
Performance Optimization of Atmospheric Model
ECHAM6 through Component Concurrency

Dissertation

zur Erlangung des akademischen Grades
Dr. rer. nat

an der Fakultät für Mathematik, Informatik und Naturwissenschaften
der Universität Hamburg

eingereicht am
Fachbereich Informatik

durch

Mohammad Reza Heidari

Hamburg, May 2022

Gutachten:

Prof. Dr. Thomas Ludwig

Prof. Dr. Ali Ebnenasir

Datum der Disputation: March 17th, 2023

Abstract
This dissertation aims at providing a solution and support for optimizing the perfor-
mance of the atmospheric model ECHAM6. The special prominence of this research
is due to the application of the model in the German climate modeling initiative
PalMod for simulating a complete glacial cycle from the last interglacial to the An-
thropocene. The model, however, suffers from poor scalability at low resolution,
as used in this paleoclimate study, due to the limited number of grid points. As
a consequence, the potential of the existing high-performance computing architec-
tures cannot be utilized for such experiments at full scale. Endeavors to adopt a
higher optimized model is, thus, opportune for the PalMod research. Our investi-
gation reveals that radiative transfer is a relatively expensive atmospheric process
in ECHAM6, accounting for approximately 50% of the total simulation time. This
current level of cost is achieved by performing radiation calculations only once every
two simulation hours.
In response, this dissertation reports on a twofold research effort to alleviate such a
computational burden in order to render the paleoclimate simulations viable. It first
presents the idea of the concurrent radiation scheme for extending the available con-
currency in ECHAM6 further by running the radiation component in parallel with
other atmospheric processes. This solution also offers a way forward to improve
the accuracy of the simulations by increasing the physical consistency between at-
mospheric states. To implement this scheme, a novel program analysis approach,
i.e. Component Isolation, is then introduced for performing the following tasks:
extracting a component from a Fortran program, detecting the input and output
global variables of the component, making shared source code of the component
non-shared. This approach not only benefits the implementation of the concurrent
radiation scheme, but it also provides support for another optimization solution
envisaged in PalMod.
Furthermore, the high accuracy of the approach of Component Isolation and the
implementation of the concurrent radiation scheme is demonstrated using careful
qualification and validation. Moreover, a thorough analysis is investigated to show
the impact of the new radiation scheme on the performance of the atmospheric
model ECHAM6. The experiments show that ECHAM6 can achieve a speedup of
over 1.9× using the concurrent radiation scheme while becoming almost twice more
scalable. The scientific results from the new scheme are, however, evaluated through
an independent investigation by a climate scientist.
In the nutshell, the approach of Component Isolation offers an unprecedented so-
lution for preparing any arbitrary components of scientific models (in Fortran) for
a better organization scheme such as component concurrency or any individual op-
timization technique such as mixed-precision arithmetic in order to improve the
performance of the model. In addition, the successful example of the concurrent
radiation scheme in the atmospheric model ECHAM6 can encourage similar opti-
mization research in scientific computing whenever scalability becomes challenging.

Zusammenfassung
Ziel dieser Dissertation ist es, eine Lösung und Unterstützung für die Opti-
mierung der Leistung des atmosphärischen Modells ECHAM6 zu entwickeln.
Die besondere Bedeutung dieser Forschung ergibt sich aus der Anwendung des
Modells in der deutschen Klimamodellierungsinitiative (PalMod) für die Simula-
tion eines kompletten glazialen Zyklus von der letzten Zwischeneiszeit bis zum
Anthropozän. Aufgrund der begrenzten Anzahl von Gitterpunkten verfügt dieses
Modell über schlechte Skalierbarkeit bei niedriger Auflösung, wie es in dieser
Paläoklimastudie gezeigt wird. Folglich kann das Potenzial der bestehenden
Hochleistungsrechnerarchitekturen für solche Experimente nicht in vollem Umfang
genutzt werden. Es besteht der Bedarf das Modell für die PalMod-Forschung höher
zu optimieren. Unsere Untersuchung zeigt, dass der Strahlungstransport ein relativ
teurer atmosphärischer Prozess in ECHAM6 ist, der ungefähr 50 % der gesamten
Simulationszeit ausmacht. Dieses derzeitige Kostenniveau wird dadurch verursacht,
dass alle zwei Simulationsstunden Strahlungsberechnungen nur einmal durchgeführt
werden.

Um eine solche Rechenlast zu verringern und dadurch die Paläoklima-Simulationen
realisierbar zu machen, wird in dieser Dissertation ein zweiteilges Lösungskonzept
entwickelt. Sie stellt zunächst die Idee des gleichzeitigen Bestrahlungsschemas
zum Erweitern der verfügbaren Parallelität in ECHAM6 weiter vor, indem die
Bestrahlungskomponente parallel zu anderen atmosphärischen Prozesse ausgeführt
wird. Diese Lösung verbessert auch die Genauigkeit der Simulationen, indem
die physikalische Konsistenz zwischen atmosphärischen Zuständen erhöht wird.
Um dieses Schema zu implementieren, wird dann ein neuartiger Programmanal-
yseansatz, genannt Komponentenisolation, eingeführt. Er umfasst die folgenden
Aspekte:: Extrahieren einer Komponente aus einem Fortran-Programm, Erfassen
der Eingabe und Ausgabevariablen der Komponente, und Trennung der gemeinsam
genutzten Quellcodes der Komponente. Dieser Ansatz kommt nicht nur der
Implementierung des simultanen Strahlungsschemas zugute, sondern bietet auch
Unterstützung für eine andere Optimierungslösung, die in PalMod vorgesehen ist.

Darüber hinaus wird die hohe Genauigkeit des Ansatzes der Komponentenisolierung
und der Implementierung des gleichzeitigen Strahlungsschemas durch sorgfältige
Qualifizierung und Validierung demonstriert. Die Analyse untersucht, welche
Auswirkungen das neue Strahlungsschema auf die Leistung des Atmosphärenmod-
ells ECHAM6 hat. Die Experimente zeigen, dass ECHAM6 mit dem simultanen
Strahlungsschema eine Beschleunigung von über 1,9x erreichen kann und dabei fast
doppelt so skalierbar wird.

Der Ansatz der Komponentenisolierung bietet eine neuartige Lösung, um beliebige
Komponenten wissenschaftlicher Modelle (in Fortran) für ein besseres Organisation-

sschema wie Komponentennebenläufigkeit oder beliebige individuelle Optimierung-
stechniken wie Mixed-Precision-Arithmetik vorzubereiten, und dadurch die Leis-
tung des Modells zu verbessern. Darüber hinaus kann das Beispiel des simulta-
nen Strahlungsschemas im Atmosphärenmodell ECHAM6 ähnliche Optimierungs-
forschung im wissenschaftlichen Rechnen anregen, wann immer die Skalierbarkeit
ein Problem darstellt.

Acknowledgments

I would like to express my sincere gratitude and appreciation first and foremost to
Prof. Dr. Thomas Ludwig for his unceasing support and invaluable feedback ever
since I applied for an admission to the PhD program, without which I would not
have been able to complete my study.
I also feel a deep sense of gratitude towards Prof. Dr. Ali Ebnenasir, whose expert
guidance was an essential and intangible asset to the correct direction of the static
program analysis presented in this dissertation.
Moreover, I wish to thank Dr. Hendryk Bockelmann for giving me the opportunity
to join the PalMod project and enabling this research. Without his help and wise
guidance, the direction of this dissertation could not have been the same.
I would also like to extend my special thanks to Jörg Behrens, who was a great and
consistent source of support throughout this research and implemented the interface
to the YAXT library for the concurrent radiation scheme. His inspiring advice and
overall insights augmented the quality of the performance analyses presented in this
dissertation.
I should also pay tribute to Prof. Dr. Julian Kunkel and Prof. Dr. Michael Kuhn,
who generously helped me to embark on this PhD study in the first place and were
always willing to support enthusiastically.
Further, I am so thankful to Deutsches Klimarechenzentrum (DKRZ) and the De-
partment of Informatics of Universität Hamburg as well as their members’ staff,
in general, for their wonderful support in this endeavor. In particular, I am ex-
tremely grateful for Ms. Anna Leffler’s never-ending support, who patiently guided
me through the submission process.
Last, but by no means least, I would like to sincerely thank Prof. Dr. Ahmad
Zeinolebadi and his lovely family for their wonderful support during my PhD study.
Part of this research was funded by the Federal Ministry of Education and Science
(BMBF) under grant number FKZ:01LP1515A.
This work used resources of the Deutsches Klimarechenzentrum (DKRZ) granted
by its Scientific Steering Committee (WLA) under project ID bk0993 and ku0598.

7

Contents

1. Introduction 1
1.1. Climate Models . 1

1.1.1. The Atmospheric Model ECHAM6 3
1.1.2. Computational Challenges of Climate Modeling 4

1.2. Motivation . 6
1.2.1. The primary motivation . 6
1.2.2. The general motivation . 8

1.3. Goals of this Thesis . 10
1.3.1. The primary goals . 10
1.3.2. The general goal . 12

1.4. Outline of the thesis . 15
1.5. Chapter Summary . 15

2. Background and Related Works 17
2.1. Background and related works to the primary goals 17

2.1.1. Concurrency in ECHAM6 . 18
2.1.2. Coarse-grained Component Concurrency: A new level of par-

allelism . 19
2.2. Background and related works to the general goal 22
2.3. Reusable Component Extraction . 23
2.4. Program Analysis . 25
2.5. Program Slicing . 28
2.6. Chapter Summary . 29

3. The Concurrent Radiation Scheme 31
3.1. Radiative transfer in atmosphere . 31
3.2. Classical Radiation Scheme in ECHAM6 32

3.2.1. Impact of MPI processes on the radiation cost 32
3.2.2. Impact of temporal resolution on the radiation cost 33
3.2.3. Impacts of larger temporal and spatial resolutions on accuracy 34
3.2.4. Sequential Component Organization: Root of problems 35

3.3. Concurrent Radiation Scheme . 37
3.4. Arbitrary Domain Decomposition . 40

3.4.1. Benefits . 41
3.5. Chapter Summary . 47

i

Chapter 0 Contents

4. Implementation of the Concurrent Radiation Scheme 49
4.1. Implementation procedure of Primary Goal 1 49

4.1.1. Extracting the radiation component from ECHAM6 50
4.1.2. Isolating the radiation component in ECHAM6 53
4.1.3. Re-integration of the isolated radiation component and

carvedout model . 54
4.2. Implementation procedure of Primary Goal 2 57

4.2.1. Separating threads of execution 57
4.2.2. Choosing the concurrency model 59
4.2.3. Synchronization . 61
4.2.4. The full implementation . 65

4.3. The External Goal . 65
4.4. Chapter Summary . 65

5. Performance Results 67
5.1. Methodology . 67
5.2. Experiments Setups . 68
5.3. The Profiling Approach . 69
5.4. Step 1: Performance measurement

. 70
5.5. Step 2: Performance tuning . 71

5.5.1. Measuring communication overhead 72
5.5.2. Measuring the idle times . 77
5.5.3. Discussions

. 82
5.5.4. Resource efficiency . 84

5.6. Chapter Summary . 87

6. Component Isolation 89
6.1. Definition of a Component . 89
6.2. Examples of a Component . 91
6.3. Variants of a Component

. 94
6.3.1. The type of a component . 94
6.3.2. The width of a component . 94
6.3.3. Program Sharing . 96
6.3.4. The depth of a component . 110
6.3.5. Epilogue . 110

6.4. Definition of Component Extraction and Isolation 110
6.4.1. Definition of Component Extraction 110
6.4.2. Definition of Component Isolation 111

6.5. Implementation of Component Isolation 115
6.5.1. Implementation I: A simple model 115
6.5.2. Implementation II: an incremental procedure 119

ii

Contents

6.5.3. Implementation III: handling shared namespaces 119
6.5.4. Implementation IV: removing dead contents 121
6.5.5. Implementation V: NDG graph

. 132
6.6. Examples of Component Isolation . 135

6.6.1. Example 1 . 136
6.6.2. Example 2 . 140
6.6.3. Example 3 . 142
6.6.4. Example 4 . 145

6.7. Extracting implicit coupling fields . 152
6.7.1. Step 1 . 152
6.7.2. Step 2 . 153
6.7.3. Step 3 . 153
6.7.4. Step 4 . 153
6.7.5. Adapting Component Isolation 153
6.7.6. Example 5 . 153

6.8. Chapter Summary . 160

7. Validation and Evaluation 161
7.1. Validation of the general goal . 161

7.1.1. Syntactic validation . 161
7.1.2. Semantic validation . 162
7.1.3. Incremental validation . 163

7.2. Validation of Primary Goal 1 . 163
7.3. Validation of Primary Goal 2 . 167
7.4. Chapter Summary . 168

8. Summary and Conclusion 173
8.1. Summary . 173
8.2. Conclusion . 176

9. Future Works 179
9.1. Support Tools for Static Program Analysis 179

9.1.1. Component Extraction and Isolation Tools 179
9.1.2. Re-integration Tools . 185
9.1.3. Epilogue . 187

9.2. Improving the concurrent radiation scheme using machine learning
techniques . 188

Bibliography 191

A. List of Publications 201

B. Eidesstattliche Erklärung 203

iii

1. Introduction

The revolution of numerical weather and climate modeling requires combined scien-
tific and computational advances to be made. A deep understanding of the shortcom-
ings and limitations as well as new opportunities in climate modeling and computing
technologies is thus a prerequisite. This chapter provides a valuable insight into the
(computational) challenges of (future) climate simulation which motivate the re-
search conducted in this dissertation. It also sets the goals of this thesis clearly and
defines the problems that will be addressed in the the following chapters.

1.1. Climate Models

The term “weather” denotes the condition of the atmosphere at certain point in
time which can change within minutes. In contrast, “climate” mainly describes the
condition of weather at a specific location over long-time scales. Climate change is,
therefore, the statistical deviation of the climate condition in the long-run, mostly
due to human activities (Kalkuhl and Wenz, 2020; Meurant, 2012). Over the last
few years, scientific tools and observations have been combined to confirm this fact.
The tools for predicting future climates are climate models, which investigate the
response of the climate system to various forcings. They are used for making cli-
mate predictions on seasonal to decadal time scales and for making projections of
future climate over the coming century and beyond. Climate modeling can address
important issues of future climate change, especially global warming and its impacts.
Models used in climate research range from simple energy balance models to complex
Earth System Models (ESMs), requiring state of the art high-performance computing
technology (Flato et al., 2014; Wang et al., 2010), and they are chosen based on
the target research questions (Flato et al., 2014; Held, 2005). Atmosphere–Ocean
General Circulation Models (AOGCMs) are used for studying climate system and pre-
dicting greenhouse gases and aerosol forcing (Flato et al., 2014). ESMs are the most
comprehensive tools that were developed on AOGCMs to account for biogeochemical
cycles and study the impact of external forcing on the climate system either in the
past or in the future (Bonan and Doney, 2018; Flato et al., 2014).

Component organization in ESMs
Climate system is a multidimensional space–time process and consists of multi-
ple components including atmosphere, ocean, land and sea ice. Each component

1

Chapter 1 Introduction

Earth System Model

Atmosphere
 Land

Physics
 Dynamics

Radiation
 Hydrology
 Chemistry
 Planetary Boundary Layer

Hydrology
 Biosphere

SEA ICE
 Ocean

Dynamics

Radiation
 Biogeochemistry
 Marine
Echosystem

Figure 1.1.: A notional architecture of Earth System Model

Figure 1.2.: An abstract architecture of a typical Earth System Model (ESM)

is driven by several physical processes. The notion of a physical component of
the climate system is translated into a software component within climate models.
Figure 1.1 shows the hierarchical component organization of a typical ESM (Balaji
et al., 2016). The architecture of ESMs are quite diverse and they embody these
components differently in their implementations (Balaji et al., 2016; Alexander and
Easterbrook, 2015). Depending on the model, the components are organized inside
one or multiple software programs. Generally speaking, an ESM is composed of
various submodels that are separate (but mutually dependent) computer programs
as shown in Figure 1.2. Each submodel is in charge of calculating a number of
physical processes that have tight data dependencies to each other and solve within
a smaller time steps. Due to the data dependency between components, submodels
may exchange data at larger time steps through a coupler mechanism.

Figure 1.3 shows an overview of the components of the traditional Earth system
model of Max Planck Institute, MPI-ESM (Müller et al., 2018; Giorgetta et al., 2013a),

2

1.1 Climate Models

Energy

Momentum

Energy

Momentum

Water

Water

Carbon

ECHAM

MPIOM

JSBACH

HAMOCC

OASIS

Radia�on

MPI-ESM 1.2

Energy Balance
Prognostic & diagnostic
 variables

Figure 1.3.: MPI-ESM Earth System Model Architecture (courtesy of Deutsches
Klimarechenzentrum (last access: 4 May 2022)), as described by Giorgetta et al.
(2013a).

and their interactions . It is based on the components of ECHAM (Giorgetta et al.,
2013b) for atmosphere and MPIOM (Jungclaus et al., 2013) for ocean as well as
JSBACH (Lasslop et al., 2018) for terrestrial biosphere and HAMOCC (Ilyina et al.,
2013) for the ocean´s biogeochemistry. The coupling of atmosphere and land on the
one hand and ocean and biogeochemistry on the other hand is made possible by a
separate coupling program called OASIS (Craig et al., 2017).

1.1.1. The Atmospheric Model ECHAM6

The atmospheric model plays a central role in every forecasting system and calculates
the evolution of physical processes in the atmosphere. A stand-alone atmospheric
model can be used to pursue specific research. Atmospheric modeling consists of
two fundamental components: dynamics and physics (Rasp, 2019). The dynamics
refer to the equations that represent the flow of air on a spatial grid and calculate
the atmospheric states in every time step based on the previous time step (Gordon
et al., 2016; Durran, 2010; Holton, 1973). Certain physical processes in the atmo-
sphere such as radiation, however, take place locally on scales smaller than current
grid resolutions of atmospheric models and thus cannot be calculated using finite
differencing schemes. These processes are referred to as subgrid processes. Such
processes play a pivotal role in the evolution of the model states, thus their effect
on other physical processes that take place across the grid must be effectively ap-
proximated. These approximations are referred to as the “parameterizations” or, in
general, the “physics” of atmospheric models (Rasp, 2019).

3

Chapter 1 Introduction

This dissertation concentrates on the performance optimization of ECHAM6, which
is the sixth generation of the atmospheric general circulation ECHAM (Stevens et al.,
2013; Giorgetta et al., 2013b). The model was developed at the Max Plank Institute for
Meteorology (MPI-M) in Hamburg. It is the traditional atmospheric component of MPI-
ESM, as indicated in Figure 1.3 and described by (Giorgetta et al., 2013a) . ECHAM6
benefits from spectral and finite difference methods in five different grid resolutions,
ranging from the coarse (CR) and low resolution (LR) to the very high resolution
(XR). The CR or T031 corresponds to a horizontal spatial resolution of 96×48 points
in longitude and latitude while the LR or T063 corresponds to 192×96 points (Stevens
et al., 2013). ECHAM6 is a parallelized and vectorized Fortran program in which the
calculations can take place on several processors.

The special prominence of ECHAM6 in this research is due to its application in the
long-time paleoclimate simulations conducted within the German climate modeling
initiative “PalMod” (PalMod webpage, last access: 17 January 2022), which is the
main motivation to this dissertation. Paleoclimate Modeling is a branch of climate
science whose research focus is on the prevalent climate conditions and natural
climate change in the past. Lack of direct observations from the past climate is
however a major obstacle in paleoclimate studies, and, thus climate scientists have
to resort to the environmental records (or proxy data in climate science jargon) found
in nature that cover different time periods (Sweeney et al., 2018). Paleoclimatology
fosters a better understanding of how slow components in the Earth system operate.
The new insights into the Earth system dynamics gained from paleoclimate research
offers a practical technique for understanding the uncertainty in climate predictions
and hence a useful means for testing and calibrating climate models (Sweeney et al.,
2018; Stocker, 2014; Li et al., 2010; Haslett and Parnell, 2008).

1.1.2. Computational Challenges of Climate Modeling

One objective in climate research is to increase the realism of the simulated phys-
ical processes (Alizadeh, 2022; Washington et al., 2009). Despite the remarkable
progress, climate modeling still suffers from stubborn errors (Rasp, 2019). And
sizeable biases yet remain in climate predictions (Washington et al., 2009). These
problems are caused by either our incomplete process understanding of the climate
system or our modeling capability (Rasp, 2019). Climate has a chaotic nature which
leads to uncertainty in climate modeling (Rasp, 2019). It is a complex system in
which a vast number of fine-grained details interact (Wang et al., 2010). Hence,
climate research needs to model a large number of physical processes on which the
evolution of such a system depends. The level of details involved in modeling the
climate system has a direct impact on the uncertainties inherent in the simulation
results (Wang et al., 2010).

In addition, stochastic parameterization is a major contributor to errors in climate
models (Rasp, 2019). This technique was introduced to better represent subgrid

4

1.1 Climate Models

processes (that happen below the resolved scale). As observational studies reveal, a
climate model must have a particular resolution to resolve some certain phenomena
more realistically. There is a well-founded hope that increasing resolution enables
climate models to replace physical parameterization with an explicit treatment and
thus inherent uncertainty in climate change projections is gradually reduced (Schär
et al., 2020).
Climate modeling is an immense task. It is compared to the simulation of the hu-
man brain and of the evolution of the early universe (Bauer et al., 2015). Due
to the limited computing capabilities, climate models were initially quite simple.
However, they have demonstrated a continual increase, in terms of vertical, hori-
zontal and temporal resolution in parallel with the advancement in the computing
industry (Lawson et al., 2021; Wedi, 2014). We are now capable of simulating the
complex climate system at an unprecedented level of realism. The choice of the spa-
tial and temporal resolutions affects the computational costs of climate simulations
(Alizadeh, 2022; Wang et al., 2010). Doubling the horizontal resolution increases
the computational cost by a factor of 24 (Rasp, 2019). To resolve crucial features
more realistically, increasing resolution becomes an indispensable element of more
accurate climate models at the expense of a higher computational power (Tabari
et al., 2016; Washington et al., 2009). High resolution models can however become
too expensive to be useful for long simulations. Since computational resources are
limited, a compromise in spatial and time resolutions is usually made in order to
perform realistic experiments in a reasonable time.
Due to the end of Moore’s law (Theis and Wong, 2017; Mann, 2000), the future
high-performance computing technology cannot continue the historical evolution
as the energy cost becomes prohibitive and it has to be reduced (Bauer et al.,
2015). Instead, the heterogeneous HPC systems are expected to combine massive
parallelism (numerous low-power processors at lower clock rates) with classical CPUs
(with large memory and a fast data interface). Challenges in science and technology
are interdependent in many ways. The new paradigm in computing technology will
exert a major impact on the design and development of future climate models. In
particular, it is expected that the new trend will give rise to the adoption of higher
scalable climate models (Bauer et al., 2015).
Although it is an old custom to adapt scientific challenges to the prevailing com-
putational performance, the issue of higher scalability adds a new dimension to
optimization of climate models. A mounting concern is aroused by the sequential
organization of components within climate models which fundamentally restricts the
benefit of mass parallelism in future heterogeneous HPC systems. Traditionally, cli-
mate models resolve physical processes sequentially and scalability is only achieved
by taking advantage of domain decomposition and implementing data parallelism
within internal components. With the emergence of new computing technology, this
classical approach to concurrency seems insufficient in achieving scalability and,
thus, the code design in climate models must be adapted in order to benefit from
various computing architectures simultaneously. This requirement will pose a major

5

Chapter 1 Introduction

challenge to legacy climate codes which contain millions lines of codes. As Peter
Bauer states (Bauer et al., 2015), improving scalability is among the top priorities
of weather and climate modeling in the next 10 years. A recent viable solution pro-
posed by Balaji (Balaji et al., 2016) suggests achieving higher scalability through the
re-organization of components in climate models and implementation of concurrency
between higher and lower components. This approach allows model developers to
offload various components into different accelerators and calculate multiple physi-
cal processes concurrently, thus improving the scalabilty of climate models. On this
account, the following implications are expected:

• components may run concurrently on multiple resources
• components may run concurrently in shared or distributed memory model
• components may run concurrently on different architectures (such as CPU and

GPGPU)

1.2. Motivation

This dissertation is inspired by two motivations, which are as follows:
• Primary motivation
• General motivation

1.2.1. The primary motivation

This research is primarily motivated by the performance optimization requirements
of the PalMod initiative in the atmospheric model ECHAM6. PalMod aims at sim-
ulating a complete glacial cycle (i.e., about 120,000 years) from the last interglacial
to the Anthropocene. There, however, remains a serious caveat as to the feasibility
of such an ambitious project which should be acknowledged in advance. In par-
ticular, a major concern has been raised over the poor performance of ECHAM6
suffering from the limited number of grid points at the setups (including the CR
spatial resolution) used in paleoclimate simulations. For this reason, the perfor-
mance optimization of the model is instrumental in ensuring the viability of such
long-time simulations. Hence, the following solutions have been proposed to reduce
the negative impact of the poor performance of the model on the simulation time.
These solutions are as follows:

• Solution I: Concurrent radiation calculations
• Solution II: Single-precision radiation calculations

These solutions target the calculation of radiative transfer in the model. In
Chapter 3, it will be shown that the radiation component is one of the most expen-
sive components in ECHAM6. Thus, reducing the impact of the high computational

6

1.2 Motivation

profile of this component will be a quantum leap towards expediting the paleocli-
mate experiments performed with this model. However, the solutions above are
confronted with some inherent obstacles in the model which will be described indi-
vidually.

1.2.1.1. Solution I: Concurrent radiation calculations

In the classical radiation scheme, the model resolves the radiative transfer and other
atmospheric processes sequentially, which prolongs the time-to-solution of the model
dramatically. Solution I is based on the idea of component concurrency introduced
by Balaji (Balaji et al., 2016) and suggests modifying the classical scheme and run-
ning the radiation component concurrently with the other components inside the
model. A full account of this approach will be provided in Chapter 3. Briefly
speaking, however, the concurrency is implemented using distributed memory and,
due to the inherent dependency, the radiation component and the main model have
to synchronize periodically during the course of simulation. Though frowned upon
in software engineering, such dependency is created in part through some global
variables that are shared between the radiation component and the main model. In
the original model, components run in a shared address space and thus they have
access to the same copy of a shared variable. In the concurrent scheme, however,
the radiation component and the main model run in different address spaces and
they, therefore. see different copies of the shared variables. To create a correct
memory consistency, synchronizing different copies of the shared variables is abso-
lutely necessary. There are, however, two main obstacles in this regard, which are
as follows:

• unknown shared variables of the radiation component:
It is remotely possible to find the shared variables between the radiation com-
ponent and the main model without performing a thorough static code analy-
sis. As a prerequisite, we need to have the entire source code of the component.

• the unknown scope of the radiation component:
Although the component has been defined inside the model, the source code
of the radiation component is not clearly known and a rigorous assessment
is required to constraint its entire source code among the definitions of other
components. This is due to the following problems:

– code sharing between components due to cross-cutting concerns

– code sharing between components due to sharing the same concerns

– the large code base of the model (containing almost 167,000 lines of code),
which hinders a quick analysis.

On this account, it is necessary to perform the following tasks before implementing
a synchronization between the concurrent components:

7

Chapter 1 Introduction

• Extracting the radiation component from the model: A thorough (static code)
analysis is required to find the entire source code of the component among
other components in the large code base of model.

• Extracting the shared variables between the radiation component and the
main model: An additional static code analysis is required to find the global
variables that are shared between the radiation component and the rest of the
model.

1.2.1.2. Solution II: Single-precision radiation calculations

The second solution, on the other hand, suggests optimizing the model by apply-
ing single-precision arithmetic to the calculation of radiative transfer to reduce the
required computations and thus the overall simulation time of the model. To imple-
ment this solution, the following steps are required:

• Converting calculations to single-precision:
All the calculations (and thus variables) inside the radiation component are
converted from high-precision to single- precision. Hence, a major code refac-
toring takes place across the component. This requires the source code of the
component to be separated from the main model in advance to prevent any
negative impacts on other calculations.

• Creating an explicit type-casting interface:
As mentioned in Section 1.2.1.1, the radiation component and the main model
exchange data through shared variables. Thus, an explicit type-casting (from
high-precision to single-precision and vice versa) must be implemented to make
sure that each part receives correct data. On this account, the prerequisite for
this step is collecting the shared variables between the radiation component
and the main model and creating a import or export data interface from or to
the component.

1.2.2. The general motivation

The prerequisites for Solution I and II also extend to other components inside the
atmospheric model ECHAM6 and even to other legacy climate models. This gives
significant rise to the general motivation for this dissertation. As explained in
Section 1.1.2, climate models are expected to demonstrate a continual increase in
terms of complexities and spatial and temporal resolutions in the future, stimulat-
ing an enormous demand for higher computational resources. It was also discussed
that a change of paradigm is expected to place much more emphasis on higher
scalability in climate models due to heterogeneity and massive parallelism of future

8

1.2 Motivation

Motivation:
Long Paleoclimate Simulations

(~120,000 years)

in

PalMod Initiative

Constraints:
Poor Performance

of
Atmospheric Model ECHAM6

Requiring:
Optimization of

Atmospheric Model ECHAM6

Solution I:
Implementing

Concurrent Radiation Scheme
in

ECHAM6

Solution II:
Applying

Single-Precision Arithmetic
to

Radiation Component in ECHAM6

Requirements:

Exrtracting Radiation Component from ECHAM6

Isolating Radiation Component in ECHAM6

Extracting Shared Variables between ًRadiation Component and other Components

Figure 1.4.: The primary motivation of this dissertation arises from the long-run
paleoclimate simulations (around 120,000 years) within PalMod projects. The
poor performance of the atmospheric model ECHAM6 is however a major con-
cern as to the feasibility of such long simulations. The radiation component is
an expensive component of the model. Single-precision arithmetic and concur-
rent radiation component are two solutions to reduce the impact of the high
computational profile of the component on the simulation time. This requires the
extraction of the component, separation of the source code of the component from
the main model and the extraction of the shared variables between the component
and the main model.

9

Chapter 1 Introduction

high-performance computing systems. As a result, it is expected various components
will be offloaded to different architectures (which match best their computational
profiles) and run concurrently in a distributed-memory model. This approach is,
however, confronted with the same obstacles discussed in Section 1.2.1. Generally
speaking, a component in legacy climate models is entitled to the following problems:

• sharing source code with other components
• the unknown scope of the component
• the unknown shared variables between the components

Since components are expected to run concurrently, the same prerequisite for Solu-
tion I is applied here as well. Additionally, the components are expected to run on
different architectures available in heterogeneous HPC systems. Hence, the source
code of each component must be adapted to the target architecture. This approach,
therefore, resembles Solution II and requires the source code of the component to
be separated from others to prevent any modifications from affecting other com-
ponents. In the nutshell, the prerequisites for improving the scalability of future
climate models are as follows:

• Extracting the shared variables between the components
• Isolating components from each other

Figure 1.5 summarizes the general motivation to this dissertation.

1.3. Goals of this Thesis

This dissertation strives for achieving multiple goals: the primary goals and the
general goal.

1.3.1. The primary goals

As shown in Figure 1.6, the primary goals of this thesis are as follows:
• Primary Goal 1: building a new version of the atmospheric model ECHAM6

with the isolated radiation component.
• Primary Goal 2: building a new version of the atmospheric model ECHAM6

with the concurrent radiation scheme.
Primary Goal 1 prepares the ground for implementing Solution I and II (discussed in
Section 1.2) by creating the isolated radiation component in the atmospheric model
ECHAM6 and extracting the shared variables between the radiation component
and other parts of the model. Roughly speaking, isolating a component in a Fortran

10

1.3 Goals of this Thesis

Motivation:

Future Climate Models:

higher complexity
higher temporal and spatial resolutions
demanding more computing power

Constraints:

Future HPC

Heterogenous Systems
Massive Parallelism

Requiring:
Higher Scalable Models

Solutions:

Concurrent Components
Offloading Components on various Architectures

Requirements:

Exrtracting Components from Models

Isolating Components in Models

Extracting Shared Variables between Components

Figure 1.5.: The general motivation for this dissertation arises from future climate
models that are expected to become more complex with a higher temporal and
spatial resolutions, requiring a higher computational power. Since future HPC
systems will provide massive parallelism on heterogeneous technologies such as
GPGPU, it requires higher scalable climate models in the form of concurrent
components. The indispensable prerequisites to implementing such concurrency
includes the extraction of components from models, separating the source code of
components from models and extracting the shared variables between components.

11

Chapter 1 Introduction

program refers to a code refactoring practice that separates the source code of the
component from the source code of the other parts of the program such that they
share no source code any longer. Extracting the component from the program is,
nevertheless, a prerequisite to make the source code of the component clearly known
in advance. In Chapter 6, this procedure will be described precisely.

Primary Goal II is, however, to implement the concurrent radiation scheme in
ECHAM6 using the results from Primary Goal I. In addition, the single-precision
radiation scheme also benefits from Primary Goal 1, but its full implementation is
beyond the scope of this dissertation. This solution was pursued by an external
team albeit taking the advantage of the support of this dissertation.

1.3.2. The general goal

This dissertation also paves the way for improving the scalability of (legacy) climate
models on future heterogeneous HPC systems. Thus, to fulfill the prerequisites
discussed in Section 1.2, this thesis generally aims at an approach called Component
Isolation for performing the following tasks on an arbitrary component in a Fortran
program:

1. Extracting the component from the Fortran program.

2. Extracting shared variables between the component and the other parts of the
program.

3. Isolating the component in the program.

Hence, the outputs of this approach are as follows:

• the shared variables

• the isolated component

• the carvedout program

The list of shared variables are the global variables shared between the component
and the other parts of the program. In Chapter 6, we will define the isolated
component and the carvedout program precisely. Roughly speaking, however, the
isolated component is similar to the original component, but it does not share any
source code with the other parts of the program. The carvedout program is almost
the same as the original program, but it does not share any source code with the
isolated component. Figure 1.7 depicts the general goal of this dissertation.

12

1.3 Goals of this Thesis

Extracting Radiation Component

Input:

Original Atmospheric Model ECHAM6

using

Sequential Radiation Scheme

with

Shared Source Code

Applying Single-Precision Arithmetic

Isolating Radiation Component

(PRIMARY GOAL I)

Output:

A new version of
Atmospheric Model ECHAM6

with

Isolated Radiation Component

and

Extracted Shared Variables

Re-integrating Radiation Component

Applying Component Concurrency

(PRIMARY GOAL II)

Output:

A new version of
Atmospheric Model ECHAM6

with

Concurrent Radiation Scheme

(EXTERNAL GOAL)

Output:

A new version of

Atmospheric Model ECHAM6

with

Single-Precision Radiation Scheme

Figure 1.6.: Primary Goal I is to create the isolated radiation component in the
atmospheric model ECHAM6 and extract the shared variables between the radia-
tion component and other parts of the model. This goal is achieved by extracting
the radiation component from the model and separating its source code from the
source code of the model. Primary Goal II is to implement the concurrent radia-
tion scheme in ECHAM6 using the results from Primary Goal I. In addition, the
single-precision radiation scheme is also created (by an external team) using the
isolated radiation component.

13

Chapter 1 Introduction

Component Isolation Practice

Output I =
Carvedout Program

(Program without Component)

Input:
Source Codes

of

 a Fortran Program

(containing a Component)

Output II =
Isolated Component

(Component without sharing Source Code)

Output III:
Shared Variables

between
the Component and other

parts

Figure 1.7.: The general goal of the dissertation is to introduce an approach called
Component Isolation for extracting a component from a Fortran program, isolat-
ing it from the program and extracting the shared variables between the compo-
nent and the program. The shared variables are the the global variables shared
between the component and the Fortran program. The isolated component is the
same as the original component, but it does not share any source code with the
other parts of the program. The carvedout program will be defined in Chapter 6
precisely. Roughly speaking, however, it is the same as the original program
without sharing any source code with the component.

14

1.4 Outline of the thesis

1.4. Outline of the thesis

• Chapter 2 is a literature review of the similar works to this dissertation. It
discusses the related research in two parts:
– The first part provides an insight into the available concurrency inside

the existing climate models.
– The second part gives an overview of the software engineering research

and tools that relate to the general goal of the dissertation. The chapter
indicates the shortcomings of the previous works and justifies the work
presented in this thesis.

• Chapter 3 describes the technique of the concurrent radiation scheme that
was applied to the atmospheric model ECHAM6 within this dissertation. It
will explain the importance of the component in the atmospheric simulation
and describes why the radiative transfer is a real computational bottleneck.
The chapter also discusses why the proposed solution should be a right choice
to overcome the challenges confronting the primary motivation of this disser-
tation.

• Chapter 4 discusses the implementation procedure regarding Primary Goal 1
and Primary Goal 2.

• Chapter 5 provides a thorough performance analysis of the classical and con-
current radiation scheme of the atmospheric model ECHAM6 and highlights
the achievements regarding Primary Goal 2.

• Chapter 6 describes a novel static program analysis approach to achieve the
general goal of this dissertation.

• Chapter 7 provides some techniques for validating the implementation pro-
cedures (described in Chapter 4 and Chapter 6) to achieve the goals of this
dissertation.

• Chapter 8 provides a summary of the discussions throughout the chapters and
conclude the dissertation.

• Chapter 9 proposes a couple of follow-up research works to improve the solu-
tions provided in this dissertation.

1.5. Chapter Summary

This chapter presented the (general and primary) motivations and goals of this
dissertation. It was stated that climate models are the means for studying cli-
mate change, but more accurate simulations require more optimized models which
can benefit from the current and future heterogeneous high performance computing
(HPC) systems. Such optimization in legacy climate models is, however, hindered

15

Chapter 1 Introduction

by sharing source code between different components inside the models. Removing
such a problem is, therefore, the general motivation of this dissertation. Hence, the
general goal of the dissertation is as follows:

• Presenting a novel approach for performing the following static program anal-
ysis tasks:
1. Extracting a component from a Fortran program.
2. Extracting shared variables between the component and the other parts

of the program.
3. Isolating the component in the program.

The primary motivation of this dissertation is, however, to optimize the radiation
scheme of the atmospheric model ECHAM6 in order to expedite the paleoclimate
simulations required by the PalMod project. Hence, Primary Goal 1 of this disser-
tation is as follows:

• Building a new version of the atmospheric model ECHAM6 with the isolated
radiation component.

In this new version of the model, the shared source code and variables of the radiation
component and the other parts of the model are separated from each other. Primary
Goal 2, on the other hand, aims at the following goal:

• Building a new version of the atmospheric model ECHAM6 with the concur-
rent radiation scheme.

In this new version of the model, radiative transfer is calculated concurrently with
other atmospheric processes in order to improve the scalability of the model. Finally,
the external goal of this dissertation is as follows:

• Building a new version of the atmospheric model ECHAM6 with the single-
precision arithmetic radiation scheme.

In this version, a single-precision arithmetic scheme is applied to the calculations of
radiative transfer by benefiting from the results from Primary Goal 1. However, this
goal is beyond the scope of this dissertation and is pursued by an external project.

16

2. Background and Related Works
Einstein:
A hundred times every day, I remind myself that my inner and outer life

depends on the labors of other men, living and dead, and that I must
exert myself in order to give in the measure as I have received and
am still receiving.

This chapter provides a solid background and the related works to the discussions in
this dissertation. The chapter thus is divided in two parts: the first part presets the
topics concerning the primary goals and the second part is dedicated to the general
goal of the dissertation.

2.1. Background and related works to the primary
goals

It was explained in Section 1.3.1 that ECHAM6 suffers from low scalability in pa-
leoclimate simulations (pursued in the PalMod project) due to the limited number
of grid points at the CR resolution. The primary goal of this dissertation is to im-
plement a concurrent radiation scheme to increase the level of concurrency in the
model. Hence, this chapter first gives an overview on the available concurrency in
ECHAM6 and then describes the idea of Coarse-grained Component Concurrency
(CCC) proposed by Balaji (Balaji et al., 2016) as the basis of the solution proposed
by this dissertation. Before delving into details, however, it should be helpful to
clarify the difference between two recurring terminologies in this dissertation here:
“concurrency” and “parallelism”.

Concurrency vs. Parallelism
Concurrency denotes the order of the execution of multiple tasks (Grossman and
Anderson, 2012). Concurrent tasks can start, run, and complete in any order
(Wikipedia, last access: 31 March 2022a; Kreowski, 1986) even on a single pro-
cessor. The results of the concurrent tasks do not change if they execute in different
orders as they do not have any dependency (Shatnawi et al., 2017; Wilde, 1990)
on each other. Parallelism, on the other hand, denotes simultaneous execution of
multiple concurrent tasks on multiple processors. In other words, if task A and B
are concurrent and they run at the same time on different processors, they are also
parallel tasks.

17

Chapter 2 Background and Related Works

2.1.1. Concurrency in ECHAM6

Climate models historically implement concurrency at different levels and lever-
age various parallelism techniques to reduce time-to-solution of climate simulations.
ESMs, in general, benefit from both fine and coarse-grained concurrency and en-
act them within a combination of data parallelism and task parallelism paradigms.
Task and data parallelism are two fundamental parallel programming paradigms
and mixing them often yields better speedups in handling expensive computational
applications (Wikipedia, last access: 31 March 2022b; Suter, 2007). Providing the
implementation support for the mixed-parallel computing at various levels has al-
ready been addressed in the literature (Khaldi et al., 2012; Aida and Casanova, 2009;
N’Takpe et al., 2007; Radulescu et al., 2001; Radulescu and Van Gemund, 2001; Bal
and Haines, 1998). MPI-ESM is a good example of climate models that benefit from
such a hybrid computing paradigm, which will be explained further below.

Task Parallelism in MPI-ESM

Introduction of the multi-processor technology in 1980s allowed for the simultaneous
execution of multiple programs on several processors. This became a milestone in
parallel computing as it enabled task parallelism in form of coarse-grained concur-
rency for the first time and led to the MPMD (multiple-program, multiple-data)
parallel framework (Wikipedia, last access: 17 January 2022; Balaji et al., 2016). In
MPMD, multiple autonomous processors execute several programs simultaneously.
The emergence of distributed-memory computing gave rise to climate models which
combine fine-grained and coarse-grained concurrency. Most of the ESMs in the world
today are MPMD applications that allow multiple submodels to run concurrently
and exchange data through a coupler mechanism as shown in Figure 1.2. MPI-ESM
implements task parallelism using the MPMD framework between the atmospheric
model ECHAM6 and the ocean model MPIOM. ECHAM6 and MPIOM are com-
posed of several components, each of which calculate some physical processes. The
land model (JSBACH) is now part of ECHAM6. By the same token, the biogeo-
chemical model (HAMOCC) is part of MPIOM. The components in ECHAM6 and
MPIOM are organized sequentially, but they implement data parallelism internally.

Data Parallelism in ECHAM6

Data parallelism in ECHAM6 is implemented at three levels: SIMD, OpenMP
threads and SPMD. These levels are explained below:

• Level I:
The first level of data parallelism in ECHAM6 is implemented using the SIMD
(single-instruction multiple data) architecture (Wikipedia, last access: 17 Jan-
uary 2022) (also known as vectorization) of modern processors in program
loops and arrays of data (Balaji, 2015). SIMD was the first introduction of
fine-grained concurrency in which the same sequence of instructions could be

18

2.1 Background and related works to the primary goals

applied to each element of a data stream simultaneously (Balaji et al., 2016)
(Balaji, 2015).

