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Abstract

This thesis is dedicated to the theoretical and practical understanding of different influences of inter-
actions on the statical and dynamical properties of classical and quantum spin systems. Systems of
interest have been finite temperature arrays of dipolarly coupled superparamagnetic nanoparticles
with uniaxial anisotropy, spin chains with short and long range exchange or dipolar interactions, as
well as coupled and diagonalized quantum spins in an infinitely large environment at zero temper-

ature, leading to relaxation behavior for the spin system.

For the case of the coupled nanoparticles, finite temperature Langevin spin dynamics in the form
of stochastic Landau-Lifshitz-Gilbert-Equation simulations were employed and supplemented with
analytic modelling of the phase space. The investigation of the spin chains was realized by both
spin dynamical and Monte Carlo simulations as well as analytical calculations for the prediction of
collinear and non-collinear ground states of the chains. Finally, the study of the relaxation behavior
of isolated and coupled quantum spins in a thermal environment was described by a non-Hermitian

Hamiltonian generator for the dynamics of pure quantum states.



Zusammenfassung

Diese Dissertation ist dem theoretischen und praktischen Verstdndnis von verschiedenen Wech-
selwirkungseffekten auf statische und dynamische Eigenschaften von klassischen und quanten-
mechanischen Spinsystemen gewidmet. Als interessante Systeme wurden dipolar gekoppelte Nano-
teilchen in einem Temperaturbad, Spinketten mit kurz- und langreichweitiger Austausch- und Dipol-
Dipol-Wechselwirkung sowie austauschgekoppelte, anisotrope Quantenspins in einer Energierelax-

ation auslosenden Umgebung studiert.

Fiir den Fall der gekoppelten Nanoteilchen wurde dabei ein Langevin-Algorithmus zur Imple-
mentierung von stochastischen Landau-Lifshitz-Gilbert-Gleichungen (LLG) bei endlicher Temper-
atur verwendet und durch analytische Betrachtungen fiir den Phasenraum und die Energieland-
schaft komplementiert. Die Untersuchung der Spinketten wurde ebenfalls mit einer stochastis-
chen LLG sowie mit Monte-Carlo-Simulationen und analytischen Betrachtungen fiir die Vorher-
sage kollinearer und nichtkollinearer Grundzustinde unterfiittert. Desweiteren wurde das Relax-
ationsverhalten isolierter und austauschgekoppelter Quantenspins in einer thermischen Umgebung
mit einem neuartigen nichthermiteschen Erzeuger fiir die Zeitentwicklung reiner Zustinde model-

liert.



Chapter 1

Introduction

In today’s age of computerized societies and economies there is a great need for improvement in
the capacity and stability of digital data storage and adaptability of information processing devices,
famously formulated in the form of Moore’s law. Its content predicts an exponential growth of the

density of transistors on integrated circuits [65]].

Not very long ago, most available information has been represented and stored on paper for books
or on vinyl records for audio related content. The introduction of digital computers and the inven-
tion of digital information based storage like magnetic hard drives, led to storage platforms using
magnetic grains as fundamental units of classical bits, being manipulated via magnetic fields. Great
progress has been made by employing magnetoresistive devices, such as the giant magnetoresis-
tance effect [67], to create sensitive magnetic field sensors for a better read-out of magnetic bits.
Challenges of the more recent past include increase of the density of magnetic grains in modern

magnetic data storage devices.

As the density of magnetic grains on a hard drive becomes higher, one inevitably faces the problem
of interactions between the individual particles of the array. This fact calls into question whether
the magnetic particles can still be used as bits of information to be stored for a very long time (~
10 years). These interactions manifest in the form of multipolar potential terms of which usually
dipolar terms form a very good leading order approximation. These interactions must be consid-
ered as additional perturbations for the stability of magnetic grains other than thermodynamically

unavoidable thermal fluctuations.



Another striking challenge in this rapidly expanding research field is the stability as well as the
controlled creation or annihilation of particular bit states in increasingly narrow spatial arrange-
ments. Fur this purpose, non-collinear magnetic ground state configurations have been proposed
such as magnetic vortices, magnetic spirals, or magnetic skyrmions [45, 146/ 47]. The latter two
magnetic states attract additional interest because one can associate a nontrivial topological wind-
ing to the magnetization field of each system when the continuum limit of an infinite crystal lattice

is considered.

A further challenge lies in the accurate theoretical description of experimentally investigated small
magnetic systems that form the basis for understanding of the above mentioned devices of informa-
tion technology. These systems are comprised of elementary quantum spins and while classical spin
precession and relaxation (more correctly monodomain macrospins) can be conveniently described
by the classical Landau-Lifshitz-Gilbert-Equation quantum spins generically follow the stochastic
predictions of the time-dependent Schrodinger Equation for probability amplitudes. Luckily, in
many applications the quantum coherent nature of the spins is removed due to quantum entangle-
ment with an environment and is replaced by a classical probabilistic evolution law, described by a

master equation [110]].

In this thesis, the primary focus lies on how boundary conditions, internal interactions and coupling
to environmental degrees of freedom affect one and two dimensional spin systems both structurally
and dynamically in different settings. I used both classical and quantum mechanical approximation
methods to explain my results and whenever necessary, I added analytical modelling and calcula-
tions to the numerical results. As an additional pillar, I was engaged in methodological work for
developing and testing a dissipative wave equation and this will be discussed and highlighted in the

second half of my thesis.

In order to give a comprehensive overview over the topics covered and methods that have been
utilized, I will start with a theory chapter. This will deal with theories important for this thesis and

introduce the numerical techniques, used in each chapter.

In chapter 3] the impact of long-range dipolar interactions on the dynamical behavior of disor-
dered ferromagnetic nanoparticles, motivated by experimental research on small arrays of cobalt-

platinum ferromagnetic nanodots [15], have been investigated. I used a system of coupled stochas-
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tic Landau-Lifshitz-Gilbert Equations (SLLG) to model the impact of an effective magnetic field
on each nanoparticle, assuming the validity of a macrospin approximation. The SLLG calcula-
tions revealed a crucial influence of dipolar interactions on the switching behavior of individual
nanoparticles, leading to collective switching behavior, as well as a sensitive interplay of differ-
ent parameters of the system, partially unobtainable via experiment. To complement the dynamical
analysis, I performed additional calculations on the energy landscape and phase space of the system.
Furthermore, an action-based model was added to bring together structural and dynamical findings
of the system to a satisfying conclusion. The results of this work have been published in [1]. In
addition, the correlation behavior of coupled nanoparticles have been calculated and quantified as
a function of distance and based on elementary arguments a classical dynamical phase transition

was proposed.

Chapter [] deals with the proposition and realization of a physical model for energy storage and
release, based on a chain of magnetic particles with chiral and topological excitations. Results
were published in [53]] and produced in close collaboration with E. Vedmedenko. We explored
the critical role of external influences on terminal objects of the chain toward the entire chain,
leading the path to a systematic, parameter-controlled manipulation of the chain and a conversion
of metastable states in an unconstrained system towards stable states in a constrained system. These
findings were, among other things, motivated and preceded by results from energy and phase space
analysis on magnetic configurations, dealt with in chapter[3] In this context, chapter 4 picks up and
evolves questions that emerged in [3| while the focus is changed from a more dynamical perspective

towards a structural. External control and dynamical aspects are still present and crucial.

After discussing dynamical and structural properties of open classical spin systems in the first part
of the thesis, an implementation of a numerical method for a quantum counterpart of open spin sys-
tems was intended. Chapter (5)) is dedicated to the general dynamical modelling of open quantum
spin systems, based on a numerically improved and linearized version of a nonlinear Schrodinger
Equation (SGE), introduced by Gisin [85]. This work brings together conceptual aspects of the
foundations of quantum wave equations, their numerical efficiency in different representational
forms and the possibility of using them for concrete quantum spin systems, as discussed in the

previous chapters.



Chapter 2

Theory

This chapter is dedicated to introduce the theoretical concepts and models on which this thesis
is based. First of all, a short phenomenological description of the different manifestations of
macroscopic magnetism is provided. After that, the different underlying classical and quantum
mechanical interaction laws are discussed which lead to the known phenomena of magnetic order

on different length scales.

Secondly, a brief introduction to non-collinear states and topological protection in magnetic sys-
tems is given. This will help to understand the notions of topological order, appearing in the context
of chapter [4] of this thesis. Finally, the basic ideas of closed and open quantum systems will be in-

troduced in order to have some background for the results of chapter [5of this thesis.

2.1 Magnetic order in atomic and nano-sized physical systems

Research on magnetism delivered ground breaking knowledge in different parts of physics in the
last 200 years, ranging from atomic and molecular physics towards astrophysics and cosmology.
At the fundamental level of elementary particles magnetic phenomena are described by Maxwell’s

equations and the Pauli exclusion principle.

The advent of experimental and theoretical methods in the course of the 20th century enabled to
investigate magnetism at the nanoscale when quantum effects become important and govern the

magnetic interactions between elementary spin degrees of freedom.
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Magnetic order manifests in nature in different forms. Usually, one differentiates five classes of
magnetic phases: Ferromagnetism, Antiferromagnetism, Paramagnetism, Diamagnetism and Su-
perparamagnetism. Paramagnetism is defined by the property of solids, small particles, isolated
atoms or ions to have a vanishing time-averaged expectation value of magnetization (M), = Z %
(for volume V' and magnetic moment jz). This effect is caused by thermal fluctuations that prezvent
a time averaged orientation from forming. The theoretical description is given by the Langevin
formalism which assumes no residual interactions between adjacent magnetic moments that form

a paramagnet [24].

A solid will be refered to as ferromagnetic, if the atomic magnetic moments align in small compart-
ments in the same direction. These regions are known as magnetic domains and were introduced
by Weiss for the first time [141]. A ferromagnet is characterized by a characteristic magnetization
curve which tracks the magnitude of the magnetization as a function of applied external magnetic
field. Due to its importance for understanding ferromagnetic and superparamagnetic particles, this

magnetization curve is described in more detail below:

First of all, the ferromagnet with saturation magnetization Mg will be completely demagnetized
during a time interval ¢ = Tgepqy. by undergoing repeated magnetization cycles with decreasing
area in the plane, spanned by external magnetic field and magnetization. This can be managed by
a time-dependent, oscillating magnetic field B.,; = By sin(wt) f(¢) with amplitude By > B, and a
decaying function f = f(t) — 0 (for t & Tyemaqy.) Which steadily decreases both total magnitude
Mz = M. (t) and residual/remanence value of the magnetization of the ferromagnet My =

Mg(t).

