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Abstract

In the first part of this thesis we introduce the Two Higgs Doublet Model (2HDM)

with a complex singlet and a Z3 Symmetry (2HDMS). We derive a physical input basis

and discuss theoretical constraints. These include unitarity constraints, boundedness

from below and the stability of the electroweak vacuum. Furthermore we use

experimental constraints from flavor physics, Higgs boson searches and measurements

of the Standard Model Higgs boson to constrain the parameter space in this model.

In this model we discuss a 3σ signal reported by CMS and LEP and interpret it as

a light Higgs boson with a mass of 95 GeV. For this singlet-like state we evaluate

the experimental coupling uncertainties at a future linear collider. Following that,

we compare this to the similar N2HDM which is the extension of the 2HDM with a

real singlet. We make first efforts to exploit experimental methods for distinguishing

both models. We find that the 2HDMS and the N2HDM can both accomodate

the excesses at LEP and CMS simultaneously and are difficult to distinguish using

the evaluation of coupling uncertainties at a linear collider. Further possibilities

to distinguish both models using the properties of the CP-odd Higgs bosons are

discussed.

In the second part of the thesis I explore the impact of a recent analysis published by

CMS with searches for heavy Higgs bosons in final states with up to four top quarks.

The original Beyond the Standard Model interpretation of the analysis is limited

to strictly aligned CP-even and CP-odd Higgs bosons and to masses between 350

and 650 GeV. Furthermore it places strong constraints on the important quantity

tanβ. In the 2HDM low values of this quantity are often needed to describe scenarios

with baryogensis. We perform a recasting of this analysis with the Monte-Carlo-

Event generator Madgraph5 and the code Madanalysis to extend the analysis for

more general types of models, such as models with CP-violation and higher masses

of up to 1 TeV. We obtain efficiencies in the most sensitive signal region and derive

fit functions as a function of the mass. These fit functions are used to derive the

efficiency as a function of the CP-even, CP-off top Yukawa and gauge-boson couplings.

We implement our results in the code Higgsbounds, which can test models with

multiple scalars against a large number of Higgs boson searches from LEP, CMS and

Atlas. We then use this implementation to study the impact of the four-top analysis

on the low tanβ region in the 2HDM, its singlet extensions and the complex 2HDM

(C2HDM).
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Zusammenfassung

In dem ersten Teil dieser Arbeit behandeln wir die erste Beschreibung des Two Higgs

Doublet Models (2HDM) mit einem komplexen Singlet und einer Z3 Symmetrie.

Wir leiten eine Basis mit physikalischen Massen her und diskutieren theoretische

Einschränkungen. Diese beinhalten Unitarität, Boundedness-from-Below und die

Stabilität des elektroschwachen Vakuums. Anschließend diskutieren wir experi-

mentelle Einschränkungen, gegeben durch Suchen nach zusätzlichen Higgs Bosonen

und Messungen der Eigenschaften des Standard Model Higgs Bosons. Wir nutzen

dieses Model um ein 3σ Signal, welches von CMS und LEP beobachtet wurde, als

ein leichtes Higgs Boson mit einer Masse von 95 GeV zu beschreiben. Wir evaluieren

die Genauigkeit der Bestimmung der Kopplungen dieses leichten Higgs Bosons im

Kontext eines zukünftigen linear Colliders. Wir vergleichen unsere Ergebnisse mit

dem verwandten N2HDM, welches die Erweiterung des 2HDM mit einem reellen

Singlet ist. Wir beobachten, dass beide Modelle den Excess beschreiben können und

nur schwer durch die Messung der Genauigkeit der Kopplungen zu unterscheiden sind.

Wir beschreiben weitere Möglichkeiten mit Hilfe der Eigenschaften der CP-ungeraden

Higgs Bosonen zur Unterscheidung beider Modelle.

In dem zweiten Teil dieser Arbeit diskutieren wir die Auswirkungen einer kürzlich

veröffentlichten Analyse von CMS, die die Suche nach schweren Higgs Bosonen mit

Endzuständen bis zu vier top quarks behandelt. Die originale Analyse beschränkt sich

auf die Suche nach reinen CP-geraden und CP-ungeraden Higgs Bosonen ohne die

Möglichkeit von gemischten Zuständen. Sie setzt weiterhin starke Einschränkungen

im Bereich niedriger tanβ Werte, einer physikalischen Größe, die eine wichtige

Rolle, bei der Beschreibung von Szenarien von Baryogenesis in 2HDMs spielt. Wir

generieren Monte-Carlo-Events mit dem Code Madgraph5 und führen ein Recasting

mit dem Code Madanalysis durch. Dabei erweitern wir die Analyse bezüglich der

Einbindung von CP-gemischten Zuständen. Wir erhalten die Effizienzen in der

sensitivsten Signal Region und leiten Funktionen in Abhängigkeit von der Masse her.

Diese nutzen wir, um die Effizienzen als Funktion der CP-geraden, CP-ungeraden

Top Yukawa and Gauge Boson Kopplung herzuleiten. Wir implementieren dies in

dem Code Higgsbounds, der Modelle mit zusätzlichen Higgs Bosonen bezüglich der

Kompatibilität mit einer großen Anzahl an Suchen nach Higgs Bosonen durch LEP,

CMS und Atlas prüft. Wir nutzen diese Implementierung um die Auswirkung der

vier Top Analyse auf den Bereich kleiner (< 2) tanβ Werte in dem 2HDM, seinen

Singlet Erweiterungen und dem komplexen 2HDM (C2HDM) zu studieren.
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1 Introduction

The discovery of a Higgs boson at the Large Hadron Collider (LHC) marked a

landmark for particle physics. Ten years after its discovery the Higgs program follows

two main avenues: the precise determination of the properties of the discovered

Higgs boson and the search for additional Higgs bosons. So far, neither significant

deviations of the Standard Model (SM) predictions for the discovered Higgs boson

nor evidence for other Higgs bosons has been found.

In recent years, the number of searches and precision measurements has steadily

increased and an even larger amount of experimental results is expected with the

upcoming LHC Run-III and the high-luminosity phase of the LHC (HL-LHC). Corre-

spondingly, it will be an important task to correlate the various results and to inves-

tigate their implications for various models of Beyond-the-SM (BSM) physics.

In this work we will focus on one type of BSM models called Two Higgs Doublet

models (2HDMs). We will study extensions of these types of models with real and

complex singlets. These extensions are the N2HDM (real singlet), which was already

studied in detail in [1], and the 2HDMS (complex singlet), which was introduced

and studied in its most general case in [2]. However, we introduce an additional

Z3-Symmetry to reduce the parameter space and get a Higgs sector similar to the

Next-to-Minimal Supersymmetric Standard Model (NMSSM) (see [3]). This work is

the first time where this model is studied in a broader phenomenological context,

including theoretical constraints, constraints from experiments and the possibility to

embed a light Higgs boson around ∼ 96 GeV, which was reported as a ∼ 3σ local

signal in the diphoton decay mode by CMS in [4] and with a ∼ 2σ local excess at

the Large Electron-Positron Collider (LEP) in [5].

We will discuss these two excesses by accomodating them simultaneously in the

N2HDM and the 2HDMS. We study the suitable parameter space in both models for

describing the excesses and investigate possibilities to experimentally distinguish both

models. Furthermore, we analyse the distinction of Higgs sectors of the N2HDM and

2HDMS at future colliders. We show what can be learned from the measurements of

the couplings at a future e+e− colliders, where we focus on the International Linear

Collider (ILC) with a center of mass energy of
√
s = 250 GeV (ILC250). In this

analysis we show for the first time a phenomenological analysis of this light Higgs

state at ∼ 96 GeV including a calculation of the coupling measurement precision at

the ILC250, which was described for the first time in [6]. We also present further

1



approaches in distinguishing both model realizations.

Another part of this thesis arises as part of the work on the public code HiggsTools

which incorporates the well known codes HiggsBounds and HiggsSignals.

HiggsSignals calculates a χ2 value which quantifies the agreement between the

model prediction and the experimental data, which includes Higgs boson signal

rates and masses at Tevatron and LHC results from ATLAS and CMS experiments.

HiggsBounds checks whether a considered parameter point in a model is in agree-

ment with Higgs boson searches, by comparing the theory predictions for all Higgs

production processes and decay rates to existing searches. The search for contri-

butions of a heavy BSM scalars to four-top final states have been studied by CMS

in [7]. Higgs–top-quark interactions are an especially important part of BSM Higgs

physics. For the discovered Higgs boson, the top-Yukawa coupling is the largest

Yukawa coupling and plays a crucial role in various production and decay modes (see

Sect. 6). While showing no significant over- or under-fluctuation, the upper limits

on cross-section times branching-ratio place a strong lower limit on the important

quantity tanβ in 2HDMs. The analysis excludes tanβ of up to 1.65 for a 2HDM

with a mass degenerate scalar and pseudoscalar Higgs boson. This low tanβ region

is especially interesting for Baryogenesis scenarios in 2HDMs.

We reinterpret this analysis by generating Monte-Carlo Events in the most important

sub- channels that can contribute to the four top cross-section, which are ttH, tWH

and tH production, with Madgraph5 and recast the Events using Madanalysis. We

do this using the Higgs-characterization framework for an arbitrary scalar with

CP -odd and CP -even couplings to top quarks and coupling to vector bosons. We

implement this analysis in HiggsBounds which makes it accessible for a variety

of models, including models with CP -violation and models with deviations from

the alignment limit. We also expand the original mass range of 350 − 650 GeV

up to 1 TeV. Using this analysis we study the impact on the low tanβ region in

a number of models, including the 2HDM, the N2HDM and the complex 2HDM

(C2HDM [8].)

2



Structure of the Thesis

This thesis is structured as follows. In Sect. 2 we give a short overview on the

Standard Model (SM), which represents the best tested theory of particle physics and

is the base for all BSM models. The need for BSM models arises from open questions

that the SM can’t describe. We discuss EW symmetry breaking, the particle content

and a selected number of open questions.

In Sect. 3 we introduce the theoretical context of the 2HDM and its singlet extensions,

the N2HDM and 2HDMS, which this work is focused on. The 2HDMS will be

discussed in greater detail, as this is the first time that this model is described to

an extent suitable for broad parameter scans and phenomenological analyses. We

derive the Z3-symmetric 2HDMS from the work on the most general complex singlet

extension of the 2HDM in [2]. We calculate the mass matrices and a physical input

base. Further, we discuss the properties of the SM like Higgs boson and derive the

alignment limit in the 2HDMS. In the end we discuss differences and similarities of

the 2HDMS and the N2HDM.

In Sect. 4 we discuss the various theoretical and experimental constraints, where

the parameter space of these models has to pass in order to describe scenarios that

could be realized in nature. The theoretical constraints ensure that the potential

parameters fulfill tree-level perturbative unitarity, i.e. controlled growth of scattering

amplitudes with growing energy scale, boundedness from below of the potential

and vacuum stability. Experimental constraints ensure that the properties of the

predicted particles agree with measurements of the observed SM like Higgs boson,

searches for BSM scalars and limits from flavor constraints as well as EW precision

observables.

In Sect. 5 we describe the technical details of the above mentioned excess at 96

GeV reported by CMS and LEP. We study the parameter space which is suitable to

accommodate both eccesses simultaneously in the N2HDM and 2HDMS. We follow up

with an analysis of the coupling measurement precision at the ILC250. Furthermore,

we discuss possibilities to distinguish both model realizations in experiments. In

Sect. 6 we discuss the importance of studying the top-Yukawa interactions in the SM

and the BSM models. We then describe the recasting process we carried out for the

CMS four-top analysis and model applications in the low tanβ region and give more

technical details of our implementation of the four-top analysis in appendix B.
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Part I

The Standard Model
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2 The Standard Model of Particle Physics

The Standard Model (SM) of Particle Physics is a quantum field theory (QFT)

describing the elementary particles in nature and their interactions mediated by the

electroweak force [9–13] and the strong force [14–18]. The SM does not contain a

description of gravitational interactions. In this section an overview of the SM will

be given based on [19–21].

The SM is the most general renormalizable QFT describing the known particle

content and is invariant under the gauge symmetry

SU(3)c ⊗ SU(2)L ⊗ U(1)Y . (2.1)

SU(2)L ⊗ U(1)Y is the gauge group of electroweak interactions operating on left-

handed fermions (subscript L) and fields carrying the hypercharge Y . SU(3)c is the

gauge group of strong interactions operating on fields with color charge c. The fields

of the SM are fermions (spin 1
2
), gauge bosons (spin 1) and a scalar boson (spin

0).

We will first have a look on the consequences of electroweak symmetry breaking on

the bosonic sector of the SM, which is given by the Lagrangian

LEW = −1

4
BµνB

µν − 1

4
W a

µνW
µν
a + |DµΦ|2 − V (Φ), (2.2)

V (Φ) = µ2|Φ|2 + λ|Φ|4. (2.3)

Φ is a complex scalar doublet with Hypercharge Y = 1 under SU(2)L and V (Φ) is

the most general, renormalisable Potential. The covariant derivative Dµ and field

tensors Bµν and W a
µν are given by

Dµ = ∂µ + ig
τa

2
Wµa + ig′

Y

2
Bµ, (2.4)

Bµν = ∂µBν − ∂νBµ, (2.5)

W a
µν = ∂µW

a
ν − ∂νW

a
ν − gfabcWµbWνc. (2.6)

(2.7)
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W a
µν and Bµν are the gauge fields of the symmetry groups SU(2)L and U(1)Y ,

respectively. The τa are the Pauli matrices, i.e. the generators of the SU(2) group,

fabc are the SU(2) structure constants and g and g′ are the SU(2)L and U(1)Y gauge

couplings, respectively. If the quadratic term µ2 < 0, the minimum of the potential

is

⟨Φ⟩ =
1√
2

0

ν

with ν =

√
−µ2

λ
, (2.8)

where the vev, ν ∼ 246 GeV, can be determined experimentally by measuring the

Fermi constant GF in the muon decay. The doublet field Φ can be expanded and

expressed in terms of the vacuum expectation value (vev), the Higgs field h and three

Goldstone bosons ϕ1,2,3,

Φ =
1√
2

 ϕ1 + iϕ2

ν + H + iϕ3

 . (2.9)

The three massless Goldstone bosons are absorbed as longitudinal components of the

three massive gauge bosons W±
µ , Zµ and the massless photon Aµ. The eigenstates

are given by

W±
µ =

1√
2

(W 1
µ ± iW 2

µ), (2.10)

Zµ = cwW
3
µ − swBµ, (2.11)

Aµ = swW
3
µ + cwBµ. (2.12)

We have introduced the weak mixing angle θW = arctan (g′/g), with sw = sin(θW )

and cw = cos(θW ). The Lagrangian describing the Higgs-gauge boson interaction

can now be given as

Lhg =

[
M2

WW+
µ W−µ +

1

2
M2

ZZµZ
µ

](
1 +

H

v

)2

8



− 1

2
M2

HH
2 − λSM

hhh

3!
H3 − λSM

hhhh

4!
H4,

where

MW =
1

2
gv, MZ =

1

2
v
√
g2 + g′2, (2.13)

MH =
√

2λv, λSM
hhh = 3

M2
H

v
, λSM

hhhh = 3
M2

H

v2
. (2.14)

The two massive gauge bosons are related via

MW

MZ

=
g√

g2 + g′2
= cw. (2.15)

We will now briefly discuss the implications of EWSB on the fermion sector. The

Yukawa interaction terms for the first generation of fermions are given by the

Lagrangian

L = yuQ̄LΦcuR + ydQ̄LΦdR + yeL̄LΦeR + h.c., (2.16)

where Φc = −iτ2Φ
∗. A SU(2) transformation to the unitarity gauge brings Φ into

the form

Φ =
1√
2

 0

v + H

 (2.17)

.

We can insert Eq.(2.17) into Eq.(2.16) and obtain

L = muūu

(
1 +

H

v

)
+ mdd̄d

(
1 +

H

v

)
+ meēe

(
1 +

H

v

)
(2.18)

where we define x̄x = x†
LxR + x†

RxL and mx = yxv/
√

2 with x = u, d, e. When

this is extended to the three-family case, the Yukawa couplings yu,d,e become 3 × 3

matrices.

9



In Tab. 1 we summarize the resulting field content with the corresponding generations

and their representation in the SM gauge groups.

gauge/matter Field generations UY (1) SUL(2) SUc(3)

B 1 0 1 1

W 1 0 3 1

G 1 0 1 8

q

u

d


L

,

c

s


L

,

t

b


L

1/6 2 3

l

ντ

τ


L

,

νµ

µ


L

,

νe

e


L

-1/2 2 1

d dR, sR, bR 1/3 1 3

u uR, cR, tR -2/3 1 3

e τR, µR, eR 1/2 2 1

Φ 1 1/2 2 1

Table 1: The Standard Model Field content categorized into the gauge and matter fields
(left column). The last row represents the Higgs doublet, which contains the only scalar
degree of freedom. The middle column shows the number of generations for each field and
the notation used to distinguish each generation. The L and R denote respectively left-
and right-handed states. The last three columns identify their representation in the SM
gauge groups.

2.1 SM Higgs boson production and decay at the LHC

The Higgs boson was discovered at the LHC in pp collisions. The main produc-

tion mechanisms are gluon fusion (ggF ), Vector-boson fusion (V BF ), production

associated with a gauge boson (V H), a pair of top quarks (tt̄H) or with a single

top quark (tqH). The corresponding Feynman diagrams are shown in Fig. 1. In

Fig. 2 (left) the contribution of these subchannels to the SM Higgs boson production

cross sections is shown as a function of the center of mass energy
√
s. The blue line

corresponds the production cross section via gluon fusion. The red line shows the

same for Vector-boson fusion. The green and grey line show the cross section for

production associated with a W or Z boson respectively. The pink and dark violet

lines correspond to the cross section for Higgs production with a pair of bottom or
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top quarks respectively, whereas the light violet line shows the same for production

with a single top quark [22].

On the right of Fig. 2 the branching ratios including QCD and EW corrections are

shown for the decay of the SM Higgs boson. The dominant decay modes are h → bb̄,

h → WW , h → gg, h → τ τ̄ , h → cc̄ and h → ZZ [22].

2.1.1 SM Higgs Pair Production and Self Coupling

The measurement of the Higgs boson trilinear and quartic self couplings are an

important direct probe of the SM. The tree level prediction from the SM are given

in Eq. (2.14). Reconstructing the Higgs scalar potential will help to deepen our

understanding of the EW phase transition.

The trilinear and quartic self couplings could in principle be measured directly

using double and triple Higgs production processes. However, the hhh final state

is constrained from very small production rates and intricate final states at the

LHC [22]. The cubic self coupling can be constrained through measurements of

double Higgs production at a hadron collider, where the production is dominated

by gluon fusion gg → hh and at a lepton collider via Higgs-strahlung e+e− → Zhh

especially at low energies, or V BF e+e− → hhνeν̄e at higher energies of ≥ 1 TeV.

The currently strongest limit at 95% C.L. on the trilinear Higgs self coupling was

reported by ATLAS [23] at

−0.4 < κλ < 6.3, (2.19)

where κλ = λhhh/λ
SM
hhh.

2.2 Open Problems in the Standard Model

Although the SM is in very good agreement with a large number of experimental

observations, there are several shortcomings of the SM, which imply that there

must be physics beyond the SM (BSM). We already mentioned that the SM doesn’t

contain a description of gravitational interactions. In the following we will a give an

overview on further open problems in particle physics which can not be described by

the SM.
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Figure 1: Main leading order Feynman diagrams contributing to the Higgs boson pro-
duction at the LHC via (a) gluon fusion, (b) Vector-boson fusion, (c) Higgs-strahlung (or
associated production with a gauge boson at tree level from a quark-quark interaction), (d)
associated production with a gauge boson (at loop level from a gluon-gluon interaction),
(e) associated production with a pair of top quarks. Taken from [22].

2.2.1 Dark Matter

There is evidence for gravitationally interacting and invisible matter, i.e. not or only

weakly interacting with visible matter. It was first postulated by Zwicky [24,25]. He

measured the speed of individual galaxies in clusters of galaxies und calculated the

mass of these clusters. By determining the mass of the visible matter by measuring the

brightness of galaxies in the clusters he was able to show that typical galaxy clusters

have around ten times more invisible than visible matter. Further astrophysical

evidence for Dark Matter (DM) has since been found e.g. in the rotation curves

of galaxies [26,27], data from weak [28] and strong [29] lensing and measurements

of the cosmic microwave background (CMB) [30]. The following short overview is

based on [22].

