
Dynamics of open and closed classical and
quantum-mechanical spin systems

Dissertation
zur Erlangung des Doktorgrades

an der Fakultät für Mathematik, Informatik und
Naturwissenschaften
Fachbereich Physik

der Universität Hamburg

vorgelegt von
David Vincent Altwein

Hamburg
28.11.2021



Gutachter/innen der Dissertation: PD. Dr. Elena Y. Vedmedenko
Prof. Dr. Alexander Lichtenstein

Zusammensetzung der Prüfungskommission: Prof. Dr. Elena Y. Vedmedenko
Prof. Dr. Alexander Lichtenstein

Prof. Dr. Roland Wiesendanger
Dr. Thore Posske

Prof. Dr. Günter Sigl

Vorsitzender der Prüfungskommission: Prof. Dr. Günter Sigl

Datum der Disputation: 26.04.2022

Vorsitzender Fach-Promotionsausschusses PHYSIK: Prof. Dr. Wolfgang Hansen

Leiter des Fachbereichs PHYSIK: Prof. Dr. Michael Potthoff

Dekan der Fakultät MIN: Prof. Dr. Heinrich Graener

2



Contents

1 Introduction 3

2 Theory 6
2.1 Magnetic order in atomic and nano-sized physical systems . . . . . . . . . . . . . 6

2.1.1 Magnetic interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Superparamagnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.3 Néel-Brown-Law und Stoner-Wohlfarth-Approximation . . . . . . . . . . 12

2.2 Spin spirals and winding numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Non-collinear magnetic states . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Topological properties in continuous magnetic systems . . . . . . . . . . . 15

2.3 Dynamics in closed and open quantum systems . . . . . . . . . . . . . . . . . . . 16
2.4 Simulation methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.1 Spin dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.2 Gilbert-Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.3 Numerical integration method . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Interaction assisted switching of ferromagnetic nanoparticles 28
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Collective switching of interacting nanodots . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.2 Results of the experiment and simulations . . . . . . . . . . . . . . . . . . 31
3.2.3 Energy landscape and dynamical correlation function . . . . . . . . . . . . 37
3.2.4 Systematic tuning of switching properties . . . . . . . . . . . . . . . . . . 41
3.2.5 Numerical results for a 4-particle-array . . . . . . . . . . . . . . . . . . . 41
3.2.6 Interacting magnetic oscillators . . . . . . . . . . . . . . . . . . . . . . . 44
3.2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Dynamical phases of interacting nanoparticles . . . . . . . . . . . . . . . . . . . . 47
3.3.1 Dynamic phase transition in linear response and Landau theory . . . . . . 47
3.3.2 Dynamical phase transition for two interacting magnetic moments . . . . . 49
3.3.3 Statistical description of a dynamic phase transition . . . . . . . . . . . . . 51
3.3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Concept of non-trivial topological magnetic helices 58
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1.1 Structure under consideration . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 Energy minimization of magnetic spin chains . . . . . . . . . . . . . . . . . . . . 60

3



4.3 Theoretical model of spin spirals and helices . . . . . . . . . . . . . . . . . . . . . 66
4.3.1 Search for stationary energy states of the spin chain . . . . . . . . . . . . . 66

4.4 Spin dynamics and Monte Carlo simulations . . . . . . . . . . . . . . . . . . . . . 67
4.5 Search for topological invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5 Efficient propagation of a dissipative wavefunction equation (DWE) 74
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2 Linear evolution equation for a non-Hermitian Hamiltonian . . . . . . . . . . . . . 77
5.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.4 Relation between DWE, Gisin’s Equation and Lindblad-master equation . . . . . . 86
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6 Summary 91

4



Abstract

This thesis is dedicated to the theoretical and practical understanding of different influences of inter-

actions on the statical and dynamical properties of classical and quantum spin systems. Systems of

interest have been finite temperature arrays of dipolarly coupled superparamagnetic nanoparticles

with uniaxial anisotropy, spin chains with short and long range exchange or dipolar interactions, as

well as coupled and diagonalized quantum spins in an infinitely large environment at zero temper-

ature, leading to relaxation behavior for the spin system.

For the case of the coupled nanoparticles, finite temperature Langevin spin dynamics in the form

of stochastic Landau-Lifshitz-Gilbert-Equation simulations were employed and supplemented with

analytic modelling of the phase space. The investigation of the spin chains was realized by both

spin dynamical and Monte Carlo simulations as well as analytical calculations for the prediction of

collinear and non-collinear ground states of the chains. Finally, the study of the relaxation behavior

of isolated and coupled quantum spins in a thermal environment was described by a non-Hermitian

Hamiltonian generator for the dynamics of pure quantum states.



Zusammenfassung

Diese Dissertation ist dem theoretischen und praktischen Verständnis von verschiedenen Wech-

selwirkungseffekten auf statische und dynamische Eigenschaften von klassischen und quanten-

mechanischen Spinsystemen gewidmet. Als interessante Systeme wurden dipolar gekoppelte Nano-

teilchen in einem Temperaturbad, Spinketten mit kurz- und langreichweitiger Austausch- und Dipol-

Dipol-Wechselwirkung sowie austauschgekoppelte, anisotrope Quantenspins in einer Energierelax-

ation auslösenden Umgebung studiert.

Für den Fall der gekoppelten Nanoteilchen wurde dabei ein Langevin-Algorithmus zur Imple-

mentierung von stochastischen Landau-Lifshitz-Gilbert-Gleichungen (LLG) bei endlicher Temper-

atur verwendet und durch analytische Betrachtungen für den Phasenraum und die Energieland-

schaft komplementiert. Die Untersuchung der Spinketten wurde ebenfalls mit einer stochastis-

chen LLG sowie mit Monte-Carlo-Simulationen und analytischen Betrachtungen für die Vorher-

sage kollinearer und nichtkollinearer Grundzustände unterfüttert. Desweiteren wurde das Relax-

ationsverhalten isolierter und austauschgekoppelter Quantenspins in einer thermischen Umgebung

mit einem neuartigen nichthermiteschen Erzeuger für die Zeitentwicklung reiner Zustände model-

liert.
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Chapter 1

Introduction

In today’s age of computerized societies and economies there is a great need for improvement in

the capacity and stability of digital data storage and adaptability of information processing devices,

famously formulated in the form of Moore’s law. Its content predicts an exponential growth of the

density of transistors on integrated circuits [65].

Not very long ago, most available information has been represented and stored on paper for books

or on vinyl records for audio related content. The introduction of digital computers and the inven-

tion of digital information based storage like magnetic hard drives, led to storage platforms using

magnetic grains as fundamental units of classical bits, being manipulated via magnetic fields. Great

progress has been made by employing magnetoresistive devices, such as the giant magnetoresis-

tance effect [67], to create sensitive magnetic field sensors for a better read-out of magnetic bits.

Challenges of the more recent past include increase of the density of magnetic grains in modern

magnetic data storage devices.

As the density of magnetic grains on a hard drive becomes higher, one inevitably faces the problem

of interactions between the individual particles of the array. This fact calls into question whether

the magnetic particles can still be used as bits of information to be stored for a very long time (≈

10 years). These interactions manifest in the form of multipolar potential terms of which usually

dipolar terms form a very good leading order approximation. These interactions must be consid-

ered as additional perturbations for the stability of magnetic grains other than thermodynamically

unavoidable thermal fluctuations.
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Another striking challenge in this rapidly expanding research field is the stability as well as the

controlled creation or annihilation of particular bit states in increasingly narrow spatial arrange-

ments. Fur this purpose, non-collinear magnetic ground state configurations have been proposed

such as magnetic vortices, magnetic spirals, or magnetic skyrmions [45, 46, 47]. The latter two

magnetic states attract additional interest because one can associate a nontrivial topological wind-

ing to the magnetization field of each system when the continuum limit of an infinite crystal lattice

is considered.

A further challenge lies in the accurate theoretical description of experimentally investigated small

magnetic systems that form the basis for understanding of the above mentioned devices of informa-

tion technology. These systems are comprised of elementary quantum spins and while classical spin

precession and relaxation (more correctly monodomain macrospins) can be conveniently described

by the classical Landau-Lifshitz-Gilbert-Equation quantum spins generically follow the stochastic

predictions of the time-dependent Schrödinger Equation for probability amplitudes. Luckily, in

many applications the quantum coherent nature of the spins is removed due to quantum entangle-

ment with an environment and is replaced by a classical probabilistic evolution law, described by a

master equation [110].

In this thesis, the primary focus lies on how boundary conditions, internal interactions and coupling

to environmental degrees of freedom affect one and two dimensional spin systems both structurally

and dynamically in different settings. I used both classical and quantum mechanical approximation

methods to explain my results and whenever necessary, I added analytical modelling and calcula-

tions to the numerical results. As an additional pillar, I was engaged in methodological work for

developing and testing a dissipative wave equation and this will be discussed and highlighted in the

second half of my thesis.

In order to give a comprehensive overview over the topics covered and methods that have been

utilized, I will start with a theory chapter. This will deal with theories important for this thesis and

introduce the numerical techniques, used in each chapter.

In chapter 3, the impact of long-range dipolar interactions on the dynamical behavior of disor-

dered ferromagnetic nanoparticles, motivated by experimental research on small arrays of cobalt-

platinum ferromagnetic nanodots [15], have been investigated. I used a system of coupled stochas-
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tic Landau-Lifshitz-Gilbert Equations (SLLG) to model the impact of an effective magnetic field

on each nanoparticle, assuming the validity of a macrospin approximation. The SLLG calcula-

tions revealed a crucial influence of dipolar interactions on the switching behavior of individual

nanoparticles, leading to collective switching behavior, as well as a sensitive interplay of differ-

ent parameters of the system, partially unobtainable via experiment. To complement the dynamical

analysis, I performed additional calculations on the energy landscape and phase space of the system.

Furthermore, an action-based model was added to bring together structural and dynamical findings

of the system to a satisfying conclusion. The results of this work have been published in [1]. In

addition, the correlation behavior of coupled nanoparticles have been calculated and quantified as

a function of distance and based on elementary arguments a classical dynamical phase transition

was proposed.

Chapter 4 deals with the proposition and realization of a physical model for energy storage and

release, based on a chain of magnetic particles with chiral and topological excitations. Results

were published in [53] and produced in close collaboration with E. Vedmedenko. We explored

the critical role of external influences on terminal objects of the chain toward the entire chain,

leading the path to a systematic, parameter-controlled manipulation of the chain and a conversion

of metastable states in an unconstrained system towards stable states in a constrained system. These

findings were, among other things, motivated and preceded by results from energy and phase space

analysis on magnetic configurations, dealt with in chapter 3. In this context, chapter 4 picks up and

evolves questions that emerged in 3 while the focus is changed from a more dynamical perspective

towards a structural. External control and dynamical aspects are still present and crucial.

After discussing dynamical and structural properties of open classical spin systems in the first part

of the thesis, an implementation of a numerical method for a quantum counterpart of open spin sys-

tems was intended. Chapter (5) is dedicated to the general dynamical modelling of open quantum

spin systems, based on a numerically improved and linearized version of a nonlinear Schrödinger

Equation (SGE), introduced by Gisin [85]. This work brings together conceptual aspects of the

foundations of quantum wave equations, their numerical efficiency in different representational

forms and the possibility of using them for concrete quantum spin systems, as discussed in the

previous chapters.
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Chapter 2

Theory

This chapter is dedicated to introduce the theoretical concepts and models on which this thesis

is based. First of all, a short phenomenological description of the different manifestations of

macroscopic magnetism is provided. After that, the different underlying classical and quantum

mechanical interaction laws are discussed which lead to the known phenomena of magnetic order

on different length scales.

Secondly, a brief introduction to non-collinear states and topological protection in magnetic sys-

tems is given. This will help to understand the notions of topological order, appearing in the context

of chapter 4 of this thesis. Finally, the basic ideas of closed and open quantum systems will be in-

troduced in order to have some background for the results of chapter 5 of this thesis.

2.1 Magnetic order in atomic and nano-sized physical systems

Research on magnetism delivered ground breaking knowledge in different parts of physics in the

last 200 years, ranging from atomic and molecular physics towards astrophysics and cosmology.

At the fundamental level of elementary particles magnetic phenomena are described by Maxwell’s

equations and the Pauli exclusion principle.

The advent of experimental and theoretical methods in the course of the 20th century enabled to

investigate magnetism at the nanoscale when quantum effects become important and govern the

magnetic interactions between elementary spin degrees of freedom.
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Magnetic order manifests in nature in different forms. Usually, one differentiates five classes of

magnetic phases: Ferromagnetism, Antiferromagnetism, Paramagnetism, Diamagnetism and Su-

perparamagnetism. Paramagnetism is defined by the property of solids, small particles, isolated

atoms or ions to have a vanishing time-averaged expectation value of magnetization ⟨M⟩t =
∑
i

µ⃗i
V

(for volume V and magnetic moment µ⃗). This effect is caused by thermal fluctuations that prevent

a time averaged orientation from forming. The theoretical description is given by the Langevin

formalism which assumes no residual interactions between adjacent magnetic moments that form

a paramagnet [24].

A solid will be refered to as ferromagnetic, if the atomic magnetic moments align in small compart-

ments in the same direction. These regions are known as magnetic domains and were introduced

by Weiss for the first time [141]. A ferromagnet is characterized by a characteristic magnetization

curve which tracks the magnitude of the magnetization as a function of applied external magnetic

field. Due to its importance for understanding ferromagnetic and superparamagnetic particles, this

magnetization curve is described in more detail below:

First of all, the ferromagnet with saturation magnetization MS will be completely demagnetized

during a time interval t = τdemag. by undergoing repeated magnetization cycles with decreasing

area in the plane, spanned by external magnetic field and magnetization. This can be managed by

a time-dependent, oscillating magnetic field Bext = B0 sin(ωt)f(t) with amplitude B0 ≥ Bc and a

decaying function f = f(t) → 0 (for t ≈ τdemag.) which steadily decreases both total magnitude

Mmax = Mmax(t) and residual/remanence value of the magnetization of the ferromagnet MR =

MR(t).

Then the curve starts at the origin (M⃗, B⃗) = (0, 0). The increase of the external magnetic field

value creates domain wall motion in the ferromagnet which leads to the decrease of the size of

domains with anti-parallel alignment to the magnetic field M⃗domain∥B⃗ = µ0H⃗ , resulting in the

minimization of the Zeeman energy

−gµBH⃗S⃗i. (2.1)

Its magnitude is directly proportional to the external field. The scattering of domain walls on

impurities impedes the growth of the energetically favorable domains and behind the impurities a
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bubble of magnetic moments arises, preserving the orientation of several magnetic moments in the

vicinity until the direction is suddenly flipped in a collective manner. This phenomenon is coined

”Barkhausen jump” and once all bubbles have flipped parallel to the magnetic field direction the

magnetization converges to the saturation magnetization M⃗S for field values values H ≥ HS . As

the magnitude of the external field is reduced, the magnetization decreases and reaches a finite

value in zero field, called remanence MR. This can be traced back to an irreversible shifting of

domain walls under the influence of the impurities. When a critical negative field value is reached

the magnetization finally passes the zero level again and it will reach the negative magnetization

saturation for even larger negative field value. Upon remagnetizing the ferromagnet, the system will

eventually reach M⃗S forHS and a new loop is initiated. The cycle is called hysteresis, reflecting that

the evolution of the magnetization magnitude depends on the history of the system while each point

in the loop corresponds to a time averaged value. The area that is enclosed by the magnetization

curve is a measure for the produced heat

Q =

HS∫
−HS

M⃗dH (2.2)

which converts into an increase in entropy S by an amount of ∆S = ∆Q
T

.

2.1.1 Magnetic interactions

According to classical electrodynamics, a magnetic moment µ⃗i generates a magnetic field of flux

density B⃗µj(r⃗) at location r⃗, where another magnetic moment µ⃗i aligns parallel to that generated

field. The interaction energy of N moments is calculated by

Edd =
1

2
· µ0

4π

N∑
ij,i̸=j

( µ⃗iµ⃗j
r3ij
− 3 · (µ⃗i · r⃗ij)(µ⃗j · r⃗ij)

r5ij

)
(2.3)

Eb,i = −
1

2

N∑
ij,i̸=j

µ⃗i · B⃗j(r⃗ij) (2.4)

with the effective dipolar fields of the moments µ⃗j onto the moment µ⃗i. The factor 1/2 ensures that

the interaction energy is not counted twice. As the dipolar interaction only decreases proportional

to the inverse cube of the particle distance, it is considered long-range. A system with only two
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magnetic dipoles already has an energy landscape with several saddle points and a global minimum

parallel to the connecting line between the particles. This will be the starting point of analytical

predictions in chapter 5.

Especially for strong anisotropic energies perpendicular to the film plane, there is a tendency to-

ward antiferromagnetic coupling behavior which is important for chapter 4. Despite its frequent

occurence, the dipolar energy doesn’t explain the emergence of ferromagnetism between atomic

magnetic moments, as for parallel alignment the dipolar energy Edd would be just 0.1 meV for a

typical lattice constant of a≈ 0.3 nm. This would not be a robust energy scale against thermal

fluctuations at room temperature. Nevertheless, transition metals such as iron, cobalt or nickel are

observed in the ferromagnetic state at room temperature.

The key to the understanding of ferromagnetic coupling lies in the short-range exchange interaction

between neighboring spins. It is of quantum mechanical origin, favors either ferromagnetic or

antiparallel alignment and is quantified via a scalar product

Eexchange = −
∑

⟨i,j ⟩i ̸=j,|i−j|=1

JijS⃗i · S⃗j (2.5)

Jij ∝
∫
V1

∫
V2

Ψ∗(r⃗1, r⃗2)HΨ(r⃗1, r⃗2)dr1dr2. (2.6)

Jij is the exchange integral and Ψ is a completely antisymmetric wavefunction formed by a spin

and position wavefunction part, respectively [119]. This integral typically has significant non-zero

value for nearest neighbors, but occasionally extends to more neighbors. Dependent on the model,

the spins S⃗i and S⃗j can be modelled either as classical vectors or with the help of raising and

lowering operators Ŝ±
i,j = Ŝi,j,x ± iŜi,j,y as quantum mechanical observables.

A special form of the exchange interaction is described by the Rudermann-Kittel-Kasuya-Yoshida

interaction (short: RKKY interaction) [150] which is mediated indirectly through polarized s-

electrons, causing the interaction to be long-ranged, similar to the dipole-dipole interaction. Fur-

thermore, the amplitude of the interaction oscillates periodically between ferromagnetic and an-

tiferromagnetic coupling while its value decreases with an inverse cube law. This behavior is
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straightforwardly explained by a Fourier representation in dual k-space where the interaction en-

ergy is constant, as the quasi-free conduction electrons E(k⃗) ≈ ℏ2k2
2m

lie in the vicinity of the Fermi

edge. A Fourier transformation into real space results in the sinusoidal coupling pattern:

Jij =
∑
k⃗

J(k⃗) exp(−i⃗k(R⃗i − R⃗j) (2.7)

Jij =
−J2k6F (sin(2kFRij)− 2kFRij cos(2kFRij))

EF (2kFRij)4
(2.8)

The exchange interaction Jij leads to a favorable angle of nearest neighbor spins of θ = 0 or

θ=π, but there is no prefered direction in space for this alignment in the absence of an external

field. This isotropy should therefore lead to a vanishing magnetization average ⟨M⟩t = 0 based on

symmetry considerations. A spontaneous magnetization along a crystallographic axis therefore has

to be attributed to a symmetry breaking that originates in the relativistic spin-orbit coupling which

is known as magnetocrystalline anisotropy.

In a crystalline environment, a magnetic moment experiences a crystal field from surrounding point

charges which usually leads to an easy axis along which electrostatic energy is minimized. This

creates a minimal overlap for the atomic orbitals of the considered ion with the surrounding charges

which are also known as ligands. The possible prefered directions depend on the symmetry of the

crystal field and will be described as the easy axis of the system. As the rotating charge can be

considered as an orbital angular momentum L⃗ of the electron with spin angular momentum S⃗, the

anisotropy is finally reduced to the spin-orbit-coupling.

