
Essays on the Interdependencies and

Linkages between the Real Economy and

Financial Markets

Interactions of Monetary and Fiscal Policy and Asset Prices in

General Equilibrium Models

Universität Hamburg

Fakultät für Wirtschafts- und Sozialwissenschaften

Dissertation

Zur Erlangung der Würde der Doktorin/des Doktors der

Wirtschafts- und Sozialwissenschaften
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Synopsis

S.1 Motivation

We live in a time of pandemics, unprecedented large-scale fiscal stimulus packages, central

banks that where for years constrained by the Zero Lower Bound (ZLB) of the nominal

interest rate, sky-rocketing debt levels and a recent surge in inflation, with rates not seen

since the 1980s. These examples highlight the importance of developing and evaluating

New Keynesian (NK) models not from a predominantly monetary driven point of view,

but to reconcile the close interplay and linkages of monetary policy with fiscal policy

and asset prices. A prominent example is the inflation rate, which has been largely

centered around monetary policy in macroeconomic models in the last decades. Our task

as macroeconomists is the aggregation of economic and financial variables in a way that

enables us to reconcile basic patterns and linkages in the data. Against this background,

the main motivation for this doctoral thesis is the conceptualization of linkages between

monetary policy, asset prices and fiscal policy.

A guiding theme throughout this dissertation is the link between the price of gov-

ernment bonds and macroeconomic aggregates. The asset pricing of government bonds

plays a crucial role in the estimation of structural parameters of macroeconomic models

with financial data in Chapter 1. The interplay of bond prices and monetary and fiscal

policy has important implications for the dynamic of macroeconomic models in Chap-

ters 2 and 3. Interdependencies of macroeconomic and financial variables are especially

highlighted when deriving the asset pricing kernel in Chapter 1 and when computing the

term structure of the interest rate in Chapter 2. While the first essay considers a general

macro-finance framework, the other two essays focus on monetary and fiscal linkages and

interdependencies in New Keynesian models.

The first part of this doctoral thesis is devoted to exploiting financial data in the

estimation of structural parameters of macroeconomic models. The motivation for doing

so are limited availability, publication lags and revisions of macro data. Financial data,

backed by the rapid emergence of availability and data science, offer an additional source

of information. As a consequence, it is difficult to believe that macroeconomists can lightly

dismiss financial data, which potentially contains information on the state of the economy.
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One of the most obvious linkages of macro and finance in dynamic stochastic general

equilibrium (DSGE) models is the stochastic discount factor (SDF), which allows to price

any asset consistently with macro dynamics. Thus, in a joint macro-finance framework, the

dynamics of observed macroeconomic aggregates and financial data should be replicated by

the economic model. Consequently, estimating the model with macro and/or finance data

should always yield the same structural parameter values. This motivates the comparison

and evaluation of structural parameter estimates in Chapter 1.

The second part of this doctoral thesis addresses the relationship between monetary

and fiscal policy in the New Keynesian framework. The Fiscal Theory of the Price Level

(FTPL) is a relatively simple but powerful macroeconomic modeling framework that es-

tablishes a close link of macro variables to the price of government bonds with arbitrary

maturities. In particular, the determination of the price level follows from tight and ex-

plicit interactions of bond prices as well as monetary and fiscal policy. The central equation

in the FTPL framework is a government debt valuation equation, which for a given price

level asserts a value to the supply of government bonds. The real value of debt, in turn,

is anchored by the expected real present value of future primary surpluses. Consequently,

every asset pricing re-evaluation of existing government bonds instantaneously affects the

real value of debt. A no-arbitrage condition relates bond prices along the whole maturity

spectrum and at any point in time to the nominal interest rate. Thus, inflation dynamics

are driven by a mix of fiscal and monetary policy as well as the maturity structure of debt.

Especially the last feature motivates the analysis of the term structure of the interest rates

in the second chapter of this doctoral thesis.

While policy analysis in Chapter 2 mostly occurs within the boundaries of existing

continuous-time NK models with FTPL, Chapter 3 offers an extension to the NK-FTPL

framework in the literature by introducing capital. An explicit evaluation of FTPL in

continuous-time NK-models with capital is basically a blank spot in the existing literature.

Thus, the third part of this doctoral thesis is devoted to fill this gap and offers an extensive

description of model features and applications. The focus of this section is more on the

macro- rather than the financial dimension of the model.

The following sections offer a short description of the design, the results and the main

contributions of the three essays of this doctoral thesis.

S.2 Macro-Finance Linkages in Structural Estimation

The first chapter of this doctoral thesis is based on the paper ”Structural Estimation of

Dynamic Macroeconomic Models using Financial Data”, which is joint work with Olaf

Posch and Michel van der Wel. This essay suggest a general approach to estimate the

structural parameters of macroeconomic models using financial data. Starting from a class

of dynamic equilibrium models, the essay shows how to derive the stochastic discount fac-
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tor, which is used to price financial assets consistently with macroeconomic dynamics.

Subsequently, the essay processes finance and macro variables into estimation equations

that are used in different combinations in the estimation of the structural parameters. Af-

ter evaluating various systems of macro and finance estimation equation in a simulation

study, the essay builds on these insights in the empirical estimation. The latter exploits

treasury bonds, macro variables, the S&P500 stock index as well corresponding future

data.

A central contribution of this essay is the formulation of a general approach to esti-

mate structural parameters for a class of dynamic equilibrium models using macro and

finance data. Even though, analytical solutions are not required for this approach, a

simple macroeconomic model with available close-form solution is utilized in order to il-

lustrate each step. The corresponding simulation study suggest that one can in principal

estimate all structural parameters from finance data alone. Thus, the paper contributes

new insights on the feasibility and the benefits and drawbacks of using finance data in

the structural estimation of macroeconomic models. As it turns out, using finance data

either as a substitute or a complement improves parameter identification and increases

the accuracy of the estimates. This holds especially true when using only first moments in

the estimation. It is well established in the literature that the estimation of the considered

Vasicek interest rate specification yields one biased parameter value. Against this back-

ground, another notably contribution of this essay is a nearly complete bias correction (in

absolute terms) by simply using stock or future data in the estimation. In summary, the

essay highlights that structural parameter estimation of macro models can benefit from

exploiting different financial asset classes. This applies even in case of small and simple

models without explicitly incorporated financial sector.

S.3 FTPL and the Maturity Structure of Govern-

ment Debt

The underlying research paper to the second essay of this doctoral thesis is called ”FTPL

and the maturity structure of government debt in the New-Keynesian Model”, which is

a joint work with Olaf Posch. This essay revisits FTPL within the NK framework (see

e.g. Sims (2011), Leeper and Leith (2016), Cochrane (2018) or Cochrane (2022b)). The

focus is on the importance of the maturity of government bonds for macro dynamics.

Considering fiscal and monetary policy shocks, this chapter emphasizes the analysis of

model-implied expectations, the term structure of interest rate and transmission chan-

nels. After the theoretical evaluation, the essay takes the model to the data and addresses

the US Coronavirus Aid, Relief and Economic Security (CARES) Act.

viii



A minor contribution of this essay is a translation of the discrete-time FTPL and debt

maturity analysis of Leeper and Leith (2016) into a continuous-time framework. This for-

mulation allows for a more clear-cut analysis of maturity effects because inflation dynam-

ics are partly driven by a pure asset pricing channel. While the existing FTPL literature

mostly focuses on transitory shocks, this chapter contributes an elaborate evaluation of

fully or partly permanent shocks. Furthermore, in contrast to existing simple NK-FTPL

models in the literature, surplus rules are implemented as ”Fiscal Taylor Rules” in the

spirit of Kliem and Kriwoluzky (2014) and Kliem et al. (2016). By splitting primary sur-

pluses into taxes and government expenditures, the essay contributes a novel evaluation

of the CARES Act through the lens of FTPL. In particular, it quantifies the effects of

the large-scale stimulus package and discusses conditions for a surge in inflation. Further

examples are offered in terms of combinations of transitory and permanent shock com-

ponents. Finally, this chapter contributes theoretical evaluations of the term-structure of

interest rates and model-implied inflation expectation in the NK-FTPL framework with

different maturities of government bonds.

S.4 Capital in the NK-FTPL Framework

The final essay of this doctoral thesis is based on my paper ”The Fiscal Theory of the

Price Level in New Keynesian Models with Capital”. I start from the simple NK-FTPL

framework of chapter 2 and introduce capital and capital adjustment costs. I show that

in the absence of capital adjustment costs, the dynamics of the capital rental rate and

the real interest rate coincide (cf. Dupor (2001) or Posch and Wang (2020)). This is a

continuous-time specific feature. As a consequence, contractionary monetary policy shocks

are expansionary and increase output and inflation. After introducing capital adjustment

costs as a remedy, I evaluate model dynamics, determinacy conditions and tackle two

puzzles in the literature.

Since continuous-time NK-FTPL models with capital are little covered in the existing

literature, filling this gap is a central contribution of this essay. Thus, by developing

and analyzing this novel framework, the essay contributes to the literature in various di-

mensions. The proposed model offers an important benchmark framework, as it allows

analyzing interactions of fiscal and monetary policy, government debt, investments as well

as capital, in a joint, simple and consistent framework. The essay presents an elaborate

discussion on determinacy, transmission channels as well as the conceptual and theoret-

ical underpinning of NK models with capital and FTPL. One of the main contributions

of this essay is a novel approach to explicitly utilize FTPL in order to solve two eco-

nomic puzzles. The first puzzle is the Crowding-In Consumption Puzzle, which refers
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to a mismatch of theoretically predicted and actual observed responses of consumption

to changes in government expenditures. The essay shows that FTPL allows for either a

crowding-in or a crowding-out effect of consumption. At the same time, the essay further

contributes a consistent evaluation of the responses of investments. The model predicts

a (at least temporary) crowding-in of investments. The second puzzle is the prediction

of expansionary effects of capital destruction at the ZLB in the standard NK framework.

Again, the NK model with FTPL and capital adjustment costs is able to explain either an

expansionary or a contractionary output response. Thus, the essay contributes an explicit

modeling framework to evaluate the puzzling behavior of NK models at the ZLB and of-

fers a novel evaluation of the Great East Japan Earthquake of 2011 (Tōhoku Earthquake).

Finally, FTPL models in the literature usually rely on long-term bonds in order to obtain

a negative relationship between the nominal interest and the inflation rate. This essay

contributes a new way to obtain the desired relationship with short-term bonds.
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Chapter 1

Structural Estimation of Dynamic Macroeconomic

Models using Financial Data

with Olaf Posch and Michel van der Wel

Abstract

In this paper we show how financial data can be used in a combined macro-finance

framework to estimate the underlying structural parameters. For this purpose, we intro-

duce a general estimation approach that is applicable to a whole class of macroeconomic

models and translates them into systems of macro and finance estimation equations. Our

formulation allows for consistently substituting macro variables by asset prices in a way

that enables casting the relevant estimation equations partly (or completely) in terms of

financial data. We illustrate the approach with a model specification with analytical solu-

tions. We show that all structural parameters can basically be estimated from finance data

alone, and discuss benefits and drawbacks of substituting and adding financial variables.

In our simulation study, we find that financial data can improve the identification and

accuracy of the parameter estimates. In the empirical application we use treasury bonds,

macro variables, the S&P500 stock index as well corresponding future data. Our findings

highlight that substituting and complementing macroeconomic variables by asset prices

is not only feasible but in some cases also preferable. We achieve the best performance

from a combination of bond, output and S&P500 data.
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1.1 Introduction

The most vital macroeconomic data, such as output, consumption or inflation data, only

appear with time lags and are subject to substantial revisions. This raises the question,

whether readily available financial data is able to offer insights into the state of macroe-

conomic aggregates, and if so, how to exploit these information. Closely related to this

question, is an important lesson learned from the financial crisis 2007/2008: The need

for a joint framework, which overcomes the traditional separation of macroeconomics and

finance. A large literature developing models at the intersection of macro and finance has

emerged in which the asset pricing kernel is consistent with the macroeconomic dynamics

(e.g. Rudebusch and Wu (2008), Rudebusch and Swanson (2016), Gürkaynak and Wright

(2012), Joslin et al. (2014), Bauer and Rudebusch (2020)).1 Although most of these pa-

pers do focus on the interaction of macro variables, fiscal and monetary policy, and their

implications for the term structure of interest rates, an open question remains to what

extent financial data eventually can be useful to complement or replace macroeconomic

variables in structural estimation.

In this paper we shed light on how macroeconomic variables and financial data can

be linked and what do we learn by connecting asset returns to macroeconomics. In a

joint macro-finance framework both dynamics of observed aggregate and financial data

should be replicated by the economic model. An important step in model comparison and

evaluation is the estimation of its structural parameters. Against this background, we

exploit the asset pricing implications of a macro-finance model in order to cast the rele-

vant estimation equations partly or completely in terms of financial data. This allows us

to estimate the structural parameters using financial data, macroeconomic data, and/or

a combination of these. Our motivation for doing so is that macro data, in contrast to

financial data, are usually available at lower frequencies, appear with significant publica-

tions lag and often with large measurement errors, which can result into poor data quality.

These difficulties become further intensified by macro data being subject to substantial

revisions. Finally, important variables, such as the aggregate capital stock or say the out-

put gap are highly controversial objects, heavily debated and are not easily comparable

across countries. Given the rapid emergence of data availability and data science, it is

hard to imagine that macroeconomists can safely ignore financial data as an additional

source of information. At the same time, for many applications it is important to keep the

analysis linked to economic theory. In fact, macro-finance is typically understood as being

the link between economic fluctuations and asset prices. Thus, given the relatively high

volatility of financial data, we investigate the informational content of empirical financial

1There is a tradition of using the stochastic discount factor, implied by macro models, to derive asset
prices that are consistent with macro dynamics (e.g. Cochrane (2005), Hansen and Scheinkman (2009),
Christensen et al. (2016), Christensen (2017).
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data. For this purpose, we utilize interest rates data as well as the prices of bonds, stocks

and futures for the identification of parameters of the underlying macroeconomic model.

Our aim is to provide new insights into the use of financial data in simple macro-finance

models, and to derive implications for the estimation of more elaborated models.

Our approach to answer whether financial data is useful to complement (or replace)

macroeconomic data is as follows. We introduce a generalized formulation that closely

relates to Parra-Alvarez et al. (2021) and is applicable to a wide class of dynamic stochastic

equilibrium models. This formulation allows representing macroeconomic variables in the

form of a system of second-order partial differential equations (PDEs). Having found

the solution of the model, the stochastic discount factor, i.e., the unique asset pricing

kernel, can be used to consistently price any financial asset. The resulting system of

macro and finance variables can then be utilized to estimate the structural parameters of

the original DSGE model. We illustrate this approach by turning to a model specification

with analytical solutions, so that each step remains fully traceable and comprehensible.

It is important to stress, however, that analytical solutions are not required and the

approach can readily be applied to elaborate models. After defining various financial

claims, we compute their price dynamics and cast the model’s equilibrium dynamics in

terms of structural parameters as well as observed financial data alone, or combined with

macro data. We then estimate the structural parameters of the model with different

specifications and different types of financial data. We study the effects on parameter

estimates both in a simulation study and empirically, using interest rate and macro as

well as S&P500 stock index and future data. Our results, obtained from simulations and

empirical estimations, indicate that using a combined macro-finance framework not only

improves the identification of structural parameters, but also increases the accuracy of

the estimates. Thus, our results indicate that financial data can be a useful substitute or

complement. This holds especially true when macro variables remain unobserved, are only

available at low frequencies or have a poor quality (e.g., due to revisions and publication

lags). In some macro-finance formulations with stock or future data, the accuracy of

estimates increases in a way that a widely known upward bias in one of the parameter of

the Vasicek interest rate specification basically vanishes in absolute terms. Thus, there is

no need for bias corrections as proposed by Tang and Chen (2009). All in all, we achieve

the best performance from a macro-finance combination of bond, output and S&P500

data.

Structural parameter estimation is an ubiquitous topic in the empirical DSGE lit-

erature. While macroeconomic models become more complex, more elaborate methods

are necessary to retrieve their structural parameters. What ones started by simple cal-

ibrations, along the lines of Kydland and Prescott (1982), now takes the form of highly

sophisticated econometric methods. Our research questions focus less on the method-

ological but more on the data side. Although likelihood-based methods are common to
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estimate, we suggest to use Generalized Method of Moments (GMM) and Martingale

Estimation Function (MEF).2

We borrow the methodological framework of Christensen et al. (2016), who show how

to estimate the structural parameters of a stochastic AK model from a system of stochastic

differential equations using bond, output and consumption data. Starting from our general

framework, we use their model and show that alternative combinations of macro and

financial estimation equations can improve identification and accuracy of the parameter

estimates. We further deviate from Christensen et al. (2016) by comparing bootstrapped

measures of dispersion (confidence intervals, medians and IQRs), which allows a in-depth

comparison of empirical estimates. Our paper also relates to Tang and Chen (2009), who

evaluate biased parameter estimates in diffusion processes. In particular, they analyze the

Vasicek interest rate specification and show why estimates of the drift parameter κ, which

measures the speed of mean reversion, can be upward biased by more than 200%. They

highlight that a lack of interest rate dynamics (small values of κ) induce higher upward

biases. As a remedy, they develop a parametric bootstrap procedure that corrects the bias.

In our framework, we obtain comparable estimation results by utilizing combinations of

interest rate, consumption and stock or future data. Even though, we still estimate a

biased κ, there is a strong accuracy gain, which basically removes the bias in absolute

terms.

Our strategy is conceptually similar to the one pursued by Guerrón-Quintana (2010),

who analyses the effects of estimating DSGEmodels with different combinations of macroe-

conomic observables. In a first step Guerrón-Quintana (2010) uses a macroeconomic data

set in order to estimate the structural parameters of a medium-scale DSGE model. In a

second step, he uses the same data set to re-estimate the parameters, but always drops

one of the variables at a time. The results indicate that the exclusion of certain variables

can cause highly biased parameter estimates and even reverse model implications. Boivin

and Giannoni (2006) also emphasize the role of data and highlight that the choice and

especially the number of different macroeconomic time series can improve both accuracy

and inference. Their study highlights that in some instances the use of comparably smaller

data sets precludes the extraction of all relevant information. As suggested by our paper,

smaller models, where only a limited number of macroeconomic time series are empir-

ically observable, may profit from exploiting additional financial time series. Liew and

Vassalou (2000) analyze the informational content of financial data on macroeconomic

aggregates. Their study indicates that financial data can offer significant information on

the growth rate of future GDP. Finally, Fernández-Villaverde and Rubio-Ramı́rez (2007)

analyze whether structural parameters are indeed invariant to interventions, or if there

is a drift in parameter values. For this purpose, they re-estimate a medium-scale DSGE

2See Fernández-Villaverde and Guerrón-Quintana (2020) for a discussion of recent advantages in the
estimation of DSGE models, including fields like machine learning and tempered particle filters.
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model several times, each time allowing one parameter at a time to drift. They conclude

that there are substantial drifts in certain parameters throughout their sample period

from 1955 to 2000, which casts doubt on their structural nature in the spirit of Hurwicz

(1966). The sample size for macroeconomic variables is limited by the start and the end

of the coverage as well as the frequency (e.g. annual or quarterly). When turning instead

to financial data with a higher frequency (e.g. monthly or daily), one can increase the

sample size without the need to increase the considered period length. This may provide

sufficient observations to estimate the structural parameters for a comparably shorter pe-

riod of time and for smaller sub-samples. This in turn may circumvent or at least unveil

the problem of parameter drifts.

Our paper contributes to different fields in the literature. We propose a readily appli-

cable approach to estimate structural parameters of macroeconomic models with financial

data, and contribute new insights on benefits, drawbacks as well as the feasibility of sub-

stituting and complementing macro with finance data. We find that finance data can

improve accuracy and identification, which contributes to the discussion on the informa-

tional content of financial data on macroeconomic aggregates. We also contribute to the

literature on bias corrections of the mean-reverting Vasicek interest rate specification. Fi-

nally, we highlight that structural estimation can benefit from exploiting financial data

even in case of small-scale macroeconomic models without explicitly modeled financial

sector.

The rest of the paper is structured as follows. Section 1.2 describes the framework,

derives the general equilibrium prices for different financial claims and outlines the systems

of equilibrium equations that we use in the estimation. In section 1.3 we describe the

estimation method and before turning to the empirical estimation, we conduct a simulation

study to analyze the effects of using financial data in addition or as substitute in the

parameter estimation. Section 1.4 concludes.

1.2 The Model

In what follows we present a class of dynamic equilibrium models. We show how to

derive the stochastic discount factors and how to price financial assets consistently with

macroeconomic dynamics. For reasons of clarity our approach will be illustrated by using

analytical solutions. We do so to highlight the underlying mechanisms and to keep track

of each step in processing the model for estimation. Hence, close-form analytical solutions

are not required for the suggested approach and can readily be extended to more elaborate

models.
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1.2.1 Solution

Consider the class of dynamic equilibrium economies that can be represented in the form

of a system of second-order partial differential equations (PDEs), which covers a wide

range of dynamic equilibrium models and is studied (and solved) in Parra-Alvarez et al.

(2021),

H (x,y,yx,yxx;ϕ) = 0, (1.1)

where x is an nx×1 vector of state variables, y is an ny×1 unknown vector of endogenous

variables, yx is the ny × nx Jacobian matrix and yxx is an ny × n2
x array of second-order

derivatives, and ϕ is the nϕ × 1 vector of structural parameters of the model.3

The functional operator H : Rnx × Rny × Rny×nx × Rny×n2
x 7→ Rny stacks the second-

order PDEs associated with the endogenous variables. The dynamics of the state vector

x can be compactly represented by the following system of controlled SDEs

dx = b (x,u) dt+ σ (x) dw, x(0) = x0 given, (1.2)

where b is the nx×1 drift vector, u the vector-valued function of controls u = U(x,y,yx)

with U : Rnx×ny×ny×nx 7→ Rnu , and σ is the nx×nx diffusion matrix coupled with an nx×1

vector of standard (uncorrelated) Brownian motions w such that Σ (x) = σ (x)σ (x)⊤ is

the state vector’s nx × nx variance-covariance matrix.

For notational convenience, we may focus on the family of rational expectations models

where (1.1) takes the form of a system of second-order quasilinear PDEs

H (x,y,yx,yxx;ϕ) := a (x,y,yx) + yxb (x,u) + yxxc (x) , (1.3)

in which y is an ny × 1 unknown vector of only costate variables, a is the ny × 1 vector, b

is the nx×1 drift vector of the state variables in (1.2), and c is an n2
x×1 vector associated

with the variance-covariance matrix Σ. Both systems (1.1) and (1.3) summarize the

necessary conditions for optimality from the Hamilton-Jacobi-Bellman (HJB) equation.

The solution of the model in (1.1) is given by a set of policy functions

y = g (x;ϕ) , (1.4)

where the vector-valued function g : Rnx 7→ Rny reduces (1.1) to an identity. Note that

this function also determines yx = gx (x;ϕ) and yxx = gxx (x;ϕ).

3This simplified approach makes use of the optimality conditions and substitutes control variables
from the problem formulation (cf. Parra-Alvarez et al., 2021).
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1.2.2 Asset Pricing

Given the existence of an asset pricing kernel or stochastic discount factor consistent with

the macro dynamics, we either use the general equilibrium shadow price yi = gi(x;ϕ) with

i ∈ {1, ..., ny} or i ∈ {x, 1, ..., ny, 1, ..., nx}, or use uj = Uj(x,y,yx) with j ∈ {1, ..., nu}
and the first-order condition to compute the costate variable. Suppose that Λt ≡ e−ρtyi

such that the SDF follows

dΛt = −ρe−ρtyidt+ e−ρtdyi, (1.5)

where

dyi = gix (x;ϕ) dx+ 1
2
vec(Σ(x))⊤gixx(x, ϕ)

⊤

= gix (x;ϕ) (b (x,u) dt+ σ (x) dw) + 1
2
vec(Σ(x))⊤gixx(x, ϕ)

⊤dt

=
(
gix (x;ϕ)b (x,u) + 1

2
vec(Σ(x))⊤gixx(x, ϕ)

⊤) dt+ gix (x;ϕ)σ (x) dw

in which gix denotes the 1 × nx Jacobian matrix belonging to yi, and gixx the ith com-

ponent in the ny × n2
x dimensional array of second-order derivatives.4

Applying conditional expectation we obtain

− 1

dt
Et

[
dΛt

Λt

]
≡ rft , (1.6)

together with the fundamental pricing equation for assets

Et [dp]− rft pdt = −Et

[
dp
dΛt

Λt

]
(1.7)

or more generally

Et [d(Λtp)] + ΛtD(x,y)dt = 0 (1.8)

when including dividend payments D. To find the general equilibrium asset price we

solve the resulting PDE, similar to finding the option price based on the celebrated Black-

Scholes formula (henceforth PDE approach). Alternatively, we compute (e.g., Cochrane,

2005)

p = Et

[
Λs

Λt

P(x,y; s)

]
+ Et

[∫ s

t

Λu

Λt

D(x,y; u)

]
du, s > t (1.9)

that is for s > t the pricing equation states that the equilibrium prices p of assets at time

t is given by the conditional expectation of the product of the SDF and the future payoff

P(x,y; s) and/or dividends D(x,y; s) (henceforth expectations approach). In this paper

4The vec operator transforms a matrix into a vector by stacking the columns of the matrix one
underneath the other (cf. Magnus and Neudecker, 2019, p.34).
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we focus on specific assets, where (1.9) is available analytically. Our results shed light on

the potential efficiency gains for more elaborated models, where the numerical solution to

the PDE implies the equilibrium prices p = h(x;ϕ) as a function of the state variables.

1.2.3 Macro-Finance Framework

Steps in estimating given macro-finance models and initial ϕ0, and possibly loop over i

1. Compute the solution y = g (x;ϕi) in (1.4) to satisfy H(x,y,yx,yxx;ϕi) = 0

2. Compute the asset prices p = h (x;ϕi) in (1.9)

3. Estimate parameters ϕ̂i+1 from macro and financial data

In our applications below, where the model specifications allow for analytical solutions,

it turns out that the most promising asset class are stock indices. While derivatives appear

somewhat preferable over stock indices in the simulation study, there are in most cases

no real-world analogues, or the data availability is limited, especially when considering

periods prior to the year 2000. Hence, stocks are our preferred asset class in the structural

estimation below. Because this conclusion might change with better availability of (high-

frequency) financial data or in more elaborated models, below we will present a step-by-

step derivations for different asset classes.

1.2.4 An Example: AK-Vasicek Model

To illustrate our estimation approach, we choose the AK-Vasicek model. In a nutshell,

the model is as follows. At each instance in time, output Yt is generated by a simple AK

technology, which combines capital with the level of productivity:

Yt = AtKt, (1.10)

where Kt denotes the aggregate capital stock and At total factor productivity (TFP). We

abstract from labor market dynamics for analytical tractability. Including hours worked

does not pose a conceptional problem, but prevents us from obtaining analytical insights.

In this economy TFP is driven by a standard Brownian motion, Bt, with µ(At) represent-

ing the generic drift- and η(At) the generic volatility function:

dAt = µ(At)dt+ η(At)dBt. (1.11)

Our specification of the macro model (1.10), allows us to link the macro model to the

seminal finance models of the interest rate process. In general equilibrium, capital is

rewarded by its marginal product rt ≡ YK = At, so we may write η(At) = η(rt), and
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µ(At) = µ(rt) interchangeably. In the Vasicek model, we specify µ(At) = κ(γ − At) and

η(At) = η,

drt = κ(γ − rt)dt+ ηdBt. (1.12)

Despite its simplicity, the one-factor model (1.12) is commonly used in finance, because

if offers analytical calculations of the asset prices (Tang and Chen, 2009; Posch, 2009),

hence, making it a natural starting point for our analysis.

If gross investments, It, are higher than capital depreciation, Kt increases according

to

dKt = (It − δKt)dt+ σKtdZt,

with σ measuring the standard deviation the stochastic depreciation shocks, δ representing

the mean depreciation rate, and Zt being another standard Brownian motion. The goods

market clearing condition determines investment in general equilibrium, It = Yt − Ct.

In this economy, households are represented by a representative consumer who exhibits

additive separable utility and maximizes expected life time utility

U0 ≡ E0

∫ ∞

0

e−ρtu(Ct)dt, where u′ > 0, u′′ < 0, (1.13)

subject to

dKt = ((rt − δ)Kt − Ct)dt+ σKtdZt. (1.14)

We restrict our focus to cases, where the aggregate capital stock cannot be observed by

the econometrician or simply is not used in the estimation. Instead, in the AK model the

capital stock can be recovered by observing macroeconomic and financial data, Kt = Yt/rt.

As shown in Christensen et al. (2016), the Euler equation is a necessary condition for

optimality, and together with the output and interest rate dynamics recovers the capital

stock. Thus our point of departure for structural estimation reads

d lnCt =

(
u′(Ct)(ρ− rt + δ)

u′′(Ct)Ct

− CKKt

Ct

σ2 − 1
2

C2
Aη(rt)

2 + C2
KK

2
t σ

2

C2
t

u′′′(Ct)Ct + u′′(Ct)

u′′(Ct)

)
dt

+
Crη(rt)

Ct

dBt +
CKσKt

Ct

dZt (1.15a)

d lnYt =

(
µ(rt)

rt
+ rt − δ − Ct

Kt

)
dt− 1

2

η(rt)
2

r2t
dt− 1

2
σ2dt+

η(rt)

rt
dBt + σdZt (1.15b)

drt = µ(rt)dt+ η(rt)dBt. (1.15c)

For admissible instantaneous utility functions in (1.13) and interest rate dynamics, we

obtain consumption Ct = C(Kt, At), with derivatives CK = CK(Kt, At) and CA =

CA(Kt, At). The simplest case is a linear approximation to the policy function, but also

higher-order local approximations or global solutions can be used. Even for a linear ap-

proximation of the policy function, our approach is to preserve the nonlinear equilibrium
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dynamics for identification and casts the system in terms of macroeconomic variables and

the interest rate. In what follows, we use (observable) macro and potentially higher-

frequency financial data for the estimation of structural parameters, summarized by the

nϕ × 1-vector ϕ.

To start with, the system in (1.15) is a subset of variables that can or need to be linked

to the relevant state or to other observed variables. In what follows we show how the dif-

ferent asset classes can be used to complement or even to replace observed macroeconomic

variables. Furthermore, we use the model specification to derive an alternative expression

for the rental rate rt in terms of observable variables rft and model parameters. In our

applications, we are using different combinations of financial and macro data to cast the

relevant estimation equations partly and completely in terms of financial data.

Proposition 1 For the case of logarithmic utility u(Ct) = lnCt, the AK-Vasicek model

with µ(rt) = κ(γ − rt) and η(rt) = η implies Ct = C(Kt, At) = ρKt.

Proof. See Appendix A.2 in Posch (2009) and Christensen et al. (2016).

Corollary 2 For log-utility, the equilibrium dynamics in (1.15) simplify to

d lnCt =
(
rt − ρ− δ − 1

2
σ2
)
dt+ σdZt (1.16a)

d lnYt =
(
κγ/rt − 1

2
η2/r2t + rt − κ− ρ− δ − 1

2
σ2
)
dt+ η/rtdBt + σdZt (1.16b)

drt = κ(γ − rt)dt+ ηdBt, (1.16c)

and the general equilibrium shadow price reads Λt = e−ρtu′(Ct) = e−ρt/Ct.

The general equilibrium SDF is easily obtained from the Euler equation (1.16a) and reads

Λs/Λt = e−
∫ s
t (rv−δ− 1

2
σ2)dv−σ

∫ s
t dZv , s > t (1.17)

in which (1.6) implies

rft ≡ rt − δ − σ2. (1.18)

Even if the rental rate of capital rt was not directly observable, it can be linked to an

observed proxy for the risk-free rate (typically the 3-month yield of zero-coupon bonds).

For simplicity, in this paper we neglect inflation dynamics, which should be included when

considering the yield curve (cf. Posch and Van der Wel 2022).

Hence, the nϕ = 6 structural parameters in the AK-Vasicek model (with log-utility)

are

ϕ = (κ, γ, η, ρ, δ, σ)⊤. (1.19)

Our macro-finance framework introduced in Section 1.2.3 is illustrated by using an

AK model (macro) combined with the one-factor Vasicek specification (finance) for the
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interest rate. We estimate the structural parameters by following the suggested three-step

procedure.

Step 1: Compute the Solution y = g (x;ϕi) in (1.4)

It is known that the AK model with the Vasicek specification features a closed-form

solution and we obtain an analytical expression for y = g : Rnx 7→ R in (1.4), in the

simplified version with ny = 1 relevant costate and its derivatives yx = gx (x;ϕ) and

yxx = gxx (x;ϕ).

More compactly, the AK-Vasicek model has the state vector x = [At, Kt]
⊤ with nx = 2,

which from (1.11) and (1.14) follows

dx =

(
κ(γ − At)

AtKt − Ct − δKt

)
dt+

(
η 0

0 σKt

)
dw, x(0) = x0 given,

such that

b (x,u) ≡

[
κ(γ − At)

AtKt − Ct − δKt

]
, σ(x) ≡

[
η 0

0 σKt

]
,

and

Σ = σ (x)σ (x)⊤ =

[
η2 0

0 σ2K2
t

]
,

in which the control u(x,y,yx) = Ct follows from the first-order condition.

In an expected utility framework, it is often sufficient to solve for y = VK as the relevant

costate variable, without explicitly computing the value function, because Ct = y−1, such

that the model can be formalized as in (1.3) with nx 6= ny ≡ 1, and

yx =
[
∂Ay ∂Ky

]
=
[
VKA VKK

]
yxx =

[
∂Ayx ∂Kyx

]
=
[
VKAA VKKA VKAK VKKK

]
.

From the maximized HJB, the costate VK must satisfy

ρVK = ((At − δ)Kt − Ct)VKK + (At − δ)VK + 1
2
(η2VKAA + σ2K2

t VKKK)

+σ2KtVKK + κ(γ − At)VKA

or compactly,

H (x,y,yx,yxx) = −ρy + a (x,y,yx) + yxb(x,u) + yxxc(x,y)
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hence,

H (x,y,yx,yxx) := a (x,y,yx) + yxb (x,u) + yxxc (x) ,

where

a (x,y,yx) ≡
[
(x11 − δ)y21 + yxσ

2x21

]
, b (x,u) ≡

[
κ(γ − x11)

(x11 − δ)x21 − u

]
,

and

c (x) ≡
[

1
2
η2 0 0 1

2
σ2x2

21

]⊤
,

which is a (simplified) second-order quasilinear PDE.

Summarizing, from Proposition 1, the AK-Vasicek model (log-utility) implies Ct = ρKt

and the costate variable satisfies VK(At, Kt) = K−1
t /ρ (cf. Posch, 2009). Hence,

y = g(x) =
[
(x21)

−1/ρ
]

together with

yx =
[
0 −(x21)

−2/ρ
]

yxx =
[
0 0 0 2(x21)

−3/ρ
]

reduces H(x,y,yx,yxx) = 0 to an identity.

Step 2: Compute the Asset Prices p = h (x;ϕi) in (1.9)

As argued above, y ≡ yi = (x21)
−1/ρ denotes the general equilibrium shadow price, such

that Λt = e−ρty = e−ρt(x21)
−1/ρ and the SDF dynamics (1.5) are

dΛt = −ρe−ρtydt+ e−ρtdy,

where

dy =
(
gx (x;ϕ)b (x,u) + 1

2
vec(Σ(x))⊤gxx(x, ϕ)

⊤) dt+ gx (x;ϕ)σ (x) dw

in which gx with ny ≡ 1 denotes the 1×nx Jacobian matrix, and gxx the 1×n2
x dimensional

array of second-order derivatives. In particular, the AK-Vasicek model implies

gx =
[
0 −(x21)

−2/ρ
]
,

which is the Jacobian matrix of y, and

gxx =
[
0 0 0 2(x21)

−3/ρ
]
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the 1× n2
x dimensional array of second-order derivatives. Hence,

dΛt = −ρe−ρtydt+ e−ρt
(
gx (x;ϕ)b (x,u) + 1

2
vec(Σ(x))⊤gxx(x, ϕ)

⊤) dt
+e−ρtgx (x;ϕ)σ (x) dw

= −ρe−ρtydt+ e−ρt
[
0 −(x21)

−2/ρ
] [ κ(γ − x11)

(x11 − δ)x21 − u

]
dt

+e−ρt 1
2

[
η2 0 0 σ2x2

21

] [
0 0 0 2(x21)

−3/ρ
]⊤
dt

+e−ρt
[
0 −(x21)

−2/ρ
] [ η 0

0 σx21

]
dw

= −ρΛtdt− Λt(At − ρ− δ)dt+ σ2Λtdt− ΛtσdZt

= −(At − δ − σ2)Λtdt− ΛtσdZt. (1.20)

Below, we consider different classes of assets (bonds, stocks, futures) for which ana-

lytical solutions are available in order to illustrate our approach. It is shown that the

AK-Vasicek model implies analytical solutions for a rich class of assets.

Proposition 3 (Bonds) If an asset j pays continuously at rft (floating rate note),

Pf (x,y; s) = 0, Df (x,y; u) = e
∫ s
t rfvdv,

then pf = 1. In contrast, a bond at t = 0 with unity payoff at maturity s (zero-coupon

bond),

Pb(x,y; s) = 1, Db(x,y; u) = 0,

implies for given s

p
(s)
b ≡ P

(s)
b,t = hb (x;ϕ) = exp (A(s)− B(s)x11)

where

A(s) = −
(
γ − δ − σ2 − η2

2κ2

)
s+

(
γ − η2

2κ2

)
B(s)− η2

4κ
B2(s), B(s) = 1− e−κs

κ
.

such that the limiting case of maturity s→ 0 approaching zero yields p
(0)
b = 1. See section

1.A.1 for a derivation of A and B.

Proof. From (1.9) together with the SDF in (1.20), we get

pf = Et

[
Λs

Λt

Df (x,y; u)

]
= Et

[
e−

∫ s
t (rv−δ− 1

2
σ2)dv−σ

∫ s
t dZv

∫ s
t (rv−δ−σ2)ds

]
= 1

13



For the price of the zero-coupon bond pb see Posch and Van der Wel (2022).

Proposition 4 (Stocks) Consider a claim on the future dividends (stock market), with

s→ ∞ (this is equivalent to a claim on the tree, not only the fruits), where

Pd(x,y; s) = 0, Dd(x,y; u) = Yu

has an analytical price

pd ≡ Pd,t = hd (x;ϕ) = x21

[
x11 − γ

ρ+ κ
+
γ

ρ

]
Proof. Appendix 1.A.2

Proposition 5 (Futures) Consider future contracts on the underlying state variables

(future market), such as the claim on the capital stock or a future on output,

PK(x,y; s) = Ks or PY (x,y; s) = Ys,

or derivatives (derivatives market), such as the future contract on the stock price, where

PF (x,y; s) = Pd,s, DF (x,y; u) = 0.

These assets have analytical prices pj = hj (x;ϕ) for j = {K,Y, F}, i.e.,

pK = x21e
−ρ(s−t),

pY = x21

[
(x11 − γ)e−(ρ+κ)(s−t) + γe−ρ(s−t)

]
,

pF = x21

[
(x11 − γ)e−(ρ+κ)(s−t)

ρ+ κ
+
γ

ρ
e−ρ(s−t)

]
.

Proof. Appendix 1.A.3

Moreover, we are not restricted how many financial asset are being used in the struc-

tural estimation because p may contain alternative assets at the same time such that the

dimension of h (x;ϕi) is np ≡ dim(p). Here, the set of assets primarily is restricted by the

availability of data, and by the requirement of a clear mapping to the underlying model.

In general, we obtain for the prices of financial assets

dp =
(
hx (x;ϕ)b (x,u) + 1

2
vec(Σ(x))⊤hxx(x, ϕ)

⊤) dt+ hx (x;ϕ)σ (x) dw

in which hx denotes the np × nx Jacobian matrix, and hxx the np × n2
x dimensional array

of second-order derivatives.
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Step 3: Estimate Parameters ϕ̂i+1 from Macro and Financial Data

Below we construct martingale increments m(x,y,p;ϕi) using the solution y = g (x;ϕi)

and asset prices p = h (x;ϕi) in terms of parameters and data (cf. Christensen et al., 2016).

In most cases, a log-transformation, ln (y) and ln (p), forms the basis for constructing m.

In general, we need Itô’s formula to obtain nm increments df(x,g (x;ϕ) ,h (x;ϕ)),

where nm ≡ dim(m), from the transformation f : Rnx × Rny × Rnp 7→ Rnm and integrate

both sides of the equation from t−∆ through t, possibly solve components of the system

analytically. We then define the nm ≡ dim(m) martingale increments

m(x,y,p;ϕi) ≡ ε(x,y,p;ϕi) (1.21)

in which

ε(x,y,p;ϕi) = [fx (x,y,p) + fy (x,y,p)gx (x;ϕi) + fp (x,y,p)hx (x;ϕi)]σ (x) dw

(1.22)

and where fx is the nm × nx, fy the nm × ny, and fp the nm × np Jacobian matrix,

respectively. The martingale increments can be written in terms of data and parameters

as

m(x,y,p;ϕi) = Et−∆ [df(x,g (x;ϕi) ,h (x;ϕi))] (1.23)

and we estimate the unknown parameters ϕ̂i+1 based on macro and financial data.

For example, treating the triple (Ct, Yt, r
f
t ) in the AK-Vasicek model as being observ-

able (see Christensen et al. (2016)), the transformation readily reads

f(x,y,p, ϕi) =
[
lny−1 ln(x11x21) x11 − δ − σ2

]⊤
.

such that

ε(x,y,p;ϕi) =

 εC,t

εY,t

εr,t

 =


σ(Zt − Zt−∆)∫ t

t−∆
η

(rfv+δ+σ2)
dBv + σ(Zt − Zt−∆)

ηe−κ∆
∫ t

t−∆
eκ(v−(t−∆))dBv

 (1.24)
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or written in terms of data and parameters

m(x,y,p;ϕi) ≡ mt =



ln(Ct/Ct−∆)−
∫ t

t−∆
rfvdv + (ρ− 1

2
σ2)∆

ln(Yt/Yt−∆)−
∫ t

t−∆
rfvdv + (κ+ ρ− 1

2
σ2)∆

−γκ
∫ t

t−∆

(
ρ(rfv + δ + σ2) + κγ

)−1
dv

+1
2
(ρη)2

∫ t

t−∆
(ρ(rfv + δ + σ2) + κγ)−2dv

rft − e−κ∆rft−∆ − (1− e−κ∆)(γ − δ − σ2)


.

In this paper, we suggest to use financial data to replace macro data, e.g., to replace

output by stock market data, treating the triple (Ct, Pd,t, r
f
t ) as being observable,

f(x,y,p, ϕi) =
[
lny−1 lnpd x11 − δ − σ2

]⊤
.

such that

ε(x,y,p;ϕi) =

 εC,t

εPd,t

εr,t

 =


σ(Zt − Zt−∆)∫ t

t−∆
ρη

ρ(rfv+δ+σ2)+κγ
dBv + σ(Zt − Zt−∆)

ηe−κ∆
∫ t

t−∆
eκ(v−(t−∆))dBv

 (1.25)

or written in terms of data and parameters

m(x,y,p;ϕi) ≡ mt =



ln(Ct/Ct−∆)−
∫ t

t−∆
rfvdv + (ρ− 1

2
σ2)∆

ln(Pd,t/Pd,t−∆)−
∫ t

t−∆
rfvdv + (ρ− 1

2
σ2)∆

−ρκ
∫ t

t−∆

(
γ−rfv−δ−σ2

ρ(rfv+δ+σ2)+κγ

)
dv

+1
2
(ρη)2

∫ t

t−∆
1

(ρ(rfv+δ+σ2)+κγ)2
dv

rft − e−κ∆rft−∆ − (1− e−κ∆)(γ − δ − σ2)


.

Alternatively, we replace consumption by stock market data, treating the triple (Pd,t, Yt, r
f
t )

in the AK-Vasicek model as being observable (see Christensen et al. (2016)), the trans-

formation readily reads

f(x,y,p, ϕi) =
[
lnpd ln(x11x21) x11 − δ − σ2

]⊤
.

such that

ε(x,y,p;ϕi) =

 εPd,t

εY,t

εr,t

 =


∫ t

t−∆
ρη

ρ(rfv+δ+σ2)+κγ
dBv + σ(Zt − Zt−∆)∫ t

t−∆
η

(rfv+δ+σ2)
dZv + σ(Zt − Zt−∆)

ηe−κ∆
∫ t

t−∆
eκ(v−(t−∆))dBv

 (1.26)
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or written in terms of data and parameters

m(x,y,p;ϕi) ≡ mt =



ln(Pd,t/Pd,t−∆)−
∫ t

t−∆
rfvdv + (ρ− 1

2
σ2)∆

−ρκ
∫ t

t−∆

(
γ−rfv−δ−σ2

ρ(rfv+δ+σ2)+κγ

)
dv

+1
2
(ρη)2

∫ t

t−∆
1

(ρ(rfv+δ+σ2)+κγ)2
dv

ln(Yt/Yt−∆)−
∫ t

t−∆
rfvdv + (κ+ ρ− 1

2
σ2)∆

−γκ
∫ t

t−∆

(
ρ(rfv + δ + σ2) + κγ

)−1
dv

+1
2
(ρη)2

∫ t

t−∆
(ρ(rfv + δ + σ2) + κγ)−2dv

rft − e−κ∆rft−∆ − (1− e−κ∆)(γ − δ − σ2)


.

