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1 Introduction

1.1 Summary and results. In this thesis, we give several results on algebraic aspects
of multiple q-zeta values. We assume that the reader is familiar with multiple zeta values;
an overview is given in Appendix B. To integers s1 ≥ 1, s2, . . . , sl ≥ 0 and polynomials
R1 ∈ tQ[t], R2, . . . , Rl ∈ Q[t], associate the generic multiple q-zeta value

ζq(s1, ..., sl;R1, ..., Rl) =
∑

n1>···>nl>0

R1(qn1)
(1− qn1)s1

· · · Rl(qnl)
(1− qnl)sl ∈ Q[[q]].

Generic multiple q-zeta values are q-analogs of multiple zeta values (Proposition 2.2).
Moreover, the product of any two generic multiple q-zeta values is a Q-linear combination
of generic multiple q-zeta values.

Definition 1.1. The algebra of multiple q-zeta values is the subalgebra of Q[[q]] given by

Zq = spanQ
{
ζq(s1, ..., sl;R1, ..., Rl)

∣∣ l ≥ 0, s1 ≥ 1, s2, ..., sl ≥ 0, deg(Rj) ≤ sj
}
,

where we set ζq(∅; ∅) = 1.

The additional requirement on the degree of the polynomials is justified by the relation
of Zq and polynomial functions on partitions ([BI22], Proposition 2.8). In particular, one
obtains nice spanning sets of Zq invariant under some involution.

The space Zq is central to this thesis. H. Bachmann and U. Kühn proposed several con-
jectures about the algebraic structure of Zq in [BK20], in particular, they conjectured
that Zq is a free polynomial algebra. In this work, we will give an algebraic approach to
these conjectures. A model of multiple q-zeta values is given by a particular assumption
on the polynomials Ri (usually these particular polynomials form a basis of Q[t]). Various
well-studied models of multiple q-zeta values are contained in Zq, an overview is given in
[BK20] and [Br21]. The space Zq also occurs in enumerative geometry. More precisely,
A. Okounkov conjectured that certain generating series of Chern characters on Hilbert
schemes of points are always contained in the space Zq ([Ok14], [Qi18]).
Traditionally models of multiple q-zeta values focus on a q-analog of the shuffle product
or the stuffle product obtained for multiple zeta values but do not combine them. So
usually, it is difficult to describe a q-analog of the double shuffle relations. In rather recent
articles on multiple q-zeta values by H. Bachmann ([Ba19]) and by K. Ebrahimi-Fard, D.
Manchon, and J. Singer ([EMS16]) the focus changed to obtaining a product formula and
some invariance under an involution, from which one easily derives a q-analog of the dou-
ble shuffle relations. In joint work with H. Bachmann ([BB22]), we constructed the first
model for multiple q-zeta values, which seems to satisfy a weight-graded product formula
and invariance under some weight-homogeneous involution. Finally, the quasi-modular
forms (with rational coefficients) expressed in their q-series expansion are contained in the
algebra Zq, in the following, we will identify the algebra M̃Q(SL2(Z)) of the quasi-modular
forms with rational coefficients with its image in Zq.
We introduce a spanning set of Zq consisting of the balanced multiple q-zeta values
ζq(s1, . . . , sl), s1 ≥ 1, s2, . . . , sl ≥ 0 (Definition 2.56). The classical Eisenstein series
and their derivatives are particular examples of balanced multiple q-zeta values. One ad-
vantage of this model is that it gives an explicit description of a conjectural weight-grading
on the algebra Zq, which extends the grading of the algebra M̃Q(SL2(Z)). Moreover, the
balanced multiple q-zeta values satisfy a product formula, which can be seen as a bal-
anced combination of the shuffle and stuffle product obtained for the multiple zeta values
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(cf (4.8.1)), and satisfy linear relations coming from a particular simple involution.
We study the algebraic structure of Zq and its relation to the space Z of multiple zeta
values (see Appendix B) with the help of the balanced multiple q-zeta values. Their re-
lations can be described in terms of a graded Hopf algebra, this leads to the definition of
the algebra Zfq of formal multiple q-zeta values (Definition 4.12). In particular, we have a
surjective algebra morphism Zfq → Zq, which is expected to be an isomorphism. We will
see that the algebra Zfq represents an affine scheme1 BM (Theorem 4.18), which contains
the affine group scheme DM introduced by G. Racinet in [Rac00] for multiple zeta values
(Theorem 4.21). This leads to a surjective algebra morphism Zfq → Zf (Corollary 4.22).
We introduce the corresponding linearized space bm0 to BM0, which contains the double
shuffle Lie algebra dm0 (Theorem 4.28). We will obtain a q-twisted Magnus Lie alge-
bra (mq, {−,−}q) (Theorem 3.20), which can be seen as a generalization of the twisted
Magnus Lie algebra (mt, {−,−}) ([Rac00, Chapter II, 2.2]). The space mq contains
the linearized space bm0 and we conjecture that the q-Ihara bracket {−,−}q also pre-
serves the space bm0. In particular, there should be an injective Lie algebra morphism
(dm0, {−,−}) ↪→ (bm0, {−,−}q). Moreover, we expect that bm0 is dual to the Lie coal-
gebra of indecomposables of Z

f
q�(

ζfq (2), ζfq (4), ζfq (6)
), where the elements ζfq (k) for k ≥ 2

even should be seen as a formal analog of the classical Eisenstein series of weight k. In
particular, we expect a decomposition

Zfq ' M̃Q(SL2(Z))⊗ U(bm0)∨.

Finally, since we expect an isomorphism Zfq ' Zq, this gives evidence for Zq being a free
polynomial algebra. A proof for the similar result for the algebra Zf of formal multiple
zeta values is one of the main results in the thesis of G. Racinet ([Rac00]) and he attributes
this result to Ecalle.
Particular subsets of the balanced multiple q-zeta values ζq(s1, . . . , sl) (Definition 2.56)
or of the brackets g(k1, . . . , kd) (Definition 2.27) should give much smaller spanning sets
of Zq. More precisely, Bachmann and Kühn ([BK20]) computed some evidence for the
following equalities

Zq = spanQ {ζq(k1, . . . , kd) | k1, . . . , kd ≥ 1} = spanQ {g(k1, . . . , kd) | kj ∈ {1, 2, 3}} .

A result towards the first equality is given in Section 6. Some speculations that Zq equals
the latter space are given in the outlook.

1.2 The algebraic structure of Zq. The space Zq is an algebra for the usual multi-
plication of power series (Proposition 2.4). In contrast to the algebra Z of multiple zeta
values, where the multiple zeta values themselves can be used to obtain a nice description
of the homogeneous subspaces and (conjecturally all) relations in Z, there is not such
a canonical choice for a spanning set of Zq. So we obtain different expressions of the
product in Zq for each choice of a spanning set. Typically, these product expressions can
be described as quasi-shuffle products on some non-commutative algebras (as defined by
M. Hoffman in [Hof00]). Moreover, a spanning set of Zq usually satisfies a second set of
relations defined by some involution. More explicitly, let A be a countable alphabet and
Q〈A〉 the free algebra over Q generated by the alphabet A (possibly with some restrictions
for the first and last letter of each word). Denote by 1 the empty word. Then for any

1Inspired by the notation DM for ”double mélange” ([Rac00]), we use BM for ”balanced mélange”
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commutative and associative product � on QA, the corresponding quasi-shuffle product
∗� on Q〈A〉 is recursively defined by 1 ∗� w = w ∗� 1 = w and

au ∗� bv = a(u ∗� bv) + b(au ∗� v) + (a � b)(u ∗� v)

for all u, v, w ∈ Q〈A〉 and a, b ∈ A. An important example in this work is the balanced
quasi-shuffle product ∗q, which is defined on the non-commutative algebra Q〈B〉 generated
by the alphabet B = {b0, b1, b2, . . .} and corresponds to

bi �q bj =
{
bi+j if i, j ≥ 1,
0 else

. (1.1.1)

Modulo words containing the letters bi for i ≥ 2 we obtain the well-known shuffle product
(Definition B.13) and restricted to the letters bi for i ≥ 1 the product ∗q is given by
the usual stuffle product (Definition B.17), therefore we call ∗q the balanced quasi-shuffle
product.

For each spanning set of Zq considered in this work (Definition 2.9, 2.27, 2.47, 2.56) there
exists a quasi-shuffle product ∗� and an involution ρ both defined on some (subspace of
a) non-commutative algebra Q〈A〉, such that there is a ρ-invariant, surjective algebra
morphism

(Q〈A〉, ∗�, ρ)→ (Zq, ·).

Denote
Q〈A〉�∼ρ = Q〈A〉�(

ρ(w)− w | w ∈ Q〈A〉
)
.

Generalizing [BK20], the following algebra isomorphisms are expected(Q〈A〉�∼ρ, ∗�) ' (Zq, ·). (1.1.2)

For the precise formulation in terms of each spanning set, we refer to Conjectures 2.22,
2.35, 2.51, and 2.60.

We want to explicate the previously illustrated picture for the different spanning sets of
Zq. First, consider the Schlesinger-Zudilin (SZ) multiple q-zeta values

ζSZ
q (s1, . . . , sl) = ζq(s1, . . . , sl; ts1 , . . . , tsl) =

∑
n1>···>nl>0

qn1s1

(1− qn1)s1
. . .

qnlsl

(1− qnl)sl ,

where s1 ≥ 1, s2, . . . , sl ≥ 0. Let B = {b0, b1, b2, . . .} be an alphabet and denote by
Q〈B〉0 the subalgebra of Q〈B〉 generated by all words which do not start in b0. Moreover,
define the quasi-shuffle product ∗SZ on Q〈B〉0 by bi �SZ bj = bi+j and the involution
τ : Q〈B〉0 → Q〈B〉0 by τ(1) = 1 and

τ(bk1b
m1
0 . . . bkdb

md
0 ) = bmd+1b

kd−1
0 . . . bm1+1b

k1−1
0 . (1.1.3)

Due to J. Singer and Y. Takeyama (Theorem 2.13), there is a τ -invariant, surjective algebra
morphism

(Q〈B〉0, ∗SZ, τ)→ (Zq, ·),
bs1 . . . bsl 7→ ζSZ

q (s1, . . . , sl).
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Moreover, define for a SZ multiple q-zeta value ζSZ
q (s1, . . . , sl) the weight as s1 + · · ·+ sl +

|{si | i = 0}| and the depth as l − |{si | i = 0}|. This endows the algebra Zq with two
compatible filtrations.

Another well-studied spanning set of Zq is given by the bi-brackets

g

(
k1, . . . , kd
m1, . . . ,md

)
= 1

(k1 − 1)! . . . (kd − 1)!
∑

u1>···>ud>0
v1,...,vd>0

um1
1 . . . umdd vk1−1

1 . . . vkd−1
d qu1v1+···+udvd ,

where k1, . . . , kd ≥ 1, m1, . . . ,md ≥ 0. Consider the alphabet Ybi = {yk,m | k ≥ 1, m ≥ 0}
and let Q〈Ybi〉 be the free non-commutative algebra generated by Ybi. Then by the work of
H. Bachmann (Theorem 2.32, 2.34), there is a swap invariant, surjective algebra morphism

(Q〈Ybi〉, ∗bb, swap)→ (Zq, ·),

yk1,m1 . . . ykd,md 7→ g

(
k1, . . . , kd
m1, . . . ,md

)
,

where ∗bb is defined in (2.31.1) and swap invariance is defined in (C.10).

The product ∗SZ of the SZ multiple q-zeta values as well as the product ∗bb of the bi-
brackets are filtered by weight. We are interested in a spanning set of Zq, which satisfies
a weight-graded product formula and is invariant under some homogeneous involution. In
joint work with H. Bachmann ([BB22]), we obtained a construction of such a spanning set
for Zq.

Theorem 1.2. (2.46, 2.50) There is a swap invariant, surjective algebra morphism

(Q〈Ybi〉, ∗, swap)→ (Zq, ·),

yk1,m1 . . . ykd,md 7→ G

(
k1, . . . , kd
m1, . . . ,md

)
,

where G
( k1,...,kd
m1,...,md

)
are the combinatorial bi-multiple Eisenstein series given in Definition

2.47 and ∗ is the quasi-shuffle product defined by yk1,m1 � yk2,m2 = yk1+k2,m1+m2.

For k+m even, the combinatorial bi-Eisenstein series G
( k
m

)
equal the classical Eisenstein

series and their derivatives. The algebra (Q〈Ybi〉, ∗) is the associated weight-graded algebra
to (Q〈Ybi〉, ∗bb), so the combinatorial multiple bi-Eisenstein series can be seen as a weight-
graded version of the bi-brackets. In particular, it is expected that the combinatorial bi-
multiple Eisenstein series endow the algebra Zq with a weight-grading (Proposition 2.52).

Using the combinatorial multiple bi-Eisenstein series, we can define a spanning set of Zq,
which can be seen as a weight-graded version of the SZ multiple q-zeta values.

Theorem 1.3. (2.59) There is a τ -invariant, surjective algebra morphism

(Q〈B〉0, ∗q, τ)→ (Zq, ·),
bs1 . . . bsl 7→ ζq(s1, . . . , sl),

where ζq(s1, . . . , sl) are the balanced multiple q-zeta values introduced in Definition 2.56
and ∗q is the balanced quasi-shuffle product given in (1.1.1).

The balanced multiple q-zeta values equip the algebra Zq with the same conjectural weight-
grading as the combinatorial bi-multiple Eisenstein series.
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1.3 Formal multiple q-zeta values. Similar to the case of multiple zeta values (Defi-
nition B.22), we want to define a formal version Zfq of the algebra Zq. Since the balanced
multiple q-zeta values ζq(s1, . . . , sl) satisfy very explicit relations homogeneous in weight,
this spanning set of Zq is the natural choice from our point of view to determine the alge-
bra Zfq . More precisely, the algebra Zfq will be generated by formal symbols ζfq (s1, . . . , sl),
for which we require to satisfy exactly the relations expected for the balanced multiple q-
zeta values. According to (1.1.2), this means that the formal symbols ζfq (s1, . . . , sl) should
multiply with respect to the balanced quasi-shuffle product ∗q and should be τ -invariant.
To give such a definition of Zfq in terms of the quasi-shuffle algebra (Q〈B〉, ∗q), we have
to introduce regularized multiple q-zeta values.

Theorem 1.4. (4.11) There is a surjective algebra morphism

ζreg
q : (Q〈B〉, ∗q)→ (Zq, ·),

which extends the map in Theorem 1.3 and satisfies ζreg
q (b0) = 0.

Regularizing also the map τ similar to Theorem 4.11 does not give any new information
and makes the defining conditions of the later introduced affine scheme BM (Definition
1.7) more complicated, thus we stick to considering τ as a map on Q〈B〉0. By the previous
discussion, a natural definition of formal multiple q-zeta values is given by the following.

Definition 1.5. Define the algebra Zfq of formal multiple q-zeta values as

Zfq = (Q〈B〉, ∗q)�Relq,

where Relq is the ideal in (Q〈B〉, ∗q) generated by {b0} ∪ {w − τ(w) | w ∈ Q〈B〉0}.

By construction, we have a surjective algebra morphism

Zfq → Zq,
ζfq (w) 7→ ζreg

q (w).

Reformulating (1.1.2), we expect that this map is an isomorphism of weight-graded alge-
bras. The algebra Zfq is related to the algebra Zf of formal multiple zeta values (Definition
B.22), by Corollary 4.22 there is a surjective algebra morphism

p : Zfq � Zf .

In a slightly different context, the subspace of Zfq of depth ≤ 2 has been studied intensively
in [BKM21]. The relations and realizations obtained there can be directly translated into
the space Zfq . Moreover, in [BIM] the algebra of formal multiple Eisenstein is studied,
which is isomorphic to the algebra Zfq

From the theory of quasi-shuffle algebras due to M. Hoffman ([Hof00],[HI17]) it is known
that each quasi-shuffle algebra can be equipped with a Hopf algebra structure. More
precisely, this means the following.

Proposition 1.6. (4.2) The tuple (Q〈B〉, ∗q,∆dec) is a commutative weight-graded Hopf
algebra, where ∆dec denotes the deconcatenation coproduct.

For any commutative Q-algebra R with unit, denote by (R〈〈B〉〉, conc,∆q) the dual com-
pleted Hopf algebra to (Q〈B〉, ∗q,∆dec) (Theorem 4.5). Then a non-commutative power
series Φ ∈ R〈〈B〉〉 is grouplike for ∆q, if and only if the coefficients of Φ multiply with
respect to the balanced quasi-shuffle product ∗q. Thus, similar to the case of multiple zeta
values studied in [Rac00], we define the following.
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Definition 1.7. For each commutative Q-algebra R with unit, denote by BM(R) the set
of all non-commutative power series Φ in R〈〈B〉〉 satisfying

(i) (Φ|b0) = 0,
(ii) ∆q(Φ) = Φ⊗̂Φ,
(iii) τ(Π0(Φ)) = Π0(Φ),

where Π0 is the R-linear extension of the canonical projection Q〈B〉 → Q〈B〉0.
For each λ1, λ2, λ3 ∈ R, let BM(λ1,λ2,λ3)(R) be the subset of all Φ ∈ BM(R) additionally
satisfying

(iv) (Φ | b2) = λ1, (Φ | b4) = λ2, (Φ | b6) = λ3.

In the following, we will write BM0(R) = BM(0,0,0)(R).

Also, the sets BM(R) and DM(R) (Definition B.24) are related, by Theorem 4.21 we have
injective maps

θ : DM(R) ↪→ BM(R).

Theorem 1.8. (4.18) The functor BM : Q-Alg→ Sets is an affine scheme represented by
the algebra Zfq of formal multiple q-zeta values.
Similarly, the functor BM0 : Q-Alg→ Sets is an affine scheme represented by the algebra

Zfq�(
ζfq (2), ζfq (4), ζfq (6)

),
where

(
ζfq (2), ζfq (4), ζfq (6)

)
denotes the ideal in Zfq generated by ζfq (2), ζfq (4), ζfq (6).

As for DM0 (Corollary B.31), we expect that BM0 is a pro-unipotent affine group scheme.

1.4 Lie algebras and generators of Zq. By linearizing the defining equations of BM0,
we obtain a space consisting essentially of the algebra generators of Zfq . We expect this
space to be equipped with a Lie algebra structure.

Definition 1.9. Let bm0(R) be the Q-vector space consisting of all non-commutative
polynomials Ψ ∈ R〈B〉, which satisfy

(i) (Ψ|b0) = 0,
(ii) ∆q(Ψ) = Ψ⊗ 1 + 1⊗Ψ,
(iii) τ(Π0(Ψ)) = Π0(Ψ),
(iv) (Ψ|bk) = 0 for k = 2, 4, 6.

The space bm0(R) is graded by weight, denote by bm0(R)(w) its homogeneous component
of weight w. Set bm0 := bm0(Q).

The space bm0 should be seen as a generalization of the double shuffle Lie algebra dm0
introduced in [Rac00], more precisely by Theorem 4.28 there is an explicit embedding of
vector spaces

θ : dm0 ↪→ bm0.

After finding a suitable spanning set for Zq, namely the balanced multiple q-zeta values,
and obtaining an explicit description of the space bm0, the main task of this thesis was
to equip bm0 with a Lie algebra structure. A lot of explicit computations and tests (cf
Subsection 4.7) as well as relating the space bm0 to certain bimoulds (cf Subsection 5.4)
led to an explicit formula for a conjectural Lie bracket on bm0. Finally, we were able to
prove the following.

9



Theorem 1.10. (3.20, 3.21) There is a Lie algebra (mq, {−,−}q) with the following
properties

(i) The twisted Magnus Lie algebra (mt, {−,−}) embeds into (mq, {−,−}q).

(ii) The space bm0 is contained in mq.

We call (mq, {−,−}q) the q-twisted Magnus Lie algebra and {−,−}q the q-Ihara bracket.
The space bm0 is conjecturally a Lie subalgebra of the q-twisted Magnus Lie algebra. More
precisely, as for the double shuffle Lie algebra dm0 (Theorem B.30, Corollary B.31), we
expect the following for the space bm0.

Conjecture 1.11.
(i) The space bm0 is a weight-graded Lie algebra equipped with the q-Ihara bracket {−,−}q.
(ii) The functor BM0 is a pro-unipotent affine group scheme with Lie algebra b̂m0.

(iii) For any commutative Q-algebra R with unit and all λ1, λ2, λ3 ∈ R, the group BM0(R)
acts freely and transitively on BM(λ1,λ2,λ3)(R). We obtain an isomorphism of affine schemes

A3 × b̂m0
∼−→ BM.

Part (i) of the conjecture is checked2 up to weight 9. Moreover, the associated depth-
graded space of bm0 embeds into a Lie algebra (lq, {−,−}Dq ), which will be described
below. The second and third part of Conjecture 1.11 should be a consequence of the first
part, though this seems to require some more work. Similar to Ecalle’s free generation
theorem (Corollary B.32), we could deduce from Conjecture 1.11 the following.

Theorem 1.12. (4.27) If Conjecture 1.11 holds, then we have an isomorphism of algebras

Zfq ' M̃Q(SL2(Z))⊗Q U(bm0)∨.

In particular, Zfq would be a free polynomial algebra.

A vague formulation of this conjecture is given in [BK20] based on their study of the
Hilbert-Poincare series of these spaces.
We want to study the associated depth-graded space to bm0.

Definition 1.13. Let lq be the Q-vector space given by all non-commutative polynomials
Ψ ∈ Q〈B〉 satisfying

(i) (Ψ|b0) = 0,
(ii) ∆�(Ψ) = Ψ⊗ 1 + 1⊗Ψ,
(iii) τ(Π0(Ψ)) = Π0(Ψ),
(iv) (Ψ|bkbm0 ) = 0 k +m even,

where ∆� denotes the usual shuffle coproduct on Q〈B〉 (Example A.62).

The weight- and depth-graded space lq is indeed a Lie algebra.

Theorem 1.14. (4.63 The space lq equipped with the depth-graded q-Ihara bracket {−,−}Dq
(Definition 4.62) is a bi-graded Lie algebra.

2For example, one of the computed q-Ihara brackets consists of three terms with 147, 225 and 206 words
and it is checked that it coincides with an element in bm0 consisting of 205 words
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Denote lb = grD bm0. Then by construction (Proposition 4.59), we have an embedding of
vector spaces

lb ↪→ lq.

But in contrast to the case of multiple zeta values, we do not expect this map to be
surjective. Actually, there is an element in lq of weight 8 and depth 2, which is not
contained in lb (Example 4.60). The Lie bracket {−,−}Dq defined for lq is exactly the
associated depth-graded to the q-Ihara bracket {−,−}q, so by Conjecture 1.11 (i) we
should have the following.

Conjecture 1.15. The space lb is a Lie subalgebra of (lq, {−,−}Dq ).

The Lie algebra lq is related to the depth-graded double shuffle Lie algebra ls obtained for
multiple zeta values (Definition B.36), by Theorem 4.69 we have an injective Lie algebra
morphism

θD : (ls, {−,−}) ↪→ (lq, {−,−}Dq ).

Since it is expected that ls ' grD dm0, the image of this embedding should lie in lb.

1.5 Lie algebras of bimoulds and Zq. We will briefly illustrate a second unpublished
approach to Lie algebras related to Zq in terms of bimoulds initiated by U. Kühn ([Kü19],
[SK]), this is inspired by the work in [Ec11], [Sc15], and [IKZ06] for multiple zeta values.
We assume that the reader is familiar with the theory of bimoulds, an introduction to
moulds and bimoulds is given in Appendix C. For this approach, we consider the spanning
set of Zq given by the combinatorial bi-multiple Eisenstein series (Theorem 1.2). Let
G = (Gd)d≥0 ∈ GBARIpow,Zq be the bimould of generating series of the combinatorial
bi-multiple Eisenstein series, i.e., G0 = 1 and

Gd

(
X1, . . . , Xd

Y1, . . . , Yd

)
=

∑
k1,...,kd≥1
m1,...,md≥0

G

(
k1, . . . , kd
m1, . . . ,md

)
Xk1−1

1
Y m1

1
m1! . . . X

kd−1
d

Y md
d

md!
, d ≥ 1.

Let Z(w)
q be the homogeneous subspace of Zq spanned by all combinatorial bi-multiple

Eisenstein series of weight w. Moreover, set Zq = Zq�M̃Q(SL2(Z))Zq and denote by Z(w)
q

the image of the homogeneous subspace Z(w)
q in Zq. Let Iq = ⊕

w≥1
Z(w)
q , then

Tq = Iq�I2
q

is a weight-graded algebra and all products of multiple q-zeta values become trivial in Tq.

Theorem 1.16. (5.2) The projection of the bimould G ∈ GBARIpow,Zq onto BARIpow,Tq

is an element in

BARIpow,Tq
il,swap =

A ∈ BARIpow,Tq

∣∣∣∣∣∣∣
· A is alternil,
· A is swap invariant,
· A1

(X1
Y1

)
is even

 .
There is a Lie bracket uri proposed by L. Schneps and used in [SK] (Definition 5.10),
which preserves by construction the space of alternil bimoulds. Unfortunately, the defi-
nition involves poles, thus it is not clear whether the Lie bracket uri preserves the space

11



of polynomial bimoulds. We obtained in this thesis a pre-Lie multiplication preuri (Def-
inition 5.15), for which we can show that it preserves the space of polynomial bimoulds
(Proposition 5.14) and for which we expect (Conjecture 5.16)

uri(A,B) = preuri(A,B)− preuri(B,A), A,B ∈ BARIpow .

Moreover, it is expected that the Lie bracket uri is compatible with swap invariance for
alternil bimoulds.

Conjecture 1.17. ([SK]) The pair
(

BARIpol,Q
il,swap,uri

)
is a weight-graded Lie algebra.

Next, consider the associated depth-graded space to Tq,

Mq =
⊕
w,d≥1

M(w,d)
q , M(w,d)

q = gr(d)
D T

(w)
q .

Theorem 1.18. (5.22) The projection of the bimould G ∈ GBARIpow,Zq onto BARIpow,Mq

is contained in the space

BARIpow,Mq

al,swap =

A ∈ BARIpow,Mq

∣∣∣∣∣∣∣
· A is alternal,
· A is swap invariant,
· A1

(X1
Y1

)
is even

 .
The well-known ari bracket (Definition C.22) equips the space BARIpol,Q

al,swap with a Lie
algebra structure.

Theorem 1.19. ([SS20, Theorem 3.1, Proposition 3.4, 3.5]) The pair
(

BARIpol,Q
al,swap, ari

)
is a bi-graded Lie algebra.

The associated depth-graded space to BARIpol,Q
il,swap properly embeds into the Lie alge-

bra BARIpol,Q
al,swap (Proposition 5.27). Moreover, the associated depth-graded to the uri

bracket is exactly the ari bracket. Therefore, Conjecture 1.17 would imply that the space
grD BARIpol,Q

il,swap is a Lie subalgebra of
(

BARIpol,Q
al,swap, ari

)
.

The spaces bm0 and lq defined in terms of non-commutative polynomials (Definition 1.9,
1.13) are closely related to the spaces BARIpol,Q

il,swap and BARIpol,Q
al,swap of bimoulds.

Theorem 1.20. (i) (5.51) There is a vector space isomorphism

#Y ◦ ρB : bm0
∼−→ BARIpol,Q

il,swap .

(ii) (5.71) There is an isomorphism of bi-graded Lie algebras

#Y ◦ ρB : (lq, {−,−}Dq ) ∼−→
(

BARIpol,Q
al,swap, ari

)
.

The q-Ihara bracket, which we expect to preserve the space bm0, should correspond to
the uri bracket, which is expected to preserve BARIpol,Q

il,swap, under the above isomorphism
#Y ◦ ρB (Theorem 5.52).

12



1.6 Overview on Lie algebras related to Z and Zq. Summarizing all our results
on Lie algebras, we expect the following commutative diagram of Lie algebras related to
multiple zeta values and multiple q-zeta values(

mq, {−,−}q
)

Thm 3.20

(
mt, {−,−}

)
Thm 3.7

(
bm0, {−,−}q

)
Conj 4.52

(
BARIpol,Q

il,swap,uri
)

Conj 5.19

(
dm0, {−,−}

)
Thm B.30

(
ARIpol,Q

al∗il , ari
)

Thm B.49

(
ls, {−,−}

)
Thm B.37

(
ARIpol .Q

al/al , ari
)

Thm B.56

(
lb, {−,−}Dq

)
Conj 4.64

(
grD BARIpol,Q

il,swap, ari
)

Conj 5.28

(
lq, {−,−}Dq

)
Thm 4.63

(
BARIpol,Q

al,swap, ari
)

Thm 5.26

∼
#Y ◦ρB (5.51)

grD grD

∼
ma (B.68)

grD

θ

(4.28)

grD

θBIMU

(5.20)

∼
ma (B.68)

θD

(4.69)
θD

BIMU

(5.29)

∼
#Y ◦ρB

∼
#Y ◦ρB (5.71)

The inner square summarizes the results of G. Racinet ([Rac00]) and J. Ecalle ([Ec11],
[Ec02]) on Lie algebras related to multiple zeta values. The double shuffle Lie algebra
dm0 and its associated depth-graded ls were obtained by G. Racinet in terms of non-
commutative alphabets, the analog Lie algebra ARIpol .Q

al∗il and ARIpol,Q
al/al of moulds were

discovered by J. Ecalle. G. Racinet ([Rac00]) and also L. Schneps ([Sc15]) related these
two kinds of Lie algebras by the isomorphism ma.
The Lie algebras of bimoulds related to multiple q-zeta values were first studied by U.
Kühn ([Kü19]). The Lie bracket uri was suggested by L. Schneps. It is a kind of an
extension of the Lie bracket ari ([SK]). The conjectural Lie algebra BARIpol,Q

il,swap should be
seen as a generalization of the Lie algebra ARIpol,Q

al∗il related to multiple zeta values. The
associated depth-graded grD BARIpol,Q

il,swap embeds into the Lie algebra BARIpol,Q
al,swap.

As a main result of this thesis, we obtained an approach to Lie algebras related to multiple
q-zeta values in terms of non-commutative alphabets similar to Racinet’s approach to
multiple zeta values. In particular, we obtained as a generalization of dm0 and ls the
conjectural Lie algebra bm0 and its associated depth-graded lb, which embeds into the Lie
algebra lq. By relating these non-commutative spaces to the analog spaces of bimoulds
via the map #Y ◦ ρB, we were able to discover the q-Ihara bracket {−,−}q and show that
it equips the bigger space mq indeed with a Lie algebra structure.

1.7 Lie algebras and dimension conjectures for Zq. As an analog of Zagier’s di-
mension conjecture B.2 and the Broadhurst-Kreimer conjecture B.3 for multiple zeta val-
ues (or more precisely of Proposition B.7), there are dimension conjectures for the space
Zq. Recall that a grading by weight Zq = ⊕

w≥0Z
(w)
q is expected, where Z(w)

q denotes
the subspace spanned by all balanced multiple q-zeta values or combinatorial bi-multiple
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Eisenstein series of weight w.

Conjecture 1.21. ([BK20], Conjecture 1.3) (i) The dimensions of the homogeneous sub-
spaces Z(w)

q are given by

∑
w≥0

dim(Z(w)
q )xw = M̃(x)

1−D(x)O1(x) +D(x)R(x)

= 1
1− x− x2 − x3 + x6 + x7 + x8 + x9 ,

where

D(x) = 1
1− x2 , M̃(x) =

∑
k≥0

dim
(
M̃k(SL2(Z))

)
xk = 1

(1− x2)(1− x4)(1− x6) ,

O1(x) = x

1− x2 , R(x) =
∑
k≥4

dim
(
Sk(SL2(Z))⊕Mk(SL2(Z))

)
xk.

(ii) The dimensions of the homogeneous subspaces gr(d)
D Z

(w)
q of the associated depth-graded

space grDZq are given by

∑
w,d≥0

dim
(
gr(d)
D Z

(w)
q

)
xwyd = 1 +D(x)E2(x)y +D(x)S(x)y2

1− a1(x)y + a2(x)y2 − a3(x)y3 − a4(x)y4 + a5(x)y5 ,

where

E2(X) = x2

1− x2 , S(x) =
∑
k≥12

dim(Sk(SL2(Z)))xk = x12

(1− x4)(1− x6) ,

and

a1(x) = D(x)O1(x), a2(x) = D(x)
∑
k≥4

dim(Mk(SL2(Z)))2xk,

a3(x) = a5(x) = D(x)xS(x), a4(x) = D(x)
∑
k≥12

dim(Sk(SL2(Z)))2xk.

Here M̃k(SL2(Z)),Mk(SL2(Z)) and Sk(SL2(Z)) denote the vector spaces of quasi-modular
forms, modular forms, and cusp forms for SL2(Z) of weight k.

There is an efficient algorithm to compute the first 10.000 coefficients of an element in Zq.
This algorithm was developed in [BK20] to provide Conjecture 1.21 and verify it up to
weight 14 and all depths and up to weight 26 and depth 4.

Conjecture 1.22.
(i) The Lie algebra bm0 is equipped with a derivation, which increases the weight by 2.
(ii) The Lie algebra bm0 has exactly one generator ξ

(k
0
)

in each odd weight k ≥ 3, which
is related to the double shuffle Lie algebra dm0. Together with ξ

(1
0
)

= b1 and derivatives
of these generators, one obtains a complete generating set for bm0. The relations between
the generators in weight k are counted by dimMk(SL2(Z))⊕ Sk(SL2(Z)).
(iii) The Hilbert-Poincare series of the universal enveloping algebra of bm0 is

HU(bm0)(x) =
∑
w≥0

dimU(bm0)(w)xw = 1
1−D(x)O1(x) +D(x)R(x) .
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Part (iii) follows from the first two parts of Conjecture 1.22. By Theorem 1.12 and the
expected isomorphy Zfq ' Zq, there should be also an isomorphism

Zq ' M̃(SL2(Z))⊗Q U(bm0)∨.

In particular, Conjecture 1.22 (iii) should be equivalent to the dimension conjecture 1.21
(i) for Zq.

For weight ≤ 13, we were able to check that Conjecture 1.22 (iii) holds. To obtain the
dimensions of the spaces bm

(w)
0 , we used another alphabet V satisfying (Corollary 4.33)

bm0 ⊂ LieQ〈V〉.

Duval’s algorithm ([BP94, Chapter 2]) allows to compute a Lyndon basis of LieQ〈V〉(w).
Picking the (on Q〈B〉0) τ -invariant elements in the Lyndon basis then yields a basis of the
space bm

(w)
0 (Theorem 4.39).

Similarly, there is an explicit expectation for the structure of the associated depth-graded
Lie algebra lb (Conjecture 1.15).

Conjecture 1.23.
(i) The Lie algebra lb is generated by the depth 1 elements

grD ξ
(
k

m

)
=
(
− ad(b0)

)m
(bk) +

(
− ad(b0)

)k−1
(bm+1), k ≥ 1, m ≥ 0, k +m odd,

and some elements in depth 4 introduced in Definition 5.37 in the spirit of Ecalle, which
are counted by dimSk(SL2(Z))2. They satisfy some relations in depths 2 and 5 related to
modular forms.
(ii) The Hilbert-Poincare series of the universal enveloping algebra of lb is

HU(lb)(x, y) =
∑
w,d≥0

dimU(lb)(w,d)xwyd

= 1
1− a1(x)y + a2(x)y2 − a3(x)y3 − a4(x)y4 + a5(x)y5 .

By Theorem 1.12 and the expected isomorphy Zfq ' Zq, there should be also a depth-
graded algebra isomorphism

grD Zq�M̃Q(SL2(Z))Zq ' U(lb)∨.

Therefore, Conjecture 1.23 (ii) should be equivalent to the dimension conjecture 1.21 (ii).
Since there is a vector space isomorphism lb ' grD BARIpol,Q

il,swap (Theorem 1.20), one could
check Conjecture 1.23 (ii) equivalently for the space grD BARIpol,Q

il,swap. This was done by U.
Kühn ([Kü19]) up to weight 26 and depth 4. Moreover in Subsection 5.2, Conjecture 1.23
(i) is explained in detail in terms of the space grD BARIpol,Q

il,swap.

1.8 Outlook. The first steps towards discovering a Lie algebra, which is associated to
multiple q-zeta values and generalizes the double shuffle Lie algebra dm0, are presented in
this work. This raises a lot of new problems and questions.

(i) The first point for future work is trying to find a proof that the space bm0 equipped
with the q-Ihara bracket {−,−}q is indeed a Lie algebra (Conjecture 1.11).
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(ii) We expect a natural map exp : b̂m0 → BM0, which might be induced by the pre-Lie
multiplication of the q-Ihara bracket (cf Theorem B.30). Applying Yoneda’s Lemma
to this exponential map would prove the algebra decomposition Zfq ' M̃Q(SL2(Z))⊗
U(bm0)∨ (Theorem 1.12).

(iii) The affine scheme BM0 is expected to be a pro-unipotent affine group scheme with
Lie algebra functor b̂m0. Some partial results towards the group multiplication for
BM0 are given in Subsection 3.4.

(iv) Conjecture 1.22 (iii) predicts a connection between relations in bm0 and modular
forms, which is made explicit in the depth-graded case in terms of bimoulds (Theorem
5.34). There should be also an explicit way to connect the relations in bm0 to (period
polynomials of) modular forms.

(v) There should be a Lie algebra derivation on bm0, which reduces to the explicit
derivation on lq (Proposition 4.68). Moreover, this derivation might be part of an
sl2-action, similar to the one obtained in [BIM] for a slightly different space.

(vi) The formula for the q-Ihara bracket is quite complicated. So it might be easier to
make progress in the previously mentioned points by obtaining a notion of block
degree and considering the associated block-graded space (cf Subsection B.5).

(vii) The q-Ihara bracket {−,−}q should determine a coproduct ∆Gon
q , such that(Zfq�(

ζfq (2), ζfq (4), ζfq (6)
), ∗q,∆Gon

q

)
becomes a weight-graded Hopf algebra. This might give a starting point to mimic
Brown’s techniques and find a small spanning set of Zq (like the brackets with entries
1, 2, 3).

(viii) There should be a motivic background for multiple q-zeta values, which allows ob-
taining upper bounds for the dimensions of the homogeneous subspaces of Zq.

In conclusion and similar to the situation of the formal multiple zeta values (B.35.1), we
expect the following picture.(
Zfq�(

ζfq (2), ζfq (4), ζfq (6)
), ∗q,∆Gon

q

) (
U(bm0),~q,∆

)

(BM0,~q)

(
Q
(
Zfq�(

ζfq (2), ζfq (4), ζfq (6)
)), δq

)
(bm0, {−,−}q)

modulo
products

∼
dual

1:1

representing
Hopf algebra

∼
dual

1:1

exp / log
(+completion)

(1.23.1)
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Here ~q denotes the dual product to the coproduct ∆Gon
q , this might be hard to determine

on the whole universal enveloping algebra U(bm0). Moreover, the space of indecomposables

Q
(
Zfq�(

ζfq (2), ζfq (4), ζfq (6)
)) is endowed with a Lie cobracket δq, which is induced by the

coproduct ∆Gon
q (Proposition A.42) and dual to the Lie bracket {−,−}q (Theorem A.43).

The natural isomorphism exp : b̂m0 → BM0 should be obtained from Theorem A.95.
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2 Graded, involutive models for Zq
We will consider the algebra of multiple q-zeta values Zq, which should be seen as a q-
analog of the algebra of multiple zeta values. In contrast to the case of multiple zeta
values, one has to restrict to certain spanning sets of Zq to obtain nice descriptions of
(conjectural all) relations in Zq. Actually, several models of multiple q-zeta values occur
in the literature and most of them span the whole space Zq. An overview of these models
is given in [BK20], [Br21], or [Zh20]. In particular, there are two well-known models
for multiple q-zeta values, the Schlesinger-Zudilin multiple q-zeta values studied by K.
Ebrahimi-Fard, D. Manchon, and J. Singer ([EMS16]) and the bi-brackets introduced by
H. Bachmann ([Ba19]). Both of them satisfy a weight-filtered product formula and some
homogeneous relations connected to an involution. So both models equip the algebra of
multiple q-zeta values with a weight-filtered structure (and these structures coincide).
In analogy to the case of multiple zeta values, a weight-graded, involutive spanning set
of Zq seems to be a more canonical choice. There are two subsets of Zq having these
properties. The first spanning set is given by the combinatorial bi-multiple Eisenstein
series ([BB22]), which are built from the bi-brackets and a rational solution to the extended
double shuffle equations. They satisfy the associated weight-graded relations of the bi-
brackets and conjecturally no other relations and thus they should induce a weight-grading
on the algebra Zq. Unfortunately, the involutive relations among the combinatorial bi-
multiple Eisenstein series become rather complicated in high depths and it is hard to
write them down explicitly. This led us to another spanning set of Zq, the so-called
balanced multiple q-zeta values, which should be seen as a weight-graded version of the
Schlesinger-Zudilin multiple q-zeta values. Explicitly, we expect that they satisfy exactly
the associated weight-graded relations of the Schlesinger-Zudilin multiple q-zeta values and
hence also induce a weight-grading on Zq (which is again the same as the one conjecturally
induced by the combinatorial bi-multiple Eisenstein series). For the balanced multiple q-
zeta values the product formula and also the involutive relations are quite easy to handle,
therefore from our point of view, these objects provide the most natural choice for a
spanning set of Zq. The balanced multiple q-zeta values are the main objects of this work,
thus we will work out their structure in many details. In particular, we will use their
algebraic structure to determine a conjectural Lie algebra consisting of non-commutative
polynomials in Section 4.

2.1 The algebra of multiple q-zeta values

This subsection provides a short overview of the algebra of multiple q-zeta values, which
was introduced in this form by H. Bachmann and U. Kühn ([BK20]).

Definition 2.1. To integers s1 ≥ 1, s2, . . . , sl ≥ 0 and polynomialsR1 ∈ tQ[t], R2, . . . , Rl ∈
Q[t], we associate the generic multiple q-zeta value

ζq(s1, ..., sl;R1, ..., Rl) =
∑

n1>···>nl>0

R1(qn1)
(1− qn1)s1

· · · Rl(qnl)
(1− qnl)sl .

The assumptions s1 ≥ 1 and R1 ∈ tQ[t] are necessary for convergence.

In general, a q-analog of some expression is a generalization involving the variable q, which
returns the original expression by taking the limit q → 1. E.g. a q-analog of some natural
number n ∈ N is

{n}q = 1− qn
1− q = 1 + q + · · ·+ qn−1,
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since lim
q→1
{n}q = 1 + · · ·+ 1︸ ︷︷ ︸

n

= n.

For all multi indices where the associated multiple zeta values are convergent, the generic
multiple q-zeta values are (modified) q-analogs of multiple zeta values.

Proposition 2.2. For s1 ≥ 2, s2, . . . , sl ≥ 1 and R1 ∈ tQ[t], R2, . . . , Rl ∈ Q[t], we have

lim
q→1

(1− q)s1+···+slζq(s1, ..., sl;R1, ..., Rl) = R1(1) · · ·Rl(1)ζ(s1, ..., sl).

Proof. This follows from the formal straight-forward calculation

lim
q→1

(1− q)s1+···+slζq(s1, ..., sl;R1, ..., Rl) = lim
q→1

∑
n1>···>nl>0

R1(qn1)
(1−qn1

1−q )s1
. . .

Rl(qnl)
(1−qnl

1−q )sl

=
∑

n1>···>nl>0

R1(1)
ns1

1
. . .

Rl(1)
nsll

= R1(1) · · ·Rl(1)ζ(s1, ..., sl).

Convergence issues are justified with the same arguments as in [BK16, Proposition 6.4.].

Definition 2.3. Define the Q-vector space spanned by all generic multiple q-zeta values

Zq = spanQ
{
ζq(s1, ..., sl;R1, ..., Rl)

∣∣ l ≥ 0, s1 ≥ 1, s2, ..., sl ≥ 0, deg(Rj) ≤ sj
}
,

where we set ζq(∅; ∅) = 1.

The additional assumption on the degree of the polynomials Rj will be justified by its
relations to polynomial functions on partitions (Proposition 2.8). In particular, this def-
inition allows to obtain nice spanning sets for Zq invariant under some involution, those
will be introduced in the next subsections.

For ζq(s1;R1), ζq(s2;R2) ∈ Zq, the usual power series multiplication reads

ζq(s1;R1) · ζq(s2;R2) = ζq(s1, s2;R1, R2) + ζq(s2, s1;R2, R1) + ζq(s1 + s2;R1R2).

Since deg(R1R2) ≤ s1 + s2, the product is also an element in Zq. Similar computations
for arbitrary multi indices show the following.

Proposition 2.4. The space Zq is an associative, commutative algebra.

Thus, we will also refer to Zq as the algebra of multiple q-zeta values.

Definition 2.5. We define the following subalgebras of Zq

Z◦q =
{
ζq(s1, . . . , sl;R1, . . . , Rl) ∈ Zq

∣∣ s1, . . . , sl ≥ 1, R1(t), . . . , Rl(t) ∈ tQ[t]
}
,

Zq,d =
{
ζq(s1, . . . , sl;R1, . . . , Rl) ∈ Zq

∣∣ deg(Rj) ≤ sj − d for j = 1, . . . , l
}
,

Z◦q,d = Z◦q ∩ Zq,d.

A model for multiple q-zeta values is a spanning set of Zq usually obtained by an explicit
choice of the polynomials Ri. Various well-studied models can be identified with some
of these subalgebras, an overview is given in [BK20], [Br21], and [Zh20]. Computational
experiments lead to the following.

Conjecture 2.6. ([Ba19, Conjecture 4.3]) The following holds

Zq = Z◦q .
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It follows directly from the definition that the algebra Zq is closed under the derivation
q d

dq , which plays an important role in the theory of quasi-modular forms. Actually, this
also holds for the space Z◦q .

Proposition 2.7. ([BK16, Theorem 1.7]) The pairs (Zq, q d
dq ) and (Z◦q , q d

dq ) are differen-
tial algebras, in particular,

q
d
dq (Zq) ⊆ Zq, q

d
dq (Z◦q ) ⊆ Z◦q .

There are explicit formulas expressing the derivation q d
dq in terms of different models of

multiple q-zeta values (e.g. in [Ba19, Proposition 4.2] and [Si15, Theorem 4.1]).

The restriction in the definition of Zq to a special kind of generic multiple q-zeta values
(Definition 2.3) can also be justified by relating Zq to polynomial functions on partitions.
In [BI22, cf (1.6)] it is shown that the space Zq is exactly the image of the polynomial
functions on partitions under the q-bracket.
Let λ = (1m12m23m3 . . . ) be a partition of some natural number N of length d, i.e.,
the multiplicities mi ∈ Z≥0 are nonzero only for finitely many indices i1, . . . , id and one
has ∑i≥1mii = N . A polynomial f ∈ Q[X1, . . . , Xd, Y1, . . . , Yd] can be evaluated at the
partition λ by

f(λ) = f(i1, . . . , id,mi1 , . . . ,mid).

E.g., for λ = (1220314050 . . . ) and f(X1, X2, Y1, Y2) = X1X2Y1 we obtain

f(λ) = f(1, 3, 2, 1) = 6.

Denote by P(N, d) the set of all partitions of N of length d.

Proposition 2.8. ([Br21, Theorem 1.3]) An element F (q) ∈ Q[[q]] lies in Zq, if and only
if there exists a sequence (fd)d≥0 ∈

⊕
d≥0Q[X1, . . . , Xd, Y1, . . . , Yd], such that

F (q) = f0 +
∑
N≥1

(
N∑
d=1

∑
λ∈P(N,d)

fd(λ)
)
qN .
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2.2 Schlesinger-Zudilin multiple q-zeta values

We will study the Schlesinger-Zudilin multiple q-zeta values in their extended version,
which were introduced by K. Ebrahimi-Fard, D. Manchon, and J. Singer ([EMS16]). They
form a spanning set for Zq and thus endow the algebra with a weight and depth filtration.
Similar to the multiple zeta values their algebraic structure can be described in terms of
two alphabets, an infinite one and a finite one.

Definition 2.9. To integers s1 ≥ 1, s2, . . . , sl ≥ 0, associate the Schlesinger-Zudilin (SZ)
multiple q-zeta value

ζSZ
q (s1, . . . , sl) =

∑
n1>···>nl>0

qn1s1

(1− qn1)s1
. . .

qnlsl

(1− qnl)sl .

For an index (s1, . . . , sl) ∈ Zl≥0, the weight and depth is given by

wt(s1, . . . , sl) = s1 + · · ·+ sl + #{i | si = 0},
dep(s1, . . . , sl) = l −#{i | si = 0}.

We will also refer to these numbers as the weight and depth of ζSZ
q (s1, . . . , sl).

Theorem 2.10. ([BK20, p. 7]) The following equalities hold

Zq = spanQ
{
ζSZ
q (s1, . . . , sl)

∣∣ l ≥ 0, s1 ≥ 1, s2, . . . , sl ≥ 0
}
,

Z◦q = spanQ
{
ζSZ
q (s1, . . . , sl)

∣∣ l ≥ 0, s1, . . . , sl ≥ 1
}
.

Here we set ζSZ
q (∅) = 1.

Proof. For all integers s1 ≥ 1, s2, . . . , sl ≥ 0 we have

ζSZ
q (s1, . . . , sl) = ζq(s1, . . . , sl; ts1 , . . . , tsl) ∈ Zq

and thus we deduce for s1, . . . , sl ≥ 1 that

ζSZ
q (s1, . . . , sl) ∈ Z◦q .

On the other hand, the elements

tj(1− t)s−j , j = 1, . . . , s,

form a basis of {R ∈ tQ[t] | deg(R) ≤ s}. Thus for each polynomial R ∈ tQ[t] of degree
≤ s, there exist elements αj ∈ Q, such that

R(t)
(1− t)s =

s∑
j=1

αj
tj

(1− t)j .

So any element in Z◦q is a linear combination of SZ multiple q-zeta values with entries ≥ 1.
Similarly, the elements

tj(1− t)s−j , j = 0, . . . , s,

are a basis of {R ∈ Q[t] | deg(R) ≤ s}, so every element in Zq is a linear combination of
SZ multiple q-zeta values ζSZ

q (s1, . . . , sl) with s1 ≥ 1, s2, . . . , sl ≥ 0.
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By Theorem 2.10, the notions of weight and depth for SZ multiple q-zeta values endow
the space Zq with compatible ascending (vector space) filtrations

Fil(w)
W (Zq) = spanQ{ζSZ

q (s1, . . . , sl) | wt(s1, . . . , sl) ≤ w}, (2.10.1)

Fil(d)
D (Zq) = spanQ{ζSZ

q (s1, . . . , sl) | dep(s1, . . . , sl) ≤ d}.

The usual power series multiplication in Zq can be expressed in terms of the SZ multiple
q-zeta values, we will refer to this expression as the SZ stuffle product. To describe this
explicitly, we introduce the following quasi-shuffle algebra (cf Subsection A.3).

Definition 2.11. Consider the alphabet B = {b0, b1, b2, . . .} and let Q〈B〉 be the free
non-commutative algebra over B. Moreover, denote by 1 the empty word.
Define the SZ stuffle product ∗SZ to be the quasi-shuffle product on Q〈B〉 corresponding
to

bi �SZ bj = bi+j , bi, bj ∈ B.

For all s1, . . . , sl ≥ 0, the weight and depth of the word bs1 . . . bsl is defined as

wt(bs1 . . . bsl) = s1 + · · ·+ sl + #{i | si = 0},
dep(bs1 . . . bsl) = l −#{i | si = 0}.

Then the pair (Q〈B〉, ∗SZ) is a bi-filtered algebra with respect to weight and depth.

Definition 2.12. Let Q〈B〉0 be the subspace of Q〈B〉 generated by all words, which do
not start in b0. Define the involution τ : Q〈B〉0 → Q〈B〉0 by τ(1) = 1 and

τ(bk1b
m1
0 . . . bkdb

md
0 ) = bmd+1b

kd−1
0 . . . bm1+1b

k1−1
0

for all k1, . . . , kd ≥ 1, m1, . . . ,md ≥ 0.

The combinatorics of infinite nested sums imply that the SZ multiple q-zeta values multiply
with respect to the SZ stuffle product ∗SZ. Even more, the following holds.

Theorem 2.13. (i) ([Si15, Theorem 3.3]) There is a surjective algebra morphism

ζSZ
q : (Q〈B〉0, ∗SZ)→ (Zq, ·),

bs1 . . . bsl 7→ ζSZ
q (s1, . . . , sl),

which is compatible with the weight and depth filtrations.

(ii) ([Ta13, Theorem 4]) The morphism ζSZ
q is τ -invariant, i.e., one has for all integers

k1, . . . , kd ≥ 1, m1, . . . ,md ≥ 0

ζSZ
q (k1, {0}m1 , . . . , kd, {0}md) = ζSZ

q (md + 1, {0}kd−1, . . . ,m1 + 1, {0}k1−1).

The SZ stuffle product in Theorem 2.13 (i) is a q-analog of the usual stuffle product.
Assuming s1 ≥ 2, s2, . . . , sl ≥ 1 and applying the limit q → 1 (after multiplying with a
suitable power of (1− q)), one obtains the stuffle product formula of multiple zeta values
(Proposition B.20).

Remark 2.14. The τ -invariance of the SZ multiple q-zeta values is quite similar to the
duality of Zudilin’s multiple q-zeta brackets ([Zu15, Proposition 4]).
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Example 2.15. In depth 2, the SZ stuffle product reads

ζSZ
q (k1, {0}m1)ζSZ

q (k2, {0}m2) =
m∑
j=0

(m−j∑
i=0

(
m2 + 1

i

)(
m− j − i

m2

)
ζSZ
q (k1, {0}j , k2, {0}m−j−i)

+
m−j∑
i=0

(
m1 + 1

i

)(
m− j − i

m1

)
ζSZ
q (k2, {0}j , k1, {0}m−j−i)

+
(
m1
j

)(
m− j
m1

)
ζSZ
q (k1 + k2, {0}m−j)

)
,

where k1, k2 ≥ 1 and m1,m2 ≥ 0, m = m1 +m2.

An immediate consequence of Theorem 2.13 (i) is the compatibility of the product in Zq
with the weight and depth filtrations.

Corollary 2.16. The notions of weight and depth for SZ multiple q-zeta values define two
algebra filtrations on Zq. In particular,

Fil(d1)
D (Zq) Fil(d2)

D (Zq) ⊂ Fil(d1+d2)
D (Zq), Fil(w1)

W (Zq) Fil(w2)
W (Zq) ⊂ Fil(w1+w2)

W (Zq).

J. Singer introduced in [Si15] a second finite alphabet to describe the algebraic structure
of SZ multiple q-zeta values. This can be viewed as an analog of the finite alphabet X
introduced for multiple zeta values (Definition B.13).

Definition 2.17. Let Q〈p, y〉 be the free algebra over Q generated by the alphabet {p, y}
and denote by 1 the empty word. Define the SZ shuffle product �SZ on Q〈p, y〉 recursively
by 1�SZ w = w�SZ 1 = w and

(yu)�SZ v = u�SZ (yv) = y(u�SZ v),
(pu)�SZ (pv) = p(u�SZ pv + pu�SZ v + u�SZ v)

for all u, v, w ∈ Q〈p, y〉. Though we call this product the SZ shuffle product, it is not a
quasi-shuffle product in the sense of Definition A.52. Moreover, denote by Q〈p, y〉0 the
subspace of Q〈p, y〉 spanned by all words starting in p and ending in y, so

Q〈p, y〉0 = Q1 + pQ〈p, y〉y.

Expressing the SZ multiple q-zeta values via iterated Rota-Baxter operators leads to

Proposition 2.18. ([Si15, Theorem 3.2.]) The map

(Q〈p, y〉0,�SZ)→ (Zq, ·),
ps1y . . . psly 7→ ζSZ

q (s1, . . . , sl)

is a surjective algebra morphism.

The SZ shuffle product in Proposition 2.18 can be seen as a q-analog of the shuffle product.
Whenever s1 ≥ 2, s2, . . . , sl ≥ 1, then taking the limit q → 1 (after multiplying with some
power of (1− q)) yields the shuffle product formula for multiple zeta values (Proposition
B.16).
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Example 2.19. In depth 2, the SZ shuffle product is given by

ζSZ
q (k1, {0}m1)ζSZ

q (k2, {0}m2) =
k−1∑
j=1

( k−1−j∑
i=0

(
j − 1
k1 − 1

)(
k1
i

)
ζSZ
q (j, {0}m1 , k − j − i, {0}m2)

+
k−1−j∑
i=0

(
j − 1
k2 − 1

)(
k2
i

)
ζSZ
q (j, {0}m2 , k − j − i, {0}m1)

+
(
j − 1
k1 − 1

)(
k1 − 1
j − k2

)
ζSZ
q (j, {0}m1+m2+1)

)
,

where k1, k2 ≥ 1, k = k1 + k2 and m1,m2 ≥ 0.

The involution τ (Definition 2.12) can be also defined on the algebra Q〈p, y〉.

Definition 2.20. Let τ be the anti-automorphism on Q〈p, y〉 given by τ(1) = 1 and
τ(p) = y, τ(y) = p, i.e., one has for all k1, . . . , kd ≥ 1, m0, . . . ,md ≥ 0

τ(ym0pk1ym1 . . . pkdymd) = pmdykd . . . pm1yk1pm0 .

The involution τ preserves the subalgebra Q〈p, y〉0. Moreover, τ relates the SZ stuffle
product ∗SZ and the SZ shuffle product �SZ. To describe this relation, consider the
canonical embedding

i : Q〈B〉 ↪→ Q〈p, y〉, (2.20.1)
bs1 . . . bsl 7→ ps1y . . . psly.

Theorem 2.21. ([EMS16, Theorem 5.4]) For all u, v ∈ Q〈B〉, the following holds

i(u ∗SZ v) = τ
(
τ ◦ i(u)�SZ τ ◦ i(v)

)
.

Since τ is an involution, one obtains an injective algebra morphism

τ ◦ i : (Q〈B〉, ∗SZ) ↪→ (Q〈p, y〉,�SZ),
bs1 . . . bsl 7→ pysl . . . pys1 .

This allows interpreting the restriction of �SZ to im(τ ◦ i) = Q1 + pQ〈p, y〉 as a quasi-
shuffle product.

Just as one expects the extended double shuffle relations among multiple zeta values to
give all relations in Z (Conjecture B.9), the following is conjectured for the SZ multiple
q-zeta values.

Conjecture 2.22. ([Ta13]) All relations in Zq are a consequence of the SZ stuffle product
and the τ -invariance (Theorem 2.13) of SZ multiple q-zeta values.

Example 2.23. By applying the SZ stuffle product formula, we obtain

ζSZ
q (1)ζSZ

q (2) = ζSZ
q (1, 2) + ζSZ

q (2, 1) + ζSZ
q (3).

On the other hand, we can apply the SZ shuffle product formula. By Theorem 2.21, this
means apply the τ -invariance to both factors, then multiply with respect to the SZ stuffle
product formula and then again apply τ -invariance

ζSZ
q (1)ζSZ

q (2) = ζSZ
q (1)ζSZ

q (1, 0)
= 2ζSZ

q (1, 1, 0) + ζSZ
q (1, 0, 1) + ζSZ

q (2, 0) + ζSZ
q (1, 1)

= 2ζSZ
q (2, 1) + ζSZ

q (1, 2) + ζSZ
q (2, 0) + ζSZ

q (1, 1).
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Comparing both product expressions, we obtain

ζSZ
q (3) = ζSZ

q (2, 1) + ζSZ
q (2, 0) + ζSZ

q (1, 1).

Multiplying by (1 − q)3 and applying the limit q → 1, we recover Euler’s well-known
relation

ζ(3) = ζ(2, 1).

We end this subsection by expressing the previously given algebraic relations of SZ multiple
q-zeta values in terms of generating series. For each d ≥ 1, define the generating series of
the SZ multiple q-zeta values of depth d by

szd

(
X1, . . . , Xd

Y1, . . . , Yd

)
=

∑
k1,...,kd≥1
m1,...,md≥0

ζSZ
q (k1, {0}m1 , . . . , kd, {0}md)Xk1−1

1 Y m1
1 . . . Xkd−1

d Y md
d

(2.23.1)

and moreover set sz0 = 1.

Lemma 2.24. ([Br21, Theorem 2.18]) For each d ≥ 1, one has

szd

(
X1, . . . , Xd

Y1, . . . , Yd

)
=

∑
u1>···>ud>0
v1,...,vd>0

d∏
i=1

(1 +Xi)vi−1(1 + Yi)ui−ui+1−1quivi

=
∑

u1>···>ud>0

d∏
i=1

(1 + Yi)ui−ui−1−1 qui

1− (1 +Xi)qui
,

where ud+1 := 0.

We reformulate the τ -invariance of the SZ multiple q-zeta values (Theorem 2.13 (ii)) in
terms of these generating series.

Proposition 2.25. For each d ≥ 1, the generating series szd is τ -invariant, i.e., one has

szd

(
X1, . . . , Xd

Y1, . . . , Yd

)
= szd

(
Yd, . . . , Y1
Xd, . . . , X1

)
.

Proof. Using the τ -invariance of the SZ multiple q-zeta values (Theorem 2.13 (ii)), we
compute for each d ≥ 1

szd

(
X1, . . . , Xd

Y1, . . . , Yd

)
=

∑
k1,...,kd≥1
m1,...,md≥0

ζSZ
q (k1, {0}m1 , . . . , kd, {0}md)Xk1−1

1 Y m1
1 . . . Xkd−1

d Y md
d

=
∑

k1,...,kd≥1
m1,...,md≥0

ζSZ
q (md + 1, {0}kd−1, . . . ,m1 + 1, {0}k1−1)Xk1−1

1 Y m1
1 . . . Xkd−1

d Y md
d

=
∑

k1,...,kd≥1
m1,...,md≥0

ζSZ
q (k1, {0}m1 , . . . , kd, {0}md)Xm1

1 Y kd−1
1 . . . Xm1

d Y k1−1
d

= szd

(
Yd, . . . , Y1
Xd, . . . , X1

)
.
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To describe the SZ stuffle product on the level of generating series, we have to consider
generating series of words (Subsection A.4). In this case, define the generating series of
words in Q〈B〉0 by ρB(W)0 = 1 and

ρB(W)d
(
X1, . . . , Xd

Y1, . . . , Yd

)
=

∑
k1,...,kd≥1
m1,...,md≥0

bk1b
m1
0 . . . bkdb

md
0 Xk1−1

1 Y m1
1 . . . Xkd−1

d Y md
d , d ≥ 1.

Extend the SZ stuffle product defined on Q〈B〉0 as well as the SZ multiple q-zeta value
map ζSZ

q : Q〈B〉0 → Zq (cf Theorem 2.13) by Q[[X1, Y1, X2, Y2, . . .]]-linearity to the space
Q〈B〉0[[X1, Y1, X2, Y2, . . .]]. Then, one obtains by definition for all d ≥ 1

ζSZ
q

(
ρB(W)d

(
X1, . . . , Xd

Y1, . . . , Yd

))
= szd

(
X1, . . . , Xd

Y1, . . . , Yd

)
.

Since ζSZ
q : (Q〈B〉0, ∗SZ)→ (Zq, ·) is an algebra morphism (Theorem 2.13 (i)), we immedi-

ately derive the following.

Proposition 2.26. For all 0 < n < d, we have

szd

(
X1, . . . , Xn

Y1, . . . , Yn

)
szd−n

(
Xn+1, . . . , Xd

Yn+1, . . . , Yd

)

= ζSZ
q

(
ρB(W)n

(
X1, . . . , Xn

Y1, . . . , Yn

)
∗SZ ρB(W)d−n

(
Xn+1, . . . , Xd

Yn+1, . . . , Yd

))
.

An explicit recursive formula for the SZ stuffle product ∗SZ on the generating series of
words ρB(W) is given in Proposition A.79.

26



2.3 Bi-brackets

We will consider the bi-brackets introduced by H. Bachmann ([Ba19]). They form a
spanning set of the space Zq and endow the algebra with weight and depth filtrations.
There is only one infinite bi-alphabet, which describes the algebraic structure of the bi-
brackets. The advantage of this model is that bi-brackets are closely related to quasi-
modular forms and multiple Eisenstein series. In particular, one obtains that Zq contains
the algebra of quasi-modular forms.

Definition 2.27. For integers k1, . . . , kd ≥ 1 and m1, . . . ,md ≥ 0, the associated bi-
bracket is

g

(
k1, . . . , kd
m1, . . . ,md

)
= 1

(k1 − 1)! . . . (kd − 1)!
∑

u1>···>ud>0
v1,...,vd>0

um1
1 . . . umdd vk1−1

1 . . . vkd−1
d qu1v1+···+udvd

=
∑

n1>···>nd>0
nm1

1 . . . nmdd
Pk1(qn1)

(1− qn1)k1
. . .

Pkd(qnd)
(1− qnd)kd ,

where the Eulerian polynomials Pk(t) ∈ Q[t], k ≥ 1, are defined by the equality

Pk(t)
(1− t)k =

∑
r≥1

rk−1

(k − 1)! t
r.

For a bi-index
( k1,...,kd
m1,...,md

)
∈ Z2d

≥0, the weight and depth are defined by

wt
(
k1, . . . , kd
m1, . . . ,md

)
= k1 + · · ·+ kd +m1 + · · ·+md,

dep
(
k1, . . . , kd
m1, . . . ,md

)
= d.

We will also refer to this as the weight and depth of the bi-bracket g
( k1,...,kd
m1,...,md

)
.

Moreover, denote

g(k1, . . . , kd) = g

(
k1, . . . , kd
0, . . . , 0

)
and we will refer to these q-series just as brackets.

Theorem 2.28. ([BK20, Theorem 2.3]) The following equalities hold

Zq = spanQ
{
g

(
k1, . . . , kd
m1, . . . ,md

) ∣∣∣∣ d ≥ 0, k1, . . . , kd ≥ 1, m1, . . . ,md ≥ 0
}
,

Z◦q = spanQ{g(k1, . . . , kd) | d ≥ 0, k1, . . . , kd ≥ 1} .

Here we set g(∅) = 1.

By Theorem 2.28, the notions of weight and depth for bi-brackets define two compatible
ascending filtrations on the space Zq

Fil(w)
W (Zq) = spanQ

{
g

(
k1, . . . , kd
m1, . . . ,md

) ∣∣∣∣∣ wt
(
k1, . . . , kd
m1, . . . ,md

)
≤ w

}
, (2.28.1)

Fil(d)
D (Zq) = spanQ

{
g

(
k1, . . . , kl
m1, . . . ,ml

) ∣∣∣∣∣ dep
(
k1, . . . , kl
m1, . . . ,ml

)
≤ d

}
.
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We will obtain in Corollary 2.39 that these filtrations coincide with the ones induced by
the SZ multiple q-zeta values (2.10.1).

Brackets of depth 1 appear in the Fourier expansion of the Eisenstein series Gk(τ) for
k ≥ 2 even,

Gk(τ) = −Bk2k! + 1
(k − 1)!

∑
n>0

σk−1(n)qn = −Bk2k! + g(k). (2.28.2)

This definition of the Eisenstein series is non-standard, the usual definition is obtained
by multiplying with the factor (k − 1)!. To keep the notations and formulas short in the
following, we will always use this normalization. There is also a formula for the Fourier
expansion of multiple Eisenstein series in terms of brackets in arbitrary depth ([Ba20,
Theorem 1.4]).
Since the Eisenstein series of weights 2, 4, and 6 generate the algebra of quasi-modular
forms, Theorem 2.28 and (2.28.2) imply the following.

Proposition 2.29. The algebra Zq contains the algebra M̃Q(SL2(Z)) of quasi-modular
forms with rational coefficients.

Moreover, the bi-brackets are (modified) q-analogs of multiple zeta values.

Proposition 2.30. (i) ([BI22, Section 4.1]) For all k1, . . . , kd ≥ 1, m1, . . . ,md ≥ 0, one
has (possibly after some regularization process)

lim
q→1

(1− q)k1+···+kdg

(
k1, . . . , kd
m1, . . . ,md

)
∈ Z.

Here Z denotes the algebra of multiple zeta values (Definition B.1).

(ii) ([Zu15, Proposition 1]) For k1 ≥ m1 + 2 and ki ≥ mi + 1, i = 2, . . . , d, one obtains

lim
q→1

(1− q)k1+···+kdg

(
k1, . . . , kd
m1, . . . ,md

)
= ζ(k1 −m1, . . . , kd −md).

The usual power series multiplication in Zq can be expressed in terms of the bi-brackets,
we refer to this expression as the product of bi-brackets. It can be described in terms of
the following quasi-shuffle algebra (cf Subsection A.3).

Definition 2.31. Consider the bi-alphabet Ybi = {yk,m | k ≥ 1, m ≥ 0} and let Q〈Ybi〉
be the free non-commutative algebra generated by Ybi. Moreover, denote the empty word
by 1. Define the numbers

λk1,k2
j = −

(
(−1)k1

(
k1 + k2 − 1− j

k2 − j

)
+ (−1)k2

(
k1 + k2 − 1− j

k1 − j

))
Bk1+k2−j

(k1 + k2 − j)!
∈ Q

(2.31.1)

and set

yk1,m1 �bb yk2,m2 = yk1+k2,m1+m2 +
k1+k2−1∑
j=1

λk1,k2
j yj,m1+m2 .

The product �bb is commutative and by [Ba19, Theorem 3.6] also associative. We denote
the corresponding quasi-shuffle product on Q〈Ybi〉 by ∗bb.
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Define the weight and the depth of a word in Q〈Ybi〉 as

wt(yk1,m1 . . . ykd,md) = k1 + · · ·+ kd +m1 + · · ·+md,

dep(yk1,m1 . . . ykd,md) = d.

The algebra (Q〈Ybi〉, ∗bb) is bi-filtered with respect to weight and depth.

Theorem 2.32. ([Ba19, Theorem 3.6]) The map

g : (Q〈Ybi〉, ∗bb)→ (Zq, ·),

yk1,m1 . . . ykd,md 7→ g

(
k1, . . . , kd
m1, . . . ,md

)

is a surjective algebra morphism compatible with the weight and depth filtrations.

If k1 ≥ 1, k2, . . . , kd ≥ 1 and m1 = · · · = md = 0, then applying the limit q → 1 (and
multiplying with a suitable power of (1 − q)) in Theorem 2.32 yields the stuffle product
formula for multiple zeta values (Proposition B.20).

To describe another kind of relations satisfied by the bi-brackets, it is convenient to con-
sider generating series. For each d ≥ 1, define the generating series of the bi-brackets of
depth d by

gd

(
X1, . . . , Xd

Y1, . . . , Yd

)
=

∑
k1,...,kd≥1
m1,...,md≥0

g

(
k1, . . . , kd
m1, . . . ,md

)
Xk1−1

1
Y m1

1
m1! . . . X

kd−1
d

Y md
d

md!
(2.32.1)

and further set g0 = 1.

Lemma 2.33. ([Ba19, Theorem 2.3]) For each d ≥ 1, one has

gd

(
X1, . . . , Xd

Y1, . . . , Yd

)
=

∑
u1>···>ud>0
v1,...,vd>0

d∏
i=1

exp(viXi) exp(uiYi)quivi

=
∑

u1>···>ud>0
Lu1

(
X1
Y1

)
. . . Lud

(
Xd

Yd

)
,

where
Lu

(
X
Y

)
= exp(X + uY )qu

1− exp(X)qu , u ≥ 1.

Interpreting the bi-brackets as generating series of polynomial functions on partitions (cf
Proposition 2.8) gives linear relations among them.

Theorem 2.34. ([Ba19, Theorem 2.3]) For each d ≥ 1, the generating series gd is swap
invariant, i.e., the following holds

gd

(
X1, . . . , Xd

Y1, . . . , Yd

)
= gd

(
Y1 + · · ·+ Yd, . . . , Y1 + Y2, Y1
Xd, Xd−1 −Xd, . . . , X1 −X2

)
.

Similar to Conjecture 2.22, the following is expected for the bi-brackets.

Conjecture 2.35. ([BK20], [Ba19]) All relations in Zq are a consequence of the product
formula (Theorem 2.32) and the swap invariance (Theorem 2.34) of the bi-brackets.
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We also want to describe the product of the bi-brackets ∗bb in terms of generating series (cf
Subsection A.4). Consider the generating series of words in Q〈Ybi〉 given by ρYbi(W)0 = 1
and

ρYbi(W)d
(
X1, . . . , Xd

Y1, . . . , Yd

)
=

∑
k1,...,kd≥1
m1,...,md≥0

yk1,m1 . . . ykd,mdX
k1−1
1

Y m1
1
m1! . . . X

kd−1
d

Y md
d

md!
, d ≥ 1.

For simplicity, we often drop the depth index and just write ρYbi(W)
(X1,...,Xd
Y1,...,Yd

)
.

Extend the product ∗bb and the bi-brackets map g : Q〈Ybi〉 → Zq from Theorem 2.32
by Q[[X1, Y1, X2, Y2, . . .]]-linearity to Q〈Ybi〉[[X1, Y1, X2, Y2, . . .]]. Then, one obtains by
definition that for all d ≥ 1

g

(
ρYbi(W)d

(
X1, . . . , Xd

Y1, . . . , Yd

))
= gd

(
X1, . . . , Xd

Y1, . . . , Yd

)
.

The map g : (Q〈Ybi〉, ∗bb)→ (Zq, ·) is an algebra morphism (Theorem 2.32), this implies
the following.

Proposition 2.36. For all 0 < n < d, one has

gn

(
X1, . . . , Xn

Y1, . . . , Yn

)
gd−n

(
Xn+1, . . . , Xd

Yn+1, . . . , Yd

)

= g

(
ρYbi(W)n

(
X1, . . . , Xn

Y1, . . . , Yn

)
∗bb ρYbi(W)d−n

(
Xn+1, . . . , Xd

Yn+1, . . . , Yd

))
.

In particular, we want to describe the product ∗bb explicitly on the generating series of
words ρYbi(W). From [Ba19, Lemma 3.2] one deduces the following.

Proposition 2.37. Set

b(X) = 1
2

( 1
X
− 1
eX − 1 −

1
2

)
= −

∑
k≥2

Bk
2k!X

k−1, (2.37.1)

where Bk denotes the k-th Bernoulli number. Then for all 0 < n < d one has 1 ∗bb
ρYbi(W)n = ρYbi(W)n ∗bb 1 = ρYbi(W)n and

ρYbi(W)
(
X1, . . . , Xn

Y1, . . . , Yn

)
∗bb ρYbi(W)

(
Xn+1, . . . , Xd

Yn+1, . . . , Yd

)

= ρYbi(W)
(
X1
Y1

)
·
(
ρYbi(W)

(
X2, . . . , Xn

Y2, . . . , Yn

)
∗bb ρYbi(W)

(
Xn+1, . . . , Xd

Yn+1, . . . , Yd

))

+ ρYbi(W)
(
Xn+1
Yn+1

)
·
(
ρYbi(W)

(
X1, . . . , Xn

Y1, . . . , Yn

)
∗bb ρYbi(W)

(
Xn+2, . . . , Xd

Yn+2, . . . , Yd

))

+
(( 1

X1 −Xn+1
− 2b(X1 −Xn+1)

)
·
(
ρYbi(W)

(
X1

Y1 + Yn+1

)
− ρYbi(W)

(
Xn+1

Y1 + Yn+1

))

− 1
2ρYbi(W)

(
X1

Y1 + Yn+1

)
− 1

2ρYbi(W)
(

Xn+1
Y1 + Yn+1

))

·
(
ρYbi(W)

(
X2, . . . , Xn

Y2, . . . , Yn

)
∗bb ρYbi(W)

(
Xn+2, . . . , Xd

Yn+2, . . . , Yd

))
.
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Here · denotes the usual concatenation product, by Proposition A.66 it is given for all
0 ≤ n ≤ d by

ρYbi(W)
(
X1, . . . , Xn

Y1, . . . , Yn

)
· ρYbi(W)

(
Xn+1, . . . , Xd

Yn+1, . . . , Yd

)
= ρYbi(W)

(
X1, . . . , Xd

Y1, . . . , Yd

)
.

In analogy to Theorem 2.21, combining the swap invariance of the bi-brackets (Theorem
2.34) and the product ∗bb yields a second expression for the product of the generating
series gd. E.g., one has

g1

(
X1
Y1

)
g1

(
X2
Y2

)
= g2

(
X1 +X2, X1
Y2, Y1 − Y2

)
+ g2

(
X1 +X2, X2
Y1, Y2 − Y1

)

+
( 1
Y1 − Y2

− 2b(Y1 − Y2)
)(

g1

(
X1 +X2

Y1

)
− g1

(
X1 +X2

Y2

))

− 1
2g1

(
X1 +X2

Y1

)
− 1

2g1

(
X1 +X2

Y2

)
.

This formula is a q-analog of the shuffle product for double zeta values. Explicitly, for
Y1 = Y2 = 0 taking the limit q → 1 (after multiplying with suitable powers of (1 − q))
gives the shuffle product written in terms of generating series (Proposition B.42).
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2.4 Comparison of SZ multiple q-zeta values and bi-brackets

In the previous two subsections, two different spanning sets of Zq were presented, the SZ
multiple q-zeta values (2.2) and the bi-brackets (2.3). In particular, there is a translation
map from one spanning set into the other. We will give explicit formulas relating the
generating series of SZ multiple q-zeta values sz and bi-brackets g. The formulas will show
that the weight and depth filtrations induced by these two spanning sets agree. Similar
to [Br21, Theorem 2.41], we obtain the following.

Proposition 2.38. For each d ≥ 1, we have

gd

(
X1, . . . , Xd

Y1, . . . , Yd

)
=

d∏
i=1

exp(Xi) exp(Y1 + · · ·+ Yi)

· szd

(
exp(X1)− 1, exp(X2)− 1, . . . , exp(Xd)− 1

exp(Y1)− 1, exp(Y1 + Y2)− 1, . . . , exp(Y1 + · · ·+ Yd)− 1

)
,

szd

(
X1, . . . , Xd

Y1, . . . , Yd

)
=

d∏
i=1

1
(Xi + 1)(Yi + 1)

· gd

(
ln(X1 + 1), ln(X2 + 1), . . . , ln(Xd + 1)

ln(Y1 + 1), ln(Y2 + 1)− ln(Y1 + 1), . . . , ln(Yd + 1)− ln(Yd−1 + 1)

)
.

