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Abstract
Collaborative robots are expected to work alongside humans and directly replace human
workers in some cases, thus effectively responding to rapid changes in assembly lines.
Contact-rich manipulation tasks are commonly found in modern manufacturing settings.
However, manually designing a robot controller is considered hard for traditional control
methods as the controller requires an effective combination of modalities and vastly
different characteristics. In this thesis, several visual and force-based creative skills and
learning frameworks are proposed to solve the current issues of force-controlled robotic
assembly tasks.

In this thesis, we first consider incorporating operational space visual and haptic in-
formation into a Reinforcement Learning (RL) framework to solve the target uncertainty
problems in unstructured environments. Moreover, we propose a novel idea of introduc-
ing a proactive action to solve a partially observable Markov decision process (POMDP)
problem. With these two ideas, our framework can either adapt to reasonable varia-
tions in unstructured environments or improve the sample efficiency of policy learning.
We evaluated our framework on a task that involved inserting a Random Access Mem-
ory (RAM) using a torque-controlled robot and tested the success rates of different base-
lines used in the traditional methods. We proved that our framework is robust and can
tolerate environmental variations.

Moreover, to solve the contact-rich task transparency and pose uncertainty issues
during robot teaching, another framework is proposed, which focuses on combining
visual servoing-based Learning from Demonstration (LfD) and force-based Learning
by Exploration (LbE) to enable the fast and intuitive programming of contact-rich tasks
with minimal user efforts. Two learning approaches were developed and integrated into a
framework, one relying on human-to-robot motion mapping (visual servoing approach)
and the other relying on force-based reinforcement learning. The developed framework
implements the noncontact demonstration teaching method based on the visual servo-
ing approach and optimizes the demonstrated robot target positions according to the
detected contact state. The developed framework is compared with the two most com-
monly used baseline techniques, i.e., teach pendant and hand-guiding programming.
Furthermore, the efficiency and reliability of the framework are validated via compar-
ison experiments involving the teaching and execution of contact-rich tasks. The pro-
posed framework shows the best performance in terms of teaching time, execution suc-
cess rate, risk of damage, and ease of use.

Lastly, in order to solve sample efficiency and safety concern issues when training
robots in the real world, a sim-to-real transfer learning framework is proposed to address
the aforementioned concerns. In this part, we introduce a sim-to-real learning framework
for vision-based assembly tasks and perform training in a simulated environment by
employing inputs from a single camera. We present a domain adaptation method based
on cycle-consistent generative adversarial networks (CycleGAN) and a force control
transfer approach to bridge the reality gap. We demonstrate that the proposed framework
trained in a simulated environment can be successfully transferred to a real peg-in-hole
setup.
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Zusammenfassung
Kollaborative Roboter sollen direkt mit menschlichen Mitarbeitern zusammenarbeiten
und in manchen Fällen sogar ersetzen können, und somit effektiv auf schnelle Än-
derungen in Montagestraßen reagieren. Kontaktreiche Manipulationsaufgaben sind
in modernen Fertigungsumgebungen weit verbreitet. Der manuelle Entwurf einer
Roboterregelung gilt jedoch als schwierig für traditionelle Regelungsmethoden, da
die Regelung eine effektive Kombination von Modalitäten und sehr unterschiedlichen
Eigenschaften erfordert. In dieser Arbeit werden mehrere visuelle und kraftbasierte
kreative Fähigkeiten und Lernsysteme vorgeschlagen, um die aktuellen Probleme kraft-
geregelter Roboter-Montageaufgaben zu lösen.

In dieser Arbeit betrachten wir zunächst die Einbeziehung von visuellen und haptis-
chen Informationen in ein Reinforcement Learning (RL)-Framework, um die Probleme
der Zielunsicherheit in unstrukturierten Umgebungen zu lösen. Darüber hinaus schlagen
wir eine neue Idee zur Einführung einer proaktiven Aktion zur Lösung eines partially
observable Markov decision process (POMDP)-Problems vor. Mit diesen beiden Ideen
kann sich unser Framework entweder an vernünftige Variationen in unstrukturierten
Umgebungen anpassen oder die Stichprobeneffizienz des Policy-Lernens verbessern.
Wir haben unser Framework an einer Aufgabe evaluiert, bei der ein Speicherriegel mit
Hilfe eines drehmomentgeregelten Roboters eingefügt werden sollte, und die Erfol-
gsquoten der verschiedenen, in den traditionellen Methoden verwendeten Grundlinien
getestet. Wir konnten zeigen, dass unser System robust ist und Umgebungsschwankun-
gen tolerieren kann.

Um die Probleme der Transparenz von kontaktreichen Aufgaben und der Pose-
nunsicherheit während des Roboterlernens zu lösen, wird ein weiteres Framework
vorgeschlagen, das sich auf die Kombination von visuellen-Servoing-basiertem Learn-
ing from Demonstration (LfD) und kraftbasiertem Learning by Exploration (LbE)
konzentriert, um die schnelle und intuitive Programmierung von kontaktreichen Auf-
gaben mit minimalem Aufwand für den Benutzer zu ermöglichen. Es wurden zwei Ler-
nansätze entwickelt und in ein Framework integriert, von denen einer auf der Abbildung
von menschlichen Bewegungen auf Roboterbewegungen (visueller Servoansatz) und
der andere auf kraftbasiertem RL beruht. Das entwickelte Framework implementiert die
berührungslose Demonstrationsmethode, die auf dem visuellen Servoing-Ansatz basiert,
und optimiert die demonstrierten Zielpositionen des Roboters entsprechend dem erkan-
nten Kontaktzustand. Das entwickelte Framework wird mit den zwei gängigsten Meth-
oden der Roboterprogrammierung verglichen, dem Programmieren über ein Handbe-
diengerät und dem Programmieren mittels Handführung. Darüber hinaus werden die
Effizienz und Zuverlässigkeit des Frameworks durch Vergleichsexperimente mit dem
Teachen und Ausführen von kontaktreichen Aufgaben validiert. Das vorgeschlagene
Framework zeigt die beste Leistung in Bezug auf die Lehrzeit, die Erfolgsquote bei
der Ausführung, das Risiko von Schäden und die Benutzerfreundlichkeit.

Schließlich sollen die Probleme der Probeneffizienz und der Sicherheit beim Train-
ing von Robotern in der realen Welt gelöst werden. Dazu wird ein Framework für
die Übertragung von Simulationen auf die reale Welt vorgeschlagen. In diesem Teil
stellen wir ein Simulation-zu-Realität-Lernsystem für bildverarbeitungsbasierte Mon-
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Abstract

tageaufgaben vor und führen das Training in einer simulierten Umgebung durch, in-
dem wir Eingaben von einer einzigen Kamera verwenden. Wir stellen eine Domänenan-
passungsmethode vor, die auf zykluskonsistenten generativen adversen Netzen (Cycle-
GAN) und einem Kraftregelungsübertragungsansatz basiert, um die Realitätslücke zu
schließen. Wir zeigen, dass das vorgeschlagene Framework, das in einer simulierten
Umgebung trainiert wurde, erfolgreich auf eine reale Umgebung übertragen werden
kann.
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Chapter 1

Introduction

This chapter gives an introduction to the topic of visual and force combined robotic
assembly with collaborative robots. Section 1.1 and Section 1.2 describe the State of the
Art (SOTA) and the challenges addressed in this thesis. Section 1.3 presents the achieved
contributions in this thesis. Section 1.4 gives the connection between different chapters
and the previous publications.

1.1 Motivation
Position-controlled robots are able to handle known objects on well-structured assem-
bly production lines with high efficiency and achieve highly accurate position control.
However, they require considerable setup time and tedious reprogramming to fulfill new
tasks, and cannot adapt to any unexpected variations [169]. Collaborative robots offer
the promise of closing the gap between onerous reprogramming and unexpected vari-
ations by combining the capabilities of position-controlled robots with dexterity and
flexibility. For example (Figure 1.1), the hand-guiding method enables unskilled users
to interact with collaborative robots and facilitates quick programming [122].

Start Pose
End Pose

Figure 1.1: Collaborative robots work with human workers in heavily constrained spaces in
factories.
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Chapter 1. Introduction

Collaborative robots equipped with force control functions can perform certain hy-
brid position/force operations for contact-rich tasks [5], [56], [38], [77]; however, their
effectiveness and variation adaptive capacity in assembly processes are still unsatisfac-
tory [90], [128]. Moreover, a long time is still required to remove and reinstall the robot
arms and various attachments during assembly line reconfiguration.

(a) (b)

Figure 1.2: High-precision contact-rich insertion tasks. (a) RAM assembly. (b) Solid State
Drives (SSD) assembly.

For high-precision contact-rich assembly tasks as shown in Figure 1.2, a robot needs
to combine high positioning accuracy with high flexibility. Designing a robot for these
tasks is very challenging although such tasks can be easily performed by humans. Sev-
eral collaborative robots have been designed to perform cooperative tasks in industrial
environments such as Light-Weight Robots (LWR) [3], Universal Robots [67], Diana7 1,
and Franka Panda [38]. Most of these robots have seven revolute joints with torque sen-
sors, and similar control algorithms [4], [107], [5]. Currently, torque-controlled robots
are safe enough when collisions occur with environments or humans [3], [45]. However,
their effectiveness in real-life and production scenarios is still unsatisfactory.

LfD has recently been recommended as an effective technique for accelerating the
learning (programming) processes, spanning from high-level assembly planning to low-
level control [71], [29]. Guiding robots by means of visual feedback [78], [166], [53]
during assembly tasks is an effective way to overcome position uncertainties. For robotic
assembly tasks, performing high precision measurements is important. However, visual
errors can be introduced by lenses and the imaging sensors, as well as the calibration
of intrinsic and extrinsic parameters [83]. Some researchers believe that humans should
focus more on execution tasks than vision sensors [83]. Based on this notion, other
approaches have been developed, such as intelligent assembly algorithms, in an effort to
lower the necessity of vision sensors for given tasks.

LbE has been suggested as an effective method for reducing the program-
ming time, and recent studies have introduced artificial intelligence methods into
robotics [70], [169], [2], [12]. Moreover, RL offers a set of tools for designing so-
phisticated robotic behaviors that are difficult to engineer. RL and its derivative methods

1https://www.agile-robots.com/
5www.kuka.com/en-de/products/robot-systems/industrial-robots/lbr-iiwa
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1.2. Problem Statement

have previously been successfully used to address various robotic manipulation prob-
lems [77], [89], [56], [90], [76], [35]. Exploration behavior entails interactions between
robots and their operational environment. Therefore, a robotic force or impedance con-
troller is required.

For contact-rich manipulations, it is nontrivial to establish a robotic system that can
learn a task with a safety guarantee and avoid wear and tear problem. Thus, sim-to-
real methods are proposed [113] to address the aforementioned concerns. Style transfer
methods based on Generative Adversarial Network (GAN) [41] have been proposed
recently in the computer vision field, enabling the use of vision-based manipulation
tasks for deploying visual sim-to-real methods; however, owing to poorly simulated
dynamics, the sim-to-real reality gap could be an issue when transferred the simulated
policies to physical setups [119].

For the reasons outlined above, this thesis(work) focuses on robotic assembly tasks
based on visual and force information using collaborative robots.

1.2 Problem Statement
Pose uncertainties are quite normal in human-based production lines as the operation
objects are not fixed. Workers could perform high-precision robotic assembly tasks with
their strong intelligence, excellent visual ability, and dexterous hands. Whereas these
tasks are challenging to robots, especially in unstructured production environments. In
addition, the friction and obstruction in contact-rich tasks introduce large positional er-
rors due to the low stiffness design concepts of torque-controlled robots [5]. The limited
control stiffness combined with the friction and obstruction in contact-rich tasks gives
the position control error at a millimeter level. Torque-controlled robots are expected to
achieve the desired dynamic interaction between environmental forces and robot move-
ments to avoid breaking environments or targets, thus the desired position and contact
force cannot be satisfied in the same DoF simultaneously. Moreover, the location of the
targets is uncertain sometimes due to the insufficient accuracy of industrial assembly
lines. Using the visual method to correct the positions of the targets is an intuitive so-
lution, while we still have position control problems when the robot contacts targets or
environments, even though we have implemented some explore actions (e.g., the spiral
explore method [109]).

Teach pendants are widely used for precision positioning (position and orientation
of the End-Effector (EE) in many assembly tasks [122]. However, these devices limit the
intuitiveness of teaching processes and are time-consuming. Hand-guiding is a typical
physical contact kinesthetic teaching solution, where programming is embodied using
demonstration concepts, enabling users to quickly and intuitively program robots. How-
ever, it has drawbacks in terms of accuracy, locational separations, and operations in-
volving dangerous objects [169]. Programming based on demonstration approaches has
been proposed to solve variations in geometry and configurations for assembly, place-
ment, handling, and picking tasks [94], which can reduce the programming time and user
training requirements [169]. Mobile manipulators can considerably reduce robots’ and
devices’ installation time [94]. The use of mobile manipulators introduces a positioning
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Chapter 1. Introduction

error at the ±5 mm level [148], and errors as small as ±1 mm can induce large huge con-
tact forces and consistent failures in typical assembly tasks [128]. In conclusion, neither
the hand-guiding nor the teach pendant programming methods can compensate for the
positioning errors that accompany mobile units [148], and can result in the generation
of a huge contact force that can damage objects.

Owing to unknown contact mechanics, designing a feedback control mechanism for
contact-rich tasks is challenging. RL has shown some progress in robotic contact-rich
tasks in unstructured environments; however, sample efficiency and safety concerns are
two main problems when performing policy training. Many RL algorithms require mil-
lions of steps to train policies for performing complex tasks [82], [78]. In other words,
human supervision is always needed in resetting experiments, hardware status monitor-
ing, and safety assurance, which is quite time-consuming and tedious [55]. The sim-
to-real approach shows the potential to solve the aforementioned problems; however,
one significant difficulty associated with this approach is bridging the reality gap to
address the mismatch in distinct distributions of rendered images and real-world coun-
terparts. Another challenge is ascribed to force modeling in simulation as the force in-
teractions will inevitably occur between the target object and environments when per-
forming contact-rich tasks. Moreover, it is expensive to apply the system calibration due
to the limitation of the simulation domain expert’s ability [144] and accurate require-
ments [48].

1.3 Contributions
In summary, this thesis focuses on robotic contact-rich assembly tasks using visual and
force information with several different collaborative robots. The main contributions of
this thesis are summarized as follows:

• Visual Residual Reinforcement Learning: A visual RL method that combines
a visual-based fixed policy with a contact-based parametric policy is proposed,
this method greatly enhances the robustness and efficiency of the RL algorithm.
Moreover, a proactive action concept is proposed in the aforementioned residual
RL policy to solve a POMDP problem, which could ensure the task success rate
and the ability to tolerate environmental variations.

• Visual Servoing based LfD: An approach is presented that learns the trajectories
of robots from demonstrations based on visual servoing for fast, easy, and accurate
robot setup in heavily constrained spaces.

• RRRL Policy: A RRRL policy based on force-torque information is trained to
overcome pose uncertainty in contact-rich tending operation.

• CycleGAN and Force Control based Sim-to-Real Transfer of Robotic Assem-
bly: A vision-based sim-to-real learning framework is proposed to perform as-
sembly tasks, a force controller and a peg-in-hole task that effectively leverages
visual information and force control using a simple reward function for a complete
insertion, including hole searching, alignment, and insertion.

4



1.4. Publications and Outline

• A Pushing-based Hybrid Position/force Assembly Skill is proposed for contact-
rich assembly tasks, and the skill was demonstrated with Diana 7 robot to prove
the method’s validity. Moreover, the theory of analyzation of maximize the uti-
lization of environmental constraints is proposed.

1.4 Publications and Outline
During the study, ten publications were accepted by different conferences and journals.
A list of the publications that are incorporated (or partially incorporated) into this thesis
is given below:

• Yunlei Shi, Zhaopeng Chen, Hongxu Liu, Sebastian Riedel, Chunhui Gao, Qian
Feng, Jun Deng, and Jianwei Zhang. Proactive Action Visual Residual Reinforce-
ment Learning for Contact-Rich Tasks Using a Torque-Controlled Robot. In 2021
IEEE International Conference on Robotics and Automation (ICRA), pp. 765-771.
IEEE, 2021 [134].

• Yunlei Shi, Zhaopeng Chen, Yansong Wu, Dimitri Henkel, Sebastian Riedel,
Hongxu Liu, Qian Feng, and Jianwei Zhang. Combining Learning from Demon-
stration with Learning by Exploration to Facilitate Contact-Rich Tasks. In 2021
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp.
1062-1069. IEEE, 2021 [135].

• Yunlei Shi, Chengjie Yuan, Athanasios Tsitos, Lin Cong, Hamid Hadjar,
Zhaopeng Chen, Jianwei Zhang. A Sim-to-Real Learning-based Framework for
Contact-Rich Assembly by Utilizing CycleGAN and Force Control. IEEE Trans-
actions on Cognitive and Developmental Systems, Jan. 2023 [136].

• Yunlei Shi, Zhaopeng Chen, Lin Cong, Yansong Wu, Martin Craiu-Müller,
Chengjie Yuan, Chunyang Chang, Lei Zhang, Jianwei Zhang. Maximizing the
Use of Environmental Constraints: A Pushing-Based Hybrid Position/Force As-
sembly Skill for Contact-Rich Tasks. In 2021 IEEE International Conference on
Robotics and Biomimetics (ROBIO), IEEE, 2021 [133].

• Chengjie Yuan*, Yunlei Shi*, Qian Feng, Chunyang Chang, Zhaopeng Chen,
Alois Christian Knoll, Jianwei Zhang. Sim-to-Real Transfer of Robotic Assembly
with Visual Inputs Using CycleGAN and Force Control. In 2022 IEEE Interna-
tional Conference on Robotics and Biomimetics (ROBIO), IEEE, 2022 [162].

• Chunyang Chang*, Kevin Haninger*, Yunlei Shi, Chengjie Yuan, Zhaopeng
Chen, Jianwei Zhang. Impedance Adaptation by Reinforcement Learning with
Contact Dynamic Movement Primitives. In IEEE/ASME International Conference
on Advanced Intelligent Mechatronics (AIM) 2022 [18].

Here is the list of publications that was generated during the period of PhD which are
related to the PhD topic but not included in this thesis:
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• Lin Cong, Yunlei Shi and Jianwei Zhang, Self-supervised Attention Learning
for Robot Control, In 2021 IEEE International Conference on Robotics and
Biomimetics (ROBIO), IEEE, 2021 [27].

• Lin Cong, Hongzhuo Liang, Philipp Ruppel, Yunlei Shi, Michael Görner,
Norman Hendrich and Jianwei Zhang, Reinforcement Learning with Vision-
Proprioception Model for Robot Planar Pushing, Frontiers in Neurorobotics,
Mar.2022 [26] .

• Vincent Mayer, Qian Feng, Jun Deng, Yunlei Shi, Zhaopeng Chen, Alois
Knoll, FFHNet: Generating Multi-Fingered Robotic Grasps for Unknown Ob-
jects in Real-time, In IEEE International Conference on Robotics and Automation
(ICRA), IEEE, 2021 [95].

• Lei Zhang, Kaixin Bai, Zhaopeng Chen, Yunlei Shi, Jianwei Zhang. Towards Pre-
cise Model-free Robotic Grasping with Sim-to-Real Transfer Learning.In 2022
IEEE International Conference on Robotics and Biomimetics (ROBIO), IEEE,
2022 [165].

The structure and chapter connections of this thesis are shown in Figure 1.3. The
main contents of this thesis are organized as follows: Chapter 1 gives a brief introduc-
tion of the thesis from motivation, problem statement, and contribution. Chapters 2, 3
and 4 belonging to the preliminaries and state of the art part, contact-rich robotic assem-
bly (Chapter 2), robot force control (Chapter 3) and RL (Chapter 4) are introduced first
as they are preliminary knowledge for the work in this thesis. Chapter 5 introduces the
reader to the system design of the Diana7 robot, the force control performance is also
evaluated, and a pushing-based hybrid position/force assembly skill is developed for
tending tasks. The proposed framework visual residual RL is given in Chapter 6 and a
PC assembly evaluation including RAM and SSD insertion based on the aforementioned
framework is given in Chapter 9. Chapter 7 present visual servoing based LfD and the
RRRL policy, then two methods combined into a robot tending skill; then the new skill
is compared with two most commonly used baseline techniques using an UR5e robot
for phone part tending task in Chapter 10. In order to solve the sample efficiency and
safety concerns when performing policy training, Chapter 8 gives a framework design
of CycleGAN and force control based sim-to-real transfer RL for robotic assembly. The
sim-to-real Peg-in-Hole (PiH) experiment is demonstrated in Chapter 11. In the Sum-
mary part, the conclusion, limitations, as well as the outlook for the future are discussed.
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1.4. Publications and Outline

Preliminary Research

Robot Platform 
Research and DesignForce-Controlled Robot Research, Development and Evaluation    Chapter 5

Visual Residual RL                Chapter 6 

Region-limited Residual RL        Chapter 7 

Sim-to-Real Transfer Learning         Chapter 8 

General Assembly Evaluation        Chapter 11 

Preliminaries and State of the Art                                      Chapter 2, 3 and  4

Phone Assembly Evaluation          Chapter 10 

PC Assembly Evaluation                  Chapter 9  

Application and 
Evaluation

Methods Research 
and Development

Human 
Knowledge

Human Knowledge and Outline of This Thesis.

