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Summary

This thesis deals with irreducible Cli�ord module bundles and Dirac generating
operators of Courant algebroids.

Irreducible Cli�ord module bundles are real vector bundles that carry a repre-
sentation of a real Cli�ord algebra bundle in such a way that all the fibrewise rep-
resentations are of the same ‘type’, i.e. they are equivalent to a fixed irreducible
representation of a real Cli�ord algebra. As one of the main results of this the-
sis, we demonstrate a relation between any two irreducible Cli�ord module bundles
of the same type and use this relation to classify all such module bundles. More
precisely, given a fixed irreducible Cli�ord module bundle, we establish a bijection
between the isomorphism classes of all irreducible Cli�ord module bundles of the
same type as this fixed bundle and the isomorphism classes of all module bundles
that carry the regular representation of the Schur algebra bundle of the fixed module
bundle.

Dirac generating operators of Courant algebroids are certain first-order di�erential
operators defined on irreducible Cli�ord module bundles. The local existence of these
operators when the scalar product on the Courant algebroid is of neutral signature
(p, p) was shown by Alekseev and Xu in [AX]. We apply our results on Cli�ord
module bundles to extend this result to prove the existence of local Dirac generating
operators of Courant algebroids in arbitrary signatures. As a further main result of
this thesis we give a description of the set of Dirac generating operators of a Courant
algebroid in signature (p, p+1) as an a�ne space. In particular, the di�erence of any
two such operators is given by Cli�ord multiplication with a section of the Courant
algebroid that satisfies a certain condition. This is the first study of Dirac generating
operators that explicitly takes into consideration non-neutral signatures.
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Zusammenfassung

Die vorliegende Arbeit befasst sich mit irreduziblen Cli�ord-Modulbündeln und
Dirac-Erzeugendenoperatoren von Courant-Algebroiden.

Irreduzible Cli�ord-Modulbündel sind reelle Vektorbündel, die eine Darstellung
eines reellen Cli�ord-Algebra-Bündels tragen, sodass die Darstellungen faserweise
vom gleichen ‘Typ’ sind, d.h. sie sind alle äquivalent zu einer festen irreduziblen
Darstellung einer reellen Cli�ord-Algebra. Als eines der Hauptergebnisse dieser Ar-
beit beweisen wir eine Beziehung zwischen beliebigen irreduziblen Cli�ord-Modul-
bündeln des gleichen Typs und verwenden diese Beziehung, um alle derartigen
Modulbündel zu klassifizieren. Genauer, gegeben ein festes irreduzibles Cli�ord-
Modulbündel, beweisen wir eine Bijektion zwischen den Isomorphieklassen aller
irreduziblen Cli�ordmodulbündel vom gleichen Typ wie dieses feste Bündel und
den Isomorphieklassen aller Modulbündeln, die die reguläre Darstellung des Schur-
Algebra-Bündels des festen Modulbündels tragen.

Dirac-Erzeugendenoperatoren von Courant-Algebroiden sind gewisse Di�erential-
operatoren erster Ordnung auf irreduziblen Cli�ord-Modulbündeln. Die lokale Ex-
istenz dieser Operatoren, wenn das Skalarprodukt des Courant-Algebroids neutrale
Signatur (p, p) hat, wurde von Alekseev und Xu in [AX] bewiesen. Wir nutzen unsere
Ergebnisse über Cli�ord-Modulbündel, um diese Aussage auf die Existenz lokaler
Dirac-Erzeugendenoperatoren von Courant-Algebroiden mit beliebigen Signaturen
zu verallgemeinern. Ein weiteres Hauptergebnis dieser Arbeit ist die Beschreibung
der Menge der Dirac-Erzeugendenoperatoren eines Courant-Algebroids von Signatur
(p, p + 1) als a�ner Raum. Hierbei ist die Di�erenz zweier solcher Operatoren
gegeben durch Cli�ord-Multiplikation mit einem Schnitt des Courant-Algebroids,
der eine bestimmte Bedingung erfüllt. Die vorliegende ist die erste Forschungsarbeit
über Dirac-Erzeugendenoperatoren, die nicht-neutrale Signaturen explizit berück-
sichtigt.
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1
Introduction

None of this was too painful, it was
another of life’s perpetual little
torments, that was all, nothing when
measured against what K. aspired to,
he had not come to this place to lead
a life of peace and honour.

Franz Kafka, The Castle

This thesis relates objects encountered in two areas of mathematics – spin geom-
etry and generalised geometry.

In spin geometry, we encounter an associative algebra called a Cli�ord algebra.
Such an algebra arises naturally from any pseudo-Euclidean vector space. The
Cli�ord algebra contains the spin group which is the central object of study in spin
geometry along with the cohort of its representations and other geometric structures
that can be associated to it.

There are at least two approaches to the study of spin representations and more
generally Cli�ord representations at the level of bundles. The classical approach be-
gins by assuming the existence of a spin structure on a pseudo-Riemannian manifold
(M, g) [LM]. To every spin structure we can associate a Cli�ord module bundle. We
do this by taking a spin structure and a representation of the corresponding spin
group to obtain the so-called spinor bundle S via the associated vector bundle con-
struction. Now, if we denote by C¸(M, g) the bundle of Cli�ord algebras associated
to the tangent bundle of the manifold, then we can show that the spinor bundle S

1



Chapter 1 Introduction

carries a representation of the Cli�ord algebra bundle C¸(M, g) and is therefore in
fact a bundle of Cli�ord modules. In this way, the existence of a spin structure on a
pseudo-Riemannian manifold implies the existence of a bundle of Cli�ord modules.
The converse however is not true, one can have Cli�ord module bundles without
spin structure, for examples see [FT, LS1].

An alternative approach to spin geometry starts with the assumption that (M, g)
admits a bundle of Cli�ord modules S over C¸(M, g) without necessarily associating
it to a specific spin structure. Generally this assumption is weaker than assuming
the existence of a spin structure and has been found useful for various applications
in mathematics and physics. For a detailed discussion see [FT, LS1].

In this thesis, in the spirit of the latter approach, we begin with a pseudo-
Riemannian vector bundle (E, È·, ·Í) of signature (r, s) on a smooth manifold M and
consider the Cli�ord algebra bundle C¸(E) associated to it in the natural way. We
assume the existence of module bundles S over the Cli�ord algebra bundle C¸(E),
here onwards called Cli�ord module bundles, and ask how any two such irreducible
Cli�ord module bundles S and � that are of the ‘same type’, are related. By ‘same
type’ we mean that each fibre of both Cli�ord module bundles is equivalent to a fixed
Cli�ord module R

N ≥= �p
≥= Sp for some N œ N, over the standard Cli�ord algebra

C¸(r, s) ≥= C¸(E)p. This question has been studied thoroughly when the Cli�ord
module bundles are associated to spin structures or spinc structures [FT, LM, F]
but here we consider them in greater generality.

An answer to the above question is relevant in various contexts in which spin
geometry plays a role. In particular, it is necessary when a ‘parametrisation’ of
spin structures or spinc structures is required, such as in Seiberg–Witten theory [N,
Sa, FV]. The choice of a spin structure determines the amount of super-symmetry
preserved by solutions of supergravity equations [FG], which is another area where
the answer to our question is relevant. In this thesis we show that in the context
of generalised geometry, when developing a theory of Dirac generating operators of
Courant algebroids, an answer to the question becomes important.

In Chapter 2, we collect all the background we need for this thesis. In Chapter
3, we answer how any two irreducible Cli�ord module bundles of the same type
are related and arrive at the first main results of this thesis. We begin with a
definition of module bundles over arbitrary algebra bundles. Our algebras are always
assumed to be associative and with a unit. For a C¸(E)-module bundle �, the
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Schur algebra bundle C(�, ��) is defined, fibrewise, to be the centraliser of the
irreducible representation of C¸(E)p on �p. Then we describe the notion of taking
the ‘tensor product of module bundles over an algebra bundle’ which is the natural
generalisation of the algebraic notion of taking the tensor product of modules over
an algebra, to fibre bundles. First we show that the bundle of all C¸(E)-equivariant
homomorphisms between two Cli�ord module bundles � and S denoted by L =
HomC¸(E)(�, S) ≠æ M is a right C(�, ��)-module bundle, i.e., L admits an action
of the algebra bundle C(�, ��) from the right. Next we show that � admits a natural
left action of the algebra bundle C(�, ��). After that, we define in Lemma 3.18 the
bundle fi : L ¢C(�,��) � ≠æ M as a quotient of the bundle L ¢R � ≠æ M by a
subbundle that relates the actions of C(�, ��) on L and on � and show that this
bundle is isomorphic to S as a C¸(E)-module bundle. The statement of Theorem 3.20
stated below summarises this result.

Theorem. Let S ≠æ M and � ≠æ M be two C¸(E)-module bundles of type [“]
where “ is an irreducible representation of C¸(r, s) on R

N
. Let L be the bundle of

all C¸(E)-equivariant homomorphisms between the module bundles � and S. Then

L ¢C(�,��) � ≠æ M and S ≠æ M are canonically isomorphic as C¸(E)-module

bundles.

Further, if we fix a C¸(E)-module bundle of type “, we obtain a classification of
irreducible C¸(E)-module bundles which establishes a bijection between the set of
isomorphism classes of irreducible C¸(E)-module bundles of type “ and the isomor-
phism classes of C(S, �S)-module bundles of the regular type. By this we mean that
the type of the C(S, �S)-module bundle is the regular representation of the typical
fibre of C(S, �S) on itself by composition from the right. This result, Theorem 3.27,
is summarised as follows.

Theorem. Let S ≠æ M be a fixed irreducible C¸(E)-module bundle of type [“].
Then there exists a bijection between the following sets:

A := {isomorphism classes of irreducible C¸(E)-module bundles of type [“]}

Ï

B := {isomorphism classes of right C(S, �S)-module bundles of regular type}

3



Chapter 1 Introduction

In Chapter 4 we apply the results that we have obtained so far to the study of
Dirac generating operators on Courant algebroids in generalised geometry.

Generalised geometry as first developed by Hitchin, Gualtieri, Cavalcanti [Hi, G,
CaG] emerged as a way of unifying symplectic geometry and complex geometry
into a single framework. The basic idea was to think of symplectic and complex
structures not as linear operators on the tangent bundle T of a manifold but on
the sum of the tangent and the cotangent bundles T ü T ú of the manifold. A
Courant algebroid is a generalisation of this notion. Courant and Weinstein first
proposed the idea of a Courant algebroid in their work on Dirac bundles [Co]. Liu,
Weinstein and Xu in [LWX] systematised the definition of a Courant algebroid in
their work generalising the notion of the Drinfeld double to Lie bialgebroids and
Roytenberg refined this definition to its current one [R1]. A rich theory has now
developed in generalised geometry with the concept of Courant algebroid at its
center. A Courant algebroid is a vector bundle E ≠æ M endowed with a symmetric
bilinear form È·, ·Í œ �(Sym2 Eú), a bracket called the Dorfman backet [·, ·] : �(E) ¢
�(E) ≠æ �(E) and a bundle map called the anchor map fi : E ≠æ TM which
satisfy some compatibility conditions. The Dorfman bracket is interesting in that
it is not skew-symmetric but satisfies the Jacobi identity in the Leibniz form i.e.,
[X, [Y, Z]] = [[X, Y ], Z] + [Y, [X, Z]] for X, Y, Z œ �(E).

Dirac generating operators (DGOs) were first defined by Alekseev and Xu in
an unpublished manuscript [AX] in an approach to understand Courant algebroids
and as analogues of Kostant’s cubic Dirac type operators [Ko]. Alekseev and Xu
defined Dirac generating operators to be first-order odd di�erential operators. These
operators were defined on irreducible module bundles of Cli�ord algebra bundles
associated to pseudo-Riemannian vector bundles (E, È·, ·Í) of neutral signature (n, n)
and satisfied the properties in Remark 4.2. In their work, they showed that with a
Dirac generating operator, it is possible to define a Dorfman bracket and an anchor
map on E such that the pseudo-Riemannian vector bundle (E, È·, ·Í) becomes a
Courant algebroid. Since Courant algebroids are, in particular, pseudo-Riemannian
vector bundles, DGOs can be defined on Courant algebroids. In such an instance,
if the Dorfman bracket and the anchor map induced by the DGO coincide with the
Dorfman bracket and the anchor map of the underlying Courant algebroid, then
the DGO is called a ‘Dirac generating operator of a Courant algebroid’. Note that
DGOs of a Courant algebroid are not unique.
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Alekseev and Xu proved that DGOs exist locally on every C¸(E)-module bundle
and showed that any two local DGOs /d and /d

Õ di�er by the Cli�ord action of a section
of E. Cortés and David in [CD1] developed a refined approach to Dirac generating
operators by taking into account the structure of regular Courant algebroids with
scalar product of neutral signature. They use a dissection of a regular Courant
algebroid to arrive at an explicit formula for the standard form of the globally
defined canonical DGO in terms of data encoding the regular Courant algebroid.
They then applied their results to the study of integrability of generalised almost
Hermitian structures.

Following the work of Alekseev and Xu in [AX], the notion of a DGO has found
relevance in various contexts that involve a Courant algebroid. In the work by
Chen and Stiénon [CS], it is shown that given a pair of Lie algebroid structures
on a vector bundle A and its dual Aú, and given a line bundle L of a specified
kind, the condition for the pair (A, Aú) to be a Lie bi-algebroid is for the sum of
two naturally defined di�erential operators associated to A and L, to be a Dirac
generating operator. In a recent extension of this work Cai, Chen, Honglei, Lang
and Xiang in [CCLX] show that the square of a Dirac generating operator gives rise
to an invariant of the split Courant algebroid to which it corresponds. Gruetzmann,
Michel and Xu in [GMX] show that the square of a DGO is an invariant in the case
of more general Courant algebroids. DGOs have also been employed in gauge fixing
Weyl degrees of freedom in the space of generalised connections with torsion T in
the work of Garcia-Fernandez [GF]. They have also found application in the context
of generalised scalar curvature [GFS].

An alternative approach to Courant algebroids has been taken from the per-
spective of graded symplectic supermanifolds by Weinstein, Roytenberg, äevera
[R1, R2, ä] and others. Dirac generating operators have also been studied within
this approach [ä, äV, GMX].

In [CD2], Cortés and David develop a theory of T-duality for transitive Courant
algebroids with scalar product of neutral signature. They recognise that canonical
Dirac generating operators /dE and /dÂE intertwine the map induced by T-duality
between the spaces of sections of the canonical weighted spinor bundles SE and
SÂE of the T-dual Courant algebroids E and ÂE respectively. In order to extend
their theory to more general Courant algebroids such as, for example, odd exact
Courant algebroids [Ru], which are not of neutral signature and are of odd rank,
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Chapter 1 Introduction

they suggested that it would be useful to develop a theory of Dirac generating
operators for such Courant algebroids. This was our primary motivation to study
DGOs of Courant algebroids in arbitrary signatures.

The classification of real Cli�ord algebras tells us that real Cli�ord algebras are
sensitive to the signature of the underlying pseudo-Euclidean vector space. Since a
Courant algebroid structure is built on top of a pseudo-Riemannian vector bundle,
we approach DGOs by keeping the signature of the Courant algebroid at the center
of our enquiry. In doing that we are able to extend the result of Alekseev and Xu
[AX] and Cortés and David [CD1] on the existence of local DGOs of regular Courant
algebroids in neutral signature to arbitrary signatures. This is the first of our main
results, Theorem 4.4, in Chapter 4.

Theorem. Let E be a regular Courant algebroid with scalar product of arbitrary

signature. Every C¸(E)-module bundle S of type [“], where “ is an irreducible rep-

resentation, admits locally a Dirac generating operator.

One of the di�culties in generalising the result of [AX] and [CD1] to Courant alge-
broids E of arbitrary signatures lay in the problem of constructing an E-connection
DS over any irreducible C¸(E)-module bundle S for a given generalised connection
D on E such that DS is compatible with the Cli�ord action. This in turn relies on
the answer to the question of how two irreducible Cli�ord module bundles S and
� of the ‘same type’, are related. Thus we are led back to our theory of Cli�ord
module bundles in Chapter 3 and see that the theorems and various lemmata proven
there find an application here.

If we have two DGOs /d and /d
Õ of a Courant algebroid of signature (p, p + 1), then

what is /d ≠ /d
Õ? This is the question we ask next. In answering that we find that

the space of local DGOs in signature (p, p + 1) is also an a�ne space, analogous
to the space of local DGOs in neutral signature [CD1]. Note that as per our sign
conventions, we have C¸(p, p + 1) ≥= R[2p] ü R[2p]. The challenge in arriving at
the final main result of this thesis came from having to make do with not having
injectivity of real irreducible Cli�ord representations fl : C¸(p, p + 1) ≠æ EndR(R2

p).
To address this issue we prove Lemma 4.16:

Lemma. Let C¸(E) be a Cli�ord algebra whose underlying pseudo-Euclidean vector

space has signature (p, p + 1) and let (S, “) be an irreducible C¸(E)-module. Let

6



A œ End(S) and assume that for all v œ E we have {A, “v} = ⁄ IdS for some ⁄ œ R.

Then A = “u for some u œ E.

Our proof to this lemma is combinatorial in nature. Before giving the abstract
proof in full generality, we explore many examples and even prove this lemma for
the Cli�ord algebra C¸(2, 3). Finally as the last result of this thesis we prove Theo-
rem 4.10, the proof of which constitutes the remaining part of Chapter 4:

Theorem. Suppose there exists a DGO /d of a Courant algebroid E ≠æ M of

signature (p, p + 1) on an irreducible C¸(E)-module bundle (S, “). Then the set of

DGOs of E on (S, “) has the structure of an a�ne space modelled on

V/d := {e œ �(E) | {/d, “e} œ CŒ(M)}.

In particular, V/d is independent of the choice of the DGO /d.

In future work, one of the obvious next open questions is to determine the space
of local DGOs in all signatures. This will provide us with the base work necessary
to construct a canonical i.e., globally defined, DGO and determine a standard ex-
pression for it in all signatures. With the results we have obtained in this thesis, the
immediate next open problem is to construct a canonical DGO and its standard form
in the (p, p + 1)-signature case. In order to further develop the theory of Dirac gen-
erating operators, it would be interesting to integrate the approach to study DGOs
using deformation quantisation of graded Poisson algebras as in [ä, äV, GMX] with
our approach to DGOs in this thesis. Another interesting open problem is to clarify
the relation between Kostant’s cubic Dirac type operators [Ko] and Dirac generating
operators.

7





2
Preliminaries

They say ‘selbstständig’, implying
that you stand on your own. But
who actually stands on their own?
We are all, if we stand, supported by
any number of things.

Judith Butler

2.1 Cli�ord Algebras and Spin Geometry

In this section we describe an algebra, called Cli�ord algebra, that can naturally be
associated to a vector space equipped with a quadratic form. We will begin with a
short note on vector spaces equipped with quadratic forms.

2.1.1 Quadratic vector spaces

Let (V, K) be a vector space over the field K = R or C endowed with a symmetric
bilinear form È·, ·Í : V ◊V ≠æ K. Then to this bilinear form can be associated a map
q : V ≠æ K called the associated quadratic form which maps v ‘æ q(v) := Èv, vÍ.
The symmetric bilinear form can be recovered from the associated quadratic form
by polarization as follows:

Èx, yÍ = 1
2(q(x + y) ≠ q(x) ≠ q(y)).

Conversely, given a vector space (V, K) over a field K, a quadratic form is a map
q : V ≠æ K such that q(av) = a2q(v) for a œ K, v œ V and the function (u, v) ‘æ

9



Chapter 2 Preliminaries

q(u + v) ≠ q(u) ≠ q(v) is bilinear. A symmetric bilinear form called the associated

symmetric bilinear form can be naturally associated to a quadratic form by
defining È·, ·Í : V ◊ V ≠æ K as (u, v) ‘æ Èu, vÍ := 1

2
(q(u + v) ≠ q(u) ≠ q(v)).

If we fix a vector space (V, K), then set of all symmetric bilinear forms over V are
in one-to-one correspondence to the set of all quadratic forms over V . That is, the
notion of having a quadratic form over a vector space is equivalent to the notion
of having a symmetric bilinear form on it. In our work we will use these notions
interchangeably depending on the context and a vector space equipped with either a
symmetric bilinear form or a quadratic form will be called a quadratic vector space.

2.1.2 Cli�ord Algebra: Definition

Henceforth we will assume that all our vector spaces are over R unless stated other-
wise. Given a vector space V we can associate to it, naturally, an algebra called the
exterior algebra �•V and this association carries over naturally to vector bundles.
In a similar way, a vector space V equipped with a quadratic form q has a naturally
associated algebra called the Cli�ord algebra C¸(V, q) and this association also car-
ries over naturally to quadratic vector bundles. Furthermore, the exterior algebra
bundle �•E ≠æ M associated to a vector bundle E ≠æ M and the Cli�ord algebra
bundle associated to the same quadratic vector bundle E ≠æ M are isomorphic as
vector bundles (but not as algebra bundles). We will now define Cli�ord algebra
in a few equivalent ways. For details and proofs, the reader is invited to look at
standard texts like Spin Geometry by Lawson and Michelsohn [LM].

Definition 2.1. The Cli�ord algebra of a quadratic vector space (V, q) is the quo-
tient of the tensor algebra T (V ) := qŒ

r=0

o
r V of V by the ideal Iq(V ) generated

by all elements of the form v ¢ v + q(v)1, where v œ V , i.e.,

C¸(V, q) := T (V )/Iq(V ).

There is a natural injection V Òæ C¸(V, q) which is the image of V = o
1 V under

the canonical projection fiq : T (V ) ≠æ C¸(V, q).

A Cli�ord algebra can also be seen as generated by the vector space V µ C¸(V, q)
subject to the relations:

v · v = ≠q(v)1 (2.1)

10



2.1 Cli�ord Algebras and Spin Geometry

for v œ V . For all v, w œ V the relation is

v · w + w · v = ≠2Èv, wÍ (2.2)

where 2Èv, wÍ = q(v + w) ≠ q(v) ≠ q(w) is the polarisation of q. A Cli�ord algebra
can therefore be seen to be fully characterised by the following universal property:

Proposition 2.2. [LM] Let f : V ≠æ A be an injective linear map into a real

associative algebra with unit such that

f(v) · f(v) = ≠q(v)1

for all v œ V . Then f extends uniquely to a real algebra homomorphism Âf :
C¸(V, q) ≠æ A. Furthermore, C¸(V, q) is the unique real associative algebra with

this property. This can be summarised by the commutative diagram

(V, q) C¸(V, q)

A
f

i

Âf

This universal property of Cli�ord algebras gives rise to a functor between the
category of real quadratic vector spaces and the category of real associative algebras
with units.

2.1.2.1 Relation between the exterior algebra and Cli�ord algebra

If the quadratic form is identically zero, q = 0, then observe that C¸(V, 0) ≥= �•V .
The vector space underlying the exterior algebra �•V and the Cli�ord algebra are
canonically isomorphic as is summarised by the below proposition.

Proposition 2.3. [LM] There is a canonical vector space isomorphism �•V
≥=≠æ

C¸(V, q).