In the above examples up to five parameters are identified from the martingale prop-

erty of the estimation equations. To identify all structural parameters one can exploit

the variances of the residuals of the martingale increments in equation (1.21) as sepa-

rate moments. Alternatively, one can use MEF estimation techniques in order to identify

the sixth structural parameter without turning to higher moment conditions. In this

case, identification follows from the conditional variances as well as the conditional mean

parameter derivatives of the martingale increments, which are used as optimally chosen

weight matrices (instruments) in estimation. However, it is important to keep in mind

that error terms are not necessarily traceable in more elaborate models. As a consequence,

one has to rely on first moments only. In such cases the inclusion of additional estimation

equations (additional data) may offers a possibility to identify more parameters. Regard-

ing MEF estimation, untraceable error terms are especially troublesome because one does

not know the parameter derivatives. Thus, while MEF turns out to be the preferable

estimation technique in our framework, one has to keep in mind that its implementation

in more general frameworks may be limited.

We choose the above examples to illustrate the steps that are needed to derive the

different model setups. In section 1.A.4 in the appendix, we provide the corresponding

equilibrium equations for all considered variables. In the subsequent section 1.A.5, we

show how to construct the corresponding martingale increments. Building on this, we

prepare the different model setups for estimation.

1.3 Estimation

In this section, we show how the different model setups of the previous section can be used

to estimate the six structural parameters ϕ in (1.19) of the AK-Vasicek model (log-utility).

Posch and Van der Wel (2022) show how to estimate the AK-Vasicek model using the term

structure of interest rate. In this paper, we follow the short-cut and proxy the short rate

by the 3-month rate in order to study a broader class of financial assets including stock
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market and derivatives market data (cf. Christensen et al., 2016).

After introducing the estimation methods, we proceed by conducting a simulation

study for all considered setups and offer some rationale for bringing the model to the

data. Building on these insights, we then turn to the empirical estimation.

1.3.1 Estimation Method

We focus on two alternative estimation methods. As already pointed out in the intro-

duction, these are GMM and MEF estimation techniques. We adopt both methods from

Christensen et al. (2016) so that we only sketch the basic ideas of the estimation ap-

proaches and refer the reader to Christensen et al. (2016) for a detailed description.

For the GMM estimation approach we start from the vector of martingale increments,

m(x,y,p;ϕi), that is given by the model equations and stated in terms of parameters and

data. As common in practice, we consider instruments that belong to the information set

and, consequently, are known at time t − ∆. In particular, we choose lagged variables

from the vector of martingale increments in order to obtain instruments that contain both

data and parameters. We are considering a two-stage GMM approach where we select the

identity matrix as positive definite weighting matrix in the first stage. Using the error

terms and the estimator from the first stage, we derive a new weighting matrix and use it

in the second stage estimation.

In contrast to the GMM approach, the instruments enter in form of a matrix when

using (optimal) MEF estimation techniques. One obtains the optimal weighting matrix

from the conditional variances and the conditional mean parameter derivatives of the mar-

tingale increments. Using the weighting matrix and the vector of martingale increments,

m(x,y,p;ϕi), we compute the martingale estimation function. The parameter vector is

then estimated by finding the combination where the martingale estimation equation is

equal to zero.

Utilizing financial claims turns out to be more demanding than using the risk-free

rate or macro variables. This is particularly true for the computation of the conditional

covariance matrix in the MEF estimation. Because iterating over the covariance matrix

seems computationally cumbersome, we turn in some instances to a simplified two-stage

MEF approach, as described in Christensen et al. (2016). The computational difficulties of

using financial claims in the optimal MEF approach are less severe at a monthly frequency.

However, they become more evident for daily frequencies, because the increased sample

size drastically increases the dimensions of the conditional covariance matrix.

In our empirical estimation, for some specifications, asymptotic t-statistics tend to

diverge and in most cases produce high values. Hence, we apply a bootstrapping method,

which yields more stable and more plausible values that are inline with the insights from

our simulation study. Since the true data generating process in the empirical application
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is unknown, we exploit the sieve bootstrap method (see e.g. Bühlmann (1997), Kreiss

and Lahiri (2012), Meyer and Kreiss (2015)). The central idea of this approach is to fit a

high-order VAR(p) (with p large) to the data. This higher-order model then allows us to

generate the bootstrapped data. Thus, the high-order VAR is treated as an approxima-

tion to the unknown true model. In settings where we utilize daily financial data together

with monthly macro data, the estimation is based on the lower frequency of macro data

and we approximate integrals over daily variables by Riemann sums. Thus, we do not

bootstrapped mixed-frequency data, but the lower-frequency variables including those

constructed from higher-frequency data. The central drawback of using monthly financial

data in the bootstrapped estimation is a comparably smaller sample size and consequently

fewer structural parameters appearing in the estimation functions. However, the simula-

tion study suggest that there is essentially no difference when directly using monthly data.

Further note that our bootstrap approach preserves the linear correlations of macroeco-

nomic and financial aggregates.5 In our empirical application we consider VAR(30) models

(hence, 30 lags) to approximate the true data generating process.

After estimating the VAR model parameters on the data, we construct bootstrapped

pseudo-data sets using residuals from the VAR model. We start by initializing the pseudo-

data set with a random draw from the set of observations. Then we draw (with replace-

ment) a vector of residuals from the high-order VAR process and use it together with

the fitted parameters of the VAR model to construct the successive values of the pseudo-

depended variables. We repeat this procedure until we obtain a whole time series for

these variables. Using this approach we compute 550 bootstrapped pseudo-data sets and

each time estimate the structural parameters of the model with as input the bootstrapped

time series. We store the corresponding estimates and obtain bootstrapped probability

density functions for all structural parameters. We then use these bootstrapped densi-

ties to compute medians, interquartile ranges and 95% confidence intervals. We chose

this simple measures of dispersion because the bootstrapped probability density func-

tions are in most cases non-normal and heavily skewed. An important reason for this

behavior are non-negativity restrictions that we use in the empirical estimation. Conse-

quently, bootstrapped density functions become truncated in some cases, which results

in a disproportionate accumulation of mass on the left-hand side. In order to compute

bootstrapped 95% confidence intervals, we apply the percentile method (Efron (1982)).

For this purpose, we use the bootstrapped distribution of parameter estimates and define

the confidence interval as the lower and upper limit corresponding to the 2.5th and 97.5th

5An alternative approach would be fitting independent high-order AR(ρ) processes to the actual data.
While this preserves the frequencies of the data, one would lose the macro-finance correlations. When
one intends to directly work with mixed frequencies, a promising approach is the use of mixed-frequency
VARs (e.g. Ghysels (2016) or Götz et al. (2016)) or a block-bootstrap approach (e.g. Lahiri (1999) or
Andrews (2004)). We leave mixed-frequency bootstrapping as an interesting separate direction for further
research.
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percentiles. While some bootstrapped distributions are heavily skewed and have relatively

large outliers, we use the interquartile range as additional measure of dispersion.

Note that starting with the financial crisis, the nominal interest rate hits the zero

lower bound. This evolution is also reflected in our risk-free rate proxy but not in all

bootstrapped samples. In some samples, however, the ZLB poses difficulties for our boot-

strap method, since the counterfactual risk-free rate can in principle become negative. To

avoid working with a negative interest rate, we set it close to zero whenever drawing errors

in the construction of the bootstrap sample would imply a negative level. In Table 1.A.9

we provide evidence from simulation that this simple reflective approach suffice for our

model framework and does not essentially interfere with the accuracy of the parameter

estimates.6

1.3.2 Simulation Study

In order to examine the small sample properties of our estimation procedures, we conduct

simulation studies for the different model setups. In a first step, we apply simple Euler

approximations to the differential equations. In a second step, we use these approximations

as data generating process (DGP) with known parameter values and simulate 25 years

of data for the short rate, consumption, output and the financial claims. In case of

the output derivative, PY,t, and the stock future, PF,t, we chose a time to maturity of 1

month (T = 1/12) and 6 months (T = 0.5), respectively. Starting from the martingale

increments, m(x,y,p;ϕi), we use the estimation methods of the previous section and

retrieve the structural parameters from the simulated data sets. Whenever a parameter

is unidentified or the estimation methods fail to consistently estimate the corresponding

parameter, we fix it at its true level and estimate the remaining parameters. As in

our bootstrap implementation, we repeat this procedure 550 times in order to obtain a

simulated distribution for each parameter.

In the literature (cf. Christensen et al. (2016)) the model parameters are estimated by

using bond, consumption and output data (Ct, Yt, r
f
t ). Thus, we denote the macro-finance

combination

f(x,y,p, ϕi) =
[
lny−1 ln(x11x21) x11 − δ − σ2

]⊤
as our benchmark model.

A standard finding in the literature on structural parameter estimation of the Vasicek

interest rate specification (see e.g. Tang and Chen (2009)) is an upward bias in the

parameter of the speed of mean reversion, κ. Since we do not apply bias correction

6We apply this reflective approach in the simulation study and re-calibrate the parameter values in
the data generating process in a way that the interest rate would turn negative in many instances with
high probability. The accuracy of median estimates as well as the interquartile ranges are similar to
our baseline parametrization. However, there tend to be a relatively small upward bias in the median
estimates for γ and an increase in the bias of κ.
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methods, this feature is also prominent in all setups that we consider. Tables 1.A.1 to 1.A.8

show the estimation results from the simulation study. Each table contains the median

estimates and the interquartile range (IQR) when using only finance or a combination

of macro and finance variables. We denote the derivative on the stock index as future,

and label the futures on capital and output more generally as derivatives. Recall that the

evolution of consumption is identical to the one of the capital derivative in the AK-Vasicek

model. Thus,

d ln(Ct/Ct−∆) = d ln(PK,t/PK,t−∆), (1.27)

so that the corresponding estimation results can be interpreted interchangeably.

For the remainder of this section, we summarize the central insights from the simu-

lation study for the GMM and MEF estimations and discuss benefits and drawbacks of

substituting macro by finance variables. For this purpose, we start from the benchmark

model and replace or add finance variables. We provide additional insights by comparing

the corresponding histograms. In order to make the histograms comparable, we normalize

their mass to 1 and plot them jointly, using the same bin width. Dark gray histograms

are always obtained from the benchmark model, while light blue histograms correspond to

parameter estimates that we obtain from using either purely finance data or a combination

of macro and finance data. As encountered in Christensen et al. (2016), there are many

cases where the estimation methods turn out to be unable to retrieve all theoretically

identified parameters. As a brief overview, Table 1.1 summarizes the robustly retrievable

parameter constellations for various systems of macro and finance estimation equations.

Using First Moments

Figure 1.1a plots the histograms of parameter estimates from the benchmark model,

(Ct, Yt, r
f
t ), against the corresponding estimates obtained from the triple (Ct, Pd,t, r

f
t ).

In theory, the benchmark model is able to identify 5 parameters through the martingale

property of the estimation equations without exploiting second moments. However, this

setting experiences numerical problems. In particular, the estimate of σ frequently di-

verges towards zero. Thus, we decide to apply two parameter restrictions (on δ and σ) in

this setting. When we replace output, Yt, in the benchmark model by stock data, Pd,t, or

future data, PF,t, we can in theory identify 4 parameters using only first moments. In this

case we also rely on restricting δ and σ. Utilizing the systems (Ct, Pd,t, r
f
t ) and (Ct, PF,t, r

f
t )

results in a strong accuracy gain in the κ estimates. In fact, the bias nearly vanishes in

absolute terms. However, this advantage comes at the cost of less accurate estimates of

η. Nevertheless, Tables 1.A.1 and 1.A.2shows that all medians of the parameter estimates

are closely centered around their true values used in the data generating process. Because

the dynamics of consumption and the derivative on capital coincide (see equation (1.27)),

Figure 1.1a can also be interpreted as comparing the benchmark model to a purely fi-
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Table 1.1: Robust parameter estimates using different combinations of macro and finance
data. Green crossed circles: Parameters obtained when using only first moments. Red
circles: Additional parameters obtained when exploiting second moments (otherwise fixed
at true values). Empty entries: Parameters fixed at true values. ”Deriv.” denotes the out-
put derivative. Cons* denotes either consumption or the capital derivative (cf. equation
1.27).

GMM Finance Model Macro-Finance Model

Bond Bond Bond Bond Bond Bond Bond Bond Bond Bond Bond Bond Bond
Stock Future Deriv. Stock Stock Cons* Cons* Cons* Cons* Cons* Stock Future

Future Deriv. Stock Future Deriv. Output Output Output

κ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

γ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

η ⃝ ⃝ ⃝ ⃝ ⊗ ⊗ ⃝ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

ρ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

δ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝

σ ⃝ ⃝ ⃝ ⊗ ⃝ ⃝ ⃝ ⃝ ⃝ ⊗ ⊗

MEF Finance Model Macro-Finance Model

κ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

γ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

η ⃝ ⃝ ⃝ ⃝ ⊗ ⊗ ⃝ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

ρ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

δ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

σ ⊗ ⊗ ⊗ ⃝ ⃝ ⊗ ⊗ ⃝ ⃝ ⊗ ⊗

nance formulation. Thus, finance and macro data are perfect substitutes in the structural

estimation. When replacing consumption in the benchmark model (Ct, Yt, r
f
t ) with stock

or future data, the resulting macro-finance combinations (Pd,t, Yt, r
f
t ) and (PF,t, Yt, r

f
t ) are

able to robustly estimate σ as additional parameter. Thus, we are able to reliably es-

timate 5 structural parameters (see Table 1.1). The same holds true for the complete

finance combinations (Pd,t, PY,t, r
f
t ) and or (PF,t, PY,t, r

f
t ) where we further substitute out-

put by the derivative of output. The reason for the accuracy gains in the estimation of σ

is the identification of additional parameter combinations that enter the system through

the financial claims. This in turn improves the identification of σ and allows more ro-

bust estimates. In all considered models, we observe a skewed distribution of σ estimates,

with a median slightly above the true parameter value used in the data generating process.
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a) GMM estimation using only first moments.

b) MEF estimation using only first moments.

Figure 1.1: Histograms: Simulation study results using GMM and MEF and first moments
only. Benchmark model (gray histograms) vs. Benchmark model when replacing output
by stock data (blue histograms).

Regarding MEF, one can, in theory, utilize the benchmark model (Ct, Yt, r
f
t ) and

identify all 6 structural parameters without relying on second moments. As in the corre-

sponding GMM estimation, 5 parameters are identified through the martingale property

of the estimation equations. Identification of the sixth parameter follows from the condi-

tional variance and mean parameter derivatives. However, we again experience numerical

problems in practice. Similar to GMM estimation, retrieving σ is troublesome and results

in estimates frequently converging towards zero. Consequently, we only estimate 5 pa-

rameters in this setting (see Table 1.1). In order to improve the accuracy of σ estimates,

we replace consumption with stock or future data. By utilizing the triples (Pd,t, Yt, r
f
t ) or

(PF,t, Yt, r
f
t ) additional parameter combinations are identified, which, in turn, improves

the identification of σ. As a consequence, we obtain reliable estimates of all 6 parameters

without turning to higher moments. In case of the baseline model, we are free to either
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restrict δ or σ. Our simulation study suggests that fixing σ results in more reliable esti-

mates. Figure 1.1b highlights that there is relatively strong upward bias in κ, whereas the

median estimates of γ, η, ρ and δ are close to their true values and have low IQRs. When

we replace output by stock data, Pd,t, or by future data, Pd,t, we are no longer able to

accurately estimate δ but instead obtain stable estimates for σ. As in the GMM case, the

accuracy of the κ estimates drastically improves. At the same time, the distribution of the

η estimates becomes wider bell-shaped but still with unbiased median estimate and with

low IQR (see Tables 1.A.3 and 1.A.4 ). Similar to GMM, we obtain a skewed distribution

of σ in all considered systems of estimation equation. Thus, the median estimate turns

out to be slightly above the true parameter value used in the data generating process.

Using Second Moments

In our exemplary model, error terms are traceable and analytical expressions for condi-

tional covariance and parameter derivative matrices are readily available. Consequently,

extending our analysis by turning to second moments is straightforward.

Using either GMM or MEF, the volatility parameters σ and η are readily identified

through the second moments of consumption (or the capital derivative) and the risk-free

rate, respectively (see equation (A.18)). Thus, whenever we utilize one or both of the

corresponding estimation equations, there is little variation in these parameters among

the considered models. Most notably, in all analyzed combinations of macro and finance

data, the distribution of σ estimates is no longer skewed when exploiting second moments.

A crucial advantage of second moments is the possibility to already identify 5 structural

parameters by only using two different time series. In fact, as suggested by Tables 1.A.7

and 1.A.8, the combination of bond and consumption data is already able to accurately

(except for the upward bias in κ) estimate 5 parameters. In some of the larger systems

of estimation equations, GMM is now able to retrieve all structural parameters. In case

of MEF, second moments also improve identification, and consequently yield more robust

parameter estimates with little dispersion. In particular, we are able to estimate all struc-

tural parameters in most of the larger models. When exploiting second moments in GMM

estimation, the benchmark model is able to additionally retrieve δ and σ. Thus, we are

able to accurately estimate all structural parameters. The same holds true when replacing

consumption by stock or future data. When further replacing output by the derivative

on output, we obtain a complete finance formulation, (Pd,t, PY,t, r
f
t ), that retrieves all six

parameters. In contrast, despite exploiting second moments, the triples (Ct, Pd,t, r
f
t ) and

(Ct, PF,t, r
f
t ) can only retrieve 5 parameters because the additionally identified parameter

combinations are unable to disentangle γ and δ. In comparison to the benchmark model,

this inability is a critical drawback. We decide to restrict δ and estimate the remaining

5 parameters. As in the corresponding estimations with first moments, there is again
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Figure 1.2: Histograms: Simulation study results using MEF and second moments. Bench-
mark model (grey histograms) vs. Benchmark model when replacing output by derivative
data and additionally introducing stock data (blue histograms).

the strong increase in the accuracy of the κ estimate. As before, we can interpret these

settings as complete finance formulations.

In most cases, there are only marginal differences between parameter estimates that

are obtained at a monthly or at a daily frequency in the simulation study. However, there

are some instances where a higher frequency improves the accuracy of volatility parameter

estimates. This appears especially important for the empirical estimation. One possible

explanation is the greater sample size and the fact that more parameters show up during

estimation. In contrast to MEF, a daily frequency does not pose a problem for GMM

estimation. In particular, MEF experiences numerical problems because the relatively

higher sample size blows up the dimension of the conditional covariance matrix. The

joint stock, bond and future setting, (Pd,t, PF,t, r
f
t ), can identify 5 parameters with GMM.

When turning to a daily frequency, there is not only an increase in the accuracy of the κ,

γ and σ estimates but also a large accuracy gain in the estimate of η (see Figure 1.A.1).

Finally, consider the macro-finance data set (Ct, Pd,t, PY,t, r
f
t ). As highlighted by Fig-

ure 1.2, this setting is able to identify all parameters. At the same time it preserves

the accuracy gain in the estimation of κ, which we encounter when utilizing the triple

(Ct, Pd,t, r
f
t ). Thus, again the bias nearly vanishes in absolute terms. Again, we can sub-

stitute consumption by the price of the capital derivative and cast the estimation equation

completely in terms of financial data.
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Simulation Study: Summary and Concluding Remarks

In summary, the simulation study suggest that replacing macro by finance data as well

as adding additional financial variables can improve the identification and accuracy of

parameter estimates. Thus, finance data can be a substitute and/or a complement to

macro data. The results offer important implications for more elaborate models. First

of all, the simulations suggest that we are not comparing apples with oranges. The

closed-form solutions of the financial claims highlight that the SDF incorporates additional

parameters when deriving asset prices from macro economic variables. This can improve

both identification and accuracy. Finance data turns out to be especially useful when

relying solely on first moment conditions. In fact, replacing macro data in the benchmark

model with financial data (stocks, futures, derivatives) offers a remedy to encountered

numerical problems and allows us to retrieve more parameters. In particular, finance data

increases the accuracy of estimates and results in more reliable estimates.

Before turning to the empirical estimation, we briefly discuss some additional insights

from simulation. Note that the estimation equations for the prices of the stock future

and of the derivatives on capital and output explicitly account for a time to maturity

effect. As a consequence, one can not only utilize one specific asset but also exploit the

whole maturity spectrum of available data. Even though, the time to maturity effect

appears to be relatively small in our framework, it probably becomes more relevant for

larger models where risk plays a greater role (e.g. term premia or default risk). While

macroeconomic data is usually observed (if at all) at an annual or quarterly basis, we

can use these (lower frequency) aggregates to readily derive financial claims and evaluate

them at any desired (available) frequency. While the effects from going from a monthly

to a daily frequency appears less relevant in our simulation study, it might play a bigger

role in more elaborate models. In this respect, a crucial benefit is the increase in the

sample size, which is especially useful when considering relatively shorter periods of time.

In our empirical estimation, a higher frequency improves the accuracy (as measured by

bootstrapped confidence intervals) when estimating the volatility and the time preference

parameters. Furthermore, utilizing the stock price estimation equation with monthly

stock price data appears to be more intuitive than utilizing monthly proxy variables for

unobservable macroeconomic aggregates like the capital stock or the output gap.

1.3.3 Taking the Model to the Data

In order to estimate the different systems of equilibrium equations of our model, we

need data on consumption, the short-term interest rate and on the financial claims. We

consider the period from January 1982 to December 2019.7 Data on consumption, output

7In case of MEF, we stop the sample period in all systems of estimation equations containing stock
data at December 2016. There are convergence problems in this cases. Since GMM has no difficulties
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and the short rate are obtained from the Federal Reserve Economic Data (FRED). We

use the monthly level of real personal consumption expenditures (PCE) as a proxy for

consumption, and monthly industrial production (IP) as a measure of output. Following

Chapman et al. (1999), we use the 3-month interest rate, derived from US treasury bonds,

as proxy for the risk-free rate. For stock data, we use the daily and monthly value-weighted

returns (including dividends) of the S&P500 obtained from the Center for Research in

Security Prices (CRSP). Finally, for data on future contracts, we consistently utilize data

on the S&P 500. For this purpose, we use Bloomberg data on the generic S&P500 mini

future contract, which is available for a time to maturity of 6 months. Thus, this time

series allows us to account for maturity, without explicitly dealing with maturity dates

and roll-overs of future contracts. Unfortunately, the data is only available since 1997.

Thus, we have to consider a shorter sub-sample when using future data in the estimation.

In section 1.3.4, we evaluate related drawbacks of the shorter sample period.

1.3.4 Estimation Design

In the empirical estimation we use the GMM and the MEF approach of the previous

sections. For the evaluation of the estimation results, we turn to the sieve bootstrap

method of section 1.3.1. For this purpose, we generate 550 pseudo data sets and each

time estimate the structural parameters. We then use the resulting bootstrapped proba-

bility density functions in order to compute 95% confidence intervals, medians as well as

the first and the third quartile in order to obtain the inter-quartile range. Regarding the

implementation of the bootstrap, fitting the high-order VAR to the data turns out to be

troublesome when jointly considering stock and future data. The reason for this is the

high correlation of the generic 6-month S&P500 mini future contract with its underlying

(the S&P500 stock index). Thus, despite the promising implications from the simulation

exercise, we do not estimate systems that contain combinations of both contracts. Fur-

thermore, we abstract from capital and output derivatives because finding convincing real

world analogs remains, at least to some extent, ambiguous and challenging.

To avoid identification issues encountered in Christensen et al. (2016), we directly ex-

ploit second moments in our empirical estimation, consider more sophisticated minimiza-

tion routines and impose more parameter restrictions. As it turns out, these adjustments

make estimation results less prone to chosen starting values. In appendix 1.A.7, we relax

some of these restrictions and in case of MEF consider its simplified 2-step approach as

mentioned in section 1.3.1. By doing so, we are able to estimate all but one parameter

from finance data alone. However, the estimation of some parameters strongly depends

on the starting values and the chosen minimizing routine in this case. Thus, for the sake

of comparability, we impose a relatively stricter set of restrictions in the main text. When

with the full sample, it appears to be a MEF-specific numerical problem.
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Table 1.2: Empirical GMM estimation: Model overview and comparison. Bold parameter
estimates lie within the bootstrapped 95% confidence interval. First and third quartiles,
obtained from the bootstrapped parameter distributions are given below the estimates.

Empirical parameter estimates - GMM

Pure finance Macro-finance

Setup Bond Bond Bond Bond Bond Bond Bond
Stock Future Cons Cons Cons Cons

Out Stock Future

(Daily) (Daily) (Daily) (Monthly) (Monthly) (Monthly) (Monthly)

κ 0.268 0.186 0.173 0.154 0.033 0.189 0.006
[0.371, 0.638] [0.279, 0.550] [0.185, 0.595] [0.131, 0.252] [0.020, 0.069] [0.161, 0.326] [0.103, 0.389]

γ 0.074 0.075 0.060 0.069 0.045 0.072 0.030
[0.073, 0.081] [0.070, 0.085] [0.063, 0.078] [0.071, 0.081] [0.051, 0.074] [0.068, 0.079] [0.060, 0.068]

η 0.0090 0.012 0.009 0.008 0.003 0.008 0.005
[0.011, 0.011] [0.011, 0.012] [0.008, 0.009] [0.008, 0.008] [0.007, 0.008] [0.008, 0.008] [0.006, 0.007]

ρ 0.013 0.007 0.000 0.000 0.000 0.000
[0.001, 0.022] [0.005, 0.027] [0.000, 0.005] [0.000, 0.004] [0.001, 0.004] [0.000, 0.000]

δ 0.05 0.05 0.05 0.05 0.05 0.05 0.05

σ 0.02 0.02 0.02 0.013 0.015 0.012 0.012
[0.014, 0.015] [0.014, 0.016] [0.014, 0.152] [0.011, 0.012]

applying GMM, we exploit daily data in our pure finance formulations. While the role of

the frequency appears to be small in the simulation study, it turns out to be more rele-

vant in the empirical estimation and results in more robust estimates (see Table 1.A.10

for the corresponding results at a monthly frequency). In setups with only 2 variables,

we consider 4 conditional moment restrictions. In larger system we only exploit the sec-

ond moments of the bond and consumption. We do this for reasons of comparability

and to address apparently numerical difficulties when dealing with the second moments

of output, stocks and futures in some macro-finance settings. Finally, in Tables 1.A.10

and 1.A.12, we estimate the structural parameters of different macro-finance models for

the shorter sub-period starting 1997. As suggested by the simulation study, the smaller

number of observations in the sub-sample is sufficiently large for applying GMM and MEF

techniques. The aim of this exercise is a better understanding of how the shorter time

series affects the quality of parameter estimates when turning to the S&P500 future data

(unavailable prior to 1997). In most cases, the estimates only slightly differ from the full

sample. Differences are primarily related to κ, γ, and η, which probably results from the

relatively higher proportion of observations at the ZLB.
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1.3.5 Estimation Results

Table 1.2 shows the empirical GMM estimates obtained from different combinations of

finance and macroeconomic estimation equations. Even though, the simulation study

suggests that we can estimate up to 5 parameters from the complete finance models, we

decide to restrict δ and σ. Otherwise, there tend to be convergence problems that result

in most parameters simultaneously approaching zero or extremely large values in both the

empirical and the bootstrapped estimation. Table 1.A.10 states the corresponding results

when estimating 5 instead of 4 parameters from the bond/stock and the bond/future

models. The estimates are similar to the corresponding 4 parameter case. However, the

results are less reliable, as they critically depend on the starting values and the tolerance

level of the minimizing routine. Nevertheless, confidence intervals and medians of the

bootstrapped distributions are in most cases similar to the ones obtained in other macro-

finance settings in Tables 1.2.

A striking feature of all larger-scale as well as the bond/consumption model is the

GMM estimate of the time preference parameter. In all of these models ρ turns out to

be approximately equal to zero in the empirical and most of the bootstrapped estimates.

Thus, even though we obtain 5 GMM parameter estimates in the macro-finance models

in Table 1.2, the identification of ρ appears troublesome. In contrast, the pure finance

settings may only yield 4 parameter estimates, but non of these parameters converges

towards zero and all lie within their corresponding bootstrapped 95% confidence intervals.

Thus, a complete finance setting allows for an identification of ρ, with values comparable

to the ones obtained from MEF estimation. As it turns out, the convergence of ρ towards

zero remains an exclusive feature of GMM estimation and in most considered settings

does not occur when using the MEF approach (see Table 1.3).

In line with the insights from the simulation study, the second moments of the bond and

consumption estimation equations appear to be the central drivers for the estimates of the

two variance parameters η and σ. Furthermore, the bootstrap analysis also suggest that

the speed of mean reversion parameter κ has a relatively large upward bias. In contrast to

the simulation study, however, there appears to no large bias reduction in macro-finance

models with stock or future data. In fact, bootstrapped confidence intervals, interquartile

ranges and medians are similar to the ones obtained from the other model formulations.

In all considered models, the GMM estimate of γ lies withing the bootstrapped 95%

confidence interval and in most cases even between the third and first quartiles of the

bootstrapped distribution. When using S&P500 future data, however, the empirical GMM

estimate of γ in the larger-scale macro-finance model is relatively small. This is also the

case when estimating the model with MEF (see table 1.3). The relatively low estimate of

γ probably results from using the smaller sub-sample, which is characterized by overall

lower interest rates with little variation. However, when using the shorter sub-sample
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in the bond/consumption/stock model, the empirical estimate of γ turns out to be only

marginally smaller than the one obtained from the full sample (see Table 1.A.12). Nev-

ertheless, in both settings, the shorter sub-sample is accompanied by significantly lower

estimates of η, which suggests that the prolonged ZLB period affects parameter esti-

mates. Note that the empirical estimate of γ in the bond/consumption/future model lies

significantly below its bootstrapped median. The ZLB is the likely reason for differences

between the empirical estimate and the bootstrapped median, because we do not model a

persistently binding lower bound in the bootstrapped samples. Thus, even though there

is a high likelihood of drawing a large proportion of ZLB observations in the construction

of the pseudo-data sets, the pseudo-times series are, on average, more volatile (higher η)

and overall imply higher levels of the risk-free rate (higher γ).

The empirical parameter estimates from the bond/consumption/output model are ba-

sically the same as in Christensen et al. (2016)(Table E5). Our bootstrap analysis unveils

that the estimate for η = 0.003 is significantly smaller than the bootstrapped median

estimates and lies relatively far outside the bootstrapped 95% confidence interval. The

corresponding confidence interval for σ is relatively wide, which shows that we frequently

observe large outliers. Comparing the law of motions of consumption (A.17a) and of out-

put (A.17g), there are many combinations of parameter values that suggest a relatively

high difference in the volatility of consumption and output. However, the volatility is

of similar magnitude in the empirical data so that drawing residuals for the bootstrap

can result in significant differences in the volatility of the two pseudo-time series. Con-

sequently, in some instances, either consumption or output turn out to be more volatile,

which explains the relatively large proportion of outliers.

The empirical parameter estimates from the bond/consumption/stock setting are sim-

ilar to the ones obtained from the bond/consumption setting. In case of the former, the

estimate of γ nearly coincides with the bootstrapped median, whereas it lies in the first

quartile in the bond/consumption case. However, the estimate of σ is relatively small

when using bond, consumption and stock data. In fact, the estimate does not even fall

within the bootstrapped 95% confidence interval, whereas σ lies more closely to the boot-

strapped median when using only bond and consumption data.

Table 1.3 shows the estimation results when using the MEF approach. As suggested

by the simulation study, MEF allows us to estimate all parameters when utilizing macro-

finance estimation equations. In the complete finance settings, in contrast to GMM, we

do not consider a daily frequency, as the increase in the sample size is computationally

burdensome and appears to exhibit numerical difficulties. Thus, we consider a monthly

frequency, restrict δ and σ and estimate the remaining 4 parameters. Nevertheless, the

MEF method turns out to have problems to retrieve ρ, which converge towards zero in

both the empirical and most of the bootstrapped estimation. As highlighted by Table
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Table 1.3: Empirical MEF estimation: Model overview and comparison. Bold parameter
estimates lie within the bootstrapped 95% confidence interval. First and third quartiles,
obtained from the bootstrapped parameter distributions are given below the estimates.

Empirical parameter estimates - MEF

Pure finance Macro-finance

Setup Bond Bond Bond Bond Bond Bond Bond
Stock Future Cons Cons Cons Cons

Out Stock Future

(Daily) (Daily) (Daily) (Monthly) (Monthly) (Monthly) (Monthly)

κ 0.165 0.135 0.115 0.170 0.022 0.007 0.068
[0.299, 0.514] [0.059, 0.129] [0.076, 0.139] [0.088, 0.215] [0.015, 0.056] [0.007, 0.014] [0.016, 0.037]

γ 0.071 0.062 0.057 0.071 0.128 0.110 0.035
[0.072, 0.081] [0.064, 0.081] [0.061, 0.074] [0.069, 0.084] [0.052, 0.176] [0.079, 0.093] [0.057, 0.073]

η 0.012 0.011 0.007 0.011 0.007 0.003 0.006
[0.011, 0.012] [0.008, 0.009] [0.006, 0.007] [0.008, 0.008] [0.008, 0.009] [0.002, 0.003] [0.004, 0.007]

ρ 0.000 0.000 0.009 0.009 0.012 0.005
[0.000, 0.000] [0.000, 0.000] [0.000, 0.006] [0.000, 0.005] [0.004, 0.010] [0.002, 0.006]

δ 0.05 0.05 0.05 0.05 0.027 0.05 0.05
[0.031, 0.171]

σ 0.02 0.02 0.02 0.017 0.017 0.018 0.013
[0.015, 0.016] [0.015, 0.016] [0.016, 0.017] [0.012, 0.013]

1.A.10, GMM estimation experiences the same behavior when using a monthly frequency.

In case of GMM, the remedy to this problem is switching to a daily frequency. Due to the

numerical and computational problems, increasing the data frequency tuns out to be no

reliable option in MEF estimation. In Table 1.A.11 we apply the simplified 2-step MEF

approach (see Christensen et al. (2016)) and estimate 5 parameters in the bond/stock

and bond/future settings at a daily frequency. The results are in line with the larger

macro-finance models and all empirical parameter estimates lie withing their 95% con-

fidence intervals and in most cases close to their corresponding bootstrapped medians.

However, similar to estimating 5 parameters from the pure finance models with GMM

(see Table 1.A.10), the results are less reliable because estimates strongly depend on the

starting values and the tolerance levels used in the minimization routines. These find-

ings suggest that the differences in the complete finance estimations in Tables 1.2 and

1.3 are not necessarily a matter of the applied estimation routines but of the different

sample frequencies used in the MEF (monthly) and the GMM (daily) estimations. This

again highlights one of the strengths of financial data; switching to a higher frequency can

improve identification and yield more significant estimates as measured in term of lower

statistical dispersion. It is important to stress, however, that the convergence problems

of ρ are not a specific feature of using finance data. In fact, the small-scale macro finance
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setting with bond and output data exhibits even more severe convergence problems.

In the small-scale bond/consumption setting, the obtained values for κ, γ and η are

nearly identical to the ones when using only bond data, suggesting that identification of

these parameters primarily occurs via the bond price. In contrast to the corresponding

GMM estimation, ρ does not converges towards zero. Even though the parameter esti-

mate of ρ = 0.009 lies within its bootstrapped 95% confidence interval, its size is three

times bigger than the median (0.003) of its bootstrapped distribution. When additionally

exploiting stock data, the empirical estimate for γ increases from 0.071 to 0.110 so that

the parameter value slightly exceeds its bootstrapped 95% confidence interval. The pa-

rameter estimate of γ appears to be quite high (around 11%). However, one has to keep

in mind that this simple model is very likely miss-specified and that our sample period

already starts in the early eighties, which were characterized by relatively high interest

rates. Nevertheless, this does not explain the significantly lower estimates of γ when ap-

plying GMM (see Table 1.3), and thus points in the direction of an MEF-related property.

In comparison to other MEF estimates of κ, the bond/consumption/stock model has the

smallest empirical estimate with a narrow bootstrapped confidence interval and the small-

est bootstrapped interquartile range. Recall that this accuracy gain is also suggested by

the simulation study. Furthermore, the estimate of the volatility parameter η turns out to

be only half as large as the ones obtained in the other MEF settings and nearly coincides

with the median of the bootstrapped distribution. In comparison to the corresponding

GMM estimation result, the parameter ρ no longer converges towards zero. In fact, the

parameter has the highest value among all MEF estimates in Table 1.3 and is nearly iden-

tical to the one obtained with GMM in case of the pure finance formulation with daily

data.

In case of the macro-finance system with bond, consumption and future data, most

parameter estimates are similar to the ones obtained with GMM. However, as in most

other large-scale models in Table (1.3), ρ does not converge towards zero. The ZLB

again appears to have a relatively large impact on the estimation results. In particular,

compared to the other settings, we obtain the lowest estimates for γ and η when utilizing

S&P500 future data. Furthermore, as suggested by the simulation study and in line with

the bond/consumption/stock model, the empirical estimate of κ is relatively small, has a

narrow 95% confidence interval and lies close to its bootstrapped mean.

Using the benchmark bond/consumption/output setting, we are able to estimate all 6

parameters. The obtained parameters are within their corresponding bootstrapped 95%

confidence intervals and, except for ρ and δ, lie relatively close to the medians of their boot-

strapped distributions. The empirical estimates of ρ and σ and their bootstrapped statis-

tics are nearly identical to the ones obtained from the smaller-scale bond/consumption

model, which suggest that identification primarily results from bond and consumption

data. The absolute value of the parameter estimate of γ nearly doubles, when adding
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output data to the bond/consumption model. Similar to the bond/consumption/stock

model, a value of nearly 13% appears to be relatively large. The depreciation rate param-

eter δ has a relatively large bootstrapped 95% confidence interval and the bootstrapped

distribution suggest a relatively high degree of dispersion as measured in terms of a large

interquartile range. The empirical parameter estimate of δ (0.026) is more than 3 times

smaller than the median (0.087) of the bootstrapped distribution. Taking everything to-

gether, we conclude that the benchmark model outperforms the other systems in case of

MEF estimation. However, as argued above, this system performs relatively poorly in

case of GMM estimation.

Our results indicate that the AK-Vasicek specification with logarithmic preferences

does not match the data very well and is very likely miss-specified. However, despite

the simplicity of the model, our estimation results highlight benefits and drawbacks of

utilizing financial data in the empirical estimation of structural estimation. Furthermore,

macro-finance and complete finance settings yield similar parameter estimates, which sug-

gest that we are not comparing apples and oranges. Hence, our findings are encouraging

to apply this approach to the estimation of more elaborate macroeconomic models. Recall

that we choose the above modeling framework as an illustrative example of our general

estimation approach. The practical evaluation of larger models is beyond the scope of this

paper but remains part of our future research agenda.

1.4 Conclusion

We discuss a general framework to estimate the structural parameters of macroeconomic

models, by utilizing a combination of macro variables and consistently priced financial

assets. To highlight this approach, we turn to a simple model with closed-form solution

that allows us to keep track of each step and to closely monitor macroeconomic and fi-

nancial dynamics. By doing so we can attribute identification of parameters to specific

estimation equations and moment conditions. We show how to estimate the structural

parameters with various different combination of macro as well as finance data and point

out drawbacks and benefits of the considered settings. Our simulation study results jus-

tify a critical assessment of the informational content of financial data on the state of

the economy. By utilizing the stochastic discount factor, any model implied asset price

can be derived consistently with macroeconomic dynamics. We show how the stochastic

discount factor allows for the computation of various financial asset prices even in very

simplistic macroeconomic frameworks. This enables us to use rich financial data sets

in our estimation, including S&P500 index and S&P500 future data with any available

frequency. We highlight that this allows substituting non-observable variables like the

risk-free rate or the capital stock with observable financial data. Furthermore, we can use
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higher-frequency financial data to replace lower-frequency macro data (e.g. GDP). Our

results suggest that a higher frequency can increase the accuracy of structural parameter

estimates. Additionally, due to the relative increase in the sample size one does not have

to go back decades in time in order to obtain a sufficiently large data set needed for esti-

mation. Furthermore, we show that certain combinations of macro and finance data offer

a nearly complete correction of the well established upward bias in the drift parameter

κ in the Vasicek interest rate specification. Strictly speaking, κ remains biased in these

macro-finance models but due to a strong accuracy gain, the bias basically vanishes in

absolute terms.

Despite the promising implications from simulation, actual empirical estimation ex-

hibits various problems and limitations. Similar to Christensen et al. (2016), these are in

some instances a relatively strong dependence on initial guesses and the used minimiza-

tion routines. The prolonged ZLB period also appears to be problematic. Nevertheless,

empirical estimation results appear to be relatively sound, given the highly stylized nature

of our exemplary model.

We believe that this paper is a promising starting point on how to utilize financial vari-

ables in the estimation of more elaborate macroeconomic models. First, our considered

generalized approach is readily applicable to a whole class of macroeconomic models and

does not stop at the exemplary AK-model. Second, while small-scale macroeconomic mod-

els usually rely on unrealistic simplifications, they offer important benchmark cases and

insights. As a consequence, our analytical solutions can turn out useful for understanding

transmission channels and relationships of macro and financial data, when introducing

more realistic features. Third, even though, this paper does not advocate casting the esti-

mation equations completely in terms of financial variables, it shows that this is possible

and, at least in theory, is equivalent to considering combinations of macro and financial

variables. A complete finance representation of macroeconomic models might turn out to

be an interesting alternative for policymakers. Especially to circumvent publication lags

and revisions of macro data, which can turn out to be useful if there is a quick need for

information on the state of the economy (e.g. policy responses to crises).
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Chapter 2

FTPL and the Maturity Structure of Government

Debt in the New-Keynesian Model

with Olaf Posch

Abstract

In this paper, we revisit the fiscal theory of the price level (Fiscal Theory of the Price

Level (FTPL)) within the New Keynesian model. We show in which cases the average

maturity of government debt matters for the transmission of policy shocks. The central

task of this paper is to shed light on the theoretical predictions of the maturity structure

on macro dynamics with an emphasis on model-implied expectations. In particular, we

address the transmission channels of monetary and fiscal policy shocks on the interest rate

and inflation dynamics. Our results illustrate the role of the maturity of existing debt

in the wake of skyrocketing debt-to-GDP ratios and increasing government expenditures.

We highlight our results by quantifying the effects of the large-scale US fiscal packages

(CARES) and predict a surge in inflation if the deficits are not sufficiently backed by

future surpluses.
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2.1 Introduction

In response to the global coronavirus pandemic, governments around the world tried to

cushion the economic downturn by financing large-scale fiscal support and relief packages

such as the US Coronavirus Aid, Relief, and Economic Security (CARES) Act, with

unprecedented volumes. For example, when including loan guarantees, the CARES Act

amounts to about $2 trillion (or 10% of US GDP) with substantial budgetary effects. The

Congressional Budget Office (CBO) projects CARES to add $1.7 trillion to deficits over

the next decade.1 In order to alleviate a deep recession, policy makers have implemented

further stimulus packages (e.g., the American Rescue Plan, the Next Generation EU fund,

NGEU). The funding of these unprecedentedly large fiscal programs drastically increased

debt levels with yet unknown consequences (e.g., accounting for distributional effects,

CARES increases the debt-to-GDP ratio by 12% in Kaplan et al., 2020).

In the macroeconomic literature, there are, however, open questions and ongoing de-

bates about the effects of sovereign debt on macro aggregates, inflation, the term structure,

and inflation expectations where no consensus has been reached. One central question here

is how the structure of outstanding government debt affects the transmission channels of

fiscal and monetary policy. Clearly, governments face a challenging task to maintain a

sustainable level and maturity structure of outstanding sovereign debt. On the one hand,

fiscal policy faces a financing decision on whether to either increase the level of public debt

or to raise taxes today. On the other hand, fiscal policy needs to decide on whether to

issue bonds with longer maturities, or to simply roll-over maturing debt with short-term

bonds. What will be the effect of those large-scale fiscal programs, in particular, how does

the maturity structure of outstanding debt affect those outcomes? This paper fills this

gap in the macroeconomic analysis of fiscal and monetary policy.

In this paper we address the transmission of fiscal and monetary policy shocks on

interest rates and inflation dynamics in a framework which combines the fiscal theory

of the price level (FTPL) with the traditional New Keynesian model of inflation. Our

central aims are the theoretical predictions of transitory and permanent policy shocks,

which offer empirical testable implications for the role of the maturity structure of debt

on the transmission of fiscal and monetary policy. Our application studies the effects

of the recent CARES Act trough the lens of fiscal theory. We depart from the existing

literature on the effects of the maturity structure of government debt in three dimensions.

First, our formulation allows us to link the macro model easily to term-structure models

in finance (Vasicek, 1977; Cox et al., 1985) and model-implied inflation expectations.

Our approach allows us to compute the term structure of interest rates and inflation

expectations by solving a partial differential equation, which is easily extended to nonlinear

1Congressional Budget Office, CARES Act, https://www.cbo.gov/publication/56334
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solutions, default risk, and term premia. Second, in contrast to existing approaches2,

we directly compute zero-coupon bond prices for arbitrary maturities and states and

then show bounds for the effects of the maturity structure of government debt on macro

dynamics and inflation decomposition. Finally, we show that the fiscal theory in the

continuous-time version works through two distinct channels: (i) a direct FTPL effect

through a discrete jump in the price of existing bonds and (ii) an indirect effect through

changing the path of future real interest rates. While the first channel is a pure asset

pricing channel, the second channel is the traditional effect present in forward-looking

rational expectations models. Hence, even in the model with short-term debt, the fiscal

theory has implications on the future path of the real interest rate, in particular, the term

structure of interest rate, inflation expectations, and the real economy.

