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Abstract

In order to enable optimal treatment decisions, physicians can be supported by

clinical decision support systems. These aim at providing accurate and objective

disease prognoses, e.g., for cancer patients. One of the most prevalent cancers

in Germany is prostate cancer. Up to today, prostate cancer severity is, to a

large extent, assessed by pathologists from histopathology images by assigning

so-called Gleason grades. Since these suffer from high interobserver variability,

algorithms for automated tissue analysis have been proposed in the literature.

However, these suffer from uncertain and subjective annotations. To eliminate

the need for subjective annotations, relapse-free survival times can be predicted

as an objective end-point for treatment decision support. Knowing how long a

patient lives relapse-free can reduce over- and under-treatment.

Therefore, in this thesis, the topic of automated estimation of relapse times

from histopathology images is explored. A literature overview reveals the short-

comings of current approaches to Gleason grade and survival prediction and why

a new approach needs to be developed for the given problem statement. In par-

ticular, an artificial neural network named eCaReNet (explainable cancer relapse

prediction network) is developed, which uses digitized tissue microarray spots

extracted after prostatectomy as input and predicts relapse-free survival curves.

Multiple datasets are available to train and evaluate the neural network.

In comparison to current state-of-the-art methods, eCaReNet allows for ac-

curate individual survival prediction and outputs biologically reasonable survival

curves. It further stratifies patients into up to eight distinct risk groups, in con-

trast to the usual two to three groups that are stratified in the literature. Also,

eCaReNet reaches predictive performance similar to a pathologist, while having

access to only a small part of prostate tissue. It is further shown that the patholo-

gist can be outperformed when adding the additional patient parameters prostate-

specific antigen (PSA) value, tumor diameter, and volume in addition to the input

image.
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To integrate a decision support system in clinical workflows, model explainabil-

ity and robustness to unseen dataset biases are necessary since the variation in the

data encountered in a clinic might be greater than in the training dataset. Thus,

an ad-hoc explainability is included, which reveals the amount of influence different

image regions have on the final prediction. This approach can support pathologists

by showing which region to focus on and can build trust in the model’s predic-

tions. Furthermore, this work presents an extensive evaluation of the robustness

to different data acquisition protocols, which reveals the sensitivity of eCaReNet

to dataset biases. An approach for out-of-distribution detection proves proper to

assign uncertainty scores to images and decide whether an image is in-distribution

or out-of-distribution. It is further proposed to transfer the training dataset color

bias to out-of-distribution images with an extension of histogram matching and

Macenko adaptation. It is shown that this color adaptation improves results on

datasets that mostly include uncertain images.

This thesis provides both a thorough analysis of the state of the art in prostate

cancer classification and survival analysis from a multidisciplinary perspective and

a proof-of-concept study. It also serves as a starting point for further evaluations

on how to obtain robust and accurate survival predictions from histopathology

prostate cancer images.

ii



Zusammenfassung

Systeme zur klinischen Entscheidungsunterstützung (vgl. Englisch, “clinical de-

cision support systems”) unterstützen Ärzte und Pathologen im Klinikalltag, in-

dem sie Patientendaten automatisiert auswerten. Sie sind in der Lage objek-

tive Prognosen zu erstellen und Therapieentscheidungen zu unterstützen, beispiel-

sweise bei Krebserkrankungen. Eine der häufigsten Krebsarten in Deutschland ist

Prostatakrebs. Um den Schweregrad eines Prostatakrebses zu bestimmen und da-

rauf basierend eine Therapieentscheidung zu treffen, analysiert ein Pathologe einen

Teil des Prostatagewebes und klassifiziert es mit dem sogenannten Gleason-Score.

Da dieser jedoch sehr subjektiv ist und eine hohe Varianz zwischen Pathologen

aufweist, werden derzeit computerbasierte Systeme zur Unterstützung der Glea-

son Klassifikation erforscht. Allerdings sind diese Systeme dadurch begrenzt, dass

sie nur die subjektiven Annotationen von Pathologen lernen können. Um von

dieser Subjektivität unabhängig zu werden, wird die rückfallfreie Überlebenszeit

als objektiver Endpunkt für eine Entscheidungsunterstützung bevorzugt. Wenn

vorhergesagt werden kann wie lange ein Patient überlebt ohne ein Rezidiv zu erlei-

den, können Über- und Unterbehandlungen von Prostatakrebspatienten verringert

werden.

In dieser Arbeit wird daher untersucht, inwieweit eine automatisierte Vorher-

sage von Rückfallzeiten von Prostatakrebspatienten möglich ist. Mit eCaReNet

(explainable cancer relapse prediction network, erklärbares Modell zur Vorhersage

von Krebsrezidiven) wird ein künstliches neuronales Netz entwickelt, welches di-

gitalisierte Histopathologie-Bilder verarbeitet, um daraus die Wahrscheinlichkeit

eines Prostatarezidivs über die Zeit zu prognostizieren.

Eine ausführliche Untersuchung von eCaReNet zeigt die Vorteile gegenüber

derzeitigen Überlebenszeitmodellen auf. Insbesondere ermöglicht eCaReNet eine

individuelle, präzise und erklärbare Prognose über einen Zeitraum von sieben

Jahren nach der operativen Entfernung der Prostata. Verglichen mit dem der-

zeitigen Stand der Technik sticht eCaReNet heraus, da eine Risikostratifizierung

in bis zu 8 statt der üblichen 2-3 Risikogruppen ermöglicht wird und biologisch

realistische Überlebenszeitkurven vorhergesagt werden. Im Vergleich mit der Klas-

sifizierung durch einen erfahrenen Pathologen erreicht eCaReNet eine äquivalente

Differenzierung der Patienten. Es wird ebenfalls gezeigt, dass eCaReNets Pro-

gnosen durch Zugabe eines zweiten Bildes oder klinischer Daten (PSA-Wert, Tu-

mordurchmesser und -volumen), zusätzlich verbessert werden können. Wenn kli-

nische Daten hinzugenommen werden, übertrifft eCaReNet sogar den Pathologen
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in seiner Klassifizierung.

Um den Einsatz von Modellen zur Entscheidungsunterstützung in Kliniken

zu ermöglichen, sind sowohl Robustheit als auch Erklärbarkeit unerlässlich. Mit

einer eingebauten ad-hoc Erklärbarkeit zeigt eCaReNet an, welche Region des

Bildes die Entscheidung wie stark beeinflusst. Dies ermöglicht dem Pathologen,

die Entscheidungsunterstützung kritisch zu bewerten und zu entscheiden, ob der

Prognose vertraut werden kann.

Verglichen mit den zum Anlernen des Modells genutzten Trainingsdatensätzen,

können die Daten, die im Klinikalltag verarbeitet werden sollen, vorher nicht beob-

achtete Variationen aufweisen (zum Beispiel durch Unterschiede in der Gewebe-

aufbereitung). Da sich die Vorhersagegenauigkeit eines neuronalen Netzes auf

unbekannten Daten verringern kann, muss die Robustheit und Generalisierbarkeit

genauestens untersucht werden. Eine Untersuchung der Robustheit auf Prostata-

krebsdatensätzen mit verschiedenen Protokollen zur Aufbereitung und Digital-

isierung von Gewebe zeigt, dass insbesondere unterschiedliche Färbungen durch

die Digitalisierung oder dünn geschnittenes Gewebe die Genauigkeit von eCaReNet

verschlechtern. Die Unsicherheit der Vorhersage kann mittels eines sogenannten

OOD (out-of-distribution, außerhalb der Verteilung) Ansatzes approximiert wer-

den. Es wird vorgeschlagen, Bilder, auf denen keine sichere Vorhersage möglich

ist da sie sich außerhalb der Verteilung der Trainingsbilder befinden, durch eine

gezielte Änderung der Farbe dem Trainingsdatensatz anzupassen. Eine Kombina-

tion aus Anpassung des Histogramms und Macenko Normalisierung trägt dazu bei,

dass die Vorhersagegenauigkeit auf Datensätzen mit überwiegend ,,OOD”-Bildern

verbessert wird.

Insgesamt präsentiert diese Arbeit eine Machbarkeitsstudie zur Überlebenszeit-

analyse von Prostatakrebspatienten auf Grundlage von Histopathologie-Bildern.

Sie zeigt eine systematische Herangehensweise auf, um solch ein Vorhersagemodell

zu erstellen und zu analysieren. Diese Arbeit soll als Ausgangspunkt zur Er-

forschung robuster und objektiver Überlebenszeitanalysen dienen.
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Chapter 1

Introduction

1.1 Motivation

Computational pathology is a branch of pathology that attempts to automate the

disease study of patient specimens (Abels et al., 2019). With the introduction of

large tissue scanners and parallel progress in computer vision algorithms, auto-

mated analysis of cancer tissue to extract relevant information for decision support

has emerged. Using computer-based models to automatically analyze cancer tissue

opens up a wide range of opportunities, from increasing objectivity and decreasing

time for cancer staging to enabling better treatment decisions and discovering new

image features (Abels et al., 2019; Li et al., 2021). One often-studied cancer type

is prostate cancer. It affects every 8th male in Germany, and regular screening pro-

grams allow detection at a stage when curative treatment is still possible (RKI,

2021; Luiting and Roobol, 2019). In order to evaluate the cancer aggressiveness,

pathologists assign Gleason scores to prostate cancer tissue. Since Gleason grad-

ing suffers from high interobserver-variability, automated prostate cancer staging

models have been developed in the last years to enable objective and accurate

Gleason grade predictions (Egevad et al., 2012; Arvaniti et al., 2018; Bulten et al.,

2020; Nagpal et al., 2019; Ström et al., 2020). However, an algorithm trained

on subjective pathologist annotations can only learn to emulate those. Thus it

cannot learn to outperform the pathologist who provided the annotations, which

limits such a model’s applicability to treatment decision support. Furthermore,

the Gleason score considers the size and shape of the glands but does not include

all information within the tissue, as it, e.g., neglects the size or shape of nuclei

(Egevad et al., 2012). Also, Gleason patterns can stratify patients only into a

few discrete groups, leaving no room for individualized predictions. For optimal

treatment recommendations, estimation of an individual and objective endpoint,

e.g., life expectancy, is preferable (Cheon et al., 2016).

This thesis addresses survival prediction for prostate cancer patients from histo-

pathology images. In particular, an artificial neural network (ANN) to predict
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patient’s relapse-free survival curves after prostatectomy is developed. In the con-

text of this thesis and following the convention in, e.g., Kamran and Wiens (2021),

Haider et al. (2020) and Kleinbaum and Klein (2012), a survival curve models the

probability that a patient remains relapse-free across time, which is termed sur-

vival probability. Digitized prostate cancer histopathology image datasets are

available for this task. In clinical practice, such a network should process images

obtained from a biopsy to support decisions for or against cancer treatments.

The schematic view of survival prediction with ANNs from patient data in Fig-

ure 1.1.1 illustrates possible survival model inputs and the desired output. The left

side depicts possible input features, like a histopathology image or the patient’s

age. These inputs are processed in an ANN to output survival probabilities over

time.
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Figure 1.1.1: Schematic workflow for prostate cancer survival prediction with
a neural network. As network input, images and clinical patient features can
be included. The output is a predicted relapse-free survival curve over time.
H&E: hematoxylin and eosin, PSA: prostate-specific antigen.

From a clinical perspective, survival prediction is a meaningful topic since

pathologists have to manually analyze and grade prostate cancer tissue today,

which is both time-consuming and subjective (Egevad et al., 2012). Furthermore,

the staging only indirectly links to patient survival, and if clinicians do directly

estimate a patient’s survival time, they often overestimate it (Cheon et al., 2016).

Healthcare professionals and patients can benefit from better prognoses to avoid

over- and under-treatment (Cheon et al., 2016).

From a technical perspective, survival prediction is a relevant task since it has

not been explored much on histopathology images. Many researchers simplify sur-
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vival prediction to a binary task of whether a patient relapses within a given time

or not (Huang et al., 2022; Kumar et al., 2017; Yamamoto et al., 2019). However,

it is challenging to estimate the relapse probability over time. Difficulties comprise

that patients that do not relapse need to be considered. Furthermore, images may

not capture all information that affects relapse times. Also, survival model evalu-

ation is complex since the underlying survival probability per individual patient is

unknown. With clinical applicability in mind, the model is supposed to be robust

toward small dataset biases. Up to today, ensuring robustness is still a challenge

in computer vision (Marini et al., 2021a).

This thesis presents a model development path from data preparation over

model selection, adaptation, and optimization to generalizability and robustness.

An application-oriented perspective is used throughout the thesis since it can only

focus on parts of all necessary steps from model development to deployment. In the

first step, a model for prostate cancer staging is developed, which predicts Gleason

patterns. That model will be extended to a model that predicts accurate survival

curves in the second step. In the third step, the model robustness is explored.

From data acquisition to model inference, sources of noise, bias, and uncertainty

will be revealed. Possible limitations that might influence the performance, such

as tissue staining, will be identified and analyzed. The aim is to build a model

that is robust to differences in dataset bias. As stated above, the entire search

space for a fully-fledged solution toward survival prediction and robustness has to

be narrowed to a size feasible for this thesis in accordance with its exploratory

nature.

1.2 Research questions

The leading question of this thesis is “How good can a deep learning model predict

survival probabilities for a given dataset, and what are the limitations regarding

robustness to differences in data acquisition protocols?”. It is split into four re-

search questions that will guide this thesis and are outlined in the following:

R1: What is the current state of the art in survival prediction from med-

ical images? A broad overview of current state-of-the-art methods is needed as

a starting point for the research in this thesis. It needs to be analyzed how prostate

cancer stratification and survival prediction are currently approached in the liter-

ature. Further, it is of interest to investigate whether there is a single promising
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approach that should be used as a model base. This literature research is a starting

point to build and improve a survival prediction model.

R2: To what degree can Gleason patterns be predicted accurately in the

given dataset of digitized prostate tissue? Currently, a pathologist assigns

Gleason scores to prostate tissue for grading. Here, it is hypothesized that a deep

learning model can also reach a high accuracy in Gleason grading. To answer this

research question, a deep learning model for Gleason classification will be derived

from state-of-the-art models, trained, and optimized on the given data. It will

be evaluated with different metrics and compared to a pathologist’s annotation

as ground truth. Therefore, in the best case, the model performs as well as the

pathologist.

R3: Can relapse-free survival probability over time after prostatectomy

be predicted for individual prostate cancer patients based solely on

histopathology images showing part of prostate tissue? For a patient, it

is relevant whether a treatment like a prostatectomy is successful and how likely

a relapse may occur afterward. The Gleason score, which is purely based on

histopathology images, is already highly correlated with prostate cancer relapse

but has several flaws. It is hypothesized that an ANN can accurately predict

the probability of prostate cancer relapse-free survival over time for individual

patients. In order to investigate this research question, a deep learning survival

prediction model will be developed, which outputs individual relapse-free survival

curves per patient. For evaluation, the predictions will be compared to the ground

truth, namely the durations from prostatectomy to biochemical recurrence with

respect to calibration and discrimination.

R4: Is it possible to capture the model’s limitations in an uncertainty

measure and make the model robust toward dataset bias? In order to

apply a model in a clinic, it is essential to be aware of cases in which the model

cannot provide reliable predictions. Protocols for histopathology image data acqui-

sition are not standardized, wherefore different dataset biases are likely observed

in clinical routine. It is hypothesized that it is possible to define a criterion that es-

timates how certain a survival prediction is, based on the model input. In order to

investigate such an uncertainty score, a method to measure the similarity between

the training data and new test data during inference will be explored. Further-

more, it will be investigated whether the uncertain predictions are improvable by
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image adaptation. The evaluation of these methods will be based on the survival

prediction metrics.

As a starting point for the research questions, a literature overview of the

current state of the art is presented in section 2.2 State of the art. It will be

explored to which extent these research questions have already been asked and

answered, and where current literature is still lacking.

1.3 Thesis outline

The thesis outline is motivated and presented in the following.

Chapter 2: Background In section 2.1 Medical background, this thesis is mo-

tivated by explaining how prostate cancer is diagnosed presently, stressing the dif-

ficulties and drawbacks of current practice. That section emphasizes the clinical

relevance of computational pathology models to support pathologists. Afterward,

it is described how prostate tissue is extracted, processed, and digitized.

Next, the reader is introduced to the current state-of-the-art machine learning

methods for image analysis in section 2.2 State of the art. The literature is nar-

rowed down to computational pathology, i.e., automated computational analysis

of pathology images. This section explores to which degree the research questions

presented above are already discussed in the current literature and where more

research is needed, thus addressing R1.

Since this thesis covers methods for prostate cancer grading from histopathol-

ogy images as well as survival prediction, current approaches for similar tasks are

elaborated in section 2.2.3 Prostate cancer classification for histopathology images

and section 2.2.4 Deep learning for survival prediction. Similarities and differences

between proposed approaches are stressed. In particular, it is highlighted that

no consensus on a common baseline is available, which impedes model develop-

ment. Furthermore, out-of-distribution detection and bias transfer are introduced

as state-of-the-art methods to achieve robust models. Finally, a short overview of

explainability methods is given. This chapter aids in putting this thesis’s derived

models into the current state-of-the-art context.

Chapter 3: Datasets In chapter 3, the datasets used throughout the the-

sis are introduced. All datasets comprise hematoxylin and eosin (H&E) stained

histopathology images. Different internal and external data subsets are introduced

in detail, stressing differences and similarities between the sets.
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Chapter 4: Gleason grade prediction In order to elaborate on research ques-

tion R2, different approaches toward automated Gleason grading are introduced

in chapter 4. The experiments conducted for this research question and their re-

sults are discussed there. The Gleason classification serves as a starting point and

preparing task for survival prediction.

Chapter 5: Survival prediction The survival prediction in chapter 5 builds

upon the results from the Gleason classification and investigates the research ques-

tion R3. A theoretical introduction to the problem formulation and the boundary

conditions of survival analysis is given. The survival model developed during this

work is presented and evaluated in several experiments. It is compared to current

state-of-the-art models as well as to a pathologist.

Chapter 6: Robustness For research question R4, the model’s robustness to

datasets with different biases is addressed. To that end, an out-of-distribution

(OOD) detection is proposed to estimate uncertainty. A color transfer method

to adjust uncertain model inputs is introduced, evaluated, and compared to a

state-of-the-art histogram matching. Further, the advantages of combining color

transformation with OOD detection are elaborated.

Chapter 7: Conclusion & discussion The final discussion summarizes this

thesis’s results and places the presented work in context with the state of the

art. The findings for research questions R1 through R4 are elaborated. Open

challenges are discussed as a starting point for future work, and an outlook on

overcoming these is given.
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1.4 Main contributions

The main contributions of this thesis are summarized in the following list.

• Development of a survival prediction model

A novel ANN named eCaReNet (explainable cancer relapse prediction net-

work) for relapse-free survival prediction is presented in this thesis. The end-

to-end trained survival prediction model builds on an InceptionV3 model,

which is extended with recurrent layers and performs similarly to a pathol-

ogist when using a single TMA spot image per patient as input. The model

predictions are explainable by design through the integration of attention-

based multiple instance learning. The attention allows insights into how

much each image region influences the survival prediction. Explainability is

an essential but often neglected aspect of medical image analysis. Compared

to state-of-the-art methods, eCaReNet is well-calibrated, shows high discrim-

inative power, and outputs individual and biologically reasonable survival

curves for 7 years. The patients can further be stratified into eight distinct

risk groups, which allows for more individualized treatment decisions than

other approaches, which usually only stratify two to three groups. When ad-

ditional patient parameters are included, an expert pathologist can be out-

performed. The presented eCaReNet is valuable to pathologists and patients

as it allows for individual, explainable, and precise survival predictions.

• Robustness

This thesis extensively evaluates the robustness of survival prediction mod-

els. First, the generalizability to datasets with unseen biases is tested. An

OOD detection is proposed to estimate the uncertainty of eCaReNet’s pre-

dictions. It is further proposed to combine OOD detection with a color trans-

fer, which has not been done in the literature before. To this end, a novel

and auspicious approach for color transfer is introduced, which extends his-

togram adaptation and Macenko normalization. The proposed combination

of color transformation and OOD detection improves prediction performance

on datasets with a significant color bias. To this end, experiments on unique

datasets that emulate different data acquisition protocols are conducted.
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Chapter 2

Background

In the following section, an introduction to prostate cancer epidemiology, prostate

cancer detection, and treatment options is given. The goal is to provide all relevant

clinical background information for the scientific problem depicted in this thesis

and to motivate the necessity for computer-assisted prostate cancer assessment.

Further, to provide a thorough overview of what research has already been con-

ducted in the field of computational pathology, which questions have already been

asked, and which answers have already been found, a brief literature overview on

the current state of the art in computational pathology is presented. First, com-

mon concepts of deep learning and its application to computer vision are intro-

duced along with state-of-the-art neural network architectures. This is then nar-

rowed down to computational pathology, where existing approaches and concepts

are analyzed. Next, the literature on Gleason grade prediction from histopathology

images is reviewed, stressing the great variability in models and datasets. Further,

algorithms for recurrence-free survival prediction on medical images are presented.

Different approaches are contrasted, and the drawbacks of current methods are

stressed, which motivates the development of a novel ANN model in this thesis.

Finally, it is evaluated how robustness against domain shifts can be achieved

and how these domain differences between a training dataset and new datapoints

can be detected. A short overview of explainability completes this chapter. The

goal of this chapter is to provide the reader with an overview of the current status of

computational pathology and the remaining, unsolved challenges in this field. The

research conducted in the work for this thesis will be derived from thie presented

state of the art.

2.1 Medical background

2.1.1 Prostate cancer

This section motivates the thesis topic from a medical perspective. An introduc-

tion to prostate cancer epidemiology is given, followed by an overview of current
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diagnosis and treatment-decision standards. Furthermore, the shortcomings of

current grading systems are highlighted and the data acquisition process is de-

scribed.

Epidemiology and screening In 2020, around 68,000 men were newly diag-

nosed with prostate cancer in Germany, which makes it the second-most frequent

cancer after breast cancer and the most frequent cancer in men (Ferlay et al.,

2020). According to cancer-related deaths, however, prostate cancer only ranks

fifth. The lifetime risk of developing prostate cancer was 12.1% in Germany in

2018, with a mortality risk of 3.3% (RKI, 2021). Since prostate cancer progresses

slowly, curative treatment is possible over a long period. Therefore there is a can-

cer screening program that, in Germany, enables every man starting at the age of

45 years to have one prostate cancer screening each year. The screening includes

a digital rectal exam (DRE), whereas the prostate-specific antigen (PSA) value

is not measured free of charge in Germany. PSA is a protein produced in the

prostate glands and can be measured in the blood (Luiting and Roobol, 2019). In

the case of a prostate tumor, the PSA value is increased. However, an increased

PSA value does not automatically imply the presence of prostate cancer but can

have different, non-cancer-related reasons, like an enlarged prostate. Thus if an

increased PSA value is measured, the reason for the increase needs to be further

investigated (Sohn, 2015). Therefore, a raised PSA value can hint toward cancer

early but at the same time may lead to unnecessary biopsies that may cause side

effects or further complications, like incontinence (Sohn, 2015). The significance

of the PSA value, and whether it should be included in the screening program,

is highly debated in the literature (Andriole et al., 2009; Schröder et al., 2009).

Since different studies could not confirm whether regular PSA screenings improve

prostate cancer treatment, several guidelines exist until today. A PSA value of

4 ng
ml

or above is often considered critical. However, this threshold is not defined

clearly and consistently across guidelines (Luiting and Roobol, 2019).

Diagnosis and treatment options A patient’s possible path from diagnosis

to treatment is depicted in Figure 2.1.1. The prostate is shown in orange, below

the blue-colored urinary bladder, and surrounding the urethra (Sotelo, 2015). If

a male is suspected to have prostate cancer, for example, due to a suspicious

DRE or an increased PSA value, a transrectal ultrasound-guided (TRUS) biopsy

may be performed to confirm the suspicion (Luiting and Roobol, 2019). Also,

magnetic resonance imaging (MRI)-guided biopsies are possible, which allow a
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Figure 2.1.1: Possible treatment process of a prostate cancer patient: After a
suspicious prostate cancer screening including, e.g., a digital rectal exam (DRE)
or prostate-specific antigen (PSA) value measure, a biopsy is performed. Based on
the clinical staging, it is decided that a prostatectomy is necessary. After prostate
removal, the tissue is examined again, now with the pathological staging to decide
on further treatments. The prostate cancer possibly spreads again, which can be
detected by an evaluated PSA level (Heidenreich, 2007).

more precise localization of suspicious areas during a biopsy (Luiting and Roobol,

2019). Up to 12 tissue probes are extracted via needle biopsy, and a pathologist

examines the tissue sample visually for clinical staging. As a histologic grade, a

Gleason score is assigned to the extracted tissue, which is described in detail later.

Furthermore, the tumor amount is quantified, for example, by counting the number

of malignant cores (Grignon, 2018). Based on the severity estimate, a treatment

can be suggested. Options include radical prostatectomy (RPE, i.e., removal of

the prostate), radiotherapy, hormonal therapy, or active surveillance, which means

no immediate action is taken but the cancer development is monitored closely

(Heidenreich, 2007). A treatment like an RPE comes with many possible side

effects, such as incontinence and impotence (Rondorf-Klym and Colling, 2003).

Hence, overtreatment should be avoided. Loeb et al. (2014) review multiple studies

and find that 1.7 % to 67 % of prostate cancer patients are overdiagnosed, which

may lead to overtreatment. If the prostate is removed, the extracted tissue is

examined to obtain a more thorough impression of the tumor and decide on further

treatment (Grignon, 2018). The pathological staging of prostate cancer includes an

examination of resection margins, again a histologic grading with Gleason scores,

and a TNM staging that includes information on whether the tumor is organ-

confined or invades adjacent structures (T, tumor), examination of lymph nodes
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(N, nodes), and extraprostatic extension (M, metastasis) (Grignon, 2018). After

treatment, the cancer progress is monitored regularly by measuring the PSA level,

because the cancer can spread again (Heidenreich, 2007). A biochemical recurrence

(BCR) is defined by a rise in PSA level after RPE (Lobel, 2007).

2.1.2 Gleason patterns

In order to classify tumor severity, a pathologist analyzes the appearance of a

prostate cancer tissue sample and annotates it with Gleason patterns. Gleason

and Mellinger (1974) developed the Gleason grading system that stratifies prostate

cancer patients into risk groups based on the glands’ architectural pattern. Glea-

son patterns can be assigned to tissue extracted from a biopsy as well as from an

RPE. Different alternatives to stratify risk groups based on the Gleason patterns

exist. These are described in the following and summarized in Table 2.1.1.

Gleason grade Gleason patterns stratify prostate tissue into grades ranging

from 1 to 5, where grade 1 and grade 2 patterns are classified as no or benign

cancer, 3 consists of slightly abnormal glands, 4 is a more malignant cancer, and

5 is the most severe cancer type. Healthy prostate tissue consists of round and

regular glands. With higher cancer grades, the glands get more cribriform and

ill-defined, and the glandular differentiation decreases (Egevad et al., 2012). This

is illustrated in Figure 2.1.2.

Figure 2.1.2: Gleason grades 1-5 based on the glandular architecture. Reprinted
by permission from Springer Berlin Heidelberg, Encyclopedia of Cancer, Gleason
grading, Furihata and Takeuchi (2017).
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Gleason score In order to grade prostate tissue, a Gleason score is assigned,

which generally consists of two Gleason patterns. For tissue extracted after RPE,

the most pervasive and second most pervasive Gleason patterns are assigned.

Thus, tissue with mostly Gleason pattern 3 and partly Gleason pattern 4 is as-

signed a Gleason score 3+4. Sometimes, besides the two most common patterns,

a small amount of severe pattern 5 is visible; thus, a tertiary pattern is assigned

as 3+4 Tert.5 (Egevad et al., 2012).

For tissue obtained from biopsies, the most common and most severe patterns

are assigned (Egevad et al., 2012). Thus, if a patient has mostly Gleason pattern

3 but also patterns 4 and 5, the Gleason score is 3+5. Note that no tertiary

patterns are assigned to biopsies. Gleason patterns 1 and 2 are typically not

assigned anymore to biopsies because they have shown a low correlation with the

grading after RPE (Gordetsky and Epstein, 2016).

If the tissue contains only a single pattern, for example, grade 3, this is noted

as 3+3 in both cases for biopsy and after RPE. The Gleason score can also be

conflated into the sum of both assigned Gleason patterns, leading to a score be-

tween 1+1=2 and 5+5=10 (Epstein et al., 2005). Since grades 1 and 2 are not

commonly applied, but considered benign, the Gleason scoring for cancerous tissue

in practice only ranges from 6 to 10 (Epstein et al., 2016).

ISUP score In most cases, the Gleason score is a valid choice since it shows

a great correlation with the time to cancer-related death (Egevad et al., 2002).

However, some drawbacks led to the agreement on a new grading system at the

2014 International Society of Urological Pathology (ISUP) consensus conference

on Gleason grading (Epstein et al., 2016). Gleason sum 7, e.g., neglects important

differences between 3+4 and 4+3, where either pattern 3 or pattern 4 is more

pervasive. Chan et al. (2000) showed that the patients with a Gleason sum of 7 are

heterogeneous with differences in disease progression and treatment suggestions.

Therefore, it is suggested to keep these groups separate. The proposed ISUP

scoring system ranges from 1 (= 3 + 3) to 5 (= 4 + 5 / 5 + 4 / 5 + 5). It is referred

to as either ISUP score or Gleason grade group and broadly applied (Epstein et al.,

2016; Egevad et al., 2012). The relationship between ISUP score, Gleason sum,

and Gleason score is shown in Table 2.1.1.

Quantitative scoring Sauter et al. (2018) developed a more fine-grained sys-

tem, called the integrated quantitative (IQ) Gleason. The aim is to take into

account the Gleason pattern quantities instead of only their presence. Further,
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Table 2.1.1: Relationship between Gleason score, Gleason sum, and ISUP score.

Gleason score 3+3 3+4 4+3 4+4 3+5 5+3 4+5 5+4 5+5
Gleason sum 6 7 8 9 10
ISUP score 1 2 3 4 5

they state that small amounts of Gleason grade 5 already have a large impact on

relapse-free survival and should therefore have a higher impact on the grading. To

obtain the IQ Gleason, first, the percentages of Gleason patterns (GP ) 4 and 5

in the prostate tissue are estimated and added together. If any Gleason pattern

5 is present, 10 points are added to the score, and another 7.5 points are added

if there is more than 20 % of Gleason pattern 5. This results in the overall IQ

Gleason score ranging from 0 (for 3+3) to 117.5 (for 5+5):

IQ = %GP4 + %GP5 + 1%GP5>0 · 10 + 1%GP5>20 · 7.5

Here, 1 is the indicator function taking value 1 if the condition is true, 0 otherwise.

In their work, Sauter et al. (2018) show that the survival times between IQ Gleason

groups stratify well when categorizing the score into 10 distinct risk groups.

Summary All proposed systems rely on Gleason patterns. However, an impor-

tant drawback of these is that the Gleason pattern is a subjective score and varies

considerably among physicians (Epstein, 2018). According to Egevad et al. (2012),

interobserver agreement varies between 36 % and 81 %. This is partly because

some Gleason patterns are at the margin between two patterns and there are no

clear distinctions. Pathologists might not even be able to reproduce their own

score, which is reflected in an intraobserver variability of 43 % to 78 % (Egevad

et al., 2012). In a recent study, van der Slot et al. (2021) indicate that the repro-

ducibility for the IQ Gleason is lower than for Gleason grade groups. Furthermore,

Gleason patterns only take into account the architecture of the glands in the tissue

and neglect other features like nuclei size and number, which might also impact

the disease status (Egevad et al., 2012). Meyer et al. (2022) conducted an ex-

periment that shows that the accuracy of pathologists’ Gleason grading increases

when being provided with (correct) artificial intelligence (AI)-based Gleason grade

suggestions. This motivates the development of a computer-aided decision support

system in this thesis.
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2.1.3 Dataset acquisition

Computer-aided decision support systems for prostate cancer stratification and

Gleason scoring require digitized histopathology images. The procedure to obtain

a digital image from prostate tissue is depicted in Figure 2.1.3. Three possible im-

age sources are included, namely tissue microarray (TMA) spots, prostatectomies,

and biopsies. The procedure for TMA spots is described in simplified terms in the

following, the workflow for whole prostate tissue and biopsies is similar.

A patient that is believed to have malignant prostate cancer is treated with an

RPE, which means that the prostate (shown in orange) is removed. With a hollow

needle, a tissue core of the (cancerous area of the) excised prostate is extracted. In

a paraffin block, multiple cores are arranged such that the block now shows spot-

shaped samples in a grid-like order (Parsons and Grabsch, 2009). The paraffin

block is cut into 1-10 µm thin sections (Mescher, 2013). A section is stained

with hematoxylin and eosin (H&E staining) sequentially as preparation for light

microscopy. H&E is a commonly used coloring method to visualize morphology,

resulting in a pink to violet tissue stain. Hematoxylin binds to acidic structures so

that the cell nuclei are colored dark blue or purple. Basic components are stained

data generation

(TMA)
Gleason

ann.
slicing staining

biopsy/
RPE

parafin
embedding

prostatectomy

TMA spot

biopsy

digitization
(+ cutting)

Figure 2.1.3: Overview of data acquisition. Biopsy and prostatectomy : The tissue
is embedded in a paraffin block and sliced completely. Each slice is stained and
digitized afterward. Therefore, the whole prostate or the whole biopsy tissue can
be examined. TMA spot : From the prostate, only a small tissue core is extracted.
This is embedded in a TMA block with cores from different regions of the same
prostate and from different patients. Slices are cut from the block, stained, and
digitized. Single TMA spots are cut, which are usually obtained for research
purposes. RPE: radical prostatectomy, TMA: tissue microarray, ann.: annotation.

15



2.2. STATE OF THE ART BACKGROUND

pink by eosin (Mescher, 2013). A pathologist usually analyzes the tissue with a

microscope to assign Gleason grades. In order to obtain a digitized version of

the prostate tissue, the cut and stained section is digitized with a scanner. For a

treatment decision, pathologists analyze either slices of the complete prostate or

multiple biopsy cores and assign Gleason grades per patient. Single TMA spot

annotations are more commonly used for research and teaching purposes (Simon

et al., 2004).

Sources of variation In each of the data acquisition steps, artifacts or color

variations might be introduced (Wright et al., 2021). Because each TMA is stained

separately, the spots of different TMAs may vary in color and intensity. Staining

differences occur due to differences in imaging protocols, e.g., staining times, tis-

sue thickness, quality of the reagents, or errors made during the staining process

(Chlipala et al., 2021; Janowczyk et al., 2017; Rolls et al., 2008; Wright et al.,

2021). Tissue storage also influences the quality since the tissue stain fades with

time and light exposure (Azevedo Tosta et al., 2019; Rolls et al., 2008). Chlipala

et al. (2021) evaluate differences in staining based on protocol, tissue thickness,

day of staining, and reagent quality. They find, e.g., that staining intensity rises

with tissue thickness, but the influence is higher in eosin staining compared to

hematoxylin. They conclude that manual quality control of the staining is essen-

tial to assure high-quality data. A detailed list of sources for artifacts and staining

differences can be found in Rolls et al. (2008). Furthermore, differences in scan-

ners may lead to variations in image color intensity or contrast. Rajaganesan et al.

(2021) state that not all scanners reproduce the original color of glass slides, but

some produce more basophilic or eosinophilic images. Also, they state common

artifacts are out-of-focus images.

2.2 State of the art

The following sections give an introduction to the relevant state of the art in order

to assess whether current approaches suffice for robust survival prediction and, if

necessary, whether already developed models can be extended.

First, an introduction to image analysis with neural networks, in general, is

provided. Then, the focus is put on computational pathology, narrowing the view

to the current state of the art in prostate cancer stratification and survival predic-

tion. The most commonly used and recent neural network models and approaches

will be stressed, while always narrowing the literature on cases similar to this
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thesis’ problem formulation and dataset source. At the end of this section, an

introduction to robustness and explainability is given.

2.2.1 Computer vision with neural networks

Computer vision refers to the automated extraction of meaningful information

from a digital image using a computer. It can be used, for example, to extract

information about where objects are present in an image (detection), to which

class an object or image belongs (classification), and which exact pixels an object

covers (segmentation).

Deep learning (DL), which is a sub-field of machine learning (ML) and refers

to the application of deep neural networks, enabled achieving high accuracy on

complex computer vision tasks (O’Mahony et al., 2020). Therefore, the following

sections give an introduction to neural networks for computer vision, omitting

traditional methods. A comparison of both approaches can be found, for instance,

in O’Mahony et al. (2020). It is assumed that the reader is familiar with basic

concepts of neural networks, such as neurons, layers, activation functions, and

backpropagation. Therefore in the following, the main characteristics of networks

designed for computer vision are introduced only shortly. For further background

knowledge, the reader is referred to Verdhan (2021).

Introduction to convolutional neural networks Automated image analysis

has advanced significantly with the introduction of convolutional neural networks

(CNNs). CNNs incorporate convolutional layers, which, in contrast to fully con-

nected layers, are able to spatially exploit the local context of data, which is

beneficial for interpreting image data (Alzubaidi et al., 2021). In the convolu-

tional layer, the learned weights are part of filters, which are trained to extract

spatial features in the image, like edges or curves (Verdhan, 2021). The filters may

have different sizes or scales, which allow for controlling the spatial dimension of

extracted features. The network’s different consecutive layers detect features of in-

creasing complexity. That means the first layers detect low-level visual structures

like edges whereas the later layers detect more complex structures up to objects

(Verdhan, 2021). After convolutional layers, pooling layers can be included for

dimensionality reduction in image width and height. In these layers, neighbor-

ing pixels are combined for example through averaging or using the maximum

value (Verdhan, 2021). Eventually, the dimension is reduced to a vector, and fully

connected layers perform the final classification task. Similar to fully connected
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neural networks, CNNs are trained for several iterations (so-called epochs) with

a pre-labeled dataset, using the annotations as ground truth and a loss function

to update the weights of the connections between neurons in neighboring layers

via backpropagation. The filters are convolved with the image (i.e., each filter

moves across the image row-wise), while the pooling layers do not have train-

able weights. Both these operations reduce the number of trainable parameters

(Alzubaidi et al., 2021). With increasing network depth across hidden layers, the

image height and width are reduced, while typically increasing the depth (which

starts with 3 channels for RGB images).

For image analysis tasks across applications (e.g., healthcare, manufacturing,

autonomous driving) and tasks (e.g., image classification, detection, segmenta-

tion), CNNs are currently the most prevalent models (Voulodimos et al., 2018).

Only in recent years, researchers have started to apply transformer networks to

image analysis, which were originally developed for natural language processing

(Vaswani et al., 2017; Dosovitskiy et al., 2021; Hu et al., 2021a). While transform-

ers usually require even larger datasets and computational resources for training,

the limited availability of annotated high-quality data for training, validating, and

testing is a key problem in medical applications.

Common CNN architectures Neural network hyperparameters like the num-

ber of convolutional layers, pooling layers, or filter sizes may be combined in

various ways, which leads to a great number of existing CNN architectures that

have been applied to different tasks. However, some models have shown greater

improvements than others through the introduction of novel layers or layer com-

binations.Since it is impossible to expand on all architectures here, in Table 2.2.1

only some of the most commonly applied CNNs for classification tasks are summa-

rized. Most of these networks were implemented for the classification of objects.

They vary in the number of hidden layers and consist mostly of convolutional,

pooling, and fully connected layers. The architectures mentioned in that table

have been among the most frequently used architectures, at least over a period of

time, or up until today (Zhang et al., 2021a).

Krizhevsky et al. (2012) developed AlexNet, a CNN with blocks of convolu-

tional layers and max-pooling, followed by fully connected layers. It was the first

deep network to beat a traditional approach on the ImageNet large scale visual

recognition challenge in 2012 (Russakovsky et al., 2015; Zhang et al., 2021a). The

visual geometry group (VGG) (Simonyan and Zisserman, 2015) introduced deeper

architectures, of which the VGG-16 and VGG-19 are nowadays still broadly ap-
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Table 2.2.1: Overview of commonly applied CNN architectures. Number (#) of
parameters according to the original paper or Chollet et al. (2015) in million (M).

Architecture Special feature #

AlexNetKrizhevsky et al. (2012) one of first deep networks 60M

VGG-16Simonyan and Zisserman (2015) smaller filter and pooling size 138M

InceptionV3Szegedy et al. (2016) inception block: processing with 24M
different kernel sizes in parallel

ResNet-50He et al. (2016) skip connections between layers 26M

MobileNetHoward et al. (2017) spatially separable convolutions 4M

EfficientNetB0Tan and Le (2019) optimize width, depth, and 5M
resolution interdependently

plied. The numbers refer to the number of layers, which are again convolutional,

pooling, and fully connected layers. The main difference to AlexNet is, besides

the depth, that they use smaller filter sizes.

Novel layers and architectural patterns were implemented over time. Szegedy

et al. (2015) introduced an architecture called Inception, which includes “incep-

tion” blocks, which process the image with differently sized convolutional filters in

parallel. These blocks enable the extraction of features of different sizes. Their up-

dated version InceptionV3 includes batch normalization, which Ioffe and Szegedy

(2015) introduced earlier (Szegedy et al., 2016). Instead of only normalizing the

input image once, batch normalization normalizes the intermediate output over a

batch during training.

He et al. (2016) found that larger architectures do not by definition lead to

better results, which is why they introduced residual networks (ResNet) with so-

called skip connections that allow weights to skip layers. They also presented

different versions with a varying number of layers, e.g., ResNet-50 or ResNet-152.

Since larger networks lead to higher computational complexity in terms of time

and memory, and an increased number of parameters to be learned, Howard et al.

(2017) introduced MobileNet as a lightweight alternative. The main advantage

lies in depthwise differentiable convolutions. For those, the convolutional layer is

split into two parts, one for filtering per channel and another for the combination

across channels.

When neural networks are expanded to increase complexity, their width (in-

fluenced by the filter size), depth (number of hidden layers), or input image size

(resolution) might be adapted. However, Tan and Le (2019) point out that only

changing a network’s depth, width, or resolution is not beneficial but instead that

these parameters are linked. With EfficientNet, they introduce another architec-
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ture, which increases width, depth, and resolution interdependently and comes in

different sizes (EfficientNetB0 through B7).

For every new task, the best suitable architecture has to be determined and

may be adapted further, since each architecture has advantages, which the given

problem may benefit from. Besides the given task and dataset, computational

resource limits or inference speed might be a critical factor in this decision.

Training and transfer learning The weights of a neural network are not set

manually but learned through training after random initialization. This data-

driven approach allows discerning complex patterns, which would be difficult to

impossible to describe with pre-defined rules. Also, the diverse appearance of

objects can be encompassed. A large training dataset is necessary for the neural

network to learn the characteristic patterns for a task like classification. A fixed

lower limit for the training set size cannot be defined generally for neural network

tasks. The training, validation, and test set sizes depend on the complexity of

the given problem and dataset. Zhou et al. (2020) train a CNN on 163 samples,

while Raghu et al. (2019) already call a dataset with 5,000 training samples “very

small”.

Available datasets, especially in the medical domain, are often too small to

train a network with millions of parameters. To overcome this limitation, a net-

work’s weights can be pretrained on a larger dataset, which may be unrelated to

the target domain and task. Large datasets are, for example, commonly available

for images of everyday objects. Even though the image content in such images

and in medical images differs significantly, basic structures like edges need to be

recognized in most image classification tasks. Pretraining the network on one

dataset, and fine-tuning it on another dataset is also known as transfer learning

(Raghu et al., 2019). It is possible to either re-train all model weights or just the

last layers since the low-level visual structures might not differ much. However,

this needs to be considered on a task-specific basis.