One of the most important evidence is the measurement of the rotational curves of

galaxies. The rotational velocity v on a stable Kepler orbit with a radius r scales

with

12



Figure 2: (Left): SM Higgs boson production cross sections depending on the center of
mass energy

√
s for pp collisions. (Right): SM Higgs boson branching ratios for the main

decay channels near the observed Higgs boson mass of mH = 125 GeV. Taken from [22].

v(r) ∝
√

M(r)

r
(2.20)

where M(r) is the mass inside the orbit. Outside the part of a galaxie with visible

matter, one would expect the velocity v to scale with v(r) ∝
√

1/r when all the mass

is inside the orbit with radius r. Instead one finds that v becomes approximately

constant. This implies the existence of a dark matter halo which envelops galaxies

with a mass density ρ ∝ 1/r2. This leads to a lower bound on the Dark matter mass

density of ΩDMh2 ≥ 0.1.

Currently the most accurate value on the DM density comes from measurements of

the cosmic microwave background (CMB) and the spatial distribution of galaxies

leading to a density of

ΩDMh2 = 0.1186 ± 0.0020, (2.21)

where h is the Hubble constant. DM candidates can be included in extensions of

the SM. The particle has to be electrically neutral, a SU(3)c singlet and stable

on cosmological scales. DM particles are allowed to interact with SM particles

with couplings comparable to the weak interaction. Well studied DM candidates

are weakly interacting massive particles (WIMPs). These particles have masses

at the EW scale and couplings comparable to those of the weak interaction. The

13



WIMP-miracle describes the coincidence that these particles are produced in the

early universe as thermal relics and produce a DM relic density in good agreement

with the observed DM density.

There are experimental efforts to search for DM particles via direct and indirect

detection. These searches rely on the scattering process between two DM particles

and two SM particles S through a vertex as shown in Fig. 3.

Figure 3: Scattering process of two DM particles X and two SM particles S.

Indirect detection looks at the annihilation of two DM particles X in cosmic rays.

Additionally one can study the production of dark matter particles at colliders through

initial state radiation pluss missing energy. These are called mono-X searches. Direct

detection relies on the scattering of a dark matter particle off a SM particle, i.e.

heavy nucleons. The Xenon experiment currently gives the strongest bounds for

WIMPs via direct detection, see Fig. 4.

2.2.2 Baryogenesis

The observable universe exhibits a matter-antimatter asymmetry which can be

estimated from the baryon to photon ratio η when assuming that all photons are

created from annihilation processes of baryons. It can be obtained from CMB

measurements [32] and is given by

η =
nb − nb̄

nγ

= 6.1 × 10−10. (2.22)

To realize this baryon-asymmetry, which is necessary for the existence of ordinary

matter, a model has to fulfill the three Sakharov criteria in the early universe. They
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Figure 4: Limit on the dark matter nucleon scattering cross section are 90% confidence
level as a function of the WIMP mass given by the XENON1T experiment [31].

are given by

• Baryon number (B) violation

• C and CP violation

• Departure from thermal equilibrium.

There are two different types of baryogenesis. In leptogenesis [33, 34] the CP-

violating scattering processes of heavy neutrinos induce the baryon asymmetry. In

electroweak baryogenesis the baryon asymmetry is generated through a strong first-

order EW phase transition. Electroweak baryogenesis requries new physics at the

EW scale, which makes it interesting when studying BSM models with extended

Higgs sectors.

In order to realize a first-order EW phase transition in the SM, one would require a

Higgs mass of mH ≤ 60 GeV which does not match the observed mass of mH = 125

GeV. In models with extended Higgs sectors, which are studied in this work, a strong

first-order EW phase transition can be realized (see. e.g. [35] for applications). A

phase transition of this kind will progress with an expanding vacuum bubble which is

out of thermal equilibrium and satisfy the third Sakharov criterion. During this phase

transition baryon number violating sphaleron process will satisfy the first Sakharov

criterion. Finally, when the BSM model introduces CP violating effects this will
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satisfy the second Sakharov criterion and generate a baryon asymmetry [36,37].
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Part II

Extensions of the Standard

Model
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3 Models with extended Higgs-sectors

In this section a description for the Two Higgs Doublet model and its real and complex

singlet extensions is provided. We will discuss the vacuum structure, symmetries,

mass matrices and couplings in the models respectively. Additionally we discuss a

change of the basis from Lagrangian input parameters to physical masses and mixing

angles.

3.1 Two Higgs Doublet models

The 2HDM extends the SM Higgs sector by a second SU(2)L scalar doublet (see [38]

for a detailed review). The most general scalar potential for two Higgs doublets Φ1

and Φ2 is given by:

V =m2
11Φ

†
1Φ1 + m2

22Φ
†
2Φ2 − (m2

12Φ
†
1Φ2 + h.c.) +

λ1

2
(Φ†

1Φ1)
2

+
λ2

2
(Φ†

2Φ2)
2 + λ3(Φ

†
1Φ1)(Φ

†
2Φ2) + λ4(Φ

†
1Φ2)(Φ

†
2Φ1)

+
[λ5

2
(Φ†

1Φ2)
2 + λ6(Φ

†
1Φ1)(Φ

†
1Φ2) + λ7(Φ

†
1Φ2)(Φ

†
2Φ2) + h.c.

] (3.1)

The parameters m2
12 and λ5,6,7 can be complex and may lead to CP-violating scenarios.

Both scalar doublets acquire a vev during EW symmetry breaking. These vevs v1

and v2 have to fulfill

v =
√

v21 + v22 = 174GeV. (3.2)

The ratio of the two vevs v1 and v2 is defined as the parameter tan β as

tan β =
v2
v1
. (3.3)

The terms containing λ6 and λ7 will introduce flavor changing neutral currents

(FCNC) for any coupling of Φ1 and Φ2 to fermions.
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Flavor Changing Neutral Currents

In the the SM we have no tree-level flavor changing neutral currents as a conse-

quence of the SU(2)L ⊗U(1)Y gauge invariance. In the SM FCNCs only appear in

loop-induced processes, which make them tiny but sensitive to BSM contributions.

Considering the 2HDM the most general interaction of the doublets Φ1 and Φ2 to

SM quarks is given by (see section 2 in [39] for more details):

−LY = Q̄L(Xd1Φ1 + Xd2Φ2)d
′
R + Q̄L(Xu1Φ1 + Xu2Φ2)u

′
R (3.4)

where Φc
1(2) = −iτ2Φ

∗
1(2) and the Xi are generic flavor space matrices. After EW

symmetry breaking this leads to the quark mass matrices with q ∈ {u, d}

Mq =
1√
2

(v1Xq1 + v2Xq2). (3.5)

For generic Xi these matrices cannot be diagonalized simultaneously with the Yukawa

interactions. This leads to FCNC couplings for some of the interactions. There are

two approaches to keep the FCNC contributions small. In minimal flavor violation

(MFV) it is assumed that the tree-level flavor symmetry of the SM is broken only

by terms proportional to Yukawa couplings. In this case the flavor matrices Xi in

eq. 3.4 are given by

Xq1 = cq1Yq, Xq2 = cq2Yq, (3.6)

where Yq are the SM Yukawa matrices and c are arbitrary prefactors. This keeps

contributions to FCNCs small.

Another approach is natural flavor conservation (NFC), which guarantees the absence

of tree-level FCNCs by allowing only one doublet Φi to couple to a fermion field. This

means that either Xq1 = 0 or Xq2 = 0 for q ∈ {u, d}. Then the Yukawa interactions

and quark masses are diagonalizable simultaneously and tree-level FCNCs are absent.

This can be ensured by imposing discrete symmetries to the scalar potential and

extending it to the Yukawa sector.

Z2-symmetry

In this work we encounter three discrete symmetries that reduce the number of free

parameters in the 2HDM and in its extensions the N2HDM and the 2HDMS. The

most commonly used symmetry ensuring the absence of FCNCs is called Z2-symmetry
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u-type d-type leptons Q uR dR L lR

type I Φ2 Φ2 Φ2 + − − + −
type II Φ2 Φ1 Φ1 + − + + −
lepton-specific Φ2 Φ2 Φ1 + − + + −
flipped Φ2 Φ1 Φ2 + − − + +

Table 2: In the three columns on the left the four Yukawa types of the Z2-symmetric
2HDM are defined by the coupling of each type of fermion to the Higgs doublets. The five
columns to the right show the parity assignments of the fermions. Q and L are the quark
and lepton doublets, uR and dR are the up- and down-type quark singlets and lR is the
lepton singlet.

and leading to four types of Yukawa structure in 2HDMs. Considering a 2HDM

with two doublets Φ1 and Φ2 and a Singlet S, a Z2-symmetry transforms the fields

as

Z2 : Φ1 → Φ1, Φ2 → −Φ2, S → S. (3.7)

It is assumed, without loss of generality, that up-type quarks only couple to Φ2,

i.e. Xd2 = 0. This leaves four possible scenarios for the coupling of down-type

quarks and leptons to the doublets. These coupling structures and the corresponding

charge assignments are given in table 3.1. In the type I 2HDM all fermions couple

to Φ2. In the type II 2HDM up-type quarks couple to Φ2 while down-type quarks

and leptons couple to Φ1. The coupling structure of the type II 2HDM is similar

to that in supersymmetric extensions of the SM like the Minimal Supersymmetric

Standard Model (MSSM) and the Next-to Minimal Supersymmetric Standard Model

(NMSSM)(see [3, 40] for detailed reviews). There are two additional symmetries,

called Z′
2 and Z3, which can also be imposed on the potential of singlet extensions of

the 2HDM. These will be discussed in the section 3.2.

3.2 Singlet Extensions of Two Higgs Doublet models

In this section we describe the N2HDM and the 2HDMS which can be obtained by

extending the 2HDM with two doublets ϕ1, ϕ2 and a singlet S which is taken to

be real (complex) in the N2HDM (2HDMS). After electroweak symmetry breaking,

the doublet fields ϕ1, ϕ2 and the singlet field S aquire non zero vaccum expectation

values (vevs). This means the fields can be expanded around these vevs and we get

the expressions [6]:
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Φ1 =

χ+
1

ϕ1

 =

 χ+
1

v1 +
ρ1 + iη1√

2

Φ2 =

χ+
2

ϕ2

 =

 χ+
2

v2 +
ρ2 + iη2√

2


S = vS +

ρS + iηS√
2

, (3.8)

where the ηS is absent in the N2HDM. The most general potential of a model with

two doublets and one singlet is given by [2]

V =m2
11Φ

†
1Φ1 + m2

22Φ
†
2Φ2 − (m2

12Φ
†
1Φ2 + h.c.)

+
λ1

2
(Φ†

1Φ1)
2 +

λ2

2
(Φ†

2Φ2)
2 + λ3(Φ

†
1Φ1)(Φ

†
2Φ2) + λ4(Φ

†
1Φ2)(Φ

†
2Φ1)

+
[λ5

2
(Φ†

1Φ2)
2 + λ6(Φ

†
1Φ1)(Φ

†
1Φ2) + λ7(Φ

†
2Φ2)(Φ

†
1Φ2) + h.c.

]
+ (ξS + h.c.) + m2

SS
†S + (

m′
S
2

2
S2 + h.c.)

+
(µS1

6
S3 +

µS2

2
SS†S + h.c.

)
+

(
λ′′
1

24
S4 +

λ′′
2

6
S2S†S + h.c.

)
+

λ′′
3

4
(S†S)2

+
[
S(µ11Φ

†
1Φ1 + µ22Φ

†
2Φ2 + µ12Φ

†
1Φ2 + µ21Φ

†
2Φ1) + h.c.

]
+ S†S

[
λ′
1Φ

†
1Φ1 + λ′

2Φ
†
2Φ2 + λ′

3Φ
†
1Φ2 + h.c.

]
+
[
S2(λ′

4Φ
†
1Φ1 + λ′

5Φ
†
2Φ2 + λ′

6Φ
†
1Φ2 + λ′

7Φ
†
2Φ1) + h.c.

]
(3.9)

with 29 free parameters. The N2HDM and 2HDMS can be obtained by applying a

different set of symmetries to this potential.

Symmetries in singlet Extensions of the 2HDM

The N2HDM is obtained by imposing a Z′
2 symmetry on the potential in eq. 3.9 in

addition to the Z2 symmetry. It has the form

Z′
2 : Φ1 → Φ1, Φ2 → Φ2, S → −S. (3.10)

22



It forbids all linear and cubic terms in the potential and gives rise to a conserved

”darkness” quantum number if the singlet S does not acquire a vev. This gives rise

to a singlet like dark matter candidate [1].

The 2HDMS is obtained by imposing an additional Z3 symmetry on the potential in

eq. 3.9. It has the form
Φ1

Φ2

S

→


1

ei2π/3

e−i2π/3




Φ1

Φ2

S

 (3.11)

and makes the Higgs-sector of the 2HDMS similar to that of the NMSSM.

3.2.1 N2HDM

The N2HDM obeys the Z2 symmetries to avoid flavour-changing neutral currents

(see section 3.1). Additionally the singlet S is odd under a Z′
2 symmetry.

Applying the Z2 symmetry on the potential in eq. 3.9 sets the parameters

λ6, λ7, λ
′
3, λ

′
6, λ

′
7, which break the Z2 symmetry explicitely, to zero. The Z′

2 re-

quires all linear and cubic terms to be zero, i.e. µS1,2, µ11, µ22,µ12, µ21 and ξ. We

keep m12, which softly breaks the Z2 symmetry. Furthermore, since the S is real,

one has S† = S. Summing up all terms containing S2Φ1Φ1, S
2Φ2Φ2, S

4 allows to

redefine accordingly the coefficients

λ′′
1 + λ′′

2 → λ6 , (3.12a)

λ′
1 + λ′

4 → λ7 , (3.12b)

λ′
2 + λ′

5 → λ8 (3.12c)

to meet the definitions in [1]. The potential then reads,

VN2HDM =m2
11Φ

†
1Φ1 + m2

22Φ
†
2Φ2 − (m2

12Φ
†
1Φ2 + h.c.) +

λ1

2
(Φ†

1Φ1)
2 +

λ2

2
(Φ†

2Φ2)
2

+ λ3(Φ
†
1Φ1)(Φ

†
2Φ2) + λ4(Φ

†
1Φ2)(Φ

†
2Φ1) +

λ5

2
[(Φ†

1Φ2)
2 + h.c.]

+
1

2
m2

SS
2 +

λ6

8
S4 +

λ7

2
(Φ†

1Φ1)S
2 +

λ8

2
(Φ†

2Φ2)S
2 .

(3.13)
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We can define tan β := v2/v1 as in the 2HDM (see section 3.1). Therefore, we

obtain v =
√

v21 + v22 = 174 GeV based on our convention of the doublet fields (and

internally for the N2HDM we use a definition with an additional factor of 1/
√

2).

After inserting the parametrizations for Φ1, Φ2 and ΦS in Eq. (3.8) into the potential,

followed by using using the minimization conditions:

∂V

∂Φ1

∣∣∣∣Φ1=v1
Φ2=v2
S=vS

=
∂V

∂Φ2

∣∣∣∣Φ1=v1
Φ2=v2
S=vS

=
∂V

∂S

∣∣∣∣Φ1=v1
Φ2=v2
S=vS

= 0 (3.14)

we obtain three minimum conditions given by

v2
v1
m2

12 −m2
11 =

1

2
(v21λ1 + v22λ345 + v2Sλ7), (3.15)

v1
v2
m2

12 −m2
22 =

1

2
(v21λ345 + v22λ2 + v2Sλ8), (3.16)

−m2
S =

1

2
(v21λ7 + v22λ8 + v2Sλ6), (3.17)

(3.18)

with

λ345 = λ3 + λ4 + λ5. (3.19)

After using 3.3 and replacing m2
11, m

2
22 and m2

S we now have 11 free parameters in

the N2HDM,

tan β, λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8 m
2
12, vS. (3.20)

The charged Higgs sector of the N2HDM is identical to the structure in the 2HDM.

The additional singlet mixes with the two doublets in the CP-even and CP-odd

sector. This generates an additional pseudo-scalar Higgs boson in the N2HDM.

We then have 3 scalar Higgs bosons h1, h2, h3, the charged Higgs boson H± and

one pseudo-scalar Higgs boson a1. We use the convention mh1 < mh2 < mh3 .

The symmetric CP-even Higgs-boson mass eigenstates are obtained by diagonalizing

the 3 × 3 mass matrix, M2
S. By taking the second derivative of the scalar potential,

one can obtain the tree level Higgs mass matrices:

M2
Sij =

∂2V

∂ρi∂ρj

∣∣∣Φ1=v1
Φ2=v2
S=vS

, M2
Pij =

∂2V

∂ηi∂ηj

∣∣∣Φ1=v1
Φ2=v2
S=vS

, M2
Cij =

∂2V

∂χi∂χj

∣∣∣Φ1=v1
Φ2=v2
S=vS

. (3.21)
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For the CP-even mass matrix we find

M2
S11 = 2λ1v

2 cos2 β + m2
12 tan β , (3.22a)

M2
S22 = 2λ2v

2 sin2 β + m2
12 cot β , (3.22b)

M2
S12 = (λ3 + λ4 + λ5)v

2 sin β cos β −m2
12 , (3.22c)

M2
S13 = 2λ7vS cos βv , (3.22d)

M2
S23 = 2λ8vS sin βv , (3.22e)

M2
S33 = λ6vS . (3.22f)

The diagonalization matrix is orthogonal and is given by the following 3 × 3 rotation

matrix for the scalar case:

R =


cα1cα2 sα1cα2 sα2

−sα1cα3 − cα1sα2sα3 cα1cα3 − sα1sα2sα3 cα2sα3

sα1sα3 − cα1sα2cα3 −sα1sα2cα3 − cα1sa3 cα2cα3

 , (3.23)

where α1, α2 and α3 are the three mixing angles. The mass basis and the interaction

basis are related by,
h1

h2

h3

 = R


ρ1

ρ2

ρS

 , diag{m2
h1
,m2

h2
,m2

h3
} = RTM2

SR . (3.24)

In the CP-odd sector such a rotation matrix is given by the 2 × 2 matrix

RA =

 cβ sβ

−sβ cβ ,

 . (3.25)

We perform a rotation of the basis of parameters in the potential to the physical

masses and mixing angles. This is given by
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λ1 =
1

v2 cos2 β

(∑
i

m2
hi
R2

i1 − µ̂2 sin2 β

)
, (3.26a)

λ2 =
1

v2 sin2 β

(∑
i

m2
hi
R2

i2 − µ̂2 cos2 β

)
, (3.26b)

λ3 =
1

v2

(
1

sin β cos β

∑
i

m2
hi
Ri1Ri2 + 2m2

h± − µ̂2

)
, (3.26c)

λ4 =
1

v2
(
µ̂2 + m2

A − 2m2
h±

)
, (3.26d)

λ5 =
1

v2
(
µ̂2 −m2

A

)
, (3.26e)

λ6 =
1

v2S

∑
i

m2
hi
Ri3 , (3.26f)

λ7 =
1

vvS cos β

(∑
i

m2
hi
Ri1Ri3

)
, (3.26g)

λ8 =
1

vvS sin β

(∑
i

m2
hi
Ri2Ri3

)
, (3.26h)

(3.26i)

where µ̂2 is defined as

µ̂2 =
m2

12

sin β cos β
. (3.27)

This results in the new set of input parameters

tan β, α1,2,3, mh1 , mh2 , mh3 , ma1 , m2
12, mH± , vS. (3.28)

3.2.2 2HDMS

In this section we will present a first description of the 2HDMS (this was not

done in the literature before). It is based on the work found in [2] which studies

phenomenological aspects of the most general extension of the 2HDM with a complex

singlet, without applying further symmetries. We introduce a Z3 symmetry to obtain

a Higgs sector similar to the NMSSM. This leads to a scalar potential very similar to

that of the N2HDM, but with 2 additional trilinear parameters µ12 and µS1 which

are forbidden in the Z′
2 symmetric N2HDM, see above.
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The 2HDMS obeys the Z2 symmetries to avoid flavour-changing neutral currents

(see section 3.1). Additionally the Doublets Φ1, Φ2 and the Singlet S obey a Z3

symmetry similar to that in the NMSSM ( [3]). This makes the Higgs-sector similar

to that in the NMSSM without restrictions from SUSY.