We calibrate a simple NK-FTPL model to match the average maturity of outstanding

US government debt and study aggregate dynamics. We find that the average maturity of

debt has important implications for the transmission channels of both monetary and fiscal

policy. Our results show how the maturity of existing sovereign debt significantly shapes

the inflation response to fiscal and monetary policy shocks. First, following a transitory

monetary policy shock, a longer maturity structure translates to a larger response in the

real interest rate. In cases where outstanding government debt consists solely of short-term

debt, the traditional negative correlation of the nominal interest rate and current inflation

is reversed and term structure and inflation expectations are more sensitive to shocks.

Similarly, based on the underlying maturity structure of government debt, expansionary

fiscal policy leads to higher inflation and more accumulation of debt with short-term

debt. Our inflation decomposition shows that with perpetuities, the inflation response to

transitory shocks is dictated solely by future fiscal policy with changes in future monetary

policy being soaked up by an immediate asset pricing effect. Second, we illustrate how

inflation expectations and the term structure helps in identifying permanent policy shocks.

Here, the maturity structure often produces some unpleasant short-term side effects. For

example, a permanently lower inflation target increases current inflation and interest rates,

but reduces long-term bond yields due to the re-evaluation of existing bonds.

Our findings confirm the hypothesis that the CARES Act with its unprecedented

large-scale fiscal stimulus programs, i.e., the large cuts in primary surplus and hikes in

government debt, has generated a market response with strong inflationary effects but

effectively helped stimulating the real economy. However, the recent surge in inflation

and medium-term inflation expectations indicate that markets do not expect that the

newly issued debt is backed by subsequent higher future surpluses. This seems in contrast

to the aftermath of the global financial crisis and raises cautionary flags as hyperinflations

are widely believed to have fiscal origins (cf. Leeper and Leith, 2016).

2Among others see Leeper et al. (2019), Lustig et al. (2008), Faraglia et al. (2013) or Faraglia et al.
(2019).
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In line with the existing literature on the fiscal theory, we confirm a prominent role

of those ideas in the NK-FTPL model with a plausible maturity structure of sovereign

debt (cf. Cochrane, 2001; Leeper and Leith, 2016).3 Most theoretical studies, such as Sims

(2011, 2013), Leeper and Leith (2016), and Cochrane (2018), highlight important insights,

e.g., the role of long-term bonds in the simple NK model causing a ‘boomerang inflation’

response to monetary policy shocks. In these models, long-term bonds are used to offset

an otherwise initial positive co-movement of the inflation and the interest rates.4 Other

studies focus on the low-frequency relationship between the fiscal stance and inflation in a

model with long-term debt (see Kliem et al., 2016) or the government spending multiplier

(see Leeper et al., 2017a). We are not aware of a comprehensive study on the effects

of fiscal and monetary policy shocks on inflation and inflation expectations, or generally

about the role of fiscal theory in the NK model with an empirically calibrated average

maturity of existing sovereign debt. Unfortunately, an inflation decomposition into a direct

FTPL effect and an indirect effect is tricky and less clear-cut in the discrete-time model

because the price level can jump (which in the continuous-time version is determined by

past inflation). Hence, a continuous-time version of the NK-FTPL model (see also Sims,

2011; Cochrane, 2018) helps identifying the effects of the maturity structure because in the

model with short-term debt, as in traditional NK models with fiscal policy and sovereign

debt, the direct bond pricing effect is zero and the fiscal theory would work solely through

the indirect effect.

Many theoretical and empirical studies recognize an important effect of the maturity

structure of government in a broader context of optimal monetary and fiscal policies.5

Leeper et al. (2019) show how high sovereign debt levels and the debt maturity structure

can increase the ‘inflationary bias’. In this setup, higher debt levels and shorter maturities

increase the temptation of the policy maker to use surprise inflation and to decrease the

real value of government debt. Similarly, Lustig et al. (2008) study the optimal policy

if the fiscal authority is constrained by its ability to lend and only issues non-contingent

nominal debt. In this case, optimal policy is achieved by almost the exclusive use of

long-term debt. Even though the holding return on long-term debt is more volatile in

contrast to short-term debt, it offers a hedge against fiscal shocks. Faraglia et al. (2013)

analyze how inflation is affected by the maturity of sovereign debt and debt levels when

fiscal and monetary policy are coordinated. They conclude that higher debt levels cause

higher inflation, while a longer maturity structure increases its persistence.

3In this paper we focus on the fiscal regime and neglect potential fiscal-monetary coordination problems
which may arise in a regime-switching model as in Bianchi (2012) or Bianchi and Melosi (2019).

4Cochrane (2022b) and Liemen (2022) discuss alternative ideas and show that long-term debt is not
necessary to address this counterfactual response for short-term debt in the NK-FTPL model.

5Other papers study the optimal debt-maturity management (cf. Buera and Nicolini, 2004; Shin, 2007;
Faraglia et al., 2010; Debortoli et al., 2017; Bigio et al., 2019). For example, Bigio et al. (2019) show how
liquidity costs can prevent an instantaneous re-balancing across maturities and identify different forces
that ultimately shape the optimal debt-maturity distribution.
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More recently, Kaplan et al. (2020) and Bayer et al. (2021) also evaluate the role of

skyrocketing debt levels, following the large-scale fiscal stimulus programs within the NK

models with heterogeneous agents (HANK). Focusing on the role of public debt as private

liquidity, Bayer et al. (2021) find that the expansionary stimulus programs decreased the

liquidity premium of government bonds over less liquid assets.

The rest of the paper is organized as follows. In Section 2 we formalize the simple

perfect-foresight NK-FTPL model and study dynamics of transitory and permanent struc-

tural zero-probability shocks. In Section 3 we provide a thorough analysis and simulation

of the CARES Act of 2020 and discuss the recent surge in inflation and differences to the

aftermath of the global financial crisis in 2008. Section 4 concludes.

2.2 The Model

In this section, we show how the FTPL mechanism outlined in Sims (2011) and Cochrane

(2018) is embedded in the continuous-time NK model (cf. Posch, 2020). For reasons of

clarity, we shortly discuss the main channels of FTPL in the linear NK framework and

abstract from the effects of uncertainty and nonlinearities.

2.2.1 Monetary Policy or Fiscal Theory of Monetary Policy

As shown in Cochrane (2018), the presence of longer-term debt has effects on both the real

economy and on how monetary policy is conducted, and more generally how government

policies affect inflation. Consider the three-equation perfect-foresight NK model

dxt = (it − ρ− πt)dt (2.1)

dπt = (ρ(πt − π∗
t )− κxt)dt (2.2)

dit = θ(ϕπ(πt − π∗
t ) + ϕy(yt/yss − 1)− (it − i∗t ))dt, (2.3)

in which xt is the output gap, yt is output, it is the nominal interest rate, ρ the rate

of time preference, πt is inflation, where κ controls the degree of price stickiness with

κ→ ∞ as the frictionless (flexible price) and κ→ 0 perfectly inelastic (fixed price) limits,

θ controls interest rate smoothing with θ → ∞ implying the traditional feedback rule,

it = i∗t + ϕπ(πt − π∗
t ) + ϕy(yt/yss − 1), and with π∗

t and i∗t being parametric values.

Following Cochrane (2018) we implement the fiscal theory of the price level (FTPL)

by closing the system with a fiscal block

dat = ((it − πt)at − st)dt (2.4)

dst = f(st, yt, at)dt, (2.5)
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in which at is the real value of sovereign debt (held by households), and st ≡ Tt− gt is the

primary surplus, where Tt denotes lump-sum tax revenues and gt government spending

other than interest payments. It represents the net payments to holders of bonds, both

through interest and retirement of outstanding debt (cf. Sims, 2011). In what follows, we

use the notion of ‘sovereign debt’ and ‘government bonds’ interchangeably, which after all

can be considered as a medium of exchange (paper money).

The central equation in the NK-FTPL model links primary surpluses to the real value

of sovereign debt. In fact, solving forward (2.4), the future path of primary surpluses

imposes a ‘constraint’ for fiscal policy (government budget constraint), because

at ≡
ntp

b
t

pt
= Et

∫ ∞

t

e−
∫ u
t (iv−πv)dvsudu, (2.6)

where nt denotes the number of outstanding bonds, pbt the bond price, and pt the price level,

which must equal its (expected) real present value.6 In this paper, we focus on bounded

solutions and limT→∞ e−
∫ T
t (iv−πv) dvaT = 0.7 Rather than being a budget constraint or

limiting fiscal capacity, equation (2.6) should be thought of as being a valuation formula

as it asserts a value pbt to the supply of government bonds nt and a given price level pt.

Similar to assuming perfectly flexible prices, it is unrealistic assuming that government

debt is either floating debt or perpetual debt (cf. Sims, 2011). In what follows, we refer

to floating debt as short-term and to long-term debt as perpetuities. We introduce bonds

with decaying coupon payments (similar to Woodford, 2001), and assume that longer-term

bonds (average duration) are amortized at rate δ and pay a nominal coupon χ+δ such that

at steady state the bonds sell at par and results compare to Sims (2011). No-arbitrage

requires (see PDE approach Cochrane, 2005, chap. 19.4),

dpbt = (it − ((χ+ δ)/pbt − δ))pbtdt+ dδpbt , Et(dδpbt ) = 0 (2.7)

in which dδpbt captures discrete changes in the bond price due to zero-probability structural

shocks, with χ = iss such that pbss = 1 is identical to floating debt. Note that (2.7) is

not a stochastic differential equation (SDE) because the ‘shocks’ have zero probability.

Following the literature, dδpbt reminds us that the variable pbt can jump (forward-looking).

In theory, we can issue floating debt which pays at χ = it and with δ → ∞ average

duration approaches zero such that pbt ≡ 1. In contrast, for long-term bond we set δ = 0

(cf. Sims, 2011). By integrating the linear approximation of equation (2.7), we obtain

pbt = 1− Et

∫ ∞

t

e−(χ+δ)(u−t)(iu − iss)du, (2.8)

6Cochrane (2018) as well as Sims (2011) abstract from government consumption, gt, in their framework,
such that primary surpluses correspond to taxes, st = Tt.

7Hence, we focus on the standard no-bubble solution (e.g., Sims, 2011; Cochrane, 2018). There is a
literature showing that a ‘bubble term’ can be important for the budget constraint (cf. Reis 2021).
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which shows that the initial response of the bond price is determined entirely by the

discounted and maturity-adjusted path of the nominal interest rate. If we use the average

duration of 6.8 years from the central bank’s Security Open Market Account (SOMA), we

calibrate δ = 1/6.8 and χ = 0.03 (see Del Negro and Sims, 2015).8

In contrast to the discrete-time model, the price level pt cannot jump and is given by

past price quotations (Calvo’s insight).9 Because the number of outstanding bonds in (2.6)

is fixed and cannot jump either, only the bond price pbt , which is determined in general

equilibrium, can jump due to changes in either future surplus su or the future discount

rate iu−πu for u ≥ t (direct FTPL effect). Because with short-term debt pbt ≡ 1, the direct

FTPL requires the presence of longer-term debt. The bond price effect then passes on to

the value of debt, inducing a jump in at (market value), i.e., a forward-looking variable.

Hence, the average duration δ of the maturity structure of government debt determines

the strength of the direct FTPL effect, such that δ → ∞ eliminates jumps in pbt .

The path of the primary surplus on the right-hand side of equation (2.6) is deter-

mined by fiscal policy, so by assumption, surpluses typically do not jump if the value of

sovereign debt changes (we discuss different scenarios below). Hence, changes in fiscal

policy are accommodated by the real interest rate (indirect FTPL effect) such that (2.6)

is not violated. So even without the presence of long-term debt, monetary policy must

accommodate future changes in fiscal policy. Although households are indifferent with

respect to the maturity of government debt because of arbitrage, the bottom line of this

paper is to show that it has important implications for inflation dynamics, the term struc-

ture, inflation expectations, and the real economy. Thus, for ease of illustration, we focus

on a fiscal regime (or fiscal dominance) throughout the paper, while the insights are useful

for a more realistic regime-switching approach, as in Bianchi and Melosi (2019).

2.2.2 Simple Fiscal Policy Rules Versus Policy Inertia

There seems to be a consensus among economists that there is a systematic response of

fiscal policy to the state of the economy. While theoretical papers often assume contem-

poraneous responses using simple fiscal policy rules (Sims, 2011; Cochrane, 2018), most

empirical studies suggest that there is a time lag (inertia) between the relevant variables

and the policy response, such as changes in the tax code or a revised public expenditure

budget plan (cf. Kliem et al., 2016; Bianchi and Melosi, 2019). In this paper, we provide

a general framework, where the specifications can be coherently studied and which allows

us to investigate the effects of temporary and permanent shocks. Starting with the central

8Below we use a zero-coupon bond with time-to-maturity of 1/δ years interchangeably.
9Because no mass of firms can change prices instantaneously, the NK Phillips curve allows a jump in

the inflation rate but not in the price level (cf. Cochrane, 2018, Online Appendix). Here, the price-level
jump of the discrete-time model rather translates into a smooth change by affecting inflation.
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NK-FTPL equation in (2.5), st ≡ Tt − gt, and specifying a tax rule as

dTt = ρτ (τy(yt/yss − 1) + τa(at − ass)− (Tt − T ∗
t )) dt, (2.9)

where ρτ controls the degree of inertia with ρτ → ∞ as the flexible limit (feedback rule),

in which Tt = T ∗
t + τy(yt/yss − 1) + τa(at − ass). For ρτ → 0 we obtain the inelastic limit

where Tt ≡ T ∗
t . This fiscal policy is accompanied by a rule for government spending

dgt = ρg (φy(yt/yss − 1) + φa(at − ass)− (gt − g∗t )) dt, (2.10)

where ρg controls the degree of inertia with ρg → ∞ as the flexible limit (feedback rule),

in which gt = g∗t + φy(yt/yss − 1) + φa(at − ass). For ρg → 0 we obtain the inelastic limit

where gt ≡ g∗t . In what follows, we refer to the model parameters, or more generally, to

the levels of government expenditures, taxes, and debt as ‘fiscal policy’, such that

dst = ρτ (τy(yt/yss − 1) + τa(at − ass)− (Tt − T ∗
t )) dt

−ρg (φy(yt/yss − 1) + φa(at − ass)− (gt − g∗t )) dt.

Note that we could add others variables such as the inflation rate, πt, which will be a

function of the relevant state variables.10 In a linearized version, such addition of variables

gives rise to different parametrization of the responses to the state variables. Our results

thus shed light on reasonable fiscal policy rules, which ultimately is an empirical question

and beyond the scope of our analysis (e.g., Kliem and Kriwoluzky, 2014).

Kliem and Kriwoluzky (2014) show that the standard fiscal policy rules, in which tax

rates respond to the level of output, are not supported by the data. Most contributions

in the FTPL literature, such as Sims (2011) and Cochrane (2018), study models with

an output response only.11 Kliem et al. (2016) find that there is only weak empirical

evidence in favor of output in fiscal policy rules, but rather evidence in favor of responses

with respect to the fiscal stance (such as the level of debt or debt-to-GDP ratios). We

follow the conventional approach and focus on (locally) determinate solutions only. As

shown in Leith and von Thadden (2008), this has important implications for the admissible

parameter set for a particular regime, in particular the size of parameters τa and φa.
12

Our benchmark parametrization closely follows Kliem and Kriwoluzky (2014), which

allows for inertia in the fiscal policy rule for tax revenues. Since our focus is on the effects

of maturity on the transmission of shocks, we abstract from introducing distortionary

taxes. We focus on a tax rule (2.9) with an output response τy > 0 and an inelastic fiscal

10With a fiscal policy rule responding to inflation, a higher interest rate may produce lower inflation
even with short-term debt (cf. Cochrane, 2022b, Chap. 5.7).

11Note that Sims (2011) and Cochrane (2018) impose ρτ → ∞ (feedback rule), and the fiscal policy
rule g = sg(y/yss − 1) can be replicated for ρg → ∞ (feedback rule) and by setting φy = sg.

12See Section 3.3.2 for an elaborate discussion on determinacy regions.
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Table 2.1: Parametrization 1 (benchmark, similar to Kliem and Kriwoluzky 2014).

ρ 0.03 subjective rate of time preference
κ 0.4421 degree of price stickiness
yss 1 normalized steady state output
ϕπ 0.6 inflation response Taylor rule (fiscal regime)
ϕy 0 output response Taylor rule
θ 1 inertia Taylor rule
πss 0 inflation target rate
τy 1 output response fiscal tax rule (Sims, 2011; Cochrane, 2018)
τa 0 debt response fiscal tax rule
ρτ 1 inertia of fiscal tax rule
φy 0 output response fiscal expenditure rule
φa 0 debt response fiscal expenditure rule
ρg 0 inertia of fiscal expenditure rule
sg 0.1534 government consumption to output ratio (Bilbiie et al., 2019)
sss 0.0324 steady-state surplus (to match US debt/GDP 2020Q1)
χ 0.03 net coupon payments (Del Negro and Sims, 2015)
1/δ 6.8 average duration of government bonds (Del Negro and Sims, 2015)

expenditure target such that gt ≡ g∗t with ρg → 0, and a corresponding T ∗
t to match the

US debt-to-GDP ratio of about 108% right before the pandemic (2020Q1).13 We follow

Bilbiie et al. (2019) and set the steady-state government consumption-to-output ratio

equal to 15.34%. A higher share of government consumption-to-output of about 20%,

similar to Justiniano et al. (2013) and Eichenbaum et al. (2020), only slightly affects the

model dynamics.

Our benchmark parametrization is summarized in Table 2.1 such that the implied

fiscal rule f(st, yt, at), in the law of motion for primary surplus (2.5), takes the form

f(st, yt, at) ≡ yt/yss − 1− (st − s∗t ). (2.11)

Market clearing and the fiscal policy rule then imply (cf. Appendix 2.A.1):

yt/yss − 1 = (1− sg)xt. (2.12)

13U.S. Office of Management and Budget and Federal Reserve Bank of St. Louis, Federal Debt: Total
Public Debt as Percent of Gross Domestic Product [GFDEGDQ188S], retrieved from FRED, Federal
Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/GFDEGDQ188S, January 13, 2022.
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Hence, the equilibrium dynamics can be summarized as

dxt = (it − ρ− πt)dt (2.13a)

dπt = (ρ(πt − π∗
t )− κxt)dt (2.13b)

dit = (ϕπ(πt − π∗
t )− (it − i∗t ))dt (2.13c)

dat = ((it − πt)at − st)dt (2.13d)

dst = ((1− sg)xt − (st − s∗t ))dt (2.13e)

in which xt, πt are forward-looking (jump) variables, and at satisfies (2.6).
14

2.2.3 Solution to the Linearized Equilibrium Dynamics

Following the FTPL literature, we solve a linearized system around the steady state for

the initial values π0 and x0 given the state variables i0, a0, and s0.
15 To this end, we use

an eigenvalue-decomposition on the Jacobian matrix of the set of differential equations

and study the local dynamics induced by an unexpected (zero-probability) shock on the

stable manifold back to a steady state. Technically, we solve the system using the stable

eigenvalues in order to find the unique (backward) solution. The jumps in forward-looking

variables πt and xt, together with zero-probability shocks to the state variables it, at, and

st, determine the initial values of the endogenous model variables.

In case of long-term debt, we use the bond price equation (2.7) and the dependence

of at on the price in pbt from the valuation equation (2.6). Note that we need the bond

price equation (2.7) only to pin down the initial price jump (direct FTPL effect), which

translates to a shock to at. For example, consider a monetary policy shock dεi ≡ it−it− in

the model with longer-term debt and store the implied initial price jump dδpbt ≡ pbt − pbt−.

Consider then the same monetary policy shock dεi in the model with short-term debt,

without bond price effects (no direct FTPL effect), and a contemporaneous shock dεa ≡
at−at− = dδpbt , i.e., use the stored price jump as an additional structural shock to at, the

short-term debt model has exactly the same solution as the model with long-term debt.

Proposition 6 (Linear solution) The linear approximation to the system of the model’s

equilibrium dynamics (2.13) implies a set of functions for given states (it, at, st)

xt = x̄i(it − iss) + x̄a(at − ass) + x̄s(st − sss), (2.14a)

πt = πss + π̄i(it − iss) + π̄a(at − ass) + π̄s(st − sss), (2.14b)

pbt = pbss + p̄bi(it − iss) + p̄ba(at − ass) + p̄bs(st − sss), (2.14c)

14For an alternative parametrization, f(st, yt, at) ≡ (τa − φa)(at − ass) − (st − s∗t ) together with a
slightly changed Phillips curve (2.13b).

15Alternative approaches, which can account for non-linearities and risk, either solve the boundary
value problem for a grid of state variables to approximate the policy function (cf. Posch, 2020), or use
perturbation (cf. Parra-Alvarez et al., 2021) to obtain the policy functions.
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where bars denote the partial derivatives (slopes), evaluated at (iss, ass, sss):

x̄i = xi(iss, vss, sss)− p̄bivssx̄a/(1− vssp̄
b
a),

x̄a = xv(iss, vss, sss)p
b
ss(1− vssp̄

b
a)/(1− vssp̄

b
a + pbssvssp̄

b
a),

x̄s = xs(iss, vss, sss)− p̄bsvssx̄a/(1− vssp̄
b
a),

π̄i = πi(iss, vss, sss)− p̄bivssπ̄a/(1− vssp̄
b
a),

π̄a = πv(iss, vss, sss)p
b
ss(1− vssp̄

b
a)/(1− vssp̄

b
a + pbssvssp̄

b
a),

π̄s = πs(iss, vss, sss)− p̄bsvssπ̄a/(1− vssp̄
b
a),

p̄bi = pbi(iss, vss, sss)(1− vssp̄
b
a),

p̄ba = pbv(iss, vss, sss)/(1 + vssp
b
n(iss, vss, sss)/p

b
ss),

p̄bs = pbs(iss, vss, sss)(1− vssp̄
b
a).

Here, vt ≡ nt/pt defines the real number of bonds because the partial derivatives in terms

of at (market value) reflect the indirect effects only, keeping fixed the price of government

debt, pbt, while the total effects are visible only in terms of vt (face value).

Proof. Appendix 2.A.3

Our linearized solution (2.14) thus gives the policy functions in terms of vt in Figure 2.1.

For illustration, we also show the policy functions in terms of at (cf. Figure 2.2). Except

for the bond price pbt , the policy functions coincide for different maturity structures and

correspond in terms of at to the short-term debt case in terms of vt. Figure 2.1 sheds light

on how the maturity structure of government debt matters for the responses of macro

aggregates with changes in the state variables. Probably the most striking result is the

link between inflation and interest rates: For the average duration of government bonds

in the data (blue solid), we obtain the traditional negative link between interest rates and

current inflation rates. This shows that the fiscal regime is crucial to the traditional effect

of monetary policy. A knife-edge case exists in which the direct FTPL effect offsets the

indirect effect and interest rates would have no contemporaneous effect on inflation.

2.2.4 Term Structure of Interest Rates

The term structure of interest rate, defined as the yield of zero-coupon bonds as a function

of their maturity, reveals important insights on expectations about the future path of

macro aggregates and inflation. Given the equilibrium prices, we can price any asset. The

no-arbitrage condition implies that the asset prices adjust such that the households will

be indifferent in their portfolio decision. Let us consider a nominal (zero-coupon) bond

with unity payoff at maturity N :

p
(N)
t = Et

(
e−ρNλt+N/λte

−
∫ t+N
t πudu

)
, (2.15)
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Figure 2.1: Policy functions for the parametrization in Table 1, showing the total response
in terms of vt (indirect and direct effects). Solid blue lines show policy functions with
average duration, dashed black for perpetuities, and dotted red for short-term debt.

where λt is the marginal value of wealth, or the current value shadow price, consistent

with equilibrium dynamics of macro aggregates. Note that the equilibrium price pbt can be

computed along the same lines (because the maturity distribution is approximately expo-

nential with a duration of 1/δ, the average-maturity bonds will share the same properties

as zero-coupon bonds at maturity 1/δ). The equilibrium bond price can be obtained from

the fundamental pricing equation for the price p
(N)
t (Cochrane, 2005, chap. 19.4):

Et

(
( dp

(N)
t )/p

(N)
t

)
−
(
1/p

(N)
t (∂p

(N)
t /∂N) + it

)
dt = 0. (2.16)

Observe that in equilibrium, the bond price p
(N)
t is a function of the state variables, so

p
(N)
t = p

(N)
t (it, at, st), where from (2.13c), (2.13d), and (2.13e) we get

dp
(N)
t = (ϕπ(πt − π∗

t )− (it − i∗t ))(∂p
(N)
t /∂it) dt

+(∂p
(N)
t /∂at)((it − πt)at − st)dt

+(∂p
(N)
t /∂st)((1− sg)xt − (st − s∗t )) dt
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Figure 2.2: Policy functions for the parametrization in Table 1, showing the partial re-
sponse in terms of at (indirect effects). Solid blue lines show policy functions with average
duration, dashed black for perpetuities, and dotted red for short-term debt.

together with the solution (2.14) and thus the PDE (henceforth PDE approach) reads:

(ϕπ(πt − π∗
t )− (it − i∗t ))(∂p

(N)
t /∂it) + ((1− sg)xt − (st − s∗t ))(∂p

(N)
t /∂st)

+((it − πt)at − st)(∂p
(N)
t /∂at) = (∂p

(N)
t /∂N) + itp

(N)
t . (2.17)

The solution to the pricing equation implies the complete term structure of interest rate

for any given interest rate and maturity:

y
(N)
t ≡ y(N)(it, at, st) = − log p

(N)
t (it, at, st)/N. (2.18)

Our strategy is to use collocation to approximate the function p
(N)
t ≈ Φ(N, it, at, st)v, in

which v is an n-vector of coefficients and Φ denotes the known n × n basis matrix, and

can compute the unknown coefficients from a linear interpolation equation:

(ϕπ(πt − π∗
t )− (it − i∗t ))Φ

′
2(N, it, at, st)v + ((it − πt)at − st)Φ

′
3(N, it, at, st)v

+((1− sg)xt − (st − s∗t ))Φ
′
4(N, it, at, st)v = Φ′

1(N, it, at, st)v + itΦ(N, it, at, st)v,
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or

(
(1− sg)xt − (st − s∗t ))Φ

′
4 + ((it − πt)at − st)Φ

′
3

+(ϕπ(πt − π∗
t )− (it − i∗t ))Φ

′
2 − Φ′

1 − itΦ
)
v = 0n, (2.19)

where n = n1 ·n2 ·n3 ·n4 with boundary condition Φ(0, it, at, st)v = 1n. So we concatenate

the two matrices and solve the linear system for the unknown coefficients. While in this

paper, we focus on the expectation channel and abstract from other determinants such as

risk premia and liquidity, an extension to include risk and term premia in the analysis is

straightforward (cf. Posch, 2020). In particular we want to study the effects of temporary

and permanent shocks on the term structure of interest rates.

2.2.5 Inflation Decomposition and Expected Inflation

Inflation and expected inflation are key determinants of monetary policy. In what follows

we decompose the total effects of structural shocks on those key variables from their

theoretical impulse response functions (IRFs). By the decompositions we answer the

question how much such shocks contribute to the observed response.

For our decomposition based on the IRFs, we start with the linearized debt evolution

using r ≡ iss − πss = ρ and sss = ρass (our decomposition follows Cochrane, 2022a,b)

d(at/ass − 1) = (it − πt + r(at/ass − 1)− st/ass)dt

and

at/ass − 1 = Et

∫ ∞

t

e−r(u−t)su/assdu− Et

∫ ∞

t

e−r(u−t)(iu − πu)du,

which is the linearized present value formula corresponding to (2.6). The real value of

debt is the present value of surpluses, discounted at the real interest rate.

From the linearized definition (2.6), the real value of sovereign debt (market value)

can be decomposed into

at/ass − 1 = vt/vss − 1 + pbt/p
b
ss − 1, (2.20)

either by changes in debt issued or valuation (direct effects). Hence, we get the identity∫ ∞

t

e−r(u−t)πudu =

∫ ∞

t

e−r(u−t)iudu−
∫ ∞

t

e−r(u−t)su/assdu

+pbt/p
b
ss − 1 + vt/vss − 1 (2.21)

in the perfect-foresight model, which allows us, for example, to decompose the effects of

zero-probability shocks on present values of future inflation into changes in the present
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value of future interest rates (monetary policy), the present value of changes in future

surpluses (fiscal policy), and the direct effects (real debt decomposition).

Moreover, from (2.8) and with χ ≡ r and vt ≡ vss in the perfect-foresight model

pbt = 1−
∫ ∞

t

e−(r+δ)(u−t)(iu − iss)du,

we conclude that the strength of the direct FTPL bond price effect depends on both the

average maturity 1/δ and the expected future path of monetary policy, at t = 0,∫ ∞

0

e−ru(πu − πss)du =

∫ ∞

0

e−ru
(
1− e−δu

)
(iu − iss)du−

∫ ∞

0

e−ru(su − sss)/assdu.

The effect is strongest for perpetuities with δ → 0, where all changes in future interest

rates (monetary policy) will be soaked up in an initial re-evaluation of sovereign debt, and

fiscal policy fully determines inflation. In contrast, in the short-term model with δ → ∞,

changes in future monetary policy affect future expected inflation most.

Similarly, inflation expectations are at the core of monetary policy, often considered

even as a separate variable. Hence, we can study the effects of monetary and fiscal policy

shocks on the model-implied expected inflation, e.g., to confront the rational expectation

forecast results with survey data. From the Phillips curve in (2.13b) it follows

πt − π∗
t = κ

∫ ∞

t

e−ρ(v−t)xudu.

The inflation rate, πt, denotes current expected inflation measured as deviation from its

policy target rate π∗
t . Multiplying the differential equation for the inflation rate by the

integrating factor and evaluating from t to t+N , we obtain

π
(N)
t ≡ Et(πt+N) = π∗

t + eρN(πt − π∗
t )− κeρN

∫ t+N

t

e−ρ(u−t)xu du. (2.22)

Intuitively, the model-implied inflation forecast is a forward contract to inflation, which

can be more informative than using forward rates (Gürkaynak et al., 2007). We compute

the rational expectation forecast πt+N as a function of the current state variables (it, at,

and st) and the fixed forecasting horizon N . Hence, for the N -year ahead future expected

inflation rate, we compute π
(N)
t from (using Feynman-Kac)

∂π
(N)
t /∂N = (ϕπ(πt − π∗

t )− (it − i∗t ))(∂π
(N)
t /∂it) dt

+(∂π
(N)
t /∂at)((it − πt)at − st)dt+ (∂π

(N)
t /∂st)((1− sg)xt − (st − s∗t )) dt

together with the known solution (2.14) and by imposing the boundary condition π
(0)
t = πt.

Similar to the term structure of interest rates, the solution to the PDE then implies the
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Table 2.2: Inflation decomposition (2.21) for the monetary policy shock in Figure 2.3.

Debt
∫∞
0 e−ruπvdu

∫∞
0 e−ruiudu

∫∞
0 e−rvsu/assdu pb0/p

b
ss − 1

Maturity inflation interest rate surplus direct effect

Long-Term −0.29 −1.14 0.29 1.14
Average −0.48 −1.25 0.21 0.98
Short-Term −1.62 −1.91 −0.29 0

N -years ahead inflation expectations for a given state variable as

π
(N)
t = π(N)(it, at, st). (2.23)

Our strategy is to use collocation to approximate the function π
(N)
t ≈ Φ(N, it, at, st)v.

The n-vector v is a vector of coefficients and Φ denotes the known n × n basis matrix,

and can compute the unknown coefficients from the linear interpolation equation

(
((1− sg)xt − (st − s∗t ))Φ

′
4 + ((it − πt)at − st)Φ

′
3

+(ϕπ(πt − π∗
t )− (it − i∗t ))Φ

′
2 − Φ′

1

)
v = 0n,

where n = n1 · n2 · n3 · n4 with the boundary condition Φ(0, it, at, st)v = 1n · πt. So we

concatenate the two matrices and solve the linear system for the unknown coefficients.

Because the model time unit is years, the N -year ahead inflation forecast π
(N)
t refers

to the empirical NY1Y measure. As a simple approximation, we may define the weighted

sum of N -year ahead inflation forecast for the successive k years π
(N,k)
t as

π
(N,k)
t ≈ (1/k) ln

( k∑
i=N

(
1 + π

(i)
t

))
. (2.24)

2.2.6 Monetary and/or Fiscal Policy and Transitional Dynamics

Defining monetary policy shocks as changes in monetary policy with no exogenous changes

in surplus (cf. Cochrane, 2018), we can answer the question of how maturity matters in the

model for the transition of unexpected (zero-probability) shocks. Similarly, we consider

unexpected changes in fiscal policy without changing the nominal interest rate.
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Figure 2.3: Transitory monetary policy shock for the parametrization in Table 2.1. De-
crease in nominal interest rate by 1 percentage point. Solid blue lines show the responses
matching average duration, dashed black for perpetuities, and dotted red for short-term
debt.

Transitory Shocks

Consider an expansionary transitory monetary policy shock of 100 basis points (bp),

i.e., the policy rate it decreases unexpectedly by 1 percentage point. That unexpected

decrease in nominal interest rates it initially has expansionary effects on output because

the real interest rate decreases (cf. Figure 2.3). This effect is larger the longer the average

maturity of government debt (i.e., ‘stepping on a rake effect of inflation’ for perpetuities).

Here, the maturity structure matters because the monetary policy shock decreases the

real interest rate even more for long-term bonds (black dashed) than with only short-term

debt (red dotted). Because with short-term debt the direct FTPL effect is missing, the

real debt does not respond immediately and we are left with the indirect FTPL effect,

which unambiguously lowers inflation on impact (cf. Cochrane, 2018).

Fiscal authorities now habitually react following the specified fiscal rule and respond

to the increased output by higher surpluses from increased tax receipts. A higher surplus

then lowers inflation (cf. Figure 2.1), which again slowly increases the real interest rate.

While the sign of the initial response of inflation depends on the maturity structure, which

is basically dictated by the policy functions, future expected inflation turns negative for

all maturities (as shown in Figure 2.4). In fact, the net present value of future expected

inflation is negative, ranging from −0.29 to −1.62 percentage points depending on the

maturity of government debt (cf. Table 2.2). Here, the negative effect on inflation can be
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Figure 2.4: Transitory monetary policy shock for the parametrization in Table 2.1. De-
crease in nominal interest rate by 1 percentage point. Solid blue lines show the responses
matching average duration, dashed black for perpetuities, and dotted red for short-term
debt.

Table 2.3: Inflation decomposition (2.21) for the fiscal policy shock in Figure 2.5.

Debt
∫∞
0 e−ruπudu

∫∞
0 e−ruiudu

∫∞
0 e−rusu/assdu pb0/p

b
ss − 1

Maturity inflation interest rate surplus direct effect

Long-Term 0.29 0.17 −0.29 −0.17
Average 0.34 0.20 −0.27 −0.12
Short-Term 0.48 0.28 −0.20 0

attributed to either fiscal policy (black dashed), where future monetary policy is soaked

up by higher bond prices, or a mix of monetary and fiscal policy, which is buffered by

lower net present value of future tax receipts (solid blue and red dotted).

The direct FTPL effect increases the value of government debt as bonds appreciate,

even more than output in the case of perpetuities such that lower interest rates initially

lead to a higher debt-to-GDP ratio. With short-term debt only, essentially the picture

is reversed: government debt initially is reduced because of higher output, which in turn

leads to a substantially lower debt-to-GDP ratio.

Along the same line, defining fiscal policy as a change in the surplus (or its compo-
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Figure 2.5: Transitory fiscal policy shock for the parametrization in Table 2.1. Decrease
in taxes (surplus) by 2.5 percent. Solid blue lines show the responses matching average
duration, dashed black for perpetuities, and dotted red for short-term debt.

nents), with no change in monetary policy, we can answer the question of how maturity

matters in the model for the transition of zero-probability fiscal policy shocks. Consider

an expansive fiscal policy shock (cut Tt by 2.5 percent). That unexpected cut in taxes (de-

creases surplus st) has expansionary effects on output and thus unambiguously increases

inflation and leads to higher inflation expectations, such that for a given short-term rate,

the real interest rate is lower (cf. Figures 2.5 and 2.6).

Hence, expansive fiscal policy (decreased surplus) leads to more inflation and lowers

the real interest rate (cf. Figure 2.1). This in turn causes the monetary authority, following

a Taylor rule, to slightly increase nominal rates, whereas the effects on 5-year bond yields

are being driven mainly by higher inflation expectations. Lower primary surpluses, after

an initial devaluation of real government debt, lead to further accumulation of debt and are

accompanied by higher future inflation. In fact, the net present value of future inflation is

positive, ranging from 0.29 to 0.48 percentage points depending on the maturity structure

of government debt (cf. Table 2.3). Again, the total effect on inflation can be attributed

to either fiscal policy (black dashed), where future monetary policy is soaked up by lower

bond prices, or a mix of monetary and fiscal policy (blue solid and red dotted).

After all, the maturity structure of government debt matters most for the direct FTPL

effect, which dampens the effects on interest rates, inflation, and output dynamics. The

direct FTPL effect decreases the real value of government debt as bonds depreciate and

output increases, which initially leads even to a lower debt-to-GDP ratio. Here, the initial
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Figure 2.6: Transitory fiscal policy shock for the parametrization in Table 2.1. Decrease
in taxes (surplus) by 2.5 percent. Solid blue lines show the responses matching average
duration, dashed black for perpetuities, and dotted red for short-term debt.

Table 2.4: Inflation decomposition (2.21) for the fiscal policy shock in Figure 2.7.

Debt
∫∞
0 e−ruπudu

∫∞
0 e−ruiudu

∫∞
0 e−rusu/assdu pb0/p

b
ss − 1 v0/vss − 1

Maturity inflation interest rate surplus direct effect debt shock

Long-Term 2.08 1.21 0.92 −1.21 3.00
Average 2.44 1.42 1.08 −0.90 3.00
Short-Term 3.49 2.03 1.54 0 3.00

deficits are not repaid by subsequent surpluses or output growth but at the cost of higher

inflation and more nominal debt, which is inflated away by subsequent unexpected inflation

with no permanent changes in the real value of debt. This in fact is like a ‘partial default’

on nominal debt. For the case of short-term debt, higher output leads after a decrease

in the debt-to-GDP ratio to more debt accumulation because the direct effect is missing,

all deficits are being inflated away. What may seem like a deal, “the trick is to convince

people that sinning once does not portend a dissolute life; that this is a once-and-never-

again devaluation or at best a rare state-contingent default, not the beginning of a bad

habit.” (p.245 Cochrane, 2022b).

Finally, consider a fiscal policy shock of issuing new debt (increase nt by 3 percent).
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Figure 2.7: Transitory fiscal policy shock for the parametrization in Table 2.1. Increase
in government debt by 3 percent. Solid blue lines show the responses matching average
duration, dashed black for perpetuities, and dotted red for short-term debt.
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Figure 2.8: Transitory fiscal policy shock for the parametrization in Table 2.1. Increase
in government debt by 3 percent. Solid blue lines show the responses matching average
duration, dashed black for perpetuities, and dotted red for short-term debt.

Suppose that this increase in government debt leaves the average maturity unchanged,

and that this unexpected change is without changes in long-run surpluses. Then, the
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Table 2.5: Inflation decomposition (2.21) for the monetary policy shock in Figure 2.9.

Debt
∫∞
0 e−ruπudu

∫∞
0 e−ruiudu

∫∞
0 e−rusu/assdu pb0/p

b,new
ss − 1 v0/v

new
ss − 1

Maturity inflation interest rate surplus direct effect debt shock

Long-Term 8.02 5.16 3.34 −4.91 11.11
Average 2.39 1.88 0.85 −1.24 2.60
Short-Term 0.81 0.96 0.15 0 0

newly issued debt creates unexpected inflation and higher inflation expectations because

the debt is not fully paid back by subsequent surpluses (inflate away the debt) and has

expansionary effects through a lower real interest rate (cf. Figures 2.7 and 2.8). In fact,

the net present value of future expected inflation ranges from 2.08 to 3.49 percentage

points depending on the maturity structure of government debt (cf. Table 2.4). It is most

striking for long-term debt, where the total effect on inflation and on inflation expectations

is smallest as one third of the initial debt shock is repaid by higher surpluses. Only the

remainder creates unexpected future inflation, and future monetary policy is soaked up

by lower bond prices (black dashed). For the case of short-term debt, the direct effect

does not offset monetary policy, which results in the highest net present value of future

inflation, even higher than the initial debt shock (red dotted).

Again, the maturity structure of government debt matters because the direct FTPL

effect devaluates long-term debt such that the initial increase in real debt (market value)

is lower and the effect on inflation is largest for short-term debt. The indirect effect rises

inflation and inflation expectations, which forces the monetary authority to increase nom-

inal interest rates. Though the higher output also leads to higher tax receipts and implies

a larger future primary surplus, the stimulus only partially accounts for the increased

liabilities. Eventually, the unexpected increase in real debt (face value) is inflated away

by unexpected future inflation and is only partially repaid by higher surpluses. However,

the number of outstanding bonds increases permanently to nss = vsse
∫∞
t πudu.

Permanent Shocks

Consider a monetary policy shock decreasing the inflation target by 50 bp, or equivalently,

the policy interest rate target (which is isomorphic to the inflation target), inewss = ρ+πnew
ss ,

decreases by 0.5 percentage points. Suppose for the moment that the policy change is fully

credible and fully observed, i.e., does not require learning and filtering. An unexpected

lower long-term interest rate or inflation target then has an expansionary effect on output

because it creates inflation and the real interest rate decreases (cf. Figure 2.9, solid blue).
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Figure 2.9: Permanent monetary policy shock for the parametrization in Table 2.1. De-
crease πss = 0.02 by 50 bp to πnew

ss = 0.015. Solid blue lines show the responses matching
average duration, dashed black for perpetuities, and dotted red for short-term debt.

In all models, independent of the maturity structure, the permanent shock clearly

shows up in the 10-year ahead inflation expectations and bond yields (cf. Figure 2.10).

While the permanent shock increases the 1-year bond yields up to 50 bp, it decreases

10-year bond yields by 50 bp (cf. Figure 2.10, dashed black). However, in the model with

short-term debt only, the permanent lower inflation target would be even contractionary

because lower current inflation increases the real interest rate. Most importantly, the

maturity structure matters because the permanent shock even increases current expected

inflation and decreases the real interest rate (solid blue and black dashed). Because the

direct FTPL effect is missing in the model with short-term debt, real debt does not

respond immediately and we are left with the indirect effect. However, the direct FTPL

effect substantially increases the real value of existing long-term government debt such

that the lower inflation target leads to a higher debt-to-GDP ratio, higher tax receipts

and thus higher primary surpluses. With short-term debt, the picture is different: initially

lower tax revenues (primary surpluses) and lower output with only small changes in real

debt lead to negligible effects on the debt-to-GDP ratio. Hence, the maturity effect is

more pronounced the longer the average maturity of government debt (cf. Table 2.5). In

fact, current inflation increases by more than 300 bp in the model with perpetuities with

net present value of future inflation of about 8 percent. How can we understand this

dramatic response for inflation dynamics in the model with long-term debt?

The simple answer is that the response of inflation is due to a price or valuation
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effect on existing longer-term bonds, which (still) pay a nominal coupon χ + δ. Hence,

a monetary policy shock in form of a lower inflation target π∗
t ≡ πnew

ss = πss − 0.005

translates into a higher price pb,newss , and with no change in fiscal surplus results into a

lower steady-state value of sovereign debt vnewss . From the decomposition (2.21), we get∫ ∞

t

e−r(u−t)(πu − πnew
ss )du =

∫ ∞

t

e−r(u−t)(iu − inewss )du−
∫ ∞

t

e−r(u−t)(su − sss)/assdu

+pbt/p
b,new
ss − 1 + vt/v

new
ss − 1,

or∫ ∞

t

e−r(u−t)πudu =

∫ ∞

t

e−r(u−t)iudu−
∫ ∞

t

e−r(u−t)su/assdu+ pbt/p
b,new
ss − 1 + vt/v

new
ss − 1,

with a new

pb,newss =
χ+ δ

inewss + δ
, and vnewss = ass/p

b,new
ss . (2.25)

Hence, a permanent monetary policy shock leads to a debt shock vt/v
new
ss − 1 because

of existing longer-term bonds do no longer sell at par in steady state. Relative to the

lower new steady state level of government debt vnewss (face value), the current debt level

vt now is above its steady-state level – because debt vt does not jump, which thus can be

interpreted as an ‘implicit’ expansionary fiscal policy shock (compare to Figure 2.7). This

shock is inflationary and its size depends on the maturity structure (cf. Table 2.5). The

effect is already sizable with average maturity (by 2.60 percent), and is substantial with

longer maturities (up to more than 11 percent for perpetuities). Both direct effects give

the change in the market value of government debt. Even the price effect is negative of

about −1.24 percent (pb0 increases, but pbss increases even more), the implied debt shock

by 2.60 percent leads to an increase of the market value by 1.36 percent.

