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Abstract

We present a semiclassical method for the simulation of fluctuating and light-induced
dynamics in cuprate superconductors, based on the Ginzburg-Landau theory of supercon-
ductivity. Our method explicitly captures the coupled dynamics of the superconducting
order parameter and the electromagnetic field on a layered lattice, including dissipation
and thermal fluctuations.

In the first part of this dissertation, we characterize the superconducting ground
state of a bilayer cuprate at zero temperature and investigate its fluctuating dynamics at
nonzero temperature. In particular, we extract the temperature dependence of the plasma
resonances and the optical conductivity from our simulations. While thermal fluctuations
reduce the phase coherence of the superconducting state at low temperature, they cause a
phase transition to a resistive state at high temperature. The resistive state that we find
is characterized by a strong suppression of the interbilayer tunneling of Cooper pairs and
the emergence of vortex excitations. This constitutes a possible scenario of the pseudogap
regime in underdoped cuprates. Furthermore, we observe a nontrivial temperature depen-
dence of the upper Josephson plasma frequency. Analytical calculations indicate that the
upper Josephson plasma frequency is stabilized by vortex-induced disorder, which partly
compensates for the reduction of intrabilayer coupling due to thermal fluctuations.

In the second part of this dissertation, we discuss light-induced nonequilibrium phe-
nomena at temperatures well below the transition temperature. Specifically, we consider
the periodic driving of a cuprate superconductor by an electric field polarized along the
crystalline c axis, implementing two different scenarios. In the first scenario, the electric
field directly couples to the superconducting order parameter. In the second scenario, the
electric field resonantly couples to an infrared-active phonon mode, resulting in a periodic
modulation of the coupling between the superconducting layers. Driving a superconductor
via the nonlinear coupling of the electric field to the order parameter gives rise to Higgs
oscillations. We propose to induce a time-crystalline state in a mono- or bilayer cuprate
by driving a sum resonance of the Higgs mode and the Josephson plasma mode or the
upper Josephson plasma mode, respectively. The nonlinear coupling between the electric
field and the Higgs mode also opens up the possibility to enhance the interlayer transport
in monolayer cuprates. We demonstrate that the superconducting weight in the c-axis
conductivity is enhanced when the frequency of the optical driving is slightly blue-detuned
from the Higgs frequency. Furthermore, we show how the nonlinear coupling of a plasma
mode to another collective mode can be used for parametric amplification of terahertz
radiation. We present two specific protocols to realize this general proposal. The first
protocol applies to monolayer cuprates and exploits the nonlinear coupling to the Higgs
mode. The second protocol applies to bilayer cuprates and exploits the nonlinear coupling
to an infrared-active phonon mode. In previous work, parametric driving of a cuprate su-
perconductor via a suitable phonon mode was also proposed as a possible explanation for
the experimental observation of light-enhanced transport in YBa2Cu3O6+x. We confirm
that the superconducting weight in the c-axis conductivity is enhanced when the driving
frequency is blue-detuned from a Josephson plasma frequency, while it is diminished by
red-detuned driving. In contrast, both our analytical and numerical calculations show
that blue-detuned driving reduces the Meissner screening as plasma waves generated at
the surface are transmitted into the superconductor. For red-detuned driving, on the
other hand, we find a tendency to an enhanced Meissner screening.





Zusammenfassung

Wir präsentieren eine semiklassische Methode zur Simulation fluktuierender und lichtin-
duzierter Dynamik in Kuprat-Supraleitern, basierend auf der Ginzburg-Landau-Theorie
der Supraleitung. Unsere Methode erfasst explizit die gekoppelte Dynamik des supralei-
tenden Ordnungsparameters und des elektromagnetischen Feldes auf einem Gitter mit
Schichtstruktur, wobei Dissipation und thermische Fluktuationen berücksichtigt werden.

Im ersten Teil dieser Dissertation charakterisieren wir den supraleitenden Grundzu-
stand eines Doppelschicht-Kuprats bei verschwindender Temperatur und untersuchen sei-
ne fluktuierende Dynamik bei endlicher Temperatur. Dabei extrahieren wir insbesondere
die Temperaturabhängigkeit der Plasma-Resonanzen und der optischen Leitfähigkeit aus
unseren Simulationen. Während thermische Fluktuationen bei niedriger Temperatur die
Phasenkohärenz des supraleitenden Zustands verringern, verursachen sie bei hoher Tempe-
ratur einen Phasenübergang in einen widerstandsbehafteten Zustand. Dieser widerstands-
behaftete Zustand ist durch eine starke Unterdrückung des Tunnelns von Cooper-Paaren
zwischen den Doppelschichten sowie das Auftreten von Vortex-Anregungen charakteri-
siert. Er stellt ein mögliches Szenario für die Pseudogap-Phase unterdotierter Kuprate
dar. Darüber hinaus beobachten wir eine nichttriviale Temperaturabhängigkeit der oberen
Josephson-Plasmafrequenz. Analytische Berechnungen deuten darauf hin, dass die obe-
re Josephson-Plasmafrequenz durch Vortex-induzierte Unordnung stabilisiert wird. Dies
kompensiert teilweise die Reduzierung der Kopplung zwischen den beiden Schichten einer
Doppelschicht aufgrund thermischer Fluktuationen.

Im zweiten Teil dieser Dissertation diskutieren wir lichtinduzierte Nichtgleichgewichts-
phänomene bei Temperaturen deutlich unterhalb der Sprungtemperatur. Konkret be-
trachten wir das periodische Treiben eines Kuprat-Supraleiters durch ein elektrisches
Feld, das entlang der kristallinen c-Achse orientiert ist. Dabei implementieren wir zwei
Szenarien. Im ersten Szenario koppelt das elektrische Feld direkt an den supraleiten-
den Ordnungsparameter. Im zweiten Szenario koppelt das elektrische Feld resonant an
eine infrarot-aktive Phonon-Mode, woraus eine periodische Modulation der Kopplung
zwischen den supraleitenden Schichten resultiert. Das Treiben eines Supraleiters über
die nichtlineare Kopplung des elektrischen Feldes an den Ordnungsparameter führt zu
Higgs-Oszillationen. Wir schlagen vor, einen zeitkristallinen Zustand in einem Einzel-
oder Doppelschicht-Kuprat zu induzieren, indem eine Summenresonanz der Higgs-Mode
sowie der Josephson-Plasmamode bzw. der oberen Josephson-Plasmamode angeregt wird.
Die nichtlineare Kopplung zwischen dem elektrischen Feld und der Higgs-Mode eröffnet
auch die Möglichkeit, in Einzelschicht-Kupraten den Ladungstransport zwischen den su-
praleitenden Schichten zu verbessern. Wir demonstrieren, dass das supraleitende Gewicht
in der Leitfähigkeit entlang der c-Achse erhöht wird, wenn die Frequenz des optischen
Treibens leicht blauverstimmt von der Higgs-Frequenz ist. Weiterhin zeigen wir, wie die
nichtlineare Kopplung der Plasmamode an eine andere kollektive Mode für die parame-
trische Verstärkung von Terahertz-Strahlung genutzt werden kann. Wir präsentieren zwei
spezifische Protokolle, um diesen allgemeinen Vorschlag zu realisieren. Das erste Pro-
tokoll ist auf Einzelschicht-Kuprate anwendbar und nutzt die nichtlineare Kopplung an
die Higgs-Mode aus. Das zweite Protokoll ist auf Doppelschicht-Kuprate anwendbar und
nutzt die nichtlineare Kopplung an eine infrarot-aktive Phononmode aus. In früheren
Arbeiten wurde das parametrische Treiben eines Kuprat-Supraleiters über eine geeigne-
te Phononmode auch als eine mögliche Erklärung für die experimentelle Beobachtung



lichtverstärkten Ladungstransports in YBa2Cu3O6+x vorgeschlagen. Wir bestätigen, dass
das supraleitende Gewicht in der Leitfähigkeit entlang der c-Achse erhöht wird, wenn die
Frequenz des Treibens blauverstimmt von einer Josephson-Plasmafrequenz ist, während
es durch rotverstimmtes Treiben verringert wird. Dagegen zeigen sowohl unsere analy-
tischen als auch unsere numerischen Berechnungen, dass blauverstimmtes Treiben den
Meissner-Effekt reduziert, da an der Oberfläche generierte Plasmawellen ungehindert in
den Supraleiter eindringen. Auf der anderen Seite finden wir eine Tendenz zu einem ver-
stärkten Meissner-Effekt für rotverstimmtes Treiben.



Preface

This cumulative thesis bases on the publications [H1–H4] and the manuscript [H5]. The
publications [H1–H4] are included in the Appendix. A summary of the scientific contri-
butions is presented in Chapters 2 and 3. Throughout this thesis, we follow the SI units
convention. In our numerical simulations, we use units that are directly related to SI
units. Important physical constants and their values are listed in Table 1.

Table 1: Physical constants occurring in this thesis. The units and values used in the
numerical simulations are also specified.

Elementary charge e 1

Speed of light c (Å as−1) 2.99792

Reduced Planck constant ℏ (meV as) 6.58212× 105

Boltzmann constant kB (meV K−1) 8.61733× 10−2

Vacuum permittivity ϵ0 (emV−1 Å−1
) 5.52635× 10−6

Vacuum permeability µ0 (mV as2 e−1 Å−1
) 2.01336× 104
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Chapter 1

Introduction

In this chapter, we review the basics of superconductivity and the properties of cuprate
superconductors, focusing on those aspects that are relevant for the remainder of this
work. Extensive presentations of the topic can be found in many textbooks, such as [1–6].

1.1 Phenomenology of superconductivity

A superconductor is a material that exhibits perfect conductivity and perfect diamag-
netism below a critical temperature Tc. As depicted in Fig. 1.1(a), the electrical resistiv-
ity of a superconductor drops to zero when it is cooled below Tc. This was first observed
by Kamerlingh Onnes in 1911 when he cooled mercury below its critical temperature of
Tc ≈ 4.2 K [7]. Today, numerous materials are known to display zero resistivity within
experimental sensitivity at low temperatures.

The sudden disappearance of the resistivity is in stark contrast to metallic behavior.
The resisitivity of a metal decreases gradually with temperature as the effect of electron-
phonon scattering lessens. In addition, the resistivity of a metal has a temperature-
independent contribution due to the scattering of electrons from crystalline impurities.
Hence, the absence of any electrical resistance indicates that electrons are not scattered
in a superconductor. The mechanism behind this phenomenon will be illuminated in the
following sections.

Perfect conductivity does not only manifest in a vanishing resisitivity but also in a
1/ω divergence of the electrical conductivity σ(ω), which can be understood on the level
of the Drude model [8,9]. We start with the definition of the electrical conductivity. The
electrical conductivity is a linear response function that describes the relation between
the current density J and the electric field E at frequency ω inside a material,

J(ω) = σ(ω)E(ω). (1.1)

Here, the current and the electric field point in the same direction such that σ(ω) is a
scalar function. Note that we refer to σ as the optical conductivity at frequencies in the
terahertz range and above. According to the Drude model, the conductivity is given by

σ(ω) =
ne2τ

m(1− iωτ)
, (1.2)

15
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(a) (b)

Figure 1.1: Signatures of perfect conductivity. (a) DC electrical resistivity of a super-
conductor and a normal metal at low temperatures. (b) Imaginary part of the electrical
conductivity of a superconductor and a normal metal at low frequencies. The metal has
a finite scattering time τ .

where n is the density of free electrons, m is the (effective) electron mass, and τ is the
mean free time between two collisions of an electron with the ion lattice. In the absence
of scattering, τ → ∞, the real part of the conductivity diverges for ω = 0 and vanishes
for any finite frequency,

σ1(ω) =
πne2

m
δ(ω). (1.3)

The divergence of the DC conductivity corresponds to a vanishing resistivity and is ac-
companied by a 1/ω divergence of the imaginary part of the conductivity,

σ2(ω) =
ne2

mω
. (1.4)

The frequency dependence of σ2 is shown in Fig. 1.1(b). In general, not all the free
electrons inside a superconductor contribute to superconductivity. In that case, n is
replaced by the density of superconducting electrons ns. Equation (1.4) is then equivalent
to the first London equation [10], relating the supercurrent to the electric field as

∂tJ =
nse

2

m
E. (1.5)

The second characteristic feature of superconductivity is perfect diamagnetism. A su-
perconductor expels any magnetic field below a critical field strength from the bulk. This
screening of magnetic fields, known as the Meissner effect [11], is provided by persistent
surface currents. In general, the relation between supercurrents and the magnetic flux
density B is described by the second London equation [10],

∇× J = −nse
2

m
B. (1.6)

Combining Eq. (1.6) with the Maxwell equation ∇×B = µ0J [12], we obtain

∇2B =
µ0nse

2

m
B. (1.7)
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(a) (b)

Figure 1.2: Response of type-I and type-II superconductors to an applied magnetic
field. (a) Magnetic flux density in the bulk of a type-I superconductor as a function of the
applied field strength. (b) Magnetic flux density in the bulk of a type-II superconductor
as a function of the applied field strength.

Equation (1.7) implies that the magnetic flux density decays exponentially from the sur-
face of a superconductor. The characteristic length scale of this exponential decay is the
London penetration depth

λ =

√
m

µ0nse2
. (1.8)

The screening currents also decay exponentially on this length scale.
There are two classes of superconductors, which are distinguished based on their re-

sponse to an applied magnetic field as illustrated in Fig. 1.2. Inside a type-I supercon-
ductor, the magnetic flux density B = |B| is zero as long as the strength of the applied
field H is lower than the critical value Hc. When the critical field strength is exceeded,
the superconducting state breaks down and the behavior of the normal state is retained.
The critical field strength depends on temperature, following the empirical relation

Hc(T ) ≈ Hc(0)
[
1− (T/Tc)

2
]
. (1.9)

Type-II superconductors are characterized by two critical field strengths. While mag-
netic fields are fully expelled up to the lower critical field strength Hc1, a mixed state
is entered above Hc1. In this mixed state, the magnetic field partially penetrates into
the bulk by creating normal conducting vortex tubes. The vortex tubes form a triangular
lattice [13–15] and their density grows with increasing field strength. At the upper critical
field Hc2, the vortex tubes essentially fill out the entire material such that the transition
to the normal state is completed.

1.2 BCS theory
An important step towards a microscopic theory of superconductivity was the following
insight by Leon Cooper [16]. He considered a normal metal at zero temperature, where
the electrons occupy all the states up to the Fermi energy ϵF. Then, two electrons with
an attractive interaction are added. It turns out that it is energetically favorable for the
two electrons to form a bound pair with zero center-of-mass momentum. Remarkably,
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(a) (b)

Figure 1.3: The BCS ground state. (a) Illustration of Cooper pairing in a conventional
superconductor. (b) Occupation probability of pair states around the Fermi energy. In
real conventional superconductors, the ratio ∆/ϵF is significantly smaller than in this
example.

the presence of the Fermi sea enables this pairing of electrons with opposite momenta for
arbitrarily weak interaction strengths.

Building on the discovery of Cooper pairs, Bardeen, Cooper and Schrieffer developed a
theory that provides the framework of the microscopic understanding of superconductivity
[17, 18]. The central ingredient of their so-called BCS theory is an attractive interaction
between electrons close to the Fermi level. Due to this interaction, all the electrons are
paired in the ground state and a minimal energy of 2∆ is required to break a Cooper
pair. The superconducting gap ∆ depends on the interaction strength. As the attractive
interaction between the electrons is assumed to be isotropic and uniform in momentum
space, the wavefunctions of the Cooper pairs and the superconducting gap exhibit s-wave
symmetry. However, the total wavefunction of a Cooper pair has to be antisymmetric
under particle exchange since electrons are fermions. This requires spin-singlet pairing,
implying that the total spin of a Cooper pair is zero.

In second quantization, the superconducting ground state at T = 0 can be written as
a product of pair states,

|Ψ⟩ =
∏

k

(uk|0⟩k + vk|1⟩k) , (1.10)

where |0⟩k denotes an empty pair state with electron momenta (k,−k) and |1⟩k cor-
responds to an occupied pair state. The probability of an occupied pair state is given
by

|vk|2 =
1

2

(
1− ϵk − ϵF√

(ϵk − ϵF)2 +∆2

)
, (1.11)

with ϵk = ℏ2|k|2/2m. As shown in Fig. 1.3(b), the electron distribution is smeared out
around the Fermi energy. The probability of an empty pair state is |uk|2 = 1− |vk|2. At
nonzero temperature, there are also unpaired electrons, which we refer to as quasiparticles.
With increasing temperature, an increasing fraction of Cooper pairs is broken and the
superconducting gap decreases. The gap vanishes at Tc, consistent with a second-order
phase transition.

In conventional superconductors, such as aluminium and niobium, the attraction be-
tween electrons close to the Fermi level is provided by an effective interaction via the
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ionic lattice [19, 20]. As one electron moves through the lattice, it causes a positively
charged ion cloud in its wake such that a second electron is attracted to it. Due to the
relatively slow formation of the ion cloud, the typical distance between two bound elec-
trons is ξ0 ∼ 1µm [1, 4]. The screening of the Coulomb repulsion by the electron gas is
very effective on these length scales, enabling a net attraction between the electrons. The
large size of the Cooper pairs implies that many of them overlap in space as depicted in
Fig. 1.3(a).

In general, experimental studies of conventional superconductors show good agreement
with the predictions of the BCS theory. The existence of Cooper pairs was demonstrated
by measurements of the magnetic flux quantum [21,22]. A phonon-mediated pairing mech-
anism is experimentally supported by the observation of the isotope effect [23,24]. Further
experimental evidence for the validity of the BCS theory includes measurements of the
superconducting gap and its temperature dependence [25–30]. We note that corrections
of the original BCS theory must be taken into account for materials with strong electron-
phonon coupling [31]. Most conventional superconductors are type-I superconductors
and have critical temperatures below 10 K. At its critical temperature, a conventional
superconductor enters a metallic state.

Unconventional superconductors cannot be described by the BCS theory. Some of
these materials have significantly higher critical temperatures than conventional super-
conductors and exhibit anisotropic gap symmetries. As an example we mention cuprate
superconductors, which will be introduced in Section 1.5. An overview of superconducting
materials and their properties is given in Refs. [3, 4], for example.

1.3 Ginzburg-Landau theory

The microscopic theory outlined in the previous section motivates a low-energy description
of superconductors in terms of a condensate of charged bosons. Such a description is
provided by the Ginzburg-Landau theory [32]. Following Landau’s theory of second-
order phase transitions [33], the superconducting state is represented by a complex order
parameter ψ(r) in the Ginzburg-Landau theory. The order parameter is assumed to
vary slowly in space and to be small at temperatures near Tc. The free energy of a
superconductor is then expanded in powers of |ψ|2. Including the magnetic field energy
and a gradient term with a gauge-invariant coupling to the electromagnetic field, the free
energy density takes the form

F = −α|ψ|2 + β

2
|ψ|4 + 1

2m∗ |(−iℏ∇− qA)ψ|2 + |B|2
2µ0

, (1.12)

where α and β are real-valued expansion coefficients. As usual, the magnetic flux density
is given by the curl of the vector potential, i.e., B = ∇×A.

Although superconductivity was not understood microscopically at the time, Ginzburg
and Landau already interpreted ψ(r) as a macroscopic wavefunction of superconducting
charge carriers. Based on the BCS theory, we consider ψ(r) as the wavefunction of the
Cooper pairs, describing the center-of-mass motion of bosons with effective mass m∗ = 2m
and charge q = −2e. Note that the density of superconducting electrons is twice the
density of Cooper pairs, i.e., ns(r) = 2|ψ(r)|2.
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Minimizing the free energy with respect to ψ∗ and A leads to the Ginzburg-Landau
equations

−αψ + β|ψ|2ψ +
1

2m∗ (−iℏ∇+ 2eA)2 ψ = 0, (1.13)

∇×B− iℏeµ0

m∗ (ψ∗∇ψ − ψ∇ψ∗) +
4e2µ0

m∗ |ψ|2A = 0. (1.14)

In the absence of magnetic fields, the minimum of the free energy corresponds to a spatially
homogeneous configuration of the order parameter in the bulk. The order parameter has a
magnitude of |ψ0| =

√
α/β for α > 0, while it vanishes for α ≤ 0. The phase transition is

well captured by taking the temperature dependence of α as α = α0(1−T/Tc) with α0 > 0
and keeping the other Ginzburg-Landau coefficient β > 0 temperature-independent [2].

Next, we consider a superconductor that occupies the half space x > 0 and suppose
the magnetic field to be zero. In this case, the order parameter varies only along the x
axis. It vanishes at the surface, ψ(0) = 0, and its magnitude approaches |ψ0| for large x.
We choose the unitary gauge such that ψ(x) is real-valued. Equation (1.13) then simplifies
to

αψ + βψ3 − ℏ2

2m∗∂
2
xψ = 0. (1.15)

The solution of this equation,

ψ(x) = |ψ0| tanh
(

x√
2ξ

)
, (1.16)

describes the relaxation of the order parameter to its bulk value |ψ0|. The rise of ψ from
the surface is characterized by the Ginzburg-Landau coherence length

ξ =
ℏ√
2m∗α

. (1.17)

Remarkably, the ratio of the coherence length to the London penetration depth

λ =

√
m

µ0nse2
=

√
m∗

4µ0|ψ0|2e2
. (1.18)

determines the response to magnetic fields. Type-I superconductors have a ratio of λ/ξ <
1/
√
2, while type-II superconductors have a ratio of λ/ξ > 1/

√
2.

The second Ginzburg-Landau equation (1.14) can be rewritten in the form of the
Maxwell equation ∇×B = µ0J by identifying the current with

J =
iℏe
m∗ (ψ

∗∇ψ − ψ∇ψ∗)− 4e2

m∗ |ψ|
2A. (1.19)

Now, we revisit the response of a superconductor to small electromagnetic fields, assuming
a spatially homogeneous ground state ψ(r) = ψ0. Thus, we obtain a simplified expression
for the current,

J = −4e2

m∗ |ψ0|2A. (1.20)
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Employing the temporal gauge, where E = −∂tA, we immediately recover the London
equations

∂tJ =
1

µ0λ2
E, (1.21)

∇× J = − 1

µ0λ2
B. (1.22)

Hence, the condensation of electrons into a macroscopic quantum state of bosonic pairs
enables perfect conductivity and the Meissner effect.

Before concluding this section, we comment on the range of validity of the Ginzburg-
Landau theory. In fact, Lev Gor’kov rigorously derived the Ginzburg-Landau theory from
the BCS theory for temperatures near Tc [34]. He showed that the superconducting order
parameter is identical to the superconducting gap in this limit. While this identity holds
only near the phase transition, the Ginzburg-Landau theory is widely used also at lower
temperatures. It has been argued that the effect of including higher order terms in the
expansion of the free energy is rather quantitative than qualitative [5]. The Ginzburg-
Landau theory is particularly useful to study superconductors for which no microscopic
theory has been established. A general requirement for its validity is that ψ and A vary
on length scales that are significantly larger than the size of a Cooper pair, i.e., ξ, λ≫ ξ0.
At temperatures far below Tc, the coherence length ξ is similar to ξ0. However, it grows
with increasing temperature and diverges at Tc. Therefore, the condition ξ ≫ ξ0 is usually
fulfilled over a large temperature range. While the London penetration depth also diverges
at Tc, its low-temperature value is smaller than ξ0 in most conventional superconductors.
For example, aluminium has a penetration depth of λ ≈ 0.01 ξ0 at low temperatures [1].
In such a material, the condition λ≫ ξ0 is fulfilled only close to the critical temperature.
In many cuprate superconductors, on the other hand, the Cooper pairs are so small that
the condition λ≫ ξ0 is fulfilled at any temperature below Tc.

1.4 Josephson effect
The Josephson effect is a consequence of the macroscopic wavefunction of a superconduc-
tor. It enables a supercurrent between two superconducting leads that are separated by a
thin insulating barrier [35,36]. The setup of a Josephson junction is depicted in Fig. 1.4.
Here, we consider two identical superconducting leads with volume V0 and Cooper pair
density n0 in equilibrium. Both superconductors are represented by spatially uniform
wavefunctions of the form ψj =

√
nj exp(iθj). If the barrier thickness d is sufficiently

small (a typical value is d ∼ 2 nm), the wavefunctions of the superconductors overlap,
enabling Cooper pairs to hop from one lead to the other. The strength of this coupling
is characterized by the tunneling energy tJ. Including a voltage difference V between the
two sites, the Schrödinger equations for the two wavefunctions read

iℏ∂tψ1 = eV ψ1 + tJψ2, (1.23)
iℏ∂tψ2 = −eV ψ2 + tJψ1. (1.24)

For small density variations, we find

∂tn1 =
2tJn0

ℏ
sin(θ2 − θ1) = −∂tn2, (1.25)
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Figure 1.4: Setup of a Josephson junction. Two superconducting leads with wavefunc-
tions ψ1 and ψ2 are separated by a thin insulating barrier. The overlap of the wavefunc-
tions inside the barrier enables a supercurrent between the superconducting leads.

implying the Josephson current

IJ = I0 sin θ, (1.26)

where θ = θ2 − θ1 is the phase difference between the two superconductors and I0 =
4etJn0V0/ℏ is the critical current. Equation (1.26) is known as the first Josephson relation.
The second Josephson relation describes the time evolution of the phase difference,

∂tθ =
2eV

ℏ
. (1.27)

To clarify the meaning of the Josephson relations, we consider two different cases. In the
first case, the Josephson junction forms a circuit with a DC current source. According
to the Josephson relations, the voltage is zero for DC currents below the critical current
I0. The current source also ensures the validity of the Josephson relations as it keeps
the density of Cooper pairs in both superconducting leads constant. In the second case,
the Josephson junction forms a circuit with a DC voltage source. The phase difference
then grows linearly with time, leading to an AC Josephson current with the frequency
ω = 2eV/ℏ.

A realistic treatment of a Josephson junction is provided by the RCSJ (resistively and
capacitively shunted junction) model [37–39]. It takes capacitive and resistive contribu-
tions to the total junction current I into account. The capacitive contribution is given
by IC = C∂tV with the junction capacitance C, and the resistive contribution is taken as
IR = V/R with the ohmic resistance R. Using the second Josephson relation, we obtain
the following equation of motion for the phase difference,

∂2t θ + γ∂tθ + ω2
J sin θ =

2eI

ℏC
, (1.28)

where γ = 1/RC and ωJ =
√

2eI0/ℏC. We see that plasma oscillations in a Josephson
junction are described by a damped nonlinear oscillator, which can be driven by applying
a current.
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1.5 Cuprate superconductors

Cuprate superconductors are a family of high-temperature superconductors. Their crys-
tal structure is characterized by copper oxide layers, which play a central role for the
emergence of superconductivity in these materials. While the critical temperature of a
conventional superconductor is usually below 10 K, values above 130 K have been reported
for cuprate superconductors [40,41]. The first cuprate superconductor was discovered by
Bednorz and Müller in 1986 [42]. Strikingly, they observed critical temperatures in the
range of 30 K for various La2−xBaxCuO4 (LBCO) samples. One year later, the material
YBa2Cu3O6+x (YBCO) was reported to exhibit superconductivity at temperatures up to
93 K for values of x slightly below 1 [43]. Today, one knows about many cuprate super-
conductors with critical temperatures of Tc ∼ 100 K at ambient pressure, which can be
reached by cooling with liquid nitrogen.

Cuprates do not occur in nature but are synthesized in elaborate processes as described
in Ref. [6], for instance. They consist of CuO2 layers, separated by layers of charge
reservoir groups and spacer atoms in the case of multilayer cuprates. The spacer atoms
are alkaline earth or rare earth elements. As an example we consider the crystal structure
of the bilayer cuprate YBa2Cu3O7, depicted in Fig. 1.5. Here, the spacer element is
yttrium and the charge reservoir group is Ba2CuO3. A specific feature of YBCO is the
existence of CuO chains along the b axis in the charge reservoir group, leading to an
anisotropic electromagnetic response in the ab plane [44,45].

The parent compound of a cuprate superconductor, corresponding to x = 0 for LBCO
and YBCO, is a Mott insulator at sufficiently low temperatures. This means that there
is exactly one localized electron per CuO2 unit and the spin configuration is antiferro-
magnetic. As x is increased, holes are injected into the material. In the following, we use
the hole doping p to specify the number of holes injected into each CuO2 unit. While we

CuO2 bilayer

O
Cu
Y
Ba
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c
b

Figure 1.5: Crystal structure of YBa2Cu3O7. The lattice parameters of the unit cell are
a0 = 3.8 Å, b0 = 3.9 Å, and c0 = 11.7 Å. The intrabilayer distance between CuO2 layers
amounts to 3.4 Å [6,46].
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Figure 1.6: Schematic phase diagram of a typical cuprate superconductor, following
Ref. [47]. At small doping, a cuprate is an insulating antiferromagnet (AF). The super-
conducting (SC) phase has a dome-like shape with a maximum of Tc around p = 0.16.
The metallic phase is divided into three regimes: the pseudogap (PG) regime, the strange
metal (SM) regime, and the Fermi liquid (FL) regime.

have p ≈ x for LBCO, there is only a phenomenological relation between the hole doping
and the chemical composition in general. Remarkably, most cuprates have a similar phase
diagram with respect to hole doping and temperature. The typical cuprate phase diagram
is shown schematically in Fig. 1.6, based on Ref. [47]. We see that a cuprate remains an
insulating antiferromagnet for small p.

The superconducting phase has a dome-like shape with a maximum of Tc for an opti-
mal doping of p ≈ 0.16. Cuprates with smaller p are underdoped and cuprates with larger
p are overdoped. Measurements of the magnetic flux quantum show that the supercon-
ducting state in the cuprates is formed by electron pairs [48]. In contrast to conventional
superconductors, the superconducting gap exhibits d-wave symmetry as demonstrated
by phase-sensitive tunneling experiments [49–51] and angle-resolved photoemission spec-
troscopy (ARPES) [52–54]. More specifically, the superconducting gap displays dx2−y2

symmetry,
∆(k) ∝

(
cos(kxa0)− cos(kya0)

)
, (1.29)

where a0 denotes the lattice parameter of the (approximate) square lattice in the ab
plane. The gap vanishes along the nodal lines, where |kx| = |ky|, while its absolute
value reaches maxima on the antinodal lines for a given in-plane momentum kxy, i.e., for
(kx = ±kxy, ky = 0) and (kx = 0, ky = ±kxy); see Refs. [55,56] for more details on the gap
symmetry. An important consequence of the gap symmetry is the existence of quasiparti-
cle excitations along the nodal lines down to very low temperatures. Besides, a gap with
dx2−y2 symmetry implies spin singlet pairing, which is corroborated by measurements of
the Knight shift [57].

To date, the pairing mechanism in cuprate superconductors has not been identified
unequivocally. Theoretical and experimental investigations indicate that Cooper pairing
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in cuprate superconductors is possibly enabled by spin fluctuations [58–61]. Remarkably,
a gap with dx2−y2 symmetry is inherent to such a pairing mechanism [62]. On the other
hand, there is also experimental evidence for the relevance of electron-phonon coupling to
the emergence of superconductivity in the cuprates [63,64].

The characteristic lengths of cuprate superconductors are very anisotropic due to
their anisotropic structure. Depending on the material, the in-plane penetration depth
λab assumes a value between 1000 and 4000 Å in the zero-temperature limit [5, 65, 66].
The c-axis penetration depth λc is typically at least one order of magnitude larger than
λab. The coherence lengths of cuprate superconductors are found to be ξab ∼ 30 Å and
ξc ∼ 2− 3 Å in the zero-temperature limit [5, 6, 67]. In addition to the anisotropy of the
characteristic lengths, the small value of ξc supports the common understanding that the
copper oxide layers are the primary seat of superconductivity in the cuprates. Since the
coherence lengths set the scale of the Cooper pair size, we notice that the Cooper pairs
in cuprate superconductors are tightly bound. Combining the determined penetrations
depths with measurements of the effective electron mass, the density of Cooper pairs at
T = 0 is estimated as n0 ∼ (1−5) ·1021 cm−3 [68,69], consistent with valency calculations.
Thus, the number of overlapping Cooper pairs is small, leading to pronounced fluctuation
effects [2, 4, 5].

Only strongly overdoped cuprate superconductors transform into a relatively normal
metallic state as the temperature is raised above Tc, corresponding to the Fermi liquid
regime in Fig. 1.6. Optimally doped and weakly overdoped cuprates enter the so-called
strange metal regime at higher temperatures. In this regime, the electrical conductivity is
about two orders of magnitude smaller than in normal metals. Furthermore, the conduc-
tivity exhibits frequency and temperature dependencies that are incompatible with the
conventional theory of metals [5, 47]. Notably, a similar behavior of the conductivity has
been observed in other strongly correlated electron systems, indicating that the strange
metal regime might not be directly linked to high-temperature superconductivity [47,70].
While the phenomenology of the strange metal regime can be described by the marginal
Fermi liquid theory [71], there exists no complete and generally accepted theory of this
regime at present. We note that there is only a soft crossover between the strange metal
regime and the Fermi liquid regime.

In contrast, the crossover from the strange metal regime to the pseudogap regime is
fairly sharp, with an approximately linear dependence of the crossover temperature T ∗

on the doping. There are still many open questions regarding the pseudogap regime and
it is possible that the pseudogap regime corresponds to a distinct phase of matter. The
characteristic feature of the pseudogap regime is a strong suppression of the electronic
density of states a low energies. This pseudogap was shown most clearly by tunneling
experiments [72,73] and ARPES studies [53,54,74–76], which also revealed that the pseu-
dogap has a similar momentum dependence as the superconducting gap. In fact, the
pseudogap smoothly evolves into the superconducting gap at Tc.

These findings suggest that the formation of electron pairs already sets in at T ∗.
Assuming the existence of preformed pairs, it was proposed that phase fluctuations of
the superconducting order parameter cause the phase transition at Tc in underdoped
cuprates [77, 78]. This scenario is consistent with the experimentally observed linear
scaling of n0 with the critical temperature [68,69]. Related investigations of the anisotropic
three-dimensional XY model indicate that vortex loop excitations play an important role
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Figure 1.7: Pump-probe experiment on YBCO. The pump pulse excites oscillations of
the apical oxygen atoms along the c axis. Subsequently, the sample is probed in reflection.

in the context of the phase transition [79–84], which is reminiscent of a Kosterlitz-Thouless
transition in a two-dimensional Bose gas [85–88]. While optical spectroscopy and pump-
probe experiments indicate fluctuating superconductivity far above Tc in the pseudogap
regime [89–92], the existence of preformed pairs is still debated. Another important aspect
regarding the breakdown of superconductivity in underdoped cuprates is the emergence
of other orders, such as charge and spin stripes, near Tc. These intertwined orders seem
to compete with superconductivity [93–96].

A modern technique for the study of cuprates and other materials with strong elec-
tronic correlations is provided by pump-probe experiments. In a pump-probe experiment,
a material sample is first excited by an intense laser pulse called pump. The transiently
excited material is then probed by a weak laser pulse called probe. As an example we
consider a pump-probe experiment that was performed on underdoped YBCO [90,91]. In
this experiment, a mid-infrared pump resonantly excited a phonon mode with a frequency
of approximately 20 THz. The duration of the pump pulse was ∼ 300 fs and the electric
field strength reached up to ∼ 3 MV cm−1. The resulting oscillations of the apical oxygen
atoms along the c axis are shown in Fig. 1.7. Using the reflected signal of a terahertz probe
pulse, the c-axis optical conductivity of the sample was measured both in equilibrium and
in the transiently excited state.

Below Tc, the imaginary part of the optical conductivity was significantly enhanced at
small probe frequencies. Recalling the relation σ2(ω) = nse

2/mω for superconductors in
equilibrium, one can interpret the observed enhancement of σ2 as an increase in the su-
perfluid density ns. Strikingly, an enhancement of σ2 at low frequencies was also observed
for temperatures between Tc and T ∗, accompanied by the appearance of a reflectivity
edge at low frequencies. These findings demonstrate light-induced coherence of interlayer
transport and prompt the question whether a transient superconducting state is induced
by resonantly driving specific phonon modes in underdoped YBCO. It was experimen-
tally confirmed that only the excitation of oscillations of the apical oxygen atoms along
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the c axis leads to enhanced interlayer transport with superconducting-like features [97].
Several mechanisms were proposed to explain the enhancement of interlayer transport,
including nonlinear lattice dynamics [98], a redistribution of phase fluctuations [99, 100],
parametric driving [101,102], and the suppression of competing orders [103,104]. Recent
measurements of second-harmonic generation indicate that optically excited phonons de-
cay into pairs of plasmons with opposite in-plane momenta, which give rise to spatial and
temporal modulations of the superfluid density [92,105]. This would explain the observed
features in the optical response at temperatures below and above Tc if one assumes that
superconducting fluctuations with sufficiently large correlation lengths preexist up to T ∗.

The phenomenology presented in the previous paragraph is not limited to a single
kind of experiment on underdoped YBCO. Features of a superconducting state were also
induced in other cuprates by optical driving of specific phonon modes [106] or near-
infrared excitation [107,108]. Furthermore, signatures of light-induced superconductivity
were reported for fullerides [109–111] and organic salts [112, 113] following excitation of
molecular vibrations.

Now, we turn to the theoretical description of light-driven cuprate superconductors. To
this end, the Ginzburg-Landau theory is a good starting point since it does not require any
assumptions about the microscopic nature of the superconducting state in the cuprates. A
natural approach to account for the layered structure of cuprate superconductors is given
by the Lawrence-Doniac model [114]. Here, each copper oxide layer is described by a
complex order parameter and the coupling between the layers is modeled as in Josephson
junctions. Experiments on the current-voltage characteristics of cuprate superconductors
indeed support a picture where superconducting layers form a stack of Josephson junctions
[115]. In the superconducting state, a plasma excitation along the c axis corresponds to
an oscillatory tunneling of Cooper pairs between copper oxide layers [116–119], leading to
observable nonlinear effects [120–123]. The Josephson plasma mode with zero momentum
is effectively described by the RCSJ model introduced in Section 1.4.

In the following chapter, we present a semiclassical U(1) lattice gauge theory that
builds on the Lawrence-Doniac model. To simulate the coupled dynamics of the supercon-
ducting order parameter and the electromagnetic field, we include time-dependent terms
and discretize space in all three dimensions. Thus, the gradient terms in the ab plane also
take the form of Josephson junctions. This lowest order gauge-invariant approximation
of the in-plane gradient terms is justified as the discretization length is chosen to be well
below the in-plane coherence length. Furthermore, our lattice gauge theory incorporates
thermal fluctuations, which cause a phase transition to a fluctuating high-temperature
state without global phase coherence. We highlight that our theory advances previous
descriptions of driven cuprates [100, 101, 124] in two aspects. Firstly, it includes the in-
plane dynamics of the order parameter and the electromagnetic field. Secondly, it allows
for arbitrarily strong and phase-independent fluctuations of the amplitude of the order
parameter.





Chapter 2

Semiclassical simulation method for
bilayer cuprate superconductors

In this chapter, we present a semiclassical U(1) lattice gauge theory developed for the
simulation of fluctuating and light-induced dynamics in cuprate superconductors [H1–H3].
While our method can be utilized to simulate monolayer and bilayer cuprates, we consider
only bilayer cuprates here. However, many of our considerations and results can be directly
applied to monolayer cuprates.

Based on our semiclassical method, we first characterize the superconducting ground
state in the absence of thermal fluctuations. Then, we investigate fluctuating dynamics
at nonzero temperature. In particular, we present a scenario of the pseudogap regime in
which vortex excitations play a central role. We discuss the temperature dependence of
the plasma resonances and the optical conductivity. Throughout this chapter, we include
analytical calculations to support our numerical results.

2.1 Lagrangian and equations of motion

Following the Ginzburg-Landau theory of superconductivity, we describe the supercon-
ducting state by a complex order parameter ψr, which is discretized on a three-dimensional
lattice with r denoting the position of a lattice site. Our lattice gauge model is depicted
schematically in Fig. 2.1(a). The crystalline c axis is oriented along the z direction and
each superconducting layer is represented by a square lattice. As the Cooper pairs carry
a charge of −2e, the order parameter is coupled to the electromagnetic field. While the
scalar potential Φr is also located on the lattice sites, the vector potential Ar is located
on the bonds. The electric field on the bond from site r to its nearest neighbor r′(j) in the
j ∈ {x, y, z} direction is given by Ej,r = −∂tAj,r−δjΦr. We calculate the spatial derivative
of the scalar potential using the finite-difference representation δjΦr = (Φr′(j) − Φr)/dj,r,
where dj,r is the length of the bond between the lattice sites r and r′(j). The magnetic
field components Bj,r = ϵjklδkAl,r are centered on the plaquettes of the lattice as shown
in Fig. 2.1(b). This arrangement is consistent with the finite-difference time-domain
(FDTD) method [125]. The in-plane lattice parameter dx,r = dy,r = dab is introduced as a
short-range cutoff that is small compared to the in-plane coherence length. The interlayer
spacing dz,r alternates between the intrabilayer distance ds and the interbilayer distance
dw, reproducing the spacing of CuO2 planes in the crystal.

29
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Figure 2.1: Schematic depiction of the lattice gauge model. (a) Cooper pairs tunnel
between neighboring lattice sites on an anisotropic lattice. (b) Spatial configuration of
the superconducting order parameter and the electromagnetic field in the xy plane. The
order parameter is located on the lattice sites. The electromagnetic vector potential is
located on the bonds, defining the magnetic field on the lattice plaquettes. The electric
field is also located on the bonds. Panel (a) is adapted from Ref. [H5].

The Lagrangian of the lattice gauge model is

L =
∑

r

K|(ℏ∂t − 2ieΦr)ψr|2 + µ|ψr|2 −
g

2
|ψr|4 −

∑

j,r

tj,r|ψr′(j) − ψre
iaj,r|2

+
∑

j,r

κj,rϵ∞ϵ0
2

E2
j,r −

κz,r
κj,rβ2

j,rµ0

[
1− cos

(
βj,rBj,r

)]
.