Figure 1.3: Outline of the thesis and relation of the main aspects.
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Chapter 2

Contact-Rich Robotic Assembly

2.1 Assembly and Contact Modeling

2.1.1 Assembly Sequence

P3

P1

P2
P12

P3

P123

Parts ProductsSub-System

Figure 2.1: Graphical representation of mechanical parts assembly sequence.

A figure has been made to clearly explain the mechanical parts assembly process. The
three pieces p : 1,2,3 as shown in Figure 2.1, are assembled in the sequence indicated
by the arrows, here, p2 is inserted into p1 and generate p12, and the rest has the same
definition. In this thesis, we focus on the assembly process.

As shown in Figure 2.1, several assembly operations are required, each assembly
sequence consists of the following principle stages [24]:

• first of all, pick up the particular component part;

• secondly, place it into the assembly jig;

• thirdly, mating it into the desired component part;

• lastly, return the manipulator for the next pick-up movement.
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Chapter 2. Contact-Rich Robotic Assembly

PCB 1 PCB 2 PCB 3Housing

Parts level

Sub-system level

Product level

Insert

Insert

Insert

Attach

Attach

Sub-System 
1

Sub-System 
2

Sub-System 
3

Product

Sub-System 
4

PCB 4 PCB 5

Figure 2.2: Graphical representation of Programmable Logic Controller (PLC) product assem-
bly, this figure is redrawn based on author understanding [163] to explain the PCB assembly
sequence.

In the PLC I/O Module assembly application as shown in Figure 2.2. The assembly
process is done as follows: Firstly, three Printed Circuit Boards (PCB) (PCB 1, PCB 2
and PCB 3) are inserted into a housing. Then, a light cover is assembled by attaching
different components to a plastic plate via one snap-fit. Finally, the cover is attached to
the housing via another snap-fit [163].

The PLC I/O Module assembly application was separated as different tasks, such as
"Housing with PCB", and this task contains three different actions:

• Pick up PCB1;

• Move PCB1 to insertion pose;

• Insert PCB1 into housing.

In order to execute the tasks, the skills can be built based on the actions [163]. The
relationship between skills, motion primitives and tasks will be explained as follows.

• Tasks :

In terms of parameters and state variables, the task layer contains an abstract
description of what the robot is doing. This layer must communicate with end
users, as well as systems that run the manufacturing line, by scripting and starting
activities.

• Skills :

which is visible to the end-user when the operator programs new tasks on the
robot, is the layer that deserves the most attention.
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2.1. Assembly and Contact Modeling

• Motion primitives:

a bottom-level motion layer in charge of implementing the robot’s real-time
control loops. For example, a hybrid force/position controller or an impedance
controller can be part of this layer.

According to the estimate from [60], PiH assembly is one of the most typical task in
assembly processes (approximately 40% of the total assembly task). Thus understanding
the contact model of PiH assembly is important.

2.1.2 Contact Modeling

(a) (d)(c)(b)

Figure 2.3: Four contact states that are commonly encountered in the PiH procedure.

Figure 2.3 depicts four states involving a peg and a hole when the peg is in touch with the
hole and is pushed toward the hole by a force [112]. The bottom of the peg and the top
of the hole are shown in planar contact in Figure 2.3 (a). When the center of the bottom
of the peg is positioned beyond the surface of the hole, this condition occurs. The peg is
slanted and two-point contact occurs if the center of the peg is near to the hole (assuming
the presence of a compliant robot), as illustrated in Figure 2.3 (b). Figure 2.3 (c) shows
three-point contact, which happens when the center of the bottom of the peg and the
hole are near enough but the peg’s tilting angle maintains. The peg will naturally fall
into the hole if the tiling angle is zero, as shown in Figure 2.3 (d). The two-point contact
condition is critical to understand since it is the most common occurrence in the PiH
operation [112]. In the two-point contact condition, the peg is angled in the direction of
the straight line and the assembly force pushes the peg to the hole.
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Chapter 2. Contact-Rich Robotic Assembly

2.1.2.1 Quasi-Static Modeling Notation (Figure 2.4)

(a) (b)

Figure 2.4: Three-point and two-point contact models [123]. Reprinted Image: ©2020 IEEE.

• θ denotes the tilt angle between the peg and the axes of the hole and ;

• L denotes the length of the hole;

• µ denotes the friction coefficient;

• f1, f2 are the reaction forces generate at the contact points;

• The applied wrench:

the force F along the vector nα =
[
−sα 0 cα

]T
forms an angle α with

respect to the moment M about yh and the axis of the hole zh.

• The quasi-static equilibrium equations:

Fnα =−Fr1 −Fr2

MRT
h yh = r1 ×Fr1 + r2 ×Fr2

(2.1)

• For different contact cases, Fri,ri, i ∈ {1,2} can be expressed differently.
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2.2. Robotic Assembly

2.1.2.2 Two-Point Contact Model (Figure 2.4) (a)

In this situation, Fri,ri, i ∈ {1,2} are expressed as:

r1 =
[

R 0 (L− ℓ)
]T

r2 =
[
−R 0 L

]T

Fr1 =
[

f1 0 −µ f1

]T

Fr2 = Ryh(θ)
[
− f2 0 −µ f2

]T

ℓ= (Dcθ −d)sθ

(2.2)

When the tilt angle is smaller than a threshold, a two-point contact case occurs:

θ
⋆ = arccos(ρ) (2.3)

where ρ = r
R represents the ratio between peg radius and hole radius. To keep an

internal two-point contact, f1 and f2 must be positive, thus the lower and higher con-
straints for the force direction angle γ is obtained:

arctan
(
− 1

µ

)
+θ < γ < arctan

(
1
µ

)
(2.4)

In the end, the assumption of the direction of the friction forces satisfies the require-
ment of a positive rotation for:

M
F

> H2pc(r,µ,ρθ ,γ,L) (2.5)

H2pc is a function that can be expressed in closed form [16] by substituting f1 and f2
obtained from Equation (2.2) and solve with respect the ratio M

F . As the two and three-
point contact cases modeling follows the same steps as [16], the three-point contact
model will not be explained here.

2.2 Robotic Assembly

2.2.1 Passive Compliant Approaches
Many methods have been developed to employ the passive compliant approaches which
can be separated into following groups [24]:

• Compliant EE or work station:

Regarding the compliant methods, a variety of compliance concepts have
been developed as well as the mating theories associated with this method. The
most successful device using this method is the remote-center-compliance (RCC)
wrist [24].
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• Air stream:

The air stream-assisted approaches use a suction cup to generate necessary
forces by an air stream to mate the parts [15], [24]. Normally, the cycle time cost
is much less than Remote-Center-Compliance (RCC) wrist [24].

• Magnetic force [39]:

This method utilizes a magnetic force to align the mating objects, a magnetic
field formed between two mating components will generate the magnetic force.

• Vibratory motion [49]:

The vibratory insertion method implemented a random search, a component
is vibrated with respect to the mating component. The vibration can be performed
either by the robot or by the specially designed EE. This kind of EE could be
similar to the traditional RCC, however, the inserting concepts are not the same.

Some passive compliant approach examples can be found as follows.

(a) (b)

Figure 2.5: Compliant mechanism work concept. [110]. Reprinted Image: ©2014 IEEE.

In the passive compliant assembly approaches shown as Figure 2.5, in Figure 2.5(a),
the peg contacts with hole before insertion, compliant mechanism shape haven’t been
changed. Then after the insertion, compliant mechanism shape is changed due to the
adaption of distance d and θ ) as shown in Figure 2.5(b).

The passive compliant mechanism was used to reduce the contact force or torques
between the object and the environment. The assembly system can generate natural com-
pliance with external forces by a parallel spring mechanism. Charles Stark Draper Labo-
ratory has developed the most successful device using the RCC wrist method [158], [31].

F is the assembly force, θ is the misalignment of orientation and d is the misalign-
ment of position. k is the spring constant parameter of the RCC device. kx is the transla-
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2.2. Robotic Assembly

tion spring constant and kw is the orientation spring constant. In most RCC devices, the
spring constant sets are fixed, thus the compliance of the manipulator is fixed.

Jeong et al. developed a pneumatic vibratory wrist for robotic assembly operations,
the vibratory wrist can perform the random motion of the hole to compensate for the
position uncertainty. The results showed that this assembly method can compensate for
considerable initial XY plane errors (maximum to 0.6 mm) for various combinations of
frequency ratio f (16Hz < f < 20Hz).

The advantages of passive compliant approaches are [24], [60]:

• Low cost, no need for expensive sensors;

• The structure is simple and the response is quick.

However, the disadvantages are [24], [60]:

• Poor adaptability, can only handle small misalignment;

• Low assembly accuracy;

• Lack of ability to measure the external force;

• The contradiction between the high flexibility of the devices and the high stiffness
due to the spring constant and the geometrical direction.

2.2.2 Active Compliance Approaches
Different with passive compliant approaches, active compliance approaches introduce
more sensing information, EE and actuating mechanism design, as well as the associated
control algorithms.

Regarding the sensing method, the main following schemes and the details can be
found as follows:

• Force sensors [116]:

The force sensors measure the contact forces and torques generated by the
misalignment. These forces and torques signals are fed back to the relevant con-
troller to control the robot’s motion. For example, the admittance controller is one
of the typical controllers.

• Touch sensors [108]:

The touch sensor provides a rich signal to indicate the different contact states.
The angle of contact can be estimated by a Convolutional Neural Network (CNN).

• Vision sensors [137]:

Vision cameras, optical fibers and laser beams are commonly used in visual
guided assembly. The vision sensors can provide information on the relative posi-
tion and orientation of mating parts.
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(a) (b)

(c)

Figure 2.6: The Region of Attraction (ROA) compliance based assembly strategy [146]. (a):
Assembly experimental setup for a set of planar objects with complex, nonconvex geometric
forms task using the German Aerospace Center (DLR) LWR. (b): Binary image after color clas-
sification and post-processing with object labeling. (c):Basic sensing-based assembly strategy.
Reprinted Image: ©2006 IEEE.

Some active compliance approaches measure the contact force/torque and feedback
them to the controller to generate the compliance trajectory of the EE [100]. Active
compliant control can overcome the disadvantages of passive compliant such as lack
of ability to measure the external force and poor adaptability. Thus, active compliant
approaches have a wider application area. According to the characteristics of imple-
mentation, several different categories of active control strategies can be found [100]:

• Admittance control strategy;

• Impedance control strategy;

• Force control strategy;

• Hybrid force/position control strategy.

Some sensing-based approaches take visual and force information as a feedback
input for the assembly. Stemmer et al. [146] took vision and force information as
the input of the ROA compliance-based assembly strategy which guarantees the local
convergence of the assembly process by considering the parts’ geometry as shown in
Figure 2.6. Complicated shapes such as prisms and splines geometries are used in this
research.
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2.2. Robotic Assembly

(a)

(b)

Figure 2.7: (a): OmniTact dimension and key design, human thumb and a US penny for scale
compare. (b): OmniTact sensor is used to execute an insertion task of electrical connector into a
wall outlet [108]. Reprinted Image: ©2020 IEEE.

Tactile information has been also used to guide assembly. For example, Omni-
Tact [108] is a multi-directional tactile sensor designed for robotic operations, such as
assembly and grasping. This concept shows that high-resolution tactile has the ability
to sense and to “feel” curved surfaces and that both may be accomplished simultane-
ously by combining several micro-cameras. The experiment demonstrated how a CNN
can detect the contact angle with a finger pressing on a flat surface, moreover, OmniTact
can also be used to execute tactile control to insert an electrical connector into an outlet
using a CNN. The cost of the cameras is a drawback of the existing design. The endo-
scopic cameras utilized in the sensor cost 600 US dollars apiece, bringing the total cost
of the sensor prototype to 3200 US dollars.

In Figure 2.7 (b), a tactile sensing-based insertion operation is demonstrated from
left to right: first of all, the connector is grasped by the gripper jaws, secondly, a random
offset is applied to the EE gripper position. The sensor touches the floor and saves the
touch information received from the top camera. Then, a fixed pick-up policy is called
to grasp and lift the connector, then the gripper and connector move to the outlet, and
the policy network is called to decide how to adjust the gripper position for insertion.
Finally, the robot applies adjustment movement and inserts the connector successfully.

However, the tactile sensor has issues with a non-linear response, temperature and
moistness dependence, fatigue, permanent deformation, and hysteresis [65], which make
the tactile sensing-based insertion methods are hardly used in industrial scenarios.
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(a) (b)

(c)

Figure 2.8: (a): Safe Autonomous Robotic Assistant (SARA) robot performs a soft rubber strip
assembly task. (b): Hand-guiding method is used to teach SARA robot a position/force hybrid
trajectory. (c): The position/force hybrid trajectory is visualized in the Graphical User Interface
(GUI) [58]. Reprinted Image: ©2021 IEEE.

The SARA robot is equipped with redundant force sensors which enable a high-
resolution force and torque measurement at the robot flange and thus allow measuring
the contact forces during the hand-guiding teaching process Figure 2.8.

In general, the advantages of active compliance approaches are [24], [60]:

• The active method can handle comparably large positioning errors;

• The structure is simple and the response is quick;

However, the disadvantages are [24], [60]:

• A comparably long insertion time is required due to long search motion and signal
processing;

• Lower reliability and applicability.

2.2.3 Learning-based Approaches
2.2.3.1 Learning by Exploration

The compliant-based and sensing-based approaches are always passive which means
that the device is not adaptable and has no self-learning capability [60]. Thus, learning-
based approaches are proposed to solve the above issues.

Inoue et al. used a robot to perform a tight clearance PiH task successfully by train-
ing a neural network with deep RL [56]. For the tight clearance PiH challenge, their
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technique has a good fitting performance and resilience against positional and angular
faults. By taking the force and position sensors input from a robot to predict the system
status, the neural network learns to execute the best action [56]. Inoue et al. separates
the PiH task into two main phases: search and insertion.

In this research, the state that inputs the RL net is defined as:

s =
[
Fx,Fy,Fz,Mx,My, P̃x, P̃y

]
(2.6)

F and M are the force and torque information generated by the force-torque sensor; the
subscript x,y,z denotes the Cartesian axis. The action space is defined as:

a =
[
Fd

x ,F
d
y ,F

d
z ,R

d
x ,R

d
y

]
(2.7)

Fd is the force command, Rd is the peg rotation command, a hybrid position/force
controller is used to execute the commands. In real experiments, the action spaces are
defined differently in the search phase and insertion phase, respectively.
For search phase: [

+Fd
x ,0,−Fd

z ,0,0
]

[
−Fd

x ,0,−Fd
z ,0,0

]
[
0,+Fd

y ,−Fd
z ,0,0

]
[
0,−Fd

y ,−Fd
z ,0,0

]
(2.8)

with Fd
x = Fd

y = Fd
z = 20 N.

For insertion phase: [
0,0,−Fd

z ,0,0
]

[
0,0,−Fd

z ,+Rd
x ,0
]

[
0,0,−Fd

z ,−Rd
x ,0
]

[
0,0,−Fd

z ,0,+Rd
y

]
[
0,0,−Fd

z ,0,−Rd
y

]
(2.9)

The Q-learning RL algorithm is used in this research. The state space, action space and
reward function design concepts have inspired the following research. However, this
research uses discrete actions to perform the PiH task with low efficiency and limited
accuracy.
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Figure 2.9: Concept and structure of Guided Uncertainty Aware Policy Optimization (GUAPO)
policy: beyond the uncertainty area, the model-based method, πMB is used to drive the system
from free space to target; once inside the uncertainty area, a RL policy πRL that learned from the
raw image sensory input from the eye-in-hand camera (blue) that gives enough information to
complete the insertion task [76]. Reprinted Image: ©2020 IEEE.

Lee et al. combined the strengths of model-based methods with the flexibility of
learning-based methods to propose a GUAPO policy that is able to overcome pose un-
certainties in contact-rich tasks [76].

In this method, a nonparametric distribution
{
S i

u
}n

i=1 and their associated weights
p
(
S i

u
)

is used to represent the uncertainty region [76]:

p(s ∈ Su) =
n

∑
i=1

⊮
[
s ∈ S i

u
]

p
(
S i

u
)

(2.10)

Then a function:
α(s) = ⊮

[
s ∈ Ŝu

]
(2.11)

can be defined to distinguish the different region to use model-based policy πMB or RL
policy πRL(a | s). The GUAPO policy can be presented as:

π(a | s) = α(s) ·πRL(a | s)+(1−α(s)) ·πMB(a | s) (2.12)

The SOTA model-free off-policy RL algorithm Soft Actor-Critic (SAC) is used in
this research.
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2.2.3.2 Learning by Demonstration

Observation
(sensing)

Encoding
(understanding)

Reproduction
(doing)

● Representation of actions 
● Mapping observed actions

● Motivation to observe 
● Which actions to observe
● Perceiving teacher actions
● Relevant context

● Motivation to reproduce
● When to reproduce 
● Adaptation of the action

Figure 2.10: Three main phases in Learning by Demonstration (LbD) [9], [169].

According to contact model recognition, LfD techniques give a way for doing robotic
PiH assembly without handmade reprogramming (Figure 2.10). LfD can be understood
as a supervised learning issue as the abilities acquired from the demonstrator may be
considered labeled information. LfD is a proper strategy to utilize when perfect behav-
ior cannot be taught by standard robot programming or clearly defined as maximizing
a known reward function via RL. Collecting demonstration experiences is a difficult
process, but it is critical for increasing not only data efficiency but also the adaptability
and generalization of the taught assembly policy. Several LbD concepts are explained
as follows.

Kinesthetic Demonstration:
The kinesthetic guiding method directly records the movements of the robot, which

does not need the transfer phase from a different kinematics and dynamics system.
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Figure 2.11: Kinesthetic guiding using a UR robot in gravity compensation mode for box pick-
ing task.

Figure 2.11 (a) demonstrates how the robot was trained in zero-gravity mode using
kinesthetic demonstration. The robot joints were placed to a gravity torque compensa-
tion (passive) mode, allowing the human demonstrator to move each limb independently.
During the demonstration, the kinematics of each joint motion were captured at a rate
by proprioception. The robot "sensed" its own motion by recording the joint-angle data
(Every DoF on the robot was equipped with motor encoders). The engagement with
the robot was more fun than utilizing a graphical simulation, which allowed the user to
sense the robot’s limitations in the real world [1], [169].

Alejandro et al. [115] proposed a method that combines an LbD approach with a
model-based and constraint-based task specification and control methodology as shown
in Figure 2.11 (b). This research showed a complex constraint-based task with sensor
interactions. However, their motion model is only sufficient for a uni-modal distribution,
also the computational cost could be sensitive.

Sensor-based Demonstration
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(a) (b) (c)

 Velostat sensors 
(pressure data)

 IMUs
(pose data)

Figure 2.12: (a) and (b): a tactile glove is used to reconstruct both forces and poses from hu-
man demonstrations [32]. (c): with observed forces and trajectories, the robot learned to open a
medicine bottle successfully. Reprinted Image: ©2017 IEEE.

Sensors and tracking devices can be used to record the movements and the forces of
a demonstrator for manipulation tasks. Edmonds et al. [32] use a tactile glove to utilize
both the poses and forces exerted by the demonstrator within a single demonstration. An
And-Or-Graph (AOG) representation that can integrate both poses and forces is used to
encode the demonstration.

Teaching Modification Execution

TracePen

Tracking sensors

Figure 2.13: Wandelbots use a tracked pen to record the trajectories with high precision. The
teaching has three steps: 1-teaching the trajectories with TracePen, 2-modifying the trajectories
on programming GUI, 3-executing the trajectories in the real robot.

A German startup called Wandelbots [40] offers a commercial solution based on
the notion of a motion track sensor. Active infrared sensors are used in the system to
track a portable pen in 3D space. The pen can record trajectories with high precision for
different procedures, the company promises a significant programming time reduction
compared with other traditional robot programming methods [47].
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Teleoperated Demonstration
With teleoperated demonstration approaches, the real-time tracking system will re-

ceive the demand EE pose information, then the robot can learn the behavior of the
demonstrators.

(a) (b)

(2)

(c) (d) (e)

Figure 2.14: (a): Robot Telekinesis [75] allow the user to control the movement of the robot
EE with hand gestures remotely. (b): the workspace setup for the teaching methods evalua-
tion. (c): teaching pendant teaching. (d): hand-guiding teaching. (e): Robot Telekinesis teaching.
Reprinted Image: ©2020 IEEE.

Lee et al. [75] present a novel robot interaction technique called Robot Telekinesis
that allows users to control the movement of the EE of a robot arm in complex and
changing environments with unimanual and bimanual hand gestures. Their method is
quite fast and intuitive and does not need any physical effort. However, their method is
lack force interaction with the environment, thus not feasible for the contact-rich task.
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Robot Force Control

3.1 Force Control Approaches

EE

Robot

Environment

Force 
controller

F
P

Figure 3.1: A robot force controller is used in contact space, Ob is the fixed base frame and Oe

is the EE frame.

Controlling the interaction between a robot and its surroundings is critical for the effec-
tive completion of a variety of practical jobs in which the robot EE must move an object
or execute a task on a surface as shown in Figure 3.1.

Many tasks such as assembly [144], polishing [102], [168], pushing [147], [25], cut-
ting [121], scraping [20], deburring [52], grinding [143], pounding [73], excavating [57]
always require the robot to interact with its environment. The environment constrains
the geometric pathways that the EE can take during contact. Constrained motion is the
term for this circumstance. In this situation, using a motion control method to govern
interaction is doomed to fail.