• Level II:
Further data parallelism in ECHAM6 is achieved through OpenMP program-
ming model by generating parallel threads that run on shared-memory ar-
chitectures (i.e. multi-processors, multi-core machines) and divide loops and
partition large data streams between multiple parallel threads and processors.

• Level III:
The third level of data parallelism in ECHAM6 is implemented using do-
main decomposition (DDM webpage, last access: 4 April 2022). It discretizes
the total physical input space and divides it into multiple separate domains.
ECHAM6 is an example of SPMD (single-program, multiple-data) applica-
tions (Wikipedia, last access: 4 April 2022; Shipman, 2016), in which multiple
autonomous processors simultaneously execute the same program on parti-
tions of a data stream. The model leverages Message Passing Interface (MPI)
(MPI official webpage, last access: 4 April 2022; Nielsen, 2016) and spawns
several MPI processes to calculate each domain on a different processor across
a distributed-memory machine.

2.1.2. Coarse-grained Component Concurrency: A new level of
parallelism

In the previous section, it was explained that the scalability of a model is affected
by the level of concurrency that is available within the model. There are several
motivations for increasing the level of concurrency in climate models. For example,
low-resolution simulations normally suffer from a low scalability due to the limited
number of grid points. In addition, as discussed in Chapter 1, climate models
need to achieve a higher scalability in order to cope with the future scientific and
technological challenges.

On this account, Balaji suggests a new approach called coarse-grained component
concurrency (CCC) to increase the rather modest amount of concurrency among
ESM components (Balaji et al., 2016). He suggests that, from 10 decisive factors in
achieving the goal of future high scalable climate models, one comes from component
reorganization (Balaji et al., 2016). Coarse-grained concurrency can be implemented
inside each submodel by running lower or higher level components in parallel with
each other.

It was pointed out earlier that components of a submodel traditionally run sequen-
tially in respect to each other (as shown in Algorithm 3.1). Since the physical pro-
cesses are calculated one at a time in this scheme, each component receives feedback
from previous calculations before it takes turn to run in every time step. As a re-
sult, every component has a direct contribution to the overall runtime of a submodel

19

Chapter 2 Background and Related Works

and fast components have to wait long for slow components. To reduce the long
simulation time, however, coarse-grained component concurrency suggests resolving
multiple physical processes simultaneously by running several (expensive) compo-
nents concurrently. As a result, this approach increases the available concurrency in
ESMs by implementing more task parallelism within submodels. Traditionally, task
parallelism is mainly available between submodels, but coarse-grained component
concurrency extends it to the components within submodels as well. In addition, if
the concurrent component has a higher scalability, it can potentially adopt finer do-
main decomposition and allocate a larger number of parallel processes. As a result,
this feature can increase the scalability of the whole model proportionally.

Components coupling
Coarse-grained component concurrency may sound non-intuitive as there is a tight
coupling dependency between components of the climate system. Traditionally,
climate models resolve the physical processes sequentially in respect to each other
to prevent instability in the model. Consider the simplest case in which two
components CompX and CompY run sequentially and have a dependency on each
other at the boundary, as shown in Figure 2.1. The call sequence of the component
can thus be schematically represented as below:

CompYt+1= CompYt+ f(CompXt, CompYt)
CompXt+1= CompXt+ g(CompYt+1, CompXt)

where f() and g() represent the feedback from the other component, and the su-
perscript represents a discrete time step. In this scheme, CompX is able to access
the updated state of CompYt+1 in the second step. As described by Balaji (Balaji
et al., 2016) and other text books on numerical computing (e.g. (Durran, 2013)),
this is formally equivalent to Euler forward-backward time integration or Matsuno
time stepping.
In a parallel scheme, the components however execute concurrently (as shown in
Figure 2.1) and CompX has access only to the lagged state CompYt. The coupling
between the parallel components can be described as below:

CompYt+1= CompYt+ f(CompXt, CompYt)
CompXt+1= CompXt+ g(CompXt, CompYt)

The new scheme, however, introduces a change in the operator splitting technique
and the potential effects of which needs to be systematical assessed as the results
will not be identical to the sequential case any longer. A general formal stability
analysis requires the forms of f and g to be available (Balaji et al., 2016). Although
this coupling algorithm is formally unconditionally unstable (like the Euler forward

20

2.1 Background and related works to the primary goals

CompY(t+1) CompX(t+1)
N

Processes

Time

CompY(t+2) CompX(t+2)CompX(t) CompY(t+3)

N
Processes

Time

CompY(t+2)CompY(t)
N

Processes CompY(t+3)CompY(t+1)

CompX(t) CompX(t+1) CompX(t+2) CompX(t+3)

Figure 2.1.: Sequential and concurrent coupling sequences between two compo-
nents (CompX and CompY) in a climate modeling, with time on the X-axis and
processors on the Y-axis. Note that, in the sequential coupling sequence (on
the top), CompXt+1has access to the update state CompYt+1. However, in the
concurrent coupling sequence (at the bottom), CompXt+1only has access to the
lagged state CompYt.

method), it works in practice in climate modeling (Balaji et al., 2016). As Balaji
states (Balaji et al., 2016), this is a good example to indicate the opportunistic nature
of performance engineering that tries to take advantage of a successful practical
solution even though theoretically unfeasible. This is due to the inherent sources
of stability within the climate system as well as some computing methods aimed at
reducing instability (Balaji et al., 2016). This issue is nevertheless a good motivation
for further investigations.

Properties of the concurrent component
A suitable candidate for coarse-grained component concurrency in a legacy climate
model should have the following properties:

• The candidate component is expensive, i.e. it is much slower than the rest of
the model.

• The expensive component is configured to run at a different timescale than
the rest of the model in order to reduce the negative impacts of its high
computational profile on the overall simulation time. In this scheme, the
component is executed at a larger time step (Tslarge) and will not be called

21

Chapter 2 Background and Related Works

during multiple shorter time steps (Tsshort) in which other physical processes
are resolved. Tslarge is usually multiple times larger than Tsshort (i.e. Tslarge =
n * Tsshort).

• Tslarge ,however, creates inaccuracies in the model. This is because the results
from the expensive component is not updated during the shorter time steps
(Tsshort). As a result, the other components use a lagged state of the expen-
sive component during the shorter time steps, which leads to inaccuracies in
simulations. However, using a larger time step requires re-tuning of the model
to achieve the required accuracy.

• Nevertheless, the candidate component is far more scalable than the rest of the
model, but the sequential organization of the main model prevents this benefit
by enforcing a similar domain decomposition setup across all components.

Advantage of coarse-grained component concurrency
Considering the properties of a candidate component that was mentioned above,
coarse-grained component concurrency can bring the following benefits:

• Since the other components do not expect updated results from the expensive
components during the shorter time steps, this provides an ample opportunity
to run the expensive component in parallel with the other calculations. In
consequence, the model does not wait long for the expensive component when
the next Tslarge arrives, thus expediting the overall simulation time.

• In addition, the concurrent scheme can give the expensive component freedom
to scale independently from the main model. Hence, the expensive component
can benefit from finer problem decomposition and allocate more computational
resources independent from the main model. This property improves the scal-
ability of the model, which can potentially reduce the overall simulation time.

• The last but not the least, coarse-grained component concurrency is an op-
portune to remove the discrepancy between Tslarge and Tsshort (i.e. Tslarge =
Tsshort) and executing the expensive component preferably in every time step.
This can happen by assigning enough resources to the expensive component.

2.2. Background and related works to the general
goal

This section presents a background and the related works regarding the general goal
of this dissertation. In Chapter 1, it was explained that the general goal of this
dissertation includes the following tasks:

1. extracting a component from a Fortran program
2. isolating the component in the program

22

2.3 Reusable Component Extraction

3. extracting the shared variables between the component and the other parts of
the program

As far as an extensive search by this dissertation is concerned, neither previous works
nor tools address the above tasks fully. However, there are some similar efforts in
the past and some helpful tools that can assist regarding the general goal of this
thesis.

2.3. Reusable Component Extraction

In software engineering, software component reuse denotes the search for compo-
nents that provide required functionality for a new software application (Thapar
and Sarangal, 2020; Singh and Tomar, 2014). The cost of developing software from
scratch and maintaining can be reduced by identifying and extracting the reusable
components from legacy software (Ampatzoglou et al., 2018; Ahmaro et al., 2014).
The authors in (Gholamshahi and Hasheminejad, 2019) provide an overview of re-
search in this regard. Some of the most relevant works are, however, presented below
and their difference with our work is explained. We refer to these papers as P1, P2,
P3 and P4 for a later discussion.

P1: Conceptual Module
Authors in (Baniassad and Murphy, 1998) introduce an approach (and a tool called
Conceptual Module) to transform an arbitrary set of lines of code (selected by the
user from a C program) to an independent component. The entry point of the com-
ponent is thus formed as a logical unit around these lines. The dependencies of the
entry point on the original source code are then explored using the SUIF(Wilson
et al., 1995) compiler’s intermediate representation (IR) of a multifile software sys-
tem. These dependencies include variables, subprograms and etc. that are used
inside the entry point but their definitions are somewhere else in the original code.
This approach generates only one slice, which is the extracted component.

P2: Extract Component
The authors in (Washizaki and Fukazawa, 2005) present an approach (and a tool
called Extract Component) to extract all possible reusable (independent) compo-
nents from a Java source code for reuse in other applications. The tool builds a
dependency graph called Class Relation Graph (CRG) and uses the reachability
techniques to collect all possible clusters that have no dependency on the elements
outside the cluster. The tool modifies the original program to use the extracted
components.

P3: ComponentExtractor
Authors in (Marx et al., 2010) report an approach (and a visual development tool
called ComponentExtractor) that interactively supports developers to extract a (de-

23

Chapter 2 Background and Related Works

pendent) component from Java source codes. Although this is not a fully automated
tool for component extraction, it visualizes the dependencies between the compo-
nent and the original program and guides the developers to collect the codes of the
component from the program step by step. The output of the process of component
extraction is two slices of the original program: the slice of the extracted component
and the slice of the remaining parts of the original program. The tool uses BCEL
library (Byte Code Engineering Language) (Cap, 2013), which works on Java byte
code, to collect the dependency information (albeit overestimated). The extracted
component will be remained dependent on the second slice (i.e. the rest of the
program), but the goal is to partition the original program in such a way that the
dependency between the two slices becomes minimal. This approach is useful for
outsourcing a component (of a large application) to an external team for further
development and create a minimum interaction between the internal and external
developers.

P4: Kernel GENerator (KGEN)
Authors in (Kim et al., 2016) introduce a Python-based open source tool (called
Kernel GENerator (KGEN)) to extract a computational kernel from a Fortran ap-
plication and run it as a standalone executable. The motivation for this research
is providing an opportunity for the independent optimization of computational ker-
nels without dealing with the complexity of running the main application. KGEN
generates only one slice of the original program which is the extracted component.
The tool picks (at least) one Fortran subroutine and collects all the source code
supporting the subroutine using a static dependency analysis on Abstarct Syntax
Tree (AST) (Jones, 2003) of the original program. KGEN captures the input and
output data to the subroutine as well as the state of the global variables while the
original application is running. The extracted kernels may carry wrong pieces of
software from the main application though it may not affect the target objectives of
KGEN.

Discussions
The general goal of this dissertation has similarities and major differences with the
methods discussed in P1, P2, P3 and P4. The main features of our approach are as
follows:

• Our approach is aimed at generating two slices from a Fortran program (which
contains a component). These two slices are denoted by the isolated component
and the carvedout program.

• Novelty I:
Both slices are independent from each other, meaning that they compile suc-
cessfully as stand-alone codes.

• Novelty II:
Our approach separates shared source code between the component and the
program by creating mirror copies of the shared parts for each slice.

24

2.4 Program Analysis

Features P1 P2 P3 P4 Dissertation

Target Programming Language C Java Java Fortran Fortran

Number of Extracted Slices 1 >2** 2* 1 2*

Extracted Component Compilable Yes Yes No Yes Yes

Carvedout Program Compilable —1 —1 No —1 Yes

Integrating Carvedout Program & Component —1 —1 No —1 Yes

Extraction Granularity Statement Class Class namespace Combined2

Mirroring Shared Namespaces —1 No No —1 Yes

1: Not applicable as the carvedout program is not extracted.

2: Extraction at both namespace and statement level.

*: One slice is the isolated component and one slice is the carvedout program.

**: The tool can extract multiple components and modifies the original code to re-use the components.

Table 2.1.: Comparing four component extraction methods (in P1, P2, P3 and P4)
with the proposed solution in this dissertation.

• Novelty III:
Our approach also extracts the shared variables between the two slices.

• The motivation to our approach is to give freedom to the developer to modify a
component without affecting the other parts of the original program (through
the shared source code). For example, the mixed precision arithmetic can be
applied to the component or it can be adapted to the required modifications
for offloading some computations on accelerators without affecting the other
parts of the original program.

A comparison between our approach regarding the general goal of this dissertation
with the methods discussed in P1, P2, P3 and P4 is presented in Table 2.1. Note
that in this dissertation, we refer to the definition of a Fortran module or a Fortran
procedure in a Fortran program as a Fortran namespace.

2.4. Program Analysis

In software engineering, a software program can be analyzed statically or dynam-
ically. Static program analysis denotes an analysis without an actual execution of
the target program as opposed to dynamic analysis that is performed when the
program is running (Kaur and Nayyar, 2020; Egele et al., 2008). Static program
analysis usually implies that the code analysis is conducted using automated tools
during the assessment process. A code analysis, in general, pursues a wide variety
of goals and thus requiring different techniques and tools to be able to perform the
required tasks. In Chapter 6, we introduce an approach to achieve the general goal

25

Chapter 2 Background and Related Works

Forcheck plusFort Flint Understand Phasar

Call Graph Yes Yes Yes Yes Yes

Cross-Reference Table Yes Yes Yes Yes Yes

(Automatic) Component Extraction No1 No1 No1 No1 No1

(Automatic) Isolated Program No1 No1 No1 No1 No1

(Automatic) Shared Variables Extraction No1 No1 No1 No1 No1

1: Lots of post processing (using the call graph and cross-reference table) is required.

Table 2.2.: Five static program analysis tools in Fortran that can help with the
approach introduced in Chapter 6 to achieve the three tasks (extracting a com-
ponent, isolated program, extracting shared variables) of the general goal of this
dissertation.

of this dissertation in multiple steps. There are some static code analysis tools that
can however be potentially helpful in implementing some of these steps. These tools
are as follows:

• Forcheck

• Cleanscape FortranLint

• Understand

• PlusFort

• Phasar

None of these tools nonetheless offers a fully-automated implementation of the ap-
proach proposed in Chapter 6. These tools can mainly provide the call graph as
well as the cross-reference table of a Fortran program. As shown in Table 2.2, such
information can be used to do a considerable post-processing to perform the three
task tasks of the general goal of this dissertation based on the algorithm described
in Chapter 6.

Forcheck

Forcheck (Codework webpage, last access: 17 January 2022) is mainly aimed at
locating bugs and generating reliable codes. It performs a static analysis on Fortran
programs to get a fast insight into the code at various stages of the development
process and verify the conformance to the Fortran standards. It can compose optimal
documentations of a project with cross-reference tables of each program unit as
well as a call-tree. Such information can be helpful in various steps of extracting a
component from a Fortran program as well as collecting the shared variables between
the component and the program.

26

2.4 Program Analysis

FortranLint (Flint)
FortranLint (Flint)(Cleanscape webpage, last access: 17 January 2022) is a propri-
etary Fortran static source code analysis tool from Cleanscape. It is mainly aimed at
automatically identifying problems in Fortran codes prior to compiling or executing
programs and has 1000+ analysis of F77-F03 source code (PhASAR webpage, last
access: 17 January 2022). Flint is useful for refactoring and source browsing and
generates different reports including the call tree and cross reference table of the
program. The call tree is composed of a graphical diagram that shows the calling
structure of the source code. Cross reference table displays every symbol used in
the Fortran program in a table along with how it is used on each line of code. The
cross reference also implements powerful filter capabilities to exclude variables that
should not be visible in the results (for example, all single-letter variables, which
are often just loop indices or other temporary variables). Such information can be
helpful in various steps of extracting a component from a Fortran program as well
as collecting the shared variables between the component and the program.

plusFort
plusFORT (Codework webpage, last access: 17 January 2022), from Polyhedron
Solutions, is a multipurpose suite of tools for analyzing and improving Fortran pro-
grams. It can generate a call tree and a comprehensive cross-reference links, which
can be helpful in extracting a component from a Fortran program as well as collect-
ing the shared variables between the component and the program.

Understand
Understand (SciTools, last access: 17 January 2022), designed and maintained by
scitools company, is a proprietary integrated development environment (IDE) and
platform for the static program analysis of large code bases written in multiple
languages. It mainly provides supports for automatically reducing unnecessary or
risky interdependencies during code modifications. Detailed cross-referencing is the
core of Understand. This tool generates a bi-directional reference (such as “depends
on” and “depended on by”) for every name in a program and creates different types
of references such as “Calls/CallBys” and “Include/Includeby”. Such information
can be used to visually track the side effects of every change that are made to a
source code. The call-graph of a program can also be extracted using the detailed
cross-reference. However, this tool does not provide a fully automated solution to
the task of the general goal of this dissertation. It can nonetheless be helpful with
the approach introduced in Chapter 6.

PhASAR
PhASAR (PhASAR webpage, last access: 17 January 2022) is a LLVM based (LLVM
webpage, last access: 17 January 2022; Lopes and Auler, 2014; Lattner, 2008) static
analysis framework that allows for solving data-flow problems based on the LLVM
intermediate representation (IR). It offers algorithms to compute points-to, type

27

Chapter 2 Background and Related Works

hierarchy, call-graph, and data-flow information. To generate the call graph of a
Fortran program, the following steps are required:

• Generating intermediate representation code: It is necessary to gener-
ate the LLVM intermediate representation (LLVM IR) of the Fortran program
in the first step. In practice, there is a tool called WLLVM(Ravitch, 2022)
that can help in this regard.

• Finding reachable methods: Once the IR code is available, it should be
possible to extract the call graph of the program and the component. In order
to find which subroutines and modules are needed by the program and the
component, PhASAR provides a call graph algorithm that implements all the
means to find out which methods are reachable starting at the specified entry
points of the program or the component.

• Methods demangling: Each of the reachable methods that the call-graph
algorithm determines must then be demangled (use the c++filt tool) to find
the actual names of the subprograms in the Fortran program.

The resulting call graph can be used in Section 6.5.1.1 to extract the code coverage
of the component. This however requires a further processing. For example, a shell
script should be used to grep for the definition of each of the resulting subprogram
names on all of the modules of the program in order to find the namespaces of the
target component. As this procedure clearly shows, PhASAR does not automatically
provide a solution to the tasks of the general goal of this dissertation.

2.5. Program Slicing

Program slicing is a source-to-source transformation technique. A program slicer
extracts those statements that potentially affect some target variables at a particular
point of the original program. In other words, program slicing filters the program
statements that are not relevant to a chosen computation called a slicing criterion,
which is composed of some target variables at a particular point of the program
(Nguyen et al., 2015; Gallagher and Binkley, 2008; Weiser, 1984). A slice of a
program is thus the remaining statements afterwards. The original program and
its slice generate the same output regarding the target variables at the target point
(Mastroeni and Zanardini, 2017; Weiser, 1984). The prerequisite to program slicing
is the slicing criterion. User must know the detail of the target program in advance to
specify the target variables. Therefore, this technique does not provide a complete
solution to the general goal of this dissertation as the source code and thus the
target variables of the target component are considered unknown to the developer.
In Chapter 6, we introduce an approach that does not require such details (e.g.
role/intention of the variables of the target component) to be known in advance.
However, some techniques of program slicing can assist with the implementation of
this approach in Section 6.5.4.4. These techniques are as follows:

28

2.6 Chapter Summary

• Interprocedural slicing (Masud and Lisper, 2021; Asăvoae et al., 2014)
• Dynamic slicing (Lin et al., 2018; Sasirekha et al., 2011)
• Backward slicing (Srinivasan and Reps, 2016)

There are several program slicing tools, some of which have been summarized in
Table 2.3. Despite an extensive search, this study could, however, detect only one
program slicer for Fortran source codes as described below.

Fortran Program Slicer Schatz:
Schatz (Hoffner, 1995) is a program slicer that works on Fortran source codes and
was developed by Ottenstein and Ottenstein on PDGs (Ito, 2018; Makka and Sagar,
2016; Ottenstein and Ottenstein, 1984) to study program slicing. It has a very
simple user interface and works on a graph representation of the code. Schatz is
intended to work with PAT which is an interactive FORTRAN parallelizing assistant
tool (Smith and Appelbe, 1989; Smith, 1988). The following problems are, however,
the main obstacles to use Schatz for the general goal of this dissertation:

• Only intraprocedural slicing. The tool offers only intraprocedural slicing.
However, the target Fortran applications of this dissertation (i.e. climate mod-
els) contain subprograms massively and thus they require the interprocedural
slicing technique.

• No side effect:. Subroutine calls must be free of side effects and are not
expected to modify their parameters. However, our problem must deal with
shared variables between subroutines.

• Not available: As far as this dissertation is concerned, this tools is not
available.

2.6. Chapter Summary

This chapter presented the background and related works concerning the goals of
this dissertation. It was explained that different levels of parallelism traditionally
exists in the earth system models (ESMs). Similarly, MPI-ESM benefits from task
parallelism between its submodels, namely the atmospheric model ECHAM6 and the
ocean model MPIOM. In addition, ECHAM6 takes advantage of data parallelism
by implementing domain decomposition across its components. The primary goals
of this dissertation are, however, in pursuit of adding a new level of parallelism in
the model by applying component concurrency to the radiation component.
Furthermore, this chapter presented the similar research and available tools regard-
ing the general goal of the dissertation. In particular, it was shown that the majority

29

Chapter 2 Background and Related Works

Program Slicer Tools Language Slicing Direction Type of information Scope of Slicing

Schatz1 FORTRAN Backward static slicing Intraprocedural

Giri2 LLVM Backward static slicing Intraprocedural

CodeSurfer3

C

Backward Dynamic Interprocedural

Spyder4 Forward & Backward Dynamic Interprocedural

Unravel5 Backward static Interprocedural

WALA6

JAVA
Backward static Interprocedural

JSlice7 Backward Dynamic Interprocedural

1: (Ottenstein and Ottenstein, 1984)

2: (Liu, 2013)

3: (GrammaTech webpage, last access: 22 Mar 2022)

4: (Hoffner, 1995)

5: (Lyle and Wallace, 1997)

6: (SourceForge webpage, last access: 17 January 2022b)

7: (SourceForge webpage, last access: 17 January 2022a)

Table 2.3.: Six program slicing tools which were studied by this dissertation to
examine their potentials for the general goal of this dissertation. The extensive
search, however, revealed only Schatz as a program slicer for Fortran source codes
albeit not useful for the approach introduced in Chapter 6.

of the previous reusable component extraction works concern other programming
languages than Fortran, which is the focus of this dissertation. In contrast to pre-
vious research, the approach described in Chapter 6 generates two slices from a
Fortran program at both statement and namespace levels. Moreover, it was ex-
plained that the existing program analysis tools cannot fulfill all the requirements
of this dissertation, which are extracting the source code of an arbitrary component
from a Fortran program, extracting the global variables shared between the com-
ponent and the program as well as separating the source code shared between both
sides. Hence, the novel program analysis approach introduced in this dissertation is
still required to benefit either from the existing tools or to build new tools to achieve
the general goal of this dissertation.

30

3. The Concurrent Radiation
Scheme

This chapter describes the concurrent radiation scheme in the atmospheric model
ECHAM6, which was implemented within this dissertation to increase the scalability
and the computational performance of the model. The discussion starts by a short
description of the role of radiative transfer in atmosphere and continues by explaining
why the classical calculation of this process in ECHAM6 is a major stumbling block
in reducing the overall simulation time.

3.1. Radiative transfer in atmosphere

Radiative transfer is one of the most expensive parts in atmospheric simulations
(Balaji et al., 2016). This process is resolved to respond to the changing state of the
chemical species which interact with the radiation (Balaji et al., 2016; Salby, 1996;
Wallace and Hobbs, 2006). Solar energy is the driving force for the atmosphere
through radiative transfer, which is the only physical process that is capable of ex-
changing energy between a planet like the Earth and the rest of the universe (Bai and
Zong, 2021; Wallace and Hobbs, 2006). Energy transfer in the atmosphere involves
electromagnetic radiation in two separated wavelengths: shortwave, emitted by the
sun, and longwave, emitted by the earth’s surface and the atmosphere (Iqbal, 2012;
Wallace and Hobbs, 2006; Salby, 1996). There are several atmospheric processes -
including greenhouse gases, aerosols and clouds - that interact with electromagnetic
radiation through the mechanisms of absorption, scattering and emission. The level
of interaction strongly depends on the state of the atmospherics particles (evolving
by advection, cloud processes and chemistry) and the optical properties (the wave-
lengths and intensity) of the incident radiation (Myers, 2017; Wallace and Hobbs,
2006).
In principle, the absorption of solar radiation by the atmosphere and the earth’s
surface must be balanced by the longwave emission to space from the terrestrial
radiation (Parkhomenko, 2018; Salby, 1996). It is crucial for atmospheric models to
accurately represent the radiative transfer process (Rasp, 2019). Solving the problem
is in essence straightforward (Balaji et al., 2016; Wallace and Hobbs, 2006). However,
this can be quite computationally demanding in practice, despite the simplifying
approximations adopted in the radiation component (Balaji et al., 2016; Wallace

31

Chapter 3 The Concurrent Radiation Scheme

and Hobbs, 2006). As a result, it is too expensive to calculate radiative transfer in
every time step and grid point and, thus, in many climate models around the world
(such as the ECMWF Integrated Forecasting System (IFS)), radiative transfer is
calculated infrequently in time and/or on a reduced spatial grid than the rest of
atmospheric physics - entirely pursuing a performance improvement rather than
fulfilling any other technical objective (Balaji et al., 2016; Hogan and Bozzo, 2015;
Morcrette et al., 2008).

3.2. Classical Radiation Scheme in ECHAM6

The calculation of radiative transfer in ECHAM6 is represented with
PSrad/RRTMG (a postscript to the Rapid Radiative Transfer Model for
GCMs(Pincus and Stevens, 2013) for both shortwave and longwave parts of the
electromagnetic spectrum (Stevens et al., 2013). The radiation component is one of
the most expensive components in ECHAM6. Figure 3.1 suggests that this com-
ponent (the red curve) may take up to over 80% of the total simulation time while
the calculation of other atmospheric processes (the blue curve) is below 20%. In
this figure (and also throughout the dissertation), RAD denotes the calculation of
radiative transfer and ATM denotes the calculation of the atmospherics processes
except for radiative transfer. The relative cost of calculating radiative transfer is
affected by the following factors:

• The number of MPI processes

• The temporal and spatial resolutions

3.2.1. Impact of MPI processes on the radiation cost

As Figure 3.1 suggests, the relative time contribution of the radiation component
varies with the number of MPI processes assigned to the model. As the model keeps
scaling, the cost of resolving radiative transfer is reduced. This is an indication of
higher scalability of the radiation component in comparison to the whole model.
Separate experiments confirm the same different scaling profiles . Figure 3.2 shows
the total runtime of the model and compares it to the pure execution time of the
radiation component. This red curve clearly shows that the calculation of radiative
transfer scales almost perfectly while the blue curve shows the other components
(the main model) tend to become flat towards the end as they fail to benefit from
more available resources. The higher scalability of the radiation component can
be attributed to the columnwise organization of the atmospheric physics and the
embarrassingly parallel nature of the workload. In other words, since the individual
columns (iterating the k index in an (i, j, k) discretization) have no cross-dependency
in (i, j), it allows for fine-grained parallelism (Balaji et al., 2016). This is the reason

32

3.2 Classical Radiation Scheme in ECHAM6

16 32 64 128 256 512 1024
Number of MPI Processes

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
Pr

op
or

tio
na

l r
un

tim
e RAD / Total runtime

ATM / Total runtime

Figure 3.1.: The (expected) relative time contribution of the radiation calculations
in ECHAM6 to the total runtime if radiative transfer is calculated in every time
step. RAD denotes the calculation of radiative transfer and ATM denotes the
calculation of the atmospherics processes except for radiative transfer.

why the radiation component can intrinsically scale better beyond the limitations
of the main model.
Allocating the number of MPI processes for the simulations must follow a strict valid
settings options controlled by the spatial resolution and the inherent configurations
and the model. Experiments also indicate that the model is not entitled to running
on more resources much further beyond what the curves in Figure 3.1 and Figure 3.2
indicate. As a negative result, using higher scalability of the radiation component
is impeded by the lower scalability of the whole model.

3.2.2. Impact of temporal resolution on the radiation cost

Intuitively, radiative transfer is expected to be calculated in each time step of the
model. In Figure 3.1, the radiation component and the main model were assumed
to adopt the same time resolution, i.e. ∆tRAD = ∆tATM . In other words, radiative
transfer was calculated in every time step as the other atmospheric processes. In
reality, however, this is different and ECHAM6 benefits from a larger radiation time
step to improve the performance of the model. Figure 3.3 shows the organization
of the classical radiation scheme in ECHAM6. In this figure, the red parts show

33

Chapter 3 The Concurrent Radiation Scheme

16 32 64 128 256 512 1024
Number of MPI Processes

256

512

1024

2048

4056

8192

16384
Ti

m
e

(s
ec

)
Radiation
Total runtime of ECHAM6

Figure 3.2.: The scaling curve of the radiation component vs. the whole atmo-
spheric model ECHAM6 shows that the radiative calculations can keep scaling
almost linearly while the main model fails to benefit from a higher number of
resources towards the end.

the calculation of radiative transfer and the blue parts show the calculation of other
atmospheric processes.
As it is apparent, the radiation component adopts a coarser time resolution than the
rest of the model, i.e. radiative transfer is calculated once in every multiple atmo-
spheric time steps, i.e. ∆tRAD = n ∗ ∆tATM . In its flagship configuration, ECHAM6
updates the optical properties of radiation every two hours (∆tRAD = 8 ∗ ∆tATM
and ∆tATM= 15min) except for very high-resolution (T255) simulations where the
radiation is calculated hourly. Although the choice of larger radiation time steps
(∆tRAD> ∆tATM) evidently reduces the overall runtime of simulations, radiative
portion is yet considered relatively high for some configurations in ECHAM6. As
shown in Figure 3.3, the radiative calculations take up from almost 40% to 58% of
the total simulation time at the CR resolution, depending on the number of MPI
processes assigned to the model.

3.2.3. Impacts of larger temporal and spatial resolutions on
accuracy

Adopting larger temporal or spatial resolutions for calculating radiative transfer
may, however, have negative impacts on the model accuracy (Balaji et al., 2016;
Pincus and Stevens, 2013; Morcrette, 2000). At coarser radiation time steps, as

34

3.2 Classical Radiation Scheme in ECHAM6

1

RAD(1) RAD(n+1) ATM(RAD(n+1))

MPI
Processes

N
P
ro
c
e
s
s
e
s

Time Steps
2 3 4 5 n n+1 2n

RAD(2n+1) ATM(RAD(2n+1))

2n+1 3n

ATM(RAD(1))

Figure 3.3.: The organization of the classical radiation scheme in ECHAM6: ra-
diative transfer is resolved sequentially with respect to the other atmospheric
physics and dynamics and it is stepped forward at a slower rate than the other
atmospheric processes.

shown in Figure 3.3, there are multiple normal atmospheric time steps between two
consecutive radiation time steps in ECHAM6. Thus, the radiation results are used
beyond the state of the input tracers, which may be as much as ∆tRAD- ∆tATM
(approximately two hours) behind. In consequence, the atmospheric calculations
are provided with old feedback from the radiation component within the normal
time steps. This scheme has a negative impact on the accuracy of the model. These
infrequent calculations of the radiative heating may result in numerical instability
in climate models. The use of the lagged state can be viewed as a potential source
of discrepancy between the cloud field and the “cloud shadow field” seen by the
radiation component. This, therefore, introduces numerical errors in atmospheric
models and becomes considerably worse at higher resolutions (Balaji et al., 2016;
Pauluis and Emanuel, 2004).
Some solutions have been proposed to mitigate the negative impacts of infrequent
radiation calculations. While some techniques focus on optimizing the calculations
for calling the radiation component more frequently without affecting the compu-
tational costs, some others suggest rescaling old radiation feedback wherever the
new results are not available (Hogan and Hirahara, 2016; Hogan and Bozzo, 2015;
Morcrette et al., 2008). To improve the model’s accuracy in ECHAM6, longwave
irradiance is rescaled based on the surface temperature while shortwave irradiance
is rescaled by the zenith angle on non-radiation time steps in between an update of
the optical properties (Stevens et al., 2013).

3.2.4. Sequential Component Organization: Root of problems

The entire crux of the problem in the classical radiation scheme can be attributed
to the sequential organization of the components inside the model, as suggested
by Algorithm 3.1. Although the actual code is far more complex, this abstract
representation shows how atmospheric processes inside the model are stepped for-
ward one at a time in a time stepping loop. “ATM_part_1” and “ATM_part_2”

35

Chapter 3 The Concurrent Radiation Scheme

Algorithm 3.1 An abstract representation of the sequential component organiza-
tion in the atmospheric model ECHAM6. As it suggests, the atmospheric processes
inside the model are stepped forward one at a time in a time stepping loop and thus
their calculations cost contribute directly to the overall simulation time.

Program ECHAM6

call Initialization

while (time steps < enough)

call ATM_part_1

if (radiation time step) call radiation(arguments)

call ATM_part_2

end while

call cleanup

End Program ECHAM6

in this algorithm denote the calculation of all the atmospheric processes except for
radiative transfer, which is handled by “radiation” subroutine. In this scheme, the
computation time of each component including the radiation directly contributes
to the overall simulation time. In particular, the radiation component significantly
delays the following calculation of other atmospheric physics and dynamics during
the entire course of simulation. As it is apparent in Figure 3.3, this architecture
prolongs the radiation time step in proportion to the high computational cost of the
radiation component. It will be shown in the next section that this long response
time of the radiation calculations is not, however, inevitable and can be avoided by
reorganizing the component inside the model.
Moreover, the sequential organization of components in the classical ECHAM6 cre-
ates another obstacle that hinders the optimization of the model. In fact, ECHAM6
traditionally benefits from MPI and implements domain decomposition parallelism
to expedite the computations. As explained before, the radiation calculations dis-
play a higher scalability than the main model in this framework. Such a higher
scalability is instrumental in reducing the high computational cost of the radiation
calculations. However, the sequential architecture of the classical ECHAM6 restrains
the benefit by forcing the radiation component to use the same computational re-
sources as the rest of the model. As a consequence, the component is hindered by
the limited scalability of the whole model.

36

3.3 Concurrent Radiation Scheme

16 32 64 128 256 512 1024
Number of MPI Processes

30%

40%

50%

60%

70%
Pr

op
or

tio
na

l r
un

tim
e

RAD / (Total runtime)
ATM / (Total runtime)

Figure 3.4.: The relative time contribution of the radiation calculations in
ECHAM6 (using the classical radiation scheme) at the CR resolution.

3.3. Concurrent Radiation Scheme

It was discussed in the previous section that, even in light of larger radiation time
steps, radiation calculations yet impose a daunting cost on the atmospheric simula-
tion at coarse (CR) resolution in ECHAM6. It was also shown that the sequential
treatment of resolving atmospheric processes is implicated in the long response time
of the radiation component in every radiation time step and restricts the benefit
of the higher scalability of the radiation calculations. This dissertation proposes
to modify the sequential component organization to resolve radiative transfer con-
currently with the other atmospheric calculations, as shown in Figure 3.5. This
new scheme is denoted by the concurrent radiation scheme. In Section 2.1.1, it was
explained that there are three levels of parallelism in ECHAM6. The concurrent
radiation scheme implements an additional level of parallelism inside the model by
applying coarse-grained component concurrency (Balaji et al., 2016) to the radiation
calculations. This approach eliminates the high response latency from the radiation
time step and paves the way for a higher scalable model. In contrast to the classical
scheme, the concurrent radiation scheme starts resolving radiative transfer much
earlier before the next radiation time step arrives. As a result, the main model
receives feedback from the radiation component much faster upon the request. This
technique minimizes the response latency of the component and reduces the over-
all simulation time. In this approach, radiative transfer is calculated concurrently
with other atmospheric processes along the course of normal time steps. Due to the

37

Chapter 3 The Concurrent Radiation Scheme

Energy

Momentum

Energy

Momentum

Water

Water

Carbon

ECHAM

MPIOM

JSBACH

HAMOCC

OASIS

Concurrent Radia�on

MPI-ESM 1.2

YAXT

Energy BalancePrognostic & diagnostic
 variables

Figure 3.5.: The concurrent radiation scheme adds a new level of parallelism in-
side the atmospheric model ECHAM6 and increases coarse-grained component
concurrency in the coupling architecture of the Earth system model MPI-ESM
(courtesy of Deutsches Klimarechenzentrum (last access: 4 May 2022)).

dependency between components, the coupling fields are also exchanged between
the radiation component and the main model within the radiation time steps but
without the typical delay experienced in the classical scheme.
Figure 3.6 describes a method for casting radiative transfer as a concurrent compo-
nent using distributed memory computing. In the concurrent scheme, the radiation
component and the main model are organized on two separate sets of MPI pro-
cesses which enable parallel calculations of radiative transfer and other atmospheric
processes. In this approach, the radiation component runs within the same binary
code of the model, but the allocated resources are split between the main model and
the component. ECHAM6 classically benefits from MPI to implement data paral-
lelism using domain decomposition and, thus, this techniques is applied to all the
components inside the model including the radiation - due to the traditional organi-
zation of the components. In the concurrent scheme, the radiation keeps benefiting
from the old data parallelism through domain decomposition but on a separate set
of MPI processes. An MPI interprocess communicator enables the communication
between the component and the main model. In the concurrent radiation scheme,
the radiation component and the main model intuitively follow the same domain
decomposition and thus they are assigned the same number of processes. However,
it will be explained shortly that the radiation component can adopt coarser or finer
domain decomposition and allocate a different number of MPI processes than the
main model.

38

3.3 Concurrent Radiation Scheme

1

ATM(RAD(1))

MPI
Processes

N
P
ro
c
e
s
s
e
s

Time Steps

n
+

1

2
n

+
1

RAD(2n+1) RAD(3n+1)RAD(1)N
P
ro
ce

ss
e
s

ATM(RAD(n+1)) ATM(RAD(2n+1))

2 n 2n

WAITING

RAD(n+1)

Figure 3.6.: The re-organization of the radiation component in parallel with the
rest of atmospheric physics and dynamics in ECHAM6. In the first (radiation)
time step, ATM sends the input data to RAD, but it has to wait long until it
receives the results from RAD. In the following radiation time steps, however,
the data exchange takes place immediately one after the other (i.e. ATM first
receives the results of radiation calculations and immediately provides the input
data to RAD for the next radiation calculations.). This way, ATM is supposed to
experience a minimum idle time when it interacts with RAD.

39

Chapter 3 The Concurrent Radiation Scheme

3.4. Arbitrary Domain Decomposition

It was explained that the radiation component is far more scalable than the main
model in the atmospheric model ECHAM6. This feature could potentially be ex-
ploited to reduce the high computational profile of radiative transfer in the classical
radiation scheme if the component were capable of choosing the best choice of do-
main decomposition freely regardless of the configuration of the main model. In the
classical model, however, this is not possible due to the following problems:

1. the sequential component organization:
This scheme does no allow the component and the main model to run on
different sets of resources.

2. sharing the model states and configuration:
This problem does not allow the component and the main model adopt differ-
ent (domain decomposition) setups as they use shared variables over some of
the model’s states and configuration.

These two problems are solved in the concurrent radiation scheme as the radiation
component and the main model become concurrent processes, thus having differ-
ent address spaces. As a result, they can adopt different (domain decomposition)
setups and allocate different number of MPI processes. In general, there are three
conceivable domain decomposition arrangements that can be adopted for the radi-
ation component in comparison to the main model’s setups. These options are as
follows:

1. identical domain decomposition:
In this scheme, the radiation component and the main model are assigned
the same number of MPI processes and there is a one-to-one communication
between the processes of both sides.

2. coarser domain decomposition:
In this scheme, the radiation component allocates a lower number of MPI
processes than the main model. As a result, one process of the radiation
component calculates radiative transfer for multiple processes of the main
model.

3. finer domain decomposition:
In this scheme, the radiation component allocates a higher number of MPI
processes than the main model. As a result, multiple processes of the radiation
component calculate radiative transfer for one process of the main model.

This approach is a means solely aimed at improving the overall performance of the
model and creating a load-balance between the MPI processes assigned to the main
model and the component. It is noteworthy that the accuracy of the model will not
however be affected if the radiation component and the main model adopt different
domain decomposition. As long as the temporal and spatial resolutions of the model

40

3.4 Arbitrary Domain Decomposition

and the radiation are remained intact, the simulations results are expected to remain
bit-wise identical.

3.4.1. Benefits

Arbitrary domain decomposition in the concurrent radiation scheme can potentially
offer the following benefits:

• higher scalability
• load balancing
• model consistency

3.4.1.1. Load balancing.

It was explained before that the concurrent radiation scheme makes it possible for the
radiation component and the main model to adopt different domain decomposition
from each other. This feature can be exploited in load-balancing in the model as
explained below.

Impacts of identical domain decomposition:
In identical domain decomposition, the main model and the radiation component
span the same number of MPI processes. In addition, for each MPI process assigned
to the main model, there is only one dedicated peer process assigned to the radiation
component for calculating radiative transfer. In another word, MPI process 0 from
ATM exchanges data with MPI process 0 from RAD and so on. However, it is
expected that this setup results in a load imbalance in the model. In Chapter 5,
such a negative impact of this setup will be shown with some explicit experiments.
Figure 3.4, however, implies the same message. It is clear from the curves in this
figure that, in some configurations (when the whole model allocates 24, 48, 96 or
144 MPI processes), RAD is more expensive than ATM. Hence, it is expected that,
in the concurrent radiation scheme in the respective configurations, ATM keeps
waiting for RAD, resulting in a load imbalance between ATM and RAD. Figure 3.7
schematically shows that the load imbalance takes place repeatedly in the coarse of
simulation before the next radiation time step arrives.

By the same token, it is clear from Figure 3.4 that if the model allocates 288, 384
or 576 MPI processes in the classical radiation scheme, RAD will be less expensive
than ATM. This implies that, in the concurrent radiation scheme in the respective
configurations, an idle time will be inflicted on RAD, resulting in a load imbalance
between ATM and RAD. In Chapter 5, some experiments will be performed to

41

Chapter 3 The Concurrent Radiation Scheme

MPI
Processes

N
Processes

N
Processes

ATM(RAD(n+1))

 RAD(1) RAD(n+1)RAD(1)

WAITING

1
Time Steps

n
+

12 n 2n

WAITINGATM(RAD(1)) WAITING

RAD(2n+1)

Figure 3.7.: Identical domain decomposition is expected to cause ATM to expe-
rience an idle time in some configurations in the concurrent radiation scheme,
resulting in a load imbalance between ATM and RAD. For example, this can hap-
pen when ATM and RAD individually adopt 16, 24, 96 or 144 MPI processes.
In these configurations, the whole model allocates (16+16=) 32, (24+24=) 48,
(96+96=)192 or (144+144=) 288 MPI processes.

indicate the idle time explicitly. Figure 3.8 schematically shows the idle time in
some setups in the concurrent radiation scheme.