Note that the above isomorphism is not an isomorphism of algebras in general
and is only so if q = 0. Furthermore, since this map is canonical, it makes sense to
speak of embeddings in the sense of

�rV µ C¸(V, q) for all r Ø 0. (2.3)

We can deduce from the above proposition that dim C¸(V, q) = 2dim(V ).

11
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2.1.3 Z2-grading of Cli�ord algebras and Cli�ord modules

Consider the unique automorphism that extends the map –(v) = ≠v for v œ V ,

– : C¸(V, q) ≠æ C¸(V, q), (2.4)

Since –2 = Id, there is a decomposition of C¸(V, q) into eigenspaces of –,

C¸(V, q) = C¸0(V, q) ü C¸1(V, q), (2.5)

where C¸i(V, q) := {x œ C¸(V, q) | –(x) = (≠1)ix} are the eigenspaces of –. The
eigenspaces satisfy the below property where the indices are taken modulo 2,

C¸i(V, q) · C¸j(V, q) ™ C¸i+j(V, q). (2.6)

An algebra that satisfies properties (2.5) and (2.6) is called a Z2-graded algebra.
C¸0(V, q) is called the even part of C¸(V, q) and is a subalgebra. However, C¸1(V, q)
is only a linear subspace of C¸(V, q) and is called the odd part. This grading is
called the canonical Z2-grading and has important consequences in the theory
and application of Cli�ord algebras.

2.1.3.1 Volume element and volume grading of Cli�ord algebras

We will now consider the Cli�ord algebra C¸(r, s) := C¸(V, q) where V = R
r+s and

q(x) = x2

1
+ · · · + x2

r
≠ x2

r+1
≠ · · · ≠ x2

r+s
. (2.7)

C¸(r, s) will be called standard Cli�ord algebra. We begin with the below defi-
nition of volume element.

Definition 2.4. Consider the quadratic vector space (Rr+s, q) and fix an orientation.
Let e1, . . . , er+s be any positively oriented q-orthonormal basis. Then the associated
volume element is

Ê := e1 · · · er+s œ C¸(r, s) (2.8)

Note that the volume element is independent of the choice of a positively oriented
q-orthonormal basis.

Proposition 2.5. [LM] The volume element (2.8) in C¸(r, s) has the following basic

properties. Let n = r + s. Then:

Ê2 = (≠1)
n(n+1)

2 +s, (2.9)

12



2.1 Cli�ord Algebras and Spin Geometry

vÊ = (≠1)n≠1Êv for all v œ R
n. (2.10)

In particular, if n is odd, then the element Ê is central in C¸(r, s). If n is even, then

„Ê = Ê–(„)

where – is the automorphism 2.4 for all „ œ C¸(r, s).

The property 2.9 can be rewritten as

Ê2 =

Y
_]

_[

(≠1)s if n © 3 or 4 (mod 4),

(≠1)s+1 if n © 1 or 2 (mod 4).
(2.11)

Proposition 2.6. [LM] Suppose the volume element Ê in C¸(r, s) satisfies Ê2 = 1
and set

fi+ = 1
2(1 + Ê) and fi≠ = 1

2(1 ≠ Ê) (2.12)

Then fi+
and fi≠

satisfy the relations

fi+ + fi≠ = 1, (2.13)

(fi+)2 = fi+, and (fi≠)2 = fi≠, (2.14)

fi+fi≠ = fi≠fi+ = 0 (2.15)

The above proposition leads to two important facts. The first one describes the
conditions under which the volume element of a Cli�ord algebra induces a grading
on it, the so-called volume grading, via the idempotents fi±:

Proposition 2.7. [LM] Suppose that the volume element Ê in C¸(r, s) satisfies Ê2 =
1, and that r + s is odd. Then C¸(r, s) can be decomposed as a direct sum

C¸(r, s) = C¸(r, s)+ ü C¸(r, s)≠ (2.16)

of isomorphic subalgebras, where C¸(r, s)± = fi± · C¸(r, s) = C¸(r, s) · fi±
and where

–(C¸(r, s)±) = C¸(r, s)û
.

The second statement describes the conditions under which one obtains a grading
on a Cli�ord module:

13
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Proposition 2.8. [LM] Suppose that the volume element Ê in C¸(r, s) satisfies Ê2 =
1 and that r+s is even. Let V be any C¸(r, s)-module. Then there is a decomposition

V = V + ü V ≠

into the +1 and ≠1 eigenspaces for multiplication by Ê. In fact,

V + = fi+ · V and V ≠ = fi≠ · V (2.17)

and for any e œ R
r+s

with q(e) ”= 0, module multiplication by e gives isomorphisms

e : V + ≠æ V ≠
and e : V ≠ ≠æ V +. (2.18)

Returning to the canonical grading of the Cli�ord algebra C¸(r, s) = C¸0(r, s) ü
C¸1(r, s) given in (2.5) we have the following relation between a Cli�ord algebra and
the even part of another Cli�ord algebra.

Proposition 2.9. [LM] For all r, s there is an algebra isomorphism

C¸(r, s) ≥= C¸0(r + 1, s)

2.1.4 Classification of Cli�ord algebras

The following proposition states how standard Cli�ord algebras can be generated
from an orthonormal basis of R

r+s.

Proposition 2.10. [LM] Let e1, . . . , er+s be any q-orthonormal basis of R
r+s µ

C¸(r, s). Then C¸(r, s) is generated as an algebra by e1, . . . , er+s subject to the relation

eiej + ejei = ≠2‘i”ij,

where ‘i := q(ei, ei) œ {±1}.

Example 2.11 (Low-dimensional Cli�ord algebras).

• the ‘trivial’ case: Consider the Cli�ord algebra C¸(0, 0) which is associated
to the quadratic vector space (R, q = 0). Then C¸(0, 0) ≥= R with isomorphism
given by x1 Ωæ x.

• C¸(1, 0): This Cli�ord algebra is generated by one element say e œ R subject
to the relation e2 = ≠1 and it is isomorphic to C as a real associative algebra
via the isomorphism x1 + ye Ωæ x + ÿy.

14



2.1 Cli�ord Algebras and Spin Geometry

• C¸(0, 2): This Cli�ord algebra is generated by two elements say e1 and e2

obeying the relations e2

1
= 1 = e2

2
and e1e2 = ≠e2e1. The resulting algebra is

isomorphic to the algebra of real 2 ◊ 2 matrices via the isomorphism:

x1 + ye1 + ze2 + we1e2 Ωæ
Q

ax + y z + w

z ≠ w x ≠ y

R

b

• C¸(2, 0): The Cli�ord algebra C¸(2, 0) is also generated by two elements e1 and
e2 satisfying the relations e2

1
= ≠1 = e2

2
and e1e2 = ≠e2e1. Then C¸(0, 2) ≥= H

via the isomorphism:

x01 + x1e1 + x2e2 + x3e1e2 Ωæ x0 + x1i + x2j + x3k

• C¸(0, 1): The Cli�ord algebra C¸(0, 1) is generated by one element say e subject
to the relation e2 = 1. We can define complementary idempotents fi± = 1

2
(1 ±

e) which obey the relations fi+ + fi≠ = 1, fi+fi≠ = 0 and fi2

± = fi±. Therefore
C¸(0, 1) can be decomposed into complementary subspaces. C¸(0, 1) ≥= R ü R

with explicit isomorphism xfi+ + yfi≠ Ωæ (x, y).

• C¸(1, 1): This Cli�ord algebra is generated by two elements which we can call
e1 and e2 satisfying the relations e2

1
= ≠1 and e2

2
= +1 with e1e2 = ≠e2e1.

It can be identified with R[2], the algebra of a real 2 ◊ 2 matrices via the
isomorphism

x1 + ye1 + ze2 + we1e2 Ωæ
Q

a x + z y ≠ w

≠y ≠ w x ≠ z

R

b .

We can obtain an explicit description of the algebras C¸(r, s) as real matrix alge-
bras with entries from R, C or H by using the isomorphisms identifying the lower-
dimensional Cli�ord algebras C¸(1, 0), C¸(0, 1), C¸(1, 1), C¸(2, 0) and C¸(0, 2) with
matrix algebras and the theorem below.

Theorem 2.12. [LM] There are isomorphims

C¸(0, n + 2) ≥= C¸(n, 0) ¢ C¸(0, 2) (2.19)

C¸(n + 2, 0) ≥= C¸(0, n) ¢ C¸(2, 0) (2.20)

C¸(r + 1, s + 1) ≥= C¸(r, s) ¢ C¸(1, 1) (2.21)

for all n, r, s Ø 0.

The complete classification is summarised below in Table 2.1.4.
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2.1 Cli�ord Algebras and Spin Geometry

2.1.5 Spin Groups and their Lie algebras

Let C¸(V, q)◊ denote the group of invertible elements in the Cli�ord algebra C¸(V, q).
Then we can define two subgroups of C¸(V, q)◊ called the Pin-group and the Spin-
group as follows,

Pin(V, q) = {v1 . . . vr œ C¸(V, q)◊ | q(vj) = ±1 ’ j} (2.22)

and
Spin(V, q) = {v1 . . . vr œ Pin(V, q) | r is even }. (2.23)

Alternatively, the Spin-group can also be seen as follows,

Spin(V, q) = Pin(V, q) fl C¸0(V, q).

When V = R
r+s and q is the quadratic form (2.7), we denote the Spin and Pin groups

by Spin(r, s) := Spin(V, q) and Pin(r, s) := Pin(V, q) and we have the following short
exact sequences.

Theorem 2.13. [LM] Let V be a finite-dimensional vector space over R and let q

be a non-degenerate quadratic form on V . Then there are the following short exact

sequences.

0 ≠æ Z2 ≠æ Spin(V, q) ÊAd≠æ SO(V, q) ≠æ 1

0 ≠æ Z2 ≠æ Pin(V, q) ÊAd≠æ O(V, q) ≠æ 1.

Here the group homomorphism ÁAd is defined by

ÁAd„(y) := –(„)y„≠1,

where – is the automorphism (2.4) and is called the twisted adjoint representa-

tion.

2.1.5.1 Lie algebra structures

In this section we will state some properties of the Lie algebra associated to the group
Spin(r, s). First note that cl◊(r, s) := (C¸(r, s), [·, ·]) where [„, Â] = „ · Â ≠ Â · „ is
the Lie algebra of the group of units C¸◊(r, s).

17
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Proposition 2.14. [LM] The Lie subalgebra of cl◊(r, s) corresponding to the sub-

group Spin(r, s) µ C¸◊(r, s) is

spin(r, s) = �2
R

r+s,

considered as a subspace of C¸(r, s) according to (2.3). In particular, �2
R

r+s
is closed

under the bracket operation.

Proof. After delineating cases based on the signature of the metric, the proof to this
statement follows analogous to the proof in [LM].

The Lie algebra of the orthogonal group SO(r, s) is the vector space below together
with the commutator:

so(r, s) =

Y
]

[A : R
r+s ≠æ R

r+s

------

A is linear and skew-symmetric, i.e.
ÈAx, yÍ = Èx, AyÍ for all x, y œ R

r+s

Z
^

\ .

There is a natural isomorphism „ : �2
R

r+s ≠æ so(r, s) mapping v · w to „(v · w)
defined by linearly extending „(v · w)(x) := Èv, xÍw ≠ Èw, xÍv for x œ R

r,s.

Note that if e1, . . . , er+s is a basis of R
r+s, then „(ei · ej) with 1 Æ i < j Æ r + s is

a basis of so(r, s). From now on, we will suppress „ in the notation and write v · w

for „(v · w), too.
Since the twisted adjoint representation ÁAd gives a surjective homomorphism

Spin(r, s) ÊAd≠æ SO(r, s),

the di�erential of this gives a Lie algebra isomorphism

spin(r, s) Âad≠æ so(r, s).

The following two propositions will play an important role in the construction of
Dirac generating operators later on, particularly in the proof of Lemma 4.5, where
it is shown that a generalised connection on a Courant algebroid E induces an
E-connection on any spinor bundle.

Proposition 2.15. [LM] The Lie algebra isomorphism spin(r, s) Âad≠æ so(r, s) induced

by the adjoint representation is given explicitly on the basis elements {eiej}i<j by

Êad(eiej) = 2ei · ej. (2.24)

18
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Consequently for v, w œ R
r+s

,

Êad
≠1(v · w) = 1

4[v, w] (2.25)

Proposition 2.16. [LM] Let � : Spin(r, s) ≠æ SO(W ) be a representation on some

vector space W obtained by restriction of a representation C¸(r, s) ≠æ End(W ) of

the Cli�ord algebra. Let �ú : so(r, s) ≠æ so(W ) be the associated representation of

the Lie algebra obtained by first pulling back so(r, s) to the double covering via Êad
≠1

.

Then on the elementary transformations v · w œ so(r, s),

�ú(v · w) = 1
4[v, w] · ≠ (2.26)

where the dot indicates Cli�ord module multiplication on W .

In terms of the standard basis {ei · ej}i<j we have

�ú(ei · ej) = 1
2eiej. (2.27)

2.1.6 Representation Theory

We recall here some basic results from Algebra for completeness and to set notations.
More details can be found in standard references for the topic such as [L, DK, Ch].
Every vector space is considered over R unless explicitly specified otherwise. Every
algebra is assumed to be a real associative algebra with unit. A real representation V

of an algebra A is an R-linear algebra homomorphism between A and the endomor-
phism algebra EndR(V ). An anti-representation of an algebra T : A ≠æ EndR(V )
is an R-linear map such that T (ab) = T (b)T (a). A module V over an associative
algebra A is a vector space V together with a representation of the algebra. We
recall below the notion of equivalence of two representations of algebras.

Definition 2.17. Let A and AÕ be real algebras. Let V and V Õ be real vector spaces
such that “ : A ≠æ EndR(V ) and “Õ : AÕ ≠æ EndR(V Õ) are real representations. “

and “Õ are said to be equivalent if there exists an isomorphism of algebras f : A ≠æ
AÕ and an isomorphism of vectors spaces g : V ≠æ V Õ such that the below diagram
commutes,

A EndR(V )

AÕ EndR(V Õ)

“

f Ad(g)

“
Õ

19
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where Ad(g) : EndR(V ) ≠æ EndR(V Õ) is such that f ‘æ g ¶ f ¶ g≠1.

Next we define the Schur algebra of a representation, also called the centraliser of
a representation. This object will play an important role in our work.

Definition 2.18. Let A be an algebra and “ : A ≠æ EndR(V ) a real representation.
The Schur algebra of the representation “ is defined as

C(V, “) := {a œ EndR(V ) | [a, “(A)] = 0}

In the proposition below we show that equivalent representations have isomorphic
Schur algebras.

Proposition 2.19. Let A and AÕ
be real algebras. If V and V Õ

are real vector

spaces such that “ : A ≠æ EndR(V ) and “Õ : AÕ ≠æ EndR(V Õ) are equivalent as real

representations, then their Schur algebras C(V, “) and C(V Õ, “Õ) are isomorphic.

Proof. If “ and “Õ are equivalent, then by definition there exists an isomorphism of
algebras f : A ≠æ AÕ and an isomorphism of vectors spaces g : V ≠æ V Õ such that
the diagram in Definition 2.17 commutes. Then Ad(g) defines an isomorphism of
the algebras EndR(V ) and EndR(V Õ) which restricts to an isomorphism of the Schur
algebras C(V, “) and C(V Õ, “Õ).

Let A be an algebra over a field K. Recall that a non-zero module is said to
be irreducible if it has no proper submodules, i.e. if the only submodules are the
whole module and the zero module.

Theorem 2.20 (Schur’s Lemma). If U and V are irreducible A-modules, then

every non-zero homomorphism f : U æ V is an isomorphism.

Proof. Ker(f) and Im(f) are submodules of U and V respectively. Since f ”= 0
we can be sure that Ker(f) ”= U and Im(f) ”= 0 and consequently, we can be sure
that, Ker(f) = 0 and Im(f) = U . Therefore, f is both a monomorphism and an
epimorphism.

Recall that a division algebra is an algebra in which every non-zero element is
invertible. It is also known as a skew-field. The following corollary is a consequence
of Schur’s lemma.
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Corollary 2.21. The endomorphism algebra of an irreducible module over algebra

A is a real associative division algebra.

Note the following classification theorem by Frobenius and Peirce for all finite-
dimensional real division algebras.

Theorem 2.22 (Frobenius). Every finite-dimensional real associative division al-

gebra is isomorphic to R, C or H.

Furthermore, every subalgebra of a finite-dimensional division algebra is again a
division algebra [DK]. Therefore, in particular, the Schur algebra of a real represen-
tation of an algebra is a real associative division algebra.

Definition 2.23. If R and S are non-commutative rings with unit and M is an
abelian group, we call M an (S, R)-bimodule if it is a right R-module and a left
S-module, and if s(mr) = (sm)r for all s œ S, r œ R and m œ M .

Example 2.24. GL(H) is an (H, H)-bimodule with the standard action because H

is associative.

Remark 2.25. If N is a left-R module and M is an (S, R)-bimodule, then the
(S, R)-bimodule structure on M implies that for all s œ S, mi œ M and ni œ N ,

s
1 ÿ

finite

mi ¢ ni

2
=

ÿ

finite

(smi) ¢ ni (2.28)

and this gives a well-defined action of S under which M ¢R N is a left S-module.

For K = R, C or H, let K[n] denote the real associative algebra of n ◊ n-matrices
with entries from K. The following theorem summarises the representation theory
of such an algebra.

Theorem 2.26. Let K = R, C or H, and consider the algebra K[n] of n ◊ n matrices

with entries from K as an algebra over R. Then the natural representation fl of K[n]
on the vector space K

n
is, up to equivalence, the only irreducible real representation

of K[n]. The algebra K[n] ü K[n] has exactly two equivalence classes of irreducible

real representations. They are given by

fl1(Ï1, Ï2) = fl(Ï1) and fl2(Ï1, Ï2) = fl(Ï2)

acting on K
n
.
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Proof. The ring K[n] is the direct sum of n simple left ideals Ii for i = 1, . . . , n,
where Ii is the set of matrices with all entries zero except in the i-th column and
is thus isomorphic to K

n as a left module. Since all the left ideals Ii are isomorphic
to each other, the ring K[n] is simple. This means that K[n] has exactly one simple
module due to Corollary 4.6 on page 653 in [L]. Similarly, it can be shown that the
ring K[n] ü K[n] has two isomorphism classes of left ideals into which it decomposes,
corresponding to the two equivalence classes of irreducible representations given in
the statement of the claim.

Note that since every Cli�ord algebra C¸(r, s) is of the form K[2m] or K[2m]üK[2m]
for K = R, C or H, see Theorem 2.12, and every representation of a Cli�ord algebra
can be decomposed into irreducible representations, the theorem above also describes
their representation theory.

2.1.6.1 Cli�ord Representations

In the proposition below we state important properties of irreducible real represen-
tations of Cli�ord algebras.

Proposition 2.27. Let “ : C¸(r, s) æ EndR(RN) be an irreducible real representa-

tion. Then:

If (r ≠ s) ©8 0, 6 then “ is an isomorphism.

If (r ≠ s) ©8 1, 5 then “ is injective but not surjective.

If (r ≠ s) ©8 2, 4 then “ is injective but not surjective.

If (r ≠ s) ©8 7 then “ is surjective but not injective.

If (r ≠ s) ©8 3 then “ is neither surjective nor injective.

Proof. From Theorem 2.26 we know all irreducible real representations of (direct
sums of) real, complex or quaternionic matrix algebras.

• (r ≠ s) ©8 0, 6:
In this case the Cli�ord algebra C¸(r, s) ≥= R[2m] is a real matrix algebra for
some m œ N. Its unique irreducible representation is the natural representation
on R

2
m and hence “ is clearly an isomorphism.
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• (r ≠ s) ©8 1, 5:
In this case the Cli�ord algebra C¸(r, s) ≥= C[2m] is a complex matrix algebra for
some m œ N. Its unique irreducible representation is the natural representation
on C

2
m and hence “ : C[2m] æ EndC(C2

m) µ EndR(C2
m), if considered as a

real representation, is injective and not surjective.

• (r ≠ s) ©8 2, 4:
In this case the Cli�ord algebra C¸(r, s) ≥= H[2m] is a quaternionic matrix
algebra for some m œ N. Its unique irreducible representation is the natural
representation on H

2
m and hence “ : H[2m] æ EndH(H2

m) µ EndR(H2
m), if

considered as a real representation, is injective and not surjective.

• (r ≠ s) ©8 7:
In this case the Cli�ord algebra C¸(r, s) ≥= R[2m]üR[2m] is the direct sum of two
real matrix algebras for some m œ N. Its two irreducible representations are
the projections of R[2m]üR[2m] onto a summand and hence they are surjective
and not injective.

• (r ≠ s) ©8 3:
In this case the Cli�ord algebra C¸(r, s) ≥= H[2m] ü H[2m] is the direct sum
of two quaternionic matrix algebras for some m œ N. Its two irreducible
representations are given by the embedding H[2m] ü H[2m] = EndH(H2

m) ü
EndH(H2

m) µ EndR(H2
m) ü EndR(H2

m) followed by the projections onto a
summand and hence they are neither surjective nor injective.

The isomorphism type of the Schur algebra of irreducible representations of C¸(r, s)
is a feature on the basis of which we can distinguish the Cli�ord algebras. For an
involved discussion on the Schur algebra of irreducible representations of C¸(r, s)
see [LS1]. In particular, Proposition 5.3 in [LS1] gives a characterisation of the
Schur algebras of irreducible representations of C¸(r, s). Cli�ord algebras can be
distinguished by the signature of the quadratic form, the simplicity or isomorphism
type of their matrix algebra, and the isomorphism type of the Schur algebra of their
irreducible representations. These facts are summarised for convenience in the table
below:
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r ≠ s mod 8 simplicity matrix algebra type Schur algebra of irrep
0,6 simple real R

1,5 simple complex C

2,4 simple quaternionic H

7 non-simple real R

3 non-simple quaternionic H

So far we have considered only real representations of Cli�ord algebras. We can
also consider K-representations of C¸(r, s) where K = R, C or H. Since a complex
vector space is just a real vector space W with a real linear map J : W ≠æ W such
that J2 = ≠ Id, a complex representation of C¸(r, s) is just a real representation
fl : C¸(r, s) ≠æ EndR(W ) such that fl(„)¶J = J ¶fl(„) for all „ œ C¸(r, s). Therefore
the image of fl commutes with the subalgebra span

R
{Id, J} ≥= C which is precisely the

Schur algebra of the representation fl. Analogous arguments apply to quaternionic
representations of C¸(r, s).

2.1.7 Fibre bundles

We collect some standard results from the theory of fibre bundles that we use in
our work here for completeness. For details and proofs look at standard texts on
the subject like [B]. All manifolds and maps between manifolds in this thesis are
assumed to be smooth.

Definition 2.28. Let fi : E ≠æ M be a surjective submersion and let F be another
manifold. The tuple (E, fi, M, F ) is called fibre bundle with typical fibre F if
around every point x œ M there exists a neighbourhood U ™ M and a di�eomor-
phism „U : fi≠1(U) ≠æ U ◊F such that pr

1
¶„U = fi|fi≠1(U) where pr1 : U ◊F ≠æ U

is the projection onto the first component. The di�eomorphism „U is called a local
trivialisation.

If V is a vector space, then a fibre bundle (E, fi, M, V ) is called a vector bundle

if its fibres fi≠1(x), x œ M, are vector spaces such that there are local trivialisations
whose restrictions „x : fi≠1(x) ≠æ {x}◊V = V to the fibres are linear isomorphisms.

