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Summary
In this thesis we study the interaction of pivotal structures on tensor categories with cat-

egorical Morita theory and establish foundational results in the theory from a bicategorical
perspective. The dissertation starts with an introductory section presenting the motivation
behind the problem of study, its connections with topological field theories and the results
achieved in this work. The structure of the document is as follows:

• In Chapter 1 the pertinent definitions and conventions about the theory of finite tensor
categories are summarized. Further preliminary material regarding relative Serre functors
and Nakayama functors is also included.

• In Chapter 2 we discuss the notion of a categorical Morita context. We describe the
two-object bicategory associated to every Morita context. Furthermore, we show that
every exact module category induces a strong Morita context, and conversely that any
such strong Morita context stems from an exact module category.

• In Chapter 3 we investigate the nature of dualities for Morita contexts, by showing that
its associated bicategory admits duals (adjoints). Moreover, we describe double-duals in
terms of relative Serre functors, which leads to Radford theorems for module categories
and for Morita context bicategories.

• In Chapter 4 we introduce the notion of pivotal Morita equivalence. The first main result
of this chapter is a characterization of this notion of equivalence in terms of the pivotal
bicategories of pivotal modules. Secondly, we show that pivotal tensor categories that are
pivotal Morita equivalent have (pivotal braided) equivalent Drinfeld centers, leading to
immediate applications to oriented topological field theories. We further discuss a notion
of sphericality for module categories.

• In Chapter 5 we make a detour to discuss categorical Morita theory in the equivariant
setting of tensor categories graded over a finite group G.

• In Chapter 6 we study the properties of traces arising from pivotal structures on bimodule
categories with a particular emphasis on the spherical semisimple case.

• In Chapter 7 we reformulate the Turaev-Viro state sum construction in terms of structures
developed in the thesis, namely the bicategory of spherical modules over a spherical fusion
category. The main result of the chapter shows that the constructed topological invariant
of oriented 3d-manifolds is independent of the choice of skeleton used to define it.
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Zusammenfassung
In dieser Doktorarbeit untersuchen wir die Interaktion zwischen Pivotalstrukturen auf Ten-

sorkategorien und Morita-Theorie, und zeigen wir grundlegende Ergebnisse der Theorie aus
einer bikategorialen Perspektive. Die Dissertation beginnt mit einem einleitenden Abschnitt,
in dem die Motivation für das zu untersuchende Problem, seine Verbindungen zu topologischen
Feldtheorien und die in dieser Arbeit bewiesenen Ergebnisse vorgestellt werden. Die Struktur
des Dokuments ist wie folgt:

• In Kapitel 1 werden die notwendigen Definitionen und Konventionen über die Theorie der
Tensorkategorien zusammengefasst. Weitere vorbereitende Konzepte und Ergebnisse zu
relativen Serre-Funktoren und Nakayama-Funktoren sind ebenfalls enthalten.

• In Kapitel 2 diskutieren wir kategoriale Morita-Kontexte. Wir beschreiben, wie ein
Morita-Kontext eine Zwei-Objekt-Bikategorie definiert. Außerdem zeigen wir, dass jede
exakte Modulkategorie einen starken Morita-Kontext erzeugt, und dass jeder solche starke
Morita-Kontext aus einer exakten Modulkategorie kommt.

• In Kapitel 3 untersuchen wir duale Objekte in Morita-Kontexten. Wir zeigen, dass die
Morita-Kontext-Bikategorie Duale (adjungierte 1-Morphismen) hat.
Außerdem, beschreiben wir die Doppelduale als relative Serre-Funktoren, was zu Radford-
Theoremen für Modulkategorien und für Morita-Kontext-Bikategorien führt.

• In Kapitel 4 definieren wir pivotale Morita-Äquivalenz. Das erste Hauptergebnis dieses
Kapitels zeigt: die pivotale Bikategorie der pivotalen Modulkategorien charakterisiert
pivotale Morita-Äquivalenz. Zweitens zeigen wir, dass pivotale Tensorkategorien, die
pivotal Morita-äquivalent sind, (pivotal verzopfte) äquivalente Drinfeld-Zentren haben.
Dieses Ergebnis hat direkte Anwendungen auf orientierte topologische Feldtheorien. Wir
diskutieren außerdem sphärische Modulkategorien.

• In Kapitel 5 diskutieren wir die äquivariante Morita-Theorie für graduierte Tensorkate-
gorien über einer endlichen Gruppe G.

• In Kapitel 6 untersuchen wir die Eigenschaften von Spuren, die von Pivotalstrukturen
auf Bimodulkategorien stammen, mit besonderem Interesse am sphärischen und halbein-
fachen Fall.

• In Kapitel 7 formulieren wir eine Turaev-Viro-Konstruktion aus der pivotale Bikategorie
der sphärischen Modulkategorien über einer sphärischen Fusionskategorie, die in der Dis-
sertation entwickelt wurde. Das Hauptergebnis des Kapitels zeigt: die konstruierte topol-
ogische Invariante von orientierten 3D-Mannigfaltigkeiten ist skeletonunabhängig.
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7.1 Skeletons on manifolds à la Turaev-Virelizier . . . . . . . . . . . . . . . . . . . . 93
7.2 The state sum invariant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

A String diagrams in pivotal bicategories 101
A.1 The pivotal 2-categories M and Modpiv(A) . . . . . . . . . . . . . . . . . . . . . 103

B Skeleton independence of the state sum 105

Bibliography 108



Introduction

Associative algebras over a field k are ubiquitous fundamental structures in mathematics and
physics. A common approach to study an algebraic structure is by means of its representations.
Many properties of a k-algebra A (e.g. semisimple, Noetherian, Artinian, self-injective, etc) are
captured by its linear category of modules A-mod, establishing it as a fundamental mathemati-
cal object. This leads to the notion of Morita equivalence: two algebras are Morita equivalent iff
their categories of modules are equivalent, or equivalently, iff there exists an invertible bimodule
between them. For example, the algebra k is Morita equivalent to the algebra of n-by-n square
matrices Mn(k) with coefficients in k for any order n ≥ 1. Under certain finiteness conditions
every k-linear category is of the form C ' A-mod for a finite dimensional algebra A determined
only up to Morita equivalence. Frequently, one encounters situations where these categories are
given in more abstract terms without making a choice of an algebra realizing it, and therefore
from a modern perspective it is desirable to aim for Morita invariant formulations which are
purely categorical.

An additional datum to consider on an algebra is that of a symmetric Frobenius form
(which can be expressed as a homotopy fixed point [HSV]). These type of structures termed
symmetric Frobenius k-algebras emerge naturally in countless areas of mathematics, as well:
in representation theory of groups in finite characteristic as rings of characters, in differential
geometry as cohomology rings of compact oriented manifolds or in commutative algebra as
artinian Gorenstein rings.

Topological field theories (TFT’s) provide a mechanism to systematically organize algebraic
structures. Broadly speaking, these theories are representations of certain geometric categories
of manifolds and manifolds with boundary and corners in an algebraic category. Indeed, a
topological field theory is defined as a (symmetric monoidal) functor from some category of
cobordisms into some target category of algebraic nature. Algebraic objects are then realized
as the image of standard manifolds under the TFT functor. The prototypical example is the
fact that an oriented two-dimensional TFT with values in the category of vector spaces maps
an oriented circle to a vector space with the structure of a commutative (and thus symmetric)
Frobenius algebra [Ko].

There are diverse flavours of geometric categories of cobordisms to consider as a source of
a topological field theory. These different types of geometry arise, for instance, as tangential
structures on manifolds such as G-bundles or framings, i.e. trivializations of the tangent bundle.
Framings are additional structure on a manifold, TFT’s compensate this by requiring fewer
structures on the algebraic countepart: a framed two-dimensional theory evaluated on a suitably
framed circle yields a vector space with the structure of a k-algebra, as opposed to the Frobenius
algebras appearing in the oriented case. Consequently, the two structures of an algebra and
a symmetric Frobenius algebra have clear distinct geometric counterparts, and thus should be
carefully regarded as two different algebraic worlds.
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2 INTRODUCTION

Categories of cobordisms, and hence topological field theories, are defined in any dimension.
It is in higher dimensions that TFT’s can show their true power and give insights into more
intricate objects, more precisely into higher algebraic structures. For example, in three dimen-
sions one comes across tensor categories, which serve as categorical analogues for k-algebras
[EGNO]. Instead of vector spaces, k-linear categories are in play. The product is replaced by
a tensor product functor and associativity, a property for algebras, is now promoted to an as-
sociator which is an additional structure. In three dimensions, one can again consider different
tangential structures on manifolds, which gives rise to distinct higher algebraic objects: tensor
categories for framed theories and pivotal tensor categories for oriented theories, as depicted in
Table 1. These two worlds of algebraic structures on categories should be carefully told apart,
as well.

Dimension Framed manifolds Oriented manifolds

2d Algebras Symmetric Frobenius
algebras

3d Tensor
categories

Pivotal tensor
categories

Table 1: Algebraic structures related to manifold invariants.

Some extent of imbalance is present in the literature: from a geometric and physical point
of view, the study of oriented topological field theories is a clear target in current research. On
the algebraic side, the theory of categories with pivotal structures is much less developed. One
of the main purposes of this thesis is to contribute precisely at this point and thereby provide
tools for the study and construction of three-dimensional TFT’s with defects and boundaries.

Categorical Morita theory and pivotality

Now, let us be somewhat more specific. As mentioned before, the structure of a finite-
dimensional algebra finds its categorical analogue in the notion of a finite tensor category,
e.g. the category of finite-dimensional representations of a finite-dimensional Hopf algebra
[EGNO]. These are finite k-linear categories together with a linear monoidal structure and
a simple monoidal unit. Additionally, the property that every object admits dual objects is
required. This is a phenomenon appearing at the categorical level that reproduces the notion
of dual of a finite-dimensional vector space and that can be interpreted as a relaxed version of
invertibility.

Finite-dimensional vector spaces have further the special feature that they are canonically
isomorphic to their double-dual in a way that is compatible with the tensor product of vector
spaces. In other finite tensor categories, such as the examples coming from Hopf algebras, the
situation can be increasingly more complex: duals are obtained using the antipode of the Hopf
algebra, the famous Radford S4 theorem from the 70’s only makes a general statement about
the fourth power of the antipode, but the square of the antipode may not have additional
properties.

The notion of a pivotal structure on a tensor category consists of a monoidal trivialization
of the double-dual functor (which again could be described as a homotopy fixed point [DSS2]).
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Pivotal finite tensor categories are then finite tensor categories together with the choice of a
pivotal structure. Such data control the dualities in the tensor category, allow to define traces
for endomorphisms and are themselves a prolific source of Frobenius algebras [FuS, Sh2] internal
to these categories.

In the study of finite tensor categories there is a well-understood categorical Morita theory
[EGNO]. Module categories over finite tensor categories play the role of modules over algebras.
In the case of the finite tensor category coming from a Hopf algebra H, its module categories
are realized by comodule algebras over H. The Morita equivalence relation on tensor categories
can be defined essentially in the same way as for algebras: two tensor categories are Morita
equivalent iff there is an invertible bimodule category connecting them.

One of the main purposes of this thesis is to develop a comprehensive pivotal Morita theory
for pivotal tensor categories. In such pivotal setting, some first steps in this direction have been
made: crucial concepts such as the notion of a relative Serre functor [FSS], which allows to
define pivotal module categories [Sh2], have been recently introduced. As we prove in Chapter
3, in a suitable setting, the image of an object in a module category under the relative Serre
functor actually is its double-dual. This insight is fundamental, since it provides a conceptual
explanation on why appropriate trivializations of the relative Serre functor should be regarded
as pivotal structures on module categories. These concepts become foundational for the pivotal
Morita theory that we establish in this dissertation.

The study of categorical Morita theory is also significant in the context of three-dimensional
topological field theories. In the case of framed theories, it has applications to invertible topo-
logical defects between framed modular functors of state-sum type [DSS2]. Morita theory is
relevant for oriented TFT’s as well: Two fundamental sources of such topological invariants
are the state sum construction by Turaev-Viro [TV] and the surgery-based construction due
to Reshetikhin-Turaev [RT]. These two are related as follows: the Turaev-Viro theory TVA
obtained from a spherical fusion categoryA is isomorphic to the RT theory arising from its Drin-
feld center Z(A) [TV, Thm. 17.1]. The notion of categorical Morita equivalence is completely
captured by the Drinfeld center [EGNO, Thm. 8.12.3]. Hence, the state sum construction ap-
plied to Morita equivalent spherical fusion categories produce isomorphic TFT’s since these can
be obtained as the RT theory associated to their (braided-equivalent) Drinfeld centers. These
constructions for oriented manifolds strongly rely on a specific instance of pivotal structure on
the input data, namely on a choice of spherical structure. The statement only holds true if such
structure is preserved under the transit to the centers induced by Morita equivalence, as we
prove in Theorem 4.15. From this result we achieve the concrete statement: the oriented three-
dimensional Turaev-Viro topological field theories TVA and TVB arising from pivotal Morita
equivalent spherical fusion categories A and B are isomorphic.

Organization of the dissertation

The material presented in this thesis is structured as follows: In Chapter 1 the pertinent
definitions and conventions about the theory of finite tensor categories are summarized. Further
preliminary material regarding relative Serre functors and Nakayama functors is also included.

The Morita equivalence relation on algebras is defined as a property by means of the exis-
tence of an invertible bimodule between the corresponding algebras. A choice of such invertible
bimodule leads to the concept of a Morita context. This notion has an analog in the categorical
Morita theory of finite tensor categories, which we discuss in Chapter 2. Such structure called
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(strong) categorical Morita context consists of bimodules AMB and BNA between two finite
tensor categories together with mixed tensor products, i.e. bimodule equivalences

� : M�BN
'−−→ A and � : N �AM

'−−→ B .

and additional coherence data fulfilling appropriate compatibility conditions. Dropping the
requirement that � and � are equivalences gives a weaker notion of a categorical Morita
context. In the same spirit as [Mü, Rem. 3.18] the data of such weak Morita context form a
bicategory M with two objects. We show that from every exact module category stems a strong
Morita context. In Theorem 2.11 we provide a converse: any strong Morita context comes from
an exact module category AM.

In Chapter 3 we investigate the nature of dualities for Morita contexts which is a crucial
step in our journey towards the study of pivotal structures. For this goal, we make use of the
notion of duals (adjoints) for 1-morphisms in a bicategory, generalizing dual objects in a finite
tensor category. We show that the Morita context bicategory M of an exact module category
AM has adjoints. The duals of objects in M are module functors from M to A given by
internal Homs and coHoms. Moreover, all internal Homs and coHoms of the categories in M
can be expressed in terms of actions, mixed tensor products � and � and dual objects in
complete analogy to the familiar case of a single tensor category. Furthermore, double duals
for objects in AM correspond to the value of the relative Serre functor on them, and thus the
relative Serre functors of the categories in a Morita context combine into a pseudo-functor S on
its associated bicategory M. As a consequence of these results we arrive at a Radford theorem
for module categories:
Theorem 3.16. Let A be a finite tensor category and M an exact A-module. There is a
natural isomorphism

DA .− /D−1
A∗M

∼====⇒ SAM ◦SAM
of (twisted) bimodule functors, where SAM is the relative Serre functor of M and DA and DA∗M
are the distinguished invertible objects of A and A∗M := FunA(M,M), respectively.

Theorem 3.16 has the following bicategorical interpretation: there are Radford isomorphisms
for every category in the Morita context of M and these assemble into a trivialization of the
square of the relative Serre pseudo-functor S of the bicategory M. Altogether these results
establish natural rigid duality structures for Morita context bicategories.

After setting up the study of dualities, in Chapter 4 we are ready to investigate the inter-
action of pivotal structures and Morita theory. In view of the bicategorical nature emerging in
Chapter 3, we continue regarding it as a guiding principle. There is a notion of pivotal structure
for a bicategory with dualities for 1-morphisms. The Morita context bicategory M arising from
a pivotal module turns out to be pivotal as a bicategory. The pivotality of a module category
M just regards its structure as one-sided module; in contrast, the pivotality of the Morita
context implies thatM is endowed with a pivotal structure as a bimodule category, and so are
all categories in the associated Morita context.
Theorem 4.8. The Morita context associated to a pivotal module category M over a pivotal
tensor category A is a pivotal Morita context.

We define pivotal Morita equivalence by means of a connecting invertible pivotal bimodule.
The 2-category of pivotal module categories over a pivotal tensor category is naturally endowed
with a bicategorical pivotal structure. We prove in Theorem 4.11 that this pivotal bicategory
characterizes the notion of pivotal Morita equivalence.
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Theorem 4.11. Two pivotal tensor categories are pivotal Morita equivalent if and only if
their associated 2-categories of pivotal module categories, module functors and module natural
transformations are equivalent as pivotal bicategories.

We further prove that if two pivotal categories are pivotal Morita equivalent, then their
Drinfeld centers are equivalent as pivotal braided tensor categories. The converse of this state-
ment holds in the (non-pivotal) world of finite tensor categories, but for pivotal tensor categories
it is an interesting question that still remains open.

Theorem 4.15. If two pivotal categories are pivotal Morita equivalent, then their Drinfeld
centers are equivalent as pivotal braided tensor categories.

In Section 4.5 the property of sphericality for a pivotal tensor category is studied. The
perspective on this condition has recently undergone a change: while trace-sphericality empha-
sized that left and right quantum traces for endomorphisms in a pivotal category agree, a more
recent notion of sphericality [DSS2] requires that the underlying tensor category is unimodular
and that the pivotal structure squares to Radford’s trivialization of the quadruple dual. The
two notions coincide in the semisimple case. We prove that (beyond semisimplicity) the later
notion of sphericality is invariant under pivotal Morita equivalence.

Corollary 4.18. Let A and B be two pivotal tensor categories that are pivotal Morita equivalent.
A is (unimodular) spherical if and only if B is (unimodular) spherical.

In the same spirit as for tensor categories [DSS2], we propose in Definition 4.21 a notion of
sphericality for a pivotal module category AM by means of the Radford isomorphism from
Theorem 3.16. However, for module categories there is a subtlety: this definition is relative to
the choice of trivializations of both the distinguished invertible objects of A and A∗M. Fixing
such trivializations, all monoidal and module categories in the Morita context associated to a
spherical module category are spherical. As we point out in Remark 4.20, there are distinguished
choices of such trivializations given by Definition 6.12 under the assumption of semisimplicity,
which we explore more closely in Chapter 6. These replicate the classical quantum traces for
the regular bimodule category, and consequently the notion of trace-sphericality.

The contents of Chapter 6 concern trace-like structures on categories in further detail.
These algebraic gadgets are frequently used for assigning scalars to closed graphs on spheres
[TV2, GP]. With this goal in mind, we study traces on bimodule categories. For this purpose,
we make use of the canonical Nr

X -twisted trace [SchW, Def. 2.4] [ShSh, Def. 4.4] associated to
any k-linear category X . Such twisted trace allows to assign scalars, not to endomorphisms,
but to a different class of morphisms in the subcategory of projective objects of X . Since, the
category underlying a bimodule category is k-linear, it comes naturally equipped with such
twisted trace. In Section 6.3, we explore the interaction of the twisted trace with pivotal
structures on bimodule categories. In Proposition 6.10, we obtain partial-trace properties for
bimodule categories.

The relative notion of bimodule sphericality from Definition 4.19 finds a distinguished nor-
malization datum in the semisimple setting, as we point out in Remark 6.13. This will lead
to traces on spherical bimodule categories. In Proposition 6.14, we show a trace-sphericality
property on spherical bimodules that resembles the trace-sphericality property of spherical fu-
sion categories. This will be the basis for the bimodule graphical calculus on spheres developed
in Chapter 7.
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State sum procedures are fundamental sources of topological invariants. In three dimensions
the Turaev-Viro invariant [TV] takes as input the structure of a spherical fusion category. In
four dimensions, a construction of topological invariants based on the structure of a fusion 2-
category [DR] has been recently formulated. A bicategorical notion of idempotent completion
predominantly appears in this work. In analogy to the fact that the idempotent completion of a
semisimple algebra is its category of modules, the 2-category underlying any fusion 2-category
can be obtained as some 2-idempotent completion of a multifusion category.

In the case of a spherical fusion category A, we would also like to consider a suitable 2-
category of A-modules as an adequate ”spherical” 2-idempotent completion, yet to be defined.
Based on the theory developed in this thesis, we tentatively consider the structure of the pivotal
bicategory Modsph(A) of spherical A-module categories as such completion. We test this idea
in Chapter 7 by showing that a three-dimensional state sum construction can be formulated
from these data. More concretely, to any closed oriented three-dimensional M we assign a scalar
St(M) given by Definition 7.5. This is done in analogy to the classical Turaev-Viro construction
by means of the auxiliary datum of a skeleton on M . Since our input is a higher algebraic
structure this will require additional considerations. An important step in the construction is
the evaluation of Modsph(A)-labeled graphs on spheres. This is based on the properties of the
traces for 2-morphisms in Modsph(A) studied in Section 6.4. The main result of Chapter 7 is
Theorem 7.8 which states that the value of St(M) is independent of the choice of skeleton used
to construct it. Moreover, as we point out in Remark 7.7, the input of the construction here
presented can be exchanged by a suitable locally Calabi-Yau pivotal bicategory (for instance a
spherical multifusion category), thereby generalizing the Turaev-Viro construction.

In Chapter 5 we make a detour to discuss categorical Morita theory in the equivariant
setting of tensor categories faithfully graded over a finite group G. The Turaev-Viro and
Reshetikhin-Turaev constructions have a generalization for homotopy quantum field theories
for G [Tu]. These equivariant constructions require a choice of additional structure on the input
data, namely a G-grading and a G-crossing, on spherical categories and modular categories,
respectively. The relative center of a graded category with respect to its trivial component,
called the equivariant center, has the structure of a braided G-crossed tensor category, and
plays the role of the Drinfeld center by relating these two constructions [TV3]. In Chapter 5
we extend Morita equivalence to G-graded tensor categories. Interestingly, G-graded module
categories are realized by algebras in the trivial component [Ga2], which leads to the definition
of graded Morita equivalence. We define in Section 5.3 a natural G-action on the bicategory
of G-graded module categories over a G-graded tensor category, although trivial to define, is
crucial for our results. This bicategory with a G-action provides a characterization of graded
Morita equivalence in Theorem 5.18.

Theorem 5.18. Two G-graded tensor categories are graded Morita equivalent if and only if
their associated 2-categories of graded module categories, graded module functors and module
natural transformations are equivalent as bicategories with group action.

In Theorem 5.29 we prove that graded Morita equivalence is characterized by the equivariant
center, as well. In Section 5.5 we also verify that dualities and pivotal structures are well-
behaved in the equivariant picture.
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This thesis is partially based on the results in the published article
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that have been obtained after submission of the author’s master thesis and the results of the
following preprint
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as [GJS] and [FGJS]. The results therein were developed together with the coauthors, whose
contributions are fully acknowledged by the author of this thesis.

The motivation to study dualities on Morita contexts arose in discussions of the paper [Bh]
with Jürgen Fuchs, César Galindo and Christoph Schweigert. In these discussions, the idea on
how to describe the second bimodule category in a Morita context came to fruition. Based on
this, the author of this thesis had the insight that double duals are related to relative Serre
functors. From this observation, most results in Chapters 3 and 4 were developed by the author
and found their final form in common meetings.

Most of the results presented in Chapter 5 were obtained after submission of the author’s
master thesis. From the main results, only Theorem 5.25 is shown in the master thesis [Ja],
while Theorem 5.29 also comprises a converse. Furthermore, in Section 5.3 a G-action on
the 2-category of graded module categories is introduced and in Theorem 5.18 is shown that
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the supervisors.
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Chapter 1

Preliminaries

In this section we fix notation and conventions and summarize some pertinent concepts and
structures. Throughout the entirety of the document, all categories we consider are supposed
to be linear abelian over an algebraically closed field k of characteristic zero. A linear abelian
category where every object is of finite length and all morphism spaces are finite-dimensio-
nal is said to be locally finite. A finite k-linear abelian category is a linear abelian category
that is equivalent to the category of finite-dimensional modules over a finite-dimensional k-
algebra. Following [Gu] strict bicategories, i.e. bicategories where the horizontal composition
is associative on the nose are termed 2-categories.

1.1 Tensor categories and module categories
We first recall a few standard definitions in the theory of tensor categories (see [EGNO]). A
multi-tensor category is a locally finite rigid monoidal category A whose tensor product functor
⊗ is bilinear. A is said to be a tensor category iff in addition its monoidal unit 1A is a simple
object. We take without loss of generality a monoidal category to be strict to simplify the
exposition. The monoidal opposite A of a monoidal category A is the monoidal category with
the same underlying category as A, but with reversed tensor product, i.e. a⊗A b= b⊗ a and
with the accordingly adjusted associators. When convenient we denote the object in A that
corresponds to an object a∈A by a.

Concerning dualities on a monoidal category A our conventions are as follows. A right dual
a∨ of an object a∈A comes equipped with evaluation and coevaluation morphisms

eva : a∨⊗ a→ 1A and coeva : 1A → a⊗ a∨. (1.1)

Similarly, a left dual ∨a and of a∈A comes with evaluation and coevaluation morphism

ẽva : a⊗∨a→ 1A and c̃oeva : 1A → ∨a⊗ a . (1.2)

A (left) module category over a tensor category A, or (left) A-module, for short, is a category
M together with an exact module action functor

. : A×M→M (1.3)

and a mixed associator obeying a pentagon axiom. In order to indicate the tensor category over
which M is a module, we also denote it by AM. Invoking an analogue for module categories

9
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of Mac Lane’s strictification theorem (see [EGNO, Rem. 7.2.4]), we assume strictness also for
module categories. In the case that A is finite, we require thatM is finite as a linear category
as well.

A right B-module N is defined as a left B-module; its module action functor is denoted by

/ : N ×B → N , (1.4)

and we also denote it by NB. Similarly, for finite tensor categories A and B, an (A,B)-bimodule
category is defined as a (left) module category over the Deligne product A�B.

The opposite category Mopp of the linear category M that underlies a bimodule AMB
can be endowed in many different ways with the structure of a (B,A)-bimodule category, by
twisting the actions with odd powers of duals.

Definition 1.1. Let M be an (A,B)-bimodule category over tensor categories A and B. We
define #M as the (B,A)-bimodule category with underlying category Mopp and actions given
by

b .m/ a := ∨a .m/ ∨b (1.5)
for a∈A, b∈B and m∈Mopp. Similarly,M# is defined to be the (B,A)-bimodule with actions
twisted by right duals, i.e.

b .m/ a := a∨ .m/ b∨ (1.6)
for a∈A, b∈B and m∈Mopp.

An A-module category M is called exact iff p .m is projective in M for any projective
object p∈A and any object m∈M. A module category which is not equivalent to a direct
sum of two non-zero module categories is said to be indecomposable.

Given associative algebras A and B in a tensor category A, the category of right A-modules
in A will be denoted by ModA(A). Similarly, AMod(A) denotes the category of left A-modules
in A and ABimodB(A) the category of (A,B)-bimodules in A. An algebra A is said to be exact
(indecomposable) if the A-module category ModA(A) is exact (indecomposable). Moreover, as
stated in Theorem 1.8, every indecomposable exact A-module category can be realized in terms
of an algebra internal to A.

Module functors
A module functor between A-module categories M and N is a functor H : M−→N together
with a module constraint, i.e. a collection of natural isomorphisms H(a .m)

∼=−→ a .H(m) for
a∈A and m∈M obeying appropriate pentagon axioms. A module natural transformation
between module functors is a natural transformation between the underlying functors that
commutes with the respective module structures. We denote by FunA(M,N ) the category
which has module functors between two A-modules M and N as objects and module natu-
ral transformations as morphisms. We denote by Natmod(H1, H2) the space of module natu-
ral transformations between given module functors H1 and H2. Similarly, RexA(M,N ) and
LexA(M,N ) denote the categories of right exact and left exact module functors, respectively.
In the case that M is exact, every H ∈FunA(M,N ) is an exact module functor [EGNO,
Proposition 7.6.9].

Lemma 1.2. [DSS1, Cor. 2.13] Let H : M−→N be an A-module functor. If its underlying
functor admits a right (left) adjoint functor, then H admits a right (left) adjoint A-module
functor such that the unit and counit of the adjunction are module natural transformations.



1.2. RELATIVE DELIGNE PRODUCT OF MODULE CATEGORIES 11

The dual category A∗M of a tensor category A with respect to an A-module M is the
category of right exact module endofunctors, A∗M= RexA(M,M), with tensor product given
by composition of functors. IfM is exact A∗M is rigid and in caseM indecomposable, then the
identity functor idM is simple, making A∗M a tensor category. The evaluation of a functor on
an object turns M into an A∗M-module category.

The category of module functors has the structure of a bimodule category. More specifically,
for given bimodule categories AMB, ANC and DLB, FunA(M,N ) becomes a (B, C)-bimodule
category via the actions

b�H := H ◦ (− / b) and H � c := (− / c) ◦H (1.7)

for H ∈FunA(M,N ), b∈B and c∈C, while FunB(M,L) inherits a (D,A)-bimodule category
structure given by

d�H := (d .−) ◦H and H � a := H ◦ (a .−) . (1.8)

Analogously, the categories of right exact and left exact module functors are endowed with the
structure of a bimodule category as well.

By realizing module categories in terms of algebras we have from [EGNO, Proposition 7.11.1]
that there is an equivalence of bimodule categories

ABimodB(A) '−−→RexA(ModA(A), ModB(A)) ,

M 7−→ −⊗AM
(1.9)

called the Eilenberg-Watts equivalence. Furthermore, for A = B and M := ModA(A) this is a
tensor equivalence ABimodA(A) ' RexA(M) = A∗M, i.e., it is compatible with composition of
functors and the tensor product relative to A.

