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“You need to let the little things 

that would ordinarily bore you 

suddenly thrill you.” 

― Andy Warhol 
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Summary  

 

Plankton forms the foundation of the food webs and, therefore, to manage the ecosystem and 

fish stocks effectively, it is essential to understand the interactions between the different 

compartments of the plankton community and the associated environmental drivers. In the 

North Sea, winter is considered a low productivity season and it is a crucial time for the survival 

and growth of marine organisms, including early life stages of many fish species, such as the 

Atlantic herring (Clupea harengus). Nevertheless, despite the recognized importance of this 

season, our understanding of plankton dynamics is still very limited underlining the need for 

further investigations on the plankton standing stocks and community structure, which will 

constitute the prey fields for larger trophic levels.  

In this thesis, I have evaluated the spatio-temporal dynamics of the North Sea plankton 

community during autumn and winter of different size fractions, the Protozoo- (PZP), the 

Microzoo- (MZP) and Mesozooplankton (MesoZP) community on a broad spatial scale across 

several years. The analysis of the PZP community revealed a homogenous community across 

the central North Sea with a general north-south gradient in terms of abundance of the the two 

main groups, dinoflagellates and ciliates. We identified only marginal effects of environmental 

drivers that may affect PZP shifts in the taxonomic and size composition of the community. To 

accelerate the time-consuming plankton identification process, we developed an automated 

Dynamic Optimization Cycle (DOC) pipeline to frequently improve and adapt the accuracy of 

a plankton image classification model, which helped us to analyze the MZP and MesoZP 

community in the two main spawning grounds of herring in autumn and winter. By combining 

two different nets, we provided more accurate estimates of the MesoZP community and a novel 

dataset of MZP abundances and biomasses for autumn and winter. The application of two 

different analytical approaches, a taxonomic and a size-based approach identified distinct 

environmental drivers related to water masses affecting the community, such as salinity and 

temperature in the respective spawning ground. The generated slopes from the broad groups 

included in the size-based approach where then used to explore the feeding conditions of the 

herring larvae in the respective spawning ground and season via physiological modeling. The 

growth of small larvae in both areas was limited by food availability, even under favorable 

feeding conditions. In Downs, even larger larvae (>13 mm) were predicted to experience food 

limitation during winter, while in Buchan/Banks, they were able to approached their maximal 

growth capacity in autumn. However, in both areas the larvae showed generally better growth 

performance and survival when their prey fields were extended beyond the “traditional” prey 

items such as copepods and nauplii, including microplankters in their diet. These findings 



   

 
 

highlight the importance of understanding the dynamics of the PZP, MZP and MesoZP 

communities, stressing the need for further monitoring within larval fish surveys in wintertime, 

especially given the ongoing low recruitment of North Sea herring. 

The findings of this study contribute to a better understanding of the standing stock of plankton 

and its relationship with environmental drivers in temperate shelf seas. Therefore, this thesis 

offers additional knowledge for management of the North Sea ecosystem and fish stocks, and 

underscores the need for further investigation into the dynamics of plankton communities 

during low productivity periods. 

  



   

 
 

Zusammenfassung 

 

In der Nordsee ist der Winter eine entscheidende Zeit für das Überleben und Wachstum von 

Meeresorganismen, vom Phytoplankton bis zu den Fischen. Das Plankton bildet die Grundlage 

des Nahrungsnetzes, aber unser Verständnis seiner Dynamiken während dieser Zeiten der 

niedrigen biologischen Produktivität ist begrenzt. Für eine nachhaltige Bewirtschaftung des 

Ökosystems und der Fischbestände ist es unerlässlich, die Wechselwirkungen zwischen den 

verschiedenen Komponenten der Planktongemeinschaft und den Umweltfaktoren zu 

verstehen. Die Forschung am Atlantischen Hering und seinen Nahrungsfeldern kann wertvolle 

Aufschlüsse über die Nahrungsverhältnisse während dieser kritischen Periode liefern. 

In meiner Doktorarbeit habe ich die räumlich-zeitliche Dynamik der Planktongemeinschaft der 

Nordsee während des Winters für verschiedene Größenfraktionen, und zwar die Protozoo- 

(PZP), die Mikrozoo- (MZP) und die Mesozooplanktongemeinschaft (MesoZP) auf einer 

breiten räumlichen Skala über mehrere Jahre hinweg untersucht. Die Analyse der PZP-

Gemeinschaft ergab eine homogene Gemeinschaftsstruktur in der zentralen Nordsee mit 

einem allgemeinen Nord-Süd-Gefälle in Bezug auf die Abundanz der beiden Hauptgruppen, 

Dinoflagellaten und Ciliaten. Wir konnten nur marginale Auswirkungen von Umwelteinflüssen 

feststellen, die sich auf die Phänologie und die Zusammensetzung der Gemeinschaft von PZP 

auswirken könnten. Um den zeitaufwendigen Prozess der Planktonidentifizierung zu 

beschleunigen, entwickelten wir einen dynamischen Optimierungszyklus (DOC), um die 

Genauigkeit eines Modells zur Klassifizierung von Planktonbildern kontinuierlich zu verbessern 

und anzupassen, mit dessen Hilfe wir die Mikro- und MesoZP-Gemeinschaft in den beiden 

Hauptlaichgebieten des Atlantischen Herings im Herbst und Winter analysierten. Durch die 

Kombination von zwei verschiedenen Netzen konnten wir erstens, genauere Abundanz- und 

Biomasseschätzungen der MesoZP-Gemeinschaft und zweitens einen einzigartigen 

Datensatz von Mikrozooplankton-Abundanzen und -Biomassen für Herbst und Winter 

erstellen. Durch die Anwendung von zwei verschiedenen analytischen Ansätzen, einem 

taxonomischen und einem größenbasierten Ansatz, konnten eindeutige Umweltfaktoren 

identifiziert werden, die mit den Wassermassen aus dem Atlantik in Verbindung stehen, die 

sich auf die Gemeinschaft auswirken, wie z. B. der Salzgehalt und die Temperatur im 

jeweiligen Laichgebiet. Die aus dem größenbasierten Ansatz gewonnenen Steigungskurven 

wurden dann verwendet, um die Nahrungssituation der Heringslarven im jeweiligen 

Laichgebiet und in der jeweiligen Jahreszeit mittels larvenphysiologischer Modellierung zu 

untersuchen. Wir haben festgestellt, dass Heringslarven in Jahreszeiten mit geringer 

biologischer Produktivität besonders empfindlich auf Nahrungslimitierung reagieren, wobei die 

Mehrheit der Larven vor allem in den Wintermonaten von Nahrungslimitierung betroffen ist. 



   

 
 

Die Heringslarven wuchsen jedoch im Allgemeinen besser und überlebten besser, wenn 

Mikroplankter in ihrer Nahrung enthalten waren. Diese Ergebnisse machen deutlich, wie 

wichtig die künftige Erfassung von MZP und MesoZP im Rahmen der Erhebung von 

Fischlarven im Winter ist, insbesondere angesichts der anhaltend geringen Rekrutierung von 

Nordseeheringen. 

Diese Arbeit stellt eine umfassende Analyse der allgemeinen Planktondynamik auf einer 

breiten räumlichen und zeitlichen Skala dar. Wir haben Einblicke in die Dynamik von 

Planktongemeinschaften in der Nordsee während Zeiten geringer biologischer Produktivität 

gewonnen. Die Ergebnisse zeigen, wie wichtig es ist, die Wechselwirkungen zwischen MZP-

/MesoZP-Gruppen und Umweltfaktoren während des Winters zu verstehen, und welche 

entscheidende Rolle das Plankton als Grundlage des marinen Ökosystems spielt. Wir haben 

auch die Vorteile automatisierter Routinen für die Klassifizierung von Plankton im 

Schnellverfahren und die Anpassung von Modellen aufgezeigt. Darüber hinaus unterstreicht 

die Studie die Vorteile einer gleichzeitigen Überwachung von MZP- und MesoZP im Rahmen 

von Fischlarvenerhebungen, insbesondere im Hinblick auf die anhaltend geringe Rekrutierung 

von Nordseeheringen. Die Ergebnisse dieser Studie tragen zu einem besseren Verständnis 

des Planktonbestandes und seiner Wechselwirkung mit Umweltfaktoren in gemäßigten 

Schelfgewässern bei. Insgesamt bietet diese Arbeit wichtige Anhaltspunkte für die Vorhersage 

und das Management des Nordsee-Ökosystems und der Fischbestände und unterstreicht die 

Notwendigkeit weiterer großräumiger Studien über die Dynamik von Planktongemeinschaften 

in Zeiten geringer biologischer Produktivität. 
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Preface 

 

A famous inspirational quote says 'It's always the little things that make the big things happen.' 

Similarly, in the ocean, the tiny plankton plays a crucial role in aquatic ecosystems. They affect 

the chemistry and climate of the planet; take carbon out of the atmosphere, locking it up for a 

time in their cells, in the animals that consume them, and in fecal pellets that they drop to the 

sea floor. Their timing of availability in the right size and the right place affects the survival of 

many other species, from fish up to the largest marine mammals. They are mediators of energy 

from bacterial- to higher trophic levels. Besides predation, they are one of the main controlling 

factors of year class strength of many commercial fish species.  Yet, our knowledge on these 

tiny but essential organisms are limited in both, space and time and, therefore, it is important 

to expand our limited knowledge on standing plankton stocks and dynamics over different size 

fraction and large spatial and temporal spheres. As they are numerous in numbers, shapes 

and lifeforms, there is a need to merge different sampling methods and test different analytical 

approaches to understand their general dynamics, predict changes under ongoing climate 

change and, in order to do that, provide data for modelling approaches e.g. biogeochemical 

cycles, growth and survival models. In this thesis, I have analyzed the micro and 

meszooplankton (MesoZP) community in the North Sea during winter, a time of the year which 

is rarely studied. Via the application of different sampling devices and analytical approaches, 

we show that there are unique patterns and drivers on both, at different temporal and spatial 

scales. Concurrently we present a unique 7-year dataset of zooplankton data from the central 

and southern North Sea, providing abundance, biomass and distribution of key plankton, from 

Protozoo- (PZP) to MesoZP groups (20-2000 µm). In the following introduction, I will briefly 

introduce the main plankton groups analyzed in this thesis, their importance for the ecosystem 

and the knowledge gaps, which I have addressed in this thesis.    
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Plankton 

General definition 
 

The word plankton stems from the Greek word “planao” which means, “to wander”. It 

encompasses all passively drifting organisms in the aquatic realm. Plankton is traditionally 

distinguished into phytoplankton (mainly autothrophs) and zooplankton (mainly phagotrophs). 

This distinction is simplified as the large diversity in plankton brought forth many different 

definitions of plankton organisms, distinguished based on their morphology, nutrition mode, 

life style, and size, among others (e.g. Castellani & Edwards 2017).  

Zooplankton may be distinguished from phytoplankton on basis of morphology or nutrition 

mode. While phytoplankton is a primary producer, capable of performing photosynthesis, 

zooplankton is mainly considered heterotrophic, i.e.,they consume organic particles with a 

variety of capturing techniques. This definition can be also tricky, though, as some zooplankton 

species can be, both autotroph and heterotroph, which is called mixotrophy. This nutrition 

mode is commonly found in flagellates and other protozoans, such as ciliates and foraminifera 

(Stoecker et al. 2017).  

Plankton is also classified according to their life style. For instance, species that spend their 

whole lifetime in the pelagic realm are defined as holoplanktonic organisms, such as copepods 

and protozoans. In contrast, species that spend only part of their life cycle as a planktonic 

phase are termed meroplanktonic organisms. For example, some species switch from a 

planktonic larva to a benthic adult life stage (e.g. Decapods) or vice versa (e.g. hydrozoans), 

and although many fish species and cephalopods inhabit permanently the pelagic 

environment, their larvae are also considered meroplankton since they are drifting organisms, 

unable to swim against the currents.   

Irrespectively of their classification, plankton forms the foundation of the aquatic food webs. 

When light and nutrient conditions allow it, phytoplankton can grow exponentially (Reid et al. 

1990). As a result, a chain reaction is triggered with rapid growth of small zooplankton 

organism with fast generation times (e.g. protozoans) feeding on them (Aberle et al. 2007). 

Subsequently, larger and slow growing zooplankton taxa feed on them and are then a food 

source for higher trophic levels (van Beusekom & Diel-Christiansen 1993). This very brief and 

streamlined description is, in reality, much more complex, with many different pathways of 

energy as the above-described feeding modes and different life stages create more of a web 

than a chain like structure (Belgrano et al. 2005).    

The term plankton comprises a large variety of different organisms with many different species, 

from nanoflagellates of two µm up to Cyaneidae species with more than 2 m of size (Fig. 1.1). 
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Body size is an important trait in the ocean as it can be used to characterize the capabilities 

and limitations of individual organisms (e.g. Litchman et al. 2013). Through power-law 

functions, organism size can be used to describe aspects of populations and organismal 

physiology across taxa (Peters & Wassenberg 1983) and can determine predator-prey 

relationships (Nakazawa et al. 2011). Schütt et al. (1892) did a first attempt of size 

classification, which underwent several modifications since. Almost 100 years later, Sieburth 

et al. (1978) revision was and still is widely accepted (Fig. 1.1), ranging from femto- to 

megaplankton, over eight orders of magnitude, among which this thesis focuses on two: micro- 

and mesoplankton.  

 

Figure 1.1 Classification of plankton in functional and size groups. The main plankton components of 
this study are highlighted in blue (redrawn from Sieburth et al. (1978)). 

 

Microplankton 
 

Microplankton is mainly defined by their size (20 – 200 µm (Fig. 1.1); they are ubiquitous and 

highly abundant in all marine and limnic aquatic ecosystems. The microplankton is 

characterized by their trophic mode, into microphyto- and microzooplankton (MZP). The MZP 

fraction includes protozoans (Fig. 1.2 A, B, E), micrometazoa such as nauplii (Fig. 1.2 G), larval 
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stages of meroplankters and rotifers (Calbet & Alcaraz 2007). Ciliates and heterotrophic 

dinoflagellates usually dominate the microzooplankton community.  

Ciliates are mostly free-living aquatic unicell organisms, characterized by an abundance of 

lash-like flagella (cilia) on their body surface (Paulin 1996). The cilia are used for locomotion 

and feeding by drawing in food particles. Ciliates are differentiated by either having a shell-like 

protection (lorica) or as “naked” ciliates without lorica (aloricate). For instance, in the order of 

Tintinnida (Fig. 1.2 B), the lorica is transparent and more like a shell, while ciliates of the genus 

Strobilidium sp. rely on their locomotion ability to avoid predators, with cilia that enables them 

to move faster (0.52 cm s−1) than other protozoa (0.2 cm s−1) (Jakobsen 2014). Some ciliates 

are mixotrophic using endosymbiotic algae or by sequestering chloroplasts from ingested 

algae that are kept functional in the ciliate cytoplasm (Esteban et al. 2010). However, most are 

holozoic and feed on bacteria, algae, particulate detritus, and other protozoans as big as their 

own size (Jonsson 1986). A few larger ciliate species are carnivorous and feed on small 

metazoans (Brown & Jenkins 1962). The division rate of ciliates is fast to keep pace with their 

phytoplanktonic prey, thus, they react immediately to algae growth and are usually the first 

grazers of phytoplankton blooms (Smetacek 1981, Aberle et al. 2007)  

 

 

Fig. 1.2 Members of the Microplankton community of the winter North Sea derived with FlowCAM (4x) 
with Protoperidinium sp. (dinoflagellate) (A), Tintinnida (ciliate) (B), a pennate (C) and a discus diatom 
(D), Tripos sp. (dinoflagellate) (E), bivalve larvae (F), nauplii (G), a nauplii and Tripos sp. in size 
comparison (H).  

 

Dinoflagellates are mainly unicellular organisms, with unique characteristics, such as flagellar 

insertion, among others. The name dinoflagellate is composed of the Greek word “dinos”, 

which translates as “whirling”, related to their distinctive swimming pattern, and the Latin 

“flagellum” which means, “whip”. They are widespread in marine and freshwater ecosystems 

with great diversity including autotrophic, heterotrophic, mixotrophic, parasitic, and symbiotic 

species (Riding et al. 2022); however, recent studies suggested that mixotrophy in 

dinoflagellates is more common than previously assumed (Flynn et al., 2013), bridging the gap 

between primary producers and consumers. Dinoflagellates are typically bi-flagellated with the 

two flagella perpendicular to each another, which is the cause for their characteristic spiral 
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motion pattern. They are distinguished into ‘naked’ or nonthecate species, possessing no 

tough cell walls, and ‘armored’ or thecate species, which are covered with a strong wall of 

interlocking cellulose plates. In some species, these plates have developed into spines, wings, 

or parachute-like extensions (e.g. Tripos sp., Fig. 1.2 E). Dinoflagellates are also important 

primary producers as many of them do photosynthesis, especially the thecate taxa. Many 

species are heterotrophic, like Protoperidinium sp. (Fig. 1.2 A), that engulf and digest their prey 

by surrounding it with a cytoplasmic sheet (pallium). Their prey includes other dinoflagellates, 

diatoms, microflagellates and bacteria. Various dinoflagellate species are large enough to 

consume copepod larvae as well as smaller phytplankton. Dinoflagellates can form blooms, 

known as red tides, with densities of over one million cells per milliliter, when the conditions 

match. They then produce dinotoxins in enough amounts to be deadly to fish, seabirds and 

can also be dangerous for human consumption (shellfish poisoning) (e.g. Schantz 1975). 

Meso(zoo)plankton 
 

Planktonic organisms ranging in size 0.2–20 mm are referred to as mesozooplankton. Some 

of the main groups of mesozooplankton include copepods, euphausiids, chaetognaths, and 

gelatinous plankton but also compose many different development stages such as bivalve 

larvae, decapod zoea or fish larvae. Being regarded as the grazers of the sea, 

mesozooplankton functions as the central link between primary production, the microbial food 

web and higher trophic levels (Stoecker & Pierson 2019).  

 

 

Fig. 1.3 Members of the Mesozooplankton community of the winter North Sea derived with ZooSCAN.  
Euphausiid (A), Cladocera (B), Copepod (adult) (C), Zoea larvae (D), Echinodermata larvae (E), veliger 
larvae (F), chaetognath (G), Appendicularia (H), hydrozoan medusae (I).  

 

Copepods are the most abundant member of the mesoplankton community and are 

widespread in all aquatic ecosystems. Their life cycle is composed by several distinct life 
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stages (i.e., egg, multiple naupliar and copepodite stages and adults), making them members 

of the micro- and meszooplankton community, throughout their development (Fig. 1.3 C and 

1.2 H). They also support population fisheries of economically important species such as cod, 

herring, and salmon, by providing food for their larvae, and therefore, controlling their survival 

and, ultimately, the recruitment success of these species (Beaugrand et al. 2003).  

Besides copepods, there is a diverse range of other zooplankton groups including euphausiids, 

mysids, chaetognaths, jellyfish, and ctenophores. Euphausiids are important prey for many 

fish species, including herring (Pearcy et al. 1979). Mysiids are omnivorous and opportunistic 

feeders, consuming a variety of prey including small crustaceans, detritus, and algae, and 

serving as an important prey item for many fish species (e.g. Eigaard et al. 2014). 

Chaetognaths are voracious predators, feeding mainly on other zooplankton and are 

considered one of the top predators in some marine ecosystems (Baier & Purcell 1997). 

Gelatinous zooplankton, including jellyfish and ctenophores, play important roles in marine 

ecosystems, consume a variety of prey, including copepods and fish larvae. Some species, 

however, can have negative impacts, such as forming blooms that can disrupt food webs and 

cause ecosystem shifts (see Purcell 2005). Copepods are by far the best studied group 

whereas the other groups are generally less abundant or less studied. 

Biogeochemical cycle 
 

Plankton, especially phytoplankton, are major contributors to oxygen production in the Earth's 

atmosphere. Through the process of photosynthesis, they use sunlight, carbon dioxide, and 

nutrients to produce organic matter and oxygen as a byproduct. In fact, it is estimated that up 

to 50% of the oxygen in the Earth's atmosphere comes from phytoplankton (Pörtner et al. 

2014). 

Plankton also play a critical role in the biological carbon pump (BCP), which is the process by 

which carbon is transferred from the surface ocean to the deep ocean (De La Rocha & Passow 

2006) (Fig. 1.4). Phytoplankton's photosynthesis is the initial step in the cycle (Basu & Mackey 

2018) and it has an effect on the environment via air-sea gas exchange (Raven 2007). When 

phytoplankton grows and reproduce, they take up carbon dioxide from the surface water and 

convert it into organic matter. This organic matter then sinks to deeper depths, either through 

the physical sinking of dead plankton or through the feeding activities of zooplankton and other 

organisms. This process effectively sequesters carbon in the deep ocean, helping to regulate 

the global carbon cycle and climate (Fig. 2). 
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Figure 1.4. The biological carbon pump. Phytoplankton use energy from sunlight to convert carbon 
dioxide and water into glucose and oxygen, driving the marine food chain. The biological carbon pump, 
which involves the transformation of carbon dioxide and nutrients into organic carbon, sinking into the 
deep ocean and its decomposition at depth, contributes to the ocean's uptake and storage of carbon 
dioxide (From: NOC/V.Byfield). 

 

Zooplankton have a crucial role in the efficiency of the BCP regulating the atmospheric carbon 

dioxide levels (Kwong & Pakhomov 2017). Cavan et al. (2017) underline the roles of 

zooplankton in improving the effectiveness of the BCP through the control of particles export 

by grazing, fractioning large and fast sinking particles in slower ones and moving particulate 

organic carbon (POC) to depth via diel vertical migration. 

Zooplankton: Food for all? 
 

Zooplankton plays an important role in the conservation of energy from primary producer 

(phytoplankton) to higher trophic levels (Aberle et al. 2007, Calbet 2008). The zooplankton 

occurrence and distribution influence pelagic fishery potentials. They are the initial prey for 

most fish larvae as well as for many planktivorious fish (e.g. herring). Zooplankton is so 

abundant in the world’s oceans that it is the main food source of the oceans largest fish (Sims 

& Reid 2002) and whales (Gulland 2013). It has also a strong effect on biomass stocks of other 

planktonic groups, in fact zooplankton can alter the concentration of prey populations such as 

phytoplankton (by consumption, top-down control) and predator populations (by being 

consumed by higher trophic levels, bottom up), consequently having effects on fish biomass 

(Lomartire et al. 2021). First feeding larvae have a limited size of their mouth gape, which 
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constrains the size of prey they can capture. Throughout ontogeny, they need to switch to 

larger prey to meet their energy requirements (Fig. 1.5). This process is known as ontogenetic 

niche shift and is a common phenomenon in fish larvae (Werner & Gilliam 1984). This switch 

in prey often coincides with changes in habitat and behavior, and is a key factor in determining 

the distribution and survival of fish larvae in the ocean. Fish larval survival success is therefore 

dependent on its surrounding environmental conditions and plankton abundance and less by 

the quantity of parent stock (Pierre et al. 2018). After exhausting their yolk reserves and when 

switching from endogenous into exogenous feeding, fish larvae need to find suitable prey items 

(“critical period”; Hjort 1914). Based on this concept, Cushing (1990) developed the “match-

mismatch” hypothesis, stating that the timing of larval production and their prey determines the 

strength of recruitment. The Match-Mismatch hypothesis has later been shown for herring 

larval survival, for instance, as low survival rates likely result from changes in prey availability, 

composition and quality (Payne et al. 2013, Lusseau et al. 2014, Alvarez-Fernandez et al. 

2015). Later studies suggested a complex interplay of temperature, prey type and availability, 

with larval growth and survival in the North Sea (Hufnagl & Peck 2011, Hufnagl et al. 2015).  

 

 

Figure 1.5: Example of the multi-branched plankton foodweb with respect to the different ontogenic 
stages of herring (From: twitter.com/ @PlanktonPundit (Dr Richard Kirby)) 

 

In summary, Zooplankton is an essential component of marine food webs, as it transfers 

carbon to higher trophic levels, feeds on microorganisms (such as bacteria and PZP), and 
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provides a food source for fish and other invertebrates (Fig. 1.5) (Figueiredo et al. 2009, Bils 

et al. 2022).  

Standing stock, biomass and seasonal dynamics 
 

The assessment of phytoplankton standing stock and its seasonality is of critical importance. 

The seasonal cycle in temperate ecosystems is mainly controlled by the effect of light on 

phytoplankton growth and can be generally divided into three stages:  

A spring bloom is initiated due to a combination of vertical stratification of the water column 

and increasing solar radiation after the replenishment of nutrients by convectional mixing over 

the winter months (Lohmann & Wiltshire 2012). After that kick off, with some delay due to 

longer reaction times, spring blooms are controlled by the grazing pressure of the increasing 

zooplankton abundances and decreasing nutrient concentration within the upper mixed layer 

(Franks 2001). The strength of the grazing effect on the spring bloom depends on the size of 

the initial zooplankton population (Strom et al. 2001). Temperature is a critical factor in aquatic 

ecosystems as it governs the growth rate of planktonic organisms. In temperate ecosystems, 

zooplankton has to maintain a higher biomass since production, since the production rate is 

temperature driven and is altered during colder seasons. In warm water systems, the 

temperature, so the growth rate is generally higher and it is possible to build up large 

populations from lower standing stocks, once the energy to support growth is available (Harris 

et al. 2000).  

During summer, when a strong thermocline prevents any mixing between surface and deeper 

waters and the available nutrients are efficiently recycled, phytoplankton growth is slowed 

down by nutrient limitation (Harrison et al. 1990). The summer period is controlled by grazing 

and the system is based on regenerated production.  

With the decrease in day length and light intensity in autumn, the surface waters cool down 

and autumn winds re-mix the water column, resuspending nutrients into the water column. 

These resuspension coupled with still high light levels may induce an autumn bloom of 

phytoplankton (Richardson et al. 2000). In contrast to spring blooms, autumn blooms are less 

studied, although widely documented (Herring 2001, Raymont 2014) as a significant 

component of annual production in temperate areas (Findlay et al. 2006).  

In late autumn/early winter the light levels decrease further, phytoplankton activity decreases 

and nutrient concentration increases. The particulate and dissolved organic matter from 

summer and autumn remains and sustains the growth of a microbial heterotrophic community, 

as profiteers from the absence of larger phytoplankton cells (Joint et al. 1986, Bils et al. 2019).  
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Here the concept of the microbial loop comes into play (Azam et al. 1983). Briefly, the microbial 

loop refers to the process by which small microorganisms (small phytoplankton and 

heterotrophic bacteria) use dissolved organic matter, converting it into biomass. These 

microorganisms are then consumed by small ciliates and dinoflagellates, which are then 

consumed by larger organisms, such as zooplankton, and ultimately passed up the food chain 

to higher trophic levels (Fig. 1.6) (Pomeroy et al. 2007). The strength of the microbial loop 

varies between seasons and can be enhanced during times of low phytoplankton productivity 

(Fileman et al. 2011).  

 

 

Fig. 1.6. Conceptual model of marine food web. Phytoplankton produce dissolved and particulate 
organic matter (DOM and POM, respectively) that bacteria and archaea use for respiration via the 
microbial loop (purple arrow), changing the expected carbon flow in traditional diatom-copepod-fish food 
chains. While food chain diagrams typically do not distinguish between different phytoplankton sizes, 
size can affect food web connections, and inorganic nutrients play a role in community composition. 
(From Worden et al. 2015) 

 

In summary, relationship between the season depended standing plankton stocks and 

production of a population mainly relies on biotic conditions, such as food supply, and abiotic 

conditions such as temperature, light availability etc. In temperate seas such as the North Sea, 

these conditions vary greatly with seasons. Thus, the seasonal production rate and biomass 

of plankton is vital to understand its population dynamics and to detect any climate change or 

anthropogenic related changes. Changes in the population dynamics of plankton has the 
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potential to affect the population of all the species in the food web, and thus, the ecosystem 

(bottom-up control). The seasonal conditions may change under ongoing climate change and, 

thus, may dramatically affect the population dynamics. Zooplankton communities tend to 

rapidly respond to changes in environmental conditions, especially in coastal areas, where the 

combination of land and marine influences can lead to significant and abrupt changes in 

conditions (Richardson 2008, Dam & Baumann 2017). Therefore, zooplankton, especially the 

small fractions with short generation times are considered as useful bioindicators for accessing 

aquatic ecosystem health (Hays et al. 2005). It is therefore essential to understand and survey 

the standing stocks across the different seasons, but especially during times of low 

productivity, which is one of the main aspects of this thesis. 

Size structure 
 

Body size is a critical trait that influences various biological and biogeochemical processes, 

such as nutrient acquisition and particle export (Peters & Wassenberg 1983, Blanchard et al. 

2017). The importance of body size has been acknowledged for almost 100 years (Elton 1927, 

Sheldon et al. 1972, Platt & Denman 1977). Size-based approaches have become increasingly 

popular in recent years as useful modeling tools for studying eutrophication and fishing effects 

(Trebilco et al. 2013, Sprules & Barth 2016, Blanchard et al. 2017). Despite variations in 

complexity and parameterizations (Mehner et al. 2018), all size-based models share the 

fundamental principle that the inefficiency of energy transfer and metabolism contributes to a 

decline in biomass at each level of the food chain (Kiørboe 2009). 

Body Size - What do we need to know (and why)? 
 

Body size is a critical functional trait to understand many ecological and evolutionary 

processes, since many of them are dependent on size (see Schmidt et al. 2006 and refrences 

therein). Many studies, including those focused on marine and limnic ecosystems, have 

demonstrated the correlation between various environmental factors and community size 

structure based on mean body size, size abundance, and biomass size spectra (e.g. Yvon-

Durocher et al. 2011, García-Comas et al. 2014). Size spectra reflect well variations in 

ecosystem productivity as oligotrophic areas tend to have steeper slopes than eutrophic areas 

(Sprules & Munawar 1986). Size spectra reflect also predator-prey relationships in aquatic 

ecosystems as they show the distribution of biomass across different sizes of organisms (Kerr 

& Dickie 2001). Generally, the size of a predator determines the size range of its prey, and the 

abundance of each size class depends on the balance between predation and resource 

availability. The transfer of energy between trophic levels is also reflected in the size spectra, 

with larger organisms typically consuming smaller organisms and thus transferring energy up 
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the food chain (Kerr & Dickie 2001). Size index measurements can be used to understand and 

monitor the health of aquatic ecosystems (Sprules & Munawar 1986, Heneghan et al. 2019). 

Furthermore, intra-specific diversity in size is often related to the reproductive success of a 

population as larger organisms are in advantage (Schmidt et al. 2006). 

The Size-spectra approach 
 

The concept of size is not a new approach. In 1927, Elton introduced the “pyramid of numbers” 

to describe his observation that there is an inverse relationship between the number of 

organisms and their size (Elton 1927). In the early 1960, body size was reconsidered in 

ecological studies until Sheldon et al. (1972) fully revived this concept when they discovered 

broad regularities in the size structure of aquatic communities that is very similar to the pyramid 

of numbers from 1927. They introduced the concept of size spectra and the biomass spectrum, 

which displays equal biomass concentrations in logarithmically equal size categories (Fig. 1.7). 

The prevalence of size spectra slopes around -1.0 highlights the significant influence of size 

on marine predator-prey interactions, surpassing other traits like taxonomy or function 

(Sheldon et al. 1972, Quinones et al. 2003). Size spectra slopes have become a useful 

measure to evaluate bottom-up or top-down control in marine ecosystems (Silvert & Platt 1978, 

Zhou 2006), while the associated intercept can indicate productivity levels (Zhou 2006, Ye et 

al. 2013). 

 

 



  General Introduction 

25 
 

 

Fig. 1.7 Conceptual diagram of an aquatic biomass size spectra from phytoplankton (green), 
zooplankton (orange) to nekton (blue) and the theoretical slope of -1 (grey arrow) (From Kwong & 
Pakhomov 2017) 

 

The size spectra approach was recently reconsidered due to a number of factors: First, the 

development of techniques to count and measure particles (e.g. FlowCAM, Coulter Counter) 

have helped to collect size data easy and fast (Dai et al. 2016). Second, size-based 

approaches help to simplify multiple, often poorly known processes for wide range of 

individuals in an aquatic assemblage (Ward et al. 2014). Third, thanks to advances in 

technology, assessing the size structure of a community has become simpler than evaluating 

other aspects, such as trophic transfer efficiency, predator–prey mass ratios, or production 

levels. Indeed, measuring the size structure of the community provides understanding into how 

the combined effects of these processes affect the food web (Jennings et al. 2002). While this 

approach has several advantages, such as providing insights into the structure and function of 

plankton communities, there are also some drawbacks to consider, such as the missing 

provision of the taxonomic identity of the organisms in each size class. This can limit the ability 

to accurately identify specific species and understand their roles in the ecosystem. Another 

point is plankton communities can be highly variable and complex, and it can be challenging 

to sample all size classes and accurately represent the entire community (Everett et al. 2017). 

This can lead to incomplete or biased data and limit the reliability and generalizability of the 

findings. Finally, the size spectra approach focuses primarily on the size distribution of 

plankton, which may not fully capture the complex ecological and environmental factors that 
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influence their abundance and distribution. This can limit the ability to understand the drivers 

of ecosystem dynamics and predict future changes. To ensure accuracy, plankton studies 

should incorporate a wide range of mass, ideally covering at least seven orders of magnitude 

to encompass small phytoplankton and zooplankton. Additionally, spatial and/or temporal 

integration should be incorporated to avoid potentially misleading short-term snapshots 

(Atkinson et al. 2021). These points will be tested and discussed in chapter 3 of this thesis.  

How do we study plankton? 
 

Knowledge on the plankton community, besides presence/absence, and its functioning, relies 

on answering the questions “how much”, “which”, “where” and “when”.  

There are two main procedures to quantitatively measure plankton:  

1) counting of organism and  

2) biomass determination.  

The most holistic approach involves both; however, counting of organisms, i.e., abundance, is 

the most commonly used metric. The biomass determination can be expressed as weight (wet 

mass, fresh mass, dry and ash mass) or as carbon content. The weight can be directly 

measured whereas carbon content is usually calculated using individual biomass conversion 

factors (e.g. Kiørboe 2013). For adequate biomass measures, size measurements are 

essential. However, size measurements from microscopy are time consuming and imprecise 

due to the vast spectrum of different shapes and measurement techniques. Often, mean sizes 

from literature are derived for biomass calculations (e.g. in Bils et al. 2019). For species that 

are consistent in size, like PZP, this approach could be appropriate. For taxa with different 

growth stages, however, literature values may not be precise enough and lead to 

miscalculations. Therefore, the instant provision of size by the image-based techniques 

(discussed below) is a feature that opened up new opportunities in plankton research. 

Plankton sampling 
 

Knowing the actual distribution of plankton in the ocean is a difficult task as they take place 

over enormous temporal and spatial scales. Most of the information about plankton comes 

from sampling either via scientific cruises or at fixed sampling stations (observational). In 

addition, laboratory experiments (experimental) provided species-specific insights and both 

data is complemented by modelling studies (theoretical). The combination of all three 

approaches (end-to-end studies) is the most promising approach, where modelling 

approaches provide information for a more specific sampling design for surveys or 

experiments, which again validate the modelling results.  
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Generally, the collection of plankton is yet a difficult task. The vast spectrum of different sizes, 

shapes and textures makes it very difficult to obtain a good overview of the entire plankton 

community. While phytoplankton biomass estimates nowadays can be derived from satellite 

imagery, most studies require abundance indices of specific taxa that can only be collected 

from in situ plankton sampling and determining its composition. Generally, Zooplankton has 

not received the same attention as the phytoplankton and fish communities within ecosystem 

studies in previous decades (Mitra et al. 2014). The most common sampling technique is using 

plankton nets, which has been established since the 20th century. These nets were specifically 

designed for different research objectives and species of interest with varying catch efficiencies 

and applications (Skjoldal et al. 2013). However, plankton nets have certain limitations that 

need to be taken into account, such as the avoidance of the sampling device by certain 

organisms, the clogging of the net meshes, the “slip through” of organisms due to their shape 

(e.g. elongated organisms such as appendicularia), and the general water pressure exerted 

on the organism through towing (see Skjoldal et al. 2013 for a comparison of different plankton 

nets). Another problem when sampling plankton is that plankton communities can be highly 

variable and patchy, with spatial and temporal differences in their distribution and abundance. 

This can make it challenging to accurately capture and represent the entire community and 

can lead to incomplete or biased data. 

Additionally, some types of plankton, such as gelatinous organisms, may be difficult to capture 

with traditional nets or sampling methods, further limiting the ability to study these important 

organisms. For the more delicate members of the plankton community, the filtration through 

nets can cause damage and loss (e.g. up to 60% of MZP; Ref.). To avoid the damage of fragile 

organisms (e.g. PZP), a more gently sampling technique can be used, e.g. water samples by 

Niskin bottles, often mounted in a conventional rosette sampler. The Niskin bottles are 

deployed open and can be remotely closed to collect water samples at the desired discrete 

depths. However, water samples have the limitations that only a relatively small volume is 

taken and a single water sample may not be representative of the entire water column or the 

entire region of interest (Harris et al. 2000). To address all these challenges, researchers often 

use a combination of different sampling methods and approaches to gain a more complete and 

accurate understanding of plankton communities and their ecology (e.g. suggested by Calbet 

et al. 2001). In chapter 3 of this thesis, we apply two different nets to more efficiently sample 

the plankton community to get more accurate numbers of micro- and mesozooplankton 

abundance and biomass. 
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Preservation and Analysis 
 

Irrespective of the net apparatus, when lifted off the water, samples are carefully washed with 

seawater into the cod-end and are usually preserved for further laboratory analysis. The type 

of preservation applied to fix the samples depends on the purpose for which the sample was 

taken. The range of preservation goes from freezing samples at different degrees, drying or 

storage in different preservation solutions. A common long-term preservation technique for 

taxonomical purposes is the fixation in a buffered 4% formalin-seawater solution, while ethanol 

is commonly used for molecular studies and fast freezing in liquid Nitrogen for stable isotopes 

and fatty acid analysis (Harris et al. 2000). Furthermore, the fixation methods must be adapted 

to the different planktonic groups of interest. For instance, Lugols Iodine fixation is commonly 

used as a fixative for microscopic analysis of phytoplankton, nanozooplankton, 

microzooplankton (Gifford & Caron 2000), and mesozooplankton samples (e.g. Jaspers & 

Carstensen 2009). This fixation technique is most delicately but preserved samples have a 

shelf-life of 6-12 months (Gifford & Caron 2000, Calbet et al. 2001). Despite the existing 

standard protocols, over the past decades, there are several in-depth discussions of the pros 

and cons of different sampling and preservation techniques for the different plankton groups 

(e.g. Steedman 1976, Heyman 1981, Wiackowski et al. 1994, Menden-Deuer et al. 2001). 

Once in the laboratory, preserved plankton samples are traditionally analyzed using 

microscopy. This approach offers a high taxonomic resolution, however, it is a labor intensive, 

time consuming and requires a certain level of expertise in plankton identification (Benfield et 

al. 2007, Culverhouse et al. 2014). These factors make it also biases and error sensitive due 

to different operators and fatigue (e.g., self-consistency can be < 80% in difficult identification 

tasks) (Culverhouse et al. 2014).  

The complexity of the plankton community and the associated difficulties in sampling, 

preservation, sorting and identification of the samples, led to the development of techniques 

that simplify these processes and increase the applicability and, by extension, the survey 

plankton survey areas and times. One of the most successful and worldwide applied 

developments is the Continuous Plankton Recorder (CPR) by Sir Allister Hardy Foundation in 

1964. The CPR was designed to be towed at top speeds up to 25 knots through the surface 

layers, which makes it easily applicable, even by non-scientific crews on ships of opportunity 

(see Warner & Hays 1994 for a detailed description). The plankton is sampled on a 270-µm 

mesh size gauze and identified through microscopy. Although the CPR provides a high 

frequency of plankton data with a large spatial coverage, the data quality is limited due the fact 

that it is towed at affixed depth and neglects the small size fractions below 270 µm.   
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To speed up the identification process of plankton net samples, reduce the costs and the 

associated errors of microscopy, automated image-based methods were developed, allowing 

the quick processing of higher number of samples. These methods (e.g. Flow Cytometer and 

Microscope, FlowCAM, or ZooSCAN) can provide instant information on abundance, biomass, 

seasonal variability of phyto- and zooplankton and the measures are comparable with 

microscope counts, especially for the most abundant classes (Álvarez et al. 2014, Naito et al. 

2019). The recording of images enables the temporally unlimited storage of information even 

for samples that cannot withstand fixing agents for a long time (e.g. PZP)(Gifford & Caron 

2000). These digital imaging techniques also have the advantage that they automatically 

provide estimates of the size of individual planktors, although at lower taxonomic resolution. 

On the other hand, these techniques/machines are very costly, bulky, not applicable at sea 

(ZooSCAN) and not suitable for large-scale sample analysis due to limitations by flowrate 

(FlowCAM) (Pitois et al. 2018).   

A more recent approach is the development of in situ analyzing techniques using optical 

devices such as the Video Plankton recorder (VPR) which can provide insights into 

distributional and migration patterns of the larger plankton community (Davis et al. 1992, 2005). 

Since the VPR, several other devices for the in-situ imaging of plankton organisms were 

developed (e.g. SIPPER (Remsen et al. 2004), ISIIS (Cowen & Guigand 2008) or the UVP 

(Picheral et al. 2010). The main limitation here is similar to the limitations with plankton nets: 

they cannot be deployed at all conditions at sea, their operation requires work force and is 

labor intensive (Pitois et al. 2018). That led to the development of all-in-one setups (e.g. 

Plankton Imager (PI) (Scott et al. 2021) or the PlanktoScope (Pollina et al. 2022), eliminating 

the limitations of gear applicability and involved labor and to provide autonomously acquired 

and analysis-ready-data without post-survey sample processing (e.g. (Culverhouse 2015). 

While the number of tools for continuous collection of high resolved data are increasing, a 

major bottleneck is the processing and interpretation of this vast amount of plankton images 

and data gathered (Giering et al. 2022). Although the features of each pictured organism are 

measured and stored (e.g. size), the ecological interpretation of the images, i.e. the taxonomic 

classification mainly relies on human validation. The interplay of the aforementioned automatic 

image-based techniques with machine learning algorithms paved the way for the automatically 

recognition of the plankton up to species level (of certain distinct shaped organisms) and 

simultaneous size measuring.  

The development of classification models developed in the 1980s (LeCun et al. 1989), first 

applied on plankton in 1998 (Tang et al. 1998) helped to drastically decrease the classification 

time by pre-sorting the images (e.g. supervised: EcoTaxa (Picheral et al. 2017) or 

unsupervised: Morphocluster (Schröder et al. 2020)) or entirely remove human interference 



  General Introduction 

30 
 

(e.g. Briseño-Avena et al. 2020). Today’s classification models are able to achieve 

classification accuracy of over 95% on test data (e.g. Al-Barazanchi et al. 2018) with similar 

features than the training data. However, in the planktonic realm, high spatio-temporal 

dynamics of the community hinders the performance of those models (Moreno-Torres et al. 

2012). The latest research trends are more directed away from fully unsupervised models and, 

towards a combination of AI as an application tool, helping to carry out tasks but not in 

autonomy (Giering et al. 2022).   

In summary, plankton image classification systems can be used in a variety of applications, 

such as monitoring water quality (e.g. Budiarti et al. 2019) and tracking changes in plankton 

populations. Some challenges in building a plankton image classification system include the 

need for large amounts of labeled data, dealing with variations in lighting, plankton size ranges, 

and accounting for the complex shapes and textures of different plankton species. Overall, the 

development of plankton image classification systems has been an ongoing process, with 

researchers continually exploring new techniques and approaches to improve their accuracy 

and robustness. However, there are several limitations that remain challenging. One important 

issue is the availability of large datasets of “labelled” plankton images. Most of the available 

datasets are generated due to specific research questions and therefore, are not broadly 

applicable. Another issue are variations in plankton size and appearance: Plankton can vary 

greatly in size and appearance, making it difficult for image classification systems to accurately 

identify and classify different species. Additionally, variations in lighting conditions and image 

quality can also affect the performance of plankton image classification systems. Added to this, 

plankton can have complex shapes and textures, making it difficult for image classification 

systems to accurately extract features that are relevant for classification. Many deep learning-

based plankton image classification systems are complex and difficult to adapt and interpret, 

making it hard to understand how they arrived at a particular classification decision and how 

the algorithm can be adapted. In chapter 2, we present an easy-to-apply, user-friendly pipeline 

for constant model adaptation to a changing plankton community.   