Analogously, one defines algebra bundles.

Remark 2.29. Let F and F Õ be smooth manifolds and � : F ≠æ F
Õ a di�eomor-

phism. Then fi : E ≠æ M is a fibre bundle with typical fibre F if and only if
fi : E ≠æ M is a fibre bundle with typical fibre F

Õ .
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Definition 2.30. Let M and F be manifolds and E a set with a surjection fi :
E ≠æ M . If U ™ M is an open set and „U : fi≠1(U) ≠æ U ◊ F a bijection such
that pr

1
¶„U = fi|EU , then we call (U, „U) a formal bundle chart of E. A family

{(Ui, „Ui)}iœ� of formal bundle charts of E is called a formal bundle atlas of E if
{Ui}iœ� is an open cover of M .

Recall the following characterization of fibre bundles, the statement and proof of
which can be found in various references such as for example [B].

Theorem 2.31. Let M and F be manifolds and E a set with a surjection fi : E ≠æ
M . Further let {(Ui, „Ui)}iœ� be a formal bundle atlas of E (with respect to fi) such

that all transition functions

„i ¶ „≠1

k
: (Ui fl Uk) ◊ F ≠æ (Ui fl Uk) ◊ F ’i, k œ �

are smooth. Then, there exists a unique topology and manifold structure on E

such that (E, fi, M, F ) is a (smooth) fibre bundle with the (smooth) bundle chart

{(Ui, „i)}iœ�.

Proposition 2.32. Let V ≠æ M be a fibre bundle with typical fibre F , then fi :
End(V ) := ÛpœM End(Vp) ≠æ M is a fibre bundle with typical fibre End(F ).

Proof. If {U– | – œ �} is an open cover of M and {÷– | – œ �} is a family of local
trivializations of V , then (End(V ), fi, M, End(F )) is a fibre bundle with the smooth
bundle chart {Ad(÷–) | – œ �}.

Proposition 2.33. If (E, h) ≠æ M is a pseudo-Riemannian vector bundle, then it

has an associated fibre bundle of Cli�ord algebras C¸(E) ≠æ M .

Proof. Given a vector bundle with a bilinear form (E, h) ≠æ M the construction of
a Cli�ord algebra over a vector space with a bilinear form is performed fibrewise to
obtain the fibres of C¸(E) ≠æ M . The topology of C¸(E) is inherited from E via
an associated bundle construction.

Next we will prove a general fact about covariant derivatives or connections on
vector bundles.

Proposition 2.34. Every smooth vector bundle admits a covariant derivative.
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Proof. Let V be a vector bundle over a manifold M . We show that there exists a
covariant derivative Ò : �(TM) ◊ �(V ) æ �(V ).

Let (Ui)i be an open cover of M such that V |Ui is trivializable and there exists
a subordinate partition of unity (Âi)i. Let (xj

i
: Ui æ R)j be coordinates on Ui ™

M and let (si : Ui æ V )i be a local frame. Then Ò(i) : �(TUi) ◊ �(V |Ui) æ
�(V |Ui), ( ˆ

ˆx
j
i

, s = qj

k=1
fksk) ‘æ q

k

ˆfk

ˆx
j
i

sk defines a covariant derivative on V |Ui for
every i, which can be glued together to a covariant derivative on V using a partition
of unity (Âi)i, as follows. For X œ �(TM) and s œ �(V ), set ÒX(s) := q

i Ò(i)

X
(Âis).

It is CŒ(M)-linear. Let f œ CŒ(M). Then,

ÒfX(s) =
ÿ

i

Ò(i)

fX
(Âis) = f

ÿ

i

Ò(i)

X
(Âis) = fÒX(s).

Furthermore, we have

ÒX(fs) =
ÿ

i

Ò(i)

X
(Âifs)

=
ÿ

i

X(f)Âis + fÒ(i)

X
(Âis)

= X(f)s +
ÿ

i

fÒ(i)

X
(Âis)

= X(f)s + fÒX(s).

2.1.8 Spin Structure

Definition 2.35. Let E æ M be an oriented pseudo-Riemannian vector bundle of
rank n > 2 and signature (r, s) with oriented orthonormal frame bundle PSO(E). A
spin structure on E is a Spin(r, s)-principal bundle PSpin(E) over M together with
a 2-sheeted covering PSpin(E) æ PSO(E) which is a Spin(r, s)-equivariant bundle
map. Here the Spin(r, s) acts on PSO(E) via the double covering Spin(r, s) æ
SO(r, s).

Proposition 2.36. A trivializable real vector bundle with an inner product admits

a spin structure.

Proof. Clearly it su�ces to show that any trivial pseudo-Riemannian vector bundle
E = M◊R

r,s æ M admits a spin structure. The SO(r, s)-principal bundle PSO(E) of
oriented orthonormal frames is the trivial one: M ◊ SO(r, s). The trivial Spin(r, s)-
principal bundle over M with the obvious bundle map M ◊Spin(r, s) æ M ◊SO(r, s)
then gives a spin structure.
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2.2 Generalised Geometry

Now we define bundles of irreducible modules over the bundle of Cli�ord algebras
C¸(E).

Definition 2.37. Let E be an oriented pseudo-Riemannian vector bundle with a
spin structure › : PSpin(E) ≠æ PSO(E). A real spinor bundle of E is a bundle of
the form

S(E) = PSpin(E) ◊µ V,

where V is a left C¸(r, s)-module, µ : Spin(r, s) ≠æ SO(V ) is the representation
given by left multiplication by elements of Spin(r, s) µ C¸0(r, s) and PSpin(E) ◊µ V

is the associated vector bundle.

Example 2.38. Consider C¸(r, s) as a module over itself by left multiplication ¸.
Then the corresponding real spinor bundle is

C¸Spin(E) = PSpin(E) ◊¸ C¸(r, s).

Every real spinor bundle is also a bundle of modules over the Cli�ord algebra
bundle as can be seen from the proposition below.

Proposition 2.39. [LM] Let S(E) be a real spinor bundle of E. Then S(E) is a

bundle of modules over the bundle of algebras C¸(E). In particular then sections of

the spinor bundle form a module over the sections of the Cli�ord bundle.

2.2 Generalised Geometry

In this section we will define the primary object of study in generalised geometry
namely, Courant algebroids. We will look at some examples and then define the
notion of connection and torsion in the context of generalised geometry. Standard
references for generalised geometry are [GF, GFS, G].

2.2.1 Courant Algebroids

Definition 2.40. A Courant algebroid over a manifold M is a vector bundle
E ≠æ M endowed with the following data:

• a fibrewise non-degenerate symmetric bilinear form È·, ·Í œ �(Sym2 Eú) which
we call the scalar product of E,
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• a bilinear map [·, ·] : �(E)◊�(E) ≠æ �(E) which we call the Dorfman bracket,

• a homomorphism fi : E ≠æ TM of vector bundles, called the anchor map,

such that the following axioms are satisfied for all u, v, w œ �(E):

1. [u, [v, w]] = [[u, v], w] + [v, [u, w]],

2. fi(u)Èv, wÍ = È[u, v], wÍ + Èv, [u, w]Í,

3. È[u, v] + [v, u], wÍ = fi(w)Èu, vÍ.

Note that the Dorfman bracket is not necessarily skew-symmetric.

Proposition 2.41. The bracket and the anchor of a Courant algebroid (E, È·, ·Í, [·, ·], fi)
satisfy the following equations for u, v œ �(E) and f œ CŒ(M):

1. [u, fv] = fi(u)(f) · v + f [u, v]

2. fi[u, v] = [fiu, fiv], where on the right hand side [·, ·] stands for the commutator

of vector fields.

Proof. These equalities follow from a straightforward application of the axioms of a
Courant algebroid, see [U].

If (E, È·, ·Í, [·, ·], fi) is a Courant algebroid, then we denote by fiú : T úM ≠æ E

the map obtained by dualising fi to obtain fiú: T úM ≠æ Eú and then identifying
Eú ≥= E via the scalar product È·, ·Í. Explicitly it is given by Èfiú(–), vÍ = –(fi(v))
for – œ T ú

p
M , v œ Ep, p œ M .

Proposition 2.42. Let (E, È·, ·Í, [·, ·], fi) be a Courant algebroid. Then the bracket,

the anchor fi and its dual satisfy the following equations for –, — œ �(T úM):

1. fi ¶ fiú = 0

2. Èfiú–, fiú—Í = 0

3. [fiú–, fiú—] = 0
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Proof. Observe that T ú
p
M = {dpf | f = Èv, vÍ, v œ �(E)} for any p œ M . Therefore

we can consider a one-form of the form › = df for f = Èv, vÍ with v œ �(E). By
Axiom 3 for a Courant algebroid, we have fiú(›) = 2[v, v]. To show that the vector
field fi(fiú(›)) is zero, we evaluate any one-form ÷ œ �(T úM) on it and obtain

÷ (fi (fiú(›))) = Èfiú(÷), fiú(›)Í = 2 Èfiú(÷), [v, v]Í

= 2÷(fi([v, v])) = 2÷([fi(v), fi(v)]) = 0.

This shows parts 1 and 2 of the lemma. To prove part 3 we compute for any e œ �(E)

È[fiú(›), fiú(÷)] , eÍ = fi (fiú(›)) Èfiú(÷), eÍ ≠ Èfiú(÷), [fiú(›), e]Í

= ≠÷ (fi [fiú(›), e])

= ≠÷ ([fi(fiú(›)), fi(e)])

= 0.

Definition 2.43. A Courant algebroid (E, È·, ·Í, [·, ·], fi) is called

1. regular if fi has constant rank,

2. transitive if fi is a submersion,

3. exact if the sequence below is exact,

0 ≠æ T úM
fi

ú
≠æ E

fi≠æ TM ≠æ 0.

Observe that exactness implies transitivity which in turn implies regularity of a
Courant algebroid. Now we will look at some examples of Courant algebroids.

Example 2.44. If M is a manifold and TM and T úM denote its tangent and
cotangent bundles respectively, then the vector bundle TM = TM ü T úM , called
the generalised tangent bundle, may be endowed with the structure of a Courant
algebroid by defining the scalar product È·, ·Í, the bracket [·, ·], the anchor fi as
follows:

• ÈX + ›, Y + ÷Í = 1

2
(›(Y ) + ÷(X)) for all X, Y œ �(TM) and ›, ÷ œ �(T úM).

• [X + ›, Y + ÷] = [X, Y ] + LX÷ ≠ LY › + d(›(Y )) for all X, Y œ �(TM) and
›, ÷ œ �(T úM).
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• fi : TM ≠æ TM is the natural projection X + › ‘æ X.

The generalised tangent bundle is an example of an exact Courant algebroid.

Example 2.45. Consider the generalised tangent bundle (TM, È·, ·Í, [·, ·], fi) with its
canonical Courant algebroid structure. If H œ �(�3T úM) is a closed 3-form, i.e.,
such that dH = 0, then the bracket defined by

[X + ›, Y + ÷]H = [X + ›, Y + ÷] + H(X, Y, ·)

is also a Dorfman bracket and defines on TM another Courant algebroid structure
(TM, È·, ·Í, [·, ·]H , fi). The Courant algebroid is also called the H-twisted Courant
algebroid.

This is another example of an exact Courant algebroid. In fact it can be shown
that every exact Courant algebroid is isomorphic to a twisted Courant algebroid [ä].

Example 2.46. Let g be a Lie algebra which admits a scalar product that is in-
variant under the adjoint action, i.e. such that È[u, v], wÍ + Èv, [u, w]Í = 0 for all
u, v, w œ g. Then (g, È·, ·Í) is called a quadratic Lie algebra. A quadratic Lie
algebra can be considered as a Courant algebroid over a point M = {pt} together
with the trivial anchor map fi = 0 : g ≠æ {pt}.

This is one of the simplest examples of a transitive Courant algebroid. Another
example of a transitive Courant algebroid is the odd exact Courant algebroid on the
vector bundle TM ü R described in [Ru], where R is the trivial bundle of rank 1 on
M . Transitive Courant algebroids have been classified by Vaisman in [V]. Now we
will look at a simple example of a regular Courant algebroid.

Example 2.47. A bundle E ≠æ M of quadratic Lie algebras can be endowed
with a Courant algebroid structure with the trivial anchor map fi = 0 : E ≠æ
TM , scalar product È·, ·Í œ �(Sym2 Eú) and bracket [·, ·] œ �(�2Eú ¢ E) such that
(Ex, È·, ·Íx, [·, ·]x) is a quadratic Lie algebra for all x œ M .

Since Rk(fi) = 0, the example above describes trivially a regular Courant algebroid
which is transitive if and only if M is zero-dimensional. For a complete classification
of regular Courant algebroids, see [CSX].
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2.2.1.1 Structure of a regular Courant algebroid

In the following lemma we describe the structure of a regular Courant algebroid.
This plays a critical role in our proof for the existence of Dirac generating operators
in arbitrary signatures. In particular, we will use this lemma to construct a local
frame for the Courant algebroid, computing with which then leads us to our desired
result, Lemma 4.9, which we need in order to prove Theorem 4.10.

Lemma 2.48. [CSX] Let E be a regular Courant algebroid with scalar product È·, ·Í
of signature (r, s) and anchor fi : E æ TM.

1. The bundle ker fi µ E is a co-isotropic subbundle of E, that is (ker fi)‹ µ ker fi.

2. The bundle E decomposes as E = ker fi ü F where F is isotropic, that is

F µ F‹
.

3. The bundle ker fi decomposes as ker fi = (ker fi)‹ ü G where G is orthogonal to

F .

4. The decomposition of E =
1
(ker fi)‹ ü F

2
ü G into (ker fi)‹ ü F and G is

orthogonal with respect to È·, ·Í. The restrictions of È·, ·Í to the two factors

(ker fi)‹ ü F and G have signatures (l, l) and (r ≠ l, s ≠ l), respectively.

Proof. 1. First observe that ker fi µ E is a sub-bundle because the anchor of a
regular Courant algebroid has constant rank. Since for any Courant algebroid,
fi ¶ fiú = 0 as seen from Proposition 2.42, that is Im fiú ™ ker fi, it is enough
to show that (ker fi)‹ = Im fiú. Let x œ Im fiú. Then there exists › œ T úM

such that x = fiú(›). If y œ ker fi, then Èfiú(›), yÍ = ›(fi(y)) = 0 implying
x œ (ker fi)‹. Therefore Im fiú ™ (ker fi)‹. Now (ker fi)‹ ™ Im fiú follows from
comparing dimensions.

2. Denote by F := fi(E) ™ TM and s := rankF . Let ⁄0 : F æ E be a section of
fi, that is fi ¶ ⁄0 = idF . Define fl : F æ F ú by fl(X)(Y ) := È⁄0(X), ⁄0(Y )Í and
let ⁄ := ⁄0 ≠ 1

2
fiú ¶ fl : F æ E. Since

fi ¶ ⁄ = fi ¶ ⁄0 ≠ 1
2fi ¶ fiú ¶ fl = IdF ,

⁄ is also a section of fi. Now define F := ⁄(F ). For p œ M and e œ Ep, we
can find f := ⁄(fi(e)) œ Fp. Furthermore for such an f we have fi(e ≠ f) =
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fi(e)≠fi(⁄(fi(e))) = 0. Thus Ep decomposes as Fp +ker fip, i.e., F is transverse
to ker fi. If now e œ F fl ker fi, then e = ⁄(X), for some X œ F and X = fi(u),
for some u œ E. Therefore

0 = fi(e) = fi(⁄(fi(u))) = fi(u) = X,

and hence e = ⁄(X) = ⁄(0) = 0. It is left to show that F is indeed isotropic,
i.e., Èu, vÍ = 0 for all u, v œ F . For that, let u, v œ F . Then there exist
X, Y œ F such that u = ⁄(X) and v = ⁄(Y ). Then

Èu, vÍ = È⁄(X), ⁄(Y )Í

= È⁄0(X) ≠ 1
2fiú(fl(X)), ⁄0(Y ) ≠ 1

2fiú(fl(Y ))Í

= È⁄0(X), ⁄0(Y )Í ≠ 1
2È⁄0(X), fiú(fl(Y ))Í ≠ 1

2Èfiú(fl(X)), ⁄0(Y )Í

+1
4Èfiú(fl(X)), fiú(fl(Y ))Í

= È⁄0(X), ⁄0(Y )Í ≠ 1
2fl(Y )(X)) ≠ 1

2fl(X)(Y ))

+1
4fl(X)(fi(fiú(fl(Y ))))

= È⁄0(X), ⁄0(Y )Í ≠ 1
2È⁄0(Y ), ⁄0(X))Í ≠ 1

2È⁄0(X), ⁄0(Y ))Í

= 0.

3. Define G := ((ker fi)‹ ü F)‹ = ker fi fl F‹. Then G is orthogonal to F .
Furthermore

(ker fi)‹ fl G = (ker fi)‹ fl ker fi fl F‹

= (kerfi)‹ fl F‹

= (ker fi ü F)‹

= E‹ = 0.

Also

(ker fi)‹ + G = (ker fi)‹ + ((ker fi)‹ ü F)‹

= (ker fi fl ((ker fi)‹ ü F))‹

´ ((ker fi)‹)‹

= ker fi.
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4. It is clear from the arguments so far that the decomposition
1
(ker fi)‹ ü F

2
üG

is orthogonal with respect to È·, ·Í. In order to determine the signature of the
restriction of the scalar product to the factors

1
(ker fi)‹ ü F

2
and G we first

observe that rank ker fi‹ = rankF and then we verify that È·, ·Í defines a non-
degenerate pairing between F and (ker fi)‹.

Next due to the non-degenerate pairing between F and (ker fi)‹, for every basis
(u1, . . . , ul) of (ker fi)‹ there exist elements v1, . . . , vl œ F such that Èui, vjÍ =
”ij. Now consider the following basis of

1
(ker fi)‹ ü F

2
, up to normalization,

(u1 + v1, . . . , ul + vl, u1 ≠ v1, . . . , ul ≠ vl). A simple computation with this basis
now shows that the restriction of the scalar product È·, ·Í to

1
(ker fi)‹ ü F

2
is

of neutral signature (l, l) and therefore its restriction to G will be of signature
(r ≠ l, s ≠ l) and signature of a scalar product being basis independent proves
our claim.

2.2.2 Connections, E-connections and generalised

connections

Let (E, È·, ·Í, [·, ·], fi) be a Courant algebroid and let V ≠æ M be a vector bundle.

Definition 2.49 (E-Connection). An E-connection is an R-bilinear map

D : �(E) ◊ �(V ) ≠æ �(V ), (e, v) ‘æ De(v),

such that

1. D(fe)v = fDev,

2. De(fv) = fi(e)(f)v + fDev,

for all f œ CŒ(M), e œ �(E) and v œ �(V ).

Definition 2.50 (Generalised Connection). A generalised connection is an E-connec-
tion on E that is compatible with the scalar product in the sense that

fi(u)Èv, wÍ = ÈDuv, wÍ + Èv, DuwÍ

for all u, v, w œ �(E).

33



Chapter 2 Preliminaries

Example 2.51. If Ò is a connection on a vector bundle V ≠æ M , then we have
an induced E-connection on V given by

De(v) := Òfi(e)(v).

The following proposition shows how a covariant derivative on a vector bundle
induces a covariant derivative on the associated bundle of Cli�ord algebras.

Proposition 2.52. Let (E, È·, ·Í) be a pseudo-Riemannian vector bundle over the

manifold M and ÒE
a covariant derivative on E. Then ÒE

induces a covariant

derivative ÒC¸(E)
on the Cli�ord algebra bundle C¸(E) ≠æ M such that ÒC¸(E)e =

ÒEe for e œ �(E) if and only if ÒEÈ·, ·Í = 0.

Proof. The covariant derivative ÒE on E induces a covariant derivative ÒT E on the
tensor algebra bundle T E = mŒ

k=0
T kE in the standard way. In order to show that

this leads to a well-defined covariant connection on C¸(E) it is only left to show
that ÒT E

X
for any X œ �(TM) preserves the ideal generated by the Cli�ord relation

e ¢ e + Èe, eÍ œ �(T E). Now we can calculate that ÒEÈ·, ·Í = 0 is equivalent to

ÒX(e ¢ e + Èe, eÍ) = ÒX(e) ¢ e + e ¢ ÒX(e) + ÒX(Èe, eÍ)

= ÒX(e) ¢ e + e ¢ ÒX(e) + ÈÒX(e), eÍ + Èe, ÒX(e)Í

= (ÒX(e) + e) ¢ (ÒX(e) + e) ≠ e ¢ e ≠ ÒX(e) ¢ ÒX(e)

+ ÈÒX(e) + e, ÒX(e) + eÍ ≠ Èe, eÍ ≠ ÈÒX(e), ÒX(e)Í

Lemma 2.53. If D is a generalised connection on a Courant algebroid (E, È·, ·Í, [·, ·], fi),
then D induces an E-connection DC¸(E)

on the Cli�ord algebra bundle C¸(E) ≠æ M

associated to E.

Proof. The proof follows analogously to the proof of Proposition 2.52.

2.2.3 Torsion

In classical pseudo-Riemannian geometry, an a�ne connection on TM has a funda-
mental tensor field called torsion. We also have an analogue of that in generalised
geometry which plays an important role in our construction of Dirac generating
operators.
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Definition 2.54. [G] Let E be a Courant algebroid and D a generalised connection
on E. The torsion T D œ �(�2Eú ¢ E) of the generalised connection D is defined to
be

T D(u, v) = Duv ≠ Dvu ≠ [u, v] + (Du)úv

for all u, v œ �(E). Here (Du)ú denotes the adjoint of Du with respect to È·, ·Í, that
is È(Du)úv, wÍ = Èv, DwuÍ.

Torsion can also be defined as follows for all u, v, w œ �(E),

T D(u, v, w) := ÈT D(u, v), wÍ = ÈDuv ≠ Dvu ≠ [u, v], wÍ + ÈDwu, vÍ. (2.29)

In the following lemma we show that torsion is a totally anti-symmetric tensor.

Lemma 2.55. The torsion of a generalised connection in the sense of (2.29) is

totally anti-symmetric, i.e., T D œ �(�3Eú).

Proof. To show anti-symmetry in the first two components we use the compatibility
of D with the scalar product and axiom 3 for a Courant algebroid and we see for all
u, v, w œ �(E) that

T D(u, v, w) = ÈDuv ≠ Dvu ≠ [u, v], wÍ + ÈDwu, vÍ

= ÈDuv ≠ Dvu, wÍ + È[v, u], wÍ ≠ fi(w)Èu, vÍ + ÈDwu, vÍ

= È≠Dvu + Duv + [v, u], wÍ ≠ ÈDwv, uÍ

= ≠T D(v, u, w).

With the help of axiom 2 of a Courant algebroid and compatibility of D with the
scalar product, we show anti-symmetry in the last two components:

T D(u, v, w) = ÈDuv ≠ Dvu ≠ [u, v], wÍ + ÈDwu, vÍ

= ÈDuv ≠ Dvu, wÍ + Èv, [u, w]Í ≠ fi(u)Èv, wÍ + ÈDwu, vÍ

= ≠Èv, DuwÍ ≠ ÈDvu, wÍ + Èv, [u, w]Í + ÈDwu, vÍ

= È≠Duw + Dwu + [u, w], vÍ ≠ ÈDvu, wÍ

= ≠T D(u, w, v).
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3
Part I: Cli�ord Module Bundles

I saw all the mirrors on earth and
none of them reflected me..