Then the curve starts at the origin (M, B) = (0,0). The increase of the external magnetic field
value creates domain wall motion in the ferromagnet which leads to the decrease of the size of
domains with anti-parallel alignment to the magnetic field ]\Zfdomamﬂé = ,uoﬁ , resulting in the

minimization of the Zeeman energy

—gupHS,. 2.1)

Its magnitude is directly proportional to the external field. The scattering of domain walls on

impurities impedes the growth of the energetically favorable domains and behind the impurities a
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bubble of magnetic moments arises, preserving the orientation of several magnetic moments in the
vicinity until the direction is suddenly flipped in a collective manner. This phenomenon is coined
“Barkhausen jump” and once all bubbles have flipped parallel to the magnetic field direction the
magnetization converges to the saturation magnetization My for field values values H > Hg. As
the magnitude of the external field is reduced, the magnetization decreases and reaches a finite
value in zero field, called remanence Mg. This can be traced back to an irreversible shifting of
domain walls under the influence of the impurities. When a critical negative field value is reached
the magnetization finally passes the zero level again and it will reach the negative magnetization
saturation for even larger negative field value. Upon remagnetizing the ferromagnet, the system will
eventually reach Mg for Hg and a new loop is initiated. The cycle is called hysteresis, reflecting that
the evolution of the magnetization magnitude depends on the history of the system while each point
in the loop corresponds to a time averaged value. The area that is enclosed by the magnetization

curve is a measure for the produced heat

Hg
Q- / NdH (2.2)

,HS

which converts into an increase in entropy S by an amount of AS = %.

2.1.1 Magnetic interactions

According to classical electrodynamics, a magnetic moment ji; generates a magnetic field of flux

density EM (7 at location 7, where another magnetic moment ji; aligns parallel to that generated

J

field. The interaction energy of /N moments is calculated by

N
L o fify 3 (i - i) (g - 1)
E,,=- = E < — > 2.
dd =5 An L\ 3 ro. (-3)
ity Y "
LN
By = 5 %&JZ - B;(ri;) (24)
17,v7J

with the effective dipolar fields of the moments ;z; onto the moment ;z;. The factor 1/2 ensures that
the interaction energy is not counted twice. As the dipolar interaction only decreases proportional

to the inverse cube of the particle distance, it is considered long-range. A system with only two
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magnetic dipoles already has an energy landscape with several saddle points and a global minimum
parallel to the connecting line between the particles. This will be the starting point of analytical

predictions in chapter 5.

Especially for strong anisotropic energies perpendicular to the film plane, there is a tendency to-
ward antiferromagnetic coupling behavior which is important for chapter 4. Despite its frequent
occurence, the dipolar energy doesn’t explain the emergence of ferromagnetism between atomic
magnetic moments, as for parallel alignment the dipolar energy F;; would be just 0.1 meV for a
typical lattice constant of a~ 0.3 nm. This would not be a robust energy scale against thermal
fluctuations at room temperature. Nevertheless, transition metals such as iron, cobalt or nickel are

observed in the ferromagnetic state at room temperature.

The key to the understanding of ferromagnetic coupling lies in the short-range exchange interaction
between neighboring spins. It is of quantum mechanical origin, favors either ferromagnetic or

antiparallel alignment and is quantified via a scalar product

Eemchange - - Z Jz]gz : §j (25)
(4,4 Yi#j,li—j|=1
Jij o< //\If*(ﬁ, 75)HWY (71, r3)dridrs. (2.6)
Vi Vo

Jij 1s the exchange integral and W is a completely antisymmetric wavefunction formed by a spin
and position wavefunction part, respectively [[119]. This integral typically has significant non-zero
value for nearest neighbors, but occasionally extends to more neighbors. Dependent on the model,
the spins S; and 573 can be modelled either as classical vectors or with the help of raising and

lowering operators Sfj = Sij« £ 15, as quantum mechanical observables.

A special form of the exchange interaction is described by the Rudermann-Kittel-Kasuya-Yoshida
interaction (short: RKKY interaction) [150] which is mediated indirectly through polarized s-
electrons, causing the interaction to be long-ranged, similar to the dipole-dipole interaction. Fur-
thermore, the amplitude of the interaction oscillates periodically between ferromagnetic and an-

tiferromagnetic coupling while its value decreases with an inverse cube law. This behavior is
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straightforwardly explained by a Fourier representation in dual k-space where the interaction en-
ergy is constant, as the quasi-free conduction electrons £ (E) ~ % lie in the vicinity of the Fermi

edge. A Fourier transformation into real space results in the sinusoidal coupling pattern:

Jij =Y _ J(k)exp(—ik(F; — F;) 2.7)

k
5 _ ke (sin(2kpRiy) — 2k Ry cos(2kr Riy)) 2.8)
E EF(QI{TFRZ])4 .

The exchange interaction J;; leads to a favorable angle of nearest neighbor spins of ¢ = 0 or
O=m, but there is no prefered direction in space for this alignment in the absence of an external
field. This isotropy should therefore lead to a vanishing magnetization average (M ); = 0 based on
symmetry considerations. A spontaneous magnetization along a crystallographic axis therefore has
to be attributed to a symmetry breaking that originates in the relativistic spin-orbit coupling which

is known as magnetocrystalline anisotropy.

In a crystalline environment, a magnetic moment experiences a crystal field from surrounding point
charges which usually leads to an easy axis along which electrostatic energy is minimized. This
creates a minimal overlap for the atomic orbitals of the considered ion with the surrounding charges
which are also known as ligands. The possible prefered directions depend on the symmetry of the
crystal field and will be described as the easy axis of the system. As the rotating charge can be
considered as an orbital angular momentum L of the electron with spin angular momentum S, the

anisotropy is finally reduced to the spin-orbit-coupling.

If only one easy axis exists in the system, one speaks of uniaxial anisotropy. For an easy axis

parallel to the z-axis, one has

Fx, = —ZK',uicosQG (ford =0...m) or Ex, = —ZKuisiHQG (for 0 = —m/2...7/2)
(2.9)
FEx, =— Z K - 57, (cartesian coordinates) (2.10)

For an easy axis in the plane, we have least energy for a spin configuration in the x-y plane.
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2.1.2 Superparamagnetism

Superparamagnetism describes the magnetic behavior of a very small particle of a ferromagnet
which doesn’t form more than one magnetic domain due to its small volume and the cost for domain
wall creation. The atomic magnetic moments of the domain compartment are aligned collinearly,
but the total magnetization behaves paramagnetic (as a function of time) below a critical size of the

particle. This special form of paramagnetic behavior is also known as superparamagnetic behavior.

The switching process of such particles is described through coherent rotation or by domain wall
propagation. For later considerations in chapter 4 domain wall propagation is ruled out as a dynam-
ical reversal process. These particles do not undergo hysteresis while completing a magnetization
curve loop, as there is no irreversible behavior expected for the polarization process of the magne-
tization. The curve describes an s-shape which can be derived from elementary considerations in

statistical mechanics.

The statistical mechanical expectation value of a superparamagnetic particle can be determined via

the well known canonic ensemble. We start with a Hamiltonian of the form

H = —pousSE 2.11)

and assume an Ising-model with two stable states of energy F; and E5 in £-z direction, leading to
2

an expectation value with the canonical partition sum Z = ) exp(SE;) as
i=1

(M.) = MO—eXp(jH) - 1\406}{19(_5(2]52 — B (2.12)
_ M eXp(+ﬁuousSE) —exp(—ﬁuousSﬁz (2.13)
exp(+8(popsSB)) + exp(—LopsSB)
o sin(BuopsS:B.)
= M, cos(uopnS.B) My tan(BpopsS.B.). (2.14)

The magnetization curve, belonging to M(B) is s-shaped and has a reversible character as men-

tioned before.
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2.1.3 Néel-Brown-Law und Stoner-Wohlfarth-Approximation

The different contributions of the magnetostatic stray field energy, the exchange energy and the
magnetocrystalline anisotropy decide whether magnetic particles form one or multiple single do-
main states. For sufficiently small volumes the second case will be realized because exchange
coupling would prevail in this scenario. A particle with saturation moment |/s| > pp, uniaxial
anisotropy constant /', external field ,uoﬁ and vanishing residual interactions will be described by

a Hamiltonian of the following kind:

H=—J) S8 —KY 5%~ Bu— pmoiigSiH. 2.15)

) @

The switching of the saturation moment, also coined macrospin, has two basic distinguishable
modes: The first possibility is provided by a coherent rotation of all NV spins of the particle and the
second possibility is a propagation of a domain wall across the particle. The nucleation of a domain

wall with area Sy, requires an energy amount of

Eyy =2SswVA- K. (2.16)

In the past, the possibility of the nucleation of one or more domain walls for high anisotropy

magnetic particles was shown in [146].

If the Hamiltonian function of the macrospins (2.15)) satisfies the conditions for coherent rotations,
one speaks of a Stoner Wohlfarth-particle [145]. The interaction with an external field and the

alignment in an anisotropy field is described through

E = KV sin®6 — pigus BS; cos ¢ (2.17)

with the angles 6=/ Biex, M )and ¢ = (I? M ). By demanding minimization of E with respect to

a variation of the angle 6, one arrives at the extremal value problem
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E
OF =sinf(2KV cosd + uH) =0 (2.18)

00
(?;Tf <0 (Maximum) (2.19)
(?;Tf >0 (Minimum) (2.20)
with extreme positions
Eminy = —pH (2.21)
Fring = +uH (2.22)
me:KV+Z§g{:KVP+(i%ﬂ} (2.23)

The minima are the roots of the sine #=0° and #=180° and the maxima are at the position, where

cosf = 211% A transition between different minima can be realized by a jump over the barrier

AE: 9 = Epgr — Epin1.2. Neél and Brown deduced a stochastic model for the switching behavior

of monodomain particles that appears like an Arrhenius-law

AE), (2.24)

V=1 exp(—k—T
B

as it is known for transition rates in certain chemical reactions. The frequency v is in the simplest

approximation an attempt frequency which would be exactly the switching frequency for a vanish-

ing energy barrier kAB—]fF — 0. This frequency depends on the Lamor precessional frequency, known

from quantum mechanics of spin angular momentum in external magnetic fields. The exponential

factor is directly related to a Boltzmann factor from statistical mechanics.

