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Abstract

The investigation of hybrid systems consisting of ultracold atoms and micro-mechanical
resonators provides access to detection, cooling and quantum control of mechanical mo-
tion, which promotes the understanding of the classical to quantum transition and has
potential applications in high-precision metrology and quantum-level signal transduc-
tion.
In this thesis experiments that couple the vibrational motion of a trampoline resonator
inside an optical cavity to the motion of laser cooled 87Rb atoms are presented. The
interaction is mediated by a coherent light field that is reflected from the mechanical
element and forms a 1D optical lattice at the site of the atoms. An inherent property
of such systems is the pump asymmetry in the lattice that arises from this reflection,
which can lead to an instability of the hybrid system and deteriorate the coupling for
large atomic densities in an attractive lattice potential.
This thesis investigates how the asymmetry in the lattice can be compensated, whether
the compensation prevents the occurrence of the instability and if that leads to an
increase of the coupling strength. First, a numerical simulation of the system is used
to identify the reason for the instability and study the possibility to suppress it by uti-
lizing an additional lattice beam. Subsequently, coupling experiments in attractive and
repulsive lattice potentials for different pump asymmetries are presented. The coupling
strength is evaluated by means of the sympathetic cooling process and is compared
to the performance of our uncompensated repulsive lattice. We observe a suppression
of the hybrid instability, which enables coupling experiments in the attractive lattice
potential at high atomic densities for the first time. However, we do not witness an
improvement of the coupling strength over the asymmetric lattice. This can be seen
from the minimal measured mode temperatures T PAC = (2.91 ± 0.66) K with pump
asymmetry compensation compared to T noPAC = (1.50 ± 0.34) K without compensa-
tion, where the resonator is initially at room temperature.
Another investigation that was conducted over the course of this thesis is the prepa-
ration and tomography of conditional mechanical states using short light pulses. The
pulsed interaction takes place on time scales much shorter than the mechanical oscilla-
tion period and allows for position measurements with a precision that can surpass the
standard quantum limit. The scheme enables the production of squeezed states of me-
chanical motion and their reconstruction by means of tomography. We performed first
pulsed experiments in our system and were able to resolve a width of the mechanical
motional state of σcond = (137 ± 4) fm, which corresponds to the 32-fold width of the
ground state of our resonator.





Zusammenfassung

Die Untersuchung hybrider Systeme aus ultrakalten Atomen und mikromechanischen
Oszillatoren ermöglicht es, die mechanische Bewegung zu detektieren, zu kühlen und
auf dem Quantenniveau zu kontrollieren. Damit fördert diese das Verständnis des Über-
gangs vom klassischen zum Quantenverhalten und zeigt mögliche Anwendungen in der
Hochpräzisionsmetrologie und Einzelquanten-Signalweitergabe auf.
Im Rahmen dieser Arbeit werden Experimente vorgestellt, in denen die Vibrationsbewe-
gung eines Trampolinoszillators innerhalb eines optischen Resonators an die Bewegung
von lasergekühlten 87Rb Atomen gekoppelt wird. Die Wechselwirkung wird dabei durch
ein kohärentes Lichtfeld vermittelt, das durch Reflexion am mechanischen Element ein
1D optisches Gitter am Ort der Atome bildet. Eine besondere Eigenschaft solcher Sys-
teme ist die aus der Reflexion resultierende Pumpasymmetrie des Gitters. Diese kann
für hohe atomare Dichten in einem attraktiven Gitterpotential zur Instabilität des hy-
briden Systems führen und die Kopplung beeinträchtigen.
Diese Arbeit geht den Fragestellungen nach wie eine Kompensation der Asymmetrie des
Gitters möglich ist sowie ob dies den Eintritt der Instabilität verhindert und dadurch zu
einer stärkeren Kopplung führt. Dazu wird zunächst in einer numerischen Simulation
des Systems die Ursache für die Instabilität identifiziert und die Möglichkeit ihrer Unter-
drückung durch Zuhilfenahme eines zusätzlichen Gitterstrahls untersucht. Anschließend
werden Kopplungs-Experimente in attraktiven und repulsiven Gitterpotentialen bei un-
terschiedlichen Pumpasymmetrien vorgestellt. Die Kopplungsstärke wird anhand des
sympathetischen Kühlprozesses bewertet und mit dem Verhalten in unserem unkom-
pensierten repulsiven Gitter verglichen. Wir beobachten eine Unterdrückung der hybri-
den Instabilität, was uns erstmalig ermöglicht Kopplungs-Experimente in einem attrak-
tiven Gitterpotential mit hohen Atomdichten zu realisieren. Allerdings können wir kei-
ne Verbesserung der Kopplungstärke gegenüber dem asymmetrischen Gitter feststellen.
Dies macht sich in der minimal gemessenen Modentemperatur T PAC = (2.91 ± 0.66) K
mit Pumpasymmetrie-Kompensation gegenüber T noPAC = (1.50 ± 0.34) K ohne Kom-
pensation bemerkbar, wobei der Resonator sich vor der Kopplung bei Raumtemperatur
befindet.
Eine weitere Untersuchung, die im Rahmen dieser Arbeit stattgefunden hat, ist die
konditionale Zustandspräparation und Tomographie des mechanischen Oszillators mit
kurzen Lichtpulsen. Die gepulste Interaktion spielt sich dabei auf Zeitskalen unterhalb
der mechanischen Schwingungsperiode ab und ermöglicht Positionsmessungen des Os-
zillators mit einer Präzision unterhalb des Standard-Quantenlimits. Dabei ist es mög-
lich, gequetschte Zustände der mechanischen Bewegung zu erzeugen und diese mittels
tomographischer Methoden abzubilden. Wir haben erste gepulste Messungen in unse-
rem System durchgeführt und konnten den Bewegungszustand des Oszillators mit einer
minimalen Breite von σcond = (137 ± 4) fm auflösen, was der 32-fachen Grundzustands-
breite des Oszillators entspricht.
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Chapter 1

Introduction

For one century quantum physics was a phenomenon reserved for scientists only but
has lately become accessible to a broader audience. In the last two or three decades we
observed a consequent and continuous evolution towards applications and technologies
based on quantum physics. Finally, quantum technology is now highly recognized by
the general public and private investors as well as federal funding agencies invest a vast
amount of money to accelerate and consolidate this emerging new technological field.
The realization of ideas like quantum computing [1–4], quantum communication and
cryptography [5, 6], quantum enhanced sensing [7–9] as well as quantum simulation of
complex systems [10, 11] have been anticipated for a long time and finally started to
become reality. This is accomplished by the rapidly evolving abilities to experimentally
manipulate and control quantum dynamics in a variety of systems. These range from
photons [12, 13], individual electron and nuclear spins [14–16] over single atoms [17, 18]
and ions [19], as well as ensembles of atoms [20] to mesoscopic superconducting [21, 22]
and nanomechanical devices [23, 24].
However, the technological progress is confronted with challenges that complicate scal-
ing up the system size and performance and thus hinder the realization of efficient
real-world applications. On the one hand, decoherence destroys the produced quantum
states and therefore demands decoupling of the systems from their environment [25], for
example by placing them in ultra-high vacuum and/or cryogenic environment. On the
other hand, each of the aforementioned systems is very well suited to perform a specific
task: photons can be conveniently transported over long distances and are therefore
ideal to transmit quantum information; weakly interacting spins have long coherence
times and may be employed as a quantum memory to store information and the dy-
namics of electronic states of atoms or electric charges in superconducting elements
enable computation and processing of the information that is encoded in their respec-
tive quantum states [26]. Yet, for many applications [2, 6] it is desirable to combine
storage, processing and transfer of information, which until now, none of the systems
is capable to provide on its own.
The solution is to combine different physical systems with complementary functionali-
ties to hybrid quantum systems (HQSs), which enable the required multitasking capa-
bilities [27–29]. Early ideas for HQSs were inspired by the field of quantum information
processing and communication and suggested coupling of superconducting qubits via a
microwave interface [21, 28] to other quantum systems with longer coherence times and
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optical transitions [30–36]. Soon, the advances in the control of micro- and nanome-
chanical resonators [23, 24] qualified these systems also as suitable interfaces [37–40].
Moreover, due to the possibility to design functionalized resonators, which respond to
weak electric, magnetic, Van-der-Waals and radiation pressure forces they experienced
considerable attention in theoretical proposals that analyse them as hybrid coupling
partners [41–48]. Indeed, mechanical resonators turned out to be an excellent con-
stituent of hybrid systems as they are found in numerous experimental realizations,
where they are coupled to semiconductor quantum dots [49, 50], spins [51–55], super-
conducting circuits [56–59] and atomic ensembles [60–65].

In this context, the research focus of our experiment lies on the investigation of a hybrid
atom-mechanical system. The combination of these two platforms holds great potential
for future hybrid quantum systems [26] and applications in quantum metrology [7, 66].
Due to the high controllability of trapped, ultracold atomic systems and the possibility
to prepare them in collective many-body states with long coherence times [67] it is
feasible to realize interaction schemes based on coupling to the center of mass motion
[45, 68–70] or the total spin of the ensemble [43, 48], as both degrees of freedom can be
treated as harmonic oscillators. While the former exhibits oscillation frequencies in the
kHz range, governed by the trapping geometry, the latter offers a rich level structure
with transition frequencies between the energy levels that range from the MHz to GHz
regime. This provides substantial flexibility in the choice of the resonator, depending
on the coupling scheme that is employed. Furthermore, both schemes rely on a long-
range interaction that is mediated by light and allows to place the individual systems
in designated environments. These form closed subsystems that can be modified and
investigated independently.
Of special interest for us is the light-mediated interaction between the subsystems.
While the interaction with light is unavoidable for cooling and trapping of the atoms
it can also be exploited for precision measurements of the atomic position or the in-
ternal atomic state by mapping these quantities onto a phase shift or an intensity
modulation that can be determined using interferometric techniques [66] or sensed by
a mechanically compliant element. Analogously, mechanical motion can be influenced
by interaction with light via radiation pressure and imprints a phase shift proportional
to the mechanical oscillation amplitude onto the light [24]. These phase shifts form the
base for the main subject of investigation in this thesis as they are responsible for the
mediation of the atom-mechanical interaction.

First related experiments employed the motion of trapped atoms in an optical lat-
tice formed by back-reflection from a mechanical resonator in free space to attenuate
its oscillation by dynamical back-action [71]. The light-mechanics interaction was sub-
stantially enhanced by placing the resonator inside an optical cavity and enabled the
observation of sympathetic cooling of the resonator by laser-cooled atoms [62, 65]. To
further increase the coupling strength more atoms were loaded into the lattice, which
led to the emergence of a dynamical instability, especially in attractive lattice poten-
tials [72–74]. It prevented approaching the strong coupling regime where the coupling
rate exceeds the dissipation in the system. Reaching this regime is of vital importance
for the realization of a true quantum hybrid system, as it permits coherent energy
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exchange on the single excitation level between the systems. The occurrence of the
instability was attributed to light-mediated collective atomic motion in optical lattices
- a phenomenon already investigated theoretically in 1D optical lattices [75, 76]. The
key point for the appearance of the collective excitation is an imbalanced lattice, which
in fact is inherent to all aforementioned atom-resonator coupling experiments. Since
the mechanical resonator (in a cavity) exhibits a finite reflectivity (on resonance) the
back-reflected lattice beam only carries a fraction of the incident beam’s power, which
results in an imbalanced lattice.
Consequently, the investigation of the influence of the pump asymmetry (power imbal-
ance) on the collective behaviour in the lattice is of great interest. It bears the answer
to the pressing question whether the number of atoms, which participate in the cou-
pling, can be increased and if the instability can be avoided by altering the pump power
imbalance. This would potentially enhance the coupling strength and enable to enter
the strong coupling regime. In addition it could alleviate the limitations from preced-
ing experiments that aimed at direct coupling of a BEC to the resonator [77]. These
prospects motivated us to elaborate a scheme that allows to compensate the reduced
power in the back-reflected lattice beam by utilizing an auxiliary lattice beam.

In this work we utilize a numerical simulation to investigate how the phase modulation
introduced by the motion of the mechanical resonator affects the response of the atoms
in the optical lattice and how this response changes with the pump asymmetry. We
identify a transition from a stable operating regime towards the hybrid instability. The
stable regime is characterized by an out-of-phase backaction from the atoms onto the
resonator, whereas the instability regime is governed by a detrimental phase lag of the

Figure 1.1: Sympathetic cooling in attractive lattice potential with and without
pump asymmetry compensation. (a): Sketch of the light mediated interaction between
the membrane in the middle (MiM) system and the atomic system. For resonant coupling the
mechanical and atomic oscillation frequencies must coincide ωm = ωat. (b): Mode temperature
Tmode of the mechanical resonator during a coupling experiment as a function of the lattice
depth. The lattice depth is expressed by means of the atomic trapping frequency ωat in units
of the resonator frequency ωm. Detailed description follows in chapter 3.
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backaction response ultimately leading to exponential heating of the resonator. We fur-
ther show that an auxiliary lattice beam can be used to contribute to the stabilization
of the lattice for increasing atom numbers. Motivated by this theoretical investigation
we examine the capability of the auxiliary lattice beam to stabilize the lattice also in
the experiment. We compare the performance of the initial asymmetric lattice to the
lattice with pump asymmetry compensation (PAC) and find that the auxiliary lattice
beam indeed enables coupling experiments in certain lattice configurations that did
not allow for sympathetic cooling before (see figure 1.1). However, the lattice configu-
ration with the highest coupling rate turns out to be still asymmetric after all and does
not suffice to enter the strong coupling regime, which would enable ground state cooling.

An alternative route to prepare the mechanical resonator in a quantum state, can be
achieved without participation of atoms in the process. An exceptional feature of our
MiM system is its very large linewidth κ that exceeds the resonator frequency by orders
of magnitude (κ ≫ ωm) and places the system far in the unresolved sideband regime
[24]. This allows to probe the resonator motion instantaneously in a pulsed rather than
a continuous manner by utilizing pulse lengths τ much shorter than the resonator’s os-
cillation period (τ ≪ 2π/ωm). The benefit of such a snap-shot of the mechanical motion,
is that the back-action introduced by the measurement pulse is completely transferred
to the unmeasured momentum quadrature, thus yielding a quantum non-demolition
measurement [78]. By using multiple, accurately timed pulses it is even possible to re-
duce the entropy of the mechanical state as was proposed and experimentally verified
already [79, 80]. This technique allows to determine the resonator position within one
oscillation period with an accuracy better than the zero-point motion of the resonator,
which is equivalent to an effective phonon occupation below unity. Moreover, it provides
a method to fully reconstruct the motional quantum state of the resonator by means of
tomography. This poses one of the most promising routes in optomechanics to explore
non-classicality at a macroscopic scale [81].

Figure 1.2: Reconstructed conditional mechanical state after pulsed preparation.
(a): Utilized pulse scheme for conditional state preparation and measurement. Two pulses of
duration τ ≪ 2π/ωm separated by a quarter mechanical oscillation period π/2 are used for the
state preparation. A third pulse after variable time t measures the state at the tomography angle
θt = ωmt. (b): Reconstructed mechanical state after state tomography. The pulsed preparation
scheme reduced the width of the conditional state (red ellipse) below the width of the initial
thermal state (blue circle). Detailed description follows in chapter 4.
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We investigate the applicability of this measurement scheme to our experimental setup
and present the necessary modifications. Further, we present the first results of a pulsed
position measurement in our MiM system in form of a tomographic reconstruction of
the motional state.

The thesis is structured as follows:

Ch. 2 – The atom-optomechanical hybrid system
The second chapter introduces the experimental setup of our hybrid atom-mecha-
nical system. It gives a general overview of all relevant techniques and parts of the
setup that are used for the measurements presented in the subsequent chapters.
Moreover, it contains an investigation of the observable Faraday rotation in our
atomic ensemble that could potentially be used as an interface for coupling to
atomic spin states.

Ch. 3 – Coupling experiments in a pump asymmetry compensated lattice
The third chapter covers our approach to compensate the pump asymmetry in
our optical lattice to avoid the hybrid instability. After a brief introduction about
the employed sympathetic cooling mechanism the theoretical aspects of asymmet-
rically pumped 1D optical lattices are presented and the necessity to compensate
the asymmetry in our system is motivated. From these considerations a numerical
simulation is derived that illustrates the origin of the hybrid instability. Further-
more, the setup of the auxiliary lattice is presented and characterized. Finally,
the sympathetic cooling in the compensated lattice is compared to the uncom-
pensated case.

Ch. 4 – From continuous to pulsed preparation and measurement
In the final chapter the concept of pulsed optomechanics and conditional state
preparation is introduced. The relevant changes to the experimental setup are
discussed and characterized, followed by the presentation of the first conditional
state preparation and reconstruction results that were obtained in our MiM sys-
tem.



Chapter 2

The atom-optomechanical hybrid
system

This chapter describes the experimental setup of our hybrid atom-optomecha-
nical system, which consists of ultra-cold 87Rb atoms coupled to a cryogenic
MiM device via laser light. In the following, all parts of the system that are
relevant for the measurements presented in subsequent chapters are intro-
duced. The chapter closes with an investigation of the observable Faraday
rotation in our setup that could potentially be used for hybrid coupling to
atomic spin degrees of freedom.

Ultra-cold atoms and mechanical resonators are particularly versatile platforms and
therefore remarkably well suited as constituents for the creation of a hybrid system.
Each system on its own is a fascinating subject that can be formed and manipulated in
multiple ways and is capable of displaying quantum features when prepared in the right
way. Although both systems are of very different nature the combination of both allows
to exploit their individual assets. For the atoms a plethora of methods to manipulate
their internal states e.g. optical pumping [82] or radio-frequency techniques [83], their
interaction strength with magnetic fields via Feshbach-resonances [84], as well as their
motional states by trapping in strong dipole potentials [85], e.g. optical tweezers or
lattices [86] are at hand. They allow for the preparation of the atoms in various quantum
states [67], which enabled implementing entanglement [87], non-classical motional states
[88] and a quantum memory [89] in ultra-cold atomic systems. Mechanical resonators on
the other hand can be specifically designed to exhibit certain resonating modes or band
gaps, depending on their shape and size, that are tailored to the individual experimental
requirements [90]. Moreover, their design influences the possible coupling mechanisms
that can be applied. Their miniature size renders the observation of quantum effects
on macroscopic objects feasible [91, 92], possibly even at room temperature [93–95].
In the following sections the individual parts of our experimental setup will be discussed.
The focus will lie on subjects that are related to the investigations presented later or
that were changed or added during the course of this thesis. For more details on the
initial design considerations see [74, 77, 96, 97].
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2.1 Cold atom apparatus

In our experiment we use a 87Rb machine for the preparation of ultra-cold atoms that
was planned and set up by A. Bick and C. Staarmann [96, 97]. Here, the main features
of the machine shall be outlined.
In order to achieve a considerable coupling strength in a coupling scheme based either
on internal or external degrees of freedom, a large number of atoms that participate
in the coupling is necessary. The machine was designed to produce samples with large
atom numbers in a magneto optical trap (MOT) or a Bose-Einstein condensate (BEC)
in a robust way and with short cycle times. This is realized in a 2D/3D MOT con-
figuration that has proven to be very successful in our group. It provides high vapour
pressures in the 2D MOT and therefore allows for fast loading rates in the 3D MOT.
At the same time excellent background pressure conditions in the 3D MOT region can
be maintained that are required to increase the lifetime of the later produced BECs.
The atoms are cooled on the D2 line |52S1/2, F = 2⟩ → |52P3/2, F′ = 3⟩, which does not
provide a closed cycle. Therefore, an additional repumping laser is employed. A scheme
of the laser system used for cooling and detection of the atomic sample is depicted in
figure 2.1. The experimental apparatus is placed on a vibration isolated optical table
next to the cryostat and provides excellent optical access (300 degrees) for the prepara-
tion and control beams. An overview drawing of the 87Rb machine is shown in figure 2.3.

2D/3D MOT setup. The UHV environment for the preparation of the atoms consists
of two glass cells on top of each other, separated by a differential pumping stage that
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Figure 2.1: Sketch of the laser system used for cooling and detection of 87Rb. The
laser system consists of two master lasers, one for cooling and one for repumping of the atoms.
Both are locked via Doppler-free absorption spectroscopy to crossover transitions (dashed lines
on the right). The cooling laser seeds a tapered amplifier (TA), whose output is split in a
detection and pushing branch (D&P) and further amplified in a 2D MOT branch and a 3D
MOT branch (Cluster In 1). The repumping laser is split and coupled into separate fibers for
the 2D MOT and the 3D MOT (Cluster In 2). In the experiment detection and pushing beams
are coupled into separate fibers as well. The frequencies of the respective beams are tuned using
AOMs either in single or double pass configuration.
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allows for pressure differences of up to three orders of magnitude between the cells. In
the first stage the atoms are trapped from a background gas in a 2D MOT formed by
two retro-reflected, elliptical beams (see panel (a) in figure 2.3). Next, the atoms are
transferred through the pumping stage into the lower glass cell (p < 1 · 10−11mbar)
using a near resonant pushing beam and caught in a 3D MOT (see panel (b) in figure
2.3). The lower glass cell is surrounded by a set of large water-cooled coils to generate
magnetic fields for the MOT and the magnetic trap as well as three pairs of compen-
sation coils, one for each spatial direction [96].

BEC in the magnetic trap. A typical experimental sequence is depicted in fig-
ure 2.2 and takes less then 30 s. The 3D MOT is loaded for less then 10 s and col-
lects NMOT ≈ 1 · 1010 atoms with a temperature close to the Doppler temperature
TD = ℏΓ/2kB = 146 µK. Subsequently, the atoms are further cooled in an optical mo-
lasses to Tmol ≈ 10 µK and loaded into an isotropic magnetic trap overlapped with a
homogeneous Helmholtz field (hybrid 4D-cloverleaf trap [97]). The trap is then com-
pressed by lowering the homogeneous field and the atoms are cooled for 15 s by radio-

MT

GC
110A

radio
frequency

30 MHz

920 kHz

13 s 5 ms 5 ms 1.2 s

1000 mW

600 mW
180 mW

102 mW

DT

TOF
DT1

DT2

t

Dipole trap

Molasses isotropic Evaporation TOF detection

t
Magnetic trap

10 ms 36 ms 1.5 s 15 s 1.3 s 1-25 ms0.4 s8 s
2D & 3D
MOT compressed

Pushing Beam

Figure 2.2: Experimental sequence to produce a 87Rb BEC in the magnetic or
dipole trap. The atoms are transferred by means of the resonant pushing beam from the
2D MOT to the 3D MOT. After a short molasses phase for sub-Doppler cooling the atoms
are loaded into the isotropic magnetic trap which is subsequently compressed for the radio-
frequency evaporation stage. Either the evaporation is performed until a BEC is obtained in
the magnetic trap, or the atoms are loaded into an optical dipole trap before the end of the
evaporation ramp where a second, optical evaporation phase takes place. At the end of the
evaporation the atoms are released from the trap and imaged after a variable time-of-flight
(TOF) phase. The lower part depicts a more detailed view of the production of a BEC in
the dipole trap. The shaded area shows the initial radio-frequency evaporation phase in the
magnetic trap (MT). The final frequency of 920 kHz is slightly higher than the typical value for
creating a BEC in the MT (typically 860 kHz). Shortly before switching of the gradient coils
(GC) of the MT, the dipole trap (DT) beams DT1 and DT2 are ramped up to a power of
180 mW and 1 W, respectively. After the radio-frequency sweep is finished the MT is switched
of and a second evaporation stage in the dipole trap is performed by exponentially ramping
down the beam powers. Subsequently, the DT is switched of and the atoms are imaged after a
variable TOF phase.
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frequency evaporation to quantum degeneracy. The resulting BECs have a particle
number of NBEC,MT ≈ 1.4 · 105 without any noticeable thermal fraction.

BEC in the dipole trap. For experiments aiming at the coupling of internal atomic
degrees of freedom to a mechanical resonator the atoms need to be held in a state inde-
pendent trapping potential. We realize this potential through a far red detuned, crossed
optical dipole trap (see panel (c) in figure 2.3), which is also convenient for pure BEC
experiments and characterization measurements like the calibration of the coupling lat-
tice (section 2.2.1). The trapping beams have circular beam waists of wDT1 = 52 µm
and wDT2 = 242 µm and are derived form a Nd:YAG laser operating at λDT = 1064 nm.
The experimental sequence for the creation of a BEC in the dipole trap is similar to
the sequence for a magnetic trap BEC (see figure 2.2). Before the end of the evapo-
ration phase in the magnetic trap, the atoms are loaded into the dipole trap and the
radio-frequency evaporation stops at a slightly higher frequency. The magnetic trap
is switched off and the final evaporation step is performed solely in the dipole trap
by lowering the beam intensities exponentially until a BEC with a particle number
of NBEC,DT ≈ 7 · 104 without any noticeable thermal fraction remains. The potential
of the dipole trap leads to an elongated cigar like shape of the BEC and exhibits ra-
dial trapping frequencies of (ωy, ωz) = 2π · (144, 105) Hz, where gravity points along
the z-direction (for PDT1 = 100 mW, PDT2 = 1 W). Due to the larger waist of beam
DT2, compared to DT1, the axial trapping frequency along the x-direction is only
ωx ≈ 2π · 12 Hz and can be tuned by adjusting the power of beam DT2 after evapora-
tion. In this way atomic samples that are elongated along the x-direction of the almost
co-propagating coupling beam can be realized. A BEC that is held in the dipole trap
after evaporation has a lifetime of τ1/e ≈ 17 s.

2.2 Coupling and detection laser system

The link that connects the two constituents of our hybrid atom-mechanical system is
the light field that produces the long-range interaction. Both the coupling beam and
the detection beam, which is used to measure the mechanical displacement, are derived
from the same dedicated laser system. It is based on a titanium-sapphire laser (TiSa)
with a wide wavelength tuning range including the D2 line (λair = 780.0 nm) and the
D1 line (λair = 794.8 nm) [98] of the 87Rb atoms that makes it applicable for different
coupling and detection schemes of the cold atoms. A sketch of the laser system is
depicted in figure 2.4. The TiSa is locked internally using an etalon dither lock and a
temperature-isolated reference cavity to increase its stability. Since we are working at
a detuning |∆at,L| ≲ 1 GHz, close to the atomic resonance, small frequency drifts of the
laser change the lattice depth experienced by the atoms [85]. To allow for an absolute
frequency stability, the TiSa can be locked to a transfer cavity (linewidth ≈ 3 MHz)
via a Pound-Drever-Hall (PDH) lock, visible in the top line of figure 2.4. A homebuilt
electro-optic modulator (EOM) creates the necessary sidebands at ≈ 10 MHz.
Using a small amount of the 87Rb cooling light, which already has sidebands from a
PDH lock to the atomic transition, the transfer cavity itself is stabilized to the cooling
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laser. The TiSa can therefore be locked to the atomic resonance in units nFSR of the
transfer cavity’s free spectral range (FSR), which further improves the lasers short-term
frequency stability to below 1 MHz. By locking the laser to every FSR from nFSR = −9
to +6 with respect to the cooling laser and measuring the beat signal of the two, the
FSR was determined using a linear fit to [96]:

∆ν = nFSR × (997.544 ± 0.004) MHz (2.1)

500 mm 500 mm

100 mm

coupling

detection
telescope

CCD
camera

detection

3D MOT

DT2

DT1

(a) (b)

(c)

Figure 2.3: Drawing of the experimental apparatus to produce a 87Rb BEC. (a)
Top view of the 2D MOT breadboard. Yellow lines depict the 2D MOT beam path. The beams
are expanded to an elliptical shape by cylindrical telescopes and back-reflected after passage
through the glass cell. Red lines depict the 3D MOT beams. (b) Side view showing the upper
glass cell and lower glass cell surrounded by the magnetic trap (green housing). A compensation
coil cage is placed around the magnetic trap. The coloured lines depict the respective beams:
red - 3D MOT beams, orange - pushing beam, green - detection beam for absorption imaging
and cyan - 2D lattice in bowtie configuration. (c) Top view of the lower 3D MOT breadboard.
The purple lines show the two perpendicular dipole trap beams DT1 and DT2 and the blue line
depicts the coupling lattice that propagates under a small angle to the DT1 beam. The green
beam denotes the detection beam and red shows the axial 3D MOT beams.
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When the transfer lock is not used the laser frequency is subject to a slow drift on the
order of 50 MHz per hour. However, if needed the frequency can be held stable within
5 MHz by manual readjustment of the locking electronics, where the accuracy is limited
by the digital quantization of the used wavemeter. Most of the experiments presented
in this thesis were performed without the transfer lock, as it proved to be more conve-
nient to tune the lattice depth by varying the detuning of the lattice rather than the
power due to the power dependent optical spring effect. Nevertheless, the transfer-lock
is an essential tool for the lattice depth calibration that has to be performed on a daily
basis, as the reading of the wavemeter is prone to temperature and humidity drifts.
The main laser output is divided into three branches (see figure 2.4):

Coupling beam - The coupling between atoms and mechanical resonator is medi-
ated by a 1D optical lattice that is created by back-reflection of the coupling beam off
the resonator inside the cavity. The beam can be intensity controlled using a home-
built analog control box, which stabilizes the signal from a photodiode to an analog
reference signal by application of feedback on the radio-frequency (RF) input of the
coupling beam acousto-optic modulator (AOM). This is established by modulating the
DC component of the 80 MHz sinusoidal RF drive signal with the control signal via a
mixer before feeding it to a high power AOM amplifier. The analog reference signal is
supplied by the experiment control and can be used to stabilize the lattice power Plat
or ramp it between desired values. Using a fast RF-switch in the RF signal path of the
AOM driver the lattice light can be rapidly switched on and off, which enables to create
short light pulses with minimum durations on the order of 100 ns and a cycle-to-cycle
pulse power stability of 0.3 % [74]. Such pulses allow for the alignment of the lattice by
Kapitza-Dirac diffraction or for non-adiabatic lattice loading as described in [77]. The
coupling light is guided to the experiment through a single mode fiber that is mounted
in a fiber polarization controller (FPC). Using a polarizing beam splitter (PBS) after
the fiber we can split off a fraction of the beam power to derive the auxiliary beam (see
section 3.4.1). The coupling light then passes the atomic sample and is coupled into
another single mode (SM) fiber that guides it to the cavity inside the cryostat. Again, a
FPC is used to adjust the polarization of the back-reflected lattice beam. The intensity
of the back-reflex can then be monitored on a dedicated photodiode.

Feedback beam - The feedback beam is used to apply an optical damping force to
the mechanical resonator that reduces its kinetic energy. It is guided to the experiment
in a polarization maintaining (PM) fiber and passes a fiber-optic amplitude modulator.
The beam can be intensity controlled via the bias input of the modulator and is always
locked to the 50 % working point1. The signal that is used to drive the intensity modu-
lation at the RF input is derived from the homodyne signal. The beam is then coupled
to the MiM system via an SM fiber and enters the cavity from the curved side.

Homodyne beam - To determine the mechanical displacement and measure the state
of the mechanical resonator with interferometric precision we apply a phase-sensitive

1Point between the minimum and maximum transmission of the modulator where the largest mod-
ulation depth can be achieved.
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homodyne detection scheme. The detection beam can be intensity controlled via an
AOM in a similar way as described for the coupling beam. It is guided by a PM fiber
to the experiment and is split there into a local oscillator (LO) and a signal beam.
The signal beam is coupled into the fiber cavity with its polarization perpendicular to
the polarization of the coupling beam. Upon reflection from the resonator the beam
collects a phase that is modulated at the resonator frequency. After returning from
the cavity the signal beam is mixed with the LO on a PBS. At a subsequent PBS the
superimposed beams are split with equal contributions to be measured on a balanced
photo detector2. A piezo-mirror is used to adjust the relative phase between signal and
LO beam that determines which quadrature component is measured. The resulting
signal is fed to a lock-in amplifier and is used to derive the feedback cooling signal as
well as the error signal for the optical spring lock (see section 2.3.2). For the pulsed
optomechanics experiments we introduced a fiber-optic amplitude modulator in the
homodyne branch as well, as we will need it for the generation of short light pulses
with arbitrary spacing and shape (see chapter 4).