If only one easy axis exists in the system, one speaks of uniaxial anisotropy. For an easy axis

parallel to the z-axis, one has

EK⊥ = −
∑
i

K · µi cos2 θ (for θ = 0 . . . π) or EK⊥ = −
∑
i

Kµi sin
2 θ (for θ = −π/2 . . . π/2)

(2.9)

EK⊥ = −
∑
i

K · S2
z,i (cartesian coordinates) (2.10)

For an easy axis in the plane, we have least energy for a spin configuration in the x-y plane.
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2.1.2 Superparamagnetism

Superparamagnetism describes the magnetic behavior of a very small particle of a ferromagnet

which doesn’t form more than one magnetic domain due to its small volume and the cost for domain

wall creation. The atomic magnetic moments of the domain compartment are aligned collinearly,

but the total magnetization behaves paramagnetic (as a function of time) below a critical size of the

particle. This special form of paramagnetic behavior is also known as superparamagnetic behavior.

The switching process of such particles is described through coherent rotation or by domain wall

propagation. For later considerations in chapter 4 domain wall propagation is ruled out as a dynam-

ical reversal process. These particles do not undergo hysteresis while completing a magnetization

curve loop, as there is no irreversible behavior expected for the polarization process of the magne-

tization. The curve describes an s-shape which can be derived from elementary considerations in

statistical mechanics.

The statistical mechanical expectation value of a superparamagnetic particle can be determined via

the well known canonic ensemble. We start with a Hamiltonian of the form

H = −µ0µSS⃗B⃗ (2.11)

and assume an Ising-model with two stable states of energy E1 and E2 in ±-z direction, leading to

an expectation value with the canonical partition sum Z =
2∑
i=1

exp(βEi) as

⟨Mz⟩ =M0
exp(−βH)
Z

=M0
exp(−β(E2 − E1)

Z
(2.12)

=M0
exp(+βµoµSS⃗B⃗)− exp(−βµoµSS⃗B⃗)

exp(+β(µoµSS⃗B⃗)) + exp(−βµoµSS⃗B⃗)
(2.13)

=M0
sin(βµ0µsSzBz)

cos(µ0µsSzBz)
=M0 tan(βµ0µsSzBz). (2.14)

The magnetization curve, belonging to M⃗ (B) is s-shaped and has a reversible character as men-

tioned before.
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2.1.3 Néel-Brown-Law und Stoner-Wohlfarth-Approximation

The different contributions of the magnetostatic stray field energy, the exchange energy and the

magnetocrystalline anisotropy decide whether magnetic particles form one or multiple single do-

main states. For sufficiently small volumes the second case will be realized because exchange

coupling would prevail in this scenario. A particle with saturation moment |µ⃗s| ≥ µB, uniaxial

anisotropy constant K, external field µ0H⃗ and vanishing residual interactions will be described by

a Hamiltonian of the following kind:

H = −J
∑
⟨i,j⟩

S⃗iS⃗j −K
∑
i

S2
z,i − Edd − µ0µ⃗sgS⃗iH⃗. (2.15)

The switching of the saturation moment, also coined macrospin, has two basic distinguishable

modes: The first possibility is provided by a coherent rotation of all N spins of the particle and the

second possibility is a propagation of a domain wall across the particle. The nucleation of a domain

wall with area Sdw requires an energy amount of

Edw = 2Sdw

√
A ·K. (2.16)

In the past, the possibility of the nucleation of one or more domain walls for high anisotropy

magnetic particles was shown in [146].

If the Hamiltonian function of the macrospins (2.15) satisfies the conditions for coherent rotations,

one speaks of a Stoner Wohlfarth-particle [145]. The interaction with an external field and the

alignment in an anisotropy field is described through

E = KV sin2 θ − µ0µsBSi cosϕ (2.17)

with the angles θ=∠(B⃗text, M⃗) and ϕ = (K⃗, M⃗). By demanding minimization of E with respect to

a variation of the angle θ, one arrives at the extremal value problem
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∂E

∂θ
= sin θ(2KV cos θ + µH) = 0 (2.18)

∂2E

∂θ2
< 0 (Maximum) (2.19)

∂2E

∂θ2
> 0 (Minimum) (2.20)

with extreme positions

Emin,1 = −µH (2.21)

Emin,2 = +µH (2.22)

Emax = KV +
(µH)2

4KV
= KV

[
1 +

(HMs

2K

)]
. (2.23)

The minima are the roots of the sine θ=0° and θ=180° and the maxima are at the position, where

cos θ = −µH
2KV

. A transition between different minima can be realized by a jump over the barrier

∆E1,2 = Emax −Emin,1,2. Neél and Brown deduced a stochastic model for the switching behavior

of monodomain particles that appears like an Arrhenius-law

ν = ν0 exp
(
−∆E

kBT

)
, (2.24)

as it is known for transition rates in certain chemical reactions. The frequency ν0 is in the simplest

approximation an attempt frequency which would be exactly the switching frequency for a vanish-

ing energy barrier ∆E
kBT
→ 0. This frequency depends on the Lamor precessional frequency, known

from quantum mechanics of spin angular momentum in external magnetic fields. The exponential

factor is directly related to a Boltzmann factor from statistical mechanics.

A coercive field of magnitude HK = 2K
Ms

yields switching frequencies

ν12 = ν012e
−(Emax−Emin,1)/kBT = ν012e

−KV (1+H/HK)/kBT (2.25)

ν21 = ν021e
−(Emax−Emin,1)/kBT = ν021e

−KV (1−H/HK)/kBT . (2.26)
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They are symmetric in the limit H → 0, implying ν12 ≡ ν21 and H ≥ HK maximal.

Which switching mechanism dominates depends on the form and extension of the particle [16].

The switching frequency will be determined through the anisotropy barrier ∆E= Emax − Emin,

expressing the difference between the most and least favorable energetic states θ = 0 and θ = π:

∆E= Emax − Emin. This energy can still be increased or decreased by Zeeman energy and dipolar

energy, respectively.

Ĥ = −J
∑
⟨i,j⟩

S⃗iS⃗j −K
∑
i

S⃗2
i,z − Edd − µ0µ⃗sgS⃗iH⃗. (2.27)

The time period that passes in between two switching events is the averaged life time τ = 1/ν

of a favorable magnetic state. It depends exponentially on the temperature and the energy barrier.

The time span τ of a particle in a particular state determines the time dependent magnetization

⟨M⃗⟩(B⃗)=M0 · exp(−t/τ) which is determined in an experiment of measurement duration t = texp.

One can think of this in formal analogy to a radioactive decay at time t0=0 in a sample with N

nuclei and a decay rate λ ̸= 0. After the time t1 = t, one still has

N(t) = N0 exp(−λ · t) (2.28)

radioactive nuclei. Switching of M⃗ and a decay event are both be considered as an irreversible

process.

2.2 Spin spirals and winding numbers

2.2.1 Non-collinear magnetic states

The emergence of non-collinear spin states is a topic of low-dimensional magnetism and results

from competing magnetic interactions. In monolayers the nearest neighbor distance, the symme-

try and the hybridization with the substrate can play an important role for the determination of

magnetic properties. This can lead to a variety of magnetic structures, from ferromagnetic and

antiferromagnetic states, as discussed in the previous section, towards complex, non-collinear spin

textures. The formation of a ferromagnetic or antiferromagnetic state can be the result of a domi-
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nating nearest neighbor exchange interaction; complex magnetic structures, however, often provide

a hint to a situation of competing magnetic interactions. Magnetic interactions in a monolayer on a

substrate are conveniently described by fitting the results of an ab-initio electronic structure model,

such as spin-density functional theory [121], to a two-dimensional Heisenberg model. When such

information is provided, it becomes possible to search for the origin of a specific magnetic ground

state and the relevant magnetic interactions that compete for influence.

Special emphasize is put on non-collinear states in one spatial dimension (a.k.a. spin spirals) and

can be explained in different ways in this picture of the two dimensional Heisenberg model. The

first possibility consists in having two different couplings J1 > 0 and J2 < 0 for nearest and

next-nearest neighbor coupling between spins where a competition for parallel and anti-parallel

alignment leads to helical or cycloidal spirals. The so called Dzyaloshinskii-Moriya (DM) inter-

action relates the spins via a vector product and can play an important role when the inversion

symmetry of the system is broken at the surfaces. Its Hamiltonian reads

EDM =
∑
i,j

D⃗i,j · (S⃗i × S⃗j) (2.29)

It favors a 90°-spin spiral and the rotational sense is determined by the sign of D; high symmetry

surfaces typically favor a formation of cycloidal spin spirals. Of course, competition between

Heisenberg exchange and DM-interaction may lead to spin spirals with any angle between adjacent

spins and also higher-order interactions can play a role for the magnetic ground state.

The first experimental realization of a spin spiral ground state at a surface was observed in the

system of one monolayer of Mn on a W(110) surface [122].

2.2.2 Topological properties in continuous magnetic systems

The spin spiral, considered in the continuum limit of a magnetization field, when modulated only

in one spherical angle θ or ϕ, has interesting topological properties, as its magnetization field M⃗(r⃗)

can be mapped exactly to a circle which reflects the description by the first homotopy group π1(X).

This is defined by a mapping
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M : S1 → X (2.30)

from the unit circle to the space of interest and in the case of the spin spiral the space X amounts

to the set of orientations of spins of the chain. This means that there exists no continuous transfor-

mation between a spin state in which a spiral exists and one where either no spiral or several (two

or more) spirals exist. This can also be formalized by the concept of the winding number obtained

from the Stokes theorem:

n1 =
1

2π

2π∫
0

1dϕ (2.31)

The winding number is normalized to unity for a complete integral over the S1-sphere and plays

a role in chapter 4 for determining the nontrivial topological state of the continuum limit in the

non-collinear ground states and excited states.

2.3 Dynamics in closed and open quantum systems

Familiarity with the axioms of quantum mechanics will be assumed in the following (see also [123]).

We describe the dynamics of a closed system in non-relativistic quantum mechanics by the

time-dependent Schrödinger Equation

iℏ
∂

∂t
|ψ⟩ = H|ψ⟩. (2.32)

with the Hamiltonian H and a pure state |ψ⟩ (a projective ray, equipped with an equivalence

relation |ψ⟩ ∼=|ϕ⟩ = α|ψ⟩ and α ∈ C).

It has an equivalent formulation by an equation for a density operator and is called von-Neumann-

Equation:

iℏ
∂

∂t
ρ = [H, ρ]. (2.33)

In terms of quantum statistical mechanics such a density operator is a convex combination of pure
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quantum states

ρ =
∑
i

pi|ψi⟩⟨ψi| (2.34)

and can be represented by a direct sum of irreducible representations of projective Hilbert space

rays.

If one likes to determine the dynamics of an open quantum system, one has to consider a ten-

sor product space of a relevant system of interest ρsys. and a second system, conveniently called

”environment”, ρenv. . ρtot. = ρenv. ⊗ ρsys., which must then be traced out by an operation

⟨ψenv.|ρenv. ⊗ ρsys.|ψenv.⟩, (2.35)

called the partial trace. This partial trace ignores the information of the environment and effectively

reduces the dimension of the total system to that of the system of relevance. As the partial trace

maps from a higher dimensional representation of a density operator to a lower dimensional repre-

sentation of a density operator it is ensured to be a linear map. Whether system and environment

are energetically coupled and thus entangled, also depends on the physical situation of interest.

A famous dynamical equation for an open quantum system that makes a lot of idealizations [79]

but is a good first approximation in many applicational scenarios is the Lindblad Equation which

reads

∂

∂t
ρsys. = −

i

ℏ
[ρsys., H] +

N2−1∑
i,j

Hi,j([aiρa
+
j ]−

1

2
[a+j aj, ρsys.]). (2.36)

The first term of the r.h.s. is an ordinary and potentially renormalized Hamiltonian contribution

of the ”original small system”. The second term is called a dissipator D(ai, a+j ) and has an anti-

Hermitian structure, if one conveniently chooses the Hamiltonian part as the Hermitian part. The

coefficient matrix Hi,j is a completely-positive map. However, it doesn’t conserve the trace of the

density operator ρ which is very important for the probability interpretation and this is why there is

another summand in the dissipator where a+j aj := a+j 1aj is the renormalization of the unit element

for every time step [143, 144]. This term will be important to look at later in chapter 6 of this thesis.

The Eq. (2.36) describes a memory-less semi-group evolution behavior of the density operator
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and thus models exponential-type relaxation.

In chapter 6, an equation for pure states is written down which corresponds to this equation in

the decoherence regime of a classical density function ρsys. := ρclass.sys. . Introduction of appropriate

weighting factors wi = wi(ai) and w∗
i = w∗

i (a
+
i ) for the i-th state in the coefficient matrix Hi,j

even grants the possibility to phenomenologically model a thermal (quantum) distribution ρ ∝
1

exp(Ei/kBT (±1))
for the reduced density matrix at hand.

2.4 Simulation methods

2.4.1 Spin dynamics

In order to describe the dynamics of classical magnetic systems, one uses mainly three different

types of equations of motion: The Landau-Lifshitz-Equation [27], the Gilbert-Equation [87] and

the Landau-Lifshitz-Gilbert-Equation [88] which have been derived in this temporal order. The

derivation of these differential equations will be presented in the following subsections:

Landau-Lifshitz-Equation (LL)

The Landau-Lifshitz-Equation, introduced by Landau and Lifshitz in 1935, is an ordinary, nonlinear

differential equation of first order and consists of two summands. The first summand is called the

precession term and has a quantum mechanical origin when derived in the Heisenberg picture for

an interaction of a spin and an external field. The second term is called the damping term and is of

phenomenological nature:

The precession term

The origin of the derivation is provided by the Heisenberg equation of motion:

iℏ
∂⟨Ŝi(t)⟩
∂t

= ⟨[Ŝi(t), Ĥ]⟩ (2.37)

with the time dependent spin operator Ŝi(t) and the Hamiltonian Ĥ = − ∂Ĥ
∂Ŝi

.

By using the ordinary angular momentum commutation relations for spins
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[Ŝxi , Ŝ
y
j ] = iℏϵijkŜzk (2.38)

and an expansion of the commutator from 2.37 in powers of Planck’s constant ℏ

[Ŝi(t), Ĥ] = iℏŜi ×
∂Ĥ
∂Ŝi

+O(ℏ2) (2.39)

the Heisenberg equation of motion can be written in the form of a cross product:

iℏ
∂⟨Ŝi(t)⟩
∂t

= iℏ⟨Ŝi ×
∂Ĥ
∂Ŝi
⟩+O(ℏ2). (2.40)

Note that the classical limit reads ℏ → 0 and that not all nonlinear terms in 2.40 vanish. Based

on the Ehrenfest theorem [135] concerning the identification of quantum expectation values with

classical vectors under certain assumptions, it follows

∂⟨s⃗i⟩
∂t

= s⃗i ×
∂Ĥ
∂s⃗i

. (2.41)

The proportionality of the magnetic moment µ⃗ and the spin s⃗ via µ⃗ = −γs⃗ immediately yields the

expression

s⃗i = −
µs
γ
S⃗i (2.42)

with a normalized spin vector S⃗i = µ⃗i
µs

.

Inserting this into (2.40) leads to the precession term of the Landau-Lifshitz-Equation

∂S⃗i
∂t

= − γ

µs
S⃗i ×

∂Ĥ
∂s⃗i

. (2.43)

Physically, this term describes a precessional motion of the spin vector around an effective, mag-

netic field H⃗i,eff.

The damping term

An undamped dynamics, as presented in (2.4.1) is not physically realistic such that one requires

another term which can emulate dissipative effects on the spin vectors. This term is oriented perpen-

dicular to the precession term and the effective magnetic field and causes a steady motion toward
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the effective magnetic field while the exact speed of this process is parameterized by the dimen-

sionless damping parameter λ.

Conveniently, this idea can be converted into a double cross product structure

− λ

µs
S⃗i × (S⃗i × H⃗i,eff), (2.44)

which was introduced without further background information by Landau and Lifshitz.

First analytic calculations for a system of uniaxial anisotropy in the 1950’s produced a critical

damping parameter value αkrit of O(10−9 s) for fastest possible dynamical magnetization reversal

through superposition of the precessional and damped motion under the influence of an external

magnetic field [152].

2.4.2 Gilbert-Equation

Experimental results as well as foundational considerations imply an unphysical magnetiza-

tion reversal process for large damping parameter values λ >> 1, as the reversal speed would

become infinite and therefore exceed the speed of light and violate relativity theory [124]. Thomas

L. Gilbert accounted for this issue by introducing a Rayleigh dissipation function into the damp-

ing term. By doing this, damped magnetization dynamics becomes structurally equivalent to the

Rayleigh dissipation of a rigid body in classical mechanics, obtained from an extended Euler-

Lagrange equation for a mechanically rotating body. The Gilbert equation, named in his honor,

then reads

∂S⃗i
∂t

= − γ

µs
S⃗i × H⃗i,eff + α

(
S⃗i ×

∂S⃗i
∂t

)
, (2.45)

and describes physically realistic results for the limit α→∞. The microscopic origin of this term

remains unexplained, though. This equation is difficult to handle for numerical integration and an

improved version will be described in the following.
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Landau-Lifshitz-Gilbert-Equation (LLG)

The Landau-Lifshitz-Equation, as mentioned above, only contains a time derivative expression for

the spin vector on the left hand side of the equation and this more desirable form can be achieved

for the Gilbert equation as well and naturally leads to the Landau-Lifshitz-Gilbert-Equation.

In order to achieve this, one multiplies ”S⃗i×” from the right side and uses the Leibniz rule a⃗× (⃗b×

c⃗) = b⃗(⃗a · c⃗)− c⃗(⃗a · c⃗) to get the expression

S⃗i ×
∂S⃗i
∂t

= − γ

µs
S⃗i × (S⃗i × H⃗i,eff) + αS⃗i

(
S⃗i ·

∂S⃗i
∂t

)
− α∂S⃗i

∂t
. (2.46)

Due to spin normalization S⃗2
i = 1 and the product rule’s use, one notices a vanishing of the second

term of the right hand side

S⃗i ×
∂S⃗i
∂t

= − γ

µs
S⃗i × (S⃗i × H⃗i,eff)− α

∂S⃗i
∂t

. (2.47)

This can be inserted directly into the damping term of the Gilbert Equation, thereby delivering a

nonlinear differential equation of first order

∂S⃗i
∂t

= − γ

(1 + α2)µs

[
S⃗i × H⃗i,eff + αS⃗i × (S⃗i × H⃗i,eff)

]
(2.48)

which is known as the Landau-Lifshitz-Gilbert-Equation [87]. A dynamical transition in an external

magnetic field is represented in figure 2.1.

The energy minimization is equivalent to a vanishing torque of magnetization vector exerted

by the effective magnetic field. This becomes apparent by expressing the cross product and scalar

product via the intermediate angle θi. Equation 2.48 is instructively written as

∂S⃗i
∂t

= − γ

(1 + α2)µs

[
S⃗i · H⃗i,eff sin θi︸ ︷︷ ︸
→0 for θi→00/1800

+ S⃗i · (S⃗i · H⃗i,eff cos θi)︸ ︷︷ ︸
→H⃗i,eff for→00/1800

−H⃗i,eff

]
. (2.49)

Finally, it should be emphasized that all three presented equations of motion could be derived from

the Heisenberg equation of motion, but still assuming a classical vector space structure instead of

that of a quantum mechanical Hilbert space for an observable algebra of spins [123]..
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Figure 2.1: Damped precession of an isolated macrospin in an external field Bz = −|B⃗|e⃗z from
µz = +0.98(µs)e⃗µz towards µz = −1.00(µs)e⃗µz in the µx-µy-plane.

Langevin-dynamics

The Néel-Brown law [62] implies a direct relation between temperature fluctuations in the envi-

ronment and its effect on the magnetization reversal frequency of a magnetic domain. This effect

is quantitatively described by an additional thermal field contributing to the effective field − ∂Ĥ
∂S⃗i

of

the LLG-Equation which only describes Hamiltonian contributions in its original formulation. The

additive thermal field has the signature of white Gaussian noise

H⃗i = −
∂Ĥ

∂S⃗i
+ ξ⃗i(t) (2.50)

satisfying the conditions
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⟨ξi(t)⟩ = 0 (2.51)

⟨ξνi (t)ξθj (t′)⟩ = 2αµskBT︸ ︷︷ ︸
q

δijδνθδ(t− t′) (2.52)

for the first and second statistical moment [40].