Plankton Time Series 
 

With ongoing climate change, the scientific interest showed an increasing focus on how this 

climate variability affects marine ecosystems. Hereby, multi-year time series are of special 

interest as they provide useful insights into interactions between the climate and the reaction 

of the planktonic community (e.g. Mackas et al. 2012a) as their changes can be mainly 

attributed to environmental causes due to the lack of human harvesting. The response of 

plankton changes through time series can be a key tool for effective management measures 

(Giering et al. 2022). Thanks to long term time series, it has been possible to identify a series 
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of changes in the North Sea (for a review see Sguotti et al. 2022) or to assess the status of 

biodiversity in the North Atlantic (McQuatters-Gollop et al. 2022). However, the main limitations 

of those time series mentioned are consistency in sampling method, spatial and temporal 

coverage (Mackas et al. 2012, Giering et al. 2022, McQuatters-Gollop et al. 2022). While 

phytoplankton measures can be interfered from satellites on broad spatial scales, zooplankton 

spatial coverage is yet scarce and highly inconsistent (Giering et al. 2022). Although the CPR 

data formed a base for many publications related to long-term monitoring (e.g. Beaugrand 

2004, Leterme et al. 2005, Hinder et al. 2012, Bedford et al. 2020), the data derived, neglects 

taxa below 270 µm, is semi-quantitative and underestimates absolute numbers (Stevens et al. 

2006, Dippner & Krause 2013). If we want to fully understand the possible effects of climate 

change on the plankton community and establish mitigation measures for its negative impacts, 

comprehensive studies including the smaller size fractions of the zooplankton are required. 

This stresses the need for further long-term studies at higher spatial scales, using traditional 

and new techniques that provide thorough information at the basis of the food webs. One of 

the main providers of time series data on various plankton groups are fixed monitoring stations 

where plankton is frequently sampled throughout the year at a specific location (e.g. L4 in the 

English Channel, (Widdicombe et al. 2010) or Helgoland Roads, Boersma et al. 2015). These 

stations enable long-term monitoring on a high taxonomic resolution with a focus on seasonal 

patterns and species composition. However, the stationary character, mainly in coastal areas, 

makes it difficult to extrapolate their findings across larger areas or to compare with other 

regions. 

The North Sea: A case study 
 

Hydrography 
 

The North Sea (North Sea) is one of the most extensively studied but also exploited 

ecosystems in the world. Its location between Scandinavia, the European mainland and the 

British Isles makes it one of the most frequented shipping zones in the world. The North Sea 

covers 570,000 square km and is considered a shallow shelf ecosystem with a mean depth of 

roughly 100 m.  The hydrology of the North Sea is strongly affected by the warm North Atlantic 

current, which enter the North Sea through the English Channel in the south and between the 

Shetland Islands and Norway from the north (Fig. 1.8) (Ducrotoy et al. 2000). On the eastside 

of the North Sea, colder and less saline Baltic seawater enters through the Skagerak, creating 

a counterclockwise circulation in the basin. Besides the Baltic waters, large amounts of fresh 

water enter through the Rhine, Elbe, Thames and other rivers, creating a salinity gradient 

between 33 and 35 between the German Bight in the south and the northern British Isles, 

respectively. The North Sea is also subject to strong seasonal fluctuations in terms of 
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temperature varying from ca. 6° C in January to 18° C in August (Ducrotoy et al. 2000). One 

of the most prominent features of the North Sea is its tidal motion with tidal differences of 4-12 

m. The different physical conditions primarily define the different regions of the North Sea.  

 

Fig. 1.8 The North Sea, the boardering countries and its Circulation system with the inflow of cold and 
salty Atlantic water (light blue) into the deeper northern central basin of the North Sea and along the 
Norwegian Trench up to the Skagerrak. Less salty coastal waters (dark blue) circulate in an anti-
clockwise gyre in the southern North Sea basin (From OSPAR 2000). 

 

The plankton community of the North Sea 
 

The North Sea phytoplankton community is mainly composed of diatoms, dinoflagellates, and 

coccolithophores, which have distinct seasonal patterns (van Beusekom & Diel-Christiansen 

1993). Diatoms dominate during the spring bloom, while dinoflagellates and coccolithophores 

are more abundant during summer and autumn. The annual average phytoplankton biomass 

in the North Sea is about 200 mg/m², with higher concentrations in the eastern and southern 

regions (Capuzzo et al. 2018). The species are mainly cosmopolitan in terms of temperature 

and salinity tolerances. Earlier studies revealed a general increase of diatoms and a 

simultaneous decrease of dinoflagellates in the southern as well as the northern North Sea 

(Hinder et al. 2012b, Beaugrand et al. 2014).  
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The phytoplankton in the North Sea shows two distinct blooming events, a spring bloom in late 

spring, early summer and a less pronounced autumn bloom triggered by high nutrient 

availability and sufficient solar irradiance (Irigoien et al. 2005). Blooms can be so extensive 

that they can be seen from space. The composition of phytoplankton in the North Sea is highly 

variable, with different species dominating in different areas and at different times of the year 

(van Beusekom & Diel-Christiansen 1993). Large blooms that can have significant ecological 

and economic impacts, both positive and negative. For example, blooms can support higher 

trophic levels by initiating secondary production in spring for instance but can also lead to 

oxygen depletion and harmful algal blooms (HAB) (Pitcher & Jacinto 2019). For instance, 

Phaeocystis spp. blooms have been associated with the formation of foam on beaches along 

the southwestern North Sea and Wadden Sea coasts, and the mortality of shellfish has been 

attributed to these blooms (Karlson et al. 2021).  

Zooplankton in the North Sea are mainly composed of copepods, euphausiids, and 

appendicularians. The copepod CaIanus finmarchicus and some species of the Euphausiacea 

as well as Oikopleura sp. characterize the zooplankton stock of the northern North Sea. 

Likewise, Euphausiids and appendicularians are also more common in the north. In the south, 

calanoid copepods like Temora longicornis, Acartia spp. and the Pseudocalanus group were 

typical inhabitants. The cyclopoid copepod Oithona spp. is also an abundant inhabitant of the 

central and northern North Sea (Krause & Martens 1990, van Beusekom & Diel-Christiansen 

1993). The most common scyphozoans (jellyfish) of the North Sea are Aurelia aurita, 

Chrysaora hysoscella, and Cyanea capillata. Other species such as the Cyanea lamarckii and 

Pelagia noctiluca can also occur in the North Sea, but are less common. The A. aurita is the 

most widely distributed species and can be found throughout the North Sea, while C. 

hysoscella is more common in the southern and western parts of the North Sea. C. capillata is 

typically found in colder waters and is most common in the northern regions of the North Sea, 

but its distribution can also be influenced by currents and tides. The C. lamarckii and P. 

noctiluca are typically found in the southern and eastern parts of the North Sea, but their 

occurrence is generally more sporadic (Hay et al. 1990). However, due to the strong 

seasonality in the North Sea, the impact of the Atlantic inflow, and the relatively fast response 

of the zooplankton community to changes in hydrographic conditions and climate variability, 

their distribution and biomass patterns underlay strong inter-seasonal and inter-annual 

variability. 
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Atlantic Herring in the North Sea 
 

The Atlantic Herring (Clupea Harengus) is the key ecological and economical fish species in 

the North Sea. Although decades of heavy exploitation, it is the most abundant planktivorous 

fish species with a wide distribution range from 40° to 60° N (ICES 2006). The different 

populations in the North Sea are roughly separated by their spawning seasons and areas (Fig. 

1.9) in autumn (northern Brisith Isles, Orkney, Buchan, Banks) and winter (English Channel, 

Downs) (ICES 2018). Due to its economic importance, the herring stocks in the North Sea are 

one of the best studied and observed stocks worldwide. The larvae of the autumn and winter 

spawners are annually investigated via the International Herring Larvae Survey (IHLS) and the 

International Bottom Trawl Survey (IBTS) (ICES 2022). Thanks to the thorough observation of 

these stocks, severe fluctuations in herring recruitment could be observed (Fässler et al. 2011). 

Here mainly the autumn spawning stock is on a constant low since the early 2000s, whereas 

SSB is stable and fishing pressure is relatively low (Schmidt et al. 2009).  

 

 

Fig. 1.9 Spawning areas (left)  and times (right) of North Sea autumn spawning herring (Clupea 
harengus) between 1977 and 2006, as determined by the International Herring Larvae Survey. The 
spawning components include OS (Orkney/Shetland), BU (Buchan), BaN (Banks north), BaS (Banks 
south), and Do (Downs) (From Hufnagl et al. 2015). 
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During the respective spawning seasons, the herring gathers in shallow areas and spawn their 

sticky eggs over gravel beds. Due to the different spawning season, the newly hatched larvae 

experience completely different conditions (ICES 2006). While the spring spawned larvae 

hatch during the spring bloom and experience favorable condition for larval growth, the autumn 

and winter spawned larvae hatch into a period of low productivity. As soon as they have fully 

absorbed their yolk, the larvae need to find appropriate food in terms of size and energy. For 

many years, copepod nauplii were believed as the main energy source for these early life 

stages and the role of other, smaller planktonic prey was overseen. However, in the past 10 

years, the role of smaller prey such as PZP was revived (e.g. Bils et al. 2017). Although, 

copepod eggs, nauplii and calanoid copepods were found to be the main prey types for 

clupeids (Checkley 1982, Kiørboe et al. 1985, Peck et al. 2012 and references therein), other 

studies showed that the larval diet is composed with up to 70% of protozooplankton (De 

Figueiredo et al. 2005) and prey smaller than 50 µm (Denis et al. 2016, Bils et al. 2022). 

Knowledge on prey fields and prey preferences, especially with reference to the conditions that 

autumn and winter spawned larvae experience and the increased role of PZP during periods 

of low productivity is of major importance to understand recruitment and prey field dynamics.  

Individual Based modelling (IBM) suggested that the interplay of temperature along with 

varying abundances of prey may have a severe effect on overwintering survival of those early 

life stages (Peck & Hufnagl 2012, Hufnagl et al. 2015). These results highlight the need to 

thoroughly study the dynamics of the lower trophic levels during these periods of low 

productivity, especially in temperate ecosystems like the North Sea. Therefore, in this thesis 

we investigate the dynamics of the lower trophic levels during periods of low productivity in the 

temperate ecosystems of the North Sea in order to gain a better understanding of the 

ecological processes that underpin these systems and to provide insights into the mechanisms 

that govern the recruitment dynamics of herring. 

Objectives 
 

The main aim of this thesis is to provide a comprehensive analysis of plankton dynamics during 

the low-productive seasons in the North Sea, which is one of the most extensively studied 

ecosystems in the world. We aimed to achieve this by utilizing a combination of sampling 

methods and analytical approaches to describe the long-term variability and interactions 

between micro/mesozooplankton groups and environmental drivers during winter. 

Furthermore, we used the observed plankton biomasses to generate prey fields and test the 

starvation potential of Atlantic herring larvae in their spawning grounds.  

In Chapter 1, we provide essential information on the standing stock of PZP plankton, their 

spatial and temporal distribution and their environmental drivers during the low productivity 
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season in the North Sea. In Chapter 2, we implemented a pipeline for automatic classification 

of plankton images (dynamic optimization cycle, DOC), which is accessible by non-AI-experts 

and accelerates sample processing by reducing the time for manual validation. This classifier 

helped us to investigate the North Sea micro- and mesozooplankton community during autumn 

and wintertime between 2013 and 2019 (Chapter 3). Here we describe changes in plankton 

abundance, spatial distribution and size structure in Buchan/Banks and Downs, two of the main 

spawning grounds for Herring. We also identified environmental drivers applying a redundancy 

analysis that included the broad taxonomic and functional information obtained from FlowCAM 

and Zooscan, and examined environmental drivers using a size-spectra approach, focusing 

only on the size distribution. In Chapter 4, we used the size- and taxa-resolved zooplankton 

samples from the previous chapter to describe the available prey fields for early life stages of 

herring. We aimed to investigate the feeding conditions that young herring larvae experience 

in the spawning areas in the North Sea during the first month post-hatch and whether these 

conditions differ among autumn- and winter-spawning sites.  
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Abstract 

Microzooplankton are key players for trophic interactions and biogeochemical processes at the 

base of pelagic marine food webs. Taxonomic and ecological work on this group is extensive, 

but yet without many broad-scale studies. In this work, Protozooplankton, the rare yet important 

component of plankton communities in the size range <200 µm, was sampled during the 

annual North Sea International Bottom Trawl Survey (IBTS) in mid-winter (January-February). 

The study evaluated PZP abundance, biomass, community composition, and distribution 

between 2014 and 2021. The community composed of 22 subgroups of ciliates, 

dinoflagellates, and silicoflagellates. The most abundant were ciliates (others), dinoflagellates 

(others), and the dinoflagellate Heterocapsa spp. The PZP community mainly comprised of 

small taxa (mean size: 29 µm) with low biomass and abundance ranging from 50-15470 Ind L-

1 and 0.001-1.57 µg C L-1, respectively. Since 2014, a significant increase in PZP abundance 

was observed and a distinct spatial pattern with higher relative abundances of dinoflagellates 

and ciliates in the southern North Sea and the English Channel was found. Although nutrients 

appeared to affect certain taxa, a main environmental driver could not be detected. This study 

provides first insights on possible environmental drivers that affect PZP shifts in phenology and 

community composition; however, a longer time series and/or a higher taxonomic resolution is 

necessary to detect general trends, broadscale protzooplankton abundance and distribution in 

the North Sea and adds to our general understanding of microzooplankton dynamics during 

times of low productivity. 

Keywords: protists, microzooplankton, community composition, time series, nutrients, low 

productivity 
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Introduction 
 

The concept of the microbial loop (Azam et al. 1983) brought protozooplankton (PZP) to 

attention and changed the concept of a “classical” marine food chain towards a food web, with 

PZP as an essential component (Montagnes et al. 2010a). Although the importance of PZP in 

trophic dynamics of pelagic systems and their critical contribution to marine biogeochemical 

processes are known, they are overlooked in monitoring programs (Stern et al. 2015, Bils et 

al., 2019). The PZP community is generally sampled at specific stations and/or during specific 

seasons in temperate shelf seas (Levinsen & Nielsen 2002, Figueiredo et al. 2009, Atkinson 

et al. 2021) or in specific areas such as the Arctic (Levinsen et al. 2000, Monti-Birkenmeier et 

al. 2021). An exception to this is the plankton monitoring program in Chesapeake Bay 

conducted from 1985 to 1987 (Dolan & Wayne Coats 1990) or a the broad-scale study of the 

PZP community across the North Sea during winter in 2014 (Bils et al. 2019) . 

PZP can be classified as heterotrophic or mixotrophic and encompass many dinoflagellate and 

ciliate species. In most cases, they are grazers, able to consume more than twice as much 

biomass from primary production as mesozooplankton consumers (Buitenhuis et al. 2010, 

López-Abbate 2021). They also serve as prey items for copepods (Calbet & Saiz 2005) and 

higher trophic levels such as fish larvae (Montagnes et al. 2010b, Bils et al. 2022). The variety 

of feeding modes allows them to feed on prey from 1/10 of their size up to much bigger 

organisms (Jonsson 1986, Sherr & Sherr 1994) which allows them to consume bacteria and 

bacterivorous nanoflagellates, channeling the energy to higher trophic levels (Pomeroy 2001). 

However, the contribution of PZP to the microbial loop and the classical food web varies 

depending e.g. on oceanographic conditions and seasons. In oligotrophic systems, PZP serve 

as main mediators of energy from small cells to higher trophic levels (Fileman et al. 2011). In 

eutrophic systems, they replace phytoplankton when the conditions do not allow the 

development of larger cells during times of low productivity (Joint et al. 1986, Bils et al. 2019). 

PZP are sensitive to most climate-related factors, and their responses can induce cascading 

effects in marine food webs (Caron & Hutchins 2013a).  Although the thermal tolerance of 

protists is wide, even moderate temperature changes are known to cause direct effects on 

PZP community composition, abundances and feeding activities (Aberle et al. 2007, Caron & 

Hutchins 2013a). This might have important implications since previous studies showed that 

seasonality in phytoplankton growth is associated with shifts in PZP community composition, 

with temperature being identified as potential driver of grazing rates (Rose & Caron 2007, 

Lawrence & Menden-Deuer 2012). Higher temperatures are predicted to to directly affect 

heterotrophic processes (such as ingestion, growth rates (e.g., Regaudie-De-Gioux & Duarte 

2012). In general, warming is believed to strengthen top-down control of phytoplankton by PZP 
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(Rose & Caron 2007) as heterotrophic growth is more temperature-dependent than autotroph 

production (Aberle et al. 2012). Yet the relationship between temperature and PZP growth and 

survival is still unresolved (Anderson & Harvey 2019). 

Because of their short life cycle, higher metabolic activity and growth rates, PZP are considered 

to be excellent bioindicators of environmental changes, as they respond quickly to shifts in the 

aquatic environment (Montagnes et al. 2003, Menden-Deuer et al. 2005, Aberle et al. 2012). 

Monitoring changes in abundance of key organisms and assigning them to a specific driver 

can function as an early warning system for ecosystem changes, such as those caused by 

changes in thermal regimes or due to localized pressures (such as anthropogenic nutrient 

loading)(Bedford et al. 2020a). However, the insufficient number of long-term monitoring 

programs at a high spatiotemporal resolution paired with a lack of microzooplankton field data 

has further hampered the identification of climate and human-driven effects on PZP 

communities. Therefore, there is a lack of understanding of the relationship between these 

small-sized planktonic groups and environmental variables (Liu et al. 2021). Moreover, the 

small number of observational data sets hinders the validation of the role of PZP in ecosystem 

functioning (e.g. ERSEM; Butenschön et al. 2016) or biogeochemical models (e.g. DGOM; Le 

Quéré et al. 2005).  

The North Sea is arguably one of the most studied shelf seas around the world. The plankton 

community of this ecosystem has been well-monitored, either in coastal areas through a variety 

of single station-based surveys such as Helgoland Roads (Wiltshire & Manly 2004), Plymouth 

L4 (Harris 2010) or Stonehaven (Bresnan et al. 2015) or with the Continous Plankton recorder 

(CPR) program (O’Brien et al. 2013), that monitors surface waters of the entire North Sea. The 

fixed coastal stations provide high temporal frequency data with high taxonomic resolution, but 

have shorter spatial and time-spans than for instance the CPR survey (Bedford et al. 2020b). 

At Helgoland Roads, for instance, although plankton data has been collected over the past 60 

years (e.g. Franke et al. 2004), there are only a few periods where PZP was routinely analysed 

e.g. 2007-2009 (Löder et al. 2011)   and 2010-2012 (Yang et al. 2014). Indeed, this is not a 

North Sea problem alone. Globally, PZP remains understudied and they are rarely monitor by 

routine oceanographic observations. In addition, the few studies monitoring PZP are usually 

done during spring and summer months but data during winter, when the importance of the 

microbial loop and subsequently PZP is elevated, are scarce (Bils et al. 2019).  

The North Seas abiotic conditions (i.e. solar radiation, temperature, and storminess) can vary 

significantly by season, which yields distinct seasonal peaks in primary production, nutrient 

availability, and water mass stratification and mixing (e.g. Quante & Colijin 2016). Even though 

some recent studies offer opposing results (e.g. during polar night; Berge et al. 2015), the 

winter season in the northern hemisphere was broadly regarded as a period of minimal activity 
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and is just recently gaining more attention. Despite being a very well-studied ecosystem, 

knowledge on North Sea dynamics during winter is surprisingly limited. However, this 

knowledge is essential to grasp the recruitment dynamics of seasonally spawning fish like 

European herring (Clupea harengus) and European plaice (Pleuronectes platessa). Previous 

studies implicated PZP as a dietary source for larval fish (e.g. Illing et al. 2015, Bils et al. 2022). 

The microbial loop, transferring energy from phytoplankton to larger zooplankton via smaller 

picoplankton and nanoplankton, is particularly influential during times of low productivity. The 

conditions during winter favor pico- and nanoplankton and shifts the energy transfer to PZP, 

which affects energy transfer efficiency and ocean productivity (Fileman et al. 2011). In 

nutrient-rich temperate waters, larger diatoms usually dominate in spring, but during winter the 

microbial loop and with that the role of PZP can be enhanced (Fileman et al. 2011). As a 

consequence, copepods e.g. of the genus Calanus, have been found to switch their dietary 

choices when phytoplankton availability is low, opting for alternative prey sources like ciliates 

(Nejstgaard et al. 1997, Mayor et al. 2006) and heterotrophic protists (Levinsen & Nielsen 

2002, Campbell et al. 2009). In situations where the ratio of microzooplankton to phytoplankton 

is in favour of the former, copepods in general demonstrate a greater preference for 

microzooplankton as a food source (Campbell et al., 2009). 

As a unique attempt, Bils et al. (2019) implemented PZP sampling on the ICES-coordinated 

winter IBTS Q1 survey (International Bottom Trawl Survey, Quarter 1, ICES 2022) and 

presented the first broad-scale PZP study in mid-winter across the North Sea in 2014. Here, a 

homogenous community across the North Sea with the dominance of small sized taxa (<40 

µm) was found with a generally low total biomass compared to other seasons. The lack of 

significant spatial patterns in PZP was assumed to be related to the unusual low temperature 

conditions during this specific year. It was stressed that a higher spatiotemporal sampling 

resolutions is needed to verify their results for the North Sea and to exclude limitations such 

as sampling within a patch. The study by Bils et al. (2019) offers an important contribution to 

the understanding of planktonic communities in the North Sea by providing an overview over 

the PZP community dynamics during winter. Although the results of the study were just a 

snapshot; they provide valuable insights into the complexity of this region. Furthermore, the 

authors’ recognition of the need for additional sampling to understand the full range of 

planktonic biomass in the North Sea is a significant step forward in this field of research. 

Here we present a follow-up study of PZP sampled during the IBTS Q1 to consolidate the 

knowledge on the PZP community composition and distribution during the winter season in the 

North Sea. We monitored the broad-scale distribution of PZP community composition and size-

structure over seven consecutive years (2014-2021, with the data from Bils et al., 2019 
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included) thus aiming to link PZP community patterns with key abiotic variables such as 

temperature, salinity and nutrients.  

Materials & Methods 
 

Study Area 

The North Sea is a large, semi-enclosed marginal sea with an area of 750 000 km2 and a mean 

depth of 100 m. In the northern area, it is connected to the Atlantic Ocean, with a constant 

inflow of Atlantic waters into the North Sea, but it also receives low-salinity water from the 

Baltic in the East as well as from large rivers in the southern area. Warmer waters from the 

Atlantic enter the North Sea through the English Channel in the South, causing temperature 

amplitudes of approx. 8°C in the south versus about 2°C in the North (Becker & Pauly 1996). 

Salinity patterns in the North Sea display variation, from 35 in the open north North Sea and 

about 30 in the Wadden Sea due to river runoffs (Ducrotoy et al. 2000). These hydrographic 

patterns in combination with the topography of the North Sea produces a main cyclonic 

(anticlockwise) circulation current (Ducrotoy et al. 2000).  
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Figure 1.  Protozooplankton sampling stations in the North Sea during the International Bottom Trawl 
Survey Q1 from 2014-2021. The ICES areas are depicted by the background color and the stations are 
colour-coded according to the IBTS leading country (FRA=France, GER=Germany, NLD=The 
Netherlands, NOR=Norway). 

 

Sample collection and processing 

PZP water samples were annually collected during the International Bottom-Trawl Quarter 1 

Survey (IBTS Q1) between January and February from 2014 to 2021. This survey is 

coordinated by the International Council for the Exploration of the Sea (ICES). For this work, 

samples were were collected in collaboration with institutes in the Netherlands, Norway, 

Germany, and France (Table 1, Fig. 1). Stations were selected along the north-south and east-

west transects, pre-defined by Bils et al. (2019) (Fig. 1). On average, 25 to 40 stations were 

analyzed every year (Fig. S1) leading to a total of 267 stations analyzed (Table 1).  

Sample collection and processing followed the methods in Bils et al. (2019). Water samples 

were collected at 10 m depth using a Niskin bottle attached to a CTD rosette. This depth was 

chosen to allow sampling in photic surface zone, even under rough sea conditions. Samples 

were immediately transferred to brown, 500 - mL glass bottles with acidified Lugol’s iodine 
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solution (2% final concentration). They were stored cool, in darkness and analyzed within 12 

months after collection.  

Table 1. Summary of the number of protozooplankton samples collected in the North Sea during the 
International Bottom Trawl Survey Q1 per country and year. See Table S1 for a detailed list of the survey 
periods per country and year 

  Samples (no. per year) 

Country 

Sampling period 

(min. start – max. 

end) 

2014 2015 2016 2017 2018 2019 2020 2021 

France 11.1. – 13.2. 9 15 1 9 7 1 7 - 

Germany 12.1. – 20.02. 14 12 14 24 16 6 10 13 

Netherlands 21.01. – 08.02. 8 - - 6 8 8 8 - 

Norway 13.01. – 02.03. 8 7 11 3 12 12 8 8 

Total 11.1. – 02.03. 39 34 26 42 43 27 33 21 

 

Once in the laboratory, seawater samples were settled for 24- 48 h (HELCOM, 2014) in 20-

100 mL sedimentation chambers (HydroBios), depending on the density of the sample, 

following the method proposed by Utermöhl (1958) and then counted using an inverted 

microscope (Leica DMI 3000, 200x). At stations with very low densities (total counts <100 

organisms), to ensure accuracy and representative numbers of the community, the samples 

were concentrated before repeated counting via inverse filtration through a 5-µm mesh. To 

avoid any potential loss of organisms during the concentration process, the filtrate was 

periodically checked, but no loss was observed. Subsequently, all PZP organisms from each 

plate were counted, to avoid over-representation of less abundant groups. PZP organisms 

were classified into the two broad groups ciliates, dinoflagellates, and silicoflagellates. Note 

that due to the time and labor-intensive analysis of the water samples and the frequent change 

of analysts, silicoflagellates were only counted from 2018. For most years (2017-2021), 

organisms were identified to the lowest taxonomic level possible, following a combination of 

references and identification keys (Larink & Westheide 2006, Kraberg et al. 2010). The 

organisms were then pictured (Leica MC170HD). The size was measured using image 

analysis (Image J. 1.53e, Wayne Rasband, USA). Small organisms such as Heterocapsa spp. 

were counted but not photographed as they are uniform in size. Note that the following 

calculations were only applied on the years from 2017 onwards as previous years were based 

on mean size measures from literature (2014) or had no precise size measures (2015-2016).  

Based on the size measures for the samples from 2017 onwards, biovolume (µm³) was 

calculated using the formula for rotational ellipsoids provided by Olenina et al. (2006). Carbon 
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content (µg C L-1) was calculated based on the carbon to volume relationship (C:Vol) for 

protists given by Mender-Deuer and Lessard (2000) (Table S1). Note that the size measures 

were not corrected for shrinkage as fixation effects have been found highly variable among 

different organism phylogenetic group, physiology or growth stage (JEROME et al. 1993, 

Wiackowski et al. 1994, Menden-Deuer et al. 2001).   

Environmental data 

To describe the habitat surface conditions during winter (i.e. January and February) we used 

a set of hydrographical and nutrient variables, i.e., temperature (TEMP), salinity (SAL), 

ammonium (NH4), nitrate (NO3), silicate (SI4), total nitrogen (TN) and total phosphorus (TP). 

The data was retrieved from the ICES Data Portal (https://data.ices.dk/view-map) and, in the 

case of temperature and salinity, complemented with CTD measurements taken at the IBTS 

Q1 survey. For each sampling, we calculated mean values over the depth range of 0-10m. To 

match the environmental conditions with the PZP sampling locations, we applied for each year 

and variable an inverse distance weighted interpolation (Shepard 1968) 

Statistical analysis 

Temporal and spatial trends of main groups (univariate analysis) 

To identify short-term trends in the total counts and the main groups ciliates and dinoflagellates 

between 2014 and 2021 as well as sillicoflagellates between 2018 and 2021, we used 

generalized least squares (GLS), robust regression technique used to offset the effects of 

pseudo-replication or when the variances within groups are subject to variability (Pinheiro & 

Bates 2006). In addition, and even more important in this case, GLS is also able to estimate 

relationships between response and explanatory variables in the case of unbalanced sample 

numbers (see Table 1).  

Specifically, we modelled the transformed abundances as a linear function of year while 

allowing variances to differ between the years or ICES areas. 

ysay= α+β*year+εsay, with εsay ~ N(0, σz
2)             (1) 

where ysay is the 4th-root transformed total or group abundance at sampling s, in ICES area a 

and year y. ε represents a random noise term assumed to be normally distributed with zero 

mean and a finite variance that is allowed to differ between areas a or years (indicated by the 

index z). The 4th-root transformation was applied to reduce the weighting of abundant data 

(Field et al. 1982) and intrinsic mean-variance relationships. 

For each total and group-specific trend analysis we compared three models, one model 

including one variance term and one model including area or year-specific variance terms. As 

https://data.ices.dk/view-map
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model selection criterion we used the Akaike’s Information Criterion (AIC) (MTW et al. 1998). 

The underlying statistical assumptions were verified through residual diagnostics of the optimal 

model.  

Broad-scale spatial patterns were analyzed for each group individually using linear mixed 

effect (LME) models (Pinheiro & Bates 2006), in which the ICES areas were included as a 

fixed effect and year as a random effect, 

ysay = µ + aa + βy + εsay, εsay ~ N(0, σ2)   (2) 

where ysay is the 4th-root transformed total or group abundance at sampling s, in ICES area a 

and year y. µ represents the overall abundance mean, aa  the effect of the ath area, βy a random 

variable with a mean of zero and a variance of σβ
2, measuring the variance in mean values of 

the response variable across all the years included. ε represents a random variable assumed 

to be normally distributed with zero mean and finite variance. 

To check for difference within the larger ICES areas, we applied the same modelling approach 

but divided IVa and IVb further into east and west. Again, underlying statistical assumptions 

were verified through residual diagnostics of the optimal model. 

Compositional changes in space and time (multivariate analysis) 

To investigate broad-scale spatio-termporal patterns in the community structure, we used 

distance-based permutational multivariate analysis of variance (PERMANOVA) (Anderson 

2005) based on Bray–Curtis dissimilarities of the tranformed abundances. The PERMANOVA 

model had two main terms, i.e. ICES area as fixed factor and year as random factor. Interaction 

terms between these factors were also tested. 

Significant terms were then investigated using a posteriori pair-wise comparisons with the 

PERMANOVA t statistic and 1000 permutations. Based on these results, a similarity 

percentages (SIMPER; CLARKE 1993) analysis was applied on those pairs of ICES areas 

and/or years showing significant differences . The SIMPER procedure assessed the average 

percent contribution of PZP subgroups to the dissimilarity between ICES areas and/or years. 

This allows identifying the PZP subgroups that are likely to be the major contributors to any 

difference between pairs detected by the pairwise PERMANOVA. The subgroups with a 

consistent high impact on the dissimilarity between ICES areas or years serve as effective 

discriminatory subgroups (Clarke & Warwick 2001).  

PZP and the environmental drivers 

To identify ICES areas that share similar patterns of variability related to the similarity of 

environmental conditions, a hierarchical agglomerative cluster analysis (HCA) was applied. 
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The HCA with average linkage creates clusters and identifies areas and years with common 

environmental characteristics. To measure the distance between each pair of groups, the 

Euclidean distance was employed and displayed on a dendrogram (Krebs 1989). Differences 

in environmental conditions between areas and years were further visualized using non-metric 

multidimensional scaling (NMDS) on the basis of the Euclidean distances. In addition, 

correlation analysis was used to explore linkages between the total and group-specific PZP 

counts with the environmental variables (Murdoch & Chow 1996). 

All analyses and graphical representations were performed using the R software (R Core 

Team, 2022). The GLS and LME analysis was performed using ‘nmle’ package (Pinheiro et al. 

2017), the inverse weighted interpolation with the ‘gstat’ package (Pebesma 2004) and all 

multivariate analyses using the ‘vegan’ package (Oksanen et al. 2007).  

Results 
 

General composition, abundance and biomass of the PZP 

We grouped the PZP community in three main groups, ciliates, dinoflagellates and 

silicoflagellates (from 2018). Within these three main groups, we identified 12 subgroups, of 

which three belonged to ciliates, eight to dinoflagellates and a single group as silicoflagelates. 

Overall, the total PZP community abundance measured across 267 stations ranged from 50 

to 15470 Ind L-1 with ciliates accounting for 35%, dinoflagellates for 64% and silicoflagellates 

for <2% of the total relative abundance across the analyzed time span (see Fig.2). 

Overall, we found that small-sized organisms (<29±16 µm) dominated the community with only 

few subgroups >50 µm (e.g. Tintinnida spp., Tripos spp.) (Table 2). Ciliates other than 

Mesodinium spp. and Tintinnida (also called ‘Ciliates (others)’ hereafter) as well as 

dinoflagellates other than the subgroups listed in Table 1 (also termed ‘Dinoflagellates (others)’ 

hereafter) were present in all stations, with peak abundances of 4290 and 4500 Ind L-1, 

respectively, and average contributions to the total abundances at around 30% (Table 2). 

Heterocapsa spp. represented another dominant group contributing on average 23% to the 

mean total abundances and appearing in 95% of the stations with maximum abundances up 

to 13,330 Ind L-1 (Table 2).  

In terms of biomass, the communities were generally dominated by Ciliates (others), 

Dinoflagellates (others) and Tripos spp., representing altogether an average of 55% to the 

mean total biomass. The average biomass of dinoflagellates was similar to that of ciliates (150 

vs. 130 ng C L-1, respectively) while sillicoflagellates biomass was low (7.89 ng C L-1) (Table 

2). Due to the lack of significant spatio-temporal trends in biomass (except for silicoflagellates), 

this study focus on PZP abundance where significant patterns were observed. 
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Modelling the biomass showed no significant spatial and/or temporal trend for the PZP 

community, dinoflagellates and ciliates but silicoflagellates. Due to the lack of significant 

spatio-temporal trends in biomass (except for silicoflagellates), this study focus on PZP 

abundance where significant patterns were observed. 

 

Table 2. Overview of the mean length (µm), standard deviation (sd), abundance (Ab, ind L-1) and 
biomass (BM, ng C L-1) of the North Sea winter PZP community, the main groups (groups) and 
subgroups (subgroups) for the available time span (years, * 2014-2021 ; ** 2014, 2017-2021 ; *** 2017 
- 2021;**** 2018-2021 ). Minimum (min), maximum (max) and mean abundance and biomass estimates 
are reported.   

 

 

Temporal and spatial trends of PZP subgroups 

Using the GLS modelling approach, we found a slight but significant increase in 4th root-

transformed abundances of ciliates (slope = 0.15, p = <0.001) and dinoflagellate (slope = 0.12, 

p = <0.001) over the analyzed time span (Fig. S2A-C). Silicoflagellate abundances (2018-

2021) showed in contrast a more steep increase in these last years (slope = 0.72, p = <0.001) 

(Fig. S2D).  

The final LME models applied to test for differences between ICES areas included all year as 

a random effect and did not differentiate between eastern and western subareas within area 

Time Time

Mean Sd MinAb MaxAb MeanAb MinBM MaxBM MeanBM

PZP 28.95 16.6 * 50.00 15470.00 1591.42 *** 1.29 1578.24 339.00

Groups

Ciliates 27.9 19.4 * 6.00 4500.00 551.17 *** 0.81 450.79 131.41

Dinoflagellates 29.9 14.4 * 30.00 14370.00 1018.88 *** 1.38 1399.36 150.64

Silicoflagellates 24.6 4.5 **** 2.00 230.00 21.37 **** 0.71 35.86 7.89

Subgroups

Ciliates

Ciliate spp. 26.2 12.8 ** 6.00 4290.00 540.14 *** 0.81 375.20 98.85

Mesodinium spp. 17.6 3.6 ** 4.00 590.00 42.10 *** 0.24 17.25 1.62

Tintinnina spp. 88.2 51.4 ** 2.00 450.00 28.36 *** 1.42 256.39 18.77

Dinoflagellates

Tripos spp. 68.2 15.3 **  2.00  1140.00 19.32  ***  0.49 1209.77   33.48

Dinoflagellate spp. 24.13 8.1 ** 14.00 2900.00 491.29 *** 1.38 329.46 50.31

Gyrodinium spp. 48.0 17.8 ** 3.33 850.00 46.55 *** 0.37 86.06 2.7

Heterocapsa spp. 15.3 2.5 ** 5.00 13330.00 503.07 *** 0.37 137.51 17.18

Katodinium spp. 28.7 6.8 ** 2.00 110.00 8.03 *** 0.31 16.11 0.89

Prorocentrum spp. 49.1 4.9 ** 5.00 130.00 5.98 *** 2.22 68.75 2.19

Protoperidinium spp. 31.1 15.0 ** 2.00 310.00 44.75 *** 0.97 238.08 23.75

Torodinium spp. 32.7 9.1 ** 2.00 1020.00 99.01 *** 0.96 125.31 15.43

Silicoflagellates

Dictyochaceae spp. 24.6 4.5 **** 2.00 230.00 29.26 **** 0.71 35.86 3.57

* 2014-2021 ; ** 2014, 2017-2021 ; *** 2017-2021;  ****2018-2021

Biomass [ng C L-1]Abundance [ N L-1]Length [µm]
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IVa and IVb. The model results show a clear latitudinal gradient in Ciliate abundances with 

highest predicted abundances in the English Channel (VIId) (Fig. 3B). In contrast, abundances 

of Dinoflagellates and the general PZP community are highest in the central areas, i.e. IVb and 

particularly the southern Bight (IVc) (Fig. 3A/C), while Silicoflagellates are mainly present in 

the northern area IVc (>30 Ind L-1) (Fig. 3D). Due to the dinoflagellate dominance in the 

community, they reflect the general PZP patterns (Fig. 3 A and C). Despite the significance of 

these spatial trends, please note their minor contribution to the overall variability as indicated 

by the marginal R2 of 5 -15%. However, when including year as random factor, the model was 

able to explain over 60% of the variance (conditional R2 of 52 -63%) suggesting stronger 

temporal than spatial dynamics.  

 

Figure 3. Predicted mean abundance (Ind L-1) per North Sea ICES area for each of the broad PZP 

groups: (A) the whole PZP community, (B) ciliates, (C) dinoflagellates, and (D) silicoflagellates. Note 
that the scale differs between groups in order to maintain visual differences. 

 

Compositional changes in space and time 

PZP community structure showed substantial variation between ICES areas and years as 

indicated by the PERMANOVA (p = <0.001). The pairwise comparison showed that there are 

significant differences in taxon-specific abundances between IVa and all other ICES areas as 

well as between VIIa and both, IVb and IVc, verifying the north-south gradient and indicating a 
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significant shift in abundance in IVa. A SIMPER analysis revealed that the ICES areas differ 

by 37 to 41% among each other with seven taxa being mainly responsible for the dissimilarities 

(Table 3). Overall Heterocapsa spp. was the taxa contributing most to the dissimilarities 

between areas (prop. contrib >15%) (Table 3) with high abundances in the central North Sea 

(IVb and IVc) with a decrease towards the South (VIId) and North (IVa) (Fig. 4). Torodinium 

spp. contributed second most to dissimilarities between areas (>10%) with highest 

abundances also in IVa. Gyrondinium spp., Protoperidinium spp., Mesodinium spp. and 

Ciliates (others) were the other taxa responsible for the spatial difference contributing approx. 

10% to the general dissimilarity per area (Table 2). 
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Table 3: Results of the SIMPER analysis (based on transformed abundance data) to identify taxa 
contributing most to dissimilarities among ICES areas (cumulative limit of 60%).  The average 
abundance of area A (ava) and area B (avb), the difference in abundance between areas (diff), and the 
proportional overall contribution to the dissimilarity (prop.contrib) is shown. 

pairs  subgroups  av. diss ava avb diff 

prop. 

contrib 

IVb_IVa 37.9%         

  Heterocapsa  spp. 2.98 2.81 0.17 0.16 

  Torodinium  spp. 2.13 1.71 0.43 0.11 

  Gyrodinium  spp. 1.88 1.50 0.38 0.10 

  Protoperidinium  spp. 1.68 1.53 0.14 0.09 

  Mesodinium  spp. 1.28 0.89 0.38 0.09 

  Ciliates (others) 4.52 4.16 0.36 0.08 

IVc_IVa 40.6%         

  Heterocapsa  spp. 2.60 2.81 -0.21 0.16 

  Torodinium  spp. 2.09 1.71 0.39 0.12 

  Protoperidinium  spp. 1.60 1.53 0.07 0.10 

  Ciliates (others) 4.47 4.16 0.32 0.09 

  Gyrodinium  spp. 1.52 1.50 0.01 0.09 

  Tintinnida    1.37 0.81 0.56 0.08 

VIId_IVa 38.7%         

  Heterocapsa  spp. 2.43 2.81 -0.37 0.15 

  Torodinium  spp. 2.07 1.71 0.36 0.11 

  Protoperidinium  spp. 1.84 1.53 0.31 0.09 

  Ciliates (others) 4.62 4.16 0.47 0.09 

  Gyrodinium  spp. 1.09 1.50 -0.41 0.09 

  Mesodinium  spp. 1.14 0.89 0.25 0.09 

VIId_IVb 38.0%         

  Heterocapsa  spp. 2.43 2.98 -0.55 0.16 

  Torodinium  spp. 2.07 2.13 -0.07 0.11 

  Gyrodinium  spp. 1.09 1.88 -0.79 0.10 

  Protoperidinium  spp. 1.84 1.68 0.17 0.09 

  Mesodinium  spp. 1.14 1.28 -0.14 0.09 

  Tintinnida    1.27 1.30 -0.03 0.09 
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Figure 4.  Relative contribution of the different North Sea PZP taxa in this study to the overall abundance 
per ICES area in %. Subgroups belonging to the ciliates main group are depicted in blue and framed 
with the dashed line, dinoflagellates are depicted in rainbow colors and silicoflagellates are grey. Note 
that subgroups <2% contribution are excluded for better representation. 

 

Potential effects of environmental conditions 

The cluster analysis of the environmental variables revealed a distinct separation into three 

clusters with one cluster presenting completely area VIId in all years (Fig. S2A). The second 

cluster represents the greater North Sea areas (IVa, IVb, IVc) in 2020 as well as IVa in 2018 

and 2019 linked to a high nutrient regime (i.e. NO3, Si4, NH4, and TP) (Fig. S2B). The third 

cluster comprises of the greater North Sea areas in the earlier years sharing similar 

characteristics in terms of salinity (SAL), temperature (TEMP), oxygen (DOXY), phosphorus 

(PH4) and total nitrogen (TN) (Fig. S2B). 

The results of the Pearson correlation analysis showed that the environmental variables had 

weak effects on the total PZP community (r=<±0.3) (Fig. 6A). Among the main groups, only 

nutrients (here NH4, NO3, SI4 and tp) showed a moderate positive (r=0.6) effect on 
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silicoflagellates (Fig. 6B). On subgroup level, again nutrients (NH4, NO3, SI4 and tp) showed 

a moderate (r=>0.4) to strong positive correlation (r=>0.6) to some subgroups such as 

Heterocapsa spp., (NH4, r= >0.5) or Dictyocha spp.  spp. (tp, r=>0.6) (Fig. 6C).  The results of 

the Pearson correlation analysis showed that the environmental variables had weak effects on 

the total PZP community (r=<±0.3) (Fig. 6A). Among the main groups, only nutrients (here 

NH4, NO3, SI4 and tp) showed a moderate positive (r=0.6) effect on silicoflagellates (Fig. 6B). 

On subgroup level, again nutrients (NH4, NO3, SI4 and tp) showed a moderate (r=>0.4) to 

strong positive correlation (r=>0.6) to some subgroups such as Heterocapsa spp., (NH4, r= 

>0.5) or Dictyocha spp.  spp. (tp, r=>0.6) (Fig. 6C).   

 

 

 

 

 Figure 5: Visualization of correlation matrix of the environmental variables temperature (TEMP), salinity 
(SAL), oxygen (DOXY) and nutrients (NH4 – Ammonia, NO3 – Nitrogen, SI4 – Silicates, TN – total 
Nitrogen, TP – total Phosphorus) related to the abundance of the total PZP (A) the groups (B) and the 
subgroups (C). The color intensity indicates positive (blue) correlation, negative correlation is shown in 
red and the numbers show effect strength. 
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Discussion 
 

Studies of the plankton dynamics and community patterns during periods of low productivity in 

temperate marine ecosystems, such as late autumn and winter, are still scarce. Especially in 

terms of the small size fractions such as PZP which gain particular importance as energy 

mediators during these seasons (Calbet & Saiz 2005). In general, data with high 

spatiotemporal resolution of these groups is still limited although there is a great need to 

explore PZP dynamics, especially during times of low productivity of PZP, mesozooplankton 

and higher trophic levels (Bils et al. 2019). We found an overall homogenous PZP community 

in the North Sea, with an overall increase in abundance since 2014 and a distinct spatial north-

south gradient. However, no direct environmental driver responsible for this gradient was 

identified.  