2HCA-S from Femto, bandwidth DC...1 MHz, gain 28.5 kV/W, NEP 1.1 pW/
√

Hz

Rb M1 laser

transfer cavity

lock on Rb laser
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Figure 2.4: Laser system for coupling and detection of the MiM device. The TiSa laser
(MBR 110 from Coherent - pumped by Verdi V18 from Coherent) can be locked relative to the
87Rb D2 line by use of a transfer cavity (FPI 100 from Toptica), which is locked to the M1 cooling
laser of the rubidium laser system. From the laser three branches are derived: (1) the coupling
beam that interfaces the mechanical resonator in the MiM device with the 87Rb atoms, (2) a
feedback cooling beam for optical damping of the resonator, (3) a beam for balanced homodyne
detection of the resonator motion. A wavemeter (WS6-600 from HighFinesse) is employed to
monitor the TiSa wavelength. The coupling and homodyne beam are both frequency shifted by
80 MHz and 70 MHz with AOMs, respectively. The AOMs are also used for intensity control of
both beams. Coupling and homodyne beam are coupled with perpendicular polarizations from
the planar side into the cavity, which allows a better mode match with the cavity field [74, 99]
and a steeper phase response as a function of the cavity-light detuning [96]. All depicted cubes
are polarizing beam splitters - wave plates are omitted for clarity.
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2.2.1 Coupling lattice setup

For the realization of a resonant interaction between the mechanical resonator and
the atomic sample the atomic trapping frequency ωat along the 1D lattice has to be
matched to the mechanical resonance frequency ωm ≈ 2π· 154 kHz. For optical lattices
the lattice depth is commonly quoted in units of the recoil energy [98]

Erec = ℏ2k2
lat

2mRb
(2.2)

of the used atomic species, where mRb denotes its mass and klat = 2π/λlat is the
wave number of the lattice light. Each lattice well can be approximated by a harmonic
potential with a trapping frequency

ωat =
√

2Vlatk2
lat

mRb
, (2.3)

which results in a trap depth of Vlat ≈ 411Erec, if the resonance condition ωat = ωm
is met. This is a very deep lattice that can be realized with various combinations of
laser power and detuning. Commonly, far detuned lattices are used, which would re-
quire several hundred milliwatts of laser power. Due to the fact that our lattice is
created by retro-reflecting a laser beam from an object in a cryogenic environment, we
can not afford such high powers as they would massively heat up the MiM system.
Therefore, we are limited to lattice powers Plat < 1 mW. As the lattice depth scales as
Vlat ∝ I0/∆at,L, where I0 is the peak intensity of the laser beam and ∆at,L the detuning
of the laser from the atomic resonance, we can reach the needed lattice depth by using
near-resonant light. In our experiments we use a detuning on the order of ∆at,L ≲ 1 GHz
and a small waist size wlat = 76 µm of the lattice beams to increase the intensity at the
position of the atoms.

Optical setup: The experimental setup of the coupling lattice is shown in figure 2.5.
It depicts the lattice setup that was used in [74, 77] and forms the basis of our study of
the asymmetric coupling lattice. For the experiments performed during the course of
this thesis several changes have been made to the setup that will be described in detail
in section 3.4.1. The coupling beam is derived from the TiSa laser and frequency shifted
by 80 MHz using an AOM. This allows for ramping and regulating the beam intensity
along with fast switching (τr,f ≈ 50 ns) for the generation of short light pulses. For
total light extinction the beam can be blocked with a shutter before it enters the PM
fiber that guides it to the experiment, which is crucial to avoid near resonant photon
scattering during the BEC cycle. At the experiment the coupling beam is then shaped
by a telescope that consists of a collimating lens, a PBS for polarization cleaning and
a focusing lens that result in a working distance of ≈ 50 cm. For fine adjustment of
the focal position with respect to the position of the BEC in the optical dipole trap,
the telescope is mounted on a translation stage that allows to move it along the direc-
tion of the outgoing beam. The lateral alignment is done with differential micrometer
screws at the dichroic mirror in front of the glass cell. In contrast to the second dichroic
mirror behind the glass cell this mirror substrate is coated in-house to have a reflec-
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tivity of R780 = 9.7 % at 780 nm, which allows for picking up the transmitted light for
the intensity control of the beam. Since the reflectivity of the substrate proved to be
slightly wavelength dependent we use a second identical substrate in front of the inten-
sity control PD to suppress this parasitic effect. Otherwise the calibrated control signal
would yield deviant lattice powers at the site of the atoms for changing wavelengths.
The dichroic mirrors are needed to transmit the optical dipole trap beam DT1 (λDT =
1064 nm), which is aligned almost parallel to the coupling beam, while the coupling
light is reflected. After passing the glass cell the beam is coupled into a PM fiber that
leads to the cryostat using an identical telescope as on the incident side. Again the
telescope is placed on a translation stage and a differential mirror holder is employed
to allow for fine alignment of the back-reflected beam. Via the reflection port of the
PBS in the cryostat telescope the homodyne beam is superimposed with the lattice
beam and coupled into the cryostat fiber, whose end forms the planar side of the fiber
cavity. After reflection from the fiber cavity in the MiM device both beams leave the
telescope through their respective ports.

The back-reflected coupling beam interferes with the incident beam and forms an 1D
optical lattice at the position of the atoms. Considering the fiber coupling efficiency,
optical losses at the optics as well as the finite reflectivity on resonance σcav = 0.54
of the cavity one finds that only ≈ 30 % of the incident light are reflected back onto
the atoms. This is an inherent property of our experimental setup and leads to the
instability that will be discussed in detail in section 3.4.1.
The fraction of the back-reflected beam that is transmitted through the 10/90 substrate
is monitored on the lattice back-reflex photodiode. This signal is used for monitoring
the coupling efficiency into the cryostat, the cavity signals (cavity alignment, tuning on
resonance, cavity length measurement, etc.) and the time evolution of the lattice power
during experimental cycles.
Not shown in figure 2.5 is the additional 2D lattice that can be applied in the plane
perpendicular to the direction of the coupling lattice. It is formed by two beams with
λ2D = 1064 nm and was used in experiments performed with T. Wagner [77] to coun-
teract the heating of the BEC in the dipole trap by scattering of blue detuned coupling
lattice photons and enabled to see a coupling effect of the resonator motion to a BEC.

Lattice alignment: To make sure that the lattice is optimally aligned within the MOT
we use a BEC for the alignment, as it is produced approximately at the center of the
MOT and allows for a much more precise adjustment, due to its small size of only a
few micrometers. The alignment is performed by blocking the cryostat telescope port,
such that no coupling light is back-reflected. Next the coupling beam is adjusted to
be red detuned by ∆F=3 ≈ −250 GHz and the power is set to Plat = 3 mW. With this
settings the coupling beam exhibits a strong enough attractive potential to pull the
BEC out of the dipole trap if it is close enough3. After evaporation in the dipole trap
the coupling beam is switched on for 2 ms and subsequently all optical potentials are
switched off. The atoms are imaged after 20 ms time of flight. If the coupling beam

3For the rough alignment blue detuned light can be used to maximize the losses in the BEC due to
the repulsive dipole potential.
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is not well aligned the atoms are pulled out of their position in the dipole trap. The
alignment of the coupling beam is optimal, when its influence on the BEC position
(compared to the position without lattice pulse) is minimal. Once the incident beam
is properly aligned the light has to be coupled into the cryostat fiber. When the fiber
coupling is optimized the alignment onto the atoms is continued using the Kapitza-
Dirac diffraction method described in [74, 77, 100]. One should already see a diffraction
pattern when short lattice pulses are applied. From here the alignment is optimized by
maximizing the Kapitza-Dirac diffraction into the first momentum order, while slightly
readjusting the fiber coupling.

Lattice depth calibration: In order to calibrate our lattice depth we use Kapitza-
Dirac diffraction measurements. For that, a BEC is prepared and held in the dipole trap
and subsequently irradiated using short pulses of lattice light with variable duration
on the order of tens of microseconds. During that process photons from either lattice
beam are redistributed into its counter-propagating correspondent, which leads to a
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Figure 2.5: Coupling lattice setup. Sketch of the setup for the 1D lattice for coupling
ultracold atoms to a mechanical resonator in a MiM system. The light from the TiSa is blue
shifted 80 MHz by an AOM and coupled to a PM fiber that is connected to the incident beam
telescope (fiber collimator 60FC-L-4-M20L-02 with beam ∅ = 3.6 mm and focusing lens 13M-
S500-05-S from Schäfter+Kirchhoff, working distance: 49.2 cm). The telescope is mounted on a
translation stage for fine adjustment of the distance to the BEC. The beam is aligned onto the
BEC with dichroic mirrors that allow transmission of the optical dipole trap beam DT1, which
propagates almost parallel to the coupling lattice. For lateral fine alignment of the lattice beam
mirror mounts with differential micrometer screws are used. After passing the glass cell the
beam is coupled through an identically constructed telescope to the cryostat fiber (AR coated
end-facet for improved incoupling efficiency). Figure adapted from [100].
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momentum transfer of two times the lattice light’s photon momentum

∆p = ±2plat = ±2ℏklat = ±4πℏ/λlat. (2.4)

During the interaction time the atoms experience Rabi oscillations between different
momentum orders. Hence, for varying interaction time their momentum distribution
changes. The atoms are released from the trap at the end of the lattice pulse and
their momentum distribution after the interaction is measured using time of flight
imaging (see upper panel in figure 2.6). For deeper lattices also higher order scattering
processes (p = n∆p , n ∈ N) start to become important. Since their Rabi frequencies
differ, the resulting interference of all the coherent scattering processes leads to a non-
trivial evolution of momentum orders. By evaluating the distribution of atoms across all
different momenta as a function of the atom-lattice interaction time the lattice depth
s = Vlat/Erec can be extracted [101, 102]. For that, the solution of the time dependent
Schrödinger equation for a matter wave (BEC) in a periodic potential (1D-lattice) is
calculated numerically and fitted to the distribution of the momentum orders (see lower
panel in figure 2.6) [74, 102].
We use measurements at moderate lattice depths Vlat ≲ 30 Erec to extrapolate them
to higher lattice depths as a function of lattice power and detuning. As in our system
the intensities of the counter-propagating lattice beams are not equal and can change
independently from each other (e.g. by tuning the the MiM cavity on resonance) we
need a model that includes the near resonant detuning, the incident lattice beam power
Pinc and the reflected power Pref [85, 98, 102]:

Vlat = 4c2√
PincPref

wincwref

[
ΓD1

ω3
D1

1
∆D1

+ 2ΓD2

ω3
D2

(
1

20∆D2,F′=1
+ 1

4∆D2,F′=2
+ 7

10∆D2,F′=3

)]
.

(2.5)

Here, winc and wref denote the beam waists of the incident and back-reflected beams,
ωD1 is the (optical) resonance frequency of the atomic D1 transition and ∆D1 is the
detuning of the lattice light to that transition. The hyperfine splitting of this transi-
tion can be neglected as it is much smaller than the detuning. For the D2 transition
however, the hyperfine splitting has to be regarded and ∆D2,F ′=i is the detuning of the
lattice light to the respective transition from the |52S1/2, F = 2⟩ ground state to the
|52P3/2, F′ = i⟩ excited state. Each D2 hyperfine transition is weighted with its relative
hyperfine transition strength factor [98]. To determine the actual detuning of the lattice
light we calibrate our wavemeter in the following way:
The TiSa, from which the lattice light is derived, is transfer-locked to a cavity that is
stabilized on the rubidium M1 cooling laser (see figure 2.4). This laser is blue detuned
from the |52S1/2, F = 2⟩ → |52P3/2, F′ = 3⟩ transition by 2× 66.809 MHz, which is the
frequency of the double-pass AOM that is used to tune the cooling laser into resonance
with the atoms for absorption imaging. Furthermore, the coupling lattice is blue de-
tuned from the raw TiSa output by 80 MHz. Hence, if the TiSa is locked to the transfer
cavity by multiple nFSR ∈ N, the lattice beam has a frequency of

ωlat/2π = ω2,3/2π + 2 × 66.809 MHz + 80 MHz + nFSR × FSR. (2.6)
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Figure 2.6: Exemplary lattice
depth calibration measure-
ment. Upper panel: Short lat-
tice pulses of variable duration (de-
picted on horizontal axis) are ap-
plied to a BEC in the dipole trap
and the resulting diffraction pat-
tern is imaged after 20 ms time-of-
flight. Lower panel: Circles de-
note the relative atom numbers in
the respective momentum orders
for a given pulse length. The solid
lines depict fits to the data us-
ing the solution of the time depen-
dent Schrödinger equation of the
system (calculations can be found
in [74, 102]). From the fit, the
measured lattice depth can be ex-
tracted.

The displayed wavemeter reading corresponding to this frequency can then be used to
calculate the relative detuning of other wavemeter readings to this frequency. And with
that an absolute detuning from the atomic resonance can be derived for any adjusted
wavelength4.
Once the absolute detuning is determined the expected lattice depth for a given lattice
power can be calculated using equation (2.5). By comparison of the measured lattice
depth with the expected lattice depth we arrive at our lattice calibration factor

ccal = slat,meas
slat,theo

. (2.7)

Ideally this factor should be close to unity, however numerous experimental imperfec-
tions (e.g. wavefront errors, axial and transversal misalignment, polarization mismatch,
etc.) lead to a smaller value. We use this quantity in two ways: 1) to gauge the quality
of the current lattice alignment, 2) to correct all extrapolated lattice depths, in order
to arrive at the actual lattice depth for given parameters.

2.2.2 Homodyne detection

When we place a mechanical resonator inside a cavity and illuminate it with light of
constant frequency ωL the resonator motion changes the cavity resonance ωcav period-
ically (see figure 2.13) due to the optomechanical coupling discussed in section 2.3.1.
This can equivalently be seen as a modulation of the detuning ∆ between laser and
cavity and results in a phase modulation of the reflected beam at the mechanical res-
onance frequency. Thus, in order to measure the motion i.e. the displacement of the
resonator a phase sensitive detection scheme is needed. Furthermore, for feedback cool-
ing of mechanical motion the detection noise plays a decisive role. Homodyne detection

4This wavemeter calibration has to be performed on a daily basis as the wavemeter output follows
ambient temperature and humidity drifts.
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is capable of fulfilling both requirements, it enables to measure any quadrature of the
light field and can be quantum noise limited [103, 104].
While direct detection of a single beam on a balanced detector cannot differentiate
between quadratures and therefore always measures the in-phase (amplitude) quadra-
ture, the addition of a stable phase reference beam (local oscillator) allows to measure
at an arbitrary relative phase and hence gives access to any quadrature. To realize a
homodyne detector the local oscillator must have the same frequency as the signal.
Practically this is realized by deriving both beams from the same laser. The signal
amplitude can be expressed by

αsig(t) = αsig + δXsig(t) + iδYsig(t), (2.8)

with αsig, δXsig(t) and δYsig(t) ∈ R. The quadratures δXsig and δYsig are the amplitude
and phase fluctuations around a steady-state value α. Similarly, the local oscillator
amplitude can be written as

αlo(t) = [αlo + δXlo(t) + iδYlo(t)]eiϕlo , (2.9)

where ϕlo is an arbitrary but fixed phase between the signal and local oscillator beam
that can be controlled by changing the path length of the LO branch in the interfer-
ometer. Both beams are superimposed spatially again, are then split on a 50/50 beam
splitter and sent to two ports of a differential photo detector. The fields at the respective
detector ports are described by

αD1(t) =
√

1
2αlo(t) +

√
1
2αsig(t),

αD2(t) =
√

1
2αlo(t) −

√
1
2αsig(t), (2.10)

where the minus sign arises from the π-phase shift experienced by one of the fields upon
reflection at the beam splitter [104]. For the photocurrents obtained from the measured
intensities this yields

iD1(t) = |αD1(t)|2 = 1
2
(
|αlo(t)|2 + αlo(t)α∗sig(t) + α∗lo(t)αsig(t) + |αsig(t)|2

)
,

iD2(t) = |αD2(t)|2 = 1
2
(
|αlo(t)|2 − αlo(t)α∗sig(t) − α∗lo(t)αsig(t) + |αsig(t)|2

)
. (2.11)

We consider that the local oscillator beam is far more intense than the signal beam:
|αlo|2 ≫ |αsig|2. If we insert equations (2.8) and (2.9) into (2.11) we can then neglect
terms of the form αsigδX and similar, as well as terms containing two quadrature
components. With that approximation we arrive at

iD1(t) ≈ 1
2α2

lo + αloδXlo(t) + αloαsig cos(ϕlo) + αloδXsig(t) cos(ϕlo) + αloδYsig(t) sin(ϕlo),

iD2(t) ≈ 1
2α2

lo + αloδXlo(t) − αloαsig cos(ϕlo) − αloδXsig(t) cos(ϕlo) − αloδYsig(t) sin(ϕlo).
(2.12)
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The homodyne signal is then given by the current difference at the two detector ports

i−(t) = iD1(t) − iD2(t) ≈ 2αloαsig cos(ϕlo) + 2αlo [δXsig(t) cos(ϕlo) + δYsig(t) sin(ϕlo)] .

(2.13)

This current i−(t) scales with the local oscillator amplitude, but its quadrature fluctu-
ations or noise are completely suppressed. On the other hand the power of the signal
beam has negligible influence as long as it is small compared to the power of the local
oscillator. The phase ϕlo determines which of the two quadratures (or which combi-
nation of both) is measured. Since the information about the mechanical resonator is
encoded in the phase quadrature of the signal beam we want to measure δYsig(t), which
is realized by choosing ϕlo = ±π/2.
Homodyne detection allows to perform very sensitive measurements of the amplitude
and phase quadrature of the light field and can be therefore applied in quantum optics
to reconstruct the full quantum state of a system. In chapter 4 we will discuss the
reconstruction of the state of our mechanical resonator. However, we cannot probe the
resonator directly but rather measure the light field that has interacted with it. As we
measure only the displacement quadrature we have to rely on the fact that the res-
onator behaves like a harmonic oscillator and that the equipartition theorem is valid.
The measurements performed in chapter 3 are weak continuous measurements. In con-
trast to a strong projective measurement (at high detection power) that determines
the state of the resonator almost arbitrarily precise but also completely destroys it by
the measurement, a weak measurement extracts less information about the system per
time but is non-destructive [105]. Even though the motional state of the resonator is not
destroyed by a weak measurement it still exerts a backaction force onto the resonator
that grows with increasing probe power. At the same time the measurement impreci-
sion is reduced at higher probe powers due to the improved signal to noise ratio as can
be seen in figure 2.7. There is an optimal detection power, where both contrary effects
are in balance. This point is called the standard quantum limit (SQL) and represents
a fundamental uncertainty principle [23, 24, 104].
Nevertheless, more advanced position measurement methods have been developed that
allow in principle to surpass this limit and measure the mechanical motion with pre-
cision below the SQL, either by evading the backaction [78] or by clever cancellation
of the noise at the detector [106]. The difficulty to realize these schemes is emphasized
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by the fact that interferometric displacement measurements with a precision below the
SQL have been realized only in the last few years on optomechanical platforms employ-
ing nanomechanical resonators [107] or kilogram-scale test masses [108].
Another path to beat the SQL is to move from continuous to pulsed or stroboscopic
measurements [109] where the interaction of the probe with the resonator is much
shorter than a period of its mechanical motion. In this case the back-action transferred
to the mechanical momentum does not have enough time to evolve into position noise
and therefore allows for a sub-SQL measurement. This will be treated in more detail
in chapter 4.

Experimental realization: In order to achieve quantum noise limited detection pre-
cision and cancellation of the classical LO noise the homodyne setup must be carefully
balanced. For that the amplitudes and the wave front curvatures of the signal and
LO beam should be ideally identical. This implies that both beams travel comparable
distances and experience similar optical components such as lenses and mirrors. Also
these components should be of high quality i.e. the use of lenses with dedicated coatings
and mirrors with excellent reflectivities is mandatory to avoid optical losses wherever
possible - otherwise vacuum noise is added and the noise suppression is deteriorated.
To judge the quality of the alignment the normalized fringe visibility

V = V IS

V ISperfect
(2.14)

can be measured, where V IS = (Imax − Imin)/(Imax + Imin) is calculated from the mea-
sured maximum and minimum intensities of the interference pattern and V ISperfect =
2
√

IsigIlo/(Isig + Ilo) is the expected fringe visibility that can be calculated from the
respective beam intensities of signal and LO. The quality of the whole homodyne de-
tection can be described by an overall efficiency [104]

ηhd = ηdetV2 (2.15)

where ηdet denotes the quantum efficiency of the photo detector. It is defined as

ηdet = hc

λe
· Idiode

Popt
(2.16)

where e = 1.602 × 10−19 C is the elementary charge and λ is the used wavelength.
The photo sensitivity Idiode/Popt is sometimes specified by the manufacturer or can be
obtained from fitting Vout,diode/R plotted against the applied power Popt for several Popt.

The homodyne detection setup used for the measurements in chapter 3 was built by T.
Wagner and is still operated in a similar state to the one presented in [74, 77] (see figure
2.8). The detection light is split into an LO and signal beam on a plate beam splitter.
The former one is coupled to the MiM setup where the resonator motion is encoded in
its phase upon back-reflection. Subsequently, the signal beam is superimposed with the
LO on a PBS. The phase of the LO can be adjusted by changing the optical path length
in the LO branch using a piezo mirror. As there are no perfect 50/50 beam splitters
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Figure 2.8: Balanced homodyne detection setup. The homodyne light is collimated to
a beam diameter of ∅ = 3.6 mm using a 60FC-L-4-M20L-02 fiber collimator from Schäfter +
Kirchhoff, polarization cleaned and subsequently split on a 50/50 non-polarizing beam splitter
into signal and LO beam. At PBS1 a small fraction of the signal beam is reflected and used
for the intensity control. The remaining fraction is guided to the cryostat telescope where 10 %
of the arriving signal light are reflected and coupled together with the lattice beam into the
cryostat fiber. After back-reflection from the MiM device the signal beam is guided via PBS1 to
PBS3 where it is superimposed with the LO beam again. The LO beam passes PBS2 and is retro-
reflected from a piezo mirror (HPSt 150/14-10/12 from Piezomechanik), which is used to adjust
the relative phase between signal and LO beam. Once both beams are spatially overlapped on
PBS3 they are split equally in power and sent onto a customized differential photo detector from
Femto (DC...1 MHz, gain 28.5 kV/W, NEP 1.1 pW/

√
Hz, ηdet,780nm = 0.86) which generates a

voltage signal proportional to the mechanical resonator displacement.

in reality we use a combination of two PBS to achieve the best possible balancing of
our homodyne signal. After the beams are overlapped with perpendicular polarizations
on the first PBS a λ/2 waveplate is used to rotate their polarization axes by 45◦ be-
fore the beams are split with equal intensities and polarizations at the second PBS.
Subsequently, each beam carries a relative phase dependent interference signal that is
composed of the signal and LO contributions and impinges on one port of a differential
photo detector. The detector was installed at an angle of 45◦ to the beams in order to
avoid back-reflection and parasitic interference effects that might occur under normal
incidence. A small fraction of the light is reflected from the glass windows in front of
the photodiodes, which is recorded on another detector (not shown in figure 2.8) and
used to derive the phase-lock signal.

Homodyne calibration: In order to convert the measured homodyne signal Uhd into
a displacement xm of the mechanical resonator the homodyne detector has to be cal-
ibrated. The used method is described in detail in [74, 110] and will only be briefly
outlined here. We are interested in the amount of signal change in the homodyne volt-
age per displacement of the resonator ∂Uhd/∂xm. It can be written as the product of
three quantities

∂Uhd
∂xm

= ∂ωcav
∂xm

∂ϕx
∂ωcav

∂Uhd
∂ϕx

, (2.17)
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where ∂ωcav/∂xm = gm is the optomechanical coupling that describes the change of the
cavity resonance frequency for a given resonator displacement. This change of resonance
frequency is related to a phase change in the light reflected from the cavity ∂ϕx/∂ωcav,
which in turn alters the voltage on the homodyne detector ∂Uhd/∂ϕx. The calibration
is based on two steps:
First, the resonator position within the cavity is changed at constant cavity length Lcav
to determine the phase change per resonator position ∂ϕx

∂xm
= ∂ωcav

∂xm
∂ϕx

∂ωcav
. This is done

by changing the position of both cavity mirrors around the resonator position by the
same amount5 and in the same direction. The resulting phase change is derived from
the reflection signal of the MiM cavity. For that we fit the reflected intensity with the
expression for a cavity resonance [99, 110]

Iref,norm(xm) =
∣∣∣∣∣
√

R1 − e4πixm
√

R2
1 − e4πixm

√
R1R2

∣∣∣∣∣
2

, (2.18)

where the cavity mirror reflectivities R1 and R2 are used as free fit parameters (left
panel in figure 2.9). The corresponding phase response is given by

ϕx = Im
(√

R1
e4πixm(1 − R1)

√
R2

e4πixm
√

R1R2 − 1

)
(2.19)

and is calculated with the values obtained from the fit. The calibration factor ∂ϕx/∂xm
is derived from the slope of the phase response function around xm = 0 (right panel in
figure 2.9).
The second calibration step is to determine the homodyne voltage per phase change
∂Uhd/∂ϕx, which is done by scanning the phase of the local oscillator by multiples of
2π (using the phase-lock piezo). The scan results in a sinusoidal interference signal with
a peak-to-peak voltage Upp and a maximum slope of ∂Uhd/∂ϕx = Upp/2 [110]. While
∂ϕx/∂xx is a fixed quantity of the aligned MiM system, the quantity ∂Uhd/∂ϕx depends
on many critical parameters (e.g. fiber coupling, alignment of the homodyne detection,
used photo detector, etc.). Therefore, Upp is measured on a daily basis to obtain the
homodyne calibration

∂Uhd
∂xm

= ∂ϕx
∂xm

· Upp
2 . (2.20)

The measurement depicted in figure 2.9 is just an exemplary one and its result was
used in chapter 4. Throughout the thesis measurements were performed at different
cryostat temperatures. Each change in temperature leads to a thermally induced length
change of the cavity and, depending on magnitude of the length change, a modified
intra-cavity position of the resonator. Thus, it is necessary to realign the MiM system
each time, which can result in an altered homodyne calibration. Furthermore, also
different balanced detectors were used, depending on the measurement scenario. After
each change to the system a new calibration was performed and the corresponding
calibration will always be mentioned in the respective sections.

5By applying the independently measured piezo calibration (see section 2.3.1).
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Figure 2.9: Cavity scan measurement
used to calibrate the homodyne detec-
tion. Normalized reflected intensity Iref,norm
and phase ϕx as a function of the resonator
position xm. Upper panel: The measured
data (blue) is fitted using equation (2.18)
(red), resulting in effective mirror reflectivi-
ties
R1 = 0.917 and R2 = 0.988. Lower panel:
Using the fit results and equation (2.19) the
phase response of the cavity is calculated
(blue line). A linear fit around the cavity res-
onance (red line) yields the calibration factor
| ∂ϕx

∂xm
| = (0.56 ± 0.01) rad/nm.

2.2.3 Feedback cooling

One major challenge in the use of mechanical resonators for quantum applications is
their coupling to the thermal environment, which acts as a source of classical noise
and leads to a finite average phonon occupation of the resonator. This classical noise
can obscure the quantum behaviour of the resonator. Thus, it is of vital importance
to cool these resonators close to their motional ground state and minimize the phonon
noise in the system. One common and powerful approach in cavity optomechanics is
to use resolved sideband cooling [56, 111, 112]. It works with resonators of all kinds
and for arbitrary resonance frequencies ωm as long as they exceed the linewidth κ of
the surrounding cavity (good cavity limit: ωm > κ). In our case this scheme is not ap-
plicable since our system operates deep in the sideband unresolved regime (bad cavity
limit: κ ≫ ωm). In this regime the optical readout field instantaneously responds to
changes in the mechanical motion, thus enabling measurement-based feedback cooling.
Indeed, in the past few years feedback cooling has proven to be a suitable tool for
cooling mechanical resonators to the quantum mechanical groundstate [113]. Recently,
we approached the ground state quite close by feedback cooling as well, reaching a final
phonon occupation of nm = 3.8 ± 0.1 [77]. Meanwhile, other groups almost managed
to reach the groundstate by feedback cooling from room-temperature [114, 115]. The
technique also was applied to qubits, facilitating controlled quantum state stabilization
[116].
In the course of this thesis feedback cooling is used as a tool for deterministic state
preparation rather than cooling to the lowest possible phonon occupations.

The lowest vibrational mode of our mechanical resonator can be well approximated by a
harmonic oscillator with resonance frequency ωm, effective mass meff and damping rate
(mechanical linewidth) Γm = ωm/Q, whose motion is described by x(t). It is subject to
three stochastic forces: a thermal force Fth associated with the ambient environment, a
back-action force Fba associated with the coupling of the resonator to the measurement
device, and a feedback force Ffb that controls the resonator. The dynamics of the system
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are described by the Langevin equation [117]

meff(ẍ + Γmẋ + ω2
mx) = Fth + Fba + Ffb (2.21)

F T⇒ meff(ω2
m − ω2 − iωΓm)︸ ︷︷ ︸
:=χm(ω)−1

x̃ = F̃th + F̃ba + F̃fb, (2.22)

where χm(ω) is the intrinsic mechanical susceptibility and FT denotes a Fourier trans-
formation from time to frequency domain6. The back-action and feedback forces can
be modelled as

F̃ba = −χba(ω)−1x̃ + F̃ba,th (2.23)
F̃fb = −χfb(ω)−1ỹ + F̃fb,th. (2.24)

Both expressions consist of a dynamic component, characterized by a linear suscep-
tibility, that contains correlations with the resonator’s position and an effective ther-
mal component. The dynamic component of the back-action force manifests itself in
the high-Q (ωm ≫ Γm), bad-cavity (κ ≫ ωm) limit relevant to our experiment as a
shifted mechanical frequency (the optical spring effect, see section 2.3.2) and passive
cold damping. Here, both effects can be neglected, as they vanish for the considered case
of resonant probe light (∆cav,L = 0). For the feedback force the dynamic component
can be regarded as a filter that affects the measured position ỹ = x̃ + x̃imp, where x̃imp
is the measurement imprecision added by the detector. Substituting equations (2.23)
and (2.24) into (2.22) and omitting χ−1

ba as mentioned above, the real resonator position
x̃ and the measured position ỹ can be expressed as

(χ−1
m + χ−1

fb )x̃ = F̃th + F̃ba,th + F̃fb,th − χ−1
fb x̃imp (2.25)

(χ−1
m + χ−1

fb )ỹ = F̃th + F̃ba,th + F̃fb,th︸ ︷︷ ︸
:=F̃tot

+χ−1
m x̃imp. (2.26)

In the equations above one can identify an inverse effective mechanical susceptibility
χ−1

eff := χ−1
m + χ−1

fb that describes how the response of the resonator is altered due to
feedback. When compared with the bare mechanical susceptibility one finds that the
resonators spring constant km = meffω2

m is altered by the real part of the feedback filter
to

k′m = km

(
1 + Re[χ−1

fb ]
km

)
= km(1 + gd) (2.27)

On the other hand the imaginary part of of the filter affects the resonator damping,
which results in

Γ′m = Γm

(
1 − Im[χ−1

fb ]
meffωΓm

)
= Γm(1 + gv). (2.28)

Since the former effect is purely position dependent and the latter effect is velocity

6The Fourier transform via x̃(ω) =
∫∞

−∞ x(t)eiωtdt is used here.
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dependent we introduced the displacement and velocity proportional feedback gains gd
and gv, respectively. Equivalently, the feedback filter function can now be expressed
through these feedback gains:

χ−1
fb = km · gd − imeffωΓm · gv. (2.29)

Using equations (2.25) and (2.26) that describe the real resonator displacement x̃(ω)
and the in-loop detected displacement ỹ(ω) under the influence of the total force Ftot
and the susceptibility χeff the power spectral densities (PSD) SO(ω) = ⟨|O(ω)|2⟩ of
these resonator positions in the feedback loop can be calculated. For the real resonator
displacement x̃ the single-sided PSD can be calculated as

Sx(ω) = ⟨x̃(ω)x̃∗(ω)⟩

= |χeff(ω)|2
(
⟨F̃tot(ω)F̃ ∗tot(ω)⟩ + |χfb(ω)|−2⟨x̃imp(ω)x̃∗imp(ω)⟩

)
= |χeff(ω)|2

(
Stot

F (ω) + |χfb(ω)|−2Simp
x (ω)

)
, (2.30)

where the cross terms including Ftot(ω) and ximp(ω) vanish because the thermal noise
and the detector noise are uncorrelated. One can see that the resonator position PSD
consists of a contribution from the thermal noise force and the imprecision noise that
is fed back to the resonator. Similarly, the PSD of the measured displacement ỹ can be
calculated to

Sy(ω) = |χeff(ω)|2
(
Stot

F (ω) + |χm(ω)|−2Simp
x (ω)

)
. (2.31)

It is clearly not just the sum of the real resonator displacement PSD Sx(ω) and the
imprecision noise PSD Simp

x (ω). Instead it becomes apparent that the feedback loop
creates correlations between the noise and the real resonator displacement.