Proof. Lemma 2.24 and 2.33 imply that we need to substitute

(1 +Xi)vi−1(1 + Yi)ui−ui+1−1, exp(Xi)vi exp(Yi)ui .

by each other for i = 1, . . . , d. To get rid of the shift in the exponents by 1, there are
additional factors in both equalities. Then the first equality follows from the substitution

Xi 7→ exp(Xi)− 1, Yi 7→ exp(Y1 + · · ·+ Yi)− 1

and the second equality follows from the reversed substitution

Xi → ln(Xi + 1), Yi 7→ ln(Yi + 1)− ln(Yi−1 + 1)

(with Y0 := 0).

One verifies directly that the formulas in Proposition 2.38 are compatible with the product
formulas for SZ multiple q-zeta values (Proposition 2.26) and the bi-brackets (Proposition
2.36) and that they translate between τ -invariance of the SZ multiple q-zeta values (Propo-
sition 2.25) and swap invariance of the bi-brackets (Theorem 2.34).

Corollary 2.39. The notions of weight and depth for SZ multiple q-zeta values (2.10.1)
and bi-brackets (2.28.1) induce the same filtrations on the algebra Zq, i.e., we obtain

Fil(w)
W (Zq) = spanQ{ζSZ

q (k1, {0}m1 . . . , kd, {0}md) | k1 + · · ·+ kd +m1 + · · ·+md ≤ w}

= spanQ
{
g

(
k1, . . . , kd
m1, . . . ,md

) ∣∣∣∣ k1 + · · ·+ kd +m1 + · · ·+md ≤ w
}
,

Fil(d)
D (Zq) = spanQ{ζSZ

q (k1, {0}m1 . . . , kl, {0}ml) | l ≤ d}

= spanQ
{
g

(
k1, . . . , kl
m1, . . . ,ml

) ∣∣∣∣ l ≤ d} .
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Proof. Coefficient comparison in Proposition 2.38 shows that any bi-bracket of weight w
is a Q-linear combination of SZ multiple q-zeta values of weight ≤ w and vice versa. The
translation formulas in Proposition 2.38 are homogeneous for the depth, so the depth
filtrations induced by the SZ multiple q-zeta values and the bi-brackets have to be equal.
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2.5 Combinatorial bi-multiple Eisenstein series

The quasi-shuffle algebra (Q〈Ybi〉, ∗bb) for the bi-brackets (Theorem 2.32) is a weight-
filtered algebra. In analogy to the case of multiple zeta values, we are interested in
a weight-graded spanning set of Zq. Thus it seems natural to consider the associated
weight-graded algebra to (Q〈Ybi〉, ∗bb) (in the sense of Definition A.48).

Definition 2.40. Define the q-stuffle product ∗ on Q〈Ybi〉 to be the quasi-shuffle product
corresponding to

yk1,m1 � yk2,m2 = yk1+k2,m1+m2 .

Then (Q〈Ybi〉, ∗) is a weight-graded algebra, it is exactly the associated weight-graded
algebra to (Q〈Ybi〉, ∗bb).

M. Hoffman obtained isomorphisms between all quasi-shuffle algebras defined over the
same alphabet in [Hof00] (cf Theorem A.57), in particular, there is an algebra isomorphism

exp∗bb ◦ log∗ : (Q〈Ybi〉, ∗)→ (Q〈Ybi〉, ∗bb).

Thus, one gets a surjective algebra morphism

(Q〈Ybi〉, ∗)→ (Zq, ·),
w 7→ g

(
exp∗bb ◦ log∗(w)

)
,

where g(w) denotes the image of w ∈ Q〈Ybi〉 under the morphism in Theorem 2.32. Unfor-
tunately, these images g

(
exp∗bb ◦ log∗(w)

)
satisfy relations coming from some involution,

which is not weight-graded. Thus, we will provide another construction for a spanning set
of Zq, which satisfies the q-stuffle product formula and still the swap invariance. The ele-
ments of this spanning set are called combinatorial bi-multiple Eisenstein series, they were
first introduced in [BB22]. The key ingredients for the construction are the bi-brackets
(Subsection 2.3) and a rational solution of the extended double shuffle equations (Defini-
tion B.24, Theorem B.25). In the following we will briefly recall the construction as given
in [BB22]. This will be done on the level of generating series, thus we will use the language
of bimoulds introduced in Appendix C.

Definition 2.41. By Theorem B.25 and (B.25.1) there exists a solution to the extended
double shuffle equations b ∈ DM− 1

24
(Q) satisfying (b | xk0x1) = 0 for k ≥ 1 even. Decom-

pose the element b∗ ∈ Q〈〈Y〉〉 (see Definition B.24) into its homogeneous depth compo-
nents,

b∗ =
∑
d≥0

b
(d)
∗ , b

(d)
∗ ∈ Q〈〈Y〉〉(d).

Apply the Q-linear map

Q〈〈Y〉〉 → Q[[X1, X2, . . .]],
yk1 . . . ykd 7→ Xk1−1

1 . . . Xkd−1
d

to the elements b(d)
∗ to obtain power series bd(X1, . . . , Xd) ∈ Q[[X1, . . . , Xd]] for all d ≥ 1.

Moreover set b0 = 1, then b = (bd)d≥0 is a mould in GARIpow,Q.

Due to the choice of b, we have (b | x0x1) = − 1
24 = − B2

2·2! and (b | xk0x1) = 0 for k ≥ 1
even, so b1 coincides with the generating series given in (2.37.1). But in higher depths,
the element b ∈ DM− 1

24
(Q) is not unique. In the following, we will fix the mould b, so the

whole construction of the combinatorial bi-multiple Eisenstein series will depend on this
choice.
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Definition 2.42. To the mould b associate a bimould also denoted as b by

bd

(
X1, . . . , Xd

Y1, . . . , Yd

)
=

∑
0≤i≤j≤d

γibj−i(Y1 + · · ·+ Yj−i, . . . , Y1 + Y2, Y1)bd−j(Xj+1, . . . , Xd),

where the coefficients γi are defined by

∑
i≥0

γiT
i = exp

∑
n≥2

(−1)n+1

n

Bn
2n!T

n

 .
Moreover, define the bimould b̃ = (b̃d)d≥0 by b̃0 = 1 and

b̃d

(
X1, . . . , Xd

Y1, . . . , Yd

)
=

d∑
i=0

(−1)i
2ii! bd−i

(
Xi+1, . . . , Xd

−Y1, . . . ,−Yd−i

)
, d ≥ 1.

Definition 2.43. For each u ≥ 1, let L(u) = (L(u)
d )d≥0 be the bimould given by L

(u)
0 = 1

and

L
(u)
d

(
X1, . . . , Xd

Y1, . . . , Yd

)
=

d∑
j=1

bj−1

(
X1 −Xj , . . . , Xj−1 −Xj

Y1, . . . , Yj−1

)
Lu

(
Xj

Y1 + · · ·+ Yd

)

· b̃d−j

(
Xd −Xj , . . . , Xj+1 −Xj

Yd, . . . , Yj+1

)
,

where the power series Lu
(X
Y

)
is defined as in Lemma 2.33 by

Lu

(
X
Y

)
= exp(X + uY )qu

1− exp(X)qu , u ≥ 1.

In particular, the depth 1 component of the bimould L(u) is equal to the power series Lu.

Definition 2.44. Define the bimould g∗ = (g∗d)d≥0 by g∗0 = 1 and

g∗d

(
X1, . . . , Xd

Y1, . . . , Yd

)
=

∑
1≤j≤d

0=d0<d1<···<dj−1<dj=d
u1>···>uj>0

j∏
i=1

L
(ui)
di−di−1

(
Xdi−1+1, . . . , Xdi

Ydi−1+1, . . . , Ydi

)
.

Definition 2.45. Let G = (Gd)d≥0 be the mould product of g∗ and b, i.e., one has G0 = 1
and

G = mu(g∗, b).

The main result of [BB22] was the following.

Theorem 2.46. [BB22, Theorem 6.5.] The bimould G is symmetril and swap invariant.

Definition 2.47. For k1, . . . , kd ≥ 1, m1, . . . ,md ≥ 0 define the combinatorial bi-multiple
Eisenstein series G

( k1,...,kd
m1,...,md

)
to be the (normalized) coefficients of the bimould G,

Gd

(
X1, . . . , Xd

Y1, . . . , Yd

)
=

∑
k1,...,kd≥1
m1,...,md≥0

G

(
k1, . . . , kd
m1, . . . ,md

)
Xk1−1

1
Y m1

1
m1! . . . X

kd−1
d

Y md
d

md!
.
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As for the bi-brackets (Definition 2.27), we refer to the number k1 + · · ·+kd+m1 + · · ·+md

as the weight of G
( k1,...,kd
m1,...,md

)
and to the number d as its depth. Moreover, the elements

G(k1, . . . , kd) = G

(
k1, . . . , kd
0, . . . , 0

)
, k1, . . . , kd ≥ 1,

are called the combinatorial multiple Eisenstein series.

Example 2.48. 1) In depth 1, one obtains

G1

(
X1
Y1

)
= b1

(
X1
Y1

)
+ g1

(
X1
Y1

)

and thus for k ≥ 1, m ≥ 0

G

(
k
m

)
= −δm,0

Bk
2k! − δk,1

Bm+1
2(m+ 1) + 1

(k − 1)!
∑
u,v>0

umvk−1quv.

In particular, the combinatorial Eisenstein series G(k) for k ≥ 2 even are exactly the
classical Eisenstein series of weight k with rational coefficients (expressed in their Fourier
expansion). Moreover, the combinatorial bi-Eisenstein series G

( k
m

)
, k + m ≥ 2 even, is

essentially the m-th derivative of the classical Eisenstein series G(k) and hence is also
contained in the algebra M̃Q(SL2(Z)).

2) In depth 2, one has

G2

(
X1, X2
Y1, Y2

)
= g2

(
X1, X2
Y1, Y2

)
+ b1

(
X1 −X2

Y1

)
g1

(
X2

Y1 + Y2

)
+ g1

(
X1

Y1 + Y2

)
b̃1

(
X2 −X1

Y2

)

+ g1

(
X1
Y1

)
b1

(
X2
Y2

)
+ b2

(
X1, X2
Y1, Y2

)
.

This formula also gives an explicit but rather complicated expression of the combinatorial
bi-multiple Eisenstein series in terms of the rational coefficients of b and the bi-brackets.

Proposition 2.49. ([BB22, Proposition 6.15.]) The combinatorial bi-multiple Eisenstein
series form a spanning set of Zq.

By Proposition 2.49 the notions of weight and depth of the combinatorial bi-multiple
Eisenstein series endow the algebra Zq with two filtrations. By construction, these filtra-
tions agree with the ones of the bi-brackets given in (2.28.1) and hence also with the ones
in Corollary 2.39. Moreover, Theorem 2.46, the definition of the symmetrility (Definition
C.13), and Proposition 2.49 imply the following.

Theorem 2.50. There is a surjective algebra morphism

G : (Q〈Ybi〉, ∗)→ (Zq, ·),

yk1,m1 . . . ykd,md 7→ G

(
k1, . . . , kd
m1, . . . ,md

)
.

As a reformulation of Conjecture 2.35, the following is expected for the combinatorial
bi-multiple Eisenstein series.

Conjecture 2.51. ([BB22, Remark 6.11.]) All relations in Zq are a consequence of the
q-stuffle product formula (Theorem 2.50) and the swap invariance (Theorem 2.46) of the
combinatorial bi-multiple Eisenstein series.
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Proposition 2.52. If Conjecture 2.51 holds, then the algebra Zq is graded by weight

Zq =
⊕
w≥0
Z(w)
q .

Here Z(w)
q denotes the subspace of Zq spanned by all combinatorial bi-multiple Eisenstein

series of weight w.

Proof. This follows immediately from the observation that the q-stuffle product and also
the swap operator are homogeneous for the weight.
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2.6 Balanced multiple q-zeta values

The combinatorial bi-multiple Eisenstein series can be viewed as a weight-graded analog
of the bi-brackets, since they satisfy the associated weight-graded relations of the bi-
brackets. Similarly, one could ask for a weight-graded version of the SZ multiple q-zeta
values. To obtain these elements we will use the combinatorial bi-multiple Eisenstein series
constructed in [BB22]. More precisely, we will obtain the weight-graded version of the SZ
multiple q-zeta values by applying a linear variables substitution to the bimould G of the
generating series of the combinatorial bi-multiple Eisenstein series (Definition 2.45).

Definition 2.53. Let B = (Bd)d≥0 be the bimould in GBARI given by B0 = 1 and

Bd

(
X1, . . . , Xd

Y1, . . . , Yd

)
= Gd

(
X1, . . . , Xd

Y1, Y2 − Y1, . . . , Yd − Yd−1

)
, d ≥ 1.

Remark 2.54. This definition has much similarities with Zudilin’s definition of the mul-
tiple q-zeta brackets in terms of the bi-brackets ([Zu15, eq (8)]). Moreover, this definition
should be seen as a weight-graded version of the comparison formula for the SZ multiple
q-zeta values and the bi-brackets (Proposition 2.38).

Proposition 2.55. The bimould B is q-symmetril and τ -invariant.

We will explain the resulting properties for the coefficients now and give the proof of the
proposition later (Subsection 2.7).

Definition 2.56. For k1, . . . , kd ≥ 1, m1, . . . ,md ≥ 0 define the balanced multiple q-zeta
values ζq(k1, {0}m1 , . . . , kd, {0}md) to be the coefficients of the bimould B,

Bd

(
X1, . . . , Xd

Y1, . . . , Yd

)
=

∑
k1,...,kd≥1,
m1,...,md≥0

ζq(k1, {0}m1 , . . . , kd, {0}md)Xk1−1
1 Y m1

1 . . . Xkd−1
d Y md

d .

As for the SZ multiple q-zeta values (Definition 2.9), we call s1 + · · ·+sl+#{i | si = 0} the
weight and l−#{i | si = 0} the depth of the balanced multiple q-zeta value ζq(s1, . . . , sl).

Proposition 2.57. The balanced multiple q-zeta values form a spanning set of Zq.

Proof. The combinatorial bi-multiple Eisenstein series form a spanning set of Zq (Propo-
sition 2.49). Since the translation between the combinatorial bi-multiple Eisenstein series
and the balanced multiple q-zeta values given in Definition 2.53 is bijective, also the bal-
anced multiple q-zeta values give a spanning set of Zq.

In particular, by Proposition 2.57 the notions of weight and depth of the balanced multiple
q-zeta values induce two filtrations on Zq. Since the transformation from the combinatorial
bi-multiple Eisenstein series into the balanced multiple q-zeta values is given by a weight-
and depth-homogeneous substitution (Definition 2.53), they coincide with the filtrations
induced by the combinatorial bi-multiple Eisenstein series and thus also with the ones in
Corollary 2.39.

Definition 2.58. Consider the alphabet B = {b0, b1, b2, . . .} and define the balanced
quasi-shuffle product ∗q on Q〈B〉 to be the quasi-shuffle product corresponding to

bi �q bj =
{
bi+j if i, j ≥ 1,
0 else

.
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We call the product ∗q balanced quasi-shuffle product, since it combines the well-known
shuffle and stuffle product (Definition B.13, B.17) is a very simple way (cf (4.8.1)).
By definition (Q〈B〉, ∗q) is the associated weight-graded algebra to quasi-shuffle algebra
(Q〈B〉, ∗SZ) introduced for the SZ multiple q-zeta values (Definition 2.11). Let Q〈B〉0 be
the subalgebra of Q〈B〉 spanned by all words, which do not start in b0.

Theorem 2.59. There is a τ -invariant surjective algebra morphism

ζq : (Q〈B〉0, ∗q)→ (Zq, ·),
bs1 . . . bsl 7→ ζq(s1, . . . , sl).

Proof. The surjectivity follows from Proposition 2.57. By Proposition 2.55 and the def-
inition of q-symmetrility (Definition 2.67), we obtain that the map is indeed an algebra
morphism. Finally, Proposition 2.55 and the same calculations as in Theorem 2.25 show
that the balanced multiple q-zeta values are τ -invariant.

As a reformulation of Conjecture 2.22, we expect the following.

Conjecture 2.60. All relations in Zq are a consequence of the balanced quasi-shuffle prod-
uct formula and the τ -invariance (Theorem 2.59) of the balanced multiple q-zeta values.

If Conjecture 2.60 holds, then the algebra Zq is graded by weight

Zq =
⊕
w≥0
Z(w)
q ,

where Z(w)
q is the subspace of Zq spanned by all balanced multiple q-zeta values of weight

w. This conjectural grading coincides with the one of the combinatorial bi-multiple Eisen-
stein series (Proposition 2.52).

Example 2.61. 1) By Example 2.68 and 2.72 the bimould B satisfies the following rela-
tions in depth ≤ 2

B1

(
X1
Y1

)
·B1

(
X2
Y2

)
= B2

(
X2, X1

Y2, Y1 + Y2

)
+ B2

(
X1, X2

Y1, Y1 + Y2

)
+

B1

(
X1

Y1 + Y2

)
−B1

(
X2

Y1 + Y2

)
X1 −X2

= B2

(
X1 +X2, X2

Y1, Y2

)
+ B2

(
X1 +X2, X1

Y2, Y1

)
+

B1

(
X1 +X2

Y1

)
−B1

(
X1 +X2

Y2

)
Y1 − Y2

.

Formalizing these equations, one gets a space closely related to the formal double Eisen-
stein space introduced and studied in [BKM21].
2) In depth 1 the balanced multiple q-zeta values coincide with the combinatorial bi-
multiple Eisenstein series up to multiplying with some factorials. Thus we deduce from
Example 2.48 1) that for all k ≥ 1, m ≥ 0

ζq(k, {0}m) = −δm,0
Bk
2k! − δk,1

Bm+1
2(m+ 1)! + 1

(k − 1)!m!
∑
u,v>0

umvk−1quv.

In particular, the element ζq(k), k ≥ 2 even, equals the classical Eisenstein series of weight
k and ζq(k, {0}m), k+m ≥ 2 even, is essentially equal to the m-th derivative of the Eisen-
stein series Gk.
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If k1, . . . , kd ≥ 1, then the balanced multiple q-zeta value ζq(k1, . . . , kd) equals the combi-
natorial multiple Eisenstein series G(k1, . . . , kd).
3) Denote by β(k1, k2) the coefficients of the depth 2 part of the mould b (Definition 2.41),
so b(X1, X2) = ∑

k1,k2≥1 β(k1, k2)Xk1−1
1 Xk2−1

2 . Then direct calculations show that

ζq(2, 3) = β(2, 3)− 1
48

∑
u,v>0

v2quv + 1
2

∑
u1>u2>0
v1,v2>0

v1v
2
2q
u1v1+u2v2 ,

ζ(2, 0, 3) = 1
2

∑
u1>u2>0
v1,v2>0

u1v1v
2
2q
u1v1+u2v2 − 1

2
∑

u1>u2>0
v1,v2>0

u2v1v
2
2q
u1v1+u2v2 .

An explicit construction for the numbers β(k1, k2) is, for example, given in [GKZ06, Sec-
tion 6], in this case, one has β(2, 3) = 0. Other constructions for these rational numbers
are given in [Bro17(2)] and [Ec02].
4) The quasi-modular forms are contained in the algebra Zq (Proposition 2.29), in particu-
lar, the modular discriminant ∆ = q

∏
n≥1(1− qn)24 is a Q-linear combination of balanced

multiple q-zeta values. Precisely, we have

1
43200∆ = 240ζq(4, 4, 4) + 120ζq(4, 8) + 120ζq(8, 4)− 98ζq(6, 6)− 9ζq(12).

As studied in [EMS16] and [Si15] for the SZ multiple zeta values (cf Theorem 2.18, 2.21),
there is a second product defined on the non-commutative algebra Q〈p, y〉 describing the
product of balanced multiple q-zeta values.

Definition 2.62. Let �q be the product on the non-commutative free algebra Q〈p, y〉
recursively defined by 1�q w = w�q 1 = w and

(yu)�q v = u�q (yv) = y(u�q v),

(pu)�q (pv) = p(u�q pv) + p(pu�q v) +
{
p(u�q v), if u = yũ and v = yṽ,

0 else

for all u, v, w ∈ Q〈p, y〉.

The involution τ : Q〈p, y〉 → Q〈p, y〉 from Definition 2.20 relates the products ∗q and �q.

Proposition 2.63. For all u, v ∈ Q〈B〉, we have

i(u ∗q v) = τ(τ ◦ i(u)�q τ ◦ i(v)),

where the embedding i : Q〈B〉 → Q〈p, y〉 is defined in (2.20.1).

Proof. Let u = bs1 . . . bsl and v = br1 . . . brk be words in Q〈B〉 and sl, rk ≥ 1. Since ∗q
is a quasi-shuffle product, it can be equally defined recursively from the right. Thus, we
obtain

i(u ∗q v) = i(bs1 . . . bsl−1 ∗q br1 . . . brk)psly + i(bs1 . . . bsl ∗q br1 . . . brk−1)prky
+ i(bs2 . . . bsl ∗q br2 . . . brk)psl+rky
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and on the other hand

τ(τ ◦ i(u)�q τ ◦ i(v)) = τ(pysl . . . pys1
�q py

rk . . . pys1)

= τ
(
pysl(pysl−1 . . . pys1

�q py
rk . . . pyr1) + pyrk(pysl . . . pys1

�q py
rk−1 . . . pyr1)

+ pysl+rk(pysl−1 . . . pys1
�q py

rk−1 . . . pyr1)
)

= τ
(
τ ◦ i(bs1 . . . bsl−1)�q τ ◦ i(br1 . . . brk)

)
psly

+ τ
(
τ ◦ i(bs1 . . . bsl)�q τ ◦ i(br1 . . . brk−1)

)
prky

+ τ
(
τ ◦ i(bs1 . . . bsl−1)�q τ ◦ i(br1 . . . brk−1)

)
psl+rky

Next, assume that sl = 0 and rk ≥ 0. Then we obtain

i(u ∗q v) = i(bs1 . . . bsl−1 ∗q br1 . . . brk)y + i(bs1 . . . bsl ∗q br1 . . . brk−1)prky

and

τ(τ ◦ i(u)�q τ ◦ i(v)) = τ(pysl . . . pys1
�q py

rk . . . pyr1)

= τ
(
p(pysl−1 . . . pys1

�q py
rk . . . pyr1) + pyrk(pysl . . . pys1

�q py
rk−1 . . . pyr1)

)
= τ

(
τ ◦ i(bs1 . . . bsl−1)�q τ ◦ i(br1 . . . brk)

)
y

+ τ
(
τ ◦ i(bs1 . . . bsl)�q τ ◦ i(br1 . . . brk−1)

)
prky

In both cases, induction on the length of the words implies the claim.

By Proposition 2.63, there is injective algebra morphism

τ ◦ i : (Q〈B〉, ∗q) ↪→ (Q〈p, y〉,�q), (2.63.1)
bs1 . . . bsl 7→ pysl . . . pys1 .

In particular, the restriction of�q to im(τ◦i) = Q1+pQ〈p, y〉 can be seen as a quasi-shuffle
product. Denote

Q〈p, y〉0 = Q1 + pQ〈p, y〉y.

Theorem 2.64. There is a surjective algebra morphism

(Q〈p, y〉0,�q)→ (Zq, ·),
ps1y . . . psly 7→ ζq(s1, . . . , sl).

Proof. First, observe that by definition ζq(i(u)) = ζq(u) for all u ∈ Q〈B〉0. So for s1, r1 ≥
1, s2, . . . , sl, r2, . . . , rk ≥ 0, we compute with Theorem 2.59 and Proposition 2.63

ζq(pysl . . . pys1)ζq(pyrk . . . pyr1) = ζq(ps1y . . . psly)ζq(pr1y . . . prky)
= ζq(bs1 . . . bsl)ζq(br1 . . . brk)
= ζq(bs1 . . . bsl ∗q br1 . . . brk)
= ζq

(
τ
(
τ ◦ i(bs1 . . . bsl)�q τ ◦ i(br1 . . . brk)

))
= ζq

(
τ ◦ i(bs1 . . . bsl)�q τ ◦ i(br1 . . . brk)

)
= ζq

(
pysl . . . pys1

�q py
rk . . . pyr1

)
.

Surjectivity is a direct consequence of Proposition 2.57.
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2.7 Comparing the symmetries of G and B

We will explain the symmetries of bimoulds, which occur particularly in the context of
the balanced multiple q-zeta values. We are interested in a very explicit and detailed
description of them. Then we will relate these symmetries to the ones of the bimould G
(Theorem 2.46) and this will give the proof of Proposition 2.55. An introductory overview
of bimoulds is given in Appendix C. All bimoulds in the following will have coefficients in
some fixed commutative Q-algebra R with unit. Moreover, the components of all bimoulds
considered in the following are power series or polynomials. In particular, we will drop
the indices indicating the underlying Q-algebra and the shape of the components.
Definition 2.65. For a bimould A ∈ BIMU, define the bimould τ(A) by

τ(A)
(
X1, . . . , Xd

Y1, . . . , Yd

)
= A

(
Yd, . . . , Y1
Xd, . . . , X1

)
.

We call a bimould A τ -invariant if τ(A) = A.
Let A ∈ BIMU be a bimould and write for all d ≥ 1

A

(
X1, . . . , Xd

Y1, . . . , Yd

)
=

∑
k1,...,kd≥1
m1,...,md≥0

a

(
k1, . . . , kd
m1, . . . ,md

)
Xk1−1

1 . . . Xkd−1
d Y m1

1 . . . Y md
d .

Then A is τ -invariant if and only if

a

(
k1, . . . , kd
m1, . . . ,md

)
= a

(
md + 1, . . . ,m1 + 1
kd − 1, . . . , k1 − 1

)
(2.65.1)

for all k1, . . . , kd ≥ 1 and m1, . . . ,md ≥ 0.

We want to translate the shuffle product and the balanced quasi-shuffle product defined
on Q〈B〉 into the language of bimoulds by applying the general setup introduced in A.4.
Recall that the depth of a word in Q〈B〉0 is defined by dep(bk1b

m1
0 . . . bkdb

md
0 ) = d for all

k1, . . . , kd ≥ 1, m1, . . . ,md ≥ 0. A Q-linear map ρB satisfying the conditions in Definition
A.64 is given by

ρB : Q〈B〉0 → Q[X1, Y1, X2, Y2, . . .],
bk1b

m1
0 . . . bkdb

md
0 7→ Xk1−1

1 Y m1
1 . . . Xkd−1

d Y md
d (k1, . . . , kd ≥ 1,m1, . . . ,md ≥ 0).

The generating series of words in Q〈B〉0 associated to ρB is given by ρB(W)0 = 1 and for
d ≥ 1 by

ρB(W)d
(
X1, . . . , Xd

Y1, . . . , Yd

)
=

∑
k1,...,kd≥1
m1,...,md≥0

bk1b
m1
0 . . . bkdb

md
0 Xk1−1

1 Y m1
1 . . . Xkd−1

d Y md
d . (2.65.2)

Definition 2.66. Let � be the shuffle product on Q〈B〉0, i.e., the quasi-shuffle product
with bi � bj = 0 (Example A.53, 1)). A bimould A ∈ GBARI is called q-symmetral if there
is an algebra morphism ϕ� : (Q〈B〉0,�)→ R, such that for all d ≥ 1

Ad

(
X1, . . . , Xd

Y1, . . . , Yd

)
=

∑
k1,...,kd≥1
m1,...,md≥0

ϕ�(bk1b
m1
0 . . . bkdb

md
0 )Xk1−1

1 Y m1
1 . . . Xkd−1

d Y md
d .

In other words, A is q-symmetral if and only if it is (ϕ�, ρB)-symmetric in the sense of
Definition A.71. We will refer to the map ϕ� as the coefficient map of A.
The subset of all q-symmetral bimoulds is denoted by GBARIq -as.
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According to (A.71.1) a bimould A ∈ GBARI is q-symmetral with coefficient map ϕ� if
and only if for all 0 < n < d

A

(
X1, . . . , Xn

Y1, . . . , Yn

)
A

(
Xn+1, . . . , Xd

Yn+1, . . . , Yd

)

= ϕ�

(
ρB(W)

(
X1, . . . , Xn

Y1, . . . , Yn

)
� ρB(W)

(
Xn+1, . . . , Xd

Yn+1, . . . , Yd

))
.

An explicit recursive formula for � on the generating series of words ρB(W) is given in
Proposition A.78 (i).

Definition 2.67. Consider the balanced quasi-shuffle product ∗q on Q〈B〉0, i.e., the quasi-

shuffle product with bi�q bj =
{
bi+j , i, j ≥ 1
0 else

(Definition 2.58). A bimould A ∈ GBARI

is called q-symmetril if there is an algebra morphism ϕ∗q : (Q〈B〉0, ∗q)→ R, such that for
all d ≥ 1

Ad

(
X1, . . . , Xd

Y1, . . . , Yd

)
=

∑
k1,...,kd≥1
m1,...,md≥0

ϕ∗q(bk1b
m1
0 . . . bkdb

md
0 )Xk1−1

1 Y m1
1 . . . Xkd−1

d Y md
d .

So A is q-symmetril if and only if A is (ϕ∗q , ρB)-symmetric. As before, we call the map
ϕ∗q also the coefficient map of A.
Denote the subset of all q-symmetril bimoulds by GBARIq -is.

A bimould A ∈ GBARI is q-symmetril with coefficient map ϕ∗q if and only if for all
0 < n < d

A

(
X1, . . . , Xn

Y1, . . . , Yn

)
A

(
Xn+1, . . . , Xd

Yn+1, . . . , Yd

)

= ϕ∗q

(
ρB(W)

(
X1, . . . , Xn

Y1, . . . , Yn

)
∗q ρB(W)

(
Xn+1, . . . , Xd

Yn+1, . . . , Yd

))
.

An explicit recursive formula for the balanced quasi-shuffle product ∗q on the generating
series of words ρB(W) is given in Proposition A.78 (ii).

Example 2.68. For a bimould A ∈ GBARI, q-symmetrility in depth 2 and 3 means

A

(
X1
Y1

)
·A
(
X2
Y2

)
= A

(
X2, X1

Y2, Y1 + Y2

)
+A

(
X1, X2

Y1, Y1 + Y2

)

+ 1
X1 −X2

(
A

(
X1

Y1 + Y2

)
−A

(
X2

Y1 + Y2

))
,

A

(
X1
Y1

)
·A
(
X2, X3
Y2, Y3

)
= A

(
X2, X3, X1

Y2, Y3, Y1 + Y3

)
+A

(
X2, X1, X3

Y2, Y1 + Y2, Y1 + Y3

)

+A

(
X1, X2, X3

Y1, Y1 + Y2, Y1 + Y3

)
+ 1
X1 −X3

(
A

(
X2, X1

Y2, Y1 + Y3

)
−A

(
X2, X3

Y2, Y1 + Y3

))

+ 1
X1 −X2

(
A

(
X1, X3

Y1 + Y2, Y1 + Y3

)
−A

(
X2, X3

Y1 + Y2, Y1 + Y3

))
.

Omit all terms of lower depths to obtain the formulas for q-symmetrality in depths ≤ 3.
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Definition 2.69. Define the following subsets of GBARI,

GBARIq -as,τ = {A ∈ GBARI | A q-symmetral and τ -invariant},
GBARIq -is,τ = {A ∈ GBARI | A q-symmetril and τ -invariant}.

The bimoulds in these two subsets also satisfy a second product formula. For GBARIq -is,τ
we will give an explicit description, then consider these formulas modulo lower depths to
obtain the corresponding formulas for GBARIq -as,τ .

Definition 2.70. Define the product ∗τ recursively on the generating series of words
ρB(W) for 0 < n < d by 1 ∗τ ρB(W)n = ρB(W)n ∗τ 1 = ρB(W)n and

ρB(W)
(
X1, . . . , Xn

Y1, . . . , Yn

)
∗τ ρB(W)

(
Xn+1, . . . , Xd

Yn+1, . . . , Yd

)

= ρB(W)
(
X1 +Xn+1

Y1

)
·
(
ρB(W)

(
X2, . . . , Xn

Y2, . . . , Yn

)
∗τ ρB(W)d−n

(
Xn+1, . . . , Xd

Yn+1, . . . , Yd

))

+ ρB(W)
(
X1 +Xn+1

Yn+1

)
·
(
ρB(W)

(
X1, . . . , Xn

Y1, . . . , Yn

)
∗τ ρB(W)

(
Xn+2, . . . , Xd

Yn+2, . . . , Yd

))

+
ρB(W)

(
X1 +Xn+1

Y1

)
− ρB(W)

(
X1 +Xn+1

Yn+1

)
Y1 − Yn+1

·
(
ρB(W)

(
X2, . . . , Xn

Y2, . . . , Yn

)
∗τ ρB(W)

(
Xn+2, . . . , Xd

Yn+2, . . . , Yd

))
.

Proposition 2.71. A bimould A ∈ GBARIq -is,τ satisfies for all 0 < n < d

A

(
X1, . . . , Xn

Y1, . . . , Yn

)
A

(
Xn+1, . . . , Xd

Yn+1, . . . , Yd

)

= ϕ∗q

(
ρB(W)

(
X1, . . . , Xn

Y1, . . . , Yn

)
∗τ ρB(W)

(
Xn+1, . . . , Xd

Yn+1, . . . , Yd

))
,

where ϕ∗q : (Q〈B〉0, ∗q)→ R is the coefficient map of A (cf Definition 2.67).

If A equals the bimould B of the generating series of the balanced multiple q-zeta values,
then Proposition 2.71 is equivalent to the second product formula of the balanced multiple
q-zeta values given in Theorem 2.64.

Proof. Let A ∈ GBARIq -is,τ and write for d ≥ 1

A

(
X1, . . . , Xd

Y1, . . . , Yd

)
=

∑
k1,...,kd≥1
m1,...,md≥0

a

(
k1, . . . , kd
m1, . . . ,md

)
Xk1−1

1 . . . Xkd−1
d Y m1

1 . . . Y md
d .

Then
Q〈B〉0 → R, bk1b

m1
0 . . . bkdb

md
0 7→ a

(
k1, . . . , kd
m1, . . . ,md

)
is an algebra morphism for the balanced quasi-shuffle product ∗q and the coefficients
a
( k1,...,kd
m1,...,md

)
satisfy the τ -invariance given in (2.65.1). So instead of simply multiplying two

coefficients with respect to the balanced quasi-shuffle product, apply the τ -invariance to
both factors then multiply with respect to the balanced quasi-shuffle product, and finally
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apply again the τ -invariance to all terms. Since A is an element in GBARIq -is,τ , this gives
the same result. On the level of bimoulds, this means for 0 < n < d

A

(
X1, . . . , Xn

Y1, . . . , Yn

)
A

(
Xn+1, . . . , Xd

Yn+1, . . . , Yd

)

= ϕ∗q

(
τ

(
τ
(
ρB(W)

)(X1, . . . , Xn

Y1, . . . , Yn

)
∗q τ

(
ρB(W)

)(Xn+1, . . . , Xd

Yn+1, . . . , Yd

)))
.

Evaluating τ and ∗q (cf Proposition A.78 (ii)), we immediately see that the right hand

side is equal to ϕ∗q

(
ρB(W)

(
X1, . . . , Xn

Y1, . . . , Yn

)
∗τ ρB(W)

(
Xn+1, . . . , Xd

Yn+1, . . . , Yd

))
.

Example 2.72. Expanding out the product ∗τ in depths 2 and 3, we obtain that any
bimould A ∈ GBARIq -is,τ satisfies

A

(
X1
Y1

)
·A
(
X2
Y2

)
= A

(
X1 +X2, X2

Y1, Y2

)
+A

(
X1 +X2, X1

Y2, Y1

)

+ 1
Y1 − Y2

(
A

(
X1 +X2

Y1

)
−A

(
X1 +X2

Y2

))
,

A

(
X1
Y1

)
·A
(
X2, X3
Y2, Y3

)
= A

(
X1 +X2, X2, X3

Y1, Y2, Y3

)
+A

(
X1 +X2, X1 +X3, X3

Y2, Y1, Y3

)

+A

(
X1 +X2, X1 +X3, X1

Y2, Y3, Y1

)
+ 1
Y1 − Y2

(
A

(
X1 +X2, X3

Y1, Y3

)
−A

(
X1 +X2, X3

Y2, Y3

))

+ 1
Y1 − Y3

(
A

(
X1 +X2, X1 +X3

Y2, Y1

)
−A

(
X1 +X2, X1 +X3

Y2, Y3

))
.

Finally, we want to relate the previously introduced sets GBARIq -as,τ and GBARIq -is,τ to
the following sets.

Definition 2.73. Define the subsets

GBARIas,swap = {A ∈ GBARI | A symmetral and swap invariant},
GBARIis,swap = {A ∈ GBARI | A symmetril and swap invariant}.

Note that by Theorem 2.46, the bimould G of the generating series of the combinatorial
bi-multiple Eisenstein series is contained in GBARIpow,Zq

is,swap .

Definition 2.74. For a bimould A ∈ BIMU, define for each d ≥ 1

A#Y

(
X1, . . . , Xd

Y1, . . . , Yd

)
= A

(
X1, . . . , Xd

Y1, Y1 + Y2, . . . , Y1 + · · ·+ Yd

)
.

Theorem 2.75. The map #Y restricts to bijections

#Y : GBARIq -as,τ → GBARIas,swap, #Y : GBARIq -is,τ → GBARIis,swap .

Note that τ -invariance induces relations on the coefficients, which are much easier to
handle than the relations induced by swap invariance (cf (2.65.1) and Example C.11).
Thus, it seems convenient to consider the sets GBARIq -as,τ and GBARIq -is,τ instead of
GBARIas,swap and GBARIis,swap.
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Proof. Let A ∈ GBARIq -as,τ . First, we show that A#Y is symmetral. For all d, d′ ≥ 1
denote by �(d, d′) the set of all permutations σ ∈ Sd+d′ satisfying σ(1) < · · · < σ(d),
σ(d + 1) < · · · < σ(d + d′). Moreover, write Yi = Y1 + · · · + Yi for 1 ≤ i ≤ d and
Yd+j = Yd+1 + · · · + Yd+j for 1 ≤ j ≤ d′. Then the q-symmetrality of A implies by
Proposition A.78 (i)

A#Y
d

(
X1, . . . , Xd

Y1, . . . , Yd

)
A#Y
d′

(
Xd+1, . . . , Xd+d′

Yd+1, . . . , Yd+d′

)
(2.75.1)

=
∑

σ∈�(d,d′)
Ad+d′

(
Xσ−1(1), . . . , Xσ−1(d+d′)

Yσ−1(1) + Yσ−1
µ (1), . . . , Yσ−1(d+d′) + Yσ−1

µ (d+d‘)

)
,

where we set σ−1
µ (k) =

{
σ−1(max{n | σ−1(n) > d, n < k}

)
, 1 ≤ σ−1(k) ≤ d,

σ−1(max{n | σ−1(n) ≤ d, n < k}
)
, d+ 1 ≤ σ−1(k) ≤ d+ d′

and Yσ−1
µ (k) = 0 if such a number n does not exists. Applying the inverse

#−1
Y : M

(
X1, . . . , Xd

Y1, . . . , Yd

)
7→M

(
X1, X2, . . . , Xd

Y1, Y2 − Y1, . . . , Yd − Yd−1

)

to any terms in the above sum, we get

A
#−1
Y

d+d′

(
Xσ−1(1), . . . , Xσ−1(d+d′)

Yσ−1(1) + Yσ−1
µ (1), . . . , Yσ−1(d+d′) + Yσ−1

µ (d+d‘)

)
= Ad+d′

(
Xσ−1(1), . . . , Xσ−1(d+d′)
Yσ−1(1), . . . , Yσ−1(d+d′)

)
.

(2.75.2)

To obtain this formula observe that for every k = 1, . . . , d+d′ the predecessor of the entry
Yσ−1(k) + Yσ−1

µ (k) in the bi-index is given by Yσ−1(k)−1 + Yσ−1
µ (k) (where Yσ−1(k)−1 := 0 if

k ∈ {1, d+ 1}) and, moreover, we have Yn−Yn−1 = Yn. Combining the equations (2.75.1)
and (2.75.2), we get

A#Y
d

(
X1, . . . , Xd

Y1, . . . , Yd

)
A#Y
d′

(
Xd+1, . . . , Xd+d′

Yd+1, . . . , Yd+d′

)
=

∑
σ∈�(d,d′)

A#Y
d+d′

(
Xσ−1(1), . . . , Xσ−1(d+d′)
Yσ−1(1), . . . , Yσ−1(d+d′)

)
.

From Corollary A.76 we deduce that A#Y is symmetral. The proof that A#Y is symmetril

for all A ∈ GBARIq -is,τ is similar. Just observe that for every entry
(

Xj

Yj + Yj′

)
coming

from the third line in the recursive expression of ∗q given in Proposition A.78 (ii), the
predecessor of the lower row is given by Yj−1 +Yj′−1 (with Y1−1 = Yd+1−1 = 0). Moreover,
we compute straight-forward

τ(A)#Y

(
X1, . . . , Xd

Y1, . . . , Yd

)
= τ(A)

(
X1, X2, . . . , Xd

Y1, Y1 + Y2, . . . , Y1 + · · ·+ Yd

)

= A

(
Y1 + · · ·+ Yd, Y1 + · · ·+ Yd−1, . . . , Y1

Xd, Xd−1, . . . , X1

)

= A#Y

(
Y1 + · · ·+ Yd, Y1 + · · ·+ Yd−1, . . . , Y1

Xd, Xd−1 −Xd, . . . , X1 −X2

)

= swap
(
A#Y

)(X1, . . . , Xd

Y1, . . . , Yd

)
.

In particular, a bimould A is τ -invariant if and only if A#Y is swap invariant.
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Theorem 2.75 enables us to prove the following proposition from the previous subsection.

Proposition 2.55. The bimould B is q-symmetril and τ -invariant.

Proof. Observe that we have by definition B = G#−1
Y . Since G is contained in GBARIpow,Zq

is,swap

(Theorem 2.46) and there is a bijection #Y : GBARIpow,Zq
q -is,τ → GBARIpow,Zq

is,swap (Theorem
2.75),we deduce that the bimould B is q-symmetril and τ -invariant.
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3 The q-Ihara bracket

G. Racinet introduced in [Rac00] the twisted Magnus3 affine group scheme MT and the
twisted Magnus Lie algebra mt and proved that the double shuffle Lie algebra dm0 and
its corresponding affine group scheme DM0 embed in there (cf Theorem B.30). In this
section we first recall the results obtained in [Rac00] for the twisted Magnus affine group
scheme and Lie algebra. Then we will introduce a q-analog of this Lie algebra, which can
be seen as a generalization of mt, and explain what is known towards the corresponding
group multiplication.

3.1 Twisted Magnus affine group scheme MT and the Lie algebra mt

Let A be an alphabet and (Q〈A〉, ·) the free non-commutative algebra over A equipped
with the concatenation product. The empty word is denoted by 1. Define the degree of
each word in Q〈A〉 to be the number of its letters, this defines a grading on the algebra
(Q〈A〉, ·). For each commutative Q-algebra R with unit, denote by R〈〈A〉〉 the completion
of R〈A〉 = Q〈A〉 ⊗R with respect to this grading (in the sense of Proposition A.45).

Definition 3.1. For each commutative Q-algebra R with unit, denote

M(R) = {f ∈ R〈〈A〉〉 | (f | 1) = 1},

where (f | 1) denotes the coefficient of f in 1. Then

M : Q -Alg→ Groups, R 7→ (M(R), ·)

is called the Magnus affine group scheme.

It is obvious that the concatenation product · is associative and possesses an identity
element in M(R). Moreover one easily verifies that the inverse of an element G = 1 + g in
M(R) with respect to the concatenation product is given by

G−1 = 1 +
∑
n≥1

(−1)ngn ∈ M(R).

Thus, (M(R), ·) is indeed a group.

Definition 3.2. For each commutative Q-algebra R with unit, define

m(R) = {f ∈ R〈A〉 | (f | 1) = 0}.

Then (m(R), [−,−]) is called the Magnus Lie algebra, where [−,−] denotes the usual
commutator bracket on (R〈A〉, ·).

One derives immediately from Definition A.88 that the Lie algebra functor to the Magnus
affine group scheme M is given by

m̂ : Q -Alg→ Lie-Alg R 7→ (m̂(R), [−,−]),

where m̂(R) denotes the completion of m(R) with respect to the grading on R〈A〉 defined
above. In Example A.96 it is explained in detail, how to derive the commutator bracket
from the concatenation product on M.

Now we will restrict to a specific alphabet consisting of two letters and consider a twisted
3In [Rac00] the affine group scheme is called ”Magnus tordu”

48



version of the Magnus affine group scheme and Lie algebra. Precisely, consider the alphabet
X = {x0, x1} and denote by Q〈X 〉 the free non-commutative algebra over X . Define the
weight of a word in Q〈X 〉 to be the number of its letters. For each commutative Q-algebra
R with unit, we denote by R〈〈X 〉〉 the completion of R〈X 〉 = Q〈X 〉 ⊗ R with respect to
the weight. In other words, the space R〈〈X 〉〉 consists of formal non-commutative power
series in the letters x0, x1 with coefficients in R.

Definition 3.3. For any commutative Q-algebra R with unit, define

MT(R) = {f ∈ R〈〈X 〉〉 | (f | 1) = 1}.

For G ∈ MT(R), define the algebra automorphism (with respect to concatenation)

κG : R〈〈X 〉〉 → R〈〈X 〉〉

by
κG(1) = 1, κG(x0) = x0, κG(x1) = G−1x1G.

Then set
G~H = GκG(H), G,H ∈ MT(R).

Note that the product ~ only differs from the usual concatenation product by the twist
in x1 (in the definition of κ).

Proposition 3.4. ([Rac00, II, Proposition 2.4]) For each commutative Q-algebra R with
unit, the pair (MT(R),~) is a group.

Proof. Evidently, the multiplication ~ preserves the set MT(R). Observe that the identity
element for the multiplication ~ is given by 1, since κG(1) = 1 and κ1(G) = G for each
G ∈ MT(R). To prove the associativity of ~, first compute for G1, G2 ∈ MT(R) that

(κG1 ◦ κG2)(x0) = x0,

(κG1 ◦ κG2)(x1) = κG1(G−1
2 x1G2) = κG1(G−1

2 )G−1
1 x1G1κG1(G2)

=
(
G1κG1(G2)

)−1
x1
(
G1κG1(G2)

)
= (G1 ~G2)−1x1(G1 ~G2)

= κG1~G2(x1).

Thus, one has κG1 ◦ κG2 = κG1~G2 and can deduce for G1, G2, H ∈ MT(R)

G1 ~ (G2 ~H) = G1 ~ (G2κG2(H)) = G1κG1(G2)κG1(κG2(H)) = G1κG1(G2)κG1~G2(H)
= (G1 ~G2)κG1~G2(H) = (G1 ~G2)~H.

Finally, it has to be shown that any G ∈ MT(R) has an inverse. For H = κ−1
G (G−1) ∈

MT(R) one computes

G~H = GκG(H) = GκG(κ−1
G (G−1)) = GG−1 = 1.

By group theory, it is enough to show that G has a right inverse.

Theorem 3.5. The functor MT : Q -Alg→ Groups, R 7→ (MT(R),~) is a pro-unipotent
affine group scheme.

We will refer to MT as the twisted Magnus affine group scheme.
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Proof. MT is an affine scheme represented by the algebra Q[(zw)w∈X ∗ ]�(z1 − 1) and thus
by Proposition 3.4 an affine group scheme. For the pro-unipotence, we refer to [Rac00,
Section II.2].

Definition 3.6. For each commutative Q-algebra R with unit, define

mt(R) = {f ∈ R〈X 〉 | (f | 1) = 0.}

Moreover, set mt = mt(Q).

It is obvious from Definition A.88 that

m̂t : Q -Alg→ Lie-Alg, R 7→ m̂t(R)

is the Lie algebra functor to the affine group scheme MT, where m̂t(R) is the completion
of mt(R) with respect to the weight. In particular, the space mt(R) admits a Lie algebra
structure, which can be derived from the group multiplication ~ on MT.

Theorem 3.7. Let R be a commutative Q-algebra with unit. Then the space mt(R) is a
Lie algebra equipped with the Lie bracket

{f, g} = df (g)− dg(f) + [f, g], f, g ∈ mt(R),

where df : R〈X 〉 → R〈X 〉 is the derivation defined by df (1) = 0, df (x0) = 0 and df (x1) =
[x1, f ].

We call (mt(R), {−,−}) the twisted Magnus Lie algebra and the Lie bracket {−,−} the
Ihara bracket.

Proof. For any G ∈ MT(R), consider the endomorphism

σ(G) : R〈〈X 〉〉 → R〈〈X 〉〉, H 7→ G~H.

Let R[ε] be the algebra of dual numbers with ε2 = 0. For f ∈ m̂t(R), define the endomor-
phism sf : R〈〈X 〉〉 → R〈〈X 〉〉 by

σ(1 + εf) = id +εsf .

Let {−,−} be the corresponding Lie bracket to ~, then we have

s{f,g} = [sf , sg], f, g ∈ m̂t(R). (3.7.1)

Moreover, one computes for f ∈ m̂t(R)

1 + εf = σ(1 + εf)(1) = (id +εsf )(1) = 1 + εsf (1)

and thus sf (1) = f . Combining this with (3.7.1) leads to

{f, g} = sf (g)− sg(f), f, g ∈ m̂t(R). (3.7.2)

Furthermore, for f ∈ m̂t(R) define the endomorphism df : R〈〈X 〉〉 → R〈〈X 〉〉 by

κ1+εf = id +εdf .

Then one calculates for f ∈ m̂t(R) and u, v ∈ R〈〈X 〉〉

κ1+εf (uv) = κ1+εf (u)κ1+εf (v) = (u+ εdf (u))(v + εdf (v)) = uv + ε(udf (v) + df (u)v).
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So df is a derivation for the concatenation product and it suffices to obtain an explicit
formula on the generators. One has

κ1+εf (x0) = x0 + ε · 0,
κ1+εf (x1) = (1 + εf)−1x1(1 + εf) = (1− εf)x1(1 + εf) = x1 + ε(x1f − fx1).

Therefore, df is the derivation determined by df (x0) = 0 and df (x1) = [x1, f ]. Finally,
compute for f ∈ m̂t(R) and w ∈ R〈〈X 〉〉

σ(1 + εf)(w) = (1 + εf)κ1+εf (w) = (1 + εf)(w + εdf (w)) = w + ε(df (w) + fw)

and hence

sf (w) = df (w) + fw.

From (3.7.2) one obtains then that the Lie bracket on m̂t(R) (and hence also on mt(R))
is given by

{f, g} = df (g) + fg − dg(f)− gf.
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3.2 The q-twisted Magnus Lie algebra mq

After reviewing the results in [Rac00] on the twisted Magnus affine group scheme and Lie
algebra, we will introduce now the q-twisted Magnus Lie algebra. In particular, our main
result will be a generalization of Theorem 3.7.
Consider the alphabet B = {b0, b1, b2, . . .} and denote by Q〈B〉 the free algebra over B.
Moreover, for a word in Q〈B〉 define the weight and depth by

wt(bm0
0 bk1b

m1
0 . . . bkdb

md
0 ) = k1 + · · ·+ kd +m0 + · · ·+md,

dep(bm0
0 bk1b

m1
0 . . . bkdb

md
0 ) = d,

where k1, . . . , kd ≥ 1, m0, . . . ,md ≥ 0.

Definition 3.8. We define the Q-linear map ∂i on Q〈B〉 by

∂i(bm0
0 bk1b

m1
0 . . . bkdb

md
0 ) = bm0

0 bk1b
m1
0 . . . bki−1b

mi−1
0 bki+1b

mi
0 bki+1b

mi+1
0 . . . bkdb

md
0

if 1 ≤ i ≤ d and ∂i(bm0
0 bk1b

m1
0 . . . bkdb

md
0 ) = 0 else.

For a word w = bm0
0 bk1b

m1
0 . . . bkdb

md
0 (where k1, . . . , kd ≥ 1, m0, . . . ,md ≥ 0) and a positive

integer 1 ≤ j ≤ d, we set then

δj(w) =
d∏
i=1
i 6=j

(∂i − ∂j)ki−1(bm0
0 b1b

m1
0 . . . b1b

mj−1
0 bkjb

mj
0 b1b

mj+1
0 . . . b1b

md
0 )

and extend this definition by Q-linearity.

Example 3.9. For k, a ≥ 1, we compute

δ2(bkba) = (∂1 − ∂2)k−1(b1ba) =
k−1∑
l=0

(−1)l
(
k − 1
l

)
bk−lba+l,

δ1(babk) = (∂2 − ∂1)k−1(bab1) =
k−1∑
l=0

(−1)l
(
k − 1
l

)
ba+lbk−l.

Thus we deduce

δ2(bkba)− δ1(babk) =
k−1∑
l=0

(−1)l
(
k − 1
l

)
[bk−l, ba+l].

Definition 3.10. For any word w = bm0
0 bk1b

m1
0 . . . bkdb

md
0 in Q〈B〉 (where k1, . . . , kd ≥

1, m0, . . . ,md ≥ 0) and r ≥ 1, a < kj , we set

lc(a,0)
j (w) = w,

lc(a,r)
j (w) =

∑
j1+···+jr+1=kj−a

j1,...,jr+1≥1

ba+j1bj2 . . . bjrb
m0
0 bk1b

m1
0 . . . bkj−1b

mj−1
0 bjr+1b

mj
0 bkj+1b

mj+1
0 . . . bkdb

md
0

and extend this definition by Q-linearity.

Example 3.11. We have

lc(6,2)
2 (b13b11) =

∑
j1+j2+j3=5
j1,j2,j3≥1

b6+j1bj2b13bj3

= b9b1b13b1 + b7b3b13b1 + b7b1b13b3 + b8b2b13b1 + b8b1b13b2 + b7b2b13b2.
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Definition 3.12. For a given word w = bm0
0 bk1b

m1
0 . . . bkdb

md
0 , we define the derivation dqw

on (Q〈B〉, ·) by its values on the generators

dqw(1) = dqw(b0) = 0,

dqw(ba) =
k1+···+kd−d∑

r=0
(−1)r

(
lc(a−1,r)
d+1 ◦ δd+1(wba)− lc(a−1,r)

1 ◦ δ1(baw)
)
, a ≥ 1.

Moreover, we set for a word w = bm0 in Q〈B〉 of depth 0

dqw(1) = dqw(b0) = 0, dqw(ba) = [w, ba], a ≥ 1.

As before, extend this definition by Q-linearity.

Lemma 3.13. We have for dqw, where w = bm0
0 bk1b

m1
0 . . . bkdb

md
0 , the explicit formula

dqw(ba) = [w, ba]

+
k1−1∑
l1=0
· · ·

kd−1∑
ld=0

(l1,...,ld) 6=(0,...,0)

(
k1 − 1
l1

)
. . .

(
kd − 1
ld

)
(−1)l1+···+ld

·
([
bm0
0 bk1−l1b

m1
0 . . . bkd−ldb

md
0 , ba+l1+···+ld

]

+
k1+···+kd−d∑

r=1
(−1)r

∑
j1+···+jr+1=l1+···+ld+1

j1,...,jr+1≥1

ba+j1−1bj2 . . . bjr

[
bm0
0 bk1−l1b

m1
0 . . . bkd−ldb

md
0 , bjr+1

])

with a ≥ 1.

Proof. This follows straight-forwardly from applying the definitions.

Note that for k1 = · · · = kd = 1 all sums in Lemma 3.13 vanish. So the first term [w, ba]
in the above expression of dqw(ba) should be seen as the part from the Ihara bracket (cf
Theorem 3.7). The terms in the third row extend the Ihara bracket part to the whole
algebra Q〈B〉, and the terms in the fourth row handle the non depth-graded parts.

Example 3.14. One computes

dqb2b0−b0b2
(b1) = [b2b0 − b0b2, b1]− [b1b0 − b0b1, b2] + b1[b1b0 − b0b1, b1],

dqb1
(b2b0 − b0b2) = [b1, b2]b0 − b0[b1, b2],

Lemma 3.15. (i) If w ∈ Q〈b0, b1〉, then dqw is a special derivation (as in Theorem 3.7)

dqw(b0) = 0, dqw(ba) = [w, ba] for a ≥ 1.

(ii) The assignment (w, v) 7→ dqw(v) is homogeneous for the weight, i.e., one has

wt
(
dqw(v)

)
= wt(w) + wt(v).

Proof. (i) follows immediately from δj(w1baw2) = w1baw2 for w1, w2 ∈ Q〈b0, b1〉, dep(w1) =
j − 1 and lc(a,0)

j = id. (ii) can be read of from Lemma 3.13.
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Note that (w, v) 7→ dqw(v) is not homogeneous for the depth on Q〈B〉, the last line in the
definition of dqw produces terms of depth > dep(v) + dep(w).

The following definition is the main definition of this section, observe its similarities to
Theorem 3.7.
Definition 3.16. For f, g ∈ Q〈B〉, we define the q-Ihara bracket as

{f, g}q = dqf (g)− dqg(f)− [f, g].
Moreover, for f, g ∈ Q〈B〉 the pre-Lie multiplication of the q-Ihara bracket is given by

sqf (g) = dqf (g) + gf.

Thus, we also have
{f, g}q = sqf (g)− sqg(f).

Example 3.17. With the results in Example 3.14, one computes
{b2b0 − b0b2, b1}q = − [b1b0 − b0b1, b2] + b1[b1b0 − b0b1, b1]− [b1, b2]b0 + b0[b1, b2]

= − b1b0b2 + 2b0b1b2 + 2b2b1b0 − b2b0b1 − b1b2b0 − b0b2b1
+ 2b21b0b1 − b1b0b21 − b31b0

One of the main results of this thesis is that the q-Ihara bracket is indeed a Lie bracket, so
it satisfies anti-symmetry and Jacobi’s identity. In particular, we will obtain a Lie algebra
(mq, {−,−}q) (Theorem 3.20), which should be seen as a q-analog of the twisted Magnus
Lie algebra (mt, {−,−}) (Theorem 3.7). To obtain these results, we need the following.
Key Lemma 3.18. For all f, g ∈ Q〈B〉, the following equality holds

dq{f,g}q = [dqf , d
q
g],

where [−,−] denotes the usual commutator bracket.
The proof is given in Subsection 3.3.

As an analog of the twisted Magnus Lie algebra mt (Definition 3.6), define the following.
Definition 3.19. Let mq be the subspace of Q〈B〉 given by

mq = {f ∈ Q〈B〉 | (f | 1) = 0}.
Theorem 3.20. The pair (mq, {−,−}q) is a Lie algebra.
We will refer to this Lie algebra as the q-twisted Magnus Lie algebra4.

Proof. From Lemma 3.15 (ii) we immediately obtain that the q-Ihara bracket {−,−}q
preserves the space mq. It is clear from Definition 3.16 that the q-Ihara bracket is anti-
symmetric. Thus we only need to check Jacobi’s identity (see Definition A.9). We compute
for all f, g, h ∈ Q〈B〉
{f, {g, h}q}q + {g, {h, f}q}q + {h, {f, g}q}q
= dqf (dqg(h))− dqf (dqh(g))− dqf ([g, h])− dq{g,h}q(f)− [f, dqg(h)] + [f, dqh(g)] + [f, [g, h]]

+ dqg(d
q
h(f))− dqg(d

q
f (h))− dqg([h, f ])− dq{h,f}q(g)− [g, dqh(f)] + [g, dqf (h)] + [g, [f, h]]

+ dqh(dqf (g))− dqh(dqg(f))− dqh([f, g])− dq{f,g}q(h)− [h, dqf (g)] + [h, dqg(f)] + [h, [f, g]]

= [dqf , d
q
g](h) + [dqg, d

q
h](f) + [dqh, d

q
f ](g)− dq{g,h}q(f)− dq{h,f}q(g)− dq{f,g}q(g)

= 0.
4After the submission of this thesis, the author was informed by D. Manchon that the q-twisted Magnus

Lie algebra has a post-Lie structure as introduced in [ELM15]
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The second equality follows from simple cancellation and Jacobi’s identity applied to the
commutator bracket, the third equality is obtained from Key Lemma 3.18.

The q-twisted Magnus Lie algebra (mq, {−,−}q) is a generalization of the twisted Magnus
algebra (mt, {−,−}) (Theorem 3.7), precisely the following holds.

Proposition 3.21. There is an embedding of Lie algebras

θ−X : (mt, {−,−}) ↪→ (mq, {−,−}q),
xs1 . . . xsl 7→ −bs1 . . . bsl

Proof. Let f, g ∈ mt. Recall that the derivation df in the Ihara bracket is given by
df (x0) = x0, df (x1) = [x1, f ]. Thus, Lemma 3.15 (i) implies that

θ−X (df (g)) = dq
θ−X (f)(θ

−
X (g))

and therefore one computes

θ−X ({f, g}) = θ−X (df (g))− θ−X (dg(f)) + θ−X ([f, g])
= dq

θ−X (f)(θ
−
X (g))− dq

θ−X (g)(θ
−
X (f))− [θ−X (f), θ−X (g)]

= {θ−X (f), θ−X (g)}q.

Remark 3.22. In Section 4 we will embed the double shuffle algebra dm0 contained in
mt into a subspace of mq. To preserve the symmetries of these subspaces, we will need a
more complicated embedding (cf Theorem 4.28).
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3.3 Proof of the Key Lemma

To prove the Key Lemma 3.18, we need the following combinatorial identity.

Lemma 3.23. Let s ≥ 1, m ≥ 0, θ1, . . . , θs ≥ 0 and j ≤ θ1 + · · ·+ θs +m, then we have

θ1∑
x1=0
· · ·

θs∑
xs=0

s∏
w=1

(−1)xw
(
θw
xw

)(
m+ θ1 + · · ·+ θs − x1 − · · · − xs

j − x1 − · · · − xs

)
=
(
m

j

)
.

Proof. Observe that for j < 0 both sides of the equation are equal to 0, thus we can
restrict to the case j ≥ 0. To prove the equality consider the following generating series
in Q[z1, . . . , zs]

A(z1, . . . , zs) =
∑

θ1,...,θs≥0
aθ1,...,θs

zθ1
1
θ1! . . .

zθss
θs!

, B(z1, . . . , zs) =
∑

θ1,...,θs≥0
bθ1,...,θs

zθ1
1
θ1! . . .

zθss
θs!

.

We compute directly that

A(z1, . . . , zs)B(z1, . . . , zs)

=
∑

θ1,...,θs≥0

(
θ1∑

x1=0
· · ·

θs∑
xs=0

(
θ1
x1

)
. . .

(
θs
xs

)
ax1,...,xsbθ1−x1,...,θs−xs

)
zθ1

1
θ1! . . .

zθss
θs!

.

For θ1, . . . , θs ≥ 0 and j,m ≥ 0 set

aθ1,...,θs =


(−1)θ1+···+θs

(j−θ1−···−θs)! , j − θ1 − · · · − θs ≥ 0,
0 else

, bθ1,...,θs = (m+ θ1 + · · ·+ θs)!.

Then we obtain from the previous formula

A(z1, . . . , zs)B(z1, . . . , zs) =
∑

θ1,...,θs≥0

(
(m+ θ1 + · · ·+ θs − j)!

θ1∑
x1=0
· · ·

θs∑
xs=0

(
θ1
x1

)
. . .

(
θs
xs

)

· (−1)x1+···+xs

(
m+ θ1 + · · ·+ θs − x1 − · · · − xs

j − x1 − · · · − xs

))
zθ1

1
θ1! . . .

zθss
θs!

. (3.23.1)

On the other hand, we deduce from the multinomial theorem

A(z1, . . . , zs) = 1
j!

∑
θ1,...,θs≥0

(
j

θ1, . . . , θs, j − θ1 − · · · − θs

)
(−z1)θ1 . . . (−zs)θs (3.23.2)

= 1
j! (1− z1 − · · · − zs)j

Next, we show that

B(z1, . . . , zs) = m!
∑

θ1,...,θs≥0

(
m+ θ1 + · · ·+ θs
m, θ1, . . . , θs

)
zθ1

1 . . . zθss = m!(1− z1 − · · · − zs)−(m+1).

(3.23.3)

The first equality follows from the definition of B(z1, . . . , zs) and we prove the second
equality by induction on m (where we omit the factor m!). If m = 0, then we obtain from
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the geometric series expansion and the multinomial theorem

(1− z1 − · · · − zs)−1 =
∑
k≥0

(z1 + · · ·+ zs)k =
∑
k≥0

∑
θ1+···+θs=k

(
k

θ1, . . . , θs

)
zθ1

1 . . . zθss

=
∑

θ1,...,θs≥0

(
θ1 + · · ·+ θs
θ1, . . . , θs

)
zθ1

1 . . . zθss .

Assume that (3.23.3) holds for some m. Then differentiating with respect to z1 gives

(m+ 1)(1− z1 − · · · − zs)−(m+2) =
∑

θ1≥1,θ2,...,θs≥0

(
m+ θ1 + · · ·+ θs
m, θ1, . . . , θs

)
θ1z

θ1−1
1 zθ2

2 . . . zθss

=
∑

θ1,...,θs≥0

(
m+ 1 + θ1 + · · ·+ θs
m, θ1 + 1, θ2, . . . , θs

)
(θ1 + 1)zθ1

1 . . . zθss

and dividing by (m+ 1) leads to

(1− z1 − · · · − zs)−(m+2) =
∑

θ1,...,θs≥0

(
m+ 1 + θ1 + · · ·+ θs
m+ 1, θ1, . . . , θs

)
zθ1

1 . . . zθss .

From (3.23.2) and (3.23.3) we deduce for m ≥ j that

A(z1, . . . , zs)B(z1, . . . , zs) = m!
j! (1− z1 − · · · − zs)−(m+1−j) (3.23.4)

=
∑

θ1,...,θs≥0

m!
j!

(
m− j + θ1 + · · ·+ θs
m− j, θ1, . . . , θs

)
zθ1

1 . . . zθss

=
∑

θ1,...,θs≥0

(
m

j

)
(m− j + θ1 + · · ·+ θs)!

zθ1
1
θ1! . . .

zθss
θs!

and for m < j that

A(z1, . . . , zs)B(z1, . . . , zs) = m!
j! (1− z1 − · · · − zs)j−m−1. (3.23.5)

Assume that j ≤ θ1 + · · · + θs + m, then coefficient comparison in (3.23.1) and (3.23.4),
(3.23.5) gives

θ1∑
x1=0
· · ·

θs∑
xs=0

s∏
w=1

(−1)xw
(
θw
xw

)(
m+ θ1 + · · ·+ θs − x1 − · · · − xs

j − x1 − · · · − xs

)
=
{(m

j

)
, m ≥ j,

0, m < j

=
(
m

j

)
.

For the first equality observe that the monomial z
θ1
1
θ1! . . .

zθss
θs! does not appear in (3.23.5) for

j −m ≥ θ1 + · · ·+ θs.

Now, we are able to give a proof of Key Lemma 3.18, this means we show

dq{f,g}q = [dqf , d
q
g], f, g ∈ Q〈B〉.
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Proof. (of Key Lemma 3.18) Since we consider derivations on Q〈B〉, the equality only
needs to be shown on the generators bi for i ≥ 0. Evidently, we have for f, g ∈ Q〈B〉

dq{f,g}q(b0) = 0 = [dqf , d
q
g](b0).

Due to linearity, we can assume that f = bm0
0 bk1b

m1
0 . . . bkdb

md
0 and g = bn0

0 bl1b
n1
0 . . . bleb

ne
0 .

Then we obtain for each a ≥ 1 by the explicit formula in Lemma 3.13

dq{f,g}q(ba) = A1(f, g) +A2(f, g) +A3(f, g) +A4(f, g)

−A1(g, f)−A2(g, f)−A3(g, f)−A4(g, f)
−A5 −A6,

where (with the abbreviations k = k1 + · · ·+ kd, l = l1 + · · ·+ le, k
′ = k′1 + · · ·+ k′d,

s = s1 + · · ·+ sd, t = t1 + · · ·+ te)

A1(f, g) =
e∑
i=1

k1−1∑
k′1=0
· · ·

kd−1∑
k′
d
=0

k1−k′1−1∑
s1=0

. . .

kd−k′d−1∑
sd=0

l1−1∑
t1=0
· · ·

li−1∑
ti−1=0

li+k′−1∑
ti=0

li+1−1∑
ti+1=0

· · ·
le−1∑
te=0

·
d∏

u=1
(−1)k′u+su

(
ku − 1
k′u

)(
ku − k′u − 1

su

)
e∏

v=1
v 6=i

(−1)tv
(
lv − 1
tv

)
(−1)ti

(
li + k′ − 1

ti

)

·
[
bn0
0 bl1−t1b

n1
0 . . . bli−1−ti−1b

ni−1
0

[
bm0
0 bk1−k′1−s1b

m1
0 . . . bkd−k′d−sdb

md
0 , bli−ti+k′

]
bni0 bli+1−ti+1b

ni+1
0 . . . ble−teb

ne
0 , ba+s+t

]
,

A2(f, g) =
e∑
i=1

k1−1∑
k′1=0
· · ·

kd−1∑
k′
d
=0

k1−k′1−1∑
s1=0

. . .

kd−k′d−1∑
sd=0

l1−1∑
t1=0
· · ·

li−1∑
ti−1=0

li+k′−1∑
ti=0

li+1−1∑
ti+1=0

· · ·
le−1∑
te=0

k+l−d−e∑
r=1

∑
h1+···+hr+1=s+t+1

· (−1)r
d∏

u=1
(−1)k′u+su

(
ku − 1
k′u

)(
ku − k′u − 1

su

)
e∏

v=1
v 6=i

(−1)tv
(
lv − 1
tv

)
(−1)ti

(
li + k′ − 1

ti

)

· ba+h1−1bh2 . . . bhr

[
bn0
0 bl1−t1b

n1
0 . . . bli−1−ti−1b

ni−1
0

[
bm0
0 bk1−k′1−s1b

m1
0 . . . bkd−k′d−sdb

md
0 , bli−ti+k′

]
bni0 bli+1−ti+1b

ni+1
0 . . . ble−teb

ne
0 , bhr+1

]
,

A3(f, g) =
e∑
i=1

k1−1∑
k′1=0
· · ·

kd−1∑
k′
d
=0

k1−k′1−1∑
s1=0

. . .

kd−k′d−1∑
sd=0

k−d∑
p=1

∑
i1+···+ip+1=k′+1

l1−1∑
t1=0
· · ·

li−1∑
ti−1=0

li+i1−2∑
ti=0

li+1−1∑
ti+1=0

· · ·
le−1∑
te=0

i2−1∑
i′2=0

· · ·
ip+1−1∑
i′p+1=0

(−1)p
d∏

u=1
(−1)k′u+su

(
ku − 1
k′u

)(
ku − k′u − 1

su

)
e∏

v=1
v 6=i

(−1)tv
(
lv − 1
tv

)
(−1)ti

(
li + i1 − 2

ti

)

·
p+1∏
w=2

(−1)i′w
(
iw − 1
i′w

)[
bn0
0 bl1−t1b

n1
0 . . . bli−1−ti−1b

ni−1
0 bli−ti+i1−1bi2−i′2 . . . bip−i′p

[
bm0
0 bk1−k′1−s1b

m1
0

. . . bkd−k′d−sdb
md
0 , bip+1−i′p+1

]
bni0 bli+1−ti+1b

ni+1
0 . . . ble−teb

ne
0 , ba+s+t+i′2+···+i′p+1

]
,
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A4(f, g) =
e∑
i=1

k1−1∑
k′1=0
· · ·

kd−1∑
k′
d
=0

k1−k′1−1∑
s1=0

. . .

kd−k′d−1∑
sd=0

k−d∑
p=1

∑
i1+···+ip+1=k′+1

l1−1∑
t1=0
· · ·

li−1∑
ti−1=0

li+i1−2∑
ti=0

li+1−1∑
ti+1=0

· · ·
le−1∑
te=0

i2−1∑
i′2=0

· · ·
ip+1−1∑
i′p+1=0

k+l−d−e−p∑
r=1

∑
h1+···+hr+1=s+t+i′2+···+i′p+1+1

(−1)p+r
d∏

u=1
(−1)k′u+su

(
ku − 1
k′u

)(
ku − k′u − 1

su

)

·
e∏

v=1
v 6=i

(−1)tv
(
lv − 1
tv

)
(−1)ti

(
li + i1 − 2

ti

) p+1∏
w=2

(−1)i′w
(
iw − 1
i′w

)

· ba+h1−1bh2 . . . bhr

[
bn0
0 bl1−t1b

n1
0 . . . bli−1−ti−1b

ni−1
0 bli−ti+i1−1bi2−i′2 . . . bip−i′p

[
bm0
0 bk1−k′1−s1b

m1
0

. . . bkd−k′d−sdb
md
0 , bip+1−i′p+1

]
bni0 bli+1−ti+1b

ni+1
0 . . . ble−teb

ne
0 , bhr+1

]
,

and the Ai(g, f) are obtained from the Ai(f, g) by exchanging the roles of f and g (for
i = 1, . . . , 4) and

A5 =
k1−1∑
k′1=0
· · ·

kd−1∑
k′
d
=0

l1−1∑
t1=0
· · ·

le−1∑
te=0

d∏
u=1

(−1)k′u
(
ku − 1
k′u

)
e∏

v=1
(−1)tv

(
lv − 1
tv

)

·
[[
bm0
0 bk1−k′1b

m1
0 . . . bkd−k′db

md
0 , bn0

0 bl1−t1b
n1
0 . . . ble−teb

ne
0

]
, ba+k′+t

]
,

A6 =
k1−1∑
k′1=0
· · ·

kd−1∑
k′
d
=0

l1−1∑
t1=0
· · ·

le−1∑
te=0

k+l−d−e∑
r=1

∑
h1+···+hr+1=k′+t+1

(−1)r
d∏

u=1
(−1)k′u

(
ku − 1
k′u

)
e∏

v=1
(−1)tv

(
lv − 1
tv

)

· ba+h1−1bh2 . . . bhr

[[
bm0
0 bk1−k′1b

m1
0 . . . bkd−k′db

md
0 , bn0

0 bl1−t1b
n1
0 . . . ble−teb

ne
0

]
, bhr+1

]
.