In order to implement all these tasks, not only does the predisposed position need
to be realized but also the resistance from the environment needs to be overcome with
the necessary force. Thus, robot force control involves the integration of task goals such
as modeling the environment, or adjustment of the applied torque in the robot joints
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according to the position, velocity and force feedback. Therefore, different kinds of
robot force control algorithms were developed.

How to estimate the interaction forces and efficiently use feedback signals to synthe-
size the necessary input signals so that the intended motion and force may be maintained
is a basic undertaking in robot force control. Position, velocity, acceleration, and force
are the four essential variables in robot force control. The diverse applications of these
basic variables and their correlations result in discrepancies in the existing fundamental
force control algorithms [164].

3.2 Indirect and Direct Force Control
Force control strategies can be distinguished into two basic categories:

• indirect force control

which achieves force control behavior via motion control, without explicit
closure of a force feedback loop.

• direct force control

which offers the possibility of controlling the contact force with the force
feedback loop.

In order to clarify the calculations for indirect force controller and direct force con-
troller, we define the frames (Figure 3.1) and notation as follows [139]:

• q denotes the vector of the joint angles, q̇ donates the vector of joint velocities.

• pe is the (3× 1) position vector that characterize the position of the robot EE
frame Σe (Oe) with respect to a fixed base frame Σb (Ob). ṗe the (3×1) vector of
robot EE linear velocity.

• Re is the (3× 3) rotation matrix that characterize the orientation of the robot EE
frame Σe (Oe) with respect to a fixed base frame Σb (Ob). ωe the (3×1) vector of
robot EE angular velocity.

• J is the robot (6×n) EE geometric Jacobian matrix.

• ve =
[

ṗT
e ωT

e

]T
is the robot EE linear velocity and angular velocity.

• h =
[

f T
µT
]T

where f denotes the (3×1) vector of external EE force and µ

the (3×1) vector of external EE moment between the EE and the environment.

• S(·) is the operator performing the cross product between two (3×1) vectors.

• B is the (n×n) symmetric and positive definite inertia matrix.

• Cq̇ is the (n×1) vector of Coriolis and centrifugal torques.

• Fq̇ is the (n×1) vector of viscous friction torques, and g is the (n×1) vector of
gravity torques.
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• KP is suitable feedback matrix gains that same to the proportional part in the
proportional-derivative controller.

• KD is an (n×n) positive definite matrix damping gain, it provides additional con-
trol damping torque at each joint.

The kinematic model of the robot are:

pe = pe(q)
Re = Re(q)

(3.1)

The desired EE position and the actual EE position error is given as:

∆pde = pd − pe (3.2)

The simple way for defining an orientation error if given as:

∆ϕde = ϕd −ϕe (3.3)

Here, ϕd and ϕe are the Euler angles representations that extract from the orientation
matrices Rd and Re, respectively.

The angle/axis representation of the orientation error between the desired and the
actual EE orientation is given as follows , eRd = RT

e Rd , ϑde and erde are the rotation and
the unit vector corresponding to eRd , respectively.

e
εde = sin

ϑde

2
erde (3.4)

The differential kinematics model is given as:

ve = J(q)q̇

J =

[
Jp

Jo

]
(3.5)

The angular velocity is given as:

Ṙe = S (ωe)Re (3.6)

In view of the partition of ve, it is appropriate to partition the vector a into its linear

and angular components, i.e. a =
[

aT
p aT

o

]T
, ap is linear partition of ve and ao is

angular partition of ve, they both are (3×1) vectors:

p̈e = ap

ω̇e = ao
(3.7)

The dynamic model of the Lagrangian form is given:

B(q)q̈+C(q, q̇)q̇+Fq̇+g(q) = τ − JT(q)h (3.8)
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Chapter 3. Robot Force Control

3.2.1 Indirect Force Control
Considering compliance (also named stiffness) control [124] and impedance control
[50], where the contact force is connected to the position inaccuracy via mechanical
stiffness or impedance of configurable parameters. An analogous mass-spring-damper
system with the contact force as input may be used to describe a robot manipulator under
impedance control. The resultant impedance is often nonlinear and coupled in several
task space directions. Force feedback can be employed in the control law to obtain a
linear and decoupled impedance controller if a force/torque sensor is available.

Compliance control is used to control the interaction’s desired static behavior. In
order to obtain the desired dynamic behavior, in addition to stiffness, the real–model
mass and damping at the contact region must be addressed, resulting in impedance con-
trol [139].

Figure 3.2: A block diagram of the indirect force control (Impedance control) [156]. Reprinted
Image: ©Springer Nature 2016. Reproduced with permission from Springer Nature.

According to the definition of the notation in Section 3.2, Figure 3.2 chooses

τ = B(q)α +C(q, q̇)q̇+Fq̇+g(q)+ JT(q)h (3.9)

Then the new control input α can be defined as:

α = J−1(q)(a− J̇(q, q̇)q̇) (3.10)

Then,
ap =p̈d +K−1

Mp
(KDp∆ṗde +KPp∆pde − f )

ao =T (ϕe)
(
ϕ̈d +K−1

Mo
(
KDo∆ϕ̇de +KPo∆ϕde −T T (ϕe)µ

))
+ Ṫ (ϕe, ϕ̇e) ϕ̇e

(3.11)
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Finally, with KMp and KMo positive definite matrix gains, the closed-loop dynamic be-
havior is given as:

KMp∆p̈de +KDp∆ṗde +KPp∆pde = f

KMo∆ϕ̈de +KDo∆ϕ̇de +KPo∆ϕde = T T (ϕe)µ
(3.12)

3.2.2 Direct Force Control
The contact force was indirectly controlled in Section 3.2.1 by appropriately managing
the EE motion. It is feasible to secure limiting contact force values for a given prelimi-
nary estimate of the environment stiffness in this way. Certain interaction activities, on
the other hand, necessitate the achievement of a precise contact force value. In princi-
ple, this might be accomplished by fine-tuning the active compliance control action and
selecting a suitable intended position for the EE; however, such an approach would only
work if accurate modeling of the contact stiffness is known.

A thorough representation of the environment is not accessible in most realistic sce-
narios. In this scenario, a successful method is inner/outer motion/force control, which
involves closing an outer force control loop around an inner motion control loop that is
normally accessible in an industrial robot [30]. The intended EE motion can be fed to
the inner loop of an inner/outer motion/force control system to integrate the capability
of directing motion alongside the unconstrained task directions. The resultant parallel
controller consists of a force controller and a motion controller, the former intended to
prevail over the latter to ensure force control along with constrained task directives [22].

Figure 3.3: A block diagram of the direct force control [139], [156]. Reprinted Image: ©Springer
Nature 2016. Reproduced with permission from Springer Nature.

A compliant frame Σc is introduced through a force and moment controller as shown
in Figure 3.3, the pose error is given as:

∆pce = pc − pe

∆ϕce = ϕc −ϕe
(3.13)
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Chapter 3. Robot Force Control

fd and µd represent a desired force and a desired moment, respectively.
A proper control action τ is designed to realize the equivalent force and moment γ

that drives the EE to the desired position and orientation:

τ = JT(q)γ −KDq̇+g(q) (3.14)

According to the static model-based compensation, γp and γo can be chosen as:

γp = KPp∆pce + f d

γo = T−T (ϕe)KPo∆ϕce +µd
(3.15)

Then the force and moment error can be created as:

∆ f = fd − f
∆µ = µd −µ

(3.16)

Then, a proportional-integral (PI) controller based on the force error and moment error
is used to calculate pc and ϕc:

pc = K−1
Pp

(
KF p∆ f +KIp

∫ t

0
∆ f dς

)
ϕc = K−1

Po

(
KFo∆µ +KIo

∫ t

0
∆µdς

) (3.17)

Here, KF p,KI p,KFo and KIo are positive definite matrix gains that can be tuned suitably.
The contact force and moment may be regulated to the appropriate values if the control
gains are properly adjusted to assure the closed-loop system’s stability.

It is important to explore the dynamic model-based compensation to improve the
system’s performance during the transient, thus, the linear and angular accelerations can
be chosen as:

ap =−KDp ṗe +KPp∆pce

ao = T (ϕe)(−KDoϕ̇e +KPo∆ϕce)+ Ṫ (ϕe, ϕ̇e) ϕ̇e
(3.18)

The direct force control (Figure 3.3) is different with indirect force control (Fig-
ure 3.2), as the control target is to achieve force regulation, thus the feedforward linear
and angular velocity and acceleration of Σc is not used.

3.3 Hybrid Force/Position Control
If a thorough model of the environment is provided, a common technique is a hybrid
position/force control, which seeks to manage position along unconstrained task direc-
tions while managing force along limited task directions. For normally flat contact sur-
faces, a selection matrix operating on both desired and feedback values fulfills this goal.
However, for general curved contact surfaces, explicit constraint equations must be con-
sidered [96], [97].
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The parallel composition controller can compose the compliant position with the
desired position by:

pr = pc + pd (3.19)

Then, same with the previous two controllers, the static model-based compensation
control action can be chosen as:

γp = KPp (pr − pe)+ f d (3.20)

Finally, the demand torque τ can be set as:

τ = JT
p(q)γp −KDq̇+g(q) (3.21)

which could allow the position control along the unconstrained task directions while
generating force error in the constrained task directions [23].

In general, the indirect force control, direct force control and hybrid force/position
control introduced in this chapter are the basic controllers for the whole work of this
thesis.
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Chapter 4

Reinforcement Learning

4.1 Robotic Reinforcement Learning Approaches
RL provides a framework and a collection of tools for designing complex and difficult-
to-engineer behaviors in robots. Through trial-and-error interactions with agent’s envi-
ronments, RL allows a robot to automatically determine an ideal behavior [68].

Agent

Environment

Figure 4.1: A universal model of RL.

The universal model of RL is shown in Figure 4.1, which is physiologically realistic
since it is based on learning through punishment or reward as a result of changes in
the environment that are either reinforcing or unreinforcing to certain behaviors/actions.
The evolutionary pressure of best behavioral adaptation to environmental limitations
drives natural RL.

The RL is a machine learning approach for teaching agents to solve different tasks
based on trials and errors when interacting with environments. The RL agent aims to
learn a policy π(at |st), which selects the action at , and meanwhile the agent observes
the environment st . The transition probability p(st+1|at ,st) is used to connect the state
change over dynamics. The final trajectory can be represented as τ = (s0,a0,s1,a1, ...).
The discount factor γ controls the sum of the reward. An optimal policy π∗ should
maximize the cumulative reward r(st ,at) during interactions with the environment, as
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shown in Equation (4.1).

π
∗ = argmax

π

Eτ∼π

[
∞

∑
t=0

γ
t(r(st ,at))

]
(4.1)

With the development of expressive function approximation such as neural networks
(e.g., Deep RL), high-dimensional inputs such as raw images can be handled [99], [149].
Great success has been gained because of the advances in RL in many fields, for in-
stance, the development of video games such as Atari [99], dexterous hand manipula-
tion [7], robot grasping [64], and robot manipulation [81].

Action

Policy space

Pose 

Touch 

Force/Torque 

Vision 

Position Control

Compliant Control

Force Control
Velocity Control

State space

TD3

DDPG
TRPO

DQN

SAC

A2C
A3C

Representation

Velocity

Simulation or Real Environment

Reward

Action space

State 

Figure 4.2: A general schematic diagram of robotic manipulation control using Deep Reinforce-
ment Learning (DRL) [105], [87].

There are several categories in which to put RL algorithms. The RL solutions may
be broken down into two main types based on their complexity: approximation solu-
tion approaches and tabular solution methods. The value function may be expressed in
table form and the former techniques are appropriate for straightforward RL problems
with constrained state and action areas. The value function must offer a decent estimate
throughout the whole state and action set, as the situation becomes more complicated,
such as when the state or action space is continuous.

The RL algorithms can be separated into model–free and model–based approaches
depending on how they access the environment model, which is utilized to forecast tran-
sitions and rewards. The agent may plan the subsequent action sequence in the future
using the model that is accessible. Model–based techniques provide the benefit of algo-
rithms with higher sampling efficiency. However, obtaining a ground truth model of the
environment is often difficult, which restricts the range of applications.
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RL Algorithms

Model-Free RL

Policy Optimization Q-Learning Learn the Mode

Model-Based RL

Policy
Gradient

A2C/A3C [98]

PPO [132]

TRPO [131]

DDPG [84]

TD3 [37]

SAC [44]

DQN [99]

C51 [10]

QR-DQN [28]

HER [6]

World
Models [43]

I2A [118]

MBMF [101]

MBVE [34]

Given the Model

AlphaZero [140]

Figure 4.3: The taxonomy of RL algorithms [106].

Figure 4.3 gives a taxonomy of RL algorithms, Q–Learning, DQN, and SAC algo-
rithms are used in this work.

Two of the most important DRL challenges of robotic manipulation are sample effi-
ciency and generalization [87]. In the context of robotic manipulation control, the pur-
pose of DRL is to train a deep neural network policy, to recognize the best command
sequence for completing the tasks. The present state space, as shown in Figure 4.2, is the
input, which can comprise the pose or the velocity of the EE, or even the force/torque.
Furthermore, the current pose of target objects, as well as the status of associated sensors
if any are present in the surroundings, can be tallied in the current state space. The policy
network’s output is an action that specifies control directives for each actuator, such as
Cartesian velocity or position commands. In Figure 4.2, some widely used policies can
be found as well.

4.2 RL for Contact-Rich Manipulation
Pushing [155], door opening [63], tool use [46], peg-in-hole [56] and related assembly
manipulations [51] are examples of tasks that have been handled using RL.

RL offers a set of tools for the design of sophisticated robotic behaviors that are
difficult to engineer. RL has been applied previously and has gained great success in
solving various of problems in robotic manipulations [77], [89], [128], [56], [90].

Newman et al. [103] inverted the mapping from relative positions to observed mo-
ments and trained a neural network to guide a robotic assembly. Inoue et al. [56] used
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long short-term memory to learn algorithms with two threads (an action and a learn-
ing thread) for searching and inserting a peg into a tight hole; however, their methods
required several pre-defined heuristics and flat searching surfaces.

Figure 4.4: A schematic diagram of combining user-defined controllers with a residual RL con-
troller [62]. Reprinted Image: ©2019 IEEE.

Residual RL could exploit the efficiency of conventional controllers and the flexibil-
ity of RL. The idea is to try injecting prior information into an RL algorithm to speed up
the training process instead of randomly exploring from scratch [61]. In many assem-
bly tasks, conventional controllers could optimize the priory of environment interactions
whereas RL could learn fine-grained user-defined controllers. In order to take advantage
of the efficiency of hand-engineered controller but also the flexibility of RL controller,
the action could be chosen as [61]:

u = πH (sm)+πθ (sm,so) . (4.2)

Here, πH (sm) is the hand-engineered controller (such as a PID controller), the
learned policy πθ (sm,so) is optimized by an RL algorithm to maximize expected re-
ward on the task.
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USB D-Sub Model-E

(a)
(b)

(c)

Figure 4.5: (a): A Sawyer robot setup for insertion tasks [129]. (b): Three different types of
connectors are used for insertion validation. (c): Model-E connector insertion process with visual
state input. Reprinted Image: ©2020 IEEE.

Specifying goals via images makes it possible to specify goals with minimal manual
effort such as imaging as shown in Figure 4.5. Schoettler et al. consider a number of
challenging industrial insertion tasks (USB, D-Sub and Model-E) with visual inputs and
a range of natural reward criteria, including sparse incentives and goal pictures [129].
An anti-windup Proportional-Integral-Derivative (PID) control–based joint impedance
controller is used to guaranteeing the interaction safety.

A 32 × 32 grayscale image is taken as the state provided to the learned policy as
shown in Figure 4.5 (c). Sparse reward function and dense reward function are both
used in the research. A dense reward based on the distance to the target position is:

rt =−α · ∥xt − x∗∥1 −
β

(∥xt − x∗∥2 + ε)
−ϕ · fz (4.3)

x∗ is the target location, where 0 < ε ≪ 1. The hyperparameters settings are: α =
100,β = 0.002,ϕ = 0.1. When the connector is inserted, the sign of the force term
flips by setting ϕ =−0.1.
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Figure 4.6: Architecture of multimodal representation learning with self-supervision. visual in-
formation including RGB and depth images, force and torques, as well as EE position, ori-
entation and velocity are encoded into a multimodal representation using a variational en-
coder [78].Reprinted Image: ©2020 IEEE.

Combining the sense of vision and touch could endow robots with a similar ability
as humans to facilitate the assembly tasks as shown in Figure 4.6 [78], which could pro-
vide robustness to the sensor and actuator noises [128] as well as position uncertainty.
Lee et al. [78] demonstrate a peg insertion task with haptic and visual input for hole
search, peg alignment and insertion. Moreover, a new variational representation learn-
ing technique is proposed and significantly expands the experimental evaluation of the
overall methodology. In this research, a dense four-stage (reaching, aligning, inserting,
and completed) reward function is designed as:

r(s) =


cr
(
1− (tanhλ∥s∥2)

(
1− sψ

)
1+ ca

(
1− ∥s∥2

∥ε1∥2

)(
1− sψ

εψ

)
if s ≤ ε1&sψ ≤ εψ

2+ ci (hd −|sz|) if sz < 0
5 if hd −|sz| ≤ ε2

(4.4)

The definitions are:

• sψ : the current relative orientation along the z-axis between the peg and the hole.

• s = (sx,sy,sz): the peg’s current relative position to the hole.

• (0,0,hd): target peg position, hd is the height of the hole.

• λ is a constant factor to scale the input to the tanh function.

• cr and ca are constant scale factors.
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However, only a few studies have focused on real industrial production contact-rich
tasks, and the aforementioned methods always require a sliding surface for the hole
search algorithms [77], [56], [76]. Moreover, agent training in the real world has low
efficiency and always has safety issues [48].

4.3 Sim-to-real Transfer of RL
One of the most important factors limiting the use of RL in robot manipulation is sample
inefficiency. Due to sampling inefficiency, even the greatest existing RL algorithms may
be unfeasible. There are several causes for the issue [105]:

• many algorithms attempt to learn to accomplish a task from scratch, which neces-
sitates a large amount of data.

• algorithms are currently insufficient for extracting relevant data from current data.
For some on-policy algorithms, each update step requires new data.

• data collecting in robots can take a long time.

Another important difficulty is safety. Learning contact-rich manipulations directly
in a physical robot system via RL is unsafe because the exploration required for learning
might generate large contact force in high stiffness environment interactions. In physical
systems, methods such as torque control [80], impedance control with restricted stiff-
ness [46], or explicit action limitation [72] are used to reduce the potential for damages.

Sim2real 
TransferTraining

Simulator Real Setup

Figure 4.7: A sim2real concept [19].

Policies can be learned in a simulation environment before being executed in the
actual system, as opposed to learning in a real system, as shown in Figure 4.7. This
enables the investigation to be carried out securely in simulation while also providing
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access to a large amount of training data. The technique, however, creates a new problem
in the shape of a reality gap between the simulation and the physical system.

(a)

(b)

(c)

Figure 4.8: Conceptual illustrations of three approaches for sim2real transfer [160]. (a): system
identification. (b): domain adaptation and (c): domain randomization. This figure has the original
author’s use and editing authorization.

As shown in Figure 4.8, the gap can be narrowed by

• Figure 4.8 (a): employing system identification to calibrate the simulation [66];

The goal of system identification is to create an accurate mathematical repre-
sentation of a physical system in order to improve the simulator’s realism.

• Figure 4.8 (b): training them with simulated noise (domain adaptation) [155] to
increase the policies resiliency, [8];

Domain adaptation approaches employ data from a source domain to improve
the performance of a learned model on a target domain with fewer data.

• or Figure 4.8 (c): with a known range of simulator parameters (domain random-
ization), [152].

Domain randomization is the concept of heavily randomizing a simulation in
order to cover the true distribution of real-world data.

Moreover, a simulation-trained policy can also be fine-tuned in the actual world, such as
by employing meta-learning to develop flexible policies [130].
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Simulated EnvironmentReal Setup

(a)

(b)

(c)
Figure 4.9: Various state-of-the-art applications of Sim2Real in robotics manipulation. (a): RL
is used to learn dexterous in-hand manipulation policies to perform vision-based object reori-
entation on a physical Shadow Dexterous Hand [7]. (b): A single learning-based technique may
automatically synthesize controllers for a varied range of actions for legged robots by using
reference motion data [114]. (c): RL-CycleGAN is a method for transferring RL from simula-
tion to the real world that eliminates the requirement for task-specific feature engineering [119].
Reprinted Image: ©2020 IEEE.
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In Figure 4.9, some of the studies carried out in recent years are highlighted.
Andrychowicz et al. [7] used RL to train dexterous in-hand manipulation policies

on a real Shadow Dexterous Hand that can execute vision-based object reorientation as
shown in Figure 4.9 (a). Many physical parameters of the system, such as friction coef-
ficients and the appearance of an item, are randomly generated throughout the training.
Despite being taught exclusively in simulation, their policies are eventually translated to
an actual robot.

Peng et al. [114] proposed a learning framework that consists of three stages (
Figure 4.9 (b)):

• motion retargeting. The motion retargeting stage processes the reference motion
first, employing inverse-kinematics to convert the motion clip’s morphology from
that of the original subject to that of the robot.

• motion imitation. In the motion imitation stage, the retargeted reference motion is
used to train a policy to reproduce the motion with a simulated robot model.

• domain adaptation. The sample efficient domain adaptation procedure adapts the
policy’s behavior using a learned latent dynamics representation before it is trans-
mitted to a real robot.