The strength of the noise q is obtained by inserting the solution to the Langevin Equation into the

equipartition theorem [25]. In this representation, the influence of temperature is time-dependent

and independent of the spin coordinates and thus stochastic rather than deterministic. This implies

that the exact dynamics can not be derived from the initial conditions of the spin configuration. The

advantage of this scheme is the breaking of time reversal symmetry and the ergodic occupation of

the phase space in the long time limit t → ∞. The indices i and j represent the lattice positions

and ν, θ represent cartesian coordinates.

An equivalent formulation of Langevin-dynamics can be given in the framework of Hamiltonian

dynamics. Here one starts with the classical HamiltonianH =
p2i
2m

+V (q) for generalized canonical

coordinates qi and momenta pi and obtains equations of motion

dq = pdt (2.53)

dp = −∇V (q)dt+−γpdt+ κdW (t) (2.54)

including a Wiener-random process W , satisfying the conditions from (2.51) [142].

Using the effective field expression, one can isolate a Langevin equation that decomposes into a

part for the ordinary LLG-Equation and a stochastic noise part:

dS⃗i
dt

= fi + giξi (2.55)

fi =
γ

(1 + α2)µs

[
S⃗i × H⃗i,eff + αS⃗i × (S⃗i × H⃗i,eff)

]
(2.56)

giξi = −
γ

(1 + α2)µs

[
S⃗i × ξi + αS⃗i × (S⃗i × ξi)

]
. (2.57)
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This is the stochastic LLG-Equation, being used in chapter 4 and 5 for numerical evaluation of the

classical spin dynamics.

A very general description of the time evolution of physical systems is captured by a Markovian

master equation [26]. This is a differential equation of first order in time and monitors the occupa-

tion probability wµ of a physical state. It reads

dwµ
dt

=
∑
ν

[
wµ(t)P (ν → µ)− wµ(t)P (µ→ ν)

]
. (2.58)

The equation describes transition rates P (ν → µ) and P (µ → ν). The first term encodes the

transition from an arbitrary state ν ̸= µ into the state µ and the second term converts the state µ

into the state ν.

The transition rate P (ν → µ) in rescaled coordinates can also be interpreted as a function of the

initial state ν and the jump r = µ − ν, and as such, one gets the master equation for a continuous

Markovian process in integral form

dw(µ, t)

dt
=

∫
w(µ− r; t)P (µ− r, r)dr − w(µ, t)

∫
P (µ;−r)dr, (2.59)

whereas from now on µ and ν are considered as continuous variables.

By expanding the first integral of (2.59) after the difference (µ−r) and assuming that the transition

rate P (ν; r) is only non-zero for small jumps r, a special master equation, truncated to second

order, emerges:

dw(µ, t)

dt
=

∫
w(y, t)P (y; r)dr −

∫
r
∂

∂µ
w(y, t)P (y; r)dr+ (2.60)

1

2

∫
r
∂2

∂µ2
w(y, t)P (y; r)dr − w(µ, t)

∫
P (µ;−r)dr. (2.61)

The performed expansion is known as the Kramers-Moyal-expansion in the literature [114, 113].
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If the expectation value and the variance of the jump is represented by ai(µ) =
∫
riP (µ; r)dr, a

one-dimensional Fokker-Planck-Equation (FKP) [112] is obtained

∂w(µ, t)

∂t
= − ∂

∂µ
(a1(y)w) +

1

2

∂2

∂µ2
(a2(µ)P ) (2.62)

with the drift coefficient a1 and the diffusion term a2.

If the coefficient a1 is identified with the function f and a2 with the function g from (2.55), an

equivalence of the FKP and the mentioned Langevin Equation is achieved. In this way, it becomes

visible, how the microscopic, spin dynamical calculations can realize a time-dependent expression

that becomes equivalent to a canonical ensemble expectation value.

The general master equation expression also forms the basis for the Lindblad equation, men-

tioned in (2.36) and mentioned in chapter 6.

2.4.3 Numerical integration method

In this thesis, spin dynamics is either implemented by the stochastic LLG-Equation (2.48) or as a

variant of the time-dependent Schrödinger Equation (2.32). Mathematically speaking, one treats

an initial value problem y′(x) = f(x) with supplied initial conditions y(x0) = y0. Unavoidable

analytical complication, such as the nonlinear term in the stochastic LLG-Equation or the non-

local nature of the dipole-dipole interaction term requires a numerical treatment and leads to an

integro-differential equation in the most general case.

Euler-, Heun- and Runge-Kutta-methods

Systems of ordinary differential equations (ODE’s) of k-th order read

yk = f(t, y(t), y′(t), . . . , y(k − 1)(t)) (2.63)

y1 = yi, i = 0, . . . , k − 1 (2.64)

and can always be reduced by successive variable transformation to a first order differential equa-

tion, treatable by initial value problem frameworks. The numerical integration of the r.h.s. of the
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first order differential equation can be achieved by a single-step or multistep method.

Both methods deliver an approximative function y(t) at a finite number of positions. The single-

step method only uses information from the initial time ti in order to approximate the function at

the time ti+1 while the multistep method has multiple evaluation points tj with j ≤ i to realize a

proper approximation scheme. This work only treats single-step methods.

The easiest single-step method happens to be the Euler method. It linearly approximates the solu-

tion function y(t) in the interval h between yn and yn+1 as

yn+1 = yt + hf(tn, yn) (2.65)

and produces a truncation error of the order O(h2), as can be easily verified by a Taylor expansion.

The second order Runge-Kutta-method provides a more precise approximation, as it uses two eval-

uation points at the beginning and at the center of the interval h, denoted k1 and k2.

The algorithm reads

k1 = hf(tn, yn) (2.66)

k2 = hf(tn + 0.5 ∗ h, yn + 0.5 ∗ k1) (2.67)

yn+1 = yn + k2 +O(h3), (2.68)

introducing a truncation error of order O(h3). The same qualitative result can be achieved by the

second order Heun-method.

The implemented single-step method, used in this thesis for implementation, is the classical

fourth order Runge-Kutta method. This method uses four evaluation points with individualized

numerical weights:
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k1 = hf(tn, yn) (2.69)

k2 = hf(tn +
h

2
, yn +

k1
2
) (2.70)

k3 = hf(tn +
h

2
, yn +

k2
2
) (2.71)

k4 = hf(tn + h, yn + k3) (2.72)

yn+1 = yn +
k1
6

+
k2
3

+
k2
3

+
k4
6

+O(h5). (2.73)

This algorithm, at h′ := 2h, is numerically superior to an algorithm of a second order method

at h. It is important to note that this method is also used to compensate for intrinsic numerical

instabilities even in the case of a linear differential equation. This fact will be exploited in chapter

6 by a numerically efficient linear dissipative wave equation.

All represented algorithms can be found in [147].

Stochastic integration calculus

Generally, one has to consider two different definitions of stochastic integrals for the above men-

tioned non-deterministic equations of motion. The definition, used by the Ito-calculus, requires an

evaluation of the stochastic process at the beginning of the interval of integration while the defi-

nition of the Stratonovich-calculus demands to take an average over initial and final values of the

interval h. The implemented Runge-Kutta-method evaluates both the initial and final time of the

interval and formally corresponds to the Stratonovich integral.
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Chapter 3

Interaction assisted switching of

ferromagnetic nanoparticles

3.1 Introduction

Until today, a considerable amount of research efforts in nano-scale magnetism and magnetic data

storage is centered around questions of field- or temperature-induced reversal dynamics of fer-

romagnetic nanodots, arranged in small magnetic assemblies [2]-[12]. Studies on superparamag-

netism and switching field distributions for ferromagnetic dots usually employ somewhat random

densities of magnetic grains and thus the influence of dipolar energy on switching field distribu-

tions cannot be systematically extrapolated. In the quest for the highest possible density of storage

units in modern age computer technology, a much more systematic study of the positive impact of

interactions on coordinated switching behavior is both expected and demanded. Consequently, the

’rule of thumb’, stating that inter-dot-coupling is almost negligible for arrays of average distance

greater than the particles’ diameters in a zero-field remanence state, must be put into question. For

high density arrays, driven to instability by multiple means (temperature, fields, frustrated config-

urations, low perpendicular anisotropy, etc.), additional inter-particle energy contributions might

further lower effective energy barriers and facilitate magnetization dynamical paths of decreased

action upon traversing saddle points in the energy landscape.

In this chapter, I am going to describe theoretical studies on the interaction behavior of ferromag-

netic nanoparticles in the light of long-range magnetostatic fields. The investigations are motivated



by an experimental setup of dipolarly coupled Co/Pt nanodots, pushed close to a state of instability

due to the choice of temperature, magnetic field and easy axis anisotropy. The observed super-

paramagnetic behavior unraveled a correlated switching behavior of multiple magnetic dots due

to the long-range nature of the interactions. This was confirmed in particular by simulations of

stochastic, atomistic spin dynamics, modelling the nanodots as uniformly rotating single domain

magnetic objects in macrospin approximation. These surprising findings significantly contribute

to the understanding of the magnetostatically induced modified switching mechanisms of dilute,

unstable magnetic ensembles and even more so for high density bit pattern configurations.

In the following sections of this chapter, I will elaborate on how multi-particle interactions affect

the magnetization dynamics of nanoparticles and how far reaching those interactions are, measured

against the diameter of a typical dot. I will briefly explain the experimental set-up of Co/Pt nano-

dots, placed on a Hall-cross and measured by the anomalous Hall-effect, and then quickly move on

to theoretical considerations. Atomistic-Landau-Lifshitz-Gilbert simulations, including a stochas-

tic field term, have been performed to analyze the magnetic ensemble for various sets of energetic

parameters, time scales and distances. Analogous to the experimental situation, I simulated static

magnetization curves and afterwards dynamical telegraph-noise plots to study the impact of inter-

actions on different time scales and energetic influences. In all simulations, a rigid, single domain

magnetic entity was assumed for all four involved dots, as domain wall propagation was believed

to be negligible due to the exchange stiffness of Co/Pt composite particles.

As a second part of this chapter, I will model the dynamics of the nanodots in a more idealized,

theoretical fashion to highlight the conceptual analogy of interacting nanodots and interactions be-

tween magnetic systems and dynamical fields via spin dynamics. The interaction of nanoparticles

will be looked at as a generalized form of a dynamical phase transition [125] between two magnetic

subsystems, influencing each other instead of being just influenced by a time-dependent periodic

external field.
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3.2 Collective switching of interacting nanodots

3.2.1 Experimental setup

The details of the fabrication process of nano-sized Co/Pt nanodots has been extensively described

in [13, 14] to which I am referring in the following. It involves the extraction of the ferromagnetic

dots from a planar Pt/Co/Pt multilayer (Pt5 nm(Co0.8 nmPt2 nm)3Pt1nm) by ion milling, using an SiO2-

based shadow mask. The platinum underlayer beneath the ferromagnetic dots is then exposed to

electron beam litography with negative resist in order to further utilize it as a Hall-cross onto which

the elements of study (approximately 35 nm in diameter) are attached to.

The intrinsic magnetic properties of the dots (of which low perpendicular magnetic anisotropy is of

particular relevance for the studies of interest) were achieved by a combination of Co- and Pt-layer

thickness optimization and the choice of films with canted magnetization. This guaranteed control

of both magnitude and spatial orientation of the anisotropy axis is achieved due to cancellation

effects of anisotropy and uncompensated magnetostatic fields at the interface. The fabricated dots

admitted a low effective anisotropy energyEeff
k,1 of the order of roughly 1 electron volt perpendicular

to the film plane.

They have been positioned on a Hall cross of nanoscopic dimensions and all magnetization mea-

surements have been performed based on the anomalous Hall effect which admits a proportionality

to the perpendicular component of the magnetization vector. Much like in the historic setting, a

current is applied and a transverse voltage is measured, but unlike for the classical Hall effect, the

Co/Pt nanodots do not lead to a significant signal other than an anomalous contribution due to the

magnetization. This interesting phenomenon is thoroughly explained in [17]-[20] and accounts for

the averaged magnetization signal of all the four dots on the Hall cross.

In order to access the thermally activated magnetization dynamics of these Co/Pt nanodots, an in-

plane field is applied to modify and reduce the barrier height separating oppositely magnetized

perpendicular states [20]. The field strength is tuned appropriately such that the instability due to

thermal agitation of the dot magnetization is observable. As the dots reveal different coercive fields

the temporal behavior of an individual dot can be separately studied via an appropriately tuned

in-plane field.
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3.2.2 Results of the experiment and simulations

Figures 3.1 (a) and (b) shows the mean magnetization curves and time-dependent signals measured

in the described set-up. Because of a slow ramping of external magnetic field, each step in figure

3.1(a) could be unambiguously assigned to an individual dot. From the dot-resolved measurement

of the anomalous Hall voltage, one is able to identify the first reversal at about 5 mT, which corre-

sponds to the switching of dot C, the second reversal at about 20 mT is produced by dot A, and the

last switching at about 50 mT, corresponds to the reversal of dot D. More details of the procedure

can be found in [13, 14].

Figure 3.1: The response via the AHE of a system of four nanodots in fields with different orien-
tation at T=300 K. (a) The switching fields of the individual dots are determined by application
and slow ramping of a perpendicular field which is parallel to the anisotropy field of the dots. The
scanning electron microscope image of the inset shows the four dots with a color code represen-
tation (A=green, B=black, C=yellow, D=violet). The dots C, A and B can be clearly assigned to
magnetization reversal in the hysteresis loop at magnetic field values of 5 mT, 20 mT and 50 mT.
A signal from dot D cannot be observed at room temperature. The dot size is 36 nm for A, C and
D and 40 nm for dot B. (b) The telegraph noise for dot A is shown for different magnetic field
strengths and one can clearly see that the in-plane field B := Bx can effectively lower the barrier
for dot magnetization reversal. An increase in switching frequency is evidently accompanied by
this.

To probe the magnetization state and behavior of individual dots, the anomalous Hall-effect is

used, which is directly proportional to the out-of-plane component of magnetization. As in a con-

ventional Hall-type measurements, a current is applied and a cross voltage is measured. The normal

Hall effect is negligibly small for the Co/Pt material system and only the magnetization-dependent

anomalous contribution is seen in measurements [20,22], thus giving access to the magnetization

state of individual nanoparticles. Figure 3.1(a) displays the magnetization behavior of the system
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obtained in a single out-of-plane field sweep at room temperature for a system that consists of

four dots on the Hall-cross (see inset of figure 3.1(a)). One can relate hysteresis loop features to

each individual ferromagnetic dot by applying the current across adjacent leads and measuring the

anomalous Hall voltage across the opposite leads as shown in [15] or via the signal height by bring-

ing together the measured relative strengths with the calculated sensitivities for the conventional

geometry [17, 18, 19].

In figure 3.1(b), the telegraph noise, obtained from dot A for three different field values, is pre-

sented. It is apparent that the field lowers the barrier, leading simultaneously to an increased fre-

quency of switching with an increasing field strength.

For a lower temperature of T = 150 K, all four dot signals become visible in the hysteresis curves

that are displayed in figure 3.2(a), particularly also for dot B. The most pronounced jumps can still

be associated to the dots A and C, as seen previously for room temperature measurements in 3.1.

The coercive fields of them are slightly increased in comparison to the room temperature measure-

ment, as expected from the reduction of thermal agitation. The signal of dot D appears at a small

field of approximately 5 mT. The absence of this signal for dot D in 3.1(a) can be explained by the

fact, that it becomes superparamagnetic for the time scale of the measurement (at a given external

field strength) at room temperature and its small signal is partially hidden behind the larger signal

of dot C. Although the hysteresis loops at both temperatures are very similar, the analysis of the

telegraph noise signal in magnetic in-plane fields unravels important differences (figure 3.2(b)).

The sub-figures show the temporal signal for a domain of field strengths, for which switching be-

havior sets in for dot A. The fields are higher than for the room temperature measurements since the

magnetization states are more robust against thermal activation, which can also be seen from the

fact that the coercivities are increased. At the lowest in-plane field strength (35 mT), no switching

event is observed. By increasing the field strength to 38 mT, the switching that corresponds to the

one shown in figure 3.1(b) kicks in (same scales of the x-axis). However, a second switching is su-

perimposed in the experiment (figure 3.2(b)) that is faster and has a smaller signal height. At 40 mT

the frequency of the switching event with smaller amplitude is decreasing again. This observation

gives rise to the hypothesis that a correlated switching event among dots at the verge of instability

can be observed. However, the experiment doesn’t allow for the verification of this hypothesis.

Therefore, I further elaborated on this by simulation results in the next section.
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Figure 3.2: The AHE response of a system containing the four nanodots for different field orien-
tation at a temperature T=150 K. (a) The magnetic hysteresis is now more pronounced due to the
reduced thermal noise. For this set of parameters, one can unambiguously identify the jumps of
all four nanodots, including dot B. The new switching fields are 5 mT, 20 mT, 38 mT and 70 mT.
(b) The telegraph noise for dot A, as expected, exhibits much less jumps of magnetization. The
in-plane magnetic field reveals an interesting fluctuating sub-signal on top of a larger seemingly
more stable signal of magnetization at about 38 mT which becomes less pronounced at 40 mT and
was even completely absent at 35 mT.

Switching at a critical field

In order to shed light on the question of correlated switching, I first simulated the expected equi-

librium magnetization curves, using the parameters of the experiments in order to verify a compu-

tationally valid basis for the numerical dynamical analysis of the nanodot interaction. Fig. (3.3)

reveals a very good match of the nanodot switching fields, described in figure (3.2) and is both

plotted as a superimposed
4∑
i=1

Sz,i and dot-resolved magnetization signal Sz,i.

After that, I analysed additional, dynamical experimental data at the critical field B=38mT, at which

the interesting phenomenon, described in the last section, has been observed. In contrast to the

behavior at room temperature, the signal heights at 150 K do not coincide with the signals obtained

in the hysteresis loops. The hysteresis loop (figure 3.3(a)) shows jump heights of (1.13± 0.03) µV,

(0.22 ± 0.03) µV, (0.46 ± 0.03) µV, and (0.08 ± 0.03) µV for dots A, B, C, and D, respectively.

The signal heights in the telegraph noise are (0.83 ± 0.05) µV for the big jump and (0.25 ± 0.05)

µV for the smaller jump. While the smaller jump height is somewhat close to the value found for

dot B the large jump signal cannot be explained by any of the individual dot switching transitions

obtained in the hysteresis loops. Even though the identification of the smaller signal seems to be

natural at first glance, there are serious arguments against a dynamical switching of dot B. Based
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Figure 3.3: Simulated time-averaged magnetization curves of the four nanodots with (a) total mag-
netization and (b) dot-resolved magnetization of the z-component, parallel to the external field. The
color code is adjusted to the experimental labelling. The numerical values of the anisotropy ener-
gies have been assumed as 1.3 eV, 1.6 eV, 0.9 eV, 0.8 eV for the dots A, B, C and D, respectively.

on the hysteresis curves, it is evident that dot B has the highest coercivity and anisotropy of all four

dots. This means that by simple assuming single particle switching as a zeroth approximation the

frequency should be the lowest among all particles. The switching between the central and upper

level, however, appears with a high rate which obviously cannot be attributed to the switching of

dot B in a single switching scenario.

A telegraph noise measurement for the four dots on an extended time interval is shown in figure

3.5(a) for an applied field of 38 mT. The temporal evolution reveals the already mentioned three

voltage levels that are involved in the switching (inset). This was explained in terms of the eval-

uation of multiple spin dynamical simulations which favored such a particular ”3-spin switching

scenario”. This is described in fig. (3.4).

Obviously, the system exhibits fast fluctuations, corresponding to an alteration between the two

higher voltage levels of the AHE measurement. The total separation of the lower and upper voltage

levels is (1.08 ± 0.05) µV. The value is apparently close to the signal of dot A in the hysteresis.

When the value obtained in the hysteresis loop is corrected for the tilting of magnetization in

the in-plane field, one could expect a signal height of 1.05 µV for the reversal of dot A. The

good agreement between the predicted, effective signal height for dot A and telegraph signal of

the measurement indicates that the net change between the lower and upper voltage level is caused

exclusively by the reversal of dot A. Hence, we may conclude that the analysis of the experimentally

measured voltage levels indicates that dot A is a key player in the observed thermal switching while
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Figure 3.4: Favored 3-spin scenario for the switching behavior of the dots, according to spin dy-
namical simulations under appreciation of signal heights from the experiment and realistic energetic
parameters for the nanodots. A sporadic switching of dot ’A’ and a frequent switching of dots C
and D have been rationalized and is shown via spin-averaged (a) and spin-resolved telegraph noise
(b). The inset schematically shows the hypothetical signal heights of the anomalous Hall voltage,
associated with such a switching, being within a tolerable error of approximately 6 percentages
and 8 percentages of the experimental values with respect to the large signal and the small signal
switching event.

other signals cannot be attributed to single dot switching.