Impacts of finer domain decomposition
Finer domain decomposition at the radiation component can bring two advantages
to the concurrent radiation scheme. These benefits are as follows:

• higher scalability
• load balancing

In Figure 3.7, it was shown that identical domain decomposition can potentially re-
sult in an idle time at the MPI processes assignmed to ATM. Adopting finer domain
decomposition can expedite the calculation of radiative transfer, thus reducing the
idle time inflicted on the MPI processes assigned to ATM. Hence, this setup can
ideally remove the load-imbalance between ATM and RAD, as shown in Figure 3.9,
while improving the scalability of the model further in comparison to identical do-
main decomposition.

Impacts of coarser domain decomposition
In Figure 3.8, it was shown that identical domain decomposition can potentially
result in an idle time at the MPI processes assignmed to RAD. Adopting coarser

42

3.4 Arbitrary Domain Decomposition

ATM(RAD(1))

MPI
Processes

N
P

ro
c
e
s
s
e
s

RAD(4n+1)N
P

ro
c
e
s
s
e
s

ATM(RAD(n+1)) ATM(RAD(2n+1))

 RAD(1) RAD(2n+1) RAD(3n+1)RAD(n+1)RAD(1) WAITINGWAITING WAITING

WAITING

1 Time Steps

n
+

1

2
n

+
1

2 n 2n

Figure 3.8.: Identical domain decomposition is expected to cause the radiation
component experiences an idle time in some configurations in ECHAM6 using
the concurrent radiation scheme, resulting in a load imbalance between ATM and
RAD. For example, this can happen when both ATM and RAD individually adopt
288, 384 or 576 MPI processes. In these configurations, the whole model allocates
(288+288=) 576, (384+384=) 768, (576+576=)1152 MPI processes.

1

ATM(RAD(1))

MPI
Processes

N
Processes

Time Steps

RAD(1)
M > N

Processes

WAITING

Radiation runs
on a higher number of

MPI processes

RAD(n+1)

ATM(RAD(n+1))

RAD(2n+1)

ATM(RAD(2n+1))

RAD(3n+1)

2 n 2n 3nn
+

1

2n
+

1

Figure 3.9.: Finer domain decomposition scheme can potentially remove the wait-
ing time shown in Figure 3.7 and thus achieves a higher scalable model with an
improved workload distribution between MPI processes assigned to ATM and
RAD.

43

Chapter 3 The Concurrent Radiation Scheme

WAITING ATM(RAD(2n+1))ATM(RAD(n+1))ATM(RAD(1))

RAD(2n+1) RAD(3n+1)RAD(n+1)RAD(1)

Radiation allocates a lower number of MPI processes

M < N
Processes

N
P

ro
c
e
s
s
e
s

MPI
Processes

1 Time Steps

n
+

1

2
n

+
1

2 n 2n

Figure 3.10.: Coarser domain decomposition scheme can remove the waiting time
shown in Figure 3.8 and thus improves the workload distribution between MPI
processes assigned to ATM and RAD.

domain decomposition can remove the idle time inflicted on the MPI processes
assigned to RAD at the expense of slowing it down. Hence, this setup can ideally
remove the load-imbalance between ATM and RAD, as shown in Figure 3.10.

3.4.1.2. Model Consistency

In Section 3.2, it was discussed that the radiation component is stepped forward in
a larger time resolution in order to reduce the negative impact of the high computa-
tional profile of radiative transfer. This however results in inaccuracy in the model.
The concurrent radiation scheme may offer a way forward to decrease the discrep-
ancy between ∆tRAD and ∆tATM, and bring us toward more physical consistency
between the radiative and physicochemical atmospheric states (Balaji et al., 2016;
Pauluis and Emanuel, 2004; Xu and Randall, 1995). Two solutions can be proposed
in this regard, which are as follows:

• taking advantage of idle times
• adopting finer domain decomposition

Taking advantage of idle times
Figure 3.11 schematically illustrates a contrived configuration in which ATM and
RAD adopt identical domain decomposition, but the radiation component is forced
to remain idle almost half of the total runtime of the model. This is, however,
an ample opportunity for reducing the radiation time step to a half and calculat-
ing radiative transfer twice as shown in Figure 3.12. This scheme thus creates a
more accurate model without increasing the total simulation time or increasing the
resource usage while removing the load-imbalance between ATM and RAD as well.

44

3.4 Arbitrary Domain Decomposition

ATM(RAD(1))

MPI
Processes

N
P

ro
c
e
s
s
e
s

RAD(4n+1)N
P

ro
c
e
s
s
e
s

ATM(RAD(n+1)) ATM(RAD(2n+1))

 RAD(1) RAD(2n+1) RAD(3n+1)RAD(n+1)RAD(1) WAITINGWAITING WAITING

WAITING

1 Time Steps

n
+

1

2
n

+
1

2 n 2n

T1 T2 T3

T3/2T2/2T1/2 T1/2 T2/2 T3/2

Figure 3.11.: A contrived model configuration in which the same domain decom-
position is assigned to ATM and RAD, thus forcing the radiation component
to remain idle almost half of the total runtime of the model and leading to a
load-imbalance between ATM and RAD.

Adopting finer domain decomposition

Generally speaking, however, the concurrent radiation scheme may offer a way for-
ward towards more physical consistency in the model between the radiative and
physicochemical atmospheric states. This feature can be achieved by assigning a
higher number of MPI processes to the radiation component in order to calculate
radiative transfer faster and reduce the gap between the radiation time step and
the model (normal) time step (Balaji et al., 2016). Ideally, if the radiation com-
ponent has enough resources, it should be possible to create a consistent model by
calculating radiative transfer in each model (normal) time step (∆tRAD = ∆tATM).
Figure 3.13 indicates a proposed configuration for the concurrent radiation in which
the radiation time step is reduced to four normal time steps. Ideally, the radiation
component should run at every time step without imposing any waiting time at the
atmospheric calculations. This should be possible by letting the radiation compo-
nent to allocate more resources and scale enough to achieve the necessary speedup
to finish in one normal time step.

45

Chapter 3 The Concurrent Radiation Scheme

1

ATM(RAD(1))

RAD(n/2+1)

MPI
Processes

N

P
ro

c
e
s
s
e
s

Time Steps

n
 / 2

+
1

n
+

1

RAD(n+1) RAD(3n/2+1)RAD(1)N

P
ro

c
e
s
s
e
s

ATM(RAD(n/2+1)) ATM(RAD(n+1))

2 n

Radiation is calculated more frequently

WAITING

n
 / 2

Figure 3.12.: A proposal for taking advantage of the idle time in Figure 3.11 to
reduce the radiation time step to a half (∆t RAD = n/2 ∗ ∆t ATM), thus improving
the model accuracy by creating a more consistent model. The advantage of this
approach is that it does not require more resources and just takes advantage of
the idle resources assigned to the radiation component.

1

ATM(RAD(1))

MPI
Processes

N
Processes

Time Steps
4

RAD(1)
M > N

Processes

WAITING

2 3

Radiation runs
on a higher number of

MPI processes

RAD(2)

ATM(RAD(2))

RAD(3)

ATM(RAD(3))

RAD(4)

ATM(RAD(4))

RAD(5)

Figure 3.13.: This is a contrived example of a finer domain decomposition setup
for the radiation component in which radiative transfer is calculated in every
normal time step in order to close the gap between the radiation and the model
time steps and ideally achieve ∆tRAD= ∆tATM. This scheme can create consistency
between the radiative and physiochemical atmospheric states in the model using
the concurrent radiation scheme.

46

3.5 Chapter Summary

3.5. Chapter Summary

This chapter describes the concurrent radiation scheme (introduced) in the atmo-
spheric model ECHAM6. It was explained that radiative transfer is one of the most
expensive parts in the atmospheric simulation. In the classical radiation scheme in
ECHAM6, it takes up to 58% of the total simulation time at the CR resolution to
resolve this atmospheric process. It was indicated that the sequential organization
of components in ECHAM6 is the major contributor to this problem as all the atmo-
spheric processes are resolved one by one. The concurrent radiation scheme, thus,
suggests running the radiation component concurrently with the main model to re-
solve radiative transfer in parallel with other atmospheric processes. This solution
reduces the impact of the high computation profile of the component and improves
the time-to-solution of the atmospheric simulation by increasing the scalability of
the model. In addition, the concurrent radiation scheme allows the radiation com-
ponent to adopt finer or coarse domain decomposition than the main model’s setup.
This feature offers a way forward to reduce the gap between the radiation time step
and the model’s normal time step, thus removing the inherent model inaccuracies
inflicted by calculating radiative transfer at larger time steps in the classical ra-
diation scheme. Hence, the concurrent radiation scheme can potentially bring the
model towards more physical consistency between the radiative and physicochemical
atmospheric states.

47

4. Implementation of the Concurrent
Radiation Scheme

This chapter presents the software engineering practice required to achieve the pri-
mary goals of this dissertation. As described in Chapter 1, this dissertation is pri-
marily in pursuit of the following goals:

• Primary Goal 1: Building a new version of the atmospheric model ECHAM6
with the isolated radiation component.

• Primary Goal 2: Building a new version of the atmospheric model ECHAM6
with the concurrent radiation scheme.

This chapter describes the implementation procedures regarding each goal individu-
ally.

4.1. Implementation procedure of Primary Goal 1

In Chapter 3, it was explained that the radiation calculations in the atmospheric
model ECHAM6 have a high computational profile. As described in Chapter 1,
two solutions (including the concurrent and single-precision radiation schemes) have
been proposed to reduce the time-to-solution of the paleoclimate simulation in the
PalMod project using the atmospheric model ECHAM6. However, the shared source
code between the radiation component and the main model poses a major obstacle
to both solutions. Sharing source code results in shared global variables between the
radiation component and the main model, which may lead memory inconsistency
depending on the concurrency scheme. Similarly, building a single-precision radia-
tion scheme must prevent modifications in the radiation component from affecting
the other calculations of the main model.
Hence, Primary Goal 1 aims at responding to these two concerns by building a
new version of the atmospheric model ECHAM6 with using the isolated radiation
component. The procedure to achieve Primary Goal 1 includes the following steps:

1. Extracting the radiation component from ECHAM6
2. Isolating the component in ECHAM6
3. Re-integrating the isolated component and carvedout model

49

Chapter 4 Implementation of the Concurrent Radiation Scheme

4.1.1. Extracting the radiation component from ECHAM6

The atmospheric model ECHAM6 was developed in Fortran and is composed of
several software components implemented in Fortran in almost 167,000 lines of code,
including 249 Fortran modules, which are contained in 280 Fortran files. We would
like to extract the following information regarding the radiation component from
the model:

• Files and namespaces containing the code coverage of the component. Note
that in this dissertation, we refer to the variable scope of a Fortran file, Fortran
module or a Fortran procedure as a Fortran namespace.

• Shared files and namespaces between the component and the other parts of
the model.

• Shared variables between the component and the other parts of the model.

The only information concerning the radiation component of this model (available to
this dissertation) is the entry point of the component. Entry points of a component
are the Fortran procedures of the component which are invoked from outside the
component. The entry point of the radiation component is the Fortran subroutine
" radiation" located in the namespace of Fortran module "mo_radiation". However,
we have to extract the required information about the component from the original
source code of the model. In Chapter 6, we will describe a novel approach for
extracting a component from a Fortran program.

In this section, we present the result of applying this approach to the radiation
component of the atmospheric model ECHAM6 and collect the required information.
The procedure was performed mainly manually as the full automatic support tools
were not available at the time of the implementation. The list of the namespaces
containing the whole source code of the radiation component is shown in table
Table 4.1. The first column in this table shows the namespaces that contain the
source code of the component exclusively, thus denoted as dedicated namespaces, and
they do not contain any codes from the other parts of the model. The second and
third columns are shared namespace between the component and the other parts of
the model. We will describe the differences between these two columns shortly. By
the same token, the complete list of the shared variables between the component and
the other parts of the model are shown in Table 4.2 and Table 4.3. The difference
between the tables are also explained in the following sections.

50

4.1 Implementation procedure of Primary Goal 1

No. Dedicated namespaces Intact shared namespaces Reduced shared namespaces
1 mo_aero_kinne.f90 mo_kind.f90 mo_control.f90
2 mo_aeropt_stream.f90 mo_interpo.f90 mo_decomposition.f90
3 mo_aero_volc.f90 mo_math_constants.f90 mo_echam_cloud_params.f90
4 mo_aero_volc_tab.f90 mo_namelist.f90 mo_echam_convect_tables.f90
5 mo_cld_sampling.f90 mo_netcdf.f90 mo_exception.f90
6 mo_cloud_optics.f90 mo_orbit.f90 mo_filename.f90
7 mo_lrtm_driver.f90 mo_physical_constants.f90 mo_gaussgrid.f90
8 mo_lrtm_gas_optics.f90 mo_radiation_forcing.f90 mo_geoloc.f90
9 mo_lrtm_kgs.f90 mo_radiation_parameters.f90 mo_greenhouse_gases.f90
10 mo_lrtm_netcdf.f90 mo_random_numbers.f90 mo_io.f90
11 mo_lrtm_setup.f90 mo_read_netcdf77.f90 mo_io_units.f90
12 mo_lrtm_solver.f90 mo_submodel_interface.f90 mo_memory_cfdiag.f90
13 mo_o3clim.f90 mo_time_base.f90 mo_memory_g3b.f90
14 mo_o3_lwb.f90 mo_time_control.f90 mo_param_switches.f90
15 mo_psrad_interface.f90 mo_time_conversion.f90 mo_submodel.f90
16 mo_rad_fastmath.f90 mo_util_string.f90 mo_transpose.f90
17 mo_radiation.f90 mo_vphysc.f90
18 mo_rrtm_coeffs.f90
19 mo_rrtm_params.f90
20 mo_simple-plumes.f90
21 mo_solar_irradiance.f90
22 mo_spec_sampling.f90
23 mo_srtm_driver.f90
24 mo_srtm_gas_optics.f90
25 mo_srtm_kgs.f90
26 mo_srtm_netcdf.f90
27 mo_srtm_setup.f90
28 mo_srtm_solver.f90

Table 4.1.: The extracted namespaces from the atmospheric model ECHAM6 that
contain the source code of the radiation component.

51

Chapter 4 Implementation of the Concurrent Radiation Scheme

No. REAL Derived Data Types3D 2D 1D
1 cisccp_cldemi3d amu0_x(:,:) ghg_cfcvmr(:) ghg_co2mmr
2 cosp_f3d rdayl_x(:,:) vct(:) ghg_ch4mmr
3 cisccp_cldtau3d geosp(:,:) ghg_n2ommr
4 cosp_reffi ghg_ch4(:,:) local_decomposition
5 cosp_reffl vphysc
6 global_decomposition

No. Scalar
LOGICAL INTEGER REAL

1 ldiag_aeropt ico2 nmw1 wgt1
2 ih2o ich4 nmw2 wgt2
3 lyr_perp io3 nmw1cl wgt1_m
4 locfdiag io2 nmw2cl wgt2_m
5 locosp in2o ndw1 wgtdt
6 Lisccp_sim icfc ndw2 wgtd2
7 ghg_ch4 ighg nmw1_m fco2
8 lcouple iaero nmw2_m cecc
9 lmidatm lrce cecc cobld
10 ldebugio nn cobld clonp
11 ldebugs ngl clonp co2vmr
12 lrad nlon nmonth ch4vmr
13 lco2 nlev isolrad n2ovmr
14 lanysubmodel nhgl ldiur cfcvmr
15 ih2o lradforcing o2vmr
16 nvclev sw_gpts_ts solc
17 yr_perp lw_spec_samp flx_ratio_cur
18 lyr_perp sw_spec_samp declination,initialized
19 p_nprocs lw_gpts_ts earth_angular_velocity
20 iaero_forcing rad_perm

Table 4.2.: The shared variables creating flow data dependencies from the other
parts of the model to the radiation component. These variables bring input data
to the component.

52

4.1 Implementation procedure of Primary Goal 1

No. 2D Scalar
REAL LOGICAL INTEGER REAL

1 amu0_x(:,:) lyr_perp yr_perp flx_ratio_cur
2 rdayl_x(:,:) nb_sw declination,initialized
3 irlu(:,:,:) co2mmr
4 srsu(:,:,:) solc
5 irld(:,:,:)
6 srsd(:,:,:)
7 irlucs(:,:,:)
8 srsucs(:,:,:)
9 irldcs(:,:,:)

Table 4.3.: The shared variables creating flow data dependencies from the radi-
ation component to the other parts the atmospheric model ECHAM6. These
variables return the results of calculating radiative transfer to the main model.

4.1.2. Isolating the radiation component in ECHAM6

In the next step, the extracted radiation component must become isolated in the
model. In Chapter 6, we will define the idea of isolating a component from a Fortran
program precisely and describe a novel approach to perform this procedure clearly.
Isolating the radiation component in the model, nevertheless, generates two slices
from the original model which are called the isolated radiation component and the
carvedout model. This procedure guarantees that these two slices share no source
code or variables. This is because a separate copy of the shared namespaces (shown
in the second and third column of Table 4.1) is created and assigned to the isolated
radiation component exclusively.

It is noteworthy to emphasize that the isolated radiation component is still capable
of generating bitwise identical results to the output of the original component. In
addition, the carvedout program is the same as the original model, but it does not
invoke the entry point of the component and does not contain the dedicated source
code of the component. Since there is no code sharing, any code refactoring in the
isolated radiation component does not affect the carvedout model. In addition, any
change in the memory context of the component does not affect the memory view
of the carvedout model and vice versa. This feature makes the component prepared
for implementing both the concurrent and the single-precision radiation schemes.

Note that the shared namespaces in the second column in Table 4.1 are denoted
by the intact shared namespaces since a copy of these namespaces are added to
the isolated radiation component without any modification. However, the shared
namespaces in the third column contain some codes that are not used by the ra-
diation component. Thus, a copy of these namespaces is modified such that they
contain only the relevant codes to the radiation component and then added to the

53

Chapter 4 Implementation of the Concurrent Radiation Scheme

isolated radiation component. Hence, these namespaces are denoted by the reduced
shared namespaces.
The same practice must be applied to the carvedout model to collect its namespaces.
However, the list of the intact and reduced shared namespaces of the model may
differ from the component.

4.1.3. Re-integration of the isolated radiation component and
carvedout model

Isolating the radiation component in ECHAM6 results in three predictable problems.
In this section, we discuss these problems and some solutions for removing them.
The process of implementing these solutions is referred to as the re-integration of
the isolated radiation component and the carvedout model. After the re-integration,
a new version of the atmospheric model ECHAM6 is created that is capable of
regenerating bit-wise identical results to the output of the original model.

4.1.3.1. Problems of the component Isolation

The first problem is the removal of the call-site to the entry point of the component
from the carvedout model. This is not, however, a major issue, but the call-site
must be re-activated to allow for the calculation of the radiative transfer again.
The second problem concerns the memory inconsistency over the shared variables
between both slices. This problem is largely due to the data dependencies between
the radiation component and the main model. Among all different types, true data
dependencies from the main model to the radiation component or vice versa result in
an inconsistent memory between the isolated radiation component and the carvedout
model. The third problem, however, stems from the memory allocation of some
dynamic variables of the radiation component. These particular variables are shared
between the component and the main model, but the allocation instructions of such
variables are not added to the source code of the extracted shared namespaces during
the component extraction procedure. This is because the extraction procedure is
syntactic rather semantic and the missing instructions do not affect the workflow.

4.1.3.2. Data flow analysis

A data flow analysis can be exploited to detect true data dependencies between the
radiation component and the other parts of the model. In addition, the concerning
memory allocation instructions discussed in Section 4.1.3.1 can also be explored
using this technique. Performing a data flow analysis in the atmospheric model
ECHAM6 is not a trivial task however, considering the large code base of the model.
As shown in Algorithm 3.1, the software is composed of an initialization and a

54

4.1 Implementation procedure of Primary Goal 1

'

&

$

%

Program ECHAM6

END Program ECHAM6

CALL Initialization

IF (radiation time step) CALL radiation

WHILE (time steps < enough)

CALL ATM_part_1

Flow dependency

CALL ATM_part_2

END WHILE

CALL cleanup

Flow dependency

Flow dependency

Fl
ow

 d
ep

en
de

nc
y

(
lo

op
-c

ar
ri

ed
 d

ep
en

de
nc

y
)

(loop-carried dependency)

Flow dependency

(from outside to inside the loop)

Figure 4.1.: A data flow analysis is carried out to extract the data dependency
between the radiation component (shown by CALL radiation) and the other
parts of the model (ATM_part_1 and ATM_part_2) in the atmospheric model
ECHAM6. This analysis only looks for flow dependencies as it is the only type
of data dependency that affects the memory consistency between these two parts.
Such a data dependency type occurs within the loop or throughout the loop-
carried dependencies (as shown with the dotted lines).

time-stepping loop. Thus, we apply a data flow analysis to find the following data
dependencies (as shown in Figure 4.1):

1. Flow dependencies inside “Initialization”
2. Flow dependencies between the “Initialization” and the time-stepping loop
3. Loop-independent dependencies
4. Loop-carried dependencies

In this dissertation, we found no (reliable) supporting tools for data flow analysis
in Fortran source codes. Hence, the result of a manual data flow analysis in the

55

Chapter 4 Implementation of the Concurrent Radiation Scheme

atmospheric model ECHAM6 is shown in Table 4.2 and Table 4.3. The variables
in Table 4.2 create a flow dependency from the other parts of the model to the
component. Hence, they bring the input data to the component. Conversely, the
variables in Table 4.3 create a flow dependency from the component to the other
parts of the model, thus providing the results of calculating radiative transfer.

4.1.3.3. Measures of re-integration

This section describes the measures for re-integrating the carvedout model and the
isolated radiation component. An abstract overview of the re-integrated code is
shown in Algorithm 4.1.

Adding the call-site of the component

The call-site of the entry point of the radiation component is removed from the model
during the process of isolating the component. To enable the calculation of radiative
transfer, the call-site must be added back to the carvedout model. In contrast to
the original model (as shown in Algorithm 3.1) that makes a direct call to the entry
point (call radiation(arguments)) and exchanges data through the formal arguments,
a wrapper subroutine (call RAD_entrypoint) will be added to the carvedout model
without any data exchange. This is because all the data exchange will take place
explicitly through two new subroutines as will be explained shortly.

Adding missing memory allocations

After detecting the missing memory allocation instructions of the dynamic shared
variables, they must be added to the extracted shared namespaces of the isolated
radiation component. Hence, a subroutine for allocating each dynamic variable is
added to the corresponding shared namespace of the isolated component. Such
subroutines become new entry points to the isolated component and they must be
called from the carvedout model.

Creating memory consistency

For each flow dependency between the radiation component and the other parts
of the model in ECHAM6, the copies of the concerning shared variable in the iso-
lated radiation component and the carvedout model must become consistent. To
create memory consistency over a shared variable, an explicit data exchange is im-
plemented between the isolated component and the carvedout model, which must be
performed at a correct synchronization point. As shown in Algorithm 4.1, two in-
terfaces (export_inputdata_to_RAD and import_results_from_RAD) are created
to export and import data from or to the isolated component explicitly over all the
shared variables collected in Table 4.2 and Table 4.3. These two interfaces will also
make the implementation procedures to achieve Primary Goal 2 and External Goal
easier.

56

4.2 Implementation procedure of Primary Goal 2

Synchronization point
The memory allocation of dynamic shared variables and creating memory consis-
tency between the isolated radiation component and the carvedout model must take
place at correct synchronization points. During the initialization phase, we can
luckily bundle all the data exchange and call-sites to the newly added entry points
(to the isolated radiation component for the missing memory allocations) inside one
subroutine (RAD_initialization) while preserving the correct call sequence between
them. The detailed information on the contents of this subroutine is skipped here,
but it is available in the source code. Algorithm 4.1 shows that the correct call-site
of the subroutine was detected at the end of the initialization phase of the carvedout
model. The second and the third synchronizations (call export_inputdata_to_RAD
and call import_results_from_RAD) take place just before and immediately after
the call-site of the main entry point of the radiation component in the time-stepping
loop (to minimize the data transfer overhead) as also shown in Algorithm 4.1.

4.2. Implementation procedure of Primary Goal 2

This section describes the implementation of the concurrent radiation scheme based
on the results from the previous section. The new scheme is implemented in three
steps:

1. Separating threads of execution
2. Choosing the concurrency model
3. Synchronization

4.2.1. Separating threads of execution

In the classical radiation scheme, ATM and RAD run sequentially. The reason is
the radiation component is reachable from the main program unit of the model. As
a result, the operating system cannot schedule the calculation of radiative transfer
as an independent task. The concurrent radiation scheme must, therefore, make the
component unreachable from the main program unit of the model to prepare the
ground for creating concurrency between these two parts. To do this, all the entry
points of the component must be detected and removed from the main thread of
execution of the model (which starts from the main program unit). In addition, it
must create another thread of execution for the component.
Luckily in Section 4.1, two separate slices of the original program (i.e. the
carvedout model and the isolated radiation component) were generated, which are
not reachable from each other (before the re-integration). The main program unit
of the carvedout model provides the entry point to the first thread of execution.

57

Chapter 4 Implementation of the Concurrent Radiation Scheme

Algorithm 4.1 Re-integrating the carvedout model and the isolated radiation
component of the atmospheric model ECHAM6. Subroutines RAD_entrypoint,
RAD_initialization, export_inputdata_to_RAD and import_results_from_RAD
are added to the carvedout model to build a new version of the atmospheric model
ECHAM6 which is capable of generating bit-wise identical results to the output of
the original model. RAD_entrypoint is a wrapper for the subroutine radiation. In
contrast to the subroutine radiation, RAD_entrypoint does not exchange any data
with the carvedout model and all the data exchange takes place through the im-
port and export subroutines. RAD_initialization bundles all the data exchange over
the shared variables between these two slices. It also contains all the call-sites for
the new entry points of the isolated component for the missing memory allocation
of some dynamic shared variables. The other two subroutines perform only data
exchange between the two slices.

Program ECHAM6_CarvedoutModel

call Initialization

call RAD_initialization

while (time steps < enough)

call ATM_part_1

if (radiation time step) then

call export_inputdata_to_RAD
call RAD_entrypoint
call import_results_from_RAD

end if

call ATM_part_2

end while

call cleanup

End Program ECHAM6_CarvedoutModel

58

4.2 Implementation procedure of Primary Goal 2

A second thread must, however, be created to run the isolated component. In
Section 4.1, all the entry points of the component and their call sequence were
also explored. This information is exploited in this section to generate a new
thread of execution for the isolated radiation component. Algorithm 4.2 shows
an abstract overview of separating the thread of execution of the radiation
component from the main model in the atmospheric model ECHAM6. The
subroutine ATM_execution_thread is responsible for starting the thread of execution
of the main model and RAD_execution_thread starts the thread of execution of
the radiation component. We will discuss this implementation in more detail shortly.

4.2.2. Choosing the concurrency model

After separating the thread of execution of the main model from the radiation com-
ponent, it should be possible to create concurrency between these two parts. The
concurrency can be implemented either in the shared memory (at the thread level
using OpenMP threads, for example) or distributed memory (at the process level us-
ing the Message Passing Interface (MPI) framework, for example). This dissertation
opts for creating the concurrency at the process level using MPI for the following
reasons:

• The MPI framework can potentially provide a higher scalability to the radi-
ation component (and thus to the whole model) as the component can freely
allocate any number of (distributed) resources (regardless of the choice of the
main model). In the OpenMP framework, however, RAD is bounded to run
only on the resources assigned to the main model.

• In addition, the MPI framework lends itself much better for calculating ra-
diative transfer at different domain decomposition from the main model while
minimizing the overall resource usage. In fact, the feature of arbitrary domain
decomposition (described in Section 3.4) requires a data reordering scheme
between ATM and RAD to create a correct data communication. In the MPI
implementation, we benefit from the communication library YAXT (Behrens
et al., 2014) (which will be described in Section 4.2.3.3) to handle such a
complexity. This option offers a major advantage over the OpenMP imple-
mentation in this dissertation.

• Furthermore, the load-balancing within the OpenMP framework cannot be
handled properly since the workload per thread can only be modified within
the local process data space. However, since ECHAM6 originally adopts the
MPI framework to implement data parallelism, the load-imbalance problem
has to be solved globally.

• Moreover, implementing (the task parallelism of) the concurrent radiation
scheme in shared memory (e.g., OpenMP) would require the duplication of

59

Chapter 4 Implementation of the Concurrent Radiation Scheme

Algorithm 4.2 Creating two separate threads of execution for the carvedout model
and the isolated radiation component (obtained from Section 4.1) and implement-
ing a client-server model to manage the concurrency between these threads within
consecutive radiation time steps.

ATM Process

Subroutine ATM_execution_thread

call Initialization

while (time steps < enough)

call ATM_part_1

if (radiation time step) then

call send_command_to_RAD (RESULTS)

call MPI_RECV (resultsdata, RAD, intercomm)

call send_command_to_RAD (INPUT)
call MPI_SEND (inputdata, RAD, intercomm)

end if

call ATM_part_2

end while

call send_command_to_RAD (FINISH)

call cleanup

End Subroutine ATM_execution_thread

RAD Process

Subroutine RAD_execution_thread

call RAD_Initialization

while (TRUE)

call receive_command_from_ATM

select case (command)

case (RESULTS)
call MPI_SEND (resultsdata, ATM, intercomm)

case (INPUT)
call MPI_RECV (inputdata, ATM, intercomm)
call RAD_entrypoint

case (FINISH)

exit

end select

end while

call cleanup

End Subroutine RAD_execution_thread

60

4.2 Implementation procedure of Primary Goal 2

a high amount of global data between ATM and RAD in every MPI process
address space (as the model originally exploits the MPI framework for per-
forming data parallelism in both ATM and RAD). This is because ATM and
RAD would require the data of different time steps and thus one could over-
write the global data that the other would still use. Instead of keeping multiple
copies of the data in the same process spaces, it would be easier to run ATM
and RAD in different MPI processes so that they would have access to their
own dedicated instances of the data.

• Finally, ECHAM6 already has the appropriate support for the MPI implemen-
tation as well as load-balancing in the model. This feature makes the MPI
framework a more attractive solution.

• The main advantage of the OpenMP implementation that could, however, be
argued is that it could avoid the MPI communication overhead between ATM
and RAD. In Chapter 5, it will nevertheless be shown that this overhead is
negligible in our experiments..

The other issue which is worth discussing here is that ATM and RAD could be
deployed within separate Fortran programs. However, they are deployed within a
new version of ECHAM6 but branch from each other upon the start. Algorithm 4.3
suggests an abstract overview of this scheme. Once an MPI process starts, it is
decided whether the role of the process should be running the main model or the
radiation component. The subroutine ATM_execution_thread is responsible for start-
ing the thread of execution of the main model and RAD_execution_thread starts the
thread of execution of the radiation component. In addition, anMPI_COMM_SPLIT
groups all the processes that have similar roles and allows for their internal data com-
munication within the domain decomposition scheme. MPI processes from different
groups can also communicate within a task parallelism scheme. This is a clear exam-
ple of mixing task and data parallelism using the MPI framework in the atmospheric
model ECHAM6.

4.2.3. Synchronization

As explained in Section 4.1, the isolated radiation component and the carvedout
model have an inconsistent view of the memory (before the re-integration). Run-
ning these two slices on different MPI processes also contributes to the inconsistency
as the processes run in different address spaces. During the re-integration process
in Section 4.1, two import and export subroutines were developed in order to create
memory consistency between these two slices in pursuit of generating bit-identical
results to the original model. It is, however, well-known that it is not possible to
create such a persistent consistent memory in the concurrent radiation scheme. Nev-
ertheless, due to the close time-dependency of radiation on evolving model’s fields,
the concurrency between the carvedout model and the isolated radiation component

61

Chapter 4 Implementation of the Concurrent Radiation Scheme

Algorithm 4.3 An abstract model for creating concurrency (in the concurrent ra-
diation scheme) between the thread of execution of the main model and the thread
of execution of the radiation component. The subroutine RAD_execution_thread
is responsible for starting the thread of execution of the radiation component and
the subroutine ATM_execution_thread is responsible for starting the thread of ex-
ecution of the main model. In this scheme, all the MPI processes that have a
rank less than the number of MPI processes required by the main model are dedi-
cated to the main model (thus make an invocation to ATM_execution_thread) and
the rest will be assigned to the radiation component (thus make an invocation to
RAD_execution_thread). An MPI_COMM_SPLIT generates private communica-
tors to group similar processes together.

Program Concurrent_ECHAM6

call MPI_INIT
call MPI_COMM_RANK(comm, rank)
if (rank < model_number_of_processes) then

has_radiation_role = FALSE
color = 0

else
has_radiation_role = TRUE
color = 1

endif

key = rank
call MPI_COMM_SPLIT(comm, color, key, newcomm))

if (has_radiation_role == TRUE) then
call RAD_execution_thread

else
call ATM_execution_thread

End Program Concurrent_ECHAM6

62

4.2 Implementation procedure of Primary Goal 2

is only enacted between consecutive radiation time steps and the memory of both
slices must become consistent at synchronization points.

4.2.3.1. Synchronization points

The isolated radiation component and the carvedout model must synchronize at
each radiation time step and a consistent memory view must be created for both
parts before they start new calculations (as shown in Figure 3.6). On this account,
they perform the following interactions at the beginning of each radiation time step:

• sending radiation results:
The isolated radiation component provides the results of the latest radiation
calculation to the carvedout model. For example, the output from RAD(2n+1)
(which was started at time step (n+1)) is exchanged at the time step (2n+1).

• receiving input data:
The isolated radiation component receives the input data from the carvedout
model for the following calculation of radiative transfer. For example, the
input data for calculating RAD(2n+1) is received at time step (n+1).

4.2.3.2. A client-server model

Algorithm 4.2 shows an abstract overview of a client-server model for implementing
the synchronization between the threads of execution discussed in Section 4.2.1. It
suggests an asymmetric communication in which one master process controls one
worker process in the time stepping loop by sending three commands (requesting the
results from the latest calculation of radiative transfer, providing input data for the
following calculation of radiative transfer or terminating the simulation process). In
an identical domain decomposition setup, one MPI process of the carvedout model
controls a peer process assigned to the isolated radiation component and they ex-
change data. If the model is setup to allocate 1152 MPI processes, for example, there
will exist 576 pairs of MPI processes (from both sides) interacting with each other.
If the carvedout model adopts coarser domain decomposition, one MPI process of
the carvedout model controls several MPI processes of the isolated radiation com-
ponent and exchanges data with them. By the same token, if the isolated radiation
component adopts coarser domain decomposition, one MPI process of the isolated
radiation component is controlled by several MPI processes of the carvedout model
and exchanges data with them.

4.2.3.3. Creating memory consistency

For each flow dependency between the radiation component and the main model
in ECHAM6, the copies of the concerning shared variable in the isolated radiation

63

Chapter 4 Implementation of the Concurrent Radiation Scheme

Figure 4.2.: YAXT library facilitates MPI communication between concurrent
components with different domain decomposition layouts. (courtesy of Deutsches
Klimarechenzentrum (last access: 4 May 2022))

component and the carvedout model must become consistent. The list of shared
variables and the types of data dependencies that they create were already extracted
in Section 4.1. To create memory consistency over a shared variable, an explicit data
exchange is implemented between the isolated component and the carvedout model.
Since these two slices run on different MPI processes, the data exchange will be
implemented in distributed memory.

Communication layout

Since the isolated radiation component and the carvedout model implement domain
decomposition using the MPI framework, the data exchange over shared variables
will take place between the peer MPI processes of both sides. If these two slices
adopt identical domain decomposition, each MPI process from one side must syn-
chronize only with its peer process from the other side. Otherwise, the number of
processes contributing to the synchronization from both sides may differ and a more
complex arrangement will be required. This feature, however, requires a reordering
of data between the MPI processes assigned to the main model and the radiation
component. To simplify the implementation, the concurrent radiation scheme ben-
efits from the communication library YAXT (Behrens et al., 2014). This library
and the required interface in the concurrent radiation scheme to this library were
developed at Deutsches Klimarechenzentrum (DKRZ). The library provides an ef-
ficient and simplified platform for the formulation of communication problems and
exchanging data. It is built based on the MPI framework and takes high level de-
scriptions of arbitrary domain decomposition and derives an efficient collective data
exchange. The automatic generation of MPI data types in YAXT provides direct
access to the model’s data for generating MPI messages and removes the need for
additional copies of data or packing and unpacking. This feature makes the library
suitable for exchanging bulk data (Heidari et al., 2021). Figure 4.2 shows the use
of the YAXT library for coupling two concurrent components with different domain
decomposition.

64

4.3 The External Goal

4.2.4. The full implementation

The full implementation of the concurrent radiation scheme is, however, more com-
plex and requires more adaptation of the original code to the new scheme. For
example, ECHAM6 benefits from a restart file mechanism to break long simula-
tions into multiple consecutive experiments. These files contain the last state of the
MPI processes from which the next experiment must continue. In the concurrent
radiation scheme, this mechanism had to be improved to support the additional
processes assigned to the radiation component. Moreover, ECHAM6 interacts with
other components of MPI-ESM (described in Chapter 1). In the concurrent radia-
tion scheme, a further modification is required to hide the MPI processes assigned
to the radiation component from the coupler. Nevertheless, the detailed report on
the implementation of the new restart file mechanism and interaction with the cou-
pled model is skipped in this dissertation for the sake of brevity. The complete
source code of the concurrent radiation scheme in the atmospheric model ECHAM6
is available under a permanent repository at (WDC-Climate, 2022).

4.3. The External Goal

The external goal of this dissertation is the implementation of the single-precision
radiation scheme in the atmospheric model ECHAM6 based on the results from Pri-
mary Goal 1. The private namespaces of the isolated radiation component allows
for applying single-precision arithmetic to the radiation calculations without affect-
ing the other calculations of the model. In addition, the explicit import/export
interfaces between the component and the main model allow for typecasting the
input/output data to/from the component. The authors in (Cotronei and Slawig,
2020) report the full implementation of the single-precision radiation scheme and
show that the calculations can be accelerated by about 40%.

4.4. Chapter Summary

This chapter describes the implementation procedures required to achieve Primary
Goal 1 and 2 of the dissertation. Primary Goal 1 aims at building a new version
of the atmospheric model ECHAM6 with the isolated radiation component. This
goal is achieved by extracting the radiation component from the model, generat-
ing two slices from the original model called the isolated radiation component and
the carvedout model, and finally re-integrating these two slices for building a new
version of the model. In this new version, the source code of ATM and RAD are com-
pletely separated and they share no variables. In addition, an explicit mechanism
is implemented to create a correct synchronization between these two parts.

65

Chapter 4 Implementation of the Concurrent Radiation Scheme

Furthermore, the new version is capable of generating bitwise identical results to
the output of the original ECHAM6 and paves the way for Primary Goal 2 and the
external goal of the dissertation. The procedure to achieve Primary Goal 1 benefits
from the novel program analysis approach introduced in Chapter 6.
Primary Goal 2, however, aims at a new version of ECHAM6 with the concurrent
radiation scheme. The procedure to achieve this goal requires the following steps:

• extracting entry points of RAD and their call sequences
• extracting the shared variables between ATM and RAD
• finding the correct synchronization points between ATM and RAD
• implementing synchronization mechanisms between ATM and RAD

All these requirements have already been fulfilled in the new version of ECHAM6
(provided by Primary Goal 1). Thus, Primary Goal 2 can take advantage of this
version and easily convert it to another version that uses a concurrent radiation
scheme. Furthermore, the concurrency between ATM and RAD is implemented
using the MPI framework as it offers a number of advantages (such as providing for
a better scalability and load-balancing in the model) over OpenMP.
Finally, the external goal of this dissertation aims at a new version of ECHAM6
with the single-precision arithmetic radiation scheme. To achieve this goal, it is
also a prerequisite to separate the source code of ATM and RAD from each other.
However, Primary Goal 1 has already taken care of this step as well. The full
implementation procedure to achieve the external goal is, nevertheless, beyond the
scope of this dissertation, but it has already been pursued by an external project.
A report shows that the time-to-solution of simulations with this new version of
ECHAM6 that benefits from the single-precision arithmetic radiation scheme can
be reduced by 40%.

66

5. Performance Results

This chapter presents the performance evaluation of the concurrent radiation scheme
(implemented in the atmospheric model ECHAM6) in comparison with the classical
approach. Before delving into details, we first describe our evaluation methodology
and the experiment setups to obtain the performance results required for the discus-
sions in this chapter.

5.1. Methodology

The aim of the concurrent radiation scheme is to minimize the time-to-solutions of
the paleoclimate simulations (at the CR resolution) using the atmospheric model
ECHAM6. It is intuitive to conclude that a performance analysis should evaluate
how successfully the concurrent radiation scheme improves the model to achieve this
goal. The evaluation therefore has to investigate the following issues:

1. searching for the best time-to-solution of the model (using old and new
schemes) regarding the target simulations

2. comparing the performance of both schemes

Since the performance of the model varies as it scales, a variety of setups (imposed
by some strict disciplines (Roeckner et al., 2003)) will be examined in search for the
shortest time-to-solutions of the model (in both schemes). In the concurrent radi-
ation scheme, however, a wide range of configurations has to be examined as ATM
and RAD can take up non-identical choices of domain decomposition. Nonetheless,
it should be noted that the same set of rules also applies to ATM in the concur-
rent radiation scheme as in the classical scheme, thus placing a constraint on the
permitted configurations. The methodology here will thus take advantage of this
limitation to reduce the search space in the following manner. In the first step, the
model (using the new scheme) is configured to apply identical domain decomposition
to ATM and RAD and hence the performance is measured at the prescribed setups.
In the next step, a further investigation will be carried out to see if there is any
room for improvement at finer or coarser domain decomposition on RAD’s side. In
the nutshell, the procedure is as follows:

• Step 1: Performance measurement

• Step 2: Performance tuning

67

Chapter 5 Performance Results

Before delving into the discussion, it is noteworthy to emphasize that our method-
ology considers the performance evaluation of the model at the configurations that
are the settings of the PalMod experiments. In Section 7.3, it will be shown that
a comprehensive scientific validation already approves of the scientific results of the
palaeoclimate simulations (performed by the concurrent radiation scheme) at such
settings. In this chapter, the model is setup at the same resolutions used by such
experiments but at a variety of domain decomposition to find the best time-to-
solution of the model. Thus, the model is expected to be capable of delivering the
same accuracy (no matter which domain decomposition is adopted) as the temporal
and spatial resolutions of the model remain intact across all the experiments.