A coercive field of magnitude Hy = % yields switching frequencies

I/12 — V?Qe_(E'rrLaw_Emin,l)/kBT — I/?QG_KV(lJFH/HK)/kBT (2'25)
Vo = Vgle_(Ema:c—Emin,l)/kBT — Vzole_KV(l_H/HK)/kBT' (2.26)

13



They are symmetric in the limit A — 0, implying v15 = v»; and H > Hj maximal.

Which switching mechanism dominates depends on the form and extension of the particle [16]].
The switching frequency will be determined through the anisotropy barrier AE= E.x — Enin,
expressing the difference between the most and least favorable energetic states § = 0 and 6 = T
AE= FE.x — Emin- This energy can still be increased or decreased by Zeeman energy and dipolar

energy, respectively.

H=-7> 88 —KY» 8. — Eu— poizgSiH. (2.27)
(4,3 i

The time period that passes in between two switching events is the averaged life time 7 = 1/v

of a favorable magnetic state. It depends exponentially on the temperature and the energy barrier.

The time span 7 of a particle in a particular state determines the time dependent magnetization

(M)(B)=My - exp(—t/7) which is determined in an experiment of measurement duration ¢ = .

One can think of this in formal analogy to a radioactive decay at time #,=0 in a sample with N

nuclei and a decay rate A\ # 0. After the time ¢; = ¢, one still has

N(t) = Noexp(—A-t) (2.28)

radioactive nuclei. Switching of M and a decay event are both be considered as an irreversible

process.

2.2 Spin spirals and winding numbers

2.2.1 Non-collinear magnetic states

The emergence of non-collinear spin states is a topic of low-dimensional magnetism and results
from competing magnetic interactions. In monolayers the nearest neighbor distance, the symme-
try and the hybridization with the substrate can play an important role for the determination of
magnetic properties. This can lead to a variety of magnetic structures, from ferromagnetic and
antiferromagnetic states, as discussed in the previous section, towards complex, non-collinear spin

textures. The formation of a ferromagnetic or antiferromagnetic state can be the result of a domi-

14



nating nearest neighbor exchange interaction; complex magnetic structures, however, often provide
a hint to a situation of competing magnetic interactions. Magnetic interactions in a monolayer on a
substrate are conveniently described by fitting the results of an ab-initio electronic structure model,
such as spin-density functional theory [121]], to a two-dimensional Heisenberg model. When such
information is provided, it becomes possible to search for the origin of a specific magnetic ground

state and the relevant magnetic interactions that compete for influence.

Special emphasize is put on non-collinear states in one spatial dimension (a.k.a. spin spirals) and
can be explained in different ways in this picture of the two dimensional Heisenberg model. The
first possibility consists in having two different couplings J; > 0 and J; < 0 for nearest and
next-nearest neighbor coupling between spins where a competition for parallel and anti-parallel
alignment leads to helical or cycloidal spirals. The so called Dzyaloshinskii-Moriya (DM) inter-
action relates the spins via a vector product and can play an important role when the inversion
symmetry of the system is broken at the surfaces. Its Hamiltonian reads

Epy =Y Dij-(Six ) (2.29)

irj

It favors a 90°-spin spiral and the rotational sense is determined by the sign of D; high symmetry
surfaces typically favor a formation of cycloidal spin spirals. Of course, competition between
Heisenberg exchange and DM-interaction may lead to spin spirals with any angle between adjacent

spins and also higher-order interactions can play a role for the magnetic ground state.

The first experimental realization of a spin spiral ground state at a surface was observed in the

system of one monolayer of Mn on a W(110) surface [122].

2.2.2 Topological properties in continuous magnetic systems

The spin spiral, considered in the continuum limit of a magnetization field, when modulated only
in one spherical angle 6 or ¢, has interesting topological properties, as its magnetization field M (7)
can be mapped exactly to a circle which reflects the description by the first homotopy group 7 (X).

This is defined by a mapping
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M:S"— X (2.30)

from the unit circle to the space of interest and in the case of the spin spiral the space X amounts
to the set of orientations of spins of the chain. This means that there exists no continuous transfor-
mation between a spin state in which a spiral exists and one where either no spiral or several (two
or more) spirals exist. This can also be formalized by the concept of the winding number obtained

from the Stokes theorem:

27
n, = i/mgb 2.31)
2
0

The winding number is normalized to unity for a complete integral over the S*-sphere and plays
a role in chapter [ for determining the nontrivial topological state of the continuum limit in the

non-collinear ground states and excited states.

2.3 Dynamics in closed and open quantum systems

Familiarity with the axioms of quantum mechanics will be assumed in the following (see also [[123]]).
We describe the dynamics of a closed system in non-relativistic quantum mechanics by the

time-dependent Schrodinger Equation

0
iha ) = HIw). (2.32)

with the Hamiltonian H and a pure state |¢) (a projective ray, equipped with an equivalence
relation [¢) =l¢) = «a|¢) and « € C).
It has an equivalent formulation by an equation for a density operator and is called von-Neumann-

Equation:

0
Tiep = [H, pl. 2.
ihzop = [H, ] (2.33)

In terms of quantum statistical mechanics such a density operator is a convex combination of pure
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quantum states

p="> pilthi) (il (2.34)

and can be represented by a direct sum of irreducible representations of projective Hilbert space

rays.

If one likes to determine the dynamics of an open quantum system, one has to consider a ten-
sor product space of a relevant system of interest p,,, and a second system, conveniently called

’environment”, Peny. - Prot. = Penv. @ Psys.» Which must then be traced out by an operation

<wem}.|penv. & psys.‘wenv.>7 (235)

called the partial trace. This partial trace ignores the information of the environment and effectively
reduces the dimension of the total system to that of the system of relevance. As the partial trace
maps from a higher dimensional representation of a density operator to a lower dimensional repre-
sentation of a density operator it is ensured to be a linear map. Whether system and environment

are energetically coupled and thus entangled, also depends on the physical situation of interest.

A famous dynamical equation for an open quantum system that makes a lot of idealizations [[79]
but is a good first approximation in many applicational scenarios is the Lindblad Equation which

reads

9 . N2-1 1
o7 Paus. = h [psys., H] + Z (laipa}] 2[a;raj,psys_]). (2.36)

The first term of the r.h.s. is an ordinary and potentially renormalized Hamiltonian contribution
of the "original small system”. The second term is called a dissipator D(a;, a;r) and has an anti-
Hermitian structure, if one conveniently chooses the Hamiltonian part as the Hermitian part. The
coefficient matrix H, ; is a completely-positive map. However, it doesn’t conserve the trace of the
density operator p which is very important for the probability interpretation and this is why there is

another summand in the dissipator where a;’

a; = a;rlaj is the renormalization of the unit element
for every time step [143,144]. This term will be important to look at later in chapter 6 of this thesis.

The Eq. (2.36) describes a memory-less semi-group evolution behavior of the density operator

17



and thus models exponential-type relaxation.

In chapter 6, an equation for pure states is written down which corresponds to this equation in
the decoherence regime of a classical density function pg,, = pgéfjs'. Introduction of appropriate
weighting factors w; = w;(a;) and wf = w}(a;") for the i-th state in the coefficient matrix H; ;
even grants the possibility to phenomenologically model a thermal (quantum) distribution p o<

WM for the reduced density matrix at hand.

2.4 Simulation methods

2.4.1 Spin dynamics

In order to describe the dynamics of classical magnetic systems, one uses mainly three different
types of equations of motion: The Landau-Lifshitz-Equation [27], the Gilbert-Equation [87] and
the Landau-Lifshitz-Gilbert-Equation [88]] which have been derived in this temporal order. The

derivation of these differential equations will be presented in the following subsections:

Landau-Lifshitz-Equation (LL)

The Landau-Lifshitz-Equation, introduced by Landau and Lifshitz in 1935, is an ordinary, nonlinear
differential equation of first order and consists of two summands. The first summand is called the
precession term and has a quantum mechanical origin when derived in the Heisenberg picture for
an interaction of a spin and an external field. The second term is called the damping term and is of

phenomenological nature:

The precession term

The origin of the derivation is provided by the Heisenberg equation of motion:

A(Si(t f
im0 _ 15,0, 7) .37)
with the time dependent spin operator S'Z(t) and the Hamiltonian H = —g—g.

By using the ordinary angular momentum commutation relations for spins
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157, SY] = ihe;j.S; (2.38)

and an expansion of the commutator from [2.37|in powers of Planck’s constant 7

[&@Jﬂzm&xaA+Omﬁ (2.39)

the Heisenberg equation of motion can be written in the form of a cross product:

. OH
— ih(S; x —) + O(R?). 2.40
ih(S; x = =)+ O) (2:40)

2

A(Si(1))

i
o

Note that the classical limit reads 2~ — 0 and that not all nonlinear terms in vanish. Based
on the Ehrenfest theorem [135] concerning the identification of quantum expectation values with

classical vectors under certain assumptions, it follows

0(5;) oM
=3, x ) 241
or "7 bs (241
The proportionality of the magnetic moment /i and the spin § via ji = —v5 immediately yields the
expression
5 =13 (2.42)
g
with a normalized spin vector S, = ;‘;
Inserting this into (2.40) leads to the precession term of the Landau-Lifshitz-Equation
05, < OH

-3 (2.43)

= P X ——.
ot ws 08
Physically, this term describes a precessional motion of the spin vector around an effective, mag-

netic field H, oy

The damping term

An undamped dynamics, as presented in (2.4.1) is not physically realistic such that one requires
another term which can emulate dissipative effects on the spin vectors. This term is oriented perpen-

dicular to the precession term and the effective magnetic field and causes a steady motion toward
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the effective magnetic field while the exact speed of this process is parameterized by the dimen-

sionless damping parameter .