To evaluate the effect of feedback cooling on the mode temperature Tmode of the res-
onator we use the obtained equations for the susceptibility χeff(ω) and the feedback

in out

Figure 2.10: Schematic representation of the feedback loop. A thermal noise force
Fth drives the resonator and its action is converted by the mechanical susceptibility χm to a
displacement x̃. Upon detection, noise x̃imp is introduced, which results in an additional back-
action force Fba that leads to the measured in-loop detection signal ỹ = x̃ + x̃imp. This signal
is processed by the feedback filter χ−1

fb to derive the feedback force Ffb. All these contributions
add up to the total force Ftot that governs the dynamics of the system.
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filter function χfb(ω) expressed through the gains gd and gv:

|χfb(ω)|−2 = (kmgd)2 + (meffωΓmgv)2 (2.32)

|χeff(ω)|2 = 1
m2

eff

[
(ω2

m (1 + gd) − ω2)2 + (ωΓm (1 + gv))2
] . (2.33)

According to the equipartition theorem the mode temperature is given by [23]:

Tmode = meffω2
m

kB
⟨x2

m⟩ = meffω2
m

kB
· 1

2π

∫ ∞
0

Sx(ω)dω (2.34)

Evaluating this formula using equation (2.30) expressed by (2.32) and (2.33) yields:

Tmode = ω2
m

2πmeffkB
Stot

F

∫ ∞
0

1
(ω′2

m − ω2)2 + (ωΓ′
m)2 dω

+ ω2
m

2πmeffkB
Simp

x

∫ ∞
0

g2
dk2

m + g2
v (mωΓm)2

(ω′2
m − ω2)2 + (ωΓ′

m)2 dω, (2.35)

where ω
′
m = ωm

√
1 + gd and Γ′

m = Γm (1 + gv). Stot
F and Simp

x are assumed constant (a
very good approximation for reasonable resonator parameters). By solving the integrals7

the mode temperature can be calculated as a function of the feedback gains gd and gv:

Tmode = Tbath
(1 + gd) (1 + gv) +

[
kmωmQ

4kB

g2
d

(1 + gd) (1 + gv) + kmωm
4kBQ

g2
v

1 + gv

]
Simp

x (2.36)

︸ ︷︷ ︸
cold spring/damping

︸ ︷︷ ︸
T ∼ gd

︸ ︷︷ ︸
T ∼ gv

From the first term of the equation one can see that for positive gains gd,v > 0 feedback
cooling occurs (Tmode < Tbath). However, as the first term approaches zero for large
gains the last two terms proportional to g2

d and g2
v will lead to an increase in temper-

ature originating from the detection noise that is fed back to the resonator. Thus, the
mode temperature exhibits a global minimum for gd,v ∈ (0, ∞). In our experimental
setup the displacement proportional term does not lead to cooling at all [74] due to
the high Q-factor (≈ 9 · 107) of our resonator and in fact only adds a parasitic heating
effect. Hence, we need to avoid it completely in the experiment. This can be done by
adjusting the feedback phase ϕfb = arg(χfb). For purely velocity dependent feedback
one needs to exploit the imaginary part of the filter function χ−1

fb which is realized for
ϕfb = π/2. Experimentally, the phase is adjusted by the feedback signal delay, which
in our case is done in the lock-in amplifier that processes the signal.

Finally, the minimum achievable temperature for gd = 0 can be determined by

∂Tmode
∂gv

= 0 ⇒ gv,opt =
√

1 + 4kBQTbath

kmωmSimp
x

− 1 ≈
√

4kBQTbath

kmωmSimp
x

:= A

7Using π
2Γω2

m
=
∫∞

0
dω

(ω2
m−ω2)2+(ωΓ)2 and π

2Γ =
∫∞

0
ω2dω

(ω2
m−ω2)2+(ωΓ)2
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⇒ Tmode(gv,opt) ≈ 2Tbath
A

= ωm

√
meffΓmSimp

x Tbath/kB (2.37)

We find that for optimal feedback cooling it is beneficial to have a low detection noise
and work at low bath temperatures. Moreover, the used resonator should have a large
Q-factor and a low mass.

2.3 Cryogenic optomechanical setup

The central component of the optomechanical part of our experiment is the cryogenic
membrane-in-the-middle (MiM) system. It consists of an asymmetric, plano-concave
fiber Fabry-Pérot cavity that encloses a high stress silicon-nitride trampoline resonator
[93, 94]. The asymmetry of the cavity refers to the cavity mirrors that have different
reflectivities, allowing for a non-zero reflectivity on resonance. This feature provides the
back-reflection from the cavity that is needed for the bi-directional interaction with the
atomic system. The mode matched cavity is formed by two coated optical fibers that
can be aligned with sub-micrometer precision using an individual 5-axis goniometer
for each fiber (see figure 2.11). Details on the properties and the fabrication process
of such fiber cavities are presented in [99, 118]. For detailed properties of the fiber
cavity used in the course of this thesis refer to [74]. The optical axis of the fibers is
oriented along gravity, perpendicular to the plane of the resonator. While the fibers
are fully moveable, the resonators position is fixed to the cavity housing. It sits on
a removable copper shuttle that can be used to exchange different resonators under
UHV and even cryogenic conditions. The cavity must be aligned around the resonator
with a transversal precision of ≈ 200 nm and a longitudinal precision of a few tens of
nanometers to ensure optimal mode match and sufficient optomechanical coupling.
This is done by positioning the upper, planar terminated fiber at a distance of ≈ 5 µm
from the resonator. In the vicinity of the fiber the wavefronts of the intra-cavity are
planar and thus can be efficiently reflected from the resonator into the cavity mode.
The fiber is used to couple the detection and coupling light into the cavity. On the other
side, the lower, curved end fiber is placed ≈ 17 µm away from the resonator and is used
to deliver the feedback cooling beam. The whole assembly is situated in a 3He/4He
dilution refrigerator and the cavity device is connected directly to its mixing chamber
allowing to reduce the temperature of the MiM device down to 500 mK. Further details
on the cryogenic implementation of the MiM structure and all parts of the MiM device
can be found in [119]. However, during the course of this thesis we had technical issues
with the 3He pump and encountered multiple blockages inside the cryogenic unit of the
refrigerator, which made it necessary to perform several warm-up cycles. The reason for
the blockages at our experiment could not be fully identified yet, but similar problems
appeared at other experiments in adjacent laboratories as well. Presumably, they were
caused by residual impurities in the used liquid helium after liquefaction of the recovered
helium gas. For this reason the experiments presented in chapter 3 were performed at
room-temperature.
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2.3.1 Trampoline resonator in a MiM configuration

The field of cavity optomechanics [24] aims at producing and controlling quantum states
of mechanical motion by exploiting the tools of quantum optics. This is facilitated by
the similarity of the two fields that reflects in two facts: first, the quantum description
of a single-mode of an optical field is equivalent to that of an harmonic oscillator and
second, the interaction between light and mechanics can be of non-linear (Kerr-type)
nature if the light confined in a cavity is modified by the mechanical motion [120].
The latter can be observed e.g. in the prototypical optomechanical setup of a cavity
with a mechanically compliant end mirror, where radiation-pressure pushes the cavity
mirrors apart. The deformation of the cavity affects its resonance frequency and hence
the stored energy, which results in optical back-action that creates a coupling between
the mechanical motion and the cavity mode. Most optomechanical systems are modifi-
cations of this simple scheme.
The great benefit of not using a mechanical resonator as a cavity end mirror is at
hand - it alleviates the stringent requirement of combined exceptional optical and
mechanical properties in a single object. Instead, by placing an extremely sensitive
micro-mechanical resonator with large Q-factor inside a high-finesse cavity the benefi-
cial properties of both objects can be utilized. Since the resonators are mostly optically
flat and very thin (d ≈ 50 nm ≪ λ) they scatter photons in a well-defined direction,
allowing for stable high-finesse modes in the MiM scheme. By placing the resonator
at a node of the intra-cavity field, purely dispersive, linear optomechanical coupling
can be created. In this configuration the cavity detuning ∆ depends linearly on the
resonator displacement xm. By changing the resonator position to an anti-node of the
intra-cavity field quadratic dispersive coupling ∼ x2

m can be created that would render
direct energy measurements of the resonator possible [121].
The MiM system is a versatile and frequently used optomechanical setup composed of a
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Figure 2.11: Sketch of the MiM setup. The MiM system is formed by two fibers that are
aligned around the trampoline resonator. Each fiber is aligned using a 5-axis goniometer. The
fibers are glued into ferules that are mounted in piezo tubes for scanning the cavity and tuning
it on resonance. The planar fiber (closer to the trampoline) exhibits a nominal reflectivity
|r1|2 = 0.907 ± 0.004, while the curved fibers holds |r2|2 = 0.994 ± 0.001 and has a radius
of curvature of approximately 50 µm [97]. The cavity has a total length of ≈ 22.5 µm. Figure
adapted from [100].
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thin dielectric membrane that is placed inside a Fabry-Pérot resonator [121–124]. It has
been utilized to sense radiation pressure shot noise through mechanical motion [125],
for mechanical ground state cooling [126], as well as sympathetic cooling [62, 65] and
quantum back-action-evading measurements [64] in hybrid atomic-mechanical systems.
More recently MiM systems have been employed to demonstrate measurement-based
quantum control [113], strong coupling of atomic spins to mechanical motion [127] and
spin feedback cooling [128]. MiM systems equipped with ultracoherent, soft clamped
photonic shield resonators could also enable ground state cooling from room tempera-
ture in the near future [115].

Trampoline resonator

Trampoline resonators are tethered membranes that are suspended by four strings of
material from the corners of a quadratic frame (see figure 2.11 and 2.12). They were
first reported in [93, 94] and developed to enter the optomechanical quantum regime
from room temperature. Their design idea is based on the goal to create mechanical
elements that experience the lowest possible force noise which in thermal equilibrium
can be described by the corresponding power spectral density [23]

Sth
F = 4kBTbathΓmmeff . (2.38)

From equation (2.38) it is evident that this requires a low resonator mass meff and a
large quality factor Q = ωm/Γm.

At the same time a high mode frequency is desirable, since the quality factor-frequency
product dictates the condition to reach the quantum realm from room temperature

Q · fm >
kBTroom

h
. (2.39)

If the condition is fulfilled the system operates in the quantum coherent oscillation
(QCO) regime and one can calculate the number of coherent oscillations that the res-
onator can undergo before a phonon enters the system

Nosc = ωm
Γth

= 2π · fm
Γm · nth

= Qfmh

kBTbath
, (2.40)

where Γth is the thermal decoherence rate caused by coupling to a thermal bath.
Our resonator was designed by H. Zhong using finite element simulation based on the
findings in [93, 94] and fabricated by Norcada. It is made from high stress (800 MPa)
silicon nitride (Si3N4), which allows for low light absorption at λ = 780 nm and can be
fabricated in almost any desired shape. The rigid silicon frame has a size of 5 mm×5 mm
and a thickness of (500±25) µm. A window of 1 mm×1 mm contains the d = (50±5) nm
thick resonator, whose pad has a side length of (115 ± 10) µm and thus is just slightly
narrower than the tips of the cavity fibers. The frame is placed under its own weight
on the copper shuttle, as gluing or clamping can reduce the resonators quality factor.
The measured mode spectrum of our resonator is depicted in figure 2.12 and corresponds
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Figure 2.12: Mode spectrum of the trampoline resonator. The blue line shows a mea-
surement of the mode spectrum of the in-house designed trampoline resonator recorded with
a spectrum analyzer (FSP from Rohde & Schwarz), RBW: 100 Hz, VBW: 300 Hz. The black
dashed lines depict the first seven resonances (s - symmetric, t - torsional, a - asymmetric), that
were calculated in COMSOL during the design of the resonator. Above the plot the simulated
displacement profiles for the modes that appear in the recorded spectrum are shown. Our work
is concentrated mainly on the first symmetric mode that appears around 154 kHz. The red
dashed lines depict parasitic noise in the spectrum that originates from the etalon modulation
of the TiSa laser.

well to the calculated fundamental modes (black dashed lines). From the simulation
the effective mass meff = 3 ng of the lowest mode that we focus on in our experiments,
can be extracted. It has a mode frequency of ωm ≈ 2π · 154 kHz. The quality factor,
the mode frequency and hence the mechanical linewidth change with the temperature
of the surrounding cryogenic environment. Therefore, we measured the quality factor
in all used configurations by ringdown measurements and determined the respective
mechanical linewidth from the measured mode frequency. The resulting numbers are
stated in table 2.1. As one can see the quality factor of our resonator does not suffice
to enter the quantum regime at room temperature.

Table 2.1: Properties of the MiM device that change with the environment temperature. The
values for 0.5 K are taken from [77], all other values are determined within this work. The
quality factor was calculated from ringdown measurements on the cooling (Qcool) and heating
side (Qheat) of the cavity resonance (that will be introduced in section 2.3.2), respectively. The
stated values are calculated by the harmonic mean Q = 2QcoolQheat/(Qcool + Qheat).

Temperature-dependent MiM parameters
T ωm Q Γm Nosc

0.5 K 2π · 153.98 kHz (8.987 ± 0.001) · 107 2π · (1.7 ± 0.4) mHz 1329
10 K 2π · 152.36 kHz (6.832 ± 0.001) · 107 2π · (2.2 ± 0.5) mHz 50
293 K 2π · 154.42 kHz (6.662 ± 0.004) · 106 2π · (23.2 ± 0.8) mHz < 1
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Optomechanical interaction

As already mentioned earlier the optical (ωcav) and mechanical (ωm) modes in an op-
tomechanical system can be described as harmonic oscillators. For the small displace-
ments that are typically created in the experiment this is an excellent approximation
and leads to a Hamiltonian Ĥ0 of the form [24]

Ĥ0 = ℏωcavâ†â + ℏωmb̂†b̂, (2.41)

with the phononic (photonic) creation b̂† (â†) and annihilation b̂ (â) operators. These
are linked via x̂ = xzpf(b̂+ b̂†), p̂ = −imeffωmxzpf(b̂− b̂†) to the position and momentum
operators, where

xzpf =
√

ℏ
2meffωm

(2.42)

is the zero-point fluctuation amplitude in the mechanical vacuum state |0⟩. The quantity
b̂†b̂ is the phonon number operator8, whose average yields the phonon occupation of
the mechanical mode: n̄m = ⟨b̂†b̂⟩.
For the case of dispersive optomechanics the coupling of optical and mechanical modes
leads to a modulation of the cavity resonance frequency by the mechanical amplitude:

ωcav(xm) ≈ ωcav + xm
∂ωcav
∂xm

+ · · · . (2.43)

The frequency shift per displacement is called optomechanical coupling G = −∂ωcav/∂xm.
Rewriting Ĥ0 by using ωcav(xm) up to first order and expressing xm through xzpf yields

Ĥ0 = ℏωcavâ†â + ℏωmb̂†b̂ − ℏg0â†â(b̂ + b̂†). (2.44)

The last term describes the interaction between the optics and the mechanics and
g0 = Gxzpf denotes the single photon coupling strength.

The simplest realization of such a scheme is a Fabry-Pérot cavity with a mechanically
compliant end mirror. For such cavities with resonance frequency ωcav = nπc/L, where
c denotes the speed of light, L the cavity length and n ∈ N, the resonance condition is
fulfilled if n · λ = 2L. If the end mirror is displaced by xm the cavity length is changed,
which results in a position-dependent cavity frequency

ωcav(xm) = nπc

L + xm
≈ ωcav

(
1 − xm

L

)
= ωcav − xm · ωcav

L
. (2.45)

The frequency shift per displacement is therefore G = −ωcav/L.

For a MiM system the optomechanical coupling gm = −∂ωcav/∂xm has a more com-
plicated form and depends on many more parameters than just the cavity length. The
resonators position xm changes gm periodically and therefore it must be placed pre-

8Equivalently â†â is the photon number operator with the average photon occupation of the cavity
field n̄cav = ⟨â†â⟩.
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Figure 2.13: Cavity response to resonator displacement. Left panel: The solid lines
show the cavity transmission (dark red), the phase of the transmitted light (grey) and modula-
tion of the resonator position (light red). The effect of that modulation on the transmission and
phase is plotted as a dotted line with the respective color. Right panel: Dependence of the
cavity resonance frequency on the resonator displacement xm from the cavity center normalized
by the FSR, with rm values (from light to dark) 0.42, 0.65, 0.85, 0.95 and 0.995. The horizontal
dotted lines show the empty cavity resonant frequencies (rm = 0) and the black dotted lines
represent the left (negatively sloped) and right (positively sloped) sub-cavity resonances for
rm = 1.

cisely at the right point of the intra-cavity field to obtain the maximal linear coupling.
This has been shown by modelling the resonator as a beam-splitter with a certain (am-
plitude) reflectivity rm inside the cavity [123, 129]. By solving a set of coupled wave
equations the cavity field amplitudes can be calculated and used to derive the cavity
resonance frequency for a MiM system [130]

ωMiM(xm) = NωFSR + ωcav
π

(
arccos[(−1)N+1|rm| cos(2kN xm)] − ϕr

)
. (2.46)

Here, ωFSR = πc/L denotes the empty cavity FSR, ϕr is the phase change of the light
reflected by the resonator and kN = πN/L is the N th empty-cavity resonance. These
frequencies are plotted in the right panel of figure 2.13 for the MiM system. The res-
onator divides the cavity into two sub-cavity modes that are coupled to each other via
the resonator transmission. If the resonator position increases the left sub-cavity is elon-
gated while the right one shortens, thus affecting their respective resonance frequencies
(black dashed lines). The coupling of the sub-cavities leads to avoided crossings, which
consequently result in a periodic modulation of the MiM systems resonance frequency.
At the points where the cavity resonance changes linearly in xm one sub-cavity is res-
onant with the light, while the other is anti-resonant as depicted by the insets. At
these points also the optomechanical coupling gm is linear. Since the reflectivities of
the cavity end mirrors are unequal, also the linewidth of the cavity is modified by the
redistribution of light between the sub-cavities [124, 129].

In our setup the resonator is not exactly in the middle of the cavity but closer to the
planar cavity end mirror, leading to a slightly skewed shape of the cavity resonances
ωcav. This results in a steeper descending slope for the left sub-cavity and thus a larger
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optomechanical coupling than for the moderate ascending slope of the right sub-cavity.
In the extreme case where the resonator is placed very close to one end mirror the
slope of the corresponding sub-cavity resonance gets so steep that the optomechanical
coupling gm at this point can exceed the coupling G of the bare Fabry-Pérot cavity
[129, 130]. Such a cavity configuration is then called membrane at the edge (MATE).

In order to determine the optomechanical coupling experimentally the cavity transmis-
sion has to be measured for different positions of the resonator within the intra-cavity
field to obtain ωcav(xm). Since it is not possible to move the resonator inside the cavity
in our setup we emulate the effect of the displaced resonator on the cavity field by mov-
ing the whole cavity instead. With the knowledge of G = −ωcav/L = 102.6 GHz/nm
for an empty cavity9 the optomechanical coupling can be determined implicitly by
measuring the ratio

gm
G

= ∂Lres
∂xm

, (2.47)

where Lres is the resonant cavity length (ωL = ωcav). This is depicted in the left panel of
figure 2.14. Both fibers are scanned simultaneously at different speeds over their whole
scan range using high voltage at the piezo tubes (see figure 2.11). In this scenario the
length of the left sub-cavity is scanned many times (∆L1 on the y-axis) during one
length scan of the right sub-cavity (depicted by ∆L2 on the x-axis). The blue line
denotes the normalized cavity transmission and the red solid line shows the line of
constant cavity length that corresponds to a simultaneous change of L1 → L1 ± ∆xm
and L2 → L2 ∓ ∆xm. The latter one is obtained by a linear fit to the transmission
maxima of the plot, which are acquired by fitting the Lorentzian transmission features
along each column. Using the fact that the transmission lines are one FSR (λ/2) apart
the piezo tubes can be calibrated to scale the axes in units of the wavelength. In this
case the measurement was performed at Tbath = 10 K and the scan range of both fibers
was sufficiently large to resolve at least one FSR along each scan direction.10 Due to
the temperature-dependent piezo stroke this is not possible at lower temperatures. In
that case only the lower cavity fiber has a sufficiently large scan range to resolve one
FSR. One can then use the slope of the line of constant cavity length to calculate the
piezo calibration for the upper fiber as well [74, 77].
From this measurement we find the piezo calibration clow = (1.58 ± 0.08) nm/V for the
lower and cup = (0.88 ± 0.01) nm/V for the upper fiber. These calibration factors are
also necessary to perform the homodyne calibration described in section 2.2.2.
The line of constant cavity length can also be used to rotate the central transmission
line in the left panel of figure 2.14, such that the red line becomes the new x-axis and the
resonant cavity length Lcav can be expressed as a function of the resonator position xm
(right panel in figure 2.14). To determine gm one can now use equation (2.46) to fit the
data with rm as the only free fit parameter. From the fit we obtain rm = 0.61 and gm/G

is calculated by taking the derivative in equation (2.47): gmax
m = 0.88G = 90.3 GHz/nm.

9Calculated for the used wavelength of λ = 780.24 nm, ωcav = 2π · 384 THz and a cavity length of
L = (23.53 ± 0.13) µm.

10One can measure the distance between two resonance lines along the vertical and horizontal direc-
tion of the plot.
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Figure 2.14: Optomechanical coupling. Left panel: Normalized transmission as a function
of the resonator intra-cavity position, acquired by a fast scan (20 Hz) of the left sub-cavity during
a slow scan (10 mHz) of the right sub-cavity. Red solid line denotes constant cavity length. Insert
sketches the experimental realization. Right panel: Resonant cavity length ∆Lres as a function
of resonator position xm (blue circles), together with fit according to expression 2.46 (solid dark
red line). By differentiating the fit result the optomechanical coupling gm/G with gmax

m = 0.88G
is obtained (solid light red line).

2.3.2 Cavity locking using the optical spring effect

Until now, we considered the shift of the cavity resonance frequency ∆ωcav as a con-
sequence of the optomechanical coupling caused by a displacement of the resonators
intra-cavity position xm. However, the interaction can be exploited in the opposite di-
rection as well, if the MiM system is pumped with a laser detuned by ∆ = ωcav−ωL from
the cavity resonance. In this scenario the cavity resonance frequency stays fixed, but
the mechanical resonance frequency experiences a shift δωm. This can be explained by
regarding the resonator position xm as a dynamical quantity instead of a static one. As
a consequence of the resonator motion the radiation pressure within the cavity is modu-
lated via the optomechanical coupling gm, which leads to a dynamical back-action that
affects the resonator again [24, 131]. Mathematically, this is equivalent to the feedback
cooling formalism presented in section 2.2.3. The radiation pressure force alters the re-
sponse of the mechanical resonator, which can be viewed as a new effective susceptibility
χeff again. This leads to a new effective spring constant k

′
m = mω

′2
m = m(ωm + δωm)2

with the mechanical resonance frequency shift δωm caused by the so-called optical spring
effect. Likewise, a new effective mechanical damping rate Γ′

m = Γm + Γopt is obtained,
where Γopt is the optomechanical damping rate that can be positive or negative and
thus lead to cooling or heating, respectively.

In order to measure this effect experimentally the cavity is pumped with a laser beam
of constant power but variable detuning. The change of the resonator frequency δωm
and the cavity transmission are recorded as a function of the laser-cavity detuning
∆ = ωL − ωcav. To obtain the resonator frequency the light reflected from the cavity is
analyzed by a lock-in amplifier. Figure 2.15 shows the measured data together with a
Lorentzian fit to the transmitted power and a fit to the mechanical resonance frequency
shift using equation (2.49). Utilizing the parameters from the fit the corresponding
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Figure 2.15: Optical spring effect. Left panel: Measured cavity transmission (blue circles)
with Lorentzian fit (solid blue line) and measured mechanical frequency shift δωm (red circles)
with fit according to equation (2.49) (solid red line) for varying laser-cavity detuning ∆ and
23.9 µW cavity input power. The blue dashed line denotes the FWHM of the Lorentzian fit with
κ/2π = (49.95 ± 0.19) GHz, which deviates 1 % from κ/2π = (50.45 ± 0.95) GHz obtained by
the fit to δωm. The data were acquired with the MiM system at room temperature, the cavity
was not actively stabilized and the mechanical resonance frequency was ωm = 2π · 154.957 kHz.
Right panel: Optomechanical damping rate Γopt calculated using the fit results for δωm (left)
in equation (2.50). In both panels the red dashed lines show the qualitative behaviour for a
constant intra-cavity photon number n̄cav(∆ = 0).

optomechanical damping rate Γopt can be calculated according to equation (2.50), which
is displayed in the right panel of the figure. Both δωm and Γopt are proportional to the
intra-cavity photon number

n̄cav(xm) = n̄max
cav

1 + [2(Gxm + ∆)/κ]2
(2.48)

with n̄max
cav the maximum number of circulating photons at resonance and the single

photon coupling strength g0 = gmax
m · xzpf for a MiM system. They can be expressed by

[24]

δωm = n̄cavg2
0

[ ∆ + ωm
(∆ + ωm)2 + κ2/4 + ∆ − ωm

(∆ − ωm)2 + κ2/4

]
(2.49)

Γopt = n̄cavg2
0

[
κ

(∆ + ωm)2 + κ2/4 − κ

(∆ − ωm)2 + κ2/4

]
. (2.50)

Here, κ denotes the full width at half maximum (FWHM) linewidth of the cavity. With
κ extracted from the fits the finesse F of the cavity for this specific alignment11 can be
calculated

F = ωFSR
κ

= πc

κL
= 138.2 ± 9.5 (2.51)

with the mean linewidth κ/2π = (50.2 ± 0.5) GHz and the measured cavity length at
11Similar to the optomechanical coupling also the finesse varies depending on the intra-cavity position

of the resonator in the MiM system.
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room temperature L = (21.6 ± 0.1) µm. The maximal optomechanical damping rate
extracted from this measurement is Γopt = 2π · 1.1 mHz which is twenty times lower
than the mechanical linewidth Γm at room temperature (see table 2.1).
As our system operates in the unresolved sideband regime (κ ≫ ωm) equations (2.49)
and (2.50) can be simplified to

δωm ≈ n̄cavg2
0

2∆
∆2 + κ2

4

Γopt ≈ −n̄cavg2
0

4κωm∆(
κ2

4 + ∆2
)2 .

(2.52)

In the limit of small detunings (∆ ≪ κ), which is valid in our experiments these
equations further simplify to

δωm ≈ n̄cavg2
0

8∆
κ2

Γopt ≈ −n̄cavg2
0

64ωm∆
κ3

(2.53)

and can be used to obtain the ratio

Γopt
δωm

= −8ωm
κ

. (2.54)

For a red-detuned laser drive ∆ < 0 we observe a frequency shift δωm < 0 and an
increased damping of the resonator by Γopt > 0, which results in a reduced resonator
mode temperature

Tmode,opt = Tbath
Γm

Γm + Γopt
. (2.55)

Here, Tbath denotes the effective bath temperature. For kBT ≫ ℏωm the phonon occu-
pation of the resonator mode is described by

n̄ = kBTmode
ℏωm

. (2.56)

In cryogenic environment the optomechanical damping rate Γopt can easily exceed the
mechanical damping rate Γm, which makes it necessary to operate the cavity always
on the cooling side of the resonance (∆ < 0) as otherwise the negative optomechanical
damping rate can destabilize the system and drive the resonator into limit cycle oscil-
lations.

Active cavity length stabilization

As one can see in figure 2.15 the resonator frequency change δωm is centrally sym-
metric around the cavity resonance, which is a useful tool to adjust the laser-cavity
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detuning around ∆ = 0. In practice, we work at a fixed wavelength12 and adjust the
cavity length to tune the MiM system on resonance. The optical spring effect, which is
inherent in our system, translates even the smallest cavity length changes to a shift of
the mechanical resonance frequency δωm. Around the cavity resonance this spring shift
has an approximately linear dependence on the cavity length change ∆L of 26 kHz/nm
per milliwatt pump power and therefore can be exploited as an error signal to stabilize
the length of the cavity. Since our MiM system operates far in the sideband unresolved
regime (κ ≫ ωm) the intra-cavity field (and correspondingly, the radiation pressure
induced optical spring) follows the detuning adiabatically on all time scales relevant
for the locking scheme. The functional principle and main characteristics of the optical
spring effect based, optomechanical locking scheme are described in the following and
were published in [132].

We employ an active feedback loop to stabilize the cavity length by using one of the
cavity mirror piezos (see figure 2.11) as the feedback actuator. The piezo stroke gen-
erated by applying a control voltage Vc leads to a cavity length change, which in turn
causes the resonator mode to experience a detuning-induced frequency shift δωm(Vc)
through the optical spring (see equation (2.49) and figure 2.15). Thus, the whole MiM
system can be regarded as a voltage-controlled resonator (VCR). In the control loop
(figure 2.16) the VCR is utilized to stabilize the resonator frequency ωm, and hence the
cavity detuning, to a digital local oscillator of frequency ωset by use of a phase-locked
loop (PLL). To obtain the resonator frequency its motion is continuously measured on a
balanced homodyne detector (part of the VCR element in figure 2.16) and analyzed by
a lock-in amplifier13. The detector signal is bandpass filtered14 and dual-demodulated
to access the amplitude and phase of the mechanical motion and thus the VCR. The
latter is compared in the PLL to the phase of the set demodulator at frequency ωset,
which represents the setpoint of the lock. By adjusting the bandwidth of the demodu-
lator to Bd = 10 kHz, which is much larger than the locking bandwidth, we ensure that
the gain and phase response of the detector are not limited by the demodulator. The
demodulator phase output ϕerr is fed as a voltage, scaled by 10 mV/deg, to a propor-
tional integral differential (PID) controller. Here, the output from the phase detector
ϕerr is compared to the set phase ϕset = 0 and the output voltage Vc from the PID
is lowpass filtered (bandwidth 5 kHz) to avoid unwanted excitations of the resonator
before being applied to the MiM cavity piezo.

To characterize the performance of the control loop the response of the system to
an external perturbation was investigated. By recording the gains and phases of all
elements in the control loop using a network analyzer (NA) the so-called open loop
response

G0 = Gdet · GPID · Glp · GVCR · Gbp (2.57)

12For most experiments (e.g. coupling of the optomechanical to the atomic system) the wavelength
is chosen to provide a certain detuning with respect to the atoms.

13HF2LI from Zurich Instruments with 50 MHz bandwidth - all operations regarding the optical
spring lock e.g. demodulation, PID control, loop analysis, etc. are performed with this device.

142994-150-BNC from KR Electronics, center frequency fm = 150 kHz, 3 dB width of 50 kHz.



38 The atom-optomechanical hybrid system

phase detector optomechanical system

LO LP

BP

PID control

VCR

phase-locked loop

Figure 2.16: Sketch of the phase locked loop. Figure adapted from [132].

is obtained, which can be expressed as the product of the individual open loop transfer
functions of all involved elements. Gdet denotes the transfer function of the phase de-
tector, GPID of the PID controller, GVCR of the optomechanical cavity and Glp (Gbp)
of the passive lowpass (bandpass) filter, respectively. From the individual transfer func-
tions Gi(f) the frequency dependent gains |Gi(f)| and phase delays arg[Gi(f)] of the
corresponding loop elements can be determined. With the knowledge of the open loop
response G0, the closed loop response

Gcl(f) = Vc(f)
Vmod(f) = G0(f)

1 + G0(f) (2.58)

can be derived that characterizes the response of the whole system. For that we gen-
erate a phase modulation by applying a modulation voltage Vmod to one cavity piezo
and measure the controller output voltage Vc.