5.2. Experiments Setups

For the purpose of this study, a new version of ECHAM6 (based on ECHAM-
6.3.05p2) is deployed with both classical and concurrent radiation schemes which
can be configured to calculate the radiative transfer with or without separate MPI
processes. Before performing an experiment, the model is set up using a configura-
tion file. Any simulation requires an extensive list of input data to adopt the target
settings, but a few relevant ones are as follows:

• Type of radiation scheme (the classical or new scheme)

• Temporal and spatial resolutions

• Allocated resources for ATM and RAD

• Simulation period (start data, stop date)

It is noteworthy that the frequency at which the radiative transfer is calculated
(in all the simulations performed for this study) is set to its default value (which
is once in every two hours, i.e. ∆trad = 8 * ∆tatm with the normal time step of
15 minutes) for all the experiments. Additionally, once the model is configured
to use the concurrent radiation scheme, an equal number of MPI processes, and
thus identical domain decomposition, is assigned to the main model (ATM) or the
radiation component (RAD) .

The performance results presented in this dissertation are obtained from a suit of
Atmospheric Model Intercomparison Project (AMIP) experiments on the CR reso-
lution from the year 1976 to 1981. Most of the presented graphs require specialized
measurements and thus numerous experiments were designed to collect the target
results. To increase the accuracy, any data point presented in the graphs is the av-
erage of a minimum ten samples acquired from repeating the required simulations.

Experiments are performed on the Mistral supercomputer at Deutsches Kli-
marechenzentrum (DKRZ) on a machine configuration with Intel Haswell processors
(E5-2680v3 12C 2.5GHz) and Melanox FDR Infiniband high speed interconnect. All

68

5.3 The Profiling Approach

runs allocate a layout of one MPI process per CPU core on the computing nodes
equipped with two processors which are exclusively dedicated to the experiments.

Lastly, the output data for generating the plots presented in this dissertation is avail-
able under a permanent data archive at (Zenodo Repository, last access: 17 January
2022) and can be inspected without any limitations. Thanks to the arrangements
by DKRZ, the source code of the model which was prepared for the experiments and
used for generating the plots presented in this dissertation is also available under
a permanent repository at (WDC-Climate, 2022) and can be used (after acquiring
the required permission) for a further analysis.

5.3. The Profiling Approach

The technique used in this chapter for profiling the performance of the atmospheric
model ECHAM6 is based on an internal profiling mechanism provided in a number
of Fortran modules of the model. Although the performance measurement infras-
tructure of Score-P (Andreas Knuepfer and Others, 2022) is an interesting tool suite
for event tracing and profiling of HPC applications, our experiments revealed that
this tool was not capable of profiling the concurrent radiation scheme as the in-
strumented model would stop working. An official investigation also showed that
Score-P was not able to handle MPI intercommunicators (MPICH webpage, last
access: 17 January 2022) (which are also used in the concurrent radiation scheme)
at the time of this study. As a result, all the code instrumentation and time mea-
surements were performed using the internal library of the model. This effort turned
out to be non-trivial as it required intricate code instrumentation and a considerable
data analysis. This is because is a large volume of data were generated due to the
following reasons:

• The profiling had to be performed by both (the classical and the concurrent)
radiation schemes for comparing the performance of both schemes.

• All the MPI processes assigned to ATM and RAD would contribute to the pro-
filing procedure and generating performance data. A post-processing analysis
was thus required over a large set of measurements.

• Multiple points in ATM and RAD had to be instrumented, which would con-
tribute to generating the profiling data in every MPI process.

In addition, it was revealed during the experiments that the profiling mechanism
would affect the profiling process by placing an extra overhead on the MPI processes
(assigned to ATM and RAD). For example, Section 5.5.3 will show how measuring
the idle times of MPI processes are affected by the profling mechanisms. Hence,
extra efforts were required to remove the inflicted overhead.

69

Chapter 5 Performance Results

16 32 64 128 256 512 1024
Number of MPI Processes

100

200

300

400

500

600

700

S
im

u
la

te
d
 Y

e
a
rs

 /
 D

a
y

ECHAM6 (concurrent radiation scheme

ECHAM6 (classical radiation scheme)

Figure 5.1.: The scaling curves of ECHAM6 using the classical and concurrent
radiation schemes. In the concurrent radiation scheme, identical domain decom-
position setups allow the radiation component and the main model to allocate the
same number of MPI processes in all the experiments.

5.4. Step 1: Performance measurement
In Step 1, the time-to-solution of the model is measured for both classical and
concurrent radiation scheme at the setups described in Section 5.1. Figure 5.1
presents two scaling curves which reflect the performance of the model with the
classical radiation scheme (the blue curve) and the concurrent radiation scheme (the
red curve). The horizontal axis shows the total number of MPI processes allocated
by the model. It is worth emphasizing that ECHAM6 (using the classical radiation
scheme) uses the same MPI processes to calculate ATM and RAD. However, when
the model is configured to use the concurrent radiation scheme, half of the allocated
MPI processes are exclusively dedicated to ATM and the other half to RAD. The
vertical axis, on the other hand, reflects the throughput of the model in terms of
the number of simulated years per day (SYPD).
As it can be inferred from Figure 5.1, ECHAM6 can achieve only a maximum per-
formance of 450 SYPD at 576 MPI processes using the classical radiation scheme at
the CR resolution. However, it yields a significant improvement using the concur-
rent radiation scheme and reaches a maximum performance of 734 SYPD at 1152
MPI processes. It is noteworthy that, due to the limited number of grid points at
the CR resolution, running the classical model at higher domain decomposition is
not justified theoretically. Needless to say, it does not attain any significant perfor-
mance improvement in practice either, as asserted in Figure 3.2 where the scaling
curve of ECHAM6 tends to flatten towards the end. This should explain why the
blue curve in Figure 5.1 stops at 576 MPI processes, as opposed to the red curve
scaling beyond. On this account, the concurrent radiation scheme acquires a new
significance as it becomes conducive to a higher scalable model.

70

5.5 Step 2: Performance tuning

1

RAD(1) ATM RAD(n+1) ATM

MPI

Processes

N

Processes

Time Steps

2 3 4 5 n n+1 2n

RAD(2n+1) ATM

2n+1 3n

ATM delayed ATM delayedATM delayed

Figure 5.2.: The classical organization of the radiation scheme in ECHAM6: the
radiation transfer is resolved sequentially with respect to the other atmospheric
processes. Hence, ATM is delayed in every radiation time step.

5.5. Step 2: Performance tuning

In the previous section, the performance of the model with the concurrent radiation
scheme was measured and it was compared with the classical scheme. In this sec-
tion, we will investigate the possibility of improving the performance of the model
further (at the same setups used in Section 5.4) by tuning the concurrency scheme.
At this stage, some performance metrics are require to spot any potential perfor-
mance bottleneck and opportunities for improving the model. As it will be shown,
the load-imbalance and the communication between ATM and RAD are two major
contributors to degrading the performance of model and they will be studied in some
more experiments.

In the classical ECHAM6, as shown in Figure 5.2, ATM and RAD are performed
sequentially and, as a result, ATM is delayed by RAD in every radiation time step.
This delay contributes directly to increasing the time-to-solution of the model. The
length of the delay is equal to the time required for calculating the radiative transfer.
Since ECHAM6 takes advantage of data parallelism, multiple MPI processes calcu-
late ATM in parallel. As a result, different MPI processes of ATM might experience
different delays, largely due to the load imbalance imposed by the choice of domain
decomposition. However, as shown in Figure 5.3, the maximum delay generated by
the slowest MPI process will eventually prolong the total runtime of the model.

71

Chapter 5 Performance Results

ATM RAD(n+1)

MPI

Processes

Process

P1

Time Steps

n n+1

ATM RAD(n+1)

ATM delayed

ATM delayed

Internal

Communications

ATMRAD(n+1)

ATMProcess

 P2

In
te

r
n

a
l

C
o
m

m
u

n
ic

a
ti

o
n

s

Radiation time stepNormal time step

Figure 5.3.: Different MPI processes of ATM experience different delays from
RAD. The one that experiences the longest delay stalls the other processes.

The concurrent radiation scheme aims at reducing this delay and optimally
removing it completely. So the success of the new scheme strongly depends on
how effectively it manages to reduce the delay imposed on ATM (by RAD). In
this scheme, ATM and RAD are performed on separate sets of MPI processes.
A load-imbalance between ATM processes (i.e. the MPI processes responsible
for doing ATM in the new version of ECHAM6 configured to use the concurrent
radiation scheme) and RAD processes (MPI processes responsible for doing RAD
in the new version of ECHAM6 configured to use the concurrent radiation scheme)
leads to an idle time imposed on the faster processes. When a radiation time step
arrives, (heavy) RAD calculations may still be running, as shown in Figure 5.4,
or may have already been finished, as shown in Figure 5.5. In Figure 5.4, ATM
is faster than RAD and thus it is delayed partly by the calculations of RAD and
partly by the communication between both processes. In contrast, RAD is faster
in Figure 5.5, thus ATM is delayed only by the communication. In the next
section, we measure the idle time and the communication time experienced by ATM
and RAD to see how they affect the performance of the concurrent radiation scheme.

5.5.1. Measuring communication overhead

The communication between ATM processes and RAD processes is the only player
that always contributes to the delay imposed on ATM in the concurrent radiation
scheme. There are two purposes for the data communication:

72

5.5 Step 2: Performance tuning

1

RAD(n+1)

ATM

MPI
Processes

ATM
Processes

Time Steps2 5 n n+1 2n

ATM

R
A

D
 R

e
su

ltsR
e
q
u
e
st

RAD
Processes

In
p
u
t

d
a
ta

RAD(2n+1)

ATM delayed

Communication

Figure 5.4.: The calculations of RAD are heavier than ATM, and, thus, RAD
processes are slower than ATM processes. As a result, ATM is delayed by both
RAD and the communication between both parties.

1

RAD(n+1)

ATM

MPI
Processes

ATM
Processes

Time Steps
2 5 n n+1 2n

ATM

R
A

D
 R

e
su

ltsR
e
q
u
e
st

RAD
Processes

In
p
u
t

d
a
ta

RAD(2n+1)

ATM delayed

Communication

Idle Idle

Figure 5.5.: The calculations of ATM are heavier than RAD, and, thus, ATM
processes are slower than RAD processes. As a result, ATM does not experience
any idle time from RAD though yet delayed by the communication between two
parties.

73

Chapter 5 Performance Results

• sending input data from ATM to RAD
• sending output data from RAD to ATM

In every radiation time step, the results of RAD are sent to ATM processes and
they, in turn, provide new input data for the following radiation calculations to RAD
processes immediately. Such interactions and the aggregated volume of exchanged
data are reflected in Figure 5.6. The schematics in both Figure 5.4 and Figure 5.5
also show how these interactions make ATM go to a wait state, prolonging the
overall simulation time. However, such a data exchange is inevitable due to the
close data dependency between ATM and RAD. This section provides an approach
for measuring these communication overheads and presents the experiments results.
The model will be configured for the same setups used in Section 5.4.

Code instrumentation
Algorithm 5.1 presents an abstract overview of the code instrumentation in
ECHAM6 for measuring the communication overhead between ATM and RAD. The
code instrumentation is required at both sides. Algorithm 5.1 measures the commu-
nication overhead on ATM and RAD individually as it can be different at each side.
This is because of different nature of MPI_SEND (which can be either a blocking or
non-blocking operation (ArgonneLab webpage, last access: 17 January 2022)) and
MPI_RECV (which is always blocking). This means if ATM, for example, starts
sending data to RAD, MPI_SEND might not wait for MPI_RECV at RAD’s side
to receive the data completely. MPI_SEND can simply leave the data in the buffer
and immediately quit. As a result, ATM experiences a shorter communication time
and continues. However, RAD may experience a longer communication time because
MPI_RECV may have to wait long until the data is transferred (over the network
perhaps) and stored in the memory. The same story applies to data exchange from
RAD to ATM. This time ATM may experience longer communication than RAD.
However, as Figure 5.6 shows, RAD receives a larger volume of data in comparison
to ATM and this imposes a bigger communication overhead on RAD than ATM.
There is nevertheless a more essential question: why should we measure the commu-
nication cost at RAD’s side in the first place? This is a valid question as we should
only look for the communication overhead that contributes to the delay experienced
by ATM. It may seem that the communication overhead is only what we measure
at ATM’s side, but this is not necessarily a complete picture. If RAD experiences a
bigger communication overhead, it may slow down RAD, thus making ATM finish
faster and wait for the following course of data exchange with RAD. As a result,
the idle time of ATM in this case does not stem (purely) from the expensive cal-
culations of RAD, but (rather) also from the data communication between them.
This becomes especially more interesting if we notice that the heavy calculations
of RAD can be handled by higher scalability of the component, while the cost of
data communication conversely increases by further scaling (largely due to smaller
messages as will be shown shortly). For this reason, the communication overhead
on both ATM and RAD will be presented in this section.

74

5.5 Step 2: Performance tuning

The measurement procedure takes place in two occasions: once when ATM sends the
input data to RAD and once when ATM receives the results from RAD. The commu-
nication overhead (for each side) is the aggregated time required for exchanging the
input and output data. In Algorithm 5.1, an MPI barrier makes every ATM process
wait for its peer RAD process and vice versa. This guarantees that when ATM and
RAD start measuring the communication overhead, both sides are already available
for the data exchange and the measurement procedure is not affected by the idle
time of the faster process. At the end of an experiment, each ATM process (or RAD
process) reports its own measurement. For example, if the model (using identical
domain decomposition) allocates 1152 MPI processes, there will be 576 ATM pro-
cesses (thus a set of 576 measurements for the communication overheads on ATM)
and 576 RAD processes (thus another set of 576 measurements for the communica-
tion overheads on RAD). The maximum of each set is chosen as the representative
of the communication overhead on ATM or RAD processes, respectively.

Experiments

Figure 5.7 shows the costs of communication between ATM and RAD in the con-
current radiation scheme. The overhead is calculated with respect to the total
simulation time. The blue and red curves exhibit the communication overheads
measured at ATM’ side and RAD’s side, respectively. The green curve, however,
indicates the effective communication cost on the simulation time.

When ECHAM6 with the concurrent radiation scheme allocates 48, 96 or 192 MPI
processes, the communication costs of ATM and RAD are almost the same. Thus,
the green curve (the effective communication cost) follows both the red curve and
the blue curve. However, at 288 or 384 MPI processes, the communication cost
at ATM’s side is lower than at RAD’s side. The effective communication cost is,
nevertheless, the larger communication overhead experienced by RAD. Therefore,
the green curve (the effective communication cost) follows the red curve. This
because, at these setups, ATM and RAD are equally assigned 144 and 192 MPI
processes, respectively, and, thus, RAD becomes relatively more expensive than
ATM at these configurations - as shown in Figure 3.4. For this reason, ATM not
only sees the communication overhead at its own side, but it is also affected by the
larger communication cost at RAD’s side. In other words, the larger communication
cost at RAD’s side causes RAD to wait longer relatively, and, thus catches up with
ATM with a longer delay in the next communication point.

When the model allocates 576, 768 and 1152 MPI processes, ATM still experiences
a lower communication overhead. This time, however, the green curve switches to
the blue curve. This is because ATM and RAD are assigned 288, 384 and 576 MPI
processes, respectively, and, thus, ATM becomes more expensive than RAD - as also
shown in Figure 3.4. In such cases, ATM will not be delayed by the communication
overhead at RAD’s side any longer even if RAD experiences a longer communication

75

Chapter 5 Performance Results

Algorithm 5.1 Instrumenting ECHAM6 (using the concurrent radiation scheme)
to measure the communication overhead between ATM and RAD.

ATM (MPI) Process

Program ECHAM6

call timer_start (Total_simulationtime)

call Initialization

while (time steps < enough)

call ATM_part_1

if (radiation time step) then

call send_command_to_RAD (RESULTS)

! A barrier to make sure ATM and RAD
! are ready for communication and
! no waiting time affects the measurements.
call barrier(intercomm)
call timer_start (CommOverhead_on_ATM)
call MPI_RECV (resultsdata, RAD, intercomm)
call timer_stop (CommOverhead_on_ATM)

call send_command_to_RAD (INPUT)
call barrier(intercomm)
call timer_start (CommOverhead_on_ATM)
call MPI_SEND (inputdata, RAD, intercomm)
call timer_start (CommOverhead_on_ATM)

end if

call ATM_part_2

end while

call send_command_to_RAD (FINISH)

call cleanup

call timer_stop (Total_simulationtime)

End Program ECHAM6

RAD (MPI) Processes

Program ECHAM6

call Initialization

while (TRUE)

call receive_command_from_ATM

select case (command)

case (RESULTS)
call barrier(intercomm)
call timer_start (CommOverhead_on_RAD)
call MPI_SEND (resultsdata, ATM, intercomm)
call timer_stop (CommOverhead_on_RAD)

case (INPUT)
call barrier(intercomm)
call timer_start (CommOverhead_on_RAD)
call MPI_RECV (inputdata, ATM, intercomm)
call timer_stop (CommOverhead_on_RAD)
call radiation

case (FINISH)

exit

end select

end while

call cleanup

End Program ECHAM6

76

5.5 Step 2: Performance tuning

1

ATM(RAD(1))

MPI
Processes

N
Processes

Time Steps

n
+

1

2
n

+
1

RAD(2n+1) RAD(3n+1)RAD(1)
N

Processes

ATM(RAD(n+1)) ATM(RAD(n+1))

2 n 2n

WAITING

RAD(n+1)

2
1
M

B
 9

M
B

9
M

B

9
M

B

9
M

B
 2

1
M

B

2
1
M

B

2
1
M

B

Figure 5.6.: The aggregated data volume transferred from the main model to the
radiation component and vice versa in the concurrent radiation scheme.

cost. This is because RAD finishes much faster and it will race to idle despite its
larger communication overhead, waiting for ATM to catch up. It is noteworthy that
the communication cost of RAD rapidly increases towards the end albeit without
any negative effect on the time-to-solution of the model.

In the nutshell, the green curve clearly indicates that the effective communication
cost on the time-to-solution of the model is less than 0.60 percent of the total
simulation time. This is a sheer advantage of the concurrent radiation scheme that
imposes a negligible communication overhead on the overall performance of the
model. Consequently, we should now focus only on analyzing the impacts of the load
imbalance between ATM processes and RAD processes on the model’s performance.

5.5.2. Measuring the idle times

A major factor that causes ATM to be delayed in the concurrent radiation scheme
is the idle times of ATM processes due to the slow RAD processes. In identical do-
main decomposition, an idle time can be created before any data exchange between
each ATM process and only its peer RAD process. In this setup, a peer RAD pro-
cess is the only MPI process that calculates radiative transfer for the corresponding
ATM process and responds only to the commands sent by that process. In finer
domain decomposition, however, one ATM process may wait on multiple RAD pro-
cesses. Conversely, in coarser domain decomposition, multiple ATM processes may
be stalled by only one RAD process.

77

Chapter 5 Performance Results

32 64 128 256 512 1024
Number of MPI Processes

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

1.40%

1.60%

Co
m

m
un

ica
tio

n
Ov

er
he

ad

Effective Communication time / Total Simulation time
RAD Communication time / RAD Caluculation time
ATM Communication time / ATM Caluculation time

Figure 5.7.: Comparing the communication costs of data exchange between the
radiation component (RAD) and the main model (ATM) respect to the overall
simulation time. The green curve shows the effective communication overhead on
the simulation time.

78

5.5 Step 2: Performance tuning

Code instrumentation

Algorithm 5.2 suggests an approach for measuring the idle time of ATM and RAD
processes. Although measuring the idle time of ATM processes is enough for find-
ing the best time-to-solution of the model in the concurrent radiation scheme, we
measure the idle time of RAD processes for the further tuning of the model (as dis-
cussed in the following sections). Since the model uses a client-server architecture
for controlling RAD from ATM, the measurement procedure takes place before the
command exchange between each ATM process and its peer RAD process. As soon
as one process is ready for data exchange, it starts a timer to measure its idle time
until the peer process arrives at the same point and becomes ready for the interac-
tion. An MPI barrier guarantees that both parties are ready for the data exchange
before any of them starts the command exchange. Algorithm 5.2 shows an abstract
overview of the code instrumentation in ECHAM6 though the real source code is
much more complex. At the end of an experiment, each MPI process reports its
own idle time. If the model sets up identical domain decomposition at 1152 MPI
processes, for example, the first set of 576 processes is assigned to ATM and the
second set is assigned to RAD. Thus, two sets of 576 measurements can be collected
from the reports. The maximum idle time of each set is chosen as the representative
of the idle time of ATM or RAD processes, respectively.

Experiments

After an accurate code instrumentation, several experiments are carried out to mea-
sure the idle time of ATM and RAD. Since the length of waiting time depends on
the choice of domain decomposition (adopted by ATM and RAD) and allocated re-
sources, experiments are repeated for each setup chosen in Section 5.4. Figure 5.8
depicts the results of these experiments. The blue and red curves show the respec-
tive idle times that ATM and RAD experience. The idle times appear when RAD
is resolved faster or slower than ATM (thus a load imbalance between ATM pro-
cesses and RAD processes appears). It should be noted that an idle time denotes
the maximum length of time that an MPI process (assigned to RAD or ATM) has
to wait for its peer MPI process until it catches up. In other words, the idle time
can be different from one ATM process to the other, but the blue curve shows only
the maximum value (which eventually contributes to overall runtime of the model).
This is also true about the red curve that shows the maximum idle time of the RAD
processes.

At lower numbers of MPI processes, as shown in Figure 5.8, calculating RAD takes
longer, hence forcing ATM to wait relatively long for receiving feedback from RAD
(in each radiation time step). At higher numbers of MPI processes, however, RAD
scales better and finishes faster than ATM. It therefore has to wait for the arrival
of the next radiation time step so that the radiation results can be transferred
from RAD to ATM. Figure 5.8 reveals a few interesting points about the behaviors

79

Chapter 5 Performance Results

Algorithm 5.2 Instrumenting (the new version of) ECHAM6 (that uses the con-
current radiation scheme) to measure the idle time of MPI processes assigned to the
main model (ATM) and radiation component (RAD). Each MPI process of ATM
waits for peer process in RAD. The algorithm synchronizes the peer (MPI) processes
to measure the length of time that they wait for each other. At the end of the ex-
periment, each process reports its own idle time and the maximum idle time will
contribute to the overall simulation time.

ATM (MPI) Process

Program ECHAM6

call timer_start (Total_simulationtime)

call Initialization

while (time steps < enough)

call ATM_part_1

if (radiation time step) then

! A barrier shows when both ATM and RAD
! are ready for data exchange
call timer_start (ATM_idletime)
call barrier(intercomm)
call timer_stop (ATM_idletime)
call send_command_to_RAD (RESULTS)
call MPI_RECV (resultsdata, RAD, intercomm)

! A barrier shows when both ATM and RAD
! are ready for data exchange
call timer_start (ATM_idletime)
call barrier(intercomm)
call timer_stop (ATM_idletime)
call send_command_to_RAD (INPUT)
call MPI_SEND (inputdata, RAD, intercomm)

end if

call ATM_part_2

end while

call send_command_to_RAD (FINISH)

call cleanup

call timer_stop (Total_simulationtime)

End Program ECHAM6

RAD (MPI) Process

Program ECHAM6

call Initialization

while (TRUE)

! A barrier shows when both ATM and RAD
! are ready for data exchange
call timer_start (RAD_idletime)
call barrier(intercomm)
call timer_stop (RAD_idletime)

call receive_command_from_ATM

select case (command)

case (RESULTS)
call MPI_SEND (resultsdata, ATM, intercomm)

case (INPUT)
call MPI_RECV (inputdata, ATM, intercomm)

call radiation

case (FINISH)

exit

end select

end while

call cleanup

End Program ECHAM6

80

5.5 Step 2: Performance tuning

32 64 128 256 512 1024
Number of MPI Processes

0%

10%

20%

30%

40%

50%
Id

le
 ti

m
e

/ T
ot

al
 ru

nt
im

e RAD
ATM

Figure 5.8.: The red curve (RAD) shows the increasing idle time of the MPI pro-
cesses responsible for resolving radiative transfer. It suggests that RAD is a dom-
inant computation in all the configurations before 576 MPI processes and does
not wait for ATM. The blue curve (ATM), on the other hand, shows that resolv-
ing other atmospheric physics and dynamics is not a dominant computation for
all the configurations before 576 MPI processes and ATM therefore experiences
a long idle time. However, ATM becomes dominant towards the end, inflicting a
long idle time on RAD. Yet the idle time of ATM is not lifted completely. This
can be attributed mainly to the unavoidable waiting time of ATM in the first
(radiation) time step (as reflected in Figure 3.6) and some infrequent (slightly)
longer radiation time steps.

of ATM and RAD. Firstly, the idle time of RAD increases rapidly as the model
keeps scaling. This behavior accounts for the higher scalability of the radiation
component, which was already reflected in Figure 5.1. Secondly, at some setups
such as 576, 768 and 1152 MPI processes, it seems RAD waits long for ATM to
catch up. Thus, ATM intuitively is expected to have a zero idle time as RAD is
already waiting for it. Surprisingly, however, the blue curve shows that ATM also
experiences some delays. Despite the first impression that implies ATM and RAD
are waiting for each other at the same time, a very thorough investigation shed light
on the secret. It appeared that RAD has to perform some expensive I/O operations
in some particular radiation time steps, and, thus, it becomes slower than ATM.
That is why the idle time of ATM is not completely zero at such setups.

In addition, extra experiments disclosed some minor negative contributions of MPI
barrier (used in the code instrumentation) to the experiments’ results. Figure 5.9
and Figure 5.10 exhibit this problem clearly. The blue curve in Figure 5.9 shows

81

Chapter 5 Performance Results

32 64 128 256 512 1024
Number of MPI Processes

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

Ti
m

e
[s

ec
]

idle time (before MPI_SEND)
barrier overhead

Figure 5.9.: The blue curve shows the idle time of ATM before sending input data
to RAD. The green curve shows the cost of MPI_barrier used in measuring the
idle time. Since the blue and green curves follow each other closely, they suggest
that the cost of MPI barrier largely affects the measurement procedure. In other
words, ATM experiences almost a zero waiting time before sending input data to
RAD.

the idle time that ATM experiences before sending input data to RAD. As the
graph suggests, the idle time increases as the model scales. The green curve shows
the cost of using MPI barrier for measuring the idle time. Interestingly, the green
curve follows the blue curve very closely, implying that what the blue curve shows
is largely due to the barrier. In other words, the idle time of ATM is, in fact, almost
zero. By the same token, the blue curve in Figure 5.10 shows that the idle time of
ATM (before receiving the results from RAD) is decreasing but it does not become
zero completely. The green curve, on the other hand, shows that the cost of MPI
barrier for measuring the idle time increases as the model scales. Since the cost of
barrier contributes directly to the measurement of the idle time, the green curve
partly justifies non-zero idle times of ATM at 576, 768 or 1152 MPI processes.

5.5.3. Discussions
This section opens with a question as to whether Figure 5.1 presents a correct
overview of the performance of the concurrent radiation scheme or it can be improved
by a better model’s configuration. It was already clarified that there are two main

82

5.5 Step 2: Performance tuning

32 64 128 256 512 1024
Number of MPI Processes

0.1

1.0

10.0

100.0

1000.0

10000
Ti

m
e

[s
ec

]
ATM idle time(before MPI_RECV)
barrier overhead

Figure 5.10.: The blue curve shows the idle time of ATM before receiving the
results from RAD is decreasing but is not removed completely. The green curve
shows the cost of MPI_barrier in measuring the idle time, which increases as the
model scales. This partly justifies why the idle time of ATM does not become
completely zero towards the end.

contributors to degrading the performance of the model using the new scheme: data
communication and load imbalance. However, the evidence from Figure 5.7 proved
that data exchange between ATM and RAD has little impact on the performance
of the model. Figure 5.8. Particularly, the blue curve in Figure 5.8 indicates the
idle time imposed on ATM at 48, 96, 192, 288 and 384 MPI processes. Such an idle
time stalls ATM repeatedly during the course of simulation. Hence, the time-to-
solution of the model can be improved if the idle time is reduced or ideally removed
completely. Since RAD experiences a fairly low communication overhead at these
setups (as shown by the red curve in Figure 5.7), it can safely be concluded that
the idle time is largely due to the expensive calculations of RAD. Since RAD scales
well, finer domain decomposition at RAD’s side is expected to expedite the overall
simulation time.
The graph in Figure 5.11 is almost the same as Figure 5.1, but the added green
curve shows the asymptotic performance of the concurrent radiation scheme. The
model achieves its asymptotic performance if the cost of RAD is removed completely
from the model. This can be calculated from the curves in Figure 3.4 by removing
the cost of RAD (shown by the red curve) and considering the cost of ATM (shown by
the blue curve) only. It can be inferred from the green curve that if the concurrent
radiation scheme uses finer domain decomposition for RAD, there will be some
performance improvements albeit negligible.
Additionally, at setups such as 576, 768 and 1152 MPI processes, no performance
improvement can be expected. This can be learned from both Figure 5.8 and

83

Chapter 5 Performance Results

16 32 64 128 256 512 1024
Number of MPI Processes

100

200

300

400

500

600

700
Si

m
ul

at
ed

 Y
ea

rs
 /

Da
y

ECHAM6 (Asymptotic performance)
ECHAM6 (concurrent radiation scheme)
ECHAM6 (classical radiation scheme)

Figure 5.11.: This graph resembles Figure 5.1, but the green curve was added to
show the asymptotic performance of the concurrent radiation scheme. This curve
shows the best performance of the model assuming that the cost of calculating
RAD were ideally zero. The asymptotic performance can be calculated from
Figure 3.3. The green curve suggests that the performance of the model can be
improved at 48, 96, 192, 288 and 384 MPI processes albeit negligible. At 576, 768
and 1152, nevertheless, the concurrent radiation scheme has already achieved its
asymptotic performance.

Figure 5.11. The blue curve in Figure 5.8 indicates that ATM waits no longer
on RAD (as RAD finally catches up), thus any finer domain decomposition at RAD
will not attain any performance improvement. This is also confirmed by the green
curve in Figure 5.11 that shows the concurrent radiation scheme has already been
able to deliver its asymptotic performance as these setups. On this account, we can
safely conclude that the best time-to-solution that the concurrent radiation scheme
can achieve is the same as the one delivered at 1152 MPI processes. It is worth
emphasizing that such a performance might be achievable at coarser domain de-
composition (at RAD) as well. In other words, if ATM keeps allocating 576 MPI
processes, it should be possible to run RAD at a lower number of resources such
that the best time-to-solution is still attainable.

5.5.4. Resource efficiency

This section presents a discussion on the efficiency of the resource utilization of the
concurrent radiation scheme. From the discussion in the last section, it was con-
cluded that we have already found the shortest time-to-solution of the concurrent

84

5.5 Step 2: Performance tuning

radiation scheme. Among multiple possible setups, it was argued that this perfor-
mance is achievable (at least) if ATM and RAD adopt identical domain decomposi-
tion and each component is assigned 576 MPI processes (i.e. a total of 2x576=1152
resources are assigned to the model). However, Figure 5.8 indicated that RAD
experiences a long idle time, suggesting a load imbalance between ATM processes
and RAD processes and thus an inefficient resource utilization. This section calcu-
lates the resource efficiency of the model for the same setups used in Figure 5.1.
A prerequisite to this is, however, the calculation of the speedup that ECHAM6
achieves using the concurrent radiation scheme (regarding the aforementioned con-
figurations). On this account, we first calculate the speedup and then present the
parallel efficiency of the model.

5.5.4.1. Methodical Speedup

Figure 5.12 displays the methodical speedup of the model across the scaling curves
(shown in Figure 5.1). In contrast to the classical definition of speedup where
additional resources are used by the same computation, the methodical speedup
compares the performance of two different computations on different number of
resources. In other words, the methodical speedup compares the simulation time
(Tp) of the the model using the concurrent radiation scheme to the simulation
time (Ts) of the original model using the sequential radiation scheme. These two
simulations are performed with different computations (which are expected to end
up in non-identical results). For each comparison, 2N MPI processes are allocated
by the model in the concurrent radiation scheme (i.e. a set of N MPI processes is
assigned to ATM and another set of N MPI processes is assigned to RAD). In the
classical radiation scheme, however, only one set of N MPI processes is allocated
by the whole model. In other words, the methodical speedup S is defined as below:

Ts = maximum simulated years per day with the classical radiation scheme
(using N resources)

Tp= maximum simulated years per day with the concurrent radiation scheme
(using 2N resources)

Methodical Speedup = S = Ts

Tp

The red curve in Figure 5.12 displays the actual (methodical) speedup of the model
for the same setups chosen for Figure 5.1. The horizantal axis indicates only the

85

Chapter 5 Performance Results

32 64 128 256 512 1024
Number of MPI Processes

1.6x

1.7x

1.8x

1.9x

2.0x

Sp
ee

du
p

Actual Speedup
Asymptotic Speedup

Figure 5.12.: The methodical speedup of ECHAM6 using the concurrent radiation
scheme and comparing it with the asymptotic speedup.

total number of MPI processes that the model allocates once it adopts the con-
current radiation scheme. However, the model allocates half of the MPI processes
shown by the horizantal axis when it adopts the the classical radiation scheme.
From this figure, it can be inferred that the concurrent radiation scheme achieves
an actual speedup ranging from a minimum 1.6x to over 1.9x. The blue curve,
however, shows the asymptotic speedup that the model would achieve if there were
no cross-dependency, and thus no communication latency, between the radiation
component and the main model. Interestingly, the red and blue curve confirm that
the concurrent radiation scheme has already achieved its asymptotic performance at
768 and 1152 MPI processes and no further tuning is imaginable, as also suggested
by the discussion in Section 5.5.3.

5.5.4.2. Parallel Efficiency

Figure 5.13 shows the efficiency of resource utilization of the model using the con-
current radiation scheme. The parallel efficiency of the concurrent radiation scheme
is defined as the ratio of the methodical speedup S to the relative number of the
allocated resources R, as shown below.

R (ratio of allocated resources) = (resources assigned to the concurrent radiation)
(resources assigned to the classical radiation) = 2N

N
= 2

E (parallel efficiency) = S

R
= S

2

86

5.6 Chapter Summary

32 64 128 256 512 1024
Number of MPI Processes

80.0%

85.0%

90.0%

95.0%

100.0%

Pa
ra

lle
l e

ffi
cie

nc
y

Figure 5.13.: The parallel efficiency of ECHAM6 (using the concurrent radiation scheme).

As visible in the figure, the model achieves a minimum parallel efficiency of 80%
across the same scaling curve shown in Figure 5.1. The most efficient resource uti-
lization takes place at 384 MPI processes as ATM and RAD experience a minimum
idle time at this configuration (as shown in Figure 5.8). While the new scheme has
an acceptable resource utilization, an effective load balancing (using finer or coarser
domain decomposition in RAD) is expected to push it to the maximum efficiency
at almost all the setups across the scaling curve..

5.6. Chapter Summary

This chapter presents a detailed performance analysis of the atmospheric model
ECHAM6 using the concurrent radiation scheme (which was developed within this
dissertation) and compares it with the performance of the model using the classical
radiation scheme. The goal is to find the setups that offer the best time-to-solution
of the model for paleoclimate simulations within the PalMod project with a mini-
mum resource usage. It was shown when ECHAM6 adopts the concurrent radiation
scheme and applies identical domain decomposition to both the main model and the
radiation component, it can achieve the shortest time-to-solution at a configuration
in which 1152 MPI processes are assigned to the whole model (i.e. the same number
of 576 MPI processes is allocated by the main model and the radiation component).
However, it was indicated that ECHAM6 cannot achieve such a performance with
the classical radiation scheme. Additionally, it was argued that this configuration
is not resource efficient as the radiation component experiences a large idle time.
Hence, it should be possible to attain the same time-to-solution and a better resource
efficiency at a configuration that provides coarser domain decomposition (and thus
requiring a lower number of MPI processes) to the radiation component, but as-
signing the same number of 576 MPI processes to the main model. In the nutshell,

87

Chapter 5 Performance Results

it was demonstrated that the concurrent radiation scheme can achieve a maximum
speedup of 1.9x over the classical scheme with a minimum of 80% parallel efficiency.

88

6. Component Isolation

This chapter introduces a novel static program analysis approach to achieve the gen-
eral goal of this dissertation. The discussion is started by providing solid definitions
that are needed in this chapter and then continues by exploring the complexity aspects
of a component. We will then proceed to describe the procedures of Component Ex-
traction and Component Isolation, augmented by a solution for extracting the shared
variables that couple a component to a Fortran program.

6.1. Definition of a Component

This section provides some preliminaries definitions which are required in the dis-
cussions in this chapter. In addition, some symbols will be defined here which will
be used throughout the chapter for further discussions.

Subprogram:
A Fortran subprogram in this dissertation denotes a Fortran procedure (either a
Fortran subroutine or function).

Control Flow Graph (CFG):
A control-flow graph (CFG) of a program is a directed graph that represents how
the control of execution of the program changes (Allen, 1970). The nodes of a CFG
capture blocks of unconditional statements and its arcs represent the transfer of
control from one block to another (through unconditional and conditional branches).

Component and Entry Point:

Definition: Let P be a Fortran program and G be the control flow graph
(CFG) of P . In addition, let C be the set of the subgraphs of G which are
reachable from some known Fortran subprograms e1 , ..., ek in P. Hence, C
is called one Fortran software component or in brief one component
of P and e1 , ..., ek are called the entry points of the component. In
addition, P is called the containing Fortran program of the compo-
nent.

89

Chapter 6 Component Isolation

Carvedout Program:

Definition: Let P be a Fortran program containing the component C.
Also, let Pm be a modified version of P by removing all the call-sites to the
entry points of C from P . Let G′ be the control flow graph (CFG) of Pm.
In this dissertation, the carvedout program Pco denotes a slice of Pm by
removing all the program statements (from Pm) that are not reachable in
G′ from the main program unit of Pm.

Syntactic Program Statement and Source Code:

Definition: Let P be a Fortran program containing the component C and
let Pco be the carvedout program of P. Also, let G and G′ be the control
flow graphs (CFG) of P and Pco, respectively.

A syntactic program statement of the component denotes a
program statement in P that is reachable in G from at least one entry
point of C. Hence, the syntactic source code or content of the
component shall denote the set of such syntactic program statements.

By the same token, a syntactic program statement of the carvedout
program denotes a program statement in P that is reachable in G′ from the
main program unit of Pco. Hence, the syntactic source code or content
of the carvedout program shall denote the set of such syntactic program
statements.

In this chapter, unless explicitly emphasized, a program statement of a component
or a carvedout program always denotes a syntactic program statement of the com-
ponent or the carvedout program, respectively. By the same token, the source code
or the content of a component or a carvedout program always denotes the syntactic
source code or content of the component or the carvedout program, respectively.

Color codes:

In this chapter, we use some color codes in the examples of Fortran programs to
distinguish the source code of a component from the carvedout program . Figure 6.1
shows a table defining the meaning of each color code.

90

6.2 Examples of a Component

Color Meaning

Pink dedicated source code of a component

Yellow dedicated source code of the carvedout program

Teal Shared source code between a component and the carvedout program

Grey dead source code in a Fortran program

White Undecided

Figure 6.1.: Color codes show whether the source code belongs to a component or
the carvedout program in a Fortran program.

Program MainProgram

Call Component_EntryPoint

End Program MainProgram

Subroutine Component_Entrypoint

!some calculations

End Subroutine Component_Entrypoint

Figure 6.2.: A Fortran program with one component. The component has the
simplest form. It has a single entry point. The entry point of the component is a
Fortran subroutine (outside any Fortran module) and contains the entire source
code of the component as it does not make a call to any other subprogram.

6.2. Examples of a Component

Figure 6.2 shows a component in the simplest form as the component includes only
one single Fortran subroutine. In this example, “Component_Entrypoint” is the only
entry point of the component and includes the whole source code of the component.
However, the source code of a component may be spread well beyond its entry point.
Figure 6.3 shows another Fortran program with a component but the source code of
the component is contained in a Fortran module. The entry point of the component
is a subroutine named “Component_Entrypoint” and the source code of the component
is spread in a Fortran module called “Component_Module”.

A component can indeed become much more complex and come in a variety of
combinations of the two simple forms presented in Figure 6.2 and Figure 6.3. In
addition, a component may have one or multiple entry points to provide multiple
functionality to the main program. Figure 6.4 shows one component with two en-
try points that are only Fortran subroutines. By the same token, Figure 6.5 shows
another component with two entry points, but the component includes only For-
tran modules and the entry points are the Fortran subroutines defined within the
modules.

91

Chapter 6 Component Isolation

Program MainProgram

USE Component, ONLY : Component_Entrypoint

Call Component_Entrypoint

End Program MainProgram

Module Component_Module

Contains

Subroutine Component_Entrypoint

!some calculations

End Subroutine Component_Entrypoint

End Module Component_Module

Figure 6.3.: A Fortran program with one component. The component has a single
entry point. The entry point of the component is a Fortran subroutine in a Fortran
module. The source code of the component is spread beyond the entry point inside
the Fortran module.

Program MainProgram

Call Component_Entrypoint1

Call Component_Entrypoint2

End Program MainProgram

Subroutine Component_Entrypoint1

!some calculations

End Subroutine Component_Entrypoint 1

Subroutine Component_Entrypoint2

!some calculations

End Subroutine Component_Entrypoint2

Figure 6.4.: One component with two entry points. The component includes only
Fortran subroutines.

92

6.2 Examples of a Component

Program MainProgram

USE Component_Module1, ONLY : Component_Entrypoint1

USE Component_Module2, ONLY : Component_Entrypoint2

Call Component_EntryPoint1

Call Component_EntryPoint2

End Program MainProgram

Module Component_Module1

Contains

Subroutine Component_Entrypoint1

!some calculations

End Subroutine Component_Entrypoint1

End Module Component_Module1

Module Component_Module2

Contains

Subroutine Component_Entrypoint2

!some calculations

End Subroutine Component_Entrypoint2

End Module Component_Module2

Figure 6.5.: One component with two entry points. The component includes only
Fortran modules. The entry points of the component are the Fortran subroutines
defined inside the modules.

Program MainProgram

USE Component_Module, ONLY: Component_Entrypoint1, //

Component_Entrypoint2

Call Component_Entrypoint1

Call Component_Entrypoint2

End Program MainProgram

Module Component_Module

Contains

Subroutine Component_Entrypoint1

!some calculation

End Subroutine Component_Entrypoint1

Subroutine Component_Entrypoint2

!some calculations

End Subroutine Component_Entrypoint2

End Module Component_Module

Figure 6.6.: Component with multiple entry points: The entry points are subrou-
tines of one module.

93

Chapter 6 Component Isolation

When a component has multiple entry points, they may be completely isolated from
each other or share source code in part. The next section analyzes variants of a
component in detail.

6.3. Variants of a Component
In real world applications, software components may exist in a wide variety of shapes
and forms. There are several factors that affect the complexity of a component,
which are as follows:

1. The type of a component
2. The depth of a component
3. Program sharing
4. The width of a component

These different aspects of a component are described in the following sections.

6.3.1. The type of a component

One component can have one of the three types:
1. It might include only Fortran subprograms, as shown in Figure 6.2, Figure 6.4

and Figure 6.7.
2. It might include only Fortran modules, as shown in Figure 6.3, Figure 6.5,

Figure 6.6, and Figure 6.8.
3. It might include a combination of Fortran subprograms and modules. One

example of combined type components is shown in Figure 6.9. However, a
combined type component may appear in various combinations of Fortran
subprograms and modules.