1.2 Relative Deligne product of module categories
Let M be a right module and N a left module over a finite tensor category B.

(i) A B-balancing on a bilinear functor F : M×N →L into a linear category L is a natural
family of isomorphisms

F (m/ b, n)
∼=−−→ F (m, b . n) (1.10)

for b∈B, m∈M and n∈N , obeying an obvious pentagon coherence condition (for details,
see for instance [Sc2, Def. 2.12]). A bilinear functor endowed with a balancing is called a
balanced functor.

(ii) A balanced natural transformation between balanced functors is a natural transformation
between the underlying functors that commutes with the respective balancings.

(iii) Balanced functors F : M×N →L together with balanced natural transformations form a
category, denoted by Bal(M×N ,L). Its full subcategory of right exact balanced functors
is denoted by Balre(M×N ,L).
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(iv) The relative Deligne product ofMB and BN is a linear categoryM�BN equipped with a
right exact B-balanced functor �B : M×N −→M�BN such that for every linear category
L the functor

Rex(M�B N ,L) '−→ Balre(M×N ,L) ,
F 7−→ F ◦ �B

(1.11)

is an equivalence of categories. The relative Deligne product exists, different realizations
are known, e.g. [DSS1, FSS] and Corollary 2.4 below.

(v) The relative Deligne product of bimodule categories is naturally endowed with the struc-
ture of a bimodule category. Accordingly, the equivalence (1.11) descends to an equiva-
lence between the categories of bimodule right exact functors and balanced right exact
bimodule functors (see [Sc2, Prop. 3.7]).

We call an object of the form m�n∈M�B N a �-factorized object of M�B N .

Lemma 1.3. Every object in the relative Deligne product M �B N is isomorphic to a finite
colimit of �-factorized objects.

Proof. As shown in [DSS1, Thm. 3.3], the relative Deligne product can be realized as a category
of bimodules internal to B. Moreover, as pointed out there in the proof, any such bimodule
can be written as a coequalizer of �-factorized objects.

Proposition 1.4. [DSS2, Prop. 2.4.10] Let AMB, ANC and DLB be bimodule categories over
finite tensor categories. The balanced functor

RexA(M,A)×N −−→ RexA(M,N ) ,
(H,n) 7−−→ H(−) . n

(1.12)

induces an adjoint equivalence

RexA(M,A) �A N '−→ RexA(M,N ) (1.13)

of (B, C)-bimodule categories. Similarly, there is an adjoint equivalence

L�B RexB(M,B) '−→ RexB(M,L) (1.14)

of (D,A)-bimodule categories.

Corollary 1.5. [DSS2, Cor. 2.4.11] Let AMB and BNC be bimodule categories over finite tensor
categories. There are equivalences

M�B N ' RexB(#M,N ) and M�B N ' RexB(N#,M) (1.15)

of (A, C)-bimodule categories between relative Deligne products and categories of right exact
module functors.
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1.3 Internal Hom and coHom
Given a module category AM over a finite tensor category, for every object m∈M the action
functor −.m : A→M is exact and therefore comes with a right adjoint HomAM(m,−) : M→A,
i.e. there are natural isomorphisms

HomM(a .m, n)
∼=−−→ HomA(a,HomAM(m,n)) (1.16)

for a∈A and m,n∈M. This extends to a left exact functor

HomAM(−,−) : Mopp×M −→ A , (1.17)

which is called the internal Hom functor of AM. We denote the internal Hom also by HomM
or just by Hom when it is clear from the context which module category is meant. Additionally,
there are canonical natural isomorphisms

HomAM(m, a . n)
∼=−−→ a⊗HomAM(m,n) (1.18)

which turn − .m a HomM(m,−) into an adjunction of A-module functors, as well as

HomAM(a .m, n)
∼=−−→ HomAM(m,n)⊗ a∨. (1.19)

Together these naturally endow the internal Hom with a bimodule functor structure

HomAM(−,−) : #M×M−→ A . (1.20)

The internal Hom is well-behaved with respect to adjunctions of module functors:

Lemma 1.6. [FuS, Lemma 3] Let A be a finite tensor category, M and N be A-module cate-
gories, and L : M→N and R : N →M be A-module functors. Then L is left adjoint to R if
and only if there are natural isomorphisms

HomAN (L(m), n)
∼=−−→ HomAM(m,R(n)) (1.21)

for m∈M and n∈N .

The monoidal category A∗M acts on a module category M by evaluation of a functor on
an object. If AM is exact, then the dual tensor category is rigid, and a left dual for F ∈A∗M
is given by its left adjoint F la. In this situation the isomorphisms from Lemma 1.6 turn the
internal Hom (1.20) into an A∗M-balanced bimodule functor.

Module categories over a tensor category A can be realized as categories of modules over
an algebra internal to A by means of internal Hom’s: Let M be an A-module category and
denote for m,n ∈M by

evm,n : HomM(m,n) .m→ n (1.22)
the counit of the adjunction (1.16), and for a ∈ A by ηa,m : a → HomM(m, a .m) the unit of
(1.16). Now for objects m,n, l ∈M define the multiplication morphism

◦m,n,l : Hom(n, l)⊗ Hom(m,n)→ Hom(m, l) (1.23)

as the image of the following composition

Hom(n, l)⊗ Hom(m,n) .m id . evm,n−−−−−→ Hom(n, l) . n evn,l−−→ l (1.24)

under the adjunction (1.16).
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Remark 1.7. (i) For any object m ∈M, the multiplication µ := ◦m,m,m and unit um := η1,m
furnishes on HomM(m,m) the structure of an associative algebra in A.

(ii) Moreover, for every pair m,n ∈M, the object HomM(m,n) ∈ A is endowed with a right
HomM(m,m)-module structure via σm,n := ◦m,m,n.

(iii) The functor (1.17) can be seen as a A-module functor

M−→ ModA(A), n 7→ ( HomM(m,n), σm,n ) (1.25)

where A := HomM(m,m) is the algebra described in (i).

Theorem 1.8. [EO, Theorem 3.17] Let A be a finite tensor category andM an indecomposable
exact A-module category, then (1.25) is an equivalence of A-module categoriesM' ModA(A).

Proposition 1.9. LetM be an A-module category decomposed into A-submodule categories as
M =

⊕
i∈I
Mi. Then for m,n ∈M

HomAM(m,n) =
⊕
i∈I

HomAMi
(mi, ni) (1.26)

as objects in A, where mi and ni are the components of m and n under the decomposition ofM.
The decomposition (1.26) yields to a decomposition of the algebra HomAM(m,m) from Remark
1.7,

HomAM(m,m) =
∏
i∈I

HomAMi
(mi,mi) (1.27)

as algebras in A.

Proposition 1.10. Let L be an exact algebra in a finite tensor category A.

(i) There is an algebra decomposition L =
∏
i∈I

Li, where Li are exact indecomposable algebras

in A.
(ii) The A-module category of L-modules in A can be decomposed as

ModL(A) '
⊕
i∈I

ModLi(A) . (1.28)

(iii) The multi-tensor category of L-bimodules in A decomposes as

LBimodL(A) '
⊕
i,j∈I

LiBimodLj(A) . (1.29)

Proof. Since L is exact, according to [EGNO, Proposition 7.6.7] there is a decomposition of the
form

M := ModL(A) =
⊕
i∈I
Mi (1.30)

where Mi is an exact indecomposable A-submodule category of ModL(A) for each i ∈ I. In
particular the regular module can be decomposed as L = ⊕i∈I mi. It follows from Remark 1.7
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and Theorem 1.8 that Li := HomMi
(mi,mi) is an algebra in A and there is an equivalence of

A-module categories
HomAMi

(mi,−) : Mi
'−−→ModLi(A) (1.31)

for each i ∈ I, and thus the algebras Li are exact and indecomposable. These equivalences lead
to an equivalence of A-module categories

HomAM(L,−) =
⊕
i∈I

HomAMi
(mi,−) : ModL(A) '−−→

⊕
i∈I

ModLi(A) (1.32)

which shows (ii). Now recall from [EGNO, Example 7.9.8] that the internal Hom is given by
HomM(m,n) = (m⊗L ∗n)∗ for m,n ∈ M. In particular one can verify that HomM(L,L) = L
as algebras in A. It follows from Proposition 1.9 that

L = HomM(L,L) =
∏
i∈I

Li (1.33)

as algebras in A, and thus statement (i) holds. Lastly, from the Eilenberg-Watts equivalence
(1.9) follows

LBimodL(A) '
⊕
i,j∈I

FunA
(
ModLi(A),ModLj(A)

)
'
⊕
i,j∈I

LiBimodLj(A) (1.34)

providing the desired decomposition in (iii).

Internal coHom
Dual to the notion of internal Hom, for m∈M the action functor − .m : A→M has a left
adjoint

HomM(n, a .m)
∼=−−→ HomA(coHomAM(m,n), a) , (1.35)

called the internal coHom, where a∈A and m,n∈M. This extends to a right exact functor
coHomAM(−,−) : Mopp×M→A. The internal Hom and coHom are related by

coHomAM(m,n) ∼= ∨HomAM(n,m) for m,n∈M . (1.36)
Hence analogously to (1.18) and (1.19), there are coherent natural isomorphisms

coHomAM(m, a . n)
∼=−−→ a⊗ coHomAM(m,n) (1.37)

and
coHomAM(a .m, n)

∼=−−→ coHomAM(m,n)⊗ ∨a (1.38)
turning the internal coHom into an A-bimodule functor

coHomAM(−,−) : M#×M −→ A . (1.39)
In view of the relation (1.36), Lemma 1.6 takes the following form:
Lemma 1.11. Let M and N be module categories over a finite tensor category A, and
L : M→N and R : N →M be A-module functors. Then L is left adjoint to R if and only
if there are natural isomorphisms

coHomAM(R(n),m)
∼=−−→ coHomAN (n, L(m)) (1.40)

for n∈N and m∈M.
Again, ifM is exact, then the isomorphisms (1.40) provide an A∗M-balancing to the internal

coHom bimodule functor (1.39).
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1.4 Relative Serre functors and Nakayama functors
A Serre functor S of a linear additive category X with finite dimensional morphism spaces
furnishes natural isomorphisms between the vector spaces HomX (x, y) and HomX (y,S(x))∗. In
case X is finite abelian, a Serre functor only exists if X is semisimple. But in the case that
X = M is a finite module category over a finite tensor category A, then there is internalized
version of the Serre functor which exists beyond the semisimple case:
Definition 1.12. [FSS, Def. 4.22] LetM be a left A-module category. A (right) relative Serre
functor on M is an endofunctor SAM : M→M together with a family

HomAM (m,n)∨
∼=−−→ HomAM

(
n,SAM(m)

)
(1.41)

of natural isomorphisms for m,n∈M. Similarly, a (left) relative Serre functor SAM comes with
a family

∨HomAM (m,n)
∼=−−→ HomAM

(
SAM(n),m

)
(1.42)

of natural isomorphisms.
According to [FSS, Prop. 4.24] a module category admits relative Serre functors if and only

if it is exact. In that case the left and right relative Serre functors are quasi-inverses of each
other and can be uniquely identified (see also [Sh2, Lemmas 3.3-3.5]) by the formulas

SAM(m) ∼= HomAM(m,−)ra(1A) and SAM(m) ∼= coHomAM(m,−)la(1A) . (1.43)
Proposition 1.13. For M an exact (A,B)-bimodule category, there are coherent natural iso-
morphisms

SAM(a .m) ∼= a∨∨ .SAM(m) and SAM(m/ b) ∼= SAM(m) / b∨∨ (1.44)
which turn the relative Serre functor SAM into a twisted bimodule equivalence. In a similar
manner, its quasi-inverse comes with coherent natural isomorphisms

SAM(a .m) ∼= ∨∨a .SAM(m) and SAM(m/ b) ∼= SAM(m) / ∨∨b (1.45)

making of SAM a twisted bimodule equivalence.
Proof. For left module categories this was already shown in [FSS, Lemma 4.23]. Now for b∈B
we have an adjunction (− / b)a (− / b∨) of A-module functors. It follows that there is a chain

HomAM(n,SAM(m/ b)) ∼= HomAM(m/ b, n)∨ ∼= HomAM(m,n / b∨)∨

∼= HomAM(n / b∨,SAM(m)) ∼= HomAM(n,SAM(m) / b∨∨)
(1.46)

of natural isomorphisms, where m,n∈M and b∈B. Hence the desired family of isomorphisms
is granted by the Yoneda Lemma for internal Hom’s, and by construction these are coherent
with respect to the tensor product.
Remark 1.14. A right module category NB can be seen as a left module category BN over the
monoidal opposite of B. Since right duals in B correspond to left duals in its monoidal opposite
and vice versa, the module structure on the relative Serre functors is twisted according to

SBN (n / b) ∼= SBN (n) / ∨∨b and SBN (n / b) ∼= SBN (n) / b∨∨ (1.47)
for n∈N and b∈B. In the case of a bimodule category ANB, the actions of A are twisted by

SBN (a . n) ∼= ∨∨a .SBN (n) and SBN (a . n) ∼= a∨∨ .SBN (n) . (1.48)
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Proposition 1.15. Given exact A-module categories M and N , for every module functor
F : M→N there is a natural isomorphism

ΛF : SAN ◦F
∼===⇒ F rra ◦SAM (1.49)

of twisted module functors, where F rra is the double right adjoint of F . ΛF is compatible with
composition of module functors, i.e. the diagram

SAL ◦H ◦F (H ◦F )rra ◦SAM

Hrra ◦SAN ◦F Hrra ◦F rra ◦SAM

ΛH◦F

ΛH◦id ∼=

id◦ΛF

(1.50)

commutes for H ∈FunA(N ,L) and F ∈FunA(M,N ). Analogously, in the case of bimodule
categories and a bimodule functor F , the natural isomorphism (1.49) is an isomorphism of
twisted bimodule functors.

Proof. The first part of the statement referring to left modules is shown in [Sh2, Thm. 3.10].
For bimodules AMB and ANB and F : M→N a bimodule functor, we now check that the
isomorphism ΛF in (1.49) is compatible with the B-module functor structures: Consider the
diagram

SAN ◦F (m/ b) SAN (F (m) / b) SAN ◦F (m) / b∨∨

F rra ◦SAM(m/b) F rra
(
SAM(m) / b∨∨

)
F rra ◦SAM(m) / b∨∨

ψ

ΛF ◦ id
ΛF (−) / b

Λ−/b

ΛF (−/b)
ΛF / id

id ◦Λ−/b ψrra

(1.51)

where ψm,b : F (m/ b)
∼=−→F (m) / b denotes the B-module functor structure on F and Λ−/b is

the twisted B-module structure of the relative Serre functor. Both of the triangles in (1.51)
are realizations of diagram (1.50) and are thus commutative. The middle square in (1.51)
commutes owing to naturality of (1.49) with respect to F .

Remark 1.16. An analogous statement as in Proposition 1.15 holds for left relative Serre
functors: Given F ∈FunA(M,N ), there is a natural isomorphism

ΛF : SAN ◦ F
∼===⇒ F lla◦ SAM (1.52)

of twisted module functors, compatible with composition of module functors in a similar manner
as in (1.50), i.e. the diagram

SAL ◦H ◦F (H ◦F )lla ◦SAM

H lla ◦SAN ◦F H lla ◦F lla ◦SAM

ΛH◦F

ΛH◦id ∼=

id◦ΛF

(1.53)
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commutes for H ∈FunA(N ,L) and F ∈FunA(M,N ). The isomorphisms (1.52) are related
with (1.49) by the commutative diagram

SAN ◦F F lla ◦SAM

SAN ◦F ◦SAM ◦S
A
M SAN ◦SAN ◦F lla ◦SAM

ΛF

∼= ∼=

id◦Λ
F lla◦id

(1.54)

considering that the left and right relative Serre functors are mutual quasi-inverses. Likewise
also the statements for bimodule functors hold.

Nakayama functors
Given a finite linear category X , its right exact Nakayama functor is the image of the identity
functor under the Eilenberg-Watts correspondence [FSS, Def. 3.14], i.e. explicitly

Nr
X :=

∫ x∈X
HomX (−, x)∗⊗x . (1.55)

It comes equipped with a family of natural isomorphisms

Nr
X ◦ F

∼===⇒ F rra ◦ Nr
X (1.56)

for every F ∈ Rex(X ,X ) having a right adjoint that is right exact as well. The left exact
analogue of the Nakayama functor is a left adjoint to Nr

X which is explicitly given by

Nl
X :=

∫
x∈X

HomX (x,−)⊗x . (1.57)

In a similar manner as Nr
X , the functor Nl

X is endowed with a family of natural isomorphisms

Nl
X ◦ F

∼===⇒ F lla ◦ Nl
X (1.58)

for every F ∈ Lex(X ,X ) having a left adjoint that is left exact as well.
The Nakayama functors of the k-linear category underlying a finite multitensor category A

[FSS, Lemma 4.10] can be described, with the help of (1.56) and (1.58), as

Nr
A
∼= D−1

A ⊗ (−)∨∨ and Nl
A
∼= DA ⊗ ∨∨(−) (1.59)

where DA := Nl
A(1A) is a distinguished invertible object and D−1

A = Nr
A(1A) [FSS, Lemma 4.11].

Additionally, for every such finite multitensor category A the invertible object DA comes with
a monoidal natural isomorphism

rA : DA ⊗−⊗ D−1
A

∼===⇒ (−)∨∨∨∨ (1.60)

known as the Radford isomorphism. Composing the isomorphisms (1.59) with the Radford
isomorphism we obtain

Nr
A
∼= ∨∨(−)⊗ D−1

A and Nl
A
∼= (−)∨∨ ⊗ DA . (1.61)
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A finite tensor category A is said to be unimodular iff its distinguished invertible object DA is
isomorphic to the monoidal unit 1A.

More generally, given an (A,B)-bimodule categoryM, by means of the isomorphisms (1.56)
and (1.58), the Nakayama functors are endowed with a twisted module functor structure [FSS,
Thm. 4.4-4.5]:

Nl
M(a .m/ b) ∼= a∨∨ .Nl

M(m) / ∨∨b and Nr
M(a .m/ b) ∼= ∨∨a .Nr

M(m) / b∨∨ . (1.62)

The relative Serre functors of AM are related to the Nakayama functors by

DA .Nr
M
∼= SAM and D−1

A .Nl
M
∼= SAM (1.63)

as twisted module functors [FSS, Thm. 4.26]. It can be checked by direct computation that for
a bimodule category these are indeed isomorphisms of twisted bimodule functors.

1.5 The relative Drinfeld center
Given a tensor category A and a full tensor subcategory D ⊂ A, the relative center of A with
respect to D [GNN, Section 2B] is a tensor category ZD(A) whose objects are pairs (a, σ) where
a ∈ A and σ is a half-braiding relative to D, i.e., a natural isomorphism σd,a : d⊗ a

∼=−→ a⊗ d
for d ∈ D, obeying the corresponding hexagon axiom. The morphisms are morphisms in A
commuting with the associated half-braidings. Notice that the Drinfeld center Z(D) is a tensor
subcategory of ZD(A). The relative center ZD(A) comes equipped with a relative braiding with
respect to Z(D), this is a natural isomorphism given for (a, σ) ∈ Z(D) and (d, δ) ∈ ZD(A) by

ω(a,σ),(d,δ) := δa,d : a⊗ d
∼=−→ d⊗ a (1.64)

which obeys the corresponding hexagon axioms. In the case of D = A we have that ZA(A) =
Z(A) is the Drinfeld center of A and the relative braiding corresponds to its braided structure.

Remark 1.17. Let A be a finite tensor category, then the relative center with respect to a
tensor subcategory D has the following properties:

(i) There is a commutative diagram of forgetful functors.

Z(A) ZD(A)

A
(a,σ)7→a

(a,σ)7→(a,σ|D)

(a,σ)7→a
(1.65)

According to [EO, Proposition 3.39] the functor Z(A)→ A is surjective, thus the forgetful
functor F : ZD(A)→ A is surjective as well; this means that every a ∈ A is a subquotient
of an object of the form F (Z) with Z ∈ ZD(A).

(ii) The category A is naturally endowed with the structure of a D�A -module category via

(d� a) . b := d⊗ b⊗ a . (1.66)

There is a distinguished tensor equivalence ZD(A) ' (D �A )∗A between the dual tensor
category of this module and the relative center [GNN, Rem. 2.4 (i)].



20 CHAPTER 1. PRELIMINARIES

(iii) The Frobenius-Perron dimension of the relative center [GNN, Rem. 2.4 (ii)] is given by

FPdim(ZD(A)) = FPdim(D) FPdim(A) .

(iv) The category A is an exact module category over ZD(A), with module structure induced
by the forgetful functor F : ZD(A)→ A : exactness follows from (ii) and [EGNO, Lemma
7.12.7].

The following result shows a relationship between module categories and the Drinfeld center:

Theorem 1.18. [Sch, Theorem 3.3] Let A be an algebra in a finite tensor category A. There
is a braided tensor equivalence

S : Z(A) '−−→Z(ABimodA(A)),

(X, σ) 7−→ (A⊗X, δ) ,
(1.67)

where the object A⊗X becomes an A-bimodule by means of the regular action and the isomor-
phism σX,A and for M ∈ ABimodA(A), the half-braiding δ in Z(ABimodA(A)) is defined by the
composition

M ⊗A A⊗X ∼= M ⊗X σM,X−−−→ X ⊗M ∼= X ⊗ A⊗AM
σ−1
A,X⊗AM−−−−−−→ A⊗X ⊗AM . (1.68)

According to Theorem 1.8, every A-module category is of the formM' ModA(A) and thus
composing (1.67) with the Eilenberg-Watts equivalence (1.9) leads to a braided equivalence
Z(A)'Z(A∗M). Explicitly it can be given, without making a choice of an algebra in A, as
[Sh3, Thm. 3.13]

Σ : Z(A) '−−→Z(A∗M ),

(a, σ) 7−→ (a .−, γ) ,
(1.69)

where σ endows a .− with an A-module functor structure, and for F ∈A∗M the half-braiding
γF,a.− : a .F

∼=−→F (a .−) is given by the module functor structure of F .

1.6 Categorical Morita equivalence
In classical algebra two rings are Morita equivalent iff their categories of modules are equivalent
as abelian categories. This notion finds a categorical analogue in the setting of finite tensor
categories. The following more technical definition is in practice easier to check.

Definition 1.19. [EGNO, Def. 7.12.17] Two tensor categories A and B are said to be cate-
gorically Morita equivalent iff there exists an A-module category M together with a tensor
equivalence B'A∗M.

Example 1.20.

• Let G be a finite group, then the tensor category of G-graded vector spaces VecG and the
tensor category of group representations Rep(G) are categorically Morita equivalent.

• More generally, given a finite dimensional Hopf algebra H, the tensor categories comod-H
and H-mod of comodules and modules over H are categorically Morita equivalent.



1.6. CATEGORICAL MORITA EQUIVALENCE 21

Remark 1.21. In the situation of Definition 1.19, the module category M is necessarily:

(i) Indecomposable: Follows from the fact that the identity functor of M has to be simple
in A∗M [EO, Lemma 3.24].

(ii) Exact: Rigidity of A∗M implies that every endofunctor of M is exact, which means that
the A-module category M is exact [EO, Proposition 3.16].

Definition 1.19 indeed yields an equivalence relation on finite tensor categories:

(i) Reflexivity: Let A be a finite tensor category and consider the regular module category
AA. Then the tensor functor

A '−−→ EndA(A) = A∗A ,

a 7−→ −⊗ a
(1.70)

is a tensor equivalence [EGNO, Ex. 7.12.3].

(ii) Symmetry: Let M be an exact A-module category. Regarding M as a left module
category over A∗M, one can consider the double dual tensor category (A∗M)∗M. There is a
canonical tensor equivalence [EGNO, Thm. 7.12.11]

can : A '−−→EndA∗M(M) = (A∗M)∗M ,

a 7−→ a .− ,
(1.71)

where the A∗M-module functor structure on the functor a .− is given for F ∈A∗M and
m∈M by the A-module functor structure of F : a .F (m)

∼=−→F (a .m).

(iii) Transitivity is proven in [EGNO, Prop. 7.12.18].

The modules of a finite tensor category form a 2-category Modex(A) with objects exact left
A-module categories, 1-morphisms module functors and 2-morphisms module natural transfor-
mations. As expected Morita equivalent finite tensor categories have equivalent 2-categories of
exact modules: Given an exact A-module category M, the assignment

Modex (A) '−−→Modex
(
A∗M

)
,

N 7−→ FunA (M,N )
(1.72)

is an equivalence of 2-categories [EGNO, Thm. 7.12.16]. The converse also holds and seems to
be well-known to experts; but it is not easy to find in the literature and thus a proof is here
included.

Theorem 1.22. Two finite tensor categories A and B are Morita equivalent if and only if
Modex(A) and Modex(B) are equivalent as 2-categories.

Proof. One implication follows from [EGNO, Thm. 7.12.16] as previously explained. To prove
the converse, consider an equivalence of 2-categories

Φ : Modex(B) '−−→Modex(A) . (1.73)
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Let M be the image of the regular module category BB under Φ. Since Φ is a 2-equivalence,
at the level of Hom-categories, it comes with an equivalence

ΦB,B : B∗B = FunB(B,B) '−→ FunA(M,M) = A∗M (1.74)

of categories. Additionally, amongst the data of the 2-functor Φ there is a natural isomorphism

FunB(B,B)×FunB(B,B) FunB(B,B)

FunA(M,M)×FunA(M,M) FunA(M,M)

Φ×Φ

◦

γ Φ

◦

(1.75)

which endows ΦB,B with a tensor structure. Pre-composing (1.74) with (1.70) we obtain the
desired tensor equivalence B ' A∗M.

The characterization of Morita equivalence given in Theorem 1.22 is more symmetric than
Definition 1.19 and thus clearly shows that, indeed, we are dealing with an equivalence relation
on finite tensor categories. There is a further characterization: The Drinfeld center completely
captures the notion of Morita equivalence.

Theorem 1.23. [EGNO, Thm. 8.12.3] Two finite tensor categories A and B are Morita equiv-
alent if and only if their Drinfeld centers Z(A) and Z(B) are equivalent as braided tensor
categories.



Chapter 2

Categorical Morita contexts

In the theory of rings or k-algebras the notion of Morita equivalence finds a generalization in
the structure of a Morita context or pre-equivalence data [Ba, Ch.2 §3]. These data involving
two (not necessarily invertible) bimodules between two rings form a category with two objects.
We now study the analogue of this notion for categorical Morita equivalence of finite tensor
categories.

Definition 2.1.
(i) A (categorical) Morita context consists of the following data:

1. Two finite (multi-)tensor categories A and B.

2. Two bimodule categories AMB and BNA.

3. Two bimodule functors

	 : M�BN −→ A and � : N �AM−→ B . (2.1)

4. Two bimodule natural isomorphisms α and β of the form

(M�BN )�AM M�B (N�AM)

A�AM M�B B

M

'

	� id id��

. /

α (2.2)

and
(N�AM)�BN N �A (M�BN )

B�BN N �AA

N

'

�� id id�	

. /

β
(2.3)

23
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These data are required to fulfill the condition that the pentagon diagrams

(m1	n1)⊗A(m2	n2)

((m1	n1) .m2)	n2 m1	 (n1 / (m2	n2))

(m1 / (n1�m2))	n2 m1	 ((n1�m2) . n2)

φm1	n1,m2�n2
φ′
m1�n1,m2	n2

id	 βn1,m2,n2αm1,n1,m2 	 id

∼=

(2.4)

and

(n1�m1)⊗B (n2�m2)

((n1�m1) . n2)�m2 n1 � (m1 / (n2�m2))

(n1 / (m1	n2))�m2 n1 � ((m1	n2) .m2)

ψn1�m1,n2�m2
ψ′
n1�m1,n2�m2

id�αm1,n2,m2βn1,m1,n2 � id

∼=

(2.5)

commute for all m1,m2 ∈M and n1, n2 ∈N , where φ and φ′ are the bimodule structures of the
functor 	 and ψ and ψ′ are the bimodule structures of � .
(ii) We say that a Morita context is strict iff A and B are strict tensor categories,M and N are
strict bimodules, 	 and � have strict bimodule functor structures and α and β are identities.
(iii) A Morita context is said to be strong iff 	 and � are equivalences. In that case, the
bimodule AMB is invertible and BNA is its inverse.

Remark 2.2.

(i) Via the equivalence (1.11) coming from the universal property of the relative Deligne
product, the bimodule functors (2.1) in a Morita context correspond to bimodule balanced
functors

	 : M×N −→ A and � : N ×M −→ B . (2.6)

As a consequence, a Morita context can be equivalently defined by replacing (2.2) and
(2.3) with bimodule balanced natural isomorphisms

M×N ×M M×B

A×M M

id×�

	×id /
α

.

and
N ×M×N N ×A

B×N N

id×	

�×id /
β

.