(2.1)

The Ginzburg-Landau coefficients µ and g are taken as temperature-independent through-
out this work. The coefficient K describes the magnitude of the dynamical term. The
physical meaning of these coefficients will be explained in the following section. The
second sum in the Lagrangian (2.1) represents the kinetic energy of the superconducting
condensate. As mentioned, the gradient terms from the Ginzburg-Landau theory take
the form of Josephson junctions, corresponding to nearest-neighbor tunneling of Cooper
pairs. The unitless vector potential aj,r = −2edj,rAj,r/ℏ couples to the phase of the order
parameter, ensuring local gauge-invariance. The tunneling coefficients are tx,r = ty,r = tab
for in-plane junctions, tz,r = ts for intrabilayer (strong) junctions, and tz,r = tw for
interbilayer (weak) junctions. The structure of a bilayer cuprate implies the hierarchy
tw ≪ ts ≪ tab. The third sum is the Lagrangian of the electromagnetic field on an
anisotropic lattice, formulated as a compact lattice gauge theory in the time-continuum
limit [126]. The background dielectric constant ϵ∞ originates from bound charges. The
other prefactors in the electromagnetic Lagrangian reflect the anisotropic lattice geom-
etry. Introducing dc = (ds + dw)/2, we write κx,r = κy,r = 1 and κz,r = dz,r/dc, while
βx,r = βy,r = 2edabdz,r/ℏ and βz,r = 2ed2ab/ℏ.

The Lagrangian (2.1) is particle-hole symmetric due to its invariance under the si-
multaneous transformations ψr → ψ∗

r and e → −e. Next, we derive the Euler-Lagrange
equations from the Lagrangian. The equation of motion for the order parameter reads

Kℏ2∂2t ψr − 4ieKℏΦr∂tψr − (4e2KΦ2
r + 2ieKℏ∂tΦr)ψr

= (µ− 4tab − ts − tw)ψr − g|ψr|2ψr +
∑

j

(
tj,r′′(j)ψr′′(j)e

iaj,r′′(j) + tj,rψr′(j)e
−iaj,r

)
, (2.2)
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where r′′(j) denotes the neighboring site of r in the −j direction. The Euler-Lagrange
equations with respect to Φr and Ar correspond to the inhomogeneous Maxwell equations
on an anisotropic lattice,

ϵ∞ϵ0
∑

j

δjEj,r = −2ieKℏ (ψ∗
r∂tψr − c.c.)− 8e2KΦr|ψr|2, (2.3)

ϵ∞ϵ0∂tEj,r = −2etj,rdj
iℏ

(
ψ∗
r′(j)ψre

iaj,r − c.c.
)
+ ϵjklδk

sin(βl,rBl,r)

βl,rµ0

, (2.4)

where dx = dy = dab and dz = dc. The backward-difference operator δj acts on a
discretized field fr as δjfr = (fr − fr′′(j))/dj,r. Based on Eqs. (2.3) and (2.4), we identify
the charge density with

ρr = −2ieKℏ (ψ∗
r∂tψr − c.c.)− 8e2KΦr|ψr|2, (2.5)

and the supercurrent density with

Jj,r =
2etj,rdj
iℏ

(
ψ∗
r′(j)ψre

iaj,r − c.c.
)
. (2.6)

Multiplying Eq. (2.2) by ψ∗
r and then subtracting the complex conjugate, we find the

continuity equation
∂tρr +

∑

j

δjJj,r = 0. (2.7)

We see that the electric charge is conserved in our model.
In our simulations and the remainder of this work, we use the temporal gauge Φr ≡ 0

such that the Lagrangian reduces to

L =
∑

r

Kℏ|∂tψr|2 + µ|ψr|2 −
g

2
|ψr|4 −

∑

j,r

tj,r|ψr′(j) − ψre
iaj,r|2

+
∑

j,r

κj,rϵ∞ϵ0
2

E2
j,r −

κz,r
κj,rβ2

j,rµ0

[
1− cos

(
βj,rBj,r

)]
.

(2.8)

The equation of motion for the order parameter simplifies to

Kℏ2∂2t ψr = (µ− 4tab − ts − tw)ψr − g|ψr|2ψr +
∑

j

(
tj,r′′(j)ψr′′(j)e

iaj,r′′(j) + tj,rψr′(j)e
−iaj,r

)
,

(2.9)
and the expression for the charge density simplifies to

ρr = −2ieKℏ (ψ∗
r∂tψr − c.c.) . (2.10)

Furthermore, we add Langevin noise and damping terms to the equations of motions,
which can be written in the form

∂2t ψr =
1

Kℏ2
∂L
∂ψ∗

r

− γsc∂tψr + ξr, (2.11)

∂2tAj,r =
1

ϵ∞ϵ0

∂L
∂Aj,r

− γj,r∂tAj,r + ηj,r. (2.12)
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Here, γsc and γj,r are phenomenological damping constants of the superconducting order
parameter and the vector potential, respectively. The damping constants of the vector po-
tential are γx,r = γy,r = γab for in-plane junctions, γz,r = γs for intrabilayer junctions, and
γz,r = γw for interbilayer junctions. The Langevin noise terms ξr and ηr are temporally
uncorrelated and follow a Gaussian distribution with zero mean, representing thermal
fluctuations. We employ periodic boundary conditions and integrate the stochastic differ-
ential equations using Heun’s method. Details on the numerical implementation can be
found in Appendix A, where we also present the equations of motion and the noise terms
in more depth. In the temporal gauge, Gauss’s law is not implied by the Euler-Lagrange
equations. However, it has to be fulfilled and constitutes an additional constraint on the
solutions.

2.2 Ground state at zero temperature
The ground state of the Lagrangian (2.8) in the temporal gauge is defined by the static
solution of Eqs. (2.11) and (2.12),

∂L
∂ψ∗

r

= 0,
∂L
∂Aj,r

= 0 for j ∈ {x, y, z}. (2.13)

Note that the noise terms vanish at zero temperature. The conditions in Eq. (2.13) ensure
that the free energy of the superconducting state is minimized. This is achieved for the
spatially homogeneous configuration

ψr ≡ ψ0 =
√
µ/g, Ar ≡ 0. (2.14)

Making this choice, we completely fix the gauge of the order parameter and the electro-
magnetic field. In the following, we characterize the ground state in Eq. (2.14) at zero
temperature.

2.2.1 Collective excitations

It is instructive to consider a spatially homogeneous condensate of uncharged bosons first.
The free energy of the condensate depends only on the order parameter ψ,

F = −µ|ψ|2 + g

2
|ψ|4. (2.15)

As visualized in Fig. 2.2, the free energy has the shape of a Mexican hat, with a continuum
of ground states on its brim. Upon formation of the condensate, the order parameter
spontaneously picks a phase such that the U(1) symmetry is broken. There are two
elementary collective excitations from the ground state, indicated by the arrows in Fig. 2.2.
The Higgs mode corresponds to amplitude oscillations of the order parameter, and the
Goldstone mode corresponds to phase oscillations. The Higgs mode is gapped due to
the slope of the Mexican hat potential in the radial directions. Phases oscillations, on
the other hand, cost a vanishing amount of energy. Therefore, the Goldstone mode is
not gapped. In the case of a charged condensate, however, the phase couples to the
electromagnetic vector potential. The arising plasma modes are gapped because of the



2.2 Ground state at zero temperature 33

Figure 2.2: Free energy of a an uncharged condensate. The Higgs mode corresponds
to amplitude oscillations (red arrow) of the order parameter, and the Goldstone mode
corresponds to phase oscillations (blue arrow). This figure is adapted from Ref. [H1].

long-range Coulomb interaction between the charged particles. This is known as the
Anderson-Higgs mechanism [127–130].

Starting from the ground state in Eq. (2.14), we write a spatially homogeneous excita-
tion of the Higgs mode as ψr ≡ ψ0(1+h). We assume that h≪ 1 and linearize Eq. (2.11),
leading to the equation of motion

∂2t h+ γsc∂th+ ω2
Hh = 0. (2.16)

The Higgs frequency at zero momentum is ωH =
√

2µ/Kℏ2. The Higgs frequency of a
d-wave superconductor is approximated by twice the maximal superconducting gap [131].
In our idealized scenario, Higgs oscillations occur in the absence of any electromagnetic
field. There are two experimental methods to excite the Higgs mode. Firstly, one quenches
µ by suddenly heating up a superconductor with an intense laser pulse. Secondly, one
continuously drives a superconductor with a laser operating at terahertz frequencies. The
nonlinear coupling of the electromagnetic field to the Higgs mode and possible applications
will be discussed in Sections 3.1–3.3. Both methods have been utilized to detect the Higgs
mode in conventional superconductors and in cuprates [132–139].

We continue with a spatially homogeneous excitation of the in-plane vector potential,
i.e., Ax,r ≡ Ax. The corresponding electric field Ex = −∂tAx is polarized along the x axis,
while the magnetic field is zero. As the order parameter is spatially homogeneous, the
gauge-invariant phase along the x-axis junctions is θx = −2edAx/ℏ, corresponding to the
Josephson relation ∂tθx = 2edabEx/ℏ. We assume that |θx| ≪ 1 and neglect variations
of the amplitude of the order parameter. The dynamics then reduces to one equation of
motion,

ϵ∞ϵ0∂
2
tAx + γab∂tAx − Jx = 0, (2.17)

with the current Jx depending on θx. Using Eq. (2.6) and linearizing in θx, we can rewrite
Eq. (2.17) as

∂2t θx + γab∂tθx + ω2
abθx = 0, (2.18)

which describes damped in-plane plasma oscillations with zero momentum. The in-plane
plasma frequency is

ωab =

√
8tab|ψ0|2e2d2ab

ϵ∞ϵ0ℏ2
. (2.19)
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Next, we consider plasma excitations along the z axis. Consistent with the literature,
we refer to these excitations as Josephson plasma modes. At zero momentum, all the
intrabilayer junctions are characterized by the uniform gauge-invariant phase difference
θs = as + φ↓ − φ↑, and all the interbilayer junctions are characterized by the uniform
gauge-invariant phase difference θw = aw + φ↑ − φ↓. Here, as and aw denote the unitless
vector potential along intra- and interbilayer junctions, respectively. The argument of ψr

is φ↓ in the lower layer of each bilayer and φ↑ in the upper layer of each bilayer. According
to Eq. (2.10), variations of φ↓ and φ↑ correspond to charge fluctuations,

ρ↓,↑ = 4eKℏ|ψ0|2∂tφ↓,↑. (2.20)

Combining this relation with the continuity equation (2.7), we obtain

∂2t φ↓ =
Jw − Js

4eKℏ|ψ0|2
= −∂2t φ↑. (2.21)

In the following, we assume γsc = γs = γw ≡ γ and small plasma excitations. Including
dissipation, the equations of motion for the on-site phases read

∂2t φ↓ + γ∂tφ↓ +
Js − Jw

4eKℏ|ψ0|2
= 0, (2.22)

∂2t φ↑ + γ∂tφ↑ +
Jw − Js

4eKℏ|ψ0|2
= 0. (2.23)

The unitless vector potential follows the equations

∂2t as + γ∂tas +
2eds
ϵ∞ϵ0ℏ

Js = 0, (2.24)

∂2t aw + γ∂taw +
2edw
ϵ∞ϵ0ℏ

Jw = 0. (2.25)

Thus, we find the linearized equations of motion

∂2t θs + γ∂tθs + (1 + 2αs)Ω
2
sθs − 2αwΩ

2
wθw = 0, (2.26)

∂2t θw + γ∂tθw + (1 + 2αw)Ω
2
wθw − 2αsΩ

2
sθs = 0, (2.27)

where

Ωs,w =

√
8ts,w|ψ0|2e2dcds,w

ϵ∞ϵ0ℏ2
(2.28)

are the bare plasma frequencies of the interlayer junctions. The capacitive coupling con-
stants

αs,w =
ϵ∞ϵ0

8K|ψ0|2e2dcds,w
(2.29)

are of the order of 1 in cuprate superconductors [124,140,141]. To decouple the equations
of motions, we write the gauge-invariant interlayer phase differences in terms of new
variables θ1 and θ2,

θs = 2αw(θ1 + θ2), (2.30)

θw =

[(
1

2
+ αs

)
Ω2

s −
(
1

2
+ αw

)
Ω2

w +W

]
θ1
Ω2

w

+

[(
1

2
+ αs

)
Ω2

s −
(
1

2
+ αw

)
Ω2

w −W

]
θ2
Ω2

w

,

(2.31)
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(a) (b)

Figure 2.3: Sketch of the interlayer currents during excitation of the lower and upper
Josephson plasma mode, respectively. (a) Interbilayer currents dominate in the case of
the lower Josephson plasma mode. (b) Intrabilayer currents dominate in the case of the
upper Josephson plasma mode.

where

W =

√[(
1

2
+ αs

)
Ω2

s −
(
1

2
+ αw

)
Ω2

w

]2
+ 4αsαwΩ2

sΩ
2
w. (2.32)

From Eqs. (2.26) and (2.27) we obtain

∂2t θ1 + γ∂tθ1 + ω2
J1θ1 = 0, (2.33)

∂2t θ2 + γ∂tθ2 + ω2
J2θ2 = 0 (2.34)

for the time evolution of the Josephson plasma modes. The lower and upper Josephson
plasma frequency are

ω2
J1,J2 =

(
1

2
+ αs

)
Ω2

s +

(
1

2
+ αw

)
Ω2

w ∓W, (2.35)

respectively. For the typical case of Ωw ≪ Ωs, the upper Josephson plasma frequency
is approximately ωJ2 ≈ Ωs

√
1 + 2αs. The interlayer currents during excitation of the

Josephson plasma modes are sketched in Fig. 2.3.

2.2.2 Choice of parameters

In the remainder of this chapter, we consider a bilayer cuprate with Nz = 4 layers and
Nxy = 40 × 40 sites per layer such that the total number of sites is N = NxyNz = 6400.
The model parameters are specified in Table 2.1. The interlayer distances approximately
reproduce the spacing of the CuO2 layers in YBCO [6, 46]. Furthermore, we choose a
background permittivity of ϵ∞ = 4, which is realistic for cuprate superconductors [142].
In the following, we relate the remaining parameters of our model to physical observables
in the limit of zero temperature.

The ratio of the Ginzburg-Landau coefficients µ and g determines the Cooper pair
density |ψ0|2 = µ/g. According to Eq. (2.29), the capacitive coupling constants αw and
αs then depend only on the coefficient K, which is related to the Thomas-Fermi screening
length ΛTF in the copper oxide layers [140],

K =
ϵ0

8e2|ψ0|2Λ2
TF

. (2.36)
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Our parameter choice implies |ψ0|2 = 2 × 1021 cm−3, αw ≈ 1, and αs ≈ 2, which are
realistic values for cuprate superconductors [68, 141]. Recalling the expressions for the
bare plasma frequencies of the interlayer junctions,

Ωs,w =

√
8ts,w|ψ0|2e2dcds,w

ϵ∞ϵ0ℏ2
, (2.37)

we have Ωw/2π ≈ 0.9 THz and Ωs/2π ≈ 6.3 THz. The Josephson plasma frequencies
ωJ1/2π ≈ 1.0 THz and ωJ2/2π ≈ 14.1 THz follow from Eq. (2.35). These frequencies are
consistent with optical measurements on underdoped YBCO [90–92]. The Higgs frequency
ωH =

√
2µ/Kℏ2 and the in-plane plasma frequency

ωab =

√
8tab|ψ0|2e2d2ab

ϵ∞ϵ0ℏ2
(2.38)

also have a realistic order of magnitude [45, 65, 134, 139]; confer Table 2.2. As we will
see below, the in-plane parameters tab and dab determine not only the in-plane plasma
frequency but also the critical temperature in our simulations. For the given system size,
finite-temperature simulations are reliable only for samples with critical temperatures of
up to ∼ 30 K. We further mention that the in-plane London penetration depth,

λab =
c

ωab
√
ϵ∞

≈ 3240 Å, (2.39)

Table 2.1: Model parameters of the simulated bilayer cuprate.

K (meV−1) 2.9× 10−5

µ (meV) 1.0× 10−2

g (meV Å3
) 5.0

ϵ∞ 4

dab (Å) 15

ds (Å) 4

dw (Å) 8

tab (meV) 5.7× 10−1

ts (meV) 3.9× 10−2

tw (meV) 3.6× 10−4

γH/2π (THz) 1.0

γab/2π (THz) 7.0

γs/2π (THz) 1.2

γw/2π (THz) 0.4
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Table 2.2: Characteristic frequencies of the simulated bilayer cuprate.

ωH/2π (THz) 6.3

ωab/2π (THz) 73.7

ωJ1/2π (THz) 1.0

ωJ2/2π (THz) 14.1

is larger than the in-plane system size Lab = 40 dab = 600 Å. By comparison to the
Ginzburg-Landau theory, we identify the in-plane coherence length with

ξab = dab

√
tab
µ

≈ 113 Å. (2.40)

As mentioned, the coherence length is approximately one order of magnitude larger than
dab. The specified damping constants ensure that the Higgs and plasma resonances have
realistic widths [45,92,134].

2.2.3 Optical conductivity

First, we determine the in-plane conductivity of a bilayer cuprate in the spatially homo-
geneous ground state (2.14) at zero temperature. To this end, we recall Eq. (2.18) and
add a small probe current to the right-hand side of the equation,

∂2t θx + γab∂tθx + ω2
abθx =

2edab
ϵ∞ϵ0ℏ

J0 cos(ωprt). (2.41)

Taking the Fourier transform of Eq. (2.41) leads to

θx(ωpr) =
edabJ0

ϵ∞ϵ0ℏ(ω2
ab − ω2

pr − iγabωpr)
. (2.42)

As the Josephson relation ∂tθx = 2edabEx/ℏ implies

Ex(ωpr) =
−iℏωpr

2edab
θx(ωpr), (2.43)

we obtain the in-plane conductivity

σx(ωpr) =
J0

2Ex(ωpr)
= ϵ∞ϵ0γab + iϵ∞ϵ0

(
ω2
ab

ωpr

− ωpr

)
. (2.44)

To measure the in-plane conductivity numerically, we add the probe current to the
equation of motion for the x component of the vector potential,

∂2tAx,r =
1

ϵ∞ϵ0

∂L
∂Ax,r

− γab∂tAx,r −
J0
ϵ∞ϵ0

cos(ωprt). (2.45)

Once a steady state is reached, we record the spatially uniform electric field Ex for 20 ps
and compute its Fourier transform. Using this protocol, we find perfect agreement between
the simulation and the analytical prediction (2.44), as evidenced by Fig. 2.4.
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(a) (b)

Figure 2.4: In-plane conductivity of a bilayer cuprate. For both the real part in (a) and
the imaginary part in (b), the numerical results agree with the analytical prediction. In
the simulation, we use a probe strength of J0 = 500 kA cm−2.

Now, we turn to the out-of-plane conductivity of a bilayer cuprate at zero temperature.
In analogy to the in-plane case, we add a small probe current to the linearized equations
of motion (2.26) and (2.27),

∂2t θs + γ∂tθs + (1 + 2αs)Ω
2
sθs − 2αwΩ

2
wθw =

2eds
ϵ∞ϵ0ℏ

J0 cos(ωprt), (2.46)

∂2t θw + γ∂tθw + (1 + 2αw)Ω
2
wθw − 2αsΩ

2
sθs =

2edw
ϵ∞ϵ0ℏ

J0 cos(ωprt). (2.47)

Note that we assume γsc = γs = γw ≡ γ here. Furthermore, we recall Eq. (2.20),

ρ↓,↑ = 4eKℏ|ψ0|2∂tφ↓,↑. (2.48)

Combining this representation of the charge density with Gauss’s law, we obtain

∂tφ↓ =
ϵ∞ϵ0

4eKℏ|ψ0|2dc
(Es − Ew) = −∂tφ↑. (2.49)

Thus, we recover the generalized Josephson relations [124,143],

ℏ
2e
∂tθs = (1 + 2αs)dsEs − 2αwdwEw, (2.50)

ℏ
2e
∂tθw = (1 + 2αw)dwEw − 2αsdsEs. (2.51)

Next, we calculate the Fourier transforms of the equations of motion and the generalized
Josephson relations. This leads to

dsEs(ωpr) =
iωprJ0

16K|ψ0|2e2dc
αsC2 + αwC4

αsαw(C1C4 − C2C3)
, (2.52)

dwEw(ωpr) =
iωprJ0

16K|ψ0|2e2dc
αsC1 + αwC3

αsαw(C1C4 − C2C3)
, (2.53)

where

C1 = (1 + 2αs)
[
ω2
pr + iγωpr − (1 + 2αs)Ω

2
s

]
− 4αsαwΩ

2
w, (2.54)

C2 = 2αw

[
ω2
pr + iγωpr − (1 + 2αs)Ω

2
s

]
− 2αwΩ

2
w(1 + 2αw), (2.55)

C3 = 2αs

[
ω2
pr + iγωpr − (1 + 2αw)Ω

2
w

]
− 2αsΩ

2
s(1 + 2αs), (2.56)

C4 = (1 + 2αw)
[
ω2
pr + iγωpr − (1 + 2αw)Ω

2
w

]
− 4αsαwΩ

2
s. (2.57)
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Details of the calculation are included in Appendix B. The average electric field along the
z axis is

Ez =
dsEs + dwEw

ds + dw
, (2.58)

so that the out-of-plane conductivity reads

σz(ωpr) =
J0

2Ez(ωpr)
=
ϵ∞ϵ0
iωpr

(ω2
pr + iγωpr − ω2

J1)(ω
2
pr + iγωpr − ω2

J2)

ω2
pr + iγωpr − ω2

⊥
. (2.59)

This analytical result was also derived in Ref. [101]. The transverse Josephson plasma
frequency ω⊥ [117,143,144] is given by

ω2
⊥ =

1 + 2αs + 2αw

αs + αw

(
αsΩ

2
s + αwΩ

2
w

)
. (2.60)

To measure the out-of-plane conductivity numerically, we add the probe current to
the equation of motion for the z component of the vector potential,

∂2tAz,r =
1

ϵ∞ϵ0

∂L
∂Az,r

− γz,r∂tAz,r −
J0
ϵ∞ϵ0

cos(ωprt). (2.61)

Once a steady state is reached, we record the average electric field Ez for 100 ps and
compute its Fourier transform. In Fig. 2.5, we compare the out-of-plane conductivity of
the simulated bilayer cuprate to the analytical prediction (2.44). Note that the damping
constants in the simulation are γw/2π = 0.4 THz, γs/2π = 1.2 THz, and γsc/2π = 1 THz.
Thus, the analytical assumption γsc = γs = γw ≡ γ is not fulfilled. We use γ/2π = 1 THz
for the analytical prediction, which yields good agreement with the numerical results for
the imaginary part of the conductivity at all frequencies. Regarding the real part of the
conductivity, the analytical prediction notably deviates from the numerical results at low
frequencies. This is due to the overestimation of the damping constant γw. In Appendix B,
we present simulations of a bilayer cuprate with γsc/2π = γs/2π = γw/2π = 0.4 THz.
Using γ/2π = 0.4 THz for the analytical prediction, we indeed find excellent agreement
with the numerical results.

(a) (b)

Figure 2.5: Out-of-plane conductivity of a bilayer cuprate. (a) At low frequencies, the
analytical prediction for the real part of the conductivity deviates from the simulation.
This is due to simplifications in the derivation of the analytical prediction. (b) These
simplifications do not affect the analytical prediction for the imaginary part of the con-
ductivity. In the simulation, we use a probe strength of J0 = 10 kA cm−2.
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Qualitatively, the out-of-plane conductivity exhibits two characteristic features. Firstly,
its imaginary part diverges as 1/ωpr at low frequencies. Based on the analytical predic-
tion (2.44), we identify the low-frequency response

[Imσz(ωpr)]ωpr→0 =
ϵ∞ϵ0ω2

J1ω
2
J2

ωprω2
⊥

. (2.62)

Secondly, the imaginary part of the conductivity is characterized by a sharp edge at
ω⊥/2π ≈ 13.6 THz, corresponding to an absorption peak in the real part.

2.3 Fluctuating dynamics at nonzero temperature

Parts of this section are taken from Ref. [H5]. For the rest of this work, we indicate the
component of a vector field by a superscript when we write the site r = (l,m, n) explicitly.
The two lowest layers n = 0 and n = 1 form a bilayer.

2.3.1 Thermal phase transition

An ensemble of thermal states is generated as follows. The system is initialized in the
ground state and then evolves freely for 10 ps in the presence of dissipation and thermal
fluctuations, which are different for each trajectory. At nonzero temperature, the tunnel-
ing coefficients are renormalized due to phase fluctuations. The gauge-invariant intrabi-
layer phase differences between layers n = 0 and n = 1 are θsl,m = P(ϕl,m,0−ϕl,m,1+a

z
l,m,0),

and the gauge-invariant interbilayer phase differences between layers n = 1 and n = 2
are θwl,m = P(ϕl,m,1 − ϕl,m,2 + azl,m,1). The gauge-invariant in-plane phase differences are
θxl,m,n = P(ϕl,m,n − ϕl+1,m,n + axl,m,n) and θyl,m,n = P(ϕl,m,n − ϕl,m+1,n + ayl,m,n). Note that
the gauge-invariant phase differences are mapped onto the interval (−π, π] by the pro-
jection operator P(·). In the presence of thermal fluctuations, we determine the effective
tunneling coefficients

ts,eff = ts
〈
cos θsl,m

〉
, (2.63)

tw,eff = tw
〈
cos θwl,m

〉
, (2.64)

tab,eff = tab
〈
cos θxl,m,n

〉
. (2.65)

Each expectation value bases on an average over space, a time interval of 2 ps (200
measurements), and an ensemble of 100 trajectories. The temperature dependence of
the effective tunneling coefficients is shown in Fig. 2.6(a), indicating a crossover to a
disordered state at a critical temperature of Tc ∼ 30 K. Above this temperature, the
interbilayer tunneling is strongly suppressed while the effective tunneling coefficients ts,eff
and tab,eff decrease significantly slower than below Tc. The temperature dependence of
the superconducting order parameter is presented in Fig. 2.6(b). The amplitude of the
order parameter first decreases with increasing temperature and reaches a minimum of
|ψ|/|ψ0| ≈ 0.66 around Tc. Above Tc, it slowly increases with increasing temperature.
This behavior is consistent with a thermal order-disorder transition [145].

The critical temperature Tc depends on the in-plane tunneling coefficient tab as shown
in Fig. 2.7(a). To investigate this further, we recall the expression for the in-plane tun-
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(a) (b)

Figure 2.6: Thermal phase transition. (a) Temperature dependence of the effective
tunneling coefficients. (b) Temperature dependence of the order parameter. Each data
point is an ensemble average of 100 trajectories and the standard error is comparable to
the point size. This figure is adapted from Ref. [H5].

neling energy from Eq. (2.1),

Tab =
∑

r

tabV0
(
|ψr′(x) − ψre

iax,r|2 + |ψr′(y) − ψre
iay,r|2

)
, (2.66)

where V0 = d2abdc. Neglecting amplitude fluctuations, we can rewrite this as

Tab ≈
∑

r

2tabV0|ψ0|2 (2− cos θxr − cos θyr) . (2.67)

Equation (2.67) has the form of the two-dimensional XY model with an in-plane coupling
of Jab = 2tabV0|ψ0|2. However, the gauge-invariant phase differences couple to the electro-
magnetic field. Figure 2.7(b) indicates a linear relation between Tc and Jab. Remarkably,
the fitted slope kBTc/Jab = 0.87± 0.03 is comparable to the estimate kBTc/Jab ≈ π/2 for
a Kosterlitz-Thouless transition [87,88]. Despite the coupling to the electromagnetic field
and the presence of amplitude fluctuations, the phase transition in our model displays
similarity to the phase transition in the anisotropic three-dimensional XY model. While
the critical behavior of the anisotropic three-dimensionalXY model is that of the isotropic

(a) (b)

Figure 2.7: Influence of the in-plane tunneling coefficient tab on the phase transition. (a)
Temperature dependence of the effective interbilayer coupling for various tab as specified
in the legend. Each data point is an ensemble average of 100 trajectories and the standard
error is comparable to the point size. (b) Relation between the critical temperature and
the in-plane coupling. The data points are fitted by a straight line through the origin
with kBTc/Jab = 0.87± 0.03.
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three-dimensional XY model, the critical temperature approaches the Kosterlitz-Thouless
estimate for large anisotropy [80,84,146]. This scaling of the critical temperature is associ-
ated with the appearance of vortex loops. Experiments indicate that the critical behavior
of underdoped cuprate superconductors is indeed consistent with a three-dimensional XY
model [147,148]. Nevertheless, the nature of the superconducting phase transition in these
materials is not completely understood, particularly with regard to the role of magnetic
fluctuations [83, 149,150] and competing orders [96].

2.3.2 Vortex excitations

The thermal phase transition is accompanied by the appearance of vortex excitations. In
continuum, the phase winding of the order parameter along a closed path is given by

Φ =

∮
∇ϕ · dr =

∮ (
∇ϕ+

2e

ℏ
A

)
· dr −

∮
2e

ℏ
A · dr. (2.68)

In the simulation, we use the latter representation as it is based on quantities that directly
enter the Lagrangian. We define the vorticity of a single plaquette in the xy plane as

vl,m,n =
1

2π

(
axl,m,n + ayl+1,m,n − axl,m+1,n − ayl,m,n

)

− 1

2π

(
θxl,m,n + θyl+1,m,n − θxl,m+1,n − θyl,m,n

)
.

(2.69)

The vorticity can assume the values −1, 0, and +1. A vorticity of +1 corresponds to a
vortex, while a vorticity of −1 corresponds to an antivortex. In Fig. 2.8(a), we show a
snapshot of the vorticity in the lowest layer at a temperature of 36 K ∼ 1.2Tc. One can
see a strong tendency of vortices and antivortices to form pairs. This is highlighted by the
equal-time in-plane vortex correlation function displayed in Fig. 2.8(b). The definition of
the in-plane vortex correlation function is

Vab(xi, yj, t) =
⟨vl,m,n(0)vl+i,m+j,n(t)⟩

⟨v2l,m,n(0)⟩
. (2.70)

Here, we evaluate the ensemble average of 1000 trajectories. The accumulated probability
to find an antivortex on the nearest or next-nearest plaquettes of a vortex amounts to 94%.

(a) (b) (c)

Figure 2.8: Vortices in the xy plane at 36 K ∼ 1.2Tc. (a) Snapshot of the vorticity in
the lowest layer. (b) Equal-time in-plane vortex correlation function. (c) Time-resolved
in-plane vortex correlation function, where r2 = x2 + y2. This figure is adapted from
Ref. [H5].



2.3 Fluctuating dynamics at nonzero temperature 43

On larger length scales, in-plane vortex correlations are negligible. Next, we consider the
cumulative correlation function

Vab(r, t) =
∑

|(xi,yj)|=r

Vab(xi, yj, t), (2.71)

where the sum is taken over all (xi, yj) with x2i + y2j = r2. The time dependence of
the in-plane vortex correlations reveals that vortex-antivortex pairs annihilate on a time
scale of a few femtoseconds, as visible in Fig. 2.8(c). For comparison, we now present
an analytical estimate of the annihilation time. Following Refs. [3, 151], the energy of a
vortex-antivortex pair with separation r ≪ λab is

U(r) ≈ 2πJab ln(r/dab) = 2πtabV0|ψ0|2 ln(r/dab), (2.72)

implying the attractive force

F (r) ≈ −2πtabV0|ψ0|2
r

. (2.73)

The mass of a vortex was derived in Ref. [152],

mv ≈ πKℏ2dc|ψ0|2. (2.74)

Thus, we obtain

∂2t r ≈ −8tabdab
Kℏ2

(2.75)

for r ≈ dab and estimate the annihilation time as

τ =

√
Kℏ2
4tab

≈ 2.3 fs, (2.76)

which is consistent with the simulation. In addition to this fast decay, the in-plane vortex
correlations are characterized by weak temporal oscillations for small r.

(a) (b)

Figure 2.9: Temperature dependence of vortex excitations. (a) Number of vortices per
layer at different temperatures. Each layer contains an equal amount of antivortices.
(b) Relative amount of isolated vortices at different temperatures. Isolated vortices are
vortices without an antivortex on the nearest or next-nearest neighbor plaquettes. Each
data point is an ensemble average of 100 trajectories and the standard error is comparable
to the point size. The critical temperature is Tc ∼ 30 K.
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Figure 2.9(a) shows that the number of vortices is negligible for temperatures up to
15 K. While the number of vortices rises rapidly with temperature between 15 K and
30 K, it rises only slowly at temperatures above Tc ∼ 30 K. In Fig. 2.9(b), we show
the relative amount of isolated vortices as a function of temperature. An isolated vortex
is a vortex without an antivortex on the nearest or next-nearest neighbor plaquettes.
The percentage of isolated vortices grows below Tc and saturates at higher temperature.
This possibly indicates a transition from bound to unbound vortices akin to a Kosterlitz-
Thouless transition. The percentage of isolated vortices is limited by the areal density
of vortices. We also note that the in-plane system size of 60 nm is smaller than the in-
plane penetration depth λab ≈ 324 nm. Thus, magnetic interactions between vortices are
strongly suppressed in the simulation.

2.3.3 Plasma excitations

In the following, we investigate the temperature dependence of the plasma resonances. We
begin with the in-plane plasma resonance. To this end, we compute the power spectrum
of the supercurrent along the x axis at different temperatures. We average the x-axis
supercurrent over one bilayer,

Jx =
1

2Nxy

∑

l,m

2∑

n=1

Jx
l,m,n, (2.77)

where
Jx
l,m,n =

2etabdab
iℏ

(
ψ∗
l+1,m,nψl,m,ne

iaxl,m,n − c.c.
)
. (2.78)

For each trajectory, we record Jx(t) for 10 ps. We then compute the Fourier transform
Jx(ω) and determine the power spectrum ⟨|Jx(ω)|2⟩ based on an ensemble average of
1000 trajectories. As one can see in Fig. 2.10(a), the in-plane plasma resonance broadens
with increasing temperature. The peak frequency ωx,peak decreases monotonically with
increasing temperature below Tc, which is also visible in Fig. 2.10(b). Consistent with
the temperature dependence of the order parameter, the peak frequency slowly increases

(a) In-plane plasmon (b)

Figure 2.10: Temperature dependence of the in-plane plasma resonance. (a) Power spec-
trum of the supercurrent along the x axis at different temperatures. The spectral power
is normalized by the total power. (b) Temperature dependence of the peak frequency
and the thermal average of the in-plane plasma frequency. The critical temperature is
Tc ∼ 30 K. This figure is adapted from Ref. [H5].
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above Tc. We find that the temperature dependence of ωx,peak is well described by the
thermal average

ωab,th = ωab

√
⟨ψ∗

l+1,m,nψl,m,ne
iaxl,m,n + c.c.⟩

2|ψ0|2
, (2.79)

which accounts for the average renormalization of the in-plane coupling and the order
parameter due to thermal fluctuations.

To study the temperature dependence of the lower and upper Josephson plasma res-
onances, we compute the power spectra of the inter- and intrabilayer supercurrents anal-
ogously to ⟨|Jx(ω)|2⟩. We take the planar average of the interbilayer supercurrent,

Jw =
1

Nxy

∑

l,m

Jz
l,m,1, (2.80)

and the planar average of the intrabilayer supercurrent,

Js =
1

Nxy

∑

l,m

Jz
l,m,0, (2.81)

where
Jz
l,m,n =

2etz,rdc
iℏ

(
ψ∗
l,m,n+1ψl,m,ne

iazl,m,n − c.c.
)
. (2.82)

The temperature dependence of the power spectra ⟨|Jw(ω)|2⟩ and ⟨|Js(ω)|2⟩ is shown
in Fig. 2.11. The lower Josephson plasma resonance shifts to lower frequencies with
increasing temperature and vanishes around Tc. This is also observed in experiments
[92,118].

Similarly to the in-plane plasma resonance, the upper Josephson plasma resonance
broadens with increasing temperature and shifts to lower frequencies. In Figure 2.12(a),
the temperature dependence of the peak frequency ωs,peak is compared to that of the
thermal average

ωJ2,th = Ωs

√
⟨Cs⟩
|ψ0|2

+ αs

〈
Cs

|ψl,m,0|2
+

Cs

|ψl,m,1|2
〉
, (2.83)

(a) Lower plasmon (b) Upper plasmon

Figure 2.11: Temperature dependence of the Josephson plasma resonances. (a) Power
spectrum of the interbilayer supercurrent at different temperatures. (b) Power spectrum
of the intrabilayer supercurrent at different temperatures. In both panels, the spectral
power is normalized by the total power. The critical temperature is Tc ∼ 30 K. This
figure is adapted from Ref. [H5].
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(a) (b)

Figure 2.12: Temperature dependence of the upper Josephson plasma frequency. (a)
Temperature dependence of the peak frequency and the thermal average of the upper
Josephson plasma frequency ωJ2,th. (b) The discrepancy δω = ωs,peak−ωJ2,th has a similar
temperature dependence as the number of vortices per layer. The critical temperature is
Tc ∼ 30 K. This figure is adapted from Ref. [H5].

with
Cs =

1

2

(
ψ∗
l,m,1ψl,m,0e

iazl,m,0 + c.c.
)
. (2.84)

The definition in Eq. (2.83) is motivated by the zero-temperature expression ωJ2 ≈
Ωs

√
1 + 2αs. While ωs,peak and ωJ2,th approximately agree at temperatures below 20 K,

ωJ2,th is clearly smaller than ωs,peak at higher temperatures. Remarkably, the discrepancy
δω = ωs,peak − ωJ2,th follows a similar temperature dependence as the average density of
vortices, which is highlighted by Fig. 2.12(b). This suggests that the emergence of vortices
stabilizes the upper Josephson plasma frequency.

Now, we present an analytical model of the upper Josephson plasma mode including
thermal fluctuations and disorder [H5]. Parts of the calculation follow Ref. [153]. Assum-
ing that the bilayers are weakly coupled, we consider the following equation of motion for
the gauge-invariant intrabilayer phase θ(r, t),

∂2t θ + γ∂tθ +D(∇θ) + ω2
J2 sin θ = ξ, (2.85)

where D(∇θ) depends on the plasma dispersion and ξ(r, t) is Langevin noise. We assume
that Eq. (2.85) is solved for θ = θT at a given temperature T . Next, we add a spatially
uniform driving term f(t) to the right-hand side of Eq. (2.85),

∂2t θ + γ∂tθ +D(∇θ) + ω2
J2 sin θ = ξ + f. (2.86)

We then write the gauge-invariant intrabilayer phase as θ = θT + θf . Assuming θf to be
small, we find

∂2t θf + γ∂tθf +D(∇θf ) + ω2
J2 cos(θT )θf ≈ f. (2.87)

Splitting θf into zero-momentum and finite-momentum contributions,

θf (r, t) = Θf (t) + δθf (r, t), (2.88)

we obtain the two equations of motion

∂2tΘf + γ∂tΘf + ω2
J2⟨cos θT ⟩spΘf + ω2

J2 ⟨(cos θT − ⟨cos θT ⟩sp) δθf⟩sp ≈ f, (2.89)

∂2t δθf + γ∂tδθf +D(∇δθf ) + ω2
J2⟨cos θT ⟩spδθf + ω2

J2 (cos θT − ⟨cos θT ⟩sp)Θf ≈ 0, (2.90)
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where ⟨·⟩sp denotes a spatial average over the entire superconductor. Next, we rewrite δθf
in terms of its Fourier components,

δθf (r, t) =

∫
dω

2π

1

N/2

∑

k

δθf (k, ω) e
i(k·r−ωt). (2.91)

The solution of Eq. (2.90) is then

δθf (k, ω) ≈ − ω2
J2

−ω2 − iγω + ω2
J2,T +D(k)

∫
dν

2π
FT (k, ν)Θf (ω − ν), (2.92)

with ωJ2,T = ωJ2⟨cos θT ⟩sp. The function

FT (k, ν) =
(
cos θT − ⟨cos θT ⟩sp

)
(k, ν) (2.93)

is related to the disorder of the gauge-invariant intrabilayer phase at a given temperature.
Inserting Eq. (2.92) into Eq. (2.89) yields

f(ω) ≈
(
−ω2 − iγω + ω2

J2,T

)
Θf (ω)

− ω4
J2

∫
dν1dν2
(2π)2

1

(N/2)2

∑

k

FT (k, ν1)FT (−k, ν2)Θf (ω − ν1 − ν2)

−(ω − ν1)2 − iγ(ω − ν1) + ω2
J2,T +D(k)

.
(2.94)

Taking the ensemble average of Eq. (2.94), we obtain the general expression for the sus-
ceptibility of the upper Josephson plasma mode at zero momentum,

χ(ω) =
Θf (ω)

f(ω)
=

1

−ω2 − iγω + Ω2(ω)
, (2.95)

where

Ω2(ω) = ω2
J2,T + ω4

J2

∫
dν

2π

1

(N/2)2

∑

k

⟨|FT (k, ν)|2⟩ens
(ω − ν)2 + iγ(ω − ν)− ω2

J2,T −D(k)
. (2.96)

According to the fluctuation-dissipation theorem [154, 155], the power spectrum of the
intrabilayer current follows the relation

⟨|Js(ω)|2⟩ ∼ ⟨|Θf (ω)|2⟩ ∼ Imχ(ω). (2.97)

Before we proceed with the calculation of the susceptibility, we consider the disper-
sion relations of the Josephson plasma modes in a bilayer cuprate. The dispersion of
the Josephson plasma modes is nearly flat for propagation along the z axis. However,
the dispersion of these longitudinal modes acquires a quadratic term if the direction of
propagation has a small in-plane component kxy =

√
k2x + k2y ≪ |kz|. We also assume

|kz| ≫ ωab
√
ϵ∞/c such that the dispersion relations for the longitudinal modes [123, 156]

can be written as

ω2
J1,J2(kxy, kz) ≈ ω2

J1,J2 +
k2xy
k2z

ω2
ab. (2.98)

The dispersion relations for transverse propagation were derived in Refs. [143,144],

ω2
J1,J2(kxy, 0) =

1

2

(
ω2
J1 + ω2

J2 +
c2k2xy
ϵ∞

)
∓
√

1

4

(
ω2
J1 + ω2

J2 +
c2k2xy
ϵ∞

)2

− ω2
J1ω

2
J2 −

c2k2xyω
2
⊥

ϵ∞
.

(2.99)
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(a) |kz| ≫ kxy (b) kz = 0 (c)

Figure 2.13: Propagating Josephson plasma modes at zero temperature. (a) Disper-
sion for longitudinal propagation. (b) Dispersion for transverse propagation. Note that
kxy/2π ≥ L−1

ab ≈ 1.7 ·105 cm−1 in the simulation. (c) Interlayer currents during excitation
of the transverse Josephson plasma mode, corresponding to the lower branch in (b) for
large kxy.