6.3.2. The width of a component

The width of a component is equal to the number of entry points of the component.
Each entry point of the component offers a new functionality to the main program.
The width of a component is at least 1 when the component has a single entry point.
The components in Figure 6.2, Figure 6.3, Figure 6.9, Figure 6.7 and Figure 6.8
have a width of 1 and the components in Figure 6.4, Figure 6.5 and Figure 6.6 have
a have a width of 2.

94

6.3 Variants of a Component

Program MainProgram

Call Component_EntryPoint

End Program MainProgram

Subroutine Component_EntryPoint

Call Component_Subroutine

End Subroutine Component_EntryPoint

Subroutine Component_Subroutine

!some calculations

End Subroutine Component_Subroutine

Figure 6.7.: One component that contains only (two) Fortran subprograms.

Program MainProgram
USE Component_Module1, ONLY : Component_Entrypoint

Call Component_EntryPoint

End Program MainProgram

Module Component_Module1

USE Component_Module2, ONLY : component_subroutine2

Contains

Subroutine Component_Entrypoint

Call component_subroutine2

End Subroutine Component_Entrypoint

End Module Component_Module1

Module Component_Module2

Contains

Subroutine component_subroutine2

!some calculations

End Subroutine component_subroutine2

End Module Component_Module2

Figure 6.8.: One component that contains only (two) Fortran modules.

95

Chapter 6 Component Isolation

Program MainProgram

Call Component_EntryPoint

End Program MainProgram

Subroutine Component_EntryPoint

USE Component_Module, ONLY : subroutine1

Call subroutine1

End Subroutine Component_EntryPoint

Module Component_Module

Contains

Subroutine subroutine1

!some calculations

End Subroutine subroutine1

End Module Component_Module

Figure 6.9.: One component with a combined type. The component includes one
Fortran subroutine and one Fortran module. A combined type component may
include any combination of Fortran subprograms and modules.

6.3.3. Program Sharing

Program sharing between a component and a containing Fortran program takes
place in different forms, which are as follows:

• program statement sharing
• program namespace sharing
• program file sharing

6.3.3.1. Program Statement Sharing

Any program statement in a Fortran program that contains a component has one
of the following status regarding the component and its corresponding carvedout
program:

• non-shared
• shared
• dead

Shared and non shared program statements:
A shared program statement between a component (in a Fortran program) and

its corresponding carvedout program is defined as below:

96

6.3 Variants of a Component

Definition. Let P be a Fortran program containing the component C and
let Pco be the carvedout program of P. Also, let G and G′ be the control
flow graphs (CFG) of P and Pco, respectively.

In this chapter, a shared program statement denotes a program
statement of P that is reachable in G from at least one entry point of C
and reachable in G′ from the main program unit of Pco.

A non-shared program statement of the component denotes a
program statement in P that is reachable in G from at least one entry
point of C, but not reachable in G′ from the main program unit of Pco.

By the same token, a non-shared program statement of the carvedout
program denotes a program statement in P that is reachable in G′ from
the main program unit of Pco, but not reachable in G from none of the entry
points of C.

It is noteworthy that the set of shared program statements is denoted as the shared
source code or content and the set of non-shared program statements is denoted
as the non-shared source code or content.

Dead program statement:
A dead program statement may exists in a component (in a Fortran program) or

in its corresponding carvedout program. A dead program statement is defined as
below:

Definition. Let P be a Fortran program containing the component C and
let Pco be the carvedout program of P. Also, let G and G′ be the control
flow graphs (CFG) of P and Pco, respectively.

a dead program statement w.r.t. the component denotes a program
statement of P that is not reachable in G from none of the entry points of
C.
a dead program statement w.r.t. the carvedout program denotes a
program statement of P that is not reachable in G′ from the main program
unit of Pco.
a dead program statement w.r.t. the program denotes a program
statement of P that is not reachable in G from the main program unit of
P .

97

Chapter 6 Component Isolation

It is also noteworthy that dead content denotes a set of dead program statements.
Dead program statements appear in two main forms, which are as follows:

• dead program declarations:
Examples of such program statements are the definitions of variables, derived
data types and etc. that are dead w.r.t. a component or its corresponding
carvedout program.

• dead program instructions:
An example of such program instructions can be found in the subprograms
that provide different services to the component and the carvedout program.

Furthermore, a non-shared program statement that is not a (syntactic) program
statement of the component may still have a special importance to the component.
These program statements are denoted as the semantic program statement of the
component and defined as below:

Definition. Let P be a Fortran program containing the component C and
let Pco be the carvedout program of P. Also, let G and G′ be the control
flow graphs (CFG) of P and Pco, respectively. In addition, let s and s′ be
two program statements of P , but let s be a syntactic program statement
of C and let s′ be a non-shared program statement of Pco.

It is said that s′ is a semantic program statement of C if there is a
data flow dependency from s′ to s.

Although semantic program statements of a component are not syntactically reach-
able from the entry points of the component in the control flow graph of the program,
they are semantically important to the component. A missing semantic program
statement of a component will not lead to a compilation failure though it can po-
tentially affect the correct execution of the component. For example, a semantic
program statement modifies variables of a component, allocates the dynamic vari-
ables of the component or opens a file that the component writes to or reads from.

Figure 6.10 shows a Fortran program which has a component with an entry point
called “Component_Entrypoint”. There is one dynamic variable called “A” defined in
the component. The variable is allocated inside a subroutine called “initialize”. This
subroutine is not, however, reachable from the entry point of the component (in the
CFG of the program). Thus, the memory allocation instruction is not considered
a syntactic program statement of the component, but rather a semantic program
statement of the component.

98

6.3 Variants of a Component

Program MainProgram
USE Component_Module, ONLY : Component_Entrypoint

Call initialize

Call Component_EntryPoint

End Program MainProgram

Subroutine initialize

USE Component_Module

Allocate(A)

A=1

End Subroutine initialize

Module Component_Module

IMPLICIT NONE
REAL, ALLOCATABLE :: A

Contains

Subroutine Component_Entrypoint
PRINT *, ’A=’, A

End Subroutine Component_Entrypoint

End Module Component_Module

Figure 6.10.: The semantic program statement of the component.

6.3.3.2. Program Namespace Sharing

In this dissertation, we recognize three different namespaces in a Fortran program
which are defined below:

Definition. Let P be a Fortran program and C a component in P . A
subprogram namespace in P denotes the definition of a Fortran subpro-
gram in P . Also a module namespace in P denotes the definition of a
Fortran module in P . In addition, the global namespace of P denotes
the source code of P excluding all the definitions of the Fortran subpro-
grams and modules in P . Furthermore, a namespace of the component
C denotes a namespace of P in which the source code of C resides.

In a Fortran program containing a component, every namespace has one of the
following status regarding the component and its corresponding carvedout program:

• shared

• non-shared

• dead

99

Chapter 6 Component Isolation

Shared and non-share namespace:
A shared or non-shared namespace between a component (in a Fortran program)
and its corresponding carvedout program is defined as below:

Definition. Let P be a Fortran program containing the component C and
let Pco be the carvedout program of P. Also, let G and G′ be the control
flow graphs (CFG) of P and Pco.

A shared namespace denotes the namespace N in P that contains at
least one syntactic program statement of P which is reachable in G from
the entry points of C and contains at least one syntactic program statement
of P which is reachable in G′ from the main program unit of Pco.

A shared namespace with shared content denotes the shared names-
pace N in P in which every syntactic program statement is reachable in
G from at least one of the entry points of C and also reachable in G′

from the main program unit of Pco. Otherwise, it is denoted as a shared
namespace with shared and non-shared content.

Conversely, a non-shared namespace denotes the namespace N in P in
which all the syntactic program statements are only reachable in G from
any of the entry points of C or only reachable in G′ from the main program
unit of Pco.

Furthermore, a dead namespace w.r.t the component denotes the
namespace N in P in which there is no single syntactic program statement
of P that is reachable in G from any of the entry points of C.

Moreover, a dead namespace w.r.t the carvedout program denotes the
namespace N in P in which there is no single syntactic program statement
of P that is reachable in G′ from the main program unit of Pco.

The global namespace of a Fortran program is always considered a shared names-
pace.

Examples:
We first present some examples on some namespaces that are Fortran subprograms.
Figure 6.11 shows two Fortran subroutines “mainprogram_nonShared_Subroutine” and
”component_nonShared_Subroutine” which are non-shared namespaces. The subrou-
tine “dead_Subroutine” is dead w.r.t. the component and its corresponding carved-
out program. It is also dead w.r.t. to the program, which can be considered

100

6.3 Variants of a Component

a bad practice in software engineering. The subroutine “MainProgram” and “main-
program_nonShared_Subroutine” are also dead w.r.t. to the component, but not the
carvedout program.

We now present some examples on some namespaces that are Fortran modules.
Figure 6.12 shows a Fortran module that is a shared namespace though it is not
clear which contents of the module are shared or non-shared. Note that using a
Fortran module takes effect with a statement such as “USE module_name”. In con-
trast, Figure 6.13 shows that the module component_nonShared_module is a non-shared
namespace of the component, and the module mainprogram_nonShared_module will be a
non-shared namespace of the corresponding carvedout program. Figure 6.14 shows
that the contents of the shared namespace Shared_Module including a Fortran parame-
ter, a derived data type, a variable and a subroutine are shared fully.

Figure 6.15 shows a shared namespace with shared and non-shared contents.
In contrast to some shared definitions, the subroutines mainprogram_subroutine and
component_subroutine are not shared. Similarly, Figure 6.16 shows a shared namespace
that contains no shared definitions. Finally, the module deadcode_nonShared_module in
Figure 6.17 is considered a dead namespace w.r.t. the component, its corresponding
carvedout program and the Fortran program. Whereas, mainprogram_nonShared_Module is
a dead namespace only w.r.t. the component.

101

Chapter 6 Component Isolation

Program MainProgram

Implicit None

Call Component_EntryPoint

Call mainprogram_nonShared_Subroutine

End Program MainProgram

Subroutine mainprogram_nonShared_Subroutine

Call Shared_Subroutine

End Subroutine mainprogram_nonShared_Subroutine

Subroutine Component_EntryPoint

Call component_nonShared_Subroutine

End Subroutine Component_EntryPoint

Subroutine component_nonShared_Subroutine

Call Shared_Subroutine

End Subroutine component_nonShared_Subroutine

Subroutine Shared_Subroutine

!some calculations

End Subroutine Shared_Subroutine

Subroutine dead_Subroutine

!some calculations

End Subroutine dead_Subroutine

Figure 6.11.: Examples of different subprogram namespaces. The subrou-
tine “mainprogram_nonShared_Subroutine” (called only by the program) and
”component_nonShared_Subroutine” (called only by the component) are non-
shared subprogram namespaces. The subroutine “Shared_Subroutine” is con-
sidered shared as it is reachable from the entry points of the compo-
nent (Component_EntryPoint) and the entry point of the carvedout program
(MainProgram). The subroutine “component_EntryPoint” is not considered
a shared subprogram namespace as it is the entry point of the compo-
nent. The subroutine “dead_Subroutine” is considered dead with respect to
the program and the component. Subroutines “MainProgram” and “mainpro-
gram_nonShared_Subroutine” are also dead with respect to the component.

102

6.3 Variants of a Component

Program MainProgram
USE Shared_Module

Implicit None

Call Component_EntryPoint

End Program MainProgram

Subroutine Component_EntryPoint

USE Shared_Module

!some calculations

End Subroutine Component_EntryPoint

Module Shared_Module

!some calculations

End Module Shared_Module

Figure 6.12.: An example of a module which is a shared namespace.
“Shared_Module” is a shared namespace, but it is not clear which contents of
the module are shared or non-shared.

Program MainProgram
USE mainprogram_nonShared_Module

Implicit None

Call Component_EntryPoint

.................................

End Program MainProgram

Module mainprogram_nonShared_Module
.................................

End Module mainprogram_nonShared_Module

Subroutine Component_EntryPoint
USE component_nonShared_Module

...
End Subroutine Component_EntryPoint

Module component_nonShared_Module
.................................

End Module component_nonShared_Module

Figure 6.13.: This is an example of modules that are non-shared namespace. The
module “component_nonShared_module“ is used only by the component and the
module “mainprogram_nonShared_module“ will be used only by the carvedout
program.

103

Chapter 6 Component Isolation

Program MainProgram

USE Shared_Module, ONLY : //
shared_subroutine, //
shared_param, //
shared_var, //

shared_derivedtype

Implicit None

Call Component_EntryPoint

Call shared_subroutine

End Program MainProgram

Subroutine Component_EntryPoint
USE Shared_Module, ONLY ://

shared_subroutine, //
shared_param, //
shared_var, //

shared_derivedtype

Call shared_subroutine

End Subroutine Component_EntryPoint

Module Shared_Module

IMPLICIT NONE

PUBLIC :: shared_param
PUBLIC :: shared_var

PUBLIC :: shared_derivedtype

INTEGER, PARAMETER :: shared_param = 0

INTEGER :: shared_var

TYPE shared_derivedtype
CHARACTER(LEN = 50) :: field1
INTEGER :: field2

END TYPE

Contains

Subroutine Shared_Subroutine

!some calculations

End Subroutine Shared_Subroutine

End Module Shared_Module

Figure 6.14.: This is an example of a shared module namespace with shared con-
tents. The module “Shared_Module” and its internal definitions are fully shared.

104

6.3 Variants of a Component

Program MainProgram

USE Shared_Module, ONLY : //
mainprogram_Subroutine,//
shared_param, //
shared_var, //

shared_derivedtype

Implicit None

Call Component_EntryPoint

Call Shared_subroutine

End Program MainProgram

Subroutine Component_EntryPoint
USE Shared_Module, ONLY :

Component_Subroutine, //
shared_param, //
shared_var, //

shared_derivedtype

Call Component_subroutine

End Subroutine Component_EntryPoint

Module Shared_Module

IMPLICIT NONE

PUBLIC :: shared_param
PUBLIC :: shared_var

PUBLIC :: shared_derivedtype

INTEGER, PARAMETER :: shared_param = 0

INTEGER :: shared_var

TYPE shared_derivedtype
CHARACTER(LEN = 50):: field1
INTEGER :: field2

END TYPE

Contains

Subroutine mainprogram_Subroutine

!some calculations

End Subroutine mainprogram_Subroutine

Subroutine Component_Subroutine

!some calculations

End Subroutine Component_Subroutine

End Module Shared_Module

Figure 6.15.: This is an example of a shared namespace with shared and non-
shared contents. In “Shared_Module”, the Fortran parameter, variable and de-
rived data type are shared, but “component_subroutine” is used only by the com-
ponent, but “mainprogram_subroutine” will be used only by the corresponding
carvedout program.

105

Chapter 6 Component Isolation

Program MainProgram

USE Shared_Module, ONLY : //
mainprogram_Subroutine, //
mainprogram_param, //
mainprogram_var, //

mainprogram_derivedtype

Implicit None

Call Component_EntryPoint

Call Shared_subroutine

End Program MainProgram

Subroutine Component_EntryPoint
USE Shared_Module, ONLY : //

Component_Subroutine, //
Component_param, //
Component_var, //

Component_derivedtype

Call Component_subroutine

End Subroutine Component_EntryPoint

Module Shared_Module

IMPLICIT NONE

PUBLIC :: mainprogram_param
PUBLIC :: mainprogram_var

PUBLIC :: mainprogram_derivedtype

INTEGER, PARAMETER :: mainprogram_param = 0

INTEGER :: mainprogram_var

TYPE mainprogram_derivedtype
CHARACTER(LEN = 50) :: field1
INTEGER :: field2

END TYPE

PUBLIC :: component_param
PUBLIC :: component_var
PUBLIC :: component_derivedtype
INTEGER, PARAMETER :: component_param = 0

INTEGER :: component_var

TYPE component_derivedtype
CHARACTER(LEN = 50) :: field1
INTEGER :: field2

END TYPE

Contains

Subroutine mainprogram_Subroutine

!some calculations

End Subroutine mainprogram_Subroutine

Subroutine Component_Subroutine

!some calculations

End Subroutine Component_Subroutine

End Module Shared_Module

Figure 6.16.: This is an example of a shared module namespace with non-shared
contents. In “Shared_Module”, no Fortran parameters, variables, derived data
types and subroutines are shared.

106

6.3 Variants of a Component

Program MainProgram
USE mainprogram_nonShared_Module

Implicit None

Call Component_EntryPoint

.................................

End Program MainProgram

Module mainprogram_nonShared_Module
.................................

End Module mainprogram_nonShared_Module

Subroutine Component_EntryPoint
USE component_nonShared_Module

...
End Subroutine Component_EntryPoint

Module component_nonShared_Module
.................................

End Module component_nonShared_Module

Module deadcode_nonShared_Module
.................................

End Module deadcode_nonShared_Module

Figure 6.17.: This is an example of modules that are dead namespace. “dead-
code_nonShared_module” is a dead namespace w.r.t. the component ans its
the corresponding carvedout program as well as the Fortran program. However,
“mainprogram_nonShared_Module” is a dead namespace w.r.t. the component,
but not to the Fortran program.

6.3.3.3. File sharing

The other factor affecting the complexity of a component is how the source code of a
component is spread across Fortran files in a Fortran program. It is noteworthy that,
in the previous examples, the name of the Fortran files containing the components
were deliberately ignored in order to focus on other aspects. One component may,
however, share several Fortran files with the carvedout program. A shared file is
defined as below:

Definition. Let P be a Fortran program containing the component C
and let Pco be the carvedout program of P. A shared Fortran file of
P denotes a Fortran file of P that contains the source code of C and Pco
partially or completely. A shared file may contain shared, non-shared or
dead namespaces. Otherwise, it is denoted as a non-shared Fortran file.

Figure 6.18 demonstrates a Fortran program with a shared and three non-shared
files. The shared file “sharedfile.f90“ contains one shared namespace and the non-shared
files “mainprogram_nonsharedfile.f90“ and “component_nonsharedfile.f90“ contain non-shared mod-
ule namespaces. However, the non-shared file “deadcode.f90” contains a dead mod-

107

Chapter 6 Component Isolation

ule namespace (deadcode_nonShared_Module) as well as a dead subprogram namespace
(deadcode_nonShared_Subroutine).

108

6.3 Variants of a Component

Program MainProgram
USE mainprogram_nonShared_Module

Implicit None

Call Component_EntryPoint

.................................

End Program MainProgram

mainprogram.f90

Module mainprogram_nonShared_Module
USE Shared_Module

.................................

End Module mainprogram_nonShared_Module

mainprogram_nonsharedfile.f90

Subroutine Component_EntryPoint
USE component_nonShared_Module

...

End Subroutine Component_EntryPoint

component_entrypoint.f90

Module component_nonShared_Module
USE Shared_Module

.................................

End Module component_nonShared_Module

component_nonsharedfile.f90

Module Shared_Module

!some calculations

End Module Shared_Module

sharedfile.f90

Subroutine deadcode_nonShared_Subroutine
!some calculations

End Subroutine deadcode_nonShared_Subroutine

Module deadcode_nonShared_Module
.................................

End Module deadcode_nonShared_Module

deadcode_file.f90

Figure 6.18.: This is an example of shared and non-shared Fortran files in a Fortran
program. The Fortran file “sharedfile.f90“ is a shared file that contains a shared
module namespace while the non-shared files “mainprogram_nonsharedfile.f90“
and “component_nonsharedfile.f90“ contain non-shared module namespaces. In
addition, the non-shared file “deadcode_file.f90” contains a dead module names-
pace (deadcode_nonShared_Module) and a dead subprogram namespace (dead-
code_nonShared_Subroutine).

109

mainprogram.f90
mainprogram_nonsharedfile.f90
component_entrypoint.f90
component_nonsharedfile.f90
sharedfile.f90
deadcode_file.f90

Chapter 6 Component Isolation

6.3.4. The depth of a component

The depth of a component is equal to the total number of Fortran modules and
Fortran subprograms that it contains in the global namespace of a Fortran program.
A component with a deep depth invokes numerous Fortran subprograms (that are
located in the global namespace of the Fortran program containing the component)
or its source code is spread in numerous Fortran modules. The components in
Figure 6.2 and Figure 6.3 have a depth of 1 and the components in Figure 6.4,
Figure 6.5, Figure 6.6, Figure 6.7, Figure 6.8 and Figure 6.9 have a depth of 2.

6.3.5. Epilogue

In this section, we discussed the complexity of a component in a Fortran program
and provided some examples for a more clarification. It was shown that the com-
plexity of a component can increase in four dimensions, namely by the types and
the number of namespaces that it contains, the number of entry points, and shared
contents between the component and other parts of the program. These variants of
a component appear in Fortran programs, and, thus, any component extraction so-
lution has to consider such a variety and be able to handle them in practice. Hence,
the discussions in this section paved the way for understanding the intricacies of
the approach proposed in the next section for achieving the general goal of this
dissertation. This approach offers a novel solution for detecting the source code of
a component in a Fortran program and separating the shared source code of the
component from the other parts of the program. The precise definitions provided
in this section (and in this chapter in general) create accurate technical jargon for
presenting an accurate description of the solution and removing any ambiguity and
misinterpretations.

6.4. Definition of Component Extraction and
Isolation

In this section, we define two program analysis procedures called Component Ex-
traction and Component Isolation, which deal with exploring the entire source of
a component and adapting the whole Fortran program for the general goal of this
dissertation.

6.4.1. Definition of Component Extraction

According to Section 6.1, the entry points of a component are assumed to be known,
but the complete source code of a component may not be immediately visible without

110

6.4 Definition of Component Extraction and Isolation

a thorough program analysis. Thus, the process of Component Extraction in this
chapter can be defined as below:

Definition: Let P be a Fortran program containing the component C and
let s be a dead program statement in P w.r.t. C. The extracted compo-
nent C ex denotes a slice of P in which every namespace N is reachable in
G from at least one entry point of C and every s in N is removed. Hence,
Component Extraction denotes the process of generating C ex .

An abstract model of Component Extraction is shown in Figure 6.19. The input
data to this process includes the source code of the original Fortran program as well
as the information concerning the entry points of the target component and the
output is the extracted component.

No code dependency

The definition above implies that the extracted component has no source code de-
pendency on the original program and it can, thus, compile independently from the
original program successfully. Hence, the extracted component can be re-used in an-
other Fortran program independently. On this account, as shown in Figure 6.20, a
compilation test after the process of Component Extraction must always be rendered
successful, otherwise the process is considered a failure.

Extracted component vs a component

Here, before delving into more details, the difference between a component and an
extracted component should be emphasized. As defined in Section 6.1, a component
is an abstract subset of the program statements in a Fortran program that are only
reached from the entry points of the component. Any reference to a component of a
Fortran program denotes this abstract model that is pointed to by the entry points
of the component, but it does not concretely show the whole source code of the
component. On the contrary, an extracted component clearly indicates a concrete
subset of the statements of the program that contains only the complete source code
of the component.

6.4.2. Definition of Component Isolation

Component Isolation is, however, slightly different and can be defined as below:

111

Chapter 6 Component Isolation

Definition: Let P be a Fortran program containing the component C
and let Pco be the carvedout program of P. Also, let C ex be the extracted
component. Furthermore, let N be a shared namespace of C and let N ′

be an exact copy of N with a different name. The isolated component
C iso denotes a modified copy of C ex in which every N is replaced by N ′ to
create unique namespaces (across C iso and Pco) and every reference to N is
redirected to N ′ in C iso. On this account, Component Isolation denotes
the process of generating C iso and Pco.

Figure 6.19 shows an abstract model of Component Isolation. The input data to
this process includes the source code of the original Fortran program as well as the
information concerning the entry points of the target component and its output is
the isolated component and carvedout program.

Unique namespaces

An isolated component and the carvedout program must allow for the re-integration
within a new Fortran program. Hence, the union set of the namespaces of the
isolated component and the carvedout program is not allowed to have two members
with the same name. This feature makes it possible to compile the new Fortran
program successfully. Hence, the namespaces with identical names generated during
the process of Component Isolation are uniquely renamed.

No code dependency

Additionally, the isolated component and the carvedout program must have no
source code dependency on each other so that each slice can compile successfully
independent from the other and the original program. This implies that we always
assume that a Fortran program compiles successfully before applying the practice
of Component Isolation. As shown in Figure 6.20, a compilation test of each slice
must always be successful, otherwise the process is considered a failure.

Data dependency

It is noteworthy that there are usually data dependencies between a component
and the other parts of a Fortran program. However, the namespaces of the isolated
component become separated from the carvedout program during the process of
Component Isolation. If these two slices are re-integrated, bit-wise identical results
to the original program cannot be generated unless a correct memory consistency
between both slices is implemented.

112

6.4 Definition of Component Extraction and Isolation

'

&

$

%

Component Isolation Process

Component Isolation

FINISHED

Carvedout Program

Input I =

Source Codes
of

Fortran Program

Input II =

Entry Points
of

Component

Component Extraction

Component Extraction

Input I =

Source Codes
of

Fortran Program

Input II =

Entry Points
of

Component

Extracted Component

FINISHED

Output=

 Isolated
Component

Output=

Output=

Figure 6.19.: An abstract model of the practice of Component Extraction and
Component Isolation.

Separate sets
In Component Isolation, two separate sets of source code will be generated. One set
contains the source code of the carvedout program and the other set contains the
source code of the isolated component. To improve the visibility of both sets, they
should be contained into separate Fortran files.

Component Isolation vs Component Extraction
Component Isolation and Extraction are very similar. However, Component Isola-
tion aims at generating two slices from a Fortran program (i.e. the isolated compo-
nent and the carvedout program) while Component Extraction generates only one
slice (i.e. the extracted component). Both techniques, nevertheless, generate an ex-
tracted component the same way, but, in Component Isolation, it is then converted
to an isolated component to guarantee unique namespaces across the two slices.

113

Chapter 6 Component Isolation

'

&

$

%

Component Isolation

Component Isolation

FINISHED

Input I =

Source Codes
of

Fortran Program

Input II =

Entry Points
of

Component

Component Extraction

Component Extraction

Input I =

Source Codes
of

Fortran Program

Input II =

Entry Points
of

Component

compilation test?

Problem
Resolving

FAIL

SUCCESS
FINISHED compilation test?

Problem
Resolving

FAIL

SUCCESS

Isolated Component

Output=

Carvedout Program

Output=

Extracted Component

Output=

Figure 6.20.: A compilation test is added to the abstract models proposed in
Figure 6.19 to implement a validation step in the process of Component Ex-
traction and Component Isolation.

114

6.5 Implementation of Component Isolation

6.5. Implementation of Component Isolation

This section presents the procedural steps to implement Component Isolation. We
try to develop this approach step by step to make it easier for the reader to follow. It
also seems to be informative to compare the implementation of Component Isolation
to Component Extraction and, thus, we juxtapose both implementations wherever
it is helpful in this section.

6.5.1. Implementation I: A simple model

A simple model of Component Extraction includes the following steps:
• Step 1: Finding the source code of the component
• Step 2: Adding the source code to the extracted component

Component Isolation is performed in three steps, which are as follows:
• Step 1: Finding the source code of the component
• Step 2: Adding the source code to the isolated component
• Step 3: Removing the source code of the component from the program to

generate the carvedout program
So, Component Isolation is exactly similar to Component Extraction in Step 1 in
order to find the source code of the component. In Step 2, Component Extraction
and isolation generate different slices. Component Extraction builds the extracted
component and Component Isolation creates the isolated component. Component
Isolation has one more extra step (Step 3) in which it generates the carved out pro-
gram. Figure 6.21 shows these two simple models. In these models, it is assumed
that the target component does not share any source code with the carvedout pro-
gram.

6.5.1.1. Step 1: Finding the source code of the component

The first step to extract or isolate a component from a Fortran program is the de-
tection of its source code. Hence, a dependency analysis is required in this step
to explore the source code of the component. This analysis can be performed at
a fine-grained level to pick up program statements of the component one by one.
Since the simple model assumes that the component and the other parts of the pro-
gram do not share any namespace, it seems that a fine-grained dependence analysis
deals with numerous irrelevant details - making it very time-consuming. Instead,
we choose to collect the source code of the component at a coarser level by picking
the namespaces of the component from the set of the total namespaces of the pro-
gram. If any entry point of a component reaches the program statements of more

115

Chapter 6 Component Isolation

'

&

$

%

Component Isolation

Input I =

Source Codes
of

Fortran Program

Input II =

Entry Points
of

Component

Component Extraction

Input I =

Source Codes
of

Fortran Program

Input II =

Entry Points
of

Component

Add all the namespaces
to the extracted component

(In the original Fortran program)
Find the list of the namespaces

of the component

step 1

step 2

Add all the namespaces
to the isolated component

(In the original Fortran program)
Find the list of the namespaces

of the component

step 1

step 2

Remove all the namespace
from the carvedout programstep 3

FINISHED FINISHEDcompilation test?

Problem
Resolving

FAIL

SUCCESS
compilation test?

Problem
Resolving

FAIL

SUCCESS

Figure 6.21.: A simple model of Component Extraction and Component Isolation

116

6.5 Implementation of Component Isolation

than one namespace, there must be a dependency between these namespaces. By
extracting these dependencies, all the namespaces that a component depends on can
be detected. Hence, a dependency analysis technique is required in this regard, as
discussed below.

Namespace dependence in Fortran: This section discusses the nature of depen-
dencies between namespaces of a Fortran program and shows how such features can
be used in detecting the namespaces of a target component. A dependence between
two namespaces A and B is defined as below:

Definition. Assuming there is a Fortran program with two namespaces A
and B. If there is one definition in namespace B that the namespace A relies
on, it is said that the namespace A depends on namespace B.

It was discussed earlier in Section 6.3.3.2 that there are three different types of
namespaces in Fortran, namely the global namespace, module namespaces and sub-
program namespaces. There is only one global namespace in any Fortran program,
which contains all local namespaces such as subprogram and module namespaces.
Thus, the dependency technique presented in this section only considers the depen-
dencies between module and subprogram namespaces.

In Fortran, any namespace can potentially use public variables, derived data types,
subprograms and etc. defined in another module namespace. Fortran reserves the
keyword “USE” to show that one namespace requires some public definitions from
another module. If the module namespace A depends on the module namespace B, it
must contain a program statement such as “USE B” to declare a general dependence
of A on B. Sometimes however, A has access only to a limited number of definitions
in B. For example, if A uses only the variable “varB” defined in the namespace B,
it can therefore declare a minimal dependency on the namespace B by stating “USE
B, ONLY : varB”.

By the same token, if a namespace depends on a subprogram namespace, it must
contain a call to that subprogram. In addition, Fortran reserves the keyword “EX-
TERNAL” to show a potential namespace dependency in a Fortran file on a subpro-
gram namespace defined in the global namespace in another file. If the namespace
A defined in a Fortran file such as “File1.f90” contains a call to a subprogram B
defined in the global namespace within another Fortran file such as “File2.f90”, there
is a dependency between A and B and Fortran expects a program statement such
as “EXTERNAL :: B” in the the Fortran file containing the namespace of A, i.e.
“File1.f90”.

117

Chapter 6 Component Isolation

Extracting namespaces dependencies in Fortran programs: As discussed above,
there might be dependencies between modules and subprograms namespaces in a
Fortran program. To find namespace dependencies, the following types of search
will be required:

• Finding a dependence on a module namespace:
To find the dependency of the namespace A on the module namespace B, a
search for “USE B” in the namespace A is required. Exploring all the“USE”
statements in the namespace A should lead to the detection of all the depen-
dencies of A on other Fortran modules.

• Finding a dependence on a subprogram namespace:
If a (module or subprogram) namespace has dependencies on subprograms de-
fined in a module namespace, the dependencies on the module (but not on the
individual subprograms) are only considered. However, dependencies on sub-
programs defined in the global namespace are captured. To find a dependency
of the (module or subprogram) namespace A on the subprogram namespace B
(defined in the global namespace), a search for the program statement “CALL
B” within the namespace A is required. This method, however, suggests that
the search has to be performed for every subprogram defined in the global
namespace. An optimal solution, however, limits the search for dependen-
cies on all the subprograms defined in the global namespace within the same
Fortran file in which the namespace A is defined as well as the subprograms
indicated by “EXTERNAL” statements (within the same file).

6.5.1.2. Step 2: Adding a namespace to the extracted and isolated
component

Once the namespaces of a component are explored, it is, however, a matter of
software organization where the source code of an extracted or isolated component
should end up. Step 2 suggests the following tasks:

• placing the source code of each namespace of the component in a new Fortran
file so that the extracted or isolated component can be re-used in other software
applications.

• placing Fortran files of the extracted component or the isolated component in
a separate folders from the original program to maximize their visibility.

6.5.1.3. Step 3: Removing all the namespaces from the carvedout program

Once a namespace is added to the isolated component, it will be removed from the
carvedout program. This is based on the assumption of the simple model presented
in this section that a component does not share any namespace with the carvedout
program. Thus, Step 3 is added to Component Isolation to perform this task. This

118

6.5 Implementation of Component Isolation

step makes sure that the carvedout program does not retain any dependency on the
component.

6.5.2. Implementation II: an incremental procedure

The algorithm proposed in Figure 6.21 still needs some improvements to make sure
that it is an effective solution in practice. The main problem is raised by the
compilation test, which takes place at the end of the process. If the compilation
test fails however, it will be very difficult to trace back the problem leading to the
failure. For this reason, Figure 6.22 suggests adding one more step to perform a
compilation test in each iteration and apply the practice of Component (Extraction
or) Isolation incrementally. In this approach, the namespace of a component is
added one by one to the extracted or isolated component. If the compilation test
succeeds, the process goes to the next iteration. If the test fails, the troubleshooting
is performed immediately (not at the end of the practice) to localize the problem.
Such a test usually requires the re-configuration of the build system (in our case
the GNU Build System (GNU Webpage, last access: 25 Mar 2022) for compiling
the modified program. This additional step is still worthy of the overhead that it
imposes on the practice of Component Extraction and Component Isolation as it
minimizes the search space for the required trouble shooting.
Note that an extracted or isolated component and a carvedout program are by def-
inition the slices of a Fortran program generated at the end of the practice of Com-
ponent Extraction and Isolation. However, these terminologies are still exploited to
refer to the output of the incremental procedure in each iteration. Consequently,
some dependencies may be lacking or redundantly exist in these slices within the
intermediary iterations.

6.5.3. Implementation III: handling shared namespaces

So far , it was assumed that components in a Fortran program contain only non-
shared namespaces. However, in real-world software applications, components con-
tain both non-shared and shared namespaces. As a result, Component Extraction
and Isolation should be adapted as explained below:

1. If there is a shared namespace, both the isolated component and carvedout
program depend on this namespace and require individual copies of the names-
pace. Hence, the following modifications are necessary in the practice of Com-
ponent Isolation (but not in Component Extraction):
a) Shared namespaces are not removed from the carvedout program and

thus Step 4 is modified accordingly.
b) In addition, shared namespaces are renamed before being added to the

isolated component.

119

Chapter 6 Component Isolation

'

&

$

%

Remove the namespace
from the carvedout program

Add the namespace
to the isolated component

Any namespace found?

(From the original Fortran program)
Find the list of the namespaces

of the component

Pick one namespace
from the list

step 1

step 2

step 3

step 4

FINISHED
NO

YES

compilation test?

Problem
Resolving

FAIL

SUCCESS

Add the namespace

to the extracted component

Any namespace found?

(From the original Fortran program)
Find the list of the namespaces

of the component

Pick one namespace
from the list

step 1

step 2

step 3

FINISHED
NO

YES

compilation test?

Problem
Resolving

FAIL

SUCCESS

Component Isolation

Input I =

Source Codes
of

Fortran Program

Input II =

Entry Points
of

Component

Component Extraction

Input I =

Source Codes
of

Fortran Program

Input II =

Entry Points
of

Component

Figure 6.22.: Extracting and isolating a component incrementally

120

6.5 Implementation of Component Isolation

c) Finally, any reference to a shared namespace in the isolated compo-
nent must be modified accordingly to refer to the re-named copy (in
the isolated component) rather than the original (in the carvedout pro-
gram). For example, if the subprogram namespace “subroutineFOO” is
renamed to “comp_subroutineFOO” when added to the isolated compo-
nent, any dependency on this subprogram (in the isolated component)
such as “CALL subroutineFOO” or “EXTERNAL :: subroutineFOO”
will be converted to “CALL comp_subroutineFOO” or “EXTERNAL
:: comp_subroutineFOO”. By the same token, if a module namespace
“moduleFOO” is renamed to “comp_moduleFOO” (when added to the
isolated component), any dependency on this namespace such as “USE
moduleFOO” (in the isolated component) will be converted to “USE
comp_ModuleFOO”.

2. As discussed in Section 6.3.3.2, a shared namespace may contain dead contents
either w.r.t. the component or w.r.t. the carvedout program. In consequence,
dead contents w.r.t. the component must be removed from the copy of the
shared-namespace added to the extracted or isolated component and the dead
contents w.r.t. to the carvedout program must be removed from the copy
of the namespace in carvedout program. Thus, the procedure of Component
Extraction and Isolation must be modified to include one step to handle the
dead contents. This is a topic of a broader discussion which will be provided
in the next section.

6.5.4. Implementation IV: removing dead contents

This section explores the impacts of dead contents on the practices of Component
Extraction and Isolation and proposes an additional step in order to detect such
contents and eliminate them from an extracted or isolated component. It was ex-
plained in Section 6.3 that dead contents appear either as dead program definitions
or dead program instructions, which will be discussed here.

6.5.4.1. dead program definitions

Dead program definitions in a Fortran program are dead program statements defin-
ing variables, derived data types, namespaces and etc. A namespace usually con-
tains a set of program definitions, but chances are only a subset of them is ac-
tually used either by a component or by the other parts of the containing For-
tran program. Dead program definitions may create wrong dependencies on other
namespaces. Figure 6.24 shows an example of such wrong dependencies. The en-
try point of the component “component_entrypoint” invokes two subroutines, namely
“cmp_sub_shared” and “cmp_sub_nonshared”. As a result, the component has two

121

Chapter 6 Component Isolation

'

&

$

%

Any namspace
found?

(From the original Fortran program)
Extract namespace dependencies

Pick one namespace (arbitrarily)

(from the list)

st
ep

 1
st

ep
 2

FINISHED
NO

compilation
test?

Problem
Resolving

FAIL

SUCCESS

Component Extraction

Input I =

Source Codes
of

Fortran Program

Input II =

Entry Points
of

Component

st
ep

 3

YES

Add the namespace of the node

to the isolated component

Any namspace
found?

st
ep

 1
st

ep
 2

st
ep

 4

FINISHED
NO

compilation
test?

Problem
Resolving

FAIL

SUCCESS

NO

YES

Remove the namespace
from carvedout program

Component Isolation

Input I =

Source Codes
of

Fortran Program

Input II =

Entry Points
of

Component

st
ep

 3

1. Make a copy of the shared namespace

 2. Rename it

 3. Add it to the isolated component
 4. Redirect all the dependencies

 (on this shared namespace from the original copy to

 the new copy in the isolated component)

YES

(From the original Fortran program)
Extract namespace dependencies

Pick one namespace (arbitrarily)

(from the list)

Shared
namespace?

Add the namespace of the node

to the extracted component

Figure 6.23.: Handling shared namespaces

122

6.5 Implementation of Component Isolation

correct dependencies on “shared_module” and “nonshared_module2”. However, there
are dead definitions in these two namespaces that lead to some wrong dependencies
of the extracted component or isolated component on the dead namespaces w.r.t.
the component. In particular, the subroutines “prg_sub_shared” and “dead_sub” in
“shared_module” are not invoked by the component and they are, therefore, dead
w.r.t. the component. So they create wrong dependencies on “nonshared_module1”
and “dead_module1”. By the same token, the subroutine “dead_sub” in the names-
pace “nonshared_module2” is not invoked by the component, but it creates a wrong
dependency on the namespace “dead_module2”.

6.5.4.2. dead program instructions

Dead program instructions w.r.t. to a component (of a containing Fortran program)
or w.r.t. the carvedout program can be found in shared subprogram namespaces. If
a subprogram is shared, it might potentially contain a path that is not taken when
the subprogram is invoked either by the component or by the carvedout program.
A subprogram that provides different services to a component and the carvedout
program is a good example. Note that if a subprogram namespace is dead w.r.t.
to a component, it means that the definition of the subprogram is not reached (in
the control flow graph of the program) from the entry points of the component.
However, if some program instructions of a subprogram namespace are dead w.r.t.
the entry points of the component, it implies that there is a path in the subprogram
that is never taken when the subprogram is invoked by the component.
Figure 6.25 shows a component in a Fortran program. It invokes a shared sub-
routine called “shared_sub” and sets the input parameter “pathtype” to 1 to run
the subroutine “component_sub”. This choice creates a dependency on the module
namespace “nonshared_module1”. The main program also invokes the subroutine
“shared_sub”. However, it sets “pathtype” to 2, leading to the invocation of the sub-
routine “mainprogram_sub”. This subroutine is a dead namespace w.r.t. the compo-
nent, but it creates a dependency on the module namespace “nonshared_module2”
during the process of Component Extraction and Isolation. Thus, a dead code
removal technique is needed to spot such dead paths and eliminate them.

6.5.4.3. Negative consequences of the wrong dependencies

The wrong dependencies due to dead contents may lead to the following problems:
• a longer processing time to extract or isolate a component from a Fortran

program.

123

Chapter 6 Component Isolation

Module nonshared_module2

END Module nonshared_module2

Implicit None

Contains

Subroutine cmp_sub_nonshared

End Subroutine cmp_sub_nonshared

Module shared_module

END Module shared_module

Implicit None
Contains

Program MainProgram

END Program MainProgram

USE shared_module

CALL prg_sub_shared

Implicit None

CALL component_entrypoint

Module dead_module2

END Module dead_module2

Implicit None
Contains

Subroutine dead_sub2

End Subroutine dead_sub2

Subroutine cmp_sub_shared

End Subroutine cmp_sub_shared

Subroutine dead_sub

End Subroutine dead_sub

!some calculations

CALL dead_sub1

USE dead_module1

Subroutine dead_sub

End Subroutine dead_sub

CALL dead_sub2

Module nonshared_module1

END Module nonshared_module1

Implicit None
Contains

Subroutine prg_sub_nonshared

End Subroutine prg_sub_nonshared

!some calculations

Module dead_module1

END Module dead_module1

Implicit None
Contains

Subroutine dead_sub1

End Subroutine dead_sub1
!some calculations

Subroutine prg_sub_shared

End Subroutine prg_sub_shared

USE nonshared_module1

CALL prg_sub_nonshared

USE dead_module2!some calculations

! A dead namespace with respect to

wro
ng d

ependency

wrong dependency

w
rong dependency

Corre
ct d

ependency

Correct dependency

! the component

! A dead namespace with respect to
! the component

! A dead namespace with respect to
! the component

! A dead namespace with respect to
! the component

! A dead namespace with respect to
! the component

Figure 6.24.: This is an example of dead program definitions that create wrong
dependencies during Component Extraction and Isolation.