This framework takes motion data from an animal as input and generates a control strat-
egy that allows an actual robot to mimic the motion.

Rao et al. [119] proposed RL-CycleGAN as a new approach for sim2real transfer
for RL as shown in Figure 4.9 (c). This method is based on combining CycleGAN [167]
with a Q-learning model [157]. RL-CycleGAN uses a jointly learned RL model to train a
GAN that is encouraged to distinguish between styles and semantics. In theory, the out-
put of the RL model should only be determined by the task’s semantics, thus restricting
the GAN with the RL model encourages the GAN to retain task-specific semantics.
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Chapter 5

Force-Controlled Robots

There is a famous phrase in China: no practice, no gain in one’s wit, which means
what’s learned from books is superficial after all; it’s crucial to have it personally tested
somehow. Therefore, the experience of being involved in developing a commercial robot
is quite valuable. This chapter presents the main knowledge and innovations during
the development of the torque-controlled robot including system design, joint design,
joint space controller, Cartesian space controller, and robotic skills development and
validation.

5.1 Torque-controlled Robot Development
The characteristics of traditional robots are [3]:

• high positioning accuracy (repeatability and absolute accuracy);

• high speed;

• durability;

• robustness;

• and the relatively low price.

Torque-controlled robots have been developed for unstructured environments that
are fundamentally different from the environments where classical industrial robots have
been used.

The DLR 7 DoF LWR systems developed in the 1990s at DLR are designed for
interaction with humans and objects in unstructured environments. The LWR robots are
designed for application areas that are generally not covered by industrial robots such
as assembly processes, human-robot cooperation, and service robotics.

The characteristics of LWR robots are [3], [4], [5], [107]:

• compensate the effects of the robot elasticity;

• robust performance (with respect to positioning and model uncertainty);

• active vibration damping;
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• compliance and force/ torque control;

• collision and failure detection;

• active safety for the human and the robot.

Agile Robots AG 1 attempts to combine the advantages of industrial robots and
LWR robots. Agile Robots AG is a spin-off of the DLR who is looking to push the
boundaries of robotics 2. The mission of Agile Robots AG’s is to bridge the gap between
Artificial Intelligence (AI) and robotics, the company has developed SOTA full-body
force sensitivity robots and world-leading vision intelligence products.

5.1.1 System Overview

Robot Control Box

Teach Pendant GUI

Diana7 Robot

Ethernet Cable

Robot Power and 
Communication Cable

PC GUI&API

Ethernet Cable

Figure 5.1: Diana7 robot system overview 3.

The Diana 7 robot system consists of a robot body and a robot control box (either
the alternating current (AC) power control box CB2T or the direct current (DC) power
control box CB2TD). The Diana 7 robot has seven rotating joints, which are connected
by connecting rods. There are in total 7 degrees of freedom including the base (joint 1),
shoulder (joint 2, joint 3), elbow (joint 4), and wrist (joint 5, joint 6, joint 7). The base
connects the foundation to the robot body, and the robot head flange connects the robot
head to the tool.

5.1.1.1 Software Design

The Diana7 robot control structure can be seen as Figure 5.2. The whole software system
is consisted by non-realtime API and GUI, real-time robot control unit and real-time
joint control units.

1https://www.agile-robots.com/
2https://www.dlr.de/rm/en/desktopdefault.aspx/tabid-17675/
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Ethernet

EtherCAT

1 kHz

1 kHz

libdiana/
dianaAPI

Robot State

Position Command

Torque Command

Motion Generators

Motion/Force Control

Robot Kinematics & Dynamics

Robot State

Robot 
Command

Figure 5.2: Diana7 robot control structure. The red part is non-realtime which includes the
Application Programming Interface (API) and GUI. The yellow part is the real-time robot control
unit which includes the motion generators as well as kinematic and dynamic functions. The green
part is the joint control units that execute the torque and position commands.

The Diana7 robot API and GUI commands are TCP/IP-based that can provide robot
control and configuration as:

• execute non-realtime commands to set the robot system parameters;

• perform manual movement control of the robot;

• execute real-time commands at 1 kHz control loops;

• check the robot status from sensors and internal controllers at 1 kHz;

• access the robot model library to compute the desired kinematic and dynamic
model.

The Diana7 robot GUI was designed by the software team, I was not involved in the
GUI development, thus more GUI details will not be presented.

In the user manual of API (version 2.5.1), there are 136 API functions in total. How-
ever, the mainly used API functions in this thesis are:

• setJointCollision , setCartCollision , setCartImpedance

and changeControlMode commands are used to set the robot system safety
and behavior parameters;

• getTcpPos , getJointPos functions are frequently used to get the robot
kinematic state;
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• enterForceMode , moveJ and moveLToPose can be used to control the
robot in force, joint position, or Cartesian impedance mode, respectively;

In order to support the promotion of educational robots, the Robot Operating System
(ROS) control interface of Diana7 was also developed.

5.1.1.2 Hardware Design

A Diana7 robot can be thought of as a combination of seven joints and links. Diana7
robot joints are designed in three sizes in order to fit different joint torque requirement
while all design has similar concepts. The design concepts and details are presented as
follows.

A robotic joint with harmonic drive, motor side and link side encoder, as well as
torque sensor, was developed [21]. A special design of the Diana 7 robot joint is the
torque sensor location. The torque sensor is fixed between the flexible spline and joint
shell, which is different from the design of LWR [3] and Franka Emika robot 4 that fix
the torque sensor on the output of circular spline.

Figure 5.3 gives the internal force and torque transmission analysis of the design.
In this design, the motor output is connected with the wave generator thus the wave
generator is the input of the Harmonic drive, the flexible spline is fixed, and the circular
spline is the output of the Harmonic drive.

The external torque is measured as follows: first of all, the external torque from the
link acts on the circular spline, and the forces generated as the teeth “slide” against
each other will cause the gear teeth in the meshing zone to align and push the circular
spline to rotate, circular spline gear-tooth normal force Fc−tooth−normal and flexible spline
gear-tooth normal force Fs−tooth−normal are paired as action force and reaction force
(i.e. Fc−tooth−normal +Fs−tooth−normal = 0); then, the external torque is transmitted to the
flexible spline by the gear-teeth; as the torque sensor is fixed with flexible spline, thus
the external torque is transmitted and measured, and vice versa if we analysis from the
motor torque input side.

The advantages of this design concept are:

• avoid the collision during the assembly of the joints as the torque sensor is in-
stalled inside the joint;

• avoid external impact torque acting directly on the torque sensor;

• no need to consider bending torque effects, simplifying the design of torque sen-
sors;

• separate the torque sensor power and signal cable with joint motor cables, to avoid
signal disturbance.

The disadvantages are:

• torque measurement is affected by link side friction;

4https://www.franka.de/robot-system
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Flexible spline

Circular spline

Wave Generator

Flexible spline 
gear-teeth

Circular spline 
gear-teeth

Torque Sensor

Figure 5.3: Force and torque transmission during the rotation of the Harmonic drive reducer.

• friction between flexible spline gear-teeth circular spline gear-teeth cannot avoid;
the larger the torque, the greater the impact; also the faster the speed of rotation,
the greater the friction [154].

The friction plays a key role in this design to attach the torque sensor solidly with
the flexible spline to avoid the backlash issue. A High-speed side magnetic encoder and
a Low-speed side magnetic encoder are used to measure the motor position and link
position. A motor side brake with the appropriate friction torque is used to ensure that
the joints are locked but can be forced to rotate when the robot is powered off.

47



Chapter 5. Force-Controlled Robots

5.1.2 Impedance Controller
For a flexible joint robot, for example, equipped with the harmonic drive reducer and
torque sensor, the robot model can be assumed as [145]:

M(q)q̈+C(q, q̇)q̇+g(q) = τ + τext

Bθ̈ + τ = τm
(5.1)

The definitions are as follows:

• q ∈ Rn : the vector of link side joint angles;

• θ ∈ Rn: the vector of motor angles;

• τ ∈ Rn: the joint torques are determined by the linear relationship τ = K(θ −q);
K ∈ Rn×n is a diagonal matrix containing the individual joint stiffness, which
consists of a series connection of reducer stiffness Kre and torque sensor stiffness
Kts;

• B ∈ Rn×n: the diagonal matrix, which consists of the rotor inertias Bi;

• M(q) ∈ Rn×n: the manipulators (link side) mass matrix;

• C(q, q̇)q̇ represents the centrifugal and Coriolis-terms of the link side rigid body
part of the model;

• g(q) ∈ Rn : the vector of gravity torques;

• τm ∈ Rn: the motor torques command for the control;

• τext ∈ Rn: the external forces and torques vector act on the robot.

}

Rotor

Joint 
housing

Link side

Environment

Figure 5.4: A single joint PD-Control based on motor position.

With a traditional PD-controller, the key joint structure and parameters can be seen
as Figure 5.4.
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5.1. Torque-controlled Robot Development

However, the inherent flexibility introduced into the flexible joints by harmonic drive
reducer and torque sensor can cause vibrations when a traditional PD-controller is used.
In order to provide safe, reliable, and robust manipulation when in contact with un-
known passive environments using the flexible joint robot, an impedance controller was
introduced into robotics instead of the position controller [5].

Rotor
Current

PI 
controller

1/s 1/sLink

1/s 1/s

Torque
sensor

-

-

+

+

KTorque
 feedback

Impedance
controller

Figure 5.5: A torque feedback-based impedance control structure.

A passivity-based impedance approach [5] that only relies on the joint motor position
(the link side position is estimated by joint torque and mechanical stiffness) and joint
torque signals provide a high degree of robustness to unmodeled robot dynamics and in
the contact with unknown environments is shown in Figure 5.5. The inner torque feed-
back loop (red part in Figure 5.5) is used for the design of impedance controllers, more
details about impedance controllers (joint space and Cartesian space) will be explained
in the next sections.

5.1.2.1 Joint Space Impedance Controller

For the joint space and Cartesian space impedance controller, the torque sensor in each
joint plays a key role. The basic controller consists of a torque feedback loop, and this
torque feedback controller can scale the motor inertia B to the desired value Bθ [107]:

τm = BB−1
θ

τu +(I −BB−1
θ
)τ (5.2)

Where τu is an intermediate control input that could shape the Cartesian or joint
impedance behavior [4], and τ is the joint torque data measured by the torque sensor.
τm is the torque on demand of the motor controller. B is real rotor inertia and B−1

θ
is the

desired apparent rotor inertia.
BB−1

θ
ratio is mainly determined by the torque sensors’ noise level and structure

frequency. For a single joint compliant behavior, BB−1
θ

ratio can be set up to 50, however,
for the compliant joint controller on the Diana7 robot, 4 to 6 is a proper setting. Lower
ratio values are chosen for high stiffness mode, and vice versa.

For the impedance behavior of joint coordinates, we have

τu =−Kθ (θ −θs)−Dθ θ̇ (5.3)

49



Chapter 5. Force-Controlled Robots

wherein τu ∈ Rn is a joint demand torque vector, Kθ = diag(ki) ∈ Rn×n is a positive
definite stiffness matrix and Dθ = diag(di) ∈ Rn×n is a damping matrix, θs ∈ Rn is a
desired robot configuration, g(θ) ∈ Rn is the gravity torque vector.

We combine Equation (5.1) and Equation (5.2), then we have:

Bθ̈ + τ = BB−1
θ

τu +
(
I −BB−1

θ

)
τ (5.4)

Replace τu with Equation (5.3), the new robot closed loop equations are:

M(q)q̈+C(q, q̇)q̇+g(q) = τ + τext

Bθ θ̈ +Dθ θ̇ +Kθ (θ −θ s)+ τ = 0
(5.5)

Note: another way to consider the Equation (5.2) is to take the controller as a P
controller:

τm = BB−1
θ

τu +
(
I −BB−1

θ

)
τ

= BB−1
θ
(τu − τ)+ Iτ

= Iτu +(BB−1
θ

− I)(τu − τ)

(5.6)

Now it is clear to find that Equation (5.6) is a P controller with feedforward τu. This
explanation would help researchers to understand Equation (5.2) when tuning the torque
controller.

5.1.2.2 Cartesian Space Impedance Controller

In real scenarios, some assembly applications need desired impedance behavior in Carte-
sian space x ∈ Rn.

For Cartesian impedance behavior, we have

τu =−J(θ)T (Kxx̃(θ)+Dxẋ(θ))+g(θ)
x̃(θ) = f (θ)− xdes

ẋ(θ) = J(θ)θ̇

(5.7)

wherein τu ∈Rn is a joint demand torque vector, Kx and Dx are the permutation and
diagonal matrices of desired stiffness and damping, respectively. xdes ∈Rn is the desired
EE pose, and x(θ) = f (θ) is the EE pose computed based on the motor position. J(θ) =
∂ f (θ)/θ is the manipulator Jacobian. θ is the measured motor positions, g(θ) ∈ Rn is
the gravity vector.

Please notice that due to the gravity issue, for a desired link side position qs
which corresponds to the desired Cartesian position xs should be modified as xs =
f
(
qs +K−1g(qs)

)
instead of xq,s = f (qs).

Thus, the new closed-loop system is:

M(q)q̈+C(q, q̇)q̇+g(q) = τ + τext ,

Bθ θ̈ + J(θ)T (Kxx̃(θ)+Dxẋ)+ τ = 0
(5.8)

Note: due to the system design such as control theory, control frequency and delay,
joint mechanical stiffness, signal noise level and so on, the maximum Cartesian space
stiffness is generally less than 10000N/m.
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5.1. Torque-controlled Robot Development

For damping design, two methods are proposed in [4]: factorization design and dou-
ble diagonalization design.

First of all, some assumptions need to be defined:

• K → ∞ , which means q ≈ θ ;

• the mass matrix M(q) is changing slowly, thus the derivative can be neglected.

Then, the approximately closed-loop dynamics can be used for the damping design:

Λ(θ) ¨̃x(θ)+Dx ˙̃x(θ)+Kxx̃(θ) = 0

Λ(θ) =
(

J(θ)(M(θ)+Bθ )
−1 J(θ)T

)−1 (5.9)

It is obvious that the damping matrix Dx cannot be constant, because it has to be
calculated as a function of Λ(θ). A well-defined variable damping matrix leads to sig-
nificant performance improvements in practice than a constant one.

Take factorization design as an example, the key idea is set:

Dx = AKx1 +Kx1A
AA = Λ

Kx1Kx1 = Kx

(5.10)

Then combine with Equation (5.9):

A
(
A ¨̃x(θ)+Kx1 ˙̃x(θ)

)
+Kx1

(
A ˙̃x(θ)+Kx1x̃(θ)

)
= 0 (5.11)

With the substitution A ˙̃x(θ)+Kx1x̃(θ) = wïijŽ

A ˙̃x(θ)+Kx1x̃(θ) = w
Aẇ+Kx1w = 0

(5.12)

Then a general damping design can be:

Dx = ADξ Kx1 +Kx1Dξ A (5.13)

Here, Dξ = diag{ξi} ,(0 ≤ ξi ≤ 1) is a diagonal matrix, and ξi = 0 for undamped be-
haviour, ξi = 1 for real eigenvalues.

5.1.2.3 Joint Torque Based Friction Observer and Compensation

The impacts of joint friction can have a significant impact on the system performance
for robots with high gear ratios (such as 100:1) striving for low own weight and high
payload. A joint friction test curve can be seen as Appendix A.1. As the joint torque
sensor is installed after the gearbox, then the external force and friction can be distin-
guished easily. Thus, the friction observer based on joint torque measurement is a proper
choice for torque-controlled robots.
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Robot JointActuator
Dynamics

Impedance
Controller

Figure 5.6: Friction observer and compensation structure for a single Joint [74]. Reprinted Im-
age: ©2008 IEEE.

Consider the actuator dynamics:

um = Jmθ̈m + τam + τ f m (5.14)

Here,

• um is the motor torque;

• θm is the motor position;

• Jm is the motor inertia;

• τam is joint torque;

• τ f m is the friction torque.

A standard friction model containing Coulomb friction is considered:

τ f m = τ f m,c + τ f m,v = fc sign
(
θ̇m
)
+ fvθ̇m (5.15)

According to Figure 5.6, the observer dynamics is designed as:

um = Jm
¨̂
θm + τam + τ̂ f m

τ̂ f m =−LJm

(
θ̇m − ˙̂

θm

) (5.16)

L > 0, τ̂ f m and ˙̂
θm are the estimation of the friction and the observer state, respectively.

As the measurement of motor position and joint torque is easy to get, thus the friction
observer can be a simple structure.

Note: after the parameter L is fixed (means the friction is estimated properly), a scale
(0.5–0.9) should be used to reduce the τ̂ f m in order to guarantee the controller passivity
and avoid overcompensation. After the friction compensation is activated, the joint can
be moved easier in zero-force mode compared with non-friction compensation.
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5.2. Force Controller Evaluation and Implementation

5.2 Force Controller Evaluation and Implementation

5.2.1 Force Controller Evaluation
As Diana 7 is a force-controlled robot, thus the Cartesian space force control accuracy
test is described as follows.

Force/torque sensor

Diana 7 robot

Fz

(a) (b)

Figure 5.7: (a): Human-Robot interaction under zero gravity mode with a Diana 7 prototype
(The robot shell hasn’t even been painted yet). (b): Diana 7 force control accuracy evaluation
setup.

A Diana 7 robot force control accuracy evaluation is executed as shown in Figure 5.7
(b). A 6 DoF force/torque sensor axia80 5 is used as a force evaluate reference and
the force data is read by TwinCAT3 6. The axia80 force/torque sensor is fixed on the
table and the robot executes the force command Fz = 2N,N = (1,2,3...15) to press the
force/torque sensor for a period of time. Therefore, a step force curve can be obtained.

5https://www.ati-ia.com/index.aspx
6https://www.beckhoff.com/en-en/products/automation/twincat/
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(a)

(b)

(c)

Figure 5.8: (a): the force command and robot estimated force which is quite close. (b): the force
command and the sensor measured force which has a bigger error compared with robot estimated
force. (c): three force curves in one figure.

A step force curve including command force, robot estimated force and sensor mea-
sured force is obtained in Figure 5.8. In Figure 5.8 (a), thanks to the force PI controller,
the robot estimated force is quite close to the command force in most steps. However, the
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5.2. Force Controller Evaluation and Implementation

sensor-measured force gives a bigger error especially when Fz > 15N, and the maximum
force error is 3 N (When the force accuracy test range is 30 N).

Note: since Diana 7 robot can calibrate the force controller before entering contact
space, thus the force control accuracy can reach 0.5 N in real-use scenarios (UR e series
also introduce this method to increase the force control accuracy).

5.2.2 Force Control Skill Implementation

Force
controller

Position
controller

F/T

Robot
+

+

Figure 5.9: Hybrid position/force controller.

To generalize the robotic assembly capabilities, assembly skills based on hybrid posi-
tion/force trajectories, such as linear, zigzag, spiral, sinus, and Lissajous trajectories,
have been developed for robots equipped with force and torque sensors [138]. In this
thesis, a newly designed hybrid position/force search skill named cross-search skill is
developed to evaluate the assembly capability of the Diana 7 robot.

5.2.2.1 Cross-search Skill

Hybrid
Pushing actions
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Figure 5.10: Pushing-based hybrid position/force assembly skill model.

A pushing-based hybrid position/force assembly skill was designed, as shown in Fig-
ure 5.10. Once the state is confirmed, 6 linear hybrid position/force movements are
executed according to the skill parameters (i.e., position and force). An inspection was
performed after the execution.

A hybrid position/force controller is implemented under the EE frame for the skill
execution (Figure 5.9), where pd and Rd are command pose, p,R are current pose; hd
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is a command force/torque, and hd is a feedback force/torque. The diagonal matrices K
and K′ were used to indicate position or force control under the EE frame. In this study,
force control along the Z direction was defined by Equation (5.17):

K =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


,K′ = I −K (5.17)

As cross-search skill is a newly developed method, the illustration and analysis are
given as follows.

1

2

Object
Holder

4
35

6

加上尺寸长度

162.6 mm（6.40英寸） 宽：74.8 
mm

75mm

160mm

Figure 5.11: Assembly task illustration: the task is to insert the object into the holder.

The general tending task can be seen as Figure 5.11: aligning two parts (object and
holder) with a certain geometric feature and maintaining the alignment using a certain
operation process. Several adjustable fixtures on the holder are used to fix the object.
The fixtures (numbered 1–6) are used to adjust the tension of the holder.
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Figure 5.12: 14 possible contact states. The pink fixtures indicate contact with the object.
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According to the analysis, there are several contact states that can cause object and
holder misalignments (Figure 5.12).

In this work, the constraints provided by the fixtures can guide the object alignments
with the holder geometry is proven and verified.
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y
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X

y
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P4

X X
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(c) (d)

A

A A

AB B

BB

Vacuum 
Gripper

Object

Holder

Figure 5.13: Illustration of a pushing action (in X direction) during an assembly task. (a) The
vacuum gripper pushes the object along the X+ direction; (b) the vacuum gripper moves to the
X− direction, and the object can be pushed until contact occurs with the left fixture; (c) the
object is pushed into the holder; and (d) the vacuum gripper continues to move along the X+
direction and slide on the object’s surface.