Jorge Luis Borges, The Aleph and
Other Stories

3.1 Module bundles

All algebras we consider in this thesis are finite-dimensional semi-simple real unital
associative algebras.
Let M be a smooth manifold. Without loss of generality we will take {U– | – œ �}
to be a fixed open cover of M such that all bundles defined over M appearing in this
thesis, be they vector bundles, algebra bundles or any other fibre bundle, admit a
family of local trivialisations over it. Let us now fix some notation that will be used
throughout this part. U–— := U– fl U— will denote the intersection of the members
of the cover, the restriction of a map f to the subset U– will be denoted by f–

and furthermore, if fi : V ≠æ M is any fibre bundle, then we use the notation
V– := fi≠1(U–).

Definition 3.1. Let A ≠æ M be a bundle of algebras whose typical fibre is the
algebra A, let V ≠æ M be a real vector bundle of rank N , � : A ≠æ EndR(V ) a
morphism of algebra bundles and let “ : A ≠æ EndR(RN) be a fixed representation
of the typical fibre of A over the typical fibre of V . We say that (V, �) is a (left)

module bundle of type [“] over the algebra bundle A if and only if there
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Chapter 3 Part I: Cli�ord Module Bundles

exists a family of local trivialisations for the algebra bundle A, {›– | – œ �}, and
the vector bundle V , {÷– | – œ �}, such that for every – œ � the following diagram
commutes.

A– EndR (V–)

U– ◊ A U– ◊ EndR(RN)

�–

›– Ad(÷–)

Id– ◊“

Observe that the representations �p : Ap ≠æ EndR(Vp) are by definition equivalent
to the representation “ : A ≠æ EndR(RN) for every p œ M .

Remark 3.2. Analogously we define ‘right’ module bundles by considering anti-
representations.

In fact, for every algebra bundle A and vector bundle V that have an algebra
bundle homomorphism � : A ≠æ EndR(V ) defined, we can always find a family
of local trivialisations of the algebra bundle and the vector bundle, (›–) and (÷–)
respectively, such that the above diagram commutes. To show this, in Proposition
3.3 below, we verify that for any local frame {fi} for A there exists a local frame
{si} for V such that the matrix representation of �(fi) is equal to the corresponding
matrix representation of “i := “(›–(fi)).

Proposition 3.3. Let A ≠æ M be an algebra bundle whose typical fibre is an algebra

A and let (ei)n

i=1
be a basis of A. Let � : A ≠æ EndR(V ) be an algebra bundle mor-

phism over a real vector bundle V ≠æ M of rank N and let “ : A ≠æ MatR(RN)
be a fixed real representation of A that is equivalent to �x for all x œ M . Let

› be a family of local trivialisations of A and let ÷ be a family of local trivialisa-

tions of V over a fixed open cover. Then Ai := “(ei) œ “(A) is a system of real

N ◊ N-matrices which satisfy certain relations for i = 1, . . . , n. For an open set

U µ R
k
, then Bi(x) := Ad(÷–)(�x(›–

≠1(x, ei))) is another system of N ◊N-matrices

which depend smoothly on x œ U and satisfy the same relations. Assume that for

every x œ U there exists an invertible N ◊ N-matrix C(x) such that for every i,

AiC(x) = C(x)Bi(x) but x ‘æ C(x) is not necessarily smooth. Then there exist

invertible N ◊ N-matrices D(x) defined in a neighbourhood of some x0 œ U which

depend smoothly on x such that AiD(x) = D(x)Bi(x) for all i.

Proof. For all x œ U µ R
k consider the equation AiY = Y Bi(x) for Y œ R[N ].

The vector space of solutions to this equation denoted by Solx µ R[N ] is clearly
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non-trivial because C(x) œ Solx. Furthermore, dim(Solx) = dim C({Ai}), where
C({Ai}) := {Y œ R[N ] | AiY = Y Ai for all i = 1, . . . , n} is the Schur algebra of the
system {Ai}. This is because for every T œ C({Ai}) the map T ‘æ TC(x) maps T

into Solx and for every Y œ Solx the map Y ‘æ Y C(x)≠1 maps Y into C({Ai}). Thus
the dimension of Solx is constant in x. Therefore Sol := ÛxœU Solx ≠æ U can be
given a smooth vector bundle structure. The smoothness follows from the smooth
dependence of the Gauss algorithm on the parameters of the linear system which
in turn are smooth functions of x. We are assured then that there exists a smooth
section D œ �(U Õ, Sol) such that D(x0) = C(x0) where x0 œ U Õ ™ U . Furthermore,
since D is invertible at x0, it is invertible in some neighbourhood of x0.

Now it is easily seen that Proposition 3.3 proves the equivalence stated below.

Proposition 3.4. Let A ≠æ M be a bundle of algebras whose typical fibre is a

algebra A, let V ≠æ M be a real vector bundle of rank N and � : A ≠æ EndR(V ) a

morphism of algebra bundles with “ : A ≠æ EndR(RN) being a fixed representation of

the typical fibre of A over the typical fibre of V . Then (V, �) is a module bundle of type

[“] over the algebra bundle A if and only if for every p œ M , �p : Ap ≠æ EndR(Vp)
is equivalent to “ : A ≠æ EndR(RN) as a representation of algebras.

We obtain Corollary 3.5 to Proposition 3.3 which shows that we can always choose
frames for the algebra bundle A and the vector bundle V in such a way that the
action of the frame of A on the frame of V has constant coe�cients.

Corollary 3.5. Let (V, �) be a module bundle over the algebra bundle A of type [“].
Then there exist local frames (ei) of A and (‡k) of V such that ei‡k = q

— C—

ik
‡—

where C—

ik
are constants.

Proof. Recall that due to Proposition 3.3 we have families of local trivialisations ›–

and ÷– such that the below diagram commutes.

A– EndR (V–)

U– ◊ A U– ◊ EndR(RN).

�–

›– Ad(÷–)

Id– ◊“

Let (ei) be a local frame of A that corresponds to the local trivialisation › and
let (‡k) be a local frame of V that corresponds to the local trivialisation ÷. More
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Chapter 3 Part I: Cli�ord Module Bundles

specifically, if (xi) is a basis of the algebra A, then set ei(p) := ›≠1

–
(p, xi). Likewise,

if (x̂j) is a basis of R
N , then set ‡–

i
(p) := ÷≠1

–
(p, x̂i). Then,

�–(ei(p))(‡–

j
) = �–(›≠1

–
(p, xi))(÷≠1

–
(p, x̂j))

= Ad(÷–)≠1(“(p, xi))(÷≠1

–
(p, x̂j))

= ÷≠1

–
“(p, xi)÷–(÷≠1

–
(p, x̂j))

= ÷≠1

–
(p,

ÿ

k

Ck

ij
x̂k) =

ÿ

k

Ck

ij
‡k(p)

where Ck

ij
are constants such that “(xi)(x̂j) = q

k Ck

ij
x̂k.

3.1.1 Irreducible Cli�ord Module Bundles

Let C¸(E) ≠æ M be the bundle of real Cli�ord algebras associated to the quadratic
vector bundle (E, q) ≠æ M where q is of signature (r, s). We now consider module
bundles over C¸(E) ≠æ M , a bundle of real Cli�ord algebras with typical fibre
C¸(r, s).

If V ≠æ M is a real vector bundle with typical fibre R
N for some N œ N and

� : C¸(E) ≠æ EndR(V ) is a morphism of algebra bundles with “ : C¸(r, s) ≠æ
EndR(RN) being a fixed irreducible representation of the typical fibre of C¸(E) over
the typical fibre of V , then applying Definition 3.1 to this setting, we say that (V, �)
is an irreducible Cli�ord module bundle over the Cli�ord algebra bundle

C¸(E) of type [“] if there exists a family of local trivialisations for the Cli�ord
algebra bundle C¸(E), {›– | – œ �}, and the vector bundle V , {÷V

–
| – œ �}, such

that for every – œ � the following diagram commutes,

C¸(E)– EndR (V–)

U– ◊ C¸(r, s) U– ◊ EndR(RN).

�–

›– Ad(÷
V
– )

Id– ◊“

Applying Proposition 3.3 to the specific case of Cli�ord module bundles, we show
next that given any family of local trivialisations of C¸(E) and any family of local
trivialisations of V we can obtain trivialisations of V such that the above diagram
commutes. Let V ≠æ M be a vector bundle, � : C¸(E) ≠æ EndR(V ) an al-
gebra bundle morphism and “ : C¸(r, s) ≠æ EndR(RN) a fixed representation of
the typical fibre. For a fixed open cover {U–} of M , if ›– is a family of local
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3.2 Intertwiners of C¸(E)-module bundles

trivialisations of the module bundle C¸(E), and ÷ÕV
–

is a family of local trivialisa-
tions of the vector bundle V ≠æ M , not necessarily such that it makes (V, �) a
C¸(E)-module bundle, then we can apply Proposition 3.3 by taking Ai = “(ei) and
Bi(x) = Ad(÷ÕV

–
)(�–(›≠1

–
(x, ei))) = Ad(C(x))Ai = Ad(D(x))Ai and ÷V

–
= D ¶ ÷ÕV

to show that we can find local trivialisations ÷V of V such that (V, �) becomes a
C¸(E)-module bundle.
The corollary below summarises the fact that if we have two irreducible C¸(E)-
module bundles S and � and fix a trivialisation for E, then we can find triviali-
sations of S and � such that they are simultaneously compatible with the algebra
bundle homomorphisms �S and ��.

Corollary 3.6. Let (S, �S) and (�, ��) be C¸(E)-module bundles of type [“]. Then

there exists an open cover of M , a family of local trivialisations {›– | – œ �} of

C¸(E), a family of local trivialisations {÷S

–
| – œ �} of the vector bundle S ≠æ M

and a family of local trivialisations {÷�

–
| – œ �} of the vector bundle � ≠æ M ,

such that

C¸(E)– EndR (S–)

U– ◊ C¸(r, s) U– ◊ EndR(RN)

C¸(E)– EndR (�–)

�
S
–

›– Ad(÷
S
–)

Id ◊“

›
≠1
– Ad((÷

�
– )

≠1
)

�
�
–

i.e., such that Ad((÷�

–
)≠1 ¶ ÷S

–
) ¶ �S

–
= ��

–
.

Proof. That ÷S

–
and ÷�

–
can be determined once we fix ›–, follows from Proposition

3.3.

3.2 Intertwiners of C¸(E)-module bundles

In this section, we will construct the vector bundle of C¸(E)-equivariant homomor-
phisms between two Cli�ord module bundles and show that it is a module bundle
over the Schur algebra bundle. To begin, we define the Schur algebra bundle of a
Cli�ord module bundle.
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Chapter 3 Part I: Cli�ord Module Bundles

Definition 3.7. For a module bundle (S, �) over a Cli�ord algebra bundle C¸(E),
the sub-bundle of algebras C(S, �) Òæ EndR(S) of the endomorphism bundle de-
fined by the subspace C(S, �) := ÛpœMC(Sp, �p) µ EndR(S) where, C(Sp, �p) :=
{a œ EndR(Sp) | [a, �p(C¸(Ep))] = 0} is called the Schur algebra bundle of the

Cli�ord module bundle (S, �).

In the lemma below we show the compatibility between the transition functions
of a Cli�ord module bundle with the action of the Cli�ord algebra.

Lemma 3.8. Let S ≠æ M be a C¸(E)-module bundle of type [“] where “ : C¸(r, s) ≠æ
EndR(RN) is an irreducible representation of C¸(r, s) and C¸(E) ≠æ M is a bundle

of Cli�ord algebras. If {÷S

–
| – œ �} is a family of local trivialisations of S as a

C¸(E)-module bundle and {gS

–—
: U– fl U— ≠æ GL(RN)} denotes the corresponding

family of transition functions, then

gS

–—
(p)(“p(e)(v)) = “p(e)(gS

–—
(p)(v)) (3.1)

for all e œ C¸(r, s), p œ M and v œ R
N

Proof. Let {›– | – œ �} be a family of local trivialisations of the algebra bundle
C¸(E) ≠æ M such that {÷S

–
| – œ �} is a family of local trivialisations of S ≠æ M

as a C¸(E)-module bundle and {gS

–—
: U–— ≠æ GL(RN)} is the family of transition

functions corresponding to {÷S

–
| – œ �} i.e.,

÷S

—
¶ (÷S

–
)≠1 : U–— ◊ R

N ≠æ U–— ◊ R
N

(p, v) ‘≠æ (p, gS

–—
(p)(v)),

then gS

–—
(p)(v) := ÷S

—
¶ (÷S

–
)≠1(v) for all p œ U–— and v œ R

N , and

gS

–—
(p)(“p(e)(v)) = ÷S

—
|p ¶(÷S

–
)≠1 |p (“p(e)(v))

= ÷S

—
|p ¶�S

–
|p (›≠1

–
|p (e)) ¶ (÷S

–
)≠1 |p (v)

= ÷S

—
|p ¶�S

—
|p (›≠1

—
|p (e)) ¶ (÷S

–
)≠1 |p (v)

= “p(e)(gS

–—
(v)),

because ÷S

—
|p ¶�S

—
|p (›≠1

—
|p (e))(v) = “p(›— |p (›≠1

—
|p (e)))(÷S

—
|p (v)).

In the lemma below we construct a vector bundle of C¸(E)-equivariant homomor-
phisms between any two Cli�ord module bundles.
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Lemma 3.9. Let S ≠æ M and � ≠æ M be C¸(E)-module bundles of type [“] with

the family of local trivialisations {÷S

–
: – œ �} and {÷�

–
| – œ �} respectively and

where “ : C¸(r, s) ≠æ EndR(RN) is an irreducible representation of C¸(r, s). Then

there exists a real vector bundle L := HomC¸(E)(S, �) ≠æ M with the typical fibre

HomC¸(r,s)(RN , R
N).

Proof. Let HomC¸(E)(S, �) := ÛpœM HomC¸(Ep)(Sp, �p) and fi : HomC¸(E)(S, �) ≠æ
M be a surjection such that fi≠1(U) = HomC¸(EU )(SU , �U) for any open set U µ M .

Let {U– | – œ �} be a fixed open cover of M over which we have the local
trivialisations ÷S

–
and ÷�

–
. We define a formal bundle chart as follows,

�– : fi≠1(U–) ≠æ U– ◊ HomC¸(r,s)(RN , R
N)

Âp ‘≠æ (p, ÷�

p
¶ Âp ¶ (÷S

p
)≠1)

where p œ U–. With a simple calculation below we verify that �– is well-defined.
Indeed,

÷�

p
¶ Âp ¶ (÷S

p
)≠1(“p(e)(v)) = ÷�

p
(Âp(÷S

p

≠1(÷S

p
(�S

p
(›≠1

p
(e))((÷S)≠1(v))))))

= ÷�

p
(Âp(�S

p
(›≠1

p
(e))((÷S)≠1(v))))

= ÷�

p
(��

p
(›≠1

p
(e))(Âp((÷S)≠1(v))))

= ÷�

p
(��

p
(›≠1

p
(e))(÷�

p

≠1(÷�

p
(Âp((÷S)≠1(v))))))

= “p(e)(÷�

p
(Âp((÷S)≠1(v))))

for every e œ C¸(Ep), v œ R
N and p œ M . It is clear now that {�–} defines a formal

bundle atlas. Furthermore the below map,

�– ¶ (�—)≠1 : U–— ◊ HomC¸(r,s)(RN , R
N) ≠æ U–— ◊ HomC¸(r,s)(RN , R

N)

(p, f) ‘≠æ (p, ÷�

–
|p (÷�

—
)≠1|p f ÷S

—
|p (÷S

–
)≠1|p)

is smooth because ÷�

–
and ÷S

—
are smooth. Therefore, from Theorem 2.31 we can

assert that there exists a real vector bundle L := HomC¸(E)(S, �) ≠æ M with the
typical fibre HomC¸(r,s)(RN , R

N) whose bundle charts are given by �–.

In the lemma below we show that the vector bundle of C¸(E)-equivariant homo-
morphisms between two Cli�ord module bundles, as constructed above, is a module
bundle over the Schur algebra bundle.
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Lemma 3.10. Let S and � be C¸(E)-module bundles. Consider the real vector bun-

dle L := HomC¸(E)(S, �) ≠æ M and let ◊ : C(RN , “) ≠æ EndR(HomC¸(r,s)(RN , R
N))

be the anti-representation given by (f ‘≠æ (g ‘≠æ g ¶ f)). Then L ≠æ M is a right

C(S, �)-module bundle of type [◊].

Proof. In order to show that L is indeed a C(S, �)-module bundle of type [◊], we
will need to verify that upon fixing an open cover {U– | – œ �} of M and local
trivialisations of C¸(E)-module bundles S and �, ÷S

–
and ÷�

–
respectively, for any –

the below diagram commutes.

C(S, �)– EndR (L–)

U– ◊ C(RN , “) U– ◊ EndR(HomC¸(r,s)(RN , R
N))

�–

Ad(÷
S
–) Ad(�–)

Id– ◊◊

Here �– are the charts defined in Lemma 3.9 and �– are restrictions of the bundle
morphism � which are defined fibrewise as �p : f ‘≠æ (g ‘≠æ g¶f). For f œ C(S, �)p,
v œ R

N and · œ HomC¸(r,s)(RN , R
N). Then,

Ad(�p) ¶ �p(f)(·(v)) = �p(�p(f)(�≠1

p
(·(v))))

= ÷�

p
(÷�≠1

p
(·(÷S

p
(f((÷S)≠1

p
(v))))))

= ·(÷S

p
(f((÷S)≠1

p
(v))),

and

◊ ¶ Ad(÷S

p
)(f)(·(v)) = ·(÷S

p
(f((÷S

p
)≠1(v))).

With the above calculation, we have shown that the diagram commutes and therefore
L is indeed a right C(S, �)-module bundle of type [◊].

In the next lemma we show that a C¸(E)-module bundle is naturally a left module
bundle over its Schur algebra bundle.

Lemma 3.11. Let S ≠æ M be a C¸(E)-module bundle of type [“] and let C(S, �) ≠æ
M its Schur algebra bundle. Then S inherits the structure of a C(S, �)-module bundle

with C(S, �) acting on S fibrewise from the left.

Proof. Let us fix an open cover {U– | – œ �} of M and let {÷S

–
| – œ �} be a

family of local trivialisations of the C¸(E)-module bundle S over that cover. Since
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C(S, �) ≠æ M is a subalgebra bundle of the endomorphism bundle EndR(S) ≠æ M ,
{Ad(÷S

–
) | – œ �} will also be a family of local trivialisations of the Schur algebra

bundle C(S, �) as seen in Proposition 2.32. If � : C(S, �) ≠æ EndR (S) is an algebra
bundle morphism which is defined fibre-wise as �p : f ‘≠æ (g ‘≠æ f ¶ g) and
Â : C(RN , “) ≠æ EndR(RN) is the representation given by f ‘≠æ (g ‘≠æ f ¶ g). It is
easy now to see that the below diagram commutes.

C(S, �)– EndR (S–)

U– ◊ C(RN , “) U– ◊ EndR(RN).

�–

Ad(÷
S
–) Ad(÷

S
–)

Id– ◊Â

3.3 Classification of Irreducible Cli�ord Module

Bundles

It is clear that given L ≠æ M , the bundle of all equivariant homomorphisms between
two C¸(E)-module bundles S and � as defined above, we can construct the tensor
product bundle L ¢R S ≠æ M over R. We will now show that this tensor product
bundle is in turn a C¸(E)-module bundle in a rather natural way.

Lemma 3.12. Let S ≠æ M and � ≠æ M be C¸(E)-module bundles of type [“]
where “ is an irreducible representation of C¸(r, s) on R

N
and L ≠æ M , the bundle

of all C¸(E)-equivariant homomorphisms between the C¸(E)-module bundles S and

�. Then the tensor product bundle L ¢R S ≠æ M over R is a C¸(E)-module bundle.

Proof. Let us fix an open cover {U– | – œ �} of M and let {›– | – œ ⁄} be a family
of local trivialisations of the algebra bundle C¸(E) ≠æ M such that {÷S

–
| – œ �}

and {÷�

–
| – œ �} are families of local trivialisations of the C¸(E)-module bundle

S and �, respectively, over that cover. Then �S : C¸(E) ≠æ EndR(S) denotes, as
usual, the algebra bundle morphism. If � : C¸(E) ≠æ EndR(L ¢R S) denotes the
algebra bundle morphism defined fibre-wise as

�p : e ‘≠æ (l ¢ s ‘≠æ l ¢ �S(e)(s))

and we consider the algebra morphism

” : C¸(r, s) ≠æ EndR(HomC¸(r,s)(RN , R
N) ¢R R

N),
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w ‘≠æ (h ¢ r ‘≠æ h ¢ “(w)(r)),

then we can show that the following diagram commutes,

C¸(E)– EndR (L– ¢R S–)

U– ◊ C¸(r, s) U– ◊ EndR(HomC¸(r,s)(RN , R
N) ¢R R

N).

�–

›– Ad(�–¢÷
S
–)

Id– ◊”

Observe that Ad(�– ¢ ÷S

–
) : EndR (L– ¢R S–) ≠æ EndR(HomC¸(r,s)(RN , R

N) ¢R R
N)

takes EndR (L– ¢R S–) – ·– := ·L

–
¢·S

–
where ·L

–
œ EndR(L |–) and ·S

–
œ EndR(S |–)

to Ad(�– ¢ ÷S

–
)(·–) = Ad(�–)(·L

–
) ¢ Ad(÷S

–
)(·S

–
).

For every p œ M , e œ C¸(E)p and h ¢ r œ HomC¸(r,s)(RN , R
N) ¢R R

N we have,

Ad(�p ¢ ÷S

p
) ¶ �p(e)(h ¢ r) = (Ad(�p ¢ ÷S

p
) ¶ IdLp(·) ¢ �S(e)(·))(h ¢ r)

= (Ad(�p)(IdLp))(h) ¢ (Ad(÷S

p
)(�S(e))(r)

= h ¢ “(›p(e))(r)

= (” ¶ ›p(e))(h ¢ r).

Thus we have shown that the real vector bundle L ¢R S ≠æ M is a C¸(E)-module
bundle of type [”].

In the lemma below we show that there is a surjective and C¸(E)-equivariant
bundle homomorphism between L ¢R S and �.

Lemma 3.13. Let S ≠æ M and � ≠æ M be C¸(E)-module bundles of type [“]
where “ is an irreducible representation of C¸(r, s) on R

N
and L ≠æ M , the bundle

of all C¸(E)-equivariant homomorphisms between the two C¸(E)-module bundles S

and �. If L¢RS ≠æ M is the C¸(E)-module bundle of type [”] where ” : C¸(r, s) ≠æ
EndR(HomC¸(r,s)(RN , R

N) ¢R R
N) is the algebra morphism w ‘≠æ (h ¢ r ‘≠æ h ¢

“(w)(r)). Then the bundle morphism � : L ¢R S ≠æ � given by l ¢ s ‘≠æ l(s) is

C¸(E)-equivariant and surjective.