Along the same line, consider an expansive fiscal policy shock (cut T ∗
t by 1 percent).16

An unexpected change in future tax revenues (decreases surplus s∗t ) has expansionary

effects on output today and thus increases current inflation and inflation expectations,

which lowers real interest rates (cf. Figures 2.11 and 2.12). The stimulus to output quickly

leads to higher tax revenues in the short run at the cost of higher inflation. In this case,

the net present value of future inflation is positive, ranging from 4.02 to 6.66 percentage

points depending on the maturity structure of government debt (cf. Table 2.6). Our fiscal

policy shock leads to an instantaneous devaluation of long-term debt and dampens the

effects on interest rate and inflation dynamics. Again, the total effect on inflation can be

attributed either to fiscal policy (black dashed), where future monetary policy is soaked up

by lower bond prices, or to a mix of monetary and fiscal policy (solid blue and red dotted).

16A contemporaneous fiscal policy shock Tt = 0.99Tt− with permanent effects, Tnew
ss = 0.99Tss has a

similar decomposition and would create more unexpected inflation (cf. Figure 2.A.2 and Table 2.A.2).
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Figure 2.10: Permanent monetary policy shock for the parametrization in Table 2.1.
Decrease πss = 0.02 by 50 bp to πnew

ss = 0.015. Solid blue lines show the responses
matching average duration, dashed black for perpetuities, and dotted red for short-term
debt.

Table 2.6: Inflation decomposition (2.21) for the fiscal policy shock in Figure 2.11.

Debt
∫∞
0 e−ruπudu

∫∞
0 e−ruiudu

∫∞
0 e−rusu/a

new
ss du pb0/p

b
ss − 1 v0/v

new
ss − 1

Maturity inflation interest rate surplus direct effect debt shock

Long-Term 4.02 2.34 2.07 −2.34 6.08
Average 4.70 2.74 2.38 −1.74 6.08
Short-Term 6.66 3.88 3.31 0 6.08

The indirect effect unambiguously rises inflation (decreases the real interest rate), which

causes the monetary authority to adjust the nominal interest rates. Temporarily higher

tax revenues (higher surplus) then lead to a further decline of government debt, and the

debt-to-GDP ratio converges to its lower steady-state level.

In particular, the change in the target tax receipts, T ∗
t ≡ T new

ss = 0.99Tss translates

into changes in the steady-state values of primary surplus, snewss = T new
ss −gss, and sovereign

59



0 2 4 6 8 10

0.025

0.03

0.035

Interest Rate

le
v
e
l

0 2 4 6 8 10

-0.02

0

0.02

Inflation Rate

0 2 4 6 8 10

years

0.175

0.18

0.185

0.19

0.195
Taxes

le
v
e
l

0 2 4 6 8 10

0.9

1

1.1

Gov. Debt

0 2 4 6 8 10

0

0.02

0.04

0.06
Real Interest Rate

0 2 4 6 8 10

0.98

1

1.02

 Output

le
v
e
l

0 2 4 6 8 10

years

0.02

0.03

0.04

Primary Surplus

0 2 4 6 8 10

years

0.145

0.15

0.155

0.16

Gov. Consumption

0 2 4 6 8 10

0.9

1

1.1

Debt-To-GDP

Figure 2.11: Permanent fiscal policy shock for the parametrization in Table 2.1. Decrease
of Tss by 1 percent to T new

ss = 0.99Tss. Solid blue lines show the responses matching
average duration, dashed black for perpetuities, and dotted red for short-term debt.

debt, anewss = snewss /ρ or vnewss = anewss /pbss, and from the identity (2.21),∫ ∞

t

e−r(u−t)(πu − πss)du =

∫ ∞

t

e−r(u−t)(iu − iss)du−
∫ ∞

t

e−r(u−t)(su − snewss )/anewss du

+pbt/p
b
ss − 1 + vt/v

new
ss − 1

or ∫ ∞

t

e−r(u−t)πudu =

∫ ∞

t

e−r(u−t)iudu−
∫ ∞

t

e−r(u−t)su/a
new
ss du

+pbt/p
b
ss − 1 + vt/v

new
ss − 1

such that our permanent fiscal policy shock leads to an ‘implicit’ debt shock vt/v
new
ss − 1,

because debt vt does not jump and is ‘too high’ relative to the new and lower vnewss . More

generally, with similar arguments – because of government debt being backed by taxes

– any (austerity) measure leading to higher tax receipts, T ∗, and/or lower government

consumption, g∗t , such that the steady-state primary surplus, s∗t = T ∗
t − g∗t , increases,

eventually need to increase the long-run real bond supply and the real value of government

debt (increase the market and face value debt-to-GDP ratio).
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Figure 2.12: Permanent fiscal policy shock for the parametrization in Table 2.1. Decrease
of Tss by 1 percent to T new

ss = 0.99Tss. Solid blue lines show the responses matching
average duration, dashed black for perpetuities, and dotted red for short-term debt.

2.3 The CARES Act

The Coronavirus Aid, Relief, and Economic Security (CARES) Act is an extensive US

economic stimulus package that was signed into law on March 27, 2020, in response to

the COVID-19 pandemic. Its central objective was a direct and fast assistance for the

real economy in order to keep it afloat and as functioning as possible. The unprecedented

volume of the act is estimated to be more than $2 trillion (10% of US GDP). However,

since CARES includes loan guarantees, the Congressional Budget Office (CBO) projects

smaller budgetary effects. Still, the CBO estimates that CARES will add $1.7 trillion to

deficits between 2020 and 2030, but most effects take place until 2022.

2.3.1 Taking the Model to the Data

In this section, we translate the empirical data to model variables and assume them to

arrive as (structural) zero-probability shocks. Table 2.7 shows the CBO’s breakdown of

the $1.7 trillion into outlays and receipts. The size of the budgetary relevant part of the

CARES Act exceeds more than 8% of US GDP. Following Kaplan et al. (2020), we presume

that the increased outlays (6.1% of GDP) together with decreased revenues (1.9% of GDP)

are going to increase the US debt-to-GDP ratio by 12% in the first eighteen months. The

lower part of Table 2.7 shows how we transfer the CARES Act into zero-probability shocks

in the NK-FTPL model. We attribute the increase in outlays to an unexpected rise in
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Table 2.7: Upper Part: Predictions of the CARES Act by the Congressional Budget Office
(CBO), the Joint Committee on Taxation (JCT), and estimated effect on debt-to-GDP
ratio from Kaplan et al. (2020). Lower part: Translation to NK-FTPL model.

CARES Act: Empirical Figures

Billions of Dollars as % of GDP as % of Outlays
(receipts) 2019

A Increased Mandatory Outlays 988 4.6% 22.2%
B Increased Discretionary Outlays 326 1.5% 7.3%
C Decreased Revenues 408 1.9% 11.8%

D Estimated Increase of debt-to-GDP Ratio: 12% (cf. Kaplan et al., 2020)

CARES Act: NK-FTPL Model

abs. Change as % of GDP as % of Steady
State Value

A + B ≡ Shock gt 0.061 6.1% 39.8%
C ≡ Shock Tt −0.019 −1.9% −10.2%

D ≡ Shock vt by 12% (either temporary and/or permanent)

Sources: Congressional Budget Office (2020).

gt by 6.1% of GDP (cf. Table 2.7). Here, the shock in gt corresponds to an increase in

government consumption by about 39.8%. In the empirical data, the rise in mandatory

and discretionary outlays amounts to 29.5% of total expenditures in 2019. Analogously

we attribute the decrease in revenues as a revenue shock by 1.9% of GDP, which translates

to a decrease in tax receipts by 10.2%. Empirically, the decrease in revenues was about

11.8% of total receipts in 2019. It shows that the order of magnitude of shocks in our

stylized model is roughly in line with the empirical figures.

For the simulation (see Section 2.3.2 below), we employ our benchmark parametriza-

tion in Table 2.1, except for the government expenditures (and thus surplus dynamics).

Because we want to model a persistent shock to government consumption with own dy-

namics, we set ρg ≡ 1 and assume a counter-cyclical output response of φy = −sg,

dgt = (φy(yt/yss − 1)− (gt − g∗t )) dt, (2.26)

e.g., example policies like food stamps, unemployment insurance, or predictable stimulus
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programs, such that surplus reacts pro-cyclically (cf. Sims, 2011; Cochrane, 2022b).

Moreover, keep in mind that monetary policy was not silent in response to the global

coronavirus pandemic, but responded to the large drop in output growth and fears of

deflationary pressures. In March 2020, the Federal Reserve decreased the federal funds rate

in two steps from 1.58% to 0.05%. Since the timing of the rate cuts and the introduction of

the CARES Act was about the same time, we study the additional effects of a temporary

expansionary monetary policy shock by 150 bp (see Section 2.3.3). Finally, we consider

the case where the unprecedented value of newly issued debt – at least to some degree –

permanently increases the debt-to-GDP ratio in both face value vnewss /yss and market value

anewss /yss because p
b
ss = 1 (see Section 2.3.4). Our experiment sheds light on the debate of

permanent vs. temporary changes in the debt-to-GDP ratio and gives important insights

into the predictions of the NK-FTPL model. Recall that debt is backed by taxes such

that a higher level of real debt requires a higher future surplus. Hence, we assume that

tax receipts ultimately have to rise in the future, while future government consumption

remains unchanged (higher value of surplus snewss ). We set T new
ss to match a fraction α of

the 12% projected increase (face value) in the current and the permanent debt-to-GDP

ratio. Subsequently, we compute the predicted responses and also analyze a combination

of the fiscal shocks together with the contemporaneous monetary policy shock.

2.3.2 The CARES Act Shock

We are mainly interested in quantifying the effects of the large scale fiscal policy operation

to which we refer as the CARES Act shock (cf. Table 2.7). Suppose that the economy is

at steady state. Without a contemporaneous response of the monetary authority we now

study the effects of the shocks to government consumption (A+B = 6.1% of GDP), and

to tax receipts (C = −1.9% of GDP), such that the steady state primary surplus turns

into a large deficit of roughly st = −8.0% of GDP and amounts to nearly −250%. Finally,

the CARES Act is projected to increase the debt-to-GDP ratio (D = 12% of GDP). In

our model, the initial increase in debt also increases output on impact. We define D as

a shock to debt (or equivalently vt/yss) rather than a shock to the debt-to-GDP ratio.

Both shocks to the primary surplus and to the debt-to-GDP ratio are expansionary and

create unexpected current inflation between 6 and 8 percent, and increase, e.g., the 5-year

ahead inflation expectations about 1 percent, such that for a given short-term rate, the

real interest rate drops substantially (cf. Figures 2.13 and 2.14).

Hence, the CARES Act shock (decreased surplus and increased debt) unambiguously

leads to higher inflation, inflation expectations, short-term bond yields, and lowers the real

interest rate, which forces the monetary authority to increase nominal rates. Through the

lens of fiscal theory, this unprecedented large-scale fiscal program, which is not followed

by sufficiently higher subsequent surpluses, is expected to spur inflation and inflation
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Figure 2.13: Transitory CARES Act shock for the parametrization in Table 2.1 with
ρg = 1 and φy = −sg. Decrease in surplus by 8 percent of GDP and increase in debt
(face value) by 12 percent. Solid blue lines show the responses matching average duration,
dashed black for perpetuities, and dotted red for short-term debt.

Table 2.8: Inflation decomposition (2.21) for the CARES Act shock in Figure 2.13.

Debt
∫∞
0 e−ruπudu

∫∞
0 e−ruiudu

∫∞
0 e−rusu/assdu pb0/p

b
ss − 1 v0/vss − 1

Maturity inflation interest rate surplus direct effect debt shock

Long-Term 10.05 5.85 1.95 −5.85 12.00
Average 11.68 6.81 2.71 −4.41 12.00
Short-Term 16.68 9.71 5.03 0 12.00

expectations. In particular, the net present value of future inflation is even about the same

size of the increase in the debt-to-GDP ratio (11.68 percentage points), and depending

on the maturity structure of government debt ranges from 10 to more than 16 percentage

points (cf. Table 2.8). Some of the newly issued debt vt thus can be repaid by a higher net

present value of future surpluses between 1.95 and 5.03 percentage points, but most of it

will be deflated away by future inflation. Hence, the total effect on inflation can be fully

attributed to fiscal policy and the large build-up of government debt (black dashed), where

future monetary policy is soaked up by lower bond prices of −5.85 percentage points, or

a mix of monetary and fiscal policy with either a slightly smaller response of bond prices
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Figure 2.14: Transitory CARES Act shock for the parametrization in Table 2.1 with
ρg = 1 and φy = −sg. Decrease in surplus by 8 percent of GDP and increase in debt
(face value) by 12 percent. Solid blue lines show the responses matching average duration,
dashed black for perpetuities, and dotted red for short-term debt.

(blue solid), or no response of bond prices (red dotted). Here, the shorter the maturity of

government debt, the larger the effect on future inflation.

The main take-away from this experiment is a predicted surge in inflation because of

the large unexpected build-up of government debt and the expansionary increase of outlays

(and decrease of taxes). In the next section, we contrast these results to a situation in

which the fiscal policy shock is accompanied by a monetary policy shock.

2.3.3 The CARES Act and Monetary Policy Shock

In this section we quantify the effects of the CARES Act shock (cf. Table 2.7) together

with an expansionary monetary policy shock decreasing nominal rates by 150 bp. While

this shock typically increases current inflation, the net present value of future inflation is

negative (cf. Section 2.2.6). Hence, the contemporaneous monetary policy shock accom-

panying the CARES Act might help reducing the large inflationary effects.

As a result, an accompanying monetary policy shock of 150 bp creates slightly less

inflation for all maturities with similar dynamics (cf. Figure 2.A.3 and Table 2.A.3). Now

the net present value of future interest rates is smaller because of initially lower interest

rates, which translate to even more negative real interest rates and even more expansion-

ary effects. Moreover, the net present value of future surpluses (fiscal policy) is higher

for average maturity and perpetuities but slightly decreases for short-term bonds. In con-
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trast, the direct FTPL effect is smaller because it offsets a smaller net present value of

future interest rates (monetary policy). Overall, the picture does not change dramatically

when assuming that the CARES Act shock was accompanied by an expansionary mone-

tary policy shock. Though a profound analysis, which requires estimating the structural

parameters and potentially latent state variables, is beyond the scope of the paper, the

experiment mimics a low interest rates environment, a situation which seems more plau-

sible for the US at the outset of the great pandemic. It shows that fiscal theory identifies

the large-scale fiscal packages as the source of the recent surge in inflation.

2.3.4 A Permanent Shock Scenario?

A key question is whether agents ‘believe’ that the observed large-scale fiscal operations

will be backed by subsequent higher future surpluses. What do responses to inflation and

inflation expectations tell us about such beliefs at the core of the fiscal theory? From

the fiscal theory point of view, this question translates to whether the increase in debt

is followed by a subsequent higher future surplus. While the higher future surplus does

not necessarily have to be permanent, possibly the cleanest analysis is to ask whether the

CARES Act shock is considered permanent or transitory. In what follows, we consider

a scenario in which the CARES Act shock does have a permanent component causing a

permanently higher debt-to-GDP ratio. Because the debt level is ultimately determined by

future surpluses, a permanently higher debt level anewss ≡ snewss /ρ requires higher surpluses

snewss . Put differently, the real debt level or debt-to-GDP ratio can increase permanently

only if economic agents presume that additional debt is financed by either higher revenues

and/or lower government consumption (i.e., backed by higher future surpluses).

Suppose that a fraction α of the newly issued debt is followed by permanently higher

tax revenues, so that vnewss = vss + α(v0 − vss). Hence, we may interpret α as the fraction

of the newly issued debt v0 − vss = Dvss that is backed by higher future surpluses. If the

observed shock to debt vt (face value) was permanent, i.e., the fiscal expansion was backed

by higher future surpluses, we set α = 1. If only a fraction of the newly issued debt αD is

backed by higher future surpluses, we may set 0 ≤ α < 1. Here, the case of α = 1 shows

that from the fiscal theory point of view, an initial shock to vt which is fully backed by

higher future surpluses does not lead to an unexpected ‘debt shock’. In fact, the effective

‘debt shock’ size in our inflation decomposition (2.21) is (1 + D)/(1 + αD)− 1 ≥ 0.

For illustration, suppose for the moment that half of the newly issued debt are backed

by subsequent higher future surpluses, α = 0.5, which for D = 0.12 implies a debt shock of

((1+0.12)/(1+0.5 · 0.12)− 1) · 100 = 5.66 percent (cf. Figure 2.A.4 and Table 2.A.4). We

then contrast our results to both a permanent CARES Act shock scenario with α = 1 (cf.

Figure 2.A.5 and Table 2.A.5) and the transitory scenario with α = 0 (see Section 2.3.2).

Comparing Table 2.8 to the permanent scenarios highlights that only the CARES Act
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shock in which the newly issued debt is not sufficiently backed by higher future surpluses

leads to a surge in future expected inflation similar to the observed response.

In particular, the effects of the CARES Act on future discounted inflation with α = 1

would be moderate between 1.72 and 2.92 percentage points. Here, the debt component of

the CARES Act shock (an increase in vt by 12 percentage points) is soaked up by higher

future tax revenues such that vnewss = v0 and v0/v
new
ss − 1 = 0. Without this permanent

shock, the debt shock directly would add up to 12 percentage points for α = 0 to the net

present value of future inflation, as shown in Table 2.8. The maturity structure matters

because longer maturities dampen the response of the real value of debt through the direct

effect (changes in bond prices). Similar to the temporary case with α = 0, even in the case

of α = 1 the permanent CARES Act scenario would be expansionary and thus temporarily

increases output. Consequently, the debt-to-GDP ratios (market value) for all maturities

initially only increase by roughly 3.5 percentage points before gradually approaching the

higher steady state value of about 120 percent.

2.4 Conclusion

We revisit the fiscal theory and extend the simple NK model with a fiscal block in order

to analyze the role of the maturity structure of sovereign debt on interest rates and

inflation dynamics. Our results suggest that the average maturity of existing debt has

a prominent role for the propagation of transitory and permanent policy shocks in the

NK-FTPL model. We show how the effects translate to the term structure of interest rate

and to model-implied inflation expectations. Our finding justifies a critical assessment of

neglecting the direct FTPL effect in the traditional NK framework. Through the lens of

the fiscal theory, we decompose the present value of future inflation into indirect effects

(changes in future monetary policy and fiscal policy) and a direct FTPL effect, which

basically is an asset pricing re-evaluation of existing bonds. In particular, we highlight

that sovereign debt, with an empirically plausible average maturity for the US, largely

offsets the impact of monetary policy on the present value of future inflation.

Our application simulates the CARES Act of 2020, which we translate to shocks to

the primary surplus of about 8 percent of GDP and to the debt (face value) by 12 percent.

Without a credible future (s-shaped) policy change, the NK-FTPL model predicts a surge

in inflation, which amounts to an increase of the net present value of future inflation about

the same size as the increase of newly issued debt. We show how this dramatic inflation

response not only depends on the average maturity of existing bonds, but also primarily

on the perception of agents whether the large-scale fiscal operations are ultimately backed

by a higher future surplus or not. In contrast to the aftermath of the global financial

crisis of 2008, where the inflation response was not as strong or inflation even declined,

the recent surge in inflation and medium-term inflation expectations indicates that the
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newly issued debt is not considered as being backed by subsequent higher surpluses.

We believe that this paper is a promising starting point for the fiscal theory in more

elaborate models, including regime-switching, nonlinearities, and stochastic shocks. First,

our results for the term structure of interest rates and inflation expectations would be much

more informative. Our setup is a natural starting point and benchmark for models with

term premia (cf. Posch, 2020), convenience yield, or default risk. Second, more research is

needed for the surplus dynamics, e.g., estimating parameters of the fiscal policy rule (cf.

Kliem et al., 2016). Third, we need to study the effects of maturity in medium-size NK

models including regime switches (see Bianchi and Melosi, 2019), financial frictions (cf.

Brunnermeier and Sannikov, 2014), and productive capital (cf. Brunnermeier et al., 2021;

Liemen, 2022), and to study the effects and transmission in models with heterogeneous

agents (cf. Kaplan et al., 2018; Bayer et al., 2021). This opens the path toward a more

profound fiscal policy evaluation and to address questions of fiscal limits and sovereign

defaults (fiscal sustainability).
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Chapter 3

The Fiscal Theory of the Price Level in New

Keynesian Models with Capital

Abstract

In this paper, I embed the fiscal theory of the price level (FTPL) in a simple continuous-

time New Keynesian model with capital and capital adjustment cost. I offer an elaborate

analysis of determinacy, model dynamics, transmission channels and the importance of

capital adjustment costs in the continuous-time NK-FTPL framework. My results indi-

cate that FTPL lives up to its name, as the exact specification of fiscal policy is crucial

for model implications and predictions. Equipped with the fiscal theory, I evaluate the

Great East Japan Earthquake of 2011 (Tōhoku Earthquake) and show how to explain

and solve the puzzling behavior of expansionary effects of capital destruction at the Zero

Lower Bound of the nominal interest rate. I then address and solve the Crowding-In

Consumption Puzzle that refers to a discrepancy between the empirically observed and

theoretically predicted responses of consumption to government consumption shocks. My

model supports consumption dynamics in either direction and at the same time suggest

a crowding-in of investment. Finally, FTPL models in the literature usually introduce

long-term debt in order to obtain a negative correlation between inflation and the nomi-

nal interest rate. I show that the inclusion of capital and its effect on fiscal policy rules is

able to induce the negative correlation even under short-term debt.
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3.1 Introduction

Pandemics, unprecedented large-scale fiscal stimulus packages, central banks that where

for years constrained by the Zero Lower Bound of the nominal interest rate, sky-rocketing

debt levels and a recent surge in inflation, with rates not seen since the 1980s, are just

some of the omnipresent challenges of our time. These developments highlight the need

for a joint framework that offers a clear and consistent understanding of monetary and

fiscal policies as well as their interactions with government debt and inflation.

One promising framework to address these developments is the fiscal theory of the price

level (FTPL), which attracted a growing interest in the academic literature in recent years

(see e.g. Sims (2011), Cochrane (2018), Brunnermeier et al. (2021), Cochrane (2022b)

or Liemen and Posch (2022)). At the core of FTPL is the government debt valuation

equation, which links primary surpluses to the real value of government debt. Satisfying

this relationship pins down the path of future inflation rates. This in turn, makes fiscal

policy one of the central driving forces for inflation dynamics.

Smaller New Keynesian models as in Sims (2011), Werning (2012), Cochrane (2017),

Cochrane (2018), Posch (2020), Cochrane (2022b) or Liemen and Posch (2022) usually

abstract from capital dynamics. However, capital and labor are commonly considered the

central input factors needed to produce output. Consequently, abstracting from capital is

not necessarily an innocuous simplification both from an empirical and from a theoretical

point of view. Thus, medium- and larger-scale macroeconomic models frequently introduce

capital stock dynamics (see e.g. Smets and Wouters (2003), Christiano et al. (2005) or

Kaplan et al. (2018)). Since the capital stock can be considered a physical form of wealth,

the synthesis of capital and FTPL is an appealing framework to simultaneously analyze

the interactions between capital, government debt as well as monetary and fiscal policy.

Note that I prefer the evaluation of FTPL in a continuous-time framework because, in

contrast to discrete-time NK-FTPL models, the price level cannot jump. As shown by

Liemen and Posch (2022) this feature allows a more clear-cut analysis of FTPL effects

and transmission channels.

With the above considerations in mind, I analyze the fiscal theory of the price level in

the continuous-time NK framework with capital. To that end, I start from the model of

Dupor (2001), which is a continuous-time formulation of the three equation NK model,

augmented with a simple rule for capital dynamics. As highlighted by Dupor (2001)

this framework implies that contractionary monetary policy shocks are expansionary and

increase inflation. Despite this counterintuitive result, I introduce FTPL to the model, dis-

cuss determinacy issues and evaluate model implications as well as transmission channels

of monetary policy shocks. My analysis highlights that this framework not only inherits

the shortfalls of the model of Dupor (2001) but also produces counterintuitive results and

predictions on its own. Hence, one can think of this framework more like a theoretical
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construct, which for obvious reasons, so far, attained little attention in the literature.

However, I evaluate this model for reasons of comparison and in order to justify the in-

troduction of capital adjustment costs. Because the model is add odds with conventional

economic thinking, I do not use it for actual policy evaluation. What I am are after, is a

simple NK model with capital and FTPL that maintains the central features of the simple

NK-FTPL framework of Sims (2011) and Cochrane (2018). I show that the introduction

of capital adjustment costs (cf. Dupor (2002) or Posch and Wang (2020)) offers a simple

and effective remedy to the counterintuitive implications of the continuous-time NK model

with capital and FTPL. Thus, in order to obtain my baseline model, I introduce capital

and capital adjustment costs to the NK-FTPL framework of Sims (2011), Cochrane (2018)

and Cochrane (2022b). My results suggest that model predictions are similar to the ones

of the simple NK-FTPL model without capital. At the same time, regarding capital spe-

cific variables, such as the capital rental rate or investment, the model dynamics are, at

least initially, closely related to the ones of the corresponding NK model without FTPL.

My findings indicate that the fiscal theory of the price level lives up to its name, as the

exact specifications of the processes for taxes and government consumption are crucial for

the implications and predictions of the model. After extensively discussing determinacy,

model dynamics, transmission channels and the importance of capital adjustment costs in

the continuous-time NK framework with capital, I use my baseline model to understand

and solve two puzzles in the literature.

The first puzzle is the expansionary effect of capital destruction at the ZLB, which is a

frequently encountered feature within the traditional NK framework1. The fiscal theory is

a promising starting point because an interest rate peg is already nested as limiting case

in the passive monetary policy specification. To address this puzzle, my application simu-

lates the Great East Japan Earthquake of 2011 (Tōhoku Earthquake), which I translate to

an exogenous shock that destroys 1 percent of the capital stock (cf. Wieland (2019)). My

results suggest that solving the puzzle depends less on the distinction between a pegged

and a variable interest rates but more on the specification of fiscal policy rules. I then solve

the Crowding-In Consumption Puzzle2, which refers to a discrepancy between theoretical

and empirically observed responses of consumption to increases in government consump-

tion. While empirical studies frequently point to a crowding-in effect, the traditional

NK framework implies a crowding-out effect. I show that the NK-FTPL framework with

capital adjustment costs delivers the theoretical underpinning for either a crowding-in or

a crowding-out effect. In both cases, the model implies, at least initially, a crowding-in

of investments. Finally, I also contribute to the literature on the implementation of the

fiscal theory in NK models. The most commonly applied approach to obtain a (tempo-

1See e.g. Eggertsson (2011), Eggertsson et al. (2014), Kiley (2016), Cochrane (2017) or Wieland
(2019).

2See e.g. Linnemann (2006), Gaĺı et al. (2007), Bilbiie (2011), Iwata (2013), Ambler et al. (2017),
Lewis and Winkler (2017) or Rüth and Simon (2022) (forthcoming).
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rary) negative inflation response to contractionary monetary policy shocks in the FTPL

literature, is the introduction of long-term debt. Using the NK-FTPL model with capital

adjustment cost, I show how to obtain the desired response without introducing long-term

bonds.

I am are not aware of a comprehensible evaluation of FTPL in the simple NK frame-

work with capital. Thus, this paper is novel in various dimensions and justifies an elab-

orate discussion of basic transmission channels and dynamics before turning to actual

policy analysis that I consider to be the main contribution of this paper. There are at

least three crucial contributions. First, my framework allows to analyze the interactions

between debt and capital, through the lens of FTPL, in a simple and traceable continuous-

time framework. Second, to the best of my knowledge I am the first to solve the above

puzzles by utilizing FTPL in the continuous-time NK framework. Third, I present a novel

approach of calibrating the fiscal policy rules in order to obtain the negative relationship

between the inflation and the nominal interest rate in the FTPL framework, even in the

presence of short-term debt.

Regarding related literature, the probably most extensive single-authored treatment

of the fiscal theory of the price level is the eponymous book of Cochrane (2022b) (forth-

coming). Closely related to my model is Sims (2011) who introduces FTPL in a simple

continuous-time model and highlights how the government debt valuation equation be-

comes the central mechanism for equilibrium selection. Building on this paper, Cochrane

(2018) further evaluates this modeling framework and shows how to simplify the model

without losing its main insights. Brunnermeier et al. (2021) analyze how the introduction

of a bubble term in the FTPL framework can explain why countries that persistently run

negative primary surpluses, are able to achieve low inflation rates. The bubble occurs

via uninsurable idiosyncratic risk on capital returns and government bonds taking the

function of a safe asset. Permanently negative primary surpluses are possible as long

as they are accompanied by a positive bubble term. More closely related to my paper

is Dupor (2001), who highlights that the continuous-time formulation of the model is a

central problem for introducing capital to the NK framework. In the basic NK model

with capital, there is a direct relation between the rental rate on physical capital and

the real interest rate. This dependence produces the counterintuitive result of contrac-

tionary monetary policy shocks being expansionary. Dupor (2001), Carlstrom and Fuerst

(2005) and Leith and von Thadden (2008) discuss this observation extensively. While

not explicitly referring to FTPL, Leith and von Thadden (2008), analyze determinacy re-

gions when considering government debt and capital in a joint framework. Carlstrom and

Fuerst (2005) solve a model similar to Dupor (2001) and highlight that both the passive

monetary policy requirement as well as the counterintuitive policy implications are indeed

a continuous-time specific phenomenon. As already pointed out above, the standard NK

framework is known to generate counterintuitive predictions under a nominal interest rate
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peg. For instance, wasteful government spending, capital and output destruction as well

as technical regress, are usually not only highly expansionary but also produce large mul-

tipliers at the ZLB (see for instance Eggertsson (2011), Eggertsson et al. (2014), Kiley

(2016), Cochrane (2017) or Wieland (2019)). There are various ways to address these

issues. For example, Kiley (2016) shows that using sticky information instead of sticky

prices is able to solve the puzzle, whereas Boneva et al. (2016) solve the puzzle by allowing

for additional non-linearities in the solution method of the model considering alternative

parametrizations. Regarding the crowding-in consumption puzzle, Gaĺı et al. (2007) show

how the introduction of rule-of-thumb investors produces model dynamics that are con-

sistent with the considered data. Bilbiie (2011) highlights that the puzzle can be solved

by a combination of Edgeworth substitutability in the utility function along with shifts in

labor demand. Turning to the negative relationship between the inflation and the nominal

interest rate in the FTPL framework with short-term debt, Cochrane (2022b) shows that

allowing the fiscal authority to directly respond to the inflation rate is able to generate

the desired response.

The rest of the paper is organized as follows. I derive the perfect-foresight NK-FTPL

model with capital and capital adjustment costs in Section 2. Subsequently, I evaluate the

baseline model and its limiting special cases and study transitory zero-probability shocks

in Section 3. Section 4 confronts the baseline model with the above puzzles. Finally,

Section 5 concludes.

3.2 The Framework

In this section, I describe the continuous-time NK model with capital and capital adjust-

ment costs (abbreviated NK-AC model). The model is basically borrowed from Posch and

Wang (2020). I then outline the Fiscal Theory of the Price Level and merge it with the

NK-AC model in order to obtain my baseline model (abbreviated NK-AC-FTPL model)

for the subsequent analysis.

3.2.1 The NK Model With Capital Adjustment Costs

The core of my framework is the simple perfect-foresight continuous-time NK model3. I

extend the model by introducing capital, capital adjustment costs and the Fiscal Theory

of the Price Level. This model nests the simple NK model and the NK model with capital,

both either with or without FTPL as special (limiting) cases. I only focus on the most

central equations and offer a complete derivation of the model and its limiting cases in

appendix 3.A.4. For the sake of clarity, throughout this paper I limit my analysis to

3See e.g. Dupor (2001), Sims (2011), Werning (2012), Cochrane (2017), Cochrane (2018), Posch
(2020), Wieland (2019) or Cochrane (2022b).

73



perfect-foresight solutions, where only initial conditions have to be determined. Hence, I

analyze ”MIT shocks”, which are one-time unexpected shocks at time 0 that are responded

to under perfect foresight. I denote predetermined variables (the variables that cannot

jump endogenously) as state variables and forward-looking variables as jump variables.

Despite considering only linearized models (simple first-order linearizations around steady

states), I state non-linearized equations throughout this paper for better traceability and

clarity. Furthermore, I denote steady state values either with a star (for exogenously

determined steady states) or the subscript ss.

I proceed by shortly wrapping up the central features of the model. I consider a repre-

sentative household, which saves, supplies labor, and consumes. There is one competitive

representative final-good producer, who uses intermediate goods to create the final output

in the economy. The required inputs (a continuum of intermediate goods) are obtained

from intermediate good producers that engage in monopolistic competition. Each of these

producers manufactures its good by renting capital and labor, given price adjustment costs

à la Rotemberg (1982). I consider a fiscal authority that levies taxes and consumes. By

allowing for long-run primary surpluses, government debt and its maturity structure enter

the framework. Finally, there is a central bank that engages in open market operations

to steer the nominal interest rate.

Households

Let ρ, ξ and ϑ denote the subjective rate of time preference, the inverse of the Frisch

labor supply elasticity and preference for leisure, respectively. Households optimize their

reward function ∫ ∞

0

e−ρt

[
log(ct)− ϑ

l1+ξ
t

1 + ξ

]
dt, (3.1)

and can invest in physical capital, kt (illiquid asset), and government bonds (liquid asset).

Let nt denote the number of bonds with price pbt and a geometric maturity structure.

Thus, nominal financial wealth of the household, bt, amounts to

bt = ntp
b
t . (3.2)

Together with the price level, pt (equal to the price of the final good), one obtains the real

financial wealth of the household as

at = bt/pt = ntp
b
t/pt. (3.3)

No-arbitrage between the nominal interest rate and the bond return implies (cf. Liemen

and Posch (2022))

itdt = ((χ+ δb)/pbt − δb)dt+ dpbt/p
b
t . (3.4)
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Similar to Woodford (2001), the bond pays a nominal coupon of χ+ δb that declines geo-

metrically at rate δb. One can interpret δb as 1 over the maturity in years. Consequently,

one obtains perpetuities for δb → 0 and short-term debt for δb → ∞. When setting χ

equal to the steady state level of the nominal interest rate, iss, the bonds sell at par at

the steady state, regardless of the maturity structure of debt. By rearranging equation

(3.4) one obtains the evolution of the bond price (a forward-looking variable) as

dpbt = (itp
b
t − χ− δb(1− pbt))dt. (3.5)

Households earn labor income wtlt, where wt denotes the real wage and lt is labor in terms

of hours worked. Furthermore, households obtain profits from firm ownership, 𝟋t, and

coupon payments from government bonds, nt(χ+ δb). The income of the households has

to finance consumption, ct, lump-sum taxes, Tt, the purchase of new government bonds,

dnt, at price p
b
t , as well as price adjustment costs, Θ(πt). The savings of the households

are used to accumulate financial wealth (the liquid asset) and physical capital (the illiquid

asset). Consequently, households can withdrawal from or deposit into the illiquid account,

where dt = xt − rkt kt denotes the net value. One can interpret rkt as the percentage gross

dividend payments on the illiquid asset and xt as investments into the illiquid asset.

From the government’s perspective, issued debt has to cover coupon payments and

the amortization of outstanding debt. At the same time, the government’s revenue are

primary surpluses, st, which are defined (see equation (3.45)) as taxes, Tt, less government

consumption, gt. Hence, the nominal value of outstanding debt follows

dnt =
((
(δb + χ)nt − ptst

)
/pbt − δbnt

)
dt. (3.6)

In continuous-time, the price level, pt, is a predetermined variable that evolves according

to4

dpt = πtptdt. (3.7)

Equation (3.7) can be understood as realized inflation over the interval [t, t + dt] at rate

πt.

Differentiate equation (3.3) and substitute equations (3.5)-(3.7) from above in order

to obtain the evolution of government debt in real terms (market value) as

dat = (pbt dnt + nt dp
b
t − ntp

b
t/pt dpt)/pt

= ((it − πt)at − Tt + gt) dt. (3.8)

4See e.g. Sims (2011), Posch (2020) or Cochrane (2018).
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Similarly, the household’s budget constraint in real terms can be written as

dat = ((it − πt)at + wtlt − dt − ct −Θ(πt)/pt − Tt +𝟋t) dt.

The market clearing condition for output5, yt, implies

yt = ct + gt + xt +Θ(πt)/pt. (3.9)

As a consequence, the evolution of real government debt and the real financial wealth

of the households coincide. In an economy without capital, dt is equal to zero and the

evolution of real debt becomes (cf. Sims (2011))

dat = ((it − πt)at + wtlt − ct −Θ(πt)/pt − Tt +𝟋t) dt. (3.10)

Turning back to the NK model with capital adjustment costs, the savings of the households

are not only used to accumulate financial wealth but also physical capital. The latter

increases if the investment in the capital stock exceeds capital depreciation, which occurs

at the constant rate δ. Let capital be subject to adjustment costs so that one obtains the

law of motion of kt as

dkt =

(
Φ

(
xt
kt

)
− δ

)
kt dt. (3.11)

I follow Parra-Alvarez et al. (2021) and define the capital adjustment costs function, Φ,

as

Φ

(
xt
kt

)
=

δ1/κ

1− 1/κ

(
xt
kt

)1−1/κ

+
δ

1− κ
. (3.12)

The functional form is based on Jermann (1998) and Boldrin et al. (2001). Equation

(3.12) implies that the steady state level of capital, kss, equals steady state investment,

xss, over the capital depreciation rate. Consequently, the steady states of the model are

invariant to the choice of κ (see derivations in Section 3.A.4). The parameter κ, which

has to be positive and not equal to 1, denotes the elasticity of the ratio of investments

over capital w.r.t. Tobin’s q. For κ → ∞ one obtains the perfectly elastic limit, which

corresponds to the case without capital adjustment costs (cf. Dupor (2001)), as

dkt =

(
xt
kt

− δ

)
kt dt. (3.13)

5Note, when linearizing the model around a zero-inflation target, the price adjustment costs term,
Θ(πt)/pt, drops out.
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The Government Problem

Through open market operations, the monetary authority sets the nominal interest rate

according to a partial adjustment interest rate rule as in Posch (2020). Hence,

dit = θ (ϕπ(πt − π∗
t ) + ϕy(yt/yss − 1)− (it − iss)) dt, (3.14)

where ϕπ and ϕy denote inflation and output response parameters, where θ controls in-

terest rate smoothing, and where π∗
t denotes the inflation target. For θ → ∞ the par-

tial adjustment rule converges towards a feedback interest rate rule of the form it =

i∗t + ϕπ(πt − π∗
t ) + ϕy(yt/yss − 1). While specification (3.14) comes of the cost of an

additional state variable, it facilitates the analysis of monetary policy shocks.

Following Liemen and Posch (2022), let government consumption evolve according to

dgt = ρg(φy(yt/yss − 1) + φa(at − ass)− (gt − gss))dt. (3.15)

The parameters φy and φa govern the responsiveness of government consumption towards

changes in output and debt, while ρg determines the degree of inertia. One obtains the

inelastic limit gt = gss by letting ρg → 0. Analogously to the monetary policy rule, by

letting ρg → ∞ one obtains the flexible limit (feedback rule) as gt = gss+φy(yt/yss−1)+

φa(at − ass). Similar to Kliem et al. (2016) and Leith and von Thadden (2008), I allow

for a response of government consumption to changes in the real value of debt. Finally, I

assume that the government consumes a constant share, sg, of output in equilibrium.

Final Good Producers

There is one final good with price pt that is produced by a competitive representative firm

using intermediate goods. The production function reads

yt =

(∫ 1

0

y
ε−1
ε

it di

) ε
ε−1

, (3.16)

where ε denotes the elasticity of substitution across intermediate goods. Subject to the

production function (3.16) the final good producer maximizes its profit, taking as given the

price of the final good as well as the prices pit of all intermediate goods. The corresponding

input demand functions are

yiτ =

(
piτ
pτ

)−ε

yt ∀i, (3.17)

and

pt =

(∫ 1

0

p1−ε
it di

) 1
1−ε

, (3.18)

where pt is readily interpreted as the aggregate price level.
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Intermediate Good Producers

There is a continuum of intermediate good producers that engage in monopolistic com-

petition. Producer i maximizes its profit by choosing its price pit given price adjustment

costs à la Rotemberg (1982). Recall that I only consider first-order linear approximations

around a zero-inflation target so that Calvo (1983) pricing would yield identical inflation

dynamics. I consider Rotemberg pricing along the lines of Kaplan et al. (2018). Being

quadratic in the rate of price changes, ṗit/pit, price adjustment costs are expressed in

terms of a fraction of nominal output, ptyt, and read

Θt

(
ṗit
pit

)
=
γ

2

(
ṗit
pit

)2

ptyt, (3.19)

where γ denotes the degree of price stickiness. The intermediate good producers use the

same technology to produce differentiated goods:

yit = kαitl
1−α
it . (3.20)

This is a Cobb-Douglas-type production function, where I impose 0 < α < 1. As a

consequence, α and 1 − α are readily interpreted as the capital and the labor share,

respectively. Thus, in the absence of capital, α = 0, and one obtains yit = lit. Perfectly

competitive factor markets imply rkt = ∂yit/∂kitmct and wt = ∂yit/∂litmct, where mct

are marginal costs that are the same across firms. Thus, one obtains

rkt = αmctyit/kit and wt = (1− α)mctyit/lit. (3.21)

Combining terms,

kit/lit = α/(1− α)wt/r
k
t . (3.22)

Substitute equation (3.22) back into the rental rate representation in equation (3.21) and

rearrange terms to obtain marginal costs as

mct = (1/(1− α))1−α(1/α)αw1−α
t (rkt )

α, (3.23)

where in the absence of capital, marginal costs are equal to wages. With the above con-

siderations in mind, the real profit maximization problem of intermediate good producers

reads

maxEt

∫ ∞

t

λτ
λt
e−ρ(τ−t)

(
piτ
pτ
yiτ −mcτyiτ −Θt

(
ṗiτ
piτ

)
/pτ

)
dτ, (3.24)

subject to the input demand function (3.17). Since I consider a symmetric equilibrium, it

follows that pit = pt and the forward-looking NK Philips-Curve (cf. Kaplan et al. (2018))
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reads

dπt =

(
dct
ct

− dyt
yt

)
πt +

(
ρπt −

ε− 1

γ

(
ε

ε− 1
mct − 1

))
dt (3.25)

Note that in a continuous-time framework the expected rate of inflation coincides with

the current rate of inflation (cf. Posch (2020)).

Aggregation

I consider a symmetric equilibrium. As a consequence, one can express output in terms

of the production function of the intermediate good producers (3.20) as

yt = kαt l
1−α
t , (3.26)

or alternatively in terms of aggregate demand

yt = ct + gt + xt +Θ(πt)/pt =
ct + gt + xt
1− γπ2

t /2
, (3.27)

where I substitute the price adjustment costs function (3.19). Note that one can also

express output as the sum of labor- and capital income as well as real profits of the firms,

giving rise to

yt = rkt kt + wtlt +𝟋t. (3.28)

Due to the symmetric equilibrium assumption, equation (3.22) implies to

rkt =
αϑct

(1− α)kt
l1+ξ
t . (3.29)

Furthermore, one obtains the real interest rate, rt, as

rt = it − πt. (3.30)

The Hamilton-Jacobi-Bellman Equation

The Hamilton-Jacobi-Bellman equation (HJB) to the above problems reads

ρV (at, it, gt, kt) = max
(ct,lt,dt)

(
log(ct)− ϑl1+ξ

t /(1 + ξ)
)

+Va (at(it − πt) + wtlt − dt +𝟋t − ct −Θt(πt)/pt − Tt)

+Vi (θ (ϕπ(πt − π∗
t ) + ϕy(yt/yss − 1)− (it − iss)))

+Vg (ρg(φy(yt/yss − 1) + φa(at − ass)− (gt − gss)))

+Vk
(((

δ1/κ(rkt + dt/kt)
1−1/κ/(1− 1/κ) + δ/(1− 1/κ)

)
− δ
)
kt
)
,
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where the value function, V , is a function of the four state variables at, it, gt and kt, with

corresponding partial derivatives Va, Vi, Vg and Vk. The control variables are consumption,

ct, labor, lt, and net changes in the illiquid account6, dt.