Figure 5.13 was used to analyze this phenomenon according to a simplified contact
situation, whereas Figure 5.13(a)–(d) illustrate the pushing action along the X direction.

e is the initial position error between the object and the holder. P is the translational
movement command along the X direction. Frame O is attached to the center of the
object, and θ is the angle between the object and the holder surface. A and B represent
the adjustable fixtures on the holder. f 1 and µ1 represent the maximum static friction
and coefficient of static friction between the vacuum gripper and object (the vacuum
gripper is released), respectively; f 2 and µ2 represent the static friction and coefficient
of static friction between the object and holder/fixtures, respectively. FN1 is the force
applied by the vacuum gripper on the object. Additionally, FN2, FN3, FN4, FN5 and FN6
are the normal forces exerted by the holder/fixtures on the object.

The general force analysis is performed on the object along the X and Y directions of
frame O. In Figure 5.13(a), the object was assumed to be stationary. The force analysis
performed along the Y direction is represented by the following equation:

FN1 cosθ +FN2 cosθ +FN3 + f 2 sinθ = 0 (5.18)

Fv−o represents the force between the vacuum gripper and object in X direction:

Fv−o = f 1 +FN1 sinθ

= µ1FN1 cosθ +FN1 sinθ
(5.19)
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Fo−h represents the force between the object and holder along the X direction:

Fo−h = f 2 cosθ + f 3

= µ2FN2 cosθ +µ2FN3

= µ2(FN2 cosθ +FN3)

(5.20)

Based on Equation (5.18),

Fo−h =−µ2FN1 cosθ −µ2 f 2 sinθ (5.21)

Considering angle θ ≈ 0, negligible terms were removed from Equation (5.19) and
(5.21) (when θ ≈ 0, sinθ ≈ 0), Equation (5.22) was obtained as follows:

Fo−h =−µ2FN1 cosθ

Fv−o = µ1FN1 cosθ
(5.22)

From Equation (5.22) and Figure 5.13, we can infer that the coefficient of static friction
determines the object’s direction of motion. The same conclusion can be obtained from
Figure 5.13(b). The vacuum grippers are mainly made of rubber 7 with a high coefficient
of static friction, thus µ1 > µ2 is an easily obtainable condition.

The following results are obtained from Figure 5.13(c) and (d):

max(FN4) = max(FN5)≫ f 1 = µ1FN1 (5.23)

Thus, the entire operation was performed based on the following condition (Fig-
ure 5.13):

max(FN4) = max(FN5)≫ Fv−o > Fo−h. (5.24)
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Figure 5.14: Workflow of a machine tending task. Before executing our hybrid pushing skill,
the object was released by the vacuum gripper. DGP: desired grasping pose; DFP: desired final
pose; EE: end-effector.

7https://www.festo.com/net/supportportal/files/216340/10783
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Table 5.1: Comparison of the success rates for different baselines

Baseline Perfect Uncertainty

Baseline 69/100 47/100
Our method 100/100 100/100

A workflow was designed to evaluate the cross-search skills as shown in Figure 5.14.
The skill parameters for the 6 actions (the sequence is shown in Figure 5.10) are set as:

1 :[+Pd
σx,0,+Fz]

2 :[−2∗Pd
σx,0,+Fz]

3 :[+Pd
σx,0,+Fz]

4 :[0,+Pd
σy,+Fz]

5 :[0,−2∗Pd
σy,+Fz]

6 :[0,+Pd
σy,+Fz].

(5.25)

Pd
σx and Pd

σy denote the amplitudes of the discrete actions. Pd
σx and Pd

σy are recommended
to set twice bigger than the error e to ensure that the environmental constraints are fully
explored. The demand Fz is set to 5 to 10 N to guarantee that the contact force is close
to the human’s operation force.

In this experiment, contrary to the perfect group, an error of e∈ [2,4] mm was added
in a random direction to the desired final pose to simulate the pose uncertainties in the
uncertainty group. We evaluated our proposed method compared with the following
baseline:

• Baseline: spiral search [59]. A spiral search path was used to survey the entire
environment surface. Here, the maximum search radius was set to 10mm;

• Our cross-search method. Pd
σx and Pd

σy is set to 8 mm, The demand Fz is set to 5
N.

Overall, the results of 400 group robot assembly tasks were recorded, as presented in
Table 5.1. Baseline 1 (spiral search) always ended when stopped by one or two fixtures
and thus insertion failed, moreover, it always generates sufficiently strong contact force
between the objects and the holder.

To verify the generalization of our method, we also tested it on two other type holders
using our method and obtained a 100% success rate (100/100 trials).
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Visual Residual Reinforcement
Learning

Torque-controlled robots often serve computers, communication, and consumer elec-
tronics (3C) product lines, which usually involve small but complex assembly tasks, and
need to be adjusted quickly and frequently. Currently, there are a few 3C assembly fac-
tory lines [120], but they require a long time to build and set up with high precision,
which is unsuitable for small- and medium-sized enterprises that have automation needs
but cannot afford to upgrade the entire production line. Position uncertainties are quite
normal in human-based traditional production lines. Some studies used simply fixed
curves for exploring [109] but they have low robustness against positional and angular
errors for insertion tasks, especially when targets are not fixed accurately. Schimmels
and Peshkin [116], [126] designed an admittance matrix for force-guided assembly in
the absence of friction, and after two years, they improved the admittance control law.
However, there still existed a maximum limit requirement of friction value [127]. Stem-
mer et al. [146] proposed the region of attraction method using vision and force percep-
tion to assemble specified-shape objects, while the geometry of the parts is required.

In this chapter, a visual residual policy that combines multimodal feedback from vi-
sion and touch was proposed, two modalities with different frequencies, dimensionality
and value range. This method greatly enhances the robustness and efficiency of the RL
algorithm.
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6.1 Visual Guided Assembly
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Figure 6.1: A position-based visual servo (PBVS) control system. cxd is the desired EE pose
relative to a target, while cx is the current estimated EE pose relative to a target.

A vision sensor allows a robot to measure the environment with a noncontact method.
Shirai and Inoue [137] described an idea on how to use visual feedback to correct the po-
sition of a robot to increase assembly task accuracy. Position-based visual servo (PBVS)
systems and image-based visual servo (IBVS) systems are the two major classes of vi-
sual servo control systems. The typical control structure of PBVS can be found in [54].

D435i
camera

Figure 6.2: A visual servo work scene. a1 and b1 are from the RGB camera sensor, and it can
be seen that the feature points have been matched with each other. a2 and b2 are from the depth
camera sensor.

An EE mounted camera could acquire the target depth and orientation information
that can be used directly for PBVS [151], [36]. However, the lens and imaging sensors,
calibration of intrinsic/extrinsic parameters, reflection, shadow and occlusion will exert
a strong influence on the precision of the visual guidance [83].
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6.2 Visual Residual Learning Framework

6.2.1 Framework Overview
An eye-in-hand camera helps solve the problem of position uncertainty in unstructured
environments in contact-rich tasks. The camera could try to align the characters of the
target and compensate for the position error of the robot. Visual feedback control could
provide geometric object properties for the pre-reaching target phase, whereas the cam-
era aligning accuracy would always be disturbed by the target material or light.

Force feedback control is quite helpful for providing contact information between
the object and environment for accurate localization and control under occlusions or
bad vision conditions, and force information could be obtained easily from the proprio-
ceptive data in the torque-controlled robot controller.

Visual feedback and force feedback are complementary and sometimes concurrent
during contact-rich manipulation. In this chapter, we implemented the visual-based fixed
policy combined with a contact-based parametric policy for a peg-in-hole operation (see
Figure 6.3) as follows:

• For roughly locating the target hole, we use one global image taken from the teach
mode with the RGB-D camera and rely only on the PBVS method [54] (i.e., the
visual-based fixed policy) in this phase, because in free space, the contact-based
parametric policy cannot receive proper contact information;

• After the rough location phase, the robot will move to the target hole according
to the prerecorded transformation gxd from global image pose to detailed image
pose, where gxd is recorded in the teaching phase. When the peg (for example, a
RAM) contact with the target hole, the detailed image that has more accuracy for
locating the hole will be used to insert the peg into the hole.

To exploit the high flexibility of RL and high efficiency of conventional controllers,
we introduce an idea of residual RL from [61] with vision information; the proposed
method is expected to outperform the original residual RL in a variable environment due
to the position uncertainty problem. In residual RL, the policy is chosen by additively
combining a fixed policy πH(sv) with a parametric RL policy πθ (st). The fixed policy
can help the agent move to the target, but prevent the agent from exploring more states.
To balance the exploration and exploitation between the fixed policy and parametric RL
policy, we design the weighted residual RL as follows:

ut = (1−α)πH(sv)+α ∗πθ (st) (6.1)

Here, α is the action weight between the fixed policy and the parametric RL policy; the
parametric policy is learned in the RL process to maximize the expected returns on the
task. We use a P-controller as the hand-designed controller πH(sv) in the experiments
for the visual-based fixed policy.
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Figure 6.3: Representation of visual residual learning framework. The blue region is the real-
time controller, and the wheat region is the non-real-time trained policy.

6.2.1.1 Visual Residual Policy Design

First, we explain the detailed design of πH(sv). sv represents a geometric relationship
of robot states which is a Euclidean distance calculated by visual and estimated depth
information. We introduce the method from [91] that used depth information in PBVS.
Combined feature extraction with depth information ZN , we could obtain the estimated
target feature set:

cP∗ = (X∗
1 ,Y

∗
1 ,Z

∗
1 , ...,X

∗
N ,Y

∗
N ,Z

∗
N) (6.2)

and current feature set:
cP = (X1,Y1,Z1, ...,XN ,YN ,ZN) (6.3)

whose coordinates are expressed with respect to the camera coordinate frame c follow-
ing the perspective projection method [54]:[

XN

YN

]
=

ZN

f

[
uN

vN

]
. (6.4)

Here, f is the focal length of the camera lens. [uN ,vN ]
T represents the coordinates of

the image feature set expressed in pixel units. Iterative closest point (ICP) [11] could be
used to get the coordinate transformation c∗xc by the feature set cP and cP∗.

c∗xc =

(
c∗Rc

c∗tc

0 1

)
(6.5)
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Here, we set sv = (c∗tc,θu) depending on Equation (6.5), where c∗tc is the translation
error vector, and θu gives the angle/axis representation for the rotation error [138]. Then
a velocity control scheme is designed by using an exponential and decoupled decrease
of the error (i.e., ė =−λe) as:

vc =−λ (c∗Rc)
T c∗tc

wc =−λθu
(6.6)

Equation (6.6) is used in the rough location phase. [vc,wc]
T is the camera frame

velocity command under current camera frame Fc, which could be transferred to robot
EE frame Fe easily. In this paper, we calculate robot movement commands under robot
EE frame Fe first and then transfer them to the base frame before inputting them to
Equation (5.7).

We directly use sv = (c∗tc,θu) as the states of fixed policy in accurate location phase,

πH(sv) =−kp · sv, (6.7)

which is quite convenient to implement.

6.2.1.2 Contact Policy Design

In this work, we use a value-based RL called Q-learning algorithm as the contact-based
parametric RL policy πθ (st), the Q-function is implemented as a table with states as
rows and actions as columns, then we can update the table by using the Bellman equa-
tion:

Qπ(st ,ut) = Ert ,st+1∼E [rt + γEut+1∼π [Qπ(st+1,ut+1)]] (6.8)

The estimated 6-DoF external forces and moments along the X, Y, and Z axis under
the EE frame are read from the Franka controller. The contact force and the moments
between the robot’s EE (i.e., the peg) and the hole the states as follows:

s = [Fx,Fy,Fz,Mx,My,Mz] (6.9)

In order to simplify the state’s design, we set a threshold T to clarify the contact
status. We assume that the EE contacts the slot when the external force |F | > T 1 N or
the external moments |M|> T 2 Nm, a value of ±1 means that contact is made, whereas
0 means that there is no contact with the encoding states.

The visual residual RL structure and training process can be seen as follows:
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6.2. Visual Residual Learning Framework

Algorithm 1 Visual Residual RL
Require: RL policy πθ , fixed policy πH .

1: for iteration=1 to M episodes do
2: Copy latest policy πθ from learning thread
3: Sample initial state s0
4: for step=1 to N do
5: Get action uRL by greedily picking from πθ (st)
6: Get action uH from πH(sv)
7: Output policy action: ut = (1−α)uH +α ∗uRL
8: Get next state ut → st+1
9: Optimize πθ with Equation (6.8)

10: if EpisodeEnd == true then
11: break
12: end if
13: end for
14: end for

The increment equation xdes = xt + ut was used to avoid the potential “far away”
problem for safety concerns; xdes is the desired EE pose, and xt is the current EE pose;
ut is the increment action command from the agent.

D435i
Camera

Interpolation Desired 
end-effector 
coordinates

Desired 
joint torque

Desired 
motor 
torque

Cartesian 
impedance 
controller

Torque 
feedback 
controller

Figure 6.4: Illustration of the robot’s low-level control scheme. The actions xdes are computed
at a low frequency, and the desired joint torques calculated directly by the Cartesian impedance
controller at 1000 Hz. The joint controller runs the torque feedback controller at 3000 Hz.

The evaluation of the visual residual policy is described in Chapter 9 with a RAM
insertion task setup.
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Chapter 7

Region-limited Residual Reinforcement
Learning

The ability to rapidly setup and reprogram newly-introduced products in factories is an
increasingly essential requirement for adaptive robotic assembly systems [70], [141].
Position-controlled robots have the ability to handle known objects in well-structured
assembly lines with high efficiency and achieve highly accurate position control. How-
ever, they require considerable setup time and tedious reprogramming to fulfill new
tasks, and cannot adapt to any unexpected variations in assembly processes [169].

Collaborative robots offer the promise of closing the gap between onerous re-
programming and unexpected variations by combining the capabilities of position-
controlled robots with dexterity and flexibility. For example, the hand-guiding method
enables unskilled users to interact with collaborative robots and facilitates quick pro-
gramming [122]. However, during assembly line reconfiguration, a long time is still
required to remove and reinstall the robot arms and various attachments. Mobile manip-
ulators (where robotic arms are mounted on mobile bases) were introduced to expand
the productivity and adaptive capacity of manufacturing automation, particularly during
the setting up phase when production lines must be reconfigured [92]. Because mo-
bile manipulators can only be placed beside production lines and cannot be installed
on production lines as collaborative robots, which occupy space previously provided
for human workers. However, programming a robot in a constrained space is very dif-
ficult [75]. Overall, ease-of-programming has been identified as an open challenge in
robot assembly [141], [93].

Additionally, collaborative robots equipped with force control functions can perform
certain hybrid position/force operations for contact-rich tasks [5], [56], [38], [77]; how-
ever, their effectiveness and variation adaptive capacity in assembly processes are still
unsatisfactory [90], [128]. Herein, an intuitive programming method was proposed to
decrease the setup time of mobile manipulators and a RL algorithm was introduced to
overcome unexpected variations in assembly tasks.

66



7.1. LbE based on RRRL policy

7.1 LbE based on RRRL policy

7.1.1 Problem Statement
Visual sensors can be used for target recognition, pose estimation, measurement, and
positioning using traditional methods [83]. However, visual sensors, lenses, imaging
sensors and the calibration of intrinsic/extrinsic parameters considerably influence the
precision of visual guidance, as well as reflection, shadow, and occlusion may fail to
extract the edges and features of objects owing to lights changes and object textures [83].

7.1.2 Method Overview

Reward

Y

N

Target pose

Current pose

Force/Torque

F/T

Robot

Figure 7.1: The RRRL policy structure.

Residual RL [128], [62] is a novel method that exploits the efficiency of conventional
controllers and the flexibility of RL. Residual RL attempts to introduce prior informa-
tion in an RL algorithm to accelerate the training process, rather than performing random
explorations from scratch. For example, the estimated position can be set as prior infor-
mation and even can have errors. The GUAPO [76] showed better performance than
residual RL, SAC, and pure model-based method such as Deep Object Pose Estima-
tor (DOPE). However, the force and torque information is not considered in the GUAPO
policy. This information can provide observations regarding current contact conditions
between objects and their environments for accurate localization [78]. Moreover, it can
ensure manipulation safety [90]. However, pure force-based learning policies may lead
to substantial deviations from goals and reduce learning efficiency. Thus, we combine
the “region limitation” idea from GUAPO and the residual RL policy to develop a force-
based approach called RRRL (Figure 7.1). In the RRRL policy, the rough target pose is
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Chapter 7. Region-limited Residual Reinforcement Learning

obtained using by the teaching phase as the residual part and a function α(s) = 1[s ∈ Su]
is used to switch between the fixed πH(s) and the parametric πθ (s) policies [76]:

π(a|s) = (1−α(s)) ·πH(a|s)+α(s) ·πθ (a|s). (7.1)

Su is the region containing the goal position with uncertainty. Because force control is
more safe and reliable in the fine motion/manipulation phase than position control and
impedance control in assembly tasks [56], the RRRL policy πθ (s) takes the operational
force controller as the desired force/torque in operational spaces. thus, our goal is to
maximize expected return (i.e., max

θ

E[rt ]) through the RRRL policy. The fixed policy

uH is used to move the object back to the initial target pose when the function α(s) = 0.
A double Deep Q Network (DQN) with proportional prioritization [125] was selected
as the learning policy πθ (s) in this study.

Algorithm 2 RRRL
Require: Model based policy πH , learning frequency C1, and target action-value update
frequency C2.

1: Initialize replay memory H to capacity N
2: Initialize action-value function Q with random weights θ

3: Initialize target action-value function Qtarget with weights θ− = θ

4: for episode = 1 to M do
5: Sample state s0
6: while NOT EpisodeEnd do
7: Calculate α(s) using Equation (7.8)
8: Select action aH from πH(st)
9: With probability ε , select a random action aRL

10: Otherwise select aRL ∼ πθ (st)
11: Obtain action at = (1−α)∗aH +α ∗aRL
12: Execute at , and observe reward rt and state st+1
13: Store transition (st ,at ,rt ,st+1) in H with priority pt = maxi<t pi
14: for j = 1 to C1 do
15: Sample minibatch of transitions with priority from H
16: Update transition priority
17: Update θ using the method proposed in [125]
18: end for
19: In each C2 step, reset Qtarget = Q
20: end while
21: end for
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7.2 LfD based on Visual Servoing

7.2.1 Problem Statement

Target Position Target Position

(a) (b)

Figure 7.2: Examples of machine tending task in a heavily constrained space.

Mobile manipulators can considerably reduce robot and device’s installation time [94].
Programming based on demonstration approaches has been proposed to address vari-
ations in geometry and configurations for assembly, placement, handling, and pick-
ing tasks [94], which can reduce the programming time and user training require-
ments [169]. The use of mobile manipulators introduces a positioning error at the ±5
mm level [148], and errors as small as ±1 mm can induce large huge contact forces
and consistent failures in typical assembly tasks [128]. In the present study, we ad-
dress the more typical cases of mobile bases that involve the repositioning of mobile
manipulators according to task requirements.

Teach pendants are still used for precision positioning (position and orientation of
the EE in many tasks [122]. However, these devices limit the intuitiveness of teaching
processes and are time-consuming. Hand-guiding is a typical physical contact kines-
thetic teaching solution, where programming is embodied using demonstration con-
cepts, enabling users to quickly and intuitively program robots. However, it has draw-
backs in terms of accuracy, locational separations, and operations involving dangerous
objects [169]. Moreover, neither the hand-guiding nor the teach pendant programming
methods can compensate for the positioning errors that accompany mobile units [148],
and can result in the generation of a huge contact force that can damage objects.

Additionally, the base of a mobile manipulator requires considerable space within
work cells. Figure 7.2 shows some real-world factory examples of constrained spaces.
Sometimes, a user must teach a robot with a highly awkward body posture owing to
anthropometric limitations [75]. Moreover, the delicate movement required by a user
may be difficult to realize due to the resistance of robots in the drag mode [75]. Hence,
because of these two issues, the use of hand-guiding for accurate assembly is rather
difficult and yields low quality (e.g., excessive contact force and low accuracy).
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7.2.2 Method Overview
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Figure 7.3: The LfD policy structure.

We propose a method that is simple and fast to implement and reduce the physical
contact force to solve the aforementioned problems described in Section 7.2.1. We in-
troduce visual guiding into the teaching phase as shown in Figure 7.3. The proposed
visual guiding teaching is performed using two steps:

• Grasping pose definition: First, a user guides the robot to achieve a grasping pose
under the target object frame. Then, the robot moves up and uses an eye-in-hand
camera to capture a photo of the object as a reference.

• Trajectory generation: Second, the robot follows the moving object (the object
can be moved by the user) to achieve a new target pose using a vision-based
control algorithm (e.g., visual servoing [69], [54]), and records the entire moving
trajectory.

Compared to utilizing a global camera [159], the method proposed in this paper
uses an eye-in-hand camera to effectively avoid the occlusion of the target, and ensure
that the robot follows the object to achieve the proper trajectory, thus achieving better
performance in real industrial scenarios. Trajectory errors have little effect on final as-
semblies because uncertainties can be generally ignored in gross motion planning, and
a fine motion planner can solve uncertainties during the assembly process [42].

7.3 Combine RRRL with LfD
This section focuses on combining visual servoing-based LfD and force-based LbE to
enable the fast and intuitive programming of contact-rich tasks with minimal user ef-
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forts. Two learning approaches were developed and integrated into a framework, one
relying on human-to-robot motion mapping (visual servoing approach) and the other
relying on force-based RL. The developed framework can implement the noncontact
demonstration teaching method based on the visual servoing approach and optimize the
demonstrated robot target positions according to the detected contact state.

7.3.1 Framework Design
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Figure 7.4: Combination of (a): LfD policy and (b): RRRL policy.