General composition, abundance and biomass of the PZP 

In the present study, the PZP community was composed of small organisms (on average 28.95 

µm) with low abundances (average 1591 Ind L-1) and biomass (339 ng C L-1). These findings 

are consistent with the studies from autumn or winter in the North Sea (Löder et al. 2012, Bils 

et al. 2019) or in the Arctic (Levinsen & Nielsen 2002, Monti-Birkenmeier et al. 2021). In this 

study, the community in terms of abundances was dominated by dinoflagellates. Previous 

studies reported conflicting results, while some studies identify dinoflagellates as the primary 

group; others suggest ciliates (Burkill et al. 1993, Montagnes et al. 2010, Fileman et al. 2011), 

which makes it difficult to establish a correlation between a particular season and the increased 

presence of either group. It is likely that the contribution of ciliates and dinoflagellates varies 

depending on specific local conditions and processes (Bils et al. 2019). Across the different 

areas of the North Sea, the here reported results confirmed that the PZP community is 

homogenously composed as reported by Bils et al. (2019). The results of the SIMPER analysis 

confirm these findings as differences in abundance of the main subgroups are contributing 

most to the dissimilarity between areas and not presence/absence of taxa. The only exception 

in this study are Silicoflagellates, being almost completely absent in southern areas. However, 

this group was not analyzed in previous studies but is generally linked to colder or temperate 

waters with peak appearance in late winter in the North Sea (Kraberg et al. 2010). Furthermore, 

the results show that across the study area, none of the ICES areas is dominated by certain 

taxa. There are variations in relative abundance between the main groups. However, these 

may be related to local effects as we found taxa-specific correlations, e.g. with nutrients, yet 

not strong enough to cause a dominance. In general, the community composition and size 

structure showed the typical characteristics of temperate regions during times of low 

productivity (Levinsen & Nielsen 2002, Löder et al. 2011).  
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Spatio-temporal trends of PZP abundance and composition 

The observed increase in total abundance over the analyzed time span across all three main 

groups in the North Sea, is in line with previous reports, especially on dinoflagellates, which 

reflect the general PZP pattern reported in this study (e.g. Widdicombe et al. 2010, Beaugrand 

et al. 2014, Nohe et al. 2020). Leterme et al. (2005) observed a similar pattern in the Northeast 

Atlantic region, including the North Sea, with an increase in dinoflagellates during the same 

period. However, these long-term trends are widely based on continuous plankton recorder 

(CPR) data which doesn’t sample the entire PZP size spectrum (incl. smaller planktonic size 

fractions <270 µm) and generally underestimates absolute abundances (John et al. 2001). The 

dataset used in this study differs from CPR datasets and more suited for PZP analyses due to 

appropriate sampling, preservation and counting procedures (Gifford & Caron 2000). More 

recently, Hernández-Fariñas et al. (2014) showed, that dinoflagellate abundance increased 

along the North Sea coast of France during the period 1992-2012. In this study, evidence for 

community shifts related to climate-driven changes in the coastal environment were provided. 

The discrepancies observed could be due to differences in sampling technique, as well as local 

characteristics, related to bathymetry, hydrography, anthropogenic activities, and effects of 

river run-offs and inflow from the Atlantic Ocean (Nohe et al. 2020). These contrasting findings 

highlight the need for a long-term PZP time series with a consistent sampling technique, to 

determine trends and to differentiate between environmental and local impacts to gain a better 

knowledge on the temporal trends of the PZP community.   

The PZP community showed a distinct north-south gradient with low abundances in the north 

and high abundances in the southern Bight and the English Channel, verifying the pattern 

found in 2014 by Bils et al. (2019). Likewise, Widdicombe et al. (2010) reported an increasing 

trend in dinoflagellate abundance in the English Channel. In our study, Heterocapsa spp. was 

mainly responsible for differences between the northern and southern areas. We assume that 

the main Heterocapsa species found is Heterocapsa cf. rotundata as identified by Bils et al. 

(2019). Heterocapsa cf. rotundata is an ubiquitous species known to dominated ecosystems 

during wet and cold winters in other temperate seas such as Chesapeak Bay (Millette et al. 

2015) or the Baltic Sea (Jaschinski et al. 2015). Note that the abundance of H. cf. rotundata 

increased since 2014 reported by Bils et al. (2019), however, this species was found to form 

winter blooms when the conditions are in favor (Millette et al. 2017). Moreover, H. cf. rotundata 

was found to increase its bacterial ingestion rate during times of low irradiation and thus, out-

compete other taxa under low light conditions (Millette et al. 2015). Torodinium spp. was 

another species that was mainly responsible for the difference between the ICES areas, being 

most abundant in the central and southern North Sea, which was already the case in 2014 
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(Bils et al. 2019). However, over the analyzed time span, higher Torodinium spp. abundances 

in area VIIId were also responsible for the dissimilarity to northern stations.  

Within the transition areas to the Atlantic, slight changes in community composition, such as 

the increase of abundance of Dictyocha spp. (IVa) or Mesodinium spp. (VIId) may indicate a 

gradual shift. These findings may indicate what has been hypothesized in previous studies, 

that water masses are more influential on ciliates for instance than biogeographic distribution 

patterns (Stoecker et al. 1994). In this regard, Yang et al. (2020) showed that the planktonic 

ciliate community structure, including the species number, abundance, biomass and diversity 

may be an ideal indicator of water masses without finding an unambiguous relation to 

environmental parameters itself.  

Environmental drivers  

PZP was found to be sensitive to most climate-related factors (Caron & Hutchins 2013b) and  

to shifts in the aquatic environment (Montagnes et al. 2003, Menden-Deuer et al. 2005, Aberle 

et al. 2012). Despite these previous findings, no distinct correlation between the environment 

and the PZP community in the North Sea was found. These results are in agreement with the 

weak effects detected by Bils et al. (2019) in 2014. In general, the environmental conditions in 

the North Sea are relatively stable over the analyzed time span, with distinct characteristics of 

the different ICES areas, as shown by the cluster analysis. In general, previous studies showed 

that heterotrophic dinoflagellates and ciliates may rather be affected by their prey and or 

predation by e.g. copepods than environmental drivers such as temperature (Riisgaard 2014). 

For the entire community, the spatial distribution patterns presented in this study may be more 

influenced by other local or physical factors. For instance, previous studies on ciliates assumed 

that spatial distribution patterns are more influenced by physical factors, such as freshwater 

intrusion and water currents, due to the comparatively limited motility of ciliates (Reid & Stewart 

1989). Hinder et al. (2012) found that long-term changes of tintinnids in the UK shelf seas are 

mainly impacted by localized factors, which, however, could be partly attributed to larger 

climate patterns.  

Conclusion 

The analysis of this novel PZP dataset across several years allowed the identification of a 

specific spatial trends among a homogenous community across the North Sea. While the 

spatio-temporal analysis of the PZP revealed distinct patterning in the greater North Sea 

region, the correlation analysis of the subgroups in relation to the environmental variables and 

nutrients was less conclusive.  In general, responses of PZP to the environment are induced 

by a complex interplay between local environmental conditions, global climatic phenomena, 

but also interspecific interactions (Caron & Hutchins 2013b). However, studying PZP means 
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also being faced with the fact that the oceanic environment is a highly dynamic environment 

with constant changes of the physical and chemical characteristics on both, small and large 

scales. The probability of working with the same PZP population is almost impossible due to 

currents and advections in combination with a rapid changing nutrient regime. The 

predominant PZP observations at fixed monitoring stations (e.g. L4 in the North Sea) allow a 

good overview of a sequence of community changes over different seasons but are hard to 

extrapolate over larger spatiotemporal scales. On the other hand, when analyzing broad scale 

data, it is difficult to archive a likewise high resolution. Therefore, broader groups are analyzed 

which makes it more difficult to detect patterns of change. Here we showed that there are 

constant spatial patterns in PZP distribution. However, due to the relatively constant 

environmental characteristics of the North Sea during winter, the effect of environmental 

drivers such as salinity and temperature remain low. Nutrients appear to have a stronger effect 

on certain taxa; however, the dominant groups appear unaffected. A fact that could hinder the 

direct linkage of PZP and the respective driving forces is the pooling of species into certain 

taxa, size classes or groups thus leading to biases related to a low taxonomic resolution. The 

PZP time series demonstrated general trends in the North Sea, but there are dynamic 

processes that cannot be directly linked with certain drivers, such as the general increase in 

abundance. Longer time series and/or higher taxonomic resolution would be necessary to 

more accurately identify long-term trends and the forces behind them. 
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Automated Plankton Classification with a Dynamic Optimization and 

Adaptation Cycle 

Jan Conradt1*, Gregor Börner1, Ángel Lopez-Urrutia2, Christian Möllmann1, Marta 
Moyano3 

Abstract 

With recent advances in Machine Learning techniques based on Deep Neural Networks 

(DNNs), automated plankton image classification is becoming increasingly popular within the 

marine ecological sciences. Yet, while the most advanced methods can achieve human-level 

performance on the classification of everyday images, plankton image data possess properties 

that frequently require a final manual validation step. On the one hand, this is due to 

morphological properties manifesting in high intra-class and low inter-class variability, and, on 

the other hand is due to spatial-temporal changes in the composition and structure of the 

plankton community. Composition changes enforce a frequent updating of the classifier model 

via training with new user-generated training datasets. Here, we present a Dynamic 

Optimization Cycle (DOC), a processing pipeline that systematizes and streamlines the model 

adaptation process via an automatic updating of the training dataset based on manual-

validation results. We find that frequent adaptation using the DOC pipeline yields strong 

maintenance of performance with respect to precision, recall and prediction of community 

composition, compared to more limited adaptation schemes. The DOC is therefore particularly 

useful when analyzing plankton at novel locations or time periods, where community 

differences are likely to occur. In order to enable an easy implementation of the DOC pipeline, 

we provide an end-to-end application with graphical user interface, as well as an initial dataset 

of training images. The DOC pipeline thus allows for high-throughput plankton classification 

and quick and systematized model adaptation, thus providing the means for highly-accelerated 

plankton analysis. 

Keywords: Machine Learning, Deep Neural Networks, plankton community, classification, 

model adaptation 
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Introduction 
 

Plankton is a diverse group of organisms with a key role in marine food-webs and 

biogeochemical cycles (e.g. Castellani & Edwards, 2017). It is furthermore responsible for 

about 50% of the global primary production, and they serve as prey for upper trophic levels 

and as recyclers of organic matter. Changes in their abundance, biogeography or size structure 

can thus lead to large changes at the ecosystem level (e.g. Capuzzo et al., 2017; Frederiksen 

et al., 2006). Climate change in particular can cause major changes in plankton community 

characteristics. The range of specific research on plankton in the ecological context is wide, 

covering issues such as the effect of ocean acidification on calcifying organisms (e.g. Stern et 

al., 2017), migrations of plankton taxa in response to ocean warming (Beaugrand, 2012), or 

the determination of available food biomass to larval fish at changing hatching times (Asch et 

al., 2019; Durant et al., 2019). Ultimately, however, many of these address – directly or 

indirectly – the effects of environmental change on the abundance of commercially exploited 

marine fish species, which are dependent on plankton either as food for their early life-stages, 

or as food of their prey. As plankton forms the base of any marine food web, climate effects 

are propagated to higher trophic levels via the response of the plankton community to climate 

change (Nagelkerken et al., 2017; Winder & Sommer, 2012). Monitoring its composition and 

abundance is hence of great importance to understanding the effects of climate change on the 

entire marine ecosystem and services it provides to humanity. 

The study of plankton in an environmental context is both quantitative and qualitative in nature. 

While certain plankton estimates (e.g. phytoplankton biomass) can be inferred from analysis 

of satellite imagery, most studies require abundance indices of specific taxa that can only be 

derived from sampling plankton in situ and determining its composition. Depending on the 

research subject, the taxonomic, life-stage and size composition of plankton can e.g. indicate 

the presence of a community specific to a certain water mass / current (Russell, 1939; 

Beaugrand et al., 2002), an abundance shift of potentially climate-sensitive species, or the 

abundance of planktonic food suitable to a particular predator of interest (Dam & Baumann, 

2017).  

Traditionally, plankton samples have been analyzed by humans with optical devices like 

microscopes (Wiebe et al., 2017). The accuracy of taxonomic classification was usually high 

when done by experienced personnel, but it could decrease significantly in complex tasks, 

such as the differentiation between morphologically similar taxa (Culverhouse et al., 2003). 

Additionally, sample processing rate is limiting the total number of samples that could be 

processed using traditional microscopy. The introduction of plankton-image recorders for both 

in situ (e.g. Video Plankton Recorder, VPR, (Davis et al., 1992)) and/or fixed samples (e.g. 
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Flow Cytometer and Microscope (FlowCAM®; Sieracki et al., 1998)), together with the 

development of image-classification algorithms, has led to great advances in the processing 

of plankton samples over the last two-to-three decades (e.g. Kraberg et al., 2017; Lombard et 

al., 2019; Goodwin et al., 2022). Image recording enables the temporally unlimited storage of 

visual information even for samples that cannot withstand fixing agents for a long time. 

Furthermore, given that the photographs are stored on disk, all visual information is kept 

permanently, and is available for discussion, unlike the memories of an expert. However, one 

of the challenges of these plankton image-recording devices (like VPR or FlowCam) is the 

large number of images that need to be classified (e.g. > 52 million in Briseno-Avena et al. 

2020). So far, classification models are intended to greatly increase classification speed, be it 

via an entire replacement of expert classification with model predictions (Briseno-Avena et al. 

2020), or by yielding a rough pre-sorting that alleviates expert validation (Álvarez et al., 2014). 

Image classification models were introduced in the late 1980s, first in the form of Neural 

Networks (NN), which were famously employed for the classification of handwritten digits by 

the US postal service (LeCun et al., 1989). In the mid-1990s, these were temporally 

superseded by Support-Vector Machines (SVMs), and for the first time applied for plankton 

classification in 1998 by Tang et al. (1998). Neural Networks were, at that time, relatively 

simple in design and could only be applied for simple classification tasks, e.g. discriminating 

between the clearly-shaped digits. While theory allowed the design of larger NNs for more 

complex targets like plankton images, constraints in computational power put a temporary 

constraint on this (e.g. Gu et al., 2018).  

SVMs became the tool of choice for plankton classification in the 2000s and early 2010s due 

to relatively strong performance (e.g. Álvarez et al., 2012). However, they were limited in 

capability and convenience-of-use by the need for human-defined features for class-

discrimination (a limitation not present in NNs). Such “feature-engineering” was required to 

reduce the enormous amount of information contained in an image (a data point in Rn-

dimensional space, n being the number of pixels) to details required to automatically tell 

classes apart (Scholkopf & Smola, 2002). Many publications of that time concerned the 

engineering of new features for better class separation, and the problem of the redundancy of 

devised features (e.g. Tang et al., 1998; Tang et al., 2006; Li et al., 2014). Even then, unique 

difficulties posed by plankton images became apparent, including the transparent nature of 

many plankton taxa and morphological similarities between classes. 

Computational power increased strongly in parallel to SVMs reaching their peak of popularity, 

and NNs eventually regained strong popularity (e.g. Chollet, 2017). In 2012, Krizhevsky et al. 

won the ImageNet contest with a so –called Deep Convolutional Neural Net (CNN), beating 

the peak performance achieved in the years prior by a before-unachieved margin. The 
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advances in classification accuracy led to massive investments into the design and application 

of Deep Neural Nets (the “parent class” of CNNs) in research and economy (Chollet, 2017). 

Plankton classification eventually followed suite in this general trend (e.g. Orenstein et al., 

2015; Al-Barazanchi et al., 2018), due to the capability of “deep” CNNs to devise and select 

features themselves; a process colloquially termed “Artificial Intelligence” (AI). CNNs are 

essentially a complex extension of multinomial regression, whereby the model input, the 

image, is an array of pixel values, and the output a quasi-“one-hot”-encoded class vector. The 

vector dimension with maximum value is taken as the predicted class index. Different from 

simple regression, several “layers” of neurons” – essentially arrays or vectors, lie in-between 

the model input and output. These contain abstracted information from the image, with 

parameters between any element of two adjacent arrays or vectors determining the flow of 

information (i.e., the filtering-out of information) from lower- to higher-order input representation 

(LeCun et al., 2010). During model fitting, the backpropagation algorithm transmits 

classification loss to each parameter using differential calculus, allowing for gradient-based 

optimization of the complex NN (Rumelhart et al., 1986). Backpropagation essentially allows 

the model to “learn” to filter information “wisely” by optimizing its parameter values over multiple 

iterations of fitting (e.g. Goodfellow et al., 2016). 

Today, CNN classification models can reach accuracies of well over 95 % (e.g. Al-Barazanchi 

et al., 2018), making automatic plankton classification appearing like a “solved task” at first 

sight. However, these accuracy values are usually derived from performance on test data 

originating from the same statistical population as the training data. Thus, these outcomes are 

only “snapshots” of the range of performances that will occur when a static model is applied to 

plankton samples that lie outside the “population”, where the training data originate from. More 

precisely, the plankton community tends to vary strongly in time and space, and this variability 

is precisely what most plankton researchers are interested in. As new taxa appear in a specific 

location or as formerly less-frequently encountered taxa increase in abundance, a 

classification model trained on a plankton community, or a pool of communities, from different 

geographic or temporal origin will likely perform poorly on the respective new samples. 

González et al. (2016) noted the variability in model performance on samples of different 

origins and recommended to focus the development of applications robust to various distances 

between training set and field samples. Also, the non-homogeneous distribution of plankton 

taxa in the field means that training datasets are often strongly non-homogeneous in 

distribution of images over classes, as well. This poses a constraint to the successful training 

of a CNN, since the resulting model will perform well on the dominating classes, but poorly on 

lower-abundant ones. Note that this is not necessarily reflected in the general accuracy metric, 

which only accounts for the total number of correctly classified images pooled over all classes. 
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Fig. 1: Examples of strong inter-class similarity (A) and high intra-class similarity (B). (A) A dinoflagellate 
of the genus Protoperidinium (left), and a juvenile bivalve (right). (B) Two dinoflagellates: Ceratium fusus 
(left) and Ceratium tripos (right) 

 

One further difficulty in automated plankton classification lies in the high intra-class variability 

in appearance (which is founded in the existence of sub-taxa, different life-stages or different 

appearances resulting from different imaging angles), and in sometimes high inter-class 

similarity (e.g. bivalves and some dinoflagellate taxa, fig. 1), of plankton organisms. Thus, if 

the intra-class variability is not homogeneously reflected in the training set, the ability of the 

CNN to discriminate between classes may be limited to only a fraction of the existing sub-

classes. 

In summary, the current constraints on successful training and application of models for 

automatic plankton classification are the often limited quality of training sets, and the high 

spatio-temporal dynamics of the plankton community. Under these circumstances, manual 

validation and correction of the model results is recommended (Gorsky et al., 2010), as is the 

adaptation of the model to avoid a decrease in classification performance. The latter usually 

requires the availability of machine-learning expertise, a commodity often lacking in the marine 
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sciences (Malde et al., 2020). Research and development should thus be focused on reducing 

the time required for the validation task and on improving operability of classifier models by 

non-AI-experts. 

Here, we follow González et al.’s (2016) suggestion and propose a pipeline for alleviating the 

task of model adaptation to a changing plankton community, and thus for reducing the time for 

manual validation: A “dynamic optimization cycle” (DOC) for iterative use accessible by non-

AI-experts. By making applied use of a trained model on field samples, correcting the 

classification and evaluating model performance through expert knowledge, and updating the 

model training set and the model itself (through training on the updated image set), the 

classifier model adapts to spatial and / or temporal changes in the plankton community. It thus 

maintains high classification performance, ensuring that validation workload remains relatively 

constant. The systematization of this procedure, and the implementation of the DOC as an 

end-to-end application with graphical user interface, removes the requirement for expertise in 

designing and coding CNNs. The DOC was designed for the classification of FlowCam images 

and the workflow related to studies using the FlowCam, but is likely applicable for other types 

of plankton images and different types of workflow, as well. 

Materials & Equipment 
 

Hardware and software requirements 

Training of NNs was performed with a Nvidia® (Santa Clara / California / US) Quadro P2000 

GPU with 4 GiB RAM (driver version 410.79) on a Dell® (Round Rock / Texas / US) Precision 

5530 notebook with 32 GiB RAM. CUDA® (Nvidia, Santa Clara / California / US) version 

10.0.130 was used for enabling the GPU to be used for general purpose processing. 

Programming was performed in Python 3.6.8 (van Rossum, 1995) using the Spyder Integrated 

Developer Environment (Raybaut, 2017) with Ipython version 7.2.0 (Perez & Granger, 2007). 

Packages used for analyzing classification outputs included NumPy (Oliphant, 2006) and 

pandas (McKinney, 2010). Packages used for image pre-processing included Matplotlib 

(Hunter, 2007), PIL (Lundh & Ellis, 2019) and Scipy (Oliphant, 2007). Tensorflow 1.12.0 (Abadi 

et al., 2015) and Keras 2.2.4 (Chollet, 2015) (with Tensorflow backend) Advanced 

Programming Interfaces were used for building, training and application of the classifier 

models. 
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Methods 
 

Model design and training 

A convolutional neural net (CNN) was built based on the publicly available “VGG16” network 

architecture (Simonyan & Zisserman, 2015). This architecture consists of 13 convolutional 

layers, i.e. 13 intermediate data representations in the form of a stack of matrices that account 

for positional relationships between pixels of the input image. These layers are arranged in five 

“blocks” of two-to-three layers each, which are connected via non-parameterized information-

pooling layers. The sixth block consisting of so-called “dense” layers was removed – as is 

usually done when applying a pre-defined architecture – and replaced with custom layers: one 

convolutional layer and two dense layers. The design of this custom “block” of layers - i.e. the 

number and type of layers, and the number of neurons (i.e. representation dimensions) of each 

– was the result of a try-and-error approach for achieving satisfying classification performance 

on training and validation images (Conradt, 2020). Details on the custom layers can be 

obtained from tab. SI V / 2. 

Model parameters were initialized with the values provided together with the VGG16 

architecture trained on ImageNet data (Deng et al., 2009.) for the respective part of the model, 

and with values drawn randomly from a Glorot uniform distribution for the custom layers, as 

per default in the Keras software. Model training (i.e. fitting) was started with the custom layers 

and the final block of convolutional layers of the VGG16 “base” set to trainable. Training was 

performed by feeding all training images in a sequence of batches of 20 randomly chosen 

images to the model. All other hyper-parameter settings (e.g. optimizer and learning rate for 

gradient-based fitting) can be obtained from Tab. SI IV / 1. The choice of hyper-parameter 

settings was based on a series of trial runs for different hyper-parameter set-ups (Conradt, 

2020). 

The entire set of training images was fed eight times (so-called “epochs”) to the model, with 

an increasing number of the layers of the VGG16 base being set to trainable (“unfrozen”) each 

epoch (Tab. SI V / 1). “Unfreezing” is a common procedure applied to ensure that learned 

features are gradually adapted towards our plankton dataset (VGG16 was originally trained on 

the ImageNet set of everyday-object images). The chosen number of epochs and the 

“unfreezing” schedule resulted from optimization through trial-and-error experimentation, as 

well (Conradt, 2020).They resulted in a steady increase of validation accuracy from approx. 88 

% to approx. 94 % and a decrease of validation loss from approx. 0.34 to approx. 0.29 when 

trained on the baseline training set, though validation loss did increase slightly from a minimum 

value of approx. 0.26 at the third epoch (fig. SI VII / 1). Validation accuracy was surpassed by 

training accuracy by the second epoch, which is usually a sign of an onset of over-fitting (e.g. 
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Chollet, 2017); however, the fact that validation accuracy also still increased over the eight 

epochs was taken as a sign of a robust training schedule.  

We did not utilize data augmentation, a technique in which artificial transformations are 

randomly applied to the training data to reduce model over-fitting and thus improve its 

generalizability (e.g. Chollet, 2017). While the approach is frequently applied in various image-

classification tasks (e.g. Luo et al., 2018; Plonus et al., 2021), previous work had shown that 

data augmentation did not markedly improve the classification when applied to a partly identical 

data set of FlowCam images (Conradt, 2020). This observation has also been made in another 

instance on an independent plankton data set (Lumini & Nanni, 2019). 

While both the set-up of the CNN and the training scheme may not represent an optimal 

configuration (for example, over-fitting occurred in our experiments), we found the 

configurations to yield consistently robust results that were sufficient to support research 

relying on the DOC pipeline (Börner et al., in prep.). Given the relatively high validation 

accuracy, our goal was not to further optimize model design or –training, but instead to 

maintain this satisfactory performance level over changes in the composition of plankton 

samples. 

Image characteristics 

Input image size was set to 120 x 120 x 3 pixels. A size of 256 x 256 x 3 pixels is more 

commonly used for plankton images (e.g. Al-Barazanchi et al., 2018; Orenstein & Beijbom, 

2017; Cui et al., 2018), however preparatory work for the present study had shown that the 

chosen image size yielded better performance than a larger size, and leads to a faster 

processing due to the lower data dimensionality (Conradt, 2020). The use of a common square 

image shape leads to an altered visual appearance of plankton organisms if the original image 

had a height-length ratio very different from 1. This would increase intra-class variability, an 

undesirable trait as described above. Therefore, within the DOC pipeline, images are pre-

processed via padding, i.e. by adding pixels in background color (the mode pixel value of the 

outermost pixel row for each color layer) to the sides or top and bottom to achieve square 

format, a common procedure in plankton-image classification (see e.g. Plonus et al., 2021). 

Characteristics of the baseline training set 

The baseline image dataset, which is updated as part of the adaptive procedures of the DOC 

pipeline, consists of 27900 RGB FlowCam images of plankton samples gathered from various 

North Sea surveys over several years. Images in the dataset were sorted into 15 classes, 

including 13 taxonomic groups as well as a detritus class and a “clumps” class that contains 

aggregates of plankton organisms and / or detritus. The distribution of images over classes 

was designed to reflect general, though not empirically determined, patterns of natural relative 
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abundance. However, the very abundant detritus class was reduced in relative proportion in 

order to avoid the learning of a quasi-binary classification scheme (detritus / non-detritus) by 

the classifier model. A random 80 % of images of each class were used as training images for 

the baseline model, while 10 % each were reserved for validation and testing purposes (see 

above). The characteristics of the baseline data set are given in Tab. SI VI / 1. 

Classification thresholds 

Within the DOC pipeline, the model classification is compared with expert validation. For each 

class, the relative amount of correct predictions is calculated and used as a threshold value 

against which the maximum probability value of the CNN output vector (the index of which is 

the class prediction) is compared. Probability values above the threshold lead to acceptance 

of the classification, as the model classification is deemed “certain”. Probability values below 

the threshold lead to rejection of the model classification, the image is then assigned to an 

“uncertain-classifications” category. Initially, thresholds were set to 60 % for all classes, as the 

difference between the properties of the baseline training set (on which the baseline model 

was trained) and the properties of the first station to be classified was deemed to be larger 

than that between subsequent modified training sets and stations. 
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Fig. 2: Sequence of main procedures in the DOC pipeline: After the automatic classification and expert 
validation of a set of plankton samples (e.g. two), the original model training set is stocked up with a 
selection of miss-classified images, based on class-specific miss-classification rate. This constrained 
update reduces the dominance of naturally-abundant classes in the add-on set. A new classifier model 
is trained on this updated training set (also, not shown here, classification thresholds are reduced based 
on miss-classification rates). The new model is used to classify the next set of plankton samples. 

 

This procedure was intended to speed up manual validation by implementing a sort out of 

images based on probability of miss-classification, which can then be checked more easily 

than if they were not separated from images with high probability of correct classification. 

DOC pipeline procedures 

The following describes the working steps for applying the DOC onto any given set of plankton 

samples (see also fig. 2). A more thorough user instruction with technical notes of importance 

is provided in the appendix. 

1) Classification: The DOC pipeline is typically started by applying the provided classifier model 

directly on the classification of plankton samples, thus allowing for potentially large initial 

classification error. However, it is also possible to directly train a custom classifier model if the 

user has already generated a training set from manually labeled images. When creating a 

custom training set, it is important to limit the number of classes to 10-20. 700-1000 training 

images should be collected for classes deemed important for research.  

The amount of training images for a “detritus” class can be higher (two-to-three-fold) if detritus 

is abundant, since this class is usually rather heterogeneous in shape and a high capacity for 
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differentiation between living and non-living particles is often desired (see tab. 3 for the 

properties of the initial training set used in the present study). The DOC was designed for 

research questions that primarily require quantitative measurements of major (i.e. abundant) 

plankton classes, not for qualitative analyses where the importance of taxa is not related to 

their abundance, e.g. biodiversity surveys. This should be considered when applying the DOC 

pipeline. 

2) Validation: Following the classification of two to three plankton samples, the model 

classification is validated by a plankton expert. When using the DOC application, this involves 

moving wrongly-classified images into correct class folders, as the application automatically 

copies the plankton images into such newly-created folders. Note that expert validation is 

critical to the functioning of the DOC pipeline. While a full automatization of plankton image 

classification, i.e. the ability to work directly with model predictions, might be desirable in some 

applications, model adaptation to a changing plankton community does require expert 

involvement. The combination of automatic pre-classification with expert validation has been 

found to be effective for quantitative plankton studies, in particular when used to improve a 

model training set (Gorsky et al., 2010).  

Performance of our baseline model was deemed insufficient to omit expert validation, as 

predicted relative abundances for certain classes were strongly different from the ground truth 

(fig. SI VIII / 1; Börner et al., in prep.). The DOC pipeline is designed to streamline and 

accelerate the validation process, as a full automatization of the classification is unlikely to be 

achievable with limited training data. 

The number of samples to classify before continuing with the adaptation steps is likely case-

specific and might require some initial trial-and-error experimentation. In our case studies, we 

classified two samples at a time. 

3) Training-set update and threshold reduction: After expert validation, the original model 

training set is stocked up with images that were wrongly classified by the model, based on 

class-specific miss-classification rates. To this end, the classification performed by the model 

and the final validation by the expert are automatically compared. For each class, the correct-

classification rate, i.e. the ratio of the number of correct model classifications to the total 

number of images assigned by the expert to that class, is calculated. The complement of these 

ratios is then normalized via division by the maximum miss-classification rate over all classes 

(eq. 1, top). These values are then multiplied by the number of wrongly-classified images of 

each class to determine the number of images to be added to the training set (eq. 1, bottom). 

Not selecting all wrongly-classified images reduces the over-proportionality of naturally-

abundant, but relatively well-classified classes, e.g. detritus, in the image add-on, putting more 

emphasis on poorly-classified classes. The number of images added thus depends both on 
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the number of miss-classified images (and thus also on the size of the classified sample(s)) 

and on the relative class-specific performance of the model. The images added are selected 

randomly. 

𝑝𝑖 =
1 −

𝐶𝑖
𝑁𝑖

max(1 −
𝐶𝑗
𝑁𝑗

𝑓𝑜𝑟𝑗 ∈ {𝑐𝑙𝑎𝑠𝑠1… 𝑐𝑙𝑎𝑠𝑠𝑛})

 

𝐴𝑖 = 𝐹𝑖𝑝𝑖 

Eq. 1: Calculation of the proportion of miss-classified images to be added to the updated training dataset 

(top) and calculation of the number of images to be added to the training set (bottom).  i = index for 

classes, p = proportion, C = number of correctly classified images in a given class, N = number of images 

assigned by expert to that class, A = number of images to be added to the training set, F = number of 

wrongly-classified images 

 

Before training, 20 % of the images in the updated training set are set aside to serve as 

validation and test data (10 % each). While validation (during training, to check on model over-

fitting) and testing (after training, to evaluate final model performance (e.g. Chollet, 2017)) are 

performed as part of the DOC application, the results are not of importance for the general 

usability of the DOC. These results are rather intended to provide users interested in modifying 

model architecture or training procedure with performance metrics. Note that training set 

updates are performed on the full 100 % of images of the previous training set (merging 

training, validation and test images of the back together), and that the setting-aside of 20 % of 

the images is done thereafter. In the present study, automatically generated validation and test 

results were not investigated. Instead, model performance was evaluated directly from the 

classification of survey samples (see below), which can therefore be considered our “test data 

sets”. 

The training-set update constitutes one part of the adaptation procedure, as images are added 

to the training data based on class-specific miss-classification. A marked temporal or spatial 

increase in the abundance of a class that was underrepresented in the original training set will 

lead to that class being better represented in the adapted version of the training set. This also 

applies to classes and morphologically distinct sub-classes (sub-taxa) not contained in the 

original training set. It is up to the researcher implementing the DOC to decide whether a new 

class encountered in a sample should be included in the updated training set. If only very few 

individuals were encountered, it is not useful to set up a new class in the new training dataset, 

since with this low amount of training data, it would not be possible to train the model to reliably 
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recognize that class. In that case, it may make more sense to include the images in a 

taxonomically related class for the purpose of training-set adaptation. 

Furthermore, the original threshold values for automatic culling of likely wrongly-classified 

images (see above) are multiplied with the aforementioned correct-classification rates. This 

reduces the threshold percentage value above which a classification will be deemed to be 

likely correct for classes that receive an increase in training images in the above adaptation 

step. It is assumed that large threshold values reduce classification performance by the 

assignment of many correctly-classified images to the “uncertain-classifications” category 

(images assigned to that category are treated as incorrect classifications). By decreasing the 

classification threshold, the number of correctly-classified images assigned to the predicted 

classes can theoretically be increased, leading to higher correct-classification rates. By 

decreasing classification thresholds more strongly for classes with relatively high miss-

classification rate, the assignment of images to “true” class folders will increase for classes 

that have received an update of training images. 

While classification thresholds may also be too low for some classes, with too many wrong 

classifications not assigned to the “uncertain-classifications” class, we found that the inter-play 

with the updating of the training set in response to correct-classification rates yielded a good 

trade-off between maintaining high precision and high recall. Performing only training-set 

updates or only threshold adaptation yielded higher precision or recall than the combined 

operations, though at the cost of the respective other metric (SI IX). We do, however, not 

exclude the possibility that classification performance may be limited at some point due to 

reduction of thresholds to values close to zero. 

4) Model training: The model is then trained on the updated training set according to the 

training schedule described above. Again, implementing the same training schedule on 

different training sets can lead to performance loss; an individual experimental adaptation of 

the training schedule is avoided for the same reason as individual changes to model design 

(see above). It should be noted that it is not the existing baseline model that is re-trained on 

the new data; instead, a completely new model instance is generated, with model parameters 

initialized as described above. This was done to avoid an over-adaptation of the model on the 

training data, since re-training would have meant training the existing model for an additional 

set of epochs on an adapted but still similar training set (similarity referring to the fact that no 

original training images are dropped during alteration). Re-training the previous model in each 

iteration of the DOC was attempted but did not appear to improve results. 

Not changing the model design, as is implemented in the DOC pipeline, can lead to lower-

than-possible classification performance, since image sets of differing distributions of classes 

may be classified differently well with a given model design (data set shift; Moreno-Torres et 
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al., 2012). Still, the DOC concept is focused on streamlining the adaptation procedure; 

experimentation on model design in each adaptation step would slow down the overall 

adaptation process. Therefore, changing the model design is not a standard procedure in the 

DOC, but may be implemented if users find classification performance unsatisfactory in 

general. DOC users may opt to add the test data to the training set if they are not required for 

the above-mentioned check to increase the number of training images. In the case studies 

performed in the present work, this was not done, though, as performance was deemed 

satisfactory without adding the test images. 

After training is completed, the new model can be applied on the next batch of plankton 

samples, and the cycle of adaptation continues anew. The DOC concept was devised based 

on the notion that plankton communities would change on a spatial and / or temporal gradient. 

In the authors’ view, it therefore makes most sense to process the plankton samples in the 

same order as they were taken by the research vessel (or along hydrographical gradients). 

User application 

A user application with graphical user interface was designed to aid in the implementation of 

the DOC pipeline. For practical purposes, it is intended that the DOC pipeline be implemented 

by a broad user group not necessarily familiar in the use of programming languages and / or 

Machine-Learning techniques. The DOC application was therefore designed to enable an end-

to-end implementation of all pipeline steps described above. It consists of a series of 

executable, partially nested, Python scripts, one executable Bash (GNU, 2007) script that 

accesses the Python scripts and a comprehensive instruction guide describing the 

implementation of all DOC-pipeline steps in the application context (SI 1). None of the scripts 

is protected, which allows users familiar with the Python programming language to edit and 

change scripts in order to make custom changes to the pipeline processes, if desired. 

The DOC application was written in the Python programming language, making extensive use 

of the TkInter package for graphical-user-interface design (Lundh, 2019) and of the os package 

for file-system access. One script utilized to start the application was written in the Bash 

command language. 

The DOC application was designed for use on Linux (The Linux Foundation, San Francisco / 

CA) operating systems (tested on Ubuntu 18 and Linux Mint 19). It requires hardware and 

drivers enabling the training and application of Deep Neural Networks for image classification. 

For the application development and for conducting the case studies, a Nvidia® Quadro P2000 

graphics-processing unit (GPU) was utilized. Further system details are given in SI II. The DOC 

application requires the installation of Python 3 (was tested under Python 3.6) via the 

Anaconda (Anaconda Software Distribution, 2020) distribution, and the creation of a dedicated 
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Python environment containing i.a. the packages Tensorflow (Abadi et al., 2015) and Keras 

(Chollet, 2015). Full details on the environment setup are given in SI III. 

The DOC application is started via the Bash script, whereupon each of the DOC processes 

can be started. The single processes can be executed in the order described above and 

suggested in the instruction manual, but can also be executed singularly, e.g. when only image 

classification, but not the implementation of the full DOC pipeline is desired. 

The DOC user application will be made available on github.com/JanCo93 upon publication. 

The baseline training set is planned for a release on zenodo.org at the time of publication. 

Case studies – North Sea surveys 

The DOC pipeline was applied to samples taken on two plankton surveys in order to test the 

performance of the approach. 

The surveys were conducted in autumn and winter 2019 in the Western North Sea (Fig. 3). 

The first survey, undertaken in September 2019, started offshore the East Coast of Scotland 

at approx. 57.5 °N / 0 °E, and moved gradually closer to the British coast in a zig-zag trajectory 

between approx. 56.2 °N and 57.5 °N. Samples were taken at these two latitudes and at 

approx. 57.9 °N. The second survey was conducted in December 2019 in the English Channel, 

starting at the eastern entrance of the Channel at approx. 51.6 °N / 2 °E, continuing south-

westwards until approx. 50.25 °N / -1 °E, and changing direction north-east-wards, for a route 

parallel to but closer to the French coast than the initial trajectory (fig. 3). Plankton samples 

were taken with a PUP net (mesh size: 55 µm) attached to a GULF VII sampler (HYDRO-BIOS 

Apparatebau GmbH), which was towed in double-oblique hauls. 
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Fig. 3: Survey transects and location of the sampling stations from the September (A) and December 
(B) surveys. 

 

Plankton samples were stored in 4-%-formaldehyde-seawater solution. Once in the laboratory, 

samples were processed using a FlowCam, following the FlowCam® Manual V 3.0 (Fluid 

Imaging Technologies, 2011), as described in Börner et al. (in prep). The FlowCam flow 

chamber had a depth of 300 µm, which was also the maximum size of plankton particles 

processed by the apparatus (the minimum particle size was determined by the PUP net mesh 

size of 55 µm). Flow rate was set to 1.7 mL min-1, in order to achieve high image quality at an 

acceptable processing speed. Using the AutoImage mode of the FlowCam’s Visual 

Spreadsheet software, images were saved for later processing. 

For both surveys, the DOC pipeline was implemented for the classification of 18 samples, with 

the samples being processed in the sequence they were taken at sea (one sample was taken 

at each station). The processing sequence equals a spatial and temporal trajectory through 

plankton habitat. The adaptation procedure was implemented every second station, pooling 

the images for both stations in order to calculate the misclassification rate and to supply the 

information for the update of the training set. Classification performance was then calculated 

for each pair of stations (see below), which in the end yielded a performance trajectory over 

the survey samples and adaptation steps. Each mark on the trajectory thus constituted the 

performance of one specific model (trained on one specific version of the training set) applied 

to one specific set of images. In the Machine-Learning context, this information yielded the test 

performance of the models at the different adaptation steps, i.e. and indicator of their 

performance on non-training images under constant field conditions (e.g. Chollet, 2017). 
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In order to assess the importance of the continuous adaptation, a set of reference runs was 

performed: After each adaptation step, the current model was saved, and all subsequent 

samples were classified with this model (previous samples were not classified, as images 

contained in these were introduced into the training set during previous adaptation cycles). 

This way, we generated a set of reference classification trajectories in which adaptation is 

stopped after various numbers of samples processed (and thus on different points of the survey 

trajectory). This set was used to assess the value of continuous adaptation of the training set 

and the training of new models thereon: By comparing the performance of an adapted model 

to a non-adapted or less-adapted model at a specific mark on the classification trajectory, the 

value of adaptation could be determined for a specific sample or point on the survey trajectory. 

Integrated over all samples, this allowed evaluating the performance of DOC-based adaptation 

over the survey- / adaptation trajectory, with respect to overall advantage and potential 

temporal dynamics in the magnitude of adaptation advantage. 

With eight adaptation steps, nine different classification trajectories resulted in total: The fully-

adaptive pathway (with one adaptation cycle and the usage of a new model every second 

station), and eight pathways in which adaptation was stopped at a specific station (fig. 4). 

 

 

Fig. 4: Model-adaptation / station-classification schedule for performance analyses.  The diagonal row 
(marked with stars) represents the fully-adaptive implementation of the DOC pipeline, where an 
adaptation is implemented every second station. All other colored rows shows reference runs where 
samples are classified with an existing model and without further adaptation. 
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We implemented the adaptation pathway twice for each survey to account for random effects 

in the adaptation procedure. These primarily include the parameter initialization before training 

of every models (i.e., at every adaptation step) except the base model (which was always 

identical) and the selection of miss-classified images for the updating of the training dataset. 

Analysis of classification performance 

Three performance metrics were calculated for comparison of the model classification and the 

expert classification (the result of the validation step): 

I) Recall is the class-specific ratio of correctly-classified images (true positive classifications) 

to the total number of images (true positive plus false negative classifications), where the total 

number is defined by the expert classification (eq. 2). This metric indicates the expert effort 

required to find miss-classified images in all other class folders. 

II) Precision is the class-specific ratio of correctly-classified images (true positive 

classifications) to the sum of correctly-classified images (true positive classifications) and 

wrongly-classified images (false positive classifications), where the total number is defined by 

the expert classification (eq. 2). This metric indicates the expert effort required to find all images 

that were mistakenly assigned to a specific class folder. 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑛(𝑡𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒)

𝑛(𝑡𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒) + 𝑛(𝑓𝑎𝑙𝑠𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒)
 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 
𝑛(𝑡𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒)

𝑛(𝑡𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒) + 𝑛(𝑓𝑎𝑙𝑠𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒)
 

Eq. 2: Definitions of recall and precision (class-specific metrics) 

 

Of these two metrics, means and standard deviations weighted by class abundance (number 

of images assigned by expert to a specific class) were calculated for each pair of stations and 

each adaptation trajectory. Recall and precision values for “detritus”, “clumps” and “uncertain 

predictions” classes were not included in the mean calculations in order to focus on the living 

components of the plankton (which are the target of plankton research). More specifically, they 

were excluded from the calculation of average recall, since miss-classification of detritus is of 

little concern in research focusing on living biomass, and clumps are miss-classifications per 

se, since a researcher would need to analyze clumps compositions manually anyway. The 

three classes were excluded from calculation of average precision, since the direct aim of 

achieving high precision is to reduce the effort of removing miss-classified images from a given 

class folder. Since detritus, clumps and uncertain classifications are not directly of interest in 

plankton research, the desire to achieve “clean” folders for these classes is comparatively low. 
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III) Categorical cross entropy (hereafter referred to simply as “cross-entropy”) measures the 

loss between a true and a predicted distribution (eq. 3). We calculated this metric for the true 

(derived from expert classification) relative class abundances with the predicted (derived from 

model classification) relative class abundances. In our application, cross-entropy measures 

the goodness of predicting the quantitative plankton-community composition. Again, the 

“detritus”, “clumps” and “uncertain predictions” classes were not included in the cross-entropy 

calculation. For classes with a predicted relative number of zero, this value was set to one 

divided by the total number of images at a given station (the cross-entropy is not defined for 

data including zero-values; hence, we artificially introduce one correct classification, which we 

assume to be a plausible stochastic error given numbers of images per station of usually more 

than ten-thousand). We compared cross-entropy with class-specific differences between true 

and predicted relative abundance to analyze the driving factors behind changes in cross-

entropy, i.e. in the goodness of prediction of the plankton-community composition. 

𝛾𝑖 = −∑𝑎𝑖𝑙𝑜𝑔𝑎�̂�

𝑁𝑐

𝑖=1

 

Eq. 3: Categorical cross entropy (γ). a = true relative abundance, â = predicted relative abundance, Nc 

= number of classes 

 

Cross-entropy represents information loss between true and predicted distributions, which 

makes it difficult to interpret single values. Therefore, we used the metric exclusively for 

comparative purposes (e.g. comparing the cross-entropy between different adaptation modes). 

Analyses and visualization were performed in R version 3.6.3 (R Core Team, 2020), partially 

using the packages “tidyverse” (Wickham et al., 2019), “viridis” (Garnier, 2018) and 

“radiant.data” (Nijs, 2020). 