(2.7)

obeying relations analogous to (2.4) and (2.5).
(ii) The four categories in a Morita context interact with each other via the tensor products

of A and B and their actions on the bimodule categories M and N . Accordingly the
functors 	 and � play the role of mixed products between the categories M and N .
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2.1 The bicategory of a Morita context
In the spirit of [Mü, Rem. 3.18] the data of a Morita context form a bicategory. The construction
is as follows. Given a Morita context (A,B,M,N ,	,�, α, β), define a bicategoryM consisting
of two objects {+,−} and Hom-categories

M(+,+) := A , M(−,+) :=M ,

M(−,−) := B , M(+,−) := N .
(2.8)

Pictorially the bicategory M can be portrayed by

+ −A

N

B

M

. (2.9)

The horizontal composition

◦i,j,k : M(j,k)×M(i, j) −→M(i,k) for i, j,k∈{+,−} (2.10)

in the bicategory M is given by the eight functors

⊗A : A×A → A , ⊗B : B×B → B ,
.M : A×M→M , .N : B×N → N ,

/N : N ×A → N , /M : M×B →M ,

	 : M×N → A , � : N ×M→ B ,

(2.11)

i.e. by the tensor products, module actions and mixed products in the Morita context.
The associativity constraints in M are natural isomorphisms

M(j,k)×M(i, j)×M(h, i) M(j,k)×M(h, j)

M(i,k)×M(h, i) M(h,k)

id×◦h,i,j

◦i,j,k×id ◦h,j,kγh,i,j,k

◦h,i,k

(2.12)

for each quadruple of objects h, i, j,k∈{+,−}. We require these sixteen constraints to be the
following:

• The two associativity constraints from the tensor products of A and B.
• The six module associativity constraints from the actions on the bimodules M and N .
• Four constraints coming from the bimodule functor structures of 	 and � .
• The two balancings of 	 and � .
• The coherence data of the Morita context, i.e. the two isomorphisms α and β.

These data provide indeed a bicategory:
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Theorem 2.3. The data of a Morita context form a bicategory M with two objects.

Proof. Clearly, the data given above are those needed for a bicategory. Thus it remains to
check that the associators defined for M obey the relevant axiom in a bicategory, i.e. that the
diagram

(fk,l ◦ fj,k) ◦ (fi,j ◦ fh,i)

((fk,l ◦ fj,k) ◦ fi,j) ◦ fh,i fk,l ◦ (fj,k ◦ (fi,j ◦ fh,i))

(fk,l ◦ (fj,k ◦ fi,j)) ◦ fh,i fk,l ◦ ((fj,k ◦ fi,j) ◦ fh,i)

γh,i,j,l γh,k,j,l

γi,j,k,l◦ id id ◦ γh,i,j,k

γh,i,k,l

(2.13)

commutes for all h, i, j,k, l∈{+,−} and every quadruple of 1-morphisms fk,l ∈M(k, l), fj,k ∈M(j,k),
fi,j ∈M(i, j) and fh,i ∈M(h, i). It can be verified that these conditions correspond to the fol-
lowing thirty-two diagrams:

1. Two pentagons obeyed by the associativity constraints of A and B.
2. Four pentagons fulfilled by the left and right module constraints of M and N .
3. Four pentagons fulfilled by the middle associativity constraints of the bimodulesM and N .
4. Six compatibility conditions on the bimodule functor structures of 	 and � .
5. The two diagrams that describe the conditions on the balancings of 	 and � .
6. Four conditions corresponding to the compatibility between the bimodule structures and

the balancings of 	 and � .
7. Four compatibility conditions characterizing α and β as bimodule natural transformations.
8. Four conditions defining α and β as balanced natural transformations.
9. The diagrams (2.4) and (2.5), which exhibit the compatibility between the coherence data
α and β of the Morita context.

Thus all the conditions are satisfied by construction.

Remark 2.4.

(i) The notion of a Morita context as a bicategory studied in [Mü] is an instance of Theorem
2.3 where a (Frobenius) algebra is chosen to realize the bimodules in the Morita context.

(ii) Theorem 2.3 justifies Definition 2.1. Coherence results for bicategories, such as Corollary
2.7 of [Gu], imply that all paths between any two possible bracketings of a product of
multiple objects in the Morita context through associativity constraints are the same
isomorphism.

As Theorem 2.3 indicates, the bicategorical setting emerges as the natural framework for
studying Morita contexts. Let us recall a few pertinent notions from this setting. A pseudo-
functor U : F−→G between bicategories consists of assignments at the level of objects and at the
level of Hom-categories together with invertible 2-morphisms that witness their compatibility
with horizontal composition and which obey a pentagon axiom. A pseudo-natural equivalence
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η : U '==⇒V between pseudo-functors amounts to an invertible 1-morphism ηx : U(x) '−→V (x)
for every object x∈F and an invertible 2-morphism ηf : ηy ◦U(f) '==⇒V (f) ◦ ηx for every 1-
morphism f : x→ y, respecting horizontal composition. Complete definitions can for instance
be found in [Sc2, App. A.2].

Definition 2.5. An equivalence of Morita contexts is a pseudo-equivalence between their bi-
categories.

Corollary 2.6 (Coherence for Morita contexts). Every Morita context is equivalent to a strict
Morita context.

Proof. Using that every bicategory is equivalent to a strict 2-category [Gu, Cor. 2.7], this follows
directly from Theorem 2.3.

2.2 The Morita context derived from an exact module
category

Let A be a finite tensor category andM an exact A-module. There is a strong Morita context
associated to AM. To see this, first recall that the category A∗M of module endofunctors has
the structure of a tensor category and that the evaluation of a functor on an object turns M
into an exact A∗M-module category. More specifically, herebyM becomes an (A,A∗M)-bimodule
category.

As described in (1.7), the category FunA(M,A) of module functors is naturally endowed
with the structure of an (A∗M,A)-bimodule category, via the actions

F �H := H ◦F and H � a := H(−)⊗ a = (−⊗ a) ◦H (2.14)

for H ∈FunA(M,A), F ∈A∗M and a∈A.
Having obtained two tensor categories and two bimodules categories from the exact A-

module M, we can proceed to define the mixed products in the Morita context:

Definition 2.7. The A∗M-valued mixed product of M is the functor

� : FunA(M,A)×M −→ A∗M ,

(H,m) 7−→ H(−) .m = (− .m) ◦H ,
(2.15)

which is a special case of (1.13). The A-valued mixed product of M is the functor given by
evaluation

� : M× FunA(M,A) −→ A ,

(m,H) 7−→ H(m) .
(2.16)

Lemma 2.8. The mixed product � is an A-balanced A∗M-bimodule functor, and the mixed
product � is an A∗M-balanced A-bimodule functor.

Proof. First notice that the functor � comes with an A-balancing given by the module asso-
ciativity constraints of AM:

(H � a) �m = (H(−)⊗ a) .m
∼=−−→ H(−) . (a .m) = H � (a .m) . (2.17)
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Furthermore, the identities

F . (H �m) = (− .m) ◦H ◦ F = (F �H) �m (2.18)

and the isomorphisms

(H�m) /F = F (H(−) .m)
∼=−−→ H(−) .F (m) = H �F (m) (2.19)

that come from the module functor structure of F endow � with the structure of an A∗M-
bimodule functor. These are compatible with the balancing because the module functor struc-
ture of F is compatible with the associativity constraints of AM.
Similarly, for the functor � the identity morphisms (m/F )�H =H ◦F (m) =m� (F �H)
provide an A∗M-balancing. Moreover, there is a natural A-bimodule functor structure on �,
namely

a⊗ (m�H) = a⊗H(m) ∼= H(a .m) = (a .m)�H (2.20)
and

(m�H)⊗ a = H(m)⊗ a = m� (H � a) (2.21)
given by the module functor structure on H and the identity morphisms, respectively.

Theorem 2.9. Let M be an exact module category over a finite tensor category A. Then the
data (

A, A∗M,M, FunA(M,A), � , �
)

(2.22)
form a Morita context.

Proof. Notice that the diagram

M×FunA(M,A)×M M×A∗M

A×M M

id×�

�×id /

.

(2.23)

commutes strictly owing to (m�H) . n=H(m) . n=m/ (H �n), and thus the identities serve
as the bimodule natural isomorphism (2.2). On the other hand, the diagram

FunA(M,A)×M×FunA(M,A) FunA(M,A)×A

A∗M×FunA(M,A) FunA(M,A)

id×�

�×id �

�

(2.24)

commutes up to the isomorphism

(H1 �m) �H2 = H2(H1(−) .m) ∼= H1(−)⊗H2(m) = H1 � (m�H2) (2.25)

that comes from the module functor structure of H2. One can directly verify that the associated
conditions (2.4) and (2.5) are satisfied.

Remark 2.10. As we will see in Proposition 3.9, the Morita context derived from an exact
module category M is in fact a strong Morita context.
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2.3 Characterization of strong Morita contexts
Exact module categories provide examples of strong Morita contexts, as stated in Remark 2.10.
It turns out that, conversely, every strong Morita context in the sense of Definition 2.1(iii) is
equivalent to the Morita context of an exact module category.

Theorem 2.11. Let A and B be finite tensor categories and AMB and BNA be finite bimodule
categories. Consider a strong Morita context (A,B,M,N , 	 , � , α, β). Then the following
statements hold:

(i) M and N are exact indecomposable bimodule categories.

(ii) The assignments

N '−→ FunA(M,A) and N '−→ FunB(M,B)
n 7−→ −	n n 7−→ n�−

(2.26)

are equivalences of (B,A)-bimodule categories.

(iii) The assignments

M '−→ FunB(N ,B) and M '−→ FunA(N ,A)
m 7−→ −�m m 7−→ m	−

(2.27)

are equivalences of (A,B)-bimodule categories.

(iv) The assignments

RM : B '−→ FunA(M,M) and LN : B '−→ FunA(N ,N )
b 7−→ − / b b 7−→ b .−

(2.28)

are equivalences of tensor categories and of B-bimodule categories.

(v) The assignments

RN : A '−→ FunB(N ,N ) and LM : A '−→ FunB(M,M)
a 7−→ − / a a 7−→ a .−

(2.29)

are equivalences of tensor categories and of A-bimodule categories.

(vi) The commutativity of the diagrams

M×N A

M×FunA(M,A) A

	

(m,n)7→(m,−	n) idA

�

and

N ×M B

FunA(M,A)×M A∗M

�

(n,m)7→(−	n,m) RM

�

(2.30)

is witnessed by the identity and by α−,n,m : − / (n�m)
∼=−→ (−	n) .m, respectively.
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Proof. First notice that (i) follows from (iv) and (v). For instance, assuming that RM is an
equivalence, rigidity of B implies that every A-module endofunctor ofM is exact and thus AM
is an exact module [EGNO, Prop. 7.9.7(2)]. Also, since the monoidal unit of B is simple, then
M is an indecomposable A-module. To prove the remaining statements we consider categories
of right exact module functors. Once the statements are checked, exactness of the bimodules
M and N will follow, and thus that every module functor is exact.
We now prove (ii). That 	 : M×N →A is a balanced bimodule functor implies that −	n has
an A-module structure and that the functor

N −→ RexA(M,A)
n 7−→ −	n

(2.31)

is endowed with a (B,A)-bimodule functor structure. On the other hand, we have an equiva-
lence � : N �AM'B, and in view of Lemma 1.3 there is an object colimi∈I ni�mi ∈N �AM
such that 1B∼= � (colimi∈I ni�mi) = colimi∈I ni�mi. Then the functor

RexA(M,A) −→ N
H 7−→ colimi∈I ni/H(mi)

(2.32)

defines a quasi-inverse to the bimodule functor (2.31). Indeed, given n∈N there is a natural
isomorphism

colimi∈I ni/(mi	n) β−−→∼= colimi∈I (ni�mi) . n ∼= 1B . n = n . (2.33)

Similarly, for a module functor H ∈RexA(M,A) and an object n ∈ N we have a natural
isomorphism

colimi∈I n	 (ni/H(mi)) ∼= colimi∈I (n	ni)⊗H(mi) ∼= colimi∈I H((n	ni) .mi)
α−−→∼= colimi∈I H(n / (ni�mi)) ∼= H(n/1B) = H(n) ,

(2.34)

where the first isomorphism is the right A-module structure on 	, the second isomorphism is
the module structure of H, and the last isomorphism after α expresses the fact that the colimit
is preserved since H is right exact, the action functor is exact and � is an equivalence. The
proof for the functor

N −→ RexB(M,B)
n 7−→ n�−

(2.35)

is obtained by merely exchanging the roles of 	 and � . Similarly, the assertion (iii) follows
by symmetry.
Next we prove (iv). We have a B-bimodule equivalence

φ : B �−1

−−−→ N �AM
(2.31)−−−−→ RexA(M,A)�AM

(1.13)−−−−→ RexA(M,M) . (2.36)

We write φ(1B) =: I and follow the argument given in [ENOM, Prop. 4.2]. The bimodule struc-
ture on φ provides natural isomorphisms

φ(b) ∼= b� I = I ◦ (− / b) and φ(b) ∼= I � b = (− / b) ◦ I (2.37)
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for b∈B. Since φ is an equivalence, there exists an object B ∈B such that idM∼= I ◦ (− /B) ∼=
(− /B) ◦ I, which means that I is invertible and therefore the endofunctor (−◦ I) : RexA(M,M)
→ RexA(M,M) is an equivalence. From (2.37) we have in particular φ∼= (−◦ I) ◦RM, and
thus RM must be an equivalence as well. The same type of argument can be applied to the
bimodule equivalence

B �−1

−−−→ N �AM
(2.27)−−−−→ N �ARexA(N ,A) (1.14)−−−−→ RexA(N ,N ) , (2.38)

leading to the second part of the statement. And similarly assertion (v) follows by symmetry.
Finally, (vi) holds by direct calculation.

Remark 2.12. Theorem 2.11 implies in particular that every strong Morita context is equiv-
alent to the Morita context of an exact module category. More explicitly, together with the
isomorphisms (2.30) the equivalencesN '−−→FunA(M,A) and RM : B '−−→A∗M furnish an equiv-
alence

(A,B,M,N , 	 , � ) '−−→
(
A, A∗M,M, FunA(M,A), �, �

)
(2.39)

between Morita contexts, i.e. a pseudo-equivalence between the associated bicategories.
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Chapter 3

Dualities in a Morita context

There is a notion of dualities for a 1-morphism in a bicategory F, see for instance [Sc2, App. A.3]:
A right dual (or right adjoint ) to a 1-morphism a∈F(x, y) consists of a 1-morphism a∨ ∈F(y, x)
and 2-morphisms 1y⇒ a ◦ a∨ and a∨ ◦ a⇒1x that fulfill the appropriate snake relations; left
duals are defined similarly. A bicategory for which every 1-morphism has both duals is said to
be a bicategory with dualities. It is worth noting that the existence of duals is a property, rather
than extra structure, of a bicategory. In the present section we explore this notion of dualities
for the bicategory M described in Theorem 2.3, that is associated to the Morita context given
by an exact module category, cf. Theorem 2.9.

3.1 Existence of dualities in the bicategory M
For M an exact module category over a finite tensor category A we consider its (strong)
Morita context

(
A, A∗M,M, FunA(M,A), �, �

)
. Since the tensor categories A and A∗M are

rigid, their objects come with dualities. Also, sinceM is exact, an object H ∈FunA(M,A) has
left and right adjoints. We now show that in the whole Morita context every object is equipped
with dualities, in such a way that the associated bicategory M is a bicategory with dualities.

Definition 3.1. Let M be an exact module category over a finite tensor category A and(
A, A∗M,M, FunA(M,A), �, �

)
the associated Morita context.

(i) The right dual of an object m∈M is the triple (m∨, evm, coevm) consisting of the following
data: First, the A-module functor

m∨ := HomAM(m,−) ∈ FunA(M,A) . (3.1)

Second, the evaluation morphisms with which the internal Hom comes naturally endowed,
which form a module natural transformation

evm : m∨�m = HomM(m,−) .m ==⇒ idM , (3.2)

defined as the counit of the adjunction (−.m)aHomM(m,−). And third, the coevaluation
morphism

coevm : 1A −→ HomM(m,m) = m�m∨, (3.3)
which is defined as the component of the unit of the adjunction (−.m)aHomM(m,−) corre-
sponding to 1A.

33
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(ii) The left dual of an object m∈M is the triple (∨m, evm, coevm) consisting of the following
data: First, the A-module functor

∨m := coHomAM(m,−) ∈ FunA(M,A) . (3.4)

Second, the evaluation morphism

evm : m� ∨m = coHomM(m,m) −→ 1A , (3.5)

defined as the component of the counit of the adjunction coHomM(m,−)a (−.m) that corre-
sponds to 1A. And third, the coevaluation morphism

coevm : idM ==⇒ coHomM(m,−) .m = ∨m�m, (3.6)

defined as the unit of the adjunction coHomM(m,−)a (−.m).
(iii) The right dual of an object H ∈FunA(M,A) is the triple (H∨, evm, coevm) consisting of:
The object

H∨ := Hra(1A) ∈M , (3.7)
together with an evaluation morphism

evH : H∨�H = H ◦Hra(1A) −→ 1A (3.8)

given by the component of the counit of the adjunction H aHra corresponding to 1A, and with
a coevaluation morphism

coevH : idM ==⇒ Hra ◦H ∼= H(−) .Hra(1A) = H �H∨ (3.9)

given by the unit of the adjunction H aHra.
(iv) The left dual of an object H ∈FunA(M,A) is the triple (∨H, ẽvm, c̃oevm) consisting of:
The object

∨H := H la(1A) ∈M (3.10)
together with an evaluation morphism

ẽvH : H � ∨H = H(−) .H la(1A) ∼= H la ◦H ==⇒ idM (3.11)

provided by the adjunction H la aH and with a coevaluation morphism

c̃oevH : 1A −→ H ◦H la(1A) = ∨H �H (3.12)

being the component of the unit of the adjunction H la aH corresponding to 1A.

Since they are the unit and counit of an adjunction, the morphisms (3.2) and (3.3), respec-
tively (3.5) and (3.6), obey the snake relations for a right and left duality. For the same reason,
the morphisms (3.8) and (3.9), respectively (3.11) and (3.12), obey the relevant snake relations
as well. In summary, the left and right duals introduced in Definition 3.1 indeed provide proper
dualities, so that we have determined dualities for all 1-morphisms in the bicategory M.

We have thus established:

Theorem 3.2. Let A be a finite tensor category and M be an exact A-module category. The
associated bicategory M is a bicategory with dualities.
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3.2 Properties of duals in a Morita context
Some further properties familiar from the duals in tensor categories are again fulfilled by duals
in a Morita context. For instance, an object serves as left (right) dual of its right (left) dual,
and the dual of a product is the product of the duals in the reversed order up to isomorphism.

Proposition 3.3. There are natural isomorphisms

(i) ∨(m∨) ∼= m ∼= (∨m)∨ , (v) (F �H)∨ ∼= H∨ /F∨ ,

(ii) ∨(H∨) ∼= H ∼= (∨H)∨ , (vi) (H � a)∨ ∼= a∨ .H∨ ,

(iii) (a .m)∨ ∼= m∨ � a∨ , (vii) (m�H)∨ ∼= H∨�m∨ ,

(iv) (m/F )∨ ∼= F∨ �m∨ , (viii) (H �m)∨ ∼= m∨�H∨

(3.13)

for a∈A, m∈M, H ∈FunA(M,A) and F ∈A∗M. Analogous relations are valid for left duals.

Proof. All these isomorphisms follow immediately from the definitions and Theorem 3.2. We
provide nonetheless the proof for some of the statements. For instance, the definition of duals
directly implies (i):

∨(m∨) = HomAM(m,−)la(1A) = 1A .m ∼= m. (3.14)
Similarly, (ii) follows with the help of Lemma 1.6:

(∨H)∨ = HomAM(H la(1A),−) ∼= HomAA(1A, H(−)) = H(−)⊗1A∨ ∼= H . (3.15)

The isomorphism in (iii) corresponds to the module functor structure on the internal Hom given
by (1.19). Finally, (viii) comes from the composition

(H �m)∨ = [(− .m) ◦H]ra = Hra ◦ HomAM(m,−)
∼= Hra

(
HomAM(m,−)⊗1A

)
∼= HomAM(m,−) .Hra(1A) = m∨�H∨,

(3.16)

where we first identify the adjoint of a composite with the composition of the adjoints in
reversed order, and where the last isomorphism corresponds to the module functor structure of
Hra.

Dualities in a tensor category provide an equivalence between its opposite category and its
monoidal opposite. Analogously, the duals we just defined for a module category exhibit how
the bimodule category FunA(M,A) plays the role of an opposite to M.

Proposition 3.4. Let M be an exact A-module category. The dualities on the bicategory M
induce equivalences

(−)∨ : M '−−→FunA(M,A)# and ∨(−) : M '−−→#FunA(M,A) (3.17)

of (A,A∗M)-bimodule categories, and equivalences

(−)∨ : FunA(M,A) '−−→M# and ∨(−) : FunA(M,A) '−−→#M (3.18)

of (A∗M,A)-bimodule categories.
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Proof. Proposition 3.3 shows that right and left duals are mutual quasi-inverses, and the iso-
morphisms from Proposition 3.3(iii) and 3.3(iv) endow the duality functor with a bimodule
structure. The statements for the remaining equivalences follow by analogous reasoning.

There are further relations involving the dualities which constitute a duality calculus in the
Morita context, a powerful tool for performing calculations such as the computation of relative
Serre functors.

Remark 3.5.

(i) Recall that for the regular module AA we have

HomAA(a, b) = b⊗ a∨ and coHomAA(a, b) = b⊗ ∨a . (3.19)

for a, b ∈ A. Similarly it follows from the definition of the mixed products and of the
dualities that

HomAM(m,n) = n�m∨ and coHomAM(m,n) = n� ∨m. (3.20)

for m,n ∈M.

(ii) Acting with dualities on the bimodules in the Morita context leads to the adjunctions

(a∨ .−) a (a .−) a (∨a .−) and (− /F la) a (− /F ) a (− /F ra) (3.21)

as well as

(F ra �−) a (F �−) a (F la �−) and (−� ∨a) a (−� a) a (−� a∨) (3.22)

for a∈A and F ∈A∗M.

It turns out that the relations given in Remark 3.5 can be extended to the entire Morita
context:

Proposition 3.6. There are natural isomorphisms

(i) HomM(a .m, n) ∼= HomA(a, n�m∨) ,
(ii) HomM(n, a .m) ∼= HomA(n� ∨m, a) ,

(iii) HomM(m/F, n) ∼= HomA∗M(F, ∨m�n) ,
(iv) HomM(n,m/F ) ∼= HomA∗M(m∨�n, F ) ,
(v) HomFunA(M,A)(F �H1, H2) ∼= HomA∗M(F,H2 �H∨1 ) ,

(vi) HomFunA(M,A)(H2, F �H1) ∼= HomA∗M(H2 � ∨H1, F ) ,
(vii) HomFunA(M,A)(H1 � a,H2) ∼= HomA(a, ∨H1�H2) ,

(viii) HomFunA(M,A)(H2, H1 � a) ∼= HomA(H∨1 �H2, a)

(3.23)

for a∈A, m,n∈M, H1, H2 ∈FunA(M,A) and F ∈A∗M.
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Proof. (i) and (ii) follow directly from the definition of the duals and the defining properties of
the internal Hom and coHom. The bijection

HomM(F (m), n) −→ Natmod(F, coHom(m,−) . n) (3.24)

in (iii) is an arrow assigning to f : F (m)→n a module natural transformation whose component
at l∈M is given by the composition

F (l) F (coev)−−−−−→ F (coHom(m, l) .m) ∼= coHom(m, l) .F (m) id . f−−−−→ coHom(m, l) . n . (3.25)

The inverse of (3.24) is given by the assignment

η 7−→ F (m) ηm−−−→ coHom(m,m) . n evm . idn−−−−−−→ n (3.26)

for η ∈Natmod(F, coHom(m,−) . n) = HomA∗M(F, ∨m�n). The bijection in (iv) is defined in a
similar fashion. To prove (v) consider the bijection

Natmod(H1 ◦F,H2) −→ Natmod(F,Hra
1 ◦H2) (3.27)

which assigns to η : H1 ◦F =⇒H2 the natural transformation

F ==⇒ Hra
1 ◦H1 ◦F

id◦ η====⇒ Hra
1 ◦H2 . (3.28)

Given γ ∈Natmod(F,Hra
1 ◦H2) = HomA∗M(F,H2 �H∨1 ) the assignment

γ 7−→ H1 ◦F
id◦ γ====⇒ H1 ◦Hra

1 ◦H2 ==⇒ H2 (3.29)

serves as inverse of (3.27). The isomorphism (vi) is defined analogously. To obtain (vii),
consider the function

Natmod ((−⊗ a) ◦H1, H2) −→ HomA
(
a, H2(H la

1 (1A))
)

η 7−→ a −→ (−⊗ a) ◦H1 ◦H la
1 (1A)

η
Hla

1 (1A)
−−−−−→ H2(H la

1 (1A)) ,
(3.30)

which has as inverse the arrow that assigns to f : a→H2(H la
1 (1A)) the composition

(−⊗ a) ◦H1
(−⊗f) ◦ id=======⇒

(
−⊗H2(H la

1 (1A))
)
◦H1 ∼= H2 ◦H la

1 ◦H1 =⇒ H2 , (3.31)

where the isomorphism is the module structure of H2 ◦H la
1 and the last arrow is the counit of

the adjunction H la
1 aH1.

Remark 3.7. Notice that the adjunctions in Proposition 3.6 describe the internal Homs and
coHoms of the bimodule categories in the Morita context in terms of the products and dualities:
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(i) HomAM(m,n) = n�m∨,

(ii) coHomAM(m,n) = n� ∨m,

(iii) HomA
∗
M
M (m,n) = ∨m�n = coHomAM(m,−) . n ,

(iv) coHomA
∗
M
M (m,n) = m∨�n = HomAM(m,−) . n ,

(v) HomA
∗
M

FunA(M,A)(H1, H2) = H2 �H∨1 = Hra
1 ◦H2 ,

(vi) coHomA
∗
M

FunA(M,A)(H1, H2) = H2 � ∨H1 = H la
1 ◦H2 ,

(vii) HomAFunA(M,A)(H1, H2) = ∨H1�H2 = H2 ◦H la
1 (1A) ,

(viii) coHomAFunA(M,A)(H1, H2) = H∨1 �H2 = H2 ◦Hra
1 (1A) .

(3.32)

In particular the formulas (iii) and (iv) relate the internal Homs and coHoms of the module
categories AM and A∗MM.

Lemma 3.8. Let M be an exact module category over a finite tensor category A. Then the
assignment

FunA(M,A) −→ FunA∗M (M, A∗M) ,
H 7−→ H �−

(3.33)

is an equivalence of (A∗M,A)-bimodule categories.

Proof. According to Lemma 2.8 the functor � is a balanced bimodule functor. It follows that
H�− is an A∗M-module functor and that the functor (3.33) has an (A∗M,A)-bimodule structure.
The following functor is a quasi-inverse to (3.33):

FunA∗M (M, A∗M) −→ FunA(M,A) ,
K 7−→ ∨[K la(idM)] = coHomAM(K la(idM),−)

(3.34)

Indeed, given H ∈FunA(M,A) we have

∨[(H�−)la(idM)] ∼= ∨(H∨/ idM) ∼= H , (3.35)

where the first isomorphism comes from Proposition 3.6(iii) and the second isomorphism from
Proposition 3.3(ii). Conversely, for K ∈FunA∗M (M, A∗M) and n∈M we have the chain

∨[K la(idM)] �n = coHomAM(K la(idM),−) . n ∼= HomA
∗
M
M (K la(idM), n)

∼= HomA
∗
M
A∗M

(idM, K(n)) ∼= K(n)
(3.36)

of natural isomorphisms, where the first isomorphism is from Remark 3.7(iii), while the second
is Lemma 1.6.

Proposition 3.9. Let M be an exact module category over a finite tensor category A. Then
the Morita context (A, A∗M,M, FunA(M,A), �, �) from Theorem 2.9 is strong.
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Proof. By invoking Proposition 1.4 it follows immediately that the mixed product � descends
to an equivalence � : FunA(M,A)�AM−→A∗M. Thus it remains to verify that � descends to
an equivalence � : M�B FunA(M,A)−→A, with B :=A∗M, as well. To see this, consider the
canonical equivalence [EGNO, Thm. 7.12.11]

can : A '−−−→ (A∗M)∗M , a 7→ a .− (3.37)

and the bimodule equivalence from Lemma 3.8. The diagram

M�B FunA(M,A) A

M�B FunB(M,B) FunB(M,M)

(3.33)

�

can

(1.14)

(3.38)

commutes strictly: we have m/ (H �n) =H(m) . n= (m�H) . n for n∈M. Since all other
functors in the diagram are equivalences, it follows that � is an equivalence, too.
Remark 3.10. Above we have focused our attention on Morita contexts associated to exact
module categories. The reason for this is the following: According to Proposition 3.9 the Morita
context derived from an exact module category, as described in Theorem 2.9, is strong. In view
of Theorem 2.11, every strong Morita context is of this type. As a consequence, Theorem 3.2
and related statements, valid for the Morita context of an exact module category, also hold for
any arbitrary strong Morita context.