On the other hand, we obtain

dqf (dqg(ba))− dqg(d
q
f (ba)) = B1(f, g) +B2(f, g) +B3(f, g) +B4(f, g)

−B1(g, f)−B2(g, f)−B3(g, f)−B4(g, f)
+B5 +B6,

where (again with the abbreviations k = k1 + · · ·+ kd, l = l1 + · · ·+ le, k
′ = k′1 + · · ·+ k′d,

s = s1 + · · ·+ sd, t = t1 + · · ·+ te)

B1(f, g) =
e∑
i=1

k1−1∑
k′1=0
· · ·

kd−1∑
k′
d
=0

l1−1∑
t1=0
· · ·

le−1∑
te=0

d∏
u=1

(−1)k′u
(
ku − 1
k′u

)
e∏

v=1
(−1)tv

(
lv − 1
tv

)

·
[
bn0
0 bl1−t1b

n1
0 . . . bli−1−ti−1b

ni−1
0

[
bm0
0 bk1−k′1b

m1
0 . . . bkd−k′db

md
0 , bli−ti+k′

]
bni0 bli+1−ti+1b

ni+1
0 . . . ble−teb

ne
0 , ba+t

]
,

B2(f, g) =
e∑
i=1

k1−1∑
k′1=0
· · ·

kd−1∑
k′
d
=0

l1−1∑
t1=0
· · ·

le−1∑
te=0

l−e∑
p=1

∑
j1+···+jp+1=t+1

(−1)p
d∏

u=1
(−1)k′u

(
ku − 1
k′u

)
e∏

v=1
(−1)tv

(
lv − 1
tv

)

· ba+j1−1bj2 . . . bjp

[
bn0
0 bl1−t1b

n1
0 . . . bli−1−ti−1b

ni−1
0

[
bm0
0 bk1−k′1b

m1
0 . . . bkd−k′db

md
0 , bli−ti+k′

]
bni0 bli+1−ti+1b

ni+1
0 . . . ble−teb

ne
0 , bjp+1

]
,
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B3(f, g) =
e∑
i=1

k1−1∑
k′1=0
· · ·

kd−1∑
k′
d
=0

l1−1∑
t1=0
· · ·

le−1∑
te=0

k−d∑
p=1

∑
i1+···+ip+1=k′+1

(−1)p
d∏

u=1
(−1)k′u

(
ku − 1
k′u

)
e∏

v=1
(−1)tv

(
lv − 1
tv

)

·
[
bn0
0 bl1−t1b

n1
0 . . . bli−1−ti−1b

ni−1
0 bli−ti+i1−1bi2 . . . bip

[
bm0
0 bk1−k′1b

m1
0 . . . bkd−k′db

md
0 , bip+1

]
bni0 bli+1−ti+1b

ni+1
0 . . . ble−teb

ne
0 , ba+t

]
,

B4(f, g) =
e∑
i=1

k1−1∑
k′1=0
· · ·

kd−1∑
k′
d
=0

l1−1∑
t1=0
· · ·

le−1∑
te=0

k−d∑
p1=1

∑
i1+···+ip1+1=k′+1

l−e∑
p2=0

∑
j1+···+jp2+1=t+1

(−1)p1+p2

·
d∏

u=1
(−1)k′u

(
ku − 1
k′u

)
e∏

v=1
(−1)tv

(
lv − 1
tv

)
ba+j1−1bj2 . . . bjp2

[
bn0
0 bl1−t1b

n1
0 . . . bli−1−ti−1b

ni−1
0

bli−ti+i1−1bi2 . . . bip1

[
bm0
0 bk1−k′1b

m1
0 . . . bkd−k′db

md
0 , bip1+1

]
bni0 bli+1−ti+1b

ni+1
0 . . . ble−teb

ne
0 , bjp2+1

]
,

the terms Bi(g, f) are obtained from Bi(f, g) by exchanging the roles of f and g (i =
1, . . . 4), and

B5 =
k1−1∑
k′1=0
· · ·

kd−1∑
k′
d
=0

l1−1∑
t1=0
· · ·

le−1∑
te=0

d∏
u=1

(−1)k′u
(
ku − 1
k′u

)
e∏

v=1
(−1)tv

(
lv − 1
tv

)

·
[
bn0
0 bl1−t1b

n1
0 . . . ble−teb

ne
0 ,
[
bm0
0 bk1−k′1b

m1
0 . . . bkd−k′db

md
0 , ba+k′+t

]]
−
k1−1∑
k′1=0
· · ·

kd−1∑
k′
d
=0

l1−1∑
t1=0
· · ·

le−1∑
te=0

d∏
u=1

(−1)k′u
(
ku − 1
k′u

)
e∏

v=1
(−1)tv

(
lv − 1
tv

)

·
[
bm0
0 bk1−k′1b

m1
0 . . . bkd−k′db

md
0 ,

[
bn0
0 bl1−t1b

n1
0 . . . ble−teb

ne
0 , ba+k′+t

]]

B6 =
k1−1∑
k′1=0
· · ·

kd−1∑
k′
d
=0

l1−1∑
t1=0
· · ·

le−1∑
te=0

k−d∑
p=1

∑
i1+···+ip+1=k′+1

(−1)p
d∏

u=1
(−1)k′u

(
ku − 1
k′u

)
e∏

v=1
(−1)tv

(
lv − 1
tv

)

·
(
ba+t+i1−1

[
bn0
0 bl1−t1b

n1
0 . . . ble−teb

ne
0 , bi2 . . . bip

[
bm0
0 bk1−k′1b

m1
0 . . . bkd−k′db

md
0 , bip+1

]]

−
p∑

x=2
ba+i1−1bi2 . . . bix−1

[
bn0
0 bl1−t1b

n1
0 . . . ble−teb

ne
0 , bix+t

]
bix+1 . . . bip

[
bm0
0 bk1−k′1b

m1
0 . . . bkd−k′db

md
0 , bip+1

]

− ba+i1−1bi2 . . . bip

[
bm0
0 bk1−k′1b

m1
0 . . . bkd−k′db

md
0 ,

[
bn0
0 bl1−t1b

n1
0 . . . ble−teb

ne
0 , bip+1+t

]])

+
k1−1∑
k′1=0
· · ·

kd−1∑
k′
d
=0

l1−1∑
t1=0
· · ·

le−1∑
te=0

l−e∑
p=1

∑
j1+···+jp+1=t+1

(−1)p
d∏

u=1
(−1)k′u

(
ku − 1
k′u

)
e∏

v=1
(−1)tv

(
lv − 1
tv

)

·
(
− ba+k′+j1−1

[
bm0
0 bk1−k′1b

m1
0 . . . bkd−k′db

md
0 , bj2 . . . bjp

[
bn0
0 bl1−t1b

n1
0 . . . ble−teb

ne
0 , bjp+1

]]

+
p∑

x=2
ba+j1−1bj2 . . . bjx−1

[
bm0
0 bk1−k′1b

m1
0 . . . bkd−k′db

md
0 , bjx+k′

]
bjx+1 . . . bjp

[
bn0
0 bl1−t1b

n1
0 . . . ble−teb

ne
0 , bjp+1

]

+ ba+j1−1bj2 . . . bjp

[
bn0
0 bl1−t1b

n1
0 . . . ble−teb

ne
0 ,
[
bm0
0 bk1−k′1b

m1
0 . . . bkd−k′db

md
0 , bjp+1+k′

]])

+
k1−1∑
k′1=0
· · ·

kd−1∑
k′
d
=0

l1−1∑
t1=0
· · ·

le−1∑
te=0

k−d∑
p1=1

∑
i1+···+ip1+1=k′+1

l−e∑
p2=1

∑
j1+···+jp2+1=t+1

(−1)p1+p2
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·
d∏

u=1
(−1)k′u

(
ku − 1
k′u

)
e∏

v=1
(−1)tv

(
lv − 1
tv

)

·
(
ba+i1+j1−2bi2 . . . bip1

[
bm0
0 bk1−k′1b

m1
0 . . . bkd−k′db

md
0 , bip1+1

]
bj2 . . . bjp2

[
bn0
0 bl1−t1b

n1
0 . . . ble−teb

ne
0 , bjp2+1

]

−
p1∑
x=2

ba+i1−1bi2 . . . bix−1bix+j1−1bj2 . . . bjp2

[
bn0
0 bl1−t1b

n1
0 . . . ble−teb

ne
0 , bjp2+1

]
bix+1 . . . bip1[

bm0
0 bk1−k′1b

m1
0 . . . bkd−k′db

md
0 , bip1+1

]
− ba+i1−1bi2 . . . bip1

[
bm0
0 bk1−k′1b

m1
0 . . . bkd−k′db

md
0 , bip1+1+j1−1bj2 . . . bjp2

[
bn0
0 bl1−t1b

n1
0 . . . ble−teb

ne
0 , bjp2+1

]]
− ba+i1+j1−2bj2 . . . bjp2

[
bn0
0 bl1−t1b

n1
0 . . . ble−teb

ne
0 , bjp2+1

]
bi2 . . . bip1

[
bm0
0 bk1−k′1b

m1
0 . . . bkd−k′db

md
0 , bip1+1

]
+

p2∑
x=2

ba+j1−1bj2 . . . bjx−1bjx+i1−1bi2 . . . bip1

[
bm0
0 bk1−k′1b

m1
0 . . . bkd−k′db

md
0 , bip1+1

]
bjx+1 . . . bjp2[

bn0
0 bl1−t1b

n1
0 . . . ble−teb

ne
0 , bjp2+1

]
+ ba+j1−1bj2 . . . bjp2

[
bn0
0 bl1−t1b

n1
0 . . . ble−teb

ne
0 , bjp2+1+i1−1bi2 . . . bip1

[
bm0
0 bk1−k′1b

m1
0 . . . bkd−k′db

md
0 , bip1+1

]])
.

We will show successively that Ai(f, g) = Bi(f, g) for i = 1, . . . , 4, and −Ai = Bi for
i = 5, 6.
We start by showing the equality A1(f, g) = B1(f, g). For i ∈ {1, . . . , e}, tv ∈ {0, . . . , lv−1}
for v = 1, . . . , i − 1, i + 1, . . . , e, σu ∈ {0, . . . , ku − 1} for u = 1, . . . , d and τ ∈ {−(k −
d), . . . , li − 1}, the coefficient of[
bn0
0 bl1−t1b

n1
0 . . . bli−1−ti−1b

ni−1
0

[
bm0
0 bk1−σ1b

m1
0 . . . bkd−σdb

md
0 , bli−τ

]
bni0 bli+1−ti+1b

ni+1
0

. . . ble−teb
ne
0 , ba+t1+···+ti−1+ti+1+···+te+τ+σ1+···+σd

]
in A1(f, g) is given by

(−1)t1+···+ti−1+ti+1+···+te+τ
σ1∑
x1=0
· · ·

σd∑
xd=0

d∏
u=1

(−1)xu+σu

(
ku − 1
xu

)(
ku − xu − 1
σu − xu

)

·
(
li + x1 + · · ·+ xd − 1
τ + x1 + · · ·+ xd

)
e∏

v=1
v 6=i

(
lv − 1
tv

)

and the coefficient in B1(f, g) is given by

(−1)t1+···+ti−1+ti+1+···+te+τ
d∏

u=1

(
ku − 1
σu

)(
li − 1

τ + σ1 + · · ·+ σd

)
e∏

v=1
v 6=i

(
lv − 1
tv

)
.

Therefore, we have to show that

σ1∑
x1=0
· · ·

σd∑
xd=0

d∏
u=1

(−1)xu+σu

(
ku − 1
xu

)(
ku − xu − 1
σu − xu

)(
li + x1 + · · ·+ xd − 1
τ + x1 + · · ·+ xd

)

=
d∏

u=1

(
ku − 1
σu

)(
li − 1

τ + σ1 + · · ·+ σd

)
.

61



Applying the identity
(ku−1
xu

)(ku−xu−1
σu−xu

)
=
(ku−1
σu

)(σu
xu

)
and substituting xu 7→ σu − xu sim-

plifies the equality to
σ1∑
x1=0
· · ·

σd∑
xd=0

d∏
u=1

(−1)xu
(
σu
xu

)(
li − 1 + σ1 + · · ·+ σd − x1 − · · · − xd
τ + σ1 + · · ·+ σd − x1 − · · · − xd

)

=
(

li − 1
τ + σ1 + · · ·+ σd

)
.

This equation follows from Lemma 3.23 substituting s = d, m = li − 1, θu = σu for
u = 1, . . . , d and j = τ + σ1 + · · ·+ σd.
Next, we show that A2(f, g) = B2(f, g). For i ∈ {1, . . . , e}, tv ∈ {0, . . . lv − 1} for v =
1, . . . , i − 1, i + 1, . . . , e, σu ∈ {0, . . . , ku − 1} for u = 1, . . . , d, τ ∈ {−(k − d), . . . , li − 1},
r ∈ {1, . . . , k+l−d−e} and h1+· · ·+hr+1 = t1+· · ·+ti−1+ti+1+· · ·+te+σ1+· · ·+σd+τ ,
the coefficient of

ba+h1−1bh2 . . . bhr

[
bn0
0 bl1−t1b

n1
0 . . . bli−1−ti−1b

ni−1
0

[
bm0
0 bk1−σ1b

m1
0 . . . bkd−σdb

md
0 , bli−τ

]
· bni0 bli+1−ti+1b

ni+1
0 . . . ble−teb

ne
0 , bhr+1

]
in A2(f, g) is given by

(−1)t1+···+ti−1+ti+1+···+te+τ+r
σ1∑
x1=0
· · ·

σd∑
xd=0

d∏
u=1

(−1)xu+σu

(
ku − 1
xu

)(
ku − xu − 1
σu − xu

)

·
(
li + x1 + · · ·+ xd − 1
τ + x1 + · · ·+ xd

)
e∏

v=1
v 6=i

(
lv − 1
tv

)

and the coefficient in B2(f, g) is

(−1)t1+···+ti−1+ti+1+···+te+τ+r
d∏

u=1

(
ku − 1
σu

)(
li − 1

τ + σ1 + · · ·+ σd

)
e∏

v=1
v 6=i

(
lv − 1
tv

)
.

In particular, the equality A2(f, g) = B2(f, g) is proven similar to the previous case
A1(f, g) = B1(f, g).
We want to show that A3(f, g) = B3(f, g). For i ∈ {1, . . . , e}, tv ∈ {0, . . . lv − 1} for
v = 1, . . . , i − 1, i + 1, . . . , e, σu ∈ {0, . . . , ku − 1} for u = 1, . . . , d, r ∈ {1, . . . , k − d} and
ι+ ι2 + · · ·+ ιr+1 ≤ σ1 + · · ·+ σd + li − 1, the coefficient of[
bn0
0 bl1−t1b

n1
0 . . . bli−1−ti−1b

ni−1
0 bli−ι−1bι2 . . . bιr

[
bm0
0 bk1−σ1b

m1
0 . . . bkd−σdb

md
0 , bιr+1

]
· bni0 bli+1−ti+1b

ni+1
0 . . . ble−teb

ne
0 , ba+t1+···+ti−1+ti+1+···+te+σ1+···+σd+ι−ι2−···−ιr+1+1

]
in A3(f, g) is

(−1)t1+···+ti−1+ti+1+···+te+ι−ι2−···−ιr+1+r+1
σ1∑
x1=0
· · ·

σd∑
xd=0

∑
y1+···+yr+1=x1+···+xd+1

yj≥1

d∏
u=1

(−1)xu+σu

·
(
ku − 1
xu

)(
ku − xu − 1
σu − xu

)(
li + y1 − 2
y1 + ι

)(
y2 − 1
y2 − ι2

)
. . .

(
yr+1 − 1
yr+1 − ιr+1

)
e∏

v=1
v 6=i

(
lv − 1
tv

)
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and the coefficient in B3(f, g) is

(−1)t1+···+ti−1+ti+1+···+te+ι−ι2−···−ιr+1+r+1
d∏

u=1

(
ku − 1
σu

)

·
(

li − 1
σ1 + · · ·+ σd + 1 + ι− ι2 − · · · − ιr+1

)
e∏

v=1
v 6=i

(
lv − 1
tv

)

Therefore, we have to show that

σ1∑
x1=0
· · ·

σd∑
xd=0

∑
y1+···+yr+1=x1+···+xd+1

yj≥1

d∏
u=1

(−1)xu+σu

(
σu
xu

)(
li + y1 − 2
y1 + ι

)

·
(
y2 − 1
y2 − ι2

)
. . .

(
yr+1 − 1
yr+1 − ιr+1

)
=
(

li − 1
σ1 + · · ·+ σd + 1 + ι− ι2 − · · · − ιr+1

)
.

Substituting s = d, m = li − 1, θu = σu for u = 1, . . . , d and j = σ1 + · · · + σd + 1 + ι −
ι2 − · · · − ιr+1 in Lemma 3.23 yields(

li − 1
σ1 + · · ·+ σd + 1 + ι− ι2 − · · · − ιr+1

)

=
σ1∑
x1=0
· · ·

σd∑
xd=0

d∏
u=1

(−1)xu
(
σu
xu

)(
li − 1 + σ1 + · · ·+ σd − x1 − · · · − xd

σ1 + · · ·+ σd + 1 + ι− ι2 − · · · − ιr+1 − x1 − · · · − xd

)

=
σ1∑
x1=0
· · ·

σd∑
xd=0

d∏
u=1

(−1)xu+σu

(
σu
xu

)(
li − 1 + x1 + · · ·+ xd

ι− ι2 − · · · − ιr+1 + 1 + x1 + · · ·+ xd

)
.

Thus, we are left with showing that we have with x = x1 + · · ·+ xd

∑
y1+···+yr+1=x+1

yj≥1

(
li + y1 − 2
y1 + ι

)(
y2 − 1
y2 − ι2

)
. . .

(
yr+1 − 1
yr+1 − ιr+1

)
=
(

li − 1 + x

ι− ι2 − · · · − ιr+1 + 1 + x

)
.

To prove this equality consider the following generating series

∑
y≥0

(
y + li − 2− ι+ ι2 + · · ·+ ιr+1
li − 2− ι+ ι2 + · · ·+ ιr+1

)
zy = (1− z)−(li−1−ι+ι2+···+ιr+1) (3.23.6)

= (1− z)−(li−1−ι)(1− z)−ι2 . . . (1− z)−ιr+1

=
∑

y1,...,yr+1≥0

(
y1 + li − 2− ι
li − 2− ι

)(
y2 + ι2 − 1
ι2 − 1

)
. . .

(
yr+1 + ιr+1 − 1

ιr+1 − 1

)
zy1 . . . zyr+1 ,

where we made use of the identity ∑y≥0
(m+y
m

)
zy = (1−z)−(m+1) (cf (3.23.3)). Coefficient

comparison in (3.23.6) at zx+ι−ι2−···−ιr+1+1 yields(
li − 1 + x

li − 2− ι+ ι2 + · · ·+ ιr+1

)

=
∑

y1+···+yr+1=x+ι−ι2−···−ιr+1+1
yj≥0

(
y1 + li − 2− ι
li − 2− ι

)(
y2 + ι2 − 1
ι2 − 1

)
. . .

(
yr+1 + ιr+1 − 1

ιr+1 − 1

)
,
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which simplifies to (substitute y1 7→ y1 + ι, yj 7→ yj − ιj for j = 2, . . . , r + 1)(
li − 1 + x

ι− ι2 − · · · − ιr+1 + 1 + x

)
=

∑
y1+···+yr+1=x+1

yj≥1

(
li + y1 − 2
y1 + ι

)(
y2 − 1
y2 − ι2

)
. . .

(
yr+1 − 1
yr+1 − ιr+1

)
.

This proves A3(f, g) = B3(f, g). Again the equation A4(f, g) = B4(f, g) follows similarly
to this case.
Applying Jacobi’s identity for the commutator bracket, one easily obtains A5 + B5 = 0
and hence the desired equality −A5 = B5.
Finally, we will show that −A6 = B6. Any word occurring in A6 or B6 is of the form

ba+x1bx2 . . . bxw1
bm0
0 bk1−k′1b

m1
0 . . . bkd−k′db

md
0 by1 . . . byw2

bn0
0 bl1−t1b

n1
0 . . . ble−teb

ne
0 bz1 . . . bzw3

(3.23.7)
or

ba+x1bx2 . . . bxw1
bn0
0 bl1−t1b

n1
0 . . . ble−teb

ne
0 by1 . . . byw2

bm0
0 bk1−k′1b

m1
0 . . . bkd−k′db

md
0 bz1 . . . bzw3

for some k′u ∈ {0, . . . , ku− 1} for u = 1, . . . , d, tv ∈ {0, . . . , lv − 1} for v = 1, . . . , e, w1 ≥ 1,
w2 ≥ 0, w3 ∈ {0, 1} and x1 + · · · + xw1 + y1 + · · · + yw2 + z1 + · · · + zw3 = k′ + t. We
will focus on the first case (3.23.7), the second case is proven completely similar due to
anti-symmetry. If w2 = w3 = 0, the part of −A6 containing words of the form (3.23.7) is
given by

(−1)w1−1
d∏

u=1
(−1)k′u

(
ku − 1
k′u

)
e∏

v=1
(−1)tv

(
lv − 1
tv

) ∑
h1+···+hw1=k′+t+1

(3.23.8)

· ba+h1−1bh2 . . . bhw1
bm0
0 bk1−k′1b

m1
0 . . . bkd−k′db

md
0 bn0

0 bl1−t1b
n1
0 . . . ble−teb

ne
0

and the part of B6 containing words of the form (3.23.7) is

(−1)w1−1
d∏

u=1
(−1)k′u

(
ku − 1
k′u

)
e∏

v=1
(−1)tv

(
lv − 1
tv

)
(3.23.9)

·
( ∑
i1+···+iw1=k′+1

ba+t+i1−1bi2 · · ·iw1
bm0
0 bk1−k′1b

m1
0 . . . bkd−k′db

md
0 bn0

0 bl1−t1b
n1
0 . . . ble−teb

ne
0

+
∑

j1+···+jw1=t+1
ba+j1−1bj2 . . . bjw1

bm0
0 bk1−k′1b

m1
0 . . . bkd−k′db

md
0 bn0

0 bl1−t1b
n1
0 . . . ble−teb

ne
0

+
w1−1∑
w′1=2

∑
i1+···+iw1−w′1+1=k′+1

∑
j1+···+jw′1

=t+1
ba+j1−1bj2 . . . bjw′1−1

bjw′1
+i1−1bi2 . . . biw1−w′1+1

· bm0
0 bk1−k′1b

m1
0 . . . bkd−k′db

md
0 bn0

0 bl1−t1b
n1
0 . . . ble−teb

ne
0

)
.

The three terms together in (3.23.9) give exactly all possibilities for the decomposition in
(3.23.8), thus these two terms agree.
Next we consider the case w2 = 1, w3 = 0, then in −A6 occur no words of the form
(3.23.7) and the part of B6 containing words of the form (3.23.7) is given by
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(−1)w1
d∏

u=1
(−1)k′u

(
ku − 1
k′u

)
e∏

v=1
(−1)tv

(
lv − 1
tv

)

·
(
−

∑
i1+···+iw1+i=k′+1

ba+t+i1−1bi2 . . . biw1
bm0
0 bk1−k′1b

m1
0 . . . bkd−k′db

md
0 bib

n0
0 bl1−t1b

n1
0 . . . ble−teb

ne
0

+
∑

i1+···+iw1+i=k′+1
ba+i1−1bi2 . . . biw1

bm0
0 bk1−k′1b

m1
0 . . . bkd−k′db

md
0 bi+tb

n0
0 bl1−t1b

n1
0 . . . ble−teb

ne
0

+
∑

j1+···+jw1+j=t+1
ba+j1−1bj2 . . . bjw1−1bjw1+k′b

m0
0 bk1−k′1b

m1
0 . . . bkd−k′db

md
0 bjb

n0
0 bl1−t1b

n1
0 . . . ble−teb

ne
0

−
∑

j1+···+jw1+j=t+1
ba+j1−1bj2 . . . bjw1

bm0
0 bk1−k′1b

m1
0 . . . bkd−k′db

md
0 bj+k′b

n0
0 bl1−t1b

n1
0 . . . ble−teb

ne
0

+
∑

i1+···+iw1=k′+1

∑
j1+j=t+1

ba+i1+j1−1bi2 . . . biw1
bm0
0 bk1−k′1b

m1
0 . . . bkd−k′db

md
0 bjb

n0
0 bl1−t1b

n1
0 . . . ble−teb

ne
0

+
w1−1∑
w′1=2

∑
i1+···+iw1−w′1+1=k′+1

∑
j1+···+jw′1

+j=t+1
ba+j1−1bj2 . . . bjw′1−1

bjw′1
+i1−1bi2 . . . biw1−w′1+1

· bm0
0 bk1−k′1b

m1
0 . . . bkd−k′db

md
0 bjb

n0
0 bl1−t1b

n1
0 . . . ble−teb

ne
0

−
w1∑
w′1=2

∑
i1+···+iw1−w′1+1+i=k′+1

∑
j1+···+jw′1

=t+1
ba+j1−1bj2 . . . bjw′1−1

bjw′1
+i1−1bi2 . . . biw1−w′1+1

· bm0
0 bk1−k′1b

m1
0 . . . bkd−k′db

md
0 bib

n0
0 bl1−t1b

n1
0 . . . ble−teb

ne
0

)

As in the previous case, the sum of the second, third, fifth, and sixth terms is equal to∑
h1+···+hw1+h=k′+t+1

ba+h1−1bh2 . . . bhw1
bm0
0 bk1−k′1b

m1
0 . . . bkd−k′db

md
0 bhb

n0
0 bl1−t1b

n1
0 . . . ble−teb

ne
0

(3.23.10)

and the sum of the first, fourth, and seventh terms is equal to the negative of (3.23.10).
Thus the terms in B6, which are of the form (3.23.7) with w2 = 1, w3 = 0 cancel out.
Next, we consider the case w1 = 1, w2 ≥ 2, w3 = 0. Again there are no words in −A6,
which are of the form (3.23.7). Moreover, the parts in B6 having the form in (3.23.7) are

(−1)w2
d∏

u=1
(−1)k′u

(
ku − 1
k′u

)
e∏

v=1
(−1)tv

(
lv − 1
tv

)

·
( ∑
j+j1+···+jw2=t+1

ba+k′+j−1b
m0
0 bk1−k′1b

m1
0 . . . bkd−k′db

md
0 bj1 . . . bjw2

bn0
0 bl1−t1b

n1
0 . . . ble−teb

ne
0

−
∑

j+j1+···+jw2=t+1
ba+j−1b

m0
0 bk1−k′1b

m1
0 . . . bkd−k′db

md
0 bj1+k′bj2 . . . bjw2

bn0
0 bl1−t1b

n1
0 . . . ble−teb

ne
0

−
∑

i1+i2=k′+1

∑
j+j1+···+jw2−1=t+1

ba+i1+j−2b
m0
0 bk1−k′1b

m1
0 . . . bkd−k′db

md
0

· bi2bj1 . . . bjw2−1b
n0
0 bl1−t1b

n1
0 . . . ble−teb

ne
0

+
∑

i1+i2=k′+1

∑
j1+···+jw2=t+1

ba+i1−1b
m0
0 bk1−k′1b

m1
0 . . . bkd−k′db

md
0 bi2+j1−1

· bj2 . . . bjw2
bn0
0 bl1−t1b

n1
0 . . . ble−teb

ne
0

)
.
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As before, the sum of the first and fourth terms and the sum of the second and third terms
cancel out, therefore also B6 has no terms of the form (3.23.7) (if w1 = 1, w2 ≥ 2, and
w3 = 0).
Finally, we consider the case w1, w2 ≥ 2, w3 = 0. Then there are no words in −A6, which
are of the form (3.23.7), and the parts in B6 of the form (3.23.7) are given by

(−1)w2
d∏

u=1
(−1)k′u

(
ku − 1
k′u

)
e∏

v=1
(−1)tv

(
lv − 1
tv

)

·
(
−

∑
j1+···+jw1+w2=t+1

ba+j1−1bj2 . . . bjw1
bm0
0 bk1−k′1b

m1
0 . . . bkd−k′db

md
0 bjw1+1+k′bjw1+2

. . . bjw1+w2
bn0
0 bl1−t1b

n1
0 . . . ble−teb

ne
0

+
∑

j1+···+jw1+w2=t+1
ba+j1−1bj2 . . . bjw1−1bjw1+k′b

m0
0 bk1−k′1b

m1
0 . . . bkd−k′db

md
0 bjw1+1 . . . bjw1+w2

·bn0
0 bl1−t1b

n1
0 . . . ble−teb

ne
0

−
∑

i1+···+iw1+i=k′+1

∑
j+j1+···+jw2−1=t+1

ba+i1+j−2bi2 . . . biw1
bm0
0 bk1−k′1b

m1
0 . . . bkd−k′db

md
0 bibj1

. . . bjw2−1b
n0
0 bl1−t1b

n1
0 . . . ble−teb

ne
0

+
∑

i1+···+iw1=k′+1

∑
j+j1+···+jw2=t+1

ba+i1+j−2bi2 . . . biw1
bm0
0 bk1−k′1b

m1
0 . . . bkd−k′db

md
0 bj1

. . . bjw2
bn0
0 bl1−t1b

n1
0 . . . ble−teb

ne
0

+
∑

i1+···+iw1+i=k′+1

∑
j1+···+jw2=t+1

ba+i1−1bi2 . . . biw1
bm0
0 bk1−k′1b

m1
0 . . . bkd−k′db

md
0 bi+j1−1bj2

. . . bjw2
bn0
0 bl1−t1b

n1
0 . . . ble−teb

ne
0

−
w1−1∑
w′1=1

∑
i1+···+iw′1

+i=k′+1

∑
j1+···+jw1−w′1+w2

=t+1
ba+j1−1bj2 . . . bjw1−w′1

bjw1−w′1+1+i1−1bi2

. . . biw′1
bm0
0 bk1−k′1b

m1
0 . . . bkd−k′db

md
0 bibjw1−w′1+2

. . . bjw1−w′1+w2
bn0
0 bl1−t1b

n1
0 . . . ble−teb

ne
0

+
w1−1∑
w′1=2

∑
i1+···+iw′1

=k′+1

∑
j1+···+jw1−w′1+w2+1=t+1

ba+j1−1bj2 . . . bjw1−w′1
bjw1−w′1+1+i1−1bi2

. . . biw′1
bm0
0 bk1−k′1b

m1
0 . . . bkd−k′db

md
0 bjw1−w′1+2

. . . bjw1−w′1+w2+1
bn0
0 bl1−t1b

n1
0 . . . ble−teb

ne
0

)
.

For the same reason as before, the sum of the second, fourth, fifth, and seventh terms and
the sum of the first, third, and sixth terms cancel out. This means, in B6 there are no
words of the form (3.23.7) (for w1, w2 ≥ 2, w3 = 0).
To prove the claim for w3 = 1, one can use the same case distinction and obtains the
results in the same way.
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3.4 Towards a q-twisted Magnus affine group scheme MQ
We will present some tentative results towards an affine group scheme corresponding to
the q-twisted Magnus Lie algebra (mq, {−,−}q). In particular, as an analog of the twisted
Magnus affine group scheme MT (Definition 3.3), we define the following.

Definition 3.24. For any commutative Q-algebra R with unit, define

MQ(R) = {f ∈ R〈〈B〉〉 | (f | 1) = 1}.

Here R〈〈B〉〉 denotes the completion of R〈B〉 = Q〈B〉 ⊗R with respect to the weight.

Definition 3.25. Let R be a commutative Q-algebra with unit. To all G,H ∈ R〈〈B〉〉,
assign an algebra morphism (with respect to concatenation)

κq(G,H) : R〈〈B〉〉 → R〈〈B〉〉,

such that the following conditions hold

(i) The map R〈〈B〉〉 ×R〈〈B〉〉 → EndR(R〈〈B〉〉), (G,H) 7→ κq(G,H) is bilinear,

(ii) For all G ∈ R〈〈B〉〉, one has

κq(1,G)(1) = κq(G,1)(1) = 1, κq(1,G)(b0) = κq(G,1)(b0) = b0,

(iii) For any word w = bm0
0 bk1b

m1
0 . . . bkdb

md
0 in R〈B〉 and a ≥ 1, we have

κq(1,w)(ba) =
k1+···+kd−d∑

r=0
(−1)r lc(a−1,r)

1 ◦ δ1(baw),

κq(w,1)(ba) =
k1+···+kd−d∑

r=0
(−1)r lc(a−1,r)

d+1 ◦ δd+1(wba).

(iv) For all G,H ∈ R〈〈b0, b1〉〉 and a ≥ 1, one has

κq(G,H)(b0) = b0, κq(G,H)(ba) = GbaH.

For two elements G,H ∈ MQ(R), we set then

G~q H = κq(G,G−1)(H)G.

Here G−1 denotes the inverse with respect to the concatenation product.

Conjecture 3.26. Let R be a commutative Q-algebra with unit. For all G,H ∈ R〈〈B〉〉
there are maps κq(G,H) satisfying the conditions in Definition 3.25, such that

MQ : Q -Alg→ Groups, R 7→ (MQ(R),~q)

is a pro-unipotent affine group scheme.
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Let w1 = bm0
0 bk1b

m1
0 . . . bkdb

md
0 , w2 = bn0

0 bl1b
n1
0 . . . bleb

ne
0 be words inR〈B〉 (where k1, . . . , kd,

l1, . . . , le ≥ 1, m1, . . . ,md, n1, . . . , ne ≥ 0) and a ≥ 1, then a naive guess for the algebra
morphism κ(w1,w2) is given by

κq(w1,w2)(1) = 1,

κq(w1,w2)(b0) = b0,

κq(w1,w2)(ba) =
k1+···+kd+l1+···+le−d−e∑

r=0
(−1)r lc(a−1,r)

d+1 ◦δd+1(w1baw2).

For each Q-algebra R, let mq(R) = mq ⊗ R and by m̂q(R) we denote the completion of
mq(R) with respect to the weight.

Theorem 3.27. Assume that Conjecture 3.26 holds. Then the corresponding Lie algebra
functor to the affine group scheme MQ is given by

m̂q : Q -Alg→ Lie-Alg, R 7→
(
m̂q(R), {−,−}q

)
.

Proof. It is obvious that the underlying sets of the Lie algebra functor to MQ are exactly
given by the sets m̂q(R) (cf Definition A.88). Thus, we are left with deriving the Lie
bracket on m̂q(R) from the group multiplication ~q on MQ(R). Let G ∈ MQ(R) and
consider the endomorphism

σq(G) : R〈〈B〉〉 → R〈〈B〉〉, H 7→ G~q H.

By R[ε] we denote the algebra of dual numbers, so ε2 = 0. For f ∈ m̂q(R) we define the
endomorphism s̃f : R〈〈B〉〉 → R〈〈B〉〉 by

σq(1 + εf) = id +εs̃f .

Denote by [−,−]~q is the corresponding Lie bracket to ~q, then we obtain

s̃[f,g]~q = [s̃f , s̃g], f, g ∈ m̂q(R). (3.27.1)

We compute for f ∈ m̂q(R)

1 + εf = σq(1 + εf)(1) = (id +εs̃f )(1) = 1 + εs̃f (1)

and therefore we have s̃f (1) = f . So evaluating (3.27.1) in 1 we get

[f, g]~q = s̃f (g)− s̃g(f), f, g ∈ m̂q(R). (3.27.2)

Moreover, we define for f ∈ m̂q(R) the endomorphism d̃f : R〈〈B〉〉 → R〈〈B〉〉 by

κq(1+εf,(1+εf)−1) = id +εd̃f .

Since κq(1+εf,(1+εf)−1) is an algebra morphism by assumption, we compute for f ∈ m̂q(R)
and u, v ∈ R〈〈B〉〉

κq(1+εf,(1+εf)−1)(uv) = κq(1+εf,(1+εf)−1)(u)κq(1+εf,(1+εf)−1)(v)

= (u+ εd̃f (u))(v + εd̃f (v)) = uv + ε(ud̃f (v) + d̃f (u)v).
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So d̃f is a derivation (for the concatenation product) and hence it suffices to obtain an
explicit formula on the generators bi, i ≥ 0. We have for a ≥ 1

κq(1+εf,(1+εf)−1)(b0) = κq(1+εf,1−εf)(b0) = κq(1,1)(b0) + ε
(
κq(f,1)(b0)− κq(1,f)(b0)

)
= b0 + ε · 0,

κq(1+εf,(1+εf)−1)(ba) = κq(1+εf,1−εf)(ba) = κq(1,1)(ba) + ε
(
κq(f,1)(ba)− κ

q
(1,f)(ba)

)
,

where the last equality follows from the assumption that (G,H) 7→ κq(G,H) is bilinear.
Thus, d̃f is the derivation determined by

d̃f (b0) = 0, d̃f (ba) = κq(f,1)(ba)− κ
q
(1,f)(ba)

From the definition of dqf (Definition 3.12) and the third requirement on κq (Definition
3.25) we deduce that d̃f (ba) = dqf (ba) for all a ≥ 1. In particular, we get d̃f = dqf for all
f ∈ m̂q(R). Finally, we calculate for f ∈ m̂q(R) and w ∈ R〈〈B〉〉

σq(1 + εf)(w) = κ(1+εf,(1+εf)−1)(w)(1 + εf) = (w + εdqf (w))(1 + εf) = w + ε(wf + dqf (w)).

and therefore

s̃f (w) = dqf (w) + wf.

In particular, the map s̃f equals the pre-Lie multiplication sqf of the q-Ihara bracket
(Definition 3.16). By (3.27.2) the Lie bracket on m̂q(R) is given by

[f, g]~q = sqf (g)− sqg(f) = dqf (g) + gf − dqg(f)− fg = {f, g}q,

where the last equality follows from the definition of the q-Ihara bracket (Definition 3.16).

Remark 3.28. (i) Since we expect that MQ is a pro-unipotent affine group scheme with
Lie algebra functor m̂q, there should be a natural isomorphism exp : m̂q→ MQ (Theorem
A.95). In particular, the q-Ihara bracket {−,−}q on m̂q should determine the group
multiplication on MQ uniquely via the Baker-Campbell-Hausdorff series. This approach
to the group multiplication on MQ seems to be too extensive for this work.
(ii) In [Rac02, Section 3.1] another extension of the twisted Magnus affine group scheme
MT and the twisted Magnus Lie algebra mt is introduced. The product and Lie bracket
in this generalization are homogeneous in depth and therefore differ significantly from the
generalization given in this section.

Proposition 3.29. Assume that Conjecture 3.26 holds. Then for each commutative Q-
algebra R with unit, there are embedding of groups

θanti
X : (MT(R),~) ↪→ (MQ(R),~q),

xs1 . . . xsl 7→ bsl . . . bs1 .

Proof. Let G,H ∈ MT(R) and recall that the algebra morphism κG in the group multi-
plication ~ is given by κG(x0) = x0, κG(x1) = G−1x1G. We deduce from the condition
(iv) required for κq (Definition 3.25) that

θanti
X (κG(H)) = κq(θanti

X (G),θanti
X (G)−1)(θ

anti
X (H)).
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Therefore, we get

θanti
X (G~H) = θanti

X (GκG(H)) = θanti
X (κG(H))θanti

X (G)
= κq(θanti

X (G),θanti
X (G)−1)(θ

anti
X (H))θanti

X (G)

= θanti
X (G)~q θanti

X (H).
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4 Lie algebras for Zq: Non-commutative approach

We expect that the algebra of multiple zeta values is a free polynomial algebra decompos-
ing into the algebra generated by ζ(2) and the graded dual of some universal enveloping
algebra (Conjecture B.10). G. Racinet proved in [Rac00] that the algebra of formal multi-
ple zeta values (Definition B.22) admits this decomposition (Corollary B.32). So assuming
that the algebra of formal multiple zeta values is isomorphic to the algebra of multiple
zeta values, one would obtain this decomposition for the algebra of multiple zeta values.
Even more, this decomposition gives evidence for Zagier’s dimension conjecture (p. 197).
To show the decomposition of the algebra of formal multiple zeta values, G. Racinet in-
troduced a pro-unipotent affine group scheme DM0 (Definition B.24) having values in the
weight-completed dual shuffle Hopf algebra (Proposition B.15) and a corresponding Lie
algebra dm0 (Definition B.27).
We are interested in establishing an analog approach for multiple q-zeta values. In par-
ticular, we will introduce a weight-completed Hopf algebra consisting of non-commutative
power series and the algebra Zfq of formal multiple q-zeta values, whose definition is moti-
vated by the balanced multiple q-zeta values. We will see that there is an affine scheme BM
with values in this weight-completed Hopf algebra, which is represented by the algebra Zfq
of formal multiple q-zeta values. This leads to the definition of a space bm0, which should
be seen as the dual of the space of indecomposables of Zfq (modulo the ideal generated by
the formal elements ζfq (2), ζfq (4), ζfq (6)) and contains the double shuffle Lie algebra dm0.
We expect that bm0 is a Lie subalgebra of the q-twisted Magnus Lie algebra (mq, {−,−}q)
introduced in Subsection 3.2. Numerical experiments show that for small w the dimension
of homogeneous subspaces of bm0 of weight w coincide with the conjectured dimensions in
1.22 (iii). At the end of this section, we will consider the associated depth-graded space lb
to bm0. We will show that lb is properly embedded into some Lie algebra lq equipped with
the depth-graded q-Ihara bracket {−,−}Dq and we expect that lb is a Lie subalgebra of lq.
For small numbers w and d, we obtained by numerical experiments that the dimensions of
the homogeneous subspaces lb(w,d) of weight w and depth d coincide with the dimension
conjecture 1.23 (ii).

4.1 The balanced quasi-shuffle Hopf algebra

We will introduce a Hopf algebra, which should be seen as an analog of the shuffle Hopf
algebra as well as the stuffle Hopf algebra for multiple zeta values (Proposition B.14, B.18).
To obtain this Hopf algebra, we focus on the algebraic structure of the balanced multiple
q-zeta values introduced in Subsection 2.6.

Consider the alphabet B = {b0, b1, b2, . . .}, denote by B∗ the set of all words with letters
in B, and let 1 be the empty word. For an element bs1 . . . bsl in B∗ the weight is given by

wt(bs1 . . . bsl) = s1 + · · ·+ sl + #{i | si = 0}.

Equip the free non-commutative algebra Q〈B〉 with the balanced quasi-shuffle product ∗q
on Q〈B〉 corresponding to (cf Definition A.52)

bi �q bj =
{
bi+j if i, j ≥ 1,
0 else

.

In the following, we will introduce a weight-graded Hopf algebra structure on (Q〈B〉, ∗q)
and determine its completed dual.
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Definition 4.1. Let ∆dec : Q〈B〉 → Q〈B〉 ⊗ Q〈B〉 be the deconcatenation coproduct, so
for each word w ∈ Q〈B〉 one has

∆dec(w) =
∑
uv=w

u⊗ v.

Observe that the deconcatenation coproduct satisfies the recursion

∆dec(biw) = (bi ⊗ 1)∆dec(w) + 1⊗ biw, bi ∈ B, w ∈ Q〈B〉.

Theorem 4.2. The tuple (Q〈B〉, ∗q,∆dec) is a weight-graded commutative Hopf algebra.

Proof. Since (Q〈B〉, ∗q) is a quasi-shuffle algebra, this follows immediately from Theorem
A.59.

Remark 4.3. The coproduct ∆dec does not preserve the space Q〈B〉0, for example we
have

∆dec(b1b0) = 1⊗ b1b0 + b1 ⊗ b0 + b1b0 ⊗ 1,

so Q〈B〉0 cannot be seen as a Hopf subalgebra of (Q〈B〉, ∗q,∆dec)5.

We will give a completed dual for the Hopf algebra (Q〈B〉, ∗q,∆dec) with respect to the
weight. For any commutative Q-algebra R with unit, denote R〈B〉 = Q〈B〉 ⊗ R and let
R〈〈B〉〉 be the completion of R〈B〉 with respect to the weight (cf Proposition A.45), i.e.,

R〈〈B〉〉 =
∏
w≥0

R〈B〉(w),

where R〈B〉(w) denotes the homogeneous subspace of R〈B〉 of weight w. In particular,
the elements in R〈〈B〉〉 are formal non-commutative power series in the alphabet B with
coefficients in R. The space R〈〈B〉〉 is filtered by weight and depth. Similarly, denote by
R〈〈B〉〉0 completion of the vector space R〈B〉0 = Q〈B〉0 ⊗R.

Definition 4.4. Define the coproduct ∆q : R〈〈B〉〉 → R〈〈B〉〉 ⊗R〈〈B〉〉 by

∆q(bi) = 1⊗ bi + bi ⊗ 1 +
i−1∑
j=1

bj ⊗ bi−j , i ≥ 0.

and extend this definition with respect to the concatenation product.

Theorem 4.5. The tuple (R〈〈B〉〉, conc,∆q) is a complete cocommutative Hopf algebra.
The pairing

R〈〈B〉〉 ⊗Q〈B〉 → R,

Φ⊗ w 7→ (Φ | w),

where (Φ | w) denotes the coefficient of w in Φ, gives a duality between the weight-graded
Hopf algebra (Q〈B〉, ∗q,∆dec) and the complete Hopf algebra (R〈〈B〉〉, conc,∆q).

5After the submission of this thesis a regularized coproduct Q〈B〉0 is obtained, which endows (Q〈B〉0, ∗q)
with a Hopf algebra structure (ArXiv: 2303.09436 [math.NT]).
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Proof. We prove the duality of (Q〈B〉, ∗q,∆dec) and (R〈〈B〉〉, conc,∆q) with respect to the
given pairing. Then (R〈〈B〉〉, conc,∆q) is a cocommutative Hopf algebra (Theorem A.31).
It is well-known that ∆dec and conc are dual maps. Moreover, for u, v ∈ Q〈B〉 one obtains

(
∆q(bi) | u⊗ v

)
=
(
1⊗ bi + bi ⊗ 1 +

i−1∑
j=1

bi ⊗ bi−j
∣∣∣ u⊗ v) =

(
bi | u ∗q v

)
The last equality holds, since the word bi appears in the product u ∗q v if and only if
u = 1, v = bi or u = bi, v = 1 or u = bj , v = bi−j for some j = 1, . . . , i − 1. Since ∆q

is compatible with the concatenation product by definition and the letters bi generate the
algebra (R〈〈B〉〉, conc), we deduce that the maps ∆q and ∗q are dual.

Remark 4.6. The coproduct ∆q does not preserve the space R〈〈B〉〉0, for example we
have

∆q(b1b0) = b1b0 ⊗ 1 + b1 ⊗ b0 + b0 ⊗ b1 + 1⊗ b1b0.

Lemma 4.7. The antipode Sq of (R〈〈B〉〉, conc,∆q) is the anti-automorphism defined by

Sq(b0) = −b0,

Sq(ba) =
a∑
r=1

∑
j1+···+jr=a
j1,...,jr≥1

(−1)rbj1 . . . bjr , a ≥ 1.

Proof. The letter b0 is primitive for the coproduct ∆q, thus we deduce from Theorem A.38
(ii) that Sq(b0) = −b0. Moreover, compute for a ≥ 1

(
conc ◦(Sq ⊗ id) ◦∆q

)
(ba) = Sq(1) · ba + Sq(ba) · 1 +

a−1∑
n=1

Sq(bn) · ba−n

= ba +
a∑
r=1

∑
j1+···+jr=a
j1,...,jr≥1

(−1)rbj1 . . . bjr +
a−1∑
n=1

n∑
s=1

∑
i1+···+is=n
i1,...,is≥1

(−1)sbi1 . . . bisba−n

=
a∑
r=2

∑
j1+···+jr=a
j1,...,jr≥1

(−1)rbj1 . . . bjr +
a−1∑
s=1

∑
i1+···+is+1=a
i1,...,is+1≥1

(−1)sbi1 . . . bis+1

= 0 = ε(ba)

and similarly one checks(
conc ◦(id⊗Sq) ◦∆q

)
(ba) = 0 = ε(ba), a ≥ 1.

Relation to the Hopf algebras of multiple zeta values. Consider the shuffle Hopf
algebra (Q〈X 〉,�,∆dec) (Proposition B.14) and the stuffle Hopf algebra (Q〈Y〉, ∗,∆dec)
(Proposition B.18) defined within the context of multiple zeta values. Both of them are
closely related to the balanced quasi-shuffle Hopf algebra (Q〈B〉, ∗q,∆dec), more precisely
there are two surjective Hopf algebra morphisms

(Q〈B〉, ∗q,∆dec)� (Q〈X 〉,�,∆dec),
b0 7→ x0,

b1 7→ x1,

bi 7→ 0, i ≥ 2
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and

(Q〈B〉, ∗q,∆dec)� (Q〈Y〉, ∗,∆dec),
b0 7→ 0
bi 7→ yi, i ≥ 1.

By duality, we also obtain two injective Hopf algebra morphisms

θX : (R〈〈X 〉〉, conc,∆�) ↪→ (R〈〈B〉〉, conc,∆q), (4.7.1)
x0 7→ b0,

x1 7→ b1,

and

θY : (R〈〈Y〉〉, conc,∆∗) ↪→ (R〈〈B〉〉, conc,∆q), (4.7.2)
yi 7→ bi, i ≥ 1.

Remark 4.8. The stuffle Hopf algebra (Q〈Y〉, ∗,∆dec) can be identified with the Hopf
subalgebra of (Q〈B〉, ∗q,∆dec) spanned by all words, which do not contain the letter b0.
This leads to an injective Hopf algebra morphism

(Q〈Y〉, ∗,∆dec) ↪→ (Q〈B〉, ∗q,∆dec),
yi 7→ bi, i ≥ 1.

On the other hand, we have b1 ∗q b1 = 2b21 + b2, and thus the words containing only the
letters b0, b1 do not span a Hopf subalgebra of (Q〈B〉, ∗q,∆dec). Therefore the shuffle Hopf
algebra (Q〈X 〉,�,∆dec) does not canonically embed into (Q〈B〉, ∗q,∆dec). In particular,
one obtains a sequence of Hopf algebras

0→ (Q〈Y〉, ∗,∆dec) ↪→ (Q〈B〉, ∗q,∆dec)� (Q〈X 〉,�,∆dec)→ 0, (4.8.1)

which is nearly exact (the only exception is the span of the words bn1 ∈ Q〈B〉, n ≥ 0).
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4.2 Regularized multiple q-zeta values

Let Q〈B〉0 be the subalgebra of Q〈B〉 generated by all words, which do not start with b0.
Then the involution τ : Q〈B〉0 → Q〈B〉0 is given by τ(1) = 1 and

τ(bk1b
m1
0 . . . bkdb

md
0 ) = bmd+1b

kd−1
0 . . . bm1+1b

k1−1
0 . (4.8.2)

By Theorem 2.59 we have a surjective τ -invariant algebra morphism

ζq : (Q〈B〉0, ∗q)→ (Zq, ·), (4.8.3)
bs1 . . . bsl 7→ ζq(s1, . . . , sl).

On the other hand, we introduced the balanced quasi-shuffle Hopf algebra (Q〈B〉, ∗q,∆dec)
and observed that the coproduct ∆dec cannot be restricted to the subalgebra Q〈B〉0 or
respectively the dual coproduct ∆q to R〈〈B〉〉0 (Remark 4.3, 4.6). So to define an algebra
of formal multiple q-zeta values analogues to Zf (Definition B.22), we need to extend the
algebra morphism given in (4.8.3) to the whole algebra Q〈B〉. This will yield the definition
of regularized multiple q-zeta values.

Proposition 4.9. Let T be a formal variable and extend the product ∗q by Q[T ]-linearity
to Q〈B〉0[T ]. The map

regq : Q〈B〉0[T ]→ Q〈B〉,
wTn 7→ w ∗q b

∗qn
0

is an algebra isomorphism for the balanced quasi-shuffle product ∗q.

Proof. For the surjectivity of regq, we show that any word w ∈ Q〈B〉 is a polynomial in b0
with coefficients in Q〈B〉0. Let w = bm0

0 bk1b
m1
0 . . . bkdb

md
0 for some integers k1, . . . , kd ≥ 1

and m0, . . . ,md ≥ 0. We prove by induction on m0, that w = u+v∗q b0 for some u ∈ Q〈B〉0
and v ∈ Q〈B〉, where all words in v have weight < wt(w). Then induction on the weight
proves the claim. The case m0 = 0 is trivial, simply choose u = w, v = 0. Next, calculate

bm0−1
0 bk1b

m1
0 . . . bkdb

md
0 ∗q b0 = m0 b

m0
0 bk1b

m1
0 . . . bkdb

md
0

+
d∑
i=1

(mi + 1) bm0−1
0 bk1b

m1
0 . . . bkib

mi+1
0 bki+1b

mi+1
0 . . . bkdb

md
0 .

Applying the induction hypotheses to every word in the second line leads to

w = 1
m0

(
u+

(
v + bm0−1

0 bk1b
m1
0 . . . bkdb

md
0
)
∗q b0

)
for some u ∈ Q〈B〉0 and v ∈ Q〈B〉, where v + bm0−1

0 bk1b
m1
0 . . . bkdb

md
0 consists of words of

weight < wt(w).
Let P ∈ Q〈B〉0[T ]\{0} and write P = wTn +R, where w ∈ Q〈B〉0\{0} and R ∈ Q〈B〉0[T ]
is a polynomial of degree < n. We have

regq(P ) = w ∗q b
∗qn
0 + regq(R) = n!bn0w + w̃,

where w̃ ∈ Q〈B〉 consists of words with at most (n−1)-times the letter b0 at the beginning.
We deduce regq(P ) 6= 0, thus regq is injective.

Definition 4.10. For every w ∈ Q〈B〉, define the regularized multiple q-zeta values by

ζreg
q (w) = ζq

(
reg−1

q (w)|T=0
)
.
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This definition is unique in the following sense.

Theorem 4.11. The map ζreg
q : Q〈B〉 → Zq, w 7→ ζreg

q (w) is the only map satisfying

(i) ζreg
q (w) = ζq(w) w ∈ Q〈B〉0,

(ii) ζreg
q (b0) = 0,

(iii) ζreg
q (v ∗q w) = ζreg

q (v)ζreg
q (w), v, w ∈ Q〈B〉.

Proof. Since regq is the identity on Q〈B〉0, the map ζreg
q satisfies (i). Moreover, we have

(regq)−1(b0) = T and thus ζreg
q (b0) = 0. Finally, regq is an algebra isomorphism for ∗q,

hence ζreg
q satisfies (iii).

By Proposition 4.9, any word w ∈ Q〈B〉 is a polynomial in b0 with coefficients in Q〈B〉0.
Thus any algebra morphism on Q〈B〉 (with respect to the product ∗q) is uniquely deter-
mined by its values on b0 and words in Q〈B〉0.

Note that the map τ is only defined on the space Q〈B〉0 (cf (4.8.2)) and not on Q〈B〉, thus
we cannot require all regularized multiple q-zeta values to be τ -invariant.
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4.3 Formal multiple q-zeta values

Similar to the case of multiple zeta values ([IKZ06], [Ec02]), we want to formalize the
algebraic relations satisfied in the algebra Zq. To describe them we use the spanning set
given by the balanced multiple q-zeta values ζq(s1, . . . , sl), s1 ≥ 1, s2, . . . , sl ≥ 0. Their
description in terms of the alphabet B allows to connect the formal multiple q-zeta values
to Hopf algebra structures closely related to the ones of multiple zeta values (given in
[Rac00]).
In (4.8.3) we have seen that there is a τ -invariant surjective algebra morphism

ζq : (Q〈B〉0, ∗q)→ (Zq, ·),
bs1 . . . bsl 7→ ζq(s1, . . . , sl).

We expect that all algebraic relations in Zq are encoded in this morphism, which means
that all relations in Zq should be a consequence of the balanced quasi-shuffle product
formula and the τ -invariance of the balanced multiple q-zeta values (Conjecture 2.60).
This will determine the definition of the algebra of formal multiple q-zeta values. In
order to link the algebra of formal multiple q-zeta values to the Hopf algebra structures
introduced in Subsection 4.1, we will use instead the extended map

ζq : (Q〈B〉, ∗q)→ (Zq, ·),
bs1 . . . bsl 7→ ζreg

q (s1, . . . , sl),

which is by Theorem 4.11 completely determined by the balanced multiple q-zeta values.

Definition 4.12. The algebra Zfq of formal multiple q-zeta values6 is given by

Zfq = (Q〈B〉, ∗q)�Relq,

where Relq is the ideal in (Q〈B〉, ∗q) generated by {b0} ∪ {w − τ(w) | w ∈ Q〈B〉0}.

Denote by ζfq (w) the image of w ∈ Q〈B〉 in the quotient space Zfq and set ζfq (1) = 1. Then
Zfq is the weight-graded algebra spanned by the elements ζfq (w), w ∈ B∗, which exactly
satisfy the following relations

(i) ζfq (b0) = 0
(ii) ζfq (v ∗q w) = ζfq (v)ζfq (w), v, w ∈ Q〈B〉
(iii) ζfq (τ(w)) = ζfq (w), w ∈ Q〈B〉0

Observe that we have similar to Theorem 4.11)

ζfq (w) = ζfq

(
reg−1

q (w)|T=0
)

for all w ∈ Q〈B〉.

Thus, the space Zfq is spanned by the elements ζfq (w), where w ∈ Q〈B〉0 are words.

Remark 4.13. In [BIM] the algebra of formal multiple Eisenstein series is studied, which
is isomorphic to the algebra Zfq (on the level of generating series the isomorphism is given
by #Y , cf Theorem 2.75).

6A more precise name would be formal regularized balanced multiple q-zeta values, but for simplicity
we call them just formal multiple q-zeta values. The notation of this space might change in forthcoming
work, because it is also related to multiple Eisenstein series.
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By definition, the algebra Zfq is equipped with the following universal property.

Proposition 4.14. For every Q-algebra R and every algebra morphism

ϕ : (Q〈B〉, ∗q)→ R,

which is τ -invariant on Q〈B〉0 and satisfies ϕ(b0) = 0, there exists a unique algebra mor-
phism ϕ̃ : Zfq → R, such that the following diagram commutes

Q〈B〉 Zfq

R

ϕ

ζfq

ϕ̃

Corollary 4.15. There is a surjective algebra morphism

Zfq � Zq,
ζfq (w) 7→ ζreg

q (w).

Proof. By Theorem 4.11, the map Q〈B〉 → Zq, w 7→ ζreg
q (w) is an algebra morphism

satisfying ζreg
q (b0) = 0. Moreover, for each w ∈ Q〈B〉0 one has ζreg

q (w) = ζq(w) and the
balanced multiple zeta values are τ -invariant on Q〈B〉0 (Theorem 2.59). Therefore, we
can apply Proposition 4.14 to the map Q〈B〉 → Zq, w 7→ ζreg

q (w) and obtain an algebra
morphism

Zfq → Zq, ζfq (w) 7→ ζreg
q (w).

Since the balanced multiple q-zeta values form a spanning set of Zq (Proposition 2.57),
one obtains surjectivity.

All relations in Zq should be induced by the balanced quasi-shuffle product formula and
the τ -invariance of the balanced multiple q-zeta values (Conjecture 2.60), therefore we
expect that the morphism in Corollary 4.15 is an isomorphism.

Corollary 4.16. The elements ζfq (2), ζfq (4), ζfq (6) are algebraic independent. In particu-
lar, Q[ζfq (2), ζfq (4), ζfq (6)] is a free polynomial algebra isomorphic to the algebra M̃Q(SL2(Z))
of quasi-modular forms.

Proof. The balanced multiple q-zeta values ζq(2), ζq(4), ζq(6) equal the classical Eisenstein
series of weight 2, 4, 6 (Example 2.61 2)). Thus, we obtain from classical results in the
theory of quasi-modular forms that ζq(2), ζq(4), ζq(6) are algebraic independent and
that Q[ζq(2), ζq(4), ζq(6)] is a free polynomial algebra equal to the algebra M̃Q(SL2(Z))
([MR05, Lemma 117, Proposition 124]). Since we have by Corollary 4.15 a surjective
algebra morphism Zfq → Zq sending ζfq (k) to ζq(k) for each k ≥ 1, we deduce that also
the elements ζfq (2), ζfq (4), ζfq (6) are algebraic independent and that the free polynomial
algebra Q[ζfq (2), ζfq (4), ζfq (6)] is isomorphic to M̃Q(SL2(Z)).

Similar to the case of multiple zeta values ([Rac00]), we want to relate the algebra Zfq to
a subset of the Hopf algebra (R〈〈B〉〉, conc,∆q).

Definition 4.17. For each commutative Q-algebra R with unit, denote by BM(R) the set
of all non-commutative power series Φ in R〈〈B〉〉 satisfying
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(i) (Φ|b0) = 0,
(ii) ∆q(Φ) = Φ⊗̂Φ,
(iii) τ(Π0(Φ)) = Π0(Φ).

Here Π0 denotes the R-linear extension of the canonical projection Q〈B〉 → Q〈B〉0, which
is the identity on Q〈B〉0 and maps all words starting with b0 to 0.
For each λ1, λ2, λ3 ∈ R, let BM(λ1,λ2,λ3)(R) be the subset of all Φ ∈ BM(R) additionally
satisfying

(iv) (Φ | b2) = λ1, (Φ | b4) = λ2, (Φ | b6) = λ3.

We abbreviate BM0(R) = BM(0,0,0)(R).
Theorem 4.18. For every commutative Q-algebra R with unit, there are bijections

BM(R) ' HomQ -Alg(Zfq , R), BM0(R) ' HomQ -Alg

(
Zfq�(

ζfq (2), ζfq (4), ζfq (6)
), R).

In particular, BM : Q -Alg → Sets is an affine scheme represented by the algebra Zfq and

BM0 : Q -Alg→ Sets is an affine scheme represented by Z
f
q�(

ζfq (2), ζfq (4), ζfq (6)
).

An introduction to affine (group) schemes is given in Appendix A.6. Note that for these
bijections the regularization in Theorem 4.11 is essential.

Proof. The first bijection is given by the map

f : HomQ -Alg(Zfq , R)→ BM(R),
ϕ 7→

∑
w∈B∗

ϕ(ζfq (w))w.

Let ϕ : Zfq → R be a Q-algebra morphism. Since ζfq (b0) = 0, we obtain (f(ϕ)|b0) = 0.
The formal multiple q-zeta values satisfy the balanced quasi-shuffle product formula, thus
we have (f(ϕ)|u ∗q v) = (f(ϕ)|u)(f(ϕ)|v) for all u, v ∈ Q〈B〉. From the duality of ∗q and
∆q (Theorem 4.5), we deduce

(∆q(f(ϕ)) | u⊗ v) = (f(ϕ) | u ∗q v) = (f(ϕ) | u) (f(ϕ) | v) = (f(ϕ)⊗ f(ϕ) | u⊗ v)

for all u, v ∈ Q〈B〉. In particular, the power series f(ϕ) is grouplike for ∆q. Since τ
maps words onto words, the τ -invariance of the formal multiple q-zeta values on Q〈B〉0
implies τ

(
Π0(f(ϕ))

)
= Π0(f(ϕ)). This shows that ϕ(f) is contained in the set BM(R) and

therefore the map f is well-defined. The inverse of f is given by

BM(R)→ HomQ -Alg(Zfq , R),

Φ 7→
(
ζfq (w) 7→ (Φ | w)

)
,

hence f is indeed a bijection. It is an immediate consequence that f also induces a bijection{
ϕ ∈ HomQ -Alg(Zfq , R)

∣∣∣ ϕ(ζfq (2)) = ϕ(ζfq (4)) = ϕ(ζfq (6)) = 0
}
→ BM0(R),

ϕ 7→ f(ϕ).

By the universal property of the quotient space, the set on the left hand side is in bijection
to

HomQ -Alg

(
Zfq�(

ζfq (2), ζfq (4), ζfq (6)
), R).

This yields the second claimed isomorphy.
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Corollary 4.19. For the regularized multiple q-zeta values given in Definition 4.10, one
obtains ∑

w∈B∗
ζreg
q (w)w ∈ BM

(
Zq
)
.

Proof. Apply the bijection in Theorem 4.18 to the Q-algebra morphism

Zfq → Zq, ζfq (w) 7→ ζreg
q (w)

given in Corollary 4.15.

Relation between formal multiple q-zeta values and formal multiple zeta values.
Let R be a commutative Q-algebra with unit. We relate the set DM(R) defined for multiple
zeta values (Definition B.24) to the set BM(R). This leads to a projection from the algebra
Zfq of formal multiple q-zeta values onto the algebra Zf of formal multiple zeta values
(Definition B.22). We will need the embeddings of the dual shuffle and stuffle Hopf algebra
into (R〈〈B〉〉, conc,∆q), those were defined in (4.7.1) and (4.7.2) as

θX : (R〈〈X 〉〉, conc,∆�)→ (R〈〈B〉〉, conc,∆q), xi 7→ bi (i ∈ {0, 1})
θY : (R〈〈Y〉〉, conc,∆∗)→ (R〈〈B〉〉, conc,∆q), yi 7→ bi (i ≥ 1).

To capture the fact that the map τ is an anti-morphism, we consider the following Hopf
algebra anti morphism

θanti
X : (R〈〈X 〉〉, conc,∆�)→ (R〈〈B〉〉, conc,∆q), (4.19.1)

xs1 . . . xsl 7→ bsl . . . bs1 .

Lemma 4.20. For the canonical projections Π0 : R〈〈B〉〉 → R〈〈B〉〉0 (Definition 4.17)
and ΠY : R〈〈X 〉〉 → R〈〈Y〉〉 (Definition B.24), we have

τ ◦Π0 ◦ θanti
X = θY ◦ΠY .

Proof. For a word w = xk1−1
0 x1 . . . x

kd−1
0 x1 in R〈〈X 〉〉 (where k1, . . . , kd ≥ 1), we compute

(τ ◦Π0 ◦ θanti
X )(w) = τ(b1bkd−1

0 . . . b1b
k1−1
0 ) = bk1 . . . bkd = θY(yk1 . . . ykd) = (θY ◦ΠY)(w).

If w = vx0 for some word v in R〈〈X 〉〉, we obtain

(τ ◦Π0 ◦ θanti
X )(w) = (τ ◦Π0)(b0θanti

X (v)) = 0 = ΠY(vx0) = (θY ◦ΠY)(w)

Theorem 4.21. For each commutative Q-algebra R with unit, we have an injective map

θ : DM(R)→ BM(R),
φ 7→ θanti

X (φ)θY(φ∗)

where we denote (as in Definition B.24)

φ∗ = φcorrΠY(φ) = exp

∑
n≥2

(−1)n−1

n
(ΠY(φ)|yn)yn1

ΠY(φ) ∈ R〈〈Y〉〉.

The chosen order of the factors in the definition of θ is necessary for the compatibility of
the projections ΠY and Π0 under the map θ.
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Proof. Let φ ∈ DM(R). We have (φ | x0) = 0 and hence (θ(φ) | b0) = 0. Since θanti
X , θY

are coalgebra morphisms and φ and φ∗ are grouplike for ∆� and ∆∗, we compute
∆q
(
θ(φ)

)
= ∆q

(
θanti
X (φ)

)
∆q
(
θY(φ∗)

)
=
(
θanti
X (φ) ⊗̂ θanti

X (φ)
)(
θY(φ∗) ⊗̂ θY(φ∗)

)
= θ(φ) ⊗̂ θ(φ).

By Lemma 4.20, we obtain

τ
(
Π0(θ(φ))

)
= τ

(
Π0(θanti

X (φ))θY(φ∗)
)

= τ
(
θY(φ∗)

)
τ
(
Π0(θanti

X (φ))
)

= τ
(
θY(φ∗)

)
θY
(
ΠY(φ)

)
= τ

(
θY(ΠY(φ))

)
τ
(
θY(φcorr)

)
θY
(
ΠY(φ)

)
= Π0

(
θanti
X (φ)

)
θY
(
φcorr

)
θY
(
ΠY(φ)

)
= Π0

(
θanti
X (φ)

)
θY(φ∗)

= Π0
(
θ(φ)

)
.

Note that θY(φcorr) consists of the letter b1 and is therefore τ -invariant. We have proven
that θ(φ) is an element in BM(R) and thus the map θ is well-defined.
Next, we show injectivity. The elements φ ∈ DM(R) satisfy (φ | x1) = 0 and hence also
(φ | xn1 ) = 0 for all n ≥ 1. Thus, any non-trivial word in θanti

X (φ) contains the letter b0 and
every non-trivial word in θY(φ∗) contains a letter bi, i > 1. As (θanti

X (φ) | 1) = (θY(φ) |
1) = 1, we deduce

θ(φ) = θanti
X (φ)θY(φ) = θanti

X (φ) + θY(φ) +
(

linear combinations of words containing
the letters b0 and bi for some i > 1

)
.

In particular, the part of θ(φ) consisting of the letters b0, b1 is exactly θanti
X (φ). Therefore,

the injectivity of θanti
X implies the injectivity of θ.

Since the set DM(R) is non-empty for any commutative Q-algebra R with unit (Theorem
B.25), the existence of the injective map in Theorem 4.21 shows that BM(R) is non-empty.

Since θ : DM → BM is an injective natural transformation of affine schemes, we obtain a
surjective morphism between the representing algebras (Theorem A.81).
Corollary 4.22. There is a surjective algebra morphism from Zfq onto the algebra Zf of
formal multiple zeta values (Definition B.22) given by

p : Zfq → Zf ,

ζfq (w) 7→
∑
w=uv

u∈Q〈b0,b1〉,v∈Q〈bi|i≥1〉

ζf
�

(
(θanti
X )−1(u)

)
ζf∗

(
θ−1
Y (v)

)
, (w ∈ B∗).

Here ζf∗ (u) denotes the stuffle-regularized formal multiple zeta values and ζf�(v) denotes
the shuffle-regularized formal multiple zeta values (obtained by applying the techniques
in Proposition B.5 to the formal multiple zeta values).

Proof. The element idZf ∈ HomQ -Alg(Zf ,Zf ) corresponds to the element ∑
w∈X ∗

ζf�(w)w

in DM(Zf ) under the bijection given in Theorem B.26. We obtain

θ

( ∑
w∈X ∗

ζf
�

(w)w
)

= θanti
X

( ∑
u∈X ∗

ζf
�

(u)u
)
θY

( ∑
v∈Y∗

ζf∗ (v)v
)

=
∑

u∈X ∗, v∈Y∗
ζf
�

(u)ζf∗ (v)θanti
X (u)θY(v)

=
∑

u∈{b0,b1}∗, v∈{bi|i≥1}∗
ζf
�

(
(θanti
X )−1(u)

)
ζf∗

(
θ−1
Y (v)

)
uv.
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So under the bijection given in Theorem 4.18 the element θ
( ∑
w∈X ∗

ζf�(w)w
)
∈ BM(Zf )

corresponds to the algebra morphism

p : Zfq → Zf ,

ζfq (w) 7→
∑
uv=w

u∈Q〈b0,b1〉, v∈Q〈bi|i≥1〉

ζf
�

(
(θanti
X )−1(u)

)
ζf∗

(
θ−1
Y (v)

)
(w ∈ B∗).

By Yoneda’s Lemma (Theorem A.81) this is exactly the algebra morphism induced by the
natural transformation θ : DM→ BM of affine schemes.

Remark 4.23. (i) The map p : Zfq → Zf can be seen as a formal limit q → 1, for example,
one computes

p(ζfq (b2b3)) = ζf
�

(1)ζf∗ (y2y3) = ζf (2, 3)

and similarly
lim
q→1

(1− q)5ζq(2, 3) = ζ(2, 3).

In [BI22, Theorem 4.18] it is proven in a slightly different context that these similarities
hold in general. Moreover, in [BIM] a quotient of the algebra of formal multiple Eisenstein
series is considered, which is isomorphic to the algebra Zf of formal multiple zeta values.
The corresponding projection map is similar to the map p.

(ii) In [BKM21] the formal double Eisenstein space Ew of weight w is introduced and there
is a canonical projection Ew → Fil(2)

D (Zfq )(w) (which is on the level of generating series
given by #−1

Y , cf. Theorem 2.75). On p. 6 they give a split exact sequence relating the
space Ew to the formal double zeta space Dw defined for multiple zeta values ([GKZ06]),

0 ker(πw) Ew Dw 0.πw

σw

If we exclude the case w = 2, then we have a canonical projection Dw → Fil(2)
D (Zf )(w). In

particular, the map πw has some similarities to the projection p.
Moreover, they obtained in Proposition 3.7 a realization in the algebra of quasi-modular
forms Ek � M̃Q

k (SL2(Z)), which might give rise to a non-trivial element in the set
BM

(
M̃Q(SL2(Z))

)
.
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4.4 Definition of the space bm0

Linearizing the defining equations of the sets BM(R) (Definition 4.17) yields the definition
of the following spaces.

Definition 4.24. For each commutative Q-algebra R with unit, let bm(R) be the R-vector
space consisting of all non-commutative polynomials Ψ ∈ R〈B〉 satisfying

(i) (Ψ|b0) = 0,
(ii) ∆q(Ψ) = Ψ⊗ 1 + 1⊗Ψ,
(iii) τ(Π0(Ψ)) = Π0(Ψ).

Here Π0 denotes the R-linear extension of the canonical projection Q〈B〉 → Q〈B〉0 (cf
Definition 4.17).
Let bm0(R) be the subspace consisting of all Ψ ∈ bm(R) additionally satisfying

(iv) (Ψ|b2) = (Ψ|b4) = (Ψ|b6) = 0.

Denote bm = bm(Q) and bm0 = bm0(Q) and observe that we have

bm(R) = bm⊗R, bm0(R) = bm0 ⊗R.

Proposition 4.25. For an element Ψ ∈ bm(R), the condition (iv) is equivalent to

(Ψ|bkbm0 ) = 0, k ≥ 1, m ≥ 0, k +m even.

Proof. Consider the R-linear map

ρB : R〈B〉0 → R[X1, Y1, X2, Y1, . . .],
bk1b

m0
0 . . . bkdb

md
0 7→ Xk1−1

1 Y m1
1 . . . Xkd−1

d Y md
d

and define for each f ∈ R〈B〉 the polynomials ρB(f)0 = 0 and

ρB(f)d
(
X1, . . . , Xd

Y1, . . . , Yd

)
= ρB

(
Π0(f)(d)

)
, d ≥ 1,

where Π0(f)(d) denotes the homogeneous component of Π0(f) of depth d. In the following,
we will usually drop the depth index and just write ρB(f)

(X1,...,Xd
Y1,...,Yd

)
. Moreover, set

ρB(f)#Y

(
X1, . . . , Xd

Y1, . . . , Yd

)
= ρB(f)

(
X1, X2, . . . , Xd

Y1, Y1 + Y2, . . . , Y1 + · · ·+ Yd

)
.

Then as observed in Theorem 5.46 and Corollary 5.51, for each Ψ ∈ bm(R) the bimould
(ρB(Ψ)#Y

d )d≥0 is alternil and swap invariant. Thus, we have (cf Example C.14 and (C.15.1)
considered modulo products)

0 = ρB(Ψ)#Y

(
X1, X2
Y1, Y2

)
+ ρB(Ψ)#Y

(
X2, X1
Y2, Y1

)
+RX

(
X1, X2
Y1, Y2

)

= ρB(Ψ)#Y

(
X1 +X2, X1
Y2, Y1 − Y2

)
+ ρB(Ψ)#Y

(
X1 +X2, X2
Y1, Y2 − Y1

)
+RY

(
X1, X2
Y1, Y2

)
,
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where

RX

(
X1, X2
Y1, Y2

)
=
ρB(Ψ)#Y

(
X1

Y1 + Y2

)
− ρB(Ψ)#Y

(
X2

Y1 + Y2

)
X1 −X2

,

RY

(
X1, X2
Y1, Y2

)
=
ρB(Ψ)#Y

(
X1 +X2

Y1

)
− ρB(Ψ)#Y

(
X1 +X2

Y2

)
Y1 − Y2

.

The following computations are similar to [BKM21, Lemma 4.2., Theorem 4.4]. First, we
obtain from the above equations

ρB(Ψ)#Y

(
X2, X1
Y2, Y1

)
= −ρB(Ψ)#Y

(
X1, X2
Y1, Y2

)
−RX

(
X1, X2
Y1, Y2

)
,

ρB(Ψ)#Y

(
X1, X1 −X2
Y1 + Y2,−Y2

)
= ρB(Ψ)#Y

(
X1 +X2, X1
Y2, Y1 − Y2

)∣∣∣∣X1=X1−X2, X2=X2
Y1=Y1, Y2=Y1+Y2

= −ρB(Ψ)#Y

(
X1, X2
Y1, Y2

)
−RY

(
X1 −X2, X2
Y1, Y1 + Y2

)
.

We deduce

ρB(Ψ)#Y

(
X2, X2 −X1
Y1 + Y2,−Y1

)
= ρB(Ψ)#Y

(
X1, X1 −X2
Y1 + Y2,−Y2

)∣∣∣∣X1=X2, X2=X1
Y1=Y2, Y2=Y1

(4.25.1)

= −ρB(Ψ)#Y

(
X2, X1
Y2, Y1

)
−RY

(
X2 −X1, X1
Y2, Y1 + Y2

)

= ρB(Ψ)#Y

(
X1, X2
Y1, Y2

)
+RX

(
X1, X2
Y1, Y2

)
−RY

(
X2 −X1, X1
Y2, Y1 + Y2

)
.

Applying again the same substitution X1 = X2, X2 = X2 −X1, Y1 = Y1 + Y2, Y2 = −Y1
to both sides and then using (4.25.1) leads to

ρB(Ψ)#Y

(
X2 −X1,−X1
Y2,−Y1 − Y2

)
= ρB(Ψ)#Y

(
X2, X2 −X1
Y1 + Y2,−Y1

)
+RX

(
X2, X2 −X1
Y1 + Y2,−Y1

)

−RY

(
−X1, X2
−Y1, Y2

)

= ρB(Ψ)#Y

(
X1, X2
Y1, Y2

)
+RX

(
X1, X2
Y1, Y2

)
−RY

(
X2 −X1, X1
Y2, Y1 + Y2

)

+RX
(
X2, X2 −X1
Y1 + Y2,−Y1

)
−RY

(
−X1, X2
−Y1, Y2

)
.

Finally, applying the same substitution a third time and then using (4.25.1), we end up
with

ρB(Ψ)#Y

(
−X1,−X2
−Y1,−Y2

)
(4.25.2)

= ρB(Ψ)#Y

(
X2, X2 −X1
Y1 + Y2,−Y1

)
+RX

(
X2, X2 −X1
Y1 + Y2,−Y1

)
−RY

(
−X1, X2
−Y1, Y2

)
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+RX
(
X2 −X1,−X1
Y2,−Y1 − Y2

)
−RY

(
−X2, X2 −X1
−Y1 − Y2,−Y1

)

= ρB(Ψ)#Y

(
X1, X2
Y1, Y2

)
+RX

(
X1, X2
Y1, Y2

)
−RY

(
X2 −X1, X1
Y2, Y1 + Y2

)
+RX

(
X2, X2 −X1
Y1 + Y2,−Y1

)

−RY

(
−X1, X2
−Y1, Y2

)
+RX

(
X2 −X1,−X1
Y2,−Y1 − Y2

)
−RY

(
−X2, X2 −X1
−Y1 − Y2,−Y1

)
.

Observe that we have

RX

(
X1, X2
Y1, Y2

)
=

∑
k1,k2≥1
m1,m2≥0

(
m1 +m2
m1

)
(Ψ | bk1+k2b

m1+m2
0 )Xk1−1

1 Xk2−1
2 Y m1

1 Y m2
2 ,

RY

(
X1, X2
Y1, Y2

)
=

∑
k1,k2≥1
m1,m2≥0

(
k1 + k2 − 2
k1 − 1

)
(Ψ | bk1+k2−1b

m1+m2+1
0 )Xk1−1

1 Xk2−1
2 Y m1

1 Y m2
2 .

Thus for k1, k2 ≥ 1, m1,m2 ≥ 0, k = k1 +k2, m = m1 +m2 and k+m even, the coefficient
of Xk1−1

1 Xk2−1
2 Y m1

1 Y m2
2 in (4.25.2) is given by

0 =
(
m

m1

)
(Ψ | bkbm0 )− δk1,1

m∑
j=0

(
m− j
m1

)
(Ψ | bk−1b

m+1
0 )

+ δm1,0(−1)k1−1
k−1∑
j=1

(
k − j − 1
k1 − 1

)
(Ψ | bkbm0 )− (−1)m1+k1−1

(
k − 2
k1 − 1

)
(Ψ | bk−1b

m+1
0 )

+ δm2,0(−1)m1+k1−1
k−1∑
j=1

(
k − j − 1
k1 − j

)
(Ψ | bkbm0 )− δk2,1

m∑
j=0

(
m− j
m2

)
(Ψ | bk−1b

m+1
0 )

Note that the terms of depth 2 cancel out, since they only differ by the sign (−1)k−2+m.
Simplifying the formula, we obtain((

m

m1

)
+ δm1,0(−1)k1−1

(
k − 1
k2 − 1

)
+ δm2,0(−1)m1+k1−1

(
k − 1
k2

))
(Ψ | bkbm0 ) =(

(−1)m1+k1−1
(
k − 2
k1 − 1

)
+ δk1,1

(
m+ 1
m2

)
+ δk2,1

(
m+ 1
m2 + 1

))
(Ψ | bk−1b

m+1
0 ) (4.25.3)

Assume that k ≥ 6 and in (4.25.3) choose the case (k1, k2,m1,m2) = (k − 2, 2, 0, 0) and
multiply with k−3

2 and then subtract the case (k1, k2,m1,m2) = (k − 3, 3, 0, 0) to obtain

(k + 1)(k − 1)(k − 6)
12 (Ψ | bkbm0 ) = 0.

Therefore, we get for k > 6 even and Ψ ∈ bm(R) that

(Ψ | bk) = 0

and by iteratively applying the identity (4.25.3) we obtain

0 = (Ψ | bk) = (Ψ | bk−1b0) = (Ψ | bk−2b
2
0) = · · · = (Ψ | b1bm0 ).

Thus we are left with showing that we can deduce from (Ψ | b2) = (Ψ | b4) = (Ψ | b6) = 0
that (Ψ | bkbm0 ) = 0 for k + m ≤ 6 even. But this follows again from applying iteratively
the identity (4.25.3). The converse implication trivially holds.
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In analogy to the case of multiple zeta values (Theorem B.30, Corollary B.31), there is
the following big main conjecture.

Conjecture 4.26.