Proof. The bundle morphism � : L ¢R S ≠æ � given by l ¢ s ‘≠æ l(s) is clearly
surjective because, given ‡ œ �p for any p œ M , since Sp and �p are irreducible mod-
ules of the Cli�ord algebra C¸(E)p, we are assured a C¸(E)p-equivariant isomorphism
fp : Sp

≥=≠æ �p such that s := f≠1

p
(‡) and �(fp ¢ s) = ‡.
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To show the C¸(E)-equivariance of �, take any e œ C¸(E)p and any l¢s œ Lp¢RSp

and observe

�(�(e)p(l ¢ s)) = �(l ¢ �S(e)(s))

= l(�S(e)(s))

= ��(e)(l(s)).

3.3.1 An algebraic interlude

We recall here the algebraic notion of tensoring modules over an algebra. For refer-
ence see any standard text on Algebra such as [DF, JS].

Definition 3.14. Let A be a real associative algebra, V a right A-module, W a left
A-module and U µ V ¢R W the subspace

U := Span
R
{v · a ¢ w ≠ v ¢ a · w | v œ V, w œ W and a œ A}.

The tensor product of V and W over the algebra A is given by the quotient
space V ¢A W := V ¢RW

U .

The usual notion of tensor product is recovered if we take A to be the algebra
of real numbers. We see in the proposition below that the quotient space V ¢A W

satisfies a universal property.

Proposition 3.15. Let V ¢A W be the quotient space defined in the definition above

and fi : V ¢R W ≠æ V ¢A W be the corresponding quotient map. Then (V ¢A W, fi)
satisfies the following universal property:

1. fi ¶ (flV ¢ IdW ) = fi ¶ (IdV ¢flW ), where flV : V ¢A æ V and flW : A¢W æ W

denote the action maps.

2. For any other vector space X and linear map p : V ¢R W æ X such that

p¶(flV ¢IdW ) = p¶(IdV ¢flW ) there exists a unique linear map Ï : V ¢AW æ X

such that Ï ¶ fi = p, as in the following diagram:

V ¢R A ¢R W V ¢R W V ¢A W

X

flV ¢IdW

IdV ¢flW

fi

p
÷!Ï
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Proof. 1. For any v ¢ a ¢ w œ V ¢R A ¢R W

fi ¶ (flV ¢ IdW )(v ¢ a ¢ w) = fi(v · a ¢ w) = [v · a ¢ w] (3.2)

and
fi ¶ (IdV ¢flW )(v ¢ a ¢ w) = fi(v ¢ a · w) = [v ¢ a · w] (3.3)

Clearly the quantities in equations (3.2) and (3.3) are equal if and only if
v · a ¢ w ≠ v ¢ a · w œ U, which is the case. By linearity this extends to prove
part 1 of the proposition.

2. Define Ï : V ¢AW ≠æ X as Ï(v¢Aw) := p(v¢w) for every v¢Aw œ V ¢AW .
We show that this is well defined as follows: observe that Ï(U) = 0 because
Ï(v · a ¢ w ≠ v ¢ a · w) = p(v · a ¢ w) ≠ p(v ¢ a · w) = 0. If v ¢A w = vÕ ¢A wÕ,
then Ï(v ¢A w ≠ vÕ ¢A wÕ) = Ï(v ¢A w) ≠ Ï(vÕ ¢A wÕ) œ Ï(U) = 0.

For uniqueness, see that if ÏÕ : V ¢A W ≠æ X is any linear map such that
ÏÕ ¶ fi = p, then ÏÕ(v ¢A w) = p(v ¢R w) = Ï(v ¢A w).

Thus we could have defined the tensor product over A equivalently via the uni-
versal property. We note the following general fact with respect to A-modules.

Proposition 3.16. Let A be an algebra, V a left A-module and AA be the algebra

A considered as a right A-module. Then there exists a canonical isomorphism � :
A ¢A V

≥=≠æ V of vector spaces.

Proof. Consider the epimorphism of vector spaces �̂ : A ¢R V ≠æ V which takes
(a ¢ v ‘≠æ a · v). Since

�̂(b · a ¢ v ≠ b ¢ a · v) = (b · a) · v ≠ b · (a · v) = 0,

by linearity, this implies U µ Ker �̂.
Consider x œ Ker �̂ such that x = q

i ti¢wi for ti œ A, wi œ V . Then �̂(x) = 0 …
q

i ti · wi = 0. Observe x = q
i ti ¢ wi = q

i 1 · ti ¢ wi ≠ q
i 1 ¢ ti · wi and by linearity

this implies that Ker �̂ µ U. Thus we have shown that � := �̂ : A ¢A V
≥=≠æ V is an

isomorphism of vector spaces.

The above proposition about A-modules inspires the following lemma.
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Lemma 3.17. Let C¸(E, q) be the real Cli�ord algebra generated by the quadratic

vector space (E, q), S and � be equivalent irreducible C¸(E, q)-modules defined by

representations “S
and “�

respectively, C(S, “S) be the Schur algebra of S, and L

the space of all C¸(E, q)-equivariant homomorphisms from S to �. Then there exists

a canonical isomorphism of vector spaces � : L ¢C(S,“S) S
≥=≠æ �.

Proof. Note that composing from the right makes L a right C(S, “S)-module and
acting from the left makes S a left C(S, “S)-module. Define

U := Span
R

Y
___]

___[
≠(l · ⁄) ¢ s + l ¢ (⁄ · s)

---------

⁄ œ C(S, “S)
l œ L

s œ S

Z
___̂

___\

and L ¢C(S,“S) S := L¢RS

U . Let Â� : L ¢ S ≠æ � be the map l ¢ s ‘æ l(s) and observe
that it is surjective since there exists a C¸(E)-equivariant isomorphism from S to �.
Since

Â�(≠(l · ⁄) ¢ s + l ¢ (⁄ · s)) = ≠(l · ⁄)(s) + l(⁄ · s) = 0,

by linearity we can assert that U µ Ker Â�.
Let f : S

≥=≠æ � be a fixed isomorphism of C¸(E)-modules and x = q
i li ¢ si œ

Ker Â�. Then observe,

x =
ÿ

i

li ¢ si = ≠
ÿ

i

(f ¢ (f≠1 ¶ li)(si) ≠ f ¶ (f≠1 ¶ li) ¢ si)

and f≠1 ¶ li œ C(S, “S). By linearity this implies that Ker Â� µ U. From the funda-
mental theorem of homomorphisms we know that there exists a unique isomorphism
� : L ¢C(S,“S) S

≥=≠æ � through which Â� factorises.

3.3.2 Tensoring over the Schur algebra bundle

Henceforth we will assume that S ≠æ M and � ≠æ M are two C¸(E)-module
bundles of type [“] where “ is an irreducible representation of C¸(r, s) on R

N and
L ≠æ M is the bundle of all C¸(E)-equivariant homomorphisms between the two
C¸(E)-module bundles S and �. From Lemma 3.10 we know that L is a right-
C(S, �S)-module bundle of type [◊] and from Lemma 3.11 we know that S ≠æ M

is a left-C(S, �S)-module bundle of type [Â].
In the lemma below we show that one can quotient the real vector bundle L ¢R S

by a sub bundle that preserves the action of the Schur algebra on L and S.

49



Chapter 3 Part I: Cli�ord Module Bundles

Lemma 3.18. Let S ≠æ M and � ≠æ M be two C¸(E)-module bundles of type

[“] where “ is an irreducible representation of C¸(r, s) on R
N

and L ≠æ M is the

bundle of all C¸(E)-equivariant homomorphisms between the C¸(E)-module bundles

S and �. Let � and � be bundle homomorphisms between C(S, �S) and EndR(L)
and EndR(S) such that L and S are right and left C(S, �S)-module bundles respec-

tively. Then, there exists a real C¸(E)-module bundle fi : L ¢C(S,�S) S ≠æ M where

(L ¢C(S,�S) S)p := Lp¢RSp

Up
and

Up := Span
R

Y
___]

___[
≠�p(⁄)(l) ¢ s + l ¢ (�p(⁄)(s))

---------

⁄ œ C(Sp, �S

p
)

l œ Lp

s œ Sp

Z
___̂

___\
.

Proof. Let L ¢C(S,�S) S := g
pœM

Lp¢RSp

Up
and fi : L ¢C(S,�S) S ≠æ M be the natural

projection. Let {U– | – œ �} be a fixed open cover of M and �– a family of local
trivialisations of L. A bundle atlas can be defined as

�– :
h

pœU–

Lp ¢R Sp

Up

≠æ U– ◊
HomC¸(r,s)(RN , R

N) ¢R R
N

U

(l ¢ s ‘≠æ (p, �–(l) ¢ ÷S

–
(s)))

where

U = Span
R

Y
___]

___[
≠◊(⁄Õ)(lÕ) ¢ sÕ + lÕ ¢ (Â(⁄Õ)(sÕ))

---------

⁄Õ œ C(RN , “)
lÕ œ HomC¸(r,s)(RN , R

N)
sÕ œ R

N

Z
___̂

___\
.

To show that �– defined above is not just a di�eomorphism between L– ¢R S–

and U– ◊ HomC¸(r,s)(RN , R
N) ¢ R

N but descends to an isomorphism between the
corresponding quotients, we observe that for ⁄ œ C(Sp, �S

p
), l œ Lp, s œ Sp and

family of local trivialisations �– of L,

�p(≠(�p(⁄)(l)) ¢ s + l ¢ (�p(⁄)(s)))

= ≠�p(�p(⁄)(l)) ¢ ÷S

p
(s) + �p(l) ¢ ÷S

p
(�p(⁄)(s))

= ≠(÷�

p
¶ l ¶ ÷S≠1

p
¶ ÷S

p
¶ ⁄ ¶ ÷S≠1

p
) ¢ ÷S

p
(s)

+ �p(l) ¢ ÷S

p
(⁄(÷S≠1

p
(÷S

p
(s))))

= ≠lÕ ¶ ⁄Õ ¢ sÕ + lÕ ¢ ⁄Õ(sÕ)

= ≠(◊(⁄Õ)(lÕ)) ¢ sÕ + lÕ ¢ (Â(⁄Õ)(sÕ)),
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where lÕ = ÷�

p
¶ l ¶ ÷S≠1

p
= �p(l) œ HomC¸(r,s)(RN , R

N), sÕ = ÷S

p
(s) œ R

N and
⁄Õ = ÷S

p
¶ ⁄ ¶ ÷S≠1

p
œ C(RN , “). Therefore, by linearity this implies �p(Up) = U.

Theorem 2.31 now guarantees the existence of a real vector bundle structure fi :
L ¢C(S,�S) S ≠æ M .

From Lemma 3.12 we know that L¢RS ≠æ M is a C¸(E)-module bundle. To show
that fi : L ¢C(S,�S) S ≠æ M inherits the structure of a real C¸(E)-module bundle,
it is enough to show that Up and U are in fact C¸(E)p- and C¸(r, s)-submodules
respectively. To this end, as in Lemma 3.12, let � : C¸(E) ≠æ EndR(L¢R S) denote
the algebra bundle morphism defined fibre-wise as �p : e ‘≠æ (l¢s ‘≠æ l¢�S(e)(s))
and ” : C¸(r, s) ≠æ EndR(HomC¸(r,s)(RN , R

N) ¢R R
N), the algebra morphism w ‘≠æ

(h ¢ r ‘≠æ h ¢ “(w)(r)). We verify that �p(C¸(E)p)(Up) = Up with the following
calculation.

For any e œ C¸(E)p, ⁄ œ C(Sp, �S

p
), l œ Lp and s œ Sp,

�p(e)(≠(�p(⁄)(l)) ¢ s + l ¢ (�p(⁄)(s))) = (≠(�p(⁄)(l)) ¢ �S(e)(s))

+ (l ¢ �S(e)(�p(⁄)(s)))

= (≠(�p(⁄)(l)) ¢ (�S(e)(s)))

+ (l ¢ (�p(⁄)(�S(e)(s)))).

By linearity we establish the claim. With an analogous calculation it can be shown
that ”(C¸(r, s))(U) = U. From this it follows that the diagram below commutes and
hence fi : L ¢C(S,�S) S ≠æ M is a real C¸(E)-module bundle.

C¸(E)– EndR (L– ¢C(S,�S) S–)

U– ◊ C¸(r, s) U– ◊ EndR(HomC¸(r,s)(RN , R
N) ¢C(RN ,“) R

N).

�–

›– Ad(�–¢÷
S
–)

Id– ◊”

Proposition 3.19. The real vector bundle fi : L ¢C(S,�S) S ≠æ M defined as above

satisfies the following universal property:

1. fi ¶ (flL ¢ IdS) = fi ¶ (IdL ¢flS), where flL : L ¢ C(S, �S) æ L and flS :
C(S, �S) ¢ S æ S denote the action maps defined by composition from the

right and composition from the left, respectively.
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Chapter 3 Part I: Cli�ord Module Bundles

2. For any other vector bundle X and bundle morphism p : L¢RS æ X such that

p¶(flL¢IdS) = p¶(IdL ¢flS) there exists a unique linear map Ï : L¢C(S,�S)S æ
X such that Ï ¶ fi = p, as in the following diagram:

L ¢R C(S, �S) ¢R S L ¢R S L ¢C(S,�S) S

X

flL¢IdS

IdS ¢flS

fi

p
÷!Ï

Proof. The proof is the same as the proof of Proposition 3.15, mutatis mutandis.
The di�erence is that in this proposition we deal with vector bundles while we deal
with modules in Proposition 3.15.

3.3.3 Classification Theorem

In the theorem below we bring together all the facts that we have established so far
to answer the question of how two irreducible Cli�ord module bundles of a type are
related. This is the first main result of this thesis.

Theorem 3.20. Let S ≠æ M and � ≠æ M be two C¸(E)-module bundles of type [“]
where “ is an irreducible representation of C¸(r, s) on R

N
. Let L = HomC¸(E)(S, �) ≠æ

M be the bundle of all C¸(E)-equivariant homomorphisms between the module bun-

dles S and �. Then fi : L ¢C(S,�S) S ≠æ M and � ≠æ M are isomorphic as

C¸(E)-module bundles.

Proof. From Lemma 3.13, we know that the bundle morphism � : L ¢R S ≠æ �
which maps (l ¢ s ‘≠æ l(s)) is C¸(E)-equivariant and surjective. Lemma 3.17 shows
that fibrewise �p descends to a C¸(E)p-equivariant isomorphism �p : (L ¢C(S,�S)

S)p ≠æ �p. Thus we have established that fi : L ¢C(S,�S) S ≠æ M and � ≠æ M

are isomorphic as real C¸(E)-module bundles.

We can now establish the below immediate consequences of the theorem. The
corollary below describes how the choice of S and � a�ects the isomorphism L¢C(S,�S)

S ≥= �.

Corollary 3.21. Suppose S ≠æ M and S Õ ≠æ M are C¸(E)-module bundles of type

[“] which are not necessarily isomorphic. Let � ≠æ M be another C¸(E)-module

bundle of type [“]. Then

HomC¸(E)(S, �) ¢C(S,�S) S ≥= HomC¸(E)(S Õ, �) ¢C(SÕ,�SÕ
)
S Õ ≥= �.
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The corollary below describes how the bundle HomC¸(E)(S, �) ¢C(S,�S) S depends
on the choice of �.

Corollary 3.22. Let S ≠æ M be any C¸(E)-module bundle of type [“] and let

� ≠æ M and �Õ ≠æ M be two C¸(E)-module bundles of type [“] which are not

isomorphic. Then HomC¸(E)(S, �) ¢C(S,�S) S ”≥= HomC¸(E)(S, �Õ) ¢C(S,�S) S and in

particular HomC¸(E)(S, �) ”≥= HomC¸(E)(S, �Õ) as bundles of right-C(S, �S)-modules.

We define below a right regular Schur module bundle.

Definition 3.23. Let S ≠æ M be a C¸(E)-module bundle of type [“] where “ is an
irreducible representation of C¸(r, s) on R

N . Then a real algebra bundle V ≠æ M

with typical fibre C(RN , “) is said to be a right C(S, �S)-module bundle of the

‘regular’ type if and only if V ≠æ M is a right module bundle over the algebra
bundle C(S, �S) ≠æ M with the action of C(RN , “) on C(RN , “) given by the right
regular representation reg : C(RN , “) ≠æ EndR(C(RN , “)) where reg : ⁄ ‘≠æ (f ‘æ
f · ⁄).

Remark 3.24. Observe that L ≠æ M as constructed in Lemma 3.9 is an example of
such a right C(S, �S)-module bundle because HomC¸(r,s)(RN , R

N) ≥= C(RN , “) as right
C(RN , “)-module bundles. Furthermore, note that the rank of such right C(S, �S)-
module bundles of the regular type is the same as the rank of the vector bundle
C(S, �S) ≠æ M .

Lemma 3.25. Let S ≠æ M be a fixed C¸(E)-module bundle of type [“]. Then,

HomC¸(E)(S, ≠) defines an injective mapping from the set of isomorphism classes of

C¸(E)-module bundles of type [“] to the set of isomorphism classes of right C(S, �S)-
module bundles of the regular type.

Proof. If � and �Õ are two isomorphic C¸(E)-module bundles of type [“] and „ :
� ≠æ �Õ is an isomorphism between them, then

‚„ : HomC¸(E)(S, �)
≥=≠æ HomC¸(E)(S, �Õ)

f ‘≠æ „ ¶ f.

Injectivity follows from Corollary 3.22.
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Lemma 3.26. Let S ≠æ M be a fixed C¸(E)-module bundle of type [“]. Then,

≠¢C(S,�S) S defines a mapping from the set of isomorphism classes of right C(S, �S)-
module bundles of the regular type to the set of isomorphism classes of irreducible

C¸(E)-module bundles of type [“].

Proof. If V and V Õ are two isomorphic right C(S, �S)-module bundles of the regular
type and Â : V ≠æ V Õ is an isomorphism between them, then

‚Â : V ¢C(S,�S) S
≥=≠æ V Õ ¢C(S,�S) S

v ¢ s ‘≠æ Â(v) ¢ s.

In the theorem below we establish a classification of irreducible Cli�ord module
bundles. This is the second main result of this thesis.

Theorem 3.27. Let S ≠æ M be a fixed irreducible C¸(E)-module bundle of type

[“]. Then there exists a bijection between the following sets,

A := {isomorphism classes of irreducible C¸(E)-module bundles of type [“]}

Ï

B := {isomorphism classes of right C(S, �S)-module bundles of regular type }.

Proof. From Theorem 3.20, it follows that (≠ ¢C(S,�S) S) ¶ (HomC¸(E)(S, ≠)) = IdA.
To show that (HomC¸(E)(S, ≠)) ¶ (≠ ¢C(S,�S) S) = IdB, take a right C(S, �S)-module
bundle of the regular type V ≠æ M . First we observe that

V ¢C(S,�S) HomC¸(E)(S, S) ≥= HomC¸(E)(S, V ¢C(S,�S) S)
ÿ

i,j

ei ¢ fj ‘≠æ (s ‘≠æ
ÿ

i,j

ei ¢ fj(s))

for every ei œ V , fi œ HomC¸(E)(S, S) and s œ S, is an isomorphism of right C(S, �S)-
module bundles where the action of C(S, �S) on V ¢C(S,�S) HomC¸(E)(S, S) is given
by (⁄, e ¢ f) ‘≠æ e ¢ f ¶ ⁄. Since by definition HomC¸(E)(S, S) = C(S, �S), we have

HomC¸(E)(S, V ¢C(S,�S) S) ≥= V ¢C(S,�S) C(S, �S).

Furthermore note that

V ¢C(S,�S) C(S, �) ≥= V
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v ¢ f ‘æ v · f

is again an isomorphism of right C(S, �S)-module bundles of the regular type. With
this we have shown that (HomC¸(E)(S, ≠)) ¶ (≠ ¢C(S,�S) S) = IdB and that there is
a bijection between the sets A and B as stated in the theorem.
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4
Part II: Dirac Generating

Operators

Sometimes I am convinced that
triangle is another name for
stupidity, that eight times eight is
madness or a dog.

Julio Cortázar, Hopscotch

4.1 Dirac generating operators of Courant

algebroids

In this part, we will apply the classification of Cli�ord module bundles from Part I to
extend the result of Alekseev and Xu [AX] on the existence of local Dirac generating
operators of Courant algebroids in neutral signature (r, r), to arbitrary signatures.
We begin with the definition of Dirac generating operators of Courant algebroids
(DGOs) where we allow the Courant algebroids to have arbitrary signatures. Recall
from Definition 2.40 that a Courant algebroid consists of a vector bundle E æ M

with a scalar product È·, ·Í, a Dorfman bracket [·, ·] : �(E) ¢ �(E) æ �(E) and an
anchor map fi : E æ TM .

To simplify our notation henceforth, whenever we talk of a C¸(E)-module bundle
(S, �S) of type [“], we will abuse the notation and use “ to indicate both “ and �S.
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Definition 4.1. Given a Courant algebroid (E, È·, ·Í, [·, ·], fi) and an irreducible
C¸(E)-module bundle (S, “) a Dirac generating operator (DGO) of a Cou-

rant algebroid E is a first-order di�erential operator /d : �(S) ≠æ �(S) such that
for all e, e1, e2 œ �(E) and f œ CŒ(M)

1. [{/d, “(e1)}, “(e2)] = “([e1, e2]),

2. {[/d, f ], “(e)} = fi(e)(f),

3. /d
2 œ CŒ(M),

where [·, ·] denotes the commutator on End(�(S)) or the Dorfman bracket on E and
{·, ·} denotes the anti-commutator on End(�(S)).

Remark 4.2. We would now like to highlight some subtleties regarding the def-
initions of Dirac generating operators that exist in literature. In the unpublished
manuscript of Alekseev and Xu [AX], they define a so-called ‘generating operator’
for a pseudo-Riemannian vector bundle (E, È·, ·Í) as a first-order odd operator D on
the sections of an irreducible module bundle (S, “) over the Cli�ord algebra bundle
C¸(E) associated to (E, È·, ·Í) satisfying the following properties:

1. For any function f œ CŒ(M), [D, f ] œ im(“).

2. For any two sections e1, e2 œ �(E), [[D, e1], e2] œ im(“).

3. D2 œ CŒ(M).

They also show that every generating operator on a pseudo-Riemannian vector bun-
dle (E, È·, ·Í) of neutral signature induces a Dorfman bracket and an anchor map on
E and thus induces a Courant algebroid structure on E. Observe that generating
operators only induce a Courant algebroid structure on E when “ is injective, i.e.,
only when C¸(E) is a bundle of simple algebras.