3.3 Double duals and relative Serre functors
Given a tensor category A, the relative Serre functor of the regular module AA corresponds to
the double right dual, SAA(a)∼= a∨∨. Similarly, The double duals of objects in the Morita context
of an exact module AM admit the following description involving the relative Serre functors:
Proposition 3.11. ForM an exact module category over a finite tensor category A, let m∈M
and H ∈FunA(M,A). We have isomorphisms

(i) m∨∨ ∼= SAM(m) , (iii) H∨∨ ∼= Hrra ∼= SA
∗
M

FunA(M,A)(H),

(ii) ∨∨m ∼= SAM(m) , (iv) ∨∨H ∼= H lla ∼= SAFunA(M,A)(H).
(3.39)

Proof. Combining the realization (1.43) of the relative Serre functor with the description of
right duals in Definition 3.1(i) and (iii) we directly get

SAM(m) ∼= HomAM(m,−)ra(1A) = m∨∨. (3.40)

Similarly for a module functor we have

H∨∨ = HomAM(Hra(1A),−) ∼= (− .Hra(1A))ra ∼= Hrra. (3.41)

The second isomorphism in (iii) follows as

SA
∗
M

FunA(M,A)(H) ∼= HomA
∗
M

FunA(M,A)(H,−)ra(idM) ∼= (−�H∨)ra(idM) ∼= idM �H∨∨ (3.42)

with the help of Remark 3.7(v) and Proposition 3.6(vi). The statements for double left duals
follow in a similar manner.
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Corollary 3.12. The relative Serre functors of M are related by

SA
∗
M
M (m) ∼= SAM(m) and SAM(m) ∼= SA

∗
M
M (m) . (3.43)

Proof. The statements follow by considering again the standard realization of the relative Serre
functors together with the duality calculus in the Morita context. For instance, combining
Remark 3.7(iii), Proposition 3.6(iv) and Proposition 3.11(ii) yields the first isomorphism:

SA
∗
M
M (m) ∼= HomA

∗
M
M (m,−)ra(idM) ∼= (∨m�−)ra(idM) ∼= ∨∨m/ idM ∼= SAM(m) . (3.44)

The second isomorphism is obtained in a similar manner.

Double duals in a tensor category are compatible with tensor products: the double dual
of a product is isomorphic to the product of the double duals of the factors. This property
extends to any bicategory F with dualities. Moreover, the double duals of 1-morphisms form a
pseudo-equivalence (−)∨∨ : F '−−→F.

In the case of the bicategory M associated with the Morita context of a module category,
Proposition 3.11 implies that the double-dual functors are isomorphic to relative Serre functors.
The compatibility between double duals and products ensures that there are coherent natural
isomorphisms

(i) SAM(a .m) ∼= a∨∨ .SAM(m) , (iv) SAM(m/F ) ∼= SAM(m) /F rra ,

(ii) (F �H)rra ∼= F rra �Hrra , (v) (H � a)rra ∼= Hrra � a∨∨ ,

(iii) (m�H)∨∨ ∼= SAM(m)�Hrra , (vi) Hrra �SAM(m) ∼= (H �m)rra

(3.45)

for a∈A, m∈M, H ∈FunA(M,A) and F ∈A∗M. These isomorphisms can be obtained by
iterating the isomorphisms from Proposition 3.3. In particular, (i) and (iv) recover the twisted
bimodule functor structure of SAM. Put differently, the isomorphisms (3.45) relate the value of
the relative Serre functor of a product with the product of the relative Serre functors evaluated
in the corresponding factors. For instance, (iii) exhibits the coherence data

SAA(m�H) ∼= (m�H)∨∨ ∼= SAM(m)�Hrra ∼= SAM(m)�SA
∗
M

FunA(M,A)(H) (3.46)

for the composition of m∈M and H ∈FunA(M,A) in M. In this spirit the relative Serre
functors of the categories in M assemble into a pseudo-equivalence:

Definition 3.13 (Relative Serre pseudo-functor).
LetM be an exact module category over a finite tensor category A. The relative Serre pseudo-
functor on the bicategory M consists of the assignment

S : M
'−−→ M,

x 7−→ x ,

M(x, y) 3 a 7−→ SM(x,y)(a) ∈M(x, y)
(3.47)

together with the natural isomorphisms (3.45), which witness the compatibility with the hori-
zontal composition in M.
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3.4 The Radford pseudo-equivalence
For a finite tensor category A, the functor taking double left duals is naturally isomorphic to
the double right dual functor up to the action of the distinguished invertible object DA. We
explore how this extends to a bimodule category and to the entirety of the Morita context of
an exact module category.

Theorem 3.14 (Radford isomorphism of a bimodule category).
Let CLD be an exact bimodule category. There exists a natural isomorphism

RL : D−1
C .SCL(−)

∼===⇒ SDL (−) /D−1
D (3.48)

of twisted bimodule functors.

Proof. We can regard L both as a left C-module and as a left D-module. Therefore from (1.63)
we obtain the desired isomorphism

D−1
C . SCL(−) ∼= Nr

L(−) ∼= D−1
D . SDL (−) ≡ SDL (−) /D−1

D (3.49)

of twisted bimodule functors.

As a first consequence of Theorem 3.14 together with the computation of the relative Serre
functors ofM we arrive to a description of the distinguished invertible object of the dual tensor
category.

Proposition 3.15. Let M be an exact module category over a finite tensor category A. There
is an isomorphism

DA∗M
∼= DA .

(
SAM

)2 ∼= Nl
M ◦ S

A
M (3.50)

of A-module functors, where DA∗M is the distinguished invertible object of the dual tensor category
A∗M.

Proof. Applying Theorem 3.14 to the (A,A∗M)-bimodule categoryM we obtain an isomorphism

D−1
A .SAM ∼= SA

∗
M
M (−) /D−1

A∗M
∼= D−1

A∗M
◦ SA

∗
M
M (3.51)

of bimodule functors. The result now follows by taking into account that SA
∗
M
M
∼= SAM. The

second isomorphism in (3.50) comes from the isomorphism Nl
M
∼=DA . S

A
M in (1.63).

We find that Radford’s theorem can be extended to exact module categories, with the
relative Serre functor playing the role of the double right dual functor.

Corollary 3.16 (Radford isomorphism of a module category).
Let A be a finite tensor category and M an exact A-module. There is a natural isomorphism

rM : DA .− /D−1
A∗M

∼====⇒ SAM ◦SAM (3.52)

of twisted bimodule functors.
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Proof. The statement follows from Proposition 3.15 by reformulating the description of DA∗M .
From the isomorphism (3.50) we obtain

DA∗M◦S
A
M ◦SAM ∼= Nl

M ◦S
A
M ◦SAM ◦SAM ∼= Nl

M ◦SAM ∼= DA .− , (3.53)

where we use the fact that SAM and SAM are quasi-inverses and the isomorphism coming from
(1.63).

Note that Equation (3.52) takes a very symmetric form because we see the A-module cate-
goryM as an (A,A∗M)-bimodule: the distinguished invertible objects of both A and A∗M enter
in (3.52) on the same footing.

There are similar Radford isomorphisms for the categories FunA(M,A) and A∗M in the
Morita context M, where again the corresponding relative Serre functors play the role of the
double right dual. These Radford isomorphisms assemble into a trivialization of the square of
the relative Serre pseudo-functor (3.47), i.e. a trivialization of the fourth power of the pseudo-
functor of dualities of M.

Theorem 3.17 (Radford pseudo-equivalence of a Morita context).
Let M be an exact module category over a finite tensor category A and M the bicategory
associated to its Morita context. There is a pseudo-natural equivalence

R : idM
∼====⇒ S2, (3.54)

where S is the relative Serre pseudo-functor (3.47).

Proof. To construct the pseudo-natural equivalence, consider the following data:

(i) For the objects 0 and 1 of M the distinguished invertible 1-morphisms

R0 := DA and R1 := DA∗M . (3.55)

(ii) For 1-morphisms in M, the following invertible 2-morphisms:

– For a∈A and F ∈A∗M, the natural isomorphisms

Ra : DA⊗ a
∼=−→ a∨∨∨∨⊗DA (3.56)

and
Rm : DA .m

∼=−→SAM ◦SAM(m) /DA∗M (3.57)
coming from (1.60) and from (3.52), respectively.

– For F ∈A∗M, the natural isomorphism

RF : DA∗M◦
oppF

∼===⇒ F rrrra ◦oppDA∗M (3.58)

given by the composite

F ◦DA∗M
∼= F ◦DA . (SAM)2 ∼= DA . (SAM)2 ◦F rrrra ∼= DA∗M◦F

rrrra, (3.59)

where the first and last isomorphisms come from (3.50) and the middle isomorphism uses
the module structure of F and the twisted structure (1.52) of the relative Serre functor
twice.
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– Analogously, for any H ∈FunA(M,A) a natural isomorphism

RH : DA∗M �H
∼===⇒ Hrrrra �DA (3.60)

given by the composite

H ◦DA∗M
∼= H ◦DA .

(
SAM

)2 ∼= DA⊗ ∨∨∨∨(−) ◦Hrrrra ∼= (−⊗DA) ◦Hrrrra, (3.61)

where again we first use (3.50) and then the twisted structure (1.52) of the relative Serre
functor (also taking into account that SAA∼= ∨∨(−)), and where the last isomorphism is the
Radford isomorphism of A.

The claim now reduces to making the routine check of the commutativity of the diagram

D ◦ s ◦ t (s ◦ t)∨∨∨∨ ◦ D

s∨∨∨∨ ◦ D ◦ t s∨∨∨∨ ◦ t∨∨∨∨ ◦ D

Rs◦t

Rs◦id (3.45)

id◦Rt

(3.62)

where the symbol ◦ denotes the horizontal composition in the bicategory M and s and t are
composable 1-morphisms.

The bicategorical formulation in Theorem 3.17 unifies Radford’s theorems for tensor and
module categories. It also offers a natural home to the invertible objects in Radford-type
theorems, since they become part of the data of a pseudo-natural equivalence.

3.5 Relative Serre functors of FunA(M,N ) and Radford
theorems

Let A be a finite tensor category and M and N exact A-module categories. Composition of
module functors turns the category FunA(M,N ) of module functors into a (A∗N ,A∗M)-bimodule
category, or equivalently a (A∗M,A∗N )-bimodule category with action given by

F1 �H �F2 := F2 ◦H ◦F1 for F1 ∈ A∗M , F2 ∈A∗N and H ∈FunA(M,N ) . (3.63)

More generally, if M and N are bimodules, then FunA(M,N ) becomes a bimodule category
with actions given by (1.7).

Lemma 3.18. Given exact and indecomposable module categories M and N over a finite
tensor category A, the (A∗N ,A∗M)-bimodule category FunA(M,N ) is invertible.

Proof. Applying Proposition 3.9 to the A∗M-module category FunA(M,N ), we deduce that the
associated Morita context is strong. On the other hand, the right action on FunA(M,N ) in
the Morita context coincides under

FunA∗M
(

FunA(M,N ),FunA(M,N )
) (1.72)−−−→ FunA(N ,N ) = A∗N (3.64)

with the action defined by (3.63). We conclude that FunA(M,N ) is invertible as an (A∗M,A∗N )-
bimodule category.
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Lemma 3.19. Let M and N be exact module categories over a finite tensor category A.
(i) The relative Serre functors of the (A∗N ,A∗M)-bimodule category FunA(M,N ) are given by

SA
∗
M

FunA(M,N )(H) ∼= Hrra , SA
∗
M

FunA(M,N )(H) ∼= H lla , (3.65)

SA
∗
N

FunA(M,N )(H) ∼= H lla and SA
∗
N

FunA(M,N )(H) ∼= Hrra (3.66)

for H ∈FunA(M,N ).
(ii) The Nakayama functors of FunA(M,N ) are given by

Nr
FunA(M,N )(H) ∼= Nr

N ◦H ◦SAM ∼= SAN ◦H ◦Nr
M (3.67)

and
Nl

FunA(M,N )(H) ∼= Nl
N ◦H ◦S

A
M
∼= SAN ◦H ◦Nl

M (3.68)
for H ∈FunA(M,N ).

(iii) For exact bimodules AMB and ANC, the relative Serre functors of the bimodule category
BFunA(M,N ) C are given by

SCFunA(M,N )(H) ∼= SCN ◦H ◦SAM , SCFunA(M,N )(H) ∼= SCN ◦H ◦S
A
M ,

SBFunA(M,N )(H) ∼= SAN ◦H ◦S
B
M , SBFunA(M,N )(H) ∼= SAN ◦H ◦SBM

(3.69)

for H ∈FunA(M,N ).

Proof.
(i) There is a bijection analogous to (3.27) for module functors in FunA(M,N ). The state-

ment thus follows in complete analogy to the computation for FunA(M,A) in Proposition
3.11, once one takes into account that FunA(M,N ) is exact over A∗M [EGNO, Prop.
7.12.14].

(ii) We show (3.68); the isomorphisms (3.67) follow in the same manner. According to Propo-
sition 3.15 the distinguished object of the dual tensor category is DA∗M

∼=Nl
M ◦S

A
M. Thus

Nl
FunA(M,N )(H) ∼= DA∗M� SA

∗
M

FunA(M,N )(H) ∼= H lla ◦Nl
M ◦S

A
M
∼= Nl

N ◦H ◦S
A
M , (3.70)

where the second isomorphism uses the second isomorphism in (3.65) and the last isomor-
phism is the twisted module structure of the Nakayama functor. Moreover, a factor of DA
can be juggled between the Nakayama functor of N and the relative Serre functor of M
using the module structure of H, leading to the second isomorphism in (3.68).

(iii) According to [Sc2, Prop. 4.15], the inner-homs of FunA(M,N ) with respect to B and C
are described in terms of those of AMB and ANC and their respective module actions; this
ensures exactness of BFunA(M,N )C. All four isomorphisms in (3.69) follow then from
the relation (1.63) between relative Serre and Nakayama functors. For instance, the last
isomorphism in (3.69) is given by the composite

SBFunA(M,N )(H) ∼= DB �Nr
FunA(M,N )(H) ∼= SAM ◦H ◦Nr

M(−) /DB ∼= SAM ◦H ◦SBM , (3.71)

where the second isomorphism comes from (3.67) and the last one is an instance of (1.63).
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Theorem 3.17 can be extended to the bicategory Modex(A) of exact module categories over
a finite tensor category A. Modex(A) is a bicategory with dualities for 1-morphisms, given by
H∗ :=H la and ∗H := Hra for every module functor H ∈FunA(M,N ). The existence of dualities
for 1-morphisms extends to a pseudo-functor of left adjoints

(−)∗ : Modex(A) '−−→ Modex(A) op,op,

M 7−→ M ,

FunA(M,N ) 3 H 7−→ H la ∈ FunA(N ,M) .
(3.72)

In complete analogy to Definition 3.13 relative Serre functors define a pseudo-functor on
Modex(A) which, by Lemma 3.19 (i), is equivalent to the double left adjoint pseudo-functor,
i.e. the square of (3.72).

Theorem 3.20 (Radford pseudo-equivalence of the 2-category of module categories).
Let A be a finite tensor category and Modex(A) its 2-category of exact module categories. There
is a pseudo-natural equivalence

R : idModex(A)
∼====⇒ (−)∗∗∗∗ (3.73)

where (−)∗∗∗∗ is the fourth power of the adjoint pseudo-functor (3.72).

Proof. The following data assemble into the desired pseudo-natural equivalence:

(i) For any exactA-moduleM consider the distinguished invertible 1-morphismRM := DA∗M .
(ii) The isomorphisms coming from (3.50) and (1.52) induce a module natural isomorphism

RH : DA∗N ◦H
∼==⇒H lllla ◦ DA∗M , (3.74)

for every module functor H ∈FunA(M,N ).

It only remains to be checked the commutativity of the diagram

DA∗L ◦H2 ◦H1 (H2 ◦H1)lllla ◦ DA∗M

H
lllla

2 ◦ DA∗N ◦H1 H
lllla

2 ◦H lllla

1 ◦ DA∗M

RH2◦H1

RH2◦id ∼=

id◦RH1

(3.75)

for all module functors H1 : M → N and H2 : N → L. This follows from the compatibility
condition (1.53) once one takes into account that DA∗M

∼= DA .
(
SAM

)2
according to (3.50).
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Chapter 4

On pivotality and Morita theory

4.1 Pivotal module categories
An additional structure that a tensor category A can carry is a pivotal structure, that is, a
monoidal natural isomorphism p : idA

∼==⇒ (−)∨∨ between the identity functor and the double-
dual functor. The monoidal opposite A of a pivotal tensor category is endowed with a canonical
pivotal structure, given by

pa := p−1
∨∨a : a

∼=−→ ∨∨a = a∨∨. (4.1)
A pivotal structure on a module category over a pivotal tensor category can be defined as
follows:

Definition 4.1. Let A and B be pivotal finite tensor categories.
(i) ([Sc2, Def. 5.2] and [Sh2, Def. 3.11]) A pivotal structure on an exact left A-module category
M is a natural isomorphism p̃ : idM

∼===⇒SAM such that the diagram

a .m SAM(a .m)

a∨∨ .SAM(m)

p̃a.m

pa . p̃m (1.44)
(4.2)

commutes for all a∈A and m∈M. A module category together with a module structure
is said to be a pivotal module category.

(ii) An exact right B-module category N is said to be pivotal if the left module category BN
has a pivotal structure.

(iii) A pivotal bimodule category is an exact bimodule AMB together with the structure
p̃ : idM

∼===⇒SAM of a pivotal A-module and the structure q̃ : idM
∼===⇒SBM of a pivotal B-

module, such that the diagrams

m/ b SAM(m/ b)

SAM(m) / b∨∨

p̃m/b

p̃m/qb (1.44)
(4.3)

47
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and
a .m SBM(a .m)

∨∨a .SBM(m)

q̃a.m

p−1
∨∨a.q̃m (1.48)

(4.4)

commute for all a∈A, b∈B and m∈M.

The dual tensor category of a pivotal module inherits the structure of a pivotal finite multi-
tensor category:

Proposition 4.2. Let A be a pivotal tensor category andM a pivotal A-module category. Then

(i) [Sh2, Thm. 3.13] The dual tensor category A∗M has a pivotal structure given by the com-
posite

qF : F
id ◦ p̃====⇒ F ◦SAM

(1.49)=====⇒ SAM ◦F lla p̃−1◦ id======⇒ F lla (4.5)

for a module endofunctor F ∈A∗M, with p̃ the pivotal structure of M.
(ii) Given a pivotal bimodule category AMB, the assignment

B −→ A∗M, b 7−→ − / b (4.6)

is a pivotal tensor functor.

Proof. The statement in [Sh2, Thm. 3.13] concerns A∗M, the monoidal opposite of the dual
tensor category, with its pivotal structure described by

qF : F
p̃ ◦ id====⇒ SAM ◦F

(1.49)=====⇒ F rra ◦SAM
id ◦ p̃−1

=====⇒ F rra. (4.7)

Considering the opposite pivotal structure (4.1) on A∗M we obtain (4.5). Now, assertion (ii)
states that the diagram

m/ b SAM(m/ b)

m/ b∨∨ SAM(m) / b∨∨

p̃m/b

id / qb (1.49)

p̃m / id

(4.8)

commutes for every m∈M and b∈B. This diagram is precisely the fulfilled condition (4.3).

For bimodule categories M and N , the category of module functors FunA(M,N ) becomes
a bimodule category with actions given by (1.7). Pivotal structures are transferred to the
category of module functors as we show next.

Proposition 4.3. Let A, B and C be pivotal finite tensor categories, and consider exact bi-
modules AMB and ANC.

(i) Suppose that AM and NC are pivotal modules. Then FunA(M,N ) has the structure of a
pivotal C-module category.

(ii) Suppose that AN and MB are pivotal modules. Then FunA(M,N ) has the structure of a
pivotal B-module category.
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(iii) If AMB and ANC are pivotal bimodules, then FunA(M,N ) has the structure of a pivotal
(B, C)-bimodule category.

Proof. Lemma 3.19 provides a description of the relative Serre functors of the category of
module functors. We construct the corresponding trivialization in each situation. To show (i)
denote by q̂ : idN '==⇒SCN and by p̃ : idM ∼==⇒ SAM the pivotal structures of the pivotal modules
AM and NC. Define for H ∈FunA(M,N ) a natural isomorphism

Q̃H : H
q̂ ◦ idH ◦ p̃=======⇒ SCN ◦H ◦SAM ∼= SCFunA(M,N )(H) ; (4.9)

this serves as a C-pivotal structure for FunA(M,N ). It remains to check that the diagram

H � c SCFunA(M,N )(H�c)

SCFunA(M,N )(H) �∨∨c

Q̃H�c

Q̃H� qc (1.47)
(4.10)

commutes for every c∈C and H ∈FunA(M,N ), where q is the pivotal structure of C. Now
indeed, for every m∈M the diagram

H(m) / c SCN (H(m) / c) SCN (H(SAM(m)) / c)

H(m) / ∨∨c SCN (H(m)) / ∨∨c SCN (H(SAM(m))) / ∨∨c

q̂H(m) / c

id / qc

SCN ◦(− / c)◦H(p̃m)

(1.47) (1.47)

q̂H(m) / id SCN ◦H(p̃m) / id

(4.11)

commutes: the square on the left corresponds to the condition fulfilled by q̂ of being a C-pivotal
structure for N , while the square on the right commutes owing to naturality of p̃.
The claim (ii) follows analogously by considering as B-pivotal structure for FunA(M,N ) the
natural isomorphism

P̃H : H
p̂ ◦ idH ◦ q̃=======⇒ SAN ◦H ◦SBM ∼= SBFunA(M,N )(H) , (4.12)

where p̂ : idN '==⇒SAN and q̃ : idM '==⇒ SBM are the corresponding pivotal structures of AN and
MB.
Assertion (iii) is verified by making the routine check of the diagrams (4.3) and (4.4).
Remark 4.4. According to Corollary 1.5 the category of module functors is a model for the
relative Deligne product. Therefore Proposition 4.3 implies that the product of two pivotal
bimodules inherits a pivotal structure.

4.2 Pivotal Morita theory
Given a bicategory F, the existence of dualities for 1-morphisms extends to a pseudo-functor

(−)∨ : F −→ F op,op,

x 7−→ x ,

(a : x→ y) 7−→ (a∨ : y→x) .
(4.13)
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A pivotal structure on a bicategory F with dualities is a pseudo-natural equivalence

P : idF
'==⇒ (−)∨∨ (4.14)

obeying Px = idx for every object x∈F. A bicategory together with a pivotal structure is called
a pivotal bicategory.

Remark 4.5. A tensor category A can be seen as a bicategory with a single object A. The
requirement that Px = idx imposed on the pseudo-natural equivalence (4.14) ensures that a
pivotal structure on the bicategory A recovers a pivotal structure on the tensor category A.
A pseudo-natural equivalence (4.14) without this requirement corresponds to the notion of a
quasi-pivotal structure on A [Sh1, Sec. 4], that is, a pair (d, γ) where d∈A is an invertible
object and γ= {γa : d⊗ a '−→ a∨∨⊗ d} is a twisted half-braiding.

Definition 4.6. A Morita context (A,B,M,N ,�,�) is said to be pivotal iff its associated
bicategory M is pivotal.

Next we establish that the Morita context of a pivotal module is indeed pivotal, thus justi-
fying the terminology.

Lemma 4.7. Let M be a pivotal module category over a pivotal tensor category A. Then we
have:

(i) M has the structure of a pivotal (A,A∗M)-bimodule category.

(ii) For every A-module category N , the A∗M-module category FunA(M,N ) inherits a pivotal
structure.

(iii) The functor category FunA(M,A) has the structure of a pivotal (A∗M,A)-bimodule cate-
gory.

Proof. Denote by p̃ : idM
∼==⇒ SAM the pivotal structure of AM. According to Corollary 3.12

we have SA
∗
M
M
∼= SAM, so that for any m∈M we can define a natural isomorphism

q̃m := p̃−1
SM(m) : m

∼=−→ SAM(m) ∼= SA
∗
M
M (m) . (4.15)

Recall from Proposition 4.2 that A∗M is endowed with the pivotal structure (4.5). In view of
Remark 1.16 this pivotal structure coincides with the composition

qF : F
q̃ ◦ id===⇒ SAM ◦ F

(1.52)====⇒ F lla ◦ SAM
id ◦ q̃−1

=====⇒ F lla. (4.16)

Now we verify that q̃ is compatible with this pivotal structure, i.e. that the diagram

F (m) SAM ◦F (m)

F lla ◦SAM(m)

q̃F (m)

qF . q̃m (1.52)
(4.17)
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commutes for every F ∈A∗M and m∈M. In fact, by invoking the relevant definitions, the
diagram translates to

F (m) SAM ◦F (m)

SAM ◦F (m) F lla ◦SAM(m) F lla(m) F lla ◦SAM(m)

qF

q̃F (m)

q̃F (m) (1.52)

(1.52) id◦ q̃−1
m id◦ q̃m

(4.18)

which commutes trivially. Thus it is established that AMA∗M
is a pivotal bimodule category.

Statement (ii) follows from (i) and Proposition 4.3(ii). Explicitly, the pivotal structure is the
composite

p̂H : H
p̃N ◦ id=====⇒ SAN ◦H

(1.49)====⇒ Hrra ◦SAM
id ◦ (p̃M)−1

========⇒ Hrra ∼= SA
∗
M

FunA(M,N )(H) (4.19)

for a module functor H ∈FunA(M,N ).
Similarly, claim (iii) follows from (i) and Proposition 4.3(iii) by considering ANA=A as the
regular bimodule category. In this situation the pivotal structures are explicitly given by

p̂H : H
p ◦ id====⇒ (−)∨∨ ◦H (1.49)====⇒ Hrra ◦SAM

id ◦ p̃−1
=====⇒ Hrra ∼= SA

∗
M

FunA(M,A)(H) (4.20)

and

q̂H : H
id ◦ p̃====⇒ H ◦ SAM

(1.49)====⇒ (−)∨∨ ◦H lla p−1 ◦ id=====⇒ H lla ∼= SAFunA(M,A)(H) (4.21)

for a module functor H ∈FunA(M,A).

Theorem 4.8. For M a pivotal module category over a pivotal tensor category A, its Morita
context (A, A∗M,M, FunA(M,A), �, �) is a pivotal Morita context.

Proof. Let M be the bicategory associated to the Morita context of M. We need to construct
a pseudo-natural equivalence P : idM '==⇒ (−)∨∨, subject to the condition that the components
of P on any object is the identity. For any 1-morphism a∈A and any F ∈A∗M, m∈M and
H ∈FunA(M,A) we define

(i) Pa : a
∼=−→ a∨∨ as the pivotal structure pa of A;

(ii) PF : F
∼===⇒F rra as the isomorphism qF in (4.7) which serves as a pivotal structure of A∗M;

(iii) Pm : m
∼=−→ SAM(m) as the pivotal structure p̃m of the module AM;

(iv) PH : H
∼===⇒Hrra as the isomorphism p̂H in (4.20) which serves as a pivotal structure of

the module A∗M FunA(M,A).
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These assignments are natural for 2-morphisms in M. The compatibility with composition of
1-morphisms reduces to the commutativity of the diagram

s ◦ t (s ◦ t)∨∨

s∨∨◦ t∨∨

Ps◦t

Ps◦Pt ∼=
(4.22)

for s and t composable 1-morphisms in M. These translate into the following eight conditions,
which are indeed all satisfied:
The tensor categories A and A∗M are pivotal, i.e.:

(i) the monoidality condition of p : idA
∼===⇒ (−)∨∨ in the case s= a and t= b in A;

(ii) the monoidality condition of q : idA∗M
∼===⇒ (−)rra in the case s=F1 and t=F2 in A∗M.

Further, the bimodules M and FunA(M,A) are pivotal (p̃ and p̂ are bimodule natural trans-
formations), i.e.:

(iii) in case s= a∈A and t=m∈M, the condition (4.2) fulfilled by p̃;

(iv) for s=m∈M and t=F ∈A∗M, the condition (4.3) fulfilled by p̃;

(v) in case s=F ∈A∗M and t=H ∈FunA(M,A), the condition (4.2) fulfilled by p̂;

(vi) for s=H ∈FunA(M,A) and t= a∈A, the condition (4.3) fulfilled by p̂.

Finally, two additional conditions involving the mixed products:

(vii) for m∈M and H ∈FunA(M,A) the commutativity of the diagram

m�H (m�H)∨∨

SAM(m)�Hrra

pm�H

p̃m� p̂H (1.49)
(4.23)

which can be rewritten in the more explicit form

H(m) H(m)∨∨

(−)∨∨ ◦H(m)

Hrra ◦SAM(m) Hrra(m) Hrra ◦SAM(m)

p
H(m)

p ◦ id

p̂H (1.49)

(1.49)

id ◦ p̃−1
m id ◦ p̃m

(4.24)

which trivially commutes;
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(viii) similarly, for m∈M and H ∈FunA(M,A) the commutativity of the diagram

H �m (H�m)rra

Hrra �SAM(m)

qH�m

p̂H � p̃m
∼=

(4.25)

which is the same as the diagram

(−.m) ◦H SAM ◦ (−.m) ◦H [(−.m) ◦H]rra ◦SAM [(−.m) ◦H]rra

(−.SAM(m)) ◦ (−)∨∨◦H (−.SAM(m)) ◦Hrra◦SAM (−.SAM(m)) ◦Hrra

p̃ ◦ id

(− . p̃m)◦p ◦ id

(1.49)

(1.49)
∼=

id ◦ p̃−1

∼=

(1.49) id ◦ p̃−1

(4.26)
which is commutative: the left triangle corresponds to the condition of p̃ being a pivotal
structure forM, the rightmost square commutes due to naturality, and the square in the
middle is the compatibility (1.50).

This shows that P : idM
∼===⇒ (−)∨∨ is a pivotal structure on the bicategory M, and thus the

claim is proven.
Definition 4.9. Two pivotal tensor categories A and B are said to be pivotal Morita equivalent
iff there exists a pivotal A-module category M together with a pivotal equivalence B'A∗M.
Proposition 4.10. Let A be a pivotal category and M a pivotal A-module.

(i) The tensor equivalence
A '−→ A∗A , a 7−→ −⊗ a (4.27)

from (1.70) is pivotal.

(ii) The canonical tensor equivalence

can : A '−→ (A∗M)∗M , a 7−→ a .− (4.28)
from (1.71) is pivotal.