(i) The space bm0 admits a weight-graded Lie algebra structure.

(ii) The functor BM0 is a pro-unipotent affine group scheme with Lie algebra functor

b̂m0 : Q -Alg→ Lie-Alg, R 7→ b̂m0(R).

(iii) For any commutative Q-algebra R with unit and all λ1, λ2, λ3 ∈ R, the group BM0(R)
acts freely and transitively on BM(λ1,λ2,λ3)(R). We obtain an isomorphism of affine
schemes

A3 × b̂m0
∼−→ BM,

where A3 is the affine scheme introduced in Example A.87 for V = Q3.

Here b̂m0(R) denotes the completion of bm0(R) with respect to the weight (cf Proposition
A.45). As in the case of formal multiple zeta values (Corollary B.32), the following holds.

Theorem 4.27. Assuming Conjecture 4.26, we obtain an algebra isomorphism

Zfq ' M̃Q(SL2(Z))⊗ U(bm0)∨.

In particular, by Proposition A.35, Zfq would be a free polynomial algebra.

Proof. By Proposition A.90 the affine scheme b̂m0 is represented by S(bm∨0 ), by Theorem
4.18 the affine scheme BM is represented by Zfq , and by Example A.87 the affine scheme
A3 is represented by S((Q3)∗) ' Q[Z1, Z2, Z3]. So applying Yoneda’s Lemma (Theorem
A.81) to the isomorphism A3 × b̂m0 → BM of affine schemes given in Conjecture 4.26
yields an isomorphism of algebras

Q[Z1, Z2, Z3]⊗ S(bm∨0 ) ' Zfq .

By Proposition A.35 we have an algebra isomorphism S(bm∨0 ) ' U(bm0)∨ and from clas-
sical results in the theory of quasi-modular forms ([MR05, Proposititon 124]) we get
Q[Z1, Z2, Z3] ' M̃Q(SL2(Z)). Thus, we obtain the claimed isomorphy.

We end the subsection by showing that the double shuffle Lie algebra dm0 (Definition
B.27) related to multiple zeta values embeds into the space bm0.

Theorem 4.28. There is an embedding of vector spaces

θ : dm0 → bm0,

ψ 7→ θanti
X (ψ) + θY(ψ∗),

where we denote (as in Definition B.27)

ψ∗ = ΠY(ψ) + ψcorr = ΠY(ψ) +
∑
n≥2

(−1)n−1

n
(ΠY(ψ)|yn)yn1

and the maps θanti
X , θY are defined in (4.19.1), (4.7.2).
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Proof. Let ψ ∈ dm0. Then one has (ψ | x0) = 0 and hence (θ(ψ) | b0) = 0. Since the maps
θanti
X and θY are coalgebra morphisms and the elements ψ, ψ∗ are primitive for ∆�, ∆∗,

one obtains

∆q
(
θ(ψ)

)
= ∆q

(
θanti
X (ψ) + θY(ψ∗)

)
= 1⊗ θanti

X (ψ) + θanti
X (ψ)⊗ 1 + 1⊗ θY(ψ∗) + θY(ψ∗)⊗ 1

= 1⊗ θ(ψ) + θ(ψ)⊗ 1.

By definition of the map θY , the image θY(ψ∗) does not contain the letter b0, and thus
Π0(θY(ψ∗)) = θY(ψ∗). Together with Lemma 4.20, compute

τ
(
Π0(θ(ψ))

)
= τ

(
Π0(θanti

X (ψ))
)

+ τ
(
θY(ψ∗)

)
= θY

(
ΠY(ψ)

)
+ τ

(
θY(ΠY(ψ))

)
+ τ

(
θY(ψcorr)

)
= θY

(
ΠY(ψ)

)
+ Π0

(
θanti
X (ψ)

)
+ θY(ψcorr)

= Π0
(
θanti
X (ψ)

)
+ θY(ψ∗)

= Π0
(
θ(ψ)

)
.

For the third equality observe that θY(ψcorr) consists of the letter b1 and is therefore τ -
invariant. Finally, we obtain from Proposition B.29 that (ψ | xk−1

0 x1) = 0 for k ≥ 2 even
and thus (θ(ψ) | b2) = (θ(ψ) | b4) = (θ(ψ) | b6) = 0. Altogether, the element θ(ψ) is
contained in bm0 and thus the map θ is well-defined. Since θanti

X and θY are injective, also
the map θ is injective.
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4.5 Calculating the space bm0

We will present an algorithm to compute a basis for bm0 in some given weight w. The
computations are partly similar to the ones done in [ENR03] for multiple zeta values.
In particular, implementing the algorithm allows us to compute the dimensions of the
homogeneous subspaces bm

(w)
0 for weight w ≤ 13 and observe that they coincide with the

dimension conjecture 1.22 (iii). The computations will be done in a new alphabet V.

Definition 4.29. For each k ≥ 1, denote by vk the homogeneous part of weight k of
log

(
1 +∑

l≥1 bl
)
, this means

vk =
∑

l1+···+ld=k
l1,...,ld≥1

(−1)d+1

d
bl1 . . . bld .

Moreover set v0 = b0 and let V be the alphabet consisting of the letters vi, i ≥ 0. We
define the weight and depth for a word in Q〈V〉 as

wt(vs1 . . . vsl) = s1 + · · ·+ sl + |{i | si = 0}|, dep(vs1 . . . vsl) = l − |{i | si = 0}|.

Example 4.30. One computes

v1 = b1,

v2 = b2 −
1
2b

2
1,

v3 = b3 −
1
2b1b2 −

1
2b2b1 + 1

3b
3
1,

v4 = b4 −
1
2b1b3 −

1
2b2b2 −

1
2b3b1 + 1

3b
2
1b2 + 1

3b1b2b1 + 1
3b2b

2
1 −

1
4b

4
1.

Lemma 4.31. The alphabet V generates the algebra (Q〈B〉, conc).

Proof. For all k ≥ 1, one has

bk =
∑

l1+···+ld=k
l1,...,ld≥1

1
d!vl1 . . . vld . (4.31.1)

Since the letters b0 = v0 and bk, k ≥ 1, are the canonical algebra generators of Q〈B〉, we
obtain the claim.

Observe that the notions of weight and depth defined for the alphabet V (Definition 4.29)
and the alphabet B (Definition 2.11) induce the same filtrations on the algebra Q〈B〉.

Proposition 4.32. The primitive elements of (Q〈B〉, conc,∆q) are exactly given by LieQ〈V〉.

Proof. LetA = {a0, a1, a2, . . .} be a countable alphabet and equip the free non-commutative
algebra (Q〈A〉, conc) with the shuffle coproduct (Example A.62)

∆�(ai) = ai ⊗ 1 + 1⊗ ai, i ≥ 0,

so ∆� is compatible with the concatenation product. We show that we have a Hopf
algebra isomorphism

σ : (Q〈A〉, conc,∆�) ∼−→ (Q〈B〉, conc,∆q),
ai 7→ vi.
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Since the primitive elements of Q〈A〉 are exactly given by LieQ〈A〉 (Corollary A.40), we
deduce Prim(Q〈B〉) = LieQ〈V〉. Clearly, σ is an algebra isomorphism, thus we only have
to check that σ is a coalgebra morphism. We obtain

∆q

1 +
∑
l≥1

bl

 = 1⊗ 1 +
∑
l≥1

(
1⊗ bl + bl ⊗ 1 +

∑
l1+l2=l
l1,l2≥1

bl1 ⊗ bl2
)

=

1 +
∑
l≥1

bl

⊗
1 +

∑
l≥1

bl

 ,
so the element 1 + ∑

l≥1 bl is grouplike for the coproduct ∆q. Therefore, Theorem A.51
implies that log

(
1+∑l≥1 bl

)
is primitive for ∆q. Since the coproduct ∆q is graded for the

weight, also the homogeneous components vk, k ≥ 1, of log
(
1 + ∑

l≥1 bl
)

are primitive.
Moreover, the element v0 = b0 is by definition primitive for ∆q. We deduce for each i ≥ 0

∆q(σ(ai)) = ∆q(vi) = 1⊗ vi + vi ⊗ 1 = 1⊗ σ(ai) + σ(ai)⊗ 1 = (σ ⊗ σ)(∆�(ai)).

Hence σ is a coalgebra morphism.

Since one requirement on the elements in bm0 is to be primitive for the coproduct ∆q, we
obtain the following.

Corollary 4.33. We have an inclusion bm0 ⊂ LieQ〈V〉.

In particular, the first step towards a basis of some homogeneous space bm(w)
0 is to compute

a basis for the homogeneous space LieQ〈V〉(w) in some weight w. More precisely, we will
compute the Lyndon basis (Definition A.12, Theorem A.13). We start by generating a list
of all Lyndon words in the alphabet V up to some weight w.

Proposition 4.34. ([BP94, chapter 2]) The following variant of Duval’s algorithm com-
putes for some given Lyndon word w ∈ Q〈V〉 of weight ≤ n the next Lyndon word of
weight ≤ n.

Algorithm 1 Duval’s algorithm
• Input: Lyndon word w ∈ Q〈V〉, weight n ∈ N
• Generate the word u of length n, whose ith letter is equal to the ith

letter of w modulo the length of w
• While wt(u) > n omit the last letter of u
• If wt(u) = n and the last letter of u is not equal to v0, omit the

last letter of u
• Replace the last letter vi of u by vi+1
• Output: u

In particular, starting with the smallest Lyndon word v0 in the alphabet V and successively
applying Duval’s algorithm to the previous output yields a list of all Lyndon words in V of
weight ≤ n. The procedure stops at the Lyndon word vn, since the next output of Duval’s
algorithm is the empty word.
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Example 4.35. Up to weight 5, one obtains successively the following Lyndon words by
applying Duval’s algorithm (Proposition 4.34)

v0, v0v0v0v0v1, v0v0v0v1, v0v0v0v1v1, v0v0v0v2, v0v0v1, v0v0v1v0v1, v0v0v1v1,

v0v0v1v1v1, v0v0v1v2, v0v0v2, v0v0v2v1, v0v0v3, v0v1, v0v1v0v1v1, v0v1v0v2,

v0v1v1, v0v1v1v1, v0v1v1v1v1, v0v1v1v2, v0v1v2, v0v1v2v1, v0v1v3, v0v2,

v0v2v1, v0v2v1v1, v0v2v2, v0v3, v0v3v1, v0v4, v1, v1v1v1v2, v1v1v2, v1v1v3,

v1v2, v1v2v2, v1v3, v1v4, v2, v2v3, v3, v4, v5.

Next, we compute the standard bracket of each Lyndon word (Definition A.12 (ii)).

Proposition 4.36. ([Lo05, p. 15]) For an arbitrary word w ∈ Q〈V〉, the following algo-
rithm computes the length (first output) and the multiplicity (second output) of the first
Lyndon factor of w.
Algorithm 2 Lyndon factorization
• Input: Word w ∈ Q〈V〉
• Set i = 0, j = 1
• While j is smaller than the length of w and the (i + 1)-th letter of w

is smaller or equal to the (j + 1)-th letter of w, do:
• If the (i+ 1)-th letter is smaller than the (j + 1)-th letter of w,

set i = 0; else increase i by 1
• Increase j by 1

• Output:
(
j − i,

⌊
j
j−i

⌋)

Consider some Lyndon word w ∈ Q〈V〉 and write w = viw̃ with vi ∈ V and w̃ ∈ Q〈V〉.
Successively applying the previous algorithm to the word w̃ yields the Lyndon factorization

w̃ = ln1
1 . . . lnrr , l1 > · · · > lr Lyndon words.

Then the word lr is the longest suffix of w̃ and hence the longest nontrivial suffix of w,
which is a Lyndon word ([Re93, Lemma 7.14]). Thus, the standard bracket of w (Definition
A.12) is recursively given by

γ(w) = [γ(viln1
1 . . . l

nr−1
r−1 l

nr−1
r ), γ(lr)].

From Theorem A.13, one directly obtains the following.

Proposition 4.37. The standard brackets γ(w), w ∈ Q〈V〉 Lyndon word, give a basis for
the space LieQ〈V〉.

Example 4.38. By applying the algorithm in Proposition 4.36, one obtains successively
the following basis for the homogeneous subspaces of LieQ〈V〉 up to weight 5:

v0, v1, v2, , v3, , v4, v5, [v0, v1], [v0, v2], [v0, v3], [v0, v4], [v1, v2],
[v1, v3], [v1, v4], [v2, v3], [v0, [v0, v1]], [v0, [v0, v2]], [v0, [v0, v3]], [[v0, v1], v1],
[v0, [v1, v2]], [v0, [v1, v3]], [[v0, v2], v1], [[v0, v2], v2], [[v0, v3], v1], [v1, [v1, v2]],
[v1, [v1, v3]], [[v1, v2], v2], [v0, [v0, [v0, v1]]], [v0, [v0, [v0, v2]]], [v0, [[v0, v1], v1]],
[v0, [v0, [v1, v2]]], [v0, [[v0, v2], v1]], [[v0, v1], [v0, v2]], [[[v0, v1], v1], v1],
[v0, [v1, [v1, v2]]], [[v0, [v1, v2]], v1], [[[v0, v2], v1], v1], [v1, [v1, [v1, v2]]],
[v0, [v0, [v0, [v0, v1]]]], [v0, [v0, [[v0, v1], v1]]], [[v0, [v0, v1]], [v0, v1]],
[v0, [[[v0, v1], v1], v1]], [[v0, v1], [[v0, v1], v1]], [[[[v0, v1], v1], v1], v1].
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The last step for computing a basis of bm(w)
0 is to determine the subspace in LieQ〈V〉(w)

spanned by the elements, whose projections to Q〈B〉0 are τ -invariant.

Theorem 4.39. Let n > 1 be given. Then the following steps lead to a basis for the
homogeneous subspace bm(n) of weight n:

1) Compute the standard brackets γ(w) for all Lyndon words w ∈ Q〈V〉 of weight n
(Proposition 4.34, 4.36).

2) Rewrite all standard brackets γ(w) from step 1) in the alphabet B (Definition 4.29)
and apply the projection Π0.

3) Compute a basis for the intersection of ker(τ − id) and the vector space spanned by
the elements obtained in step 2).

4) In the basis obtained in step 3) replace all the projections with their original standard
brackets.

If n = 2, 4, 6 omit the elements containing the word vn to obtain a basis of bm
(n)
0 . In all

other cases, one has bm
(n)
0 = bm(n).

Unfortunately, the size of the matrices in step 3) increases very fast, hence we were able
to execute the algorithm only up to weight 13.

Example 4.40. 1) Without any algorithm it is easy to see that the homogeneous subspace
bm

(1)
0 is spanned by the element

ξ

(
1
0

)
= v1.

2) To determine a basis for bm(2)
0 , we first compute the projections of the standard brackets

of weight 2 (obtained in Example 4.38):

σ
(2)
1 = b2 −

1
2b1b1, σ

(2)
2 = −b1b0.

Restricting the map τ − id to spanQ{σ
(2)
1 , σ

(2)
2 } we obtain that the kernel is spanned by

σ
(2)
1 − σ

(2)
2 .

Thus the space bm(2) is spanned by the element v2− [v0, v1] and the space bm0 is empty.

3) In weight 3, we have the following projections of the standard brackets (given in Example
4.38)

σ
(3)
1 = b3 −

1
2b1b2 −

1
2b2b1 + 1

3b1b1b1, σ
(3)
2 = −b2b0 + 1

2b1b1b0, σ
(3)
3 = b1b2 − b2b1,

σ
(3)
4 = b1b0b0, σ

(3)
5 = −2b1b0b1 + b1b1b0.

The kernel of the map τ − id restricted to spanQ{σ
(3)
1 , σ

(3)
2 , σ

(3)
3 , σ

(3)
4 , σ

(3)
5 } has the basis

σ
(3)
1 −

3
2σ

(3)
3 + σ

(3)
4 + σ

(3)
5 , −σ(3)

2 + σ
(3)
3 −

1
2σ

(3)
5 .

91



Thus a basis for the homogeneous subspace bm
(3)
0 is given by

ξ

(
3
0

)
= v3 −

3
2[v1, v2] + [v0, [v0, v1]] + [[v0, v1], v1],

ξ

(
2
1

)
= −[v0, v2] + [v1, v2]− 1

2[[v0, v1], v1].

4) A basis for bm(4) is given by

ξ

(
2, 1
1, 0

)
= [[v0, v2], v1] + 2[v0, [v1, v2]]− [v1, [v1, v2]] + 1

2[[[v0, v1], v1], v1],

v4 −
5
2[v0, v3] + 5

2[v0, [v0, v2]]− [v0, [v0, [v0, v1]]] + 1
2[v1, v3]− 5

4[v0, [v1, v2]]

− 1
4[v0, [[v0, v1], v1]] + 5

12[v1, [v1, v2]]− 1
6[[[v0, v1], v1], v1].

In particular, the first element spans the space bm
(4)
0 .

5) A basis for bm
(5)
0 is given by the elements

ξ

(
5
0

)
= v5 + [v0, [v0, [v0, [v0, v1]]]]− 5

2[v1, v4] + 5[v2, v3] + 2[v0, [v0, [[v0, v1], v1]]]

− 3
2[[v0, [v0, v1]], [v0, v1]] + 5

12[v1, [v1, v3]]− 25
12[[v1, v2], v2] + 2[v0, [[[v0, v1], v1], v1]]

+ 1
2[[v0, v1], [[v0, v1], v1]]− 5

4[v1, [v1, [v1, v2]]] + [[[[v0, v1], v1], v1], v1],

ξ

(
4
1

)
= − [v0, v4]− [v0, [v0, [v0, v2]]] + [v1, v4]− 3

2[v2, v3]− 1
2[v0, [v1, v3]]− 2[[v0, v3], v1]

+ 3
2[[v0, v2], v2]− 1

2[v0, [v0, [[v0, v1], v1]]] + 1
2[[v0, [v0, v1]], [v0, v1]] + [v0, [v0, [v1, v2]]]

− [v0, [[v0, v2], v1]]− 2[[v0, v1], [v0, v2]]− 3
4[v1, [v1, v3]]− 3

4[[v1, v2], v2]

+ 11
6 [v0, [v1, [v1, v2]]] + 3[[v0, [v1, v2]], v1] + 1

6[[[v0, v2], v1], v1]− 1
2[v0, [[[v0, v1], v1], v1]]

− 1
2[[v0, v1], [[v0, v1], v1]]− 1

8[v1, [v1, [v1, v2]]] + 1
8[[[[v0, v1], v1], v1], v1],

ξ

(
3
2

)
= [v0, [v0, v3]] + 3

2[[v0, v3], v1]− [[v0, v2], v2]− 1
2[v0, [v0, [v1, v2]]] + 1

2[v0, [[v0, v2], v1]]

+ 3
2[[v0, v1], [v0, v2]] + 1

2[v1, [v1, v3]] + [[v1, v2], v2]− [v0, [v1, [v1, v2]]]

− 7
4[[v0, [v1, v2]], v1]− 1

12[v0, [[[v0, v1], v1], v1]] + 1
4[[v0, v1], [[v0, v1], v1]]

+ 1
4[v1, [v1, [v1, v2]]]− 1

4[[[[v0, v1], v1], v1], v1],

ξ

(
2, 1, 1
1, 0, 0

)
= −3[v0, [v1, [v1, v2]]]− 3[[v0, [v1, v2]], v1]− [[[v0, v2], v1], v1] + [v1, [v1, [v1, v2]]]

− 1
2[[[[v0, v1], v1], v1], v1].

Recall that we expect the following dimensions for the homogeneous subspaces of the
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universal enveloping algebra of bm0 (Conjecture 1.22 (iii))

HU(bm0)(x) =
∑
w≥0

dimQ U(bm0)(w)xw
?= 1

1−D(x)O1(x) +D(x)R(x) .

Lemma 4.41. There are integers gw ∈ Z, such that

1
1−D(x)O1(x) +D(x)R(x) =

∏
w≥1

(1− xw)−gw .

Proof. This is a simple application of [Bou89, p. 140, Lemma 1].

If (1 − D(x)O1(X) + D(x)R(x))−1 is indeed the Hilbert-Poincare series of the universal
enveloping algebra U(bm0), then by Proposition A.35 and Corollary A.7 we must have
gw ≥ 0 for all w ≥ 1. In particular, Conjecture 1.22 (iii) is equivalent to the following.

Conjecture 4.42. For all w ≥ 1, we have

dimQ bm
(w)
0 = gw.

For example, for w ≤ 14 the following values are obtained in [BK20]:

w 1 2 3 4 5 6 7 8 9 10 11 12 13 14
gw 1 0 2 1 4 3 8 11 18 28 48 74 126 202

We continued the calculations illustrated in Example 4.40 to obtain the following.

Theorem 4.43. For each w ≤ 13, we have

dimQ bm
(w)
0 = gw.

Proof. Execution of the algorithm given in Theorem 4.39 with the computer algebra system
PARI/GP.

The algorithm solves linear equations in LieQ〈V〉. Since

∑
w≥0

dimQ U(LieQ〈V〉)(w)xw = 1
1− 2x− x2 − x3 − x4 − x5 − . . .

= 1 + 2x+ 5x2 + 13x3 + 34x4 + 89x5 + 233x6 + 610x7

+ 1597x8 + 4181x9 + 10946x10 + 28657x11 + 75025x12

+ 196418x13 + 514229x14 + . . . ,

sophisticated methods are needed to verify Conjecture 4.42 for higher weights.
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4.6 Alternative description of bm0 in the alphabet Cbi

For further studies of the space bm0, we will introduce a third alphabet. In this new
alphabet, the elements in bm0 possess the shortest representation. In should be seen as a
q-analog of the alphabet C defined for multiple zeta values (Definition B.65).

Definition 4.44. For k ≥ 1, m ≥ 0, define

Ck,m =
(
− ad(v0)

)m
(vk) = [. . . [[vk, v0], v0], . . . , v0]︸ ︷︷ ︸

m times

and denote by Cbi the alphabet consisting of all these letters.

Proposition 4.45. (Lazard elimination, [Re93, Theorem 0.6]) The space LieQ〈Cbi〉 is a
free Lie algebra and

LieQ〈V〉 = Qv0 ⊕ LieQ〈Cbi〉.

By considering the universal enveloping algebras and applying Lemma 4.31, one obtains

Q〈B〉 = Q[v0]⊗Q〈Cbi〉. (4.45.1)

In the following, we will always make use of the fact that the alphabet V provides a free
generating set for the algebra (Q〈B〉, conc) (Lemma 4.31).

Definition 4.46. Let ∂0 : Q〈B〉 → Q〈B〉 be the derivation with respect to concatenation
given by ∂0(v0) = 1 and ∂0(vk) = 0 for all k ≥ 1.

Proposition 4.47. (i) The kernel of the derivation ∂0 is exactly given by Q〈Cbi〉.
(ii) The restriction of Π0 : Q〈B〉 → Q〈B〉0 to ker(∂0) has an inverse given by

secq : Q〈B〉0 → Q〈B〉,

f 7→
∑
m≥0

(−1)m
m! vm0 ∂

m
0 (f).

In particular, the image of secq is contained in ker(∂0).

Proof. (i) Follows directly from the decomposition in (4.45.1).
(ii) For any f ∈ Q〈B〉0, compute

∂0
(

secq(f)
)

=
∑
m≥0

(−1)m
m! ∂0

(
vm0 ∂

m
0 (f)

)
=
∑
m≥1

(−1)m
(m− 1)!v

m−1
0 ∂m0 (f) +

∑
m≥0

(−1)m
m! vm0 ∂

m+1
0 (f)

= 0.

We deduce im(secq) ⊂ ker(∂0). Since Π0(vm0 ∂0(f)) = 0 for all m ≥ 1, we obtain for
f ∈ Q〈B〉0

Π0
(

secq(f)
)

= Π0(f) = f.

So Π0 has the right inverse secq. Next, let g ∈ ker(∂0) and write g = ∑
m≥0 v

m
0 gm with

gm ∈ Q〈B〉0. Then compute

0 = ∂0(g) =
∑
m≥1

mvm−1
0 gm +

∑
m≥0

vm0 ∂0(gm)
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Since gm ∈ Q〈B〉0 for all m ≥ 0, one obtains ∂0(gm) ∈ Q〈B〉0. Thus coefficient comparison
with respect to v0 at the beginning leads to

0 = mgm + ∂0(gm−1), m ≥ 1.

Inductively, we deduce for all m ≥ 1

gm = (−1)m
m! ∂m0 (g0)

and thus get

secq
(
Π0(g)

)
= secq(g0) =

∑
m≥0

(−1)m
m! vm0 ∂

m
0 (g0) =

∑
m≥0

vm0 gm = g.

So secq is also the left inverse for the restriction of Π0 to ker(∂0).

The map secq allows extending the involution τ (see (4.8.2)) to the algebra Q〈Cbi〉.

Definition 4.48. Define the map τCbi : Q〈Cbi〉 → Q〈Cbi〉 to be the composition

τCbi = secq ◦τ ◦Π0.

Explicitly, the map τCbi can be computed as follows:

1) Translate words in Q〈Cbi〉 into words in Q〈B〉 (Definition 4.29, 4.44).

2) Apply the map τ ◦Π0.

3) Translate words in Q〈B〉 into words in Q〈V〉 (see (4.31.1)).

4) Translate words in Q〈V〉 into words in Q〈Cbi〉 by using iteratively the identity

secq(Ck1,m1 · · ·Ckj ,mjv0Ckj+1,mj+1 · · ·Ckd,md)

=
j∑
i=1

Ck1,m1 . . . Cki−1,mi−1Cki,mi+1Cki+1,mi+1 . . . Ckd,md .

In particular, the letter v0 acts like a right derivation on Q〈Cbi〉.

Example 4.49. We compute

τCbi(C2,1) = secq ◦τ ◦Π0

((
b2 −

1
2b

2
1
)
b0 − b0

(
b2 −

1
2b

2
1
))

= secq
(
b2b0 −

1
2b2b1

)
= secq

(
v2v0 + 1

2v
2
1v0 −

1
2v2v1 −

1
4v

3
1

)
= secq

(
C2,0v0 + 1

2C
2
1,0v0 −

1
2C2,0C1,0 −

1
4C

3
1,0

)
= C2,1 + 1

2C1,1C1,0 + 1
2C1,0C1,1 −

1
2C2,0C1,0 −

1
4C

3
1,0

Definition 4.50. We define the following subspaces of Q〈Cbi〉

Q〈Cbi〉τ =
{
f ∈ Q〈Cbi〉

∣∣∣ τCbi(f) = f
}
,

Q〈Cbi〉τ =
{
f ∈ Q〈Cbi〉τ

∣∣∣ (f | C2,0) = (f | C4,0) = (f | C6,0) = 0
}
.
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The spaces bm and bm0 can be purely described in terms of the alphabet Cbi.

Theorem 4.51. The following holds

bm ' LieQ〈Cbi〉 ∩Q〈Cbi〉τ , bm0 ' LieQ〈Cbi〉 ∩Q〈Cbi〉τ .

Proof. By Proposition 4.32, the primitive elements of (Q〈B〉, conc,∆q) are exactly given
by LieQ〈V〉. Applying additionally the Lazard elimination (Proposition 4.45), one obtains
that Ψ ∈ Q〈B〉 satisfies (Ψ | b0) = 0 and ∆q(Ψ) = Ψ⊗1+1⊗Ψ if and only if Ψ ∈ LieQ〈Cbi〉.
Furthermore, by the construction of the map τCbi , Ψ satisfies τ(Π0(Ψ)) = Π0(Ψ) if and
only if Ψ ∈ Q〈Cbi〉τ . So by definition of the space bm (Definition 4.24), we obtain then
bm ' LieQ〈Cbi〉 ∩Q〈Cbi〉τ .
For each k ≥ 1, Ck,0 is the unique word in Q〈Cbi〉, which contains the word bk (when
rewritten in the alphabet B according to Definition 4.44, 4.29). Thus, Ψ ∈ Q〈B〉 satisfies
(Ψ | bk) = 0 for k = 2, 4, 6 if and only if (Ψ | Ck,0) = 0 for k = 2, 4, 6. This shows the
second isomorphism.
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4.7 The structure of bm0

We will explain the conjectured Lie algebra structure of bm0. In particular, we will describe
the expected generators and relations in bm0 and present a systematic list in small weights.

Let (mq, {−,−}q) be the q-twisted Magnus Lie algebra (Theorem 3.20), where {−,−}q
denotes the q-Ihara bracket. Then as a refinement of Conjecture 4.26 (i), we expect the
following.

Conjecture 4.52. The space bm0 is a weight-graded Lie subalgebra of (mq, {−,−}q).

Example 4.53. As obtained in Example 4.40, the following two elements are contained
in bm0

ξ

(
1
0

)
= b1, ξ

(
2
1

)
= b2b0 − b0b2 + b1b2 − b2b1 − b21b0 + b1b0b1.

We compute{
ξ

(
2
1

)
, ξ

(
1
0

)}
q

= − b1b0b2 + 2b0b1b2 + 2b2b1b0 − b2b0b1 − b1b2b0 − b0b2b1 + 2b21b0b1

− b1b0b21 − b31b0 − b21b2 + 2b1b2b1 − b2b21
∈ bm0.

The elements in bm0 as well as the formula for the q-Ihara bracket {−,−}q are quite
complicated, but it is checked with computer assistance that Conjecture 4.52 holds up to
weight 9. Moreover, the space bm0 is isomorphic to the space BARIpol,Q

il,swap of bimoulds
(Corollary 5.51), which is also expected to be a Lie algebra (Conjecture 5.19). The q-
Ihara bracket and the conjectural Lie bracket on BARIpol,Q

il,swap are compatible with this
isomorphism (Theorem 5.52). Finally, the associated depth-graded space to bm0 embeds
into a Lie algebra (lq, {−,−}Dq ) (Theorem 4.63), where {−,−}Dq is exactly the depth-
graded Lie bracket to the q-Ihara bracket {−,−}q.

If one could show that the q-Ihara bracket {−,−}q preserves the primitive elements of
(Q〈B〉, conc,∆q) and τ -invariance, this would give a proof for Conjecture 4.52. Since the
primitive elements of (Q〈B〉, conc,∆q) are exactly the elements in LieQ〈V〉, the invariance
of the primitive elements under {−,−}q should follow from a closed formula for the q-Ihara
bracket or the derivation dqw (Definition 3.12) in terms of the alphabet V.

Example 4.54. With some computer assistance, one computes the following.

(i) For all w ∈ LieQ〈V〉, we have dqw(v0) = 0

(ii) For all w ∈ LieQ〈v0, v1〉 and i ≥ 0, we have dqw(vi) = [w, vi]

(iii) For all i ≥ 1, we have dqv2(vi) = [v2, vi]− [v1, vi]

(iv) We have

dq[v0,v2](v1) = [[v0, v2], v1]− [[v0, v1], v2] + 1
2[[v1, [v0, v1]], v1],

dq[v0,v2](v2) = [[v0, v2], v2]− [[v0, v1], v3] + 1
2[[v1, [v0, v1]], v2] + 1

12[[v1, [v1, [v0, v1]]], v1]

dq[v0,v2](v3) = [[v0, v2], v3]− [[v0, v1], v4] + 1
2[[v1, [v0, v1]], v3] + 1

12[[v1, [v1, [v0, v1]]], v2]

+ 1
12[v1, [[v1, [v0, v1]], v2]]
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dq[v0,v2](v4) = [[v0, v2], v4]− [[v0, v1], v5] + 1
2[[v1, [v0, v1]], v4] + 1

12[[v1, [v1, [v0, v1]]], v3]

+ 1
12[v1, [[v1, [v0, v1]], v3]] + 1

12[[v2, [v1, [v0, v1]]], v2]

− 1
720[[v1, [v1, [v1, [v1, [v0, v1]]]]], v1]

(v) We have

dqv3(v1) = [v3, v1]− 2[v2, v2] + [v1, v3] + 3
2[[v1, v2], v1]

dqv3(v2) = [v3, v2]− 2[v2, v3] + [v1, v4] + 3
2[[v1, v2], v2] + 1

4[[v1, [v1, v2]], v1]

dqv3(v3) = [v3, v3]− 2[v2, v4] + [v1, v5] + 3
2[[v1, v2], v3] + 1

4[[v1, [v1, v2]], v2]

+ 1
4[v1, [[v1, v2], v2]]

dqv3(v4) = [v3, v4]− 2[v2, v5] + [v1, v6] + 3
2[[v1, v2], v4] + 1

4[[v1, [v1, v2]], v3]

+ 1
4[v1, [[v1, v2], v3]] + 1

4[[v2, [v1, v2]], v2]− 1
240[[v1, [v1, [v1, [v1, v2]]]], v1]

dqv3(v5) = [v3, v5]− 2[v2, v6] + [v1, v7] + 3
2[[v1, v2], v5] + 1

4[[v1, [v1, v2]], v4]

+ 1
4[v1, [[v1, v2], v4]] + 1

4[[v2, [v1, v2]], v3] + 1
4[v2, [[v1, v2], v3]]

− 1
240[[v1, [v1, [v1, [v1, v2]]]], v2]− 1

240[v1, [v1, [v1, [[v1, v2], v2]]]]

− 1
240[v1, [v1, [[v1, [v1, v2]], v2]]]− 1

240[v1, [[v1, [v1, [v1, v2]]], v2]]

All values of the derivation dqw in the previous example are contained in LieQ〈V〉, which
means primitive elements of (Q〈B〉, conc,∆q) get mapped to primitive elements in these
special cases. It is not clear how to find such a general formula for the derivation dqw
on LieQ〈V〉, which allows deducing the invariance of the primitive elements under this
derivation.
Furthermore, one easily checks that the q-Ihara bracket does not preserve τ -invariance in
general, this holds only true for τ -invariant primitive elements in (Q〈B〉, conc,∆q). But it
is not clear, how to prove this property of the q-Ihara bracket {−,−}q in general.

Finally, we want to give an insight into the expected structure of (bm0, {−,−}q) as shortly
stated in Conjecture 1.22. At the end of this subsection, we will systematically present
the generators and relations of bm0 in low weights.
We expect that bm0 has besides the generator ξ

(1
0
)

= b1 one generator ξ
(k

0
)

in each odd
weight k ≥ 3, which lies in the image of the embedding θ : dm0 → bm0 (Theorem 4.28).
Moreover, there should be a derivation on bm0, which increases the weight by 2. We
denote the m-th derivative of the element ξ

(k
0
)

by ξ
(k+m
m

)
. Conjecturally, the elements

ξ
( k
m

)
, k ≥ 1, m ≥ 0, k + m odd, provide a complete generating set for the Lie algebra

(bm0, {−,−}q). In particular, denote D(x) = 1
1−x2 and O1(x) = x

1−x2 , then the coefficient
of D(x)O1(x) at xw would be equal to the number of generators of bm0 in weight w.

Remark 4.55. Since an element in bm0 must be contained in LieQ〈V〉 and τ -invariant on
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Q〈B〉0, the depth-graded part grD ξ
( k
m

)
of the generator ξ

( k
m

)
must be given by

grD ξ
(
k
m

)
=
(
− ad(b0)

)m
(bk) +

(
− ad(b0)

)k−1
(bm+1).

These elements should provide a complete set of generators for the associated depth-graded
Lie algebra to bm0 in depth 1.

In contrast to the case of the double shuffle Lie algebra dm0 related to multiple zeta values
(Conjecture B.33), we do not expect that bm0 is a free Lie algebra. More precisely, we
conjecture that the generators of bm0 described above satisfy exactly dim(Sk(SL2(Z))) +
dim(Mk(SL2(Z))) independent relations in weight k and also derivatives of these relations.
The relations between the generators of bm0 corresponding to the Eisenstein series are
given by the following.

Proposition 4.56. If (bm0, {−,−}q) is a Lie algebra (Conjecture 4.52), then we have for
all k ≥ 1 odd {

ξ

(
k

0

)
, ξ

(
1
0

)}
q

= 0.

Proof. For k = 1 the equation holds trivially, thus we assume k ≥ 3. Then by definition,
the element ξ

(k
0
)

is an element in the image of the embedding θ : dm0 → bm0 (Theorem
4.28). Let w ∈ Q〈B〉 be a word, such that the coefficient of w in ξ

(k
0
)

is nonzero. Then
due to the construction of the map θ, this means that w consists of the letters b0, b1 or
does not contain the letter b0. In the first case, we obtain from Lemma 3.15 (i) that{

w, ξ

(
1
0

)}
q

= dqw(b1)− dqb1
(w)− [w, b1] = [w, b1]− 0− [w, b1] = 0.

Since the q-Ihara bracket preserves the subspace of Q〈B〉 spanned by words, which do not
contain the letter b0, we obtain from the previous calculation that {ξ

(k
0
)
, ξ
(1
0
)
} does not

contain the letter b0. We assumed that (bm0, {−,−}q) is a Lie algebra, so in particular,
the element {ξ

(k
0
)
, ξ
(1
0
)
}q must be τ -invariant. By definition of the map τ any τ -invariant

element, which does not contain the letter b0, must consist of powers of b1. Since {−,−}q
is homogeneous for the weight (Lemma 3.15 (ii)), we deduce{

ξ

(
k

0

)
, ξ

(
1
0

)}
q

= λbk+1
1 for some λ ∈ Q.

The bracket {ξ
(k

0
)
, ξ
(1
0
)
}q is contained in bm0 and hence is an element in LieQ〈V〉. Since

bk+1
1 /∈ LieQ〈V〉, we deduce λ = 0 and therefore{

ξ

(
k

0

)
, ξ

(
1
0

)}
q

= 0.

Derivatives of the Eisenstein relations given in Proposition 4.56 should be of the form

∑
m1+m2=m
m1,m2≥0

(
m

m1

){
ξ

(
k +m1
m1

)
, ξ

(
1 +m2
m2

)}
q

= 0, k ≥ 1 odd.
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It is not clear how to describe the relations between the generators of bm0 corresponding
to the cusp forms Sk(SL2(Z)) in general.

We expect that the previously explained described structure determines (bm0, {−,−}q)
completely. Thus by (A.11.1), the Hilbert-Poincare series of U(bm0) should be given by

HU(bm0)(x) =
∑
w≥0

dimQ U(bm0)(w)xw
?= 1

1−D(x)O1(x) +D(x)R(x) , (4.56.1)

where

D(x) = 1
1− x2 , O1(x) = x

1− x2 , R(x) =
∑
k≥4

dim
(
Sk(SL2(Z))⊕Mk(SL2(Z)))

)
xk.

We expect an algebra isomorphism Zfq ' Zq, thus Theorem 4.27 should also lead to a
decomposition

Zq ' M̃Q(SL2(Z))⊗ U(bm0)∨.

Applying Lemma A.2, one obtains that this decomposition of Zq as well as the dimension
conjecture (4.56.1) and the dimension conjecture 1.21 for Zq are compatible. Even more,
the dimension conjectures (4.56.1) and 1.21 should be equivalent.

We want to investigate bm0 systematically in small weights. More precisely, we will list
the Lie algebra generators in each weight and also linearly independent Lie products.
Both together will give a basis for bm0 in these weights. Moreover, we will give the non-
trivial relations between the Lie algebra generators, which means we will only consider
relations not induced by the anti-symmetry or Jacobi’s identity for the q-Ihara bracket.
The elements will be described in the alphabet Cbi, since this gives the shortest expression.

weight 1

Generators:

ξ

(
1
0

)
= C1,0

Relations: ——–

weight 2

Generators: ——–
Relations: ——–

weight 3

Generators:

ξ

(
3
0

)
= C3,0 + C1,2 −

3
2[C1,0, C2,0]− [C1,1, C1,0]

ξ

(
2
1

)
= C2,1 + [C1,0, C2,0] + 1

2[C1,1, C1,0]

Relations: ——–

weight 4
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Generators: ——–
Lie products:{

ξ

(
2
1

)
, ξ

(
1
0

)}
q

= [C2,1, C1,0]− 2[C1,1, C2,0]− [C1,0, [C1,0, C2,0]]− 1
2[[C1,1, C1,0], C1,0]

Relations:{
ξ

(
3
0

)
, ξ

(
1
0

)}
q

= 0

weight 5

Generators:

ξ

(
5
0

)
= C5,0 + C1,4 −

5
2[C1,0, C4,0] + 5[C2,0, C3,0]− 2[C1,3, C1,0]− 1

2[C1,2, C1,1]

+ 5
12[C1,0, [C1,0, C3,0]]− 25

12[[C1,0, C2,0], C2,0] + 2[[C1,2, C1,0], C1,0]

− 3
2[C1,1, [C1,1, C1,0]]− 5

4[C1,0, [C1,0, [C1,0, C2,0]]]− [[[C1,1, C1,0], C1,0], C1,0]

ξ

(
4
1

)
= C4,1 + C2,3 + [C1,0, C4,0]− 3

2[C2,0, C3,0] + 1
2[C1,1, C3,0]− 3

2[C1,0, C3,1]

− 3
2[C2,1, C2,0] + 1

2[C1,3, C1,0] + [C1,2, C2,0] + [C1,1, C2,1] + 2[C1,0, C2,2]

− 3
4[C1,0, [C1,0, C3,0]]− 3

4[[C1,0, C2,0], C2,0]− 11
6 [C1,1, [C1,0, C2,0]]

+ 7
6[C1,0, [C1,1, C2,0]] + [C1,0, [C1,0, C2,1]]− 1

2[[C1,2, C1,0], C1,0]

− 1
8[C1,0, [C1,0, [C1,0, C2,0]]]− 1

8[[[C1,1, C1,0], C1,0], C1,0]

ξ

(
3
2

)
= C3,2 −

3
2[C3,1, C1,0] + [C2,1, C2,0]− 1

2[C1,2, C2,0]− [C1,0, C2,2]

+ 1
2[C1,0, [C1,0, C3,0]] + [[C1,0, C2,0], C2,0] + [C1,1, [C1,0, C2,0]]

− 3
4[C1,0, [C1,1, C2,0]]− 3

4[C1,0, [C1,0, C2,1]]− 1
12[[C1,2, C1,0], C1,0]

+ 1
3[C1,1, [C1,1, C1,0]] + 1

4[C1,0, [C1,0, [C1,0, C2,0]]] + 1
4[[[C1,1, C1,0], C1,0], C1,0]

Lie products:{{
ξ

(
2
1

)
, ξ

(
1
0

)}
q
, ξ

(
1
0

)}
q

= 3[C1,1, [C1,0, C2,0]] + [C1,0, [C1,0, C2,1]]

+ [C1,0, [C1,0, [C1,0, C2,0]]] + 1
2[[[C1,1, C1,0], C1,0], C1,0]

Relations: ——–

weight 6

Generators: ——–
Lie products:
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{
ξ

(
4
1

)
, ξ

(
1
0

)}
q
,

{
ξ

(
3
2

)
, ξ

(
1
0

)}
q
,


{{

ξ

(
2
1

)
, ξ

(
1
0

)}
q
, ξ

(
1
0

)}
q

, ξ

(
1
0

)
q

Relations:{
ξ

(
5
0

)
, ξ

(
1
0

)}
q

= 0,
{
ξ

(
4
1

)
, ξ

(
1
0

)}
q

+
{
ξ

(
3
0

)
, ξ

(
2
1

)}
q

= 0

weight 7

Generators:

ξ

(
7
0

)
, ξ

(
6
1

)
, ξ

(
5
2

)
, ξ

(
4
3

)
Lie products:{{

ξ

(
4
1

)
, ξ

(
1
0

)}
q
, ξ

(
1
0

)}
q

,

{{
ξ

(
3
2

)
, ξ

(
1
0

)}
q
, ξ

(
1
0

)}
q

,

{
ξ

(
2
1

)
,

{
ξ

(
2
1

)
, ξ

(
1
0

)}
q

}
q

,



{{

ξ

(
2
1

)
, ξ

(
1
0

)}
q
, ξ

(
1
0

)}
q

, ξ

(
1
0

)
q

, ξ

(
1
0

)
q

Relations: ——–

weight 8

Generators: ——–
Lie products:{

ξ

(
6
1

)
, ξ

(
1
0

)}
q
,

{
ξ

(
5
2

)
, ξ

(
1
0

)}
q
,

{
ξ

(
4
3

)
, ξ

(
1
0

)}
q
,

{
ξ

(
5
0

)
, ξ

(
3
0

)}
q
,{

ξ

(
4
1

)
, ξ

(
3
0

)}
q
,

{
ξ

(
4
1

)
, ξ

(
2
1

)}
q
,

{
ξ

(
3
2

)
, ξ

(
2
1

)}
q
,

{{
ξ

(
4
1

)
, ξ

(
1
0

)}
q
, ξ

(
1
0

)}
q

, ξ

(
1
0

)
q

,


{{

ξ

(
3
2

)
, ξ

(
1
0

)}
q
, ξ

(
1
0

)}
q

, ξ

(
1
0

)
q

,


{
ξ

(
2
1

)
,

{
ξ

(
2
1

)
, ξ

(
1
0

)}
q

}
q

, ξ

(
1
0

)
q

,




{{

ξ

(
2
1

)
, ξ

(
1
0

)}
q
, ξ

(
1
0

)}
q

, ξ

(
1
0

)
q

, ξ

(
1
0

)
q

, ξ

(
1
0

)
q

Relations:{
ξ

(
7
0

)
, ξ

(
1
0

)}
q

= 0,
{
ξ

(
6
1

)
, ξ

(
1
0

)}
q

+
{
ξ

(
5
0

)
, ξ

(
2
1

)}
q

= 0,{
ξ

(
5
2

)
, ξ

(
1
0

)}
q

+ 2
{
ξ

(
4
1

)
, ξ

(
2
1

)}
q

+
{
ξ

(
3
0

)
, ξ

(
3
2

)}
q

= 0
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4.8 The depth-graded balanced q-shuffle Lie algebra

We study the defining equations for bm0 modulo higher depth. This leads to a q-analog
of the linearized double shuffle Lie algebra ls (Definition B.36).

Consider the usual shuffle coproduct ∆� on Q〈B〉 (Example A.62), i.e., set

∆�(bi) = bi ⊗ 1 + 1⊗ bi, i ≥ 0,

and extend this with respect to the concatenation product.

Definition 4.57. Let lq be the vector space given by all non-commutative polynomials
Ψ ∈ Q〈B〉 satisfying

(i) (Ψ|b0) = 0,
(ii) ∆�(Ψ) = Ψ⊗ 1 + 1⊗Ψ,
(iii) τ(Π0(Ψ)) = Π0(Ψ),
(iv) (Ψ|bkbm0 ) = 0, k +m even.

By Corollary A.40 condition (ii) is equivalent to Ψ ∈ LieQ〈B〉.

Definition 4.58. Denote the associated depth-graded space to bm0 by

lb = grD bm0.

Proposition 4.59. There is an embedding of vector spaces

lb ↪→ lq.

Proof. Let Ψ ∈ bm0. Then evidently the associated depth-graded element grD Ψ also sat-
isfies (grD Ψ | b0) = 0 and we also have τ(Π0(grD Ψ)) = Π0(grD Ψ), since τ is homogeneous
in depth. Furthermore, we have grD ∆q = ∆�, thus grD Ψ is primitive for the coproduct
∆�. Finally, by Proposition 4.25, we have (Ψ | bkbm0 ) = 0 for all k+m even, and therefore
the same holds for the associated depth-graded element grD Ψ.

In contrast to the case of multiple zeta values, it turns out that the associated depth-graded
space lb is not isomorphic to lq.

Example 4.60. The following element of weight 8 and depth 2 is contained in lq, but not
in lb:

b3b0b2b0b0 − b2b0b3b0b0 + b2b0b0b3b0 − b3b0b0b2b0 − b0b0b2b3b0 + b0b0b3b2b0 + b0b2b3b0b0

− b0b3b2b0b0 − b0b0b3b0b2 + b0b0b2b0b3 − b0b2b0b0b3 + b0b3b0b0b2.

Definition 4.61. For a word w = bm0
0 bk1b

m1
0 . . . bkdb

md
0 in Q〈B〉, define the derivation dq,Dw

on (Q〈B〉, ·) by

dq,Dw (1) = dq,Dw (b0) = 0,
dq,Dw (ba) = δd+1(wba)− δ1(baw1)

=
k1−1∑
l1=0
· · ·

kd−1∑
ld=0

(
k1 − 1
l1

)
. . .

(
kd − 1
ld

)
(−1)l1+···+ld

·
[
bm0
0 bk1−l1b

m1
0 . . . bkd−ldb

md
0 , bi+l1+···+ld

]
,

where a ≥ 1.
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The operator δj is given in Definition 3.8

Definition 4.62. For f, g ∈ Q〈B〉, the depth-graded q-Ihara bracket {−,−}Dq is given by

{f, g}Dq = dq,Df (g)− dq,Dg (f)− [f, g].

We obtain from the definition of the derivations dq,Dw (Definition 4.61) and dqw (Definition
3.12) that {−,−}Dq is exactly the associated depth-graded to the q-Ihara bracket {−,−}q
(Definition 3.16).

Theorem 4.63. The pair (lq, {−,−}Dq ) is a bi-graded Lie algebra.

Proof. The proof relies on the comparison of the space lq and a Lie algebra consisting of
bimoulds, thus see Corollary 5.71

Since the associated depth-graded space lb to bm0 is a subspace of lq and {−,−}Dq is exactly
the associated depth-graded Lie bracket to the q-Ihara bracket {−,−}q, Conjecture 4.52
would imply the following.

Conjecture 4.64. The space lb is a bi-graded Lie subalgebra of (lq, {−,−}Dq ).

Remark 4.65. We expect that lb is generated by two Lie sub algebras F and D, where F
is generated in depth 1 (by the elements given in Remark 4.55) and D is generated in depth
4. The generators of the Lie algebra F satisfy some relations in depth 2 related to (tensor
products of) modular forms and the generators of F and D satisfy some relations in depth
5. This should determine lb completely. We will study this in detail in the commutative
approach involving bimoulds (Subsection 5.2).

Next, we equip the Lie algebra (lq, {−,−}Dq ) with a derivation.

Proposition 4.66. (Lazard elimination, [Re93, Theorem 0.6]) The Lie algebra LieQ〈B〉
is generated by the elements b0 and(

− ad(b0)
)m

(bk) = [. . . [[bk, b0], b0], . . . , b0], k ≥ 1, m ≥ 0.

Definition 4.67. Define the derivation (with respect to the concatenation product) δ :
LieQ〈B〉 → LieQ〈B〉 by

δ
((
− ad(b0)

)m
(bk)

)
=
(
− ad(b0)

)m+1
(bk+1).

Note that the derivation δ increases the weight by 2.

Proposition 4.68. The tuple (lq, {−,−}Dq , δ) is a differential Lie algebra.

Proof. To shorten the notation, set Dk,m =
(
− ad(b0)

)m
(bk). Since both maps {−,−}Dq

and δ are Q-linear, we can assume f = Dk1,m1 . . . Dkd,md and g = Dl1,n1 . . . Dle,ne . We
compute straight-forwardly

δ
(
dqf (g)

)
= δ

(
e∑
i=1

k1−1∑
k′1=0
· · ·

kd−1∑
k′
d
=0

(
k1 − 1
k′1

)
. . .

(
kd − 1
k′d

)
(−1)k1+···+k′d

·Dl1,n1 . . . Dli−1,ni−1

(
− ad(b0)

)ni([
Dk1−k′1,m1 . . . Dkd−k′d,md , Dli+k′1+···+k′

d
,0
])

·Dli+1,ni+1 . . . Dle,ne

)
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=
e∑
i=1

k1−1∑
k′1=0
· · ·

kd−1∑
k′
d
=0

(
k1 − 1
k′1

)
. . .

(
kd − 1
k′d

)
(−1)k′1+···+k′d

(

δ
(
Dl1,n1 . . . Dli−1,ni−1

)(
− ad(b0)

)ni([
Dk1−k′1,m1 . . . Dkd−k′d,md , Dli+k′1+···+k′

d
,0
])

·Dli+1,ni+1 . . . Dle,ne

+Dl1,n1 . . . Dli−1,ni−1

(
− ad(b0)

)ni([
δ
(
Dk1−k′1,m1 . . . Dkd−k′d,md

)
, Dli+k′1+···+k′

d
,0
])

·Dli+1,ni+1 . . . Dle,ne

+Dl1,n1 . . . Dli−1,ni−1

(
− ad(b0)

)ni([
Dk1−k′1,m1 . . . Dkd−k′d,md , δ(Dli+k′1+···+k′

d
,0)
])

·Dli+1,ni+1 . . . Dle,ne

+Dl1,n1 . . . Dli−1,ni−1

(
− ad(b0)

)ni([
Dk1−k′1,m1 . . . Dkd−k′d,md , Dli+k′1+···+k′

d
,0
])

· δ
(
Dli+1,ni+1 . . . Dle,ne

))
= dqδ(f)(g) + dqf (δ(g)).

Moreover, we have
δ
(
[f, g]

)
= [δ(f), g] + [f, δ(g)].

Combining both formulas, we obtain

δ
(
{f, g}Dq

)
= {δ(f), g}Dq + {f, δ(g)}Dq .

The depth-graded double shuffle Lie algebra ls (Definition B.36) defined for multiple zeta
values embeds into the Lie algebra lq via the associated depth-graded map of θ (obtained
in Theorem 4.28).

Theorem 4.69. We have an injective Lie algebra morphism

θD : (ls, {−,−}) ↪→ (lq, {−,−}Dq ),
ψ 7→ θanti

X (ψ) + θY(ΠY(ψ)).

The map ΠY is given in Definition B.27.

It is expected that ls ' grD dm0, thus the image of the map θD should be contained in the
associated depth-graded space lb to bm0.

Proof. First, observe that the maps θX and θY also give injective Hopf algebra morphisms

θX : (Q〈X 〉, conc,∆�)→ (Q〈B〉, conc,∆�), x0 7→ b0, x1 7→ b1,

θY : (Q〈Y〉, conc,∆�,Y)→ (Q〈B〉, conc,∆�), yi 7→ bi i ≥ 1.

Let ψ ∈ ls. First, deduce from (ψ | x0) = 0 that (θD(ψ) | b0) = 0. Since ψ is primitive for
∆�, ΠY(ψ) is primitive for ∆�,Y and θanti

X , θY are coalgebra morphisms, we obtain

∆�(θD(ψ)) = ∆�
(
θanti
X (ψ) + θY(ΠY(ψ))

)
= 1⊗ θanti

X (ψ) + θanti
X (ψ)⊗ 1 + 1⊗ θY(ΠY(ψ)) + θY(ΠY(ψ))⊗ 1

= 1⊗ θD(ψ) + θD(ψ)⊗ 1.
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Applying Lemma 4.20 and observing that Π0
(
θY(ΠY(ψ))

)
= θY(ΠY(ψ)), we compute

τ
(
Π0(θD(ψ))

)
= τ

(
Π0(θanti

X (ψ))
)

+ τ
(
θY(ΠY(ψ))

)
= θY(ΠY(ψ)) + Π0(θanti

X (ψ))

= Π0(θD(ψ)).

Finally, we deduce from (ψ | xk−1
0 x1) = 0 that (θD(ψ) | bk) = 0 for k = 2, 4, 6. Altogether,

the map θD is well-defined and the injectivity follows immediately from the injectivity of
θanti
X and θY .

Recall that we expect (Conjecture 1.23 (ii))

HU(lb)(x, y) =
∑
w,d≥0

dimU(lb)(w,d)xwyd

?= 1
1− a1(x)y + a2(x)y2 − a3(x)y3 − a4(x)y4 + a5(x)y5 .

Lemma 4.70. There are numbers gw,d ∈ Z satisfying

1
1− a1(x)y + a2(x)y2 − a3(x)y3 − a4(x)y4 + a5(x)y5 =

∏
w,d≥1

(1− xwyd)−gw,d .

Proof. Apply [Bou89, p. 140, Lemma 1].

If we assume that
(
1− a1(x)y + a2(x)y2 − a3(x)y3 − a4(x)y4 + a5(x)y5

)−1
is the Hilbert-

Poincare series of U(lb), then by Proposition A.35 and Corollary A.7 we must have gw,d ≥ 0
for all w, d ≥ 1. In particular, Conjecture 1.23 (ii) is equivalent to

Conjecture 4.71. For all w, d ≥ 1, we have

dimQ lb(w,d) = gw,d.

The numbers gw,d are computed numerically in [BK20] as

gw,d 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 1
2 0 0
3 2 0 0
4 0 1 0 0
5 3 0 1 0 0
6 0 2 0 1 0 0
7 4 0 3 0 1 0 0
8 0 7 0 3 0 1 0 0
9 5 0 8 0 4 0 1 0 0
10 0 12 0 11 0 4 0 1 0 0
11 6 0 22 0 14 0 5 0 1 0 0
12 0 20 0 31 0 17 0 5 0 1 0 0
13 7 0 47 0 44 0 21 0 6 0 1 0 0
14 0 31 0 81 0 58 0 25 0 6 0 1 0 0

Theorem 4.72. For w, d ≤ 13, we have

dimQ lb(w,d) = gw,d.

Proof. Take the depth-graded parts from the elements computed in Theorem 4.43.
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4.9 Supplement: A variant of the balanced quasi-shuffle Hopf algebra

For multiple zeta values there exists the shuffle Hopf algebra (Proposition B.14), which de-
scribes their product structure and is defined on some finite alphabet X . For the balanced
multiple q-zeta values there exists also such a finite alphabet. More precisely, let Q〈p, y〉
be the free non-commutative algebra generated by the letters p, y, denote the empty word
by 1, and set Q〈p, y〉0 = Q1 + pQ〈p, y〉y. By Theorem 2.64 there is a surjective algebra
morphism

(Q〈p, y〉0,�q)→ (Zq, ·), (4.72.1)
ps1y . . . psly 7→ ζq(s1, . . . , sl),

where the product �q is recursively defined by 1�q w = w�q 1 = w and

(yu)�q v = u�q (yv) = y(u�q v),

(pu)�q (pv) = p(u�q pv) + p(pu�q v) +
{
p(u�q v), if u = yũ and v = yṽ,

0 else

for all u, v, w ∈ Q〈p, y〉. In this subsection, we will equip the algebra (Q〈p, y〉,�q) with a
graded bialgebra structure and obtain its completed dual. We will see that the Hopf alge-
bra (Q〈B〉, ∗q,∆dec) (Theorem 4.2) embeds into this bialgebra. To give a better description
of the bialgebra structure, we modify the algebra (Q〈p, y〉,�q).

Definition 4.73. Denote by Q〈p, c, y〉 the free algebra over Q generated by the letters
p, c, y and define

H+
q = Q〈p, c, y〉�Q〈p, c, y〉(py − c)Q〈p, c, y〉.

In the following, we will identify H+
q with the space generated by all words in the letters

p, c, y, which do not contain the subword py. In particular, if we write pw ∈ H+
q , then we

always assume w ∈ H+
q \yH+

q . Moreover, set

Hq =
(
H+
q \yH+

q

)
∪ {0}. (4.73.1)

For a word w ∈ H+
q , the weight wt(w) is defined to be the number of letters of w, i.e., for

k1, . . . , kd+1 ≥ 1, m0, . . . ,md ≥ 0 we have

wt(ym0pk1−1cym1 . . . pkd−1cymdpkd+1−1) = k1 + · · ·+ kd+1 − 1 +m0 + . . .md,

and the depth dep(w) is defined to be the number of c’s contained in w, i.e.,

dep(ym0pk1−1cym1 . . . pkd−1cymdpkd+1−1) = d.

The notions of weight and depth endow H+
q with two compatible ascending filtrations.

Definition 4.74. Define the product �q on H+
q recursively by 1�q w = w�q 1 = w and

yu�q v = u�q yv = y(u�q v),
a1u�q a2v = a1(u�q a2v) + a2(a1u�q v) + δ(a1,a2),(c,c)cy(u�q v),

for all u, v, w ∈ H+
q and a1, a2 ∈ {p, c}.

Proposition 4.75. There is an algebra isomorphism

ψ : (H+
q ,�q)→ (Q〈p, y〉,�q)

induced by the assignment p 7→ p, y 7→ y and c 7→ py. In particular, (H+
q ,�q) is an

associative and commutative algebra.
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Proof. There is a short exact sequence

0 −→ Q〈p, c, y〉(py − c)Q〈p, c, y〉 −→ Q〈p, c, y〉 ψ̃−→ Q〈p, y〉 −→ 0,
where ψ̃ is the algebra morphism (with respect to concatenation) defined by ψ̃(p) =
p, ψ̃(y) = y and ψ̃(c) = py. This induces a vector space isomorphism

ψ : H+
q
∼−→ Q〈p, y〉.

We show that ψ is an algebra isomorphism. For u, v ∈ H+
q , one obtains by induction on

the weight
ψ(cu)�q ψ(cv) = pyψ(u)�q pyψ(v)

= py(ψ(u)�q pyψ(v)) + py(pyψ(u)�q ψ(v)) + py2(ψ(u)�q ψ(v))
= py(ψ(u)�q ψ(cv)) + py(ψ(cu)�q ψ(v)) + py2(ψ(u)�q ψ(v))
= pyψ(u�q cv) + pyψ(cu�q v) + py2ψ(u�q v)
= ψ

(
c(u�q cv) + c(cu�q v) + cy(u�q v)

)
= ψ(cu�q cv).

The other cases are verified in a similar way.

Remark 4.76. There is also a definition of the non-homogeneous product �SZ on H+
q

corresponding to the product �SZ on Q〈p, y〉 defined for SZ multiple q-zeta values (Propo-
sition 2.18), such that there is an algebra isomorphism (H+

q ,�SZ) → (Q〈p, y〉,�SZ). We
will omit the explicit description, since we are interested in weight-graded structures.
Definition 4.77. Let ∆ : H+

q → H+
q ⊗ H+

q be the coproduct (with respect to the con-
catenation product) defined by ∆(1) = 1⊗ 1 and

∆(aw) = (a⊗ 1)∆(w) + 1⊗ aw, a = p, c, w ∈ H+
q ,

∆(yw) = (y ⊗ 1)∆(w), w ∈ H+
q .

Example 4.78. One computes
∆(pcy) = pcy ⊗ 1 + p⊗ cy + 1⊗ pcy,

∆(pcy2) = pcy2 ⊗ 1 + p⊗ cy2 + 1⊗ pcy2.

Theorem 4.79. The tuple (H+
q ,�q,∆) is a (weight-)graded commutative bialgebra with-

out a counit.
Proof. By Proposition 4.75 the pair (H+

q ,�q) is a commutative algebra, thus we have to
show the coassociativity of ∆ and the compatibility of �q and ∆. First, we will show the
coassociativity of ∆ by induction on the weight. Using Sweedler’s notation

∆(w) =
∑
(w)

w(1) ⊗ w(2)

one obtains for each w ∈ H+
q(

(∆⊗ id) ◦∆
)
(yw) = (∆⊗ id)

(
(y ⊗ 1)∆(w)

)
=
∑
(w)

∆(yw(1))⊗ w(2)

= (y ⊗ 1⊗ 1)
∑
(w)

∆(w(1))⊗ w(2) = (y ⊗ 1⊗ 1)
∑
(w)

w(1) ⊗∆(w(2))

= (id⊗∆)
(∑

(w)
yw(1) ⊗ w(2)) = (id⊗∆)

(
(y ⊗ 1)∆(w)

)
=
(
(id⊗∆) ◦∆

)
(yw)
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and for a ∈ {p, c}(
(∆⊗ id) ◦∆

)
(aw) = (∆⊗ id)

(
(a⊗ 1)∆(w) + 1⊗ aw

)
=
∑
(w)

∆(aw(1))⊗ w(2) + 1⊗ 1⊗ aw

= (a⊗ 1⊗ 1)
∑
(w)

∆(w(1))⊗ w(2) +
∑
(w)

1⊗ aw(1) ⊗ w(2) + 1⊗ 1⊗ aw

= (a⊗ 1⊗ 1)
∑
(w)

w(1) ⊗∆(w(2)) + 1⊗
(∑

(w)
aw(1) ⊗ w(2) + 1⊗ aw

)
= (id⊗∆)

(∑
(w)

aw(1) ⊗ w(2))+ 1⊗∆(aw)

= (id⊗∆)
(∑

(w)
aw(1) ⊗ w(2) + 1⊗ aw

)
=
(
(id⊗∆) ◦∆

)
(aw).

In both cases, the fourth step follows from the induction hypotheses. Next, we prove the
compatibility of the product �q and the coproduct ∆ by induction on the weight. For
u, v ∈ H+

q , compute

∆(yu)�q ∆(v) =
(
(y ⊗ 1)∆(u)

)
�q ∆(v) =

∑
(u),(v)

(
yu(1)

�q v
(1))⊗ (u(2)

�q v
(2))

=
∑

(u),(v)
y
(
u(1)

�q v
(1))⊗ (u(2)

�q v
(2)) = (y ⊗ 1)

(
∆(u)�q ∆(v)

)
= (y ⊗ 1)∆(u�q v) = ∆

(
y(u�q v)

)
= ∆(yu�q v)

and similarly, obtain

∆(u)�q ∆(yv) = ∆(u�q yv).

For a1, a2 ∈ {p, c} and u, v ∈ H+
q , one has

∆(a1u)�q ∆(a2v) =
(
(a1 ⊗ 1)∆(u) + 1⊗ a1u

)
�q

(
(a2 ⊗ 1)∆(v) + 1⊗ a2v

)
=

∑
(u),(v)

(
a1u

(1)
�q a2v

(1))⊗ (u(2)
�q v

(2))
+
∑
(u)

a1u
(1) ⊗

(
u(2)

�q a2v
)

+
∑
(v)

a2v
(1) ⊗

(
a1u�q v

(2))
+ 1⊗

(
a1u�q a2v

)
= (a1 ⊗ 1)

(
∆(u)�q (a2 ⊗ 1)∆(v) + ∆(u)�q (1⊗ a2v)

)
+ (a2 ⊗ 1)

(
(a1 ⊗ 1)∆(u)�q ∆(v) + (1⊗ a1u)�q ∆(v)

)
+ δ(a1,a2),(c,c)(cy ⊗ 1)

(
∆(u)�q ∆(v)

)
+ 1⊗

(
a1u�q a2v

)
= (a1 ⊗ 1)

(
∆(u)�q ∆(a2v)

)
+ (a2 ⊗ 1)

(
∆(a1u)�q ∆(v)

)
+ δ(a1,a2),(c,c)(cy ⊗ 1)

(
∆(u)�q ∆(v)

)
+ 1⊗

(
a1u�q a2v

)
= (a1 ⊗ 1)∆(u�q a2v) + 1⊗

(
a1(u�q a2v)

)
+ (a2 ⊗ 1)∆(a1u�q v) + 1⊗

(
a2(a1u�q v)

)
+ δ(a1,a2),(c,c)

(
(cy ⊗ 1)∆(u�q v) + 1⊗

(
cy(u�q v)

))
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= ∆
(
a1(u�q a2v) + a2(a1u�q v) + δ(a1,a2),(c,c)cy(u�q v)

)
= ∆(a1u�q a2v).

A counit ε : H+
q → Q must satisfy

(
(ε⊗ id) ◦∆

)
(y) = y. Since(

(ε⊗ id) ◦∆
)
(y) = (ε⊗ id)(y ⊗ 1) = ε(y) · 1 ∈ Q1,

a counit cannot exist.

Restricting to Hq (defined in (4.73.1)) yields a Hopf algebra isomorphic to the balanced
quasi-shuffle Hopf algebra (Q〈B〉, ∗q,∆dec) (Theorem 4.2).
Corollary 4.80. The tuple (Hq,�q,∆) is a weight-graded commutative Hopf algebra.
Moreover, the map

ψ−1 ◦ τ ◦ i : (Q〈B〉, ∗q,∆dec)→ (Hq,�q,∆),
bm0
0 bk1b

m1
0 . . . bkdb

md
0 7→ pmdcykd−1 . . . pm1cyk1−1pm0 ,

where k1, . . . , kd+1 ≥ 1 and m1, . . . ,md ≥ 0, is an algebra isomorphism and a coalgebra
anti isomorphism.

In particular, if the coproduct ∆ gets replaced by t ◦∆, where t simply swaps the tensor
product factors (see (A.14.1)), then ψ−1 ◦ τ ◦ i would be a Hopf algebra isomorphism.

Proof. Evidently, the maps �q and ∆ preserve the space Hq and a counit ε : Hq → Q is
given by

ε(w) =
{

1, if w = 1
0 else

for each word w ∈ Hq. So (Hq,�q,∆) is a connected bialgebra and hence a Hopf algebra
(Theorem A.33).
As observed in (2.63.1), the map τ ◦ i is an injective algebra morphism. Since ψ is an
algebra isomorphism (Proposition 4.75), also ψ−1 ◦ τ ◦ i is an injective algebra morphism.
Clearly, ψ−1◦τ ◦i is also surjective and hence an algebra isomorphism. Thus, we only have
to check the compatibility of the coproducts ∆dec and ∆ under the morphism ψ−1 ◦ τ ◦ i.
For a word w = bm0

0 bk1b
m1
0 . . . bkdb

md
0 , one computes((

ψ−1 ◦ τ ◦ i
)
⊗
(
ψ−1 ◦ τ ◦ i

))
◦∆dec(w)

=
d∑
j=0

mj∑
i=0

(
ψ−1 ◦ τ ◦ i

)
(bm0

0 bk1b
m1
0 . . . bkjb

i
0)⊗

(
ψ−1 ◦ τ ◦ i

)
(bmj−i0 bkj+1b

mj+1
0 . . . bkdb

md
0 )

=
d∑
j=0

mj∑
i=0

picykj−1 . . . pm1cyk1−1pm0 ⊗ pmdcykd−1 . . . pmj+1cykj+1−1pmj−i

= t ◦∆(pmdcykd−1 . . . pm1cyk1−1pm0)
= t ◦∆ ◦

(
ψ−1 ◦ τ ◦ i

)
(w)

Next, we will determine a completed dual to the graded bialgebra (H+
q ,�q,∆). For any

commutative Q-algebra R with unit, denote H+
q (R) = H+

q ⊗Q R. Let Ĥ+
q (R) be the

completion of H+
q (R) with respect to the weight (Proposition A.45), i.e.,

Ĥ+
q (R) =

∏
w≥0
H+
q (R)(w),
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where H+
q (R)(w) denotes the homogeneous subspace of H+

q (R) of weight w. The space
Ĥ+
q (R) is filtered by weight and depth. Similarly, denote by Ĥq(R) the completion of the

vector space Hq(R) = Hq ⊗Q R.

Definition 4.81. Define the product concy : Ĥ+
q (R)⊗ Ĥ+

q (R)→ Ĥ+
q (R) by

concy(u⊗ v) =
{
uv, v 6= yṽ

0 else

for all words u, v ∈ H+
q and extend this definition R-linearly to the completion.

Definition 4.82. Define the coproduct ∆q
� : Ĥ+

q (R)→ Ĥ+
q (R)⊗ Ĥ+

q (R) by

∆q
�

(a) = 1⊗ a+ a⊗ 1, a = p, c,

∆q
�

(ym) = 1⊗ ym + ym ⊗ 1 +
m−1∑
i=1

yi ⊗ ym−i,

∆q
�

(cym) = 1⊗ cym + cym ⊗ 1 +
m∑
i=1

cyi−1 ⊗ cym−i,

and extend this definition with respect to the product concy.

Theorem 4.83. The tuple (Ĥ+
q (R), concy,∆q

�) is a complete cocommutative bialgebra
without unit. The pairing

Ĥ+
q (R)⊗Q H+

q → R,

Φ⊗ w 7→ (Φ | w),

where (Φ | w) denotes the coefficient of Φ ∈ Ĥ+
q (R) in w ∈ H+

q , gives a duality between
the weight-graded bialgebra (H+

q ,�q,∆) and the complete bialgebra (Ĥ+
q (R), concy,∆q

�).

Proof. We prove the duality of (H+
q ,�q,∆) and (Ĥ+

q (R), concy,∆q
�) with respect to the

given pairing. Then (Ĥ+
q (R), concy,∆q

�) is a cocommutative bialgebra without a unit (cf
Theorem A.31). For f, g ∈ Ĥ+

q (R) and any word w = a1 . . . an ∈ H+
q , one has

(
concy(f ⊗ g), w

)
=
(
f ⊗ g

∣∣∣ n+1∑
i=1
ai 6=y

a1 . . . ai−1 ⊗ ai . . . an
)

=
(
f ⊗ g | ∆(w)

)
.

So concy and ∆ are dual maps. For u, v ∈ H+
q and a ∈ {p, c}, one obtains(

∆q
�

(a) | u⊗ v
)

=
(
1⊗ a+ a⊗ 1 | u⊗ v

)
=
(
a | u�q v

)
.

The last equality holds, since the word a appears in the product u �q v if and only if
u = 1, v = a or u = a, v = 1. Similarly, one has for m ≥ 1

(
∆q
�

(ym) | u⊗ v
)

=
(
1⊗ ym + ym ⊗ 1 +

m−1∑
i=1

yi ⊗ ym−i
∣∣∣ u⊗ v) =

(
ym | u�q v

)
,

(
∆q
�

(cym) | u⊗ v
)

=
(
1⊗ cym + cym ⊗ 1 +

m∑
i=1

cyi−1 ⊗ cym−i
∣∣∣ u⊗ v) =

(
cym | u�q v

)
.

111



Since ∆q
� is compatible with concy by definition and we proved that(

∆q
�

(f) | u⊗ v
)

=
(
f | u�q v

)
holds on the algebra generators of

(
Ĥ+
q (R), concy

)
, the maps ∆q

� and �q are dual.

The complete dual balanced quasi-shuffle Hopf algebra (R〈〈B〉〉, conc,∆q) (Theorem 4.5)
embeds into the dual bialgebra (Ĥ+

q (R), concy,∆q
�).

Corollary 4.84. The tuple (Ĥq(R), conc,∆q
�) is a complete, cocommutative Hopf algebra.

Moreover, the map

ψ−1 ◦ τ ◦ i : (R〈〈B〉〉, conc,∆q)→ (Ĥq(R), conc,∆q
�

),
bm0
0 bk1b

m1
0 . . . bkdb

md
0 7→ pmdcykd−1 . . . pm1cyk1−1pm0 ,

where k1, . . . , kd+1 ≥ 1 and m1, . . . ,md ≥ 0, is an algebra anti isomorphism and a coalgebra
isomorphism.

In particular, if Ĥq(R) is equipped instead of conc with the product conc ◦t (see (A.14.1)
for the definition of t), then ψ−1 ◦ τ ◦ i would be a Hopf algebra isomorphism.

Proof. The product concy restricted to Ĥq(R) is simply the concatenation product. In
particular, there is a unit given by 1. So (Ĥq(R), conc,∆q

�) is a connected bialgebra and
thus a Hopf algebra (Theorem A.33).
Since (Q〈B〉, ∗q,∆dec), (R〈〈B〉〉, conc,∆q) and (Hq,�q,∆), (Ĥq(R), conc,∆q

�) are graded
dual Hopf algebras, Corollary 4.80 implies that the map ψ−1 ◦ τ ◦ i is an algebra anti
isomorphism and a coalgebra isomorphism.
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5 Lie algebras for Zq: Commutative approach

For multiple zeta values there exists also an approach to Lie algebras using Ecalle’s theory
of moulds ([Ec11],[Sc15]), which is presented in Appendix B.3. In this section, we will
relate the algebra Zq of multiple q-zeta values to (conjectural) Lie algebras consisting of
bimoulds. A basic introduction to the theory of bimoulds is given in Appendix C. We will
end this section by comparing the commutative approach presented in this section to the
non-commutative one given in Section 4.

5.1 The space BARIQ,pol
il,swap and the uri bracket

A spanning set for the algebra Zq of multiple q-zeta values is given by the combinatorial
bi-multiple Eisenstein series

G

(
k1, . . . , kd
m1, . . . ,md

)
, k1, . . . , kd ≥ 1, m1, . . . ,md ≥ 0.

For k + m ≥ 2 even, the combinatorial bi-Eisenstein series G
( k
m

)
is essentially the m-th

derivative of the classical Eisenstein series of weight k expressed in its Fourier expansion
(cf Example 2.48 1)). In particular, the algebra M̃Q(SL2(Z)) of quasi-modular forms with
rational coefficients is contained in Zq.
Consider the bimould G = (Gd)d≥0 ∈ GBARIpow,Zq of the generating series of the combi-
natorial bi-multiple Eisenstein series, so G0 = 1 and

Gd

(
X1, . . . , Xd

Y1, . . . , Yd

)
=

∑
k1,...,kd≥1
m1,...,md≥0

G

(
k1, . . . , kd
m1, . . . ,md

)
Xk1−1

1
Y m1

1
m1! . . . X

kd−1
d

Y md
d

md!
.

By Theorem 2.46, the bimould G is symmetril and swap invariant. Conjecturally, all
algebraic relations in Zq can be deduced from these two properties of the bimould G
(Conjecture 2.51).

The main idea to obtain a Lie algebra is to consider the bimould G of the generating series
of the combinatorial bi-multiple Eisenstein series modulo products and quasi-modular
forms.

Definition 5.1. Let Z(w)
q be the homogeneous space spanned by all combinatorial bi-

multiple Eisenstein series of weight w. Moreover, set

Zq = Zq�M̃Q(SL2(Z))Zq

and for each w ≥ 0 denote by Z(w)
q the image of the homogeneous subspace Z(w)

q in Zq.
Then let Iq = ⊕

w≥1
Z(w)
q and define the Q-algebra

Tq = Iq�I2
q
.

By construction, the algebra Tq is graded by weight and all products become trivial.
Moreover, the dimension of the homogeneous subspace T (w)

q of weight w is equal to the
number of algebra generators of Zq�M̃Q(SL2(Z))Zq in weight w.
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Let G
( k1,...,kd
m1,...,md

)
be the image of the combinatorial bi-multiple Eisenstein series G

( k1,...,kd
m1,...,md

)
in Tq and consider their generating series for each d ≥ 1,

Gd

(
X1, . . . , Xd

Y1, . . . , Yd

)
=

∑
k1,...,kd≥1
m1,...,md≥0

G

(
k1, . . . , kd
m1, . . . ,md

)
Xk1−1

1
Y m1

1
m1! . . . X

kd−1
d

Y md
d

md!
.

Set G0 = 0, then G = (Gd)d≥0 is a bimould contained in BARIpow,Tq .