A sketch of the measurement setup is presented in figure 2.17. The MiM system is stabi-
lized at a red detuning ∆ < 0, by locking the resonator frequency to ωm = 2π ·154.2 kHz
using the spring-control PLL. While the lock is active, the stabilized cavity length is
perturbed by the modulation voltage Vmod applied by the NA to the other cavity piezo,
which is not part of the control loop. The output control voltage Vc of the loop is picked
off and connected as an input to the NA. The measured open loop transfer functions of
the individual loop elements Gi and the resulting closed loop response Gcl are depicted
in figure 2.18. Since the optomechanical VCR has a bandwidth BVCR ≫ 10 kHz it can
be regarded as a constant prefactor GVCR ∈ R and is therefore used as the only free
fit parameter in the loop analysis. By multiplying all measured gains |Gi| and adding
the measured phases arg(Gi) one arrives at the full open-loop gain G0. The measured
closed-loop gain |Gcl| and phase arg(Gcl) match the expected characteristics, calculated

in out

network
analyzer

PLL gain
LO

Figure 2.17: Sketch of the loop analysis measurement setup. Figure adapted from [132].
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Figure 2.18: Loop response analysis.
Direct measurement of the closed-loop re-
sponse Gcl and indirect measurement of the
open-loop response G0 through measure-
ment of the individual transfer functions Gi
of the PLL elements. Top panel shows the
gain |G| and bottom panel shows the phase
arg(G) of the measured Gcl (blue circles) and
the predicted response (red solid line) cal-
culated by equation (2.58) using the mea-
sured G0 (green solid line). G0 is derived
from separate response measurements of the
phase detector Gdet, the PID controller GPID
and the passive lowpass (bandpass) filter Glp
(Gbp). GVCR ∈ R is the only free parameter
in G0 to fit Gcl. The unity gain frequency
f0 = 370 Hz (logarithmic zero-crossing at
|G0| = 1) and fπ = 910 Hz for positive feed-
back [arg(G0) = −180◦] are indicated by ver-
tical lines. Figure adapted from [132].

using G0 in equation (2.58), very well. We define the locking bandwidth of the spring
control through the unity gain bandwidth (zero-crossing of the logarithmic scale) of the
open loop transfer function |G0| = 1, which corresponds to a frequency of f0 = 370 Hz.
The lock is stable with a phase margin of arg[G0(f0)] + 180◦ = 51◦ that is defined
by the frequency difference of f0 to the point fπ = 910 Hz where the open-loop phase
becomes arg(G0) = −180◦. In consequence, this point allows to read of the gain margin
−|G(fπ)| = 8.8 dB of the lock, which indicates a good stability.

This locking scheme can be implemented in a variety of optomechanical systems, oper-
ating in the unresolved sideband regime, where the optical spring produces an asym-
metric, dispersive feature around the cavity resonance. For the lock any mechanical
mode, whose Q-factor and optomechanical coupling are sufficiently large, can be used.
Strictly speaking, the linewidth Γm of the used resonator mode has to be narrow, com-
pared to the width of the dispersive feature δωmax

m −δωmin
m , to allow for a reliable cavity

length discriminating measurement. However, the shape of the error signal δωm(∆) is
governed by the linewidth of the cavity κ and the mechanical frequency ωm only (see
equation (2.49)) and can not be tuned in general.

For our experimental setup, this locking scheme is superior to other locking schemes,
as it does not require additional modulation of neither the used light15, nor the cavity
and it allows to stabilize the cavity on - or close to - resonance. Especially the latter is
strictly required in order to perform coupling experiments between cold atoms and a
mechanical resonator.

15Pound-Drever-Hall locking is unfavourable in our case, as the magnitude of the error signal scales
with Ωmod/κ. Since our cavity linewidth exceeds technically feasible modulation frequencies Ωmod by
far, the achievable signal to noise ratio is inapplicable for locking.
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2.4 Preparation and measurement of atomic spin states

An alternative way of realizing a hybrid atom-mechanical system is to address the
coupling of the resonator motion to internal atomic states instead of their center of
mass motion. This approach is no longer limited by trapping frequencies in the sub-
MHz range that are realizable in optical lattices in order to establish resonant coupling.
Thus, it benefits from much higher employable resonator frequencies in the MHz or GHz
range, depending on the choice of internal states i.e. Zeeman or hyperfine states. With
increasing mechanical resonance frequency the thermal phonon occupation at a given
bath temperature is reduced, which results in a decreased thermal decoherence rate and
relaxes the requirements for the coupling strength to reach the strong coupling regime.
Moreover, high frequency resonators are less susceptible to other decoherence sources
like vibrational and laser noise.
The proposed schemes for long-distance coupling [42, 48] make use of the Faraday
effect [133] that causes a polarization rotation of the light that traverses the atomic
sample. This change in polarization can be utilized to transform spin oscillations, for
example originating from Larmor precession of the atomic total angular momentum,
into intensity modulations that enable radiation pressure coupling to the resonator. In
this scenario the spin oscillation frequency can be easily tuned into resonance with the
mechanical oscillation by variation of the magnetic field that provides the quantisation
axis.
In order to enable internal state coupling in our hybrid system the preparation of the
atomic sample in different mF states of the F = 2 manifold via radio frequency driven
Rabi oscillations was implemented by C. Schellong [134]. During the course of this
thesis the feasibility of the readout of these states via Faraday rotation was investigated
together with J. Hahne [135].

2.4.1 mF - state preparation

In order to achieve a clean and reproducible initialization of the atoms in one highly
polarized spin state a stable magnetic offset field B0 that defines the quantization axis
is needed. Furthermore, a thorough compensation of magnetic stray fields as well as
the earth’s magnetic field is mandatory. We use three pairs of compensation coils (see
figure 2.21 and refer to [96] for details) to neutralize the stray fields in each spatial
direction and employ the atoms as highly sensitive magnetic field sensors for the ad-
justment of the needed compensation currents16. A prerequisite for this procedure is a
working BEC machine with condensates produced in an optical dipole trap, whose spin
composition is analysed by Stern-Gerlach separation (SGS). A detailed description of
the procedure can be found in [134].
The spin state preparation begins in the magnetic trap phase of the experimental cycle.
In the MOT and molasses phases the atoms occupy all mF states of the F = 2 manifold.
However, in the magnetic trap only atoms with mF = +1, +2 can be trapped. After
rf-evaporation in the magnetic trap we obtain a spin polarized BEC in the stretched

16The residual magnetic stray fields after the compensation procedure were measured to be smaller
than Bres = 3 mG. The compensation has to be checked daily when working with spin states, since the
magnetic stray fields in the lab can change over time due to experiments with strong magnetic fields
(>1 T) in the neighbouring laboratories.
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state |F = 2, mF = +2⟩. An offset field generated by the Helmholtz coils, previously
used for the MOT fields, provides a non-vanishing magnetic field at the trap center to
minimize Majorana spin-flips and serves as the quantization field. The field is oriented
along the z-axis in axial direction of the MOT coils and is parallel to the co-propagating
dipole trap (DT1) and coupling lattice beams. We use one of the MOT coils to produce
a gradient field for the SGS during time-of-flight at the end of the experiment cycle.
Therefore, we ramp up another homogeneous offset field along the axial direction using
one layer of the compensation coils to maintain the quantization axis before the mag-
netic trap is switched off and the atoms are transferred to the optical dipole trap.
For the preparation of distinct mF-state distributions rf-pulses can be used to drive
Rabi oscillations between the mF states (see figure 2.24) and rf-sweeps can be applied
to address specific mF levels. If the offset field B0 is small the Zeeman splitting of
hyperfine levels is linear and all transitions between adjacent mF levels are equidis-
tant. By applying a π-pulse17 with an rf-frequency that matches the level splitting
caused by the offset field the population of the initial mF state distribution can be
inverted. In our case this leads to the stretched state |2, −2⟩. For larger offset fields the
quadratic Zeeman effect lifts the degeneracy of the energy spacing and leads to avoided
crossings of the energy levels. This enables to selectively address transitions between
specific mF-levels by tuning the rf-frequency. Using rf-sweeps the population can be
adiabatically transferred to any mF-state enabling access also to fully spin polarized
but non-stretched states, e.g. |2, +2⟩ → |2, −1⟩ [136].

2.4.2 Spin state detection in a BEC via Faraday rotation

In this section we study interaction of a single, free propagating light beam with a spin
polarized BEC that is held in an optical dipole trap. The atoms are prepared in the
|2, +2⟩ state as described in the previous section and are illuminated with a light pulse
of duration τ detuned by ∆2,3 from the F = 2 → F′ = 3 transition of the D2 line.
The probe beam is traveling along the orientation of the bias field B0 in z-direction
(see figure 2.19) and is polarized in the horizontal plane along x. In this configuration
dispersive measurements of the atomic spin polarization can be performed.

The polarization state of the probe field can be described by the Stokes operators [137]:

Ŝ0 = 1
2
(
â†+â+ + â†−â−

)
, Ŝ1 = 1

2
(
â†−â+ + â†+â−

)
,

Ŝ2 = i

2
(
â†−â+ − â†+â−

)
, Ŝ3 = 1

2
(
â†+â+ − â†−â−

)
.

(2.59)

where â†±(â±) are the creation (annihilation) operators of the σ± modes of the field18

and Ŝ0 denotes the total intensity of the field. Ŝ1 can be understood as the imbal-
ance between horizontal and vertical polarization, Ŝ2 as the imbalance between ±45◦

17The spin state vector is rotated by π to the adjacent side of the Bloch sphere. The pulse duration
depends on the applied rf-power.

18since the linear polarization of the probe field can be expressed as a superposition of two equally
strong circular polarized fields, see figure 2.19
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Figure 2.19: Faraday interac-
tion scheme. The atomic sam-
ple is irradiated with a linearly po-
larized beam from the right and
causes forward scattering of the
Faraday-rotated light. The linear
polarization can be decomposed to
equal parts in circularly polarized
light σ± whose interaction strength
(indicated by the color brightness
of the transitions) with the atomic
cloud depends on the mF-state of
the atoms. The σ+ transitions for
the |2, +2⟩ state is enhanced by a
factor of 15 over the σ− transition
[98].

F

F

F

polarization and Ŝ3 as the imbalance between σ+ and σ− [127]. Furthermore, the
Stokes operators Ŝi, i = 1, 2, 3 fulfill the angular momentum commutation relation
[Ŝi, Ŝj] = iℏϵijkŜk and thus are a convenient choice computationally as well as concep-
tually, since their dynamics can be understood as rotations on the Poincaré sphere (see
figure 2.20).

The atom-light interaction is determined by the dynamics of the magnetic sublevels in
the electronic ground-state manifold that couple to the polarization modes of the field.
The dynamics in turn, affect the field through the spin-dependent refractive index of
the atoms and change the atomic state through the polarization-dependent light-shift
[138]. The interaction Hamiltonian can be expressed as

ĤI = −
∑
F,F ′

Ê(−) · α̂F,F ′ · Ê(+)
, (2.60)

where Ê(+) (Ê(−)) is the rotating (counter-rotating) term of the probe electric field
operator and α̂F,F ′ is the atomic polarizability between the hyperfine ground and ex-
cited states F and F ′, respectively. Since the atomic polarizability is a rank-2 spherical
tensor operator it can be decomposed into three irreducible components [139]

α̂F,F ′ = α̂
(0)
F,F ′ ⊕ α̂

(1)
F,F ′ ⊕ α̂

(2)
F,F ′ . (2.61)

Following [138, 140] the Hamiltonian can be written as

ĤI = Ŝ0Â0 + Ŝ1Â1 + Ŝ2Â2 + Ŝ3Â3 (2.62)

with the operators Âk representing the atomic observables

Â0 = g

(
2
3α(0)ÎF + α(2)

(
Nat∑

i
f̂ (i)

z − 1
3F (F + 1)ÎF

))
, (2.63)
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Â1 = gα(2)
Nat∑

i

(
f̂ (i)

x f̂ (i)
x − f̂ (i)

y f̂ (i)
y

)
, (2.64)

Â2 = gα(2)
Nat∑

i

(
f̂ (i)

x f̂ (i)
y + f̂ (i)

y f̂ (i)
x

)
, (2.65)

Â3 = gα(1)
Nat∑

i
f̂ (i)

z . (2.66)

Here, α(0) denotes the scalar, α(1) the vector and α(2) the tensor component of the
polarizability [139, 141], ÎF is the identity operator on a space of dimension 2F + 1 and
g = ωL/(2ϵ0V ) is a constant that contains the interaction volume V . Finally, the sums
over f̂

(i)
k cover the per atom contributions to the total atomic angular momentum F̂k.

The contributions of the individual terms in the scattering Hamiltonian from equa-
tion (2.62) can be interpreted as follows: The rank-0 term causes an atomic-state-
independent light shift, which affects both circular polarization modes of the probe field
in the same way and therefore will not influence our measurement process. It would be
important if we intended to distinguish populations across different hyperfine states in-
stead of sublevel populations within one hyperfine state, hence we can neglect it in the
following. The other terms lead to a rotation of the Stokes vector on the Poincaré sphere
(figure 2.20) about an axis and angle that depends on the moments of the atomic spin
distribution. The rank-1 vector contribution causes a differential phase shift of the cir-
cular polarization modes that leads to a rotation around S3, which precesses the Stokes
vector Sin in the equatorial plane by an amount proportional to the magnetization along
the probe propagation direction F̂z ≡

∑Nat
i f̂

(i)
z . This is the origin of the Faraday effect

that we want to exploit for the spin state detection. The rank-2 tensor contribution
leads to rotations around S1 or S2 and couples spin coordinates to elliptical compo-
nents of the probe field - a signature of birefringence. It can be used to measure the
observables F̂ 2

x − F̂ 2
y ≡

∑Nat
i f̂

(i)
x f̂

(i)
x − f̂

(i)
y f̂

(i)
y and F̂xF̂y + F̂yF̂x ≡

∑Nat
i f̂

(i)
x f̂

(i)
y + f̂

(i)
y f̂

(i)
x

and produces a second-order light shift proportional to the atomic quadrupole moment.

The final form of the interaction Hamiltonian is

ĤI = ℏ
τ

G1Ŝ3F̂z + ℏ
τ

G2
[
Ŝ1
(
F̂ 2

x − F̂ 2
y

)
+ Ŝ2

(
F̂xF̂y + F̂yF̂x

)]
(2.67)

with the atom-light coupling constants G1 and G2 proportional to α(1) and α(2) , respec-
tively. They can be viewed as the per-atom rotation of the incoming light polarization
and for atoms in F = 2 on the D2 line amount to (see appendix A.1)

G1 = Γλ2

160πA
(3D2,1 + 5D2,2 − 28D2,3) , (2.68)

G2 = Γλ2

160πA
(−D2,1 + 5D2,2 − 4D2,3) , (2.69)
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with DF,F ′ = ∆F,F ′

∆2
F,F ′ + Γ2/4 . (2.70)

Here, Γ and λ denote the linewidth and wavelength of the D2 tansition and A = πR2
at

is the effective interaction area19. In the experiment we choose a detuning ∆2,3/2π =
5 GHz that is much larger than the excited state hyperfine splitting. Since ∆F,F ′ ≫ Γ
we can assume DF,F ′ ≈ 1/∆F,F ′ and with ∆2,3 ≫ ∆F,F ′ for all F ′ we can set ∆2,1 ≈
∆2,2 ≈ ∆2,3 ≡ ∆eff which leads to

G1 = − 1
8π

Γλ2

A∆eff
, and G2 = 0. (2.71)

This is a remarkable result and tells us that for sufficiently large detunings (no matter
if red or blue) the rank-2 component of the polarizability can be neglected. This is a
consequence of the symmetry of the polarizability tensor and has nothing to do with
the explicit dependence of the detuning of all three of its components (all scale in the
same way with 1/∆). By carefully adjusting the detuning the contributions of the po-
larizability tensor to the interaction can be tuned to engineer a Hamiltonian that can
be used for different quantum-information applications [139].

In our case the Hamiltonian reduces to

ĤI = ℏ
G1
τ

Ŝ3F̂z (2.72)

and the evolution of the vector operators Ŝ and F̂ can be determined from the Heisen-
berg equation of motion [142]

∂F̂i
∂t

= 1
iℏ

[
F̂i, ĤI

]
, (2.73)

with the angular momentum commutation relation
[
F̂i, F̂j

]
= iℏϵijkF̂k. By inserting

equation (2.72) into the commutator in (2.73) we obtain

∂F̂x

∂t
= −ℏ

τ
G1Ŝ3F̂y,

∂Ŝ1
∂t

= −ℏ
τ

G1Ŝ2F̂z

∂F̂y

∂t
= ℏ

τ
G1Ŝ3F̂x, and ∂Ŝ2

∂t
= ℏ

τ
G1Ŝ1F̂z,

∂F̂z

∂t
= 0,

∂Ŝ3
∂t

= 0.

(2.74)

With these equations we can formulate input/output relations for the components of
Ŝ and F̂ up to first order after the interaction time τ . With the atomic spin pointing

19Conventionally, the interaction area is chosen to be the probe beam cross section. However, since
the BEC is much smaller than the beam in our case Rat ≪ wlat the cross section of the BEC is chosen
in the following as the effective interaction area
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along the z-direction and the probe polarization along the 1-direction we get

Ŝ
(out)
2 = Ŝ

(in)
2 + ℏG1Ŝ1F̂z,

F̂ (out)
z = F̂ (in)

z

(2.75)

where Ŝ1 is rotated onto Ŝ2 by an amount that is proportional to F̂z. This is depicted
on the Poincaré sphere in figure 2.20 by the angle φ3, which is twice as large as the
Faraday angle that is measured in the laboratory frame [137]

θF = |G1|Nat
2 = 1

16π

Γλ2Nat
πR2

at∆eff
(2.76)

that we expect to measure in our system. From the number of atoms Nat = 7 · 104 in
our optical dipole trap and its trapping frequencies ωi (see section 2.1) we can calculate
the radii of the BEC using the Thomas-Fermi approximation [143]

Ri =
√

2µ

mRbω2
i

, i = x, y, z (2.77)

where µ is the chemical potential given by

µ = ℏω̄

2

(15Nata

aHO

) 2
5

(2.78)

with the scattering length a, ω̄ = (ωxωyωz)1/3 and aHO =
√
ℏ/(mRbω̄). In the plane

perpendicular to the probe beam direction we arrive at a BEC radius of Rat = 3.7 µm
which yields a maximal expected rotation angle of θF = 24 mrad = 1.37◦.
Another measure for the strength of the atom-light interaction is the on-resonance
optical depth [137]

d0 = σ0Nat
A

= 2σ0θF
AG1

(2.79)

Figure 2.20: Transformation of the Stokes
vector on the Poincaré sphere. For an ini-
tially linearly polarized beam Sin along S1, a
rotation on the sphere around S3 by an angle
φ3 ∝ ⟨F̂z⟩ corresponds to a rotation of the po-
larization vector proportional to the atomic mag-
netization (the Faraday effect). A rotation around
S2 by an angle φ2 ∝ ⟨F̂xF̂y + F̂yF̂x⟩ corresponds
to a change in the ellipticity of the light (bire-
fringence). These polarization changes can be de-
tected as a difference in intensities of an appro-
priately configured polarimeter.
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with the on-resonance scattering cross section σ0 = λ2/π for π-polarized light. Here,
equation (2.76) was used to arrive at an expression that can be used to determine d0
from the Faraday rotation measurement. For the expected rotation angle this yields
d0 = 315.4.

Experimental realization of the spin state detection

Since we want to find out how well the atomic spin state can be read out via Faraday
rotation in our current setup we use the coupling lattice beam as a probe beam, but
insert an additional mirror in the beam path before the beam reaches the cryostat. It
is already aligned with the dipole trap and can therefore be used almost right away.
We had to take some additional precautions to make sure that absolutely no residual
light is leaking through the coupling beam fiber when no probe pulse is applied. Due
to a temporal jitter of the coupling beam shutter of τon/off = 5 ms we observed severe
atom loss in the BEC due to photon scattering before and after the application of a
probe pulse. Details can be found in [135].
A sketch of the used setup is shown in figure 2.21. The coupling beam is collimated
again before its polarization is rotated by 45◦ using a λ/2 plate for the analysis in
a polarimeter that consists of a PBS and a balanced photodetector. Note, that the
maximum sensitivity is achieved, when the polarimeter analyses the output along a
direction perpendicular to the input. For the measurement of Faraday rotation the
analyser needs to be oriented along the linear diagonal directions (±45◦), whereas the
usage of circularly polarized light for the analyses would perform a measurement of the
second order atomic moment due to birefringence in the sample.

DT1
beam

DM

glass cell
with

compensation
coils

BEC

coupling lattice
telescope

45°

PBS

/2 waveplate

/4 waveplate

differential
photo detector

S1
10/90

B0

Figure 2.21: Experimental setup for the detection of Faraday rotation. The coupling
beam is employed for the Faraday detection. Initially, it is p-polarized along the y-axis and after
the interaction with the BEC it has acquired an s-polarized contribution. The beam is picked
up with a mirror before it reaches the cryostat and is collimated and refocused on the photo
detectors using two lenses. A λ/4 plate is used to compensate any unwanted ellipticity of the
polarization and the subsequent λ/2 plate is used rotate the polarization by 45◦ to balance the
signal on the differential detector (PDB210A from Thorlabs - DC to 1 MHz, CMRR > 40 dB).
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Figure 2.22: Calibration of the bal-
anced detector. The signal produced by
the balance detector for a known polariza-
tion modulation, applied with an EOM is
recorded for different beam powers in front
of the detector. The x-axis shows the an-
gle by which the polarzation is rotated away
from the 45◦ basis. Blue solid lines denote
the detector signal and red solid lines are
linear fits to extract the steepness of the
slope.

Balanced detector calibration: In order to calibrate our polarimeter we place an
EOM in the beam path of the probe beam to produce a well defined polarization
rotation. The EOM is supplied with a triangular scan voltage and the resulting po-
larization modulation is measured on the balanced detector in the 45◦ basis. The
intensity at the ports of the detector is described by Malus law and is given by
Itrans = I0 cos(ϕ)2 and Irefl = I0(1 − cos(ϕ)2), respectively. Therefore, the detector
signal yields SBD = Itrans − Iref = I0(2 cos(ϕ)2 − 1) = I0 cos(2ϕ), which allows us to
assess a rotation angle of 90◦ between maximum and minimum intensity of the signal.
Figure 2.22 shows the detector signal for different probe beam powers in front of the
detector. Since the steepness of the slope increases linearly with the probe beam power
we arrive at the calibration factor K = 0.0054 V/(µW ◦).

Measurement of the BEC induced Faraday angle

As described earlier the atoms in the BEC are prepared in the |2, +2⟩ state in the optical
dipole trap. To measure the Faraday angle θF we apply probe pulses of τ = 300 µs
duration while the BEC is held in the dipole trap. In order to vary the atom number
in the BEC we apply the probe pulses after a varying hold time in the dipole trap.
Figure 2.23 shows the reduction of the total atom number in the BEC with increasing
hold time in the DT (left panel), the Faraday angle as a function of time for exemplary
atom numbers (central panel) and the Faraday angle per atom number in the BEC
(right panel). In the central panel we can see that the Faraday angle decreases over
the duration of the probe pulse. This can be attributed to atom loss due to photon
scattering induced by the probe light. For the used parameters we can calculate the
scattering rate according to [98, 144]

γsc = Γ
2

2Ω2
π

Γ2 + 4∆2
2,3 + 2Ω2

π

= 2870 Hz (2.80)

where Ωπ = 2
√

2/3Ω̃jj′
√

ΦL is the Rabi frequency for a laser beam with linear polar-
ization and photon flux ΦL

20. This results on average in 0.86 scattering events per
20Ω̃jj′ = djj′ E0/ℏ is the vacuum coupling strength, djj′ the reduced atomic dipole moment and

E0 =
√

ℏωL/(2ϵ0cAp) the vacuum electric field density with cross-sectional area Ap of the probe beam
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Figure 2.23: Characterization of the Faraday angle as a function of the atom
number. Left panel: Atom number of the BEC in the optical dipole trap as a function of the
hold time in the trap. Central panel: Measured Faraday angle θF for selected atom numbers
in the ODT as a function of time. The atoms are prepared in the |2, +2⟩ state and probed with
a light pulse of 300 µs duration, Pprobe = 141 µW power and a detuning ∆2,3/2π = 5 GHz. θF
is extracted from the amplitude of the signal in the first 20 µs (red shaded area). Right panel:
Extracted Faraday angle (blue circles) as a function of the atom number in the BEC together
with linear fit (red).

atom over the duration of the probe pulse.

The maximum Faraday rotation angle is extracted by averaging over the first 20 µs of
the time traces. As expected θF increases linearly with the number of atoms but the
measured rotation angle θF,max = (0.059 ± 0.005)◦ is a factor of 21 smaller than calcu-
lated from equation (2.76). The same holds for the optical depth, which is calculated
from equation (2.79) using the measured angle d0,max = 15.1.

The most probable reason for that is the mode mismatch between the atomic sample
and the probe beam mode (as indicated in figure 2.19). If an off-resonant laser beam is
used to irradiate a large ensemble of atoms the scattered light interferes constructively
in the forward direction of the incoming beam [145]. However, the efficiency of this
process is determined by the geometry of the target and is maximized if the scattered
light is well characterized by a single mode that overlaps with the input field. This
overlap can be estimated by the Fresnel number

F = πR2
at

λLat
≈ 1.7 (2.81)

that compares the “atomic Rayleigh length” πR2
at/λ to the length of the atomic en-

semble Lat = 33.2 µm and describes, whether the scattered light can be attributed to
a single paraxial mode. For F ≈ 1 the single mode assumption is justified, but if F ≫ 1
for a wide sample, the emission can occur into a large number of modes, or if F ≪ 1
in the case of a very long sample, the light strongly diverges due to diffraction. For
our BEC the single mode assumption is still applicable, yet it only accounts for the
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geometry of the atomic ensemble. Additionally, the optical mode of the probe beam
has to be matched to the scattered mode which in dipole trapped ensembles is ap-
proximately fulfilled if the waist of the probe beam matches the waist of the atomic
ensemble [146, 147]. In our setup the probe beam waist is wlat ≈ 20Rat and therefore a
deterioration in efficiency is expected.

Detection of Rabi oscillations via Faraday rotation

To demonstrate that the atomic spin state evolution can be observed in real-time using
Faraday rotation we apply an rf-pulse simultaneously to the probe pulse to drive Rabi
oscillations between the atomic mF states. The rf-frequency is chosen to match the en-
ergy difference between the mF states, which is determined by the applied bias field B0.

The Rabi oscillations can be made visible in two ways: Either a destructive spin state
measurement is performed, where the atoms are first prepared in a certain spin state,
or mixture of spin states (depending on the duration of the rf-pulse), and subsequently

Figure 2.24: Measurement of Rabi oscillations via Faraday rotation vs. TOF. Top
panel: Absorption images of the atomic ensemble after Stern-Gerlach separation during a
time-of-flight measurement. The atoms are prepared in different mF states by application of an
rf-pulse of varying pulse length that leads to Rabi Oscillations between the states mF = +2
and mF = −2. Bottom panel: Comparison of a single-shot Rabi oscillation measurement
via Faraday rotation (blue trace) with a Rabi oscillation measurement by mapping out the
magnetization of the BEC via 80 TOF sequences (circles). The fits yield the Rabi frequencies
ΩR,Fara = (25.281 ± 0.007) kHz and ΩR,TOF = (24.9752 ± 0.0001) kHz. Parameters: fRF =
906 kHz, B0 = 1.32 G, Pprobe = 141 µW, ∆2,3 = 5 GHz. Note that on the time scale of t ≈ 1 ms
the quadratic Zeeman effect is negligible for the applied magnetic field.
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imaged by a standard absorption imaging sequence with an additional magnetic field
gradient applied during the time-of-flight to separate the spin states (see top panel of
figure 2.24). This technique requires a series of absorption images to map out the evo-
lution of the spin state, since each image provides only a snapshot of the instantaneous
spin state. At the same time it allows to determine the purity of the prepared atomic
spin state.

The other way (presented in more detail in [135]) is to use a single light pulse of τ = 1 ms
duration to make the evolution of the spins visible via Faraday rotation. In principle this
method is capable to produce a quantum-non-demolition (QND) measurement of the
atomic ensemble since the interaction entangles the atomic and light observables [137].
An exemplary measurement is presented in figure 2.24 (blue trace in bottom panel)
where the Rabi oscillation can be observed in real-time. The oscillation is damped,
which can be explained by the decrease in signal amplitude due to photon scattering
from the probe beam that was already observed in figure 2.23. Nevertheless, the Rabi
frequency ΩR,Fara = (25.281±0.007) kHz can be extracted from a fit to the trace. It can
be compared to the Rabi frequency determined from the fit of the magnetization of the
sample that is obtained by summing over the relative atom numbers for all spin states
in each TOF image (column in upper panel of figure 2.24). This fit yields a slightly lower
Rabi frequency of ΩR,TOF = (24.9752 ± 0.0001) kHz. The difference between the fitted
Rabi frequencies is caused by the optical Stark effect [148] that leads to a detuning
dependent light-shift of the atomic energy levels induced by the Faraday probe beam.
For increasing detuning ∆2,3 we observe a decrease of ΩR,Fara that approaches ΩR,TOF
asymptotically. At the same time the damping rate of the oscillation Γosc, which can be
extracted from fits to data similar as depicted in figure 2.24, decreases with 1/(∆2,3)2,
which confirms that the signal amplitude decreases due to photon scattering (see figure
2.25).

Figure 2.25: Rabi Oscillations via Faraday rotation for varying detuning. Left panel:
Faraday signal of the spin state evolution for different probe beam detunings ∆2,3 between
1.5 GHz and 5 GHz at constant probe beam power Pprobe = 141 µW. For each detuning a fit (red
lines) is used to extract the Rabi frequency ΩR,Fara and the damping rate Γosc. Right panel:
Extracted Rabi frequencies ΩR,Fara (circles) with fit (red) and damping rates Γosc (triangles)
with fit (blue) as a function of the probe beam detuning ∆2,3. The dotted line denotes ΩR,TOF.
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Larmor precession measurement

For an application in the sense of coupling to a mechanical resonator higher spin pre-
cession frequencies and much likely a larger signal amplitude are required. As for the
frequency, the Larmor precession of the atomic spins can be utilized. Its frequency is
dependent on the strength of the magnetic offset field, which defines the quantization
axis:

fL = gF
e

4πme
B0 (2.82)

with the Landé-factor gF = 1/2 (for F = 2 in 87Rb), as well as the charge e and the
mass me of an electron. The offset field has to be adiabatically rotated into an axis
perpendicular to the propagation axis of the light, such that the offset field lies in the
oscillation plane of the probe beam’s B-field component. Regarding the signal strength
it turned out that a BEC is not the best choice. Although it has a much higher atomic
density than for example atoms in a vapour cell, or confined in an optical dipole trap,
it contributes with a considerably lower atom number to the overall signal. Since we
could not observe any Larmor precession on our BEC sample we tested the Faraday
measurement scheme on an ensemble of ultracold atoms released from the magnetic
trap [135].
The atoms are prepared in the magnetic trap as described in section 2.1, except that
the rf-evaporation is stopped before a BEC is produced. We obtain a thermal cloud of
Nat ≈ 1.1 · 106 atoms that we release from the magnetic trap. After 1 ms of free fall the
probe pulse is applied to make sure that the atoms are still in the interaction region of
the beam.

This measurement should rather be regarded as a proof-of-principle attempt since there
are a few uncertainties in the measurement procedure. The offset field needs to be
oriented along the y-axis of the experimental setup to observe Larmor precession. Since
the magnetic fields in the MT are much larger than the offset field we have to switch
the MT off to allow for observation. Moreover, we probe the atoms very shortly after
release from the magnetic trap such that we can not rotate the offset field adiabatically
into the y-direction, but have to switch it on already before we release the atoms from

Figure 2.26: Larmor precession mea-
surement. Exemplary trace of the Larmor
precession measured in an ensemble released
from the magnetic trap. Inserts show a zoom
into the area between the dotted lines and
the dependence of the Larmor frequency
fLarmor on the offset field B0,y in y-direction.
The frequencies were extracted by Fourier
analysis of traces similar to the depicted one,
for different settings of B0,y. For the plotted
trace fL = 0.351 MHz. Parameters: Pprobe =
100 µW, ∆2,3 = 5 GHz, B0,y = 385 mG.
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the trap. It is likely that this influences the atomic spin states in an unpredictable way.
Nevertheless, we were able to detect the Larmor precession with this approach and the
results are summarized in figure 2.26. Due to the increased atom number we observe
much larger rotation angles with Larmor frequencies up to fL = 0.75 MHz. These
were only limited by the available current source that produces the offset field B0,y at
the time of the measurement21. As expected the Larmor frequency increases linearly
with the applied offset field. The deviation of the data points for B0,y < 400 mG from
the linear fit can be explained by residual magnetic field components in other spatial
directions that were not well compensated. From the measured angle θF,max = 1.49◦
we can calculate an optical depth of d0,max = 381. Subsequent experiments should be
performed in a far detuned, large volume optical dipole trap, which would allow for
much better control over magnetic fields and longer interaction times.