Proof.
(i) The pivotal structure for the functor −⊗ a in A∗A is given by

q−⊗a : (−⊗ a)
p−⊗a====⇒ (−⊗ a)∨∨ (1.49)====⇒ (−)∨∨⊗ a∨∨

p−1
− ⊗id

=====⇒ (−⊗ a∨∨) . (4.29)

But since p : idA '==⇒ (−)∨∨ is monoidal, we have q−⊗a = id−⊗ pa.

(ii) According to Corollary 3.12 there is an isomorphism SA
∗
M
M
∼= SAM. Taking this into consid-

eration the pivotal structure on (A∗M)∗M is given by

qa .− : (a .−) p̃ ◦ id====⇒ SAM (a .−) (1.44)====⇒ a∨∨ .SAM
id ◦ p̃−1

=====⇒ (a∨∨ .−) = (a .−)lla.

(4.30)
But in a similar manner the defining condition (4.2) of p̃ being a pivotal structure forM
implies that can(pa) = qa .− .
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4.3 The 2-category of pivotal modules

Pivotal modules over a pivotal tensor category form a pivotal bicategory, as presented
in [Sc2, Def. 5.2] in terms of inner-product module categories. Here we express this fact in
the language of relative Serre functors. Let A be a pivotal tensor category, and denote by
Modpiv(A) the 2-category that has pivotal A-module categories as objects, A-module functors
as 1-morphisms and module natural transformations as 2-morphisms. Since pivotal modules
are exact [FSS, Prop. 4.24], every module functor H : AN1→AN2 comes with adjoints

H∗ := H la : AN2 −→ AN1 and ∗H := Hra : AN2 −→ AN1 . (4.31)

These turn Modpiv(A) into a bicategory with dualities for 1-morphisms. Moreover, Modpiv(A)
is endowed with a pivotal structure (4.14). Indeed, given any 1-morphism H : AN1−→AN2 in
Modpiv(A), define

PH : H
id ◦ p̃1====⇒ H ◦ SAN1

(1.49)====⇒ SAN2 ◦H
lla (p̃2)−1 ◦ id=======⇒ H lla, (4.32)

where p̃i are the pivotal structures of the module categoriesNi. The 2-morphisms PH are invert-
ible and natural in H. Moreover, (1.50) implies that they are compatible with the composition
of module functors. Therefore P constitutes a pivotal structure on the 2-category Modpiv(A).

Theorem 4.11. Two pivotal tensor categories A and B are pivotal Morita equivalent if and
only if Modpiv(A) and Modpiv(B) are equivalent as pivotal bicategories.

Proof. Given a pivotal A-moduleM, according to Lemma 4.7(ii) for every N ∈Modpiv(A) the
A∗M-module FunA(M,N ) is endowed with a pivotal structure. By Theorem 7.12.16 of [EGNO]
this assignment extends to a 2-equivalence

Ψ : Modpiv(A) −→Modpiv(A∗M) ,
N 7−→ FunA(M,N ) .

(4.33)

Moreover, Ψ preserves the pivotal structure: To a 1-morphism H : AN1−→AN2 in Modpiv(A)
it assigns

Ψ(H) : FunA(M,N1) H ◦−−−−→ FunA(M,N2) . (4.34)

The component at Ψ(H) of the pivotal structure of Modpiv(A∗M) is the composite

PΨ(H) : (H ◦−) id ◦ p̂1====⇒ H ◦ (−)rra ∼===⇒ (H lla ◦−)rra (p̂2)−1◦ id=======⇒ (H lla ◦−) , (4.35)

where, for i= 1, 2, p̂i is the pivotal structure of the module category FunA(M,Ni) given by
(4.19). The task at hand is to verify that the diagram

Ψ(H) Ψ(H)lla

Ψ(H lla)

PΨ(H)

Ψ(PH) ∼=
(4.36)
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commutes for every 1-morphism H in Modpiv(A). By inserting the definitions, this diagram
translates to

(H ◦−) (H ◦SAN1 ◦−) H ◦ (−)rra ◦SAM H ◦ (−)rra

(H ◦ SAN1 ◦−) (H lla ◦ −)rra

(SAN2 ◦H
lla ◦−) (H lla ◦ −) SAN2 ◦ (H lla ◦−) (H lla ◦−)rra ◦SAM

id ◦ p̃N1◦ id

id ◦ p̃N1◦ id
id

(1.49) id ◦ (p̃M)−1

∼=

∼=

id ◦ p̃M(1.49)

p̃N2◦ id p̃N2 ◦ id (1.49)

(1.49)

(4.37)
This is indeed a commutative diagram: The pentagon in the middle commutes owing to the
compatibility (1.50), and the triangle and squares in the periphery commute trivially.
To see the converse implication, consider a pivotal 2-equivalence

Φ : Modpiv(B) '−−→Modpiv(A) . (4.38)

Define M as the image of the regular pivotal module BB under Φ. Since Φ is a 2-equivalence,
we obtain an equivalence

ΦB,B : B∗B = FunB(B,B) '−→ FunA(M,M) = A∗M (4.39)

of categories. In addition, amongst the data of the 2-functor Φ there is a natural isomorphism

FunB(B,B)×FunB(B,B) FunB(B,B)

FunA(M,M)×FunA(M,M) FunA(M,M)

Φ×Φ

◦

γ Φ

◦

(4.40)

whereby ΦB,B is endowed with a tensor structure. Furthermore, ΦB,B is pivotal. To see this,
notice that an object F ∈A∗M is a 1-morphism in Modpiv(A). Now on the one hand the pivotal
structure (4.5) of the tensor category A∗M provides an isomorphism qF : F

∼===⇒F lla, while on the
other hand the pivotal structure (4.32) in the bicategory Modpiv(A) for F is an isomorphism
PF : F

∼===⇒F lla, and in fact it coincides with qF . The same argument holds for B∗B; since Φ
preserves P, it follows that ΦB,B is a pivotal equivalence. We have thus obtained an equivalence

B (4.27)−−−−→ B∗B
ΦB,B−−−→ A∗M (4.41)

of pivotal tensor categories; hence A and B are pivotal Morita equivalent.

Remark 4.12. Theorem 4.11 implies that pivotal Morita equivalence is indeed an equivalence
relation on pivotal tensor categories. Proposition 4.10 already shows reflexivity and symmetry.
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4.4 Pivotality of the center and pivotal Morita equiva-
lence

Recall that the Drinfeld center of a tensor category A is the braided tensor category Z(A)
whose objects are pairs (a, σ) consisting of an object a∈A and a half-braiding σ, i.e. a natural
isomorphism σb,a : b⊗ a

∼=−→ a⊗ b for b∈A obeying the appropriate hexagon axiom. Accord-
ing to [EGNO, Prop. 8.10.10] the Drinfeld center Z(A) is unimodular. A pivotal structure
pa : a

∼=−→ a∨∨ on A induces a pivotal structure on Z(A) via p(a,σ) := pa [EGNO, Ex. 7.13.6].
Lemma 4.13. Let A be a finite tensor category and M an A-module, and let (a, σ)∈Z(A).

(i) There is a natural isomorphism ιa : a∨∨
∼=−−→ ∨∨a in Z(A).

(ii) The diagram
a∨∨ .SAM ∨∨a .SAM

SAM(a .−)

(1.44)

ιa . id

(1.49)
(4.42)

commutes, where the natural isomorphism (1.49) is applied to the module functor a .−.
Proof. The desired isomorphism in (i) comes from the composition

a∨∨⊗DA
(1.60)−−−−→ DA⊗ ∨∨a

∨∨σ−−−→ ∨∨a⊗DA . (4.43)

Now denote by Fa := a .− the module functor induced by (a, σ). Its double adjoints are
F lla
a = a∨∨ .− and F rra

a = ∨∨a .−. Assertion (ii) is thus implied by the commutativity of the
diagram

a∨∨.SAM ∨∨a.SAM

a∨∨⊗DA.Nr
M DA⊗ ∨∨a.Nr

M
∨∨a⊗DA.Nr

M

SAM(a.−) DA.Nr
M(a.−) SAM(a.−)

(1.44)

ιa . id

(1.63)

(1.49)
(1.60) ∨∨σ

(1.56)

(1.63)

(1.63) (1.63)

(4.44)
where (1.56) and (1.49) are applied to the functor Fa. The pentagon at the top of this diagram
commutes owing to naturality and the definition of ιa. Commutativity of the pentagon on the
left is the condition that (1.63) is an isomorphism of twisted module functors. Similarly, the
pentagon on the right is secretly the diagram

F rra
a ◦DA .Nr

M F rra
a ◦SAM

DA .Nr
M ◦Fa SAM ◦Fa

(1.63)

(1.56) ◦σ (1.49)

(1.63)

(4.45)
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which again commutes because (1.63) is an isomorphism of twisted bimodule functors.

Proposition 4.14. For any pivotal A-module category M the braided equivalence Σ between
Z(A) and Z(A∗M ) defined in (1.69) is pivotal.

Proof. From Lemma 4.13 it follows that the pivotal structure in Z(A∗M) for the object Σ(a, σ)
is given by the composite

a .− p̃ ◦ id====⇒ SAM(a .−) (1.44)=====⇒ a∨∨. SAM
id ◦ p̃−1

=====⇒ (a∨∨ .−) . (4.46)

The condition (4.2) on p̃ means that Σ(pa) coincides with the morphism (4.46), and thus the
assertion holds.

Proposition 4.14 immediately implies

Theorem 4.15. If two pivotal categories A and B are pivotal Morita equivalent, then their
Drinfeld centers Z(A) and Z(B) are equivalent as pivotal braided tensor categories.

4.5 Sphericality for bimodule categories
A notion of sphericality for pivotal tensor categories that is defined through the Radford iso-
morphism (1.60) has been studied, under the assumption of unimodularity, in [DSS2]. In the
semisimple case this notion is equivalent to trace-sphericality [DSS2, Prop. 3.5.4], i.e. to the
property that right and left traces coincide. Let C be a unimodular finite tensor category. The
monoidal functor given by conjugation with DC can be canonically identified with the identity
functor of C. Consider any trivialization uC : 1

∼=−→D−1
C of the distinguished invertible object,

then
idC u∗⊗id⊗u=====⇒ DC ⊗−⊗ D−1

C (4.47)

does not depend of the choice of uC since 1 is simple and thus HomC(1,DC) is one-dimensional.
By precomposing the Radford isomorphism (1.60) with (4.47), we obtain a canonical monoidal
isomorphism

rC : idC
∼===⇒ (−)∨∨∨∨ (4.48)

trivializing the fourth power of the right dual functor.

Definition 4.16. [DSS2, Def. 3.5.2] A unimodular pivotal tensor category C is called spherical
iff the diagram

idC (−)∨∨∨∨

(−)∨∨

rC

p p∨∨
(4.49)

commutes, where p is the pivotal structure of C.

It turns out that sphericality is a property on unimodular pivotal tensor categories that is
invariant under pivotal Morita equivalence, as we show next.

Theorem 4.17. Let M be a pivotal module category over a (unimodular) spherical tensor cat-
egory A. Then the following statements hold:
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(i) The dual tensor category A∗M is unimodular.
(ii) The pivotal structure (4.5) induced on the dual tensor category A∗M is spherical.

Proof. According to Proposition 3.15, the distinguished invertible object of A∗M is given by
D−1
A∗M
∼=D−1

A . (SM)2. Any trivialization uA : 1
∼=−→D−1

A of the distinguished invertible object of
A furnishes an A-module natural isomorphism D−1

A∗M
∼= (SM)2 where (SM)2 is endowed with the

module structure

(SM)2 (a .m) (1.44)2

−−−−−→ a∨∨∨∨ . (SM)2 (m) rA←−−− a . (SM)2 (m) . (4.50)

Now the square of the pivotal structure p̃ of M trivializes (SM)2 with module structure

(SM)2 (a .m) (1.44)2

−−−−−→ a∨∨∨∨ . (SM)2 (m) p∨∨◦ p←−−−−− a . (SM)2 (m) , (4.51)

by the defining condition (4.2) of p̃. Sphericality of A ensures that the two resulting module
structures on (SM)2 coincide. And thus, the composition

uA∗M : idM
p̃ ◦ p̃====⇒ (SM)2 uA . id=====⇒ D−1

A . (SM)2 (3.50)====⇒ D−1
A∗M

(4.52)

provides an isomorphism of A-module functors, which proves (i). In order to prove (ii) we need
to check the commutativity of the triangle

idA∗M (−)lllla

(−)lla

rA∗M

q qlla
(4.53)

where q is the pivotal structure of the dual tensor category given by the isomorphism (4.5),
and rA∗M is the canonical isomorphism (4.48) of the dual tensor category A∗M. Since rA∗M does
not depend on the trivialization of DA∗M chosen, we can very well use (4.52). By inserting the
definitions, it is not hard to see that this diagram reads, for F ∈A∗M,

F F ◦SAM ◦ SAM SAM ◦F lla ◦SAM SAM ◦SAM ◦F lllla F lllla

F ◦ SAM SAM ◦F lllla

SAM ◦F lla F lla F lla ◦SAM

id ◦ p̃ ◦ p̃

id ◦ p̃

(1.49) (1.49) (p̃ ◦ p̃)−1◦id

(1.49)

id ◦ p̃ p̃ ◦ id
p̃−1 ◦ id

p̃−1 ◦ id

id ◦ p̃

id ◦ p̃

p̃ ◦ id

(1.49)

(4.54)

This diagram indeed commutes: the upper-left and upper-right triangles commute trivially; the
remaining squares commute due to functoriality of functor composition.

Corollary 4.18. Let A and B be two pivotal Morita equivalent pivotal tensor categories. A is
(unimodular) spherical if and only if B is (unimodular) spherical.
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We will now explore sphericality for module categories in a similar vein. Let CLD be an
exact bimodule category over unimodular pivotal tensor categories. Associated to L, there is a
Radford isomorphism (3.48) of twisted bimodule functors

RL : D−1
C . SCL(−)

∼===⇒ SDL (−) /D−1
D : L −→ ∨∨(−)L(−)∨∨

involving the distinguished invertible objects of both C and D. The pivotal structures of C
and D turn the functors D−1

C .SCL and SDL (−) /D−1
D into bimodule functors and RL becomes an

isomorphism of bimodule functors. Now we pick trivializations

uC : 1
∼=−→D−1

C and uD : 1
∼=−→D−1

D (4.55)

which together with RL furnish an isomorphism

RL : SCL
∼===⇒ SDL (4.56)

of bimodule functors. There are some subtleties in the definition of (4.56). First of all, unlike
rC, the isomorphism RL is not canonical and depends on the choice of uC and uD. Moreover,
this is an isomorphism of bimodule functors by considering on SCL the left module structure

SCL(c . x) (1.44)−−−−→ c∨∨ . SCL(x) rC←−−− ∨∨c .SCL(x) p∨∨c−−−−→ c .SCL(x) , (4.57)

and analogous module structure morphisms on SDL . Now a pivotal structure on CL is a trivial-
ization of SCL with module functor structure given by

SCL(c . x) (1.44)−−−−→ c∨∨ . SCL(x) pc←−−− c .SCL(x) . (4.58)

In the case C is spherical, the module structures (4.57) and (4.58) on SCL coincide by definition. A
similar consideration holds for SDL under sphericality of D. We are now ready define sphericality
for bimodule categories by means of the Radford isomorphism RL:

Definition 4.19 (Spherical bimodule category).
Let C and D be (unimodular) spherical tensor categories and uC : 1

∼=−→D−1
C and uD : 1

∼=−→D−1
D

trivializations of the corresponding distinguished invertible objects.
A pivotal bimodule category CLD is called (uC,uD)-spherical or simply spherical iff the diagram

SCL SDL

idL

RL

p̃ q̃

(4.59)

commutes, where RL is the composition

SCL
uC . id=====⇒ D−1

C . SCL
RL====⇒ SDL (−) /D−1

D
id /u−1

D======⇒ SDL (4.60)

and p̃ and q̃ denote the pivotal structures of CL and LD respectively.
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Remark 4.20. The notion of sphericality for bimodule categories given in Definition 4.19 is
relative to the choice of isomorphisms uC : 1

∼=−→D−1
C and uD : 1

∼=−→D−1
D . As we will see in

Definition 6.12, there is a special choice of such trivializations in the semisimple setting.

We define sphericality of left module categories in terms of its associated invertible bimodule.
Under the hypothesis of Theorem 4.17, a choice of isomorphisms

uA : 1
∼=−→D−1

A and uA∗M : idM
∼==⇒D−1

A∗M
(4.61)

turns (3.50) into an A-module isomorphism

rM : idM
uA∗M====⇒ D−1

A∗M
(3.50)=====⇒ D−1

A . SAM ◦SAM
u−1
A .id

======⇒ SAM ◦SAM , (4.62)

where SAM ◦SAM is the functor with module structure coming from the isomorphism rA = p∨∨◦ p.

Definition 4.21 (Spherical module category).
Let M be a pivotal module category over a (unimodular) spherical tensor category A and
uA : 1

∼=−→D−1
A and uA∗M : idM

∼==⇒D−1
A∗M

be trivializations of the distinguished invertible objects.
The pivotal module AM is called spherical iff the pivotal (A,A∗M)-bimodule category M is
spherical, i.e. the diagram

SAM SAM

idM

RM

p̃p̃

or equivalently

idM SAM ◦SAM

SAM

rM

p̃ id ◦ p̃
(4.63)

commutes, where p̃ is the pivotal structure of M.

Remark 4.22. In [Ya] the choice of trivialization uA∗M is termed unimodular structure on M.

Proposition 4.23. Let M and N be spherical A-module categories, then the (A∗N ,A∗M)-
bimodule category FunA(M,N ) is spherical.

Proof. According to Proposition 4.3 (iii) FunA(M,N ) inherits a pivotal structure as a (A∗N ,A∗M)-
bimodule category. Sphericality of FunA(M,N ) is proved by checking the commutativity of
the following diagram

H
(
SA
∗
M

FunA(M,N )

)2
(H)

SA
∗
M

FunA(M,N )(H)

r FunA(M,N )

(4.12)
(4.12)lla

(4.64)
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for every module functor H :M→N . Considering (3.69), this diagram turns explicitly into

H SAN ◦SAN ◦H SAN ◦SAN ◦H ◦S
A
M ◦S

A
M

SAN ◦H SAN ◦H ◦S
A
M SAN ◦SAN ◦H ◦S

A
M

rN ◦ id

p̂ ◦ id

id ◦ r−1
M

id ◦ q̃p̂ ◦ id

id ◦ q̃ p̂ ◦ id

id ◦ q̃ (4.65)

where p̂ : idN
∼===⇒ SAN is the pivotal structure of AN and q̃ : idM

∼===⇒ SAM ∼= SA
∗
M
M is the pivotal

structure coming from (4.15). The commutativity of the left triangle is precisely the sphericality
condition of the pivotal module AN and the sphericality of AM implies the commutativity of
the right triangle. The diagram in the middle commutes due to functoriality of the composition
functor.

Remark 4.24. Given a (unimodular) spherical tensor category A, and a spherical module
category AM, Proposition 4.23 implies that the (A∗M,A)-bimodule category FunA(M,A) is
spherical. The dual tensor category A∗M is also spherical by Theorem 4.17, and so is every
Hom-category of the pivotal bicategory M associated to AM.

The sphericality condition on a pivotal module category can be then interpreted in the
bicategorical setting as the statement that the pivotal structure of M squares to the Rad-
ford pseudo-natural equivalence (3.54). Beyond unimodularity, the non-triviality of the distin-
guished invertible objects in (3.54) suggests that such a bicategorical interpretation could be
studied in the framework of quasi-pivotal structures, as considered in Remark 4.5.

Definition 4.25. A pivotal Morita context (A,B,M,N ,�,�) is said to be spherical iff the
Radford pseudo-equivalence (3.54) of its associated bicategory M is equivalent to the square of
the pivotal structure of M.
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Chapter 5

On G-equivariant Morita theory

5.1 Equivariant setting background
This section revisits some notions and G-structures on categories for a finite group G. Most of
the content seem to be well-known to experts, but we would like to highlight Remark 5.3 and
Theorem 5.8.

Group actions on tensor categories and equivariantization
Let G be a finite group and denote by G the strict monoidal category whose objects are elements
in G, all morphisms are identities and the tensor product is given by the group law. Given a
monoidal category C denote by Aut⊗(C) the strict monoidal category of tensor autoequivalences
of C and morphisms monoidal natural isomorphisms. A monoidal G-action on C is the datum
of a monoidal functor T : G→ Aut⊗(C). We refer to the pair (C, T ) as a monoidal G-category.

Let (C, T ) be a monoidal G-category. A G-equivariant object is an object X ∈ C together
with a choice of isomorphisms {ug : Tg(X) ∼−→ X}g∈G, fulfilling a compatibility condition with
the tensor structure of the G-action functor T [GNN, Def, 2.6]. The category of equivariant
objects is denoted by CG and is called the equivariantization of (C, T ). The equivariantization
CG inherits a monoidal structure from C.

Graded tensor categories
Let G be a finite group and A a tensor category. A G-grading on A consists of a decomposition

A =
⊕
g∈G
Ag

into a direct sum of full abelian subcategories, such that for g, h ∈ G the tensor product
restricts to ⊗ : Ag × Ah → Agh. If Ag 6= 0 for all g ∈ G the G-grading is called faithful. In
this case we also say that A is a G-extension of the trivial component Ae and it holds that
FPdim(A) = |G|FPdim(Ae). We will only consider faithful gradings.

Braided G-crossed tensor categories and central G-extensions
The following notion is an analog to the notion of braided tensor category in the equivariant
setting and was introduced in [Tu].

63
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Definition 5.1. (Braided G-crossed tensor category)
A braided G-crossed tensor category is a tensor category C equipped with,

• A G-grading C =
⊕
g∈G
Cg.

• A compatible monoidal G-action g 7→ Tg, i.e., Tg(Ch) ⊂ Cghg−1 for all g, h ∈ G.

• A G-braiding which consists of a natural collection of isomorphisms,

ωc,x : x⊗ c
∼=−→Tg(c)⊗ x, x ∈ Cg, c ∈ C

which satisfy certain compatibility conditions with the tensor structure ηg,h : Tg ◦ Th
∼==⇒Tgh of

the G-action T and the tensor structure of Tg. A complete definition can be found in [GNN,
Definition 2.10].

The equivariantization CG of any braided G-crossed tensor category C inherits the structure
of a braided tensor category, as explained in [Mü]: Consider (x, {ug}g∈G) and (c, {vg}g∈G)
objects in CG with x ∈ Ch, then the braiding is given by extending additively the following
composition

ω̃x,c : x⊗ c ωx,c−−→ Th(c)⊗ x
vh⊗idx−−−−→ c⊗ x (5.1)

where ωx,c is the G-braiding of C. As an additional structure CG contains a Tannakian subcat-
egory Rep(G), i.e., there is a braided fully faithful functor

Rep(G) = VecG −→ CG (5.2)

whose essential image is given by the possible equivariant structures on objects which are
multiples of the monoidal unit of C.

Definition 5.2. Let D be a braided tensor category. A central G-extension of D is a G-
extension C of D together with a braided tensor functor ι : D → Z(C) such that its composition
with the forgetful functor Z(C)→ C coincides with the inclusion D → C. We also just say that
C is a central G-extension.

Notice that given a central G-extension C of D, the datum of the braided tensor functor
ι : D → Z(C) is the same as a relative braiding on C with respect to D, i.e., a natural
isomorphism

γd,c : d⊗ c
∼=−→ c⊗ d, for d ∈ D, c ∈ C

fulfilling the hexagon axioms of a braiding.

Remark 5.3. To any braided G-crossed tensor category C a central G-extension of Ce is as-
sociated up to equivalence, and vice versa. This is described in [DN, Proposition 8.11] as a
2-equivalence between the 2-groupoids of central G-extensions and braided G-crossed tensor
categories. We will therefore use both notions indistinctly.
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De-equivariantization
The inverse construction to the equivariantization of a braided G-crossed tensor category is
known as de-equivariantization, as formulated in detail in [DGNO, Section 4.4].

Let D be a braided tensor category together with the additional datum of a braided fully
faithful functor Rep(G) → D. The group G acts by left translations on the set Fun(G,k) of
functions, thereby turning it into an object in Rep(G). Moreover, this object has a canonical
structure of a commutative special Frobenius algebra in Rep(G). This algebra is called the
regular algebra of functions; denote by ΥG the image in D of Fun(G,k) under the functor
Rep(G)−→D. The de-equivariantization of D is a braided G-crossed tensor category DG, whose
underlying category is the category of modules ΥGMod(D) with tensor product ⊗ΥG .

The processes of equivariantization and de-equivariantization are mutual inverses providing
a 2-equivalence between the 2-categories of braided G-crossed fusion categories and of braided
fusion categories containing Rep(G). As it is mentioned at the start of [DGNO, Section 4.4]
these constructions and results hold in the non-semisimple case as well, leading in particular
to the following statements (for a proof without the semisimplicity assumption we also refer to
[Ja, Section 3.4]):

(i) For every braided G-crossed tensor category C, there is an equivalence C '−−→ (CG)G of
braided G-crossed tensor categories.

(ii) Given a braided tensor category D together with a braided fully faithful functor Γ :
Rep(G) → D, there exists a braided equivalence D '−−→ (DG)G, which commutes with Γ
and the braided functor (5.2) coming from the equivariantization process.

Graded module categories
Definition 5.4. Let A be a G-graded tensor category.

(i) A G-graded module category over A is an A-module category with a decomposition

M =
⊕
g∈G
Mg (5.3)

into a direct sum of full abelian subcategories, withMg 6= 0 for every g ∈G, and such that
for g, h∈G the A-action restricts to . : Ag×Mh−→Mgh.

(ii) A G-graded A-module category M is called indecomposable if it is not equivalent to a
non-trivial direct sum of G-graded module categories, and is called exact if it is exact as
a A-module category.

The following propositions regarding graded module categories seem to be well-known but
are difficult to find in the literature; hence, they are here included.

Proposition 5.5. Let A be a G-graded finite tensor category and M a G-graded A-module
category. For m ∈Mg and n ∈Mh, then HomAM(m,n) ∈ Ahg−1.

Proof. It follows from the definition of the internal Hom considering that A is graded.

Proposition 5.6. Let A be a G-graded tensor category and let A be an algebra in the trivial
component Ae.
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(i) ModA(A) is a G-graded A-module category with decomposition

ModA(A) =
⊕
g∈G

ModA(Ag)

where ModA(Ag) is the subcategory of A-modules with underlying object in Ag.
(ii) The category ABimodA(A) is G-graded with decomposition

ABimodA(A) =
⊕
g∈G

ABimodA(Ag)

where ABimodA(Ag) is the subcategory of bimodules with underlying object in Ag, and this
decomposition is compatible with ⊗A.

(iii) Let C be a central G-extension and A be an exact commutative algebra in the trivial
component Ce. Then ModA(C) has the structure of a G-graded tensor category.

Proof.

(i) Consider a collection of right A-modules {(Mg, rg : Mg ⊗ A → Mg)}g∈G with Mg ∈ Ag,
and let M := ⊕g∈GMg, then the morphism

M ⊗ A =
⊕
g∈G

Mg ⊗ A
⊕g∈Grg−−−−→

⊕
g∈G

Mg = M

provides a right A-module structure on M .
Conversely given a module (M, r : M ⊗A→M) ∈ ModA(A), since A is graded there is a
decomposition of the underlying object M =

⊕
g∈G

Mg in A. For each g ∈ G one can check

that the object Mg acquires a right A-module structure via the morphism

rg : Mg ⊗ A
ιg⊗idA−−−−→M ⊗ A r−→M

pg−→Mg

this determines a decomposition of (M, r) =
⊕
g∈G

(Mg, rg) in ModA(A).

The decomposition above is compatible with the module category structure of ModA(A):
Given an object X ∈ Ag and a module (M, r) ∈ ModA(Ah), then X ⊗M ∈ Agh meaning
that (X ⊗M, idX ⊗ r) ∈ ModA(Agh).

(ii) The decomposition of bimodules follows in complete analogy to (i). It remains to verify
that this G-decomposition is compatible with ⊗A:
Let (M, rM , lM) ∈ ABimodA(Ag) and (N, rN , lN) ∈ ABimodA(Ah), and consider the co-
equalizer diagram

M ⊗A⊗N M ⊗N M ⊗A N .
id⊗lN

rM⊗id

IfM⊗AN were not of degree gh, then the coequalizer morphism would be a zero morphism,
but since it is epic, then M ⊗A N would be a zero object.
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(iii) Given a module (M, r) ∈ ModA(C) the following composition defines a compatible left
A-action on M

A⊗M ωA,M−−−→M ⊗A r−→M

where ωA,M is the relative braiding of C. This construction induces a fully faithful func-
tor ModA(C) → ABimodA(C) and ModA(C) is closed under the tensor product ⊗A in
ABimodA(C) providing the tensor structure on ModA(C).

The notions of induction and restriction of modules categories play an important role in the
context of graded categories by relating them with their trivial component. LetA be a G-graded
finite tensor category and N ' ModA(Ae) an Ae-module category, where A is an algebra in
Ae. The induced module category is defined as the A-module category IndAAe(N ) := ModA(A).
Given a G-graded A-module category M, the restricted Ae-module category is denoted by
ResAAe(M) :=Me.

Lemma 5.7. [MM, Lemma 4.5] Let A be a G-graded tensor category.

(i) M is an exact A-module category if and only if ResAAe(M) is an exact Ae-module category.

(ii) N is an exact Ae-module category if and only if IndAAe(N ) is an exact A-module category.