In Figs. 2.13(a) and 2.13(b), we show the dispersion of the Josephson plasma modes for
longitudinal and transverse propagation, respectively, using the parameters specified in
Section 2.2.2. While the Josephson plasma modes retain their character for longitudinal
propagation with kxy ≪ |kz|, their character changes qualitatively for transverse prop-
agation with kxy ≫ ωJ2

√
ϵ∞/c. The upper plasma mode attains photonic character as

the dispersion merges with the light cone. The lower plasma mode hybridizes with the
transverse Josephson plasma mode as ωJ1(kxy, 0) converges to the frequency ω⊥, which is
slightly smaller than ωJ2 according to Eq. (2.60). As depicted in Fig. 2.13(c), the trans-
verse plasma mode is characterized by intra- and interbilayer currents oscillating with a
comparable amplitude and a phase shift of π; see also Ref. [144].

Strictly speaking, the dispersion relations in Eqs. (2.98) and (2.99) are only valid in the
limit of zero temperature. Nonetheless, we also employ them for temperatures around Tc,
replacing the fundamental plasma frequencies by their thermal averages, e.g., ωJ2 → ωJ2,T .
We consider only the out-of-plane momenta kz = 0 and kz = π/2dc, which are the only
out-of-plane momenta included in our simulation. Furthermore, the dispersion relations
for transverse propagation simplify to

ωJ1(kxy, 0) ≈ ω⊥,T , (2.100)
ωJ2(kxy, 0) ≈ ckxy/

√
ϵ∞ (2.101)

for the in-plane momenta included in the simulation. For longitudinal propagation, only
the upper Josephson plasma mode delivers a significant contribution to Ω2(ω) since the
lower Josephson plasma mode is primarily associated with oscillations of the gauge-
invariant interbilayer phase. As we will see below, the spectral weight of the disorder
function FT (k, ν) is concentrated on small in-plane momenta and small frequencies. Thus,
we can neglect the photonic mode in the case of transverse propagation. The transverse
Josephson plasma mode, on the other hand, is relevant for our discussion since its fre-
quency is close to ωJ2,T .

In the following, we analyze the effects of longitudinal and transverse disorder. We
begin with transverse disorder. As mentioned, the dispersion of the transverse Josephson



2.3 Fluctuating dynamics at nonzero temperature 49

plasma mode is flat, so that the general expression in Eq. (2.96) takes the form

Ω2(ω) = ω2
J2,T + ω4

J2

∫
dν

2π

1

(N/2)2

∑

kx,ky

⟨|FT (kx, ky, 0, ν)|2⟩ens
(ω − ν)2 + iγ(ω − ν)− ω2

⊥,T

. (2.102)

The disorder function rapidly decreases with increasing kxy as evidenced by Fig. 2.14(a);
see also Appendix C. Note that FT (k = 0, ν) = 0. Therefore, we use the approximation

⟨|FT (kx, ky, 0, ν)|2⟩ens =
{
|F⊥,T (ν)|2 for 2π/Lab ≤ kxy ≤ kmax,

0 else.
(2.103)

Converting the momentum sum to an integral and performing the integration, we find

Ω2(ω) = ω2
J2,T +

(k2maxL
2
ab − 4π2)ω4

J2

πN2

∫
dν

2π

|F⊥,T (ν)|2
(ω − ν)2 + iγ(ω − ν)− ω2

⊥,T

. (2.104)

Figure 2.14(a) also shows that |F⊥,T (ν)|2 decays for frequencies well below ωJ2,T ∼ ωJ2,th.
Therefore, we consider the limit of static disorder,

|F⊥,T (ν)|2 = 2πF 2
⊥,T δ(ν). (2.105)

Thus, we obtain

Ω2(ω) = ω2
J2,T +

S⊥(k2maxL
2
ab − 4π2)ω4

J2

ω2 + iγω − ω2
⊥,T

, (2.106)

where S⊥ = F 2
⊥,T/πN

2 quantifies the strength of transverse disorder. Corresponding to
the numerically obtained disorder spectra in Fig. 2.14, we choose a momentum cutoff of
kmax = 4π/Lab. Based on the numerical results for ωJ2,th and ωab,th at 36 K ∼ 1.2Tc, we use
ωJ2,T = 0.5ωJ2 and ωab,T = 3ωJ2 in the following. Furthermore, we use γ = 0.1ωJ2 for the
damping constant. In Figs. 2.14(b) and 2.14(c), the imaginary part of the susceptibility
is displayed for varying disorder strength S⊥ and two different values of the transverse

(a) (b) (c)

Figure 2.14: Influence of transverse disorder on the susceptibility of the upper Josephson
plasma mode. (a) Fourier spectrum of transverse disorder for various in-plane momenta
(kx, ky) specified in units of 2π/Lab. The data is obtained from an ensemble average of
1000 trajectories at 36 K ∼ 1.2Tc. (b) Analytical solution for the imaginary part of the
susceptibility, assuming ω⊥,T = 0.9ωJ2,T . (c) Analytical solution for the imaginary part
of the susceptibility, assuming ω⊥,T = 0.3ωJ2,T .
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plasma frequency ω⊥,T . If the transverse plasma frequency is slightly below ωJ2,T , as
in Fig. 2.14(b), the susceptibility of the upper Josephson plasma mode reveals three
different regimes of transverse disorder. For small disorder strength, the maximum of
Imχ(ω) is slightly asymmetric such that the peak is slightly blue-shifted with respect to
the perfectly ordered case. For intermediate disorder strength, the maximum of Imχ(ω)
splits into two peaks. For large disorder strength, Imχ(ω) exhibits only a significantly
blue-shifted peak. By contrast, the imaginary part of the susceptibility always exhibits a
clearly dominant, blue-shifted maximum if the transverse plasma frequency is well below
ωJ2,T as in Fig. 2.14(c). The blue-shift of the maximum grows with increasing disorder. In
Appendix C, we demonstrate that the analytical solution for the susceptibility does not
change qualitatively when the finite spectral width of |F⊥,T (ν)|2 is taken into account.

Next, we consider longitudinal disorder. The general expression in Eq. (2.96) takes
the form

Ω2(ω) = ω2
J2,T + ω4

J2

∫
dν

2π

1

(N/2)2

∑

kx,ky

⟨|FT (kx, ky, π/2dc, ν)|2⟩ens
(ω − ν)2 + iγ(ω − ν)− ω2

J2,T − 4ω2
ab,Tk

2
xyd

2
c/π

2
.

(2.107)
Figure 2.15(a) shows that longitudinal disorder has a similar dependence on kxy and ν as
transverse disorder. Therefore, we use the approximation

⟨|FT (kx, ky, π/2dc, ν)|2⟩ens =
{
2πF 2

∥,T δ(ν) for kxy ≤ kmax,

0 for kxy > kmax.
(2.108)

Converting the momentum sum to an integral and performing the integration, we find

Ω2(ω) = ω2
J2,T − π2S∥L2

abω
4
J2

4d2cω
2
ab,T

ln

(
ω2 + iγω − ω2

max

ω2 + iγω − ω2
J2,T

)
, (2.109)

where the cutoff frequency

ω2
max,T = ω2

J2,T +
4ω2

ab,Tk
2
maxd

2
c

π2
(2.110)

is determined by the momentum cutoff and S∥ = F 2
∥,T/πN

2 quantifies the strength of
longitudinal disorder. As before, we use γ = 0.1ωJ2, ωJ2,T = 0.5ωJ2, ωab,T = 3ωJ2, and
kmax = 4π/Lab. This implies ωmax ≈ 1.1ωJ2,T . In Figs. 2.15(b) and 2.15(c), the imaginary
part of the susceptibility is displayed for varying disorder strength S∥ and two different
values of the cutoff frequency ωmax. For both values of the cutoff frequency, we find three
regimes of longitudinal disorder, which are qualitatively similar to the case of transverse
disorder. However, the asymmetry of the maximum is inverted for weak disorder, such
that the peak is slightly red-shifted with respect to the perfectly ordered case. This
inverted asymmetry is due to the fact that the plasma frequencies of the longitudinal
mode are larger than ωJ2,T while the transverse plasma frequency is smaller than ωJ2,T .

Finally, we combine transverse and longitudinal disorder, leading to

Ω2(ω) = ω2
J2,T +

S⊥(k2maxL
2
ab − 4π2)ω4

J2

ω2 + iγω − ω2
⊥,T

− π2S∥L2
abω

4
J2

4d2cω
2
ab,T

ln

(
ω2 + iγ∥ω − ω2

max

ω2 + iγ∥ω − ω2
J2,T

)
, (2.111)
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(a) (b) (c)

Figure 2.15: Influence of longitudinal disorder on the susceptibility of the upper Joseph-
son plasma mode. (a) Fourier spectrum of longitudinal disorder for various in-plane mo-
menta (kx, ky) specified in units of 2π/Lab. The data is obtained from an ensemble average
of 1000 trajectories at 36 K ∼ 1.2Tc. (b) Analytical solution for the imaginary part of
the susceptibility, assuming ωmax = 1.1ωJ2,T . (c) Analytical solution for the imaginary
part of the susceptibility, assuming ωmax = 1.2ωJ2,T .

where we introduced γ∥ as the damping constant of the longitudinal mode. Our simu-
lations indicate that the strength of transverse disorder is comparable to that of longi-
tudinal disorder. Therefore, we utilize S⊥ = S∥ ≡ S here. In Figs. 2.16(a) and 2.16(b),
we show the imaginary part of the susceptibility of the upper Josephson plasma mode
using γ∥ = γ = 0.1ωJ2, ωJ2,T = 0.5ωJ2, ωab,T = 3ωJ2, and kmax = 4π/Lab. For these pa-
rameters, we find a qualitatively similar dependence of the susceptibility on the disorder
strength as in the case of purely longitudinal disorder. Comparing these results with the
simulation, one notes that the power spectrum of the plane-averaged intrabilayer current
exhibits only one visible peak at all simulated temperatures. A possible explanation for
this observation is that there is a sharp jump of the disorder strength from the weakly
disordered regime to the strongly disordered regime. Thus, the regime of intermediate
disorder might correspond to a very narrow temperature region which is not captured
by our simulations. The numerical results in Fig. 2.12 indeed feature a steep rise of the
discrepancy between the peak frequency ωs,peak and ωJ2,th. However, we find a disorder

(a) (b) (c)

Figure 2.16: Analytical solution for the imaginary part of the susceptibility of the
upper Josephson plasma mode, including transverse and longitudinal disorder with the
same disorder strength S. (a) Analytical solution for ω⊥,T = 0.9ωJ2,T and γ∥ = γ.
(b) Analytical solution for ω⊥,T = 0.3ωJ2,T and γ∥ = γ. (c) Analytical solution for
ω⊥,T = 0.3ωJ2,T and γ∥ = 5 γ.
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strength of S ∼ 10−4 at 36 K ∼ 1.2Tc, corresponding to the regime of intermediate
disorder strength. We evaluate

S =
F 2
⊥,T

πN2
=

1

πN2

∫
dν

2π
|FT (2π/Lab, 0, 0, ν)|2 (2.112)

from the numerically obtained disorder spectrum shown in Fig. 2.14(a).
An alternative scenario is presented in Fig. 2.16(c). In this scenario, the longitudinal

plasma mode is overdamped such that the susceptibility is mainly affected by transverse
disorder. The imaginary part of the susceptibility then exhibits only one pronounced
maximum, which is blue-shifted with respect to the perfectly ordered case. The blue-shift
grows monotonically with increasing disorder. Furthermore, the significant broadening of
the maximum of Imχ(ω) is consistent with the simulation.

In both scenarios, the susceptibility of the upper Josephson plasma mode is modified
by scattering with a continuum of finite-momentum modes, which is conceptually related
to a Fano resonance [157]. The broadening of the plasma resonance can be regarded
as inhomogeneous broadening. To conclude our analysis, we elaborate on the relation
between disorder and vortices. For this purpose, we consider a superconducting bilayer in
the ground state, in which the gauge-invariant intrabilayer phase is θ(x, y) ≡ 0. Then, we
add a single vortex-antivortex pair to one of the two layers. We assume that the vortex
has the coordinates (0, 0) while the antivortex is located at (0, δy). Thus, the spatial
profile of the gauge-invariant intrabilayer phase is modified to

θ(x, y) = arctan
(y
x

)
− arctan

(
y − δy

x

)
≈ arctan

(
x · δy
x2 + y2

)
(2.113)

for x, y ≫ δy. This induces the disorder

F (x, y) ≈ cos θ − 1 =
1√

1 + (x · δy)2/(x2 + y2)2
− 1 ≈ −1

2

(
x · δy
x2 + y2

)2

. (2.114)

2.3.4 Optical conductivity

Now, we investigate how vortices affect the in-plane conductivity. To measure the in-
plane conductivity, we add a spatially homogeneous probe current Jext = J0 cos(ωprt)
to the equation of motion for Ax,r as described in Section 2.2.3. Once a steady state is
reached, we record the average electric field Ex = 1

N

∑
rEx,r and the average current Jx,tot

along the x axis for 4 ps. The average current Jx,tot includes superconducting, normal
and capacitive contributions,

Jx,tot = Jx,sup + Jx,nor + Jx,cap. (2.115)

The superconducting current is given by

Jx,sup =
1

N

∑

r

2etabdab
iℏ

(
ψ∗
r′(x)ψre

iaxr − c.c.
)
. (2.116)

The normal current is defined as

Jx,nor =
1

N

∑

r

ϵ∞ϵ0γabEx,r. (2.117)
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(a) (b)

Figure 2.17: In-plane conductivity at different temperatures. (a) Real part. (b) Imag-
inary part. The probe strength is J0 = 500 kA cm−2, and the error bars indicate the
standard errors of the ensemble averages. The critical temperature is Tc ∼ 30 K. This
figure is adapted from Ref. [H5].

The capacitive current is given by

Jx,cap =
1

N

∑

r

ϵ∞ϵ0∂tEx,r. (2.118)

From the steady-state dynamics of Ex and Jx,tot, we evaluate the in-plane conductivity
σx(ωpr) = Jx,tot(ωpr)/Ex(ωpr) for 100–1000 trajectories and take the ensemble average. We
demonstrate in Appendix B that the linear response is probed for J0 = 500 kA cm−2. In
Fig. 2.17, the in-plane conductivity is shown for different temperatures. At 3 K, the real
part of the in-plane conductivity is relatively flat and its magnitude is close to the zero-
temperature value ϵ∞ϵ0γab. We note that the numerical convergence of Reσx is very slow
for small frequencies at low temperature. The imaginary part of the in-plane conductivity
exhibits the characteristic 1/ωpr behavior of a superconductor at 3 K. The prefactor of
this divergence is slightly reduced with respect to zero temperature, consistent with the
reduction of the in-plane plasma frequency. At higher temperatures, we observe a steep
rise of the real part of σx for small frequencies, which is less pronounced at 15 K than
at 27 K and 36 K. While we find an approximate 1/ωpr behavior of the imaginary part
of σx at 15 K and 27 K, this feature of superconductivity does not seem to be present
at 36 K. This indicates that the appearance of vortices causes a transition to a resistive
state as proposed to occur in superconducting films [158]. The underlying mechanism
is the unbinding of vortex-antivortex pairs due to an applied current. The vortices and
antivortices are exposed to a Magnus force and drift in opposite directions, perpendicular
to the current. The drift of the vortices leads to phase slips along the current direction,
giving rise to an electric field.

Next, we measure the out-of-plane conductivity at nonzero temperature. For this
purpose, we add a spatially homogeneous probe current Jext = J0 cos(ωprt) to the equation
of motion for Az,r as described in Section 2.2.3. Once a steady state is reached, we record
the average electric field Ez and the average current Jz,tot along the z axis for 20 ps. The
average electric field is given by

Ez =
1

N

∑

r

dz,rEz,r

dc
(2.119)
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(a) (b)

Figure 2.18: Out-of-plane conductivity at 3 K ∼ 0.1Tc, compared to the out-of-plane
conductivity at zero temperature. (a) Real part. (b) Imaginary part. The probe strength
is J0 = 10 kA cm−2, and the error bars indicate the standard errors of the ensemble
averages.

In analogy to the in-plane case, the average current Jz,tot includes superconducting, normal
and capacitive contributions,

Jz,tot = Jz,sup + Jz,nor + Jz,cap, (2.120)

with

Jz,sup =
1

N

∑

r

2etz,rdz,r
iℏ

(
ψ∗
r′(z)ψre

iazr − c.c.
)
, (2.121)

Jz,nor =
1

N

∑

r

ϵ∞ϵ0γz,rdz,rEz,r

dc
, (2.122)

Jz,cap =
1

N

∑

r

ϵ∞ϵ0dz,r∂tEz,r

dc
. (2.123)

From the steady-state dynamics of Ez and Jz,tot, we evaluate the out-of-plane conductivity
σz(ωpr) = Jz,tot(ωpr)/Ez(ωpr) for 1000 trajectories and take the ensemble average. As the
numerical convergence of σz is generally slow, we present results only for a relatively low
temperature of 3 K ∼ 0.1Tc in Fig. 2.18. One can see that the real part of σz does not
significantly change compared to zero temperature. The imaginary part of σz still exhibits
a 1/ωpr behavior with a slightly reduced prefactor, corresponding to the reduction of the
lower plasma frequency. In the following chapter, we discuss among other things how the
out-of-plane conductivity is modified in various scenarios of driving.



Chapter 3

Light-induced nonequilibrium
phenomena in cuprate superconductors

In this chapter, we discuss light-induced nonequilibrium phenomena in cuprate supercon-
ductors based on our semiclassical method. Each section summarizes one of the author’s
publications [H1–H4].

3.1 Higgs time crystal

Time crystals are physical systems in a particular dynamical phase of matter that was
first proposed in 2012 [159,160]. Originally, a time crystal was defined as a closed many-
body system that spontaneously breaks time-translation symmetry in its ground state.
This symmetry-broken state also has to be robust against perturbations. However, it was
shown that time crystalline states do not exist in closed quantum systems in equilibrium
[161, 162]. Since then, two modified variants of time crystals have been proposed and
experimentally demonstrated, namely discrete time crystals [163–167] and dissipative time
crystals [168–170]. In the latter class of time crystals, dissipation stabilizes a state that
spontaneously breaks continuous time symmetry. A discrete time crystal is a periodically
driven system that does not respond with the driving frequency or an integer multiple of
the driving frequency. Instead, the response is subharmonic, i.e., the response frequency
is smaller than the driving frequency. Discrete time-crystalline states can be induced in
closed and dissipative systems. Reviews on time crystals can be found in Refs. [171,172].

In Ref. [H1], we propose to induce a time-crystalline state in a cuprate superconductor
by optical driving. As this discrete time crystal is enabled by the nonlinear coupling
between the Higgs mode and a Josephson plasma mode, we call it a Higgs time crystal.
We identify the Higgs time crystal based on a minimal model of a light-driven monolayer
cuprate. Then, we demonstrate that a Higgs time crystal can also be induced in a bilayer
cuprate. The robustness of the subharmonic response against thermal fluctuations is
confirmed by finite-temperature simulations.

First, we consider a monolayer cuprate that is periodically driven by an electric field
polarized along the z axis as depicted in Fig. 3.1. We take the driving to be spatially
uniform as the wavelength of the terahertz drive (> 10 µm) is significantly larger than the
system size (< 0.1 µm). At zero temperature, the superconducting order parameter and
the z-axis electric field then perform a spatially homogeneous motion, while the in-plane
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Edr (t   )

Figure 3.1: Light-driven monolayer cuprate. The electric field Edr(t) = E0 cos(ωdrt) is
polarized along the z axis, driving Josephson plasma oscillations. This figure is adapted
from Ref. [H2].

components of the electric field and all components of the magnetic field vanish. As the
superconductor is spatially homogeneous, we can take the order parameter to be real and
expand it around its ground state ψ0, i.e., ψ = ψ0(1 + h). We use the gauge-invariant
interlayer phase θz to describe the motion of the z-axis electric field Ez = ℏ∂tθz/2edz,
where dz is the interlayer distance. Thus, the dynamics governed by Eqs. (2.11) and
(2.12) simplifies to the two-mode model

∂2t θz + γz∂tθz + ω2
J(1 + h)2 sin θz = jdr cos(ωdrt), (3.1)

∂2t h+ γsc∂th+ ω2
H

(
h+

3

2
h2 +

1

2
h3
)
+ 2αω2

J(1 + h)(1− cos θz) = 0, (3.2)

where γz is the damping constant of the gauge-invariant interlayer phase and α is the
capacitive coupling constant. The fundamental frequencies are the Higgs frequency ωH

and the Josephson plasma frequency ωJ. The optical drive with the frequency ωdr couples
directly to the Josephson plasma mode and enters as a driving current on the right-
hand side of Eq. (3.1). The relation between the current amplitude jdr and the electric
field strength E0 is jdr = 2edzωdrE0/ϵ∞ℏ. We then perform numerical simulations of
the coupled equations (3.1) and (3.2), using the parameters ωH/2π = 6.3 THz, ωJ/2π =
16 THz, γsc/2π = γz/2π = 0.5 THz, α = 0.33, dz = 6 Å, and ϵ∞ = 1. Based on the
dynamics in the steady state, we obtain the dynamical phase diagram shown in Fig. 3.2(a).
In the normal phase, θz oscillates at the driving frequency and h oscillates at twice the
driving frequency. The latter is a consequence of the nonlinear coupling between the
Higgs mode and the Josephson plasma mode. To see this, we neglect all nonlinear terms
in Eqs. (3.1) and (3.2) except for the lowest order coupling between the two modes,

∂2t θz + γz∂tθz + ω2
Jθz + 2ω2

Jθzh = jdr cos(ωdrt), (3.3)
∂2t h+ γsc∂th+ ω2

Hh+ αω2
Jθ

2
z = 0. (3.4)

For ωdr = ωH/2, the Higgs mode is resonantly excited as one can see in Fig. 3.2(b). The
underlying nonlinear process is visualized in Fig. 3.2(c). For large field strengths, we
identify a heating regime, which is characterized by the suppression of superconducting
order. The tongue-like shape of the heating regime is associated with the Josephson
plasma resonance. The tip of the heating tongue is slightly red-shifted from ωJ due to the
presence of nonlinearities and dissipation in the dynamics; see also Ref. [173].

The main finding of Ref. [H1] is the emergence of a time-crystalline phase for driving
frequencies of ωdr ≈ ωH + ωJ and intermediate driving strengths. This Higgs time crystal
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(a) (b) ωdr = ωH/2

ωH/2

ωH/2

ωH

ωdr = ωH + ωJ

ωJ + ωH

ωJ

ωH

1

(c)

Figure 3.2: Response of a monolayer cuprate to periodic driving by an electric field
Edr(t) = E0 cos(ωdrt) polarized along the z axis. (a) Dynamical phase diagram at zero
temperature. The time crystalline (TC) phase is encoded in red. (b) Response of the
order parameter to the optical drive for the Higgs resonance at ωdr = ωH/2 (diamond),
the time crystal (cross), and an off-resonantly driven superconductor (circle). The driving
parameters are indicated by the symbols in (a). (c) Resonant excitation of the Higgs mode
by two different nonlinear processes. This figure is adapted from Ref. [H1].

is enabled by a sum resonance of the Higgs mode and the Josephson plasma mode, which
can also be derived analytically from Eqs. (3.3) and (3.4). As shown in Fig. 3.2(c), the
optical drive resonantly excites the Higgs mode and the Josephson plasma mode at the
same time. Thus, the amplitude of the order parameter mainly oscillates at the Higgs
frequency ωH in the time-crystalline phase. Furthermore, the amplitude of the Josephson
plasma oscillations at the Josephson plasma frequency ωJ is comparable to the amplitude
of the Josephson plasma oscillations at the driving frequency ωdr. We emphasize that the
Higgs time crystal originates from the same cubic coupling term ∼ θ2zh in the Lagrangian
as the Higgs resonance for ωdr = ωH/2. In general, the subharmonic response of the Higgs
mode and the Josephson plasma mode is incommensurate to the drive.

A Higgs time crystal can also be induced in a bilayer cuprate superconductor. Here,
it is enabled by a sum resonance of the Higgs mode and the upper Josephson plasma
mode. Importantly, we demonstrate the robustness of the subharmonic response against
thermal fluctuations by simulating a bilayer cuprate with 48 × 48 × 4 lattice sites in
Ref. [H1]. Unlike the monolayer example above, the simulated bilayer cuprate has realistic
parameters in comparison to known materials. At zero temperature, the Higgs frequency
is ωH/2π ≈ 6.3 THz and the upper Josephson plasma frequency is ωJ2/2π ≈ 14.3 THz.
As discussed in Section 2.3, the Josephson plasma frequency decreases with increasing
temperature. Remarkably, the Higgs frequency increases with increasing temperature in
our simulations, which is scrutinized in the Supplemental Material of Ref. [H1]. The
critical temperature of the simulated bilayer cuprate is Tc ∼ 30 K.

In Fig. 3.3(a), we show the power spectrum of the zero-momentum amplitude of the
order parameter for different driving frequencies at 3 K. All power spectra exhibit a sharp
peak at twice the driving frequency and a second peak near the Higgs frequency. How-
ever, the power spectrum is qualitatively unique for ωdr/2π = 22.4 THz, corresponding
to the sum of the Higgs frequency ω∗

H and the upper Josephson plasma frequency ω∗
J2 at
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(a) (b) (c)

Figure 3.3: Higgs time crystal in a bilayer cuprate at nonzero temperature. (a) Power
spectrum of the amplitude of the order parameter for different driving frequencies at
3 K ∼ 0.1Tc. The driving strength is E0 = 200 kV cm−1. (b) Corresponding power
spectra of the supercurrent along the z axis. In both panels, we show power spectra at
zero momentum, averaged over 100 trajectories. The spectral power is normalized by
the total power. (c) Temperature dependence of the optimal time-crystalline fraction,
normalized by its value at T = 0. The optimal crystalline fraction at a given temperature
is determined by the maximum height of the blue-detuned side peak in the power spectrum
of the z-axis supercurrent. This figure is adapted from Ref. [H1].

3 K. In this case, the peak near the Higgs frequency is significantly more pronounced,
and additional sharp peaks at 2ωdr − ω∗

H and 2ωdr − 2ω∗
H emerge. The collective sub-

harmonic response of the order parameter at a temperature of ∼ 0.1Tc confirms that a
time-crystalline state is induced by driving a sum resonance of the Higgs mode and the
upper Josephson plasma mode. The emergence of the time-crystalline state gives rise to
pronounced side peaks at ωdr ± ω∗

H in the power spectrum of the zero-momentum super-
current along the z axis, as evidenced by Fig. 3.3(b). Thus, we identify an experimentally
relevant signature of the Higgs time crystal.

Next, we investigate the temperature dependence of the Higgs time crystal in Ref [H1].
For this purpose, we introduce the time-crystalline fraction as the height of the blue-
detuned side peak in the power spectrum of the z-axis supercurrent. We evaluate the
time-crystalline fraction for a variety of driving parameters at different temperatures and
identify the optimum at each temperature. The temperature dependence of the optimal
time-crystalline fraction is presented in Fig. 3.3(c). As expected, the time-crystalline
fraction decreases with increasing temperature. Nonetheless, the subharmonic response
of the bilayer cuprate is robust against thermal fluctuations for temperatures up to ∼
0.2Tc. Furthermore, we demonstrate that the subharmonic response is robust against
perturbations of the drive and observable for pulsed driving with a pulse duration of
∼ 2 ps. Therefore, a Higgs time crystal can possibly be realized and detected in state-of-
the-art experiments using techniques from Refs. [92,97,111].

3.2 Higgs mode mediated enhancement of interlayer
transport

In Ref. [H2], we present a mechanism for light-enhanced interlayer transport in monolayer
cuprate superconductors which is mediated by the Higgs mode. This enhancement of
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interlayer transport is achieved by periodic driving with an electric field that is polarized
along the z axis and whose frequency is blue-detuned from the Higgs frequency. To derive
this, we consider the simplified two-mode model from the previous section and add a
probe current,

∂2t θz + γz∂tθz + ω2
Jθz + 2ω2

Jθzh = jdr cos(ωdrt) + jpr cos(ωprt), (3.5)
∂2t h+ γsc∂th+ ω2

Hh+ αω2
Jθ

2
z = 0. (3.6)

Due to the θ2z term in Eq. (3.6), the amplitude of the order parameter oscillates at the
frequencies 2ωdr, 2ωpr, and ωdr ± ωpr. Thus, Eq. (3.5) takes the form of a parametrically
driven oscillator. The coupling of amplitude oscillations at ωdr±ωpr to Josephson plasma
oscillations at ωdr renormalizes θz(ωpr). A perturbative expansion of h and θz shows that
θz(ωpr) is reduced if the driving frequency is blue-detuned from the Higgs frequency. The
renormalization of θz(ωpr) is particularly strong for ωdr ≈ ωH as the amplitude oscillations
at ωdr±ωpr are close to resonance in this case. Note that we assume the probing frequency
ωpr to be very small. Our perturbative expansion leads to the analytical prediction

ωprσz(ωpr) =
iϵ∞ϵ0jpr
2θz(ωpr)

≈ iϵ∞ϵ0ω2
Jω

2
H(ω

2
dr − ω2

H + iγscωdr)
[
(ω2

dr − ω2
J)

2 + γ2zω
2
dr

]

ω2
H(ω

2
dr − ω2

H + iγscωdr)
[
(ω2

dr − ω2
J)

2 + γ2zω
2
dr

]
+ αω2

Jj
2
dr(ω

2
dr − 3ω2

H + iγscωdr)
.

(3.7)

for the z-axis conductivity in the limit of ωpr → 0. In general, one has to distinguish
three different cases regarding Eq. (3.7): ωJ < ωH, ωH < ωJ <

√
3ωH, and

√
3ωH < ωJ.

All these cases are discussed in Ref. [H2]. Here, we focus on the case of ωJ < ωH, which
is realized in known monolayer cuprates, such as La2−xSrxCuO4 (LSCO) [174, 175]. We
choose the parameters ωJ/2π = 2 THz, ωH/2π = 6 THz, γsc/2π = γz/2π = 0.5 THz,
α = 1, dz = 10 Å, and ϵ∞ = 4.

Motivated by Eqs. (1.3) and (1.4), we define the superconducting weight

D = Im [πωprσz(ωpr)]ωpr→0 . (3.8)

In equilibrium, the superconducting weight is given by D0 = πϵ∞ϵ0ω2
J. Figure 3.4(a)

displays the superconducting weight in the driven state as a function of the driving fre-
quency for a fixed driving strength. While the superconducting weight is enhanced for
driving frequencies that are blue-detuned from the Higgs frequency, it is reduced for red-
detuned driving frequencies. The analytical prediction is in qualitative agreement with
numerical simulations of Eqs. (3.1) and (3.2), which include all nonlinearities of the lat-
tice gauge model. In the simulations, we determine the superconducting weight based
on the z-axis conductivity at ωpr/2π = 0.05 THz. At this frequency, the imaginary part
of σz approaches a 1/ωpr behavior as exemplified by Fig. 3.4(b). Remarkably, the en-
hancement of interlayer transport reaches nearly 50% in this example. One can see in
Fig. 3.4(c) that the corresponding driving parameters belong to the regime of maximal
enhancement. In general, the interlayer transport is enhanced for driving frequencies
that are slightly blue-detuned from the Higgs frequency, while it is diminished on the
red-detuned side. Increasing the driving strength amplifies the suppression/enhancement
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(a) (b) (c)

Figure 3.4: Higgs mode mediated enhancement of interlayer transport in a light-driven
monolayer cuprate at zero temperature. (a) Dependence of the superconducting weight
on the driving frequency, normalized by its equilibrium value. The driving strength is
fixed at E0 = 100 kV cm−1 as indicated by the dotted line in (c). (b) Imaginary part of
the z-axis conductivity multiplied by the probing frequency. The driving parameters are
ωdr = 1.05ωH and E0 = 400 kV cm−1 as indicated by the cross in (c). (c) Superconducting
weight as a function of the driving frequency and the driving strength. The gray area
marks the heating regime. The results in (b) and (c) are obtained numerically. This figure
is adapted from Ref. [H2].

effects and additionally renormalizes the resonance frequencies, which is inherent to non-
linear oscillators [173]. The renormalization of the Higgs frequency results in the bending
of the enhancement regime towards lower driving frequencies for stronger driving. The
enhancement regime is limited by the onset of heating for large driving strengths.

For driving frequencies below ωH, the strongest suppression of interlayer transport
occurs close to the Josephson plasma frequency. Strikingly, there is a second suppression
regime for driving frequencies of ωdr ≈ ωH + ωJ. In fact, this regime corresponds to the
time-crystalline phase discussed in the previous section, demonstrating that the emergence
of a Higgs time crystal does not depend on the ratio of the Higgs frequency and the
Josephson plasma frequency. In particular, we also find a Higgs time crystal for realistic
parameters of a monolayer cuprate. Furthermore, we note that the sum frequency ωH+ωJ

(a) (b)

Figure 3.5: Dependence of Higgs mode mediated enhancement of interlayer transport
on the damping constants. (a) γH is varied while γJ/2π = 0.5 THz is fixed. (b) γJ is
varied while γH/2π = 0.5 THz is fixed. The driving strength is E0 = 300 kV cm−1. This
figure is adapted from Ref. [H2].
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bounds the enhancement regime with respect to the driving frequency. This upper bound
originates from higher order terms that are not included in our analytical calculation.
According to the analytical prediction for the z-axis conductivity in Eq. (3.7), we expect
an upper bound of ωdr =

√
3ωH for the enhancement regime.

We continue our analysis in Ref. [H2] by varying the damping constants in the sim-
ulation. Considering higher values of γsc is particularly interesting because the Higgs
mode is strongly damped in cuprate superconductors [134,135,176,177]. Figure 3.5 shows
that the enhancement of interlayer transport significantly decreases for larger values of
γsc while stronger damping of the Josephson plasma mode has a negligible effect. Finite-
temperature simulations indicate Higgs mode mediated enhancement of interlayer trans-
port for temperatures up to ∼ 0.1Tc; see Supplemental Material of Ref. [H2]. Therefore,
we propose to experimentally study this effect at low temperature first. We emphasize
that the enhancement mechanism presented in this section is broadly applicable to cuprate
superconductors because it does not rely on the existence of suitable phonon modes. The
main limiting factor is the damping of the Higgs mode.

3.3 Parametric amplification of terahertz radiation

In Ref. [H3], we show how the nonlinear coupling of a plasma mode and another collective
mode can be exploited for parametric amplification of terahertz radiation. Specifically,
we demonstrate gain reflectivity for two examples. Firstly, we consider the nonlinear
coupling between the Higgs mode and the Josephson plasma mode in a monolayer cuprate.
Secondly, we consider the nonlinear coupling between a phonon mode and the upper
Josephson plasma mode in a bilayer cuprate.

As in the previous sections, we assume that the monolayer cuprate is periodically
driven by an electric field polarized along the z axis. We simulate the fully nonlinear
two-mode model given by Eqs. (3.1) and (3.2) with the parameters ωJ/2π = 2 THz,

(a) (b)

Drive, 𝜔dr

Probe,
𝜔pr = 𝜔dr -𝜔H

𝜔H

𝜔pr

(c)

Figure 3.6: Parametric amplification of terahertz radiation in a light-driven mono-
layer cuprate, mediated by the Higgs mode. (a) Real part of the z-axis conductivity
for ωdr < ωH. The driving frequency is ωdr/2π = 4.8 THz and the driving strength is
E0 = 150 kV cm−1. (b) Real part of the z-axis conductivity for ωdr > ωH. The driving fre-
quency is ωdr/2π = 7.2 THz and the driving strength is E0 = 300 kV cm−1. (c) Schematic
illustration of the amplification process corresponding to the negative conductivity in (b).
The drive induces Josephson plasma oscillations, which are down-converted to the probe
frequency by simultaneous excitation of the Higgs mode. This figure is adapted from
Ref. [H3].
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(a) (b)

Figure 3.7: Higgs mode mediated gain reflectivity in a light-driven monolayer cuprate.
The reflectivity at normal incidence is shown for two choices of the driving strength: (a)
E0 = 200 kV cm−1, (b) E0 = 300 kV cm−1. The driving frequencies are indicated in (a).
Gray lines correspond to the undriven case. The probe strength is Epr = 1 kV cm−1. This
figure is adapted from Ref. [H2].

ωH/2π = 6 THz, γz/2π = 0.25 THz, γsc/2π = 1 THz, α = 1, dz = 10 Å, and ϵ∞ = 4. The
real part of the z-axis conductivity is displayed for two different sets of driving parameters
in Figs. 3.6(a) and 3.6(b). For a driving frequency that is red-detuned from the Higgs
frequency, the conductivity exhibits a pronounced absorption peak at ωpr ≈ ωH − ωdr.
In this case, the Higgs mode is resonantly excited due to the mixing of the probe with
Josephson plasma oscillations induced by the drive. This process is enabled by the cubic
coupling Lagrangian θ2zh and leads to parametric attenuation of the probe. When the
driving frequency is blue-detuned from the Higgs frequency, the probe is parametrically
amplified as Josephson plasma oscillations at the driving frequency are down-converted
to the probing frequency by simultaneous excitation of the Higgs mode, which serves as
an idler mode. Thus, we find a minimum of the conductivity at ωpr ≈ ωdr − ωH. In
the example shown in 3.6(b), parametric amplification dominates over absorption due to
quasiparticles, resulting in a negative conductivity.

In the following, we focus on blue-detuned driving and compute the reflectivity at
normal incidence from the optical conductivity using the Fresnel equation

R(ω) =

∣∣∣∣
1− n(ω)

1 + n(ω)

∣∣∣∣
2

. (3.9)

The refractive index n(ω) = ±
√
ϵz(ω) is a function of the dielectric permittivity ϵz(ω) =

ϵ∞+ iσz(ω)/ϵ0ω. The sign of the refractive index for a given frequency is fixed by causal-
ity [178–180]. We choose the positive sign unless both the real part and the imaginary
part of ϵz(ω) are negative. Thus, incident radiation penetrates the bulk at frequencies
above the Josephson plasma edge around ωJ/

√
2 while it is screened from the bulk at

lower frequencies. In fact, the reflectivity is larger than 1 at probe frequencies below
the Josephson plasma edge as one can see in Fig. 3.7. This is a direct consequence of
the negative conductivity for driving frequencies blue-detuned from the Higgs frequency.
Naturally, the enhancement of the reflectivity is more pronounced for the larger driving
strength in Fig. 3.7(b) than for the smaller driving strength in Fig. 3.7(a). The am-
plification mechanism is particularly effective if the detuning ωdr − ωH approaches the
Josephson plasma edge. The latter is the case for ωdr/2π = 7.2 THz. We note that the
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Figure 3.8: Parametric amplification of terahertz radiation in a light-driven bilayer
cuprate, mediated by a phonon mode. (a) The optical drive resonantly excites a phonon
mode, represented by the red atoms moving along the z axis. (b) Reflectivity at normal
incidence in the presence of driving at T = 5 K ∼ 0.2Tc. The driving frequency is
ωdr/2π = 14.8 THz, and the modulation amplitudes are Ms = 0.2 and Mw = 0.8. The
upper Josephson plasma frequency is ω∗

J2 ≈ 13.8 THz at this temperature. The error
bars indicate the standard errors of the ensemble averages. The probe strength is Epr =
30 kV cm−1. (c) Schematic illustration of the amplification process corresponding to the
gain reflectivity in (b). This figure is adapted from Ref. [H3].

driving causes a small reduction of the time-averaged order parameter, resulting in a shift
of the Josephson plasma edge to a slightly lower frequency.

Next, we put forth a phonon mediated mechanism for parametric amplification of
terahertz radiation in Ref. [H3]. To this end, we simulate a bilayer cuprate with 40×40×4
lattice sites at nonzero temperature. We assume that the bilayer cuprate has an infrared-
active phonon mode whose resonance frequency is slightly blue-detuned from the upper
Josephson plasma frequency. Furthermore, we assume that the interlayer tunneling is
modulated by resonantly driving the phonon mode as depicted in Fig. 3.8(a). We include
the phononic excitation in our model by making the interlayer tunneling coefficients time-
dependent [101,102], i.e.,

ts,w → ts,w [1±Ms,w cos(ωdrt)] (3.10)

in the limit of large wavelengths. We then evaluate the ensemble average of the z-axis
conductivity as described in Section 2.3.4 and determine the reflectivity via the Fresnel
equation. In Fig. 3.8(b), we show that phonon mediated driving induces a reflectivity
of R > 1 in the low-terahertz regime despite the presence of thermal broadening at a
temperature of ∼ 0.2Tc. Here, the cubic coupling ∼ tz,rθ

2
z,r of the tunneling coefficients

and the plasmonic degrees of freedom enables the parametric amplification of terahertz
radiation. Remarkably, this parametric amplification is effective for probe frequencies
below the lower Josephson plasma edge around ωJ1/

√
2 while the upper Josephson plasma

mode serves as an idler mode. In principle, the lower Josephson plasma mode can also
act as an idler mode. However, this is not useful for the amplification of radiation with
frequencies of ∼ 1 THz since it requires the driving frequency to be in the same regime.
We note that phonon mediated amplification of terahertz radiation is feasible for probe
strengths up to 100 kV cm−1 according to our simulations. In addition to gain reflectivity,
we observe a parametric enhancement of the imaginary part of σz at low frequencies,
which was previously discussed in Refs. [101, 102]. We will investigate this enhancement
of interlayer transport more closely in the following section.
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R3 = 1

R1, T1
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Figure 3.9: Setup of a terahertz amplifier using a light-driven superconductor (SC) with
reflectivity R2 > 1 as a gain medium. This figure is adapted from Ref. [H3].

A key feature of both amplification mechanisms presented in this section is that the
enhancement of the reflectivity is controlled by the driving frequency and the driving
strength. We emphasize that the phonon mediated amplification mechanism requires the
existence of a suitable phonon mode. In many cases, parametric amplification of terahertz
radiation is limited by the fact that the penetration depth of the drive is smaller than the
penetration depth of the probe [90, 91, 113]. To reduce the mismatch of the penetration
depths, we recommend to choose a large incident angle for the probe beam while orienting
the pump beam parallel to the surface normal. The general idea to exploit the nonlinear
coupling of light to collective modes can also be applied to other materials. To achieve
gain reflectivity, one should consider only materials with a reflectivity of nearly 1 in
equilibrium.