Transfer learning has become a standard in medical image analysis. Raghu

et al. (2019) show that it has a positive effect when re-training large models on

a small medical dataset, however, the effect decreases when using larger datasets

or models with less parameters. Still, pretraining a model on a large dataset is

time- and resource-intensive. However, many commonly used architectures are

available open-source with weights pre-trained on a large dataset. A prevalently-

used dataset for pre-training of weights is ImageNet, which contains images of

real-world objects (Deng et al., 2009). It contains millions of images, is designed
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for classification into 1000 classes, and often serves as a benchmark for the eval-

uation of new network architectures. These pretrained networks enable a quick

adaptation to a new task and image class by fine-tuning on new datasets.

Supervised, unsupervised, and semi-supervised training In the case that

the ground-truth classes are known and an annotation exists for each sample in the

training dataset, supervised learning can be applied. That means that a direct

comparison between network output and annotation/class label in terms of an

error metric incorporated in the loss function (Alzubaidi et al., 2021) is possible.

In contrast, unsupervised learning does not use any annotations but the goal is

to find, e.g., clusters in the training data based on common features (Alzubaidi

et al., 2021). A mixture of both is weakly supervised learning. In that case, only

coarse/weak annotations are available, e.g., one annotation for a whole image

instead of annotations per image region (Otálora et al., 2021). Weakly supervised

learning is often applied in medical image analysis when whole slide images (WSI)

are available. WSIs show large tissue areas, like a slice of the complete prostate

or biopsy core, and typically much background. If these large images (up to more

than 100,000 × 100,000 pixels in size) do not fit into memory, they are cut into

smaller pieces (patches or tiles) in order to process them in a neural network (Lu

et al., 2021; Campanella et al., 2018). If a patient has cancer, usually not the

whole tissue is affected. Still, often the whole image is labeled as, for example,

cancer, while not every single pixel or patch shows cancer. Therefore, it is not

possible to classify the tiles separately.

For this particular problem, multiple instance learning (MIL) was introduced

(Dietterich et al., 1997). In MIL, an image is cut into smaller pieces and treated as

a bag of patches. The whole bag is processed at once with a neural network, and

for the final classification, the results per patch are averaged over the whole bag.

In a binary setting, a bag is positive if it contains at least one patch that is labeled

positive. Thus a bag is only negative if all its patches are negative. Instead of

averaging over all instances, Ilse et al. (2018) add attention to MIL through which

the model is trained to automatically weigh the single instances according to their

importance. The MIL layer provides an explanation for the prediction by revealing

which instance influenced the result by how much. Since the single instances are

assumed to be independent of each other (Rymarczyk et al., 2021) introduced

self-attention. They leverage the dependencies in-between single instances. More

details for both MIL and self-attention are provided in section 5.6 eCaReNet.
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Recurrent neural networks For image sequences as input or time-dependent

outputs, recurrent neural networks (RNNs; Rumelhart et al., 1985) can be used.

The dimension of the input or output layer is extended with an additional time

dimension. Nodes in the recurrent layer process not only the current input but

can also store information from previous time steps in hidden states. Since it is

known that backpropagation learning lead to stability problems like exploding or

vanishing gradients, advanced architectures have been introduced, including long

short-term memory cells (LSTMs; Hochreiter and Schmidhuber, 1997) and gated

recurrent units (GRUs; Cho et al., 2014). RNNs can be used in combination with

CNNs, e.g., for (per-frame) video classification (sequence of images to class) or

image captioning (image to a sequence of words) (Yue-Hei Ng et al., 2015; Mao

et al., 2015).

2.2.2 Computational pathology

“Digital pathology” refers to tissue examination, archiving, and reporting in a

digitized form (Abels et al., 2019). Azam et al. (2021) show in their study that

pathologists’ conclusions do not differ significantly when using digitized images

compared to direct examination with light microscopy. Since manual image anal-

ysis is time-consuming, repetitive, and suffers from high inter-observer variability,

computational analysis has been proposed in recent years (Li et al., 2021). The

field of “computational pathology” focuses on the computational analysis of pa-

tient specimens, like tissue, to study a disease or support decision-making (Abels

et al., 2019). Especially with the introduction of whole slide image scanners that

allow the digitization of large tissue regions in high resolution, computational

pathology applications have emerged. These have further benefited from the ad-

vances in computational power (Hanna et al., 2020).

On histopathology images, neural networks can be used for classification (e.g.,

the decision whether tissue is cancerous; Xu et al., 2017; Campanella et al., 2018),

localization (e.g., of cell nuclei; Zhou et al., 2019), quantification (e.g., lymph

node quantification; Hu et al., 2021b), or more complex tasks like clinical decision

support systems for risk prediction (Wulczyn et al., 2020; Fan et al., 2021). Besides

developing models for clinical usage, computational pathology methods can also

be used for basic research: Integrating multiple data sources (e.g., genomics and

images) can, for example, uncover novel biomarkers (Hanna et al., 2020).

As stated above, deep learning (DL) algorithms have improved performance

for many image classification tasks over the last decade. Also in histopathology
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image analysis, DL models improved the robustness over traditional computer

vision methods (Abels et al., 2019). This is especially due to the high complexity

of histopathology images, which hinders manual feature extraction (Banerji and

Mitra, 2022).

Despite the fast development of research in the field of computational pathol-

ogy, translation to the clinics has been slow (Rakha et al., 2021). According to

Rakha et al. (2021), the main reasons are the gap between development and clin-

ical environment (e.g., more data variation in clinical practice than during model

training), missing explainability, and the disruption of current workflows.

Neural networks require large amounts of (annotated) data for training. Pho-

tographs from everyday scenes can be searched for and downloaded directly from

the internet (Deng et al., 2009). However, access to large histopathology datasets

is limited since public histopathology datasets for research usage are rare. Ac-

quiring sufficiently large in-house datasets is also difficult and laborious (Abels

et al., 2019). One of the main reasons why digital histopathology images are often

not readily available is that during clinical routine tissue is often only examined

under the microscope and not digitized (Williams et al., 2018; Nam et al., 2021).

According to Williams et al. (2018), in 2018, 58.8 % of institutions in the UK

did not produce any digital slides. Furthermore, digital slides are mostly used

for teaching, research, or quality assurance, not for diagnosis. Nam et al. (2021)

published a study from 2020 showing that only 26 % of Korean pathologists are

using digital pathology systems but 78 % see a need for using these.

If digitized histopathology datasets can be collected, data protection, ethics,

and privacy concerns need to be considered (Abels et al., 2019). Data needs to

be anonymized or pseudonymized, while patients must consent to the data usage

(Heesen et al., 2020). Furthermore, a dataset from a single hospital might not in-

clude enough (diseased) patients to train a data-driven model. Larger datasets are

available when analyzing very common diseases or accessing data from a special-

ized clinic. Merging images from multiple data sources yields larger but possibly

inconsistent datasets since data acquisition protocols are not standardized (Banerji

and Mitra, 2022; Howard et al., 2021). Inconsistent datasets might have differ-

ent biases between data sources and impede neural network performance. For

histopathology images, possible sources of variation are detailed in section 2.1.3

Dataset acquisition.

One research project that identified the need for a standardized ecosystem is

empaia. Physicians and AI experts are part of the consortium to encourage an

exchange of knowledge and build an ecosystem that pathologists, researchers, and
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industry can benefit from (empaia.org, 2022).

In addition to high-quality digitized images, for supervised learning, ground

truths in the form of image annotations are required. Images need to be annotated

by at least one experienced pathologist, e.g., for Gleason classification tasks. This

process is time-consuming, expensive, and requires close collaboration with the

clinics (Tizhoosh and Pantanowitz, 2018; Montagnon et al., 2020; Kohli et al.,

2017). For survival prediction, no manual annotations are required, but follow-up

data needs to be recorded, i.e., the patient’s disease status over time. Difficulties

arise since this data may not be routinely documented in EHRs and requires data

to be recorded over a long time.

A crucial aspect of survival prediction is choosing the patient cohort. All pa-

tients need a common reference time origin of data acquisition (e.g., they enter the

study on the day of their treatment), equivalent medical records, and treatments

(Gerds and Kattan, 2021). Also, when comparing the tissue of two patients who

underwent RPE, some boundary conditions need to match. For example, the time

from biopsy to relapse is incomparable if the time between biopsy and RPE is not

constant across patients since the cancer can grow during that period.

2.2.3 Prostate cancer classification for histopathology im-

ages

Research on ML-based prostate cancer classification has increased in the last years,

especially since 2016, as a recent literature review from Denysenko et al. (2022)

reveals. A short overview of the most recent works for the classification of prostate

cancer histopathology images is given in Table 2.2.3. An extended version is

available in Table A.1.1. Due to the extensive literature, this overview makes

no claim of being complete, e.g., MRIs and CTs can also be used as an image

source for prostate stratification, however, these are not covered here (Ahmed

et al., 2017; Bertelli et al., 2022; John et al., 2021; Korevaar et al., 2021). Instead,

this overview is restricted to histopathology images since that is the image source

used for the experiments in this thesis. The following paragraphs will highlight

the main similarities and differences in the approaches to prostate cancer grading

from H&E-stained histopathology images.

Model output Automated prostate cancer grading may be approached as a bi-

nary classification to differentiate benign from malignant tissue (e.g., Campanella

et al., 2018) or low-grade from high-grade cancer (e.g., Jimenez-del Toro et al.,
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2017) or as a multi-class classification to differentiate distinct Gleason grade groups

(e.g., Bulten et al., 2020). Some research not only aims at classifying a complete

image but also at identifying more exact cancer regions, either through segmen-

tation or patch-wise classification (e.g., Arvaniti et al., 2018; Burlutskiy et al.,

2019).

Dataset source All prostate cancer datasets in Table 2.2.3 include H&E stained

images as input. However, since they stem from different hospitals and coun-

tries, and standardized imaging protocols are missing, they differ, for example,

in staining, scanning, or image size. Also the tissue origin may differ, as it can

be extracted via biopsy or after RPE. Some publications classify small tissue mi-

croarray (TMA) spots obtained after RPE (e.g., Arvaniti et al., 2018). The TMA

technique was introduced by Kononen et al. (1998) for faster analysis and typically

shows round spots of 0.6 mm diameter. Others use larger WSIs (e.g., Li et al.,

2021; Campanella et al., 2018), which are either obtained through a needle biopsy

(e.g., Marginean et al., 2021; Duran-Lopez et al., 2020) or show prostate slices

obtained after RPE (e.g., Nagpal et al., 2019; Jimenez-del Toro et al., 2017). This

heterogeneity impedes direct comparisons of models.

Dataset size The used datasets also differ in size, as the number of included pa-

tients and images vary significantly. Zhang et al. (2021b) use as little as 54 WSIs,

while Campanella et al. (2018) use 12,160 WSIs. Furthermore, most publications

use more than one dataset, either for external validation or to train robustness

(Bulten et al., 2020; Marini et al., 2021a). The number of images does not neces-

sarily correspond to the number of available patients, since some datasets contain

more than one image per patient, while others do not. In contrast, Jimenez-del

Toro et al. (2017) state that some of their images contain multiple samples, which

further reduces the comparability of the dataset sizes. Unfortunately, the ratio

of images to patients is not provided in each paper. Marini et al. (2021a) only

state the number of patches used, not how many complete images or patients

are included, while Oner et al. (2022) have access to 99 WSIs from 99 patients,

Marginean et al. (2021) use 735 images from 195 patients, and Burlutskiy et al.

(2019) use 476 images without stating the image/patient ratio.

Dataset splits Besides differing in size, the datasets are all split differently

into training, validation, and test sets. Some authors randomly divide the whole

dataset into training, validation, and test sets according to fixed percentages (e.g.,
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Campanella et al., 2018; Jimenez-del Toro et al., 2017). Others use datasets from

different sources for training and testing (e.g., Bulten et al., 2020; Marini et al.,

2021a). Bulten et al. (2020) have multiple test sets: internal, external, and one

for comparison to pathologists. Instead of dividing the dataset by source clinic,

Arvaniti et al. (2018) split their dataset on the TMA level, using one TMA for

testing, one for validating, and the remaining TMAs as training sets. Duran-

Lopez et al. (2020) use a three-fold cross-validation, so they only split the data

into two training and test sets and use parts of the training set for validation.

This heterogeneity impedes the comparison of the models’ ability to generalize to

unseen test data.

Dataset annotation Image annotations are either provided as single class la-

bels at slide level (e.g., Campanella et al., 2018) or segmentations (e.g., Arvaniti

et al., 2018). To overcome high interobserver variability, annotations for the whole

dataset, or, due to labeling effort, for a test set, are often collected from multiple

pathologists, and a majority vote defines the final ground truth (e.g., Nagpal et al.,

2019, 2020; Bulten et al., 2020). Besides obtaining annotations from pathologists

directly, some datasets are labeled based on the health records (e.g., Bulten et al.,

2020; Li et al., 2021; Campanella et al., 2018). In contrast, Burlutskiy et al. (2019)

let pathologists label only one part of their dataset. For the other part, they use

a histochemical stain for automated segmentation annotation. They state that

the absence of basal cells hints toward cancer and therefore use the color obtained

through that staining for the definition of the ground truth.

Public datasets Most authors use non-public datasets that are only evaluated

within their own publication. This impedes quality control and hinders the re-

producibility of results, but is mostly because patient data requires high data

privacy standards. Nevertheless, there exist some publicly available datasets that

are used in multiple publications, either for training or as external test sets. How-

ever, also here it is not always transparent whether the exact same data partition

is used. Some public datasets that are used by multiple authors are summarized

in Table 2.2.2 and presented in the following.

The TMAZ dataset (TMA Zürich; Arvaniti et al., 2018) includes 886 TMA

spot images with segmentation annotations per Gleason pattern. It is used for

Gleason grade prediction by, for instance, Marini et al. (2021a) and Bulten et al.

(2020).
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Table 2.2.2: Prostate cancer histopathology datasets that are used in multiple
publications are listed here. im: number of images, pa: number of patients, TMA:
tissue microarray.

Dataset (Source) Tissue origin Dataset size
TMAZ (Arvaniti et al., 2018) TMAs 886 im, 886 pa
GleasonChallenge (Nir et al., 2018) TMAs 333 im, 231 pa
TCGA-PRAD (Zuley et al., 2016) prostatectomies 16,790 im
DiagSet (Koziarski et al., 2021) biopsies 5,179 im
SICAPv1 (Esteban et al., 2019) biopsies 79 im, 48 pa
SICAPv2 (Silva-Rodŕıguez et al., 2020) biopsies 155 im, 95 pa
PANDA (Bulten et al., 2022) biopsies 12,625 im

The GleasonChallenge dataset was presented as a challenge at the 22nd Inter-

national Conference on Medical Image Computing and Computer Assisted Inter-

vention (MICCAI) in 2019 (Nir et al., 2018; Karimi et al., 2020). It comprises 333

TMAs from 231 patients with Gleason grade segmentation masks. The dataset is

also used by Vuong et al. (2021) and Marini et al. (2021a).

TCGA (The Cancer Genome Atlas) is a composition of multiple cancer types,

including prostate cancer (Prostate Adenocarcinoma Collection, TCGA-PRAD;

Zuley et al., 2016). It contains whole slide images of prostatectomies and is an-

notated with Gleason patterns from pathology reports (Jimenez-del Toro et al.,

2017).

Further, Koziarski et al. (2021) present DiagSet, a dataset that is available

online and consists of biopsy WSIs. 4,675 of those slides are annotated with

binary classification (cancer / no cancer), while 668 are with more detail (Gleason

grade group, background, benign, artifact). At the moment, Marini et al. (2021a)

also use that dataset, especially to estimate the performance on datasets from a

different source than the training data.

Li et al. (2021) use SICAPv1, published by Esteban et al. (2019). It consists of

79 prostate biopsies from 48 patients with pixel-level annotations. Silva-Rodŕıguez

et al. (2020) present the extension, SICAPv2, including 155 images of 95 patients,

which is publicly available and used by Marini et al. (2021a).

The to-date largest WSI prostate cancer dataset was released for research usage

by Bulten et al. (2022) in the prostate cancer grade assessment (PANDA) chal-

lenge at MICCAI 2020. It contains whole slide biopsy images from two different

institutions and is partly annotated with Gleason pattern segmentation masks,

partly with fewer classes (cancer, benign, background).
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Model Even though all listed approaches use CNNs for classification, there is no

consensus on which architecture leads to the best results. Some researchers report

that ResNet performs best (e.g., Campanella et al., 2018; Oner et al., 2022), while

others find InceptionV3 outperforming other architectures (e.g., Nagpal et al.,

2019; Ström et al., 2020; Marginean et al., 2021). Many approaches also use

variations of networks, e.g., Xception-like network (Nagpal et al., 2020). Silva-

Rodŕıguez et al. (2020) develop their own CNN architecture, which they train from

scratch. Ikromjanov et al. (2022) apply a vision transformer model on the PANDA

dataset. Bulten et al. (2020) use a U-Net for the segmentation of Gleason patterns

or benign glands. The final classification is obtained from those segmentations

afterward.

The approaches further differ in the way the images are preprocessed. Since the

images are relatively large, most authors cut them into patches before processing.

Arvaniti et al. (2018) use small patches to predict the Gleason grade per region

and later combine the results to obtain pixel-wise segmentation. Nagpal et al.

(2019) also classify single patches during training and inference, however, with a

different aggregation of the final classification. Ström et al. (2020) use a two-fold

approach. First, they classify patches as either benign or malignant, and, with

a second model, determine the Gleason grade. Oner et al. (2022) first segment

glands in patches and use only these for classification.

Marini et al. (2021a) train a model that is supposed to be invariant to staining

(color) differences. For each image, they calculate the H&E stain matrix, which

converts the hematoxylin and eosin coloring to RGB colors. They simultaneously

train a classifier for Gleason grade group classification and a regressor for the pre-

diction of the H&E matrix components. While the classification is encouraged,

correct predictions of H&E matrices are punished in the proposed objective func-

tion. Their backbone is a DenseNet (Huang et al., 2017). Ren et al. (2018a) also

tackle the problem of different dataset sources. They train a siamese network

and use a loss commonly applied in generative adversarial networks (GANs) to

encourage learning of domain invariant features.

Metrics Since Gleason grading is a classification task, accuracy is a common

metric for evaluation. The accuracy measures the fraction of correctly predicted

samples, hence, it ranges from 0 to 1, with 1 being perfect classification (e.g., Ren

et al., 2018a; Nagpal et al., 2019; Bhattacharjee et al., 2021). Also, the amount

of true and false positives and negatives can be calculated and summarized as

precision, recall/sensitivity, specificity, or F1 score. Precision measures how many

28



BACKGROUND 2.2. STATE OF THE ART

samples of a predicted class were really of that class. Recall and sensitivity measure

how many samples of a class were identified. Specificity measures how many

samples of the false class were identified. The F1 score is a mixture of precision

and recall. The AUROC (area under the receiver operator curve) summarizes the

area under the plot of true positives against false positives, with a maximum value

of 1, while the AUPRC (area under the precision recall curve) summarizes the area

under the plot of precision and recall. Further, Cohen’s kappa (Cohen, 1960) is a

metric that is also commonly applied and measures the interobserver agreement

of two ratings, taking into account random guessing (e.g., Arvaniti et al., 2018;

Bulten et al., 2020; Ström et al., 2020). For random guessing, Cohen’s kappa is

0.5, and for perfect agreement, it is 1. Oner et al. (2022) segment glands and

therefore also report a Dice score (Dice, 1945) besides accuracy, precision, and

recall, which measures the similarity of annotation and prediction. For details on

these metrics, consider Vujović (2021).

For the binary Gleason classification task, AUCs as high as 0.999 (Duran-Lopez

et al., 2020) are reported, and kappas up to 0.979 for the multi-class classification

(Bhattacharjee et al., 2021). Ström et al. (2020) report a kappa of 0.62, which

indicates that the results vary widely among different datasets, and thus none

of the reported performances can be conceived as a general baseline for clinical

assessment.

Performance compared to human pathologists The subjective nature of

Gleason grading hinders comparison to a ground truth if the image annotation is

provided by a single pathologist. Therefore, some authors compare their model’s

performance to multiple pathologists. Nagpal et al. (2019) show that their model’s

accuracy of 0.70 is higher than that of 8 out of 10 pathologists. Ström et al. (2020)

show an extensive study, where their ANN outperforms 3 or 7 out of 23 pathologists

in terms of kappa, depending on the number of prediction classes (5 or 3 classes,

kappa of 0.62 for both). Bulten et al. (2020) show that their model outperforms

10 out of 15 pathologists with a kappa of 0.85.

Summary The approaches toward prostate cancer classification are diverse.

Since there is no common dataset for benchmarking, it is difficult to state which

approach performs best overall. Each model is optimized to a different dataset and

tested on a test set either from the same or an external data source. An objective

evaluation of the results is further impeded since not all results are reproducible

due to not accessible hyperparameters, imaging protocols, or restricted access to
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the datasets.

Multiple authors report similar model performance compared to pathologists

on the respective datasets and use cases. However, the subjectivity of labels

may impede further improvements. For reliable results, large datasets should be

accessed, and accuracy as well as kappa should be evaluated since these metrics

are most common in the evaluated literature.

In conclusion, a common neural network architecture like ResNet or Inception

should be used to build a Gleason classification model, however, for any new

prostate cancer dataset it is essential to evaluate first which baseline architecture

performs best. Then, the model can be adjusted (i.e., adaptation of preprocessing)

and hyperparameters can be optimized to the given dataset.

Table 2.2.3: Literature overview for prostate cancer stratification. AUROC: area
under the receiver operator curve, AUPRC: area under the precision recall curve,
acc: accuracy, pa: number of patients, im: number of images, n/a: not available.

Paper Task Model Metric Dataset
Campanella
et al. (2018)

benign/
malignant

MIL +
ResNet, VGG

AUROC
0.98

• non-public
• biopsies
• 12,160 im (n/a pa)

Jimenez-del
Toro et al.
(2017)

low/ high GoogLeNet acc
0.78

• TCGA
• prostatectomies
• 235 im (n/a pa)

Burlutskiy
et al. (2019)

binary seg-
mentation

U-Net for
different
resolutions

F1 0.8
AUPRC
0.89

• non-public
• biopsies +
prostatectomies
• 476 im (n/a pa)

Arvaniti
et al. (2018)

Gleason
grade group

MobileNet kappa
0.75

• TMAZ
• TMAs
• 886 im (886 pa)

Nagpal
et al. (2019)

Gleason
grade group

InceptionV3 acc 0.7
AUROC
0.96

• TCGA + non-public
• prostatectomies
• 769 im (769 pa)

Ström et al.
(2020)

Gleason
grade group

InceptionV3 kappa
0.62

• non-public
• biopsies
• 9,001 im (1,474 pa)

Nagpal
et al. (2020)

Gleason
grade group

Xception-like kappa
0.71

• non-public
• biopsies
• 1,276 im (1,112 pa)

Bulten
et al. (2020)

Gleason
grade group

U-Net kappa
0.72-
0.85

• non-public + TMAZ
• biopsies + TMAs
• 6,745 im (2,129 pa)
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Marini
et al.
(2021a)

Gleason
pattern

adversarial
CNN

kappa
0.47-
0.73

• TMAZ + SICAPv2
+ GleasonChallenge +
DiagSet
• TMAs + biopsies
• n/a im (n/a pa)
83,091 patches

2.2.4 Deep learning for survival prediction

Predicting the time-to-event, such as the time from surgery to death from a certain

disease, is referred to as survival prediction. For clinical decision support, the time

to an event is a relevant score to decide for or against treatments or for triage,

e.g., for a liver transplant or in intensive care units (Heitz et al., 2021; Andres

et al., 2018). In a study, Heinz et al. (2022) asked 75 computational pathology

experts which of 12 predefined tasks they find most promising (e.g., cell classifi-

cation, prediction of gene expression). Survival prediction from H&E images was

assigned an importance score of 9 out of 10. Among participants with a medical

background, the score reached 10, making it the second-most important task after

the prediction of treatment response. These results emphasize the relevance of

survival prediction for clinical usage.

There is a large variety of models for survival analysis. A short overview of

the literature for survival prediction is presented in Table 2.2.4, with an extended

version in Table A.1.2. Since this thesis uses histopathology images as input,

the overview is restricted to models using medical images as input. Besides H&E

stained images, CT, MRI, or radiography images are considered, since similar mod-

els might be applicable. The use case is not restricted to prostate cancer since the

approaches can be applied interchangeably to any disease progression and restrict-

ing the overview to prostate cancer would be too limiting. Work that does include

prostate cancer is highlighted, though. Approaches using only electronic health

records (EHRs) or genomics as input are not covered in this thesis (Giunchiglia

et al., 2018; Huang et al., 2021b; Katzman et al., 2018; Kvamme et al., 2019) but

were researched in a complementary project (Fuhlert et al., 2022).

The chosen papers in Table 2.2.4 allow a subsumption of the approach devel-

oped in this thesis into the state of the art, stressing similarities and differences.

This list does not include all existing literature but tries to provide a general

overview. For an overview exceeding the selection presented in this thesis, con-
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sider Wang et al. (2019).

Similar to the overview presented on Gleason classification in section 2.2.3

Prostate cancer classification for histopathology images, the presented literature

varies in the model architectures and dataset sources as well as evaluation met-

rics. Furthermore, the problem formulation is not consistent across the presented

works, and also the chosen endpoint is either overall survival, time to disease-

related death, treatment success, or cancer recurrence (Duanmu et al., 2020;

Kumar et al., 2017; Esteva et al., 2022). The broad spectrum of applications,

data sources, and the lack of consistent metrics and problem formulation impedes

the comparison of model performance. Therefore, the differences and similarities

among the approaches are stressed.

In the following, the literature is split into three broader categories based

on the problem formulation. Those categories are i) binary prediction (relapse or

not), ii) risk score prediction (discrete or continuous), and iii) prediction of relapse

probability over time in the form of survival curves. The latter category is split

further into approaches that rely on the Cox model (Cox, 1972) and approaches

that predict individual survival probabilities for discrete time intervals. Details

on the Cox model will be explained in section 5.4.1 Cox model. Within these

categories, similarities and differences in architectures, losses, and metrics are

pointed out. Also, the advantages and limitations of the approaches are stressed.

Theoretical aspects, such as the used metrics, are only briefly described in this

section for understanding the context, but more details are provided in chapter 5

Survival prediction.

Binary classification The simplest strategy to answer the question “Does a

patient experience an event (before time t)?” is a binary classification (e.g., Du-

anmu et al., 2020; Exarchos et al., 2012; Kumar et al., 2017; Yamamoto et al.,

2019). Such a classification may support a physician in deciding whether a therapy

would be helpful for a patient but neglects the exact time to relapse since only a

single cut-off time is considered. Furthermore, the inclusion of censored patients,

i.e., patients without an event, is limited to those with a later censoring time than

the survival time threshold. (More information on censoring is included in section

5.2 Censoring.)

In binary classification, the input images are processed with different CNN

architectures and the performance is measured in terms of AUC, accuracy, speci-

ficity, or sensitivity. While Exarchos et al. (2012) extract features like “extra nodal

spreading” or “bone infiltration” from images to input these together with pre-
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processed clinical and genomic data to a classifier like random forest, recent work

uses neural networks on the input images end-to-end. Huang et al. (2022), e.g., use

a CNN and an MIL approach for binary prediction of prostate cancer recurrence

in WSIs. Instead of predicting cancer recurrence, Duanmu et al. (2020) predict

whether a patient will respond to a therapy. As input to all models, either MRI,

CT, or histopathology images are used, while Duanmu et al. (2020) and Exarchos

et al. (2012) also include clinical or genomic data.

Kumar et al. (2017), Yamamoto et al. (2019), and Huang et al. (2022) use

prostate cancer histopathology images as input. While Kumar et al. (2017) use

TMA spots, Yamamoto et al. (2019) and Huang et al. (2022) use WSIs as input.

Within the presented literature, the dataset sizes range from 220 to 842 cases.

Huang et al. (2022) predict relapse within 3 years, Kumar et al. (2017) within

5 years, and (Yamamoto et al., 2019) evaluate their model on 1-year and 5-year

relapse prediction.

Risk score For a more fine-grained survival prediction the problem is formulated

as “How high is the risk of experiencing an event?”. To that end, each patient

is either assigned a discrete risk score by dividing patients into multiple groups

(e.g., long-term, mid-term, short-term survival as in Muhammad et al., 2021) or

a continuous risk score between 0 and 1 (Zhou et al., 2020; Wulczyn et al., 2020;

Chang et al., 2021; Li et al., 2018; Fan et al., 2021; Huang et al., 2022). Instead of

calculating the risk, Pinckaers et al. (2022) directly predict the year of relapse as

a score between 0 and 4. Wulczyn et al. (2020) divide the time into intervals of 25

months and aim to predict the risk score per interval. From these, a continuous

risk score is created afterward. For these discrete approaches, the authors need to

define beforehand how the survival times are split into groups.

For risk group prediction, again accuracy, precision, or F1 score are used as

metrics for evaluation. For the continuous risk prediction, no ground truth risk

score can be obtained. Most models that predict a continuous score are evaluated

with the concordance index, short C-index (Harrell et al., 1982). It ranges from

0 to 1 and measures how well patients are discriminated, hence compares the

order of predicted risk scores with the order of survival times. A C-index of

1 indicates perfect discrimination, whereas 0.5 is equivalent to a random guess.

Reported C-indices reach up to 0.88 (Muhammad et al., 2021). Pinckaers et al.

(2022) report a hazard ratio of 3.02 and an odds ratio of 3.32, which both measure

the effect of a feature on the survival time when comparing two groups (George

et al., 2020; Kleinbaum and Klein, 2012). For both, a value of 1 states that
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there is no effect. Based on the predicted continuous risk values, many authors

further split the patients into two or three risk groups for evaluation (Chang et al.,

2021; Muhammad et al., 2021; Wulczyn et al., 2020). The discrimination power is

visually shown with Kaplan-Meier (KM) survival curves per group and sometimes

quantified with a log-rank test (Kaplan and Meier, 1958; Chang et al., 2021).

With KM curves, populations’ probabilities of surviving can be compared. More

details on KM curves are given in section 5.3 Population-based survival prediction.

More details about survival model evaluation metrics can be found in section 5.5

Metrics.

As a loss function, the negative log partial likelihood (nlpl) is commonly ap-

plied. Since the nlpl loss only compares the ranking of patients it favors the dis-

criminatory power of the models. Muhammad et al. (2021) extend the loss with

additional terms to stress distinguishing low and high risk. Patients are strati-

fied into two groups based on the predicted risk, and the difference between both

groups’ mean risks is optimized. Wulczyn et al. (2020) combine cross-entropy loss,

since they use a classification-like output, with nlpl and an additional exponential

lower bound on the C-index.

The most commonly used architecture for risk prediction is ResNet (Zhou

et al., 2020; Muhammad et al., 2021; Fan et al., 2021), while some papers use Ef-

ficientNet (Kiyokawa et al., 2022; Walhagen et al., 2022) or individual approaches

(Chang et al., 2021). In contrast, Li et al. (2018) developed a graph network using

patch encodings as vertices and thresholded distances as edges. Furthermore, self-

supervised pretraining may be included for feature extraction (Chang et al., 2021;

Fan et al., 2021). Fan et al. (2021) first train an encoder-decoder architecture on

a colorization task. The encoder part is further used for survival prediction. Zhou

et al. (2020) and Esteva et al. (2022), for instance, use clinical features in addition

to images. Esteva et al. (2022) predict the risk scores either after 5 or 10 years,

while Pinckaers et al. (2022) predict in which of the first 4 years a relapse occurs.

However, not all authors state the time horizon that is regarded.

Prostate cancer use cases are considered by Walhagen et al. (2022), Pinckaers

et al. (2022), and Esteva et al. (2022). Esteva et al. (2022) make use of a non-public

dataset with 5,654 digital histopathology image data (16,204 histopathology slides)

of pretreatment biopsy samples. For 5-year recurrence prediction, they reach a

time-dependent AUC of 0.67, and for 10-year prostate-related death, they reach

0.77. Pinckaers et al. (2022) use two datasets that are available upon request for

research purposes and consist of TMA spots from 685 and 204 patients. Walhagen

et al. (2022) use a private dataset, which is the same that is used for model
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development throughout this thesis. They train a network for binary survival

prediction but treat the predicted output as a risk score. They achieve AUCs of

0.79 and 0.93, depending on whether the test set is denoised.

From the previous literature on Gleason classification, some papers relate their

classification results to the survival of patients afterward, without using survival

information during training. Since Gleason grades may be comparable to risk

groups those approaches are shortly mentioned here. Ström et al. (2020) show

that survival times are equally distributed across their predicted ISUP scores and

a pathologist’s ISUP annotations. No results in form of a metric are reported.

Tolkach et al. (2020) evaluate the KM curves for the predicted Gleason grades

and show with a log-rank test that those stratify well. Nagpal et al. (2019) use

their classification as risk stratification for BCR and achieve a C-index of 0.65,

which is better than the median achieved by pathologists. Arvaniti et al. (2018)

group their results into low, intermediate, and high risk groups and show the KM

curves for these groups. They also state that their groups are statistically more

significant in the log-rank test than those obtained from a pathologist. However,

no comparison to models trained on survival times is made.

Survival curve Not only the risk estimation compared to others is relevant for a

patient, but also an individual prediction of risk over time is beneficial. A patient

would ask, “How long will I live without a relapse? What is the probability of

living relapse-free for another three years?”. To answer these questions, survival

models that predict the probability of an event occurring over time are necessary.

Survival curve with the Cox model

A popular approach to survival prediction on tabular data is the Cox model. It

focuses on predicting the correct ordering of patients. Only linear dependencies

between patient features are considered and patient survival curves cannot cross.

More detailed theory on the Cox model can be found in section 5.4.1 Cox model.

One of the first approaches to Cox model-based survival analysis on image data is

from Zhu et al. (2016). They process images with a CNN and train the model to

order the patients correctly. The model output is, like in the Cox model, a single

hazard value, which is comparable to a risk score. A survival curve can be derived

afterward by modeling a base hazard. As a loss function, the nlpl is applied.

Further extensions of this approach, such as adapting the preprocessing, opti-

mizing the CNN architecture, or including attention are prevalent (Li et al., 2022;

Ren et al., 2018b; Wang et al., 2021; Zhu et al., 2016). Ren et al. (2018b) extract
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features from genomic information and fuse these into an AlexNet, which is used

for image processing. The features are combined across patches with a recurrent

neural network to obtain a final vector, which is input into a Cox model. Liu

and Kurc (2022) include segmentation masks of different structures (tumor re-

gion, tumor-infiltrating lymphocytes, and nuclei) in addition to the image so that

their input consists of six channels. With these, they first predict a risk score of

experiencing an event across five intervals. The result from their model is then

further processed with a Cox model to obtain a survival curve. Nam et al. (2022)

first predict the survival probability in different intervals with a DenseNet from

images and combine this with clinical features. However, they state that adding

a Cox regression to those predictions increases the performance. Their prediction

intervals cover 600 days each.

For the evaluation of these survival models, the C-index is calculated on the

predicted hazard score and reported for all models. Li et al. (2022), Mobadersany

et al. (2018), and Liu and Kurc (2022), for instance, draw KM curves for two to

three groups to illustrate the discriminative power.

In this category, Ren et al. (2018b) train only on prostate cancer data, reach-

ing a C-index of 0.71 solely on images (0.74 when including genomic information).

Sandeman et al. (2022) train a CNN to predict Gleason grading and use these

predictions as input for a Cox model. They show that the KM curves stratify well

when dividing the patients into two risk groups. Using all 5 Gleason grade groups,

the KM curves stratify poorer. However, they do not report a C-index.

Survival curve without the Cox model

Instead of using the Cox model, patients’ survival probabilities can be predicted

for discrete time intervals, allowing for individual progression estimates (Vale-Silva

and Rohr, 2021; Xiao et al., 2020; Nam et al., 2022). Two common approaches

are found: Vale-Silva and Rohr (2021) output a hazard score per time interval,

while Xiao et al. (2020) and Hermoza et al. (2022) directly model the survival

probability per interval. Popescu et al. (2022) estimate a fixed distribution for

the individual survival curves with a log-logistic distributed hazard rate. For each

patient, they estimate the individual hazard rate with a log-logistic distribution

and train to learn its scale µ and shape σ.

If a model is designed to output a prediction per interval, the spacing of the

intervals needs to be defined in advance. The interval lengths are inconsistent

across the literature presented here since they depend on the use case. Hermoza

et al. (2022) divide their bins so that an equal number of patients is included per
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bin. This results in intervals covering 354, 757, and 1,813 days. Vale-Silva and

Rohr (2021) present a study on different interval spacings (1 year, 0.5 years, and

quantile spacing based on patients’ survival times with different time horizons)

and report that results do not differ much when changing the interval spacing.

The most common metrics to evaluate survival curves are again the C-index

and the KM curves for visual interpretation. The survival model evaluation met-

rics are further detailed in section 5.5 Metrics. Xiao et al. (2020) use the survival

curve to estimate the overall survival time of the patient. They evaluate the mean

average error (MAE), which calculates the error between the estimated and the

true survival time. If the target is converted into a binary prediction of surviving

a specified time, the AUC can be measured. Another metric is the Brier score,

which measures the distance between true and observed probability of surviving

single intervals. Survival models perform well if they achieve a high discrimina-

tory power and are also calibrated. Good calibration means that the predicted

survival probabilities represent the true survival probabilities. However, this is

often neglected in the literature (Kamran and Wiens, 2021).

Overall, most models are based on CNNs (Xiao et al., 2020; Hermoza et al.,

2022; Lombardo et al., 2021). ResNet is commonly applied (Xiao et al., 2020;

Hermoza et al., 2022; Yala et al., 2021). Yala et al. (2021) combine the ResNet

with a Transformer, Vale-Silva and Rohr (2021) use a ResNeXt, and Nam et al.

(2022) use a DenseNet as base model. Agarwal et al. (2021) use a siamese network

structure, to process two patients in parallel, and predict the difference in survival

times as the output.

Vale-Silva and Rohr (2021) include 33 different cancer types, among them

prostate cancer, in their experiments and reach a C-index of 0.569 when using

only WSIs as input. The results are improved to 0.801 when including clinical

data. On the prostate cancer dataset, they report a Brier score of 0.079 and a

C-index above 0.8 when including additional patient features.

Summary The survival prediction approaches presented in Table 2.2.4 are het-

erogeneous. Image sources, model architectures, and prediction horizons differ in

the current research. It can be concluded that survival prediction from medical

images is a research topic that is still under development. The current literature

does not provide a clear guidance on which approach is most promising and should

be used as a starting point for new developments. While some researchers reduce

survival prediction to a binary or risk score prediction, predicting a survival curve

provides more detailed information to a pathologist about the patient’s progres-
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sion. The Cox model is often combined with a CNN but restricts the survival

curves to be non-crossing. Hence, modeling the survival per interval with a neural

network seems more valuable. With such an approach, Xiao et al. (2020) and Her-

moza et al. (2022) reach high discrimination performance. However, they model

the survival in different intervals independently and thus cannot enforce decreas-

ing survival curves. By modeling the hazard function, Popescu et al. (2022) and

Vale-Silva and Rohr (2021) enforce biologically reasonable survival curves. How-

ever, both report performances below a C-index of 0.7 when using only images

as input. Only by adding clinical or genomic patient data, the prediction perfor-

mance can be improved. Thus, ways to improve survival prediction models from

histopathology images need to be explored.

Table 2.2.4: Literature overview for medical survival prediction using images as
input. Bold literature uses only prostate cancer data, italic literature uses also
prostate cancer data, besides others
Data sources: M: MRI image, C: CT image, H: Histopathology image, R: radio-
graph, c: clinical data, o: omics data (genomics and/or transcriptomics and/or
epigenomics and/or radiomics) – Data sizes: pa: patients, im: images – Loss:
nlpl: negative log partial likelihood, i.e., Cox-loss, n/a: not available. – Met-
rics: AUC: area under the receiver operator curve, sp: specificity, se: sensitivity,
acc: accuracy, KM: Kaplan-Meier, MAE: mean average error, OR: odds ratio,
HR: hazard ratio

Paper Task Data Model Loss Metric

BINARY

Duanmu
et al.
(2020)

therapy
response

M c o
112 pa

VGG-13 for
3D data

n/a AUC 0.8
acc 0.89
F1 0.77
sp 0.88
se 0.68

Kumar
et al.
(2017)

relapse
(5 years)

H
220 pa

2 CNNs:
detect nuclei
+
classification

binary
cross
entropy

AUC 0.81

Yamamoto
et al.
(2019)

relapse
(1 and 5
years)

H
842 pa
9,916
im

Autoencoder
+ SVM

n/a AUC
0.76-0.84
pseudo
R-squared
0.26

Huang
et al.
(2022)

relapse
(3 years)

H
416 pa
416 im

CNN cross
entropy

AUC 0.78
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RISK SCORES

Esteva
et al.
(2022)

risk score
(5 and 10
years)

H c
5,654
pa
16,204
im

self-supervised
pretraining +
CatBoost
fusion

n/a time dep
AUROC
0.67-0.77

Wulczyn
et al.
(2020)

risk score
/ risk
interval (3
intervals)

H
6,096
pa
(15,104
im)

CNN similar
to MobileNet

cross
entropy
(for risk
in
interval)

c-index 0.61
AUC 5year
0.7
KM (3)

Walhagen
et al.
(2022)

risk score
(event <
3 years)

H
15,238
pa
15,238
im

EfficientNet +
MIL

cross-
entropy

AUC
0.79-0.93
KM (7)

Pinckaers
et al.
(2022)

year of
relapse
(year 0-4)

H
889 pa
2,963
im

ResNet smooth
L1 loss

OR 3.32
HR 3.02
KM curve (2
and 4)

SURVIVAL CURVES WITH COX MODEL

Ren
et al.
(2018b)

survival H o
247 im

AlexNet +
LSTM

nlpl HR 5.73
C-index 0.74

Zhu et al.
(2016)

survival H
450 pa

DeepConvSurv
(CNN + Cox)

nlpl C-index 0.63

Liu and
Kurc
(2022)

5 intervals H c
978 pa
978 im

6-channel
input to
MobileNet +
Cox

extension
of cross-
entropy

C-index 0.70
(im only)
0.73 (with c)
HR 1.19

Nam et al.
(2022)

survival
curve
(600
days)

R c
5,372
pa

DenseNet +
neural net +
Cox

negative
log likeli-
hood

time dep.
5-year AUC
0.67-0.76
(im only)
C-index
0.63-0.72
(im only)
KM (2)
calibration
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SURVIVAL CURVES WITHOUT COX MODEL

Xiao et al.
(2020)

survival
curve +
time

H
769 pa,
1,061
im

CDOR
(ResNet for
censoring-
aware deep
ordinal
regression)

censor-
aware
cross
entropy

MAE 321.2
C-index 0.74

Hermoza
et al.
(2022)

survival
curve per
interval +
time

H,
Xray
16,013
pa,
49,008
im

ResNet augmen-
tation of
censor
aware
cross-
entropy

MAE 26.28
C-index 0.76

Popescu
et al.
(2022)

survival
curve (to
10 years)

M c
269 pa

multiple
network fusion
+ log-logistic
survival model

negative
likeli-
hood

C-index 0.63
(im only)
0.74 (with c)
Brier 0.19
(im only)
0.14 (with c)

Vale-Silva
and Rohr
(2021)

survival
curve per
interval
(30 years)

H c o
11,081
pa
8,376
im

ResNext negative
log likeli-
hood

C-index 0.57
(im only)
0.82 (with c)
Brier 0.22
(im only)
0.14 (with c)
KM (per
cancer)

Lombardo
et al.
(2021)

survival
curve

C o c
1,037
pa

2D + 3D-CNN negative
log likeli-
hood

C-index
0.67-0.88
AUC
0.63-0.89
KM (2)

2.2.5 Robustness

Most neural network models are developed under the closed-world presumption:

It is assumed that the training, validation, and test data are from the same distri-

bution and valid representations of real-world cases (Hsu et al., 2020; Yang et al.,

2021). However, this assumption does not always hold true. When the network

is applied in an open-world scenario, the distributions between the training and

test datasets can differ (Yang et al., 2021). These differences result from (hid-

den) biases in the datasets, for instance, due to different staining protocols. A
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model’s performance may decrease when applying it to a dataset with a different

bias than the one it was trained on (Tellez et al., 2019). Tschandl et al. (2020)

showed that clinicians’ decisions improve when being supported by good-quality

“AI-based” predictions. However, clinicians’ performance degrades when the AI

system provides faulty suggestions. This stresses the need for a robust model that

performs consistently and equally well on internal and external datasets, indepen-

dently from the applied staining protocols and scanners used for digitization. By

restricting the real-world use cases, e.g., to a certain scanner, some bias may be

avoided. However, some sources of domain shift or bias are inevitable.