124

6.5 Implementation of Component Isolation

Module nonshared_module1

END Module nonshared_module1

Implicit None

Contains

Subroutine component_sub

End Subroutine component_sub

!some calculations

Module shared_module

END Module shared_module

Contains

Subroutine shared_sub(pathtype)

End Subroutine shared_sub

Subroutine component_entrypoint

END Subroutine component_entrypoint

Program MainProgram

END Program MainProgram

USE Shared_Module

CALL shared_sub(2)

Implicit None

CALL component_entrypoint

USE Shared_Module

CALL shared_sub(1)

SELECT CASE pathtype

END SELECT shared_sub

CALL mainprogram_sub

CALL component_sub

Module nonshared_module2

END Module nonshared_module

Implicit None
Contains

Subroutine mainprogram_sub

End Subroutine mainprogram_sub

!some calculations

USE nonshared_module1

USE nonshared_module2

INTEGER :: pathtype

!A dead path execution

!main program's

! component's dedicated

w
ro

n
g
 d

e
p
e
n
d
e
n
cy

w
ro

n
g
 d

e
p
e
n
d
e
n
c
y

correct dependencies

!dedicated execution path

CASE (2)

! execution path

CASE (1)

!w.r.t the component.

Implicit None

Figure 6.25.: This is an example of dead program instructions.

125

Chapter 6 Component Isolation

• increasing the size of the extracted or isolated component, which might be
harmful for some applications. For example, to evaluate the impact of lower
precision arithmetic on scientific calculations, all the computations within a
component must be modified. The presence of dead contents creates a extra
burden on the practice.

• leading to wrong data dependencies in the data flow analysis between a com-
ponent and the carvedout program.

6.5.4.4. Handling dead contents

Now that the negative impacts of dead contents are clarified, a small adaptation
is necessary. Figure 6.26 shows how Step 3 and 4 in Component Extraction and
Isolation have been modified to handle the detection and removal of dead contents.

A method for removing dead content from an isolated component:
It was explained that dead contents in Fortran programs appear in two main forms

and, thus, different removal measures should be taken as described below:

• Removing dead program instructions:
In this dissertation, we assume that if a component has a dependency on a
subprogram namespace, all the paths of the subprogram can be taken by the
entry points of the component.

• Removing dead program definitions:
Before adding a namespace to an extracted or isolated component, a static
source code analysis is required to detect dead program definitions. Thus, a
backtracking method can be employed to remove one program definition per
time from a module namespace. This dissertation exploits the static code
analysis of the target compiler to find any reference to a removed definition. If
the compilation fails, the definition must be added back to the namespace. If
the compilation succeeds, the definition will be removed forever. This process
continues until all the definitions of the namespace are visited. An implemen-
tation of this technique has been proposed in Figure 6.27.

6.5.4.5. A performance optimization: Reducing the burden in dead contents
removal

Searching for dead content in every namespace leads to a longer processing time in
Component Extraction and Isolation, thus an optimal solution as proposed below is
opportune.

126

6.5 Implementation of Component Isolation

'

&

$

%

Any namspace
found?

(From the original Fortran program)
Extract namespace dependencies

Pick one namespace (arbitrarily)

(from the list)

st
ep

 1
st

ep
 2

FINISHED
NO

compilation
test?

Problem
Resolving

FAIL

SUCCESS

Shared
namespace?

NO

YES

Component Extraction

Input I =

Source Codes
of

Fortran Program

Input II =

Entry Points
of

Component

st
ep

 3

 1. Add the namespace to the extracted component

 2. Remove redundant source code from the namespace

YES

Add the namespace of the node

to the isolated component

Any namspace
found?

st
ep

 1
st

ep
 2

st
ep

 4

FINISHED
NO

compilation
test?

Problem
Resolving

FAIL

SUCCESS

NO

YES

Remove redundant source code

(from the shared namspaces in the carvedout program)

Remove the namespace
from carvedout program

Component Isolation

Input I =

Source Codes
of

Fortran Program

Input II =

Entry Points
of

Component

st
ep

 3

1. Make a copy of the shared namespace

 2. Rename it

 3. Add it to the isolated component
 4. Redirect all the dependencies

 (on this shared namespace from the original copy to

 the new copy in the isolated component)
 5. Remove redundant source code from the copy

YES

(From the original Fortran program)
Extract namespace dependencies

Pick one namespace (arbitrarily)

(from the list)

Shared
namespace?

Add the namespace of the node

to the extracted component

Figure 6.26.: Handling dead contents removal in the procedure of Component
Isolation

127

Chapter 6 Component Isolation

'

&

$

%

compilation
test?

FAIL

SUCCESS

 Removal

of

dead program definitions

Any program
definition
found?

FINISHED

YES

NO

(In the isolated component)
Pick the next program definition

from the namespace

Remove the program definition

from the namespace

The name of a namespace

added to

the isolated component

Add the program definition back

to the namespace

Start all over again

from

the first program definition

in the namespace

Figure 6.27.: Removing dead program definitions from a namespace

128

6.5 Implementation of Component Isolation

Ignoring dead contents w.r.t. a Fortran program:
Component Extraction and Isolation ignores dead contents w.r.t. a Fortran pro-

gram to expedite the process. This is because the existence of such contents in a
program is considered a wrong practice in software development, and, thus, a For-
tran program is expected to be free of dead contents in advance. In addition, this
topic has already been addressed in the literature, and, thus, is out of the scope of
this dissertation. Above all, such dead contents do not have any negative impact on
the semantic of an extracted or isolated component.

Ignoring non-shared namespaces:
So far, we assumed that the procedure of dead contents removal must be applied

to every namespace that is added to an extracted or isolated component. However,
the non-shared namespaces should be ignored in this process and only shared names-
paces must be examined for dead contents. The reason is the dead contents w.r.t.
the component or the carvedout program in a non-shared namespace are considered
dead w.r.t. the program as well, and, thus, they should be ignored for the same rea-
son explained before. As a result, non-shared namespaces should be exempted from
the procedure of dead contents removal (in Step 3 and Step 4) during the process
of Component Extraction and Isolation.

Ignoring independent namespaces:
If a namespace does not have any dependency on the other namespaces of a

Fortran program, it will not lead to further processing even though it contains dead
contents. So independent namespaces should be exempted from the procedure of
dead contents removal, purely in pursuit of expediting the process of Component
Extraction and Isolation.

6.5.4.6. Handling dependency orders

In general, there is a dependency order, and, thus, a priority in the processing of the
namespaces of a Fortran program during the procedures of Component Extraction
and Isolation. Processing a namespace in a wrong order can potentially lead to the
following problems:

• False addition of information:
Assuming that a component has a correct dependency on the namespace A,
but a wrong dependency on B (through some dead contents in A w.r.t.the
component). If B is processed first, it leads to a false addition of informa-
tion. Thus, it is advisable to process A before B to respect the dependency
order. Since the wrong dependency is removed during the process of dead
contents removal, processing the namespaces B will not be needed any longer.
Hence, a correct dependency order can reduce the processing time of Compo-

129

Chapter 6 Component Isolation

nent Extraction and Isolation as well as the size of the extracted or isolated
component.

• False omission of information:
This problem happens when useful information from a namespace is removed
due to a wrong dependency order. For example, consider a component has
correct dependencies on the namespaces A, B and C. Assuming that A and B
have a dependency on C. The processing order A, B and C or B, A and C are
correct and no useful information in C is omitted. However, the order A, C,
and B can lead to an information loss and an extra processing time. Consider
C contains variables c1 and c2 while A uses c1 and B uses c2. If A is processed
first, and, then, C before B, the procedure of dead contents removal omits the
variable c2 from the namespace C as A uses only c1, and, there is not any
other namespaces (such as B) to request for c2. However, when B is finally
processed, c2 must be added back to C. On this account, a wrong order of
dependency handling can potentially lead to a temporary loss of information
and imposes an extra processing on the procedure of Component Extraction
and Isolation.

6.5.4.7. Considering dependency orders

As discussed, a wrong dependency order may increase the processing time of Com-
ponent Extraction and Isolation, thus these procedures must be improved in this
regard. As shown in Figure 6.28, Step 2 is adapted to take care of dependency
orders between the namespaces of a component by searching for a top namespace in
each iteration. Note that there must be at least one top namespace in each itera-
tion, but chances are multiple top namespaces exist simultaneously in one iteration.
However, it should not matter which top namespace is processed first.

130

6.5 Implementation of Component Isolation

'

&

$

%

Any namspace
found?

(From the original Fortran program)
Extract namespace dependencies

Pick top namespace

(from the list)

st
ep

 1
st

ep
 2

FINISHED
NO

compilation
test?

Problem
Resolving

FAIL

SUCCESS

Shared
namespace?

NO

YES

Component Extraction

Input I =

Source Codes
of

Fortran Program

Input II =

Entry Points
of

Component

st
ep

 3

 1. Add the namespace to the extracted component

 2. Remove redundant source code from the namespace

YES

Add the namespace of the node

to the isolated component

Any namspace
found?

st
ep

 1
st

ep
 2

st
ep

 4

FINISHED
NO

compilation
test?

Problem
Resolving

FAIL

SUCCESS

NO

YES

Remove redundant source code

(from the shared namspaces in the carvedout program)

Remove the namespace
from carvedout program

Component Isolation

Input I =

Source Codes
of

Fortran Program

Input II =

Entry Points
of

Component

st
ep

 3

1. Make a copy of the shared namespace

 2. Rename it

 3. Add it to the isolated component
 4. Redirect all the dependencies

 (on this shared namespace from the original copy to

 the new copy in the isolated component)
 5. Remove redundant source code from the copy

YES

(From the original Fortran program)
Extract namespace dependencies

Pick top namespace

(from the list)

Shared
namespace?

Add the namespace of the node

to the extracted component

Figure 6.28.: Modifying the procedures of Component Extraction and Isolation to
account for the dependency orders between the namespaces of a component. In
the new scheme, a top namespace is always picked in Step 2 to be be processed
first. 131

Chapter 6 Component Isolation

6.5.5. Implementation V: NDG graph
In the previous section, we discussed the approach of Component Extraction and
Isolation that proposes to leverage the dependencies between the namespaces of a
Fortran program to extract a component and isolate it from the carvedout program.
This section introduces a graph processing technique for storing and processing the
dependency information of the namespaces in a Fortran program. We call this graph
a Namespace Dependency Graph (NDG). In particular, this technique affects Step
1, 2 and 3 of Component Extraction and Isolation.

6.5.5.1. Using an NDG graph in Step 1

Step 1 of Component Extraction and Isolation collects all the dependencies between
namespaces of a Fortran program. In this section, we will show how an NDG can
be exploited to implement this step.

An NDG graph for storing namespace dependencies
A namespace dependence graph (NDG) is a directed acyclic graph whose vertices are
the namespaces of a Fortran program and its edges show the dependency relations
between the namespaces of the program. A simple NDG graph with two vertices A
and B and an edge incident on A and B represents two namespaces A and B in a
Fortran program and the fact that the namespace A depends on some definitions in
the namespace B. This dependency implies that the source code in the namespace A
cannot compile successfully if the definitions in the namespace B are not available.
A vertex in an NDG graph has one of the following two types:

• A subprogram namespace in the global namespace
• A module namespace

Creating the complete NDG of a Fortran program
An NDG graph can be used to store and present the complete dependency relations
between the namespace of a Fortran program. An NDG is built by creating an
empty directed graph and adding one source node for the main program unit and
one source node for each entry point of the component. In the following steps,
the dependencies of the main program unit and the entry points of the component
on the other namespaces of the original program are extracted (as explained in
Section 6.5.1.1) and one node is added to the graph for each namespace.

6.5.5.2. Using the NDG graph in Step 2

Step 2 in Component Extraction and Isolation is responsible for processing the col-
lected information concerning the dependencies between the namespaces of a Fortran

132

6.5 Implementation of Component Isolation

'

&

$

%

Add the namespace of the node

to the extracted component

Any node
found?

Create NDG graph

of the original Fortran program

Pick the next top node
from the NDG graph

step 1

step 2
FINISHED

NO

compilation
test?

Problem
Resolving

FAIL

SUCCESS

Shared node?

NO

YES

Component Extraction
(with NDG)

Input I =

Source Codes
of

Fortran Program

Input II =

Entry Points

of

Component

step 3

YES
Remove redundant source code

from the namespace

Figure 6.29.: Leveraging an NDG graph in Component Extraction.

133

Chapter 6 Component Isolation

'

&

$

%

Add the namespace of the node

to the isolated component

Any node found?

Create NDG graph

of the original Fortran program

Pick the next top node

from the NDG graph

step 1

step 2

step 4

FINISHED
NO

compilation
test?

Problem
Resolving

FAIL

SUCCESS

Shared node?

NO

YES

Remove redundant source code

(from the shared namspaces in the carvedout program)

Remove the namespace
from carvedout program

Component Isolation
(with NDG)

Input I =

Source Codes
of

Fortran Program

Input II =

Entry Points
of

Component

step 3

 1. Make a copy of the shared namespace

 2. Rename it

 3. Add it to the isolated component
 4. Redirect all the dependencies

 (in the isolated component on this shared

 namespace from the original copy to the new copy)
 5. Remove redundant source code from the copy

YES

Figure 6.30.: Leveraging an NDG graph in Component Isolation

134

6.6 Examples of Component Isolation

program and detecting the namespaces on which the entry points of a component
depend. As explained before, an NDG graph can be used to store these dependency
relations and extracting the required information. In addition, we can take advan-
tage of such a graph to identify a top namespace in each iteration. Such a namespace
is a node (denoted as the top node) in the graph that can be reached from at least
one entry point of the component, and, no path from the entry points to the top
node reaches an unvisited node. An unvisited node is the one that its corresponding
namespace has not been added to the extracted or isolated component yet. In each
iteration, at least one node becomes a top node and the topological sort algorithm
(Wikipedia, last access: 4 May 2022) would serve the purpose in order to find the
top namespace. Figure 6.29 and Figure 6.30 explicitly reflect the usage of the NDG
graph in Step 2 of Component Extraction and Isolation.

6.5.5.3. Using the NDG graph in Step 3

In Step 3, we need to find shared namespaces. The NDG graph can be used to
detect shared namespaces. A shared namespace resides in a node that is reached
from at least one entry point of the component and the entry point of the carvedout
program. Note that no path between the main program unit and a shared node can
visit the entry points of a component since all the call-sites to the entry points are
removed from the program before the dependency analysis.

6.6. Examples of Component Isolation

This section provides four Fortran programs that each contains one component.
These examples should be able to articulate the concept of Component Extraction
and Isolation. In all the examples, we explicitly discuss the procedure of Component
Isolation, but we show only the results for the Component Extraction as well for
comparison. In each example, the source code of the original program is given and
the required information on the entry point of the components is provided in a table
below the source code of each Fortran program. The components differ in the depth,
type and how they share contents with the program. In each example, an NDG
graph is built and the extracted and isolated components as well as the carvedout
program are generated. We use the color codes (defined in section Section 6.1) to
differentiate the isolated (or extracted) component (always shown in pink) from a
carvedout program (always shown in yellow). In all examples, the extracted and
isolated components are initially empty spaces. In contrast, the complete source
code of the original program is assigned to the carvedout program in the beginning
though the extra parts are removed incrementally. In addition, we always ignore the
call-sites to the entry points of the component while extracting the dependencies of
the carvedout program. Furthermore, when all the nodes of the NDG are visited

135

Chapter 6 Component Isolation

and the processing of the last namespace is complete, the existing call-sites to the
entry points of the component are removed from the carvedout program.

6.6.1. Example 1

Figure 6.31 shows a Fortran program and a component. We apply Component
Isolation to this program to isolate the component from the program. The input
to the procedure is the source code of the Fortran program and the name of the
entry point of the component, which is the subprogram namespace “subroutine1”.
The output of this process will be an isolated component and a carvedout program.

Step 1: Creating NDG graph In this step, a dependency analysis is performed to
extract the dependency information of the component and the carvedout program
and to store the information in an NDG graph. The analysis is performed on
the source code of the original Fortran program that is available in the carvedout
program.

We start building the NDG graph by assigning one vertex to the namespace of the
entry point of the component (i.e. subroutine1). Since this namespace does not have
any further dependency, the dependency analysis of the component is over. Hence,
we switch to extracting the dependency of the carvedout program by assigning one
vertex (i.e. MainProgram) to its entry point (i.e. the main program unit). The
dependency of the main program unit on the entry point of the component is,
however, ignored, and, thus, no edge is placed between the two vertices. Since there
is no further dependencies in the main program unit, the analysis is over and the
NDG graph is complete as shown Figure 6.32.

It is noteworthy that the internal program statements of “MainProgram” and “subrou-
tine1” do not appear in the NDG graph as they are irrelevant information. The tables
in Figure 6.32 show that the extracted dependency information in more detail. As
it is shown, the component contains a non-shared module namespace (subroutine1)
inside the global namespace of one non-shared file (originalprogram_file1.f90). By the
same token, the carvedout program has only one subprogram namespace (MainPro-
gram) in the global namespace of a non-shared file (originalmainprogram_file1.f90).

6.6.1.1. Iteration 1

In the first iteration, the following steps are performed:

Step 2: Picking the next top node In this step, the graph is traversed, starting
from the vertex of the entry point of the component, to pick the top node (which is
the vertex “subroutine1”).

136

6.6 Examples of Component Isolation

Step 3: Adding the namespace to the isolated component In this step, the
definition of the namespace associated to the top vertex (i.e. subroutine1) is added
to the isolated component. The definition is, however, placed into a new file “isolat-
edcomponent_file.f90”.

Step 4: Remove the namespace from the carvedout program In this step, the
definition of “subroutine1” is removed from the carvedout program completely since
it is not a shared namespace (as the graph does not contain any path from the vertex
“MainProgram” to “module1”.

6.6.1.2. Iteration 2

In the second iteration, only Step 2 takes place.

Step 2: Picking the next top node The practice stops in the second iteration
since the graph does not show any path from the vertex “subroutine1”.

6.6.1.3. Results

Once the procedure stops, the isolated component and the carvedout program are
available. As shown in Figure 6.34, the carvedout program (shown in yellow) con-
tains “MainProgram”, whose definition has been moved into a new file called “carved-
outprogram_file.f90”. In addition, the dependency of the main program unit on the
entry point of the component has been removed from the file to prevent the compila-
tion failure of the carvedout program. Hence, the call-site (call subroutine1) and the
dependency link (External:: subroutine1) are struck through (temporarily) in “carved-
outprogram_file.f90”. Thus, the carvedout program is now expected to compile suc-
cessfully independent of the isolated component. Note that these statements can be
activated again once the isolated component is re-integrated back to the carvedout
program to make the new program capable of generating bit-wise identical results
to the output of the original program.

Additionally, the isolated component (shown in pink) contains only “ subroutine1”
(thus the component has a depth of 1), whose definition has been placed into a new
file “isolatedcomponent_file.f90” to increase the visibility of the component. Thus,
the isolated component is now expected to compile successfully independent of the
carvedout program.

137

Chapter 6 Component Isolation

Program MainProgram

External :: subroutine1

Implicit None

Call subroutine1

End Program MainProgram

originalprogram_mainfile.f90

Subroutine subroutine1
! some calculations

End Subroutine subroutine1

originalprogram_file1.f90

Entry Point of the Component

Subprogram Namespace

subroutine1 The global namespace

Figure 6.31.: (Example 1: Original Program) A simple Fortran program with one
component and two namespaces in the global namespace. The information about
the entry point of the component is shown in the table.

MainProgram subroutine1

Extracted Information of Component

File Module Namespace Subprogram Namespace

non-shared shared non-shared shared non-shared shared

originalprogram_file1.f90 — — — subroutine1 —

Extracted Information of the carvedout program

File Module Namespace Subprogram Namespace

non-shared shared non-shared shared non-shared shared

originalprogram_mainfile.f90 — — — MainProgram —

Figure 6.32.: (Example 1: dependency information) Applying Component Isola-
tion to the Fortran program in Figure 6.31 and extracting the information about
the namespaces of the program and component.

138

originalprogram_mainfile.f90
originalprogram_file1.f90

6.6 Examples of Component Isolation

Subroutine subroutine1

PRINT *,"HELLO WORLD"

End Subroutine subroutine1

extractedcomponent_file.f90

Figure 6.33.: (Example 1: extracted component) The extracted component gen-
erated from the Fortran program in Figure 6.31 by the procedure of Component
Extraction .

Program MainProgram

External :: subroutine1

Implicit None

Call subroutine1

End Program MainProgram

carvedoutprogram_file.f90

Subroutine subroutine1

PRINT *,"HELLO WORLD"

End Subroutine subroutine1

isolatedcomponent_file.f90

Figure 6.34.: (Example 1: isolated component and carvedout program) The iso-
lated component (in pink) and carvedout program (in yellow) generated from the
Fortran program in Figure 6.31 by Component Isolation.

139

extractedcomponent_file.f90
carvedoutprogram_file.f90
isolatedcomponent_file.f90

Chapter 6 Component Isolation

6.6.2. Example 2

Figure 6.35 shows a Fortran program and a component whose entry point is a sub-
program named “subroutine1”, but contained in a module namespace. We apply
Component Isolation to this program. Like the previous example, the isolated com-
ponent is initially an empty space, but the complete source code of the original
program is assigned to the carvedout program.

Step 1: Creating NDG graph
We start building the NDG graph by assigning one vertex to the namespace of

the entry point of the component. Since the definition of “subroutine1” is inside
a module namespace rather than the global namespace, the vertex is assigned to
“module1”. As “module1” does not have further dependencies, thus the analysis of
the component is complete. Hence, we switch to extracting the dependency of the
carvedout program by assigning one vertex (i.e. MainProgram) to its entry point.
The dependency of the main program unit on the entry point of the component is,
however, ignored, and, thus, no edge is placed between the vertices “MainProgram”
and “module1”. Since there is no further dependencies in the main program unit,
the analysis is over and the NDG graph is complete as shown Figure 6.35.

6.6.2.1. Iteration 1

In the first iteration, the following steps are performed:

Step 2: Picking the next top node In this step, the graph is traversed, starting
from the vertex of the entry point of the component, to pick the top vertex (which
is the vertex “module1”).

Step 3: Add the namespace to the isolated component In this step, the defi-
nition of the namespace associated to the top vertex (i.e. module1) is added to the
isolated component. The definition is, however, placed into a new file “isolatedcom-
ponent_file.f90”.

Step 4: Remove the namespace from the carvedout program In this step, the
definition of “module1” is removed from the carvedout program completely since it
is not a shared namespace (as the graph does not contain any path from the vertex
“MainProgram” to “module1”).

6.6.2.2. Iteration 2

In the second iteration, the practice stops in Step 2 as the graph does not contain
any path from the vertex “module2”.

140

6.6 Examples of Component Isolation

Program MainProgram

USE module1, ONLY : subroutine1

Implicit None

Call subroutine1

End Program MainProgram

originalprogram_mainfile.f90

Module module1

IMPLICIT NONE

Contains

Subroutine subroutine1
! some calculations

End Subroutine subroutine1

End Module module1

originalprogram_file1.f90

Entry Point of the Component

Subprogram Namespace

subroutine1 module1

Figure 6.35.: (Example 2: Original Program) A simple Fortran program with one
component and two namespaces in the global namespace. The information about
the entry point of the component is shown in the table.

6.6.2.3. Results

Once the procedure stops, the isolated component and the carvedout program are
available. As shown in Figure 6.38, the carvedout program (shown in yellow) con-
tains “MainProgram”, whose definition has been moved into a new file called “carved-
outprogram_file.f90”. In addition, the dependency of the carvedout program on the
entry point of the component has been removed from the file to prevent the compila-
tion failure of the carvedout program. Hence, the call-site (call subroutine1) and the
dependency link (USE module1, ONLY: subroutine1) are struck through (temporar-
ily) in “carvedoutprogram_file.f90”. Thus, the carvedout program is now expected
to compile successfully independent of the isolated component. Note that these
statements can be activated again once the isolated component is re-integrated back
to the carvedout program to make the new program capable of generating bit-wise
identical results to the output of the original program.
Additionally, the isolated component (shown in pink) contains only “module1” (thus
the component has a depth of 1), whose definition has been placed into a new
file “isolatedcomponent_file.f90” to increase the visibility of the component. Thus,
the isolated component is now expected to compile successfully independent of the
carvedout program.

141

originalprogram_mainfile.f90
originalprogram_file1.f90

Chapter 6 Component Isolation

MainProgram module1

Extracted Information of Component

File Module Namespace Subprogram Namespace

non-shared shared non-shared shared non-shared shared

X — X — — —

Extracted Information of the carvedout program

File Module Namespace Subprogram Namespace

non-shared shared non-shared shared non-shared shared

X — — — X —

Figure 6.36.: (Example 2: dependency information) Applying Component Isola-
tion to the Fortran program in Figure 6.35 and extracting the information about
the namespaces of the program and component.

6.6.3. Example 3

Figure 6.39 shows a Fortran program and a component whose entry point is a sub-
program named “subroutine1”, but contained in a module namespace. In contrast to
Example 1 and 2, the component has a depth 2. We apply Component Isolation to
this program and explain how it differs from the previous examples. Like the previ-
ous examples, the isolated component is initially an empty space, but the complete
source code of the original program is assigned to the carvedout program.

Step 1: Creating NDG graph The NDG graph of the Fortran program in this
example will be generated as in the Example 2. However, “module1” also has a
dependency on “module2” as there is a call to “subroutine2” from “subroutine1”. So
another vertex (module2) is added to the graph to show the dependency. Since
“module2” does not have further dependencies, the analysis of the component is
over and the NDG graph is complete as shown in Figure 6.39. It is noteworthy that
“subroutine2” does not appear in the graph as it is not in the global namespace,
but inside another namespace (module2). As shown by the tables in this figure,
the component contains two non-shared module namespaces in two non-shared files
(originalprogram_file1.f90 and “originalprogram_file2.f90”). The carvedout program
is the same as Example 2.

142

6.6 Examples of Component Isolation

Module module1

IMPLICIT None

Contains

Subroutine subroutine1

! some calculations

End Subroutine subroutine1

End Module module1

extractedcomponent_file.f90

Figure 6.37.: (Example 2: extracted component) The extracted component gen-
erated from the Fortran program in Figure 6.35 by the procedure of Component
Extraction.

Program MainProgram

USE module1, ONLY : subroutine1

Implicit None

Call subroutine1

End Program MainProgram

carvedoutprogram_file.f90

Module module1

IMPLICIT None

Contains

Subroutine subroutine1

! some calculations

End Subroutine subroutine1

End Module module1

isolatedcomponent_file.f90

Figure 6.38.: (Example 2: isolated component and carvedout program) The iso-
lated component (in pink) and carvedout program (in yellow) generated from the
Fortran program in Figure 6.35 by Component Isolation.

143

extractedcomponent_file.f90
carvedoutprogram_file.f90
isolatedcomponent_file.f90

Chapter 6 Component Isolation

6.6.3.1. Iteration 1

In the first iteration, similar to Example 2, the namespace “module1” is added to
the isolated component.

6.6.3.2. Iteration 2

In the second iteration, Step 2, 3 and 4 take place.

Step 2: Picking the next top node In contrast to previous examples, the pro-
cedure does not stop in iteration 2 and the vertex “module2” is picked as the top
vertex.

Step 3: Add the namespace to the isolated component In this step, the defi-
nition of the namespace associated to the top vertex (i.e. module2) is added to the
isolated component. The definition is, however, placed into a new file “isolatedcom-
ponent_file2.f90”.

Step 4: Remove the namespace from the carvedout program In addition, the
definition of “module2” is removed from the carvedout program completely since it
is not a shared namespace (as the graph does not contain any path from the vertex
“MainProgram” to “module2”.

6.6.3.3. Iteration 3

In the third iteration, the practice stops in Step 2 as the graph does not contain any
path from the vertex “module2”.

6.6.3.4. Results

Once the procedure stops, the isolated component and the carvedout program are
available. As shown in Figure 6.42, the carvedout program contains “MainProgram”,
whose definition has been moved into a new file called “carvedoutprogram_file.f90”.
In addition, the dependency of the carvedout program on the entry point of the
component has been removed from the file to prevent the compilation failure of the
carvedout program. Hence, the call-site (call subroutine1) and the dependency link
(USE module1, ONLY: subroutine1) are struck through (temporarily) in “carvedoutpro-
gram_file.f90”. Thus, the carvedout program is now expected to compile successfully
independent of the isolated component. Note that these statements can be activated
again once the isolated component is re-integrated back to the carvedout program to

144

6.6 Examples of Component Isolation

Program MainProgram
USE module1, ONLY : subroutine1

Implicit None

Call subroutine1

End Program MainProgram

originalprogram_mainfile.f90

Module module1
USE module2, ONLY : subroutine2
IMPLICIT None

Contains

Subroutine subroutine1

Call subroutine2

End Subroutine subroutine1

End Module module1

originalprogram_file1.f90

Module module2
IMPLICIT None

Contains

Subroutine subroutine2

PRINT *,"HELLO WORLD"

End Subroutine subroutine2

End Module module2

originalprogram_file2.f90

Entry Point of the Component

Subprogram Namespace

subroutine1 module1

Figure 6.39.: (Example 3: Original Program) A Fortran program with one com-
ponent and three namespaces in the global namespace. The information about
the entry point of the component is shown in the table.

make the new program capable of generating bit-wise identical results to the output
of the original program.

Additionally, the isolated component contains only “module1” and “module2” (thus
the component has a depth of 2), whose definitions have been placed into a new
file “isolatedcomponent_file1.f90” and “isolatedcomponent_file2.f90” in a new folder
to increase the visibility of the component. Thus, the isolated component is now
expected to compile successfully independent of the carvedout program.

6.6.4. Example 4

In this example, the Fortran program of Example 3 has been modified so that
there is a shared namespace between the component and carvedout program, as
shown in Figure 6.43. We apply Component Isolation to this program and explain
how it differs from the previous example. Like the previous examples, the isolated
component is initially an empty space, but the complete source code of the original
program is assigned to the carvedout program.

145

originalprogram_mainfile.f90
originalprogram_file1.f90
originalprogram_file2.f90

Chapter 6 Component Isolation

MainProgram module1

module2

Extracted Information of Component

File Module Namespace Subprogram Namespace

non-shared shared non-shared shared non-shared shared

X — X — — —

Extracted Information of the carvedout program

File Module Namespace Subprogram Namespace

non-shared shared non-shared shared non-shared shared

X — — — X —

Figure 6.40.: (Example 3: dependency information) Applying Component Isola-
tion to the Fortran program in Figure 6.39 and extracting the information about
the namespaces of the program and component.

146

6.6 Examples of Component Isolation

Module module1

USE module2, ONLY : subroutine2
IMPLICIT None

Contains

Subroutine subroutine1

Call subroutine2

End Subroutine subroutine1

End Module module1

extractedcomponent_file1.f90

Module module2

IMPLICIT None

Contains

Subroutine subroutine2

PRINT *,"HELLO WORLD"

End Subroutine subroutine2

End Module module2

extractedcomponent_file2.f90

Figure 6.41.: (Example 3: extracted component) The extracted component generated from
the Fortran program in Figure 6.39 by the procedure of Component Extraction.

Program MainProgram

USE module1, ONLY : subroutine1

Implicit None

Call subroutine1

End Program MainProgram

carvedoutprogram_file.f90

Module module1

USE module2, ONLY : subroutine2
IMPLICIT None

Contains

Subroutine subroutine1

Call subroutine2

End Subroutine subroutine1

End Module module1

isolatedcomponent_file1.f90

Module module2

IMPLICIT None

Contains

Subroutine subroutine2

PRINT *,"HELLO WORLD"

End Subroutine subroutine2

End Module module2

isolatedcomponent_file2.f90

Figure 6.42.: (Example 3: isolated component and carvedout program) The isolated com-
ponent (in pink) and carvedout program (in yellow) generated from the Fortran program in
Figure 6.39 by Component Isolation.

147

extractedcomponent_file1.f90
extractedcomponent_file2.f90
carvedoutprogram_file.f90
isolatedcomponent_file1.f90
isolatedcomponent_file2.f90

Chapter 6 Component Isolation

Step 1: Creating NDG graph We start building the NDG graph by assigning one
vertex to the namespace of the entry point of the component. Since the definition
of “subroutine1” is inside a module namespace rather than the global namespace,
the vertex is assigned to “module1”. However, this module namespace also has a
dependency on “module2” due to a call to “subroutine2” (from “subroutine1”). Thus,
another vertex (i.e. module2) is added to the graph. As “module2” has no further
dependencies, the analysis of the component is complete. Hence, we switch to
extracting the dependency of the carvedout program by assigning one vertex (i.e.
MainProgram) to its entry point. The dependency of the main program unit on the
entry point of the component is, however, ignored, and, thus, no edge is placed
between the vertices “MainProgram” and (module1). Due to the dependency link
“USE module2, ONLY: subroutine2” in the main program unit, an edge is established
from the vertex “MainProgram” to other vertex “module2”. Since there is no further
dependencies in the main program unit, the analysis is over and the NDG graph is
complete as shown Figure 6.44.

6.6.4.1. Iteration 1

In the first iteration, similar to Example 2, the namespace “module1” is added to
the isolated component.

6.6.4.2. Iteration 2

The second iteration is also similar to Example 3, but with a difference that, the
definition of “module2” is not removed from the carvedout program since it is a shared
namespace between the component and the carvedout program. This is because
the vertex “module2” is reached from both vertices “MainProgram” and “module1”.
However, a copy of the definition of “module2” is added to the isolated component
and it is renamed to “module2_copy”. In addition, any reference to “module2” (in
the isolated component) should be redirected to “module2_copy”.

6.6.4.3. Iteration 3

Similar to Example 3, the practice stops in the third iteration.

6.6.4.4. Results

Once the procedure stops, the isolated component and the carvedout program are
available. As shown in Figure 6.46, the carvedout program contains “MainProgram”
and “module2”, whose definitions have been moved into two new files called “carved-
outprogram_file1.f90” and “carvedoutprogram_file2.f90”, respectively. In addition, the
dependency of the main program unit on the entry point of the component has been

148

6.6 Examples of Component Isolation

Program MainProgram
USE module1, ONLY : subroutine1
USE module2, ONLY : subroutine2

Implicit None

Call subroutine1

Call subroutine2

End Program MainProgram

originalprogram_mainfile.f90

Module module1
USE module2, ONLY : subroutine2
IMPLICIT None

Contains

Subroutine subroutine1

Call subroutine2

End Subroutine subroutine1

End Module module1

originalprogram_file1.f90

Module module2
IMPLICIT None

Contains

Subroutine subroutine2

PRINT *,"HELLO WORLD"

End Subroutine subroutine2

End Module module2

originalprogram_file2.f90

Entry Point of the Component

Subprogram Namespace

subroutine1 module1

Figure 6.43.: (Example 4: Original Program) A Fortran program with one component and three namespaces

in the global namespace. The information about the entry point of the component is shown in the table.

removed from the file to prevent the compilation failure of the carvedout program.
Hence, the call-site (call subroutine1) and the dependency link (USE module1, ONLY:
subroutine1) are struck through (temporarily) in “carvedoutprogram_file1.f90”. Thus,
the carvedout program is now expected to compile successfully independent of the
isolated component. Note that these statements can be activated again once the
isolated component is re-integrated back to the carvedout program to make the new
program capable of generating bit-wise identical results to the output of the original
program.
Additionally, the isolated component contains only “module1” and “module2_copy”
(thus the component has a depth of 2), whose definitions have been placed into new
files “isolatedcomponent_file1.f90” and “isolatedcomponent_file2.f90” in a new folder
to increase the visibility of the component. This should prevent any conflict with
the original copy left in “carvedoutprogram_file2.f90” once the isolated component is
re-integrated back to the carvedout program. Accordingly, the statement “USE mod-
ule2, ONLY: subroutine2” has been converted to “USE module2_copy, ONLY: subrou-
tine2” in “isolatedcomponent_file2.f90”. Thus, the isolated component is now expected
to compile successfully independent of the carvedout program.

149

originalprogram_mainfile.f90
originalprogram_file1.f90
originalprogram_file2.f90

Chapter 6 Component Isolation

MainProgram module1

module2

Extracted Information of Component

File Module Namespace Subprogram Namespace

non-shared shared non-shared shared non-shared shared

X X X X — —

Extracted Information of the carvedout program

File Module Namespace Subprogram Namespace

non-shared shared non-shared shared non-shared shared

X X — X X —

Figure 6.44.: (Example 4: dependency information) Applying Component Isola-
tion to the Fortran program in Figure 6.43 and extracting the information about
the namespaces of the program and component.

150

6.6 Examples of Component Isolation

Module module1

USE module2, ONLY : subroutine2
IMPLICIT None

Contains

Subroutine subroutine1

Call subroutine2

End Subroutine subroutine1

End Module module1

extractedcomponent_file1.f90

Module module2

IMPLICIT None

Contains

Subroutine subroutine2

PRINT *,"HELLO WORLD"

End Subroutine subroutine2

End Module module2

extractedcomponent_file2.f90

Figure 6.45.: (Example 4: extracted component) The extracted component gen-
erated from the Fortran program in Figure 6.43 by the procedure of Component
Extraction.

Program MainProgram

USE module1, ONLY : subroutine1
USE module2, ONLY : subroutine2

Implicit None

Call subroutine1

Call subroutine2

End Program MainProgram

carvedoutprogram_file1.f90

Module module2

IMPLICIT None

Contains

Subroutine subroutine2

PRINT *,"HELLO WORLD"

End Subroutine subroutine2

End Module module2

carvedoutprogram_file2.f90

Module module1

USE module2_copy, ONLY : subroutine2
IMPLICIT None

Contains

Subroutine subroutine1

Call subroutine2

End Subroutine subroutine1

End Module module1

isolatedcomponent_file1.f90

Module module2_copy

IMPLICIT None

Contains

Subroutine subroutine2

PRINT *,"HELLO WORLD"

End Subroutine subroutine2

End Module module2_copy

isolatedcomponent_file2.
f90

Figure 6.46.: (Example 4: isolated component and carvedout program) The iso-
lated component (in pink) and carvedout program (in yellow) generated from the
Fortran program in Figure 6.43 by Component Isolation.

151

extractedcomponent_file1.f90
extractedcomponent_file2.f90
carvedoutprogram_file1.f90
carvedoutprogram_file2.f90
isolatedcomponent_file1.f90
isolatedcomponent_file2.f90
isolatedcomponent_file2.f90

Chapter 6 Component Isolation

6.7. Extracting implicit coupling fields

In a Fortran program containing a component, there is usually a data flow between
the component and the other parts of the program. Such a data flow can be imple-
mented explicitly or implicitly. An explicit data flow (in a shared address space) can
be implemented through standard parameters of the entry points of the component.
However, an implicit data flow is implemented through the global variables that are
shared between the component and the other parts of the program. These shared
variables are denoted by implicit coupling fields, which end up in the shared modules
namespaces. Extracting the implicit coupling fields is the last task to achieve the
general goal of this dissertation.
Although shared modules contain the implicit coupling fields, they also contain
variables of other types. This hinders an easy extraction of the shared variables.
Every shared module namespace in the program may contain the following types of
variables:

• shared variables (between the component and the other parts of the program)
• non-shared variables (dedicated either to the component or to the other parts

of the program, but not both).
• dead variables (neither used by the component nor by the program)

If non-shared and dead variables are removed from shared module namespaces, the
remaining variables are shared between the component and the other parts of the
program. We already know that the isolated component and the carvedout program
contain a copy of every shared module namespace. Although the copies of each
shared namespace end up differently in each slice, both contain the shared variables
of the namespace. In addition, the dead variables are already removed from these
copies (during the dead contents removal in Step 3 and Step 4 of Component Isola-
tion). Hence, the set of the shared variables is just the intersection of the available
variables defined in both copies. On this account, the following steps are required
to detect the shared variables:

• Step 1: collecting the set of variables defined in a shared module namespace
in the the carvedout program.

• Step 2: collecting the set of variables defined in the the peer copy of the shared
module namespace in the isolated component.

• Step 3: the intersection of the two sets (from Step 1 and 2) gives the coupling
fields defined in the target module namespace.

• Step 4: repeating step 1 to 3 for every shared module namespace

6.7.1. Step 1

When a shared module namespace is detected through the process of Component
Isolation, the original copy of its definition is left in the carvedout program. However,

152

6.7 Extracting implicit coupling fields

any variable that is dead w.r.t. to the carvedout program will be eliminated from
this copy in Step 4 of Component Isolation. As a result, the remaining set of the
variables is the same set of the variables that are used by the carvedout program.

6.7.2. Step 2

Additionally, a copy of the original namespace is added to the isolated component.
However, any variable that is dead w.r.t. to the component will be eliminated from
this copy version in Step 3 of the process. As a result, the remaining set of the
variables is the same set of the variables that are used by the original component.

6.7.3. Step 3

The intersection of the two sets generated in Step 1 and Step 2 is a subset of the
implicit coupling fields between the component and the carvedout program.

6.7.4. Step 4

To collect the complete list of the implicit coupling fields between the component
and the carvedout program, Step 1, Step 2 and Step 3 must be applied to each
shared module namespace of the component. At the end, the union of all the sets
gives the complete list of the implicit coupling fields between the component and
carvedout program of the original Fortran program.

6.7.5. Adapting Component Isolation

Figure 6.47 shows how the procedure of Component Isolation has been modified to
extract the implicit coupling fields. As shown, Step 5 has been added to enable the
procedure to collect the shared variables of a shared namespace in each iteration of
the process.

6.7.6. Example 5

In this example, as shown in Figure 6.48, the Fortran program of Example 4 has
been modified to indicate how dead contents and shared variables are handled when
isolating a component. We apply Component Isolation to this program and explain
how it differs from the previous example. Like the previous examples, the isolated
component is initially an empty space, but the complete source code of the original
program is assigned to the carvedout program.

153

Chapter 6 Component Isolation

'

&

$

%

Add the namespace of the node

to the isolated component

Any node found?

Create NDG graph

of the original Fortran program

Pick the next top node

from the NDG graph

step 1

step 2

step 4

FINISHED
NO

compilation
test?

Problem
Resolving

FAIL

SUCCESS

Shared node?

NO

YES

Remove redundant source code

(from the shared namspaces in the carvedout program)

Remove the namespace
from carvedout program

Component Isolation
(with NDG)

Input I =

Source Codes
of

Fortran Program

Input II =

Entry Points
of

Component

step 3

 1. Make a copy of the shared namespace

 2. Rename it

 3. Add it to the isolated component
 4. Redirect all the dependencies

 (in the isolated component on this shared

 namespace from the original copy to the new copy)
 5. Remove redundant source code from the copy

Collect shared variables

of this shared namespace

step 5

YES

Figure 6.47.: Extracting the implicit coupling fields between a component and
the carvedout program in a Fortran program using the procedure of Component
Isolation.

154

6.7 Extracting implicit coupling fields

Step 1: Creating NDG graph The NDG graph of this example is built similar
to Example 4. However, an edge must be added to the graph between the vertices
“MainProgram” and “module1” to show the the dependency of the main program unit
on “var1”. The NDG graph is shown in Figure 6.49.

6.7.6.1. Iteration 1

In the first iteration, the following steps are performed:

Step 2: Picking the next top node In this step, the graph is traversed, starting
from the vertex of the entry point of the component, to pick the top vertex (which
is “module1”).