There is a correspondence between exact graded module categories over a graded tensor
category and exact module categories over its trivial component.

Theorem 5.8. [Ga2, Theorem 3.3]
Let A be a G-graded finite tensor category. Induction and restriction of module categories
determine a 2-equivalence between exact G-graded A-module categories and exact Ae-module
categories.

Proof. The statement in [Ga2, Theorem 3.3] is for the fusion case, but the proof does not
require semisimplicity, and in view of Lemma 5.7 the result holds restricting to the class of
exact module categories.

The following corollary is an immediate consequence from Theorem 5.8.

Corollary 5.9. For any exact G-graded A-module category M, there exists an algebra A in
the trivial component Ae such that M' ModA(A) as G-graded A-module categories.

Graded category of module functors
Definition 5.10. Let A be a G-graded tensor category and let M and N be G-graded A-
module categories. An A-module functor H : M−→N satisfying H(Mx)⊆Nxg for every x∈G
is called homogeneous of degree g ∈ G. A grading preserving module functor is a homogeneous
module functor of trivial degree.

The full subcategory of FunA(M,N ) whose objects are homogeneous module functors of
degree g ∈ G is denoted by FunA(M,N )g.
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Proposition 5.11. [Ja, Prop. 4.9] Let M, N and L be G-graded A-module categories, then
the composition of module functors restricts to

◦ : FunA(N ,L)g × FunA(M,N )h → FunA(M,L)hg (5.4)

and the category of module functors decomposes as

FunA(M,N ) =
⊕
g∈G

FunA(M,N )g .

In particular, the dual category A∗M is Gopp-graded and FunA(N ,M) is a Gopp-graded module
category over A∗M. Similarly, the opposite dual category A∗M is a G-graded tensor category and
FunA(M,N ) is a G-graded module category over A∗M.

Proof. It is straightforward to check the compatibility of composition with the grading as
expressed in (5.4).

Given a family of functors {(Hg, φg)}g∈G with (Hg, φg) ∈ FunA(M,N )g, their sum is defined
as the functor ⊕

g∈G
Hg :M−→ N , m 7−→

⊕
g∈G

Hg(m) (5.5)

and the isomorphisms defined for a ∈ A and m ∈ N by
⊕
g∈G

Hg(a .m) ⊕g∈G(φg)a,m−−−−−−−→
⊕
g∈G

a .Hg(m) = a .
⊕
g∈G

Hg(m) (5.6)

provide a A-module functor structure on
⊕
g∈G

Hg.

Conversely for (H,φ) ∈ FunA(M,N ) and g, y ∈ G consider the composition of functors

My
ιy−−→M H−−−→ N pyg−−−→ Nyg

and define a homogeneous functor Hg :=
⊕
y∈G

pyg ◦H ◦ ιy with A-module structure (φg)a,m given

for homogeneous objects a ∈ Ax and m ∈My by

Hg(a .m) = H(a .m)xyg
pxyg(φa,m)−−−−−−→ (a .H(m))xyg = a . (H(m))yg = a .Hg(m)

then (Hg, φg) ∈ FunA(M,N )g. Moreover, their sum correspond to a decomposition of H since
for m ∈M ⊕

g∈G
Hg(m) =

⊕
y,g∈G

H(my) yg =
⊕
y∈G

H(my) = H(m)

where the last line follows since H preserves finite sums.

A direct computation shows that in the equivariant setting the Eilenberg-Watts equivalence
is compatible with the grading:

Proposition 5.12. [Ja, Prop. 4.10] Given algebras A and B in the trivial component of a
G-graded tensor category A, the Eilenberg-Watts equivalence

ABimodB(A) ∼−→ RexA(ModA(A),ModB(A))

given by equation (1.9) is grading preserving.
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5.2 Graded Morita equivalence
Definition 5.13. [Ja, Def. 4.14] Two G-graded tensor categories A and B are said to be graded
Morita equivalent if there exists a G-graded A-module category M together with a G-graded
tensor equivalence B ' A∗M.

Remark 5.14. For a G-graded finite tensor category A, similarly to the non-graded case, we
have the following remarks:

(i) Consider the regular graded module category A, then the tensor equivalence (1.70)

A '−−→ A∗A, a 7→ −⊗ a , (5.7)

is grading preserving.

(ii) Let M be an exact G-graded A-module category, then M is naturally a Gopp-graded
module category over A∗M, and the double dual (A∗M)∗M is a G-graded tensor category.

(iii) Notice that the canonical tensor equivalence (1.71) is G-graded

can : A '−−→ (A∗M)∗M , a 7→ a .− (5.8)

taking into consideration (ii).

(iv) From Corollary 5.9 and Proposition 5.12, the notion of graded Morita equivalence between
A and B can be described by the existence of an exact algebra A in Ae together with a
G-graded tensor equivalence B ' ABimodA(A).

Proposition 5.15. The notion of graded Morita equivalence is an equivalence relation on G-
graded finite tensor categories.

Proof. Remark 5.14 (i) exhibits reflexivity as well as (iii) implies symmetry. Now transitivity
follows in the same manner as in the non-graded case shown in [EGNO, Proposition 7.12.18],
if one takes into consideration that the algebras involved are always in the trivial component
of the corresponding graded tensor category.

From Definition 5.13 it immediately follows that two graded Morita equivalent graded tensor
categories are also Morita equivalent just as tensor categories. As shown next, their trivial
components are Morita equivalent as well.

Proposition 5.16. If two G-graded finite tensor categories A and B are graded Morita equiv-
alent, then their trivial components Ae and Be are Morita equivalent.

Proof. Since A and B are graded Morita equivalent there is an exact G-graded A-module
category M = ModA(A) and we have that

(A∗M)e = EndA(M)e ' ABimodA(Ae) ' EndAe(Me) = (Ae)∗Me
(5.9)

where the first equivalence takes into account that the Eilenberg-Watts equivalence preserves
the grading as shown in Proposition 5.12. Consequently, a graded tensor equivalence B ' A∗M
induces a tensor equivalence Be ' (Ae)∗Me

.
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Remark 5.17. The converse of Proposition 5.16 does not hold in general. Morita equivalent
tensor categories can have G-extensions which are not graded Morita equivalent:
Consider for instance the finite cyclic group G = Z/pZ with p prime and the tensor category
Ae = Be = Vec. The G-extensions A = VecG and B = VecωG with ω ∈ H3(G; C×) a non-
trivial 3-cocycle have different number of indecomposable module categories according to [Os,
Example 2.1]. Hence A and B are not Morita equivalent and therefore A and B cannot be
G-graded Morita equivalent.

5.3 The 2-category of graded module categories
For every G-graded tensor category A there is associated a 2-category ModGr(A) whose objects
are exact G-graded A-module categories, the 1-morphisms are graded module functors and the
2-morphisms are module natural transformations.

Recall the notion of group actions on 2-categories, as discussed for example in [HSV] and
[BGM]. A strict G-action on a 2-category F is a collection of 2-functors {g· : F → F}g∈G such
that g· ◦ h· = (gh)· for every g, h ∈ G. An equivalence of 2-categories with group action is a
2-equivalence Ψ with a G-structure γg : Ψ ◦ g· ∼=⇒ g· ◦Ψ fulfilling certain conditions, see [BGM,
Definition 2.3] for a complete definition.

The G-grading of A induces an additional structure on the 2-category ModGr(A), namely
a strict left action of G which is given by shifting the grading: For N ∈ModGr(A) and g ∈ G,
define a G-graded A-module category g·N by N as a A-module category, but with G-grading
described by the following homogeneous components

[g·N ]x := Nxg, for x ∈ G .

Every 1-morphism H : N → L induces a 1-morphism g·H : g·N → g· L, n 7→ H(n), and the
assignment on 2-morphisms is similarly defined.

Notice that for M,N ∈ModGr(A) and g ∈ G

FunA(M, g·N )e = FunA(M,N )g = FunA(g−1
· M,N )e (5.10)

which are A-module functors H :M→N such that H(Mx) ⊂ Nxg for all x ∈ G.
The action of G on the graded module categories of a graded tensor category plays an

important role in the notion of graded Morita equivalence.

Theorem 5.18. Two G-graded finite tensor categories A and B are graded Morita equivalent
if and only if ModGr(A) and ModGr(B) are equivalent as 2-categories with G-action.

Proof. Given an exact graded A-module category M, from [EGNO, Theorem 7.12.16] and
considering Proposition 5.11 we have a 2-equivalence

Ψ : ModGr(A) −→ModGr(A∗M)
N 7−→ FunA(M,N )

which has a strict G-structure, i.e., the diagram of 2-functors

ModGr(A) ModGr(A∗M)

ModGr(A) ModGr(A∗M)

Ψ

g· g·

Ψ



5.3. THE 2-CATEGORY OF GRADED MODULE CATEGORIES 71

strictly commutes for every g ∈ G. Indeed, for N ∈ ModGr(A) notice that both Ψ(g·N ) =
FunA(M, g·N ) and g·Ψ(N ) = g·FunA(M,N ) are equal to FunA(M,N ) as A∗M-module cate-
gories. Moreover, the G-gradings coincide:
For a homogeneous functor H ∈ FunA(M, g·N )h it holds that

H(Mx) ⊂ [g·N ]xh = Nxhg

for all x ∈ G, which means that H ∈ FunA(M,N )hg = [ g·FunA(M,N ) ]h.
Conversely, consider a 2-equivalence

Φ : ModGr(B) 'ModGr(A)

which is compatible with the corresponding G-actions. Denote byM := Φ(B) the image under
Φ of the regular graded B-module category. Then for every g ∈ G we have an equivalence

EndB(B)g = FunB(B, g· B)e ' FunA(M,Φ(g· B))e ' FunA(M, g·M)e = EndA(M)g

and thus Φ induces a graded equivalence of categories

Ω : EndB(B) ∼−→ EndA(M) = A∗M .

Moreover, since Φ is a 2-functor there is a natural isomorphism γ

EndB(B)g × EndB(B)h EndB(B)hg

EndA(M)g × EndA(M)h EndA(M)hg

Φ×Φ

◦

γ Φ

◦

which endows Ω with a monoidal structure. We therefore obtain a G-graded tensor equivalence

B ' EndB(B)opp ' EndA(M)opp = A∗M

which means that A and B are graded Morita equivalent.

Remark 5.19. In Theorem 5.18 it is necessary to keep the information encoded in the G-
action on ModGr(A). IfA is a G-graded tensor category, any group automorphism f ∈ Aut(G),
defines a newG-grading by (Af )g := Af(g), where g ∈ G. Depending of the group automorphism
and the graded tensor category, it is possible that the 2-categories ModGr(A) and ModGr(Af )
are equivalent as 2-categories, but not as 2-categories with G-action. For instance, if A = VecωG,
and f ∈ Aut(G) is such that f ∗(ω) and ω are not cohomologous, then A and Af are not graded
Morita equivalent, but the 2-categories ModGr(A) and ModGr(Af ) are equivalent.

The equivariantization construction has an analog for 2-categories with group action. Let A
be a G-graded finite tensor category, then for ModGr(A) the 2-category of equivariant objects
corresponds to Mod(A) the 2-category of (not necessarily graded) exact module categories
over A. In order to see this consider the following:

The 2-equivalence in Theorem 5.8 is given by induction of module categories and can be
described in terms of the relative Deligne product [ENOM]

Mod(Ae)→ModGr(A), N 7→ IndAAe(N ) = A�Ae N (5.11)
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and its inverse is given by restriction

ModGr(A)→Mod(Ae), M 7→ ResAAe(M) =Me . (5.12)

Since G acts on ModGr(A) we can transport this G-action structure to the 2-category Mod(Ae)
via the 2-equivalence (5.12). We obtain for each g ∈ G a 2-functor

g× : Mod(Ae)→Mod(Ae), N 7→ ResAAe(g· IndAAe(N )) = Ag �Ae N

and the Ae-bimodule equivalences Mg,h : Ag �Ae Ah
∼−→ Agh coming from the tensor product of

A provide the corresponding pseudonatural equivalences g× ◦ h× ∼=⇒ gh×.
We notice that this G-action coincides with the G-action on Mod(Ae) presented in [BGM,

Theorem 5.4]. Moreover, the authors also show that the 2-category of equivariant objects in
Mod(Ae) under this action corresponds to Mod(A). Consequently, by considering equivariant
objects in ModGr(A), one recovers the (not necessarily graded) module categories over A.

Corollary 5.20. Given a G-graded finite tensor category A. The equivariantization ModGr(A)G
is 2-equivalent to Mod(A).

5.4 The equivariant center and graded Morita equiva-
lence

Given a G-graded finite tensor category A, there is a construction [GNN, TV2] that associates
to A a braided G-crossed tensor category called the equivariant center and denoted by ZG(A),
whose underlying tensor category is the relative center ZAe(A) of A with respect to the trivial
component Ae.

On the other hand, the ordinary Drinfeld center of a G-graded finite tensor category A is a
braided tensor category endowed with a fully faithful braided functor

Rep(G) −→ Z(A) , (kn, ρ) 7−→ (1n, γ−,1n) , (5.13)

where for a∈Ag the half-braiding is defined via γa,1n : a⊗1n ida⊗ρ(g)−−−−−→ a⊗1n = 1n⊗ a. There-
fore Z(A) is a possible input for the de-equivariantization construction. The following result
shown in [GNN] states that the category of equivariant objects in ZG(A) is braided equivalent
to the Drinfeld center Z(A).

Theorem 5.21. [GNN, Theorem 3.5] Let A be a G-graded finite tensor category, there is an
equivalence of braided tensor categories

ZG(A)G '−−→Z(A) (5.14)

compatible with the canonical inclusions of Rep(G) given by (5.2) and (5.13).

Remark 5.22. Since equivariantization and de-equivariantization are inverse procedures, it
follows from Theorem 5.21 that the equivariant center ZG(A) can be characterized as the de-
equivariantization of Z(A), i.e. ZG(A) ' ΥGMod(Z(A)), where ΥG is the image of the algebra
of functions under the inclusion (5.13).
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Proposition 5.23. [Ja, Thm. 4.13] Let A be a G-graded finite tensor category and M =
ModA(A) an exact indecomposable G-graded A-module category, where A is an algebra in Ae.
The braided equivalence Z(A)'Z(A∗M) given by (1.69) induces, via de-equivariantization, an
equivalence

ZG(A) '−−→ZG(ABimodA(A)) '−−→ZG(A∗M ) (5.15)

of braided G-crossed tensor categories.

Proof. First, notice that the following diagram commutes:

Z(A)

Rep(G)

Z(ABimodA(A))

S

(5.13)

(5.13)

(5.16)

where S refers to equivalence (1.67). Explicitly we have for the G-graded tensor category
ABimodA(A) that the functor (5.13) is given by

Rep(G)→ Z(ABimodA(A)), (kn, ρ) 7→ (A⊗ 1n, β ,An)

where for N ∈ ABimodA(Ag), the half-braiding βN,An is given by

N ⊗A A⊗ 1n idN⊗AidA⊗ρ(g)−−−−−−−−−→ N ⊗A A⊗ 1n ∼= N ⊗ 1n = 1n ⊗N ∼= 1n ⊗A⊗A N = A⊗ 1n ⊗A N.

On the other hand, composing S with the functor (5.13) corresponding to A leads to

(1n, γ−,1n) 7→ (A⊗ 1n, δ ,An)

where for M ∈ ABimodA(Ag), the half-braiding δM,An is given by the composition

M ⊗AA⊗1n ∼= M ⊗1n idM⊗ρ(g)−−−−−→M ⊗1n = 1n⊗M ∼= 1n⊗A⊗AM
γ−1
A,1n⊗AidM
−−−−−−−→ A⊗1n⊗AM .

but since A ∈ Ae, then γA,1n = idA ⊗ ρ(e) = idAn and thus the half-braidings β and δ
coincide, which implies the commutativity of the diagram (5.16). It follows by applying de-
equivariantization, that Schauenburg’s equivalence (1.67) induces an equivalence of braided
G-crossed tensor categories

ZG(A) '−−→ZG(ABimodA(A)) .

Similarly, from Proposition 5.12 the Eilenberg-Watts equivalence is graded, but the construction
of the inclusion (5.13) is determined by the G-grading, therefore the diagram

Z(ABimodA(A))

Rep(G)

Z(A∗M)

(5.13)

(5.13)
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is commutative and by applying de-equivariantization, we conclude that ZG(ABimodA(A)) and
ZG(A∗M) are equivalent as braided G-crossed tensor categories as well.

Remark 5.24. Given a G-graded finite tensor category A the equivalence from Proposition
5.23 makes the following diagram commute

Z(A) Z(ABimodA(A))

ZG(A) ZG(ABimodA(A))

S

SG

where the vertical arrows are the forgetful functors mentioned in Remark 1.17 (i) and S is
equivalence (1.67). More explicitly SG is given by the assignment (X, σ) 7−→ (A⊗X, δ), where
for M ∈ ABimodA(Ae), the half-braiding δ is defined by the composition

M ⊗A A⊗X ∼= M ⊗X σM,X−−−→ X ⊗M ∼= X ⊗ A⊗AM
σ−1
A,X⊗AM−−−−−−→ A⊗X ⊗AM .

In particular Proposition 5.23 implies the following extension of Theorem 1.18 which corre-
sponds to the case of the trivial group:

Theorem 5.25. [Ja, Rem. 4.15] If two G-graded finite tensor categories A and B are graded
Morita equivalent, then their equivariant centers ZG(A) and ZG(B) are equivalent as braided
G-crossed tensor categories.

Converse of Theorem 5.25
Morita equivalence of finite tensor categories can be completely detected by braided equivalence
of their Drinfeld centers. In the graded case an analogous result will be proven in Theorem 5.29
for the equivariant center. To this end, we need to prove the converse of Theorem 5.25 and we
will closely follow the approach in [EGNO, Section 8.12] for the non-graded case.

Given a G-graded finite tensor category A, the forgetful functor

F : ZG(A)→ A, (X, γ) 7→ X (5.17)

endows A with the structure of an exact G-graded module category over ZG(A), according to
Remark 1.17 (iv).

The functor Hom(1,−) : A → ZG(A) is right adjoint to F : From the definition of the
internal Hom, given Z ∈ ZG(A) and X ∈ A

HomA(F (Z), X) = HomA(Z ⊗1, X) ∼= HomZG(A)(Z,Hom(1, X)) (5.18)

where Z ⊗1 stands for the action of Z on the monoidal unit 1 ∈ A.
Notice that the adjunction (5.18) is a special case of (1.16) for the exact G-graded ZG(A)-

module category A. Denote by ξX := ev1,X : Hom(1, X)⊗1→ X the counit morphism (1.22).
Now consider for every X ∈ A the following morphisms:

σX := ◦1,1,X : Hom(1, X)⊗ Hom(1,1)→ Hom(1, X) (5.19)

i.e., the image of the composition

Hom(1, X)⊗Hom(1,1)⊗1 id⊗ξ1−−−→ Hom(1, X)⊗1 ξX−→ X (5.20)
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under the adjunction (5.18), and define

ρX : Hom(1,1)⊗ Hom(1, X)→ Hom(1, X) (5.21)

as the image of the composition

Hom(1,1)⊗ 1⊗ Hom(1, X) ξ1⊗id−−−→ 1⊗ Hom(1, X) ∼= Hom(1, X)⊗ 1 ξX−→ X (5.22)

under the adjunction (5.18), where monoidal units should be inserted and removed where nec-
essary.

From Remark 1.7 we know that

(i) A := (Hom(1,1),m := σ1, u1) is an algebra in ZG(A). Moreover, A is in the trivial
component ZG(A)e according to Proposition 5.5.

(ii) R(X) := (Hom(1, X), σX) is a right A-module in ZG(A), for every X ∈ A.

(iii) From Theorem 1.8 the assignment R : A −→ ModA(ZG(A)), X 7→ R(X) is an equivalence
of ZG(A)-module categories, and from Proposition 5.5 it is G-graded.

Proposition 5.26. (a) The algebra A is commutative in ZG(A)e = Z(Ae).

(b) For every X ∈ A, the morphism ρX : A ⊗ R(X) → R(X) from equation (5.21) coincides
with the composition

A⊗R(X)
cA,R(X)−−−−→ R(X)⊗ A σX−→ R(X) (5.23)

providing a structure of an A-bimodule in ZG(A) on R(X).

Proof. Given X ∈ A, the following diagram commutes due to the naturality of the braiding
(see equation (1.64))

Hom(1,1)⊗Hom(1, X) 1⊗Hom(1, X)

Hom(1, X)⊗1 X

Hom(1, X)⊗Hom(1,1) Hom(1, X)⊗1

cA,R(X)

ξ1⊗id

c1,R(X)

∼

ξX

id⊗ξ1

=

(5.24)

From the definition of σX and ρX , the commutativity of the diagram (5.24) translates to
σX ◦ cA,R(X) = ρX under the isomorphism

HomA (Hom(1,1)⊗ Hom(1, X), X) ∼= HomZG(A)(Hom(1,1)⊗ Hom(1, X),Hom(1, X))

coming from the adjunction (5.18). The case X = 1 corresponds to commutativity of the
algebra A = Hom(1,1).
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In particular since A is a commutative algebra in the trivial component of ZG(A), it follows
from Proposition 5.6 that ModA(ZG(A)) is a G-graded tensor category. Now the goal is to
define a tensor structure on the graded functor R : A → ModA(ZG(A)). It is important to
point out that the construction of such tensor structure does not involve the grading on A, and
thus is reduced to the non-graded case. Define for X, Y ∈ A a morphism

ϕX,Y : Hom(1, X)⊗ Hom(1, Y )→ Hom(1, X ⊗Y ) (5.25)
as the image of ξX ⊗ ξY : Hom(1, X) ⊗ Hom(1, Y ) → X ⊗Y under (5.18). A direct

computation shows that ϕX,Y is a cone under the coequalizer diagram

R(X)⊗ A⊗R(Y ) R(X)⊗R(Y ) R(X)⊗A R(Y )

R(X ⊗ Y )

id⊗ρY

σX⊗id

ϕX,Y
ϕ̃X,Y (5.26)

and moreover one can check that the morphisms ϕ̃X,Y : R(X) ⊗A R(Y ) → R(X ⊗ Y ), given
by the universal property of the coequalizer, fulfill the axioms of a weak tensor structure on R.
Furthermore, ϕ̃X,Y : R(X)⊗A R(Y )→ R(X ⊗ Y ) is an isomorphism for every X, Y ∈ A:

(i) For an object Z ∈ ZG(A) the canonical isomorphism (1.18) provides an isomorphism of
A-modules R(F (Z)) = Hom(1, Z ⊗1) ∼= Z ⊗Hom(1,1) = Z ⊗A, where F is the forgetful
functor (5.17) and in this case ϕ̃F (Z),Y corresponds to the isomorphism

R(F (Z))⊗A R(Y ) ∼= Z ⊗Hom(1, Y ) ∼= Hom(1, Z ⊗Y ) = R(F (Z)⊗ Y ) (5.27)

where the second isomorphism comes from (1.18) once more.

(ii) Every projective object P ∈ A is a direct summand of an object of the form F (Z): Since
F is surjective there are Z ∈ ZG(A) and W ∈ A, such that P is a subobject of W and
W is a quotient of F (Z). Now from [EGNO, Proposition 6.1.3] P is injective, then P is
a direct summand of W and therefore a quotient of F (Z). But from projectivity of P it
follows that P is a direct summand of F (Z).

(iii) For every projective object P ∈ A the morphism ϕ̃P,Y is an isomorphism: From (ii) there
exists Z ∈ ZG(A) with F (Z) = P ⊕T for some T ∈ A and thus ϕ̃F (Z),Y = ϕ̃P,Y ⊕ ϕ̃T,Y . It
follows that if ϕ̃P,Y is not an isomorphism, then ϕ̃F (Z),Y is not an isomorphism, but this
is a contradiction with (i).

(iv) For an arbitrary X ∈ A, the morphism ϕ̃X,Y is an isomorphism: Consider a projective
cover p : P → X. By naturality of ϕ̃X,Y the following diagram commutes

R(P )⊗A R(Y ) R(P ⊗Y )

R(X)⊗A R(Y ) R(X ⊗Y )

ϕ̃P,Y

R(p)⊗Aid R(p⊗id)

ϕ̃X,Y

(5.28)

Now from (iii) the top arrow ϕ̃P,Y is an isomorphism, and since p is epic and R and ⊗ are
exact, then R(p⊗ id) is epic and thus ϕ̃X,Y has to be epic as well. An analogous argument
using an injective hull of X, shows that ϕ̃X,Y is also mono.
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Lemma 5.27. Let A be a G-graded finite tensor category, then there exists a commutative
algebra A in ZG(A)e = Z(Ae) and an equivalence A ' ModA(ZG(A)) of G-graded tensor
categories.

Proof. Follows considering the construction given above.

Proposition 5.28. Let A and B be G-graded finite tensor categories. Provided that ZG(A)
and ZG(B) are equivalent as central G-extensions, then A and B are graded Morita equivalent.

Proof. Let B be the commutative algebra in ZG(B)e constructed in Lemma 5.27 and let Λ :
ZG(B) ' ZG(A) be an equivalence of central G-extensions, then L := Λ(B) is a commutative
algebra in ZG(A)e and

B ' ModB(ZG(B)) ' ModL(ZG(A)) (5.29)
as G-graded tensor categories, where the first equivalence comes from Lemma 5.27 and the
second equivalence is induced by Λ.

Now notice that ModF (L)(A) is an exact G-graded A-module category: let A be the com-
mutative algebra in ZG(A)e from Lemma 5.27, then A ' ModA(ZG(A)).

(i) Since B ' ModB(ZG(B)) is exact over ZG(B), then ModL(ZG(A)) is exact as a ZG(A)-
module category.

(ii) From [EGNO, Proposition 7.12.14] and Proposition 5.11, the category

FunZG(A)(ModL(ZG(A)),A) ' LBimodA(ZG(A))

is an exact Gopp-graded module category over (ZG(A))∗A ' ABimodA(ZG(A)).

(iii) Since A ' ModA(ZG(A)), then ModF (L)(A) ' LBimodA(ZG(A)).

(iv) From (ii) and (iii) it follows that ModF (L)(A) is an exact Gopp-graded module category
over

(ZG(A))∗A ' ((Ae �A )∗A)∗A ' Ae �A
therefore it is in particular exact over Ae, and thus Me = ModF (L)(Ae) is an exact
Ae-module category. From Lemma 5.7 it follows that ModF (L)(A) is exact over A.

On the other hand, the module category B ' ModB(ZG(B)) is indecomposable over the
dual category (Be � B )∗B ' ZG(B), hence under Λ the module category ModL(ZG(A)) is
indecomposable over ZG(A). But the forgetful image ModF (L)(A) might be decomposable
over A. Since ModF (L)(A) is exact over A, it follows from Proposition 1.10 that there is a
decomposition of A-module categories

ModF (L)(A) '
⊕
i∈I

ModLi(A) (5.30)

where Li is an exact indecomposable algebra in Ae for all i ∈ I and F (L) decomposes as
∏
i∈I
Li

as an algebra. Furthermore, the category of bimodules decomposes as follows

F (L)BimodF (L)(A) '
⊕
i,j∈I

LiBimodLj(A) . (5.31)
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Now consider the following commutative diagram,

ZG(A) ZG (LiBimodLi(A))

ModL(ZG(A)) ⊂ LBimodL(ZG(A)) F (L)BimodF (L)(A) LiBimodLi(A)

Z 7→Z⊗L

SG

Fi

F
πi

(5.32)
where the equivalence SG comes from Proposition 5.23, πi is the canonical projection of the
direct sum (5.31) and F is the functor between the categories of bimodules induced by the
forgetful functor F . Now since the forgetful functor Fi is surjective (see Remark 1.17 (i)), then
we have a surjective graded functor

Hi := πi ◦ F : ModL(ZG(A)) −→ LiBimodLi(A) (5.33)

between tensor categories of the same Frobenius-Perron dimension, and thus Hi is an equiva-
lence. Indeed,

(i) From [EGNO, Corollary 7.16.7] FPdim(LiBimodLi(A)) = FPdim(A).

(ii) Since Λ is an equivalence,

1
|G|

FPdim(B)2 = FPdim(ZG(B)) = FPdim(ZG(A)) = 1
|G|

FPdim(A)2 (5.34)

and thus FPdim(B) = FPdim(A).

(iii) From (ii) and equivalence (5.29) it follows that

FPdim(ModL(ZG(A))) = FPdim(B) = FPdim(A) . (5.35)

Summarizing, there is an exact G-graded A-module category M = ModLi(A) and a graded
tensor equivalence B ' LiBimodLi(A) ' A∗M.

Considering the results of Proposition 5.28 and Theorem 5.25, we obtain the following
theorem.

Theorem 5.29. Two G-graded finite tensor categories A and B are graded Morita equivalent
if and only if ZG(A) and ZG(B) are equivalent as braided G-crossed tensor categories.

In view of [DN, Proposition 8.11], Theorem 5.29 can be described considering the equivariant
centers as central G-extensions as well.

5.5 Dualities and pivotality for equivariant Morita The-
ory

The previous study of graded Morita equivalence has not yet considered pivotal structures. In
this section we investigate the interaction of duals and pivotal structures with Morita theory
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in the equivariant setting. One expects that the equivalence data for the notion of graded
Morita equivalence are endowed with a graded structure in a compatible manner. That is,
the categories in the Morita context of a G-graded module category should be graded and be
related via grading preserving actions. Indeed we have

Proposition 5.30. Let A be a G-graded tensor category andM a G-graded A-module category
and consider (A, A∗M,M, FunA(M,A), �, �) the Morita context associated to it.