Applying the Z2 symmetry on the potential in eq. 3.9 sets the parameters

λ6, λ7, λ
′
3, λ

′
6, λ

′
7, which break the Z2 symmetry explicitely, to zero. Imposing the Z3

Symmetry sets the Z3 breaking parameters λ5 = λ′′
1 = λ′′

2 = λ′
4 = λ′

5 = 0. On the

other hand, we keep the terms m′
S,m12, µS2, µ11, µ22, µ21, which softly break the Z3

symmetry. Taking the mapping of the 2HDMS to the NMSSM in [2] into account,

we only keep m12 and µ12 as soft breaking parameters. The Z3-invariant potential

then reads,

V2HDMS =m2
11(Φ

†
1Φ1) + m2

22(Φ
†
2Φ2) +

λ1

2
(Φ†

1Φ1)
2 +

λ2

2
(Φ†

2Φ2)
2 + λ3(Φ

†
1Φ1)(Φ

†
2Φ2)

+ λ4(Φ
†
1Φ2)(Φ

†
2Φ1) + m2

S(S†S) + λ′
1(S

†S)(Φ†
1Φ1) + λ′

2(S
†S)(Φ†

2Φ2)

+
λ′′
3

4
(S†S)2 +

(
−m2

12Φ
†
1Φ2 +

µS1

6
S3 + µ12SΦ†

1Φ2 + h.c.
)
.

(3.29)

The definitions for tan β and the vevs are the same as in the N2HDM, see section 3.2.1.

After using the minimization conditions in Eq. (3.14) we can again replace m2
11, m

2
22

and m2
S by the tapdole equations

m2
11 = (m2

12 − µ12vS)
v2
v1

− λ1v
2
1 − (λ3 + λ4)v

2
2 − λ′

1v
2
S , (3.30)

m2
22 = (m2

12 − µ12vS)
v1
v2

− λ2v
2
2 − (λ3 + λ4)v

2
1 − λ′

2v
2
S , (3.31)

m2
S = −µS1

2
vS − λ′′

3

2
v2S − µ12

v1v2
vS

− λ′
1v1 − λ′

2v
2
2 . (3.32)

(3.33)

We obtain 12 free parameters in the 2HDMS, coming from the additional degree of

freedom,

tan β, λ1, λ2, λ3, λ4, λ
′
1, λ

′
2, λ

′′
3, m

2
12, µS1, µ12, vS. (3.34)

The charged Higgs sector of the 2HDMS is identical to the structure in the 2HDM.
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The additional neutral singlet, however, mixes with the two doublets in the CP-even

and CP-odd sector. This generates two additional pseudo-scalar Higgs bosons in

the 2HDMS. We then have 3 scalar Higgs bosons h1, h2, h3, the charged Higgs

boson H± and two pseudo-scalar Higgs bosons a1 and a2. We use the conventions

mh1 < mh2 < mh3 and ma1 < ma2 .

The CP-even Higgs-boson mass eigenstates are obtained by diagonalizing the 3 × 3

mass matrix, M2
S. For the CP-even Higgs mass matrix one finds,

M2
S11 = 2λ1v

2 cos2 β + (m2
12 − µ12vS) tan β , (3.35a)

M2
S22 = 2λ2v

2 sin2 β + (m2
12 − µ12vS) cot β , (3.35b)

M2
S12 = (λ3 + λ4)v

2 sin 2β − (m2
12 − µ12vS) , (3.35c)

M2
S13 = (2λ′

1vS cos β + µ12 sin β)v , (3.35d)

M2
S23 = (2λ′

2vS sin β + µ12 cos β)v , (3.35e)

M2
S33 =

µs1

2
vS + λ′′

3v
2
S − µ12

v2

2vS
sin 2β . (3.35f)

For the CP-odd Higgs sector we obtain

M2
P11 = (m2

12 − µ12vS) tan β , (3.36a)

M2
P22 = (m2

12 − µ12vS) cot β , (3.36b)

M2
P12 = −(m2

12 − µ12vS) , (3.36c)

M2
P13 = µ12v sin β , (3.36d)

M2
P23 = −µ12v cos β , (3.36e)

M2
P33 = −3

2
µS1vS − µ12

v2

2vS
sin 2β . (3.36f)

The charged Higgs Boson mass is given by

M2
C = 2(m2

12 − µ12vS) csc 2β − λ4v
2 . (3.37)

The scalar diagonalization matrix is orthogonal and is given by the same 3 × 3

rotation matrix as for the N2HDM (see section 3.2.1).

28



In the CP-odd sector the diagonalization matrix is given by

RA =


−sβcα4 cβcα4 sα4

sβsα4 −cβsα4 cα4

cβ sβ 0

 (3.38)

with


a1

a2

ξ

 = RA


η1

η2

ηS

 and diag{m2
a1
,m2

a2
, 0} = (RA)TM2

PR
A , (3.39)

parametrized by the angle β and the CP-odd mixing angle α4.

We perform, as in the case before, a rotation of the basis from the parameters to the

physical masses and mixing angles. This is given by

µ12 =
m2

a2
−m2

a1

v
sinα4 cosα4 , (3.40a)

vS =
m2

12 − µ̃2 sin β cos β

µ12

, (3.40b)

µS1 = − 2

3vS

(
sin2 α4m

2
a1

+ cos2 α4m
2
a2

+
v2

2vS
sin 2βµ12

)
, (3.40c)

λ1 =
1

2v2 cos2 β

(∑
i

m2
hi
R2

i1 − µ̃2 sin2 β

)
, (3.40d)

λ2 =
1

2v2 sin2 β

(∑
i

m2
hi
R2

i2 − µ̃2 cos2 β

)
, (3.40e)

λ3 =
1

v2

(
1

sin 2β

∑
i

m2
hi
Ri1Ri2 + m2

h± − µ̃2

2

)
, (3.40f)

λ4 =
µ̃2 −m2

h±

v2
, (3.40g)

λ′
1 =

1

2vSv cos β

(∑
i

m2
hi
Ri1Ri3 − µ12v sin β

)
, (3.40h)

λ′
2 =

1

2vSv sin β

(∑
i

m2
hi
Ri2Ri3 − µ12v cos β

)
, (3.40i)

29



u-type d-type leptons

Type I Ri2

sβ

Ri2

sβ

Ri2

sβ

Type II Ri2

sβ

Ri1

cβ

Ri1

cβ

Lepton-Specific Ri2

sβ

Ri2

sβ

Ri1

cβ

Flipped Ri2

sβ

Ri1

cβ

Ri2

sβ

Table 3: Effective Yukawa couplings of the Higgs bosons Hi in the N2HDM and 2HDMS.

λ′′
3 =

1

v2S

(∑
i

m2
hi
R2

i3 + µ12
v2

2vS
sin 2β − µS1

2
vS

)
, (3.40j)

where we define the parameter µ̃2 as,

µ̃2 =
m2

12 − vSµ12

sin β cos β
≡ cos2 α4m

2
a1

+ sin2 α4m
2
a2

. (3.41)

This results in the new set of input parameters

tan β, α1,2,3,4, mh1 , mh2 , mh3 , ma1 , ma2 , mH± , vS (3.42)

for the 2HDMS.

The effective Yukawa couplings for the Higgs bosons Hi in the N2HDM and 2HDMS

are the same and shown in Tab. 3.

3.2.3 Type II SM-like Higgs boson

Following Eq. (3.23), one finds that the singlet component of h1 can be expressed

by |R13|2 = sin2 α2. In our study, the lightest scalar Higgs h1 should be a singlet-

dominant Higgs, which is motivated by the experimental excesses, see the discussion

below, i.e. sin2 α2 should be close to 1.

Since the type-II N2HDM is favored for interpreting the current experimental ex-

cess [41–45], we will stick to the type-II Yukawa structure for our analysis. We

choose h2 to be the SM-like Higgs, and one can obtain the reduced couplings of h2

to t-quarsk, b-quarks and gauge bosons from Tab. 5, Eq. (3.23) and Eq. (5.4),

ch2tt = (cα1cα3 − sα1sα2sα3)/sβ, (3.43)
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ch2bb = (−sα1cα3 − cα1sα2sα3)/cβ, (3.44)

ch2V V = cα3sβ−α1 − sα2sα3cβ−α1 . (3.45)

In the limit of sin2 α2 → 1, one can factor out | sinα2|, and the h2 couplings are

approximately given by

ch2tt ≈
cos(α1 + sgn(α2)α3)

sin β
| sinα2|, (3.46)

ch2bb ≈ −sin(α1 + sgn(α2)α3)

cos β
| sinα2|, (3.47)

ch2V V ≈ sin(β − (α1 + sgn(α2)α3))| sinα2|. (3.48)

These three reduced couplings, Eqs. (3.46)–(3.48), are required to be close to 1 for an

SM-like h2. The so-called alignment limit is thus reached for β− (α1 + sgn(α2)α3) →
π/2. All three couplings of the h2 are close to 1 simultaneously in this limit.

3.2.4 Differences between the 2HDMS and the N2HDM

As discussed above, the 2HDMS has an additional CP-odd Higgs boson and an

additional mixing angle α4 compared to the N2HDM, because of the imaginary part

of the singlet field. Therefore, the α4 determines whether the lighter a1 or the heavier

a2 plays the role of the singlet-like CP-odd Higgs. By taking our convention for the

CP-odd mixing matrix in Eq. (3.38), the lighter CP-odd Higgs a1 would be singlet

dominated when α4 → π/2. Conversely, when α4 → 0, the a1 would be doublet-like

and the heavier a2 becomes singlet-like. If α4 = π/4, both a1 and a2 are admixtures

of the singlet component and the doublet components. In the case α4 → π/4, one

could potentially distinguish the CP-odd Higgs A in the N2HDM from the CP-odd

Higgs ai in the 2HDMS with some singlet admixture, by comparing the decays of

A/ai → τ+τ− or A/ai → tt̄. On the other hand, if α4 is too close to 0 or π/2,

the singlet dominant CP-odd Higgs would completely decouple from the other SM

particles, where the 2HDMS can be approximately in the “N2HDM limit”, and only

the doublet-like CP-odd Higgs of the 2HDMS would remain potentially visible. In

this case it would be difficult to resolve experimentally the difference in the couplings

of the doublet-like CP-odd Higgs to fermions.

However, even in the limit of α4 = 0 or π/2 the two models differ by their symmetries.

The Z3 symmetry of the 2HDMS yields two additional trillinear terms µ12 and

µS1 in the Higgs potential. By neglecting the effect of the imaginary part of the
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singlet field, the λ′
1, λ

′
2 and λ′′

3 in Eq. (3.29) can play similar roles as λ7, λ8 and λ6 in

Eq. (3.13), respectively. On the other hand, the terms given by µS1 and µ12 have

no corresponding terms in the N2HDM. Consequently, these two terms can give

additional contributions to triple-Higgs couplings which can be expressed as

λhihjhk
= λN2HDM-like

hihjhk
+

µS1

2v
Ri3Rj3Rk3 +

µ12

2v
(Ri2Rj3 + Rj2Ri3)Rk1 (3.49)

+
µ12

2v
[(Ri1Rj3 + Rj1Ri3)Rk2 + (Ri1Rj2 + Rj2Ri1)Rk3]. (3.50)

Here the N2HDM-like part is the N2HDM triple Higgs couplings, but replacing the

λ7, λ8, λ6 by the λ′
1, λ

′
2, λ

′′
3. In the limit of α4 = 0 or π/2, one finds µ12 = 0 according

to Eq. (3.40a). However, µS1 would be non-zero as long as the singlet CP-odd Higgs

remains massive. In this case, the additional µS1 contributions can lead to differences

in λh1h1h1 , λh1h1h2 and λh1h2h2 , since µS1 is the trilinear self-coupling of the singlet

field and the h1 is the singlet dominated Higgs. This would lead to phenomenological

differences, e.g., in various di-Higgs production modes at pp or e+e− colliders. On

the other hand, the differences in the triple-Higgs couplings with h3 involved, would

be relatively small and difficult to detect in the decay h3 → hihj. We leave such

studies for future work.

In principle, the µS1 term can also vanish in the case of a massless CP-odd singlet

Higgs according to (3.40c). In this case the triple-Higgs couplings can be similar in

both models in the limit of α4 → π/2 and ma1 → 0. However, the decay channel of

h2 → a1a1 would then be open (mh2 > 2ma1), which would drastically change the

behavior of the Higgs at ∼ 125 GeV.

3.3 The Complex Two Higgs Doublet Model

The complex two Higgs doublet model (C2HDM) has an explicitly CP-violating

scalar potential, with a softly broken Z2 symmetry. The following, brief description

is based on Ref. [8].

The scalar potential can be written as
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V =m2
11Φ

†
1Φ1 + m2

22Φ
†
2Φ2 − (m2

12Φ
†
1Φ2 + h.c.) +

λ1

2
(Φ†

1Φ1)
2

+
λ2

2
(Φ†

2Φ2)
2 + λ3(Φ

†
1Φ1)(Φ

†
2Φ2) + λ4(Φ

†
1Φ2)(Φ

†
2Φ1)

+
[λ5

2
(Φ†

1Φ2)
2 + h.c.

] (3.51)

All parameters are real, except for m2
12 and λ5. The doublet fields take the known

form of

Φ1 =

 χ+
1

v1 +
ρ1 + iη1√

2

 , Φ2 =

 χ+
2

v2 + ρ2 + iη2√
2

 . (3.52)

There are two CP-violating phases ϕ(m2
12) and ϕ(λ5), defined as

m2
12 = |m2

12|eiϕ(m
2
12), λ5 = |λ5|eiϕ(λ5). (3.53)

The rotation matrix is the same as given in Eq. (3.23). Diagonalization and basis

change, as discussed in the previous sections, leads to the minimum conditions

m11
2v1 +

λ1

2
v31 +

λ345

2
v1v

2
2 = Re(m2

12)v2 , (3.54)

m22
2v2 +

λ1

2
v32 +

λ345

2
v21v2 = Re(m2

12)v1 , (3.55)

2Im(m2
12) = v1v2Im(λ5) , (3.56)

where we now have

λ345 = λ3 + λ4 + Re(λ5). (3.57)

This results in the following set of input parameters.

v, tan β, α1, α2, α3, mHi
, mHj

, mH± , Re(m2
12). (3.58)
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u-type d-type leptons

Type I Ri2

sβ
− iRi3

tβ
γ5

Ri2

sβ
+ iRi3

tβ
γ5

Ri2

sβ
+ iRi3

tβ
γ5

Type II Ri2

sβ
− iRi3

tβ
γ5

Ri1

cβ
− iRi3tβγ5

Ri1

cβ
− iRi3tβγ5

Lepton-Specific Ri2

sβ
− iRi3

tβ
γ5

Ri2

sβ
+ iRi3

tβ
γ5

Ri1

cβ
− iRi3tβγ5

Flipped Ri2

sβ
− iRi3

tβ
γ5

Ri1

cβ
− iRi3tβγ5

Ri2

sβ
+ iRi3

tβ
γ5

Table 4: Effective Yukawa couplings of the Higgs bosons Hi in the C2HDM

Here mHi
and mHj

denote two of the three neutral Higgs boson masses. The third

mass is not an independent parameter and is calculated from the other parameters

by

mH3 =
m2

H1
R13(R12tanβ −R11) + m2

H2
R23(R22tanβ −R21

R33(R31 −R23tanβ)
. (3.59)

The couplings, including CP-violating admixtures are given in Tab. 4.
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4 Constraints on models with extended Higgs-

sectors

In this section we will discuss the various theoretical and experimental constraints

on BSM models. The general principle of each constraint and its application for

the 2HDMS and N2HDM will be discussed. Each point of a parameter scan is

required to fulfill various theoretical and experimental constraints. Theoretical

constraints directly influence the allowed values of the parameters in the model

Lagrangian. When a benchmark point passes all theoretical constraints it is tested

against experimental constraints, which test the measured properties of the predicted

particles and general limits from searches.

The calculation of constraints in the 2HDMS was a crucial part in the publication [6],

on which this section is based. My contribution to this section was the calculation

of conditions to fulfill tree-level perturbative unitarity, boundedness from below

and vacuum stability constraints. I also carried out the calculation of the oblique

parameters S,T and U coming from EW precision measurements.

4.1 Theoretical Constraints

The 2HDMS and the N2HDM face constraints from all mentioned constraints. In the

following we show the conditions for the 2HDMS. For the N2HDM these conditions

were already derived in [46] (see below).

4.1.1 Tree-Level perturbative unitarity

Tree-level perturbative unitarity conditions ensure perturbativity of the model up

to very high scales. They ensure a controlled growth of the scattering amplitude

with growing energy scale. A scattering amplitude can be decomposed into partial

waves [47]

M(θ) = 16π
∞∑
l=0

(2l + 1)Pl(cosθ)al, (4.1)

where Pl are the Legendre polynomials of degree l, θ is the scattering angle and al

are coefficients that can be extracted by an orthogonality condition. The 2 → 2

scattering cross-section is given by
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σ =
16π

s

∑
l

(2l + 1)|al|2, (4.2)

where s is the center of mass energy. The cross-section can be related to the scattering

amplitude with the optical theorem:

σ =
1

s
ImM(θ = 0) =

1

s
16π(2l + 1) Im al. (4.3)

This can be rewritten as a circle in the complex plane as

(Re al)
2 + (Im al −

1

2
)2 =

1

4
, (4.4)

which results in the the condition

|al| <
1

2
. (4.5)

In the high energy limit the leading contributions to the scattering amplitude do

not have angular dependence and thus only M0 contributes to the full tree-level

matrix element M. Taking the normalization factor of 16π from the partial wave

expansion into account we can write the tree-level perturbative unitarity constraint

as [48]

M ≤ 8π. (4.6)

Following the procedure of [48] and using a Mathematica package implemented in

ScannerS [49] the conditions can be calculated for any model with an extended

scalar sector.

Tree-level perturbative unitarity in the 2HDMS

We carried out the calculation in the 2HDMS and found the following conditions:

|λ′
1,2| < 8π, (4.7)
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|λ
′′
3

2
| < 8π, (4.8)

|λ1,2,3| < 8π, (4.9)

|λ3 ± λ4| < 8π, (4.10)

|1
2

(λ1 + λ2 ±
√

(λ1 − λ2)2 + 4λ2
4)| < 8π. (4.11)

For models with extended scalar-sectors the calculation cannot be carried out purely

analytically. All other eigenvalues are given by the three real roots (x1, x2, x3) of the

cubic polynomial

64 (6λ′2
2 λ1 + 6λ′2

1 λ2 − 9λ′′
3λ1λ2 − 8λ′

1λ
′
2λ3 + 4λ′′

3λ
2
3 − 4λ′

1λ
′
2λ4 + 4λ′′

3λ3λ4 + λ′′
3λ

2
4)

+ 16 (−2λ′2
1 − 2λ′2

2 + 3λ′′
3λ1 + 3λ′′

3λ2 + 9λ1λ2 − 4λ2
3 − 4λ3λ4 − λ2

4)x

+ (−4λ′′
3 − 12λ1 − 12λ2)x

2 + x3 = 0,

(4.12)∣∣∣x1

4

∣∣∣ < 8π,
∣∣∣x2

4

∣∣∣ < 8π,
∣∣∣x3

4

∣∣∣ < 8π (4.13)

Tree-level perturbative unitarity in the N2HDM

In the N2HDM perturbative unitarity constraints were already derived in [46] [see

their Eqs. (3.43)–(3.48)]:

|λ7,8| < 8π, (4.14)

|λ3 − λ4| < 8π, (4.15)

|λ1,2,3| < 8π, (4.16)

|λ3 + 2λ4 ± 2λ5| < 8π, (4.17)

|1
2

(λ1 + λ2 ±
√

(λ1 − λ2)2 + 4λ2
4)| < 8π, (4.18)

|1
2

(λ1 + λ2 ±
√

(λ1 − λ2)2 + 4λ2
5)| < 8π. (4.19)

Again, all remaining eigenvalues are given by the three real roots (x1, x2, x3) of the

cubic polynomial
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4 (−27λ1λ2λ6 + 12λ2
3λ6 + 12λ3λ4λ6 + 3λ2

4λ6 + 6λ2λ
2
7 − 8λ3λ7λ8 − 4λ4λ7λ8 + 6λ1λ

2
8)

+ (36λ1λ12 − 16λ2
3 − 16λ3λ4 − 4λ2

4 + 18λ1λ6 + 18λ2λ6 − 4λ2
7 − 4λ2

8)x

+ (−6(λ1 + λ2) − 3λ6)x
2 + x3 = 0,

(4.20)∣∣∣x1

4

∣∣∣ < 8π,
∣∣∣x2

4

∣∣∣ < 8π,
∣∣∣x3

4

∣∣∣ < 8π. (4.21)

4.1.2 Boundedness from below

The boundedness from below conditions ensure that the potential remains positive

when the field values Φ approach infinity. In other words, boundedness from below

ensures the existence of a global minimum. This is shown in Fig. 5. For simple

models with a small number of parameters in the potential it can be straightforward

to point out the values of the parameters for which the Higgs potential is bounded

from below. In models with extended Higgs sectors, the Higgs potential can have

very complicated structures. This is the case for the 2HDM and it’s extensions,

which can have multiple scalar doublets and singlets. For these models the conditions

for the parameter space, under which the potential is bounded from below, become

non-trivial. The corresponding conditions and more details can be found in [50] and

were adapted for the 2HDMS. The allowed region is given by

Ω1 ∪ Ω2 (4.22)

with

Ω1 =

{
λ1, λ2, λ

′′
3 > 0;

√
λ1λ′′

3

2
+ λ′

1 > 0;

√
λ2λ′′

3

2
+ λ′

2 > 0; (4.23)

√
λ1λ2 + λ3 + D > 0;λ′

1 +

√
λ1

λ2

λ′
2 ≥ 0

}
(4.24)

and
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Figure 5: Schematic example of a potential bounded (blue) and unbounded(red) from
below.