The first-order condition (FOC) of the HJB w.r.t. consumption yields

Va = 1/ct ≡ λt, (3.31)

where λt denotes the marginal value of wealth. One obtains from the FOC w.r.t. labor

that

λtwt = ϑlξt . (3.32)

When combining equations (3.31) and (3.32), one can eliminate the co-state λt and arrives

at

wt = ϑlξt ct. (3.33)

Taking the derivative of the HJB w.r.t. financial wealth, at, one obtains the law of motion

of the marginal value of wealth as

dλt = λt(πt + ρ− it)dt, (3.34)

which together with (3.31) yields the consumption Euler equation

dct = ct(it − ρ− πt)dt. (3.35)

The FOC of the HJB w.r.t. dt yields

µt = λtδ
−1/κ

(
kαt l

1−α
t − ct − gt −Θ(πt)/pt

kt

)1/κ

, (3.36)

where I denote the marginal value of capital as µt ≡ Vk and use dt = xt − rkt . Without

capital adjustment cost, κ→ ∞, equation (3.36) reduces to

µt = λt. (3.37)

In this case, the marginal values of wealth and capital coincide (cf. Dupor (2001)). Start-

ing from equation (3.36), I show in appendix 3.A.4 that the co-state µt evolves according

to

dµt =

(
(ρ+ δ)µt −

(
δ(µt/λt)

κ−1 − δ

κ− 1

)
µt − rkt λt

)
dt. (3.38)

6Note that one can equivalently substitute dt = xt−rkt kt so that investment, xt, instead of dt becomes
the relevant control variable.
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Without capital adjustment cost, equation (3.38) reduces to

dµt = (ρ+ δ − rkt )µtdt, (3.39)

which together with equations (3.34) and (3.37) implies (cf. Dupor (2001))

rkt = rt + δ. (3.40)

Thus, in the absence of capital adjustment costs, the dynamics of the real interest rate and

the capital rental rate concur. In order to obtain an expression for the rental rate in the

model with capital adjustment costs, rearrange equation (3.36) to obtain an alternative

representation for labor,

lt =
(
k1−α
t (µt/λt)

κ δ + k−α
t (ct + gt +Θ(πt)/pt)

) 1
1−α , (3.41)

which after substituting in equation (3.29) yields

rkt =
αϑct

(1− α)kt

(
k1−α
t

(
Vk
Va

)κ

δ + k−α
t (ct + gt +Θt(πt)/pt)

) 1+ξ
1−α

. (3.42)

3.2.2 The Fiscal Theory of the Price Level

Following Sims (2011), I introduce FTPL by augmenting the NK-AC model with a fiscal

policy block, which consists of government debt, primary surpluses and the bond price. I

implement government debt in terms of its face value7

vt = nt/pt. (3.43)

Differentiate equation (3.43) and use equations (3.6) and (3.7) to obtain the evolution of

government debt as

dvt = (((δb + χ)/pbt − δb − πt)vt − st/p
b
t)dt, (3.44)

where primary surpluses are defined as the difference of taxes and government consump-

tion8

st = Tt − gt. (3.45)

Note that Tt and gt can enter the system either as (predetermined) state or as (forward-

looking) jump variables. Since I want to study exogenous shocks to taxes and government

7One can equivalently let government debt enter the model in terms of the market value, at = ntp
b
t/pt

(see for instance Sims (2011), Cochrane (2018) or Liemen and Posch (2022)). This formulation implies
the same dynamics and refers to the same model.

8Without government consumption, as in Sims (2011), primary surpluses correspond to taxes.
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consumption, I implement both of them as additional state variables.

I follow Liemen and Posch (2022) and let taxes evolve according to

dTt = ρτ (τy(yt/yss − 1) + τa(at − ass)− (Tt − T ∗
t )) dt. (3.46)

The parameter τy governs the responsiveness of taxes towards changes in the output gap,

while, similar to Kliem et al. (2016), τa introduces a dependence of taxes on the real value

of debt. The parameter ρτ determines the degree of inertia. One obtains the inelastic limit

Tt = T ∗
t by letting ρτ → 0. By letting ρτ → ∞, one obtains the flexible limit (feedback

rule) with Tt = T ∗
t + τy(yt/yss − 1) + τa(at − ass).

The values of the debt response parameters τa and φa in the government consumption

rule (3.15) and the tax rule (3.46) play a crucial role for model determinacy and are vital

for the transmission of fiscal policy. See Section 3.3.2 for a discussion on determinacy as

well as the role and the interdependence of debt responses in the fiscal policy rules.

By integrating9 the law of motion of real debt (3.8), one obtains the government debt

valuation equation as

at ≡
ntp

b
t

pt
= vtp

b
t = E

∫ ∞

t

e−
∫ u
t (iv−πv)dvsudu. (3.47)

This valuation equation is the core of FTPL. The price level, pt, as well as the number

of outstanding government bonds, nt, are predetermined variables and, consequently, do

not jump in a continuous-time framework with price stickiness (see e.g. Posch (2020),

Cochrane (2018), Cochrane (2022b)). For given paths of the state variables it and st,

the right-hand side of equation (3.47) pins down the path for the inflation rate. Due to

equation (3.5) any discrete change in pbt directly translates to a jump in at on the left-

hand side of equation (3.47). Inherited jumps in at are higher the longer the maturity of

government bonds and vanish in case of instantaneous debt. To highlight this maturity

channel, linearize and integrate the bond price equation (3.4) to arrive at

pbt = 1−
∫ ∞

t

e−(χ+δb)(v−t)(iv − iss)dv. (3.48)

In case of short-term bonds, δb → ∞, the integral term in equation (3.48) drops out and

the bond price is always equal to one. For longer maturity bonds, δb → 0, the exponent

in equation (3.48) becomes bigger and approaches −χ. Thus, δb → ∞ and δb = 0 are the

lower and upper bounds for the size of the maturity effect.

To highlight how FTPL relates to the inflation rate, I use the inflation decomposition

9I restrict my focus on bounded solutions, where limT→∞ e−
∫ T
t

rsdsaT = 0 so that I rule out bubble
solutions. See e.g. Brunnermeier et al. (2021) for an analysis of FTPL, where the transversality condition
does not necessarily rules out a bubble component.
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from Section 2.2.5, which gives rise to∫ ∞

t

e−ρ(v−t)(πv − π∗
t )dv =

∫ ∞

t

e−ρ(v−t)(iv − iss)dv −
∫ ∞

t

e−ρ(v−t)(sv − s∗t )/assdv

+(pbt/p
b
ss − 1) + (vt/vss − 1). (3.49)

According to equation (3.49), changes in the present value of future inflation can be

attributed to the weighted present value of changes in future surpluses (fiscal policy), to

changes in the present value of future interest rates (monetary policy) and two direct

effects (cf. Liemen and Posch (2022)). In particular, the penultimate term of equation

(3.49) accounts for a maturity effect (as described by equation (3.48)) and the last term

captures the effect of a potential exogenous shock to the face value of debt (which is a

predetermined variable). Further note that the size of the weighting factor 1/ass = ρ/s∗t

for the present value of changes in future surpluses depends on the (exogenous) choice of

the equilibrium value of surpluses (see Section 3.A.4).

As in Sims (2011), I introduce the fiscal policy block by augmenting the model of the

previous section with the three additional differential equations for the bond price (3.5),

taxes (3.46) and the face value of government debt (3.44).

3.2.3 Equilibrium Dynamics

In summary, I obtain a system with 5 differential equations for the state variables (the

face value of government debt vt, the nominal interest rate it, taxes Tt, government con-

sumption gt and the capital stock kt) and 4 differential equations for the forward-looking

jump variables (the inflation rate πt, consumption ct, the marginal value of wealth µt and

the bond price pbt). Thus, the model reads

dπt = (dct/ct − dyt/yt) πt + (ρπt − (ε− 1)/γ (ε/(ε− 1)mct − 1)) dt

dct = ct (it − πt − ρ) dt

dit = θ (ϕπ (πt − π∗
t ) + ϕy (yt/yss − 1)− (it − iss)) dt (3.50)

dgt = ρg (φy (yt/yss − 1)− (gt − g∗t )) dt

dkt = kt(Φ(xt/kt)− δ)dt

dµt =
(
µt(ρ+ δ)− µt

((
δ (µtct)

κ−1 − δ
)
/(κ− 1)

)
− rkt /ct

)
dt,

together with the fiscal block

dTt = ρτ (τy (yt/yss − 1)− (Tt − T ∗
t )) dt

dvt = (((δb + χ)/pbt − δb − πt)vt − st/p
b
t)dt (3.51)

dpbt =
(
itp

b
t − χ− δb

(
1− pbt

))
dt,
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where

yt = kαt l
1−α
t ,

lt = ((k1−α
t δ(Vkct)

κ + k−α
t ct + k−α

t gt)/(1− γ/2π2
t ))

1/(1−α),

xt = yt − ct − gt −
γ

2
π2
t yt,

and

Φ(xt/kt) = δ1/κ/(1− 1/κ)(xt/kt)
1−1/κ + δ/(1− κ).

Thus, one can use the 9 variables in the above differential equations to determine aggregate

output (3.9), the capital adjustment costs function (3.12), marginal costs (3.23), the

production function (3.26), wages (3.33), the capital rental rate (3.42), labor (3.41) and

primary surpluses (3.45). See appendix 3.A.4 for steady-state values and a complete

derivation of the model.

In the following sections I use the simple NK- and the NK model with capital (both

with and without FTPL) as reference models. I derive both models in the appendix in

Section 3.A.4.10 Both models are limiting cases of the NK-AC-FTPL framework. To

obtain the NK model with capital, start from the NK-AC-FTPL model, remove the fiscal

policy block, and let κ→ ∞ so that capital adjustment costs approach zero. In this case,

one arrives at the framework of Dupor (2001). When additionally setting α = 0, one

obtains the simple NK model. By augmenting these models with the fiscal policy block of

the previous section, one obtains the simple NK-FTPL model and the NK-FTPL model

with capital.

3.3 Fiscal Theory and Capital: Model Evaluations

and Comparisons

In what follows, I linearize all models around their steady states by applying simple first-

order linear approximations to all variables and differential equations. Regarding the

inflation rate, I assume a zero-inflation target, π∗
t = 0. For reasons of clarity, I derive

and present all steady states in Section 3.A.4 in the appendix. After the linearization, I

solve each model along the lines of Cochrane (2018). To this end, I apply an eigenvalue-

decomposition to the Jacobian matrix of the linearized system of differential equations. I

then use this decomposition together with the (exogenous) initial values of the state vari-

ables (i.e. the shocks) to determine the initial values of all remaining variables. Equipped

with the initial values, I use the stable eigenvalues of the system to find the unique back-

ward solution of the model. See e.g. Cochrane (2018), Cochrane (2022b) or Liemen and

10See e.g. Dupor (2001), Cochrane (2018), Posch (2020) or Liemen and Posch (2022) for an elaborate
description of these frameworks.
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Posch (2022) for a detailed description of this method.

I restrict my analysis to perfect foresight solutions. Consequently, in order to obtain

impulse-response functions I rely on analyzing non-recurring unexpected shocks (MIT

shocks). Economic agents address these shocks with perfect foresight responses. I follow

Sims (2011) and define monetary policy as changes in the short-term interest rate. Hence,

I can compare how different model specifications and parametrizations affect the transmis-

sion of exogenous unexpected (zero-probability) monetary policy shocks. In the same way,

I define fiscal policy as changes in surpluses, via taxes and/or government consumption

(cf. Sims (2011)). Finally, I introduce an unexpected negative shock to the capital stock,

which I define along the lines of Wieland (2019) as an unexpected event that destroys

parts of the capital stock (e.g. natural disaster).

Similar to Chapter 2 of this doctoral thesis, some arguments in this section are based

on policy functions. Recall that these functions follow directly from the model’s solution

and express any forward-looking variable as function of the state variables (see e.g. Posch

(2020)). Consequently, in a linearized model environment, policy functions have to be

linear functions of the states. Thus, for an arbitrary forward-looking variable zt one

obtains

zt − zss = z(it, gt, kt, vt, Tt) = zi(it − iss) + zg(gt − gss) + zk(kt − kss)

+zv(vt − vss) + zT (Tt − Tss) (3.52)

where zi, zg, zk, zv and zT are constant coefficients that correspond to the partial deriva-

tives evaluated at the steady state. Thus, these coefficients are functions of the states (e.g.

zi = zi(iss, gss, kss, vss, Tss)). Since I consider a linearized model, the partial derivatives in

equation (3.52) are constant coefficients. Hence, similar to Leeper et al. (2017b), one can

interpret the policy function coefficients as impact multipliers, as they directly show the

proportional initial responses of forward-looking variables to changes in the state variables

of the model.

3.3.1 Model Parametrization

Despite its simplicity, the FTPL framework allows one to depict a wide variety of economic

dynamics. In this context, the parametrization plays a crucial role since many mechanisms

and features are captured by single parameter values. For example, δb captures the un-

derlying debt maturity structure, s∗t defines the equilibrium debt-to-GDP ratio and τy,

τa, φy and φa not only determine fiscal dynamics but also determinacy regions of the

model. There are in total 22 structural parameters. If not stated otherwise, I always

use the baseline parametrization, which I describe below and summarize in Section 3.A.1.

Most of the fundamental parameters are borrowed from Kaplan et al. (2018). For the
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debt level I follow Liemen and Posch (2022) and choose the equilibrium value of primary

surpluses in a way to obtain the US Q1 2020 debt-to-GDP ratio11 of 108%. I calibrate

ϑ in a way to normalize equilibrium output (yss = 1). As a consequence, one obtains

different values for ϑ in settings with and without capital. When normalizing output this

way, one can use the same value of s∗t in models with and without capital and always

obtains identical debt-to-GDP ratios. By doing so, interest rate shocks produce the same

initial response of the real value of debt (measured in terms of deviation from the steady

state). This facilitates the comparison of settings with and without capital. I follow

Parra-Alvarez et al. (2021) and set the degree of capital adjustment costs equal to 0.326

(Jermann (1998)). I consider a partial adjustment tax rule with parameters similar to the

ones in Sims (2011), Davig and Leeper (2011) and Liemen and Posch (2022). Furthermore,

I implement a partial adjustment rule for government consumption without direct debt

response, φa = 0. Regarding the output response parameter, I calibrate φy in a way that

in the flexible limit, gt = g∗t +φy(yt/yss−1), government consumption responds one-to-one

to changes in the output gap with the negative of its constant share on output, φy = −sg.
Overall, as emphasized by Cochrane (2022b) and Sims (2011), my parametrization lets

primary surpluses and taxes respond pro- and government consumption counter-cyclically

to changes in output. Regarding monetary policy, I use standard values from the literature

and implement a zero-inflation target. Finally, the decay parameter δb in the bond price

equation is defined as 1 over the average debt maturity in years. I follow Del Negro and

Sims (2015), who assume an average debt maturity of 6.8 years for the US. Finally, for

the inflation response parameter, ϕπ, I parameterize active and passive monetary policy

as in Bianchi and Melosi (2017), whose parameter estimates are in line with Leeper et al.

(2017b).

I analyze the Great East Japan Earthquake of 2011 in Section 3.4.1. For this purpose,

I consider an alternative parametrization for the Japanese economy, as described below

and summarized in Section 3.A.1. In particular, I adjust my baseline parametrization and

closely follow Braun and Körber (2011), who specifically calibrate a NK model for Japan.

In general, most parameters are similar to Kaplan et al. (2018). In terms of empirical

data, I use the 2011 average debt maturity of 7 years12 and the 2011 debt-to-GDP ratio13

of 175.9%. Finally, I use an alternative surplus rule specification, which is based on Kliem

et al. (2016).

More generally, finding appropriate fiscal policy rules remains a challenging task both

from a empirical and a theoretical point of view because the mandate of fiscal authorities

tends to be less clear than the mandate of most central banks. Possible reasons are

11Source: FRED Data (GFDEGDQ188S), ”Federal Debt: Total Public Debt as Percent of Gross Do-
mestic Product”.

12Source: Ministry of Finance, Japan - Debt Management Report 2020.
13Source: World Bank, Central government debt, total (% of GDP) for Japan [DEBTTLJPA188A],

retrieved from FRED, Federal Reserve Bank of St. Louis.
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institutional details, political orientation or (temporary) voter preferences. My take on

the current discussion on fiscal policy rules is a missing consensus on their appropriate

specification, which points toward the need to intensify research in this area. Thus, one has

to keep in mind that even though I orientate on empirical parameter estimates, I primarily

chose surplus rules for illustrative reasons. Nevertheless, I only consider parametrizations

that are based on estimates in the literature and establish and match observable empirical

patterns, such as higher deficits in recessions.

3.3.2 Model Determinacy

The intention of my paper is not an elaborate discussion of determinacy regions. However,

since I analyze various models where active/passive monetary and fiscal policy specifica-

tions do affect transmission channels and implications, determinacy needs to be defined

and addressed properly. This holds especially true when working around the model of

Dupor (2001) because this framework is known to imply determinacy regions that, at first

glance, appear to contradict the commonly presumed understanding of active/passive

policy regimes along the lines of Leeper (1991). The results in this section follow from

a determinacy analysis similar to the ones in Dupor (2001) and Leith and von Thadden

(2008). To that end, I only consider bounded solutions and examine determinacy in terms

of stable and unstable Eigenvalues of the Jacobian matrix of the model. I present the

determinacy analysis in detail in appendix 3.A.2.

Table 3.1 summarizes the insights from Section 3.A.2 and shows necessary monetary

and fiscal policy stances needed for determinacy in the simple NK model, the NK model

with capital and the NK model with capital adjustment costs. I consider these models

with and without the fiscal block of Section 3.2.2. Note that the mere existence of the fiscal

policy block does not determine whether fiscal policy is active or passive. By considering

Ricardian households (see e.g. Leith and von Thadden (2008) or Bayer et al. (2021)),

one can always calibrate the fiscal policy block in a way that its implementation leaves

determinacy conditions of the underlying model unchanged. In this case, however, the

fiscal policy block just becomes dragged along and remains irrelevant for the dynamic of

other model variables (see e.g. Liemen and Posch (2022)). Since I am after the role of

FTPL in models with capital, I focus on situations where the introduction of the fiscal

policy block does matter for the dynamics of the underlying NK model. Thus, I always

analyze the implementation of an active fiscal policy block throughout this paper (fiscal

regime).

As a standard finding in the literature, monetary policy in the NK framework is either

considered to be active (ϕπ > 1) or passive (ϕπ < 1). The central mechanism to render

fiscal policy active or passive is its role in stabilizing debt (see e.g. Leeper (1991), Leith

and von Thadden (2008) or Bai and Leeper (2017)). A fiscal policy rule that stabilizes
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Table 3.1: Determinacy requirements for bounded solutions in considered NK models.
The table summarizes the results of the determinacy analysis in appendix 3.A.2. Fiscal
policy blocks are always chosen so that they imply active fiscal policy.

Determinacy Requirements

Model Monetary Policy Fiscal Policy

NK-Simple active passive
NK-Simple + Fiscal Block passive active

NK-Capital passive passive
NK-Capital + Fiscal Block active active

NK-Capital + Adj. Cost active passive
NK-Capital + Adj. Cost + Fiscal Block passive active

debt is considered to be passive while a destabilizing one is considered to be active. Similar

to the value of the inflation response parameter in the Taylor rule, there is a comparable

condition for the debt response parameters τa and φa in the fiscal policy rules (3.15)

and (3.46). When setting τy and φy equal to zero, fiscal policy is active if τa − φa < ρ.

This demarcation line, however, can become blurred14 under certain parametrizations

that allow for a direct output response in the fiscal policy rules. Regarding this property,

note that government consumption is a direct component of output so that taxes and

government consumption are both explicitly and implicitly linked via their responses to

output. An elaborate analysis of all special cases that result from the introduction of

government consumption and all possible combinations of τa, τy, φa and φy is beyond

the scope of my paper. Thus, I generally circumvent these special cases15 by imposing

parametrizations where either τa = φa ≡ 0 or τy = φy ≡ 0.

As a standard finding in the literature, determinacy in the simple NK model requires

active monetary policy. Sims (2011) shows how the introduction of the fiscal policy block

to the simple NK model changes the determinacy requirement from active- to passive

monetary policy. By doing so, one obtains the NK-FTPL model along the lines of Sims

(2011) and Cochrane (2018) (in both papers sg, ρg and τa are equal to zero). When

introducing capital to the simple NK model, one has to consider (similar to the NK-

FTPL model) one additional state variable (the capital stock) as well as an additional no-

arbitrage condition that links the marginal values of wealth and capital (equation (3.37)).

14Also see the discussion in Leith and von Thadden (2008).
15I consider simultaneous responses to yt and at in Section 3.4.3. However, I directly choose unambigu-

ous combinations of parameter values that are distinctly within the active fiscal/passive monetary policy
region.
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Dupor (2001) elaborates that this model specification requires passive monetary policy for

determinacy. At the same time, fiscal policy also has to be passive as highlighted by Leith

and von Thadden (2008) (Proposition 2.1, p. 293). Now, introduce the fiscal policy block.

In line with the findings of Leith and von Thadden (2008) (Proposition 2.2, p. 293), a

determinate solution requires monetary and fiscal policies to be simultaneously active. In

fact, a determinate bounded solution always requires ϕπ to be slightly larger than one (see

Leith and von Thadden (2008)). Not least because of the famous determinacy analysis in

Leeper (1991), it is widely perceived that situations, where monetary and fiscal policy are

simultaneously active or passive, induce instability and deem the model indeterminate.

However, the above results do not contradict Leeper (1991), as he neither considers capital

accumulation16 nor the continuous-time specific determinacy conditions. Further note that

environments with non-Ricardian consumers can also blur the demarcation lines of active

and fiscal policies (see Leith and von Thadden (2008)). Strictly speaking, due to the

simultaneously active monetary and fiscal policy requirement, the system is not a FTPL

model in the sense of Sims (2011) or Cochrane (2018), as fiscal policy is no longer the

single main driving force in the determination of the price level. Nevertheless, for the sake

of clarity and because fiscal policy is active, I denote this model as the NK model with

capital and FTPL.

In line with Dupor (2002) and Posch and Wang (2020), the introduction of capital

adjustment costs to the continuous-time NK-capital model with capital changes the de-

terminacy requirements from passive to active monetary policy. This time, however, fiscal

policy remains passive. This results follows from breaking the strict one-to-one relation-

ship between the marginal values of wealth and capital in equation (3.37) when making

adjustments of capital costly. As a consequence, the law of motion of the marginal value

of capital (3.38) no longer coincides with equation (3.34) so that it has to explicitly enter

the model as additional equilibrium variable. Finally, the determinacy region becomes

reversed once more when introducing the fiscal policy block to the NK model with capital

adjustment costs. Thus, one obtains a New Keynesian FTPL framework along the lines

of Sims (2011) and Cochrane (2018) with active fiscal- and passive monetary policy.

The results of my determinacy analysis are in line with standard findings in the liter-

ature. What is new, however, is the explicit analysis of determinacy when adding capital

adjustment costs to the simple continuous-time NK model with capital and FTPL.

3.3.3 Model Comparisons

This section compares and analyzes model dynamics and predictions of the NK-AC-FTPL

model and its limiting cases discussed in Section 3.2.3.

16See discussion on determinacy and capital accumulation in Schmitt-Grohe and Uribe (2007).
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NK Model with Capital and FTPL

Consider a contractionary monetary policy shock that raises the nominal interest rate by 1

percentage point. Figure 3.1 shows the corresponding IRFs for the NK model with capital

and/or FTPL. Regarding the dynamics of the simple NK-FTPL model, I refer to Chapter

2 of this doctoral thesis. For later reference, Table 3.2 shows the inflation decomposition

(3.49) for the monetary policy shock. I proceed with a short recap on the dynamics of

the continuous-time NK framework with capital (cf. Dupor (2001)). Turning to Figure

3.1, the unexpected increase in the nominal interest rate induces an instantaneous upward

jump in the real interest rate. Due to overall higher future real interest rates, household

immediately decrease consumption through inter-temporal substitution. According to

equation (3.40), the dynamics of the capital rental rate and the real interest rate coincide.

Due to optimizing firms, the capital rental rate is equal to the marginal product of capital

times marginal costs. Consequently, in order to match the increase in the rental rate,

there has to be a rise in the marginal product of capital and/or a rise in marginal costs.

In particular, the optimization problem of the firms gives rise to equation (3.29), which

shows that an instantaneous increase in the rental rate has to be matched by an immediate

upward jump in consumption and/or labor. Because consumption initially decreases,

labor has to increase instantaneously. This effect not only raises total output but also

unambiguously the inflation rate (cf. Dupor (2001)).

Having laid out the central dynamics of the frameworks of Dupor (2001) and Sims

(2011), I now turn to the NK-FTPL framework with capital. Obtaining a determinate

solution requires that fiscal and monetary policy are simultaneously active (see Section

3.3.2). As in Dupor (2001), equation (3.40) establishes the one-to-one relationship between

the dynamics of the real interest and the capital rental rate. At the same time, despite

monetary policy being active, the government debt valuation equation (3.47) has to be

satisfied as well. Combining equations (3.40) and (3.49) underscores the explicit relation

between capital and the fiscal policy block in this framework∫ ∞

t

e−ρ(v−t)(rkv − rkss)dv =

∫ ∞

t

e−ρ(v−t)(sv − s∗t )/assdv (3.53)

−(pbt/p
b
ss − 1)− (vt/vss − 1).

Thus, changes in the present value of future capital rental rates have to be equal to

the changes in the weighted present value of future surpluses less direct maturity and

debt effects. Figure 3.1 illustrates that the inclusion of the fiscal policy block in the NK

model with capital causes essentially all variables to respond in wavelike motions to the

monetary policy shocks. As in Leith and von Thadden (2008), the model is indeterminate

for parametrizations with ϕπ only slightly larger than 1. As it turns out, if θ and ϕπ are

close to the lower bound of determinacy, shocks induce extremely slow decaying dynamics
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Figure 3.1: IRFs: Contractionary monetary policy shock that raises the nominal interest
rate by 1 percentage point. Baseline parametrization. NK-FTPL model (dotted yellow
lines), NK model with capital (dashed red lines) and NK model with capital and fiscal
policy block and with θ = 3 (solid blue lines).

Table 3.2: Inflation decomposition: Contractionary monetary policy shock that raises the
nominal interest rate by 1 percentage point. Baseline parametrization. Simple NK-FTPL
model. Entries given by equation (3.49).

∫∞
0 e−ρu(πu − π∗

t )du
∫∞
0 e−ρu(iu − iss)du

∫∞
0 e−ρu(su − s∗t )/assdu (pb0/p

b
ss − 1)

inflation interest rate surplus direct effect

0.30 1.14 -0.08 -0.92
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with high frequencies and amplitudes. But even for higher values of ϕπ, the wavelike

responses of variables persist. My findings suggest that the inertia of the Taylor rule with

respect to the nominal interest rate is the critical factor to smooth out the wavelike IRFs.

Put differently, the central bank has to commit to a high degree of interest rate smoothing

as captured by high values of θ in the Taylor rule17. Therefore, I deviate from the baseline

parametrization in this framework and set θ = 3, as this value already smooths out most

of the undulating dynamics.

As in the frameworks of Dupor (2001) and Sims (2011), the unexpected increase in

the nominal interest rate induces an immediate upward jump in the real interest rate.

The marginal values of wealth and capital coincide so that the dynamics of the real

interest rate are equal to the ones of the capital rental rate (cf. Dupor (2001)). The

existence of optimizing firms pins down the capital rental rate as marginal costs times

the marginal product of capital. With an unambiguous initial rise in the rental rate,

equation (3.29) dictates that the upward jump in the rental rate has to be matched by

an immediate upward jump in consumption and/or labor. Due to overall higher future

real interest rates, households substitute inter-temporally and thus decrease consumption.

Consequently, firms have to increase labor demand to make up for the drop in consumption

and the rise in the rental rate. Higher labor demand, in turn, causes an upward jump in

wages, which together with the rise in the rental rate induces an immediate upward jump

in marginal costs. The change in marginal costs is smaller than the change in the rental

rate so that the upward jump in labor causes an upward jump in the marginal product of

capital (cf. Dupor (2001)). Thus, investment increase immediately and induce an upward

jump in output, which reflects the initial rise in labor (recall that capital cannot jump

endogenously). Due to the initial rise in wages and the rental rate, the present value of

future marginal costs increases, reflecting an upward in the inflation rate.

Model responses in the framework of Dupor (2001) and in the NK-FTPL model with

capital initially only differ in terms of magnitudes (see Figure 3.1). Contrary to the frame-

works of Dupor (2001) and Sims (2011), the interest rate hike in the NK-FTPL model

with capital is short-lived and followed by a prolonged period of lower nominal interest

rates. In fact, the change in the maturity weighted present value of future nominal interest

rates is negative so that the no-arbitrage condition (3.48) requires an upward jump in the

bond price, which translates to an immediate increase in real debt. In contrast to the

simple NK-FTPL framework, the contractionary monetary policy shock is highly expan-

sionary. Following a pro-cyclical surplus rule, the fiscal authority addresses higher output

by gradually raising taxes and by lowering government consumption. Consequently, as

highlighted by the inflation decomposition equation (3.49), the weighted present value of

17It is important to keep in mind that the model remains determinate even for lower values of θ.
Also see Schmitt-Grohe and Uribe (2007) for a discussion on determinacy and interest rate smoothing in
discrete-time models with capital accumulation.
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Table 3.3: Inflation decomposition: Contractionary monetary policy shock that raises the
nominal interest rate by 1 percentage point. Baseline parametrization. NK-FTPL model
with capital and θ = 3. Entries given by equation (3.49).

∫∞
0 e−ρu(πu − π∗

t )du
∫∞
0 e−ρu(iu − iss)du

∫∞
0 e−ρu(su − s∗t )/assdu (pb0/p

b
ss − 1)

inflation interest rate surplus direct effect

-0.43 -0.34 0.21 0.12

future surpluses increases by 0.21 percentage points. Hence, fiscal policy has a negative

impact on the change in the present value of future inflation rates. Similar to the model

of Dupor (2001), the monetary policy shock is not only expansionary but initially raises

inflation. The central bank starts to decrease the nominal interest rate in order to bring

down the increased real interest rate (equivalently the capital rental rate). In contrast

to Dupor (2001), however, the path of future inflation follows from a combination of (ac-

tive) monetary and (active) fiscal policy as well the debt decomposition. As it turns out,

satisfying the government debt valuation equation (3.47) requires that the inflation rate

and the nominal interest rate persistently drop below their corresponding steady states

during transition. In particular, the inflation decomposition shows that the present value

of future nominal interest rates decreases by 0.34 percentage point so that monetary pol-

icy also contributes to overall lower inflation rates. This effect, however, is partly soaked

up by higher bond prices as reflected in the direct maturity effect of 0.12 percentage

points. Taking everything together, the present value of future inflation declines by 0.43

percentage points. This in turn, implies an increase in the present value of future real

interest rates by 0.09 percentage points, which is equal to the change in the present value

of future capital rental rates. Consequently, as captured by equation (3.54), changes in

the weighted present value of future surpluses less the initial maturity effect fully account

for the change in the present value of future capital rental rates.

The above evaluation of the NK model with capital and FTPL highlights the various

and partly competing interactions of fiscal and monetary policy. As a consequence, the

dynamics of all model variables experience wavelike dynamics. I conclude that the NK-

FTPL model with capital is unsuitable for actual policy analysis, as it inherits undesired

properties from the model in Dupor (2001), and consequently is ad odds with conventional

economic thinking in many different dimensions. In particular, the model’s predictions

turn out to be even less plausible than the ones of the simple NK capital model with-

out FTPL (e.g. the overall decline in nominal interest rates or the wavelike dynamics).

In summary, if one is interested in analyzing FTPL in a simple continuous-time frame-
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work with capital, one has to rely on additional ingredients to avoid ending up with the

shortcomings of the NK-FTPL model with capital. Hence, I reject the model and do not

analyze the propagation of other shocks.

NK Model with Capital Adjustment Costs and FTPL

I build on the insights of the previous section, and show how the introducing of capital

adjustment costs resurrects the counterintuitive implications of the continuous-time NK-

FTPL model with capital. Analogously to the previous section, I initially abstract from

FTPL and start the analysis with a short recap on the effects of a contractionary monetary

policy shock in the NK model with capital adjustment costs (cf. Posch and Wang (2020)).

Figure 3.2 shows the IRFs for an interest rate hike by 1 percentage point in the simple NK-

FTPL, the NK-AC and the NK-AC-FTPL model. The dynamics of the simple NK-FTPL

model are as described in Section 3.3.3.

In case of the NK model with capital adjustment costs, monetary policy is active and

an interest rate hike is accompanied by an increase in the real interest rate. In line with

the standard NK framework, the inflation rate moves inversely to the nominal interest

rate. Thus, the inflation rate initially jumps downwards before steadily converging back

towards its equilibrium level. Due to persistently higher real interest rates, households

respond by initially decreasing their consumption expenditures through inter-temporal

substitution. The first-order condition (3.31) of the HJB unveils that percentage changes

in the marginal value of wealth are the mirror image of percentage changes in consumption.

Thus, there is a steep upward jump in the marginal value of wealth. Firms address the

decreased demand for goods by reducing investments and labor, which is reflected in a

downward jump in the marginal value of capital. The rental rate and wages decrease,

which in turn induces a downward jump in marginal costs. The capital stock decreases

for as long as the marginal value of capital exceeds the marginal value of wealth. Since

both marginal values initially jump in opposite directions, there is a gradual and prolonged

decline in capital. The drawn out response of capital and its relative slow convergence

back to steady state, are, above all, consequences of the relatively costly adjustment of

capital. In summary, the introduction of capital adjustment costs resurrects the model

implications of Dupor (2001). Hence, adjustment costs not only offer a possibility to

change determinacy conditions form passive to active monetary policy but also a way

to offset the counterintuitive implications of the expansionary nature of contractionary

monetary policy shocks in the simple continuous-time NK model with capital (cf. Dupor

(2002) and Posch and Wang (2020)).

In the NK-AC-FTPL model, the unexpected increase in the nominal interest rate

translates to an immediate upward jump in the real interest rate. Responding to over-

all higher real interest rates, households initially decrease consumption through inter-
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Figure 3.2: IRFs: Contractionary monetary policy shock that raises the nominal interest
rate by 1 percentage point. Baseline parametrization. NK-FTPL model (dotted yellow
lines), NK model with capital adjustment costs (dashed red lines) and NK model with
capital adjustment costs and FTPL (solid blue lines).

temporal substitution. Firms address declining demand by decreasing labor inputs and

investment, which corresponds to an immediate downward jump in the marginal value

of capital. Hence, wages and the capital rental rate also decrease initially. As in the

NK-AC model, percentage changes in the marginal value of wealth are the mirror image

of percentage changes in consumption. Thus, the marginal values of capital and wealth

initially jump in opposite directions so that the capital stock gradually decreases for as

long as the marginal value of wealth exceeds the marginal value of capital. The fiscal au-

thority cannot instantaneously adjust taxes and government consumption (both variables

are predetermined). Consequently, the initial declines in investments and consumption

induce an immediate contraction of output. As captured by the no-arbitrage condition

for the bond price (3.48), overall higher nominal interest rates require an instantaneous

decline in the bond price. This in turn, induces an immediate devaluation of government

95



Table 3.4: Inflation decomposition: Contractionary monetary policy shock that raises the
nominal interest rate by 1 percentage point. Baseline parametrization. NK-AC-FTPL
model. Entries given by equation (3.49).

∫∞
0 e−ρu(πu − π∗

t )du
∫∞
0 e−ρu(iu − iss)du

∫∞
0 e−ρu(su − s∗t )/assdu (pb0/p

b
ss − 1)

inflation interest rate surplus direct effect

0.30 1.13 -0.08 -0.91

debt, which causes a downward jump in the real value of debt. The fiscal authority fol-

lows a pro-cyclically surplus rule. Thus, it lowers taxes and at the same time provides

an additional fiscal stimulus by increasing government consumption. Surpluses have an

s-shaped response so that preceding deficits are partly payed back by future surpluses.

In fact, most variables in the NK-AC-FTPL have a slightly s-shaped response, which, as

argued below, primarily results from the evolution of the real interest rate. According

to the inflation decomposition equation (3.49), the increase in the present value of fu-

ture inflation rates (0.3 percentage points) follows from an increase in the present value

of future nominal interest rates (1.13 percentage points), which is partly soaked up by a

revaluation of debt (-0.91 percentage points), and a decrease in the weighted present value

of surpluses by 0.08 percentage points. In order to satisfy the government debt valuation

equation (3.47), this requires a path of the inflation rate with an initial drop, followed

by a relative larger and more drawn-out increase in future inflation rates (stepping on a

rake effect). Monetary policy is passive and the central bank adjusts the nominal interest

less than one-to-one to changes in the inflation rate. As a consequence, the change in the

inflation rate exceeds the change in the nominal interest rate during transition. Thus, the

real interest rate has a slightly s-shaped response. However, the present value of future

real interest rates increases by 0.83 percentage points, which reflects that the temporary

decline in the real interest rate is relatively small compared to the preceding period of

higher real interest rates. Nevertheless, the subsequent decline in the real interest rate

induces a small expansionary effect, which causes s-shaped responses of most variables in

the model. Note that this feature is not specific to the NK-AC-FTPL model but a general

property of the NK-FTPL framework.

The above analysis and the IRFs in Figure 3.2 highlight that the FTPL mechanisms

directly translate to the NK model with capital adjustment costs. In case of my base-

line parametrization, the dynamics of all variables in the NK-AC-FTPL model that are

also present in the simple NK-FTPL model closely resemble the dynamics of their corre-

sponding counterparts in the simple NK-FTPL model. The remaining variables, at least
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initially, respond to the shock as suggested by the NK-AC model without FTPL. In the

longer-run, however, the fiscal theory kicks in and model predictions deviate from the NK-

AC model without FTPL. A relatively large part of these differences can be attributed to

the effects of FTPL on the evolution of the inflation rate as well as the related dynamics

of the real interest rate and the marginal value of wealth. Due to the s-shaped responses

of the marginal values of wealth and capital in the NK-AC-FTPL model, initial decreases

in the capital stock are short-lived and capital becomes replaced relatively quick. In fact,

the capital stock even overshoots its equilibrium, which reflects the above described tem-

porary expansionary effect of the monetary policy shock during transition. Hence, in

contrast to the NK-AC model, the initial declines in investment and the rental rate also

have to be followed by s-shaped responses. Recall that the Philips curve relates changes

in inflation to changes in the present value of marginal costs. Since the government debt

valuation equation implies a boomeranging path of the inflation rate, the initial drop in

marginal costs ultimately has to be followed by a period of higher marginal costs. Overall,

even though transmission channels differ, the responses of the NK-AC-FTPL model to the

monetary policy shock preserve the initial and medium-term dynamics of the underlying

NK-AC model.

In case of the baseline parametrization, the adjustment of capital is relatively costly. As

a consequence, there are in most cases only minor differences between common variables

in the simple NK-FTPL and the NK-AC-FTPL model. In fact, the respective inflation

decomposition in Tables 3.2 and 3.4 are basically identical. Keeping all else equal, a

less costly adjustment of capital (higher value of κ) induces significant differences in the

dynamics of the two models. Consequently, by lowering capital adjustment costs, most

of the IRFs of the two FTPL models in Figure 3.2 are basically no longer on top of each

other. However, it is important to keep in mind that if κ→ ∞, the NK-AC-FTPL model

approaches the simple NK-FTPL with capital (see Section 3.3.3) and inherits its undesired

features.

I conclude that the combination of capital adjustment costs and the fiscal theory offers

a simple and intuitive framework to study the role of FTPL in NK models with capital.

One appealing feature of this approach is the ability to (at least temporary) maintain

model implications and predictions of the NK-AC and the NK-FTPL model. This property

also holds when considering other policy shocks. For an elaborate discussion on shocks

to capital and government consumption, I refer to Sections 3.4.1 and 3.4.2, respectively.

Furthermore, as I argue in these sections, the combination of FTPL and capital adjustment

costs is able to solve at least two puzzles in the literature. Thus, the NK-AC-FTPL model

offers an important benchmark framework, as it allows analyzing interactions of fiscal and

monetary policy, government debt, investments as well as capital, in a joint, simple and

consistent framework.
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3.4 NK-AC-FTPL Model: Policy Experiments, Puz-

zles and Properties

This section evaluates and solves two puzzles in the literature. Strictly speaking, I show

that these are no puzzles at all in a FTPL framework. Furthermore, I revisit the short-

term debt implications of the FTPL framework.

3.4.1 The Great East Japan Earthquake

It was on March 11 in 2011 that a magnitude 9.0 earthquake struck the northeast part of

the Japan Trench. Within 30 minutes the resulting Tsunami hit the east cost of Japan,

devastating critical infrastructure, the power grid as well as production facilities. The

earthquake (known as the Great East Japan Earthquake or the Tōhoku Earthquake) turned

out to be extremely damaging for Japan’s economy. In particular, available evidence

suggest that the earthquake was contractionary and accounted for a substantial drop in

output (see e.g. Tokui et al. (2017), Wieland (2019) or Carvalho et al. (2021)). For

instance, Tokui et al. (2017) estimate that resulting supply chain disruptions induced a

production loss of at least 0.35 percent of GDP, whereas Carvalho et al. (2021) estimate

that the earthquake resulted in a 0.47 percentage points drop in GDP in the subsequent

year.

Following Wieland (2019), I define the Great East Japan Earthquake of 2011 as an

unexpected shock to the capital stock. Equipped with the fiscal theory and capital, I

confront the NK-AC-FTPL model with the natural disaster and compare predictions and

implications with standard NK models in the literature.

Frequently encountered features of some models within the standard NK framework

are counterintuitive predictions under a nominal interest rate peg. In particular, waste-

ful government spending, capital and output destruction as well as technical regress turn

out to be highly expansionary and produce large multipliers at the ZLB (see for instance

Eggertsson (2011), Eggertsson et al. (2014), Kiley (2016), Cochrane (2017) or Wieland

(2019)). Since the standard NK model relies on active monetary policy, certain assump-

tions and modifications are necessary to obtain determinate solutions. One widely used

approach in the literature18 exploits that the standard NK model, despite being build

around the assumption of active monetary policy, can under a zero-inflation target and

a temporary binding interest rate peg still select a locally unique and forward-bounded

equilibrium. Pinning down this equilibrium requires that among all forward-bounded so-

lutions, the central bank is able to restore its zero inflation target after a shock occurred.

Cochrane (2017) shows that the counterintuitive predictions of the standard NK models

18See for instance Eggertsson (2011), Christiano et al. (2011), Werning (2012) or Wieland (2019).
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at the ZLB are a direct consequence of ultimately letting the monetary authority commit

to its zero-inflation target. Due to its wide adoption in the literature, I take the uniquely

defined equilibrium path and the resulting counterintuitive implications of the above mod-

els as given, and use them in direct comparison to my framework. For this purpose, I

compare the NK-AC-FTPL model with the Smets and Wouters (2007) model as speci-

fied in Wieland (2019). In this framework Wieland (2019) directly assumes an interest

rate peg (or tautologically the ZLB) that binds for 25 years and defines the Great East

Japanese Earthquake of 2011 as an unexpected negative shock to the capital stock. The

paper highlights the expansionary effect of capital destruction at the ZLB and concludes

that the model implications fail to reproduce the empirically observed drop in output.

As highlighted in the previous sections, FTPL offers an alternative equilibrium selec-

tion mechanism. Since monetary policy is passive in the NK-AC-FTPL model, one can

readily analyze an interest rate peg19 (such as the ZLB) by setting θ in the Taylor rule

(3.14) equal to zero. Thus, the NK-FTPL framework remains determinate even under the

limiting case of a pegged interest rate. To motivate my approach, note that the basic loan

rate of the Bank of Japan (BoJ) between 1960 and 2021 remains basically pegged at a

lower-bound since 1995.20 In particular, the official policy target rate even became nega-

tive during this time. Despite a recent rise in global interest rates, the BoJ (in contrast to

the FED or the ECB) confirms its commitment to keep its policy rate unchanged21. This

suggests that the Japanese economy is indeed in a passive monetary policy regime, which

is characterized by a prolonged ZLB episode for nearly 30 years. Thus, directly imposing

passive monetary policy (or even a peg) appears justified by the data.

Figure 3.3 shows the IRFs for output, the capital stock and the inflation rate following

a temporary shock that destroys one percent of the capital stock. For reasons of com-

parability, the layout of the figure is borrowed from Wieland (2019). The left-hand side

panels show the IRFs of the Smets and Wouters (2007) model as replicated by Wieland

(2019). The term ”normal times”, which I also borrow from Wieland (2019), denotes the

situation without interest rate peg. The right-hand side panels show the corresponding

IRFs of the NK-AC-FTPL model. In contrast to the previous sections, I closely fol-

low the parametrization of Braun and Körber (2011), who explicitly parameterize a NK

model for Japan for the period prior to the earthquake. I further deviate from my base-

line parametrization and consider fiscal response parameters similar to the ones in Kliem

et al. (2016). Hence, government consumption and taxation are now explicitly driven by

debt- instead of output dynamics. I change the law of motion of surpluses for illustrative

reasons. As already pointed out throughout the previous sections, no clear consensus has

yet emerged regarding the specification of surplus rules.

19Note that it is unimportant for simple NK models whether pegging the interest rate at zero or another
non-negative constant (see Wieland (2019)).

20See e.g. Bank of Japan: Basic Loan Rate (FRED time series: [IRSTCB01JPM156N].)
21Source: Bank of Japan, Statement on Monetary Policy, July 21, 2022.
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Figure 3.3: IRFs: Negative shock to capital by 1 percent (capital destruction). Left-hand
side panels show IRFs of the Smets and Wouters (2007) model as replicated by Wieland
(2019). Right-hand side panels show the corresponding IRFs of the NK-AC-FTPL model
using parametrization 2.

In the standard NK framework in normal times (upper left-hand side panel of Figure

3.3), capital destruction raises marginal costs, which in turn increases inflation. Because

monetary policy is active, the central bank reacts by increasing the nominal interest rate

more than one-to-one with inflation. Thus, the real interest rate starts to rise so that a

small initial increase in output is followed by a prolonged contraction. With an interest

rate peg (lower left-hand side panel of Figure 3.3), however, the monetary authority cannot

adjust the nominal interest rate. Hence, the rise in inflation consequently decreases the

real interest rate substantially. Due to overall lower future real interest rates, households

substitute inter-temporally and increase consumption. Firms build up investment, which

in turn also fuels the expansionary effect. Consequently, the capital stock is replaced

at a relatively high rate compared to the normal times scenario. Due to the overall

expansionary nature of the shock, the initial upward jump in output is followed by a

further gradual increase, which results in a rise in output by nearly 2 percent. Thus, in

line with the theoretical literature discussed above, capital destruction turns out to be

highly expansionary at the ZLB.