The processes in LfD can be divided into three steps: observing, representing, and re-
producing an operation [169]. We perform our entire policy following these processes,
and then add the RRRL policy at the end of the operations. Our method comprises two
learning policies:

• LfD policy: The robot learns gross motions via human demonstrations, wherein a
human demonstrates the target object images and grasping position to the robot.

• RRRL policy: The robot learns fine motions based on the RRRL policy, as de-
scribed in Algorithm 2. The RRRL policy can be trained in advance to save the
setup time.

First, we define the terminology and notation required to represent the coordinate
transformations. We represent the task space of the robot as T , which constitutes a set
of positions and orientations that can be attained by the robot EE (i.e., suction gripper).
T is a smooth m-manifold in which m = 6 and T = SE3 = R3×SO3. The superscript-
s/subscripts of the coordinate frames are listed in Table 7.1.

Table 7.1: Coordinate frames

e Coordinate frame attached to the robot EE
c Coordinate frame of the camera
b Base coordinate frame of the robot
o Coordinate frame attached to the target object
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In our policy, we equip an eye-in-hand camera to avoid the occlusions caused by the
robot’s links and other industrial devices [169], [85] during the demonstration. The rel-
ative homogeneous transformation exc and intrinsic camera parameters are determined
by means of the hand/eye calibration method [153].

In the demonstration phase, teaching was categorized into the three following steps:
1) Robot EE was moved to the desired grasping pose (DGP), which was then recorded
as bxDGP.
2) Robot EE was moved to the desired visual servoing pose (DVSP), which was
recorded as bxDV SP; here, the object must be kept in view of the camera. The first ref-
erence photo (RF1) was captured, and a fixed relative pose (RP) was calculated as
follows:

cxo = (cxe)(
DV SPxDGP) = (cxe)(

bxDV SP)
−1(bxDGP), (7.2)

where cxo is the coordinate transformation of the object frame o with respect to the
camera frame c.
3) The visual servoing strategy [54] was activated, and the following system con-
straints [17] were applied to the robot during the teaching process:

q ∈Qc, (7.3)

q ∈ [qmin,qmax], qmin,qmax ∈ RN , (7.4)

q̇ ∈ [q̇min, q̇max], q̇min, q̇max ∈ RN , (7.5)
qk+1 = qk +δ q̇k, (7.6)

where Qc is the set of configurations that do not cause any part of the arm to collide
with obstacles that are difficult to model. Equation (7.4) and Equation (7.5) describe the
robot’s joint positions and velocity constraints, respectively. The object was then moved
from the DGP to the desired final pose (DFP) by the user, the robot EE followed the
trajectory qk from the DVSP to the DFP under the aforementioned constraints. Further,
the trajectory could be recorded. At DFP, the camera automatically captured the sec-
ond reference photo (RF2), and the DFP could be easily calculated at the end of the
trajectory by Equation (7.7):

DFP = (bxe)(
exc)(

cxo) (7.7)

In this study, the image-based visual servoing method was introduced based on spec-
ified observed feature positions (Figure 7.4(a)). With the human expert (user) in the
teaching loop, the trajectory-based representation output using LfD could avoid colli-
sions even if the robot operated in a heavily constrained operation space. Additionally,
our noncontact guiding method can avoid the resistance force of the robot in the drag
mode, making it easier and more accurate for the users to perform teaching.

In most assembly tasks, the aim is to minimize the distance between objects and
their goal positions [90]. The limited region is used to constrain the exploration area.
Many methods can describe the uncertainty region with respect to a nonparametric dis-
tribution [76] or a parametric equation. In this study, the Euclidean distance was used to
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indicate the switch signal between the fixed πH(s) and parametric πθ (s) policies in the
hybrid RRRL policy:

α(s) =

{
1, if∥CP−DFP∥2 < D
0, otherwise,

(7.8)

CP and DFP denote the current and desired final poses, respectively. D is an engi-
neering hyperparameter determined based on experience, and we suggest that D should
be at least twice the final positioning error introduced by the fixed policy πH(s). When
α(s) = 1, the force-based learning policy πθ (s) is used, otherwise the position-based
fixed policy πH(s) is used to the object back to its initial uncertain target pose. The same
switch algorithm was used during the training and execution phases. A double DQN
with proportional prioritization [125] was selected as the learning policy πθ (s) in this
study.

7.3.1.1 Action Design

The actions in the assembly task can be either a position [78], [76] or force/torque com-
mand [56], [90]. Because we aim to reduce the contact force between the object and
environment to ensure safety, the force/torque command action in the operational space
(i.e. under frame xe) was selected [90].

Here, we set the orientation space as the position mode to utilize the flexibility of
the suction cup. Then, all the torque commands in the operation space were set to 0 Nm,
and all the force amplitudes were set to 10 N, which is half of the force amplitudes set
in [56].

7.3.1.2 State Design

Forces and torques feature the most direct information that characterizes con-
tact states during an operation.Thus, the 6-dimensional force-torque vector s =
[Fx,Fy,Fz,Mx,My,Mz] under the robot EE’s frame xe were sent to the RRRL network
as the input state.

7.3.1.3 Reward Design

We employed the precise target position of the hole as a reference for the reward during
the learning phase. Unlike the execution phase, the precisely desired position was easy
to obtain because the robot exhibited high positional repeatability.

r =

{
1− ksteps/kmax, success
−∥CP−DFP∥2, otherwise.

(7.9)

The evaluation of the combined RRRL and LfD framework is described in Chap-
ter 10 with a 3C machine tending task setup.
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Chapter 8

Sim-to-Real Transfer Learning

Industrial robots are commonly used in structured environments, such as car manufac-
turing factories and phone assembly lines. The requirement to push the border of the
"Robot Zone" [163] toward the manual manufacturing domain is increasing rapidly. Hu-
mans can execute manual manufacturing tasks easily using visual and force feedback,
whereas robotic conventional methods, such as position control or visual servoing, are
difficult to accomplish. RL shows the potential to solve complex robot manipulation
problems because it allows an agent to interact with the environment for trial-and-error
learning and accepts high-dimension feedback as the input [78], [150], [68].

For contact-rich manipulations, it is nontrivial to establish a robotic system that can
learn a task with a safety guarantee and avoid wear and tear problem. Thus, sim-to-real
methods are proposed to address the aforementioned concerns [113]. Recently, style
transfer methods based on GAN [41] have been proposed recently in the computer vision
field, enabling the use of vision-based manipulation tasks for deploying visual sim-to-
real methods.

RL has shown some progress in robotic contact-rich tasks in unstructured environ-
ments; however, sample efficiency and safety concerns are two main problems when
performing policy training. Many RL algorithms require millions of steps to train poli-
cies for performing complex tasks [82], [78]. In other words, human supervision is al-
ways needed in resetting experiments, hardware status monitoring, and safety assurance,
which is quite time-consuming and tedious [55].

The sim-to-real approach shows the potential to solve the aforementioned problems;
however, one significant difficulty associated with this approach is bridging the reality
gap to address the mismatch in distinct distributions of rendered images and real-world
counterparts. Another challenge is ascribed to force modeling in simulation as the force
interactions will inevitably occur between the target object and environments when per-
forming contact-rich tasks. Moreover, it is expensive to apply the system calibration due
to the limitation of the simulation domain expert’s ability [144] and accurate require-
ments [48].

In this chapter, the sim-to-real framework was proposed to solve the aforementioned
problems. The training system was built in a Bullet simulator [33], the robot and task
environment are modeled based on OpenAI Gym [14].
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8.1 Soft-Actor-Critic based RL Framework
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Figure 8.1: The SAC based RL framework.

We proposed a sim-to-real learning-based framework for contact-rich PiH operation by
utilizing CycleGAN approach and robot force control.

Our approach is divided into two steps:
Step 1: a visual-based PiH insertion policy is trained in the simulation environment.
Step 2: the CycleGAN approach to transfer the real-world observations to the simulation
observations, moreover, a force controller is used to solve the contact-rich issue during
the assembly.

8.1.1 Policy
The SAC algorithm [44] was employed in our framework. SAC introduces an entropy
H in its objective function (Equation (8.2)), which is a significant characteristic, where
α denotes a temperature parameter that determines the importance of the entropy term.

H(P) = Ex∼P[− logP(x)] (8.1)

π
∗ = argmax

π

Eτ∼π

[
∞

∑
t=0

γ
t(r(st ,at)+αH(π(·|st)))

]
(8.2)
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Similarly, the value functions Equation (8.3) is also modified by the additional en-
tropy:

V π = Eτ∼π

[
∞

∑
t=0

γ
t (R(st ,at ,st+1)+αH (π (· | st))) | s0 = s

]

Qπ(s,a) = Eτ∼π

[
∞

∑
t=0

γ
tR(st ,at ,st+1)+α

∞

∑
t=1

γ
tH (π (· | st)) | s0 = s,a0 = a

] (8.3)

The entropy is used to measure the randomness of a given policy. In this study, the
policy is trained to maximize a value that relies on the expected return value as well as
the entropy. It helps to reach a good trade-off between exploration and exploitation.

SAC will update one policy πθ and two Q-functions Qφ1,Qφ2 during the training.
SAC policy uses Mean-squared Bellman Error (MSBE) loss for each Q network, which
is shown as:

L(φi,D) = E(s,a,r,s′,d)∼D

[(
Qφi(s,a)− y

(
r,s′,d

))2
]

(8.4)

y
(
r,s′,d

)
= r+ γ(1−d)

(
min
j=1,2

Qφtarg, ,

(
s′, ã′

)
−α logπθ

(
ã′ | s′

))
, ã′ ∼ πθ

(
· | s′

)
(8.5)

D represents the replay buffer. To prevent the overestimation of Q value, SAC chooses
the minimum Q-value in two Q approximates. The policy aims to maximize the new
objective function including the expected return and expected entropy. In order to allow
stochastic descent on the loss function, a reparameterization trick is utilized as 1:

ãθ (s,ξ ) = tanh(µθ (s)+σθ (s)⊙ξ ) ,ξ ∼ N (0, I). (8.6)

Observation Action

Critic Net1 Critic Net2

min(Q1  ,,Q   )

Q value

Observation

Actor Net

Action

Figure 8.2: The general SAC architecture.

The general SAC architecture is shown as Figure 8.2.
1https://spinningup.openai.com/en/latest/algorithms/sac.html
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8.1.2 States
For a vision-based learning policy, the commonly used observation states are the RGB,
grayscale, and latent representation [78], [128]. In this work, we select observation
spaces as follows:

• RGB observation space: 3×64×64 tensor

• Grayscale observation space : 1×64×64 tensor

• Latent representation observation space: 128×1 vector.

For the RGB and grayscale observation spaces, the network conducts end-to-end
learning; in other words, raw images are inputted to the network and the output com-
mand is obtained. For the latent representation observation space, an Variational Autoen-
coder (VAE) [117] is employed as a part of the network. This autoencoder comprises an
encoder and a decoder, we exploit the encoder to compress the input image and generate
the latent representation observation space. Different from an autoencoder, a VAE can
provide a probabilistic manner for describing an observation in latent space instead of
an encoding vector with specific values. Each latent attribute for a given input is repre-
sented as a probability distribution.

8.1.3 Actions
Inspired by the literature [77], the necessary translation movement along the X-, Y-,
and Z axes are considered and the orientation of the EE is fixed. We define a three-
dimensional (3D) vector that contains the translation movement information of the
robot. We use a position controller in the simulation, and the robot will move along
a relative distance with respect to the current pose. The continuous 3D displacement
action space ∆P

∆P = [∆x, ∆y, ∆z], (8.7)

which considers translation movement along the X-, Y-, and Z-axes. The value in each
axis is strictly in the interval of [−0.02,0.02] m.

8.1.4 Rewards
Some researchers set reward functions based on the different insertion phases such as
reaching, alignment and insertion [77], [56], making the reward function hard to design;
and need to distinguish the different phases. We only design one normal reward function
that combines L1 and L2 distances for reaching, alignment and insertion phases and one
reward for successful insertion:

R(s) =


50, (Success)
−( f lag∗10+0.4∗ (

∥∥pob j − pgoal
∥∥)

+0.6∗ (|pob j − pgoal|)) (Otherwise),
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where pob j and pgoal represent the positions of the peg and hole, respectively, and
flag is set to 1 if the robot moves to a distance exceeding a certain threshold (i.e., 15 cm
away from the hole center); otherwise, it is set to 0. Here, flag works as a punishment
when the robot makes unexpected movements.

8.2 CycleGAN and Force Control based Sim-to-Real
Transfer Learning

The sim-to-real learning-based framework for a PiH insertion task is presented in Fig-
ure 8.3. Sim part (in blue) is used to train the encoder (Frozen Net) and RL policy net
in a simulator. In real pipeline (red part), GRS : R → S is a mapping function generated
using a cycle-consistent generative adversarial networks (CycleGAN) to transfer an im-
age from a real-world style to a simulator style. In the simulation, a position controller
is used to execute the policy actions while a force controller is called when transferring
the policy to the real world.

8.2.1 Observation Space Transfer
To transfer our policy from the simulator to the real world, we must transfer the images
from the domain of the real world to their counterparts in the simulator. Conventionally,
training an image-to-image translation model requires a paired dataset. The requirement
for paired examples is a limitation, it is challenging and expensive to prepare these
datasets.

A successful approach for unpaired image-to-image translation is the Cycle-
consistent Generative Adversarial Networks (CycleGAN) [167]. CycleGAN aims to
update the data distribution in simulation to match the real one through mapping or
regularization enforced by the task model, i.e., it is an approach to transfer the source
data distribution to the distribution in the target domain. In order to avoid the draw-
back of GAN, CycleGAN introduces a novel approach called cycle-consistency, which
can be used to calculate the reconstruction error of the images. There are two mapping
functions: G : X → Y and F : Y → X and associated adversarial discriminators DY and
DX .

For function G : X → Y and its discriminator DY :

LGAN (G,DY ,X ,Y ) = Ey∼pdata (y) [logDY (y)]+Ex∼pdata (x) [log(1−DY (G(x))] (8.8)

For function G : Y → X and its discriminator DX :

LGAN (F,DX ,X ,Y ) = Ex∼pdata (x) [logDX(x)]+Ey∼pdata (y) [log(1−DX(F(y))] (8.9)

For the cycle consistency loss function:

Lcyc(G,F) = Ex∼pdata (x) [∥F(G(x))− x∥1]+Ey∼pdata (y) [∥G(F(y))− y∥1] (8.10)

Finally, the full objective is:

L (G,F,DX ,DY ) = LGAN (G,DY ,X ,Y )+LGAN (F,DX ,X ,Y )+λLcyc(G,F) (8.11)
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Chapter 8. Sim-to-Real Transfer Learning

where λ controls the relative importance of the two objectives, and function:

G∗, f ∗ = argmin
G,F

max
Dx,DY

L (G,F,DX ,DY ) (8.12)

should be solved.
In our framework, we command the robot to move randomly in the view of the

camera and captured its random state each time. Approximately 200-300 images can
be effortlessly obtained for training the model. Using the style transfer based on the
CycleGAN, we map the view of the camera in the real-world environment to its coun-
terpart, which we use to train our policy.

8.2.2 Action Space Transfer
In a study [144], researchers incorporated force augmentations by multiplying a random
constant α with the force and the moment because they arrived at the conclusion that the
direction of the vectors (F,M), but not the magnitude, is the most important factor
in insertion operations. We extended this conclusion to our sim-to-real transfer process
using a new method: we multiply gain K and the original position action output ∆P and
then use the product Creal as the control command for the real robot force controller:

Creal = [Fx,Fy,Fz]

= K∆P
= K[∆x, ∆y, ∆z],

(8.13)

For instance, if K = 100 N/m, then the force command values along the X-, Y-, and
Z-axes are in the range [−2,2] N.
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Chapter 9

Visual Residual Reinforcement
Learning for RAM Insertion

9.1 Experiment Setup

9.1.1 Setup Description

D435i
camera

FRANKA
robot

RAM
target
slot

Dell
laptop

Mother
board

RAM
storage
slot

Figure 9.1: A contact-rich task scenario: RAM insertion.

We consider the experiment for the insertion task here. The task can be described as
moving the already-grasped parts to their goal pose (Figure 9.1). This is the most com-
mon setting in manufacturing. The success of such tasks can be measured by minimizing
the distance between the objects and their goal pose especially in the Z direction (see
Figure 9.1).
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9.1. Experiment Setup

We used the Franka robot [38] 1 for real robot experiments and set the translational
Cartesian stiffness as 3000 N/m and stiffness for the rotations as 300 Nm/rad (Recom-
mended upper limit).

(b)

Image sensor Image sensor
RGB sensor

Infrared 
Projector

Length:99mm

Height:
23mm

Width:
20mm

Figure 9.2: Intel RealSense D435 camera sensor configuration, appearance, and dimensions.

Two sensor modalities were available in the real hardware, including proprioception
and red-green-blue (RGB) depth camera as shown in Figure 9.2 (This figure is redrawn
according to 2 ). The RGB and depth information was recorded using the eye-in-hand In-
tel RealSense Depth Camera D435i. The policy ran on a Dell Precision 5510 laptop and
sent the updated position to the real-time controller, which calculated the joint torque
command and sent it to the robot controller at 1000 Hz. We used a CORSAIR DDR3
RAM and a motherboard as the training and testing environment.

1https://frankaemika.github.io/docs
2https://www.intelrealsense.com/depth-camera-d435/
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Chapter 9. Visual Residual Reinforcement Learning for RAM Insertion

9.1.2 Task Analysis

Robot
gripper Spring 

contacts

RAM

RAM slot

A B

Figure 9.3: A contact-rich task scenario: RAM insertion. Such tasks always have stuck problems
due to tight clearance and narrow space.

9.1.2.1 Position Uncertainty in Unstructured Environments

Position uncertainties are quite normal in human-based production lines as the operation
objects are not fixed. Workers could perform high-precision robotic assembly tasks with
their strong intelligence, excellent visual ability, and dexterous hands. Whereas these
tasks are challenging to robots, especially in unstructured production environments.

In addition, the friction and obstruction in contact-rich tasks introduce large posi-
tional errors due to the low-stiffness design concepts of torque-controlled robots. The
limited control stiffness combined with the friction and obstruction in contact-rich tasks
gives the position control error at a millimeter level. Torque-controlled robots are ex-
pected to achieve a desired dynamic relationship between environmental forces and
robot movements to avoid breaking the environments or targets, thus the desired po-
sition and contact force cannot be satisfied in the same DoF simultaneously. Moreover,
the location of the targets is uncertain sometimes due to the insufficient accuracy of
industrial assembly lines.

Using the visual method to correct the positions of the targets is an intuitive solution,
while we still have position control problems when the robot contacts with targets due
to the reason as we explained in Section 6.1, even though we have implemented some
explore actions (e.g., the spiral explore method [109]).

In 3C production lines, the insertion scenarios are different from the typical sim-
plification settings of peg-in-hole [77], [56]. For example, the random-access memory
(RAM) insertion task has the following problems:

1. The RAM slot or other slots do not have proper surfaces for the sliding behavior
of a robot in the alignment stage [77], [89] ( Figure 9.1), which makes sliding-type
algorithms not to work anymore;

2. The objects (like the RAM or hard disk) would be easily stuck by the structure
near the slot or the slot itself in the explore/alignment stage;
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9.1. Experiment Setup

3. Compared with previous studies, the slot has a long and narrow shape with tight
clearance, which is difficult to insert by random and traditional search algo-
rithm [109], [112].

9.1.3 Uncertainty of POMDP States

RAM slot

A B

RAM slot

A B

RAM slot

A B

Normal insert

Stuck at B

Stuck at A

Figure 9.4: Success and failure insertion cases

Contact point

Contact point

(a) (b)

Figure 9.5: (a) RAM contacts with one slot side in movement action with 5 N force feedback
in the Z direction. (b) External moment data My which is difficult to detect the torque contact
status (goes up first and then down during the contact force increase).

The main challenge of the traditional policy is to design adaptable, yet robust algorithms
when faced with inherent difficulties in modeling all possible interaction behaviors. RL
enabled us to find new control policies automatically for contact-rich problems where
traditional heuristics had been used, but the results were unsatisfactory.
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Chapter 9. Visual Residual Reinforcement Learning for RAM Insertion

Contact states are hard to estimate due to the sensor noise and robot modeling error,
changing the Markov decision process (MDP) to POMDP, making it significantly harder
to find an optimal policy [104], and it requires more training time. Belief state tracking
is one way to handle the POMDP problem [86], [161], [88], but this method takes too
much time to find an optimal policy.

9.2 RAM Insertion Task Implementation

9.2.1 Proactive Action
Most studies [77], [90], and [61] have modeled the robot manipulation task as a finite-
horizon discounted Markov Decision Process (MDP) M in an environment E, with
a state space S , an action space A , state transition dynamics T : S ×A → S , a
discount factor γ ∈ (0,1], and a reward function r : S ×A →R to determine an optimal
stochastic policy π .

In practice, many contact states st cannot be observed directly in the manipulation
tasks that are close to a POMDP problem. However, the POMDP problem is confined to
the modeling error of the torque-controlled robot, which makes it difficult to detect the
contact states.

Gorilla

actioninvestigative
action

>>>>>>>>>>Cross the river >>>>>>>>>>

estimate
state

status
reward

Deepth?

Drown?
 S
li
pp
er
y?

River

Figure 9.6: Process modeling of a gorilla cross river task. An investigative action is used to
clarify the state and to avoid punishment (i.e. the dangerous states).

Inspired by wild gorillas, who tried crossing a pool of water using a walking stick to
test the water depth [13], the process is modeled as Figure 9.6.