We suggest to first test our proposal using pump pulses with a duration of ∼ 1 ps.
If a significant net amplification of terahertz radiation is observed, one could aim to
implement a terahertz amplifier as sketched in Fig. 3.9. In this setup, a light-driven
superconductor with reflectivity R2 = R(ωpr) > 1 serves as one of three mirrors forming
an optical resonator. The probe enters the resonator through a partially transparent
mirror with reflectivity R1 < 1 and transmissivity T1 > 0. Assuming the third mirror
to have perfect reflectivity R3 = 1, the probe is amplified for R2 > 1/R1. Above this
threshold, the gain saturates once the probe strength enters the nonlinear response regime,
where R(ωpr) decreases. The realization of such a terahertz amplifier requires to overcome
several technical challenges. Most importantly, the duration of the pump pulse has to be
extended to ∼ 1 ns as in Ref. [111] so that the probe pulse can travel several times around
the optical resonator. This would allow for a terahertz amplifier in pulsed operation,
which is also advantageous with respect to surface heating. Ultimately, it should be tested
experimentally whether there are materials and conditions for which a terahertz amplifier
can be realized. The development of a terahertz amplifier is relevant since the intensity
of existing sources of coherent terahertz radiation [181–185] limits their application for
spectroscopy and imaging [186–190].

3.4 Parametric control of Meissner screening

In Ref. [H4], we investigate the Meissner effect in a parametrically driven superconductor.
Specifically, we consider periodic driving of the z-axis tunneling, which has been proposed
as a possible mechanism for light-enhanced interlayer transport in YBCO [101,102]. First,
we confirm that the superconducting weight in the z-axis conductivity is enhanced if the
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(a) (b)

Figure 3.10: Renormalization of z-axis transport in a parametrically driven supercon-
ductor. (a) Imaginary part of the z-axis conductivity. (b) Imaginary part of the z-axis
conductivity multiplied by the probe frequency. The dashed lines indicate the analyti-
cal prediction for the superconducting weight, which corresponds to the zero-frequency
limit of Im [πωprσz(ωpr)]. The z-axis tunneling coefficient is driven with the frequency
ωdr = 0.9ωpl in the red-detuned case and with the frequency ωdr = 1.1ωpl in the blue-
detuned case. The driving strength is M = 0.3 in both cases. The plasma frequency is
ωpl/2π = 100 THz and the sample height is 100 µm. This figure is adapted from Ref. [H4].

driving frequency is blue-detuned from the z-axis plasma frequency. We then examine
the response to an applied magnetic field analytically and numerically. Our calculations
demonstrate a reduction of the Meissner screening for blue-detuned driving, which is in
contrast to the enhancement of z-axis transport. For red-detuned driving, on the other
hand, the Meissner screening displays a tendency to be enhanced while the z-axis transport
is reduced.

Due to computational constraints, we focus on an isotropic superconductor with
plasma frequency ωpl. Additionally, we restrict our analysis to zero temperature and
neglect spatial variations along the y axis. In the simulation, we employ open boundary
conditions in the x and z direction, which enables us to impose a magnetic field at the
surfaces of the superconductor. The superconductor is driven by a periodic modulation
of the tunneling coefficients of all z-axis junctions,

tz → tz [1 +M cos(ωdrt)] . (3.11)

In Fig. 3.10(a), we show the effect of this parametric driving on the imaginary part of
the z-axis conductivity. While the imaginary part of σz is reduced for ωdr < ωpl at probe
frequencies ωpr ≲ |ωpl−ωdr|, the imaginary part of σz is enhanced for ωdr > ωpl. According
to Ref. [101], the imaginary part of the z-axis conductivity approaches a 1/ωpr behavior
at low probe frequencies also in the driven state. The superconducting weight is predicted
as

D = D0

(
1−

M2ω2
pl(ω

2
pl − ω2

dr)

2(ω2
pl − ω2

dr)
2 + 2γ2zω

2
dr

)
, (3.12)

where D0 = πϵ∞ϵ0ω2
pl is the superconducting weight in equilibrium. This prediction is in

good agreement with our numerical results for M = 0.3 as highlighted by Fig. 3.10(b).
In the blue-detuned case of ωdr = 1.1ωpl, the superconducting weight is enhanced by
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Figure 3.11: Analytical results for the Meissner screening in a parametrically driven
superconductor. (a) A static magnetic field is applied at the surface of a parametrically
driven superconductor, inducing the emission of electromagnetic waves. The magnetic
field is oriented along the y axis. (b) Spatial dependence of the DC magnetic field for
M = 0.3 and two different red-detuned driving frequencies. (c) Spatial dependence of the
DC magnetic field for M = 0.3 and two different blue-detuned driving frequencies. In (b)
and (c), the equilibrium magnetic field Beq = Bext exp(−x/λ) is subtracted. Panels (b)
and (c) are adapted from Ref. [H4].

approximately 17%. In the red-detuned case of ωdr = 0.9ωpl, the superconducting weight
is reduced by approximately 19%. We note that the numerical results slightly deviate
from the predicted 1/ωpr behavior due to the insufficiently small probe frequencies and
the finite system size.

We now turn to the response of a parametrically driven superconductor to an applied
static magnetic field. In Ref. [H4], we derive an analytical prediction for the magnetic field
inside a parametrically driven superconductor. Specifically, we apply a weak DC magnetic
field Bext at the surface and allow for the emission of electromagnetic waves induced by
the driving. The considered geometry is depicted in Fig. 3.11(a). Our prediction is
valid close to the center of the surface. In general, parametric driving has two effects
on the DC magnetic field inside the superconductor. Firstly, the London penetration
depth λ = c/ωpl

√
ϵ∞ is slightly reduced. This renormalization alone would imply an

enhanced screening. However, the driving also induces an additional contribution to the
DC magnetic field, which is screened similarly to an AC magnetic field in equilibrium,
The penetration depth of this contribution is approximately

λ(ωdr) =
λ√

1− ω2
dr/ω

2
pl

, (3.13)

implying less effective screening for driving frequencies that are red-detuned from the
plasma frequency. Taking both contributions to the DC magnetic field into account, the
Meissner screening close to the surface is slightly enhanced for red-detuned driving, as
visible in Fig. 3.11(b). Further away from the surface, the slower decaying contribution
dominates such that the DC magnetic field is larger than in the absence of driving. The
length scale of enhanced screening grows with decreasing detuning ωpl − ωdr. In the case
of blue-detuned driving, the second contribution to the DC magnetic field is not screened
but oscillates in space. Thus, the Meissner screening is generally lessened for blue-detuned
driving. This is evidenced by Fig. 3.11(c).
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Figure 3.12: Numerical results for the Meissner screening in a parametrically driven
superconductor. (a) Setup of the lattice gauge simulation with a fixed magnetic field at
the surface. (b) Attenuation length for ωdr = 1.1ωpl and different driving strengths. (c)
Attenuation length for M = 0.3 and different driving frequencies. The gray line indicates
the equilibrium value λ = 477 nm. In panels (b) and (c), the dashed red line indicates
the analytical solution for the attenuation length. The system size is 12× 12 µm2, except
for the two largest driving frequencies in (c), where converged results are obtained for a
system size of 16× 16 µm2. This figure is adapted from Ref. [H4].

In our simulations, we impose a weak DC magnetic field B = Bextŷ at the surface of
the superconductor as shown in Fig. 3.12(a), neglecting the emission of electromagnetic
waves. We also determine the analytical solution for this boundary condition and compare
it our numerical results below. We find that the analytical solution is not affected in the
case of blue-detuned driving. However, the modified boundary condition suppresses the
enhancement regime for red-detuned driving.

In Ref. [H4], we simulate the Meissner effect in an isotropic superconductor with a
plasma frequency of ωpl/2π = 100 THz. In the presence of driving, the magnetic field
inside the superconductor oscillates with the driving frequency. While the magnetic field
is screened from the bulk for red-detuned driving, blue-detuned driving stimulates the
transmission of electromagnetic waves into the bulk. Nevertheless, the magnitude of the
magnetic field inside the superconductor is strongly suppressed compared to the surface
field Bext even in this case. To evaluate the DC magnetic field, we average the magnetic
field over 1 ps with a detection rate of 5 PHz. We then characterize the Meissner screening
in the driven state by the attenuation length Rx, which is defined by the condition By(x =
Rx) = Bext exp(−1). In equilibrium, the attenuation length equals the London penetration
depth, i.e., Rx = λ. The attenuation length Rx grows monotonically with increasing
driving amplitude as shown in Fig. 3.12(b). The numerical results show good agreement
with the analytical solution for M ≤ 0.3. The dependence of Rx on the driving frequency
is displayed in Figure 3.12(c). As mentioned, the Meissner screening is reduced also for
red-detuned driving if the emission of electromagnetic waves is surpressed. We note that
the screening of AC magnetic fields with frequencies of ∼ 1 THz is consistent with the
screening of a DC magnetic field; see Supplemental Material of Ref. [H4]. Furthermore, we
simulate an anisotropic superconductor whose in-plane plasma frequency is six times as
large as the z-axis plasma frequency. We find a similar renormalization of the attenuation
length as in the isotropic case, consistent with the fact that our analytical prediction is
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also valid for anisotropic superconductors. Therefore, we expect that our results apply to
cuprate superconductors, at least qualitatively.

Our analysis suggests that the enhancement of the low-frequency conductivity is nat-
urally accompanied by a suppression of the Meissner effect when the z-axis tunneling
is periodically driven with a frequency blue-detuned from the z-axis plasma frequency.
While the admixture of the plasma resonance into the low-frequency response provides an
enhanced conductivity, it results in a reduced Meissner screening due to the transmission
of unscreened plasma waves into the superconductor.



Chapter 4

Conclusion

In this dissertation, we have presented a newly developed semiclassical method for the
simulation of cuprate superconductors, based on the Ginzburg-Landau theory of super-
conductivity. Using this method, we have analyzed the fluctuating dynamics in a bilayer
cuprate at nonzero temperature and discussed several light-induced nonequilibrium phe-
nomena in monolayer and bilayer cuprates. An important feature of our method is the
possibility to implement various driving mechanisms and to simulate the response to
electric and magnetic probes.

Our method explicitly captures the coupled dynamics of the superconducting order
parameter and the electromagnetic field on a layered lattice. The coupling to other de-
grees of freedom, such as quasiparticles and the ionic lattice, is included in the form of
dissipation and thermal fluctuations. After characterizing the superconducting ground
state of a bilayer cuprate at zero temperature, we investigate its fluctuating dynamics at
nonzero temperature. Thermal fluctuations reduce the phase coherence of the supercon-
ducting state at low temperature and cause a phase transition to a resistive state at high
temperature. This resistive state is characterized by a strong suppression of the inter-
bilayer tunneling of Cooper pairs and the emergence of vortex excitations. Remarkably,
the upper Josephson plasma frequency decreases slower than the thermal average of the
intrabilayer coupling. While analytical calculations indicate two possible mechanisms for
a stabilization of the upper Josephson plasma frequency due to vortex-induced disorder,
a complete understanding of its temperature dependence requires further research.

The resistive state that we find constitutes a possible scenario of the pseudogap regime
in underdoped cuprates. The dependence of the critical temperature on the in-plane
coupling seems to follow the scaling of a Kosterlitz-Thouless transition. Investigating the
phase transition in more detail might be an interesting direction for future work. To this
end, it would be desirable to simulate larger systems. Increasing the system size would
allow to vary the in-plane coupling over a larger range and to explore the influence of
magnetic fluctuations. At this stage, magnetic interactions between vortices are strongly
suppressed as the system size is smaller than the London penetration depth.

In our discussion of light-induced nonequilibrium phenomena, we focus on temper-
atures well below Tc. Specifically, we consider the periodic driving of a cuprate super-
conductor by an electric field polarized along the crystalline c axis, implementing two
different scenarios. In the first scenario, the electric field directly couples to the supercon-
ducting order parameter. In the second scenario, the electric field resonantly couples to an
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infrared-active phonon mode, resulting in a periodic modulation of the coupling between
the superconducting layers. In both cases, the properties of the driven state critically
depend on the driving strength and the driving frequency.

Driving a superconductor via the nonlinear coupling of the electric field to the order
parameter gives rise to Higgs oscillations. We propose to induce a time-crystalline state
in a mono- or bilayer cuprate by driving a sum resonance of the Higgs mode and the
Josephson plasma mode or the upper Josephson plasma mode, respectively. We iden-
tify the emergence of two pronounced side peaks in the power spectrum of the c-axis
supercurrents as a possible experimentally accessible signature of this Higgs time crystal,
which is visible also for pulsed driving. It remains an open question whether a Higgs
time crystal can be observed experimentally since the Higgs mode is strongly damped in
cuprate superconductors. Another noteworthy aspect is that the time-crystalline state
emerges for optical driving with photon energies above the superconducting gap. Thus,
pair-breaking is a competing process, which is not fully captured by our method. The
importance of pair breaking depends on the microscopic nature of the superconducting
state in the cuprates. The creation of a Higgs time crystal is favored by the scenario of
preformed pairs in underdoped cuprates, with the pseudogap corresponding to an effective
pairing energy.

Based on the nonlinear coupling between the electric field and the Higgs mode, we
put forth a mechanism for the enhancement of interlayer transport in monolayer cuprates,
which is qualitatively different from previous proposals [98–105]. We demonstrate that
the superconducting weight in the c-axis conductivity is enhanced when the frequency of
the optical driving is slightly blue-detuned from the Higgs frequency. The enhancement
effect is limited by the damping of the Higgs mode, and we recommend to first test our
proposal in experiments at low temperature.

Furthermore, we show how the nonlinear coupling of a plasma mode to another col-
lective mode can be exploited for parametric amplification of terahertz radiation. We
present two specific protocols to implement this general proposal. The first protocol
applies to monolayer cuprates and exploits the nonlinear coupling to the Higgs mode.
The second protocol applies to bilayer cuprates and exploits the nonlinear coupling to
an infrared-active phonon mode that modulates the interlayer coupling. Here, paramet-
ric amplification of terahertz radiation is possible only if the resonance frequency of the
phonon mode is slightly blue-detuned from the upper Josephson plasma frequency. We
also propose a design of a terahertz amplifier using a light-driven superconductor as a gain
medium. The realization of such a terahertz amplifier is associated with several technical
challenges and its feasibility remains an open question.

Parametric driving of a cuprate superconductor via a suitable phonon mode also en-
ables an enhancement of interlayer transport as reported in Ref. [101, 102]. This was
proposed as a possible explanation for the observation of light-enhanced transport in
YBCO [90,91]. We confirm that the superconducting weight in the c-axis conductivity is
enhanced when the driving frequency is blue-detuned from a Josephson plasma frequency,
while it is diminished by red-detuned driving. In contrast, both our analytical and numer-
ical calculations show that blue-detuned driving reduces the Meissner screening as plasma
waves generated at the surface are transmitted into the superconductor. For red-detuned
driving, on the other hand, we find a tendency to an enhanced Meissner screening. These
results suggest that the light-induced state considered here is a genuinely non-equilibrium
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state, rather than a renormalized equilibrium state, in which some of the reasoning derived
from equilibrium superconductors does not apply. This insight is generally relevant for
the interpretation of pump-probe experiments indicating light-enhanced or light-induced
superconductivity.

It would be interesting to investigate the enhancement mechanism presented in
Refs. [92, 105] with our method. According to these works, the enhancement of inter-
layer transport in YBCO is mediated by the decay of optically excited phonons into pairs
of Josephson plasmons with opposite in-plane momenta, which give rise to spatial and
temporal modulations of the superfluid density. However, the limitation of computational
resources does not currently allow for the simulation of sufficiently large systems with an
in-plane discretization of the order of the coherence length. Our present simulations do
not include the range of in-plane momenta that are relevant for the mechanism reported
in Refs. [92, 105]. In principle, this problem can be circumvented by choosing an artifi-
cially high background permittivity of ϵ∞ ∼ 105. In addition to increasing the system
size, larger computational resources might enable convergent measurements of the c-axis
conductivity at temperatures around Tc as one could simulate larger ensembles.





Appendix A

Details on the numerical
implementation

Here, we elaborate on the numerical integration of the stochastic differential equations
(2.11) and (2.12),

∂2t ψr =
1

Kℏ2
∂L
∂ψ∗

r

− γsc∂tψr + ξr, (A.1)

∂2tAj,r =
1

ϵ∞ϵ0

∂L
∂Aj,r

− γj,r∂tAj,r + ηj,r for j ∈ {x, y, z}. (A.2)

The Langevin noise terms ξr and ηr have zero mean and follow Gaussian distributions
[191,192]. The noise of the superconducting order parameter has the properties

⟨Re{ξr(t)}Re{ξr′(t′)}⟩ =
γsckBT

Kℏ2V0
δrr′δ(t− t′) , (A.3)

⟨Im{ξr(t)}Im{ξr′(t′)}⟩ =
γsckBT

Kℏ2V0
δrr′δ(t− t′) , (A.4)

⟨Re{ξr(t)}Im{ξr′(t′)}⟩ = 0, (A.5)

where V0 = d2abdc. The noise correlations for the vector potential are

⟨ηx,r(t)ηx,r′(t′)⟩ =
2γabkBT

ϵ∞ϵ0V0
δrr′δ(t− t′), (A.6)

⟨ηy,r(t)ηy,r′(t′)⟩ =
2γabkBT

ϵ∞ϵ0V0
δrr′δ(t− t′), (A.7)

⟨ηz,r(t)ηz,r′(t′)⟩ =
2γz,rkBT

κz,rϵ∞ϵ0V0
δrr′δ(t− t′). (A.8)

We introduce the conjugate fields πr and Er in order to obtain two sets of first order
differential equations,

∂tψr =
πr
Kℏ2

, (A.9)

∂tAj,r = −Ej,r. (A.10)
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Figure A.1: The temporal discretization is consistent with a leapfrog scheme.

The equations of motion for the conjugate fields are shown explicitly at the end of this
section. The general form of the equations of motion is

∂tQi(t) = f [Pi(t)], (A.11)
∂tPi(t) = g[{Qi(t)}]− γiPi(t) + ξi(t), (A.12)

where {Qi} = {ψr, A
x
r , A

y
r, A

z
r} and {Pi} = {πr, Ex

r , E
y
r , E

z
r}. Our numerical implementa-

tion picks up on elements of the leapfrog scheme [193] and Heun’s method [194,195]. The
fields Qi and their conjugate fields Pi are staggered in time as depicted in Fig. A.1. The
integration steps are performed according to

Qi(t+∆t) = Qi(t) + f [Pi(t+∆t/2)] ·∆t, (A.13)
Pi(t+∆t/2) = Pi(t−∆t/2) + g[{Qi(t)}] ·∆t

+
(
−γiPi(t−∆t/2) + ξi(t−∆t/2)

)
·∆t/2

+
(
−γiP̃i(t+∆t/2) + ξi(t+∆t/2)

)
·∆t/2,

(A.14)

with P̃i(t + ∆t/2) = Pi(t − ∆t/2) +
(
g[{Qi(t)}] − γiPi(t − ∆t/2) + ξi(t − ∆t/2)

)
· ∆t.

The last two lines in Eq. (A.14) correspond to the predictor and corrector, respectively,
in Heun’s method. We implement the equations of motion in C++, compatible with
the language standard ISO/IEC 14882:2011. We employ the random number generator
mt19937 for the noise terms and draw new random numbers for both the predictor and
corrector in each time step. Note that δ(t − t′) transforms to δtt′/∆t in the simulation.
We use a time step of ∆t = 1.25 as ≈ ds/c, which yields convergent results as evidenced
by Fig. A.2.

The explicit equation of motion for the conjugate field of the order parameter is

∂tπl,m,n = (µ− 4tab − ts − tw)ψl,m,n − g|ψl,m,n|2ψl,m,n − γscπl,m,n + ξl,m,n

+ tab

(
ψl−1,m,ne

iaxl−1,m,n + ψl+1,m,ne
−iaxl,m,n + ψl,m−1,ne

iayl,m−1,n + ψl,m+1,ne
−iayl,m,n

)

+ tz,n−1ψl,m,n−1e
iazl,m,n−1 + tz,nψl,m,n+1e

−iazl,m,n .

(A.15)
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The explicit equations of motion for the electric field are

∂tE
x
l,m,n

= −
Jx
l,m,n

ϵ∞ϵ0
− γabE

x
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(A.16)
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(A.18)

where βx,n = βy,n = 2edabdz,n/ℏ and βz = 2ed2ab/ℏ.
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Figure A.2: Temperature dependence of the effective interbilayer tunneling coefficient
for two different time steps. Each data point is an ensemble average of 100 trajectories
and the standard error is comparable to the point size.



Appendix B

Details on the optical conductivity of a
bilayer cuprate

B.1 Out-of-plane conductivity at zero temperature
In the following, we consider the case γsc = γs = γw ≡ γ. We recall the equations of
motion

∂2t θs + γ∂tθs + (1 + 2αs)Ω
2
sθs − 2αwΩ

2
wθw =

2eds
ϵ∞ϵ0ℏ

J0 cos(ωprt), (B.1)

∂2t θw + γ∂tθw + (1 + 2αw)Ω
2
wθw − 2αsΩ

2
sθs =

2edw
ϵ∞ϵ0ℏ

J0 cos(ωprt) (B.2)

from Section 2.2.3. We transform these equations into the frequency domain,
[
−ω2

pr − iγωpr + (1 + 2αs)Ω
2
s

]
θs(ωpr)− 2αwΩ

2
wθw(ωpr) =

edsJ0
ϵ∞ϵ0ℏ

, (B.3)

[
−ω2

pr − iγωpr + (1 + 2αw)Ω
2
w

]
θw(ωpr)− 2αsΩ

2
sθs(ωpr) =

edwJ0
ϵ∞ϵ0ℏ

. (B.4)

We also recall the generalized Josephson equations

ℏ
2e
∂tθs = (1 + 2αs)dsEs − 2αwdwEw, (B.5)

ℏ
2e
∂tθw = (1 + 2αw)dwEw − 2αsdsEs, (B.6)

and transform them into the frequency domain,

−iωℏ
2e

θs(ωpr) = (1 + 2αs)dsEs(ωpr)− 2αwdwEw(ωpr), (B.7)

−iωℏ
2e

θw(ωpr) = (1 + 2αw)dwEw(ωpr)− 2αsdsEs(ωpr). (B.8)

Inserting Eqs. (B.7) and (B.8) into Eqs. (B.3) and (B.4) yields

C1dsEs(ωpr)− C2dwEw(ωpr) =
iωprJ0

16K|ψ0|2e2dcαs

, (B.9)

−C3dsEs(ωpr) + C4dwEw(ωpr) =
iωprJ0

16K|ψ0|2e2dcαw

, (B.10)
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(a) (b)

Figure B.1: Out-of-plane conductivity of a bilayer cuprate with uniform damping con-
stants. For both the real part in (a) and the imaginary part in (b), the numerical re-
sults agree with the analytical prediction. In the simulation, we use a probe strength of
J0 = 10 kA cm−2.

where

C1 = (1 + 2αs)
[
ω2
pr + iγωpr − (1 + 2αs)Ω

2
s

]
− 4αsαwΩ

2
w, (B.11)

C2 = 2αw

[
ω2
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2
s

]
− 2αwΩ

2
w(1 + 2αw), (B.12)

C3 = 2αs

[
ω2
pr + iγωpr − (1 + 2αw)Ω

2
w

]
− 2αsΩ

2
s(1 + 2αs), (B.13)

C4 = (1 + 2αw)
[
ω2
pr + iγωpr − (1 + 2αw)Ω

2
w

]
− 4αsαwΩ

2
s. (B.14)

As shown in Section 2.2.3, this leads to the analytical prediction

σz(ωpr) =
ϵ∞ϵ0
iωpr

(ω2
pr + iγωpr − ω2

J1)(ω
2
pr + iγωpr − ω2

J2)

ω2
pr + iγωpr − ω2

⊥
(B.15)

for the out-of-plane conductivity. In Fig. B.1, we compare the analytical prediction to
simulations of a bilayer cuprate with γ/2π = 0.4 THz. We find excellent agreement
between the numerical results and the analytical prediction.
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B.2 In-plane conductivity at nonzero temperature
Here, we repeat the measurements of the in-plane conductivity from Section 2.3.4 using
a smaller probe strength. Figure B.2 demonstrates that the linear response at nonzero
temperature is probed for J0 = 500 kA cm−2, consistent with the measurements at zero
temperature in Section 2.2.3.

(a) (b)

Figure B.2: In-plane conductivity for different probe strengths at 36 K ∼ 1.2Tc. (a)
Real part. (b) Imaginary part. The error bars indicate the standard errors of the ensemble
averages.





Appendix C

Details on the temperature dependence
of the upper Josephson plasma mode

C.1 Disorder at large in-plane momenta

In Fig. C.1, we show the disorder function for large in-plane momenta at a temperature
of 36 K ∼ 1.2Tc. The small disorder strength for kxy > 4π/Lab justifies the momentum
cutoff at kmax = 4π/Lab in the analytical calculations in Section 2.3.3.

(a) (b)

Figure C.1: Fourier spectra of transverse and longitudinal disorder for large in-plane
momenta (kx, ky) specified in units of 2π/Lab. (a) Transverse disorder, kz = 0. (b)
Longitudinal disorder, kz = π/2dc. The data is obtained from an ensemble average of
1000 trajectories at 36 K ∼ 1.2Tc.

C.2 Influence of dynamical disorder

The disorder function is not completely static as one can see in Fig. C.1, for example. To
include dynamical effects in our description of transverse disorder, we consider a white
spectrum with a width of Γ, i.e.,

|F⊥,T (ν)|2 =
{
πF 2

⊥,T/Γ for 0 ≤ |ν| ≤ Γ,

0 for |ν| > Γ.
(C.1)
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(a) (b)

Figure C.2: Analytical solution for the susceptibility of the upper Josephson plasma
mode, including transverse disorder with spectral width Γ. (a) Analytical solution for
ω⊥,T = 0.9ωJ2,T . (b) Analytical solution for ω⊥,T = 0.3ωJ2,T . In both panels, the disorder
strength is S⊥ = 10−4 and the gray curve indicates the solution in the absence of disorder.

In this case, the frequency integral in Eq. (2.104) yields

Ω2(ω) = ω2
J2,T +

S⊥(k2maxL
2
ab − 4π2)ω4

J2

2ω⊥,TΓ

[
artanh

(
ω − Γ + iγ/2

ω⊥,T

)

− artanh

(
ω + Γ + iγ/2

ω⊥,T

)]
,

(C.2)

with S⊥ = F 2
⊥,T/πN

2. In Fig. C.2, the imaginary part of the susceptibility is displayed for
γ = 0.1ωJ2, ωJ2,T = 0.5ωJ2, and kmax = 4π/Lab. For Γ = 0.1ωJ2,T , the analytical solution
is only weakly modified in comparison to the case of static disorder; confer Fig. 2.14. Even
for a spectral width of Γ = 0.3ωJ2,T , the qualitative character of the analytical solution
does not change.

C.3 Influence of the system size
The system size analysis of the intrabilayer supercurrent in Fig. C.3 indicates that the
system size has no significant influence on the upper Josephson plasma resonance.

Figure C.3: Power spectrum of the intrabilayer supercurrent at 36 K ∼ 1.2Tc for
different system sizes. While the data for the system with 40 × 40 × 4 sites is based on
an ensemble average of 1000 trajectories, the data for the two larger systems is based on
an ensemble average of 100 trajectories.
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We propose to induce a time-crystalline state in a high-Tc superconductor, by optically driving a sum resonance
of the Higgs mode and a Josephson plasma mode. The generic cubic process that couples these fundamental
excitations converts driving of the sum resonance into simultaneous resonant driving of both modes, resulting
in an incommensurate subharmonic motion. We use a numerical implementation of a semiclassical driven-
dissipative lattice gauge theory on a three-dimensional layered lattice, which models the geometry of cuprate
superconductors, to demonstrate the robustness of this motion against thermal fluctuations. We demonstrate this
light-induced time-crystalline phase for mono- and bilayer systems and show that this order can be detected for
pulsed driving under realistic technological conditions.

DOI: 10.1103/PhysRevResearch.2.043214

I. INTRODUCTION

Optical driving of solids constitutes a new method of
designing many-body states. Striking examples of this ap-
proach include light-induced superconductivity [1–3] as well
as optical control of charge density wave phases [4]. For
these states, the carefully tuned light field either renormalizes
the phase boundary of the equilibrium phase, as is the case
for light-induced superconductivity, or renormalizes a nearby
metastable state into a stable state of the driven system, as is
the case for light-controlled charge density waves.

These observations are part of a larger effort to determine
the steady states of periodically driven many-body systems.
In a parallel development in cold atom systems, serving
as well-defined many-body toy models, the generic regimes
that were proposed (see Refs. [5,6]) firstly include renor-
malized equilibrium states, for which the above-mentioned
states are examples. Secondly, regimes beyond the equilib-
rium states emerge, in particular, genuine nonequilibrium
orders, which have no equilibrium counterpart, and only exist
in the driven state. A striking example of a nonequilibrium
order is time crystals [7–13], reported in systems such as ion
traps or nitrogen-vacancy centers [14,15]. Thirdly, for strong
driving, chaotic states emerge. These different regimes are
achieved for different driving amplitudes and driving frequen-
cies, which constitutes the dynamical phase diagram of the
system.

*ghomann@physnet.uni-hamburg.de

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

In this paper, we propose to create a light-induced time-
crystalline state in a high-Tc superconductor. This advances
light control of superconductors towards genuine nonequi-
librium orders and furthers time crystals in the solid-state
domain [16]. We characterize the observed nonequilibrium
state as a time crystal based on the following criteria [12]:
(i) A time crystal spontaneously breaks time-translation sym-
metry; that is, it exhibits a subharmonic response to the drive.
(ii) The subharmonic response is robust against perturbations
which respect the time-translation symmetry of the Hamilto-
nian. (iii) The subharmonic response emerges in a many-body
system with a large number of locally coupled degrees of
freedom, and it persists for an infinite time.

We call the novel dynamical phase a Higgs time crystal
because we induce it via optical driving of a sum resonance
of the Higgs mode and a Josephson plasma mode. The Higgs
mode and the Josephson plasma mode correspond to the two
fundamental collective excitations of a system with broken
U (1) symmetry and with an underlying approximate particle-
hole symmetry. The Higgs mode is an amplitude oscillation
of the order parameter, as depicted in Fig. 1(a) for the |ψ |4
theory used in the following. The Higgs mode is a gapped ex-
citation due to the increase of the potential energy in the radial
direction. The Josephson plasma mode is a phase oscillation,
as indicated. This mode also has a gapped excitation spectrum
owing to the electromagnetic interaction of the system. Be-
cause of the approximate particle-hole symmetry, these two
oscillations are orthogonal to each other [17,18].

To identify the Higgs time-crystalline phase, we map out
the dynamical phase diagram of optically driven high-Tc su-
perconductors as a function of the driving frequency ωdr

and the driving amplitude E0, which is shown in Fig. 2(a),
for instance. The time-crystalline state is induced by driving
the superconductor via the nonlinear coupling ∼a2h of the
electromagnetic field a and the Higgs field h. We demon-
strate that driving at the frequency ωdr = ωH + ωJ induces a
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FIG. 1. Exciting the Higgs and plasma modes. (a) Illustration of
the free energy of a state with broken U (1) symmetry. (b) Illustra-
tion of a driven cuprate superconductor modeled as a U (1) gauge
theory on an anisotropic lattice. In-plane dynamics is captured by
discretizing the condensate field in the ab plane. (c) The Higgs mode
can be excited resonantly with a driving frequency of ωdr � ωH/2,
by utilizing the nonlinear coupling between the electromagnetic field
and the Higgs field. Upper panel: Diagrammatic representation of
the nonlinear process. Lower panel: Exemplary dynamical portrait
of the phase difference between the superconducting layers and the
condensate amplitude in the steady state for 10 driving cycles at zero
temperature. (d) We propose to utilize the same nonlinear coupling
to induce a time-crystalline state by driving the sum resonance of the
system at ωdr = ωH + ωJ. The phase-space trajectories shown in the
lower panels of (c) and (d) are obtained using a Josephson junction
model for a monolayer cuprate with Higgs frequency ωH/2π ≈ 6.3
THz and plasma frequency ωJ/2π ≈ 16.0 THz; see Table I for full
parameter set.

time-crystalline phase, where ωH is the Higgs frequency and
ωJ is the plasma frequency, as depicted in Fig. 1(d). We note
that this nonlinear coupling has been confirmed in conven-
tional superconductors [19–22], while a direct probe of the
Higgs field is challenging due to its scalar nature. Further
studies on the Higgs mode in high-Tc cuprates and organic
superconductors are reported in Refs. [23–29]. Persistent mul-
tifrequency dynamics of the superconducting order parameter
has been investigated in Ref. [30].

To describe the dynamics of optically driven supercon-
ductors, we develop a lattice gauge simulation that describes
the motion of the order parameter of the superconducting
state ψ (r, t ) and the electromagnetic field A(r, t ). We first

utilize our method to show how to induce the time-crystalline
state and to determine its regime in the dynamical phase
diagram. Furthermore, we demonstrate the robustness of the
time-crystalline phase against thermal fluctuations and show
that it can be realized and identified under pulsed operation.

II. THREE-DIMENSIONAL LATTICE GAUGE MODEL

We represent the layered structure of high-Tc supercon-
ductors via the lattice geometry illustrated in Fig. 1(b). We
note that this geometry of CuO2 layers perpendicular to the
c axis has motivated a low-energy description of stacks of
Josephson junctions [31–33], which captures the appearance
of Josephson plasma excitations reported in Refs. [34–36].
Each layer is represented by a square lattice, leading to a
discretization of the fields of the form ψ (r, t ) → ψl,m,n(t ) ≡
ψr(t ). The in-plane discretization length dab constitutes a
short-range cutoff well below the in-plane coherence length.
In doing so, we generalize the modeling of layered cuprates to
a three-dimensional (3D) lattice of Josephson junctions. Each
component of the vector potential Ai,r(t ) is located between
a lattice site r and its nearest neighbor r′(i) in the i direction,
where i ∈ {x, y, z}. According to the Peierls substitution, it de-
scribes the averaged electric field along the bond of a plaquette
in Fig. 1(b).

We focus on temperatures below Tc, where the dominant
low-energy degrees of freedom are Cooper pairs. We de-
scribe the Cooper pairs as a condensate of interacting bosons
with charge −2e, represented by the complex field ψr(t ).
To construct the Hamiltonian of the lattice gauge model, we
discretize the Ginzburg-Landau free energy [37] on a layered
lattice and add time-dependent terms. We explicitly simulate
the coupled dynamics of the condensate and the electromag-
netic field. We discretize space by mapping it on a lattice,
as mentioned, but implement the compact U (1) lattice gauge
theory in the time-continuum limit [38]. The particle-hole
symmetry inherent to our relativistic model creates stable
Higgs oscillations, even in bilayer cuprates where the Higgs
frequency is between the two longitudinal Josephson plasma
frequencies.

We consider mono- and bilayer cuprate superconductors.
For bilayer cuprates, we assign the strong (weak) junc-
tions to the even (odd) layers. The corresponding tunneling
coefficients are t2n = ts and t2n+1 = tw. The interlayer spac-
ings d2n,2n+1 = ds,w are the distances between the CuO2

planes in the crystal. Note that we suppose the z direction to
be aligned with the c axis of the crystal throughout this paper.
The Hamiltonian of the lattice gauge model is

H = Hsc + Hem + Hkin. (1)

The first term is the |ψ |4 model of the superconducting con-
densate in the absence of Cooper pair tunneling:

Hsc =
∑

r

|πr|2
Kh̄2 − μ|ψr|2 + g

2
|ψr|4, (2)

where πr = Kh̄2∂tψ
∗
r is the conjugate momentum of ψr, μ is

the chemical potential, and g is the interaction strength. This
Hamiltonian is particle-hole symmetric due to its invariance
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under ψr → ψ∗
r . The coefficient K describes the magnitude

of the dynamical term.
The electromagnetic part Hem is the discretized form of the

free-field Hamiltonian, modified by tunable interlayer permit-
tivities εs,w to capture the screening due to bound charges in
the material:

Hem =
∑
i,r

κi,rεi,rε0

2
E2

i,r + κz,r

κi,rβ
2
i,rμ0

[1 − cos(βi,rBi,r )],

(3)

where Ei,r denotes the i component of the electric field. The
vector potential is located on the bonds between the supercon-
ducting sites. Consequently, this applies to the electric field
as well. Note that we choose the temporal gauge for our cal-
culations, i.e., Ei,r = −∂t Ai,r. Meanwhile, the magnetic field
components Bi,r = εi jkδ jAk,r are centered about the plaque-
ttes. This arrangement is consistent with the finite-difference
time-domain (FDTD) method for solving Maxwell’s equa-
tions [39]. We calculate the spatial derivatives according to
δ jAk,r = (Ak,r′( j) − Ak,r )/d j,r, where d j,r is the length of the
bond. The dielectric permittivities are εx,r = εy,r = 1 and
εz,r = εn. The other prefactors in Eq. (3) account for the
anisotropic lattice geometry. They are defined as κx,r = κy,r =
1 and κz,r = dn/dc, while βx,r = βy,r = 2edabdn/h̄ and βz,r =
2ed2

ab/h̄, where dc = (ds + dw )/2.
The nonlinear coupling between the Higgs field and the

electromagnetic field derives from the tunneling term

Hkin =
∑
i,r

ti,r|ψr′(i) − ψreiai,r |2. (4)

The unitless vector potential ai,r = −2edi,rAi,r/h̄ couples to
the phase of the superconducting field, ensuring the gauge
invariance of Hkin. The in-plane tunneling coefficient is tab,
and the c-axis tunneling coefficients are ts,w.

We solve the equations of motion for ψr(t ) and Ar(t ) ob-
tained from the Hamiltonian numerically, employing Heun’s
method with an integration step size 
t = 1.6 as. Thermal
fluctuations are included by adding dissipation and Langevin
noise to the equations of motion for both fields. For example,
the time evolution of the superconducting field is given by

∂tπr = − ∂H
∂ψr

− γπr + ξr, (5)

where γ is a damping constant and ξr represents white
Gaussian noise with zero mean; see Appendix A for noise
correlations. We note that the inclusion of in-plane dynam-
ics and arbitrarily strong amplitude fluctuations constitutes
a qualitative advance of previous descriptions, such as 1D
sine-Gordon models [40,41].

We determine the response of the superconductor to peri-
odic driving of the electric field along the c axis. The external
drive Edr (t ) has the frequency ωdr and the effective field
strength E0. We consider the long-wavelength limit such that
the external drive is assumed to be homogeneous in the bulk
of the sample. Thus the time evolution of Ez,r(t ) reads

∂t Ez,r = dc

dnεnε0

∂H
∂Az,r

− γ Ez,r + ηz,r + ∂t Edr

εn
, (6)

where ηz,r is white Gaussian noise with zero mean. The equa-
tions of motion for Ex,r(t ) and Ey,r(t ) are analogous to Eq. (6),
except for the driving term. We characterize the response by
evaluating the sample averages of the condensate amplitude
|ψ (t )| and the supercurrent density J (t ); see also Appendix B.

By applying the optical driving as described, we obtain the
full dynamical phase diagram due to the direct coupling of the
electromagnetic field to the superconducting order parameter.
We note that resonant optical driving of phonon modes has
been utilized and discussed in Refs. [1–3,40–42]. Here, we
ignore the phononic resonances, so that our predictions are
valid away from these resonances. A combined description
will be given elsewhere.

III. TWO-MODE MODEL

Before we present the full numerical simulation, we iden-
tify the main resonant phenomena of the system. We consider
the zero-temperature limit, where the in-plane dynamics can
be neglected and the model simplifies to a 1D chain along the
c axis. Furthermore, we restrict ourselves to weak driving and
a monolayer structure with ts = tw ≡ tJ and ds = dw ≡ d . For
periodic boundary conditions, the time evolution then reduces
to two coupled equations of motion. Keeping only linear terms
except for the lowest-order coupling between the Higgs field
and the unitless vector potential, we find

∂2
t a + γ ∂t a + ω2

J a + 2ω2
J ah ≈ jdr, (7)

∂2
t h + γ ∂t h + ω2

Hh + αω2
J a2 ≈ 0, (8)

where h = (ψ − ψ0)/ψ0 is the Higgs field with ψ0 being the
equilibrium condensate amplitude, γ is the damping constant,
and α is the capacitive coupling constant of the junction.
Note that the unitless vector potential a equals the phase
difference between adjacent planes in this setting. The ex-
ternal drive appears through the current jdr. The Higgs and
plasma frequencies are ωH =

√
2μ/Kh̄2 and ωJ =

√
tJ/αKh̄2,

respectively.
The main finding of this work is the emergence of a time-

crystalline phase by driving at the sum of the Higgs and
plasma frequencies, ωdr = ωJ + ωH. A cubic interaction pro-
cess, visualized in Fig. 1(d), allows for simultaneous resonant
driving of both the Higgs and the plasma modes [43].

In addition to the sum resonance, we identify various other
resonances from the simplified equations of motion. For a
response of the vector potential at the driving frequency, i.e.,
a = a1cos(ωdrt ), Eq. (8) simplifies to a forced oscillator with
a resonance at ωdr = ωH/2. This recovers the subgap Higgs
resonance [22]. The subgap resonance and the sum resonance
originate from the same cubic coupling term ∼a2h, as illus-
trated in Figs. 1(c) and 1(d). Next, we consider the range of
driving frequencies where the Higgs field exhibits a second-
harmonic response; that is, the external drive induces Higgs
oscillations of the form h = h0 + h1cos(2ωdrt ) through the a2

term in Eq. (8). For small driving amplitudes, the ah term
in Eq. (7) can be neglected so that the equation reduces to
a forced oscillator with a resonance at ωdr = ωJ. However,
the response is modified once the coupling to the Higgs field
becomes significant. Then, Eq. (7) approaches a parametri-
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FIG. 2. Dynamical phases of a light-driven monolayer cuprate superconductor. (a) Dynamical phase diagram of a monolayer cuprate
continuously driven by an electric field with frequency ωdr and effective field strength E0 at T = 0. The time-crystalline (TC) phase is encoded
in red. (b) Driving Edr (t ) and response of the condensate amplitude |ψ |/|ψ0|(t ) for the Higgs resonance at ωdr = ωH/2 (diamond), the time
crystal (cross), and an off-resonantly driven superconductor (circle). The driving parameters are indicated by the symbols in (a). (c) Power
spectra of the condensate amplitude, corresponding to the trajectories of the Higgs resonance and the time crystal presented in (b). The
parameters for the monolayer system are the same as in Fig. 1.

cally driven oscillator. The parametric resonances emerge at
ωdr = ωJ/k, where k ∈ N.