(i) A∗M is a G-graded tensor category.

(ii) M and FunA(M,A) are G-graded bimodule categories.

(iii) The mixed products � and � are compatible with the group law of G.

Proof. That A∗M is a G-graded tensor category and FunA(M,A) is a G-graded A∗M-module is
part of the statement in Proposition 5.11. The remaining assertions follow from the fact that,
by the definition of the gradings, we have

m/F = F (m) ∈Mgy , H / a = H(−)⊗ a ∈ FunA(M,A)xh ,

m�H = H(m) ∈Mgx , H �m = H(−) .m ∈
(
A∗M

)
xg

(5.36)

for all m∈Mg, a∈Ah, H ∈FunA(M,A)x and F ∈ (A∗M )y.

Remark 5.31. Proposition 5.30 can be seen as a statement about the bicategoryM associated
to the Morita context of an exact G-graded module category: M is a bicategory enriched in
the (non-symmetric) monoidal 2-category of G-graded linear abelian categories and grading
preserving functors.

A feature of a G-graded tensor category is that the duals of a homogeneous object are again
homogeneous, with inverse degree. This holds for the Morita context of an exact G-graded
module category as well:

Proposition 5.32. Let A be a G-graded finite tensor category and M an exact G-graded
A-module category.

(i) For a homogeneous object m∈Mg, the duals m∨ and ∨m are homogeneous of degree g−1

in FunA(M,A).

(ii) For a homogeneous object H ∈FunA(M,A)g, the duals H∨ and ∨H are homogeneous of
degree g−1 in M.

(iii) The relative Serre functors of M and of FunA(M,A) are grading preserving.

Proof. According to Proposition 5.5 we have HomAM(m,n)∈Ahg−1 for m∈Mg and n∈Mh.
This also implies that coHomAM(m,n)∼= ∨HomAM(n,m)∈Ahg−1 , which proves (i).
To show (ii), notice that the adjoints of a module functor H ∈FunA(M,A)g are homogeneous
module functors in FunA(A,M)g−1 . Since 1∈Ae, it follows that Hra(1), H la(1)∈Mg−1 .
Assertion (iii) follows from (i) and (ii) together with Proposition 3.11.

Now we will consider a G-graded tensor category A endowed with the additional datum of a
pivotal structure.



80 CHAPTER 5. ON G-EQUIVARIANT MORITA THEORY

Definition 5.33. An exact G-graded module M over a G-graded pivotal category A is said
to be pivotal iff the underlying module category has the structure of a pivotal module.

Proposition 5.34. LetM be an exact G-graded module category over a G-graded pivotal tensor
category A. A pivotal structure on AM is the same as a pivotal structure on AeMe.

Proof. First notice that for m,n∈Me we have HomAM(m,n) = HomAeMe
(m,n), and thus the

restriction of the relative Serre functor obeys SAM|Me
= SAeMe

. The pivotal structure of A turns
both SAM and SAeMe

into module functors. According to Proposition 5.32, relative Serre functors
are grading preserving, and thus a pivotal structure on AM is an isomorphism idM

∼==⇒SAM in
(A∗M)e. Now Theorem 5.8 implies that restriction induces an equivalence

(A∗M)e = FunA(M,M)e ' FunAe(Me,Me) = (Ae) ∗Me
(5.37)

under which a module natural isomorphism idM
∼==⇒ SAM corresponds to a module natural iso-

morphism idMe

∼==⇒SAeMe
.

Definition 5.35. Two G-graded pivotal categories A and B are said to be graded pivotal Morita
equivalent iff there exists a G-graded pivotal A-module category M together with a G-graded
pivotal equivalence B'A∗M.

The Drinfeld center of a pivotal tensor category inherits a pivotal structure [EGNO, Ex. 7.13.6].
In particular for a G-graded pivotal tensor category A, the Drinfeld center Z(A) has a canon-
ical pivotal structure p : idZ(A)

∼==⇒ (−)∨∨. According to [KO, Thm. 1.17], p serves as pivotal
structure for the equivariant center ΥGMod(Z(A)) ' ZG(A) (Remark 5.22).

Proposition 5.36. Let M be a G-graded pivotal A-module category. The braided G-crossed
equivalence (5.15) is pivotal.

Proof. By Proposition 4.14 the equivalence (1.69) is pivotal. Further, (5.15) is induced by
(1.69) and thus preserves p as well.

Corollary 5.37. If two G-graded pivotal categories A and B are graded pivotal Morita equiva-
lent, then their equivariant centers ZG(A) and ZG(B) are equivalent as pivotal braided G-crossed
tensor categories.



Chapter 6

Categories with traces and dimensions

Traces are a crucial ingredient for the construction of topological invariants. These structures
on categories allow to assign scalars to closed graphs on spheres, which is an important step in
constructions such as the Turaev-Viro state sum from semisimple categories or the invariants
discussed in [GP, GPV] from non-semisimple categories.

In this chapter, we study traces arising from pivotal structures on bimodule categories. For
this purpose, we make use of the canonical Nakayama twisted trace (6.15) associated to any
k-linear category. Such twisted trace allows to assign scalars, not to endomorphisms, but to
a different class of morphisms in the subcategory of projective objects. Since, the category
underlying a bimodule category is k-linear, it comes naturally equipped with such twisted
trace. In Section 6.3, we explore the interaction of the twisted trace with pivotal structures on
bimodule categories. We obtain partial-trace properties for bimodule categories.

In Section 6.4, we further explore the properties of the traces constructed for 2-morphisms
the pivotal bicategory Modsph(A) of spherical module categories over a spherical fusion cat-
egory A. In Chapter 7, this will allow to evaluate Modsph(A)-labeled graphs on spheres to
produce a topological invariant.

In this chapter, we will give use of the graphical calculus of string diagrams in bicategories
and pivotal bicategories following the conventions summarized in Appendix A. In particular,
the graphical calculus will be used in the context of a tensor category seen as a one-object
bicategory.

6.1 Calabi-Yau categories and Nakayama twisted traces
Given a finite k-linear category X , we denote by ProjX the full subcategory of projective
objects in X and IrrX stands for the set of equivalence classes of simple objects.
Definition 6.1. [He, Def. 2.9]

1. A Calabi-Yau category (X , trX ) consists of a finite k-linear category X , together with a
family of traces, i.e. k-linear maps

trXx : HomX (x, x) −→ k (6.1)

for each x ∈ X , obeying the following two conditions.

(i) Symmetry: Given x, y ∈ X , it holds

trXy (f ◦ g) = trXx (g ◦ f) . (6.2)

81
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for every f ∈ HomX (x, y) and g ∈ HomX (y, x)
(ii) Non-degeneracy: The induced pairing

〈−,−〉X : HomX (x, y)⊗k HomX (y, x) −→ k, f ⊗ g 7→ trXx (g ◦ f) (6.3)

is non-degenerate, i.e. the k-linear map

HomX (x, y) −→ HomX (y, x)∗, f 7−→ trXx (− ◦ f) (6.4)

is an isomorphism for every x, y ∈ X .

2. Given Calabi-Yau categories (X , trX ) and (Y , trY) a functor F ∈ Rex(X ,Y) is said to be
a Calabi-Yau functor, if

trXx (f) = trYF (x)(F (f)) (6.5)
for every x ∈ X and f ∈ HomX (x, x).

3. A Calabi-Yau natural transformation between Calabi-Yau functors is just a natural trans-
formation.

Remark 6.2. The datum of a Calabi-Yau structure on a finite semisimple k-linear category
X is equivalent to the data of a collection of natural isomorphisms

HomX (x, y) ∼= HomX (y, x)∗ (6.6)

for objects x, y ∈ X [Sc, Prop. 4.1].

In a Calabi-Yau category there is the notion of dimension of an object x ∈ X which is given by

dim(x) := trXx (idx) ∈ k. (6.7)
The categorical dimension of X is defined as the scalar

dim(X ) :=
∑

x∈IrrX
dim(x)2 ∈ k. (6.8)

Proposition 6.3. Let (X , trX ) be a semisimple Calabi-Yau category.

(i) Given a simple object h ∈ IrrX , any endomorphism f ∈HomX (h, h) can be expressed as

f = trXh (f)
dim(h) · idh . (6.9)

(ii) For every object x ∈ X it holds that

dim(x) =
∑

h∈IrrX
dim(h) dimkHomX (h, x) . (6.10)

Proof. To prove (i) notice that, due to simplicity of h, f = λ. idh for some λ ∈ k∗. It follows
that trXh (f) = λ · dim(h), which leads to the result. Now since X is semisimple hom-spaces
have a decomposition of the form

HomX (x, x) ∼=
⊕

h∈IrrX
HomX (x, h)⊗k HomX (h, x) (6.11)
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and thus for each h∈ IrrX , there are bases {ψ∗i } and {ψi} of HomX (h, x) and HomX (x, h) such
that

ψi ◦ ψ∗j = δi,j · idh, and
∑

h∈IrrX

∑
i

ψ∗i ◦ ψi = idx (6.12)

Summing over i and j gives
∑
i

ψi ◦ ψ∗i = dimkHomX (h, x) · idh, and thus

dim(x) = trXx (idx)
(6.12)=

∑
h∈IrrX

∑
i

trXx (ψ∗i ◦ ψi)
(6.2)=

∑
h∈IrrX

∑
i

trXh (ψi ◦ ψ∗i ) (6.13)

=
∑

h∈IrrX
dim(h) dimkHomX (h, x) (6.14)

which proves statement (ii).

The canonical Nakayama twisted trace of a linear category

In general, non-semisimple k-linear categories may not admit Calabi-Yau structures [He, Exam-
ple 3.12]. However, there is a canonical trace structure on any such category once we consider
a different class of morphisms to be traced: Recall that every finite k-linear category X comes
with a distinguished right exact endofunctor called the Nakayama functor (1.55). For every
projective object p ∈ ProjX there exists a linear map

tXp : HomX (p,Nr
X (p)) −→ k (6.15)

named the Nr
X -twisted trace or simply the twisted trace of X [SchW, Def. 2.4] [ShSh, Def. 4.4].

Lemma 6.4. [SchW, Lemma 2.5] Let X be a finite k-linear category. The twisted trace (6.15)
satisfies the following properties:

(i) Cyclicity: Given p, q ∈ ProjX

tXq (f ◦ g) = tXp (Nr
X (g) ◦ f ) (6.16)

for every f ∈ HomX (p,Nr
X (q)) and g ∈ HomX (q, p).

(ii) Non-degeneracy: The induced pairing

〈−,−〉X : HomX (p, x)⊗k HomX (x,Nr
X (p)) −→ k, f ⊗ g 7→ tXp (g ◦ f) (6.17)

is non-degenerate for p ∈ ProjX and x ∈ X .

6.2 Traces on tensor categories
Tensor categories are a classical source of categories with traces. The monoidal structure on
a category permit the definition of partial traces. These lead to the so-called quantum traces,
quantities defined only for certain class of morphisms in a tensor category, where appropriate
instances of double-duals appear in their target. This section discusses their interaction with
the Nakayama twisted trace.

Definition 6.5. Let A be a finite tensor category.
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(i) For objects a, b, c ∈ A, the left partial trace with respect to a is the map given by

tral : HomA(a⊗ b, ∨∨a⊗ c) −→ HomA(b, c)

a

∨∨a

b

c

f 7−→

b

c

∨a f .
(6.18)

(ii) Similarly, the right partial trace with respect to a is defined by the map

trar : HomA(b⊗ a, c⊗ a∨∨) −→ HomA(b, c)

b

c

a

a∨∨

f 7−→

b

c

a∨f .
(6.19)

Now, in a finite tensor category, the monoidal unit is a simple object. Thus, it is natural
to think of its endomorphisms as scalars in the base field. In the literature [TV, Sec. 4.2.3]
[EGNO, Rem. 4.7.2] it is standard to make this identification via the map

trA1 : HomA(1,1) −→ k,
id1 7−→ 1

(6.20)

which is an isomorphism of k-algebras. Left and right (quantum) traces are then simply defined
as the scalars associated to partial traces under this identification.

Definition 6.6. [EGNO, Def. 4.7.1] Let A be a finite tensor category.
Define the left (quantum) trace as the map

trAL : HomA(a, ∨∨a) tral−−−→ HomA(1,1) trA1−−−−→ k (6.21)

for an object a ∈ A. Right (quantum) traces can be defined in complete analogy as

trAR : HomA(a, a∨∨) trar−−−→ HomA(1,1) trA1−−−−→ k . (6.22)

The double-duals at the target of the morphisms in Definition 6.6 can be trivialized with
the use of a pivotal structure leading to traces on endomorphisms. However, there is another
obstacle to obtain a Calabi-Yau category: In general, quantum traces may be degenerate if the
underlying category is non-semisimple [EGNO, Rem. 4.8.5].

To avoid this, we now consider the Nr
A-twisted trace associated to the k-linear category

underlying a finite tensor category A. We can extend the partial traces to morphisms with
target in the image of the Nakayama functor [SchW, Def. 3.3]. This is done by means of its
twisted A-bimodule functor structure. Explicitly, the left partial trace is given for a, b ∈ A by
the composition:

tral : HomA(a⊗ b,Nr
A(a⊗ b)) (1.62)−−−→ HomA(a⊗ b, ∨∨a⊗Nr

A(b)) (6.18)−−−→ HomA(b,Nr
A(b)) (6.23)



6.3. TRACES ON MODULE CATEGORIES 85

Similarly, the right partial trace is defined by the following composition.

trar : HomA(b⊗a,Nr
A(b⊗a)) (1.62)−−−→ HomA(b⊗a,Nr

A(b)⊗a∨∨) (6.19)−−−→ HomA(b,Nr
A(b)) (6.24)

for all objects a, b ∈ A. The morphisms obtained by applying partial traces can still be
interpreted as scalars under (6.15) at the cost of restricting our attention to projective objects.

Proposition 6.7. [SchW, Prop. 3.5]
Let A be a finite tensor category, for any projective object p ∈ ProjA, the twisted trace (6.15)

tAp : HomA (p,Nr
A(p)) −→ k

satisfies the right and left partial trace properties:
Given a ∈ A, and morphisms f ∈ HomA(p⊗ a, Nr

A(p⊗ a)) and g ∈ HomA(a⊗ p, Nr
A(a⊗ p))

tAp⊗a(f) = tAp trar (f), tAa⊗p(g) = tAp tral (g) (6.25)

i.e. the following diagrams commute

HomA (p⊗ a,Nr
A(p⊗ a)) k

HomA (p,Nr
A(p))

trar

tAp⊗a

tAp

HomA (a⊗ p,Nr
A(a⊗ p)) k

HomA (p,Nr
A(p))

tral

tAa⊗p

tAp

(6.26)

Proof. In [SchW, Prop. 3.5] the authors prove the right partial trace property. The argument
strongly relies on the fact that the Nakayama functor Nr

A comes with a canonical right twisted
structure Nr

A(− ⊗ a) ∼= Nr
A(−) ⊗ a∨∨. The same argument can be made into a proof of the

left partial trace property by mutatis mutandis where now the canonical left twisted structure
Nr
A(a⊗−) ∼= ∨∨a⊗ Nr

A(−) coming from (1.62) is in play.

One can further consider a choice of pivotal structure on the finite tensor category A as
pointed out in [SchW, Thm. 3.6] and [ShSh, Thm. 6.8]. We leave this aspect for Section 6.3,
where we study a more general situation involving bimodule categories.

6.3 Traces on module categories
In [Sc] the notion of a module trace in the fusion setting is defined. In [ShSh] the authors
study twisted traces for right module categories beyond the semisimplicity requirement. We
explore in this section the Nakayama twisted trace on bimodule categories under the presence
of pivotal structures.

In the situation of a bimodule category CLD over finite tensor categories, the underlying
categories are k-linear and thus each comes naturally equipped with Nakayama twisted traces.
The structure of bimodule category on L together with the twisted bimodule functor structure
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on Nr
L allow to define left and right partial traces in complete analogy to the case of a tensor

category. These are given for objects x ∈ L, c ∈ C and d ∈ D by the compositions:

trcl : HomL (c . x,Nr
L(c . x)) (1.62)−−−→ HomL(c . x, ∨∨c .Nr

L(x)) −→ HomL(x,Nr
L(x))

c

∨∨c

x

Nr
L(x)

fC

C

C

L 7−→

x

Nr
L(x)

∨c fCC L
(6.27)

trdr : HomL(x / d,Nr
L(x / d)) (1.62)−−−→ HomL(x / d,Nr

L(x) / d∨∨) −→ HomL(x,Nr
L(x))

x

Nr
L(x)

d

d∨∨

fC

L

L

L 7−→

x

Nr
L(x)

d∨fC LL
(6.28)

In Section 3.1 we studied dualities for strong Morita contexts. This notion of duals allows to
extend partial traces with respect to objects in invertible bimodule categories. These are set up
by means of the following isomorphisms which are analogous to the twisted module structure
of the Nakayama functor.
Lemma 6.8. Let CLD be an invertible bimodule category over finite tensor categories. There
are natural isomorphisms

Nr
L(c . y) ∼= Nr

C(c) . y∨∨ and Nr
L(y / d) ∼= ∨∨y /Nr

D(d) (6.29)
for all c ∈ C, d ∈ D and y ∈ L.
Proof. The isomorphisms can be obtained by using that double-duals are isomorphic to relative
Serre functors and juggling distinguished invertible objects around. Explicitly, for the first
isomorphism in (6.29) consider the composition

Nr
L(c . y) ∼= ∨∨c .Nr

L(y) ∼= ∨∨c⊗ D−1
C .SCL(y) ∼= Nr

C(c) . y∨∨ (6.30)
where the first isomorphism comes from the twisted structure (1.62) of the Nakayama functor,
the second is (1.63) and the last one uses (1.61) and Proposition 3.11 (i).
Definition 6.9. Let CLD be an invertible bimodule category over finite tensor categories.

(i) Given y ∈ L and d ∈ D, the left partial trace with respect to y is defined by the composition

tryl : HomL(y / d,Nr
L(y / d)) (6.29)−−−→ HomL(y / d, ∨∨y /Nr

D(d)) −→ HomD(d,Nr
D(d))

y

∨∨y

d

Nr
D(d)

fC

L

L

L 7−→

d

Nr
D(d)

∨y fCL L

(6.31)
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(ii) Similarly, for objects y ∈ L and c ∈ C the right partial trace with respect to y is given by
the composition

tryr : HomL(c . y,Nr
L(c . y)) (6.29)−−−→ HomL(c . y,Nr

C(c) . y∨∨) −→ HomC(c,Nr
C(c))

c

Nr
C(c)

y

y∨∨

fC

C

C

L 7−→

c

Nr
C(c)

y∨fC CL

(6.32)

Proposition 6.10. Let CLD be a bimodule category over finite tensor categories. For any
projective object x ∈ ProjL, the twisted trace (6.15)

tLx : HomL (x,Nr
L(x)) −→ k

satisfies right and left partial trace properties: Given x ∈ ProjL, c ∈ C and d ∈ D, and

tLx / d(f) = tLx trdr (f), where f ∈ HomL(x / d, Nr
L(x / d)) (6.33)

tLc . x(g) = tLx trcl (g), where g ∈ HomL(c . x, Nr
L(c . x)) (6.34)

i.e. the following diagrams commute

HomL (x / d,Nr
L(x / d)) k

HomL (x,Nr
L(x))

trdr

tLx/d

tLx

HomL (c . x,Nr
L(c . x)) k

HomL (x,Nr
L(x))

trcl

tLc.x

tLx
(6.35)

Furthermore, if L is invertible, then for objects y ∈ L, p ∈ Proj C and q ∈ ProjD

tLy / q(f) = tDq tryl (f), where f ∈ HomL(y / q, Nr
L(y / q)) (6.36)

tLp . y(g) = tCp tryr (g), where g ∈ HomL(p . y, Nr
L(p . y)) (6.37)

i.e. the following diagrams commute

HomL (p . y,Nr
L(p . y)) k

HomC (p,Nr
C(p))

tryr

tLp.y

tCp

HomL (y / q,Nr
L(y / q)) k

HomD (q,Nr
D(q))

tryl

tLy/q

tDq
(6.38)
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Proof. The result follows in complete analogy to Proposition 6.7. The commutativity of the
diagrams (6.35) is obtained by using the same argument on the twisted structure of Nr

L given by
(1.62) (see also [ShSh, Lemma 5.5]). The second part of the proposition requires invertibility
for two reasons: On the one hand, this implies exactness on L and thus p . y and y / q are
projective which ensures that the traces tLy/q(f) and tLp.y(g) in equations (6.36) and (6.37) are
defined. Secondly, invertibility allows to define partial traces for objects in L as described in
Definition 6.9. Again, the statement can be proved by means of the argument in Proposition
6.7 mutatis mutandis where the isomorphisms (6.29) play the role of the twisted structure of
the Nakayama functor.

The role of pivotality

The addition of pivotal structures in the mix permit to trivialize the Nakayama functors up to
the action of the distinguished invertible objects. Under the assumption of unimodularity we
can apply the Nakayama twisted traces to endomorphisms of projective objects.

Definition 6.11. Let C and D be pivotal finite tensor categories and CLD be a pivotal bimodule
category with pivotal structures p̃ : idL

∼==⇒ SCL and q̃ : idL
∼==⇒ SDL .

The left trace is the map defined as the composition

trLL x : HomL
(
x,D−1

C . x
)

p̃◦−−−→ HomL
(
x,D−1

C . SCL(x)
) (1.63)−−−→ HomL (x,Nr

L(x)) (6.15)−−−→ k
(6.39)

for any projective object x ∈ ProjL. Similarly, the right trace is given by

trLR x : HomL
(
x, x /D−1

D

)
q̃◦−−−→ HomL

(
x,SDL (x) /D−1

D

) (1.63)−−−→ HomL (x,Nr
L(x)) (6.15)−−−→ k .

(6.40)

We obtain traces for endomorphisms of projective objects, if we require unimodularity.
However, these traces will depend on the choice of trivializations of the corresponding distin-
guished invertible objects. One could further define a notion of trace-sphericality subject to
such choices, in a similar fashion as bimodule sphericality (see Definition 4.19).

For now, we leave this analysis on the side and we focus on the semisimple setting. In
that case, tensor categories are unimodular and every object is projective. Moreover, there is
a special trivialization of the distinguished invertible object compatible with the twisted trace
associated to the monoidal unit.

Definition 6.12. Let C be a fusion category. The standard trivialization of DC is the isomor-
phism sC : 1

∼=−→Nr
C(1) = D−1

C obeying that the composition

HomC (1,1) sC ◦−−−−−−→ HomC (1,Nr
C(1)) (6.15)−−−−−→ k (6.41)

is equal to the k-linear map trC1 from equation (6.20), i.e. the assignment id1 7→ 1.

Let CLD be a pivotal bimodule category as in Definition 6.11 with the additional assumption
of semisimplicity. It holds that every object in L is projective and that C and D are unimodular.
Thus, one can trace arbitrary endomorphisms via the standard trivialization of the distinguished
invertible objects: Explicitly, for every x ∈ L we define the left trace for endomorphisms as the
composition

trLL x : HomL (x, x) sC.id ◦−−−−−−−→ HomL
(
x,D−1

C . x
) (6.39)−−−−−→ k (6.42)
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and the right trace for endomorphisms given by

trLR x : HomL (x, x) id/sD ◦−−−−−−−−→ HomL
(
x, x /D−1

D

) (6.40)−−−−−→ k (6.43)

These traces endow the category L with two Calabi-Yau structures (L, trLL ) and (L, trLR) in
the sense of Definition 6.1. These two agree under sphericality, as we will see in Proposition
6.14. In a purely pivotal (non-spherical) situation, this leads to the notion of left and right
dimensions for any object x ∈ L

dimL(x) := trLL x(idx), dimR(x) := trLR x(idx) . (6.44)

Remark 6.13. Recall that the notion of sphericality on a pivotal bimodule category CLD from
Definition 4.19 depends on the choices of trivialization of the distinguished invertible objects
of C and D. In the semisimple setting, we will always consider sphericality relative to the
standard trivializations sC and sD given in Definition 6.12. The same consideration will be
taken for spherical module categories over a spherical fusion category.

Proposition 6.14. Let C and D be spherical fusion categories and CLD a spherical bimodule
category. Then

trLL x(f) = trLR x(f) =: trLx(f) (6.45)
for all x ∈ L and endomorphisms f ∈ HomL(x, x). The trace trL endows the category L with
the structure of a Calabi-Yau category in the sense of Definition 6.1.
Moreover, in case CLD is invertible, it holds that

trC1

 f
L

C

 = trLx


x

f

x

LC

 = trD1

 f
C

L
 (6.46)

for every f ∈ HomL(x, x), i.e. the following diagram commutes

HomC (1,1)

HomL (x, x) k

HomD (1,1)

trC1trxr

trxl

trLx

trD1

(6.47)

for every object x ∈ L, where trC1 and trD1 are the k-algebra isomorphisms given by (6.20).

Proof. Equation (6.45) states that the following diagram commutes.

HomL
(
x,D−1

C . x
)

HomL
(
x,D−1

C .SCL(x)
)

HomL (x, x) HomL (x,Nr
L(x)) k

HomL
(
x, x /D−1

D

)
HomL

(
x,SDL (x) /D−1

D

)

( id . p̃ ) ◦−

(1.63)

RL ◦−

sC.id ◦−

id/sD ◦−

(6.15)

( q̃ / id ) ◦−

(1.63)

(6.48)
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This is indeed the case, since the diagram in the left is the sphericality condition on L and the
triangle in the right is the definition of the Radford isomorphism. The relation (6.46) follows
from (6.37) and (6.36) applied to the objects 1 ∈ C and 1 ∈ D which are projective due to
semisimplicity.

Remark 6.15. The traces (6.42) and (6.43) applied to the regular bimodule category CCC
give back the classical quantum traces from Definition 6.6 in the semisimple pivotal setting.
In this case, Proposition 6.14 is the statement that, under semisimplicity, sphericality implies
trace-sphericality.

6.4 Traces in the 2-category of spherical module cate-
gories

We will focus our attention on a specific type of 2-category with traces for 2-endomorphims.
Let A be spherical fusion category, and denote by Modsph(A) the 2-category that has spher-
ical A-module categories as objects, A-module functors as 1-morphisms and module natural
transformations as 2-morphisms. Roughly speaking, this 2-category is, at the level of Hom-
categories, a collection of invertible spherical bimodule categories: Given two indecomposable
spherical module categories M and N , the (A∗N ,A∗M)-bimodule category FunA(M,N ) is in-
vertible by Lemma 3.18 and naturally endowed with a spherical structure by Proposition 4.23.
Hence, FunA(M,N ) is a Calabi-Yau category according to Proposition 6.14, in other words,
the 2-category Modsph(A) is locally Calabi-Yau.

Moreover, as described in Section 4.3, Modsph(A) has the structure of a pivotal bicategory
given by (4.32). From now on, the identity module functor idM of an A-module M will be
denoted by 1M to emphasize its role as monoidal unit of A∗M.

Remark 6.16. Recall that in a spherical fusion category A, the following properties involving
traces and dimensions hold:

(i) The dimension of an object a ∈ A equals the dimension of its dual: dim(a) = dim(a∨).
(ii) Traces are multiplicative: given objects a, b ∈ A,

trAa⊗b(f ⊗ g) = trAa (f) trAb (g) (6.49)

for every f ∈HomA(a, a) and g ∈HomA(b, b).
(iii) Dimensions are multiplicative: for a, b ∈ A it holds that

dim(a⊗ b) = dim(a) dim(b) . (6.50)

These familiar properties generalize to Modsph(A), as we show next.

Proposition 6.17. Let M, N and L be indecomposable spherical module categories over a
spherical fusion category A.

(i) For every H ∈ FunA(M,N ), it holds that

dim(H) = dim(H la) . (6.51)
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(ii) Given H1 ∈ FunA(M,N ) and H2 ∈ FunA(N ,L) and module natural transformations
α : H1 ⇒ H1 and β : H2 ⇒ H2

trFunA(M,L)
H2◦H1 (β ◦α) = trFunA(N ,L)

H2 (β) · trFunA(M,N )
H1 (α) (6.52)

i.e. the horizontal composition functor

◦ : FunA(N ,L) � FunA(M,N )→ FunA(M,L) (6.53)

is a Calabi-Yau functor.
(iii) Given module functors H1 ∈ FunA(M,N ) and H2 ∈ FunA(N ,L), it holds that

dim(H2 ◦H1) = dim(H2) · dim(H1) . (6.54)

Proof. Assertion (i) follows from the computation

dim(H) = trFunA(M,N )
H (idH) = trA

∗
N

1N

(
H

Hla

Hra
N

M

)
= trA

∗
N

1N

(
Hla

H

Hlla

N
M

)

= trFunA(N ,M)
Hla (idHla) = dim(H la)

(6.55)

where the second and fourth equality make use of (6.46). Similarly, to prove (ii) notice that

trFunA(M,L)
H2◦H1 (β ◦ α) = trA

∗
L

1L

 αβ
M
N

L
 = trA

∗
N

1N

 β α
L

N

M



= trA
∗
N

1N

 β
L

N

 · trA
∗
N

1N

 α
M

N

 = trFunA(N ,L)
H2 (β) · trFunA(M,N )

H1 (α)

(6.56)
where the second equality is (6.46) applied to the 2-morphism β · trH1

r (α) and the third step
follows from the multiplicativity of trA

∗
N

1N . First and last steps also follow from (6.46). Statement
(iii) directly follows by applying (ii) to the respective identity 2-morphisms.

Further identities proper of the semisimple setting generalize to Modsph(A) as well.