Results 
 

Overall performance in the fully-adaptive mode of the DOC was relatively high with regard to 

recall, with weighted means ranging between approx. 82 and 92 % over all survey-station 

pairs. Precision was lower, with weighted means ranging between approx. 50-75 % for the 

September survey, and approx. 60-80 % (with one very low value of 30 % at start) for 

December. Performance was sufficiently large to enable successful usage of the DOC 

application in the context of experimental research work, which benefitted from the time-

savings through semi-automatic classification and model adaptation (Börner et al., in prep.).  
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Altogether, a fully-adaptive implementation (adaptation cycle implemented every second 

station) of the DOC frequently achieved comparatively high or top level mean performance in 

recall and precision metrics, though absolute and comparative performance varied between 

both survey month, and, more strongly, between classes (for details see below). Performance 

gains were often largest in the first one to two adaptation cycles, i.e. after the first adaptation 

of the baseline training set. 

Recall 

Overall, there were no clear trends in mean recall development over stations for the larger part 

of the classification trajectory, neither in the fully-adaptive nor in the less-adaptive 

implementations (fig. 5): In the September trajectory, mean recall for the fully-adaptive mode 

decreased from approx. 90 % by approx.10 % after the third station pair (stations 5 and 6), 

and increased again somewhat after stations 11 and 12. Mean recall at stations 17 / 18 was 

approx. 91 %. In the December trajectory, mean recall for the same mode increased strongly 

between stations 3 / 4 and stations 5 / 6, from approx. 20 % to slightly over 90 %. Recall 

remained at a relatively high, though slightly decreasing level, having a final value of approx. 

85 % at stations 17 / 18. 

Relative performance to less adaptive DOC implementations differed initially strongly between 

the two surveys, but became more similar thereafter. While in the September samples no large 

performance difference was visible between the adapted and the baseline model at stations 2 

/ 3, recall for the more adaptive model strongly outperformed that of the less adaptive one in 

the December samples, as a value of over 90 % was achieved with the former, while no marked 

performance difference to the first station (approx. 20 % mean recall) was detected in the latter. 

With the exception of the baseline model used for the December samples, which remained at 

low-level performance of approx. 40 % mean over the trajectory, recall of the fully-adaptive 

mode was not markedly superior or even somewhat inferior (in the December samples) to that 

of less adaptive approaches, depending on the replicate. Performance of all adaptive modes 

converged to a relatively similar value (approx. 91 %) in the final September sample (see also 

fig. SI X / 1). Convergence was not present in the December samples. 
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Fig. 5: Recall trajectories for different modes of adaptation using the DOC. Solid black line represents 
weighted mean of the fully-adaptive implementation, grey area denotes the corresponding weighted 
standard deviation. Colored solid and dashed lines represent weighted mean and weighted standard 
deviation of less-adaptive implementations (denoted by the number of adaptation cycles). (A), (B): 
September survey; (C), (D): December survey. Results for two replicates are shown for each survey. 
Note that weighted standard deviation for the fully-adaptive implementation in the December survey was 
not omitted, but is very small compared to that in the September survey. Trajectories for all nine 
adaptation modes are shown in fig. SI X / 1. 

 

Recall trajectories differed strongly between classes, and showed stronger fluctuations 

between station pairs than the weighted mean trajectory over all classes, with values of zero 

and 100 % being reached occasionally (figs. 6, SI X / 2). Trajectories for the fully-adaptive 

implementation of the DOC were relatively similar between replicates, though. For many 

classes, a recall of markedly over 90 % was achieved at least occasionally in fully adaptive 

mode, although the identity of these classes differed between September and December 

surveys. Classes for which a relatively high recall was frequently achieved (though not 

necessarily consistently over all stations) included Ceratium spp., Protoperidinium spp. 

(September survey only), copepods, detritus and diatoms. All other classes showed relatively 

high performance at least once in the recall trajectory; thus it is not possible to name classes 

for which recall was particularly poor. The comparative performance of the fully-adaptive 
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implementation of the DOC varied strongly between classes, as well. Furthermore, 

performance also varied between surveys, and to a smaller extent between replicates. For 

some classes, such as bivalves (September), detritus (both surveys), diatoms (both surveys), 

dinoflagellates (September), foraminiferans (September), unknown taxa A, B and C (only 

present in September), as well as copepods (December), the fully-adaptive implementation 

yielded near- or top-level performance over the larger part of the stations trajectory. For other 

classes, including copepods (September) and Dinophysis spp. (September), comparative 

performance was relatively constantly poor. It should be noted that performance differences 

between different modes of adaptation were of various magnitudes between classes. In most 

classes, the recall trajectory of the fully-adaptive implementation followed the general trend 

shown by all modes of adaptation. 
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Fig. 6: Class-specific recall for the September (A, B) and December (C, D) surveys. Results for two replicates are shown for each survey. Black line 
represents fully adaptive DOC implementation (training-set update every second station); colored lines represent less-adaptive implementations (denoted 
by the number of adaptation cycles). Trajectories for all nine adaptation modes are shown in fig. SI X / 2. 
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Precision 

In general, mean precision increased in both survey trajectories slightly, in all but the two least 

adaptive implementations of the DOC after a more variable initial phase (first two station pairs) (fig. 

7). Mean precision increased from approx. 60 % at stations 5 / 6 to approx. 75 % at stations 15 / 16 

in the September survey, and from approx. 65 % to approx. 80 % in the December survey. Mean 

precision then decreased again from stations 15 / 16 to station 17 / 18, from the mentioned values to 

approx. 63 % in the September survey, and to approx. 70 % in the December survey. Altogether, the 

trajectory of mean precision was smoother for the December survey, i.e. there was little fluctuation 

between adjacent station pairs. 

Different from the recall trajectories, mean precision of the fully-adaptive mode of the DOC was 

frequently at top level compared to less-adaptive modes, in both the September and the December 

survey (for almost every station in the latter) (see also fig. SI X / 3). The zero-adaptive implementation 

(use of the baseline model for all classifications) showed markedly lower performance than all other 

implementations over the full trajectory in the December samples, while lowest performance was 

achieved by the one-time-adapted model in the September samples, In the latter case, the 

performance difference was not as pronounced as in the September samples, though. While mean 

precision for the weakest-performing mode was relatively constant to slightly decreasing in the 

September survey (approx. 55 % at stations 5 / 6 to approx. 50 % at stations 17 / 18), it did temporarily 

increase from stations 7 / 8 to a peak at stations 13 / 14 (from approx. 20 % to approx. 75 % to approx. 

25 % at stations 17 / 18) in the December survey. 
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Fig. 7: Precision trajectories for different modes of adaptation using the DOC. Solid black line represents 
weighted mean of the fully-adaptive implementation, grey area denotes the corresponding weighted standard 
deviation. Colored solid and dashed lines represent weighted mean and weighted standard deviation of less-
adaptive implementations (denoted by the number of adaptation cycles). (A, B): September survey; (C, D): 
December survey. Results for two replicates are shown for each survey. Trajectories for all nine adaptation 
modes are shown in fig. SI X / 3. 

 

Precision trajectories differed strongly between classes and surveys, but were mostly consistent 

between replicates, both with regard to the fully-adaptive implementation of the DOC and to its 

comparison with less-adaptive implementations (figs. 8, SI X / 4). For most classes, precision varied 

strongly between adjacent stations, and did not bear a clearly increasing or decreasing trend. For 

many classes in the September survey, the fully-adaptive implementation achieved near- or top-level 

performance over the larger part of samples; exceptions include the “clumps” class, copepod egg 

clumps, detritus, dinoflagellates and the two unknown taxa “A” and “B”. However, unlike in the case 

of class-specific recall, a comparatively poor or very poor performance was observed for none of these 

exceptions. In the December survey, the fully-adaptive implementation achieved average 

performance for the larger number of classes. Exceptions with near- or top-level performance over 
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the larger part of the trajectory include bivalves, Dinophysis spp., foraminiferans and Protoperidinium 

spp.; for few additional classes, top-level performance was achieved in only one of the two replicates. 

Very poor performance was also noted for a few classes (appendicularians, copepod egg clumps, 

gastropods), but again only in one of the two replicates. As with class-specific recall, performance 

differences between differently-adaptive modes were of different magnitudes for different classes, and 

the precision trajectories of the fully-adaptive mode in general followed the trend of all other modes of 

adaptation. 

Cross-entropy 

Cross-entropy in general decreased over the stations trajectory, representing an increasing similarity 

between true (as defined by classification expert) and predicted distributions of relative abundances 

of plankton classes (fig. 9). By the end of the trajectory (stations 17 / 18), cross-entropy of the fully-

adaptive implementation was decreased to approx. 90 % and 40 % of its value at the start of the 

trajectory for the September and December surveys, respectively. The cross-entropy trajectories were 

markedly smoother for the December survey than that for the September survey, which featured an 

oscillatory pattern from stations five / six onwards. In the September survey, the deviation between 

true and predicted distributions was driven by a variety of classes, including the constantly strongly 

abundant diatoms and Protoperidinium spp. classes, as well as the occasionally strongly abundant 

Ceratium spp. class and the little-abundant unknown taxa “B” and “C” (fig. 10). The cross-entropy 

decrease was primarily driven by lowered differences between predicted and true relative abundances 

of the diatoms class and of the two unknown taxa. Differences were not lowered by a large amount; 

however, the magnitude of absolute differences was not large (<< 10 % at maximum). In the 

December survey, the deviation was almost exclusively driven by the strongly-abundant diatoms class 

and the little-abundant Protoperidinium spp. class. Cross-entropy decrease was notably driven by a 

decrease in the difference between predicted and true relative abundance for both classes. 

Differences decreased by a large magnitude, from more than 50 % absolute to markedly less than 20 

%. 
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Fig. 8: Class-specific precision for the September (A, B) and December (C, D) surveys. Results for two replicates are shown for each survey. Black line 
represents fully adaptive DOC implementation (training-set update every second station); colored lines represent less-adaptive implementations (denoted 
by the number of adaptation cycles). Results for two replicates are shown for each survey. Trajectories for all nine adaptation modes are shown in fig. SI 
X / 4. 
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Cross-entropy was lowest over all stations compared to all other adaptation modes, in the fully-

adaptive implementation of the DOC (see also fig. SI X / 5). It was markedly higher in the two least-

adaptive implementations in the September survey, and in the none-adaptive implementation in the 

December survey, compared to all other implementations. Relative cross-entropy dynamics over time 

were similar among all adaptation modes. 

Discussion 
 

Our results show that adapting a classifier model to changes in the plankton community is vital for 

ensuring continuously high classification performance. As the comparison between the fully-adaptive 

and less-adaptive performance trajectories demonstrates, the standardized procedure implemented 

in the DOC pipeline generates suitable adaptation steps via training-set stock-up and reduction of 

classification thresholds, making the DOC an appropriate tool for implementing model adaptation. 

Our results confirm that continuous adaptation via the DOC pipeline clearly improves classification 

performance compared to more limited or no adaptation. The fact that performance of the classifier 

model improved over adaptation steps – primarily in comparison to less-adaptive scenarios, but to 

some extent also over survey stations, with regard to precision and cross-entropy – shows that the 

DOC is indeed able to cope with and actively learn from a difficult classification task. However, it is 

worth noting that improvement was not existing or continuous for all metrics and taxa, with e.g. mean 

recall not showing clear signs of improvement over stations. Given that neural networks generally 

require large amounts of data for training (Goodfellow, 2016), a larger initial training set and 

processing of larger samples might have yielded a clearer, more universal performance improvement. 

Still, in the context of field research, where image data from a new region and / or time period may 

initially be sparse, the DOC pipeline makes effective use of the incoming data such that best possible 

performance is frequently achieved. 

With regard to precision and cross-entropy metrics, the highest possible performance is achieved for 

almost every sample by the fully-adaptive implementation of the DOC, while recall performance is 

often at very high comparative levels. The same is true for a number of single taxa that are of strong 

importance in the study of the ecological function of marine plankton, e.g. in the determination of 

planktonic biomass available as food to commercially-harvested fish (e.g. Peck et al., 2012). Thus, 

fully continuous adaptation yields the best performance possible per sample when integrating over all 

three performance metrics. 

It should be noted that the DOC was not designed with the intention of advancing classification 

performance in terms of improving accuracy on artificially created validation datasets. Rather, the aim 

was to design a procedure that achieves acceptably good performance for applied research work that 
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focusses on abundant and broad taxonomic plankton groups, and in particular maintains that level of 

performance even as the classifier model is confronted with changes in the plankton community. Still, 

with weighted mean recall ranging from 80 to over 90 %, the classification performance of our model 

is comparable to the current state of the art, which ranges approximately between 80 and 95 % (Dai 

et al., 2016; Luo et al., 2018, Briseno-Avena et al., 2021). Although some studies have reported very 

high accuracies of over 95 % (Al-Barazanchi et al., 2018; Cui et al., 2018), this performance metric 

appears to depend strongly on the diversity of samples and on the classes chosen to report accuracy 

on (Briseno-Avena et al., 2021; Luo et al., 2018), which makes model comparisons difficult. Compared 

to recall, precision of our approach is somewhat low at 60 to 80 %, but still similar to the 84 % reported 

by Luo et al. (2018). 
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Fig. 9: Cross-entropy trajectories for different modes of adaptation using the DOC. Solid black line represents 
weighted mean of the fully-adaptive implementation, grey area denotes the corresponding weighted standard 
deviation. Colored solid and dashed lines represent weighted mean and weighted standard deviation of less-
adaptive implementations (denoted by the number of adaptation cycles). (A, B): September survey; (C, D): 
December survey. Results for two replicates are shown for each survey. Trajectories for all nine adaptation 
modes are shown in fig. SI X / 5. 

 

Given that speed and easiness of adaptation was also deemed critical for applied usage of the model, 

the DOC omits a thorough sample-specific model optimization (by means of re-designing the 

architecture of the Deep Neural Network or changing the training scheme), which might have yielded 

stronger performance. However, trading in performance optimization for performance reliability and 

easiness of adaptation did not affect the usefulness of the procedure in applied research, as shown 

by Börner et al. (in prep.). 

Performance trajectories varied strongly between the two surveys, but to a lesser extent between 

replicates, both with regard to weighted-mean and to class-specific performance in most classes. This 

demonstrates that the DOC is affected by natural variability in the plankton community rather than by 
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technical random factors (e.g. the sampling of additional training images during the adaptation 

procedure). In particular, performance appears to be affected by the complexity of the plankton 

community, as expressed via the degree of homogeneity of relative abundances of the plankton taxa: 

In the September survey, taxa that made up a very minor part of the total number of plankton 

organisms of the December samples (e.g. Ceratium spp.) were comparatively increased in relative 

abundance, yielding a more heterogeneous plankton community. Furthermore, the increase varied 

between survey stations, creating an additional spatial level of heterogeneity. Consequently, the 

capacity to correctly predict the distribution pattern over classes, as measured by cross-entropy, 

became lower, as did the capacity to improve that performance by applying the DOC over several 

stations. As a result, mean precision was also lower for the September samples, as the increased 

abundance of non-major classes (for which fewer training images were available) likely led to more 

miss-classifications that reduced the purity of the model-generated class folders. Given that precision 

for the September samples increased slightly over stations, and markedly over the number of 

adaptation steps employed, it becomes visible that the DOC still led to adaptation even in this more 

difficult classification situation. 
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Fig. 10: Deviation between true and predicted (via non-validated automatic classification) relative class abundances for the September (A, B) and December 
(C, D) surveys, for the fully-adaptive DOC implementation and for classification of all samples with the baseline model (no adaptation). Results for two 
replicates are shown for each survey. Circle size indicates true relative abundance. 
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The fact that high recall was achieved for the diatom, copepod and some dinoflagellate 

classes, and that poor precision only occurred in some rather minor classes, makes the DOC 

useful for research questions addressing abundant plankton taxa. These can include analyses 

on the amount of potential plankton food available to larval fish, which combine classification 

with length measurements on the plankton items to calculate taxon-specific biomass estimates 

(e.g. Kiørboe, 2013; Menden-Deuer & Lessard, 2000). A high classification success on 

abundant classes thus enables a rapid estimation of the larger part of planktonic biomass, 

while low classification success on more rare classes does not influence biomass estimation 

particularly strongly. The distribution of classification performance over classes thus also 

shows that the DOC is particularly useful for broad quantitative analyses on the plankton 

community. It is not particularly well suited for qualitative surveys e.g. intended to assess the 

biodiversity of a certain marine area, which naturally require a classification with higher 

taxonomic resolution. Still, the DOC can in theory also facilitate expert-based high-level 

classification, as a performance improvement on a broad taxonomic scale will help the expert 

to better focus on the finer-scale classification of the taxon of interest. However, this would 

require the usage of different imaging devices, since FlowCam image resolution only allows 

for broad taxonomic classification even by experts (sensu Álvarez et al., 2014). 

It should be pointed out that the viability of our DOC over longer series of survey samples 

might not necessarily follow the trends observed on the classification trajectories presented 

here. While the fact that performance improvements were observed in both the September and 

December transects indicates stability of the DOC pipeline under various ecological conditions, 

it remains to be seen how its performance behaves beyond the 18 stations per survey covered 

here. It is possible that at some point, a manual re-design of the training set might be necessary 

due to very drastic changes in the plankton community (note that the DOC approach does not 

discard training images during adaptation, leading to an increase in complexity of the training 

dataset over samples). Also, the continued decreasing of classification thresholds might at 

some point prove detrimental to classification precision due to many wrong classifications 

appearing in class folders instead of the “uncertain-classifications” folder. Some indications of 

deteriorating performance in the final survey samples (precision in September samples, recall 

in December samples) were observed in our case study, which might be an indication of the 

effects mentioned. For applied usage, we suggest to monitor the performance trajectory of the 

DOC in order to determine whether manual adjustments are advisable. Additionally, depending 

on the performance level found acceptable and the perceived chance of strong community 

changes, it may not be necessary to implement the DOC adaptation scheme after each 

processed sampled. It is up to the user to decide on a good trade-off between the performance 

improvement achieved through model adaptation and the time saved by not implementing the 

DOC adaptation steps.  
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The DOC pipeline proposed by us is not the first attempt at continually maintaining or improving 

model performance as new plankton samples are classified and validated in applied use: 

Gorsky et al. (2010) initially made use of a plankton training set not specifically built for their 

study, and obtained improved classification results once adding validated images from their 

samples and training a model on this. They continued this procedure until further improvements 

became marginal. Li et al. (2022) systematized a scheme of human-model interaction, where 

validated images are added to the training set during applied usage of the classifier. However, 

neither study has explicitly quantified performance decay nor the effect of training-set updates 

over a spatial trajectory as presented here. Also, both used expert validation to grow the 

training set in a rather non-systematized manner, and classification thresholds (to accept or 

discard a model classification as “uncertain”) were not adapted. While a non-systematized 

growing of the training set achieved marked performance improvements in both studies, our 

work shows that careful systematized training-set updates and adaptation of classification 

thresholds initially improve and then maintain classification performance without the need for 

continuously adding all validated images, which would lead to increased training durations. 

Our DOC application joins a growing number of pipelines and applications designed to facilitate 

the embedding of machine-learning models into the workflow of plankton classification. These 

include the Prince William Sound Plankton Camera (Campbell et al., 2020), the Scripps 

Plankton Camera system (Orenstein et al., 2020) and the MorphoCluster clustering workflow 

(Schröder et al., 2020). All of these applications incorporate a step of manual validation in the 

workflow; however, none of them incorporate a dedicated standardized scheme for dynamic 

adaptation, as proposed by our study. The MorphoCluster is an exception to the super-vised 

classification schemes presented in most other applications, since it makes use of an 

unsupervised clustering algorithm that groups the plankton images in a data-driven manner. It 

therefore appears not to require a dedicated dynamic adaptation; however, the interpretation 

of the resulting clusters may be less straight-forward than the expert check of a machine 

classification. While the MorphoCluster appears particularly useful for in-situ monitoring 

studies that focus on fine-resolution taxon recognition, we assume that our DOC may be of 

more convenient use in quantitative studies that primarily address a fixed set of broad 

taxonomic groups. 

Compared to other applications that often present an end-to-end system from field sampling 

to classification, and related hardware, our DOC covers a relatively small part of the overall 

workflow. Future extensions of our application would primarily address a more direct coupling 

to size measurements on the plankton images (used, together with a class-specific conversion 

factor, to calculate the biomass of every plankton item (e.g. Kiørboe, 2013; Menden-Deuer & 

Lessard, 2000)), as well as to the preceding photography in the FlowCam. Further extensions 
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could include the incorporation of automatic performance monitoring in order to give advice to 

the user of when a manual re-design of the training set or a manual adaptation of classification 

thresholds might be necessary. 

Conclusions 

Our DOC proves to be a capable tool for adapting a classifier model on a plankton community 

changing over the spatial and temporal dimension. Our method continually delivers high or 

highest performance compared to non- or less-adaptive approaches, especially for abundant 

classes, though is subject to sample-specific variability in the difficulty of classification. 

Combined with the streamlining of the adaptation process and the availability of an easy-to-

operate user interface, the DOC serves as an aide for quantitative plankton analysis on a broad 

taxonomic level that performs reliably under changing community patterns. 
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in autumn and winter from 2013-2019 
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Abstract 
Plankton dynamics in temperate ecosystems are mainly studied during the productive 

seasons, whereas less is known for winter, particularly for microplankton. Using image-based 

techniques, we investigated the North Sea micro- and mesozooplankton community 

composition, abundance and size structure (55-2000 µm) during autumn- (Buchan/Banks 

area) and wintertime (Downs area) between 2013 and 2019. Community diversity (broad taxa) 

was similar across years and areas, but abundance was lower in Downs compared to 

Buchan/Banks for most microplankters (e.g. Tripos spp. and ciliates) and, to a lower degree, 

for mesozooplankton (e.g. copepods). Average slopes of normalized abundance size spectra 

(NASS) reflected these spatial differences with steeper slopes (i.e. lower contribution of large 

organisms) in Downs (-1.67) compared to Buchan/Banks (-1.45). Spatiotemporal changes in 

the planktonic community and their potential environmental drivers were examined using a 

redundancy analysis (including taxonomy and size) and a correlation analysis using NASS 

slopes (size only). Both approaches highlighted the importance of water mass properties (e.g. 

salinity, temperature, turbidity) in shaping the spatiotemporal variability of the plankton, 

although the amount of explained variance differed between approaches (11 vs. 46%). Our 

results contribute to a better understanding of standing stock of plankton and its relationship 

with environmental drivers during winter in a temperate shelf sea, highlighting how novel 

solutions to plankton monitoring (i.e. automated routines implemented in fisheries surveys) can 

provide much-needed information for models of lower trophic levels or plankton consumers. 

Keywords: plankton dynamics, microplankton, mesozooplankton, size spectra, image-based 

analysis, FlowCAM, Zooscan 
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Introduction 
 

Plankton is the foundation of the marine food webs including the productivity of all higher 

trophic levels (Ryther 1969). Besides being the main energy source for higher trophic levels, 

some planktonic organisms can serve as bioindicators of ecosystem state, while others can 

pose a threat to other marine organisms (e.g., red tides) (McQuatters-Gollop et al. 2009, 

Bedford et al. 2018, 2020b). Climate-related changes in plankton communities can result in 

cascading effects on the entire ecosystem (Murphy et al. 2020, Sguotti et al. 2022). While 

extensive research is available on plankton phenology, abundance and community 

composition during relatively productive seasons in temperate marine ecosystems, much less 

is known about their dynamics during seasons of low productivity (e.g. wintertime). This 

accounts especially for the microzooplankton, including both protists (ciliates and 

dinoflagellates) and small metazoans (e.g. copepod nauplii, meroplanktonic larvae) between 

20 to 200 µm in size. This small size fraction of plankton plays an significant role in the 

ecosystem as key consumers of primary production, important players in the microbial loop, 

and as potentially abundant prey resource for mesozooplankton and fish larvae (e.g. Calbet 

2008, Montagnes et al. 2010). During periods of low light intensity and nutrient limitation, 

conditions that are not favorable for the growth and productivity of large phytoplankton cells, 

metazoan abundance can be low (Montagnes et al. 2010) and the trophodynamic importance 

of protists and other players in the microbial loop can be enhanced (Fileman et al. 2011). Thus, 

monitoring comprehensive plankton dynamics during periods of low productivity can be critical 

to understanding the factors shaping seasonal changes in marine ecosystems. 

The majority of the broad-scale zooplankton monitoring focuses on mesozooplankton (the size 

fraction between 200 and 2000 µm) (e.g. Doray et al. 2018, Yebra et al. 2022), but overlooks 

the microzooplankton (20-200 µm). For example, the Continuous Plankton Recorder (CPR), 

one of the longest ongoing plankton sampling programs starting in the 1930s in the eastern 

North Atlantic and now conducted in many regions worldwide (e.g. western North Atlantic, 

Australia), provides large-scale coverage on the abundance (semi-quantitative) and 

distribution of zooplankton (>270 µm) in surface waters (Richardson et al. 2006, Dippner & 

Krause 2013). In contrast, microzooplankton is sampled either with limited spatially extend, for 

instance at fixed monitoring stations (e.g. Eloire et al. 2010, Löder et al. 2011), or constrained 

to single cruises mainly during  the productive season (e.g. Dolan et al. 2021, Yang et al. 2021). 

The reason behind the lack of long-term, large-scale microzooplankton data is likely due to 

logistical challenges in sampling (i.e. size range between water samples and regular plankton 

nets) and sample preservation (i.e. lugol-preserved samples have a shelf-life of 6-12 months; 

Gifford & Caron 2000, Calbet et al. 2001). Therefore, there is a need to further develop easy-

to-use, time-effective routines for microzooplankton sampling and processing in order to better 



  Chapter 3: Plankton Dynamics 

116 
 

understand general plankton dynamics, food webs and build more robust ecosystem models 

(Calbet 2008, Lombard et al. 2019, Lehtiniemi et al. 2022). In this sense, implementing 

advanced methods (e.g., image analysis, metabarcoding) to track temporal and spatial 

changes in the entire planktonic community composition and abundance is now the goal of 

many monitoring programs embracing an ecosystem-based approach for fisheries and 

management (Lombard et al. 2019, Vazquez et al. 2021). 

Over the past decades, the automatic processing of plankton organisms using image analysis 

technologies and machine learning algorithms has exploded (Goodwin et al. 2022). While 

traditional identification of preserved samples via microscopy offers a high taxonomic 

resolution, it is a labor intensive, time consuming and costly process (Benfield et al. 2007). It 

is also error-prone due to operator fatigue or human bias (e.g., self-consistency can be < 80% 

in difficult identification tasks) (Culverhouse et al. 2014). Automated image-based methods 

can alleviate some of these issues, allowing the processing of higher number of samples, albeit 

at a lower taxonomic resolution (i.e. rarely to species level). The outcomes of these methods 

(e.g. Flow Cytometer and Microscope (FlowCAM) or ZooSCAN) in terms of abundance, 

biomass and seasonal variability of phyto- and zooplankton are comparable with microscope 

counts, especially for the most abundant classes (Álvarez et al. 2014, Naito et al. 2019). These 

digital imaging techniques also have the advantage that they automatically provide estimates 

of the size of individual planktors.  

Given the functional complexity of the zooplankton community and methodological difficulties 

to estimate its diversity, alternative metrics based on size have been used to represent this 

diversity in the food-web studies and ecosystem models. A size-spectra approach, introduced 

by Sheldon (1972), is a widely used approach to investigate the spatiotemporal variability of 

zooplankton, predator-prey interactions, and to model the productivity of the higher trophic 

levels feeding on zooplankton (e.g. Serra‐Pompei et al. 2022). The zooplankton size-spectra 

is often reported in terms of the Normalized Abundance Size Spectra (NASS) or Normalized 

Biomass Size Spectra (NBSS) (Sprules & Barth 2016). The slope of NASS is generally close 

to -2.0 (-1.0 for NBSS) and can indicate bottom-up or top-down control of the marine 

ecosystem (Silvert & Platt 1978, Zhou 2006a). The intercept of these size spectra reflects 

ecosystem productivity and varies substantially between oligotrophic and highly productive 

ecosystems (Zhou 2006a, Ye et al. 2013). 

The North Sea is a temperate shelf ecosystem with pronounced seasonal changes in primary 

and secondary productivity (Krause et al. 2003). Long-term time-series are available for many 

species and groups of plankton, fishes and marine mammals that serve as a basis for a regular 

assessment of the North Sea environmental status (ICES, 2022). In terms of plankton, weekly 

time series spanning several decades are available for phyto-, micro- and zooplankton at some 
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fixed stations, such as Plymouth L4 (Eloire et al. 2010, Lehtiniemi et al. 2022) or Helgoland 

Roads (e.g. Pitois et al. 2009, Widdicombe et al. 2010). Additionally, time series with a broader 

spatial scale, such as the CPR, are available for mesozooplankton groups,  such as copepods, 

euphausiids and meroplankton (e.g. Richardson et al. 2006, Dippner & Krause 2013).  

Thanks to these time series, it has been possible to identify long-term changes in the North 

Sea, such as regime shifts (e.g. in 1988), a general decrease in primary productivity and 

holoplankton, and poleward range shift in cold-water copepod species (e.g. Calanus 

finmarchicus) leading to an increased relative contribution of small-sized, warm-water species 

(e.g. Calanus helgolandicus) (for a review see Sguotti et al. 2022). Despite being a well-studied 

ecosystem, there is a general lack of knowledge on plankton dynamics during wintertime for 

most temperate seas. Besides providing a better understanding of the dynamics of lower 

trophic levels, this knowledge is essential to assess potential food limitation in higher trophic 

levels, e.g. early life stages of commercially important winter-spawning fishes such as Atlantic 

herring (Clupea harengus) and European plaice (Pleuronectes platessa). This is especially 

relevant because of the relatively low recruitment success that, for example herring 

experienced during the most recent decade (ICES, 2022), which has been related to warming 

and changes in prey type and abundance (see Alvarez-Fernandez et al. 2015 and references 

therein). 

In this study, we investigated the North Sea micro- and mesozooplankton community during 

autumn and wintertime between 2013 and 2019. Samples were obtained during a routine 

fisheries survey, which covered the traditional spawning grounds of Atlantic herring in the 

western (Buchan/Banks in September, autumn) and southern North Sea (Downs in late 

December, winter). Our objectives were i) to describe spatiotemporal changes in the plankton 

community composition, abundance, and size structure in both sampling areas, ii) to identify 

environmental drivers of changes in the size composition of plankton, and iii) to identify 

environmental drivers of changes in plankton diversity that included the broad taxonomic and 

functional information obtained from image-based analysis (FlowCAM and ZooSCAN). Our 

results provide essential information on the standing stock of plankton and their environmental 

drivers during the low productivity season in the North Sea. We discuss the benefits and 

drawbacks of the sampling methods and statistical approaches, as well as provide 

recommendations for future zooplankton monitoring in the North Sea and other temperate 

coastal systems. 
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Materials & Methods 
 

Sample collection 

The plankton samples were taken on board the Dutch research vessel Tridens within the 

framework of the International Herring Larval Survey (IHLS), coordinated by the International 

Council for the Exploration of the Sea (ICES). The Dutch surveys cover the three spawning 

grounds of the North Sea Autumn Spawning herring: Buchan and Banks in September and 

Downs in late December (Fig. 1). On each station, ichthyo-and mesozooplankton were 

sampled using a modified GULF VII net (280 µm mesh size; Nash et al. 1998), which had 

attached a PUP-net (55 µm mesh size) for micro(zoo)plankton sampling (Fig. 2). The double-

net was towed in double oblique hauls at 5 knots down to 5 m above sea floor to cover the 

whole water column. Once onboard, samples from both nets were preserved in 4% 

formaldehyde. Out of the sampling grid, six transects in Buchan/Banks and three transects in 

Downs were chosen for plankton analysis in this study (Fig.1), representing the onshore-

offshore and north-south gradients. Typically, 25-35 samples per IHLS survey were available, 

although in three Downs surveys <10 samples along the predefined transects were sampled 

(Fig. S1).  
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Fig. 1. Selected transects from the International Herring Larval Survey in the Buchan/Banks (September 
/ autumn; red dots) and Downs spawning grounds (December / winter; cyan dots) analyzed in this study. 
Arrows indicate the two subareas in the Downs spawning grounds (English Channel and Southern 
Bight). See sampling stations per year for each specific year in Fig. S1.  

 

Sample analysis 

 Microplankton samples - FlowCAM  

Once in the laboratory, the microplankton samples from the PUP net were rinsed and sieved 

through a 300-µm mesh. The fraction below 300 µm was retained and diluted (approx. 4000 

particles mL-1; 50-500 mL, depending on the density of each sample).  

Subsequently the samples were analyzed using the FlowCAM (Yokagawa Fluid Imaging, USA; 

Sieracki et al., 1998) with a 300 µm flow chamber (i.e. upper size limit for the particles 

analyzed). The amount of sample to process was set according to the particle concentration, 

aiming at approx. 10,000 pictures per sample containing a minimum of 10% living organisms 

(generally >30%). Subsequently, images were classified using the workflow principle of the 

dynamic optimization cycle (Conradt et al. 2022). Pictures from living organisms were grouped 
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into 11 taxa sets: bivalve, tripos, ciliate, copepod, diatom, dinoflagellate, dinophysis, 

foraminifera, gastropoda, protoperidinium, and silicoflagellate, which included species, genus 

or families, with class as the lowest taxonomic resolution (Fig. S2). Note that the metazoan 

groups from the PUP net samples (bivalves, gastropods, and copepods) refer to their larval 

stages (e.g. nauplii in the case of copepods). Due to the distinct differences in shapes, some 

specific genera were separated from the general class, e.g. tripos, dinophysis and 

protoperidinium were considered separately from the general dinoflagellate class. 

Appendicularia from the PUP net samples were excluded from the analysis due size 

measurement issues related to their transparency. Likewise, pictures of unknown organisms 

and non-living particles (such as detritus, sand, fibers etc.) were excluded from further analysis. 

Note that the relative amount of detritus within each sample was calculated per station and 

used as an index of turbidity (in %).   
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Fig. 2. Flowchart of the methodology encompassing field sampling and data analyses in this study. 
Numbers indicate section numbers in the text.    

 

 Mesozooplankton samples - ZooSCAN 

Mesozooplankton samples were subsampled using 1/16 to 1/1024 of the original sample 

following Motoda (1967) and one subsample per station was placed into the ZooSCAN v.2 

(Gorsky et al. 2010). The images captured by the ZooSCAN were classified automatically using 

ImageJ software (v. 1.41o) with ZooProcess (v.7.19) and the Plankton Identifier software 

(v.1.3.4), followed by a final manual validation step. Organisms were grouped into 10 taxa sets: 
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appendicularia, chaetognatha, cladocera, copepods, diatoms, echinodermata, gastropods, 

jellies, malacostraca, and polychaeta (Fig. S2). The metazoan groups echinoderms, 

malacostraca, and gastropods, refer to their larval stages. As for microplankton, we treated 

classes that were easily distinguishable due to their shape as separate taxa sets. For instance, 

we pooled all gelatinous zooplankton except chaetognatha and appendicularians in the jellies 

taxa (mainly ctenophores).  

 Environmental data & larval fish 

Environmental variables (water temperature, salinity) were recorded by a CTD (conductivity, 

temperature, depth) profiler (Seabird SBE 911) attached to the Gulf VII net. For further 

analysis, salinity and temperature were averaged over the upper 20 m of the water column. 

Turbidity was calculated, based on the amount of detritus contained in each sample (see 

2.2.1). Herring larvae in the GULF VII net were counted and measured to the nearest 

millimeter. Further technical and methodological details for the larval handling and the survey 

can be found at Schmidt et al. (2009) and references therein.  

 Data analysis and statistics  

Micro- and mesozooplankton datasets were combined to analyze the planktonic community 

between 55 and 2000 µm. Classes that were present in both methods (copepods, gastropods 

and diatoms) were merged together (Fig. S2). To avoid overlapping in size classes and double 

counts, taxa <300 µm were excluded from the mesozooplankton dataset.  

The biovolume (BV, µm³) of  each planktonic organism was calculated using a modified version 

of the formula proposed by Saccà (2016) 

BV (µm³) =
4

3
∗ √𝜋−1 ∗ 𝐴𝑅 ∗ 𝐴3  (1) 

where AR is the aspect ratio (ratio between the width and the length) and A is the area (µm²) 

of each organism. Both values were determined by the FlowCAM and ZooSCAN. The BV was 

then used to calculate the carbon biomass for the different plankton taxa using taxa-specific 

equations (Table S1; Menden-Deuer et al. 2001, Kiørboe 2013). Note that sizes (width and 

length) were not corrected by the potential effect of fixation.  We are aware of the fact that the 

fixation can cause swelling, shrinking or even the loss of certain organisms (e.g. Calbet and 

Saiz 2005), and discuss this topic below (see section 4.1).  

Hierarchical cluster analysis (HCA) was applied to detect changes in the plankton community 

across seasons/areas. Abundance data was scaled using the triple-square-root transformation 

to reduce the data skewness (Legendre & Gallagher 2001). The Euclidean Distance and the 
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Ward linkage was calculated on the transformed abundance data per species and survey 

(Buttigieg & Ramette 2014, Murtagh & Legendre 2014). Additionally, we conducted a SIMilarity 

PERcentages (SIMPER) analysis (Clarke, 1993) to determine the taxonomic groups that  

contributed most to the dissimilarities between the two spawning grounds. 

To investigate the changes in the plankton size-structure of the plankton community, NASS 

were constructed for each station. All zooplankton organisms were grouped into size classes 

based on their BV (irrespective of taxa), using a doubling or octave scale (Sheldon et al. 1972, 

Blanco et al. 1994). Size classes with low counts (0.01% of all records) were excluded, leading 

to classes ranging between size 14 (BV ~1.6 x105 µm3) and 33 (BV ~8.5 x109 µm3). The 

total abundance of each size class was divided by its width (in terms of BV) in order to 

normalize the size-spectra. A linear weighted regression was fitted to the obtained NASS: 

log2β(BV) = a log2 BV + b    (2) 

where a and b were the slope and the intercept of the NASS β (BV), respectively. Weights of 

the regression were proportional to the zooplankton abundance in the corresponding BV 

classes. 

The influence of environmental drivers on the plankton community was explored using two 

approaches: a correlation analysis on the size-resolved dataset (NASS slopes) and a 

redundancy analysis (RDA) which used the taxa- and size- resolved plankton community 

structure (Legendre 2001). Prior the RDA approach, the abundance data was transformed 

after Hellinger (Legendre & Gallagher 2001). The environmental variables used in both 

approaches included water temperature and salinity averaged over the upper 20 m, distance 

to shore (m), depth (m) and turbidity (%). Moreover, we used the larval herring abundance (ind 

m-3) for each station as an additional explanatory variable. In the size only approach, Pearson 

correlation (Pearson 1896) was used to identify the relations between the potential 

environmental drivers and NASS variability. An ANalysis Of VARiance (ANOVA) was used to 

test the significance of the explanatory variables on the Principle Components (RDA-PC) of 

the abundance data.  

All analyses and graphical representations were performed using the R software (R core Team, 

2022). The RDA analysis was performed using ‘ade4’ package (Bougeard & Dray 2018) and 

the HCA with the ‘gplots’ package (Warnes et al., 2022).  
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Results 
 

 Plankton community composition 

In total, 18 taxonomic groups of plankton were identified across both areas. Most taxa were 

present in all surveys, except two Downs surveys in 2013 and 2018 with reduced spatial 

coverage (Fig. 3). The hierarchical cluster analysis clearly separated the planktonic 

communities in Buchan/Banks and Downs (Fig. 3). The SIMPER analysis revealed that the 

areas were 22.7% different from each other with most taxonomic groups being significantly 

more abundant (p< 0.05) in Buchan/Banks than Downs (Table S2). Tripos, dinophysis, 

silicoflagellates, ciliates, protoperidinium and gastropod larvae had higher abundances in 

Buchan/Banks, being responsible for >62% of the dissimilarity between the areas/seasons (in 

bold in Fig. 3, Table S2). Diatoms, bivalves and dinoflagellates had similar abundances in both 

areas, and only foraminifera were more abundant in Downs.  

 

 

Fig. 3. Clustering and associated heatmap of the abundance of different micro- and mesozooplankton 
taxa (x-axis) for each of the analyzed North Sea cruises (y-axis indicating location, Downs or 
Buchan/Banks, and year). In the heatmap the colors blue (low abundance) to red (high abundance) 
indicate the strength of association by showing the frequency of triple-square-root transformed 
abundance (ind 1/8 m-3) per taxa in each year and area. White color indicates the missing taxa. The 
dendrogram clusters together cruises from each area. Note the asterisk (*) indicate years with the 
reduced spatial coverage (see Fig S1). Taxa sets mainly responsible for dissimilarities between 
spawning grounds are written in bold.  
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Overall, microplankton taxa (including nauplii) contributed >98% to the total plankton 

abundance of which diatoms and tripos dominated (>50% in Buchan/Banks and 90% in 

Downs) (Table S3, S4). Copepod nauplii were less abundant (approx. 4-5% of the total 

microplankton abundance, Table S3, S4), but they dominated in terms of biomass (27% of the 

total microplankton biomass in Buchan/Banks vs 41% in Downs, Table S5, S6). For the 

mesozooplankton, gastropods and larger copepods dominated the community in terms of both 

abundance and biomass, contributing on average 10 % (30 %) of total mesozooplankton 

abundance and 38% (43%) of total biomass in Buchan/Banks (Downs). The average 

abundance ratio of microplankton to mesozooplankton was 90:1 for Buchan/Banks and 235:1 

for Downs (Table S3, S4). Due to the differences in the planktonic community shown with the 

HCA, we further analyzed both sampled areas/seasons separately. 

 Environmental drivers of plankton abundance and distribution 

Environmental conditions were distinct and showed clear spatial patterns in both studied 

areas/seasons. We provide more details on the environmental conditions in supplementary 

materials (Fig. S3), and focus here only on their relations with the planktonic community.  

In the Buchan/Banks area, the six explanatory variables used in the RDA explained 11.4% of 

the total variation in plankton abundance, whereby the half of this covariation (6%) was 

summarized in the first Principal Component of the abundance data (RDA-PC1, Fig. 4A). 

Middle sized gastropods, ciliates and chaetognatha (size classes 18-22) had the highest 

positive scores in RDA-PC1 and small silicoflagellates, dinophysis and jellies (size class 14-

17) had the highest negative scores (Fig. 4A, 4B). Larger size classes (26-33) did not show 

any distinct pattern and their RDA-PC1 scores ranged between -0.1 and 0.1 (Fig. 4B). The 

observed spatial pattern in the Buchan/Banks area (Fig. 4C) was consistent over the sampled 

years, except for 2016, which appeared to have exceptionally low salinity, resulting in negative 

scores for most stations, associated with higher abundance of silicoflagellates, dinophysis and 

jellies (Fig. 4D). All six explanatory variables were significant (ANOVA, p<0.001), but salinity, 

turbidity, and bottom depth had the highest positive scores, mainly in northern stations (Fig. 

4C, 4E).  
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Fig. 4. Results of the redundancy analysis (RDA) analyzing the effect of five environmental drivers 
(distance to shore (dist), turbidity (turb), salinity (sal), temperature (temp), and bottom depth (depth)) 
and herring larvae abundance (her.larv) on the zooplankton community composition and distribution 
during the Buchan/Banks surveys (September/autumn). Each subpanel displays the scores of the 
Principal Component 1 (PC1) among taxonomic groups and the explained variability (A), the size 
classes with the different types indicated in dark blue (FlowCAM), light blue (ZooSCAN) and purple 
(both) (B), The map of the stations’ score shows its spatial variation, with the stations coordinates being 
jittered to avoid overlap among years (C). The temporal variation of stations’ score is represented with 
a bold black line for the median, dark grey area for the inter quartile range, and light grey area for the 
95% quantiles (D). Pearson correlation coefficient between the PC1 and the six explanatory variables: 
herring larvae abundance (her.larv), distance to shore (dist), salinity (sal), temperature (temp), turbidity 
(turb) and bottom depth (depth) including the significance lines (*** p < 0.001, * p < 0.05). Color intensity 
is proportional to the correlation coefficients (brown – negative, cyan – positive) and shows the impact 
on the respective station (E). 

 

In the Downs area, the RDA explained in total 10.6% of the variability in plankton abundance 

within the analyzed period, of which 33.5% (3.6% of total variation) was framed within the RDA-

PC1 (Fig. 5A). Large chaetognatha (size class 30-31), tripos and dinoflagellates were more 

abundant in the English Channel, while medium to large sized copepods (size class 26-28), 

polychaeta and jellies were more abundant in the Southern Bight stations and had the highest 

positive scores (Fig. 5A, 5B). Most distribution of scores per size classes crosses zero (except 
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classes 14, 15, 19 and 22) and the absolute value of the median score per size class is 

between -0.2 and 0.2; hence, there was no pronounced effect of most size classes on RDA-

PC1 (Fig.5B). The described west-east pattern was detected in all years with full spatial 

coverage (2016, 2017 and 2019) (Fig. 5C and 5D). Four of the six explanatory variables (i.e 

temperature, salinity, depth and turbidity) had a significant effect on RDA-PC1 (ANOVA, 

p<0.001, Fig. 5E). Overall, temperature, salinity and depth had the highest negative scores, 

generally towards the southwestern stations (Fig. 5E).  