Assume now that a Courant algebroid E is already given. Consider a gener-
ating operator associated to the pseudo-Riemannian vector bundle underlying the
Courant algebroid E such that the Dorfman bracket and anchor map induced by
the operator coincides with the Dorfman bracket and anchor map of E. Such a
generating operator is called (Dirac) generating operator of a Courant algebroid.
In a large majority of literature starting from Alekseev and Xu in [AX] followed
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by [LWX, CS, CD1, GF, CS, CCLX], Dirac generating operators are defined on
Courant algebroids of neutral signature. This is either explicitly stated or implicitly
assumed. In some places, such as in [CS, LWX] Courant algebroids are not assumed
to be of neutral signature but the DGOs are defined over sections of only those
C¸(E)-module bundles that admit a Z2-grading that is compatible with the canoni-
cal Z2-grading of the Cli�ord algebra bundle. Furthermore, it is also always assumed
to be an odd operator and the definition is stated in terms of the super-commutator
on End(�(S)). From Proposition 2.8 from the theory of Cli�ord modules we know
that a natural Z2-grading on Cli�ord modules compatible with the canonical Z2-
grading of the Cli�ord algebra exists when the volume element of C¸(E) satisfies
Ê2 = 1, which, while true for some signatures of E, does not hold in all signatures,
see Equation (2.11). Since in this thesis we consider Courant algebroids of arbi-
trary signature, we drop the assumption that Dirac generating operators are odd
operators and state its properties in terms of the anti-commutator and commutator
instead of a super-commutator.

Now we look at the classical examples of DGOs.

Example 4.3. Consider the generalized tangent bundle TM from Example 2.44 on
a smooth manifold M . The sections �(TM) of TM act on the space of di�erential
forms �(S) = �•(M) = �(w• T úM) as follows:

(X + ›) · µ = ÿXµ + › · µ

where X œ �(TM), › œ �(T úM) and µ œ �•(M). A straightforward computation
shows us that this action is also a Cli�ord action and therefore it turns w• T úM into
a module bundle over the Cli�ord algebra bundle C¸(TM). The de Rham di�erential
d on the co-chain complex of di�erential forms on M defines a DGO over TM as
can be verified from a straightforward computation.

Similarly, on the H-twisted generalized tangent bundle (TM, È·, ·Í, [·, ·]H , fi) from
Example 2.45, the following operator defines a DGO:

dH = d + H · ·

In both of the above cases the DGOs square to zero [AX].
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4.2 The Existence of Local DGOs

The main theorem of this section is stated below and we will prove it in several
steps.

Theorem 4.4. Let E be a regular Courant algebroid with scalar product of arbi-

trary signature. Every C¸(E)-module bundle S of type “, where “ is an irreducible

representation, admits locally a Dirac generating operator.

Henceforth DGO will always mean Dirac generating operator of a Courant alge-
broid E, whether stated explicitly or not. The signature of the scalar product on
E will be denoted by (r, s). Recall that a regular Courant algebroid is a Courant
algebroid whose anchor map has constant rank.

While the basic strategy for the proof in arbitrary signatures is similar to the proof
in the neutral signature case as in [CD1], we need to generalise this proof in certain
key places and use results about Cli�ord module bundles that we have obtained in
Part I. To prove the existence of local Dirac generating operators we first show that,
for each pair of generalised connection D on a regular Courant algebroid E and an
irreducible module bundle over (S, “) over C¸(E), there exists an E-connection on
(S, “) that is compatible with the generalised connection D. By compatibility we
mean that the E-connection on (S, “) respects the Cli�ord action. In proving the
existence of such an E-connection on (S, “) we use in critical ways the results that
we have obtained in Part I. Specifically, we use our result on the relation between
two irreducible C¸(E)-module bundles of the same type to induce an E-connection
on S from the given generalised connection D on E.

We next use this E-connection on (S, “) to define a Dirac type operator /D. We
then propose an ansatz for a DGO, namely, /d = /D+“T , where T denotes the torsion
of the generalised connection D, and show that it satisfies the first two properties
of a Dirac generating operator of the Courant algebroid E. At this point the gen-
eralised connection D is arbitrary and, in particular, globally defined, in virtue of
which /d is globally defined. To show that the ansatz for /d also satisfies the third
property, however, we must choose a specific local generalised connection, namely,
the generalised connection D induced from a parallel connection with respect to
a certain structure-preserving local frame for E. This means that /d can then be
defined only locally. By structure-preserving we mean that this local frame is con-
structed so that it preserves the structure of the regular Courant algebroid E. Here
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4.2 The Existence of Local DGOs

the signature of the Courant algebroid plays an important role. We next compute
/d

2 with respect to this local frame and verify that it satisfies the third property of
a DGO, namely /d

2 œ CŒ(M).
In the lemma below we show that upon fixing a generalised connection there exists

a D-compatible E-connection DS on S.

Lemma 4.5. Let E be a regular Courant algebroid with arbitrary signature and D

a generalised connection on E. If (S, “) is an irreducible module bundle over C¸(E),
then there exists an E-connection DS

on S which is compatible with D, i.e.,

DS

e
(“a(s)) = “De(a)(s) + “a(DS

e
(s)) (4.1)

for all e œ �(E), a œ �(C¸(E)), s œ �(S).

Proof. Without loss of generality, we fix {U– | – œ �} to be an open cover of M

such that all bundles defined over M appearing in this proof, be they vector bundles,
algebra bundles or module bundles, admit a family of local trivializations over it.

Since the bundle (E, È·, ·Í) locally always admits a spin structure, we can asso-
ciate a spinor bundle � over every open set U–. For example, � can be chosen to
be the trivial C¸(E)-module bundle of type [“] over U–. We show below how the
E-connection D on E induces an E-connection D� on �. As we will show, the
connection form of this D� with respect to the local trivialisation of the spin struc-
ture is one half of the connection form of D with respect to the corresponding local
orthonormal frame of E. Both connection forms can be considered as sections of
Eú ¢ so(E) after the identification spin(E) ≥= so(E) via the adjoint representation
ad : spin(E) ≠æ so(E), adu(v) = uv ≠ vu. For the following calculations, let (ei)
be an orthonormal frame of E|U and (‡–) a frame of � such that ei‡– = q

— C—

i–
‡—

where C—

i–
are constants. We know that such a frame exists because of Corollary

3.5.
Since D is a generalised connection on E, due to the compatibility of D with È·, ·Í,

we have the following expression:

Dv(ek) = ≠‘k

ÿ

j

Êjk(v)ej

for v œ �(E|U) and ‘j = Èej, ejÍ œ {±1} and (Êjk) is the skew symmetric matrix of
1-forms. When eú

j
(ei) = ”ij = ‘jÈei, ejÍ we have

ÿ

(j,p)

Êpj(v)(‘peú
p

¢ ej ≠ ‘je
ú
j

¢ ep)(ek) =
ÿ

(j,p)

Êpj(v)(‘p”pkej ≠ ‘j”jkep)
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=
ÿ

j

Êkj(v)(‘kej) +
ÿ

p

Êkp(v)(‘kep)

= ≠2‘k

ÿ

j

Êjk(v)ej.

Furthermore, since
ÿ

(j,p)

Êpj(v)(‘peú
p

¢ ej ≠ ‘je
ú
j

¢ ep)(ek) = 2
ÿ

j<p

Êpj(v)(‘peú
p

¢ ej ≠ ‘je
ú
j

¢ ep)(ek),

we have

Dv(ek) = ≠‘k

ÿ

j

Êjk(v)ej

=
ÿ

j<p

Êpj(v)(‘peú
p

¢ ej ≠ ‘je
ú
j

¢ ep)(ek)

=
ÿ

j<p

Êpj(v)(ep · ej)(ek).

The element 1

2
epej œ spin(E) µ C¸(E) when i ”= j acts under the adjoint representa-

tion as ‘peú
p
¢ej ≠‘jeú

j
¢ep œ so(E) which corresponds to ep ·ej œ ·2E, see (2.27) for

more details. The following computations show that D�

e
(‡–) := 1

2

q
j<p Êjp(e)ejep‡–

is compatible with D|U for basis elements.

Dv(ek) · ‡m + ek · D�

v
(‡m) =

ÿ

i<j

Êji(v)(‘je
ú
j

¢ ei ≠ ‘ie
ú
i

¢ ej)(ek)‡m

+ 1
2

ÿ

i<j

Êij(v)ekeiej‡m

=
ÿ

i<j

Êij(v)(‘ie
ú
i

¢ ej ≠ ‘je
ú
j

¢ ei)(ek)‡m

+ 1
2

ÿ

i<j

Êij(v)ekeiej‡m

=
ÿ

i<j

Êij(v)(‘i”ikej ≠ ‘j”jkei)‡m + 1
2

ÿ

i<j

Êij(v)ekeiej‡m

= 1
2

ÿ

i<j

Êij(v)(ei(≠2‘j”jk ≠ ekej) ≠ (≠2‘i”ik ≠ eiek)ej)‡m

+ 1
2

ÿ

i<j

Êij(v)ekeiej‡m

= 1
2

ÿ

i<j

Êij(v)(eiejek ≠ ekeiej)‡m + 1
2

ÿ

i<j

Êij(v)ekeiej‡m

= 1
2

ÿ

i<j

Êij(v)eiejek‡m
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and

D�

v
(ek‡m) = D�

v
(
ÿ

—

C—

km
‡—)

=
ÿ

—

C—

km
D�

v
(‡—)

=
ÿ

—

C—

km

Q

a1
2

ÿ

i<j

Êij(v)eiej‡—

R

b

= 1
2

ÿ

i<j

Êij(v)eiejek‡m.

For any general local section, we can express them in terms of the local frame and
apply Leibniz rule to show the same compatibility.

Now consider the bundle L := HomC¸(E)(�, S) ≠æ M that we know to exist from
Lemma 3.9 and consider the family of local trivialisations �– of L constructed there.
Let (li) be the local frame of L that corresponds to the local trivialisation �–. Let
(⁄j) be the local frame of the Schur algebra bundle C(�, ��) that corresponds to
the local trivialization Ad(÷�

–
) restricted to C(�–, ��) µ HomC¸(E)(�–, �–). Here ÷�

–

is the C¸(E)-equivariant local trivialization of � underlying the local frame (‡k).
From Lemma 3.10 we know that L is a right module bundle over the Schur algebra

bundle C(�, ��). Therefore, from Corollary 3.5 it follows that li·⁄j = q
k Nk

ij
lk where

Nk

ij
are constants. Likewise, from Lemma 3.11 we know that � is a left module

bundle over the Schur algebra bundle C(�, ��) so again from Corollary 3.5 we know
that ⁄r · ‡k = q

q Bq

rk
‡q for some constants Bq

rk
.

Consider the trivial connection on L with respect to the local trivialisation �– and
let DL denote the induced E-connection. Then by construction we have DL

v
(li) = 0

for v œ �(E) and for all i. Let DL¢R� denote the local connection over the tensor
bundle L ¢R � ≠æ M induced by the connections DL and D�. With the following
computation we show that this local connection descends to a local connection on
the Cli�ord module bundle S ≥= L ¢C(�,�) � ≠æ M , i.e. DL¢R�

v
for all v œ �(E)

leaves invariant the space of sections of the sub-bundle ÂU := fipœMUp ≠æ M , where
Up := Span

R
{≠(l · ⁄) ¢ ‡ + l ¢ (⁄ · ‡) | l œ Lp, ⁄ œ C(�, �)p and ‡ œ �p} is the

subspace defined in Lemma 3.18. For v œ �(E),

DL¢R�

v
(≠(li · ⁄k) ¢ ‡j + li ¢ (⁄k · ‡j)) = DL¢R�

v
(≠(li · ⁄k) ¢ ‡j)

+ DL¢R�

v
(li ¢ (⁄k · ‡j))
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= DL

v
(≠(li · ⁄k)) ¢ ‡j + (≠li · ⁄k) ¢ D�

v
(‡j)

+ DL

v
(li) ¢ ⁄k · ‡j + li ¢ D�

v
(⁄k · ‡j)

= ≠(li · ⁄k) ¢ D�

v
(‡j) + li ¢ D�

v
(⁄k · ‡j)

= ≠(li · ⁄k) ¢ D�

v
(‡j) + li ¢ ⁄kD�

v
(‡j)

œ �(U),

where in the third step we use li · ⁄j = q
k Nk

ij
lk and DL

v
(li) = 0. The last step

follows due to the fact that ⁄r · ‡k = q
q Bq

rk
‡q for some constants Bq

rk
and because

⁄k œ �(C(�, ��)) they commute with ei œ �(E) as can be seen from the calculation
below.

D�

v
(⁄k · ‡j) = D�

v
(
ÿ

q

Bq

kj
‡q)

=
ÿ

q

Bq

kj

Q

a1
2

ÿ

l<m

Êlm(v)elem‡q

R

b

= 1
2

ÿ

l<m

Êlm(v)elem

A
ÿ

q

Bq

kj
‡q

B

= 1
2

ÿ

l<m

Êlm(v)elem⁄k · ‡j

= ⁄k

1
2

ÿ

l<m

Êlm(v)elem‡j

= ⁄kD�

v
(‡j).

Furthermore, we can express any local section of U over an open set U– as a CŒ(U)-
linear combination of elements ≠(li · ⁄k) ¢ ‡j + li ¢ (⁄k · ‡j) and apply the Leibniz
rule to show that DL¢R�

v
(s) is again in �(U) for any v œ �(E). Therefore locally

DL¢R� descends to an E-connection DL¢C(�,�)� on L ¢C(�,�) � and therefore an E-
connection DS|U– on S|U–

≥= L ¢C(�,�) �|U– . Now by gluing the E-connections DS|U–

with a partition of unity subordinate to the cover (U–) we get an E-connection
DS.

We recall the notion of ‘Dirac operator’ in the context of generalised geometry
given an E-connection DS on a C¸(E) module bundle (S, �S).

Definition 4.6. A Dirac operator is a first-order di�erential operator on S such
that

/D = ≠1
2

r+sÿ

i=1

ẽiD
S

ei
,
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where (ei) is any local frame of E and ẽi is the metrically dual frame, Èei, ẽjÍ = ”ij.

Note that the Dirac operator is independent of the chosen basis. Next in the
lemma below, we propose an ansatz for a Dirac generating operator and show that
it satisfies the first two properties of a DGO:

Lemma 4.7. Let T œ �(·3Eú) ≥= �(·3E) µ �(C¸(E)) denote the torsion of D

where D is any generalised connection and let DS
be a D compatible E-connection.

Then the operator

/d = /D + 1
4“T (4.2)

satisfies conditions (1) and (2) from Definition 4.1.

Proof. We will first show that condition (2) in Definition 4.1 is satisfied. Since
[“T , f ] = 0 for f œ CŒ(M), we have {[/d, f ], “v} = {[ /D, f ], “v} for v œ �(E). With
[ /D, f ] = 1

2

q
r+s

i=1
fi(ei)(f)“ẽi it follows that {[ /D, f ], “v} = fi(v)(f) and therefore con-

dition (2) is satisfied.
To show that condition (1) in Definition 4.1 is satisfied, we need to compute

[{ /D, “v}, “w] for v, w œ �(E). To do this, we first compute

{ /D, “v} = ≠1
2

ÿ

i

(“ẽiD
S

ei
“v + “v“ẽiD

S

ei
)

= ≠1
2

ÿ

i

(“ẽiD
S

ei
“v ≠ “ẽi“vDS

ei
≠ 2“Èẽi,vÍD

S

ei
)

= ≠1
2

ÿ

i

“ẽi(DS

ei
“v ≠ “vDS

ei
) + DS

v

= ≠1
2

ÿ

i

“ẽi(“Dei v + “vDS

ei
≠ “vDS

ei
) + DS

v

= ≠1
2

ÿ

i

“ẽi“Dei v + DS

v
.

Now,

[{ /D, “v}, “w] = ≠1
2

ÿ

i

[“ẽi“Dei v, “w] + “Dvw

= ≠
ÿ

i

(“Èẽi,wÍ“Dei v ≠ “ÈDei v,wÍ“ẽi) + “Dvw

=
ÿ

i

“ÈDei v,wÍ“ẽi + “Dvw≠Dwv.
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Using the definition of torsion of D we get

[{ /D, “v}, “w] = “T (v,w) + “[v,w].

For any 3-form we can further show that

[{“T , “v}, “w] = ≠4“T (v,w).

With this we have shown that

[{/d, “v}, “w] = [{ /D + 1
4“T , “v}, “w] = “[v,w].

If we can show that /d as defined in the previous lemma also satisfies condition (3)
of Definition 4.1, then we have shown the existence of a local Dirac generating
operator on regular Courant algebroids. To analyse condition (3) of Definition 4.1,
we use the Lemma 2.48 on the structure of a regular Courant algebroid. Observe
that Lemma 2.48 implies that for a regular Courant algebroid E of signature (r, s)
over any U µ M su�ciently small, the bundle E|U admits a frame

(p1, . . . , pmin(r,s), q1, . . . , qmin(r,s), t1, . . . , t|r≠s|) (4.3)

such that there exists an l, with 1 Æ l Æ min(r, s), such that

ker fi‹ = span
R
{pa|a Æ l}

F = span
R
{qa|a Æ l}

ker fi ∏ span
R
{qa|a Ø l + 1}

and

Èpa, qbÍ = ”ab

[fi(qa), fi(qb)] = 0

for any 1 Æ a, b Æ min(r, s),

Èpa, tmÍ = 0

Èqa, tmÍ = 0

for all 1 Æ m Æ |r ≠ s| and
Èti, tjÍ = ‘”ij
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for 1 Æ i, j Æ |r ≠ s|, where ‘ = ≠1 if r < s and ‘ = +1 if s < r.
We can obtain such a frame as follows: Property 2 of Proposition 2.41 states

that the image of fi is an involutive distribution and thus by the Frobenius theorem
we can choose a basis qa for a = 1, . . . , l of F such that [fi(qa), fi(qb)] = 0 for any
1 Æ a, b Æ l. Next, choose a basis of (ker fi)‹, pa where a = 1, . . . , l such that
Èpa, qbÍ = ”ab for any 1 Æ a, b Æ l. Finally we choose a basis

{pl+1, . . . , pmin(r,s), ql+1, . . . , qmin(r,s), t1, . . . , t|r≠s|} µ G

in such a way that the relations Èpa, pbÍ = Èqa, qbÍ = 0, Èpa, qbÍ = ”ab hold for all
a, b Ø l + 1, Èti, tjÍ = ‘”ij, Èpa, tiÍ = 0 and Èqa, tiÍ = 0 for all a, b, i and where ‘ = ≠1
if r < s and ‘ = +1 if s < r.

The following lemma will help us in proving that the operator in (4.2) will indeed
satisfy the third property of Definition 4.1.

Lemma 4.8. For any ‡ œ �(ker fi), q
a fi(qa)È‡, paÍ + q

k

i=1
fi(ti)È‡, tiÍ = 0.

Proof. Each term in q
a fi(qa)È‡, paÍ + q

k

i=1
fi(ti)È‡, tiÍ vanishes: if a Æ s, then pa œ

�(ker fi‹) and È‡, paÍ = 0. If a Ø s + 1, then qa œ �(ker fi) and fi(qa) = 0. Since
ti œ �(ker fi), we have fi(ti)È‡, tiÍ = 0 for all i.

To show the existence of a DGO, we will choose a connection Ò on E|U with
respect to which the frame ((pa)a, (qa)a, (tm)m), as constructed above, is parallel.
Such a Ò is flat, preserves the scalar product È·, ·Í of E and S|U admits a flat
connection ÒS compatible with Ò due to Lemma 4.5. Then Ò induces a generalised
connection D on E and ÒS an E-connection DS on S which is compatible with D.
The next lemma will show us that the operator 4.2 satisfies Property 3 of a Dirac
generating operator.

Lemma 4.9. The operator /d = /D + 1

4
“T constructed using D and DS

satisfies

/d
2 œ CŒ(U).

Proof. The Dirac operator /D has the expression:

/D = ≠1
2

A
ÿ

a

paDS

qa
+

ÿ

a

qaDS

pa
+ ‘

kÿ

i=1

tiD
S

ti

B

= ≠1
2

A
ÿ

a

paDS

qa

B

(4.4)

because pa, ti œ �(ker fi). Observe that ((qa)a, (pa)a, ‘(tm)m) is the frame that is
metrically dual to the frame ((pa)a, (qa)a, (tm)m), where ‘ = ≠1 if r < s and ‘ = +1
if s < r.
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Since /d
2 = ( /D)2 + 1

4
{ /D, “T } + 1

16
“2

T
, we compute each of the terms on the right

hand side starting with the square of /D below:

( /D)2 = 1
4

A
ÿ

a

paDS

qa

B2

= 1
4

ÿ

a,b

papbD
S

qa
DS

qb

= ≠1
2

ÿ

a,b

Èpa, pbÍDS

qa
DS

qb

= 0.

This follows from the flatness of ÒS, that is, ÒSpa = 0 and [fi(qa), fi(qb)] = 0 for
any a, b. The last step follows from the fact that (pa)a span an isotropic subspace.

Next we compute { /D, “T }. The torsion T of D is written as T = 1

6

q
T ijkeijk œ

C¸(E) where (ei) is a D-parallel orthonormal frame and eijk := eiejek. The coe�-
cients T ijk are given by

T ijk = T (ẽi, ẽj, ẽk) = ‘i‘j‘kT (ei, ej, ek) = ≠‘i‘j‘kÈ[ei, ej], ekÍ, (4.5)

where (ẽi) is the frame of E|U that is metrically dual to (ei), i.e., ẽi = ‘iei with
‘i = Èei, eiÍ. We use the abbreviation “ijk = “eiejek

and we write

{ /D, “T } = ≠ 1
12

Y
]

[
ÿ

l

“ẽl
DS

el
,
ÿ

ijk

T ijk“ijk

Z
^

\

= ≠ 1
12

Q

a
ÿ

ijkl

‘l(“lfi(el)(T ijk)“ijk + “lT
ijkDS

el
(“ijk) + T ijk“ijk“el

DS

el
)
R

b

= ≠ 1
12

Q

a
ÿ

ijkl

‘l(“lfi(el)(T ijk)“ijk + “lT
ijk“ijkDS

el
+ T ijk“ijk“el

DS

el
)
R

b

= ≠ 1
12

Q

a
ÿ

ijkl

‘l(“lfi(el)(T ijk)“ijk + T ijk{“l, “ijk}DS

el
)
R

b .

For a fixed l we have
ÿ

ijk

T ijk{“ẽl
, “ijk} = ‘l

ÿ

ijk

T ijk(“l“ijk + “ijk“l)

= ‘l

ÿ

ijk

T ijk(≠2Èel, eiÍ“jk ≠ “iljk + “ijk“l)
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= ‘l

ÿ

ijk

T ijk(≠2Èel, eiÍ“jk + 2Èel, ejÍ“ik ≠ 2Èel, ekÍ“ij)

= ≠
ÿ

jk

2T ljk”ll“jk +
ÿ

ik

2T ilk”ll“ik ≠
ÿ

ij

2T ijl”ll“ij

= ≠6
ÿ

jk

T ljk“jk.

Further,
ÿ

ijkl

T ijk{“ẽl
, “ijk}DS

el
= ≠6

ÿ

jk

“jkDSq
l
‘lT

ljkel

= 6
ÿ

jk

“jkDS

[ẽj ,ẽk]

= 6
ÿ

jk

‘j‘k “jkDS

([ej ,ek])
.

Therefore,

{ /D, “T } = ≠ 1
12

ÿ

ijkl

‘l(“lfi(el)(T ijk)“ijk) ≠ 1
2

ÿ

jk

‘j‘k “jkDS

([ej ,ek])
.