Ω2 =

{
λ1, λ2, λ

′′
3 > 0;

√
λ2λ′′

3

2
≥ λ′

2 > −
√

λ2λ′′
3

2
;−
√

λ1

λ2

λ′
2 ≥ λ′

1 > −
√

λ1λ′′
3

2
; (4.25)

(D + λ3)λ
′′
3

2
> λ′

1λ
′
2 −

√
(λ′2

1 − λ1λ′′
3

2
)(λ′2

2 − λ2λ′′
3

2
)

}
, (4.26)

where

D =

λ4 forλ4 < 0

0 forλ4 ≥ 0
. (4.27)

The corresponding conditions for the N2HDM were already derived in [46] (see their

Eqs. (3.51) and (3.52)).

4.1.3 Vacuum stability

In the SM the electroweak (EW) vacuum is required to be stable at the EW scale.

This vacuum state is characterised by a non-zero vev of the Higgs field. In BSM

theories vacuum stability at the EW scale places additional constraints on their

extended parameter space. An obvious condition is to require the EW vacuum to
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be the global minimum (true vacuum) of the scalar potential. In this case the EW

vacuum is absolutely stable. If the EW vacuum is a local minimum (false vacuum)

the corresponding parameter region can still be allowed if it is sufficiently metastable.

This is the case if the predicted lifetime of the false vacuum is longer than the current

age of the universe. Any configuration with a lifetime shorter than the age of the

universe is considered unstable.

Following [51] the decay of a false vacuum and thus the stability of the EW vacuum

can be described by the so-called bounce action. Considering a single real field

Lagrangian, which is bounded from below

L =
1

2
(∂Φ)2 − V (Φ), (4.28)

it was found in [52, 53] that the decay rate Γ of a metastable vacuum state per

(spatial) volume VS is given by

Γ

VS

= Ke−B, (4.29)

where B is the bounce action and K is a dimensionful parameter, [K] = GeV4, that

can be estimated from a typical scale M of the theory as

K = M4. (4.30)

Since the decay rate Γ is mostly sensitive to the bounce action B and varying the

scale M over a range from 10 GeV to 100 TeV shifts the border between metastability

and instability by less than 10%, points where B > 440 are considered as long lived

and points where B < 390 as short-lived. The intermediate range 390 < B < 440

is considered as an uncertainty threshold from M. For further details see section 3

in [51].

For our study we used EVADE [54–56] which finds the tree-level minima employing

HOM4PS2 [57]. In the case of the EW vacuum being a false vacuum, it calculates the

bounce action for a given parameter point with a straight path approximation, which

is sufficiently accurate for the purpose, see [55].

We additionally made a detailed comparison of the results of the straight path
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approximation of EVADE with the more sophisticated approach via path deformation

of the code FindBounce [58] and Vevacious++ [59]. In Fig. 7 the concept of a straight

path and correct bounce path connecting two local minima in a two-dimensional scalar

potential is shown. As can be seen in Fig. 6 the enhancement by the computationally

more intensive FindBounce is negligible. The border between metastable (yellow) and

unstable (red) regions is very similar for Vevacious++ at tree-level and FindBounce,

which both use path deformation in the calculation of the bounce action. They also

put a stricter constraint on the metastable regions compared to EVADE. As expected

for all three the stable region shown in green is the same, because for these points

the EW vacuum is the global minimum of the potential. The code Vevacious++

at 1-loop level suffers from numerical instabilities and cannot be considered for the

calculation of the bounce action. Overall all three codes were in good agreement and

we chose the actively developed code EVADE for our study.

4.2 Experimental Constraints

Parameter points in BSM models that fulfill all theoretical constraints have to be

tested against current experimental results. Any new scalars have to be allowed by

searches for additional Higgs bosons. These most commonly come with upper limits

on the cross-section times branching ratio for a specfic search channel or upper limits

on couplings. Additionally one of the scalars has to be SM-like and in agreement with

measurements of the observed Higgs boson at ∼ 125 GeV. Constraints from flavor

physics give lower limits on the charged scalar masses and the S, T and U parameters

study one-loop corrections of BSM physics to EW precision observables.

4.2.1 Measurement of Observed Higgs Bosons

Since it’s discovery in 2012 we did not observe any significant deviation of the

properties of the Higgs boson from the SM. This makes it necessary that parameter

points in any BSM models provide a scalar that agrees with the properties of the

observed Higgs boson at a mass of 125 GeV. For such tests we use the public code

HiggsSignals-3 [61–66]. The code is part of HiggsTools [67] and calculates a

χ2 value which quantifies the agreement between the model prediction and the

experimental data, which includes Higgs boson signal rates and masses from CDF

results at Tevatron and LHC results from ATLAS and CMS experiments.

There are different measurement types depending on the experiment. The LHC

data at 7 TeV and 8 TeV are released in combined results for the mass [68] and
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(a) (b)

(c) (d)

Figure 6: Vacuum stability regions in the 2HDMS in the plane of the trillinear couplings
µ12 and µS1 calculated with EVADE (a), Vevacious (b), Vevacious (c) at 1-loop level and
FindBounce (d). For the green region, the EW vacuum is the global minimum. Yellow
regions are sufficiently metastable, i.e. the lifetime is longer than the age of the universe
and red points are short-lived. While Vevacious at 1-loop level suffers from numerical
instabilities, the bounce action calculation with a straight path approximation used in
EVADE and is in good agreement with the path deformation approach used in Vevacious

at tree level and FindBounce.

signal rates [69]. The newer results from 13 TeV data are given in the simplified

template cross sections (STXS) [70] framework by ATLAS and CMS with collected

data of ∼ 137fb−1. These types of measurements correspond to the peak-centered

observables, mass-centered observables and STXS measurements in HiggsSignals.

With the latest version of HiggsSignals which is part of the HiggsTools framework

the handling of these measurement types has been unified [67]. Further the latest

version of HiggsSignals includes measurements that are not simple signal rate
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Figure 7: Two local minima of a two/dimensional scalar potential connected by a straight
(blue) and correct (green) bounce path. Taken from [51,60].

Figure 8: Vacuum stability calculated with EVADE for the best fit point in the 2HDMS from
Tab. 8. The dark (light) green area depicts points that are absolutely stable and long-lived
respectively. Points in the yellow area are in the uncertainty threshold for 390 < B < 440
and red points are short lived. The points in purple are tachyonic (unphysical) states.

measurements but can also depend on other model parameters. An example is the

recent CMS H → τ+τ− − CP analysis [71] which measures the CP structure of the

tau-Yukawa coupling and depends on the cτ and cτ̃ coefficients of the CP-even and
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CP-odd tau-Yukawa coupling with respect to the SM.

In our analysis we use the reduced χ2 to judge the validity of our generated points,

which is defined as

χ2
red =

χ2
HS

nobs

. (4.31)

Here χ2 is evaluated by HiggsSignals and nobs = 111 is the considered number

of experimental measurements. The are other different ways of interpreting the χ2

value to judge the validity of a parameter point. One can calculate the likelihood

ratio test in the gaussian approximation as

∆χ2 = χ2
Model − χ2

SM . (4.32)

One benefit is that the effects of the number of observables cancels in this normalisa-

tion and ∆χ2 directly compares to the SM. ∆χ2 describes the best-fit region of the

model parameter space. For a confidence level of 2σ this leads to a region of

∆χ2 < 6.18. (4.33)

4.2.2 Searches for Additional Higgs Bosons

The currently running ATLAS and CMS experiments at the LHC and earlier experi-

ments at the Tevatron and LEP colliders have made searches for additional BSM

scalar particles in various decay channels. It is necessary to ensure that the model

parameter space used for phenomenological studies is not already excluded by one of

the many searches available. Doing this by hand for each search individually would be

very time consuming and unpractical. For this reason the code HiggsBounds [63–66]

was developed, which is now, with its latest version, a part of HiggsTools [67]. The

code checks whether a considered parameter point is allowed, by comparing the

theory predictions for all Higgs production processes and decay rates to existing

searches. Using the narrow width approximation it calculates signal rates from the

supplied cross sections and branching ratios and compares with the corresponding

limit.

The experimental results give expected and observed limits at 2σ or 95% confidence

level as a function of one or more model parameters. This is typically the mass of an

additional BSM scalar particle. This is shown for an examplary search in Fig. 10.
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Figure 9: Examplary result of a search for an additional Higgs boson Φ with mass mΦ.
The limit is given at the 95% confidence level on the production cross section gg → Φ
times its branching ratio to µµ̄. The results is taken from the ATLAS collaboration [73].

HiggsBounds uses the expected limits (dashed black line and confidence interval in

color) to first select the most sensitive experimental search for each scalar in the

model. For such searches, the observed limit (solid black line) is applied. If the

observed ratio robs of one of the scalars is greater than 1, the parameter point is

considered as excluded by the search.

Concerning our study of a light Higgs boson in the N2HDM and 2HDMS, some

important searches are the direct searches for charged Higgs production pp → H±tb

with the decay modes H± → τν and H± → tb [72]. The constrained regions mostly

lie in the low tanβ <∼ 2 region, due to the enhanced coupling to top quarks. Searches

at LEP for charged Higgs bosons are mostly irrelevant as we focus on tanβ = {1, 20}
and light charged Higgs boson masses are excluded from flavor physics observables

(see below). Direct searches for additional neutral Higgs bosons become relevant

when the heavy scalar Higgs boson h3 or the heavy pseudo-scalar Higgs bosons a1, a2

are not too heavy to be decoupled from lighter particles.
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Figure 10: Constraints from flavor physics in the type II 2HDM in the plane of the
charged Higgs mass mH± and tanβ. The figure was taken from ref. [75].

4.2.3 Constraints from Flavor Physics

In Sect. 3.1 it was discussed that the introduction of a Z2-symmetry suppresses the

occurrence of FCNCs at tree level. However, FCNC processes may still be introduced

by BSM particles through loop effects. In 2HDMs effects from flavor physics mostly

constrain the charged Higgs bosons H± in low-energy observables like B-meson decays.

Since most constraints from flavor physics are expected to be independent from the

presence of additional singlet fields [74], the constraints, which were evaluated in the

different 2HDM types, can be applied for the N2HDM and 2HDMS. For the tanβ

= {1, 20} region we are interested in, the most important bounds according to [75]

come from BR(Bs → Xsγ), constraints on ∆MBs from neutral B-meson mixing and

from BR(Bs → µ+µ−). The dominant contributions to these bounds come from

charged Higgs H± [76–78] and top quarks [79, 80]. As those bounds are independent

from the neutral scalar sector to a good approximation we can take over the bounds

directly from the 2HDM. The constraints from ∆MBs and BR(Bs → µ+µ−) are

dominant for tanβ ≃ 1 while the constraint from BR(Bs → Xsγ) is present for the

whole range of tanβ that we study. Taking all this into account for our study in

the type II 2HDMS and N2HDM, these constraints give a lower limit of the charged

Higgs mass of mH± >∼ 650 GeV [75].

4.2.4 Electroweak Precision Observables

The oblique parameters S, T and U were introduced by Peskin and Takeuchi [81]

in order to study one-loop corrections of BSM physics to EW precision observables
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relative to those of the SM. These variables are a parametrization for the W mass

mW and several Z-pole observables. Especially

T ∝ ρ− 1 (4.34)

gives the deviation of the ρ parameter from it’s tree-level value of one. The current

experimental value is given by ρ = 1.00038 ± 0.0002 [22] and it is defined as

ρ =
m2

W

m2
Zcos

2θW
. (4.35)

The parameters S, T and U are defined by

α(mZ)T =
ΠWW (0)

m2
W

− ΠZZ(0)

m2
Z

, (4.36)

α(mZ)

4s2W c2W
S =

ΠZZ(m2
Z) − ΠZZ(0)

m2
Z

− c2W − s2W
sW cW

ΠZγ(m2
Z)

m2
Z

− Πγγ(m2
Z)

m2
Z

, (4.37)

α(mZ)

4s2W
(S + U) =

ΠWW (m2
W ) − ΠWW (0)

m2
W

− cW
sW

ΠZγ(m2
Z)

m2
Z

− Πγγ(m2
Z)

m2
Z

, (4.38)

where the Πij are the one loop self energies. These oblique parameters have experi-

mental values that can be obtained from a global fit to EW precision measurements.

In this work we use the results given in [82]

S = 0.04 ± 0.11, T = 0.09 ± 0.14, U = −0.02 ± 0.11. (4.39)

In [83,84] predictions for these oblique parameters have been calculated for a variety

of BSM models with an arbitary number of SU(2)L doublets and singlets. We use

these results to calculate theory predictions and compare these to the fit results

in eq. 4.39. We calculate a χ2 and perform a cut at χ2 < 7.81 which corresponds

to a 2σ limit in the plane of S,T and U. For the parametrization of BSM effects

through the oblique parameters, the new particles have to be sufficiently heavy to

avoid on-shell effects in the self-energy diagrams.

The oblique parameters directly constrain the possible mass values of additional
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particles in BSM theories. The parameter T constraints the upper bound on the

mass difference between the charged scalars and the closest in mass neutral scalar

coming from additional doublets. The parameter S constrains the mass difference

between sufficiently mixed scalars. The parameter T is the most relevant in the

scenarios we discuss. However, the strong correlation between S, T and U can lead

to stronger constraints when all three are considered.

We now discuss the calculation of the oblique parameters in the 2HDMS explicitly.

We follow the procedure in [85]. In the full expressions for S, T and U in [85] appear

parts of the n × n unitary matrix Ũ and the m ×m orthogonal matrix Ṽ. These

are the diagonalizing matrices for the mass-squared matrices of the charged and

neutral scalars. We have n = nd + nc where nd and nc are the number of scalar

SU(2) doublets and complex scalar SU(2) singlets, respectively. Similarly, we have

m = 2nd + nn where nn is the number of real scalar SU(2) singlets.

They are given by

Ũ =

U

T

 , Ṽ =


ReV

ImV

R

 . (4.40)

The matrices U and V, appearing in the expressions for S, T and U, are nd × n

and nd ×m dimensional, respectively. The matrix V can be constructed from the

matrices Eq. 3.23 and Eq. 3.38 for the neutral scalars and the matrix U from the

diagonalizing matrix of the charged sector. This gives the matrices

U =

 cb sb

−sb cb

 , (4.41)
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V =



RA
13 RA

23

iRA
11 iRA

21

iRA
12 iRA

22

R11 R21

R12 R22

R13 R23


=



cb sb

−isbcα4 icbcα4

isbsα4 −icbsα4

cα1cα2 sα1cα2

−sα1cα3 − cα1sα2sα3 cα1cα3 − sα1sα2sα3

sα1sα3 − cα1sα2cα3 −sα1sα2cα3 − cα1sα3


. (4.42)

With these matrices the full calculation of the S, T and U parameters can be carried

out, following [85].
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Part III

A light Higgs Boson in Singlet

Extensions of the Two Higgs

Doublet Model
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5 A light Higgs Boson in Singlet Extensions of the

2HDM

This section is based on the publication [6]. We discuss a local 2.3σ local excess

discovered at LEP in the e+e− → ZH(H → bb̄) channel [5], consistent with a scalar

of mass 96 GeV. Due to the bb̄ final state the mass resolution is rather large. ATLAS

and CMS searched for light Higgs bosons in the diphoton final state. The CMS

Run II results [4] show a local excess of ∼ 3σ at 96 GeV, where a similar excess of

2σ had been observed in Run I [86] at roughly the same mass.

Before the start of the LHC, searches for Higgs bosons below 125 GeV have been

performed at LEP [5, 87, 88] and Tevatron [89]. Since the discovery of a Higgs boson

by the ATLAS and CMS collaboration in 2012, there were further searches for a

light Higgs boson performed at LHC [4,90–92].

First Run II results from ATLAS, on the other hand, using 80 fb−1 turned out to be

weaker than the corresponding CMS results, see, e.g., Fig. 1 in Ref. [93].

The excesses found by LEP and CMS were effectively at the same mass. This leads

to the question if both excesses have a common origin. We interpret them as a light

scalar Higgs boson at as mass of ∼ 96 GeV. The goal is to accomodate both excesses

simultaneously in a model, while still being in agreement with all other Higgs boson

related measurements and searches. The excesses have already bin described in:

(i) the Next-to-Two Higgs doublet model, N2HDM [41–45,94], as will be discussed

below,

(ii) various realizations of the Next-to-Minimal supersymmetric SM, NMSSM [94–

96],

(iii) the µ-from-ν supersymmetric SM (µνSSM) with one [97] and three genera-

tions [98] of right-handed neutrinos

(iv) Higgs inflation inspired µNMSSM [99],

(v) NMSSM with a seesaw extension [100],

(vi) Higgs singlet with additional vector-like matter, as well as two Higgs doublet

model, 2HDM type I [101],

(vii) 2HDM type I with a moderately-to-strongly fermiophobic CP-even Higgs [102],
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(viii) radion model [103] ,

(ix) Higgs associated with the breakdown of an U(1)LµLτ symmetry [104],

(x) minimal dilaton model [105],

(xi) composite framework containing a pseudo-Nambu Goldstone-type light

scalar [106],

(xii) SM extended by a complex singlet scalar field (which can also accommodate a

pseudo-Nambu Goldstone dark matter) [107],

(xiii) anomaly-free U(1)′ extensions of SM with two complex scalar singlets [108].

Having different models being able to accomodate the two excesses lets the question

arise how one can distinguish the various model realizations, especially if they are very

similar to each other. In this work we take a first step towards this by accomodating

the two excesses both in the N2HDM and in the 2HDMS which have a very similar

parameter space. We analyze which part of the parameter space is suitable for

describing the two excesses and investigate possible ways to distinguish both model

realizations.

For the analyses of the 2HDMS and the N2HDM Higgs-boson sectors at future

colliders we employ the anticipated reach and precision of the HL-LHC, as well as a

possible future e+e− collider, where we focus on the International Linear Collider

(ILC) with a center-of-mass energy of
√
s = 250 GeV (ILC250). In particular we

show what can be learned from a measurement of the couplings of the 125 GeV

Higgs boson at the ILC250. Going one step further, we present for the first time a

phenomenological analysis of the new state at ∼ 96 GeV at the ILC250: we analyze

to which precision its couplings can be measured at the ILC250 and what can be

learned from these future measurements about the underlying model. We include all

relevant technical and phenomenological details for such a coupling measurement of

a light Higgs boson at the ILC250.
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5.1 The Experimental Excesses

The experimental excesses at both LEP and CMS could be translated into the

following signal strengths as quoted in [4, 88,109,110]:

µexp
LEP =

σexp(e+e− → Zϕ → Zbb̄)

σSM(e+e− → ZH0
SM → Zbb̄)

= 0.117 ± 0.05 , (5.1)

µexp
CMS =

σexp(pp → ϕ → γγ)

σSM(pp → H0
SM → γγ)

= 0.6 ± 0.2 , (5.2)

where the H0
SM is the SM Higgs boson with the rescaled mass at the same range as

the unknown scalar particle ϕ.

For our analysis we interpret the experimental excess at ∼ 96 GeV as the lightest

scalar Higgs boson h1, and we identify the second lightest scalar Higgs h2 as the

SM-like Higgs at ∼ 125 GeV.