IV. DYNAMICAL PHASE DIAGRAM

We now present our numerical results in two steps. Firstly,
we verify our analytical predictions for the resonances and,
in particular, the Higgs time crystal by mapping out the
dynamical phase diagrams of mono- and bilayer cuprate su-
perconductors at zero temperature. We will show how the
sum resonance is modified in a bilayer system, which has
two plasma modes. Secondly, we test the robustness of this
phase against thermal fluctuations using finite-temperature
simulations.

A. Monolayer cuprate superconductor

Here, we consider a monolayer cuprate with ωH/2π ≈
6.3 THz, ωJ/2π ≈ 16.0 THz, γ /2π = 0.5 THz, and α =
0.33; see Table I for full parameter set. The system is con-
tinuously driven at various amplitudes and frequencies in
the terahertz regime. In each realization, the drive is applied
for 20 ps, and the relevant frequency spectra are com-
puted using the final 10 ps, which amounts to 5 < Mtot <

300 driving cycles in the frequency range of interest. The
dynamical phase diagram in Fig. 2(a) is mapped out by
analyzing the normalized power spectra of |ψ (t )| and J (t )
defined as Pf (ω) = 〈 f (ω) f (−ω)〉, where

∫
Pf (ω)dω = 1,

f (ω) = 1/
√

Ts
∫

dt ′exp(−iωt ′) f (t ′), and Ts = 10 ps is the
sampling interval. Specifically, we obtain the spectral en-
tropy for the dynamics of the condensate amplitude, S|ψ | =
− ∫

dωP|ψ |(ω)lnP|ψ |(ω).
The heating regime, which is characterized by a strong

depletion of the condensate, is identified based on the thresh-
old S|ψ | > 2.2 × 10−2. It indicates the appearance of resonant
phases associated with the Higgs and plasma excitations.
We note that the two dominant heating tongues are weakly

red-detuned from the expected resonance frequencies ωH/2
and ωJ, respectively. Such a renormalization of the funda-
mental frequencies is inherent to strongly driven nonlinear
systems [44]. This effect is further amplified by the damping
terms present in our model. We identify the small tongue at
ωdr/2π ≈ 4.8 THz as the third-order parametric resonance of
the Josephson plasma mode around ωJ/3.

For intermediate driving intensity, we observe several dy-
namical regimes due to resonances. The resonance with the
lowest frequency is the Higgs resonance at ωdr = ωH/2. In
general, resonant excitation of the Higgs mode is marked
by strong modulation of the condensate amplitude as exem-
plified in Fig. 2(b). Moreover, the Higgs resonance exhibits
a commensurate and superharmonic response of |ψ (t )| with
respect to the driving Edr (t ) as seen from the closed trajectory
in Fig. 1(c) and the sharp peak at 2ωdr of the condensate
amplitude spectrum in Fig. 2(c). We emphasize that driv-
ing away from any noticeable resonance, indicated as the
blue regime in Fig. 2(a), induces only a single sharp peak
in the supercurrent spectrum, namely, at the driving fre-
quency. The condensate amplitude oscillates at twice the
driving frequency in the blue regime. This also applies to
the regime near the Josephson plasma resonance at ωdr = ωJ,
where the system responds with strong oscillations of the
supercurrent.

The red regime in Fig. 2(a), identified via the condition
10−4 < S|ψ | < 2.2 × 10−2, is the Higgs time crystal intro-
duced earlier. We emphasize that its resonance condition
ωdr = ωJ + ωH differs from the subgap frequencies ωdr �
ωH/2 used in standard Higgs spectroscopy. The sum res-
onance simultaneously couples to the Higgs and plasma
resonances as evident from the exemplary mean-field tra-
jectory in Fig. 1(d), where the amplitude oscillation is
accompanied by a strong oscillation of the phase difference
between the junctions. Despite a smaller driving amplitude E0,
the plasma mode is excited with larger amplitude than for the
Higgs resonance. The strong activation of the plasma mode
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FIG. 3. Higgs time crystal in a light-driven bilayer cuprate su-
perconductor. (a) Dynamical phase diagram of a bilayer cuprate
continuously driven by an electric field with frequency ωdr and ef-
fective field strength E0 at T = 0. (b) Robustness of the time crystal
(TC) against perturbations of the drive as described in the text. Values
of the dominant amplitude frequency ωpeak close to ωH indicate
a subharmonic response, whereas maxima at 2ωdr mark a normal
response. The bilayer system has the Higgs frequency ωH/2π ≈
6.3 THz and the two longitudinal Josephson plasma frequencies
ωJ1/2π ≈ 2.0 THz and ωJ2/2π ≈ 14.3 THz at T = 0; see Table I
for full parameter set.

results in a partial depletion of the condensate as visible in
Fig. 2(b), where the time average of the oscillatory motion of
the condensate amplitude is below 1. The key feature of the
novel phase is the subharmonic response of the condensate
amplitude as |ψ (t )| oscillates at ωH when the superconductor
is driven at ωdr = ωJ + ωH. This phenomenon is highlighted
in Fig. 2(b) and in the strong subharmonic peak in the power
spectrum of |ψ (t )| shown in Fig. 2(c). The other dynamical
phases respect the time-translation symmetry imposed by the
external drive as evidenced by Figs. 2(b) and 2(c).

The subharmonic collective motion is one of the defining
features of a time crystal. In addition to being subharmonic,
the response of the time-crystalline state is also incommensu-
rate to the external driving. That is, the phase-space trajectory
traces an open loop for any number of driving cycles; see also
Fig. 1(d). Therefore, and more specifically, the state that we
propose to create is an incommensurate time crystal in high-Tc

superconductors. We will confirm its robustness against per-
turbations of the drive and thermal fluctuations for the bilayer
case. We note that the subharmonic response can be expected
to be rigid as it emerges for a broad regime of driving pa-
rameters rather than a fine-tuned point in the dynamical phase
diagram. In addition, our finite-temperature calculations with
a large number of lattice sites will highlight the many-body
nature of the Higgs time crystal.

B. Bilayer superconductor

We now focus on bilayer cuprates. Due to the staggered
tunneling coefficients ts and tw along the c axis, the system
has two fundamental longitudinal plasma excitations with fre-
quencies ωJ1 and ωJ2. The dynamical phase diagram at zero
temperature in Fig. 3(a) displays a regime in which a Higgs
time crystal is induced by optical driving at a sum resonance.
Here, the resonance condition is ωdr = ωH + ωJ2, so it is the
sum of the Higgs frequency and the upper plasma frequency.

First, we examine how perturbing the optical drive itself
affects the subharmonic response. To excite the sum reso-
nance, we initially drive the bilayer superconductor with E0 =
0.1 MV/cm and ωdr/2π = 21 THz. At some instant of time
t0, the driving is altered so that the oscillation amplitude of the
field strength depends on its sign for t > t0:

Edr (t ) =
{

E0cos(ωdrt ) for cos(ωdrt ) � 0
(E0 + δE ) cos(ωdrt ) for cos(ωdrt ) < 0.

(9)

After allowing the system to relax to a steady state, we take
the power spectrum of the condensate amplitude and deter-
mine the dominant frequency ωpeak. The robustness of the
subharmonic response is demonstrated by Fig. 3(b), where
perturbations of the driving amplitude between δE/E0 =
−0.4 and δE/E0 = 1 do not destroy the sum resonance. We
have also verified the persistence of the subharmonic response
for 105 cycles of continuous driving at T = 0 [43]. Because
of experimental and numerical limitations in accessible time
scales (∼102 driving cycles for our finite-temperature calcu-
lations), we will not distinguish here between a “true” time
crystal and a slowly decaying time crystal [13,14].

We note that the time-crystalline response is stabilized
by the nonlinear coupling between the Higgs and plasma
modes, which further highlights the collective nature of the
Higgs time crystal. Furthermore, the amplitudes of the oscil-
lations are saturated by nonlinear processes in the system (see
Ref. [45] for example) while the dissipative coupling to the
environment limits heating.

Next, we demonstrate the robustness of the Higgs time
crystal against thermal fluctuations modeled as Langevin
noise in the dynamics of the fields. These fluctuations are
a natural test for the rigidity of the subharmonic response
against temporal perturbations [13]. When considering ther-
mal fluctuations, we include the in-plane dynamics of the
fields in a full 3D simulation. The complete parameter
set is summarized in Table I, implying the Higgs fre-
quency ωH/2π ≈ 6.3 THz and the two longitudinal Joseph-
son plasma frequencies ωJ1/2π ≈ 2.0 THz and ωJ2/2π ≈
14.3 THz at T = 0. For simplicity, we keep the chemical
potential fixed in the following finite-temperature calcula-
tions, μ(T ) ≡ μ. We choose the parameters within the CuO2

planes to yield a critical temperature of Tc ∼ 30 K. We find
that a discretization of 48 × 48 × 4 lattice sites with peri-
odic boundaries is sufficient to obtain fully converged results
with respect to the system size. Note that both the Higgs
and Josephson plasma frequencies are renormalized at finite
temperature [43].

Examples of the power spectra of the condensate am-
plitude and the supercurrent density at T = 3 K are shown
in Figs. 4(a) and 4(b), respectively. When the sum reso-
nance is driven, the condensate amplitude exhibits strong
subharmonic modulation as evidenced by a sharp peak in the
amplitude spectrum in Fig. 4(a). Moreover, we observe in
Fig. 4(a) how the modulation of the condensate amplitude
is suppressed as the driving frequency is tuned away from
the resonance frequency. As shown in Fig. 4(b), we identify
an experimentally relevant signature of the superconducting
time-crystalline phase, which is the appearance of two side
peaks at ωdr ± ωH in the power spectrum of the supercurrent
density. The side peaks vanish as the driving frequency is
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FIG. 4. Higgs time crystal at nonzero temperatures. (a) Comparison between the power spectra of the condensate amplitude at T = 3 K ∼
0.1Tc for E0 = 0.2 MV/cm and different driving frequencies indicated in the legend. The time-crystalline state at ωdr/2π = 22.4 THz is
demonstrated by the strongly enhanced subharmonic peak at ωH. (b) Power spectra of the supercurrent density for the same parameters as
in (a). The time-crystalline state creates strongly enhanced side peaks at ωdr ± ωH. (c) Time-crystalline fraction PJ (ωdr + ωH) in a section of
the dynamical phase diagram at T = 3 K ∼ 0.1Tc, containing the time-crystalline phase. (d) Temperature dependence of the optimal time-
crystalline fraction for a bilayer cuprate superconductor, rescaled by its value at T = 0. The optimal crystalline fraction at a given temperature
corresponds to the maximum value of PJ (ωdr + ωH) in the relevant section of the dynamical phase diagram, as exemplified in (c). The error
bars in (d) arise from the standard errors of Lorentzian fits to the blue-detuned side peaks. The parameters for the bilayer system are the same
as in Fig. 3. The resonance frequencies are shifted at finite temperature.

tuned away from the resonance frequency. Coherent dynamics
of supercurrents can be experimentally probed using second-
harmonic measurements [46,47].

To quantify the time-crystalline fraction, we use the height
of the blue-detuned side peak in the power spectrum of the
supercurrent density, PJ (ωdr + ωH). Figure 4(d) displays the
temperature dependence of the optimal crystalline fraction for
a bilayer cuprate, normalized to the optimal time-crystalline
fraction at T = 0. The optimal driving parameters at each
temperature were inferred from coarse scans such as that in
Fig. 4(c). As we expect for time crystals under increasingly
strong perturbation, the crystalline fraction decreases with
temperature. Nevertheless, the subharmonic response is ro-
bust against thermal noise for temperatures up to T = 6 K ∼
0.2Tc.

V. PULSED EXCITATION OF THE HIGGS TIME CRYSTAL

While significant progress has been made in generating
continuous-wave terahertz sources [48], typical experiments
in optically driven superconductors utilize pulsed excitation,
as in most pump-probe experiments. We now point out that
the time-crystalline phase can be detected when the system
is driven with a short pulse, rather than the steady state
discussed so far. We consider a pulsed driving scheme by
introducing a Gaussian envelope of the periodic driving; that
is, Edr (t ) = E0cos(ωdrt ) exp(−t2/2σ 2) with the pulse width
σ . In Fig. 5, we present an example of the dynamical response
of the bilayer system under pulsed excitation. The response
shown in Fig. 5(b) is approximately the Fourier-broadened
form of Fig. 4(b). The similarity between the two results
suggests that the defining features of the Higgs time crystal of
continuously driven superconductors are detectable for pulsed
driving protocols with realistic pulse lengths. The response
can be clearly distinguished from normal dynamical phases
by probing the coherent dynamics of the supercurrent. Thus
the Higgs time crystal predicted here can be observed in cur-
rent state-of-the-art experiments with optically driven high-Tc

superconductors.

VI. DISCUSSION

In conclusion, we have demonstrated the emergence of a
time-crystalline phase in a high-Tc superconductor, which is
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FIG. 5. Time-crystalline response of a bilayer cuprate supercon-
ductor to a driving pulse. (a) Temporal wave form of the pulsed
electric field and the induced motion of the supercurrent den-
sity shown for one representative trajectory at T = 3 K ∼ 0.1Tc

with an effective field strength E0 = 0.2 MV/cm, driving frequency
ωdr/2π = 22.4 THz, and pulse width σ = 2 ps. (b) Power spectrum
of the supercurrent density, measured in the interval between 0 and
2 ps. The parameters for the bilayer system are the same as in Fig. 3.
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induced by optical driving of a sum resonance of the Higgs
mode and a Josephson plasma mode. Using a newly developed
lattice gauge simulator, we demonstrate this time crystal for
mono- and bilayer cuprates and show its robustness against
thermal fluctuations, for up to ∼20% of the critical tempera-
ture. As an experimentally accessible signature we observe the
emergence of two side peaks at ωdr ± ωH in the supercurrent
spectra. This signature is also visible in pulsed operation,
which mimics realistic experimental conditions.

The emergent time-crystalline order that we propose to
induce constitutes a qualitative departure from previous
light-induced states in solids, because it is a genuine nonequi-
librium state with no equilibrium counterpart. The realization
of such a state expands the scope of the scientific effort
to design many-body states by optical driving beyond the
paradigm of renormalizing equilibrium orders. While even
this existing paradigm has been and continues to be thought
provoking and stimulating, the work presented here urges the
design and exploration of light-induced nonequilibrium states
beyond that framework and thereby expands the scope of the
effort to design quantum matter on demand.
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APPENDIX A: NOISE CORRELATIONS

The fluctuation-dissipation theorem requires

〈Re{ξr(t )}Re{ξr′ (t ′)}〉 = γ Kh̄2kBT

V0
δrr′δ(t − t ′), (A1)

〈Im{ξr(t )}Im{ξr′ (t ′)}〉 = γ Kh̄2kBT

V0
δrr′δ(t − t ′), (A2)

〈Re{ξr(t )}Im{ξr′ (t ′)}〉 = 0 (A3)

for the noise term of the superconducting field, where V0 =
d2

abdc is the discretization volume of a single superconducting

TABLE I. Model parameters used in the simulations.

Monolayer Bilayer

K (meV−1) 2.9 × 10−5 2.9 × 10−5

μ (meV) 1.0 × 10−2 1.0 × 10−2

g (meV Å3) 5.0 5.0
γ /2π (THz) 0.5 0.5
tab (meV) 6.2 × 10−1 6.2 × 10−1

ts (meV) 4.2 × 10−2 2.5 × 10−2

tw (meV) 4.2 × 10−2 1.0 × 10−3

dab (Å) 15 15
ds (Å) 6 4
dw (Å) 6 8
εs 1 1
εw 1 4

site. The noise correlations for the electric field are

〈ηx,r(t )ηx,r′ (t ′)〉 = 2γ kBT

ε0V0
δrr′δ(t − t ′), (A4)

〈ηy,r(t )ηy,r′ (t ′)〉 = 2γ kBT

ε0V0
δrr′δ(t − t ′), (A5)

〈ηz,r(t )ηz,r′ (t ′)〉 = dc

dnεn

2γ kBT

ε0V0
δrr′δ(t − t ′). (A6)

APPENDIX B: CHARACTERIZATION OF THE RESPONSE

We characterize the response of the system to the periodic
driving by studying the dynamics of the sample averages of
the condensate amplitude and the supercurrent along the c
axis. The supercurrent along a single junction in the c direc-
tion is given by the Josephson relation

Jz
l,m,n = 4etndc

h̄
Im{ψ∗

l,m,n+1ψl,m,neiaz
l,m,n}. (B1)

The sample average of the supercurrent density along the c
axis can be obtained from

J (t ) = dsJs(t ) + dwJw(t )

ds + dw

, (B2)

where Js,w(t ) denotes the spatial average of Josephson cur-
rents along either strong or weak junctions. In the case of
nonzero temperatures, we average the power spectra P|ψ |(ω)
and PJ (ω) over an ensemble of trajectories. We find that 100
trajectories are enough to obtain convergent results for sam-
pling thermal fluctuations at nonzero temperatures.

APPENDIX C: MODEL PARAMETERS

Table I summarizes the parameters of our numerical calculations for mono- and bilayer systems, respectively. In both cases,
our parameter choice of μ and g implies an equilibrium condensate density n0 = μ/g = 2 × 1021 cm−3 at T = 0. The bilayer
system has two longitudinal c-axis plasma modes. Their eigenfrequencies are

ω2
J1,J2 =

(
1

2
+ αs

)
�2

s +
(

1

2
+ αw

)
�2

w ∓
√[(

1

2
+ αs

)
�2

s −
(

1

2
+ αw

)
�2

w

]2

+ 4αsαw�2
s �

2
w, (C1)
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as follows from a sine-Gordon analysis at T = 0 [32,33]. Here, we introduced the bare plasma frequencies of the strong and
weak junctions

�s,w =
√

8ts,wn0e2dcds,w

h̄2εs,wε0
, (C2)

where dc = (ds + dw )/2. The capacitive coupling constants are given by

αs,w = εs,wε0

8Kn0e2dcds,w
. (C3)

Besides, there is a transverse c-axis plasma mode with the eigenfrequency

ω2
T = 1 + 2αs + 2αw

αs + αw

(
αs�

2
s + αw�2

w

)
. (C4)

We have αs = 0.5, αw = 1, ωJ1/2π ≈ 2.0 THz, ωJ2/2π ≈ 14.3 THz, and ωT/2π ≈ 11.8 THz for the parameters specified in
Table I. The in-plane plasma frequency amounts to 154 THz.

[1] D. Fausti, R. I. Tobey, N. Dean, S. Kaiser, A. Dienst, M. C.
Hoffmann, S. Pyon, T. Takayama, H. Takagi, and A. Cavalleri,
Light-induced superconductivity in a stripe-ordered cuprate,
Science 331, 189 (2011).

[2] W. Hu, S. Kaiser, D. Nicoletti, C. R. Hunt, I. Gierz, M. C.
Hoffmann, M. Le Tacon, T. Loew, B. Keimer, and A. Cavalleri,
Optically enhanced coherent transport in YBa2Cu3O6.5 by ul-
trafast redistribution of interlayer coupling, Nat. Mater. 13, 705
(2014).

[3] K. A. Cremin, J. Zhang, C. C. Homes, G. D. Gu, Z. Sun,
M. M. Fogler, A. J. Millis, D. N. Basov, and R. D. Averitt, Pho-
toenhanced metastable c-axis electrodynamics in stripe-ordered
cuprate La1.885Ba0.115CuO4, Proc. Natl. Acad. Sci. USA 116,
19875 (2019).

[4] A. Kogar, A. Zong, P. E. Dolgirev, X. Shen, J. Straquadine,
Y.-Q. Bie, X. Wang, T. Rohwer, I.-C. Tung, Y. Yang, R. Li, J.
Yang, S. Weathersby, S. Park, M. E. Kozina, E. J. Sie, H. Wen,
P. Jarillo-Herrero, I. R. Fisher, X. Wang et al., Light-induced
charge density wave in LaTe3, Nat. Phys. 16, 159 (2019).

[5] J. G. Cosme, C. Georges, A. Hemmerich, and L. Mathey, Dy-
namical Control of Order in a Cavity-BEC System, Phys. Rev.
Lett. 121, 153001 (2018).

[6] C. Georges, J. G. Cosme, L. Mathey, and A. Hemmerich, Light-
Induced Coherence in an Atom-Cavity System, Phys. Rev. Lett.
121, 220405 (2018).

[7] F. Wilczek, Superfluidity and Space-Time Translation Symme-
try Breaking, Phys. Rev. Lett. 111, 250402 (2013).

[8] K. Sacha and J. Zakrzewski, Time crystals: A review, Rep. Prog.
Phys. 81, 016401 (2018).

[9] F. M. Gambetta, F. Carollo, M. Marcuzzi, J. P. Garrahan, and I.
Lesanovsky, Discrete Time Crystals in the Absence of Manifest
Symmetries or Disorder in Open Quantum Systems, Phys. Rev.
Lett. 122, 015701 (2019).

[10] B. Buca, J. Tindall, and D. Jaksch, Non-stationary coher-
ent quantum many-body dynamics through dissipation, Nat.
Commun. 10, 1730 (2019).

[11] T. L. Heugel, M. Oscity, A. Eichler, O. Zilberberg, and R.
Chitra, Classical Many-Body Time Crystals, Phys. Rev. Lett.
123, 124301 (2019).

[12] D. V. Else, C. Monroe, C. Nayak, and N. Y. Yao, Discrete time
crystals, Annu. Rev. Condens. Matter Phys. 11, 467 (2020).

[13] N. Y. Yao, C. Nayak, L. Balents, and M. P. Zaletel, Classical
discrete time crystals, Nat. Phys. 16, 438 (2020).

[14] S. Choi, J. Choi, R. Landig, G. Kucsko, H. Zhou, J. Isoya, F.
Jelezko, S. Onoda, H. Sumiya, V. Khemani, C. von Keyserlingk,
N. Y. Yao, E. Demler, and M. D. Lukin, Observation of discrete
time-crystalline order in a disordered dipolar many-body sys-
tem, Nature (London) 543, 221 (2017).

[15] J. Zhang, P. W. Hess, A. Kyprianidis, P. Becker, A. Lee, J.
Smith, G. Pagano, I.-D. Potirniche, A. C. Potter, A. Vishwanath,
N. Y. Yao, and C. Monroe, Observation of a discrete time
crystal, Nature (London) 543, 217 (2017).

[16] A. Chew, D. F. Mross, and J. Alicea, Time-Crystalline Topolog-
ical Superconductors, Phys. Rev. Lett. 124, 096802 (2020).

[17] C. M. Varma, Higgs boson in superconductors, J. Low Temp.
Phys. 126, 901 (2002).

[18] D. Pekker and C. Varma, Amplitude/Higgs modes in con-
densed matter physics, Annu. Rev. Condens. Matter Phys. 6,
269 (2015).

[19] R. Matsunaga, N. Tsuji, H. Fujita, A. Sugioka, K. Makise, Y.
Uzawa, H. Terai, Z. Wang, H. Aoki, and R. Shimano, Light-
induced collective pseudospin precession resonating with Higgs
mode in a superconductor, Science 345, 1145 (2014).

[20] N. Tsuji and H. Aoki, Theory of Anderson pseudospin reso-
nance with Higgs mode in superconductors, Phys. Rev. B 92,
064508 (2015).

[21] S. Nakamura, Y. Iida, Y. Murotani, R. Matsunaga, H. Terai,
and R. Shimano, Infrared Activation of the Higgs Mode by
Supercurrent Injection in Superconducting NbN, Phys. Rev.
Lett. 122, 257001 (2019).

[22] R. Shimano and N. Tsuji, Higgs mode in superconductors,
Annu. Rev. Condens. Matter Phys. 11, 103 (2020).

[23] F. Peronaci, M. Schiró, and M. Capone, Transient Dynamics of
d-Wave Superconductors after a Sudden Excitation, Phys. Rev.
Lett. 115, 257001 (2015).

[24] K. Katsumi, N. Tsuji, Y. I. Hamada, R. Matsunaga, J.
Schneeloch, R. D. Zhong, G. D. Gu, H. Aoki, Y. Gallais,
and R. Shimano, Higgs Mode in the d-Wave Superconductor
Bi2Sr2CaCu2O8+x Driven by an Intense Terahertz Pulse, Phys.
Rev. Lett. 120, 117001 (2018).

[25] M. Buzzi, G. Jotzu, A. Cavalleri, J. I. Cirac, E. A. Demler,
B. I. Halperin, M. D. Lukin, T. Shi, Y. Wang, and D. Podolsky,

043214-8



HIGGS TIME CRYSTAL IN A HIGH-Tc … PHYSICAL REVIEW RESEARCH 2, 043214 (2020)

Higgs-mediated optical amplification in a non-equilibrium su-
perconductor, arXiv:1908.10879 [cond-mat.supr-con].

[26] H. Chu, M.-J. Kim, K. Katsumi, S. Kovalev, R. D. Dawson,
L. Schwarz, N. Yoshikawa, G. Kim, D. Putzky, Z. Z. Li, H.
Raffy, S. Germanskiy, J.-C. Deinert, N. Awari, I. Ilyakov, B.
Green, M. Chen, M. Bawatna, G. Christiani, G. Logvenov et al.,
Phase-resolved Higgs response in superconducting cuprates,
Nat. Commun. 11, 1793 (2020).

[27] L. Schwarz, B. Fauseweh, N. Tsuji, N. Cheng, N. Bittner,
H. Krull, M. Berciu, G. S. Uhrig, A. P. Schnyder, S. Kaiser,
and D. Manske, Classification and characterization of nonequi-
librium Higgs modes in unconventional superconductors, Nat.
Commun. 11, 287 (2020).

[28] M. Puviani, L. Schwarz, X.-X. Zhang, S. Kaiser, and D.
Manske, Current-assisted Raman activation of the Higgs
mode in superconductors, Phys. Rev. B 101, 220507(R)
(2020).

[29] F. Yang and M. W. Wu, Theory of Higgs modes in d-wave
superconductors, Phys. Rev. B 102, 014511 (2020).

[30] E. A. Yuzbashyan, O. Tsyplyatyev, and B. L. Altshuler,
Relaxation and Persistent Oscillations of the Order Parame-
ter in Fermionic Condensates, Phys. Rev. Lett. 96, 097005
(2006).

[31] T. Koyama and M. Tachiki, I-V characteristics of Josephson-
coupled layered superconductors with longitudinal plasma
excitations, Phys. Rev. B 54, 16183 (1996).

[32] D. van der Marel and A. A. Tsvetkov, Transverse-optical
Josephson plasmons: Equations of motion, Phys. Rev. B 64,
024530 (2001).

[33] T. Koyama, Josephson plasma resonances and optical properties
in high-Tc superconductors with alternating junction parame-
ters, J. Phys. Soc. Jpn. 71, 2986 (2002).

[34] H. Shibata and T. Yamada, Double Josephson Plasma Reso-
nance in T ∗ Phase SmLa1−xSrxCuO4−δ , Phys. Rev. Lett. 81,
3519 (1998).
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2

I. MULTIPLE-SCALE ANALYSIS OF THE SUM RESONANCE

Here, we derive the sum resonance of the Higgs mode and the Josephson plasmon of a monolayer cuprate super-
conductor in the zero-temperature limit, where the model simplifies to a 1D chain along the c-axis. We consider the
two-mode model discussed in the main text:

∂2t a+ γ∂ta+ ω2
Ja+ 2ω2

Jah ≈ jdr, (1)

∂2t h+ γ∂th+ ω2
Hh+ αω2

Ja
2 ≈ 0. (2)

The Higgs field is given by h = (ψ − ψ0)/ψ0 with ψ0 being the equilibrium condensate amplitude, and jdr is the
current due to the drive. Note that the unitless vector potential a equals the phase difference between adjacent planes
in this setting. The Higgs and plasma frequencies are ωH =

√
2µ/K~2 and ωJ =

√
tJ/αK~2, respectively. Next, we

expand jdr, a, and h according to

f = f (0) + λf (1) + λ2f (2) +O(λ3), (3)

where λ� 1 is a small expansion parameter. Moreover, we take the driving as

j
(1)
dr = j1e−iωdrt + c.c., (4)

where

λ|j1| =
edωdrE0

~ε
(5)

for Edr(t) = E0 cos(ωdrt). From now on, we assume weak damping, that is, γ = λγ̃. The expansion parameter λ is
also used to define multiple time scales:

T0 ≡ t , T1 ≡ λt. (6)

The time derivatives transform as

∂t = D0 + λD1 +O(λ2) , ∂2t = D2
0 + 2λD0D1 +O(λ2), (7)

where Dn ≡ ∂
∂Tn

. Since all the zeroth order contributions vanish, the first non-trivial contribution comes from the
first order

D2
0a

(1) + ω2
Ja

(1) = j1e−iωdrt + c.c., (8)

D2
0h

(1) + ω2
Hh

(1) = 0. (9)

This implies solutions of the form

a(1) = CJe−iωJT0 + F e−iωdrT0 + c.c., (10)

h(1) = CHe−iωHT0 + c.c., (11)

where F is given by

F =
j1

ω2
J − ω2

dr

. (12)

Introducing the amplitudes CJ(T1) and CH(T1) allows to describe a possible sum resonance. These amplitudes are
determined in the following. In second order, we have

D2
0a

(2) + ω2
Ja

(2) = −2D0D1a
(1) − γ̃D0a

(1) − 2ω2
Ja

(1)h(1), (13)

D2
0h

(2) + ω2
Hh

(2) = −2D0D1h
(1) − γ̃D0h

(1) − αω2
J[a(1)]2. (14)

Substituting the first order solutions into the second order equations leads to

D2
0a

(2) + ω2
Ja

(2) = i(2D1 + γ̃)
(
ωJCJe−iωJT0 + ωdrF e−iωdrT0

)

− 2ω2
J

(
CJCHe−i(ωJ+ωH)T0 + CJC

∗
He−i(ωJ−ωH)T0 + FCHe−i(ωdr+ωH)T0 + FC∗He−i(ωdr−ωH)T0

)
+ c.c.,

(15)

D2
0h

(2) + ω2
Hh

(2) = i(2D1 + γ̃)ωHCHe−iωHT0 − αω2
J

(
|CJ|2 + |F |2 + C2

Je−2iωJT0 + F 2e−2iωdrT0

+ 2FCJe−i(ωdr+ωJ)T0 + 2FC∗Je−i(ωdr−ωJ)T0

)
+ c.c..

(16)
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To study the behavior near the sum resonance, we write

ωdr = ωJ + ωH + λδ (17)

with the detuning δ. Inserting this into the second order equations induces secular terms, which we demand to vanish:

i(2D1 + γ̃)ωJCJ − 2ω2
JFC

∗
He−iδT1 = 0, (18)

i(2D1 + γ̃)ωHCH − 2αω2
JFC

∗
Je−iδT1 = 0. (19)

The conditions (18) and (19) imply solutions of the form

CJ = C̃Je(r−iδ)T1 , (20)

CH = C̃Jer
∗T1 . (21)

Using this ansatz, we find

r = − (γ̃ − iδ)

2
± 1

2

√
4αω3

J

ωH
|F |2 − δ2. (22)

If the real part of r is positive, the amplitudes CJ and CH grow exponentially. Such a behaviour signals the excitation
of the sum resonance. It requires a sufficient driving amplitude given by the condition

|F |2 >
(
γ̃2 + δ2

) ωH

4αω3
J

. (23)

Let us consider the case ωdr = ωJ + ωH, i.e., δ = 0. In this case, the required driving amplitude to induce the sum
resonance is

E0 > γ

√
2n0K~2
εε0

(
2ωJ + ωH

ωJ + ωH

)(
ωH

ωJ

)3/2

≈ 8× 10−3 MV cm−1 (24)

for the parameters specified in the main text. Higher order terms play an important role in saturating the amplitude
of oscillations [1], which can be understood from the perspective of non-linear oscillators having amplitude dependent
eigenfrequencies.

In the case of driving close to the difference frequency,

ωdr = ωJ − ωH + λδ, (25)

we find

r = − (γ̃ − iδ)

2
± 1

2

√
−4αω3

J

ωH
|F |2 − δ2. (26)

Here the real part of r is always negative. Hence, there is no difference resonance in the system.

II. RIGIDITY OF THE HIGGS TIME CRYSTAL

The following zero-temperature simulations refer to the bilayer cuprate superconductor specified in the main text.
We take the driving as

Edr(t) =
E0

2
cos(ωdrt)

[
1 + tanh

(
t

τ

)]
, (27)

where E0 is the strength of the external field effectively penetrating the sample. Additionally, the external drive is
characterised by the frequency ωdr and the rise time τ .

To realise the sum resonance of the Higgs mode and the upper Josephson plasmon, we drive the electric field with
E0 = 0.2 MV cm−1 and ωdr/2π = 21 THz. The long-time persistence of the time-translation symmetry breaking is
exemplified in Fig. 1, where the subharmonic oscillations in the condensate amplitude are found to survive even after
105 driving cycles.

As discussed in Ref. [2], a signature of a phase transition to a time crystalline order in classical systems is the
hysteretic behaviour across a critical point. Here, we demonstrate an indicator of such hysteresis in the response
of the condensate amplitude. This can be seen in Fig. 2 as we tune the driving amplitude across the time crystal-
normal response transition from E0 = 0.08 MV cm−1 to E0 = 0.1 MV cm−1 and vice versa, while keeping the driving
frequency fixed at ωdr/2π = 21 THz. In particular, there is a clear difference in the time that it takes the system to
enter and leave the time crystalline phase.



4

-0.2

0

0.2

E
dr

 (
M

V
 c

m
-1

)

200 300

Driving cycles

0.8

0.9

1

1.1

|
 | /

 
|

0
|

Amplitude response

Driving
(a)

-0.2

0

0.2

E
dr

 (
M

V
 c

m
-1

)

1.002 1.003

Driving cycles 105

0.8

0.9

1

1.1

|
 | /

 
|

0
|

Amplitude response

Driving
(b)

FIG. 1. Long-time persistence of the subharmonic response at T = 0. (a) Amplitude response after 200 driving cycles. (b)
Amplitude response after 1.002 × 105 driving cycles.
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FIG. 2. Dynamical transitions between normal and time crystalline phase. (a) Transition from normal to time crystalline
phase. (b) Transition from time crystalline to normal phase.
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III. OPTICAL CONDUCTIVITY OF THE HIGGS TIME CRYSTAL

The optical conductivity σ(ω) is a crucial quantity to characterise the electric transport properties of a supercon-
ductor in the linear response regime. It is a macroscopic observable that can be measured in pump-probe experiments
[3, 4]. Here, we investigate how the emergence of the Higgs time crystal alters the c-axis optical conductivity of a
bilayer cuprate superconductor with parameters as specified in the main text. For this purpose, the system is driven
into the time crystalline phase with E0 = 0.2 MV cm−1 and ωdr/2π = 21 THz at T = 0. Then, we add a probing
term to the external drive,

Edr(t) = E0cos(ωdrt) +
Epr

2
cos(ωprt)

[
1 + tanh

(
ωpr(t− tpr)

2π

)]
, (28)

where tpr = 10 ps. The probing amplitude Epr has to be one order of magnitude smaller than E0 to enter the linear
response regime. We evaluate σ(ω) = Jtot(ω)/E(ω) from a Fourier analysis over 50 ps in the steady state. The
average electric field along the c-axis is given by

E(t) =
dsEs(t) + dwEw(t)

ds + dw
, (29)

where Es,w(t) denotes the spatial average of electric fields along either strong or weak junctions. The total current is
the sum of the average supercurrent and the average displacement current inside the sample, that is,

Jtot(t) = J(t) +
dsεsε0∂tEs + dwεwε0∂tEw

ds + dw
, (30)

where J(t) is the supercurrent given in the main text. As visible in Fig. 3(a), the real part of the optical conductivity
acquires additional resonance peaks in the time crystalline phase, especially at ωL = ωdr − ωH and ωR = ωdr + ωH.
These frequencies correspond to the side peaks previously observed in the supercurrent spectra. Remarkably, the
current response is amplified at the left side peak while attenuated at the right side peak. The counterparts of the
peaks in σ1 are sharp edges in σ2 as evidenced by Fig. 3(b). The depletion of the condensate tends to reduce the
plasma frequencies in the time crystalline phase. This effect is most apparent for the transverse Josephson plasmon
shifting from 11.8 THz to 11.4 THz. For the same reason, we find a smaller prefactor of the 1/ω divergence of σ2 at
low frequencies.
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FIG. 3. Optical conductivity in the time crystalline phase. (a) Real part of the optical conductivity. (b) Imaginary part of the
optical conductivity.
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IV. THERMAL PHASE TRANSITION

Here, we elaborate on the thermal phase transition of the simulated bilayer cuprate superconductor, see main text
for parameters. The thermal equilibrium at a given temperature is established as follows. We initialise the system in
its ground state at T = 0 and let the dynamics evolve without external driving, influenced only by thermal fluctuations
and dissipation. After 10 ps, the average condensate density n = 1

N

∑
r |ψr|2 and the phase coherence are converged,

indicating thermal equilbrium. To characterise the phase transition, we introduce the order parameter

O =
1

n

∣∣∣∣
1

N/2

∑

l,m,n∈odd
ψ∗l,m,n+1ψl,m,n eia

z
l,m,n

∣∣∣∣. (31)

The order parameter measures the phase coherence of the condensate across different bilayers. For each trajectory,
it is evaluated from the average of 200 measurements within a time interval of 2 ps. Finally, we take the ensemble
average of 100 trajectories. As shown in Fig. 4(a), the temperature dependence of the order parameter is reminiscent
of a second order phase transition. Due to the finite size of the simulated system, the order parameter converges to a
plateau with non-zero value for high temperatures. Instead of a sharp discontinuity, one finds a distinct crossover at
Tc ∼ 30 K. We also note that the lower Josephson plasmon vanishes in this temperature regime, which agrees with
experimental observations [5]. Figure 4(b) reveals that the condensate density does not drop below 0.4n0 through
the phase transition. Strikingly, the condensate density decreases almost linearly with temperature below Tc. By
contrast, it undergoes a nearly linear increase above the transition temperature. We see in Figs. 4(c) and 4(d) that
the phase transition is only weakly modified by increasing the system size.
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FIG. 4. Phase transition of a bilayer cuprate superconductor. (a) Order parameter for a system of 48 × 48 × 4 lattice sites.
(b) Condensate density for a system of 48 × 48 × 4 lattice sites. The error bars indicate the standard deviations of the
ensemble averages. (c) Order parameter for various system sizes. (d) Condensate density for various system sizes. The physical
parameters are the same as for the bilayer system considered in the main text.
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V. TEMPERATURE DEPENDENCE OF THE RESONANCE FREQUENCIES

In this section, we discuss the temperature dependence of the resonance frequencies, which can be deduced from the
undriven dynamics of the superconductor in thermal equilibrium. More precisely, the Higgs mode and the longitudinal
Josephson plasmons appear as peaks in the amplitude and supercurrent spectra, respectively. We fit a Lorentzian
to the corresponding maxima in the thermal spectra (ensemble average of 100 trajectories). Figure 5 displays the
temperature dependence of the Higgs and upper Josephson plasma frequencies up to ∼ 0.4Tc for various system sizes.

While the upper Josephson plasmon is weakly shifted towards smaller frequencies, the Higgs frequency notably
increases with temperature. The temperature dependence of the Higgs frequency does not significantly depend on
the system size, but on the in-plane tunnelling tab as inferred from additional simulations. Additionally, a comparison
to thermal spectra with different tab indicates a minor role of the condensate density in this process. That is why
our analysis is focused on the correction of the Higgs frequency arising from fourth order coupling terms between the
Higgs field and the vector potential. Due to the dominant role of the in-plane dynamics in this process, we perform
the following calculations in 2D. Expanding around the thermal equilibrium at a given temperature yields

∂2t hr + γ∂thr +
2µ

K~2
hr +

tab
K~2

∑

r′∈NN

(hr − hr′) +
tab

2K~2
∑

r′∈NN

θ2rr′hr′ ≈ 0, (32)

where the sum is restricted to the nearest neighbours (NN) of r in the ab-plane, and θrr′ = arr′ + arg(ψr)− arg(ψr′)
denotes the gauge-invariant phase between neighbouring sites. The notation arr′ means the bond-directed component
of the vector potential at (r + r′)/2 with ar′r = −arr′ . A Fourier transform leads to

∑

k

(
∂2t hk + γ∂thk + ω2

H(k)hk

)
eik·r ≈ − tab

K~2M
∑

p,q

[
cos

(
px + 2qx

2
dab

)
(θ2x)p + cos

(
py + 2qy

2
dab

)
(θ2y)p

]
hqei(p+q)·r,

(33)
where M is the total number of sites in the ab-plane, and

ω2
H(k) =

2µ

K~2
+

2tab
K~2

[
2− cos(kxdab)− cos(kydab)

]
. (34)

The equation of motion for a given momentum mode reads

∂2t hk + γ∂thk + ω2
H(k)hk ≈ −

tab
K~2M

∑

q

[
cos

(
kx + qx

2
dab

)
(θ2x)k−q + cos

(
ky + qy

2
dab

)
(θ2y)k−q

]
hq. (35)

0 3 6 9 12

Temperature (K)

7

9

11

13

H

 /(
2

) 
(T

H
z)

48x48x4
64x64x4
48x48x8

(a)

0 3 6 9 12

Temperature (K)

12.5

13

13.5

14

14.5

J2
 /(

2
) 

(T
H

z)

48x48x4
64x64x4
48x48x8

(b)

FIG. 5. Temperature dependence of the the resonance frequencies. (a) Temperature dependence of the Higgs frequency. (b)
Temperature dependence of the upper Josephson plasma frequency.
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FIG. 6. Increase of the Higgs frequency at low temperatures. The numerical results are compared to a semi-analytical estimate.