Step 3: Add the namespace to the isolated component The namespace associ-
ated to the top vertex (i.e. module1) is a shared namespace as there is an edge from
the vertex “mainprogram” to “module1”. There is, nevertheless, no dead contents
with respect to the component in this namespace. Thus, a copy of the namespace
is created and renamed to “module1_copy” and added to the isolated component in
a new file “isolatedcomponent_file1.f90”.

Step 4: Remove the namespace from the carvedout program In contrast to
Example 4, the definition of “module1” is not removed from the carvedout program
since it is a shared namespace. However, dead contents w.r.t. carvedout program
must be removed from the namespace. The main program unit is dependent on
“module1” through “USE module1, ONLY:: var1, subroutine1”. Since the dependency
of the main program unit on the entry point of the component is ignored, the
definition of “subroutine1” is removed from “module1” and the namespace is placed
in a new file “carvedoutprogram_file1.f90”.

Step 5: Collect shared variables In contrast to Example 4, this example contains
shared variables. Thus, these variables must be detected and collected in each iter-
ation once a shared namespace is detected. Since “module1” is a shared namespace,
it may contain some of the shared variables between the component and the carved-
out program. To collect the shared variables in this namespace, we must collect
the variables that are shared between “module1” and “module1_copy”. A close look
shows that “var1” must be a shared variable as it exists in both namespaces.

6.7.6.2. Iteration 2

Step 2: Picking the next top node In this step, the graph is traversed again and
the next top vertex (which is “module2”) is picked up.

155

Chapter 6 Component Isolation

Step 3: Add the namespace to the isolated component The namespace associ-
ated to the top vertex (i.e. module2) is a shared namespace as there is an edge from
the vertex “mainprogram” to “module2”. Thus, a copy of the namespace is created,
renamed to “module2_copy”, and will be added to the isolated component in a new
file “isolatedcomponent_file2.f90”. However, “var2” and “subroutine2” are dead with
respect to the component and, thus, their definitions are removed from the file.

Step 4: Remove the namespace from the carvedout program Similar to Ex-
ample 4, the definition of “module2” is not removed from the carvedout program
since it is a shared namespace. However, the dead contents with respect to the main
program unit must be removed from the namespace. The main program unit is de-
pendent on “module2” through “USE module2, ONLY:: var2, subroutine2”. Thus, the
definition of “subroutine3” is removed from “module2” as dead contents with respect
to the main program unit.

Step 5: Collect shared variables Similar to previous iteration, the top namespace
is a shared namespace and contains a shared variable. Hence, we collect the variable
that is shared between “module2” and “module2_copy”. A close look shows that
“var3” exists in both namespaces and, thus, it is shared between the component and
the carvedout program.

6.7.6.3. Iteration 3

Similar to Example 4, the practice stops in the third iteration.

6.7.6.4. Results

Once the procedure stops, the isolated component and the carvedout program are
available. As shown in Figure 6.51, the carvedout program contains “MainPro-
gram”, “module1” and “module2”, whose definitions have been moved into three new
files called “carvedoutprogram_file1.f90”, “carvedoutprogram_file2.f90” and “carvedout-
program_file3.f90”, respectively. In addition, the dependency of the main program
unit on the entry point of the component has been removed from “carvedoutpro-
gram_file1.f90” to prevent the compilation failure of the carvedout program. Hence,
the call-site (call subroutine1) and “subroutine1” in the dependency link (USE mod-
ule1, ONLY: var1,subroutine1) are struck through (temporarily) in “carvedoutpro-
gram_file1.f90”. Thus, the carvedout program is now expected to compile success-
fully independent of the isolated component. Note that these statements can be
activated again once the isolated component is re-integrated back to the carvedout
program to make the new program capable of generating bit-wise identical results
to the output of the original program. In addition, the dead contents have been

156

6.7 Extracting implicit coupling fields

Program MainProgram
USE module1, ONLY : var1,subroutine1
USE module2, ONLY : var2,subroutine2

Implicit None

var1=1
Call subroutine1
Call subroutine2

PRINT *, var2

End Program MainProgram

originalprogram_mainfile.f90

Module module1
USE module2, ONLY : var3,subroutine3
IMPLICIT None
PUBLIC :: var1,subroutine1
INTEGER :: var1

Contains

Subroutine subroutine1
Call subroutine3
var1=var1+var3
PRINT *, var1

End Subroutine subroutine1

End Module module1

originalprogram_file1.f90

Module module2
IMPLICIT None
PUBLIC :: var2,subroutine2
PUBLIC :: var3,subroutine3
INTEGER :: var2, var3

Contains

Subroutine subroutine2
var2=var3

End Subroutine subroutine2

Subroutine subroutine3
var3=1

End Subroutine subroutine3

End Module module2

originalprogram_file2.f90

Entry Point of the Component

Subprogram Namespace

subroutine1 module1

Figure 6.48.: (Example 5: Original Program) A Fortran program with one com-
ponent and three namespaces in the global namespace. The information about
the entry point of the component is shown in the table.

removed from “carvedoutprogram_file2.f90” and “carvedoutprogram_file3.f90” as well
by striking through the dead statements.
Additionally, the isolated component contains only “module1_copy” and “mod-
ule2_copy” (thus the component has a depth of 2), whose definitions have been
placed into new files “isolatedcomponent_file1.f90” and “isolatedcomponent_file2.f90”
to increase the visibility of the component. Note that the definition of “module1” and
“module2” have been renamed to “module1_copy” and “module2_copy” and placed in
two new files “isolatedcomponent_file1.f90” “isolatedcomponent_file2.f90”. This should
prevent any conflict with the original copies of the two namespaces left in “carved-
outprogram_file2.f90” and “carvedoutprogram_file3.f90” once the isolated component
is re-integrated back to the carvedout program. Accordingly, any reference to “mod-
ule2” in the isolated component has been redirected to “module2_copy”. Thus, the
statement “USE module2, ONLY: var3, subroutine3” has been converted to “USE mod-
ule2_copy, ONLY: var3,subroutine2” in “isolatedcomponent_file1.f90”. Hence, the iso-
lated component is now expected to compile successfully independent of the carved-
out program.

157

originalprogram_mainfile.f90
originalprogram_file1.f90
originalprogram_file2.f90

Chapter 6 Component Isolation

module1

module2

MainProgram

Extracted Information of Component

File Module Namespace Subprogram Namespace

non-shared shared non-shared shared non-shared shared

— X — X — —

Extracted Information of the carvedout program

File Module Namespace Subprogram Namespace

non-shared shared non-shared shared non-shared shared

X X — X X —

Figure 6.49.: (Example 5: dependency information) Applying Component Isola-
tion to the Fortran program in Figure 6.48 and extracting the information about
the namespaces of the program and component.

Module module1
USE module2, ONLY : var3,subroutine3
IMPLICIT None
PUBLIC :: var1,subroutine1
INTEGER :: var1

Contains

Subroutine subroutine1
Call subroutine3
var1=var1+var3
PRINT *, var1

End Subroutine subroutine1

End Module module1

extractedcomponent_file1.f90

Module module2
IMPLICIT None
PUBLIC :: var2,subroutine2
PUBLIC :: var3,subroutine3
INTEGER :: var2, var3

Contains

Subroutine subroutine2
var2=var3

End Subroutine subroutine2

Subroutine subroutine3
var3=1

End Subroutine subroutine3

End Module module2

extractedcomponent_file2.f90

Figure 6.50.: (Example 5: extracted component) The extracted component generated from
the Fortran program in Figure 6.48 by the procedure of Component Extraction.

158

extractedcomponent_file1.f90
extractedcomponent_file2.f90

6.7 Extracting implicit coupling fields

Program MainProgram
USE module1, ONLY : var1,subroutine1
USE module2, ONLY : var2,subroutine2

Implicit None

var1=1
Call subroutine1
Call subroutine2

PRINT *, var2

End Program MainProgram

carvedoutprogram_file1.f90

Module module1
USE module2, ONLY : subroutine3,var3
IMPLICIT None
PUBLIC :: var1,subroutine1
INTEGER ::var1

Contains

Subroutine subroutine1
Call subroutine3
var1=var1+var3
PRINT *, var1

End Subroutine subroutine1

End Module module1

carvedoutprogram_file2.f90

Module module2
IMPLICIT None
PUBLIC :: var2,subroutine2
PUBLIC :: var3 , subroutine3
INTEGER :: var2, var3

Contains

Subroutine subroutine2
var2=var3

End Subroutine subroutine2

Subroutine subroutine3
var3=1

End Subroutine subroutine3

End Module module2

carvedoutprogram_file3.f90

Module module1_copy
USE module2_copy, ONLY : var3, subroutine3
IMPLICIT None
PUBLIC :: var1,subroutine1
INTEGER :: var1

Contains

Subroutine subroutine1
Call subroutine3
var1=var1+var3
PRINT *, var1

End Subroutine subroutine1

End Module module1_copy

isolatedcomponent_file1.f90

Module module2_copy
IMPLICIT None
PUBLIC :: var2,subroutine2
PUBLIC :: var3,subroutine3
INTEGER :: var2, var3

Contains

Subroutine subroutine2
var2=var3

End Subroutine subroutine2

Subroutine subroutine3
var3=1

End Subroutine subroutine3

End Module module2_copy

isolatedcomponent_file2.f90

Figure 6.51.: (Example 5: isolated component and carvedout program) The isolated com-
ponent (in pink) and carvedout program (in yellow) generated from the Fortran program in
Figure 6.48 by Component Isolation.

159

carvedoutprogram_file1.f90
carvedoutprogram_file2.f90
carvedoutprogram_file3.f90
isolatedcomponent_file1.f90
isolatedcomponent_file2.f90

Chapter 6 Component Isolation

6.8. Chapter Summary

This chapter presents the required procedures to achieve the general goal of this
dissertation. It describes a novel static program analysis approach for extracting a
component from a Fortran program, isolating a component in a Fortran program
and extracting the shared variables between the component and the other parts of
the program.
Extracting a component refers to the process of identifying the complete source code
of a component in a Fortran program and is performed with a technique denoted
as Component Extraction. This technique generates only one slice (which contains
the complete source code of the component) from the Fortran program. In contrast,
isolating a component aims at separating the source code of the component from
the source code of the other parts of the program. This process is performed with
another technique in this dissertation denoted as Component Isolation, which gen-
erates two slices from the Fortran program called the isolated component and the
carvedout program. The isolated component contains the complete source code of
the component and the carvedout program contains the source code of the other
pats of the program. Furthermore, the shared variables between the component and
the other parts of the program can be extracted with this technique.
Component Isolation guarantees that the isolated component and the carvedout pro-
gram share no source code. This goal is achieved by renaming those Fortran modules
and subprograms in the isolated component that are shared with the carvedout pro-
gram. Hence, it makes it possible to re-integrate the isolated component to the
carvedout program within a new Fortran program in pursuit of generating bit-wise
identical results to the output of the original program (after creating a consistent
memory between both slices).
The approach presented in this chapter benefits from a new program dependency
graph called the NDG graph that indicates the dependencies between the namespaces
of a Fortran program. Using this graph, all the namespaces of a component can be
collected from the program and the shared namespaces between the component and
other parts of the program will be identified. In addition, dead codes will be removed
from the copies of the shared namespaces in the extracted component or the isolated
component and the cravedout program.

160

7. Validation and Evaluation

This chapter describes the validation procedure of the research carried out within
this dissertation. Hence, Section 7.1 and Section 7.2 evaluate the achievements
regarding the general and primary goals of this dissertation.

7.1. Validation of the general goal

In Chapter 6, we introduced the approach of Component Isolation to achieve the
general goal of this dissertation, which is to extract the source code and shared
vaairables of a component from a Fortran program and isolate it in the program.
This section describes two techniques to validate this approach. These techniques
are as follows:

1. Syntactic validation

2. Semantic validation

7.1.1. Syntactic validation

A syntactic validation refers to the use of a static program analysis to examin the
slices of a Fortran program (containing a component) generated by Component
Isolation in order to determine the success of the procedure. A success is achieved
firstly when the isolated component contains all the program statements that the
original component depends on, and, secondly, when the carvedout program contains
all the program statements that the other parts of the program depend on. Hence,
compilation tests can be used in this regard to perform the required analyses as the
isolated component and the carvedout program are supposed to compile successfully
independent of each other and the original program. Note that all the call-sites to
the entry points of the original component are removed from the carvedout program,
and, thus, this slice bears no external dependency. Figure 7.1 presents the scheme
of a syntactic validation. It is noteworthy that the syntactic validation has already
been embedded in the practice of Component Isolation in chapter Chapter 6.

161

Chapter 7 Validation and Evaluation

compilation test?

Validation
of

Component Isolation
Successful

Isolated Component

Validation

Failed

 Syntatic Validation

on

Component Isolation

Applying

Component Isolation

to
Original Fortran Program

FAIL

SUCCESS

Figure 7.1.: A syntactic validation of the practice of Component Isolation.

7.1.2. Semantic validation

In the semantic validation, the output of an isolated component and its correspond-
ing carvedout program is examined to see if they generate correct results in com-
parison to the original Fortran program. The implementation details may, however,
render such tests challenging as the output of the original component might not be
easily available. In practice, it is advisable to build a new Fortran program com-
posed of the isolated component and carvedout program such that mimicking the
functionality of the original program becomes a valid expectation. Thus, the output
of the new program is inspected to see if it is bit-wise identical to the the output
of the original program, given the same input data. As shown in Figure 7.2, the
procedure of the semantic validation is implemented in the following manner:

• re-integrating the isolated component to the carvedout program, which re-
quires re-establishing the (removed) call-sites to the (entry points of the) com-
ponent in the carvedout program.

• creating memory consistency: since the isolated component and the carved-
out program see different copies of the shared variables, this creates memory
inconsistency between these two parts inside the new Fortran program. Thus,
the same data flow of the original program must be implemented between the
isolated component and the carvedout program in the new program. This step,
therefore, requires a data flow analysis in the original Fortran program to cap-

162

7.2 Validation of Primary Goal 1

ture the data flow specifications between the component and the other parts of
the program. In the next step, the memory consistency must be implemented
between the isolated component and the carvedout program by implementing
the same data flow between these two partitions.

• applying the same input data to the original and new programs and comparing
the results to see if they are bit-wise identical.

It should also be noted that a semantic validation already involves a syntactic valida-
tion as a successful compilation of an isolated component and a carvedout program
is a prerequisite to the successful compilation and execution of the new program.

7.1.3. Incremental validation

So far, it was assumed that a syntactic or semantic validation are performed at the
end of the process of Component Isolation. However, it is also helpful to apply such
a validation during the process in order to facilitate the problem solving procedure.
Hence, a validation phase can be added to every iteration of Component Isolation
to prevent error propagation to the following iterations.

7.2. Validation of Primary Goal 1

Chapter 4 described the implementtion procedure of building a new version of the
atmospheric model ECHAM6 with the isolated radiation scheme, which is Primary
Goal 1 of this dissertation. The procedure applied Component Isolation to the
original source code of the atmospheric model ECHAM6 and generated two slices
from the model, namely the isolated radiation component and the carvedout model.
In addition, it re-integrated these two slices and built a new version of model that
still adopts the sequential radiation scheme of original ECHAM6. Hence, this raises
an ample opportunity to use the semantic validation, described in Section 7.1.2, to
indicate that the new model can still generate bit-wise identical results to the output
of the original model. On this account, we compare the simulation results of the old
and new models.
ECHAM6 generates some restart files that store the values of a wide range of the
variables of the model that contain the essential simulation data. These variables
indicate the state of the model at the end of one course of simulation. The model
can continue the simulation in a follow-up run by loading the most recent state of
the model from the restart files. These restart files have a NetCDF format (UCAR
Community Programs, last access: 19 Mar 2022). To compare the simulation results
between the new and original models, we use the Climate Data Operators (CDO)

163

Chapter 7 Validation and Evaluation

compilation test?

 Semantic Validation

on

Component Isolation

Validation
of

Component Isolation
Successful

Validation

Failed

Isolated Component
&

Carvedout Program

Re-integration
(Isolated component + Isolated Program)

Input data

Running
the original Fortran Program

Applying

Component Isolation

to
Original Fortran Program

Original Results
 New Results

Bit-Identical?
 Validation

Failed

Running
the New Fortran Program

Data Flow Analysis

on

Original Program & Original Component

Memory Consistency Policy

Implementation

Building
New Fortran Program

FAIL

SUCCESS

FAIL

SUCCESS

Figure 7.2.: A semantic validation of the isolated component.

164

7.2 Validation of Primary Goal 1

(Max-Plank-Institute fuer Meteorologie, last access: 17 January 2022), which is a
collection of operators for standard processing of climate and forecast model data -
including simple statistical and arithmetic functions, data selection and subsampling
tools, and spatial interpolation. In addition, it provides support for multiple climate
data file formats including NetCDF.
To perform the validation, we compare the following restart files generated by the
new model with their peers generated by the original model:

• restart_echam.nc
• restart_accw.nc
• restart_co2.nc
• restart_jsbach.nc
• restart_g3bm.nc
• restart_glm.nc
• restart_spm.nc
• restart_surf.nc
• restart_veg.nc
• restart_yasso.nc

The comparison is conducted using the cdo diff command, which compares the
contents of two datasets field by field. The input datasets need to have the same
structure and their fields need to have the same header information and dimensions.
Although this command provides useful detailed reports for climate scientists once
the datasets are different, our semantic validation is only interested in the success
or failure of the test. Exit status is 0 if datasets are the same and 1 if they differ.
Figure 7.3 shows the results of applying a cdo diff to the above-mentioned restart
files of ECHAM6. The figure shows that the command compares the new and the
original model on 27 millions of values (from almost 1300 variables) over two time
steps and reports no difference.
This semantic validation proves that the procedure of building a new model with
the isolated radiation component has been conducted successfully. In other words, it
shows that the procedure of Component Isolation has been performed successfully on
the atmospheric model ECHAM6 and implies that the source code of the radiation
component and its shared variables have also been extracted correctly from the
original model. In addition, the validation results show that the integration of
the isolated radiation component to the carvedout model has ended up in a new
model with the same functionality of the original model, thus making it capable of
generating bit-wise identical results to the output of the original model.

165

Chapter 7 Validation and Evaluation

$ cdo diff original/restart_co2.nc isolated/restart_co2.nc
cdo diff: Processed 138432 Values From 34 Variables Over 2 Timesteps [0.04s 11MB]

$ cdo diff original/restart_accw.nc isolated/restart_accw.nc
cdo diff: Processed 24912 Values From 20 Variables Over 2 Timesteps [0.01s 10MB]

$ cdo diff original/restart_Echam.nc isolated/restart_Echam.nc
cdo diff: Processed 15657984 Values From 452 Variables Over 2 Timesteps [0.20s 92MB]

$ cdo diff original/restart_g3bm.nc isolated/restart_g3bm.nc
cdo diff: Processed 783552 Values From 82 Variables Over 2 Timesteps [0.07s 19MB]

$ cdo diff original/restart_glm.nc isolated/restart_glm.nc
cdo diff: Processed 1299648 Values From 10 Variables Over 2 Timesteps [0.06s 25MB]

$ cdo diff original/restart_jsbach.nc isolated/restart_jsbach.nc
cdo diff: Processed 3952248 Values From 222 Variables Over 2 Timesteps [0.12s 56MB]

$ cdo diff original/restart_spm.nc isolated/restart_spm.nc
cdo diff: Processed 300096 Values From 12 Variables Over 2 Timesteps [0.07s 13MB]

$ cdo diff original/restart_surf.nc isolated/restart_surf.nc
cdo diff: Processed 2156736 Values From 472 Variables Over 2 Timesteps [0.13s 36MB]

$ cdo diff original/restart_veg.nc isolated/restart_veg.nc
cdo diff: Processed 1959252 Values From 172 Variables Over 2 Timesteps [0.08s 33MB]

$ cdo diff original/restart_yasso.nc isolated/restart_yasso.nc
cdo diff: Processed 1236192 Values From 84 Variables Over 2 Timesteps [0.07s 24MB]

Figure 7.3.: Using the cdo diff command to compare the contents of the restart
files generated by the new ECHAM6 (built by integrating the isolated radiation
component to the carvedout model) with their counterparts generated by the
original ECHAM6. The test is performed on 27 millions of values (from almost
1300 variables) over two time steps. If the exit status of the command is 0 (as it
is the case in this figure), it shows that the restart files are the same - implying
that the two models generate bit-wise identical results. If the restart files were
different, the command would generate an exit status of 1 and report on the
variables that have different values. These tests clearly show that the procedure of
Component Isolation has been conducted correctly and the new model composed
of the isolated radiation component and the carvedout model generates bit-wise
identical results to the output of the original model as no difference between the
restart files were detected.

166

7.3 Validation of Primary Goal 2

It is noteworthy that the complete procedure of applying Component Isolation to
the source code of the classical version of the atmospheric model ECHAM6 was
carried out incrementally in more than 1000 iterations. Hence, the syntactic and
semantic validations were also applied to each iteration of the process. These results
provide solid evidence that Primary Goal 1 and (implicitly) the general goal of this
dissertation have already been achieved so far.

7.3. Validation of Primary Goal 2

Chapter 3 described the idea of building a new version of the atmospheric model
ECHAM6 with the concurrent radiation scheme, which is Primary Goal 2 of this
dissertation. Chapter 4 described the implementtion procedure to achieve this goal,
which benefitted from the new version of the model generated for Primary Goal 1 and
applied the concurrency scheme to the isolated radiation component. This section
describes the process of validating this new version of the model (that adopts the
concurrent radiation scheme). A semantic validation is not, however, applicable at
this stage since the new version of the model with the concurrent radiation scheme is
not designed (by nature) to generate bit-wise identical results to the original model.
This approach is, nevertheless, inevitable to improve the computational performance
of the original model. On this account, we propose an intermediary step in which a
new version of the model with a different radiation scheme will be built.

This intermediary version has a striking similarity to both the sequential and the
concurrent radiation schemes. Figure 7.4 shows how the new scheme works with
two interesting features. Like the concurrent radiation scheme, it arranges the radi-
ation component on separate MPI processes as shown in Figure 7.4 and implements
the same data communication mechanism. In contrast to the concurrent radiation
scheme, however, the intermediary version does not solve the radiative transfer and
other atmospheric processes simultaneously (concurrently). Instead, it acts like the
classical radiation scheme (of the the original atmospheric model ECHAM6) and
executes the radiation component sequentially with other atmospheric components
(albeit on different MPI processes in a synchronous controlled fashion). Hence, it
is said that the intermediary version benefits from the concurrent synchronous
radiation scheme, which is able to generate bit-wise identical results to the original
model. This interesting trait allows for a semantic validation of this scheme. A
successful validation implies the following messages:

1. The radiation component has been extracted successfully from the main model.

2. The shared variables of the radiation component has been extracted success-
fully.

3. The radiation component and the main model have been arranged succesfully
on two separate sets of MPI processes.

167

Chapter 7 Validation and Evaluation

4. Data communications between the radiation component and the main model
has been implemented correctly.

5. Memory consistency has been correctly established between the radiation com-
ponent and the main model.

To perform the semantic validation, we conduct the restart files of the model that
was presented in Section 7.2, except for the fact that this time we compare the
simulation results generated by (the model using) the the concurrent synchronous
radiation scheme with the output of the original model.
After the successful implementation of the new version of the atmospheric model
with the concurrent synchronous radiation scheme, we can easily implement the
final version of the model with the concurrent (asynchronous) radiation scheme.
Although this last version cannot guarantee bit-wise identical results and does not
lend itself to a semantic validation, an independent scientific validation was carried
out by a domain expert to indicate that the concurrent radiation scheme is still ca-
pable of generating satisfactory simulation results albeit different from the classical.
A comprehensive report of the scientific evaluation has been published by (Heidari
et al., 2021). This dissertation provided some technical support during the valida-
tion process. On this account, we can also conclude that Primary Goal 2 has also
been achieved and validated successfully by this dissertation.
Figure 7.5 reflects the validation procedure of the process of building the new version
of the atmospheric model ECHAM6 with the concurrent (asynchronous) radia-
tion scheme. As it shown, the new versions of the model with the isolated radiation
component and the concurrent synchronous radiation scheme are indeed imple-
mented incrementally. In other words, the radiation component is isolated from the
atmospheric model ECHAM6 step by step, and, in each iteration, a synchronous
radiation scheme is gradually built. Therefore, the validation of these two phases is
performed incrementally. Once the whole component is isolated in the main model,
the concurrent radiation scheme will finally be implemented and a scientific valida-
tion will be performed. This measure prevents error propagation from one iteration
of the process to the others.

7.4. Chapter Summary

This chapter evaluates the implementation procedures required to achieve the goals
of this dissertation. Concerning the general goal, we presented a syntactic and
a semantic validation technique to evaluate the approach of Component Isolation

168

7.4 Chapter Summary

1

ATM(RAD(1))

MPI
Processes

N
Processes

Time Steps

2n+1n+1

RAD(n+1) RAD(2n+1)RAD(1)
N

Processes

ATM(RAD(n+1))

2 n 2n

WAITING

WAITING

WAITING

WAITING

WAITING ATM(RAD(2n+1))

3n

WAITING

Figure 7.4.: A synchronous radiation scheme which generates bit-identical results
to the classical radiation scheme.

described in Chapter 6. The syntactic validation indicates that the slices from
a Fortran program by Component Isolation contain all the syntactically required
program statements. The semantic validation, however, shows that these slices
can still function correctly. The syntactic validation can be applied to the isolated
component and carvedout program generated using a static program analysis (of a
Fortran compiler, for example). To implement a semantic validation, the isolated
component and the carvedout program are re-integrated again and a consistent
memory is created in order to make the new version of the Fortran program capable
of generating bit-wise identical results to the output of the original.

The procedure to achieve Primary Goal 1 takes advantage of Component Isolation
and applies it to the radiation component of the atmospheric model ECHAM6.
Thus, it generates two slices from the model, namely the isolated radiation com-
ponent and the carvedout model. Hence, the validation of this procedure follows
the same steps described above to validate Component Isolation. In other words,
a syntactic and a semantic validation can show that the isolated radiation compo-
nent and the carvedout model have been generated correctly and the new version of
ECHAM6 that is built by re-integrating these two slices can generate bit-wise iden-
tical results to the original model’s output. On this account, it can be concluded
that the implementation procedure of Primary Goal 1 is also validated. This shows
the general goal and Primary Goal 1 have been achieved.

Primary Goal 2 is, however, in pursuit of replacing the classical radiation scheme
in ECHAM6 with the concurrent radiation scheme. Since the new scheme resolves
the radiative transfer asynchronously in parallel with other atmospheric processes,
it cannot thus generate bit-wise identical results to the original model by nature.
Hence, no semantic validation is applicable at this stage. However, we introduced
the concurrent synchronous radiation scheme in which we expect that the radi-
ation component and the main model run sequentially with respect to each other
as the classical scheme, but on separate sets of MPI processes as the concurrent ra-

169

Chapter 7 Validation and Evaluation

Input:

Atmospheric Model ECHAM6

containing

Original Radiation Component

Applying
Component Isolation

Output/Input:

Isolated Radiation Component

&

Carvedout Model

Building a new Program

Output/Input:

A New Atmospheric Model ECHAM6

with

Isolated Radiation Component

Building a new Program

Semantic Validation

Syntactic Validation

Output/Input:

A New Atmospheric Model ECHAM6

with

Synchronous Radiation Scheme

Output:

A New Atmospheric Model ECHAM6

with

Concurrent Radiation Scheme

Building a new Program

Semantic Validation

Scientific Evaluation

FAIL

FAIL

FAIL

Validation
Failed

FAIL

Success

Success

YES

Success

Validation
Successful

Component Isolation
complete?

Success

NO

Figure 7.5.: The validation procedure of the concurrent radiation scheme in the
atmospheric model ECHAM. A synchronous radiation scheme is built as an inter-
mediary phase to increase the validation accuracy. Thus, the procedure includes
a syntactic validation of the isolated radiation component and carvedout model,
a semantic validation of a new model composed of the two slices and a semantic
validation of the synchronous scheme. In practice, the procedure is performed
incrementally in each iteration of isolating the component from the main model.
Once the component is completely isolated from the model, the concurrent radi-
ation scheme is being built and a scientific validation is applied.

170

7.4 Chapter Summary

diation scheme. Consequently, the main model starts running once the calculation
of radiative transfer is complete and the results are sent back to the main model.
Hence, it is expected that ECHAM6 with the synchronous radiation scheme gener-
ates bit-wise identical results to the original model and thus a semantic validation is
applicable. As a result, it is possible to conclude that the concurrency and the data
communication between the radiation component and the main model have also
been implemented correctly in the concurrent asynchronous radiation scheme.
In addition, the new versions of the model with the isolated radiation component
and the concurrent synchronous radiation scheme were implemented incremen-
tally. Thus, the intended semantic validations were also performed in each step to
prevent error propagation from one step to the other. Furthermore, a rigorous sci-
entific validation was carried out by domain scientists to show that the simulation
results from the concurrent radiation scheme are still satisfactory. The report of this
evaluation is available as a separate peer-reviewed publication from this dissertation.
On this account, we conclude that the implementation procedure of Primary Goal
2 is also validated and the goal has been achieved.

171

8. Summary and Conclusion
This chapter provides a summary of the research conducted within this dissertation.
It starts by giving a brief overview of each chapter in Section 8.1, and, then, presents
the selected results and conclusions.

8.1. Summary

This dissertation was motivated by the low performance of the atmospheric model
ECHAM6 due to the limited number of grid points at the low and coarse-grained
spatial resolutions. Hence, improving the performance of the model is opportune
for paleoclimate simulations within the PalMod initiative, which benefit from the
same settings. Two solutions (including the concurrent and single-precision arith-
metic radiation schemes) are, therefore, proposed to improve the scalability of the
model. Both solutions are, however, challenged by the unknown code coverage and
shared variables of the radiation component as well as its code sharing with other
components. Hence, it is argued that a component extraction solution as well as
separating the source code of the radiation component from the other parts of the
component are prerequisite to the optimization of the model. Such solutions are
also beneficial for improving the scalability of the other legacy climate models on
heterogenous high performance computing systems. On this account, Primary Goal
1 and 2 of this dissertation are as follows:

• Primary Goal 1: building a new version of the atmospheric model ECHAM6
with the isolated radiation component.

• Primary Goal 2: building a new version of the atmospheric model ECHAM6
with the concurrent radiation scheme.

By the same toke, the general goal of this dissertation is:
1. Extracting a component from a Fortran program.
2. Extracting the shared variables between the component and the other parts

of the program.
3. Isolating the component in the program.

Background and related works:
In Chapter 2, three levels of data-parallelism in ECHAM6 are discussed and it is
shown how a new level of task-parallelism can be added to the model. This chapter

173

Chapter 8 Summary and Conclusion

also compares the component extraction and isolation solutions introduced in this
dissertation with previous works and argues that none of the existing tools provide
a complete solution to the problem in this thesis.

The concurrent radiation scheme:

In Chapter 3, it is shown that the radiation component in ECHAM6 traditionally
takes up to 58% of the total simulation time at the CR resolution, but it is much
more scalable than the main model. However, the sequential component organiza-
tion of the model constrains this benefit. The concurrent radiation scheme reduces
the high computational profile of the component by calculating radiative transfer
concurrently with the main model. Additionally, it allows for adopting different do-
main decomposition and allocating separate MPI processes (from the main model)
for the radiation component.

Implementation of the concurrent radiation scheme:

Chapter 5 describes the implementation procedures to achieve Primary Goal 1 and
2 of this dissertation. It benefits from the novel approach of Component Isolation
(introduced in Chapter 6) to isolate the radiation component in the atmospheric
model ECHAM6, which is Primary Goal 1. This version has three important features
that will be useful for Primary Goal 2.

1. the extracted shared variables between the radiation component and the other
parts of the model.

2. the explicit data exchange between the radiation component and the main
model.

3. the consitent memory between the radiation component and the main model.
Thus, we benefit from these features to build another version of the model with the
concurrent radiation scheme, which is Primary Goal 2. The new scheme opts for
the MPI framework and organizes the main model and the radiation component on
two separate sets of MPI processes in order to create a new level of concurrency
in ECHAM6. In addition, synchronization is created using a client-server model.
The data exchange interfaces of the previous version are augmented with the YAXT
library to implement the required data communication between the concurrent ra-
diation component and the main model. The library provides a solution for data
redordering between the MPI processes assigned to the radiation component and
the main model. This feature allows the radiation component to adopt different
domain decomposition from the main model, which can be helpful in load-balancing
and creating a consistent model.

Performance results:

Chapter 5 presented a detailed performance analysis of the atmospheric model
ECHAM6 using the concurrent radiation scheme in comparison to the performance

174

8.1 Summary

of the model using the classical radiation scheme. It was shown the best performance
of the model with the classical radiation scheme is around 550 SYPD (Simulated
Years Per Day) if the model is set up to run on 576 MPI processes. In contrast, the
concurrent radiation scheme can gain 734 SYPD if both the model and the radiation
component individually allocate the same number of 576 MPI processes (i.e. a total
of 1152 MPI processes). The same performance is arguably attainable even if the
radiative transfer is calculated on a lower number of resources. Nevertheless, this
is a clear indication that the new scheme improves both the performance and the
scalability of the model.
A further investigation also showed that the concurrent radiation scheme can achieve
a maximum speedup of 1.9x over the classical scheme with a minimum parallel effi-
ciency of 80%. In addition, the radiation component demonstrated higher scalability
than the main model, a feature that allows for creating physical consistency in the
model.

Component Isolation:
Chapter 6 presented a novel static program analysis to achieve the general goal
of this dissertation. This approach describes a solution for identifying the complete
source code of a component in a Fortran program (denoted as component extraction),
separating the source code of the component from the source code of the other
parts of the program (denoted as component isolation), and extracting the shared
variables between the component and the other parts of the program. This approach
was described as Component Extraction and Component Isolation.
Component Extraction generates one slice from a Fortran program, which is the
extracted component. In contrast, Component Isolation generates two slices from
a Fortran program, which are the isolated component and the carvedout program.
Although the cross-dependenies between these two slices are resolved by replicating
the shared source code for each slice, they can be re-integrated to generate a new
program capable of generating bit-wise identical results to the output of the orig-
inal program. Furthermore, Component Isolation can extract the shared variables
between the component and the other parts of the program.

Validation and Evaluation:
Chapter 7 evaluated the implementation procedures required to achieve the goals
of this dissertation. Concerning the general goal, a syntactic and a semantic valida-
tion technique were described to evaluate the output of Component Isolation. The
syntactic validation indicates whether the the isolated component and the carved-
out program (generated from a Fortran program by Component Isolation) contain
all the syntactic program statements of the component. The semantic validation,
however, shows if these slices can still function correctly.
Concerning Primary Goal 1, a syntactic and a semantic test were applied to the
isolated radiation component and the carvedout model (generated by Component

175

Chapter 8 Summary and Conclusion

Isolation from the atmospheric model ECHAM6), and, then, it was shown that
ECHAM6 with the isolated radiation component is still capable of generating bit-
wise identical results to the output of the original model.

Concerning Primary Goal 2, the validation of ECHAM6 with the concurrent radia-
tion scheme was performed in two phases as a semantic validation was not directly
applicable. First, an intermediary version of the model (capable of generating bit-
wise identical results to the output of the original model) was built, and, thus, a
semantic validation was succesfully applied. Since this new version runs the main
model and the radiation component on different sets of MPI processes, the concur-
rency mechanism and the data communication supports of the concurrent radiation
scheme were also validated. Additionally, a rigorous scientific validation on the at-
mospheric model ECHAM6 with the concurrent radiation schme (conducted by an
expert) also showed that the simulation results from the concurrent radiation scheme
are still satisfactory.

8.2. Conclusion

The new developed concurrent radiation scheme in the atmospheric model ECHAM6
meets Primary Goal 1 and 2 of this dissertation. Radiative transfer is now calcu-
lated concurrently with the other atmospheric processes of the model after becom-
ing isolated from the other calculations. Hence, the new scheme allows for scaling
ECHAM6 further beyond the old limitations and achieving an unbeatable perfor-
mance of 734 SYPD that was not attainable by the classical radiation scheme.
The new scheme also offers a maximum speedup of 1.9x with a minimum parallel
efficiency of 80% across the scaling curve. Additionally, arbitrary domain decompo-
sition shows a promising feature to push the model to much further efficient resource
utilization and improve the workload distribution between the MPI processes asigned
to the concurent components. This salient feature is expected to eventually decrease
the discrepancy between the radiation time step ∆trad and normal atmospheric time
step ∆t atm with the objective of creating more physical consistency in the model.

The novel approach of Component Extraction and Isolation described in this thesis
also realized the general goal of the model. This method is now capable of extracting
a component from a Fortran program, isolating the component fom the other parts
in the program and extracting the shared variables between the component and the
other parts of program. It was applied to the atmospheric model ECHAM6 and two
slices of the model including the isolated radiation component and the carvedout
model were generated. In addition, the shared variables between the component and
the main model were extracted. These results were directly used in implementing
the concurrent radiation scheme in the atmospheric model ECHAM6 in this disser-
tation. Furthermore, the same results were used in an independent project (Cotronei
and Slawig, 2020) to apply single-precision arithmetic to the radiation calculations

176

8.2 Conclusion

in ECHAM6. The report shows that the single-precision radiation scheme was ac-
celerated by about 40%.
Component Extraction and Isolation can also be applied to other components in
ECHAM6 or to other legacy climate models. This empirical study serves as a
successful example that can stimulate research on other concurrent components in
climate modeling whenever scalability becomes challenging.

177

9. Future Works

This chapter describes two proposals for the extensions to the presented works in this
dissertation. The proposed ideas augment the novel approach presented in Chapter 6
as well as the concurrent radiation scheme presented in Chapter 3.

9.1. Support Tools for Static Program Analysis

Applying the static program analysis approach described in this dissertation to
Fortran programs, especially to large codebases, can become non-trivial without
having appropriate support tools around. Hence, we envisage a set of tools to
support users in their endeavors to extract or isolate arbitrary components from
complex Fortran programs such as legacy climate models. These tools are divided
into two different sets as described below.

9.1.1. Component Extraction and Isolation Tools

The first set of tools include eight individual tools that are required during the
process of Component Extraction and Isolation. These tools are the building blocks
of an automation process, but can also be used to conduct the procedures manually
as well. Below, we present a brief account of the functionality of these tools.

9.1.1.1. Tool I: Graph Generator

The first required tool that should be designed is a graph generator that must be
able to generate two graphs from a Fortran program containing a component: the
control flow graph (CFG) and the namespace dependence graph (NDG). The tool
takes the source code of the Fortran program as well as the list of entry points of the
component as input and generates two data structure representing graphs as output.
The NDG graph must clearly show the start node assigned to the only single entry
point of the program and all the start nodes assigned to the entry points of the
component. Figure 9.1 indicates the block diagram of the graph generator tool.

179

Chapter 9 Future Works

Input =

Source Code

of

Original Program

Input =

List of Entry Points

of

Component

Graph Generator
Tool

Static Program Analysis

Output =

 CFG Graph

of

Original Program

Output =

 NDG Graph

of

Original Program

Figure 9.1.: A proposed tool for generating the CFG and NDG graphs of a Fortran
program that contains a component. This tool is called a graph generator.

9.1.1.2. Tool II: Namespace Collector

The second tool is a namespace collector that collects the namespaces of a For-
tran program that contains the source code of a component and stores them into
a set of new Fortran files dedicated to the extracted component. It also collects
the namespaces of the program that contain the source code of the corresponding
carvedout program and stores them into another set of new Fortran files dedicated
to the carvedout program. Hence, the tool takes the source code and the NDG
graph of the program as input and generates two slices from the original Fortran
program. One slice is composed of a set of Fortran files containing the namespaces
of the component and the other slice is composed of a set of Fortran files contain-
ing the namespaces of the carvedout program. Since the namespaces dedicated to
the component may contain some dead codes w.r.t. the component, they contain a
superset of the source code of the component. By the same token, the namespaces
dedicated to the carvedout program may also contain some dead codes w.r.t. the
carvedout program. Thus, they contain a superset of the source code of the carved-
out program. Figure 9.2 indicates the block diagram of the namespace collector
tool.

180

9.1 Support Tools for Static Program Analysis

Graph Traversing

Input =
NDG of

Original Program

Output =

A Superset

of
Carvedout Program

Input =

Start Nodes of NDG

assigned to

Entry Points of Component

Namespace Collector
Tool

Graph Traversing

Source Code

of

Original Program

Input =

Output =

 A Superset

of

Component

Input =

Start Node of NDG
assigned to

Entry Point of Carvedout Program

Figure 9.2.: A proposed tool for collecting the namespaces of a component from a
Fortran program and/or the namespaces of its corresponding carvedout program.
This tool generates a superset of the component and a superset of the carvedout
program. This tool is called a namespace collector.

181

Chapter 9 Future Works

Input =

NDG

of

Original Program

Input =

List of Entry Points

of

Component

Shared Namespace
Detector Tool

Graph Analysis

on

NDG

Output =

 List of Shared Namespaces

Figure 9.3.: A proposed tool for detecting the shared namespaces between a com-
ponent (in a Fortran program) and its corresponding carvedout program. This
tool is called a shared namespace detector.

9.1.1.3. Tool III: Shared Namespace Detector

The third tool is a shared namespace detector. This tool finds the namespaces
shared between a component of a Fortran program and the corresponding carvedout
program. It traverses the NDG graph of the program and finds the nodes reachable
from both the entry point of the program and the entry points of the component.
These nodes will indicate the shared namespaces. Thus, this tool takes the NDG
graph and the entry points of the component as input and generates the list of the
shared namespaces. Figure 9.3 indicates the block diagram of the shared namespace
detector tool.

9.1.1.4. Tool IV: Dead Source Code Remover

The fourth tool is a dead source code remover which removes the dead source code
from the copies of the shared namespaces. Since shared namespaces contain the
source code of both the component and the carvedout programs, they may carry
some dead source code w.r.t. to either of them - which must be prevented from
leaking into the carvedout program or the extracted/isolated component. The fourth
tool removes the dead source w.r.t. the component and the carvedout program from
the supersets of the component and carvedout program (generated by the namespace
collector tool as described in Section 9.1.1.2), respectively. On this account, the
third tool requires the list of shared namespaces and the CFG of the original Fortran

182

9.1 Support Tools for Static Program Analysis

Static Program Slicing

to remove

Dead Source Code

Input =
List of

Shared Namesspaces

Output =

Carvedout Program

yet suffering from

references to
Component

Input =

Superset

of

Component

Output =

Extracted
Component

Dead Source Code
Remover Tool

Static Program Slicing
to remove

Dead Source Code

Input =

Superset

of

Carvedout Program

CFG of

Original Program

Input =

Figure 9.4.: A proposed tool for removing the dead source code (w.r.t. a compo-
nent in a Fortran program) from the superset of the component (generated by the
namespace collector tool in Section 9.1.1.2) as well as removing the dead source
code (w.r.t. the corresponding carvedout program) from a superset of the carved-
out program (generated by the same tool). This tool is called a dead source code
remover.

program and generates two slices from the original Fortran program. The first slice
is the extracted component and the second slice is almost the carvedout program
though it yet contains the call-sites for the entry points of the component (which
must be removed by another tool). Figure 9.4 indicates the block diagram of the
dead source code remover tool.