Furthermore, the elements of the rotation matrix, i.e. |Rij|2, represent each field

admixtures of the corresponding physical states. The matrix elements thus determine

the Higgs-boson couplings to the SM particles. Here we define the reduced coupling

as the ratio between the 2HDMS/N2HDM Higgs coupling and the corresponding

SM-Higgs coupling:

chiff =
ghiff

gHSMff

. (5.3)

The reduced Higgs to fermion couplings for all four Yukawa types are summarized in

Tab. 5.

Type I Type II Lepton specific Flipped

chitt
Ri2

sinβ
Ri2

sinβ
Ri2

sinβ
Ri2

sinβ

chibb
Ri2

sinβ
Ri1

cosβ
Ri2

sinβ
Ri1

cosβ

chiττ
Ri2

sinβ
Ri1

cosβ
Ri1

cosβ
Ri2

sinβ

Table 5: Higgs to fermion reduced couplings for different types of Yukawa couplings

One can also derive the reduced Higgs to gauge-bosons couplings,

chiV V = chiZZ = chiWW = cos βRi1 + sin βRi2 . (5.4)

Since one of the most important targets of our analysis is the interpretation of the
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experimental excess in the 2HDMS/N2HDM, we interpreted the scalar ϕ as the

lightest CP-even Higgs boson h1 of the 2HDMS/N2HDM, and we evaluated such

signal strengths for all the h1. These signal strengths can be calculated by the

following expressions in the narrow width approximation [41] (introduced here for

the 2HDMS):

µthe
LEP =

σ2HDMS(e+e− → Zh1)

σSM(e+e− → ZH0
SM)

× BR2HDMS(h1 → bb̄)

BRSM(H0
SM → bb̄)

= |ch1V V |2
BR2HDMS(h1 → bb̄)

BRSM(H0
SM → bb̄)

,

(5.5)

µthe
CMS =

σ2HDMS(gg → h1)

σSM(gg → H0
SM)

× BR2HDMS(h1 → γγ)

BRSM(H0
SM → γγ)

= |ch1tt|2
BR2HDMS(h1 → γγ)

BRSM(H0
SM → γγ)

.

(5.6)

The effective couplings of ch1V V and ch1tt can be easily obtained from Eq. (5.4)

and Tab. 5, while the corresponding branching ratios have been obtained with

SPheno-4.0.4 [111,112].

The overall χ2 corresponding to the excesses is calculated as

χ2
CMS-LEP =

(
µthe
LEP − 0.117

0.057

)2

+

(
µthe
CMS − 0.6

0.2

)2

. (5.7)

The total χ2 is defined as

χ2
tot = χ2

CMS-LEP + χ2
HS . (5.8)

The points of the 2HDMS/N2HDM with the lowest χ2
tot are the respective “best-fit”

points in the two models.

In order to understand the effect of mixing angles on the signal strengths of the

excesses, one can focus on the couplings of h1 derived from Eq. (3.23) and Tab. 5,

which are given by

ch1tt =
sinα1 cosα2

sin β
, ch1bb =

cosα1 cosα2

cos β
, ch1V V = cosα2 cos(β−α1). (5.9)

If h1 is the pure gauge singlet (i.e. cosα2 = 0), all three couplings in Eq. (5.9), which

are proportional to the cosα2, would be zero. However, h1 would then be completely
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invisible and could not produce any experimental excesses in this case. Therefore, in

order to cover the ranges of the experimental excesses efficiently, we enforced the

singlet component of h1 to be smaller than 95% (i.e. cos2 α2 > 5%), which essentially

yields non-vanishing couplings of h1 to SM particles. As a result, the interval of α2

is constrained by this requirement. We have checked explicitly that this constraint

does not exclude any valid parameter point in our analysis.

For the signal strength of CMS, the coupling ch1tt and the BR(h1 → γγ) play the

dominant roles. Since the decay width of the h1 is dominated by the decay to bb̄, a

smaller ch1bb would suppress the decay width of h1 → bb̄ and lead to the enhancement

of BR(h1 → γγ). Consequently, BR(h1 → γγ) can be anti-proportional to the

coupling |ch1bb|2. Since µCMS is also proportional to the |ch1tt|2, one obtains the

approximate relation for µCMS which is given by, see Eq. (5.6),

µthe
CMS ∝ |ch1tt|2

|ch1bb|2
=

(
tanα1

tan β

)2

. (5.10)

As we see in Eq. (5.10), µthe
CMS can be directly enhanced by the increment of α1. In

order to have a not too suppressed signal strength for the CMS excess, tanα1 > tan β

is required. However, the combination tanα1

tanβ
can be arbitrarily large during the scan.

Thus we scan the inverse of this combination in the range from 0 to 1, see the next

subsection.

5.2 The Parameter Scan

Following the N2HDM interpretation of the excesses [41], we also focus on the type-II

Yukawa structure for the 2HDMS. However, we will investigate a larger tan β region

as it was done in Ref. [41].

In order to investigate the parameter space of the 2HDMS/N2HDM that gives rise

to a description of the 96 GeV excesses, we performed an extensive scan of the

parameter spaces by using the spectrum generator SPheno-4.0.4 [111,112], where

the model implementations are generated by the public code SARAH-4.14.3 [113].

During the scan, we fix the mass mh2 = 125.09 GeV and enforce the mixing angles

to be close to the alignment limit as explained in detail in Sect. 3.2.3. As discussed

above, by employing HiggsSignal-2.6.1, we can ensure that the h2 is in agreement

with the LHC measurements. Concerning the exclusion bounds from flavor physics as

we mentioned in Sect. 4.2, we simply apply the conservative limits given by tan β > 1
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and mH± > 800 GeV, which is above the experimental limit of 650 GeV [75].

Studying a higher region of tan β with different ranges for the heavy Higgs boson

masses, from 1 to 20 (i. e. going beyond the region explored in Ref. [41]) raises

the lower bound of the heavy Higgs boson masses mh3 and ma2 coming from the

constraints on heavy Higgs bosons from searches for H/A → τ+τ− at the LHC [114].

We scan two intervals of tan β with different ranges for the heavy Higgs boson masses,

see Tab. 7. Concerning unitarity constraints, the S, T, U parameters and the mass

difference between the heavy Higgs states has to be small. Therefore mH± is scanned

in the interval given in Tab. 7 and the other two are scanned around this mass with

a Gaussian distribution (with a width of 200 GeV or 50 GeV for the low and high

tan β region, respectively).

In the case of the 2HDMS we have an additional lighter CP-odd Higgs boson a1, see

Sect. 3.2.4. For α4 <
π
4

the heavier a2 would be singlet-like. This scenario is more

likely to be excluded by vacuum stability constraints and we leave this for future

studies. Therefore we choose π
4
< α4 < π

2
, which makes the lighter a1 singlet-like.

We choose mh2 < ma1 which leads to a scan range of ma1 from 200 GeV to 500 GeV

to also fulfill ma1 < ma2 . Overall, the scan intervals for all the particles are given

by:

mh1 {95, 98} GeV

mh2 125.09 GeV

ma1 {200, 500} GeV

η {0.98, 1}
α4 {π

4
, π

2
}

vS {100, 2000} GeV
tanβ
tanα1

{0, 1}
α2 ±{0.95, 1.3}

Table 6: Scan intervals

tan β mh3 ∼ ma2 ∼ mH±

1 - 10 {800, 1200} GeV

10 - 20 {1000, 1700} GeV

Table 7: Heavy Higgs boson mass scan intervals for different tanβ regions.

We have checked explicitly that the constraints on sin(β − (α1 + sgn(α2)α3)) and α2

do not exclude any valid point of our parameter space.
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5.3 Preferred Parameter Spaces

In this section we will discuss the preferred parameter spaces in the 2HDMS and

N2HDM. This study was never carried out in the 2HDMS and will be discussed in

detail. The N2HDM application was already discussed in [41] and redone with our

scan setup for consistency. The results going beyond the analysis in [41] will be

discussed.

5.3.1 2HDMS

The results of the 2HDMS scan in the low tan β region are shown in Fig. 11 in the

µCMS-µLEP plane, where the color code indicates χ2
red, see Eq. (4.31). The red ellipse

corresponds to the 1σ ellipse, with the best-fit point (see below) marked by a red

cross.

Figure 11: The signal strengths of both excesses µCMS and µLEP for the 2HDMS scan
points with tanβ ∈ {1, 10}. The red ellipse shows the 1σ region of the excesses with the
red star as the best-fit point. The color code indicates the χ2

red and the lowest χ2
red in the

1σ ellipse is about 0.821.

As can be seen in Fig. 11 the 1σ ellipse of µCMS and µLEP can be fully covered by

the 2HDMS parameter space, while all the points in the figure have χ2
red < 1.3. The

lowest χ2
red in the 1σ ellipse is about 0.821. Therefore, the 96 GeV excesses can be

easily accommodated while the h2 at ∼ 125 GeV is in good agreement with the

experimental measurements. The best-fit point, defined via Eq. (5.8), is marked
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with a red cross and lies well within the 1σ ellipse. Phenomenological details of this

best-fit point can be found in Tab. 8.

Best fit point in tanβ ∈ {1, 10}
mh1 mh2 mh3 ma1 ma2 mH±

96.438 GeV 125.09 GeV 784.08 GeV 413.46 GeV 660.07 GeV 808.93 GeV

tanβ α1 α2 α3 α4 vs

1.3393 1.3196 −1.1687 −1.2575 1.4719 653.84 GeV

Branching ratios

h1 → bb̄ h1 → gg h1 → τ+τ− h1 → γγ h1 → W+∗
W−∗

h1 → Z∗Z∗

42.2% 35.3% 4.61% 0.317% 0.739% < 0.1%

h2 → bb̄ h2 → gg h2 → τ+τ− h2 → γγ h2 → W+∗
W−∗

h2 → Z∗Z∗

53.9% 10.5% 6.17% 0.249% 23.4% 2.54%

h3 → bb̄ h3 → tt̄ h3 → h2h2 h3 → h1h2 h3 → h1h1 h3 → W+W−

< 0.1% 65.3% 5.26% 7.76% 0.158% 8.26%

a1 → tt̄ a1 → τ+τ− a2 → tt̄ a2 → τ+τ− H± → tb H± → W±h2

95% < 0.1% 88.2% < 0.1% 73.7% 1.12%

Table 8: Parameters and relevant branching ratios of the best-fit point in the 2HDMS in
the tanβ ∈ {1, 10} region.

Best fit point in tanβ ∈ {10, 20}
mh1 mh2 mh3 ma1 ma2 mH±

96.013 GeV 125.09 GeV 1437.8 GeV 323.4 GeV 1438.5 GeV 1499.6 GeV

tanβ α1 α2 α3 α4 vs

13.783 1.5441 1.2162 1.5338 1.5679 1212.6 GeV

Branching ratios

h1 → bb̄ h1 → gg h1 → τ+τ− h1 → γγ h1 → W+∗
W−∗

h1 → Z∗Z∗

45.1% 32.5% 4.93% 0.612% 1.04% < 0.1%

h2 → bb̄ h2 → gg h2 → τ+τ− h2 → γγ h2 → W+∗
W−∗

h2 → Z∗Z∗

53.7% 10.0% 6.14% 0.269% 24.2% 2.62%

h3 → bb̄ h3 → tt̄ h3 → h2h2 h3 → h1h2 h3 → h1h1 h3 → W+W−

69.7% 4.82% 3.74% 5.73% 0.585% 2.60%

a1 → bb̄ a1 → τ+τ− a2 → bb̄ a2 → τ+τ− H± → tb H± → W±h2

88.0% 11.7% 74.2% 12% 91.4% 0.353%

Table 9: Parameters and relevant branching ratios of the best-fit point in the high tanβ
region.

In Fig. 12 we show the results for |ch1V V |2 and |ch1bb/ch1tt|2, respectively, in the

plane of µCMS and µLEP. In Fig. 12, the points with higher signal strength µLEP
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(a) The same plane as in Fig. 11, with
the color code indicating the square of the
effective coupling of h1 to gauge bosons.
The lowest (highest) value of |ch1V V |2 in
the 1σ ellipse is 0.088 (0.26).

(b) The same plane as in Fig. 11,
with the color code indicating the ratio
|ch1bb|2/|ch1tt|2. The lowest (highest) value
in the 1σ ellipse is 0.039 (0.53).

Figure 12

always have the higher coupling ch1V V , as µLEP is directly proportional to |ch1V V |2,
see Eq. (5.5). On the other hand, one can observe from Fig. 12 that the points

with lower values of |ch1bb|2/|ch1tt|2 yield a higher signal strength µCMS, consistent

with the discussion in Sect. 5.1, i.e. µCMS is anti-proportional to |ch1bb|2/|ch1tt|2.
However, a lower ch1bb coupling would slightly suppress BR(h1 → bb̄) leading to

the lower µLEP, and therefore the distribution is slightly oblique in the plane of

µCMS and µLEP. The best-fit point marked by the red cross has |ch1V V |2 ∼ 0.13 and

|ch1bb|2/|ch1tt|2 ∼ 0.12.

The results of the high tan β region scan, using the intervals given in Tab. 7, are

shown in Fig. 13, where the color coding indicates the χ2
red. It can be observed

that also in the high tan β region the 1σ ellipse in the plane of µCMS − µLEP is well

covered by our parameter scan for tan β=10–20. The distribution of the χ2
red is found

to be very similar to the low tan β case. Also the other quantities, |ch1V V |2 and

|ch1bb|2/|ch1tt|2 behave as in the low tan β case (and are thus not shown). In the

Tab. 9 we summarize the details for best-fit points in the region of tan β=10–20. The

high tan β best-fit point has |ch1V V |2 ∼ 0.12 and |ch1bb/ch1tt|2 ∼ 0.14, which is very

close to the corresponding numbers of the low tan β best-fit point. Overall we find

that the points within the 1σ range of the 96 GeV excesses have no preference for

low or high tan β. Finally, also for the charged Higgs boson mass we do not find a

preferred region (within the intervals given in Tab. 7), neither in the low nor in the
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Figure 13: The same plane as in Fig. 11 with tanβ ∈ {10, 20}, and the color coding
indicating the χ2

red.

high tan β analysis.

5.3.2 N2HDM

We now turn to the corresponding analysis in the N2HDM, where earlier results

can be found in Refs. [41–45]. In Fig. 14 we show the results of the N2HDM in the

µCMS-µLEP plane for the low (left plot) and high tan β range (right plot). One can

observe that both the low tan β region and the high tan β region of the N2HDM

parameter space can cover the 1σ range of the 96 GeV “excess”. This extends

the analysis in Ref. [41], where only relatively low tan β values were found. These

differences can be traced back to an improved scan strategy as well as improvements

in the parameter point generation. The behavior of the other quantities analyzed in

the previous subsection is very similar for the N2HDM.

Overall, our comparative analysis of the 2HDMS (which is a new model analysis)

and the N2HDM (updating the results of Ref. [41]) shows that the two models

can fit equally well the 96 GeV excess. The differences between the two models

(see in particular the discussion in Sect. 3, i.e. different symmetries and different

particle content) do not impact in a relevant way the description of the excesses.

Consequently, other phenomenological investigations will have to be performed to

distinguish the two models, see the discussion in Sect. 3.2.4, as well as our analysis
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(a) (b)

Figure 14: The N2HDM scan results with the same plane as in Fig. 11. The left (right)
plot is for tanβ=1–10 (10–20).

below in Sects. 5.4.1 and 5.4.2.

5.4 Prospects for e+e− colliders

The searches for a possible Higgs boson at ∼ 96 GeV will continue at ATLAS and

CMS. However, it is not expected that such a particle could be seen in other decay

modes than γγ and possibly τ+τ−. The pp environment makes it difficult to perform

precision measurements of such a light Higgs boson. Better suited for such a task

would be a future e+e− collider such as the planned ILC [41, 44], where the light

Higgs is produced in the Higgs-strahlung channel, e+e− → Z∗ → Zh1 [115–117].

The ILC can analyze the scenarios under investigations in two complementary ways.

One can search for the new Higgs boson and analyze its properties directly. We also

include, for the first time, an analysis of the coupling measurement of the h1 at the

ILC. On the other hand, one can perform precision measurements of the Higgs boson

at ∼ 125 GeV and look for indirect effects of the extended Higgs boson sector. In

this section we will explore both possibilities (where we will emphasize where we go

beyond Refs. [41,44]). In particular, we analyze the 2HDMS and the N2HDM side

by side to check for possible differences in their phenomenology.

5.4.1 Precision on coupling measurements

In Fig. 15 we show the plane of mh1 and the quantity |ch1V V |2 × BR(h1 → bb̄). The

green dashed (blue) line indicates the expected (observed) limits at LEP [5], where

the 2σ excess at ∼ 96 GeV can be observed. The orange and the red line show the
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Figure 15: The plane of mh1 and S95, which is defined as σ(e+e− → Zh1)/σSM×BR(h1 →
bb̄). The green dashed (blue) line indicate the expected (observed) limits at LEP [5]. The
orange and the red line show the reach of the ILC using the ”recoil method” or the
”traditional method” (see text). The red (blue) points indicate the parameter points within
(outside of) the 1σ range of the 96 GeV excesses.

reach of the ILC using the “recoil method” [118] or the ”traditional method”, see

Ref. [115] for details (and Ref. [116] for a corresponding experimental analysis). The

“recoil” method is using a Z boson produced by Higgs strahlung which is reconstructed

from the Z → µ+µ− decay, while the “traditional method” is the analysis using the

H → bb̄ channel. This analysis assumed
√
s = 250 GeV and an integrated luminosity

of 500 fb−1. The colored dots indicate the results from our parameter scan in the

2HDMS. The red (blue) points correspond to the parameter points inside (outside)

the 1σ ellipse of µCMS and µLEP. One can observe that the red points, i.e. the ones

describing the two excesses, are all well above the orange line. This shows that such

light Higgs boson could be produced abundantly at the ILC. The same conclusion

holds for the N2HDM.

In a second step we analyze the anticipated precision of the h1 coupling measurements

that can be performed at the ILC. We would like to stress that this constitutes the

first analysis of this type: to which precision the couplings of a BSM Higgs boson

can be measured at a future e+e− collider (all relevant details of this new analysis

can be found in Appendix A, and what are the phenomenological consequences.

Concretely, we assume an ILC center-of-mass energy of
√
s = 250 GeV and an

integrated luminosity of 2 ab−1. We concentrate on the points within the 1σ ellipse of

the 96 GeV excesses in the µCMS-µLEP plane. In Fig. 16 (left) we show the numbers
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of h1 events produced in the Higgs-strahlung channel for the dominant decay modes.

We directly compare the results for the 2HDMS and the N2HDM for the low and

the high tan β region. It can be seen that no relevant differences can be observed,

neither between the two models nor for the two tan β regions. It is remarkable that,

depending on the channel between ∼ 103 and up to 105 events can be expected. The

statistical uncertainty for these numbers is shown in the right plot of Fig. 16.

In the left plot of Fig. 17 we show the predictions for the effective couplings, which

are the same for ch1bb and ch1ττ , as well as for ch1ZZ and ch1WW . The only visible

difference between the low and high tan β region is the somewhat enlarged range of

ch1tt, which is found in the low tan β region. Naively, one would expect a corresponding

enhancement in the number of gg events in the left plot of Fig. 16. However, the

corresponding branching ratio is largely driven by the decay h1 → bb̄, and no direct

correspondence of ch1tt and BR(h1 → gg) is found (see also the numbers for the best-

fit points in Tabs. 8 and 9). Finally in the right plot of Fig. 17 we show a completely

new type of analysis: the anticipated precision for the h1 coupling measurement

at the ILC (details about this evaluation are given in Appendix A. The coupling

of the h1 to bb̄, τ+τ−, gg, and W+W− are determined from the respective decays,

whereas the coupling to ZZ is determined from the Higgs-strahlung production. It

is expected that the coupling of the h1 to bb̄ can be measured with an uncertainty

between 2% and ∼ 3.5%. For τ+τ− and gg, the precision is expected to be only

slightly worse. Because of the smaller coupling to W bosons, the corresponding

uncertainty is found between ∼ 4.5% and ∼ 12%. The highest precision, however,

is expected from the light Higgs boson production via radiation from a Z boson,

where an accuracy between 1% and 2% is anticipated. While these precisions are

the same for the two models under investigation and as well as for the two tan β

regions, they will nevertheless allow for a high-precision test of the 2HDMS/N2HDM

predictions. Concerning a possible differentiation of the two models, as before, we

find that the different symmetries and couplings do not have any relevant impact on

the h1 coupling analysis. Consequently, in order to distinguish the 2HDMS and the

N2HDM more direct phenomenological analyses will have to be performed, see our

discussion in Sect. 3.2.4.