So, we have

∂2t h0 + γ∂th0 + ω2
H(0)h0 ≈ −

tab
K~2

(θ2x)0 + (θ2y)0

M
h0 −

tab
K~2M

∑

q6=0

[
cos

(
qxdab

2

)
(θ2x)−q + cos

(
qydab

2

)
(θ2y)−q

]
hq. (36)

To determine the finite-momentum modes on the right-hand side of equation (36), we apply a rotating wave approx-
imation:

hq ≈ −
tab

K~2ω2
H(q)M

∑

k

[
cos

(
kx + qx

2
dab

)
(θ2x)q−k + cos

(
ky + qy

2
dab

)
(θ2y)q−k

]
hk. (37)

Furthermore, we assume that the zero-momentum mode provides the main contribution to the sum in equation (37),
leading to

hq ≈ −
tab

K~2ω2
H(q)M

[
cos

(
qxdab

2

)
(θ2x)q + cos

(
qydab

2

)
(θ2y)q

]
h0. (38)

Inserting this into equation (36) yields

∂2t h0 + γ∂th0 + ω2
H(0)h0

≈ − tab
K~2

(θ2x)0 + (θ2y)0

M
h0 +

t2ab
K2~4

∑

q6=0

[
Fx(q)(θ2x)q(θ2x)−q

M2
+
Fy(q)(θ2y)q(θ2y)−q

M2
+

2Fxy(q)(θ2x)q(θ2y)−q
M2

]
h0,

(39)

where

Fx(q) =
1

ω2
H(q)

cos2
(
qxdab

2

)
, (40)

Fy(q) =
1

ω2
H(q)

cos2
(
qydab

2

)
, (41)

Fxy(q) =
1

ω2
H(q)

cos

(
qxdab

2

)
cos

(
qydab

2

)
. (42)

This implies the temperature-dependent Higgs frequency

ωH(k = 0, T ) = ωH(0, 0)
√

1 + ∆1(T ) + ∆2(T ), (43)
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with the corrections

∆1(T ) =
tab
2µ

〈
(θ2x)0 + (θ2y)0

M

〉
, (44)

∆2(T ) = − t2ab
2µK~2

∑

q6=0

〈
Fx(q)(θ2x)q(θ2x)−q

M2
+
Fy(q)(θ2y)q(θ2y)−q

M2
+

2Fxy(q)(θ2x)q(θ2y)−q
M2

〉
. (45)

The estimate in Eq. (43) is compared to the purely numerical results in Fig. 6. For both curves, we take the ensemble
average of 100 trajectories. The discrepancy between the the numerical and semi-analytical values can be ascribed to
the approximations made in equations (37) and (38). Moreover, we have ignored the c-axis dynamics and higher order
terms as present in the Mexican hat potential, for example. Nonetheless, our estimate distils the effect of the fourth
order coupling terms ∼ a2h2 on the Higgs frequency. For fixed model parameters, the Higgs frequency is shifted to
a higher value because of thermally activated phase fluctuations in the ab-plane. In realistic systems, however, the
chemical potential µ(T ) decreases with temperature such that the Higgs frequency does not necessarily increase.
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We put forth a mechanism for enhancing the interlayer transport in cuprate superconductors, by optically
driving plasmonic excitations along the c axis with a frequency that is blue-detuned from the Higgs frequency.
The plasmonic excitations induce a collective oscillation of the Higgs field which induces a parametric enhance-
ment of the superconducting response, as we demonstrate with a minimal analytical model. Furthermore, we
perform simulations of a particle-hole symmetric U (1) lattice gauge theory and find good agreement with our
analytical prediction. We map out the renormalization of the interlayer coupling as a function of the parameters
of the optical field and demonstrate that the Higgs mode mediated enhancement can be larger than 50%.

DOI: 10.1103/PhysRevB.103.224503

I. INTRODUCTION

The observation of light-induced superconductivity in
cuprates and organic salts has been associated with exciting
lattice or molecular vibrations [1–3]. Related experiments
on light-enhanced interlayer transport in the bilayer cuprate
YBa2Cu3O7−δ (YBCO) above and below the critical tempera-
ture Tc have been reported in Refs. [4–7]. Several mechanisms
for these observations have been proposed in Refs. [8–14].
These proposed mechanisms focus on inducing phononic mo-
tion and its influence on the superconducting response. Here,
we propose to enhance the interlayer transport in cuprates by
optically exciting Higgs oscillations. This collective motion
of the Higgs field couples parametrically to the plasma field,
which results in the enhancement of the superconducting re-
sponse. Our primary example will be monolayer cuprates. We
expect that similar results emerge for other lattice geometries
as well. We demonstrate that the enhancement of the super-
conducting response, in particular the low-frequency behavior
of the imaginary conductivity, is achieved via driving of the
electric field along the c axis with frequencies that are slightly
blue-detuned from the Higgs frequency. Thus, we expand the
scope of dynamical control of the superconducting state in the
cuprates by exploiting nonlinear plasmonics [15,16].

In this paper, we first consider a two-mode model with a
cubic coupling of the Higgs and plasma modes [17]. Based
on this minimal model, we provide an analytical expression
for the Higgs mode mediated renormalization of the interlayer
coupling in monolayer cuprates. We then extend our treatment
to a U (1) lattice gauge theory with inherent particle-hole sym-
metry and simulate the c-axis optical conductivity for different
ratios of the Higgs and plasma frequencies at zero tempera-
ture. The numerical results confirm our analytical prediction,

and we identify the optimal parameter regime for observing
the Higgs mode mediated enhancement of interlayer transport.
Finally, we discuss the feasibility of the effect and possible
challenges brought by damping.

II. ANALYTICAL PREDICTION

Expanding on previous works [18–21], we model a layered
superconductor as a stack of intrinsic Josephson junctions.
In addition to Josephson plasma resonances [22–24], re-
cent experiments have revealed the existence of another
fundamental excitation in cuprate superconductors, the Higgs
mode [25–27]. This mode corresponds to amplitude oscil-
lations of the superconducting order parameter ψ , which
decouples from the plasma mode in a system with ap-
proximate particle-hole symmetry [28,29]. The two distinct
low-energy modes of a monolayer cuprate superconductor
are depicted in Fig. 1(a), where the phase of ψ shall be
interpreted as the gauge-invariant phase difference between
adjacent layers. At zero momentum, the lowest-order coupling
between the Higgs field h and the unitless vector potential a is
given by the cubic interaction Lagrangian Lint ∼ a2h [27,30].
The equations of motion corresponding to such a minimal
model for describing the dynamics of a light-driven mono-
layer cuprate at zero temperature are

ä + γJȧ + ω2
J a + 2ω2

J ah = j, (1)

ḧ + γHḣ + ω2
Hh + αω2

J a2 = 0, (2)

where ωH is the Higgs frequency, ωJ is the plasma frequency,
and γH and γJ are damping coefficients. The capacitive cou-
pling constant α is of the order of 1 in the cuprates [31]. The
interlayer current j is induced by an external electric field.

2469-9950/2021/103(22)/224503(6) 224503-1 ©2021 American Physical Society
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We use γH/2π = γJ/2π = 0.5 THz and α = 1 unless stated
otherwise [32], and we assume the z axis to be aligned with
the c axis of the crystal.

For weak pump-probe strengths, we perform a perturbative
expansion for a and h around their equilibrium values [32].
To calculate the c-axis optical conductivity σ (ω) in the driven
state, we apply both driving and probing currents. We take the
current as a first-order term in the expansion, i.e.,

j = λ( jdr,1e−iωdrt + jpr,1e−iωprt + c.c.), (3)

where λ � 1 is a small expansion parameter. Hence, the
leading contribution to a is of first order and the leading
contribution to h is of second order. The coupling term ∼ah

gives a third-order correction to a. Additionally, we assume
that the probing frequency ωpr is much smaller than the
driving frequency ωdr and the eigenfrequencies ωH and ωJ.
Thus, we obtain an approximate expression for the Fourier
component a(ωpr ) = λapr,1 + λ3apr,3. The contributions are
apr,1 ≈ jpr,1/ω

2
J and

apr,3 ≈ 4α| jdr,1|2 jpr,1
(
ω2

dr − 3ω2
H + iγHωdr

)

ω2
H

(
ω2

dr − ω2
H + iγHωdr

)[(
ω2

dr − ω2
J

)2 + γ 2
J ω2

dr

] .

(4)
This leads to the analytical prediction

ωprσ (ωpr ) = iεzε0 j(ωpr )

a(ωpr )
≈ iεzε0ω

2
J ω

2
H

(
ω2

dr − ω2
H + iγHωdr

)[(
ω2

dr − ω2
J

)2 + γ 2
J ω2

dr

]

ω2
H

(
ω2

dr − ω2
H + iγHωdr

)[(
ω2

dr − ω2
J

)2 + γ 2
J ω2

dr

] + 4αω2
J | jdr|2

(
ω2

dr − 3ω2
H + iγHωdr

) , (5)

where εz denotes the dielectric permittivity of the junctions,
and jdr = λ jdr,1 is the driving amplitude. We define an effec-
tive Josephson coupling [13] based on the 1/ω divergence of
the conductivity,

Jeff = h̄

2edz
Im[ωprσ (ωpr )]ωpr→0, (6)

with the interlayer spacing dz. In the absence of driving,
the Josephson coupling is J0 = h̄εzε0ω

2
J /(2edz ) according to

FIG. 1. (a) Higgs and plasma modes of a monolayer cuprate
superconductor, illustrated with a Mexican hat potential for the
superconducting order parameter. (b) Schematic representation of
a layered superconductor periodically driven by a c-axis polarized
electric field with frequency ωdr and field strength E0. (c) Effective
interlayer coupling Jeff rescaled by its equilibrium value J0. The field
strength is fixed at E0 = 100 kV/cm. (d) Numerical results for the
imaginary conductivity σ2. The driving parameters are ωdr = 1.05 ωH

and E0 = 400 kV/cm. The cuprate considered in (c) and (d) has
the Josephson plasma frequency ωJ/2π = 2 THz and the Higgs
frequency ωH/2π = 6 THz.

Eq. (5). The analytical prediction for Jeff/J0 in the presence
of driving is shown in Fig. 1(c). The key result of this work is
the enhancement of the effective interlayer coupling when the
pump frequency is slightly blue-detuned from the Higgs fre-
quency. This enhancement phenomenon is due to parametric
amplification. Indeed, Eq. (1) takes the form of a parametric
oscillator due to the two-wave mixing of drive and probe in
Eq. (2), inducing amplitude oscillations at frequencies 2ωdr,
2ωpr, and ωdr ± ωpr. The coupling of amplitude oscillations
with ωdr ± ωpr to the drive amplifies the current response at
the probing frequency. The numerical results in Figs. 1(c)
and 1(d), further highlighting the enhancement of interlayer
transport, are obtained by simulating a full lattice gauge model
discussed in the following.

III. LATTICE GAUGE MODEL

We now turn to our relativistic U (1) lattice gauge theory
in three dimensions, which is inherently particle-hole sym-
metric. The layered structure of cuprate superconductors is
encoded in the lattice parameters. Our approach allows us to
explicitly simulate the coupled dynamics of the order parame-
ter of the superconducting state ψr(t ) and the electromagnetic
field Ar(t ) at temperatures below Tc. To this end, we describe
the Cooper pairs as a condensate of interacting bosons with
charge −2e, represented by the complex field ψr(t ). The
time-independent part of our model Lagrangian has the form
of the Ginzburg-Landau free energy [33], discretized on an
anisotropic lattice. We model the layered structure of high-Tc

cuprates using an anisotropic lattice geometry as illustrated
in Fig. 1(b). The in-plane discretization length dxy constitutes
a short-range cutoff around the coherence length, while the
interlayer spacing dz is the distance between the CuO2 planes
in the crystal. Each component of the vector potential As,r(t )
is located at half a lattice site from site r in the s direction,
where s ∈ {x, y, z}. According to the Peierls substitution, it de-
scribes the averaged electric field along the bond of a plaquette
in Fig. 1(b).

We discretize space by mapping it on a lattice and
implement the compact U (1) lattice gauge theory in the time
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continuum limit [34]. The Lagrangian of the lattice gauge
model is

L = Lsc + Lem + Lkin. (7)

The first term is the |ψ |4 model of the superconducting con-
densate in the absence of Cooper pair tunneling,

Lsc =
∑

r

Kh̄2|∂tψr|2 + μ|ψr|2 − g

2
|ψr|4, (8)

where μ is the chemical potential, and g is the interaction
strength. This Lagrangian is particle-hole symmetric due to
its invariance under ψr → ψ∗

r . The coefficient K describes the
magnitude of the dynamical term [27,29].

The electromagnetic part Lem is the discretized form of the
free-field Lagrangian:

Lem =
∑

s,r

εsε0

2
E2

s,r − 1

μ0β2
s

[1 − cos (βsBs,r )]. (9)

Here, Es,r denotes the s component of the electric field, and
εs is the dielectric permittivity along that axis. The mag-
netic field components Bs,r follow from the finite-difference
representation of ∇×A. The temporal and spatial arrange-
ment of the electromagnetic field is consistent with the
finite-difference time-domain (FDTD) method for solving
Maxwell’s equations [35]. Note that we choose the temporal
gauge for our calculations, i.e., Es,r = −∂t As,r. The coeffi-
cients for the magnetic field are βx = βy = 2edxydz/h̄ and
βz = 2ed2

xy/h̄.
The nonlinear coupling between the Higgs field and the

electromagnetic field derives from the tunneling term

Lkin = −
∑

s,r

ts|ψr′(s) − ψreias,r |2, (10)

where r′(s) denotes the neighboring lattice site of r in
the positive s direction. The unitless vector potential as,r =
−2edsAs,r/h̄ couples to the phase of the superconducting
field, ensuring the local gauge invariance of Lkin. The in-
plane tunneling coefficient is txy, and the interlayer tunneling
coefficient is tz.

We numerically solve the equations of motion derived
from the Lagrangian, including damping terms. We employ
periodic boundary conditions and integrate the differential
equations using Heun’s method with a step size 
t = 2.5 as.
Here, we focus on zero temperature, where the in-plane
dynamics is silent. An example of Higgs mode mediated
enhancement at nonzero temperature is included in the
Supplemental Material [32].

We drive the system by adding (ωdrE0/εz )sin(ωdrt ) to the
equations of motion for the vector potential Az,r(t ) on all
interlayer bonds, which describes a spatially homogeneous
driving field. Note that Eqs. (1) and (2) can be derived as
the Euler-Lagrange equations of the Lagrangian (7) at zero
temperature. In that case, the fields are uniform in the bulk,
i.e., ψr ≡ ψ , Ax,r = Ay,r ≡ 0, and Az,r ≡ A. The equations of
motion read

∂2
t A = 2edztz

ih̄εzε0
|ψ |2(eia − e−ia) − γJ∂t A + ωdrE0

εz
sin(ωdrt )

(11)

and

∂2
t ψ = μ − g|ψ |2 + tz(eia + e−ia − 2)

Kh̄2 ψ − γH∂tψ, (12)

where a = −2edzA/h̄. To recover Eqs. (1) and (2), the order
parameter is expanded around its equilibrium value ψ0 =√

μ/g, i.e., ψ = ψ0 + h, and only linear terms in a and
h except for the coupling term ∼ah are retained. Thus,
one can identify the plasma frequency with ωJ =

√
tz/αKh̄2

and the Higgs frequency with ωH =
√

2μ/Kh̄2, where α =
(εzε0)/(8Kψ2

0 e2d2
z ) is the capacitive coupling constant of the

c-axis junctions. The drive induces a current with Fourier
amplitude | jdr| = edzωdrE0/h̄εz.

IV. NUMERICAL RESULTS

In the following, we present our numerical results. We
evaluate the effective interlayer coupling based on the opti-
cal conductivity at ωpr = ωH/120. For weak driving, we find
decent agreement between the analytical prediction in Eq. (5)
and the numerical results of the full lattice gauge model, as
shown in Fig. 2. The deviations are due to higher-order terms
ignored in the minimal model and the perturbative expansion.
They grow with increasing field strength. Nevertheless, our
simulations demonstrate that the enhancement effect persists
for strong driving, even in the presence of higher-order non-
linearities, fully included in our U (1) lattice gauge theory.

We find that the renormalization of the interlayer coupling
does not only depend on the driving parameters, but also on
the ratio of the Higgs frequency and the plasma frequency of
the system. Our main proposal consists of driving the super-
conductor slightly blue-detuned from the Higgs frequency ωH.
This mechanism is effective for all ratios of ωJ/ωH. As we
discuss below, there is a second regime in which dynamical
stabilization can be achieved, if the system fulfills the require-
ment ωH < ωJ <

√
3ωH.

Figure 3 displays the renormalized interlayer coupling as
a function of the driving parameters for a monolayer cuprate
with ωJ < ωH [the same system as in Figs. 1 and 2(a)]. Con-
sistent with our analytical prediction, the interlayer transport
is enhanced for driving frequencies blue-detuned from the
Higgs frequency, while it is diminished on the red-detuned
side, as immediately apparent for weak driving. In general,
higher field strengths amplify the suppression/enhancement
effects and additionally renormalize the Higgs frequency
and the plasma frequency. The frequency renormalization of
the Higgs mode results in the bending of the enhancement
regime towards lower driving frequencies for larger driv-
ing fields. This observation reflects the general behavior of
nonlinear oscillators to display amplitude-dependent eigenfre-
quencies [36]. We emphasize that the interlayer coupling can
be increased by more than 50% in this example. The strongest
suppression of interlayer transport occurs for driving close to
the plasma frequency. This is generally the case if ωJ < ωH or
ωJ >

√
3ωH.

The enhancement and suppression effects are limited by
heating that dominates for larger field strengths (see also
Ref. [17]). We identify the heating regime based on the
condition that the condensate is completely depleted. Specifi-
cally, we observe the driven dynamics for 100 ps and apply
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FIG. 2. Effective interlayer coupling for three light-driven monolayer cuprate superconductors with different ratios ωJ/ωH. (a) ωJ < ωH,
(b) ωH < ωJ <

√
3ωH, (c)

√
3ωH < ωJ. Each panel shows the dependence on the driving frequency ωdr for two fixed values of the field strength

E0. Solid lines correspond to numerical results, and dotted lines indicate analytical results for the lower field strength. In all cases, the Higgs
frequency is fixed at ωH/2π = 6 THz, while the plasma frequency ωJ/2π is varied: (a) 2 THz, (b) 9 THz, and (c) 15 THz.

the condition min(|ψ |/|ψ0|) < 10−3 to determine unstable
states. We note that the heating regime has a similar shape
as the parameter set for which no stable solutions can be
found by applying the harmonic balance method with ten
harmonics [32,37].

Within our analytical solution for the optical conductivity
in Eq. (5), we have determined an upper boundary for the
driving frequency of

√
3ωH for the enhancement effect to

occur. At this boundary, the second term in the denomina-
tor of Eq. (5) switches sign. Our simulations confirm this
prediction for ωH < ωJ. However, as visible in Fig. 3, an
additional suppression lowers this upper bound for super-
conductors with ωJ < (

√
3 − 1)ωH. Here, the enhancement

regime is approximately limited by the resonance frequency of
the time crystalline state at ωdr = ωH + ωJ [17]. This modified
upper bound derives from higher-order terms not included in
the analytical solution.

We continue our analysis by varying the damping coef-
ficients, as shown in Fig. 4. Studying higher values of γH

is particularly interesting because the damping of the Higgs
mode is typically strong in cuprate superconductors [25,26].
It can be seen in Fig. 4(a) that increasing γH significantly
decreases the enhancement of the interlayer coupling for a
given field strength. By contrast, stronger damping of the

FIG. 3. Dependence of the effective interlayer coupling Jeff/J0

on the driving frequency ωdr and the field strength E0. The gray area
marks the heating regime.

plasma mode has a negligible effect. In the Supplemental
Material [32], we provide a parameter scan of the renor-
malized interlayer coupling with higher damping coefficients
γH/2π = γJ/2π = 1 THz. Compared to Fig. 3, we find that
the parameter regime with an enhancement of more than 10%
is smaller and shifted to higher field strengths.

Finally, we consider cuprates with ωH < ωJ <
√

3ωH. In
this case, the previous suppression of interlayer transport
for ωdr ≈ ωJ switches to strong enhancement, as exempli-
fied in Fig. 2(b). Therefore, we propose to drive these
particular systems near the plasma frequency ωJ. In typical
monolayer cuprates, such as La2−xSrxCuO4 (LSCO), the su-
perconducting gap 2
 is larger than the Josephson plasma
energy h̄ωJ [38–40]. At low temperatures, the Higgs fre-
quency approximately equals 2
/h̄ [27,41], so it is larger
than the Josephson plasma frequency in these materials, i.e.,
ωJ < ωH. However, while the temperature dependence of
the Higgs mode in cuprate superconductors is the subject
of debate [25,26,42,43], the case ωH < ωJ <

√
3ωH might

be realized for higher temperatures. For these temperatures,
stronger damping and thermal fluctuations might suppress or
reduce the enhancement mechanism. This regime will be dis-
cussed elsewhere. Further decay channels of the Higgs mode
have been studied in Refs. [44,45].

FIG. 4. Dependence of the Higgs mode mediated renormaliza-
tion of the interlayer coupling on the damping coefficients. (a) γH

is varied while γJ/2π = 0.5 THz is fixed. (b) γJ is varied while
γH/2π = 0.5 THz is fixed. The cuprate with Josephson plasma fre-
quency ωJ/2π = 2 THz and Higgs frequency ωH/2π = 6 THz is
driven with the field strength E0 = 300 kV/cm.
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V. CONCLUSION

In conclusion, we propose a mechanism for light-enhanced
interlayer transport in cuprate superconductors by optically
exciting Higgs oscillations which then induce a paramet-
ric amplification of the superconducting response. Both our
analytical and numerical calculations show that the super-
conducting response of a monolayer cuprate is significantly
amplified when the optical driving is slightly blue-detuned
from the Higgs frequency. Our calculations demonstrate that
the regime of driving parameters, for which a significant
Higgs mode mediated enhancement of interlayer transport
is achieved, crucially depends on the damping of the Higgs
mode. Therefore, we propose to verify this effect first for
low temperatures. The enhancement mechanism presented in
this work is broadly applicable to cuprate superconductors
because it does not rely on the existence of suitable phonons.
Instead, the light-driven renormalization of interlayer trans-
port is mediated by Higgs oscillations of the Cooper pair
condensate itself. This effect amounts to dynamical control of
a functionality in high-temperature superconductors, utilizing
the intrinsic collective modes of these materials and their
nonlinear coupling.
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APPENDIX: MODEL PARAMETERS

Table I summarizes the parameters of the monolayer
cuprate superconductors studied in this paper. Our parameter
choice of μ and g implies an equilibrium condensate density
n0 = μ/g = 2×1021 cm−3 at zero temperature. The capaci-
tive coupling constant is given by

α = gεzε0

8μKe2d2
z

= 1. (A1)

For the c-axis plasma frequency, we consider the three cases
ωJ/2π = 2 THz, ωJ/2π = 9 THz, and ωJ/2π = 15 THz. The
Higgs frequency is ωH/2π = 6 THz in each case.
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I. ANALYTICAL DERIVATION OF THE HIGGS MODE MEDIATED ENHANCEMENT OF
INTERLAYER TRANSPORT

Here, we consider a monolayer cuprate superconductor at zero temperature. Since the system is driven along the
c axis, it exhibits no in-plane dynamics. We rewrite Eqs. (11) and (12) from the main text as

ä+ γJȧ+ ω2
J sin(a)(1 + h)2 = j, (1)

ḧ+ γHḣ+ ω2
H

(
h+

3

2
h2 +

1

2
h3
)

+ 2αω2
J [1− cos(a)] (1 + h) = 0. (2)

Neglecting all nonlinear terms except for the quadratic coupling between the Higgs field h and the unitless vector
potential a, we find

ä+ γJȧ+ ω2
Ja+ 2ω2

Jah = j, (3)

ḧ+ γHḣ+ ω2
Hh+ αω2

Ja
2 = 0. (4)

Now, we expand j, a, and h in the form

f = f (0) + λf (1) + λ2f (2) + λ3f (3) +O(λ4), (5)

where λ� 1 is a small expansion parameter. We take the current j induced by driving and probing as

j(1) = jdr,1e
−iωdrt + jpr,1e

−iωprt + c.c.. (6)

Hence, there are no zeroth order contributions and we obtain

a(1) = adr,1e
−iωdrt + apr,1e

−iωprt + c.c., (7)

h(1) = 0 (8)

in first order, where

adr,1 =
jdr,1

ω2
J − ω2

dr − iγJωdr
, (9)

apr,1 =
jpr,1

ω2
J − ω2

pr − iγJωpr
. (10)

In second order, we have

a(2) = 0, (11)

h(2) = h0 + h1e
−2iωdrt + h2e

−2iωprt + h3e
−i(ωdr−ωpr)t + h4e

−i(ωdr+ωpr)t + c.c., (12)

where

h0 = −2αω2
J

ω2
H

(
|adr,1|2 + |apr,1|2

)
, (13)

h1 =
αω2

Ja
2
dr,1

4ω2
dr − ω2

H + 2iγHωdr
, (14)

h2 =
αω2

Ja
2
pr,1

4ω2
pr − ω2

H + 2iγHωpr
, (15)

h3 =
2αω2

Jadr,1a
∗
pr,1

(ωdr − ωpr)2 − ω2
H + iγH(ωdr − ωpr)

, (16)

h4 =
2αω2

Jadr,1apr,1
(ωdr + ωpr)2 − ω2

H + iγH(ωdr + ωpr)
. (17)

In third order, we find the following correction for the vector potential at the probing frequency:

apr,3 =
2ω2

J

(
h0apr,1 + h2a

∗
pr,1 + h∗3adr,1 + h4a

∗
dr,1

)

ω2
pr − ω2

J + iγJωpr
. (18)
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Using |jpr,1| � |jdr,1| and ωpr � ωdr, ωH, ωJ, we can neglect terms proportional to |apr,1|2apr,1 and simplify the
denominators of Eqs. (10), (16), (17), and (18):

apr,3 ≈
4αω2

J|adr,1|2apr,1
ω2
H

(
1− 2ω2

H

ω2
dr − ω2

H + iγHωdr

)

≈ 4α|jdr,1|2jpr,1(ω2
dr − 3ω2

H + iγHωdr)

ω2
H(ω2

dr − ω2
H + iγHωdr)

[
(ω2

dr − ω2
J)2 + γ2Jω

2
dr

] .
(19)

Thus, we obtain

ωprσ(ωpr) =
iεzε0j(ωpr)

a(ωpr)

=
iεzε0λjpr,1

λapr,1 + λ3apr,3

≈ iεzε0ω
2
Jω

2
H(ω2

dr − ω2
H + iγHωdr)

[
(ω2

dr − ω2
J)2 + γ2Jω

2
dr

]

ω2
H(ω2

dr − ω2
H + iγHωdr)

[
(ω2

dr − ω2
J)2 + γ2Jω

2
dr

]
+ 4αω2

J|jdr|2(ω2
dr − 3ω2

H + iγHωdr)
,

(20)

with the original driving amplitude jdr = λjdr,1. Taking jdr = 0 leads to the equilibrium solution

ωprσ(ωpr) ≈ iεzε0ω2
J. (21)

II. LATTICE GAUGE MODEL

The discretization of the fields on the lattice is sketched in Fig. 1. As mentioned in the main text, the supercon-
ducting order parameter is located on the sites and the vector potential is located on the bonds. The time derivative
of the vector potential leads to the electric field, which has the same spatial structure. The magnetic field inside a
plaquette is defined by the discretized curl of the vector potential on the enclosing bonds. While we take the vector
potential to be constant along each bond, the spatially dependent terms in the electromagnetic part of the Lagrangian
describe variations of the electric and magnetic fields on length scales above the discretization length. In particular,
we note that for a system at nonzero temperature, the order parameter and the electromagnetic field display spatial
fluctuations, even if the driving field has a much longer wavelength. These fluctuations are captured in our simulation
method.

Az, Ez

ψ

By

Ax, Ex

x

z

FIG. 1. Discretization of the fields in the xz plane.
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III. COMPARISON BETWEEN THE QUADRATIC AND FULLY NONLINEAR MODELS

We refer to Eqs. (3) and (4) as the quadratic model, which approximates the fully nonlinear model given by Eqs. (1)
and (2). In Fig. 2, we investigate the effect of the higher order terms on the effective interlayer coupling. We also
compare the numerical results for the two models to the analytical prediction from Section I. While the analytical
prediction shows excellent agreement with the numerical results for the quadratic model, simulating the fully nonlinear
model leads to slightly different results, even for weak driving.

(a) (b)

FIG. 2. Effective interlayer coupling for the quadratic and fully nonlinear models. The driving amplitudes are E0 = 10 kV cm−1

in (a) and E0 = 100 kV cm−1 in (b). The dotted lines indicate the analytical predictions based on the quadratic model. The
model parameters are consistent with Section II, with ωJ/2π = 2 THz.

IV. DEPLETION OF THE CONDENSATE

In our model, we explicitly include the drive in the time evolution of the electric field, keeping µ and α fixed. In
fact, the gauge field effectively rescales µ, which leads to a (partial) suppression of the order parameter. For simplicity,
we consider the spatially homogeneous case and expand the tunneling term of the Lagrangian up to quadratic order
in the vector potential:

Lkin = −
∑

s,r

ts|ψr|2|1− eias,r |2 ≈ −
∑

s,r

ts|ψr|2a2s,r, (22)

where ψr ≡ ψ and as,r ≡ as are homogeneous in space. Comparing the above expression with Eq. (6) in the
manuscript, we find an effective reduction µ → µ −∑s tsa

2
s due to the gauge field. The effective reduction of the

order parameter is displayed as a function of the driving parameters in Fig. 3(a). While the gauge field is small away
from the resonances, it leads to a significant depletion of the condensate in the resonant regimes. Entering the heating
regime results in a complete depletion of the condensate. Note that the gauge field accounts for both the external
drive and the supercurrents inside the sample.

Furthermore, we scrutinize the dynamical stability of the Higgs field and the vector potential using the harmonic
balance method. Given a set of nonlinear ordinary differential equations with periodically changing parameters, the
harmonic balance method maps the problem into an algebraic one by expanding solutions by multiple harmonics. The
obtained algebraic equation is solved by the Newton or secant method. In order to solve the fully nonlinear equations
of motion (1) and (2), we use the Krylov-Newton method with ten harmonics in Mousai [1].

In Fig. 3(b), we plot the absolute value of the time-averaged Higgs field for various driving frequencies ωdr and
amplitudes E0 (corresponding to Fig. 3 in the main text). Due to the nonlinearity of the equation of motion, the
system may show multistability; the obtained solution depends on the initial condition. Here, at each frequency, we
sweep from weak to strong driving using the preceding calculation as the initial condition for the next calculation.
We confirm the stability of the obtained solutions by adding slight noise to the initial conditions.

The blank area corresponds to the case where the Krylov-Newton method fails to obtain periodic steady solutions.
The strong instability appears around ωdr ' ωJ and ωH/2, which agrees with the numerical solutions in the main text.
The harmonic balance method overestimates the instability regimes due the difficulty of solving nonlinear algebraic
equations accurately. At higher frequencies near ωH, we find that the multistability is more prominent, and that
the instability needs large driving amplitude. This regime corresponds to the heating regime identified via spectral
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(a) (b)

FIG. 3. Depletion of the condensate. (a) Dependence of the time-averaged amplitude of the order parameter |ψ|/|ψ0| on the
driving frequency ωdr and the field strength E0. (b) Absolute value of the time-averaged Higgs field h = |ψ|/|ψ0| − 1 as a
function of driving frequency and field strength, as obtained by the harmonic balance method with ten harmonics.

entropy or depletion. The deviation between the harmonic balance method and the numerical solutions may come
from the fact that chaotic solutions cannot be obtained by the harmonic balance method due to its harmonic ansatz.

V. THE ROLE OF THE DAMPING COEFFICIENTS AND THE CAPACITIVE COUPLING
CONSTANT

In this section, we investigate how the Higgs mode mediated enhancement of interlayer transport depends on the
damping coefficients and the capacitive coupling constant. In analogy to Fig. 3 in the main text, we numerically eval-
uate the renormalized interlayer coupling for different driving parameters, but we choose larger damping coefficients
γH/2π = γJ/2π = 1 THz. We see in Fig. 4 that the enhancement and reduction regimes are similar as before. The
magnitude of the enhancement is generally smaller, but it is still possible to enhance the effective coupling by 50%
when using sufficently strong fields.

To further scrutinize the role of the damping coefficients, we present the effective interlayer coupling for different
values of γH and γJ for the the two cases of the ratio ωJ/ωH that are not shown in the main text. Figure 5 displays
the effect of increasing the damping coefficient of the Higgs mode. In both cases, the renormalization of the effective
interlayer coupling is visible for higher values of γH, but the effect is notably weaker. Higher values of γJ, on the other
hand, do not significantly reduce the enhancement of the effective interlayer coupling for driving frequencies near the
Higgs frequency, as shown in Fig. 6. Interestingly, the enhancement near the plasma frequency for ωH < ωJ <

√
3ωH

is more severely affected by γJ than by γH.

FIG. 4. Dependence of the effective interlayer coupling Jeff/J0 on the driving frequency ωdr and the field strength E0. The
gray area marks the heating regime. The damping coefficients are γH/2π = γJ/2π = 1 THz.



6

To modify the capacitive coupling constant α, we vary the interaction strength g and adjust the tunneling coefficient
tz such that the previous values of the plasma frequency ωJ are recovered. It is evidenced by Fig. 7 that the Higgs
mode mediated enhancement is qualitatively not affected by the value of α, which is of the order of 1 in the cuprates
[2]. As expected, the enhancement is most pronounced for the largest α.

(a) (b)

FIG. 5. Effective interlayer coupling for various values of γH/2π. The Higgs frequency ωH/2π = 6 THz and γJ/2π = 0.5 THz
are kept fixed. The choice of the driving amplitude depends on the plasma frequency: (a) E0 = 20 kV cm−1 for ωJ/2π = 9 THz
and (b) E0 = 100 kV cm−1 for ωJ/2π = 15 THz.

(a) (b)

FIG. 6. Effective interlayer coupling for various values of γJ/2π. The Higgs frequency ωH/2π = 6 THz and γH/2π = 0.5 THz
are kept fixed. The choice of the driving amplitude depends on the plasma frequency: (a) E0 = 20 kV cm−1 for ωJ/2π = 9 THz
and (b) E0 = 100 kV cm−1 for ωJ/2π = 15 THz.

(a) (b) (c)

FIG. 7. Effective interlayer coupling for various values of the capacitive couling constant α. The Higgs frequency is ωH/2π =
6 THz. The choice of the driving amplitude depends on the plasma frequency: (a) E0 = 200 kV cm−1 for ωJ/2π = 2 THz, (b)
E0 = 10 kV cm−1 for ωJ/2π = 9 THz, and (c) E0 = 50 kV cm−1 for ωJ/2π = 15 THz.



7

VI. HIGGS MODE MEDIATED ENHANCEMENT AT NONZERO TEMPERATURE

Here, we consider a monolayer cuprate superconductor at nonzero temperature. For this purpose, we simulate a
three-dimensional system of 48×48×4 sites with the parameters specified in the Appendix of the main text, choosing
tz = 9.44× 10−4 meV. The equations of motion read

∂2t ψr =
1

K~2
∂L
∂ψ∗r

− γH∂tψr + ξr, (23)

∂2tAs,r =
1

εsε0

∂L
∂As,r

− γJ∂tAs,r + ηs,r, (24)

where ξr and ηs,r represent the thermal fluctuations of the superconducting order parameter and the vector poten-
tial, respectively. These Langevin noise terms have a white Gaussian distribution with zero mean. To satisfy the
fluctuation-dissipation theorem, we take the noise of the order parameter as

〈Re{ξr(t)}Re{ξr′(t′)}〉 =
γHkBT

K~2V0
δrr′δ(t− t′) , (25)

〈Im{ξr(t)}Im{ξr′(t′)}〉 =
γHkBT

K~2V0
δrr′δ(t− t′) , (26)

〈Re{ξr(t)}Im{ξr′(t′)}〉 = 0. (27)

The noise correlations for the vector potential are

〈ηx,r(t)ηx,r′(t′)〉 =
2γJkBT

εxε0V0
δrr′δ(t− t′), (28)

〈ηy,r(t)ηy,r′(t′)〉 =
2γJkBT

εyε0V0
δrr′δ(t− t′), (29)

〈ηz,r(t)ηz,r′(t′)〉 =
2γJkBT

εzε0V0
δrr′δ(t− t′). (30)

The thermal equilibrium at a given temperature is established as follows. We initialize the system in its ground
state at T = 0 and let the dynamics evolve without external driving, influenced only by thermal fluctuations and
dissipation. To characterize the phase transition, we introduce the order parameter

O =

∣∣∣
∑

l,m,n ψ
∗
l,m,n+1ψl,m,n eia

z
l,m,n

∣∣∣
∑

l,m,n |ψl,m,n|2
. (31)

The order parameter measures the gauge-invariant phase coherence of the condensate across different layers. In our
simulations, this quantity converges to a constant after 10 ps of free time evolution, indicating that thermal equilibrium
is reached. For each trajectory, the order parameter is evaluated from the average of 200 measurements within a time
interval of 2 ps. Finally, we take the ensemble average of 100 trajectories. As shown in Fig. 8(a), the temperature
dependence of the order parameter is reminiscent of a second order phase transition. Due to the finite size of the
simulated system, the order parameter converges to a plateau with nonzero value for high temperatures. Instead of
a sharp discontinuity, one finds a distinct crossover at Tc ∼ 30 K.

To obtain the c-axis conductivity at nonzero temperature, we add a probe term to the equations of motion for Az,r.
Then, we compute σ(ω) as the ratio of the sample averages of Jz(ω) and Ez(ω) before taking the ensemble average of
several hundred trajectories. In Fig. 8(b), we present an example of Higgs mode mediated enhancement of interlayer
transport at T = 1.5 K. Applying an optical drive with the frequency ωdr/2π = 7.4 THz and the field strength
E0 = 400 kV cm−1, we find a low-frequency enhancement of σ2 by ∼ 10%. Note that the c-axis plasma frequency and
the Higgs frequency are ωJ/2π ≈ 2 THz and ωH/2π ≈ 6.7 THz, respectively, at this temperature.

[1] J. C. Slater, Mousai: An open-source general purpose harmonic balance solver, 13th ASME Dayton Engineering Sciences
Symposium (2017).

[2] M. Machida and T. Koyama, Localized rotating-modes in capacitively coupled intrinsic Josephson junctions: Systematic
study of branching structure and collective dynamical instability, Phys. Rev. B 70, 024523 (2004).
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(a) (b)

FIG. 8. Finite-temperature results. (a) Phase transition of a system of 48×48×4 sites. (b) Higgs mode mediated enhancement
of the imaginary c-axis conductivity for low frequencies at T = 1.5 K. The driving frequency is ωdr ≈ 1.1ωH. In both panels,
the error bars indicate the standard errors of the ensemble averages.



D.3 Terahertz amplifiers based on gain reflectivity in cuprate superconductors 121

D.3 Terahertz amplifiers based on gain reflectivity in
cuprate superconductors





PHYSICAL REVIEW RESEARCH 4, 013181 (2022)

Terahertz amplifiers based on gain reflectivity in cuprate superconductors

Guido Homann ,1 Jayson G. Cosme ,2 and Ludwig Mathey1,3

1Zentrum für Optische Quantentechnologien and Institut für Laserphysik, Universität Hamburg, 22761 Hamburg, Germany
2National Institute of Physics, University of the Philippines, Diliman, Quezon City 1101, Philippines

3The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany

(Received 7 September 2021; revised 23 November 2021; accepted 9 February 2022; published 4 March 2022)

We demonstrate that parametric driving of suitable collective modes in cuprate superconductors results in
a reflectivity R > 1 for frequencies in the low terahertz regime. We propose to exploit this effect for the
amplification of coherent terahertz radiation in a laserlike fashion. As an example, we consider the optical
driving of Josephson plasma oscillations in a monolayer cuprate at a frequency that is blue-detuned from the
Higgs frequency. Analogously, terahertz radiation can be amplified in a bilayer cuprate by driving a phonon
resonance at a frequency slightly higher than the upper Josephson plasma frequency. We show this by simulating
a driven-dissipative U (1) lattice gauge theory on a three-dimensional lattice, encoding a bilayer structure in the
model parameters. We find a parametric amplification of terahertz radiation at zero and nonzero temperature.

DOI: 10.1103/PhysRevResearch.4.013181

I. INTRODUCTION

Coherent radiation sources in the terahertz regime have
applications in spectroscopy and imaging in numerous fields,
such as biology and medical diagnostics, nondestructive
evaluation, and solid state research [1–5]. While significant
progress has been made in the development of powerful
terahertz sources [6–14], further development of terahertz
technologies is imperative to close the “terahertz gap,” par-
ticularly in the range between 0.5 and 1.5 THz [11,12]. In
this work, we propose the design of an optical parametric
oscillator [15–17] in the low-terahertz regime, i.e., ∼1 THz, to
be utilized as an optical amplifier in a laserlike operation. We
base this design on a general strategy to control the reflectivity
of solids. The central mechanism is to use a collective mode
with a nonlinear coupling to the electromagnetic field for
parametric amplification. We apply this mechanism to cuprate
superconductors and propose a laserlike setup for the am-
plification of terahertz radiation. In this setup, a light-driven
superconductor with reflectivity R2 = R(ωpr ) > 1 serves as
one of three mirrors forming an optical resonator as depicted
in Fig. 1. The probe with frequency ωpr enters the resonator
through a partially transparent mirror with reflectivity R1 < 1
and transmissivity T1 > 0. The third mirror is assumed to have
perfect reflectivity R3 = 1. For R1R2 < 1, the intensity ratio of
the outgoing and the ingoing signal is given by

Iout

Iin
= R2T 2

1

1 − R1R2
+ R1. (1)

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

The gain condition of this setup, R2 > 1/R1, is reflected
by the divergence of Iout for R1R2 → 1. Above this threshold,
the gain saturates once the probe signal enters the nonlinear
response regime such that R(ωpr ) decreases.

As our proposal requires pump lasers with field strengths
of several hundred kV/cm, we suggest the following strat-
egy towards its technical realization. The first step would be
to test the proposed amplification mechanism using a pump
pulse with a duration of ∼1 ps. Following the interpretation of
the measurements in Ref. [18], we propose to achieve better
overlap of the pump and probe laser fields in the material by
varying the incident angle of the probe pulse. We note that
observing a net reflectivity gain from a light-driven supercon-
ductor would also be interesting from a purely scientific point
of view. The next step would be a terahertz amplifier that
is operated in pulsed fashion. Extending the duration of the
pump pulse to ∼1 ns, as in Ref. [19], would allow for several
round trips of the probe pulse in an optical resonator with a
path length of a few centimeters.