Conveniently, this idea can be converted into a double cross product structure

—

=25 (5 % ). (2.44)

which was introduced without further background information by Landau and Lifshitz.

First analytic calculations for a system of uniaxial anisotropy in the 1950’s produced a critical
damping parameter value ay,.;; of O(107%s) for fastest possible dynamical magnetization reversal
through superposition of the precessional and damped motion under the influence of an external

magnetic field [152].

2.4.2 Gilbert-Equation

Experimental results as well as foundational considerations imply an unphysical magnetiza-
tion reversal process for large damping parameter values A >> 1, as the reversal speed would
become infinite and therefore exceed the speed of light and violate relativity theory [124]. Thomas
L. Gilbert accounted for this issue by introducing a Rayleigh dissipation function into the damp-
ing term. By doing this, damped magnetization dynamics becomes structurally equivalent to the
Rayleigh dissipation of a rigid body in classical mechanics, obtained from an extended Euler-
Lagrange equation for a mechanically rotating body. The Gilbert equation, named in his honor,
then reads
a5,

05, Y& ._ g 5
% _,lTsSi X Hiegr + CM(Sz‘ X 8_t>7 (2.45)

and describes physically realistic results for the limit &« — oo. The microscopic origin of this term
remains unexplained, though. This equation is difficult to handle for numerical integration and an

improved version will be described in the following.
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Landau-Lifshitz-Gilbert-Equation (LLG)

The Landau-Lifshitz-Equation, as mentioned above, only contains a time derivative expression for
the spin vector on the left hand side of the equation and this more desirable form can be achieved

for the Gilbert equation as well and naturally leads to the Landau-Lifshitz-Gilbert-Equation.

In order to achieve this, one multiplies ”51- x” from the right side and uses the Leibniz rule @ x (l; X

—

¢) =b(a-c) — &(a- ) to get the expression

— 85’1 Y = — = [ = 8SZ)_ 052 (246)

:——SZ'X iXﬁie Sz(SZ— .
( ) @ or) "ot
Due to spin normalization 51»2 = 1 and the product rule’s use, one notices a vanishing of the second
term of the right hand side

- 08§ . 05,

’7 — —
: —__'g X Hiot) — _
S; X T ” Si X (S; X Hiefr) — o

(2.47)

This can be inserted directly into the damping term of the Gilbert Equation, thereby delivering a
nonlinear differential equation of first order
0S; _ Y

=——'1 |S x H. S; x (S; x Hie 2.48
ot (At 7 et X (i Hier) (2:49)

which is known as the Landau-Lifshitz-Gilbert-Equation [87]. A dynamical transition in an external

magnetic field is represented in figure [2.1]

The energy minimization is equivalent to a vanishing torque of magnetization vector exerted
by the effective magnetic field. This becomes apparent by expressing the cross product and scalar
product via the intermediate angle #,. Equation [2.48]is instructively written as

Y TG Bsing 4G (5 Foweostl) o], 240
ot (1 + a?)us [\ arsinfd +5; - ( ieff COS ) —Hicrr (2.49)

"
—0 for 6;—00,/180° — Hi ¢ for —00 /1800

Finally, it should be emphasized that all three presented equations of motion could be derived from
the Heisenberg equation of motion, but still assuming a classical vector space structure instead of

that of a quantum mechanical Hilbert space for an observable algebra of spins [[123]..
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Figure 2.1: Damped precession of an isolated macrospin in an external field B, = —\é |€, from

pe = +0.98(115)€,, towards p, = —1.00(5)€,, in the ju,-p1,-plane.

Langevin-dynamics

The Néel-Brown law [62] implies a direct relation between temperature fluctuations in the envi-
ronment and its effect on the magnetization reversal frequency of a magnetic domain. This effect
is quantitatively described by an additional thermal field contributing to the effective field —% of

the LLG-Equation which only describes Hamiltonian contributions in its original formulation. The

additive thermal field has the signature of white Gaussian noise

+ &(t) (2.50)

satisfying the conditions

22



(&(t) =0 (2.51)
<f¢y(t)§?(t/)> = 2apuskpT §;;0,00(t —t') (2.52)

q

for the first and second statistical moment [40].

The strength of the noise ¢ is obtained by inserting the solution to the Langevin Equation into the
equipartition theorem [25]. In this representation, the influence of temperature is time-dependent
and independent of the spin coordinates and thus stochastic rather than deterministic. This implies
that the exact dynamics can not be derived from the initial conditions of the spin configuration. The
advantage of this scheme is the breaking of time reversal symmetry and the ergodic occupation of
the phase space in the long time limit ¢ — co. The indices ¢ and j represent the lattice positions

and v, 6 represent cartesian coordinates.

An equivalent formulation of Langevin-dynamics can be given in the framework of Hamiltonian
2
Py

dynamics. Here one starts with the classical Hamiltonian H = 3*

+V (q) for generalized canonical

coordinates ¢; and momenta p; and obtains equations of motion

dq = pdt (2.53)
dp = —VV (q)dt + —ypdt + kdW (t) (2.54)

including a Wiener-random process W, satisfying the conditions from (2.51) [[142].
Using the effective field expression, one can isolate a Langevin equation that decomposes into a

part for the ordinary LLG-Equation and a stochastic noise part:

dS;
dt = fi + g:i& (2.55)
_ 7 [d«H = a0
e |5 x By + a8 x (S x Hien)| (2.56)
9i&i = ——(1 —l—f(szQ)u [5_2 x & 4 aS; x (S; x fz)] (2.57)
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This is the stochastic LLG-Equation, being used in chapter 4 and 5 for numerical evaluation of the

classical spin dynamics.

A very general description of the time evolution of physical systems is captured by a Markovian
master equation [26]. This is a differential equation of first order in time and monitors the occupa-

tion probability w,, of a physical state. It reads

dw,

dt

=D [wu(t)P(v — ) — wu(O) P — v)]. (2.58)

v
The equation describes transition rates P(v — p) and P(u — v). The first term encodes the
transition from an arbitrary state v # p into the state x4 and the second term converts the state

into the state v.

The transition rate P(v — pu) in rescaled coordinates can also be interpreted as a function of the
initial state v and the jump » = 4 — v, and as such, one gets the master equation for a continuous

Markovian process in integral form

dw(p,t)

Y / w(pt — v )P — rr)dr — w(p,t) / Pyi; —r)dr. (2.59)

whereas from now on p and v are considered as continuous variables.
By expanding the first integral of (2.59) after the difference (¢ — r) and assuming that the transition
rate P(v; r) is only non-zero for small jumps r, a special master equation, truncated to second

order, emerges:

D) — [ty Plasryir = [ vty 0P+ 2.60)
1 o
§/ra—/ﬂw(y,t)P(y;r)dr—w(u,t)/P(,u; —7)dr. (2.01)

The performed expansion is known as the Kramers-Moyal-expansion in the literature [[114, [113].
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If the expectation value and the variance of the jump is represented by a;(1) = [ r*P(u;7)dr, a
one-dimensional Fokker-Planck-Equation (FKP) [[112] is obtained

ow(u,t) 0 102

“or = —a—u(%(y)w) + Ea—lﬂ(@(N)P) (2.62)

with the drift coefficient a; and the diffusion term a,.

If the coefficient a; is identified with the function f and ay with the function g from (2.55)), an
equivalence of the FKP and the mentioned Langevin Equation is achieved. In this way, it becomes
visible, how the microscopic, spin dynamical calculations can realize a time-dependent expression

that becomes equivalent to a canonical ensemble expectation value.

The general master equation expression also forms the basis for the Lindblad equation, men-

tioned in (2.36) and mentioned in chapter 6.

2.4.3 Numerical integration method

In this thesis, spin dynamics is either implemented by the stochastic LLG-Equation or as a
variant of the time-dependent Schrédinger Equation (2.32). Mathematically speaking, one treats
an initial value problem y'(z) = f(z) with supplied initial conditions y(xy) = yo. Unavoidable
analytical complication, such as the nonlinear term in the stochastic LLG-Equation or the non-
local nature of the dipole-dipole interaction term requires a numerical treatment and leads to an

integro-differential equation in the most general case.

Euler-, Heun- and Runge-Kutta-methods

Systems of ordinary differential equations (ODE’s) of k-th order read

yF = ftyt),y' @), ...,y — 1)) (2.63)
Y=y, i=0,...,k—1 (2.64)

and can always be reduced by successive variable transformation to a first order differential equa-

tion, treatable by initial value problem frameworks. The numerical integration of the r.h.s. of the
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first order differential equation can be achieved by a single-step or multistep method.

Both methods deliver an approximative function y(t) at a finite number of positions. The single-
step method only uses information from the initial time ¢; in order to approximate the function at
the time ¢,,; while the multistep method has multiple evaluation points ¢; with 57 < 7 to realize a

proper approximation scheme. This work only treats single-step methods.

The easiest single-step method happens to be the Euler method. It linearly approximates the solu-

tion function y(t) in the interval i between y,, and y,, 1 as

Ynt1 = Yt + hf(tm yn) (265)

and produces a truncation error of the order O(h?), as can be easily verified by a Taylor expansion.

The second order Runge-Kutta-method provides a more precise approximation, as it uses two eval-

uation points at the beginning and at the center of the interval 5, denoted £, and k.

The algorithm reads

ko = hf(ty + 0.5 % h,y, + 0.5 % ki) (2.67)
Yni1 = Yn + ko + O(R?), (2.68)

introducing a truncation error of order O(h?). The same qualitative result can be achieved by the

second order Heun-method.

The implemented single-step method, used in this thesis for implementation, is the classical
fourth order Runge-Kutta method. This method uses four evaluation points with individualized

numerical weights:
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ko = hf(t, + g, Un + %) (2.70)
ks = hf(lfn + g, UYn + %) 2.71)
ki = hf(tn + by yn + s) (2.72)
PRI S . B ) (2.73)

6 3 3 6

This algorithm, at A’ := 2h, is numerically superior to an algorithm of a second order method
at h. It is important to note that this method is also used to compensate for intrinsic numerical
instabilities even in the case of a linear differential equation. This fact will be exploited in chapter

6 by a numerically efficient linear dissipative wave equation.

All represented algorithms can be found in [147].