Proposition 6.18. Let A be a spherical fusion category, M,N indecomposable spherical A-
module categories, and H ∈ FunA(M,N ) a simple module functor.

(i) For every module natural transformation α : H ⇒ H, it holds that

α = trFunA(M,N )
H (α)
dim(H) idH (6.57)

(ii) Let β : H ⇒ H and α : H ⇒ H be module natural transformations, then

dim(H) · trFunA(M,N )
H (β · α) = trFunA(M,N )

H (β) · trFunA(M,N )
H (α) . (6.58)
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Given indecomposable spherical A-module categories M1,M2, ...,Mn+1:

(iii) For composable simple module functors H1, H2, . . . , Hn; where Hk ∈FunA(Mk,Mk+1), it
holds that

Hn H2 H1

Mn+1 Mn · · · M3 M2 M1 =
∑
F

dim(F )
∑
i

Hn H2 H1

F

Hn H2 H1

ψi

ψ∗i
Mn+1 M1 (6.59)

where the sum on F runs over all simple objects in FunA(M1,Mn+1) and {ψ∗i } and {ψi} is
a pair of dual bases of the vector spaces Natmod(Hn◦· · ·◦H1, F ) and Natmod(F,Hn◦· · ·◦H1).

(iv) Assume in the situation of (iii) that M := M1 = Mn+1. Given a module natural trans-
formation η ∈ Natmod(Hn ◦ · · · ◦H1, idM), it holds that

Hn H2 H1

M

η

=
∑
i

Hn H2 H1

Hn H2 H1

ψi

ψ∗iM M

η

(6.60)

for a pair {ψ∗i } and {ψi} of dual bases of the vector spaces Natmod(Hn ◦ · · · ◦H1, F ) and
Natmod(F,Hn ◦ · · · ◦H1).

Proof.

(i) The statement is simply Proposition 6.3 (i) applied to the category FunA(M,N ) with
associated Calabi-Yau structure given by (6.45).

(ii) It directly follows from (i).
(iii) The statement is a slight generalization of [BK, Lemma 1.1] to this 2-categorical situation

and follows from semisimplicity. Without loss of generality, it is enough to prove the case
n = 1 for every simple K ∈ FunA(M1,Mn+1). In that case, Natmod(K,F ) is non-zero
and one-dimensional only for F ∼= K, then ψ ◦ ψ∗ = λ. idK for some λ ∈ k∗. Therefore,
λ dim(K) = tr(ψ ◦ ψ∗) = tr(ψ∗ ◦ ψ) = 1, which produces the factor of dim(K) on (6.59).
Since we are working on a semisimple setting, extending the previous argument to direct
sums implies the full statement.

(iv) From Schur’s lemma, Natmod(F,1M) = 0 in case F is not isomorphic to the identity
functor. Additionally, by the normalization condition dim(1M) = 1 and thus the claim
follows from (iii).



Chapter 7

State sum construction for oriented
manifolds

State sum constructions are a fundamental source of topological invariants for oriented man-
ifolds. The classical case in three dimensions is the Turaev-Viro construction [TV] based on
the structure of a spherical fusion category. In the last years, the story has been extended to
four dimensions: The higher structure of a fusion 2-category has been introduced and, together
with an adequate 2-spherical structure, it has been used for the construction of topological
invariants of four-dimensional oriented manifolds [DR]. An interesting aspect of this work is
the role played by the notion of idempotent completion. In the same way that the idempotent
completion of a semisimple algebra is its category of modules, the 2-category underlying any
fusion 2-category can be obtained as some 2-idempotent completion of a multifusion category.

In the case of a spherical fusion category A, we would like to consider an adequate 2-
idempotent completion as well. This should be as suitable 2-category of A-modules. We
tentatively consider the pivotal bicategory Modsph(A) of spherical A-module categories studied
in Section 6.4. We regard it as a spherical 2-idempotent completion of A, though the precise
meaning of this is something that remains to be worked out.

In this chapter, we will test this idea by showing that a three-dimensional state-sum con-
struction can be formulated from these data. We expect this construction to be equivalent to
the original Turaev-Viro invariant based on A, but the details of this statement also remain
to be worked out. The main result of the chapter is Theorem 7.8 where we prove that our
construction does not depend on the choice of skeleton used to produce the invariant. This
is a non-trivial insight: this displays that the geometric primary moves on manifold skeletons
interact in synergy with the algebraic structures of the spherical module categories developed
in this thesis. Moreover, as we point out in Remark 7.7, the input of the construction here
presented can be exchanged by a suitable locally Calabi-Yau pivotal bicategory (for instance a
spherical multifusion category), thereby generalizing the Turaev-Viro construction.

7.1 Skeletons on manifolds à la Turaev-Virelizier
In this section we summarize the pertinent definitions about an auxiliary datum on a manifold
called skeleton and introduced in [TV, Sec. 11].

Definition 7.1. [TV, Sec. 11.1]

93
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(i) A graph is a topological space obtained from a disjoint union of intervals [0, 1] by iden-
tifying endpoints. The images of the intervals are called the edges of the graph and the
endpoints are called vertices. Each edge connects two (possibly coinciding) vertices, and
each vertex is incident to at least one edge. The images of the half-intervals [0, 1

2 ] and
[1
2 , 1] in the graph are called half-edges.

(ii) A 2-polyhedron S is a compact topological space with the property that it can be trian-
gulated using a finite number of simplices of dimension 2 or lower.

(iii) A stratification on a 2-polyhedron S is a graph S(1) embedded in S such that S\Int(S) ⊂
S(1), where the interior Int(S) of S is the set of points in S that have a neighbourhood
homeomorphic to R2.

(iv) Given a stratified 2-polyhedron S, the edges and vertices of the graph S(1) are called edges
and vertices of S and the sets containing them are denoted by v(S) and e(S), respectively.
The connected components of S \S(1) are called the regions of S. The finite set of regions
of S is denoted by Reg(S).

(v) A branch of a stratified 2-polyhedron S at an edge l ∈ e(S) is a germ of a region r ∈ Reg(S)
adjacent to l, i.e. a homotopy class of embeddings σ : [0, 1) → S such that σ(0) ∈ l and
σ(0, 1) ⊂ S\l. The set of branches at an edge l ∈ e(S) is denoted by Sl.

(vi) An orientation of a stratified 2-polyhedron S is an orientation of the surface S \S(1), i.e.
a choice of orientation for each region of S.

(vii) The boundary ∂S of a stratified 2-polyhedron S consists of the edges adjacent to only one
region of S.

Definition 7.2. [TV, Sec. 11.2.1] Let M be a closed 3-manifold. A skeleton of M is an oriented
stratified polyhedron S embedded in M such that ∂S = ∅ and M \S is a disjoint union of open
3-balls.

The set of open 3-balls determined by an skeleton S of M (also called the 3-cells of (M,S))
is denoted by |M\S|, and by abuse of notation |M\S| will also denote its cardinality, i.e. the
number of such 3-balls.

We summarize next the study [TV, Sec. 11.3.1] of local transformations on skeletons known
as moves. Two arbitrary skeletons S and S ′ of a closed 3-manifold are connected by a finite
sequence of so-called primary moves: These occur locally on a subset of M represented in what
follows by a plane consisting of regions adjacent to common connected components of M\S.

T0 : The bubble move can be made by removing an open disk from a region in a first step and
gluing afterwards a sphere along the equator to the boundary of the removed disk.

A new vertex and an edge along the equator of the sphere are added to S ′ and thus
|v(S ′)| = |v(S)|+1 and |e(S ′)| = |e(S)|+1. The hemispheres are new regions |Reg(S ′)| =
|Reg(S)|+ 2 and the 3-ball inside the sphere is an additional 3-cell |M\S ′| = |M\S|+ 1.
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T1 : The phantom edge move adds a new edge by gluing its endpoints to two existing distinct
vertices of S. We have that |e(S ′)| = |e(S)|+ 1.

No vertices are added |v(S ′)| = |v(S)| and depending whether the regions adjacent to
the new edge coincide or not we have that |Reg(S ′)| = |Reg(S)|(or + 1). The number of
3-cells is preserved |M\S ′| = |M\S|.

T2 : The contraction move collapses an edge in S with distinct endpoints into a single point.

Consequently, the number of vertices and edges decrease by one |v(S ′)| = |v(S)| − 1
|e(S ′)| = |e(S)| − 1. The regions and 3-cells are preserved: |Reg(S ′)| = |Reg(S)| and
|M\S ′| = |M\S|.

T3 : The percolation move pushes a branch across a vertex v in S. An open disk whose
boundary contains v is removed from a branch. The boundary of the removed disk is
glued on another branch at v. This creates a new edge |e(S ′)| = |e(S)|+1 whose endpoints
are both v. The disk bounded by this edge is a new region |Reg(S ′)| = |Reg(S)|+ 1.

There is no change in vertices |v(S ′)| = |v(S)| or in 3-cells |M\S ′| = |M\S|.

Theorem 7.3. [TV, Thm. 11.1] Any two skeletons of a closed 3-manifold M can be related by
primary moves.
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7.2 The state sum invariant
Consider an oriented closed 3-manifold M with an oriented skeleton S. We construct a scalar
invariant of M following very closely the procedure in [TV, Sec. 13.1.1]. The main difference
is that our input will be a special type of pivotal bicategory, which will require additional
considerations.

Let A be a spherical fusion category and consider the pivotal bicategory Modsph(A). We
fix a choice of representatives of the equivalence classes of simple objects in the 2-category
Modsph(A) and denote by Irr Modsph(A) the set of representatives. The construction consists
of multiple steps described next.

1. Labeling: We define a labeling on (M,S) as a pair ϕ := (ϕ3, ϕ2) of functions of the
following form.

(i) Every 3-cell in |M\S| is labeled by a simple object in Irr Modsph(A), i.e. an inde-
composable spherical A-module category. This defines the first function

ϕ3 : |M\S| −→ Irr Modsph(A) . (7.1)

(ii) Every region r ∈ Reg(S) is adjacent to two 3-cells. The orientation on r and the
global orientation of the 3-manifold M determine a direction normal to r, and thus
we could say that one 3-cell Pr is to the ”right” of the region and the other 3-cell
Λr is to the ”left”.

We label the region r with a simple object H ∈ FunA(ϕ3(Λr), ϕ3(Pr)), i.e. a sim-
ple A-module functor between the spherical module categories labeling the 3-cells
adjacent to r. This assignment determines the second function

ϕ2 : Reg(S) −→ Irr
⊕
|M\S|

FunA
(
ϕ3(Λr), ϕ3(Pr)

)
. (7.2)

For now let us fix such a labeling ϕ := (ϕ3, ϕ2) on (M,S).

2. Assignment of vector spaces: We assign to each half-edge l ≡ (l, v) of the skeleton
S a vector space Vl. For this purpose we make use of the set Sl of branches at l, see
Definition 7.1 (v).
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(i) Each branch r ∈ Sl at the edge l is contained in a region r̃ bounding l. We assign
to r a label depending on both the label of the region r̃ and a sign δr. The value of
the sign is given by δr = +1 in case the orientation of r restricts to the orientation
of l and δr = −1 otherwise.

Let H ∈ FunA(ϕ3(Λr̃), ϕ3(Pr̃)) be the label of the region r̃∈Reg(S). Then the
branch r gets labeled by

Hδr =
H , if δr = +1
Hra , if δr = −1

(7.3)

(choosing right adjoints instead of left adjoints is simply a mere convention since
the pivotal structure on the bicategory identifies these two options.)

(ii) The global orientation of the 3-manifold M together with the orientation of l deter-
mine a direction on a circle around the half-edge l. This defines a cyclic order on
the set of branches Sl = {r1, ..., rn} bounding l.

We pick a starting branch r1 and compose the labels Hδi
i of the adjacent branches

ri following the cyclic order on Sl. The resulting composition is an endofunctor of
the spherical module category labeling the 3-cell to the left of r1. We assign to l a
2-hom-space in the pivotal bicategory Modsph(A).

7−→ Natmod
(
1M1 , H

δn
n ◦ · · · ◦Hδ1

1

)
(7.4)
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This vector space only depends up to canonical isomorphism on the cyclic order of
Sl and not on the linear order determined by the starting branch. More explicitly,
this vector space can be defined as the tip of the limit cone of the diagram defined
by the choices of linear orders compatible with the cyclic order of Sl [FSY, Def. 2.9]:

Vl := limρ Natmod
(
1Mρ(1) , H

δρ(n)
ρ(n) ◦ · · · ◦H

δρ(1)
ρ(1)

)
(7.5)

where ρ is a cyclic permutation of the ordered tuple (1, ..., n).

Each edge in S consists of two half-edges l and l. Tensoring over all edges gives a vector
space associated to the labeled skeleton S on M :

V (M,S, ϕ) :=
⊗
l∈e(S)

Vl ⊗k Vl . (7.6)

3. Distinguished vector: For each edge in the skeleton, we can realize the vector spaces
Vl and Vl associated to its half-edges l and l as hom-spaces in a dual category A∗M. Since
Modsph(A) is locally Calabi-Yau, in particular A∗M is Calabi-Yau (see Section 6.4) and
thus the non-degeneracy condition of the traces yields an isomorphism Vl

∼= V ∗l . The
coevaluation morphism determines a vector ∗l ∈ Vl ⊗k Vl.
We obtain a distinguished vector by tensoring over all edges in S:

∗ϕ :=
⊗
l∈e(S)

∗l ∈ V (M,S, ϕ) . (7.7)

4. Evaluation at vertices: For any given vertex v ∈ v(S), consider a ball Bv in M around
v. The intersection Bv ∩ S with the skeleton is a closed graph G on the sphere S2 = ∂Bv

bounding the ball Bv: Denote by ev(S) the set of half-edges with endpoint being the vertex
v. The sphere intersects the edges in ev(S) at points and the regions bounding these edges
at strands connecting the corresponding points. This intersection generates a graph G on
the sphere. The labels on the regions of the skeleton Reg(S) and the distinguished vector
∗ϕ induce a labeling of G. An intersecting 3-cell of the skeleton meets the sphere at a
patch, i.e. a connected component of S2 \ G. Similarly, the labels of the 3-cells induce a
label on the patches. We obtain a closed Modsph(A)-labeled graph on the sphere.

(7.8)

The structure on the 2-category Modsph(A) allows to define a graphical calculus and
evaluate closed graphs on the sphere to a scalar. Let G be such a labeled graph. First,
we choose one of the patches on the sphere, i.e. one connected component of S2 \ G. By
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puncturing the chosen patch, we obtain a closed graph G̃ on the plane. The labeling on
the graph determine a planar string diagram in Modsph(A).

7−→ Natmod (1M1 , 1M1)
tr
A∗M
1M−−−−−→ k (7.9)

The string diagram represents a 2-endomorphism which is invariant under isotopies of
the graph G̃ on the plane. Such invariance in general pivotal bicategories is established
in [FSY, Prop. 2.2]. Further, we trace the associated 2-endomorphism into an scalar by
means of the local Calabi-Yau structure, i.e. of the trace map of the corresponding Hom-
category. This value will be independent on the choice of patch used to transition from
the graph G on the sphere to a graph G̃ on the plane, see Lemma 7.4 below. Altogether,
the graphical calculus on the sphere determines a linear map by tensoring over all the
vertices of the skeleton

trϕ : V (M,S, ϕ) =
⊗

v∈v(S)

⊗
l∈ev(S)

Vl −→ k . (7.10)

Lemma 7.4. The scalar assigned to a closed Modsph(A)-labeled graph G on the sphere
S2 is invariant under isotopies of G and independent of the patch chosen to define it.

Proof. Without loss of generality, assume that the graph G determines two patches on
the sphere. Then Proposition 6.46 ensures that by puncturing either patch we obtain
the same scalar. In case of a larger number of patches, the result follows by transitively
applying the previous argument to any pair of patches adjacent to a common strand in
the graph.

5. State sum: Now we define the state sum invariant as a weighted average of the value of
all possible labelings on (M,S): ∑

ϕ3

ω3
∑
ϕ2

ω2 · trϕ(∗ϕ) . (7.11)

Given a labeling ϕ = (ϕ3, ϕ2) we define the weight ω2 associated to the function (7.2) by

ω2 :=
∏

r∈Reg(S)
dim (ϕ2(r))χr (7.12)

where for a label ϕ2(r) = H ∈ FunA(M,N ), dim(H) is given by (6.7) and χr denotes
the Euler characteristic of the region r ∈ Reg(S). For the function (7.1) we designate a
weight ω3 given by

ω3 :=
∏

Γ∈ |M\S|

(
dimA∗ϕ3(Γ) ·#ϕ3(Γ)

)−1
(7.13)

where for M ∈ Modsph(A) the value dimA∗M is the categorical dimension of the fusion
category A∗M and #M is the number of equivalence classes of simple objects in the
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connected component of M, i.e. the number of equivalence classes of simple objects
N ∈Modsph(A) for which there are non-zero 1-morphisms M→N .
In our setting, these two values simplify: For any indecomposable A-moduleM its cate-
gorical dimension satisfies dimA∗M = dimA [EGNO, Prop. 9.3.9]. Additionally, since A
is fusion, #M =: #A is equal to the number of equivalence classes of indecomposable
A-module categories which is a finite number according to [EGNO, Cor. 9.1.6 (ii)]. This
simplifies the value of ω3 to the expression

ω3 =
(
dimA ·#A

)−|M\S|
. (7.14)

Definition 7.5. Let M be a closed oriented 3-manifold together with a skeleton S and A be
a spherical fusion category. Denote by C = Modsph(A) the 2-category of spherical A-modules.
The state sum assigned to M is the scalar

StC(M,S) :=
(
dimA ·#A

)−|M\S| ∑
ϕ=(ϕ3,ϕ2)

ω2 · trϕ(∗ϕ) ∈ k , (7.15)

where the sum runs over all possible labelings (7.1) and (7.2), the value of ω2 is given by (7.12),
dimA denotes the categorical dimension of A and #A is the number of equivalence classes of
indecomposable A-module categories.

Remark 7.6. The Turaev-Viro construction based on a spherical fusion category A appears in
the state sum (7.15) as the term corresponding to the constant labeling ϕ3 equal to the regular
spherical module category AA.

Remark 7.7. The state sum invariant of Definition 7.5 can be generalized by changing the
input to a certain pivotal bicategory C that resemble a Calabi-Yau category in the bicategorical
setting. For instance, consider a multifusion category C = ⊕i,j∈I Ci,j together with a choice of
spherical structure for each fusion category Ci := Ci,i and a spherical structure on the (Ci, Cj)-
bimodule category Ci,j for all i, j ∈ I. There is a bicategory C associated to C [EGNO, Rem.
4.3.7]. The objects of C are elements of I, the Hom-categories are given by C(j, i) := Ci,j and the
tensor product of C furnishes the horizontal composition of C. By assumption each Ci,j comes
the structure of a spherical bimodule, which together endow the bicategory C with a pivotal
structure. Furthermore, by [EGNO, Prop. 7.17.5] each Ci,j is invertible and consequently,
Proposition 6.14 implies that C is locally Calabi-Yau.

Theorem 7.8. Given a closed oriented 3-manifold M , the state sum scalar StC(M,S) is inde-
pendent of the choice of skeleton S.

Proof. By means of Theorem 7.3 it is enough to check the invariance under the primary moves.
This is verified in further detail in Appendix B.



Appendix A

String diagrams in pivotal bicategories

The graphical notation of morphisms in a pivotal 2-category is a useful tool for making com-
putations. A practical survey for such graphical calculus can be found for instance in [FSY,
Sec. 2]. In this appendix we settle the conventions to be used in the document.

Given a 2-category F we have the following graphical representations on the plane:

(i) Objects: X ∈ F is represented by a label on a region of the plane.

(ii) For a 1-morphism H ∈ F(X ,Y) we draw a line between appropriately labeled regions.
The diagram is meant to be read from right to left, i.e the source of H is on the right of
the line and the target on the left.

H

H

Y X (A.1)

The identity 1-morphism 1X ∈ F(X ,X ) is depicted by a transparent line.

(iii) A 2-morphism α : H1 ⇒ H2 is represented by a rectangular box between the corresponding
lines where the source of α is the line at the bottom and the target the one at the top. In
order to simplify some diagrams, the rectangular box is often replaced by a labeled dot.

H1

H2

αY X or simply

H1

H2

αY X (A.2)

The identity 2-morphism idH : H ⇒ H is represented by (A.1).
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(iv) Horizontal and vertical compositions of 2-morphisms in F are depicted by

F1

F2

γZ Y

H1

H2

α X and

H1

H3

H2

α

β

Y X (A.3)

correspondingly, i.e. the first diagram represents the 2-morphism γ ◦α : F1 ◦H1 ⇒ F2 ◦H2
and the second diagram stands for β · α : H1 ⇒ H3.

Recall that there is a notion of duals for a 1-morphism in a 2-category F, see for instance [Sc2,
App. A.3], we will use the following graphical description.
(v) A right dual to a 1-morphism H ∈F(X ,Y) consists of a 1-morphism H∗ ∈ F(Y ,X ) and

2-morphisms evH : H∗ ◦H =⇒1X and coevH : 1Y =⇒H ◦H∗ depicted by

H∗ H

Y

X

and

H H∗

X

Y

(A.4)

These pair of 2-morphisms obey appropriate snake relations.
(vi) Similarly, a left dual to H ∈F(X ,Y) is a 1-morphism ∗H ∈F(Y ,X ) together with 2-

morphisms ev′H : H ◦ ∗H =⇒1Y and coev′H : 1X =⇒ ∗H ◦H portrayed by

H ∗H

X

Y

and

H ∗H

Y

X
(A.5)

If the bicategory F admits dualities for every 1-morphism one can further consider a pivotal
structure, i.e. pseudo-natural equivalence

P : idF
'==⇒ (−)∗∗ (A.6)

obeying PX = idX for every object X ∈F.
(vii) Given a 1-morphism H ∈F(X ,Y), the component PH : H =⇒ H∗∗ is depicted by

H

H∗∗

Y X
(A.7)

or, in case the labeling of the lines is clear, the circumference is not made explicit.
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A.1 The pivotal 2-categories M and Modpiv(A)
We look a bit closer into the graphical calculus on the bicategories of interest for this thesis.
Any tensor category A can be seen as a bicategory A with a single object also known as its
delooping. The End-category of the unique object in A is the category underlying A, and the
composition between 1-morphisms a, b ∈ A is given by the tensor product a ◦ b := a ⊗ b. A
morphism f : a⊗ b→ c in A is graphically represented by

a b

c

f (A.8)

as a string diagram in A. Left and right duals in A correspond to bicategorical left and right
duals in A. A pivotal structure on A endows the bicategory A with a pivotal structure in the
bicategorical sense, see Remark 4.5.

A second pivotal bicategory of interest is the 2-category Modpiv(A) of pivotal modules over
a pivotal tensor category discussed in Section 4.3. In this 2-category the right dual of a module
functor is its left adjoint and vice versa. The conventions presented in this appendix for drawing
string diagrams are set up for this pivotal 2-category.

Lastly, recall that associated to an invertible bimodule CLD there is a strong Morita context
(C,D,L,K) which defines a two-object bicategory M as explained in Section 2.1. Moreover,
owing to Theorem 3.2, M is a bicategory with dualities. Consequently, objects in L and the
actions of C and D can be graphically represented in terms of string diagrams. For instance
given morphisms f ∈ HomL(x, y) and g ∈ HomD(d1, d2) the diagram

x

y

y∨

f− + −

d1

d2

g − (A.9)

stands for the morphism evy . idd2 ◦ idy∨ � f / g : y∨�x / d1 → 1⊗D d2 in D.
Let M1(op) be a bicategory with the same objects than M, but where the Hom-categories

are given by M1(op)(x, y) = M(y, x), this means that only the 1-morphisms are reversed. The
bicategoryM1(op) can be embedded into the 2-category Modex(C) of exact C-module categories,
i.e. there is a fully faithful pseudo-functor

M
1(op) −→Modex(C) (A.10)
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sending + 7→ C and − 7→ L at the level of objects, and equivalences at the level of Hom-
categories (Theorem 2.11) given by the assignments

M
1(op)(+,+) = C ' FunC(C, C) , M

1(op)(+,−) = L ' FunC(C,L) ,
c 7→ − ⊗ c y 7→ − . y

M
1(op)(−,−) = D ' FunC(L,L) , M

1(op)(−,+) = K ' FunC(L, C)
d 7→ − / d k 7→ −	 k .

(A.11)

Under this identifications one might very well represent the morphism (A.9) by the diagram

x

y

y∨

fL C L

d1

d2

g L (A.12)

as a 2-morphism in the 2-category Modex(C). Furthermore, in the pivotal setting the bicategory
M inherits a pivotal structure according to Theorem 4.8 and the pseudo-functor factors through
a pivotal pseudo-functor

M
1(op) −→Modpiv(C) . (A.13)



Appendix B

Skeleton independence of the state sum

Proof of Theorem 7.8

Theorem 7.8. Given a closed oriented 3-manifold M , the state sum scalar StC(M,S) is inde-
pendent of the choice of skeleton S.

Proof. According to Theorem 7.3, every pair of skeletons on M can be related by a sequence of
the primary moves described in Section 7.1. Consequently, the invariance of StC(M,S) under
the primary moves implies the independence of skeleton in the construction. We check next
the invariance under primary moves.
Let us start with the percolation move T3 : S → S ′. Fix a labeling ϕ of the skeleton S. The
move pushes a branch across a vertex v ∈ v(S). This creates a new edge whose endpoints are
both equal to v. This edge bounds a new region. Each simple object J ∈ FunA(N ,N ) assigned
to the region created by the move extends ϕ to a labeling of the new skeleton S ′.

(B.1)

The contribution of the vertex v to the state sum before the move is the value of the graph on
the sphere, namely the trace of the string diagram

(B.2)

where α, β, γ, δ are the module natural transformations coming from the distinguished vector.
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The contribution of v after the move is the trace of the string diagram

∑
J ∈ IrrA∗N

dim(J) (B.3)

where ψ and ψ∗ are dual bases since the two half-edges associated to the new edge in S ′ share
endpoint. The value dim(J) comes from the factor in ω2 associated to the new region, and the
sum accounts for all the possible labelings of S ′ extending ϕ. It follows from Proposition 6.18
(iii) that

trA
∗
N

1N

  =
∑

J ∈ IrrA∗N

dim(J) trA
∗
N

1N

  (B.4)

proving the invariance under the percolation move T3.
Now, for the contraction move T2 : S → S ′, we fix again a labeling ϕ of S. The move collapses
an edge l ∈ e(S) into a single vertex v ∈ v(S ′).

(B.5)

The contribution of the endpoints of the edge l before the move is

trA
∗
N

1N

  · trA
∗
N

1N

  (B.6)

where ψ and ψ∗ are again dual bases since they come from the two half-edges associated to l.
By the multiplicativity of the trace we have that (B.6) equals to

tr
A∗N
1N

  = trA
∗
N

1N

  (B.7)

where the last equality follows from Proposition 6.18 (iv). On the other hand, the graph on the
sphere around the vertex v after the move is again of the form (B.2). Hence, the contribution
of v is precisely the right hand side of (B.7), which proves invariance under T2.
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For the bubble move T0 : S → S ′, we consider a labeling ϕ = (ϕ3, ϕ2) of S once more.
The interior of the newly created bubble is an additional 3-cell of S ′. Each choice of spherical
module categoryN ∈ Irr Modsph(A) extends the function ϕ3 to the first component of a labeling
ϕ′ = (ϕ′3, ϕ′2) of S ′.

Now, fix such a function ϕ′3 or equivalently such a spherical module N . The choice of
simple module functors H1 ∈ FunA(M,N ) and H2 ∈ FunA(N ,L) extend the function ϕ2 to
the second component of a labeling of S ′.

(B.8)

The new edge l ∈ v(S ′) created along the equator has coinciding endpoints, namely the new
vertex v ∈ v(S ′), and thus dual bases label its half-edges. Consequently, the value of the graph
around v equals the dimension of the vector space Natmod(1N , Kδ ◦Hδ2

2 ◦Hδ1
1 ) associated to l.

Hence, we have for a fixed ϕ′3 that the contribution of v to the state sum is∑
H1,H2

dim(Hδ1
1 ) dim(Hδ2

2 ) dimkNatmod(1N , Kδ ◦Hδ2
2 ◦Hδ1

1 )

=
∑
H1,H2

dim(H1) dim(H2) dimkNatmod(1N , K ◦H2 ◦Hra
1 )

=
∑
H2

dim(H2)
∑
H1

dim(H1) dimkNatmod(H1, K ◦H2)

=
∑
H2

dim(H2) dim(K ◦H2) = dim(K)
∑
H2

dim(H2)2

=dim(K) dim FunA(N ,L) = dim(K) dimA∗N

(B.9)

where the first step makes use of Proposition 6.17 (i) and in the second equality we use that
H1 and Hra

1 are duals. The third step follows from (6.10). The fourth equality uses Propo-
sition 6.17 (iii). Finally, we use the definition of the categorical dimension and the fact that
dim FunA(N ,L) = dimA∗N according to [ENO, Prop. 2.17].

Now, the sum over all ϕ′3 contributes with a factor of #A which together with the factor
dimA∗N = dimA from (B.9) cancel out the prefactor in ω arising from the inclusion of the new
3-cell. The factor of dim(K) in (B.9) gives account of the change in Euler characteristic of
the region r labeled by K (removing a disk from r reduces χr by 1), which demonstrates the
invariance under T0. Invariance under the move T1 is proven in complete analogy to the proof
in [TV, Thm. 13.1] by using Proposition 6.17 (ii) and Proposition 6.18 (i) and (iv).
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