Theorem 5.2. The bimould G is contained in the space

BARIpow,Tq
il,swap =

A ∈ BARIpow,Tq

∣∣∣∣∣∣∣
· A is alternil,
· A is swap invariant,
· A1

(X1
Y1

)
is even

 .
Proof. Alternility is symmetrility modulo products, thus we deduce from the symmetrility
of G (Theorem 2.46) that G is alternil. The swap invariance of G gives only linear relations
among the combinatorial bi-multiple Eisenstein series, thus the image G is still swap
invariant. The combinatorial bi-Eisenstein series G

( k
m

)
for k + m ≥ 2 even are exactly

the coefficients of the odd monomials in G1. On the other hand, these combinatorial
bi-Eisenstein series are essentially the classical Eisenstein series and their derivatives and
hence are contained in M̃Q(SL2(Z)) (Example 2.48, 1)). Thus their images in Tq vanish
and G1 is even.

Corollary 5.3. Decompose the bimould G as

G =
∑
α

α · ξα,

where α runs through a vector space basis of Tq. Then any bimould ξα is contained in

BARIpol,Q
il,swap =

A ∈ BARIpow,Q
il,swap

∣∣∣∣∣∣∣∣
· Ad

(
X1, . . . , Xd

Y1, . . . , Yd

)
∈ Q[X1, Y1, . . . , Xd, Yd] for all d ≥ 1,

· Ad
(
X1, . . . , Xd

Y1, . . . , Yd

)
6= 0 only for finitely many d ≥ 1

 .

Proof. Since G is contained in BARIpow,Tq
il,swap (Theorem 5.2) and we decompose over a Q-

vector space basis of Tq, evidently, the bimoulds ξα are contained in BARIpow,Q
il,swap. Since

Tq is graded by weight and all homogeneous components T (w)
q are finite-dimensional, the

entries of ξα must be polynomials. Moreover, the depth is bounded by the weight, thus
only finitely many components of ξα can be non-zero.

Example 5.4. There are the following bimoulds in BARIpol,Q
il,swap, which should correspond

to the elements G
(3
0
)
, G

(2
1
)
, G

(5
0
)
, G

(4
1
)
, G

(3
2
)
, G

(2,1,1
1,0,0

)
∈ Tq

ξ

(
3
0

)
= (X2

1 + Y 2
1 , X1 − 2X2 − Y1 + Y2,

1
3 , 0, . . .),

ξ

(
2
1

)
= (X1Y1, −X1 +X2 − Y2, 0, . . .),
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ξ

(
5
0

)
= (X4

1 + Y 4
1 , 2X3

1 − 3X3
2 + 9

2X1X
2
2 −

11
2 X

2
1X2 − 2Y 3

1 −
1
2Y

2
1 Y2 + 1

2Y1Y
2

2 + 2Y 3
2 ,

2X2
1 −

1
2X

2
2 −

1
2X

2
3 −

11
2 X1X2 + 9

2X1X3 + 2X2X3 + 2Y 2
1 − 4Y 2

2 + 2Y 2
3

− 3
2Y1Y2 + 3Y1Y3 −

3
2Y2Y3, X1 − 4X2 + 6X3 − 4X4 − Y1 + 3Y2 − 3Y3 + Y4,

1
5 , 0, . . .),

ξ

(
4
1

)
= (X3

1Y1 +X1Y
3

1 , −X3
1 +X3

2 −
3
2X1X

2
2 + 3

2X
2
1X2 − Y 3

2 −
3
2Y

2
1 Y2 −

3
2Y1Y

2
2

− 2X1X2Y1 +X1X2Y2 +X2Y1Y2 −X1Y1Y2 +X2
1Y1 −X2

1Y2 + 2X2Y
2

2 −X1Y
2

2

+X2Y
2

1 − 2X1Y
2

1 − 2X2
2Y2, −X2

1 + 3
2X

2
2 + 1

2X1X2 + 3
2X1X3 − 2X2X3 −

1
2X

2
3

+ Y 2
2 − Y 2

3 + 3
2Y1Y2 −

3
2Y2Y3 + 6X2Y3 − 6X1Y3 − 5X3Y1 + 3X3Y2 +X2Y2

+ 4X2Y1, X1 − 4X2 + 4X3 −X4 + Y2 − 3Y3 + Y4, 0, . . .),

ξ

(
3
2

)
= (X2

1Y
2

1 , X1X2Y1 −X1X2Y2 −
3
2X

2
1Y1 + 3

2X
2
2Y2 −X1Y1Y2 −X2Y1Y2 + 1

2X1Y
2

1

−X2Y
2

1 −
3
2X2Y

2
2 ,

1
2X

2
1 −X2

2 + 1
2X

2
3 +X1X2 − 2X1X3 +X2X3 + 1

2Y
2

2 + 1
2Y

2
3

+ 2Y2Y3 + 1
2X1Y1 − 4X2Y3 + 9

2X1Y3 + 7
2X3Y1 − 2X3Y2 −

1
2X2Y2 + 1

2X1Y2

− 5
2X2Y1, −X1 + 7

2X2 − 4X3 + 3
2X4 −

3
2Y2 + 5

2Y3 − Y4, 0, . . .),

ξ

(
2, 1, 1
1, 0, 0

)
= (0, 0, X1Y1 + 3X1Y3 − 3X2Y1 − 2X2Y2 − 3X2Y3 + 3X3Y1 +X3Y3,

−X1 + 3X2 − 3X3 +X4 − Y2 + 2Y3 − Y4, 0, . . .).

The space BARIpol,Q
il,swap is graded by weight, and the homogeneous components

(
BARIpol,Q

il,swap
)(w)

are obtained from (C.24.1).
Corollary 5.5. For each w ≥ 1, one has

dimQ T (w)
q ≤ dimQ

(
BARIpol,Q

il,swap
)(w)

.

Proof. If α is a basis element of T (w)
q , then by Corollary 5.3 the bimould ξα is contained in(

BARIpol,Q
il,swap

)(w). In particular, the dimension of the space spanned by the ξα, where α is
homogeneous of weight w, is bounded by the dimension of

(
BARIpol,Q

il,swap
)(w). As the assign-

ment α 7→ ξα is injective, also the dimension of T (w)
q is bounded by dimQ

(
BARIpol,Q

il,swap
)(w).

Conjecturally the space BARIpol,Q
il,swap has a weight-graded Lie algebra structure and the

dimensions of the homogeneous subspaces are compatible with the dimension conjecture
1.21. More precisely, this means
Conjecture 5.6. ([Kü19]) (i) There is a decomposition of graded algebras

Zq ' M̃Q(SL2(Z))⊗ U
(

BARIpol,Q
il,swap

)∨
.

(ii) For all w ≥ 1, the following holds

dimQ T (w)
q = dimQ

(
BARIpol,Q

il,swap
)(w) = gw,

where the numbers gw are defined in Lemma 4.41.
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It is hard to attack this conjecture with the computer even for low weights, since the
occurring polynomials are very large.

The rest of this subsection is devoted to explain the conjectural Lie algebra structure on
the subspace BARIpol,Q

il,swap, which was suggested by L. Schneps. This will be done more
generally for some fixed commutative Q-algebra R with unit. In particular, we will always
omit the index indicating the underlying Q-algebra in the following.

Definition 5.7. For any bimould B ∈ GBARIfL, define the automorphism ganitB of
BARIfL by

ganitB(A)(w) =
∑

w=a1b1...asbs
a1,b1,...,bs−1,as 6=∅

= A(a1c . . .asc)B(db1) . . . B(dbs),

where the flexions are explained in Appendix C.2. Moreover, let pic,poc ∈ GBARIfL be
the bimoulds for d ≥ 1 given by

pic
(
X1, . . . , Xd

Y1, . . . , Yd

)
= 1
X1 . . . Xd

, poc
(
X1, . . . , Xd

Y1, . . . , Yd

)
= − 1

X1(X1 −X2) . . . (Xd−1 −Xd)
.

Example 5.8. For any bimould A ∈ BARIfL, one obtains

ganitpic(A)
(
X1, X2
Y1, Y2

)
= A

(
X1, X2
Y1, Y2

)
+ 1
X2 −X1

A

(
X1

Y1 + Y2

)
,

ganitpic(A)
(
X1, X2, X3
Y1, Y2, Y3

)
= A

(
X1, X2, X3
Y1, Y2, Y3

)
+ 1
X3 −X2

A

(
X1, X2

Y1, Y2 + Y3

)

+ 1
X2 −X1

A

(
X1, X3

Y1 + Y2, Y3

)
+ 1

(X2 −X1)(X3 −X1)A
(

X1
Y1 + Y2 + Y3

)
,

ganitpic(A)
(
X1, X2, X3, X4
Y1, Y2, Y3, Y4

)
= A

(
X1, X2, X3, X4
Y1, Y2, Y3, Y4

)
+ 1
X4 −X3

A

(
X1, X2, X3

Y1, Y2, Y3 + Y4

)

+ 1
X3 −X2

A

(
X1, X2, X4

Y1, Y2 + Y3, Y4

)
+ 1
X2 −X1

A

(
X1, X3, X4

Y1 + Y2, Y3, Y4

)

+ 1
(X3 −X2)(X4 −X2)A

(
X1, X2

Y1, Y2 + Y3 + Y4

)
+ 1

(X2 −X1)(X3 −X1)A
(

X1, X4
Y1 + Y2 + Y3, Y4

)

+ 1
(X2 −X1)(X4 −X3)A

(
X1, X3

Y1 + Y2, Y3 + Y4

)

+ 1
(X2 −X1)(X3 −X1)(X4 −X1)A

(
X1

Y1 + Y2 + Y3 + Y4

)
,

ganitpoc(A)
(
X1, X2
Y1, Y2

)
= A

(
X1, X2
Y1, Y2

)
− 1
X2 −X1

A

(
X1

Y1 + Y2

)
,

ganitpoc(A)
(
X1, X2, X3
Y1, Y2, Y3

)
= A

(
X1, X2, X3
Y1, Y2, Y3

)
− 1
X3 −X2

A

(
X1, X2

Y1, Y2 + Y3

)

− 1
X2 −X1

A

(
X1, X3

Y1 + Y2, Y3

)
− 1

(X2 −X1)(X2 −X3)A
(

X1
Y1 + Y2 + Y3

)
,
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ganitpoc(A)
(
X1, X2, X3, X4
Y1, Y2, Y3, Y4

)
= A

(
X1, X2, X3, X4
Y1, Y2, Y3, Y4

)
− 1
X4 −X3

A

(
X1, X2, X3

Y1, Y2, Y3 + Y4

)

− 1
X3 −X2

A

(
X1, X2, X4

Y1, Y2 + Y3, Y4

)
− 1
X2 −X1

A

(
X1, X3, X4

Y1 + Y2, Y3, Y4

)

− 1
(X3 −X2)(X3 −X4)A

(
X1, X2

Y1, Y2 + Y3 + Y4

)
− 1

(X2 −X1)(X2 −X3)A
(

X1, X4
Y1 + Y2 + Y3, Y4

)

+ 1
(X2 −X1)(X4 −X3)A

(
X1, X3

Y1 + Y2, Y3 + Y4

)

− 1
(X2 −X1)(X2 −X3)(X3 −X4)A

(
X1

Y1 + Y2 + Y3 + Y4

)
.

Proposition 5.9. ([Bau14, Lemma 4.37, Proposition 4.38]) The map ganitpic restricts to
a vector space isomorphism

ganitpic : BARIfL
al → BARIfL

il .

The inverse map is given by ganitpoc.

In Remark C.18 it is explained how to extend the definition of alternality and alternility
to the space BARIfL.

L. Schneps suggested the following definition for a Lie bracket.

Definition 5.10. For bimoulds A,B ∈ BARIfL, define the uri bracket as

uri(A,B) = ganitpic

(
ari
(

ganitpoc(A), ganitpoc(B)
))
.

Since
(

BARIfL
al , ari

)
is a Lie algebra (Theorem C.24), one obtains from Proposition 5.9

the following.

Theorem 5.11. The space BARIfL
il equipped with the uri bracket is a Lie algebra.

We are interested in a polynomial expression of the uri bracket, since this would prove
that the uri bracket preserves the space BARIpow. More precisely, we define the following
analog of the derivation arit (Definition C.20).

Definition 5.12. For two bimoulds A,B ∈ BARIpow and d, e, r ≥ 1 define uritB(A)(d,e,r)

to be the bimould, whose only nontrivial component is in depth d+ e+ r and is given by

uritB(A)(d,e,r)
(
X1, . . . , Xd+e+r
Y1, . . . , Yd+e+r

)

=
e∑
i=1

Ae

(
X1, . . . , Xi−1, Xi, Xi+1+d+r, . . . , Xd+e+r

Y1, . . . , Yi−1, Yi + · · ·+ Yi+d+r, Yi+1+d+r, . . . , Yd+e+r

)

·
[ ∑

0≤s≤r−1
or

s=d+r

∏
0≤k≤r−1, k 6=s

or
k=d+r, k 6=s

1
(Xi+k −Xi+s)

Bd

(
Xi+r −Xi+s, . . . , Xi+d+r−1 −Xi+s

Yi+r, . . . , Yi+d+r−1

)

−
r∑
s=0

r∏
k=0
k 6=s

1
(Xi+k −Xi+s)

Bd

(
Xi+1+r −Xi+s, . . . , Xi+d+r −Xi+s

Yi+1+r, . . . , Yi+d+r

)]
.
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Then we define the bimould uritB(A) by

uritB(A)
(
X1, . . . , Xn

Y1, . . . , Yn

)
= aritB(A)

(
X1, . . . , Xn

Y1, . . . , Yn

)
+

∑
d+e+r=n
d,e,r≥1

uritB(A)(d,e,r)
(
X1, . . . , Xn

Y1, . . . , Yn

)
.

Example 5.13. Let A,B ∈ BARIpow, then one obtains

uritB(A)
(
X1, X2
Y1, Y2

)
= aritB(A)

(
X1, X2
Y1, Y2

)
,

uritB(A)
(
X1, X2, X3
Y1, Y2, Y3

)
= aritB(A)

(
X1, X2, X3
Y1, Y2, Y3

)

+A

(
X1

Y1 + Y2 + Y3

)
1

X3 −X1

(
B

(
X2 −X1

Y2

)
−B

(
X2 −X3

Y2

))

−A
(

X1
Y1 + Y2 + Y3

)
1

X2 −X1

(
B

(
X3 −X1

Y3

)
−B

(
X3 −X2

Y3

))
,

uritB(A)
(
X1, X2, X3, X4
Y1, Y2, Y3, Y4

)
= aritB(A)

(
X1, X2, X3, X4
Y1, Y2, Y3, Y4

)

+A

(
X1, X4

Y1 + Y2 + Y3, Y4

)[
1

X3 −X1

(
B

(
X2 −X1

Y2

)
−B

(
X2 −X3

Y2

))

− 1
X2 −X1

(
B

(
X3 −X1

Y3

)
−B

(
X3 −X2

Y3

))]

+A

(
X1, X2

Y1, Y2 + Y3 + Y4

)[
1

X4 −X2

(
B

(
X3 −X2

Y3

)
−B

(
X3 −X4

Y3

))

− 1
X3 −X2

(
B

(
X4 −X2

Y4

)
−B

(
X4 −X3

Y4

))]

+A

(
X1

Y1 + Y2 + Y3 + Y4

)[
1

X4 −X1

(
B

(
X2 −X1, X3 −X1

Y2, Y3

)
−B

(
X2 −X4, X3 −X4

Y2, Y3

))

− 1
X2 −X1

(
B

(
X3 −X1, X4 −X1

Y3, Y4

)
−B

(
X3 −X2, X4 −X2

Y3, Y4

))]

+A

(
X1

Y1 + Y2 + Y3 + Y4

)[
1

(X2 −X1)(X4 −X1)B
(
X3 −X1

Y3

)

+ 1
(X1 −X2)(X4 −X2)B

(
X3 −X2

Y3

)
+ 1

(X1 −X4)(X2 −X4)B
(
X3 −X4

Y3

)]

−A
(

X1
Y1 + Y2 + Y3 + Y4

)[
1

(X2 −X1)(X3 −X1)B
(
X4 −X1

Y4

)

+ 1
(X1 −X2)(X3 −X2)B

(
X4 −X2

Y4

)
+ 1

(X1 −X3)(X2 −X3)B
(
X4 −X3

Y4

)]
.

Proposition 5.14. For all A,B ∈ BARIpow, one has uritB(A) ∈ BARIpow.
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Proof. By [St99, Excercise 7.4.], for some commutative variables a1, . . . , ar the following
holds

∑
j1+···+jr=m+1

j1,...,jr≥1

aj1−1
1 . . . ajr−1

r =
r∑
s=1

r∏
k=1
k 6=s

1
(as − ak)

ams . (5.14.1)

Let B ∈ BARIpow be a bimould. Without loss of generality, assume that

Bd

(
X1, . . . , Xd

Y1, . . . , Yd

)
= Xk1−1

1 . . . Xkd−1
d Y m1

1 . . . Y md
d

for some k1, . . . , kd ≥ 1, m1, . . . ,md ≥ 0. Then we obtain for each i ≥ 1
r∑
s=0

r∏
k=0
k 6=s

1
(Xi+k −Xi+s)

Bd

(
Xi+1+r −Xi+s, . . . , Xi+d+r −Xi+s

Yi+1+r, . . . , Yi+d+r

)

= Y m1
i+1+r . . . Y

md
i+d+r

k1−1∑
l1=0
· · ·

kd−1∑
ld=0

(l1,...,ld)6=(0,...,0)

(
k1 − 1
l1

)
. . .

(
kd − 1
ld

)
(−1)l1+···+ld

·Xk1−l1−1
i+1+r . . . Xkd−ld−1

i+d+r

r∑
s=0

r∏
k=0
k 6=s

1
(Xi+k −Xi+s)

X l1+···+ld
i+s

(5.14.1)= Y m1
i+1+r . . . Y

md
i+d+r

k1−1∑
l1=0
· · ·

kd−1∑
ld=0

(l1,...,ld)6=(0,...,0)

(
k1 − 1
l1

)
. . .

(
kd − 1
ld

)
(−1)l1+···+ld+r

·
∑

j1+···+jr+1=l1+···+ld+1
j1,...,jr+1≥1

Xk1−l1−1
i+1+r . . . Xkd−ld−1

i+d+r Xj1−1
i . . . X

jr+1−1
i+r .

A completely analogous calculation shows that also the poles in the first sum in the
definition of uritB (Definition 5.12) cancel out.

Definition 5.15. For bimoulds A,B ∈ BARIpow, define the bimould preuri(A,B) ∈
BARIpow by

preuri(A,B) = uritA(B) + mu(B,A).

We expect that preuri is exactly a pre-Lie multiplication for the uri bracket, which means

Conjecture 5.16. For all bimoulds A,B ∈ BARIpow the following holds

uri(A,B) = preuri(A,B)− preuri(B,A).

In particular, Proposition 5.14 would imply that the uri bracket preserves the space
BARIpow.

Proposition 5.17. (i) For depth d ≤ 6 Conjecture 5.16 holds, in particular for depth
d ≤ 6 the space BARIpow is preserved by uri.
(ii) For depth d ≤ 3, the Lie bracket uri preserves the swap invariant bimoulds in BARIpow

il .

Proof. (i) This was calculated explicitly with the computer algebra system Maple.
(ii) is obtained in [SK].
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Example 5.18. From Example 5.13, one can easily obtain explicit formulas for uri in low
depths. E.g., we obtain for A,B ∈ BARIpow that

uri(A,B)
(
X1, X2, X3
Y1, Y2, Y3

)
= ari(A,B)

(
X1, X2, X3
Y1, Y2, Y3

)

+B

(
X1

Y1 + Y2 + Y3

)
1

X3 −X1

(
A

(
X2 −X1

Y2

)
−A

(
X2 −X3

Y2

))

−B
(

X1
Y1 + Y2 + Y3

)
1

X2 −X1

(
A

(
X3 −X1

Y3

)
−A

(
X3 −X2

Y3

))

−A
(

X1
Y1 + Y2 + Y3

)
1

X3 −X1

(
B

(
X2 −X1

Y2

)
−B

(
X2 −X3

Y2

))

+A

(
X1

Y1 + Y2 + Y3

)
1

X2 −X1

(
B

(
X3 −X1

Y3

)
−B

(
X3 −X2

Y3

))
.

It is conjectured in [SK] that uri is well-behaved for alternility and swap invariance in all
depths, in particular, this leads to the following.

Conjecture 5.19. ([SK]) The space BARIpow
il,swap is a Lie algebra with the uri bracket.

In particular, if Conjecture 5.19 holds, then the subspace BARIpol
il,swap equipped with the uri

bracket would be a weight-graded Lie algebra. As stated in Proposition 5.17 the conjecture
is proven up to depth 3 in [SK].

The space BARIpol
il,swap can be seen as a bi-version of the Lie algebra ARIpol

al∗il (introduced
in Theorem B.45).

Theorem 5.20. ([SK]) There is a map θBIMU : ARIpol
al∗il → BARIpol

il,swap given for each
d ≥ 1 by

θBIMU(A)
(
X1, . . . , Xd

Y1, . . . , Yd

)
= swap(A)(X1, . . . , Xd) +A(Y1, . . . , Yd) + CA

where CA denotes the unique constant bimould, such that swap(A) + CA is alternil.

The image θBIMU
(

ARIpol
al∗il

)
is a Lie algebra for the uri bracket. In particular, if Conjecture

5.19 holds, the map θBIMU is an embedding of graded Lie algebras.
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5.2 The Lie algebra BARIpol,Q
al,swap

We study the depth-graded behavior of the bimould G of generating series of the combi-
natorial bi-multiple Eisenstein series modulo products and quasi-modular forms.

Definition 5.21. Denote by Mq the associated depth-graded algebra to Tq (Definition
5.1), so

Mq =
⊕
w,d≥1

M(w,d)
q , M(w,d)

q = Fil(d)
D (T (w)

q )�Fil(d−1)
D (T (w)

q ).

In particular,Mq is a bi-graded algebra with respect to weight and depth. Moreover, the
dimension of M(w,d)

q equals the number of algebra generators of grD Z�M̃Q(SL2(Z))Z in
weight w and depth d.
Denote by grDG

( k1,...,kd
m1,...,md

)
the image of the combinatorial bi-multiple Eisenstein series

G
( k1,...,kd
m1,...,md

)
in Mq and consider their generating series in any fixed depth d ≥ 1,

grDGd

(
X1, . . . , Xd

Y1, . . . , Yd

)
=

∑
k1,...,kd≥1
m1,...,md≥0

grDG
(
k1, . . . , kd
m1, . . . ,md

)
Xk1−1

1
Y m1

1
m1! . . . X

kd−1
d

Y md
d

md!
.

Let grDG0 = 0, then grDG = (grDGd)d≥0 is a bimould in BARIpow,Mq .

Theorem 5.22. The bimould grDG is contained in

BARIpow,Mq

al,swap =

A ∈ BARIpow,Mq

∣∣∣∣∣∣∣
· A is alternal,
· A is swap invariant,
· A1

(X1
Y1

)
is even

 .
Proof. By Theorem 5.2 the bimould G in contained in BARIpow,Tq

il,swap . The definition of
alternility considered modulo lower depth is just alternality and the swap operator is
homogeneous in depth, thus the bimould grDG is alternal and swap invariant. Moreover,
G1 is an even function, thus the same holds for grDG.

Corollary 5.23. Decompose grDG over a vector space basis of Mq,

grDG =
∑
β

β · grD ξβ.

Then any bimould grD ξβ is contained in

BARIpol,Q
al,swap =

A ∈ BARIpow,Q
al,swap

∣∣∣∣∣∣∣∣
· Ad

(
X1, . . . , Xd

Y1, . . . , Yd

)
∈ Q[X1, Y1, . . . , Xd, Yd] for all d ≥ 1,

· Ad
(
X1, . . . , Xd

Y1, . . . , Yd

)
6= 0 only for finitely many d ≥ 1

 .

Proof. As in Corollary 5.3, this follows immediately from the weight-grading of Mq.

Example 5.24. For each k ≥ 1, m ≥ 0 and k +m odd, the elements

grD ξ
(
k
m

)
=
(
Xm

1 Y
m

1 (Xk−m−1
1 + Y k−m−1

1 ), 0, . . .
)

are contained in BARIpol,Q
al,swap. They should correspond to the elements grDG

( k
m

)
∈Mq.
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The space BARIpol,Q
al,swap is bi-graded by weight and depth, and the homogeneous components(

BARIpol,Q
al,swap

)(w,d) are given in (C.24.2).

Corollary 5.25. For all w, d ≥ 1, the following holds

dimQM(w,d)
q ≤ dimQ

(
BARIpol,Q

al,swap
)(w,d)

.

Proof. Apply the same arguments as in Corollary 5.5.

Equality in Corollary 5.25 is not expected, this will be explained in the following.

Theorem 5.26. ([SS20, Theorem 3.1, Proposition 3.4 + 3.5]) For each commutative Q-
algebra R with unit, the space BARIpol,R

al,swap equipped with the ari bracket (Definition C.22)
is a bi-graded Lie algebra.

Proposition 5.27. Let R be a commutative Q-algebra with unit and assume that the pair
(BARIpol,R

il,swap, uri) is a Lie algebra (Conjecture 5.19). Then the map

grD : (BARIpol,R
il,swap,uri)→ (BARIpol,R

al,swap, ari),
(0, . . . , 0, Ar, Ar+1, . . .) 7→ (0, . . . , 0, Ar, 0, . . .)

is a Lie algebra morphism.

Proof. Since the swap operator is homogeneous in depth and the map grD maps alternil
bimoulds to alternal bimoulds (Proposition C.19), the map grD is well-defined. By def-
inition, the associated depth-graded map to ganitpic and ganitpoc is simply the identity.
Thus, the associated depth-graded to the uri bracket (see Definition 5.10) is just the ari
bracket.

The map in Proposition 5.27 is not surjective, for example, one has

dimQ gr(2)
D

(
BARIpol,Q

il,swap

)(8)
= 7 < 8 = dimQ

(
BARIpol,Q

al,swap
)(8,2)

. (5.27.1)

In accordance with Conjecture 5.6, the following is expected.

Conjecture 5.28. ([Kü19])
(i) The space grD BARIpol,Q

il,swap is a proper bi-graded Lie subalgebra of BARIpol,Q
al,swap.

(ii) For all w, d ≥ 1, the following holds

dimQ gr(d)
D

(
BARIpol,Q

il,swap

)(w)
= dimQM(w,d)

q = gw,d,

where the numbers gw,d are defined in Lemma 4.70.

Evidence for the dimension part of this conjecture was computed by U. Kühn up to
weight 26 and depth 4. The example in (5.27.1) together with Conjecture 5.28 explains
why equality in Corollary 5.25 is not expected.

The Lie algebra BARIpol,R
al,swap can be seen as a generalization of the Lie algebra ARIpol,R

al/al of
moulds (introduced in Theorem B.53).

Proposition 5.29. ([SK]) Let R be commutative Q-algebra with unit. Then the map
θDBIMU : (ARIpol,R

al/al , ari)→ (BARIpol,R
al,swap, ari) given by

θDBIMU(A)
(
X1, . . . , Xd

Y1, . . . , Yd

)
= swap(A)(X1, . . . , Xd) +A(Y1, . . . , Yd)

is an embedding of bi-graded Lie algebras.
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Proof. By definition of the space ARIpol,R
al/al , the bimould θDBIMU(A) is alternal. Moreover,

one computes directly

swap(θDBIMU(A))
(
X1, . . . , Xd

Y1, . . . , Yd

)
= swap(A)(Y1 + · · ·+ Yd, . . . , Y1 + Y2, Y1) +A(Xd, Xd−1 −Xd, . . . , X1 −X2)
= A(Y1, . . . , Yd) + swap(A)(X1, . . . , Xd)

= θDBIMU(A)
(
X1, . . . , Xd

Y1, . . . , Yd

)
.

Thus θDBIMU(A) is contained in BARIpol,R
al,swap for all A ∈ ARIpol,R

al/al . Finally, obtain for
A,B ∈ ARIpol,R

al/al

ari(θDBIMU(A), θDBIMU(B))
(
X1, . . . , Xd

Y1, . . . , Yd

)
= ari(swap(A), swap(B))(X1, . . . , Xd) + ari(A,B)(Y1, . . . , Yd)
= swap

(
ari(A,B)

)
(X1, . . . , Xd) + ari(A,B)(Y1, . . . , Yd)

= θDBIMU
(

ari(A,B)
)(X1, . . . , Xd

Y1, . . . , Yd

)

The first equality follows from ari(A, swap(B)) = 0, which is proven in [SK], and the
second equality is a consequence of [Sc15, Lemma 2.4.1, 2.5.5.].

At the end of this subsection, we will explain the conjectured structure of the Lie algebra
(grD BARIpol,Q

il,swap, ari) and relate this to the depth-graded dimension conjecture 1.21. In
the following, we will work over the field Q for simplicity, but everything holds also for an
arbitrary commutative Q-algebra R with unit.
An immediate consequence of [Ec11, eq (2.79)] is the following parity result.

Proposition 5.30. If w, d ≥ 1 and w 6≡ d mod 2, then one has(
BARIpol,Q

al,swap
)(w,d) = {0}.

Proposition 5.31. ([Kü19]) The Lie algebra (BARIpol,Q
al,swap, ari) is equipped with the deriva-

tion δ : BARIpol,Q
al,swap → BARIpol,Q

al,swap given by

δ(A)
(
X1, . . . , Xd

Y1, . . . , Yd

)
= (X1Y1 + · · ·+XdYd)A

(
X1, . . . , Xd

Y1, . . . , Yd

)
.

Definition 5.32. Denote by F the Lie algebra over Q generated by the elements

grD ξ
(
k
0

)
=
(
Xk−1

1 + Y k−1
1 , 0, . . .

)
, k ≥ 1 odd,

and their derivatives

δm grD ξ
(
k
0

)
=
(
(X1Y1)m(Xk−1

1 + Y k−1
1 ), 0, . . .

)
, k ≥ 1 odd, m ≥ 0.
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For each A ∈ grD BARIpol,Q
il,swap the component A1 must be even and swap invariant. Thus,

grD BARIpol,Q
il,swap and F must coincide in depth 1

gr(1)
D BARIpol,Q

il,swap = F(1).

In particular, if grD BARIpol,Q
il,swap is a Lie algebra, then F is a Lie subalgebra of grD BARIpol,Q

il,swap.
By Proposition 5.29 there is a Lie algebra embedding

θDBIMU : ARIpol,Q
al/al → BARIpol,Q

al,swap .

For k ≥ 3 odd, the elements grD ξ
(k

0
)

lie in the image of θDBIMU, since their preimages
are exactly given by the generators grD ξ(k) = (Xk−1

1 , 0, . . .) of ARIpol,Q
al/al in depth 1 (cf

Definition B.59). In particular, F contains the images of the ekma moulds obtained for
multiple zeta values,

θDBIMU(E) ⊂ F.

Lemma 5.33. The number fw of generators of F(1) is given by∑
w≥1

fwx
w = D(x)O1(x) = a1(x),

where D(x) = 1
1−x2 , O1(x) = x

1−x2 .

Proof. The generators grD ξ
(k

0
)
, k ≥ 1 odd, are counted by the term O1(x) and their

derivatives are counted by the term D(x).

Theorem 5.34. ([Kü19]) The number rw of independent relations in F(2) of weight w is
given by ∑

w≥2
rwx

w = D(x)
∑
k≥4

dim(Mk(SL2(Z)))2xk = a2(x),

where D(x) = 1
1−x2 and Mk(SL2(Z)) is the vector space of modular forms of weight k.

Sketch of proof.7 Due to the shape of the ari bracket in depth 2 (Example C.23) and
the generators of F, the number rw is exactly given by the dimension of the space Rw

spanned by all homogeneous polynomials P ∈ Q[X1, X2, Y1, Y2] of degree w− 2 satisfying
the following relations

P

(
X1, X2
Y1, Y2

)
+ P

(
X2, X1 −X2
Y1 + Y2, Y1

)
+ P

(
X2 −X1, X1
Y2, Y1 + Y2

)
= 0,

P

(
X1, X2
Y1, Y2

)
+ P

(
X2, X1
Y2, Y1

)
= 0,

P

(
X1, X2
Y1, Y2

)
= P

(
±X1, X2
±Y1, Y2

)
= P

(
X1,±X2
Y1,±X2

)
,

P

(
X1, X2
Y1, Y2

)
= P

(
Y1, X2
X1, Y2

)
= P

(
X1, Y1
Y2, X2

)
.

The space Rw can be decomposed as

Rw = ker ∆⊕ δ(Rw−2),
7More details can be found in [Con22]
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where ∆ = ∂X1∂Y1 +∂X2∂Y2 denotes the symplectic Laplacian. Following an idea of Zagier,
the space ker ∆ can be identified with the space of all symmetric tensor products of even
or odd period polynomials. This identification allows counting the dimensions of ker ∆
and one obtains the claimed formula.

The relations in F(2) can be divided into two families. On the one hand, one obtains for
all k ≥ 1 odd

ari
(

grD ξ
(

1
0

)
, grD ξ

(
k
0

))
= 0 (5.34.1)

and hence also

δm ari
(

grD ξ
(

1
0

)
, grD ξ

(
k
0

))
= 0 for all m ≥ 0. (5.34.2)

These relations are called the Eisenstein relations. On the other hand, there are the
well-known period polynomial relations in (ARIpol,Q

al/al )(2) (Proposition B.60). Applying the
embedding θDBIMU (Proposition 5.29) leads to period polynomial relations between the
generators grD ξ

(k
0
)

for k ≥ 3 odd. For example, one has in weight 12

ari
(

grD ξ
(

3
0

)
, grD ξ

(
9
0

))
− 3 ari

(
grD ξ

(
5
0

)
, grD ξ

(
7
0

))
= 0. (5.34.3)

There are also derivatives of these period polynomial relations.

The Eisenstein relations and the period polynomial relations induced by θDBIMU intersect
in depth 3. More precisely, consider any period polynomial relations induced by θDBIMU,

∑
λk1,k2 ari

(
grD ξ

(
k1
0

)
, grD ξ

(
k2
0

))
= 0.

Then applying Jacobi’s identity yields

ari
(

grD ξ
(

1
0

)
,
∑

λk1,k2 ari
(

grD ξ
(
k1
0

)
, grD ξ

(
k2
0

)))
=

∑
λk1,k2 ari

(
grD ξ

(
k1
0

)
, ari

(
grD ξ

(
k2
0

)
, grD ξ

(
1
0

)))

+
∑

λk1,k2 ari
(

grD ξ
(
k2
0

)
, ari

(
grD ξ

(
1
0

)
, grD ξ

(
k1
0

)))
,

and the right-hand side consists of Lie products of the Eisenstein relations. Evidently,
there also exist derivatives of these intersections of relations. Denote by iw the number of
this kind of intersections in F(3) and weight w.

Lemma 5.35. The following holds∑
i≥3

iwx
w = D(x)xS(x) = a3(x),

where D(x) = 1
1−x2 , S(x) = x12

(1−x4)(1−x6) .
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Proof. The series S(x) is exactly the Hilbert-Poincare series of the cusp forms S(Sl2(Z))
and thus counts the number of period polynomial relations induced by θDBIMU (see Propo-
sition B.60). Since the intersections of relations occur when considering the Lie product of
these period polynomial relations and grD ξ

(1
0
)
, the series S(x) needs to be multiplied by

x. Finally, there exist derivations of the intersections of relations illustrated above, this is
encoded in the term D(x).

It is expected that there exist no new relations or intersections of relations in F(w) for
w > 3. So the computations in Lemma 5.33, Theorem 5.34, and Lemma 5.35 lead to the
following Hilbert-Poincare series of U(F).

Conjecture 5.36. ([Kü19]) The Hilbert-Poincare series of the universal enveloping alge-
bra of F is given by

HU(F)(x, y) =
∑
w,d≥0

dimQ U(F)(w,d)xwyd = 1
1− a1(x)y + a2(x)y2 − a3(x)y3 .

This conjecture is verified by U. Kühn up to weight 27 and depth 6.

In depth 4, the homogeneous subspace F(4) is properly included in gr(4)
D BARIpol,Q

il,swap. We
will explain now a construction how to find these additional generators of gr(4)

D BARIpol,Q
il,swap,

we call this Ecalle’s construction (cf [Ec11, Section 7.3, 7.7]).
If (BARIpol,Q

il,swap, uri) is a Lie algebra (Conjecture 5.19), then (grD BARIpol,Q
il,swap, ari) is the

associated depth-graded Lie algebra (cf Proposition 5.27). Thus, any relation in the Lie
algebra F ⊂ grD BARIpol,Q

il,swap can be lifted to BARIpol,Q
il,swap. For example lifting the period

polynomial relation induced by θDBIMU given in (5.34.3) to BARIpol,Q
il,swap, one obtains

uri
(
ξ

(
3
0

)
, ξ

(
9
0

))
− 3 uri

(
ξ

(
5
0

)
, ξ

(
7
0

))
= ξ∆,

where ξ∆ ∈ BARIpol,Q
il,swap is an element of depth ≥ 4. In general, lifting any relation in F(2)

to a relation in BARIpol,Q
il,swap, the depth 2 part must vanish by construction and the depth

3 part vanishes by Proposition 5.30. Thus any relation in F(2) gives rise to an element
in BARIpol,Q

il,swap of depth ≥ 4. Then apply the morphism in Proposition 5.27 to obtain a
(possibly trivial) element in gr(4)

D BARIpol,Q
il,swap.

Definition 5.37. Let D be the Lie algebra generated by the elements in gr(4)
D BARIpol,Q

il,swap
induced by the relations in F(2) in the above explained way.

By construction, the Lie algebra D contains the images of the carma moulds obtained for
multiple zeta values (Definition B.61) under the map θDBIMU (Proposition 5.29),

θDBIMU(C) ⊂ D.

Not all relations in F(2) produce non-trivial generators for D, for example, the Eisenstein
relations given in (5.34.1) should lift to proper relations in BARIpol,Q

il,swap. More precisely,
the following number of generators and relations in D is expected.

Conjecture 5.38. ([Kü19]) The Lie algebra D is a free Lie algebra and the Hilbert-
Poincare series of its universal enveloping algebra is given by

HU(D)(x, y) =
∑
w,d≥0

dimQ U(D)(w,d)xwyd = 1
1− a4(x)y4 ,
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where a4(x) = 1
1−x2

∑
k≥12

dim(Sk(SL2(Z)))2xk.

Finally, we want to investigate the relations between the two Lie algebras F and D. Similar
to the case of the ekma moulds (5.34.1), one obtains for any carma mould C ∈ C

δm ari
(

grD ξ
(

1
0

)
, θDBIMU(C)

)
= 0, m ≥ 0. (5.38.1)

Conjecture 5.39. ([Kü19])

(i) The two Lie algebras F and D generate the whole associated depth-graded Lie algebra
grD BARIpol,Q

il,swap.

(ii) There are no relations between F and D expect for the ones given in (5.38.1).

Theorem 5.40. Assume that Conjectures 5.36, 5.38, 5.39, and B.64 hold. Then the
Hilbert-Poincare series of the universal enveloping algebra of grD BARIpol,Q

il,swap is given by

H
U
(

grD BARIpol,Q
il,swap

)(x, y) = 1
1− a1(x)y + a2(x)y2 − a3(x)y3 − a4(x)y4 + a5(x)y5 ,

where ai(x), i = 1, . . . , 5 are defined in Conjecture 1.21.
In particular, Conjecture 5.28 would hold.

Proof. By Conjecture 5.36 and 5.38, one has

HU(F)(x, y) = 1
1− a1(x)y + a2(x)y2 − a3(x)y3 , HU(D)(x, y) = 1

1− a4(x)y4 .

The number of generators of C in weight k is expected to be given by dimSk(SL2(Z))
(Conjecture B.64). Thus, the number of relations in (5.38.1) is given by D(x)xS(x) =
a5(x) (as before, the term D(x) counts the derivations) and evidently, the relations in
(5.38.1) are generated in depth 5. Since we assume that there are no further relations
between F and D and both together generate grD BARIpol,Q

il,swap (Conjecture 5.39), we deduce

H
U
(

grD BARIpol,Q
il,swap

)(x, y) = 1
1− a1(x)y + a2(x)y2 − a3(x)y3 − a4(x)y4 + a5(x)y5 .

By definition of the numbers gw,d (Lemma 4.70), we immediately deduce Conjecture 5.28,

dimQ gr(d)
D

(
BARIpol,Q

il,swap

)(w)
= gw,d.

In particular, the expected structure of
(

grD BARIpol,Q
il,swap, ari

)
is compatible with the

depth-graded dimension conjecture 1.21 (ii) for the multiple q-zeta values.
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5.3 Symmetries of bimoulds related to balanced multiple q-zeta values

To compare the two approaches to Lie algebras related to multiple q-zeta values (Section
4 and Subsections 5.1, 5.2), we have to explain some terminology. In Definition 2.66 and
2.67, we introduced q-symmetral and q-symmetril bimoulds. In order to obtain Lie algebra
structures, we will consider these properties modulo products. In the following, we will
work over some fixed commutative Q-algebra R with unit. Moreover, we only consider
bimoulds with polynomial or power series components. In particular, we will drop both
indices in the notation in the following.

Definition 5.41. A bimould A ∈ BARI is called q-alternal if there is a Q-linear map
ϕ� : Q〈B〉0 → R satisfying ϕ�(u� v) = 0 for all u, v ∈ Q〈B〉0\Q1, such that for all d ≥ 1

Ad

(
X1, . . . , Xd

Y1, . . . , Yd

)
=

∑
k1,...,kd≥1
m1,...,md≥0

ϕ�(bk1b
m1
0 . . . bkdb

md
0 )Xk1−1

1 Y m1
1 . . . Xkd−1

d Y md
d .

In this case, we refer to the map ϕ� as the coefficient map of A.
The space of all q-alternal bimoulds is denoted by BARIq -al.

From the definition, we obtain that a bimould A ∈ BARI is q-alternal with coefficient
map ϕ� if and only if for all 0 < n < d

ϕ�

(
ρB(W)

(
X1, . . . , Xn

Y1, . . . , Yn

)
� ρB(W)

(
Xn+1, . . . , Xd

Yn+1, . . . , Yd

))
= 0. (5.41.1)

Here ρB(W) denotes the generating series of words in Q〈B〉0 as introduced in (2.65.2).

Definition 5.42. A bimould A ∈ BARI is called q-alternil if there is a Q-linear map
ϕ∗q : Q〈B〉0 → R satisfying ϕ∗q(u ∗q v) = 0 for all u, v ∈ Q〈B〉0\Q1, such that for all d ≥ 1

Ad

(
X1, . . . , Xd

Y1, . . . , Yd

)
=

∑
k1,...,kd≥1
m1,...,md≥0

ϕ∗q(bk1b
m1
0 . . . bkdb

md
0 )Xk1−1

1 Y m1
1 . . . Xkd−1

d Y md
d .

As before, we will refer to ϕ∗q as the coefficient map of A.
By BARIq -il we denote the subspace of all q-alternil bimoulds.

A bimould A ∈ BARI is q-alternil with coefficient map ϕ∗q if and only if for all 0 < n < d

ϕ∗q

(
ρB(W)

(
X1, . . . , Xn

Y1, . . . , Yn

)
∗q ρB(W)

(
Xn+1, . . . , Xd

Yn+1, . . . , Yd

))
= 0. (5.42.1)

As in the case of alternality and alternility (Proposition C.19), q-alternality can be seen
as the associated depth-graded symmetry to q-alternility.

Proposition 5.43. Let r ≥ 1 and A = (0, 0, . . . , 0, Ar, Ar+1, . . .) ∈ BARIq -il. Then
grD A = (0, 0, . . . , 0, Ar, 0, 0, . . .) is a q-alternal bimould.

Proof. By Proposition A.78 the explicit formulas for q-alternality (5.41.1) and q-alternility
(5.42.1) differ only by terms of lower depth, this directly implies the claim. In particular,
grD A is a q-alternal and q-alternil bimould at the same time.
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Definition 5.44. We define the following subspaces of BARI,

BARIq -al,τ =

A ∈ BARI

∣∣∣∣∣∣∣
· A is q-alternal,
· A is τ -invariant,
· A
(X1
Y1

)
is even

 ,
BARIq -il,τ =

A ∈ BARI

∣∣∣∣∣∣∣
· A is q-alternil,
· A is τ -invariant,
· A
(X1
Y1

)
is even

 .
The elements in BARIq -il,τ also satisfy a condition related to the product ∗τ . More pre-
cisely, we will state a version of Proposition 2.71 modulo products.

Proposition 5.45. Let A ∈ BARIq -il,τ , and ϕ∗q : Q〈B〉0 → R be the coefficient map of
A. Then we have for all 0 < n < d

ϕ∗q

(
ρB(W)

(
X1, . . . , Xn

Y1, . . . , Yn

)
∗τ ρB(W)

(
Xn+1, . . . , Xd

Yn+1, . . . , Yd

))
= 0.

Proof. As obtained in the proof of Proposition 2.71, we have ∗τ = τ ◦ ∗q ◦ (τ, τ). Thus, we
obtain the claim from the τ -invariance and the q-alternility of A.

We relate the spaces BARIq -al,τ and BARIq -il,τ to the known spaces BARIal,swap and
BARIil,swap (introduced in Theorem 5.2, 5.22).

Theorem 5.46. We have two vector space isomorphisms

#Y : BARIq -al,τ → BARIal,swap, #Y : BARIq -il,τ → BARIil,swap .

Proof. The proof consists of the same arguments as the proof of Theorem 2.75, just set
the products to be zero. Observe that #Y is the identity in depth 1, thus the condition
that the depth 1 component of each bimould is even is preserved.

Definition 5.47. For a bimould A ∈ BIMU, denote

A#X

(
X1, . . . , Xd

Y1, . . . , Yd

)
= A

(
X1 + · · ·+Xd, X2 + · · ·+Xd, . . . , Xd

Y1, . . . , Yd

)
.

Note that we have by definition #X = τ ◦#Y ◦ τ .

Corollary 5.48. We have two vector space isomorphisms

τ ◦#X : BARIq -al,τ → BARIal,swap, τ ◦#X : BARIq -il,τ → BARIil,swap .

Proof. Since τ ◦ #Y ◦ τ = #X , any τ -invariant bimould A ∈ BIMU satisfies τ(A#X ) =
τ(A)#Y = A#Y . Thus the claim is obtained from Theorem 5.46.
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5.4 Bimoulds and bm0

We will associate to each element in the space bm0 (Definition 4.24) a bimould in BARIQ,pol

(the general procedure is explained in Subsection A.4). Since the space bm0 can be de-
scribed in terms of three different alphabets, there are three different possibilities for the
association. Each one yields bimoulds with different symmetries, which we will elaborate
in detail in the following. These studies were an important part of finding the explicit
formula of the q-Ihara bracket (Subsection 3.2). We state all the obtained detailed results
here for further reference.

The alphabet B. We start with the most natural translation of the space bm0 into
bimoulds, this means we consider the alphabet B.

Definition 5.49. Consider the Q-linear map

ρB : Q〈B〉0 → Q[X1, Y1, X2, Y2, . . .],
bk1b

m1
0 . . . bkdb

md
0 7→ Xk1−1

1 Y m1
1 . . . Xkd−1

d Y md
d .

Let
(
Q〈B〉0

)(d) the homogeneous component of Q〈B〉0 of depth d and for each f ∈ Q〈B〉0

denote by f (d) the homogeneous component of f of depth d. Then to every f ∈ Q〈B〉 we
associate a bimould ρB(f) = (ρB(f)d)d≥0 ∈ BARIpol,Q by

ρB(f)d
(
X1, . . . , Xd

Y1, . . . , Yd

)
= ρB

(
Π0(f)(d)

)
, d ≥ 1.

Note that the map (Q〈B〉, conc) → (BARIpol,Q,mu), f 7→ ρB(f) is not an algebra mor-
phism. This is only the case if we restrict to Q〈B〉0.

Theorem 5.50. For every f ∈ bm0, the bimould ρB(f) is q-alternil and τ -invariant. More
precisely, there is a vector space isomorphism

bm0
∼−→ BARIpol,Q

q -il,τ , f 7→ ρB(f).

The space BARIpol,Q
q -il,τ is introduced in Definition 5.44.

Proof. First observe that there is an isomorphism
(
Q〈B〉0\Q1

)
→ BARIpol,Q, f 7→ ρB(f).

By definition a bimould ρB(f) ∈ BARIpol,Q is q-alternil with coefficient map Q〈B〉0 → Q,
w 7→ (f | w) if and only if

(f | u ∗q v) = 0 for all u, v ∈ Q〈B〉0\Q1.

On the other hand, the duality given in Theorem 4.5 implies that an element f ∈ Q〈B〉 is
primitive for ∆q if and only if

(f | v ∗q w) = 0 for all v, w ∈ Q〈B〉\Q1.

Furthermore, if f is primitive for ∆q, then f is contained in ker(∂0). In particular, by
applying the map secq one can uniquely recover f from the projection Π0(f) (Proposition
4.47). This shows that there is an isomorphism Prim(Q〈B〉)→ BARIpol,Q

q -il , f 7→ ρB(f).
Next, observe that a bimould ρB(f) ∈ BARIpol,Q is τ -invariant if and only if the coefficient
satisfy

(f | w) = (f | τ(w)) for all w ∈ Q〈B〉0.
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This follows immediately from the definition of τ (Definition 2.12) and the observation in
(2.65.1). On the other hand τ : Q〈B〉0 → Q〈B〉0 maps words onto words, thus τ

(
Π0(f)

)
=

Π0(f) is equivalent to

(f | w) = (f | τ(w)) for each word w ∈ Q〈B〉0.

Therefore, an element f ∈ Q〈B〉 satisfies τ
(
Π0(f)

)
= Π0(f) if and only if the bimould

ρB(f) is τ -invariant.
Finally, f ∈ bm satisfies (f | b2) = (f | b4) = (f | b6) = 0 if and only if (f | bkbm0 ) = 0
for any k+m even (Proposition 4.25). Equivalently, the coefficient of Xk−1

1 Y m
1 in ρB(f)1

vanishes for all k +m even, which means that ρB(f)1 is even. Altogether, we have shown
that bm0 → BARIpol,Q

q -il,τ , f 7→ ρB(f) is an isomorphism.

Corollary 5.51. There is an isomorphism of vector spaces

bm0
∼−→ BARIpol,Q

il,swap f 7→ ρB(f)#Y .

Proof. The isomorphism can be obtained immediately from Theorem 5.50 and Theorem
5.46.

The pre-Lie multiplication sqf for the q-Ihara bracket (Definition 3.16) corresponds to
the pre-Lie multiplication preuri (Definition 5.15) under the above isomorphism #Y ◦
ρB. To prove this, we restrict to the subspace Prim(Q〈B〉) of primitive elements in
(Q〈B〉, conc,∆q).

Theorem 5.52. For f, g ∈ Prim(Q〈B〉), one has

ρB
(
sqf (g)

)#Y

= preuri
(
ρB(f)#Y , ρB(g)#Y

)
.

Proof. Define the auxiliary letters

Dk,m =
(
− ad(b0)

)m
(bk) = [· · · [[bk, b0], b0] · · · , b0]︸ ︷︷ ︸

m times

), k ≥ 1,m ≥ 0.

By rewriting the letters vi in terms of the alphabet B in Proposition 4.32 (according to
Definition 4.29), we see that any element in Prim(Q〈B〉) is a Q-linear combination of words
in the letters Dk,m. Consider the Q-linear map

ρD : Prim(Q〈B〉)→ Q[X1, Y1, X2, Y2, . . .],
Dk1,m1 . . . Dkd,md 7→ Xk1−1

1 Y m1
1 . . . Xkd−1

d Y md
d .

Let Prim(Q〈B〉)(d) be the homogeneous subspace of Prim(Q〈B〉) spanned by all words in
the letters Dk,m of depth d and for each f ∈ Prim(Q〈B〉) denote by f (d) the homogeneous
component of f of depth d. We associate to each f ∈ Prim(Q〈B〉) the bimould ρD(f) =(
ρD(f)d

)
d≥0 ∈ BARIpol,Q by

ρD(f)d
(
X1, . . . , Xd

Y1, . . . , Yd

)
= ρD

(
f (d)

)
, d ≥ 1.

For some word w = Dk1,m1 . . . Dkd,md and each d ≥ 1 compute

Π0(w) = bk1b
m1
0

(
− ad(b0)

)m2
(bk2) . . .

(
− ad(b0)

)md
(bkd)

=
m2∑
n2=0

· · ·
md∑
nd=0

(
m2
n2

)
. . .

(
md

nd

)
(−1)n2+···+ndbk1b

m1+n2
0 bk2b

m2−n2+n3
0 . . . bkdb

md−nd
0
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and thus

ρB(w)
(
X1, . . . , Xd

Y1, . . . , Yd

)
=

m2∑
n2=0

· · ·
md∑
nd=0

(
m2
n2

)
. . .

(
md

nd

)
(−1)n2+···+ndXk1−1

1 . . . Xkd−1
d

· Y m1+n2
1 Y m2−n2+n3

2 . . . Y md−nd
d

= Xk1−1
1 . . . Xkd−1

d Y m1
1 (Y2 − Y1)m2(Y3 − Y2)m3 . . . (Yd − Yd−1)md

= ρD(w)
(

X1, . . . , Xd

Y1, Y2 − Y1, Y3 − Y2 . . . , Yd−1 − Yd

)

We deduce ρB(w)#Y = ρD(w). Therefore, it is enough to show that

ρD
(
sqf (g)

)
= preuri

(
ρD(f), ρD(g)

)
, f, g ∈ Prim(Q〈B〉).

Since all maps areQ-linear, we can assume that f = Dk1,m1 . . . Dkd,md , g = Dl1,n1 . . . Dle,ne .
By definition, we obtain

dqf (g) =
e∑
i=1

k1−1∑
k′1=0
· · ·

kd−1∑
k′
d
=0

(
k1 − 1
k′1

)
. . .

(
kd − 1
k′d

)
(−1)k′1+···+k′dDl1,n1 . . . Dli−1,ni−1

·
(
− ad(b0)

)ni([
Dk1−k′1,m1 . . . bkd−k′d,md , Dli+k′1+···+k′

d
,0
])
Dli+1ni+1 . . . Dle,ne

+
k1+···+kd−d∑

r=1

e∑
i=1

k1−1∑
k′1=0
· · ·

kd−1∑
k′
d
=0

(k′1,...,k′d)6=(0,...,0)

(
k1 − 1
k′1

)
. . .

(
kd − 1
k′d

)
(−1)r+k′1+···+k′d

∑
j1+···+jr+1=k′1+···+k′d+1

j1,...,jr+1≥1

Dl1,n1 . . . Dli−1,ni−1

(
− ad(b0)

)ni(
Dli+j1−1,0Dj2,0 . . . Djr,0

·
[
Dk1−k′1,m1 . . . Dkd−k′d,md , Djr+1,0

])
Dli+1,ni+1 . . . Dle,ne .

On the other hand, observe that we have for 1 ≤ i ≤ j ≤ d

(Yi + · · ·+ Yj)ρD(Dk1,m1 . . . Dkd,md)
(
X1, . . . , Xd

Y1, . . . , Yd

)

=
j∑
s=i

Xk1
1 . . . Xkd−1

d Y m1
1 . . . Y

ms−1
s−1 Y ms+1

s Y
ms+1
s+1 . . . Y md

d

= ρD
( j∑
s=i

Dk1,m1 . . . Dks−1,ms−1Dks,ms+1Dks+1,ms+1 . . . Dkd,md

)(X1, . . . , Xd

Y1, . . . , Yd

)

= ρD
(
Dk1,m1 . . . Dki−1,mi−1

(
− ad(b0)

)(
Dki,mi . . . Dkj ,mj

)
Dkj+1,mj+1

. . . Dkd,md

)(X1, . . . , Xd

Y1, . . . , Yd

)
,

where the last step follows from the observation that − ad(b0) acts as a derivation on the
letters Dk,m. Iteratively we get for each n ≥ 1

(Yi + · · ·+ Yj)nρD(Dk1,m1 . . . Dkd,md)
(
X1, . . . , Xd

Y1, . . . , Yd

)
(5.52.1)
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= ρD
(
Dk1,m1 . . . Dki−1,mi−1

(
− ad(b0)

)n(
Dki,mi . . . Dkj ,mj

)
Dkj+1,mj+1

. . . Dkd,md

)(X1, . . . , Xd

Y1, . . . , Yd

)
.

With (5.52.1) compute

aritρD(f)(ρD(g))
(
X1, . . . , Xd+e
Y1, . . . , Yd+e

)

=
e∑
i=1

ρD(g)
(

X1, . . . , Xi−1, Xi+d, Xi+d+1, . . . , Xd+e
Y1, . . . , Yi−1, Yi + · · ·+ Yi+d, Yi+d+1, . . . , Yd+e

)

· ρD(f)
(
Xi −Xi+d, . . . , Xi+d−1 −Xi+d

Yi, . . . , Yi+d−1

)

−
e∑
i=1

ρD(g)
(

X1, . . . , Xi−1, Xi, Xi+d+1, . . . , Xd+e
Y1, . . . , Yi−1, Yi + · · ·+ Yi+d, Yi+d+1, . . . , Yd+e

)

· ρD(f)
(
Xi+1 −Xi, . . . , Xi+d −Xi

Yi+1, . . . , Yi+d

)

=
e∑
i=1

X l1−1
1 . . . X

li−1−1
i−1 X

li+1
i+d+1 . . . X

le
d+eY

n1
1 . . . Y

ni−1
i−1 (Yi + · · ·+ Yi+d)niY ni+1

i+d+1 . . . Y
ne
d+e

·
(
X li
i+d(Xi −Xi+d)k1−1 . . . (Xi+d−1 −Xi+d)kd−1Y m1

i . . . Y md
i+d−1

−X li
i (Xi+1 −Xi)k1−1 . . . (Xi+d −Xi)kd−1Y m1

i+1 . . . Y
md
i+d

)
=

e∑
i=1

X l1−1
1 . . . X

li−1−1
i−1 X

li+1
i+d+1 . . . X

le
d+eY

n1
1 . . . Y

ni−1
i−1 (Yi + · · ·+ Yi+d)niY ni+1

i+d+1 . . . Y
ne
d+e

·
k1−1∑
k′1=0
· · ·

kd−1∑
k′
d
=0

(
k1 − 1
k′1

)
. . .

(
kd − 1
k′d

)
(−1)k′1+···+k′d

·
(
X
li+k′1+···+k′d
i+d X

k1−k′1−1
i . . . X

kd−k′d−1
i+d−1 Y m1

i . . . Y md
i+d−1

−X li+k′1+···+k′d
i X

k1−k′1−1
i+1 . . . X

kd−k′d−1
i+d Y m1

i+1 . . . Y
md
i+d

)

= ρD

(
e∑
i=1

k1−1∑
k′1=0
· · ·

kd−1∑
k′
d
=0

(
k1 − 1
k′1

)
. . .

(
kd − 1
k′d

)
(−1)k′1+···+k′dDl1,n1 . . . Dli−1,ni−1

·
(
− ad(b0)

)ni([
Dk1−k′1,m1 . . . Dkd−k′d,md , Dli+k′1+···+k′

d
,0
])
Dli+1,ni+1

. . . Dle,ne

)(
X1, . . . , Xd+e
Y1, . . . , Yd+e

)
.

Moreover, with (5.14.1) and (5.52.1) we obtain for r ≥ 1

uritρD(f)(ρD(g))(d,e,r)
(
X1, . . . , Xd+e+r
Y1, . . . , Yd+e+r

)
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=
e∑
i=1

ρD(g)
(

X1, . . . , Xi−1, Xi, Xi+1+d+r, . . . , Xd+e+r
Y1, . . . , Yi−1, Yi + · · ·+ Yi+d+r, Yi+1+d+r, . . . , Yd+e+r

)

·
[ ∑

0≤s≤r−1
or

s=d+r

∏
0≤k≤r−1, k 6=s

or
k=d+r, k 6=s

1
(Xi+k −Xi+s)

ρD(f)
(
Xi+r −Xi+s, . . . , Xi+d+r−1 −Xi+s

Yi+r, . . . , Yi+d+r−1

)

−
r∑
s=0

r∏
k=0
k 6=s

1
(Xi+k −Xi+s)

ρD(f)
(
Xi+1+r −Xi+s, . . . , Xi+d+r −Xi+s

Yi+1+r, . . . , Yi+d+r

)]

=
e∑
i=1

X l1−1
1 . . . X li−1

i X
li+1−1
i+1+d+r . . . X

le−1
d+e+rY

n1
1 . . . Y

ni−1
i−1 (Yi + · · ·+ Yi+d+r)ni

· Y ni+1
i+1+d+r . . . Y

ne
d+e+r

·
[

k1−1∑
k′1=0
· · ·

kd−1∑
k′
d
=0

(k′1,...,k′d)6=(0,...,0)

(
k1 − 1
k′1

)
. . .

(
kd − 1
k′d

)
(−1)r+k′1+···+k′d

∑
j1+···+jr+1=k′1+···+k′

d
+1

·Xj1−1
i Xj2−1

i+1 . . . Xjr−1
i+r−1X

k1−k′1−1
i+r . . . X

kd−k′d−1
i+d+r−1X

jr+1−1
i+d+r Y

m1
i+r . . . Y

md
i+d+r−1

−
k1−1∑
k′1=0
· · ·

kd−1∑
k′
d
=0

(k′1,...,k′d)6=(0,...,0)

(
k1 − 1
k′1

)
. . .

(
kd − 1
k′d

)
(−1)r+k′1+···+k′d

∑
j1+···+jr+1=k′1+···+k′

d
+1

·Xj1−1
i Xj2−1

i+1 . . . X
jr+1−1
i+r X

k1−k′1−1
i+r+1 . . . X

kd−k′d−1
i+d+r Y m1

i+r+1 . . . Y
md
i+d+r

]

= ρD

(
d∑
i=1

k1−1∑
k′1=0
· · ·

kd−1∑
k′
d
=0

(k′1,...,k′d)6=(0,...,0)

(
k1 − 1
k′1

)
. . .

(
kd − 1
k′d

)
(−1)r+k′1+···+k′d

∑
j1+···+jr+1=k′1+···+k′

d
+1

·Dl1,n1 . . . Dli−1,ni−1

(
− ad(b0)

)ni(
Dli+j1−1,0Dj2,0 . . . Djr,0

[
Dk1−k′1,m1

. . . Dkd−k′d,md , Djr+1,0
])
Dli+1,ni+1 . . . Dle,ne

)(
X1, . . . , Xd+e+r
Y1, . . . , Yd+e+r

)
.

Since

uritρD(f)(ρD(g))
(
X1, . . . , Xn

Y1, . . . , Yn

)
= aritρD(f)(ρD(g))

+ uritρD(f)(ρD(g))d,e,n−d−e
(
X1, . . . , Xn

Y1, . . . , Yn

)
,

comparing the computed formulas yields

ρD
(
dqf (g)

)
= uritρD(f)

(
ρD(g)

)
.

Moreover, the map (Prim(Q〈B〉), conc) → (BARIpol,Q,mu), f 7→ ρD(f) is an algebra
morphism. For two elements f, g ∈ Prim(Q〈B〉) the homogeneous component of fg of
depth d (with respect to the letters Dk,m) is given by

(fg)(d) =
d−1∑
i=1

f (i)g(d−i).
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Thus, we obtain ρD(fg)1 = mu(ρD(f), ρD(g))1 = 0 and for each d ≥ 2

ρD(fg)
(
X1, . . . , Xd

Y1, . . . , Yd

)
=

d−1∑
i=1

ρD(f)
(
X1, . . . , Xi

Y1, . . . , Yi

)
ρD(g)

(
Xi+1, . . . , Xd

Yi+1, . . . , Yd

)

= mu
(
ρD(f), ρD(g)

)(X1, . . . , Xd

Y1, . . . , Yd

)
.

We deduce that for all f, g ∈ Prim(Q〈B〉)

ρD
(
sqf (g)

)
= ρD

(
dqf (g)

)
+ ρD(gf) = uritρD(f)

(
ρD(g)

)
+ mu

(
ρD(g), ρD(f)

)
= preuri

(
ρD(f), ρD(g)

)
.

Due to Theorem 5.52 and Corollary 5.51, Conjectures 5.16, 5.19, and 4.52 can be summa-
rized as follows.

Conjecture 5.53. There is a Lie algebra isomorphism(
bm0, {−,−}q

) ∼−→ (
BARIpol,Q

il,swap,uri
)
, f 7→ ρB(f)#Y .

The alphabet V. Consider the alphabet V and recall that by Corollary 4.33, the space
bm0 is contained in LieQ〈V〉.

Set dep(v0) = 0 and dep(vk) = 1 for k ≥ 1, this defines an ascending filtration on Q〈V〉.
Note that the notions of depth for Q〈B〉 and Q〈V〉 induce the same filtration under the
identification given in Definition 4.29. Let Q〈V〉0 be the subalgebra of Q〈V〉 generated by
all words, which do not start in v0. Moreover, we denote by

(
Q〈V〉0

)(d) the homogeneous
component of Q〈V〉0 of depth d.

Definition 5.54. Consider the Q-linear map

ρV : Q〈V〉0 → Q[X1, Y1, X2, Y2, . . .],
vk1v

m1
0 . . . vkdv

md
0 7→ Xk1−1

1 Y m1
1 . . . Xkd−1

d Y md
d .

To each f ∈ Q〈V〉, associate a bimould ρV(f) =
(
ρV(f)d

)
d≥0 ∈ BARIpol,Q by

ρV(f)d
(
X1, . . . , Xd

Y1, . . . , Yd

)
= ρV

(
Π0(f)(d)

)
, d ≥ 1,

where f (d) ∈
(
Q〈V〉0

)(d) denotes the homogeneous component of f of depth d.

Note that the map (Q〈V〉, conc) → (BARIpol,Q,mu), f 7→ ρV(f) is not an algebra mor-
phism.

Proposition 5.55. For an element f ∈ LieQ〈V〉 the bimould ρV(f) is q-alternal. More
precisely, there is a vector space isomorphism{

f ∈ LieQ〈V〉
∣∣∣ (f | v0) = 0

}
→ BARIpol,Q

q -al , f 7→ ρV(f).
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Proof. There is an isomorphism
(
Q〈V〉0\Q1

)
→ BARIpol,Q, f 7→ ρV(f). By definition a

bimould ρV(f) ∈ BARIpol,Q is q-alternal with coefficient map

Q〈B〉0 → Q, bk1b
m1
0 . . . bkdb

md
0 7→ (f | vk1v

m1
0 . . . vkdv

md
0 )

if and only if
(f | u� v) = 0 for all v, w ∈ Q〈V〉0\Q1.

On the other hand, an element f ∈ Q〈V〉 is contained in LieQ〈V〉 if and only if it is
primitive for the shuffle coproduct ∆� : Q〈V〉 → Q〈V〉 ⊗ Q〈V〉 (Corollary A.40). By
duality (Example A.62) being primitive for ∆� is equivalent to

(f | v� w) = 0 for all v, w ∈ Q〈V〉\Q1.

In particular, for f ∈ LieQ〈V〉 the bimould ρV(f) is q-alternal. Moreover, we have by
Proposition 4.45 and Proposition 4.47 (i){

f ∈ LieQ〈V〉
∣∣∣ (f | v0) = 0

}
= ker(∂0).

Thus the map secq associates to every element in Q〈V 〉0 a unique element in LieQ〈V〉 with
vanishing coefficient at v0. Thus, the isomorphism

(
Q〈V〉0\Q1

)
→ BARIpol,Q, f 7→ ρV(f)

restricts to an isomorphism from {f ∈ LieQ〈V〉 | (f | v0) = 0} to BARIpol,Q
q -al .

Let f ∈ Q〈V〉 and r be the smallest number, such that f has a non-trivial component of
depth r. Then by definition of the alphabet V (Definition 4.29), the following holds

ρV(f)
(
X1, . . . , Xr

Y1, . . . , Yr

)
= ρB(f)

(
X1, . . . , Xr

Y1, . . . , Yr

)
.

So by Theorem 5.50 the component ρV(f)r is τ -invariant for f ∈ bm0. We want to
investigate the τ -invariance of some f in terms of the bimould ρV(f). Therefore, we will
explain the translation of the alphabet V into the alphabet B (Definition 4.29) in terms
of bimoulds.

Definition 5.56. Let A ∈ BARIpol,Q be a bimould. For 1 ≤ i ≤ j ≤ d, we define

A

(
X1, . . . , Xi−1, [X•]ji , Xj+1, . . . , Xd

Y1, . . . , Yi−1, Yj , Yj+1, . . . , Yd

)
=

(−1)j−i
j − i+ 1

j∑
s=i

j∏
k=i
k 6=s

(Ys − Yk)−1A

(
X1, . . . , Xi−1, Xs, Xj+1, . . . , Xd

Y1, . . . , Yi−1, Yi, Yj+1, . . . , Yd

)

and let tV,B(A) be the bimould given by

tV,B(A)
(
X1, . . . , Xd

Y1, . . . , Yd

)
=

d∑
r=1

∑
0<j1<···<jr=d

A

(
[X•]j11 , [X•]

j2
j1+1, . . . , [X•]

jr
jr−1+1

Yj1 , Yj2 , . . . , Yjr

)

Extend the definition of the operators [−]ji by distributivity, to evaluate several of them
at the same time.

We call a bimould A ∈ BARIpol,Q quasi τ -invariant if the bimould tV,B(A) is τ -invariant.
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Lemma 5.57. The following equality of bimoulds holds for each f ∈ Q〈V〉 = Q〈B〉(
tV,B ◦ρV

)
(f) = ρB(f).

Proof. Let w = vkv
m
0 . Then the component w(d) ∈ Q〈B〉0 of depth d is given by (Definition

4.29)

w(d) = (−1)d−1

d

∑
j1+···+jd=k
j1,...,jd≥1

bj1 . . . bjdb
m
0

and thus we deduce with (5.14.1)

ρB(w)
(
X1, . . . , Xd

Y1, . . . , Yd

)
= (−1)d−1

d

∑
j1+···+jd=k
j1,...,jd≥1

Xj1−1
1 . . . Xjd−1

d Y m
d

= (−1)d−1

d

d∑
s=1

d∏
k=1
k 6=s

(Xs −Xk)−1Xk−1
s Y m

d

= (−1)d−1

d

d∑
s=1

d∏
k=1
k 6=s

(Xs −Xk)−1ρV(w)
(
Xs

Yd

)

= ρV(w)
(

[X•]d1
Yd

)

=
(

tV,B ◦ρV
)
(w)

(
X1, . . . , Xd

Y1, . . . , Yd

)

Thus, we have for any word w = vk1v
m1
0 . . . vkrv

mr
0 and d ≥ r that

ρB(w)
(
X1, . . . , Xd

Y1, . . . , Yd

)
=

∑
0<j1<···<jr=d

ρV(w)
(

[X•]j11 , [X•]
j2
j1+1, . . . , [X•]

jr
jr−1+1

Yj1 , Yj2 , . . . , Yjr

)

=
(

tV,B ◦ρV
)
(w)

(
X1, . . . , Xd

Y1, . . . , Yd

)
.

Extending the arguments by linearity to all elements in Q〈V〉0, we obtain the claim.

Definition 5.58. Define the following subspace of BARIpol,Q

BARIpol,Q
q -al,quasi-τ =

A ∈ BARIpol,Q

∣∣∣∣∣∣∣
· A is q-alternal,
· A is quasi τ -invariant,
· A
(X1
Y1

)
is even

 .
Theorem 5.59. There is an isomorphism of vector spaces

bm0
∼−→ BARIpol,Q

q -al,quasi-τ , f 7→ ρV(f).

Proof. By Proposition 5.55 we have a vector space isomorphism{
f ∈ LieQ〈V〉

∣∣∣ (f | v0) = 0
}
→ BARIpol,Q

q -al , f 7→ ρV(f).
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By Proposition 4.32 an element f ∈ Q〈B〉 lies in LieQ〈V〉 is and only if f is primitive for
∆q. Thus f ∈ Q〈B〉 satisfies the defining conditions (i) and (ii) of bm0 (Definition 4.24) if
and only if ρV(f) is contained in BARIpol,Q

q -al . Moreover, by Theorem 5.50 and Lemma 5.57,
an element f ∈ Q〈B〉 satisfies τ

(
Π0(f)

)
= Π0(f) if and only if tV,B ◦ρV(f) is τ -invariant.

By definition, this is equivalent to ρV(f) being quasi τ -invariant. Finally, by Proposition
4.25 an element f ∈ bm satisfies (f | b2) = (f | b4) = (f | b6) = 0 if and only if we have
(f | bkbm0 ) = 0 for all k + m even. By definition of the alphabet V, this is equivalent to
(f | vkvm0 ) = 0 for all k +m even, which means ρV(f)1 must be even.

The alphabet Cbi. Finally, we consider the alphabet Cbi. Recall that by Theorem 4.51
the space bm0 can be purely described in the alphabet Cbi,

bm0 ' LieQ〈Cbi〉 ∩Q〈Cbi〉τ .

Set dep(Ck,m) = 1, this defines an ascending depth filtration on Q〈Cbi〉. Denote by
Q〈Cbi〉(d) the homogeneous subspace of depth d. The notions of depth for Q〈B〉, Q〈V〉,
and Q〈Cbi〉 induce all the same filtration under the identifications given in Definition 4.29,
4.44.

Definition 5.60. Consider the Q-linear map

ρCbi : Q〈Cbi〉 → Q[X1, Y1, X2, Y2, . . .],
Ck1,m1 . . . Ckd,md 7→ Xk1−1

1 Y m1
1 . . . Xkd−1

d Y md
d .

To every f ∈ Q〈Cbi〉 associate the bimould ρCbi(f) =
(
ρCbi(f)d

)
d≥0 ∈ BARIpol,Q by

ρCbi(f)d
(
X1, . . . , Xd

Y1, . . . , Yd

)
= ρCbi

(
f (d)), d ≥ 1,

where f (d) ∈ Q〈Cbi〉(d) denotes the homogeneous component of f of depth d.

Lemma 5.61. The map (Q〈Cbi〉\Q1, conc)→ (BARIpol,Q,mu), f 7→ ρCbi(f) is an algebra
morphism.

Proof. For two elements f, g ∈ Q〈Cbi〉\Q1, the component of depth d of the product fg is
given by

(fg)(d) =
d−1∑
i=1

f (i)g(d−i).

Thus we deduce for each d ≥ 2 that

ρCbi(fg)
(
X1, . . . , Xd

Y1, . . . , Yd

)
=

d−1∑
i=1

ρCbi(f)
(
X1, . . . , Xi

Y1, . . . , Yi

)
ρCbi(g)

(
Xi+1, . . . , Xd

Yi+1, . . . , Yd

)

= mu(ρCbi(f), ρCbi(g))
(
X1, . . . , Xd

Y1, . . . , Yd

)

and moreover ρCbi(fg)1 = mu(ρCbi(f), ρCbi(g))1 = 0.

Lemma 5.62. For f ∈ Q〈Cbi〉, one has

ρCbi(f)
(
X1, . . . , Xd

Y1, . . . , Yd

)
= (ρV(f))#Y

(
X1, . . . , Xd

Y1, . . . , Yd

)
.
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Proof. It is enough to proof the equality for words in Q〈Cbi〉, thus let w = Ck1,m1 . . . Ckd,md .
Then we obtain

Π0(w) = vk1v
m1
0

(
− ad(v0)

)m2
(vk2) . . .

(
− ad(v0)

)md
(vd)

=
m2∑
n2=0

· · ·
md∑
nd=0

(
m2
n2

)
. . .

(
md

nd

)
(−1)n2+···+ndvk1v

m1+n2
0 vk2v

m2−n2+n3
0 . . . vkdv

md−nd
0

and thus

ρV(f)
(
X1, . . . , Xd

Y1, . . . , Yd

)
=

m2∑
n2=0

· · ·
md∑
nd=0

(
m2
n2

)
. . .

(
md

nd

)
(−1)n2+···+ndXk1−1

1 . . . Xkd−1
d

· Y m1+n2
1 Y m2−n2+n3

2 . . . Y md−nd
d

= Xk1−1
1 . . . Xkd−1

d Y m1
1 (Y2 − Y1)m2 . . . (Yd − Yd−1)md

= ρCbi(w)
(

X1, . . . , Xd

Y1, Y2 − Y1, . . . , Yd − Yd−1

)

= ρCbi(w)#−1
Y

(
X1, . . . , Xd

Y1, . . . , Yd

)
.

Proposition 5.63. For f ∈ LieQ〈Cbi〉, the bimould ρCbi(f) is alternal. More precisely,
there is a vector space isomorphism

LieQ〈Cbi〉 ∼−→ BARIpol,Q
al , f 7→ ρCbi(f).

Proof. By Lazard elimination (Proposition 4.45), we can identify{
f ∈ LieQ〈V〉

∣∣∣ (f | v0) = 0
}

= LieQ〈Cbi〉.

Thus, by Proposition 5.55 there is an isomorphism

LieQ〈Cbi〉 → BARIpol,Q
q -al , f 7→ ρV(f).

Theorem 5.46 shows that #Y induces an isomorphism

#Y : BARIpol,Q
q -al → BARIpol,Q

al .

Thus we deduce the claim from Lemma 5.62.

Recall that #Y maps a τ -invariant bimould to a swap invariant bimould (Theorem 5.46).
Thus, by Lemma 5.62 we have for a τ -invariant element f ∈ Q〈Cbi〉 that the component of
ρCbi(f) of lowest non-trivial depth is swap invariant. We want to investigate, what kind of
relation the τ -invariance of some f ∈ Q〈Cbi〉 induces on the bimould ρCbi(f) in arbitrary
depths.
Definition 5.64. For a bimould A ∈ BARIpol,Q define tCbi,B(A) by

tCbi,B(A)
(
X1, . . . , Xd

Y1, . . . , Yd

)

=
d∑
r=1

∑
0<j1<···<jr=d

A

(
[X•]j11 , [X•]

j2
j1+1, . . . , [X•]

jr
jr−1+1

Y1 + · · ·+ Yj1 , Yj1+1 + · · ·+ Yj2 , . . . , Yjr−1+1 + · · ·+ Yjr

)
.

where the operator [−]ji is given in Definition 5.56.
We say that a bimould A ∈ BARIpol,Q is q-swap invariant if the bimould tCbi,B is swap
invariant.
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Lemma 5.65. The following equality of bimoulds holds for f ∈ Q〈Cbi〉 ⊂ Q〈B〉(
tCbi,B ◦ρCbi

)
(f) = ρB(f)#Y .