As a next step, it is instructive to focus on the time scales of the switching events in figure (3.5).

Utilizing the anisotropy that has been assumed, the effective barrier heights for single particle

switching in the in-plane field can be estimated for dot A: ∆EA (38 mT) ≈ 37 kBT . The re-

sult is that dot A should not switch on the time scale of the experiment (at 150 K) while dots C

(∆EC (38 mT) ≈ kBT ) and D (∆ED (38 mT)≪ kBT ) should switch with a frequency that is too

fast to be resolved within the experiment (assuming an attempt frequency in the range of 1011 Hz).

This means that the experimental result and the expected behavior (based on single particle poten-

tials) are in disagreement, as values for dots C and D are too large and those for dot A are too small.

Reasonable adjustment can thus not be made by a simple adjustment of the attempt frequencies.

More importantly, the inset in figure 3(a) demonstrates that the transition from the bottom level al-

ways ends in the central level, which is definitely caused by a simultaneous switching of more than

one dot. Hence, the switching of single dots cannot explain the finding and correlated switching

has to be assumed.
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Figure 3.5: Graphic display of the telegraph noise and the associated magnetic states of the system
of four nanodots. (a) Dynamical evolution of the nanodot magnetization for the relevant, critical
magnetic in-plane field of 38 mT over a large period of time (80 minutes). It is obvious that the
overall signal switches between three levels of signal height. A detailed combinatorial analysis of
the jump heights and the expected dynamical behavior from single dot measurements is described
in panel (b). (c) Local SEM micrograph of the Hall cross. The inter-dot separation is indicated in
white. The B-D inter-dot distance is 209 nm.
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3.2.3 Energy landscape and dynamical correlation function

In order to get better insight into the highly complex energy landscape of the ensemble of nanodots,

I performed simulations in the framework of Landau - Lifshitz - Gilbert spin dynamics, including

a stochastic Gaussian distributed field [24], modelling temperature effects via an additive Langevin

noise term. For this purpose, the dots have been treated as macroscopic dipoles. This approxi-

mation is motivated by the strong exchange interaction between the constituting atoms of the dots

and the high J/K ratio, that prevents the formation of domain walls. The exact same spatial ar-

rangement of four dots has been modeled and the dynamics of the switching behavior analyzed. In

agreement with the experimental results, I have found that the dynamical behavior of the four dots

is quite different from calculations based on the energy barriers as determined from the temperature

dependent coercive fields of individual magnetic particles. The predominantly occupied magnetic

state is the one which minimizes the dipolar energy and can be seen in the middle panel of figure

3.5(b). The dynamical calculations, however, clearly indicated that this state is twofold degenerated

with respect to the orientation of the dots D and C. This means, that on the timescale at which the

dots A and B remain locked in the respective orientations, the dots D and C realize many switching

events between configurations of upper and middle panels of figure 3.5 (b). This result raises the

decisive question of whether this instability may explain the deviation of the energy barriers from

those of individual, decoupled magnetic dots.

In full generality, one can only answer this question by investigating the complete energy land-

scape of the ensemble. This proves to be a tremendous task, since the energy landscape is nine-

dimensional (the magnetization of each macroscopic dipole i can be described by two spherical

coordinates (θi, φi) plus time). A way to solve this problem is to analyze the dynamical correla-

tion function Cdyn = 1/T
∫∞
−∞ dt Sz,i(t)Sz,j(t + s) between pairs of magnetic moments i and j,

where Sz,i(j) is the z-component of magnetization of moment i and j at times t and t + s, respec-

tively. This function provides the information whether a given state is still correlated after a delay

time s. Hence, |Cdyn| → 1 corresponds to the correlated, in-phase switching, while Cdyn → 0

to stochastic noise. In the simulations, this function was calculated for vanishing delay s = 0

and variable center-to-center distances rij to check for the degree of correlation for simultaneous

switching. The dependence of the function Cdyn

(
r3ij

)
on dot separation is given in figure 3.6. The

distance scale in the simulation is comparable to the length scale of the experiment and chosen
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Figure 3.6: Simulations of the dynamical correlation function Cdyn and the decrease of dipolar
energy EDE plotted as a function of the inter-particle distance. The decrease of the dynamical
correlations (red spheres) and the decrease of the dipolar coupling energy is normalized to the range
of 70 nm to 140 nm which corresponds to typical inter-dot distances on the Hall cross. The dipolar
energy decreases linearly due to the x-axis, being scaled as 1/r3ij , normalized to 100 nm. The
dynamical correlations decrease more slowly and amount to persistent antiferromagnetic coupling
of the dots. This functional form is not dependent on the value of the damping parameter (here
α :=0.2 is chosen which is close to the value of Co/Pt dots for which the magnetization dynamics
can be reasonably approximated by the LLG-Equation). All dotted curves are guides to the eye.
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to be 100 nm (see also figure 3.5(c)). In figure 3.6 the spheres give the time-averaged dynamical

correlation, while the open squares show the decrease of the strength of dipolar interaction with

1/r3ij (dotted curves as guide to the eye) for comparison. The plot clearly shows that the dynamical

correlation Cdyn decreases much slower than the static dipolar coupling. For the separation of dots

C and D (105 nm) the correlation function is still more than 0.8 and thus correlated switching is

found. Hence, these two dots are switching in-phase and the stability of the anti-parallel configu-

ration is increased. Even the farther separated dots (rij ≈ 140 nm) show strong correlations (see

figure 4) which is responsible for the occasional switching of dot A although its anisotropy energy

is much larger than the dipolar energy. The physical reason for the long range phenomenon is the

minimization of the time-averaged or -integrated total potential energy of all dots. This manifests

in the many-body dynamical correlations and prevents the magnetic moments from dephasing. In

other words, the many-body dynamical effects, described here experimentally and theoretically,

correspond to a minimization of a dynamical quantity, the spin dynamical version of the action,

rather than to a mere minimization of single particle energies in a static viewpoint for individual

dots.

I illustrated that fact further by fig. (3.7) which uses the same distance scaling, as fig. (3.6) for

the x-axis. The figure illustrates the large amount of action S, accumulated by single reversal in

the presence of a static magnetic dipole source at some distance ri,j . It is remarkable that despite

the presence of noise and dissipation such a conceptually simple action-based ansatz which only

strictly applies for exact Hamiltonian systems grants such a good explanation for the collective

behavior of the dots in the simulations.

With the result of the theoretical analysis it becomes clear that the fast switching between the middle

and upper voltage level is a correlated switching of dots C and D. From the hysteresis measurement

in figure 2(a) a signal height of (0.32± 0.06) µV has to be expected, taking the field induced canting

into consideration. A complete analysis of all transitions between all possible states reveals that the

scenario proposed in figure 3.4 is the one that comes closest to the experimentally observed value

concerning level separation. Both the theoretical and experimental results prove unambiguously

that it is crucial to know very accurately the magnetic behavior of the dots in the surrounding on a

scale that is far beyond the separation of nearest neighbors, to properly describe thermal switching

or switching field distributions.
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Figure 3.7: Comparison of the expected accumulated action for a reversal path of a single nanodot
(blue) and for the reversal in the presence of a second nanodot at a distance, as prescribed by
the x-axis (normalized to cubic inverse inter-dot distance). The numerical value of the action is
not affected by isolated reversal, but rises linearly with decreasing inter-dot distance. This makes
isolated switching increasingly unfavorable for nearby magnetic environments of a nanodot.
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Finally, I would like to comment on the frequency decrease of switching when changing the field

from 38 mT to 40 mT in figure 3.2 (b). The latter is an indication for some asymmetry in our

experimental set-up, in particular a small misalignment of the external field, which favors one over

the other state. The effect of the misaligned field is also seen in the room temperature measurements

(figure 3.1(b)) where the switching between the two states with same energy is slightly asymmetric

in time.

3.2.4 Systematic tuning of switching properties

In this subsection, we demonstrate how the two-spin correlation function can be tuned by varying

different parameters in a small system of interacting dipolar particles. Additionally, we discuss our

results in the context of interacting magnetic oscillators to understand the dynamic behavior in the

limiting cases of small and large interaction energy Edd.

3.2.5 Numerical results for a 4-particle-array

Particularly important for future applications of storage devices is external control or even mastery

over switching properties of selected nanoparticles inside an array. We investigated the impact of

the magnetostatic interaction of four particles on a length scale that is several times larger than

the particle size and we were able to show that even on such a scale there is mutual influence on

the switching rate. In order to quantify the influence of the interaction, we calculated the average

switching rate νfree,i of the i-th particle in the absence of interaction fields and compared this number

with switching rate νj,i of the i-th particle in the presence of an interaction field of particle j. We

encoded this ratio into a square matrix

Mint,ij =


M11 M12 . . . M1N

M21 M22 . . . M2N

...
... . . .

...

MN1 MN2 . . . Mnn

 (3.1)

with matrix elements Mij = νfree,i
νj,i

. This matrix characterizes the mutual influence on the switch-

ing rate of the N interacting particles and has therefore dimension N . In order to account for
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many-body interactions (e.g. the influence of particle i by particles j and k in terms of a resulting

frequency shift), Mint,ij can be generalized to a tensor Mint,i,j,k,... with N indices. The influence of

particle i, quantified by Mint,i,j,k,...−Mi,i

Mint,i,j,k,...
, is then determined by summation over all indices j, k, . . .

and results in

∑
j,k,...

Mi,j,k,... =
N−1∑
k=1

N − 1

k

 (3.2)

distinguishable matrix elements for each value of i.

Figure 3.8: System of four Co/Pt magnetic nanodots on a Hall-cross [1]. The geometry of the
system inspired the theoretical study on the correlation of the dots.

Motivated by an experimental study [1], we exemplify this scheme by evaluating all matrix ele-

ments for four magnetostatically coupled particles with different anisotropiesK1=21.73 kBT ,

K2=11.07 kBT , K3=5.47 kBT andK4=2.67 kBT and different distances, ranging from approxi-

mately 3 to 5 times the particles’ diameter (figure 3.8). The effective magnetic moments of all

particles have been assumed to be µs = 3.7 · 105µB. The asymmetric choice of parameters helps

to discuss the full complexity of the problem. It also accounts for the different size of artificially

produced nanoparticles as well as their individual shape anisotropy [14, 15].

For the given example, the matrix (3.1) reads as
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(a) (b)

Figure 3.9: (a) Anisotropy of particle i vs anisotropy of particle j for a reference dipolar energy
Edd = kBT . The external field is set to B⃗ = 0⃗ for all simulation points in this diagram. (b)
Dipolar energy Edd plotted against an external field aligned parallel to the z-axis. The competition
of dipolar interaction field which favors anti-parallel alignment and external field which favors
parallel alignment of the magnetization vectors is illustrated by the contour lines.

Mint,ij =


1 3.053 7.064 5.667

1.005 1 1.207 1.008

1.043 1.002 1 1.094

1.040 1.000 1.120 1

 (3.3)

with vanishing self-interaction; i.e., diagonal elements Mii are exactly 1.

It can be immediately extracted from (3.3) that the particle with the highest anisotropy K1

dramatically enlarges the switching frequency of all the other particles, while it retains its own free

switching frequency νfree,1 to a very high degree. This effect is to some extent inherited by the

rest of the particles: The particle with second-largest anisotropy K2 still causes relative deviations

of the switching frequency of particle with K3 but not vice versa. The deviations from diagonal

elements of (3.3) almost vanish when we are looking towards the subspace of particles 3 and 4

which are almost on equal footage with respect to the matrix elements M3,4 and M4,3. In this

manner, switching can be observed with a certain hierarchy: Particle 1 manipulates the dynamics of

particle 2. Particle 2 manipulates the dynamics of particle 3 and so forth (although this manipulation

breaks down at some critical anisotropy/distance value).
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Additionally, we calculated the two-spin correlation-function in dependence of different ratios

for selected parameters, arising from the considered Hamiltonian.

Figure 3.9 (a) reveals the mutual influence of two spins with different anisotropies. Anti-parallel

alignment is clearly favored for spins with strong anisotropy, while it almost vanishes for spins with

small anisotropy-values. This diagram reflects the matrix elements of (3.3), because the relative

deviations in switching frequencies of the different particles can be used to estimate the two-spin

correlation function between them.

In figure 3.9 (b), the two-spin correlation function for a static magnetic z-field and dipolar

interaction is shown. On the considered time scale, spin i is chosen to have stable orientation

parallel to the z-direction, while the spin j tries to align in the opposite direction. Because of

the vanishing two-spin correlation function along the diagonal of the diagram, it is very simple to

negate the influence of a dipolar field by applying a suitable counter field Bz=-Hint,i where Hint,i

is the dipolar interaction field of particle i acting on particle j.

3.2.6 Interacting magnetic oscillators

In this subsection, we want to discuss the results from the matrix (3.3) in terms of coupled mag-

netic oscillators which are well known from the literature (e.g. [136, 137, 138]) and have a formal

basis in the context of Holstein-Primakoff-transformations [134, 135]. This can be motivated in

the anisotropic ( K
kBT

>>1) single-particle-picture, where the energy landscape takes the quadratic

form

E = Ei = −KS2
z,i (3.4)

and leads to an average switching frequency ν (due to thermal activation) in the limit of t → ∞,

allowing for a Fourier (half-) expansion after an infinite number of oscillators

Z(β) =
∞∑
n=0

exp[−iβ(n+ 1/2)ν] (3.5)

that models a corresponding canonical ensemble (h:=1).

The analogy to the oscillator representation becomes also visible in the partition function of equal-

ity (3.20), if we add four regularization factors 0 < Kν <<1 for the spin-components Sx,1, Sx,2, Sy,1
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andSy,2 to get a quadratic form in all cartesian components. The energy then reads as

H = −K⃗1S⃗
2
1 + JS⃗1S⃗2 − K⃗2S⃗

2
2 (3.6)

with vectors K⃗i:=(Kx,i, Ky,i, Kz,i) and S⃗2:=(S2
x, S

2
y , S

2
z ).

The equation (3.6) can be diagonalized straightforwardly and results in an expression

Hdiag = −K⃗ ′
1S⃗ ′2

1 − K⃗ ′
2S⃗ ′2

2 (3.7)

for two decoupled 3D magnetic oscillators in the sense of (3.5) with normal coordinates. Here, K⃗ ′
1

and K⃗ ′
2 contain the information about the coupling.

A typical case, discussed in the literature, is a linear coupling of two mechanical oscillators which

leads to two normal mode solutions: a) in phase-oscillation; b) anti-phase-oscillation or a superpo-

sition, resulting in a time-dependent energy transfer, also known as ”beat”. This beat is maintained

by the mechanical spring that transfers kinetic energy from oscillator 1 to oscillator 2 and vice

versa. It is interesting to see whether the magnetic coupling shows a similar behavior or not.

In the case of a small magnet with uniaxial anisotropy, the oscillatory magnetization dynamics of

Sz is a result of constant thermal activation and a diffusive motion over a quadratic energy barrier

instead of a continuous energy transfer between potential and kinetic energy (there is in fact no

intrinsic ”directional” kinetic energy present, but only Gaussian distributed thermal energy). For a

coupled pair, there is no apparent reason why a magnet i should be prefered over another magnet

j in terms of the influence on the switching frequency νij or νji respectively. A first look at the

two particle subspace in the matrix (3.3) with Ki ≥ Kj suggests that coupled magnetic oscillators

behave qualitatively different from linearly coupled harmonic oscillators, as the matrix elements

are asymmetric. For example, the element M3,2 of matrix (3.3) is 7 times larger than the diagonal

elements Mi,i = 1. Formally, this difference can be regarded as an energy loss or a ”dissipative

channel”. The described asymmetry calls for a dynamical explanation which can be given by the

difference in thermal stability of the magnets with different anisotropy. First, we concentrate on the

weak coupling regime, in terms of interaction energy Edd. The averaged time-dependent dipolar

interaction field of particle i, acting on particle j is
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⟨H⃗int,i⟩t =
1

T

t2∫
t1

dtH⃗int,i. (3.8)

For sufficiently long periods of time T = t2 − t1 >> τr, the magnitude of ⟨H⃗int,i⟩t is larger for

a magnet with Ki > Kj . Therefore, short time correlations are ruled out and a time-averaged

influence on a time scale T >> τr becomes important. In this manner, a magnet i forces a magnet

j with Kj < Ki to align in its time-dependent interaction field and not vice versa.

However, if the coupling is sufficiently large ( Edd

kBT
>> 1) the two particles switch collectively

which is qualitatively similar to anti-phase oscillations in the more simple mechanical analogon,

mentioned above. In this case, short time correlations increase significantly and the long-time

dynamical asymmetry of the alignment vanishes. The increased switching rate of both magnets can

be understood very well in the picture of a reduced energy barrier

EBarrier = EAnisotropy − 2
D

r3ij
(3.9)

emerging from an alignment of the spin-vectors parallel to the x-axis of the system when passing

the hard plane of the system, as discussed further above in chapter 3.

3.2.7 Conclusion

In summary, I have shown that magnetostatic interactions can play a significant and important

role in the dynamic reversal process of magnetic nanoparticles even when the system’s energy is

dominated by anisotropy barriers. The observed switching behavior leads to the conclusion that

correlations determine the switching. Dynamical processes have been observed that are clearly in

contradiction to a single particle switching scenario. Wrong interpretations can be obtained, if only

single particles are in the focus of study, neglecting the temporal behavior of the surrounding mag-

netization degrees of freedom and corresponding correlations. The spin-dynamical-simulations of

hysteresis loops, telegraph noise and the supplementary calculations of the dynamical correlation

function prove that dynamic correlations facilitate new reversal paths through the multidimensional

energy landscape. This phenomenon finds a quite natural explanation in terms of action minimiza-

tion and saddle point transition in the energy landscape. The farest reaching theoretical outcome is
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that dynamical correlations are decreasing slower than the static interactions, responsible for this

behavior (long range dipolar fields). This was considered as a behavior analogous to that of a dy-

namical phase transition. It follows that correlations become imminent when a magnetic system

is close to the state of thermal instability and the dipolar energies of inter-dot coupling are of the

same order of magnitude as the thermal fields. The simulations demonstrate that the interactions

cannot be disregarded when thermally assisted switching with low effective barrier heights is the

focus of interest, which has wide ranging implications for the research of superparamagnetism as

well as technical applications, such as heat or thermally assisted magnetic recording.

3.3 Dynamical phases of interacting nanoparticles

After investigating the experimental situation of interacting nanodots in (3.2) this chapter will be

continued with a section on a possible dynamical manifestation of a phase transition between classi-

cally interacting magnetic particles. This is motivated by the dynamical correlation function (3.2.3)

and its functional behavior as a function of interaction strength and inter-particle distance.

A brief introduction to general dynamical phase transitions is given in (3.3.1) and then the idealized

modelling of a system of exchange interacting magnetic moments is presented in (3.3.2 and 3.3.3).

This simplification is justified by antiferromagnetic ground state properties of a pair of dipoles

with large out-of-plane uniaxial anisotropy energy EK⊥ >> Edd (compare (2.10) and (2.4) for the

notation).

A short conclusion (3.3.4) is presented at the end of the section.

3.3.1 Dynamic phase transition in linear response and Landau theory

Dynamical phase transitions are well known in the framework of the Landau-theory, which is

closely related to the mean-field-theory [151, 139]. The theory predominantly deals with non-

equilibrium stochastic systems subject to an oscillating magnetic field h(t) with period T . A

prominent system, undergoing such a phase transition, is the kinetic Ising-model which shows

two characteristic phases, originally analyzed numerically by Tania and Oliveria [125] in the con-

text of Glauber-dynamics [128]: (a) A symmetry restoring oscillation or paramagnetic phase and

47



(b) a symmetry breaking oscillation or ferromagnetic phase. The transition between these phases

is intimately linked to both, the exact magnitude and the frequency ω = 2π/T of the oscillating

external field. Typically, the time-dependent magnetization m(t), averaged over one period of the

external magnetic field serves as the dynamical order parameter Q of the system, hence

Q =
1

T

∮
dtm(t). (3.10)

This is in contrast to the volume averaged order parameter

M =
1

V

∫
dV m(V ), (3.11)

used for the description of a static phase transition. This order parameter can be obtained as an

ensemble-average, calculated by ordinary Monte-Carlo simulations. In figure 1 (b), we qualitatively

reproduced the two phases found in [125] within the framework of our dynamic model, introduced

in section (4.2), using an exchange interaction, as well as a static external field to symmetrize the

ferromagnetic phase.