Conclusion

In the previous sections the feasibility to detect the atomic spin states via a polarization
measurement based on the Faraday effect was demonstrated. The presented method is
capable of detecting polarization rotations by angles as small as θF = 0.01◦ even in
samples much smaller than the probe beam and to resolve Rabi oscillations and Lar-
mor precession in real-time. However, for further application we note that the signal
strength, characterized by the optical density d0 that we obtain from a BEC, is likely
too small to be useful for coupling experiments that involve a mechanical resonator.
Larger signals can be obtained using samples with a higher atom number. A common
approach is to employ cold atoms confined in an elongated dipole trap and to probe
the sample along its long axis to maximize the number of atoms that contribute to the
signal [127, 137]. This allows at the same time for long hold times and precise control
of the quantization axis, given by an offset magnetic field. Additionally, the interaction
strength can be maximized by matching the mode of the probe beam to the cloud size
of the atomic ensemble.

We were preparing to implement the aforementioned changes in order to achieve stronger
spin-light coupling and planned to utilize the described interaction scheme for coupling
to a mechanical resonator. This also involved the design of a higher frequency mechan-
ical resonator in the MHz range that would be less susceptible to low frequency noise
and would benefit from a lower thermal phonon occupation. The resonator was simu-
lated and designed in COMSOL by C. Friesen based on the findings in [90, 149] and
fabricated by Norcada. It is made from a Si3N4 film that is patterned with a honeycomb
structure of air holes resembling a crystalline structure. In the center of the material a
few holes are displaced from the periodic arrangement and form a defect mode, which
serves as the mechanical resonator. This allows to decouple the resonator from the
acoustic noise of its support structure and lets the resonator mode decay evanescently
into a “soft” clamping region [150]. In contrast to the usual “rigid” clamping the res-
onator experiences reduced noise from the frame modes and radiates less energy into
the substrate, which leads to further increased Q-factors (values of Q > 108 at room
temperature were reported [90]). Since this structure provides a region that can filter

21All traces and the corresponding Fourier transforms can be found in appendix A.2
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Figure 2.27: Mechanical response for our phononic shield resonator. Left panel:
Simulated band diagram for a large number of unit cells. The inset shows one unit cell of the
honeycomb lattice in real space and the corresponding first Brillouin zone in k space. The
wave vector k is swept along the blue line within the Brillouin zone to map out the bands.
The shaded blue region denotes the emerging band gap. Right Panel: Simulated integrated
displacement spectrum of the mechanical mode. The large peak within the band gap at fm =
2.215 MHz denotes the central resonance frequency of the mode. The inset shows the out-of
plane displacement pattern of the mode of interest.

and confine acoustic waves it can be understood as a band gap. Therefore, this kind
of resonator is often referred to as a phononic crystal or phononic shield resonator.
Figure 2.27 shows the simulation data for our device. The blue shaded areas depict
the band gap within which we expect the central resonator mode at a frequency of
fm = 2.215 MHz. To produce a corresponding Larmor frequency we would need to ap-
ply a bias field of B0 = 3 G which is easily done experimentally. We have ordered 8
devices, which we still have to characterize experimentally.

However, shortly after the outbreak of the Corona pandemic a paper on light-mediated
strong coupling of atomic spins to a mechanical resonator was published by T. Karg
et al. [127]. It presented a comprehensive study of the spin-mechanical interaction,
covering normal-mode splitting, coherent energy exchange, thermal noise squeezing
and dissipative coupling in their hybrid atom-mechanical system. Thus, we had to
acknowledge that this group was too far ahead of us and therefore we decided to cease
our internal-state coupling efforts.



Chapter 3

Coupling experiments in a pump
asymmetry compensated lattice

In this chapter the effect of the pump asymmetry on the coupling in the hy-
brid atom-mechanical system is studied by means of a numerical simulation
as well as experimentally. An approach to compensate the asymmetry, suited
to alleviate its undesirable consequences, is presented and the performance
of the compensated coupling lattice is characterized. The utilized scheme
allows to enter a previously inaccessible regime for sympathetic cooling of
mechanical motion, albeit performing different than expected.

Hybrid atom-mechanical systems are a prominent subject of many proposals in funda-
mental research and may open the door to novel quantum technologies. Possible appli-
cations range from ground state cooling of mechanical motion [45–47, 68, 70, 151, 152],
coherent quantum state transfer [43, 127, 144, 153], teleportation and entanglement
[42, 151] to quantum backaction evading measurements of mechanical motion [64].
Moreover, schemes for improved precision force sensing [154] or the engineering of
phase transitions in atomic clouds by coupling atoms to mechanical resonators were
suggested [155–157]. Yet, many of those still remain to be demonstrated.
In our hybrid system consisting of cold 87Rb atoms in an optical lattice and a me-
chanical resonator in a MiM system we want to bring both constituents together after
initializing them in their respective ground states to study their coherent dynamics. For
the mechanical resonator this can be achieved by cryogenic pre-cooling and subsequent
feedback or sympathetic cooling. Both cooling mechanisms are, in principle, capable of
ground state cooling the mechanical resonator even in the bad cavity regime (ωm ≪ κ)
[45, 62, 70] and the latter can be employed to characterize the hybrid coupling mecha-
nism.
One significant challenge in the realization of strong coupling to the center of mass
motion of atoms in an optical lattice, is the occurrence of an instability that arises at
high atomic densities in the hybrid atom-mechanical system [72–74]. Its origin is the
asymmetric pumping in the coupling lattice, which is intrinsic in these systems and
results in disruptive collective atomic motion in the lattice [75, 76]. The instability
leads to excessive heating of the mechanical resonator and ensues predominantly in
near detuned red lattices (see section 3.2).
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On the atomic side, we can routinely produce Bose-Einstein condensates, but coupling
them to the resonator was elusive in the past. To avoid excessive resonator heating at
high atomic densities in a red detuned coupling lattice a blue detuned lattice was used
for the coupling attempt. In this configuration however, the repulsive interaction with
the lattice potential leads to anti-trapping and expells the atoms from the dipole trap.
To counteract this, we utilized an additional (far) red detuned 2D lattice perpendicular
to the coupling lattice, which provided increased confinement and enabled to observe
the signature of atomic excitations to higher lattice bands at the mechanical resonance
frequency [77].
Motivated by the prospect of surpassing the hitherto existing limitations, induced by
asymmetric lattice pumping, we started to elaborate a scheme to compensate the asym-
metry. This chapter describes our approach to realize a balanced coupling lattice that
shall facilitate hybrid coupling in a so far inaccessible regime and might be suited to
enable coupling of a BEC to a mechanical resonator.
Due to technical problems with our cryostat we were not able to run it at its base
temperature of Tbase = 500 mK over an extended period of time and had to warm it
up several times to find the cause of the malfunction. Therefore, the measurements
presented in this chapter were conducted at room temperature and the performance of
the pump asymmetry compensated (PAC) lattice will be gauged against the uncom-
pensated lattice.

3.1 Sympathetic cooling

Commonly, sympathetic cooling is known as a technique applied to microscopic parti-
cles of different species, where energy exchange between the species is mediated through
inter-particle collisions. One species that can be effectively cooled, for example by laser
or evaporative cooling, is used as the coolant for the other, which on its own can not
be further cooled directly. In this way it is possible to cool ions with other ions [158] or
neutral atoms [159], or to produce quantum degenerate Fermi gases of neutral atoms
by cooling fermionic atoms through collisions with bosonic ones [160].
However, the energy can also be transferred indirectly by coupling two systems via a
mediating link. Recently, this has been demonstrated by confining a single proton and
a sample of laser cooled Be+ ions in two spatially separated Penning traps, that were
connected by the particle induced image currents transmitted through a superconduct-
ing LC-circuit [161].
In the realm of optomechanics we can also achieve collectively enhanced, long-range
sympathetic cooling of a macroscopic mechanical resonator by utilizing laser cooled
atoms confined in an optical lattice as the coolant [62, 65]. Interestingly, for the long-
range interaction schemes cooling is possible despite the large mass ratio of ≈ 2 · 106

between the resonator and the atoms22, in contrast to ≲ 100 for the collision mediated
sympathetic cooling schemes. In our case, the efficiency of the cooling effect depends
on the coupling strength between the two subsystems, which can in return be inferred
from sympathetic cooling measurements.

22Here, an effective mass meff = 3 ng of the resonator mode and Nat = 107 Rb atoms are assumed.
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In this section the theoretical principles of sympathetic cooling will be reviewed. Ex-
perimental results will be presented in section 3.5.

3.1.1 Principles of sympathetic cooling

In the following, the mechanical resonator mode and the motion of the atoms inside
the lattice wells will be treated as harmonic oscillators that are coupled by a spring,
which is given by the coupling light field. This hybrid coupling scheme for long-distance
interaction is depicted in figure 3.1 and can be understood as follows [74, 162]. A
displacement xm of the mechanical resonator changes the cavity resonance frequency
ωcav of the MiM cavity (see section 2.3.1 and figure 2.13) and correspondingly the phase
ϕr of the reflected light that creates the optical lattice. The phase shift with respect to
the incoming beam is [24]

ϕr = arctan
(

∆κ

(κ/2)2 − ∆2

)
|∆|≪κ

≃ 0, (3.1)

and accordingly its derivative with respect to the detuning yields

dϕr
d∆ = κ

(κ/2)2 + ∆2

|∆|≪κ
≃ 4

κ
. (3.2)

As described in section 2.3.1 a small resonator displacement xm causes a cavity fre-
quency shift δωcav = −gmxm and thus a phase shift δϕr = −(dϕr/d∆)δωcav = 4gmxm/κ.
Hence, the minima of the optical lattice potential are displaced by δxlat = −δϕr/(2klat) =
−2gmxm/(κklat), which leads to a force

Fat = Nmatδxlatω
2
at = − 2gm

κklat
Nmatxmω2

at = −Kxm, (3.3)

laser cooling

Figure 3.1: Coupling of a MiM system to atomic center of mass motion in an optical
lattice. The mechanical resonator in the MiM system (see section 2.3) is coupled to 87Rb atoms
in an optical lattice of frequency ωlat (see (2.6)), which is created by the reflected light from the
MiM cavity. Due to the resonator motion with frequency ωm the the confining optical potential
for the atoms is periodically shifted. At the same time the atomic center of mass motion inside
the potential modulates the radiation pressure on the resonator with frequency ωat. By means
of laser cooling the atoms, energy is dissipated from the system, which allows to sympathetically
cool the resonator inside the cavity.
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with the spring constant K on the ensemble of N atoms. Conversely, an atom displaced
by xat from the center of a harmonic optical potential experiences a restoring dipole
force Fd = −matxatω

2
at. This force arises from an imbalance of absorption and stimu-

lated emission processes of photons from the counter propagating lattice beams. The
displaced atoms preferably absorb photons from one lattice beam and re-emit them into
the opposite beam. Due to the conservation of momentum each redistribution process
alters the momentum of an atom by 2ℏklat.
Consequently, we find the photon redistribution rate ṅph = NFd/(2ℏklat) that results in
a power modulation δPlat = ṅphℏωlat incident on the MiM cavity. The variation of the
mean intra-cavity photon number δn̄cav ≈ 4βt2δPlat/(κℏωcav) is directly proportional
to the variation of the cavity incident power and can be used to describe the radia-
tion pressure force Frad = ℏgmn̄cav that acts on the mechanical resonator in the MiM
system. With the reduced incoupling efficiency into the MiM system due to imperfect
mode match β and the power transmittance t2 of the optical path between the atoms
and the MiM cavity we arrive at the variation of the radiation pressure force at the
resonator, caused by a displacement of the atoms in the lattice

δFrad = − 2gm
κklat

βt2Nmatxatω
2
cav = −βt2Kxat (3.4)

When comparing equations (3.3) and (3.4) it becomes clear that the force exerted
on the resonator is reduced by the factor βt2 compared to the force , which acts on
the atoms. In our system the incoupling mode match is β > 0.95 [74] and the power
transmittance of the optical path is t2 = 0.63(5) (see appendix B.1). This already
makes the coupling of the atoms to the resonator asymmetric. Additionally, the optical
losses and the finite reflectivity on resonance σcav = 0.53(1) cause a power imbalance of
the counter propagating lattice beams which can lead to collective atomic oscillations
[75, 76] and result in instabilities in the hybrid system [72, 73] as discussed later in
section 3.1.2.

Equations of motion in the hybrid system

With the forces defined in equations (3.3) and (3.4) the coupled equations of motion
for the two subsystems are [70, 162]

Nmatẍat = −ΓatNmatẋat − Nmatxatω
2
at − Kxm (3.5a)

meff ẍm = −Γmmeff ẋm − meffxmω2
m − βt2Kxat + Fth, (3.5b)

with the atomic (and mechanical) damping rate Γat (Γm) and the thermal Langevin
force Fth acting on the resonator (see section 2.2.3). Similar to section 2.2.3 the equa-
tions of motion can be Fourier transformed

x̃at(ω)χ−1
at (ω) = −Kx̃m(ω) (3.6a)

x̃m(ω)χ−1
m (ω) = F̃th − βt2Kx̃at(ω) (3.6b)
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and are expressed through the susceptibilities

χ−1
at (ω) = Nmat

(
ω2

at − ω2 − iωΓat
)

≈ 2Nmatωat(ωat − ω − iΓat/2) (3.7a)

χ−1
m (ω) = meff

(
ω2

m − ω2 − iωΓm
)

≈ 2meffωm(ωm − ω − iΓm/2), (3.7b)

where a Taylor expansion around ωat/m was used to get to the approximation on the
right side of the equations. By inserting equation (3.6a) into (3.6b) x̃at can be eliminated
and the response of the resonator motion x̃m to the driving force in the coupled system
is obtained:

x̃m(ω)[χ−1
m − βt2K2χat(ω)︸ ︷︷ ︸

χ−1
sym(ω)

] ≡ x̃mχ−1
eff,s(ω) = Fth (3.8)

with the new effective susceptibility χeff,s of the mechanical resonator. The formalism to
describe sympathetic cooling is very similar to active feedback cooling (compare section
2.2.3) as both methods lead to cold damping due to an increased effective mechanical
damping rate of the resonator caused by the imaginary part of χsym. Thus, sympathetic
cooling can be regarded as a coherent feedback scheme [70]. Explicitly, we have

χ−1
sym(ω) = −βt2K2χat(ω) = −βt2K2 (ωat − ω) + iΓat/2

2Nmatωat
[
(ωat − ω)2 + (Γat/2)2

] , (3.9)

which can be used to arrive at the new effective susceptibility χeff,s of the sympatheti-
cally cooled mechanical resonator (assuming ω ≈ ωat)

χ−1
eff,s(ω) = 2meffωm

(
ω′m − ω − iΓ′m/2

)
(3.10)

with ω′m = ωm + (ωm − ωat)
Γsym
Γat

(3.11)

and Γ′m = Γm

(
1 + Γsym

Γm

)
≡ Γm(1 + gsym), (3.12)

where the sympathetic cooling rate

Γsym(N, ωat) = g2
N βt2Γat

(ωat − ωm)2 + (Γat/2)2 (3.13)

was introduced. It contains the single-phonon coupling rate [62, 70]

gN = Kxm
zpfx

at
zpf/ℏ = |rm|ωat

√
Nmatωat
meffωm

2F
π

(3.14)

with the mechanical and atomic quantum zero point fluctuations xm
zpf =

√
ℏ/(2meffωm)

and xat
zpf =

√
ℏ/(2matωat) and the field reflectivity of the mechanical resonator rm. In

equation (3.12) the sympathetic cooling gain gsym was introduced. Similar to the case
of velocity-dependent feedback in section 2.2.3 it describes the cold damping effect due
to the effectively increased damping rate Γ′m. Also the reduced mode temperature of
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the resonator can be described similarly [62]

Tmode = Tbath
1 + gsym

= Tbath
Γm

Γm + Γsym
. (3.15)

Ensemble-integrated sympathetic cooling rate

When conducting a sympathetic cooling experiment the coupling beam is centred on a
sample of atoms in a MOT, whose cloud radius Rat is much larger than the waist wlat
of the coupling lattice beams. Therefore, it is reasonable to assume a constant atom
number density nat throughout the lattice volume. Moreover, previous experiments
[73, 74] have shown that the density distribution is not changed significantly by the
presence of the lattice. In the preceding passage the sympathetic cooling rate Γsym was
calculated under the assumption that the atoms in the lattice are confined in identical
potential wells with equal trapping frequency ωat. This is only partially true. While
the lattice intensity, and therefore also the lattice depth, along the axial direction
of the trapping beams can safely be regarded as constant, since the Rayleigh range
zr = πwlat

2/λ ≈ 2 cm ≫ Rat, the Gaussian intensity profile along the radial direction
has to be considered. It leads to a radial dependency of the atomic trapping frequency
ωat(r) = ωat,0e−r2/wlat

2 with the maximum trapping frequency ωat,0 in the center of the
coupling lattice beams (note that outside this context, ωat,0 will simply be denoted by
ωat). Thus, in order to describe the experimental conditions more realistically Γsym in
equation (3.13) has to be integrated over the radial beam profile. Following [162], the
integral over the radial coordinate

Γint
sym = 2Ratnat

∫ Rat

0
Γsym[N = 1, ωat(r)]2πr dr (3.16)

can be converted into an integral over the frequency

Γint
sym(ωat,0) = Nlat

∫ ωat,0

ωat(Rat)

Γsym[N = 1, ωat]
ωat

dωat

= matNlat
meff

|rm|2βt2 Γat
ωm

(2F
π

)2 ∫ ωat,0

ωat(Rat)

ω2
at

(ωat − ωm)2 + (Γat/2)2 dωat,
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Figure 3.2: Ensemble-integrated sym-
pathetic cooling rate Γint

sym for differ-
ent Γat. Γint

sym is plotted as a function of the
atomic trapping frequency ωat,0 for different
Γat and is proportional to Sres in equation
(3.18). For the model, constant atomic den-
sity in the lattice volume is assumed and
both Γat and ωat,0 are in units of the me-
chanical resonator frequency ωm.
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where Nlat = 2Ratπwlat
2nat is the number of atoms in the lattice volume. Since Rat ≫

wlat the lower integration limit can be set to ωat(Rat) → 0 and the integral is solved to
[74]

Γint
sym(ωat,0) = 2matNlat

meff
|rm|2βt2

(2F
π

)2
ωm · Sres(ωat,0), (3.17)

with the function

Sres(ωat,0) :=
(

1 − Γ2
at

4ω2
m

)(
arctan

[2ωm
Γat

]
+ arctan

[2 (ωat,0 − ωm)
Γat

])

+ Γat
2ω2

m

(
ωat,0 + ωm ln

[
Γ2

at + 4 (ωat,0 − ωm)2

Γ2
at + 4ω2

m

])
(3.18)

that shows step-like behaviour for a small atomic damping rate Γat ≪ ωm and grows
smoothly as a function of the trapping frequency in the center of the beam until it
diverges for Γat → ωm (see figure 3.2).

Quantized model of hybrid coupling and hybrid cooperativity

In the above treatment of sympathetic cooling the approach was purely classical and
quantum noise processes that limit the minimum achievable temperature were ne-
glected. Hence, for a realistic description the relevant dissipation processes in the system
must be taken into account. A fully quantized model was introduced in [45] where the
linearized effective interaction Hamiltonian

Hint = ℏgN

(
â†mâat + â†atâm

)
(3.19)

was found, which describes the coherent exchange between mechanical and atomic
motional quanta through the annihilation and creation operators âm (âat) and â†m (â†at)
for phonons of the mechanical resonators mode (motional quanta of the atomic mode).
One of the most relevant consequences of this model is the introduction of additional
contributions to the decoherence of the coupled system. Classically, arbitrarily low
temperatures could be achieved with sufficiently high sympathetic cooling rates Γsym
(see equation (3.15) and figure 3.2) by making the lattice very deep. The quantum
model accounts for heating of the resonator by shot noise of the cavity photons via the
mechanical momentum diffusion rate

Γdiff
m = 16Pinωcav

meffc2ωm
|rm|2

(2F
π

)2
. (3.20)

On the atomic side the decoherence is introduced by photon scattering Γsc and is
described by the atomic momentum diffusion rate [96]

Γdiff
at = Γsc(klatx

at
lat)2 =

(klatx
at
zpf)2ΓVlat

ℏ∆at,L
. (3.21)
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In order to be able to observe the coherent transfer of single excitations expressed by
equation (3.19), between the mechanical and the atomic system, their coupling has
to exceed all decoherence rates in the system, which is fulfilled if the strong coupling
condition [45]

gN ≫ Γdiff
m , Γdiff

at , Γth
m (3.22)

is satisfied. Here, Γth
m = Γmn̄th is the thermal decoherence rate due to the coupling

to the thermal bath with the phononic mode occupation n̄th = kBTbath/(ℏωm). With
all decoherence mechanisms considered one can find the equation for the steady state
phonon occupation n̄ss of the mechanical resonator that can be reached by sympathetic
cooling:

n̄ss = Γth
m

Γm + Γsym
+ Γdiff

m
Γm + Γsym

+ Γdiff
at

Γat
+
( Γat

4ωat

)2
. (3.23)

The last term originates from the counter-rotating terms in the Hamiltonian that be-
come important for strong atomic damping due to a large cooling rate Γat.
For dominant thermal decoherence Γth

m ≫ Γdiff
m , large sympathetic cooling rates Γsym ≫ Γm

and resonant coupling ωat ≈ ωm one can use equation (3.13) to summarize the first two
terms in (3.23)

Γth
m + Γdiff

m
Γm + Γsym

≈ Γth
m

Γsym
= n̄th

Chybrid
. (3.24)

Here, the hybrid cooperativity [70, 162]

Chybrid = 4βt2g2
N

ΓatΓm
= Γsym

Γm
(3.25)

was introduced, which is closely related to the strong coupling condition (3.22) and can
be understood as a general indicator for coherent dynamics as it relates the strength
of the hybrid coupling to the mechanical decoherence rate in a simple quantity. If
Chybrid ≫ n̄th is reached the mechanical resonator is cooled to its motional ground
state (n̄ss < 1) and coherent dynamics can be observed.

In order to reach the strong coupling regime the hybrid cooperativity Chybrid and hence
the single-phonon coupling strength gN in equation (3.14), need to be increased as
much as possible. This can be done in two ways: First, the experimental setup can be
optimized. This includes the reduction of optical losses to reach values of β and t2 close
to unity, the use of a high-finesse cavity and a careful choice of the used mechanical
resonator. Second, the number of atoms that participate in the coupling has to be
maximized, as the coupling strength gN scales with

√
N .

On the side of the experimental setup the optical losses were already minimized and the
cavity is designed to provide a reflectivity on resonance as high as possible to realize
the coupling lattice. However, this comes at the cost of a relatively low finesse such that
we are limited to a value on the order of F ≈ 140. For the mechanical resonator three
properties are relevant: a low effective mass meff of the mechanical mode employed
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for the coupling, a narrow mechanical linewidth Γm and a high resonance frequency
ωm, as for resonant coupling (ωm ≈ ωat) the coupling strength scales with ωat. In this
regard we also already optimized our setup by the choice of a trampoline resonator
(see section 2.3) over a membrane [77], which has a lower linewidth by a factor of
Γmem

m /Γtramp
m = 14 and a lower effective mass by a factor mmem

eff /mtramp
eff = 23 than

the previously employed resonator [74]. Using the membrane resonator a maximum
hybrid cooperativity of Chybrid = 151±9 [74] was achieved, which was much lower than
the mode occupation n̄th = 3.95 · 105 at 5 K bath temperature. With the trampoline
resonator much higher cooperativities are feasible and the only other parameter left to
approach the strong coupling regime by sympathetic cooling is to increase the atom
number.

3.1.2 Instability in the hybrid system

One of the main challenges in reaching a high number of atoms that participate in
the coupling manifests in the occurrence of an instability in the hybrid system under
certain experimental conditions. In this case sympathetic cooling can turn into heating
that drives the resonator into large amplitude, limit-cycle oscillations. This effect has
first been observed in the group of P. Treutlein in Basel and was studied by A. Vochezer
et al (née Faber) [72, 73]. It sets in for small atom-light detuning ∆at,L of the coupling
laser and large atom numbers. In fact, this instability turns out to be a general feature
of atom-mechanical hybrid systems as we observe the same effect in our experiment as
well [74].
An exemplary measurement is depicted in the left panel of figure 3.3. Here, atoms from
a continuously loaded MOT were coupled to the mechanical resonator and the reduc-
tion of its mode temperature Tmode was measured as a function of the lattice depth for
red and blue lattice detuning. The lattice depth is denoted in form of the atomic trap-
ping frequency ωat (see (2.3)), which is expressed in units of the mechanical resonance
frequency ωm. The experiment reveals that with increasing lattice depth, and thus in-
creasing number of coupled atoms, the resonator mode temperature is reduced to a
certain point (ωat ≈ 1.25 ωm). While for the blue detuned lattice the cooling efficiency
further improves with increasing trapping frequency, the red detuned lattice leads to a
rapid excitation of the resonator mode that results in large oscillation amplitudes, for
which the mode temperature is not well defined any more.
This excitation induced instability can be explained by a delay in the coupling between
the resonator and the atoms that is caused by an effective retardation of the atomic
backaction onto the light field. Most likely this delay is produced by collective effects
within the atomic ensemble that have been predicted by J. K. Asbóth et al [75, 76] to
arise in asymmetrically pumped optical lattices. Since, we have an intrinsic asymmetry
in our coupling lattice it is conceivable that collective atomic effects destabilize our
coupling lattice. The influence of asymmetrical pumping will be discussed in detail in
the next section 3.2.

The fact that we only observe the instability in the red detuned lattice can be explained
by the attractive dipole potential at the intensity maxima of the trapping field. It gath-
ers more atoms at the lattice sites than in the blue detuned case and thus exhibits
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Figure 3.3: Instability in the hybrid coupling mechanism. Left panel: Resonator mode
temperature Tmode for coupling to atoms in a continuously loaded MOT. For two different lattice
detunings ∆ the lattice depth is adjusted by varying the lattice power Plat and is depicted by
the trapping frequency ωat in units of the resonator frequency ωm. Blue detuning (∆2,3 > 0)
refers to the F′ = 3 level of the D2 line, red detuning (∆2,1 < 0) to the F′ = 1 level. For
both detunings sympathetic cooling is visible, until in the red lattice the cooling turns into
heating at ωat ≈ 1.25 ωm. The dashed lines denote the respective bath temperatures Tbath =
Tmode(Plat = 0). Note that in the case of heating, the resonator performs limit-cycle oscillations
and Tmode is not well defined. Figure adapted from [74]. Right panel: Mode temperature
Tmode for coupling to atoms in a high density MOT (see description in section 3.5) using a
blue detuned lattice as a function of the pump asymmetry A = (Iinc − Iback)/

√
IincIback. The

dashed line denotes the feedback pre-cooled mode temperature without sympathetic cooling.
The pump asymmetry is adjusted by introducing losses to the coupling beam after it has passed
the atoms. The sympathetic cooling efficiency decreases with increasing asymmetry and finally
turns into heating for A > 2.4. Figure adapted from [77].

higher local atomic densities, which are predicted to further enhance the effect of the
collective atomic backaction on the delay in the system due to the asymmetry. How-
ever, the theory predicts the instability to occur in blue detuned lattices as well. Its
applicability to our system was proven in another experiment, where the pump asym-
metry in the blue lattice was artificially increased [77]. By dumping a fraction of the
incident beam power before it entered the MiM system, the losses in the optical path
were increased, which resulted in a stronger asymmetry of the coupling lattice. Once
the asymmetry exceeded a critical point, we observed similar heating effects in the blue
detuned lattice as well (see right panel of figure 3.3). These measurements indicate that
the instability of the hybrid system is indeed caused by the asymmetry in the pumping
of our optical lattice and leads us to the conclusion that it can be overcome by reducing
the asymmetry.

3.2 Influence of asymmetric pumping on an optical lattice

The previous section illustrated the occurrence of an instability in a hybrid system of
cold atoms, whose motion is coupled to a mechanical resonator using an optical lattice.
The experiments reported until now [65, 72] have two things in common: First, the
employed coupling lattice is created by retro-reflection of the coupling beam from the
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mechanical resonator, which is placed inside a cavity to enhance the optomechanical
interaction. As a consequence the reflected beam carries only a fraction of the incident
beam’s power due to incoupling and mode matching losses and a finite reflectivity on
resonance. Thus, the coupling lattices in these systems are intrinsically asymmetrically
pumped. Second, the experiments aim at reducing the amplitude of mechanical motion
of the resonator by interaction with a laser-cooled coupling partner. Therefore, the laser
power used for the interaction mediating coupling light is restricted to relatively low
values in order to prevent the resonator from heating, induced by absorption of the
coupling light itself. This demands the use of near detuned light, with respect to the
atomic transition, to produce the needed lattice depth for resonant coupling. In this
regime however, the propagation of the trapping light is not unaffected by the presence
of the atoms. Instead, it is substantially influenced by the atomic backaction, which can
alter the equilibrium configuration and lead to collective motion in the system as derived
by J. K. Asbóth et al. [75, 76]. Inspired by their findings A. Vochezer (neé Faber) studied
the light-mediated interaction of atoms in different wells of an asymmetric lattice both
theoretically and experimentally [73] in a system very similar to ours. She found that
the atomic backaction can lead to large phase shifts of the lattice light that become
relevant predominantly in regimes of high atom number or small detuning and are likely
the origin of the aforementioned instability that occurs in hybrid atom-optomechanical
systems. Her investigation motivated us to reproduce the simulation and to extend it
by an additional beam that we want to use for the compensation of the asymmetry in
our coupling lattice.

For the investigation of the dynamics in the lattice it is useful to establish a model
that can be used to describe the system. We assume two counter-propagating lattice
beams with equal beam shape but different intensities Iinc > Iback, where Iinc describes
the intensity of the incident and Iback the intensity of the back-reflected lattice beam.
Both are connected via the total reflectance of the MiM system on resonance R that

Figure 3.4: Illustration of the model to describe a 1D lattice. The atoms inside an
optical 1D lattice can be described by an array of N beam splitters separated by the distance
dj with the field amplitudes Aj , Bj , Cj , Dj incident on the j-th beam splitter. For red detuning
the atoms gather at the intensity maxima of the lattice, for blue detuning they localize at the
intensity minima, whose positions are given by xj . Figure adapted from [100].
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includes all optical losses and the reflectivity of the resonator (see appendix B.1). For
the reflected intensity Iback = R·Iinc holds. The atoms in the 1D lattice can be described
as a periodic arrangement of thin, disk-shaped clouds at positions xj that behave like
beam splitters and are separated by a distance dj (see figure 3.4). Each beam splitter is
subject to dipole and radiation pressure forces that can be expressed through the in- and
outgoing fields Aj , Bj , Cj , Dj at the j-th beam splitter. As our trapping beams have
much larger waists than the lattice wavelength (winc,ref ≈ 69 µm ≫ λlat = 780 nm) we
can describe the incident fields through plane waves. The incident beam, propagating
to the left, is then represented by Eleft(x) = Einc · e−ikx and the reflected beam by
Eright(x) = Eback · eikx with the corresponding intensities Iinc,ref = 1

2ϵ0c|Einc,ref |2. The
intensity imbalance can be quantified by two alternative dimensionless quantities, the
pump asymmetry, characterized by the normalized difference of the intensities [76]

A = Iinc − Iback√
IincIback

=
∣∣∣∣ Einc
Eback

∣∣∣∣− ∣∣∣∣Eback
Einc

∣∣∣∣ > 0 (3.26)

and the pump power ratio

P = Pinc
Pback

> 1. (3.27)

For almost symmetric pumping (A ≪ 1), the two are related by P = 1 + A, whereas
for highly asymmetric pumping (A ≫ 1), roughly P = A2 holds.