Proof. For a bimould A ∈ BARIpol,Q, compute

tV,B
(
A#−1

Y

)#Y

(
X1, . . . , Xd

Y1, . . . , Yd

)
= tV,B

(
A#−1

Y

)( X1, . . . , Xd

Y1, Y1 + Y2, . . . , Y1 + · · ·+ Yd

)

=
d∑
r=1

∑
0<j1<···<jr=d

A#−1
Y

(
[X•]j11 , [X•]

j2
j1+1, . . . , [X•]

jr
jr−1+1

Y1 + · · ·+ Yj1 , Y1 + · · ·+ Yj2 , . . . , Y1 + · · ·+ Yjr

)

=
d∑
r=1

∑
0<j1<···<jr=d

A

(
[X•]j11 , [X•]

j2
j1+1, . . . , [X•]

jr
jr−1+1

Y1 + · · ·+ Yj1 , Yj1+1 + · · ·+ Yj2 , . . . , Yjr−1+1 + · · ·+ Yjr

)

= tCbi,B(A)
(
X1, . . . , Xd

Y1, . . . , Yd

)
.

Thus, we get

tCbi,B ◦ρCbi = #Y ◦ tV,B ◦#−1
Y ◦ ρCbi = #Y ◦ tV,B ◦ρV = #Y ◦ ρB,

where the second equality follows from Lemma 5.62 and the third equality from Lemma
5.57.

Definition 5.66. Define the following subspace of BARIpol,Q

BARIpol,Q
al,q -swap =

A ∈ BARIpol,Q

∣∣∣∣∣∣∣
· A is alternal,
· A q-swap invariant,
· A
(X1
Y1

)
is even

 .
Theorem 5.67. There is a vector space isomorphism

bm0
∼−→ BARIpol,Q

al,q -swap, f 7→ ρCbi(f).

Proof. By Proposition 5.63, there is a vector space isomorphism

LieQ〈Cbi〉 → BARIpol,Q
al , f 7→ ρCbi(f).

Furthermore, one has f ∈ Q〈Cbi〉τ if and only if τ(Π0(f)) = Π0(f) and (f | Ck,0) = 0 for
k = 2, 4, 6 (Definition 4.50). By Corollary 5.51 the first condition is equivalent to ρB(f)#Y

being swap invariant. By Lemma 5.65 this is equivalent to (tCbi,B ◦ρCbi)(f) being swap
invariant, so by definition that ρCbi is q-swap invariant. Finally, we have (f | Ck,0) = 0
for k = 2, 4, 6 if and only if (f | Ck,m) = 0 for all k +m even (cf Proposition 4.25), which
is by definition of ρCbi(f) equivalent to ρCbi(f)1 being even. From the description of the
space bm0 purely in the alphabet Cbi (Theorem 4.51), we obtain the claim.

Summarizing the results in this subsection, we have the following commutative diagram
of isomorphic vector spaces

BARIpol,Q
q -il,τ BARIpol,Q

q -al,quasi- τ

bm0

BARIpol,Q
il,swap BARIpol,Q

al,q -swap

#Y

tV,B

#Y

ρB

ρV

ρCbi

tCbi,B
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The composition #Y ◦ ρB should be a Lie algebra isomorphism for the q-Ihara bracket
(Definition 3.16) and the uri bracket (Definition 5.10). It is not clear how to find a closed
formula for a Lie bracket on the other spaces (resp. in terms of the other alphabets).
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5.5 Bimoulds and lq

We want to relate the space lq (Definition 4.57) to bimoulds via the map ρB (Definition
5.49) and investigate the obtained properties. This will give the proof that the pair
(lq, {−,−}Dq ) is a Lie algebra (Theorem 4.63).

Theorem 5.68. For an element f ∈ lq, the bimould ρB(f) is q-alternal and τ -invariant.
More precisely, there is an isomorphism of vector spaces

lq
∼−→ BARIpol,Q

q -al,τ , f 7→ ρB(f).

The space BARIpol,Q
q -al,τ is given in Definition 5.44.

Proof. There is an isomorphism Q〈B〉0\Q1→ BARIpol,Q, f 7→ ρB(f) and by definition a
bimould ρB(f) ∈ BARIpol,Q is q-alternal with coefficient map Q〈B〉0 → Q, w 7→ (f | w) if
and only if

(f | u� v) = 0 for all u, v ∈ Q〈B〉0\Q1.

By duality (Example A.62) an element in f ∈ Q〈B〉 is primitive for ∆� if and only if

(f | u� v) = 0 for all u, v ∈ Q〈B〉\Q1.

Thus for any primitive element f ∈ Q〈B〉 (with respect to the coproduct ∆�) the bimould
ρB(f) is q-alternal. On the other hand, the primitive elements of (Q〈B〉,∆�) are exactly
the elements in LieQ〈B〉 (Corollary A.40). So similar to the map secq (Proposition 4.47) we
can uniquely recover each element f ∈ LieQ〈B〉 satisfying (f | b0) = 0 from its projection
Π0(f). Thus we get an isomorphism{

f ∈ LieQ〈B〉
∣∣∣ (f | b0) = 0

}
→ BARIpol,Q

q -al , f 7→ ρB(f).

As in the proof of Theorem 5.50, f ∈ Q〈B〉 satisfies τ(Π0(f)) = Π0(f) and (f | bkbm0 ) = 0
for all k +m even if and only if ρB(f) is τ -invariant and ρB(f)1 is even.

Corollary 5.69. There is a vector space isomorphism

lq
∼−→ BARIpol,Q

al,swap, f 7→ ρB(f)#Y .

Proof. This is an immediate consequence of Theorem 5.68 and Theorem 5.46.

Since the associated depth-graded space lb to bm0 (Definition 4.58) is a proper subspace
of lq, we get embedding of vector spaces

lb ↪→ BARIpol,Q
al,swap, f 7→ ρB(f)#Y .

Recall that BARIpol,Q
al,swap equipped with the ari bracket is a Lie algebra (Theorem 5.26).

Thus the ari bracket induces a Lie algebra structure on lq under the isomorphism #Y ◦ρB.

Proposition 5.70. For all f, g ∈ Q〈B〉, the following holds

ρB
(
{f, g}Dq

)#Y

= ari
(
ρB(f)#Y , ρB(g)#Y

)
.

The depth-graded q-Ihara bracket {−,−}Dq is introduced in Definition 4.62.
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Proof. Considering the calculations in Theorem 5.52 modulo higher depth leads to

ρB
(
dq,Df (g)

)#Y

= aritρB(f)#Y

(
ρB(g)#Y

)
, ρB(fg)#Y = mu

(
ρB(f)#Y , ρB(g)#Y

)
for all f, g ∈ Q〈B〉. Thus, we obtain

ρB
(
{f, g}Dq

)#Y

= ρB
(
dq,Df (g)− dq,Dg (f)− fg + gf

)#Y

= aritρB(f)#Y

(
ρB(g)#Y

)
− aritρB(g)#Y

(
ρB(f)#Y

)
−mu

(
ρB(f)#Y , ρB(g)#Y

)
+ mu

(
ρB(g)#Y , ρB(f)#Y

)
= ari

(
ρB(f)#Y , ρB(g)#Y

)
.

An immediate consequence of Corollary 5.69 and Proposition 5.70 is the following.

Corollary 5.71. The pair (lq, {−,−}Dq ) is a Lie algebra and there is a Lie algebra iso-
morphism (

lq, {−,−}Dq
)
→
(

BARIpol,Q
al,swap, ari

)
, f 7→ ρB(f)#Y .

143



6 A result towards Bachmann’s conjecture in terms of the
algebra Q〈B〉0

By construction of the balanced multiple q-zeta values (Subsection 2.6), one obtains

Zq = spanQ{ζq(s1, . . . , sl) | s1 ≥ 1, s2, . . . , sl ≥ 0},
Z◦q = spanQ{ζq(s1, . . . , sl) | s1, . . . , sl ≥ 1}.

Moreover, define the subspaces of bi-brackets (Definition 2.27)

Z+
q = spanQ

{
g

(
k1, . . . , kd
m1, . . . ,md

) ∣∣∣∣∣ k1 > m1, . . . , kd > md

}
,

Z123
q = spanQ {g(k1, . . . , kd) | kj ∈ {1, 2, 3}} .

By definition, there are inclusions

Z123
q ⊂ Z◦q ⊂ Z+

q ⊂ Zq.

In [BK20] it is conjectured that all these inclusion are equalities. In this subsection, we
will focus on the inclusion Z◦q ⊂ Zq, which was already conjectured by H. Bachmann to
be an equality ([Ba19, Conjecture 4.3]).

Let Q〈B〉≥1 ⊂ Q〈B〉0 be the free algebra generated by all words in the letters bi, i ≥ 1.
By Theorem 2.59, we have a surjective algebra morphism

(Q〈B〉≥1, ∗q)� (Z◦q , ·),
bk1 . . . bkd 7→ ζq(k1, . . . , kd).

Therefore, a reformulation of Bachmann’s conjecture Zq = Z◦q is given by the following.
Conjecture 6.1. There is a surjective algebra morphism

(Q〈B〉≥1, ∗q)→ (Zq, ·)
bk1 . . . bkd 7→ ζq(k1, . . . , kd).

Since we expect that all algebraic relations in Zq are a consequence of the balanced
quasi-shuffle product formula and the τ -invariance of the balanced multiple q-zeta val-
ues (Conjecture 2.60), those two properties should be sufficient to prove the surjectivity
in Conjecture 6.1.
Remark 6.2. 1) According to the observations on p. 73 et seq., the algebra (Q〈B〉≥1, ∗q)
is isomorphic to the usual stuffle algebra (Q〈Y〉, ∗) via the identification bi 7→ yi for i ≥ 1.
Therefore, Conjecture 6.1 would imply the following commutative diagram of algebras

0 (Q〈Y〉, ∗) (Q〈B〉, ∗q) (Q〈X 〉,�) 0

0 (Z◦q , ·) (Zq, ·) 0 0

ζq ζq

∼

2) There are some partial results towards Conjecture 6.1 proven in terms of the bi-brackets
(Definition 2.27). In [Ba19, Proposition 4.4] Conjecture 6.1 is proven in depth 1 and there
is also obtained a partial result towards the depth 2 case. Moreover, in [Vl20] Conjecture
6.1 is shown for depth 2 and odd weight by taking advantage of the fact that any bi-bracket
of depth 2 and odd weight is a linear combination of (products of) bi-brackets of depth 1.
Finally, there is an approach to Conjecture 6.1 by B. Brindle, which uses the SZ multiple
q-zeta values (Definition 2.9).
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Definition 6.3. For any word w = bk1b
m1
0 . . . bkdb

md
0 ∈ Q〈B〉0, let

b(w) = min{k1 + · · ·+ kd − d,m1 + · · ·+md}.

By definition, a word w ∈ Q〈B〉0 satisfies b(w) = 0 if and only if w is contained in Q〈B〉≥1

or only consists of the letters b0, b1. One obtains

τ(b1bm1
0 . . . b1b

md
0 ) = bmd+1 . . . bm1+1

for all m1, . . . ,md ≥ 0. Therefore, applying the τ -invariance of the balanced multiple
q-zeta values shows that ζq(w) ∈ Z◦q for any word w ∈ Q〈B〉0 satisfying b(w) = 0.

Theorem 6.4. Let w ∈ Q〈B〉0 be a word satisfying b(w) = 1, then ζq(w) ∈ Z◦q .

In particular, any balanced multiple q-zeta value of the form

ζq(k1, . . . , ki, 0, ki+1, . . . , kd), k1, . . . , kd ≥ 1, i ∈ {1, . . . , d},

is contained in Z◦q .

Proof. We use induction on the depth. Let w ∈ Q〈B〉0 be a word of depth 1 satisfying
b(w) = 1, i.e., we have w = bm+1b0 or w = b2b

m
0 for some m ≥ 1. Since τ(bm+1b0) = b2b

m
0

and the balanced multiple q-zeta values are τ -invariant, it is enough to show that ζq(w) ∈
Z◦q for w = b2b

m
0 . Compute

b1b
m
0 ∗q b1 =

m∑
i=0

b1b
i
0b1b

m−i
0 + b21b

m
0 + b2b

m
0 .

Since ζq : (Q〈B〉0, ∗q)→ Zq is an algebra morphism (Theorem 2.59), we deduce

ζq(w) = ζq(b1bm0 )ζq(b1)−
m∑
i=0

ζq(b1bi0b1bm−i0 )− ζq(b21bm0 ).

Any word u contained in the right-hand side satisfies b(u) = 0 and hence is contained in
Z◦q . Therefore, we have ζq(w) ∈ Z◦q .
Assume that for all words w ∈ Q〈B〉0 of depth d ≥ 1 satisfying b(w) = 1, the element
ζq(w) is contained in Z◦q . Let n,m1, . . . ,md ≥ 0, then for i = 1, . . . , d, one obtains

bn+1 ∗q bm1+1 . . . bmi+1b0bmi+1+1 . . . bmd

≡
i∑

j=0
bm1+1 . . . bmj+1bn+1bmj+1+1 . . . bmi+1b0bmi+1+1 . . . bmd

+
d∑
j=i

bm1+1 . . . bmi+1b0bmi+1+1 . . . bmj+1bn+1bmj+1+1 . . . bmd

mod depth ≤ d.

By the induction hypothesis, we have ζq(bn+1)ζq(bm1+1 . . . bmi+1b0bmi+1+1 . . . bmd) ∈ Z◦q .
Moreover, all words w of depth ≤ d appearing in these products also satisfy b(w) = 1,
thus they are also contained in Z◦q by the induction hypothesis. We deduce

d∑
i=1

(
i∑

j=0
ζq(bm1+1 . . . bmj+1bn+1bmj+1+1 . . . bmi+1b0bmi+1+1 . . . bmd) (6.4.1)

+
d∑
j=i

ζq(bm1+1 . . . bmi+1b0bmi+1+1 . . . bmj+1bn+1bmj+1+1 . . . bmd)
)
∈ Z◦q .
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On the other hand, we obtain for j = 0, . . . , d that

b1 ∗q b1bmd0 . . . b1b
mj+1
0 b1b

n
0b1b

mj
0 . . . b1b

m1
0 ≡

j∑
i=1

b1b
md
0 . . . b1b

mj+1
0 b1b

n
0b1b

mj
0 . . . b1b

mi+1
0 b2b

mi
0 b1b

mi−1
0 . . . b1b

m1
0

+ b1b
md
0 . . . b1b

mj+1
0 b2b

n
0b1b

mj
0 . . . b1b

m1
0

+
d∑
i=j

b1b
md
0 . . . b1b

mi+1
0 b2b

mi
0 b1b

mi−1
0 . . . b1b

mj+1
0 b1b

n
0b1b

mj
0 . . . b1b

m1
0

mod words w satisfying b(w) = 0.

Since all words w ∈ Q〈B〉0 satisfying b(w) = 0 are contained in Z◦q , we obtain

ζq(b1)ζq(b1bmd0 . . . b1b
mj+1
0 b1b

n
0b1b

mj
0 . . . b1b

m1
0 ) ∈ Z◦q

and thus by applying the τ -invariance of the balanced multiple q-zeta values
d∑
j=0

( j∑
i=1

ζq(bm1+1 . . . bmi+1b0bmi+1+1 . . . bmj+1bn+1bmj+1+1 . . . bmd+1)

+ζq(bm1+1 . . . bmj+1bn+1b0bmj+1+1 . . . bmd+1) (6.4.2)

+
d∑
i=j

ζq(bm1+1 . . . bmj+1bn+1bmj+1+1 . . . bmi+1b0bmi+1+1 . . . bmd+1)
)
∈ Z◦q .

The two expressions given in (6.4.1) and (6.4.2) are equal up to the additional term
ζq(bn+1b0bm1+1 . . . bmd+1) appearing in (6.4.2), therefore we get by subtracting them

ζq(bn+1b0bm1+1 . . . bmd+1) ∈ Z◦q . (6.4.3)

Next, let n1, n2,m1, . . . ,md−1 ≥ 0. Then compute all products

bn1+1bn2+1 ∗q bm1+1 . . . bmi+1b0bmi+1+1 . . . bmd−1+1, i = 1, . . . , d− 1. (6.4.4)

As before, by the induction hypothesis each product gives a linear combination of balanced
multiple q-zeta values contained in Z◦q . Similarly, for 0 ≤ j1 ≤ j2 ≤ d − 1 compute the
products

b1 ∗q b1b
md−1
0 . . . b1b

mj2+1
0 b1bn2b1b

mj1
0 . . . b1b

mj1+1
0 b1b

n1
0 b1b

mj2
0 . . . b1b

m1
0 . (6.4.5)

Since the words w appearing in the products satisfy b(w) = 0, we obtain as in the previous
case linear combinations of balanced multiple q-zeta values contained in Z◦q . Again we ob-
tain that the sum of all expressions obtained from (6.4.4) equals the sum of all expressions
obtained from (6.4.5) except for some additional terms (appearing in (6.4.5)), explicitly
we get

ζq(bn1+1bn2+1b0bm1+1 . . . bmd−1+1)

+
d−1∑
j=0

ζq(bn1+1b0bm1+1 . . . bmj+1bn2+1bmj+1+1 . . . bmd−1+1) ∈ Z◦q .

From the first case (6.4.3) we get ζq(bn1+1b0bm1+1 . . . bmj+1bn2+1bmj+1+1 . . . bmd−1+1) ∈ Z◦q
for each j = 0, . . . , d− 1 and thus, we deduce

ζq(bn1+1bn2+1b0bm1+1 . . . bmd−1+1) ∈ Z◦q .
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Iterating this process shows that any balanced multiple q-zeta value of the form

ζq(bm1+1 . . . bmi+1b0bmi+1+1 . . . bmd+1+1), i = 1, . . . , d+ 1,

is contained in Z◦q . Applying the τ -invariance of the balanced multiple q-zeta values shows
that also

ζq(b1bm1
0 . . . b1b

mj
0 b2b

mj+1
0 b1b

mj+2
0 . . . b1b

md+1
0 ), j = 0, . . . , d+ 1,

is contained in Z◦q . Since any word w ∈ Q〈B〉0 of depth d+ 1 satisfying b(w) = 1 has one
of the above given two shapes, we have ζq(w) ∈ Z◦q for all words w ∈ Q〈B〉0 of depth d+ 1
satisfying b(w) = 1.

Example 6.5. We will illustrate the idea of proof explicitly in depth 4. In particular, we
assume that any word w ∈ Q〈B〉0 of depth < 4 with b(w) = 1 satisfies ζq(w) ∈ Z◦q .
Let n,m1,m2,m3 ≥ 0. We compute

bn+1 ∗q bm1+1b0bm2+1bm3+1 ≡ bn+1bm1+1b0bm2+1bm3+1 + bm1+1bn+1b0bm2+1bm3+1

+ bm1+1b0bn+1bm2+1bm3+1 + bm1+1b0bm2+1bn+1bm3+1

+ bm1+1b0bm2+1bm3+1bn+1 mod depth < 4,
bn+1 ∗q bm1+1bm2+1b0bm3+1 ≡ bn+1bm1+1bm2+1b0bm3+1 + bm1+1bn+1bm2+1b0bm3+1

+ bm1+1bm2+1bn+1b0bm3+1 + bm1+1bm2+1b0bn+1bm3+1

+ bm1+1bm2+1b0bm3+1bn+1 mod depth < 4,
bn+1 ∗q bm1+1bm2+1bm3+1b0 ≡ bn+1bm1+1bm2+1bm3+1b0 + bm1+1bn+1bm2+1bm3+1b0

+ bm1+1bm2+1bn+1bm3+1b0 + bm1+1bm2+1bm3+1bn+1b0

+ bm1+1bm2+1bm3+1bn+1b0 mod depth < 4.

All appearing words w of depth < 4 satisfy b(w) = 1, so by assumption, those are contained
in Z◦q . Moreover, also the products are contained in Z◦q by assumption, thus by summing
up the three equations, we get

ζq(bn+1bm1+1b0bm2+1bm3+1) + ζq(bm1+1bn+1b0bm2+1bm3+1) + ζq(bm1+1b0bn+1bm2+1bm3+1)
+ ζq(bm1+1b0bm2+1bn+1bm3+1) + ζq(bm1+1b0bm2+1bm3+1bn+1) + ζq(bn+1bm1+1bm2+1b0bm3+1)
+ ζq(bm1+1bn+1bm2+1b0bm3+1) + ζq(bm1+1bm2+1bn+1b0bm3+1) + ζq(bm1+1bm2+1b0bn+1bm3+1)
+ ζq(bm1+1bm2+1b0bm3+1bn+1) + ζq(bn+1bm1+1bm2+1bm3+1b0) + ζq(bm1+1bn+1bm2+1bm3+1b0)
+ ζq(bm1+1bm2+1bn+1bm3+1b0) + ζq(bm1+1bm2+1bm3+1bn+1b0) + ζq(bm1+1bm2+1bm3+1bn+1b0)
∈ Z◦q . (6.5.1)
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On the other hand, we have

b1 ∗q b1bm3
0 b1b

m2
0 b1b

m1
0 b1b

n
0 ≡ b2b

m3
0 b1b

m2
0 b1b

m1
0 b1b

n
0 + b1b

m3
0 b2b

m2
0 b1b

m1
0 b1b

n
0

+ b1b
m3
0 b1b

m2
0 b2b

m1
0 b1b

n
0 + b1b

m3
0 b1b

m2
0 b1b

m1
0 b2b

n
0

mod words w satisfying b(w) = 0,
b1 ∗q b1bm3

0 b1b
m2
0 b1b

n
0b1b

m1
0 ≡ b2b

m3
0 b1b

m2
0 b1b

n
0b1b

m1
0 + b1b

m3
0 b2b

m2
0 b1b

n
0b1b

m1
0

+ b1b
m3
0 b1b

m2
0 b2b

n
0b1b

m1
0 + b1b

m3
0 b1b

m2
0 b1b

n
0b2b

m1
0

mod words w satisfying b(w) = 0,
b1 ∗q b1bm3

0 b1b
n
0b1b

m2
0 b1b

m1
0 ≡ b2b

m3
0 b1b

n
0b1b

m2
0 b1b

m1
0 + b1b

m3
0 b2b

n
0b1b

m2
0 b1b

m1
0

+ b1b
m3
0 b1b

n
0b2b

m2
0 b1b

m1
0 + b1b

m3
0 b1b

n
0b1b

m2
0 b2b

m1
0

mod words w satisfying b(w) = 0,
b1 ∗q b1bn0b1b

m3
0 b1b

m2
0 b1b

m1
0 ≡ b2b

n
0b1b

m3
0 b1b

m2
0 b1b

m1
0 + b1b

n
0b2b

m3
0 b1b

m2
0 b1b

m1
0

+ b1b
n
0b1b

m3
0 b2b

m2
0 b1b

m1
0 + b1b

n
0b1b

m3
0 b1b

m2
0 b2b

m1
0

mod words w satisfying b(w) = 0.

For all words w ∈ Q〈B〉0 satisfying b(w) = 0, we have ζq(w) ∈ Z◦q . In particular, all
products are contained in Z◦q . Therefore, by summing up the four product expressions
and applying the τ -invariance of the balanced multiple q-zeta values, we obtain

ζq(bn+1bm1+1bm2+1bm3+1b0) + ζq(bn+1bm1+1bm2+1b0bm3+1) + ζq(bn+1bm1+1b0bm2+1bm3+1)
+ ζq(bn+1b0bm1+1bm2+1bm3+1) + ζq(bm1+1bn+1bm2+1bm3+1b0) + ζq(bm1+1bn+1bm2+1b0bm3+1)
+ ζq(bm1+1bn+1b0bm2+1bm3+1) + ζq(bm1+1b0bn+1bm2+1bm3+1) + ζq(bm1+1bm2+1bn+1bm3+1b0)
+ ζq(bm1+1bm2+1bn+1b0bm3+1) + ζq(bm1+1bm2+1b0bn+1bm3+1) + ζq(bm1+1b0bm2+1bn+1bm3+1)
+ ζq(bm1+1bm2+1bm3+1bn+1b0) + ζq(bm1+1bm2+1bm3+1b0bn+1) + ζq(bm1+1bm2+1b0bm3+1bn+1)
+ ζq(bm1+1b0bm2+1bm3+1bn+1) ∈ Z◦q . (6.5.2)

The expressions in (6.5.1) and 6.5.2 only differ by the term ζq(bn+1b0bm1+1bm2+1bm3+1),
in particular subtracting (6.5.1) from (6.5.2) yields

ζq(bn+1b0bm1+1bm2+1bm3+1) ∈ Z◦q . (6.5.3)

Next, let n1, n2,m1,m2 ≥ 0. Again we compute

bn1+1bn2+1 ∗q bm1+1b0bm2+1 ≡ bn1+1bn2+1bm1+1b0bm2+1 + bn1+1bm1+1bn2+1b0bm2+1

+ bn1+1bm1+1b0bn2+1bm2+1 + bn1+1bm1+1b0bm2+1bn2+1

+ bm1+1bn1+1bn2+1b0bm2+1 + bm1+1bn1+1b0bn2+1bm2+1

+ bm1+1bn1+1b0bm2+1bn2+1 + bm1+1b0bn1+1bn2+1bm2+1

+ bm1+1b0bn1+1bm2+1bn2+1 + bm1+1b0bm2+1bn1+1bn2+1

mod depth < 4,
bn1+1bn2+1 ∗q bm1+1bm2+1b0 ≡ bn1+1bn2+1bm1+1bm2+1b0 + bn1+1bm1+1bn2+1bm2+1b0

+ bn1+1bm1+1bm2+1bn2+1b0 + bn1+1bm1+1bm2+1b0bn2+1

+ bm1+1bn1+1bn2+1bm2+1b0 + bm1+1bn1+1bm2+1bn2+1b0

+ bm1+1bn1+1bm2+1b0bn2+1 + bm1+1bm2+1bn1+1bn2+1b0

+ bm1+1bm2+1bn1+1b0bn2+1 + bm1+1bm2+1b0bn1+1bn2+1

mod depth < 4.
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Then by the completely same argument as before, we deduce that

ζq(bn1+1bn2+1bm1+1b0bm2+1) + ζq(bn1+1bm1+1bn2+1b0bm2+1) + ζq(bn1+1bm1+1b0bn2+1bm2+1)
+ ζq(bn1+1bm1+1b0bm2+1bn2+1) + ζq(bm1+1bn1+1bn2+1b0bm2+1) + ζq(bm1+1bn1+1b0bn2+1bm2+1)
+ ζq(bm1+1bn1+1b0bm2+1bn2+1) + ζq(bm1+1b0bn1+1bn2+1bm2+1) + ζq(bm1+1b0bn1+1bm2+1bn2+1)
+ ζq(bm1+1b0bm2+1bn1+1bn2+1) + ζq(bn1+1bn2+1bm1+1bm2+1b0) + ζq(bn1+1bm1+1bn2+1bm2+1b0)
+ ζq(bn1+1bm1+1bm2+1bn2+1b0) + ζq(bn1+1bm1+1bm2+1b0bn2+1) + ζq(bm1+1bn1+1bn2+1bm2+1b0)
+ ζq(bm1+1bn1+1bm2+1bn2+1b0) + ζq)bm1+1bn1+1bm2+1b0bn2+1) + ζq(bm1+1bm2+1bn1+1bn2+1b0)
+ ζq(bm1+1bm2+1bn1+1b0bn2+1) + ζq(bm1+1bm2+1b0bn1+1bn2+1) ∈ Z◦q . (6.5.4)

On the other hand, we compute

b1 ∗q b1bm2
0 b1b

m1
0 b1b

n2
0 b1b

n1
0 ≡ b2b

m2
0 b1b

m1
0 b1b

n2
0 b1b

n1
0 + b1b

m2
0 b2b

m1
0 b1b

n2
0 b1b

n1
0

+ b1b
m2
0 b1b

m1
0 b2b

n2
0 b1b

n1
0 + b1b

m2
0 b1b

m1
0 b1b

n2
0 b2b

n1
0

mod words w satisfying b(w) = 0,
b1 ∗q b1bm2

0 b1b
n2
0 b1b

m1
0 b1b

n1
0 ≡ b2b

m2
0 b1b

n2
0 b1b

m1
0 b1b

n1
0 + b1b

m2
0 b2b

n2
0 b1b

m1
0 b1b

n1
0

+ b1b
m2
0 b1b

n2
0 b2b

m1
0 b1b

n1
0 + b1b

m2
0 b1b

n2
0 b1b

m1
0 b2b

n1
0

mod words w satisfying b(w) = 0,
b1 ∗q b1bn2

0 b1b
m2
0 b1b

m1
0 b1b

n1
0 ≡ b2b

n2
0 b1b

m2
0 b1b

m1
0 b1b

n1
0 + b1b

n2
0 b2b

m2
0 b1b

m1
0 b1b

n1
0

+ b1b
n2
0 b1b

m2
0 b2b

m1
0 b1b

n1
0 + b1b

n2
0 b1b

m2
0 b1b

m1
0 b2b

n1
0

mod words w satisfying b(w) = 0,
b1 ∗q b1bm2

0 b1b
n2
0 b1b

n1
0 b1b

m1
0 ≡ b2b

m2
0 b1b

n2
0 b1b

n1
0 b1b

m1
0 + b1b

m2
0 b2b

n2
0 b1b

n1
0 b1b

m1
0

+ b1b
m2
0 b1b

n2
0 b2b

n1
0 b1b

m1
0 + b1b

m2
0 b1b

n2
0 b1b

n1
0 b2b

m1
0

mod words w satisfying b(w) = 0,
b1 ∗q b1bn2

0 b1b
m2
0 b1b

n1
0 b1b

m1
0 ≡ b2b

n2
0 b1b

m2
0 b1b

n1
0 b1b

m1
0 + b1b

n2
0 b2b

m2
0 b1b

n1
0 b1b

m1
0

+ b1b
n2
0 b1b

m2
0 b2b

n1
0 b1b

m1
0 + b1b

n2
0 b1b

m2
0 b1b

n1
0 b2b

m1
0

mod words w satisfying b(w) = 0,
b1 ∗q b1bn2

0 b1b
n1
0 b1b

m2
0 b1b

m1
0 ≡ b2b

n2
0 b1b

n1
0 b1b

m2
0 b1b

m1
0 + b1b

n2
0 b2b

n1
0 b1b

m2
0 b1b

m1
0

+ b1b
n2
0 b1b

n1
0 b2b

m2
0 b1b

m1
0 + b1b

n2
0 b1b

n1
0 b1b

m2
0 b2b

m1
0

mod words w satisfying b(w) = 0.

Again using the same arguments as before and applying the τ -invariance of the balanced
multiple q-zeta values yields

ζq(bn1+1bn2+1bm1+1bm2+1b0) + ζq(bn1+1bn2+1bm1+1b0bm2+1) + ζq(bn1+1bn2+1b0bm1+1bm2+1)
+ ζq(bn1+1b0bn2+1bm1+1bm2+1) + ζq(bn1+1bm1+1bn2+1bm2+1b0) + ζq(bn1+1bm1+1bn2+1b0bm2+1)
+ ζq(bn1+1bm1+1b0bn2+1bm2+1) + ζq(bn1+1b0bm1+1bn2+1bm2+1) + ζq(bn1+1bm1+1bm2+1bn2+1b0)
+ ζq(bn1+1bm1+1bm2+1b0bn2+1) + ζq(bn1+1bm1+1b0bm2+1bn2+1) + ζq(bn1+1b0bm1+1bm2+1bn2+1)
+ ζq(bm1+1bn1+1bn2+1bm2+1b0) + ζq(bm1+1bn1+1bn2+1b0bm2+1) + ζq(bm1+1bn1+1b0bn2+1bm2+1)
+ ζq(bm1+1b0bn1+1bn2+1bm2+1) + ζq(bm1+1bn1+1bm2+1bn2+1b0) + ζq(bm1+1bn1+1bm2+1b0bn2+1)
+ ζq(bm1+1bn1+1b0bm2+1bn2+1) + ζq(bm1+1b0bn1+1bm2+1bn2+1) + ζq(bm1+1bm2+1bn1+1bn2+1b0)
+ ζq(bm1+1bm2+1bn1+1b0bn2+1) + ζq(bm1+1bm2+1b0bn1+1bn2+1) + ζq(bm1+1b0bm2+1bn1+1bn2+1)
∈ Z◦q (6.5.5)
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Subtracting (6.5.4) from (6.5.5) then yields

ζq(bn1+1b0bn2+1bm1+1bm2+1) + ζq(bn1+1b0bm1+1bn2+1bm2+1) + ζq(bn1+1b0bm1+1bm2+1bn2+1)
+ ζq(bn1+1bn2+1b0bm1+1bm2+1) ∈ Z◦q

Applying the result from the first case (6.5.3) then gives

ζq(bn1+1bn2+1b0bm1+1bm2+1) ∈ Z◦q (6.5.6)

Next, let n1, n2, n3,m ≥ 0. As before, we compute

bn1+1bn2+1bn3+1 ∗q bm+1b0 ≡ bn1+1bn2+1bn3+1bm+1b0 + bn1+1bn2+1bm+1bn3+1b0

+ bn1+1bm+1bn2+1bn3+1b0 + bm+1bn1+1bn2+1bn3+1b0

+ bn1+1bn2+1bm+1b0bn3+1 + bn1+1bm+1bn2+1b0bn3+1

+ bm+1bn1+1bn2+1b0bn3+1 + bn1+1bm+1b0bn2+1bn3+1

+ bm+1bn1+1b0bn2+1bn3+1 + bm+1b0bn1+1bn2+1bn3+1

mod depth < 4

and deduce

ζq(bn1+1bn2+1bn3+1bm+1b0) + ζq(bn1+1bn2+1bm+1bn3+1b0) + ζq(bn1+1bm+1bn2+1bn3+1b0)
+ ζq(bm+1bn1+1bn2+1bn3+1b0) + ζq(bn1+1bn2+1bm+1b0bn3+1) + ζq(bn1+1bm+1bn2+1b0bn3+1)
+ ζq(bm+1bn1+1bn2+1b0bn3+1) + ζq(bn1+1bm+1b0bn2+1bn3+1) + ζq(bm+1bn1+1b0bn2+1bn3+1)
+ ζq(bm+1b0bn1+1bn2+1bn3+1) ∈ Z◦q (6.5.7)

On the other hand, we have

b1 ∗q b1bm0 b1b
n3
0 b1b

n2
0 b1b

n1
0 ≡ b2b

m
0 b1b

n3
0 b1b

n2
0 b1b

n1
0 + b1b

m
0 b2b

n3
0 b1b

n2
0 b1b

n1
0

+ b1b
m
0 b1b

n3
0 b2b

n2
0 b1b

n1
0 + b1b

m
0 b1b

n3
0 b1b

n2
0 b2b

n1
0

mod words w satisfying b(w) = 0,
b1 ∗q b1bn3

0 b1b
m
0 b1b

n2
0 b1b

n1
0 ≡ b2b

n3
0 b1b

m
0 b1b

n2
0 b1b

n1
0 + b1b

n3
0 b2b

m
0 b1b

n2
0 b1b

n1
0

+ b1b
n3
0 b1b

m
0 b2b

n2
0 b1b

n1
0 + b1b

n3
0 b1b

m
0 b1b

n2
0 b2b

n1
0

mod words w satisfying b(w) = 0,
b1 ∗q b1bn3

0 b1b
n2
0 b1b

m
0 b1b

n1
0 ≡ b2b

n3
0 b1b

n2
0 b1b

m
0 b1b

n1
0 + b1b

n3
0 b2b

n2
0 b1b

m
0 b1b

n1
0

+ b1b
n3
0 b1b

n2
0 b2b

m
0 b1b

n1
0 + b1b

n3
0 b1b

n2
0 b1b

m
0 b2b

n1
0

mod words w satisfying b(w) = 0,
b1 ∗q b1bn3

0 b1b
n2
0 b1b

n1
0 b1b

m
0 ≡ b2b

n3
0 b1b

n2
0 b1b

n1
0 b1b

m
0 + b1b

n3
0 b2b

n2
0 b1b

n1
0 b1b

m
0

+ b1b
n3
0 b1b

n2
0 b2b

n1
0 b1b

m
0 + b1b

n3
0 b1b

n2
0 b1b

n1
0 b2b

m
0

mod words w satisfying b(w) = 0.

Therefore, we deduce by applying the τ -invariance of the balanced multiple q-zeta values

ζq(bn1+1bn2+1bn3+1bm+1b0) + ζq(bn1+1bn2+1bn3+1b0bm+1) + ζq(bn1+1bn2+1b0bn3+1bm+1)
+ ζq(bn1+1b0bn2+1bn3+1bm+1) + ζq(bn1+1bn2+1bm+1bn3+1b0) + ζq(bn1+1bn2+1bm+1b0bn3+1)
+ ζq(bn1+1bn2+1b0bm+1bn3+1) + ζq(bn1+1b0bn2+1bm+1bn3+1) + ζq(bn1+1bm+1bn2+1bn3+1b0)
+ ζq(bn1+1bm+1bn2+1b0bn3+1) + ζq(bn1+1bm+1b0bn2+1bn3+1) + ζq(bn1+1b0bm+1bn2+1bn3+1)
+ ζq(bm+1bn1+1bn2+1bn3+1b0) + ζq(bn1+1bm+1bn2+1b0bn3+1) + ζq(bn1+1bm+1b0bn2+1bn3+1)
+ ζq(bn1+1b0bm+1bn2+1bn3+1) ∈ Z◦q . (6.5.8)
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Subtracting (6.5.7) from (6.5.8), we obtain

ζq(bn1+1b0bn2+1bn3+1bm+1) + ζq(bn1+1b0bn2+1bm+1bn3+1) + ζq(bn1+1b0bm+1bn2+1bn3+1)
+ ζq(bn1+1bn2+1b0bn3+1bm+1) + ζq(bn1+1bn2+1b0bm+1bn3+1) + ζq(bn1+1bn2+1bn3+1b0bm+1)
∈ Z◦q .

Applying the results from the first case (6.5.3) and the second case (6.5.6), we deduce

ζq(bn1+1bn2+1bn3+1b0bm+1) ∈ Z◦q . (6.5.9)

Finally, let n1, n2, n4, n4 ≥ 0. We calculate

b1 ∗q b1bn4
0 b1b

n3
0 b1b

n2
0 b1b

n1
0 ≡ b2b

n4
0 b1b

n3
0 b1b

n2
0 b1b

n1
0 + b1b

n4
0 b2b

n3
0 b1b

n2
0 b1b

n1
0

+ b1b
n4
0 b1b

n3
0 b2b

n2
0 b1b

n1
0 + b1b

n4
0 b1b

n3
0 b1b

n2
0 b2b

n1
0

mod words w satisfying b(w) = 0.

Thus by applying the τ -invariance of the balanced multiple q-zeta values, we deduce

ζq(bn1+1bn2+1bn3+1bn4+1b0) + ζq(bn1+1bn2+1bn3+1b0bn4+1) + ζq(bn1+1bn2+1b0bn3+1bn4+1)
+ ζq(bn1+1b0bn2+1bn3+1bn4+1) ∈ Z◦q .

Together with the results in the previous cases (6.5.3), (6.5.6), and (6.5.9), this shows

ζq(bn1+1bn2+1bn3+1bn4+1b0) ∈ Z◦q .
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Appendix A Introduction to the algebraic framework

This section provides an introduction to Hopf algebras, quasi-shuffle algebras, and affine
group schemes. In the following, let R be a commutative Q-algebra with unit. Note that
we assume any algebra to be associative by definition.

A.1 Graded algebras

We introduce graded algebras and their Hilbert-Poincare series. Proofs for the provided
results are given in [Bou89], [Foi], [Ok15], or [Re93].

Definition A.1. An R-module M is graded if there is a family (M (i))i≥0 of free submod-
ules of M of finite rank, such that

M =
⊕
i≥0

M (i).

The elements in M (i) are called homogeneous of degree i. Moreover, the Hilbert-Poincare
series of M is given by

HM (x) =
∑
i≥0

rankR(M (i))xi.

Lemma A.2. Let M,N be graded R-modules. Then also the R-modules M ⊕ N and
M ⊗N are graded via

(M ⊕N)(i) = M (i) ⊕N (i), (M ⊗N)(i) =
⊕
a+b=i

M (a) ⊗N (b).

In this case, the following holds

HM⊕N (x) = HM (x) +HN (x), HM⊗N (x) = HN (x)HM (x).

Definition A.3. A unitary R-algebra (A, ·, 1) is graded, if A = ⊕
i≥0A

(i) is a graded
R-module and

A(i) ·A(j) ⊂ A(i+j).

If (A, ·, 1) is a graded algebra, then 1 ∈ A(0).

Example A.4. Let M = ⊕
i≥0M

(i) be a graded R-module and M (0) = {0}. Then the
tensor algebra T (M) = ⊕

n≥0M
⊗n (with M⊗0 = R) is graded via

T (M)(0) = R, T (M)(i) = (M⊗1)(i) ⊕ · · · ⊕ (M⊗i)(i), i ≥ 1.

Proposition A.5. Let (A, ·, 1) be a unitary, commutative, free, graded R-algebra satisfy-
ing rankA(0) = 1. Then, one has

HA(x) =
∏
i≥1

(1− xi)−gi ,

where gi denotes the number of algebra generators of A of degree i.

Definition A.6. Let M be an R-module. Then the symmetric algebra of M is given by
S(M) = T (M)�J , where J is the ideal generated by the elements m1⊗m2−m2⊗m1 for
all m1,m2 ∈M .
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For example, if M is a free R-module of rank r, then one obtains S(M) ' R[x1, . . . , xr].
Let M = ⊕

i≥0M
(i) be a graded R-module and M (0) = {0}. Then the ideal J in Definition

A.6 is graded, i.e., one has

J =
⊕
i≥0

J (i) =
⊕
i≥0
T (M)(i) ∩ J,

and hence also S(M) is graded via

S(M)(i) = T (M)(i)
�J (i).

The symmetric algebra S(M) is a commutative, free R-algebra generated by a basis of M ,
thus Proposition A.5 implies the following.

Corollary A.7. Let M = ⊕
i≥0M

(i) be a graded R-module and M (0) = {0}. Then the
Hilbert-Poincare series of S(M) is given by

HS(M)(x) =
∏
i≥1

(1− xi)rankR(M(i)).

Next, we want to investigate non-commutative graded algebras.

Proposition A.8. If (A, ·, 1) is a unitary, non-commutative, free, graded R-algebra over
some countable set Z, then the following holds

HA(x) =
(
1−

∑
z∈Z

xdeg(z))−1
.

An important class of non-commutative algebras is given by the following.

Definition A.9. A Lie algebra over R is an R-module L equipped with an R-linear map

[·, ·] : L⊗ L→ L,

such that the following holds for all x, y, z ∈ L

(i) Anti symmetry: [x, x] = 0,
(ii) Jacobi’s identity: [[x, y], z] + [[y, z], x] + [[z, x], y] = 0.

The map [·, ·] is called the Lie bracket.

A Lie algebra (L, [·, ·]) is graded, if L = ⊕
i≥0 L

(i) is a graded R-module and one has for
all i, j ≥ 0

[L(i), L(j)] ⊂ L(i+j).

Example A.10. Let (A, ·, 1) be an R-algebra and define the commutator bracket by

[a, b] = a · b− b · a, a, b ∈ A.

Then the pair (A, [−,−]) is a Lie algebra over R.

Definition A.11. Let (L, [·, ·]) be a Lie algebra over R. Then the universal enveloping
algebra of L is given by U(L) = T (L)�K, where K is the ideal generated by the elements
x⊗ y − y ⊗ x− [x, y] for all x, y ∈ L.
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Let (L, [·, ·]) be a graded Lie algebra over R and L(0) = {0}. Then the ideal K in Definition
A.11 is a graded ideal, and thus also the universal enveloping algebra U(L) is graded via

U(L)(i) = T (V )(i)
�K(i).

Assume that the generators in the Lie algebra L only satisfy independent relations. Since
U(L) is a non-commutative R-algebra, Proposition A.8 implies

HU(L)(x) =
(
1−

∑
i≥0

gix
i +

∑
i≥0

rix
i)−1

, (A.11.1)

where gi denotes the number of algebra generators of L(i) and ri denotes the number of
independent relations in L(i).

At the end of this subsection, we will explain how to obtain a basis for some free Lie
algebra and hence also its universal enveloping algebra and symmetric algebra. Clearly,
the number of basis elements yields a formula for the Hilbert-Poincare series.

Definition A.12. Let A be an ordered set. Denote by (R〈A〉, conc,1) the free non-
commutative algebra over R generated by A and call the monic monomials in R〈A〉 words.
Extend the ordering lexicographically to all words in R〈A〉.
(i) A word w ∈ R〈A〉\R1 is called a Lyndon word if for every nontrivial decomposition
w = uv one obtains w < v.
(ii) For a Lyndon word w ∈ R〈A〉 the standard bracket γ(w) contained in the free Lie
algebra LieR〈A〉 generated by A is recursively defined as

• If w ∈ A, then set γ(w) = w.
• If w consists at least of two elements in A, then write w = uv with u, v Lyndon

words and v as long as possible and set γ(w) = [γ(u), γ(v)].

As a special case of [Re93, Theorem 4.9 (i)] the following holds.

Theorem A.13. Let L = LieR〈A〉 be a free Lie algebra generated by some ordered set A.
Then the set of all standard brackets is a basis for L.

Example A.14. Let L = LieR〈f1, f2, . . .〉 be the free Lie algebra over R generated by
f1, f2, . . .. Set deg(fi) = i and extend this to a grading on L, i.e., set

deg(fi1 . . . fin) = i1 + · · ·+ in.

The universal enveloping algebra of L is the free non-commutative algebra generated by
f1, f2, . . ., so U(L) = R〈f1, f2, . . .〉. The algebra U(L) inherits the grading of L and thus
one obtains from Proposition A.8

HU(L)(x) = 1
1− x− x2 − x3 − . . .

.

We also want to compute the Hilbert-Poincare series of the symmetric algebra S(L), since
this algebra also inherits the grading from L. It is well-known that the symmetric algebra
is a free polynomial algebra in any basis of L, thus we have to determine a basis of L.
According to Definition A.12, we have to compute the Lyndon words (with respect to the
ordering fi < fj iff i < j). For example, the Lyndon words of degree ≤ 6 are given by

f1, f2, f3, f1f2, f4, f1f3, f1f1f2, f5, f1f4, f2f3, f1f1f3, f1f2f2,

f1f1f1f2, f6, f1f5, f2f4, f1f1f4, f1f2f3, f1f3f2, f1f1f1f3, f1f1f2f2,

f1f1f1f1f2.
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and the corresponding standard brackets are

f1, f2, f3, [f1, f2], f4, [f1, f3], [f1, [f1, f2]], f5, [f1, f4], [f2, f3],
[f1, [f1, f3]], [[f1, f2], f2], [f1, [f1, [f1, f2]]], f6, [f1, f5], [f2, f4], [f1, [f1, f4]],
[f1, [f2, f3]], [[f1, f3], f2], [f1, [f1, [f1, f3]]], [f1, [[f1, f2], f2]], [f1, [f1, [f1, [f1, f2]]]].

By Theorem A.13 the standard brackets form a basis of L. Thus by Proposition A.5, we
have to count the number of standard brackets (or equivalently the number of Lyndon
words) to obtain the Hilbert-Poincare series of the symmetric algebra S(L). This gives

HS(L)(x) = (1− x)(1− x2)(1− x3)2(1− x4)3(1− x5)6(1− x6)9 . . . .

Actually applying Möbius inversion, one obtains an explicit formula for the number N(d)
of Lyndon words in degree d (cf [Re93, Corollary 4.14]) and then gets

HS(L)(x) =
∏
d≥1

(1− xd)N(d).

A.2 Hopf algebras

This subsection gives an introduction to Hopf algebras. We start by introducing algebras
and coalgebras as dual structures. Then we will provide the notion of bialgebras and Hopf
algebras. In particular, we will define the set of grouplike elements, primitive elements,
and indecomposables and present their additional structures and relations between them.
We will end by introducing the concept of completion of Hopf algebras. All presented
results can be found in [AB80], [Ca07], [Foi], [Man08], or [MM65].

Algebras. We will reformulate the usual definitions for algebras in terms of linear maps
to motivate the definition of coalgebras.

Let (A, ·, 1) be a unitary R-algebra. Then the product · can be considered as an R-linear
map

m : A⊗A→ A, a1 ⊗ a2 7→ a1 · a2.

Then associativity is equivalent to requiring that the following diagram commutes

A⊗A⊗A A⊗A

A⊗A A

m⊗id

id⊗m m

m

.

Similarly, the unit 1 can be considered as an R-linear map

η : R→ A, λ 7→ λ1.

Then the axiom of a unit is given by the commutativity of the following diagram

R⊗A A⊗A A⊗R

A

η⊗id

id
m

id⊗η

id
.

In this diagram, the following canonical isomorphisms of tensor products are used

R⊗A ∼−→ A
∼−→ A⊗R,

λ⊗ a 7→ λa 7→ a⊗ λ.
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A submodule B ⊂ A is a subalgebra of A if m(B ⊗ B) ⊂ B and η(R) ⊂ B. Similarly, a
submodule I ⊂ A is an algebra ideal if m(A⊗ I + I ⊗A) ⊂ I.

Define the R-linear map

t : A⊗A→ A⊗A, a1 ⊗ a2 7→ a2 ⊗ a1. (A.14.1)

Then an R-algebra (A,m, η) is commutative if m ◦ t = m.

An R-algebra A is graded if A = ⊕
i≥0A

(i) is a graded R-module (Definition A.1) and

m(A(i) ⊗A(j)) ⊆ A(i+j), i, j ≥ 0.

In this case, one has η(R) ⊆ A(0).

The axioms of an algebra morphism Φ : (A,m, η) → (A′,m′, η′) can be rephrased as
commutativity of the following diagrams

A⊗A A′ ⊗A′

A A′

Φ⊗Φ

m m′

Φ

,

R A

A′

η

η′
Φ .

Lemma A.15. Let (A,m, η) be an R-algebra. Then the tensor product A ⊗ A equipped
with the maps

m⊗ : (A⊗A)⊗ (A⊗A)→ A⊗A,
(a1 ⊗ a′1)⊗ (a2 ⊗ a′2) 7→ m(a1 ⊗ a2)⊗m(a′1 ⊗ a′2),

η⊗ : R→ A⊗A,
λ 7→ λ(η(1)⊗ η(1))

is again an R-algebra.

In the following, we will use both notions for an algebra, either we give the product and
the unit directly or we define the product and unit maps.

Coalgebras. By reversing the arrows in the previously given new description of algebras,
we obtain the concept of coalgebras.

Definition A.16. An R-module C equipped with two R-linear maps

∆ : C → C ⊗ C,
ε : C → R,

is called a coalgebra if the following diagrams commute

C C ⊗ C

C ⊗ C C ⊗ C ⊗ C

∆

∆ id⊗∆
∆⊗id

(coassociativity),

R⊗ C C ⊗ C C ⊗R

C

ε⊗id id⊗ε

id
∆

id
(counitarity).
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A submodule D ⊂ C is a subcoalgebra if ∆(D) ⊂ D ⊗D. Similarly, I ⊂ C is a coideal if
∆(I) ⊂ I ⊗ C + C ⊗ I and ε(I) = {0}.

An R-coalgebra (C,∆, ε) is cocommutative if t ◦ ∆ = ∆, where t permutes the tensor
product factors (see (A.14.1)).

An R-coalgebra (C,∆, ε) is graded, if C = ⊕
i≥0C

(i) is a graded R-module (Definition
A.1) and

∆(C(i)) ⊆
∑

m+n=i
C(m) ⊗ C(n), i ≥ 0.

One has then ε(C(i)) = {0} for each i ≥ 1.

An R-coalgebra morphism is an R-linear map Φ : (C,∆, ε) → (C ′,∆′, ε′), such that the
following diagrams commute

C C ′

C ⊗ C C ′ ⊗ C ′

Φ

∆ ∆′

Φ⊗Φ

,

C R

C ′

ε

Φ
ε′

.

The tensor product of coalgebras can also be equipped with a coalgebra structure.

Lemma A.17. Let (C,∆, ε) be an R-coalgebra. Then the tensor product C ⊗ C together
with the maps

∆⊗ : C ⊗ C → (C ⊗ C)⊗ (C ⊗ C),
(c1 ⊗ c2) 7→ (id⊗ t⊗ id)(∆(c1)⊗∆(c2)),

ε⊗ : C ⊗ C → R,

c1 ⊗ c2 7→ ε(c1)ε(c2),

is also an R-coalgebra.

Duality. We will introduce the concept of dual modules and dual graded modules with
respect to a pairing and explain dual maps. We will see that the structures of algebras
and coalgebras are dual in this sense. Moreover, we will obtain the dual structure of Lie
algebras.

Definition A.18. Two R-modules M and N are dual, if there is an R-linear map

(· | ·) : M ⊗N → R,

such that

(i) if (m | n) = 0 for all n ∈ N , then m = 0,
(ii) if (m | n) = 0 for all m ∈M , then n = 0.

In this case, (· | ·) is called the duality pairing of M and N .

Let M and N be graded R-modules. If there is a duality pairing (· | ·) : M ⊗ N → R,
such that

(M (i) | N (j)) = 0 for all i 6= j,

then M and N are graded dual. In this case, we say that (· | ·) is a graded duality pairing.
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Example A.19. (i) Let M be a free R-module of finite rank. Then the usual dual module
is defined by

M∗ = HomR -lin(M,R).

The modules M and M∗ are dual in the sense of Definition A.18, the duality pairing is
given by

(· | ·) : M∗ ⊗M → R,

f ⊗m 7→ f(m).

(ii) Let M be a graded R-module (Definition A.1). Then its usual graded dual is defined
by

M∨ =
⊕
i≥0

(M (i))∗.

The modules M and M∨ are also graded dual in the sense of Definition A.18, the graded
duality pairing is given by

M∨ ⊗M → R,

fi ⊗mj 7→
{
fi(mj), i = j,

0 else
(where fi ∈ (M (i))∗, mj ∈M (j)).

Proposition A.20. (i) Let M,N be dual free R-modules of finite rank. Then one has

rankR(M) = rankR(N).

(ii) Let M,N be graded dual R-modules. Then for each i ≥ 0, the following holds

rankR(M (i)) = rankR(N (i)).

Definition A.21. Let M1, N1 be dual R-modules for the pairing (· | ·)1, M2, N2 be dual
R-modules for the pairing (· | ·)2 and f : M1 →M2 be an R-linear map. The dual map to
f is the unique R-linear map g : N2 → N1 satisfying

(f(m), n)2 = (m, g(n))1 for all m ∈M1, n ∈ N2.

Lemma A.22. Let M,N be (graded) dual R-modules for the pairing (· | ·). Then also
M ⊗M and N ⊗N are (graded) dual R-modules, the (graded) duality pairing is given by

(m1 ⊗m2 | n1 ⊗ n2)⊗ = (m1 | n1)(m2 | n2)

for all m1,m2 ∈M and n1, n2 ∈ N .

Theorem A.23. (i) Let (A,m, η) be a (graded) R-algebra. If C is an R-module (graded)
dual to A, then C equipped with the dual maps of m and η is a (graded) R-coalgebra.

(ii) Let (C,∆, ε) be a (graded) R-coalgebra. If A is an R-module (graded) dual to C, then
A together with the dual maps of ∆ and ε is a (graded) R-algebra.

There is also a dual notion for Lie algebras (Definition A.9).

Definition A.24. A Lie coalgebra over R is an R-module E equipped with an R-linear
map

δ : E → E ⊗ E,

such that
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(i) Anti symmetry: t ◦ δ = −δ

(ii) Cocycle condition: (δ ⊗ id) ◦ δ = (id⊗ δ) ◦ δ + (id⊗ t) ◦ (δ ⊗ id) ◦ δ

The map δ is called the Lie cobracket of E. Moreover, the map t is given in (A.14.1).

Proposition A.25. (i) Let (L, [−,−]) be a Lie algebra over R. If E is an R-module
(graded) dual to the module L, then E equipped with the dual map of the Lie bracket [−,−]
is a Lie coalgebra over R.

(ii) Let (E, d) be a Lie coalgebra over R. If L is a graded dual R-module to E, then L
equipped with the dual map of d is a Lie algebra over R.

Bialgebras. We are interested in modules, which are equipped with the structure of
an algebra and a coalgebra at the same time and satisfy certain compatibility conditions.
This leads to the notion of bialgebras.

Definition A.26. If an R-module B is equipped with an algebra structure (B,m, η) and
a coalgebra structure (B,∆, ε), such that the maps ∆ and ε are algebra morphisms (or
equivalently, such that m and η are coalgebra morphisms), then (B,m, η,∆, ε) is called
an R-bialgebra.

The algebra and coalgebra structure on B ⊗B is explained in Lemma A.15, A.17.
A submodule B′ ⊂ B is a subbialgebra if B′ is a subalgebra and a subcoalgebra. Similarly,
a submodule I ⊂ B is a biideal if it is an algebra ideal and a coalgebra ideal.
An R-bialgebra (B,m, η,∆, ε) is graded if it is graded as an algebra and as a coalgebra.
An R-bialgebra morphism is an R-linear map Φ : (B,m, η,∆, ε) → (B′,m′, η′,∆′, ε′),
which is simultaneously an algebra and a coalgebra morphism.

Theorem A.27. Let (B,m, η,∆, ε) be a (graded) R-bialgebra. If B′ is an R-module
(graded) dual to B, then B′ equipped with the dual maps of m, η, ∆ and ε is also a
(graded) R-bialgebra.

Proposition A.28. Let (B,m, η,∆, ε) be an R-bialgebra. Then HomR -lin(B,B) equipped
with the product

f ? g = m ◦ (f ⊗ g) ◦∆
and the unit

i : B → B, b 7→ ε(b)η(1)
is an R-algebra. This algebra is called the convolution algebra of H.

Hopf algebras. With the previously given background, we are able to define Hopf
algebras. Those are a subclass of the bialgebras with particularly nice behavior.

Definition A.29. A Hopf algebra over R is a bialgebra (H,m, η,∆, ε), where the identity
admits an inverse S in the convolution algebra (HomR -lin(H,H), ?, i) (given in Proposition
A.28). The inverse S is called the antipode.

A submodule H ′ ⊂ H is a Hopf subalgebra if H ′ is a subbialgebra and S(H ′) ⊂ H ′.
Similarly, I ⊂ H is a Hopf ideal if I is a biideal and S(I) ⊂ I.

A Hopf algebra (H,m, η,∆, ε) over R is graded, if it is graded as a bialgebra and

S(H(i)) ⊆ H(i), i ≥ 0.
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In the following, we sometimes just give the product and coproduct map for a Hopf algebra,
since the other maps are often clear from the context. The same also applies to algebras,
coalgebras, and bialgebras.

Proposition A.30. Let (H,m, η,∆, ε, S) and (H ′,m′, η′,∆′, ε′, S′) be Hopf algebras over
R. Then for any R-bialgebra morphism Φ : (H,m, η,∆, ε)→ (H ′,m′, η′,∆′, ε′), one has

S′ ◦ Φ = Φ ◦ S.

Due to the previous proposition, a Hopf algebra morphism is simply defined to be a
bialgebra morphism.

Theorem A.31. Let (H,m, η,∆, ε, S) be a (graded) Hopf algebra over R. If H ′ is an
R-module (graded) dual to H, then H ′ equipped with the dual maps of m, η, ∆, ε and S
is also a (graded) Hopf algebra over R.

Proposition A.32. Let (H,m, η,∆, ε, S) be a Hopf algebra over R. Then the antipode S
is an anti-morphism, i.e., the following holds

S ◦m = m ◦ t ◦ (S ⊗ S).

Recall that t simply permutes the tensor product factors (see (A.14.1)).

Theorem A.33. Let (B,m, η,∆, ε) be a graded R-bialgebra. If B is connected, i.e., one
has rankRB(0) = 1, then B is a Hopf algebra over R.

Example A.34. (i) Let M be a graded R-module with M (0) = {0}. The tensor algebra
T (M) (Example A.4) equipped with the coproduct ∆�(m) = 1 ⊗ m + m ⊗ 1 and the
antipode S(m) = −m for all m ∈ M is a graded, cocommutative Hopf algebra over R.
Note that ∆� is an algebra morphism and S is an algebra anti morphism, so both maps
are determined uniquely by its images on M .

(ii) Consider the symmetric algebra S(M) = T (M)�J (Definition A.6). Since J is a Hopf
ideal of T (M), the symmetric algebra S(M) is a graded, commutative, and cocommutative
Hopf algebra.

(iii) Let (L, [·, ·]) be a graded Lie algebra over R with L(0) = {0} and consider the universal
enveloping algebra U(L) = T (L)�K (Definition A.11). Since K is also a Hopf ideal, the
universal enveloping algebra U(L) is a graded, cocommutative Hopf algebra.

Proposition A.35. Let L be a graded Lie algebra over R and L(0) = {0}. Then there is
an algebra isomorphism

U(L)∨ ' S(L∨).

The usual graded duals L∨ and U(L)∨ are defined in Example A.19 (ii). Proposition A.20
implies the following for the corresponding Hilbert-Poincare series.

Corollary A.36. For any graded Lie algebra (L, [·, ·]) over R satisfying L(0) = {0}, one
has

HS(L)(x) = HU(L)(x).

So by Corollary A.7 and (A.11.1), one obtains two different expressions of the Hilbert-
Poincare series of a symmetric algebra or universal enveloping algebra.
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Definition A.37. Let (H,m, η,∆, ε, S) be a Hopf algebra over R. An element x ∈ H\{0}
is called grouplike if

∆(x) = x⊗ x.
The set of grouplike elements in H is denoted by Grp(H). An element x ∈ H is called
primitive if it satisfies

∆(x) = 1⊗ x+ x⊗ 1.
By Prim(H) we denote the set of all primitive elements in H.
Theorem A.38. Let (H,m, η,∆, ε, S) be a Hopf algebra over R.

(i) The set Grp(H) equipped with the product and the unit of H forms a group. For an
element x ∈ Grp(H), the inverse element is given by S(x). Moreover, each grouplike
element x ∈ H satisfies ε(x) = 1.

(ii) The set Prim(H) equipped with the commutator bracket [x, y] = m(x⊗y)−m(y⊗x) is
a Lie algebra. Furthermore, one has for each primitive element x ∈ H that ε(x) = 0
and S(x) = −x.

Theorem A.39. (Cartier-Quillen-Milnor-Moore) Let H be a graded cocommutative Hopf
algebra over R, such that rankH(0)

R = 1. Then there is a Hopf algebra isomorphism

H ' U(Prim(H)).

Corollary A.40. Let (R〈A〉, conc,1) be the non-commutative free algebra over R gener-
ated by the set A. Define the coproduct ∆� by ∆�(a) = a⊗ 1 + 1⊗ a for all a ∈ A (and
extend this with respect to concatenation), then (R〈A〉, conc,∆�) is a cocommutative Hopf
algebra. One has

Prim(R〈A〉) = LieR〈A〉.

Definition A.41. Let (H,m, η,∆, ε, S) be a Hopf algebra over R. The space of indecom-
posables of H is defined as

Q(H) = ker(ε)�ker(ε)2.

If (H,m, η,∆, ε, S) is a graded algebra with H = ⊕
i≥0H

(i), then from the observations
on p. 157 one obtains

ker(ε) =
⊕
i≥1

H(i).

Let (C,∆, ε) be an R-coalgebra. Then define a corresponding Lie cobracket δ to ∆ by

δ = (id−t) ◦∆ : C → C ⊗ C, (A.41.1)

where t simply permutes the tensor product functors (see (A.14.1)).
Proposition A.42. Let (H,m, η,∆, ε, S) be a Hopf algebra over R. Then the correspond-
ing Lie cobracket to ∆ defined in (A.41.1) induces a Lie coalgebra structure on the space
Q(H) of indecomposables.

This Lie coalgebra structure is closely related to the Lie algebra structure on the primitive
elements (Theorem A.38 (ii)).
Theorem A.43. ([MM65, Proposition 3.10]) Let (H,m, η,∆, ε, S) be a graded Hopf al-
gebra over R. Then there is an isomorphism of Lie algebras over R

Prim(H∨) ' Q(H)∨.

The usual graded duals H∨ and Q(H)∨ are defined in Example A.19 (ii).

161



Completed Hopf algebras and the exponential map. We will introduce the concept
of completions with respect to a filtration. This will lead to the notion of completed Hopf
algebras, for which we will obtain a bijection between the grouplike and primitive elements.

Definition A.44. (i) Let M be an R-module equipped with a descending filtration, i.e.,
there is a chain of submodules

M = Fil(0)M ⊃ Fil(1)M ⊃ Fil(2)M ⊃ Fil(3)M ⊃ . . . .

The completion M̂ of M with respect to this filtration is defined by the inverse limit

M̂ = lim←−
j

M�Fil(j)M.

If M̂ = M , then M is called a complete R-module. The completion M̂ of M is also a
filtered R-module via

Fil(j) M̂ = lim←−
k>j

Fil(j)M�Fil(k)M.

Proposition A.45. Assume that M = ⊕
i≥0M

(i) is a graded R-module. Then M admits
a descending filtration given by Fil(j)M = ⊕

i≥jM
(i). Since M�Fil(j)M = ⊕j−1

i=0 M
(i),

the completion of M is
M̂ = lim←−

j

M�Fil(j)M =
∏
i≥0

M (i).

The completion M̂ is filtered by Fil(j) M̂ = ∏
i≥jM

(i).

Proposition A.46. Let M,N be two graded R-modules. Then the tensor product M ⊗N
is also graded (Lemma A.2) and for the completion M⊗̂N one has

M⊗̂N =
∏
i≥0

 ⊕
a+b=i

M (a) ⊗N (b)

 .
Moreover, there is a canonical embedding M ⊗ N ↪→ M⊗̂N . We denote the image of
m⊗ n ∈M ⊗N under this embedding by m⊗̂n.

Definition A.47. Let (H,m, η,∆, ε, S) be a graded Hopf algebra (resp. bialgebra/ coal-
gebra/ algebra). By extending the maps m, η,∆, ε, S of H to the completed module Ĥ,
one obtains the completed Hopf algebra (resp. bialgebra/ coalgebra/ algebra) of H.

The completed Hopf algebra (Ĥ,m, η,∆, ε, S) is filtered, i.e., one has for all i ≥ 0

m(Fil(i)H ⊗ Fil(j)H) ⊂ Fil(i+j)H, ∆(Fil(i)H) ⊂
∑

m+n=i
Fil(m)H ⊗ Fil(n)H,

S(Fil(i)H) ⊂ Fil(i)H.

Definition A.48. Let M be a filtered R-module. Then the associated graded module
grM is defined by

grM =
⊕
j≥0

Fil(j)M�Fil(j+1)M.

One has grM = gr M̂ . In particular, if M is a graded module, then gr M̂ = M .
If M is a filtered R-module and all quotients M�Fil(j)M are free modules of finite rank,
then the module grM is graded in the sense of Definition A.1.

162



Definition A.49. Let (H,m, η,∆, ε, S) be a filtered Hopf algebra over R. Then the
associated graded Hopf algebra is the R-module grH equipped with the induced maps by
m, η,∆, ε and S.

Similarly, the associated graded for bialgebras, coalgebras, and algebras is defined.

Definition A.50. Let H be a graded Hopf algebra and denote by Ĥ = ∏
j≥0H

(j) its
completion. For an element x ∈ ∏j≥1H

(j) ⊂ Ĥ, define

expH(x) =
∑
i≥0

1
i!x

i,

where xi means applying the product map exactly (i− 1)-times to x⊗i.

The map exp provides a bijection between the primitive and grouplike elements of a
completed Hopf algebra.

Theorem A.51. Let H be a graded Hopf algebra. Then there is a bijection

Prim(Ĥ) ∼−→ Grp(Ĥ),
x 7→ expH(x).
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A.3 Quasi-shuffle algebras

This chapter provides an introduction to a special type of Hopf algebras, the quasi-shuffle
Hopf algebras. All results are taken from the articles [Hof00] and [HI17]. In the following,
R is some arbitrary fixed commutative Q-algebra with unit.

Let A be an alphabet, this means A is a countable set whose elements are called letters.
By RA denote the R-module spanned by the letters of A and let R〈A〉 be the free non-
commutative algebra generated by the alphabet A. The monic monomials in R〈A〉 are
called words with letters in A, the set of all words is denoted by A∗. Moreover, let 1 be
the empty word.

Definition A.52. Let � : RA × RA → RA be a commutative and associative product.
Define the quasi-shuffle product ∗� on R〈A〉 recursively by 1 ∗� w = w ∗� 1 = w and

au ∗� bv = a(u ∗� bv) + b(au ∗� v) + (a � b)(u ∗� v)

for all u, v, w ∈ R〈A〉 and a, b ∈ A.

Note that the quasi-shuffle product ∗� can be equally defined recursively from the left and
from the right, since both product expressions agree.

Example A.53. 1) Define a � b = 0 for all a, b ∈ A, then we get the well-known shuffle
product, which is usually denoted by �. Choosing the alphabet X = {x0, x1}, the shuffle
product occurs for multiple zeta values (Definition B.13).
2) Let Y = {y1, y2, y3, . . .} and define on RY the product yi�yj = yi+j . The corresponding
quasi-shuffle product is known as the stuffle product or harmonic product and is usually
denoted by ∗, it arises in the context of multiple zeta values (Definition B.17).
3) Consider the alphabet B = {b0, b1, b2, . . .} and define on RB the product bi�SZ bj = bi+j .
We will refer to this quasi-shuffle product as the SZ stuffle product, since it appears for
the SZ multiple q-zeta values (Definition 2.11), and denote this by ∗SZ.
4) On the alphabet B define another product by

bi �q bj =
{
bi+j , if i, j ≥ 1,
0 else

.

This quasi-shuffle product occurs for balanced multiple q-zeta values (Definition 2.58) and
will be called the balanced quasi-shuffle product, it is denoted by ∗q.

5) Consider the bi-alphabet Ybi = {yk,m | k ≥ 1, m ≥ 0}. There are numbers λk1,k2
j ∈ R,

such that one obtains an associative and commutative product

yk1,m1 � yk2,m2 = yk1+k2,m1+m2 +
k1+k2−1∑
j=1

λk1,k2
j yj,m1+m2 . (A.53.1)

In the context of bi-brackets (2.31.1), an explicit choice of the numbers λk1,k2
j is given, and

the corresponding quasi-shuffle product is denoted by ∗bb.
6) Another possible choice in A.53.1 is λk1,k2

j = 0 for all j, k1, k2 ≥ 1, the obtained quasi-
shuffle product is called the q-stuffle product and is denoted by ∗. This should be seen as
a bi-version of the stuffle product on R〈Y〉 given in 2). It appears in the context of the
combinatorial bi-multiple Eisenstein series (Definition 2.40).
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Proposition A.54. The pair (R〈A〉, ∗�) is an associative, commutative algebra.

For the shuffle algebra (R〈A〉,�) there is an explicit generating set. Choose a total
ordering on the alphabet A, then the lexicographic ordering defines a total ordering on
the set of all words A∗. Recall that a word w ∈ A∗\{1} is called a Lyndon word, if we
have for any nontrivial decomposition w = uv that w < v (Definition A.12).

Theorem A.55. ([Re93, Theorem 4.9 (ii)]) The shuffle algebra (R〈A〉,�) is a free poly-
nomial algebra generated by the Lyndon words of A.

We will see that all quasi-shuffle algebras over the same alphabet A are isomorphic. In
particular, the previous theorem holds for all quasi-shuffle algebras.

Definition A.56. Let (R〈A〉, ∗�) be a quasi-shuffle algebra. By a composition of a positive
integer n we mean an ordered sequence I = (i1, . . . , ir), such that i1 + · · · + ir = n. Let
w = a1 . . . an ∈ A∗ be a word and I = (i1, . . . , ir) a composition of n, then define

I[w] = (a1 � · · · � ai1)(ai1+1 � · · · � ai1+i2) . . . (ai1+···+ir−1+1 � · · · � an)

and

exp∗�(w) =
∑

I=(i1,...,ir) composition of n

1
i1! . . . ir!

I[w],

log∗�(w) =
∑

I=(i1,...,ir) composition of n

(−1)n−r
i1 . . . ir

I[w].

Theorem A.57. ([Hof00, Theorem 2.5]) The map exp∗� is an algebra isomorphism

exp∗� : (R〈A〉,�) ∼−→ (R〈A〉, ∗�).

The inverse map is given by log∗�.

From Theorem A.55 and A.57, one deduces the following.

Corollary A.58. Any quasi-shuffle algebra (R〈A〉, ∗�) is a free polynomial algebra gener-
ated by the Lyndon words of A.

Next, we equip the quasi-shuffle algebras with a Hopf algebra structure. Define the decon-
catenation coproduct ∆dec : R〈A〉 → R〈A〉 ⊗R〈A〉 and the counit map ε : R〈A〉 → R for
a word w ∈ A∗ by

∆dec(w) =
∑
w=uv

u⊗ v, ε(w) =
{

1, if w = 1
0 else

. (A.58.1)

Theorem A.59. ([Hof00, Theorem 3.1, 3.2]) The tuple (R〈A〉, ∗�,1,∆dec, ε) is a com-
mutative Hopf algebra.

The antipode S∗� : R〈A〉 → R〈A〉 is on a word w = a1 . . . an in A∗ given by

S∗�(w) = (−1)n
∑

I=(i1,...,ir) composition of n
I[anan−1 . . . a1].

The map exp∗� in Theorem A.57 is compatible with the Hopf algebra structures, explicitly
the following holds.
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Theorem A.60. ([Hof00, Theorem 3.3]) The map exp∗� is a Hopf algebra isomorphism

exp∗� : (R〈A〉,�,1,∆dec, ε) ∼−→ (R〈A〉, ∗�,1,∆dec, ε).

We want to determine a completed dual of the quasi-shuffle Hopf algebra (in the sense of
Definition A.18). Define a degree map on the letters in A, such that deg(a) ≥ 1 for all
a ∈ A. This induces a grading on the quasi-shuffle Hopf algebra (R〈A〉, ∗�,1,∆dec, ε) by

deg(a1 . . . an) = deg(a1) + · · ·+ deg(an), a1, . . . , an ∈ A.

Denote by R〈〈A〉〉 the completion with respect to this grading (see Proposition A.45).
There is a pairing

(· | ·) : R〈〈A〉〉 ⊗R〈A〉 → R, (A.60.1)
φ⊗ w 7→ (φ | w),

where (φ | w) denotes the coefficient of φ ∈ R〈〈A〉〉 in w ∈ R〈A〉. On R〈〈A〉〉 define the
coproduct ∆∗� : R〈〈A〉〉 → R〈〈A〉〉 ⊗R〈〈A〉〉 by

∆∗�(φ) =
∑

u,v∈A∗
(φ | u ∗� v) u⊗ v.

Moreover, denote the concatenation product by conc.

Theorem A.61. The tuple (R〈〈A〉〉, conc,1,∆∗� , ε) is a complete cocommutative Hopf
algebra. It is dual to the quasi-shuffle Hopf algebra (R〈A〉, ∗�,1,∆dec, ε) with respect to
the pairing (· | ·) given in (A.60.1).

Example A.62. For the shuffle product � given in Example A.53 1), the dual coproduct
is given by

∆�(a) = a⊗ 1 + 1⊗ a for all a ∈ A.

So (R〈〈A〉〉, conc,∆�) is a cocommutative Hopf algebra (cf. Corollary A.40).

Let exp∨∗� the algebra endomorphism on (R〈〈A〉〉, conc) defined by

exp∨∗�(a) =
∑

a1�···�an=a

1
n!a1 . . . an

for all letters a ∈ A. Then by duality, the following holds

Corollary A.63. ([Hof00, Theorem 4.1]) The map exp∨∗� gives a Hopf algebra isomor-
phism

exp∨∗� : (R〈〈A〉〉, conc,1,∆∗� , ε)→ (R〈〈A〉〉, conc,1,∆�, ε).
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A.4 Generating series and quasi-shuffle products

For a quasi-shuffle algebra (Q〈A〉, ∗�) we want to study its symmetries in terms of gener-
ating series. In all our given examples the quasi-shuffle algebra (Q〈A〉, ∗�) will be filtered
or graded. Define the generic diagonal series of Q〈A〉 by

W(A) =
∑
w∈A∗

w ⊗ w.

We want to apply Q-linear maps to the first factors, usually denoted by ϕ, or to the
second factors, usually denoted by ρ, of W(A) to get generating series of different kinds
and describe the resulting properties.
Let dep : A∗ → Z≥0 be a depth map compatible with concatenation, i.e., we have

dep(uv) = dep(u) + dep(v), u, v ∈ A∗.

Denote by (A∗)(d) the set of all words in A∗ of depth d and by Q〈A〉(d) the space spanned
by (A∗)(d). Then in the following, we will explain the following picture∑

w∈A∗ w ⊗ w

∑
w∈A∗

ϕ(w)w
( ∑
w∈(A∗)(d)

wρ(w)
)
d≥0

( ∑
w∈(A∗)(d)

ϕ(w)ρ(w)
)
d≥0

1⊗ρ
ϕ⊗1

1⊗ρ

ϕ⊗1

.

We begin with an abstract discussion and later a more detailed explanation in special
cases is given.

Definition A.64. Let ρA : Q〈A〉 → Q[Z1, Z2, . . .] be a Q-linear map having the following
properties with respect to the depth map

(i) For each d ≥ 1, the restriction of ρA to Q〈A〉(d) is an injective Q-linear map

ρA|Q〈A〉(d) : Q〈A〉(d) → Q[Z1, . . . , Zd].

(ii) For n ≥ 1 denote by ρ[n]
A the Q-linear map obtained from ρA by shifting the variables

Zi to Zn+i, so ρ[n]
A

(
Q〈A〉(d)

)
⊂ Q[Zn+1, . . . , Zn+d]. Then, one has

ρA(uv) = ρA(u)ρ[n]
A (v), u ∈ Q〈A〉(n), v ∈ Q〈A〉.