Very recently, the more general case of h(t) being superimposed by a static external bias field hb,

was studied and it was shown that hb serves as a conjugate field with respect to the order parameter

Q [120].

The dynamical correlation function Clit, proposed in the literature [148], which describes the

time-averaged overlap of the magnetization m(t) with the oscillating field h(t) is

Clit ∝
∮
m(t)h(t)dt = h0

∮
m(t) sin(ωt)dt (3.12)

from which the order parameter Q can be obtained with little difficulty. In our case, we want to

describe the correlation between two dipolarly coupled magnetic moments. The main difference is

the dynamical, a priori non-periodic, character of the time-dependent dipolar fields which is due to

the interaction of the magnetic moments and due to the fact that both moments are evaluated in the

superparamagnetic regime. Therefore, we can expect qualitatively different results when evaluating

our correlation function C.

48



3.3.2 Dynamical phase transition for two interacting magnetic moments

The dynamical phase transition, described in this section, arises from the coupling of different

magnetic moments and is not maintained by an external field. The evolution of the presented system

can thus not be described within the linear response theory as the previously studied systems [125,

129, 130, 131, 132]. We start the discussion of this phenomenon by introducing a proper correlation

function which is similar to (3.12), but replaces the magnetization m(t) by the z-component of a

time-dependent spin vector Sz,1(t) and the external field h(t) by another spin-vector Sz,2(t). This

gives rise to the self-organized behavior of the system. Furthermore, we will regard the correlation

function as the order parameter of the system, because we are interested in the mutual response

of the two spin components as a function of time. In the following, numerical representation of

the time dependence of the two vectors is described by an additional index k, running from 1 to

M >> 1, hence by the expressions Skz,1, S
k
z,2.

Figure 3.10 shows the correlation function C, calculated numerically for M time steps via the

expression

C =
M∑
k=1

Skz,iS
k
z,j

[Skz,l]
2

l = i, if Skz,i > Skz,j, else : l = j (3.13)

=

∫
ds Sz,i(s) · Sz,i(t+ s) (3.14)

of the z-components of two dipolarly coupled nanoparticles i and j as a function of the cubic inverse

inter-particle distance r−3
ij evaluated at vanishing time difference s=0. Almost the same functional

dependence holds for antiferromagnetically coupled nanoparticles, if one assumes a hypothetical

cubic inverse distance dependence for the coupling. This clearly underlines the similarity of dipolar

and antiferromagnetic energy terms under the given boundary conditions of large anisotropy and

we will pick this up in section 3.3.3. As it can be seen from figure 3.10, C goes to zero with

some potency of the coupling strength. The strength of the coupling in contrast reveals a linear

dependence on 1
r3ij

in this kind of plot. It means that the dynamical correlation function decreases

much slower than the interaction strength. In other words, the switching magnetic moments are

strongly correlated at distances, where the interaction strength almost vanishes.
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Figure 3.10: Two-spin correlation function C for dipolarly interacting nanoparticles with K1 =
K2 = 20 kBT as a function of the cubic inverse distance (red), starting from a critical distance
rmin where C starts to deviate from -1 . The order parameter C goes to zero for larger distances. A
very similar functional dependence C(r1,2) holds for antiferromagnetic exchange coupling (black),
for which the same distance dependence was assumed. The linear dependence of the dipolar and
exchange energy on 1/r3ij is also plotted for comparison (blue).

In the limit of strong coupling, the relative difference in all cartesian components α = x, y, z of the

spins

|Sαi − Sαj | = 2Sαi = 2Sαj (3.15)

is a strictly additive property (∀t), while in the limit of vanishing coupling the difference is uni-

formly distributed, i.e.

0 ≤ |Sαi − Sαj | ≤ 2. (3.16)

Hence, the power-law of C( 1
r3ij
) has to be hidden in the dynamics of the system under investigation.

The shape of the function C( 1
r3ij
) resembles the decrease of magnetization of a ferromagnet as a

function of increasing temperature, describing a continuous phase transition. In the next section,

we analyze whether it is possible to define a dynamical phase transition for a very small system of
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two coupled superparamagnetic particles.

3.3.3 Statistical description of a dynamic phase transition

The proper definition of any phase transition relies on an ensemble description. In order to char-

acterize a phase transition in a system with a small number of particles, a corresponding ensemble

description has to be found. For that purpose, we develop a general scheme, containing two steps.

At first, we demonstrate how to simplify the Hamiltonian of the dynamical system and then we

demonstrate how to map the model onto a lattice problem with many degrees of freedom.

Simplification of the Hamiltonian

To ensure the equivalence of an initial and simplified model, reliable boundary conditions have to

be formulated and satisfied. We elaborate these boundary conditions by introducing a probability

function

P (θop) = [P (θ0), . . . , P (θπ)] (3.17)

which measures the canonical weight, obtained from the corresponding partition function, of all

spin configurations with a given angle θop; i.e., an opening angle. Different states of this function

are characterized by different angles θop ∈ [0, π]. The correlation function C, derived from (3.17)

is positive for all θo < π
2
− ϵ

2

(
C>0 =

π/2−ϵ/2∫
0

dθopP (θop)
)

and negative for all θop > π
2
+ ϵ

2(
C<0 =

π∫
π/2+ϵ/2

dθopP (θop)
)

with ϵ as an arbitrarily small number.

From these definitions, we can construct the correlation function

C := C0> + C0< = const, (3.18)

which has to be identical for any two models to be compared within our analysis. In the following,

we will demonstrate how the conservation of C can be recast into a continuity equation.

Since our simulations are stochastic in origin, we can assume ergodic behavior of our spin sys-

tem for t → ∞. Therefore, it is possible to express the two-spin correlation function for particles,

aligned along the x-axis in real space, canonically via
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⟨C⟩can =
∑
config

(S⃗iS⃗j)config
exp(−βHconfig)

Z(β)
(3.19)

in terms of a canonical partition function

Z(β) =
∑

a,b,c,d,e,f

exp(−βHa,b,c,d,e,f ) =
∑

a,b,c,d,e,f

exp
(
−β

[
−K

2∑
i=1

(Sez,i)
2

+D[−2Sax,1Sbx,2 + Scy,1S
d
y,2 + Sez,1S

f
z,2]

])
(3.20)

taking into account all possible configurations (=config) of the two spins, characterized by the

indices a, . . . , f .

The main reason for this mapping is that we try to understand our findings within the framework of

a well-defined theory of phase transitions in statistical systems with many degrees of freedom [139,

140]. Another notable observation from figure (3.10), worth mentioning in this section, is that

the two-spin correlation function for dipolarly coupled spins with strong uniaxial anisotropy K

and exchange coupled spins are very similar when it is assumed that both model Hamiltonians

share the same distance dependence. Moreover, we found that the two-spin correlation function

of exchange coupled spins without anisotropy term, matches the two-spin correlation function of

exchange coupled spins with uniaxial anisotropy when the exchange coupled spins have another

distance dependence (̸= 1/r312). Thus, the model with K ̸= 0 (labeled ”1”) can be transformed into

the model with K = 0 (labeled ”2”) by destroying negative correlation C<0 for θ0 ≥ π
2
+ ϵ

2
via

f(θ0) and simultaneously create it for θ0 ≤ π
2
− ϵ

2
via g(θ0) in the form

π
2
− ϵ

2∫
0

dθop

(
P (θop)1 + f(θop)

)
−

π∫
π
2
+ ϵ

2

dθop

(
P (θop)1 + g(θop)

)

=

π
2
− ϵ

2∫
0

dθop

(
P (θop)2

)
−

π∫
π
2
+ ϵ

2

dθop

(
P (θop)2

)
(3.21)

with the boundary condition
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π
2
− ϵ

2∫
0

dθopf(θop)−
π∫

π
2
+ ϵ

2

dθopg(θop) = 0 (3.22)

to be fulfilled. Equation (3.22) thus reflects a vanishing net flow of total correlation

∇(C>0
f + C<0

g ) = 0, (3.23)

introduced by the functions f and g.Summarizing, we have a mapping

K > D > kBT ↔ K > J > kBT ↔ J ′ > kBT

from effectively antiferromagnetic dynamics of dipolarly coupled spins with strong uniaxial anisotropy

to antiferromagnetically coupled spins with vanishing anisotropy.

The partition function of the isotropic exchange Hamiltonian can be decomposed into the par-

tition function for N paramagnets, subject to an external field B⃗i = JS⃗i for the i-th paramagnet.

Incorporating the effect of anisotropy from the original model results in an internal field, giving rise

to a shifted Langevin-function L→ L
′ for the paramagnets. Because of the limiting case of C ≡ 0

for rij →0 the correlation function remains zero for field values 1
N

N∑
i=1

B⃗i = B⃗. The simplified

partition function reads

Z(β)′ =
∑

α,β,γ,δ,ϵ,ϕ

exp(−βHα,β,γ,δ,ϵ,ϕ)

=
∑

α,β,γ,δ,ϵ,ϕ

exp
(
−β

[
J ′[Sαx,1S

β
x,2 + Sγy,1S

δ
y,2

+ Sϵz,1S
ϕ
z,2]

])
. (3.24)

with antiferromagnetic exchange constant J ′. It is important to note, that the simplified model

with K = 0 has spherical symmetry - something we will use later on. At very high values of J ′

the opening angle θop in the probability function P (θop)approaches zero. It means that the spin

components of the moments 1 and 2 are related to each other by

Sx,2 = Sx,1 ±∆Sx, Sy,2 = Sy,1 ±∆Sy, Sz,2 = Sz,1 ±∆Sz (3.25)
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with a small displacement ∆Sµ,ν (µ ∈ (x, y, z) and ν ∈ (1, 2)) paying tribute to the observation

(3.15) within the dynamics.

By decreasing J ′, the number of orientations of spin 2, contributing non-negligibly to the in-

teraction with spin 1, increases steadily until the equation (3.16) is satisfied for the limiting case

J ′ = Jc.

Mapping the small system onto a statistical system

Now, we map our small system of two interacting spins, expressed in a canonical partition function

onto a statistical system with many degrees of freedom. To do so, we define a hypothetical Ising

model with spins homogeneously distributed on a sphere with surface area Asphere = 4πr2sphere and

all spins oriented perpendicularly to the surface. The spins are coupled via an effective ferromag-

netic exchange interaction

J ′′ =
J ′

rκ
∀ r ≥ rsphere , otherwise J ′′ = 0 (3.26)

with parameter κ, which determines the range of the interaction (see figure 3.11 d-f). We resort to a

ferromagnetic model by virtue of simplicity and use the invariance of the underlying physics under

a piecewise transformation of all source points of the exchange fields, generated by each spin site,

to its respective antipode (θi, ϕi) → (−θi,−ϕi) which then corresponds to the antiferromagnetic

case.

For the description of the evolution of the order parameter of section 3.3.2, only one configuration

with all spins pointing either outwards or towards the surface is used to account for the spherical

symmetry of the problem, achieved in the previous section (see figure 3.11 d-f). The distance

dependence of the correlation function of equation (3.13) will be reflected in the statistical model

by increasing the range of J ′′ via the decrease of the parameter κk=1,...,k=n in n discrete steps. The

comparison of the two models is given in figure 3.11 (a-c) and (d-f) respectively.

For J ′ >> Jc, our dynamical 2-spin system (figure 3.11 a) with very sharp P (θop) distribution

envelops the ground state of the Ising model with a very short interaction range κ = κ1, corre-

sponding to a small surface area A1 (figure 3.11 d). Within A1 the normalized order parameter

⟨Sz⟩A1 approaches unity. This was also confirmed in extended Monte-Carlo simulations .
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≈ ≈0.5 ≈0.1(a) (b) (c)

(d) (e) (f)

Figure 3.11: Modeling of the system of two interacting particles by means of the probability func-
tion (3.17) (top panels) and the corresponding spherical Ising model (bottom panels): Top: Ef-
fective coupling, experienced by a spin with arbitrary, but fixed orientation i on the sphere with
another spin j of arbitrary orientation. Green color expresses positive correlations C>0 while red
color expresses negative correlationsC<0, resulting from different angles in the propability function
P (θop). (a) For strong interaction, there is only non-negligible weight of P (θop) for configurations
with small angles between possible spin orientations; i.e., the cone around the encircled spin. The
number of contributing configurations rises with decreasing interaction, as seen in (b) and (c). Bot-
tom: Corresponding model of parallel aligned Ising-spins, oriented along the surface normal at
each position on the sphere. (d) A spin at position i experiences a large effective field (highlighted
by the blue ellipsoid) from its environment. For J >> Jc the area A1 underlined in orange gives
the interaction range. As the range of the interaction rises and curvature plays a role, the effective
field at lattice site i is reduced, as seen in (e). Its value subsequently approaches zero in (f) towards
the long-range limit ( |n−n

′|
n
→ 0) of the interaction where the correlation length ζ diverges.
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The decrease of J ′ in the 2-spin model results in a broadening of P (θop) (fig. 3.11 b). This situation

corresponds to an increase of the interaction range and the surface area Ak in the spherical model

(figure 3.11 e) and, hence, to the decrease of the order parameter ⟨Sz⟩Ak
< 1 due to the curvature.

Eventually, the system reaches a limit on the sphere and ⟨Sz⟩An → 0 as well as An → Asphere.

The introduced model allows us to map our N = 2 particle system with isotropic exchange inter-

action and N2 possible states onto an N particle spherical Ising system. Hence, a proper statistical

description of the dynamical phase transition can be achieved. From a more fundamental point of

view, the decrease of the parameter κ (in combination with the curvature of the sphere) leads to

a connection of initially disconnected regions of the phase space and thus naturally establishes a

correlation length ζ which diverges in the above mentioned long-range limit for α→ αn when the

order parameter ⟨Sz⟩An = 0 vanishes. Thus, it is important to note that our approach is different

from the mean field approximation. This is due to the fact that our dynamic correlation function

C takes full account of the partition function of the system, which is not the case in the mean field

theory, featuring only the most important state of a partition function in a self-consistent set of

equations [141].

The above analysis demonstrates that despite the smallness of the numerical system the canonical

correlation function ⟨C⟩can is suitable for the description of the dynamical phase transition, as it

can be mapped onto the statistical system with order parameter ⟨Sz⟩Ak
(for the k-th parameter κk)

or equivalently the effective field generated at a particular lattice site i. Note, that the violation of

ergodicity, usually discussed for the two ferromagnetic branches of the Ising-model below T = Tc

doesn’t contradict with our assumption of ergodicity concerning the dynamic behavior, because

the numerically found correlation function C includes information from the entire phase space vol-

ume; i.e., there is no spontaneous symmetry breaking within the dynamic description. Hence, the

experimental or theoretical analysis of the telegraph noise of two coupled magnets as a function

of distance gives a possibility to define a critical distance below which the particles become dy-

namically correlated. Moreover, the piecewise increase of the range of interaction, acting on the

described Ising-state on a sphere, gives a more intuitive explanation for the increase of the correla-

tion length ζ towards the critical point than in the 2-dimensional Ising-model, discussed extensively

in the literature [33, 34, 35, 140] as a prototype for phase transitions in the field of magnetism. The

described procedure from above can be applied to larger systems as well.
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3.3.4 Conclusion

In this section, the effect of long-range interactions on the correlation behavior of two exchange-

coupled particles has been investigated. We systematically calculated the correlation function C

between the signals of two spin vectors over a wide variety of distances and found a continuous de-

crease of this time-averaged observable as well as a characteristic symmetry reduction. We propose

a method that allows us to map the dynamics of a small number of particles onto a statistical ensem-

ble of many static particles and, hence, to describe a dynamical phase transition. The established

procedure for identifying the dynamical phase transition may serve as a prototype how to model the

continuous decrease of any two-spin correlation function for a particular Hamiltonian. The first step

of such a procedure exploits the possibility of an equivalent formulation of an original Hamiltonian

via an isotropic exchange Hamiltonian by choosing well-suited auxiliary functions. The second

step is then a model dependent transformation of the modified Hamiltonian on the spherical Ising

model with varying range of interactions. The analysis of the correlation function allows for the

conclusion that in the limit of strong interactions the particles behave ”paramagnetic” with respect

to the notions of the field induced DPT in Landau theory while they behave ”ferromagnetic” in the

limit of low interaction strength.
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Chapter 4

Concept of non-trivial topological magnetic

helices

4.1 Introduction

An increasingly active field of study in solid state and condensed matter physics on the nanoscale is

devoted to the conceptualization, theoretical modelling and fabrication of applicational devices for

purposes of energy efficient storage and processing of information. Utilization of the spin degree of

freedom has been a particulary promising route in this direction and has benefited from substantial

progress in measurement technology, such as spin-polarized scanning tunneling microscopy.

A limitation of several proposed research directions, such as spintronics, spin caloritronics

or magnonics has been the neccessity of an interaction of the spin degrees with external agents

(charges, heat currents, external fields) and a spin-charge conversion. More recent strategies aim

towards an all-spin based use for storing and releasing magnetic information in nanoscopic objects.

In this context, artificially produced micro- and nanoscopic dipolar systems allow for a variety of

magnetic anisotropies in different spatial directions. Furthermore, attention is focused on atomic

spin ensembles [29, 30], magnetic nanoarrays [31, 32, 36, 37], structured multilayers [44] and su-

perlattices [39, 40], colloids [42], and molecular systems [43].

In particular, Ruderman-Kasuya-Kittel-Yoshida (RKKY) induced antiferromagnetic coupling has

already been utilized to transmit the information of the state of an ”input” ferromagnetic dot to the

”gate” dot [28, 39] and a dependence of the magnetic ground state on the chain length has been



confirmed elsewhere [45].

The proposed concept of the energy storage and release is based on the use of metastable energy

states. This idea has been employed since ancient times and is predominantly used in water mills

to harness the energy of water in elevated states of potential energy and goes under the name of

”hydropower” [60]. In anticipation of an age of depleted fossile energy ressources and ongoing

climatic changes, such renewable and sustainable forms of energy supply gain importance in both

public and scientific recognition [61]. This concept has also been pursuited for magnetic systems

in [59] . In the following, this concept is transfered to magnetic chains and the manipulation of

their phase space and energy landscape, respectively.

In this chapter, I present results on the size-dependent magnetic order in one-dimensional spin

chains, stabilized through competition of exchange, RKKY or dipolar interactions and in-plane

anisotropies, published in [53]. As the basic result, local energy minimum states manifest as integer

twists of the magnetic configuration while local maxima are found in between those minima at half-

integer twists. When modulated in one degree of freedom, topological protection manifests as an

additional property and contributes to the magnitude of the involved energy barriers. Modulation

of the spirals and helices by rotation of one terminal spin results in a periodic storage and release

of magnetic energy, giving an opportunity for potential application in future storage devices.

4.1.1 Structure under consideration

All calculations are based on a x-directional linear chain of N dipoles with uniaxial or easy

plane anisotropy which are coupled by ferromagnetic (FM) or antiferromagnetic (AFM) exchange,

RKKY or dipolar interaction. This configuration corresponds to a chain of nanomagnetic islands, a

stack of nanopillars or an atomic chain on a substrate. The anisotropy may arise from either magne-

tocrystalline anisotropy, particle shape or higher order multipolar contributions. The Hamiltonian

of the system reads as

H = D
∑
i,j

S⃗iS⃗j
rij
− 3

(S⃗ir⃗ij)(S⃗j r⃗ij)

r5ij
−K

∑
i

(Sxi )
2, (4.1)

where S⃗i is a three-dimensional unit spin vector, D is the dipolar coupling constant, K is the

anisotropy constant, and r⃗ij is the distance between spin vectors i and j of the chain.
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4.2 Energy minimization of magnetic spin chains

Before describing the procedure of how the magnetic helix states were modeled and manipulated,

some theoretical background on the energy landscape of dipolar spin chains will be described.