5.4.2 Measurements of the h2 couplings

The Higgs boson observed at ∼ 125 GeV at the LHC can also serve for the exploration

of BSM models. The extended Higgs boson sector of the 2HDMS/N2HDM, in
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(a) (b)

Figure 16: Number of events (left) at the h1 → bb̄, h1 → τ+τ−, h1 → gg and h1 →
W+W− final states produced by the Higgs-strahlung process at the ILC, and the respective
uncertainties (right) for the 2HDMS and the N2HDM scan points, which are within the 1σ
ellipse of the 96 GeV excesses. The ILC center-of-mass energy is

√
s = 250 GeV and the

integrated luminosity is 2 ab−1.

(a) (b)

Figure 17: Left: the effective couplings of the h1 for both 2HDMS and N2HDM in the
two tanβ regions. Right: the anticipated coupling measurement uncertainties (see text)
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particular the mixing of the lighter doublet with the singlet, yields deviations of the

h2 couplings from their SM expectations. In Fig. 18 we compare the predictions of

the 2HDMS (blue points) and the N2HDM (red points) for the effective h2 couplings

with the experimental accuracies. As before, special attention is paid to potential

differences between the two models, leading possibly to an experimental distinction.

Only points within the 1σ ellipse of the 96 GeV excesses are used, where the two

tan β regions have been combined. Shown are ch2bb vs. ch2tt (upper left), ch2V V (upper

right) and ch2ττ (lower plot). The black dotted (dashed) ellipses indicate the current

ATLAS (CMS) 1σ limits (see Refs. [119]and [120]). The HL-LHC expectation [121],

centered around the SM value, are shown as dashed violet ellipses. The orange

(green) dashed ellipses indicate the improvements expected from the ILC at 250 GeV

(additionally at 500 GeV), based on Ref. [122]. All the points are roughly within

the 2σ range of the current Higgs boson rate measurements at the LHC, because of

the HiggsSignals constraint. No relevant difference between the two models can

be observed. While ch2bb = ch2ττ can reach the SM value (which by definition of the

effective couplings is 1), the couplings to top quarks and to gauge bosons always

deviate at least ∼ 5% from the SM prediction. We have checked explicitly that this

is due to the agreement with the 96 GeV excesses. For the coupling to top quarks,

depending which point in the parameter space is realized, possibly no deviation can

be observed, neither with the HL-LHC, nor with the ILC precision. The situation

is different for the h2 coupling to gauge bosons. The HL-LHC precision might

still yield a significance below the ∼ 3σ level. The in this case strongly improved

ILC precision, on the other hand, yields for all parameter points of the 2HDMS

or the N2HDM a deviation from the SM prediction larger than 5σ. Consequently,

the anticipated high-precision h2 coupling measurements at the ILC will always

either rule out the 2HDMS/N2HDM or refute the SM prediction. There will be no

distinction visible between the two models via the h2 coupling determinations. This

re-enforces our finding of the h1 analysis in the previous subsection: only more direct

phenomenological analyses will be able to distinguish the 2HDMS and the N2HDM,

see our discussion in Sect. 3.2.4.
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(a) (b)

(c)

Figure 18: The effective couplings of the SM-like Higgs-boson h2. Shown are |ch2bb vs.
ch2tt (upper left), ch2V V (upper right) and ch2ττ (lower plot). The blue (red) points show
the 2HDMS (N2HDM) points within the 1σ range of the 96 GeV excesses, with the two
tanβ ranges combined. The black dotted (dashed) ellipses indicate the current ATLAS
(CMS) 1σ limits. The HL-LHC expectation, centered around the SM value, are shown
as dashed violet ellipse. The orange (green) dashed ellipses indicate the improvements
expected from the ILC at 250 GeV (additionally at 500 GeV).
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Part IV

Four top final states as a probe of

Two Higgs Doublet Models and its

Extensions
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6 Four top final states as a probe of Two Higgs

Doublet Models

Higgs–top-quark interactions are an especially important part of BSM Higgs physics.

For the discovered Higgs boson, the top-Yukawa coupling is the largest Yukawa

coupling and plays a crucial role in various production processes (e.g. Higgs pro-

duction via gluon fusion, Higgs production in association with top-quarks, Z-boson

associated Higgs production) and decay channels (e.g. decay to two photons or to

two gluons). In order to derive precise constraints, the information from various

channels has to be combined.

Similarly, large top-Yukawa couplings are expected for BSM Higgs bosons in many

BSM models. Typical examples are the Two-Higgs-Doublet models (2HDM) where

this work focuses on. In order too maximise the discovery potential for such BSM

Higgs bosons, various channels sensitive to their top-Yukawa coupling should be

combined.

In gluon fusion (ggH), in the decay of a Higgs boson into two photons (H → γγ) and

the subdominant gluon induced ZH production, the top-Yukawa coupling appears

at leading-order (LO). At the LHC, there are also production channels which are

sensitive to the top-Yukawa coupling already at tree level. These channels are the

production of a Higgs boson in association with two top quarks (ttH), with a W

boson and a top quark (tWH) and with a single top quark (tqH). If the BSM Higgs

bosons are heavy enough, a large top-Yukawa coupling can not only facilitate their

production but also their decay into top quarks. This strongly motivates the search

for multi-top final states.

Such a search for contributions of heavy BSM scalars to four top final states have been

recently studied by CMS in [7]. Such a search for additional heavy scalars is not only

sensitive to final states with four top quarks but also to the production of heavy scalars

in association with a single (tqH, tWH) or two top quarks (ttH) with a subsequent

decay of the scalar into two top quarks. The BSM interpretation in [7] includes upper

limits on the cross-section times branching ratio σ((tt̄, tq, tW ) + H) · BR(H → tt̄)

as well as limits on the important quantity tanβ discussed already in Sect. 3. While

the cross-section limits show no significant over- or under-fluctuation, they place a

strong lower limit on tanβ. The analysis excludes tanβ of up to 1.65 for a 2HDM

with a mass degenerated scalar and pseudoscalar Higgs bosons. This low tanβ region

71



is especially interesting for Baryogenesis scenarios in 2HDMs (see e.g. [123]). For low

tanβ the top-Yukawa couplings become strong and suppress other channels. This

makes final states with multiple tops especially important.

The CMS search is restricted to cross-section limits on a pure scalar or pseudoscalar

particle in a mass range of 350 GeV to 650 GeV and assumes that the BSM scalar

has no coupling to massive vector bosons. To make this search sensitive to a more

general set of models — i.e. accommodating scenarios with CP-mixed scalars as well

as scalars with non-zero couplings to massive vector bosons —, we perform a detailed

recasting of the analysis and implement the results into HiggsBounds in the form

of fit functions to ensure easy applicability without the need to run Monte-Carlo

simulations.

We reinterpret this analysis by generating Monte-Carlo Events in the most important

sub-channels that can contribute to the four top cross-section. These are ttH,

tWH and tH production. This is done using Madgraph5 for event generation and

Madanalysis for recasting the event. We do this using a simplified model framework

for an arbitrary scalar with CP-odd and CP-even couplings to top quarks and

couplings to massive vector bosons. We implement this analysis in HiggsBounds

which makes it easily accessible for a variety of models, including models with CP-

violation and models with deviations from the alignment limit. We also expand the

original mass range of 350 − 650 GeV up to 1 TeV. Using this analysis we study

the impact on the low tanβ region in a number of models, including the 2HDM, the

N2HDM and the complex 2HDM (C2HDM, see [8].)

6.1 Higgs-top quark interaction at hadron colliders for mH >

2mtop

There are multiple processes where the top-Yukawa coupling of the Higgs boson

appears. For this analysis we restrict ourselves to processes where the Higgs top-

Yukawa coupling appears at leading-order (LO). The additional Higgs boson can be a

scalar or pseudoscalar, denoted as H and A, respectively. For simplicity we will refer

to the additional Higgs boson as H (if not stated otherwise). We start with discussing

loop-induced processes which can be mediated by a top-quark loop (among others).

Two examples are gluon fusion, which is the dominant production mode at the LHC

for a SM like Higgs boson, and the decay into two photons. Both are mediated by

a top-quark loop. The decay into two photons also has a dominant W -boson loop
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for a SM like Higgs boson. Both processes are shown in Fig. 19. There is another

loop-induced process involving Higgs top-Yukawa couplings in the subdominant gluon

induced ZH production process. The relevant Feynman diagrams for ZH production

are shown in Fig. 20. In these loop-induced processes the top-Yukawa coupling enters

via a virtual top quark loop (among other particles).

At the LHC there are production channels which are sensitive to the top-Yukawa

coupling already at tree level. The channels are Higgs production modes in association

with a single or two top qarks. The ttH production is proportional to the top-Yukawa

coupling, while tWH and tH production involve contributions of the top-Yukawa

couplings and the Higgs–W -boson couplings. The production rate of these particles

with an additional single top quark is sizable at masses of mH > 2mtop. In Fig. 21

we show exemplary Feynman diagrams for the tt̄H, tqH and tWH production.

We always assume a subsequent decay of the produced Higgs boson into two top

quarks. These processes do not have significant interference with the SM tt̄tt̄

production [124]. Furthermore tWH and ttH production modes are difficult to

distinguish experimentally. They interfere with each other at next-to-leading order

in the five-flavor scheme or at leading-order in the four flavor scheme.

We use this analysis to constrain new on-shell scalar and pseudo-scalar particles with

mH,A > 2mtop. In addition to tt̄H followed by a decay of H → tt̄, we include the

additional production channels tqH and tWH.

Figure 19: Exemplary Feynman diagrams for gg → H and h → γγ

Figure 20: Exemplary Feynman diagrams for the loop-induced subdominant ZH produc-
tion modes involving Higgs top-Yukawa couplings.
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Figure 21: Exemplary Feynman diagrams of tH, tt̄H, tWH production. At masses of
mH > 2mtop the production of a Higgs boson with a single top quark becomes relevant.

6.1.1 Effective model description

The limits obtained by the analysis should be model independent. To achieve this

we use an effective field theory (EFT) approach with a model similar to the Higgs-

characterization model defined in [125]. The top-Yukawa part of the Lagrangian

scaled with respect to the SM ist given by [126]

LY uk = −ySMt√
2
t̄(ct + iγ5c̃t)tX. (6.1)

Here ySMt is the SM top-Yuakwa coupling, X denotes a generic Scalar and t denotes

the top-quark field and ct, c̃t, cV are the CP-even and CP-odd coupling to top-quarks

rescaled to the SM prediction with ct = 1 and c̃t = 0. For this study we look at heavy

scalars with only top-Yukawa and gauge-boson couplings, which are given by

LV = cVX

(
M2

Z

ν
ZµZ

µ + 2
M2

W

ν
W+

µ W−µ

)
, (6.2)

where W,Z denote the Vector-boson fields with the masses MZ and MW , and where

cV is the coupling to Vector-bosons (rescaled to the SM).

6.1.2 Cross section comparison of ttH, tWH and tH at the LHC

In Fig. 22 we compare the production cross sections of the discussed ttH, tWH and

tH production modes for a heavy scalar as a function of the mass at the LHC. The
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blue lines show the production cross-section σ((ttH + tWH), H → tt) for a SM-like

Higgs boson (solid line), a CP-even BSM scalar (dashed line) with ct = 1 and a

CP-odd BSM scalar (dotted line) with ct̃ = 1. If the Higgs boson is SM like, i.e. the

gauge boson coupling cV = 1, the cross section becomes significantly smaller for high

masses of mH > 350 GeV than the production of a CP-even/odd scalar. This should

be compared to tH production of the same particles (red lines). While for a SM-like

Higgs boson (solid line) the cross-section is significantly smaller for the mass around

the SM Higgs boson mh = 125.09 GeV (due to a large negative interference between

the contribution proportional to the top-Yukawa coupling and the contribution

proportional to the Higgs–W -boson coupling), the production rate of tH processes

for a CP-even BSM scalar (dashed line) line is comparable to ttH production for

masses of mH < 350 GeV and is of similar size as tWH production (green dashed

line) for mH > 350 GeV. While the cross-section for the tWH channel is almost the

same for a CP-even/odd scalar, it would be possible to deduce CP-properties of the

produced scalar for ttH and tH production from the production rate, which shows a

dependence of the CP-character of the top-Yukawa coupling.

We assume that the Higgs boson produced in ttH, tWH and tH processes dominantly

decays into two top quarks for mH > 350. The responsible top-Yukawa coupling

will also induce decays to two gluons and two photons. To investigate the size of

these contributions, we show in Fig. 23 a comparison of the partical decay widths

for a Higgs boson decaying into two top quarks (H → tt̄), two gluons (H → gg)

and two photons (H → γγ). For a CP-odd scalar the decay into two top quarks

(red solid line) is by a factor of ten larger than the decay into two gluons (blue solid

line) for small masses around 350 GeV. However, for larger masses and a CP-even

scalar the decay into gluons is less than 1% of the decay width into two top quarks.

The decay width into two photons (green lines) is two orders smaller than the decay

into gluons. Additionally, we show the cross-section for a heavy scalar in ttH, tWH

and tH production at a mass of 400 GeV as a function of the CP-even and CP-odd

couplings ct and ct̃ in Fig. 24.

6.2 Recasting process

In the following we will discuss our model independent approach of fitting cross

section formulas that depend on the mass and top Yukawa couplings. Further we will

give more details about the Monte Carlo Event generation and recasting setup.
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Figure 22: Comparison of the total cross section in tth, tWH and tqH production.

6.2.1 Cross-section fit formulas

We derive fit formulas for the total cross section and the cross section in each signal

region in each of the tH, tt̄H, tWH subchannels. We would also expect contributions

from the ggH production mode. However, we found that the sensitivity of the analysis

to the ggH channel is very small. The ggH channel is therefore neglected.

If the width is sufficiently small, it is not parameterized in terms of cV , ct, and ct̃,

and these cross-sections are proportional to

σ ∝ (a1c
2
V + a2cV ct + a3c

2
t + a4c̃

2
t ) · (b1c

2
t + b2c̃

2
t ), (6.3)

where the first bracket comes from the production and the second bracket from the

decay. All other possible coefficients are zero as a result of the non-interference

between CP-even and CP-odd contributions. If more than one scalar is present, we

expect a positive interference between them. We make a conservative choice and

neglect any expected interference terms. We can then write this as
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Figure 23: Partial decay width Γ of produced scalar H to two top-quarks, two photons
and two gluons.

σ ∝ c1c
2
vc

2
t + c2c

2
V c̃

2
t + c3cV c

3
t + c4cV ctc̃

2
t + c5c

4
t + c6c

2
t c̃

2
t + c7c̃

4
t . (6.4)

The coefficients ci, i = 1, ..., 7 of the total cross-section σtot can be extracted by

calculating the cross-sections for 7 different coupling configurations with MadGraph.

One possible choice is

ct = 1, c̃t = 0, cV = 0 −→ σ1 = c5,

ct = 0, c̃t = 1, cV = 0 −→ σ2 = c7,

ct = 1, c̃t = 1, cV = 0 −→ σ3 = c5 + c6 + c7,

ct = 1, c̃t = 0, cV = 1 −→ σ4 = c1 + c3 + c5,

ct = 1, c̃t = 0, cV = 2 −→ σ5 = 4c1 + 2c3 + c5,

ct = 1, c̃t = 1, cV = 1 −→ σ6 = c1 + c2 + c3 + c4 + c5 + c6 + c7,

ct = 1, c̃t = 1, cV = 2 −→ σ7 = 4c1 + 4c2 + 2c3 + 2c4 + c5 + c6 + c7,

(6.5)
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Figure 24: Total cross-section of ttH, tWH and tqH production as a function of ct and
c̃t coupling for cV = 0

where σi is the cross section for the respective coupling configuration. Using this

strategy for different mass values, we obtain the total cross section by running

MadGraph (see Sect. B.1 for details on the prompts) and read out the total cross

section.

To obtain the cross sections for the individual signal regions, we process the generated

event samples using MadAnalysis. The analysis was implemented and used for

studying top-philic scalars in [127]. MadAnalysis calculates the efficiency by dividing

the number of MC events in the signal region by the initial number of events,

ϵ =
N

Ntot

(6.6)

where Ntot is the number of events in the MC sample (and not the number of actual

events predicted for the signal region for the given parameter point, which would be

ϵσtot). The cross section in each signal region is then given by
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σ = ϵ · σtot. (6.7)

After having derived polynomial fits for both σ and σtot, we can write down a fit

formula for the efficiency ϵ,

ϵ =
σ

σtot

=
cσ1c

2
V c

2
t + cσ2c

2
V c̃

2
t + cσ3cV c

3
t + cσ4cV ctc̃

2
t + cσ5c

4
t + cσ6c

2
t c̃

2
t + cσ7 c̃

4
t

cσtot
1 c2V c

2
t + cσtot

2 c2V c̃
2
t + cσtot

3 cV c3t + cσtot
4 cV ctc̃2t + cσtot

5 c4t + cσtot
6 c2t c̃

2
t + cσtot

7 c̃4t
.

(6.8)

CMS reports an upper limit on σ(tt̄H + tH + tWH) · BR(H → tt̄). The coupling

dependence of the production rate in general scales with c4t . If the Higgs boson

only decays into top quarks and the decay width is sufficiently small to ignore

off-shell effects, the rate scales with c2t . For the implementation into HiggsBounds

we, however, want to keep the width as an independent quantity. For this, we

computed the efficiencies for different width values of the decaying Higgs boson (1%,

5%, 10% and 15%), finding only negligible differences of a few percent, making the

HiggsBounds limit effectively independent of the decay width.

Our implementation will put a limit on the number of event in the most sensitive

signal region. For the comparison with the CMS results we can perform the following

steps, to derive a limit on the production rate. Given the scaling with c4t for a scalar

with c̃t = cV = 0, we can then rewrite the production rate as

σ(tt̄H + tH + tWH) · BR(H → tt̄) = c4t [σ(tt̄H + tH + tWH) · BR(H → tt̄)]ct=1 .

(6.9)

To obtain an exclusion limit, we can write an expression for the number of signal

events as

Nsignal = L · [σ(tt̄H,H → tt̄)ϵtt̄H + σ(tH,H → tt̄)ϵtH + σ(tWH,H → tt̄)ϵtWH ] ,

(6.10)

which we again can write as

Nsignal = c4tL · [σ(tt̄H,H → tt̄)ϵtt̄H + σ(tH,H → tt̄)ϵtH + σ(tWH,H → tt̄)ϵtWH ]ct=1

(6.11)

for c̃t = cV = 0. We obtain a limit on the number of signal events from the observed
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Nl Nb Nj SR tt̄tt̄ (SM signal - CMS) tt̄tt̄ (Background - CMS)

2 3 6 SR5 1.68 ± 0.95 6.7 ± 1.1

2 3 7 SR6 1.20 ± 0.67 3.48 ± 0.66

2 3 ≥ 8 SR7 0.88 ± 0.48 1.59 ± 0.49

2 ≥ 4 ≥ 5 SR8 2.2 ± 1.3 5.5 ± 1.3

Table 10: The most sensitive signal regions (SR) after recasting. Nl is the number of
leptons, Nb the number b jets and Nj the total number of jets. We show the numbers
reported by CMS for the expected tt̄tt̄ number of events and SM background plus tt̄tt̄
events.

number of events in each signal region. This allows us to test the couplings and

masses of a given model point against the limit on the number of signal events and

derive a limit on the couplings and cross-section. Similarly, we find the number of

signal events for all coupling configurations with c̃t ̸= 0 and cV ̸= 0.

CMS uses a BDT analysis (boosted decision trees), which is a machine learning

algorithm (see [128]), to calculate upper limits on the cross-section and other model

parameters. We are limited to using the cut-based analysis which divides the events

in fourteen signal regions. We treat the total number of events, which is the SM

background plus SM tt̄tt̄ events, as background for our implementation. Furthermore,

we do not know the correlations between the signal regions and are have to derive

our limits from the events in the most sensitive signal region. The most sensitive

signal regions are shown in table Tab. 10. Signal region 8 was the most sensitive for

all recasted MC samples.

In Fig. 25 we show two exemplary fit functions (orange dashed) and data obtained

by Eqs. (6.5) (blue) with the error bars coming from the Monte-Carlo simulation.