3.2.1 Contraction of the lattice

For symmetric, red detuned optical lattices, where the counter-propagating beams have
equal intensities, the backaction induced interaction leads to a moderate reduction of
the lattice constant d = λlat/2 as predicted in [163] and experimentally observed in
[164, 165]. This can be intuitively understood by imagining the atoms at the intensity
maxima as media with different refractive index than the surrounding environment,
which leads to an alteration of the wavelength of the lattice light, as well as its phase.
For blue lattice detuning, where the atoms effectively remain in the dark, the lattice
constant remains unaffected. For an asymmetric lattice the situation changes, as in
this case the beams can not interfere completely destructive any more and thus also
atoms in a blue detuned lattice experience trapping at lattice sites with non-vanishing
intensity. This leads to a reduction of the lattice constant in blue lattices as well and
even further enhances the contraction in the case of red detuning as depicted in figure
3.5.

The effect can be quantified by utilizing the model. If we assume that the atoms are
cold enough and the laser beams are intensive enough to provide deep trapping, the
atoms form a stack of disk-shaped clouds. Each cloud then represents an infinitely thin
plane of polarizable material, whose interaction strength depends on the complex linear
polarizability αat of the particles and their areal density η = Nd/σL. Here, Nd denotes
the number of atoms in a disk-shaped cloud with area σL = πwlat

2/2. These can be
combined in a dimensionless coupling constant [73] that describes the (areal density of
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the) polarizability of a cloud

ζ = kηαat
2ϵ0

= − Ndσ0Γ
4σL (∆at,L + iΓ/2) (3.28)

with the resonant scattering cross-section σ0 = 3λ2/2π and the atomic linewidth Γ.
Its real part Re(ζ) describes the dispersive atom-light interaction, while the imaginary
part Im(ζ) corresponds to dissipation via absorption and spontaneous emission. For us,
∆at,L ≫ Γ in all experimentally relevant scenarios, hence we can neglect Im(ζ).

Following [163] the propagation of the trap light through the atomic sample can be
calculated using the 1D wave equation, where the N clouds are represented by Dirac-δ
distributions of polarizable material

(
∂2

x + k2
)

E(x) = −2E(x)
N∑

j=1
ζδ(x − xj). (3.29)

The solution of (3.29) between two clouds is a superposition of plane waves

E(xj−1 < x < xj) = Aje−ik(x−xj) + Bjeik(x−xj)

= Cj−1e−ik(x−xj−1) + Dj−1eik(x−xj−1) (3.30)

with boundary conditions for the field, set by the clouds at positions x = xj

E(x =→ xj) = E(x = xj←) (3.31a)

∂xE(x =→ xj) − ∂xE(x = xj←) = 2kζE(xj). (3.31b)

When substituting the superposition ansatz (3.30) into the boundary conditions, we
arrive at the equations for the mode amplitudes to the left and to the right of each
atom cloud. These have the form of beam splitter relations [76]

Aj = rBj + tCj , (3.32a)

Dj = tBj + rCj , (3.32b)

with reflection and transmission coefficients

r = iζ

1 − iζ
, t = 1

1 − iζ
, and ζ = −i

r

t
. (3.33)

If the interaction is purely dispersive (ζ ∈ R) the photon number is conserved and
|r|2 + |t|2 = 1 holds. Now, in order to specify the equilibrium positions of the clouds the
optical force one each of them has to be considered. It can be derived by calculating
the amount of momentum transferred to a cloud by the field via the surface integral of
the Maxwell stress tensor over the volume V = σLdL that encloses the cloud [166] and
yields the simple formula

F = σLϵ0
2

(
|A|2 + |B|2 − |C|2 − |D|2

)
. (3.34)
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Using the ingoing fields B(x) = Eback · eikx and C(x) = Einc · e−ikx and the relations
(3.32) for the outgoing fields the position dependence of the force can be expressed
explicitly [76]

F (x) = 2σL

c|1 − iζ|2
[
(Iback − Iinc)Im(ζ) (3.35)

− 2
√

IincIbackRe(ζ) sin(2kx + Φ) + (Iback − Iinc)|ζ|2
]
,

where Φ is the relative phase of the two trapping beams. The first term describes the
radiation pressure force on an atom due to absorption of light in the atomic ensemble,
which is independent of the position and points in the direction of the weaker beam. The
second term represents the dipole force that arises from absorption of light from one
beam followed by stimulated emission into the other beam. If |ζ| ≪ 1 and Γ ≪ |∆at,L|,
which is usually the case in our experiments, this term becomes the dominant one
and |1 − iζ|2 ≈ 1. It produces a restoring force that generates a trap for the atoms.
For red lattice detuning Re(ζ) > 0 and the atoms are attracted towards areas of high
intensity. Accordingly, in a blue detuned lattice Re(ζ) < 0, thus the atoms are repelled.
Additionally, if one beam carries a phase, it moves the position of the intensity maxima
and hence the points to which the restoring force pulls the atoms. This can be used to
couple the motion of the atoms to an external source that produces the phase shifts
on the lattice light. The third term is generated by incoherent reflection at the atomic
cloud and becomes important for high densities, where it can exceed the other two
contributions. Note, that it also points towards the weaker beam. From the relative
phase Φ a condition for the maximum asymmetry that still allows for trapping can be
found [76]:

Amax = 2
∣∣∣∣ Re(ζ)
|ζ|2 + Im(ζ)

∣∣∣∣ . (3.36)

In the purely dispersive case (ζ ∈ R) the relation converts to the simple form

Amax = 2
ζ

⇔ ζmax = 2
A

. (3.37)

If Iback < Iinc more photons are on the left of the beam splitters than on the right,
which exerts a force on them. If enough light is transmitted (|t| > |r|A/2) and the beam
splitter positions support interference, the number of outgoing photons is high enough
to counteract the force and a steady state sets in. This steady state is characterized by
a decreased lattice constant d that is given by

dred(ζ, A) = λ

2

(
1 − χ+(ζ, A)

π

)
, ζ > 0 (3.38a)

dblue(ζ, A) = λ

2

(
1 −

∣∣∣∣∣χ−(ζ, A)
π

∣∣∣∣∣
)

, ζ < 0 (3.38b)
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Figure 3.5: Pump asymmetry dependent lattice contraction. The plots show the con-
traction of the lattice constant d (solid lines) as a function of the pump asymmetry A for blue
(left panel) and red (right panel) lattice detuning and different polarizabilities ζ. Regions where
no stable operation of an optical lattice is possible (ζA < 2) are denoted by the shaded areas.
Our current pump asymmetry A = 1.7 is indicated by the dotted line and the green circles
show the calculated lattice constant for the case of Nat = 5.5 × 107 distributed over 10 beam
splitters that is depicted in figure 3.6, where the phase shift becomes larger than 180◦ for the
first time.

for red and blue lattice detuning respectively, with

χ+ = arccos
(

−ζ2√
4 + A2 + ζ

√
4 − ζ2A2

2 (1 + ζ2)

)
(3.39)

χ− = arcsin
(

ζ
√

4 + A2 − ζ
√

4 − ζ2A2

2 (1 + ζ2)

)
. (3.40)

The resulting contraction of the lattice constant is depicted in figure 3.5 for exemplary
values of ζ. Note however, that the lattice contraction is a static effect, which is often
masked by more dominant dynamic effects in the lattice. These can lead to the creation
of density waves, which propagate in the direction of the weaker lattice beam and can
eventually destroy the lattice. A thorough analytical treatment of this phenomenon
can be found in [76]. On the other hand we know from active-feedback cooling experi-
ments that an increasing phase lag between action and reaction can turn cooling of the
resonator into heating. An evident question is therefore, whether an increasing optome-
chanical interaction between the atoms in the lattice can influence the aforementioned
phase in a way that it can explain the observed heating.

3.3 Collective atomic effects in an asymmetric lattice

In order to study the dynamics that occurs in our atom-mechanical system we use a
numerical simulation of the asymmetric coupling lattice that was initially set up by C.
F. Klein during his Master thesis [100] and finalized in the course of this thesis. On
the one hand it allows us to better understand the behaviour of the system and learn
about its stability. On the other hand, we can use it to make predictions about the
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behaviour when we add an auxiliary lattice beam to compensate for the intrinsic asym-
metry. Asymmetrically pumped optical lattices were already studied using numerical
simulations in [73, 76], and we use the same approach to set up the simulation for our
system.

3.3.1 Modelling the system

As already described in section 3.2 we model the atomic clouds in the 1D lattice as
an array of thin beam splitters as depicted in figure 3.4. To model the lattice we have
to relate the light modes to the left of each atomic beam splitter to the modes to the
right of them. Since we assume linear optics the relationship will be linear as well and
can be expressed by a 2 × 2 matrix. The atomic clouds can be described by beam
splitter matrices MBS separated by the distance dj . This allows us to use the transfer
matrix formalism, which is an elegant tool to handle large composite systems (in our
case consisting of travelling light fields and atomic beam splitters) by simple matrix
multiplication. The transfer matrix of the system of interest is thus given by the product
of the transfer matrices of all system components. In this way we only need to know
the ingoing fields on both sides of the system to calculate the fields Aj , Bj , Cj and Dj

at any position j in the lattice. Using the beam splitter relations from equation (3.32)
we obtain the matrix for a single atomic cloud

MBS = 1
t

[
t2 − r2 r

−r 1

]
(3.33)=

[
1 + iζ iζ

−iζ 1 − iζ

]
. (3.41)

Since we deal with coherent light fields we have to account for possible phase shifts be-
tween the beam splitters to cover interference effects between the superimposed beams.
We do this by including the propagation of the light with the wave vector k between
the beam splitters23

Mprop,j =
[
eikdj 0

0 e−ikdj

]
. (3.42)

By multiplication of the matrices we can describe how an incident field evolves when
passing a single lattice section consisting of two atomic clouds that are separated by a
propagation distance d1 [

A1
B1

]
= MBS · Mprop,1 · MBS︸ ︷︷ ︸

:=Msys,1

[
C2
D2

]
. (3.43)

Here, the transfer matrix for the composite system Msys,1 was introduced. This expres-
sion can be further generalized for a lattice of arbitrary size by multiplying with the

23The distance dj between the beam splitters is calculated from adjacent beam splitter positions
using equation (3.46).
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corresponding transfer matrices for all N lattice sites:[
Aj

Bj

]
= MBS ·

N∏
j

Mprop,j · MBS︸ ︷︷ ︸
:=Msys,j

[
CN

DN

]
, (3.44)

Note, that CN and DN describe the fields to the right of the system, whereas Aj and
Bj describe the fields to the left at any given beam splitter j. Using the symmetry of
the beam splitter relations (3.32) we can see that a reflection along x corresponds to
the simultaneous swapping of the amplitudes A ↔ D and B ↔ C and hence[

Aj

Bj

]
= MBS

[
Cj

Dj

]
⇔
[
Dj

Cj

]
= MBS

[
Bj

Aj

]
, (3.45)

which can be used to calculate the fields to the right of the j-th beam splitter. With
the knowledge of the ingoing left-propagating field CN = Einc · e−ikx and the right-
propagating field B1 = Eback·eikx all fields at any position in the lattice can be calulated.

Now we have to add the mechanical resonator to the system. Since it can be represented
by another beam splitter it seems straightforward to include it. However, its separa-
tion from the atomic beam splitters is much larger than d and cannot be precisely
determined. Moreover, the fields that mediate the interaction travel through different
media, such that an accurate description of the propagation matrix is difficult. Because
the reflectivity of the resonator is implicitly included in the field amplitude Eback, we
focus on the action of the resonator on the light field - a modulation of the phase. We
account for the phase modulation by adding the phase term Φ(t) = Φ0 cos(ωt) to the
ingoing field B1 = Eback · eikx+iΦ(t). In a similar manner the cumulated effect of the
collective optomechanical interaction in the optical lattice manifests itself in a phase
shift of the amplitude modulation on the outgoing field A1, i.e the atomic backaction
on the resonator.

3.3.2 Numerical simulation and results

At the start of the simulation (t = 0) the positions of all atomic beam splitters are
randomly shifted by a small displacement ξj(t = 0) from their steady state positions
xss

j , which are determined by the detuning dependent lattice constant introduced in
(3.38) and the position offset xasym caused by the asymmetric radiation pressure

xj(t = 0) = xss
j + ξj(t = 0) = xasym + (j − 1)dred,blue + ξj(t = 0). (3.46)

The random displacement ξj(t = 0) is a uniformly distributed variable between ξini
and −ξini, with ξini = 5 × 10−4λ. In each time step the fields at all beam splitters
are calculated and used to determine the force Fj on each beam splitter via (3.34).
Next, all beam splitter positions for the following time step are calculated from the
corresponding equation of motion

mBSẍj = −mBSΓatẋj + Fj(x1, ..., xN ), (3.47)
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where mBS = NatmRb/N is the mass of a beam splitter and Γat is the laser-cooling in-
duced atomic damping rate. From equation (3.47) we obtain a system of N differential
equations that are coupled to each other via the force Fj . In order to solve the sys-
tem of equations numerically we use the ordinary differential equation solver ode45 in
MATLAB. Since (3.47) represents differential equations of second order and the solver
is only capable of solving a system of first order equations we have to reduce them to
ordinary differential equations by making the subsitution ẋj = Xj , which leads to the
first-order differential equations

ẋj = Xj and Ẋj = −ΓatXj + Fj

mBS
. (3.48)

They can now be solved by setting the initial conditions in form of initial positions xj

(equation (3.46)) and initial velocities ẋj = ωξini for each beam splitter. We use the pe-
riod of one oscillation τosc = 2π/ω to define the simulation time t = 40 τosc. The system
evolution is then solved incrementally by integrating the differential equations for each
time step. After each iteration the the newly determined beam splitter displacements
and velocities are used as the initial conditions for the following time step and the new
distances dj are calculated from the changed positions.

In order to determine the effect of the phase modulation at frequency ω carried by
the beam coming from the mechanical resonator, the amplitude and phase of the
resulting power modulation on the outgoing beam are evaluated after each simulation
run. They can be interpreted as the atomic backaction on the lattice light and are
imprinted on the beam that leaves the interaction region in the direction of the MiM
system. The power modulation is described by Pleft = ϵ0cπwlat

2|A1|2/4. We only take
it into account after an initial transient time Tdamp = 1/Γat. To study the evolution of
the amplitude and the phase, the modulation frequency is swept between 5 kHz and
500 kHz.

For parameters similar to the ones used in our sympathetic cooling experiments (see
sections 3.1 and 3.5) we simulate the backaction of the atomic ensemble on the coupling
lattice light. In order to keep the computing time low, we use only ten beam splitters in
our simulation since, similar as in [72, 73], we find that the collective dynamics converge
quickly for more than two beam splitters (see figure B.4). In figure 3.6 the situation in
a balanced lattice (R = 1) is compared to an asymmetric lattice (R = 0.22) for varying
atom numbers Nat in the lattice volume. We evaluate the relative amplitude of the
power modulation (Pleft − ⟨Pleft⟩)/⟨Pleft⟩ on the outgoing field propagating to the left,
where the angled brackets denote the mean value. The phase of the power modulation
is measured relative to the ingoing phase Φ(t).

In the balanced lattice we obtain the expected amplitude and phase response for a
driven damped harmonic oscillator, where the position and width of the resonance de-
pend sensitively on the set lattice power Pinc and detuning ∆at,L, as well as the atomic
damping rate Γat. Their shape obviously differs slightly from the textbook expectation,
which can be attributed to the strong damping Γat = 0.3 ωm that was assumed for the
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simulation, based on earlier experimental results [74, 77].
For comparison the inset shows the result of the simulation for low atomic damping and
a single beam splitter. Here, the expected response is recovered. The phase modulation
causes a displacement of the intensity maxima, which can be adiabatically followed
by the atoms for low driving frequencies ω. Hence, the atoms barely oscillate in the
trapping potential leading to a small power modulation. With increasing frequency the
atoms can no longer follow the lattice motion and start to oscillate at larger amplitudes
resulting in a stronger backaction. At resonance the driving is 90◦ ahead of the atomic
motion and has the greatest impact. For further increased ω the atoms stay located at
the minimum of the temporally averaged potential and do not react to the motion any
more. Their phase lag approaches ∆ϕ = −180◦. Under the effect of strong damping, as
realized in the simulation, we observe a finite phase lag even at low driving frequencies
and a negligible amplitude of the power modulation.

Figure 3.6: Simulated atomic response for variable atom number Nat. Amplitude and
phase response of the relative power modulation (Pleft −⟨Pleft⟩)/⟨Pleft⟩ of the outgoing beam as
a function of the modulation frequency ω. The phase is referenced to the phase of the ingoing
modulation. The vertical dotted lines mark the resonance frequency ωat = ωm and the dashed
grey lines denote the response of a single beam splitter. Grey areas denote the phase margin
in which sympathetic cooling is expected to occur. Inset: Amplitude and phase response for a
single beam splitter with Nat = 0.4 · 107 and low damping Γat = 0.06 ωm. For both, balanced
and asymmetric lattice configurations the same simulation parameters were used except for the
reflectivity R and the detuning ∆at,L. Parameters: ingoing power Pinc = πw2

latIinc/2 = 100 µW,
detuning ∆at,L/(2π) = −9.6 GHz (R = 1) and ∆at,L/(2π) = −4.55 GHz (R = 0.22), beam waist
wlat = 70 µm, number of beam splitters NBS = 10, atomic damping Γat = 0.3 ωm = 290 kHz
and driving amplitude Φ0 = 2π · 10−3.
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The parameters for the simulation were chosen such that the atomic trapping frequency
in the lattice ωat coincides with the resonance frequency of our mechanical resonator
ωm. However, for increasing atom numbers the maximum of the amplitude at resonance
is shifted to lower frequencies, which can be attributed to the increased inertia due to
the higher atomic beam splitter masses. In the balanced lattice the atomic ensemble
behaves like a single beam splitter and no intra beam splitter induced dynamics occur.
This is indicated by the dashed lines in the left panel of figure 3.6 where the simulation
was run exemplarily for the lowest and highest atom number under the assumption
that all atoms are inside one beam splitter.

With regard to an asymmetric lattice the situation looks different. While at low atom
numbers the ensemble still behaves like a single beam splitter, collective effects become
increasingly important for larger systems with more atoms. This can be seen when
comparing how the response of the system changes for different atom numbers and an
increasing amount of beam splitters (figure B.4). From the right panel of figure 3.6 one
can recognize that the amplitude response gets much more broadened than in the bal-
anced lattice and separates into a double peaked feature. More importantly, the phase
lag enlarges dramatically with increasing atom number and approaches ∆ϕ = −360◦.
This is a strong indicator for the hypothesis that the phase lag is responsible for the
instability that occurs in the hybrid atom-mechanical system. It can be explained by
revisiting the coupling mechanism:
The displacement xm of the mechanical resonator from its equilibrium position pro-
duces a phase shift proportional to xm on the reflected lattice light. This phase shift
causes a displacement of the lattice sites and thus moves the atoms out of their equilib-
rium position inside the lattice potential. As a consequence the atoms redistribute the
incoming lattice photons (see section 3.1.1), which results in a restoring force Fd acting
in the opposite direction. Following the oscillation of the resonator the atoms also os-
cillate in their respective potential wells and thereby produce an intensity modulation
at the oscillation frequency. This intensity modulation in turn exerts a time-dependent
radiation pressure force Frad on the resonator, which can influence its motion. If there
is a phase lag ∆ϕ between the motion of the resonator and the motion of the atoms,
the resulting radiation pressure force can damp the resonator motion and lead to sym-
pathetic cooling. The process is illustrated in figure 3.7, where the upper panel denotes
the ideal case of a ∆ϕ = −90◦ phase lag. The motion of the resonator is depicted by
the sinusoidal line, where the differently coloured amplitudes show the direction of the
displacement. The motion of the atoms is symbolized by the circles on the sinusoidal
trajectory. Every time the resonator moves from the red to the blue position it is sub-
ject to Frad, which counteracts the movement and leads to damping of the resonator.
This is physically equivalent to the velocity dependent feedback cooling discussed in
section 2.2.3. The lower panel illustrates the scenario for a phase lag of ∆ϕ = −180◦.
This is the tipping point, where damping turns into excitation, since Frad acts on the
resonator at the point of largest displacement (red) and in the direction of the resonator
movement. Hence, for phase lags smaller than ∆ϕ = −180◦ the resonator gets heated
by the atomic motion and the maximum excitation appears at ∆ϕ = −270◦.
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Figure 3.7: Effect of the phase lag on the atom-membrane interaction. The illustration
shows how the atoms react to a displacement of the lattice potential that results from a phase
modulation by the mechanical resonator. A lattice displacement to the left elevates the atoms
to the right slope of the potential (blue) and a displacement to the right elevates the atoms to
the left slope (red). When excited, the atoms experience the restoring force Fd and emit light
preferably in the opposite direction. The oscillatory motion produces an intensity modulation
δI that manifests as a radiation pressure force Frad on the resonator. The resonator motion is
depicted by the red and blue coloured sinusoidal line and the motion of the atoms is traced out
by the circles on the sinusoidal trajectory. The shaded areas denote regions where Frad leads
to cooling (blue) - when the force acts in the opposite direction of the resonator motion - and
heating (red) - when the force acts in the direction of the motion.

Qualitatively, the simulation reproduces the results obtained in [73] and gives a plausible
explanation for the experimentally observed instability in the hybrid system. Motivated
by this result, we can use the simulation to make a prediction about the system be-
haviour when an additional lattice beam is included in the simulation. This beam shall
be used in the experiment to balance the pump power in the lattice and prevent the
instability from occurring. The necessary properties to realize the scheme experimen-
tally as well as the method to adjust the balancing of the resulting three beam coupling
lattice are described in detail in the next sections. For now we only assume that the
auxiliary lattice beam is co-propagating with the reflected beam in the right direction.
To provide a balanced lattice the total reflected intensity has to be equal to the incident
intensity Iref,tot = Iinc. It is given by Iref,tot = Iback + Iaux + 2

√
IbackIaux cos(ϕaux,back).

For simplicity we chose the relative phase between the auxiliary beam and the back-
reflected beam to be ϕaux,back = π/2 such that Iaux = Iinc − Iback holds. To include the
auxiliary beam into the simulation we simply add its contribution to the right propa-
gating field: B1 = Eback · ei(kx+Φ(t)) + Eaux · ei(kx+ϕaux,back), where Eaux =

√
1 − R ·Einc.

The simulation result for the PAC lattice is depicted in figure 3.8. As expected we
recover similar results as for the balanced lattice with only two beams and no intra-beam
splitter dynamics seem to occur. The only visible differences are that the amplitude
is reduced, compared to the two beam balanced lattice, and does not monotonously
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Figure 3.8: Simulated atomic response
for variable atom number Nat with
pump asymmetry compensation. Am-
plitude and phase response of the relative
power modulation (Pleft − ⟨Pleft⟩)/⟨Pleft⟩ of
the outgoing beam as a function of the mod-
ulation frequency ω. Here, a balanced op-
tical lattice is simulated that is created by
employing an auxiliary lattice beam, which
is co-propagating with the back-reflected
beam. The intensity Iaux = 0.78 Iinc and
phase ϕaux,back = π/2 are set to compensate
the lacking intensity in the back-reflected
beam, like described in section 3.5.2. The
atomic backaction phase (lower panel) is ref-
erenced to the phase of the ingoing modula-
tion. Again, the dashed lines denote the re-
sponse of a single beam splitter and the dot-
ted lines mark the resonance position. The
grey shaded area denotes the phase margin
where sympathetic cooling should occur.

grow with increasing atom number. The reduced amplitude can be explained by the
fact that the modulation is carried by a much weaker beam with field amplitude Eback
instead of Einc. Hence, the resulting amplitude of the power modulation is expected to
be lower than in the two beam balanced lattice. The non-monotonous behaviour of the
amplitude response is an interesting yet not understood feature whose origin is left for
future investigation. Potentially, interference effects between the unavoidable amplitude
modulation of the combined auxiliary and back-reflected beam with the phase shifted
amplitude modulation generated by the optical lattice play a role here. Remarkably, the
frequency shift of the amplitude peak is equal in the PAC lattice and in the balanced
two beam lattice, which can also be seen from the identical phase response. This result
substantiates our conjecture that a compensation of the pump asymmetry in our lattice
should enable us to increase the coupling strength trough a larger number of atoms that
participate in the process.

Conclusion

The results of our numerical simulation show that light-induced interactions between
atoms in different lattice wells occur in asymmetric lattices for regimes of high atomic
polarizability ζ. When the atomic motion in the lattice is driven by a modulation of the
phase of one ingoing beam, the atomic backaction on the light is completely different
than in a balanced lattice, or for a single beam splitter. Most strikingly, the phase of the
atomic backaction can be strongly delayed, which has a crucial effect if one considers
closing the loop to act back on the source of the phase modulation. In this case for
phase lags larger than ∆ϕ = −180◦ the atomic backaction would resonantly enhance
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the driving process and lead to instability of the system.
Experimentally, it is not feasible for us to determine the exact atom numbers in the
lattice volume and thus precise modelling or a direct comparison with the experiment
is difficult. Nevertheless, in a parameter regime similar to our experimental conditions
the simulation shows atomic backaction effects that qualitatively agree with our mea-
surements. The full range of parameter variations i.e. dependence on the detuning and
its sign, atomic damping rate, lattice asymmetry and number of beam splitters in the
simulation can be found in appendix B.2. The main observations are listed here in
bullet points:

• Decreasing detuning ∆at,L leads to an increased atomic polarizability ζ ∼ 1
∆at,L

and hence stronger backaction induced by collective effects.

• For increasing damping the initial phase lag is increased.

• For more than one beam splitter collective effects in the asymmetric lattice start
to occur and saturate quickly for an increasing number of beam splitters.

• The larger the asymmetry the smaller the number of atoms at which collective
effects start to play a role.

However, the simulation does not explicitly show different behaviour depending on
the sign of the detuning. Although the configuration of the lattice changes, the effect
on the backaction is seemingly the same. Thus the experimentally observed difference
between red and blue lattice detuning can only be explained by an increased number
of atoms that participate in the coupling in a red detuned lattice. Finally, we find that
an auxiliary lattice beam that provides the lacking intensity to produce a balanced
lattice can stabilize the system and suppress the collective atomic effects observed in
an asymmetric two beam lattice. We conclude that a pump asymmetry compensated
lattice should allow to involve more atoms in the coupling process, permit sympathetic
cooling with dense atomic samples in a red detuned lattice and consequently increase
the coupling strength.

3.4 Experimental design considerations

In the preceding sections the necessity to compensate the pump asymmetry in our setup
was motivated. A suitable scheme to reach this goal is the use of an auxiliary lattice
beam, which provides the power that is lacking in the back-reflected beam to produce
a balanced coupling lattice. For that, the auxiliary beam has to be superimposed with
the back-reflected beam from the cavity that carries the signal from the MiM system,
such that they are indistinguishable at the site of the atoms. This requires identical
frequency and polarization of the beams as well as ideal mode match. Moreover, the
power of the auxiliary beam and its phase, relative to the back-reflected beam, must
be independently adjustable. In the following the experiment specific demands will be
regarded to determine the necessary properties for the auxiliary lattice beam.
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Beam profile

The beam profile has to be mode matched to the coupling and back-reflected beam. This
involves the waist size, focal position and divergence of the beam. Since the auxiliary
beam will be focussed onto the atoms by a separate telescope it is essential to avoid
astigmatisms and aberrations in the beam that would reduce the spatial coherence and
lead to local intensity fluctuations in the lattice. Moreover, around the focal region
Gaussian beams experience a phase advance, whose amount is described by the Gouy
phase (see left panel in figure 3.9)

φgouy = arctan
(

z

z0

)
(3.49)

where z is the position along the beam axis and z0 = πw0
2/λ is the Rayleigh range

for a beam waist w0 and the wavelength λ. A mismatch in the waist size or displaced
focal positions of the beams can lead to an additional relative phase ∆φgouy between
the beams, which we have to avoid.
The influence of a waist mismatch on this phase is depicted in the central panel of figure
3.9. For a difference of 10 % in waist size a phase difference of ∆φgouy = 4◦ is acquired
over the extent of the atomic cloud, which has a radius of Rat ≈ 2 mm ≈ 0.1 · z0.
Differing focal positions have an even stronger impact on ∆φgouy as is depicted in the
right panel of figure 3.9. A position offset of ∆z = z0/4 = 4.9 mm already results in
a relative phase difference of |∆φgouy| = 14◦, which can have a significant impact on
the combined lattice beam. In order to avoid these effects the setup must allow for
positioning the auxiliary beam focus with sub-millimeter precision and the waists have
to be matched up to a few micrometers.
In the realized setup the focal position can be adjusted with an accuracy of 0.1 mm

Figure 3.9: Gouy phase shift caused by different waist sizes and focal positions. For
the calculations the waist size w0 = 70 µm and Rayleigh range z0 = 1.97 mm of our coupling
lattice beam are assumed. Left panel: Gouy phase for different positions along the beam axis.
Upon passage through the focal plane of a Gaussian beam φgouy leads to a phase shift of 180◦.
Central panel: Phase difference ∆φgouy introduced by deviant waist sizes of two beams for
different ratios of the beam waists as a function of the position along the beam axis. Right
panel: φgouy for two beams with equal waists that are ∆z = 4.9 mm apart (dotted lines). The
difference in focal position introduces a relative phase ∆φgouy = 14◦ (dashed lines).
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and the waist sizes differ by 1.7 %, resulting in a maximum additional relative phase of
∆φgouy = 0.5◦, whose effect should be negligible.

Relative phase and intensity

The auxiliary beam must have the same frequency and polarization as the coupling and
back-reflected lattice beams in order to allow for maximal interference. Furthermore,
in order to carefully balance the lattice, it must be possible to tune and fix the rel-
ative phase ϕaux,back between the auxiliary and the back-reflected beams to arbitrary
values. A convenient scheme for the stabilization of the relative phase of two beams
is the so-called side-of-fringe lock. In our case, the fringe is a slope of the sinusoidal
interference signal obtained by sweeping the relative phase ϕrel between two beams. A
reference phase ϕref , represented by a point on that slope, can be chosen to lock the
actual phase ϕact to that reference phase using an actuator that is able to adjust the
relative phase. Since the reference phase lies on a slope, a controller can discriminate
the direction in which the actuator needs to shift the actual phase in order to coincide
with the reference phase (ϕrel = |ϕact − ϕref | → 0). Typically, the reference phase ϕref
is chosen to be at the steepest point on the slope, which is exactly centred between the
turning points of the signal and thus allows for the best locking stability. For our use-
case the locking bandwidth should stay far below the mechanical resonance frequency
ωm as otherwise the lock could erase the resonators phase information from the signal.
We anticipate the required locking bandwidth to be on the order of 5-10 kHz, since the
planned interferometer is set up on a vibration isolated, temperature stabilized optical
table with high stability optics mounts.

It is important to consider whether the combined back-reflected beam will be able to
produce a balanced optical lattice. For that we first calculate the expected intensity
Ilat of a regular 1D optical lattice

Ilat = cϵ0
2 |Ēinc + Ēback|2 = cϵ0

2
[
|Einc|2 + |Eback|2 + 2EincEback cos(2kx − ϕinc,back)

]
.

(3.50)

where Einc and Eback are the electric field amplitudes of the incident and back-reflected
beam respectively and ϕinc,back is relative phase between the beams. Since the lattice is
produced by reflection from the MiM system the relative phase is fixed to ϕinc,back = π.
We normalize the incident beam intensity to Iinc = 1 and distinguish the case of a
balanced lattice with Iback = Iinc from an asymmetric lattice with Iback = 0.3Iinc like
it is present in our experiment. Both configurations are depicted in the left panel of
figure 3.10. For a balanced lattice (red dashed line) the maximum lattice depth is
Vlat,bal ∝ 4Iinc and the intensity completely vanishes at the minima. In our actual lat-
tice (blue dashed line) the maximum lattice depth is reduced to Vlat,act ∝ 4

√
IincIback

due to the asymmetry in the pumping which leads also to non-vanishing intensity at
the lattice minima.
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When the additional auxiliary beam is taken into account, equation (3.50) is extended
by additional interference terms with the auxiliary beam

Ilat = cϵ0
2 |Ēinc + Ēback + Ēaux|2

= cϵ0
2

[
|Einc|2 + |Eback|2 + |Eaux|2 + 2EincEback cos(2kx − ϕinc,back) (3.51)

+ 2EincEaux cos(2kx − ϕaux,back) + 2EbackEaux cos(ϕinc,back − ϕaux,back)
]
.