In the following, we show how the (non-) collinear stable spiral states for the spin-chain can

be constructed by an expansion after collinear solutions. We start with the simplest possible situ-

ation of two dipoles, a dimer. In this case only collinear solutions for stationary points (minima,

maxima and saddle-points) arise. Then, we consider the more general case of N dipoles and de-

duce the amount of collinear solutions in this extended phase space from the solutions of the dimer.

The collinear solutions of the chain with N dipoles are subsequently used to construct the (non-

)collinear solutions.

Therefore, we consider (without loss of generality) a chain with N spins along the x-axis with

normalized distance ri,j = xi,j = 1, ∀ |i − j| = 1, and pure dipolar interaction between each

spin-sites i and j.

Eint =Ei,j = [sin(θi) sin(θj) · [−2 cos(ϕi) cos(ϕj)

+ sin(ϕi) sin(ϕj)] + cos(θi) cos(θj)]/(xij)
3. (4.2)

We calculate the stationary points of the chain with generalized phase space coordinates qk,

expressed in terms of normalized spherical coordinates (θi, ϕi). This task requires the computation

of the multidimensional gradient of the energy which must satisify

∇⃗
N∑
i,j

Ei,j = 0⃗ (4.3)

The set of equations in (4.3) can be solved exactly for N=2 and results in 22 solutions along

the x-axis (θ1 = θ2 = π
2

with angles ϕ1 = ±ϕ2 = 0, π
2
, π or 3

2
π), 22 solutions along the z-axis

(θ1 = θ2 = 0 or π), continuously degenerated in the ϕ1- and ϕ2-coordinates, as well as 22 solutions

along the y-axis. An additional ”ring” of degenerated solutions ϕ1 = ±ϕ2 =
π
2

or 3
2
π ∀ θ1 = ±θ2

can be constructed by a linear superposition of basis-solutions along the y- and z-axis and are thus

not treated as basis-solutions.
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We want to prove now that the many-body problem for collinear stationary points reduces to

the dimer-problem by showing that each of the (N − 1)! pairs of coupled spins i and j satisfy the

orthogonal sets of solutions of the dimer. Since we have a discrete lattice problem, bounded by a

natural number N , we prove our statement by mathematical induction:

Our basis is realized by the N=3 problem which must satisfy

∂θ1(E1,2 + E1,3) = 0

∂ϕ1(E1,2 + E1,3) = 0

∂θ2(E2,1 + E2,3) = 0

∂ϕ2(E2,1 + E2,3) = 0

∂θ3(E3,2 + E3,1) = 0

∂ϕ3(E3,2 + E3,1) = 0, (4.4)

for all possible stationary points.

At this point, we utilize L’Hopital’s rule [41] from one-dimensional mathematical analysis to ap-

proach the stationary points from different directions in the 6-dimensional phase space, inflicting

several boundary conditions on the set of solutions for stationary points. In total, we have 5! differ-

ent equations for different quotients ∂qkE
∂qlE

which are (a priori) undefined, but can be expressed by

second derivatives ∂qm∂qkEtot

∂qm∂qlEtot
, except for points in phase space, for which the second derivative of

the denominator equals to zero without the trivial cases k = l. These additional derivatives ∂qm just

introduces a π
2
-phase shift with respect to the periodic function in qm in spherical coordinates. The

advantage of calculating quotients is to cancel out distance dependences, as will be shown below.

For example, the quotient ∂θ1(E1,2+E1,3)

∂ϕ1(E1,2+E1,3)
can be calculated in 6 different ways:

lim
θ1→θs1

∂θ1(E13 + E12)

∂ϕ1(E13 + E12)
= lim

θ1→θs1

∂θ1∂θ1(E13 + E12)

∂θ1∂ϕ1(E13 + E12)
= α (4.5)

lim
ϕ1→ϕs1

∂θ1(E13 + E12)

∂ϕ1(E13 + E12)
= lim

ϕ1→ϕs1

∂ϕ1∂θ1(E13 + E12)

∂ϕ1∂ϕ1(E13 + E12)
= β (4.6)

lim
θ2→θs2

∂θ1(E13 + E12)

∂ϕ1(E13 + E12)
= lim

θ2→θs2

∂θ2∂θ1(E13 + E12)

∂θ2∂ϕ1(E13 + E12)
= γ (4.7)
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lim
ϕ2→ϕs2

∂θ1(E13 + E12)

∂ϕ1(E13 + E12)
= lim

ϕ2→ϕs2

∂ϕ2∂θ1(E13 + E12)

∂ϕ2∂ϕ1(E13 + E12)
= δ (4.8)

lim
θ3→θs3

∂θ1(E13 + E12)

∂ϕ1(E13 + E12)
= lim

θ3→θs3

∂θ3∂θ1(E13 + E12)

∂θ3∂ϕ1(E13 + E12)
= ϵ (4.9)

lim
ϕ3→ϕs3

∂θ1(E13 + E12)

∂ϕ1(E13 + E12)
= lim

ϕ3→ϕs3

∂ϕ3∂θ1(E13 + E12)

∂ϕ3∂ϕ1(E13 + E12)
= φ (4.10)

with α = β = γ = δ = ϵ = φ. We arbitrarily compare the values for γ and ϵ. The quotient reduces

to

∂θ2∂θ1(E1,2)

∂θ2∂ϕ1(E1,2)
=
∂θ3∂θ1(E1,3)

∂θ3∂ϕ1(E1,3)
(4.11)

and yields the constraint θ2 = θ3 or θ2 = θ3 ± π, because the quotients only differ in coordinates

θ2 and θ3. The same principle applies to the quotient of the values of δ and φ

∂ϕ2∂θ1(E1,2)

∂ϕ2∂ϕ1(E1,2)
=
∂ϕ3∂θ1(E1,3)

∂ϕ3∂ϕ1(E1,3)
(4.12)

and yields the constraint ϕ2 = ϕ3 or ϕ2 = ϕ3 ± π. On the other hand, we can easily compute the

identity

∂θ1(E1,2 + E1,3)

∂ϕ1(E1,2 + E1,3)
=

=
∂θ2∂θ1(E1,2 + E1,3)

∂θ2∂ϕ1(E1,2 + E1,3)
=
∂θ2∂θ1E1,2

∂θ2∂ϕ1E1,2

=
∂θ1E1,2

∂ϕ1E1,2

(4.13)

which relates γ directly to the dimer-problem. This equation has two distinct sets of solutions for

the constraints |θ2− θ3| = 0 or±π, |ϕ2−ϕ3| = 0 or±π mentioned above. The π-shifted solution

yields
∂θ1E1,2 + ∂θ1E1,3

∂ϕ1E1,2 + ∂ϕ1E1,3

=
0

0
=
∂θ1E1,2

∂ϕ1E1,2

(4.14)

and can be identified with the set of solutions for the dimer-problem. The other set of solutions

results in the trivial identity

2∂θ1E1,3

2∂ϕ1E1,3

=
2∂θ1E1,2

2∂ϕ1E1,2

=
∂θ1E1,2

∂ϕ1E1,2

(4.15)

Hence, comparison with equation (4.14) and the fact that 0 = ∂θ1E1,2|θ1=−θ2 = −∂θ1E1,2|θ1=θ2
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yields that the second set of solutions also matches that of the dimer-problem. Permutating the

different coordinates in phase space, e.g. making additional use of the values for α and β, and

applying the same procedure as in equations (4.11) and (4.12) gives the analogue constraints for

the variables of spin 1 (θ1 = ±θ2 or ± θ3). This results in 23 stationary points along the x-axis

and 23 highly degenerated stationary points along the z-direction and 23 solutions along the y-axis

ϕi = ±ϕj = π
2

or 3π
2

for θi = θj =
π
2
.

This scheme is also applicable to all cases N > 3 because a mixed second derivative ∂qm∂qn

always reduces the quotients to one single interaction between spins at sites m and n.

We now assume the validity of the statement, proven for N=3, for arbitrarily large, but finite

values of N . The induction step N → N + 1 is simply performed by using the additivity of the

dipolar interaction

∂θ1(E1,1 + E1,2 + · · ·+ E1,N)︸ ︷︷ ︸
=0

+∂θ1E1,N+1 = 0

∂ϕ1(E1,1 + E1,2 + · · ·+ E1,N)︸ ︷︷ ︸
=0

+∂ϕ1E1,N+1 = 0

. . . = 0

. . . = 0

∂θN(EN,1 + EN,2 + · · ·+ EN,N)︸ ︷︷ ︸
=0

+∂θNEN,N+1 = 0

∂ϕN(EN,1 + EN,2 + · · ·+ EN,N)︸ ︷︷ ︸
=0

+∂ϕNEN,N+1 = 0

∂θN+1(EN+1,1 + EN+1,2 + · · ·+ EN+1,N) = 0

∂ϕN+1(EN+1,1 + EN+1,2 + · · ·+ EN+1,N) = 0 (4.16)

which evidently forces the derivative of the two-particle-interaction of the spin N + 1 with all

other spins to be zero by comparison of the coefficients. A substitution of variables with indices

i ↔ N + 1 shows that the remaining two derivatives do also vanish by virtue of symmetry. Sum-

marized, there is a total number of 2N collinear stationary points along each of the three cartesian

axes, labeled by ψx,i, ψy,j and ψz,k. This remains valid, even if we alter the magnetic moment of

each spin-site individually, which is explored in the following.
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At this point, we change to cartesian coordinates, since the basis-solutions coincide with the x,y

and z-axes. We are able to express any point in the 3N -dimensional phase space by a suitable

superposition of the 2N + 2N + 2N = 3 · 2N basis-solutions Ψx,i,Ψy,j andΨz,k calculated above,

e.g.

(Sx,1, Sy,1, Sz,1, . . . , Sx,N , Sy,N , Sz,N) =

=
2N∑
i=1

αx,iΨx,i +
2N∑
j=1

αy,jΨy,j +
2N∑
k=1

αz,kΨz,k (4.17)

certainly including all possible non-collinear stationary points.

If we exploit the fact that the energy of any chain-configuration can be decomposed into inter-

actions of the Sx-, Sy- and Sz-components, the task of finding non-collinear spiral states reduces to

the determination of the coefficients αi,x, αj,y andαk,z to express the non-collinear basis-solutions

by the collinear basis (resembling the task of calculating Clebsch-Gordan-coefficients to express

coupled quantum spins in the basis of single quantum spins (for example [55]).

To make things even more transparent we use the decomposition into Sx, Sy and Sz-components

with coefficients

(Sx,1, Sx,2, Sx,3, . . . , Sx,N) =
N∑
l=1

βx,lψx,l

(Sy,1, Sy,2, Sy,3, . . . , Sy,N) =
N∑
m=1

βy,mψy,m

(Sz,1, Sz,2, Sz,3, . . . , Sz,N) =
N∑
n=1

βz,nψz,n (4.18)

with Ψx,i=[ψ1, ψ2, . . . ψN ]x,i, Ψy,j=[ψ1, ψ2, . . . ψN ]y,j , Ψz,k=[ψ1, ψ2, . . . ψN ]z,k and coefficients

βx,i, βy,j, βz,k which have an unambiguous relation to the coefficients αi,x, αj,y and αk,z. If there is

only one basis-set with non-zero coefficients, it corresponds to collinear solutions. A superposition

of the different basis-sets with symmetric distribution of the coefficients with respect to the center

of the chain for each set results in minima-states.
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One example for N=5 is given by the component-resolved expansion

Sx : 0→ +
1

2
← + 0→ +

1

2
→ + 0→

Sy : 0↗ +
1

2
↙ + 1↗ +

1

2
↙ + 0↗

Sz : 1 ↑ +
1√
2
↓ + 0 ↑ +

1√
2
↑ + 1 ↓ (4.19)

and corresponds to a stable non-collinear spiral state.

In conclusion the number of stationary points for collinear states is 3 · 2N . Since the calculation of

the symmetric coefficients is in general not a straightforward task, we calculated them systemati-

cally by the modulation of the spirals, as explained in the subsection 4.3. The number of minima

corresponds to all possible numbers of symmetric coefficients between 0 and N in the different

basis-sets. A graphical model for a magnetic helix is shown in figure 4.1.

Figure 4.1: 2-dimensional projection of a 3-dimensional model of a magnetic helix. It is clearly
visible how spin vectors simultaneously wind around two spatial directions, as parametrized by the
two spherical angles ϕ and θ . The variation of the azimuthal angle is color-coded by blue and
yellow spin vectors (”base-pairs”) while the variation of the polar angle is color-coded by a blue-
red alteration of the ”back-bone” of the helix.
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4.3 Theoretical model of spin spirals and helices

4.3.1 Search for stationary energy states of the spin chain

The following results are discussed for dipolar interaction (see 4.2) as the most generic form of

interaction, but the formalism can be straightforwardly applied to the RKKY or (direct) exchange

interaction, if needed.

All information about the saturation magnetization MS of a particle is hidden in the dipolar

interaction constant D = µ0M
2
s /2, as defined in (4.1). At first, we look for the exact total number

of critical points of Hamiltonian (1) solving the set of equations ∇
N∑
i,j

H = 0⃗ as was explained

in the previous section (4.2). We reveal 3 × 2N stationary points (minima, maxima, or saddle

points) related to (non-)collinear solutions, and the question is what the magnetic configurations

corresponding to these metastable states look like. To answer this question analytically, we utilize

the method used for the construction of spin-spiral states. The magnetic structure is regarded as

a superposition of spirals in the 2D Brillouin zone under the requirement of a constant magnetic

moment at all sites. The energy of the constructed structure is then analyzed. The spin spirals can

be described via vectors δ and q in the form (i) S⃗(r) = S⃗[sin(δr) cos(qr), sin(δr) sin(qr), cos(δr)]

or (ii) S⃗(r) = S⃗[sin(δr), sin(δr) cos(qr) cos(δr)] . For q = 0 and r∥O⃗x⃗, for example, (i) gives a

spin spiral S⃗(x) = sin(δx), 0, cos(δx)] in the xz plane. The energy of this spin configuration as a

function of δ is plotted as a dashed line in figure 4.2(a).

It is seen that the energy is minimal (Emin,1) at δ = π, i.e., corresponds to the AFM alignment

of neighboring spins and is known as the ground state of a chain with easy x-z plane [see figure

4.2(c)]. There is only one minimum in this case, and the envelope of the AFM structure Fig. 1(c)

forms a straight line. If, however, (δ, q) differ from these special values, the energy spectrum

changes dramatically: it adopts many local energy minima and maxima, in good agreement with

the analytical calculations.

The contour plot of the energy E(δ, q) for a chain of N=10 dipoles can be seen in figure 4.2(b).

Several cross sections of this two-dimensional energy surface for different K are shown in Fig.

1(a). Amazingly, the minima occur for all q, δ = ±(nπ/N), π ± (mπ/N) for K < −2.3D and

with integer q, δ = ±(nπ/N), π ± (π/2N) +±(mπ/N) for K > 2.3D with integer m ∈ [0, N ]

and n ∈ [0, N ]. That is to say, the energy spectrum becomes discrete and the energy gaps become
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Figure 4.2: (a),(b) One- and two-dimensional representation of the energy of modulated helices in
a dipolar chain consisting of 10 moments as a function of δ and q. (c) Sz for several energy levels.
The thick lines in (c) show the envelope lines of double helices corresponding to the magnetic
moments (arrows) in two sublattices. The dashed parabola in (a) corresponds to the energy E of
the harmonic spiral S(x) =(sin(δx),0, cos(δx)); the black, red, and blue curves correspond to E(δ)
of modulated helices with K = 0 and q = 0, q = π/N , and q = 2π/N , respectively, while the cyan
line shows E(δ) for q = π/N and K = 2.5D. The energy scale in (b) goes linearly from −0.8D
(blue) to +0.8D (yellow). (d) Three-dimensional representation of an intermediate helix state found
in the SD simulations for N = 81 (video SI2 of [53]) for K = −1.23µ0M

2
z at T < 1K. (e) End

configuration of SD simulations for K = 0 and starting configuration identical to (d).

size dependent; i.e., we observe all components of quantum confinement. The deepest lying energy

minima, i.e., stablest energetic states, correspond to magnetic helices (MH) with integer number of

turns along the chain, as demonstrated in Fig. 4.2(c), (d) and (e), and can be uniquely described

using quantum numbers m and n defining wave vectors δ and q, which are commensurate to the

chain length. The number of helix turns is codified by the smaller wave vector. For example, if

δ⃗ ≤ π, then q = π/N amounts to to one helix turn of the total chain.

4.4 Spin dynamics and Monte Carlo simulations

In order to access the complete configurational space beyond the restrained two-wave-vector ap-

proximation, Monte Carlo (MC) and spin dynamical simulations (SD) have been performed. Fur-

thermore, a magnetomechanical model presented in fig. 4.3 and described in the supplementary
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Figure 4.3: Magnetomechanical model of [53]. The magnets are not connected by a wire. They
are hanging each on their own soft, nonmagnetic filament and they are coupled via magnetostatics
only. The hole is larger than the diameter of the filament and magnets may rotate without screwing
it. Left: Stable spin helix with modulation vector q = (3/2)π/14. Right: General view of the
model. Silver and green colors represent the north and the south poles, respectively.

material of [53] has been tinkered. While the MC procedure has been developed to adequately

model the equilibrium properties of many-body systems, the SD calculate an exact dynamical path

from an initial configuration into a final configuration. The details of the numerical procedures

are elaborated on in [50, 51, 53]. According to the MC analysis, the stable equilibrium configu-

ration of a dipolar chain of length N for kBT > 0.1D and −1.2D < K < 2D indeed corre-

sponds to Emin,2 in Fig. 4.2(c), i.e., to (q, δ) = (π/N, π ± (π/N)). Only at lower temperatures

or higher anisotropy the ground AFM state can be achieved. Our SD simulations demonstrate

that the exact dynamical path towards the global energy minimum strongly depends on the start-

ing configuration and passes through several energy MH states as predicted above. Starting with

the Ssin[(π + (π/N))x], cos[(π + (π/N))x], 0 state, e.g., one ends up with a half-turn helix for

an anisotropy comparable with the dipolar energy. Another example of dynamical relaxation is

recorded in video SI2 in the supplemental material of [53], while one of the intermediate configura-

tions is shown in fig. 1(d). Even for a vanishing anisotropy constantK the system often freezes in a

modulated structure, as depicted in fig. 4.2(e). In accordance with the simulations, the most proba-

ble stable states of the chain established after mechanical agitation are spin spirals with π or π = 2

twist. Both an easy-plane rotation of magnetization and a systematic modulation of the easy-axis

component were clearly observable. The less likely (but still stable) spiral case with q = 3π/2N
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configuration is visible in fig. 4.3.

The stability of the magnetic helices can be explained as such: (i) the internal fields, created in

these structures, coincide with the orientation of dipoles, and (ii) those states cannot be transformed

into the magnetic ground state by a continuous transformation of the configuration; i.e., they pos-

sess topological stability. Consequently, if the ends of a chain are fixed, the helical structure will

remain at the local energy minimum. Next, this property will be exploited to achieve different (δ, q)

states artificially. To manage this, the magnetization vector of one of the terminal dipoles is ro-

tated in order to introduce additional magnetic energy into the chain. The results of this procedure

are carried out in MC simulations (Fig. 3), SD simulations (see suppl. of [53]), as well as in the

magnetomechanical models (see suppl. of [53]).

The Monte Carlo simulations have been prepared for chains of length N = 70a. The equilib-

rium winding-up process is given in fig. 4.4(a). At the beginning, the slow annealing procedure

from the aforementioned literature has been applied. At the end of this process, at a thermal en-

ergy of kBT = 0.05D, the chain has relaxed into the magnetic helix state with q = π/N ; that is,

the entire chain acquired half of a modulation period. This relaxed configuration was taken as the

starting point for the winding-up process. Then, the first spin has been rotated at an angular rate of

(π/2)/(2× 105 Monte Carlo Steps (MCS)), as our analysis revealed that a critical period of about

2× 105 MCS was long enough to achieve a new equilibrium state. After nine completed rotations,

as illustrated in fig. 4.4(a), the chain was found at the stable q = 5π/2N helix configuration. The

other terminal spin of the chain remained unconstrained.

In Fig. 3(b) the calculated time dependence of magnetization of the z component for the first

and the last spins is visualized. It is visible that the rotation angle of the last spin is retarded

compared to the rotation angle of the first spin. This can be explained by the tendency of the

magnetic spiral to remain in its initial energy minimum.