In panel (a) we show the fit function for the coefficient c5 in ttH production which

corresponds to a vertex proportional to c4t . The function, whose form is chosen

heuristically, is given by

c5(mX) = 2523.55 · 1

m2
x

− 0.0000079 ·mx + 0.0076. (6.12)

In panel (b) we show an example of a coefficient which can be neglected because

the fit function would be close to zero. All remaining fit functions can be found in

Sect. B.
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To show the contribution of each coefficient to the cross-section calculation, we

compare them in Fig. 26 for (a) ttH and (b) tWH production. The ttH channel

in panel (a) only has contributions from c5 and c7 while c6 is zero (see Fig. 25)

and c1−4 are zero because there is no vertex containing cV in ttH production. For

the tWH channel we have strong negative contributions from c3,6 < 0 and positive

contributions from c1,4,5,7 > 0 while only c2 is equal to zero. This shows relevant

contributions from vertices which are proportional to cV in the coefficients c1, c3

and c4. Although some of the coefficients are negative, we checked, that the total

efficiencies stay positive in all cases.

(a) (b)

Figure 25: Exemplary fit functions (orange dashed) of the coupling coefficients c5 (a)
and c6 (b) plotted against the original data. The coefficient in (b) is fitted to 0 and won’t
contribute to the overall cross section.
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(a) (b)

Figure 26: Contributing fit functions for (a) ttH- and (b) tWH-production. While
ttH-production does not have any cV coupling we can see a strong negative contribution
from the c3 coefficient, corresponding to a cvc

3
t vertex, for tWH production.

6.2.2 Cross-section and tanβ limits

Before we use the obtained limits to study the impact on the 2HDM and its singlet

extensions we validate our implementation against the existing results in the CMS

analysis [7]. In Fig. 28 we show the cross-section limit for a pure scalar (ct = 1, ct̃ = 0,

cV = 0) in panel (a), a pseudoscalar (ct̃ = 1, ct = 0, cV = 0) in panel (c) and mass

degenerate scalar and pseudoscalar in panel (e), obtained from HiggsBounds with our

implementation for the total production rate σ(pp → (tt, tW, t) + H) ·BR(H → tt̄)

(red) compared to the limit from CMS (green) and the limit from ttH production only

(blue). As expected, because of our limitation to the most sensitive signal region, our

limit is overall weaker compared to the CMS result for the total cross-section times

branching ratio σ(pp → (tt, tW, t) + H) · BR(H → tt̄). However, in HiggsBounds

the limits for each subchannel are implemented independently. This means that

our implementation could end up with a stronger limit in specific cases, because

the cross-section of each sub-channel is compared against the limit. This ensures

sensitivity for parameter points with a large cross-section in one subchannel of ttH,

tWH or tH but a small cross-section in the other channels. In panel (b), (d) and (f)

we show the observed and expected ratio obtained with HiggsBounds for the case of

a pure scalar, of a pure pseudoscalar and when both are present with the same mass.

For a pure scalar masses above mH = 350 GeV are allowed. For a pure pseudoscalar
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masses below mA = 450 GeV are excluded already. The limit is strongest when both

a scalar and a pseudoscalar of the same mass are present. Masses below mH/A = 650

are excluded.

In Fig. 27 we compare the upper limits on tanβ obtained from our cross-section

functions and HiggsBounds. The blue area indicates the excluded observed tanβ

area, while the dotted orange line shows the expected limit. The dashed grey line

shows the observed limit from the original CMS analysis. Overall, we are in good

agreement with the case of a single scalar Higgs boson and two degenerate scalar and

pseudo-scalar Higgs bosons. The upper limit for the pseudo-scalar deviates more from

the original analysis but is still in good agreement. This is likely explained by the

fact that we can only use the most sensitive signal region in our recasting setup while

the original analysis uses the BDT (boosted decision tables) analysis and includes

correlations between signal regions leading to an overall better sensitivity.

Overall, the implementation in HiggsBounds is able to reproduce the CMS results

and sets a conservative, slightly weaker limit on the combined production rate σ(pp →
(tt, tW, t) + H) ·BR(H → tt̄) and on tanβ. This validates our implementation.

In Fig. 29 we show a naive scaling of the observed upper limit on tanβ for the

luminosities expected after LHC Run-III (300 fb−1) and after the completion of the

high-luminosity phase (HL-LHC, 3000 fb−1). With the HL-LHC luminosity, we could

exclude values of tanβ up to 8 for two degenerate scalar and pseudo-scalar particles

with masses of 350 GeV.
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(a) (b)

(c)

Figure 27: Observed (blue area) and expected (orange dashed line) upper limits on tanβ
compared to the observed limit from the original CMS analysis (grey dashed line) for a
scalar (a), pseudo-scalar (b) and scalar + pseudo-scalar of the same mass (c).
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(a) (b)

(c) (d)

(e) (f)

Figure 28: Cross-section limit for a pure scalar (cV = 0, ct̃ = 0) (a), a pseudoscalar
(cV = 0, ct = 0)(c) and both (e) obtained from HiggsBounds with our implementation for
the total production rate σ(pp → (tt, tW, t) +H) ∗ BR(H → tt̄) (red) compared to the
limit from CMS (green) and the limit obtained from ttH production only (blue). In (b), (d)
and (e) we show the respective observed and expected ratio obtained from HiggsBounds.
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(a) (b)

(c)

Figure 29: Naive scaling of the observed limit on tanβ for LHC Run-III (300 fb−1) and
HL-LHC (3000 fb−1)

.
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6.3 Impact on the low tanβ region in the 2HDM and its

singlet extensions

We validated the model independent cross section limits and tanβ limits in the

2HDM, and can now study the impact on the low tanβ parameter regions of extended

2HDMs. The focus will be on additional parameter space excluded by the four-top

analysis and the comparison to existing limits from di-top analyses in [129].

In Fig. 30 we show the excluded parameter regions in the 2HDM Type II in the tanβ-

mH/A plane for Higgsbounds with the four-top analysis implemented (a) and without

it (b). The area for tanβ ∈ [0.2, 1.5] and mH/A ∈ [400, 750] GeV is dominantly

excluded by di-top searches from [129] without the four-top analysis. The gap

between the excluded plane from the di-top searches around tanβ = 0.3 and tanβ = 0

originates from the width dependence of the di-top limit. The triangular shaped

excluded plane for mH/A ≤ 400 GeV and high tanβ is excluded by the recent ττ

search from CMS in [130]. The newly implemented four-top analysis additionally

excludes values of tanβ < 1.5 for masses between 350 and 400 GeV. It also extends

the excluded region for low tanβ for masses up to 1 TeV and lower tanβ values up

to 0.5. In a small area between masses of 600 and 750 GeV it places a stronger limit

than existing di-top search while the di-top limits are stronger between 400 and 600

GeV. The new analysis has a substantial impact on the excluded parameter regions

for low tanβ.

We show the same tanβ-mH/A plane for the N2HDM in Fig. 30 with the four-top

analysis implemented (see panel (a)) and without it (panel (b)). The relevant masses

and mixing angles can be found in Tab. 11. As expected the excluded plane is very

similar to the 2HDM Type II when both are in the alignment limit. However, without

the four-top analysis, the the strongest limit for low tan β is set on the additional

light scalar, whose mass is chosen to be 96 GeV, from searches for light Higgs bosons

in the di-photon final state in [4]. Furthermore, we study the effects when the masses

of the heavy scalar and pseudoscalar are not degenerate. When the pseudo-scalar

mass mA is fixed in Fig. 31 and the tanβ-mH plane is scanned the di-top search is

again the strongest in excluding parameter space for mH ∈ [400, 750] without the

four-top analysis. If the four-top analysis is applied we excluded tanβ up to 1.2 for

mH ∈ [350, 400]. For mH > 660 GeV the four-top search is selected over the di-top

search. The excluded region is now constant with tanβ ∼ 0.5 because the limit on

the pseudo-scalar with mA = 792 becomes stronger. The small plateau around 800
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mh1 [GeV] mh2 [GeV] mh3 [GeV] ma [GeV] mH± [GeV]

96 125.09 [350; 1000] [350; 1000] 800

α1 α2 α3 tanβ

β − π
2

1.2 0 [0; 3]

Table 11: Masses and mixing angles of the N2HDM scan.

mh1 [GeV] mh2 [GeV] ma [GeV] mH± [GeV] α tanβ

125.09 [350; 1000] [350; 1000] 800 β − π
2

[0; 3]

Table 12: Masses and mixing angles of the 2HDM Type II scan.

GeV is explained by HiggsBounds clustering the two particles A and H together

when they are closer in mass than the mass resolution of the analysis. We see again

similar behaviour for the tanβ-mA plane with fixed scalar mass mH . The di-top

search again gives the strongest exclusion criteria and the four-top analysis acts

complementary in excluding parameter space for mass values which are not covered

by the di-top searches. For masses of mA > 660 the limit from the four- top analysis

again is stronger than the di-top search.

Finally, we study the impact of the four-top analysis in the C2HDM. We choose the

parameters as given in Tab. 13 for which the lightest scalar h1 is SM- like and in the

alignment limit. In this limit the couplings for the heavier h2 and h3 are CP-mixed.

We scan again in the tanβ-mA plane but for 2 different mixing angles of h2 and h3

with α3 ∈ [π
4
, π
2
]. In Fig. 32 without the four-top analysis (left) the only excluded

region in the low tanβ region comes from γγ searches. The di-top search is only

applicable to scalars which are either CP-even or CP-odd (but not for CP-mixed

scalars). On the right, we see an excluded region similar to the prior models where the

dashed and dotted lines indicate the excluded region for α3 = π/2. This highlights

the impact of including CP-mixed scalars in our implementation.

mh1 [GeV] mh2 [GeV] mh3 [GeV] mH± [GeV]

125.09 [350; 1000] [350; 1000] 800

α1 α2 α3 tanβ

β 0 [π
4
, π
2
] [0; 3]

Table 13: Masses and mixing angles of the C2HDM scan.
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(a) 2HDM without tt̄tt̄ analysis (b) 2HDM wit tt̄tt̄ analysis

(c) N2HDM without tt̄tt̄ analysis (d) N2HDM with tt̄tt̄ analysis

Figure 30: HiggsBounds exclusion in the 2HDM Type II in the tanβ-mH/A plane with
degenerate scalar and pseudo-scalar masses for BP1 with (a) and without (b) the four
top analysis. The color spectrum shows the observed ratio robs < 1. The plain colors
give the analysis leading to exclusion. Without the analysis in (a) the light grey are for
mH/A ∈ [400, 750] gets excluded by di-top searches. With the four top analysis implemented
we exclude substantially more parameter space of up to tanβ = 2 for mH/A = 350 GeV
and tanβ = 0.5 for mH/A = 1000 GeV. Panels (c) and (d) show the same plane for the
N2HDM Type II. Without the analysis in (a) the light grey are for mH/A ∈ [400, 750]
gets excluded by di-top searches. With the four top analysis implemented we exclude
substantially more parameter space of up to tanβ = 2 for mH/A = 350 GeV and tanβ = 0.5
for mH/A = 1000 GeV. The additional light Higgs boson extends the exclusion from γγ
searches in [4] compared to the 2HDM.
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(a) N2HDM without tt̄tt̄ analysis
and fixed mH

(b) N2HDM with tt̄tt̄ analysis
and fixed mH

(c) N2HDM without tt̄tt̄ analysis
and fixed mA

(d) N2HDM with tt̄tt̄ analysis
and fixed mA

Figure 31: HiggsBounds exclusion in the N2HDM in the tanβ-mH plane with fixed pseudo-
scalar and running scalar mass for BP1 with (a) and without (b) the four top analysis.
The color spectrum shows the observed ratio robs < 1. The plain colors give the analysis
leading to exclusion. Without the analysis in (a) the light grey are for mH/A ∈ [400, 750]
gets excluded by di-top searches. With the four top analysis implemented we exclude
substantially more parameter space of up to tanβ = 1.2 for mH/A = 350 GeV and
tanβ = 0.5 for mH/A = 1000 GeV. In panels (c) and (d) we show the same plane for a fixed
pseudoscalar mass. Without the analysis in (a) the light grey are for mH/A ∈ [400, 750]
gets excluded by di-top searches. With the four top analysis implemented we exclude
substantially more parameter space of up to tanβ = 1 for mH/A = 350 GeV and tanβ = 0.4
for mH/A = 1000 GeV.
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(a) C2HDM without tt̄tt̄ analysis
and degenerate mH2,3

(b) C2HDM with tt̄tt̄ analysis
and degenerate mH2,3

(c) C2HDM without tt̄tt̄ analysis
and fixed mH2

(d) C2HDM with tt̄tt̄ analysis
and fixed mH2

Figure 32: HiggsBounds exclusion in the C2HDM in the tanβ-mH/A plane with degenerate
heavy scalar masses with (a) and without (b) the four top analysis. The color spectrum
shows the observed ratio robs < 1. The plain colors give the analysis leading to exclusion.
Without the analysis in (a) only a γγ-search in [4] is sensitive in the low mass and tanβ
region and the di-top search is not sensitive to the CP-violating C2HDM. With the four
top analysis implemented we exclude substantially more parameter space of up to tanβ = 2
for mH/A = 350 GeV and tanβ = 0.5 for mH/A = 1000 GeV. The dashed lines indicate
the exclusion limits for the mixing angle of h2 and h3 (α3) chosen to be equal to π/4. In
panels (c) and (d) we show the same plane for the C2HDM with only one of the heavy
scalar masses fixed.
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7 Summary and Conclusion

Describing experimental data in the context of BSM models requires a thorough

study of the parameter space with respect to theoretical and experimental constraints.

In this work we studied the 2HDMS, which was never studied before in an extensive

phenomenological context. With the 2HDMS being very similar to the N2HDM in

terms of the involved parameters, a comparison of both models was an obvious part

of this study.

We introduced the 2HDMS with a Z3-symmetry and derived a number of theoretical

constraints including tree-level perturbative unitarity, boundedness from below and

vacuum stability constraints. Studying the bounds of the parameter space with

respect to theoretical constraints is the foundation of studying a new model and

directly constraints the parameters in the model potential. To describe applications

of benchmark points at colliders it is useful to change the basis from the set of

input parameters of the potential to physical parameters such as masses and mixing

angles. These benchmark points have to be tested against constraints coming from

experiments. These include searches for additional Higgs Bosons at experiments like

CMS and ATLAS, as well as measurements of the properties of the observed Higgs

boson. Constraints from flavor physics usually place a constrain on the mass of the

charged Higgs boson and tanβ.

In Sect. 5 we interpreted a ∼ 3σ excess at CMS and a ∼ 2σ excess at LEP as a

light Higgs boson and accomodated both excesses simultaneously in the 2HDMS

and N2HDM. We found that both models are equally well able to describe the the

observed signals for the low and high tanβ region. Our efforts then focused on

possibilities to distinguish the very similar models experimentally. The first step was

to study the precision of coupling measurements at a future linear collider. We found

that precision for various channels, such as bb̄, tt̄ and gauge boson couplings are very

similar in the 2HDMS and N2HDM. We give an outlook on further possibilities to

distinguish the models. These focus on the properties of the CP-odd Higgs bosons.

The N2HDM only has one CP-odd Higgs boson, whereas the 2HDMS has two and

an additional CP-odd mixing angle.

In the second part of this work we studied the impact of the search for additional

heavy Higgs bosons in final states with up to four top quarks on the low tanβ region

of 2HDMs. We used an analysis published by CMS as baseline and extended it via

Monte-Carlo-Event generation and recasting to higher masses and the possibilities of
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CP-mixed Higgs bosons. The results were used for a first of this kind implementation

into the public code HiggsBounds, which is a code that directly tests scenarios in

BSM models against searches for additional Higgs bosons at collider experiments.

Searches are usually implemented as an upper limit on the production rate (cross

section times branching ratio). The results from our anaylsis were implemented

as functions of the effficiency as a function of the mass, the involved CP-odd and

CP-even couplings and the coupling to gauge bosons. We found good agreement

with our implementation and the original anaylsis performed by CMS for a pure

CP-even CP-odd Higgs boson. We studied the constraints, which the new limit

places on the low tanβ region in the 2HDM and the N2HDM. Further, we studied

the impact on the C2HDM which includes CP-violating phases. We found that the

analysis can complement existing di-top searches and can exclude up to tanβ = 1.5

for masses of the additional Higgs bosons of 350 GeV if a mass degenerate CP-even

and CP-odd Higgs boson are present. In the C2HDM we exclude a similar plane but

the di-top searches are not CP-sensitive and not present in this model. This allowes

us to place much stronger limits on the low tanβ region in this model than previous

searches.

The phenomenological studies in this thesis have been carried not only to show the

capibities of 2HDMs and its extensions to describe hints of BSM physics observed at

the experiment, but also to give a starting point for the experimental distinction of

models that share a very similar parameter space and phenomenological properties.

The discussed signals of a possible light Higgs boson with a mass of ∼ 96 GeV will

be topic of further studies, motivated by a recently described signal at ∼ 95 by CMS

in [131]. Our results from the recasting of the four-top analysis by CMS can be used

to constrain low tan β scenarios, which are often important for the description of

baryogenesis which requires sources of CP-violation.
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A Evaluation of experimental coupling uncertain-

ties for a light Higgs boson

In this section we describe in detail how we estimate the experimental uncertainties

of the coupling measurements of a Higgs boson below 125 GeV based on ILC250

measurements. This section was taken from [6]. 1 We would like to stress that

this constitutes the first analysis of this type: to which precision the couplings of

a BSM Higgs boson can be measured at a future e+e− collider. This facilitates

future phenomenological analysis that may allow to obtain information about the

underlying model and its preferred parameter space.

A.1 SM Higgs-boson results

In this subsection we denote the SM Higgs boson as h and assume a mass of 125 GeV.

The cross section at the ILC250 is given as

σ(e+e− → Zh) = 206 fb. (A.1)

The BRs are taken from Ref. [132] and summarized in Tab. 14.

Final state bb̄ cc̄ gg τ+τ− WW ∗

Branching ratios 0.582 0.029 0.082 0.063 0.214

Table 14: BRs of the SM Higgs boson [132].

The SH Higgs coupling uncertainties have been obtained in Ref. [133] (Tab. 2),

assuming Lint = 2ab−1 at
√
s = 250 GeV (i.e. the ILC250). The results are given in

Tab. 15.

Coupling bb̄ cc̄ gg τ+τ− WW ZZ

Relative uncertainties [%] 1.04 1.79 1.60 1.16 0.65 0.66

Table 15: Relative uncertainties in the SM Higgs couplings, ∆gx/gx, at the ILC250 [133].

The numbers for the ratio of signal-over-background events, S/B(=: fh) of a SM

Higgs boson at 125 GeV at the ILC250 are given in Tab. 16 [134]. The hZZ coupling

is determined directly from the cross section, where the qq̄h mode can be neglected.

1We thank M. Cepeda for invaluable help in this section. We also thank J. Tian for providing
ILC numbers.
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The other couplings should be taken in the qq̄h mode, corresponding effectively to

e+e− → Z∗ → Zh → qq̄h (with the subsequent Higgs decay).

Measurement Efficiency S/B

σZh in µ+µ−h 88% 1/1.3

σZh in e+e−h 68% 1/2.0

BR(h → bb̄) in qq̄h 33% 1/0.89

BR(h → cc̄) in qq̄h 26% 1/4.7

BR(h → gg) in qq̄h 26% 1/13

BR(h → τ+τ−) in qq̄h 37% 1/0.44

BR(h → WW ) in qq̄h 2.6% 1/0.96

Table 16: Numbers for S/B at the ILC250 [134].

A.2 Basic signal-background statistics

In this section we use the following notation: NS(≡ S): number of signal events;

NB(≡ B): number of background events; NT : total number of events with. Then

one finds

NS = NT −NB, (A.2)

f = NS/NB. (A.3)

The background is taken after cuts, i.e. “irreducible background”, likely to be small

at an e+e− collider. For the uncertainties we have

∆N2
S = ∆N2

T + ∆N2
B. (A.4)

The uncertainty of the total number of events scales like

∆NT =
√

NT . (A.5)

The uncertainty of the background goes like

∆NB = ϵsyst,B ·NB, (A.6)
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where ϵsyst,B denotes the relative uncertainty for background estimation (which

cancels out later). Therefore,

∆N2
S =

(√
NT

)2
+ (ϵsyst,B ·NB)2 , (A.7)

∆NS =
√

(NS + NB) + ϵ2syst,BN
2
B. (A.8)

If the background is known perfectly, one has an overall uncertainty fully dominated

by the purely statistical uncertainty,

ϵsyst,B = 0, (A.9)

∆NS =
√

NS + NB

=
√

NS + NS/f

=
√

NS (1 + 1/f)

=
√

NS ·
√

1 + 1/f, (A.10)

∆NS/NS =
1√
NS

·
√

1 + 1/f. (A.11)

Consequently, the uncertainty improves with
√
NS if f = NS/NB ≫ 1. On the other

hand, if f is small, one wins less from the gain in statistics.