We improved our RL process by adding a proactively investigative action (aI) that
could detect the clear states (est) involved in the RL process (Figure 9.7), which is
different with [56] that continues to push the target to obtain a detectable moment; the
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9.2. RAM Insertion Task Implementation

action
at

Environment

state&reward
st, rt

estimate
state

est/est+1

Investigative
Action

aI

st+1, rt+1

SE belief?
N

Y

Agent

Figure 9.7: Investigative action idea for solving POMDP problem. SE: state estimator. The states
will be estimated by the SE function, then the policy receives the clear states and outputs an
action.

investigative action space T I is a smooth m-manifold, where m = 6 and T I = SE3 =
R3 ×SO3.

We use the investigative action aI combined with ut to construct a new policy uI
t (st)

instead of the original ut(st), which can be written as aI,ut → E → sI
t+1, where sI

t+1
is determined by adding an investigative action aI of the torque-controlled robot to the
environment. Consequently, the heuristic design of the investigative action prevents the
learning process from falling into multiple unclear states.

Contact point
Contact point

(a) (b)

Figure 9.8: (a) RAM contacts with the side of the slot using investigative action with 25 N
press force. (b): External moment My reaches -1 Nm which could clearly detect contact status.

In particular, the torque-controlled robot outputs either the movements or the forces.
In our experiments, the movements are considered as the actions in the action space
A , and the forces are considered as the investigative actions. Instead of using 20 N
force continuously to detect the values of the moments in the search phase [56], we only
command the controller to exert a force (10–25 N) in some directions in a short time
(0.5–1 s) as the investigative action, whereas the feedback movements or forces/mo-
ments are used to verify the contact states when the states are vague. Our investigative
action method can markedly reduce the friction and probability of being stuck when the
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Chapter 9. Visual Residual Reinforcement Learning for RAM Insertion

robot performs movement actions.

9.2.2 Experiment Algorithm Design
In the weighted residual RL in this chapter as shown in Figure 9.9, actions ut are de-
signed by adding the fixed policy uH = πH(sv) with the parametric policy uRL ∼ πθ (st):

ut = (1−α)uH +α ∗uRL. (9.1)
The fixed policy output uH is calculated by a hand-designed controller as given in Equa-
tion (6.7); α helps to adjust the balance between exploration and exploitation. We set
kp to (1,1,0.3,0,0,0) when calculating the fixed policy. To identify a reasonable weight
between the two components, we initially experimented with the weighted residual RL
by introducing a group of action weight parameters, such as 0.3, 0.5, and 0.7. The train-
ing experiments suggested an optimum policy output with a weight of 0.5, whereas
the weight could increase or decrease around 0.5 according to the visual condition in
the implementation phase. We used the algorithm to detect states and implemented its
slightly-modified version, where the trained policies were constructed by the two afore-
mentioned components. Here the flag belief is set to 0 or 1, according to the moment
threshold settings, a detectable moment (over threshold) always gives the true belief
state. Combined with the investigative action mentioned in Section 9.2.1, the modified
Q-learning algorithm was trained at a high speed, and it easily resulted in optimization.

9.2.2.1 Action Design

We design Cartesian movement actions for this experiment. Each Cartesian movement
dimension was set to +1 for a positive movement and −1 for a negative movement;
therefore, we had 6∗2 = 12 discrete actions. We set λ as the scale parameter to adjust
the amplitude of the discrete actions similar to [56] as

a = λ [Pd
σx,P

d
σy,P

d
σz,R

d
σx,R

d
σy,R

d
σz]. (9.2)

Here, P and R are positional and orientational movements under EE frame, respectively.
λ is easy to choose because it is closely related to assembly clearance and visual accu-
racy, normally we set λ = 0.002, then we have movement resolution at 0.002 mm and
0.002 rad level. We found that orientational movement accuracy was enough by using
the fixed policy uH , so we only output positional movement actions in our RL idea, this
is a normal setting because of the visual feedback and force feedback are complementary
during contact-rich manipulation.

The investigative action was designed as the force action eFz = 25N under robot
EE frame Fe for 1 s. The robot will try adding force but will stop moving if the force
is greater than 25 N or the movement is greater than 3 mm. Then, the agent will obtain
clear state feedback because of the large contact force and torque amplitude (Figure 9.8).
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Chapter 9. Visual Residual Reinforcement Learning for RAM Insertion

9.2.2.2 Reward Design

Depending on the pose error between the current and the target pictures, the reward
function was set as follows:

r =


1, (success)
−2, (failed).
1−150∥sxy∥2 − s/smax, (otherwise).

Here, sxy is the norm of the x and y errors of the images, s is the number of steps in one
episode, and smax is the maximum steps in one episode.

9.2.2.3 State Design

The estimated 6-DoF external forces and moments along the X, Y, and Z axis under the
EE frame were obtained from the Franka controller. The contact force and the moments
between the robot’s EE (i.e., the RAM) and the slot were considered as the Markov
Decision Process (MDP) states as follows:

s = [Fx,Fy,Fz,Mx,My,Mz] (9.3)

We assume that the EE contacts the slot when the external force |F |> 4 N or the external
moments |M| > 0.4 Nm, a value of ±1 means that contact is made, whereas 0 means
that there is no contact with the encoding states.

9.2.2.4 Experiment Algorithm

Combine proactive action with policy framework as shown in Figure 6.3, the Algo-
rithm 1 was improved as:
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9.3. Experimental Evaluation

Algorithm 3 Visual Residual RL with Proactive Action
Require: RL policy πθ , fixed policy πH .

1: for iteration=1 to M episodes do
2: Copy latest policy πθ from learning thread
3: Sample initial state s0
4: for step=1 to N do
5: Get action uRL by greedily picking from πθ (st)
6: Get action uH from πH(sv)
7: Output policy action: ut = (1−α)uH +α ∗uRL
8: if belief ==true then
9: Get next state ut → st+1

10: else
11: Get next state aI,ut → st+1
12: end if
13: Optimize πθ with Equation (6.8)
14: if EpisodeEnd == true then
15: break
16: end if
17: end for
18: end for

9.3 Experimental Evaluation

9.3.1 Tasks Setup
In the ablation study experiment, the trained policy was evaluated by masking different
modalities as four baselines given below:

1. No vision: masks out the visual part action; α = 1;

2. No RL policy: masks out the RL part action; α = 0;

3. Random policy: generates a random Q table

4. No investigative action: masks out the investigative action and chooses random
action when the state is not clear.

The maximum steps was set as 10 and initial random errors (|error| ∈ [2,3]mm) was
added in the x and y directions for each baseline in the ablation study experiment.

In the comparison study experiment, we compared the task success rates of our
method with the other four baselines in the real scenarios (no maximum steps limit
and no initial random errors for each baseline) by moving the motherboard, which are
as follows:

1. Baseline 1: For normal teaching and direct insertion;

2. Baseline 2: For normal teaching with spiral exploration;
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Chapter 9. Visual Residual Reinforcement Learning for RAM Insertion

3. Baseline 3: For teaching with vision and direct insertion;

4. Baseline 4: For teaching with vision and spiral exploration.

9.3.2 Results and Discussion

Table 9.1: Ablation study of policy evaluation statistics

Baselines Result(success/total) Total Time Cost

No vision 92/200 1.09 h
No RL policy 112/200 0.65 h
Random RL policy 77/200 2.59 h
No investigative action 66/200 0.85 h
Our method 179/200 1.18 h

The policy was trained with 500 episodes, and each episode lasted a maximum of 50
steps. The training time for the exploration was approximately 150 min, which is much
less than [77]. We specified discrete actions in this experiment, and the action execution
had errors. The policy can increase the probability of success and decrease the cost steps
but cannot guarantee success every time. The random errors were set for the initial pose
of the robot; sometimes, the robot will successfully insert by chance and obtain a high
reward in the early stage of training.

Table 9.1 shows the ablation study result of the policy evaluation statistics. Ran-
dom RL policy and No investigative action had poor performances with success rates
of 38.5% and 33%, respectively. No vision had a 46% success rate because of discrete
overshooting actions whereas No RL policy had a 56% success rate because the RAM
was always stuck by the short side of the slot. The proposed method had a success rate
of 89.5%. Notably, the success rate of our method is limited by the maximum steps in
the experiment.

The absence of either visual or correct forces/moments information negatively af-
fected the task success rate, and wrong policy performance was even worse than with-
out RL policy. Therefore, the Random RL policy and No investigative action had similar
performances because the RL policy is always in conflict with the visual output action.
None of the four baselines reached the same level of performance as the final method.
With visual input alone, the robot sometimes cannot overcome the last small distance be-
cause of either the limited movement accuracy of the robot or contact friction, whereas
the RL policy is capable of recovering from such issues, which could be proven in our
method. Without the visual input, the robot will require more steps to find the proper
pose for insertion and will always overshoot for some actions (i.e., drop out of the slot).

Table 9.2 shows a comparison of the success rates of different traditional method
baselines. To simulate an industrial scenario, the additional random error and maximum
step limit in the ablation study are removed. Obviously, baselines 1&2 work well only
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Table 9.2: Comparison of success rates for different baselines

Baselines Fix motherboard Move motherboard

Baseline 1 97/100 0/20
Baseline 2 100/100 0/20
Baseline 3 98/100 81/100
Baseline 4 100/100 88/100
Our method 100/100 100/100

when the motherboard is fixed in the same position as in the teaching phase, so we only
test 20 times in the “move motherboard” case for baselines 1&2 for saving time. The
success rates for baselines 3&4 increased with vision correction, but still have failure
cases due to the visual error. Our method shows a strong ability to tolerate environ-
mental variations and resilience from stuck with full success, which really meets the
requirements of industrial scenarios. Notably, in the comparison study, the increase of
success rates is also related to the removal of initial errors and removal of the limit of
the maximum steps.

In this chapter, RL with an operational space visual controller was introduced to
solve position uncertainty problems in high-precision assembly tasks, and a proactive
action idea was proposed to solve the POMDP problem using an investigative action.
This proactive action idea could also be extended to other POMPD algorithms to predict
and clarify the unclear states.

The proposed method could solve the shortage of traditional visual servoing methods
by using our visual residual RL algorithm, which inherits some traditional controller
parameters that make the setting up not fast enough. The SSD insertion scenario with
our policy achieves full success with 100 episodes.

At the end of this chapter, I would like to thank the gorilla for the inspiration during
my research (Figure 9.10).

Thanks for your attention!

Contact-based 
policy

Visual-based 
policy

Figure 9.10: Thanks to the clever gorilla for the inspiration during this research. This figure has
the original author’s use and editing authorization.
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Chapter 10

Combine LfD and LbE for 3C Machine
Tending

10.1 Experiment Setup

EE

Machine

EE

Tight-fit 
Fixture

CarriageMobile 
Manipulator

Camera

Sucker

Robot

Worker

1

2 3

4Part

Figure 10.1: A mobile manipulator system performing a contact-rich tending task using a vac-
uum gripper.

In Figure 10.1, a contact-rich tending task is performed by a mobile manipulator system,
the mobile manipulator system has one mobile manipulator and one robot, also a vacuum
gripper is equipped at the robot EE. Moreover, a camera is installed at the robot EE to
ensure the pose correction.
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Holder

Object

Heavily constrained 
operation space

Desired grasping pose 
(DGP)

Desired  final  pose
(DFP)

Figure 10.2: Hand-guiding teaching in a heavily constrained operation space to implement a
tending task.

A UR5e robot 1 was used to implement our novel approach to facilitate the tending
task Figure 10.1. The UR5e features a 6-axis and 5 kg payload, a working radius of 850
mm. It is equipped with a 6-DOF force/torque sensor on the EE. UR5e robot uses admit-
tance controller [50] to achieve operational space force control. A Schmalz CobotPump
ECBPi suction cup was installed beyond the force/torque sensor in order to ensure the
detection of the contact force with the environment. An Intel RealSense Depth Camera
D435i was attached to the EE to conduct the visual servoing process. Our policy was
run using a Dell Precision 5510 laptop, and the updated position was sent to the UR5e
controller. We used ur-rtde 2 as the Python interface for controlling and receiving data
from the UR robot. A 6-DoF ATI Axia80 force sensor 3 was mounted under the holder
in order to measure the operating force, and a low-pass filter with a cutoff frequency of
9.37 Hz was used to mitigate the force noise.

1https://www.universal-robots.com/products/ur5-robot/
2https://pypi.org/project/ur-rtde/
3https://www.ati-ia.com/Products/ft/sensors.aspx
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10.2 Machine Tending Skill Implementation

Reaching
Exploration Insertion

Learning from Demonstration 

Learning  by  Exploration

Robotic Assembly Tasks

(a)

(b)

(c)

Figure 10.3: A robot arm and a suction gripper performing a machine tending skill consist of
LfD and LbE.

In Figure 10.3, a machine tending skill consist of LfD and LbE is shown as Figure 10.3
(a) and (b), respectively. The gross motion is learned from human demonstration (LfD)
and the fine motion is learned from exploration (LbE). An example of a contact-rich
tending task is shown in Figure 10.3 (c).

10.2.1 Parameters Setup
In order to gain more contact experience, a positional error δP ∈ [2,4] mm was added
in a random direction during the training phase. The transitions (st ,at ,rt ,st+1) sampled
from the environment were stored in a replay buffer [125]. The size of the experience’s
replay memory Preplay was 20, 000, the maximum number of training episodes M was
200, and the maximum number of steps kmax for the search phase was 50. The batch size
Pbatch was set to 64 to select random experiences from Preplay, and the discount factor λ

was 0.5.
Carefully exploiting the natural constraints in the design of the learning policy was

essential for the assembly tasks considered herein. It is obvious that the task is simplified
if the motion is constrained in “wrong” directions. We utilized comparative experiments
to investigate the ways in which different force-based actions utilize natural constraints.
We set the same initial positional error of δP ∈ [2,4] mm in a random direction, and
then performed a random strategy to select the actions. We tested each action 200 times
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10.2. Machine Tending Skill Implementation

with a maximum step of 20 and a maximum force amplitude of 10N, the success rates
of which are as follows:

Table 10.1: Success rate of different random actions

Force control action Success rate

1 Operational space controller [90] 32%

2 Fz with the force of another one dimension [56] 60%

3 Fz with the forces of other two dimensions 69%

The third discrete action as Equation (10.1) performs the best in the comparison
experiment:

1 :[+eFx,+
eFy,+

eFz,0,0,0]
2 :[+eFx,−eFy,+

eFz,0,0,0]
3 :[−eFx,+

eFy,+
eFz,0,0,0]

4 :[−eFx,−eFy,+
eFz,0,0,0]

(10.1)

Here, we set the orientation space as the position mode to fix the orientation of the
suction cup. All the force amplitudes were set to 10 N. The state sampling frequency
was 10 Hz, which could guarantee the observation of the contact states.

10.2.2 Task Setup
A tight clearance machine tending task (similar to the assembly task) was used to eval-
uate our method and the two baselines. One holder was installed in an opaque box to
simulate a situation in which the field of view in the production line is obscured and an
object is inserted into the holder. The users were provided a brief tutorial and allowed to
practice until they felt ready. A group of four able-bodied volunteers (1 female, 3 male,
aged: 24 to 35) participated in the experiment.

The commonly available methods for collaborative robots were selected as base-
lines [75]. We compared our proposed method with the following baselines:

1. Teach-pendant + spiral searching. The UR5e teach pendant with a UR
PolyScope GUI was held in one hand by a user, who pressed the on-screen buttons
to map the rate control of the EE’s translation and rotation in the task space T
with the other. At the DFP, a spiral search function similar to that outlined in the
literature [111] was added;

2. Hand-guiding + spiral searching. The UR5e “Freedrive” mode was utilized, and
users physically grabbed and exerted force to move the robot arm using one or two
hands. At the DFP, a spiral search function was also added.
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10.3 Experimental Evaluation

1.Define grasping pose 2.Moving to target

3.Check alignment 4.Insertion

Figure 10.4: Teach-pendant teaching: aligning the object with the target holder by eye is diffi-
cult.

1.Define grasping pose 2.Moving to target

3.Moving to target 4.Alignment and insertion

Figure 10.5: Hand-guiding teaching: moving the robot EE with singular configurations and
aligning with the target holder are difficult.
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1.Define grasping pose 2.Define relative transformation 

3.Guiding to target 4.Insertion

Figure 10.6: Visual servoing based LfD method teaching: contact-free guiding that is not phys-
ically demanding, and is easy to align without robot resistance.

We evaluated our methods in the teaching and execution phases. In our experiments in
both phases, we aimed to answer the following questions: (Q1) Can our method maintain
fast and easy programming abilities even in constrained operation spaces? (Q2) Can our
method retain the execution success rate against positional uncertainty? (Q3) Can our
method reduce the risk of damage during the operation of an object?

The following data were used to compare the advantages and disadvantages of the
different methods:

1. Teaching time: The task’s completion time was measured as the time cost by the
user to move the robot from the DGP to the DFP (Figure 10.2);

2. Execution success rate: After the teaching phase was completed, the trajectory
of the demonstration was executed and the insertion success rate was tested. Con-
trary to the “perfect” group, an error of δP ∈ [2,4] mm in a random direction
was added on DFP to simulate the pose uncertainties in the “uncertainty” group
(Figure 10.2);

3. Risk of damage: The risk of damage caused by the operating force was ignored
in previous studies [77], [89], [90], [76], [111]. In this study, the maximum abso-
lute contact force during contact operation was employed to evaluate the risk of
damage.
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(a)

(b)

(c)

Figure 10.7: Contact force during teaching. (a) This curve shows the contact characteristics of
the teach-pendant teaching method: the user uses an “observe-move” strategy and only makes
adjustments after finding unsuccessful insertions, hence, the contact force is maintained during
the observation. (b) The hand-guiding method: the object frequently collides with the holder
when it is not inserted (impact force in the figure), and there is a continuous contact force after
inserting the object. (c) Our method produces a small contact force (less than 5 N) in the teaching
phase.

Table 10.2: Evaluation in the teaching phase

Teaching phase Time cost Maximum contact force

Teach-pendant 60–120 s 15–50 N

Hand-guiding 15–42 s 30–60 N

Our method 23–30 s 3–10 N
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(a)

(b)

Figure 10.8: Contact force during execution. (a) Spiral exploration method: the first half of
the curve (700-1500ms) is not yet constrained by the holder, and the contact force is small
and stable. After 1600ms, the object is inserted into the holder, immediately generating a larger
contact force. Due to the accuracy issue of the UR5e force sensor, the spiral movement generates
a larger contact force than the stopping threshold. (b) RRRL method: the maximum contact force
is around 10N because of the force action amplitude limitation.

Table 10.3: Evaluation in the execution phase

Execution phase
Success rate Maximum

contact forcePerfect Uncertainty

Only teach-pendant 55/100 17/100 15 N

Only hand-guiding 33/100 5/100 15 N

Teach-pendant +
spiral searching

69/100 47/100 35 N

Hand-guiding +
spiral searching

51/100 33/100 35 N

Our method 95/100 91/100 15 N

Overall, the results of 12 group robot teaching and 1000 group robot execution were
obtained.

The teaching phase test scenarios can be observed in Figure 10.4, Figure 10.5, Fig-
ure 10.6 and the results are presented in Table 10.2. Although it is more generalized,
our method features a similar time cost to the hand-guiding method. Using the hand-
guiding method, male volunteers always required less teaching time than females owing
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to physical demands. All the volunteers noted that the robot “required excessive force to
move, particularly near the boundaries”. Our method does not require physical contact
with the robot, therefore, it is not physically demanding. All the volunteers required con-
siderably longer teaching times when the teach-pendant teaching method was used. A
considerable amount of time was spent aligning the object with the target, and the tricky
sight angle made this even more difficult. In contrast, our method does not require a
human to align the object with the target, but enables the robot arm to actively track
the object to attain the target position. Thus, the setup is performed quickly. Hence, the
answer to Q1 is yes. Furthermore, our method produces minimal contact force on the
environment (Figure 10.7), as our schematic approach is identical to the human tend-
ing one. The other two methods resulted in considerably less transparency during the
interactions with the environment owing to the resistance of the robot arm itself or the
inability to interact with the environment in terms of force.

The execution phase results are presented in Table 10.3. The success rate of our
method far exceeded those of the other reference baselines. We found that the elasticity
of the suction cup had a major influence on the accuracy of the demonstrated target
position. The contact force at the end of the demonstration could induce the deforma-
tion of the suction cup and thus affect the actual target position. Using our method, the
robot EE did not contact the target environment at the end of the teaching phase; hence,
there was no contact force and therefore no deformation of the suction cup. Finally, high
target position accuracy was achieved. Additionally, the RRRL policy could determine
force actions based on the contact state of the object and holder, thus greatly improving
the insertion success rate. Our method can guarantee small contact forces owing to the
amplitude limitation of the force actions (Figure 10.8(b)). Therefore, the answers to Q2
and Q3 are also yes.

In this chapter, we combined visual servoing based LfD and force-based LbE to fa-
cilitate the rapid and intuitive execution of the assembly tasks that require minimal user
expertise, involvement, and physical exertion. The efficiency of the proposed method
was validated via a series of experiments that involved the execution of a tending task
using a robot arm and a suction cup system.

In a challenging setting designed to simulate heavily constrained operation spaces,
which is very common in actual factories, experiments that compared our method with
two commonly used baselines, namely teach pendant-based and hand-guiding teaching,
were performed. Our method realized the best feedback in terms of both subjective and
objective evaluations.
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Chapter 11

Sim-to-Real Learning for Peg-in-Hole
Manipulation

In order to validate the framework and explore its generalization, two experiments are
implemented in this work. The first framework validation experiment uses a UR5e robot
and focuses on the different observation states, also the different colors of the peg and
background are investigated. Based on the result of the first experiment, the second
generalization experiment uses a Diana7 robot and tests the different peg shapes.