A further interesting aspect concerns the propagation velocity of a knot in the magnetic helix: The

propagation of this knot decreases with increasing q, as shown by the dashed red line, and can

be modeled by a function of the form v = at2 with some negative acceleration a. The backward

process is shown in figs. 4.4(c) and 4.4(d). Here, the first spin is rigid and the relaxation of the

chain is observed. The back rotation was decelerated once again, as evidenced in fig. 4.4(d). The

whole process, however, was slowed down significantly. This can be explained by the fact that
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Figure 4.4: MC simulations of a linear chain of 70 dipoles with K = −1.23µ0M
2
S at kBT < 1K.

(a) Winding up of the spiral. Each snapshot of Sz(r) corresponds to a relaxed state. The far-left
moment (red) has been rotated with velocity of (π/2) × 105 MCS. (b) Time dependence of the
far-left (blackline) and the far-right (red line) moments. (c) Release of the stored energy: the left
moment is fixed downwards. (d) Nonlinear time dependence of the chain-averaged ⟨Sz⟩. A typical
angle distribution in a relaxed helix is shown in the inset.

spiral had been released at a local energy minimum state.

The obtained MC results match up very well to the SD simulations shown in supplementary videos

of [53] for dipolar coupling and for ferromagnetic exchange interaction, respectively. The relevant

time scale for dynamical processes depends on the chosen magnitude of the magnetic interactions

and damping parameters of the atomistic LLG Equations. For a chain made out of 35× 35× 2 nm

sized nanoparticles, interparticle distance 20 nm, and a dimensionless Gilbert damping parameter

of 0.01, the completed winding up process (see supplementary video sequence of [53]) amounts

to milliseconds. In addition, SD provides new interesting features of the winding process. The

first important conclusion is that the speed of the entire process depends on the angular rotation

speed, enforced externally onto the first spin of the chain. The second, more staggering finding

is that the emergence of each new turn of the magnetic helix is accompanied by a sudden change

in the magnetization of many dipoles in the case of dipolar interaction. At the beginning, the

neighbors of the first dipole rotate coherently with certain phase shift between adjacent spins of

the chain. The internal energy of the chain grows as a result towards a local energy maximum

(e.g., Emax,1 in fig. 4.2). Once the rotation angle approaches a critical value, the local maximum

is realized, and a very fast change in the orientation of magnetization of the dipoles happens and
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the system relaxes down into the nearest stable state corresponding to two turns of the helix (see

suppl. of [53]). During this time, a subset of the dipoles continue to rotate in the direction of

forced winding up, while another subset rotate in the opposite direction. In the proposed magneto-

mechanical experiment, the states with larger q’s are also found immediately after the magnetization

jumps described above, as demonstrated in [53]. Accordingly, the magnetic helix can find stable

energy states automatically, once they are critically rotated. This happens to be different from

Dzyaloshinskii-Moriya spin spirals [30].

The ”click into place” behavior during the winding-up process exists also for q = 0, i.e., for Sx

= 0. If the same procedure is repeated for a spin chain coupled via nearest-neighbor ferromagnetic

exchange interaction with identical interaction strength and damping parameters, the behavior is

analogous but no jumps occur (see suppl. of [53]), as the relaxation time of the chain and the

angular rotation velocity are of the same order of magnitude. When a wound-up chain (in a high-

energy state) is released (supplementary to [53]), the stored energy is sufficiently large to overcome

several barriers.

The intriguing features of magnetic helices open up several interesting perspectives for tech-

nological applications. Arguably the most important opportunity lies in the new way of energy

storage. Among the oldest methods, which is still actively employed in a large number of applica-

tions, is the spring wind-up technique.

A simple but powerful everyday example, would be a clockwork device mechanically powered

by a mainspring. In this scheme, one end of a mechanical spring is fixed, while the other one gets

continuously rotated until the spring is wound up. Then this latter spring terminal is released and

the stored potential energy transforms into the kinetic energy of a clock arrow, a motor, a pump, or

another viable mechanical device. An analogous procedure can be applied to the magnetic helices.

By rotation of one chain’s end via local magnetic fields or spin-polarized currents, one can force the

helix towards higher integer windings and, thus, magnetic higher energy. The system can then stay

in this new stable configuration to store the energy introduced through the rotational process of the

first spin. The stored energy can then be transformed into its mechanical or magnetic counterparts

to produce work as visualized in the supplementary parts of [53] and fig. 4.3.

As an additional feature of stability of the above described magnetic helices, one can understand

their stability from the viewpoint of continuum theory of micromagnetics [62] as a non-trivial topo-

logical magnetic configuration.
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4.5 Search for topological invariants

In the previous chapter the metastability of magnetic helices has been explored on the basis of

energy considerations. On the other hand, it has been mentioned that only certain numbers of

windings are stable. The subset of integer windings of the helical structure can be characterized by

a winding number.

As mentioned in the previous subsection, the investigated magnetic chains are based on the

atomistic model of classical magnetic spin moments µ. This implies that the theory of topological

order, which is a continuous theory for both, the considered degrees of freedom and its underlying

spatial background, doesn’t apply here. However, in the continuum limit of infinitesimal inter-

particle distance d → 0 and slowly varying magnetic order parameter δM → 0 for δd → 0, one

can employ ideas from topology to explain the stability of the described magnetic helices, if the

rotation of the spin vector takes place in one plane only.

The phenomenon of topological stability itself is simple and fundamental. Objects with so

called ”topological order” are resistant against any local perturbation. The notion of topological

stability can be applied to various physical systems that can be modeled by continuous vector

fields. Magnetic materials are among these systems. Particularly, magnetic solitons and skyrmions,

introduced first in [56], belong to the class of topologically non-trivial objects, studied extensively

in the last decade.

While magnetic skyrmions are characterized by the topological winding number

n2 =
1

4πMs

∫
A

M⃗(
∂M

∂x
× ∂M

∂y
)dxdy (4.20)

the magnetic helices, modulated in a plane, can be seen as one -dimensional counterparts with the

winding number

n1 =
1

2π

2π∫
0

1dϕ (4.21)

with angle ϕ as introduced in Eq. (4.2) of section (4.2).

In this interpretation, the metastable configurations of AFM or dipolar magnetic helices corre-

spond to the topological numbers n1 going from [1/2, . . . , N/2]. Equations 4.20 and 4.21 can be
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derived as special cases of a generalized Stokes theorem [133].

4.5.1 Summary

In conclusion, I showed in this chapter that finite length microscopic magnetic chains possess

a quantized spectrum of local energy minima, sensitive to the geometry of the chain, the mate-

rial of the elements and the shape of the involved particles. Furthermore, these quantized states

can be described by topological winding numbers. The unique energy spectrum is realized by

magnetic spirals or magnetic helices and in the case of spirals the configurations carry additional

topological protection as one-dimensional counterparts to the celebrated two-dimensional magnetic

skyrmions [28, 29, 30]. The results explain recent experimental findings and open broad perspec-

tives for possible future investigations concerning the dynamics of this nontrivial system. Also, the

results stimulate research in pursuit of realizing such topologically protected spin chains experi-

mentally by exchange-coupled thin films [31, 40].
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Chapter 5

Efficient propagation of a dissipative

wavefunction equation (DWE)

Energy dissipation or damping is relevant for any real dynamical process of an open system, such as

those described in the two previous chapters 3 and 4 on arrays of nanodots and spin chains. There-

fore it is important to be able to develop a microscopic understanding of the underlying quantum

dynamics of such systems which will be describable by quantum master equations. In the deco-

herent limit, a classical master equation such as that described in 2.4.2 can be available. This may

also give a good correspondence with time-quantified Monte-Carlo systems, as demonstrated for

spin-based Langevin equations [52] and even a conventional Monte-Carlo-simulation approach can

yield good agreement with dynamically treated systems, as demonstrated in the previous chapter 4.

If the Hamiltonian, describing the system, its environment and their interaction is known mi-

croscopically, integration over environmental degrees of freedom yields a master equation for a

reduced density matrix, influenced by a superoperator which is linear, completely positive and

trace-preserving. If the dynamical description boils down to the simplicity of a rate equation, but

knowledge about the microscopic details of transition rates is inaccessible, it is meaningful to use

an absorbing potential, described by a special non-Hermitian operator in the energy eigenbasis

acting on a wave function. Such an operator keeps the advantage of representing unitary and non-

unitary processes and allows for an estimation of the corresponding dynamical time scales. On

the other hand, this kind of generator enforces very small time steps in a numerical treatment for

the large damping regime, as it usually contains an unrestricted parameter for the anti-Hermitian



absorption part. Furthermore, the used time-evolution includes a nonlinear term due to a necessary

normalization condition for the wave function which is numerically expensive. Here, we propose

an extended effective non-Hermitian Hamiltonian which can simulate the effects of a physically

meaningful ”viscous force” on the reduced system and avoids the need for a perpetual rescaling

of time. Additionally, we have implemented a numerically advantageous linear version of the re-

sulting evolution equation. This procedure can save significant computation time, particularly for

interacting systems with an exponentially increasing Hilbert space. We show that the proposed

equation can be easily implemented for a numerical description of different systems and exemplify

this for different spin relaxation scenarios.

5.1 Introduction

When a system is driven out of equilibrium, it will return back to its statistical mechanical or me-

chanical equilibrium state after a finite time. The reason is that practically any system coupled to the

environment exchanges energy with the latter [69, 70, 71, 72] and looses phase coherence [73, 74]

to it (or more precisely to the total system). Various techniques have been employed to describe

or model these processes [75, 76, 77, 78, 79, 80, 81]. A complete account of quantum mechanical

interactions in the above sense can be given by a reduced density matrix description [123] or by a

stochastic wave function description [83, 84]. A complete deterministic wave function evolution

has to be linear to be in accordance with the theory of relativity [85]. If, however, only energy

dissipation is at the center of concern and one has to deal with incomplete information about mi-

croscopic degrees of freedom, one can phenomenologically model this situation as a non-unitary

process and the description typically includes a nonlinear damping term in addition to a linear equa-

tion of motion. Mathematically, such a nonlinearity reflects the absence of superposition among the

one-dimensional Hilbert space vectors, associated with the diagonal elements of a (decohered) den-

sity matrix. A meaningful normalization condition in each time step helps to successfully estimate

transfer rates from the reduced amount of obtainable information and approximates the irreversible

relaxation behavior of many quantum systems, particularly decay phenomena for systems of dif-

ferent complexity. Two simple examples of classical nonlinear equations are given by the Newton

equation with friction for mechanical systems or the Landau-Lifshitz-Gilbert equation of motion

for magnetic systems [86, 87] which have many important applications in fields far apart from clas-
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sical mechanics [89, 90]. One of the possible ways to treat the dissipative processes of quantum

dynamics is the extension of the linear Schrödinger equation to its nonlinear counterpart [91] and

using the classical limit ℏ→ 0 for the derivation of the Landau-Lifshitz-equation [92].

For the purpose of describing energy losses without exact knowledge of a master equation, a

Hermitian total Hamiltonian Htot, employed in the Schrödinger equation Htot|ψ⟩tot = E|ψ⟩tot of

a closed system is often replaced by a non-Hermitian Hamiltonian, Heff |ψ⟩eff = E
′ |ψ⟩eff which

allows, besides its exploration in the foundations of quantum physics [93], for a phenomenological

description of particle and quasiparticle decay [94, 27] as well as energy gain and loss of open sys-

tems with respect to an environment [96]. In a self-consistent approach towards measurements of a

single open quantum system, the wave function evolution of environmentally-influenced quantum

systems is stochastic and confined to a non-Hermitian evolution or quantum jumps, depending on

particular random number outcomes [85, 97, 98, 99, 100]. This leads to Lindblad master equa-

tions [79] after sufficient averaging over independently generated stochastic Monte-Carlo wave

function trajectories. However, we do not use non-Hermitian operators in this latter context to

model ”avoided jumps” in quantum jump trajectories.

The damping parameter λ describes the magnitude of energy dissipation from a subsystem. It

is usually treated as a free, (a priori) unrestricted parameter or is taken from experimental mea-

surements such as ferromagnetic resonance spectroscopy [101] or inelastic phonon scattering [102]

measurements. Depending on the strength of λ, one distinguishes between the overdamped (return

to equilibrium without oscillations), underdamped (return to equilibrium with oscillations) and crit-

ical regimes. An effective non-Hermitian Hamiltonian has the typical form H∗
eff = H0 − iΓ with

H0 being conveniently chosen as the Hamiltonian of the open system, iΓ := iλH0 the absorbing

potential, being related to the imaginary part of the self-energy operator in standard perturbative cal-

culations [103]. While the underdamped case is well described by an evolution equation, generated

from the above mentioned Hamiltonian, specific assumptions have to be made, if one is interested

in critical or overdamped regimes (see for example [104]). This is rooted in the straightforward

linear parametrization of the anti-Hermitian operator part in λ which must have some limits, as

discussed later in the manuscript.

In section 5.2, we briefly describe the meaning of non-Hermitian generators in the phenomeno-

logical dynamics of the non-unitary time evolution of open quantum systems. We advocate the
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viewpoint that anti-Hermitian parts of the non-Hermitian operator should be bounded due to phys-

ical constraints and thus relaxation rates should be limited by an upper bound for all physical situ-

ations. Based on this, one can define a fixed scale for the time resolution of numerical integration

schemes for the differential equations of motion.

We propose a simple non-Hermitian operator of the above kind and use it to generate a linear time

evolution of the wave function with a numerically performed normalization. This saves computa-

tion time, as opposed to the proposals of the authors [85, 91, 92] who have used nonlinear evolution

equations.

We present simulation results in section 5.3 which match predictions for single spin degrees of

freedoms in external fields. Additionally, we show the nontrivial case of exchange interacting spins.

Motivated by the simulations, we compare our finding to results obtainable by the classical Landau-

Lifshitz-Gilbert equation [27], bearing a striking conceptual similarity to our effective equation of

motion.

We finalize the chapter with a short discussion of the results in section 5.5.

5.2 Linear evolution equation for a non-Hermitian Hamilto-

nian

Open quantum systems that are perturbatively coupled to an environment yield a non-unitary time

evolution in general which is conveniently worked out in the interaction picture. In many cases,

after the integration over the known environmental degrees of freedom, one can identify a superop-

erator which serves as the generator for such a time evolution of the density operator. The Lindbla-

dian [79] and Redfieldian [106] are typical superoperators at the Born-Markov level of perturbation

theory with(out) secular approximation and usually capture both Hermitian and anti-Hermitian con-

tributions. The anti-Hermitian contributions signal a non-vanishing result for the Fourier transform

of the environmental Green’s function and assist in explaining transitions within a stabilized basis

of the reduced density matrix of the open system, but still permits a linear, trace-preserving and

completely positive superoperator. A computationally less demanding description at the level of

the Schrödinger equation without detailed knowledge about the transition rates cannot capture the

process of coherence matrix elements of a density matrix, but can be justified for the purpose of
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a qualitative description of energy renormalization and/or dissipation. It can thus qualitatively ap-

proximate the relaxation process, described by rate equations in a stabilized basis, and is given by

the simple equation of the kind

iℏ
d

dt
|Ψ⟩ = Heff |Ψ⟩. (5.1)

The operator Heff = H1 + iH2 has a Hermitian and an anti-Hermitian part (H1 = H+
1 and

H2 = H+
2 ) which separates a (renormalized) unitary part of the evolution and a non-unitary, dis-

sipative part (sometimes associated with a decay rate or an absorbing potential). The presence of

H2 destroys the unitary group property of the set of time evolution operators {U(ti) , ∀i ≥ i0} and

the limited knowledge, obtainable from the thought of system-environment-interaction, necessi-

tates a normalization procedure for the wave function. The latter is usually expanded into a set of

orthonormal states {|ψ⟩n} of an isolated quantum system (often the energy eigenbasis), subjected

to irreversible repopulation of its eigenstates.

For our purposes of describing several damping regimes for a quantum system, it is convenient

to group the anti-Hermitian parts of operators of equality (5.1) into two classes of bounded and

not bounded anti-Hermitian generators. In our terminology, bounded anti-Hermitian generators

H2 : X → Y fit the usual definition of bounded operators,

||H2|Ψ⟩||Y
|||Ψ⟩||X

≤M, M <∞ (5.2)

known from functional analysis [107], while for not bounded operators M →∞ in (5.2).

Since the strength of dissipation or decay rates is associated to the magnitude of the bound of

the anti-Hermitian operator

||H2|Ψ⟩||Y
|||Ψ⟩||X

≤M, (5.3)

and [H1,H2]− = 0 (and often evenH1 = CH2 with C ∈ R), we require a bound which is of order

O(M) ≤ 1 to achieve time scales for the non-unitary part of the evolution which are larger or equal

to typical time scales of unitary processes.
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In many applications [91, 92, 99], operators of the kind

H∗
eff = H0 − iΓ := H0 − iλH0 (5.4)

are used and λ is usually not a restricted damping parameter (in general λ could be chosen matrix-

valued). Therefore, one has to deal with a not bounded anti-Hermitian generator for λ→∞, even

though the spectrum of H0 may be bounded from above.

Such operators lead to a nonlinear evolution equation of the kind

iℏ
d

dt
|ψ⟩ =

(
H0 − iλ[H0 − ⟨H0⟩]

)
|ψ⟩, (5.5)

if the renormalization of the probability amplitude is worked into an infinitesimal time evolution of

the corresponding initial wave function [92]. We refer to (5.5) as Gisin’s Equation due to a proposal

of Gisin in [91].

Beyond the fact, that such an equation requires an adjustment of time steps in the large damping

regime δt→ δt = δt(λ), its nonlinear part, which entails the expectation value of the Hamiltonian

H0, slows down the speed of numerical integration, particularly for multistep methods, such as

higher-order Runge-Kutta integration methods.

The simplest phenomenological way to avoid the adjustment of time steps is the introduction

of the Gilbert-like prefactor 1
1+λ2

to the right hand side of equality (5.5) [105].

However, despite this modification, the approach still contains a nonlinearity due to the ⟨H0⟩-

expression. This is computationally ineffective due to the arising matrix-vector-products, repeat-

edly appearing in multistep numerical integration methods, used by many authors.

In order to overcome both the time scaling problem and the nonlinear representation for the

evolution equation, we propose a new non-Hermitian generator

Heff = H0

∞∑
n=0

(−iλ)n =
H0 − iλH0

1 + λ2
. (5.6)

This ansatz pays tribute to the fact that limitations of the relaxation rates arise from changes

to the microscopic transition rates in master equations, reflected by the superoperator or in our

simplified case by an absorbing potential. Instead of converting the information, provided by this

operator, into a nonlinear evolution equation, we numerically normalize our initial wave function

79



and thus succeed in implementing a formally linear evolution equation of the form

iℏ
∂

∂t
|ψ⟩ =

(H0 − iλH0

1 + λ2

)
|ψ⟩. (5.7)

Since we constructed the effective Hamiltonian for a not yet specified H0 Hamiltonian, we can

simulate relaxation not just for single particle systems but also many-body systems by this method,

as long as we can diagonalize the Hamiltonian H0.

5.3 Simulations

In order to make the numerical scheme more efficient, as described in the last section, we describe

the following results directly in terms of Eq. (5.1). The Eq. (5.5) in its rescaled form of [105]

should therefore be replaced and propagated by a linear representation

iℏ
∂

∂t
|ψ⟩ =

(H0 − iλH0

1 + λ2

)
|ψ⟩ (5.8)

which captures the slow down of the relaxation rate at the level of the generator alongside L2-

normalization |ψ(t+ δt)⟩ → |ψ(t+dt)⟩
|||ψ(t+δt)⟩|| after each successful numerical time step t→ t+ δt.

The Eq. (5.7) and the rescaled version of Eq. (5.5) differ by an infinitesimal time step δt only,

but (5.7) can be solved much easier numerically, as one doesn’t incorporate information about

the eigenstate repopulation into the dynamical equation explicitly but only at the end of the time

step and avoids the evaluation of the ⟨H0⟩ term within the linear multistep method (Runge-Kutta

4.th order), implemented in our code.Numerical renormalization of (5.7) is also sligthly superior to

(2.36) in the numerical integration efficiency, since latter requires to deal with the second summand

of the dissipator D four times in the integration while it only appears once for the former. This

saves memory time and becomes particularly relevant for a large Hilbert space dimension N of

the relevant quantum system. Such a simplification is not possible for systems, based on a non-

Hermitian Hamiltonian of the form (5.4), as there is no natural bound on the magnitude of the

anti-Hermitian part of the generator and thus one would need smaller time steps in the numerical

treatment to approximate both unitary and non-unitary timescalesO(τ)1 andO(τ)2 of the dynamics

simultaneously, as one expects O(τ)1 >> O(τ)2 in the large damping limit λ >> 1.
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In order to verify the new results from the previous section, we performed numerical simulations

of the Schrödinger equations (5.5) and (5.7) for the simple example of a spin 1 quantum system.