Three options are commonly applied to tackle the challenge of dataset biases:

One option is to adapt the model architecture to make the model robust against

bias changes. As a second option, data preprocessing might transfer the dataset

bias from one domain to the other. The test set bias can be transferred to all

training images prior to training (e.g., Ma, 2021). Also, the training set bias can

be transferred to the test images after training (e.g., Varsavsky et al., 2020). A

third option is to identify data that differs too much from data that was seen

during training to make a reliable prediction. This can be approached with out-

of-distribution (OOD) detection. When an input is recognized as OOD, it should

not be used for a prediction (e.g., Lee et al., 2018).

The following section first defines and sets the limits of what is covered with

the term “robustness” in the scope of this thesis. Then, methods for detecting

OOD samples and methods for bias transfer are introduced. In the following, if

applicable, example literature using prostate cancer or histopathology images is

provided. However, the cited work is not restricted to either prostate cancer as

the disease or histopathology as the image source.

Definition The term robustness covers a wide range of applications and mean-

ings. Therefore here, the terminology is restricted to a few use cases. In the scope

of this thesis, robustness will be tied to uncertainty. Hence, a model is expected to

assign uncertainty scores to predictions in order to differentiate between images

on which it can make a prediction and those images on which it cannot make

a reliable prediction. Further, a robust model should be able to return correct

predictions on images with a great variety of color biases. Thus, the space of

uncertain images should be reduced as much as possible. Related research fields

like adversarial attacks, detecting non-prostate-tissue images, or other types of ro-

bustness are not covered (for an overview on adversarial attacks in medical image

analysis, consider Apostolidis and Papakostas, 2021).
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Robust models Robustness may be achieved by training on a large dataset

that includes various biases. Since such a dataset is not always available, data

augmentation is used to expand the variety of training images artificially. The

neural network’s ability to generalize is increased when trained with a larger variety

of images. Image augmentation methods include color adaptations and geometric

transforms like flipping or rotation (Shorten and Khoshgoftaar, 2019).

In contrast, color adaptation methods aim at reducing stain variation to as-

similate training and test distributions (Tellez et al., 2019). Tellez et al. (2019)

perform an extensive study on the effects of stain color augmentation and nor-

malization in histopathology images. As a result, they report that stain color

augmentation improves performance, while normalization is negligible. They fur-

ther train a U-Net to reconstruct an image’s original stain after heavy color data

augmentation. That network learns to remove the data augmentation effects and

thus performs a stain color normalization. The normalized images are used in a

classification network for both training and inference.

Different approaches beyond data augmentation have been proposed to make

models more robust against domain shifts. Marini et al. (2021a), for example,

aim to train a network on prostate cancer histopathology images, which is robust

against stain color heterogeneity. Instead of training only a classifier for Gleason

grade classification, they in parallel use a regression output to predict the H&E

components of the image. They argue that the model learns staining invariant

features this way. During training, they use two datasets from different sources.

Ren et al. (2019a) also train an adversarial model for prostate cancer strati-

fication on both the source and target domain, without requiring labels for the

target domain. They aim to create a feature space that is discriminative for the

task, not for the domain. To achieve this, a siamese CNN network that processes

two target domain image patches at once and a CNN to process the source domain

patches are implemented. The siamese network is trained to classify two patches

from the same image as the same class. A discriminator between both domains is

trained with a GAN loss.

Color transfer Instead of training a model to be robust against domain shifts,

another approach is to reduce the difference between the training and test domain.

To assimilate dataset biases, domain adaptation or color transfer methods can

be applied. Some approaches adapt the training dataset such that the images

are more similar to the test set domain (Mohseni et al., 2020; Roy et al., 2022;

Fort et al., 2021). Ma (2021) show that a model that is trained on MRI images
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that were adapted to the test set intensities performs better on the test set than

a model trained on the original training images. The drawbacks are that this

method requires retraining and can only be used when the test domain is known

in advance with multiple available test-domain images.

Instead of adapting the training images to match the domain of the test set,

the inverse direction is another option. That means the test images are adapted to

match the training domain (Ren et al., 2019a; Bulten et al., 2020). An advantage

is that neither re-training nor a large test dataset is needed, since single images

may be matched to the training domain.

Different approaches for bias transfer have been proposed and can be used on

the training or test domain. In the following, domain adaptation is defined as the

color transfer from a source domain to a target domain. Biases besides color are

neglected.

A simple color transfer approach is histogram matching (in RGB, HSV, or Lab

space; Fan et al., 2022). The histogram of a source domain image is matched to the

histogram of an arbitrary image from the target domain. However, visual artifacts

may be introduced into the images by histogram matching (Ren et al., 2019a). For

histopathology images, alternatives have been proposed, for instance, by Macenko

et al. (2009) and Vahadane et al. (2016). Macenko et al. (2009) transfer the images

into optical density space to obtain two distinct stain matrices. Background pixels

that do not exceed a threshold value are omitted. The target image’s stain matrices

and maximum intensity are adapted to the stain matrices and intensity of the

source image to assimilate the source image’s appearance. Vahadane et al. (2016)

also decompose the image into stain density maps, corresponding to hematoxylin

and eosin staining. A structure-preserving color normalization is applied to adapt

the source image to the target image.

A reference image needs to be chosen for all these color transfer techniques.

Instead of matching to a single random image, Ren et al. (2019a) match the source

image to several target images. They combine the predictions per transformation

in the feature space to obtain the final classification. With an increasing number

of target images, the classification performance improves.

Thebille et al. (2021) and Bulten et al. (2020) developed more complex domain

adaptation methods. Both implemented a GAN for bias transfer of external image

samples to the training domain. Compared to color transfer via histogram match-

ing, the GAN approach improved test set results. Drawbacks are that GANs need

access to a reasonably sized dataset of the new domain for training, they have to

be retrained for every new dataset bias, and may also introduce visual artifacts.
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For all color transfer methods, it is assumed in advance that the color matching

improves the images sufficiently to make a correct prediction afterward. However,

the image quality generally is not tested after transformation and no uncertainty

measure, with respect to predictive performance, is included.

Out-of-distribution (OOD) detection Making a model robust to domain

changes or sufficiently adapting the domain may not always be possible. Further-

more, a transformation does not guarantee reliable and certain model predictions.

Therefore, mechanisms are needed to detect samples that do not stem from the

same distribution as the training data. When these out-of-distribution (OOD)

samples are encountered during inference, the prediction may not be reliable and

thus should be discarded or passed on to a human expert.

The term “OOD detection” covers a wide range of applications and has ambigu-

ous definitions in the literature. Yang et al. (2021) summarize out-of-distribution

detection, anomaly detection, open set recognition, outlier detection, and novelty

detection with the term “generalized OOD detection”.

In the case of classification, detecting a semantic shift, that is, a sample coming

from an unknown class, is a common task. In contrast, especially in the medical

domain, non-semantic shifts like biases in the dataset need to be detected (Yang

et al., 2021). Depending on the use case, either the semantic or non-semantic

shift is focused on, even though some algorithms aim to detect both equally well

(e.g., Hsu et al., 2020). Chen et al. (2020a) aim to detect artificial OOD examples

obtained through adversarial attacks. However, robustness to adversarial attacks

is considered a separate research field and therefore not covered here. In the scope

of this thesis, OOD samples are assumed to have a different color bias on which a

model cannot make reliable predictions.

A wide range of approaches toward OOD detection has been developed. The

field gained more attention recently as researchers count robustness indispensable

for the application of their models (Drenkow et al., 2021). An OOD detection al-

gorithm can either be trained including OOD examples or solely on in-distribution

(ID) examples. Exploiting OOD examples eases their detection but is limited to

known biases since variations that might occur in real-world data might differ from

OOD data present during training. In the following, two often-applied OOD de-

tection approaches are presented, one including density estimation, and one based

on classification output (Yang et al., 2021).

In classification tasks, the output of the final layer’s softmax activation func-

tion is often interpreted as a probability for the input to belong to one of the
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output classes (e.g., Kumar et al., 2017; Nagpal et al., 2020). The higher the class

probability, the higher the confidence. A threshold can be used to decide whether

to trust the prediction or not. However, Nguyen et al. (2015) show that using the

softmax output as an uncertainty measure is unreliable. It returns overconfident

probabilities, even for inputs that are unrecognizable to humans. Therefore, Liang

et al. (2018) propose pushing the probabilities of ID and OOD predictions further

apart. In their method called ODIN (out-of-distribution detector for neural net-

works), they add a temperature scaling factor to the softmax function. The second

important part of their work is adding a parameter ϵ to all input data to increase

the difference between ID and OOD data. For this, they need access to OOD

data during training. Hsu et al. (2020) propose a generalized ODIN model that

does not need access to OOD samples. They alter the neural network’s output to

also predict the probability of the image being ID, along with the class prediction.

Other classification models explicitly introduce an outlier class in the model so

that unknown classes can be classified as outliers.

Lee et al. (2018) propose a different approach for outlier detection. They ap-

proximate the training distribution in the latent space (the output of a predefined

neural network layer) of each class with a Gaussian distribution. Then they com-

pute the distance from the latent representation of a new data point to each class

mean. As a distance metric, the Mahalanobis distance is applied, which incorpo-

rates the data correlation. Based on the distance, it is decided whether a sample

is considered in- or out-of-distribution. The final decision threshold is chosen to

count 95 % of the training data as ID. Furthermore, they apply a data shift to

all input data to spread ID and OOD data further apart, similar to Liang et al.

(2018). This approach assumes a Gaussian distribution in the latent space, which

Sun et al. (2022) propose to circumvent. They propose a k-nearest-neighbors ap-

proach and a Euclidean distance. In the latent space, they measure the distance to

the k-th nearest neighbor, assuming that OOD samples reveal themselves through

a larger distance (less close neighbors) than ID samples. Again, a threshold of

95 % ID training data is set to decide whether a sample is OOD.

However, as can be seen above, most OOD detection models presume an un-

derlying classification task while some even require it, e.g., when adapting the

softmax or adding an outlier class node. These approaches can thus not be ap-

plied to tasks like survival prediction. Other approaches aim at detecting OOD

via the gradient of the model (if the gradient changes a lot, the input must have

been different; Huang et al., 2021a) or use GANs to detect anomalies when the

GAN cannot reconstruct the original image (Yan et al., 2021).
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Summary In the literature, OOD detection, color transfer, and robust models

are usually not combined but used separately. There is great potential in com-

bining OOD detection, which only assigns uncertainty scores and dismisses OOD

samples, with color transfer, which transfers all images without verifying that the

resulting image is reasonable. Thus, evaluating the OOD-ness of a sample after

color transfer could increase robustness even further, since uncertain samples can

be deferred to an expert and only certain samples are used for prediction.

2.2.6 Explainability

For clinical application, a model needs to provide good performance on varying

clinical datasets and studies (Kleppe et al., 2021). Even though this increases

trust, neural networks still act as black boxes, without revealing the underlying

decision-making processes. The influence of single input features on a prediction is

hard to reconstruct due to the non-linear and complex nature of neural networks,

which makes them difficult to interpret (Zhang et al., 2018).

To overcome this, explanations of what the neural network focuses on during a

prediction can be generated. The decision-making process is better comprehensible

if a neural network explains why it predicts a certain model output. For image

analysis, e.g., the image regions that were most relevant for classification might

be highlighted. Such explanations can be used to explore whether the model

focuses on features that a human deems relevant and whether a decision should

be trusted. The explanation might then be used during model development or

deployment (Barredo Arrieta et al., 2020).

Besides being a beneficial feature, explainable AI (XAI) may be a requirement

for clinical usage or acceptance (Heesen et al., 2020). The terms “explainable,

trustworthy, understandable, interpretable” suffer from inconsistent connotations

in the literature (Barredo Arrieta et al., 2020). For the scope of this thesis, these

terms are used interchangeably and the meaning is limited to “showing which

image regions are most relevant for a prediction of a neural network”.

There are different options to include explainability in neural networks. One

option is to include explainability directly in the model architecture. Using atten-

tion MIL, the input image patches are weighted based on their relevance. These

weights can reveal which image regions are most important for a prediction (Ilse

et al., 2018).

Another option is to apply explainability methods after model development on

the black box neural network, without adapting the architecture or training. With

46



BACKGROUND 2.2. STATE OF THE ART

the introduction of class activation maps (CAMs), Zhou et al. (2016) established

a new method, which has been widely applied and adopted further. By map-

ping the class activation scores backward through the neural network, they can

reveal which image regions are most discriminative for a certain class. Instead of

calling their approach explainability, they use the generated heatmaps for object

localization. Selvaraju et al. (2017) propose an extension called gradient-weighted

class activation mapping (Grad-CAM). They use the gradients of a target concept,

such as one class in a classification, and state that their approach is not limited

to classification outputs.

Patil et al. (2019) apply interpretability methods on breast cancer histopathol-

ogy images. They state that attention-based MIL returns better localization re-

sults than Grad-CAMs. Li et al. (2021) apply Grad-CAM to the problem of

prostate cancer classification to reveal relevant image regions.

A drawback of these methods is that no general statement about feature im-

portance can be made. The importance is only explored and visualized on single

images, without further quantification. For further exploration of explainability

methods, the reader is referred to Barredo Arrieta et al. (2020), Vilone and Longo

(2021), and Singh et al. (2020).

2.2.7 Conclusion

The state of the art illustrates that CNNs are the gold standard in computer

vision classification and survival prediction tasks, but there is no single leading

architecture. In the field of prostate cancer histopathology, most research focuses

on Gleason grade prediction. Gleason prediction, however, requires much annota-

tion effort, and the accuracy is bound by subjective pathologist labels. Instead,

survival prediction models enable objective predictions since they can be trained

on objective endpoints.

In the literature, survival prediction is often reduced to a binary prediction of

whether a relapse occurs. However, this only takes into account a single time hori-

zon, hence, no progression estimation. A more valuable approach is to predict sur-

vival curves. Many models that predict survival curves extend the Cox model (e.g.,

DeepConvSurv; (Zhu et al., 2016)), which is restricted to non-crossing survival

curves and thus might not approximate the true underlying survival probability

of patients. Therefore, it might be beneficial to pursue an approach that predicts

survival probability in discrete intervals. The approach of Xiao et al. (2020), who

model a survival curve directly with CDOR based on ResNet, is promising in this
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field since it only uses histopathology images as input and achieves high predictive

performance. The downside of CDOR is that the time-dependency between the

intervals is not modeled and the predicted survival per interval is unconstrained,

thus it is not restricted to be monotonically decreasing. Vale-Silva and Rohr (2021)

present a different promising approach for cancer-related survival prediction. They

model the hazard instead of the survival curve and predict the survival for multi-

ple cancer types. However, they also do not model the time dependency between

intervals and do not include any explainability. Further, their model performs

best when only using clinical patient data like age and genomic features, and the

performance significantly decreases when predicting survival from a WSI. Thus,

their model is not sufficiently trained to extract valuable image features. They

state that the large variability in tissue appearances across cancer types might

impede performance.

The robustness of models is not often tackled in histopathology. Marini et al.

(2021a) present a classification model that is trained to be robust to staining vari-

ations and include a detailed analysis on multiple datasets. However, their model

still shows great differences in model performance between internal and external

test sets. The model trained by Ren et al. (2019a) achieves significantly improved

scores over a baseline model on unseen datasets for prostate cancer stratification.

While both models achieve reasonable performance on external datasets both re-

quire datasets from two different domains during training. Therefore, a color

transfer method that is applied on test set images, independent of model training,

is preferable. Current approaches include histogram matching or Macenko adap-

tation. Since a random reference training image is chosen for those approaches,

the transformation is highly dependent on that random choice and not stable.

Further, no quality control after color transformation is included. Detection of

uncertain images can be tackled with OOD detection. Thus, combining color

transfer methods with OOD detection approaches would be preferable to ensure

that the model only makes predictions on certain (ID) images while decreasing

the number of uncertain (OOD) images by color transfer.

The literature also showed that explainability is still an unsolved research task,

which is often approached by visualizing explanations for single inputs. However,

it misses quantification.

To date, no model for prostate cancer survival prediction has been developed

that provides accurate predictions from only histopathology images, explains its

predictions, and includes a robustness analysis on several external or differently

biased datasets.
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To address these existing challenges, this work will focus on the following

research topics:

• Deriving the best-fit model for Gleason classification for a given dataset

based on the presented state-of-the-art computer vision architectures (see

Table 2.2.1) and Gleason classification models (see Table 2.2.3). This anal-

ysis can be found in chapter 4 Gleason grade prediction.

• Developing a survival prediction model that, in terms of discrimination and

calibration, accurately predicts survival curves using only histopathology

images as input. This model is explained in chapter 5 Survival prediction and

compared to two of the presented state-of-the-art survival prediction models,

namely the aforementioned DeepConvSurv and CDOR (see Table 2.2.4).

• Exploring how to obtain predictions that are robust toward changes in

dataset bias by combining OOD detection with color transfer. The OOD

approach is based on Lee et al. (2018) and Sun et al. (2022), whereas for

color transformation, histogram matching and the color adaptation proposed

by Macenko et al. (2009) are extended (see section 2.2.5 Robustness). This

novel approach can be found in chapter 6 Robustness.
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Chapter 3

Datasets

The datasets used throughout this thesis comprise images of TMA spots obtained

after RPE. Since tissue appears similar at biopsy and after RPE, a model trained

on RPE tissue is expected to be extendable to process biopsy images, which is the

long-term objective for a prostate cancer decision support system. One advantage

of these TMA datasets over biopsies is that the patients are comparable since the

time of tissue acquisition corresponds to the time of RPE. Also, TMA spot images

are smaller in size, therefore, containing less misleading information than WSIs

(e.g., background, stroma).

For this thesis, two different dataset sources are available: several non-public

internal datasets are provided by the University Medical Center Hamburg-Eppen-

dorf (UKE), Hamburg, Germany (see section 3.1 Internal datasets), while an exter-

nal dataset is provided by the New York University through the Prostate Cancer

Biorepository Network (PCBN; see section 3.2 External test dataset).

For all internal datasets, survival annotations and Gleason scores per patient

are available from the EHRs, while an experienced pathologist annotated single

images with Gleason scores only in one subset. The internal dataset is exceptional

for prostate cancer survival prediction, as it is large in size (more than 17,000

patients) and labeled with objective relapse times. That enables training neural

network survival models and obtaining meaningful evaluations. Several subsets

emulate differences in data acquisition protocols. These are thus suitable for the

research questions as they allow a thorough evaluation of robustness and general-

izability.

The external dataset is smaller in size (204 patients) and also comprises survival

labels. That dataset is used to further evaluate the generalizability to a dataset

bias different from the internal datasets.

All datasets and subsets are described in detail in the following.
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3.1 Internal datasets

The internal datasets are provided by the UKE Institute of Pathology. The TMA

spots have a diameter of 0.6 mm, are 2.5 µm thick, and are stained with hema-

toxylin for 4 minutes and with eosin for 1:20 minutes unless stated otherwise. A

Leica Aperio AT2 scanner1 is used to digitize the TMA spots with a 20x mag-

nification objective, but the images are digitally magnified to 40x. One dataset

is scanned with a 3D Histech scanner2. The resulting images are either provided

as portable network graphics (.png) files or converted to .png from tagged image

file format (.tiff) files. The images are 2490 × 2490 to 3181 × 3181 pixels in size.

Patients included in this study underwent an RPE in the UKE between 1992 and

2014. All personal information was removed, so no identification of the patients

is possible from these datasets.

For this thesis, there are two kinds of internal datasets, which both comprise

TMA spot images: The dataset named Gleasonaut contains individual Glea-

son annotations per TMA spot for Gleason classification, while the Survival

dataset contains Gleason annotations only for the complete patient, i.e., the

whole prostate, along with the patients’ times to relapse. The Survival dataset

further comprises several subsets. There is an overlap between the patients in

the Gleasonaut and the Survival dataset, however, since the TMA spot images

differ and no patient IDs are available, it is impossible to match the patients. The

composition of all datasets is described in the following.

3.1.1 Gleasonaut

The “Gleasonaut” contains TMA spot images with individual Gleason labels per

image. One experienced pathologist annotated each spot with two Gleason grades,

sometimes giving a tertiary Gleason grade. The algorithm developed in this thesis

is supposed to be applied prior to RPE in the future and thus to biopsy images.

Since no tertiary grade is assigned to biopsies, the tertiary grade is integrated into

the secondary Gleason grade in this thesis (e.g., 3+4 Tert.5 → 3+5). Even though

the pathologist is very experienced, the labels must be considered subjective since

some Gleason grades are ambiguous.

This dataset for Gleason grade classification comprises 7 TMAs, each with 195-

1https://www.leicabiosystems.com/de/digitalpathologie/scannen/ (last accessed
November 21, 2022)

2https://www.3dhistech.com/research/pannoramic-digital-slide-scanners/

pannoramic-1000/ (last accessed November 21, 2022)
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520 spots, yielding 2,976 images. Images that are corrupted or include (almost)

no tissue are dismissed manually, which leaves 2,961 images. For 91 images, no

Gleason annotation is available. These are further dismissed, leading to a dataset

size of 2,870 images. Since all images are from distinct patients, the number of

images equals the number of patients.

6 TMAs are shuffled and split into a training, a validation, and a test set (75 %

- 15 % - 15 %). The splitting is stratified and keeps a similar ratio of Gleason

grades across the datasets. One TMA (TMA 13.1D) is omitted from this split to

evaluate how the algorithm performs on unseen data from a completely separate

TMA, with possibly unseen staining variation. The left-out TMA is the one with

the fewest images. The data split according to the Gleason scores is shown in

Table 3.1.1. It is unbalanced, with most images showing low Gleason grades or

benign tissue.

Table 3.1.1: Gleasonaut: Number of patients, i.e., images, per Gleason grade and
dataset split. The bar chart on the right illustrates the total numbers. #: number,
test13: test13.1D dataset.

ISUP Gleason grade training validation test test13 total
0 0 343 74 74 28 519
1 3+3 611 131 131 53 926
2 3+4 555 119 120 53 847
4 3+5 21 5 5 4 35
3 4+3 102 22 22 11 157
4 4+4 58 13 13 17 101
5 4+5 72 16 16 14 118
4 5+3 4 1 1 0 6
5 5+4 49 11 11 5 76
5 5+5 55 12 12 6 85

total 1,870 404 405 191 2,870 0 500
# images

3.1.2 Survival dataset

Each TMA spot image in the Survival dataset is annotated with its patient’s re-

currence-free survival time. That denotes the time from RPE to BCR, which is

available from the EHR. A BCR is defined as a significant rise in PSA value after

RPE (Lobel, 2007). Further, the censoring status of a patient is available, stored

as censored or uncensored. For censored patients, the occurrence or time of BCR

is unknown, and the last known time without relapse is recorded. Censoring is
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described later in more detail (see section 5.2 Censoring). For patients in this

Survival dataset, a Gleason label is only available for the whole prostate, not

for the individual TMA spots. Since label acquisition is less laborious for this

dataset, it comprises more patients than the Gleasonaut described before, where

a pathologist had to annotate each image manually.

The Survival dataset includes patients with unknown relapse or censoring times

and tissue spots with artifacts. Therefore, all sub-datasets need to be filtered

and cleaned before usage. First, patients are removed if their relapse time or

censoring status is unknown since they cannot be used for analysis. Furthermore,

images with little to no tissue or extreme artifacts, such as overlapping tissue, are

removed by manual quality control. Another filtering criterion is applied based on

the assumption that not all images are equally informative since a TMA spot only

covers a part of the whole prostate and might miss the malignant region. That

may result in tissue images not representative of the patient’s disease status and

outcome. Since Gleason scores per spot (image) are not available to evaluate if

the TMA spot grade matches with the aggressiveness seen in the whole prostate, a

neural network was used to predict the Gleason score (as ISUP score) for individual

TMA spots. The Gleason score prediction per image and the annotation per

patient are compared, and an image is omitted if its Gleason prediction is ‘no

cancer’, but the patient’s annotated Gleason score is greater than ‘3+3’, his PSA

value is greater than 4 ng
ml

, and he had a relapse within 2 years after the RPE.

This criterion filters out the most extreme cases, which are expected to reduce the

survival model’s ability to learn important image features. It is named FilterRepr

(filter representative images) in the following for reference.

The Survival dataset comprises several sub-datasets, which vary in tissue sec-

tion per patient, scanner, tissue thickness, or staining. The primary dataset used

throughout this thesis comprises a single TMA spot per patient and is named

Surv1. A second dataset, including the same patients but tissue taken from a

different region in the patient’s prostate, is named Surv2. The SurvHetero

includes multiple images per patient, with partly overlapping patients to Surv1,

but distinct images. For SurvHetero, the annotations are only known to the UKE

Institute of Pathology. The parameters concerning diameter, staining time, tis-

sue thickness, and scanner for digitization described above in section 3.1 Internal

datasets apply to Surv1, Surv2, and SurvHetero. For a deeper analysis of the

network performance when the tissue thickness or staining time changes, three

different datasets, SurvThin, SurvThick, and SurvLongStain are available,

summarized as SurvDiff. SurvScan is scanned with a different scanner. The
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great variety of images, particularly the emulation of different data acquisition

techniques for a single set of patients, is unique and valuable for robustness anal-

yses. The following sections describe the details of the different internal datasets,

which are also summarized in Figure 3.1.1.
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Figure 3.1.1: Composition of the internal survival datasets of which the annota-
tions are not blinded, i.e., excluding SurvHetero. The greyed-out training datasets
are not used throughout this thesis but are listed for completeness. The indicated
colors per dataset are reused in section 6.4 Experiments for clearer visualization.
train: training, valid: validation, test13: test13.1D dataset. TMA: tissue microar-
ray.

Surv1 In Surv1, 17,230 images with prostate tissue are available (2,997 images

without tissue were neglected). This dataset was further reduced to obtain a clean

dataset that can be used for model training as follows: 1,748 of these patients have

an unknown relapse time, and 1,741 have an unknown censoring status, which is

why these are excluded. Additional 345 images that contain little tissue or are
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of poor quality (e.g., artifacts in the image) are omitted. The additional Gleason

filtering criterion, FilterRepr, is met by 709 patients who are further excluded.

The final Surv1 comprises 14,479 patients since some patients fit multiple of the

exclusion criteria mentioned above.

The remaining patients are split into 70 % training dataset, 15 % validation

dataset, and 15 % test dataset, again leaving out one TMA block (13.1D) as a

separate test set. The datasets are stratified by annotated prostate Gleason score

to obtain equal distribution of cancer grades across the splits. Table 3.1.2 (a)

shows the numbers of censored and uncensored patients per dataset split before

and Table 3.1.2 (b) after data cleaning. The distribution of relapse times for each

dataset is shown in Figure 3.1.2. It can be seen that the distributions are similar

for the training, validation, and test sets, and only the small test set obtained

from a single TMA has a different distribution. Most relapses and censored events

occur in the first months after RPE, with a median of 26.8 months and a mean

of 35.9 months for relapses. In Figure 3.1.3, one random image of each TMA is

shown. It is apparent that the staining differs between TMAs.

Table 3.1.2: Number of censored and uncensored patients in Surv1 per dataset
split, before and after data cleaning. c=0 uncensored with relapse, c=1 censored
without (known) relapse, and c=−1 unknown censoring status.

(a) Surv1, before cleaning.

training validation test test13.1D total
c=0 2,482 558 541 45 3,626
c=1 8,217 1,732 1,770 144 11,863
c=−1 1,217 255 260 9 1,741
total 11,916 2,545 2,571 198 17,230

(b) Surv1, after cleaning.

training validation test test13.1D total
c=0 1,965 445 429 36 2,875
c=1 8,023 1,698 1,742 141 11,604
total 9,988 2,143 2,171 177 14,479
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Figure 3.1.2: Histograms of the distribution of time (in months) from RPE to BCR
or censoring time for each dataset split of Surv1. Dark blue (c=0) are uncensored
patients with relapse, and light blue (c=1) are censored patients without (known)
relapse. #: number, RPE: radical prostatectomy, BCR: biochemical recurrence.

Figure 3.1.3: Sample images per TMA given in Surv1.

Surv2 Surv2 was preprocessed with the same steps as Surv1, the original and

final data distribution are shown in Table 3.1.3. Here, it is important to note that

the same patients are included in this dataset as in Surv1, hence, the patients

are split into the same training, test, and validation sets as before. The tissue

samples are, however, extracted from a different region in the prostate. In contrast

to Surv1, this dataset is stained and digitized at a single point in time, making

the appearance more homogeneous, but different from Surv1, as can be seen in

Figure 3.1.4.
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Even though both Surv1 and Surv2 initially contain the same patients, the

image filtering and selection steps result in some patients for whom only a single

image of Surv1 or Surv2 is available, while the majority of patients have two

images. For model performance comparisons, it is interesting to create a dataset

only including patients that have two images, one from Surv1 and one from Surv2.

This dataset is named SurvMulti and summarized in Table 3.1.4. Note that the

number of images is indicated, which is twice the number of patients.

Table 3.1.3: Number of censored and uncensored patients in Surv2 per dataset
split, after data cleaning, c = 0 uncensored with relapse, c = 1 censored without
(known) relapse.

training validation test test13.1D total
c=0 2,290 469 507 43 3,309
c=1 7,116 1,529 1,540 139 10,324
total 9,406 1,998 2,047 182 13,633

Figure 3.1.4: Sample images per TMA given in Surv2.

Table 3.1.4: Number of censored and uncensored images in SurvMulti (only pa-
tients that have an image in both Surv1 and Surv2) per dataset split, after data
cleaning, c=0 uncensored with relapse, c=1 censored without (known) relapse.

training validation test test13.1D total
c=0 3,444 754 770 70 5,038
c=1 13,906 3,002 3,020 274 20,202
total 17,350 3,756 3,790 344 25,240
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SurvDiff Furthermore, tissue cores of five TMA blocks, which were also part

of Surv2, were sliced and stained again, emulating different data acquisition pro-

cesses. While in Surv1 and Surv2, each tissue slice is 2.5 µm thick, for this addi-

tional dataset, tissue slices with 1 µm (SurvThin) and 10 µm (SurvThick) were

cut. A third set, SurvLongStain, contains images of tissue that was sliced again

with 2.5 µm but stained approximately 10 times longer than usual: 40 min with

hematoxylin and 10 min with eosin instead of 4 min and 1:20 min, respectively.

These tissue samples were obtained by subsequently cutting slices from the same

core as was used in Surv2. Therefore, the structures in the images of SurvThin,

SurvThick, and SurvLongStain for the same patient look similar (see Figure 3.1.5).

The different methods lead to images with lighter (SurvThin), darker (SurvThick),

or more saturated appearances (SurvLongStain).

As was shown by Chlipala et al. (2021), different tissue thicknesses and stain-

ing protocols influence the optical density of the images, which could reduce the

prediction performance of digital image analysis models.

Figure 3.1.5: Sample images per TMA given in SurvDiff. Each column corresponds
to the same patient and tissue core, of which slices are cut subsequently. First
row: SurvThin, second row: SurvThick, third row: SurvLongStain.

Table 3.1.5: Number of censored and uncensored patients in SurvDiff per dataset
split, after data cleaning, train: training set, val: validation set, c=0 uncensored
with relapse, c=1 censored without (known) relapse.

SurvThin SurvThick SurvLongStain total
train val test train val test train val test

c=0 226 81 94 229 81 94 229 81 94 1,209
c=1 552 210 248 553 211 248 553 214 248 3,037
total 778 291 342 782 292 342 782 295 342 4,246
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SurvDiff will therefore be used to test the generalizability of models trained

on Surv1. It may further approximate the achievable performance on external

datasets, for which the data-acquisition conditions are not known in advance.

Since the images included in SurvDiff belong to the same patients as in Surv1

and Surv2, the patients are assigned to the same training, validation, and test sets

as before. However, the training split is not used since only the evaluation is of

interest. The dataset numbers are shown in Table 3.1.5 for SurvThin, SurvThick,

and SurvLongStain. Only a few images are removed due to the filtering criterion

so that the three datasets are almost equal in size.

SurvScan In addition to the staining time and tissue thickness, another source

of variation for histopathology datasets is the scanner used for digitizing the tissue.

The datasets Surv1, Surv2, SurvDiff, and SurvHetero described above are all

obtained with a Leica Aperio scanner. For SurvScan, the same tissue as in Surv1

is digitized by a different scanner, the 3D Histech. However, only 33 out of 39

TMAs are available, which leads to a reduced dataset size. The patients’ images

are split the same way as in Surv1 into training, validation, and test sets. Again,

the training set will not be used in this thesis. SurvScan is also cleaned as described

above using FilterRep and removing images with little or no tissue, resulting in

the dataset distribution shown in Table 3.1.6. An impression of the images is

given in Figure 3.1.6. The color varies across TMAs and differs from the previous

datasets as it has an orange-pink tint instead of violet.

Figure 3.1.6: Sample images per TMA taken with the 3D Histech scanner in
SurvScan.
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Table 3.1.6: Number of censored and uncensored patients in SurvScan per dataset
split, after data cleaning, c = 0 uncensored with relapse, c = 1 censored without
(known) relapse.

training validation test total
c=0 2,309 532 439 3,280
c=1 6,929 1,465 1,390 9,784
total 9,238 1,997 1,829 13,064

Surv1AddInfo Besides the prostate tissue TMA spot image, additional infor-

mation is available for the patients in the internal Survival dataset. These can be

used for a clinical decision support system in addition to the H&E images. All

clinical features that the dataset comprises are listed in Table 3.1.7 along with

their value ranges.

However, some of that additional information is only available after RPE.

When adding clinical information to improve a treatment decision model, only

those features available before the treatment of a patient have to be selected.

Therefore, the feature overview table includes information on whether or not a

feature is available at the time of biopsy. For example, whether cancer cells are

present in the resection margin can only be known after RPE. In contrast, the

patient’s age and PSA value are readily available at the time of biopsy. In the

Survival dataset, Gleason grades are only available for the whole prostate and are

neglected since they comprise more information than is available during the biopsy.

Tumor volume and tumor diameter are typically measured after the removal of the

prostate. However, research on the approximation of tumor volume and diameter

before surgery, for instance, with MRI, exists (Mazaheri et al., 2009; Hsieh et al.,

2021). Therefore, these two features may be available at the time of biopsy as

model input features.

Tumor volume, tumor diameter, and PSA value are not available for all patients

in Surv1. 3,428 patients do not have information about tumor diameter, 4,818

patients lack information about the tumor volume, and 71 patients do not have a

recorded PSA value. Therefore, the number of patients in Surv1 reduces to 7,806.

An overview of the remaining training, validation, and test set patients in Surv1

is given in Table 3.1.8. This dataset is from now on named Surv1AddInfo.

To estimate whether the data already reveals an association between features

and relapse-free survival time, KM curves can be used. The theory of KM curves

is described in detail in section 5.3 Population-based survival prediction. In short,

patients are split into groups according to a single feature, and for each group, the
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Table 3.1.7: Additional patient features that are available for parts of the internal
Survival dataset, Av. at biopsy: value available at time of biopsy, #: number,
PSA: prostate-specific antigen, RPE: radical prostatectomy.

Feature Value range Av. at biopsy
group of PSA level before RPE <4, 4-10, 10.01-20, >20.01 yes
PSA level before RPE up to 1,101 yes
patient age at RPE 37.5 - 80.8 yes
size of the tumor pT1 - pT4 no
positive resection margin yes/no/unknown no
vessel invasion yes/no/unknown no
lymph vessel invasion yes/no/unknown no
lymph node invasion yes/no/unknown no
# lymph nodes with metastases up to 23 no
# lymph nodes total up to 132 no
diameter of tumor up to 92 indirect
volume of tumor up to 3,125 indirect
Gleason pattern 0 - 5+5 yes
% Gleason 3 in prostate 0 - 100 yes
% Gleason 4 in prostate 0 - 100 yes
% Gleason 5 in prostate 0 - 100 yes

Table 3.1.8: Number of censored and uncensored patients in Surv1AddInfo per
dataset split, after data cleaning, c= 0 uncensored, with relapse, c= 1 censored,
without (known) relapse.

training validation test total
c=0 890 202 209 1,301
c=1 4,569 964 972 6,505
total 5,459 1,166 1,181 7,806

number of patients surviving (relapse-free) is plotted against time. A correlation

between the group selection feature and the outcome exists if the KM curves for

different groups separate well. When comparing more than two groups, the curves

also need to be in the correct order to be meaningful.

For Surv1AddInfo, the patients are grouped according to their features, and the

resulting KM curves are plotted in Figure 3.1.7. The last relapse in this dataset

occurs at 83.9 months. The patients are split into four quantiles according to

the single features, yielding an equal number of patients per group. A higher PSA

value correlates with an earlier relapse time since the curves drop earlier the higher

the PSA value is in a group. Accordingly, patients with low PSA values (<5 ng
ml

)

survive longer relapse-free than patients with higher values. The same holds for

tumor volume and tumor diameter. The larger the tumor, the lower the survival
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probability. These correlations are also supported by findings in the literature

(Eichelberger et al., 2005; Kattan et al., 1999; Stamey et al., 1999). For the age,

however, the correlation is not as clear in Surv1AddInfo since the curves for all

patients are very close. Only for patients older than 70 years, a slight difference

is visible as the KM curve remains below the others.
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Figure 3.1.7: Kaplan-Meier curves showing how PSA value (in ng
ml

), age (in years),
tumor volume (in ml), and tumor diameter (in mm) relate to relapse-free survival
time. The plots are cut at 110 months on the y-axis for clarity and without loss of
information since only a single patient has a later censoring time. The descriptions
of the colors in the line plots are provided in the respective legends.

SurvHetero Another test dataset in the internal Survival dataset is SurvHetero.

Like Surv1, the tissue is 2.5 µm thick and scanned with the Leica Aperio. However,

it includes multiple TMA spots per patient and therefore resembles the situation

of a biopsy more closely, where up to twelve cores are extracted and analyzed.

SurvHetero is used to evaluate whether the performance of a model is affected

when using multiple images as input during inference. It includes 828 patients

that are partly overlapping with the patients in Surv1, but the included images

are different. Per patient, 2-6 images are available, in total 4,181. In contrast to

the datasets mentioned above, all annotations and additional patient information
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are blinded. This dataset is also not split but used completely as a test set. In

order to evaluate any model on SurvHetero, the predictions are sent to the UKE

Institute of Pathology and evaluated there.

3.2 External test dataset

The external dataset also comprises TMA spot images of prostate cancer pa-

tients. The dataset is accessed through the Prostate Cancer Biorepository Net-

work (PCBN) and is referred to as SurvPCBN3. It is provided by the New York

University. This dataset contains 204 patients with up to nine images per patient

and includes censoring information as well as the patients’ time to BCR. In total,

725 images are available, of which 702 can be used for evaluation after apply-

ing FilterRep and filtering out images with few or missing tissue. The patients’

survival time distribution is shown in Figure 3.2.1 (a). The images are arranged

in four TMA blocks, containing 35, 218, 237, and 235 images, respectively. The

tissue is of 0.6 mm diameter and 5 µm thickness. Example images per TMA are

shown in Figure 3.2.1 (b). Since SurvPCBN is only used as a test set, no dataset

split is performed. The number of censored and uncensored patients and images

is summarized in Table 3.2.1.
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(a) Distribution of time from radical prostatectomy (RPE)
to biochemical recurrence (BCR) or censoring time in
SurvPCBN in months. c=0 uncensored, c=1 censored,
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(b) Sample images
per TMA given in
SurvPCBN.

Figure 3.2.1: Graphical overview of SurvPCBN.

3This work is supported by the Department of Defense Prostate Cancer Research Program,
DOD Award No W81XWH-18-2-0013, W81XWH-18-2-0015, W81XWH-18-2-0016, W81XWH-
18-2-0017, W81XWH-18-2-0018 and W81XWH-18-2-0019 PCRP Prostate Cancer Biorepository
Network (PCBN).
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Table 3.2.1: Number of censored (c = 1) and uncensored (c = 0) patients and
images in SurvPCBN.

patients images
c=0 41 123
c=1 163 579
total 204 702

Comparison of the internal and external datasets The tissue in the exter-

nal dataset is 5 µm thick, which is thicker than the tissue in Surv1, but thinner

than the tissue in SurvThick. The spots in both datasets are 0.6 mm in diame-

ter and stained with H&E. From visual inspection, there seems to be a different

color variation in the images, as the images in SurvPCBN appear more red than

violet. The images in SurvPCBN are 1817 × 1817 pixels in size and therefore

smaller than in Surv1 (images up to 3181× 3181 pixels). The survival time distri-

butions of Surv1 and SurvPCBN differ since SurvPCBN comprises more censored

patients with a long follow-up record (after 200 months). Similar to SurvHetero,

SurvPCBN comprises multiple images per patient.

3.3 Data preprocessing

The internal dataset images are provided as single cutout spots from digitized

TMA images, whereas the TMA images of the external dataset needed to be cut

into single spots using QuPath (Bankhead et al., 2017). Therefore all available

images are square but of different sizes (2490× 2490 to 3181 × 3181 pixels in the

internal, 1817 × 1817 pixels in the external dataset). The images show circular

tissue areas on white background. Depending on the model used later, different

preprocessing steps and data augmentation methods are applied to all images or

individually. These methods are described in the following.

Cutting centerpieces Since white background does not include any cancer-

related information, a simple method is used to improve the foreground-to-back-

ground ratio: Images are reduced to a central square of their circular spot so

that most background is removed, but most tissue is kept. It is assumed that the

gain by removing background noise that does not include information outweighs

the information loss by removing the margin tissue. This will also be analyzed

in an experiment in chapter 4 Gleason grade prediction. Cutting the centerpieces

results in images of size 2048×2048 pixels for the internal datasets and 1024×1024
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pixels for SurvPCBN. The centerpiece is cut by fitting an ellipse to the tissue spot

and cutting the square around the ellipse’s center since not all spots are perfectly

centered. All single steps are shown in Figure 3.3.1. First, the RGB image (a) is

converted to grayscale (b) using the OpenCV package for Python (Bradski, 2000).

It is then binarized with Otsu-thresholding (c) (Otsu, 1979), and an ellipse is fitted

(d) since not all tissue spots are perfectly round. The ellipse’s center is used as

a center point for the resulting square image (e)+(f). This preprocessing step is

applied to all images from all datasets. If it is not indicated otherwise, referring

to a dataset image alludes to the centerpiece.

(a) (b) (c) (d) (e) (f)

Figure 3.3.1: An example of the preprocessing steps to cut image centerpieces
and remove most of the white background. The original image (a) is converted to
grayscale (b), and Otsu-thresholding is applied (c). Then, an ellipse is fitted to
the tissue spot, here projected in red onto the RGB image (d). In the last step, a
center square is cut (e) + (f). Taken from Dietrich et al. (2021).

Patching For some experiments, the image is cut into smaller pieces, also called

patches or tiles, instead of using the whole image. For this, an even grid is placed

on the image so that non-overlapping patches can be cut (e.g., 8×8 patches of size

128 × 128 pixels each for an image of size 1024 × 1024 pixels).

Data augmentation Data augmentation is applied during model training to

increase the variability and artificially expand the given dataset. This includes

morphologic transformations, i.e., 90-degree rotation and horizontal or vertical

flip.