Stochastic integration calculus

Generally, one has to consider two different definitions of stochastic integrals for the above men-
tioned non-deterministic equations of motion. The definition, used by the Ito-calculus, requires an
evaluation of the stochastic process at the beginning of the interval of integration while the defi-
nition of the Stratonovich-calculus demands to take an average over initial and final values of the
interval h. The implemented Runge-Kutta-method evaluates both the initial and final time of the

interval and formally corresponds to the Stratonovich integral.
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Chapter 3

Interaction assisted switching of

ferromagnetic nanoparticles

3.1 Introduction

Until today, a considerable amount of research efforts in nano-scale magnetism and magnetic data
storage is centered around questions of field- or temperature-induced reversal dynamics of fer-
romagnetic nanodots, arranged in small magnetic assemblies [2]-[12]. Studies on superparamag-
netism and switching field distributions for ferromagnetic dots usually employ somewhat random
densities of magnetic grains and thus the influence of dipolar energy on switching field distribu-
tions cannot be systematically extrapolated. In the quest for the highest possible density of storage
units in modern age computer technology, a much more systematic study of the positive impact of
interactions on coordinated switching behavior is both expected and demanded. Consequently, the
‘rule of thumb’, stating that inter-dot-coupling is almost negligible for arrays of average distance
greater than the particles’ diameters in a zero-field remanence state, must be put into question. For
high density arrays, driven to instability by multiple means (temperature, fields, frustrated config-
urations, low perpendicular anisotropy, etc.), additional inter-particle energy contributions might
further lower effective energy barriers and facilitate magnetization dynamical paths of decreased

action upon traversing saddle points in the energy landscape.

In this chapter, I am going to describe theoretical studies on the interaction behavior of ferromag-

netic nanoparticles in the light of long-range magnetostatic fields. The investigations are motivated



by an experimental setup of dipolarly coupled Co/Pt nanodots, pushed close to a state of instability
due to the choice of temperature, magnetic field and easy axis anisotropy. The observed super-
paramagnetic behavior unraveled a correlated switching behavior of multiple magnetic dots due
to the long-range nature of the interactions. This was confirmed in particular by simulations of
stochastic, atomistic spin dynamics, modelling the nanodots as uniformly rotating single domain
magnetic objects in macrospin approximation. These surprising findings significantly contribute
to the understanding of the magnetostatically induced modified switching mechanisms of dilute,

unstable magnetic ensembles and even more so for high density bit pattern configurations.

In the following sections of this chapter, I will elaborate on how multi-particle interactions affect
the magnetization dynamics of nanoparticles and how far reaching those interactions are, measured
against the diameter of a typical dot. I will briefly explain the experimental set-up of Co/Pt nano-
dots, placed on a Hall-cross and measured by the anomalous Hall-effect, and then quickly move on
to theoretical considerations. Atomistic-Landau-Lifshitz-Gilbert simulations, including a stochas-
tic field term, have been performed to analyze the magnetic ensemble for various sets of energetic
parameters, time scales and distances. Analogous to the experimental situation, I simulated static
magnetization curves and afterwards dynamical telegraph-noise plots to study the impact of inter-
actions on different time scales and energetic influences. In all simulations, a rigid, single domain
magnetic entity was assumed for all four involved dots, as domain wall propagation was believed

to be negligible due to the exchange stiffness of Co/Pt composite particles.

As a second part of this chapter, I will model the dynamics of the nanodots in a more idealized,
theoretical fashion to highlight the conceptual analogy of interacting nanodots and interactions be-
tween magnetic systems and dynamical fields via spin dynamics. The interaction of nanoparticles
will be looked at as a generalized form of a dynamical phase transition [[125]] between two magnetic
subsystems, influencing each other instead of being just influenced by a time-dependent periodic

external field.
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3.2 Collective switching of interacting nanodots

3.2.1 Experimental setup

The details of the fabrication process of nano-sized Co/Pt nanodots has been extensively described
in [13} [14] to which I am referring in the following. It involves the extraction of the ferromagnetic
dots from a planar Pt/Co/Pt multilayer (Pts ,;(C00 8 nmPt2 nm )3Ptinm) by ion milling, using an SiOs-
based shadow mask. The platinum underlayer beneath the ferromagnetic dots is then exposed to
electron beam litography with negative resist in order to further utilize it as a Hall-cross onto which

the elements of study (approximately 35 nm in diameter) are attached to.

The intrinsic magnetic properties of the dots (of which low perpendicular magnetic anisotropy is of
particular relevance for the studies of interest) were achieved by a combination of Co- and Pt-layer
thickness optimization and the choice of films with canted magnetization. This guaranteed control
of both magnitude and spatial orientation of the anisotropy axis is achieved due to cancellation
effects of anisotropy and uncompensated magnetostatic fields at the interface. The fabricated dots
admitted a low effective anisotropy energy E,f:ﬁl of the order of roughly 1 electron volt perpendicular

to the film plane.

They have been positioned on a Hall cross of nanoscopic dimensions and all magnetization mea-
surements have been performed based on the anomalous Hall effect which admits a proportionality
to the perpendicular component of the magnetization vector. Much like in the historic setting, a
current is applied and a transverse voltage is measured, but unlike for the classical Hall effect, the
Co/Pt nanodots do not lead to a significant signal other than an anomalous contribution due to the
magnetization. This interesting phenomenon is thoroughly explained in [[17]-[20] and accounts for

the averaged magnetization signal of all the four dots on the Hall cross.

In order to access the thermally activated magnetization dynamics of these Co/Pt nanodots, an in-
plane field is applied to modify and reduce the barrier height separating oppositely magnetized
perpendicular states [20]]. The field strength is tuned appropriately such that the instability due to
thermal agitation of the dot magnetization is observable. As the dots reveal different coercive fields
the temporal behavior of an individual dot can be separately studied via an appropriately tuned

in-plane field.
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3.2.2 Results of the experiment and simulations

Figures[3.1](a) and (b) shows the mean magnetization curves and time-dependent signals measured
in the described set-up. Because of a slow ramping of external magnetic field, each step in figure
3.1(a) could be unambiguously assigned to an individual dot. From the dot-resolved measurement
of the anomalous Hall voltage, one is able to identify the first reversal at about 5 mT, which corre-
sponds to the switching of dot C, the second reversal at about 20 mT is produced by dot A, and the
last switching at about 50 mT, corresponds to the reversal of dot D. More details of the procedure

can be found in [13], [14].

. I S B . S S E = B v T v . v v r v
(a ) Pts nm(coo.snmptz nm)3Pt1 nm ( b) C Ptsnm(conlg ,..,,.Ptz r”|-.);,Pt| [ mag netic field
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T~ 300K ] F T~ 300K ——250mT
3 ——27.5mT
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Figure 3.1: The response via the AHE of a system of four nanodots in fields with different orien-
tation at T=300 K. (a) The switching fields of the individual dots are determined by application
and slow ramping of a perpendicular field which is parallel to the anisotropy field of the dots. The
scanning electron microscope image of the inset shows the four dots with a color code represen-
tation (A=green, B=black, C=yellow, D=violet). The dots C, A and B can be clearly assigned to
magnetization reversal in the hysteresis loop at magnetic field values of 5 mT, 20 mT and 50 mT.
A signal from dot D cannot be observed at room temperature. The dot size is 36 nm for A, C and
D and 40 nm for dot B. (b) The telegraph noise for dot A is shown for different magnetic field
strengths and one can clearly see that the in-plane field B := B, can effectively lower the barrier
for dot magnetization reversal. An increase in switching frequency is evidently accompanied by
this.

To probe the magnetization state and behavior of individual dots, the anomalous Hall-effect is
used, which is directly proportional to the out-of-plane component of magnetization. As in a con-
ventional Hall-type measurements, a current is applied and a cross voltage is measured. The normal
Hall effect is negligibly small for the Co/Pt material system and only the magnetization-dependent
anomalous contribution is seen in measurements [20,22], thus giving access to the magnetization

state of individual nanoparticles. Figure[3.1fa) displays the magnetization behavior of the system

31



obtained in a single out-of-plane field sweep at room temperature for a system that consists of
four dots on the Hall-cross (see inset of figure [3.1f(a)). One can relate hysteresis loop features to
each individual ferromagnetic dot by applying the current across adjacent leads and measuring the
anomalous Hall voltage across the opposite leads as shown in [[15] or via the signal height by bring-
ing together the measured relative strengths with the calculated sensitivities for the conventional
geometry [17, 18} [19].

In figure [3.1(b), the telegraph noise, obtained from dot A for three different field values, is pre-
sented. It is apparent that the field lowers the barrier, leading simultaneously to an increased fre-

quency of switching with an increasing field strength.

For a lower temperature of T = 150 K, all four dot signals become visible in the hysteresis curves
that are displayed in figure[3.2a), particularly also for dot B. The most pronounced jumps can still
be associated to the dots A and C, as seen previously for room temperature measurements in |3.1

The coercive fields of them are slightly increased in comparison to the room temperature measure-
ment, as expected from the reduction of thermal agitation. The signal of dot D appears at a small
field of approximately 5 mT. The absence of this signal for dot D in[3.I[(a) can be explained by the
fact, that it becomes superparamagnetic for the time scale of the measurement (at a given external
field strength) at room temperature and its small signal is partially hidden behind the larger signal
of dot C. Although the hysteresis loops at both temperatures are very similar, the analysis of the
telegraph noise signal in magnetic in-plane fields unravels important differences (figure [3.2(b)).
The sub-figures show the temporal signal for a domain of field strengths, for which switching be-
havior sets in for dot A. The fields are higher than for the room temperature measurements since the
magnetization states are more robust against thermal activation, which can also be seen from the
fact that the coercivities are increased. At the lowest in-plane field strength (35 mT), no switching
event is observed. By increasing the field strength to 38 mT, the switching that corresponds to the
one shown in figure[3.1|(b) kicks in (same scales of the x-axis). However, a second switching is su-
perimposed in the experiment (figure[3.2[b)) that is faster and has a smaller signal height. At 40 mT
the frequency of the switching event with smaller amplitude is decreasing again. This observation
gives rise to the hypothesis that a correlated switching event among dots at the verge of instability
can be observed. However, the experiment doesn’t allow for the verification of this hypothesis.