Definition A.65. Let ρA : Q〈A〉 → Q[Z1, Z2, . . .] be a Q-linear map as in Definition
A.64. The (commutative) generating series of words in Q〈A〉 associated to ρA are given
by ρA(W)0 = 1 and for d ≥ 1 by

ρA(W)d(Z1, . . . , Zd) =
∑

w∈(A∗)(d)

wρ(w) ∈ Q〈A〉[[Z1, . . . , Zd]].
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For simplicity, we will usually omit the index d and just write ρA(W)(Z1, . . . , Zd) for the
generating series of words in depth d.

Extend the concatenation product defined onQ〈A〉 toQ〈A〉[[Z1, Z2, . . .]] byQ[[Z1, Z2, . . .]]-
linearity and denote it by ·. Then there is an explicit expression of the concatenation
product on the generating series of words ρA(W).

Proposition A.66. Let ρA : Q〈A〉 → Q[Z1, Z2, . . .] be a Q-linear map as in Definition
A.64. Then for 0 ≤ n ≤ d , one has

ρA(W)(Z1, . . . , Zn) · ρA(W)(Zn+1, . . . , Zd) = ρA(W)(Z1, . . . , Zd).

Proof. For n = 0, d the formula is obvious. For 0 < n < d, compute

ρA(W)(Z1, . . . , Zn) · ρA(W)(Zn+1, . . . , Zd) =
∑

u∈(A∗)(n)

∑
v∈(A∗)(d−n)

uvρA(u)ρ[n]
A (v)

=
∑

u∈(A∗)(n)

∑
v∈(A∗)(d−n)

uvρA(uv) =
∑

w∈(A∗)(d)

wρA(w) = ρA(W)(Z1, . . . , Zd).

Extend also the quasi-shuffle product ∗� on Q〈A〉 to Q〈A〉[[Z1, Z2, . . .]] by Q[[Z1, Z2, . . .]]-
linearity. Then by definition of the quasi-shuffle product ∗�, we have that for all 0 ≤ n ≤ d

ρA(W)(Z1, . . . , Zn) ∗� ρA(W)(Zn+1, . . . , Zd) ∈ Q〈A〉[[Z1, . . . , Zd]].

In some special cases, this expression can be described explicitly by a recursive formula.

Consider the alphabet Y = {y1, y2, . . .}. For a word in Q〈Y〉 define the depth as

dep(yk1 . . . ykd) = d, k1, . . . , kd ≥ 1,

and let ρY be the Q-linear map defined by

ρY : Q〈Y〉 → Q[X1, X2, . . .], (A.66.1)
yk1 . . . ykd 7→ Xk1−1

1 . . . Xkd−1
d .

It is obvious that the map ρY satisfies the properties listed in Definition A.64 and the
associated generating series of words are given by ρY(W)0 = 1 and

ρY(W)d(X1, . . . , Xd) =
∑

k1,...,kd≥1
yk1 . . . ykdX

k1−1
1 . . . Xkd−1

d , d ≥ 1.

Proposition A.67. (i) Let (Q〈Y〉,�) be the shuffle algebra, i.e., � is the quasi-shuffle
product corresponding to yi � yj = 0 for all i, j ≥ 1 (Example A.53 1)). Then we have for
all 0 < n < d that 1� ρY(W)n = ρY(W)n � 1 = ρY(W)n and

ρY(W)(X1, . . . , Xn)� ρY(W)(Xn+1, . . . , Xd)

= ρY(W)(X1) ·
(
ρY(W)(X2, . . . , Xn)� ρY(W)(Xn+1, . . . , Xd)

)
+ ρY(W)(Xn+1) ·

(
ρY(W)(X1, . . . , Xn)� ρY(W)(Xn+2, . . . , Xd)

)
.

(ii) ([Ih07, Proposition 8 (i)]) Let (Q〈Y〉, ∗) be the stuffle algebra, i.e., ∗ is the quasi-
shuffle product with yi � yj = yi+j for all i, j ≥ 1 (Example A.53 2)). One obtains for all
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0 < n < d that 1 ∗ ρY(W)n = ρY(W)n ∗ 1 = ρY(W)n and

ρY(W)(X1, . . . , Xn) ∗ ρY(W)(Xn+1, . . . , Xd)

= ρY(W)(X1) ·
(
ρY(W)(X2, . . . , Xn) ∗ ρY(W)(Xn+1, . . . , Xd)

)
+ ρY(W)(Xn+1) ·

(
ρY(W)(X1, . . . , Xn) ∗ ρY(W)(Xn+2, . . . , Xd)

)
+ ρY(W)(X1)− ρY(W)(Xn+1)

X1 −Xn+1
·
(
ρY(W)(X2, . . . , Xn) ∗ ρY(W)(Xn+2, . . . , Xd)

)
.

Proof. We only prove (ii). Part (i) follows then from (ii) by applying the same calculations
and arguments modulo lower depth. First, restrict to the case d = 2 and compute directly

ρY(W)(X1) ∗q ρY(W)(X2)

=
∑

k1,k2≥1
(yk1 ∗ yk2)Xk1−1

1 Xk2−1
2 =

∑
k1,k2≥1

(
yk1yk2 + yk2yk1 + yk1+k2

)
Xk1−1

1 Xk2−1
2

= ρY(W)(X1, X2) + ρY(W)(X2, X1) + ρY(W)(X1)− ρY(W)(X2)
X1 −X2

,

where ∑
k1,k2≥1

yk1+k2X
k1−1
1 Xk2−1

2 = ρY(W)(X1)− ρY(W)(X2)
X1 −X2

follows from a simple power series manipulation. Since the stuffle product as well as the
above generating series formula are given recursively, we obtain the claim in arbitrary
depth by applying induction and the same arguments as before.

Next, consider the alphabet X = {x0, x1} and let h1 be the subalgebra of Q〈X 〉 spanned
by all words ending in x1. For a word in h1 define the depth as

dep(xk1−1
0 x1 . . . x

kd−1
0 x1) = d, k1, . . . , kd ≥ 1,

and let ρX be the Q-linear map defined by

ρX : h1 → Q[X1, X2, . . .],
xk1−1

0 x1 . . . x
kd−1
0 x1 7→ Xk1−1

1 . . . Xkd−1
d .

The map ρX satisfies the properties in Definition A.64 and the generating series of words
associated to ρX is given by ρX (W)0 = 1 and

ρX (W)d(X1, . . . , Xd) =
∑

k1,...,kd≥1
xk1−1

0 x1 . . . x
kd−1
d x1X

k1−1
1 . . . Xkd−1

d , d ≥ 1.

Proposition A.68. ([Ih07, Proposition 8 (ii)]) Let (h1,�) be the shuffle algebra, i.e., �
is the quasi-shuffle product with xi �xj = 0 for i, j ∈ {0, 1} (Example A.53 1)). We obtain
for 0 < n < d that 1� ρX (W)n = ρX (W)n � 1 = ρX (W)n and

ρX (W)(X1, . . . , Xn)� ρX (W)(Xn+1, . . . , Xd)

= ρX (W)(X1 +Xn+1) ·
(
ρX (W)(X2, . . . , Xn)� ρX (W)(Xn+1, . . . , Xd)

)
+ ρX (W)(X1 +Xn+1) ·

(
ρX (W)(X1, . . . , Xn)� ρX (W)(Xn+2, . . . , Xd)

)
.
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Proof. First, restrict to the case d = 2 and obtain

ρX (W)(X1) = 1
1− x0X1

· x1, (A.68.1)

= x1 + x0X1ρX (W)(X1). (A.68.2)

Thus, compute

ρX (W)(X1)� ρX (W)(X2)

= x1 � x1 + x1 �
(
x0X2ρX (W)(X2)

)
+
(
x0X1ρX (W)(X1)

)
� x1

+
(
x0X1ρX (W)(X1)

)
�

(
x0X2ρX (W)(X2)

)
= 2x2

1 + x1 · x0X2ρX (W)(X2) + x0 ·
(
x1 �

(
X2ρX (W)(X2)

))
+ x1 · x0X1ρX (W)(X1)

+ x0 ·
((
X1ρX (W)(X1)� x1

))
+ x0 ·

((
X1ρX (W)(X1)

)
�

(
x0X2ρX (W)(X2)

))
+ x0 ·

((
x0X1ρX (W)(X1)

)
�X2ρX (W)(X2)

)
= 2x2

1 + x1 ·
(
ρX (W)(X2)− x1

)
+ x0 ·

(
x1 �

(
X2ρX (W)(X2)

))
+ x1 ·

(
ρX (W)(X1)− x1

)
+ x0 ·

((
X1ρX (W)(X1)� x1

))
+ x0 ·

((
X1ρX (W)(X1)

)
�

(
ρX (W)(X2)− x1

))
+ x0 ·

((
ρX (W)(X1)− x1

)
�X2ρX (W)(X2)

)
= x1 · ρX (W)(X2) + x1 · ρX (W)(X1) + x0(X1 +X2) ·

(
ρX (W)(X1)� ρX (W)(X2)

)
,

where the first equality follows from (A.68.2), the second equality is just applying the
definition of �, the third equality is again obtained from (A.68.2) and the fourth equality
is simple cancellation and reordering. Together with (A.68.1) and Proposition A.66, one
deduces

ρX (W)(X1)� ρX (W)(X2) = 1
1− x0(X1 +X2) ·

(
x1 · ρX (W)(X1) + x1 · ρX (W)(X2)

)
= ρX (W)(X1 +X2) · ρX (W)(X1) + ρX (W)(X1 +X2) · ρX (W)(X2)
= ρX (W)(X1 +X2, X1) + ρX (W)(X1 +X2, X2).

This is exactly the claimed formula for the generating series in depth 2. Since both the
shuffle product and the generating series formula are defined recursively, the claim in
arbitrary depths follows from induction.

Remark A.69. Consider the isomorphism of vector spaces

ιY,X : Q〈Y〉 → h1, yk1 . . . ykd 7→ xk1−1
0 x1 . . . x

kd−1
0 x1

and extend it to Q〈Y〉[[X1, X2, . . .]] by Q[[X1, X2, . . .]]-linearity. As obtained in [IKZ06]
one has for all 0 < n < d that

(ρX (W))#X (X1, . . . , Xn)� (ρX (W))#X (Xn+1, . . . , Xd) (A.69.1)
= ιY,X (ρY(W)(X1, . . . , Xn)� ρY(W)(Xn+1, . . . , Xd))#X .

Here the right-hand side is explained in Proposition A.67 (i) and we denote

(ρX (W))#X (X1, . . . , Xd) = ρX (W)(X1 + · · ·+Xd, X2 + · · ·+Xd, . . . , Xd).
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By variable substitution, one shows that the formulas in (A.69.1) and in Proposition A.68
agree. For example, for n = 1, d = 3 the formula (A.69.1) reads

ρX (W)(X1)� ρX (W)(X2 +X3, X3)
= ιY,X (ρY(W)(X1, X2, X3) + ρY(W)(X2, X1, X3) + ρY(W)(X2, X3, X1))#X

= ρX (W)(X1 +X2 +X3, X2 +X3, X3) + ρX (W)(X1 +X2 +X3, X1 +X3, X3)
+ ρX (W)(X1 +X2 +X3, X1 +X3, X1).

Substituting X1 7→ X1, X2 7→ X2 −X3, X3 7→ X3 this equation is equivalent to

ρX (W)(X1)� ρX (W)(X2, X3) = ρX (W)(X1 +X2, X2, X3)
+ ρX (W)(X1 +X2, X1 +X3, X3) + ρX (W)(X1 +X2, X1 +X3, X1),

which is exactly the formula in Proposition A.68 for n = 1, d = 3.

As a second step, we apply a Q-linear map ϕ : Q〈A〉 → R into some commutative Q-
algebra R with unit to the first component of such a generating series of words ρA(W).
In other words, we consider the image of the generic diagonal series W(A) under ϕ⊗ ρA.

Definition A.70. Let ρA : Q〈A〉 → Q[Z1, Z2, . . .] be a Q-linear map as in Definition A.64,
R be a commutative Q-algebra with unit and ϕ : Q〈A〉 → R a Q-linear map. Then the
generating series with coefficients in R associated to (ϕ, ρA) are given by (ϕ⊗ρA)(W)0 = 1
and

(ϕ⊗ ρA)(W)d(Z1, . . . , Zd) =
∑

w∈(A∗)(d)

ϕ(w)ρA(w) ∈ R[[Z1, . . . , Zd]], d ≥ 1.

As before, we will usually drop the depth index and simply write (ϕ⊗ρA)(W)(Z1, . . . , Zd).
Later, we will refer to the sequences (ϕ ⊗ ρA)(W) =

(
(ϕ ⊗ ρA)(W)d

)
d≥0

as moulds or
bimoulds (cf Section C).

Definition A.70 allows relating a quasi-shuffle product defined on Q〈A〉 to a symmetry
among a sequence in ∏d≥0R[[Z1, . . . , Zd]].

Definition A.71. Let R be a commutative Q-algebra with unit. A sequence M =
(Md)d≥0 ∈

∏
d≥0R[[Z1, . . . , Zd]] is called (ϕ∗� , ρA)-symmetric if there is a Q-algebra mor-

phism ϕ∗� : (Q〈A〉, ∗�)→ (R, ·) and a Q-linear map ρA : Q〈A〉 → Q[[Z1, Z2, . . .]] satisfying
the conditions in Definition A.64, such that for all d ≥ 0

Md = (ϕ∗� ⊗ ρA)(W)d.

Let M = (Md)d≥0 ∈
∏
d≥0R[[Z1, . . . , Zd]] be such a (ϕ∗� , ρA)-symmetric sequence. Then,

one obtains immediately from the definition that for 0 < n < d

Mn(Z1, . . . , Zn)Md−n(Zn+1, . . . , Zd) (A.71.1)

= ϕ∗�

(
ρA(W)n(Z1, . . . , Zn) ∗� ρA(W)d−n(Zn+1, . . . , Zd)

)
.

The right-hand side is an element in Q〈A〉[[Z1, . . . , Zd]], so we need to extend the map
ϕ∗� : Q〈A〉 → R by Q[[Z1, Z2, . . .]]-linearity to apply it to this expression.
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Example A.72. Recall that the map

ρY : Q〈Y〉 → Q[X1, X2, . . .],
yk1 . . . ykd 7→ Xk1−1

1 . . . Xkd−1
d .

given in (A.66.1) satisfies the conditions in Definition A.64.
1) A sequence M = (Md)d≥0 ∈ R[[X1, . . . , Xd]] will be called symmetral if there is an
algebra morphism ϕ� : (Q〈Y〉,�) → R, such that M is (ϕ�, ρY)-symmetric. So M is
symmetral if and only if we have for all 0 < n < d

Mn(X1, . . . , Xn)Md−n(Xn+1, . . . , Xd)

= ϕ�
(
ρY(W)n(X1, . . . , Xn)� ρY(W)d−n(Xn+1, . . . , Xd)

)
,

where the right-hand side is explicitly described in Proposition A.67 (i).

2) A sequence M = (Md)d≥0 ∈ R[[X1, . . . , Xd]] will be called symmetril if there is an
algebra morphism ϕ∗ : (Q〈Y〉, ∗)→ R, such that M is (ϕ∗, ρY)-symmetric. In particular,
M is symmetril if and only if we have for all 0 < n < d

Mn(X1, . . . , Xn)Md−n(Xn+1, . . . , Xd)

= ϕ∗
(
ρY(W)n(X1, . . . , Xn) ∗ ρY(W)d−n(Xn+1, . . . , Xd)

)
.

An explicit expression for the right hand-side is given in Proposition A.67 (ii).
Definition A.71 will be used in Subsection 2.7 and C.1 to obtain the definition of symmetral,
symmetril, and q-symmetral, q-symmetril for bimoulds.

Alternatively, we can first apply the evaluation map ϕ : Q〈A〉 → R for some commutative
Q-algebra R with unit to the generic diagonal series W(A).
Definition A.73. Let R be a commutative Q-algebra with unit and ϕ : Q〈A〉 → R be
a Q-linear map. Define the (non-commutative) generating series with coefficients in R
associated to ϕ by

ϕ(W(A)) =
∑
w∈A∗

ϕ(w)w ∈ R〈〈A〉〉.

Here R〈〈A〉〉 denotes the completion of the space R〈A〉 = R ⊗ Q〈A〉 with respect to the
grading deg(a) = 1 for all a ∈ A.
Clearly, the generating series ϕ(W(A)) can also be decomposed into its homogeneous
depth components ϕ(W(A))d for d ≥ 0 (similar to Definition A.65).
Proposition A.74. Let R be a commutative Q-algebra with unit and ϕ : Q〈A〉 → R be a
Q-linear map. Assume that the algebra (Q〈A〉, ∗�) is graded with deg(a) ≥ 1 for all a ∈ A,
and denote by ∆∗� the dual coproduct to ∗� with respect to the pairing given in (A.60.1).
The map ϕ is an algebra morphism for the quasi-shuffle product ∗� if and only if ϕ(W(A))
is grouplike for the coproduct ∆∗�.

Proof. By Theorem A.61, we have ∆∗�
(
ϕ(W(A))

)
= ∑

u,v∈A∗ ϕ(u ∗� v)u ⊗ v. So ϕ is an
algebra morphism for the quasi-shuffle product ∗� if and only if

∆∗�
(
ϕ(W(A))

)
=

∑
u,v∈A∗

ϕ(u)ϕ(v)u⊗ v = ϕ(W(A))⊗ ϕ(W(A)).

In particular, applying the map ϕ involves always a dualization process. This approach is
the basis for Section 4.
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A.5 Examples for generating series and quasi-shuffle algebras

In this subsection, we give explicit recursive formulas for several quasi-shuffle products on
generating series of words (cf subsection A.4) for sake of reference.

Consider the alphabet Ybi = {yk,m | k ≥ 1, m ≥ 0} and let the depth of a word in Q〈Ybi〉
be given by

dep(yk1,m1 . . . ykd,md) = d, k1, . . . , kd ≥ 1, m1, . . . ,md ≥ 0.

Define the Q-linear map ρYbi by

ρYbi : Q〈Ybi〉 → Q[X1, Y1, X2, Y2, . . .],

yk1,m1 . . . ykd,md 7→ Xk1−1
1

Y m1
1
m1! . . . X

kd−1
d

Y md
d

md!
,

then ρYbi essentially8 satisfies the conditions in Definition A.64. The generating series of
words in Q〈Ybi〉 associated to ρYbi is given by ρYbi(W)0 = 1 and

ρYbi(W)d
(
X1, . . . , Xd

Y1, . . . , Yd

)
=

∑
k1,...,kd≥1
m1,...,md≥0

yk1,m1 . . . ykd,mdX
k1−1
1

Y m1
1
m1! . . . X

kd−1
d

Y md
d

md!
, d ≥ 1.

First, we give a recursive formula for an arbitrary quasi-shuffle product ∗� defined on
Q〈Ybi〉 on the generating series of words.

Proposition A.75. Let (Q〈Ybi〉, ∗�) be a quasi-shuffle algebra. Then we have for all
0 < n < d that 1 ∗� ρYbi(W)n = ρYbi(W)n ∗� 1 = ρYbi(W)n and

ρYbi(W)
(
X1, . . . , Xn

Y1, . . . , Yn

)
∗� ρYbi(W)

(
Xn+1, . . . , Xd

Yn+1, . . . , Yd

)

= ρYbi(W)
(
X1
Y1

)
·
(
ρYbi(W)

(
X2, . . . , Xn

Y2, . . . , Yn

)
∗� ρYbi(W)

(
Xn+1, . . . , Xd

Yn+1, . . . , Yd

))

+ ρYbi(W)
(
Xn+1
Yn+1

)
·
(
ρYbi(W)

(
X1, . . . , Xn

Y1, . . . , Yn

)
∗� ρYbi(W)

(
Xn+2, . . . , Xd

Yn+2, . . . , Yd

))

+
(
ρYbi(W) � ρYbi(W)

)(X1, Xn+1
Y1, Yn+1

)
·
(
ρYbi(W)

(
X2, . . . , Xn

Y2, . . . , Yn

)
∗� ρYbi(W)

(
Xn+2, . . . , Xd

Yn+2, . . . , Yd

))
,

where
(
ρYbi(W) � ρYbi(W)

)(X1, X2
Y1, Y2

)
=

∑
k1,k2≥1
m1,m2≥0

(yk1,m1�yk2,m2)Xk1−1
1 Xk2−1

2
Y m1

1
m1!

Y m2
2
m2! .

Here · denotes the concatenation product (cf Proposition A.66).
8To be precisely in the situation of Definition A.64, we have to define the depth as

dep(yk1,m1 . . . ykd,md ) = 2d. But this means the depth of every homogeneous element in Q〈Ybi〉 is di-
visible by 2, thus we stick to the above given depth map.
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Proof. First, consider the case d = 2 and compute directly

ρYbi(W)
(
X1
Y1

)
∗� ρYbi(W)

(
X2
Y2

)
=

∑
k1,k2≥1
m1,m2≥0

(yk1,m1 ∗� yk2,m2)Xk1−1
1 Xk2−1

2
Y m1

1
m1!

Y m2
2
m2!

=
∑

k1,k2≥1
m1,m2≥0

(
yk1,m1yk2,m2 + yk2,m2yk1,m1 + yk1,m1 � yk2,m2

)
Xk1−1

1 Xk2−1
2

Y m1
1
m1!

Y m2
2
m2!

= ρYbi(W)
(
X1, X2
Y1, Y2

)
+ ρYbi(W)

(
X2, X1
Y2, Y1

)
+
(
ρYbi(W) � ρYbi(W)

)(X1, X2
Y1, Y2

)
.

Since the definition of the quasi-shuffle product ∗� as well as the above formula for the
generating series ρYbi(W) is recursive, the arbitrary depth case follows similarly by induc-
tion.

Corollary A.76. For all 0 < n < d, one has 1� ρYbi(W)n = ρYbi(W)n� 1 = ρYbi(W)n
and

ρYbi(W)
(
X1, . . . , Xn

Y1, . . . , Yn

)
∗� ρYbi(W)

(
Xn+1, . . . , Xd

Yn+1, . . . , Yd

)

= ρYbi(W)
(
X1
Y1

)
·
(
ρYbi(W)

(
X2, . . . , Xn

Y2, . . . , Yn

)
∗� ρYbi(W)

(
Xn+1, . . . , Xd

Yn+1, . . . , Yd

))

+ ρYbi(W)
(
Xn+1
Yn+1

)
·
(
ρYbi(W)

(
X1, . . . , Xn

Y1, . . . , Yn

)
∗� ρYbi(W)

(
Xn+2, . . . , Xd

Yn+2, . . . , Yd

))
.

Proof. This is a direct consequence of Proposition A.75, since one obtains for the shuffle
product that (

ρYbi(W) � ρYbi(W)
)(X1, X2

Y1, Y2

)
= 0.

Corollary A.77. For all 0 < n < d, one obtains 1∗ρYbi(W)n = ρYbi(W)n∗1 = ρYbi(W)n
and

ρYbi(W)
(
X1, . . . , Xn

Y1, . . . , Yn

)
∗� ρYbi(W)

(
Xn+1, . . . , Xd

Yn+1, . . . , Yd

)

= ρYbi(W)
(
X1
Y1

)
·
(
ρYbi(W)

(
X2, . . . , Xn

Y2, . . . , Yn

)
∗� ρYbi(W)

(
Xn+1, . . . , Xd

Yn+1, . . . , Yd

))

+ ρYbi(W)
(
Xn+1
Yn+1

)
·
(
ρYbi(W)

(
X1, . . . , Xn

Y1, . . . , Yn

)
∗� ρYbi(W)

(
Xn+2, . . . , Xd

Yn+2, . . . , Yd

))

+
ρYbi(W)

(
X1

Y1 + Yn+1

)
− ρYbi(W)

(
Xn+1

Y1 + Yn+1

)
X1 −Xn+1

·
(
ρYbi(W)

(
X2, . . . , Xn

Y2, . . . , Yn

)
∗ ρYbi(W)

(
Xn+2, . . . , Xd

Yn+2, . . . , Yd

))
.
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Proof. Apply Proposition A.75 and observe that
(
ρYbi(W) � ρYbi(W)

)(X1, X2
Y1, Y2

)
=

∑
k1,k2≥1
m1,m2≥0

yk1+k2,m1+m2X
k1−1
1 Xk2−1

2
Y m1

1
m1!

Y m2
2
m2!

=
ρYbi(W)

(
X1

Y1 + Y2

)
− ρYbi(W)

(
X2

Y1 + Y2

)
X1 −X2

.

Next, consider the alphabet B = {b0, b1, b2, . . .} and let Q〈B〉0 the subalgebra of Q〈B〉
spanned by all words, which do not start in b0. The depth of a word in Q〈B〉0 is defined
by

dep(bk1b
m1
0 . . . bkdb

md
0 ) = d, k1, . . . , kd ≥ 1, m1, . . . ,md ≥ 0.

Moreover, define the Q-linear map ρB by

ρB : Q〈B〉0 → Q[X1, Y1, X2, Y2, . . .],
bk1b

m1
0 . . . bkdb

md
0 7→ Xk1−1

1 Y m1
1 . . . Xkd−1

d Y md
d (k1, . . . , kd ≥ 1,m1, . . . ,md ≥ 0),

then ρB satisfies the conditions in Definition A.64. The generating series of words in Q〈B〉0
associated to ρB is given by ρB(W)0 = 1 and

ρB(W)d
(
X1, . . . , Xd

Y1, . . . , Yd

)
=

∑
k1,...,kd≥1
m1,...,md≥0

bk1b
m1
0 . . . bkdb

md
0 Xk1−1

1 Y m1
1 . . . Xkd−1

d Y md
d , d ≥ 1.

Proposition A.78. (i) Let (Q〈B〉0,�) be the shuffle algebra, i.e., � is the quasi-shuffle
product to bi � bj = 0 for all i, j ≥ 0 (Example A.53 1)). For all 0 < n < d, we obtain that
1� ρB(W)n = ρB(W)n � 1 = ρB(W)n and

ρB(W)
(
X1, . . . , Xn

Y1, . . . , Yn

)
� ρB(W)

(
Xn+1, . . . , Xd

Yn+1, . . . , Yd

)

=
(
ρB(W)

(
X1, . . . , Xn−1
Y1, . . . , Yn−1

)
� ρB(W)

(
Xn+1, . . . , Xd

Yn+1, . . . , Yd

))
· ρB(W)

(
Xn

Yn + Yd

)

+
(
ρB(W)

(
X1, . . . , Xn

Y1, . . . , Yn

)
� ρB(W)

(
Xn+1, . . . , Xd−1
Yn+1, . . . , Yd−1

))
· ρB(W)

(
Xd

Yn + Yd

)
.

(ii) Let (Q〈B〉0, ∗q) be the balanced quasi-shuffle algebra, i.e., ∗q is the quasi-shuffle product

to bi �q bj =
{
bi+j , i, j ≥ 1
0 else

for all i, j ≥ 0 (Example A.53 4)). For all 0 < n < d, we

obtain 1 ∗q ρB(W)n = ρB(W)n ∗q 1 = ρB(W)n and

ρB(W)
(
X1, . . . , Xn

Y1, . . . , Yn

)
∗q ρB(W)

(
Xn+1, . . . , Xd

Yn+1, . . . , Yd

)

=
(
ρB(W)

(
X1, . . . , Xn−1
Y1, . . . , Yn−1

)
∗q ρB(W)

(
Xn+1, . . . , Xd

Yn+1, . . . , Yd

))
· ρB(W)

(
Xn

Yn + Yd

)

+
(
ρB(W)

(
X1, . . . , Xn

Y1, . . . , Yn

)
∗q ρB(W)

(
Xn+1, . . . , Xd−1
Yn+1, . . . , Yd−1

))
· ρB(W)

(
Xd

Yn + Yd

)
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+
(
ρB(W)

(
X1, . . . , Xn−1
Y1, . . . , Yn−1

)
∗q ρB(W)

(
Xn+1, . . . , Xd−1
Yn+1, . . . , Yd−1

))

·
ρB(W)

(
Xn

Yn + Yd

)
− ρB(W)

(
Xd

Yn + Yd

)
Xn −Xd

.

Proof. We will only give a proof for (ii), part (i) follows from the same calculations modulo
lower depth. Consider the case d = 2. We obtain

ρB(W)
(
X1
Y1

)
=
∑
k≥1
m≥0

bkb
m
0 X

k1−1
1 Y m

1 ,

=

∑
k≥1

bkX
k−1
1

 · 1
1− b0Y1

, (A.78.1)

=
∑
k≥1

bkX
k−1
1 + ρB(W)

(
X1
Y1

)
· b0Y1. (A.78.2)

Hence we compute

ρB(W)
(
X1
Y1

)
∗q ρB(W)

(
X2
Y2

)

=

∑
k≥1

bkX
k−1
1

 ∗q
∑
k≥1

bkX
k−1
2

+

∑
k≥1

bkX
k−1
1

 ∗q
(
ρB(W)

(
X2
Y2

)
· b0Y2

)

+
(
ρB(W)

(
X1
Y1

)
· b0Y1

)
∗q

∑
k≥1

bkX
k−1
2


+
(
ρB(W)

(
X1
Y1

)
· b0Y1

)
∗q

(
ρB(W)

(
X2
Y2

)
· b0Y2

)

=

∑
k≥1

bkX
k−1
1

 ∗q
∑
k≥1

bkX
k−1
2

+

∑
k≥1

bkX
k−1
1

 ∗q
(
ρB(W)

(
X2
Y2

)
Y2

) · b0
+ ρB(W)

(
X2
Y2

)
· b0Y2 ·

∑
k≥1

bkX
k−1
1 +

(ρB(W)
(
X1
Y1

)
Y1

)
∗q

∑
k≥1

bkX
k−1
2

 · b0
+ ρB(W)

(
X1
Y1

)
· b0Y1 ·

∑
k≥1

bkX
k−1
2 +

((
ρB(W)

(
X1
Y1

)
Y1

)
∗q

(
ρB(W)

(
X2
Y2

)
· b0Y2

))
· b0

+
((

ρB(W)
(
X1
Y1

)
· b0Y1

)
∗q

(
ρB(W)

(
X2
Y2

)
Y2

))
· b0

=

∑
k≥1

bkX
k−1
1

 ∗q
∑
k≥1

bkX
k−1
2

+

∑
k≥1

bkX
k−1
1

 ∗q
(
ρB(W)

(
X2
Y2

)
Y2

) · b0
+

ρB(W)
(
X2
Y2

)
−
∑
k≥1

bkX
k1
2

 ·∑
k≥1

bkX
k−1
1 +

(ρB(W)
(
X1
Y1

)
Y1

)
∗q

∑
k≥1

bkX
k−1
2

 · b0
+

ρB(W)
(
X1
Y1

)
−
∑
k≥1

bkX
k−1
1

 ·∑
k≥1

bkX
k−1
2
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+

(ρB(W)
(
X1
Y1

)
Y1

)
∗q

ρB(W)
(
X2
Y2

)
−
∑
k≥1

bkX
k1
2

 · b0
+

ρB(W)
(
X1
Y1

)
−
∑
k≥1

bkX
k−1
1

 ∗q
(
ρB(W)

(
X2
Y2

)
Y2

) · b0
=

∑
k≥1

bkX
k−1
1

 ∗q
∑
k≥1

bkX
k−1
2

− 2

∑
k≥1

bkX
k−1
1

 ·
∑
k≥1

bkX
k−1
2


+ ρB(W)

(
X2
Y2

)
·
∑
k≥1

bkX
k−1
1 + ρB(W)

(
X1
Y1

)
·
∑
k≥1

bkX
k−1
2

+
(
ρB(W)

(
X1
Y1

)
∗q ρB(W)

(
X2
Y2

))
· b0(Y1 + Y2)

where the first equality is obtained from (A.78.2), the second equality is just an applica-
tion of the definition of ∗q, the third equality again follows from (A.78.2) and the fourth
equality is a simple cancellation and reordering. Therefore, we obtain

ρB(W)
(
X1
Y1

)
∗q ρB(W)

(
X2
Y2

)
(A.78.3)

= 1
1− b0(Y1 + Y2) ·

(∑
k≥1

bkX
k−1
1

 ∗q
∑
k≥1

bkX
k−1
2

− 2

∑
k≥1

bkX
k−1
1

 ·
∑
k≥1

bkX
k−1
2


+ ρB(W)

(
X2
Y2

)
·
∑
k≥1

bkX
k−1
1 + ρB(W)

(
X1
Y1

)
·
∑
k≥1

bkX
k−1
2

)

= 1
1− b0(Y1 + Y2) ·

∑
k≥1

bkX
k−1
1

 ∗q
∑
k≥1

bkX
k−1
2

− 2

∑
k≥1

bkX
k−1
1

 ·
∑
k≥1

bkX
k−1
2


+ ρB(W)

(
X2
Y2

)
· ρB(W)

(
X1

Y1 + Y2

)
+ ρB(W)

(
X1
Y1

)
· ρB(W)

(
X2

Y1 + Y2

)

= 1
1− b0(Y1 + Y2) ·

∑
k≥1

bkX
k−1
1

 ∗q
∑
k≥1

bkX
k−1
2

− 2

∑
k≥1

bkX
k−1
1

 ·
∑
k≥1

bkX
k−1
2


+ ρB(W)

(
X2, X1

Y2, Y1 + Y2

)
+ ρB(W)

(
X1, X2

Y1, Y1 + Y2

)
,

here the second equality is obtained from (A.78.1) and the third equality follows from ap-
plying the concatenation product (A.66). Moreover, one verifies by applying the definition
of ∗q and some power series manipulation∑

k≥1
bkX

k−1
1

 ∗q
∑
k≥1

bkX
k−1
2


= 2

∑
k≥1

bkX
k−1
1

 ·
∑
k≥1

bkX
k−1
2

+
∑

k1,k2≥1
bk1+k2X

k1−1
1 Xk2−1

2

= 2

∑
k≥1

bkX
k−1
1

 ·
∑
k≥1

bkX
k−1
2

+
∑
k≥1 bkX

k1
1 −

∑
k≥1 bkX

k−1
2

X1 −X2
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Applying this result to (A.78.3), we obtain together with (A.78.1)

ρB(W)
(
X1
Y1

)
∗q ρB(W)

(
X2
Y2

)

= 1
1− b0(Y1 + Y2) ·

(∑
k≥1 bkX

k1
1 −

∑
k≥1 bkX

k−1
2

X1 −X2

)
+ ρB(W)

(
X2, X1

Y2, Y1 + Y2

)

+ ρB(W)
(

X1, X2
Y1, Y1 + Y2

)

= ρB(W)
(

X2, X1
Y2, Y1 + Y2

)
+ ρB(W)

(
X1, X2

Y1, Y1 + Y2

)
+
ρB(W)

(
X1

Y1 + Y2

)
− ρB(W)

(
X2

Y1 + Y2

)
X1 −X2

,

which equals exactly the claimed formula of ∗q for the generating series in depth 2. Since
the definition of the product ∗q and the above generating series formula are both recursive
(and any quasi-shuffle product can be equally defined from the left and the right), we obtain
the desired formula in arbitrary depth by applying induction and the same computations
as before.

Proposition A.79. Let (Q〈B〉0, ∗SZ) be the SZ stuffle algebra, i.e., ∗SZ is the quasi-shuffle
product to bi �SZ bj = bi+j for all i, j ≥ 0 (Example A.53 3)). We have for all 0 < n < d
that 1 ∗SZ ρB(W)n = ρB(W)n ∗SZ 1 = ρB(W)n and

ρB(W)
(
X1, . . . , Xn

Y1, . . . , Yn

)
∗SZ ρB(W)

(
Xn+1, . . . , Xd

Yn+1, . . . , Yd

)

= (Yn + 1)
(
ρB(W)

(
X1, . . . , Xn−1
Y1, . . . , Yn−1

)
∗SZ ρB(W)

(
Xn+1, . . . , Xd

Yn+1, . . . , Yd

))

· ρB(W)
(

Xn

(Yn + 1)(Yd + 1)− 1

)

+ (Yn + 1)
(
ρB(W)

(
X1, . . . , Xn

Y1, . . . , Yn

)
∗SZ ρB(W)

(
Xn+1, . . . , Xd−1
Yn+1, . . . , Yd−1

))

· ρB(W)
(

Xd

(Yn + 1)(Yd + 1)− 1

)

+
(
ρB(W)

(
X1, . . . , Xn−1
Y1, . . . , Yn−1

)
∗SZ ρB(W)

(
Xn+1, . . . , Xd−1
Yn+1, . . . , Yd−1

))

·
ρB(W)

(
Xn

(Yn + 1)(Yd + 1)− 1

)
− ρB(W)

(
Xd

(Yn + 1)(Yd + 1)− 1

)
Xn −Xd

.

Proof. First, restrict to the case d = 2. We obtain

ρB(W)
(
X1
Y1

)
=
∑
k≥1
m≥0

bkb
m
0 X

k1−1
1 Y m

1

=

∑
k≥1

bkX
k−1
1

 · 1
1− b0Y1

(A.79.1)
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=
∑
k≥1

bkX
k−1
1 + ρB(W)

(
X1
Y1

)
· b0Y1. (A.79.2)

Then, calculate

ρB(W)
(
X1
Y1

)
∗SZ ρB(W)

(
X2
Y2

)

=

∑
k≥1

bkX
k−1
1

 ∗SZ

∑
k≥1

bkX
k−1
2

+

∑
k≥1

bkX
k−1
1

 ∗SZ

(
ρB(W)

(
X2
Y2

)
· b0Y2

)

+
(
ρB(W)

(
X1
Y1

)
· b0Y1

)
∗SZ

∑
k≥1

bkX
k−1
2


+
(
ρB(W)

(
X1
Y1

)
· b0Y1

)
∗SZ

(
ρB(W)

(
X2
Y2

)
· b0Y2

)

=

∑
k≥1

bkX
k−1
1

 ∗SZ

∑
k≥1

bkX
k−1
2

+

∑
k≥1

bkX
k−1
1

 ∗SZ

(
ρB(W)

(
X2
Y2

)
Y2

) · b0
+ ρB(W)

(
X2
Y2

)
· b0Y2 ·

∑
k≥1

bkX
k−1
1 + ρB(W)

(
X2
Y2

)
Y2 ·

∑
k≥1

bkX
k−1
1

+

(ρB(W)
(
X1
Y1

)
Y1

)
∗SZ

∑
k≥1

bkX
k−1
2

 · b0 + ρB(W)
(
X1
Y1

)
· b0Y1 ·

∑
k≥1

bkX
k−1
2

+ ρB(W)
(
X1
Y1

)
Y1 ·

∑
k≥1

bkX
k−1
2 +

((
ρB(W)

(
X1
Y1

)
Y1

)
∗SZ

(
ρB(W)

(
X2
Y2

)
· b0Y2

))
· b0

+
((

ρB(W)
(
X1
Y1

)
· b0Y1

)
∗SZ

(
ρB(W)

(
X2
Y2

)
Y2

))
· b0

+
((

ρB(W)
(
X1
Y1

)
Y1

)
∗SZ

(
ρB(W)

(
X2
Y2

)
Y2

))
· b0

=

∑
k≥1

bkX
k−1
1

 ∗SZ

∑
k≥1

bkX
k−1
2

+

∑
k≥1

bkX
k−1
1

 ∗SZ

(
ρB(W)

(
X2
Y2

)
Y2

) · b0
+

ρB(W)
(
X2
Y2

)
−
∑
k≥1

bkX
k1
2

 ·∑
k≥1

bkX
k−1
1 + ρB(W)

(
X2
Y2

)
Y2 ·

∑
k≥1

bkX
k−1
1

+

(ρB(W)
(
X1
Y1

)
Y1

)
∗SZ

∑
k≥1

bkX
k−1
2

 · b0
+

ρB(W)
(
X1
Y1

)
−
∑
k≥1

bkX
k−1
1

 ·∑
k≥1

bkX
k−1
2 + ρB(W)

(
X1
Y1

)
Y1 ·

∑
k≥1

bkX
k−1
2

+

(ρB(W)
(
X1
Y1

)
Y1

)
∗SZ

ρB(W)
(
X2
Y2

)
−
∑
k≥1

bkX
k1
2

 · b0
+

ρB(W)
(
X1
Y1

)
−
∑
k≥1

bkX
k−1
1

 ∗SZ

(
ρB(W)

(
X2
Y2

)
Y2

) · b0
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+
((

ρB(W)
(
X1
Y1

)
Y1

)
∗SZ

(
ρB(W)

(
X2
Y2

)
Y2

))
· b0

=

∑
k≥1

bkX
k−1
1

 ∗SZ

∑
k≥1

bkX
k−1
2

− 2

∑
k≥1

bkX
k−1
1

 ·
∑
k≥1

bkX
k−1
2


+ ρB(W)

(
X2
Y2

)
(1 + Y2) ·

∑
k≥1

bkX
k−1
1 + ρB(W)

(
X1
Y1

)
(1 + Y1) ·

∑
k≥1

bkX
k−1
2

+
(
ρB(W)

(
X1
Y1

)
∗SZ ρB(W)

(
X2
Y2

))
· b0(Y1 + Y2 + Y1Y2),

where the first equality follows from (A.79.2), the second equality is obtained from the
definition of ∗q, the third equality again follows from (A.79.2) and the fourth equality is
just cancellation and reordering. We deduce

ρB(W)
(
X1
Y1

)
∗SZ ρB(W)

(
X2
Y2

)
(A.79.3)

= 1
1− b0(Y1 + Y2 + Y1Y2) ·

(∑
k≥1

bkX
k−1
1

 ∗SZ

∑
k≥1

bkX
k−1
2


− 2

∑
k≥1

bkX
k−1
1

 ·
∑
k≥1

bkX
k−1
2

+ ρB(W)
(
X2
Y2

)
(1 + Y2) ·

∑
k≥1

bkX
k−1
1

+ ρB(W)
(
X1
Y1

)
(1 + Y1) ·

∑
k≥1

bkX
k−1
2

)

= 1
1− b0(Y1 + Y2 + Y1Y2) ·

(∑
k≥1

bkX
k−1
1

 ∗SZ

∑
k≥1

bkX
k−1
2


− 2

∑
k≥1

bkX
k−1
1

 ·
∑
k≥1

bkX
k−1
2

)+ (1 + Y2)ρB(W)
(
X2
Y2

)
· ρB(W)

(
X1

Y1 + Y2 + Y1Y2

)

+ (1 + Y1)ρB(W)
(
X1
Y1

)
· ρB(W)

(
X2

Y1 + Y2 + Y1Y2

)

= 1
1− b0(Y1 + Y2 + Y1Y2) ·

(∑
k≥1

bkX
k−1
1

 ∗SZ

∑
k≥1

bkX
k−1
2


− 2

∑
k≥1

bkX
k−1
1

 ·
∑
k≥1

bkX
k−1
2

)+ (1 + Y2)ρB(W)
(

X2, X1
Y2, (Y1 + 1)(Y2 + 1)− 1

)

+ (1 + Y1)ρB(W)
(

X1, X2
Y1, (Y1 + 1)(Y2 + 1)− 1

)
,

here the second equality follows from (A.79.1) and the third equality is obtained from ap-
plying the concatenation product (A.66). Moreover, one verifies by applying the definition
of ∗SZ and some power series manipulation∑
k≥1

bkX
k−1
1

 ∗SZ

∑
k≥1

bkX
k−1
2
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= 2

∑
k≥1

bkX
k−1
1

 ·
∑
k≥1

bkX
k−1
2

+
∑

k1,k2≥1
bk1+k2X

k1−1
1 Xk2−1

2

= 2

∑
k≥1

bkX
k−1
1

 ·
∑
k≥1

bkX
k−1
2

+
∑
k≥1 bkX

k1
1 −

∑
k≥1 bkX

k−1
2

X1 −X2

Inserting this formula into (A.79.3), one obtains together with (A.79.1)

ρB(W)
(
X1
Y1

)
∗SZ ρB(W)

(
X2
Y2

)

= 1
1− b0(Y1 + Y2 + Y1Y2) ·

(∑
k≥1 bkX

k1
1 −

∑
k≥1 bkX

k−1
2

X1 −X2

)

+ (1 + Y2)ρB(W)
(

X2, X1
Y2, (Y1 + 1)(Y2 + 1)− 1

)
+ (1 + Y1)ρB(W)

(
X1, X2

Y1, (Y1 + 1)(Y2 + 1)− 1

)

= (1 + Y2)ρB(W)
(

X2, X1
Y2, (Y1 + 1)(Y2 + 1)− 1

)
+ (1 + Y1)ρB(W)

(
X1, X2

Y1, (Y1 + 1)(Y2 + 1)− 1

)

+
ρB(W)

(
X1

(Y1 + 1)(Y2 + 1)− 1

)
− ρB(W)

(
X2

(Y1 + 1)(Y2 + 1)− 1

)
X1 −X2

,

which is exactly the formula for the generating series ρB(W) in depth 2. Since both the
above generating series formula and the SZ stuffle product are defined recursively (and
each quasi-shuffle product can be equally defined recursively from the left and the right),
we obtain the claim in arbitrary depths by applying induction and the same arguments as
before.
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A.6 Affine group schemes

We give a rough introduction to affine group schemes in this subsection. More details and
missing proofs can be found in [DG70], [Mil17], [Rac00, I.4], and [Wa79].

Definition A.80. Let C be a locally small category. A functor F : C → Sets is called
representable if there is an object A ∈ C, such that F is naturally isomorphic to the
Hom-functor

HomC(A,−) : C→ Sets,
B 7→ HomC(A,B).

In this case, one says that A represents the functor F .

Let Q -Alg be the category of commutative Q-algebras with unit (we require an algebra
to be associative by definition).
An affine scheme is a representable functor F : Q -Alg→ Sets.

Theorem A.81. (Yoneda’s Lemma) Let C be a locally small category and E,F : C →
Sets be two functors represented by A,B. Then any natural transformation Φ : E → F
corresponds uniquely to a morphism ϕ : B → A in C.

Let Φ : E → F be some natural transformation. Apply the map Φ(A) : E(A)→ F (A) to
id : A → A ∈ HomC(A,A) ' E(A) to obtain a morphism ϕ : B → A ∈ HomC(B,A) '
F (A). Then ϕ is exactly the morphism corresponding to Φ in the previous theorem.

Definition A.82. An affine group scheme is a representable functor G : Q -Alg→ Groups.

Let G : Q -Alg → Groups be an affine group scheme represented by A. Then there are
natural transformations

mult : G×G→ G, unit : {e} → G, inv : G→ G

corresponding to the group multiplication, the unit, and the inverse elements. Here we
denote by {e} the functor Q -Alg→ Groups mapping any Q-algebra R to the trivial group
with one element. By Theorem A.81 the above three natural transformations correspond
to algebra morphisms

∆ : A→ A⊗A, ε : A→ Q, S : A→ A.

Here the associativity of the group multiplication translates into the coassociativity of ∆
(cf Definition A.16), the unit property translates into the counit property of ε and ∆ (cf
Definition A.16), and the inverse elements property translates into the antipode property
of S (cf Definition A.29). Thus, the maps ∆, ε and S equip the algebra A with a Hopf
algebra structure. Summarizing the previous observations leads to the following.

Theorem A.83. ([Wa79, Subsection 1.4]) Affine group schemes are in one-to-one corre-
spondence to commutative Hopf algebras over Q.

Example A.84. For each commutative Q-algebra R with unit, consider the dual quasi-
shuffle Hopf algebra (R〈〈A〉〉, conc,∆∗�) obtained in Theorem A.61. The functor

F : Q -Alg→ Sets,
R 7→ R〈〈A〉〉
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is an affine scheme represented by the polynomial algebra Q[(zw)w∈A∗ ], since there are
natural bijections

R〈〈A〉〉 → HomQ -Alg
(
Q[(zw)w∈A∗ ], R

)
,

Φ 7→
(
zw 7→ (Φ | w)

)
.

Here (Φ | w) denotes the coefficient of Φ in w. The grouplike elements Grp(R〈〈A〉〉) for
the coproduct ∆∗� form a group with the concatenation product (Theorem A.38). Hence
restricting the images of the affine scheme F to the grouplike elements Grp(R〈〈A〉〉), one
obtains an affine group scheme

G : Q -Alg→ Groups,
R 7→ Grp(R〈〈A〉〉).

By the duality given in Theorem A.61, the affine group scheme G is represented by

B = Q[(zw)w∈A∗ ]�〈
zuzv − zu∗�v | u, v ∈ A∗

〉,
where we set zλu+µv := λzu + µzv for u, v ∈ A∗, λ, µ ∈ R. By Theorem A.83, B is a Hopf
algebra. Again by the duality in Theorem A.61, the coproduct on B is given by

∆(zw) =
∑
uv=w

zu ⊗ zv, w ∈ A∗.

Definition A.85. An affine (group) scheme G represented by A is called algebraic if A
is a finitely generated algebra.

For an affine group scheme, one uses the additional Hopf algebra structure on the repre-
senting algebra to obtain the following.

Theorem A.86. Any affine group scheme is an inverse limit of algebraic affine group
schemes.

Example A.87. Let V be a finite-dimensional Q-vector space. Then there is an algebraic
affine group scheme

AV : Q -Alg→ Groups,
R 7→ (V ⊗Q R,+)

represented by the symmetric algebra S(V ∗). More generally, let V be a complete filtered
Q-vector space (Definition A.44), such that the quotients Fil(j) V�Fil(j+1) V are finite-
dimensional for all j ≥ 0 and ⋂j≥0 Fil(j) V = {0}. Then the functor

ÂV : Q -Alg→ Groups,
R 7→ (V ⊗̂QR,+)

satisfies ÂV = lim←−A
Fil(j) V�Fil(j+1) V . Thus, ÂV is an affine group scheme represented by

the algebra

lim−→S
((Fil(j) V�Fil(j+1) V

)∗)
= S

(
lim−→

(Fil(j) V�Fil(j+1) V

)∗)
= S(grV ∨),

where the associated graded space grV is introduced in Definition A.48 and the graded
dual grV ∨ is defined in Example A.19.
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Similar to the connection of Lie groups and Lie algebras, one can assign a Lie algebra
functor to each affine group scheme.

Definition A.88. For any commutative Q-algebra R with unit, let R[ε] = R[t]�〈t2〉 be
the algebra of dual numbers over R, so ε2 = 0. For an affine group scheme G, define the
Lie algebra functor as

g : Q -Alg→ Lie-Alg,

R 7→ ker
(
G
(
R[ε]� R

))
.

Here R[ε]� R denotes the canonical projection induced by ε 7→ 0.

In particular, g(R) consists of all elements in G(R[ε]) of the form 1 + εx. Thus, in all
examples occurring in this work we will identify

g(R) = {x | 1 + εx ∈ G(R[ε])}.

Proposition A.89. Let G be an affine group scheme represented by a graded Hopf algebra
H and denote by g the Lie algebra functor to G. Then one has

g(Q) ' Q(H)∨,

where Q(H)∨ denotes the graded dual of the space of indecomposables of H (Definition
A.41, Example A.19 (ii)).

If the affine group scheme G is algebraic, then g(Q) is finite-dimensional and one obtains
g(R) = g(Q) ⊗ R for any commutative Q-algebra R with unit. By Theorem A.86 any
affine group scheme G is an inverse limit G = lim←−Gn, where the Gn are algebraic affine
group schemes. Therefore, we have for each commutative Q-algebra R with unit

g(R) = lim←− gn(R) = lim←−
(
gn(Q)⊗R

)
= g(Q)⊗R.

Identifying g(Q) with the space of all derivations on the representing Hopf algebra of
G, which are left-invariant under the coproduct, gives the Lie bracket on g(Q). Via the
identification g(R) = g(Q)⊗R, one obtains the Lie bracket on each space g(R).

Proposition A.90. Let G be an affine group scheme. Then the Lie algebra functor
g : Q -Alg→ Lie-Alg is an affine scheme represented by the algebra S(gr g(Q)∨).

Sketch of proof. If G is algebraic, then g(Q) is finite-dimensional and g(R) = g(Q) ⊗ R.
In particular, the functor g is equal to the functor Ag(Q) given in Example A.87 and thus
represented by S(g(Q)∗).
By Theorem A.86 any affine group scheme G is an inverse limit G = lim←−Gn, where the
Gn are algebraic affine group schemes. Therefore, g(Q) = lim←− gn(Q) is a complete filtered
vector space. Since g(R) = g(Q)⊗̂R, the functor g is equal to Âg(Q) . So by Example A.87
g is represented by the algebra S(gr g(Q)∨).

Next, we introduce an important class of affine group schemes, for which there exists a
natural isomorphism to their Lie algebra functors.

Definition A.91. For a Q-vector space V , define the functor Gl(V ) by

Gl(V ) : Q -Alg→ Groups,
R 7→ AutR(V ⊗R).
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A linear representation of an affine group scheme G on a Q-vector space V is a natural
transformation ρ : G→ Gl(V ). Such a linear representation ρ : G→ Gl(V ) of G is called
faithful if for any commutative Q-algebra R with unit the map ρ(R) : G(R)→ Gl(V )(R)
is injective.

If V is a finite-dimensional vector space, then Gl(V ) is an affine group scheme.

Definition A.92. An algebraic affine group scheme G is called unipotent if there is a
faithful linear representation ρ : G→ Gl(V ) on some finite-dimensional Q-vector space V ,
such that the following holds

• V contains a finite flag V = V0 ⊇ V1 ⊇ V2 ⊇ · · · ⊇ Vn = {0}.

• For each commutative Q-algebra R with unit and i = 1, . . . , n, the subspace Vi ⊗R
is invariant under the action of G(R), i.e., ρ(R)(G(R))(Vi ⊗R) ⊆ Vi ⊗R.

• For any commutative Q-algebra R with unit, the action of G(R) on
(
Vi�Vi+1

)
⊗ R

is trivial.

An arbitrary affine group scheme is called pro-unipotent if it is an inverse limit of unipotent
algebraic affine group schemes.

Proposition A.93. Let G be an affine group scheme with Lie algebra functor g. For any
commutative Q-algebra R with unit and x ∈ g(R), there is a unique element exp(tx) ∈
G(R[[t]]), such that

(i) exp(εx) = x in G(R[ε]),
(ii) exp(tx) exp(t′x) = exp((t+ t′)x) in G(R[[t, t′]]),

(iii) exp(tx) exp(ty) = exp(t(x+ y)) if x, y ∈ G(R) commute.

Example A.94. Let V be a finite-dimensional vector space and consider the affine group
scheme Gl(V ). The corresponding Lie algebra functor is given by

gl(V ) : Q -Alg→ Lie-Alg,
R 7→ EndR(V ⊗R),

where the Lie bracket on the sets EndR(V ⊗ R) is simply the commutator. For each
commutative Q-algebra R with unit and f ∈ gl(V )(R), one has

exp(tf) =
∑
i≥0

tif i

i! in Gl(V )(R[[t]]).

One simply checks that the element ∑i≥0
tif i

i! satisfies (i)-(iii) in Proposition A.93, then
the claim follows from the uniqueness.

Let G be a unipotent algebraic affine group scheme with Lie algebra functor g. Then it
can be shown that for each commutative Q-algebra R with unit and each x ∈ g(R), the
element exp(tx) is contained in G(R[t]). In particular, one can specialize in t = 1 and
obtains maps

g(R)→ G(R), x 7→ exp(x).

One verifies that these maps possess inverses and the construction is functorial. Thus, by
passing to inverse limits, the following is obtained.
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Theorem A.95. ([DG70, IV, Proposition 4.1]) Let G be a pro-unipotent affine group
scheme with Lie algebra functor g. Then there is a natural isomorphism

exp : g → G.

The Baker-Campbell-Hausdorff series ([Mil17, p. 260]) gives the explicit relation between
the Lie bracket on g and the group multiplication on G under the isomorphism exp.

Example A.96. In Example A.84 we considered the dual quasi-shuffle Hopf algebra
(R〈〈A〉〉, conc,∆∗�) (where the unit was denoted by 1) and obtained the corresponding
affine group scheme

G : Q -Alg→ Groups,
R 7→ Grp(R〈〈A〉〉).

Let g be the Lie algebra functor to G. By definition for each commutative Q-algebra R
with unit, the set g(R) consists of all Ψ ∈ R〈〈A〉〉, such that 1 + εΨ ∈ G(R[ε]). Compute
for 1 + εΨ ∈ G(R[ε])

1⊗ 1 + ε∆∗�(Ψ) = ∆∗�(1 + εΨ) =
(
1 + εΨ

)
⊗
(
1 + εΨ

)
= 1⊗ 1 + 1⊗ εΨ + εΨ⊗ 1 + εΨ⊗ εΨ

= 1⊗ 1 + ε
(
1⊗Ψ + Ψ⊗ 1

)
.

Thus g(R) consists of the primitive elements for ∆∗� , this means for each commutative
Q-algebra R with unit we have

g(R) = Prim(R〈〈A〉〉).

We want to derive the Lie bracket [−,−]g on g(R) from the group multiplication on G(R),
which is the concatenation product. For each commutative Q-algebra R with unit and
Φ ∈ G(R), define the map

σR(Φ) : R〈〈A〉〉 → R〈〈A〉〉,Φ′ 7→ ΦΦ′.

Moreover, for Ψ ∈ g(R) define the morphism sR(Ψ) : R〈〈A〉〉 → R〈〈A〉〉 by

σR(1 + εΨ) = id +εsR(Ψ).

Since sR : (g(R), [−,−]g) → (End(R〈〈A〉〉), [−,−]) is the Lie algebra morphism deduced
from the group morphism σR : (G(R), conc)→ (Aut(R〈〈A〉〉), ◦), one obtains

sR([Ψ1,Ψ2]g) = [sR(Ψ1), sR(Ψ2)], Ψ1,Ψ2 ∈ g(R). (A.96.1)

For 1 + εΨ ∈ G(R[ε]), compute

1 + εΨ = σR(1 + εΨ)(1) = 1 + εsR(Ψ)(1)

and thus sR(Ψ)(1) = Ψ. Applying this to (A.96.1) gives

[Ψ1,Ψ2]g = sR(Ψ1)(Ψ2)− sR(Ψ2)(Ψ1), Ψ1,Ψ2 ∈ g(R). (A.96.2)

For 1 + εΨ ∈ G(R[ε]) and each x ∈ R〈〈A〉〉, compute

x+ εsR(Ψ)(x) = σR(1 + εΨ)(x) = (1 + εΨ)x = x+ εΨx
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and thus sR(Ψ)(x) = Ψx. Inserting this into the equation (A.96.2) yields

[Ψ1,Ψ2]g = Ψ1Ψ2 −Ψ2Ψ1.

Thus for each commutativeQ-algebraR with unit, the Lie bracket on g(R) = Prim(R〈〈A〉〉)
is exactly the commutator with respect to the concatenation (cf. Theorem A.38).
Moreover, one can show that G is pro-unipotent. So by Theorem A.95, one obtains a
natural isomorphism

exp : g → G.

Explicitly, for each commutative Q-algebra R with unit, this isomorphism is given by (cf.
Theorem A.51)

exp(R) : Grp(R〈〈A〉〉)→ Prim(R〈〈A〉〉),

Ψ 7→ exp(R)(Ψ) =
∑
i≥0

1
i!Ψ

i,

where Ψi denotes the i-times concatenation of the element Ψ.

We summarize some important results of this section. Let (G, ·) be a pro-unipotent affine
group scheme, such that the corresponding Hopf algebra (H,mH ,∆H) (cf Theorem A.83)
is graded, commutative and satisfies rankH(0) = 1. Moreover, let g be the Lie algebra
functor associated to G (Definition A.88). Then there is the following diagram

(H,mH ,∆H)
(
U(g(Q)), ·,∆)

(G, ·)

(Q(H), δ) (g(Q), [−,−])

Prop A.42

∼
dual (A.96.4)

1:1
Thm A.83

∼
dual (Prop A.89)

1:1

exp / log
(Thm A.95)

(A.96.3)

The upper duality is obtained from Theorem A.39, A.43, and Proposition A.89

H∨ ' U(Prim(H∨)) ' U(Q(H)∨) ' U(g(Q)). (A.96.4)
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Appendix B Multiple zeta values and Lie algebras

This section starts with a short basic introduction to the theory of multiple zeta values.
Then we will present two different approaches obtaining Lie algebras related to multiple
zeta values. On the one hand, there is the approach via non-commutative power series
([Rac00]), which shows that the algebra of formal multiple zeta values is a free polynomial
algebra. On the other hand, there is the commutative approach via moulds ([Ec11],[Sc15]),
which deals with the usual generating series of multiple zeta values. We will end this section
by comparing the Lie algebras obtained in these two different ways.

B.1 The algebra of multiple zeta values

We introduce the algebra of multiple zeta values and explain shortly the extended double
shuffle relation between multiple zeta values. For details, we refer to [BGF, Chapter 1].

Definition B.1. To integers k1 ≥ 2, k2, . . . , kd ≥ 1, associate the multiple zeta value

ζ(k1, . . . , kd) =
∑

n1>···>nd>0

1
nk1

1 . . . nkdd
∈ R.

Denote the Q-vector space spanned by all multiple zeta values by

Z = spanQ{ζ(k1, . . . , kd) | d ≥ 0, k1 ≥ 2, k2, . . . , kd ≥ 1},

where ζ(∅) = 1. For a multi index (k1, . . . , kd) ∈ Nd, define the weight and depth by

wt(k1, . . . , kd) = k1 + · · ·+ kd, dep(k1, . . . , kd) = d.

For simplicity, we will also refer to these numbers as the weight and depth of ζ(k1, . . . , kd).

Numerical experiments have led to the following dimension conjectures for Z.

Conjecture B.2. ([Zag94, p. 509])
1) The vector space Z is graded with respect to the weight, i.e.,

Z =
⊕
w≥0
Z(w),

where Z(w) is spanned by the multiple zeta values of weight w.

2) The dimensions of the homogeneous subspaces Z(w) of Z are given by

HZ(x) =
∑
w≥0

dimQ(Z(w))xw = 1
1− x2 − x3 = 1

1− x2 ·
1

1− x3 − x5 − x7 − . . .
.

It is well-known that Z is not graded with respect to the depth, e.g., there is Euler’s
relation

ζ(2, 1) = ζ(3).
The notion of depth induces an ascending filtration on Z by

Fil(d)
D (Z) = spanQ{ζ(k1, . . . , kl) | dep(k1, . . . , kl) ≤ d}.

Considering the associated depth-graded vector space to Z (as defined in A.48)

grD Z =
⊕
d≥0

gr(d)
D Z =

⊕
d≥0

Fil(d)
D (Z)�Fil(d−1)

D (Z)

leads to a refinement of Zagier’s dimension conjecture.
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Conjecture B.3. ([BK97, (7)]) The dimensions of the homogeneous subspaces of grD Z
with respect to the weight and depth are given by

HgrD Z(x, y) =
∑
w,d≥0

dimQ
(

gr(d)
D Z

(w))xwyd = (1 + E2(x)y) 1
1−O3(x)y + S(x)y2 − S(x)y4 ,

where
E2(x) = x2

1− x2 , O3(x) = x3

1− x2 , S(x) = x12

(1− x4)(1− x6) .

Proposition B.4. The space Z equipped with the usual power series multiplication is an
algebra.

There are two ways of expressing the product of multiple zeta values, called the stuffle and
the shuffle product (a general algebraic description is given in Proposition B.20, B.16).
The stuffle product comes from the combinatorics of multiplying infinite nested sums.
E.g., for k1, k2 ≥ 2, there is the simple calculation

ζ(k1)ζ(k2) =
(∑
m>0

1
mk1

)(∑
n>0

1
nk2

)
=
( ∑
m>n>0

+
∑

n>m>0
+

∑
m=n>0

)
1

mk1nk2

= ζ(k1, k2) + ζ(k2, k1) + ζ(k1 + k2).

The shuffle product is obtained from expressing multiple zeta values as iterated integrals
([BGF, Theorem 1.108.]). E.g., in depth 2 the shuffle product reads for k1, k2 ≥ 2

ζ(k1)ζ(k2) =
k1+k2−1∑
j=2

((
j − 1
k1 − 1

)
+
(
j − 1
k2 − 1

))
ζ(j, k1 + k2 − j).

Comparing the stuffle and shuffle product gives the double shuffle relations of multiple
zeta values. An immediate consequence of [IKZ06, Proposition 1], is the following.

Proposition B.5. For all k1, . . . , kd ≥ 1, there are unique elements ζT
�

(k1, . . . , kd) and
ζT∗ (k1, . . . , kd) in Z[T ], such that

(i) ζT
�

(k1, . . . , kd) = ζT∗ (k1, . . . , kd) = ζ(k1, . . . , kd) for k1 > 1,
(ii) ζT

�
(1) = ζT∗ (1) = T ,

(iii) all elements ζT
�

(k1, . . . , kd) satisfy the shuffle product formula,
(iv) all elements ζT∗ (k1, . . . , kd) satisfy the stuffle product formula.

Define the Z-linear map ρ : Z[T ]→ Z[T ] by

ρ

(
Tm

m!

)
=

m∑
i=0

γi
Tm−i

(m− i)! , m = 0, 1, 2, . . . , (B.5.1)

where the coefficients γi ∈ Z are defined by ∑
i≥0

γiu
i = exp

(∑
n≥2

(−1)n
n ζ(n)un

)
.

Theorem B.6. ([IKZ06, Theorem 1]) For all k1, . . . , kd ≥ 1, one has

ρ
(
ζT∗ (k1, . . . , kd)

)
= ζT

�
(k1, . . . , kd).
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From the dimension conjectures B.2 and B.3, one also obtains conjectural dimensions for
the algebra Z[T ] spanned by the regularized elements ζT

�
(k1, . . . , kd) and ζT∗ (k1, . . . , kd).

Proposition B.7. Assume that Conjecture B.2 and B.3 hold. Then the Hilbert-Poincare
series of Z[T ] and the associated depth-graded space grD Z[T ] are given by

HZ[T ](x) = 1
1− x

1
1− x2 − x3 = 1

1− x2
1

1−O1(x) + E4(x) ,

HgrD Z[T ](x, y) = 1
1− xy (1 + E2(x)y) 1

1−O3(x)y + S(x)y2 − S(x)y4

= (1 + E2(x)y) 1
1−O1(x)y +M(x)y2 − xS(x)y3 − S(x)y4 + xS(x)y5 ,

where

O1(x) = x

1− x2 , E4(x) = x4

1− x2 , M(x) = 1
(1− x4)(1− x6) .

Definition B.8. For k1, . . . , kd ≥ 1, the elements

ζ�(k1, . . . , kd) = ζT=0
�

(k1, . . . , kd), ζ∗(k1, . . . , kd) = ζT=0
∗ (k1, . . . , kd) ∈ Z

are called the shuffle regularized and stuffle regularized multiple zeta values.

Combining the shuffle product formula for the shuffle regularized multiple zeta values and
the stuffle product formula for the stuffle regularized multiple zeta values together with
Theorem B.6 gives the extended double shuffle relations among multiple zeta values.

Conjecture B.9. ([IKZ06, Conjecture 1]) All algebraic relations in the algebra Z of
multiple zeta values are a consequence of the extended double shuffle relations.

In particular, Conjecture B.9 would imply that the algebra Z is graded by weight, since
the stuffle and the shuffle product are both homogeneous for the weight.
To get a better understanding of the algebraic structure of Z, it is usual to study the space
of indecomposables. More precisely, we want to consider the space of indecomposables of
Z�ζ(2)Z given by

nz = Z≥1�(Z2
≥1 +Qζ(2)

). (B.9.1)

Here Z≥1 denotes the subspace of Z spanned by all multiple zeta values except ζ(∅) = 1.
The space nz inherits the conjectural weight-grading and the depth filtration from the
algebra Z. If Z�ζ(2)Z would be a Hopf algebra, then space of indecomposables nz would
be equipped with a Lie cobracket (cf. Proposition A.42). It is expected that Goncharov’s
coproduct defined for formal iterated integrals ([Gon05]) induces a Hopf algebra structure
on Z�ζ(2)Z, this leads to the following conjectures (according to Theorem A.39, A.43).

Conjecture B.10. (i) The algebra Z is a free weight-graded polynomial algebra, more
precisely there is an algebra isomorphism

Z ' Q[ζ(2)]⊗ U(nz∨)∨.

(ii) The associated depth-graded algebra grD Z�ζ(2)Z is a free bi-graded polynomial algebra,
it is isomorphic to the graded dual of the universal enveloping algebra of grD nz∨.
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Some evidence for this conjecture is given by the shape of the conjectured Hilbert-Poincare
series in B.2 and B.3.

Lemma B.11. ([IKZ06, Appendix]) By applying Möbius inversion one obtains integers
gw, gw,d ≥ 0, such that

HZ�ζ(2)Z
(x) ?= 1

1− x3 − x5 − x7 − . . .
=
∏
w≥1

(1− xi)−gw ,

HgrD Z�ζ(2)Z
(x, y) ?= 1

1−O3(x)y + S(x)y2 − S(x)y4 =
∏

w,d≥1
(1− xwyd)−gw,d .

So according to Corollary A.36, the Hilbert-Poincare series of Z�ζ(2)Z resp. grD Z�ζ(2)Z
could correspond to a universal enveloping algebra of some graded resp. bi-graded Lie
algebra. Proposition A.7 implies

Proposition B.12. (i) If Conjecture B.2 and B.10 (i) hold, then one has for the homo-
geneous subspaces of weight w ≥ 1

dimQ
(
nz(w)) = gw.

(ii) If Conjecture B.3 and B.10 (ii) hold, then one has for the homogeneous subspaces of
weight w ≥ 1 and depth d ≥ 1 that

dimQ
(

gr(d)
D nz(w)) = gw,d.

In the following subsections, we will introduce two different explicit Lie algebras, one of
them is defined in terms of non-commutative polynomials, the other one uses the language
of moulds (Appendix C). For both Lie algebras, it is expected that they are isomorphic
to nz∨ equipped with the conjectural Lie bracket induced by Goncharov’s coproduct.
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B.2 Racinet’s Lie algebra of non-commutative polynomials

We provide a summary of the approach of G. Racinet to multiple zeta values given in
[Rac00]. We will start with a general description of the stuffle and the shuffle product
(p. 189) in terms of quasi-shuffle products (cf Appendix A.3). This allows defining the
algebra of formal multiple zeta values Zf , whose generators satisfy exactly the relations
predicted for multiple zeta values in Conjecture B.9. Since quasi-shuffle algebras are al-
ways equipped with a Hopf algebra structure (Theorem A.59), one obtains completed
dual stuffle and shuffle Hopf algebras (Theorem A.61). The grouplike elements in these
completed dual Hopf algebras will give rise to a pro-unipotent affine group scheme DM0
represented by the algebra Zf of formal multiple zeta values modulo ζf (2). By consid-
ering the primitive elements in these dual Hopf algebras, one obtains the corresponding
Lie algebra functor dm0 (cf. Example A.96). This Lie algebra of primitive elements is
canonically isomorphic to the graded dual of the Lie coalgebra of indecomposables of Zf
modulo ζf (2) (cf. Theorem A.43). Note that the group multiplication of the affine group
scheme DM0 equips the algebra Z

f
�ζf (2)Zf with a coproduct, which gives rise to the Lie

cobracket on the space of indecomposables.

Definition B.13. Let X = {x0, x1} be an alphabet. Denote by X ∗ the set of all words
with letters in X , let Q〈X 〉 be the free algebra generated by X , and denote by 1 the
empty word. For a word in Q〈X 〉, define the weight and depth as

wt(xk1−1
0 x1 . . . x

kd−1
0 x1x

kd+1
0 ) = k1 + · · ·+ kd+1,

dep(xk1−1
0 x1 . . . x

kd−1
0 x1x

kd+1
0 ) = d.

Moreover, the shuffle product � on Q〈X 〉 is defined to be the quasi-shuffle product
corresponding to xi � xj = 0 for i, j ∈ {0, 1} (Example A.53 1)), this means one has
1� w = w� 1 = w and

xiu� xjv = xi(u� xjv) + xj(xiu� v)

for all u, v, w ∈ Q〈X 〉, xi, xj ∈ X .

Theorem A.59 implies the following.

Proposition B.14. The tuple (Q〈X 〉,�,∆dec) is a weight-graded commutative Hopf al-
gebra.

The deconcatenation coproduct ∆dec is defined in (A.58.1).
For each commutative Q-algebra R with unit, denote by R〈〈X 〉〉 the completion of the
space R〈X 〉 = Q〈X 〉⊗R with respect to the weight (Proposition A.45). So R〈〈X 〉〉 consists
of formal non-commutative power series in the letters x0, x1 with coefficients in R. By
Theorem A.61 a completed dual to the shuffle Hopf algebra is given by the following.

Proposition B.15. The tuple (R〈〈X 〉〉, conc,∆�) is a complete cocommutative Hopf al-
gebra, where the coproduct ∆� is on the generators defined by

∆�(xi) = xi ⊗ 1 + 1⊗ xi, i = 0, 1.

The pairing R〈〈X 〉〉 ⊗ Q〈X 〉 → R, φ ⊗ w 7→ (φ | w) gives the duality between the graded
Hopf algebra (Q〈X 〉,�,∆dec) and the complete Hopf algebra (R〈〈X 〉〉, conc,∆�).
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Let h1 be the subspace of Q〈X 〉 spanned by all words ending in x1, so

h1 = Q1 +Q〈X 〉x1.

The shuffle product preserves the subspace h1, so (h1,�) is an algebra.

Proposition B.16. The map

ζ� : (h1,�)→ (Z, ·),
xk1−1

0 x1 . . . x
kd−1
0 x1 7→ ζ�(k1, . . . , kd)

is a surjective algebra morphism compatible with notions of weight and depth.

Using the same techniques as in Proposition B.5, one obtains a unique extension of the
previously defined map h1 → Z to Q〈X 〉. By abuse of notation, we write ζ�(w) for the
image of w ∈ Q〈X 〉 under this map.

The duality of Q〈X 〉 and R〈〈X 〉〉 given in Proposition B.15 and Proposition B.16 implies
that the non-commutative generating series φ� = ∑

w∈X∗
ζ�(w)w ∈ Z〈〈X 〉〉 satisfies

∆�(φ�) = φ�⊗̂φ�. (B.16.1)

Next, we introduce the stuffle algebra and equip it with a Hopf algebra structure.

Definition B.17. Consider the infinite alphabet Y = {y1, y2, . . .}. Let Y∗ be the set of
all words with letters in Y, Q〈Y〉 be the free non-commutative algebra generated by Y,
and denote by 1 the empty word. For a word in Q〈Y〉, define the weight and depth by

wt(yk1 . . . ykd) = k1 + · · ·+ kd, dep(yk1 . . . ykd) = d.

Moreover, let the stuffle product ∗ on Q〈Y〉 be the quasi-shuffle product corresponding to
yi � yj = yi+j for i, j ≥ 1, so we have 1 ∗ w = w ∗ 1 = w and

yiu ∗ yjv = yi(u ∗ yjv) + yj(yiu ∗ v) + yi+j(u ∗ v)

for all u, v, w ∈ Q〈Y〉, yi, yj ∈ Y.

Again one obtains from Theorem A.59.

Proposition B.18. The tuple (Q〈Y〉, ∗,∆dec) is a weight-graded commutative Hopf alge-
bra.

For any commutative Q-algebra R with unit, denote by R〈〈Y〉〉 the completion of the
space R〈Y〉 = Q〈Y〉 ⊗ R with respect to the weight (Definition A.44). Then by Theorem
A.61, a completed dual for the stuffle Hopf algebra is given by the following.

Proposition B.19. The tuple (R〈〈Y〉〉, conc,∆∗) is a complete cocommutative Hopf alge-
bra, where the coproduct ∆∗ is defined on the generators by

∆∗(yi) = 1⊗ yi + yi ⊗ 1 +
i−1∑
j=1

yj ⊗ yi−j , i = 1, 2, . . . .

The pairing R〈〈Y〉〉 ×Q〈Y〉 → R, φ | w 7→ (φ | w) gives the duality of (Q〈Y〉, ∗,∆dec) and
(R〈〈Y〉〉, conc,∆∗).
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Proposition B.20. The map

ζ∗ : (Q〈Y〉, ∗)→ (Z, ·),
yk1 . . . ykd 7→ ζ∗(k1, . . . , kd)

is a surjective algebra morphism compatible with the notions of weight and depth.

We will write ζ∗(w) for the image of w ∈ Q〈Y〉 under the above map. Proposition B.20
and the duality given in Proposition B.19 imply that the non-commutative generating
series φ∗ = ∑

w∈Y∗
ζ∗(w)w ∈ Z〈〈Y〉〉 satisfies

∆∗(φ∗) = φ∗⊗̂φ∗. (B.20.1)

A non-commutative analog of the comparison of the shuffle and stuffle regularized multiple
zeta values (Theorem B.6) is given by the following.

Theorem B.21. ([Rac00, III, Corollary 4.20]) The following holds

φ∗ = exp

−∑
n≥2

(−1)n
n

ζ(n)yn1

ΠY(φ�),

where ΠY is the Z-linear extension of the canonical projection Q〈X 〉 → Q〈Y〉 sending each
word ending in x0 to 0 and xk1−1

1 x1 . . . x
kd−1
0 x1 to yk1 . . . ykd for all k1, . . . , kd ≥ 1.

We reformulated the extended double shuffle relations for multiple zeta values in terms
of quasi-shuffle algebras (Proposition B.16, B.20 and Theorem B.21), this leads to the
following definition.

Definition B.22. Define the algebra Zf of formal multiple zeta values as

Zf = (Q〈X 〉,�)�RelEDS,

where RelEDS is the ideal generated by the extended double shuffle relations.

In particular, Zf is a (weight-)graded algebra generated by the formal symbols ζf (w),
w ∈ X ∗, for which we require that they satisfy no other relations than the extended
double shuffle relations. Let h0 be the subspace of Q〈X 〉 spanned by all words, which start
in x0 and end in x1, so

h0 = Q1 + x0Q〈X 〉x1.

Using the same techniques as in Proposition B.5, one shows that the elements ζf (w) for
words w ∈ h0 generate the space Zf . Since it is expected that all relations in Z are a
consequence of the extended double shuffle relations (Conjecture B.9), we should have

Conjecture B.23. The canonical map

Zf → Z,
ζf (w) 7→ ζ(w), (w ∈ h0)

is an isomorphism of weight-graded algebras.