Normalization All images contain pixel values in the range [0, 255]. Since

ANNs are trained best when the input values are closer to 0, all images are nor-

malized (Kim, 1999). In the work for this thesis, all images are normalized to a

range of [0, 1] simply by dividing the pixel values by the maximum possible pixel

value, 255.
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3.4 Main dataset challenges

The datasets described above contain several challenges for deep learning algo-

rithms, possibly limiting the performance. A summary of the main challenges due

to data size, noise, and uncertainty is given here. Most of the listed dataset biases

are unavoidable during data acquisition. However, it is important to be aware

of these challenges and evaluate how to treat these. Throughout the thesis, this

aspect will be recurring.

Image size After the preprocessing steps, all internal datasets have images with

sizes of 2048×2048 pixels. The size can be a challenge to computational resources.

Reducing image size is a solution, but it comes at the cost of information loss due to

decreased resolution. Furthermore, image sizes may vary between dataset sources.

For instance, the SurvPCBN contains smaller images of size 1024 × 1024 pixels.

Due to the lower resolution, some detail may be lost.

Label noise The Gleasonaut suffers from label noise since the images are an-

notated with Gleason scores by a single pathologist. As described before, the

Gleason score is highly subjective, which likely reduces the accuracy of any model

predicting Gleason scores but does not make the labels infeasible as ground truths.

Even though the Survival dataset is annotated with an objective, measurable

label, i.e., the reported time to relapse, the time points are noisy to a certain

extent. If a patient has regular follow-ups and at one time a rise in PSA value

is measured, it is impossible to state at which month exactly between the last

and the current follow-up the relapse occurred. The time of the relapse detection

serves as an annotation.

Dataset bias Since H&E staining does not follow the same protocol across

hospitals, biases might occur due to staining time, tissue thickness, reagents, dig-

itization, or tissue resolution. A model’s generalizability to differences in image

appearance needs to be evaluated carefully since biases such as unseen colors might

occur in clinics. A data-driven model trained on an internal dataset also needs to

be evaluated on an external dataset. A model generalizes well if the performance

on the external dataset reaches similar values as on the internal dataset. If a gen-

eralization is not achievable, minimum requirements for unseen datasets need to

be defined to assure high performance. Besides bias from data acquisition, a bias

in the patient sample might occur. All patients in the Survival dataset had an
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RPE. Therefore, all patients suffered from relatively severe cancer. It needs to be

investigated whether data-driven models trained on these images have difficulties

generalizing to patients with less severe cancers.

Dataset noise The TMA spots for the Survival dataset are extracted from

the tumorous region of the prostate. However, such a spot only covers a small

percentage of the complete, inhomogeneous prostate tissue. The malignant tissue

of a diseased patient may be missed when extracting a TMA core, resulting in a

spot with healthy prostate tissue for a patient with malignant cancer. In that case,

the spot itself may not give a good indication of the patient’s health status. This

kind of dataset noise could be circumvented by a manual effort of a pathologist

sorting through all dataset images, which is time-consuming and, therefore, not

done in this thesis. A different option to reduce the risk of missing cancerous

areas is including multiple tissue samples per patient. Furthermore, some images

include artifacts like overlapping tissue, blurry effects, or broken tissue. Careful

dataset cleaning removes most of the severely affected images, but probably some

cases are still kept inside the dataset, and these are expected to influence the

model’s performance.

3.4.1 Discussion

The presented datasets allow for comprehensive analyses and experiments, which

are explained in the following chapters. The large dataset size enables training

artificial neural networks, but the presented dataset challenges and proposed pre-

processing steps need to be addressed. The influence of preprocessing steps, like

cutting centerpieces and varying the image size, is analyzed in chapter 4 Gleason

grade prediction, where different possibilities to approach Gleason grade predic-

tion are compared. In chapter 5 Survival prediction, it is explored how including

additional patient features influences the performance of survival prediction. It is

further evaluated how to exploit multiple images from one patient for a predic-

tion. The robustness toward dataset biases is explored using the above-presented

datasets with differing data acquisition protocols in chapter 6 Robustness. In all

experiments, the presented internal and external datasets are used. In particular,

the Gleasonaut is used in chapter 4 Gleason grade prediction, while the Survival

dataset and SurvPCBN are used in both chapter 5 Survival prediction and chapter

6 Robustness.
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Chapter 4

Gleason grade prediction

4.1 Motivation

Pathologists assign Gleason grades to prostate cancer tissue based on the size

and shape of prostate glands. Since this manual process is time-consuming and

suffers from high interobserver variability, it is expected to benefit from (semi-)

automation. In this chapter, the research question R2 is addressed concerning an

automated Gleason pattern prediction for the Gleasonaut, which is described in

chapter 3 Datasets.

Nagpal et al. (2019), Ström et al. (2020), and Bulten et al. (2020) showed

that CNNs can outperform pathologists in the task of Gleason grading on several

datasets. Therefore, also in this thesis, a CNN will be applied to assign Gleason

grades to individual prostate cancer images.

The intention in the context of this thesis is to start with classification as a

straightforward computer vision task, for which models already exist off-the-shelf,

before moving on to survival prediction afterward. The Gleason classification

also serves as a starting point to obtain an estimate of the Gleasonaut quality

because that dataset has not been used for computer vision tasks before. If the

dataset is of good quality, it is expected that a CNN reaches performances similar

to those reported on other datasets in the literature (see section 2.2.3 Prostate

cancer classification for histopathology images). If the Gleason classification does

not yield high performance on the given dataset, going to survival prediction in

the next step may not be promising.

Furthermore, pretrained networks exist for neither survival prediction nor

histopathology classification. Spanning the gap from ImageNet classification to

histopathology survival prediction might be too challenging for transfer learning.

First pretraining a network on Gleason classification and using that network as a

starting point for the survival prediction is hypothesized to increase performance

and robustness since the main characteristics of histopathology images are learned

already.
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Which network architecture performs best depends on the used dataset, as

stated in section 2.2.3 Prostate cancer classification for histopathology images.

The first task is, therefore, to select the best performing among state-of-the-art

architectures on the Gleasonaut. Transfer learning from a model pretrained on

ImageNet will be applied to reduce training time. However, several differences

between Gleason grading and ImageNet classification may need to be addressed.

For example, multiple patterns might be visible in one histopathology image, which

in combination affect the final class (e.g., Gleason patterns 3+4 lead to ISUP 2,

but 4+3 to ISUP 3).

4.2 Gleason stratification

Gleason grading can be treated as a multi-class classification problem, where one

out of k classes is assigned to each image. The label per image is provided in

the Gleasonaut, which is why this is a supervised learning task. Since many pre-

trained neural networks are available open-source, transfer learning from a model

pretrained on the ImageNet dataset is easily applied. A single image can contain

multiple Gleason patterns (e.g., 3+4). In order to reduce the classification to a

single-label prediction, two different approaches are considered in the following:

Single Gleason pattern When a neural network is trained to predict Gleason

scores on images that contain mixed Gleason patterns, patterns need to be quan-

tified for the final classification. In order to simplify the problem, all images with

mixed Gleason pattern labels are removed, and a model is trained only on images

that show single patterns (Bulten et al., 2020; Arvaniti et al., 2018). Leaving out

all mixed pattern images reduces the dataset to 1,527 images. It is expected that,

for example, each part of an image labeled as 3+3 is of Gleason pattern 3, which

means no other patterns are visible anywhere in the image. Thus, when each im-

age region shows only one pattern, single image patches contain all the necessary

information for the classification task. This is an advantage since these patches

are smaller and can be used individually during training and inference. Thus, the

loss of resolution when downsizing the patches is not as great as for the whole

image. Disadvantages are that not all information of the image is used, and the

applicability to images of mixed patterns during inference is uncertain.

The single Gleason pattern approach reduces the task to a k = 4-class clas-

sification problem (benign, 3+3, 4+4, 5+5). The annotations of the dataset are

converted to one-hot encoded vectors for this approach, from treating no cancer

70



GLEASON GRADE PREDICTION 4.3. METRICS AND LOSS FUNCTION

as [1, 0, 0, 0] to Gleason 5+5 as [0, 0, 0, 1]. Formally, for a class c ∈ [0, . . . , k − 1]

the label l is given by

lc = [1j=c], j = 0...k − 1.

1 is the indicator function taking value 1 if the condition is true, and 0 otherwise.

Class c = 0 corresponds to benign tissue, class c = 1 to Gleason 3+3, and so on.

The final softmax layer of a pretrained classification network will be reduced to 4

output nodes, using maximum voting for the final prediction.

ISUP classification In contrast to single Gleason pattern classification, pre-

dicting ISUP classes enables using the complete image dataset. This task is

considered to be more complex since the combination and quantity of Gleason

patterns influence the ISUP class. The ISUP classes 2 and 3, e.g., only differ by

the amount of Gleason patterns 3 and 4. Therefore a more advanced encoding is

applied for the ISUP classification. With one-hot encoding, all classes are modeled

to be “equally different” and independent. In contrast, ordinal regression includes

the notion that ISUP classes 1 and 2 are closer to one another than ISUP classes 1

and 3. The ISUP classification is a task with k = 6 classes, encoded with 5 output

nodes as

lc = [1j<c], j = 0...k − 2

with
∑

lc = c

for class c. Following this convention, benign is encoded as [0, 0, 0, 0, 0], and, for

example, ISUP class 2 is encoded as [1, 1, 0, 0, 0]. In contrast to one-hot encoding,

the final prediction is calculated as the sum of all output nodes.

4.3 Metrics and loss function

Metrics For the evaluation of multiclass classification, the number of correctly

predicted samples can be counted relative to the total number of samples. That is

captured by accuracy, which is defined as the sum of correctly predicted samples

over all predictions (Zeng et al., 2010). For N samples, the accuracy

Acc =
1

N

N∑
i

1pi=yi (4.3.1)
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ranges from 0 to 1, such that a perfectly accurate model reaches 1. Here, p is the

predicted class, and y is the annotated class.

Accuracy, however, can be misleading under class imbalance. Another metric

that is less prone to class imbalance and which is often used in medical applications

is Cohen’s kappa (Cohen, 1960)

κ =
Pr(a) − Pr(e)

1 − Pr(e)
, (4.3.2)

with actual agreement Pr(a) and chance agreement Pr(e) (McHugh, 2012). It

measures the number of correct classifications compared to a random guess. It

was developed to measure the agreement between two physicians for objective

measures, but it can also be used to measure the agreement between a model’s

prediction and the annotation (McHugh, 2012). Note that Cohen’s kappa ranges

from -1 to 1: If the model’s prediction is as good as a random guess, κ=0, if it is

worse than a random guess, κ<0, whereas a model in perfect alignment with the

annotation has κ=1.

The confusion matrix can be calculated to visualize a model’s performance.

It is a table showing the amount of correct and incorrect predictions and which

classes are confused with each other (Somogyi, 2021).

Loss function As loss function, a categorical cross-entropy loss is applied (Ru-

binstein, 1999). Since the Gleasonaut is imbalanced, with more samples showing

low-grade Gleason patterns than high-grade patterns, the loss is weighted with

the inverse class frequency (e.g., Li et al., 2021). Thus, the applied loss is

L =
∑
c

wc yc log(pc), (4.3.3)

using all classes c, predictions pc and annotations yc, weighted with wc, the inverse

class frequency (wc = N/Nc for N total samples and Nc samples per class c).

4.4 Experiments

Several experiments are performed to explore the best-performing neural network

model and hyperparameters on the Gleasonaut. All models for the following ex-

periments are trained on an Nvidia Tesla V100 16GB GPU. The algorithms and
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models are implemented in Python31, using keras2 and TensorFlow3 as deep learn-

ing libraries (van Rossum and Drake, 2009; Chollet et al., 2015; Abadi et al., 2015).

The models are trained with Nadam4 optimizer and a weighted categorical cross-

entropy loss5 with learning rate 0.0003 (Dozat, 2016). The models are trained for

350 epochs with early stopping, so the model that achieves the highest accuracy

on the validation dataset is used as the final model. Each model setup is trained

three times with different initialization seeds to estimate the reproducibility and

stability of the training. All shown results are obtained on the separate test set.

The numbers of images per experiment and dataset split are shown in Table 4.4.1.

Table 4.4.1: Number of Gleasonaut images per class for both dataset splits.
Gp: Gleason pattern, I: ISUP score, train: training, valid: validation, t13:
test13.1D dataset.

Single Gleason patterns ISUP scores
Gp train valid test t13 total I train valid test t13 total
0 343 74 74 28 519 0 343 74 74 28 519

3+3 611 131 131 53 926 1 611 131 131 53 926
4+4 58 13 13 17 101 2 555 119 120 53 847
5+5 55 12 12 6 85 3 102 22 22 11 157

4 83 19 19 21 142
5 176 39 39 25 279

total 1,067 230 230 104 1,631 1,870 404 405 191 2,870

4.4.1 Single Gleason grading

For the task of single Gleason grading, only the images with single Gleason pat-

terns (0, 3+3, 4+4, 5+5) are included, reducing the dataset to 1,067 training im-

ages and 230 images in both the validation and the test dataset (see Table 4.4.1).

Architecture As shown above in section 2.2.3 Prostate cancer classification for

histopathology images, different architectures are reported to yield the best results

for Gleason classification. Thus, it is difficult to decide a priori which base CNN

architecture is suited for the given dataset. Therefore, different architectures are

trained here, and their performances are compared to determine which architecture

1https://www.python.org/ (last accessed November 24, 2022)
2https://keras.io/ (last accessed November 24, 2022)
3https://www.tensorflow.org/ (last accessed November 24, 2022)
4https://keras.io/api/optimizers/Nadam/ (last accessed November 24, 2022)
5https://keras.io/api/losses/probabilistic_losses/#categorical_

crossentropy-function (last accessed November 24, 2022)
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performs best on the Gleasonaut. Only the most common and recently used

architectures ResNet-506, InceptionV37, and EfficientNetB08 are considered here.

All architectures are pre-trained on the ImageNet dataset, and all weights are fine-

tuned on the Gleasonaut. The centerpiece TMA image is used as input, resized to

224× 224 pixels, which is the default input size. A batch size of 16 is used during

training.

InceptionV3 achieves the highest test set kappa (0.68), before EfficientNet

(0.64) and ResNet (0.53). The performance on the validation set reveals low gen-

eralizability of EfficientNet (a drop of 0.12 from validation to test set). The kappa

of InceptionV3 is 0.01 higher on the test set than on the validation set. Regarding

accuracy, ResNet again scores lowest on the validation and the test set (0.74 and

0.75). The test set accuracy is identical for both the InceptionV3 and Efficient-

Net architectures (0.83). However, again, the performance drop from validation

to test data is greater for the EfficientNet, indicating overfitting. Based on these

results, it is concluded that InceptionV3 has the best overall performance, con-

sidering accuracy, kappa, and generalizability. Therefore, an ImageNet-pretrained

InceptionV3 network is used for the following experiments.

Whole image versus centerpiece As explained in chapter 3 Datasets, the

centerpiece of each image is cut to remove the uninformative background. It is

therefore evaluated if centerpiece extraction is improving classification over whole

image classification. An ImageNet-pretrained InceptionV3 model is fine-tuned on

the complete TMA spots in the Gleasonaut with the white background and on

the cut centerpiece without background. The images with the white background

are padded with white margins to obtain images of equal sizes of 2525 × 2525

pixels. As input to the model, each image is resized to 224 × 224 pixels, which is

the default input size of the InceptionV3 architecture. Using only the centerpiece

improves results over using the padded image in both kappa (0.68 versus 0.51 on

the test set) and accuracy (0.83 versus 0.74). The gap between validation and

test metrics is small (0.01 in kappa, <0.01 in accuracy). It is concluded that the

performance gain of removing background is greater than the loss of information

in the tissue margin. Therefore, in all other experiments, the cut centerpiece is

used.

6https://keras.io/api/applications/resnet/#resnet50-function (last accessed
November 24, 2022)

7https://keras.io/api/applications/inceptionv3/ (last accessed November 24, 2022)
8https://keras.io/api/applications/efficientnet/#efficientnetb0-function (last

accessed November 24, 2022)
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Freezing layers In the literature, it has been shown that freezing the first layers

of a pretrained CNN and only fine-tuning the last ones leads to good results

(Raghu et al., 2019). In the experiments for this thesis, that result could not be

confirmed. The performances when fine-tuning all weights and when freezing all

convolutional layers to fine-tune only the classification layer are compared. When

fine-tuning all weights, the classification performance is better than when freezing

the convolutional layers, both in accuracy (0.19 versus 0.83 on the test set) and

kappa (0.67 versus 0.68). This can be explained by the large difference between

the pretraining dataset (ImageNet) and the fine-tuning dataset (Gleasonaut). The

model with frozen weights does not generalize well, which is indicated by a large

difference in accuracy on the validation and test sets (0.73 versus 0.19). All model

weights will be fine-tuned for the following experiments since this yielded the best

results.

Using a single image patch The input to pretrained neural networks is usu-

ally much smaller than the original image size of the Gleasonaut images (224×224

instead of 2048 × 2048 pixels). Downsizing the images results in an information

loss due to reduced resolution. Using only a smaller patch of the image as in-

put circumvents this but comes at the cost of loss in image information since a

part is cut off. Using a single image patch is a valid approach when using only

single-Gleason-pattern images since the whole image consists of a single pattern.

Therefore, a small part of the image is also expected to include all information

needed for classification. The influence of the patch size on the model’s perfor-

mance is evaluated here. For this experiment, a single squared patch of side lengths

800, 1000, 1400, 1600, or 1800 pixels is cut per input image randomly each epoch,

which is then resized to 224×224 pixels as input for the InceptionV3 architecture.

For comparison, the complete image is used as input, which has a side length of

2048 pixels.

The accuracy and kappa for the validation and test sets are shown in Fig-

ure 4.4.1 for the different patch side lengths. Both accuracy and kappa increase

with patch size. This trend indicates that small patches contain too little tissue

to recognize the cancer severity or that the glands are only partially visible on

the patches. Another reason is that if only a part of the image shows cancerous

tissue and another region is benign, a cut patch might only represent the benign

tissue. This effect reduces with larger patch sizes. The mean kappa and accuracy

are similar for the validation and test splits. Only the standard deviation of kappa

values is greater for the test set, indicating lower stability. When using patches of
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size 800 × 800 pixels, the accuracy on the test set is 0.70, with a kappa of 0.48.

When the complete image is used, without cutting patches (2048 × 2048 pixels),

an average accuracy of 0.83 and kappa of 0.68 is reached. The rise in accuracy

levels off with patches larger than 1600×1600 pixels, but the kappa still increases.

800 1000 1400 1600 1800 2048

patch size (side length in pixel)
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Figure 4.4.1: Comparison of model performance when training with different patch
sizes. Mean accuracy is shown in blue, and mean kappa in red. The test set results
are indicated by solid lines, and the validation set results with dashed lines. The
shaded area indicates the standard deviation. Both results for validation and test
set show similar trends. The larger the patches, the more accurate the prediction.
Patch size of 2048 corresponds to using the complete image, no patches. The
network input shape is kept constant at 224 × 224.

The confusion matrices for the smallest patch size (800 × 800 pixels) and the

whole image are shown in Figure 4.4.2. For the smallest patch size in Figure 4.4.2

(a), the model predicts class ‘3+3’ in most cases. Since that class is overrepresented

in the dataset, these results indicate that the network cannot learn distinguishing

features. Since a TMA spot labeled as malignant might still include some non-

cancerous regions, cutting small patches increases the probability that these show

only lower cancer grades, and thus some label noise is introduced. The high

values on the diagonal of the confusion matrix in Figure 4.4.2 (b) indicate more

accurate predictions for the experiment with the whole image. The model most

often confuses tissue with Gleason ‘5+5’ as benign. Besides predicting 16 % of

benign images as ‘3+3’, the model seldom predicts a higher Gleason grade than

the annotation.

Input size When cutting a single patch, image information is lost, and it was

shown above that using the whole image is best. However, this has to be downsized

to 224×224 pixels to fit the default input size of ImageNet, so again, image detail

is lost. The less an image is downsized, the more information it retains, which is

expected to benefit the neural network. Therefore here, the effect of changing the
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Figure 4.4.2: Comparison of the test set confusion matrices when using different
patch sizes. (a) Confusion matrix using patch size 800×800 pixels. (b) Confusion
matrix using patch size 2048 × 2048 pixels - the whole image.

image input size is evaluated. Again, an ImageNet-pretrained InceptionV3 model

is trained, fine-tuning all weights. When downsizing the image to 224×224 pixels

or 512×512 pixels, a batch size of 16 is used, which needs to be reduced to a batch

size of 8 for 1024 × 1024 pixel inputs given computational resource constraints.

Downsizing the image to 512 × 512 pixels yields the best accuracy (0.87 on

the validation set, 0.86 on the test set) and kappa (0.77 and 0.76). In contrast,

the input size of 224 × 224 pixels reduces the test and validation set accuracies

to 0.83 and kappa to 0.68 on the validation and 0.67 on the test set. An input

size of 1024×1024 pixels reduces validation and test set accuracies to 0.82 (kappa

validation 0.70, test 0.67). On the one hand, using images of 224 × 224 pixels

might reduce the image information so much that essential details are lost. On

the other hand, larger input sizes require smaller batch sizes, which might degrade

performance. Furthermore, the larger the input size, the higher the number of

model parameters, the computational cost, and the training time. Since the final

use case does not depend on a fast, real-time analysis, the increased training and

inference time with larger input images can be neglected, and the best model solely

depends on the accuracy and kappa.

Final best model Concluding from the experiments above, an InceptionV3

performs best when trained on the centerpieces, using the whole available tissue,

not single cutout patches. Resizing to 512 × 512 pixels yields the best results.

A model trained with different seeds reached an average accuracy of 0.87 on the
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validation set and 0.86 on the test set. The average kappa is 0.77 on the validation

and 0.76 on the test set, see also Table 4.4.2. The results on the left-out test13.1D

set consisting of the single TMA drop in both accuracy and kappa to 0.73 and

0.70, respectively.

The single best-performing run achieves an accuracy of 0.88 and a kappa of

0.80 on the test set. The corresponding confusion matrix is shown in Figure 4.4.3.

There is little confusion between the classes. The prediction is rarely higher than

the ground truth label, however, some ‘5+5’ Gleason tissue is mistaken as benign,

and some ‘4+4’ tissue is predicted as ‘3+3’.

Table 4.4.2: Best results for single Gleason prediction using an InceptionV3 and
the cut centerpiece as a whole image, which is resized to 512 × 512 pixels.

accuracy kappa
validation set 0.87 0.77
test set 0.86 0.76
test13.1D set 0.73 0.70
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Figure 4.4.3: Confusion matrix for the best single Gleason classification model on
the test set.

4.4.2 ISUP grading

Since it has been shown above that using the whole image as input to the network

results in high accuracy, it is concluded that this approach should also be appli-

cable to images with mixed Gleason grades. ISUP grade classification is chosen

as an endpoint since this is an international standard. Therefore, 6 classes are

distinguished (no cancer, ISUP 1-5). These ISUP classes are encoded with ordinal
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regression, as explained in section 4.2 Gleason stratification. For these experi-

ments, all images of the Gleasonaut can be included for training, validation, and

testing (see Table 4.4.1).

Again, an InceptionV3 is trained for this task. Again, the loss is a weighted

cross-entropy loss (eq. (4.3.3)), the network is optimized with the Nadam opti-

mizer (Dozat, 2016), and early stopping is applied on the validation accuracy.

Input size Since multiple Gleason patterns within a single image form the ISUP

grading, the image size reduction when downsizing might have a different influence

on the model performance compared to the single Gleason pattern experiments.

Therefore again, the influence of the model input size on the performance is com-

pared. Two image sizes are considered, 512 × 512 pixels and 1024 × 1024 pixels.

In contrast to the above results, for validation and test data, the performance in-

creases with the larger input size 1024× 1024 pixels in both accuracy (0.62 versus

0.64) and kappa (0.75 versus 0.79) on the test set and the validation set (accu-

racy 0.63 versus 0.66, kappa 0.80 versus 0.83). This indicates that more detailed

information is exploited for ISUP classification.

Best model The best model for ISUP classification is an InceptionV3 network

with an input size of 1024× 1024 pixels. It is called MISUP from now on. Training

an MISUP on the Gleasonaut results in an accuracy of 0.66 on the validation set

and 0.64 on the test set. The kappa is 0.83 on the validation and 0.79 on the test

set, see Table 4.4.3. On the separate test13.1D set, the model’s average accuracy

reduces to 0.57 and the kappa to 0.76.

The best-performing single model achieves an accuracy of 0.68 with a kappa of

0.85 on the test set. That model’s confusion matrix is shown in Figure 4.4.4. The

high values on the diagonal indicate accurate model performance. It can be seen

that the confusion between nearby classes is higher than between classes that are

farther apart. That corresponds to human understanding of the ordinal ranking

of the classes. Pathologists are expected to confuse close ISUP grades following

Table 4.4.3: Best results for ISUP classification with MISUP (InceptionV3, whole
image, resized to 1024 × 1024 pixels).

accuracy kappa
validation set 0.66 0.83
test set 0.64 0.79
test13.1D set 0.57 0.76
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Figure 4.4.4: Confusion matrix for the best ISUP classification model, MISUP, on
the test set.

a similar pattern. The model most often confuses ISUP 2 tissue as ISUP 1, and

ISUP 3 tissue as ISUP 2. If the model’s prediction does not match the annotation,

the predicted ISUP is lower than the annotation in most cases.

4.5 Discussion

The possibility of predicting Gleason grades in the Gleasonaut was evaluated in

this chapter. The research question R2 “To what degree can Gleason patterns be

predicted accurately in the given dataset of digitized prostate tissue?” has been

answered. When considering single Gleason patterns, an InceptionV3 reaches an

accuracy of 0.87 and a kappa of 0.76 on the test set. Since these scores are only

0.01 below the validation set results, it is concluded that the model is good at

generalization to unseen data. On the left-out test set 13.1D, the accuracy and

kappa slightly decrease, which might result from the fact that relatively more

Gleason grades 4+4 are in that test set. It could be seen in the confusion matrix

in Figure 4.4.3 that ground truth class 4+4 is the greatest source of error, as it

is often confused with 3+3. Also, it would be interesting to investigate whether

that separate TMA has a different color stain to which the model is not robust.
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When more classes are differentiated in the form of ISUP scores, the Incep-

tionV3 reaches an accuracy of 0.64 and a kappa of 0.79. The performance drop

from validation to test set is only slightly higher than in the single Gleason case.

Again, the performance drops for the test set 13.1D, which is again attributed to

the higher ratio of ISUP 4 and 5. It also hints at sensitivity to a dataset bias since

that TMA was not included in the training set.

The best parameters for the neural network were found in a detailed analy-

sis. Experiments revealed that the InceptionV3 has higher generalizability than

an EfficientNetB0 and better overall performance than a ResNet50. The results

show clear evidence that it is best to reduce the image background by cutting the

centerpiece and training on that. Further, it is best to include all available cen-

terpiece information, hence the whole image, instead of cutting a smaller patch.

Since only random patches are cut in the experiments, it should be further tested

whether an informative selection could improve the results. The information loss

due to downsizing is lower than the information loss due to cutting out tissue

parts. The results on ISUP grading indicate that less downsizing leads to better

results since more details are kept in the images. In contrast to findings in the

literature (Raghu et al., 2019), freezing layers pretrained on ImageNet did not

improve the results. It needs to be further investigated whether this can be at-

tributed to the large differences between images from the ImageNet database and

the Gleasonaut. Further, it is worth experimenting whether freezing the first con-

volutional layers and training the deeper convolutional and fully-connected layers

of InceptionV3 would improve results. The presented results also motivate using

the ISUP prediction model as a pretrained network for the survival prediction in

the next step instead of using an ImageNet-pretrained model.

It is concluded that Gleason grading is possible on the given dataset with an

InceptionV3 network. The results reach comparable scores to the ones reported in

the literature in Table 2.2.3. It further leads to the conclusion that the dataset is

well suited for Gleason prediction as it includes high-quality images that are rich

in information. Reaching a perfect classification accuracy and kappa closer to 1

is impeded by the variations in image bias as well as the label noise of Gleason

scoring since this is a subjective label.

Since the results for Gleason classification are promising, moving on to survival

prediction is a reasonable succeeding step to be discussed in the next chapter.
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Chapter 5

Survival prediction

Survival prediction is an important research area in computational pathology and

crucial for optimal treatment recommendations (Cheon et al., 2016). It is also

called time-to-event prediction since the endpoint is not always patient death but

could be, for example, time to relapse. The following sections motivate survival

prediction and introduce the main concepts. Then, two different categories of

survival prediction are introduced: Survival prediction on a population and an

individual level. While population-based methods are advantageous for compar-

ing groups that are, e.g., treated with two different medications, individualized

predictions take into account multiple patient features and allow for precise treat-

ment decisions per patient (Kumar et al., 2022). Further, the metrics used in this

thesis for evaluating individual survival prediction models are presented.

A model for survival prediction of prostate cancer patients will be derived

from the state of the art and introduced in section 5.6 eCaReNet. The following

experiments section explores ablation studies, comparisons to a pathologist, ex-

plainability, and extensions to improve model performance to investigate research

question R3.

5.1 Motivation

In oncology, estimating the patient’s life expectancy is crucial since it can improve

treatment decisions, give patients a better estimate of their current situation, and

avoid over- and under-treatment (Cheon et al., 2016). Currently, for prostate can-

cer patients, life expectancy is not estimated directly but is captured indirectly

with the Gleason score. With an image-based survival prediction model, it might

be possible to extract more disease-related details from a prostate tissue image

than what is captured by the Gleason score alone. In contrast to Gleason predic-

tion, the annotations available for survival prediction are objective. In the scope

of this thesis, the term survival refers to relapse-free survival after RPE.

Challenges in survival prediction arise since the probability of having a relapse
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depends on many factors, of which the tissue image captures only a part. Since

many different factors influence the survival time, including dietary factors, genet-

ics, and family history, there are always unknowns when predicting an individual

patient’s survival time (Rawla, 2019). Further, the actual probability of having

a relapse over time is not measurable, but only quantifiable is whether a relapse

occurs at discrete time points. In contrast to overall survival prediction, where

the event is death, relapse prediction has to deal with the problem that not ev-

ery patient experiences an event sooner or later since some remain relapse-free

(Kleinbaum and Klein, 2012). These challenges are addressed in the following.

5.2 Censoring

In survival analysis, not every patient experiences an event since endpoints are

disease-related. Furthermore, not all events are observed, for example, if patients

drop out of a study and do not have further follow-ups recorded (Kleinbaum and

Klein, 2012). Instead of removing those patients without (known) events from the

dataset, they are marked as censored (c = 1) and remain in the analysis. That

is important, on the one hand, because any model should also apply to healthy

or cured patients that will never experience an event. On the other hand, these

censored patients still have regular follow-ups, which is valuable information since

it is known until when a relapse did not occur (Kleinbaum and Klein, 2012). In

order to illustrate censoring, Figure 5.2.1 shows an exemplary study time with

three patients. In this example, patient A has an RPE at the beginning of the

study and regular follow-ups afterward. He remains relapse-free until he drops

out of the study for unknown reasons. The dashed line indicates that the state of

relapse is unknown afterward. Patient B has a later RPE, lives relapse-free until

the end of the study, and is censored when the recording stops. He has a relapse

later, which is, however, not recorded. In contrast, the relapse of patient C is

observed during a follow-up. He is, therefore, uncensored. Only the relative time

from RPE to BCR or censoring is considered for relapse-free survival time. Thus,

the time origin is the time of RPE.

In this thesis, only right censoring (as illustrated) is considered, meaning the

time of RPE is known for every patient, while the time of BCR may be unknown.

Censoring can further be distinguished into independent versus non-independent,

random versus non-random, and non-informative versus informative censoring.

Random censoring means patients that are censored at time t should be repre-

sentative of all patients surviving time t. Thus, censoring is not depending on a
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start of study end of study

time of study

Patient A

Patient B

Patient C

patient leaves study

end of study

relapse free survival

unknown status

RPE

relapse

censoring

unobserved relapse

Figure 5.2.1: Example to illustrate right-censoring: A and B drop out of the
study without an event and are thus censored, C experiences an event. Solid
lines indicate the relapse-free survival time, dashed lines indicate an unknown
status of relapse. The orange and blue “x” indicate relapses that are or are not
observed during the study, respectively. A triangle indicates censoring. The gray
dot is at the time of RPE, i.e., the time a patient enters the study. RPE: radical
prostatectomy.

patient’s features. Independent means censoring is random within any subgroup

of patients. For example, when splitting the patients according to their age, the

percentage of censored patients should be equal in all groups. If the censoring is

non-informative, the distribution of the event times does not give any information

about the distribution of censoring times. The same holds in reverse. Often, it

is assumed that independent and random censoring assure non-informativeness

(Kleinbaum and Klein, 2012). For this thesis, censoring is considered random,

independent, and non-informative.

5.3 Population-based survival prediction

For a population, the number of individuals that survive a time t can be esti-

mated with the Kaplan-Meier (KM) method, which also accounts for censored

patients (Kaplan and Meier, 1958). KM curves enable a graphical interpretation

of the survival probabilities of a population over time and are used to compare

the survival of different subpopulations. In order to calculate the KM curves, the

following values need to be known for each individual: time-to-event, censoring

status, and the subgroup the individual belongs to (e.g., whether the individual

received a treatment). Per subgroup, one KM curve is estimated and visualized,

enabling the analysis of differences in survival probability (Rich et al., 2010). For
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KM curves Ŝ, a population’s failure times tf are sorted. The curve is defined by

Ŝ(tf ) = Ŝ (tf−1)P (t∗ > tf |t∗ ≥ tf )

=

f∏
i

P (t∗ > ti|t∗ ≥ ti), (5.3.1)

with the product of all conditional probabilities to survive a current failure time

tf , given the event did not occur before (Kleinbaum and Klein, 2012). Here, t∗ is

the individual patient’s survival time, which is a random variable. Since the KM

curve is evaluated at every discrete event time in the dataset, it is a step-function

that drops at each measured event time. In general, the KM curves are calculated

as

Ŝ(tf ) =
∏
ti<tf

ni − di
ni

, (5.3.2)

with di uncensored patients with an event t∗ = ti and ni patients at risk, i.e.,

without any event until time ti (t∗ ≥ ti)(May, 2017). If KM curves of two popula-

tion groups stratify well, the underlying stratification correlates with the survival

outcome.

Figure 5.3.1 shows an example of KM curves in which one group that received

treatment (blue) is compared to a control group (gray). The survival probabil-

ity curve of the control group decreases earlier, indicating that the patients in

this group have, on average, an earlier event time. Therefore it is concluded that

patients receiving treatment will outlive patients without treatment. Since dif-

ferences between patients in other characteristics are neglected, the control and

treatment groups should have equal distributions in their remaining patient fea-

tures (e.g., age). That assures that no other factors influence the event time. In

this figure, confidence intervals are plotted as shaded areas and calculated follow-

ing the Greenwood formula for the variance (Yuan and Rai, 2011; Greenwood,

1926):

Var[Ŝ(t)] = Ŝ(t)2

(∏
ti<t

di
ni(ni − di)

)
. (5.3.3)

Log-rank test Besides visually inspecting KM curves, a log-rank test can be

used to assess whether the difference between two curves is statistically significant.
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Figure 5.3.1: Example of Kaplan-Meier curves for two different subgroups. The
survival probability of the control group (gray) is lower than the survival proba-
bility of patients in the treatment group (blue).

The tested hypothesis is that the probability of experiencing an event is equal for

two populations at all times t:

H0 : S1(t) = S2(t) ∀t (5.3.4)

(Li et al., 2015; Bland and Altman, 2004). For large samples, the log-rank test is

a chi-square test, with

log-rank =
∑
i

(Oi − Ei)
2

var(Oi − Ei)
(5.3.5)

≈
∑
i

(Oi − Ei)
2

Oi

= χ2 (5.3.6)

for i population groups, Oi observed and Ei expected events (Kleinbaum and

Klein, 2012). A p-value indicates whether the hypothesis is rejected. If it is, the

two populations do not have similar survival probabilities, their survival curves

stratify well, and the feature used for splitting the population into groups is related

to survival.

A drawback of the log-rank test is that it performs best under the proportional

hazards assumption, which means that survival curves do not cross. Since KM

survival curves may cross, the log-rank test should be modified. Li et al. (2015)

compare several log-rank test adaptations under different scenarios, like varying

amounts of censoring, number of samples per subgroup, and the time point of

crossing for the survival curves (early, middle, late). They show that Fleming-

Harrington weights (Fleming and Harrington, 1991) are appropriate to adapt the

87



5.4. INDIVIDUAL SURVIVAL PREDICTION SURVIVAL PREDICTION

log-rank test in situations with more censored than uncensored patients, as is the

case in the given Survival dataset in this thesis. In that case, the survival times

are not all weighted equally but according to the failure time. The test statistic

changes to

log-rankFH =
(
∑

w(Oi − Ei))
2

var(
∑

w(Oi − Ei))
, (5.3.7)

with w = Ŝ(t)p × [1 − Ŝ(t)]q, (5.3.8)

(Kleinbaum and Klein, 2012). Here, p = 1 and q = 0 holds (Li et al., 2015).

5.4 Individual survival prediction

For personalized healthcare, it is beneficial to predict the survival outcome for

individuals instead of comparing groups of patients. As described in section 2.2.4

Deep learning for survival prediction, survival prediction can be interpreted in

different ways. Some research is concerned with the binary prediction of whether

a patient survives a certain time, while other aims at stratifying patients into

different risk groups. In the context of this thesis, however, the aim is to develop

a model that predicts individual survival curves for patients based on their input

features, i.e., a diagnostic image.

If a patient’s survival probability is predicted over time, this is a continuous-

time problem. The Cox model is a typically-used continuous-time survival predic-

tion model and is thus also introduced here as a baseline model for comparison.

Extending the Cox model with neural networks is also possible. An alternative is

treating survival prediction as a discrete-time problem, for which neural networks

can also be trained end-to-end. The derivations of the most important formu-

las and concepts, starting from continuous and then moving on to discrete-time

survival prediction are given in the following.

5.4.1 Continuous-time survival prediction

Let t∗ be the event time of a patient. That event time is defined as either the time

of censoring tc or the time of relapse tr as t∗ = min(tc, tr). Therefore,

t∗ =

tc if c = 1,

tr if c = 0,
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with the censoring indicator c. The patient’s survival function

S(t) = P (t∗ > t). (5.4.1)

defines the probability to survive event-free up to time t. It is a monotonically

decreasing function, defined for t ≥ 0 (Emmert-Streib and Dehmer, 2019). Since

the event time t∗ is a random variable, it has a probability density function f(t)

and the cumulative density function F (t), which describes the probability that

the event occurs before time t. Thus, in reverse, the survival probability can be

written as

S(t) = 1 − F (t) =

∫ ∞

t

f(s)ds (5.4.2)

(Rodriguez, 2007). The survival time of a patient with features x can be calculated

as the expected value of the survival function:

E[x] =

∫ ∞

0

tf(t)dt =

∫ ∞

0

S(t)dt (5.4.3)

(Emmert-Streib and Dehmer, 2019). Instead of modeling the survival probability

directly, an option is to describe the risk of the event occurring at time t, given

that it did not occur until time t. This is described by the conditional hazard rate

h(t) = lim
∆t→0

P (t ≤ t∗ < t + ∆t|t∗ ≥ t)

∆t
=

f(t)

S(t)
, (5.4.4)

which is a non-negative function (Emmert-Streib and Dehmer, 2019). The survival

function can be expressed in terms of the hazard function as

S(t) = exp

(
−
∫ t

0

h(t)

)
. (5.4.5)

Many survival models estimate h(t) first and the above relation eq. (5.4.5)

is applied afterward to obtain a survival curve. Note that the expectation value

cannot be calculated for censored patients since t is undefined. The survival and

hazard functions are still defined though (Rodriguez, 2007).

Cox model A popular approach for continuous-time survival prediction is the

Cox proportional hazards (CoxPH) model, in short, Cox model (Cox, 1972). It

separates the time dependency of the survival curves from the influence of patient
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features. Let x be the vector of p input features for a patient. In the Cox model,

the hazard function for this patient is calculated as

h(t|x) = h0(t) exp (g(x))

= h0(t) exp

(
p∑
i

βpxp

)
(5.4.6)

with h(t) ≥ 0 ∀ t (Kleinbaum and Klein, 2012; Emmert-Streib and Dehmer, 2019).

Here, h0(t) is called the baseline hazard since h reduces to h0(t) if all input fea-

tures x = 0 (Kleinbaum and Klein, 2012). The baseline hazard is equal for all

patients and only dependent on t, not on patient features x. In contrast, the

exponential part g(x) is independent of time t. It can be modeled with a logistic

regression, fitting the parameters βp with a maximum likelihood estimator. It

limits the model to linear dependencies between the patient features and survival

time. Since the baseline hazard h0(t) is not defined in particular, the Cox model is

a semiparametric model. In practice, the baseline hazard is often neglected since

it is unnecessary for risk stratification. Several assumptions are made when using

a Cox model. The proportional hazards assumption states that the hazard rate of

two patients remains constant over time (Kleinbaum and Klein, 2012). As stated

above, it is assumed that the baseline hazard is equal for all patients and only

scaled individually through g(x). Therefore the survival curves of two patients

cannot cross. During the optimization of the model, only the exponential part is

used to compare the ranking between patients.

The Cox model can be extended to nonlinear functions when modeling g(x)

with a more complex function. In the DeepSurv model, Katzman et al. (2018)

propose to train a neural network with a single output neuron to model g(x). As

an extension to processing images instead of tabular data, Zhu et al. (2016) replace

that neural network with a CNN, calling their model DeepConvSurv accordingly.

When training such a Cox (-based) model, the ranking of the patients is com-

pared since the progress of all patients’ curves over time is equal and therefore

negligible. As an objective function, the Cox partial likelihood

L =
∏
i:ci=0

exp (g(xi))∑
j:t∗j≥t∗i

exp (g(xj))
(5.4.7)

is applied. For each uncensored patient (ci = 0) with features xi and event time

t∗i , his event probability given the patients that are still in the risk set at time

t∗i is considered (Kvamme et al., 2019). Using the negative logarithm of the loss
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simplifies the product to a sum in the negative log partial likelihood (nlpl)

L = − 1

n

∑
i:ci=0

g(xi) − log
∑

j:t∗j≥t∗i

exp (g(xj))

 (5.4.8)

(Katzman et al., 2018). Note that when training a neural network, only patients

within the same batch are compared in the loss, setting n to the patients with

events within a batch, not in the population. These adaptations of the Cox model

using neural networks still do not allow crossing survival curves.

5.4.2 Discrete-time survival prediction

Instead of adapting the Cox model with a neural network, in this thesis survival

curves are modeled end-to-end. That means, not only a risk factor is predicted

with a neural network, but the survival curve per discrete time step. Sloma et al.

(2021) showed that a discrete model does not result in a loss in performance

compared to a continuous model. An advantage is that the proportional hazards

assumption can be ignored and survival curves are allowed to cross.

In contrast to continuous-time survival prediction, in discrete-time survival

prediction the time of interest t has discrete values 0 = t0 < t1 < . . . < tk

(Kvamme and Borgan, 2021). These times define the boundaries of k intervals

Ij = (tj−1, tj], j = 1, . . . , k (Suresh et al., 2022). The survival function over time

for a patient with features x and a true survival time t∗,

S(tj|x) = P (t∗ > tj|x), (5.4.9)

now describes the probability of surviving the time step tj and thus the interval

Ij. Equivalent to the continuous-time case, the probability mass function

f(tj|x) = P (t∗ ∈ Ij|x) (5.4.10)

can be used to define the survival function

S(tj|x) =
∑
k>j

f(tk|x) (5.4.11)

(Kvamme and Borgan, 2021; Suresh et al., 2022). Now t∗ corresponds to the

interval in which the event occurs. The hazard function defines the probability of
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an event to occur in the current interval, given it has not yet occurred:

h(tj|x) = P (t∗ ∈ Ij|t∗ > tj−1) (5.4.12)

(Kvamme and Borgan, 2021; Suresh et al., 2022). The survival probability can be

written in terms of hazard as

S(tj) =

j∏
k=1

(1 − h(tk)). (5.4.13)

(Kvamme and Borgan, 2021). When training a neural network on survival pre-

diction in an end-to-end approach, either S(tj) or h(tj) can be the prediction

endpoint. The advantage of modeling the hazard rate over time is that the con-

straint of having a monotonically decreasing survival function does not need to be

accounted for, as this results from eq. (5.4.13) directly.