To compute the last term we choose the orthonormal frame (ei) to be

(ei)i=1,...,r+s =
AA

1Ô
2

(pa + qa)
B

a

,

A
1Ô
2

(pa ≠ qa)
B

a

, (tm)m

B

,

where ((pa)a, (qa)a, (tm)m) is the frame (4.3) constructed before. Since [fi(qa), fi(qb)] =
0, we have fi([ej, ek]) = 0. Therefore,

{ /D, “T } = ≠ 1
12

ÿ

ijkl

‘l(“lfi(el)(T ijk)“ijk). (4.6)

So we have
/d

2 = ≠ 1
16

A
1
3

ÿ

ijkl

‘l(“lfi(el)(T ijk)“ijk) ≠ “2

T

B

.

First observe
ÿ

i,j

eiej =
ÿ

i,j

(≠2Èei, ejÍ ≠ ejei)

= ≠2
ÿ

i,j

Èei, ejÍ ≠
ÿ

i,j

eiej = ≠
ÿ

i,j

Èei, ejÍ = ≠
ÿ

i

‘i.

Next we compute

(“T )2 =
3

“ 1
6

q
ijk

T ijkeijk

4 1
“ 1

6
q

lmn
T lmnelmn

2
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= 1
36

ÿ

ijklmn

T ijkT lmn“ijklmn

= 1
36

ÿÕ

ijklmn

T ijkT lmn“ijk“lmn ≠ 9
36

ÿ

ijlmn

‘lT
ijlT lmn“ijmn

= ≠1
4

ÿ

ijlmn

‘lT
lijT lmn“ijmn,

where the primed summation sign here, and in the following, runs only over pairwise
distinct indices.

Note that in the above calculation, if we let I denote the index set of ordered tuples
(ijklmn) over which our summation runs, and consider the involution — : I æ I

where (ijklmn) ‘æ (lmnijk), then

1
36

ÿÕ

ijklmn

T ijkT lmn“ijk“lmn

2 + 1
36

ÿÕ

—(ijklmn)

T ijkT lmn“ijk“lmn

2 = 0.

Observe that
ÿ

ijlmn

‘lT
lijT lmn“ijmn =

ÿÕ

ijlmn

‘lT
lijT lmn“ijmn +

ÿ

ijln

‘lT
lijT lin“ijin +

ÿ

ijlm

‘lT
lijT lmi“ijmi

+
ÿ

ijln

‘lT
lijT ljn“ijjn +

ÿ

ijlm

‘lT
lijT lmj“ijmj

=
ÿÕ

ijlmn

‘lT
lijT lmn“ijmn + 4

ÿ

ijln

‘lT
lijT lin“ijin

=
ÿÕ

ijlmn

‘lT
lijT lmn“ijmn ≠ 4

ÿ

ijln

‘lT
lijT lin“iijn

=
ÿÕ

ijlmn

‘lT
lijT lmn“ijmn + 4

ÿ

ijl

‘l‘jT
lijT lij“ii

=
ÿÕ

ijlmn

‘lT
lijT lmn“ijmn ≠ 4

ÿ

ijr

‘r‘j‘i(T rij)2.

Therefore,

(“T )2 = ≠1
4

A
ÿÕ

ijlmn

‘lT
lijT lmn“ijmn ≠ 4

ÿ

ijr

‘r‘j‘i(T ijr)2

B

.

Similarly,
ÿ

ijkl

fi(el)(T ijk)“ẽl
“ijk =

ÿÕ

ijkl

fi(el)(T ijk)“ẽl
“ijk +

ÿ

jkl

fi(el)(T ljk)“ẽl
“ljk

+
ÿ

ikl

fi(el)(T ilk)“ẽl
“ilk +

ÿ

ijl

fi(el)(T ijl)“ẽl
“ijl
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=
ÿÕ

ijkl

fi(el)(T ijk)“ẽl
“ijk + 3

ÿ

jkl

fi(el)(T ljk)“ẽl
“ljk

=
ÿÕ

ijkl

fi(el)(T ijk)“ẽl
“ijk ≠ 3

ÿ

jkl

fi(el)(T ljk)“jk.

Combining the above two expressions and taking into account that for any fixed j

and k we have
ÿ

l

fi(el)(T ljk) = ≠‘j‘k

ÿ

l

fi(el)È[ej, ek], elÍ‘l

= ≠‘j‘k

ÿ

a

fi(qa)È[ej, ek], paÍ ≠
ÿ

i

fi(ti)È[ej, ek], tiÍ = 0,

Above we have used Lemma 4.8. Next we obtain the expression

/d
2 = 1

16

A
1
3

ÿÕ

ijkl

fi(el)(T ijk)“ẽl
“ijk + 1

4
ÿÕ

ijlmn

‘lT
lijT lmn“ijmn

B

≠ 1
16

ÿ

ijr

‘r‘j‘i(T rij)2.

We aim to show that
/d

2 = ≠ 1
16

A
ÿ

ijr

‘i‘j‘r(T ijr)2

B

. (4.7)

For this we need to show that

1
3

ÿÕ

ijkl

fi(el)(T ijk)“ẽl
“ijk + 1

4
ÿÕ

ijlmn

‘lT
lijT lmn“ijmn = 0. (4.8)

To show that the equation (4.7) is true we use the property that [u, [v, w]] =
[[u, v], w] + [v, [u, w]] for all u, v, w œ �(E) and we metrically raise and lower in-
dices as needed:

0 = [ei, [ej, ek]] ≠ [[ei, ej], ek] ≠ [ej, [ei, ek]]

=
ÿ

l

1
≠ [ei, Tjk

lel] + [Tij

lel, ek] + [ej, Tik

lel]
2

=
ÿ

l

(≠fi(ei)(Tjk

lel) + fi(ej)(Tik

l)el) +
ÿ

l,m

(Tjk

lTil

m ≠ Tik

lTjl

m)em

+
ÿ

l

(≠[ek, Tij

lel] + fiúdÈTij

lel, ekÍ)

=
ÿ

l

(≠fi(ei)(Tjk

lel) + fi(ej)(Tik

l)el) +
ÿ

l,m

(Tjk

lTil

m ≠ Tik

lTjl

m)em + fiúdTijk

≠
ÿ

l

fi(ek)(Tij

l)el +
ÿ

l,m

Tij

lTkl

mem

=
ÿ

l

fi(el)(Tijk)ẽl ≠
ÿ

(i,j,k) cyclic

ÿ

l

A

fi(ei)(Tjk

l)el ≠
ÿ

m

Tij

lTkl

mem

B

.
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In the above we have used that fiúdf = q
l fi(el)(f)ẽl for all f œ CŒ(M). For any

fixed i, j, k, l we therefore find

fi(el)(Tijk)ẽl ≠
ÿ

(i,j,k) cyclic

ÿ

l

A

fi(ei)(Tjk

l)el ≠
ÿ

m

Tij

lTkl

mem

B

= 0.

Let i, j, k, l all be pairwise distinct. Now we multiply the above equation with “ijk

and sum over i, j, k, l which are pairwise distinct

0 =
ÿÕ

ijkl

A

fi(el)(Tijk)ẽl ≠
ÿ

(i,j,k) cyclic

ÿ

l

A

fi(ei)(Tjk

l)el ≠
ÿ

m

Tij

lT m

kl
em

B

“ijk

B

=
ÿÕ

ijkl

fi(el)(Tijk)“lijk ≠
ÿÕ

ijkl

ÿ

(i,j,k) cyclic

fi(ei)(Tjkl)“lijk

+
ÿÕ

ijkl

A
ÿ

(i,j,k) cyclic

ÿ

m

Tij

mTkml

B

“lijk.

Observe that
ÿÕ

ijkl

ÿ

(i,j,k) cyclic

fi(ei)(Tjkl)“lijk = 3
ÿÕ

ijkl

fi(ei)(Tjkl)“lijk = 3
ÿÕ

ijkl

fi(el)(Tjki)“iljk

= ≠3
ÿÕ

ijkl

fi(el)(Tijk)“lijk

and
ÿÕ

ijkl

A
ÿ

(i,j,k) cyclic

ÿ

m

Tij

mTkml

B

“lijk =
ÿÕ

ijklm

A
ÿ

(i,j,k) cyclic

Tij

mTkml

B

“lijk

= 3
ÿÕ

ijklm

Tij

mTkml“
lijk

= 3
ÿÕ

ijklm

Tij

lTklm“mijk.

Combining all the above we obtain

4
ÿÕ

i,j,k,l

fi(el)(T ijk)“ẽl
“ijk + 3

ÿÕ

i,j,l,m,n

‘lT
lijT lmn“ijmn = 0

which is essentially Equation (4.8) subject to re-organisation of indices. With this
we can conclude that /d

2 œ CŒ(U).

Lemma 4.7 shows that /d = /D + 1

4
“T satisfies the first two properties of a DGO

and Lemma 4.9 shows that it satisfies the third, so we conclude that /d = /D + 1

4
“T

is a Dirac generating operator – proving Theorem 4.4.
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4.3 The space of local DGOs in signature (p, p + 1):

In this section, we aim to describe the space of local Dirac generating operators in
signature (p, p + 1). Having a description of this space is not only important to gain
a better understanding of DGOs of Courant algebroids of the said signature type
but it is also a first step towards constructing the canonical DGO, which would then
be a globally defined operator.

Theorem 4.10. Suppose there exists a DGO /d for a Courant algebroid E ≠æ M

of signature (p, p + 1) on an irreducible C¸(E)-module bundle (S, “). Then, the set

of DGOs for E on (S, “) has the structure of an a�ne space modelled on

V/d := {e œ �(E) | {/d, “e} œ CŒ(M)}. (4.9)

In particular, V/d is independent of the choice of the DGO /d.

The proof of Theorem 4.10 is in Section 4.3.2.
In all that follows we assume that E ≠æ M is a Courant algebroid and (S, “) an

irreducible C¸(E)-module bundle. In the lemma below, we show that if /d is a DGO,
then /d + “e is also a DGO for any e œ V/d, where V/d is as described in Theorem 4.10
above. Note that the lemma below holds in all signatures even though we apply it
only in the (p, p + 1) case.

Lemma 4.11. Suppose there exists a DGO /d for a Courant algebroid E ≠æ M of

signature (r, s) on an irreducible C¸(E)-module bundle (S, “). Then for every e œ V/d,

where V/d is as in Equation (4.9), /d + “e is a DGO for E.

Proof. For any e œ V/d, we verify below that /d
Õ := /d + “e is a DGO.

1. Let e1, e2 œ �(E). Then

[{/d + “e, “e1}, “e2 ] = [{/d, “e1}, “e2 ] + [{“e, “e1}, “e2 ]

= “[e1,e2] + [“e“e1 , “e2 ] + [“e1“e, “e2 ]

= “[e1,e2].

In the last step [“e“e1 , “e2 ] + [“e1“e, “e2 ] = 0 due to the Cli�ord relation.

2. Let e1 œ �(E) and f œ CŒ(M). Since [“e, f ] = 0,

{[/d + “e, f ], “e1} = {[/d, f ], “e1} + {[“e, f ], “e1} = fi(e)(f).

With this we have shown that /d
Õ satisfies condition 2.
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3. If e œ �(E) such that {/d, “e} œ CŒ(M), then

(/d + “e)(/d + “e) = /d
2 + {/d, “e} + “e“e œ CŒ(M).

Therefore, /d
Õ satisfies condition 3.

Now we will prove the converse, that is, in signature (p, p + 1) we show that
/d ≠ /d

Õ = “e for some e œ V/d for any two DGOs /d and /d
Õ. To do this we proceed

as follows. We first observe that [L, f ] is a 0th order operator for L := /d ≠ /d
Õ and

any smooth function f . Then we show that [L, f ] = 0 in signature (p, p + 1) and
from this we conclude that L is a 0-th order operator. Next, we show that {L, f}
belongs to the Schur algebra bundle and is therefore a scalar operator. For this the
signature (p, p + 1) is important. In the final step, due to surjectivity of “ and since
{L, f} is a scalar operator in signature (p, p + 1), we conclude that L = “e for some
e œ �(E). To this end, we begin with a lemma.

Lemma 4.12. The commutator of any first-order di�erential operator L and any

smooth function f is a 0-th order operator. Furthermore, if L is a first-order operator

such that [L, f ] = 0 for all f , then L is of 0-th order.

Proof. Let M be a smooth manifold of dimension n and S ≠æ M a real vector
bundle of rank m. Recall that a first-order di�erential operator on M is a linear
map L : �(S) ≠æ �(S) that has the following property. Each point of x œ M

has a neighbourhood U with local coordinates (x1, . . . , xn) and local trivialisations
‰S

U
: S |U≠æ U ◊ R

m in which L can be written in the form:

L =
mÿ

i=1

Ai(x) ˆi

ˆxi
+ A0(x),

where each Ai(x) is an m ◊ m-matrix of smooth real-valued functions such that
Ai ”= 0 for some i. Let (›1, . . . , ›m) be a local frame for S over the neighbourhood
U . Write any g œ �(S|U) as g = q

m

i=1
gi›i where gi œ CŒ(U). Now by the Leibniz

rule,

(Lf ≠ fL)(g1, . . . , gm) =
A

mÿ

i=1

Ai(x) ˆ

ˆxi
+ A0(x)

B

(f(g1, . . . , gm))

≠ f

A
mÿ

i=1

Ai(x) ˆ

ˆxi
+ A0(x)

B

((g1, . . . , gm))
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=
mÿ

i=1

Ai(x)
A

ˆ(f(g1, . . . , gm))
ˆxi

B

≠ f
mÿ

i=1

Ai(x)
A

ˆ((g1, . . . , gm)
ˆxi

B

=
mÿ

i=1

Ai(x)(g1, . . . , gm)
A

ˆf

ˆxi

B

.

Since each component of the above m-tuple is a CŒ(U) function, [L, f ] is a 0-th
order operator for all f œ CŒ(U).

Now to show that L is of 0-th order when [L, f ] = 0, let f = xj for any 1 Æ j Æ n.
Given that [L, f ] = 0 for all f œ CŒ(U) we have the following:

CA
mÿ

i=1

Ai(x) ˆ

ˆxi
+ A0(x)

B

, xj

D

((g1, . . . , gm)) = 0.

mÿ

i=1

Ai(x)(g1, . . . , gm) (dxj(ˆxi)) = 0.

With this we have shown that Aj(x)(g1, . . . , gm) = 0 for all x œ U and all j. Without
loss of generality, now let g be such that gi are nowhere vanishing functions for all
i. This would imply that Aj(x) = 0 for all j. Thus L is of 0-th order.

In particular, from Lemma 4.12 it follows that if L := /d ≠ /d
Õ, where /d and /d

Õ are
DGOs on a Courant algebroid E ≠æ M , then, [L, f ] is a 0-th order operator for all
f œ CŒ(M).

Remark 4.13. From property 2 of Definition 4.1, it is clear that {[L, f ], “e} = 0
for all e œ �(E).

The lemma below shows that [L, f ] is C¸0(E)-equivariant.

Lemma 4.14. If L := /d ≠ /d
Õ

where /d and /d
Õ

are DGOs on a Courant algebroid

E ≠æ M of signature (r, s), then [L, f ], where f œ CŒ(M), commutes with C¸0(E)
and anti-commutes with C¸1(E).

Proof. For L := /d ≠ /d
Õ it follows from property 2 of DGOs that {[L, f ], “e} = 0 for

all e œ �(E). Now from the Cli�ord relations the proof follows.

Let (r, s) be the signature of the Courant algebroid E ≠æ M . We show below that
when the Cli�ord algebras C¸(E)x are isomorphic to R[N ]üR[N ] or H[N ]üH[N ] for
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some N œ N, i.e., when r ≠ s © 7 mod 8 or r ≠ s © 3 mod 8 respectively, [L, f ] is in
fact zero. Note that metric of signature (p, p+1) is a special case of r ≠s © 7 mod 8.
The fact that [L, f ] is zero is necessary for our proof of Theorem 4.10.
Note that in both of the above stated cases, there are two inequivalent irreducible
representations, “± of C¸(E) and a unique irreducible representation Â“ of C¸0(E)
such that “± |C¸0(E)

≥= Â“ as representations. This fact is critical in our proof showing
that [L, f ] is zero.

Lemma 4.15. Let E ≠æ M be a Courant algebroid whose signature (r, s) is such

that r ≠ s © 7 mod 8 or r ≠ s © 3 mod 8 and let L := /d ≠ /d
Õ

where /d and /d
Õ

are

DGOs. Then [L, f ] = 0 for all f œ CŒ(M).

Proof. • Case r≠s © 7 mod 8: Let “ : C¸(E) ≠æ EndR(S) be an irreducible rep-
resentation of C¸(E) and let C(S, “|C¸0(E)) be the Schur algebra bundle of the re-
striction of “ to the even part C¸0(E). Clearly �(C(S, “|C¸0(E))) µ �(EndR(S)).
Since [L, f ] is a 0-th order operator, [L, f ] œ �(EndR(S)). Furthermore,
{[L, f ], “e} = 0 for all e œ �(E) implies [[L, f ], “(�(C¸0(E)))] = 0. There-
fore [L, f ] œ �(C(S, “|C¸0(E))). Since C(S, “|C¸0(E))p

≥= R, [L, f ]p = ⁄p IdSp for
some ⁄p œ R for all p œ M . Observe that {[L, f ], “e} = 0 for all e œ �(E) also
implies that {[L, f ], “(�(C¸1(E)))} = 0, that is for all ÷ œ “(�(C¸1(E))):

{[L, f ], ÷}p = ⁄p IdSp ÷p + ÷p⁄p IdSp

= 2⁄p÷p

= 0.

This can only hold for all ÷p œ “p(C¸1(E)) and for all p œ M , if ⁄p = 0. Thus
we have shown that [L, f ] = 0.

• Case r≠s © 3 mod 8: Let “ : C¸(E) ≠æ EndR(S) be an irreducible representa-
tion on C¸(E) and let C(S, “|C¸0(E)) be the Schur algebra bundle of the restric-
tion of “ to the even part C¸0(E). Clearly �(C(S, “|C¸0(E))) µ �(EndR(S)).
Since [L, f ] is a 0-th order operator, [L, f ] œ �(EndR(S)). Furthermore,
{[L, f ], “e} = 0 for all e œ �(E) implies [[L, f ], “(�(C¸0(E)))] = 0. There-
fore [L, f ] œ �(C(S, “|C¸0(E))). Recall that C(S, “|C¸0(E))p

≥= H. Let Ip, Jp, Kp œ
EndR(Sp) be the endomorphisms that correspond to the quaternionic units
{i, j, k} via the identification C(S, “|C¸0(E))p

≥= H. Then

[L, f ]p = a IdSp +bIp + cJp + dKp
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for some a, b, c, d œ R. Observe that {[L, f ], “e} = 0 for all e œ �(E) also
implies that {[L, f ], “(�(C¸1(E)))} = 0, that is for all ÷ œ “(�(C¸1(E))),

{[L, f ], ÷}p = 2a(÷p IdSp) + b(Ip÷p + ÷pIp) + c(Jp÷p + ÷pJp) + d(Kp÷p + ÷pKp).

Note that by the natural action of C(S, “)p
≥= H, Sp is a left H-module. Further-

more, since by definition “(C¸(E)p) commutes with C(S, “)p
≥= H, it is clear

that the action of C¸(E)p on Sp is H-linear. Observe that C(S, “|C¸0(E))p =
C(S, “)p

≥= H, therefore, we have:

{[L, f ], ÷}p = 2a(÷p IdSp) + 2b(÷pIp) + 2c(÷pJp) + 2d(÷pKp) = 0.

Since {IdSp , Ip, Jp, Kp} are linearly independent, this can only hold for all
÷p œ “p(C¸1(E)) and for all p œ M , if a = b = c = d = 0. Thus we have shown
that [L, f ] = 0.

The next lemma about Cli�ord modules will supply us with the final part neces-
sary to prove Theorem 4.10.

Lemma 4.16. Let C¸(E) be a Cli�ord algebra whose underlying pseudo-Euclidean

vector space has signature (p, p + 1) and let (S, “) be an irreducible C¸(E)-module.

Let A œ End(S) and assume that for all v œ E we have {A, “v} = ⁄ IdS for some

⁄ œ R. Then A = “u for some u œ E.

For the proof of this lemma, which is written in Section 4.3.1 in full detail, we find
a basis of End(S) in terms of the Cli�ord generators of C¸(E). We do this by first
determining the kernel of “ and then use the surjectivity of “ when the signature of
E is (p, p + 1). Note that, to avoid cumbersome notation, unlike in the rest of the
text we use the symbol C¸(E) here to indicate a Cli�ord algebra instead of Cli�ord
algebra bundle.

We begin with the observation that if C¸(E) is a Cli�ord algebra whose underlying
pseudo-Euclidean vector space has signature (p, p + 1), then

C¸(E) ≥= C¸(p, p + 1) ≥= C¸(0, 1) ¢ C¸(1, 1) ¢ · · · ¢ C¸(1, 1)
¸ ˚˙ ˝

p times

.

This is a standard fact about Cli�ord algebras which follows from Theorem 2.12.
Now we fix algebra isomorphisms C¸(0, 1) ≥= RüR and C¸(1, 1) ≥= R[2]. We do this by
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allowing {(1, 1), (1, ≠1)} to be the images of Cli�ord generators {Id, Â�} of C¸(0, 1)
and the matrices below to be the images of Cli�ord generators {Id, �1, �1, �3} of
C¸(1, 1):

Id =
Q

a1 0
0 1

R

b , I =
Q

a 0 1
≠1 0

R

b , J =
Q

a1 0
0 ≠1

R

b , K = IJ =
Q

a 0 ≠1
≠1 0

R

b

The lemma below gives an explicit form for an isomorphism C¸(p, p+1) ≥= (RüR)¢
R[2] ¢ · · · ¢ R[2]
¸ ˚˙ ˝

p times

in terms of the above generators.

Lemma 4.17. Let {�1, �2, . . . , �2p+1} be a set of generators of C¸(p, p + 1) such

that �2

i
= ≠1 for i Æ p and �2

i
= 1 for i > p. Then there exists an isomorphism of

Cli�ord algebras

� : C¸(p, p + 1) ≠æ (R[2] ¢ · · · ¢ R[2]
¸ ˚˙ ˝

p times

) ü (R[2] ¢ · · · ¢ R[2]
¸ ˚˙ ˝

p times

)

which maps the generators as follows.

�(�l) :=(Id ¢ · · · ¢ Id¸ ˚˙ ˝
l≠1

¢I ¢ K ¢ · · · ¢ K¸ ˚˙ ˝
p≠l

, Id ¢ · · · ¢ Id¸ ˚˙ ˝
l≠1

¢I ¢ K ¢ · · · ¢ K¸ ˚˙ ˝
p≠l

)

�(�p+1) :=(K ¢ · · · ¢ K¸ ˚˙ ˝
p

, ≠K ¢ · · · ¢ K¸ ˚˙ ˝
p

)

�(�p+1+l) :=(Id ¢ · · · ¢ Id¸ ˚˙ ˝
l≠1

¢J ¢ K ¢ · · · ¢ K¸ ˚˙ ˝
p≠l

, Id ¢ · · · ¢ Id¸ ˚˙ ˝
l≠1

¢J ¢ K ¢ · · · ¢ K¸ ˚˙ ˝
p≠l

)

for all 1 Æ l Æ p.

Proof. First we verify that the images �(�l), for 1 Æ l Æ 2p + 1, of the Cli�ord
generators satisfy the Cli�ord relations:

�(�l)2 = ≠ Id, ’1 Æ l Æ p,

�(�p+1+l)2 = Id, ’0 Æ l Æ p,

�(�m)�(�l) = ≠�(�l)�(�m), ’1 Æ m, l Æ 2p + 1, m ”= l.