Therefore, I further elaborated on this by simulation results in the next section.
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Figure 3.2: The AHE response of a system containing the four nanodots for different field orien-
tation at a temperature T=150 K. (a) The magnetic hysteresis is now more pronounced due to the
reduced thermal noise. For this set of parameters, one can unambiguously identify the jumps of
all four nanodots, including dot B. The new switching fields are 5 mT, 20 mT, 38 mT and 70 mT.
(b) The telegraph noise for dot A, as expected, exhibits much less jumps of magnetization. The
in-plane magnetic field reveals an interesting fluctuating sub-signal on top of a larger seemingly
more stable signal of magnetization at about 38 mT which becomes less pronounced at 40 mT and
was even completely absent at 35 mT.

Switching at a critical field

In order to shed light on the question of correlated switching, I first simulated the expected equi-
librium magnetization curves, using the parameters of the experiments in order to verify a compu-
tationally valid basis for the numerical dynamical analysis of the nanodot interaction. Fig. (3.3)
reveals a very good match of the nanodot switching fields, described in figure (3.2)) and is both

4
plotted as a superimposed > S, ; and dot-resolved magnetization signal S, ;.

After that, I analysed additiZ(:rllal, dynamical experimental data at the critical field B=38mT, at which
the interesting phenomenon, described in the last section, has been observed. In contrast to the
behavior at room temperature, the signal heights at 150 K do not coincide with the signals obtained
in the hysteresis loops. The hysteresis loop (figure[3.3(a)) shows jump heights of (1.13 & 0.03) .V,
(0.22 £ 0.03) 1V, (0.46 £ 0.03) 1V, and (0.08 £ 0.03) iV for dots A, B, C, and D, respectively.
The signal heights in the telegraph noise are (0.83 4 0.05) ¢V for the big jump and (0.25 £ 0.05)
1V for the smaller jump. While the smaller jump height is somewhat close to the value found for
dot B the large jump signal cannot be explained by any of the individual dot switching transitions

obtained in the hysteresis loops. Even though the identification of the smaller signal seems to be

natural at first glance, there are serious arguments against a dynamical switching of dot B. Based
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Figure 3.3: Simulated time-averaged magnetization curves of the four nanodots with (a) total mag-
netization and (b) dot-resolved magnetization of the z-component, parallel to the external field. The
color code is adjusted to the experimental labelling. The numerical values of the anisotropy ener-
gies have been assumed as 1.3 eV, 1.6 eV, 0.9 eV, 0.8 eV for the dots A, B, C and D, respectively.

on the hysteresis curves, it is evident that dot B has the highest coercivity and anisotropy of all four
dots. This means that by simple assuming single particle switching as a zeroth approximation the
frequency should be the lowest among all particles. The switching between the central and upper
level, however, appears with a high rate which obviously cannot be attributed to the switching of

dot B in a single switching scenario.

A telegraph noise measurement for the four dots on an extended time interval is shown in figure
[3.5(a) for an applied field of 38 mT. The temporal evolution reveals the already mentioned three
voltage levels that are involved in the switching (inset). This was explained in terms of the eval-
uation of multiple spin dynamical simulations which favored such a particular ”3-spin switching
scenario”. This is described in fig. (3.4).

Obviously, the system exhibits fast fluctuations, corresponding to an alteration between the two
higher voltage levels of the AHE measurement. The total separation of the lower and upper voltage
levels is (1.08 £ 0.05) V. The value is apparently close to the signal of dot A in the hysteresis.
When the value obtained in the hysteresis loop is corrected for the tilting of magnetization in
the in-plane field, one could expect a signal height of 1.05 ©V for the reversal of dot A. The
good agreement between the predicted, effective signal height for dot A and telegraph signal of
the measurement indicates that the net change between the lower and upper voltage level is caused
exclusively by the reversal of dot A. Hence, we may conclude that the analysis of the experimentally

measured voltage levels indicates that dot A is a key player in the observed thermal switching while
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Figure 3.4: Favored 3-spin scenario for the switching behavior of the dots, according to spin dy-
namical simulations under appreciation of signal heights from the experiment and realistic energetic
parameters for the nanodots. A sporadic switching of dot A’ and a frequent switching of dots C
and D have been rationalized and is shown via spin-averaged (a) and spin-resolved telegraph noise
(b). The inset schematically shows the hypothetical signal heights of the anomalous Hall voltage,
associated with such a switching, being within a tolerable error of approximately 6 percentages
and 8 percentages of the experimental values with respect to the large signal and the small signal
switching event.

other signals cannot be attributed to single dot switching.

As a next step, it is instructive to focus on the time scales of the switching events in figure (3.5).
Utilizing the anisotropy that has been assumed, the effective barrier heights for single particle
switching in the in-plane field can be estimated for dot A: AF, (38 mT) ~ 37 kgT. The re-
sult is that dot A should not switch on the time scale of the experiment (at 150 K) while dots C
(AEc (38 mT) ~ kgT') and D (AEp (38 mT) < kgT') should switch with a frequency that is too
fast to be resolved within the experiment (assuming an attempt frequency in the range of 1011 Hz).
This means that the experimental result and the expected behavior (based on single particle poten-
tials) are in disagreement, as values for dots C and D are too large and those for dot A are too small.
Reasonable adjustment can thus not be made by a simple adjustment of the attempt frequencies.
More importantly, the inset in figure 3(a) demonstrates that the transition from the bottom level al-
ways ends in the central level, which is definitely caused by a simultaneous switching of more than
one dot. Hence, the switching of single dots cannot explain the finding and correlated switching

has to be assumed.
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Figure 3.5: Graphic display of the telegraph noise and the associated magnetic states of the system
of four nanodots. (a) Dynamical evolution of the nanodot magnetization for the relevant, critical
magnetic in-plane field of 38 mT over a large period of time (80 minutes). It is obvious that the
overall signal switches between three levels of signal height. A detailed combinatorial analysis of
the jump heights and the expected dynamical behavior from single dot measurements is described
in panel (b). (c) Local SEM micrograph of the Hall cross. The inter-dot separation is indicated in
white. The B-D inter-dot distance is 209 nm.
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3.2.3 Energy landscape and dynamical correlation function

In order to get better insight into the highly complex energy landscape of the ensemble of nanodots,
I performed simulations in the framework of Landau - Lifshitz - Gilbert spin dynamics, including
a stochastic Gaussian distributed field [24]], modelling temperature effects via an additive Langevin
noise term. For this purpose, the dots have been treated as macroscopic dipoles. This approxi-
mation is motivated by the strong exchange interaction between the constituting atoms of the dots
and the high J/K ratio, that prevents the formation of domain walls. The exact same spatial ar-
rangement of four dots has been modeled and the dynamics of the switching behavior analyzed. In
agreement with the experimental results, I have found that the dynamical behavior of the four dots
is quite different from calculations based on the energy barriers as determined from the temperature
dependent coercive fields of individual magnetic particles. The predominantly occupied magnetic
state is the one which minimizes the dipolar energy and can be seen in the middle panel of figure
[3.5(b). The dynamical calculations, however, clearly indicated that this state is twofold degenerated
with respect to the orientation of the dots D and C. This means, that on the timescale at which the
dots A and B remain locked in the respective orientations, the dots D and C realize many switching
events between configurations of upper and middle panels of figure [3.5] (b). This result raises the
decisive question of whether this instability may explain the deviation of the energy barriers from

those of individual, decoupled magnetic dots.

In full generality, one can only answer this question by investigating the complete energy land-
scape of the ensemble. This proves to be a tremendous task, since the energy landscape is nine-
dimensional (the magnetization of each macroscopic dipole i can be described by two spherical
coordinates (;, ;) plus time). A way to solve this problem is to analyze the dynamical correla-
tion function Cyy, = 1/T [7°_dt S.;(t)S. ;(t + s) between pairs of magnetic moments i and j,
where . ;(;) is the z-component of magnetization of moment ¢ and j at times ¢ and ¢ + s, respec-

tively. This function provides the information whether a given state is still correlated after a delay

time s. Hence, C’dyn| — 1 corresponds to the correlated, in-phase switching, while Cyy, — 0
to stochastic noise. In the simulations, this function was calculated for vanishing delay s = 0
and variable center-to-center distances 7;; to check for the degree of correlation for simultaneous
switching. The dependence of the function Cgyn (rf’j) on dot separation is given in figure The

distance scale in the simulation is comparable to the length scale of the experiment and chosen
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Figure 3.6: Simulations of the dynamical correlation function Cy,, and the decrease of dipolar
energy E'pp plotted as a function of the inter-particle distance. The decrease of the dynamical
correlations (red spheres) and the decrease of the dipolar coupling energy is normalized to the range
of 70 nm to 140 nm which corresponds to typical inter-dot distances on the Hall cross. The dipolar
energy decreases linearly due to the x-axis, being scaled as 1/ rf’j, normalized to 100 nm. The
dynamical correlations decrease more slowly and amount to persistent antiferromagnetic coupling
of the dots. This functional form is not dependent on the value of the damping parameter (here
a :=0.2 is chosen which is close to the value of Co/Pt dots for which the magnetization dynamics

can be reasonably approximated by the LLG-Equation). All dotted curves are guides to the eye.
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to be 100 nm (see also figure [3.5c)). In figure [3.6] the spheres give the time-averaged dynamical
correlation, while the open squares show the decrease of the strength of dipolar interaction with
1/ rfj (dotted curves as guide to the eye) for comparison. The plot clearly shows that the dynamical
correlation Cyy, decreases much slower than the static dipolar coupling. For the separation of dots
C and D (105 nm) the correlation function is still more than 0.8 and thus correlated switching is
found. Hence, these two dots are switching in-phase and the stability of the anti-parallel configu-
ration is increased. Even the farther separated dots (r;; ~ 140 nm) show strong correlations (see
figure 4) which is responsible for the occasional switching of dot A although its anisotropy energy
is much larger than the dipolar energy. The physical reason for the long range phenomenon is the
minimization of the time-averaged or -integrated total potential energy of all dots. This manifests
in the many-body dynamical correlations and prevents the magnetic moments from dephasing. In
other words, the many-body dynamical effects, described here experimentally and theoretically,
correspond to a minimization of a dynamical quantity, the spin dynamical version of the action,
rather than to a mere minimization of single particle energies in a static viewpoint for individual
dots.