11.1 Sim-to-Real Learning Validation Experiment

Camera view Camera view

UR5 robot Diana7 robot

Peg and Hole

Peg and Hole
Figure 11.1: A PiH setup with a UR5e robot in simulation.
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11.1.1 Simulation Setup With a 6 DoF Robot

In this section, we introduce the PiH task to validate our framework and explain the
experimental results for both the simulated and real-world environments, in which we
address the following questions:

1. Will all observation spaces work well in our framework?

2. Can our trained policy be transferred to a real-world environment successfully?

3. How does our framework perform compared to other insertion methods in terms
of the success rate?

4. What is the robustness of our framework under external perturbations and target
uncertainties?

Regarding the first question, to compare the performances of different observation
spaces with our framework, we test the scene of a white block with a metallic texture. We
use the success rate of a complete insertion in the simulation as a criterion to evaluate the
performance of different observation spaces. A convolutional neural network is utilized
as a part of the SAC network for training using the inputs from the RGB and grayscale
observation spaces. A VAE is used to obtain a latent representation of the input image.
The encoder part allows the compression of the original image to a lower-dimension
vector that contains the important information. We first generate a series of images of
the robot state by executing random actions in the simulator as the training dataset and
then train the VAE using this dataset. Thereafter, we extract the encoder as a part of the
SAC network. We use the generated simulated images of the RGB observation space
(size=3×64×64) to train the VAE.

Table 11.1: Success rates of three observation spaces

Total episodes Observation space Success rate

Gray 1×64×64 0%

RGB 3×64×64 0%3000
Latent 128×1 96%

We train the agent using cumulative episodes, and the results are shown in Ta-
ble 11.1. With the latent representation as policy input, the policy converged and the suc-
cess rate could reach 96% at checkpoints 3000. Even increasing the episodes to 10000,
the results remain the same. Thus, we choose latent representation observation space:
128×1 vector, as the states, to perform the remaining experiments.

Although we demonstrate the policy performance before using a latent representa-
tion observation space in the scene of a white block with a metallic texture, it is unclear
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(a) (b)

(c) (d)

Figure 11.2: Four different scenes. (a): a red block with a wooden texture. (b): a white block
with a wooden texture. (c): a red block with a metallic texture. (d): and a white block with a
metallic texture.

whether the difference in the scene will influence the performance. A high success rate
must be achieved in the simulation environment to perform further real experiments. Ad-
ditionally, to verify the generalization of the framework, we consider the permutation of
four environmental scenes with two blocks and two textures: a red block with a wooden
texture, a white block with a wooden texture, a red block with a metallic texture, and a
white block with a metallic texture (Figure 11.2). Every scene is trained 3000 episodes
in the simulation environment with a Dell Precision 5510 laptop IntelCore i7–6700HQ
CPU.

(a) (b)

(c) (d)

(a) (b) (c)
Figure 11.3: A example of UR5e PiH sequence in the simulation.
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Table 11.2: Success rates of different scenes (simulation)

Evaluate Trials Scene Success Rate

500

red block with wooden texture 96%

red block with metal texture 70.5%

white block with wooden texture 99%

white block with metal texture 96%

Table 11.2 shows the success rate of the framework obtained under different scenes.
All scenes achieved a success rate higher than 90%. The white block with a wooden
texture reached a 99% success rate. We compare the performance of this approach in
different scenes, and one example of PiH execution sequence is presented in Figure 11.3.

11.1.2 Sim-to-Real transfer Setup With a 6 DoF Robot

UR5 robot

Peg and Hole

Diana7 robot

Peg and Hole

Camera

Camera

Figure 11.4: A PiH setup with a UR5e robot in the real world.

In this real-world environment setup (Figure 11.4), a UR5e robot1 is used to perform
a peg-in-hole insertion task. This 6-axis robot features a 5 kg payload and a working
radius of 850 mm. It is equipped with a 6 degree-of-freedom force/torque sensor on the
EE. The robot uses an operational space admittance controller [50] with a 500 Hz control

1https://www.universal-robots.com/products/ur5-robot/
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11.1. Sim-to-Real Learning Validation Experiment

rate. The blocks are mounted behind the force/torque sensor to ensure the detection of
the contact force with the environment.

An Intel RealSense D415 camera2 is fixed on the platform to observe the operation.
The position and orientation of the camera are selected to ensure the block and hole are
visible during most of the training time. Figure 11.4 shows our hardware setup in the
experiment. In our experiment, we use a white and a red block with the same dimensions
of 65×30×25 mm, and a white block with a hole size of 70×35×30mm. The clearance
in each direction (i.e., length and width) is 5 mm. We select this setup because we aim
to establish a potential scenario in which a packed data cable is inserted into a phone
box in the mobile phone assembly line [142].

(a) (b) (c) (d) (e) (f)

(a) (b) (c)

(d) (e) (f)

Figure 11.5: Domain adaption with CycleGAN approach. (a) is from the real domain and (b) is a
fake image belonging to the simulation domain mapped by the function G, (c) is a reconstructed
image mapped by the function F from (b). Vice versa for (d), (e) and (f).

The CycleGAN is introduced to perform the domain adaptation process to transfer
the image distribution from the real world to the simulation. We capture 200 images of
the robot state in the real world and then generated a training dataset along with 3000
simulated images to train the CycleGAN. We train the CycleGAN model on four Nvidia
1080 Ti GPUs. The domain adaptation results of the trained CycleGAN with our setup
inputs are shown in Figure 11.5.

In this work, a modified admittance force controller based on the direct force control
concept ( [139]) is used, and the stiffness is set to zero. Thus the dynamic model is as
follows:

Mẍe +Bẋe = fd − f (11.1)

M is the desired EE inertia and B is desired EE damping. fd is the command force
and f is the contact force between robot EE and the environment. Then the demand
acceleration is obtained:

ẍe = M−1 ( fd − f −Bẋe) (11.2)

2https://www.intelrealsense.com/zh-hans/depth-camera-d415/
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By introducing the differentiation term and calculation cycle T into the equation, the
demand velocity and position can be calculated by several integration operations:

ẍe
t+1 = M−1 ( fd − f −Bẋe

t) (11.3)

ẋe
t+1 = ẋe

t + ẍe
t+1T (11.4)

xt+1
e = xt

e + ẋt+1
e T (11.5)

xt+1
c = xt

d + xt
e (11.6)

In this experiment, we only need a force controller, thus the new desired compliant
position xc is calculated based on the desired force fd , desired positionxd with equations
from Equation (11.1) to Equation (11.6), M and B can be adjusted according to the
behavior requirement.

(a) (b)

(c) (d)

Figure 11.6: UR5e execute the PiH operation successfully.

Based on the previous results listed in Table 11.2, we can conclude that the scene
with wooden texture achieves the highest success rate with our policy. Hence, we trans-
fer the real-world image to a scene of a block with a wooden texture using the DA
method to evaluate our framework in a real-world setup. We define three situations when
testing the policy in the real world as [78].

Table 11.3: Performances in real environment setups

Scene Complete insertion Touched the box Failed

Red block 86/100 10/100 4/100

White block 88/100 12/100 0/100
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Complete Insertion means that the robot accomplishes the insertion task completely.
Touched the box implies that the peg was moved in the right direction, but the insertion
is not completed. Failed indicates a situation in which the robot moves far away from
the target in the wrong direction or performs unexpected movements.

During the execution (Figure 11.6), we randomly occlude the camera’s field of view
for several seconds and push the robot in the wrong direction to the target hole to eval-
uate the system robustness to external perturbations. The performance of the physical
robot in the real-world setup is summarized in Table 11.3. We obtain an average success
rate equal to the method reported in the literature [78] with a safer sim-to-real framework
as we limit the force command amplitude during the control.

11.2 Sim-to-Real Learning Generalization Experiment
In the previous Section 11.1, we verified that our framework works well with a block
insertion task, In this section, a seven DoF Diana7 robot (as shown in Figure 11.8) and
6 different pegs (as shown in Figure 11.7) are used to evaluate the generalization of our
framework.

Round Square Triangular Hexagonal Card Board 

Figure 11.7: Six kinds of pegs and holes.

11.2.1 Simulation Setup With a 7 DoF Robot

In the validation experiment, we proved that the latent representation spaces (128×1
vector) perform the best in the training in simulation, thus we directly introduce the
latent representation as the observation space in this section.

A URDF file is used to describe the simulation robot and its environment
for each kind of peg and hole. The same collision and visual mesh files are
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Camera view Camera view

UR5 robot Diana7 robot

Peg and Hole

Peg and Hole

Figure 11.8: A PiH setup of board insertion with a Diana7 robot in simulation.

used to guarantee the visual input and collision feedback are aligned. Three
Pybullet functions createVisualShape , createCollisionShape and
createMultiBody are used to build a high-precision visual and collision model.

According to our experiment, the collision model is necessary for the training of the
policy, a collision-free model achieves a 0% success rate in the training process.

Episode

R
ew

ar
d

Figure 11.9: A training reward curve with Diana7 simulation setup.

We choose six different kinds of pegs and holes, namely, round shape, square shape,
triangular shape, hexagonal shape, card shape and board shape, to validate the frame-
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work generalization ability. Every peg and hole has the same clearance of 1 mm. An
example of a board insertion task with a Diana7 robot in simulation is shown in Fig-
ure 11.8.

A PiH example of the board insertion task training reward curve of the SAC agent
is shown in Figure 11.9. We trained the policy with 3k episodes and each lasting 50
steps. It is clear that the agent converges to a policy that allows it to successfully com-
plete the task after nearly 1000 episodes. Due to the entropy regularization concept, the
agent mainly explores its environment until the 1000th episode. The smoothing weight
coefficient is set to 0.99 in order to show the orange solid learning curve clearly with
TensorBoard’s built-in function. Moreover, the ActorLoss and CriticLoss both go up first
and then go down which means the recommended actions by the actor are maximizing
the rewards during the training.

As images are less capable of showing small pose errors, we also found that the
robot struggles with alignment when pegs are close to holes as stated in [79], while our
policy learned a more complex manipulation method than just sliding around the surface
as described in [79], with our trained policy, the agent can move up and realign itself
again after stuck around the hole.

Table 11.4: Six kinds of PiH insertion success rate in simulation.

3-D printed pegs Round Square Triangular Hexagonal Card Board

Success rate 100/100 100/100 100/100 100/100 100/100 100/100

In Figure 11.10, a Diana7 robot is performing the board insertion task. First of all,
the robot starts to move the peg at the random initialized position up to 20 cm high
from the target hole as shown in Figure 11.10 (a); then the peg is moved to the pose that
is closer to the hole as shown in Figure 11.10 (b); lastly, the robot performed several
exploration actions and find the hole as shown in Figure 11.10 (c) and (d).

11.2.2 Sim-to-Real transfer with a 7 DoF Robot Setup
In this part, an impedance-based force controller is developed and implemented in the
PiH task as shown in Figure 11.11. Based on Equation (11.1) and in order to limit the
maximum velocity, the damping parameter B is set to:

B =
fd

ẋmax
. (11.7)

The maximum velocity ẋmax is set manually. In this experiment, the maximum velocity
is set to 1 cm/s.

The same method as described in Section 11.1.2 is used to perform the domain adap-
tation process to transfer the image distribution from the real world to the simulation.
Even with all-white color for peg and hole, the domain adaptation still performs well
with clear relative positions and sharp edges as shown in Figure 11.12.
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(a) (b)

(c) (d)

Figure 11.10: From (a) to (d): a board PiH task sequence is performed by Diana7 robot in
simulation.

UR5 robot

Peg and Hole

Diana7 robot

Peg and Hole

Camera

Camera

Figure 11.11: A PiH setup with a Diana7 robot in the real world.

A board peg insertion task is performed in real setup and a 80% success rate is
achieved in the experiment as shown in Figure 11.13 (a)–(b), the up left corner shows
the camera view of insertion status. As peg and hole are both white, it is not easy to
distinguish their relative positions in the overall scene camera. According to our anal-
ysis, the success rate is limited by the real robot behavior, as the Diana 7 robot only
supplies one direction of force control, thus we have to use an impedance controller in
the other two directions, and the contact force is not able to control. We believe that our
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(a) (b) (c) (d) (e) (f)

(a) (b) (c)

(d) (e) (f)

Figure 11.12: (a) to (b): from the real domain to fake image belonging to the simulation domain
mapped by the function G; (b) to (c): from the fake simulation domain to a reconstructed image
mapped by the function F .

(a) (b)

(c) (d)

Figure 11.13: Diana7 insertion sequence in real setup.

next work will focus on the policy as well as robot performance improvement, thus not
all the shapes (as shown in Figure 11.7) are used in this sim-to-real transfer experiment.
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Part IV

Summary
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In the previous parts, the main contributions details regarding the DRL for the force-
controlled robotic manipulation is presented. In this part, we will give a conclusion
in Chapter 12. Then, the limitations will be discussed in Section 13.1. In the end, the
potential future work directions will be touched in Section 13.2.
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Chapter 12

Conclusion

This thesis mainly focuses on the research of using visual and force information to guide
the contact-rich assembly operation as described in Part II, the skills and frameworks are
mainly used in PC and phone assembly lines as described in Part III. During my four
years of research on this topic, I deeply understand the importance of force and vision
information in assembly tasks: for example, in the teaching phase, the hand-guiding
function needs high transparency in order to avoid the huge collision force with the target
or environment; in the execution phase, visual information is very helpful to overcome
the pose uncertainty while force information is always used for exploration. Moreover,
we found that RL algorithm is quite useful, especially where traditional policies do not
work. More details about contributions of this thesis are as follows:

• Visual Residual RL: In this method, we combined RL with an operational space
visual controller to solve position uncertainty problems in high-precision assem-
bly tasks, and we proposed a proactive action idea to solve the POMDP prob-
lem using an investigative action. The proposed method could solve the shortage
of traditional visual servoing method by using our visual residual RL algorithm,
which inherits some traditional controller parameters that make the setting up not
fast enough. As shown in Chapter 9, our method shows a strong ability to toler-
ate environmental variations and resilience from stuck with full success, which
really meets the requirements of industrial scenarios. This work also inspired our
follow-up research.

• Visual Servoing based LfD: With this newly developed LfD based on visual
servoing method, the fast, easy, and accurate robot setup in heavily constrained
spaces was successfully implemented. Experiments that compared our method
with two commonly used baselines, namely teach pendant-based and hand-
guiding teaching, were performed. Our method realized the best feedback in terms
of both subjective and objective evaluations. Moreover, our method produces min-
imal contact force on the environment owing to the high transparency during the
teaching (Our method does not require physical contact with the robot, but can let
the user feel contact force with the target or environment).

• RRRL Policy: With our LbE based RRRL policy, the force-torque information

116



is used in the net to overcome pose uncertainty in contact-rich tending operation.
The success rate of our method far exceeded those of the other reference baselines.
The reason is our RRRL policy could determine force actions based on the contact
state of the object and holder, thus greatly improving the insertion success rate.
Moreover, our method can guarantee small contact forces owing to the amplitude
limitation of the force actions.

To our knowledge, we are the first to judge learning-based assembly strategies
based on contact force as this is an important issue for contact-rich operation.

• CycleGAN and Force Control based Sim-to-Real Transfer of Robotic Assem-
bly: A vision-based sim-to-real learning framework is proposed to perform as-
sembly tasks. In this work, we proved that our sim-to-real framework is a valid
approach to solving the peg-in-hole task both in simulated and real-world envi-
ronments. By employing DA and force controller, we can directly transfer the
policy that was trained in a simulator to a real-world setup. Moreover, we eval-
uated different observation spaces and proved that the latent representation (i.e.,
low dimension) can accelerate the convergence of policy learning and afford a
higher success rate for the task than end-to-end learning using raw image input.
The importance of force control is shown by the fact that in real-world experi-
ments

• Pushing-based Hybrid Position/force Assembly Skill: In this method, we
present a pushing-based hybrid position/force assembly skill that can maximize
environmental constraints during task execution. To the best of our knowledge,
this is the first work that considers using pushing actions during the execution of
the assembly tasks. We have proved that our skill can maximize the utilization of
environmental constraints using mobile manipulator system assembly task exper-
iments, and achieve a 100% success rate in the executions.
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Chapter 13

Limitations and Outlook

13.1 Limitations
Despite the promising results presented in the previous chapters, in this chapter, the
drawbacks of the different components of the proposed concepts are discussed.

The main limitation of this work is the algorithm generalization. For example, in the
methods of visual residual RL and RRRL policy, we try to increase our method’s lo-
calized generalizability with visual and force information which makes similar scenar-
ios can import our skills directly without retraining. However, when the environment
changes a lot, the policies always need to retrain and it wastes lots of time and resources.

The other limitation of the visual servoing based LfD method is the teaching trajectory
accuracy. As the visual servoing is used to track the object and it inevitably has errors,
thus the recorded trajectory can also have some errors. In the experiment in this thesis,
we slow down the moving velocity of the object in order to reduce the following error,
however, a better solution should be designed.

Furthermore, we noted the negative effect of the elasticity of the suction cups on the ac-
curacy of the position demonstrations. We have investigated ways to utilize this elasticity
using a traditional approach (in Section 5.2.2.1), however, a learning based approach to
utilize the EE elasticity is not being achieved.

Lastly, the CycleGAN and force control based Sim-to-Real transfer framework still has
a huge reality gap in contact-rich operations including but not limited to friction model,
contact model, and sample efficiency.
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13.2 Outlook
Although several issues and problems are solved in this study, however, the research
never ends.

The generalizability and efficiency of the visual and force based assembly skills
should be further improved based on the limitation summarized in the last section. More-
over, several possible improvements and new directions can be studied in the future.

• Partial General Robotic Assembly Framework: We plan to analyze more
contact-rich tending tasks and more types of grippers to refine our method and
improve its generalizability. While assembly skills comparable to those of human
hands are impossible to achieve in the short term, thus partial generalization is
our next target that robots can do 95 % operations (now around 40–60 %) in 3C
production lines. We believe more sensor modalities are necessary for future re-
search.

• DMPs based Visual Servoing LfD: We plan to introduce DMPs to the current
visual servoing LfD, thus the trajectory can be automatically modified when a new
target is given, moreover, a compensation method of the visual servoing follow
error will be also invested, thus the trajectory will be more accurate.

• Sim-to-Real Transfer Learning: Our method can be optimized further in terms
of performance and generalization ability. For example, the scene of a red block
with a metallic texture in the simulation achieves a success rate of only 70.5%
considerably worse than those achieved using the other three scenes. Moreover, a
more complex action space with both translation and rotation,
[∆x, ∆y, ∆z,∆rx,∆ry,∆rz], can be designed for training and implementation. In the
end, investigating the application of the sim-to-real approach to more industrial
robotic tasks will be interesting.

• Elastic Structure Preserving Assembly Learning: We have investigated a cross-
search method to utilize the robot EE elasticity, however, the learning based ap-
proach to utilize the EE elasticity or the robot activate elasticity in order to learn
human operation will be more interesting.

• Tiny FPC connectors PiH operation: The tiny FPC connectors assembly in the
phone production line is an open challenge. The manipulation accuracy of tiny
parts is a great challenge for the human hands, moreover, the operation force
should be controlled properly to avoid damage to the connectors. Integrating hap-
tic technology and precise manipulation technology into robotics will be a poten-
tial research direction.

119



Chapter 13. Limitations and Outlook

120



121



Appendix A. Appendix

Appendix A

Reference Information

A.1 Single joint test data

 

Figure A.1: Single joint test data.

122



Appendix A. Appendix

A joint made by Sensodrive1 Figure A.1 is tested under quasi-static (very low acceler-
ations) situation, which means that the joint torque represents purely the frictional and
viscous losses, the maximum friction reach 50 Nm. While the sensor torque represents
the friction at flange side, the maximum friction is around 0.12 Nm which close to zero
and change directions according to the directions of velocity.

1https://www.sensodrive.de/
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Appendix B

Chapter of Abbreviations

LWR Light-Weight Robots

DLR German Aerospace Center

EE End-Effector

CNN Convolutional Neural Network

DoF Degree of Freedom

DRL Deep Reinforcement Learning

GAN Generative Adversarial Network

MDP Markov Decision Process

RL Reinforcement Learning

SAC Soft Actor-Critic

VAE Variational Autoencoder

GUI Graphical User Interface

125



Appendix B. Abbreviations

API Application Programming Interface

ROS Robot Operating System

RRRL Region-limited Residual Reinforcement Learning

LfD Learning from Demonstration

LbE Learning by Exploration

DOPE Deep Object Pose Estimator

DQN Deep Q Network

RAM Random-access memory

PCB Printed Circuit Boards

PLC Programmable Logic Controller

SARA Safe Autonomous Robotic Assistant

RCC Remote-Center-Compliance

PID Proportional-Integral-Derivative

PiH Peg-in-Hole

LbD Learning by Demonstration

GUAPO Guided Uncertainty Aware Policy Optimization

MSBE Mean-squared Bellman Error
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CycleGAN Cycle-consistent Generative Adversarial Networks

VAE Variational Autoencoder

RRRL Region-limited Residual RL

RAM Random Access Memory

SSD Solid State Drives

POMDP partially observable Markov decision process

SOTA State of the Art

ROA Region of Attraction

AI Artificial Intelligence
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