 

Fig. 5 Results of the redundancy analysis (RDA) analyzing the effect of five environmental drivers 
(distance to shore (dist), turbidity (turb), salinity (sal), temperature (temp), and bottom depth (depth)) 
and herring larvae abundance (her.larv) on the zooplankton community composition and distribution 
during the Downs surveys (December/winter). Each subpanel displays the scores of the Principal 
Component 1 (PC1) among taxonomic groups and the explained variability (A), the size classes with 
the different types indicated in dark blue (FlowCAM), light blue (ZooSCAN) and purple (both) (B), The 
map of the stations’ score shows its spatial variation, with the stations coordinates being jittered to avoid 
overlap among years (C). The temporal variation of stations’ score is represented with a bold black line 
for the median, dark grey area for the inter quartile range, and light grey area for the 95% quantiles. 
Years with + indicate incomplete sampling (D). Pearson correlation coefficient between the PC1 and the 
six explanatory variables: herring larvae abundance (her.larv), distance to shore (dist), salinity (sal), 
temperature (temp), turbidity (turb) and bottom depth (depth) including the significance lines (*** p < 
0.001, * p < 0.05). Color intensity is proportional to the correlation coefficients (brown – negative, cyan 
– positive) and shows the impact on the respective station (E). 
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Larval herring abundance, used as a predation index, had a significant effect on the RDA-PC1 

in Buchan/Banks (ANOVA, p<0.001) but not in the RDA-PC1 Downs (ANOVA, p>0.05). In all 

cases, it had a lower score then other environmental variables tested, and, therefore, the 

lowest effect on the plankton community (Pearson correlation coefficient, r= > -0.2).  

 Plankton size structure and environmental drivers 

The total mean NASS slope for Buchan/Banks was -1.45 (Fig. 6A), with the highest frequencies 

between -1.2 and -1.6 (Fig. 6B). The range of NASS intercepts was between 5 and 30 

(Supplements 2). The correlation analysis using the NASS slopes in Buchan/Banks showed 

only slight tendency to flatter slopes (> -1.4, light to dark-orange dots in Fig. 6C) at the northern 

stations (indicating a higher abundance of larger organisms). Mean NASS slope was steeper 

in 2014 and 2016 (<-1.6) than in 2017, 2018 and 2019 (> -1.4) (Fig. 6D). The NASS slopes in 

Buchan/Banks showed the strongest correlations with salinity and turbidity (r =0.57 and r 

=0.58, respectively, p < 0.001), but all other environmental variables, except herring larval 

abundance, were significant as well at p<0.05 (Fig. 6E). The temporal distribution of the NASS 

slopes in Buchan/Banks reflected well the patterns captured in the RDA-PC1 scores. The 

amount of variability in the NASS slopes explained by the environmental variables in 

Buchan/Banks was 46% (adj. R²).  
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Fig. 6 Mean normalized abundance size spectra (NASS) calculated for all stations in Buchan/Banks 
survey in September/autumn (A). The dots in light blue represents size classes sampled by FlowCAM, 
in dark blue by ZooSCAN. The size of the dots represents the relative abundance of the size class, used 
in the weight linear regression to derive the slope of the size spectra. Information on the goodness of fit 
(R2 = 0.96), slope (Sl= -1.45) and intercept (In =19.91) are detailed. (B) Histograms showing the 
distribution of individual slopes. (C) The map of the NASS slope depicted in color shows its spatial 
variation, with the stations coordinates being jittered to avoid overlap. (D) The temporal variation of 
NASS slope is represented with a bold black line for the median, dark grey area for the inter quartile 
range, and light grey area for the 95% quantiles. (E) Pearson correlation coefficient between the slope 
and the six explanatory variables: herring larvae abundance (her.larv), distance to shore (dist), salinity 
(sal), temperature (temp), turbidity (turb) and bottom depth (depth) including the significance lines (*** p 
< 0.001, ** p < 0.01). Color intensity is proportional to the correlation coefficients (purple – negative, 
orange - positive).  

In Downs, the mean NASS slope was -1.67 (Fig. 7A), with highest frequencies between -1.9 

and -1.6 (Fig. 7B). The range of NASS intercepts was between 15 and 30 (Supplements 2). In 

years with full spatial coverage (2016, 2017, 2019), the NASS slopes in Downs showed a 

gradient with flatter size spectra (> -1.4) in the northeastern stations and steeper slopes (< -

1.6) in the southwestern stations (Fig. 7C and 7D). The NASS slopes in this area showed a 

high negative correlation with temperature, salinity and depth (r = -0.52, r = -0.49, and r=-0.34 

respectively, p < 0.05) (Fig. 7E), while turbidity showed the highest correlation (positive) with 

the NASS slopes (r =0.58, p < 0.05) (Fig. 7E). Similar to Buchan/Banks, the temporal 
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distribution of the NASS slopes in Downs followed a similar pattern to that observed in the 

RDA-PC1 scores. Note that the amount of variability in the NASS slopes explained by the 

environmental variables in this area was 55% (adj. R²).  

 

 

Fig. 7 Normalized abundance size spectra (NASS) calculated for the complete dataset for Downs survey 
in December/ winter (A). Information on the goodness of fit (Rsq = 0.98), slope (Sl=-1.67) and intercept 
(In=24.15) are detailed. The size of the dots represents the relative abundance of the size class, used 
in the weight linear regression to derive the slope of the size spectra. The dots in light blue represents 
size classes sampled by FlowCAM, in dark blue by ZooSCAN. (B) Histograms with the distribution of 
slopes. (C) The map of the stations’ slope depicted in color shows its spatial variation, with the stations 
coordinates being jittered to avoid overlap. (D) The temporal variation of stations’ slope is represented 
with a bold black line for the median, dark grey area for the inter quartile range, and light grey area for 
the 95% quantiles. Years with + indicate incomplete sampling. (E) The Pearson correlation coefficient 
between the slope and the five explanatory variables: herring larvae abundance (her.larv), distance to 
shore (dist), salinity (sal), turbidity (turb) and bottom depth (depth) including the significance lines (*** p 
< 0.001, * p < 0.05). Color intensity is proportional to the correlation coefficients (purple – negative, 
orange - positive). 
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Discussion 
 

 Spatio-temporal variability in plankton community composition  

 

Periods of low productivity in temperate marine ecosystems, such as late autumn and winter, 

have received less attention in plankton ecology studies as the more productive seasons (i.e. 

spring and summer). During those periods, the role of microzooplankton as an energy mediator 

is expected to be enhanced (Calbet & Saiz 2005), but there is still limited broad-scale data 

available to explore the variability and the trophodynamic role of this group, even in well-

studied marine ecosystems (Bils et al. 2019). The present study provides broad-scale survey 

results of the autumn and winter standing stocks of micro- and mesozooplankton in the western 

and southern North Sea during seven years. 

Within the studied areas and years, the planktonic community was homogeneous in terms of 

the relative contribution of different taxa during autumn and winter, but the absolute abundance 

of organisms in almost all taxa (except diatoms, dinoflagellates and bivalves) was lower during 

winter. The observed broad range in abundances was consistent with other studies (mean 

range 182.9 – 3825.4 ind m-3, Table S7). For example, the observed total plankton abundance 

in the English Channel during winter was within the range of previously reported values (354.9 

vs 266.6 ind m-3 in Dudeck et al. 2021, and 1500.0 ind m-3 in Eloire et al. 2010, Table S6). The 

same applies to specific taxonomic groups. For example, the mean abundance of copepod 

nauplii in autumn and winter (55 and 38.1 ind L-1, respectively) was similar to values reported 

at the Dove station (4.0 to 20.0 ind L-1 in autumn, 15.0 to 43.0 ind L-1 in winter ; Pitois et al. 

2009). It is important to note that the overall abundance in Buchan/Banks was slightly lower 

than reported from other studies in the North Sea  (4172.9 ind m-3, Eloire et al. 2010) and other 

temperate seas (1239.0 ind m-3 in Georges Bank, Morse et al. 2017), despite using a similar 

sampling method. This is mainly largely attributed to two years of particularly low plankton 

abundance (see e.g. 2013 and 2019, Table S3). This is a good example of the potential pitfalls 

of short time series, where unusual years can have a great effect on the overall results (e.g. 

Widdicombe et al. 2010). Although total abundances may differ, the relative abundance of 

various groups such as copepods (60 to 80%) agrees with other studies (e.g. Morse et al. 

2017, Tab. S7).  

The sampling method presented here, using two plankton nets simultaneously (mesh size 55 

and 280 µm), has been already proposed as the most adequate approach to capture the entire 

mesozooplankton assemblage, including small copepods (e.g. Oithona spp.) and other small 

metazoans (Calbet et al. 2001).  
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On average, 11% more of the copepodites and adult copepods (>200 µm) were captured in 

the 55-µm plankton net compared to the 280-µm GULF VII alone. The abundance of 

mesozooplankton caught in the GULF net alone was 7.2 times lower when using only a 

traditional 200-µm net versus a combination with a 55 µm net, similar to a previous study (8.1 

times lower, Calbet et al. 2001).  

This finding advocates for the combined use of different mesh-sized nets in large-scale routine 

monitoring programs to gain a more realistic estimate of large microzooplankton and the entire 

mesozooplankton community.  

The average abundance of protists (dinoflagellates and ciliates) obtained in this study was 

between two and six orders of magnitude lower than previously reported for the North Sea 

(Bresnan et al. 2015, Bils et al. 2019; Table S7). This discrepancy is likely due to differences 

in sampling and preservation methods. Those studies sampled protists using Niskin bottles 

and preserved the samples in lugol, whereas a PUP net was used here and the samples were 

fixed in formaldehyde. Mesh filtering of a plankton net can lead up to 60% loss of protists 

(Gifford & Caron 2000), and formaldehyde fixation causes soft-bodied dinoflagellates and 

ciliates to dissolve (Calbet & Saiz 2005). Therefore, it is important to interpret our results for 

protozoa with caution, as our method most probably underestimates their abundance. Among 

the ciliates, tintinnids are the only group able to better withstand various types of preservation 

and filtration (Modigh & Castaldo 2005). For this group, abundances reported here were 

comparable with a previous study in the North Sea (Bils et al. 2019, Table S7).  

 Spatio-temporal variability in the plankton size structure 

Body size is an important ecological trait, which is relatively easy to measure in plankton 

samples, especially via automatic image analysis. These body sizes can be used to build 

zooplankton size spectra (either NASS or NBSS), which can serve as indicators of ecosystem 

status (Blanchard et al. 2017, Atkinson et al. 2021) and are helpful tools identifying alterations 

in the food-web structure (Gorokhova et al. 2016). While NBSS are arguably more common in 

plankton ecology studies (e.g. Sprules & Munawar 1986, San Martin et al. 2006), here we 

chose to calculate NASS over NBSS because i) the biovolume was based on linear measures 

of organisms directly provided by FlowCAM and ZooSCAN, ii) species or genus specific 

conversion formulas between individual biovolume and biomass had to be applied on “broad” 

taxa sets, which might lead to biomass miscalculations; and iii) the calculated NASS and 

associated linear model (Eq. 2) resulted in a higher coefficient of determination (R2= 0.98 

±0.02) than for the NBSS (R2= 0.83 ± 0.11).  

In this study, the average NASS slopes were -1.45 (±0.20 SD) in Buchan/Banks and -1.67 

(±0.18 SD) in Downs. The steeper slopes in Downs during winter indicate lower abundances 
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of larger organisms compared to Buchan/Banks, which were reflected well in the 

microzooplankton:mesozooplankton abundance ration for both areas. NASS intercepts were 

similar in both sampling areas, although Buchan/Banks showed a wider range (5 to 30) 

compared to Downs (15 to 30). If we consider the intercept as a reflection of the primary 

production (Ye et al. 2013), it appears that the production levels are on a comparable levels 

despite the different seasons.   

The NASS slopes reported in this study were below the theoretical value of -2.0 for NASS 

(which translates into -1.0 for NBSS) (Blanco et al. 1994). This theoretical value is based on 

analysis of the whole pelagic community (from picoplankton to fish), and therefore a direct 

comparison is not possible when analyzing a limited size range (Kerr & Dickie 2001). 

Furthermore, comparison with previously reported slopes  must be done with care due to 

various variables, units and axis scaling used within size-spectra approaches (Blanco et al., 

1994; Sprules & Barth 2016). Sampling, counting or preservations methodologies used for 

small-sized organisms here can potentially affect the NASS as well. For instance, NASS slopes 

of phytoplankton samples (3 to 100 µm ESD) from the Cantabrian Sea differed based on the 

preservation and analysis method: -1.77 for samples preserved in lugol and analyzed with 

microscopy vs -1.99 and -2.11 for fresh samples analyzed using the FlowCAM with two 

different imaging modes (in log10 -biovolume; Álvarez et al. 2014). These accuracies need to 

be taken into account when exploring differences across ecosystems or among years and/or 

season (e.g. Zhang et al. 2019), although trends within studies can always be compared. For 

example, steeper NBSS slopes were observed offshore compared to nearshore for nano- and 

microplankton in the southern China Sea (Liu et al. 2021), while mesozooplankton NBSS 

slopes flattenned offshore in the subarctic North Pacific (Kwong et al. 2022). In this latter work 

and others in temperate seas (e.g. Atkinson et al. 2021), NBSS showed a significant 

seasonality, with steep slopes (and lower intercepts in some cases) during the winter. These 

results agree with the steeper slopes reported in our study, although no difference in the 

intercepts was found here. In this sense, it is important to note that there are significant 

differences between both studied areas in terms of seasonality, water mass properties, and 

bathymetric characteristics, among others.  

 Environmental drivers of the plankton taxonomic composition and 
size structure 

 

Salinity, turbidity, depth and distance to the coast were found to be the main drivers of the 

plankton community and size composition in Buchan/Banks in autumn (Figs 4E and 6E), while 

temperature, salinity, depth and turbidity were the main factors in Downs in winter (Figs 5E 

and 7E). Temperature and salinity are known to be related to the water masses and their 
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dynamics, whereas turbidity (defined here as percentage of detritus) is mainly driven by 

processes like river runoff, dust deposition and resuspension of seabed sediments. Both 

studied areas are strongly influenced by the inflow of highly saline Atlantic water and river 

runoff (Lee 1980). In the Buchan/Banks area, Atlantic water flows southward and mixes 

gradually with the less saline North Sea coastal waters influenced by the freshwater discharge 

from Tyne, Tees and Humber rivers (Emeis et al. 2015). No clear temperature gradient was 

observed between the two water masses in autumn (Fig S3) and, therefore, temperature 

appeared to be a less pronounced explanatory variable in both RDA and correlation analysis 

applied to the zooplankton data in this region (Figs 4E, 6E). 

Gastropod larvae and chaetognaths were found in higher abundances at the northern stations 

of Buchan/Banks, in the area strongly influenced by the Atlantic inflow. This agrees well with 

previous findings of  the gastropods Spiratella retroversa, Clione limancina, and the 

chaetognath Sagitta elegans being characteristic taxa in the northwestern North Sea (Vane 

1961, Bone et al. 1987). Tintinnids (the major group in the ciliate taxa set in this study) were 

found to be abundant at the northern stations in Buchan/Banks as well, whereas they have 

been previously reported to be more abundant in the southern North Sea during wintertime 

(Bils et al. 2019). This discrepancy may be related to the different environmental preferences 

of different tintinnid species (e.g. salinity, Cordeiro et al. 1997), which were not accounted for 

in our broad taxa sets. Silicoflagellates, dinoflagellates (such as Dinophysis spp.) and 

gelatinous plankton (pooled as “jellies” here) were more abundant in the fresher and shallower 

waters in the south. Although nutrients were not measured, we speculate that those taxa sets 

were more abundant there due to an elevated nutrient concentration associated with the river 

runoff as suggested by Jochem & Babenerd (1989) and Purcell et al (2001).  

Turbidity was identified as one of the factors affecting the variability of the zooplankton 

community and its size structure in the Buchan/Banks area. Turbidity was positively correlated 

with salinity; therefore, high turbidity cannot be ascribed to the river inflow there. We assume 

that elevated turbidity at the northern stations was linked to the vertical water mixing and 

sediment resuspension. Wilson & Heath (2019) showed that in September the water column 

is well-mixed in the Buchan area (north), whereas it is predominantly stratified in the Banks 

area (south). Since the effects of turbidity were weaker than the effects of salinity, we assume 

that the former had just an ancillary effect on the plankton community.  

Changes in the NASS slope in Buchan/Banks were consistent with the observed community 

composition and the distribution of the water masses. Since large zooplankton taxa such as 

gastropoda and chaetognatha were more abundant in the north and small-sized taxa such as 

silicoflagellates and dinophysis in the south, the NASS slope was relatively flat in the northern 

stations (>-1.6) compared to the southern ones (<-1.6, Fig. 6C). The temporal distribution of 
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the NASS slope reflected well the patterns captured in the RDA PC1 scores for Buchan/Banks, 

as the curve-shape over the analyzed time span was equivalent (Figs 4D and 6D). 

Our observations on the environmental variables in Downs in December showed a prominent 

southwest-northeast gradient from warmer, more saline and less turbid waters of Atlantic origin 

in the English Channel to colder, fresher and more turbid coastal waters in the Southern Bight 

(Fig S3). Chaetognaths, dinoflagellates, and tripos were dominant taxa sets in the central 

English Channel, whereas large copepods, jellies and echinoderm larvae were more abundant 

in the Southern Bight. These results are consistent with reported higher winter abundances of 

copepods near the Belgium and Dutch coasts compared to the English Channel (Dudeck et al. 

2021). As for the jellies, although they are generally known to thrive in warmer waters, high 

abundances of gelatinous plankton have been previously observed under cold conditions 

across the North Sea and in the Celtic Sea (Purcell 2005, Haberlin et al. 2019). Similarly to the 

Buchan and Banks area, we presume that a nutrient flux from the Rhine-Meuse-Scheldt delta 

can potentially explain the elevated jellyfish abundance in the Southern Bight (Purcell et al. 

2001). Furthermore, since the shallow English Channel and Southern Bight are well-mixed in 

winter (Wilson & Heath 2019), we assume that the elevated turbidity associated with low saline 

waters in the Southern Bight was linked to the river discharge.  

The influence of temperature and salinity on the slope of the NASS was consistent with the 

results of the RDA: flatter NASS slope (>-1.6) in the Southern Bight dominated by larger 

organisms, and steeper slopes (-1.7) in the English Channel with a higher contribution of 

smaller organisms. Note that we found a stronger influence of turbidity on the NASS slope than 

on the community structure (Figs 5E and 7E). In fact, among all tested variables, turbidity 

appeared to have the stongest correlation with NASS slope (Fig 5E). This can be related to 

the accumulation of larger size classes (zooplankton) but not smaller ones (phytoplankton and 

protists) near turbidity maxima, as observed in some estuarine systems like Chesapeake Bay 

(Roman et al. 2001, Keller et al. 2014).   

Previous studies have reported the impacts of the water masses dynamics and Atlantic inflow 

on the planktonic community and its spatiotemporal variability in the North Sea (e.g. Krause et 

al. 2003, Taylor et al. 2021). Our results confirm that the water mass structure, zooplankton 

community and size structure are strongly related during the low productive season in the North 

Sea. However, beside environmental effects, biological interactions (predation, grazing, 

competition) are known to modify zooplankton community and size spectra to a large extent 

(Zhou 2006b, Zhou et al. 2009). Our approach of combining planktonic organisms into broad 

taxonomic groups did not allow elaborating on the complex food-web dynamics within the 

zooplankton community. Only the external predation pressure of herring larvae was tested 

here. We found a weak (not significant for Downs) relationship between zooplankton 
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community and size structure and herring abundance. These results are in line with Pepin & 

Penney (2000), who found no significant effects of larval predation on zooplankton biomass 

in the Newfoundland coastal waters.  

 Taxonomic information vs size spectra 

 

Plankton time-series are increasingly used to inform marine policy and management about the 

state and productivity of ecosystems (McQuatters-Gollop et al. 2015, Bedford et al. 2018, 

2020b). In particular, fisheries management is interested in zooplankton data since fish early-

life stages and recruitment success depends on zooplankton stock and productivity. In this 

regard, it is important to generate data at an adequate spatial and temporal resolution that can 

reveal changes in ecosystem functioning. The development of easy and time-cost-effective 

tools to provide key data on plankton groups, their abundance or biomass is thus gaining 

increased attention (e.g. Pollina et al. 2022). The state-of-the-art automated image processing, 

although being time-effective, allows to identify zooplankton organisms to rather broad 

taxonomical groups (e.g. copepods, chaetognaths, dinoflagellates) and barely to the species 

level. Such analysis seems to be adequate to provide abundances and biomasses of certain 

zooplankton groups, which have been used to detect large-scale, long-term changes in the 

planktonic community in response to climate-related processes (e.g. Bedford et al. 2020a) and 

to create prey fields for studying foraging in early life stages of fish (Akimova et al., submitted). 

However, this broad taxonomical resolution precludes studying the environmental drivers 

affecting the community composition. In our study, the environmental variables explained a 

small percentage (11%) of the total spatiotemporal variability of the planktonic community (see 

section 3.5). This was probably due to the use of broad taxa sets, as different genera and taxa 

can have different habitat preferences. For instance, the copepod taxa set is likely partially 

composed of four common North Sea species (Calanus finmarchicus, Calanus helgolandicus, 

Oithona atlantica, and Oithona similis), which have very distinct affinities for temperature and 

salinity (Lindegren et al. 2020).  

Once the taxonomic information was disregarded and a size-based approach was used, the 

identified environmental drivers remained similar but the proportion of the explained variance 

increased to 46% (see section 4.3). These results agree with previous studies suggesting that 

size spectra are particularly useful as they provide a simple metric of the ecosystem status that 

can be linked to general changes in food-web structure and ecosystem productivity (Sprules 

& Munawar 1986, Petchey & Belgrano 2010). The size spectra approach is often used to 

simplify energy fluxes from lower to higher trophic levels, in size-structured ecosystem models 

(e.g. Blanchard et al. 2017). In particular, this approach has been widely applied in larval fish 
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modelling given a limited ability of fish larvae to consume certain size fractions of their 

planktonic prey field (e.g. Huebert & Peck 2014).  

The results from our study highlight the benefits and limitations of using taxonomically- and 

size-resolved vs. solely size-resolved plankton datasets. However, one needs to be careful 

with the choice of resolution as recent studies showed how it can drastically change the picture 

of the correlation between plankton and associated variables, such as patterns being 

emphasized or small scale changes being lost (Scott et al. 2023). The choice of a suitable 

methodology needs to consider the level of community discrimination required for a particular 

research question and additional factors such as data resolution, the available working time 

and local expertise. Ideally, both approaches would be used in combination to explore different 

aspects of the planktonic community. A third alternative approach would be the functional trait-

based approach, where taxa are grouped into classes defined by their functional roles (e.g. 

feeding mode) rather than their size or taxonomic identity (Venello et al. 2021). This change to 

a functional approach would also reduce the complexity from the higher taxonomic resolution, 

providing a different view on the plankton community composition. In this regard, Venello et al. 

(2021) suggested that a combination of species/region specific and functional group-based 

analysis may lead to a more comprehensive view on zooplankton community dynamics.  

 Conclusion and Outlook 

 

The present study provides a thorough examination of the plankton standing stocks and spatio-

temporal changes in abundance of the micro- and mesozooplankton community in a temperate 

marine ecosystem during low productivity seasons. The planktonic community was shaped 

along environmental gradients, primarily salinity, temperature and turbidity, which are related 

to inflows of North Atlantic waters in the western and southern North Sea. These gradients 

became apparent when analyzing the community structure as broad taxa and size spectra 

slopes, suggesting that the size spectra approach can be a useful tool to track the variability 

in the plankton community related to environmental drivers.  

Routine larvae surveys, such as the IHLS, offer a unique and low-cost opportunity for additional 

micro- and mesozooplankton sampling. So far, the IHLS only accounted for herring larvae in 

the Gulf VII plankton samples, and other planktonic organisms that have been analyzed only 

for targeted studies (e.g. Dudeck et al. 2021). However, this ecosystem-based approach to 

fisheries surveys is the way forward and has already been implemented elsewhere such as 

the PELGAS survey in the Bay of Biscay (Doray et al. 2018). The combination of automated 

survey instruments (e.g. PlanktoScope; Pollina et al. 2022) with automated plankton 

classification tools (Conradt et al. 2022) can greatly reduce the work effort, thus allowing for 

high frequency sampling in space and time. Ultimately, the combination of both traditional and 
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novel instruments and procedures will help to optimize survey design and resolution (Scott et 

al. 2023) to get a more holistic understanding of ecosystem processes. Plankton datasets 

stemming from this kind of surveys will support the goal of designing public and global datasets 

of plankton, which can be used i) as early-warning indicators of hydro-climatic changes 

(Bedford et al. 2018; Taylor et al, 2021), ii) for model validation, e.g. Nutrient Phytoplankton 

Zooplankton Detritus (NPZD) models (D’Alelio et al. 2016) or iii) to help identifying the top-

down control of planktivorous fish and the strengths of bottom-up drivers of fish recruitment 

(Akimova et al. submitted), supporting the stock assessment and management process.  
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Combining modeling with novel field observations yields new 

insights into food limitation of wintertime larval fish 

Anna Akimova1, Gregor Börner2, Myron A. Peck3, Cindy van Damme4 and Marta 

Moyano5,6 

Abstract  

Recruitment success of marine fishes is generally considered to be highly dependent on larval 

growth and survival. In temperate ecosystems, fish larvae can be particularly sensitive to food 

limitation during the low productivity seasons, especially as the frequency of warmer winter 

increases. We combined seven years of in situ sampling of larval fish, novel observations on 

zooplankton via automated image analyses, and larval physiological modelling to explore 

feeding conditions of Atlantic herring larvae (Clupea harengus) in the North Sea. The observed 

plankton size-structure was close to the theoretical optimum for larval foraging, but not the 

biomass. Our results for autumn larvae supported Hjort’s critical period hypothesis: small first-

feeding larvae were predicted to have a high probability of starvation, whereas larvae >13 mm 

were able to reach their maximal growth capacity. In winter, the majority of herring larvae of all 

tested sizes (5 to 27 cm) experienced food-limitation with over 35% probability of starvation. 

Sensitivity analysis suggested that young herring larvae improve their growth performance and 

probability of survival if feed not only on copepods and their life-stages but include other 

microplankters in their diet. Given projected warming of the North Sea, our model predicts that 

herring larvae would require 28% (35%) more prey biomass in autumn (winter) to sustain their 

growth and survival in the future. This finding together with the ongoing low recruitment of 

North Sea herring underscore the importance of future micro- and mesoplankton monitoring 

within a scope of wintertime larval fish surveys.  

Keywords: larval fish, bioenergetic model, herring, North Sea, zooplankton size-spectra, 
foraging, starvation, physiology 
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Introduction 
 

Fish early life is widely acknowledged as a critical period determining variation in fish 

recruitment and, to a large extent, the population size of various fish species (e.g. Chambers 

and Trippel, 1997; Fuiman and Werner, 2002). The larval stage is often considered the main 

bottleneck due to high starvation and predation mortality (Bailey and Houde, 1989; Pepin et 

al., 2015). Both mortality agents are not fully independent and may interact with each other at 

various spatial and temporal scales (e.g. Petrik et al., 2014; Akimova et al., 2019). Several 

prominent recruitment hypotheses linking larval foraging success, growth and survival have 

emerged in the of 20th century, starting with the “critical period” hypothesis of Hjort (1914) and 

moving towards more complex concepts of “growth-survival”, “stage duration”, and “bigger is 

better” (e.g. Houde, 2008). Although much progress has been made in our understanding of 

different mortality processes such as starvation, predation and physical transport (Peck and 

Hufnagl, 2012), the relative impact of each process in establishing the cumulative mortality of 

specific cohorts and overall recruitment strength remains challenging to ascertain for most 

marine fish populations. 

Numerous studies on marine and freshwater fish have considered larval growth, particularly 

the rapid gaining of length, to be decisive for survival and recruitment (Anderson, 1988; Houde, 

1997). Studying larval foraging and growth is important for gaining a mechanistic 

understanding of processes governing marine fish recruitment and to make robust projections 

of the consequences of climate-driven shifts in direct (e.g. temperature) and indirect (prey 

abundance and type) factors. Field based observations of larval feeding are rare and linked to 

notorious methodological difficulties accompanied by a large uncertainty (Suthers et al., 2022). 

Diets and feeding preferences are poorly studied in larvae compared to juvenile and adult fish 

(Robert et al., 2014), and this lack of knowledge can potentially lead to biased estimates of the 

food-limited larval growth as well as starvation mortality. Field studies of diet preference are 

generally based on gut content analysis, which is associated with challenges including the 

identification of small and soft plankton prey (e.g. naked dinoflagellates or appendicularians) 

in the guts of fish larvae caught in the sea (e.g. Llopiz et al, 2011). Second, the zooplankton 

prey should be sampled simultaneously with fish larvae to accurately assess larval feeding 

environments (Pepin et al., 2015).  

The ranges in sizes and taxonomic resolution of the sampled plankton should be broad enough 

to include all potential larval prey, which implies measuring and identifying a wide range of 

micro- to mesoplanktonic organisms (e.g. Llopiz and Cowen, 2009; Bils et al., 2016).  

Temporal match between fish larvae and the spring “bloom” of their pranktonic prey is 

considered a key factor determining larval survival and recruitment (Cushing, 1990; Peck et 
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al., 2012). Less is known about tropical fishes spawning in oligotrophic waters (Llopiz et al, 

2011) and temperate fishes spawning in autumn or early winter. Larvae from the latter group 

encounter colder temperatures as well as shorter photoperiods and decreasing prey 

abundance as they develop into the winter (Hufnagl et al., 2015). Long-term climate variability 

affecting ecosystem productivity and phenology of various organisms, have caused past shifts 

in the spawning season of such fishes (ICES, 2005; Moyano et al, 2022) and the ongoing 

global warming could potentially drive the shifts in phenology (or prey requirements) beyond 

tolerable thresholds for the persistence of some populations in the future . Therefore, feeding 

processes and adaptation strategies are of great interest in such species. We describe here 

an example of Atlantic herring (Clupea harengus) in the North Sea to explore larval feeding 

conditions, starvation and growth using a combination of size-structured observations of the 

larval prey field and the individual-based physiological modelling.  

North-Sea autumn spawning herring (NSASH), one of the most commercially important pelagic 

stocks in the region, is known to spawn between August and January in four main areas in the 

North Sea: Orkney-Shetland, Buchan, Banks and Downs (Dickey-Collas et al., 2010; Fig 1A). 

NSASH has a long history of exploitation, including a stock collapse caused by recruitment 

overfishing and subsequent recovery  (Fig 1B; Payne et al., 2009; Geffen, 2009; Dickey-Collas 

et al., 2010). Since 2002, this stock has experienced a sustained period of low recruitment that 

has alarmed fisheries scientists and managers. The pre-recruitment life stages of NSASH have 

been extensively studied using field observations (e.g. Nash and Dickey-Collas, 2005; van 

Damme et al., 2009), laboratory experiments (e.g. Blaxter and Hempel, 1963; Kiørboe et al., 

1987; Illing et al., 2018), as well as bioenergetic modeling (e.g. Heath et al., 1997; Hufnagl et 

al., 2015). A main conclusion from these studies is that elevated rates of larval mortality cause 

poor recruitment success, but whether North Sea herring larvae starve at the onset of 

exogenous feeding in agreement with the “critical period” hypothesis or over a longer period 

as they drift across the North Sea in winter is still debated. Hufnagl et al. (2015) highlighted 

the complexity of disentangling larval mortality due to starvation, predation and dispersion. 

Their model study pointed out some critical knowledge gaps such as the extremely sparse field 

observations of zooplankton abundance, size-structure and species composition during 

autumn and winter in the North Sea. 

The main objective of this study was to investigate the feeding conditions that young herring 

larvae experience during their first month of life in the North Sea and whether these conditions 

differ among autumn- and winter-spawning sites. We used size- and taxa-resolved information 

on zooplankton collected simultaneously with herring larvae to describe the available prey field, 

including novel estimates of microplankton abundance. A physiological model simulating larval 

foraging and growth used these prey fields to test the hypothesis that recent, poor recruitment 
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of North Sea herring was linked to sub-optimal feeding conditions experienced during first 

feeding and that the available prey was insufficient to cover larval energy requirements. 

Furthermore, given a projected rise of water temperatures in the North Sea by the end of the 

21st century (on average 2.0 °C, Schrum et al., 2016), we estimated how the zooplankton 

biomass and/or size composition would need to change to meet the increasing energy demand 

of herring larvae in a future climate.  

Data and Methods 
 

Data 

Zoo- and phytoplankton, larval abundance and water temperature data were taken during the 

International Herring Larvae Survey (IHLS) in the North Sea between 2013 and 2019. In this 

study, we considered a merged Buchan and Banks area (further on Buchan/Banks) east of the 

British Isles (Fig.1A), where herring is known to spawn in September. The second area was 

the Downs area in the English Channel and Southern Bight, where spawning occurs in 

December-January (e.g. Dickey-Collas et al., 2010). Note that not all stations could be sampled 

every year due to a sampling failure or bad weather conditions (Table 4. 1). 

Herring larvae and mesozooplankton were sampled using a Gulf VII high-speed sampler (280 

µm mesh size, 0.2 m nose cone opening; Nash et al., 1998) and conducting double-oblique 

hauls from the surface to 5 m above the bottom. A PUP-net (55 µm mesh size) was attached 

to the Gulf VII and sampled microplankton. A detailed description of the zooplankton data 

analyses is available in Börner et al. (unpubl.) and briefly summarized in the supplements (S1 

“Zooplankton data”). In this study, we included only planktonic organisms that were considered 

suitable for larval feeding based on their size, geometric form and previous studies identifying 

them as larval prey (Last, 1978; Pepin and Penney, 1997; Robert et al., 2014). The following 

11 taxonomic groups were included: copepods, appendicularians, bivalve larvae, gastropod 

larvae, echinoderm larvae, ciliates, cladocerans, diatoms, dinoflagellates, foraminiferas, and 

silicoflagellates. 

Herring larvae were preserved in formalin, total length of each individual was measured with 

the accuracy of 1 mm and abundance-at-length was calculated. Developmental stages of 

herring larvae (yolk-sac, pre-flexion, flexion, and post-flexion) per size class were documented. 

We refer the reader to Schmidt et al. (2009) for further technical and methodological details on 

the survey.  
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Data on water temperature were collected using a Seabird CTD (conductivity, temperature, 

depth) SBE 911 profiler mounted on the Gulf VII sampler. We calculated the mean temperature 

along the entire water column at each station to match depth-integrated plankton and larval 

samples. 

 

Figure 1. a) Study region in the western North Sea. Plankton samples taken in September 
(teal) and December (cyan dots) are shown together with a typical sampling grid of the 
Netherland’s contribution to the International Herring Larvae Survey (black dots) , where 
herring larvae were sampled. Known spawning locations (Orkney-Shetland, Buchan, 
Banks and Downs) of the North Sea Autumn Spawning Herring stock (NSASH) are 
identif ied. Arrows show two subareas in the Downs spawning area (English Channel and 
Southern Bight). b) Annual changes in spawning stock biomass (SSB, gray area) and 
recruitment (R, teal bars) of NSASH as obtained from the ICES stock assessment 
(https://www.ices.dk/data/assessment-tools/Pages/stock-assessment-graphs.aspx, 
accessed on June, 1st, 2022). Red dashed lines identify phases of herring stock history 
in agreement with Payne et al. (2009). 

 

 

https://www.ices.dk/data/assessment-tools/Pages/stock-assessment-graphs.aspx
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Table 1. The number of stations sampled during the IHLS from 2013 to 2019 and used in 
the study. No sampling was conducted in 2014 and 2015 in the Downs area due to bad 
weather conditions. September 2015 (Buchan/Banks) and December 2013 (Downs) were 
excluded due to a failure of the plankton sampling.  

Year Buchan/Banks areas (September) Downs area (December) 

 CTD Larvae Zooplankton CTD Larvae Zooplankton 

2013 164 165 31 - - - 

2014 144 145 27 - - - 

2015  - - - - - - 

2016 162 162 35 79 77 24 

2017 170 167 33 82 80 25 

2018 156 155 35 34 26 14 

2019 163 161 30 81 80 18 

 

Methods 
 

Observed larval prey fields and length-at-first-feeding  

In situ estimates of plankton abundance and composition were used to provide the prey field 

for a larval foraging model. We calculated a normalized biomass size spectra (NBSS) based 

on the empirical paradigm of Sheldon’s spectra (Sheldon et al., 1972; Blanco et al., 1994).  

We first converted the equivalent spherical diameter (Lz, in µm) measured for each 

zooplankton organism to its individual dry weight wz (in µg) using the equation of Huebert et 

al. (2018) (their Eq. A3), adapted to µm instead of mm originally used:  

wz = 4.43 × 10−7 ⋅ Lz
2.5,       (1) 

Based on their dry weight wz,planktonic organisms were grouped in size bins on the octave 

scale (with the interval of 2) and the bin-specific biomass was calculated by summing all 
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individual weights within each size bin. To obtain a normalized size spectrum βz, we divided 

the bin-specific biomass by the width of the corresponding weight intervals ∆wz. We calculated 

βz at each station and fitted a weighted linear regression to βzon the log-log scale with the 

regression weights being proportional to the observed abundances within each size class. The 

normalized biomass spectrum βz was then used to calculate the zooplankton biomass Bzin the 

size range between 20 and 2000 µm:  

Bz = ∫ βzdwz
w2

w1
       (2) 

where  w1 and w2  were dry weights of zooplankton of 20 and 2000 µm in size, respectively. 

Given the linear relationships between βz and wz on the log-log scale the Eq. 2 can be solved 

as: 

Bz = ∫ βzdwz = ∫ a ∙ wz
sdwz = {

a ∙ lnwz, ifs = 1

a ∙ wz
s+1, ifs ≠ 1

w2

w1

w2

w1
  (3) 

where s is the slope and a is the intercept of the linear regression fitted to βz on the log-log 

scale. The biomass distribution in given size ranges was utilized in the optimal foraging routine 

of the bioenergetic model (see section “Bioenergetic model”). 

We used length measurements and staging performed on captured herring larvae to obtain a 

field-based estimate of the larval length-at-first-feeding (LFF). The measured length of the 

formalin preserved larvae was converted to the length of fresh larvae (see S2 “Bias correction 

of larval length due to formalin preservation”). This resulted in a range in larval sizes between 

5.3 and 26.2 mm. We split the Downs observations into two subareas (the English Channel 

area in the south-west and the Southern Bight area in the north-east; Fig. 1) and built the mean 

size-frequency distributions for yolk-sack and no-yolk-sac larvae for the Buchan/Banks and 

each subarea within Downs over the observed period 2013-2019. 

Bioenergetic model 

We used an physiological individual-based model of herring larvae originally developed by 

Hufnagl and Peck (2011) and advanced in follow-up studies (Hufnagl et al., 2015; Bils et al., 

2016; Illing et al., 2018). This bioenergetic model keeps energy housekeeping of a herring 

larva based on the equation: 

G = C ⋅ AE ⋅ (1 − SDA) − k ⋅ Rs     (4) 

where G is the energy available for somatic growth, C is the energy gain due to foraging, AE  is 

the assimilation efficiency, SDA is specific dynamic action (i.e. metabolic costs of the digestion 
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of a meal) and Rs is the standard respiration rate. The parameter k is an activity multiplier. The 

energy gain C was modeled based on the optimal foraging approach (see S3 “Bioenergetic 

model” for more details). In this study, we applied three modifications to the model of Hufnagl 

and Peck (2011): i) a new parameterization of the standard respiration rate was used based 

on the recent measurements of Moyano et al. (2018); ii) a Boolean function was used for the 

dynamic energy allocation; iii) activity multiplicator k= 2 during the day and k=1 during the 

night. More details on these modifications and the full set of model equations can be found in 

the supplement S3 “Bioenergetic model”. 

The model equations were iteratively solved for 24 hours (one day and one night) with hourly 

timestep in order to estimate the daily growth rates of herring larvae at the observed 

environmental and prey conditions. The photoperiod (length of daylight) was 12 h in September 

and 8 h in December, respectively. For each simulation, we used a spin up of 48 hours to 

achieve a realistic initial gut content in the beginning of our daily simulations. The modeled 

larval growth was converted to the daily specific growth rate (SGR, in percent dry weight per 

day, further on % dw·d-1) as: 

SGR = 100 ∙ (w24 −w0) ∙ 1/w0     (5) 

where w24 and w0were larval weights at the beginning and at the end of the 24-hour 

simulation. Additionally, we calculated the ad-libitum larval growth or maximal growth capacity 

(SGRmax) at each station and for each larval length by keeping the NBSS slope fixed and 

gradually increasing the prey concentration until the modeled growth rate reached its maximum 

and stagnated. Herring larvae were considered to experience starvation if the predicted 

SGRwas ≤ 0,food-limited growth if SGR>0 and SGR<SGRmax and prey satiation, i.e. ad-libitum 

growth, if  SGR=SGRmax. 

Model simulations 

We conducted three groups of model simulations: 1) diet preference scenarios, 2) growth 

predictions using in situ prey fields, and 3) optimal prey conditions. We performed simulations 

for the initial larval length varying between 5 and 27 mm with 0.1 mm length increment in order 

to cover the length distribution observed in the field. In the “diet preference” simulations, we 

tested two scenarios of larval feeding: i) “specialist”, where only copepods were included as a 

suitable prey, and ii) “generalist”, where all 11 taxonomic groups of plankton were considered 

as potential prey. For both scenarios, we used average NBSS obtained with corresponding 

zooplankton organisms. In these simulations, temperature was set to its area-specific mean 

values (calculated as the median of all observed temperatures within each area during the 

entire period): 12.3 °C for Buchan/Banks and 10.9 °C for Downs.  
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To predict larval growth at in situ prey fields, we simulated daily SGR of herring larvae at each 

station where zooplankton data were available (Fig. 1) using the station-specific water 

temperature, zooplankton NBSS slope and biomass that corresponded to the generalist 

feeding scenario. The simulated growth rate was expressed as a proportion of SGRmax in order 

to isolate effects of the prey limitation from the temperature- and size- dependency of larval 

growth. To clearly demonstrate the seasonal differences, we pooled all predicted growth rates 

for all stations within each season and calculated the proportion of larvae that were predicted 

to grow at a certain growth. 

In the simulations of the “optimal prey conditions”, we further investigated the prey-predator 

relationships between plankton and herring larvae. We set water temperature to its area-

specific mean value and estimated larval growth at a wider range of the size-spectra slope 

between -2 and 0 and a wider range of the zooplankton concentrations between 0.1 and 1000 

mg/m3. For each larval length, we identified two values: i) the minimal prey biomass required 

for a positive larval growth (starvation point, Bmin), and ii) an optimal NBSS slope that 

corresponds to the Bmin . 

Results 
 

Observed prey fields and herring larvae 

The total plankton biomass Bzof all eleven taxonomic groups in the range of sizes between 20 

and 2000 µm was, on average, 3 times lower in winter in Downs (median of 3.4 mg·m-3 Fig. 

2C) than in autumn in Buchan/Banks areas (median of 9.4 mg·m-3). The mean NBSS slope 

was significantly (t-test, t(280)=9.64, p<0.01) steeper in December (mean slope= -0.9; Fig. 2C) 

than in September (-0.73). Accordingly, the proportion of microplankton was higher in 

December in the Downs (40% of the total plankton biomass) than in September in Buchan and 

Banks areas (20 % of the total biomass).  

Copepods were the most abundant taxa (between 73 and 100% of the biomass) of the 

mesozooplankton but their proportion decreased toward the low end of the size-spectra (i.e. 

ESD<200 µm). This caused a shallower NBSS slope in the copepod scenario in comparison 

to the generalist one (Fig. 2E and F compared to A and B). Furthermore, no copepods smaller 

than 40 µm were observed (Fig 2E and F and Figure 4. S5.1), therefore, all size-classes 

smaller than 40 µm were excluded from the NBSS used in the “specialist” scenario simulations 

(Fig 2B, gray bars).    
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Figure 2: Mean normalized biomass size spectra (NBSS) obtained with 11 prey taxa (A – 
September, B – December), and with only copepods (C – September, D - December). 
Circles display the mean observed normalized biomass 𝛽𝑧 averaged over all stations 
within the season/spawning area measured with a Flowcam (orange) and Zooscan (blue). 
The size of the circles is proportional to the log - abundance of the zooplankton organisms 
in corresponding size-bins. Red dashed lines indicate the weighted regression line fitted 
to the observed NBSS. Gray bars show the NBSS spectra used in the feeding scenarios. 
The distr ibutions of the observed NBSS slope and the total zooplankton biomass with 11 
prey taxa (E and F) and with only copepods (G and H) are shown for both 
seasons/spawning sites (teal - September (Buchan&Banks), cyan - December (Downs)). 
The zooplankton biomass B z in F and H is in mg·m -3.   