Here, ϕaux,back denotes the relative phase between the auxiliary and the back-reflected
beam and the fields are defined in a similar way24 as in section 3.2. Now, a lattice
depth Vlat ∝ 4Ilat equal to the one in the balanced lattice can be obtained by different
combinations of the auxiliary beam intensity Iaux and the relative phase ϕaux,back. This
is depicted by the solid blue lines in the left panel of figure 3.10. Each shade represents
a different set auxiliary beam intensity, which produces the same lattice depth as in a
balanced two beam lattice for an appropriately set relative phase ϕaux,back. The right
panel of figure 3.10 shows the normalized intensity Iaux,back resulting from the interfer-
ence of the auxiliary and the back-reflected beam, depending on their relative phase.
The circles denote the relative phase that has to be adjusted in order to produce a
balanced lattice with three beams. Once the relative phase between the auxiliary and

24i.e. Ēinc = Einceikx, Ēback = Ebacke−i(kx−ϕinc,back) and Ēaux = Eauxe−i(kx−ϕaux,back)

Figure 3.10: Intensity Ilat in the coupling lattice for different lock-points of the
relative phase ϕaux,back. Left panel: Lattice intensity Ilat for a two beam lattice (dashed
lines, equation (3.50)) in our actual configuration (blue) and a balanced one (red) compared
to a three beam lattice with added auxiliary beam (solid blue shaded lines, equation (3.51)).
Each shade represents a different set auxiliary beam intensity Iaux and the specific lattice
depth that corresponds to the balanced two beam lattice is produced by an appropriate choice
of the relative phase ϕaux,back. Right panel: Normalized intensity Iaux,back = Iaux + Iback +
2
√

IauxIback cos(ϕaux,back) obtained by interference of the auxiliary and back-reflected beam as
a function of their relative phase ϕaux,back. The blue shaded circles denote the phase that has to
be adjusted to produce a balanced lattice at the corresponding auxiliary beam intensity Iaux.
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the back-reflected beam is fixed they can be regarded as one beam and we recover an
ordinary 1D optical lattice with two counter-propagating beams.

Due to the fact, that we have to superimpose the auxiliary beam with the back-reflected
beam on an optical element the losses in the back-reflected beam will further increase,
leading to an even stronger initial pump-asymmetry. At the same time this means
that only a small fraction of the auxiliary beam intensity will be co-propagating with
the back-reflected beam after that element. To keep the additional losses in the back-
reflected beam low and simultaneously be able to use a sufficient amount of the auxiliary
beam we employ a substrate with a reflectivity of 92.8 % at 780 nm (see section 3.4.1).
Together with other modifications to the setup this results in an intensity of the back-
reflected beam of Iback ≈ 0.235 Iinc

25. From equation (3.50) the condition for a balanced
lattice becomes apparent26

Einc = Eback + Eaux (3.52)

and we find a range of auxiliary beam intensities that allow for balancing the three
beam lattice for an appropriate relative phase setting:

Imax,min
aux = (

√
Iinc ±

√
Iback)2 = (

√
Iinc ±

√
0.235Iinc)2 =

 2.2Iinc

0.265Iinc
(3.53)

Note, that these two values are the extrema of the range of auxiliary beam intensi-
ties and require complete constructive or destructive interference to produce a bal-
anced three beam lattice. Hence, they are not experimentally feasible with a setup that
requires a finite slope of the interference signal to lock the phase. Nevertheless, the
auxiliary beam setup is planned to provide intensities in this range.

3.4.1 The pump asymmetry compensation setup

In the following section the realized experimental setup for the compensation of the
pump asymmetry in our coupling lattice is discussed. This setup was used to conduct
the experiments that are presented later in section 3.5 and was set up together with C.
F. Klein.

Optical setup

For the compensation of the pump asymmetry in our experiment we set up a dedicated
auxiliary lattice beam that we employ to provide the lacking intensity in the back-
reflected beam. The coupling lattice setup (discussed in section 2.2.1) was refined and
is supplemented by the additional auxiliary beam. A detailed sketch with all relevant
components is depicted in figure 3.11.
In order to ensure identical frequency, the auxiliary lattice beam is derived from the
same beam as the coupling lattice incident beam. We exchanged the polarization main-
taining fiber, which guides the lattice light from the laser system to the experiment by

25A detailed overview of all relevant optical losses in the setup can be found in figure B.1
26Assuming a fixed relative phase ϕaux,back such that the two beams can be treated as one.
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a single mode fiber, equipped with a fiber polarization controller (FPC). This allows to
split the incident lattice beam conveniently at the PBS inside the coupling lattice tele-
scope and to quickly change the splitting ratio if needed. At the outputs of the PBS the
beam is collimated and has a waist of wcol = 1.8 mm. The transmitted beam is focused
onto the atoms by a f = 500 mm lens and produces a waist winc = (69.8 ± 0.8) µm at
the site of the atoms in a working distance of (505 ± 2) mm 27. Since only 20 % of the
incident light are transmitted into the coupling beam branch we exchanged the sub-
strate S1 in the differential mirror mount for a higher reflective one to provide sufficient
intensity at the atomic site. After the beam has passed the atoms it is reflected from
substrate S2 with a reflectivity of R780 = 92.8 % and coupled into the cryostat. The
cryostat telescope was rebuilt to produce an exact copy of the incident beam telescope
and we exchanged also the PM fiber for an anti-reflection coated single mode fiber28

with FPC to adjust the polarization of the back-reflected light from the cavity. This
allows for fiber coupling efficiencies into the cryostat of up to 90 % for coupling lattice
and homodyne light. We measured the waist of the back-reflected lattice beam to be
wback = (69.7 ± 0.1) µm, which matches the incident beam waist very well within the
error. Also the measured working distance of (504 ± 2) mm is nearly equal to the one of
the coupling lattice telescope. Both telescopes are mounted on translation stages that
allow to move the focal position along the beam propagation axis and align it with
respect to the atoms in the glass cell.
The auxiliary beam (light red line in figure 3.11) leaves the coupling lattice telescope
through the reflection port of the PBS and passes a combination of λ/2 waveplate and
PBS that are used to adjust the auxiliary beam power independently from the incident
beam power. Additionally, the auxiliary beam is p-polarized after the PBS and thus
matched to the polarization of the other two lattice beams. Subsequently, the auxiliary
beam diameter is reduced using telescope T2 to fit through the EOM that we employ
as a fast phase shifter. Telescope T3 is an inverted version of T2 and expands the
beam back to its original diameter. Additional to the EOM, which has a large band-
width but small phase stroke, we use a piezo mounted mirror, whose travel of 3.3 µm
allows for larger phase shifts at the cost of a reduced bandwidth. Finally, the auxiliary
beam passes telescope T1 that is used to mode match it to the back-reflected lattice
beam from the cavity. This telescope has a working distance of (590 ± 5) mm and is
also positioned on a translation stage to position its focal plane with respect to the
back-reflected beam. It produces a waist of waux = (68.5 ± 0.5) µm at the site of the
atoms, which deviates by only 1.7 % from the waist of the back-reflected beam wback
(see figure 3.12). The auxiliary beam is superimposed with the back-reflected beam on
substrate S2, where only 7.2 % of the auxiliary beam power are transmitted and the
rest is dumped. For the alignment with respect to the back-reflected beam we installed
two pellicle beam splitters in the common beam path of the back-reflected and auxil-
iary beam. Their reflectivity is strongly dependent on the tilt angle with respect to the
beam axis and we measured it to be (94 ± 2) % in their final position. One of them is
placed right after substrate S2 and allows to view and overlap the beams at their focal

27Due to the slightly different mode field diameter of the new fiber the waist winc is decreased by
6 µm with respect to the previous lattice beam.

28We used the same fiber type as on the lattice incident telescope - Nufern 780-HP single mode fiber
with 5 µm mode field diameter.
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position using a beam profiling camera. After the alignment is finished the camera is
replaced by a photo detector, which is positioned in the focal plane of the beams to
derive the signal for the phase-lock. The second pellicle beam splitter is placed in front
of the coupling lattice telescope and allows to monitor and align the beams in the far
field. The alignment strategy will be outlined in the next paragraph.
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Figure 3.11: Realized optical setup for the auxiliary lattice beam. Modified setup of
the coupling lattice (see figure 2.5) including the auxiliary beam path. The auxiliary beam is
derived from the incident lattice light in the coupling lattice telescope (light red line). Its power
can be adjusted independently using a λ/2 waveplate and a PBS. Telescope T2 is used to reduce
the beam diameter for passage through the EOM and T3 restores the former beam size. The
EOM (LM0202 0.1W KD*P 3x3 400-850 nm from Linos) is used together with the piezo mirror
(ring actuator NAC2121 from Noliac) to shift the phase of the auxiliary beam with respect to
the back-reflected beam from the cavity. Telescope T1 is used to reproduce the beam shape of
the back-reflected beam as good as possible and is placed on a translation stage to align the
focus with respect to the atoms. The auxiliary and back-reflected beam are superimposed on
the substrate S2 and their interference can be monitored in the focal plane (using a pellicle
beam splitter on the left of the glass cell) or in the far field (using a pellicle on the right of the
glass cell). Figure adapted from [100].
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Auxiliary beam alignment

Along the beam path of the auxiliary beam we use different telescopes to shape the
beam to our needs. First, the beam diameter has to be reduced in order to fit trough the
aperture of the EOM (3x3 mm) without clipping. For that we use telescope T2 which
consists of two lenses with focal lengths f1 = 125 mm and f2 = −20 mm separated by
a distance df1,f2 = 10.8 mm that reduce the collimated beam waist to wcol = 460 µm.
After the beam has traversed the EOM it is expanded again to its original size by
T3, which is an inverted version of T2. In front of the last beam shaping telescope
T1 we measure a waist of the collimated beam of wcol = 1.89 mm. T1 consists of two
lenses with focal lengths f1 = −200 mm and f2 = 200 mm separated by a distance
df1,f2 = 7.6 mm. The lenses are chosen to produce a beam waist as close as possible
to the waist of the back-reflected beam, while at the same time providing a slightly
larger working distance then the other two lattice telescopes. Of course with this setup
the auxiliary beam cannot be perfectly mode matched, but we find reasonable mode
overlap with the back-reflected beam along the whole common beam path (see figure
3.13).
All three telescopes have two main features in common: One of the lenses is fixed in
a lens tube, which is mounted in a v-groove. The other lens is held by a moveable
lens mount that allows for translation in the directions perpendicular to the beam
axis. For the alignment the transmitted beam is viewed on a beam profiling camera
and iteratively adjusted onto the center of the lenses using a beam walk and and the
translation of the lens. The quality of the alignment is indicated by the beam shape
and its susceptibility to move upon rotation of the telescope. Once no movement of the
beam spot during rotation is visible the beam is properly aligned.
In order to measure the waist size of the auxiliary beam and its relative position with
respect to the waist of the back-reflected beam we superimpose the beams roughly and
use pellicle P1 to reflect a fraction of the light intensity onto a beam profiling camera.
The beam camera is placed close to the focal position of the beams and moved along
the beam propagation axis to record the beam size at different positions along the beam
(see figure 3.12). The measured beam sizes are fitted using the formula for the evolving
Gaussian beam width

w(z) = w0

√
1 +

(
z

z0

)2
(3.54)

to obtain the beam waists waux,back and the corresponding waist positions. Using the
translation stage of T1 the focal position of the auxiliary beam can adjusted by the
waist separation obtained from the fit (indicated by the two dotted lines in figure 3.12)
and overlapped with the focal position of the back-reflected beam. For the final fine
alignment of the auxiliary beam one can use Kapitza-Dirac diffraction as described in
section 2.2.1 again. If the lattice backreflex is already well aligned onto the atoms a
more convenient method for the alignment of the auxiliary beam can be used that leads
to the same result. By maximizing the interference contrast between the auxiliary and
back-reflected beam the auxiliary beam can be aligned onto the atoms. We do this by
iteratively overlapping the beams at their focal position (using pellice P1) and in the far
field (using pellicle P2) on the beam profiling camera until we observe only one global
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Figure 3.12: Measurement of the waist
sizes waux and wback back to back. Af-
ter the auxiliary beam and the back-reflected
beam are roughly overlapped we record the
spot size of the beams at different positions
along the beam axis using a beam profiling
camera on a translation stage. Each data
point is averaged over 20 shots. The dot-
ted lines depict the waist positions obtained
from the fit. The auxiliary beam telescope
is moved by the distance of the waists after
the measurement, to overlap the foci of the
beams. Here the separation is (1.0±0.2) mm.

Figure 3.13: Interference between
equally strong auxiliary and coupling
lattice beam. The top row shows the
time dependent interference in the far
field (≈ 50 cm) behind the glass cell. The
bottom row depicts the time dependent
signal in the focal plane (zoomed 8x). From
left to right the intensity increases from
minimum to maximum.

interference fringe. This is depicted in figure 3.13, where the resulting interference at
three instants in time is presented. When the beam powers are matched one observes
complete destructive interference, which results in "blinking" of the beam spot on the
beam profiling camera. In the far field the beams do not completely annihilate each
other. This can be attributed to an imperfection in the mode match, since we can not
reproduce the back-reflected beam over the whole beam path with a different set of
optics. We concentrated our beam shaping effort mainly on the focal region, where the
beams interact with the atoms, and find that the modes are matched sufficiently well.

Realized phase-locking scheme

During the master thesis of C. F. Klein [100] a first version of the auxiliary lattice beam
setup was realized. At that time we used a mirror mounted on a piezo ring stack29 to
stabilize the relative phase between back-reflected and auxiliary beam. The choice of
the actuator was based on our well working homodyne phase-lock, where we use the
same actuator. We expected the relative phase drifts between the auxiliary and back-
reflected lattice beam to be the same as between the local oscillator and the signal
beam since they are mainly introduced by the cryostat fiber, which is traversed by the
light in both cases. However, for the auxiliary lattice phase lock this actuator turned
out to be not fast enough. A probable reason can be the better passive stability of the
compact homodyne setup, where all optics are mounted on short posts resulting in a
beam height of 50 mm over the optical table. In contrast, the beam height of the lattice

29HPSt 150/14-10/12 from Piezomechanik with 16 µm maximum stroke.
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beams (120 mm) is predetermined by the position of the atoms in the glass cell. Addi-
tionally, the auxiliary beam has to be guided around the whole experimental setup30

to be irradiated along the back-reflected beam.
For this reason we decided to implement a two-stage phase-lock that enables to stabi-
lize slow frequency drifts using a piezo and is capable to handle the remaining higher
frequency phase drifts with a fast EOM.

In the realized setup we use a pellicle in the common beam path of the back-reflected
and the auxiliary beam to reflect a small fraction of the intensity onto a photo detector
that we place in the focal plane of both beams. In this way we make sure that we can
stabilize the intensity at the site of the atoms by adjusting the relative phase ϕaux,back.
The signal from the photo detector is low-pass filtered at 60 kHz 31 and fed to a fast
servo controller32. Its output is connected to a high voltage amplifier33 that drives the
EOM. The error signal from the servo controller is fed to a second, identical controller
and its output is connected to another high voltage amplifier34 that drives the piezo
actuator. In this configuration the EOM is used as a fast proportional regulator and the
piezo is configured as a pure integrator, which allows for the best locking performance
due to the separation of time scales.
The nominal bandwidths of the phase shifting elements are 1 MHz for the EOM and
490 kHz for the unloaded piezo actuator. However, there are several factors that limit
the achievable bandwidth in the experiment. The EOM has a half wave voltage of
Uπ = 2 · 259 V at 780 nm 35, thus the large bandwidth will be limited by the high
voltage amplifier that drives the EOM. On the other hand the piezo actuator is glued
between a 6 mm thick half-inch mirror and a one inch substrate, which is mounted in a
standard mirror mount. The load of the small mirror drastically reduces the bandwidth
of the actuator.
In order to estimate the achievable bandwidth of the components a test Mach-Zehnder

interferometer was set up with both actuators placed in one interferometer arm. To
characterize the piezo mirror bandwidth the intensity at the interferometer outputs is
stabilized by locking the phase between both interferometer arms to the side of an inter-
ference fringe (as described in section 3.5.2). Next the setpoint of the lock is modulated
with an amplitude that corresponds to 10 % of the intensity modulation depth due to
interference and the modulation frequency is varied over a range of 10 Hz to 30 kHz. We
are interested in the frequency range over which the piezo can follow the modulation
and maintain the lock. Therefore, we measure the in-lock amplitude of the modulated
intensity in the interferometer. Figure 3.14 shows the resulting amplitude and phase re-
sponse. The in-lock frequency modulation can be followed up to a frequency of 2.5 kHz
before a resonance at 3.4 kHz appears that significantly distorts the amplitude of the

30resulting in a 310 cm long beam path from PBS to photo detector see figure 3.11.
31This is done to make sure that the locking electronics do not see any frequency components from

the mechanical resonator. Used SIM 965 analog filter from Stanford Research Systems.
32LB1005 from New Focus with 10 MHz bandwidth.
33HA51U-0.5B20 from hivolt with Ud = ±500 V output voltage and 30 kHz bandwidth.
34A-301 HS from A.A. Lab Systems Ldt. with Ud = ±200 V output voltage and 250 kHz bandwidth.
35The used EOM can rotate the polarization of a laser beam or retard the beams phase, depending

on its orientation. Compared to the polarization rotation a phase retardation by π requires twice the
voltage.
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signal. If the EOM is included into the lock the amplitude of this resonance is reduced,
which increases the overall bandwidth to ≈ 16 kHz before the next resonance appears.
For reference the modulation bandwidth of the EOM alone is also measured. In this
case the EOM is used to rotate the light polarization and a PBS is placed after the
EOM to measure the amplitude and phase of the resulting intensity modulation. The
measurement confirms that the bandwidth of the EOM is limited by the driving high
voltage amplifier. At 30 kHz the amplitude response drops to −1.6 dB in accordance
with the specifications by the manufacturer.
From the half-wave voltage Uπ of the EOM its maximum phase shift at the full modu-
lation depth can be determined to ∆ϕEOM = π · Ud

Uπ
= 1.93π = 6.06 rad. The piezo has

a free stroke of 3.3 µm at a maximal drive voltage of Ud = 200 V and thus can produce
a phase shift of ∆ϕpiezo = 8.46π = 26.58 rad.
Using the lock points and the corresponding photo detector signal from the measure-
ments presented in sections 3.5.2 and 3.5.3 the residual in-lock phase noise can be de-
termined. For a shift of the relative phase ϕaux,back = π the interference signal changes
from maximum to minimum, thus the peak to peak voltage Upp of the photo detector
signal can be assigned to this phase shift. The residual root-mean-square (rms) phase
noise in the phase locked beam can then be calculated from the in-lock signal U in−lock

rms
by

ϕrms = π

Upp
U in−lock

rms . (3.55)

Note, that the residual phase noise depends on the lock point, as it increases with higher
intensities. For typical lock settings in the experiments we obtain a residual phase noise
between ϕbof

rms = 0.038 π = 119 mrad and ϕsof
rms = 0.061 π = 192 mrad, where bof denotes

the lowest used lock point at the bottom of the fringe and sof denotes a lock point
close to the side of the fringe.

Figure 3.14: Bandwidth esti-
mation of the used phase-
shifting components. Measured
amplitude and phase response of
the used components for varying
modulation frequency. The ampli-
tude response is normalized to the
measured modulation amplitude at
10 Hz and is flat below 1 kHz, thus
the plot sows only higher frequen-
cies. The dashed-dotted lines mark
the most pronounced resonances
of the piezo actuator at f1 =
3.4 kHz and f2 = 18.1 kHz. It is
clearly visible that the bandwidth
of the combined lock is increased
by more than 10 kHz. The modula-
tion bandwidth of the EOM is mea-
sured at full modulation depth of
±500 V.
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3.5 Sympathetic cooling in a pump asymmetry compen-
sated lattice

In this section the conducted experiments to compensate the pump asymmetry in our
system are presented. The goal is to investigate, whether the coupling strength be-
tween the two hybrid partners can be enhanced by alleviating the pump asymmetry.
As described earlier in section 3.1.1 the sympathetic cooling mechanism is based on
the resonance between the atomic oscillations in the coupling lattice with frequency
ωat and the oscillations of the mechanical resonator with frequency ωm. The resulting
sympathetic cooling rate Γsym follows a specific resonance behaviour depending on the
maximum atomic trapping frequency ωat on the beam axis (see figure 3.2). We studied
this resonance behaviour of Γsym(ωat) in detail by sweeping the lattice depth in lattices
with different pump asymmetries. From the sympathetic cooling rate the hybrid coop-
erativity Chybrid (equation (3.25)) can be derived to gauge the strength of the hybrid
coupling.
The lattice depth can be varied either by changing the lattice power Plat or the lattice
detuning ∆at,L. For the coupling mechanism both methods are equivalent, but they
lead to different parasitic effects. For example, when sweeping the detuning close to
the atomic resonance the atomic scattering rate increases, the atoms are expelled from
the trapping potential of the lattice and the sympathetic cooling rate is drastically
reduced. On the other hand large coupling lattice powers lead to heating of the MiM
system and thermal drifts of the cavity which can distort the measurement. We decided
to sweep the lattice detuning at a fixed lattice power, as this allows to reliably stabilize
the cavity length, avoids parasitic heating effects and is much more convenient for the
adjustment of the balancing of the coupling lattice.

The presented measurements were performed with the MiM system at room tempera-
ture due to maintenance work on the cryostat. Qualitatively, this does not affect the
experiments, as we primarily intended to investigate the influence of the pump asymme-
try and its reduction on the atom-resonator coupling in our system. A decreased initial
bath temperature mainly leads to lower final mode temperatures that can be reached
with sympathetic cooling. The only concern we faced before doing the experiments
at room temperature was the stability of the cavity length. With the MiM system at
500 mK we observed an excellent passive stability of the cavity in the past [74], such
that no additional active cavity length stabilization was required. However, after the
exchange of the mechanical resonator the cavity stability was seemingly reduced. This
can be explained by the 20 times lower mechanical damping rate Γm of the tram-
poline resonator compared to the former membrane resonator. A reduced mechanical
damping rate makes the resonator more susceptible to optomechanical heating close
to resonance, and hence to shifts of the mechanical resonance frequency due to the
optical spring effect (see section 2.3.2). These frequency shifts lead to a detuning from
the cavity resonance and can not be distinguished from real cavity length changes. To
circumvent this effect, moderate feedback cooling of the resonator was applied to sup-
press possible instabilities caused by optomechanical heating [77]. For the experiments
presented here we chose a different approach and stabilized the cavity length using the
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optical spring lock described in section 2.3.2.
In the following, the used experimental sequence and the evaluation method are de-
scribed. Subsequently, the experimental results are presented and discussed and relevant
parameters such as realized cooling rates and obtained hybrid cooperativities will be
derived. The presented measurements were conducted together with C. F. Klein.

3.5.1 Experimental sequence

All coupling experiments presented in this section were performed with atoms confined
in a compressed high optical density magneto optical trap (in the following denoted
by high OD MOT). To realize this configuration the atoms are loaded for 5 s from the
2D-MOT into the 3D-MOT using a pushing beam and optimized MOT parameters
for efficient loading. Subsequently, the pushing beam is switched off and the parame-
ters are linearly ramped within 500 ms to a new set of MOT parameters optimized for
high atomic density: cooling light intensity I0 = 31.5Isat = 52.6 mW/cm2 ⇒ 2.25Isat =
3.8 mW/cm2, magnetic field gradient 5 G/cm ⇒ 45 G/cm and cooling light detuning
δMOT = −2π · 17.8 MHz (2.9 ΓD2) ⇒ −2π · 37.8 MHz (6.2 ΓD2). The final parameters
were found to yield the highest sympathetic cooling rates in [74]. Next, the 2D-MOT
is switched off and the coupling lattice is ramped to its final depth in 1 ms. In exper-
iments that use the auxiliary lattice beam, the servo controllers stabilize the relative
phase ϕaux,back within 50 ms after the final lattice depth is reached. After 3 s of coupling
the lattice is ramped down again in 10 ms and the resonator is allowed to rethermalize
for 5 s, before the next sequence starts. A sketch of the experimental sequence is shown
in figure 3.15.
In order to avoid unwanted optomechanical heating of the resonator during the mea-
surements, the cavity is stabilized at moderate red detuning ∆cav/(2π) = −1 GHz.
This results in a measured optical spring shift of ∆ωm/(2π) = 20 Hz and places the
resonator on the optomechanical cooling side of the cavity resonance with a cooling
rate of Γopt = 3.1 mHz that is negligible compared to the sympathetic cooling rate.
To quantify the sympathetic cooling effect we measure the mode temperature Tmode of

the resonator during the coupling as a function of time using homodyne detection. The
voltage signal from the photo detector is demodulated by a lock-in amplifier36 to obtain

36HF2LI from Zurich Instruments

Figure 3.15: Experimental se-
quence for sympathetic cool-
ing in the high OD MOT. The
blue line denotes the optical den-
sity (OD) of the atoms and the
green line shows the lattice power.
After loading the MOT for 5 s the
trap parameters are switched to
produce a high OD MOT, while the
lattice power is ramped up within
1 ms. The atoms are coupled to the
mechanical resonator for 3 s before
the lattice is ramped off again.
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the PSD Sy(ω), which originates from a displacement of the mechanical mode at ωm.
The demodulator output voltage Vd(t) is proportional to the integrated PSD ⟨x2(t)⟩
and hence proportional to the mode temperature of the resonator (see equation (2.34)).
This holds long as the demodulator bandwidth Bd ≫ Γm and Sy ≈ Sx (measured PSD
corresponds to the real PSD), which is a good approximation if the thermal noise peak
Sx(ωm) is well above the noise floor Simp

x . For the measurements at room temperature
we determined the homodyne calibration factor to be | ∂ϕx

∂xm
| = (0.738 ± 0.006) rad/nm

(see section 2.2.2).
An exemplary trace of the time evolution of the resonators mode temperature is

depicted in the left panel of figure 3.16. After the coupling lattice is ramped up
(t = 0 s), the mode temperature reduces to the final sympathetically cooled tempera-
ture Tmode,min. We determine Tmode,min by averaging the mode temperature over 1.4 s
once a steady state after the initial cool-down is reached. The displayed trace (solid
blue line) is an average of 15 measurements at equal parameters and the shaded region
around the trace denotes the standard deviation. For the measurements where we used
the auxiliary beam for the pump asymmetry compensation an additional evaluation
step is needed. Simultaneous to the time evolution of the resonator mode temperature
we record the cavity transmission and reflection signals as shown in the right panel
of figure 3.16. The transmission signal (red lines) indicates the quality of the cavity
lock, while the reflection signal (blue lines) lets us judge how well the auxiliary lattice
lock worked. Since we permanently measure the resonator displacement, even when the
coupling lattice is turned off, the optical spring lock is active all the time. However,
when the lattice is ramped up the intra-cavity power rapidly increases and with it the

Figure 3.16: Sympathetic MOT cooling in the time domain. Left panel: Exemplary
trace of the resonator mode temperature Tmode during sympathetic cooling in the high OD
MOT. At t = 0 s the lattice is ramped on and the mode temperature decreases due to the
coupling to the atoms. The blue solid line is the average of 15 measurements and the shaded
region around the trace denotes the standard deviation. The region between the dashed grey
lines is used to determine Tmode,min (red dotted line). Parameters: Plat = 100 µW, ∆2,3 =
2π · 361 MHz, ωat = 2.18 ωm. Right panel: Exemplary traces of the cavity reflection and
transmission during a sympathetic cooling experiment. The dark red (blue) solid lines depict
traces where both locks were stable. The lighter shades are examples for cases where the locks
failed. In the latter case, corresponding time traces of the mode temperature evolution are
excluded from further evaluation.
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magnitude of the optical spring effect, resulting in a temporarily increased gain of the
lock. In some cases this can destabilize or even break the lock, which can be observed on
the cavity transmission signal. On the other hand it is possible that the auxiliary lattice
lock can not stabilize the relative phase fast enough and the coupling takes place in a
lattice with arbitrary lattice depth due to the random relative phase. For this reason
we evaluate the corresponding transmission and reflection signals to each time trace of
the resonator mode temperature evolution in order to determine if all locks were stable
during the coupling. Only measurement runs where both locks were stable during the
whole coupling time are regarded for further evaluation.

3.5.2 Blue detuned lattice

The first scenario we want to look at is sympathetic cooling in a blue detuned lattice.
This configuration allows to investigate the hybrid coupling mechanism for high atomic
densities even in a strongly asymmetric lattice. It is the ideal test bed to figure out if
our approach to compensate the pump asymmetry in the coupling lattice works and
how it performs in comparison to the asymmetric case.

Balancing of the lattice

We decided to work at a lattice power of 100 µW, which allows good control over the
MiM cavity and does not lead to excessive heating when the lattice light is resonantly
coupled to the cavity and no sympathetic or feedback cooling is applied. With the
cavity on resonance (22±1) % of the incident lattice light is reflected onto the atoms37.
As illustrated in figure 3.10 balancing of the coupling lattice can be achieved with
different combinations of the auxiliary beam power Paux (Iaux ∝ Paux) and the relative
phase ϕaux,back between the auxiliary and the back-reflected beam. For a side of fringe
lock the relative phase is ϕaux,back = π/2, the interference term vanishes and the beam
powers Pback and Paux simply add up to the total reflected power Pref,tot. Thus, we
determine the needed auxiliary beam power to be Paux = Pinc − Pback in this case. To
find the exact needed powers we measure the incident beam power Pinc in front of the
glass cell and calculate the power at the site of the atoms using the known transmission
for a single surface of the glass cell (see figure B.1). The auxiliary beam power Paux
is measured at the same position (after the beam has traversed the glass cell) and the
power of the back-reflected beam Pback is measured in front of the lattice back-reflex
photo detector (see figure 3.11). Also the phase-locked total reflected power Pref,tot of
the combined back-reflex and auxiliary beam is measured in front of the photo detector.
All values for the beam powers that are stated in the following are already converted
to the power at the site of the atoms, using the transmission factors of the traversed
optical elements.

37Due to the additional losses we had to introduce, in order to enable the use of the auxiliary lattice
beam (see section 3.4.1).
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Evidence for sympathetic cooling in a balanced lattice

With the auxiliary beam power set to Paux = 0.78 Pinc sympathetic cooling measure-
ments in a balanced lattice can be conducted. We use the experimental sequence de-
scribed in section 3.5.1 and stabilize the relative phase to ϕaux,back = π/2 using the com-
bined piezo and EOM lock. In this configuration the atoms experience equal intensities
from both directions of the incoming lattice beams and hence the pump asymmetry in
the lattice is compensated. In the following we will distinguish measurements where we
employed the auxiliary lattice beam for pump asymmetry compensation (with PAC)
from measurements without auxiliary beam (without PAC).
The lattice detuning is set to ∆2,3 = 2π ·214 MHz 38 which leads to sympathetic cooling
in our usual (asymmetric) lattice. Now the resonator mode temperature Tmode can be
determined from the homodyne signal, which is demodulated at the resonator frequency
ωm. We slightly vary the lock-point of the relative phase around π/2 and measure the
sympathetically cooled resonator mode temperature. The results are depicted in figure
3.17 and clearly show that sympathetic cooling in a balanced blue detuned lattice is
possible. We observe a reduction of the mode temperature from room temperature to
slightly below 3 K. In the left panel of figure 3.17 the measured mode temperature Tmode
is plotted as a function of combined power of the back-reflected lattice beam Pback. The
power is varied by changing the relative phase ϕaux,back, which is depicted in the right
panel, where Pref,tot is plotted as a function of ϕaux,back.

38In the following ∆2,3 denotes blue detuning relative to the atomic transition |F = 2 → F ′ = 3⟩,
whereas ∆2,1 denotes red detuning relative to the |F = 2 → F ′ = 1⟩ transition.