As an output for a neural network, one neuron per time interval is chosen. In

the ground truth, each interval that a patient survives is annotated as S = 1, and

each interval that he does not survive is annotated as S = 0. After censoring, S

is not defined. The hazard is annotated with h = 1 in the interval with the event

and h = 0 before. In the intervals after the event, the hazard rate is not defined

(n.d.) anymore. This can be written as

Sannotation(tj) =


1 if t∗ > tj,

0 if t∗ ≤ tj and ci = 0,

n.d. if t∗ ≤ tj and ci = 1,

(5.4.14)

hannotation(tj) =



1 if t∗ ∈ Ij and ci = 0,

0 if t∗ > tj,

n.d. if t∗ ∈ Ij and ci = 1,

n.d. if t∗ < tj−1.

(5.4.15)

Risk estimation Estimating the life expectancy with S can be a problem for

censored patients, as it would grow to infinity. In the literature, that measure

is nevertheless sometimes applied. Xiao et al. (2020), e.g., calculate the overall

survival time as the sum of the predicted survival probabilities per time interval.

By limiting the number of intervals, an infinite survival probability is prevented.

Instead of using the area under the survival curve as a measure of life ex-

pectancy, in this thesis, it is proposed to use it as a measure of patients’ risk.
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The higher the area under the curve, the lower the risk. Therefore, a risk score

between 0 and 1

r = 1 − 1

tk

k∑
i=1

S(ti) · |ti − ti−1| (5.4.16)

can be estimated when summing over all k intervals. For a censored patient, whose

survival probability ground truth is S(t) = 1 ∀t, the risk is 0. A patient with an

event in the first interval, therefore S(t) = 0 ∀t, has risk 1.

Loss function In this setting of discrete-time survival prediction, the aim is

not only to correctly order the patients but also to correctly estimate the survival

probability over time. Thus, a loss depending only on the order of patients, like

the nlpl, is not sufficient. Instead, the predicted hazard or survival probability per

interval needs to be included in the loss function. Here, a likelihood function is

formulated per patient as

L = f(t∗i )
(1−ci)S(t∗i )

ci (5.4.17)

(Kvamme and Borgan, 2021). The mean negative log-likelihood

L = − 1

n

n∑
i=1

((1 − ci) log[f(t∗i |xi)] + ci log[S(t∗i |xi)]), (5.4.18)

over n patients, each with features x, is minimized by a neural network (Kvamme

and Borgan, 2021). This loss can further be expressed in terms of the hazard

function and split into a censored and an uncensored part:

Lc=0 =
∑
c=0

[log(h(t∗)) +
∑

ti:ti<t∗

log(1 − h(ti))], (5.4.19)

Lc=1 =
∑
c=1

[log(S(t∗))] (5.4.20)

=
∑
c=1

[
∑

ti:ti≤t∗

log(1 − h(ti))]. (5.4.21)

Thus, the predicted survival probabilities and hazard rates until the event interval

are considered. Ren et al. (2019b) propose to weight both losses separately as

L = αLc=0 + (1 − α)Lc=1. (5.4.22)
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This loss will be used in section 5.7 Experiments with α=0.5, which empirically

led to the best results.

Definition of time intervals There are several options to define the discrete

intervals Ij used for survival analysis. The most common option is using equally

spaced intervals, each of the same length. Another option is using intervals divided

into quantiles, with an equal number of patients’ event and censoring times per

interval (Kvamme and Borgan, 2021).

Since the division into quantiles is data-driven, this may lead to problems when

applying the model to new datasets. Further, in a dataset like the one illustrated

in Figure 3.1.2, this spacing would lead to very small intervals at the beginning

and large intervals at the end. Distinguishing between very small differences in

survival times is not reasonable since these might result from the time of follow-

up rather than the disease. Large intervals in the end, reflect an uncertainty for

far-away predictions but are also less meaningful. In this thesis, equal spacing of

intervals is considered.

5.5 Metrics

For the evaluation of survival prediction models, multiple metrics are considered

in this thesis. A survival model should be able to discriminate between patients

while being well-calibrated at the same time. While discrimination measures how

well the order of the predicted survival curves (or risk scores) matches with the

actual order of patients’ event times, calibration measures how well the prediction

matches with the ground truth (Gerds and Kattan, 2021). Metrics for both cases

are presented in the following.

C-index As a discriminating metric for survival analysis, the concordance index,

short C-index, is commonly applied (Harrell et al., 1982). When randomly drawing

two patients A and B, with survival times t∗A < t∗B, the C-index estimates the

probability that the risk for patient A is higher than for patient B (Gerds and

Kattan, 2021). If the predicted order of the two patients matches the true survival

times’ order, the pair is concordant. Only comparable pairs of data points are

used, which means that in this example, patient A may not be censored. The

C-index is applied to measure how many patient pairs are concordant, relative

to all comparable pairs. In case the prediction is not a single risk score but a

measure that changes over time, like a survival curve, the evaluation is performed
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at the event times of the patients. This means that at the event time tA, it is

expected that the survival probability of patient B is higher than that of patient

A (SB > SA at time t∗A), see also Figure 5.5.1. That is especially necessary in the

case of non-proportional hazards, with the possibility of crossing survival curves.

The time-dependent (td) C-index follows as

C-indextd = P
(
Si(t

∗
i ) < Sj(t

∗
i )|t∗i < t∗j , ci = 0

)
=

# concordant pairs

# comparable pairs
(5.5.1)

for patients i and j, where Si(t) = S(t|xi) (Antolini et al., 2005). Counting tied

predictions only half is proposed in the literature:

C-indextd = P (Si(t
∗
i ) < Sj(t

∗
i )|t∗i < t∗j , ci = 0)

+ 0.5P (Si(t
∗
i ) = Sj(t

∗
i )|t∗i < t∗j , ci = 0) (5.5.2)

(Yan and Greene, 2008; Longato et al., 2020). A C-index of 0.5 is equivalent to

a random guess, and a measure of 1 is the highest possible concordance (Harrell

et al., 1982). A problem with the C-index occurs if the risk of experiencing an

event within a time horizon th is of interest. The event horizon does not affect

the calculation of the C-index and therefore can result in misleading conclusions

(Gerds and Kattan, 2021). It has been shown by Blanche et al. (2019) that the

C-index is not a proper score. That means the true underlying data distribution

does not necessarily lead to the best C-index. Therefore, this measure needs to

be considered with care. Furthermore, as can be seen in Figure 5.5.1, the C-index

does not account for crossing survival curves, since two patients are only compared

at a single time. The predictions are considered concordant, even though after a

time, the survival curve of patient B drops below the curve of patient A.

AUCcd Another measure of discrimination is the cumulative-dynamic time-de-

pendent area under the receiver operator curve (AUCcd), see Figure 5.5.2. In

contrast to the C-index, the AUCcd takes into account a time horizon th for the

evaluation

AUCcd(t) = P
(
Si(t) < Sj(t) | t∗i ≤ t, t∗j > t

)
+ 0.5P

(
Si(t) = Sj(t) | t∗i ≤ t, t∗j > t

)
, (5.5.3)

when t < th (Blanche et al., 2019; Kamarudin et al., 2017). For a certain time

t, the AUCcd discriminates between cases (patients with an event before t) and
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t∗A cA=0 t∗B
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0.75

1.00
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)

prediction A

prediction B

concordant

Figure 5.5.1: The two survival curves of patients A and B are compared at t∗A for
the C-index since t∗A < t∗B.

controls (patients with an event later than t). Equivalent to the C-index, tied

predictions are only counted as half.

As the name suggests, cumulative sensitivity and discriminative specificity are

included in the definition. The cumulative sensitivity describes the probability

that a patient’s survival prediction is lower than a threshold z, given an event

t∗i < t. The discriminative specificity is defined as the probability of a patient

having a survival probability greater than z, among all patients who are event-

free at time t. Thus,

Se(z, t) = P (Si(t) ≤ z|t∗i ≤ t), (5.5.4)

Sp(z, t) = P (Si(t) > z|t∗i > t), (5.5.5)

(Kamarudin et al., 2017). Using these definitions, the AUCcd can be formulated

as

AUCcd(t) = P (Si(t) < Sj(t)|t∗i = t, t∗j > t), i ̸= j

=

∫ ∞

−∞
Se(z, t) d[1 − Sp(z, t)]. (5.5.6)

An adaptation is needed for the sensitivity in the case of censoring, which is

why an inverse probability of censoring weighting (ipcw) can be performed (Vock

et al., 2016). A KM estimate of the censoring distribution ŜC is calculated with eq.

(5.3.2), giving the probability that a patient is censored instead of the probability

that a patient has an event. This is also applied when using Uno’s estimator of

sensitivity and specificity (Uno et al., 2007). According to Blanche et al. (2013)
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Figure 5.5.2: The two survival curves of patients A and B are compared at multiple
times t∗A ≤ t < t∗B for the AUCcd. Concordant and discordant pairs are indicated
in green and red, respectively.

and Kamarudin et al. (2017), these are defined as

Se(c, t) =

∑n
i=1 I(Si(t) ≤ z, t∗i ≤ t) (1−ci)

nŜC(t∗i )∑n
i=1 I(t

∗
i ≤ t) (1−ci)

nŜC(t∗i )

, (5.5.7)

Sp(c, t) =

∑n
i=1 I(Si(t) > z, t∗i > t)∑n

i=1 I(t
∗
i > t)

, (5.5.8)

for n samples and with the indicator function I taking either 0 or 1 as value.

To obtain a single score over time span (t1, t2), the AUCcd(t) is further inte-

grated

AUCcd(t1, t2) =
1

S(t1) − S(t2)

∫ t2

t1

AUCcd(t) dS(t) (5.5.9)

(Lambert and Chevret, 2016). Throughout the thesis, the AUCcd will be referred

to as AUC to ease readability.

Brier score A metric that combines discrimination and calibration is the Brier

score (Brier, 1950). For uncensored cases, the Brier score is equivalent to the mean

squared error and calculates the distance between the true survival curve and the

prediction. Since the true underlying survival probability cannot be observed, the

difference between the annotation (a survival curve that drops from 1 to 0 in the

event interval) and the predicted survival probability per time step is calculated,

as illustrated in Figure 5.5.3. A Brier score below 0.25 is considered meaningful

(Gerds and Kattan, 2021). Following Kvamme et al. (2019), the Brier score can
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Figure 5.5.3: The survival curve of patient A is compared to the ground truth
curve, which drops from one to zero at t∗A for the Brier score. The absolute error
of the prediction is indicated with red arrows.

also be weighted with ipcw to account for censored cases

Brier(t) =
1

n

n∑
i=1

[
(1 − Si(t))

2I(t∗i > t)

ŜC(t)
+

Si(t)
2I(t∗i ≤ t, ci = 0)

ŜC(t∗)
]. (5.5.10)

Also in this case, a single Brier score over time is obtained through integration,

Brier =
1

t2 − t1

∫ t2

t1

Brier(s)ds, (5.5.11)

for a time span from t1 to t2. Throughout this thesis, the Brier score refers to this

integrated Brier score. The perfect survival curve with a Brier score of 0 would

match the ground truth annotation. Haider et al. (2020) state that the Brier score

is not sufficient to estimate the goodness-of-fit of predicted survival curves. They

argue that the perfect survival curve would model an unrealistic probability for the

stochastic event time t. Further, it cannot provide an estimate of the probability

of surviving past a specific time. Therefore, they introduce the d-calibration.

D-calibration For an individual patient, it is not only relevant if a model pre-

dicts the order of patients’ events correctly, but it is of interest if the predicted

survival curve matches the underlying ground truth. That can be assessed using a

calibration measure. A model is d-calibrated if the survival functions per patient

reflect the probability of relapse over time (Haider et al., 2020). If according to

the prediction, a patient’s survival probability after two years is 90 %, that should

reflect the true probability. That is valid if 90 % of patients survive past the time

at which their survival probability is 90 %. It is expected that 10 % of patients re-
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lapse while their survival probability is predicted to be 90-100 %. The same holds

true for each probability interval: The survival probability is divided into 10 bins

[pk−1, pk), k = 1, . . . , 10 each covering 10 %, i.e., p0 = 0, p1 = 0.1, etc. Since the

d-calibration is easiest understood graphically, Figure 5.5.4 shows an exemplary

plot. In order to calculate calibration, the predicted survival probability at each

patient’s event time, Si(t
∗), is recorded. Each patient is assigned to one of the

bins based on his survival probability. It is expected that 10 % of the patients are

assigned per bin. For the calculation of d-calibration, Haider et al. (2020) treat

censored patients differently from uncensored ones since their t∗ is not equal to

the time of the event.

They calculate the number of patients per 10 %-bin, bk, for a dataset with N

patients as

bk =
1

|N |
N∑
i

[
I(Si(t

∗
i ) ∈ [pk, pk+1) ci = 0)

+
Si(t

∗
i ) − pk

Si(t∗i )
· I(Si(t

∗
i ) ∈ [pk, pk+1) ci = 1)

+
pk+1 − pk
Si(t∗i )

· I(Si(t
∗
i ) ≥ pk+1 ci = 1)

]
. (5.5.12)

Whether the resulting distribution over the bins is uniform is tested with a chi-

square test. If the test passes (p > 0.05), the model is well calibrated (Haider

et al., 2020).

Remarks Besides the Brier score, all metrics consider the whole population

and cannot evaluate the model’s performance for single patients. The scores are

best used to compare models trained on the same dataset (Gerds and Kattan,

2021). Since calibration and discrimination are two contradictory scores, usually

a trade-off between both is needed. To evaluate and compare survival models,

all the above metrics, AUC, C-index, Brier score, and d-calibration, need to be

considered.

5.6 eCaReNet

For survival prediction on prostate cancer patients, eCaReNet (explainable Cancer

Relapse prediction Network) was developed for this thesis and published (Dietrich

et al., 2021). It is a neural network that takes as input images of prostate tissue

and predicts individual hazard rates. The hazard rates are used to calculate
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Figure 5.5.4: The survival prediction of patient A is 0.67 at t∗A and therefore con-
tributes to the 0.6-0.7 bucket. SB(t∗B) = 0.09 thus contributes to the 0-0.1 bucket
in the d-calibration plot on the right. A model is calibrated if the distribution on
the right is uniform. Inspired by Haider et al. (2020).

both a survival curve and a risk score per patient, using eq. (5.4.13) and eq.

(5.4.16). It builds upon the pretrained model MISUP from section 4.4.2 ISUP

grading. The version predicting ISUP scores from the whole TMA spot is used

since it is supposed to capture more detail than the single-Gleason-pattern model.

5.6.1 Overview

Figure 5.6.1 shows a complete overview of eCaReNet. In part A, MISUP (from

section 4.4.2 ISUP grading) is used for supervised pretraining on ISUP grades.

Part B shows a binary relapse prediction network, MBin, which approximates the

probability of a patient having a relapse within two years. Its output can be

used as an additional input for eCaReNet in part C. Part C is the main model,

eCaReNet, which outputs individual survival curve predictions. The overview

figure also shows which datasets and annotations are used for each model part.

Details for parts B and C are provided in the following since part A was already

detailed in section 4.4.2 ISUP grading.

5.6.2 Binary survival prediction

As a preparatory task, a binary survival prediction model MBin is trained. It

predicts whether or not a patient will have a relapse before time tx. The output of

this network will be used as additional input to eCaReNet. As a model, MISUP from
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Figure 5.6.1: Overview of the complete model, including the three steps MISUP,
MBin and eCaReNet. On the left, the dataset and the annotation for training are
indicated. The input image is shown in pink, optional model parts are drawn in
gray, and necessary parts are in black. For clarity, only four image patches are
drawn, while the final eCaReNet uses 64 patches. ISUP: International Society
of Urological Pathology, Bin: binary, GAP: global average pooling, GRU: gated
recurrent unit, MIL: multiple instance learning.
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section 4.4.2 ISUP grading is used but the last layer is reduced to 2 output neurons

and it is retrained. The input size is 1024 × 1024 pixels. During model training

with cross-entropy loss, all network weights are fine-tuned using the complete

Surv1 training data for which the survival status at tx is known. That means

that patients with a censoring time before tx are excluded. The binary survival

prediction model is shown in part B in Figure 5.6.1.

5.6.3 Survival curve prediction

The same pretrained MISUP is used again as a base model for the survival curve

prediction in eCaReNet. Images with three color channels are used as input, and

hazard rates per time interval are returned. However, some more adaptations

are made to transform the classification network into a survival curve prediction

network.

MISUP is cut after four inception blocks to decrease the number of parameters,

required computational resources, and training time. In experiments, this came

with no loss in prediction performance compared to using the complete architec-

ture.

After the last convolutional layer, a global average pooling layer is attached.

That reduces the 3-dimensional output to a vector. To this vector, the output of

the binary prediction model MBin is concatenated.

Time is discretized into intervals so the model can output hazard rates per

interval. Following the approach of Ren et al. (2019b), a recurrent layer is used

to account for the time dependencies between time interval hazard rates. As

input to the recurrent layer, the current vector needs to be repeated so it matches

the number of time intervals and a time step is concatenated to each of these

repetitions, representing the interval limits. The recurrent layer then outputs one

hazard prediction per time interval. In this thesis, GRUs (Cho et al., 2014) are

chosen for the recurrent layer since these yielded the best results compared to

LSTMs in experiments. GRUs comprise an update gate and a reset gate. During

a forward pass, the reset gate is updated as

rj = σ
(
[Wrx]j + [Urh

t−1]j
)
, (5.6.1)

with the logistic sigmoid function σ, the weight matrices W and U, the input x

and the previous hidden state ht−1. Thus, superscript t denotes the current time

and each [.]j indicates a vector’s j-th element (Cho et al., 2014). The elements of
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the update gate z are computed similarly as

zj = σ
(
[Wzx]j + [Uzh

t−1]j
)
. (5.6.2)

The final activation at time t, ht, is then calculated element-wise as

ht
j = zjh

t−1
j + (1 − zj)h̃

t
j, (5.6.3)

with h̃t
j = tanh ([Whx]j + [Uh(r⊙ ht−1)]j) , (5.6.4)

with the element-wise product ⊙. The reset gate allows the GRU to ignore previ-

ously seen information that is stored in the hidden state.

In order to include ad-hoc explainability, an attention-based multiple instance

learning (MIL; Ilse et al., 2018) approach is included in the survival model as

follows. Instead of inputting the whole image at once into the network, each

image is cut into non-overlapping square tiles, which form a bag of instances.

These tiles are processed individually until an MIL layer after the GRU weights

the hazard rates per image patch with attention ak and adds those together with

ak =
exp(wT tanh(VhT

k ))∑K
j=1 exp(wT tanh(VhT

j ))
, (5.6.5)

o =
K∑
k=1

akhk. (5.6.6)

Here, V is a matrix of network weights, w contains the learned attention weights

as a column vector, o is the layer output, and h is the output vector per image

patch out of K patches (row vectors forming a bag H = {h1, . . . ,hK}). The

hyperbolic tangent tanh is applied element-wise (Ilse et al., 2018). The weights

per image patch reveal how much each image region influences the final prediction.

The network outputs one prediction per patient.

For eCaReNet, a further adaption with self-attention is included (Rymarczyk

et al., 2021). The self-attention layer accounts for dependencies in-between patches

and is included right before the GRU. That way, the information about other

patches of the same image can be considered in the hazard prediction. For self-

attention, per patch a key vector ki = Wkhi, a query vector qj = Wqhj, and a

value vector vi = Wvhi are defined. The dot product of the key and query is

sij = ⟨k(hi),q(hj)⟩. (5.6.7)
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Scores β per patch are calculated with

βj,i =
exp(sij)∑N
i=1 exp(sij)

(5.6.8)

for each j, i combination of N patches. Finally, the output of the self-attention

layer is calculated patch-wise as

ĥj = γ
N∑
i=1

βj,ivi + hj, (5.6.9)

where γ is trainable (Rymarczyk et al., 2021; Ramachandran et al., 2019).

The whole architecture of eCaReNet is depicted in Figure 5.6.1, part C. Some

parts of eCaReNet are necessary for survival curve prediction, while others are

not essential but are expected to increase the performance (shown in gray). The

influence of the optional parts, e.g., MIL, is evaluated in an ablation study in

section 5.7 Experiments.

The model predicts a hazard score per time interval to avoid modeling the

monotonicity of survival curves. These hazard scores are converted to survival

probabilities per time interval with eq. (5.4.13). A risk score per patient is ob-

tained with eq. (5.4.16). The aforementioned maximum likelihood loss from eq.

(5.4.22) is applied during training. The hazard and survival annotations are ob-

tained following eq. (5.4.14) and eq. (5.4.15). For both censored and uncensored

patients, the hazard remains undefined after t∗. That is also reflected in the loss

function, which does not take into account any intervals after the event time.

5.6.4 Risk score

A risk score per patient can be estimated with eq. (5.4.16). It follows that risk

r = 0 if ∀ tj : S(tj) = 1 and r = 1 if ∀ tj : S(tj) = 0, or - in words - the later the

survival curve drops, the lower the risk. Still, a single scalar risk value is difficult

to interpret if it is not put in relation to other patients. That is especially true

since the risk values may not be distributed uniformly among the population.

In order to obtain a comparable risk value, patients can be grouped into discrete

risk groups. The number of risk groups needs to be chosen deliberately since

there is a tradeoff between good stratification and clinical utility. For example,

defining only two well-stratifying groups, low-risk versus high-risk, is insufficient

to decide on an individual treatment. Also, assigning each patient their own risk

group might yield individual predictions, but the stratification suffers. In the
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preferred case, the maximum number of groups is chosen subject to sufficient

patient stratification. This means risk groups need to be defined based on the

dataset. Each risk group is limited by an interval with a lower and an upper

risk-score limit.

In this thesis, an exploratory approach will be applied to find the optimal

intervals: First, multiple possible interval limits between the lowest and highest

training set risk scores (minimum 0 and maximum 1) are defined in steps of,

e.g., 0.03 (0.03, 0.06, 0.09, 0.12, etc.), and d is chosen as the desired number of

intervals. For each possible combination of d intervals, the patients are assigned

to their appropriate risk groups. For example, if d = 4, the explored interval limit

combinations are ([0.03,0.06,0.09], [0.03,0.06,0.12], [0.03,0.06,0.15], etc.), where

the first combination yields the 4 intervals [0,0.03), [0.03,0.06), [0.06,0.09), and

[0.09,1]. A patient with a risk of 0.02 would be assigned to the first group. The

patients’ survival times are summarized per group with KM curves and all curves

are tested for discrimination power with a log-rank test. Then it is counted how

many of the proposed risk groups stratify well. If no interval combination leads to

perfect stratification (i.e., at least one log-rank test fails), the number of intervals

is decreased to d − 1. The procedure is repeated with all possible combinations

of d− 1 intervals, and the number of intervals is decreased until all log-rank tests

pass.

Multiple interval combinations for d groups may lead to a perfect stratification

between groups on the training set. In that case, these combinations are further

evaluated on the validation set. As before, the patients are assigned to the d risk

groups, and the stratification of the KM curves is tested with log-rank tests. The

interval combination that yields the best result on the validation set (the least

failed log-rank tests) is chosen for the final risk group assignment. The evaluation

of the risk group stratification is performed on the test set. As mentioned above,

survival prediction with neural networks allows for non-proportional hazards and

therefore crossing survival curves. Therefore the log-rank test is modified with

Fleming-Harrington weights (see section 5.3 Population-based survival prediction).

5.6.5 Multiple images

In a study by Vollmer (2009), 75 % of patients had a tumor with a volume less

than 25 % of the prostate. Thus, a core extracted from a prostate affected by

cancer may not contain tumor tissue. Even though the TMA spots in Surv1 are

taken from the tumorous area of the prostate after RPE, it is possible that not all
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tumor information is captured within a single image. Analyzing more tissue may

give a better overview and lead to more precise predictions. Also in practice, up

to twelve cores of tissue are extracted during a biopsy, and it has been shown that

using more cores yields higher detection rates (Hu et al., 2019). The prediction

with a second core per patient can be simulated with Surv2. It consists of a

second image per patient for most patients in Surv1. The images are obtained

from a different region in the patients’ prostates. Furthermore, an evaluation

dataset, SurvHetero, is available, which comprises up to 6 images per patient.

These patients are partly distinct from the other datasets, and the annotations

are only known to the UKE Institute of Pathology. Multiple images of the same

patient can be combined for the survival prediction inference in different ways.

One option is to use all image patches at once, thus only inputting more patches

into eCaReNet than before (image concatenation). Another option is to process

multiple images sequentially and then combine the predictions (mean, pessimistic,

or optimistic vote). All options are introduced here:

Image concatenation Since eCaReNet uses patches, only the size per patch

but not the number of patches is predefined. Therefore, it is possible to input

fewer or more image patches during inference than were used during training. For

the approach of image concatenation, all image patches of both images are input

at once into the network, so that the trained attention layer decides which patches

to weight more or less for the final prediction.

Mean Instead of using both images at once, another option is to input each

image separately into eCaReNet. The survival predictions can then be averaged

per interval to obtain the final survival curve.

Pessimistic Imagine a patient for whom two images of prostate cancer are given,

one with, the other without cancer. The image with cancer may be more important

for the final decision than the benign image. When averaging the results, this effect

is lost. Therefore, another option is to use the pessimistic vote, that is, the survival

curve with the lowest survival probability at each time interval.

Optimistic The opposite of the pessimistic vote is an optimistic vote, which

uses the highest predicted survival probability per time interval across the input

images. That method might outperform the mean or pessimistic voting if most

images show cancer, and a benign image reduces the predicted risk.
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5.6.6 Multimodal data input

Complex processes in the human body influence the occurrence of prostate cancer

relapse. Hence the tumor tissue may not include all the relevant information to

predict cancer progression. As described in chapter 3 Datasets, some datasets also

contain additional patient information and the KM curves in Figure 3.1.7 indicated

a correlation between some patient features (e.g., tumor volume) and survival time.

Thus, it is interesting to examine whether a multimodal approach that includes

additional patient features influences the survival prediction. Furthermore, it was

shown in a complementary project (Fuhlert et al., 2022) and in the work of other

researchers that relapse prediction from EHRs alone is successful (e.g., Vale-Silva

and Rohr, 2021).

Since the model developed for this thesis should be applicable at the time of

a biopsy, only features available before an RPE should be taken into account,

as indicated in Table 3.1.7. A Gleason score can be obtained from the biopsy,

but for all patients in the Survival dataset, only the Gleason score for the whole

prostate is available, not for the individual images. Since that score includes more

information than is available during a biopsy, it is neglected. Furthermore, a per-

image Gleason score would be redundant since it is derived from the tissue, and

the input image contains the necessary information already. In this thesis, PSA

value, age, tumor diameter, and tumor volume are considered since these features

are available or can be estimated at the time of biopsy.

For the multimodal analysis, these additional patient features can be attached

to the output of the global average pooling layer, equivalent to the binary survival

prediction from MBin. The model’s predictive performance will be evaluated with

respect to adding these patient features.

5.7 Experiments

In the following, the survival prediction experiments that are conducted during the

work for this thesis are presented. Extensive evaluation of metrics and comparisons

to pathologists are performed. Further, experiments using multiple images and

multimodal input data are shown. Parts of the shown results have been published

in Dietrich et al. (2021).
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5.7.1 Setup: eCaReNet

The models are all implemented in Python31 with TensorFlow2 and keras3 (van

Rossum and Drake, 2009; Abadi et al., 2015; Chollet et al., 2015). They are

partly trained on an NVIDIA Tesla V100 with 16GB, and partly on an Nvidia

Quadro RTX 8000 with 48 GB. The code for eCaReNet is publicly available at

www.github.com/imsb-uke/ecarenet. All survival prediction models are trained

with a Nadam optimizer (Dozat, 2016), the loss introduced in eq. (5.4.22), a

learning rate of 0.00005, and early stopping such that the epoch with the lowest

validation loss is used for the best model. For all conducted experiments no

model layer was frozen since it showed lower performance in the previous Gleason

classification task. Since a random initialization might influence the training,

the models are trained five times with different initialization seeds to enable a

comparison of the variation between runs of the same model and between models

with different setups. If not stated differently, a single TMA spot image, cut

into patches, is used as input for a patient. As data augmentation, the images

are randomly flipped and rotated by 90 degrees. Modifying the images’ hue,

saturation, brightness, or blurring the images did not increase performance and is

therefore neglected in the experiments.

The survival time is encoded into a hazard annotation per interval with eq.

(5.4.15). The model predicts a hazard rate per time interval, which is always

postprocessed to a survival curve showing the relapse-free survival probability

over a time of 7 years. That period covers the 90 % of relapses that occur before

7 years after RPE. The intervals should not be chosen too small (e.g., one week

per interval) since usually patients are not monitored that closely. Large intervals,

however, e.g., 1 year, impede meaningful differentiation between patients, which is

needed for treatment recommendations. Therefore, for this thesis, equal intervals

of three months are chosen. Thus, to cover a span of 7 years (84 months), 28

intervals are used.

5.7.2 Binary survival prediction

First, the binary prediction model MBin of relapse-free survival beyond two years

is trained on Surv1. The predictions will be used as extra input in addition to

the images for eCaReNet. A time horizon of 2 years is chosen since this is close

1https://www.python.org/ (last accessed November 24, 2022)
2https://www.tensorflow.org/ (last accessed November 24, 2022)
3https://keras.io/ (last accessed November 24, 2022)
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to the median (26.8 months) of the relapse times (44 % of relapses occur before

2 years) in Surv1. Since all patients with a censoring time before 2 years need to

be removed from the dataset, it reduces to 8,200 images in the training set, 1,765

in the validation set, and 1,790 in the test set. It is unbalanced, with 89 % of

patients surviving beyond 2 years since many patients are censored afterward.

The confusion matrices for the best MBin on the validation and test sets are

shown in Figure 5.7.1. The accuracy reaches 0.71 on the validation and 0.67 on the

test set. The confusion matrix reveals that the wrong predictions are evenly spread

among both classes in the validation set, but more patients with a relapse within

two years were predicted to not have a relapse on the test set. This is attributed

to the unbalanced dataset. Nevertheless, MBin does not completely overfit on the

most prevalent class and its predictions are thus included in eCaReNet as described

in the following section.
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Figure 5.7.1: Confusion matrices for the best run of MBin for binary survival
prediction. Left: validation set, right: test set.

5.7.3 eCaReNet ablation study

As described above, not all parts of eCaReNet are mandatory to enable survival

prediction but some parts are expected to contribute to increased performance or

usability. While the InceptionV3 backbone and the GRU layer are mandatory,

attention MIL, self-attention, and binary survival prediction are optional.

Therefore, in the following, eCaReNet is adapted to evaluate which architec-

tural parts contribute most to model discrimination power and calibration. Fur-

thermore, the influence of pretraining the model on the histopathology images

from the Gleasonaut instead of ImageNet is evaluated.

Table 5.7.1 summarizes all ablation study results, where a higher AUC and

C-index but a lower Brier score indicate better model performance. For d-cal-

ibration, it is only indicated whether the chi-square test passes or fails. As model
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input, the images are downsized to 1024×1024 pixels, which is the resolution used

in MISUP (see section 4.4.2 ISUP grading).

Results As base model Mbase, a GRU layer is added to the InceptionV3 network,

and the H&E image is input as a whole. That model is pretrained only on the

ImageNet dataset and does not include the previous binary prediction. The base

model Mbase reaches an AUC of 0.74, a C-index of 0.72, and a Brier score of 0.116.

The d-calibration chi-square test passes.

As a first adaptation (Mpretr), the pretrained weights of MISUP from section

4.4.2 ISUP grading are used. The results of Mpretr show that pretraining on

histopathology images has a positive effect on all metrics. The AUC increases

to 0.76, the C-index increases to 0.73, and the Brier score decreases to 0.109.

This is expected since the visual content of ImageNet images and histopathol-

ogy images differs, and a model pretrained on histopathology images produces

more valuable latent space representations than a model pretrained on ImageNet.

Since all model weights are fine-tuned, without freezing any layers, it is concluded

that the transfer learning from both a different dataset source (ImageNet images)

and task (classification) to histopathology survival prediction is too challenging to

obtain optimal results.

Next, an attention-based MIL layer is added after the GRU layer for MMIL.

The MIL layer enables insights into the model’s predictions by revealing the con-

tribution of each image patch to the final prediction. While this approach has the

advantage of adding transparency to the survival model, it also adds more com-

plexity. The input image is cut into non-overlapping patches for this approach.

Using 16 patches with size 256 × 256 pixels showed the best results. With the

patch-based MIL approach MMIL, the C-index improves to 0.74 on both the vali-

dation and test set, while the AUC and the Brier score remain unchanged. That

alone would suggest no clear advantage of using image patches. However, the

attention in the MIL includes explanations about which image regions contribute

most to the final prediction. Therefore, it is concluded that adding explainability

does not reduce prediction performance and should hence be kept in the model.

Next, the prediction output from MBin (section 5.7.2 Binary survival prediction)

is added to the global average pooling layer in MMIL-Bin. That binary task can

already hint toward an early or late relapse time and therefore support the sur-

vival prediction. The AUC improves to 0.77 on the validation and test sets, the

Brier score improves to 0.107 on the validation set, and 0.109 on the test set. The

C-index remains as high as before (0.74). Therefore, also the binary prediction
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Table 5.7.1: Comparison of model adaptations. Values are the mean of five train-
ing runs with the standard deviation in parentheses for the validation (Valid) and
test sets. When models MISUP (MI) or MBin (MB), or MMIL (MM) or self-attention
(s) layers are included, it is indicated with a dot (•). The best results are marked
in bold. MIL=multiple instance learning, Bin=including binary relapse prediction
from MBin. All d-calibration (D) chi-squared tests pass (p).

Valid set MIMMMB s AUC ↑ C-index ↑ Brier ↓ D

Mbase 0.74 (0.0042) 0.72 (0.0008) 0.116 (0.0038) p
Mpretr • 0.76 (0.0018) 0.73 (0.0023) 0.109 (0.0005) p
MMIL • • 0.76 (0.0004) 0.74 (0.0000) 0.109 (0.0000) p
MMIL-Bin • • • 0.77 (0.0012) 0.74 (0.0026) 0.107 (0.0003) p
eCaReNet • • • • 0.78 (0.0041) 0.75 (0.0016) 0.107 (0.0004) p

Test set

Mbase 0.74 (0.0054) 0.71 (0.0031) 0.115 (0.0007) p
Mpretr • 0.76 (0.0031) 0.73 (0.0018) 0.110 (0.0004) p
MMIL • • 0.76 (0.0002) 0.74 (0.0003) 0.110 (0.0000) p
MMIL-Bin • • • 0.77 (0.0011) 0.74 (0.0022) 0.109 (0.0003) p
eCaReNet • • • • 0.77 (0.0048) 0.74 (0.0037) 0.109 (0.0006) p

should be kept to ensure high discrimination performance. It has to be kept in

mind that the binary prediction only discriminates between surviving two years

or not, while the survival model MMIL-Bin is evaluated over a time of 7 years.

Finally, for eCaReNet, a self-attention layer is included to account for inter-

patch influences. These influences are relevant since the final survival curve is

not predictable from single patches, but, e.g., the ratio of benign and malignant

image regions is relevant, too. Here, using 64 patches (with 128× 128 pixels each)

showed the best results. The AUC and C-index on the validation set improve to

0.78 and 0.75, respectively, however, this effect cannot be seen on the test set.

In addition, the variance increases. This shows that network initialization has a

greater influence on the final prediction performance with self-attention. It can

be concluded that the inter-patch dependencies add little additional information.

For all model variations, the d-calibration chi-square test passes, assuring cal-

ibration. Furthermore, the models generalize well, as there is only a slight per-

formance decrease observable from the validation set to the test set. Evaluation

of the results on the separate test set 13.1D, only containing a single TMA, also

results in AUC scores of 0.74-0.76 for all adaptations, confirming equally good

performance and generalizability.
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Conclusion: Best variant In conclusion, the best model, eCaReNet, includes

self-attention and attention-based MIL layers, the prediction from MBin, and is

pretrained on ISUP scores (built on MISUP). As input, the H&E images are cut

into 64 patches of size 128 × 128 pixels. The model reaches an AUC of 0.78 on

the validation and 0.77 on the test set. That is an AUC integrated over time, but

the AUC can also be calculated at single time points. The single best eCaReNet

(initialization seed that led to the best AUC) reaches the highest AUC on the test

set at 18 months, where it reaches 0.85, see Figure 5.7.2 (a). The time-dependent

C-index reaches 0.75 and 0.74 on the validation and the test set, respectively.

The Brier scores are 0.107 on the validation set and 0.109 on the test set, thus,

below 0.25 and indicate a good model performance. The d-calibration plot for the

best model is shown in Figure 5.7.2 (b). The chi-square test passes, indicating a

uniform distribution and thus a well-calibrated model.
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Figure 5.7.2: Results of eCaReNet on the Surv1 test set for a single trained model.

5.7.4 Comparison to baseline and pathologist

In order to evaluate eCaReNet further, its performance is compared to models and

loss functions proposed in the literature. It is also compared to a pathologist’s

annotations, which are not survival estimates but Gleason scores for the patients’

whole prostates. All results are summarized in Table 5.7.2 using the same metrics

as before. Since the pathologist only assigned a single score per patient and does

not predict a survival curve, only discrimination can be evaluated, not calibration.

Two models from the literature, DeepConvSurv (Zhu et al., 2016) and CDOR

(Xiao et al., 2020), are used for comparison. These are chosen among the models
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presented in section 2.2.4 Deep learning for survival prediction since DeepConv-

Surv is the standard Cox-based survival model and CDOR shows the best per-

formance on only histopathology images for survival curve prediction. Both those

models have different underlying CNNs, optimized for the applied datasets. In

order to enable a fair performance comparison in this thesis, both base models are

exchanged with an InceptionV3 as used for eCaReNet. In particular, the Incep-

tionV3 model pretrained on ISUP scores, MISUP (see section 4.4.2 ISUP grading), is

used since the ablation study revealed that the pretraining already improves the

performance. Comparing ImageNet-pretrained models from the literature with

eCaReNet pretrained on histopathology images would yield misleading conclu-

sions.

Comparison to baseline models For DeepConvSurv, a single output node is

added after the global average pooling layer of the pretrained InceptionV3. That

output node returns the patient’s risk and models the exponential part of the Cox

model (see eq. (5.4.6)). DeepConvSurv is trained with the negative log partial

likelihood loss from eq. (5.4.8). That model reaches an AUC of 0.69 and a C-index

of 0.65 on the validation set (see Table 5.7.2). The AUC on the test set is 0.71

with a C-index of 0.64. The test for d-calibration fails, and the Brier score of 0.305

on the validation set (0.296 on the test set) indicates a non-calibrated model, too.

For CDOR, fully connected layers are attached to the pretrained InceptionV3

after the global average pooling. Since it has the same intervals as eCaReNet,

28 output nodes are needed. CDOR predicts the survival probability per interval

directly without modeling the hazard first. However, a constraint that enforces

monotonically decreasing survival curves is missing. That model reaches an AUC

of 0.77 on the validation and 0.78 on the test set. The C-index is 0.73 for both sets.

Like DeepConvSurv, it fails in terms of calibration. Furthermore, the resulting

survival curves are not monotonically decreasing, therefore biologically unreason-

able (see Figure 5.7.3).

Compared to both previously described models from the literature, eCaReNet

shows the best performance for all measures on the validation set (AUC 0.78,

C-index 0.75, Brier score 0.107). On the test set, it also obtains the best C-index

(0.74) and Brier score (0.109) and passes the chi-square test for d-calibration.

CDOR performs best on the test set’s AUC. In contrast to CDOR, eCaReNet

predicts monotonically decreasing survival functions. Figure 5.7.3 compares the

predicted survival curves for three uncensored patients. CDOR and eCaReNet

both predict the order of the patients correctly, but the individual predictions per
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interval differ. Furthermore, eCaReNet passes the d-calibration chi-square test

and is thus better calibrated than CDOR and DeepConvSurv. Another advantage

is that eCaReNet offers an intuitive explanation for its decisions through patch-

wise attention weights, which will be evaluated later in more detail.

Table 5.7.2: Comparison of eCaReNet to state-of-the-art models and a pathol-
ogist’s ISUP annotations. Values are the mean of five training runs with the
standard deviation in parentheses. For d-calibration (D), only failure (f) or pass
(p) is indicated. The best results are marked in bold.

Validation set AUC ↑ C-index ↑ Brier ↓ D

ISUP 0.78 0.75 - -

DeepConvSurvZhu et al. (2016) 0.69 (0.0207) 0.65 (0.0173) 0.305 (0.0146) f
CDORXiao et al. (2020) 0.77 (0.0089) 0.73 (0.0046) 0.111 (0.0014) f
eCaReNet 0.78 (0.0041) 0.75 (0.0016) 0.107 (0.0004) p

Test set

ISUP 0.80 0.76 - -

DeepConvSurv 0.71 (0.0232) 0.64 (0.0132) 0.296 (0.0227) f
CDOR 0.78 (0.0005) 0.73 (0.0003) 0.110 (0.0001) f
eCaReNet 0.77 (0.0048) 0.74 (0.0037) 0.109 (0.0006) p
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Figure 5.7.3: Predicted survival curves of eCaReNet compared to CDOR. While
the order of the three patients is correctly predicted with both models, only the
survival curves of eCaReNet are monotonically decreasing. t∗: ground truth sur-
vival time, r: predicted risk score, group a/b: predicted risk group a out of b
groups.

Comparison to pathologist Pathologists assign ISUP scores to patients in-

stead of directly estimating the time to relapse, whereby higher ISUP scores

correspond to higher risk and, thus, lower survival probability. Therefore, the
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discrimination power of the assigned ISUP scores and eCaReNet’s prediction can

be compared. The pathologist’s annotations are assumed to be constant over

time for AUC and C-index calculation. In terms of validation set discrimination,

eCaReNet reaches on-par performance with the pathologist’s annotations (AUC

0.78, C-index 0.75). On the test set, the pathologist reaches a higher AUC and

C-index than eCaReNet (AUC 0.80, C-index 0.76). In this context, it is impor-

tant to note that in contrast to eCaReNet, which analyzes single TMA spots, the

pathologist had access to the patient’s whole prostate tissue.

Even though the pathologist’s assigned risk scores are constant over time, the

AUC can be evaluated at different time points, see eq. (5.5.8). The performance

of eCaReNet and the pathologist is therefore compared in terms of AUC for a time

of 84 months (7 years) in Figure 5.7.4. The curves on the validation and test sets

are similar and, therefore, not addressed separately in this analysis. In the time

range from 6 to 26 months after RPE, eCaReNet’s AUC is higher than 0.8, with

the best test set AUC at 18 months, as stated above. Hence, eCaReNet’s predic-

tions are best in a time range from half a year to two years after RPE. Overall,

eCaReNet’s AUC is similar to the expert pathologist. In the first months, where

eCaReNet’s survival curves are still close to 1 for all patients, it is outperformed

by the pathologist, whose predictions are constant over time. The pathologist and

eCaReNet perform similarly in the time range from 15 to 42 months. Afterward,

the pathologist again outperforms eCaReNet in terms of AUC. Since eCaReNet

and the pathologist achieve similar discrimination, it is concluded that eCaReNet

has the potential to support pathologists’ decisions.
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Figure 5.7.4: AUC over time of eCaReNet compared to a pathologist. Test set
results are shown with solid lines, validation set results with dashed lines. The
pathologist’s performance is shown in orange, and eCaReNet’s performance is
shown in blue.
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Conclusion It was shown that eCaReNet achieves similar discrimination on

Surv1 as a pathologist and outperforms state-of-the-art approaches by being cal-

ibrated and predicting biologically reasonable survival curves. However, the per-

formance does not increase beyond the predictive performance of the ISUP an-

notations from a pathologist. It should be noted again, however, that eCaReNet

only uses a single image per patient for its prediction, while the pathologist had

access to the whole prostate. These results are encouraging for future work. It

needs to be investigated further whether pathologists’ patient stratification and

decision-making can improve when being supported by eCaReNet’s predictions.