 

Larval length-frequency distributions as well as the proportion of the yolk-sac larvae differed 

among the spawning areas (Fig 3). In the Buchan/Banks area, herring larvae up to 26 mm 

were observed and the largest yolk-sac larvae were recorded in the 5th size-class (Fig 3A) 

corresponding to the length range between 9.7 and 10.8 mm. As for the Downs area, a larger 

proportion of smaller larvae was observed in the English Channel in comparison to the 

Southern Bight and the largest observed larvae were slightly smaller in the English Channel 

(21 mm) than in the Southern Bight (23 mm). The largest yolk-sac larvae were reported in the 

7th length class (Fig 3B and C; length range between 11.9 and 13.0 mm) in both subareas of 

the Downs. We used the largest size of the observed yolk-sac larvae as a proxy for the largest 

length-at-first-feeding of herring larvae in both seasons. 
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Figure 3. The mean length-frequency distr ibutions of yolk -sac (orange) and post-yolk 
(blue) herring larvae observed the Buchan/Banks areas in September (A), in the English 
Channel (B) and the Southern Bight (C) in December. Larval length was corrected due to 
shrinkage occurring during the preservation. Larval abundances were averaged over the 
2013-2019 period. Arrows indicate the largest size -classes of the observed yolk -sac 
larvae and the corresponding size-range is annotated. 

 

Simulation 1 “Diet preference”: model sensitivity to the choice of the 

larval feeding scenario 

Larval growth rates obtained in both dietary scenarios (specialist vs generalist) varied with 

larval length and differed among the spawning seasons/areas (Fig 4). In the specialist 

scenario, herring larvae smaller than 10.5 (12.5) mm in September (December) (orange curves 

in Fig. 4) were not able to consume enough prey to sustain their growth (predicted growth rates 

were negative). In the generalist scenario (blue curves in Fig 4), our model predicted a positive 

growth for smaller larvae in comparison to the specialist scenario in both spawning seasons 

(8.8 mm in September and 10.5 mm in December). 

The maximal-growth capacity SGRmax (black dashed curves in Fig 4) changed with larvae size 

in a similar way in both seasons, but was reduced by almost half in December (between 7 and 

13 % dw·d-1, Fig. 4B) compared to September (between 12 and 25 % dw·d-1, Fig. 4A) due to 
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a combined effect of a lower temperature and a shorter day length. At the mean prey 

concentrations, herring larvae were predicted to be food-limited in both feeding scenarios until 

they reached the length of 16.3 mm and 20.5 mm in September and December 

correspondingly. Independently of the season, the growth rate predicted in the specialist 

scenario was about 40% that in the generalist scenario (Fig. 4).  

 

Figure 4. Simulated specif ic larval growth rate (SGR in % dw·d -1), obtained with the mean 
NBSS for the generalist (orange) and specialist (blue) feeding scenarios in September 
(A) and December (B). Black dashed curves show the modeled “ab - l ibitum” feeding at 
corresponding environmental conditions (Buchan/Banks areas - T=12.3 ��C, day length = 
12 hours; Downs - T=10.9 ��C, day length=8 hours). Black solid l ines identify zero -growth. 
Orange and blue circles indicate minimal larval length at which modeled larvae were able 
to sustain a posit ive growth in corresponding feeding scenarios.  

 

The generalist feeding scenario was further used to illustrate the role of microplankton in larval 

foraging at different prey biomass and larval length. The optimal foraging routine predicted that 

the optimal prey size increased with larval length and remained unchanged at different prey 

biomass (Fig 5, red dots). The foraging niche was found to broaden with increasing larval size 

and to narrow when the food availability increased. At two tested prey concentrations (0.3 and 

6.3 mg·m-3), which correspond to the 2.5%- and 50%-percentiles of the observed biomass in 

both seasons, larvae of all size-classes were predicted to include microplankton prey in their 

diet (Fig 5). For example, 38% of the diet of an 8-mm larva consisted of microplankton and this 

proportion was found to decreased with larval size, as the optimal prey size increased. 

Although the contribution of microplankton decreased with increasing prey availability, only 

larger larvae (>18 mm) and only at the highest observed zooplankton biomass (90.9 mg·m-3) 

were predicted to have no microplankton in their diet. 
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Figure 5. The width of the foraging niche of an 8-, 13-, 18 and 23-mm herring larva 
obtained in the model simulations with the minimal (0.3 mg·m -3; blue), median (6.3 mg·m -

3; orange) and maximal (90.9 mg·m -3; gray) observed prey biomass and a constant NBSS 
slope of -0.77, which was the median of all observed slopes. Asterisks identify the optimal 
prey size of herring larvae and the black dashed line indicates 200 µm as a separation 
between micro- and meso- plankton. The inlet shows the frequency distribution of the 
zooplankton biomass (B z), observed in both spawning areas, and color bars show the 
corresponding prey biomasses used to calculate the foraging niches.  

 

Simulation 2: predicted larval growth at the observed feeding 

conditions 

The different feeding conditions herring larvae experienced in their spawning areas in 

September and in December (zooplankton biomass and size distribution, temperature and day 

length) resulted in different larval growth rates predicted with the bioenergetic model.  The 

proportion of larvae with no growth decreased with increasing larval size and this decrease 

was faster in September (Fig. 6A) than in December (Fig. 6B). For example, 74% of the 8-mm 

larvae was predicted to starve in Buchan/Banks and this percentage decreased to 3% for 13-

mm larvae (Fig. 6A). The vast majority (85%) of 18-mm larvae grew at ad-libitum rates. In 

Downs, 62% of 13-mm and 50% of the 18-mm larvae was predicted to starve, and only 26% 

of the 18-mm larvae grew at ad-libitum rates (Fig. 6B). 
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Figure 6 The fraction (in %) of all modeled larvae per size class that were predicted to 
experience starvation (SGR≤0, gray), food-limitation (SGR > 0 and SGR < SGRmax, beige) 
or to growth at their maximal temperature-, l ight- and size-dependent growth capacity 
(SGR=SGRmax, brown). The composites for Buchan/Banks areas in September (A) and 
Downs area in December (B) are shown. Dashed lines show the length range, w here the 
largest yolk-sac larvae were observed in this study. Black solid l ines show larval length -
at-f irst-feeding (LFF) calculated after Hufnagl and Peck (2011) and dotted lines depict 
LFF reported by Blaxter and Hempel (1963) . 

 

To depict the spatial pattern in predicted larval growth we used three years with the full 

plankton data coverage (2016, 2017 and 2019; other years are shown in supplement S5 “The 

modelled larval growth in 2013, 2014 and 2018”. The observed prey concentrations in all three 

years had a similar spatial pattern with the highest prey concentration in the northern North 

Sea (in Buchan/Banks areas) and the lowest prey concentration in the English Channel (Fig 

7, A, E and I). The zooplankton biomass observed in the Southern Bight was comparable with 

that in the Buchan/Banks areas in September. In all sampled years, prey biomass had a patchy 

structure with up to ten-fold differences in biomass in neighboring stations. This patchiness 

was reflected in the spatial distribution of predicted larval growth, which was particularly 

obvious for the smaller herring larvae (Fig. 7, B, F and J). In agreement with Fig 6, the observed 

plankton biomass at most of the stations did not support the growth of 8-mm larvae. A herring 

larva of 8 mm required zooplankton biomass > 25 mg·m-3 to sustain its growth. Such high 

zooplankton biomass was observed only at about 7% of all stations broadly distributed across 

the sampling area (Fig 7). Larger larvae, as it is shown using an example of 13 mm (Fig 7c, g, 

and k) and 18 mm (d, h, and l) larvae, found enough food to grow almost at all observed 

stations, except those in the English Channel. The low zooplankton biomass (< 2 mg·m-3) 

observed there in December caused a strong food deprivation of herring larvae of all tested 

sizes. Only a few stations had enough food to support larval growth.      
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Figure 7: The observed plankton biomass (B z) (in 2016 (A), 2017(E) and 2019(I)) and 
corresponding growth predicted for a 8-mm (B, F, J), 13-mm (C, G, K) and 18-mm herring 
larva (D, H, L). Colors correspond those of Fig. 6: gray - starvation (SGR≤0), beige - 
food-limitation (SGR > 0 and SGR < SGRmax) and brown – ad-libitum feeding 
(SGR=SGRmax). Please find the corresponding figure for the years 2013, 2014 and 2018 
in supplemental materials (Figure 4. S5.1) . 

 

Simulation 3: optimal feeding conditions 

The optimal feeding simulations showed that larval growth rate and the minimal zooplankton 

biomass required by a herring larva to sustain its growth vary not only with larval size, but also 

with slope of the zooplankton size-spectrum (Fig. 8). As we can see from the example of an 8-

mm larva (Fig. 8A), the required biomass reached its absolute minimum (Bmin) at slope of -

0.93 (considered to be “optimal”) and was higher at the smaller and larger slopes. Similar 

patterns of Bmin were obtained for larger herring larvae (see Fig. 8, B and C) as well, although 

an asymmetric distribution was observed with increasing larval size where a higher biomass 

was required at steeper slopes (those approaching -2) than at shallower ones (approaching 

0). Interestingly, the observed prey slopes in the field (brown dots in Fig. 8) were dispersed 

around the NBSS slopes considered to be optimal in both seasons. The difference between 

the simulated Bmin and the observed zooplankton biomass was larger in December (Fig. 8 D, 

E and F) than in September (Fig. 8 A, B and C).   
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Figure 8. Modeled growth rate of herring larvae of 8 mm (A and D), 13 mm (B and E) and 
18 mm (C and F) length foraging at different prey conditions (prey biomass and NBSS 
slope) in the Buchan/Banks in September (A, B and C) and in the Downs in December 
(D, E and F). Colors identify simulated specif ic growth rates (SGR in % dw·d -1), gray 
color marks the area where predicted growth is negative (SGR<0), i.e. the larvae starved. 
The minimal biomass 𝐵𝑚𝑖𝑛 required by a larva to sustain its growth and the corresponding 
optimal NBSS slope are marked in panel A. The larval growth was m odeled at the mean 
observed temperatures and light conditions in corresponding spawning areas 
(Buchan/Banks areas - T=12.3 ��C, day length = 12 hours; Downs - T=10.9 ��C, day 
length=8 hours). Black dots indicate the observed prey fields (NBSS slope and bio mass) 
in all sampled years and stations within corresponding spawning areas.   

 

To further investigate the optimal feeding conditions, we calculated Bmin and the optimal NBSS 

slope for each initial larval length and for both spawning seasons. The optimal NBSS slope 

increased with larval length from -1.1 to -0.6 for 5-mm to 27-mm larvae (Fig. 9A) and was 

similar in both spawning areas. The Bmin exponentially decreased with the larval length (Fig. 

9B): the smallest (5 mm) larvae required at least 67 mg·m3 to sustain their growth, whereas 

larger larvae (e.g. 20 mm) required ten-fold lower prey biomass (1.66 mg·m3). On average, the 

Bmin was 19 % higher in December than in September. 

The optimal NBSS slope did not change with increasing temperature as can be seen using 

a13-mm larvae as an example (Fig. 9C). In contrast, the Bmin increased with temperature in 

both areas (Fig. 9D). Given a projected 2 °C increase of the mean water temperature in the 

North Sea by the end of the 21st century, our model predicted that Bmin for a 13-mm larva 

would increase from 5.6 to 7.6 mg·m3 (+35%) in the Downs and from 5.0 to 6.4 mg·m3 (+28%) 

in the Buchan/Banks.  
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Figure 9. Optimal NBSS slope (A) and the corresponding minimal required biomass (B) 
modelled for a herring larva between 5 and 27 mm long and with the mean environmental 
conditions in September (teal, T=12.3 °C, day length = 12 hours) and December (cyan, 
T=10.9 °C, l ight=8 hours) for larval init ial length between 5 and 26 mm. Please note the 
log-scale along the y-axis at the panel B. Optimal NBSS slope (C) and the minimal 
required biomass (D), predicted for a 13-mm herring larva in the model simulations with 
the day length of 12 hours (teal, corresponding to September conditions), and 8 hours 
(cyan, corresponding to December) but with water temperature varying between 7 °C and 
18 °C. The vertical l ines depict current (dotted) and projected (dashed) mean 
temperatures in the Buchan/Banks (teal) and the Downs (cyan) areas.  

 

Discussion  
 

To improve our understanding of biotic and abiotic factors effecting marine fish recruitment, 

there is a need to better resolve processes impacting larval growth and mortality, which is 

challenging in marine ecosystems (Pepin et al., 2015; Hinchliffe et al., 2021). Here, we 

addressed two major gaps in knowledge regarding feeding and growth of temperate larval fish: 

i) the difference in energetic needs between a specialist vs generalist feeding strategy, and ii) 

the probability of food limited growth and starvation during periods low secondary productivity 

(e.g. wintertime). Physiological individual-based models as one used in this study is a powerful 

tool to explore larval growth and its variability particularly in a food-limited environment. 

Estimates of larval growth from such models are sensitive to the methods used and 

assumptions made to construct larval prey fields. These prey fields can be generated using 

highly simplified theoretical consideration (Huebert and Peck, 2014), lower-trophic level 

models (Huebert et al., 2018) or based on measurements from field sampling campaigns (Kühn 

et al., 2008; Hufnagl et al., 2015). In contrast to the former two approaches, deriving prey fields 
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from in situ measurements provides the most accurate estimate of the spatiotemporal 

variability in the zooplankton biomass and size structure. We argue that covering a wide size-

range of potential prey using automated identification and size measurement is necessary to 

not only understand the spatiotemporal dynamics of zooplankton in general but also to assess 

feeding conditions experienced by fish larvae. This automated approach is substantially less 

time-consuming compared to classical microscopy (Orenstein et al., 2022) and still provides 

sufficient information to accurately estimate larval growth by means of bioenergetics modelling. 

The approach taken here of combining simultaneous sampling of fish larvae and their 

planktonic prey and physiological modelling seems to be a plausible method to expand the 

existing larval monitoring programs providing estimates of larval abundance for the routine 

stock assessments toward more holistic ecosystem surveys. 

In the following, we discuss our findings with respect to the feeding preference of herring larvae 

and compare larval feeding success between two spawning seasons and areas in the North 

Sea. We suggest that our growth estimates can be used not only to the estimate the probability 

of larval mortality via starvation, but also provides indirect indices for other mortality processes 

given the tight link between larval size and predation risk (e.g. Bailey and Houde, 1989; Stige 

et al., 2019) or larval size and swimming ability influencing dispersion and drift (e.g. Woodson 

and McManus, 2007). We also discuss possible limitations of our modelling approach and point 

out critical knowledge gaps that hamper translating model-derived estimates of probability of 

starvation to cumulative larval mortality as a direct proxy of recruitment success.  

Feeding modes of herring larvae and the role of microplankton  

Previously reported field-based estimates of prey preference of herring larvae agree poorly. 

Some studies report that herring larvae have a clear preference for copepods, with a shift from 

smaller to larger stages or species of copepods with increasing larval size (e.g. Kiørboe et al., 

1988; Wilson et al., 2018). More recent studies suggested that young herring larvae are 

generalist foragers, ingesting a wider range of proto- and microplankton organisms (de 

Figueiredo et al., 2005; Bils et al., 2016; Denis et al., 2016). While, no gut content analysis was 

included in this study, the results of our model scenarios provide some insight on a likely 

feeding strategy of larvae from the bioenergetic perspective.  

Our results based on mean, observed feeding conditions suggest that “specialist” feeders (only 

copepods) needed to be, on average, 2-mm larger on the onset of the exogeneous feeding 

than “generalist” feeders to survive and sustain positive growth (Fig 3). The higher survival 

potential of small, potentially first-feeding, larvae in the generalist scenario was due to the 

broader range in microplankton prey species included in their diet. Moreover, if larvae survive 

this early period, the growth rates of larvae smaller than 16 mm (20 mm) in September 
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(December) were, on average, 40% lower in the “specialist” compared to the “generalist” 

scenario. Similar estimates of reduced growth were obtained by Bils et al. (2016) for herring 

larvae in the Irish Sea when microplankton was excluded from their feeding simulations. Such 

difference in growth may result in substantial reductions in larval survival since mortality rates 

are believed to decrease rapidly with increasing larval size (e.g. Houde, 2002). Payne et al. 

(2013) estimated that a 10% reduction in growth can result in a 60 to 80% reduction in the 

number of herring larvae surviving to metamorphosis.  

A main reason for the differences in growth and survival of “specialist” and “generalist” feeders 

was that copepods formed on average only 20% of the observed biomass of microplankton 

(ESD 20-200 µm) (Fig. 2 and Fig. S5.1). The microzooplankton taxa with highest biomasses 

beside copepods were Dinoflagellates in September, and Bivalve larvae and Foraminifera in 

December. The optimal foraging theory used in this study predicted that small, in particular 

first-feeding, herring larvae include a substantial proportion of microplankton (also none 

copepods) in their diet (Fig 5). Our estimate of 38% of microzooplankton in the diet of an 8-

mm larva agrees well with the estimated proportion of protozoa in the diet of herring larvae 

between 19 and 71 % obtained by de Figueiredo et al. (2005) in the Irish sea. Larger herring 

larvae, however, were predicted to be able to reach their maximal growth capacity by feeding 

only on copepods (Fig 5). This was in agreement with Denis et al. (2016) who reported a shift 

from the generalist feeding mode to a narrower specialist feeding as larvae grow. They showed 

that protists constituted a relevant part of the diet of Downs herring larvae smaller than 12 mm, 

whereas bigger larvae (between 13 and 15 mm) fed mainly on copepods and dinoflagellates. 

Given this growing body of literature on larval feeding on microplankton and our modelling 

results, we suggest that focusing only on copepods as a prey item of herring larvae, as for 

example in Kühn et al. (2008), Alvarez-Fernandez et al. (2015) or Hufnagl et al. (2015), could 

potentially lead to an underestimation of the larval growth and survival, particularly when early-

feeding herring larvae are of concern. 

Optimal, current and future prey fields of herring larvae  

According to the seven years of observations used in this study, feeding conditions of herring 

larvae differed among herring spawning areas Buchan/Banks and Downs not only in terms of 

temperature and day length, but also in terms of available zooplankton biomass. This yielded 

different larval growth, as predicted with the bioenergetic model. Even in the most favorable 

“generalist” feeding scenario, food limitation was an important factor affecting small larvae in 

both areas. Larger larvae (>13 mm) were predicted to have food-limited growth during winter 

at Downs, but not in autumn at Buchan/Banks, where larvae approached their maximal growth 

temperature-specific growth capacity. These results compare well with previous field studies 

of Kiørboe et al. (1988) on Buchan herring larvae and Buckley and Durbin (2006) on Atlantic 
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cod (Gadus morhua) and haddock (Melanogrammus aegelfinus) on Georges Bank. Both 

studies showed a strong prey-limitation of young larvae, but not of larger larvae captured at 

the same stations.  

Our findings for the Buchan/Banks areas are in line with the “critical period” hypothesis, which 

postulates that high larval mortality during the transition from yolk-sac to exogenous feeding is 

crucial for the year-class strength (Hjort, 1914). Some previous studies have argued for the 

importance of the critical period for the recruitment success of herring in the North Sea 

(Alvarez-Fernandez et al., 2015, Fässler et al., 2011). In contrast, we found the Downs larvae 

to have a subnational probability of starvation over a wider range of larval lengths and, 

therefore, well beyond the first-feeding period (Fig. 6). A closer inspection of the spatial 

distribution of zooplankton and predicted larval growth revealed that only the western part of 

the Downs (English Channel) was characterized by low zooplankton concentrations and, thus, 

a high proportion of starving larvae, whereas the feeding conditions in the eastern part 

(Southern Bight in the inner North Sea) were rather similar to those in September (Fig. 7). 

Given the prevailing direction of the water currents, herring larvae hatched in the English 

Channel would be transported to the Southern Bight (Hufnagl et al., 2015) where, according 

to our results, they would find more favorable feeding conditions. However, comparison of the 

larval length-frequency distributions in the English Channel and the Southern Bight revealed 

only a marginal shift towards larger larvae in the latter (Fig. 3C and D). This implies that herring 

larvae of all tested lengths between 5 and 27 mm are probably affected by starvation and/or 

food-limitation in winter in the English Channel. This suggests that the survival of winter herring 

larvae is not driven by a single, “critical” event but by continual losses due to starvation over 

the protracted overwintering period in agreement with Hufnagl et al. (2015). Our differentiation 

between larval growth conditions in the English Channel and Southern Bight will hopefully 

contribute to a better understanding of the larval survival in the Downs area. This spawning 

component  is gaining increasing attention, because of its growing contribution to the overall 

NSASH recruitment, but has previously been shown to be challenging for modelling and 

process-understanding (Heath et al., 1997; Hufnagl et al., 2015). 

The predicted rapid decrease in the probability of starvation with increasing larval size, 

particularly in September, suggests that larger first-feeding larvae have a better chance of 

surviving (finding enough food to support their growth) compared to their smaller siblings. The 

LFF parameterization of Hufnagl and Peck (2011) and temperature ranges in the spawning 

areas observed in this study yield LFF estimates of 9.9±0.1 mm for larvae spawned in 

September, and 10.0±0.1 mm for those spawned in December. The latter compares well with 

previously reported mean LFF of 9.9 mm for Downs larvae (Blaxter and Hempel, 1963), but is 

below the maximal LFF estimated in the present study based on the size of captured yolk-sac 
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larvae (Fig. 6B). As for the Buchan/Banks area, the LFF estimate of 9.9 of Hufnagl and Peck 

(2011) falls within the size range 9.7 to 10.8 mm, where the largest yolk-sac larvae were 

reported in this study, but is above LFF of 7.7 mm previously reported by Blaxter and Hempel 

(1963) for this area (Fig 6A). According to our results, these subtle differences in LFF result in 

substantially different probability of mortality due to starvation, particularly in September (see 

Table 4. 2). We further discuss LFF and its variability in the section „Uncertainties and critical 

gaps in knowledge” below.  

Table 2. Length-at-f irst-feeding (LFF) of herring larvae as reported in previous studies 
and corresponding probability of sta rvation predicted in the “generalist” feeding scenario 
in both spawning areas/seasons (Fig 6). LFF estimates in this study were based on the 
size-range of the largest yolk -sac larvae observed in corresponding spawning areas 
between 2013 and 2019.  

Spawning 

area/season 

Reference LFF estimate 

(mm) 

Probability of 

starvation (in %) 

Buchan/Banks 

(September) 

Blaxter and Hempel, 

1963 

7.7 76 

Hufnagl and Peck (2011) 9.9 24 

This study 9.7 to 10.8 0.5 to 9 

Downs 

(December) 

Blaxter and Hempel, 

1963 

9.9 72 

Hufnagl and Peck (2011) 10.1 70 

This study 11.9 to13.0 60 to 63 

 

Further valuable conclusions can be drawn from the comparison of the observed prey fields 

(prey biomass and size-spectra) with the theoretical optimal feeding conditions of herring larval 

at different lengths and/or ages. Our model results suggest that the growth of herring larvae is 

sensitive to both plankton biomass and size structure (NBSS slope). Particularly young herring 

larvae were sensitive to changes in the NBSS (Fig 8), whereas larger larvae were found less 

sensitive to the less negative slopes (more larger prey items) because those larvae become 

more efficient in utilizing larger prey organisms. The importance of the zooplankton size 

structure for larval growth has been previously emphasized by modelling studies of Urtizberea 

and Fiksen (2013), David et al. (2022) and Huebert and Peck (2014), although the simulation 

results of the latter were somewhat different from ours (see more details in Supplement S6 

“Model sensitivity to NBSS slope”).  

To our knowledge, the role of the prey size-structure in the survival and growth of marine fish 

larvae has been rarely tested in the laboratory due to technical challenges related to offering 
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and maintaining a prey field characterized by a specific size-spectrum slope. However, given 

the known feeding behavior, prey preferences and gape limitation of fish larvae, one would 

expect the larval foraging success and growth to be dependent on the size structure of the 

prey field. Following seminal studies on size-spectrum theory in marine ecosystems (Sheldon 

et al., 1972; Hatton et al., 2021), the most recent study of Suthers et al. (2022) hypothesized 

a key role of NBSS slope in shaping growth and survival of fish larvae in marine ecosystems. 

Although, their conclusion is mainly based on a theoretical consideration, the dependency of 

larval growth and survival on zooplankton NBSS could provide a new context in quantifying or 

predicting fish recruitment.  

The optimal slope of the zooplankton size spectrum, i.e. the slope at which larvae required the 

least biomass of prey for herring larvae to maintain their growth, was similar at Downs and 

Buchan/Banks and was well within the observed range of the NBSS slope calculated from field 

samples (Fig. 8). This may suggest that the larval foraging strategy is well adapted to the size-

structure of the prey field encountered in the North Sea. The minimal prey biomass required 

for larval growth was, on average, 19% higher in December than in September. The reason 

for the higher prey requirements was a shorter day length in winter and, thus, a longer period 

of time when larvae pay for metabolic costs without energetic income. This finding points out 

that the energy savings afforded by decreased temperature in December does not fully 

compensate for the losses in foraging time due to the short, wintertime photoperiod. Projected 

warming will increase energetic costs and, therefore, be particularly challenging for larvae 

experiencing short day lengths. We estimated that a 13-mm herring larva will require 28% 

(35%) higher prey biomass in the Buchan/Banks (Downs) area to sustain their growth in the 

2°C-warmer North Sea. It remains an open question whether the productivity of the North Sea 

will increase in the future, or Atlantic herring will adapt its spawning strategy, including 

phenology and/or distributional shift, to promote larval survival as it is known for various marine 

fish species (e.g. Bakun, 2006; Ottmann et al., 2021). 

Uncertainties and critical knowledge gaps  
 

Bioenergetic model 

The model used in this study has been thoroughly validated and yielded a good comparison 

with laboratory and field studies of herring larvae (Hufnagl and Peck, 2011; Bils et al., 2016; 

Illing et al., 2018). Although we were not able to compare our modeled growth rates with in situ 

measurements based on the RNA:DNA or otolith microstructure analyses, we believe this 

model provided reliable estimates of growth and starvation of herring larvae. However, there 

are some important limitations to our modeling approach. First, although the optimal foraging 

routine used in our model represents an advancement in our mechanistic understanding of the 
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foraging process, this routine is still a simplified representation of the larval trophodynamics. It 

is solely based on the size-driven predator-prey interactions and does not take other potentially 

relevant aspects into account (e.g. prey visibility, species-specific energy content or escape 

behavior). Although size is likely an important factor in prey selection by larvae and the 

predicted prey niche breadth compares well with observed sizes of prey in larval guts (Hufnagl 

and Peck, 2011), we need to keep in mind that i) field-based analysis of larval gut content can 

be biased toward larger prey items, and ii) laboratory observations on predator-prey 

interactions are usually obtained using single prey species such as different life stages of a 

copepod (de Figueiredo et al., 2005; Robert et al., 2014). In our opinion, the main factor 

hindering the creation of more realistic foraging models is the availability of reliable field or 

laboratory data with taxonomical and size-resolved information on available versus consumed 

prey. We suggest that future feeding studies conducted in the laboratory or in mesocosms to 

employ more realistic prey fields and trophodynamic field studies to combine multiple 

approaches (such as visual gut content analysis, DNA metabarcoding and isotope analysis). 

Once such data are available, they can be easily integrated into the foraging routine of a 

bioenergetic model to account for the larval prey preferences.  

Second, the metabolic rates used in this study (see Eq. S3.4 in supplements) were 

temperature- and size-dependent, and did not consider metabolic down-regulation as an 

adaptive strategy to poor feeding conditions. Illing et al. (2018) reported the metabolic rates of 

a starving larva being 8 to 34 % lower than those of a well-fed larva. A similar down-regulation 

was demonstrated herring larvae fed at low rations by Kiørboe et al. (1987). Such energy-

saving mechanism is probably linked to the starvation resistance of herring larvae that allow 

them to survive at zero-growth rates whereas larvae of other species such as cod need to 

maintain a positive growth (e.g. 3% d-1) to survive (Folkvord et al., 2015). However, the positive 

effects of this adaptation on larval survival remain questionable. Low or zero-growth increases 

a size-dependent predation pressure on larvae in agreement with the “bigger is better” and 

“stage duration” hypotheses (Anderson, 1988; Houde, 2008). Moreover, it is unclear for how 

long larvae can down-regulate their metabolism and still be able to successfully forage when 

they encounter favorable feeding conditions such as a patch of zooplankton. For example, 

Pedersen (1993) reported that larvae reared under low and high ration-cycles (5 and 10 days, 

respectively) grew slower during the high ration phase compared to conspecifics constantly 

fed high rations. A better understanding of a decreased performance of starved larvae and 

larval resilience to unfavorable feeding conditions (e.g. duration to point-of-no-return of yolk-

sac and pre-flexion larvae) will be needed for different spawning components/seasons. 
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Prey field 

Plankton concentration is known to vary at a wide range of spatial scales and its patchiness 

has been shown to be important for feeding dynamics of planktivorous predators, including fish 

larvae (Robinson et al., 2021). Although the simultaneous sampling of herring larvae and their 

planktonic prey used in this study was the best possible approach in these field campaigns, 

we need to be aware that the net sampling represents an “average” prey concentration across 

~2 km at each station. Despite finding substantial variability in the distribution of zooplankton 

biomass at this scale (Fig 7, A, E, and I), prey patchiness relevant to larval foraging occurs at 

much smaller scales (10s of meter, Pepin et al., 2015). Previous studies suggested that prey 

patchiness at these small-scales and the random encounter of higher prey densities by 

individual larvae can enhance growth rates and sustain the survival of larvae within cohorts 

experiencing suboptimal feeding conditions (e.g. Davis et al., 1991; Pitchford and Brindley, 

2001). Our ability to include prey patchiness in the individual-based model is limited by a lack 

of observations and process understanding of zooplankton patchiness. Alternative 

observational methods, for example, a Video Plankton Recorder (Davis et al., 2005; Lough 

and Broughton, 2006) or similar equipment could be used in the future to resolve the fine-scale 

patchiness in the distribution of fish larvae and their prey. This information is particularly 

valuable to better understand larval feeding success and survival in food-limited environments 

such as the winter North Sea. 

Our modelling approach did not consider the impact of larval feeding on zooplankton and ability 

of herring larvae to overgraze its zooplankton prey. Pepin and Penney (2000) and Llopiz et al. 

(2010) found it rather unlikely that fish larvae can exert enough pressure to severely reduce 

zooplankton standing stocks. In contrast, Cushing (1983) suggested that lesser sandeel 

(Ammodytes marinus) larvae caused significant mortality on, and local depletion of, their 

zooplankton prey in the North Sea. Although larval prey consumption will likely have little 

impact if foraging occurs in a patch of high zooplankton biomass, intraguild competition and 

overgrazing may increase the risk of larval starvation when prey availability or productivity is 

low. To add more realism to larval foraging models, density-dependent effects and a feedback 

loop on the prey field need to be considered. Although larval fish consumption has been 

included as a mortality term in some low-trophic level models (i.e. Maar et al., 2014), to our 

knowledge, such feedback has been largely ignored in individual-based bioenergetic models 

of marine fish larvae.  

 



  Chapter 4: Physiological Modelling 

170 
 

Larval length at first feeding 

Larval length is an important trait that determines various developmental attributes of fish 

larvae (e.g. swimming speed, capture success) and, thereby, controls larval feeding success 

and vulnerability to starvation during the first critical period of their life. Our results suggest that 

particularly young first feeding larvae are vulnerable to starvation and that a cohort-specific 

starvation mortality depends not only on the mean LFF, but on the length-frequency distribution 

of the first-feeding larvae within this cohort. Our literature review on herring spawning sub-

components in the North Sea and herring stocks elsewhere revealed that the variability of 

larval length-at-hatch (LAH) has been well documented (e.g. Blaxter and Hempel, 1963; Peck 

et al., 2012), whereas less information is available on the variability of the LFF. To our 

knowledge, only two studies reported ranges of LFF for autumn-spawning herring larvae: i) 

Johannessen et al. (2000) estimated the standard deviation of LFF of  0.5 mm from laboratory 

experiments, and ii) Gamble et al. (1985) reported a LFF range of 0.8 mm in larvae reared in 

large, enclosed mesocosms. Due to a low number of parents used to produce offspring for 

laboratory/mesocosm experiments, we think that these LFF ranges underestimate the 

variability of LFF in the North Sea herring population. Field observations from the IHLS were 

not feasible to derive the range of LFF, because wild caught herring larvae rapidly lose their 

yolk-sac while being captured. Therefore, we only used these data to estimate the maximal 

size of yolk-sac larvae in the field as a proxy to the maximal LFF. Th comparison of those LFF 

with previously reported ones, suggest the length range of first-feeding larvae of at least 2 mm. 

Our results underscore the need for up-to-date and quality assured estimates of herring larvae 

length-at-hatch and length-at-first feeding for different spawning components in the North Sea 

(and probably, elsewhere). 

Temperature and parental factors (e.g. changes in stock age-structure due to climate change 

or exploitation) have often been reported as an important factor regulating egg size, LAH and 

LFF (Peck et al., 2012; Geffen, 2009, van Damme et al., 2009). It has been shown that egg 

size in herring populations differs not only among spawning seasons but between cohorts 

within the same spawning season due to seasonal difference in the size of females within 

spawning waves (Huang et al., 2022). Two-fold variation in egg size was reported by Blaxter 

and Hempel (1963) and dos Santos Schmidt et al. (2017) reported for the Downs and Buchan 

spawning areas. However, it is unclear how these differences in egg size translate into 

differences in LAH and LFF. As for temperature, Blaxter and Hempel (1963) questioned 

whether a uniform influence of incubation temperature on the hatching size of herring larvae 

exists for all Atlantic herring (sub)stocks. We suggest further laboratory and mesocosm 

investigations where mean and, even more importantly, ranges of larval LAH and LFF should 

be reported. Novel mobile mesocosm experimental setup with underwater video recordings 
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(e.g. Sswat et al., 2018) could produce new insights into trophodynamics of first-feeding herring 

larvae to overcome the problem that herring larvae often lose their yolk-sac if handled. Parental 

effects on LAH/LFF in North Sea herring can be studied using cross-fertilizations experiments 

(e.g. Berg et al., 2018) Furthermore, long-term monitoring of changes in LAH and LFF would 

be required to explore effects of temperature during incubation time and changes in the 

age(size)-structure and reproductive strategy of the parental NSASH stock. 
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The lack of knowledge about plankton dynamics and environmental drivers in the North Sea 

limits our understanding of long-term trends in biomass and biodiversity in the region. Previous 

studies from various parts of the North Sea may provide some insight into long-term changes 

of key species and functional groups (e.g. Widdicombe et al. 2010, Löder et al. 2011, Bresnan 

et al. 2015). However, the North Sea is highly heterogeneous and changes observed in other 

areas may not always be consistent or may even contradict those reported (Capuzzo et al. 

2015, 2018) and, therefore extrapolations should be done with caution. Additionally, few 

datasets include the small size fractions of the plankton community hampering our full 

understanding of plankton dynamics at large spatial and temporal scales.  

In my thesis, we conducted a comprehensive assessment of plankton dynamics in the North 

Sea during times of low productivity, covering the entire region and two main spawning grounds 

of herring. Through this thesis, we generated a unique dataset that provided more accurate 

mesozoo-, novel microzoo-, and PZP estimates. By analyzing and comparing the prey fields 

of the two spawning grounds and seasons in the North Sea in Chapter 3, we demonstrated the 

impact of prey availability and size on larval condition and growth, emphasizing the importance 

of PZP for herring larvae, especially in Downs, as discussed in Chapter 4. This study adds to 

our understanding of plankton dynamics during the winter, their interactions with the 

environment, and their potential impact on overwinter growth and survival of larval herring and, 

therefore, recruitment dynamics. In this general discussion, I will synthesize the findings of the 

different chapters, expand on topics that go beyond the scope of each individual chapter, 

explore broader implications, and suggest future perspectives. 

The plankton community in winter 

The results reported in this thesis show that the plankton standing stock biomass in the North 

Sea, during winter, ranged between 4.7 and 23.8 and between 21.4 and 195.6 µg C m-3 for 

the MZP and MesoZP communities, respectively. This is a critical ecological information, since 

the plankton stocks surviving the winter are the baseline for the plankton succession in spring 

and determine the stock of secondary production (Sommer et al. 2007).  Moreover, based on 

the winter stock data as provided by this thesis, the production rate of the plankton biomass 

can be estimated and predictions that are more reliable can be made. Changes in primary 

production can be driven by various factors including nutrient and light availability, 

temperature, and grazing (Cadée & Hegeman 2002, Behrenfeld et al. 2006, Cloern et al. 2014) 

with a cascading effect on higher trophic levels, especially during times of low productivity and 

biomass (Sommer et al. 2007). Due to a lack of reliable data of plankton standing stocks at the 

lower trophic levels, it is still unclear whether the recent marked temperature increase during 

winter can influence the long-term local and broad scale system productivity and which other 

drivers are important. Ultimately, this might have important implications since this productivity 
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can have drastic effects on the secondary production, for instance nauplii, which are an 

important component of the winter zooplankton community and a critical food source for herring 

larvae (main biomass source, even in generalist scenario) (chapter 4).  

During times of low productivity, the microbial loop is mainly responsible for carbon cycling and 

energy transfer towards higher trophic levels (Levinsen & Nielsen 2002). The observed 

dominance of small taxa such as Heterocapsa spp. in winter (Chapter 1), which is known to 

increase its bacterial ingestion rate during the times of low irradiation (Millette et al. 2017), is a 

strong indicator of an enhanced microbial activity and energy transfer during this time of the 

year. Furthermore, the here reported higher nauplii abundance compared to other studies 

(www-wgze.net) (Chapter 3,4) underlines the strength and importance of the microbial loop in 

winter, since they primarily feed on heterotrophic protists, rather than on phytoplankton (Turner 

2004). Indeed, higher biomass of nauplii were observed in the southern German Bight than in 

the English Channel, which coincided with the peak of abundance of Ciliates and partially of 

dinoflagellates (Chapter 1 and 3). However, the structure of microbial food webs was found to 

be significantly altered by changing inter-annual climatic conditions, which can be induced by 

climate change. Warming in general was found to promote the relationships among smaller 

groups, taxa or species, while diminishing the role of large phytoplankton and ciliates which 

may result in a potential alteration of energy circulation through the microbial food web 

(Trombetta et al. 2020). 

Differences in PZP community composition were typically reported at smaller spatial scales 

(Montagnes & Lessard 1999), where different water masses congregate (Yang et al. 2021). 

Here we report a slight shift in the community composition nearby the transition zone between 

the North Sea and the Atlantic Ocean both in the northern (through the Orkney-Shetland 

passage) and southern (English Channel) areas. When combining MZP and MesoZP data, we 

confirmed the previously indicated community change and found a clear transition in 

community composition along classical water mass characteristics such as temperature and 

salinity in the Buchan/Banks and Downs areas. This community shift along clear environmental 

drivers was not shown in the PZP community only. This indicates that relying solely on the 

highly variable PZP dynamics will make it hard to distinguish between large-scale processes 

and locally induced variability patterns.  

Plankton dynamics and fisheries 

When the lower trophic levels control the abundance and productivity of higher trophic levels, 

the system is bottom up controlled. Bottom up control can be seasonal or initiated by the effect 

of environmental stressors (Lynam et al. 2017). In shelf seas, such as the North Sea, variability 

in zooplankton production was found to exert a pronounced bottom up effect on fish production 
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(Heath 2005). Under ongoing climate change, the bottom up effect, especially on planktivory 

fish such as Herring may be more distinct as they react directly on changes in plankton 

production (Lynam et al. 2017). On early life stages of fish, the bottom up effect is more 

pronounced during first feeding, when fish larvae require a sufficient amount or prey in terms 

of abundance and size (“ciritcal period”, Hjort 1914) and the amount of prey needed is expected 

to increase under climate change as a response to increasing temperatures (chapter 4). 

Investigation of the factors that affect feeding success during the larval stage is, thus, an 

essential research area that assists in our understanding of the recruitment variability among 

marine fish populations (Hjort 1914, Hunter 1980, Houde 2008). In chapter 4, we investigated 

the feeding conditions of herring larvae in their spawning grounds and found significant 

differences in the feeding conditions, which I will discuss in the following.  

In Buchan/Banks, the in situ prey field was not adequate to support the growth of larvae < 10 

mm in length, whereas bigger larvae were able to reach their maximal temperature-dependent 

growth capacity due to a sufficient amount of larger prey. These differences in growth potential 

between larval sizes is linked to the mouth gape of larvae, which limits their prey spectra. 

Therefore, smaller larvae are more dependent on smaller prey like PZP, while larger larvae 

are able to feed on larger mesozooplankton, if sufficiently available. Indeed, here I show that 

the plankton community in this area was composed by higher relative abundances of larger 

zooplankton, expressed by the less negative slopes of the community size spectra, with 

relatively high contribution or larger mesozooplankton taxa as also reflected as positive scores 

by the RDA (Chapter 3).  

In the Downs compartment, larvae experienced higher and longer starvation-probability at all 

sizes (from 6 to 26 mm). However, the main limitation here appears to be food availability, 

since this system is biomass-restricted to sustain growth. This contrast with Buchan/Banks 

area where larvae seem to be more impacted by the community composition and size structure 

than by limited availability of prey items as larger larvae were not at risk to starvation. Indeed, 

the overall biomass of zooplankton in Downs was lower than in Buchan/Banks (Chapter 3), 

and composed by lower relative abundance of small prey organisms, expressed by the steeper 

size spectra slopes (Chapter3). However, in both spawning grounds and seasons, larvae 

showed better growth performance when MZP was included in their diet (chapter 4), which 

agrees with previous studies that suggested that Downs’s larvae might rely more on PZP than 

MZP (Denis et al. 2016, Bils et al. 2022). Hence, despite the appropriate size community 

structure to support the larval growth in Downs, the lower zooplanktonic biomass appeared to 

be a crucial factor affecting the growth and survival of herring larvae and thus their recruitment. 

However, we cannot exclude the likely methodological bias affecting these results. Indeed, the 

underrepresentation of PZP in Downs may be attributed to the use of formalin as a fixation 
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method to obtain biomass for the models. In Chapter 1, ciliates were found to be abundant in 

the English Channel, with lugol preserved samples showing over 600 individuals, compared to 

only 0.18 individuals per liter in Chapter 3. This disparity may have influenced the predicted 

food limitation in the English Channel. The theory of the "critical period" (Hjort 1914) suggests 

that the first feeding larvae are the most susceptible to food limitation. Our findings, however, 

indicate that larval survival in Downs is not confined to a single critical period, but rather, their 

elevated vulnerability to starvation persists throughout larval development. This could have 

significant implications since, even if PZP is underestimated due to the fixation method, the 

absence of larger prey will affect the larvae at later stages when their metabolic demands 

increase. Although food limitation for herring larvae in the Downs spawning ground has been 

demonstrated, previous research has indicated that the proportion of newly hatched larvae 

from Downs contributing to the total larvae has been increasing since the 1990s (Schmidt et 

al. 2009). The observation may suggest that the Downs larvae are drifting into the southern 

North Sea early enough, where they might be able to find more favorable food conditions 

during later developmental stages.  

The North Sea is home to a diverse array of marine organisms besides Herring (Clupea 

harengus) that are economically and culturally important to the region, such as Plaice 

(Pleuronectes platessa) or Cod (Gadus morhua). Plankton, as the base of the marine food 

web, plays a crucial role in supporting these organisms. Examine how plankton populations 

change during the winter is needed to predict food availability and recruitment patterns, not 

only for winter spawners, which in turn is important for managing and conserving fish 

populations in general. The dependence of fish production on plankton production is evident 

as highest fisheries production overlaps with seasons and areas of highest plankton production 

(e.g. (Nielsen & Richardson 1989, Heath 2005). Hufnagl et al. (2015) suggested a combination 

of field, laboratory and field studies to successfully unravel the key processes of fish 

recruitment. Including in situ prey fields of simultaneously sampled herring larvae into a 

bioenergetics model revealed some important patterns but given the number of processes 

affecting recruitment, there is a need to develop end-to-end models including physical and 

biochemical changes, nutrient dynamics, primary and secondary production (Brander 2010, 

Pörtner et al. 2014) to make reliable predictions on marine production, including fish. 

Therefore, to better manage fish stocks, there is a need for a general understanding of baseline 

processes such as seasonal effect on the phytoplankton-zooplankton dynamics.  
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Environmental drivers of plankton dynamics and possible scenarios 

under climate change  

Although we could not find a clear link between distribution pattern and the environment of the 

PZP community, growth and reproduction of zooplankton is generally highly temperature 

sensitive (Mauchline 1998). With their short generation times, biomass and community 

structure is often tightly coupled with climate and environmental stresses (Hays et al. 2005, 

Chiba et al. 2018). Due to this fact, they are minimally effected by multi-year carryover effect 

such as higher trophic levels (e.g. fish) meaning that their population size closely tracks 

seasonal-to inter-annual environmental condition changes (Mackas & Beaugrand 2010). 