In this paper, we first demonstrate parametric amplifica-
tion of terahertz radiation in monolayer cuprates using a
gauge-invariant two-mode model with a cubic coupling pro-
cess of the Higgs and plasma modes [20,21]. We find that

SC
R2 > 1

R3 = 1

R1, T1

PumpIin

Iout

FIG. 1. Setup of an optical parametric oscillator using a super-
conductor (SC) with reflectivity R2 > 1 as a gain medium.

2643-1564/2022/4(1)/013181(10) 013181-1 Published by the American Physical Society
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driving plasmonic excitations blue-detuned from the Higgs
mode leads to a reflectivity R > 1 for probe frequencies be-
low the Josephson plasma edge. As a second example, we
consider a periodic modulation of the interlayer coupling in
bilayer cuprates, which models a periodic excitation of a
phonon mode. Here, the low-frequency reflectivity is larger
than 1 when the frequency of the excited phonon mode is
blue-detuned from the upper Josephson plasma frequency.
We implement a three-dimensional U (1) lattice gauge theory
with anisotropic lattice parameters to simulate this scenario
at nonzero temperature. Our calculations show that phonon
mediated amplification of terahertz radiation is effective at
temperatures up to ∼20% of the critical temperature Tc.
Optical amplification in light-driven solids was also discussed
in Refs. [18,22–26].

The key requirement for the amplification mechanism pre-
sented in this work is a cubic coupling term of the form
φθ2 in the Lagrangian, where θ is the plasma mode and
φ represents another collective mode. Note that the plasma
mode directly couples to the electric field E . When one ap-
plies pump and probe processes to the system, as sketched
in Fig. 2(a), there are two scenarios for a parametric am-
plification of the probe. In one scenario, the pump directly
excites the plasma mode θ at a frequency that is blue-detuned
from the eigenfrequency of the mode φ, which acts as an
idler mode. Alternatively, the pump primarily couples to the
collective mode φ. An enhanced response is then achieved for
a pump frequency ωdr that is blue-detuned with respect to the
plasma frequency. Here, the plasma mode serves as the idler
mode. In both cases, the probe couples to the plasma mode,
and its frequency should be ωpr = ωdr − ωr, where ωr denotes
the eigenfrequency of the idler mode. Thus three-wave mixing
of the probe with the pump and resonant excitations of the
idler mode induces the amplification of the probe signal. An
important signature of this effect is a negative peak in the real
part of the optical conductivity σ1 at ωpr = ωdr − ωr.

II. HIGGS MODE MEDIATED AMPLIFICATION IN
LIGHT-DRIVEN MONOLAYER CUPRATES

Josephson plasma oscillations are characteristic excitations
of cuprate superconductors [27–31], corresponding to the
tunneling of Cooper pairs between copper-oxide layers. The
Higgs mode, on the other hand, describes amplitude oscilla-
tions of the superconducting order parameter [32–38]. While
plasma modes directly couple to the electromagnetic vector
potential, the Higgs mode has no linear coupling to electro-
magnetic fields in a system with approximate particle-hole
symmetry [39,40]. A two-mode model of a light-driven mono-
layer cuprate at zero temperature was derived in Refs. [20,21].
The underlying Lagrangian includes a cubic term ∼hθ2,
coupling the plasma mode θ and the Higgs mode h. The
equations of motion read

θ̈ + γJθ̇ + ω2
J sin(θ )(1 + h)2 = j, (2)

ḧ + γHḣ + ω2
H

(
h + 3

2
h2 + 1

2
h3

)

+2αω2
J [1 − cos(θ )](1 + h) = 0,

(3)

FIG. 2. Parametric amplification of terahertz radiation in a solid
with a plasma mode θ and a collective mode φ that are nonlinearly
coupled. (a) Schematic illustration of the amplification process. The
pump laser excites the plasma mode θ (or the collective mode φ)
with frequency ωdr. The pump signal is down-converted to the lower
frequency ωpr = ωdr − ωr of the probe by simultaneous excitation of
the collective mode φ (or the plasma mode θ ) at its eigenfrequency
ωr . The numerical results in (b) and (c) are obtained for a monolayer
cuprate, in which Josephson plasma oscillations are driven by the
pump laser and the Higgs mode is the idler mode. (b) When the pump
frequency is red-detuned from the Higgs frequency ωr ≡ ωH, a probe
with ωpr ≈ ωH − ωdr is attenuated as indicated by the positive peak
in the real part σ1 of the optical conductivity. The pump frequency
is ωdr/2π = 4.8 THz and the pump strength is E0 = 150 kV/cm.
(c) A blue-detuned pump frequency leads to an amplification of the
probe for ωpr ≈ ωdr − ωH, corresponding to a negative peak in σ1. In
this case, the pump frequency is ωdr/2π = 7.2 THz and the pump
strength is E0 = 300 kV/cm. The probe strength is Epr = 1 kV/cm
in both cases. The Josephson plasma frequency is ωJ/2π = 2 THz
and the Higgs frequency is ωH/2π = 6 THz. The remaining param-
eters are γJ/2π = 0.25 THz, γH/2π = 1 THz, α = 1, ε∞ = 4, and
d = 10 Å.

where ωH is the Higgs frequency, ωJ is the plasma frequency,
and γH and γJ are damping coefficients. The capacitive cou-
pling constant α is of the order of 1 in cuprate superconductors
[41]. The interlayer current j(t ) = jdr (t ) + jpr (t ) is induced
by an external electric field polarized along the c axis of
the crystal and describes the pump and probe processes.
A monochromatic pump with field strength E0 gives rise
to jdr (t ) = (−2edωdrE0/h̄ε∞) sin(ωdrt ), where −2e is the
Cooper pair charge, d is the interlayer spacing, and ε∞ is
the background dielectric constant of the material. To calcu-
late the optical conductivity, we include a weak probe current
jpr (t ) and evaluate the Fourier components j(ωpr ) and θ (ωpr )
in the steady state. The conductivity is given by σ (ωpr ) =
iε∞ε0 j(ωpr )/ωprθ (ωpr ), as follows from the Josephson rela-
tion θ̇ = 2edE/h̄ [42].

In Figs. 2(b) and 2(c), we present numerical results for the
real part of the optical conductivity of a monolayer cuprate
with Josephson plasma frequency ωJ/2π = 2 THz and Higgs
frequency ωH/2π = 6 THz. For a pump frequency that is
red-detuned with respect to the Higgs frequency, σ1 exhibits a
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(a) (b)

FIG. 3. Higgs mode mediated amplification of terahertz radiation
in a monolayer cuprate. The reflectivity at normal incidence is shown
for two choices of the pump strength: (a) E0 = 200 kV/cm and
(b) 300 kV/cm. The pump frequencies for the higher pump strength
in (b) are the same as indicated for the lower pump strength in (a).
Gray lines correspond to the undriven case. The probe strength is
Epr = 1 kV/cm. The model parameters are the same as in Fig. 2.

pronounced absolute maximum at ωpr ≈ ωH − ωdr and a local
maximum at ωpr ≈ ωH + ωdr. The peak at ωpr ≈ ωH − ωdr

corresponds to an excitation of the Higgs mode via resonant
two-photon processes, whereas a probe with ωpr ≈ ωH + ωdr

amplifies the pump signal and simultaneously excites the
Higgs mode. The minimum slightly below 15 THz results
from the coupling of the probe to the third-harmonic of the
pump.

For a blue-detuned pump frequency, we find σ1 < 0 for
low probe frequencies. The mininum at ωpr ≈ ωdr − ωH

indicates a resonant amplification of the probe due to a
down-conversion of the pump by simultaneous excitation of
the Higgs mode. The conductivity displays a maximum at
ωpr ≈ ωdr + ωH, similarly to the case of a red-detuned pump
frequency, while the third-harmonic of the pump is outside
the plotted frequency range. In Appendix A, we provide an
analytical estimate of σ (ωpr = ωdr − ωH) based on a perturba-
tive expansion for weak pump-probe strengths. Our analytical
estimate is in qualitative agreement with the numerical results.

In the following, we focus on pump frequencies that are
blue-detuned from the Higgs frequency. As we shall see be-
low, a negative conductivity σ1 implies a reflectivity R > 1 at
low frequencies. The reflectivity at normal incidence is ob-
tained from the optical conductivity via the Fresnel equation

R(ω) =
∣∣∣∣1 − n(ω)

1 + n(ω)

∣∣∣∣
2

. (4)

The refractive index n(ω) = ±√
ε(ω) is a function of the

dielectric permittivity ε(ω) = ε∞ + iσ (ω)/ε0ω. The sign of
the refractive index for a given frequency is fixed by causality
[43,44]. We choose the positive sign unless both the real part
and the imaginary part of ε(ω) are negative. Thus the electric
field penetrates the bulk for frequencies above the plasma edge
around ωJ/

√
2, while it is screened for lower frequencies. This

is the characteristic response of a Josephson plasma, also in
the presence of a periodic drive [26].

Figure 3 displays the low-frequency reflectivity for differ-
ent strengths and frequencies of the optical pump applied to
the same monolayer cuprate as before. For pump frequencies

that are slightly blue-detuned from the Higgs frequency, the
reflectivity is larger than 1 at probe frequencies below the
plasma edge. This is an immediate consequence of the neg-
ative σ1 at low probe frequencies in those cases. As expected,
the enhancement of the reflectivity is more pronounced for
the stronger pump in Fig. 3(b) than for the weaker pump
in Fig. 3(a). The amplification mechanism is particularly ef-
fective if the detuning ωdr − ωH, and thus the minimum of
σ1, approaches the plasma edge frequency, as is the case for
ωdr/2π = 7.2 THz. We note that the plasma edge is shifted
to a slightly lower frequency by the pump, corresponding
to a small reduction of the time-averaged superconducting
order parameter. The magnitude of this shift increases with in-
creasing pump strength and decreasing detuning of the pump
frequency from the Higgs frequency.

III. PHONON MEDIATED AMPLIFICATION
IN BILAYER CUPRATES

We now turn to our second example of parametric am-
plification of terahertz radiation in cuprate superconductors.
While the Higgs mode is strongly damped in the cuprates
in general [34,35,45], phononic excitations have picosec-
ond lifetimes, such as vibrations of apical oxygen atoms in
YBa2C3O7−δ (YBCO) [46,47]. In the following, we consider
the scenario in which the pump laser periodically modulates
the Josephson coupling between the copper-oxide layers as it
resonantly couples to a phonon mode. Parametric driving of
Josephson plasma oscillations by optically excited phonons
was also discussed in Refs. [48–51].

Specifically, we consider bilayer cuprates utilizing a
particle-hole symmetric U (1) lattice gauge theory in three di-
mensions [20,21]. We formulate a Lagrangian with dynamical
and static terms on an anisotropic lattice that corresponds to
a bilayer structure as illustrated in Fig. 4(a). The static part of
the Lagrangian resembles the Ginzburg-Landau free energy
[52]. That is, we describe the Cooper pairs as a condensate of
interacting bosons with charge −2e, represented by the com-
plex field ψr. This model is suitable for simulating the coupled
dynamics of the order parameter of the superconducting state
and the electromagnetic field at temperatures below Tc.

The order parameter ψr(t ) is located on the lattice sites.
According to the Peierls substitution, each component of the
electromagnetic vector potential Ak,r(t ) is defined on the bond
between the site r and its nearest neighbor in the k ∈ {x, y, z}
direction. The intra- and interbilayer spacings ds,w are taken
as the distances between the CuO2 planes in the crystal, and
the in-plane discretization length dab is introduced as a short-
range cutoff of the order of the in-plane coherence length.
The bilayer structure results in the appearance of two Joseph-
son plasma modes. The lower Josephson plasma resonance
is dominated by interbilayer currents, due to the interbilayer
tunneling energy tw. The upper Josephson plasma resonance,
on the other hand, is dominated by intrabilayer currents, due to
the intrabilayer tunneling energy ts. We choose the tunneling
coefficients ts and tw to yield realistic values for the Joseph-
son plasma frequencies. The in-plane tunneling coefficient
tab does not only define an in-plane plasma frequency but
also sets the critical temperature of the system. Note that we
suppose the z direction to be aligned with the c axis of the
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crystal. The Lagrangian of the lattice gauge model is

L = Lsc + Lem + Lkin. (5)

The first term is the |ψ |4 model of the superconducting con-
densate in the absence of Cooper pair tunneling,

Lsc =
∑

r

Kh̄2|∂tψr|2 + μ|ψr|2 − g

2
|ψr|4, (6)

with the fixed Ginzburg-Landau coefficients μ and g. The
coefficient K describes the magnitude of the dynamical term
[33,40].

The electromagnetic part Lem is the Lagrangian of the free
electromagnetic field on a lattice, modified by the screening
due to bound charges in the material,

Lem =
∑
k,r

κk,rεk,rε0

2
E2

k,r − κz,r

κk,rβ
2
k,rμ0

[1 − cos(βk,rBk,r )],

(7)
where Ek,r denotes the k component of the electric field.
Note that we choose the temporal gauge for our calcula-
tions, i.e., Ek,r = −∂t Ak,r. The magnetic field components
Bk,r = εklmδlAm,r are centered on the plaquettes of the lattice.
We calculate the spatial derivatives according to δlAm,r =
(Am,r′(l ) − Am,r )/dl,r, where r′(l ) is the neighboring site of r
in the l direction. The discretization lengths are dx,r = dy,r =
dab for in-plane junctions, dz,r = ds for intrabilayer junctions,
and dz,r = dw for interbilayer junctions. The background di-
electric constants are εx,r = εy,r = εab for in-plane junctions,
εz,r = εs for intrabilayer junctions, and εz,r = εw for inter-
bilayer junctions. The other prefactors in Eq. (7) account
for the anisotropic lattice geometry. Introducing dc = (ds +
dw )/2, we write κx,r = κy,r = 1 and κz,r = dz,r/dc, while
βx,r = βy,r = 2edabdz,r/h̄ and βz,r = 2ed2

ab/h̄.
The kinetic part of the Lagrangian is given by

Lkin = −
∑
k,r

tk,r|ψr′(k) − ψreiak,r |2. (8)

The unitless vector potential ak,r = −2edk,rAk,r/h̄ directly
couples to the phase of the order parameter. Thus it does not
only ensure the local gauge invariance of Lkin, but it also
gives rise to a nonlinear coupling between the order param-
eter and the electromagnetic field. This coupling accounts
for the Coulomb interaction between the Cooper pairs. The
Lagrangian (5) is particle-hole symmetric due to its invariance
under ψr → ψ∗

r .
We add damping terms and Langevin noise to the equa-

tions of motion, which are given by the Euler-Lagrange
equations. This enables us to numerically determine the
time evolution of the order parameter and the vector poten-
tial at zero and nonzero temperature. We employ periodic
boundary conditions and integrate the stochastic differential
equations using Heun’s method with a step size of �t =
1.6 as. To mimic the effect of a driven phonon mode, we make
the interlayer tunneling coefficients time-dependent [49,50],
i.e.,

ts,w → ts,w[1 ± �s,w cos(ωdrt )]. (9)

This captures a phononic excitation with a wavelength that
is large compared to the system size of the simulation. As
before, the reflectivity is calculated numerically by adding a

Probe

Pump

(a)

tw

ts

(b)

tab

FIG. 4. Phonon mediated amplification of terahertz radiation in
a bilayer cuprate. (a) Schematic illustration of the pump-probe dy-
namics in a bilayer cuprate. The superconducting order parameter
is discretized on a layered lattice. The pump excites a phonon
mode, represented by the red atoms moving along the c axis. Thus
the interlayer tunneling coefficients ts,w become time-dependent,
which modifies the plasmonic response to the c-axis polarized probe.
(b) Reflectivity at normal incidence for different pump frequencies
at T = 0. The modulation amplitudes are �s = 0.2 and �w = 0.8.
The gray line corresponds to the undriven case. The probe strength is
Epr = 1 kV/cm. The lower and upper Josephson plasma frequencies
are ωJ1/2π = 2 THz and ωJ2/2π = 14.3 THz, respectively. The full
parameter set is specified in Table I.

probe to the equations of motion for the z component of the
electromagnetic vector potential. We assume the existence of a
suitable phonon resonance such that ωdr is blue-detuned from
the upper Josephson plasma frequency ωJ2.

In Fig. 4(b), we show that the phonon mediated pump
has a similar effect as the plasmonic excitations discussed
before. This analogy derives from tunneling terms of the form
∼tk,rA2

k,r in the Lagrangian. That is, the parametric amplifica-
tion of the terahertz probe is enabled by the cubic coupling of
the tunneling coefficients and the vector potential. In contrast
to the case of Higgs mode mediated amplification, the pump
does not primarily couple to the vector potential but to the tun-
neling coefficients, which models the excited phonon mode.
Here, the maximum gain is realized when the detuning ωdr −
ωJ2 approaches the frequency of the lower reflectivity edge
at ωJ1/

√
2. The amplification of terahertz radiation is feasible

up to probe strengths of ∼100 kV/cm; see Appendix E. Note
that the amplification mechanism also works if the frequency
of the excited phonon mode is slightly blue-detuned from the
lower Josephson plasma frequency. However, this requires a
pump frequency of the order of 1 THz [53], which is in the
frequency range that lacks suitable radiation sources.

Finally, we investigate the phonon mediated amplification
of terahertz signals at nonzero temperature T by simulating an
ensemble of several hundred trajectories for a bilayer system
of 40 × 40 × 4 sites. To obtain the c-axis conductivity σ (ωpr )
for a single trajectory, we evaluate the sample averages of the
c-axis current Jz(ωpr ) and the c-axis electric field Ez(ωpr ). We
then take the ensemble average of σ (ωpr ) and calculate the
reflectivity R(ωpr ) using Eq. (4). As shown in Figs. 5(a) and
5(c), the phonon mediated amplification of terahertz radiation
is effective at ∼20% of Tc despite the thermal broadening
of the parametric resonance expected at ωpr/2π ≈ 1 THz.
Importantly, the real part of the conductivity is negative at
frequencies around 1 THz and below, leading to a reflectivity
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(a) (b) (c)

FIG. 5. Phonon mediated amplification of terahertz radiation in a bilayer cuprate at T = 5 K ∼ 0.2Tc. (a) Real part of the optical
conductivity. (b) Imaginary part of the optical conductivity. (c) Reflectivity at normal incidence. The pump frequency is ωdr/2π = 14.8 THz,
and the modulation amplitudes are �s = 0.2 and �w = 0.8. The error bars indicate the standard errors of the ensemble averages. The probe
strength is Epr = 30 kV/cm. The bilayer system is the same as in Fig. 4. The upper Josephson plasma frequency is shifted to ωJ2 ≈ 13.8 THz
due to thermal fluctuations.

R > 1 in this regime. Additionally, we observe a parametric
enhancement of the imaginary part of the low-frequency con-
ductivity in Fig. 5(b); see also Refs. [21,48–50].

IV. DISCUSSION AND OUTLOOK

In conclusion, we propose a terahertz amplification tech-
nology based on parametric amplification in high-Tc super-
conductors, utilizing an optical pump mechanism. A key
feature of the amplifier and its underlying mechanism is
that the enhancement of the reflectivity is controlled via the
pump frequency and the pump strength. Superconductors are
promising candidates to induce a reflectivity R > 1 because
their low-frequency reflectivity is close to 1 in equilibrium.
We emphasize, however, that the mechanism we put forth can
not only be realized in cuprate superconductors but also in
other materials with collective modes that couple nonlinearly
to light. The parametric amplification of terahertz signals is
limited by the finite penetration depth of the pump, which
is smaller than the penetration depth of the probe in many
cases [18,54,55]. To reduce the mismatch of the penetration
depths of the pump and the probe, we propose to choose a
large incident angle for the probe beam while orienting the
pump beam parallel to the surface normal; see Fig. 1. As
mentioned in the introduction, we recommend to implement
an amplifier in pulsed operation once net optical gain from
a light-driven solid is achieved. This would also be advan-
tageous with regards to heating effects, which are further
discussed in Appendix F.

Our proposed terahertz amplifier advances pump-probe
experiments on high-Tc superconductors towards a potential
application. It motivates a demonstration of a stable and suffi-
ciently strong enhancement of the reflectivity above 1 and the
design of an optical cavity as shown in Fig. 1, with the pur-
pose of developing coherent radiation sources in the terahertz
regime.
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APPENDIX A: ANALYTICAL ESTIMATE OF HIGGS
MODE MEDIATED AMPLIFICATION IN MONOLAYER

CUPRATES

Neglecting all nonlinear terms except for the quadratic
coupling between the Higgs mode h and the plasma mode θ

in Eqs. (2) and (3), we find

θ̈ + γJθ̇ + ω2
J θ + 2ω2

J θh = j, (A1)

ḧ + γHḣ + ω2
Hh + αω2

J θ
2 = 0, (A2)

as in Refs. [20,21]. Now, we expand j, θ , and h in the form

f = f (0) + λ f (1) + λ2 f (2) + λ3 f (3) + O(λ4), (A3)

where λ � 1 is a small expansion parameter. We take the
current j induced by the pump and the probe as

j (1) = jdr,1e−iωdrt + jpr,1e−iωprt + c.c. (A4)

Hence, there are no zeroth order contributions and we obtain

θ (1) = θdr,1e−iωdrt + θpr,1e−iωprt + c.c., (A5)

h(1) = 0 (A6)

in first order, where

θdr,1 = jdr,1

ω2
J − ω2

dr − iγJωdr
, (A7)

θpr,1 = jpr,1

ω2
J − ω2

pr − iγJωpr
. (A8)
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In second order, we have

θ (2) = 0, (A9)

h(2) = h0 + h1e−2iωdrt + h2e−2iωprt + h3e−i(ωdr−ωpr )t + h4e−i(ωdr+ωpr )t + c.c., (A10)

where

h0 = −2αω2
J

ω2
H

(|θdr,1|2 + |θpr,1|2
)
, (A11)

h1 = αω2
J θ

2
dr,1

4ω2
dr − ω2

H + 2iγHωdr
, (A12)

h2 = αω2
J θ

2
pr,1

4ω2
pr − ω2

H + 2iγHωpr
, (A13)

h3 = 2αω2
J θdr,1θ

∗
pr,1

(ωdr − ωpr )2 − ω2
H + iγH(ωdr − ωpr )

, (A14)

h4 = 2αω2
J θdr,1θpr,1

(ωdr + ωpr )2 − ω2
H + iγH(ωdr + ωpr )

. (A15)

In third order, we find the following correction for the vector potential at the probe frequency:

θpr,3 = 2ω2
J

(
h0θpr,1 + h2θ

∗
pr,1 + h∗

3θdr,1 + h4θ
∗
dr,1

)
ω2

pr − ω2
J + iγJωpr

. (A16)

We consider a probe with | jpr,1| � | jdr,1| and ωpr = ωdr − ωH such that we can neglect the h2 term. Moreover, we assume
near-resonant driving, i.e., ωdr � ωH, to simplify the denominators in Eqs. (A14) and (A15),

θpr,3 ≈ −4αω4
J |θdr,1|2θpr,1

ω2
pr − ω2

J + iγJωpr

(
1

ω2
H

+ 2

iγHωH

)

≈ 4αω4
J | jdr,1|2 jpr,1(γH − 2iωH)

γHω2
H

[
(ωdr − ωH)2 − ω2

J + iγJ(ωdr − ωH)
]2[(

ω2
dr − ω2

J

)2 + γ 2
J ω2

dr

] .

(A17)

As θ̇ = 2edE/h̄ [42], the optical conductivity is given by

σ (ωpr ) = iε∞ε0 j(ωpr )

ωprθ (ωpr )
= iε∞ε0λ jpr,1

ωpr (λθpr,1 + λ3θpr,3)
, (A18)

and we obtain

σ (ωpr = ωdr − ωH)

≈ −iε∞ε0γHω2
H

[
(ωdr − ωH)2 − ω2

J + iγJ(ωdr − ωH)
]2[

(ω2
dr − ω2

J )2 + γ 2
J ω2

dr

]
(ωdr − ωH)−1

γHω2
H

[
(ωdr − ωH)2 − ω2

J + iγJ(ωdr − ωH)
][(

ω2
dr − ω2

J

) + γ 2
J ω2

dr

] − 4αω4
J | jdr|2(γH − 2iωH)

,
(A19)

with the original pump amplitude jdr = λ jdr,1. Taking jdr = 0 leads to the equilibrium solution

σ1(ωpr = ωdr − ωH) = ε∞ε0γJ. (A20)

for the real part of the conductivity. In the above calculation,
ωpr is formally negative for ωdr < ωH. However, our ana-
lytical prediction has the property that σ1(ωpr ) = σ1(−ωpr ),
as characteristic for Fourier transforms of real quantities. In
Fig. 6, the real part of the conductivity at ωpr = ωdr − ωH is
displayed as a function of the pump frequency according to
our analytical estimate in Eq. (A19). The field strength E0

of the applied electric field gives rise to the pump amplitude
| jdr| = edωdrE0/h̄ε∞. Consistent with the numerical results,
we find a negative conductivity when the pump frequency is
slightly blue-detuned from the Higgs frequency. On the other
hand, the conductivity is positive for red-detuned pump fre-
quencies. A quantitative comparison to the numerical results

reveals notable deviations, which are due to the approxima-
tions made in the derivation of Eq. (A19).

APPENDIX B: EQUATIONS OF MOTION FOR THE
THREE-DIMENSIONAL LATTICE GAUGE MODEL

Including damping terms and thermal fluctuations, the
equations of motion read

∂2
t ψr = 1

Kh̄2

∂L
∂ψ∗

r
− γH∂tψr + ξr, (B1)

∂2
t Ax,r = 1

εabε0

∂L
∂Ax,r

− γab∂t Ax,r + ηx,r, (B2)

013181-6



TERAHERTZ AMPLIFIERS BASED ON GAIN … PHYSICAL REVIEW RESEARCH 4, 013181 (2022)

FIG. 6. Analytical estimate of the optical conductivity of a
monolayer cuprate, in which Josephson plasma oscillations are op-
tically driven. The negative conductivity for ωdr � ωH indicates
the Higgs mode mediated amplification of terahertz radiation. As
in Fig. 2, the Josephson plasma frequency is ωJ/2π = 2 THz and
the Higgs frequency is ωH/2π = 6 THz. The remaining parameters
are E0 = 300 kV/cm, γJ/2π = 0.25 THz, γH/2π = 1 THz, α = 1,
ε∞ = 4, and d = 10 Å.

∂2
t Ay,r = 1

εabε0

∂L
∂Ay,r

− γab∂t Ay,r + ηy,r, (B3)

∂2
t Az,r = 1

κz,rεz,rε0

∂L
∂Az,r

− γz,r∂t Az,r + ηz,r, (B4)

where ξr and ηr represent the thermal fluctuations of the
superconducting order parameter and the vector potential, re-
spectively. These Langevin noise terms have a white Gaussian

distribution with zero mean. The damping coefficients of the
intra- and interbilayer electric fields are γs and γw, respec-
tively. To satisfy the fluctuation-dissipation theorem, we take
the noise of the order parameter as

〈Re{ξr(t )}Re{ξr′ (t ′)}〉 = γHkBT

Kh̄2V0
δrr′δ(t − t ′), (B5)

〈Im{ξr(t )}Im{ξr′ (t ′)}〉 = γHkBT

Kh̄2V0
δrr′δ(t − t ′), (B6)

〈Re{ξr(t )}Im{ξr′ (t ′)}〉 = 0, (B7)

where V0 = d2
abdc. The noise correlations for the vector poten-

tial are

〈ηx,r(t )ηx,r′ (t ′)〉 = 2γabkBT

εabε0V0
δrr′δ(t − t ′), (B8)

〈ηy,r(t )ηy,r′ (t ′)〉 = 2γabkBT

εabε0V0
δrr′δ(t − t ′), (B9)

〈ηz,r(t )ηz,r′ (t ′)〉 = 2γz,rkBT

κz,rεz,rε0V0
δrr′δ(t − t ′). (B10)

APPENDIX C: SIMULATION PARAMETERS OF THE
BILAYER CUPRATE

In this work, we simulate a bilayer cuprate with 40 × 40 ×
4 sites, choosing the parameters summarized in Table I. Our
choice of μ and g implies an equilibrium condensate density
n0 = μ/g = 2 × 1021 cm−3 at T = 0. The bilayer system has
two longitudinal c-axis plasma modes. Their eigenfrequencies
are

ω2
J1,J2 =

(
1

2
+ αs

)
�2

s +
(

1

2
+ αw

)
�2

w ∓
√[(

1

2
+ αs

)
�2

s −
(

1

2
+ αw

)
�2

w

]2

+ 4αsαw�2
s �

2
w, (C1)

as follows from a sine-Gordon analysis [28,29]. Here we
introduced the bare plasma frequencies of the strong and weak
junctions

�s,w =
√

8ts,wn0e2dcds,w

εs,wε0h̄2 , (C2)

where dc = (ds + dw )/2. The capacitive coupling constants
are given by

αs,w = εs,wε0

8Kn0e2dcds,w
. (C3)

Besides, there is a transverse c-axis plasma mode with the
eigenfrequency

ω2
T = 1 + 2αs + 2αw

αs + αw

(
αs�

2
s + αw�2

w

)
. (C4)

We have αs ≈ 1.5, αw ≈ 3.0, ωJ1/2π ≈ 2.0 THz, ωJ2/2π ≈
14.3 THz, and ωT/2π ≈ 13.2 THz for the parameters speci-
fied in Table I.

The in-plane plasma frequency is

ωab =
√

8tabn0e2d2
ab

εabε0h̄2 ≈ 2π × 70 THz, (C5)

and the Higgs frequency is

ωH =
√

2μ

Kh̄2 ≈ 2π × 6.1 THz. (C6)

TABLE I. Model parameters of the simulated bilayer cuprate.

K (meV−1) 1.9 × 10−5

μ (meV) 6.0 × 10−3

g (meV Å3) 3.0

γH/2π (THz) 1.0
γab/2π (THz) 7.0
γs/2π (THz) 1.5
γw/2π (THz) 0.25
εab 4
εs 2
εw 8
dab (Å) 15
ds (Å) 4
dw (Å) 8
tab (meV) 5.2 × 10−1

ts (meV) 2.4 × 10−2

tw (meV) 1.7 × 10−3
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FIG. 7. Phase transition of a bilayer cuprate with 40 × 40 × 4
sites and the parameters specified in Table I. The error bars indicate
the standard errors of the ensemble averages.

The average background dielectric constant along the c axis is

ε∞ = (ds + dw )εsεw

dsεw + dwεs
= 4. (C7)

APPENDIX D: THERMAL PHASE TRANSITION

The thermal equilibrium at a given temperature is estab-
lished as follows. We initialize the system in its ground state
at T = 0 and let the dynamics evolve without external driv-
ing, influenced only by thermal fluctuations and dissipation.
To characterize the phase transition, we introduce the order
parameter

O =
2
∣∣∣∑{r,r′}∈inter ψ∗

r′ψr eiaz,r

∣∣∣∑
r |ψr|2 . (D1)

The sum in the numerator is taken over all interbilayer bonds,
with site r in the lower layer. Thus the order parameter mea-
sures the gauge-invariant phase coherence of the condensate
across different bilayers. In our simulations, this quantity
converges to a constant after 10 ps of free time evolution,
indicating the onset of thermal equilibrium. For each trajec-
tory, the order parameter is evaluated from the average of

200 measurements within a time interval of 2 ps. Finally, we
take the ensemble average of 100 trajectories. As depicted
in Fig. 7, the temperature dependence of the order parameter
is reminiscent of a second order phase transition. Due to the
finite size of the simulated system, the order parameter con-
verges to a plateau with nonzero value for high temperatures.
At Tc ∼ 25 K, there is a distinct crossover.

APPENDIX E: DEPENDENCE OF PHONON MEDIATED
AMPLIFICATION ON THE PUMP AND PROBE

STRENGTHS

Figure 8(a) displays the reflectivity of a bilayer cuprate,
corresponding to the examples of phonon mediated ampli-
fication of terahertz radiation in Fig. 4(b). While the pump
frequencies are the same, the modulation amplitudes of the
interlayer tunneling coefficients are larger here.

Next, we investigate the dependence of the reflectivity on
the probe strength. As one can see in Fig. 8(b), the results for
Epr = 1 kV/cm and Epr = 30 kV/cm are in very good agree-
ment. There is only a small deviation close to the maximum.
This demonstrates that these probe strengths correspond to the
linear response regime. For higher probe strenths, however,
the amplification peak in the reflectivity decreases and the
plasma edge is shifted to lower frequencies. Remarkably, the
reflectivity still exceeds 1 for probe frequencies slightly above
1 THz when the probe strength reaches 100 kV/cm.

APPENDIX F: SAMPLE HEATING

Here, we estimate an upper limit for the heating of the sam-
ple by a pump pulse. We consider a cubic YBCO sample with
a volume of 1 mm3, corresponding to N ≈ 10−5 mol. The
specific heat capacity of YBCO at 20 K is C ≈ 4 J mol−1K−1

[56]. If an entire face of the sample is irradiated by a laser
with a fluence of u = 20 mJ cm−2 [19], the sample can absorb
energy up to an amount of U = 0.2 mJ. Assuming that all
the energy is dissipated and converted into heat, we find a
temperature increase of

�T = U

CN
≈ 5 K. (F1)

(a) (b)

FIG. 8. Reflectivity of a bilayer cuprate in the presence of a phonon mediated pump at T = 0. (a) Reflectivity at normal incidence for
different pump frequencies. The modulation amplitudes of the interlayer tunneling coefficients are �s = 0.3 and �w = 1. The gray line
corresponds to the undriven case. (b) Reflectivity at normal incidence for different probe strengths. The pump frequency is ωdr/2π = 15.7 THz,
and the modulation amplitudes are �s = 0.2 and �w = 0.8. See Sec. C for model parameters.
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For a material with Tc ∼ 90 K, this would be a
moderate effect. Due to the finite penetration depth of
the pump, the surface of the sample generally heats
up disproportionately. Experimental observations on

various cuprates indicate robustness against surface
heating for pump pulses with a field strength of
∼1 MV/cm and a duration of a few hundred femtoseconds
[54,55,57].
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[30] D. Dulić, A. Pimenov, D. van der Marel, D. M. Broun, S.
Kamal, W. N. Hardy, A. A. Tsvetkov, I. M. Sutjaha, R. Liang,
A. A. Menovsky, A. Loidl, and S. S. Saxena, Observation of the
Transverse Optical Plasmon in SmLa0.8Sr0.2CuO4−δ , Phys. Rev.
Lett. 86, 4144 (2001).

[31] H. Shibata and T. Yamada, Double Josephson Plasma Reso-
nance in T ∗ Phase SmLa1−xSrxCuO4−δ , Phys. Rev. Lett. 81,
3519 (1998).

[32] R. Matsunaga, N. Tsuji, H. Fujita, A. Sugioka, K. Makise, Y.
Uzawa, H. Terai, Z. Wang, H. Aoki, and R. Shimano, Light-
induced collective pseudospin precession resonating with Higgs
mode in a superconductor, Science 345, 1145 (2014).

[33] N. Tsuji and H. Aoki, Theory of Anderson pseudospin reso-
nance with Higgs mode in superconductors, Phys. Rev. B 92,
064508 (2015).

[34] K. Katsumi, N. Tsuji, Y. I. Hamada, R. Matsunaga, J.
Schneeloch, R. D. Zhong, G. D. Gu, H. Aoki, Y. Gallais,

013181-9



HOMANN, COSME, AND MATHEY PHYSICAL REVIEW RESEARCH 4, 013181 (2022)

and R. Shimano, Higgs Mode in the d-Wave Superconductor
Bi2Sr2CaCu2O8+x Driven by an Intense Terahertz Pulse, Phys.
Rev. Lett. 120, 117001 (2018).

[35] H. Chu, M.-J. Kim, K. Katsumi, S. Kovalev, R. D. Dawson,
L. Schwarz, N. Yoshikawa, G. Kim, D. Putzky, Z. Z. Li, H.
Raffy, S. Germanskiy, J.-C. Deinert, N. Awari, I. Ilyakov, B.
Green, M. Chen, M. Bawatna, G. Christiani, G. Logvenov
et al., Phase-resolved Higgs response in superconducting
cuprates, Nat. Commun. 11, 1793 (2020).

[36] R. Shimano and N. Tsuji, Higgs mode in superconductors,
Annu. Rev. Condens. Matter Phys. 11, 103 (2020).

[37] L. Schwarz and D. Manske, Theory of driven Higgs oscillations
and third-harmonic generation in unconventional superconduc-
tors, Phys. Rev. B 101, 184519 (2020).

[38] G. Seibold, M. Udina, C. Castellani, and L. Benfatto, Third
harmonic generation from collective modes in disordered su-
perconductors, Phys. Rev. B 103, 014512 (2021).

[39] C. M. Varma, Higgs boson in superconductors, J. Low Temp.
Phys. 126, 901 (2002).

[40] D. Pekker and C. Varma, Amplitude/Higgs modes in con-
densed matter physics, Annu. Rev. Condens. Matter Phys. 6,
269 (2015).

[41] M. Machida and T. Koyama, Localized rotating-modes in ca-
pacitively coupled intrinsic Josephson junctions: Systematic
study of branching structure and collective dynamical instabil-
ity, Phys. Rev. B 70, 024523 (2004).

[42] B. Josephson, Possible new effects in superconductive tun-
nelling, Phys. Lett. 1, 251 (1962).

[43] J. Skaar, Fresnel equations and the refractive index of active
media, Phys. Rev. E 73, 026605 (2006).

[44] B. Nistad and J. Skaar, Causality and electromagnetic properties
of active media, Phys. Rev. E 78, 036603 (2008).

[45] F. Peronaci, M. Schiró, and M. Capone, Transient Dynamics of
d-Wave Superconductors after a Sudden Excitation, Phys. Rev.
Lett. 115, 257001 (2015).

[46] R. Mankowsky, A. Subedi, M. Först, S. O. Mariager,
M. Chollet, H. T. Lemke, J. S. Robinson, J. M. Glownia, M. P.
Minitti, A. Frano, M. Fechner, N. A. Spaldin, T. Loew, B.
Keimer, A. Georges, and A. Cavalleri, Nonlinear lattice dynam-
ics as a basis for enhanced superconductivity in YBa2Cu3O6.5,
Nature (London) 516, 71 (2014).

[47] R. Mankowsky, M. Först, T. Loew, J. Porras, B. Keimer, and
A. Cavalleri, Coherent modulation of the YBa2Cu3o6+x atomic
structure by displacive stimulated ionic raman scattering, Phys.
Rev. B 91, 094308 (2015).

[48] S. J. Denny, S. R. Clark, Y. Laplace, A. Cavalleri, and D.
Jaksch, Proposed Parametric Cooling of Bilayer Cuprate Su-
perconductors by Terahertz Excitation, Phys. Rev. Lett. 114,
137001 (2015).

[49] J.-i. Okamoto, A. Cavalleri, and L. Mathey, Theory
of Enhanced Interlayer Tunneling in Optically Driven
High-Tc Superconductors, Phys. Rev. Lett. 117, 227001
(2016).

[50] J.-i. Okamoto, W. Hu, A. Cavalleri, and L. Mathey, Transiently
enhanced interlayer tunneling in optically driven high-Tc super-
conductors, Phys. Rev. B 96, 144505 (2017).

[51] M. H. Michael, A. von Hoegen, M. Fechner, M. Först, A.
Cavalleri, and E. Demler, Parametric resonance of Josephson
plasma waves: A theory for optically amplified interlayer su-
perconductivity in YBa2Cu3O6+x , Phys. Rev. B 102, 174505
(2020).

[52] V. L. Ginzburg and L. D. Landau, On the theory of supercon-
ductivity, Zh. Eksp. Teor. Fiz. 20, 1064 (1950).

[53] D. N. Basov and T. Timusk, Electrodynamics of high-Tc super-
conductors, Rev. Mod. Phys. 77, 721 (2005).

[54] W. Hu, S. Kaiser, D. Nicoletti, C. R. Hunt, I. Gierz, M. C.
Hoffmann, M. Le Tacon, T. Loew, B. Keimer, and A. Cavalleri,
Optically enhanced coherent transport in YBa2Cu3O6.5 by ul-
trafast redistribution of interlayer coupling, Nat. Mater. 13, 705
(2014).

[55] S. Kaiser, C. R. Hunt, D. Nicoletti, W. Hu, I. Gierz, H. Y. Liu,
M. Le Tacon, T. Loew, D. Haug, B. Keimer, and A. Cavalleri,
Optically induced coherent transport far above Tc in underdoped
YBa2Cu3O6+δ , Phys. Rev. B 89, 184516 (2014).

[56] J. W. Loram, K. A. Mirza, J. R. Cooper, and W. Y. Liang,
Electronic Specific Heat of YBa2Cu3O6+x from 1.8 to 300 K,
Phys. Rev. Lett. 71, 1740 (1993).

[57] K. A. Cremin, J. Zhang, C. C. Homes, G. D. Gu, Z. Sun,
M. M. Fogler, A. J. Millis, D. N. Basov, and R. D. Averitt, Pho-
toenhanced metastable c-axis electrodynamics in stripe-ordered
cuprate La1.885Ba0.115CuO4, Proc. Natl. Acad. Sci. USA 116,
19875 (2019).

013181-10



D.4 Parametric control of Meissner screening in light-driven superconductors 133

D.4 Parametric control of Meissner screening in light-
driven superconductors





New J. Phys. 24 (2022) 113007 https://doi.org/10.1088/1367-2630/ac9b83

OPEN ACCESS

RECEIVED

1 June 2022

REVISED

11 October 2022

ACCEPTED FOR PUBLICATION

19 October 2022

PUBLISHED

3 November 2022

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the
title of the work, journal
citation and DOI.

PAPER

Parametric control of Meissner screening in light-driven
superconductors

Guido Homann1,∗ , Jayson G Cosme2 and Ludwig Mathey1,3

1 Zentrum für Optische Quantentechnologien and Institut für Laserphysik, Universität Hamburg, 22761 Hamburg, Germany
2 National Institute of Physics, University of the Philippines, Diliman, Quezon City 1101, The Philippines
3 The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
∗ Author to whom any correspondence should be addressed.