Definition B.24. For any commutative Q-algebra R with unit, let DM(R) be the set of
all non-commutative power series φ ∈ R〈〈X 〉〉 satisfying
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(i) (φ|x0) = (φ|x1) = 0,
(ii) ∆�(φ) = φ⊗̂φ,
(iii) ∆∗(φ∗) = φ∗⊗̂φ∗,

where

φ∗ = exp

−∑
n≥2

(−1)n
n

(ΠY(φ)|yn)yn1

ΠY(φ) ∈ R〈〈Y〉〉

and ΠY is the R-linear extension of the projection Q〈X 〉 → Q〈Y〉 (cf Theorem B.21).
For each λ ∈ R, denote by DMλ(R) the set of all φ ∈ DM(R), which additionally satisfy

(iv) (φ|x0x1) = λ.

By (B.16.1), (B.20.1), and Theorem B.21, the non-commutative generating series φ� of
the shuffle regularized multiple zeta values is an element in DMπ2/6(Z).

Theorem B.25. ([Rac02, Theorem I]) For each commutative Q-algebra R and λ ∈ R,
the set DMλ(R) is non-empty.

From [Dr91] and [Fu11] one deduces that there also exist elements φ in DMλ(R) addition-
ally satisfying

(φ | xk0x1) = 0 for k ≥ 1 even. (B.25.1)

The sets DMλ(R) give rise to an affine scheme represented by a quotient algebra of Zf
(Appendix A.6).

Proposition B.26. The functor DMλ : Q -Alg→ Sets is an affine scheme represented by
the algebra Z

f
�(ζf (2)− λ)Zf . In particular, for each commutative Q-algebra R with unit,

there is a bijection

HomQ -Alg

(
Zf�(ζf (2)− λ)Zf , R

)
→ DMλ(R),

ϕ 7→
∑
w∈X ∗

ϕ(ζf (w))w.

To figure out the group structure for the affine scheme DM0, one needs to consider first
the corresponding linearized space.

Definition B.27. For any commutative Q-algebra R with unit, let dm(R) be the Q-vector
space of all non-commutative polynomials ψ ∈ R〈X 〉 satisfying

(i) (ψ | x0) = (ψ | x1) = 0,
(ii) ∆�(ψ) = 1⊗ ψ + ψ ⊗ 1,
(iii) ∆∗(ψ∗) = 1⊗ ψ∗ + ψ∗ ⊗ 1,

where
ψ∗ = ΠY(ψ) +

∑
n≥2

(−1)n−1

n
(ΠY(ψ) | yn)yn1 ∈ R〈Y〉

and ΠY is the R-linear extension of the canonical projection Q〈X 〉 → Q〈Y〉.
By dm0(R) denote the subspace of all ψ ∈ dm(R) additionally satisfying

(iv) (ψ | x0x1) = 0.

195



Denote dm0 = dm0(Q). Then one has dm0(R) = dm0 ⊗R.
Example B.28. There are the following elements in dm0 up to weight 5

ξ(3) = [x0, [x0, x1]] + [[x0, x1], x1],

ξ(5) = [x0, [x0, [x0, [x0, x1]]]] + 2[[x0, [x0, [x0, x1]]], x1] + 1
2[[x0, [x0, x1]], [x0, x1]]

+ 2[x1, [x1, [x0, [x0, x1]]]]− 3
2[[x0, x1], [[x0, x1], x1]] + [[[[x0, x1], x1], x1], x1].

Proposition B.29. ([Rac00, IV, Proposition 2.2]) For each k ≥ 2 even and ψ ∈ dm0,
one has

(ψ | xk−1
0 x1) = 0.

Consider the twisted Magnus Lie algebra (mt, {−,−}) given in Theorem 3.7, where {−,−}
is the Ihara bracket defined by

{ψ1, ψ2} = dψ1(ψ2)− dψ2(ψ1) + [ψ1, ψ2], ψ1, ψ2 ∈ dm0(R),

and dψ is the derivation given by dψ(1) = 0, dψ(x0) = 0 and dψ(x1) = [x1, ψ].
Theorem B.30. ([Rac00, IV, Proposition 2.28., Corollary 3.13.])
1) The pair

(
dm0(R), {−,−}

)
is a weight-graded Lie subalgebra of the twisted Magnus Lie

algebra.

2) Let R be a commutative Q-algebra with unit. For all φ1, φ2 ∈ DMλ(R), there exists a
unique element ψ in the completed Lie algebra d̂m0(R) such that

exp(sψ)(φ1) = φ2,

where sψ(f) = dψ(f) + fψ for all f ∈ R〈〈X 〉〉.

In particular, one obtains natural bijections

d̂m0(R)→ DM0(R), (B.30.1)
ψ 7→ exp(sψ)(1).

According to Theorem A.95, this leads to the following.
Corollary B.31. ([Rac00]) The functor DM0 is a pro-unipotent affine group scheme with
Lie algebra functor

d̂m0 : Q -Alg→ Lie-Alg, R 7→ d̂m0(R).

Actually, DM0 is a subscheme of the twisted Magnus affine group scheme MT (Theorem
3.5). So for any commutative Q-algebra R with unit, the group multiplication on DM0(R)
is given by (Definition 3.3)

φ1 ~ φ2 = φ1κφ1(φ2), φ1, φ2 ∈ DM0(R), (B.31.1)

where κφ is the algebra automorphism on (R〈〈X 〉〉, ·) given by κφ(1) = 1, κφ(x0) = x0
and κφ(x1) = φ−1x1φ.

By [Rac00, Section IV, Corollary 3.13] we have an isomorphism of affine schemes

A1 × d̂m0 → DM, (B.31.2)

where A1 is the affine scheme from Example A.87 for V = Q. Since the affine scheme
DM is represented by the algebra Zf (Proposition B.26) and the affine scheme d̂m0 is
represented by S(dm∨0 ) ' U(dm0)∨ (Proposition A.90, A.35), applying Yoneda’s Lemma
(Theorem A.81) to (B.31.2) gives the following theorem of Ecalle.
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Corollary B.32. ([Rac00], Chapter IV, Corollary 3.14) There is an algebra isomorphism

Zf ' Q[ζf (2)]⊗Q U(dm0)∨,

So, Zf is a free polynomial algebra.

In particular, the conjectured algebra isomorphism Zf ' Z (Conjecture B.23) would imply
that Z is a free polynomial algebra (Conjecture B.10).

We want to investigate the dimensions of the homogeneous subspaces of dm0. Let gm =
Lie〈s3, s5, . . .〉 be the free Lie algebra generated by formal symbols s2k+1, k ≥ 1. From the
theory of motivic multiple zeta values ([Bro12],[De89],[Dr91],[Fu11],[Gon05]) it is known
that there is a non-canonical injective map

gm ↪→ dm0, (B.32.1)
s2k+1 7→ σ2k+1,

such that σ2k+1 ∈ dm0 is a homogeneous element of weight 2k + 1. The images σ2k+1 are
not unique and it is an open question how to explicitly construct them. It is expected that
the embedding gm ↪→ dm0 is an isomorphism, this conjecture is attributed to P. Deligne
([De89]) and Y. Ihara ([Ih89, p. 300]).

Conjecture B.33. The space dm0 is a free Lie algebra with exactly one generator in each
odd weight w ≥ 3.

Under the assumption of Conjecture B.33, one obtains the following Hilbert-Poincare series
for the universal enveloping algebra of dm0 (Proposition A.8)

HU(dm0)(x) =
∑
w≥0

dimQ
(
U(dm0)(w))xw = 1

1− x3 − x5 − x7 − . . .
. (B.33.1)

Since U(dm0)∨ ' Z
f
�ζ(2)Zf (Corollary B.32), (B.33.1) would imply that the formal

multiple zeta values satisfy Zagier’s dimension conjecture B.2. Since it is expected that
there is an algebra isomorphism Zf ' Z (Conjecture B.23), this gives some evidence for
Zagier’s dimension conjecture for multiple zeta values.

The group multiplication ~ on DM0 given in (B.31.1) induces a Hopf algebra structure on
Zf�ζf (2)Zf , since any group multiplication on an affine scheme equips the representing
algebra with a Hopf algebra structure (Theorem A.83, Proposition B.26). More precisely,
there is a coproduct ∆ defined on the non-commutative algebra Q〈X 〉 satisfying

(f ~ g | w) = (f ⊗ g | ∆(w)) ∈ R, f, g ∈ R〈〈X 〉〉, w ∈ Q〈X 〉.

Here (· | ·) : R〈〈X 〉〉 × Q〈X 〉 → R is the canonical pairing given in Proposition B.15. In
[BGF, Proposition 3.296] it is shown that this coproduct ∆ is exactly Goncharov’s coprod-
uct ([Gon05, eq (24)]), hence we denote ∆ = ∆Gon. The proof is purely algebraic and does
not use any motivic results. The coproduct ∆Gon induces a coproduct on Z

f
�ζf (2)Zf via

the canonical projection

Q〈X 〉 → Z
f
�ζf (2)Zf , w 7→ ζf (w) mod ζf (2),

for more details see also [Sc13, p.54].
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Theorem B.34. The algebra Z
f
�ζf (2)Zf equipped with Goncharov’s coproduct ∆Gon is

a Hopf algebra.

In particular, by Proposition A.42, Goncharov’s coproduct ∆Gon induces a Lie cobracket
δ on the space of indecomposables of Z

f
�ζf (2)Zf given by

nfz = Z
f
≥1�((Zf≥1)2 +Qζf (2)

).
Theorem A.89 then implies the following.

Theorem B.35. There is a canonical isomorphism of Lie algebras

dm0 ' nfz∨.

Conjecture B.23 would imply that there is an isomorphism nz ' nfz, where nz is the
space of indecomposables of multiple zeta values (see (B.9.1)). In particular under the
assumption of Conjecture B.23, one obtains from Corollary B.32 the decomposition

Z ' Q[ζ(2)]⊗ U(nz∨)∨

as expected in Conjecture B.10 (i).

Summarizing the previous results leads to the following diagram (cf (A.96.3))

(Zf�ζf (2)Zf , ·,∆
Gon

) (
U(dm0),~,∆

)

(DM0,~)

(nfz, δ) (dm0, {−,−})

Prop A.42

∼
dual (A.96.4)

1:1
Prop B.26

∼
dual (Thm B.35)

1:1

exp / log
(Thm A.95)

.

(B.35.1)

At the end of this subsection, we want to study the associated depth-graded Lie algebra
to dm0.

Definition B.36. Define ls to be the Q-vector space of all non-commutative polynomials
ψ ∈ Q〈X 〉 satisfying

(i) (ψ|x0) = (ψ|x1) = 0,
(ii) ∆�(ψ) = 1⊗ ψ + ψ ⊗ 1,
(iii) ∆�,Y(ΠY(ψ)) = 1⊗ΠY (ψ) + ΠY(ψ)⊗ 1,
(iv) (ψ|xn−1

0 x1) = 0 n ≥ 2 even,

where ∆�,Y denotes the shuffle coproduct on Q〈Y〉 (Example A.62), i.e.,

∆�,Y(yi) = 1⊗ yi + yi ⊗ 1, i = 1, 2, . . . ,

and ΠY : Q〈X 〉 → Q〈Y〉 is the canonical projection given in Theorem B.21.
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The same arguments as in the proof of Theorem B.30 1) show

Theorem B.37. The pair
(
ls, {−,−}

)
is a bi-graded Lie algebra.

Remark B.38. In [Ma22] it is shown that the Lie algebra (ls, {−,−}) is the bi-graded
dual of Goncharov’s dihedral Lie coalgebra.

Example B.39. For each odd k ≥ 3, there are the following elements

grD ξ(k) = ad(x0)k−1(x1) ∈ ls.

For example, this implies{
grD ξ(3), grD ξ(5)

}
= − 2[[x0, [x0, [x0, [x0, [x0, x1]]]]], [x0, x1]]
− 5[[x0, [x0, [x0, [x0, x1]]]], [x0, [x0, x1]]]
∈ ls.

Since ∆�,Y is the associated depth-graded map to the coproduct ∆∗ and by Proposition
B.29, one obtains a canonical embedding

grD dm0 ↪→ ls.

It is expected that this embedding is an isomorphism. So according to Conjecture B.10 (ii)
and Proposition B.12 (ii), the Hilbert-Poincare series of the universal enveloping algebra
of ls should be given by

HU(ls)(x, y) =
∑
w,d≥0

dimQ(U(ls)(w,d))xwyd ?= 1
1−O3(x)y + S(x)y2 − S(x)y4 .

The dimension formula indicates that the elements σ2k+1, k ≥ 1, defined in B.32.1 satisfy
some relations in ls. Indeed for any normalized choice of the embedding gm ↪→ dm0, one
obtains

σ2k+1 ≡ ad(x0)2k(x1) ∈ ls,

so for example in weight 12 there is the relation

{σ3, σ9} − 3{σ5, σ7} ≡ 0. (B.39.1)

Remark B.40. It is expected that ls is generated by two Lie algebras E and C, where E
is generated by the elements ad(x0)2k(x1) and C is generated by some elements in depth
4. The generators of the Lie algebra E satisfy some relations in depth 2 related to cusp
forms (like (B.39.1)) and C should be a free Lie algebra. Moreover, there should be no
relations between the Lie algebras E and C. This determines the Lie algebra ls completely.
More details are elaborated in the commutative approach (Subsection B.3).
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B.3 Ecalle’s commutative approach to Lie algebras via moulds

We will introduce the usual generating series of shuffle and stuffle regularized multiple
zeta values and view them as moulds. An introduction to moulds is given in Appendix
C, we will use the notations and definitions from there. We will see that the images of
the generating series of the shuffle and stuffle regularized multiple zeta values in a formal
weight-graded version T of the space of indecomposables nz (see (B.9.1)) are contained
in the Lie algebra ARIpow,T

al∗il . It is expected that the Lie subalgebra ARIpol,Q
al∗il consisting

of moulds, whose entries are rational polynomials, is isomorphic to nz∨. Moreover, we
will consider also a weight- and depth-graded version of nz, which leads to a bi-graded
Lie algebra ARIpol,Q

al/al . The Lie algebra ARIpol,Q
al/al should be seen as the associated depth-

graded Lie algebra to ARIpol,Q
al∗il . We will end this section by explaining the structure of

the Lie algebra ARIpol,Q
al/al in detail and relating this to the Broadhurst-Kreimer dimension

conjecture B.3.

Definition B.41. For any depth d ≥ 1, define the generating series of the shuffle regu-
larized and stuffle regularized multiple zeta values

F�d (X1, . . . , Xd) =
∑

k1,...,kd≥1
ζ�(k1, . . . , kd)Xk1−1

1 . . . Xkd−1
d ,

F ∗d (X1, . . . , Xd) =
∑

k1,...,kd≥1
ζ∗(k1, . . . , kd)Xk1−1

1 . . . Xkd−1
d .

Moreover, let F�0 = F ∗0 = 1. Then both sequences F� =
(
F�d

)
d≥0 and F ∗ =

(
F ∗d
)
d≥0 are

moulds in GARIpow,Z .

For any mould F we denote

F#X (X1, . . . , Xd) = F (X1 + · · ·+Xd, X2 + · · ·+Xd, . . . , Xd).

Proposition B.42. The mould
(
F�

)#X is symmetral and the mould F ∗ is symmetril.

Proof. The mould F ∗ is symmetril, since by Proposition B.20 the coefficient map

(Q〈Y〉, ∗)→ (Z, ·), yk1 . . . ykd 7→ ζ∗(k1, . . . , kd)

is an algebra morphism (cf Example A.72). Moreover,

(h1,�)→ (Z, ·), xk1−1
0 x1 . . . x

kd−1
0 x1 7→ ζ�(k1, . . . , kd)

is an algebra morphism (Proposition B.16), so we deduce from (A.69.1) that for all 0 <
n < d(

F�
)#X (X1, . . . , Xn)

(
F�

)#X (Xn+1, . . . , Xd)

= ζ� ◦ ιY
(
ρY(W)(X1, . . . , Xn)� ρY(W)(Xn+1, . . . , Xd)

)#X

.

Since by definition ζ� ◦ ιY
(
ρY(W)(X1, . . . , Xd)

)
= F�(X1, . . . , Xd) for all d ≥ 1, the

mould
(
F�

)#X is symmetral (cf Example A.72).

Definition B.43. Let I = ⊕
w≥1
Z(w), where Z(w) denotes the homogeneous subspace of

Z of weight w. Define the Q-algebra

T = I�(I2 +Qζ(2)
).
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By construction, the algebra T is graded by weight and all products of multiple zeta values
become trivial in T . In particular, the dimension of T (w) equals the number of algebra
generators of Z�ζ(2)Z in weight w. If the algebra Z would be graded (Conjecture B.2),
then T is equal to the space of indecomposables nz (see (B.9.1)).

Denote by ζ�(k1, . . . , kd) the images of the shuffle regularized multiple zeta values in T , by
ζ∗(k1, . . . , kd) the images of the stuffle regularized multiple zeta values in T , and consider
their generating series in some depth d ≥ 1,

F�d (X1, . . . , Xd) =
∑

k1,...,kd≥1
ζ�(k1, . . . , kd)Xk1−1

1 . . . Xkd−1
d ,

F ∗d (X1, . . . , Xd) =
∑

k1,...,kd≥1
ζ∗(k1, . . . , kd)Xk1−1

1 . . . Xkd−1
d .

Set F�0 = F ∗0 = 0, then both sequences F� =
(
F�d

)
d≥0 and F ∗ =

(
F ∗d
)
d≥0 are moulds

contained in ARIpow,T .

Corollary B.44. The mould
(
F�

)#X is alternal and the mould F ∗ is alternil.

Proof. This is an immediate consequence of Proposition B.42, since alternality (resp.
alternility) is just symmetrality (resp. symmetrility) modulo products (see Appendix
C.1).

There is an explicit relation between the shuffle and the stuffle regularized multiple zeta
values given in Theorem B.6, which allows treating

(
F�

)#X and F ∗ simultaneously.

Theorem B.45. The mould
(
(−1)d−1(F�d )#X

)
d≥0

is contained in

ARIpow,T
al∗il =

A ∈ ARIpow,T

∣∣∣∣∣∣∣∣∣
· A is alternal,
· swap(A) is alternil up to addition with some

constant mould,
· A1(X1) is even.

 .
Proof. By Corollary B.44, the mould (F�)#X is alternal, and therefore also the mould(
(−1)d−1(F�d )#X

)
d≥0

is alternal. By definition of the map ρ (given in (B.5.1)) and Theo-
rem B.6, the images of ζ�(k1, . . . , kd) and ζ∗(k1, . . . , kd) in T become equal up to addition
with some constant,

F�d (X1, . . . , Xd) = F ∗d (X1, . . . , Xd) + Cd

for some Cd ∈ T . Moreover, any alternal mould A satisfies

swap(A)(X1, . . . , Xd) = (−1)d−1A#−1
X (X1, . . . , Xd), d ≥ 1.

So Corollary B.44 implies that there is a constant mould (Cd)d≥0, such that

swap
(
(−1)d−1(F�d )#X

)
d≥0

+ (Cd)d≥0 = (F�d )d≥0 + (Cd)d≥0 = (F ∗d )d≥0

is an alternil mould. Finally, Euler’s formula for the even single zeta values

ζ(2k) ∈ Qπk, k ≥ 1,

implies that the odd component of
(
F�1

)#X = F�1 vanishes.
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Lemma B.46. Decompose the mould F� of the shuffle regularized multiple zeta values as

F� =
∑
α

α · ξα,

where α runs through a vector space basis of T . Then every mould
(
(−1)d−1(ξα)#X

)
d≥0

is contained in

ARIpol,Q
al∗il =

{
A ∈ ARIpow,Q

al∗il

∣∣∣∣∣ · Ad(X1, . . . , Xd) ∈ Q[X1, . . . , Xd] for all d ≥ 1,
· Ad(X1, . . . , Xd) 6= 0 only for finitely many d ≥ 1

}
.

Proof. Since the mould
(
(−1)d−1(F�d )#X

)
d≥0

is contained in ARIpow,T
al∗il (Theorem B.45)

and we decompose over a Q-vector space basis of T , the moulds
(
(−1)d−1(ξα)#X

)
d≥0

must be contained in ARIpow,Q
al∗il . Since T is graded by weight and the homogeneous com-

ponents are finite-dimensional, the components of each mould
(
(−1)d−1(ξα)#X

)
d≥0

must
be polynomial. Moreover, the depth is bounded by the weight, therefore only finitely many
components can be non-zero.

Example B.47. There are the following moulds in ARIpol,Q
al∗il , which should correspond to

the elements ζ(3), ζ(5) ∈ T

ξ(3) = (X2
1 , −X1 +X2, 0, . . .)

ξ(5) = (X4
1 , −2X3

1 + 2X3
2 −

1
2X

2
1X2 + 1

2X1X
2
2 , 2X2

1 − 4X2
2 + 2X2

3 −
3
2X1X2 + 3X1X3

− 3
2X2X3, −X1 + 3X2 − 3X3 +X4, 0, . . .)

The space ARIpol,Q
al∗il is graded by weight, its homogeneous components

(
ARIpol,Q

al∗il
)(w) are

defined in (C.24.1).

Corollary B.48. For each w ≥ 1, the following holds

dimQ T (w) ≤ dimQ
(

ARIpol,Q
al∗il

)(w)
.

Proof. Let α is a basis element of T (w), then by Lemma B.46
(
(−1)d−1(ξα)#X

)
d≥0

is

contained in
(

ARIpol,Q
al∗il

)(w). Therefore, the dimension of the space spanned by the moulds(
(−1)d−1(ξα)#X

)
d≥0

, where α is homogeneous of weight w, is bounded by the dimension

of
(

ARIpol,Q
al∗il

)(w). Evidently the assignment α 7→
(
(−1)d−1(ξα)#X

)
d≥0

is injective, thus

also the dimension of T (w) has an upper bound given by dimQ
(

ARIpol,Q
al∗il

)(w).

Theorem B.49. ([Sc15, Theorem 4.6.1.]) For each commutative Q-algebra R with unit,
the space ARIpol,R

al∗il equipped with the ari bracket (Definition C.22) is a graded Lie algebra.

Recall that it is expected that T = nz. The decomposition in Lemma B.46 should be seen
just as a dualizing process with respect to the weight-grading, thus there should be a Lie
algebra isomorphism nz∨ ' ARIpol,Q

al∗il . So Conjecture B.10 (i) and Proposition B.12 (i) can
be reformulated in terms of bimoulds as follows.
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Conjecture B.50. (i) There is an algebra isomorphism

Z ' Q[ζ(2)]⊗ U
(

ARIpol,Q
al∗il

)∨
.

(ii) For all w ≥ 1, the following holds

dimQ
(

ARIpol,Q
al∗il

)(w) = dimQ T (w) = gw,

where the numbers gw are defined in Lemma B.11.

Next, we want to consider the associated depth-graded space to T (Definition B.43).

Definition B.51. Define the Q-algebra

M =
⊕
w,d≥1

M(w,d), M(w,d) = gr(d)
D T

(w) = Fil(d)
D (T (w))�Fil(d−1)

D (T (w)).

The algebraM is bi-graded with respect to weight and depth and the product is trivial. In
particular, the dimension of the homogeneous space M(w,d) equals the number of algebra
generators of grD Z�ζ(2)Z of weight w and depth d. As before, Conjecture B.2 would
imply that M = grD nz.

Denote by grD ζ�(k1, . . . , kd) the images of the shuffle-regularized multiple zeta values in
M and by grD ζ∗(k1, . . . , kd) the images of the stuffle-regularized multiple zeta values in
M. For some depth d ≥ 1 consider their generating series,

grD F�d (X1, . . . , Xd) =
∑

k1,...,kd≥1
grD ζ�(k1, . . . , kd)Xk1−1

1 . . . Xkd−1
d ,

grD F ∗d (X1, . . . , Xd) =
∑

k1,...,kd≥1
grD ζ∗(k1, . . . , kd)Xk1−1

1 . . . Xkd−1
d .

Set grD F�0 = grD F ∗0 = 0, then grD F� =
(

grD F�d
)
d≥0 and grD F ∗ =

(
grD F ∗d

)
d≥0 are

moulds in ARIpow,M.

Proposition B.52. Both
(

grD F�
)#X and grD F ∗ are alternal moulds. In addition, one

has
grD F� = grD F ∗.

Proof. The first part is a direct consequence of Corollary B.44 and the observation that al-
ternility modulo lower depth is just alternality. The second part is obtained from Theorem
B.6 and the definition of ρ (given in (B.5.1)).

Theorem B.53. The mould
(

grD F�
)#X is contained in

ARIpow,M
al/al =

A ∈ ARIpol,M

∣∣∣∣∣∣∣
· A is alternal,
· swap(A) is alternal,
· A1(X1) is even.

 .
Proof. As explained in the proof of Theorem B.45, one has

swap
((

grD F�
)#X

)
(X1, . . . , Xd) = (−1)d−1 grD F

�(X1, . . . , Xd).

Moreover, observe that for any alternal mould A also the mould
(
(−1)d−1A

)
d≥0 is alternal.

So Proposition B.52 implies that
(

grD F�
)#X and swap

((
grD F�

)#X
)

are both alternal.

Finally, Euler’s formula ζ(2k) ∈ Qπk, k ≥ 1, implies that
(

grD F�1
)#X is even.
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Lemma B.54. Decompose grD F� over a Q-vector space basis of M,

grD F� =
∑
β

β · grD ξβ.

Then any bimould
(

grD ξβ
)#X is contained in

ARIpol,Q
al/al =

{
A ∈ ARIpow,Q

al/al

∣∣∣∣∣ · Ad(X1, . . . , Xd) ∈ Q[X1, . . . , Xd] for all d ≥ 1,
· Ad(X1, . . . , Xd) 6= 0 only for finitely many d ≥ 1

}
.

Proof. Similar to Lemma B.46, this follows immediately from the weight-grading ofM.

For example, the moulds

grD ξ(k) =
(
Xk−1

1 , 0, . . .
)
, k ≥ 3 odd,

are contained in ARIpol,Q
al/al , and should correspond to the odd zeta values grD ζ(k).

The space ARIpol,Q
al/al is bi-graded by weight and depth, the homogeneous components(

ARIpol,Q
al/al

)(w,d) are given in (C.24.2).

Corollary B.55. ([IKZ06, Corollary 7]) For each w, d ≥ 1, the following holds

dimQM(w,d) ≤ dimQ
(

ARIpol,Q
al/al

)(w,d)
.

Proof. This follows from the same arguments as in Corollary B.48.

Theorem B.56. ([Sc15], Theorem 2.5.6.) For each commutative Q-algebra R with unit,
the space ARIpol,R

al/al is a bi-graded Lie algebra with the ari bracket (Definition C.22).

It is expected that ARIpol,R
al/al is exactly the associated depth-graded Lie algebra to ARIpol,R

al∗il .
So as a reformulation of Conjecture B.10 (ii) and Proposition B.12 (ii), the following should
hold.

Conjecture B.57. (i) There is an algebra isomorphism

grD Z�ζ(2)Z ' U(ARIpol,Q
al/al )∨.

(ii)([IKZ06, p. 329]) For all w, d ≥ 1, the following holds

dimQ
(

ARIpol,Q
al/al

)(w,d) = dimQM(w,d) = gw,d,

where the numbers gw,d are obtained in Lemma B.11.

Computational evidence for the second part of this conjecture are given by Carr and Ecalle
in [Ec11, 7.10.].

At the end of this subsection, we will explain the structure of the Lie algebra ARIpol,Q
al/al and

relate this to the Broadhurst-Kreimer dimension conjecture B.3. For simplicity we work
over the field Q, but the same holds for any commutative Q-algebra R with unit.

Proposition B.58. ([Ec11, eq (2.79)]) If w, d ≥ 1 and w 6≡ d mod 2, then one has(
ARIpol,Q

al/al
)(w,d) = {0}.
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Definition B.59. Let E be the Lie subalgebra of ARIpol,Q
al/al spanned by the ekma moulds

grD ξ(k) = (Xk−1
1 , 0, . . .), k ≥ 3 odd.

Since the depth 1 components of moulds in ARIpol,Q
al/al must be even, we must have

(
ARIpol,Q

al/al
)(1) = E(1).

To describe the relations between the ekma moulds we introduce the space of even period
polynomials (see [KZ84] for details). For k ≥ 2 even, set

W ev
k =

f ∈ Q[x, y]

∣∣∣∣∣∣∣∣∣
· f homogeneous of degree k − 2,
· f(x, y) + f(y, x) = 0,
· f(±x,±y) = f(x, y),
· f(x, y) + f(x− y, x) + f(−y, x− y) = 0.

 .
There is a decomposition

W ev
k = Sk ⊕Qpk−2,

where pk−2 ∈ W ev
k denotes the polynomial pk−2 = xk−2 − yk−2. By the Eichler-Shimura

theorem, there is an isomorphism

SQk (SL2(Z))→ Sk,

here SQk (SL2(Z)) denotes the space of cusp forms with rational coefficients for SL2(Z).

Proposition B.60. ([Bro21, 7.2.]) There is a short exact sequence

0→
⊕

k≥2 even
Sk →

(
ARIpol,Q

al/al
)(1) ∧

(
ARIpol,Q

al/al
)(1) ari−→

(
ARIpol,Q

al/al
)(2) → 0.

In particular, one has
(

ARIpol,Q
al/al

)(2)
= E(2), and each relation in depth 2 between the

ekma moulds grD ξ(k), k ≥ 3 odd, can be uniquely assigned to a cusp form. One can also
show that

(
ARIpol,Q

al/al
)(3) = E(3) and all relations in depth 3 are induced from the cusp

form relations in depth 2 ([Bro21, 7.3]).

In depth 4, one obtains a proper inclusion E(4) (
(

ARIpol,Q
al/al

)(4). We will explain now
how to obtain the additional generators in ARIpol,Q

al/al of depth 4, this construction is due to
Ecalle ([Ec11, Section 7.3, 7.7]).
Consider the relation in E(2) corresponding to the smallest cusp form in weight 12,

ari
(

grD ξ(3), grD ξ(9)
)
− 3 ari

(
grD ξ(5), grD ξ(7)

)
= 0.

Lifting this relation to the non depth-graded space ARIpol,Q
al∗il , one obtains

ari
(
ξ(3), ξ(9)

)
− 3 ari

(
ξ(5), ξ(7)

)
= ξ∆

where ξ∆ ∈ ARIpol,Q
al∗il is a mould of depth ≥ 4. Since it is expected that ARIpol,Q

al/al is the
associated depth-graded Lie algebra to ARIpol,Q

al∗il , any relation between the ekma moulds
in depth 2 should have a lift to ARIpol,Q

al∗il . By construction, this lift vanishes in depth 2 and
due to Proposition B.58 also the depth 3 part vanishes. So any relation between the ekma
moulds in depth 2 should yield an element in ARIpol,Q

al∗il and after taking the depth-graded

part a (possibly trivial) in
(

ARIpol,Q
al/al

)(4)
.
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Definition B.61. Let C be the Lie algebra generated by the elements in
(

ARIpol,Q
al/al

)(4)

induced by the relations in E(2) in the above explained way.

In [Bro21, 8.2] a different construction for the generators of C is given.

Definition B.62. Any even period polynomial f ∈⊕k≥2 even Sk has a decomposition

f(x, y) = xyf1(x, y) = xy(x− y)f0(x, y)

for some homogeneous f1, f0 ∈ Q[x, y]. Define the polynomial

ef (z0, z1, z2, z3, z4) =
∑
Z�5Z

f1(z4 − z3, z2 − z1) + (z0 − z1)f0(z2 − z3, z4 − z3),

where the sum is taken over all cyclic permutations of z0, z1, z2, z3, z4. Then the mould
carmaf ∈ ARI is given by

carmaf (X1, X2, X3, X4) = ef (0, X1, X1 +X2, X1 +X2 +X3, X1 +X2 +X3 +X4)

and 0 elsewhere.

Proposition B.63. ([Bro21, Theorem 8.2]) For each f ∈
⊕

k≥2 even Sk, the mould carmaf
is contained in ARIpol,Q

al/al .

The following structure is expected for the two Lie subalgebras E and C.

Conjecture B.64. ([Bro21, Conjecture 3], [Ec11, 8.5.])

(i) There are no relations between the two Lie subalgebras E and C and both together
generate the Lie algebra ARIpol,Q

al/al .

(ii) The Lie algebra C is a free Lie algebra generated by the moulds carmaf (Definition
B.62).

(iii) The only relations in the Lie algebra E are the cusp form relations in depth 2 (Propo-
sition B.60).

Assuming Conjecture B.64, one obtains the following Hilbert-Poincare series (cf (A.11.1))

HU(E)(x, y) = ∑
w,d≥0

dimQ
(
U(E)(w,d))xwyd = 1

1−O3(x)y+S(x)y2 ,

HU(C)(x, y) = ∑
w,d≥0

dimQ
(
U(C)(w,d))xwyd = 1

1−S(x)y4 ,

HU(ARIpol,Q
al/al )(x, y) = ∑

w,d≥0
dimQ

(
U(ARIpol,Q

al/al )(w,d))xwyd = 1
1−O3(x)y+S(x)y2−S(x)y4 ,

where

O3(x) = x3

1− x2 , S(x) =
∑
k≥12

dimSk(SL2(Z))xk = x12

(1− x4)(1− x6) .

In particular, the Hilbert-Poincare series of U(ARIpol,Q
al/al ) equals the conjectured Hilbert-

Poincare series of grD Z�ζ(2)Z in the Broadhurst-Kreimer conjecture B.3. This gives some
evidence for the expected isomorphy grD Z�ζ(2)Z ' U(ARIpol,Q

al/al )∨ (Conjecture B.57 (i)).
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B.4 Comparison of the different approaches

In the previous two subsections, we have seen two different Lie algebras conjecturally
isomorphic to the dual of the space of indecomposables nz (see (B.9.1)), one is defined in
the context of non-commutative polynomials (B.2) and the other one is defined via moulds
(B.3). We will give an explicit isomorphism between these two Lie algebras, a proof is
given in [Rac00, Appendix A] or [Sc15, Chapter 3]. The relation of these two kinds of
generating series is generally explained in Subsection A.4.

Definition B.65. For each k ≥ 1, define

Ck = ad(x0)k−1(x1)

and let C be the alphabet consisting of these letters. For a word in Q〈C〉, define the weight
and depth by

wt(Ck1 . . . Ckd) = k1 + · · ·+ kd, dep(Ck1 . . . Ckd) = d.

Proposition B.66. (Lazard elimination, [Re93, Theorem 0.6]) The space LieQ〈C〉 is a
free Lie algebra and

LieQ〈X 〉 = Qx0 ⊕ LieQ〈C〉.

In particular, both Lie algebras dm0 (Definition B.27) and ls (Definition B.36) are con-
tained in LieQ〈C〉.

Definition B.67. Consider the Q-linear map

ρC : Q〈C〉 → Q[X1, X2, . . .],
Ck1 . . . Ckd 7→ Xk1−1

1 . . . Xkd−1
d .

To every element f ∈ Q〈C〉 associate a mould ma(f) =
(

ma(f)d
)
d≥0 ∈ ARIpol,Q by

ma(f)d(X1, . . . , Xd) = (−1)d−1ρC(f (d)),

where f (d) denotes the homogeneous component of f of depth d.

Theorem B.68. ([Sc15, Theorem 3.4.3., Theorem 3.4.4.,]) There are two Lie algebra
isomorphisms

(dm0, {−,−}) ∼−→ (ARIpol,Q
al∗il , ari), f 7→ ma(f)

(ls, {−,−}) ∼−→ (ARIpol,Q
al/al , ari), f 7→ ma(f)

In particular, one obtains the following commutative diagram of Lie algebras

dm0 ARIpol,Q
al∗il

ls ARIpol,Q
al/al

ma
∼

grD grD

ma
∼
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Example B.69. The elements ξ(3), ξ(5) introduced in Example B.28 can be expressed in
terms of the alphabet C as

ξ(3) = C3 + [C2, C1],

ξ(5) = C5 + 2[C4, C1] + 1
2[C3, C2] + 2[C1, [C1, C3]]− 3

2[C2, [C2, C1]] + [[[C2, C1], C1], C1].

Thus, we compute

ρC
(
ξ(3)

)
= (X2

1 , −X1 +X2, 0, . . .),

ρC
(
ξ(5)

)
= (X4

1 , −2X3
1 + 2X3

2 −
1
2X

2
1X2 + 1

2X1X
2
2 , 2X2

1 − 4X2
2 + 2X2

3

− 3
2X1X2 + 3X1X3 −

3
2X2X3, −X1 + 3X2 − 3X3 +X4, 0, . . .)

These two moulds coincide with the ones given in Example B.47.
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B.5 Block grading

The generators σ2k+1 of the depth-graded Lie algebra ls satisfy relations related to modular
forms (see for example (B.39.1)). One way to rid of these algebraic dependencies of the
generators σ2k+1 is to consider the block degree instead of the depth. Following [Ch21],
define for a word w = xi1 . . . xiw in Q〈X 〉 its block degree as

degbl(w) = #{m | im = im+1}.

This defines an decreasing filtration on the space Q〈X 〉

Fil(n)
bl Q〈X 〉 = spanQ{w ∈ X ∗ | degbl(x1wx0) ≥ n}.

Proposition B.70. The Lie algebra (dm0, {−,−}) is filtered for the block degree. In
particular,

grbl dm0 =
⊕
n≥0

Fil(n)
bl dm0�Fil(n+1)

bl dm0

is a block-graded Lie algebra equipped with the block-graded Ihara bracket.

There is an explicit formula for the block-graded Ihara bracket. For ψ ∈ Q〈X 〉, define the
map dbl

ψ : Q〈X 〉 → Q〈X 〉 by

dbl
ψ (xm0 xn1 ) =


0, n = 0
xm0 x

n
1ψ, m = 0

xm0 x
n
1ψ + xm0 ψ

∗xn1 else

and extend this to

dbl
ψ (xm1

0 xn1
1 . . . xmr0 xnr1 x

mr+1
0 )

=
r∑
i=1

xm1
0 xn1

1 . . . x
mi−1
0 x

ni−1
1 dbl

ψ (xmi0 xni1 )xmi+1
0 x

ni+1
1 . . . xmr0 xnr1 x

mr+1
0

for all r ≥ 1, m2, . . . ,mr, n1, . . . nr ≥ 1, m1,mr+1 ≥ 0. Moreover, let

Πx1 : Q〈X 〉 → Q1 + x0Q〈X 〉

be the canonical projection, which sends any word starting with x1 to 0 and is the identity
elsewhere. Then the block-graded Ihara bracket is given by

{ψ1, ψ2}bl = dbl
ψ1(ψ2)− dbl

ψ2(ψ1) + ψ1Πx1(ψ2)− ψ2Πx1(ψ1).

Theorem B.71. ([Ke20, Proposition 2.2.5, Theorem 2.2.7, Proposition 2.3.3])
1) The image of gm in

(
grbl dm0, {−,−}bl) is a free Lie algebra with exactly one generator

p2k+1 in each odd weight ≥ 3.

2) The generators p2k+1 are explicitly determined and for each normalized choice of the
embedding gm ↪→ dm0, one has

σ2k+1 ≡ p2k+1 ∈ grbl dm0.

Corollary B.72. Assume that dm0 is a free Lie algebra with one generator in each odd
weight ≥ 3 (Conjecture B.33). Then the pair (grbl dm0, {−,−}bl) is also a free Lie algebra
generated by one element in each odd weight w ≥ 3. In particular, we would have

grbl dm0 ' dm0.
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Appendix C Moulds and bimoulds

This chapter provides the necessary background on moulds and bimoulds. These objects
were introduced by J. Ecalle ([Ec11], [Ec02]) and further developed by L. Schneps ([Sc15]).
To compare the following to these articles, one needs to identify Xi = vi and Yi = ui.

Definition C.1. Let A be an alphabet, denote by A∗ the set of all words with letters in
A, and let R be a commutative Q-algebra with unit. Following [Cr09], a mould is a map

M : A∗ → R,

w 7→M(w).

There is a canonical bijection between the sets of moulds A∗ → R and non-commutative
power series over A with coefficients in R given by the association(

M : A∗ → R
)
7→

∑
w∈A∗

M(w)w. (C.1.1)

Example C.2. (i) The map of the balanced multiple q-zeta values given in Theorem 2.59
defines a mould

Mζq : B∗ → Zq,

bs1 . . . bsl 7→
{
ζq(s1, . . . , sl) if s1 > 0
0 else

(s1, . . . , sl ≥ 0).

(ii) Similarly, the map of the shuffle regularized multiple zeta values from Proposition B.16
gives a mould

Mζ� : X ∗ → Z,

xk1−1
0 x1 . . . x

kd−1
0 x1x

kd+1−1
0 7→

{
ζ�(k1, . . . , kd), kd+1 = 1
0, else

(k1, . . . , kd+1 ≥ 1).

By choosing an appropriate translation map ρ from the algebra Q〈A〉 into some ring of
commutative polynomials with coefficients in R, one can associate to a mould M : A∗ → R
a sequence of commutative generating series with coefficients in R (cf Subsection A.4,
Definition A.70). This leads to the notion of moulds, which will be used in this work.

Example C.3. Consider the Q-linear map

ρX : Q〈X 〉 → Q[X1, X2, . . .],

xk1−1
0 x1 . . . x

kd−1
0 x1x

kd+1−1
0 7→

{
Xk1−1

1 . . . Xkd−1
d , kd+1 = 1

0, else
,

which satisfies the conditions in Definition A.64, and the mould Mζ� given in Example
C.2 (ii). Then the commutative generating series with coefficients in Z associated to
(Mζ� , ρX ) in the sense9 of Definition A.70 is given by

(Mζ� ⊗ ρX )(W)d(X1, . . . , Xd) =
∑

w∈(X ∗)(d)

Mζ�(w)ρX (w), d ≥ 1,

where (X ∗)(d) denotes the subset of all words in X ∗ of depth d. Observe that generating
series (Mζ� ⊗ ρX )(W)d(X1, . . . , Xd) equals exactly the generating series of the shuffle
regularized multiple zeta values F�(X1, . . . , Xd) in some depth d (Definition B.41).

9More precisely, the map Mζ� : X ∗ → Z need to be extended to the space Q〈X 〉 by Q-linearity to apply
Definition A.70
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In particular, we will view moulds from now on as a sequence of commutative power series
in an increasing number of variables.

Definition C.4. Let R be a commutative Q-algebra with unit. A sequence

M = (Md(X1, . . . , Xd))d≥0 = (M0(∅),M1(X1),M2(X1, X2), . . .) ∈
∏
d≥0

R[[X1, . . . , Xd]]

is called a mould. Denote MUpow,R = ∏
d≥0R[[X1, . . . , Xd]] and call the elements in

MUpow,R moulds with coefficients in R.

Let A = {a1, a2, . . .} be an alphabet. Conversely, any mould M ∈ MUpow,R defines a
mould in the sense of Definition C.1

M : A∗ → R[[X1, X2, . . .]],
ai1 . . . aid 7→Md(Xi1 , . . . , Xid).

In particular, the alphabet A gets identified with the set of variables {X1, X2, . . .}.
At some points, it is necessary to consider sequences

M = (Md(X1, . . . , Xd))d≥0 ∈
∏
d≥0

R((X1, . . . , Xd)).

We denote the set of those moulds by MUfL,R = ∏
d≥0R((X1, . . . , Xd)).

Definition C.5. A sequence

M =
(
Md

(
X1, . . . , Xd

Y1, . . . , Yd

))
d≥0

=
(
M0(∅),M1

(
X1
Y1

)
,M2

(
X1, X2
Y1, Y2

)
, . . .

)
∈
∏
d≥0

R[[X1, Y1, . . . , Xd, Yd]]

is called a bimould. Denote BIMUpow,R = ∏
d≥0R[[X1, Y1, . . . , Xd, Yd]] and call the ele-

ments in BIMUpow,R bimoulds with coefficients in R.

Consider a bi-alphabet Abi = {ai,j | i, j ≥ 1}. Then any bimould M ∈ BIMUpow,R gives a
mould in the sense of Definition C.1

M : A∗bi → R[[X1, Y1, X2, Y2, . . .]],

ai1,j1 . . . aid,jd 7→Md

(
Xi1 , . . . , Xid

Yj1 , . . . , Yjd

)
.

Moreover, set BIMUfL,R = ∏
d≥0R((X1, Y1, . . . , Xd, Yd)).

Example C.6. The generating series of the SZ multiple q-zeta values (2.23.1) given by
sz0 = 1 and for d ≥ 1 by

szd

(
X1, . . . , Xd

Y1, . . . , Yd

)
=

∑
k1,...,kd≥1
m1,...,md≥0

ζSZ
q (k1, {0}m1 , . . . , kd, {0}md)Xk1−1

1 Y m1
1 . . . Xkd−1

d Y md
d

and the generating series of the bi-brackets (2.32.1) given by g0 = 1 and for d ≥ 1 by

gd

(
X1, . . . , Xd

Y1, . . . , Yd

)
=

∑
k1,...,kd≥1
m1,...,md≥0

g

(
k1, . . . , kd
m1, . . . ,md

)
Xk1−1

1
Y m1

1
m1! . . . X

kd−1
d

Y md
d

md!

both define bimoulds sz = (szd)d≥0 and g = (gd)d≥0 in BIMUpow,Zq .
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In the following, we will often give definitions only for bimoulds. By forgetting about
the second row corresponding to the variables Yi, one obtains the definition for moulds.

Moreover, we will usually omit the index d and simply write M

(
X1, . . . , Xd

Y1, . . . , Yd

)
resp.

M(X1, . . . , Xd). If the shape of the components of the bimoulds does not matter, we
just write BIMUR (resp. MUR). Similarly, if the underlying algebra R is clear from the
context, we just write BIMU (resp. MU). This applies also to all subsets of (bi-)moulds,
which will be defined in the following.

Definition C.7. For two bimoulds M,N ∈ BIMUR and λ ∈ R, define

(λM)
(
X1, . . . , Xd

Y1, . . . , Yd

)
= λ ·M

(
X1, . . . , Xd

Y1, . . . , Yd

)
,

(M +N)
(
X1, . . . , Xd

Y1, . . . , Yd

)
= M

(
X1, . . . , Xd

Y1, . . . , Yd

)
+N

(
X1, . . . , Xd

Y1, . . . , Yd

)
,

mu(M,N)
(
X1, . . . , Xd

Y1, . . . , Yd

)
=

d∑
i=0

M

(
X1, . . . , Xi

Y1, . . . , Yi

)
N

(
Xi+1, . . . , Xd

Yi+1, . . . , Yd

)
.

The composition mu corresponds to the power series multiplication under the bijection
(C.1.1).

Lemma C.8. The triples (BIMUR,+,mu) and (MUR,+,mu) are R-algebras with unit.

Define the following subspaces of MU and BIMU,

ARI = {A ∈ MU | A0 = 0}, BARI = {A ∈ BIMU | A0 = 0}.

A simple calculation shows the following.

Lemma C.9. The sets ARIR and BARIR are R-subalgebras of (BIMUR,+,mu).

Moreover, define the subsets

GARI = {A ∈ MU | A0 = 1}, GBARI = {A ∈ BIMU | A0 = 1}.
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C.1 Basic symmetries of (bi-)moulds

We will introduce some standard symmetries of (bi-)moulds. All of them are introduced
in [Ec11] and can be found with more details in [Sc15]. We focus on giving an as explicit
description of these symmetries as possible. All of the following (bi-)moulds will have
coefficients in some fixed Q-algebra R with unit.

The first symmetry for bimoulds is closely related to the conjugation of partitions.

Definition C.10. For A ∈ BIMU, define the bimould swap(A) as

swap(A)
(
X1, . . . , Xd

Y1, . . . , Yd

)
= A

(
Y1 + · · ·+ Yd, Y1 + · · ·+ Yd−1, . . . , Y1

Xd, Xd−1 −Xd, . . . , X1 −X2

)
.

In this special case, consider on both sides the row consisting of the variables Xi to obtain
the corresponding definition for moulds, i.e., for a mould A ∈ MU, one has

swap(A)(X1, . . . , Xd) = A(Xd, Xd−1 −Xd, . . . , X1 −X2).

The inverse of swap on MU is obtained by only considering the variables Yi.
A (bi-)mould A is called swap invariant if swap(A) = A.

Example C.11. Let A ∈ BIMUpow and write

A

(
X1, . . . , Xd

Y1, . . . , Yd

)
=

∑
k1,...,kd≥1
m1,...,md≥0

a

(
k1, . . . , kd
m1, . . . ,md

)
Xk1−1

1
Y m1

1
m1! . . . X

kd−1
d

Y md
d

md!

where a
( k1,...,kd
m1,...,md

)
are the (normalized) coefficients of A. If the bimould A is swap invariant,

then the coefficients satisfy

a

(
k1
m1

)
= m1!

(k1 − 1)!a
(
m1 + 1
k1 − 1

)
,

a

(
k1, k2
m1,m2

)
=

m1∑
u=0

k2−1∑
v=0

(−1)v
u!v!

m1!
(k1 − 1)!

(m2 + u)!
(k2 − 1− v)!a

(
m2 + 1 + u,m1 + 1− u
k2 − 1− v, k1 − 1 + v

)
.

In higher depths, it is hard to give the explicit relations between the coefficients of A
coming from the swap invariance, see for example [BI22, Remark 3.14].

We want to translate the shuffle product and the q-stuffle product defined on Q〈Ybi〉
(Example A.53, 1) and 5)) into the language of (bi-)moulds (cf Subsection A.4). So recall
that Ybi = {yk,m | k ≥ 1, m ≥ 0} and that the depth of a word in Q〈Ybi〉 is given by
dep(yk1,m1 . . . ykd,md) = d. Define the Q-linear map

ρYbi : Q〈Ybi〉 → Q[X1, Y1, X2, Y2, . . .],

yk1,m1 . . . ykd,md 7→ Xk1−1
1

Y m1
1
m1! . . . X

kd−1
d

Y md
d

md!
,

which satisfies the properties in Definition A.64. The generating series of words in Q〈Ybi〉
associated to ρYbi is given by ρYbi(W)0 = 1 and

ρYbi(W)d
(
X1, . . . , Xd

Y1, . . . , Yd

)
=

∑
k1,...,kd≥1
m1,...,md≥0

yk1,m1 . . . ykd,mdX
k1−1
1

Y m1
1
m1! . . . X

kd−1
d

Y md
d

md!
, d ≥ 1.
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Definition C.12. Consider the shuffle algebra (Q〈Ybi〉,�), i.e., � is the correspond-
ing quasi-shuffle product to yk1,m1 � yk2,m2 = 0 (Example A.53, 1)). A bimould A ∈
GBARIpow,R is called symmetral if there is an algebra morphism ϕ� : (Q〈Ybi〉,�) → R,
such that for all d ≥ 1

Ad

(
X1, . . . , Xd

Y1, . . . , Yd

)
=

∑
k1,...,kd≥1
m1,...,md≥0

ϕ�(yk1,m1 . . . ykd,md)X
k1−1
1

Y m1
1
m1! . . . X

kd−1
d

Y md
d

md!
.

In other words, the bimould A is symmetral if and only if A is (ϕ�, ρYbi)-symmetric in
the sense of Definition A.71. We will refer to the map ϕ� as the coefficient map of A.
Denote by GBARIpow,R

as (resp. GARIpow,R
as ) the subset of all symmetral bimoulds (resp.

moulds).

As obtained in (A.71.1) a bimould A ∈ GBARIpow,R is symmetral with coefficient map
ϕ� if and only if for all 0 < n < d

A

(
X1, . . . , Xn

Y1, . . . , Yn

)
A

(
Xn+1, . . . , Xd

Yn+1, . . . , Yd

)

= ϕ�

(
ρYbi(W)

(
X1, . . . , Xn

Y1, . . . , Yn

)
� ρYbi(W)

(
Xn+1, . . . , Xd

Yn+1, . . . , Yd

))
.

An explicit recursive formula for � on the generating series of words ρYbi(W) is obtained
in Corollary A.76.

Definition C.13. Let(Q〈Ybi〉, ∗) be the q-stuffle algebra, i.e., ∗ is the quasi-shuffle product
with yk1,m1 � yk2,m2 = yk1+k2,m1+m2 (Example A.53, 6)). A bimould A ∈ GBARIpow,R is
said to be symmetril if there is an algebra morphism ϕ∗ : (Q〈Ybi〉, ∗) → R, such that for
all d ≥ 1

Ad

(
X1, . . . , Xd

Y1, . . . , Yd

)
=

∑
k1,...,kd≥1
m1,...,md≥0

ϕ∗(yk1,m1 . . . ykd,md)X
k1−1
1

Y m1
1
m1! . . . X

kd−1
d

Y md
d

md!
.

In particular, the bimould A is symmetril if and only if A is (ϕ∗, ρYbi)-symmetric. As
before, we also refer to ϕ∗ as the coefficient map of A.
By GBARIpow,R

is (resp. GARIpow,R
is ) denote the subset of all symmetril bimoulds (resp.

moulds).

A bimould A ∈ GBARIpow,R is symmetril with coefficient map ϕ∗ if and only if for all
0 < n < d

A

(
X1, . . . , Xn

Y1, . . . , Yn

)
A

(
Xn+1, . . . , Xd

Yn+1, . . . , Yd

)

= ϕ∗

(
ρYbi(W)

(
X1, . . . , Xn

Y1, . . . , Yn

)
∗ ρYbi(W)

(
Xn+1, . . . , Xd

Yn+1, . . . , Yd

))
.

An explicit recursive formula for the product ∗ on these generating series of words ρYbi(W)
is given in Corollary A.77.
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Example C.14. For a bimould A ∈ GBARI, symmetrility in depths 2 and 3 means

A

(
X1
Y1

)
·A
(
X2
Y2

)
= A

(
X1, X2
Y1, Y2

)
+A

(
X2, X1
Y2, Y1

)

+ 1
X1 −X2

(
A

(
X1

Y1 + Y2

)
−A

(
X2

Y1 + Y2

))
,

A

(
X1
Y1

)
·A
(
X2, X3
Y2, Y3

)
= A

(
X1, X2, X3
Y1, Y2, Y3

)
+A

(
X2, X1, X3
Y2, Y1, Y3

)
+A

(
X2, X3, X1
Y2, Y3, Y1

)

+ 1
X1 −X2

(
A

(
X1, X3

Y1 + Y2, Y3

)
−A

(
X2, X3

Y1 + Y2, Y3

))

+ 1
X1 −X3

(
A

(
X2, X1

Y2, Y1 + Y3

)
−A

(
X2, X3

Y2, Y1 + Y3

))
.

Omit all terms of lower depths to obtain the formulas for symmetrality.

Remark C.15. (i) So far we defined symmetrality and symmetrility only for (bi-)moulds
in GBARIpow,R, but clearly one could use the complicated explicit formulas for such
symmetries (as given in Example C.14 for low depths) alternatively as the definition for
these symmetries. This is for example the point of view of J. Ecalle and L. Schneps
([Ec11],[Sc15]), and in turn this allows to extend these symmetries to a wider class of (bi-)
moulds like GBARIfL,R.
(ii) The definition of symmetral and symmetril for moulds is already given in Example
A.72, but can be also obtained from Definition C.12 and C.13 by forgetting about the
variables Yi and the second index of the letters in Ybi.

Consider the subspace

BARIis,swap =
{
A ∈ BARI

∣∣∣∣∣ · A symmetril,
· A swap invariant

}
.

The elements in BARIis,swap satisfy a second product formula. More precisely, one obtains
this second formula by applying the swap invariance to both factors, then multiplying with
respect to ∗ and finally again applying the swap invariance to all terms. For example in
depth 2, this leads to the following explicit formula

A

(
X1
Y1

)
A

(
X2
Y2

)
= A

(
X1 +X2, X1
Y2, Y1 − Y2

)
+A

(
X1 +X2, X2
Y1, Y2 − Y1

)
(C.15.1)

+
A

(
X1 +X2

Y1

)
−A

(
X1 +X2

Y2

)
Y1 − Y2

.

There are two other important properties of bimoulds, which should be seen as the sym-
metrality and symmetrility modulo products.

Definition C.16. A bimould A ∈ BARIpow,R is called alternal if there is a Q-linear map
ϕ� : Q〈Ybi〉 → R satisfying ϕ�(u � v) = 0 for all u, v ∈ Q〈Ybi〉\Q1, such that for all
d ≥ 1

Ad

(
X1, . . . , Xd

Y1, . . . , Yd

)
=

∑
k1,...,kd≥1
m1,...,md≥0

ϕ�(yk1,m1 . . . ykd,md)X
k1−1
1

Y m1
1
m1! . . . X

kd−1
d

Y md
d

md!
.

215



In this case, we also call ϕ� the coefficient map of A.
Denote by BARIpow,R

al (resp. ARIpow,R
al ) the subspace of all alternal bimoulds (resp.

moulds).

In particular, a bimould A ∈ BARIpow,R is alternal with coefficient map ϕ� if and only if
for all 0 < n < d

ϕ�

(
ρYbi(W)

(
X1, . . . , Xn

Y1, . . . , Yn

)
� ρYbi(W)

(
Xn+1, . . . , Xd

Yn+1, . . . , Yd

))
= 0. (C.16.1)

Definition C.17. A bimould A ∈ BARIpow,R is called alternil if there is a Q-linear map
ϕ∗ : Q〈Ybi〉 → R satisfying ϕ∗(u ∗ v) = 0 for all u, v ∈ Q〈Ybi〉\Q1, such that for all d ≥ 1

Ad

(
X1, . . . , Xd

Y1, . . . , Yd

)
=

∑
k1,...,kd≥1
m1,...,md≥0

ϕ∗(yk1,m1 . . . ykd,md)X
k1−1
1

Y m1
1
m1! . . . X

kd−1
d

Y md
d

md!
.

As before, we will call ϕ∗ the coefficient map of A.
Denote by BARIpow,R

il (resp. ARIpow,R
il ) the subspace of all alternil bimoulds (resp.

moulds).

So a bimould A ∈ BARIpow,R is alternil with coefficient map ϕ∗ if and only if for all
0 < n < d

ϕ∗

(
ρYbi(W)

(
X1, . . . , Xn

Y1, . . . , Yn

)
∗ ρYbi(W)

(
Xn+1, . . . , Xd

Yn+1, . . . , Yd

))
= 0. (C.17.1)

Remark C.18. Similar to the case of symmetrality and symmetrility, one could define
alternality and alternility for (bi-)moulds by the explicit formulas obtained from (C.16.1)
and (C.17.1). This allows to extend these symmetries to wider classes of (bi-)moulds like
BARIfL,R.

Alternality can be seen as the associated depth-graded property to alternility.

Proposition C.19. Let r ≥ 1 and A = (0, 0, . . . , 0, Ar, Ar+1, . . .) be an alternil bimould.
Then grD A = (0, 0, . . . , 0, Ar, 0, 0, . . .) is an alternal bimould.

Proof. From Corollary A.76 and A.77, we deduce that the explicit formulas for alternality
(C.16.1) and alternility (C.17.1) in some depth d differ only by terms of depth < d. In
particular, the bimould grD A is simultaneously alternil and alternal.
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C.2 (Bi-)Moulds and Lie algebras

This subsection is devoted to present the basic Lie algebra structure on the subspaces
ARIal and BARIal. In the following, we work over some fixed commutative Q-algebra R
with unit.

Decompose w =
(X1,...,Xd
Y1,...,Yd

)
into w = abc, where

a =
(
X1, . . . , Xk

Y1, . . . , Yk

)
, b =

(
Xk+1, . . . , Xk+l
Yk+1, . . . , Yk+l

)
, c =

(
Xk+l+1, . . . , Xd

Yk+l+1, . . . , Yd

)
.

The flexions are defined by ac = a if b = ∅, db = b if a = ∅, be = b if c = ∅, bc = c if
b = ∅, and

ac =
(

X1, . . . , Xk

Y1, . . . , Yk−1, Yk + · · ·+ Yk+l

)
, db =

(
Xk+1 −Xk, . . . , Xk+l −Xk

Yk+1, . . . , Yk+l

)
,

be =
(
Xk+1 −Xk+l+1, . . . , Xk+l −Xk+l+1

Yk+1, . . . , Yk+l

)
, bc =

(
Xk+l+1, . . . , Xd

Yk+1 + · · ·+ Yk+l+1, Yk+l+2, . . . , Yd

)
.

Definition C.20. For A,B ∈ BARI, define the derivation (with respect to mu) aritB by

aritB(A)(w) =
∑

w=abc
b,c 6=∅

A(abc)B(be)−
∑

w=abc
a,b6=∅

A(acc)B(db).

Example C.21. For bimoulds A,B ∈ BARI, one computes

aritB(A)
(
X1, X2
Y1, Y2

)
= A

(
X2

Y1 + Y2

)
B

(
X1 −X2

Y1

)
−A

(
X1

Y1 + Y2

)
B

(
X2 −X1

Y2

)
,

aritB(A)
(
X1, X2, X3
Y1, Y2, Y3

)
= A

(
X1, X3

Y1, Y2 + Y3

)
B

(
X2 −X3

Y2

)

+A

(
X3

Y1 + Y2 + Y3

)
B

(
X1 −X3, X2 −X3

Y1, Y2

)
+A

(
X2, X3

Y1 + Y2, Y3

)
B

(
X1 −X2

Y1

)

−A
(

X1, X3
Y1 + Y2, Y3

)
B

(
X2 −X1

Y2

)
−A

(
X1, X2

Y1, Y2 + Y3

)
B

(
X3 −X2

Y3

)

−A
(

X1
Y1 + Y2 + Y3

)
B

(
X2 −X1, X3 −X1

Y2, Y3

)
,

aritB(A)
(
X1, X2, X3, X4
Y1, Y2, Y3, Y4

)
= A

(
X4

Y1 + Y2 + Y3 + Y4

)
B

(
X1 −X4, X2 −X4, X3 −X4

Y1, Y2, Y3

)

+A

(
X3, X4

Y1 + Y2 + Y3, Y4

)
B

(
X1 −X3, X2 −X3

Y1, Y2

)
+A

(
X2, X3, X4

Y1 + Y2, Y3, Y4

)
B

(
X1 −X2

Y1

)

+A

(
X1, X2, X4

Y1, Y2, Y3 + Y4

)
B

(
X3 −X4

Y3

)
+A

(
X1, X4

Y1, Y2 + Y3 + Y4

)
B

(
X2 −X4, X3 −X4

Y2, Y3

)

+A

(
X1, X3, X4

Y1, Y2 + Y3, Y4

)
B

(
X2 −X3

Y2

)
−A

(
X1, X2, X4

Y1, Y2, Y3 + Y4

)
B

(
X4 −X3

Y4

)
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−A
(

X1, X2
Y1, Y2 + Y3 + Y4

)
B

(
X3 −X2, X4 −X2

Y3, Y4

)

−A
(

X1
Y1 + Y2 + Y3 + Y4

)
B

(
X2 −X1, X3 −X1, X4 −X1

Y2, Y3, Y4

)

−A
(

X1, X2, X4
Y1, Y2 + Y3, Y4

)
B

(
X3 −X2

Y3

)
−A

(
X1, X4

Y1 + Y2 + Y3, Y4

)
B

(
X2 −X1, X3 −X1

Y2, Y3

)

−A
(

X1, X3, X4
Y1 + Y2, Y3, Y4

)
B

(
X2 −X1

Y2

)
.

Definition C.22. For two bimoulds A,B ∈ BARI, set

preari(A,B) = aritA(B) + mu(B,A).

Then, the ari bracket is defined as

ari(A,B) = preari(A,B)− preari(B,A).

Example C.23. For two bimoulds A,B ∈ BARI, one obtains

ari(A,B)
(
X1, X2
Y1, Y2

)
= B

(
X2

Y1 + Y2

)
A

(
X1 −X2

Y1

)
−B

(
X1

Y1 + Y2

)
A

(
X2 −X1

Y2

)

−A
(
X1
Y1

)
B

(
X2
Y2

)
−A

(
X2

Y1 + Y2

)
B

(
X1 −X2

Y1

)

+A

(
X1

Y1 + Y2

)
B

(
X2 −X1

Y2

)
+B

(
X1
Y1

)
A

(
X2
Y2

)
,

In difference to the previous cases, one obtains the definition of the ari bracket on the space
ARI of moulds by considering just the variables Yi. For example, one has for A,B ∈ ARI

ari(A,B)(X1, X2) = B(X1 +X2)A(X1)−B(X1 +X2)A(X2)−A(X1)B(X2)
−A(X1 +X2)B(X1) +A(X1 +X2)B(X2) +B(X1)A(X2).

Combining both statements in [SS20, Theorem 3.1.], one obtains the following.

Theorem C.24. The spaces BARIal and ARIal equipped with the ari bracket are Lie
algebras.

Define

ARIpol,R =
{
A ∈ ARI

∣∣∣∣∣ · Ad(X1, . . . , Xd) ∈ R[X1, . . . , Xd] for all d ≥ 1,
· Ad(X1, . . . , Xd) 6= 0 only for finitely many d ≥ 1

}
,

BARIpol,R =

A ∈ BARI

∣∣∣∣∣∣∣∣
· Ad

(
X1, . . . , Xd

Y1, . . . , Yd

)
∈ R[X1, Y1, . . . , Xd, Yd] for all d ≥ 1,

· Ad
(
X1, . . . , Xd

Y1, . . . , Yd

)
6= 0 only for finitely many d ≥ 1

 ,
and similarly for all subspaces of ARIR and BARIR. The two spaces ARIpol,R and
BARIpol,R are bi-graded by weight and depth, the homogeneous component of weight
w is given by(

(B)ARIpol,R
)(w)

=
{
A ∈ (B)ARIpol,R

∣∣∣∣∣ Ad homogeneous of degree w − d
for all d ≥ 1

}
(C.24.1)

218



and the homogeneous component of weight w and depth d is given by

(
(B)ARIpol,R

)(w,d)
=

A ∈ (B)ARIpol,R

∣∣∣∣∣∣∣ · A = (
d−1︷ ︸︸ ︷

0, . . . , 0, Ad, 0, . . .),
· Ad homogeneous of degree w − d.

 .
(C.24.2)

Since the ari bracket is defined by a finite number of terms homogeneous in weight and
depth, Theorem C.24 implies the following.

Corollary C.25. Both ARIpol
al and BARIpol

al are bi-graded Lie algebras with the ari bracket.

Remark C.26. The set of all symmetral (bi-)moulds is the corresponding Lie group to
the alternal (bi-)moulds. Define for any bimould A ∈ BARI,

expari(A) =
∑
n≥0

1
n! preari(. . . preari(preari(A,A), A), . . . , A)︸ ︷︷ ︸

n−1 times

(C.26.1)

= 1 +A+ 1
2 preari(A,A) + 1

6 preari(preari(A,A), A) + . . . .

By [Sc15, Proposition 2.6.1.] the operator expari restricts to bijections

expari : BARIal → GBARIas, expari : ARIal → GARIas .

In particular, both sets GBARIas and GARIas are groups, the explicit group law gari is
given in [Sc15, (2.7.3.)].
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Ich möchte mich auch bei Dominique Manchon bedanken für die sehr interessanten und
informativen Diskussionen während seines Aufenthaltes in Hamburg aber vor allem auch
für sein Interesse an meiner Doktorarbeit.
Außerdem bedanke ich mich bei Koji Tasaka und Jan-Willem van Ittersum für das Interesse
an meiner Forschung und Hinweise zu der schriftlichen Ausführung meiner Ergebnisse. Ich
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Abstract

We study the algebraic structure of multiple q-zeta values, being inspired by the theory
of multiple zeta values.
Multiple zeta values are real numbers, which occur and have been studied in various areas
of mathematics and high energy physics. They satisfy a lot of algebraic relations and
conjecturally all of those arise from the so-called extended double shuffle relations. This
leads to the definition of the algebra Zf of formal multiple zeta values, which was for
example studied by Ihara-Kaneko-Zagier or Gangl-Kaneko-Zagier. In his thesis, Racinet
gave an algebraic approach to the formal multiple zeta values in terms of non-commutative
power series. More precisely, he showed that the algebra Zf modulo ζf (2) represents a
pro-unipotent affine group scheme DM0. Using the corresponding Lie algebra dm0 al-
lowed him to prove that Zf is a free polynomial algebra. Moreover, one obtains that Zf
equipped with Goncharov’s coproduct is a Hopf algebra. The appendix provides a detailed
exposition of this approach.
A multiple q-zeta value is a particular kind of q-series, which yields a multiple zeta value
for the limit q → 1 (whenever the corresponding multiple zeta value exists). We intro-
duce the balanced multiple q-zeta values, which span the algebra Zq of all multiple q-zeta
values and satisfy very explicit and simple relations. In particular, their product formula
is a balanced combination of the two product formulas for multiple zeta values. Another
advantage of the balanced multiple q-zeta values is that they give a simple description of a
conjectural weight-grading on Zq, which extends the weight-grading of the quasi-modular
forms. Moreover, the balanced multiple q-zeta values are closely related to the combina-
torial multiple Eisenstein series, which were obtained in a joint work with Bachmann.
With similar techniques as for multiple zeta values, we extend the balanced multiple q-
zeta values to a wider set of indices, such that they lie in the image of some morphism
from a quasi-shuffle algebra. The expected relations for these regularized multiple q-zeta
values lead to the definition of the algebra Zfq of formal multiple q-zeta values. This thesis
provides an algebraic approach to the algebra Zfq , which should be seen as a q-analog of
Racinet’s approach to formal multiple zeta values.
It turns out that the algebra Zfq modulo the formal quasi-modular forms ζfq (2), ζfq (4), ζfq (6)
represents an affine scheme BM0, which has values in a completed Hopf algebra of non-
commutative power series. Moreover, the affine group scheme DM0 introduced by Racinet
for the formal multiple zeta values embeds into BM0. This implies a projection from the
algebra Zfq of formal multiple q-zeta values onto the algebra Zf of formal multiple zeta
values, which should be seen as a formal version of the limit q → 1.
Linearizing the defining equations of the affine scheme BM0 leads to a space bm0 consist-
ing of non-commutative polynomials. In analogy to the case of multiple zeta values, we
expect that BM0 is a pro-unipotent affine group scheme and bm0 is its Lie algebra. The
space bm0 is very explicit and its generators can be computed up to weight 13, this allows
testing potential Lie brackets on bm0.
In this thesis, we obtained a Lie algebra mq equipped with the so-called q-Ihara bracket
{−,−}q, which is a generalization of the twisted Magnus Lie algebra (mt, {−,−}). Just
as dm0 is a Lie subalgebra of the twisted Magnus Lie algebra, we expect that bm0 is a Lie
subalgebra of (mq, {−,−}q). The elements in bm0 as well as the q-Ihara bracket {−,−}q
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are quite complicated. By computer experiments, we verified that the q-Ihara bracket
preserves bm0 up to weight 9, and with some more effort one could probably extend this
to weight 13.
On the other hand, Kühn proposed an approach to Lie algebras related to multiple q-zeta
values by using Ecalle’s theory of (bi-)moulds. We show that the (conjectural) Lie algebra
of alternil and swap invariant bimoulds is isomorphic to bm0. Although the alternil and
swap invariant bimoulds can only be calculated in very small weights and depths, since the
occurring bimoulds become very large, its depth-graded version is much more accessible
for explicit calculations. Therefore, the bimould approach as well as the non-commutative
approach to Lie algebras related to multiple q-zeta values are both of interest.
Independent of the general algebraic approach to multiple q-zeta values explained before,
explicit calculations give a partial result towards Bachmann’s conjecture that the brackets
and the bi-brackets span the same space. This result is a side product of this thesis.
In summary, this thesis opens up a lot of new questions and possible ways to continue,
some of which are described at the end of the introduction.
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Zusammenfassung

Wir untersuchen die algebraische Struktur der multiplen q-Zetawerte inspiriert durch die
Theorie der multiplen Zetawerte.
Multiple Zetawerte sind reelle Zahlen, welche in diversen Feldern der Mathematik und der
Hochenergiephysik auftreten und studiert werden. Sie erfüllen eine Vielzahl von algebrais-
chen Relationen und vermutungsweise entstehen alle durch die sogenannten erweiterten
Doppelshuffle-Relationen. Dies führt zu der Definition der Algebra Zf der formalen multi-
plen Zetawerte, welche zum Beispiel von Ihara-Kaneko-Zagier oder Gangl-Kaneko-Zagier
studiert wurde. Racinet erklärt in seiner Doktorarbeit einen algebraischen Zugang zu
den formalen multiplen Zetawerten, der nicht-kommutative Potenzreihen nutzt. Genauer
zeigt er, dass die Algebra Zf modulo ζf (2) ein pro-unipotentes affines Gruppenschema
DM0 repräsentiert. Dann nutzt er die zugehörige Lie-Algebra dm0 um zu zeigen, dass Zf
eine freie Polynomalgebra ist. Außerdem folgt, dass Zf ausgestattet mit Goncharovs Ko-
produkt eine Hopf-Algebra ist. Der Appendix enthält eine detaillierte Darstellung dieses
Zugangs.
Ein multipler q-Zetawert ist eine spezielle Art einer q-Reihe, welche unter dem Gren-
zwert q → 1 einen multiplen Zetawert liefert (wenn der zugehörige multiple Zetawert
existiert). Wir führen die balancierten multiplen q-Zetawerte ein, welche die Algebra Zq
aufspannen und sehr explizite und einfache Relationen erfüllen. Insbesondere ist ihre
Produktformel eine ausbalancierte Kombination der beiden Produktformeln für multi-
ple Zetawerte. Ein weiterer Vorteil der balancierten multiplen q-Zetawerte ist, dass sie
eine einfache Beschreibung einer vermuteten Gewichtsgraduierung auf Zq liefern, welche
die Gewichtsgraduierung der Quasi-Modulformen erweitert. Die balancierten multiplen
q-Zetawerte stehen in engem Zusammenhang zu den kombinatorischem multiplen Eisen-
steinreihen, welche in einer gemeinsamen Arbeit mit Bachmann entdeckt wurden.
Mit ähnlichen Methoden wie bei den multiplen Zetawerten, erweitern wir die balancierten
multiplen q-Zetawerte auf eine größere Menge von Indices, sodass diese im Bild eines
Morphismus von einer Quasishuffle-Algebra liegen. Die erwarteten Relationen von diesen
regularisierten multiplen q-Zetawerten liefern die Definition der Algebra Zfq der formalen
multiplen q-Zetawerte. Diese Arbeit präsentiert einen algebraischen Zugang zu der Alge-
bra Zfq , welcher als q-Analog von Racinet’s Zugang zu den formalen multiplen Zetawerten
gesehen werden sollte.
Es stellt sich heraus, dass die Algebra Zfq modulo den formalen Quasi-Modulformen
ζfq (2), ζfq (4), ζfq (6) ein affines Schema BM0 darstellt, welches Werte in einer komplet-
tierten Hopf-Algebra von nicht-kommutativen Potenzreihen hat. Darüber hinaus gibt es
eine Einbettung des affinen Gruppenschemas DM0, welches von Racinet für die formalen
multiplen Zetawerte eingeführt wurde, in das affine Schema BM0. Dies impliziert eine Pro-
jektion von der Algebra Zfq der formalen multiplen q-Zetawerte auf die Algebra Zf der
formalen multiplen Zetawerte, welche als formale Version der Grenzwertabbildung q → 1
gesehen werden sollte.
Linearisieren der definierenden Gleichungen des affinen Schemas BM0 führt zu dem Vektor-
raum bm0, der aus nicht-kommutativen Polynomen besteht. In Analogie zu den multiplen
Zetawerten erwarten wir, dass BM0 ein pro-unipotentes affines Gruppenschema ist und
bm0 die zugehörige Lie-Algebra. Der Vektorraum bm0 ist sehr explizit und die Erzeuger
können bis zum Gewicht 13 berechnet werden, dies erlaubt potentielle Lie-Klammern auf

228



bm0 zu testen.
In dieser Arbeit präsentieren wir eine Lie-Algebra mq ausgestattet mit der sogenannten
q-Ihara-Klammer {−,−}q, welche eine Verallgemeinerung der getwisteten Magnus Lie-
Algebra (mt, {−,−}) ist. Genauso wie dm0 eine Lie-Unteralgebra der getwisteten Magnus
Lie-Algebra ist, erwarten wir, dass bm0 eine Lie-Unteralgebra von (mq, {−,−}q) ist. Die
Elemente in bm0 und die q-Ihara-Klammer {−,−}q sind recht kompliziert. Mit Computer-
Experimenten konnten wir verifizieren, dass bm0 abgeschlossen unter der q-Ihara-Klammer
ist bis zum Gewicht 9, mit etwas mehr Aufwand kann dies vermutlich bis Gewicht 13 fort-
geführt werden.
Auf der anderen Seite hat Kühn einen Zugang zu Lie-Algebren von multiplen q-Zetawerten
vorgeschlagen, welcher Ecalles Theorie der (Bi-)Moulds nutzt. Wir zeigen, dass die (ver-
mutete) Lie-Algebra der alternil und swap-invarianten Bimoulds isomorph ist zu bm0.
Obwohl alternil und swap-invariant Bimoulds nur in sehr kleinen Gewichten und Tiefen
berechnet werden können, da die auftretenden Bimoulds sehr groß sind, ist die tiefen-
graduierte Version wesentlich zugänglicher für explizite Berechnungen. Daher ist sowohl
der Zugang via Bimoulds als auch der nicht-kommutative Zugang zu Lie-Algebren von
multiplen q-Zetawerten sehr interessant.
Unabhängig von dem oben erklärten algebraischen Zugang zu multiplen q-Zetawerten
liefern explizite Berechnungen Teilresultate in Richtung Bachmanns Vermutung, dass die
Klammern und die Bi-Klammern denselben Vektorraum aufspannen. Dieses Resultat ist
einer Nebenprodukt dieser Doktorarbeit.
Zusammenfassend wirft diese Arbeit viele neue Fragen auf und liefert viele mögliche Wege
zur Fortsetzung, ein paar von diesen werden am Ende der Einleitung beschrieben.
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Publications related to this dissertation

Subsection 2.5 is based on

[BB22] H. Bachmann, A. Burmester. ”Combinatorial multiple Eisenstein series”.
Preprint, ArXiv: 2203.17074v2 [math.NT], 2022.

The paper provides the construction of the combinatorial (bi-)multiple Eisenstein series
and presents their properties. H. Bachmann and I independently obtained a construction
for the combinatorial bi-multiple Eisenstein series in depth 3, therefore we decided to
study the general depth case together. The main idea for the general construction is due
to H. Bachmann and together we figured out the details. Then my main task was to find
a proof that this construction has indeed the desired properties. H. Bachmann came up
with a first draft of the paper, which we then filled in together with details.
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