Ongoing ocean warming impacts seasonal cycles and inter-annual trends in the ocean. These 

impacts are best measureable in the smaller than the larger organism. While climate change 

is often discussed on a global scale, some regions are experiencing higher impact rates and 

more local extreme events than the whole planet, such as the North Sea (Quante & Colijin 

2016).  

Linking the prominence of the microbial loop during these times with the climate related 

changes over the past two centuries; we can assume that PZP will have a more significant 

impact in a warmer future (Aberle et al. 2007). This is due to several reasons: 1) an increase 

in sea temperature will result in higher growth rates for PZP, 2) more stratified waters will 

enhance the rate at which PZP encounter their prey, and 3) a reduction in phytoplankton cell 

size is expected, which will be favorable for PZP as they are adapted to consuming smaller 

cells. In this manner, more energy will flow through a thriving PZP community, rather than 

sinking to deeper waters or being directed straight to larger metazoan grazers like small 

copepods (Caron & Hutchins 2013). As phytoplankton size becomes biased towards smaller 

cells, PZP will serve as an important link in the trophic chain between small-sized 

phytoplankton and metazoans (Figueiredo et al. 2009). These changes may lead to an 

increased recycling of nutrients in the pelagic. The general temperature increase is 

accelerating heterotrophic processes faster, which may cause a mismatch between predator 

and prey with significant impacts on the whole ecosystem stability and its season-adapted 

processes (Wiltshire & Manly 2004).  

We showed that under ongoing climate change, the minimum biomass needs for larval herring 

will increase in both spawning grounds, but more distinct in Downs (+35%), where current 

feeding conditions already do not supply efficient growth (Chapter 4). With the observed 

increase in abundance and the predicted increase in the face of climate change in the North 

Sea during winter, it may be beneficial for the smaller herring larvae, potentially improving their 

nutrition and survival. On the other hand, the consequences for larger herring larvae that have 



  General Discussion 

185 
  

to rely on small food due to the higher abundance of very small organisms may include slower 

growth rates and reduced survival. While small organisms such as PZP can still provide 

nutrition, larger larvae require more energy and larger prey to sustain their growth and 

development. If their diet is limited to small food, it may not provide enough energy for them to 

grow, especially if increased temperatures during winter leads to increased metabolic 

demands, which could ultimately affect their survival at later development stages.  

To address the impacts of ongoing climate change, it is important to focus on organisms and 

seasons that are more prone to changes, starting at the bottom of the food web (Kreyling et al. 

2019). However, distinguishing natural variability, especially in small planktonic organisms, is 

a challenging task, and fragmented studies make it even more difficult. The same drivers 

affecting seasonal growth and production, such as temperature and nutrients, may cause local-

induced and inter-annual variation, resulting in a carryover effect on different temporal scales 

(into the following year, season, trophic level, etc.). Extreme events can also severely influence 

year-year plankton biomass and abundance on both local and broader scales. Short or 

incomplete time series have the issue that unusual years, even delayed due to carryover 

effects, can have a large and flawed impact on the observed trends (Widdicombe et al. 2010), 

making it difficult to separate cyclical and non-cyclical, locally induced, seasonal, and inter-

annual variations. To reduce the local effect of variations and incorporate short datasets in 

large time series with different resolutions to match broad scale patterns, Scott et al. (2023) 

suggest changing the spatial resolution to mask small spatial changes and emphasize large-

scale patterns, or vice versa. Currently, there is a general lack of understanding of multi-driver 

impacts in the face of climate change, with the impact of single drivers being studied more 

intensively (Richardson 2009). An integrative approach, combining the study of individual and 

simultaneous factors along with different organizational levels (individual, population, and 

community), should be the aimed approach, which will be discussed below. 

Ecosystem approach and bioindicators 

The North Sea, as well as other European seas, has and is undergoing significant ecosystem 

changes in recent decades (Beaugrand 2004, Alheit et al. 2005). Given that these 

transformations have occurred across all trophic levels (Beaugrand et al. 2003, Alvarez-

Fernandez et al. 2012), the goal of fisheries management has been to apply an ecosystem-

based approach (Folke et al. 2004). Assessing the states of ecosystems and projecting their 

future under different scenarios has become a critical requirement for ecosystem management 

(Jørgensen 2002).  

However, the most comprehensive approach to understand larval growth and survival related 

to zooplankton biomass and size structure over time and space, is the combination of modeling 
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and field measurements, as noted by Hufnagl et al. (2015). Using individual-based 

physiological models, such as in Chapter 4 of this thesis, can be an effective way to study 

larval growth and variation when food is limited. The generated size spectra slopes based on 

the plankton data was used to improve an IBM for growth and survival of early life stages of 

herring. With this parameterization, the IBM indicated food-limited areas for the different larval 

size classes in the respective spawning areas. By adding taxonomic information to the 

approach, we revealed the influence of the general community composition on zooplankton 

biomass, particularly the lack of larger, biomass-rich prey items such as nauplii. The approach 

used in this study, is based on broad taxonomic sorting, which has advantages such as the 

exclusion of non-prey organisms before generating the size spectra. It also allows for more 

realistic predator-prey interactions and the calculation of species-averaged predator: prey-

mass ratios (PPMR). For instance, the abundance of chaetognatha in some areas may also 

indicate processes such as predation on larvae and food competition. In that sense, the 

traditional size spectra approach has its limitations, as it is based on the assumption that larger 

organisms feed on smaller ones and would not reveal predator-prey interactions between taxa 

of similar sizes. Thus, a certain amount of taxonomic identification is necessary.  

Long and broad-scale data on winter plankton dynamics will be helpful to improve these kind 

of models by providing baseline information on the availability and dynamics of prey for fish 

during the winter, which can help predict the carrying capacity of the ecosystem and the 

carrying capacity of fish populations. The data presented here can be also used to improve 

ecosystem model estimates. Ecosystem models are able to predict interactions between 

different components of an ecosystem, such as plankton, fish, and other organisms as well as 

abiotic parameters. Data on winter plankton dynamics is needed to parameterize and validate 

these models, allowing to better understand the functioning of the North Sea ecosystem and 

predict how it may respond to changes in the future (for a review see Moll & Radach 2003). 

Pollution models, which are used to predict how pollutants such as agricultural related nutrients 

move through the environment and how they will affect different organisms will also profit from 

knowledge on winter plankton dynamics (e.g. James 2002). Ultimately, climate change models 

can be also parameterized to improve the accuracy by providing estimates on how plankton 

populations are likely to respond to changes in temperature, precipitation, and other 

environmental factors (see Schrum et al. 2016). In summary, data on winter plankton dynamics 

can be useful for numerous modelling approaches by providing important information on how 

the ecosystem, climate and fish populations respond to the changes in the environment and 

pollutants. It allows to have a better understanding of the functioning of the ecosystem and to 

predict how it may be impacted by the future changes, which can help inform management 

decisions and policy-making. 
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Nevertheless, monitoring all trophic levels is a complicated and time-consuming task. 

Therefore, a major research objective has been to identify suitable environmental indicators 

for assessing the "good environmental state" which are straightforward to monitor and are 

responsive to changes in the ecosystem (Rees et al. 2008). The "good environmental state" 

(GES) is a term used in marine management to describe the ideal condition of a marine 

ecosystem. It is a benchmark against which the status of an ecosystem can be measured, and 

is defined as the environmental status that would be achieved if pressures on the marine 

environment were reduced to levels that enable the ecosystem to function in a healthy and 

sustainable way (Dickey-Collas et al. 2017). In the process of monitoring changes in the state 

of ecosystems and trophic relationships, the use of bioindicators is an essential tool. To 

observe changes in the good environmental status of the world's oceans, for example, as a 

result of climate change and overfishing, bioindicators are needed that can rapidly detect 

change, are easy to apply, and simple to monitor.  

PZP is often considered as indicator for conservation purposes (e.g. Bils et al. 2019). However, 

observing changes in the PZP community requires extensive effort and highly skilled observers 

who can differentiate between plankton species and the difficulties in preservation such as the 

loss of organisms due to inappropriate preservation or shelf life of the samples remain. 

Moreover, the quick reaction time of PZP may be more obstructive than expedient. Ciliates for 

instance, may respond rigorous to small-scale, local changes rather than to broad scale 

changes. These quick responses makes it hard to discern between cyclical variability of several 

factors, the local conditions, the communities natural variability due to other factors such as 

production or predation. Therefore, using only PZP as biondicators would require certain data 

perquisites, including an appropriate length and spatial scale of the data. In summary, although 

the PZP community has some valuable characteristics to serve as bioindicators, a more holistic 

approach across a broader size range of plankton offers more reliable and robust results 

reflecting impacts of both, local- and broad- as well as short- and long-term changes. 

Difficulties with sampling, preservation and the challenging nature of processing the data may 

be one of the contributing factors to the scarcity of these holistic approaches. 

Plankton sampling and Methodologies 

There is a general underrepresentation of small taxa in plankton studies due to the traditional 

use of nets >200 µm which causes underestimations of zooplankton abundances and biomass 

and subsequently hinders the understanding of ecosystem processes, especially when 

studying times of low productivity. The presented method of combining different meshed nets 

offers a better enumeration and catchability, although no plankton sampling system is able to 

provide true estimates of abundance for the different plankton components equally (Owens et 

al. 2013). With the here presented dataset we improved the estimation of Mesozooplankton 
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abundance and biomass and also provided inexistent estimates of broad scale 

Microzooplankton community abundance and biomass in the autumn and winter. Although we 

cannot assume that the estimates are complete, it can be used as a baseline. Baseline 

estimates about the general primary production in the North Sea, are scarce due to two main 

factors. First, traditional methods of measuring primary production is time and labor extensive 

and second, satellite remote sensing data, which became a valuable tool to obtain insight in 

spatial and temporal patterns of primary production, particularly at the global scale (see 

Westberry et al. 2008) is limited due to the thick cloud cover during winter time. This lack of 

data for the low productive season results in poor model estimates, already at the baseline. 

This might help to explain the discrepancy between zooplankton model results and field 

samples (Everett et al. 2017). 

The presented DOC pipeline (Chapter 2) demonstrates that continuous adaptation is 

necessary and significantly enhances classification performance compared to limited or no 

adaptation. Despite working with abundant and diverse taxonomic plankton groups, the 

pipeline maintained high performance levels in the face of changes of the plankton community, 

making it a useful tool for research questions that focus on broad groups for instance. Our 

DOC is a powerful tool for adapting a classifier model to work with plankton communities that 

change over space and time, and offers high accuracy, adaptability, versatility, and ease of 

use. The pipeline's user-friendly interface also makes it accessible to non-experts. 

The development of plankton image classification systems has been strongly influenced by the 

desire to reduce sampling processing times. Plankton imaging can be broadly divided into two 

parts, the imaging of preserved samples (e.g. FlowCAM, ZooSCAN) and the in-situ imaging 

(e.g. VPR, ROV). The imaging of physical samples has the advantage that imaging can be an 

additional tool next to other analysis techniques (e.g. biochemical or molecular anaylsis) and 

the results of the imaging can be physically checked. However, the time-consuming sampling 

device application, the addressed problems in preserving samples and the delay in sample 

processing (unless the device is applicable on board) remains. In situ plankton devices have 

the advantage that sample preservation and storage problems disappear. However, with in 

situ devices, no physical evidence rather than the stored image exists and the main limitations 

are the limits in resolution or orientation of the imaged particle. Distinct morphological features 

may not be visible. These devices are usually costly due to a proper camera to ensure a certain 

image quality and the size limitations of the imaged organisms are usually narrow due to focus 

depth (for a comprehensive review see Lombard et al. 2019). More recent devices focus on 

the application via the survey ships clean water inlets. This ensures a condition independent 

and unlimited application on the entire survey area and time (e.g. Plankton Image Analyser 

(PI); Scott et al. 2021). The main limitations here are mainly the fixed sampling depth, the loss 
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of delicate organisms through the pumping process and the collection rate and subsequent 

storage of the data. Whichever device used, the combination of imaging devices (e.g. PI, 

Zooscan, FlowCAM) and machine learning techniques (e.g. ZooProcess, Plankton Identifier, 

EcoTaxa) to identify and classify different types of plankton based on digital images changed 

the game. These tools are designed to support and accelerate the analysis process as the 

number of samples taken, physically or digital, supersedes their processing. They are trained 

using a dataset of labeled/ human-identified plankton images, and can then be used to 

automatically identify and classify new plankton images. The disadvantage of such automated 

classifier algorithms is the essential precondition of a labelled training set.   

Outlook 

The growing threat of anthropogenic impacts, such as overfishing, pollution, and climate 

change highlight the urgent need for a deeper understanding of the marine ecosystems. Only 

by enhancing our knowledge of ecosystem functioning, we can develop effective strategies to 

mitigate the detrimental effects of human activities on marine habitats, and ensure their 

preservation for future generations. The primary findings of my thesis underscore the urgent 

requirement for detailed and extensive short- and long-term spatially-resolved data on the 

abundance and biomass of PZP, MZP and MesoZP as well as their specific and broad-scale 

dynamics. These estimates are critical for developing precise models of, for instance, energy 

transfer and nutrient recycling in marine ecosystems, given their crucial role as a key 

component of the carbon cycle. The number of steps involved in energy transfer determines 

the amount of carbon/energy that is available for fish and their offspring, therefore affecting 

recruitment dynamics. This essential aspect must be taken into account when making 

decisions related to the management of marine ecosystems. 

The future of plankton sampling will involve continued advancements in sampling devices and 

techniques, with a focus on improving efficiency, accuracy, and applicability. Automation is 

becoming increasingly common in the form of autonomous underwater vehicles (AUVs), which 

can collect large amounts of data quickly and accurately, even in harsh or inaccessible 

environments (e.g. EXOCETUS, Harvey & Ryan 2012). Advances in DNA sequencing 

technologies are also allowing researchers to analyze plankton samples more thoroughly and 

accurately than ever before, providing a detailed picture of the diversity and abundance of 

plankton populations and identifying changes in community structure over time (Sildever et al. 

2021). Satellite-based remote sensing is already and will continue to provide valuable 

information on the distribution and abundance of phytoplankton populations over large spatial 

scales, which can help to identify areas of high biological productivity and environmental stress. 

To achieve a more comprehensive picture of plankton populations and their ecology, multiple 

sampling techniques are increasingly being integrated, such as the combination of net tows, 
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optical plankton counters, and high-throughput sequencing. The integration of data from 

multiple sources will help to overcome the limitations of individual sampling techniques and 

improve our understanding of plankton dynamics. Overall, the future of plankton sampling will 

continue to focus on technological innovation and the integration of multiple sampling 

techniques, which will provide a more detailed and accurate understanding of the ecology and 

dynamics of plankton populations in the ocean. 

As the volume of data from plankton samples continues to increase, the need for efficient and 

accurate plankton classification technology becomes ever more pressing. While traditional 

methods rely on manual identification and counting, these approaches are time-consuming 

and require highly trained personnel. The development of user-friendly AI-based classification 

technologies has the potential to revolutionize the way we analyze plankton data. By leveraging 

deep learning algorithms, AI-based systems can rapidly and accurately classify plankton 

species from digital images, reducing the need for manual identification and allowing for the 

processing of large amounts of data in a fraction of the time. Furthermore, user-friendly 

interfaces such as the DOC (Chapter 3) can enable even non-experts to use these 

technologies, making them accessible to a wider range of researchers. Overall, the 

development of user-friendly AI-based plankton classification technology is essential for 

improving our ability to promptly process the vast amounts of data produced in order to monitor 

and understand plankton dynamics, which are critical for predicting and managing the health 

of marine ecosystems. 

This thesis has contributed significantly to our understanding of the plankton dynamics in the 

North Sea during the low productive seasons and its potential impact on the growth and 

survival of herring larvae. However, there are still uncertainties and knowledge gaps that 

require further research. First, the complexity of the link between MZP and MesoZP goes 

beyond the information that can be derived from size spectra approaches, and the predator-

prey interactions are generally not well understood. As a result, studying these interactions 

directly in the field is a challenging task. In addition, the potential consequences of an 

enhanced microbial loop on higher trophic levels and the costs associated with the extra step 

in energy transfer efficiency remain to be investigated across multiple trophic levels. Although 

this thesis has shed light on the optimal prey size for different larval sizes, it is still unclear what 

costs feeding on suboptimal prey has on larval growth, metabolism, and condition at different 

temperatures. Understanding the costs of feeding on suboptimal prey for larval fish, including 

the reduction in growth and condition, and the underlying physiological changes such as 

metabolism and activity, will improve our knowledge of food limitation in the field during a 

critical life stage for many species. Additionally, this information may help predict how fish 

larvae can cope with the change towards smaller prey species due to climate change.  
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Researching the uncertainties and knowledge gaps mentioned above is not an easy task. 

Mesocosm experiments provide a promising opportunity to study the intricate interactions 

between MZP, MesoZP, and higher trophic levels in semi in-situ conditions. Additionally, 

innovative in situ observational techniques can be applied within mesocosms to advance our 

understanding of plankton dynamics. Hence, it is imperative to conduct further research on 

predator-prey interactions, including the abiotic affects with the help of mesocosms and novel 

observational techniques, to develop effective ecosystem-based management strategies for 

sustainable fisheries in the North Sea. 

In conclusion, to improve the accuracy of modeling methods and advance ecosystem-based 

management in fisheries, there is an urgent need for a more comprehensive and widespread 

dataset of a broader range of plankton components. Therefore, the continuation of the here 

established time series of abundance, biomass, distribution, and size composition of the broad 

plankton community throughout the winter season is crucial. The ongoing collection of this data 

will be critical in gaining a comprehensive understanding of the North Sea ecosystem over 

time, promoting the sustainable use of its natural resources. 
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Supplements: Chapter 1 

 

Fig. S1 spatial coverage per year of the Protozooplankton sampling stations in the North Sea during the 
International Bottom Trawl Survey Q1 from 2014-2021. The ICES areas are depicted by the background 
color (red= Iva, green= IVb, blue=IVc, and purple= VIId) and the stations are colour-coded according to 
the IBTS leading country (FRA=France, GER=Germany, NLD=The Netherlands, NOR=Norway). 
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Table S1. Survey period of the IBTS Q1 per respective country and year   

Country Year Start date End date 

France 2014 15.01 13.02 

France 2015 21.01 09.02 

France 2016 22.01 13.02 

France 2017 20.01 08.02 

France 2018 25.01 06.02 

France 2019 25.01 05.02 

France 2020 11.01 24.01 

Germany 2014 26.01 20.02 

Germany 2015 29.01 18.02 

Germany 2016 05.02 19.02 

Germany 2017 24.01 19.02 

Germany 2018 26.01 19.02 

Germany 2019 04.01 18.02 

Germany 2020 12.01 29.01 

Germany 2021 27.01 12.02 

Netherlands 2014 27.01 31.01 

Netherlands 2017 24.01 26.01 

Netherlands 2018 02.02 08.02 

Netherlands 2019 29.01 04.02 

Netherlands 2020 21.01 31.01 

Norway 2014 16.01 18.02 

Norway 2015 17.01 09.02 

Norway 2016 13.01 27.01 

Norway 2017 22.01 15.02 

Norway 2018 13.02 26.02 

Norway 2019 09.02 28.02 

Norway 2020 12.02 02.03 

Norway 2021 19.01 08.02 
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Fig.S2 : Mean 4th-root transformed abundance trend averaged across all stations for (A) the whole PZP 
community, (B) Ciliates, (C) Dinoflagellates, (D) Silicoflagellates. All three groups increased significantly 
in abundances over the last seven years. The variance of the fixed effects (year) (marginal R² (mar.Rsq)) 
and Slope (Slo) are displayed for total PZP and each main group. 
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Figure S3: (A) Dendrogram obtained for the four ICES areas per each year based on the environment 
and nutrients. (B) NMDS plot of the environmental variables for the four ICES areas and the different 
years. Colors represent the different clusters from the dendrogram. Sites are clearly separated by the 
key environmental variables temperature (TEMP), salinity (SAL), oxygen (DOXY) and nutrients (NH4 – 
ammonia, NO3 – Nitrogen, SI4 – Silicates, TN – total nitrogen) with an excellent goodness of fit (stress 
<0.05).  

 

Table S2. Taxa-specific coefficients used for estimating biomass B of individual zooplankters as a 
function of their biovolume BV: 𝑙𝑜𝑔10𝐵 = 𝑎 + 𝑏 ∙ 𝑙𝑜𝑔10𝐵𝑉. Note that a and b were adjusted to the units 
of B[µgC] and BV[µm3] used in this study.   

Biovolume [µm³] =
𝜋

6
∗ 𝑑2 ∗ 𝑤 d=diameter 

h = width 

Olennia et al., 

(2016) 

Log pgC cell-1  
=  log a + b * log 

V (µm³) 

a = -0.665 

b = 0.939 

V = biovolume 

Menden-Deuer 

& Lessard 

(2000) 
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Supplements Chapter 2 
 

Instruction manual for the DOC application 

Preface 

The following steps require that the basic foundations of a computer capable of Deep Learning 

have been set up. These include the fulfillment of all hardware requirements as lined out in SI 

II and the installation of a Linux operating system (the DOC application was tested successfully 

under Ubuntu 18.04 and Linux Mint 19.1). Furthermore, required drivers (CUDA) of the Nvidia® 

(Santa Clara, CA / US) Graphics card and Python 3 (via the Anaconda (Anaconda Software 

Distribution, 2016) distribution) have to be installed (SI III), and a Conda environment 

containing the packages listed in SI III (in the correct version) has to be created. 

Preparatory work 

In these steps the path to the Anaconda environment of your computer is set in the start script 

of the application. They require knowing the location of this environment, and the modification 

of one line of code. Any IT technician familiar with Linux computers should be able to execute 

these steps 

1. Change path to the location of your anaconda installation (“source ...”), and change the 

name from “DLV” to the name of your Anaconda enviroment in the bash script “Start_Here.sh” 

(fig. 1). 

 

Fig. 1: Bash script “Start_Here.sh” in text-editor view 

2. Set “Start_Here.sh” to “executable” (right-click, check box) (fig. 2). Check whether the 

Python scripts (featuring the “.py” suffix) are set to executable, and if not, set them to 

executable as before. 
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Fig. 2: Properties manager of script “Start_Here.sh” 

General remarks 

During the process, the file “Start_Here.sh” will be called multiple times. Depending on your 

operating-system settings, a window will prompt when double-clicking on the file, asking you 

how to proceed (fig. 3). It is recommendable to choose the option “run in terminal”, which 

means that the file is run in executable mode, and that program output like progress bars will 

be visible in a terminal window that opens automatically and closes automatically once a 

process is finished. 

 

Fig. 3: Options manager for executing script “Start_Here.sh”. 

In some parts of the graphical user interface, it is necessary to write input into an orange-

colored input field and confirm the input by clicking a button. For programming reasons, this 

field is still visible and accessible after confirmation, but should not be modified at that point in 

any way. Only enter input into an input field when the program dialogue asks for it (negative 

example in 4). 
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Fig. 4: User interface with input line that should not be modified in the current step 

 

If you have made an error in your input or selection of an option, it is advisable to close the 

application, and to then restart it. Do not attempt to make a correction after you have clicked 

on a “confirm” button. 

At several points, you will be asked to provide the location of a target folder. This location is 

chosen via a file-browser window that opens automatically. When asked for the location, 

navigate through the folder structure until you see the target folder listed in the window (fig. 5). 

Do not enter this folder before confirming the target location. 

 

Fig. 5: File-browser window of the user application. The folder “wrong_classifications” is the target folder 
that is being asked for in the current user dialogue. The next step would be to click the “OK” button 

 

Some scripts in the application will create temporary files and folders that are deleted after 

process completion. Do not mingle with or delete these files or folders! 

It is a good idea not to execute other memory-intensive processes on the Deep-Learning 

computer during image classification and model training. 

1. Classify images of one survey station 

Double-click on “Start_Here.sh”, and choose the option “classify_images (single folder)” (fig. 

6). You need to provide the name of your station folder (this folder should only contain images; 

no other files or directories!), the location of this folder, the location of the model file 

(“Final_Classifier.h5”) and the location of the “Model_Executable” script (figs. 7-11). Make sure 
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that the image folder does not contain “broken” files (these are sometimes created in copying 

processes that are not successfully completed). 

 

Fig. 6: Task menu that appears upon opening “Start_Here.sh” 

 

Fig. 7: First step in the “classify images (single folder)” task: The name of a folder of unsorted plankton 
images should be entered into the input field 

 

Fig. 8: Second step in the “classify images (single folder)” task: The path to the folder of images to be 
classified should be provided by clicking on “choose”. This will open a file-browser window for locating 
the folder (see also fig. 5). After path selection, a “confirm” button must be clicked to proceed (not 
pictured) 
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Fig. 9: Third step in the “classify images (single folder)” task: The path to the classifier-model file 
(“Final_Classifier_Model.h5”) should be provided by clicking on “choose”. This will open a file-browser 
window for locating the folder. After path selection, a “confirm” button must be clicked to proceed (not 
pictured) 

 

Fig. 10: Fourth step in the “classify images (single folder)” task: The path to the classification script 
(“Model_Executable_CNN_NoDataAugmentation4GUI.py”) should be provided by clicking on “choose”. 
This will open a file-browser window for locating the folder. After path selection, a “confirm” button must 
be clicked to proceed (not pictured) 

 

Fig. 11: Final step in the “classify images (single folder)” task: Final confirmation to start classification is 
given by clicking the “confirm” button 

 

2. Validate classification 

Perform a manual validation of the model output, i.e. make a copy of the model-output folder 

an move wrongly-classified images into the correct .class folders; if necessary, create new 

class folders. 
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Be aware that it may not be a good idea to create new folders for new classes that were very 

rarely encountered during validation. Training a model (see below) on these few images will 

very likely not lead to good classification results. 

In the end, you should have one folder that is the original model output (i.e., the folder 

“classified images”, automatically created by the classifier script), and one folder containing 

your validated classification. Both folders should have the same structure, and of course 

contain identical (and the identical amount of) images! 

You do not need to do any changes to the “uncertain_classifications” folder in the original 

model output – just leave it as it is. 

If you encountered new classes during manual re-analysis, be sure to name the folders in a 

manner that is consistent with the naming of the other class folders. In particular, avoid capital 

letters, underscores, dots and numbers. This is necessary to maintain the “alpha-numerical 

order” of classes in the classification scripts! 

In order to implement the DOC concept, it is wise to classify a few samples, i.e. two to three, 

and to then merge all model-output folders and all corrected folders. This is convenient in order 

to get more images to stock the training set up with. 

To start the comparison between model classification and expert validation, double-click on 

“Start_Here.sh”, and choose “analyze manual validation”. The program will compare the 

location of each image between the class folders of the original model output and your manual 

correction, and thus infers miss-classification rates. The program dialogue will ask you for the 

names and locations of the two folders, as well as for the location of the script 

“Manual_Validation_Analysis4GUI.py”, and will then start the comparison (figs. 12-15). It will 

fail if the number and file names of the images are not exactly the same for the two folders, so 

make sure copy processes are successfully completed if you need to transfer image folders 

between multiple computers for manual validation. 

 

Fig. 12: First step in the “analyse manual validation” task: The name of the folder containing the 
automatic-classification output (class folders) should be entered into the input field. 
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Fig. 13: Second step in the “analyse manual validation” task: The folder containing the expert-validated 
classification (class folders) should be given by clicking “proceed”, which opens a file-browser window. 
After navigating to the folder location, a confirmation by clicking a “confirm” button (not shown) is 
required. 

 

Fig. 14: Third step in the “analyse manual validation” task: The folder containing the script for comparing 
automatic and expert-validated classification (“Manual_Validation_Analysis4GUI.py”) should be given 
by clicking “proceed”, which opens a file-browser window. After navigating to the folder location, a 
confirmation by clicking a “confirm” button (not shown) is required. 

 

Fig. 15: Final step in the “analyse manual validation” task: Final confirmation to start the comparison 
between automatic and expert-validated classification is given by clicking the “start” button. 

 

The application will create two scripts that are of further importance within the “Scripts” 

directory: “Image_Stockup_Recommendation.csv” and “Thresholds.csv”. 



  Supplements 

209 
  

Within the folder containing the manually corrected class folders, a new folder has been 

created called “wrong_classifications”. This contains all images that you reassigned to other 

class folders during the manual validation. 

3. Stock up the training data-set with new images 

Create a duplicate of the folder containing the training-images class-folders. If you do not care 

about keeping a copy of the prior training set, no duplication is needed, and the original training 

folder will be modified. 

If you encountered new classes during manual re-classification, be sure to add respective 

empty folders in the new training-set folder! Furthermore, if not all classes that were part of the 

prior training set are included in the “wrong_classifications” folder, be sure to add respective 

empty folders here, as well! 

Double-click on “Start_Here.sh”, and choose “copy validated images to new training set”. The 

program dialogue will ask you for the name and location of the folder that provides the images 

for the new, extended training set. This is the aforementioned “wrong_classifications” folder 

(fig. 16). 

Also, you are asked to provide the location of the training folder, which should be the copy of 

the original folder just created (“Training_2”) (fig. 17). 

You are then asked to provide the names of the class folders in the source folder and those of 

the target folders (fig. 18). These names should be identical (this this input demand will be 

removed in a future version due to redundancy). Names should be given in alphabetical order. 

You are further asked to provide the relative number of images to be added to the new training 

set (values between 0 and 1). Take these from the file 

“Image_Stockup_Recommendation.csv”, which was created in the prior step. Note that the 

sequence of classes in the .csv file is not alphabetical, but that the sequence of stock-up ratios 

must be provided in the same sequences as the class names! 

Set “NA” values to 0. If you encountered new classes during manual re-analysis, be sure to 

set the stock-up values to “1”! (These values are originally set to 0 in the 

“Image_Stockup_Recommendation.csv” file). Also be sure to add the new class names in the 

respective input lines, in the correct alphabetical position in the sequence of class names! 

The aforementioned inputs should be provided with comma-space separation (“, “). It is a good 

idea to keep these in a Word file for later use – it can speed up the process of typing. 
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Fig. 16: First step in the “copy validated images to new training set” task: The name of the folder 
containing the wrongly classified images (arranged in class folders, as per the expert validation) should 
be entered into the input field 

 

Fig. 17: Second step in the “copy validated images to new training set” task: The name of the training 
folder to be stocked up with new images should be entered into the input field. 

 

Fig. 18: Final step in the “copy validated images to new training set” task: The names of classes should 
be entered into the upper two input fields. The relative values for image stock-up should be entered into 
the lower-most input field. Copying of the images is started by clicking “set”. 

4. Train a new model 

Make a copy of the scripts folder (name it e.g. “Scripts_2”). You can delete all the newly-

created .csv files – except for “Thresholds.csv”, which will be required later. 

From now on, work in this folder only! 

Double-click on “Start_Here.sh”, and choose “train the model”. You are then asked to provide 

the name and location of the updated training set (“Training_2”), as well as the location of the 

“Train4GUI_EX” scripts (“X” indicating numbers 1 to 8). You can then start the training (figs. 

19-22), which may take a while depending on the number and size of the training images, and 
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on your computer and GPU specifications (it takes about 50 minutes for about 50 k training 

images on the authors’ computer). 

The new model is then saved as “Final_Classifier_Model.h5” in the current scripts folder. This 

means that the baseline model of the same name is over-written. 

 

Fig. 19: First step in the “train the model” task: The name of the folder containing the training images 
should be entered into the input field. 

 

Fig. 20: Second step in the “train the model” task: The folder containing the training set should be given 
by clicking “proceed”, which opens a file-browser window. After navigating to the folder location, a 
confirmation by clicking a “confirm” button (not shown) is required. 

 

Fig. 21: Third step in the “train the model” task: The folder containing the training scripts 
(“Train4GUI_E1.py” and so on) should be given by clicking “proceed”, which opens a file-browser 
window. After navigating to the folder location, a confirmation by clicking a “confirm” button (not shown) 
is required. 
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Fig. 22: Final step in the “train the model” task: Final confirmation to start the training is given by clicking 
the “start” button. 

 

 

5. Incorporate new thresholds 

The script that performs the classification must now be updated with the thresholds generated 

in step #3. 

Double-click on “Start_Here.sh” and choose “modify scripts”. Then choose the option “change 

classes” (fig. 23). You are asked for the location of the script 

“Model_Executable_CNN_NoDataAugmentation4GUI.py”, which is located in the scripts folder 

(fig. 24). 

You are then asked to provide the class names. As in step #3, provide the names in 

alphabetical order (fig. 25). Finally, you are asked to provide the new threshold values (fig. 26). 

These are contained in the file “Thresholds.csv” that was generated in step #3 (if you 

accidentally deleted it, you can copy it from the previous scripts folder). Note that while class 

names are not provided in this file, the sequence of values is already correct, so you can 

maintain it as it is. Note that the top “0” is not a number, but a column header. 

If you encountered new classes during manual re-analysis: Make sure to also provide the new 

class names, and to provide threshold values for these new classes. These values are not 

included in “Thresholds.csv”, and should initially be set to 0.6. Make sure to add class names 

and threshold values at the correct alphabetical position in the sequence of class names and 

values, respectively. This position can be derived from the sequence of folders in your new 

training-set folder (if you kept class naming consistent). 

As in step #3, make sure to separate the values with comma-space (“, “). After confirmation 

(fig. 27), the aforementioned script is over-written, while a copy of the previous version is 

maintained (bearing the suffix “_old”). This can be deleted or kept for future reference. 
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Fig. 23: First step in the “modify scripts” task: Select the “change classes” option. 

 

Fig. 24: Second step in the “modify scripts” task: The folder containing the classification script 
(“Model_Executable_CNN_NoDataAugmentation.py”) should be given by clicking “proceed”, which 
opens a file-browser window. After navigating to the folder location, a confirmation by clicking a “confirm” 
button (not shown) is required. 

 

Fig. 25: Third step in the “modify scripts” task: The class names of all classes in the current training set 
should be typed into the input line. 
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Fig. 26: Fourth step in the “modify scripts” task: The new classification thresholds – as given by the 
“Thresholds.csv” file – should be typed into the input line, their sequence corresponding to the sequence 
of class names in the previous step. 

 

Fig. 27: Final step in the “modify scripts” task: A confirmation for over-writing the existing thresholds in 
the classification script (“Model_Executable_CNN_NoDataAugmentation.py”) is required, which is given 
by clicking “confirm”. 

6. Start the cycle anew 

You can now proceed from step #1 again. Make sure to always create a copy of the scripts 

folder; to avoid confusion regarding different versions of models and scripts. 

You can also choose the option “classify super-folder” when opening “Start_Here.sh” and 

provide a folder containing several image folders, or you type the names of several image 

folders in a row (separated with comma-space) in the basic “classify images” option. This way, 

a batch of image folders can be classified. 

Technical prerequisites – hardware 

Tab. SI II / 1: Hardware required for operating the DOC application. Two working systems are presented 

Component Computer #1 Computer #2 

   

Computer Dell Precision 5530 
notebook 

Dell Optiplex 790 work 
station 

CPU Intel Core i7 Intel Core i5 
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GPU Nvidia Quadro P2000 Nvidia Quadro P2000 

Hard drive SSD, 512 GB SSD Toshiba, 240 GB 

RAM 32 GiB 8 GB 

 

Technical prerequisites – software 

 

Tab. SI III / 1: Software required for operating the DOC application 

Operating system / program / package Version 

  

Linux Ubuntu 18.04.4 LTS 

Linux Mint 19.1 

  

CUDA 10.0.130 

Python 3.6.8 

  

CUDNN 7.2.1 

Dplython 0.0.7 

Keras 2.2.4 

NumPy 1.17.4 

Pandas 0.23.4 

Pillow 5.4.1 

SciPy 1.1.0 

Tensorflow 1.12.0 

TkInter 8.6 

 

Hyperparameter settings of the classifier model 

Tab. SI IV / 1: Hyper-parameter settings of the CNN used in the DOC pipeline 

Parameter Setting 

  

learning rate 0.0001 

learning-rate decay rate 0.001 

optimizer Adam (Kingma & Ba, 2014) 

loss function categorical cross-entropy 

batch size 20 

image size 120 x 120 pixels 

distribution for initial CNN-parameter values Glorot uniform (Glorot & Bengio, 2010) 

VGG16 initial parameter values ImageNet weights 
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Tab. SI V / 2: Details on the CNN architecture (nomenclature follows that used in the Keras API (Chollet, 
2015)). 

layer type units kernel_size strides activation 

     

pre-trained base 
(VGG16) 

- - - - 

Conv2D 1000 1 x 1 1 relu 

Flatten - - - - 

Dense number of 
classes * 30 

- - relu 

Dense number of 
classes 

- - softmax 

 

Unfreezing scheme and model architecture 

Tab. SI V / 1: Unfreezing scheme of the CNN layers used in the DOC pipeline. Blue = frozen layer, red 
= unfrozen layer. 

Layer Epoch 
1 

Epoch 
2 

Epoch 
3 

Epoch 
4 

Epoch 
5 

Epoch 
6 

Epoch 
7 

Epoch 
8 

         

block1-
conv1 

        

block1-
conv2 

        

block2-
conv1 

        

block2-
conv2 

        

block3-
conv1 

        

block3-
conv2 

        

block3-
conv3 

        

block4-
conv1 

        

block4-
conv2 

        

block4-
conv3 

        

block5-
conv1 

        

block5-
conv2 

        

block5-
conv3 

        

convolutional 
layer 

        

dense layer 
#1 

        

dense layer 
#2 
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Properties of the training images 

 

Tab. SI VI / 1: Properties of the baseline training dataset used to train the baseline model in 
the DOC pipeline 

Class Number 
of 
images1 

Number 
of 
training 
images 

Example image Example image Example 
image 

      

Appendicular
ians 

200 160 

   
Bivalves 500 400 

   
Ceratium 
spp. 

1500 1200 

   
Ciliates 1000 800 

   
Clumps 2000 1600 

   
Copepods 4000 3200 

   
Copepod egg 
clumps 

200 160 
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Detritus 9000 7200 

   
Diatoms 4500 3600 

   
Other 
dinoflagellate
s  

500 400 

   
Dinopysis 
spp. 

500 400 

   
Foraminifera
ns 

500 400 

   
Gastropods 2000 1600 

   
Protoperidini
um spp. 

1000 800 

   
Silicoflagellat
es 

500 400 

   
1before setting aside validation and test images 
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Training-performance trajectories of baseline model 

 

Fig. SI VII / 1: Loss trajectories (a) and accuracy trajectories (b) for the baseline model while 
being trained and validated on the respective baseline image data sets. Solid line indicates 
training loss / accuracy, dotted line indicates validation loss / accuracy. 

 

SI VIII Observed and predicted class-specific relative abundances with baseline model 

 

Fig. SI VIII / 1: Observed (blue) and predicted (red) abundances of plankton taxa in the first 
two stations of the December survey. Predictions done with the baseline classifier model. 

 

Comparison of exclusive training-set adaptation and exclusive threshold adaptation 

In order to analyze the effects of training-set updates (and training new classification models 

on the updated training sets) and reduction of classification thresholds in isolation, we 

performed two separate classification runs for the September-survey plankton samples. In the 

first, we updated the training set based on class-specific miss-classification rates and trained 

a new classification model on the updated set, but did not change the classification thresholds 

(thus, they remained at 0.6 for each class over all adaptation steps). In the second 

classification run, we updated the classification thresholds as described in the Materials & 

Methods section, but did not update the training set; in effect, we used the baseline model 

together with changing classification thresholds for all survey samples. Weighted-mean recall 

and weighted-mean precision (see Material & Methods section for a description of the 

averaging procedure) were calculated for each pair of plankton samples for bot classification 

runs. The resulting performance trajectories were compared to the fully-adaptive (where both 
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the training set and thresholds were constantly updated) and to the non-adaptive classification 

run (where neither the training set nor the thresholds were adapted). 

Analysis of the four trajectories showed that solely updating the training set yielded higher 

precision, and that solely updating the thresholds yielded higher recall (in some samples), than 

the combined approach (fig. SI IX / 1). However, recall was lower in the former approach, while 

precision was lower in the latter approach, compared to the combination of updating the 

training set and updating the thresholds. 

We concluded that the combined approach yields the best trade-off between maintaining 

relatively high recall and maintaining relatively high precision, and therefore incorporated it into 

the DOC pipeline. 

 

Fig. SI IX / 1: Recall (A) and precision (B) trajectories for different combinations of training-set 
updates and threshold updates. 

 

Extended plots of classification performance 

The following figures show performance trajectories for all nine differently adapted models over 

all 18 survey samples, whereas the figures in the main text only show a selection of models. 
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Fig. SI X / 1: Recall trajectories for different modes of adaptation using the DOC. Solid black 
line represents weighted mean of the fully-adaptive implementation, grey area denotes the 
corresponding weighted standard deviation. Colored solid and dashed lines represent 
weighted mean and weighted standard deviation of less-adaptive implementations (denoted 
by the number of adaptation cycles). (A, B): September survey; (C, D): December survey. 
Results for two replicates are shown for each survey. Note that weighted standard deviation 
for the fully-adaptive implementation in the December survey was not omitted, but is very small 
compared to that in the September survey. 
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Fig. SI X / 2: Class-specific recall for the September (A, B) and December (C, D) surveys. Results for two replicates are shown for each survey. 
Black line represents fully adaptive DOC implementation (training-set update every second station); colored lines represent less-adaptive 
implementations (denoted by the number of adaptation cycles). 
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Fig. SI X / 3: Precision trajectories for different modes of adaptation using the DOC. Solid black 
line represents weighted mean of the fully-adaptive implementation, grey area denotes the 
corresponding weighted standard deviation. Colored solid and dashed lines represent 
weighted mean and weighted standard deviation of less-adaptive implementations (denoted 
by the number of adaptation cycles). (A, B): September survey; (C, D): December survey. 
Results for two replicates are shown for each survey. 

 



   

 
 

 

Fig. SI X / 4: Class-specific precision for the September (A, B) and December (C, D) surveys. Results for two replicates are shown for each survey. 
Black line represents fully adaptive DOC implementation (training-set update every second station); colored lines represent less-adaptive 
implementations (denoted by the number of adaptation cycles). Results for two replicates are shown for each survey. 
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Fig. SI X / 5: Cross-entropy trajectories for different modes of adaptation using the DOC. Solid 
black line represents weighted mean of the fully-adaptive implementation, grey area denotes 
the corresponding weighted standard deviation. Colored solid and dashed lines represent 
weighted mean and weighted standard deviation of less-adaptive implementations (denoted 
by the number of adaptation cycles). (A, B): September survey; (C, D): December survey. 
Results for two replicates are shown for each survey. 
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Supplements Chapter 3 
 

 

Fig. S1. Map of stations per year (panels A-G) from the International Herring Larval Survey in the 
Buchan/Banks (September, red dots) and Downs spawning grounds (December, cyan dots) analyzed 
in this study. H) shows the number of stations per spawning ground ( BB= Buchan/Banks, D= Downs) 
and year. Note that there was no data available for Downs in 2014 and in Buchan/Banks in 2015.  
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Table S1. Taxa-specific coefficients used for estimating biomass B of individual zooplankters 
as a function of their biovolume BV: 𝑙𝑜𝑔10𝐵 = 𝑎 + 𝑏 ∙ 𝑙𝑜𝑔10𝐵𝑉. Note that a and b were adjusted 
to the units of B[µgC] and BV[µm3] used in this study.   

Taxa  a 
 
b Reference 

Diatoms (<3000µm) -6.54 
 
0.811 

Menden-Deuer 
& Lessard (2000) Diatoms (≥ 3000 µm), 

phytoplankton 
-6.93 

 
0.811 

ciliate 
tripos 
dinoflagellate 
protoperidinium 
dinophysis 
silicoflagellate 
foraminifera 

-6.29 

 
 
 
0.88 

Kiørboe 
(2013) 
 

copepods -6.48 
 
0.95 

cladocera 
malacostraca 

-5.85 
 
0.92 

appendicularia 
chaetognatha 
polychaeta 

-8.49 
 
1.08 

bivalves 
gastropods 

       -5.64 
 
0.83 

jellies -7.22 
 
0.98 

echinodermata -6.42 
 
          0.94 
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Fig. S2. Size classes for the different taxa analyzed using the FlowCAM (dark blue), the (ZooSCAN 
(light blue) or both (purple) in descending order. Sizes classes are based on the biovolume, using an 
octave scale with the top y-axis representing the size as equivalent spherical diameter (ESD). The box 
represents the inter-quartile ranges (IQR), the circles are the outliers, detected as higher or below 
quartiles +/- 1.5*IQR, and the dashed lines shows the maximum/minimum values without outliers. 
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Table S2. SIMilarity PERcentage (SIMPER) results for Downs and Buchan/Banks plankton 
communities, showing the most important taxa sets contributing to the dissimilarities between both 
groups.  Reported results include Taxa sets average contribution to overall dissimilarity (average), 
standard deviation of contribution (sd), Average to sd ratio (ratio), Average abundances per group (ava, 
avb), ordered cumulative contribution (cumsum), taxa sets contribution in to overall abundance 
(contrib%) with the statistical significance (p =  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 '' 1.  