Turning to the NK-AC-FTPL framework (right-hand side panels of Figure 3.3), the

inflation decomposition equation (3.49) implies that the path of future inflation rates is
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Table 3.5: Inflation decomposition: Negative shock to capital by 1 percent (capital de-
struction). Parametrization 2. NK-AC-FTPL model in normal times and at the ZLB.
Entries given by equation (3.49).

Setting
∫∞
0

e−ρu(πu − π∗
t )du

∫∞
0

e−ρu(iu − iss)du
∫∞
0

e−ρu(su − s∗t )/assdu (pb0/p
b
ss − 1)

inflation interest rate surplus direct effect

Normal Times -0.25 -0.21 -0.08 -0.12

ZLB 0.08 0 -0.08 0

again determined by an interplay of monetary and fiscal policy as well as the composition

of government debt. Since the earthquake destroys a part of the capital stock, there is

less capital available for production. The rental rate sharply jumps upwards and becomes

the central driving force for overall higher future marginal costs. Following the rise in the

capital rental rate, there is an instantaneous drop in investment. Due to overall higher

marginal costs, the inflation rate immediately increases as highlighted by the integrated

Philips curve. The central bank cannot instantaneously adjust the nominal interest rate

so that the real interest rate drops on impact. Responding to the rise in the inflation

rate, the central bank then starts to increase the nominal interest rate, which in turn

gradually elevates the decreased real interest rate. However, due to the passive monetary

policy regime, the monetary authority adjusts the nominal interest rate less than one-

to-one with inflation. In order to satisfy the government debt valuation equation (3.47),

the nominal interest rate as well the inflation rate have to drop below their correspond-

ing steady states during transition. In particular, the decline in the inflation rate has to

temporary exceed the drop in the nominal interest rate. Inflation dynamics again follow

from the interplay of monetary and fiscal policy as well as the maturity structure of debt.

As captured by the inflation decomposition equation, the path of the inflation rate has

to imply an increase in the present value of future real interest rates by 0.04 percent-

age points (see Table 3.5). This increase can be attributed to changes in fiscal policy

and to the direct maturity effect. Regarding the latter, despite the drop in the present

value of future nominal interest rates by 0.21 percentage points, the maturity weighted

present value of future nominal interest rates in the no-arbitrage condition (3.48) rises.

Consequently, the bond price jumps downwards, which in turn induces an immediate

devaluation of real debt. In contrast to my baseline parametrization, surpluses respond

positively to changes in debt. Hence, the fiscal authority decreases taxes and increases

government expenditures. The size of the corresponding debt response parameter, how-

ever, is relatively small compared to the output response parameters in the surplus rule
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Table 3.6: Inflation decomposition: Negative shock to capital by 1 percent (capital de-
struction). Parametrization 2 with fiscal policy parameters from the baseline parametriza-
tion. NK-AC-FTPL model in normal times and at the ZLB. Entries given by equation
(3.49).

Setting
∫∞
0

e−ρu(πu − π∗
t )du

∫∞
0

e−ρu(iu − iss)du
∫∞
0

e−ρu(su − s∗t )/assdu (pb0/p
b
ss − 1)

inflation interest rate surplus direct effect

Normal Times 1.68 1.41 -1.08 -0.81

ZLB 0.96 0 -0.96 0

in the baseline parametrization. Therefore, changes in surpluses are relatively small in

absolute terms. Thus, fiscal policy stabilizes the real interest rate because the weighted

present value of futures surpluses only contributes a relative small decrease of 0.08 per-

centage points to the overall change in the present value of future real interest rates. The

maturity structure of debt, therefore, accounts for the rise in the present value of future

real interest rates. Due to overall higher future real interest rates, households initially

decrease consumption through inter-temporal substitution. The fiscal authority cannot

instantaneously adjust government consumption. Therefore, in contrast to the Smets and

Wouters (2007) model22, the initial declines in consumption and investments translate

to a instantaneously downward jump in output. Note that labor initially increases, de-

spite a drop in wages. This occurs because the decrease in real wages is smaller than

the drop in consumption so that total labor income (wtlt) slightly increases. However,

higher labor and lower wages neither offset the rise in marginal costs nor the drop in

output. To obtain further insights into transmission channels and effects of the earth-

quake in the normal times setting, I additionally evaluate two alternative surplus rules.

Tables 3.6 and 3.7 highlight that the surplus process is a crucial factor for obtaining an

initial drop in consumption and output. To evaluate the underlying mechanisms, I again

consider Parametrization 2 but replace the tax and government consumption response

parameters with the ones from the baseline parametrization. Thus, taxes and government

consumption now directly respond to changes in output instead of debt. Figure 3.4 shows

the corresponding IRFs. Because surpluses react relatively strong to changes in output,

there is a prolonged period of lower tax revenues and higher government consumption.

As a consequence, the weighted present value of future surpluses now contributes a rise

by 1.08 percentage points to the change in the present value of future inflation (versus a

22In general, the initial output response can also be negative in the traditional NK framework. See for
instance Figure 3.A.1.
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Figure 3.4: IRFs: Negative shock to capital by 1 percent (capital destruction). Left-
hand side panels show IRFs of the Smets and Wouters (2007) model as replicated by
Wieland (2019). Right-hand side panels show the corresponding IRFs of the NK-AC-
FTPL model when using Parametrization 2 but the fiscal policy parameters from the
baseline parametrization.

0.08 percentage points increase with parametrization 2). Higher inflation requires that the

monetary authority increases the nominal interest rate more aggressively as reflected by

a rise in the present value of future nominal interest rates by 1.41 percentage points (ver-

sus a drop by 0.21 percentage points increase with parametrization 2). Hence, the direct

maturity effect is larger and decreases the present value of future inflation by 0.81 per-

centage points (versus a 0.12 percentage point decline with parametrization 2). In total,

the present value of future inflation increases by 1.68 percentage points (versus a decrease

of 0.25 percentage points with parametrization 2). Thus, satisfying the government debt

valuation equation (3.47) requires a path with higher inflation rates, characterized by a

sharp initial upward jump. Consequently, the real interest rate decreases substantially.

Due to overall lower future real interest rates, households initially increase consumption.

Thus, in contrast to parametrization 2, there is a rise in consumption, which exceeds the

initial drop in investments so that there is an overall short lived expansionary effect on

output as in the Smets and Wouters (2007) model.

To conclude the analysis of the normal times setting, I again consider Parametriza-

tion 2 but this time make surpluses constant (Tt = Tss and gt = gss). In this case, the
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Table 3.7: Inflation decomposition: Negative shock to capital by 1 percent (capital de-
struction). Parametrization 2 with constant surpluses (gt = gss and Tt = Tss). NK-AC-
FTPL model in normal times and at the ZLB. Entries given by equation (3.49).

Setting
∫∞
0

e−ρu(πu − π∗
t )du

∫∞
0

e−ρu(iu − iss)du
∫∞
0

e−ρu(su − s∗t )/assdu (pb0/p
b
ss − 1)

inflation interest rate surplus direct effect

Normal Times -0.42 -0.35 0 -0.07

ZLB 0 0 0 0

model dynamics are closely related to the ones of parametrization 2. This follows directly

from the role of surpluses in the inflation decomposition equation (3.49). In the constant

surplus case, there are no changes in taxes and government consumption. Consequently,

the weighted present value of future surpluses is equal to zero and, therefore, in absolute

terms, only slightly smaller than the one obtained with Parametrization 2 (0 versus -0.08

percentage points). With constant surpluses, changes in the present value of future real

interest rates are fully accounted for by the direct maturity effect. In the previous two

examples, there are pro-cyclical surplus rules, which induce a decrease to the weighted

present value of future surpluses. Since this (expansionary) effect vanishes in the con-

stant surplus setting, the constant surplus rule specification is associated with the biggest

instantaneous drop in output among all considered parametrizations.

When turning to the NK-AC-FTPL model at the ZLB, basically the same mechanisms

as in normal times apply. This result directly follows from the passive monetary policy

regime, which already nests the limiting case of an immobile nominal interest rate. In

order to satisfy the no-arbitrage relation between the nominal interest rate and the bond

price (3.48), all debt has to be short-term at the ZLB. As a consequence, there is no

immediate (endogenous) revaluation of government debt. Thus, at the ZLB, the change

in the present value of future inflation is fully determined by the weighted present value

of future surpluses as captured by the inflation decomposition equation (3.49).

I start my analysis by turning to Parametrization 2 and implement an interest peg by

setting θ ≡ 0. The model responses to the earthquake closely follow the ones in normal

times, as the model mainly operates through the same channels. Thus, one again obtains

the initial rise in marginal costs and inflation. As before, investments decrease, which

reflects the rise in the capital rental rate. Surplus dynamics depend positively on the evo-

lution of real debt, which (in the absence of long-term bonds) starts to decrease gradually.

At the ZLB, the weighted present value of future surpluses falls by 0.08 percentage points

(see Table 3.5). In order to satisfy the government debt valuation equation (3.47), this
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requires an equivalent increase in the present value of future inflation. Thus, the total ef-

fect on inflation can be attributed to fiscal policy. Since the nominal interest rate remains

pegged, the dynamic of the real interest rate is equal to the negative of the dynamic of

the inflation rate. The change in the present value of future real interest rates is negative

(in contrast to normal times), which is fully accounted for by the decrease in the present

value of future surpluses. The real interest rate has an s-shaped response with a relatively

steep initial decline. Since the central bank cannot adjust the nominal interest rate, the

subsequent rise in the real interest rate is relatively slow compared to normal times. In

fact, the integral over (non-discounted) changes in the real interest rate is positive so that

the drop in present value of future real interest rates results from discounting. Thus,

overall higher real interest rates induce a drop in consumption through inter-temporal

substitution. Together with the downward jump in investments, one obtains an initial

drop in output as in normal times. However, keeping all else equal, the contractionary

effect has to be smaller at the ZLB compared to normal times (see Figure 3.3). On the

one hand, the maturity channel ceased to exist. On the other hand, the central bank

cannot adjust the nominal interest rate. As a consequence, the present value of future

inflation rate increases in normal times but decreases at the ZLB. Thus, future real inter-

est rates are lower at the ZLB, which induces a smaller initial drop in consumption, and

consequently output.

At the ZLB, higher changes in the weighted present value of future surpluses translate

to higher changes in the present value of future inflation. To further evaluate this feature,

I consider Parametrization 2 with an interest rate peg and the fiscal policy parameters of

Parametrization 1. The NK-AC-FTPL model now implies a decrease in the present value

of future real interest rates by 0.96 percentage points (see Table 3.6). Responding to over-

all lower real interest rates, households substitute inter-temporally and instantaneously

increase consumption expenditures. The initial rise in consumption is more substantial

that the initial drop in investment. Consequently, the immediate output response to the

earthquake is highly expansionary as implied by the Smets and Wouters (2007) model. In

contrast to this model, there is no further increase in output in the NK-AC-FTPL frame-

work. Thus, output directly starts to decline and persistently falls below its equilibrium

level during transition.

Finally, I consider Parametrization 2 with an interest rate peg and constant primary

surpluses. As in normal times, this specification amplifies the contractionary effect of the

shock through the same transmission channels. Table 3.7 highlights that all components of

the inflation decomposition have to be equal to zero in this case. In line with the insights

from parametrization 2, the absence of monetary policy and long-term debt induces a

increase in the (non-discounted) integral over future real interest rates. Thus, through

inter-temporal substitution, the constant surplus induces the biggest contractionary effect

among considered parametrizations.
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The above analysis suggest that the predictions of the NK-AC-FTPL model are closer

to the actual data than those implied by the above formulations of the standard NK

framework. Most notably, in line with the existing empirical evidence and economic

intuition, the NK-AC-FTPL model hints that the great east Japan earthquake was indeed

contractionary. In regards to policy analysis at the ZLB, one crucial benefit of the FTPL

over the standard NK framework is the passive monetary policy specification, which nests

the special case of an unresponsive nominal interest rates. Hence, one does not rely on

additional assumptions or alternative equilibrium selection mechanisms. The fiscal theory,

therefore, offers an elegant and simple way to overcome the counterintuitive predictions

of the standard NK framework at the ZLB. However, model implications are prone to the

parametrization and obtaining an initial contractionary output response depends less on

the distinction between peg or normal times but more on the specification of fiscal policy.

In normal times, even though transmission channels differ, the standard NK framework

and the NK-AC-FTPL model imply similar dynamics.

3.4.2 The Crowding-In Consumption Puzzle

Understanding the effects of an increase in government spending on private consump-

tion is a much debated topic in both empirical and theoretical macroeconomics. One

particular aspect of the discussion is the Crowding-in consumption puzzle23. This puzzle

refers to a frequently encountered discrepancy of a theoretically implied crowding-out but

an empirically observed crowding-in of consumption in response to an increase in gov-

ernment spending. In this section, I provide a simple theoretical framework that allows

consumption responses in either direction.

There exist different approaches in the literature to address the theoretically side of

the Crowding-in Consumption Puzzle. For instance, Gaĺı et al. (2007) show how the in-

troduction of rule-of-thumb investors can produce a crowding-in effect that is consistent

with their considered data. Bilbiie (2011) suggest that a combination of Edgeworth sub-

stitutability in the utility function and shifts in labor demand is able to solve the puzzle.

For additional examples, I refer to Lewis and Winkler (2017), who offer an extensive lit-

erature review and discussion on the Crowding-in Consumption Puzzle, in both empirical

and theoretical studies. While the existence of a crowding-in effect of consumption seems

to be widely accepted, there appears to be no clear consensus, neither in the empirical

nor in the theoretical literature, on how investments respond to increases in government

consumption (see e.g. Burnside et al. (2004), Gaĺı et al. (2007), Mountford and Uhlig

(2009), Lewis and Winkler (2017) or Bayer et al. (2021)). I also contribute to this strand

of literature because the NK-AC-FTPL framework allows me to simultaneously analyze

23See e.g. Linnemann (2006), Gaĺı et al. (2007), Bilbiie (2011), Iwata (2013), Ambler et al. (2017),
Lewis and Winkler (2017) or Rüth and Simon (2022) (forthcoming).
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Figure 3.5: IRFs: Fiscal policy shock that increases government consumption by 5 percent.
Baseline parametrization. NK-AC model (dashed red lines), NK-AC-FTPL model (solid
dark blue lines) and recalibrated NK-AC-FTPL model with τy = 1.15 and ϕπ = 0.95
(dotted light blue lines).

the responses of investments and the capital stock to changes in government consumption.

Consider a fiscal policy shock that increases government consumption by 5 percent.

Figure 3.5 shows the corresponding IRFs for the NK-AC model as well as the NK-AC-

FTPL model when using either the baseline or an alternative parametrization, which I

choose for illustrative reasons and describe in detail below. Government consumption

is a component of output so that the fiscal policy shock has an expansionary effect on

aggregate output. As a consequence, output and the inflation rise immediately in the

NK-AC model. Since the central bank cannot instantaneously adjust the nominal interest

rate, the real interest rate jumps downwards. Monetary policy is active and the central

bank responds more than one-to-one to changes in inflation. Thus, the nominal interest

rate catches up with the higher inflation rate at a relatively fast pace, compared to the NK-

AC-FTPL model, so that there is a s-shaped response of the real interest rate. Despite the
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initial drop, there is an overall increase in future real interest rates. Households respond to

higher future real interest rates by initially decreasing consumption, due to inter-temporal

substitution. In particular, households even further decrease consumption for as long as

the real interest rate stays below its equilibrium level. Thus, in line with the theoretical

literature above, the simple NK-AC model predicts a crowding-out of consumption. As

stated by equation (3.31), percentage changes in the marginal value of wealth are the

mirror image of percentage changes in consumption. Thus, the marginal value of wealth

jumps upwards initially. Addressing the increased demand for output, firms increase

investments and labor inputs, which reflects an upward jump in marginal value of capital.

As a consequence, production costs (wages and the rental rate on capital) jump upwards as

well. The capital stock then gradually increases for as long as investments exceed capital

depreciation, or put differently, for as long as the marginal value of capital exceeds the

marginal value of wealth. Both marginal values initially jump upwards but the increase

in the marginal value of wealth is smaller so that the capital stock starts to increase

gradually. In line with the s-shaped response of the real interest rate, the marginal value

of wealth increases further and quickly exceeds the decreasing marginal value of capital.

Consequently, this brings the rise in capital to an end and the initial increase in investment

is followed by an s-shaped dynamic, where investment undershoot its equilibrium level for

a prolonged period of time. Thus, the NK-AC model responds to a increase in government

consumption with a temporary crowding-in of investment, which is followed by a period

of lower investments. Nevertheless, the integral over changes in future investment remains

positive.

Turning to the baseline NK-AC-FTPL model, government consumption is again a part

of output so that the fiscal policy shock has expansionary effects on output today, and

thus increases the inflation rate. The monetary authority cannot immediately adjust the

nominal interest so that the increase in inflation induces an instantaneous decrease in the

real interest rate. Following a Taylor rule, the monetary authority then addresses the

upsurge in the inflation rate by gradually increasing the nominal interest rate. Due to

overall higher future nominal interest rates, the bond price jumps downwards initially,

as required by the no-arbitrage relation (3.48). The decline in the bond price immedi-

ately devalues the real value of debt, which consequently jumps downwards. Taxes are

predetermined so that the unexpected rise in government consumption instantaneously

decreases primary surpluses. Lower primary surpluses, in turn, induce an accumulation of

government debt and are accompanied by higher future inflation rates. This feature again

follows directly from the government debt valuation equation (3.47) and is reflected in the

inflation decomposition equation (3.49). In absolute terms, the weighted present value

of future primary surpluses has the highest impact on the change in the present value

of future inflation rates, and thus the highest impact on the change in the present value

of future real interest rates (see Table 3.8). In particular, most of the changes in future
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nominal interest are soaked up by the initial re-valuation of debt, effectively leaving an

increase of 0.09 percentage points. Thus, the greatest part of the increase in the present

value of future inflation (0.36 percentage points) can be attributed to fiscal policy as mea-

sured by the decline in the weighted present value of future surpluses (-0.27 percentage

points). Put differently, changes in the weighted present value of future surpluses and the

maturity effect fully account for the decrease in the present value of future real interest

rates by -0.14 percentage points. In response to overall lower future real interest rates,

households substitute inter-temporally and instantaneously increase consumption expen-

ditures. Hence, in contrast to the NK-AC model, there is a crowding-in of consumption

as suggested by the empirical literature above. Obtaining the crowding-in effect relies on

the specification and interactions of monetary and fiscal policy as well as the maturity

structure of government debt. I further elaborate this model feature below. The response

of investment to the expansionary fiscal policy shock is similar to the one in the NK-AC

model. In line with the upward jump in output, the marginal value of capital increases

instantaneously. Hence, firms increase labor inputs and investments, which in turn raises

wages and the rental rate of capital. Higher consumption corresponds to a lower marginal

value of wealth. In contrast to the NK-AC model, this means that the marginal values

of wealth and capital jump in opposite directions. Economic agents invest in the capital

stock for as long as the marginal value of capital exceeds the marginal value of wealth.

Thus, the increase in the capital stock is significantly higher and more drawn out in the

baseline NK-AC-FTPL. In particular, the integral over future changes in the capital stock

is nearly 50 times higher than the one in the underlying NK-AC model. In contrast to

the NK-AC model, there is no s-shaped response of investment so that the initial upward

jump of investment in the NK-AC-FTPL model is followed by a relatively slow and grad-

ual convergence back to the steady state. Thus, the baseline NK-AC-FTPL suggest a

relative strong crowding-in effect of investment, which consequently increases the capital

stock and further contributes to the rise in output. In fact, as given by equation (3.52),

the (impact) fiscal multiplier of output in the baseline NK-AC-FTPL model turns out to

be greater than one (equal to 1.18), whereas the corresponding impact fiscal multiplier is

smaller than one (equal to 0.98) in the NK-AC model without FTPL.

Figure 3.5 shows that the dynamics of consumption and investment in the reparametrized

NK-AC-FTPL model closely resemble the ones in the NK-AC model. This highlights that

(depending on its parametrization) the NK-AC-FTPL framework is able to predict either

a crowding-in or a crowding-out of consumption (or no initial change in consumption

at all). In fact, the inflation decomposition equations (3.49) suggest that one can eas-

ily switch off the crowding-in effect through various channels. Starting from the baseline

parametrization, I increase the inflation response parameter in the Taylor rule (ϕπ = 0.95)

and assume a stronger output response of taxes (τy = 1.15). That is, I set ϕπ close to

the demarcation line between passive and active monetary policy regimes. With these
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Table 3.8: Inflation decomposition: Expansionary fiscal policy shock that increases gov-
ernment consumption by 5 percent. Baseline parametrization. NK-AC-FTPL model and
reparametrized NK-AC-FTPL model with ϕπ = 0.95 and τy = 1.15. Entries given by
equation (3.49).

Setting
∫∞
0

e−ρu(πu − π∗
t )du

∫∞
0

e−ρu(iu − iss)du
∫∞
0

e−ρu(su − s∗t )/assdu (pb0/p
b
ss − 1)

inflation interest rate surplus direct effect

Baseline 0.36 0.22 -0.27 -0.13

Reparameterized -0.014 -0.013 -0.024 -0.025

adjustments, Figure 3.5 illustrates that consumption and investment dynamics behave

similar to their counterparts in the NK-AC model. Thus, there is no crowding-in of

consumption in the reparametrized model. Therefore, keeping all else equal, one can ob-

tain a crowding-out effect in the FTPL framework by adjusting the surplus process. In

particular, the path of the inflation rate, which is determined by the government debt

valuation equation (3.47), has to result in overall lower future inflation rates. This in

turn, corresponds to overall higher future real interest rates so that households substitute

inter-temporally consumption from today into the future. Thus, in order to obtain the

desired crowding-out effect, the change in the weighted present value of future surpluses

has to be sufficiently large. Put differently, the initial drop in surpluses, which results

from the increase in government consumption, has to be offset by a quick and aggressive

tax hike. This in turn, requires a surplus process with a substantial s-shaped response.

In case of the reparameterized NK-AC-FTPL model, the response of taxes to changes

in output is larger compared to the baseline parametrization. Consequently, the fiscal

authority adjusts taxes more aggressively to changes in the business cycle. Thus, the

overall increase in the weighted present value of future tax receipts is twice as big as the

corresponding response under the baseline parametrization. In particular, the increase in

taxes induces a much more substantial s-shaped surplus in the reparameterized model.

Because the s-shape does not completely nets out the preceding decrease in surpluses, one

is left with a drop in the weighted present value of future surpluses by 0.02 percentage

points (compared to a 0.27 percentage points drop under the baseline parametrization).

Thus, one obtains that a stronger pro-cyclical tax response is able to counteract the effect

of increasing government consumption on primary surpluses in equation (3.49). The sec-

ond change in the reparameterized model is a ”more active” monetary policy rule, which

consequently suggest an overall ”less passive” fiscal policy regime. Thus, compared to

the baseline NK-AC-FTPL model, the central bank reacts more aggressively to changes
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in the inflation rate so that the nominal interest rate drops below its equilibrium level

for a prolonged period of time during transition. This in turn, dampens the effect of the

preceding increases of the nominal interest rate and ultimately lowers its present value by

0.01 percentage points. Due to no-arbitrage between the nominal interest rate and bond

returns, the initial drop in the bond price is smaller than the one obtained in the baseline

model. Taking everything together, equation (3.49) implies a small increase in the present

value of future real interest rates by 0.001 percentage points. Facing overall higher future

real interest rates, households immediately decrease consumption due to inter-temporal

substitution. Hence, as in the NK-AC model, there is a crowding-out of consumption

in the reparametrized model. Firms initially behave similar to the ones in the baseline

NK-AC-FTPL model and there is also an upward jump in the marginal value of capital.

At the same time, the marginal value of wealth evolves inversely to consumption. Hence,

in contrast to the baseline NK-AC-FTPL model, the marginal values of wealth and cap-

ital both jump upwards initially. As a consequence, the dynamics of investment and the

capital stock are less drawn out and similar to the corresponding dynamics in the NK-AC

model as illustrated in Figure 3.5.

I conclude that the fiscal theory is able to capture the positive co-movement of con-

sumption and government consumption in the data. Therefore, FTPL offers a simple and

intuitive way to solve the crowding in puzzle. The NK-AC-FTPL model delivers the theo-

retical underpinning for either a crowding-in or crowding-out effect of consumption. This

flexibility makes it especially useful to evaluate identified crowding-in and crowding-out

of consumption and/or investment in the empirical literature. It is important to stress

that the FTPL framework does not require capital to generate a crowding-in of consump-

tion. In fact, this effect can also occur in the simple NK-FTPL framework through the

(non capital-specific) transmission channels discussed above. However, the benefit of in-

troducing capital to the model is the possibility to simultaneously analyze the responses

of investments and the capital stock under the fiscal theory.

3.4.3 Resurrecting FTPL Model Implications for Short-Term

Debt

A frequently encountered feature of simple NK models with FTPL and short-term debt is

the inability to generate a drop in the inflation rate in response to contractionary monetary

policy shocks24. Sims (2011) highlights that the introduction of long-term bonds is (at least

temporary) able to fix this counterintuitive result (stepping on a rake effect). Cochrane

(2022b) stresses that the fiscal theory does not necessarily relies on longer-term debt

in order to generate a temporary drop in the inflation rate. To that end, he proposes to

implement a direct inflation response in the surplus rule. In my framework, this translates

24See e.g. Sims (2011), Leeper and Leith (2016), or Cochrane (2018).
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to adding the term τπ(πt − π∗
t ) to the surplus rule. Cochrane (2022b) is after highlighting

the mechanisms to produce the negative inflation response. While this specification might

be considered controversial in the empirical literature, its implications are intriguing and

justify further research on fiscal policy rules.

I highlight that one can obtain the negative inflation response to contractionary mon-

etary policy shocks by turning to a larger NK framework with FTPL and capital. To that

end, I show how to get the desired response in the NK-AC-FTPL model with short-term

debt by using only the fiscal policy rules for government consumption and taxes as speci-

fied by equations (3.15) and (3.46). Thus, my approach does not relies on the introduction

of additional inflation response parameters or other adaptions. In fact, all rests on the

parametrization of the policy rules. Consequently, I only need direct responses to output

and debt, which are the typically encountered variables in the estimation of fiscal policy

rules in the empirical literature25. I start my analysis from the NK-AC-FTPL model with

short-term debt, apply the baseline parametrization but alter parameter values in the

fiscal policy rules and impose a lower equilibrium Debt-to-GDP ratio. In particular, I set

τa = 0.029, φa = −0.038, τy = 0.69 and s∗t = 0.02. It is important to stress that this

is just one exemplary parametrization, which I chose to highlight central mechanism for

obtaining the desired response. Based on these channels, there is a wide range of suitable

parameter constellations within the FTPL framework with capital adjustment costs.

Consider a contractionary monetary policy shock that increases the nominal interest

rate by 1 percentage point. A comparison of Figures 3.2 and 3.6 unveils that replacing

long- by short-term debt in the baseline NK-AC-FTPL model causes an upward jump in

the inflation rate. In this case, the bond price is constant so that debt does not become

immediately revalued and FTPL only operates through the real interest rate channel (cf.

Liemen and Posch (2022)). In the reparameterized model, however, satisfying the inflation

decomposition equation (3.49) requires an initial drop in the inflation rate, followed by a

less drawn out increase. Consequently, the dynamics are closely related to the baseline

NK-AC-FTPL model with long-term debt. The model implications essentially only differ

in terms of magnitudes, where the most evident differences are observed for fiscal policy

block variables and the inflation rate. These variations, in turn, especially result from the

absence of the direct maturity effect in the reparameterized model.

It is important to stress that the maturity structure of debt still plays a crucial role in

the reparameterized model. In particular, if one introduces long-term debt, FTPL operates

through the same channels as in the baseline setting. To highlight this model property,

Figure 3.7 shows the policy functions for the baseline and the reparameterized NK-AC-

FTPL. In each case, I consider either perpetuities, the baseline maturity or short-term debt

(cf. Liemen and Posch (2022)). The two left-hand side panels depict the inflation response

25See e.g. Chung and Leeper (2007), Traum and Yang (2011), Davig and Leeper (2011), Kliem and
Kriwoluzky (2014), Kliem et al. (2016), Ricco et al. (2016).
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Figure 3.6: IRFs: Contractionary monetary policy shock that raises the nominal interest
rate by 1 percentage point. Baseline parametrization with short-term debt. NK-AC-FTPL
model (dashed light blue lines) and reparametrized NK-FTPL model (dotted red lines)
and reparametrized NK-AC-FTPL model (solid dark blue lines). Reparametrization uses
τa = 0.029, φa = −0.038, τy = 0.69 and s∗t = 0.02.

to changes in the nominal interest rate. In case of the baseline parametrization, the NK-

AC-FTPL model exhibits a positive correlation between the inflation- and the nominal

interest rate for shorter maturities (upper panel). In contrast, in the reparameterized

model (lower panel), the inflation rate coefficient is always negatively correlated to the

nominal interest rate, independent of the underlying maturity structure. However, longer

maturities are still associated with steeper downward jumps in the inflation rate.

To evaluate the reasons for the negative inflation response in the reparametrized NK-

AC-FTPL model, Table 3.9 shows the inflation decomposition (3.49) for the baseline and

the reparameterized NK-AC-FTPL model with short-term debt (see Figure 3.6). Since I

consider short-term debt, there is no direct maturity effect. Consequently, changes in the

present value of future real interest rates must corresponds to changes in the weighted
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Baseline parametrization with τa = 0.029, φa = −0.038, τy = 0.69 and s∗t = 0.02.

present value of future surpluses. Comparing both parametrizations, the increase in the

weighted present value of future surpluses is larger in the reparameterized NK-AC-FTPL

model. To see where this difference comes from, note that primary surpluses in the

reparameterized framework react more strongly to the monetary policy shock and respond

with higher up- and down swings (compare Figures 3.2 and 3.6). A crucial reason for this

dynamic is the additional objective of the fiscal authority to directly address changes

in the real value of debt. As highlighted by Figure 3.6, debt rises substantially during

transition so that the increase in the weighted present value of future surpluses becomes

larger in the reparameterized model and accumulates to 0.76 percentage points (versus

a 0.42 percentage points increase in the baseline setting with short-term debt). Note

that part of this difference also results form a higher weighting factor, 1/ass = ρ/s∗t , in

the reparametrized model, which follows from the lower equilibrium Debt-to-GDP ratio.

Compared to the baseline model with short-term debt, the increases in the present value of

future nominal interest rates (1.25 versus 1.78 percentage points) and the present value of

future inflation (0.48 versus 1.36 percentage points) are significantly smaller. Since there is

no maturity effect, the present value of future real interest rates must also increase by 0.76

percentage points in the reparametrized model. In the baseline NK-AC-FTPL model with

short-term debt, the relatively large increase in the present value of future inflation (1.36

percentage points) requires a path of the inflation rates with an initial upward jump.

In contrast, the relatively small increase in the present value of future inflation in the
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reparametrized NK-AC-FTPL model (0.48 percentage points) requires overall lower future

inflation with an initial downward jump. Thus, comparing the inflation decomposition

for both parametrizations, the direct dependence on debt in the surplus rule as well as

the higher weighting factor for the present value of surpluses turn out to be the relevant

factors for the initial negative inflation response.

The further illustrate the above findings, I turn to a comparison between reparame-

terized versions of the simple NK-FTPL (without capital) and the NK-AC-FTPL model

with short-term debt. Figure 3.6 shows the corresponding model responses to the contrac-

tionary monetary policy shock. The dynamics of the NK-AC-FTPL model again produce

the desired inflation response. In the simple NK-FTPL model, however, the inflation

rate jumps upwards, despite applying the alternative parametrization. This is notably

because with the baseline parametrization, inflation dynamics in the NK-FTPL and the

NK-AC-FTPL model are more closely related (see e.g. Figure 3.2). Nevertheless, the

upward jump in the inflation rate in the reparametrized NK-FTPL model is smaller than

the one implied by my baseline parametrization. In general, the simple NK-FTPL model

with short-term debt turns out to be unable (for reasonable parameter values) to produce

the desired inflation response (cf. Sims (2011) or Cochrane (2022b)). To understand

the differences between the inflation responses in the reparametrized versions of the sim-

ple NK-FTPL and the NK-AC-FTPL model, I again apply the inflation decomposition

equation (3.49) to the models (see Table 3.9). In comparison to the simple NK-FTPL

framework, the change in the present value of future inflation is 0.13 percentage points

lower in the NK-AC-FTPL setting. This corresponds to a higher increase in the present

value of future real interest rates (and consequently in the weighted present value of future

surpluses) by 0.05 percentage points. In both models, overall higher real interest rates

initially cause households to decrease consumption. This behavior follows directly form

inter-temporal substitution considerations and the increased marginal value of wealth.

Facing a decreased demand for output, firms lower production. In case of the simple

NK-FTPL model, firms decrease their labor demand, which in turn initially decreases the

real wage. Thus, output adjusts immediately because it is equal to labor in the NK-FTPL

model. In the NK-AC-FTPL model, however, output consists of both labor (jump vari-

able) and capital (predetermined variable). Hence, firms address the decreased demand

of the households by cutting investment and by reducing labor. As a consequence, wages

and the capital rental rate instantaneous decline. The initial drop in output is smaller in

the NK-AC-FTPL model because, unlike labor, capital cannot be adjusted immediately.

In both frameworks (see Section 3.3.3), the initial decline in output is ultimately followed

by a temporary increase during transition. The adjustment of capital is relatively costly.

Hence, due to the dynamics of the capital stock, the subsequent increase in output is more

dampened in the NK-AC-FTPL model. As in the previous sections, the output response

parameters are the central driving factors for the dynamics of the fiscal policy rules. Thus,
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Table 3.9: Inflation decomposition: Contractionary monetary policy shock that raises
the nominal interest rate by 1 percentage point. Baseline parametrization with short-
term debt. Simple NK-FTPL and NK-AC-FTPL model. Reparametrized versions of the
models are marked with a star. In this case τa = 0.029, φa = −0.038, τy = 0.69 and
s∗t = 0.02. Simple NK-FTPL model and NK-AC-FTPL model. Entries given by equation
(3.49).

Setting
∫∞
0

e−ρu(πu − π∗
t )du

∫∞
0

e−ρu(iu − iss)du
∫∞
0

e−ρu(su − s∗t )/assdu
inflation interest rate surplus

NK-FTPL∗ 0.61 1.32 0.71

NK-AC-FTPL∗ 0.48 1.25 0.76

NK-AC-FTPL 1.36 1.78 0.42

the differences in the dynamics of output are also reflected in the weighted present values

of future surpluses. In particular, this property results in a relatively lower increase in the

present value of future inflation in the reparametrized NK-AC-FTPL model (0.48 versus

0.61 percentage points), which in turn requires a path of future inflation with an initially

lower inflation rate. In contrast, in the reparametrized NK-FTPL model, the increase

in the present value of future inflation still remains too high to imply a path of future

inflation rates with the desired downward jump. To sum things up, in Sims (2011) long-

term debt is able to induce the desired initial downward in the inflation rate, whereas in

Cochrane (2022b) the additional dependence of surpluses on the inflation rate does the

trick. In my framework, one has an additional capital channel, which circumvents the need

for long-term debt or the introduction of additional responses in the surplus rule. Even

though, my results are intriguing, actual government bonds are neither all short-term nor

all perpetual. Thus, assuming some type of average maturity as in Liemen and Posch

(2022) or in my baseline parametrization is probably an empirically more valid approach.

However, the reparameterized model sheds light on the importance of surplus processes

and its role in the propagation of shocks within joint frameworks with capital and FTPL.

3.5 Conclusion

In this paper I introduce capital and capital adjustment costs to the continuous-time NK-

FTPL framework of Sims (2011) and Cochrane (2018). Due to limited or non-existing

coverage in the related literature, I start with an elaborate description of determinacy

conditions and model dynamics in the continuous-time NK framework with capital and
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FTPL. I then show that the NK-FTPL model with capital and capital adjustment costs

maintains the basic predictions of the simple NK-FTPL model, and thus consistently

extends the FTPL framework of Sims (2011) by capital dynamics. My results show that

the combination of FTPL and capital adjustment costs offers an intuitive and simple way

to understand and address puzzling implications of the standard NK framework. Using the

Great East Japan Earthquake of 2011 as illustrative example, I discuss conditions under

which the NK-AC-FTPL model predicts a contractionary effect of capital destruction

at the ZLB. I highlight that the effect critically depends on the specification of fiscal

policy, and that it is also possible to obtain an expansionary effect, which is frequently

encountered in the standard NK literature. I then address the Crowding-In Consumption

Puzzle and present in detail how the FTPL framework allows for either a crowding-in or a

crowding-out of consumption. By doing so, I also find a (at least temporary) crowding-in

of investment. Again, the decisive factor is the design of fiscal policy. Finally, I show

that contractionary monetary policy shocks in larger-scale FTPL models with capital

adjustment costs can induce an initial drop in the inflation rate, even in the absence of

long-term debt.

Complex macroeconomic problems highlight the need for more involved economic mod-

els. However, smaller macroeconomic models offer important benchmarks before turning

to more elaborate models. While the simple NK-FTPL model is already widely cov-

ered in the literature, I believe that the inclusion of capital is an important step towards a

medium-scale continuous-time NK-FTPL model. Hence, I consider my analysis to be help-

ful for obtaining intuition, for conceptualization and for understanding basic transmission

channels in NK models with capital and FTPL, which in turn facilitates the translation

to more evolved frameworks. In fact, the introduction of capital opens the door for a wide

field of further economic applications. First, my setup is a promising benchmark and start-

ing point for stochastic models featuring different types of risk. Promising approaches are

term premia (cf. Posch (2020)) or the introduction of uninsurable idiosyncratic return

risk for physical capital along the lines of Brunnermeier et al. (2021). Second, allowing for

regime switches between active and passive monetary policy (see e.g. Bianchi and Melosi

(2017)) is a promising extension, which allows for a more profound fiscal policy evaluation

and is especially interesting from an empirical point of view. Regarding empirical eval-

uations, one ultimately has to estimate the parameters of the surplus rule because of its

strong impact on the predictions of the model. Third, one needs to evaluate the effects of

alternative surplus rules, which arise endogenously from the underlying NK model, such

as the implementation of distortionary taxes. This facilitates the evaluation of fiscal lim-

its and sovereign default (fiscal sustainability), which is a crucial endeavor of my research

agenda. Finally, since my setting already contains many features of the continuous-time

HANK model in Kaplan et al. (2018), it is a natural starting point to analyze the effects

of FTPL in heterogeneous agent models.
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Appendices of Essays

1.A Appendix, Chapter 1

1.A.1 Properties and Derivations for the SDF

Starting from equation (1.5) we apply Itô’s formula to obtain the evolution of ln(Λt):

d ln(Λt) =
1

Λt

(dΛt)−
1

2

1

Λ2
t

(dΛt)
2

= −(rt − δ − 1
2
σ2)dt− σdZt.

Integration yields ∫ s

t

d ln(Λv)dv = −
∫ s

t

(rv − δ − 1
2
σ2)dv − σ

∫ s

t

dZv,

from which we obtain the stochastic discount factor as the process given by equation

(1.17).

Now to compute the expected value of the SDF we start from equation (1.12). Since this

is an Ornstein-Uhlenbeck process we can find the solution by using a standard technique

in differential equations as shown below.

eκt(drt + κrt)dt = eκtκγdt+ eκtηdBt∫ s

t

(drte
κu) =

∫ s

t

(dγeκu) + η

∫ s

t

eκudBu

eκsrs − eκtrt = eκsγ − eκtγ + η

∫ s

t

eκudBu

rs = e−κ(s−t)rt + (1− e−κ(s−t))γ + ηe−κ(s−t)

∫ s

t

eκ(u−t)dBu.

Note that in order to obtain the expected value of the stochastic discount factor we employ

log-normality and compute

lnEt

[
eln(Λs)−ln(Λt)

]
= Et[ln(Λs)− ln(Λt)] +

1
2
V art[ln(Λs)− ln(Λt)]. (A.1)
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We can now plug our solution for rs into our log expression for the stochastic discount

factor and obtain

ln(Λs)− ln(Λt) = −
∫ s

t

rvdv +

∫ s

t

(δ + 1
2
σ2)dv − σ

∫ s

t

dZv

= −
∫ s

t

(e−κ(v−t)rt + (1− e−κ(v−t))γ − δ − 1
2
σ2)dv

−η
∫ s

t

e−κ(v−t)

∫ v

t

eκ(u−t)dBudv − σ

∫ s

t

dZv.

Reversing the order of integration and evaluating the ds integrals yield

ln(Λs)−ln(Λt) = −rt − γ

κ
(1−e−κ(s−t))−(γ−δ−1

2
σ2)(s−t)−η

κ

∫ s

t

(1−e−κ(s−u))dBu−σ
∫ s

t

dZv.

Inspection of the last two integrals give rise to a normally distributed random variable

with mean zero and variance

V art[ln(Λs)− ln(Λt)] =

∫ s

t

(η
κ
(1− e−κ(s−u))

)2
du+

∫ s

t

σ2du

=

((η
κ

)2
+ σ2

)
(s− t)− 2

η2

κ3
(1− e−κ(s−t)) +

η2

2κ3
(1− e−2κ(s−t)),

and

Et[ln(Λs)− ln(Λt)] = −rt − γ

κ
(1− e−κ(s−t))− (γ − δ − 1

2
σ2)(s− t).

Thus by plugging in we conclude

lnEt

[
eln Λs−ln Λt

]
= −

(
rt − γ

κ
+
η2

κ3

)
(1− e−κ(s−t))

−
(
γ − δ − σ2 − 1

2

η2

κ2

)
(s− t) +

η2

4κ3
(1− e−2κ(s−t)).

1.A.2 Proof of Proposition 4

One challenge is the incorporation of the empirically observed data into the theoretical

framework. For example, we have alternative approaches to asset pricing. Starting from

(1.9), one way of interpreting the data is to consider a claim on future dividends (in an

endowment economy this is equivalent to a claim on the tree, not only on the next period’s

fruit), that is

Pd,t = Et

[∫ ∞

t

Λs

Λt

Ysds

]
. (A.2)

To find the equilibrium price of this asset we have to compute an expression for Ys, the

rate of output at time s. First, we obtain an expression for the capital stock in period
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s > t as

Ks = Kte
∫ s
t (rv−ρ−δ− 1

2
σ2)dv+σ

∫ s
t dZv . (A.3)

In combination with consumption we obtain for output

Ys =

[
Ktrt +Ktγe

κ(s−t) −Ktγ +Ktη

∫ s

t

eκ(u−t)dBu

]
e
∫ s
t (rv−δ−ρ−κ− 1

2
σ2)dv+σ

∫ s
t dZv . (A.4)

Now, we may find the price of the claim on future dividends. We insert into (A.2) and get

Pd,t = Et

[∫ ∞

t

[
Ktrt +Ktγe

κ(s−t) −Ktγ +Ktη

∫ s

t

eκ(u−t)dBu

]
e−

∫ s
t (ρ+κ)dvds

]
.

Solving the integrals yields

Pd,t = Kt

[
rt − γ

ρ+ κ
+
γ

ρ

]
. (A.5)

This is an important, and intuitive result. The price of the claim is based on the sum of

(two) annuities multiplied with the capital stock. Recall that in the AK-Vasicek model

the parameter γ can be interpreted as the mean of the interest rate, or, since At = rt,

the mean productivity level. Therefore, the price of the claim is the current capital stock

multiplied by average productivity γ (annuity of mean output), plus the current capital

stock times the current deviation of At from γ, properly accounted for the speed of mean

reversion κ.

We may be interested in the holding return of this asset from t to s. The dynamics of

the equilibrium price (A.5) are then given by

dPd,t = Pd,t[rt − ρ− δ]dt+ Pd,tσdZt + Pd,t
[ρκ(γ − rt)]

ρrt + κγ
dt+ Pd,t

ρη

ρrt + κγ
dBt. (A.6)

Or applying Itô’s formula to find an expression for the log price change of the claim

d lnPd,t =

[
rt − δ − ρ− 1

2
σ2 +

ρκ(γ − rt)

[ρrt + κγ]
− 1

2

(ρη)2

[ρrt + κγ]2

]
dt (A.7)

+
ρη

[ρrt + κγ]
dBt + σdZt,

or

d lnPd,t = d lnCt +

[
ρκ(γ − rt)

[ρrt + κγ]
− 1

2

(ρη)2

[ρrt + κγ]2

]
dt+

ρη

[ρrt + κγ]
dBt, (A.8)

which shows how stock market data can be used to recover the consumption dynamics.

This allows us to estimate the structural parameters completely by financial market data.
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1.A.3 Proof of Proposition 5

The market for derivatives offer additional information about (potentially) latent variables.

For example, a claim on capital can be defined as an asset whose payoff is the future capital

stock Ks (the replacement cost of the firm). Using the SDF we can find the price for a

claim on the capital stock (a future contract) using the basic pricing equation:

PK,t = Et

[
Λs

Λt

Ks

]
, (A.9)

in which Ks is the underlying asset and PK,t is the price of the future contract at time t.