A.3 Evaluation of uncertainties in the Higgs couplings

A.3.1 Cross section evaluation

The production cross section for a Higgs ϕ at an e+e− collider is evaluated as

σ(e+e− → ϕZ) = σSM(e+e− → Hϕ
SMZ) × |cϕV V |2. (A.12)

Here Hϕ
SM is the SM Higgs boson with a hypothetical mass equal to mϕ. cϕV V is the

coupling strength of the ϕ to two gauge bosons (V = W±, Z) relative to the SM value.

In Fig. 33 we show the evaluation of σSM(e+e− → Hϕ
SMZ) (where Hϕ

SM is labeled H)

at the tree-level (“tree”) and the full one-loop level (“full”) [135], including soft

and hard QED radiation.2 One can see that the loop corrections are important for

the reliable evaluation of this cross section. Explicit numbers are given in Tab. 17.

Multiplying the loop corrected cross section with |cϕV V |2 is an approximation that

works well for mϕ
>∼ 75 GeV and requires more scrutiny for the lowest Higgs-boson

2We thank C. Schappacher for providing the calculation.
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masses.

Figure 33: Production cross section for “SM Higgs bosons” with mH ≤ 125 GeV [135].

mϕ [GeV] 5 10 20 30 40 50 60 70 80 90 96 100 110 120

σHZ [fb] 858 763 670 611 565 523 482 441 400 359 333 316 273 228

Table 17: Production cross section for “SM Higgs bosons” with mϕ ≡ mH ≤
125 GeV [135].

A.3.2 Signal over background for the new Higgs boson

An important element for the evaluation of the Higgs-boson coupling uncertainties is

the number of signal over background events for ϕ,(
NS

NB

)
ϕ

=: fϕ (A.13)

relative to the SM value(s) as given in Tab. 16,(
NS

NB

)
h

=: fh (A.14)

with (
NS

NB

)
h

/

(
NS

NB

)
ϕ

= fh/fϕ =: D. (A.15)
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Unfortunately, there is no (neither general nor model specific) evaluation of fϕ or

D available. However, for the ILC500 “SM-like” Higgs bosons with masses above

and below 125 GeV have been simulated [117]. One finds that in this case very

roughly D ≈ 2 can be assumed. For our evaluation we use D = 3 as a conservative

value.

A.3.3 Relating signal events to Higgs couplings

In this subsection we derive the evaluation of the uncertainties in the (light) Higgs-

boson couplings. We denote the generic coupling of a Higgs ϕ to another particle x

as gx. There are two cases:

(i) The coupling is determined via the decay ϕ → xx. The number of signal events

is given by

NS = Lint × σ(e+e− → ϕZ) × BR(ϕ → xx) × ϵsel × BR(Z → qq̄),

(A.16)

BR(ϕ → xx) =
Γ(ϕ → xx)

Γtot

, (A.17)

where ϵsel is the selection efficiency. In the formulas below ϵsel and BR(Z → qq̄)

cancel out, but they enter in the NS/NB evaluation, i.e. in the numbers of S/B

given in Tab. 16, as well as in the coupling precisions given in Tab. 15. The

decay channel ϕ → xx gives not only Γ(ϕ → xx), but also contributes to Γtot.

For simplicity we assume

BR(ϕ → xx) =
g2x

g2x + g2
, (A.18)

where g2 (modulo canceled prefactors) summarizes the other contributions.

The relative strength between gx and g is given by

(p− 1)g2x = g2, (A.19)

⇒ BR(ϕ → xx) =
1

p
. (A.20)

Then one finds

NS + ∆NS ∝ BR + ∆BR
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=
g2x(1 + ∆gx/gx)2

g2x(1 + ∆gx/gx)2 + (p− 1)g2x

=
1

p

(
1 + 2

∆gx
gx

− 2
∆gx
gx p

)
(A.21)

⇒ ∆BR =
1

p

(
2

∆gx
gx

− 2
∆gx
gx p

)
, (A.22)

⇒ ∆NS

NS

=
∆BR

BR
= 2

∆gx
gx

− 2
∆gx
gx p

= 2
∆gx
gx

(
1 − 1

p

)
. (A.23)

(ii) The coupling is determined via the production cross section. This is the case

for gZ .

Then one can assume [where as above the BR(Z → ℓ+ℓ−) cancels out]

NS ∝ σ(e+e− → ϕZ) × BR(Z → e+e−, µ+µ−) ∝ g2Z , (A.24)

NS + ∆NS ∝ (gZ + ∆gZ)2 . (A.25)

∆NS/NS ∝ 2
∆gZ
gZ

. (A.26)

A.3.4 Uncertainty in the Higgs couplings

In the following we denote the SM Higgs boson as h, and the new Higgs boson at

96 GeV as ϕ. For the SM Higgs boson we have

• σ(e+e− → Zh) from Eq. (A.1) and BR(h → xx) from Tab. 14, which gives us

NS,h.

•
(

NS

NB

)
h

from Tab. 16.

This allows us to evaluate
(

∆NS

NS

)
h

via Eq. (A.11).

•
(

∆gx
gx

)
h

from Tab. 15.

For the new Higgs boson ϕ we have

• NS,ϕ from Eq. (A.16).

• For
(

NS

NB

)
ϕ

we assume fh/fϕ = D with D = 2 as starting/central point.

This allows us to evaluate
(

∆NS

NS

)
ϕ

via Eq. (A.11). Here it should be kept in
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mind that D is a priori unknown. We use, as discussed above, D = 3 as a

conservative value.

Using the proportionality relations one can evaluate the coupling precision in the

two cases:

(i) The coupling determined via the decay ϕ → xx. Here one finds(
∆gx
gx

)
ϕ(

∆gx
gx

)
h

=

(
∆NS

NS

)
ϕ(

∆NS

NS

)
h

×

(
1 − 1

ph

)
(

1 − 1
pϕ

) , (A.27)

and can thus evaluate
(

∆gx
gx

)
ϕ

using

(
∆NS

NS

)
ϕ(

∆NS

NS

)
h

×

(
1 − 1

ph

)
(

1 − 1
pϕ

) =

(√
1+1/fϕ√
NS,ϕ

)
(√

1+1/fh√
NS,h

) ×

(
1 − 1

ph

)
(

1 − 1
pϕ

) (A.28)

=

√
1 + D/fh√
1 + 1/fh

×
√

NS,h√
NS,ϕ

× (1 − BR(h → xx))

(1 − BR(ϕ → xx))
(A.29)

=

√
D + fh
1 + fh

×

√
σ(e+e− → Zh)

σ(e+e− → Zϕ)
×

√
BR(h → xx)

BR(ϕ → xx)
(A.30)

× (1 − BR(h → xx))

(1 − BR(ϕ → xx))
. (A.31)

(ii) The coupling is determined via the production cross section, i.e. gZ . Here we

find (
∆gZ
gZ

)
ϕ(

∆gZ
gZ

)
h

=

(
∆NS

NS

)
ϕ(

∆NS

NS

)
h

, (A.32)

and can thus evaluate
(

∆gZ
gZ

)
ϕ

using

(
∆NS

NS

)
ϕ(

∆NS

NS

)
h

=

√
NS,h√
NS,ϕ

(A.33)
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=

√
σ(e+e− → Zh)

σ(e+e− → Zϕ)
. (A.34)
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B Four-top analysis: details on implementation

into HiggsBounds

B.1 Monte-Carlo and detector-simulation

The events for ttH, tWH and tH production at the LHC at NLO accuracy can be

generated using MadGraph5 by issuing the following commands.

For ttH production:

import model HC_NLO_X0-no_b_mass

define p = g d d~ u u~ s s~ c c~ b b~

define j = g d d~ u u~ s s~ c c~ b b~

generate p p > x0 t t~

output

For tWH production:

import model HC_NLO_X0-no_b_mass

define p = g d d~ u u~ s s~ c c~ b b~

define j = g d d~ u u~ s s~ c c~ b b~

generate p p > t w- x0

add process p p > t~ w+ x0

output

For tH production:
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import model HC_NLO_X0-no_b_mass

define p = g d d~ u u~ s s~ c c~ b b~

define j = g d d~ u u~ s s~ c c~ b b~

generate p p > t j x0 $$ w+ w-

add process p p > t~ j x0 $$ w+ w-

output

The relevant parameters can then be given via the following commands:

launch

shower=PYTHIA8

madspin=on

set nevents 50000

set cosa 0.707106

set kSM 0

set kHtt 1

set kAtt 0

set MX0 350

set WX0 auto

set pdflabel lhapdf

set lhaid 303600

where kHtt, kAtt and kSM are the CP-even, CP-odd and coupling to vector bosons

of the Higgs boson. MX0 is the mass of the additional Higgs boson and WX0 auto

ensures that the width of the particle is calculated via MadWidth. As discussed in

Sect. 6 the impact of the width can be neglected.
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B.2 Cross-section coefficient fit functions

In the following we show all fit functions ci(mX), where i ∈ {1, 7}, used to calculate

the cross-section depending on the mass mX and the couplings ct, c̃t and cV as

described in Sect. 6.

B.2.1 ttH-production

The fit functions for the coefficients in σϵ,ttH are given in the form ci,ϵ,ttH by

c5,ϵ,ttH(mX) = 2523.55 · 1

m2
X

− 0.0000079 ·mX + 0.0076,

c6,ϵ,ttH(mX) = 0,

c7,ϵ,ttH(mX) = 6087.51 · 1

m2
X

+ 0.00000027 ·mX − 0.0039.

(B.1)

This gives the function for σϵ,ttH as

σϵ,ttH(ct, ct̃, cV ,mX) = c5,ϵ,ttH(mX) · c4t + c7,ϵ,ttH(mX) · c̃4t . (B.2)

The fit functions for the total cross section σtot,ttH are given by

c5,tot,ttH(mX) = 2703921.1 · 1

m2
X

+ 0.0019 ·mX − 3.71,

c6,tot,ttH(mX) = 0,

c7,tot,ttH(mX) = 4300877.59 · 1

m2
X

+ 0.0048 ·mX − 8.14.

(B.3)

Which gives the function for σtot,ttH

σtot,ttH(ct, ct̃, cV ,mX) = c5,tot,ttH(mX) · c4t + c7,tot,ttH(mX) · c̃4t . (B.4)

In Fig. 34 the coefficients are shown as function of the mass. The dashed orange

lines show the fit functions and the blue points show the data points.

104



(a) (b)

(c)

Figure 34: Coupling coefficients and fit functions for for the ttH production process as a
function of the mass.
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B.2.2 tWH-production

The fit functions for the coefficients in σϵ,tWH are given by

c1,ϵ,tWH(mX) = 850 · 1

m2
X

− 0.00000042 ·mX − 0.00018,

c2,ϵ,tWH(mX) = 0,

c3,ϵ,tWH(mX) = −2100 · 1

m2
X

+ 0.0000016 ·mX − 0.00025,

c4,ϵ,tWH(mX) = −0.0000032 ·mX + 0.0036,

c5,ϵ,tWH(mX) = 1200 · 1

m2
X

− 0.0000026 ·mX + 0.0021,

c6,ϵ,tWH(mX) = −1200 · 1

m2
X

− 0.0000059 ·mX + 0.0067,

c7,ϵ,tWH(mX) = 5500 · 1

m2
X

− 0.0000047 ·mX − 0.0049.

(B.5)

This gives the function for σϵ,ttH as

σϵ,tWH(ct, ct̃, cV ,mX) =c1,ϵ,tWH(mX) · c2V ct2 + c3,ϵ,tWH(mX) · cV c3t+

c4,ϵ,tWH(mX) · cV ctc̃2t + c5,ϵ,tWH(mX) · c4t+

c6,ϵ,tWH(mX) · c2t c̃2t + c7,ϵ,tWH(mX) · c̃4t

(B.6)

The fit functions for the total cross section σtot,tWH are given by

c1,tot,tWH(mX) = 940000 · 1

m2
X

+ 0.0011 ·mX − 1.8,

c2,tot,tWH(mX) = 0,

c3,tot,tWH(mX) = −2100000 · 1

m2
X

− 0.0015 ·mX − 3,

c4,tot,tWH(mX) = 12000 · 1

m2
X

+ 0.000055 ·mX − 0.069,

c5,tot,tWH(mX) = 1300000 · 1

m2
X

+ 0.000093 ·mX − 0.84,

c6,tot,tWH(mX) = −8600 · 1

m2
X

− 0.000035 ·mX + 0.044,

c7,tot,tWH(mX) = 1300000 · 1

m2
X

− 0.0000043 ·mX − 0.69.

(B.7)
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Which gives the function for σtot,tWH

σtot,tWH(ct, ct̃, cV ,mX) =c1,tot,tWH(mX) · c2V ct2 + c3,tot,tWH(mX) · cV ct3+

c4,tot,tWH(mX) · cV ctc̃2t + c5,tot,tWH(mX) · c4t+

c6,tot,tWH(mX) · c2t c̃2t + c7,tot,tWH(mX) · c̃4t .

(B.8)

In Fig. 35 and Fig. 36 the coefficients are shown as function of the mass. The dashed

orange lines show the fit functions and the blue points show the data points.

(a) (b)

(c) (d)

Figure 35: Coupling coefficients and fit functions c1−4 for for the tWH production process
as a function of the mass.
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(a) (b)

(c)

Figure 36: Coupling coefficients and fit functions c5−7 for for the tWH production process
as a function of the mass.
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B.2.3 tH-production

The fit functions for the coefficients in σϵ,tH are given in the form ci,ϵ,tH by

c5,ϵ,tH(mX) = 604.51 · 1

m2
X

− 0.00000053 ·mX + 0.00032,

c7,ϵ,tH(mX) = 150.39 · 1

m2
X

+ 0.0000017 ·mX − 0.0017.
(B.9)

All other coefficents ci are zero. This gives the function for σϵ,ttH as

σϵ,tH(ct, ct̃,mX) = c5,ϵ,tH(mX) · c4t + c7,ϵ,tH(mX) · c̃4t . (B.10)

The fit functions for the total cross section σtot,ttH are given by

c5,tot,tH(mX) = 2948263.1 · 1

m2
X

+ 0.0041 ·mX − 6.35,

c7,tot,tH(mX) = 1741654.4 · 1

m2
X

+ 0.0014 ·mX − 2.57.
(B.11)

Which gives the function for σtot,ttH

σtot,tH(ct, ct̃,mX) = c5,tot,ttH(mX) · c4t + c7,tot,ttH(mX) · c̃4t . (B.12)

In Fig. 34 the coefficients are shown as function of the mass. The dashed orange

lines show the fit functions and the blue points show the data points.

(a) (b)

Figure 37: Coupling coefficients and fit functions for for the tH production process as a
function of the mass.
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B.3 Implementation in HiggsBounds

In this section, we will document the implementation of your analysis in the code

HiggsBounds. In HiggsBounds, we are able to implement a limit that is derived

from coupling dependent acceptances. The four-top analysis present in Sect. 6 is the

first analysis which is implemented in this way. Therefore, we here document the

necessary code. For simplicity we will only show an example for the implementation

of the ttH process. The limits for tWH and tH production are implement in the

same way.

We start by importing some dependencies. These include some well-known Python

packages for data handling (e.g. pandas) and HiggsPredictions, as well as

Higgsbounds. We also need to import some functions from ImplementationUtils,

which is part of the HiggsTools installation.

import pandas as pd

import numpy as np

from Higgs.tools.ImplementationUtils import (

implementChannelLimit,

implementChannelWidthLimit,

fromHB5Table1,

readHEPDataCsv,

)

from Higgs import Predictions

from Higgs import predictions as HP

from Higgs import bounds as HB

from Higgs.tools.LimitValidation import validateChannelLimit,

validateChannelWidthLimit

import os, sys

import matplotlib.pyplot as plt

import pwlf

from scipy.interpolate import interp1d

sys.path.insert(0, os.path.dirname(os.path.dirname(os.getcwd())))

import MassResolutions as resolution

We can calculate the upper limit on the signal events ns with MadAnalysis. For
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this we need the observed and expected number of events in our most sensitive

signal region. We then implement the expected and observed limit on ns in our mass

range of [350, 1000] GeV. We also have to define the fit functions for the individual

coefficients of the total cross-section σtot and cross-section times efficiency σ · ϵ. The

number of signal events is defined as

ns = ϵs · L · σ. (B.13)

For Signal Region 8 of the CMS analysis the upper limit on the expected and

observed number of signal are given by ns,exp = 6.94 and ns,obs = 6.43. We use this

to implement the observed and expected limit on

σ · ϵ =
ns

L
. (B.14)

One also has to specifically define the production mode as ["Htt"] in

Higgsbounds.

df = pd.DataFrame(

columns={

"m",

"obs",

"exp",

}

)

# fit functions for efficiency eff = sigma_s/sigma_tot

xtot_c5 = lambda m: 2703921.1 * 1/m**2 + 0.0019 * m - 3.71

xtot_c7 = lambda m: 4300877.59 * 1/m**2 + 0.0048 * m - 8.14

xeff_c5 = lambda m: 2523.55 * 1/m**2 + -0.0000079 * m + 0.0076

xeff_c7 = lambda m: 6087.51 * 1/m**2 + 0.00000027 * m - 0.0039

prods = ["Htt"]
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masses = np.linspace(350, 1000, 100)

df.m = masses

df.obs = [6.43/(1000*137)] * len(masses)

df["exp"] = [6.94/(1000*137)] * len(masses)

Now we can start with the actual limit implementation of the coupling dependent

acceptances. For this, we define the dependence of the acceptances on the individual

couplings by our fit functions for the coefficients of σ ·ϵ. This is done in the code block

acceptances=[...]. Here we assign the fit functions to the individual couplings

defined by effCPeTopYuk for the CP-even and effCPoTopYuk for the CP-odd top-

Yukawa coupling. The number (in our case four) depicts to which power the coupling

contributes.

df1 = pd.DataFrame(

columns={

"m",

"AccCPe",

"AccCPo"

}

)

df1.m = masses

df1.AccCPe = xeff_c5(df1.m)

df1.AccCPo = xeff_c7(df1.m)

limitFile = implementChannelLimit(

"1908.06463",

{"channels": [[p, "tt"] for p in prods]},

"https://arxiv.org/pdf/1908.06463.pdf",

df,

massResolution=resolution.tt["tttt"],

acceptances=[

{

"couplingDepAcceptance": [
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[

{"effCPeTopYuk": 4},

{

"massDepAcceptance": df1.AccCPe.to_list(),

"massGrid": df1.m.to_list()

}

],

[

{"effCPoTopYuk": 4},

{

"massDepAcceptance": df1.AccCPo.to_list(),

"massGrid": df1.m.to_list()

}

]

],

"denominator": [

[

{"effCPeTopYuk": 4},

{

"massDepAcceptance": df1.AccCPetot.to_list(),

"massGrid": df1.m.to_list()

}

],

[

{"effCPoTopYuk": 4},

{

"massDepAcceptance": df1.AccCPotot.to_list(),

"massGrid": df1.m.to_list()

}

]

]

}

for p in prods

],

)
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lim = HB.Limit(limitFile)

validateChannelLimit(

lim

)

Running this code will give a variety of validation plots. In our case, this validation

plot is just given by the constant upper limit on the nS as shown in figure Fig. 38(left).

This is not very useful to judge the success of an analysis. One can also validate the

cross-section limit, which is shown in Fig. 38(right). This is what is usually done by

HiggsBounds when implementing a new limit.

(a) (b)

Figure 38: Validation plots generated with HiggsBounds. The left plot shows the number
of signal events ns as a function of the mass. The right plot shows the expected and
observed upper limit on the cross-section times branching ratio for ttH production as a
function of the mass. These plots are automatically generated when implementing a new
limit in Higgsbounds.
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Wittbrodt. Vacuum instabilities in the n2hdm. Journal of High Energy Physics,

2019(9), Sep 2019.

[55] Wolfgang G. Hollik, Georg Weiglein, and Jonas Wittbrodt. Impact of vacuum

stability constraints on the phenomenology of supersymmetric models. Journal

of High Energy Physics, 2019(3), Mar 2019.

[56] J. Wittbrodt. https://gitlab.com/jonaswittbrodt/EVADE.

[57] Tsung-Lin Lee, Tien-Yien Li, and Chih-Hsiung Tsai. Hom4ps-2.0: a soft-

ware package for solving polynomial systems by the polyhedral homotopy

continuation method. Computing, 83(2):109–133, 2008.
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