5.7.5 Risk group evaluation

Besides describing a patient’s relapse-free survival probability with a survival

curve, his overall risk can be condensed to a single risk score, and he can be

assigned to a risk group. An exploratory approach for defining the number of dif-

ferentiable risk groups is applied for eCaReNet, as described in section 5.6.4 Risk

score. As initial possible interval limits, steps of 0.03 between the lowest training

set risk 0.009 and the highest risk 0.85 are defined as 0.03, 0.06, ..., 0.84. As a

starting number of differentiable groups, d = 10 is chosen. d is decreased as long

as the log-rank tests do not all pass between the KM curves per risk group on the

training set.

That approach leads to a maximum of eight risk groups that are still well

stratified in the training set, according to the log-rank test. The limit for the p-

value is 0.05. The eight intervals that lead to the best training set stratification are,

from low to high risk, [0, 0.06) [0.06, 0.12),[0.12, 0.15), [0.15, 0.18),[0.18,0.3),[0.3,

0.42), [0.42,0.51), and [0.51, 1]. The lowest risk group is named group 1, and the

highest is named group 8. The uneven spacing of the intervals confirms that a

data-driven approach for defining the risk groups is beneficial since pure uniform

partitions would not yield such well-stratified groups. In contrast to state-of-the-

art models, where mostly two to three groups are distinguished, differentiating

eight groups enables a more individualized prognosis. That again stresses the

discriminatory power of eCaReNet. Figure 5.7.3 shows an example of survival

curves and their associated risk scores and groups.

The log-rank tests pass for all risk groups in the training dataset. The KM

curves on the validation and test set are shown in Figure 5.7.5. For the validation

set, only one log-rank test fails (p-value 0.219), indicating that groups 2 and 3

do not stratify sufficiently. The log-rank test for the test set fails for groups 3/4
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(p-value 0.07) and 5/6 (p-value 0.306). Therefore, 6 groups are still well-stratified

in the test set.

Most test set patients are assigned to risk group 2 (835 patients - 38 % of the

test set data). The group with the fewest patients is risk group 8, which includes

66 patients (3 % of the test data). That is reasonable since most patients’ cancer

progresses slowly, and in the given dataset most patients did not report a relapse

throughout the study.
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(a) Validation set.
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Figure 5.7.5: KM survival curves per risk group on the validation and test sets of
Surv1.

Conclusion With eCaReNet, it is possible to stratify up to eight risk groups

in the training set and six risk groups in the test set, which allows for more

individualized decisions in comparison to current state-of-the-art methods, which

often only discriminate two or three risk groups.

5.7.6 Attention evaluation

So far it has been demonstrated that eCaReNet has high discriminatory power,

is well-calibrated, and generalizes to an unseen test set. In order to apply such

a model in a clinic, trustworthy and explainable predictions are crucial besides

high prediction performance. Since deep neural networks act as black boxes, their

decisions are incomprehensible. As described in chapter 2 Background, the term

“explainability” has no clear connotation in the literature. Here, explainability is

included in eCaReNet by inspecting the attention weights assigned to single image

patches in the MIL layer. It is expected that image regions showing cancer receive

more attention than benign tissue.
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Synthetic example with stitched patches For the first experiment, syn-

thetic images are stitched from cancerous and non-cancerous patches. For this,

an image that is labeled as benign (Gleason 0) and an image that is labeled as

highly cancerous (Gleason pattern 5), are stitched together in such a way that

half the image shows benign and half the image shows cancerous tissue. Since the

images in Surv1 are not labeled image-wise, the Gleasonaut test set is used for

this experiment, of which 12 example images are stitched. Each stitched image is

cut into patches, input to eCaReNet, and the attention weights that are assigned

per patch in the MIL layer are calculated. In the example image in Figure 5.7.6

(a), patches with higher attention are highlighted in a lighter color. It is shown

that the malignant, upper half receives more attention than the lower, benign

part. The attention that malignant and benign patches are assigned is plotted in

the boxplot in Figure 5.7.6 (b). It confirms that malignant image regions receive

significantly more attention than benign patches (p-value < 0.01).
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Figure 5.7.6: Evaluation of attention scores in benign and malignant patches.
(a) Example stitched image with Gleason pattern 0 in the lower and 5 in the
upper half, where patches are lighter the more attention they are assigned. (b)
Comparison of attention assigned to benign and malignant patches. The box
indicates the upper and lower quartiles, and the black line is the median value.
b: benign, m: malignant, ** indicates that the difference is significant with a
p-value < 0.01. (c) Example image from Surv1. Patches with higher attention are
shown in a lighter color. The cancerous areas are circled in black. (d) Comparison
of attention assigned to benign and malignant patches (*: p < 0.05). Adapted
from Dietrich et al. (2021).

Real examples In order to further explore whether the attention weights match

with cancerous regions in the Surv1, two images of each of 38 TMAs of Surv1 were

randomly selected (one from the validation and the other from the test set) and

shown to a pathologist (Prof. Dr. Guido Sauter, UKE Institute of Pathology). In
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each image, the pathologist marked the cancerous regions with a pen. Each image

is then cut into 64 patches with 128 × 128 pixels (input size for eCaReNet), and

a patch is considered malignant if at least 2/3 of its tissue are within the marked

area. Images showing no cancerous structures are left out since the attention

cannot focus on any malignant parts, hence, the results might be misleading.

The original image patches (without marks) are processed with eCaReNet and

the attention weight per patch is extracted. The average attention the patches

receive is calculated separately for all patches annotated as malignant and for

all patches annotated as benign. The average attention of malignant patches

compared to benign patches is shown in a boxplot in Figure 5.7.6 (d) for the

test set. It can be seen that malignant patches are assigned significantly higher

attention weights (p-value < 0.05) than benign patches. Figure 5.7.6 (c) shows an

example test set image with superimposed attention. Patches with high attention

are illustrated bright whereas patches with low attention are darker. The regions

circled with black lines are annotated as cancerous by a pathologist. As can be

seen, not all image regions that are marked as malignant obtain high attention

weights. However, all patches that receive the highest attention are within the

malignant regions. Still, the attention weights are all within a small range around

0.015625, which would be an equal attention across 64 patches.

Conclusion The attention assigned per image patch in the MIL layer corre-

lates to malignancy. On average, malignant patches are assigned higher attention

values. Thus, eCaReNet incorporates an explainability that makes it more trans-

parent and could help pathologists to decide whether to trust the provided predic-

tions. It can also assist pathologists’ decisions by determining the most relevant

image regions the pathologist should focus on.

5.7.7 Multiple images per patient

Since a single TMA spot might not be representative of a patient’s disease status,

in the following experiments, multiple images per patient are used during evalu-

ation. The different options to combine the information of multiple images per

patient during inference explained in section 5.6.5 Multiple images are compared

on SurvMulti and SurvHetero.

SurvHetero First, eCaReNet is trained on Surv1 and evaluated on SurvHetero.

Since only the institute of pathology has access to the annotations for that dataset,
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SurvHetero can be used only for evaluation, not for training. All patient survival

curves are converted into scalar risk scores, and the results are sent to the institute

of pathology for evaluation. Instead of calculating metrics over time, the AUC at

5 years after RPE is evaluated, which is why no other metrics are available here.

SurvHetero contains 828 patients and up to 6 images per patient. A risk score

and a risk group are calculated per image, which is why, for one patient, multiple

risk scores and groups are available that need to be combined. For most patients,

the minimum and maximum predicted risk groups in all their images are adjacent.

However, for some patients, one of their TMA spots is predicted as risk group 1

(no cancer) while another is predicted as the highest risk group 8. This shows

the heterogeneity of the images in SurvHetero. For the following evaluations, all

available images per patient (4,181 images in total) are used to predict relapse-

free survival. Calculating the mean or the pessimistic vote of the survival curves

is compared to inputting all image patches at once to eCaReNet. It has to be

noted that eCaReNet is again trained on a single patient image from Surv1 and

evaluated on multiple images. All results are summarized in Figure 5.7.7.

When using the mean of all predictions and the most pessimistic prediction per

patient, the AUCs are equal at 0.78. Concatenating all images leads to a similar

AUC of 0.77. It is concluded that the method of combining multiple predictions

does not influence the results much since the differences between the results are

within the model variance observed in the previous experiments (compare Ta-

ble 5.7.2). Since the AUC calculates the discriminative power, it is reasonable

that using the pessimistic vote for all patients or the mean for all patients does

not make a great difference in the predicted patient order. The discrimination

is similar to the results on Surv1, which confirms eCaReNet’s generalizability to

unseen data.

The pathologist annotated every single image in SurvHetero, and the annota-

tions were combined in different ways. Thus, the pathologist and eCaReNet use

the same information, as opposed to Surv1, for which the pathologist had access to

the whole prostate tissue. When assigning the maximum Gleason score of all im-

ages per patient, the pathologist reaches an AUC of 0.76 and thus is outperformed

by eCaReNet. If the more differentiated IQ Gleason score is used and summed

up over all images, the pathologist and eCaReNet (using the pessimistic or mean

voting) are on par with an AUC of 0.78. The pathologist only scores higher than

eCaReNet when he assigns the maximum IQ Gleason score over all images to a

patient, reaching an AUC of 0.79.

Different aspects could contribute to keeping the AUC below 0.8 for both
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Figure 5.7.7: AUC for 5-year relapse-free survival of eCaReNet (concatenated,
pessimistic, and mean voting) on SurvHetero, compared to the pathologist’s an-
notation (max GS, sum IQ, and max IQ). GS: Gleason score, IQ: integrated quan-
titative Gleason score.

eCaReNet and the pathologist. One limitation is that the tissue alone does not

include all information necessary to predict relapse times since also the patient’s

lifestyle or other clinical features are relevant.

SurvMulti For most patients in the internal datasets, two images are available

with the “regular” data acquisition protocol (tissue 2.5 µm thick, normal staining

time, Leica Aperio scanner), one image in Surv1 and one in Surv2, showing tissue

from different regions in the prostate. These are used to evaluate if a second image

per patient can improve predictive performance. eCaReNet is trained as before

on the complete Surv1, so the images from Surv2 are only used during inference.

For evaluation, both datasets are reduced to only comprise patients with images

in each of both datasets. The resulting datasets are therefore called Surv1∩Surv2

and Surv2∩Surv1. While Surv1∩Surv2 contains images from Surv1 but is reduced

to those patients who also have an image in Surv2, Surv2∩Surv1 contains images

from Surv2 but is reduced to those patients who also have an image in Surv1.

Both datasets comprise 1,878 images each in the validation set and 1,895 images

each in the test set. To allow for a fair comparison of prediction performance, as a

baseline eCaReNet needs to be evaluated on Surv1∩Surv2 since that is only a subset

of Surv1. Thus, eCaReNet is first evaluated on both these subsets Surv1∩Surv2 and

Surv2∩Surv1 separately and then on a combination, using two images (one from each

subset) for per-patient predictions. Again, using all patches of both images at once

(concatenating the images) is compared to mean, pessimistic and optimistic voting

when predicting both images separately. All results are shown in Figure 5.7.8 as a

boxplot over five runs, and with the mean as a black line. For quantitative results

consider Table A.2.1.
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(a) Results on the validation set patients.
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(b) Results on the test set patients.

Figure 5.7.8: Model performances when using two images per patient for eval-
uation. The boxplots show the results over five runs with the mean value and
different initialization seeds on (a) the validation and (b) the test set patients.
Surv1∩Surv2 contains images from Surv1 but is reduced to patients who also have
an image in Surv2.
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The performances on the Surv1∩Surv2 test set are similar to the results on Surv1.

The AUC on the test set is 0.77, the C-index 0.73, and the Brier score 0.114. The

validation set results are also similar to before, with an AUC of 0.77, a C-index

of 0.75, and a Brier score of 0.104. On both test and validation sets, the model

shows good calibration.

The performance on Surv2∩Surv1 decreases compared to Surv1∩Surv2. The AUC

and C-index on the test set reduce to 0.72 and 0.70, respectively, and the Brier

score increases to 0.135. The same holds for the validation set (AUC 0.74, C-index

0.72, Brier 0.134). It needs to be investigated whether the performance degrada-

tion is due to differences in staining or to the images stemming from a different

location in the prostate, thus including less meaningful information.

When combining the images of both datasets for evaluation, the results im-

prove slightly. On the validation set, the performance in all metrics is best when

predicting both images separately and using the mean across both survival curves

per patient. The AUC reaches 0.79, the C-index reaches 0.76, and the Brier score

reaches 0.109. When concatenating both images, the discrimination is equal to

using the mean, but the Brier score increases to 0.115. The chi-square test fails

for both variants. It only passes in the case of optimistic voting. In that case,

the AUC only reaches 0.77, which is equal to the results on Surv1∩Surv2. The

pessimistic vote reaches the lowest performance on the validation set (AUC 0.77,

C-index 0.74, Brier 0.133).

The performance on the test set is also slightly higher than on Surv1∩Surv2

when combining both images. Again, using the mean across both predictions

yields the best results while failing the d-calibration test (AUC 0.77, C-index 0.74,

Brier 0.115). When concatenating both images for a prediction, the discrimination

performance on the test set is again equal to the performance when using the mean

of both predicted survival curves. However, the Brier score increases to 0.121, and

the d-calibration test passes in this case. Using a pessimistic vote again scores

lower than the best approaches (AUC 0.76, C-index 0.73, Brier 0.133).

The best results when combining two images are summarized in Table 5.7.3 and

compared to a pathologist. The pathologist did not annotate two different images

but each patient’s whole prostate. Therefore, the pathologist’s scores do not differ

between Surv1∩Surv2 and Surv2∩Surv1. Regarding AUC, the discrimination perfor-

mance of the pathologist’s ISUP annotation is above eCaReNet. The ISUP score

achieves an AUC of 0.80 on the validation and 0.82 on the test set patients. On

the validation set, the pathologist achieves a C-index of 0.75. Hence, eCaReNet

outperforms the pathologist. The C-index achieved with the ISUP score on the
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Table 5.7.3: Model performances when using two images per patient, one from
Surv1, one from Surv2. Values are the mean of five training runs with the standard
deviation in parentheses. For d-calibration (D-cal.), only failure (f) or pass (p) is
indicated. The best results are marked in bold. An extended version including
pessimistic and optimistic voting is included in Table A.2.1.

Validation set AUC ↑ C-index ↑ Brier ↓ D-cal.

ISUP 0.80 0.75 -
Surv1∩Surv2 0.77 (0.0039) 0.75 (0.0013) 0.104 (0.0005) p
Surv2∩Surv1 0.74 (0.0069) 0.72 (0.0055) 0.134 (0.0287) f
mean 0.79 (0.0049) 0.76 (0.0067) 0.109 (0.0064) f
concatenated 0.79 (0.0066) 0.76 (0.0056) 0.115 (0.0147) f

Test set

ISUP 0.82 0.76 -
Surv1∩Surv2 0.76 (0.0050) 0.73 (0.0038) 0.114 (0.0006) p
Surv2∩Surv1 0.72 (0.0077) 0.70 (0.0029) 0.135 (0.0205) p
mean 0.77 (0.0019) 0.74 (0.0030) 0.115 (0.0032) f
concatenated 0.77 (0.0036) 0.74 (0.0049) 0.121 (0.0102) p

test set is 0.75, thus, again above eCaReNet’s performance.

The presented results show that eCaReNet’s performance on Surv2∩Surv1 de-

creases, which can have multiple reasons. It is worthwhile exploring whether

Surv2 includes less informative images than Surv1 or has a dataset bias to which

eCaReNet cannot generalize. Since combining both images increases the perfor-

mance over using only a single image from either dataset, it is concluded that

Surv2 does include some useful additional information. In order to further inves-

tigate whether Surv2 contains less informative images or if a dataset bias hinders

the generalizability, it is evaluated next how a model performs when being trained

on Surv2.

Effect of using a different tissue core

It is evaluated whether the performance decreases on Surv2 because its images

are less informative of the disease status or if the performance decreases because

eCaReNet fails to generalize. Therefore, eCaReNet is trained on the training

partition of Surv2 and evaluated on the respective validation and test sets. If the

performance reaches a similar performance to Surv1, it hints at the model being

sensitive to a dataset bias. If the performance remains below Surv1, the tissue in

Surv2 might not be as informative as the tissue in Surv1.

The results when training and evaluating eCaReNet on Surv2 are summarized

in Table 5.7.4. The AUC on the validation set reaches 0.73. That is below the
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performance when training and evaluating on Surv1. The C-index (0.71) and the

Brier score (0.125) are also below the previously reported performances. On the

test set, the model shows low generalizability since the AUC decreases to 0.69,

the C-index to 0.66, and the Brier score increases to 0.142. These results indicate

that the images in Surv2 include information to discriminate patients well, but

the images contain less meaningful information for survival prediction than the

images in Surv1.

Table 5.7.4: Performances of eCaReNet trained on Surv2. Values are the mean
of five training runs with the standard deviation in parentheses. For d-calibration
(D-cal.), the chi-square tests pass (p).

Validation set AUC ↑ C-index ↑ Brier ↓ D-cal.

Surv2 0.73 (0.0132) 0.71 (0.0086) 0.125 (0.0018) p

Test set

Surv2 0.69 (0.0147) 0.66 (0.0080) 0.142 (0.0024) p

Conclusion The experiments show that using multiple images per patient in-

creases predictive performance. Thus, a single TMA spot cannot include all rel-

evant information for survival prediction. In particular, the information included

in a single TMA spot per patient varies with the location where the tissue is ex-

tracted. This was indicated by the performance difference between Surv1∩Surv2 and

Surv2∩Surv1. The best way to combine multiple images is to make one prediction

per image and average the predicted survival curves.

On SurvHetero, it could be seen that if more than two images per patient

are available and the pathologist and eCaReNet use the same information, both

perform similarly. However, there still is a gap to perfect discrimination. It is

concluded that the prostate tissue alone does not include all relevant information

that influences relapse times. Thus, the influence of including additional patient

information along with a TMA spot image in a multimodal approach is evaluated

next.

5.7.8 Multimodal analysis

All the above experiments are conducted using only TMA spot images as input.

However, a TMA spot only covers a part of the disease picture. Thus, it is evalu-

ated whether adding clinical patient features increases the model performance by

providing a broader overview of the patient’s disease status.
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Setup As additional patient-specific features, age, PSA value, tumor volume,

and diameter are used. Their influence on the prediction performance is analyzed

individually and in combination. The age is available for every patient, but the

PSA value, tumor volume, and diameter are unknown for some patients in Surv1.

Therefore, the dataset reduces to patients for whom the values for all these four

features are known, thus to Surv1AddInfo (see Table 3.1.8). Due to the removal of

patients, only two patients with a censoring time after 7 years and no patients with

a relapse later than 7 years remain in the training set of Surv1AddInfo. Therefore

the previously chosen time horizon of 7 years is no longer reasonable and, for these

experiments, the time horizon is adjusted to 5 years (60 months). That makes 20

intervals of 3 months in length, thus, 20 output nodes.

As input to eCaReNet, the additional values need to be normalized to the range

[0, 1]. Therefore, the age is divided by 100, PSA by 1,000, diameter by 90, and vol-

ume by 110. These denominators are the maximum values in the dataset, rounded

up. Again, the model is trained with an early stopping criterion on the validation

loss. Furthermore, for a fair comparison, the model trained only on images needs

to be re-trained on the images included in this sub-dataset Surv1AddInfo so that

all differences in performance can be attributed to the additional features, not to

the included patients and dataset size.

Results The results in Figure 5.7.9 show the values per metric over five runs

with different seeds on the validation and test sets. All results are also summarized

in Table A.2.2, with mean values and standard deviations.

The model trained only on the Surv1AddInfo images achieves a mean validation

set AUC and a C-index of 0.77. On the test set, the AUC is 0.75, and the C-index

is 0.74. The Brier score is 0.105 on the validation and 0.112 on the test set. These

results are slightly below the previously reported results on the complete Surv1.

Adding age as a feature slightly lowers the model’s predictive performance in

all metrics on the Surv1AddInfo validation set (AUC 0.76, C-index 0.76, Brier

0.107). On the test set, the discrimination remains equal to using the image only

when adding the age, and the Brier score increases slightly (AUC 0.75, C-index

0.74, Brier 0.113). In other words, age does not seem to impact model performance

significantly. That corresponds to the KM estimate in Figure 3.1.7, which already

indicated a low correlation between age and survival time.

Adding only the PSA value increases the model performance in all valida-

tion (AUC 0.78, C-index 0.78, Brier 0.103) and test set metrics (AUC 0.76,

C-index 0.75, Brier 0.111). That confirms the expectations based on the KM
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curves shown in Figure 3.1.7 and reinforces the intuitive idea that the prostate

tissue alone cannot cover all relevant information for relapse prediction. It also

stresses the need for a multimodal analysis of patients. Adding only the tumor

volume or diameter as an additional feature also increases performance, as can be

seen in Figure 5.7.9. That is reasonable since the TMA spot image only shows

whether there is cancer in the tissue, but the ratio of benign and malignant tissue

in that spot may not be representative of the whole prostate. Thus, including in-

formation on how much cancer is in the prostate improves predictive performance.

When only inputting a single patient feature in addition to the image to

eCaReNet, adding the tumor volume results in the best performance on the vali-

dation set (AUC 0.81, C-index 0.80, Brier 0.099), adding only the tumor diameter

leads to the best results on the test set (AUC 0.79, C-index 0.77, Brier 0.108).

When inputting multiple features along with the histopathology image, the

best combination is using the PSA value, the tumor volume, and the tumor di-

ameter. The discrimination equals adding only volume in the validation set and

only diameter in the test set. However, the Brier score is slightly lower, and the

standard deviation decreases.

The results for using the image only and the best feature combination are

contrasted quantitatively in Table 5.7.5. The best model reaches a mean AUC of

0.81 on the validation and 0.79 on the test set. The best C-indices are 0.80 and

0.77, and the Brier scores are 0.097 and 0.106 for the validation and test sets,

respectively. Adding the age in addition to the PSA value, tumor volume, and

diameter does not affect the average model performance but increases the standard

deviation. As can be seen, the model that includes the PSA value, tumor volume,

and tumor diameter as additional features outperforms the pathologist’s ISUP

annotation per patient. The pathologist achieves AUCs of 0.79 and 0.77 and

C-indices of 0.77 and 0.76 on the validation and test sets, respectively.

Conclusion Adding additional patient information increases eCaReNet’s pre-

dictive performance significantly. That was shown already when only using a

single additional patient feature. When jointly adding the PSA value, tumor vol-

ume, and tumor diameter, eCaReNet outperforms the pathologist on both the

validation and the test set. That emphasizes that a TMA spot can only give a

first impression of the disease status. In particular, information about how much

of the prostate tissue is cancerous supports an accurate prediction. It is expected

that predictive performance could be increased further if more patient features

were available and included.
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Figure 5.7.9: Model performance when inputting patient features in addition to
the TMA spot image. The boxplots show the results over five runs with different
initialization seeds. A black line indicates the mean value. The more patient
features are added, the better the results. Only age is decreasing performance. a:
age, p: PSA value, d: tumor diameter, v: tumor volume.
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Table 5.7.5: Model performances when using only an image or adding PSA value,
tumor diameter (dm), and tumor volume (vol) to eCaReNet. Values are the mean
of five training runs with the standard deviation in parentheses. For d-calibration
(D-cal.), the chi-square tests pass (p). The best results are marked in bold.

Validation set AUC ↑ C-index ↑ Brier ↓ D-cal.

ISUP 0.79 0.77 -
image only 0.77 (0.0069) 0.77 (0.0026) 0.105 (0.0015) p
image+psa+dm+vol 0.81 (0.0040) 0.80 (0.0025) 0.097 (0.0008) p

Test set

ISUP 0.77 0.76 -
image only 0.75 (0.0051) 0.74 (0.0028) 0.112 (0.0012) p
image+psa+dm+vol 0.79 (0.0033) 0.77 (0.0038) 0.106 (0.0007) p

5.7.9 Evaluation on different datasets

Next, eCaReNet is evaluated on different datasets to evaluate the generalizability

further. For these experiments, a single image is used as input, no additional

patient information is included, and eCaReNet is trained on the complete Surv1.

The following evaluation results are again averaged over five runs with different

initialization seeds on eCaReNet, and a summary of all metrics for all Survival

datasets is provided in Table 5.7.6. The following paragraphs give detailed analyses

of the results.

Surv2 Since the results on Surv2∩Surv1 were already described in the previous

section 5.7.7 Multiple images per patient, they are not elaborated here again but

listed in Table 5.7.6 for completeness.

SurvDiff The influence of thin, thick, and differently stained tissue is evaluated

next. The datasets SurvThin, SurvThick, and SurvLongStain comprise a subset

of the same tissue cores as Surv2. The TMA spots differ slightly since the spots

are sliced subsequently from the tissue cores. Since it was shown in section 5.7.8

Multimodal analysis that eCaReNet’s performance drops on the second core per

patient, the following results are compared to the performance on the regularly

sliced, stained, and scanned dataset Surv2. Thus, changes in performance can

more clearly be related to the slicing or staining instead of the tissue core selection.

Since SurvThin, SurvThick, and SurvLongStain only encompass a subset of

all patients, only those patients with images in Surv2 and in all three different-

acquisition datasets (SurvDiff: SurvThin, SurvThick, and SurvLongStain) are

used for the comparisons. Those datasets are therefore named Surv2∩SurvDiff,
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Table 5.7.6: Results of eCaReNet on different datasets. eCaReNet is trained on
Surv1. Values are the mean of five training runs with the standard deviation in
parentheses. For d-calibration (D), only failure (f) or pass (p) is indicated. T
indicates the trend of whether the performance on the dataset remains equal or
decreases.

Validation set AUC ↑ C-index ↑ Brier ↓ D T

Surv1 0.78 (0.0041) 0.75 (0.0016) 0.107 (0.0004) p
Surv1∩Surv2 0.77 (0.0039) 0.75 (0.0013) 0.104 (0.0005) p
Surv2∩Surv1 0.74 (0.0069) 0.72 (0.0055) 0.134 (0.0287) f ↘
Surv2∩SurvDiff 0.77 (0.0139) 0.74 (0.0085) 0.133 (0.0271) p
SurvLongStain∩SurvDiff 0.76 (0.0108) 0.71 (0.0053) 0.134 (0.0245) p →
SurvThick∩SurvDiff 0.70 (0.0063) 0.66 (0.0045) 0.130 (0.0095) p ↘
SurvThin∩SurvDiff 0.50 (0.0221) 0.53 (0.0185) 0.157 (0.0244) p ↓
Surv1∩SurvScan 0.78 (0.0034) 0.75 (0.0017) 0.108 (0.0003) p
SurvScan∩Surv1 0.53 (0.0137) 0.54 (0.0103) 0.146 (0.0042) f ↓
Test set

Surv1 0.77 (0.0048) 0.73 (0.0048) 0.113 (0.0008) p
Surv1∩Surv2 0.76 (0.0050) 0.73 (0.0038) 0.114 (0.0006) p
Surv2∩Surv1 0.72 (0.0077) 0.70 (0.0029) 0.135 (0.0205) p ↘
Surv2∩SurvDiff 0.71 (0.0116) 0.68 (0.0105) 0.140 (0.0163) p
SurvLongStain∩SurvDiff 0.65 (0.0120) 0.65 (0.0109) 0.146 (0.0176) p ↘
SurvThick∩SurvDiff 0.67 (0.0096) 0.66 (0.0097) 0.134 (0.0020) p ↘
SurvThin∩SurvDiff 0.61 (0.0315) 0.61 (0.0210) 0.144 (0.0076) p ↓
Surv1∩SurvScan 0.78 (0.0048) 0.74 (0.0042) 0.104 (0.0006) p
SurvScan∩Surv1 0.53 (0.0121) 0.53 (0.0087) 0.139 (0.0038) f ↓
SurvPCBN 0.53 (0.0054) 0.56 (0.0138) 0.104 (0.0007) p ↓

SurvThin∩SurvDiff, SurvThick∩SurvDiff, and SurvLongStain∩SurvDiff, and comprise 302

patients per test set.

On the Surv2∩SurvDiff test set, eCaReNet reaches an AUC of 0.71, a C-index

of 0.68, and a Brier score of 0.140. These performances are below the previously

reported results on Surv2∩Surv1. On the validation set, however, the AUC increases

to 0.77, the C-index to 0.74, and the Brier score remains similar (0.133). That

stresses how sensitive all scores are to the dataset composition and size.

On the SurvLongStain∩SurvDiff validation set, eCaReNet achieves an AUC of

0.76, therefore similar to Surv2∩SurvDiff. However, the AUC decreases to 0.65 on

the test set. The C-index also decreases, to 0.71 on the validation and 0.65 on the

test set. The Brier score increases slightly to 0.134 on the validation and 0.146 on

the test set. The d-calibration test passes for the validation and test sets. These

results indicate that the longer staining time degrades model performance slightly.
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The performance on SurvThick∩SurvDiff decreases in comparison to Surv2∩SurvDiff.

The AUC on the validation set is 0.70, the C-index decreases to 0.66, and the

Brier score decreases to 0.130. On the test set, discrimination is lower than on

Surv2∩SurvDiff, while the Brier score remains similar (AUC 0.67, C-index 0.66, Brier

0.134). On validation and test sets, the results are well-calibrated. It is concluded

that the tissue thickness has a slightly negative influence on eCaReNet’s perfor-

mance.

The results on SurvThin∩SurvDiff are more evident since a more significant de-

crease in AUC in both the validation and the test set is visible. The AUC reaches

0.61 on the test set and 0.50 on the validation set, which is equally good as ran-

domly ordering the patients and below the test set performance. The C-index

decreases to 0.61 on the test and 0.53 on the validation set. The Brier score in-

creases to 0.157 on the validation and 0.144 on the test set. These results indicate

that the image coloring or contrast influences the results much since the images

of tissue with 1 µm thickness are pale compared to Surv1. Moreover, the stan-

dard deviation of the discrimination is higher on this dataset, indicating unstable

performance.

SurvScan To compare the performances on SurvScan and Surv1, subsets with

overlapping patients are created (Surv1∩SurvScan and SurvScan∩Surv1). These sub-

sets each comprise 1,737 patients in the test set (1,895 in the validation set) and

consist of the same TMA spots in both sets, which are only scanned with different

scanners. Every change in performance can therefore be related to a bias created

by the scanner.

The results on the subset Surv1∩SurvScan are still well calibrated according to

the d-calibration chi-square test. The AUC is 0.78 on the validation and the test

set. The C-index is 0.75 on the validation and 0.74 on the test set, hence also

similar to the above-reported performance on the complete Surv1 validation and

test sets. The Brier score is 0.108 on the validation and 0.104 on the test set.

The performance on SurvScan∩Surv1 is much lower than on Surv1∩SurvScan for

the validation and test sets. The AUC drops to 0.53 on the validation and the

test set, and the C-index drops to 0.54 on the validation and 0.53 on the test set.

The Brier score increases to 0.146 on the validation and 0.139 on the test set.

On this dataset, the d-calibration test fails, indicating a non-calibrated model.

Since SurvScan∩Surv1 comprises the exact same TMA spots as Surv1∩SurvScan, those

results reveal the model’s sensitivity to the dataset source and hint at a significant

influence of color bias on the performance.
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SurvPCBN The performance on the external dataset SurvPCBN is evaluated

next. Multiple images per patient are available, and the predictions per image are

averaged to obtain a survival curve per patient since that yielded the best results

before. The Brier score indicates a good performance at 0.104. Furthermore, the

d-calibration chi-square test shows good calibration. However, the model only

reaches an AUC of 0.53 on SurvPCBN and a C-index of 0.56. The drop indicates

an insufficient discrimination power, which might result from the differences in

staining and could also be due to differences in patient survival time distributions.

Conclusion It was shown that the model is sensitive to data acquisition. When

tissue is cut thinner or scanned differently, eCaReNet’s performance decreases

significantly, while longer staining time and thicker tissue decrease model perfor-

mance only slightly. The model also fails to achieve good performance on the

external SurvPCBN. It can be concluded that eCaReNet is not robust to dataset

biases. In the presented cases, differences are particularly visible as color biases.

5.8 Discussion

This chapter presented eCaReNet as a survival prediction model that reaches dis-

criminative performance on par with a pathologist, using a single TMA spot image

as input. Compared to state-of-the-art models, eCaReNet provides more clinically

reasonable and well-calibrated survival curves. Further, the results allow individ-

ualized predictions since patient survival curves cover 7 years, and up to eight

distinct risk groups are distinguishable. This detailed stratification is an advan-

tage over many proposed methods in the literature, which often only distinguish

two to three groups (Nam et al., 2022; Lombardo et al., 2021; Pinckaers et al.,

2022).

By including an MIL layer, explainability is included in eCaReNet. A quan-

titative analysis showed that malignant image patches receive higher attention

weights than benign patches. Thus, eCaReNet is expected to support pathol-

ogists by indicating the most relevant, probably malignant, image regions that

should be focused on when analyzing the tissue.

It was further evaluated how model performance can be improved to reach

a higher discrimination power. Including a second patient image from Surv2 in

addition to the image from Surv1 during evaluation increases the model perfor-

mance. That shows that a single TMA spot may not represent the patient’s whole

prostate. Thus, it is suggested to include more than a single TMA spot for clin-
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ical decision support. Also, it should be investigated further whether training

eCaReNet on multiple images per patient improves model performance.

Providing the model with additional patient information increases the perfor-

mance, reaching higher discrimination than with the ISUP annotations. That

confirms that a single image spot cannot encompass all information about a pa-

tient’s disease status but that more information is needed for a thorough picture of

the patient. In particular, how much of the prostate tissue is cancerous, included

in tumor volume and diameter, is relevant to increase performance. If more pa-

tient information was available, for example, about the family cancer history, a

further increase in predictive performance is expected.

For the Survival dataset, the image quality was controlled manually to re-

move images with artifacts. It needs to be investigated if automated detection

of artifacts like blurry spots, tissue folds, or missing tissue can improve overall

performance further. Shakhawat et al. (2020), for example, propose a quality

estimation that first detects artifacts and then classifies these into artifacts that

could be removed by rescanning (e.g., out-of-focus) and artifacts that are due to

slide preparation (e.g., tissue folds). However, some differences in the datasets

are not due to artifacts but result from differences in data acquisition protocols.

Extending the evaluation to these datasets that differ in data acquisition reveals

the model’s limitations. eCaReNet is sensitive to the scanner used for digitiza-

tion, and the prediction performance also decreases for thin tissue. The datasets

on which eCaReNet achieves the lowest performances are SurvPCBN and SurvS-

can. Since, compared to the training dataset, these show a great difference in

color, it is concluded that color bias is the most significant source of error. The

low performance on SurvThin appears to indicate a sensitivity to decreased color

intensity and contrast. Since the color is a systematic bias introduced by the

data acquisition and staining, it is proposed to adjust the color of images that

appear different to the training set in chapter 6 Robustness. Since a dataset with

a consistent dataset acquisition protocol was used for training (Surv1), it would be

interesting to evaluate the performance when training on multiple datasets with

differing biases.

Furthermore, the distribution of relapse times in SurvPCBN is different from

the training dataset of Surv1 since the external dataset contains more patients

with late relapse times. Possibly, eCaReNet cannot predict well on patients who

remain relapse-free over a long time. That stresses the need for further evaluations

of different biases to ensure robustness when applying a survival prediction model

in a clinic.
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Chapter 6

Robustness

It was shown in section 5.7.9 Evaluation on different datasets that eCaReNet’s pre-

dictive performance is sensitive to dataset biases. Thus, research question R4 is

addressed here (“Is it possible to capture the model’s limitations in an uncertainty

measure and make the model robust toward dataset bias?”) by introducing an un-

certainty measure and a color transfer method to increase model robustness. The

chapter starts with a theoretical introduction before presenting the experiment

results.

6.1 Motivation

In order to apply a trained neural network to new data, which may come from

a different source than the training data, it is necessary to estimate whether the

prediction is reliable. Especially in pathology, the input images might vary, for

example, in color, intensity, resolution, and sharpness due to differences in data

acquisition, as described in section 2.1.3 Dataset acquisition. Since images ob-

tained during clinical routine are likely to have a greater variance in appearance

than a dataset used for training a model, building a model that is robust to most

biases and identifies uncertain predictions is of uttermost importance. In this the-

sis, the focus is on color differences since this is the most prevalent difference in

the Survival dataset’s images. Recognizing corrupt or adversarial images is also

important, but not covered in this thesis (for adversarial attacks, see Apostolidis

and Papakostas, 2021).

An option to distinguish samples coming from the same distribution as the

training data from samples coming from a different distribution than the train-

ing data (due to domain bias), is OOD detection. Usually, OOD samples are

detected in a latent space representation and neglected during inference. Besides

only deciding that an image is OOD and denying a prediction, in this thesis, it

is investigated whether the OOD samples can be shifted closer to the training

distribution through a color adaptation.
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This thesis proposes a novel workflow, shown in Figure 6.1.1, to decide how

to proceed with newly presented images, which may differ from the training data

in coloring. In the first step during inference, it is decided whether a new image

is OOD or ID based on its latent space representation (for details, see section

6.2 Out-of-distribution detection). If an image is classified as ID, a survival curve

is predicted and made available to the pathologist. If the sample is OOD, the

image color is adjusted to match that of the training set with a color transfer

method (for details, see section 6.3 Color transfer). Afterward, the OOD score of

the transformed image is reassessed. If the image is still OOD, it will be deferred

to a pathologist without providing a survival prediction. In contrast, survival

predictions on ID images can be passed on to the pathologist for decision support.

In the following, the methods for OOD detection and color adaptation that are

used and developed in this thesis are motivated and introduced. Differences to

current state-of-the-art methods are stressed in this context.

latent space

OOD
decision

latent space

OOD
decision

predict
survival

O
O

D

OOD

color transfer

ID

ID

defer

Figure 6.1.1: Proposed workflow to combine OOD detection and color transfer
during inference: First, an image is transferred into the latent space to decide
whether it is OOD or ID. If it is OOD, the color bias of the training set is trans-
ferred to the new image. The transformed image is again tested for OOD-ness.
ID images are used for survival prediction, while OOD images are deferred to a
pathologist. OOD: out-of-distribution, ID: in-distribution.

6.2 Out-of-distribution detection

Lee et al. (2018) introduce a method for OOD detection using the Mahalanobis

distance, which is now commonly applied. First, each sample from the training
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dataset is transformed into the latent space, i.e., the output after a predefined layer

in the neural network. Per annotated class, these latent space representations are

used to fit a multivariate class-conditional Gaussian distribution. Therefore, each

class is represented by a mean in the latent space, with the covariance tied among

all classes. Instead of using a single latent space, the authors propose using the

average across multiple neural network layers (the number of layers depends on

the network architecture). In order to estimate whether an unseen test image

is close to the training distribution, it is also transformed into its latent space

representation first. Then, the minimum Mahalanobis distance M from the sample

to the distribution of each class (c) is calculated to serve as an OOD score as

M(x) = min
c

(f(x) − µ̂c)
T Σ̂−1(f(x) − µ̂c), (6.2.1)

with the latent representation f of test sample input features x. The class-mean

µ̂c, and covariance matrix Σ̂ are defined as

µ̂c =
1

Nc

∑
i:yi=c

f(xi), (6.2.2)

Σ̂ =
1

N

∑
c

∑
i:yi=c

(f(xi) − µ̂c)(f(xi) − µ̂c)
T, (6.2.3)

for N total training samples and Nc samples of class c, each sample with class

annotations yi and features xi (Lee et al., 2018). This Mahalanobis distance M

is chosen as the final score to estimate the prediction confidence or “OOD-ness”:

the smaller the distance, the higher the probability that the sample is ID. A

threshold to binarize the samples into ID and OOD according to their distances

is defined such that 95 % of the training samples are counted as ID (true positive

rate of 95 %). An AUROC measures the performance of this method for ID/OOD

classification if clearly-defined ID and OOD test sets are available.

Ren et al. (2021) also use a Mahalanobis distance but adapt it to being a

relative Mahalanobis distance. They fit a distribution per class for the per-class

distance as Lee et al. (2018) and additionally fit a single distribution for the whole

training set for the overall distance with

µ =
1

N

N∑
i=1

f(xi), (6.2.4)

Σ =
1

N

N∑
i=1

(f(xi) − µ)(f(xi) − µ)T (6.2.5)
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(Ren et al., 2021). The relative Mahalanobis distance is the smallest per-class

distance relative to the distance to the overall distribution.

To stress the difference between ID and OOD samples, Lee et al. (2018) add

a small perturbation ϵ to each input during training, with the goal of driving ID

and OOD samples further apart in the latent space and improving discriminative

performance. Therefore, Lee et al. (2018) need ID and OOD samples during model

training.

Sun et al. (2022) propose an approach with a similar underlying idea as Lee

et al. (2018). They also suggest estimating the uncertainty in the latent space rep-

resentation with a distance measure. However, they state that the Mahalanobis

distance might not always be applicable since it expects the latent space to be

Gaussian-distributed, which may not hold true for all datasets. Instead of fit-

ting distributions to the latent space representations of the training dataset, they

propose to use the distance from a new sample to its k-th nearest neighbor in

the training dataset. Instead of calculating the distances to all training samples,

which would be computationally expensive, they only use a subset. Further, they

use a Euclidean distance instead of the Mahalanobis distance and normalize the

feature space. Again, a threshold is defined to decide which sample is ID or OOD.

Adaptations for this thesis Since no distinct classes are available for survival

analysis, the Mahalanobis approach needs to be adapted. In this thesis, the la-

tent space representation of the training data is approximated with only a single

multivariate Gaussian, and possible classes are neglected. Hence eq. (6.2.4) and

eq. (6.2.5) are used. In their setup, Lee et al. (2018) define images as OOD when

these come from classes that are not part of the training set. Instead, for survival

prediction, detecting OOD samples that show dataset biases for which the model

cannot output confident predictions is necessary. It is difficult to obtain such a

dataset that can be clearly labeled as OOD since a dataset bias may or may not

lead to model performance degradation. Therefore, the input perturbation part

in Lee et al. (2018), which needs OOD samples during training, is disregarded in

this thesis.

Further, the k-th nearest neighbor approach of Sun et al. (2022) is combined

with the Mahalanobis distance from Lee et al. (2018). That means a new sample

is first transformed into its latent space representation. The distances from this

representation to all latent space representations of a training data subset are

calculated with the Mahalanobis distance. The distance to a sample’s k-th nearest

neighbor serves as its OOD score. If a sample’s distance exceeds a threshold,
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meaning that the k-th neighbor is too far away, that sample is classified as OOD

and a prediction on the image is expected to be unreliable. For this thesis, k = 0,

thus, the distance to the closest neighbor is chosen as a reference since this led to

the best results. As a threshold, a 95 % true positive rate on the training data is

chosen.

Evaluation of OOD detection The quality of OOD detection will be esti-

mated with Surv2, SurvDiff, SurvScan, as well as the external SurvPCBN (all

introduced in chapter 3 Datasets, and denoted from now on as SurvOODCandi-

dates). These datasets do not represent semantic shifts (same tissue type, same

disease) but non-semantic shifts due to data acquisition differences. Defining these

images as OOD is not straightforward since the model could be robust toward the

changes. Therefore, calculating the AUC of the “classification” into ID and OOD

is misleading. Instead, the model’s predictive performance on all SurvOODCan-

didates’ samples will be evaluated and compared to the performance on only ID

samples. It is expected that images with higher OOD scores are more often incor-

rectly predicted than images with lower OOD scores.

6.3 Color transfer

Color transfer methods transfer test images into the color space of the training

images. The goal is to improve a model’s prediction by imitating the training

dataset bias during inference.