9.1.1.5. Tool V: Namespace Separator

The fifth tool is a namespace separator which is responsible for separating the names-
paces of a component (in a Fortran program) from the namespaces of its correspond-
ing carvedout program by converting shared namespace to non-shared. To do this,
the tool renames the copies of the shared namespace created in the extracted com-
ponent (which was generated by the fourth tool as described in Section 9.1.1.4) and

183

Chapter 9 Future Works

Removing references

to

Component

Input =

List of

Shared Namesspaces

Output =

Carvedout Program

Input =

Extracted
Component

Output =

Isolated Component

Namespace Separator
Tool

Rename shared namespaces

in
Extracted Component

Input =

Carvedout Program

yet suffering from

references to
Component

Redirect references

to
shared namespaces in Extracted Component

to
newly renamed namespaces

Figure 9.5.: A proposed tool for separating the (shared) namespaces of a compo-
nent (in a Fortran program) from the namespaces of its corresponding carvedout
program and generating the isolated component and the carvedout program. This
tool is called a namespace separator.

redirects any references to the shared namespaces inside the extracted component
to the renamed namespaces, accordingly. On this account, the namespace separator
tool takes the list of the shared namespaces and the slices generated by the fourth
tool as input and generates the carvedout program and the isolated component.
Figure 9.5 indicates the block diagram of the namespace separator tool.

9.1.1.6. Tool VI: Shared Variables Extractor

The sixth tool is a shared variables extractor which is responsible for collecting the
shared variables between a component (of a Fortran program) and its corresponding
carvedout program. This tool will compare the copy of each shared namespace in

184

9.1 Support Tools for Static Program Analysis

Input =

Isolated Component

Input =

Carvedout Program

Shared Variables Extractor Tool

Static Program Analysis

Output =

 List of Shared Variables

Figure 9.6.: A proposed tool for extracting the shared variables between a com-
ponent (of a Fortran program) and its corresponding carvedout program. This
tool is called a shared variables extractor.

the isolated component with its peer copy in the carvedout program and collects
the same global variables that exist in both. The set of such variables comprises the
shared variables between the component and the carvedout program. Figure 9.6
indicates the block diagram of the shared variables extractor tool.

9.1.2. Re-integration Tools

In addition to the set of tools described in Section 9.1.1 for extracting and isolat-
ing a component from a Fortran program, a couple of more tools will be required
for reusing an extracted component in another Fortran program or integrating an
isolated component with its corresponding carvedout program. If users should in-
tegrate an isolated component and a carvedout program to build a new Fortran
program that generates bit-wise identical results to the original program or they
decide to reuse the extracted component within another Fortran program to simu-
late the same behavior of the original component, the tools proposed so far are not
enough and more support tools will thus be helpful in this regard. These tools are
described in this section.

9.1.2.1. Tool VII: Input and output variables detector

The seventh tool is an input and output variables detector that is responsible for
detecting which shared variables bring the input data to a component (in a Fortran
program) and which variables carry the output data out of the component. To
achieve this, an inter-procedural data flow analysis is required to detect the data

185

Chapter 9 Future Works

Input =

Source Code & CFG

of

Original Program

Input =

List of Entry Points

of

Component

Input & Output Variables
Detector Tool

Data Flow Analysis

Output =

 Lists of

Input and Output Variables

of

Component

Input =

List
of

Shared Variables

Figure 9.7.: A proposed tool for identifying which shared variables bring the input
data to a component in a Fortran program and which take the output data from
a component to the other parts of the program. This tool is called an input and
output variables detector.

dependencies over the shared variables between the component and its corresponding
carvedout program. This analysis is performed in the original Fortran program and
must find the true data dependencies from the other parts of the program to the
component and vice versa. The variables that create true data dependencies from
the other parts of the program to the component are the input variables to the
component. By the same token, the variables that create true data dependencies
from the component to the other parts of the program are the output variables of
the component.
A taint analysis can solve this problem. In this approach, the variables generated
by one or more sources are propagated through the program and a "leak" is reported
whenever one of those variables reaches a so-called sink. Hence, a taint analysis must
be instantiated in the entry point of the component to treat any global variables
that is shared between the component and he other parts of the original Fortran pro-
gram. A data-flow solver is then required to automatically propagate these variables
through the inter-procedural control-flow graph. Once the solver reaches the end of
the entry point, all the program points that access these variables starting from the
entry point and throughout the paths along which the data-flow information has
been propagated) can be reported.
Figure 9.7 indicates the block diagram of the input and output variables detector
tool.

186

9.1 Support Tools for Static Program Analysis

Input =

Source Code & CFG

of

Original Program

Input =

List of Entry Points

of

Component

Semantic Program Statements
Detector Tool

Data Flow Analysis

Input =

List
of

Shared Variables

Output =

Semantic Program

Statements
added to

Isolated Component

Figure 9.8.: A proposed tool for detecting semantic program statements of a com-
ponent in a Fortran program. This tool is called a semantic program statements
detector.

9.1.2.2. Function VIII: Semantic Program Statements Detector

The eighth tool is a semantic program statements detector. This tool is required
for reusing an extracted component in another Fortran program or integrating an
isolated component to its corresponding carvedout program. The epitome of such
statements are the allocation of the dynamic shared variables that are not captured
by the static program analysis method described in Chapter 6. The semantic pro-
gram statements detector must be able to detect such statements and add them to
the extracted or isolated component. This tool can benefit from a data flow analysis.
Figure 9.8 indicates the block diagram of the semantic program statements detector
tool.

9.1.3. Epilogue

It is an attractive option to build the tools suggested in this section on top of
PhASAR (PhASAR webpage, last access: 17 January 2022). As explained in
Chapter 2, PhASAR offers different algorithms to compute some properties of a
program such as call-graph and data-flow information. These algorithms can pro-
vide the building blocks of the support tools. PhASAR becomes a more interesting
option as it allows for program analysis based on the LLVM intermediate represen-
tation (IR). Thus, the tools built on top of PhASAR can become applicable to any
programming language supported by LLVM including C/C++.

187

Chapter 9 Future Works

LLVM offers a front-end called Flang for compiling Fortran applications. However,
Flang is still a work in progress and not yet able to generate LLVM IR codes (Flang
webpage, last access: 4 May 2022). There is an alternative Fortran compiler called
LFortran, which is a modern open-source (BSD licensed) interactive Fortran com-
piler built on top of LLVM. LFortran is also in development (alpha stage) and its
reliability has not been approved by PhASAR (LFortran official webpage, last access:
4 May 2022).

Furthermore, it is noteworthy that one of the key challenges in building the tools
proposed in this section is how to ensure high precision and efficiency in the static
program analysis. As known from Turing and Rice, all non-trivial properties of
the behavior of programs written in common programming languages are mathe-
matically undecidable (Møller and Schwartzbach, 2012). Reps (2000) shows that
the problem of context-sensitive, structure-transmitted data-dependence analysis is
undecidable for first-order languages (both functional and imperative). He argues
that some questions in the static program analysis often turn out to be undecidable
in their most general forms for several independent reasons (for example, it is un-
decidable whether a given statement is ever executed; it is undecidable whether a
given path is ever executed).

Hence, it would be impossible to create a precise algorithm for context-sensitive,
structure-transmitted data-dependence analysis. This means that automated rea-
soning of software’s behaviour generally must involve approximation by handling
uncertain information. Thus, we need to circumvent undecidability (when building
supporting tools for the required static program analysis discussed in this disserta-
tion) by using useful algorithms that compute approximate, but safe, solutions to
the target problems. In practice, manual interventions may become inevitable to
overcome some uncertainties. For example, function pointers can potentially create
undecidable problems for an automatic call-graph computation if the analyzer is
unsure to which function these pointers are pointing. In such cases, it might safely
assume that all the functions that match the function pointers signature are called.
Consequently, it might decide to add all the matching functions to the call-graph,
thus ruining the precision of the analysis. In these case, resolving the ambiguity
manually may help to improve the precision of the program analysis.

9.2. Improving the concurrent radiation scheme using
machine learning techniques

The second proposal for future works suggests improving the concurrent radiation
scheme by adding a machine learning technique to improve the accuracy of the
atmospheric simulations. In the concurrent radiation scheme, the calculation of
radiative transfer starts one radiation time step earlier. For example in Figure 3.8,
every n time steps are radiation time steps, i.e. ∆t rad = n * ∆t atm. In other

188

9.2 Improving the concurrent radiation scheme using machine learning techniques

words, time steps 1, n+1 and 2n+1 are radiation time steps 1, 2 and 3, respectively.
The calculation of RAD(n+1) starts at time step 1 or the calculation of RAD(2n+1)
starts at time step n+1. However, this time-coupling scheme creates an important
problem as discussed in Chapter 3. In fact, the calculation of radiative transfer
for each radiation time step requires the input data generated by the model at
the same radiation time step. For example, calculating RAD(n+1) requires the
results of the main model at time step n+1. Since the concurrent radiation scheme
starts calculating RAD(n+1) at radiation time step 1 (i.e. one radiation time step
earlier), the model cannot provide the expected input. As a result, RAD(n+1) is
calculated with the model’s results generated at radiation time step 1. In other
words, the radiation component sees a lagging state of the model for calculating
radiative transfer for the next radiation time step. This problem, therefore, affects
the accuracy of the model.

To reduce the negative impact of this problem, one solution could be using machine
learning techniques for estimating the input data of the following radiation time step
based on the model’s results at each radiation time step. A schematic of this solution
is shown in Figure 9.9. As the figure shows, one machine learning block is placed
before calculating radiative transfer to make an estimation of the atmospheric states
at the following radiation time step. For example, at time step n+1, the calculation
of radiative transfer of the next radiation time step (i.e. RAD(2n+1)) starts based
on the current atmospheric state at time step n+1. However, in Figure 9.9, one
machine learning block estimates how the actual atmospheric states would look like
at time step 2n+1 before RAD(2n+1) is calculated.

The proposed machine learning block can fortunately benefit from online learning.
In batch learning, a set of training examples is first collected and the machine learn-
ing algorithm is trained based on the examples later. In some practical problems,
examples arrive sequentially one by one, but the machine leaning algorithm cannot
wait for a training session on the entire example set. This is exactly the situation in
Figure 9.9. The actual atmospheric state required for calculating radiative transfer
is generated sequentially in every radiation time step. However, the machine learn-
ing technique in Figure 9.9 must start making estimations from the first radiation
time step, and, therefore, it should be trained on the actual atmospheric states ar-
riving one by one. This principle is realized in online algorithms, in which the last
arrived example is used for updating parameters of the network. Baysian inference
offers an attractive solution to implement an online learning algorithm regarding
the estimation of the atmospheric states in the concurrent radiation scheme (Opper,
2021). This dissertation does not go further in describing this proposal, but it is
worth mentioning that adding a machine learning block in Figure 9.9 should not
put any burden on the actual computation cost of the concurrent radiation scheme.
This is because the new scheme can potentially take advantage of the idle time
slots of the radiation component (as shown in Figure 3.7) and use the free resources
already assigned to the radiation component (as shown in Figure 9.9).

189

Chapter 9 Future Works

ATM(RAD(1))

MPI
Processes

N
Processes

RAD(4n+1)
N

Processes

ATM(RAD(n+1)) ATM(RAD(2n+1))

 RAD(1) RAD(2n+1) RAD(3n+1)RAD(n+1)RAD(1) ML(n+1)

WAITING

1 Time Steps

n
+

1

2
n

+
1

2 n 2n

ML(2n+1) ML(3n+1)

Figure 9.9.: Using machine learning techniques to estimate the correct input data
for calculating radiative transfer of the following radiation time step.

190

Bibliography

Ahmaro, I., Abualkishik, A. M., and Yusoff, M. Z. M.: Taxonomy, definition, ap-
proaches, benefits, reusability levels, factors and adaption of software reusability:
a review of the research literature, Journal of Applied Sciences, 14, 2396, 2014.

Aida, K. and Casanova, H.: Scheduling mixed-parallel applications with advance
reservations, Cluster Computing, 12, 205–220, 2009.

Alexander, K. and Easterbrook, S. M.: The software architecture of climate models:
a graphical comparison of CMIP5 and EMICAR5 configurations, Geoscientific
Model Development, 8, 1221–1232, 2015.

Alizadeh, O.: Advances and challenges in climate modeling, Climatic Change, 170,
1–26, 2022.

Allen, F. E.: Control flow analysis, ACM Sigplan Notices, 5, 1–19, 1970.

Ampatzoglou, A., Bibi, S., Chatzigeorgiou, A., Avgeriou, P., and Stamelos, I.:
Reusability index: A measure for assessing software assets reusability, in: In-
ternational Conference on Software Reuse, pp. 43–58, Springer, 2018.

Andreas Knuepfer and Others: Score-P - Scalable Performance Measurement In-
frastructure for Parallel Codes, URL http://www.score-p.org, 2022.

ArgonneLab webpage: A quick overview of MPI’s send modes, URL https://www.
mcs.anl.gov/research/projects/mpi/sendmode.html, last access: 17 January
2022.

Asăvoae, I. M., Asăvoae, M., and Riesco, A.: Towards a formal semantics-based
technique for interprocedural slicing, in: International Conference on Integrated
Formal Methods, pp. 291–306, Springer, 2014.

Bai, J. and Zong, X.: Global solar radiation transfer and its loss in the atmosphere,
Applied Sciences, 11, 2651, 2021.

Bal, H. E. and Haines, M.: Approaches for integrating task and data parallelism,
IEEE concurrency, 6, 74–84, 1998.

Balaji, V.: Climate computing: the state of play, Computing in Science & Engineer-
ing, 17, 9–13, 2015.

Balaji, V., Benson, R., Wyman, B., and Held, I.: Coarse-grained component con-
currency in Earth System modeling, 2016.

191

http://www.score-p.org
https://www.mcs.anl.gov/research/projects/mpi/sendmode.html
https://www.mcs.anl.gov/research/projects/mpi/sendmode.html

Bibliography

Baniassad, E. L. and Murphy, G. C.: Conceptual module querying for software
reengineering, in: Proceedings of the 20th international conference on Software
engineering, pp. 64–73, IEEE, 1998.

Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolution of numerical weather
prediction, Nature, 525, 47–55, 2015.

Behrens, J., Hanke, M., and Jahns, T.: How to use MPI communication in highly
parallel climate simulations more easily and more efficiently., EGUGA, p. 13569,
2014.

Bonan, G. B. and Doney, S. C.: Climate, ecosystems, and planetary futures: The
challenge to predict life in Earth system models, Science, 359, eaam8328, 2018.

Cap, C. H.: JIT99: Java Informations Tage 1999, Springer-Verlag, 2013.

Cleanscape webpage: FortranLint static source code analysis tool, URL https:
//stellar.cleanscape.net/products/fortranlint/, last access: 17 January
2022.

Codework webpage: Fortran Static Analyzer, URL https://codework.com/
solutions/developer-tools/forcheck-fortran-analysis/, last access: 17
January 2022.

Cotronei, A. and Slawig, T.: Single-precision arithmetic in ECHAM radiation
reduces runtime and energy consumption, Geoscientific Model Development,
13, 2783–2804, https://doi.org/10.5194/gmd-13-2783-2020, URL https://gmd.
copernicus.org/articles/13/2783/2020/, 2020.

Craig, A., Valcke, S., and Coquart, L.: Development and performance of a new ver-
sion of the OASIS coupler, OASIS3-MCT_3. 0, Geoscientific Model Development,
10, 3297–3308, 2017.

DDM webpage: Domain Decomposition Methods (DDM), URL http://www.ddm.
org/, last access: 4 April 2022.

Deutsches Klimarechenzentrum: Topological sorting, URL https://www.dkrz.de/
de, last access: 4 May 2022.

Durran, D. R.: Numerical methods for fluid dynamics: With applications to geo-
physics, vol. 32, Springer Science & Business Media, 2010.

Durran, D. R.: Numerical methods for wave equations in geophysical fluid dynamics,
vol. 32, Springer Science & Business Media, 2013.

Egele, M., Scholte, T., Kirda, E., and Kruegel, C.: A survey on automated dynamic
malware-analysis techniques and tools, ACM computing surveys (CSUR), 44, 1–
42, 2008.

Flang webpage: Flang Release Notes, URL https://releases.llvm.org/11.0.0/
tools/flang/docs/ReleaseNotes.html, last access: 4 May 2022.

192

https://stellar.cleanscape.net/products/fortranlint/
https://stellar.cleanscape.net/products/fortranlint/
https://codework.com/solutions/developer-tools/forcheck-fortran-analysis/
https://codework.com/solutions/developer-tools/forcheck-fortran-analysis/
https://gmd.copernicus.org/articles/13/2783/2020/
https://gmd.copernicus.org/articles/13/2783/2020/
http://www.ddm.org/
http://www.ddm.org/
https://www.dkrz.de/de
https://www.dkrz.de/de
https://releases.llvm.org/11.0.0/tools/flang/docs/ReleaseNotes.html
https://releases.llvm.org/11.0.0/tools/flang/docs/ReleaseNotes.html

Bibliography

Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S. C., Collins, W., Cox,
P., Driouech, F., Emori, S., Eyring, V., et al.: Evaluation of climate models, in:
Climate change 2013: the physical science basis. Contribution of Working Group
I to the Fifth Assessment Report of the Intergovernmental Panel on Climate
Change, pp. 741–866, Cambridge University Press, 2014.

Gallagher, K. and Binkley, D.: Program slicing, in: 2008 Frontiers of Software
Maintenance, pp. 58–67, IEEE, 2008.

Gholamshahi, S. and Hasheminejad, S. M. H.: Software component identification
and selection: A research review, Software: Practice and Experience, 49, 40–69,
2019.

Giorgetta, M. A., Jungclaus, J., Reick, C. H., Legutke, S., Bader, J., Böttinger,
M., Brovkin, V., Crueger, T., Esch, M., Fieg, K., et al.: Climate and carbon
cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model
Intercomparison Project phase 5, Journal of Advances in Modeling Earth Systems,
5, 572–597, 2013a.

Giorgetta, M. A., Roeckner, E., Mauritsen, T., Bader, J., Crueger, T., Esch, M.,
Rast, S., Kornblueh, L., Schmidt, H., Kinne, S., et al.: The atmospheric general
circulation model ECHAM6-model description, 2013b.

GNU Webpage: GNU Build System, URL https://www.gnu.org, last access: 25
Mar 2022.

Gordon, A., Grace, W., Byron-Scott, R., and Schwerdtfeger, P.: Dynamic meteo-
rology, Routledge, 2016.

GrammaTech webpage: CodeSurferÂ®, URL https://news.grammatech.com/
grammatech-releases-codesurfer-1-6-for-c, last access: 22 Mar 2022.

Grossman, D. and Anderson, R. E.: Introducing parallelism and concurrency in the
data structures course, in: Proceedings of the 43rd ACM technical symposium on
Computer Science Education, pp. 505–510, 2012.

Haslett, J. and Parnell, A.: A simple monotone process with application to
radiocarbon-dated depth chronologies, Journal of the Royal Statistical Society:
Series C (Applied Statistics), 57, 399–418, 2008.

Heidari, M. R., Song, Z., Degregori, E., Behrens, J., and Bockelmann, H.: Concur-
rent calculation of radiative transfer in the atmospheric simulation in ECHAM-
6.3.05p2, Geoscientific Model Development, 14, 7439–7457, https://doi.org/
10.5194/gmd-14-7439-2021, URL https://gmd.copernicus.org/articles/14/
7439/2021/, 2021.

Held, I. M.: The gap between simulation and understanding in climate modeling,
Bulletin of the American Meteorological Society, 86, 1609–1614, 2005.

Hoffner, T.: Evaluation and comparison of program slicing tools, Citeseer, 1995.

193

https://www.gnu.org
https://news.grammatech.com/grammatech-releases-codesurfer-1-6-for-c
https://news.grammatech.com/grammatech-releases-codesurfer-1-6-for-c
https://gmd.copernicus.org/articles/14/7439/2021/
https://gmd.copernicus.org/articles/14/7439/2021/

Bibliography

Hogan, R. J. and Bozzo, A.: Mitigating errors in surface temperature forecasts using
approximate radiation updates, Journal of Advances in Modeling Earth Systems,
7, 836–853, 2015.

Hogan, R. J. and Hirahara, S.: Effect of solar zenith angle specification in models
on mean shortwave fluxes and stratospheric temperatures, Geophysical Research
Letters, 43, 482–488, 2016.

Holton, J. R.: An introduction to dynamic meteorology, American Journal of
Physics, 41, 752–754, 1973.

Ilyina, T., Six, K. D., Segschneider, J., Maier-Reimer, E., Li, H., and Núñez-Riboni,
I.: Global ocean biogeochemistry model HAMOCC: Model architecture and per-
formance as component of the MPI-Earth system model in different CMIP5 exper-
imental realizations, Journal of Advances in Modeling Earth Systems, 5, 287–315,
2013.

Iqbal, M.: An introduction to solar radiation, Elsevier, 2012.

Ito, S.: Semantical equivalence of the control flow graph and the program depen-
dence graph, arXiv preprint arXiv:1803.02976, 2018.

Jones, J.: Abstract syntax tree implementation idioms, in: Proceedings of the 10th
conference on pattern languages of programs (plop2003), pp. 1–10, 2003.

Jungclaus, J., Fischer, N., Haak, H., Lohmann, K., Marotzke, J., Matei, D., Mikola-
jewicz, U., Notz, D., and Von Storch, J.: Characteristics of the ocean simulations
in the Max Planck Institute Ocean Model (MPIOM) the ocean component of the
MPI-Earth system model, Journal of Advances in Modeling Earth Systems, 5,
422–446, 2013.

Kalkuhl, M. and Wenz, L.: The impact of climate conditions on economic pro-
duction. Evidence from a global panel of regions, Journal of Environmental Eco-
nomics and Management, 103, 102 360, https://doi.org/https://doi.org/10.1016/
j.jeem.2020.102360, URL https://www.sciencedirect.com/science/article/
pii/S0095069620300838, 2020.

Kaur, A. and Nayyar, R.: A comparative study of static code analysis tools for vul-
nerability detection in c/c++ and java source code, Procedia Computer Science,
171, 2023–2029, 2020.

Khaldi, D., Jouvelot, P., Ancourt, C., and Irigoin, F.: Task parallelism and data
distribution: An overview of explicit parallel programming languages, in: In-
ternational Workshop on Languages and Compilers for Parallel Computing, pp.
174–189, Springer, 2012.

Kim, Y., Dennis, J., Kerr, C., Kumar, R. R. P., Simha, A., Baker, A., and Mick-
elson, S.: KGEN: A Python tool for automated Fortran kernel generation and
verification, Procedia Computer Science, 80, 1450–1460, 2016.

194

https://www.sciencedirect.com/science/article/pii/S0095069620300838
https://www.sciencedirect.com/science/article/pii/S0095069620300838

Bibliography

Kreowski, H.-J.: Is parallelism already concurrency? Part 1: Derivations in graph
grammars, in: International Workshop on Graph Grammars and Their Applica-
tion to Computer Science, pp. 343–360, Springer, 1986.

Lasslop, G., Moeller, T., D’Onofrio, D., Hantson, S., and Kloster, S.: Tropical
climate–vegetation–fire relationships: multivariate evaluation of the land surface
model JSBACH, Biogeosciences, 15, 5969–5989, 2018.

Lattner, C.: LLVM and Clang: Next generation compiler technology, in: The BSD
conference, vol. 5, 2008.

Lawson, J. R., Potvin, C. K., Skinner, P. S., and Reinhart, A. E.: The vice and virtue
of increased horizontal resolution in ensemble forecasts of tornadic thunderstorms
in low-CAPE, high-shear environments, Monthly Weather Review, 149, 921–944,
2021.

LFortran official webpage: Lfortran, URL https://lfortran.org/, last access: 4
May 2022.

Li, B., Nychka, D. W., and Ammann, C. M.: The value of multiproxy reconstruction
of past climate, Journal of the American Statistical Association, 105, 883–895,
2010.

Lin, Y., Sun, J., Tran, L., Bai, G., Wang, H., and Dong, J.: Break the dead end
of dynamic slicing: Localizing data and control omission bug, in: Proceedings of
the 33rd ACM/IEEE international conference on automated software engineering,
pp. 509–519, 2018.

Liu, M.: Inter-Procedural Program Slicing in LLVM, URL https://marc.info/
?l=llvm-dev&m=136712747610842&q=p6, 2013.

LLVM webpage: The LLVM Compiler Infrastructure, URL https://llvm.org/,
last access: 17 January 2022.

Lopes, B. C. and Auler, R.: Getting started with LLVM core libraries, Packt Pub-
lishing Ltd, 2014.

Lyle, J. R. and Wallace, D. R.: Using the unravel program slicing tool to evaluate
high integrity software, Technology, 301, 975–3270, 1997.

Makka, S. and Sagar, B.: A New Approach for Optimization of Program Dependence
Graph using Finite Automata, Indian Journal of Science & Technology, 9, 2016.

Mann, C. C.: The end of Moore’s law?, Technology Review, 103, 42–42, 2000.
Marx, A., Beck, F., and Diehl, S.: Computer-aided extraction of software compo-
nents, in: 2010 17th Working Conference on Reverse Engineering, pp. 183–192,
IEEE, 2010.

Mastroeni, I. and Zanardini, D.: Abstract program slicing: An abstract
interpretation-based approach to program slicing, ACM Transactions on Com-
putational Logic (TOCL), 18, 1–58, 2017.

195

https://lfortran.org/
https://marc.info/?l=llvm-dev&m=136712747610842&q=p6
https://marc.info/?l=llvm-dev&m=136712747610842&q=p6
https://llvm.org/

Bibliography

Masud, A. N. and Lisper, B.: Semantic correctness of dependence-based slicing for
interprocedural, possibly nonterminating programs, ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), 42, 1–56, 2021.

Max-Plank-Institute fuer Meteorologie: The Climate Data Operators (CDO), URL
https://code.mpimet.mpg.de/projects/cdo, last access: 17 January 2022.

Meurant, G.: Insect Outbreaks, Elsevier Science, URL https://books.google.de/
books?id=v2Hz2blt61IC, 2012.

Møller, A. and Schwartzbach, M. I.: Static program analysis, Notes. Feb, 2012.
Morcrette, J.-J.: On the effects of the temporal and spatial sampling of radiation
fields on the ECMWF forecasts and analyses, Monthly weather review, 128, 876–
887, 2000.

Morcrette, J.-J., Mozdzynski, G., and Leutbecher, M.: A reduced radiation grid
for the ECMWF Integrated Forecasting System, Monthly weather review, 136,
4760–4772, 2008.

MPI official webpage: MPI Forum, URL https://www.mpi-forum.org/, last ac-
cess: 4 April 2022.

MPICH webpage: MPI Intercommunication, URL https://www.mpich.org/
static/docs/v3.3/www3/MPI-Intercomm-create.html, last access: 17 January
2022.

Müller, W. A., Jungclaus, J. H., Mauritsen, T., Baehr, J., Bittner, M., Budich, R.,
Bunzel, F., Esch, M., Ghosh, R., Haak, H., et al.: A higher-resolution version
of the Max Planck institute earth system model (MPI-ESM1. 2-HR), Journal of
Advances in Modeling Earth Systems, 10, 1383–1413, 2018.

Myers, D. R.: Solar radiation: practical modeling for renewable energy applications,
CRC press, 2017.

Nguyen, H. V., Kästner, C., and Nguyen, T. N.: Cross-language program slicing
for dynamic web applications, in: Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, pp. 369–380, 2015.

Nielsen, F.: Introduction to MPI: the message passing interface, in: Introduction to
HPC with MPI for Data Science, pp. 21–62, Springer, 2016.

N’Takpe, T., Suter, F., and Casanova, H.: A Comparison of Scheduling Approaches
for Mixed-Parallel Applications on Heterogeneous Platforms, in: Sixth Interna-
tional Symposium on Parallel and Distributed Computing (ISPDC’07), pp. 35–35,
https://doi.org/10.1109/ISPDC.2007.1, 2007.

Opper, M.: A Bayesian Approach to Online Learning, Aston University Birming-
ham, 2021.

Ottenstein, K. J. and Ottenstein, L. M.: The program dependence graph in a soft-
ware development environment, in: ACM Sigplan Notices, vol. 19, pp. 177–184,
ACM, 1984.

196

https://code.mpimet.mpg.de/projects/cdo
https://books.google.de/books?id=v2Hz2blt61IC
https://books.google.de/books?id=v2Hz2blt61IC
https://www.mpi-forum.org/
https://www.mpich.org/static/docs/v3.3/www3/MPI-Intercomm-create.html
https://www.mpich.org/static/docs/v3.3/www3/MPI-Intercomm-create.html

Bibliography

PalMod webpage: PalMod official webpage, URL https://www.palmod.de, last
access: 17 January 2022.

Parkhomenko, V.: Modeling of global and regional climate response to solar radia-
tion management, in: Journal of Physics: Conference Series, vol. 1141, p. 012057,
IOP Publishing, 2018.

Pauluis, O. and Emanuel, K.: Numerical instability resulting from infrequent calcu-
lation of radiative heating, Monthly weather review, 132, 673–686, 2004.

PhASAR webpage: An LLVM-based static analysis framework written in C++,
URL https://phasar.org/phasar/, last access: 17 January 2022.

Pincus, R. and Stevens, B.: Paths to accuracy for radiation parameterizations in
atmospheric models, Journal of Advances in Modeling Earth Systems, 5, 225–233,
2013.

Radulescu, A. and Van Gemund, A. J.: A low-cost approach towards mixed task
and data parallel scheduling, in: International Conference on Parallel Processing,
2001., pp. 69–76, IEEE, 2001.

Radulescu, A., Nicolescu, C., Jonker, P. P., et al.: CPR: Mixed task and data
parallel scheduling for distributed systems, in: Proceedings 15th International
Parallel and Distributed Processing Symposium. IPDPS 2001, pp. 9–pp, IEEE,
2001.

Rasp, S.: Statistical methods and machine learning in weather and climate modeling,
Ph.D. thesis, lmu, 2019.

Ravitch, T.: How WLLVM works, URL https://github.com/travitch/
whole-program-llvm, 2022.

Reps, T.: Undecidability of context-sensitive data-dependence analysis, ACM Trans-
actions on Programming Languages and Systems (TOPLAS), 22, 162–186, 2000.

Roeckner, E., Bäuml, G., Bonaventura, L., Brokopf, R., Esch, M., Giorgetta, M.,
Hagemann, S., Kirchner, I., Kornblueh, L., Manzini, E., et al.: The atmospheric
general circulation model ECHAM 5. PART I: Model description, 2003.

Salby, M. L.: Fundamentals of atmospheric physics, Elsevier, 1996.

Sasirekha, N., Robert, A. E., and Hemalatha, D. M.: Program slicing techniques
and its applications, arXiv preprint arXiv:1108.1352, 2011.

Schär, C., Fuhrer, O., Arteaga, A., Ban, N., Charpilloz, C., Di Girolamo, S., Hent-
gen, L., Hoefler, T., Lapillonne, X., Leutwyler, D., et al.: Kilometer-scale climate
models: Prospects and challenges, Bulletin of the American Meteorological Soci-
ety, 101, E567–E587, 2020.

SciTools: Understand, URL https://www.scitools.com, last access: 17 January
2022.

197

https://www.palmod.de
https://phasar.org/phasar/
https://github.com/travitch/whole-program-llvm
https://github.com/travitch/whole-program-llvm
https://www.scitools.com

Bibliography

Shatnawi, A., Mili, H., El Boussaidi, G., Boubaker, A., Guéhéneuc, Y.-G., Moha, N.,
Privat, J., and Abdellatif, M.: Analyzing program dependencies in java ee appli-
cations, in: 2017 IEEE/ACM 14th International Conference on Mining Software
Repositories (MSR), pp. 64–74, IEEE, 2017.

Shipman, G. M.: Programming Models in HPC, Tech. rep., Los Alamos National
Lab.(LANL), Los Alamos, NM (United States), 2016.

Singh, A. P. and Tomar, P.: Estimation of component reusability through reusability
metrics, International Journal of Computer, Electrical, Automation, Control and
Information Engineering, 8, 1965–1972, 2014.

Smith, K. and Appelbe, B.: Interactive conversion of sequential to multitasking
FORTRAN, in: Proceedings of the 3rd international conference on Supercomput-
ing, pp. 225–234, ACM, 1989.

Smith, K. S.: Pat: an interactive fortran parallelizing assistant tool, 1988.

SourceForge webpage: JSlice Program Slicer, URL http://jslice.sourceforge.
net/, last access: 17 January 2022a.

SourceForge webpage: WALA Program Slicer, URL http://wala.sourceforge.
net/wiki/index.php/UserGuide:Slicer, last access: 17 January 2022b.

Srinivasan, V. and Reps, T.: An improved algorithm for slicing machine code, ACM
SIGPLAN Notices, 51, 378–393, 2016.

Stevens, B., Giorgetta, M., Esch, M., Mauritsen, T., Crueger, T., Rast, S., Salz-
mann, M., Schmidt, H., Bader, J., Block, K., et al.: Atmospheric component of
the MPI-M Earth system model: ECHAM6, Journal of Advances in Modeling
Earth Systems, 5, 146–172, 2013.

Stocker, T.: Climate change 2013: the physical science basis: Working Group I
contribution to the Fifth assessment report of the Intergovernmental Panel on
Climate Change, Cambridge university press, 2014.

Suter, F.: Scheduling ∆Critical Tasks in mixed-parallel applications on a national
grid, IEEE, 2007.

Sweeney, J., Salter-Townshend, M., Edwards, T., Buck, C. E., and Parnell, A. C.:
Statistical challenges in estimating past climate changes, Wiley Interdisciplinary
Reviews: Computational Statistics, 10, e1437, 2018.

Tabari, H., De Troch, R., Giot, O., Hamdi, R., Termonia, P., Saeed, S., Brisson,
E., Van Lipzig, N., and Willems, P.: Local impact analysis of climate change
on precipitation extremes: are high-resolution climate models needed for realistic
simulations?, Hydrology and Earth System Sciences, 20, 3843–3857, 2016.

Thapar, S. S. and Sarangal, H.: Quantifying reusability of software components us-
ing hybrid fuzzy analytical hierarchy process (FAHP)-Metrics approach, Applied
Soft Computing, 88, 105 997, 2020.

198

http://jslice.sourceforge.net/
http://jslice.sourceforge.net/
http://wala.sourceforge.net/wiki/index.php/UserGuide:Slicer
http://wala.sourceforge.net/wiki/index.php/UserGuide:Slicer

Bibliography

Theis, T. N. and Wong, H.-S. P.: The end of moore’s law: A new beginning for
information technology, Computing in Science & Engineering, 19, 41–50, 2017.

UCAR Community Programs: Network Common Data Form (NetCDF), URL
https://www.unidata.ucar.edu/software/netcdf/, last access: 19 Mar 2022.

Wallace, J. M. and Hobbs, P. V.: Atmospheric science: an introductory survey,
vol. 92, Elsevier, 2006.

Wang, D., Post, W., and Wilson, B.: Climate change modeling: Computational
opportunities and challenges, Computing in Science & Engineering, 13, 36–42,
2010.

Washington, W. M., Buja, L., and Craig, A.: The computational future for climate
and Earth system models: on the path to petaflop and beyond, Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering
Sciences, 367, 833–846, 2009.

Washizaki, H. and Fukazawa, Y.: A technique for automatic component extraction
from object-oriented programs by refactoring, Science of Computer programming,
56, 99–116, 2005.

WDC-Climate: The source code of the atmospheric model ECHAM6 prepared for
performing experiments with both the clasical and concurrent radiation schemes,
URL https://doi.org/10.35089/WDCC/SC_PalMod_ECHAM6/, 2022.

Wedi, N. P.: Increasing horizontal resolution in numerical weather prediction and
climate simulations: illusion or panacea?, Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering Sciences, 372, 20130 289, 2014.

Weiser, M.: Program slicing, IEEE Transactions on software engineering, pp. 352–
357, 1984.

Wikipedia: Flynn’s taxonomy, URL https://en.wikipedia.org/wiki/Flynn%
27s_taxonomy#cite_note-autogenerated1-16, last access: 17 January 2022.

Wikipedia: Concurrent Computing, URL https://en.wikipedia.org/wiki/
Concurrentcomputing, last access: 31 March 2022a.

Wikipedia: Parallel Computing, URL https://en.wikipedia.org/wiki/
Parallel_computing, last access: 31 March 2022b.

Wikipedia: SPMD, URL https://en.wikipedia.org/wiki/SPMD, last access: 4
April 2022.

Wikipedia: Topological sorting, URL https://en.wikipedia.org/wiki/
Topological_sorting, last access: 4 May 2022.

Wilde, N.: Understanding program dependencies, Citeseer, 1990.
Wilson, R., French, R., Wilson, C., Amarasinghe, S., Anderson, J., Tjiang, S., Liao,
S.-W., Tseng, C.-W., Hall, M., Lam, M., et al.: An overview of the SUIF compiler
system, Unpublished manuscript, Stanford University, 1995.

199

https://www.unidata.ucar.edu/software/netcdf/
https://doi.org/10.35089/WDCC/SC_PalMod_ECHAM6/
https://en.wikipedia.org/wiki/Flynn%27s_taxonomy#cite_note-autogenerated1-16
https://en.wikipedia.org/wiki/Flynn%27s_taxonomy#cite_note-autogenerated1-16
https://en.wikipedia.org/wiki/Concurrentcomputing
https://en.wikipedia.org/wiki/Concurrentcomputing
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/SPMD
https://en.wikipedia.org/wiki/Topological_sorting
https://en.wikipedia.org/wiki/Topological_sorting

Bibliography

Xu, K.-M. and Randall, D. A.: Impact of interactive radiative transfer on the macro-
scopic behavior of cumulus ensembles. Part I: Radiation parameterization and
sensitivity tests, Journal of the atmospheric sciences, 52, 785–799, 1995.

Zenodo Repository: The output results from the experiments performed by the
atmospheric model ECHAM6 using both both the clasical and concurrent radi-
ation schemes, URL https://doi.org/10.5281/zenodo.4589140/, last access:
17 January 2022.

200

https://doi.org/10.5281/zenodo.4589140/

A. List of Publications

Some parts of this dissertation have already been published in the following journal
paper:

Heidari, M. R., Song, Z., Degregori, E., Behrens, J., and Bock-
elmann, H.: Concur- rent calculation of radiative transfer in the at-
mospheric simulation in ECHAM- 6.3.05p2, Geoscientific Model Devel-
opment, 14, 7439–7457, https://doi.org/ 10.5194/gmd-14-7439-2021, URL
https://gmd.copernicus.org/articles/14/ 7439/2021/, 2021.

201

B. Eidesstattliche Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit selbstständig
und ohne fremde Hilfe verfasst und keine anderen als die angegebenen Quellen
und Hilfsmittel verwendet habe. Alle Stellen, die wörtlich oder sinngemäß aus
Veröffentlichungen entnommen wurden, wurden als solche kenntlich gemacht.

Diese Versicherung bezieht sich auch auf alle in der Arbeit enthaltenen Grafiken,
Zeichnungen und andere bildliche Darstellungen.

Diese Doktorarbeit wurde bisher keiner anderen Prüfungsbehörde vorgelegt.

____________________ ____________________
Ort, Datum Unterschrift

203

	Contents
	1 Introduction
	1.1 Climate Models
	1.1.1 The Atmospheric Model ECHAM6
	1.1.2 Computational Challenges of Climate Modeling

	1.2 Motivation
	1.2.1 The primary motivation
	1.2.2 The general motivation

	1.3 Goals of this Thesis
	1.3.1 The primary goals
	1.3.2 The general goal

	1.4 Outline of the thesis
	1.5 Chapter Summary

	2 Background and Related Works
	2.1 Background and related works to the primary goals
	2.1.1 Concurrency in ECHAM6
	2.1.2 Coarse-grained Component Concurrency: A new level of parallelism

	2.2 Background and related works to the general goal
	2.3 Reusable Component Extraction
	2.4 Program Analysis
	2.5 Program Slicing
	2.6 Chapter Summary

	3 The Concurrent Radiation Scheme
	3.1 Radiative transfer in atmosphere
	3.2 Classical Radiation Scheme in ECHAM6
	3.2.1 Impact of MPI processes on the radiation cost
	3.2.2 Impact of temporal resolution on the radiation cost
	3.2.3 Impacts of larger temporal and spatial resolutions on accuracy
	3.2.4 Sequential Component Organization: Root of problems

	3.3 Concurrent Radiation Scheme
	3.4 Arbitrary Domain Decomposition
	3.4.1 Benefits

	3.5 Chapter Summary

	4 Implementation of the Concurrent Radiation Scheme
	4.1 Implementation procedure of Primary Goal 1
	4.1.1 Extracting the radiation component from ECHAM6
	4.1.2 Isolating the radiation component in ECHAM6
	4.1.3 Re-integration of the isolated radiation component and carvedout model

	4.2 Implementation procedure of Primary Goal 2
	4.2.1 Separating threads of execution
	4.2.2 Choosing the concurrency model
	4.2.3 Synchronization
	4.2.4 The full implementation

	4.3 The External Goal
	4.4 Chapter Summary

	5 Performance Results
	5.1 Methodology
	5.2 Experiments Setups
	5.3 The Profiling Approach
	5.4 Step 1: Performance measurement
	5.5 Step 2: Performance tuning
	5.5.1 Measuring communication overhead
	5.5.2 Measuring the idle times
	5.5.3 Discussions
	5.5.4 Resource efficiency

	5.6 Chapter Summary

	6 Component Isolation
	6.1 Definition of a Component
	6.2 Examples of a Component
	6.3 Variants of a Component
	6.3.1 The type of a component
	6.3.2 The width of a component
	6.3.3 Program Sharing
	6.3.4 The depth of a component
	6.3.5 Epilogue

	6.4 Definition of Component Extraction and Isolation
	6.4.1 Definition of Component Extraction
	6.4.2 Definition of Component Isolation

	6.5 Implementation of Component Isolation
	6.5.1 Implementation I: A simple model
	6.5.2 Implementation II: an incremental procedure
	6.5.3 Implementation III: handling shared namespaces
	6.5.4 Implementation IV: removing dead contents
	6.5.5 Implementation V: NDG graph

	6.6 Examples of Component Isolation
	6.6.1 Example 1
	6.6.2 Example 2
	6.6.3 Example 3
	6.6.4 Example 4

	6.7 Extracting implicit coupling fields
	6.7.1 Step 1
	6.7.2 Step 2
	6.7.3 Step 3
	6.7.4 Step 4
	6.7.5 Adapting Component Isolation
	6.7.6 Example 5

	6.8 Chapter Summary

	7 Validation and Evaluation
	7.1 Validation of the general goal
	7.1.1 Syntactic validation
	7.1.2 Semantic validation
	7.1.3 Incremental validation

	7.2 Validation of Primary Goal 1
	7.3 Validation of Primary Goal 2
	7.4 Chapter Summary

	8 Summary and Conclusion
	8.1 Summary
	8.2 Conclusion

	9 Future Works
	9.1 Support Tools for Static Program Analysis
	9.1.1 Component Extraction and Isolation Tools
	9.1.2 Re-integration Tools
	9.1.3 Epilogue

	9.2 Improving the concurrent radiation scheme using machine learning techniques

	Bibliography
	A List of Publications
	B Eidesstattliche Erklärung