 

 

 

Average 
Contribution 
SD 

Ratio 
Average/SD 

Average 
abund. 
Downs 

Average 
abund. 
Buchan/Banks 

Cumulative 
contribution 

Contribution 
to overall 
abundance 
(%) 

tripos 0.03 0.02 1.90 2.23 5.05 0.13 12.94** 

dinophysis 0.03 0.01 2.00 1.56 4.29 0.25 12.47** 

silicoflagellate 0.03 0.01 2.20 0.52 3.16 0.37 11.86** 

ciliate 0.02 0.01 1.84 1.77 3.86 0.47 9.69** 

protoperidinium 0.02 0.01 2.17 3.06 4.74 0.55 7.71** 

gastropoda 0.02 0.01 2.63 2.35 4.00 0.62 7.54** 

cladocera 0.01 0.01 1.32 1.18 2.13 0.67 4.55** 

diatom 0.01 0.01 1.31 5.45 5.55 0.71 3.96 

jellies 0.01 0.00 2.30 1.47 2.32 0.75 3.85** 

copepod 0.01 0.01 1.38 3.71 4.51 0.78 3.77** 

echinodermata 0.01 0.01 1.37 1.16 1.97 0.82 3.71** 

malacostraca 0.01 0.00 2.57 1.62 2.40 0.86 3.56** 

appendicularia 0.01 0.01 0.94 1.29 1.86 0.89 3.02* 

foraminifera 0.01 0.00 1.68 2.95 2.28 0.92 2.99** 

polychaeta 0.01 0.00 2.03 1.06 1.64 0.94 2.54** 

chaetognatha 0.01 0.00 1.34 1.88 2.36 0.96 2.24** 

dinoflagellate 0.00 0.00 1.05 3.07 3.34 0.98 1.91 

bivalve 0.00 0.00 1.03 3.09 3.26 1.00 1.69 

Permutation: free Number of 
permutations:  
999 

overall: 

0.227 
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Water temperature in the Buchan/Banks area varied between 10 and 15 °C and was generally 

higher close to the coast than at more offshore stations. As for the Downs area, the warmest 

water (T>12 C) was observed in the southwestern stations and temperature decreased to 7-9 

C toward northeast (Fig. S4A). Salinity above 35 was observed at the northern offshore 

stations and gradually decreased to 34.4 to the south and toward the coast (Fig. S4B). Salinity 

in Downs varied between 33 and 35.5 and the strongest differences in salinity were observed 

between off- and inshore stations (Fig. S4B). An exceptionally low salinity <34.6 was observed 

everywhere in this area in September 2016. Highest turbidity was found in the northern coastal 

stations with a decrease towards offshore and the south (Fig. S4C). Maximum larval herring 

abundances were comparable across both spawning grounds (206.7 Ind m-3 in Buchan/Banks 

vs 193.4 Ind m-3 in Downs), although average larval abundances were generally higher in 

September (Fig. S4D). 

 

Fig. S3. Mean variability of the environmental variables across the sampling period (2013-2019) in the 
Buchan/Banks area (September) and Downs (December). (A) mean temperature (SST (°C)), (B) mean 
salinity (Sal), (C) relative turbidity (%) and (D) logarithmic larval herring abundance (Log (Ind m-3)). 
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Table S3: Plankton abundance (Ind x10² m-3) per year as total mesozoo (MesoZP) and microplankton (MicroZP) and by taxa in Buchan/Banks (BB) as minimum 
(min), maximum (max), average values (mean) as well as the overall average and the relative abundance (%). 

 

 

 

taxa min max mean min max mean min max mean min max mean min max mean min max mean mean %

tripos 1.604 879.728 306.738 0.443 574.087 266.405 52.426 6092.999 603.918 13.347 3821.122 826.395 3.175 363.461 132.135 2.563 326.172 149.271 380.810 25.664

ciliate 0.636 114.102 38.820 1.060 111.856 48.535 0.237 181.919 78.125 0.795 19.461 11.136 0.402 57.440 21.227 0.327 142.763 57.523 42.561 3.859

diatom 0.017 499.915 178.483 5.654 107.273 47.135 16.656 6407.280 1066.146 19.943 729.860 169.547 8.051 1436.507 552.772 10.605 1878.529 393.493 401.263 36.379

dinoflagellate 0.330 79.081 18.823 0.186 9.487 4.546 0.922 35.343 14.407 0.421 16.554 6.018 0.084 32.185 8.374 0.189 18.898 5.031 9.533 0.864

dinophysis 0.155 27.147 11.148 2.191 2805.928 714.064 13.952 2919.773 390.431 0.146 193.086 119.690 0.166 218.720 110.660 0.077 59.922 27.177 228.862 20.749

foraminifera 0.082 2.797 0.823 0.030 0.379 0.173 0.237 3.315 1.590 0.092 1.579 0.798 0.075 0.800 0.369 0.036 9.827 3.878 1.272 0.115

protoperidinium 1.584 122.162 34.940 6.998 683.836 265.745 8.850 952.982 263.183 26.560 1102.321 190.225 1.361 128.444 74.756 5.341 138.371 63.067 148.653 13.477

silicoflagellate 0.120 15.026 7.784 0.040 1.884 0.821 0.459 2463.559 849.515 0.108 13.633 5.812 0.052 11.762 3.802 0.031 14.062 3.209 145.157 13.160

bivalve 0.164 13.692 8.207 0.079 32.265 10.914 0.437 30.414 5.100 0.826 36.263 13.597 0.254 12.759 6.412 0.218 15.118 5.737 8.328 0.755

copepod all 10.885 129.801 58.771 7.725 125.973 41.410 13.736 340.826 49.381 17.773 338.698 90.293 9.448 142.357 60.115 16.715 228.490 54.296 59.044

copepods 1.330 1.210 5.770 0.420 29.330 3.170 1.790 97.510 8.810 0.780 16.030 8.070 0.460 20.340 7.370 0.780 16.030 7.900 6.848 0.621

nauplii 9.002 127.474 59.474 5.334 125.156 44.767 8.831 243.314 41.266 15.595 323.296 83.833 8.005 122.014 53.595 4.674 214.234 47.174 55.018 4.988

gastropoda 0.211 49.016 18.183 0.667 166.561 36.730 0.023 89.452 39.053 0.289 263.202 127.507 2.078 98.628 53.671 0.207 75.444 42.118 52.877 4.794

appendicularia 0.006 0.227 0.117 0.006 0.051 0.031 0.019 1.566 0.225 0.057 0.493 0.231 0.025 0.406 0.176 0.011 0.569 0.264 0.174 0.016

chaetognatha 0.026 0.912 0.371 0.005 2.949 0.470 0.041 2.350 0.422 0.057 1.168 0.533 0.052 1.703 0.644 0.045 0.904 0.513 0.492 0.045

cladocera 0.006 0.152 0.097 0.003 0.155 0.055 0.009 2.350 0.813 0.033 1.851 0.510 0.025 0.992 0.508 0.006 0.650 0.241 0.371 0.034

echinodermata 0.004 0.225 0.073 0.004 0.155 0.027 0.022 1.072 0.305 0.020 0.212 0.084 0.025 1.503 0.626 0.013 0.125 0.094 0.202 0.018

jellies 0.011 1.433 0.616 0.004 0.569 0.289 0.027 5.091 1.044 0.025 0.543 0.292 0.029 1.173 0.631 0.006 0.824 0.456 0.555 0.050

malacostraca 0.034 1.478 0.553 0.008 3.104 0.432 0.036 3.916 0.429 0.033 0.617 0.321 0.103 6.291 2.147 0.040 2.074 0.710 0.765 0.069

polychaeta 0.006 0.094 0.045 0.002 0.013 0.007 0.012 0.268 0.141 0.020 0.209 0.095 0.028 0.109 0.060 0.011 0.100 0.062 0.068 0.006

Total 64.592 1360.076 355.815 36.517 3900.380 863.677 124.786 19273.796 1769.658 142.587 5589.444 902.573 73.445 1609.013 544.307 70.304 2312.206 402.071 806.350 100.000

MesoZP 2.019 13.943 7.610 0.793 37.816 4.229 3.441 112.784 10.598 1.144 19.863 10.172 2.534 29.104 12.617 1.043 16.013 8.901 9.021 1.102

MicroZP 58.625 1354.473 373.685 35.103 3897.262 893.376 118.128 19161.011 1754.796 136.944 5571.008 901.230 61.548 1600.171 539.057 57.569 2296.194 396.351 809.749 98.898

Overall

Ind x10² m-3 Ind x10² m-3 Ind x10² m-3 Ind x10² m-3 Ind x10² m-3 Ind x10² m-3 Ind x10² m-3

BB 2013 BB 2014 BB 2016 BB 2017 BB 2018 BB 2019
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Table S4: Plankton abundance (Ind x10² m-3) per year as total mesozoo (MesoZP) and microplankton (MicroZP) and by taxa in Downs (Dow) as minimum (min), 
maximum (max), average values (mean) as well as the overall average and the relative abundance (%). 

 

 

 

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                

taxa min max mean min max mean min max mean min max mean min max mean min max mean mean %

tripos 0.000 0.000 0.000 1.542 28.171 18.243 0.055 1.940 0.818 0.221 1.448 0.752 0.098 98.295 53.854 0.298 6.159 3.082 12.792 1.435

ciliate 0.000 0.000 0.000 0.567 0.729 0.675 0.113 0.405 0.259 0.118 2.070 1.038 0.102 9.215 4.690 0.115 5.643 4.246 1.818 0.204

diatom 331.802 658.078 474.114 231.327 1030.379 692.146 58.461 1367.317 485.295 28.267 1137.300 312.299 56.989 3158.959 1207.245 78.177 8045.778 1540.732 785.305 88.119

dinoflagellate 1.446 8.025 5.948 3.822 18.781 9.924 0.051 19.638 7.590 0.118 12.935 5.593 0.186 23.617 8.591 1.382 157.027 24.104 10.292 1.155

dinophysis 0.000 0.000 0.000 0.671 3.426 1.960 0.069 0.130 0.096 0.074 0.781 0.507 0.098 0.512 0.325 0.079 0.684 0.382 0.545 0.061

foraminifera 3.132 12.964 9.205 0.849 12.073 5.942 0.720 13.665 4.749 0.265 13.417 3.525 0.116 10.262 3.446 1.422 74.775 15.479 7.058 0.792

protoperidinium 3.704 3.704 3.704 1.082 24.146 13.219 0.257 13.092 6.103 0.106 70.684 23.848 0.279 56.315 17.627 0.145 52.268 17.875 13.729 1.541

silicoflagellate 0.000 0.000 0.000 0.000 0.000 0.000 0.055 0.214 0.135 0.106 0.414 0.311 0.000 0.000 0.000 0.000 0.000 0.000 0.074 0.008

bivalve 0.964 10.495 8.679 0.425 11.403 6.910 0.626 59.009 19.954 0.132 19.609 5.896 1.217 41.980 14.824 1.012 49.655 14.350 11.769 1.321

copepod all 7.329 43.870 28.073 12.525 22.621 17.045 2.774 102.816 47.755 2.445 92.272 37.949 0.285 89.805 19.874 1.895 411.930 72.793 37.248

copepods 0.340 3.120 1.900 0.090 0.260 0.190 0.270 18.540 6.480 0.010 11.690 5.980 0.280 4.020 2.330 0.060 24.880 3.850 3.455 0.388

nauplii 6.988 40.744 30.440 12.316 22.352 16.535 2.490 95.346 44.916 2.322 81.751 33.590 2.839 86.008 23.125 1.827 403.784 79.744 38.058 4.271

gastropoda 0.723 1.235 0.928 0.018 2.835 1.919 0.012 33.173 24.829 0.006 3.104 1.402 0.003 1.024 0.209 0.145 29.957 5.942 5.871 0.659

appendicularia 0.000 0.000 0.000 0.012 0.028 0.021 0.005 0.155 0.094 0.008 0.058 0.025 0.005 0.116 0.051 0.003 0.175 0.026 0.036 0.004

chaetognatha 0.034 0.042 0.041 0.057 0.377 0.203 0.014 0.603 0.249 0.021 0.490 0.165 0.012 0.798 0.263 0.011 0.719 0.124 0.174 0.020

cladocera 0.000 0.000 0.000 0.011 0.056 0.030 0.006 0.472 0.106 0.058 0.058 0.058 0.001 0.005 0.003 0.004 0.140 0.074 0.045 0.005

echinodermata 0.014 0.014 0.014 0.000 0.000 0.000 0.015 0.044 0.029 0.006 0.050 0.027 0.001 0.037 0.015 0.004 0.005 0.004 0.015 0.002

jellies 0.014 0.014 0.014 0.009 0.098 0.048 0.007 0.314 0.095 0.002 0.122 0.057 0.003 0.032 0.016 0.003 0.047 0.014 0.041 0.005

malacostraca 0.001 0.103 0.097 0.009 0.050 0.025 0.011 0.744 0.248 0.002 0.151 0.059 0.002 0.122 0.048 0.003 0.233 0.056 0.089 0.010

polychaeta 0.072 0.072 0.072 0.005 0.005 0.005 0.024 0.024 0.024 0.002 0.023 0.008 0.005 0.012 0.010 0.001 0.001 0.001 0.020 0.002

Total 345.439 738.608 539.080 299.163 1072.556 720.760 65.275 1438.825 515.564 38.497 1209.195 322.990 63.316 3299.240 1161.280 90.778 8810.034 1664.070 820.624 100.000

MesoZP 0.380 3.360 2.020 0.210 0.770 0.460 0.410 19.590 6.560 0.160 11.800 5.880 0.430 5.090 2.540 0.160 25.690 3.850 3.552 0.423

MicroZP 345.050 735.250 522.220 298.800 1072.350 721.490 64.790 1436.230 518.480 37.960 1208.740 337.320 60.570 3294.150 1261.120 90.570 8801.000 1654.400 835.838 99.577

Overall

Ind x10² m-3Ind x10² m-3 Ind x10² m-3 Ind x10² m-3 Ind x10² m-3 Ind x10² m-3 Ind x10² m-3

DOW 2013 DOW 2015 DOW 2016 DOW 2017 DOW 2018 DOW 2019
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Table S5: Plankton biomass (µgC x105 m-3) per year as total mesozoo (MesoZP) and microplankton (MicroZP) and by taxa in Buchan/Banks (BB) as minimum 
(min), maximum (max), average values (mean) as well as the overall average and the relative biomass (%). 

 

 

 

 

BB 2018 BB 2019

taxa min max mean min max mean min max mean min max mean min max mean min max mean mean %

ceratium 0.066 5.731 2.800 0.021 11.679 6.477 1.311 69.075 13.650 0.696 140.989 31.429 0.157 12.640 5.855 0.157 5.738 3.018 10.538 1.836

ciliate 0.008 1.548 0.623 0.011 2.405 1.022 0.002 2.982 1.147 0.017 0.669 0.280 0.004 1.288 0.466 0.003 1.834 1.035 0.762 0.133

diatom 0.077 2.180 0.931 0.059 0.779 0.340 0.074 8.026 1.650 0.148 2.078 1.029 0.131 4.438 1.840 0.080 6.708 1.372 1.194 0.208

dinoflagellate 0.002 1.593 0.369 0.002 0.165 0.079 0.019 0.609 0.314 0.017 0.708 0.235 0.001 1.053 0.308 0.003 0.600 0.153 0.243 0.042

dinophysis 0.001 0.271 0.124 0.022 35.074 8.418 0.142 31.276 4.027 0.003 1.976 1.244 0.003 2.222 1.146 0.001 0.703 0.354 2.552 0.445

foraminifera 0.006 0.253 0.063 0.001 0.017 0.008 0.013 0.311 0.147 0.008 0.200 0.101 0.004 0.152 0.054 0.001 0.593 0.248 0.103 0.018

protoperidinium 0.052 2.619 0.941 0.140 15.288 5.669 0.164 29.415 7.669 0.924 23.770 4.941 0.074 6.111 3.298 0.124 5.678 1.900 4.069 0.709

silicoflagellate 0.001 0.077 0.040 0.000 0.009 0.004 0.002 11.729 4.342 0.000 0.065 0.029 0.000 0.054 0.020 0.000 0.071 0.015 0.742 0.129

copepod 110.105 960.274 447.300 88.058 6352.755 497.588 88.183 3087.109 301.596 75.031 792.192 399.639 45.070 1217.366 418.005 52.675 629.873 347.875 402.001 70.048

nauplii 0.960 13.984 6.760 0.767 11.849 4.831 1.100 21.289 5.120 3.071 41.956 13.728 0.863 15.668 8.375 0.735 35.158 7.843 7.776 1.355

appendicularia 0.017 2.853 1.259 0.012 0.438 0.223 0.039 4.058 0.676 0.098 1.526 0.839 0.067 3.588 0.838 0.017 2.936 1.316 0.859 0.150

bivalve 0.009 1.078 0.729 0.019 5.086 2.099 0.011 2.294 0.912 0.155 6.549 3.542 0.138 5.052 2.630 0.033 4.733 1.359 1.878 0.327

chaetognatha 1.827 124.054 23.297 0.298 309.454 49.582 1.316 97.328 18.369 1.889 64.270 23.828 0.750 71.183 28.083 1.521 58.520 24.849 28.001 4.879

cladocera 0.651 13.283 7.680 0.255 10.892 4.288 0.451 154.386 42.938 1.322 88.506 26.023 0.674 52.221 24.518 0.191 34.351 13.742 19.865 3.461

echinodermata 0.039 3.497 1.177 0.044 5.597 1.281 0.251 22.731 6.835 0.290 5.724 1.528 0.244 19.107 7.854 0.139 1.590 1.191 3.311 0.577

gastropoda 2.669 114.962 61.806 0.251 46.411 15.301 0.340 67.482 27.143 0.042 84.885 45.699 2.271 164.790 67.342 0.087 57.816 22.596 39.981 6.967

jellies 0.248 115.236 53.049 0.229 85.849 41.696 0.525 322.749 61.634 0.092 102.782 27.346 0.321 184.972 67.513 0.233 93.755 48.859 50.016 8.715

malacostraca 4.295 1140.332 375.982 9.457 2388.914 286.823 6.994 1198.953 155.940 8.501 466.972 170.315 12.558 560.630 274.665 14.523 728.707 265.081 254.801 44.399

polychaeta 0.131 10.606 4.393 0.038 3.625 0.848 0.189 33.244 9.614 0.049 10.489 2.631 0.176 2.230 0.919 0.027 8.362 3.124 3.588 0.625

Total 293.727 1428.495 634.930 212.820 9183.152 714.039 157.451 5001.189 535.238 125.625 1261.100 630.217 133.308 1522.093 684.771 145.271 1029.727 522.069 620.211 100.000

MesoZP 283.745 1417.307 671.586 190.603 9176.340 799.427 147.898 4843.293 519.487 103.965 1201.827 555.921 124.444 1503.394 699.219 141.529 1020.754 515.486 626.854 96.177

MicroZP 1.751 29.021 11.374 1.819 65.208 21.469 3.580 157.895 29.297 12.337 211.157 48.728 5.349 41.037 22.383 2.916 50.375 16.233 24.914 3.823

biomass x 105  [µgC m-3] biomass x105 [µgC m-3]biomass x 105  [µgC m-3] biomass x 105  [µgC m-3] biomass x 105  [µgC m-3] biomass x 105  [µgC m-3] biomass x 105  [µgC m-3]

BB 2013 BB 2015 BB 2016 BB 2017 Overall
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Table S6: Plankton biomass (µgC x105 m-3) per year as total mesozoo (MesoZP) and microplankton (MicroZP) by taxa in Downs (Dow) as minimum (min), maximum 
(max), average values (mean) as well as the overall average and the relative biomass (%).  

 

taxa min max mean min max mean min max mean min max mean min max mean min max mean mean %

ceratium 0.000 0.000 0.000 0.034 0.690 0.413 0.002 0.049 0.021 0.003 0.022 0.016 0.001 3.387 1.731 0.007 0.135 0.072 0.375 0.234

ciliate 0.000 0.000 0.000 0.002 0.013 0.009 0.003 0.003 0.003 0.001 0.046 0.029 0.001 0.243 0.126 0.001 0.219 0.162 0.055 0.034

dinophysis 0.000 0.000 0.000 0.008 0.061 0.029 0.001 0.002 0.001 0.001 0.010 0.006 0.001 0.008 0.004 0.001 0.006 0.004 0.007 0.005

silicoflagellate 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.003 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

protoperidinium 0.055 0.055 0.055 0.024 0.619 0.333 0.004 0.221 0.094 0.001 1.765 0.549 0.003 1.829 0.459 0.002 1.008 0.350 0.307 0.191

dinoflagellate 0.014 0.125 0.090 0.120 0.503 0.311 0.001 0.704 0.298 0.003 0.369 0.148 0.009 0.559 0.200 0.037 5.777 0.702 0.291 0.181

foraminifera 0.074 0.327 0.231 0.026 0.532 0.213 0.024 0.673 0.199 0.004 0.578 0.157 0.004 0.313 0.115 0.201 7.938 1.629 0.424 0.264

bivalve 0.164 0.829 0.703 0.036 1.234 0.787 0.134 8.092 2.765 0.020 2.906 0.929 0.113 7.307 2.063 0.148 9.458 2.079 1.554 0.967

diatom 0.945 2.422 1.589 0.977 3.282 2.419 0.156 5.376 2.052 0.140 4.397 1.621 0.237 10.506 4.585 0.472 57.347 9.420 3.614 2.249

gastropoda 0.070 0.102 0.083 0.014 0.344 0.242 0.030 2.922 2.209 0.013 0.245 0.144 0.025 0.275 0.148 0.009 3.354 0.679 0.584 0.363

copepod 7.611 67.624 41.680 4.128 9.232 6.260 5.612 409.641 142.965 2.393 302.708 147.944 9.366 224.708 96.920 2.278 687.327 109.899 90.945 56.596

nauplii 0.796 3.947 2.985 1.144 3.200 1.838 0.271 13.102 4.867 0.260 10.540 4.205 0.269 14.068 3.302 0.151 76.378 13.177 5.063 3.150

appendicularia 0.000 0.000 0.000 0.025 0.070 0.050 0.009 1.004 0.429 0.016 0.206 0.085 0.017 0.342 0.154 0.007 0.419 0.087 0.134 0.084

cladocera 0.000 0.000 0.000 0.266 2.928 1.238 0.269 45.977 6.602 3.803 3.803 3.803 0.030 0.157 0.123 0.094 4.545 2.378 2.357 1.467

polychaeta 0.238 0.238 0.238 0.008 0.008 0.008 0.040 0.040 0.040 0.004 0.935 0.325 0.017 1.147 0.404 0.016 0.016 0.016 0.172 0.107

echinodermata 0.415 0.415 0.415 0.000 0.000 0.000 0.271 1.119 0.702 0.106 1.596 0.594 0.047 0.957 0.462 0.404 0.472 0.438 0.435 0.271

chaetognatha 1.054 1.949 1.857 1.494 7.367 5.144 0.226 31.198 10.609 0.396 14.959 5.602 0.661 30.023 10.557 0.203 37.208 4.186 6.326 3.937

jellies 2.842 2.842 2.842 0.043 0.793 0.388 0.056 32.714 7.991 0.024 16.368 5.772 0.022 0.409 0.167 0.019 17.709 4.760 3.653 2.274

malacostraca 1.663 26.896 25.318 2.387 24.875 12.238 0.484 417.046 123.733 0.226 230.418 73.543 0.458 50.373 19.294 1.491 25.931 12.228 44.392 27.626

Total 12.490 102.929 57.032 18.929 37.903 26.357 19.108 845.942 137.836 7.296 485.217 134.862 24.555 255.310 137.275 10.027 755.302 112.977 101.057 100.000

MesoZP 10.430 95.122 56.927 13.094 33.815 21.421 17.627 835.662 195.621 6.246 482.677 193.709 18.300 232.038 106.432 2.797 707.839 109.431 113.923 50.714

MicroZP 2.060 7.807 4.670 3.032 6.651 5.276 0.810 25.031 6.906 0.857 14.614 5.504 0.308 35.626 11.790 1.219 156.761 23.810 9.659 4.300

biomass x105 [µgC m-3]

Overall

biomass x105 [µgC m-3]

Dow 2013 Dow 2015 Dow 2016 Dow 2017 Dow 2018 Dow 2019

biomass x105 [µgC m-3] biomass x105 [µgC m-3] biomass x105 [µgC m-3] biomass x105 [µgC m-3] biomass x105 [µgC m-3]
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Table S7: Compilation of abundance and biomass estimates of different broad zooplankton groups over 
the North Sea and other temperate shelf seas. 

 

Group Taxa Type Estimates Unit Method, Mesh Size Location Area Season Reference

Microplankton

Diatoms Abundance 80000.0 Ind L-1 water sample Stonehaven North Sea Autumn Bresnan et al., 2015

Diatoms Abundance 129390.0 Ind L-1 Time Series Helgoland Roads North Sea Autumn Yang et al., 2021

Diatoms Abundance 69767.0 Ind L-1 water sample Stonehaven North Sea Autumn ICES, 2013

Diatoms Abundance 11628.0 Ind L-1 water sample Stonehaven North Sea winter ICES, 2013

Dinoflagellates Abundance 950.0 Ind m³ PUP net, 55µm Buchan/Banks North Sea Autumn This study

Dinoflagellates Abundance 2000.0 Ind L Water sample Stonehaven North Sea Autumn Bresnan et al., 2015

Dinoflagellates Abundance 200000.0 Ind L Time Series Helgoland Roads North Sea Autumn Yang et al., 2021

Dinoflagellates Abundance 1030.0 Ind m³ PUP net, 55µm Downs North Sea Winter This study

Dinoflagellates Abundance 1123.8 Ind m³ Water sample Stonehaven North Sea Winter Bresnan et al., 2015

Tripos Abundance 38080.0 Ind m³ PUP net, 55µm Buchan/Banks North Sea Autumn This study

Tripos Abundance 1280.0 Ind m³ PUP net, 55µm Downs North Sea Autumn This study

Tripos Abundance 600.0 Ind L Time Series Helgoland Roads North Sea Autumn Yang et al., 2021

Tinntinid Abundance 4.2 Ind L-1 PUP net, 55µm Buchan/Banks North Sea Autumn This study

Tinntinid Abundance 0.2 Ind L-1 PUP net, 55µm Downs North Sea Winter This study

Tinntinid Abundance 4.6 Ind L-1 Water sample North Sea North Sea Winter Bils et al., 2019

Copepod nauplii Abundance 5.5 Ind L PUP net, 55µm Buchan/Banks North Sea Autumn This study

Copepod nauplii Abundance 4.0 - 20.0 Ind L-1 Ring Net, 65 µm Dove Station North Sea Autumn Pitois et al., 2009

Copepod nauplii Abundance 3.8 Ind L-1 PUP net, 55µm Downs North Sea Winter This study

Copepod nauplii Abundance 15.0 - 43.0 Ind L-1 Ring Net, 65 µm Dove Station North Sea Winter Pitois et al., 2009

Copepod nauplii Biomass 0.8 mg C m³ PUP net, 55µm Buchan/Banks North Sea Autumn This study

Copepod nauplii Biomass 0.6 mg C m³ water sample L4 North Sea Autumn Djeghri et al., 2018

Copepod nauplii Biomass 0.5 mg C m³ PUP net, 55µm Downs North Sea Winter This study

Copepod nauplii Biomass 0.1 mg C m³ water sample L4 North Sea Winter Djeghri et al., 2018

Total Abundance 809.8 Ind L-1 water sample Buchan/Banks North Sea Autumn This study

Total Abundance 64865.0 Ind L-1 water sample L4 North Sea Autumn ICES, 2013

Total Abundance 835.8 Ind L-1 water sample Downs North Sea winter This study

Total Abundance 16216.0 Ind L-1 water sample L4 North Sea winter ICES, 2013

Mesozooplankton

Copepods Abundance 685.0 Ind m³ GULF V, 280 µm Buchan/Banks North Sea Autumn This study

Copepods Abundance 1831.1 Ind m³ WP2, 200 µm Stonehaven North Sea Autumn ICES, 2013

Copepods Abundance 1143.0 Ind m³ WP2, 200 µm L4 North Sea Autumn Djeghri et al., 2018

Copepods Abundance 1098.3 Ind m³ Bongo, 333 µm Georges Bank N Atlantic Autumn Morse et al., 2017

Copepods Abundance 346.0 Ind m³ GULF V, 280 µm Downs North Sea Winter This study

Copepods Abundance 1500.0 Ind m³ WP2, 200 µm L4 North Sea Winter Eloire et al., 2010

Copepods Abundance 661.0 Ind m³ WP2, 200 µm L4 North Sea Winter Djeghri et al., 2018

Copepods Abundance 1500.0 Ind m³ WP2, 200 µm Belgium Coast North Sea annual ave. Mortelmans et al., 2021

Copepods Abundance 281.4 Ind m³ WP2, 200 µm Stonehaven North Sea Winter ICES, 2013

Appendicularia Abundance 17.4 Ind m³ GULF V, 280 µm Buchan/Banks North Sea Autumn This study

Appendicularia Abundance 3.6 Ind m³ GULF V, 280 µm Downs North Sea Winter This study

Appendicularia Abundance 24.9 Ind m³ Bongo, 333 µm Georges Bank N Atlantic annual mean Kane, 2007

Chaetognatha Abundance 49.2 Ind m³ GULF V, 280 µm Buchan/Banks North Sea Autumn This study

Chaetognatha Abundance 17.4 Ind m³ GULF V, 280 µm Downs North Sea Winter This study

Chaetognatha Abundance 68.6 Ind m³ WP2, 200 µm Stonehaven North Sea Autumn ICES, 2013

Chaetognatha Abundance 19.7 Ind m³ WP2, 200 µm L4 North Sea winter ICES, 2013

Chaetognatha Abundance 5.6 Ind m³ Bongo, 333 µm Georges Bank N Atlantic Autumn Morse et al., 2017

Chaetognatha Abundance 29.7 Ind m³ Bongo, 333 µm Georges Bank N Atlantic annual mean Kane, 2007

Echinodermata larvae Abundance 20.2 Ind m³ GULF V, 280 µm Buchan/Banks North Sea Autumn This study

Echinodermata larvae Abundance 1.5 Ind m³ GULF V, 280 µm Downs North Sea Winter This study

Echinodermata larvae Abundance 118.9 Ind m³ WP2, 200 µm L4 North Sea Autumn ICES, 2013

Echinodermata larvae Abundance 4.0 Ind m³ WP2, 200 µm L4 North Sea Winter ICES, 2013

Echinodermata larvae Abundance 5.3 Ind m³ Bongo, 333 µm Georges Bank N Atlantic Autumn Morse et al., 2017

Echinodermata larvae Abundance 28.7 Ind m³ Bongo, 333 µm Georges Bank N Atlantic annual mean Kane, 2007

Gastropoda larvae Abundance 5287.7 Ind m³ GULF V, 280 µm Buchan/Banks North Sea Autumn This study

Gastropoda larvae Abundance 587.1 Ind m³ GULF V, 280 µm Downs North Sea Winter This study

Gastropoda larvae Abundance 113.2 Ind m³ WP2, 200 µm L4 North Sea Autumn ICES, 2013

Gastropoda larvae Abundance 6.4 Ind m³ WP2, 200 µm L4 North Sea Winter ICES, 2013

Gastropoda larvae Abundance 2.6 Ind m³ Bongo, 333 µm Georges Bank N Atlantic Autumn Morse et al., 2017

Polychaeta Abundance 6.8 Ind m³ GULF V, 280 µm Buchan/Banks North Sea Autumn This study

Polychaeta Abundance 2.0 Ind m³ GULF V, 280 µm Downs North Sea Winter This study

Polychaeta Abundance 0.8 Ind m³ Bongo, 333 µm Georges Bank N Atlantic Autumn Morse et al., 2017

Total Abundance 902.0 Ind m³ GULF VII, 280 µm Buchan/Banks North Sea Autumn This study

Total Abundance 4172.9 Ind m³ WP2, 200 µm L4 North Sea Autumn Eloire et al., 2010

Total Abundance 4800.0 Ind m³ WP2, 200 µm English Channel North Sea Autumn ICES, 2013

Total Abundance 1239.0 Ind m³ Bongo, 333 µm Georges Bank N Atlantic Autumn Morse et al., 2017

Total Abundance 354.9 Ind m³ GULF VII, 280 µm English Channel North Sea Winter This study

Total Abundance 1500.0 Ind m³ WP2, 200 µm L4 North Sea Winter Eloire et al., 2010

Total Abundance 266.6 Ind m³ GULF VII, 280 English Channel North Sea Winter Dudeck et al., 2021
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Supplements Chapter 4 
 

S1. Zooplankton data 

Collected plankton samples from both the PUPnet (55 µm mesh) and Gulf VII (280 µm mesh) 

were stored onboard in 4% buffered formalin following the approach of Bils et al. (2022). The 

microplankton samples were then sieved through a 300-µm mesh and the fraction smaller than 

300 µm was diluted in 50-500 ml distilled water depending on the zooplankton density. The 

diluted samples were analyzed using the Flowcam image analysis system(Christian et al., 

1998), which counted particles, made a digital image and measured the size of each particle. 

The Flowcam was instructed to measure approx. 10000 particles per sample, containing at 

least 10% of living organisms. Obtained images of microplankton organism were classified 

using a machine-learning dynamic optimization cycle (Conradt et al., 2022), followed by a final 

manual validation step. 

Mesozooplankton samples were subsampled using a fractionation factor between 1/16 and 

1/1024 depending on the original sampled material following Motoda (1967). To identify and 

measure zooplankton organisms, we used ImageJ software (v. 1.41o) with ZooProcess 

(v.7.19) and the Plankton Identifier software (v.1.3.4). The automatic identification of the 

organisms was manually validated.  

After the micro- and mezoplankton datasets were merged, organisms smaller or bigger then 

the effective size-range of the PUP (<55 µm) and Gulf VII nets (>3000 µm) were excluded from 

the dataset. All organisms were then classified in 15 taxonomic sets, including species, genus 

or families, with class as the lowest taxonomic resolution (Fig. S1). As it is mentioned in the 

main text, 11 taxonomic sets were identified as potential herring larval prey and included in 

this study.  
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Figure S1. Boxplot of the 15 taxonomic groups identified in the plankton samples. Lower and upper box 
boundaries are the 25th and 75th percentiles, respectively, line inside box is the median. Upper (lower) 
error lines are the largest (smallest) values within 1.5 times interquartile range above 75th (below 25th) 
percentile. Open circles mark outside data, i.e. data >1.5 and <3 times interquartile range beyond either 
end of the box. Light blue color marks the planktonic organisms considered as larval prey in the 
“generalist” feeding scenario. The taxonomic groups not included in the larval diet are shown in dark 
blue. ESD is an equivalent spherical distance. Dinoflagellates taxonomic group includes Dinophysis 
spp., Protoperidinium spp., and Ceratium spp. 

 

S2. Bias correction of larval length due to formalin preservation 

 

Fish larvae stored in 4% formalin are known to shrink in their total length (Fox, 1996). We 

recalculated the length of a herring larva prior storage ll from the length measurements of the 

formalin-preserved larvaelp, using a correction equation provided by M. Moyano and B. Illing 

based on their laboratory experiments (Fig. S2.1): 

ll = 1.10 ∙ lp − 0.25       (S2.1) 
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Figure S2.1 Lengths of a herring larva prior 4% formalin-storage against stored lengths. The line shows 
the best linear fit.   

 

S3. Bioenergetic model 

 

Table S3.1 contains the full set of the parameters and equations of the bioenergetic model of 

herring larvae used in this study. This model utilized an optimal foraging routine to calculate 

the amount of food a larva forages per time unit (Letcher et al., 1996, Daewel et al., 2011, 

Kühn et al., 2008).  The optimal foraging approach first ranks the prey size classes accordingly 

to the ratio Q: 

 

Qi =
Wzi∙CSi

HTi
  ,         (S3.1) 

 

where wzi is the zooplankton dry weight, CSi is the capture success and HTi is the handling 

time (see Table S3.1).  

Once the prey size classes are ranked, a profitability Pj is assigned to each ranked prey classj: 

 

Pj =
∑ wzj∙ERj∙CSjj

1+∑ ERj∙HTjj
         (S3.2) 

 

where ERjis the encounter rate (see Table S3.1). Prey size classes were included in the larval 

diet sequentially on the basis of their ranks until the profitability Pj began to decrease (Letcher 

et al., 1996).  

The amount of the foraged food F (µg·s-1) was then found as the maximum of Pj: 
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F = max(Pj)          (S3.3) 

 

The energy gain C (Eq. 4 in the main text) was then calculated from F under consideration of 

the size-dependent maximal gut content (GCmax) and gut evacuation rate (GER, Table S3.1).   

The majority of the equations was directly adopted from Hufnagl and Peck (2011), other have 

been arithmetically simplified in comparison to their original form. Furthermore, we applied 

three modifications to the original model: 

 

1)      We used the standard respiration rate Rs from Moyano et al. (2018) instead of the one 

used in Hufnagl and Peck (2011) and Hufnagl et al. (2015): 

Rs = 0.02 ⋅ (wl
0.886) ⋅ e0.105⋅T                       (S3.4) 

where wl  was the dry weight of a herring larva (in µg) and T(֯ ��C) is temperature. This allowed 

us to reproduce the ad-libitum growth rates of herring larvae reported by Moyano et al. (2018)  

2)     Dynamic growth allocation scheme was replaced by a Boolean function following 

Huebert and Peck (2014). The proportion p of the energy G available for growth allocated to 

the length growth was: 

  p = 1, ifwl > wref and p = 0, ifwl ≤ wref,    (S3.5) 

where wref  was the reference larval weight (see Table S3.1). We are convinced that the 

Boolean function is more suitable to describe energy allocation than the function used in 

Hufnagl and Peck (2011) (their Eq.22), because the later exceeded 1 if  wl > 1.04 ∗ wref or 

drops below 0 if wl < 0.96 ∗ wref (Figure S3.1) 

3)  Since the herring larvae are visual feeders and thus only feed during the day, the 

activity multiplicator k was taken kday=2 and knight=1, following the approach of Huebert and 

Peck (2014) to differentiate between active feeding and passive phase during the night. No 

dependency on prey concentrations or gut fullness was included in our study.  

Table S3.1: Summary of all variables, parameters and equations of the bioenergetic model simulating 
larval foraging and growth at observed zooplankton prey fields and temperatures. HP2011 stays for 
Hufnagl and Peck (2011), HP2014 – for Huebert and Peck (2014) 

Description Value/Equation Unit Comments 

Variables 

Larval length Ll mm  

Larval dry weight wl µg  

Zooplankton total 
biomass  

Bz µg/m3 Eq. 3 in main text 

Zooplankton size 
class index 

i   

Zooplankton dry 

weight in class i 
wzi µm  

Prey biomass in 

the size class i 
Bi µg/m3  

Temperature T °C  

Prey field 

Zooplankton size 

in class i 
Lzi = 2.25 ∙ 106 ⋅ wi

0.4 µg Adapted from 
HP2014  
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Prey abundance 

in the size class i 
Ai = Bi/wi number of 

individuals 
 

Maximal prey size 
Lzmax =

2200

1 + (
Ll
14
)
−2 

µm Simplified HP2011 

The optimal foraging routine 

Handling Time
  
   

HTi = e0.264⋅10
d
, whered = 20

Lzi
Ll

 

 

s HP2011 

Capture Success
  
   

CSi = 1.1 − (1.1 ⋅
Lzi

Lzmax
) 

  

s-1 HP2011 

Encounter Rate 
ERi = (

2

3
⋅ π ⋅ RDi

3 ⋅
Ai

1000
⋅ PF)

+ (π ⋅ RDi
2 ⋅

Ai
1000

⋅ PF ⋅ PD

⋅ √Vl
2 +Vi

2 + ε2) 

# s Corrected HP2011 

Angle of visual 
acuity 

α = 0.0167 ∙ eb, 
  

whereb = 9.14 − 2.4 ∙ ln(ll)
+ 0.229
∙ (ln(Ll))

2, 
 

degree HP2011 

Reactive Distance 
RDi =

Lzi

2 ∙ tan(
α
2
)
 

mm HP2011 

Pause frequency PF = 0.35 1/s HP2011 

Pause duration PD = 0.35 s HP2011 

Larval swimming 
speed  

Vl = 6.7 +
127.21

1 + 4.1 ∙ 103 ∙ e−0.27∙Ll
 

mm/s Corrected and 
simplified HP2011 

    

Zooplankton 
swimming speed 

Vi = 0.003 ∙ Lzi mm/s HP2011 

Turbulent velocity ε = 1.3 mm/s HP2011 

Energy budget and growth 

Activity Multiplier  k = 2.5duringtheday 
k = 1duringthenight 

unitless HP2014 

Standard 
Respiration 

Rs = 0.02 ⋅ (wl
0.886) ⋅ e0.105⋅T µg dw∙h-1 Moyano et al., 2018 

Reference larval 
weight 

wref = 0.019 ⋅ Ll
3.603e0.0067⋅T µg HP2011 

Larval dry weight 
at hatch 

Wmin = 0.019 ∙ (11 − 0.09 ∙ T)f 
wheref = 3.614 ∙ e0.0063∙T 

µg HP2011 

Assimilation 
Efficiency 

β = 0.6 ∙ (1 − 0.3 ∙ ec) 
wherec = −0.003 ∙ (wl −Wmin) 

unitless Corrected HP2011  

Specific dynamic 
action 

SDA = 0.10 unitless HP2011 

Maximal gut 
content 

GCmax = 0.045 ⋅ wref
1.02 µg Corrected and 

simplified HP2011 

Gut evacuation 
rate 

GER = 100 ∗ 0.59 ⋅ Ll
−0.83

∙ 1.097T 

% / h Simplified HP2011 
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Proportion 
Allocated to 
Length Growth 

p =
1, ifwl > wref

0, ifwl ≤ wref
  

unitless This study 

 

 

 

Figure S3.1. The proportion p of the available energy a herring larva allocates to growth in length as a 
function of the larval conditional index expressed as a ratio of an actual larval weight wl to the reference 

larval weight  wref (Table S3.1). Orange line depicts the approach used in this study and in Huebert and 
Peck (2014), the blue line depicts the approach of Hufnagl and Peck (2011) . 

S4. The proportion of copepods in different size-classes of the plankton samples  

 

Figure S4.1. Relative proportion (% of the biomass) of copepods in size-classes of the plankton samples 
in the Buchan/Banks areas in September (left panel) and in the Downs area in December (right panel).  

S5. The modelled larval growth in 2013, 2014 and 2018 

The spatial distribution of the plankton biomass and the modelled larval growth rates obtained 

using the observed biomasses and the station-specific temperatures in 2013, 2014, and 2018 

is shown in Fig S4. In these years, none or only few stations were sampled in Downs due to 

bad weather conditions. 
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Figure S5.1. The observed plankton concentrations (in 2013(A), 2014 (E) and 2018(I)) and 
corresponding growth predicted for a herring larva of the initial length of 8 mm (B, F, J), 13 mm (C, G, 
K) and 18 mm (D, H, L). Colors correspond to: gray - starvation (SGR≤0), beige - food-limitation (SGR 
> 0 and SGR < SGRmax) and brown – ad-libitum feeding (SGR=SGRmax). Please find the corresponding 
figure for the years 2016, 2017 and 2019 in the main text (Figure 7). 
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S6. Model sensitivity to the NBSS slope 

Fig 9 in the main text shows the sensitivity of the modelled larval growth to the zooplankton 

biomass and size-spectra slope for herring larvae of 8-mm, 13-mm and 18-mm length. The 

comparison of the results for a 13-mm larva revealed some discrepancies in the shape of 

starvation (SGR = 0) and satiation (SGR=SGRmax) curves reported by Huebert and Peck (2014) 

(their Fig. 4). Furthermore, the optimal NBSS slope in our study (-0.9) was somewhat less 

steep than the optimal slope of -1.4 obtained by Huebert and Peck (2014). The detailed 

analyses of both models showed that the different parameterizations of the handling time HT 

was main reason for this discrepancy: the HT used in this study as well as in Hufnagl and Peck 

(2011) increased with the increasing prey size (see Table S3.1), whereas HT considered to be 

constant in Huebert and Peck (2014). To demonstrate this, we simulated the larval growth 

using the same set of equations (Table 3.1), but different HT (Fig.  S6.1) and plotted the results 

the same way as in Huebert and Peck (2014). The model simulation with the constant HT (Fig. 

6.1b) reproduced well the shape of the starvation and satiation curves reported in Huebert and 

Peck (2014).  

To our opinion the increase of the handling time with the prey size is more realistic than the 

approach used by Huebert and Peck (2014). However, a detailed comparison of both models 

remains beyond the scope of this paper.  

 

 

 

 Figure S6.1. Starvation (solid lines) and satiation (dashed lines) points predicted for a 13-mm herring 
larva feeding at different prey conditions (prey biomass and NBSS slope). A) the results obtained with 
the handling time parameterization used in this study, B) the results obtained with the constant handling 
time in agreement with Huebert and Peck (2014) 
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