One of the simplest color transfer approaches is histogram matching. For that

method, at least one training and one test set image need to be available. In

histogram matching, the histogram of a source image is adjusted to the histogram

of a target image. An image’s histogram counts the number of pixels per color

value, thus neglecting the spatial distribution. For color transfer during model in-

ference, a test image’s color space is manipulated such that after the color transfer,

its histogram matches that of a randomly chosen reference training image. That

method is named RandHistMatch in the remainder of this thesis.

For histogram matching, the cumulative distribution functions of the reference

and test image are matched. In theory, continuous pixel intensities r and t, for

the reference and test image, can be seen as random variables, with the histogram

as the probability density function. For matching, the cumulative histograms

G for both images are computed. A transformation function between the test

image’s histogram and the reference histogram needs to be calculated. To this end,
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both histogram cumulative distribution functions are equated, using the random

variable s:

reference : G(r) = (L− 1)

∫ r

0

pr(w)dw = s, (6.3.1)

target : G(ttransf ) = (L− 1)

∫ t

0

pt(w)dw = s, (6.3.2)

match target : G(ttransf )
!

= G(r), (6.3.3)

inverse mapping : ttransf = G−1[G(r)], (6.3.4)

(Gonzalez and Woods, 2002). Here, pr is the probability density function for r,

and L is the number of different intensity values, thus, 256 for an 8-bit image. In

the case of k = L− 1 discrete pixel values, the equations change to

G(tk) = (L− 1)
k∑

j=0

pt(tj) = sk (6.3.5)

=
L− 1

MN

k∑
j=0

nj,

ttransf = G−1(sk) (6.3.6)

for an image with M ×N pixels, and nj pixels with intensity tj. The computation

of G−1 is not necessary in the discrete case, but all values for G can be calculated

directly and stored in a lookup table. The closest match for sk in the lookup table

is used (Gonzalez and Woods, 2002).

Histogram matching adapts the intensity of the target image. However, his-

togram matching is not restricted to gray values but can be performed in any

color space. For multichannel images, like RGB, the color channels are treated

independently (van der Walt et al., 2014).

For H&E-stained images, it is relevant that equivalent structures are colored

similarly. Therefore, approaches exist that decompose the RGB channels of a

histopathology image into the hematoxylin and eosin channels and adapt those

instead of the RGB channels directly. Macenko et al. (2009) introduced such a

method. They transform an RGB image into optical density space (OD) and

adapt the H and E channels to a randomly chosen reference training image. The

optical density space is defined as

OD = − log10(I), (6.3.7)
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where I is the image as an RGB color vector, normalized to [0, 1] (Macenko et al.,

2009). The matrices of stain vectors V and saturations of each stain S are defined

as

OD = V S, (6.3.8)

S = V −1OD. (6.3.9)

The stain matrix converts between RGB and H&E colors. In their experiments,

they show that removing background which is mostly white improves results. The

stain matrix of the reference image is used as the new stain matrix for the test

image. Furthermore, the 99th percentiles of both intensity values in H and E of

the test image are matched to those of the reference image. Then, the new image

is converted back from optical density into RGB color space.

Both approaches RandHistMatch and Macenko adaptation do not require a

large known test set, which is an advantage over other methods, e.g., those using

a GAN. Further, they are applied on the test set, so no model retraining is required.

Adaptations for this thesis In this thesis, both Macenko normalization and

histogram matching are used in consecutive steps to adjust the staining color of a

test image to the training dataset. The proposed color transformation method is

named ClusterMatch from now on and illustrated in Figure 6.3.1.

Since all training images vary in color and the amount of background on the

image, adapting the color of a test image to a random training sample might

introduce artifacts and cannot yield reproducible results. Instead, an improved

method for the selection of the reference histogram and H&E stain matrices is

proposed. For both transfer methods, adapting the test image’s color to the most

similar sample in the training dataset leads to as little color transformation as

possible, therefore also limiting the chances of introducing undesired artifacts.

Since comparing the histogram and stain matrix to every training sample is costly,

it is proposed to cluster similar training samples first and represent the training

dataset with the cluster centers.

The histograms for histogram matching and stain matrices for Macenko adap-

tation of the training set are k-means clustered independently (Figure 6.3.1 (a)).

For Macenko adaptation, each training sample is reduced to its stain matrix, and

the 99th percentile of the intensity per H and E channel is calculated. The stain

matrix and 99th percentiles are concatenated to one vector and clustered with

k-means, using a Euclidean distance as the metric. For histogram matching, the
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Surv1 training set

C
ol

or
tr

an
sf

or
m

at
io

n
d

u
ri

n
g

in
fe

re
n

ce

cl
os

es
t

i) find closest Macenko cluster

ii) match Macenko

i) find closest histogram cluster

ii) match histogram

reduce images to
stain matrices and histograms

cluster with k-means
P

re
p

ar
at

io
n

on
tr

ai
n

in
g

d
at

a

cluster centers

cl
os

es
t

(a
)

(b
)

A B

C D

Figure 6.3.1: Workflow for ClusterMatch. (a) For each training image, the stain
matrix and HSV histogram are calculated (A). These are k-means clustered so the
cluster centers represent the training dataset (B). (b) During inference, the image
is first adapted to the most similar stain matrix among the cluster centers with
the Macenko transformation (C). Then, the test image histogram is adapted to
the closest histogram cluster center of the training set (D).

RGB training images are first transformed into HSV color space, as the separa-

tion of hue, saturation, and value allows for independent color tuning. Then, the

Wasserstein distance per color channel is used to find the distance between two

histograms. It measures the amount of work that is needed to transform one dis-

tribution into another. For two distributions H1 and H2 with cumulative density

functions F1 and F2, the Wasserstein distance W is defined as

W (H1, H2) =

∫ 1

0

|F1(y) − F2(y)|dy (6.3.10)

(Chan et al., 2007). The distances per color channel are weighted in this thesis to

emphasize saturation, which reflects the white background. Therefore, the overall

distance d between two images with color channels HSV is calculated as

d = W (H1, H2) + 2W (S1, S2) + W (V1, V2). (6.3.11)

Weighting the saturation twice as much as the other color channels led to the best
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results in experiments, compared to equal weighting or emphasizing hue or value.

The optimal number k of clusters needs to be identified for both methods so

that the training set is represented well. The elbow method is used to plot the

total distance from each training sample to its cluster center against the number

of clusters. The optimal number of clusters, k, is defined by the elbow of that

plot. During inference, the closest clusters for Macenko adaptation and histogram

matching are computed and each image’s color is adapted consecutively (see Fig-

ure 6.3.1 (b)). Note that the closest histogram cluster is computed after Macenko

color adaptation. The color adaptation is expected to shift the test image closer

to the training distribution. However, it is possible that an image is still OOD

after applying ClusterMatch, which is why the OOD detection is applied again

after color transformation.

Evaluation of color transfer Using ClusterMatch in combination with the

OOD detection is evaluated again on the SurvOODCandidates with the AUC,

C-index, and Brier score. The predictive performance of eCaReNet is expected to

increase on those datasets after color transfer and OOD removal.

6.4 Experiments

The experiments for OOD detection and color transfer are evaluated in the fol-

lowing. They are performed on a single best-performing model (see section 5.7.3

- Conclusion), not with models including different seeds since single OOD scores

need to be assigned to images. Using multiple trained models with different seeds

would not lead to a clear ID/OOD discrimination. Using a single model is rea-

sonable since the variation caused by differing initialization seeds has shown to

be smaller than the variation in-between datasets in section 5.7 Experiments. For

completeness, the prediction performances on all SurvOODCandidates and for

Surv1 for that model are illustrated in Figure 6.4.1 since, in section 5.7.9 Evalua-

tion on different datasets, only the mean over five runs was evaluated. The model

is trained on Surv1 and evaluated again on the subsets with overlapping patients

to enable performance comparison. Recall that Surv2∩Surv1 contains images from

Surv2, restricted to those patients that also have an image in Surv1.
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Figure 6.4.1: Results of a single trained eCaReNet model on all test datasets.

6.4.1 OOD scores

Setup There is no ground truth for the OOD scores of the SurvOODCandidates’

images. Therefore, to evaluate whether the calculated OOD scores (Mahalanobis

distances) can be used as uncertainty measures, it is evaluated whether those

correlate to eCaReNet’s predictive performance. It is expected that the datasets

on which eCaReNet shows the lowest performance include more OOD samples

or have higher OOD scores than those on which eCaReNet shows performances

similar to Surv1.

The OOD-ness of each image in SurvOODCandidates and Surv1 is calculated

with the nearest-neighbor approach described in section 6.2 Out-of-distribution

detection. First, eCaReNet transforms all image patches into their latent space

representations, using the global average pooling layer as output, and taking the

average over all patches for an image. As OOD measure, the Mahalanobis distance

to the closest neighbor in the Surv1 training set is calculated in the latent space

for each image from the SurvOODCandidates. Instead of calculating the distance

to every training sample, which would be computationally expensive, a subset

of training samples is selected randomly, as proposed by Sun et al. (2022). Here,

1,000 training samples yield stable results. The Mahalanobis distance to the closest

neighbor is then used as a score for an image’s OOD-ness. The threshold to count

a sample as ID or OOD is a distance of 41.7, which is the threshold at which 95 %

of the training samples are classified as ID, as proposed by Lee et al. (2018).

OOD score as uncertainty measure To compare the OOD-ness of all Surv-

OODCandidates’ test sets, their images’ OOD scores are depicted as violin plots in
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Figure 6.4.2 (a). By definition of the OOD threshold, 95 % of Surv1’s images are

ID. Surv2 does not have many OOD samples, which fits the above hypothesis that

the performance decrease is mostly due to the tissue selection instead of the image

staining. The proportions of OOD samples in SurvThin, SurvThick, and Surv-

LongStain coincide with the measured discrimination and Brier scores: SurvThin

contains most OOD samples while having the lowest performance. SurvThick and

SurvLongStain have less OOD samples, while having performances closer to Surv2.

Nearly all images of SurvScan and SurvPCBN are OOD. That also matches the

low AUCs on those datasets. The lowest test set AUC and C-index, as well as the

highest Brier score, are achieved on SurvScan, which has the highest OOD scores

in the violin plot and fewest ID samples (2 images).

The relation between model performance and OOD scores is further depicted

in Figure 6.4.2 (b). A negative correlation between discrimination and OOD

scores is shown. The Pearson correlation is r = −0.93 and r = −0.95 for the

AUC and C-index, respectively, with p-values smaller than 0.05. The Brier score
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(a) Violin plot of the OOD scores as Mahalanobis distance to the closest neighbor
in Surv1’s training set per image in the respective test dataset. Each violin’s middle
line shows the median value. From left to right, the datasets contain relatively more
OOD samples. The black line indicates the threshold at 41.7, which distinguishes in-
distribution from out-of-distribution (OOD) samples.
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(b) Model performance against median dataset OOD scores. The same dataset colors
as in (a) are chosen.

Figure 6.4.2: Evaluation of the out-of-distribution (OOD) scores per test dataset.
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seems to show a nonlinear correlation, wherefore the Kendall τ is measured. It

is τ = 0.39, indicating only a slight correlation, which is probably due to the

outlier SurvPCBN. Due to the small sample size, the significance of these results

needs to be considered with caution. Based on the ratio of ID and OOD images,

Surv2, SurvLongStain, and SurvThick can be called near-OOD datasets, whereas

SurvThin, SurvPCBN, and SurvScan are far-OOD datasets.

OOD score threshold If the OOD score correlates with the uncertainty, the

performance on ID samples should be higher than the performance on OOD sam-

ples. Therefore, eCaReNet’s performance should increase when removing OOD

samples gradually. That hypothesis is tested by varying the threshold of counting

a sample as either OOD or ID and evaluating the model performance only on

the samples with a lower OOD score than the threshold. Since the dataset size

and included patients change when removing OOD samples, only evaluating the

discrimination alone could be misleading. That is because the AUC and C-index

compare the ranking of patients and are thus strongly dependent on the chosen

cohort. The Brier score evaluates single survival curves and therefore depends less

on the patient distribution.

Figure 6.4.3 depicts the Brier scores and AUCs that eCaReNet reaches on the

SurvThin test dataset for varying thresholds. The metrics are evaluated only on

the ID images. From left to right, the threshold is reduced such that the number

of images counted as ID decreases. The Brier score and AUC improve when more

and more OOD samples are removed. The number of ID samples reduces to 104,

while the Brier improves to 0.113 and the AUC increases to 0.65. Equivalent plots

for the remaining test datasets are in the supplementary material in Figure A.3.1.

The results are not as clear for every dataset, as sometimes the Brier score or the

AUC decreases slightly.

Conclusion It can be concluded that the proposed OOD measure correlates with

eCaReNet’s predictive performance, particularly, it is negatively correlated with

discrimination. The more OOD samples are in a dataset, the lower the predictive

performance. Thus, the OOD score can be seen as an uncertainty measure. Only

the Brier score of SurvPCBN does not follow this pattern, as the Brier score is

low for that dataset, which contains almost only OOD samples.
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Figure 6.4.3: The model performance increases on SurvThin, when removing more
and more OOD samples. The dots show the Brier score in the left, and AUC in
the right plot. The bars indicate the test set size, which decreases with removing
OOD samples until it reaches 104. The Brier improves to 0.113, the AUC increases
to 0.65.

6.4.2 Color transformation

Setup It is now evaluated whether a color transformation improves performance

on the SurvOODCandidates. As a baseline, all images are transformed with Rand-

HistMatch, which means an image’s histogram is matched to a randomly chosen

training image. The results are compared to using ClusterMatch only for the im-

ages identified as OOD before. When applying ClusterMatch, the OOD score is

re-calculated after color transfer since a transformed image might still be OOD.

Only those images that are ID afterward are included for a final prediction and

performance evaluation. Images still calculated as OOD need to be deferred to a

pathologist in clinical practice.

In order to evaluate the color transfer, the model’s performances on the original

and the transformed images are compared. One difficulty in the evaluation is that

discrimination and calibration are both relevant, but one does not require the

other. That means that, e.g., the AUC might decrease with color adaptation

while the Brier score improves, or vice versa.

For the histogram matching, the algorithm provided by scikit-image1 is used

(van der Walt et al., 2014). The Macenko color adaptation is performed with

an online repository2. Scikit-learn is used to find the k-means clusters3 of stain

matrices for the Macenko algorithm (Pedregosa et al., 2011). Since the clustering

of the histograms requires the Wasserstein distance as a custom distance function,

1https://scikit-image.org/docs/stable/api/skimage.exposure.html#skimage.

exposure.match_histograms (last accessed November 24, 2022)
2http://github.com/wanghao14/Stain_Normalization (last accessed November 21, 2022)
3https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.

html (last accessed November 24, 2022)
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pyclustering4 is used (Novikov, 2019). The Wasserstein distance is calculated with

scipy5 (Virtanen et al., 2020).

Baseline: RandHistMatch As a baseline color transformation method, Rand-

HistMatch is applied to all test images in SurvOODCandidates. For each image,

a random training image is chosen as a reference for histogram matching in the

HSV space. In Figure 6.4.4, eCaReNet’s predictive performances are compared

before and after applying RandHistMatch to each dataset. The same subsets as

in Figure 6.4.1 are used to enable performance comparison.

For the near-OOD datasets Surv2, SurvLongStain, and SurvThick, eCaReNet’s

performance decreases after color transformation in AUC, C-index, and Brier

score. The AUC on Surv2∩Surv1 and SurvThick∩SurvDiff both decrease by 0.07

to 0.64 and 0.60, respectively. Their C-indices decrease to 0.63 and 0.58, and the

Brier scores increase to 0.126 and 0.143, respectively. For SurvLongStain∩SurvDiff,

the AUC decreases to 0.62 and the C-index to 0.61. The Brier score increases to

0.135. These results confirm that the near-OOD datasets are already very close

to the original training dataset and cannot benefit from color adaptation.

For the far-OOD datasets SurvThin, SurvScan, and SurvPCBN, the perfor-

mance improves in AUC, Brier score, and C-index. After applying RandHist-

Match, the discrimination metrics are close to those on the near-OOD datasets.

On SurvThin∩SurvDiff, the C-index increases by 0.05 to 0.62, and the AUC by 0.04

to 0.61. The C-index on SurvScan∩Surv1 reaches 0.60 and the AUC 0.61. On

SurvPCBN, the C-index is 0.61 after applying RandHistMatch with an AUC of

0.58. Also the Brier scores improve to 0.135 on SurvThin∩SurvDiff, to 0.127 on

SurvScan and 0.087 on SurvPCBN. Thus, increased performance is shown on all

datasets that include more OOD than ID images.

ClusterMatch For ClusterMatch, both the Surv1 training set’s stain matrices

and histograms are clustered separately with k-means.

Each training sample is converted to HSV color space, and the histogram per

color channel is calculated. Those histograms are clustered with a k-means clus-

tering algorithm using the Wasserstein distance. For best results, the saturation

is weighted twice as much as the hue and value. The optimal number of clusters

in the training set is determined as 20 with an elbow plot. When assigning each

4https://pyclustering.github.io/docs/0.8.2/html/da/d22/classpyclustering_1_

1cluster_1_1kmeans_1_1kmeans.html (last accessed November 24, 2022)
5https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.

wasserstein_distance.html (last accessed November 24, 2022)
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Figure 6.4.4: Performance of eCaReNet when applying RandHistMatch to all test
datasets is shown in dark color and the results before applying RandHistMatch in
light color.

training sample to a cluster, the smallest cluster contains 143 samples, and the

largest one contains 880. Thus, each cluster contains 1.4 to 8.8 % of the train-

ing data, and each cluster’s histogram represents a reasonable proportion of the

training set.

For the Macenko color matching, clusters of H&E stain matrices combined with

the intensity values are found. Each training sample is converted to a vector with

8 elements: the first three elements correspond to the RGB encoding of hema-

toxylin, the following three elements correspond to the RGB encoding of eosin,

and the last two values are the image’s lowest and highest intensity values. For

k-means clustering, the Euclidean distance is used. Again, the optimal number of

clusters is determined as 20 with an elbow plot. When assigning a training sam-

ple per cluster, the clusters include 24 to 819 samples. Since the smallest cluster

only includes 0.24 % of the training set, that cluster is not representative of the

training set. Therefore, only the remaining 19 clusters are used in the following

experiments.

Examples of ClusterMatch image transformations are provided in Figure 6.4.5.

There, (a) shows the original image, (b) shows the image after Macenko adapta-

tion, and (c) is the final image after additional histogram adaptation. The upper
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(a) (b) (c)

Figure 6.4.5: Examples of ClusterMatch. (a) original image, (b) after Macenko
adaptation, (c) after histogram matching. Upper row: SurvScan, lower row:
SurvPCBN.

row shows the color transformation of an example image from SurvScan. It is

transformed to be more intense and pink. The lower row shows an example image

from SurvPCBN. The red blood cells in the image are colored less red after color

transformation.

The results of the experiments are illustrated in Figure 6.4.6 and also provided

in the supplements in Table A.3.1 and Table A.3.2. They are detailed in the

following.

Surv2 26 % of Surv2∩Surv1 are counted as OOD (492 images), which is why

their color is transformed. The results on Surv2∩Surv1 are not improving with

ClusterMatch, the AUC remains at 0.71 while the C-index is slightly increasing

from 0.69 to 0.70 (Surv2CM in Figure 6.4.6 (a)). The Brier score also improves

slightly from 0.120 to 0.119, which is within the model variance. Compared to

RandHistMatch (Surv2RHM), the decrease in performance is low. It is concluded

that Surv2 is neither benefiting from nor impaired by applying ClusterMatch.

That supports the hypothesis that the main reason for a performance decrease

compared to Surv1∩Surv2 is not the color but the tissue content. Removing images

that are still OOD after color transformation (393 images) does not improve the

metrics further (see Surv2ID). This appears to indicate a dataset bias in the

remaining images, which is not captured by the OOD detection.
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SurvLongStain SurvLongStain∩SurvDiff with longer H&E staining time has only

72 OOD samples (24 %). The performance was already close to Surv2∩SurvDiff

in terms of AUC, C-index, and Brier score without color transformation. As

shown in Figure 6.4.6 (b), the AUC slightly reduces from 0.66 to 0.64 with Clus-

terMatch and the C-index to 0.64, while the Brier score remains constant at

0.132 (SurvLongStainCM). Still, the performance is better than when applying

RandHistMatch (SurvLongStainRHM). Removal of the remaining 65 OOD sam-

ples improves the Brier score to 0.126. The AUC increases to 0.67, which is

still slightly below the performance before applying ClusterMatch. The same

holds for the C-index, which only increases to 0.66 after removing OOD samples

(SurvLongStainID).

SurvThick SurvThick∩SurvDiff has 125 OOD samples (41 %), which are adjusted

for color. The performance without color transformation is similar to the per-

formance on Surv2∩SurvDiff. ClusterMatch improves the Brier score from 0.136 to

0.133 (SurvThickCM), while even better results can be obtained by removing OOD

samples (0.129, SurvThickID) (Figure 6.4.6 (c)). Applying ClusterMatch does not

influence the AUC, which is still 0.67. It increases slightly to 0.68 when removing

all remaining 91 OOD samples. The C-index only improves to 0.68 by remov-

ing OOD samples. It is concluded that the images in SurvThick neither benefit

nor suffer from ClusterMatch application, while RandHistMatch clearly reduces

performance in all three metrics (SurvThickRHM).

SurvThin SurvThin∩SurvDiff contains 66 % OOD images (198 images). As shown

in Figure 6.4.6 (d), ClusterMatch improves the AUC from 0.57 to 0.61 and the

C-index from 0.57 to 0.62 (SurvThinCM). The Brier score reduces from 0.142

to 0.135, providing evidence that both calibration and discrimination profit from

ClusterMatch. Interestingly, the performance after applying ClusterMatch is equal

to the performance when applying RandHistMatch (SurvThinRHM). After color

transformation, most images remain OOD (190). Removing these OOD samples

and evaluating the metrics only on the ID images increases the AUC further to

0.68 and the C-index to 0.67 (SurvThinID). The final Brier score is 0.113, which is

below the performance on Surv2∩SurvDiff. Since all metrics now show similar values

compared to the performance on Surv2∩SurvDiff, it is concluded that the SurvThin

dataset contains a bias besides color, which is not compensated by ClusterMatch

but revealed by the OOD detection and which decreases eCaReNet’s performance.
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SurvScan The positive effect of color transformation with ClusterMatch also

shows in SurvScan∩Surv1, which comprises 99.9 % OOD images. Instead of reaching

an AUC of 0.52, the performance increases to 0.71 with ClusterMatch, and the

C-index improves to 0.69 (SurvScanCM , Figure 6.4.6 (e)). The Brier score improves

from 0.141 to 0.114. These results are better than after applying RandHistMatch

(SurvScanRHM). After color adaptation, 74 % of the images are still OOD. When

only keeping the ID samples after matching, the AUC slightly reduces to 0.70,

but the Brier score further improves to 0.105, which is close to the results on

Surv1∩SurvScan. Also, the C-index improves to 0.71 on the ID images (SurvScanID).

SurvPCBN Similar results are achieved on the external dataset SurvPCBN. As

shown in Figure 6.4.6 (f), ClusterMatch increases performances from 0.53 to 0.61

in AUC, from 0.54 to 0.64 in C-index. This is a larger improvement than with

RandHistMatch. The Brier score improves from 0.104 to 0.097. Removing OOD

samples increases the overall performance to an AUC of 0.69 and a C-index of 0.71.

The Brier score improves to 0.090, which is better than on Surv1. It is important

to note that SurvPCBN contains multiple images per patient, hence removing an

image does not equal removing a patient. Removing OOD samples excludes 51 %

of the images but keeps 79 % of the patients for evaluation. A reason for the AUC

being lower than on Surv1 while the Brier score is better might be the difference

in relapse time distributions, as shown in Figure 3.2.1 (a). Also, it needs to be

analyzed whether a dataset bias besides the color is present in SurvPCBN.

Conclusion The proposed ClusterMatch improves the performance of eCaReNet,

particularly for far-OOD datasets. If the datasets include many ID samples and

only a few near-OOD samples, there is little to no performance gain by color

transformation. On SurvLongStain, the discrimination decreases slightly when

adapting the color. It was further shown that ClusterMatch outperforms Rand-

HistMatch in most cases.

Removing OOD samples after applying ClusterMatch further improves results

on far OOD dataset, so eCaReNet’s performance is shifted closer to that on the

Surv1 test set. Since many samples are still OOD after color transformation, it

needs to be investigated whether there is a different dataset bias that needs to be

addressed besides the color. The images in SurvPCBN are of size 1024×1024 pixels

after cutting the centerpiece, whereas the training images in Surv1 are downsized

from 2048 × 2048 pixels to 1024 × 1024 pixels. Therefore, possible differences in

the level of detail need to be evaluated in further experiments.
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(a) Results on Surv2∩Surv1, compared to Surv1∩Surv2.
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(b) Results on SurvLongStain∩SurvDiff, compared to Surv2∩SurvDiff.
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(c) Results on SurvThick∩SurvDiff, compared to Surv2∩SurvDiff.

Figure 6.4.6: For figure caption, see next page.

153



6.4. EXPERIMENTS ROBUSTNESS

0.4 0.6 0.8

AUC

Surv2

SurvThin

SurvThinCM

SurvThinID

SurvThinRHM

0.69

0.57

0.61

0.68

0.61

0.0 0.1

Brier

0.129

0.142

0.135

0.113

0.135

0.4 0.6 0.8

C-index

0.67

0.57

0.62

0.67

0.62

(d) Results on SurvThin∩SurvDiff, compared to Surv2∩SurvDiff.
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(e) Results on SurvScan∩Surv1, compared to Surv1∩SurvScan.
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(f) Results on SurvPCBN, compared to Surv1.

Figure 6.4.6: Test set performances of the single best performing eCaReNet model
when inputting the original images, applying ClusterMatch, and additionally re-
moving OOD samples afterward. For comparison, the performances when using
RandHistMatch are shown. For better readability, subscripts like ∩Surv1 are omit-
ted in the y-axis labels. CM: applying ClusterMatch, ID: keeping only ID samples
after color adaptation, RHM: applying RandHistMatch.
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6.5 Discussion

The experiments show that the proposed OOD measure can be used as an un-

certainty score since eCaReNet performs best on datasets that contain more ID

than OOD images. The performance decreases with the number of OOD im-

ages in terms of discrimination. The OOD detection might be further improved

when instead of using the distance to the nearest neighbor, an average distance

to k nearest neighbors is used. Also, modeling the training distribution with a

multimodal Gaussian could be considered.

Differences between the images from the training dataset Surv1 and the Surv-

OODCandidates are visible, particularly as color biases. Therefore, a color trans-

formation approach, ClusterMatch, is proposed. It is shown that ClusterMatch

improves performances on all datasets that contain many OOD samples. In con-

trast to the state-of-the-art RandHistMatch, ClusterMatch rarely decreases the

predictive performance. Only on SurvLongStain, on which the performance is

already close to Surv2, the performance decreases slightly. It needs to be fur-

ther investigated whether other color transformation methods, such as applying

a GAN, lead to similar or improved results. The combination of OOD detec-

tion and ClusterMatch increases the predictive performance on all datasets. Since

eCaReNet does not always reach similar performances on the SurvOODCandi-

dates after removing OOD samples as on Surv1, it is concluded that the proposed

OOD detection method cannot detect all images that eCaReNet makes imprecise

predictions on.

In summary, the proposed framework is beneficial for digital histopathology in

clinical applications to ensure that a model only makes predictions when it has

sufficient confidence and certainty. The method is independent of the model archi-

tecture and thus further applicable to other endpoints besides survival prediction.

It is expected to be transferable to other image types, such as radiology. Single

images of different color biases can be processed with the proposed approach since

no model fitting to an OOD dataset is needed. However, since the performance

did not always reach the reference performance of Surv1, it is concluded that

color transfer alone cannot cover all variations in the SurvOODCandidates’ im-

ages. In practice, additional variations, like blurred images or artifacts on images,

are expected to occur and need to be addressed.
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Chapter 7

Conclusion and discussion

A quick review of the whole thesis is presented here, along with the answers to

the research questions posed in the beginning. Afterward, a critical analysis of

the thesis’ limitations is presented and future research directions are proposed.

7.1 Summary

This thesis contributes to the state of the art by proposing a comprehensive sys-

tematic method to approach deep learning-based relapse-free survival prediction

for prostate cancer patients. First, literature research revealed that the approaches

for Gleason grade prediction and survival prediction from medical images are het-

erogeneous. However, none of the existing models is directly applicable to the

given problem in this thesis due to differences in the dataset or problem formula-

tion.

In contrast to models for classification of everyday objects, pretrained mod-

els on histopathology prostate cancer images or for survival prediction are not

available open-source. Hence, an ImageNet-pretrained model was first optimized

on the Gleasonaut dataset for Gleason grade classification before moving on to

survival prediction. It was shown that this model, MISUP, achieves performances

similar to the state of the art. In the next step, eCaReNet was introduced as a

survival prediction model, building on MISUP. An extensive evaluation revealed

that attention-based MIL, binary survival prediction, and self-attention are ben-

eficial for survival prediction. eCaReNet outperforms state-of-the-art models and

is on par with pathologists.

Further, it was shown that the performance increases when using more data

during inference, such as additional images or clinical patient information. Includ-

ing clinical patient information, eCaReNet could even outperform a pathologist.

In the end, a robustness analysis revealed the model’s sensitivity to unseen biases,

for example, due to color differences. An approach to increase prediction perfor-

mance was presented as a combination of OOD detection and color transfer with
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ClusterMatch. The proposed method incorporates an uncertainty measure and

significantly increases eCaReNet’s predictive performance on far-OOD datasets.

Since eCaReNet is not limited to prostate cancer histopathology images it

is worthwhile analyzing how it can be applied to different survival prediction

endpoints using medical image input. Also, the proposed method to increase

robustness is expected to be applicable other histopathology datasets, regardless

of the endpoint.

7.2 Answers to research questions

The research questions posed in section 1.2 are addressed here along with so far

achieved answers.

R1: What is the current state of the art in survival prediction from

medical images? The literature overview in section 2.2 State of the art showed

great heterogeneity in cancer stratification and survival prediction approaches.

Survival prediction can be interpreted as a binary prediction, a risk score predic-

tion, or a prediction of survival probability over time. Many models build upon

the Cox model, however, this has drawbacks since it does not allow survival curves

to cross. Approaches that predict the survival probability in discrete intervals are

emerging, but these are still rare. Since no common ground can be built upon,

there is a need for a transparent and thorough exploration of survival prediction

for prostate cancer histopathology images. Furthermore, robustness and explain-

ability are often not addressed in computational pathology.

R2: To what degree can Gleason patterns be predicted accurately in the

given dataset of digitized prostate tissue? ISUP prediction was performed

with MISUP, an InceptionV3 network pretrained on ImageNet and finetuned on

the Gleasonaut dataset (chapter 4 Gleason grade prediction). Kappas of 0.83 on

the validation set and 0.79 on the test set were reached. That is in line with the

results presented in the literature. It is concluded that MISUP can successfully

support pathologists in their Gleason grading decisions. Another conclusion is

that the Gleasonaut has high quality, which leads to the assumption that also the

Survival dataset provided by the UKE is suited for training neural networks.
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R3: Can relapse-free survival probability over time after prostatec-

tomy be predicted for individual prostate cancer patients based solely

on histopathology images showing part of prostate tissue? For survival

prediction, eCaReNet was developed, which predicts relapse-free survival curves

over 7 years after prostatectomy (chapter 5 Survival prediction). Besides predict-

ing individual survival curves, eCaReNet can stratify patients into up to eight

distinct risk groups. Given only single TMA spot images per patient, the model

reaches a performance close to a pathologist, with AUCs of 0.78 and 0.77 on the

validation and the test set, respectively, while being well calibrated. The predictive

performance could be increased by including a second image per patient during

inference. The pathologist was even outperformed by eCaReNet when adding ad-

ditional patient information about the tumor volume, tumor diameter, and PSA

value. It remains unclear whether the performance could be increased beyond a

pathologist’s performance on the given dataset when using only images or if an

upper limit has already been reached, for example, due to dataset noise. It is

further interesting to explore whether the pathologist’s patient stratification can

be improved when being supported by eCaReNet.

R4: Is it possible to capture the model’s limitations in an uncertainty

measure and make the model robust toward dataset bias? Color bias

was identified as a crucial factor influencing eCaReNet’s performance. That effect

was studied on several datasets, showing that the performance decreases for im-

ages digitized with a different scanner, containing thinner tissue, or stemming from

other clinics. A measure was proposed to decide for single images whether they are

OOD. It was shown that this OOD measure correlates to model performance and

can thus serve as an uncertainty score for single test images during inference (chap-

ter 6 Robustness). Such an uncertainty measure is crucial in clinical practice to

avoid misleading predictions. Further, a color transformation was proposed, Clus-

terMatch, which could successfully increase the performance on datasets including

many OOD samples. The combination of color transfer and OOD detection was

shown to lead to prediction performances close to those on reference test datasets.

Biases besides color, like image sharpness, were not explored. Thus, it needs to

be further investigated which other data variations influence model performance

and how to make eCaReNet robust against those.
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7.3 Future research directions

This thesis is a proof-of-concept that survival prediction from histopathology im-

ages alone provides predictions that reach performance close to a pathologist.

However, to create added value, it is desired to build a model that outperforms

pathologists. Only then can decision support systems be integrated into a clin-

ical workflow and improve human decisions. A remaining question is whether

eCaReNet reached an upper limit of performance achievable with Surv1, for ex-

ample, due to dataset noise, or if eCaReNet can be improved further to outperform

a pathologist in terms of discrimination. Also, it needs to be explored whether

eCaReNet’s robustness to unseen dataset biases can be improved.

Therefore, the following discussion explores possibilities to improve the imple-

mented model and its prediction performance. Since the vast space of options for

solving computational pathology problems could not be explored entirely in this

thesis, this section elaborates on approaches to continue with the research or steer

it in a different direction.

Adaptation of model and training process A significant flaw of computa-

tional pathology is the currently limited amount of data. The experiments con-

ducted in the work for this thesis show that pretraining on Gleason scores improves

results over pretraining on ImageNet. Current approaches in medical image anal-

ysis explore a different kind of pretraining, which is called self-supervised learning.

In self-supervised learning, a neural network is trained on a large dataset with-

out having annotations of the final (classification) task. The idea is to pretrain a

network to learn common patterns characteristic of the tissue or classes. One ap-

proach for self-supervised learning is contrastive learning (Ciga et al., 2022; Chen

et al., 2020b). In contrastive learning, a network is trained with pairs of images,

where a pair could be an image and its augmented counterpart or an image patch

and a neighboring patch. With a contrastive loss, the model is trained such that

two instances of a pair are considered similar, and two instances from different

pairs are learned to be dissimilar. A comparable approach is contrastive predic-

tive coding, where pairs or sequences of images are used for training. However, the

goal is to input one image and predict the paired image (encoded as a latent space

representation) or to input a sequence of images and predict the sequence of fol-

lowing images (van den Oord et al., 2018; Lu et al., 2019). The pretrained encoder

that computes latent space representations can be used afterward for training on

a supervised task.
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For both approaches, the intention is to increase the focus on structures that

are characteristic of the images instead of learning local biases. For self-supervised

learning in computational pathology, any large database with histopathology im-

ages can be used without requiring annotations. Images from different organs can

also be mixed to increase the dataset size (Ciga et al., 2022). Self-supervised pre-

training is a promising approach to fill the gap between missing large annotated

datasets and histopathology-pretrained, openly available models. Self-supervised

learning as a pretraining could thus increase the performance of eCaReNet and

outperform the current model that is pretrained on the Gleasonaut only.

It is also possible to improve the model architecture itself. eCaReNet builds

upon a state-of-the-art CNN, but transformers are evolving in the field of com-

puter vision. Transformers emerged in natural language processing and outper-

form classic approaches like RNNs (Vaswani et al., 2017). Instead of recurrent

layers, transformers include (self-)attention layers, reducing the number of opera-

tions and increasing inference speed. A drawback is that transformers need large

datasets for training and have more trainable parameters than common CNN ar-

chitectures. Dosovitskiy et al. (2021), for instance, state that pretraining on a

dataset of 14 - 300 million images gives good results. Nevertheless, recent ap-

proaches using vision transformers exist also in computational pathology, showing

promising results (e.g., Shao et al., 2021; Chen et al., 2021; Ikromjanov et al., 2022;

Lv et al., 2022). Thus, it is interesting to analyze whether using a Transformer as

a base model improves performance for the given survival prediction task.

It remains an open question how accurately a model trained solely on histo-

pathology images from Surv1 can predict the time to relapse. This thesis showed

that including the PSA value, prostate volume, and prostate diameter as model

input increases performance metrics. Thus, it is expected that including more fea-

tures, for instance, about the patient’s lifestyle (e.g., whether he smokes) or family

history (i.e., whether a relative is affected by prostate cancer), further increases

performance. Also, the fusion of EHR and image data needs to be evaluated in

more detail. In this thesis, the EHR data is concatenated after the global average

pooling layer. Duanmu et al. (2020), for example, show that fusing the information

at multiple layers inside the model improves predictive performance. A general

limitation is in the evaluation of survival models since it was shown that a single

metric is not sufficient for performance evaluation and multiple metrics may be

contradictory. Reinke et al. (2021) elaborate that choosing the correct metric is a

commonly underappreciated topic in image analysis.
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Dataset improvements The extracted TMA spots of Surv1 are not all repre-

sentative of the patients’ disease statuses. Since eliminating the white background

at the margins of the TMA spots already increases performance, it is assumed that

a model’s predictive performance can profit from further data cleaning. A more

sophisticated elimination of less informative regions, like a classification of back-

ground, stroma, and artifacts, should be integrated (Arvaniti et al., 2018; Li et al.,

2021). Such a dataset cleaning would ensure that eCaReNet is only trained on

relevant regions of interest and thus can reach improved performances. Manual

quality control of the images by a pathologist who annotates whether the TMA

spot of the patient seems representative would be an ideal setting. However, this

is very time-consuming and could again lead to problems due to a subjective se-

lection. It is also possible to train eCaReNet with multiple images per patient to

increase the probability of including representative images.

Further, all evaluations in this thesis are performed on TMA spot images, but

a prediction on biopsy images is more relevant in clinical routine for treatment

decision support. Thus, digitized biopsy images of patients and their relapse

times need to be obtained to evaluate whether the results are transferable to

biopsy tissue as expected. Difficulties may arise again due to differences in color

bias. Also, biopsies are larger in size and might include more non-cancerous tissue,

which could decrease eCaReNet’s predictive performance. It needs to be evaluated

whether the predictive performance on biopsy images is similar to that on TMA

spots. If not, the reasons for the performance decrease need to be explored, and

eCaReNet has to be retrained with biopsy images.

Improvement of robustness The proposed approach for color transformation,

ClusterMatch, increases performance on datasets with color biases, but the model

performance on most datasets remains below that on Surv1. These results suggest

that non-color biases in the data still reduce prediction performance, while color

biases are efficiently dealt with by ClusterMatch. Therefore, an improvement of

model robustness to dataset biases is needed.

An option to improve generalizability is to use all SurvOODCandidates during

training. By extending the training dataset, eCaReNet could adjust its weights to

these datasets’ biases. Besides only adding the images to the training dataset, the

survival prediction model can be adapted to focus mainly on the tissue content

instead of the tissue color. Using images from different domains to deliberately

train a model that does not concentrate on the staining but only on the structural

appearance of histopathology images is possible, as shown by Ren et al. (2019a)
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and Marini et al. (2021a). When using paired data from Surv1 and SurvScan,

hence, one TMA spot scanned with different scanners, a loss could be included

that pushes the model to produce equal latent space representations for both

images. Using unpaired data is possible when the samples’ domains are known.

The model can then be trained with a loss to decrease domain discrimination

performance like Ren et al. (2019a) propose.

When explicitly providing different datasets during model training, the space

of biases counted as ID increases. However, it needs to be explored whether such a

model is able to generalize to new, unseen biases. As stated above, datasets have

many different sources of variation, and the presented datasets can only cover

parts thereof. This thesis builds upon the hypothesis that most biases stem from

color variations. However, other biases, like blurriness, are also imaginable for

a neural network to count as OOD. Collecting a dataset that covers all possible

variations to extend the training dataset is far too time- and resource-intensive.

Instead, explicitly exploring the space of OOD samples is a promising approach.

In the latent space, one can explore which OOD regions are covered by the cur-

rent datasets and which region in the latent space is not covered yet. GANs could

artificially create OOD samples not covered by current datasets. Instead of creat-

ing samples in the latent space, which is not interpretable by humans, the GAN

should be trained to generate input images. The GAN needs to be conditioned to

generate OOD images based on the Mahalanobis kth-nearest-neighbor approach.

Using these generated images during training extends the ID space; thus, it is

possible to control manually to which biases the network should be insensitive. A

difficulty in synthetically creating OOD images is that these need to be of very

high quality and medically realistic. Thus, a close collaboration with pathologists

is necessary. Suppose a pathologist states that a histopathology image cannot

be analyzed, for instance, since it is too blurry or medically unreasonable. Such

images should also be excluded from a training dataset.

Toward clinical application Since this thesis shows that an automated sur-

vival prediction from prostate cancer tissue images is possible, the next step for

such a model is one toward clinical application. However, aspects like evaluating

eCaReNet on other external datasets, ensuring robustness, and obeying regula-

tions need to be considered (Homeyer et al., 2021).

The developed survival prediction model should support pathologists’ decision-

making in clinical practice. Thus, it needs to be explored whether pathologists

trust the predictions when provided with a single risk score, risk group, or a
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survival curve per patient. Meyer et al. (2022) state that pathologists’ decisions

do not change when provided with model accuracy and information like stating the

model focuses on cells. Evans et al. (2022) present a study where a questionnaire

was sent to pathologists, and they find that visual explanations are preferred

since those relate to the way pathologists think. Thus, it needs to be investigated

if visual explanations for single images can build trust in eCaReNet.

Besides highlighting the patches that get the most attention in the MIL layer,

GradCAM can be used to reveal relevant regions for the prediction in more detail

(Selvaraju et al., 2017). The GradCAM algorithm tracks the gradient of the target

class and thus highlights the regions that are most important for predicting that

class. GradCAM might need to be adapted for survival prediction since no single

classes are predicted. Another explainability method that can be applied, par-

ticularly when adding patient features to the model, is LIME (local interpretable

model-agnostic explanations, Ribeiro et al., 2016). For LIME, the input is per-

turbed in various ways, and it is observed how the outcome changes. Thus, each

input feature’s importance can be estimated. Whether these local image-based

explanations improve decision-making needs to be evaluated in a clinical study.

Ghassemi et al. (2021) argue that local explanations (i.e., explanations for

single samples) are ambiguous and that proving robust model performance in a

thorough validation study is sufficient for clinical usage. However, explanations

might be necessary for certification (Heesen et al., 2020). In the study by Evans

et al. (2022), the pathologists also state that trust would increase when showing

reliable predictions in extensive tests and comparisons to physicians. Another

opportunity that comes with explanations is to generate clinical insights. Pathol-

ogists can evaluate regions relevant to the model to find if the model discovered

patterns that are yet unknown to contribute to cancer relapse. Visual explanations

can also reveal which images the model mistakes, thus giving insights to improve

training.

Challenges remain in the non-uniform, as yet non-standardized, data acquisi-

tion processes. Thus, a clinical study in one clinic might not suffice to prove the

added value of a clinical decision support system. The research community has

recognized the need for consistent standards, but the cost of reagents and scan-

ners, pathologists’ coloring preferences, time constraints for staining, and other

aspects hinder a standardized tissue acquisition (Lang, 2006; Kanwal et al., 2022;

Wright et al., 2021).
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Appendix A

Supplementary material

A.1 State of the art

Table A.1.1: Extended overview of papers for prostate cancer stratification. AU-
ROC: area under the receiver operator curve, AUPRC: area under the precision
recall curve, acc: accuracy, pr: precision, sp: specificity, se: sensitivity, npv: neg-
ative predictive value, ppv: positive predictive value, pa: number of patients,
im: number of images, n/a: not available.