Now using (A.3) and the SDF given by (1.17) we get

PK,t = Kte
−ρ(s−t). (A.10)

If we are interested in the price movement of this asset, or to be more precisely in the

price dynamics of the asset class, the prices follow

dPK,t =
dKt

Kt

PK,t (A.11)

or

d lnPK,t = d lnKt = d lnCt

=
(
rt − ρ− δ − 1

2
σ2
)
dt+ σdZt, (A.12)

which shows that the log price of the claim on capital behaves like the log change of

the capital stock or consumption. In other words, the instantaneous return on the claim

can be interpreted as percentage changes in the capital stock or consumption. Another

interesting derivative is a claim on output, i.e., an asset which pays Ys at time s (in an

endowment economy this is equivalent to the claim on the next period’s fruit). We may

obtain the price on the claim on output, PY,t, by using (1.9):

PY,t = Et

[
Λs

Λt

Ys

]
, (A.13)

in which Ys is the underlying asset and PY,t is the price of the future contract at time t.

Plugging in the expressions for Ys and the stochastic discount factor, we arrive at:

PY,t = Kt

[
(rt − γ)e−(ρ+κ)(s−t) + γe−ρ(s−t)

]
,
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where

d lnPY,t =

[
rt +

κ(γ − rt)

(rt + γeκ(s−t) − γ)
− ρ− δ − 1

2
σ2 − 1

2

η2

[rt + γeκ(s−t) − γ]2

]
dt

+σdZt + η/(rt + γeκ(s−t) − γ)dBt.

Obviously, when s = t, the price dynamic simplifies to the law of motion of log output,

d lnYt.

Consider a future contract on the stock price in (A.5), which must satisfy

PF,t = Et

[
Λs

Λt

Pd,s

]
.

Plugging in and rearranging terms

PF,t = Kt

[
(rt − γ)e−(ρ+κ)T

ρ+ κ
+
γ

ρ
e−ρ T

]
(A.14)

where s− t = T denotes the time to maturity of the stock future contract. Differentiating

yields the price change as

dPF,t = PF,t

(
rt − ρ− δ +

κ(γ − rt)

(rt − γ) + (γ + γκ/ρ)eκT

)
dt

+PF,t

(
σdZt +

η

(rt − γ) + (γ + γκ/ρ)eκT
dBt

)
. (A.15)

Finally, using Itô’s formula the log price change follows

d lnPF,t =
(
rt − ρ− δ − 1

2
σ2 +

κ(γ − rt)

(rt − γ) + (γ + γκ/ρ)eκT
(A.16)

−
1
2
η2

((rt − γ) + (γ + γκ/ρ)eκT )2

)
dt+ σdZt +

η

(rt − γ) + (γ + γκ/ρ)eκT
dBt.

Observe that when the time to maturity, T , approaches 0, the price of the stock future

collapse to the price of the claim on future dividends.

1.A.4 Equilibrium Dynamics

Our aim is to investigate different possibilities of replacing macro and financial variables

in this setup. In what follows we consider either a pure finance or a combined macro-

finance framework. First, we study the benefits and drawbacks of these approaches in a

simulation study. Second, we then use the insights to empirically estimate the structural

model parameters. As in the main text T = (s− t). In summary our relevant equilibrium
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equations are

d lnCt =
(
rt − ρ− δ − 1

2
σ2
)
dt+ σdZt (A.17a)

drft = κ(γ − rt)dt+ ηdBt (A.17b)

d lnPd,t =

(
rt − ρ− δ − 1

2
σ2 +

ρκ(γ − rt)

(ρrt + κγ)
− 1

2

(ρη)2

(ρrt + κγ)2

)
dt (A.17c)

+
ρη

(ρrt + κγ)
dBt + σdZt

d lnPK,t =
(
rt − ρ− δ − 1

2
σ2
)
dt+ σdZt (A.17d)

d lnPY,t =

(
rt − ρ− δ − 1

2
σ2 +

κ(γ − rt)

(rt + γeκ(s−t) − γ)
− 1

2

η2

(rt + γeκ(s−t) − γ)
2

)
dt

+
η

(rt + γeκ(s−t) − γ)
dBt + σdZt (A.17e)

d lnPF,t =

(
rt − ρ− δ − 1

2
σ2 +

κ(γ − rt)

(rt − γ) + (γ + γκ/ρ)eκT

−1
2

η2

((rt − γ) + (γ + γκ/ρ)eκT )2

)
dt

+
η

(rt − γ) + (γ + γκ/ρ)eκT
dBt + σdZt (A.17f)

d lnYt =

(
κγ

rt
− 1

2

η2

r2t
+ rt − κ− ρ− δ − 1

2
σ2

)
dt+

η

rt
dBt + σdZt (A.17g)

where rt = rft + δ + σ2. We use different combinations of these equations to estimate the

structural parameters. In our empirical estimation, however, we only consider a smaller

set of financial claims, with unequivocal real world analogs and readily available data.

1.A.5 Derivations of the Estimation Equations

In this section we will derive, in a first step, the discrete time formulations for the system

of equilibrium equations given by (A.17). In a second step, we will then set up the

equations necessary for the GMM and MEF estimations. For the sake of clarity, we

keep the derivations as general as possible and show a system of 5 variables, with their

corresponding 2nd moments. This leads to a system with 10 estimation equations. To

obtain a specific set of estimation equations, one can simply drop the remaining equations

and remove the corresponding rows and columns in the matrices provided in this section.

As in the main text T = (s − t). Integrating the differential equations in system (A.17)
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over (t−∆) to t we obtain

ln(Ct/Ct−∆) =

∫ t

t−∆

rfvdv − (ρ− 1
2
σ2)∆ + εC,t

ln(PK,t/PK,t−∆) =

∫ t

t−∆

rfvdv − (ρ− 1
2
σ2)∆ + εPK ,t

ln(Pd,t/Pd,t−∆) =

∫ t

t−∆

rfvdv − (ρ− 1
2
σ2)∆ + ρκ

∫ t

t−∆

(
γ − rfv − δ − σ2

ρ(rfv + δ + σ2) + κγ

)
dv

−1
2
(ρη)2

∫ t

t−∆

1[
ρ(rfv + δ + σ2) + κγ

]2dv + εPd,t

ln(PY,t/PY,t−∆) =

∫ t

t−∆

rfvdv − (ρ− 1
2
σ2)∆ + κ

∫ t

t−∆

(
γ − rfv − δ − σ2

(rfv + δ + σ2) + γeκT − γ

)
dv

−1
2
η2
∫ t

t−∆

1[
(rfv + δ + σ2) + γeκT − γ

]2dv + εPY ,t

ln(PF,t/PF,t−∆) =

∫ t

t−∆

rfvdv − (ρ− 1
2
σ2)∆

+κ

∫ t

t−∆

(
γ − rfv − δ − σ2

(rfv + δ + σ2)− γ + (γ + γκ/ρ)eκT

)
dv

−1
2
η2
∫ t

t−∆

1[
(rfv + δ + σ2)− γ + (γ + γκ/ρ)eκT

]2dv + εPF ,t

ln(Yt/Yt−∆) =

∫ t

t−∆

rfvdv − (ρ+ κ− 1
2
σ2)∆ + κγ

∫ t

t−∆

(
1

rfv + δ + σ2

)
dv

−1
2
η2
∫ t

t−∆

1[
rfv + δ + σ2

]2dv + εY,t

rft = e−κ∆rft−∆ + (1− e−κ∆)(γ − δ − σ2) + εr,t
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where the martingale increments are defined by

εC,t ≡ σ(Zt − Zt−∆)

εPK ,t ≡ σ(Zt − Zt−∆)

εPd,t ≡
∫ t

t−∆

ρη

ρ(rfv + δ + σ2) + κγ
dBv + σ(Zt − Zt−∆)

εPY ,t ≡
∫ t

t−∆

η

(rfv + δ + σ2) + γeκT − γ
dZv + σ(Zt − Zt−∆)

εPF ,t ≡
∫ t

t−∆

η

(rfv + δ + σ2)− γ + (γ + γκ/ρ)eκT
dZv + σ(Zt − Zt−∆)

εY,t ≡
∫ t

t−∆

η

(rfv + δ + σ2)
dZv + σ(Zt − Zt−∆)

εr,t ≡ ηe−κ∆

∫ t

t−∆

eκ(v−(t−∆))dBv.

Recall that the estimation equations for the claim on capital and for consumption coincide

(see equation (1.27)). Thus, for the sake of clarity we do not explicitly consider PK,t in

the subsequent computations and keep in mind that we can interpret consumption and

the claim on capital interchangeably.
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Now, to derive the vector of martingale difference sequences, mt, let

MC =

∫ t

t−∆

rfvdv − (ρ− 1
2
σ2)∆

MPd
=

∫ t

t−∆

rfvdv − (ρ− 1
2
σ2)∆ + ρκ

∫ t

t−∆

(
γ − rfv − δ − σ2

ρ(rfv + δ + σ2) + κγ

)
dv

−1
2
η2
∫ t

t−∆

[
rfv + δ + σ2 + κγ/ρ

]−2
dv

MPF
=

∫ t

t−∆

rfvdv − (ρ− 1
2
σ2)∆

+κ

∫ t

t−∆

(
γ − rfv − δ − σ2

rfv + δ + σ2 − γ + (γ + γκ/ρ)eκT

)
dv

−1
2
η2
∫ t

t−∆

[
rfv + δ + σ2 − γ + (γ + γκ/ρ)eκT

]−2
dv

MY =

∫ t

t−∆

rfvdv − (ρ+ κ− 1
2
σ2)∆ + κγ

∫ t

t−∆

[
rfv + δ + σ2

]−1
dv

−1
2
η2
∫ t

t−∆

[
rfv + δ + σ2

]−2
dv

MPY
=

∫ t

t−∆

rfvdv − (ρ− 1
2
σ2)∆ + κ

∫ t

t−∆

(
γ − rfv − δ − σ2

(rfv + δ + σ2) + γeκT − γ

)
dv

−1
2
η2
∫ t

t−∆

[
rfv + δ + σ2 + γeκT − γ

]−2
dv + εPY ,t

such that mt reads

ln(Ct/Ct−∆)−MC

ln(Pd,t/Pd,t−∆)−MPd

rft − e−κ∆rft−∆ − (1− e−κ∆)(γ − δ − σ2)

ln(Yt/Yt−∆)−MY

ln(PF,t/PF,t−∆)−MPF

ln(PY,t/PY,t−∆)−MPY

(ln(Ct/Ct−∆)−MC)
2 − σ2∆

(ln(Pd,t/Pd,t−∆)−MPd
)2 − σ2∆−

∫ t

t−∆
η2(rfv + δ + σ2 + κγ/ρ)−2dv

(rft − (1− e−κ∆)(γ − δ − σ2)− e−κ∆rft−∆)
2 − η2(1− e−2κ∆)/(2κ)

(ln(Yt/Yt−∆)−MY )
2 − σ2∆−

∫ t

t−∆
η2(rfv + δ + σ2)−2dv(

(ln(PF,t/PF,t−∆)−MPF
)2 − σ2∆

−
∫ t

t−∆
η2((rfv + δ + σ2)− γ + (γ + γκ/ρ)eκT )−2dv

)(
(ln(PY,t/PY,t−∆)−MPY

)2 − σ2∆

−
∫ t

t−∆
η2((rfv + δ + σ2) + γeκT − γ)−2dv

)



. (A.18)
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1.A.6 Simulation Study Results

Table 1.A.1: Simulation Study: GMM estimation using only first moments. Median
estimates of structural parameters for 550 runs of the simulation study. Corresponding
interquartile ranges are given in brackets below the estimates. Blank spaces indicate
parameters that are fixed at their value used in the DGP. All results involving consumption
data can be interpreted as using the derivative on the capital stock instead (e.g. finance
or macro-finance).

Simulation Study: GMM First Moments

Finance or Macro-Finance Macro-Finance

Setup Bond Bond Bond Bond Bond Bond Bond Bond Bond
Cons* Cons* Cons* Cons* Cons* Out Cons* Stock Future

Stock Future Derivative Derivative Out Out Out
Stock

κ = 0.2 0.356 0.202 0.201 0.388 0.202 0.358 0.341 0.300 0.432
(0.290) (0.041) (0.033) (0.262) (0.137) (0.285) (0.285) (0.151) (0.217)

γ = 0.1 0.099 0.099 0.099 0.099 0.100 0.099 0.100 0.102 0.099
(0.012) (0.013) (0.013) (0.013) (0.013) (0.012) (0.014) (0.015) (0.013)

η = 0.01 0.010 0.010 0.010 0.010 0.010 0.010 0.009
(0.003) (0.003) (0.001) (0.002) (0.001) (0.002) (0.003)

ρ = 0.03 0.030 0.030 0.030 0.030 0.022 0.030 0.030 0.027 0.030
(0.005) (0.005) (0.005) (0.005) (0.014) (0.005) (0.006) (0.010) (0.006)

δ = 0.05

σ = 0.02 0.022 0.021
(0.005) (0.002)

(Monthly) (Monthly) (Monthly) (Monthly) (Monthly) (Monthly) (Monthly) (Monthly) (Monthly)

Table 1.A.2: Simulation Study: GMM estimation using only first moments. Purely finan-
cial models. Setting as described in Table 1.A.1.

Simulation Study: GMM First Moments

Finance

Setup Bond Bond Bond Bond Bond Bond
Stock Future Derivative Stock Stock

Future Derivative

κ = 0.2 0.359 0.374 0.342 0.370 0.201 0.360
(0.277) (0.260) (0.244) (0.269) (0.075) (0.242)

γ = 0.1 0.099 0.099 0.099 0.099 0.098 0.100
(0.012) (0.013) (0.013) (0.012) (0.013) (0.013)

η = 0.01 0.010 0.010
(0.002) (0.001)

ρ = 0.03 0.030 0.030 0.029 0.030 0.030
(0.005) (0.005) (0.006) (0.005) (0.007)

δ = 0.05

σ = 0.02 0.022
(Monthly) (Monthly) (Monthly) (Monthly) (Monthly) (0.003)
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Table 1.A.3: Simulation Study: MEF estimation using only first moments. Median es-
timates of structural parameters for 550 runs of the simulation study. Corresponding
interquartile ranges are given in brackets below the estimates. Blank spaces indicate pa-
rameters that are fixed at their value used in the DGP. All results involving consumption
data can be interpreted as using the derivative on the capital stock instead (e.g. finance
or macro-finance).

Simulation Study: MEF First Moments

Finance or Macro-Finance Macro-Finance

Setup Bond Bond Bond Bond Bond Bond Bond Bond Bond
Cons* Cons* Cons* Cons* Cons* Out Cons* Stock Future

Stock Future Derivative Derivative Out Out Out
Stock

κ = 0.2 0.353 0.207 0.204 0.311 0.348 0.357 0.358 0.280 0.218
(0.283) (0.043) (0.034) (0.272) (0.277) (0.287) (0.286) (0.238) (0.157)

γ = 0.1 0.099 0.099 0.100 0.097 0.099 0.099 0.099 0.102 0.100
(0.012) (0.013) (0.014) (0.013) (0.013) (0.018) (0.013) (0.017) (0.015)

η = 0.01 0.010 0.010 0.010 0.010 0.010 0.010 0.010
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

ρ = 0.03 0.030 0.031 0.030 0.030 0.030 0.030 0.030 0.030 0.030
(0.005) (0.005) (0.005 ) (0.005) (0.005) (0.005) (0.005) (0.006) (0.005)

δ = 0.05 0.049 0.050 0.050 0.050 0.053 0.050
(0.003) (0.002) (0.012) (0.001) (0.008) (0.006)

σ = 0.02 0.021 0.021 0.023 0.021
(0.005) (0.005) (0.013) (0.003)

(Monthly) (Monthly) (Monthly) (Monthly) (Monthly) (Monthly) (Monthly) (Monthly) (Monthly)

Table 1.A.4: Simulation Study: MEF estimation using only first moments. Purely finan-
cial models. Setting as described in Table 1.A.3.

Simulation Study: MEF First Moments

Finance

Setup Bond Bond Bond Bond Bond Bond
Stock Future Derivative Stock Stock

Future Derivative

κ = 0.2 0.355 0.273 0.271 0.336 0.256 0.314
(0.310) (0.175) (0.176) (0.272) (0.160) (0.264)

γ = 0.1 0.099 0.100 0.100 0.097 0.099 0.101
(0.013) (0.014) (0.013) (0.018) (0.013) (0.016)

η = 0.01 0.010 0.010
(0.002) (0.001)

ρ = 0.03 0.030 0.030 0.030 0.031 0.030
(0.006) (0.005) (0.005) (0.004) (0.005)

δ = 0.05 0.048 0.053
(0.012) (0.006)

σ = 0.02 0.021 0.020 0.020
(0.011) (0.011) (0.011)

(Monthly) (Monthly) (Monthly) (Monthly) (Monthly) (Monthly)
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Table 1.A.5: Simulation Study: GMM estimation when exploiting second moments. Me-
dian estimates of structural parameters for 550 runs of the simulation study. Correspond-
ing interquartile ranges are given in brackets below the estimates. Blank spaces indicate
parameters that are fixed at their value used in the DGP. All results involving consump-
tion data can be interpreted as using the derivative on the capital stock instead (e.g.
finance or macro-finance).

Simulation Study: GMM First and Second Moments

Finance or Macro-Finance Macro-Finance

Setup Bond Bond Bond Bond Bond Bond Bond Bond Bond
Cons* Cons* Cons* Cons* Cons* Out Cons* Stock Future

Stock Future Derivative Derivative Out Out Out
Stock

κ = 0.2 0.357 0.202 0.201 0.311 0.211 0.331 0.264 0.314 0.321
(0.285) (0.052) (0.047) (0.181) (0.220) (0.302) (0.261) (0.220) (0.296)

γ = 0.1 0.099 0.100 0.100 0.100 0.100 0.101 0.106 0.108 0.107
(0.013) (0.013) (0.013) (0.012) (0.013) (0.015) (0.023) (0.025) (0.023)

η = 0.01 0.010 0.010 0.010 0.010 0.007 0.010 0.010 0.009 0.009
(0.001) (0.001) (0.001) (0.001) (0.003) (0.001) (0.001) (0.002) (0.002)

ρ = 0.03 0.030 0.030 0.030 0.030 0.022 0.030 0.030 0.028 0.028
(0.005) (0.006) (0.005) (0.006) (0.012) (0.006) (0.006) (0.008) (0.007)

δ = 0.05 0.051 0.051 0.055 0.054
(0.003) (0.003) (0.009) (0.011)

σ = 0.02 0.020 0.020 0.020 0.020 0.021 0.020 0.020 0.020
(0.001) (0.001) (0.001) (0.001) (0.002) (0.001) (0.003) (0.003)

(Monthly) (Monthly) (Monthly) (Monthly) (Monthly) (Monthly) (Monthly) (Monthly) (Monthly)

Table 1.A.6: Simulation Study: GMM estimation when exploiting second moments.
Purely financial models. Setting as described in Table 1.A.5.

Simulation Study: GMM First and Second Moments

Finance

Setup Bond Bond Bond Bond Bond Bond
Stock Future Derivative Stock Stock

Future Derivative

κ = 0.2 0.364 0.374 0.360 0.287 0.252 0.339
(0.277) (0.275) (0.231) (0.249) (0.075) (0.220)

γ = 0.1 0.099 0.099 0.099 0.099 0.100 0.105
(0.012) (0.013) (0.013) (0.016) (0.013) (0.019)

η = 0.01 0.010 0.010 0.010 0.010 0.010 0.010
(0.001) (0.001) (0.001) (0.001) (0.001) (0.002)

ρ = 0.03 0.030 0.030 0.029 0.030 0.028
(0.005) (0.005) (0.006) (0.005) (0.008)

δ = 0.05 0.050 0.052
(0.004) (0.006)

σ = 0.02 0.022 0.022 0.019 0.020
(0.002 ) (0.002) (0.002) (0.003)

(Monthly) (Monthly) (Monthly) (Monthly) (Monthly) (Monthly)

137



Table 1.A.7: Simulation Study: MEF estimation when exploiting second moments. Me-
dian estimates of structural parameters for 550 runs of the simulation study. Correspond-
ing interquartile ranges are given in brackets below the estimates. Blank spaces indicate
parameters that are fixed at their value used in the DGP. All results involving consump-
tion data can be interpreted as using the derivative on the capital stock instead (e.g.
finance or macro-finance).

Simulation Study: MEF First and Second Moments

Finance or Macro-Finance Macro-Finance

Setup Bond Bond Bond Bond Bond Bond Bond Bond Bond
Cons* Cons* Cons* Cons* Cons* Out Cons* Stock Future

Stock Future Derivative Derivative Out Out Out
Stock

κ = 0.2 0.358 0.204 0.225 0.349 0.209 0.359 0.358 0.281 0.279
(0.288) (0.044) (0.045) (0.286) (0.055) (0.288) (0.287) (0.205) (0.205)

γ = 0.1 0.099 0.098 0.099 0.098 0.099 0.100 0.100 0.099 0.099
(0.013) (0.013) (0.014) (0.013) (0.014) (0.013) (0.013) (0.013) (0.013)

η = 0.01 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

ρ = 0.03 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030
(0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005)

δ = 0.05 0.049 0.050 0.050 0.050 0.050 0.050
(0.003) (0.001) (0.001) (0.001) (0.001) (0.001)

σ = 0.02 0.020 0.020 0.020 0.020 0.020 0.020 0.021 0.021
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.003) (0.003)

(Monthly) (Monthly) (Monthly) (Monthly) (Monthly) (Monthly) (Monthly) (Monthly) (Monthly)

Table 1.A.8: Simulation Study: MEF estimation when exploiting second moments. Purely
financial models. Setting as described in Table 1.A.7.

Simulation Study: MEF First and Second Moments

Finance

Setup Bond Bond Bond Bond Bond Bond
Stock Future Derivative Stock Stock

Future Derivative

κ = 0.2 0.358 0.290 0.260 0.348 0.251 0.256
(0.286) (0.251) (0.220) (0.287) (0.137) (0.166)

γ = 0.1 0.099 0.099 0.100 0.098 0.098 0.100
(0.012) (0.013) (0.012) (0.013) (0.012) (0.014)

η = 0.01 0.010 0.010 0.010 0.010 0.010 0.010
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

ρ = 0.03 0.030 0.029 0.030 0.031 0.030
(0.005) (0.005) (0.005) (0.003) (0.005)

δ = 0.05 0.049 0.050
(0.004) (0.001)

σ = 0.02 0.021 0.021 0.021 0.021
(0.003) (0.003) (0.002) (0.003)

(Monthly) (Monthly) (Monthly) (Monthly) (Monthly) (Monthly)
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Table 1.A.9: Simulation Study: Robustness Check for Bootstrap. We re-calibrated the
DGP in a way that interest rate easily can become negative and apply the reflective
approach used in the bootstrap method of section 3. That is, we artificially set the
interest rate to a small positive value, whenever it would turn negative. Blank spaces
indicate parameters that are fixed at their value used in the DGP.

Simulation Study: Robustness Check for Bootstrap

GMM MEF

Setup Bond Bond Bond Bond Bond Bond
Cons Cons Cons Cons

Stock Stock

κ = 0.20 0.470 0.460 0.229 0.463 0.463 0.222
(0.371) (0.373) (0.119) (0.375) (0.377 ) (0.085)

γ = 0.03 0.032 0.032 0.033 0.032 0.032 0.029
(0.009) (0.010) (0.010) (0.009) (0.009) (0.011)

η = 0.01 0.010 0.010 0.010 0.010 0.010 0.010
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

ρ = 0.03 0.030 0.029 0.030 0.030
(0.005) (0.007) (0.005) (0.005)

δ = 0.01

σ = 0.02 0.020 0.020 0.020 0.020
(0.001) (0.001) (0.001) (0.001)

Figure 1.A.1: Histograms: Simulation study results using GMM and second moments
(Daily). Benchmark model (gray histograms) at monthly frequency vs. Benchmark model
when we replace output by stock and consumption by future data (blue histograms) at
daily frequency.
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1.A.7 Additional Empirical Estimation Results

Table 1.A.10: Empirical GMM estimation: Pure finance models. Bold parameter esti-
mates lie within the bootstrapped 95% confidence interval. First and third quartiles,
obtained from the bootstrapped parameter distributions are given below the estimates.

Empirical GMM: Additional Finance Models

Sample: 1982-2017 Sample: 1997-2017 Sample: 1997-2020

Setup Bond Bond Bond Bond Bond Bond Bond Bond
Stock Stock Stock Stock Future Future

(Monthly) (Monthly) (Daily) (Daily) (Monthly) (Daily) (Monthly) (Monthly)

κ 0.029 0.041 0.118 0.169 0.075 0.119 0.069 0.118
[0.157, 0.286] [0.125, 0.276] [0.075, 0.129] [0.340, 0.737] [0.001, 0.725] [0.082, 0.133] [0.197, 0.424] [0.072, 0.120]

γ 0.033 0.042 0.074 0.070 0.059 0.068 0.065 0.102
[0.071, 0.081] [0.069, 0.083] [0.075, 0.129] [0.064, 0.074] [0.061, 0.067] [0.066, 0.102] [0.062, 0.070] [0.092, 0.148]

η 0.008 0.008 0.008 0.008 0.007 0.007 0.007 0.006
[0.008, 0.008] [0.008, 0.008] [0.009, 0.011] [0.008, 0.009] [0.006, 0.007] [0.006, 0.008] [0.006, 0.007] [0.007, 0.008]

ρ 0.000 0.014 0.000 0.015 0.001 0.009
[0.000, 0.000] [0.018, 0.026] [0.000, 0.000] [0.021, 0.029] [0.000, 0.002] [0.011, 0.020]

δ 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

σ 0.02 0.02 0.037 0.02 0.02 0.038 0.02 0.043
[0.028, 0.055] [0.027, 0.049] [0.028, 0.050]

140



Table 1.A.11: Empirical MEF estimations: Additional pure finance models. Bold pa-
rameter estimates lie within the bootstrapped 95% confidence interval. First and third
quartiles, obtained from the bootstrapped parameter distributions are given below the
estimates.

Empirical MEF: Additional Finance Models

Setup Bond Bond Bond Bond
Stock Future Output

Stock

(Monthly) (Daily) (Daily) (Monthly)

κ 0.170 0.009 0.010 0.025
[0.000, 0.360] [0.005, 0.008] [0.004, 0.009] [0.017, 0.097]

γ 0.071 0.063 0.096 0.136
[0.069, 0.081] [0.048, 0.074] [0.043, 0.070] [0.096, 0.178]

η 0.011 0.007 0.014 0.022
[0.008, 0.008] [0.002, 0.006] [0.005, 0.010] [0.014, 0.026]

ρ 0.017 0.013 0.000
[0.012, 0.026] [0.018, 0.029] [0.000, 0.003]

δ 0.05 0.05 0.05 0.031
[0.012, 0.056]

σ 0.0200 0.021 0.0447 0.024
[0.024, 0.041] [0.0233, 0.0392] [0.035, 0.090]

Table 1.A.12: Empirical GMM estimation: Shorter samples starting 1997. Bold parameter
estimates lie within the bootstrapped 95% confidence interval. First and third quartiles,
obtained from the bootstrapped parameter distributions are given below the estimates.

Empirical GMM: Shorter Sample

(1997-2020) (1997-2017)

Setup Bond Bond
Cons Cons

Stock

κ 0.064 0.379
[0.299, 0.560] [0.332, 0.613]

γ 0.063 0.063
[0.062, 0.067] [0.062, 0.067]

η 0.005 0.006
[0.006, 0.007] [0.006, 0.007]

ρ 0.000 0.000
[0.000, 0.000] [0.000, 0.000]

δ 0.05 0.05

σ 0.012 0.012
[0.011, 0.012] [0.012, 0.013]
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2.A Appendix, Chapter 2

2.A.1 Technical Details FTPL Model

In this paper, we use a linear version of the micro-founded NK model (cf. Posch, 2020).

The basic structure of the model is as follows. A representative household consumes, saves,

and supplies labor. The final output is assembled by a final good producer, who uses as

inputs a continuum of intermediate goods manufactured by monopolistic competitors. The

intermediate good producers rent labor to manufacture their good and face the constraint

that they can only adjust the price following Calvo’s pricing rule (Calvo, 1983). Finally,

there is a monetary authority that fixes the short-term nominal interest rate through open

market operations following a Taylor rule and a detailed government sector with a fiscal

authority that issues debt, taxes, and consumes following fiscal policy rules.

Households

Let the reward function of the households be given as

E0

∫ ∞

0

e−ρt

{
log ct − ψ

l1+ϑ
t

1 + ϑ

}
dt, ψ > 0, (A.1)

where ρ denotes the subjective rate of time preference, ϑ is the inverse of the Frisch

labor supply elasticity, and ψ scales the disutility from working by supplying labor in

terms of hours lt (we use ψ to normalize lss = 1). Let nt denote the number of shares of

government bonds; assuming that each bond has a nominal value of one unit, whereas pbt

is the equilibrium price of bonds. Suppose the household earns a disposable income of

δcnt + ptwtlt − ptTt + pt𝟋t

where δc are coupon payments, pt is the price level (or price of the consumption good), wt

is the real wage, Tt are lump-sum taxes, and 𝟋t are the profits of the firms in the economy.

Hence, the household’s budget constraint reads

dnt =
(
(δcnt − ptct + ptwtlt − ptTt + pt𝟋t) /p

b
t − δnt

)
dt, (A.2)

in which pbt denotes the bond price. Each bond pays a proportional coupon χ per unit of

time and is amortized at the rate δ.

The first-order condition for households to maximize (A.1) subject to (A.2) is

ψlϑt ct = mct, (A.3)

which is the standard static optimality condition between labor and consumption. Hence,
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for the given preferences (A.1), the Euler equation for consumption reads (cf. Posch, 2020)

dct = (it − πt − ρ)ct dt, (A.4)

or the linearized version

dct ≈ (it − ρ− πt)css dt, (A.5)

with πt being determined in general equilibrium.

The Final Good Producer

There is one final good, produced using intermediate goods with

yt =

(∫ 1

0

y
ε−1
ε

it di

) ε
ε−1

, (A.6)

where ε is the elasticity of substitution.

Final good producers are perfectly competitive and maximize profits subject to the

production function (A.6), taking as given all intermediate goods prices pit and the final

good price pt. Hence, the input demand functions associated with this problem are:

yit =

(
pit
pt

)−ε

yt ∀i,

and

pt =

(∫ 1

0

p1−ε
it di

) 1
1−ε

(A.7)

is the (aggregate) price level.

Intermediate Good Producers

Each intermediate firm produces differentiated goods out of labor using:

yit = lit, (A.8)

where lit is the amount of the labor input rented by the firm. Therefore, the marginal

cost of the intermediate good producer is the same across firms:

mct = wt. (A.9)

The monopolistic firms engage in price setting à la Calvo, which then gives rise to the

NK Phillips curve (see, e.g., Leith and von Thadden, 2008; Posch, 2020)

d(πt − πss) ≈ (ρ(πt − πss)− κ0(mct/mcss − 1)) dt. (A.10)
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Note that from (A.3) ψyϑt ct = mct such that a linearized version is

mct/mcss − 1 ≈ (ct/css − 1) + ϑ(yt/yss − 1).

Moreover, for the parametrization in Table 2.1, we have that gt ≡ gss and thus

d(πt − πss) = (ρ(πt − πss)− κ0((ct/css − 1) + ϑ(yt/yss − 1))) dt

= (ρ(πt − πss)− κ0((yt/yss − 1)yss/css + ϑ(yt/yss − 1))) dt

≡ (ρ(πt − πss)− κxt) dt (A.11)

as in (2.2), where xt ≡ (yt/yss − 1)/(1− sg) is the output gap and κ ≡ κ0(1 + ϑ(1− sg))

captures ‘price stickiness’. Our definition of the output gap is to formulate the benchmark

model as close as possible to the one used in the literature, where typically sg ≡ 0.

Note that with this definition of the output gap, we obtain (2.1) from (A.5) as

d(yt − gss) = (it − ρ− πt)(yss − gss) dt

= (it − ρ− πt)(1− sg)yss dt

after inserting our definition xt ≡ (yt/yss − 1)/(1− sg).

Or with variable government consumption,

mct/mcss − 1 = (1 + ϑ(1− sg))(yt/yss − 1)/(1− sg)− (gt/gss − 1)sg/(1− sg)

= (1 + ϑ(1− sg))xt − (gt/gss − 1)sg/(1− sg)

and thus the Phillips curve in the generalized version obeys

d(πt − πss) = (ρ(πt − πss)− κxt + κ0sg/(1− sg)(gt/gss − 1)) dt. (A.12)

Government

We assume that the monetary authority sets the nominal interest rate it of short-term

bonds through open market operations according to either the feedback model,

it − i∗t = ϕπ(πt − π∗
t ) + ϕy(yt/yss − 1), ϕπ > 0, ϕy ≥ 0, (A.13a)

or the partial adjustment model (cf. Posch, 2020):

dit = θ(ϕπ(πt − π∗
t ) + ϕy(yt/yss − 1)− (it − i∗t ))dt, θ > 0, (A.13b)

which includes a response to inflation and output, and a desire to smooth interest rates.

The fiscal authority trades a nominal non-contingent bond. Let nt be the outstanding
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stock of nominal government bonds, i.e., the total nominal value of outstanding debt

(alternative assets are priced using arbitrage arguments but are in net zero supply). The

government incurs a real primary surplus st ≡ Tt − gt where revenues Tt and expenditure

gt rules are given in (2.9) and (2.10). Each bond pays a proportional coupon χ per unit of

time and is amortized at the rate δ. Hence, the government faces the constraint that the

newly issued debt must cover amortization plus coupon payments of outstanding debt,

net of the primary surplus such that the nominal value of outstanding debt follows

dnt =
(
((δ + χ)nt − ptst) /p

b
t − δnt

)
dt, (A.14)

where pbt is the bond price.

Aggregation

First, market clearing demands:

yt = ct + gt = ct + Tt − st, (A.15)

and suppose aggregate output is produced according to (e.g., in the linearized model)

yt = lt

in which we normalized to yss = lss ≡ 1 in the benchmark parametrization, and the

income is generated through

yt = wtlt +𝟋t.

All outstanding sovereign debt is owned by households, so (A.2) and (A.14) yield

(δ + χ)nt − ptst = δcnt − ptct + ptwtlt − ptTt + pt𝟋t.

Recall that the real value of sovereign debt is defined as in (2.6), at = ntp
b
t/pt. In equilib-

rium,

itdt = ((χ+ δ)/pbt − δ)dt+ (1/pbt) dp
b
t

such that the bond price follows (2.7). We define the inflation rate πt such that

dpt = πtptdt (A.16)

and the (realized) rate of inflation is locally non-stochastic.
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Hence, the budget constraint of the fiscal authority (2.6) can be written as

dat = (pbt dnt + nt dp
b
t − ntp

b
t/pt dpt)/pt

= ((δ + χ)nt/pt − st) dt− δntp
b
t/pt + nt dp

b
t/pt − ntp

b
t/pt(1/pt) dpt

= ((δ + χ)nt/pt − st) dt− δat dt+ atit dt− ((δ + χ)nt/pt − δat) dt− atπt dt,

which is equation (2.4) in the fiscal block.

Similarly, the household’s budget constraint (A.2) can be written as

dat = (pbt dnt + nt dp
b
t − ntp

b
t/pt dpt)/pt

=
(
(δ + χ)at/p

b
t − st

)
dt− δat + at(1/p

b
t) dp

b
t − atπt dt

=
(
(δ + χ)at/p

b
t − st

)
dt− δat + (−((δ + χ)/pbt − δ) + it)atdt− atπt dt

= −st dt+ itatdt− atπt dt

= ((it − πt)at + wtlt − ct − Tt +𝟋t) dt,

which again shows that the household’s budget constraint coincides with the government

budget constraint. Using (A.2) and (A.14), together with market clearing (A.15), the

coupon payments cover payouts and amortization such that δc ≡ δ + χ.

Steady-State Values

From (2.1), (2.4), and (2.7), we obtain iss = ρ + πss, ass = sss/ρ, and pbss = 1. In this

model

mcss = wss =
ε− 1

ε
,

where ε is the elasticity of substitution between intermediate goods. Moreover, condition

(A.3) implies together with the market clearing condition (A.15) that

ψlϑsscss = wss.

Observe that css = yss − gss = lss − gss, defining sg = gss/yss such that

ψl1+ϑ
ss (1− sg) = wss.

Hence, we parameterize

ψ ≡ wssl
−(1+ϑ)
ss /(1− sg)

to normalize the steady-state output yss = lss = 1, such that 𝟋ss = 1/ε, css = 1 − gss,

Tss = sss + gss (sss and sg are calibrated using US targets).
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2.A.2 Linearized Dynamics

In this paper use the linearized NK model, so we need to linearize the equations (A.4),

(2.4), and (2.7). Let us summarize the equilibrium dynamics for our parametrization.

Benchmark Parametrization (Table 2.1)

Using π∗
t = πss, i

∗
t = iss = ρ+ πss, and s

∗
t = sss, together with the parametrization of the

benchmark model (cf. Table 2.1), the linearized equilibrium dynamics can be written as

dxt = (it − ρ− πt)dt (A.17)

dπt = (ρ(πt − πss)− κxt) dt (A.18)

dit = (ϕπ(πt − πss)− (it − iss))dt (A.19)

dat = (ass(it − πt − ρ) + ρ(at − ass)− (st − sss))dt (A.20)

dst = ((yt/yss − 1)− (st − sss)) dt (A.21)

dpbt =
(
(it − iss) + (χ+ δ)(pbt − 1)

)
dt, (A.22)

where

yt/yss − 1 = (ct − css + gt − gss)/yss

such that with gt = gss we get κ ≡ (1 + ϑ(1− sg))κ0, and

xt = (yt/yss − 1)/(1− sg) = (ct/css − 1)(css/yss)/(1− sg) = (ct/css − 1),

i.e., the consumption Euler equation can be written in terms of the output gap.

2.A.3 Proof of Proposition 6

Recall that in the model with long-term debt, a proper predetermined state variable (which

does not jump) is vt rather than at, hence, we linearize

at − ass = pbss(vt − vss) + vss(p
b
t − pbss)

such that the real value of government debt changes due to two channels

dat = pbss dvt + vss dp
b
t . (A.23)

The partial derivatives of the policy function x(it, at, st) show the indirect FTPL effect

for a given bond price, pbt , such that we need to isolate the direct FTPL effect due to

the re-evaluation of sovereign debt. Now, evaluating the effect of a change to it at some

reference point, say x̄i = xi(iss, ass, sss), the slope of the policy function in terms of at
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would only include the indirect effect, keeping fix the price of government debt. Note that

our solution implies both pbt = pb(it, vt, st) or p
b
t = pb(it, at, st) such that

dpbt = pbi(it, vt, st) dit + pbv(it, vt, st) dvt + pbs(it, vt, st) dst (A.24)

and dpbt = pbi(it, at, st) dit + pba(it, at, st) dat + pbs(it, at, st) dst and thus using (A.23)

dpbt = pbi(iss, ass, sss) dit + pba(iss, ass, sss)(p
b
ss dvt + vss dp

b
t) + pbs(iss, ass, sss) dst

or equivalently

dpbt =
pbi(iss, ass, sss)

1− vsspba(iss, ass, sss)
dit +

pbssp
b
a(iss, ass, sss)

1− vsspba(iss, ass, sss)
dvt

+
pbs(iss, ass, sss)

1− vsspba(iss, ass, sss)
dst (A.25)

and by matching coefficients with (A.24)

pbi(it, vt, st) =
pbi(iss, ass, sss)

1− vsspba(iss, ass, sss)

pbv(it, vt, st) =
pbssp

b
a(iss, ass, sss)

1− vsspba(iss, ass, sss)

pbs(it, vt, st) =
pbs(iss, ass, sss)

1− vsspba(iss, ass, sss)
,

we can conclude that

p̄bi ≡ pbi(iss, ass, sss) = pbi(iss, vss, sss)(1− vssp̄
b
a)

p̄ba ≡ pba(iss, ass, sss) =
pbv(iss, vss, sss)

1 + vsspbn(iss, vss, sss)/p
b
ss

p̄bs ≡ pbs(iss, ass, sss) = pbs(iss, vss, sss)(1− vssp̄
b
a).

Similarly, for the inflation rate we can utilize

dπt = πi(it, vt, st) dit + πn(it, vt, st) dnt + πs(it, vt, st) dst (A.26)

or, equivalently,

dπt = πi(it, at, st) dit + πa(it, at, st) dat + πs(it, at, st) dst. (A.27)

We substitute equation (A.23)

dπt = πi(it, at, st) dit + πa(it, at, st)(p
b
ss dvt + vss dp

b
t) + πs(it, at, st) dst
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or

dπt = πi(it, at, st) dit + πa(it, at, st)p
b
ss dvt + πs(it, at, st) dst + vssπa(it, at, st) dp

b
t .

Substitute by equation (A.25)

dπt =

(
πi(iss, ass, sss) +

pbi(iss, ass, sss)vssπa(iss, ass, sss)

1− vsspba(iss, ass, sss)

)
dit

+

(
πa(iss, ass, sss)p

b
ss +

pbssp
b
a(iss, ass, sss)vssπa(iss, ass, sss)

1− vsspba(iss, ass, sss)

)
dvt

+

(
πs(iss, ass, sss) +

pbs(iss, ass, sss)vssπa(iss, ass, sss)

1− vsspba(iss, ass, sss)

)
dst

and matching coefficients with equation (A.26)

πi(iss, vss, sss) = πi(iss, ass, sss) +
pbi(iss, ass, sss)vssπa(iss, ass, sss)

1− vsspba(iss, ass, sss)

πv(iss, vss, sss) = πa(iss, ass, sss)p
b
ss +

pbssp
b
a(iss, ass, sss)vssπa(iss, ass, sss)

1− vsspba(iss, ass, sss)

πs(iss, vss, sss) = πs(iss, ass, sss) +
pbs(iss, ass, sss)vssπa(iss, ass, sss)

1− vsspba(iss, ass, sss)
.

Rearranging terms we arrive at

π̄i ≡ πi(iss, ass, sss) = πi(iss, vss, sss)−
p̄bivssπ̄a
1− vssp̄ba

π̄a ≡ πa(iss, ass, sss) = πv(iss, vss, sss)
pbss(1− vssp̄

b
a)

1− vssp̄ba + vsspbssp̄
b
a

π̄s ≡ πs(iss, ass, sss) = πs(iss, vss, sss)−
p̄bsvssπ̄a
1− vssp̄ba

.

We proceed analogously for the output gap, x(it, vt, st) and x(it, vt, st). Except for notation

the derivations are identical to the inflation rate. Thus,

x̄i ≡ xi(iss, ass, sss) = xi(iss, vss, sss)−
p̄bivssx̄a
1− vssp̄ba

x̄a ≡ xv(iss, ass, sss) = xv(iss, vss, sss)
pbss(1− vssp̄

b
a)

1− vssp̄ba + vsspbssp̄
b
a

x̄s ≡ xs(iss, ass, sss) = xs(iss, vss, sss)−
p̄bsvssx̄a
1− vssp̄ba

,

which closes the proof (inflation rates and output gap analogously).
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2.A.4 Figures and Tables
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Figure 2.A.1: Transitory monetary policy shock for the parametrization in Table 2.1 and
different surplus dynamics. Decrease nominal interest rate by 1 percentage point. Left-
hand panel: Baseline scenario, τπ = 0 and τy = 1. Middle panel: τπ = 1.02 and τy = 3.08.
Right-hand panel: τπ = 0.5 and τy = −0.25. Solid blue lines show the responses matching
average duration, dashed black for perpetuities, and dotted red for short-term debt.

Table 2.A.1: Inflation decomposition (2.21) for the monetary policy shock in Figure 2.A.1.

Surplus Debt
∫∞
0 e−ruπudu

∫∞
0 e−ruiudu

∫∞
0 e−rusu/a

new
ss du pb0/p

b
ss − 1

Rule Maturity inflation interest rate surplus direct effect

I Average −0.48 −1.25 0.21 0.98
II Average −0.48 −1.25 0.21 0.98
III Average −0.48 −1.25 0.21 0.98
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Figure 2.A.2: Permanent fiscal policy shock for parametrization in Table 2.1. Permanent
decrease of Tss by 1 percent to T new

ss = 0.99Tss, together with a transitory shock that de-
creases taxes by 1 percent. Solid blue lines show the responses matching average duration,
dashed black for perpetuities, and dotted red for short-term debt.
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Figure 2.A.3: CARES Act and monetary policy shock using parametrization in Table 2.1
with ρg = 1 and φy = −sg. Decrease in surplus by 8 percent of GDP, and increase in debt
(face value) by 12 percent, and decrease interest rates by 150 bp. Solid blue lines show
the responses matching average duration, dashed black for perpetuities, and dotted red
for short-term debt.
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Figure 2.A.4: CARES Act shock with permanent increase of vss by 6 percent (α = 0.5)
for the parametrization in Table 2.1 with ρg = 1 and φy = −sg. Decrease in surplus by
8 percent of GDP and increase in debt (face value) by 12 percent. Solid blue lines show
the responses matching average duration, dashed black for perpetuities, and dotted red
for short-term debt.
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Figure 2.A.5: CARES Act shock with permanent increase of vss by 12 percent (α = 1)
for the parametrization in Table 2.1 with ρg = 1 and φy = −sg. Decrease in surplus by
8 percent of GDP and increase in debt (face value) by 12 percent. Solid blue lines show
the responses matching average duration, dashed black for perpetuities, and dotted red
for short-term debt.
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Table 2.A.2: Inflation decomposition (2.21) for the fiscal policy shock in Figure 2.A.2.