I illustrated that fact further by fig. which uses the same distance scaling, as fig. (3.6) for
the x-axis. The figure illustrates the large amount of action S, accumulated by single reversal in
the presence of a static magnetic dipole source at some distance r; ;. It is remarkable that despite
the presence of noise and dissipation such a conceptually simple action-based ansatz which only
strictly applies for exact Hamiltonian systems grants such a good explanation for the collective

behavior of the dots in the simulations.

With the result of the theoretical analysis it becomes clear that the fast switching between the middle
and upper voltage level is a correlated switching of dots C and D. From the hysteresis measurement
in figure 2(a) a signal height of (0.32 + 0.06) 11V has to be expected, taking the field induced canting
into consideration. A complete analysis of all transitions between all possible states reveals that the
scenario proposed in figure is the one that comes closest to the experimentally observed value
concerning level separation. Both the theoretical and experimental results prove unambiguously
that it is crucial to know very accurately the magnetic behavior of the dots in the surrounding on a
scale that is far beyond the separation of nearest neighbors, to properly describe thermal switching

or switching field distributions.
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Figure 3.7: Comparison of the expected accumulated action for a reversal path of a single nanodot
(blue) and for the reversal in the presence of a second nanodot at a distance, as prescribed by
the x-axis (normalized to cubic inverse inter-dot distance). The numerical value of the action is
not affected by isolated reversal, but rises linearly with decreasing inter-dot distance. This makes
isolated switching increasingly unfavorable for nearby magnetic environments of a nanodot.
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Finally, I would like to comment on the frequency decrease of switching when changing the field
from 38 mT to 40 mT in figure [3.2] (b). The latter is an indication for some asymmetry in our
experimental set-up, in particular a small misalignment of the external field, which favors one over
the other state. The effect of the misaligned field is also seen in the room temperature measurements
(figure[3.1J(b)) where the switching between the two states with same energy is slightly asymmetric

in time.

3.2.4 Systematic tuning of switching properties

In this subsection, we demonstrate how the two-spin correlation function can be tuned by varying
different parameters in a small system of interacting dipolar particles. Additionally, we discuss our
results in the context of interacting magnetic oscillators to understand the dynamic behavior in the

limiting cases of small and large interaction energy Fq.

3.2.5 Numerical results for a 4-particle-array

Particularly important for future applications of storage devices is external control or even mastery
over switching properties of selected nanoparticles inside an array. We investigated the impact of
the magnetostatic interaction of four particles on a length scale that is several times larger than
the particle size and we were able to show that even on such a scale there is mutual influence on
the switching rate. In order to quantify the influence of the interaction, we calculated the average
switching rate v ; Of the i-th particle in the absence of interaction fields and compared this number
with switching rate v;; of the i-th particle in the presence of an interaction field of particle j. We

encoded this ratio into a square matrix

My My, ... My
My May ... My
Mins i = . . . (3.1)
MNI MN2 s Mnn
with matrix elements M;; = Ui This matrix characterizes the mutual influence on the switch-

Vjii

ing rate of the N interacting particles and has therefore dimension N. In order to account for
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many-body interactions (e.g. the influence of particle i by particles j and k in terms of a resulting

frequency shift), M;,, ;; can be generalized to a tensor M;y ; ;x,.. With N indices. The influence of

Mint,ijk,..—M;

particle ¢, quantified by L, is then determined by summation over all indices j, k, . . .

Mint i jk,...

and results in

Z M k.. = (3.2)

distinguishable matrix elements for each value of <.

Figure 3.8: System of four Co/Pt magnetic nanodots on a Hall-cross [1]. The geometry of the
system inspired the theoretical study on the correlation of the dots.

Motivated by an experimental study [1], we exemplify this scheme by evaluating all matrix ele-
ments for four magnetostatically coupled particles with different anisotropies K;=21.73 kgT,

Ky=11.07 kg, K3=5.47 kgT and K,=2.67 kgT' and different distances, ranging from approxi-
mately 3 to 5 times the particles’ diameter (figure [3.8)). The effective magnetic moments of all
particles have been assumed to be pg = 3.7 - 10°up. The asymmetric choice of parameters helps
to discuss the full complexity of the problem. It also accounts for the different size of artificially

produced nanoparticles as well as their individual shape anisotropy [[14] [13].
For the given example, the matrix (3.1)) reads as
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Figure 3.9: (a) Anisotropy of particle i vs anlsotropy of particle j for a reference dipolar energy
FE, 4 = kgT. The external field is set to B = 0 for all simulation points in this diagram. (b)
Dipolar energy E,, plotted against an external field aligned parallel to the z-axis. The competition
of dipolar interaction field which favors anti-parallel alignment and external field which favors
parallel alignment of the magnetization vectors is illustrated by the contour lines.

1 3.063 7.064 5.667
Y 1.005 1 1.207 1.008 (33)
int,ij = .
! 1.043 1.002 1 1.094

1.040 1.000 1.120 1

with vanishing self-interaction; i.e., diagonal elements M;; are exactly 1.

It can be immediately extracted from (3.3)) that the particle with the highest anisotropy K
dramatically enlarges the switching frequency of all the other particles, while it retains its own free
switching frequency vg..; to a very high degree. This effect is to some extent inherited by the
rest of the particles: The particle with second-largest anisotropy K still causes relative deviations
of the switching frequency of particle with K3 but not vice versa. The deviations from diagonal
elements of (3.3) almost vanish when we are looking towards the subspace of particles 3 and 4
which are almost on equal footage with respect to the matrix elements M3, and M, 3. In this
manner, switching can be observed with a certain hierarchy: Particle 1 manipulates the dynamics of
particle 2. Particle 2 manipulates the dynamics of particle 3 and so forth (although this manipulation

breaks down at some critical anisotropy/distance value).
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Additionally, we calculated the two-spin correlation-function in dependence of different ratios
for selected parameters, arising from the considered Hamiltonian.

Figure[3.9](a) reveals the mutual influence of two spins with different anisotropies. Anti-parallel
alignment is clearly favored for spins with strong anisotropy, while it almost vanishes for spins with
small anisotropy-values. This diagram reflects the matrix elements of (3.3), because the relative
deviations in switching frequencies of the different particles can be used to estimate the two-spin
correlation function between them.

In figure [3.9] (b), the two-spin correlation function for a static magnetic z-field and dipolar
interaction is shown. On the considered time scale, spin ¢ is chosen to have stable orientation
parallel to the z-direction, while the spin j tries to align in the opposite direction. Because of
the vanishing two-spin correlation function along the diagonal of the diagram, it is very simple to
negate the influence of a dipolar field by applying a suitable counter field B,=-H,,; ; where H;,; ;

is the dipolar interaction field of particle ¢ acting on particle j.

3.2.6 Interacting magnetic oscillators

In this subsection, we want to discuss the results from the matrix (3.3) in terms of coupled mag-
netic oscillators which are well known from the literature (e.g. [[136, 137, 138]]) and have a formal
basis in the context of Holstein-Primakoff-transformations [134), [135]]. This can be motivated in
the anisotropic (kg% >>1) single-particle-picture, where the energy landscape takes the quadratic

form

E=E;=-KS2, (3.4)

and leads to an average switching frequency v (due to thermal activation) in the limit of ¢ — oo,

allowing for a Fourier (half-) expansion after an infinite number of oscillators

2(9) = Y expl—iB(n -+ 1/20 35)

n=0

that models a corresponding canonical ensemble (h:=1).

The analogy to the oscillator representation becomes also visible in the partition function of equal-

ity (3.20)), if we add four regularization factors 0 < K, <<1 for the spin-components Sy 1, Sz.2, Sy.1

44



and S, 5 to get a quadratic form in all cartesian components. The energy then reads as

H=—K5+JSS, — K,S5? (3.6)

with vectors I?i:(Km-, K, K.;) and §2:=(S§, Sz, 52).

The equation (3.6) can be diagonalized straightforwardly and results in an expression

Hdiag = _Xllglf - X/2§,; (37)

for two decoupled 3D magnetic oscillators in the sense of |i with normal coordinates. Here, K,

and K's contain the information about the coupling.

A typical case, discussed in the literature, is a linear coupling of two mechanical oscillators which
leads to two normal mode solutions: a) in phase-oscillation; b) anti-phase-oscillation or a superpo-
sition, resulting in a time-dependent energy transfer, also known as ’beat”. This beat is maintained
by the mechanical spring that transfers kinetic energy from oscillator 1 to oscillator 2 and vice

versa. It is interesting to see whether the magnetic coupling shows a similar behavior or not.

In the case of a small magnet with uniaxial anisotropy, the oscillatory magnetization dynamics of
S, is a result of constant thermal activation and a diffusive motion over a quadratic energy barrier
instead of a continuous energy transfer between potential and kinetic energy (there is in fact no
intrinsic “directional” kinetic energy present, but only Gaussian distributed thermal energy). For a
coupled pair, there is no apparent reason why a magnet ¢ should be prefered over another magnet
J in terms of the influence on the switching frequency v;; or vj; respectively. A first look at the
two particle subspace in the matrix with K; > K suggests that coupled magnetic oscillators
behave qualitatively different from linearly coupled harmonic oscillators, as the matrix elements
are asymmetric. For example, the element Mj» of matrix (3.3) is 7 times larger than the diagonal
elements M;;=1. Formally, this difference can be regarded as an energy loss or a “dissipative
channel”. The described asymmetry calls for a dynamical explanation which can be given by the
difference in thermal stability of the magnets with different anisotropy. First, we concentrate on the
weak coupling regime, in terms of interaction energy F;;. The averaged time-dependent dipolar

interaction field of particle ¢, acting on particle j is
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to

. 1 .
(Hosh = 7 / iz (3.8)

t1

—

For sufficiently long periods of time 7" = ¢y — t; >> 7,, the magnitude of (H,,.,): is larger for
a magnet with K; > K. Therefore, short time correlations are ruled out and a time-averaged
influence on a time scale 7' >> 7, becomes important. In this manner, a magnet i forces a magnet
J with K; < K to align in its time-dependent interaction field and not vice versa.