E-mail: ghomann@physnet.uni-hamburg.de

Keywords: Meissner effect, parametric driving, light-induced superconductivity

Supplementary material for this article is available online

Abstract
We investigate the Meissner effect in a parametrically driven superconductor using a semiclassical
U(1) lattice gauge theory. Specifically, we periodically drive the z-axis tunneling, which leads to an
enhancement of the imaginary part of the z-axis conductivity at low frequencies if the driving
frequency is blue-detuned from the plasma frequency. This has been proposed as a possible
mechanism for light-enhanced interlayer transport in YBa2C3O7−δ (YBCO). In contrast to this
enhancement of the conductivity, we find that the screening of magnetic fields is less effective than
in equilibrium for blue-detuned driving, while it displays a tendency to be enhanced for
red-detuned driving.

1. Introduction

Optical driving of solids opens up the possibility to induce superconducting-like features in their response
to electric fields. This was first achieved in several cuprates by the excitation of specific phonon modes [1, 2]
or near-infrared excitation [3, 4]. Later, signatures of a superconducting state were induced in fullerides and
organic salts by exciting molecular vibrations [5–7]. In all these experiments, the imaginary part σ2(ω) of
the optical conductivity exhibited a 1/ω divergence at low frequencies following optical excitation at
temperatures above the equilibrium critical temperature Tc. In the case of YBCO, an enhancement of the
low-frequency conductivity σ2(ω) along the c axis was also observed below Tc [2, 8]. Several mechanisms
have been proposed to explain the enhancement of interlayer transport, including nonlinear lattice
dynamics [9], parametric driving [10–13], and suppression of competing orders [14, 15]. While the
transient optical response of the light-driven cuprates and organic materials is consistent with enhanced or
induced superconducting states, their response to magnetic fields has remained largely unexplored. That is
due to the limited lifetimes of the excited states, which make experimental measurements of the magnetic
response challenging [16]. Therefore, it is an open question whether the experimental observations of the
light-induced transport properties indeed correspond to light-enhanced or light-induced superconductivity
in the sense of an enhanced Meissner effect [17–21].

In this paper, we theoretically study the Meissner effect in a parametrically driven superconductor (SC).
We consider a specific mechanism of parametric driving, where the Cooper pair tunneling along the z axis
is periodically modulated in time [12, 22]. This type of driving enhances the imaginary part of the optical
conductivity along the z axis at low frequencies. Based on analytical and numerical calculations, we find
that the screening of DC magnetic fields is less effective than in equilibrium for slightly blue-detuned
driving. This is due to the generation of electromagnetic waves by the parametric driving. For red-detuned
parametric driving, there is no transmission of electromagnetic waves into the bulk and the Meissner
screening is enhanced on a length scale that depends on the driving strength and the driving frequency at
the order of our analytical investigation. The enhancement of the Meissner screening is particularly effective

© 2022 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft
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Figure 1. Magnetic and optical probing of a SC. (a) Setup of the lattice gauge simulation with a fixed magnetic field at the
surface. The order parameter is located on the lattice sites, while the vector potential is defined on the bonds. (b) The z-axis
optical conductivity is measured by applying a spatially uniform probe current and setting Bext = 0.

when the driving frequency is close to the plasma frequency. Notably, the imaginary part of the optical
conductivity is reduced in this regime of driving frequencies.

This paper is organized as follows. After introducing our semiclassical method in section 2, we discuss
the optical conductivity of a parametrically driven SC in section 3. In section 4, we first investigate the
Meissner effect in a parametrically driven SC from an analytical perspective. Furthermore, we present
numerical results for parametrically driven SCs with isotropic and anisotropic lattice parameters. We
conclude this work in section 5.

2. Method

Here, we give an overview of the semiclassical U(1) lattice gauge theory that we utilize to simulate the
dynamics of a parametrically driven SC [23–25]. The static part of the Lagrangian is the Ginzburg–Landau
free energy [26] on a three-dimensional lattice. As depicted in figure 1(a), the superconducting order
parameter ψr(t) is located on the sites of a cubic lattice with lattice constant d, where r = (x, y, z) is the
lattice site. The components of the electromagnetic vector potential Aj,r(t) are defined on the lattice bonds,
which connect each site r with its nearest neighbor in the j ∈ {x, y, z} direction. We employ the temporal
gauge such that the electric field components are calculated according to Ej,r = −∂tAj,r. The magnetic field
components Bj,r = εjkl(Al,r′(k) − Al,r)/d are found on the lattice plaquettes, with r′(k) as the neighboring site
of r in the k direction.

The Lagrangian of the lattice gauge model is

L =
∑

r

K�2|∂tψr|2 + μ|ψr|2 − g

2
|ψr|4 −

∑

j,r

tj|ψr′(j) − ψr eiaj,r |2

+
∑

j,r

ε0

2
E2

j,r − �2

4μ0e2d4

[
1 − cos

(
2ed2

�
Bj,r

)]
, (1)

where μ and g are the Ginzburg–Landau coefficients and the coefficient K describes the magnitude of the
dynamical term [27, 28]. The dynamical term is of the form |∂tψr|2, which supports the particle-hole
symmetry of the Lagrangian, i.e. L is invariant under ψr → ψ∗

r and e → −e. The coupling of the unitless
vector potential aj,r = −2edAj,r/� to the phase of the order parameter ensures the local gauge-invariance of
the Lagrangian. Note that the charge of a Cooper pair is −2e. The tunneling coefficients tx = ty = txy and tz

determine the plasma frequencies of the SC,

ωj =

√
8tjn0e2d2

ε0�2
, (2)

with the equilibrium Cooper pair density n0 = μ/g. The SC is isotropic for txy = tz and anisotropic for
txy �= tz.
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We derive the Euler–Lagrange equations from equation (1) and include damping terms,

∂2
t ψr =

1

K�2

∂L
∂ψ∗

r

− γsc∂tψr, (3)

∂2
t Aj,r =

1

ε0

∂L
∂Aj,r

− γel, j∂tAj,r, (4)

where γsc and γel, j are phenomenological damping coefficients of the order parameter and the electric field,
respectively. We note that these equations are the zero-temperature limit of the Langevin equations used in
reference [25].

We numerically solve the equations of motion employing periodic boundary conditions along the y axis.
With this boundary condition, we take the superconducting sample to be spatially homogeneous along the
y axis, rather than having open boundary conditions. We assume open boundary conditions in the x and z
direction and impose a spatially uniform magnetic field B = Bextŷ at the surfaces in x and z direction. For
this purpose, we add one numerical layer outside the sample; see figure 1(a). On the external plaquettes, we
fix the magnetic field to zero, ramp it up to a non-zero constant or specify a temporally oscillating value in
the following. Thus, we model different physical scenarios. To simulate the vacuum, we set the order
parameter and the tunneling coefficients to zero outside the sample. Inside the sample, we initialize the
order parameter and the vector potential in the ground state, where ψr ≡

√
μ/g and Ar ≡ 0, and integrate

the differential equations using Heun’s method with a step size of Δt = 2.5 ns.

3. Conductivity of parametrically driven superconductors

We measure the optical conductivity by adding a weak probe current Jext(t) = J0 cos(ωprt) to the equations
of motion for the z component of the electric field,

∂2
t Az,r =

1

ε0

∂L
∂Az,r

− γel,z∂tAz,r − Jext

ε0
, (5)

as depicted in figure 1(b). For this measurement, we fix the surface magnetic field to Bext = 0, neglecting
radiation from the sample due to the probe current. Thus, the dynamics is spatially homogeneous along the
x axis and independent of the sample width. The optical conductivity is σ(ωpr) = Jext(ωpr)/E(ωpr), where
E(ωpr) is the Fourier transform of the spatial average of the electric field in the steady state. Additionally, we
drive the sample by periodically modulating the tunneling coefficients of all z-axis junctions,

tz → tz[1 + M cos(ωdrt)]. (6)

Experimentally, this could be achieved by resonantly exciting an infrared-active phonon mode; see
references [2, 12, 22, 29].

The effect of this parametric driving on the imaginary part σ2(ωpr) of the z-axis conductivity is
displayed in figure 2(a). While σ2 is reduced for ωdr < ωpl at probe frequencies ωpr � |ωpl − ωdr|, it is
enhanced for ωdr > ωpl. Figure 2(b) reveals that σ2 approaches a 1/ωpr behavior at low probe frequencies,
regardless of whether the SC is driven or not. These results are consistent with the findings of references
[12, 22]. To quantify the superconducting character of the optical response, we use the superconducting
weight

D = π
[
ωprσ2(ωpr)

]
ωpr→0

, (7)

following the definition given in reference [30]. For an infinitely large sample, the analytical expression for
the superconducting weight is D0 = πε0ω

2
pl. An analytical prediction for the parametrically driven case was

derived in reference [12],

D = D0

(
1 −

M2ω2
pl(ω

2
pl − ω2

dr)

2(ω2
pl − ω2

dr)
2 + 2γ2

el,zω
2
dr

)
. (8)

As one can see in figure 2(b), our numerical results for M = 0.3 are in good agreement with this prediction.
In the blue-detuned case of ωdr = 1.1ωpl, the superconducting weight is enhanced by approximately 17%.
In the red-detuned case of ωdr = 0.9ωpl, the superconducting weight is reduced by approximately 19%. We
note that the numerically obtained conductivity σ2 does not strictly follow the predicted 1/ωpr behavior
due to the insufficiently small probe frequencies and the finite sample size. The effect of parametric driving
on the real part of the optical conductivity and the redistribution of spectral weight are discussed in the
supplementary material.
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Figure 2. Optical conductivity of a parametrically driven SC. (a) Imaginary part σ2 of the optical conductivity. (b) σ2 multiplied
by the probe frequency. The dashed lines indicate the analytical prediction for the superconducting weight, which corresponds to
the zero-frequency limit of πωprσ2(ωpr). The z-axis tunneling coefficient is driven with the frequency ωdr = 0.9ωpl in the
red-detuned case and with the frequency ωdr = 1.1ωpl in the blue-detuned case. The driving strength is M = 0.3 in both cases.
The plasma frequency is ωpl/2π = 100 THz and the sample height is 100 μm; see supplementary material for the full parameter
set (isotropic sample).

4. Meissner screening in parametrically driven superconductors

4.1. Analytical results
The magnetic response of the parametrically driven SC can be understood from an analytical perspective.
We suppose that the bottom left corner of the SC has the coordinates x = 0 and z = 0. First, we derive an
approximate equation for the dynamics of the magnetic field close to the center of the left surface, i.e. for
x � Lx and z = Lz/2, where Lx and Lz are the edge lengths of the SC in x and z direction, respectively.
According to our semiclassical U(1) gauge theory, the supercurrent density along the z axis is given by

J(sup)
z,r =

2tzed

i�
(
ψ∗

r′(z)ψr eiaz,r − c.c.
)
[1 + M cos(ωdrt)]. (9)

Neglecting fluctuations of the superconducting order parameter, this can be simplified to

J(sup)
z,r ≈ 4tzn0ed

�
sin(az,r)[1 + M cos(ωdrt)]. (10)

In the previous step, we fixed the gauge such that arg(ψr) ≡ 0, which complies with the temporal gauge in a
charge neutral system. For weak fields, we linearize the above expression and rewrite it using the expression
for the plasma frequency ωpl from equation (2),

J(sup)
z,r ≈ −ε0ω

2
plAz,r[1 + M cos(ωdrt)]. (11)

In the following, we treat A and J as continuous fields and drop the subscript r. As Ax ∼ Jx = 0 for
z = Lz/2, the magnetic field is given by By = −∂xAz. Neglecting the current contribution from the damping
term, we obtain

∇ × J ≈ −ε0ω
2
pl[1 + M cos(ωdrt)]Byŷ (12)

for the curl of the free current density. On the other hand, Maxwell’s equations imply

1

μ0

(
1

c2
∂2

t − ∇2

)
B = ∇ × J. (13)

Combining equations (12) and (13) yields the minimal model

∂2
t By + ω2

pl[1 + M cos(ωdrt)]By ≈ c2∂2
x By, (14)

as ∂2
z By � ∂2

x By for x � Lx and z = Lz/2. For M � 1, we use the ansatz

By(x, t) = B0(x) + B1(x) cos(ωdrt) + B2(x) sin(ωdrt). (15)
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This leads to

∂2
x B0 =

1

λ2

(
B0 +

M

2
B1

)
, (16)

∂2
x B1 =

1

λ2

(
1 − ω2

dr

ω2
pl

)
B1 +

M

λ2
B0, (17)

∂2
x B2 =

1

λ2

(
1 − ω2

dr

ω2
pl

)
B2, (18)

where λ = c/ωpl is the London penetration depth of the undriven SC. To determine B0(x) and B1(x), we use
the ansatz

B0 = b0 e−x/�, (19)

B1 = b1 e−x/�. (20)

The solutions for B0 and B1 are superpositions of four exponentials with

�1,2 = λ

(
1 − ω2

dr

2ω2
pl

±
√

ω4
dr

4ω4
pl

+
M2

2

)−1/2

, �3,4 = −�1,2. (21)

While �1 is generally real-valued and smaller than λ, �2 is real-valued only for ωdr � ωpl and imaginary for
ωdr > ωpl. The absolute value of �2 is larger than λ for ωdr ∼ ωpl. The solution for B2(x) is of the form

B2 = b2 e−x/�0 , (22)

where

�0 = ± λ√
1 − ω2

dr/ω2
pl

(23)

is real-valued for ωdr < ωpl and imaginary for ωdr > ωpl.
In the red-detuned case of ωdr < ωpl, we exclude exponentially growing solutions and write the

magnetic field inside the SC as

B(in)
y = β1 e−x/�1 + β2 e−x/�2 +

Mβ1 e−x/�1 cos(ωdrt)

ω2
dr/2ω2

pl +
√

ω4
dr/4ω4

pl + M2/2

+
Mβ2 e−x/�2 cos(ωdrt)

ω2
dr/2ω2

pl −
√

ω4
dr/4ω4

pl + M2/2
+ β3 e−x/�0 sin(ωdrt). (24)

The corresponding electric field is

E(in)
z =

∫
∂tB

(in)
y dx

=
�1ωdrMβ1 e−x/�1 sin(ωdrt)

ω2
dr/2ω2

pl +
√

ω4
dr/4ω4

pl + M2/2
+

�2ωdrMβ2 e−x/�2 sin(ωdrt)

ω2
dr/2ω2

pl −
√

ω4
dr/4ω4

pl + M2/2
− �0ωdrβ3 e−x/�0 cos(ωdrt).

(25)

We note that red-detuned parametric driving induces an AC contribution to the magnetic field, which is
less effectively screened than the DC magnetic field. For blue-detuned parametric driving, the induced AC
part of the magnetic field leads to the formation of two standing waves. As these standing waves are induced
at the surface, we use the ansatz

B(in)
y = β1 e−x/�1 + β2 cos(x/|�2|) +

Mβ1 e−x/�1 cos(ωdrt)

ω2
dr/2ω2

pl +
√

ω4
dr/4ω4

pl + M2/2

+
Mβ2 cos(x/|�2|) cos(ωdrt)

ω2
dr/2ω2

pl −
√

ω4
dr/4ω4

pl + M2/2
+ β3 cos(x/|�0|) sin(ωdrt) (26)
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for ωdr > ωpl. The electric field has the form

E(in)
z =

∫
∂tB

(in)
y dx

=
�1ωdrMβ1 e−x/�1 sin(ωdrt)

ω2
dr/2ω2

pl +
√

ω4
dr/4ω4

pl + M2/2
− |�2|ωdrMβ2 sin(x/|�2|) sin(ωdrt)

ω2
dr/2ω2

pl −
√

ω4
dr/4ω4

pl + M2/2

+ |�0|ωdrβ3 sin(x/|�0|) cos(ωdrt). (27)

In general, parametric driving of a SC in the presence of a magnetic field causes emission of
electromagnetic waves. Here, we consider the emission of electromagnetic waves from the left edge of the
sample,

B(out)
y = Bext + α1 cos

(
ωdr(t + x/c)

)
+ α2 sin

(
ωdr(t + x/c)

)
, (28)

E(out)
z = cα1 cos

(
ωdr(t + x/c)

)
+ cα2 sin

(
ωdr(t + x/c)

)
. (29)

Using the continuity of By(x, t) and Ez(x, t) at the surface of the sample, we determine the coefficients β1, β2

and β3; see supplementary material for details of the calculation. In the red-detuned case, we obtain

β1 =
Bext

ζ

(
1 +

�2�0ω
2
dr

c2

)(
ω2

dr

2ω2
pl

+

√
ω4

dr

4ω4
pl

+
M2

2

)
, (30)

β2 = −Bext

ζ

(
1 +

�1�0ω
2
dr

c2

)(
ω2

dr

2ω2
pl

−
√

ω4
dr

4ω4
pl

+
M2

2

)
, (31)

β3 =
ωdrMBext

ζc
(�1 − �2), (32)

where

ζ =

(
1 +

�2�0ω
2
dr

c2

)(
ω2

dr

2ω2
pl

+

√
ω4

dr

4ω4
pl

+
M2

2

)
−

(
1 +

�1�0ω
2
dr

c2

)(
ω2

dr

2ω2
pl

−
√

ω4
dr

4ω4
pl

+
M2

2

)
. (33)

In the blue-detuned case, we find

β1 =
Bext

2

⎛
⎝1 +

ω2
dr/2ω2

pl√
ω4

dr/4ω4
pl + M2/2

⎞
⎠, (34)

β2 =
Bext

2

⎛
⎝1 −

ω2
dr/2ω2

pl√
ω4

dr/4ω4
pl + M2/2

⎞
⎠, (35)

β3 =
Bext

2c

�1ωdrM√
ω4

dr/4ω4
pl + M2/2

. (36)

In figures 3(a) and (b), we show how red- and blue-detuned driving modifies the spatial dependence of
the DC magnetic field inside the SC. In the red-detuned case, the DC part of the magnetic field is the sum
of two exponentially decaying contributions. As the driving frequency approaches the plasma frequency, the
length scale of the first decay converges to a value below the equilibrium penetration depth,

�1 → λ√
1 + M2/2

. (37)

This feature of the response by itself indicates a parametric enhancement of the Meissner screening.
However, the length scale �2 of the second exponential decay is generally larger than the equilibrium
penetration depth. Thus, the enhancement of the Meissner screening is lessened or reverted. While �2

diverges for ωdr → ωpl, the prefactor of the second exponential decay vanishes in this limit. Taking both into
account, the Meissner screening is enhanced as the driving frequency is slightly below the plasma frequency.
For larger detuning, the enhanced screening is effective only on a short length scale. Further away from the
surface, the slower decaying contribution dominates such that the DC magnetic field is larger than in the
absence of driving. This is visible in figure 3(a).
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Figure 3. Analytical results for the Meissner screening in a parametrically driven SC. (a) Spatial dependence of the DC magnetic
field for M = 0.3 and two different red-detuned driving frequencies. (b) Spatial dependence of the DC magnetic field for
M = 0.3 and two different blue-detuned driving frequencies. (c) Attenuation length Rx of the DC magnetic field as a function of
the driving frequency for two different driving strengths. In panels (a) and (b), the equilibrium magnetic field
Beq = Bext exp(−x/λ) is subtracted, where λ is the London penetration depth.

For blue-detuned driving, the DC part of the magnetic field is the sum of a contribution that decays
exponentially on the length scale �1 < λ and a spatially oscillating contribution. As evidenced by
figure 3(b), the spatially oscillating contribution reduces the Meissner screening such that the DC magnetic
field is larger than in the absence of driving. In the supplementary material, we present the spatial
dependence of the DC magnetic field explicitly, using a higher driving amplitude of M = 0.6.

Figure 3(c) displays the attenuation length of the magnetic field as a function of the driving frequency
for blue-detuned driving. The attenuation length is defined by the condition By(x = Rx) = Bext exp(−1).
While the attenuation length equals the London penetration depth in equilibrium, it is increased by slightly
blue-detuned driving. The attenuation length grows as the detuning of the driving frequency from the
plasma frequency is decreased and the driving strength is increased.

In our simulations, we apply a static magnetic field at the surface of the SC. The analytical solution for
this boundary condition is provided in the supplementary material. We find that the solution for the DC
magnetic field inside the SC is not affected in the case of blue-detuned driving. However, the modified
boundary condition suppresses the enhancement regime for red-detuned driving.

4.2. Numerical results for an isotropic superconductor
To simulate the Meissner effect, we apply a small surface magnetic field along the y axis, i.e. B = Bextŷ.
Throughout this paper, we use Bext = 1 mT. Note that we obtain consistent results for Bext = 0.1 mT, which
confirms that the linear response is measured. In figure 4, we present equilibrium results for an isotropic SC
with the same parameters as in section 3, except for the sample size. The plasma frequency is
ωpl/2π = 100 THz and the edge length is L = 6 μm along both axes. We see in figure 4(a) that the magnetic
field By(x, z) is screened away from the surface, which is the characteristic response of a SC to a magnetic
field. As shown in figure 4(b), the decay of the magnetic field from the sample surfaces is well captured by
the exponential fit functions By(x, 0) = Bext exp

(
−x/λeq

)
and By(0, z) = Bext exp

(
−z/λeq

)
, with λeq being

the only free parameter. The fitted value λeq = 478 nm of the London penetration depth is in excellent
agreement with the analytical prediction λ = c/ωpl = 477 nm. In fact, the numerical value converges to the
analytical prediction for larger sample size; see supplementary material.

In the remainder of this section, we investigate the response of an isotropic SC to an external magnetic
field in the presence of parametric driving as defined in equation (6). We characterize the Meissner
screening in the driven state by the attenuation lengths Rx and Rz. The attenuation length Rx quantifies the
Meissner screening at the center of the left sample surface, i.e. for x � Lx and z = Lz/2. To resolve changes
of Rx below the discretization length d, we interpolate the magnetic field linearly between the plaquettes left
and right of x = Rx. The attenuation length along the z axis, Rz, is determined analogously. In equilibrium,
the attenuation lengths equal the London penetration depth, i.e. Rx = Rz = λeq.

We consider a superconducting sample with the same parameters as before but with a sample size of
12 × 12 μm2 to ensure the convergence of our results. First, we choose the driving frequency
ωdr/2π = 110 THz and the driving amplitude M = 0.3, consistent with the conductivity measurements
shown in figure 2. Once a steady state is reached, the magnetic field inside the SC oscillates with the driving
frequency. Snapshots of the time evolution of the magnetic field during one driving cycle are displayed in
figure 5(b). The parametric driving with ωdr > ωpl has two main effects. Firstly, electromagnetic waves
generated at the left and right surfaces are transmitted into the bulk of the sample. However, the magnitude
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Figure 4. Expulsion of a static magnetic field from an isotropic SC in equilibrium. (a) Spatial dependence of the magnetic field.
(b) Exponential fit to the decay of the magnetic field along the cyan lines in (a). The decay of the magnetic field is the same for
both lines. The fitted value of the London penetration depth λeq = 478 nm is in good agreement with the analytical prediction of
477 nm. The sample parameters are the same as in figure 2, except for the sample size.

Figure 5. Expulsion of a static magnetic field from an isotropic SC in the presence of blue-detuned driving of the z-axis
tunneling. (a) Dynamics of the attenuation lengths during one driving cycle Tdr = 2π/ωdr. The gray line indicates the
equilibrium value λeq = 477 nm. (b) Spatial dependence of the magnetic field during one driving cycle, corresponding to the
attenuation lengths in (a). The snapshots are ordered from left to right and top to bottom, with the upper left snapshot taken at
Tdr/6. The driving frequency is ωdr = 1.1ωpl and the driving amplitude is M = 0.3. The sample size is 12 × 12 μm2.

of the magnetic field inside the SC is strongly suppressed compared to the surface field Bext. Secondly, the
attenuation lengths are no longer isotropic and exhibit an oscillatory behavior in time. As evidenced by
figure 5(a), Rx exhibits a pronounced oscillation, while Rz has a small oscillation amplitude. Remarkably, we
find that there is no generation of electromagnetic waves for driving frequencies red-detuned from the
plasma frequency. The time evolution of the magnetic field for one example of red-detuned driving is
shown in the supplementary material.

Next, we average the magnetic field over 1 ps with a detection rate of 5 PHz and evaluate the attenuation
lengths Rx = 488 nm and Rz = 479 nm of the time-averaged magnetic field. The attenuation lengths in the
driven state are both larger than the equilibrium value λeq = 477 nm of this sample. So, while the
parametric driving leads to a significant enhancement of z-axis transport, the time-averaged screening of
magnetic fields is slightly reduced. This result also holds for larger sample size and AC magnetic fields with
small frequencies ∼1 THz; see supplementary material. We note that the relative phase between the
oscillation of Rx and the oscillation of Rz depends on the lateral sample size. This suggests that the
modulation of Rz is due to the transmission of electromagnetic waves from the left and right surfaces.

We proceed by varying the driving strength and the driving frequency. Figure 6(a) demonstrates that the
attenuation length Rx grows monotonically with increasing driving amplitude. The data points in
figure 6(b) indicate a divergence of Rx as the driving frequency approaches the plasma frequency. We
compare our numerical results to the analytical solution from section 4.1, applying the boundary condition
of a static magnetic field at the sample surface. The numerical results show good agreement with the
analytical solution, except for the data point at ωdr = 1.3ωpl. This discrepancy is due to the approximations
that we used in the derivation of the analytical solution. For example, we neglected the spatial dependence

8



New J. Phys. 24 (2022) 113007 G Homann et al

Figure 6. Attenuation length Rx of the time-averaged magnetic field for different driving strengths and frequencies. (a) Rx for
ωdr = 1.1ωpl and different driving strengths. (b) Rx for M = 0.3 and different driving frequencies. The gray line indicates the
equilibrium value λeq = 477 nm. In both panels, the dashed red line indicates the analytical solution for Rx. The sample size is
12 × 12 μm2, except for the two largest driving frequencies in (b), where converged results are obtained for a sample size of
16 × 16 μm2.

Figure 7. Expulsion of a static magnetic field from an anisotropic SC in the presence of blue-detuned driving of the z-axis
tunneling. (a) Attenuation lengths as a function of time during one driving cycle Tdr = 2π/ωdr. The gray lines indicate the
equilibrium values λz and λx, and the dashed lines indicate the attenuation lengths of the time-averaged magnetic field in the
driven state. (b) Spatial dependence of the magnetic field during one driving cycle, corresponding to the attenuation lengths in
(a). The snapshots are ordered from left to right and top to bottom, with the upper left snapshot taken at Tdr/6. The driving
frequency is ωdr = 1.1ωz and the driving amplitude is M = 0.3. The sample size is 24 × 6 μm2.

of the magnetic field along the z axis and temporal oscillations at higher harmonics of the driving
frequency. Thus, the analytical solution is valid only close to the sample surface and does not capture the
propagation of electromagnetic waves in the case of blue-detuned driving.

4.3. Numerical results for an anisotropic superconductor
In this section, we study the effect of parametric driving on the magnetic response of an anisotropic SC.
Since our analytical arguments in section 4.1 are not limited to an isotropic SC, we expect a similar
reduction of the Meissner screening for an anisotropic SC. In cuprate SCs, the ratio between the in-plane
plasma frequency and the (lower) c-axis plasma frequency is of the order of 100. Due to numerical
constraints, we choose plasma frequencies with a smaller ratio. In the following, we consider a SC with the
plasma frequencies ωx/2π = 300 THz and ωz/2π = 50 THz along the x axis and the z axis, respectively.
Consistent with the relations λx = c/ωx and λz = c/ωz, we find the attenuation lengths Rx = λz = 954 nm
and Rz = λx = 159 nm in equilibrium. The sample size is 24 × 6 μm2.

We then add parametric driving with frequency ωdr/2π = 55 THz and amplitude M = 0.3. We show in
figure 7(b) that the time evolution of the magnetic field during one driving cycle is comparable to the
isotropic case. However, the spatial patterns are sharper and more pronounced, especially towards the top
and bottom of the sample. While the oscillation amplitude of Rx compared to its temporal average is similar
to the isotropic case, the oscillation amplitude of Rz is significantly larger as shown in figure 7(a). This

9



New J. Phys. 24 (2022) 113007 G Homann et al

further indicates that the modulation of Rz is a consequence of electromagnetic waves transmitted into the
bulk. Here, the attenuation lengths of the time-averaged magnetic field are Rx = 977 nm and Rz = 161 nm
in the driven state. The increase of Rx by approximately 2% is in good agreement with our observation for
an isotropic SC, where we also used ωdr = 1.1ωz and M = 0.3. The increase of Rz by more than 1% is
considerably larger than in the isotropic case.

5. Conclusion

In conclusion, we have presented the response of light-driven SCs to magnetic fields for the scenario of
parametrically driven z-axis tunneling. For driving with a frequency blue-detuned from the plasma
frequency, we find an enhancement of z-axis transport and a reduction of the Meissner screening along the
x axis, the direction perpendicular to the parametric drive and the applied magnetic field. This key result is
in contrast to the equilibrium behavior of SCs. In the absence of driving, both London theory [31] and our
model in equation (1) predict that an enhancement of the low-frequency σ2(ω) along the z axis implies an
enhancement of the Meissner screening along the x axis. Our simulations demonstrate the breakdown of
this general relation in a driven SC. In fact, the screening of DC magnetic fields is reduced for slightly
blue-detuned driving, which can be understood analytically based on a minimal model that we derived in
this work. According to our analytical calculations, the screening of DC magnetic fields shows a tendency to
be enhanced for slightly red-detuned driving. This enhanced screening is enabled by emission of
electromagnetic waves from the SC. If the emission of electromagnetic waves is suppressed, as in our
simulations, the Meissner screening for red-detuned driving is generally less effective than in the absence of
driving. We emphasize that we observe similar behavior for isotropic and anisotropic SCs.

Our findings suggest that the enhancement of the low-frequency conductivity is naturally accompanied
by a suppression of the Meissner effect in the parametrically driven scenario that we consider. The
parametric driving mixes the Josephson plasmon into the low-frequency response. While this admixture
provides an enhanced conductivity, it results in a suppressed Meissner screening due to the transmission of
unscreened plasma excitations into the SC. More generally, our results suggest that the light-induced state is
a genuinely non-equilibrium state, rather than a renormalized equilibrium state, in which some of the
reasoning derived from equilibrium SCs does not apply.

Our work is relevant for the interpretation of pump–probe experiments on light-driven SCs,
particularly cuprates. An improved understanding of these experiments might eventually provide new
insights into the nature of the superconducting state in unconventional SCs.
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I. REDISTRIBUTION OF SPECTRAL WEIGHT

As shown in Fig. 1, the real part σ1 of the optical conductivity exhibits a maximum around

ω∗ = |ωpl − ωdr| for red-detuned driving, while it exhibits a minimum around ω∗ for blue-

detuned driving. These extrema of σ1 correspond to parametric attenuation/amplification

as discussed in Ref. [1]. Following the notation in Ref. [2], we write the optical conductivity

as

σ(ω) = D

(
δ(ω) +

i

πω

)
+ σregular(ω). (1)

The total spectral weight is then given by

S =

∫ ∞

0

dω σ1(ω) =
D

2
+

∫ ∞

0

dω σregular
1 (ω). (2)

Here, we evaluate the spectral weight difference

∆W =

∫ ωb

ωa

dω
(
σdriven
1 (ω)− σundriven

1 (ω)
)

(3)

with ωa/2π = 2 THz and ωb/2π = 100 THz. For red-detuned driving, we find ∆Wred ≈
−0.84 · (Dred − D0)/2, while we obtain ∆Wblue ≈ −0.94 · (Dblue − D0)/2 for blue-detuned

driving. Note that the absolute value of ∆W is underestimated in both cases due to the

lower cutoff at ωa. These results indicate that the parametric driving redistributes spectral

weight, while the total spectral weight is conserved.

FIG. 1. Real part of the optical conductivity of a parametrically driven superconductor. The

driving amplitude is M = 0.3. The driving frequencies are ωdr = 0.9ωpl and ωdr = 1.1ωpl, consistent

with Fig. 2 in the main text.
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II. DETAILS ON THE ANALYTICAL SOLUTION

A. Emitting boundary condition

As mentioned in Section 4.1 of the main text, the electromagnetic waves emitted by the

parametrically driven superconductor have the form

B(out)
y = Bext + α1 cos

(
ωdr(t+ x/c)

)
+ α2 sin

(
ωdr(t+ x/c)

)
, (4)

E(out)
z = cα1 cos

(
ωdr(t+ x/c)

)
+ cα2 sin

(
ωdr(t+ x/c)

)
. (5)

For the magnetic and the electric field inside the superconductor, we use the general ansatz

from Section 4.1 of the main text. In the red-detuned case, the continuity of By(x, t) at

x = 0 implies

Bext = β1 + β2, (6)

α1 =
Mβ1

ω2
dr/2ω

2
pl +

√
ω4
dr/4ω

4
pl +M2/2

+
Mβ2

ω2
dr/2ω

2
pl −

√
ω4
dr/4ω

4
pl +M2/2

, (7)

α2 = β3. (8)

The continuity of Ez(x, t) at x = 0 implies

cα1 = −`0ωdrβ3, (9)

cα2 =
`1ωdrMβ1

ω2
dr/2ω

2
pl +

√
ω4
dr/4ω

4
pl +M2/2

+
`2ωdrMβ2

ω2
dr/2ω

2
pl −

√
ω4
dr/4ω

4
pl +M2/2

. (10)

Thus, we obtain

β1 =
Bext

ζ

(
1 +

`2`0ω
2
dr

c2

)(
ω2
dr

2ω2
pl

+

√
ω4
dr

4ω4
pl

+
M2

2

)
, (11)

β2 = −Bext

ζ

(
1 +

`1`0ω
2
dr

c2

)(
ω2
dr

2ω2
pl

−
√

ω4
dr

4ω4
pl

+
M2

2

)
, (12)

β3 =
ωdrMBext

ζc
(`1 − `2) , (13)

where

ζ =

(
1 +

`2`0ω
2
dr

c2

)(
ω2
dr

2ω2
pl

+

√
ω4
dr

4ω4
pl

+
M2

2

)
−
(

1 +
`1`0ω

2
dr

c2

)(
ω2
dr

2ω2
pl

−
√

ω4
dr

4ω4
pl

+
M2

2

)
.

(14)
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In the blue-detuned case, the continuity of By(x, t) at x = 0 implies

Bext = β1 + β2, (15)

α1 =
Mβ1

ω2
dr/2ω

2
pl +

√
ω4
dr/4ω

4
pl +M2/2

+
Mβ2

ω2
dr/2ω

2
pl −

√
ω4
dr/4ω

4
pl +M2/2

, (16)

α2 = β3. (17)

The continuity of Ez at x = 0 implies

cα1 = 0, (18)

cα2 =
`1ωdrMβ1

ω2
dr/2ω

2
pl +

√
ω4
dr/4ω

4
pl +M2/2

. (19)

We find

β1 =
Bext

2


1 +

ω2
dr/2ω

2
pl√

ω4
dr/4ω

4
pl +M2/2


 , (20)

β2 =
Bext

2


1−

ω2
dr/2ω

2
pl√

ω4
dr/4ω

4
pl +M2/2


 , (21)

β3 =
`1ωdrMBext/c

2
√
ω4
dr/4ω

4
pl +M2/2

. (22)

Figure 2 displays the analytical solution for the spatial dependence of the DC magnetic field

explicitly. Here, the driving amplitude is chosen relatively high such that the effect of the

parametric driving is visible.

SciPost Physics Submission

(a) (b)
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FIG. 2. Spatial dependence of the DC magnetic field for M = 0.6. (a) Red-detuned driving,

ωdr = 0.95ωpl. (b) Blue-detuned driving, ωdr = 1.05ωpl.
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B. Static boundary condition

For comparison with the numerical simulations, we apply the boundary condition By(x =

0, t) = Bext. With the general ansatz for the magnetic field inside the superconductor from

Section 4.1 of the main text, we then obtain

β1 =
Bext

2


1 +

ω2
dr/2ω

2
pl√

ω4
dr/4ω

4
pl +M2/2


 , (23)

β2 =
Bext

2


1−

ω2
dr/2ω

2
pl√

ω4
dr/4ω

4
pl +M2/2


 , (24)

β3 = 0 (25)

for both red- and blue-detuned driving. In the case of blue-detuned driving, the DC part

of the magnetic field is the same as for the emitting boundary condition considered in

the previous section. For red-detuned driving, however, the modified boundary condition

qualitatively changes the solution. In contrast to the emitting case, β2 does not vanish in the

limit of ωdr → ωpl such that the divergence of `2 implies a less effective Meissner screening

than in the absence of driving; see Fig. 3. Our analytical results are in good agreement with

the numerical simulations as evidenced by Fig. 6 in the main text.

FIG. 3. Spatial dependence of the DC magnetic field for M = 0.3 and two different red-detuned

driving frequencies, applying the boundary condition By(x = 0, t) = Bext to the analytical solu-

tion. The equilibrium magnetic field Beq = Bext exp(−x/λ) is subtracted, where λ is the London

penetration depth.
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TABLE I. Model parameters of the simulated superconductors. If a second value is provided, it

refers to the anisotropic sample.

K (meV−1) 4.7× 10−5

µ (meV) 1.0× 10−3

g (meV Å
3
) 0.5

d (Å) 200

γsc/2π (THz) 1

γel,xy/2π (THz) 10, 30

γel,z/2π (THz) 10, 5

txy (meV) 1.48× 10−3, 1.33× 10−2

tz (meV) 1.48× 10−3, 3.7× 10−4

III. SIMULATION PARAMETERS

The parameters of the simulated superconductors are summarized in Table I. Our choice

of µ and g implies a Cooper pair density of n0 = µ/g = 2× 1021 cm−3 in equilibrium. The

discretization length d is of the order of the Ginzburg-Landau estimate for the coherence

length,

ξ =

√
txyd2

µ
=

√
tzd2

µ
= 243 Å (26)

for the isotropic sample. The Higgs frequency is

ωH =

√
2µ

K~2
= 2π × 5 THz. (27)

IV. FINITE SIZE ANALYSIS

In the main text, we present results for a parametrically driven superconductor with

a sample size of 12 × 12 µm2. Here, we investigate the magnetic response of isotropic
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FIG. 4. Attenuation lengths of the time-averaged magnetic field in an isotropic superconductor for

different sample sizes. In equilibrium, the attenuation length equals the London penetration depth

λeq. The driving frequency is ωdr = 1.1ωpl and the driving amplitude is M = 0.3.

superconductors with different sample sizes L × L. As visible in Fig. 4, the value of the

equilibrium penetration depth is fully converged for samples with a size of 12 × 12 µm2 or

larger. In fact, the numerical result agrees with the analytical prediction of λ = 477 nm.

In the driven state, the values of the attenuation length Rx exhibit no systematic drift

for large samples, varying between 488 and 491 nm for L ≥ 12 µm. The values of the

attenuation length Rz vary between 478 and 479 nm for L ≥ 12 µm. We conclude that a

sample with a size of 12×12 µm2 accurately reflects the magnetic response of large samples,

both in equilibrium and in the presence of parametric driving.

V. TIME EVOLUTION OF THE MAGNETIC FIELD FOR RED-DETUNED

DRIVING

In Fig. 5, we show the time evolution of the magnetic field for one example of parametric

driving, in which the driving frequency is red-detuned from the plasma frequency. In stark

contrast to the blue-detuned case shown in Fig. 5 in the main text, there is no visible

transmission of electromagnetic waves from the left and right surfaces into the bulk of the

sample. Thus, the modulation of Rz is negligible, while the oscillation of Rx is similar to

the blue-detuned case.
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FIG. 5. Expulsion of a static magnetic field from an isotropic superconductor in the presence of

red-detuned driving of the z-axis tunneling. (a) Attenuation lengths as a function of time during

one driving cycle Tdr = 2π/ωdr. The gray line indicates the equilibrium value λeq = 477 nm. (b)

Spatial dependence of the magnetic field during one driving cycle, corresponding to the attenuation

lengths in (a). The snapshots are ordered from left to right and top to bottom, with the upper

left snapshot taken at Tdr/6. The driving frequency is ωdr = 0.9ωpl and the driving amplitude is

M = 0.3. The sample size is 12× 12 µm2.

VI. AC MEISSNER EFFECT IN A PARAMETRICALLY DRIVEN SUPERCON-

DUCTOR

Finally, we briefly discuss the response of a parametrically driven isotropic superconductor

to AC magnetic fields, i.e., Bext → Bext cos(ωprt). Once a steady state is reached, we record

the time evolution of the magnetic field for 10 ps with a detection rate of 5 PHz. We then

compute the Fourier transform of the magnetic field to evaluate the component of By(x, z)

that oscillates with the probe frequency ωpr. Eventually, we determine the attenuation

lengths Rx and Rz as in the case of a static magnetic field.

Figure 6 displays the attenuation lengths as a function of the probe frequency. Impor-

tantly, the attenuation lengths of an AC magnetic field with ωpr/2π = 1 THz approach

the attenuation lengths of a static magnetic field. Therefore, it is sufficient to probe the

sample with a static magnetic field in order to obtain the low-frequency limit of its magnetic

response. This is particularly relevant when comparing the magnetic response to the optical

response in Section 3 of the main text. For increasing probe frequency, the equilibrium
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FIG. 6. Attenuation lengths of the time-averaged magnetic field for different probe frequencies.

In equilibrium, the attenuation length equals the London penetration depth λeq. The driving

frequency is ωdr = 1.1ωpl and the driving amplitude is M = 0.3. The sample size is 16× 16 µm2.

penetration depth also increases, which can be understood from an analytical perspective.

As mentioned in Section 4.1 of the main text, Maxwell’s equations imply

1

µ0

(
1

c2
∂2t −∇2

)
B = ∇× J. (28)

We insert the London equation ∇ × J = −B/(µ0λ
2) into Eq. (28), where λ is the London

penetration depth of a static magnetic field. This leads to

−
(

1

c2
∂2t −∇2

)
B =

1

λ2
B, (29)

implying

λ(ωpr) =
λ√

1− ω2
pr/ω

2
pl

. (30)

For example, the numerical value of λeq = 487 nm for ωpr/2π = 20 THz agrees with the an-

alytical prediction based on Eq. (30). In the presence of parametric driving, the attenuation

lengths follow a qualitatively similar dependence on the probe frequency as in equilibrium.
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