We started our investigation with the simplest possible Hamiltonian

H0 = −SzBz (5.9)

and plotted the relaxation behavior of the x-component of the expectation value of the spin operator,

respectively. Therefore our eigenbasis |ψ⟩S =
∑
n

cn|ψn⟩ is just the ordinary Zeeman basis of a

single quantum spin. Figure (5.1) shows the result in the three different damping regimes.

Figure 5.1: Relaxation behavior of the ⟨Sx⟩-component described by the two equations (5.7) (blue)
and (5.5) (red) for a normalized initial expectation value ⟨S⃗⟩=(0.885,0.442,0.147): (a) Under-
damped evolution (λ = 0.02), (b) near critically damped evolution (λ=0.6) and (c) overdamped
evolution (λ=5.0). The magnetic field has been set to unity Bz := 1 in all cases. The differences in
the relaxation behavior for the two equations are clearly visible for large damping values.

For small damping far below unity the results of (5.5) and (5.7) nearly coincide, as expected.

One can understand this in a very simple way by performing a Taylor expansion of the denominator

of (5.7) which yields
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lim
λ→0

1

1 + λ2
≈ 1 +O(λ3). (5.10)

For intermediate damping the solutions clearly deviate from one another and one sees the in-

creasing period of the oscillation of the expectation value for the improved, linear Eq. (5.7). The

period T1 described by the already known nonlinear evolution equation increases compared to the

low damping value. The increase in period T2 of Eq. (5.7) is larger, but from the comparison of the

curves one can still not infer a qualitative but only a quantitative difference concerning the physical

predictions, given by Eqs. (5.5) and (5.7). This general increase of the period of equality (5.7)

is clearly due to the known frequency renormalization and, as expected, the ratio of periods T1
T2

is

exactly 1/2 for λ = 1.

In the strong damping regime for λ = 5, one can finally distinguish the predictions of the

equations also in a qualitative way: While the relaxation rate of the Eq. (5.7) has decreased sev-

eral times compared to critical damping, the Eq. (5.5) has still increased ever since reaching that

critical value. For our proposed equation, we clearly see a carry-over effect from the subcritical

to supercritical damping like in the solution for the damped one-dimensional harmonic oscillator,

known from the literature [86]. Damping of the real time oscillation period for subcritical damping

is followed by damping of the imaginary time period for supercritical damping. Such a physically

”well-behaved” solution space is imposed by the expansion of the Hamiltonian Heff in imaginary

damping values which has a limitless radius of convergence after Borel regularization [109].

However, our method is not restricted to a single spin relaxation but we can simulate ground

state relaxation behavior of many-body systems and obtain the different damping regimes for them.

We exemplify this for a realistic Hamiltonian

H0 = −J
ˆ⃗
S1

ˆ⃗
S2 −K

2∑
i=1

Ŝ2
z,i −

2∑
i=1

B⃗
ˆ⃗
Si (5.11)

of two coupled magnetic atoms, prepared near the | ↑, ↑⟩-product state and compare the relaxation

results with thermal expectation values of the diagonalized Hamiltonian H0 of Eq. (5.7) in figures

(5.2) and (5.3). We found an excellent agreement in the low temperature regime T ≈ 0 for the

antiferromagnetic J < 0 case, discussed in figure (5.2).

We particularly demonstrated this convergence property in figure (2)(d) by lowering the tem-
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Figure 5.2: Relaxation behavior of two antiferromagnetically coupled spins of S=1/2 with J =
−0.01 and uniaxial anisotropy K = 1.0, prepared near the ferromagnetic state | ↑, ↑⟩ for damping
parameters (a)λ = 0.02, (b)λ = 0.6 and (c) λ = 5.0. One observes relaxation towards the thermal
expectation value of the traced out spin degrees of freedom of the total spin Hamiltonian at T=0.3
K. The speed of relaxation is in qualitative agreement compared to the relaxation of a single spin
in a magnetic field. (d) Relaxation behavior of two antiferromagnetically coupled S=1/2 spins with
J = −1.0, uniaxial anisotropyK = 1.0, andBz = 0.7, prepared near the ferromagnetic state | ↑, ↑⟩
for a damping parameter λ = 0.6. One observes a relative deviation of the dynamically computed
expectation values for the traced out spins at T=0.3 K. If we reduce the temperature to T=0.03 K
for the thermal expectation values, we find excellent agreement with the relaxation dynamics of our
effective equation of motion (5.7).
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perature for the thermal expectation value. That observation justifies the neglection of the noise

operator in our effective equation of motion and demonstrates that our equation of motion is sen-

sitive to the spectral energies of many-particle eigenstates. This even holds, if we prepare the state

of the system in a subspace of the many-particle Hamiltonian, as discussed in the representative

figures.

However, the ferromagnetic J > 0 case, described in figure (5.3)(a)-(c), deserved special men-

tioning, as its symmetry does not allow to find thermal expectation values from a single preparation

of the initial state of the wave function alone, as we prepare the system in a subspace of the Hilbert

spaceH of the Hermitian Hamiltonian of H0 for the sake of generality.

However, an average over different initial conditions could easily account for the thermal expec-

tation value and one may also achieve a thermal expectation value through the introduction of small

additional tunneling contributions via transverse components to the Zeeman energy. Such quantum

tunneling can thus serve a qualitatively similar purpose in our set up, as Gaussian noise fluctuations

does in a (classical) Langevin treatment by making a larger part of the relevant mathematical space

(Hilbert space or phase space) accessible to the system.

We want to conclude this paragraph by mentioning that Eq. (5.7) can be rewritten as

iℏ(1 + iλ)
∂

∂t
|ψ⟩ = H0|ψ⟩

iℏ
∂

∂t
|ψ⟩ = (H0 + λℏ

∂

∂t
)|ψ⟩. (5.12)

which is, however, structurally equivalent to

∂

∂t
S⃗ = − γ

µs
S⃗ × (H⃗eff − λ

µs
γ

∂

∂t
S⃗) (5.13)

if one replaces |ψ⟩ by a classical, normalized, dimensionless spin variable S⃗, by using H⃗eff =

−∂H0

∂S⃗
with effective magnetic moment µs and gyromagnetic ratio γ. One quickly realizes that the

cross-product operation corresponds to real and imaginary phase rotations of a wave function in this

analogy (see r.h.s. of (5.12)). Hence, our ansatz is valid for a variety of physical systems, bearing a

close conceptual analogy to classical spin systems or more general geometric vectors, as Eq. (5.13)
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Figure 5.3: Relaxation behavior of two ferromagnetically coupled spins of S=1/2 with J = 0.01
and uniaxial anisotropy K = 1.0, prepared near the ferromagnetic state | ↑, ↑⟩ for damping param-
eters λ = 0.6: (a) An additional Bz-field (small compared to exchange and anisotropy energies)
gives rise to a reversal of the spin, as the | ↓, ↓⟩ becomes the ground state of the spectrum. Large de-
viations from the thermal expectation value occur as significant thermal contributions from excited
states are not accounted for by the relaxation. (b) An additional Bx-field leads to both relaxation
and residual tunneling. For this case, thermal expectation values (at T=0.3 K) can be matched,
as additional tunneling of the magnetization makes a large part of the Hilbert space of the system
accessible for the damping part to act on. (c) In the absence of additional magnetic fields, ther-
mal expectation values (at T=0.3 K) cannot be reproduced due to the symmetry of the Heisenberg
model, but by considering a preparation in the opposite direction and averaging over the prepara-
tions of the wave function, one can restore the ”thermal character” of the final state.
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is nothing but the famous Landau-Lifshitz-Gilbert-Equation in its implicit representation.

5.4 Relation between DWE, Gisin’s Equation and Lindblad-

master equation

The r.h.s. of the Lindblad master Equation, introduced in 2.36, does have a Hermitian part through

the (renormalized) Hamiltonian unitary part and an anti-Hermitian part through the dissipator

D(ai, a+j ). Furthermore the second term of the dissipator was meant as a normalization term for the

trace of the density on which the Lindbladian acts. This can be deduced from the application of the

Choi-Kraus-theorem [144, 143] in the construction of a general generator for a quantum dynamical

semi-group in [79].

We can now relate the Hamiltonian part of the Lindbladian to the first (Hermitian) summand

of 5.4 and the first part of D to the second part (anti-Hermitian summand of 5.4), if we take a

particular choice of U(1)-gauge for the wavefunction |Ψ⟩ in the complex unit plane C and use the

Born rule |Ψ⟩|2 = ρ for the conversion of pure states into diagonal elements of a density matrix by

scalar multiplication of bra- and ket-vectors. The second summand of D which ensures the trace

class conservation during evolution can be related to either the nonlinear part 5.5 or the numerical

normalization procedure at the end of the numerical integration step which we introduced in 5.6.

This comparison reveals that not only equations 2.36 and 5.7 act linearly on pure states and

yield the same transformation independent of the chosen basis of states, but also the equation 5.5

does act linearly on the pure states, if the same interpretation of the action of the Hamiltonian is

applied, as assumed for 2.36 and 5.4. This is in accordance with the axioms of quantum mechanics,

referenced earlier in [82].

The nonlinear action results for the convex combination

|Ψ⟩⟨Ψ| =
∑
i

pi|ψi⟩⟨ψ| (5.14)

of gauge-fixed pure states |ψ⟩.

The fact that normalization is a position-dependent process in all three schemes Li (i=1..3),
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however, doesn’t allow for a linear decomposition of a mixed state into two mixed states in the

same basis |Ψ⟩⟨Ψ|:

Li

2∑
j=1

|Ψj⟩⟨Ψj| ≠ P1Li|Ψ1⟩⟨Ψ1|+ P2Li|Ψ2⟩⟨Ψ2| (5.15)

This is caused by the fact that a locally convex vector space is defined by a family of semi-norms

Nt∈R instead of just by one unique norm N [107].

In the following, we compare our proposed DWE (5.7), Gisin’s Equation (5.5) and the Lindblad-

Equation in the form (2.36) with respect to a conventional numerical implementation for numerical

integration of the forth order Runge-Kutta scheme (a.k.a. ”RK4”), as discussed in (2.4.3) of the

chapter 2.4). The use of such a higher order method is useful to avoid the accumulation of nu-

merical errors in the integration scheme due to numerical inaccuracy of number-variables of the

programming language C++ (such as ”float” or ”double”) [154].

In order to be able to compare the three Eqs. (5.7), (5.5) and (2.36), we have to assume a fixed

basis for the density matrix representation of (2.36) which is equivalent to having pointer basis in

the semi-classical decoherence limit of the quantum master equation. This enables to discuss the

Lindblad equation as a semi-classical rate equation with evaluation of N eigenstates in a pointer

basis of a Hilbert spaceH of dimension dim(H) = N .

We remember the necessary four steps for numerical integration of the function f in the ordinary

differential equation

yk = f(t, y(t), y′(t), . . . , y(k − 1)(t)) (5.16)

y1 = yi, i = 0, . . . , k − 1. (5.17)

They read
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k1 = hf(tn, yn) (5.18)

k2 = hf(tn +
h

2
, yn +

k1
2
) (5.19)

k3 = hf(tn +
h

2
, yn +

k2
2
) (5.20)

k4 = hf(tn + h, yn + k3) (5.21)

yn+1 = yn +
k1
6

+
k2
3

+
k2
3

+
k4
6

+O(h5) (5.22)

and one can easily see that with k being restricted to ”1”, f translates into the r.h.s. expressions of

(5.7), (5.5) and (2.36).

The nonlinear Eq. (5.5) contains an expectation value

⟨H0⟩ (5.23)

which implies an additional evaluation cost of a co-vector-matrix-vector product ⟨ψ|H0|ψ⟩ of di-

mension N for four evaluation points k1..k4 compared to the Eq. (2.36) and (5.7).

Despite the above described numerical gain of Eq. (2.36) over Eq. (5.5), the former equation

still contains the second summand of the dissipator D

N2−1∑
i,j

Hi,j([aiρa
+
j ]−

1

2
[a+j 1aj, ρsys.]) (5.24)

from the section (2.3) of the theory chapter in its diagonal form.

This amounts to a matrix product of the coefficient matrix Hi,j and the unit matrix ∞ and the

diagonal density matrix which enters the four evaluation steps k1..k4 of the RK4 scheme. Since

both the diagonal matrix and density matrix only contain N non-zero value, one is troubled with

an additional matrix-vector-vector-product.

Finally, in our proposed DWE (5.7) we are neither troubled with additional co-vector-matrix-

vector products nor with additional matrix-vector-vector-products for our generator of the time

evolution of the form (5.6). The numerical normalization only enters after the completed numer-

ical integration in order to arrive at normalized expectation values. Henceforth, f only contains
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dim H  =  N : =  x

Evaluated M.E.‘s per RK4-cycle

Figure 5.4: Estimated number of evaluated matrix elements (M.E.) for each RK4-cycle as a function
of the Hilbert space dimensionality dimH of the quantum spin system for Gisin’s Equation and the
Lindblad-master equation (orange) and for the DWE (5.7) (blue), respectively.

matrix-vector-products for the four numerical evaluation steps. In the following section (5.3), these

expectation values will be taken for spin operators.

The quantitative performance gain per ”RK4-cycle” depends on the produced computational

costs of the additional co-vector-matrix-vector-product of (5.5) and the matrix-vector-vector-product

of (2.36) over the ordinary matrix-vector-products, present in all three equations. In general this

leads to an evaluation cost of N 3 for matrix-vector-products and N 4 for matrix-vector-vector-

product or co-vector-matrix-vector-product respectively, as shown schematically in figure 5.4.

This results in an overall performance gain which scales linearly with the Hilbert space dimension

dimH = N .

5.5 Conclusion

To summarize, in this chapter a non-Hermitian Hamiltonian Heff is proposed to describe dissipa-

tive behavior of quantum systems in all known damping regimes (underdamped, critically damped
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and overdamped) with a bounded anti-Hermitian part. TheHeff generator has to be introduced into

an effective time evolution scheme and the consequent action on the prepared wave function leads

a superficially linear Schrödinger equation (5.7) which has to be numerically normalized at each

time step. This approach saves significant computation time by avoiding numerical integration of

an expectation value within the Schrödinger time evolution which costs co-vector-matrix-vector-

products multiple times during the evaluation of a multistep method of choice (such as RK4). This

is not the case in previous approaches [91, 105] and sets clear limits for numerical evaluation of

larger system sizes in the respective cases, as the numerical performance gain through our im-

plementation method scales linearly with the Hilbert space dimensionality of the open quantum

system of interest. The chosen form of Heff simultaneously permits to avoid any asymptotic diver-

gences for limiting values of the damping parameter and reflects the microscopic origins of such

restrictions to the relaxation process, covered by the restricted information provided by the anti-

Hermitian absorbing potential. These findings question the idea to provisionally rescale the time in

nonlinear evolution equations with unrestricted parameters and favor a linear evolution viewpoint

with a modified Hamiltonian instead, though not ruling out dynamical explanations for restricted

relaxation rates, either. The method was tested numerically for the case of isolated and exchange

coupled atomic spins and can be extended to more complicated systems, as long as the Hermitian

Hamiltonian H0 of the method can be diagonalized. For the sake of completeness, it should be

mentioned that the results obtained in this chapter can be straightforwardly generalized to a finite

temperature bath by introducing canonical, numerical weight factors onto the pure states of the

dissipative Schrödinger Equation, analogously to the procedure of the Lindblad equation (see [68]

for example).
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Chapter 6

Summary

In the following, I will summarize the main results that were obtained in the course of this Ph.D.

thesis.

In chapter 3, the influence of interactions on the dynamics of classical magnetic bits was inves-

tigated, as well as the connection of this mutual influence of particles as a generalized manifestation

of dynamical phases, known from responses of magnetic domains to external driving fields.

It was shown that dipolar interactions can play a profound role in the dynamic reversal process

of magnetic dots even in the case when the anisotropy energy describes the leading energy contri-

bution. From the observed switching behavior it could be inferred that correlations determine the

switching events of the dots. Dynamical processes have been observed that are in contradiction

to a single particle scenario and can lead to erroneous interpretations when only single particles

are taken into account for measurements. The spin-dynamical simulations and the calculation of

the dynamical correlation function proved that dynamic correlations open up new reversal paths

through the multidimensional energy landscape. The most important outcome was the demon-

stration that dynamical correlations are reaching longer than expected by the static cubic inverse

interaction law due to long range dipolar fields. It was revealed that correlations come into play

when a magnetic system is brought close to the state of thermal instability. Furthermore, it was

shown that the choice of anisotropy strength influences the switching frequency of other particle,

too and that there are superficial similarities between the magnetic coupling of switching particles

and that of harmonic oscillators, coupled by a spring. Furthermore, the mutual influence of simple

exchange fields was investigated and different regimes for the inter-particle correlations were de-
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fined, being reminiscent of a classical dynamical phase transition. The results demonstrate that the

interactions cannot be disregarded when thermally assisted switching is the focus of interest, which

has wide ranging implications for the fundamentals of superparamagnetism as well as technical

applications, such as heat or thermally assisted magnetic recording [156].

In chapter 4, a more stable and robust combination of parameters was selected for the interaction

among classical spins in a chain to yield several metastable magnetic states upon manipulation of a

terminal spin. At a conceptual level the uncontrollable thermal field influence was replaced by an

exactly controllable spin-field interaction energy. The accumulated magnetic work through rotation

even lead to topologically stable configurations in one dimension.

We showed that finite magnetic chains, coupled by exchange, RKKY, or dipolar interactions

and manipulated at their boundary by controlled external fields, admit a quantized energy spec-

trum of non-collinear spin states. The spectrum properties were found to be influenced by multiple

parameters, such as chain geometry, material of the elements, as well as the shape anisotropy of

the particles. The quantized energy spectrum simultaneously corresponded to one-dimensional

topologically protected configurations in the form of magnetic helices with integer winding num-

bers. The results opens up several new perspectives for future investigations of quantization effects,

observed in classical energy spectra. Furthermore, the generation of nontrivial spiral states due to

boundary manipulation may be compared to the spiral states that have been created via the inclusion

of DM interaction in the past: It may raise the question, if boundary spin rotation and the associated

accumulation of magnetic energy in the form of work emulates the parametric enhancement of the

DM coupling constant for magnetic surfaces with inversion symmetry breaking.

In chapter 5, an equation for the evolution of pure quantum states was proposed on theoretical

foundations that effectively describes the decoherence regime of a semi-classical master equation

of Lindblad-type for coupled quantum spins.

The proposed equation retained some quantum features, as eigenstates of a coupled system of

quantum spins were subjected to the decoherence dynamics of the system. Furthermore, it was

argued based on simple reasoning for numerical integration schemes of higher order, such as the

famous RK4 scheme, that the linear implementation of the equation of motion yields a performance

advantage over previous linear and nonlinear implementations, as the normalization procedure for
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the mixed state (convex combination of the propagated pure states) was performed neither analyt-

ically nor within the numerical integration scheme, but was performed after the integration proce-

dure as an operation for the evaluation of the expectation value. Despite the unfavorable nonlinear

expression of an analog equation, originally published by Gisin [91] we’d like to conclude with the

remark that a nonlinear evolution when applied only to the convex combination of pure states is

not in contradiction with fundamental laws of physics such as special relativity [85], the second

law of thermodynamics [126] or the stochastic interpretation of the density operator put forward by

John von Neumann and re-emphasized by Diósi [155]. It also doesn’t lead to exotic predictions for

quantum computations, as predicted by Llyod and Abrahams [127].

In summary, the proposed equation can describe both quantum and classical features for cou-

pled magnetic spin degrees of freedom, as it relies on a diagonalization of the energy eigenbasis

and manifested decoherence of the off-diagonal elements of an associated density matrix state. This

makes it a potentially interesting object of study for the evolution one- and two-dimensional mag-

netic systems, such as those presented in chapter 3 and chapter 4, used for classical computations

by interpolating between quantum and classical spin dynamics.
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