Paper Task Model Metric Dataset
Campanella
et al. (2018)

benign/
malignant

MIL +
ResNet, VGG

AUROC
0.98

• non-public
• biopsies
• 12,160 im (n/a pat.)

Jimenez-del
Toro et al.
(2017)

low/ high GoogLeNet acc 0.78 • TCGA
• prostatectomies
• 235 im (n/a pa)

Burlutskiy
et al. (2019)

binary seg-
mentation

U-Net for
different
resolutions

F1 0.8
AUPRC
0.89

• non-public
• biopsies +
prostatectomies
• 476 im (n/a pa)

Oner et al.
(2022)

benign/
malignant
glands

Mask R-CNN
+ multi
resolution
ResNet

AUROC
0.996
pr 0.997

• non-public
• biopsies +
prostatectomies
• 99 im (99 pa)

Duran-
Lopez et al.
(2020)

benign/
malignant

feature
extraction,
wide and
deep network

acc
0.999
sp 1
se 0.999
pr 1
F1
0.999

• non-public
• biopsies
• 97 im (n/a pat.)

Chen et al.
(2019)

benign/
malignant

InceptionV4 AUROC
0.99

• TCGA + non-public
• prostatectomies
• 451 im (n/a pat.)
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Bhattacharjee
et al. (2022)

benign /
malignant

custom CNN AUROC
0.98
acc 0.93
pr 0.96
re 0.94
F1 0.93

• PANDA +
non-public
• biopsies
• 1,900 im (n/a pa)

Karimi
et al. (2020)

benign/
malignant
+low/high

combination
of 3 CNNs

acc
0.86-
0.92

• GleasonChallenge
• TMAs
• 333 im (231 pa)

Ren et al.
(2018a)

low/ high AlexNet +
Siamese
network

acc 0.83 • TCGA + non-public
• prostatectomies
• 990 im (less pa)

Arvaniti
et al. (2018)

Gleason
grade group

MobileNet kappa
0.75

• TMAZ
• TMAs
• 886 im (886 pa)

Nagpal
et al. (2019)

Gleason
grade group

InceptionV3 acc 0.7
AUROC
0.96

• TCGA + non-public
• prostatectomies
• 769 im (769 pa)

Ström et al.
(2020)

Gleason
grade group

InceptionV3 kappa
0.62

• non-public
• biopsies
• 9,001 im (1,474 pa)

Nagpal
et al. (2020)

Gleason
grade group

Xception-like kappa
0.71

• non-public
• biopsies
• 1,276 im (1,112 pa)

Bulten
et al. (2020)

Gleason
grade group

U-Net kappa
0.72-
0.85

• TMAZ + non-public
• TMAs + biopsies
• 6,745 im (2,129 pa)

Marini
et al.
(2021b)

Gleason
group

student/
teacher
(ResNext)

kappa
0.45-
0.76

• TMAZ + TCGA
• TMAs +
prostatectomies
• 1,187 im (1,185 pa)

Marginean
et al. (2021)

Gleason
group +
percent
b/3/4/5

InceptionV3 se 0.8-1
sp 0.77-
0.98
kappa
0.5-0.69

• non-public
• biopsies
• 735 im (195 pa)

Mun et al.
(2021)

Gleason
grade group

DenseNet
(2stage:
benign/
malginant,
then groups)

kappa
0.88-
0.90
acc
0.67-
0.78

• non-public +
GleasonChallenge
• biopsies + TMAs
• 7,844 im (1,032 pa)
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Otálora
et al. (2021)

Gleason
grade group
(strong +
weak)

MobileNet kappa
0.69

• TMAZ + TCGA
• TMAs +
prostatectomies
• 1,187 im (n/a pa)

Tolkach
et al. (2020)

Gleason
pattern and
ISUP

NASNetLarge
+ special
evaluation of
unsure
patches

kappa
0.59-
0.67

• TCGA + non-public
• prostatectomies
• 1,233 pa (n/a im)

Bhattacharjee
et al. (2021)

Gleason
0,3,4,5

dual-channel
CNN

acc 0.98
kappa
0.98
pr 0.98
re 0.98
F1 0.98

• PANDA +
non-public
• 6,000 patches (n/a
pa)

Li et al.
(2021)

Gleason
group

VGG + two
stage MIL,
first b/m,
then
classification

acc 0.93
kappa
0.82

• SICAPv1 +
non-public
• biopsies
• 20,308 im (909 pa)

Vuong et al.
(2021)

Gleason
grade

EfficientNet
with
categorical
and ordinal
classification

acc
0.70-
0.80
F1
0.62-
0.66
kappa
0.62-
0.71

• TMAZ +
GleasonChallenge
• TMAs
• 1,130 im (n/a pa)

Nir et al.
(2018)

Gleason
pattern

UNet
adaptation,
gland +
nuclei
segmentation
+ logistic
regression

kappa
0.51

• GleasonChallenge +
non-public
• TMAs +
prostatectomies
• 563 im (287 pa)

Ikromjanov
et al. (2022)

Gleason
group

Vision
Transformer

pr 0.8
re 0.8
F1 0.8

PANDA
biopsies
> 5,000 im
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Singhal
et al. (2022)

Gleason
group

UNet, active
learning,
multi task

kappa
0.92-
0.96
acc
0.83-
0.89

• PANDA +
non-public
• biopsies
• 6,670 im (n/a pa)

Leon and
Martinez
(2021)

Gleason
score

InceptionV3,
Xception +
triplet loss

acc 0.62 • TMAZ
• TMAs
• 886 im (886 pa)

Zhang et al.
(2021b)

benign, G3,
G4/5

attention net
+
InceptionV3

acc 0.91
AUROC
0.98
pr 0.96

• TCGA
• 54 im (n/a pa)

Salman
et al. (2022)

ISUP Yolo
detection

pr 0.84-
0.97
re 0.85-
0.97
F1
0.94-
0.97
acc
0.89-
0.97

• non-public
• biopsies
• 500 im

Marini
et al.
(2021a)

Gleason
pattern

adversarial
CNN

kappa
0.47-
0.73

• TMAZ + SICAPv2
+ GleasonChallenge +
DiagSet
• TMAs+biopsies
• n/a im (n/a pa)
83,091 patches

Koziarski
et al. (2021)

binary +
Gleason
grade group

VGG19 acc 0.95 • DiagSet
• biopsies
• 5,179 im (n/a pa)

Silva-
Rodŕıguez
et al. (2020)

Gleason
grade, sum,
(cribriform)

custom CNN
architecture

kappa
0.77-
0.81
acc 0.67
F1 0.65

• SICAPv2 + TMAZ
non-public
• biopsies + TMAs
• 648 im + 625
patches (608 pa)
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Sandeman
et al. (2022)

Gleason
grade, area

custom CNN
architecture

acc 0.67
kappa
0.77
se 0.58
sp 0.94
npv
0.94
ppv
0.57

• non-public
• biopsies
• 4,221 im (750 pa)

Table A.1.2: Extended literature overview for medical survival prediction using
images as input. Bold literature uses only prostate cancer data, italic literature
uses also prostate cancer data, besides others.
Data sources: M: MRI image, C: CT image, H: Histopathology image, R: radio-
graph, c: clinical data, o: omics data (genomics and/or transcriptomics and/or
epigenomics and/or radiomics) – Data sizes: pa: patients, im: images – Metrics:
AUC: area under the receiver operator curve, sp: specificity, se: sensitivity, acc: ac-
curacy, KM: Kaplan-Meier, MAE: mean average error, OR: odds ratio, HR: hazard
ratio – Loss: nlpl: negative log partial likelihood, i.e., Cox-loss, n/a: not available.

Paper Task Data Model Loss Metric

BINARY

Duanmu
et al. (2020)

therapy
response

M c o
112 pa

VGG-13 for 3D
data

n/a AUC 0.8
acc 0.89
F1 0.77
sp 0.88
se 0.68

Kumar
et al.
(2017)

relapse
(5years)

H
220 pa

2 CNNs: detect
nuclei +
classification

binary
cross
entropy

AUC 0.81

Yamamoto
et al.
(2019)

relapse (1
and 5
years)

H
842 pa
9,916
im

Autoencoder +
SVM

n/a AUC
0.76-0.84
pseudo
R-squared
0.26

Huang
et al.
(2022)

relapse (3
years)

H
416 pa
416 im

CNN cross
entropy

AUC 0.78

Exarchos
et al. (2012)

relapse
yes/no

C M
41 pa

feature
extraction +
Bayesian
network

n/a acc 0.83
se 0.79
sp 0.86
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Yang et al.
(2020)

response C c o
99 pa
793
CTs

simple
Temporal
Attention

MSE AUC 0.47
(im only)
0.8 (with
c+o)

RISK SCORES

Esteva
et al.
(2022)

risk score
(5 and 10
years)

H c
5,654 pa
16,204
im

self supervised
pretraining +
CatBoost fusion

n/a time dep
AUROC
0.67-0.77

Wulczyn
et al. (2020)

risk score
/ risk
interval
(3
intervals)

H
6,096 pa
15,104
im

CNN similar to
MobileNet

cross
entropy
(for risk
in
interval)

c-index
0.61
AUC 5year
0.7
KM (3)

Walhagen
et al.
(2022)

risk score
(event <
3 years)

H
15,238
pa
15,238
im

EfficientNet +
MIL

cross-
entropy

AUC
0.79-0.93
KM (7)

Pinckaers
et al.
(2022)

year of
relapse
(year
0-4)

H
889 pa
2,963
im

ResNet smooth
L1 loss

OR 3.32
HR 3.02
KM curve
(2 and 4)

Han et al.
(2022)

3 groups:
0-3-5, >5
years

C c
198 pa

multibranch
spatiotemporal
ResNet

n/a acc 0.87
F1 0.86

Zhou et al.
(2020)

3 groups:
0-10,
10-15,
>15
months

M c
163 pa

ResNet (per
image,
combine)

custom acc 0.66
F1 0.59
pr 0.58
re 0.61

Abbet et al.
(2020)

risk score H
374 pa
660 im

divide and rule custom:
mean
squared
error,
cross-
entropy,
recon-
struction
and rule
loss

Brier 0.27
C-index
0.69
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Chang
et al. (2021)

risk score H
53,454
pa

self supervision
+ custom
hybrid
aggregation
network

nlpl c-index
0.67-0.73
KM (2)

Di et al.
(2020)

risk score H
1,573 pa
4,790
im

hypergraph ranking
loss

c-index
0.66-0.68
AUROC
0.66-0.71
KM (2)

Fan et al.
(2021)

risk score H
1,368 pa
4,405
im

weakly
pretraining,
ResNet

rank loss
+ consis-
tency

C-index
0.67-0.70

Kiyokawa
et al. (2022)

risk score H
68 pa
550 im

EfficientNet n/a acc 0.97
pr 0.96
re 0.97
F1 0.96

Laleh et al.
(2021)

risk score H
775 pa

ResNet per
patch

Cox prop
hazard
loss

C-index
0.67-0.75
KM (2)

Li et al.
(2018)

risk score H
1,090 pa
1,451
im

Graph Network Cox
negative
likeli-
hood loss

c-index
0.66-0.71

Liu et al.
(2022)

risk score M c
649 pa

Risk Attention
Network +
Segmentation

neg log
part like-
lihood

C-index
0.70 (im
only) 0.73
(+c)

Muhammad
et al. (2021)

risk score H
265 pa

ResNet for
patches +
fusion

nlpl +
cluster
(own
loss)

c-index
0.88
KM (2)

Yao et al.
(2020)

risk score
at time
points

H
1,533 pa
2,791
im

VGG +
clustering +
siamese
network + MIL

nlpl c-index
0.70
AUC 0.71
KM (2)

Agarwal
et al. (2021)

survival
time as
value/
difference

H c
389 pa
860 im

siamese
network

pairwise
ranking
loss

C-index
0.62
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SURVIVAL CURVES WITH COX MODEL

Ren et al.
(2018b)

survival H o
247 im

AlexNet +
LSTM

nlpl HR 5.73
C-index
0.74

Zhu et al.
(2016)

survival H
450 pa

DeepConvSurv
(CNN + Cox)

nlpl C-index
0.63

Liu and
Kurc (2022)

5
intervals

H c
978 pa
978 im

6-channel input
to MobileNet +
Cox

extension
of cross-
entropy

C-index
0.70 (im
only) 0.73
(with c)
HR 1.19

Nam et al.
(2022)

survival
curve
(600
days)

R c
5,372 pa

DenseNet +
neural net +
Cox

negative
log likeli-
hood

time dep.
5year AUC
0.67-0.76
(im only)
0.72-0.83
(+c)
C-index
0.63-0.72
(im only)
0.68-0.79
(+c)
KM (2)
calibration

Jiang et al.
(2021)

survival H
2,375 pa
6,162
im

ResNet +
Multihead
attention

nlpl C-index
0.64
HR 2.27

Li et al.
(2019)

survival C
84 pa

CNN with one
risk output /
Cox

nlpl C-index
0.64

Li et al.
(2022)

survival H+g
1015 pa

custom
architecture

nlpl C-index
0.77
AUC 0.81
KM (2)

Lv et al.
(2022)

survival H o c
520 pa

ResNet +
Linear model to
Transformer
fusion + Cox

nlpl C-index
0.822
KM (2)

Mobadersany
et al. (2018)

survival H o
769 pa
1061 im

Cox on
detected ROIs

NLL C-index
0.74 (im
only) 0.78
(+o)
HR 7.15
KM (3)
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Tabibu
et al. (2019)

survival H
2,093
im

extracted
features + Cox

nlpl KM (2)

Wang et al.
(2018)

survival C
129 pa

Residual Conv
Autoencoder
(weak
pretraining) +
LASSO Cox

nlpl C-index
0.70
KM (2)

Wang et al.
(2021)

survival H o
627 pa
1993 im

Multi-modal
Transformer-
like

nlpl C-index
0.69-0.70
(im only)
0.75-0.76
(+o)
KM (2)

Zhu et al.
(2017)

survival H
651 pa
1,844
im

DeepConvSurv
for patch
clusters

nlpl C-index
0.60-0.70

SURVIVAL CURVES WITHOUT COX MODEL

Xiao et al.
(2020)

survival
curve +
time

H
769 pa,
1,061
im

CDOR (ResNet
for
censoring-aware
deep ordinal
regression)

censor-
aware
cross-
entropy

MAE
321.2
C-index
0.74

Hermoza
et al. (2022)

survival
curve per
interval
+ time
(1-6423
days)

H Xray
16,013
pa
49,008
im

ResNet adapt. of
censor-
aware
cross-
entropy

MAE
26.28
C-index
0.76

Popescu
et al. (2022)

survival
curve (to
10 years)

M c
269 pa

multiple
network fusion
+ log-logistic
survival model

negative
likeli-
hood

C-index
0.63 (im
only) 0.74
(+c)
Brier 0.19
(im only)
0.14 (+c)
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Vale-Silva
and Rohr
(2021)

survival
curve per
interval
(30
years)

H c o
11,081
pa 8,376
im

ResNext negative
log likeli-
hood

C-index
0.57 (im
only) 0.82
(+c)
Brier 0.22
(im only)
0.14 (+c)
KM
(between
cancers)

Lombardo
et al. (2021)

survival
per
interval

C o c
1,037 pa

2D + 3D-CNN negative
log likeli-
hood

C-index
0.67-0.88
AUC
0.63-0.89
KM (2)

Yala et al.
(2021)

risk clas-
sification
per year

Xray
91,520
pa
295,002
im

ResNet +
Transformer
aggregation +
hazard pred

log likeli-
hood

C-index
0.76-0.81
1-5-year
AUROCs
(0.76-0.90)

174



SUPPLEMENTARY MATERIAL A.2. SURVIVAL PREDICTION

A.2 Survival prediction

This section includes additional result tables and plots for the experiments con-

ducted in section 5.7 Experiments.

A.2.1 Multiple images

Table A.2.1: Results when combining the prediction of multiple images per pa-
tient. Values are the mean of five training runs with the standard deviation in
parentheses. For d-calibration (D-cal.), only failure (f) or pass (p) is indicated.
The best results are marked in bold.

Validation set AUC ↑ C-index ↑ Brier ↓ D-cal.

ISUP 0.80 0.75 -

Surv1∩Surv2 0.77 (0.0039) 0.75 (0.0013) 0.104 (0.0005) p

Surv2∩Surv1 0.74 (0.0069) 0.72 (0.0055) 0.134 (0.0287) f

mean 0.79 (0.0049) 0.76 (0.0067) 0.109 (0.0064) f

pessimistic 0.77 (0.0136) 0.74 (0.0106) 0.133 (0.0305) f

optimistic 0.77 (0.0078) 0.76 (0.0039) 0.104 (0.0027) p

concatenated 0.79 (0.0066) 0.76 (0.0056) 0.115 (0.0147) f

Test set

ISUP 0.82 0.76 -

Surv1∩Surv2 0.76 (0.0050) 0.73 (0.0038) 0.114 (0.0006) p

Surv2∩Surv1 0.72 (0.0077) 0.70 (0.0029) 0.135 (0.0205) p

mean 0.77 (0.0019) 0.74 (0.0030) 0.115 (0.0032) f

pessimistic 0.76 (0.0085) 0.73 (0.0061) 0.133 (0.0227) f

optimistic 0.75 (0.0060) 0.73 (0.0015) 0.115 (0.0025) p

concatenated 0.77 (0.0036) 0.74 (0.0049) 0.121 (0.0102) p
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A.2.2 Multimodal data input

Table A.2.2: Results when using only the image or adding PSA value, tumor
diameter, and volume to eCaReNet. Values are the mean of five training runs
with the standard deviation in parentheses. For d-calibration (D-cal.), all chi-
square tests pass (p). The best results are marked in bold. dm: tumor diameter,
vol: tumor volume.

Validation set AUC ↑ C-index ↑ Brier ↓ D-cal.

ISUP 0.79 0.77 -

image only 0.77 (0.0069) 0.77 (0.0026) 0.105 (0.0015) p

+age 0.76 (0.0065) 0.76 (0.0037) 0.107 (0.0011) p

+psa 0.78 (0.0069) 0.78 (0.0035) 0.103 (0.0021) p

+dm 0.80 (0.0038) 0.79 (0.0034) 0.100 (0.0009) p

+vol 0.81 (0.0110) 0.80 (0.0044) 0.099 (0.0024) p

+age+psa+dm+vol 0.81 (0.0085) 0.80 (0.0027) 0.097 (0.0025) p

+psa+dm+vol 0.81 (0.0040) 0.80 (0.0025) 0.097 (0.0008) p

Test set

ISUP 0.77 0.76 -

image only 0.75 (0.0051) 0.74 (0.0028) 0.112 (0.0012) p

+age 0.75 (0.0073) 0.74 (0.0051) 0.113 (0.0015) p

+psa 0.76 (0.0058) 0.75 (0.0044) 0.111 (0.0016) p

+dm 0.79 (0.0069) 0.77 (0.0051) 0.108 (0.0021) p

+vol 0.77 (0.0052) 0.76 (0.0024) 0.108 (0.0022) p

+age+psa+dm+vol 0.79 (0.0063) 0.77 (0.0068) 0.106 (0.0020) p

+psa+dm+vol 0.79 (0.0033) 0.77 (0.0038) 0.106 (0.0007) p
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A.3 Robustness

This section includes additional result tables and plots for the experiments con-

ducted in section 6.4 Experiments.

A.3.1 OOD threshold variation
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(a) The model performance increases on SurvThick, when removing more and more
OOD samples. 177 samples are left in the ID set. The Brier score improves to 0.133,
the AUC increases to 0.70.
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(b) The model performance increases on SurvLongStain when removing more and more
OOD samples. 230 patients are left in the ID set. The Brier score improves to 0.124,
the AUC increases to 0.68.
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(c) The model performance remains similar on Surv2, when removing more and more
OOD samples. 1,403 ID samples are left. The Brier score improves to 0.121, the AUC
remains at 0.70.
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(d) The model performance increases on SurvScan, when removing more and more
OOD samples. The threshold is not reduced to 41.7 since too few patients would be left
for evaluation.
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(e) The model performance increases on SurvPCBN, when removing more and more
OOD samples. The threshold is not reduced to 41.7 since too few patients would be left
for evaluation.

Figure A.3.1: For different datasets, the influence of the OOD threshold on Brier
score and AUC are visualized. The dots show the Brier scores in the left, AUCs in
the right plots. The bars indicate the test set sizes, which decrease with removal
of OOD samples.
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A.3.2 Results using OOD detection and ClusterMatch

Table A.3.1: Results of eCaReNet on different test datasets after applying Clus-
terMatch (CM) and keeping only in-distribution (ID) samples afterward. Best
results are marked in bold. For d-calibration (D-cal.), only pass (p) or failure (f)
is indicated. For better readability, subscripts like ∩Surv1 are omitted when CM or
ID is indicated.

Test set AUC ↑ C-index ↑ Brier ↓ D-cal.

Surv1∩Surv2 0.77 0.74 0.112 p

Surv2∩Surv1 0.71 0.69 0.120 p

Surv2CM 0.71 0.70 0.119 p

Surv2ID 0.70 0.69 0.121 p

Surv2∩SurvDiff 0.69 0.67 0.129 p

SurvLongStain∩SurvDiff 0.66 0.66 0.132 p

SurvLongStainCM 0.64 0.64 0.132 p

SurvLongStainID 0.67 0.66 0.126 p

SurvThick∩SurvDiff 0.67 0.66 0.136 p

SurvThickCM 0.67 0.66 0.133 p

SurvThickID 0.68 0.68 0.129 p

SurvThin∩SurvDiff 0.57 0.57 0.142 p

SurvThinCM 0.61 0.62 0.135 p

SurvThinID 0.68 0.67 0.113 p

Surv1∩SurvScan 0.79 0.75 0.103 p

SurvScan∩Surv1 0.52 0.52 0.142 f

SurvScanCM 0.71 0.69 0.114 f

SurvScanID 0.70 0.71 0.105 p

SurvPCBN 0.53 0.55 0.104 f

SurvPCBNCM 0.61 0.64 0.097 p

SurvPCBNID 0.69 0.71 0.090 p
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Table A.3.2: Results of eCaReNet on different validation datasets after applying
ClusterMatch (CM) and keeping only in-distribution (ID) samples afterward. Best
results are marked in bold. For d-calibration (D-cal.), only pass (p) or failure (f)
is indicated. For better readability, subscripts like ∩Surv1 are omitted when CM or
ID is indicated.

Validation set AUC ↑ C-index ↑ Brier ↓ D-cal.

Surv1∩Surv2 0.77 0.75 0.103 p

Surv2∩Surv1 0.73 0.72 0.111 f

Surv2CM 0.73 0.70 0.111 p

Surv2ID 0.73 0.71 0.109 p

Surv2∩SurvDiff 0.75 0.73 0.112 p

SurvLongStain∩SurvDiff 0.74 0.71 0.115 p

SurvLongStainCM 0.73 0.70 0.118 p

SurvLongStainID 0.73 0.71 0.121 p

SurvThick∩SurvDiff 0.69 0.66 0.124 p

SurvThickCM 0.72 0.67 0.125 p

SurvThickID 0.72 0.69 0.131 p

SurvThin∩SurvDiff 0.48 0.51 0.138 p

SurvThinCM 0.68 0.65 0.128 p

SurvThinID 0.64 0.62 0.109 p

Surv1∩SurvScan 0.79 0.75 0.108 p

SurvScan∩Surv1 0.52 0.53 0.150 f

SurvScanCM 0.71 0.68 0.120 f

SurvScanID 0.72 0.69 0.126 p
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Appendix B

Publications originating from this

thesis

Dietrich, E., Fuhlert, P., Ernst, A., Sauter, G., Lennartz, M., Stiehl, H. S.,

Zimmermann, M., & Bonn, S. (2021). Towards Explainable End-to-End Prostate

Cancer Relapse Prediction from H&E Images Combining Self-Attention Multiple

Instance Learning with a Recurrent Neural Network. In Proceedings of Machine

Learning for Health (Vol. 2020, pp. 38–53). https://ml4health.github.io/

2021/poster_A1.html

Fuhlert, P., Ernst, A., Dietrich, E., Westhaeusser, F., Kloiber, K., & Bonn,

S. (2022). Deep Learning-Based Discrete Calibrated Survival Prediction. IEEE

International Conference on Digital Health (ICDH), 2022, 1–6. https://doi.

org/10.1109/ICDH55609.2022.00034
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hashi, H., Tamboli, P., Tan, P. H., Tètu, B., Tickoo, S., Tomaszewski, J. E.,

Troncoso, P., Tsuzuki, T., True, L. D., Van Der Kwast, T., Wheeler, T. M.,

Wojno, K. J., and Young, R. H. (2005). The 2005 international society of

urological pathology (ISUP) consensus conference on gleason grading of pro-

static carcinoma. American Journal of Surgical Pathology, 29(9):1228–1242.

https://doi.org/10.1097/01.pas.0000173646.99337.b1.

Epstein, J. I., Egevad, L., Amin, M. B., Delahunt, B., Srigley, J. R., Humphrey,

P. A., and the Grading Committee (2016). The 2014 international soci-

ety of urological pathology (ISUP) consensus conference on gleason grading

of prostatic carcinoma – definition of grading patterns and proposal for a

new grading system. American Journal of Surgical Pathology, 40(2):244–252.

https://doi.org/10.1097/PAS.0000000000000530.
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Hufnagl, P. (2021). Artificial intelligence in pathology: From prototype to

product. Journal of Pathology Informatics, 12(13). http://doi.org/10.4103/

jpi.jpi_84_20.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T.,

Andreetto, M., and Adam, H. (2017). MobileNets: Efficient convolutional neural

networks for mobile vision applications. arxiv preprint. http://arxiv.org/

abs/1704.04861.

Howard, F. M., Dolezal, J., Kochanny, S., Schulte, J., Chen, H., Heij, L., Huo, D.,

Nanda, R., Olopade, O. I., Kather, J. N., Cipriani, N., Grossman, R. L., and

Pearson, A. T. (2021). The impact of site-specific digital histology signatures on

deep learning model accuracy and bias. Nature Communications, 12(4423):1–13.

https://doi.org/10.1038/s41467-021-24698-1.

Hsieh, P. F., Li, T. R., Lin, W.-C., Chang, H., Huang, C.-P., Chang, C.-H., Yang,

C. R., Yeh, C.-C., Huang, W.-C., and Wu, H.-C. (2021). Combining prostate

health index and multiparametric magnetic resonance imaging in estimating

the histological diameter of prostate cancer. BMC Urology, 21(1):1–8. http:

//doi.org/10.1186/s12894-021-00928-y.

Hsu, Y.-C., Shen, Y., Jin, H., and Kira, Z. (2020). Generalized ODIN: Detect-

ing out-of-distribution image without learning from out-of-distribution data.

In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR). http://doi.org/10.1109/CVPR42600.2020.01096.

Hu, S., Fridgeirsson, E. A., van Wingen, G., and Welling, M. (2021a). Transformer-

based deep survival analysis. Proceedings of AAAI Spring Symposium on Sur-

vival Prediction - Algorithms, Challenges, and Applications 2021, 2021:1–16.

https://proceedings.mlr.press/v146/hu21a.html.

Hu, Y., Su, F., Dong, K., Wang, X., Zhao, X., Jiang, Y., Li, J., Ji, J., and

Sun, Y. (2021b). Deep learning system for lymph node quantification and

metastatic cancer identification from whole-slide pathology images. Gastric

Cancer, 24(4):868–877. http://doi.org/10.1007/s10120-021-01158-9.

195

http://doi.org/10.1162/neco.1997.9.8.1735
http://doi.org/10.4103/jpi.jpi_84_20
http://doi.org/10.4103/jpi.jpi_84_20
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
https://doi.org/10.1038/s41467-021-24698-1
http://doi.org/10.1186/s12894-021-00928-y
http://doi.org/10.1186/s12894-021-00928-y
http://doi.org/10.1109/CVPR42600.2020.01096
https://proceedings.mlr.press/v146/hu21a.html
http://doi.org/10.1007/s10120-021-01158-9


BIBLIOGRAPHY BIBLIOGRAPHY

Hu, Z., Wang, J., Sun, D., Cui, L., and Ran, W. (2019). How Many Cores Does

Systematic Prostate Biopsy Need?: A Large-Sample Retrospective Analysis.

Journal of Ultrasound in Medicine, 38:1491–1499. http://doi.org/10.1002/

jum.14834.

Huang, G., Liu, Z., van Der Maaten, L., and Weinberger, K. Q. (2017). Densely

connected convolutional networks. In 30th IEEE Conference on Computer Vi-

sion and Pattern Recognition, CVPR, pages 2261–2269. http://doi.org/10.

1109/CVPR.2017.243.

Huang, R., Geng, A., and Li, Y. (2021a). On the importance of gra-

dients for detecting distributional shifts in the wild. In Advances in

Neural Information Processing Systems, volume 34, pages 677–689. Cur-

ran Associates, Inc. https://proceedings.neurips.cc/paper/2021/hash/

063e26c670d07bb7c4d30e6fc69fe056-Abstract.html.

Huang, S., Chaudhary, K., and Garmire, L. X. (2021b). More is better: Recent

progress in multi-omics data integration methods. Frontiers in Genetics, 11.

http://doi.org/10.3389/fgene.2017.00084.

Huang, W., Randhawa, R., Jain, P., Hubbard, S., Eickhoff, J., Kummar,

S., Wilding, G., Basu, H., and Roy, R. (2022). A novel artificial intelli-

gence–powered method for prediction of early recurrence of prostate cancer

after prostatectomy and cancer drivers. JCO Clinical Cancer Informatics.

http://doi.org/10.1200/CCI.21.00131.

Ikromjanov, K., Bhattacharjee, S., Hwang, Y.-B., Sumon, R. I., Kim, H.-C., and

Choi, H.-K. (2022). Whole slide image analysis and detection of prostate cancer

using vision transformers. In 2022 International Conference on Artificial In-

telligence in Information and Communication (ICAIIC), pages 399–402. IEEE.

http://doi.org/10.1109/ICAIIC54071.2022.9722635.

Ilse, M., Tomczak, J. M., and Welling, M. (2018). Attention-based deep multi-

ple instance learning. In Proceedings of the 35th International Conference on

Machine Learning. https://proceedings.mlr.press/v80/ilse18a.html.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network

training by reducing internal covariate shift. International Conference on Ma-

chine Learning – ICML 2015, pages 448–456. https://dl.acm.org/doi/10.

5555/3045118.3045167.

196

http://doi.org/10.1002/jum.14834
http://doi.org/10.1002/jum.14834
http://doi.org/10.1109/CVPR.2017.243
http://doi.org/10.1109/CVPR.2017.243
https://proceedings.neurips.cc/paper/2021/hash/063e26c670d07bb7c4d30e6fc69fe056-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/063e26c670d07bb7c4d30e6fc69fe056-Abstract.html
http://doi.org/10.3389/fgene.2017.00084
http://doi.org/10.1200/CCI.21.00131
http://doi.org/10.1109/ICAIIC54071.2022.9722635
https://proceedings.mlr.press/v80/ilse18a.html
https://dl.acm.org/doi/10.5555/3045118.3045167
https://dl.acm.org/doi/10.5555/3045118.3045167


BIBLIOGRAPHY BIBLIOGRAPHY

Janowczyk, A., Basavanhally, A., and Madabhushi, A. (2017). Stain normalization

using sparse autoencoders (stanosa): Application to digital pathology. Comput-

erized Medical Imaging and Graphics, 57:51–60. http://doi.org/10.1016/j.

compmedimag.2016.05.003.

Jiang, S., Suriawinata, A. A., and Hassanpour, S. (2021). MHAttnSurv : Multi-

head attention for survival prediction using whole-slide pathology images. arxiv

preprint. https://arxiv.org/abs/2110.11558.
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Vujović, Ž. (2021). Classification model evaluation metrics. International Journal

of Advanced Computer Science and Applications, 12(6):599–606.

Vuong, T. T. L., Kim, K., Song, B., and Kwak, J. T. (2021). Joint categorical

and ordinal learning for cancer grading in pathology images. Medical Image

Analysis, 73. https://doi.org/10.1016/j.media.2021.102206.

Walhagen, P., Bengtsson, E., Lennartz, M., Sauter, G., and Busch, C. (2022). AI-

based prostate analysis system trained without human supervision to predict

patient outcome from tissue samples. Journal of Pathology Informatics. https:

//doi.org/10.1016/j.jpi.2022.100137.

Wang, P., Li, Y., and Reddy, C. K. (2019). Machine learning for survival anal-

ysis: A survey. ACM Computing Surveys, 51(6). https://doi.org/10.1145/

3214306.

215

https://doi.org/10.1038/s41592-019-0686-2
https://scipy.org/
https://doi.org/10.1016/j.jbi.2016.03.009
https://doi.org/10.1309/AJCPX5MAMNMFE6FQ
https://doi.org/10.1309/AJCPX5MAMNMFE6FQ
https://doi.org/10.1155/2018/7068349
https://doi.org/10.1016/j.media.2021.102206
https://doi.org/10.1016/j.jpi.2022.100137
https://doi.org/10.1016/j.jpi.2022.100137
https://doi.org/10.1145/3214306
https://doi.org/10.1145/3214306


BIBLIOGRAPHY BIBLIOGRAPHY

Wang, R., Huang, Z., Wang, H., and Wu, H. (2021). AMMASurv: Asymmetrical

multi-modal attention for accurate survival analysis with whole slide images

and gene expression data. In IEEE International Conference on Bioinformatics

and Biomedicine, BIBM 2021. https://doi.org/10.1109/BIBM52615.2021.

9669382.

Wang, S., Liu, Z., Chen, X., Zhu, Y., Zhou, H., Tang, Z., Wei, W., Dong, D.,

Wang, M., and Tian, J. (2018). Unsupervised deep learning features for lung

cancer overall survival analysis. In 26th Annual International Conference of the

IEEE Engineering in Medicine and Biology Society, pages 2583–2586. https:

//doi.org/10.1109/EMBC.2018.8512833.

Williams, B. J., Lee, J., Oien, K. A., and Treanor, D. (2018). Digital pathology

access and usage in the UK: Results from a national survey on behalf of the na-

tional cancer research institute’s CM-path initiative. Journal of Clinical Pathol-

ogy, 71(5):463–466. https://doi.org/10.1136/jclinpath-2017-204808.

Wright, A. I., Dunn, C. M., Hale, M., Hutchins, G. G. A., and Treanor, D. E.

(2021). The effect of quality control on accuracy of digital pathology image

analysis. IEEE Journal of Biomedical and Health Informatics, 25(2):307 – 314.

https://doi.org/10.1109/JBHI.2020.3046094.

Wulczyn, E., Steiner, D. F., Xu, Z., Sadhwani, A., Wang, H., Flament-Auvigne,

I., Mermel, C. H., Chen, P.-H. C. C., Liu, Y., and Stumpe, M. C. (2020). Deep

learning-based survival prediction for multiple cancer types using histopathology

images. PLoS ONE, 15(6):1–18. https://doi.org/10.1371/journal.pone.

0233678.

Xiao, L., Yu, J.-G., Liu, Z., Ou, J., Deng, S., Yang, Z., and Li, Y. (2020).

Censoring-aware deep ordinal regression for survival prediction from patho-

logical images. In Medical Image Computing and Computer Assisted In-

tervention – MICCAI 2020, pages 449–458. https://doi.org/10.1007/

978-3-030-59722-1_43.

Xu, Y., Jia, Z., Wang, L.-B., Ai, Y., Zhang, F., Lai, M., and Chang, E. I.-C.

(2017). Large scale tissue histopathology image classification, segmentation, and

visualization via deep convolutional activation features. BMC Bioinformatics,

18(281). https://doi.org/10.1186/s12859-017-1685-x.

Yala, A., Mikhael, P. G., Strand, F., Lin, G., Smith, K., Wan, Y. L., Lamb,

L., Hughes, K., Lehman, C., and Barzilay, R. (2021). Toward robust

216

https://doi.org/10.1109/BIBM52615.2021.9669382
https://doi.org/10.1109/BIBM52615.2021.9669382
https://doi.org/10.1109/EMBC.2018.8512833 
https://doi.org/10.1109/EMBC.2018.8512833 
https://doi.org/10.1136/jclinpath-2017-204808
https://doi.org/10.1109/JBHI.2020.3046094
https://doi.org/10.1371/journal.pone.0233678
https://doi.org/10.1371/journal.pone.0233678
https://doi.org/10.1007/978-3-030-59722-1_43
https://doi.org/10.1007/978-3-030-59722-1_43
https://doi.org/10.1186/s12859-017-1685-x


BIBLIOGRAPHY BIBLIOGRAPHY

mammography-based models for breast cancer risk. Science Translational

Medicine, 13. https://doi.org/10.1126/scitranslmed.aba4373.

Yamamoto, Y., Tsuzuki, T., Akatsuka, J., Ueki, M., Morikawa, H., Numata, Y.,

Takahara, T., Tsuyuki, T., Tsutsumi, K., Nakazawa, R., Shimizu, A., Maeda,

I., Tsuchiya, S., Kanno, H., Kondo, Y., Fukumoto, M., Tamiya, G., Ueda, N.,

and Kimura, G. (2019). Automated acquisition of explainable knowledge from

unannotated histopathology images. Nature Communications, 10(1). https:

//doi.org/10.1038/s41467-019-13647-8.

Yan, G. and Greene, T. (2008). Investigating the effects of ties on measures of

concordance. Statistics in Medicine, 27:4190 – 4206. https://doi.org/10.

1002/sim.3257.

Yan, X., Zhang, H., Xu, X., Hu, X., and Heng, P.-A. (2021). Learning seman-

tic context from normal samples for unsupervised anomaly detection. In The

Thirty-Fifth AAAI Conference on Artificial Intelligence. https://doi.org/

10.1609/aaai.v35i4.16420.

Yang, J., Chen, J., Kuang, K., Lin, T., He, J., and Ni, B. (2020). MIA -prognosis

: A deep learning framework to predict therapy response. In Medical Image

Computing and Computer Assisted Intervention – MICCAI 2020, volume 4,

pages 211–220. Springer International Publishing. https://doi.org/10.1007/

978-3-030-59713-9_21.

Yang, J., Zhou, K., Li, Y., and Liu, Z. (2021). Generalized out-of-distribution

detection: A survey. arxiv preprint, pages 1–20. http://arxiv.org/abs/2110.

11334.

Yao, J., Zhu, X., Jonnagaddala, J., Hawkins, N., and Huang, J. (2020). Whole slide

images based cancer survival prediction using attention guided deep multiple

instance learning networks. Medical Image Analysis, 65. https://doi.org/

10.1016/j.media.2020.101789.

Yuan, X. and Rai, S. N. (2011). Confidence intervals for survival probabilities: A

comparison study. Communications in Statistics: Simulation and Computation,

40(7):978–991. https://doi.org/10.1080/03610918.2011.560732.

Yue-Hei Ng, J., Hausknecht, M., Vijayanarasimhan, S., Vinyals, O., Monga, R.,

and Toderici, G. (2015). Beyond short snippets: Deep networks for video classi-

217

https://doi.org/10.1126/scitranslmed.aba4373
https://doi.org/10.1038/s41467-019-13647-8
https://doi.org/10.1038/s41467-019-13647-8
https://doi.org/10.1002/sim.3257
https://doi.org/10.1002/sim.3257
https://doi.org/10.1609/aaai.v35i4.16420
https://doi.org/10.1609/aaai.v35i4.16420
https://doi.org/10.1007/978-3-030-59713-9_21
https://doi.org/10.1007/978-3-030-59713-9_21
http://arxiv.org/abs/2110.11334
http://arxiv.org/abs/2110.11334
https://doi.org/10.1016/j.media.2020.101789
https://doi.org/10.1016/j.media.2020.101789
https://doi.org/10.1080/03610918.2011.560732


BIBLIOGRAPHY BIBLIOGRAPHY

fication. In 2015 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR). https://doi.org/10.1109/CVPR.2015.7299101.

Zeng, X.-D., Chao, S., and Wong, F. (2010). Optimization of bagging classifiers

based on SBCB algorithm. In Proceedings of the Ninth International Conference

on Machine Learning and Cybernetics, number Jul, pages 262–267. https:

//doi.org/10.1109/ICMLC.2010.5581054.

Zhang, A., Lipton, Z. C., Li, M., and Smola, A. J. (2021a). Dive into Deep

Learning. https://d2l.ai/ (last accessed October 19, 2022).

Zhang, J., Ma, K., Van Arnam, J., Gupta, R., Saltz, J., Vakalopoulou, M., and

Samaras, D. (2021b). A joint spatial and magnification based attention frame-

work for large scale histopathology classification. IEEE Computer Society Con-

ference on Computer Vision and Pattern Recognition Workshops, pages 3771–

3779. https://doi.org/10.1109/CVPRW53098.2021.00418.

Zhang, Z., Beck, M. W., Winkler, D. A., Huang, B., Sibanda, W., and Goyal, H.

(2018). Opening the black box of neural networks: methods for interpreting neu-

ral network models in clinical applications. Annals of Translational Medicine,

6(11):216–216. https://doi.org/10.21037/atm.2018.05.32.

Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., and Torralba, A. (2016). Learn-

ing deep features for discriminative localization. In 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pages 2921–2929. IEEE.

https://doi.org/10.1109/CVPR.2016.319.

Zhou, T., Fu, H., Zhang, Y., Zhang, C., Lu, X., Shen, J., and Shao, L. (2020).

M2Net: Multi-modal multi-channel network for overall survival time predic-

tion of brain tumor patients. In Medical Image Computing and Computer As-

sisted Intervention – MICCAI 2020, pages 221–231. https://doi.org/10.

1007/978-3-030-59713-9_22.

Zhou, Y., Onder, O. F., Dou, Q., Tsougenis, E., Chen, H., and Heng, P.-

A. (2019). CIA-Net: Robust nuclei instance segmentation with contour-

aware information aggregation. In Information Processing in Medical Imaging,

pages 682–693. Springer International Publishing. https://doi.org/10.1007/

978-3-030-20351-1_53.

Zhu, X., Yao, J., and Huang, J. (2016). Deep convolutional neural network

for survival analysis with pathological images. In 2016 IEEE International

218

https://doi.org/10.1109/CVPR.2015.7299101
https://doi.org/10.1109/ICMLC.2010.5581054
https://doi.org/10.1109/ICMLC.2010.5581054
https://d2l.ai/
https://doi.org/10.1109/CVPRW53098.2021.00418
https://doi.org/10.21037/atm.2018.05.32
https://doi.org/10.1109/CVPR.2016.319
https://doi.org/10.1007/978-3-030-59713-9_22
https://doi.org/10.1007/978-3-030-59713-9_22
https://doi.org/10.1007/978-3-030-20351-1_53
https://doi.org/10.1007/978-3-030-20351-1_53


BIBLIOGRAPHY BIBLIOGRAPHY

Conference on Bioinformatics and Biomedicine (BIBM), pages 544–547. IEEE.

https://doi.org/10.1109/BIBM.2016.7822579.

Zhu, X., Yao, J., Zhu, F., and Huang, J. (2017). WSISA: Making survival

prediction from whole slide histopathological images. In 2017 IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR), pages 7234–7242.

https://doi.org/10.1109/CVPR.2017.725.

Zuley, M. L., Jarosz, R., Drake, B. F., Rancilio, D., Klim, A., Rieger-Christ,

K., and Lemmerman, J. (2016). The cancer genome atlas prostate ade-

nocarcinoma collection (tcga-prad) (version 4) [dataset]. the cancer imag-

ing archive. https://wiki.cancerimagingarchive.net/pages/viewpage.

action?pageId=6884022.

219

https://doi.org/10.1109/BIBM.2016.7822579
https://doi.org/10.1109/CVPR.2017.725
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=6884022
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=6884022


Eidesstattliche Versicherung
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