Debt
∫∞
0 e−ruπudu

∫∞
0 e−ruiudu

∫∞
0 e−rusu/a

new
ss du pb0/p

b
ss − 1 v0/v

new
ss − 1

Maturity inflation interest rate surplus direct effect debt shock

Long-Term 4.14 2.41 1.94 −2.41 6.08
Average 4.84 2.82 2.28 −1.79 6.08
Short-Term 6.86 3.99 3.22 0 6.08

Table 2.A.3: Inflation decomposition (2.21) for the CARES Act in Figure 2.A.3.

Debt
∫∞
0 e−ruπudu

∫∞
0 e−ruiudu

∫∞
0 e−rusu/assdu pb0/p

b
ss − 1 v0/vss − 1

Maturity inflation interest rate surplus direct effect debt shock

Long-Term 9.60 4.14 2.40 −4.14 12.00
Average 10.96 4.93 3.04 −2.93 12.00
Short-Term 14.28 6.86 4.58 0 12.00

Table 2.A.4: Inflation decomposition (2.21) for the CARES Act shock in Figure 2.A.4.

Debt
∫∞
0 e−ruπudu

∫∞
0 e−ruiudu

∫∞
0 e−rusu/a

new
ss du pb0/p

b
ss − 1 v0/v

new
ss − 1

Maturity inflation interest rate surplus direct effect debt shock

Long-Term 5.72 3.33 −0.06 −3.33 5.66
Average 6.63 3.86 0.34 −2.56 5.66
Short-Term 9.61 5.60 1.65 0 5.66

Table 2.A.5: Inflation decomposition (2.21) for the CARES Act shock in Figure 2.A.5.

Debt
∫∞
0 e−ruπudu

∫∞
0 e−ruiudu

∫∞
0 e−rusu/a

new
ss du pb0/p

b
ss − 1 v0/v

new
ss − 1

Maturity inflation interest rate surplus direct effect debt shock

Long-Term 1.72 1.00 −1.72 −1.00 0
Average 1.93 1.12 −1.63 −0.83 0
Short-Term 2.92 1.70 −1.22 0 0
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3.A Appendix, Chapter 3

3.A.1 Parametrization

Parametrization 1: Baseline (United States)

Table 3.A.1: Baseline Parametrization, Chapter 3

General Model Parameters

γ 100 Price adjustment cost (Kaplan et al. (2018))
ε 10 Demand elasticity (Kaplan et al. (2018))
α 1/3 labor share of production function (Kaplan et al. (2018))
δ 0.07 depreciation rate of physical capital (Kaplan et al. (2018))
ρ 0.051 time preference (Kaplan et al. (2018))
ξ 1 labor supply elasticity (Kaplan et al. (2018))
ϑ 2.2 preference for leisure (capital models) normalizes output yss = 1
ϑ 1.06 preference for leisure (non-capital models) normalizes output yss = 1
sg 0.15 gov. consumption output ratio (cf. Bilbiie et al. (2019))
s∗t 0.0551 long-run surplusa FREDb

δb 1/6.8 avg. debt maturity (Del Negro and Sims (2015))
κ 0.3261 degree of adjustment cost (Jermann (1998))

Monetary Policy Parameters

ϕπ 1.6 inflation response Taylor Rule (active) (Bianchi and Melosi (2017))
ϕπ 0.64 inflation response Taylor Rule (passive) (Bianchi and Melosi (2017))
θ 1 interest rate smoothing Taylor Rule (Kaplan et al. (2018))
ϕy 0 response to output gap in Taylor Rule (Kaplan et al. (2018))
π∗
t 0 inflation target (Kaplan et al. (2018))

Fiscal Policy Parameters

ρg 1 inertia of adjustment of gov. consumption (Liemen and Posch (2022))
φy -0.15 gov. cons. responsiveness to output gap (Liemen and Posch (2022))
ρτ 1 inertia of adjustment of taxes (Liemen and Posch (2022))
τy 0.324 tax responsiveness to output gap (Davig and Leeper (2011))

aMatches the US debt-to-GDP ratio of about 108% in 2020Q1.
bU.S. Office of Management and Budget and Federal Reserve Bank of St. Louis, Federal Debt: Total

Public Debt as Percent of Gross Domestic Product [GFDEGDQ188S], retrieved from FRED, Federal
Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/GFDEGDQ188S, January 13, 2022.
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Parametrization 2: Japan

Table 3.A.2: Alternative Parametrization for Japan, Chapter 3

General Model Parameters

γ 80 Price adjustment cost (Braun and Körber (2011))
ε 7.5 Demand elasticity (Braun and Körber (2011))
α 0.362 labor share of production function (Braun and Körber (2011))
δ 0.085 depreciation rate of physical capital (Braun and Körber (2011))
ρ 0.029 time preference (Braun and Körber (2011))
ξ 1 labor supply elasticity (Kaplan et al. (2018))
ϑ 3.028 preference for leisure normalizes output yss = 1
sg 0.19 government consumption output ratio (Braun and Körber (2011))
s∗t 0.051 yields Debt-2-GDP of 175.9% (in 2011) FREDa

δb 1/7 avg. debt maturity of 7 years (in 2011) Ministry of Finance Japanb

κ 0.326 degree of adjustment cost (Jermann (1998))

Monetary Policy Rule Parameters

ϕπ 1.6 inflation response Taylor Rule (active) (Bianchi and Melosi (2017))
ϕπ 0.86 inflation response Taylor Rule (passive) (Davig and Doh (2008))
θ 1 interest rate smoothing (use θ = 0 for peg) (Kaplan et al. (2018))
ϕy 0 response to output gap (Kaplan et al. (2018))
π∗
t 0 inflation target (Kaplan et al. (2018))

Fiscal Policy Parameters

ρg 1 inertia of adjustment of gov. consumption (Liemen and Posch (2022))
φy 0 gov. cons. responsiveness to output gap (Kliem et al. (2016))
φa -0.01 gov. cons. responsiveness to debt (Kliem et al. (2016))
ρτ 1 inertia of adjustment of taxes (Liemen and Posch (2022))
τy 0 tax responsiveness to output gap (Kliem et al. (2016))
ρa 0.01 tax responsiveness to debt (Kliem et al. (2016))

aSource: World Bank, Central government debt, total (% of GDP) for Japan [DEBTTLJPA188A],
retrieved from FRED, Federal Reserve Bank of St. Louis.

bSource: Ministry of Finance, Japan - Debt Management Report 2020.
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3.A.2 Determinacy Analysis

In this section, I evaluate determinacy of the models in this paper. It is important to

stress that I only consider bounded solutions. To start my analysis, I break all considered

models down to their most basic formulation. For this purpose, I implement a feedback

interest rate rule of the form

it = iss + ϕπ(πt − π∗
t ),

where ϕπ > 1 corresponds to active monetary policy. Furthermore, I introduce a feedback

rule for surpluses

st = s∗t + τa(vt − vss)

so that τa < ρ corresponds to active fiscal policy. As in the main text, I always consider the

implementation of active fiscal policy rules. Thus, to keep things as simple as possible,

I impose constant surpluses by setting τa ≡ 0. Finally, I abstract from government

consumption and assume debt to be short-term. As a consequence, the fiscal policy block

reduces to

dvt = ((ρ− τa)(vt − vss) + vss(ϕπ − 1)(πt − π∗
t ))dt. (A.1)

Note that the determinacy conditions in this section can (except for government consump-

tion) readily be translated to the more sophisticated model formulations in the main text.

As discussed in Section 3.3.2, the introduction of government consumption is troublesome

because it affects determinacy in various dimensions and results in less straightforward

conditions.

To evaluate determinacy, I analyze the Jacobian matrices of the linearized models

along the lines of Leeper (1991), Dupor (2001) and Leith and von Thadden (2008). To

illustrate my findings, I additionally provide some numerical examples when using the

baseline parametrization (Table 3.A.1). Note that obtaining a determinate and unique

solution in a continuous-time framework requires that each predetermined (state) variable

has to correspond to exactly one negative (stable) eigenvalue of the Jacobian matrix

of the linearized model. At the same time, each forward-looking (jump) variable has

to correspond to exactly one positive (explosive) eigenvalue of the Jacobian. If these

conditions hold true, the model is considered determinate (see for instance Dupor (2001)

or Leith and von Thadden (2008)).

Note that in case of the more sophisticated model specifications in the main text, the

partial adjustment interest rate rule makes the nominal interest rate a state. In this case,

the Jacobian needs one negative eigenvalue that corresponds to the nominal interest rate.

While a determinate solution requires that each state variable correspond to exactly one

negative eigenvalue, the active/passive interest rate specification, in general, determines

whether the nominal interest rate contributes a negative or a positive eigenvalue to the

Jacobian. Regarding taxes and government consumption, I only consider situation where
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both variables enter the model as state variables and where their inclusion is associated

with corresponding negative eigenvalues of the Jacobian.

For a Jacobian-based determinacy analysis for the simple NK and the NK-FTPL model

with or without capital see e.g. Leith and von Thadden (2008). The simplified version of

the NK-AC model becomes

dπt = (ρ(πt − π∗
t )− ε/γ(mct −mcss)) dt

dct = css(ϕπ − 1)(πt − π∗
t )dt (A.2)

dkt = ((xt − xss)− δ(kt − kss))dt

dµt = (ρ(µt − µss) + ρµss(ct/css − 1)− µss(r
k
t − rkss))dt.

Hence, the Jacobian reads

J4 =


f11 f12 f13 f14

f21 0 0 0

0 f32 0 f34

0 f42 f43 f44

 =


0.051 −0.145 0.014 −0.002

0.535 0 0 0

0 0.068 0 0.054

0 −0.289 0.088 0.041


where

f11 = ρ

f12 =
mcssε(cssξ + κξxss + α(css + κxss − yss) + yss)

(−1 + α)cssγyss

f13 =
mcssε(ξxss + α(xss − (1 + ξ)yss))

(α− 1)γkssyss

f14 =
κmcssε(α + ξ)xss
(α− 1)γµssyss

f22 = (ϕπ − 1)css

f32 = δκkssµss

f34 = cssδκkss

f42 = −δµ2
ss −

αl1+ξ
ss ϑ(1 + κxssµss)(1 + ξ)

(α− 1)2kssyss

f43 =
αl1+ξ

ss ϑ((1 + α)yss − (1 + ξ)xss)

((−1 + α)2k2ssyss

f44 = ρ− αδκϑ(1 + ξ)l1+ξ
ss

(α− 1)2µssyss
.

For the sake of clarity, I abstain from a meticulous mathematical characterization and

instead offer a more intuitive approach. The model with capital adjustment costs consists

of one state and three jump variables. Thus, model determinacy requires one negative

and three positive eigenvalues. To evaluate the effect of capital adjustment costs, consider

the limiting case (no capital adjustment costs) by letting κ→ ∞. For this purpose, turn
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to the Jacobian matrix, J4, and assume passive monetary policy, ϕπ < 1. Then, with

κ approaching infinity, one eigenvalue, ν4, converges towards negative infinity, while the

remaining three eigenvalues ν1, ν2, ν3, converge towards the ones of the (determinate)

Jacobian of the simple NK model with capital. Thus, one obtains one negative and two

positive eigenvalues.
ν1,NK-AC

ν2,NK-AC

ν3,NK-AC

ν4,NK-AC

 for κ→ ∞


ν1,NK-AC → ν1,NK-Capital

ν2,NK-AC → ν2,NK-Capital

ν3,NK-AC → ν3,NK-Capital

ν4,NK-AC → −∞

 thus


ν1 < 0

ν2 > 0

ν3 > 0

ν4 < 0

 .

To render the model determinate, one negative eigenvalues has to flip its sign. For this to

be case, the model requires active monetary and passive fiscal policy. In this case, there

is exactly one negative eigenvalue corresponding to the single state variable, kt.

I introduce the fiscal policy block in the simple NK model with capital adjustment costs

(A.3) and obtain a system with five differential equations. The corresponding Jacobian

matrix reads

J4 =


f11 f12 f13 f14 0

f21 0 0 0 0

0 f32 0 f34 0

0 f42 f43 f44 0

f51 0 0 0 f55

 =


0.051 −0.145 0.014 −0.002 0

−0.321 0 0 0 0

0 0.068 0 0.0542 0

0 −0.289 0.088 0.041 0

−0.389 0 0 0 0.051


where

f51 = vss(ϕπ − 1)

f55 = (ρ− τa).

Note that all but one entry in the last column of the Jacobian are equal to zero. Thus,

it directly follows that there is one positive eigenvalue, which is equal to f55 = ρ (recall I

assume τa ≡ 0). The remaining variables are identical to the simple 4 equation NK model

with capital adjustment costs. As argued above, in case of passive monetary policy,

ϕπ < 1, there are two negative and two positive eigenvalues, which one obtains from the

4× 4 matrix of the non-fiscal part of the model. Hence, there are, in total, three positive

and two negative eigenvalues, corresponding to two states and three jump variables. Thus,

model determinacy requires passive monetary- and active fiscal policy.
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3.A.3 Great East Japanese Earthquake, Additional Figure
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Figure 3.A.1: IRFs: Negative shock to capital by 1 percent (capital destruction).
Parametrization 2. NK-AC model (dashed red lines). NK-AC-FTPL model (solid blue
lines) and NK-AC-FTPL model when using Parametrization 2 but the fiscal policy pa-
rameters from the baseline parametrization.

3.A.4 Model Derivations

Derivation of the simple NK Model (with and without FTPL)

The starting point in the derivation of the simple NK model is the same one described in

Section 3.2.1. As shown in Section 3.2.1, the simple NK framework is a limiting case of

the NK-AC-FTPL model. Households maximize∫ ∞

0

e−ρt

[
log(ct)− ϑ

l1+ξ
t

1 + ξ

]
dt.
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The HJB of the simple NK model reads

ρV (at, it, gt) = max
(ct,lt)

(
log(ct)− ϑ

l1+ξ
t

1 + ξ

)
+Va (at(it − πt) + wtlt +𝟋t − ct −Θt(πt)/pt − Tt)

+Vi (θ (ϕπ(πt − π∗
t ) + ϕy(yt/yss − 1)− (it − iss)))

+Vg (ρg(φy(yt/yss − 1) + φa(at − ass)− (gt − gss)))

where the value function, V , is a function of the three state variables at, it and gt, with

corresponding partial derivatives Va, Vi and Vg. One obtains the first-order conditions as

Va = 1/ct (A.3)

and

Vawt = ϑlξt . (A.4)

Define

λt ≡ Va = 1/ct.

Combine equations (A.3) and (A.3), to obtain

wt = ϑlξt ct. (A.5)

Since labor is the single input factor in the production of output, yt, marginal costs equal

wages

mct = wt. (A.6)

To obtain the consumption Euler equation, differentiate equation (A.3). Hence,

dλt/λt = −dct/ct. (A.7)

Taking the derivative of the HJB w.r.t. at yields

ρVa = Va(it − πt) + Vaadat + Vaidit + Vagdgt.

Itô calculus implies

dVa = Vaadat + Vaidit + Vagdgt.

Hence,

dλt = (ρ− it − πt)λtdt.
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Together with equation (A.7) one obtains the consumption Euler equation as

dct = (it − πt − ρ)ctdt.

The output identity reads

yt = ct + gt + γπ2
t /2 = lt,

which one can combine with equations (A.5) and (A.6) to obtain

mct = ϑ(ct + gt + γπ2
t /2)

ξct.

As in Kaplan et al. (2018) the Phillips curve reads

dπt =

(
dct
ct

− dyt
yt

)
πt +

(
ρπt −

ε− 1

γ

(
ε

ε− 1
mct − 1

))
dt

Finally, putting everything together, one obtains the simple NK model, augmented with

the fiscal policy block of Section 3.2.2 as

dπt =

(
dct
ct

− dyt
yt

)
πt +

(
ρπt −

ε− 1

γ

(
ε

ε− 1
mct − 1

))
dt

dct = ct (it − πt − ρ) dt

dit = θ (ϕπ (πt − π∗
t ) + ϕy (yt/yss − 1)− (it − iss)) dt

dgt = ρg (φy (yt/yss − 1)− (gt − g∗t )) dt

dTt = ρτ (τy (yt/yss − 1)− (Tt − T ∗
t )) dt

dat = ((it − πt) at − st) dt

dpbt =
(
itp

b
t − χ− δB

(
1− pbt

))
dt

where

st = Tt − gt

Starting from the Phillips curve one can successively derive the steady states of the model

mcss =
ρπ∗

t γ

ε− 1
+
ε− 1

ε
,

wss = mcss,

mcss = ϑlξsscss,

lss = yss,

yss = css + gss +
γ
2
(π∗

t )
2yss,

gss = sgyss,
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css = yss(1− sg − γ
2
(π∗

t )
2),

css = (mcss/ϑ)
1/(1+ξ)

(
1

1− sg − γ
2
(π∗

t )
2

)−ξ/(1+ξ)

.

s∗t is an exogenous steady state value for primary surpluses. Hence,

Tss = s∗t + gss

pbss = (χ+ δb)/(iss + δb)

ass = s∗t/ρ

Derivation of the NK Model with Capital (with and without FTPL)

The starting point in the derivation of the simple NK model with capital is the same one

described in Section 3.2.1. As highlighted in Section 3.2.1, the simple NK framework with

capital is a limiting case of the NK-AC-FTPL model. To avoid repetitions of common

equations (e.g. consumption Euler equation), I refer the reader to Section 3.A.4.

Households maximize ∫ ∞

0

e−ρt

[
log(ct)− ϑ

l1+ξ
t

1 + ξ

]
dt.

The HJB of the simple NK model with capital reads

ρV (at, it, gt, kt) = max
(ct,lt,xt)

(
log(ct)− ϑ

l1+ξ
t

1 + ξ

)
+Va

(
at(it − πt) + wtlt + rkt kt +𝟋t − ct −Θt(πt)/pt − Tt

)
+Vi (θ (ϕπ(πt − π∗

t ) + ϕy(yt/yss − 1)− (it − iss)))

+Vg (ρg(φy(yt/yss − 1) + φa(at − ass)− (gt − gss)))

+Vk (xt − δkt)

where the value function, V , is a function of the four state variables at, it, gt and kt, with

corresponding partial derivatives Va, Vi, Vg and Vk. The FOCs in the NK model with

capital are

λt = 1/ct, (A.8)

Vawt = ϑlξt , (A.9)

and

Va = Vk. (A.10)
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Combine equations (A.8) and (A.9) to obtain

wt = ϑlξt ct. (A.11)

Define λt ≡ Va and µt ≡ Vk. Analogously to Section 3.A.4 one obtains

dλt = (ρ− it + πt)λtdt (A.12)

and

dct = (it − πt − ρ)ctdt.

Taking the derivative of the HJB w.r.t. kt yields

ρVk = rkt Va + Vkadat − δVk + Vkkdkt + Vkidit + Vkgdgt. (A.13)

Itô calculus implies that Vk follows

dVk = Vkadat + Vkkdkt + Vkidit + Vkgdgt, (A.14)

which after substituting equations (A.10) and (A.13) yields

dµt = (ρ+ δ − rkt )µtdt. (A.15)

Combine this expression with equations (A.10) and (A.12) to obtain

rkt = it − πt + δ. (A.16)

The output identity reads

yt = kαt l
1−α
t = ct + gt + xt +Θ(πt)/pt =

ct + gt + xt
1− γπ2

t /2
.

Let mpkt and mplt denote the marginal product of capital and labor, respectively. Then

the optimization problem of the firms implies

rkt = mpktmct = αmctyt/kt and wt = mpltmct = (1− α)mctyt/lt,

Substituting and equating terms, one obtains

wtmpkt = rktmplt,

and

kt/lt = α/(1− α)wt/r
k
t .
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Substituting the latter expression back into equation (3.21) and rearranging terms yields

mct = (1/(1− α))1−α(1/α)αw1−α
t (rkt )

α.

Combine equations (A.11), (3.21) and (A.17) to arrive at

rkt =
αϑct

(1− α)kt
l1+ξ
t . (A.17)

Then, rearrange equation (A.17) to obtain

lt = ((1− α)/(αϑ))(1/(1+ξ))(kt/ct)
1/(1+ξ)(rkt )

(1/(1+ξ)).

One can substitute rkt from equation (A.16) to express labor as

lt = ((1− α)/(αϑ))(1/(1+ξ))(kt/ct)
1/(1+ξ)(it − πt + δ)(1/(1+ξ)).

Rearrange the output identity to obtain investments, xt as

xt = yt − ct − gt − γπ2
t yt/2.

Finally, one obtains the NK model with capital along the lines of Dupor (2001) and fiscal

policy block as

dπt =

(
dct
ct

− dyt
yt

)
πt +

(
ρπt −

ε− 1

γ

(
ε

ε− 1
mct − 1

))
dt

dct = ct (it − πt − ρ) dt

dit = θ (ϕπ (πt − π∗
t ) + ϕy (yt/yss − 1)− (it − iss)) dt

dgt = ρg (φy (yt/yss − 1)− (gt − g∗t )) dt

dkt = (xt − δkt) dt

dTt = ρτ (τy (yt/yss − 1)− (Tt − T ∗
t )) dt

dat = ((it − πt) at − st) dt

dpbt =
(
itp

b
t − χ− δB

(
1− pbt

))
dt.

To shut of FTPL, simply drop the fiscal policy block variables. To compute the steady

states, start again from the Philips Curve and successively compute

0 = ρπ∗
t −

ε− 1

γ

(
ε

ε− 1
mcss − 1

)
mcss =

ρπ∗
t γ

ε− 1
+
ε− 1

ε
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so that

mcss =

(
1

1− α

)1−α(
1

α

)
w1−α

ss (rkss)
α.

Hence,

wss =

(
mcss

(
1

1− α

)−(1−α)(
1

α

)−α

(rkss)
−α

) 1
1−α

,

and

yss = css + xss + sgyss +
γ

2
(π∗

t )
2yss

where gss = sgyss. Rearranging terms yields

css + xss = yss(1− sg − γ
2
(π∗

t )
2)

yss =
css + xss

(1− sg − γ
2
(π∗

t )
2)
.

Alternatively, one can use

yss = kαssl
1−α
ss ,

together with

xss = δkss,

in order to rewrite the steady state value of consumption as

css = yss((1− sg)− γ
2
(π∗

t )
2)− δkss.

Optimal factor rewards imply

rkss =
αyssmcss

kss

yss =
rkss

αmcss
kss.

Consequently,

css =

(
rkss

αmcss
((1− sg)− γ

2
(π∗

t )
2)− δ

)
kss.

The FOCs of the HJB imply

wss = ϑlξss

(
rkss

αmcss
(1− sg − γ

2
(π∗

t )
2)− δ

)
kss.
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Note that (yssk
−α
ss )

1
1−α . Thus,

lss =

((
rkss

αmcss
kss

)
k−α
ss

) 1
1−α

which after some algebra yields

lξss =

((
rkss

αmcss

)) ξ
1−α

kξss.

A combination with the above steady state expressions yields for wages

wss = ϑ

((
rkss

αmcss

)) ξ
1−α
(

rkss
αmcss

((1− sg)− γ
2
(π∗

t )
2)− δ

)
k1+ξ
ss .

Thus, one obtains the equilibrium value of the capital stock as

kss =

(
ϑ

((
rkss

αmcss

)) ξ
1−α
(

rkss
αmcss

((1− sg)− γ
2
(π∗

t )
2)− δ

)
/wss

)− 1
1+ξ

.

Finally,

lss =

((
rkss

αmcss

)) 1
1−α

kss.

Derivation of the NK Model with Capital Adjustment Costs (with and without

FTPL)

In this section, I derive the NK-AC-FTPL model. The starting point is the one described

in Section 3.2.1. To avoid repetitions of common equations (e.g. consumption Euler

equation), I refer the reader to sections 3.A.4 and 3.A.4.

Households maximize ∫ ∞

0

e−ρt

[
log(ct)− ϑ

l1+ξ
t

1 + ξ

]
dt.
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In contrast to the main text, I directly substitute dt = xt − rkt kt. Then, the HJB reads

ρV (at, it, gt, kt) = max
(ct,lt)

(
log(ct)− ϑ

l1+ξ
t

1 + ξ

)
+Va

(
at(it − πt) + wtlt + rkt kt +𝟋t − ct −Θt(πt)/pt − Tt

)
+Vi (θ (ϕπ(πt − π∗

t ) + ϕy(yt/yss − 1)− (it − iss)))

+Vg (ρg(φy(yt/yss − 1) + φa(at − ass)− (gt − gss)))

+Vk

(((
δ1/κ

1− 1/κ

(
xt
kt

)1−1/κ

+
δ

1− κ

)
− δ

)
ktdt

)

where the value function, V , is a function of the four state variables at, it, gt and kt,

with corresponding partial derivatives Va, Vi, Vg and Vk. The FOCs of the HJB w.r.t.

consumption and labor are

λt = 1/ct, (A.18)

Vawt = ϑlξt . (A.19)

The derivative of the HJB w.r.t xt reads

Vk = Vaδ
−1/κ

(
xt
kt

)1/κ

= Vaδ
−1/κ

(
kαt l

1−α
t (1− γπ2

t /2)− ct − gt
kt

)1/κ

,

which after some algebra yields

lt =

(
k1−α
t (Vk/Va)

κ δ + k−α
t (ct + gt)

1− γπ2
t /2

) 1
1−α

,

and

xt =

(
Vk
Va

)κ

δkt = kαt l
1−α
t (1− γπ2

t /2)− ct − gt.

When taking the derivative of the HJB with respect to kt, one obtains

ρVk =

(
δ1/κ(xt/kt)

(κ−1)/κ − κδ

κ− 1

)
Vk + rkt Va + dktVkk + datVak + Vikdit + Vgkdgt.

The co-state has to obey

dVk = dktVkk + datVak + Vikdit + Vgkdgt.
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By combining the last two expressions and by rearranging terms, one obtains

dVk = (ρ+ δ)Vk −

δ1/κ
(

xt

kt

)(κ−1)/κ

− δ

κ− 1

Vk − rkt Va

= (ρ+ δ)Vk −
(
δ(Vkct)

κ−1 − δ

κ− 1

)
Vk − rkt /ct.

Firm optimization pins down the rental rate of capital as

rkt =
αϑct

(1− α)kt
l1+ξ
t

where one can substitute labor to obtain

rkt =
αϑct

(1− α)kt

(
k1−α
t

(
Vk
Va

)κ

δ + k−α
t (ct + gt +Θt(πt)/pt)

) 1+ξ
1−α

.

Finally,

dVk = (ρ+ δ)Vk −
(
δ(Vkct)

κ−1 − δ

κ− 1

)
Vk

− αϑ

(1− α)kt

(
k1−α
t

(
Vk
Va

)κ

δ + k−α
t (ct + gt +Θ(πt)/pt)

) 1+ξ
1−α

.

Wages can be expressed as

wt = ϑlξt ct.

As in the simple NK model with capital, marginal costs read

mct =

(
1

1− α

)1−α(
1

α

)α

w1−α
t (rkt )

α.

Putting everything together, one obtains the NK-AC-FTPL model as stated in Section

(3.2.3). Due to the specification of capital adjustment costs, the steady states of the NK

models with adjustment costs, coincide with the ones of the corresponding NK models

with capital and no adjustment costs (see Section 3.A.4).
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General Appendix

A.1 Abstract

Chapter 1

The first essay of this doctoral thesis with the title Structural Estimation of Dynamic

Macroeconomic Models using Financial Data evaluates the benefits, drawbacks and limi-

tations of using financial data as substitute or complement for macro data in the estima-

tion of macroeconomic models. To that end, the essay introduces a generalized estimation

framework that is applicable to a whole class of macroeconomic models. There are 4

necessary steps that consists of (I) solving the model, (II) deriving the stochastic discount

factor, (III) pricing financial assets and (IV) setting up the estimation equations. The

required steps are illustrated by a small-scale macroeconomic model with analytical solu-

tions. The essay proposes the use of GMM and MEF estimation techniques. Estimating

the structural parameters with different combinations of macro and financial data, the

essay evaluates and compares the different settings empirically and in a simulation study.

The essay argues that there is a lack of suitable real world analogues for certain derived

assets prices. Thus, corresponding systems of estimation equations are only analyzed in

the simulation study for illustrative purpose. In particular, the essay utilizes data on

treasury bonds, real personal consumption expenditures, industrial production and the

S&P500 stock index in the empirical estimation.

This essay offers new insights into the use of financial data in the estimation of macroeco-

nomic models. To that end, the essay contributes a generalized formulation to introduce

financial estimation equations, which are consistent with the macroeconomic dynamics of

the model. This approach is applicable to a whole class of DSGE models. By choosing

a simple macroeconomic model with close-form solutions as an illustrative example, the

essay discusses benefits, drawbacks and limitations of utilizing asset prices in the struc-

tural parameter estimation. By doing so, the essay contributes new insights into the

informational content of financial data on macroeconomic aggregates, both empirically

and theoretically. A crucial result is an increased accuracy and improved identification
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when substituting or complementing macro with financial data. In the related literature,

the estimate of the parameter of the speed of mean reversion of the Vasicek interest rate

specification is known to be biased. The essay contributes to this literature by showing

that certain combinations of macro and finance estimation equations basically remove the

model inherent parameter bias. Thus, no further bias correction methods are required.

Finally, the essay highlights that exploiting financial data in structural parameter esti-

mation can be advantageous even in case of small-scale macroeconomic models without

explicit financial sector.

Chapter 2

The second essay of this doctoral thesis with the title FTPL and the Maturity Structure

of Government Debt in the New-Keynesian Model evaluates the impact of the maturity

structure of government bonds on the inflation rate and other macroeconomic aggregates.

For this purpose, the essay uses the continuous-time NK-FTPL framework (see e.g. Sims

(2011), Cochrane (2018) or Cochrane (2022b). In particular, the price level is determined

by explicit interactions of bond prices with monetary and fiscal policy. These interactions

follow from the assumption that the real value of debt has to be equal to the present

value of future surpluses discounted by the real interest rate. The bond maturity plays

a vital role because it determines the magnitude of endogenous changes in bond prices

in response to exogenous shocks. These price changes induce an immediate revaluation

of existing debt, and consequently establishes a direct link to the path of future inflation

rates. While considering different bond maturities, this essay emphasizes the effects of

monetary- and fiscal policy shocks on the term structure of the nominal interest rate and

model-implied inflation expectations. The theoretical evaluation of the model is followed

by an analysis of the US Coronavirus Aid, Relief and Economic Security (CARES) Act,

which is a unprecedentedly large fiscal stimulus from 2020.

The modeling framework in this essay is similar to the discrete-time NK-FTPL model in

Leeper and Leith (2016). Thus, it directly replicates their maturity related results within

the continuous-time NK-FTPL model. This chapter emphasizes that a continuous-time

formulation has important benefits regarding the interpretation of FTPL effects. However,

these are not the main contributions of this essay. The focus is on the implementation of

fiscal Taylor rules along the lines of Kliem and Kriwoluzky (2014) and Kliem et al. (2016),

which divides primary surpluses into taxes and government consumption and allows for

a quantifiable evaluation of the CARES Act. Furthermore, these rules imply s-shaped

surplus dynamics without the need for further assumptions or ingredients, such as latent

state variables as in Cochrane (2022b). While the analysis of policy shocks in the FTPL

literature mostly focuses on transitory dynamics, this essay explicitly evaluates permanent
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changes. Another crucial contribution of the essay is an analysis of the impact of the bond

maturity on the terms structure of the nominal interest rate and model-implied inflation

expectation, which fills a gap in the corresponding literature.

Chapter 3

The third essay of this doctoral thesis is named The Fiscal Theory of the Price Level

in New Keynesian Models with Capital. It starts from the model of the preceding chap-

ter and extends it by capital and capital adjustment costs. Simple continuous-time NK

model with capital (see Dupor (2001)) predict that contractionary monetary policy shocks

are expansionary and increase both output and inflation. This however, is at odds with

conventional economic reasoning, which predicts a decrease in output and inflation. In

order to obtain a FTPL framework along the lines of Sims (2011), this essay additionally

introduces capital adjustment costs. An elaborate description of model dynamics and

features is followed by an evaluation of two economic puzzles. Finally, the essay evaluates

necessary ingredients to obtain a negative correlation between the nominal interest- and

the inflation rate in the FTPL framework.

Continuous-Time NK models with capital and FTPL attain, at best, marginal cover-

age in the existing literature. This essay fills the gap and highlights the versatility of

the NK-FTPL model with capital adjustment costs. By developing this novel framework,

the essay contributes to the literature in various dimensions, such as new insights into

determinacy issues, transmission channels or the role of parametrization. The derived

model is then used to address two economic puzzles in the literature. The first one is

the Crowding-In Consumption Puzzle, which refers to a mismatch of empirically observed

and theoretically predicted responses of private consumption to changes in government

expenditures in conventional NK models. The essay contributes a novel solution to this

problem and highlights that the FTPL framework is able to predict either a crowding-in,

a crowding-out or no initial change at all. At the same time, it predicts a consistent (and

at least temporary) crowding-in of investment. The second puzzle are counterintuitive

predictions of traditional NK models at the ZLB. In particular, the destruction of capital

turns out to be highly expansionary and increases output in these models. The essay

shows how FTPL solves this Puzzle and illustrate the result with an extensive and novel

analysis of the Great East Japan Earthquake of 2011 (Tōhoku Earthquake). The anal-

ysis and the solution of the two puzzles with an explicit NK-FTPL model is one of the

main contributions of this chapter. Finally, FTPL models in the literature usually rely

on long-term bonds in order to establish a negative correlation between the inflation and

the nominal interest rate. This chapter of the doctoral thesis suggest a novel approach to

obtain the desired correlation in the presence of short-term debt.
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A.2 Zusammenfassung

Die Zusammenfassung beschreibt die Inhalte sowie die zentralen Ergebnisse der vorliegen-

den Dissertation.

Kapitel 1

Der erste Essay dieser Dissertation mit dem Namen ”Structural Estimation of Dynamic

Macroeconomic Models Using Financial Data” (dt. ”Strukturelle Schätzung von dynami-

schen makroökonomischen Modellen unter der Verwendung von Finanzdaten”) untersucht

die Vor- und Nachteile sowie die Einschränkungen der Finanzdatenverwendung als Kom-

plemente oder Substitute für makroökonomische Variablen in der strukturellen Schätzung

makroökonomischer Modelle. Hierzu wird in dem Essay ein allgemeiner Rahmen zur

Schätzung vorgestellt, welcher sich auf eine ganze Klasse von makroökonomischen Mo-

dellen anwenden lässt.

Das allgemeine Vorgehen besteht aus 4 Schritten. Diese sind (I) die Lösung des

Modells, (II) die Herleitung des stochastischen Diskontfaktors, (III) die Bepreisung von

Vermögenswerten sowie (IV) die Herleitung der benötigten Schätzgleichungen. Zur Veran-

schaulichung wird hierzu ein einfaches makroökonomisches Modell mit analytischer Lösung

herangezogen. Der Essay verwendet zur strukturellen Parameterschätzung sowohl die

Generalisierte Momentenmethode (GMM) als auch Martingale Schätzfunktionen (MEF).

Über die Schätzung der strukturellen Parameter mittels unterschiedlicher Kombinationen

von makroökonomischen und finanziellen Variablen finden theoretische (mittels Simula-

tionsstudie) sowie empirische Evaluationen und Vergleiche der unterschiedlichen Schätz-

systeme statt. Der Essay legt dar, dass es für einige der hergeleiteten Finanzvariablen keine

überzeugenden empirischen Gegenstücke gibt. Nichtsdestotrotz werden die dazugehörigen

Schätzsysteme zur Veranschaulichung in der Simulationsstudie analysiert. In der em-

pirischen Schätzung werden US Daten von Treasury Bonds, von realen persönlichen Kon-

sumausgaben, von der industriellen Produktion sowie des S&P500 Aktienindex verwendet.

Dieser Essay bietet neue Einblicke in die Verwendung von Finanzdaten in der Schätzung

makroökonomischer Modelle. Ein wichtiger Beitrag ist die allgemeine Formulierung der

Vorgehensweise, welche die Aufnahme von Vermögenswerten ermöglicht. Letztere sind

über den stochastischen Diskontfaktor konsistent mit der makroökonomischen Dynamik

bepreist. Ein entscheidender Vorteil, des im Essay entwickelten allgemeinen Ansatzes, ist

die Anwendbarkeit auf eine ganze Klasse von DSGE Modellen. Die beispielhafte Analyse

eines analytisch lösbaren makroökonomischen Modells zeigt die Vor- und Nachteile sowie

die Einschränkungen der Verwendung von Finanzdaten auf. Dadurch bietet der Essay

neue Einblicke in den theoretischen und empirischen Informationsgehalt von Finanzdaten
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über den Zustand makroökonomischer Größen. Ein weiterer zentraler Beitrag des Es-

says ist das Resultat, dass Finanzdaten sowohl die Genauigkeit als auch die Identifikation

von geschätzten Modellparametern erhöhen können. Ein in der zugehörigen Literatur

etabliertes Resultat ist ein verzehrter Schätzer des Parameters, der die Geschwindigkeit der

Mittelwertrückkehr in der Vasicek Zinssatzspezifizierung determiniert. Der Essay zeigt,

dass diese Verzerrung in einigen Schätzsystemen mit Finanzdaten nahezu vollständig kor-

rigiert wird. Somit sind keine zusätzlichen Korrekturverfahren nötig. Zudem zeigt der

Essay, dass selbst in einfachen makroökonomischen Modellen, ohne explizit modelliertem

Finanzsektor, die Aufnahme von Finanzdaten die Genauigkeit und Parameteridentifika-

tion in strukturellen Schätzungen erhöhen kann.

Kapitel 2

Im zweiten Kapitel dieser Dissertation mit dem Titel ”FTPL and the maturity struc-

ture of government debt in the New-Keynesian Model” (dt. ”Die fiskalische Theorie des

Preisniveaus (FTPL) und die Fälligkeitsstruktur von Staatsverschuldung im neukeyne-

sianischen (NK) Modell”) geht es um den Einfluss der Laufzeit von Staatsanleihen auf die

Entwicklung der Inflationsrate und anderer makroökonomischer Größen. Zu diesem Zweck

findet der zeitstetige NK-FTPL Modellrahmen (siehe z. B. Sims (2011), Cochrane (2018)

oder Cochrane (2022b)) Verwendung. Das Preisniveau wird demnach durch ein enges und

explizites Zusammenspiel von Anleihepreisen sowie geld- und fiskalpolitischen Entschei-

dungen determiniert. Diesem Zusammenspiel liegt die Annahme zugrunde, dass der reale

Wert der Staatsverschuldung dem mit dem realen Zinssatz diskontierten Gegenwartswert

aller zukünftigen Primärüberschüssen entsprechen muss. Hierbei spielt die Laufzeit von

Anleihen eine entscheidende Rolle, da diese das Ausmaß der endogenen Preisanpassung

der Anleihen in Folge exogener Shocks bestimmt. Da Preisanpassungen von Anleihen eine

sofortige Neubewertung der realen Schulden zufolge haben, besteht ein direkter Einfluss

auf die Entwicklung der zukünftigen Inflationsraten.

Ein besonderes Augenmerk liegt in diesem Essay auf den Effekten von geld- und

fiskalpolitischen Schocks auf die Zinsstrukturkurve und den modellimplizierten Inflations-

erwartungen unter Berücksichtigung unterschiedlicher Laufzeiten von Anleihen. Im An-

schluss an die theoretische Evaluation erfolgt eine Analyse des Coronavirus Aid, Relief and

Economic Security (CARES) Act, bei dem es sich um ein von der Größe her präzedenzloses

Konjunkturprogramm der USA im Jahr 2020 handelt.

Der Modellrahmen im zweiten Essay dieser Dissertation ist ähnlich zu dem zeit-

diskreten NK-FTPL Modell in Leeper und Leith (2016). Somit werden deren Ergebnisse

bezüglich der Effekte der Laufzeitstruktur von Staatsverschuldung direkt in dem zeitsteti-

gen NK-FTPL Modell dieses Essays repliziert. Es wird gezeigt, dass die zeitstetige For-

mulierung entscheidende Vorteile bei der Interpretation von FTPL Effekten bietet. Dieses
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ist jedoch nicht der eigentliche Beitrag des zweiten Kapitels. Vielmehr wird der NK-FTPL

Rahmen um fiskalische Taylor Regeln im Sinne von Kliem und Kriwoluzky (2014) sowie

Kliem et al. (2016) erweitert, welche Primärüberschüsse in Steuern und Staatsausgaben

aufschlüsseln und dadurch eine quantifizierbare Analyse des CARES Act ermöglichen.

Zudem erlauben die fiskalischen Regeln eine S-förmige Dynamik von Primärüberschüssen,

ohne dass weitere Anpassungen, wie beispielsweise die Einführung von zusätzlichen laten-

ten Zustandsvariablen wie in Cochrane (2022b), vorgenommen werden müssen. Während

sich die Untersuchung von Schocks in der FTPL Literatur weitestgehend auf temporärere

Effekte konzentriert, werden in diesem Essay explizit permanente Änderungen analysiert.

Ein weiterer wichtiger Beitrag dieses Kapitels ist die Untersuchung des Einflusses der

Fälligkeit von Anleihen auf die Zinsstrukturkurve und den modellimpliziten Inflations-

erwartungen, welche ebenfalls eine existierende Lücke in der diesbezüglichen Literatur

schließt.

Kapitel 3

Der dritte Essay dieser Dissertation mit dem Namen ”The Fiscal Theory of the Price Level

in New Keynesian Models with Capital” (dt. ”Die Fiskalische Theorie des Preisniveaus

in neukeynesianischen Modellen mit Kapital”) greift das Modell des vorangegangenen

Kapitels auf und erweitert dieses um Kapital und Kapitalanpassungskosten. Im einfachen

zeitstetigen NK Modell mit Kapital (siehe Dupor (2001)) führen restriktive geldpolitische

Schocks zu einem Anstieg von Inflation und Output. Dies widerspricht jedoch den konven-

tionellen ökonomischen Grundannahmen, nach denen Output und Inflation sinken. Um

ein typisches FTPL Modell im Sinne von Sims (2011) zu erhalten, werden in diesem Essay

Kapitalanpassungskosten eingeführt. Es folgt eine ausführliche Beschreibung der Modell-

dynamiken und eine anschließende Analyse von zwei ökonomischen Puzzles. Abschließend

wird der entwickelte Modellrahmen dazu verwendet, um die nötigen Bedingungen zu un-

tersuchen, die einen negativen Zusammenhang zwischen Inflation und dem nominalen

Zinssatz in FTPL Modellen herstellen.

In der bestehenden Literatur finden zeitstetige NK Modelle mit FTPL und Kapital bislang

weitestgehend keine Beachtung. Dieser Essay füllt die entsprechende Lücke und unter-

streicht die Vielseitigkeit des NK-FTPL Modells mit Kapitalanpassungskosten. Durch die

Entwicklung dieses neuartigen Modellrahmens trägt der Essay in vielen unterschiedlichen

Dimensionen zur Literatur bei. So werden beispielsweise neue Einblicke in die Bestimm-

barkeit des Modells, die Transmissionskanäle und die Bedeutung der Parametrisierung

gegeben. Das hergeleitete Modell wird anschließend dazu verwendet zwei ökonomische

Puzzle in der Literatur zu lösen. Das erste Puzzle ist das ”Crowding-In Consump-

tion Puzzle”, welches sich auf die Unstimmigkeiten in empirischen und theoretischen
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Vorhersagen bezüglich des Effekts von Staatsausgabenerhöhungen auf privaten Konsum

im einfachen neukeynesianischen Modellrahmen bezieht. Der Essay schlägt eine neuartige

Lösung des Puzzles durch das hergeleitete Modell vor und unterstreicht dessen Fähigkeit,

einen anfänglichen Crowding-In oder Crowding-Out Effekt vorherzusagen. Das Modell

erlaubt zudem eine konsistente Vorhersage bezüglich der Dynamik von Investitionen, bei

denen (wenigstens anfänglich) ein Cowding-In Effekt stattfindet. Das zweite Puzzle be-

trifft die kontraintuitive Vorhersage von vielen neukeynesianischen Modellen, nach denen

die Zerstörung von Kapital am ZLB einen extrem starken Anstieg von Output zufolge

hat. Der Essay zeigt, wie FTPL dieses Puzzle lösen kann und illustriert die Ergebnisse

anhand einer extensiven und neuartigen Analyse der großen Erdbebenkatastrophe von

2011 in Japan (Tōhoku-Erdbeben). Einer der wichtigsten Beiträge dieses Essays zur rele-

vanten Literatur ist daher die neuartige Analyse und Lösung dieser beiden Puzzles mit-

tels eines expliziten NK-FTPL Modells. FTPL Modelle in der Literatur benötigen in der

Regel langfristige Anleihen, um eine negative Korrelation von Inflation und des nominalen

Zinssatzes zu erhalten. Dieser Essay der Dissertation stellt einen neuen Ansatz vor, mit

dem die gewünschte Korrelation ebenfalls mit kurzfristigen Anleihen erzielt werden kann.
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Promotionsverfahren angenommen oder als ungenügend beurteilt.
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die Durchführung bei 80%

der Manuskripterstellung bei 75%

Für den dritten Artikel liegt die Eigenleistung für

das Konzept / die Planung bei 100%
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