This is a straightforward verification, using the relations between I, J and K. So
we conclude that � defines a homomorphism of algebras.

Observe that C¸(p, p + 1) has dimension 22p+1 and R[2]¢p ü R[2]¢p has dimension
2(4p) = 22p+1. Therefore, in order to show that � is an isomorphism it is su�cient
to prove that � is surjective.
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Surjectivity of � follows from the fact that the elements �(�l), for 1 Æ l Æ 2p+1,
generate the algebra R[2]¢p ü R[2]¢p. By explicit computation one can verify that
the elements in the set below can all be obtained as products of elements �(�l), for
1 Æ l Æ 2p + 1.

G :=

Y
___]

___[
A ¢ Id ¢ · · · ¢ Id¸ ˚˙ ˝

l≠1

¢T ¢ Id ¢ · · · ¢ Id¸ ˚˙ ˝
p≠l

---------

A œ {(1, 1), (1, ≠1)}
T œ {I, J, K}
1 Æ l Æ p

Z
___̂

___\

Since G generates the algebra (R ü R) ¢ R[2]¢p, this concludes our proof.

Remark 4.18. Denote by (�[p]

j
) the Cli�ord generators of C¸(p, p + 1). Then note

that from Lemma 4.17 it follows that �(�[p]

j
) = �(�[p≠1]

j
) ¢ K for all 1 Æ j < p and

�(�[p]

j
) = �(�[p≠1]

j≠1 ) ¢ K for all p < j < 2p + 1.

Without loss of generality, hence forth we will consider the irreducible represen-
tation “ : C¸(p, p + 1) ≠æ End(R2

p) that linearly maps �i ‘æ fi1 ¶ �(�i) for all
generators �i of C¸(p, p + 1) where fi1 is the projection of C¸(p, p + 1) onto the first
component of R[2]¢p ü R[2]¢p.

In what follows we will obtain an explicit description of the kernel of “ in terms of
the generators of the Cli�ord algebra. Before we give the abstract description of the
kernel of “ for C¸(p, p + 1) in full generality, we will take a look at some examples in
lower dimensions. We explicitly compute below the kernel of “ for C¸(1, 2), C¸(2, 3)
and C¸(3, 4).

Example 4.19. C¸(1, 2)
Let {Id, �1, �2, �3} be a set of generators for C¸(1, 2). Then

{Id, �1, �2, �3, �1�2, �1�3, �2�3, �1�2�3}

forms a basis for C¸(1, 2). Explicitly, an isomorphism � as in Lemma 4.17 maps the
above basis of C¸(1, 2) to the following elements in R[2] ü R[2]:

Id ‘æ (1, 1)

�1 ‘æ (I, I)

�2 ‘æ (K, ≠K)

�3 ‘æ (J, J)
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�1�2 ‘æ (≠J, J)

�1�3 ‘æ (K, K)

�2�3 ‘æ (I, ≠I)

�1�2�3 ‘æ (≠1, 1)

It is now easy to see that the kernel of “ is as follows:

Ker(“) = Span
R
{�1 ≠ �2�3, �2 ≠ �1�3, �3 + �1�2, �1�2�3 + Id}.

Example 4.20. C¸(2, 3)
Let {Id, �1, �2, �3, �4, �5} be a set of generators for C¸(2, 3). Then the isomor-

phism � as in Lemma 4.17 maps a basis of C¸(2, 3) constructed from the generators
of C¸(2, 3) to elements in R[4] ü R[4] as follows.

Id ‘æ (1 ¢ 1, 1 ¢ 1) �1�2�3 ‘æ (≠J ¢ ≠I, ≠J ¢ I)

�1 ‘æ (I ¢ K, I ¢ K) �1�2�4 ‘æ (K ¢ ≠I, K ¢ ≠I)

�2 ‘æ (1 ¢ I, 1 ¢ I) �1�2�5 ‘æ (I ¢ 1, I ¢ 1)

�3 ‘æ (K ¢ K, ≠K ¢ K) �1�3�4 ‘æ (≠1 ¢ K, 1 ¢ K)

�4 ‘æ (J ¢ K, J ¢ K) �1�3�5 ‘æ (≠J ¢ J, J ¢ J)

�5 ‘æ (1 ¢ J, 1 ¢ J) �1�4�5 ‘æ (K ¢ J, K ¢ J)

�1�2 ‘æ (I ¢ J, I ¢ J) �2�3�4 ‘æ (I ¢ I, I ¢ ≠I)

�1�3 ‘æ (≠J ¢ 1, J ¢ 1) �2�3�5 ‘æ (K ¢ ≠1, K ¢ 1)

�1�4 ‘æ (K ¢ 1, K ¢ 1) �2�4�5 ‘æ (J ¢ ≠1, J ¢ ≠1)

�1�5 ‘æ (I ¢ I, I ¢ I) �3�4�5 ‘æ (I ¢ J, ≠I ¢ J)

�2�3 ‘æ (K ¢ ≠J, K ¢ J) �1�2�3�4 ‘æ (≠1 ¢ J, ≠1 ¢ ≠J)

�2�4 ‘æ (J ¢ ≠J, J ¢ ≠J) �2�3�4�5 ‘æ (I ¢ K, I ¢ ≠K)

�2�5 ‘æ (1 ¢ K, 1 ¢ K) �1�3�4�5 ‘æ (≠1 ¢ I, 1 ¢ I)

�3�4 ‘æ (I ¢ 1, ≠I ¢ 1) �1�2�4�5 ‘æ (K ¢ ≠K, K ¢ ≠K)

�3�5 ‘æ (K ¢ I, ≠K ¢ I) �1�2�3�5 ‘æ (≠J ¢ ≠K, ≠J ¢ K)

�4�5 ‘æ (J ¢ I, J ¢ I) �1�2�3�4�5 ‘æ (≠1 ¢ 1, ≠1 ¢ ≠1)

The kernel of “ is as follows:

ker(“) = span
R
{�1�2�3�4�5 + Id, �1�2�3�4 + �5, �2�3�4�5 ≠ �1,
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�1�3�4�5 + �2, �1�2�4�5 + �3, �1�2�3�5 ≠ �4,

�1�2�3 ≠ �4�5, �1�2�4 + �3�5, �1�2�5 ≠ �3�4,

�1�3�4 + �2�5, �1�3�5 ≠ �2�4, �1�4�5 + �2�3,

�2�3�4 ≠ �1�5, �2�3�5 + �1�4, �2�4�5 ≠ �1�3,

�3�4�5 ≠ �1�2}.

Example 4.21. C¸(3, 4)
Let {Id, �1, �2, �3, �4, �5, �6, �7} be a set of generators for C¸(3, 4). Then explic-

itly, an isomorphism � as in Lemma 4.17 maps these generators to the following
elements in R[6] ü R[6].

Id ‘æ (1 ¢ 1 ¢ 1, 1 ¢ 1 ¢ 1)

�1 ‘æ (I ¢ K ¢ K, I ¢ K ¢ K)

�2 ‘æ (1 ¢ I ¢ K, 1 ¢ I ¢ K)

�3 ‘æ (1 ¢ 1 ¢ I, 1 ¢ 1 ¢ I)

�4 ‘æ (K ¢ K ¢ K, ≠K ¢ K ¢ K)

�5 ‘æ (J ¢ K ¢ K, J ¢ K ¢ K)

�6 ‘æ (1 ¢ J ¢ K, 1 ¢ J ¢ K)

�7 ‘æ (1 ¢ 1 ¢ J, 1 ¢ 1 ¢ J)

The kernel of “ is spanned by the elements

�1�2�3�4�5�6�7 ≠ Id

and
�i1 . . . �ik

(�1�2�3�4�5�6�7 ≠ Id) ,

where 1 Æ k Æ 3, ik œ {1, . . . , 7} and i1 < · · · < ik.

Below we give a general description for kernel of “.

Lemma 4.22. The set
Y
___]

___[
�µ

3
�1�2 . . . �2p+1 + (≠1)

p(p+1)
2 +1 Id

4
---------

µ = (i1, i2, . . . , ik),
0 Æ |µ| = k Æ p,

1 Æ i1 < · · · < ik Æ 2p + 1

Z
___̂

___\

forms a basis of the kernel of the irreducible representation “ : C¸(p, p + 1) ≠æ
End(R2

p) where “�µ = Id when |µ| = 0.
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Proof. Let (�[p]

j
) be generators of C¸(p, p + 1). First we will show by induction on p

that
“(�[p]

1 �[p]

2 . . . �[p]

2p+1) = ¢p

l=1
K l≠1IK lJ.

Observe that for C¸(1, 2), the volume element gets mapped by “ as follows,

“(�[1]

1 �[1]

2 �[1]

3 ) = IKJ.

Assume that for p ≠ 1 the volume element gets mapped as

“(Ê) = “(�[p≠1]

1 �[p≠1]

2 . . . �[p≠1]

2p≠1) = ¢p≠1

l=1
K l≠1IK lJ.

Then

“(�[p]

1 �[p]

2 . . . �[p]

2p+1) = “((≠1)p≠1�[p]

p
(�[p]

1 �[p]

2 . . . �[p]

p≠1�
[p]

p+1 . . . �[p]

2p)�[p]

2p+1).

From Remark 4.18 it follows that

“(�[p]

1 �[p]

2 . . . �[p]

2p+1) = “((≠1)p≠1�[p]

p
(�[p≠1]

1 �[p≠1]

2 . . . �[p≠1]

2p≠1 ¢ K2p≠1)�[p]

2p+1).

Now due to the induction hypothesis we have

“(�[p]

1 �[p]

2 . . . �[p]

2p+1) = (≠1)p≠1“(�[p]

p
)(¢p≠1

l=1
K l≠1IK lJ ¢ K2p≠1)“(�[p]

2p+1).

By substituting “(�[p]

p
) = Id ¢ · · · ¢ Id¸ ˚˙ ˝

p≠1

¢I and “(�[p]

2p+1) = Id ¢ · · · ¢ Id¸ ˚˙ ˝
p≠1

¢J into the

previous equation and simplifying we get

“(�[p]

1 �[p]

2 . . . �[p]

2p+1) = ¢p≠1

l=1
K l≠1IK lJ ¢ (≠1)p≠1IK2p≠1J

= ¢p≠1

l=1
K l≠1IK lJ ¢ (≠1)p≠1IKp≠1KpJ

= ¢p

l=1
K l≠1IK lJ.

From now on we will drop the superscript p from the symbol �[p]

j
denoting the

generators of C¸(p, p + 1) and we observe the following:

“(�1�2 . . . �2p+1) = ¢p

l=1
K l≠1IK lJ

= ¢p

l=1
(≠1)l≠1IK2l≠1J

= ¢p

l=1
(≠1)l≠1IKJ

= ¢p

l=1
(≠1)l
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= (≠1)
p(p+1)

2 Id .

From this, we can not only conclude that �1�2 . . . �2p+1 + (≠1)
p(p+1)

2 +1 Id belongs to
the kernel of “ but also that the set described in the statement of this lemma does.
We can further simplify and show that the elements of this set are either of the
form �1�2 . . . �2p+1 + (≠1)

p(p+1)
2 +1 Id or of the form �i1 . . . �ik

± �ik+1 . . . �i2p+1 where
1 Æ k Æ p, i1, . . . , i2p+1 œ {1, . . . , 2p + 1}, i1 < · · · < ik and ik+1 < · · · < i2p+1. It
is now easy to see that these elements are linearly independent. A straightforward
combinatorial computation shows that the total number of elements of the stated
form is qp

j=0

1
2p+1

j

2
which is equal to dim C¸(p, p + 1) ≠ dim End R

2
p . Thus we can

conclude that these elements form a basis of the kernel of “.

Using dimensional arguments and the basis for the kernel of “ from Lemma 4.22,
we can further conclude that the set described below forms a basis of End(R2

p).

{“�µ | µ = (i1, i2, . . . , ik), 0 Æ| µ |Æ p, 1 Æ i1 < · · · < ik Æ 2p + 1 and 1 Æ k Æ p}
(4.10)

where “�µ = Id when |µ| = 0.
Before concluding the proof of Lemma 4.16, we will prove it in the special case of

C¸(2, 3) as an illustration.

Lemma 4.23. Consider the Cli�ord algebra C¸(2, 3) and let (S, “) be an irreducible

C¸(2, 3)-module. Let A œ End(S) and assume that for all v œ E and for some ⁄ œ R

we get {A, “v} = ⁄ IdS. Then A = “u for some u œ E.

Proof. Consider C¸(2, 3) and the irreducible representation “ : C¸(2, 3) ≠æ End(R2
2)

that linearly maps �i ‘æ fi1 ¶ �(�i) for all generators �i of C¸(2, 3) where fi1 is the
projection onto the first component of R[4] ü R[4]. Let {�1, �2, �3, �4, �5} be a set
of generators for C¸(2, 3). Then A œ End(R2

2) has the following expression

A = ⁄ Id +
5ÿ

i=1

⁄i“i +
5ÿ

i<j

i,j=1

⁄ij“ij,

where “ijk := “�i“�j “�k
. Imposing the condition that {A, “i} = ÷i Id for some ÷i œ R,

we obtain the following equations.

÷1 Id = 2⁄“1 ≠ ⁄1 Id +2⁄23“123 + 2⁄24“124 + 2⁄25“125 + 2⁄34“134 + 2⁄35“135 + 2⁄45“145

83



Chapter 4 Part II: Dirac Generating Operators

÷2 Id = 2⁄“2 ≠ ⁄2 Id +2⁄13“213 + 2⁄14“214 + 2⁄15“215 + 2⁄34“234 + 2⁄35“235 + 2⁄45“245

÷3 Id = 2⁄“3 + ⁄3 Id +2⁄12“123 + 2⁄14“314 + 2⁄15“315 + 2⁄24“324 + 2⁄25“325 + 2⁄45“345

÷4 Id = 2⁄“4 + ⁄4 Id +2⁄12“124 + 2⁄13“134 + 2⁄15“415 + 2⁄23“234 + 2⁄25“254 + 2⁄35“354

÷5 Id = 2⁄“5 + ⁄5 Id +2⁄12“125 + 2⁄13“135 + 2⁄14“145 + 2⁄23“235 + 2⁄24“245 + 2⁄34“345

Since for any five pairwise distinct i, j, k, l, m we have “ijk = ±“lm, the latter of
which belongs to the basis of End(R2

2), we can conclude that if {A, “v} = ÷ Id for
all v œ R

2,3, then A = “u for some u œ R
2,3.

4.3.1 Proof of Lemma 4.16

We are now ready to prove Lemma 4.16 in full generality:

Proof of Lemma 4.16. Consider C¸(p, p + 1) and let {�1, . . . , �2p+1} be a set of Clif-
ford generators. Consider the irreducible representation “ : C¸(p, p+1) ≠æ End(R2

p)
that linearly maps �i ‘æ fi1 ¶ �(�i) for all generators �i of C¸(p, p + 1) where fi1 is
the projection onto the first component of R[2]¢p ü R[2]¢p. Let “µ := “�µ where
µ = (i1, i2, . . . , ik), 0 Æ |µ| Æ p, 1 Æ i1 < · · · < ik Æ 2p + 1 and 1 Æ k Æ p. Then
A œ End(R2

p) has the following expression in terms of the basis of End(R2
p) as in

(4.10):

A =
ÿ

µ

⁄µ“µ

= ⁄0 Id +
2p+1ÿ

t=1

Q

ccccca

ÿ

i1,...,it
i1<···<it

i1,...,itœ{1,...,2p+1}

⁄i1...it“i1...it

R

dddddb
(4.11)

where ⁄µ œ R. Let ‘l = +1 for all 1 Æ l Æ p and ‘l = ≠1 for all p + 1 Æ l Æ 2p + 1.
For each k such that 1 Æ k Æ 2p + 1 by imposing the condition that {A, “k} = ÷k Id
where ÷k œ R, we obtain the following equation:

÷k Id = 2⁄0“k +
2p+1ÿ

t=1

Q

ccccca

ÿ

i1,...,it
i1<···<it

i1,...,itœ{1,...,2p+1}

⁄i1...it{“i1...it , “k}

R

dddddb
(4.12)

Observe that there are four cases to consider in order to determine {“µ, “k} when
|µ| Ø 2 namely:
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Case (1) |µ| is even and k œ µ :

In this case, the length of the string µ is |µ| = 2r for some r œ N. Since the
index k œ µ its position in the string µ will divide µ into parts of length x and
y

(. . . . . .¸ ˚˙ ˝
x

k. . . . . .¸ ˚˙ ˝
y

)

such that 2r = x + 1 + y. Since this would imply that x + y = 2r ≠ 1, this
would further imply that only one of x and y is even while the other is odd.
From this we can conclude that {“µ, “k} = 0.

Case (2) |µ| is even and k /œ µ :

When k /œ µ and the length of µ is even {“µ, “k} = 2“µÕ where µÕ is a multi
index of length |µ| + 1.

Case (3) |µ| is odd and k œ µ :

In this case, the length of the string µ is |µ| = 2r + 1 for some r œ N. Since
the index k is such that k œ µ, its position in the string µ will divide µ into
parts of length x and y

(. . . . . .¸ ˚˙ ˝
x

k. . . . . .¸ ˚˙ ˝
y

)

such that 2r +1 = x+1+y. Since this would imply that x+y = 2r, we would
have two possibilities, x and y are both even or both odd. When x and y are
both even, {“µ, “k} = 2‘k“µÕ where µÕ is a multi-index of length |µ| ≠ 1. When
x and y are both odd, {“µ, “k} = ≠2‘k“µÕ .

Case (4) |µ| is odd and k /œ µ :

It is clear that in this case again {“µ, “k} = 0.

In the simplified expression for {A, “k} after incorporating the results for {“µ, “k}
coming from the above considerations, no two terms will have the same basis element
of End R

2
p . To demonstrate this, consider the expression (4.11) that we have for A

in terms of the basis in (4.10) of End R
2p. The indices of the basis elements “µ have

length |µ| œ {0, . . . , p}. In the anti-commutator {A, “k} the terms {“µ, “k} will be
equal to a“µÕ for some appropriate scalar a œ R. By carefully observing the way the
length of µ changes upon the action of the anti-commutator with “k on A according
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to the above analysis, we find that if µ is of even length, then the term becomes 0 or
|µÕ| = |µ|+1 and if µ is of odd length, then the term becomes 0 or |µÕ| = |µ|≠1. This
means that all the terms whose basis elements have indices of length 1 will either
become 0 or some scalar times Id, all the terms whose basis elements have indices
of length 2 will either become 0 or some scalar times basis elements whose indices
are of length 3 while all the terms whose basis elements have indices of length 3 will
either become 0 or some scalar times basis elements whose indices are of length 2
and so on.

Observe that if p is odd, then all the terms whose basis elements have indices of
length p will either become 0 or some scalar times basis elements whose indices are
of length p≠1. There will be no basis elements whose indices are of length p≠1 that
come from anywhere other than this reduction. Therefore we can be certain that in
the simplified expression for {A, “k} after incorporating the results for {“µ, “k}, no
two terms will have the same basis element. Below is a helpful diagram to illustrate
this. Here the numbers denote the length of µ and the arrows denote the length to
which µ changes upon the action of the anti-commutator with “k on A, when the
terms don’t vanish:

0

��

2

��

4

��

· · · p ≠ 1

!!
1

]]

3

]]

5

]]

· · · p

aa

If p is even, then all the terms whose basis elements have indices of length p will
either become 0 or some scalar times basis elements whose indices are of length
p + 1. When |µ| = p + 1 we know from the description of the kernel of “ (cf. Lemma
4.22) that “µ = ±“µc where µc := {1, . . . , 2p + 1} \ µ is the complement of the set
underlying µ in the set {1, . . . , 2p + 1}. Since in this situation there are no basis
elements whose indices are of length p that are coming from anywhere other than
this reduction, we can be certain that in the simplified expression for {A, “k} after
incorporating the results for {“µ, “k}, no two terms will have the same basis element.
Below is a helpful illustrative diagram, analogous to the one above:

0

��

2

��

4

��

· · · p

!!

1

]]

3

]]

5

]]

· · · p + 1

aa
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Computing {A, “k} for every 1 Æ k Æ 2p + 1 in this way, we obtain a system of
equations of the below form:

÷k Id =
ÿ

µ

|µ|=2q

k /œµ

⁄µ{“µ, “k} +
ÿ

µ

|µ|=2q+1

kœµ

⁄µ{“µ, “k} (4.13)

=
ÿ

µ

|µ|=2q

k /œµ

|µÕ|=|µ|+1

2⁄µ“µÕ ≠
ÿ

µ

|µ|=2q+1

kœµ

|µÕ|=|µ|≠1

2⁄µ‘k“µÕ

where q Ø 0 and in each equation no two terms will have the same basis element.
Comparing the two sides of the equation, we can then conclude that the only non-
zero coe�cients are ⁄k where 1 Æ k Æ 2p + 1. From this we can conclude that
A = “u for some u œ E ≥= R

2p+1.

We are now ready to prove Theorem 4.10:

4.3.2 Proof of Theorem 4.10

Proof of Theorem 4.10. From Lemma 4.11 it is clear that if there exists a DGO /d

for a Courant algebroid E ≠æ M on an irreducible C¸(E)-module bundle (S, “),
then /d + “e is a DGO for every e œ V/d = {e œ �(E) | {/d, “e} œ CŒ(M)}. Conversely,
we have to show that given DGOs /d and /d

Õ there exists an e œ V/d such that L :=
/d

Õ ≠ /d = “e. First we observe that [L, f ] is a 0-th order operator for all f œ CŒ(M)
due to Lemma 4.12. Then we see from Lemma 4.14 that [L, f ] is not only C¸0(E)-
equivariant but it also anti-commutes with �(C¸1(E)). From this, it follows that
[L, f ] = 0 as seen in Lemma 4.15. Given this, we can now conclude that L is in fact
of 0-th order due to Lemma 4.12. Now if L is of 0-th order and “ is surjective, L = “a

for some a œ �(C¸(E)). Next we observe that {L, “v} commutes with �(C¸(E)) in
virtue of the property 1 of DGOs as in Definition 4.1 and therefore it is a section of
the Schur bundle of the representation “. Since the signature of E is (p, p + 1) the
Schur algebra bundle C(S, “) is isomorphic to the trivial real line bundle therefore we
can conclude that {L, “v} is a scalar operator. From Lemma 4.16, we can conclude
that L = “e where e œ �(E). Now property 3 of the Definition 4.1 applied to
/d

Õ = /d + “e implies that e œ V/d.
The claim that V/d is independent of the choice of /d is now immediate because if /d

and /d
Õ are two DGOs, then /dÕ = /d + “e for e œ V/d µ �(E). Now applying property
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3 of Definition 4.1 to /dÕ and due to the symmetry in exchanging /dÕ and /d, it follows
that V/d = V/d

Õ .

Remark 4.24. We have stated and proved Theorem 4.10 for the signature (p, p+1).
Since in virtue of the classification of Cli�ord algebras, any Cli�ord algebra C¸(r, s)
for r ≠ s © 7 mod 8 is isomorphic to C¸(p, p + 1) for some p, the result is true more
generally also in these cases.
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