However, if the coupling is sufficiently large (,i—d% >> 1) the two particles switch collectively
which is qualitatively similar to anti-phase oscillations in the more simple mechanical analogon,
mentioned above. In this case, short time correlations increase significantly and the long-time

dynamical asymmetry of the alignment vanishes. The increased switching rate of both magnets can

be understood very well in the picture of a reduced energy barrier

4 - D
JpBarrier _ phAnisotropy 2_3 (3.9)

emerging from an alignment of the spin-vectors parallel to the x-axis of the system when passing

the hard plane of the system, as discussed further above in chapter 3]

3.2.7 Conclusion

In summary, I have shown that magnetostatic interactions can play a significant and important
role in the dynamic reversal process of magnetic nanoparticles even when the system’s energy is
dominated by anisotropy barriers. The observed switching behavior leads to the conclusion that
correlations determine the switching. Dynamical processes have been observed that are clearly in
contradiction to a single particle switching scenario. Wrong interpretations can be obtained, if only
single particles are in the focus of study, neglecting the temporal behavior of the surrounding mag-
netization degrees of freedom and corresponding correlations. The spin-dynamical-simulations of
hysteresis loops, telegraph noise and the supplementary calculations of the dynamical correlation
function prove that dynamic correlations facilitate new reversal paths through the multidimensional
energy landscape. This phenomenon finds a quite natural explanation in terms of action minimiza-

tion and saddle point transition in the energy landscape. The farest reaching theoretical outcome is
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that dynamical correlations are decreasing slower than the static interactions, responsible for this
behavior (long range dipolar fields). This was considered as a behavior analogous to that of a dy-
namical phase transition. It follows that correlations become imminent when a magnetic system
is close to the state of thermal instability and the dipolar energies of inter-dot coupling are of the
same order of magnitude as the thermal fields. The simulations demonstrate that the interactions
cannot be disregarded when thermally assisted switching with low effective barrier heights is the
focus of interest, which has wide ranging implications for the research of superparamagnetism as

well as technical applications, such as heat or thermally assisted magnetic recording.

3.3 Dynamical phases of interacting nanoparticles

After investigating the experimental situation of interacting nanodots in (3.2) this chapter will be
continued with a section on a possible dynamical manifestation of a phase transition between classi-
cally interacting magnetic particles. This is motivated by the dynamical correlation function (3.2.3)

and its functional behavior as a function of interaction strength and inter-particle distance.

A brief introduction to general dynamical phase transitions is given in (3.3.1)) and then the idealized

modelling of a system of exchange interacting magnetic moments is presented in (3.3.2]and [3.3.3).

This simplification is justified by antiferromagnetic ground state properties of a pair of dipoles
with large out-of-plane uniaxial anisotropy energy Ex, >> E;; (compare (2.10) and (2.4) for the

notation).

A short conclusion (3.3.4) is presented at the end of the section.

3.3.1 Dynamic phase transition in linear response and Landau theory

Dynamical phase transitions are well known in the framework of the Landau-theory, which is
closely related to the mean-field-theory [[151, [139]. The theory predominantly deals with non-
equilibrium stochastic systems subject to an oscillating magnetic field h(¢) with period 7. A
prominent system, undergoing such a phase transition, is the kinetic Ising-model which shows
two characteristic phases, originally analyzed numerically by Tania and Oliveria [[125] in the con-

text of Glauber-dynamics [128]: (a) A symmetry restoring oscillation or paramagnetic phase and
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(b) a symmetry breaking oscillation or ferromagnetic phase. The transition between these phases
is intimately linked to both, the exact magnitude and the frequency w = 27 /T of the oscillating
external field. Typically, the time-dependent magnetization m(t), averaged over one period of the

external magnetic field serves as the dynamical order parameter () of the system, hence

1
Q:?%ﬁmﬁ. (3.10)

This is in contrast to the volume averaged order parameter

1
szfwmw, (3.11)

used for the description of a static phase transition. This order parameter can be obtained as an
ensemble-average, calculated by ordinary Monte-Carlo simulations. In figure 1 (b), we qualitatively
reproduced the two phases found in [[125] within the framework of our dynamic model, introduced
in section (4.2), using an exchange interaction, as well as a static external field to symmetrize the

ferromagnetic phase.

Very recently, the more general case of h(t) being superimposed by a static external bias field Ay,
was studied and it was shown that h; serves as a conjugate field with respect to the order parameter

Q[120].

The dynamical correlation function CY;;, proposed in the literature [[148]], which describes the

time-averaged overlap of the magnetization m(t) with the oscillating field h(¢) is

Char o 7{ m(®h(t)dt = ho 7{ m(#) sin(wt)dt (3.12)

from which the order parameter () can be obtained with little difficulty. In our case, we want to
describe the correlation between two dipolarly coupled magnetic moments. The main difference is
the dynamical, a priori non-periodic, character of the time-dependent dipolar fields which is due to
the interaction of the magnetic moments and due to the fact that both moments are evaluated in the
superparamagnetic regime. Therefore, we can expect qualitatively different results when evaluating

our correlation function C.
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3.3.2 Dynamical phase transition for two interacting magnetic moments

The dynamical phase transition, described in this section, arises from the coupling of different
magnetic moments and is not maintained by an external field. The evolution of the presented system
can thus not be described within the linear response theory as the previously studied systems [[125]
129113041131}, 1132]]. We start the discussion of this phenomenon by introducing a proper correlation
function which is similar to , but replaces the magnetization m(t) by the z-component of a
time-dependent spin vector .S, ;(¢) and the external field A (t) by another spin-vector S, 5(t). This
gives rise to the self-organized behavior of the system. Furthermore, we will regard the correlation
function as the order parameter of the system, because we are interested in the mutual response
of the two spin components as a function of time. In the following, numerical representation of
the time dependence of the two vectors is described by an additional index k, running from 1 to

M >> 1, hence by the expressions S¥,, S¥,.

Figure [3.10] shows the correlation function C, calculated numerically for A/ time steps via the

expression

- ShiSE o |
C:Z [Sk }2 [ =4,if 57, > 5;;,else: 1= (3.13)
k=1 z
= / ds 5:4(s) - Szu(t + 5) (3.14)

of the z-components of two dipolarly coupled nanoparticles ¢ and j as a function of the cubic inverse
inter-particle distance 7}';3 evaluated at vanishing time difference s=0. Almost the same functional
dependence holds for antiferromagnetically coupled nanoparticles, if one assumes a hypothetical
cubic inverse distance dependence for the coupling. This clearly underlines the similarity of dipolar
and antiferromagnetic energy terms under the given boundary conditions of large anisotropy and
we will pick this up in section As it can be seen from figure C goes to zero with
some potency of the coupling strength. The strength of the coupling in contrast reveals a linear
dependence on % in this kind of plot. It means that the dynamical correlation function decreases
much slower than the interaction strength. In other words, the switching magnetic moments are

strongly correlated at distances, where the interaction strength almost vanishes.
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Figure 3.10: Two-spin correlation function C for dipolarly interacting nanoparticles with K; =
Ky = 20kgT as a function of the cubic inverse distance (red), starting from a critical distance
Tmin Where C starts to deviate from -1 . The order parameter C goes to zero for larger distances. A
very similar functional dependence C (74 2) holds for antiferromagnetic exchange coupling (black),
for which the same distance dependence was assumed. The linear dependence of the dipolar and
exchange energy on 1 / rs. s also plotted for comparison (blue).

In the limit of strong coupling, the relative difference in all cartesian components o = x, y, 2 of the

spins

S — 59| = 25% = 252 (3.15)

is a strictly additive property (Vt), while in the limit of vanishing coupling the difference is uni-

formly distributed, i.e.

0<[S¢— 59 <2. (3.16)

Hence, the power-law of C (%) has to be hidden in the dynamics of the system under investigation.
The shape of the function C ( ) resembles the decrease of magnetization of a ferromagnet as a
z]

function of increasing temperature, describing a continuous phase transition. In the next section,

we analyze whether it is possible to define a dynamical phase transition for a very small system of
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two coupled superparamagnetic particles.

3.3.3 Statistical description of a dynamic phase transition

The proper definition of any phase transition relies on an ensemble description. In order to char-
acterize a phase transition in a system with a small number of particles, a corresponding ensemble
description has to be found. For that purpose, we develop a general scheme, containing two steps.
At first, we demonstrate how to simplify the Hamiltonian of the dynamical system and then we

demonstrate how to map the model onto a lattice problem with many degrees of freedom.

Simplification of the Hamiltonian

To ensure the equivalence of an initial and simplified model, reliable boundary conditions have to
be formulated and satisfied. We elaborate these boundary conditions by introducing a probability

function

P(QOP) = [P(Qo)v K P(Qﬂ)] (3.17)

which measures the canonical weight, obtained from the corresponding partition function, of all
spin configurations with a given angle 0,,; i.e., an opening angle. Different states of this function
are characterized by different angles 6, € [0, 7|. The correlation function C, derived from (3.17)

w/2—€/2

is positive for all 4, < 5 — § <C’>0 = d@opP((‘)Op)> and negative for all 6,, > 7 + §
0

i
(C =70 dQOpP(Hop)) with € as an arbitrarily small number.
w/2+€/2
From these definitions, we can construct the correlation function

C = C% + C° = const, (3.18)

which has to be identical for any two models to be compared within our analysis. In the following,

we will demonstrate how the conservation of C' can be recast into a continuity equation.

Since our simulations are stochastic in origin, we can assume ergodic behavior of our spin sys-
tem for ¢ — oco. Therefore, it is possible to express the two-spin correlation function for particles,

aligned along the x-axis in real space, canonically via
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eXp<_BHconfig)

C can — ‘S_;zg confi (319)
(C) Zf: ( ]) fig Z(B)
config
in terms of a canonical partition function
2
Z3) = Y exp(—BHapeaes) = 3. exp(—B|-K D (S5)?
a,b,c,de, f a,b,c,de,f i=1
+ D[-282,80 5 + S50 + 52,50 (3.20)

taking into account all possible configurations (=config) of the two spins, characterized by the
indices a, . . ., f.

The main reason for this mapping is that we try to understand our findings within the framework of
a well-defined theory