Figure 3.17: Variation of the lattice lock-point in blue detuned lattice. Left panel:
Resonator mode temperature Tmode as a function of Pref,tot resulting from different lock-points
of the relative phase ϕaux,back. In the vicinity of ϕaux,back ≈ π/2 the pump asymmetry is com-
pensated and sympathetic cooling with the auxiliary lattice beam is possible. The shaded area
denotes the range of Pref,tot that is theoretically achievable by interference of both beams. Right
panel: Total reflected power Pref,tot of the interfering back-reflected and auxiliary beam as a
function of their relative phase ϕaux,back. Blue circles show the lock-points at which sympathetic
cooling in the PAC lattice occurred. Red circle denotes heating. Parameters: Pinc = 102.6 µW,
Pback = 22.1 µW, Paux = 80.4 µW, ∆2,3 = 2π · 214 MHz.
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For relative phases close to ϕaux,back = π/2 we measure a comparable sympathetic
cooling effect, but if the relative phase is decreased (increased) towards 0 (π) the cooling
turns into heating. This is illustrated by the red circle in the right panel of figure 3.17
that corresponds to the dark blue triangle in the left panel at Tmode = (214.4±96.2) K.
For reference, also the mode temperature that is reached with sympathetic cooling at
the set parameters in our asymmetric lattice without auxiliary beam is plotted (blue
circle in the left panel). The measured mode temperature for the asymmetric lattice
Tmode,noPAC = (1.4 ± 0.3) K is slightly lower than the mean mode temperature from
the measurements around the balanced lattice configuration T̄mode,PAC = (2.5 ± 0.6) K.
This might be explained by the different resulting lattice depths that do not fulfil the
resonance condition for hybrid coupling equally well. In order to evaluate this we have
to compare the resonance behaviour of the sympathetic cooling in the balanced and
the asymmetric lattice.

Resonance behaviour in a balanced lattice

In order to assess the strength of the hybrid coupling we have to investigate the evolu-
tion of the resonator mode temperature as a function of the coupling lattice depth. For
atomic trapping frequencies ωat ≈ ωm close to the mechanical resonance frequency we
expect to see resonant coupling behaviour and thus a reduction of the resonator mode
temperature due to sympathetic cooling.
As described in the beginning of section 3.5 we vary the lattice depth by adjusting

different lattice detunings within a range of several gigahertz around the atomic transi-
tion39. For each lattice detuning we measure the resonator mode temperature Tmode(t)
and determine the minimum mode temperature Tmode,min after the initial cooldown
as depicted in figure 3.16. We performed the measurement in our normal, asymmetric
lattice and in the balanced, compensated lattice to compare the strength of the sympa-
thetic cooling effect. The results are shown in figure 3.18 and one clearly observes the
expected resonant behaviour for both lattice configurations. However, one also notices
that the cooling behaviour is different for both lattices. In the balanced lattice the cool-
ing effect is reduced compared to the asymmetric lattice for most trapping frequencies
up to ωat/ωm ≈ 4.1 where the minimum mode temperature T PAC

min is reached. Also the
range of trapping frequencies that allows for efficient sympathetic cooling is broadened
with respect to the asymmetric lattice. The fact that we observe sympathetic cooling
at trapping frequencies of multiple ωm can be understood by the influence of the Gaus-
sian radial intensity profile of the trapping beams, which we did not include in our
lattice depth calibration. Since the atomic cloud is much larger than the waists of the
lattice beams there are atoms at all radii that contribute to the coupling with differ-
ent sympathetic cooling rates due to their radius-dependent axial trapping frequencies.
The decreased cooling performance can be attributed to the larger number of scattered
photons in the balanced lattice due to the increased laser power at the site of the atoms.
We observed qualitatively very similar effects in earlier experiments with a membrane
resonator in which the detuning sweeps were performed at different laser powers [74].

39The lattice frequencies were adjusted manually with a precision of ≈ 5 MHz relative to a frequency
f0 which is determined with an absolute accuracy of 3 MHz using the transfer-lock (see section 2.2).
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Figure 3.18: Sympathetic cooling with and without pump asymmetry compensation
in blue detuned lattice. Minimum resonator mode temperature Tmode during sympathetic
cooling with a high OD MOT as a function of the resonant lattice depth. Left panel: The lattice
power is held constant and the detuning ∆2,3 is varied to tune the lattice depth. The circles show
the resulting mode temperature Tmin = (1.54 ± 0.34) K due to coupling mediated via an imbal-
anced lattice and the triangles denote the measured mode temperature T PAC

min = (2.87 ± 0.69) K
in a balanced lattice. Dashed lines depict the bath temperature Tbath = 294 K, which corre-
sponds to the room temperature. Right panel: Tmode as a function of the (calibrated) atomic
trapping frequency ωat in units of the resonator frequency ωm. Parameters: Pinc = 102 µW,
Pback = 20.5 µW, Paux = 102.2 µW, ϕaux,back = 0.57 π. Note that this measurement was per-
formed after the parameter optimization in the red detuned lattice (section 3.5.3), where we
found optimal sympathetic cooling for Paux = Pinc.

There, the measured minimum mode temperature was 1.6 times higher when the lattice
power was increased by a factor of 4. In our case the minimum mode temperature in
the balanced lattice is 1.9 times higher than in the asymmetric lattice. Furthermore,
residual phase noise in the combined back-reflected beam can lead to intensity noise
that limits the performance of the PAC lattice. Nonetheless, this assumption could not
be proven through independent measurements.

In order to obtain the sympathetic cooling rates for the coupling measurements in the
balanced and asymmetric lattice we use the measured temperatures Tmode, Tbath and
the mechanical linewidth Γm (from table 2.1) to calculate Γsym according to equation
(3.15). The obtained cooling rates can be described by the theoretical model for the
ensemble-integrated cooling rate (see equation (3.17) and figure 3.2) with the atomic
cooling rate Γat and the single phonon coupling strength gN as free fit parameters. The
results are displayed in figure 3.19, where the atomic trapping frequencies are rescaled
using the fit to account for the radial intensity distribution of the coupling lattice
beams. Given that the same MOT parameters were used the extracted atomic cooling
rates Γat should be equal. However, the PAC data can not be unambiguously fitted
and therefore we retrieve an increased value for Γat from the fit. With the measured
maximum sympathetic cooling rates the hybrid cooperativities can be calculated using
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Figure 3.19: Resonance behaviour
of Γsym(ωat) for MOT cooling
in blue detuned lattice. Sympa-
thetic cooling rate Γsym calculated
with equation (3.15) using the tem-
peratures Tmode and Tbath from fig-
ure 3.18. Data points with decreasing
Γsym for large ωat are omitted. The
solid lines are fits according to equa-
tion (3.17), which are used to obtain the
atomic cooling rate Γat and to rescale
the x-axis. Maximum measured cool-
ing rates: Γmax

sym = (27.7 ± 6.1) Hz and
Γmax

sym,PAC = (14.8 ± 3.6) Hz.

equation (3.25)

Chybrid = (190 ± 42) and CPAC
hybrid = (102 ± 25).

Evidently, although sympathetic cooling is possible in a blue detuned coupling lat-
tice with compensated pump asymmetry the optomechanical coupling could not be
enhanced in the balanced lattice.

3.5.3 Red detuned lattice

After we have observed that the pump asymmetry compensation works and that sym-
pathetic cooling with our setup can be realized in a balanced blue detuned lattice we
want to study the behaviour in the red detuned case. Until now, efficient sympathetic
cooling in a red detuned lattice was only possible using atoms in an optical molasses,
where the atomic density is reduced compared to a MOT [74]. In our hybrid experi-
ment as well as in a similar one [72, 73] the attempt of sympathetic cooling with higher
atomic densities in a red detuned lattice led to a dynamic instability that excited the
mechanical resonator to limit-cycle oscillations instead of cooling it.

We repeat the measurements presented in section 3.5.2 with the same MOT parameters,
leading to a high OD atomic sample, but change the detuning of the coupling lattice
with respect to the atomic resonance from blue to red. Again we compare the scenario
in our intrinsically asymmetric lattice to a lattice with additional auxiliary beam and
study the resonant coupling behaviour as a function of the lattice depth by varying the
lattice detuning ∆2,1. The auxiliary beam power is again set to the difference of Pinc
and Pback to produce a balanced lattice when the relative phase is locked at the side of
the fringe and the results are depicted in figure 3.20. The data without PAC reproduce
the already known behaviour, where the resonator mode temperature is drastically
increased as soon as the lattice detuning is small enough to approach the resonant
lattice depth around ωat ≈ ωm. In contrast, for the data where the auxiliary lattice
beam is employed we observe a significant reduction of the mode temperature to a
minimum value of T PAC

min = (8 ± 2) K with the MiM-system at room temperature. Note
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Figure 3.20: Sympathetic cooling with and without pump asymmetry compensation
in red detuned lattice. Minimum resonator mode temperature Tmode during sympathetic
cooling with a high OD MOT as a function of the resonant lattice depth. Left panel: The lattice
power is held constant and the detuning ∆2,1 is varied to tune the lattice depth. The circles show
the resulting mode temperature due to coupling mediated via an imbalanced lattice and the
triangles denote the measured mode temperature Tmin,PAC = (8 ± 2) K with applied auxiliary
lattice beam. Dashed lines depict the bath temperature Tbath = 294 K, which corresponds to
the room temperature. Right panel: Tmode as a function of the (calibrated) atomic trapping
frequency ωat in units of the resonator frequency ωm. Parameters: Pinc = 102.6 µW, Pback =
21.2 µW, Paux = 81.4 µW, ϕaux,back = 0.78 π.

however, that the relative phase ϕaux,back = 0.78π is set closer to the bottom of the
fringe than to the side which results in a total reflected power of Pref,tot = 38.5 µW.
Notably, cooling in a balanced lattice with this lattice configuration was not possible so
we adjusted the relative phase at a fixed detuning until we observed a cooling effect and
swept the detuning subsequently. The resulting lattice is still asymmetric but allows for
sympathetic cooling. This unexpected result motivated a more detailed investigation of
the lattice parameters that will be described in the following.

Parameter optimization

As already explained in section 3.4 a balanced lattice can be obtained from different
combinations of the auxiliary beam intensity and the relative phase ϕaux,back. There-
fore, we studied the sympathetic cooling behaviour for different ratios Paux/Pback from
1:1 to 7.4:1 of the auxiliary beam power with respect to the back-reflected power and
varied the relative phase to tune the total reflected power Pref,tot. The incident power
Pinc = 102.6 µW is held constant and we fix the detuning close to the point, where op-
timal sympathetic cooling occurred in the previous measurement (see figure 3.20). The
results are shown in figure 3.21, where each color corresponds to one ratio Paux/Pback
in all plots. For moderate auxiliary beam powers the data exhibit a minimum of the
mode temperature when the power of the combined reflected beam is increased, which
indicates the existence of an optimal relative phase (red, orange, yellow). The remain-
ing power ratios lead to a monotonically increasing mode temperature with increasing
Pref,tot. Each setting of the total reflected power corresponds to one value of ϕaux,back
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as depicted in the top right panel. It stands out that all lock-points are situated on the
lower half of the fringe. For every power ratio (>2:1) the point closest to the bottom
of the fringe yields the lowest mode temperature. Moving the lock-point towards the
side of the fringe, which results in a larger reflected power, leads to a higher Tmode. The
lock-points were swept from the lowest possible value that allowed stable operation
of the phase-lock to a setting were no cooling effect is visible any more. Clearly, the

Figure 3.21: Sympathetic cooling efficiency in red detuned lattice for different pump
asymmetries. To identify the parameters for the best sympathetic cooling efficiency in the
high OD MOT Paux is set to multiples of Pback (see left column in legend) and the resonator
mode temperature Tmode is measured as a function of the total reflected power Pref,tot, which
is varied by sweeping the relative phase ϕaux,back between back-reflected and auxiliary beam.
Corresponding Pref,tot and ϕaux,back are indicated by the same color. Top left panel: Tmode
as a function of Pref,tot resulting from varying the lock-point of the relative phase ϕaux,back for
different Paux. The dotted line denotes a symmetric lattice, but clearly the cooling efficiency
at this lattice configuration is inferior to other still asymmetric configurations. Top right
panel: Total reflected power Pref,tot of the phase-locked interfering beams as a function of their
relative phase ϕaux,back for different Paux. The circles denote the lock-points at which Tmode
is investigated. Interestingly, the lock-points corresponding to the lowest Pref,tot and thus to
the highest asymmetry in the resulting lattice, lead to the most efficient cooling. Bottom left
panel: Tmode as a function of the (calibrated) atomic trapping frequency ωat in units of the
resonator frequency ωm. Bottom right panel: Tmode as a function of the pump asymmetry A
(see equation 3.26). Parameters: Pinc = 102.6 µW, Pback = (21.4 ± 0.5) µW, ∆2,1 = −475 MHz.
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most efficient cooling is achieved with the power ratios Paux/Pback 4:1 and 4.8:1 where
the auxiliary beam power is close or equal to the incident beam power. We also find
a configuration that allows for sympathetic cooling in a balanced red detuned lattice
(denoted by the dotted line in the upper left panel of figure 3.21) but the cooling effect
is less pronounced for this setting. Again, it seems likely that the resonance condition
for the coupling is not equally well fulfilled here (compare bottom left panel), however
this assumption could be ruled out by another detuning sweep for selected power ratios
(see figure 3.22). Although we can not confirm our initial assumption, that sympathetic
cooling works best in a balanced optical lattice we observe that the cooling efficiency
improves with decreasing pump asymmetry according to our expectation. The optimal
cooling is achieved at an asymmetry of A ≈ 1 and the performance deteriorates again
towards the completely symmetric lattice at A = 0 (compare bottom right panel in fig-
ure 3.21). For negative values of A the pump asymmetry is inverted and the combined
reflected power exceeds the incident power.

In order to further characterize the sympathetic cooling in the red detuned lattice we
study the resonant behaviour of the mode temperature as a function of the lattice
depth by varying the detuning ∆2,1 again. We compare the power ratios Paux/Pback =
4:1 and 4.8:1, for which we obtained the lowest mode temperatures for the sweep of
the relative phase and the ratio 7.4:1 at the setting of ϕaux,back that resulted in the
balanced lattice configuration. The results are shown in figure 3.22 and the individual

Figure 3.22: Sympathetic cooling in red detuned lattice for optimized parameters.
Minimum resonator mode temperature Tmode as a function of the resonant lattice depth. Left
panel: The lattice power is held constant and the detuning ∆2,1 is varied to tune the lattice
depth. Comparison of the cooling efficiency of the two auxiliary beam powers Paux that resulted
in the lowest Tmode during the lock-point sweep (see figure 3.21) and a configuration that re-
sults in a balanced lattice (pink). Minimum reached temperatures are Tmin,4:1 = (3.24 ± 0.75) K,
Tmin,4.8:1 = (2.91 ± 0.66) K and Tmin,7.4:1 = (16.63 ± 3.63) K. The dashed lines denote the bath
temperatures Tbath = 294 K, which corresponds to the room temperature. Right panel:
Tmode as a function of the (calibrated) atomic trapping frequency ωat in units of the res-
onator frequency ωm. Parameters: Pinc = 102.6 µW, Pback = 21.7 µW, ϕaux,back,4:1 = 0.76 π,
ϕaux,back,4.8:1 = 0.81 π, ϕaux,back,7.4:1 = 0.57 π.
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power ratios are plotted in the same colours as in figure 3.21. Qualitatively, the trend of
the blue data looks similar to sympathetic cooling in the blue detuned lattice without
PAC, where the minimum mode temperature is also reached around ωat ≈ 2ωm at a
detuning |∆| < 0.5 GHz. In the case of Paux/Pback = 7.4:1 the minimal mode tempera-
ture is reached at a slightly higher lattice depth and the resonance feature is broadened
similar to the blue lattice with PAC (compare figure 3.18). In this case however, the
minimum mode temperature is also significantly higher than for the other two power
ratios that yield equivalent minimum mode temperatures within the error.
A more quantitative analysis can be done by comparing the resulting sympathetic cool-
ing rates Γsym and the deduced cooperativities. The calculation is equivalent to the one
described in section 3.5.2 and the results are depicted in figure 3.23. Here, the extracted
atomic cooling rates Γat are equal within the error for all three power ratios. From the
measured sympathetic cooling rates we can calculate the hybrid cooperativities

CPAC
hyb,4:1 = (90 ± 21) , CPAC

hyb,4.8:1 = (100 ± 23) and CPAC
hyb,7.4:1 = (17 ± 4).

Another factor that influences the sympathetic cooling efficiency is the power in the
coupling lattice. Therefore, we studied if the cooling effect in the PAC lattice can be
further improved by changing the overall lattice power. We do this at the experimen-
tally determined optimal power ratio of Paux = Pinc by varying the incident beam
power. For each set incident power Pinc we fix the relative phase ϕaux,back at the lowest
stable lock-point where the best cooling performance is observed (compare figure 3.21).
Additionally, we adjust the detuning ∆2,1 for each power to maintain the same lattice
depth for all measurements. The results are shown in figure 3.24. The measurement
clearly indicates, that we did not operate at the optimal incident power. Compared to
the power that we used in all our experiments presented before the mode temperature
could be further reduced by a factor of 1.5 for an incident power of Pinc = 65 µW. Also
the mode temperature increases for higher lattice powers at the same lattice depth
as expected. Still, we do not exceed the cooling efficiency that we obtain in the blue
detuned lattice without PAC.

Figure 3.23: Resonance behaviour of
Γsym(ωat) for MOT cooling in a red
detuned lattice. Sympathetic cooling rate
Γsym calculated with equation (3.15) us-
ing the temperatures Tmode and Tbath
from figure 3.22. Data points with de-
creasing Γsym for large ωat are omit-
ted. The solid lines are fits according to
equation (3.17), which are used to ob-
tain the atomic cooling rate Γat and
to rescale the x-axis. Maximum measured
cooling rates: Γmax

sym,4.8:1 = (14.6 ± 3.4) Hz,
Γmax

sym,4:1 = (13.1 ± 3.1) Hz and
Γmax

sym,7.4:1 = (2.4 ± 0.6) Hz.



Conclusion 99

Figure 3.24: Sympathetic cooling as a function of the incident power in red detuned
lattice. For the determined optimal ratio Paux = Pinc the influence of the incident power on
the sympathetic cooling efficiency is investigated. At each set value of Pinc the relative phase
ϕaux,back is adjusted to the point where optimal cooling occurs and the lattice detuning ∆2,1
is chosen to produce the same lattice depth at the trapping frequency ωat = (1.65 ± 0.01) ωm.
Left panel: Resonator mode temperature Tmode for different set incident powers Pinc with the
corresponding detuning (lower x-axis) and total reflected power Pref,tot (upper x-axis) to pro-
duce constant lattice depth. Right panel: Power ratio Pref,tot/Pinc resulting from the choice
of the relative phase ϕaux,back (left y-axis) and lattice depth ωat/ωm (right y-axis) as a function
of the incident power Pinc. Shaded regions denote two times the standard deviation. All mea-
surements were performed at Paux = Pinc.

3.6 Conclusion

In this chapter we investigated the feasibility to improve the hybrid coupling between
cold atoms and a mechanical resonator by alleviating the asymmetry in the coupling
lattice. First, we convinced ourselves that the pump asymmetry in the coupling lattice
is a reasonable cause for the arising instability that was observed in earlier experiments
[74, 77]. This hypothesis was substantiated by a numerical simulation of an optical
lattice, which is represented by a periodic array of thin beam splitters and is subject to
a phase modulation, like it is caused by the mechanical resonator. We found that the
system exhibits a phase lag that depends on the number of atoms in the system and
the used lattice detuning. More importantly, for asymmetrically pumped optical lattices
this phase lag can exceed ∆ϕ = −180◦ which results in resonant driving of the phase
modulation source (in our case the mechanical resonator) if the system is regarded as a
closed feedback loop. The simulation also proved, that the build-up of large phase lags
can be prevented by introducing an auxiliary lattice beam to compensate the pump
asymmetry.
Consequently, we elaborated a scheme to prove this also experimentally. Indeed, we
observed that it is possible to establish hybrid coupling between the atoms and the
mechanical resonator in a balanced optical lattice, even at high atomic densities in a
red detuned lattice, which was not possible before. Therefore, we can conclude that the
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scheme is suited to stabilize the system and prevent it from exhibiting self-oscillations,
which drive the resonator into limit-cycle oscillations.
However, the compensation of the pump asymmetry does not work as expected and
behaves differently for red and blue lattice detuning. First of all, we observe that sym-
pathetic cooling in the blue detuned PAC lattice is only possible when the lattice is
properly balanced. For relative phases ϕaux,back that result in a strongly asymmetric
lattice no cooling effect is achieved. Moreover, the cooling effect for a well balanced
lattice is inferior by roughly a factor of 2 to cooling in a blue detuned asymmetric
lattice. This becomes clear by comparing the lowest achieved mode temperatures, the
sympathetic cooling rates and the hybrid cooperativities:

blue lattice T min
mode Γmax

sym Chybrid

without PAC (1.50 ± 0.34) K (27.7 ± 6.1) Hz (190 ± 42)
with PAC (2.87 ± 0.69) K (14.8 ± 3.6) Hz (102 ± 25)

Interestingly, for red lattice detuning the PAC lattice behaves very different. The use
of an additional lattice beam allows for sympathetic cooling in a high optical density
MOT where cooling with our ordinary two beam lattice is not possible at all. Yet, the
best cooling performance is not achieved in a balanced lattice configuration. Contrary
to our expectation, the strongest cooling effect is obtained in a still asymmetric lattice.
We find the optimal parameters for sympathetic cooling in the red detuned lattice
by sweeping the relative phase ϕaux,back between the auxiliary and the back-reflected
beam for different power settings Paux of the auxiliary beam. After the optimization
we measure

red lattice T min
mode Γmax

sym Chybrid

with PAC (2.91 ± 0.66) K (14.6 ± 3.4) Hz (100 ± 23)

for the optimal power ratio Paux = Pinc. The obtained results indicate that the realized
coupling in the PAC lattice is equally strong for red and blue lattice detuning, although
the total reflected power is different (Pref,tot = Pinc for the blue lattice and Pref,tot =
0.46 Pinc for the red lattice). This brings us to the conclusion that the coupling strength
can not be enhanced by an additional lattice beam that does only interact with the
atoms but not with the cavity. Also, this suggests that the improved stability of the
red detuned lattice does not result in the participation of more atoms in the coupling
process. To achieve stronger coupling it would be necessary to increase the lattice
volume by using larger beam waists and enhance the reflectivity on resonance as well
as the photon resonator coupling through an improved cavity finesse.
The difference in performance between the PAC lattice and the ordinary two beam
lattice is probably caused by intensity noise introduced by the auxiliary beam phase
lock or other mechanical jitter in the long optical path of the auxiliary beam setup
that disturbs the lattice potential during the coupling. From the residual phase noise
(see equation 3.55) we determine the relative in-lock intensity fluctuations to be on the
order of 2 %. Beyond that we did not invest more time to explicitly identify the source
of the performance deterioration.
Since our approach was not able to improve the coupling strength we also assess its
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applicability to further BEC coupling experiments as low. We note, that the mechanical
linewidth Γm of the trampoline resonator at room temperature is comparable to that of
the previously employed square membrane at Tbase = 500 mK (Γ□

m = 2π ·24.5 mHz) [74],
which leads to an already increased hybrid cooperativity. For similar experiments at
cryogenic temperatures we measured a maximum cooperativity of Chybrid = (347 ± 72).
However, those experiments could not be performed at base temperature and were
subject to a drifting bath temperature. Qualitatively, they show the same behaviour
as the measurements presented in this chapter and can therefore be found in appendix
B.3. Nevertheless, the hybrid cooperativity is orders of magnitude smaller than the
residual phonon occupation of the resonator mode, which renders ground state cooling
by means of sympathetic cooling impossible in our current setup. Therefore, we switch
gears and follow a different approach to prepare our mechanical resonator in a quantum
state, which will be described in the following chapter.



Chapter 4

From continuous to pulsed
preparation and measurement

This chapter describes a novel detection method for high-sensitivity opto-
mechnical displacement measurements at our experiment, which relies on a
pulsed light-mechanics interaction and is capable of surpassing the standard
quantum limit. The concept of conditional state preparation and tomogra-
phy is introduced and the necessary experimental modifications for the ap-
plication of the technique are presented. First experiments are performed to
identify the capabilities of our system and to evaluate possible future en-
hancements.

Preparation and measurement of macroscopic objects in non-classical states is a long
sought-after goal that promises insight into the quantum to classical transition [25, 167].
A well established platform to study the formation of such non-classical states of mas-
sive objects and their decoherence is posed by the field of cavity optomechanics [24].
It has already led to the demonstration of ground state cooling [56, 111, 112], en-
tanglement [92, 168], quantum squeezing [91, 169, 170] and coherent state transfer
[58, 127, 171, 172] of mechanical motion. Still, there is an ongoing pursuit to improve
the sensitivity of the utilized measurement schemes to characterize the quantum states
of motion. The ultimate goal is to be able to fully reconstruct these quantum states,
which requires a resolution better than the width of the mechanical zero-point motion
xzpf [81].
Due to the intrinsic linkage between control and detection of motional states, each mea-
surement process can be associated with a competition between the gain of information
(measurement rate), noise added by the measurement (backaction) and decoherence.
Full control over a system can be gained, if the measurement rate exceeds all dele-
terious effects allowing for feedback cooling to the ground state [113, 173, 174] and
conditional preparation of pure quantum states [175, 176]. Typically, optomechanical
detection schemes are based on displacement measurements that are long compared to
the mechanical oscillation period, termed continuous measurements. Their sensitivity is
bounded fundamentally by the Heisenberg uncertainty principle, which manifests in the
standard quantum limit (see figure 2.7). The measurement imprecision due to quantum
noise (e.g. photon shot noise) can be reduced by increasing the probe field strength,
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but this comes at the cost of an increased measurement backaction due to radiation
pressure noise. The point of minimum uncertainty is reached when both, the impreci-
sion and backaction noise, add equal contributions to the overall measurement noise.
In continuous measurements this corresponds to probing the non-commuting position
and momentum variables simultaneously, limiting the sensitivity to the ground state
size xzpf of the probed object.
It is however possible, to circumvent the backaction by only partially measuring the
state of the system. A measurement performed on a single quadrature variable can
be in principle arbitrarily precise as long as only information about this quadrature
is gathered. All the measurement imprecision is then transferred to the unmeasured
quadrature [78].

4.1 Backaction evading measurements

The concept of backaction evading measurements was originally proposed by Braginsky
and Vorontsov [177] and is often also termed quantum nondemolition measurement [78].
It is defined by a sequence of precise measurements of an observable A, whose results are
exactly predictable from the outcome of the initial measurement of A. The measurement
is only backaction free, if the system commutes with itself at different instants of time
tj , tk after it has evolved according to the Heisenberg equations of motion such that
its commutator yields [A(tj), A(tk)] = 0. If this condition is satisfied at all times A is
called a continuous quantum nondemolition (QND) variable.
Considering a harmonic oscillator, the position x and momentum p are subject to the
commutation relations

[x(t), x(t + τ)] = iℏ
mω

cos(ωτ)

[p(t), p(t + τ)] = iℏmω sin(ωτ).
(4.1)

Hence, they are not continuous QND observables. Due to the periodically vanish-
ing commutators at integer multiples of half-periods these observables can however
be measured without backaction and are therefore termed stroboscopic QND observ-
ables. Such well-timed measurements thus result in precise knowledge of x at instants
τ = (n + 1/2)π/ω and p at τ = nπ/ω (with n ∈ N0) but are uncertain at other times.
In quantum theory it is often useful to introduce the complex amplitude of an oscillator
[178]

X + iY =
(

x + ip

mω

)
eiωt (4.2)

whose real and imaginary parts form QND observables at all times

X = x(t) cos(ωt) − p(t)
mω

sin(ωt) (4.3a)

Y = x(t) sin(ωt) + p(t)
mω

cos(ωt). (4.3b)
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During a measurement a single observable can be measured with arbitrary precision
at the cost of strongly increasing the uncertainty in the other observable while the
fundamental precision limit

∆X∆Y ≥ ℏ
2mω

= x2
zpf (4.4)

is enforced by the commutation relation [X, Y ] = iℏ/(mω), which follows from [x, p] = iℏ
[78].

Numerous examples of such backaction evading measurements have been shown in dif-
ferent quantum systems including mechanical systems, optical fields and spin ensembles
[64, 113, 179–182]. In the optomechanical realisations the backaction was avoided by
only probing one of the motional quadratures while gaining no knowledge about the
other orthogonal one. The applicable experimental schemes depend on the ratio between
the mechanical resonance frequency ωm and the cavity linewidth κ. Many systems op-
erate in the sideband resolved regime (ωm ≫ κ), where a technique termed two-tone
driving can be applied. It is based on a modulation of the optomechanical interaction
by amplitude modulation of the drive at the mechanical frequency, which leads to effec-
tively pumping the cavity at the upper and lower cavity sideband. In this way a time
varying intra-cavity amplitude is obtained that accumulates a phase, proportional to
the quadrature X in equation (4.3a), on time scales that are long compared to 1/ωm.
Since only the quadrature X is probed, the measurement backaction is completely de-
posited in Y . Such measurements have been performed in microwave optomechanical
systems [183, 184] and with photonic crystal nanobeams [185].
Another possibility is to use a variational readout scheme that employs a time or fre-
quency dependent readout of the output field to cancel the backaction via correlations
in the quantum fluctuations of the amplitude and phase quadrature [181, 182].
In systems where κ ≫ ωm the optical mode decays much faster than a mechanical
period. Therefore, this unresolved sideband regime allows to make snapshot-like mea-
surements of the mechanical motion that only probe the instantaneous position of the
resonator and do not acquire any information about its momentum. Such pulsed mea-
surements where originally conceived in 1978 by Braginsky et al. [109] and described
more recently under the name pulsed quantum optomechanics by M. Vanner et al. [79].
The latter outline a procedure that allows for cooling by measurement, which was real-
ized in a simplified proof of principle experiment [80] and later refined by J. Muhonen
et al. [186]. However, the achieved sensitivity was not good enough to resolve the me-
chanical ground-state width.

4.1.1 Pulsed backaction evasion

For instantaneous position measurements of a duration τ ≪ 2π/ωm, the position can be
determined with an imprecision that is limited by the shot noise arising from the number
of photons in the probe pulse. If the pulses are sufficiently intense, this imprecision can
become smaller than the width of the mechanical ground state xzpf and surpass the
standard quantum limit.
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When the measurement process is considered in the time domain, it becomes apparent
that the backaction can be avoided by appropriately timing the measurement sequence.
The time dependent motion of a mechanical resonator can be described by recasting
equations (4.3) in the familiar form

x(t) = XM(t) cos(ωmt) + PM(t) sin(ωmt) (4.5a)
p(t)

meffωm
= −XM(t) sin(ωmt) + PM(t) cos(ωmt), (4.5b)

where XM(t) and PM(t) are the position and momentum quadratures of the resonator.
They vary slowly, on a time scale set by the inverse of the mechanical dissipation rate
Γm, and are driven by the thermal occupation of the surrounding bath. This means
that they diffuse randomly in phase space at the thermal decoherence rate Γth, or in
other words remain unchanged within the thermal decoherence time tth = 1/(Γmnth)
[187].
A phase sensitive homodyne measurement of a short probe pulse at time t = 0 will
yield a position measurement that is linearly proportional to the mechanical position
quadrature XM (see (4.6a)). Since no information about the momentum quadrature
PM is acquired we can not predict the trajectory of the motion from a single measure-
ment. However, due to the periodicity of the motion we can anticipate to measure the
same result (up to the measurement imprecision), if we apply a second pulse exactly
one mechanical period T later and the thermal decoherence is negligible during that
time. This is illustrated in figure 4.1. Since we probe the same quadrature, the first
measurement allows us to predict the outcome of the second with an accuracy that can
be better than the zero-point motion. The backaction from this measurement due to
the radiation pressure force can be decomposed into two contributions: a stochastic one
that depends on the photon shot noise in the pulse, proportional to

√
N̄ and a coherent

one, proportional to the mean photon number N̄ that alters the resonator momentum p

(see (4.6b)). It affects the position only at a later time t′ such that ωmt′ = π/2. Hence,
for the measurement at time t = 0 only the unmeasured quadrature PM is subject to
the backaction noise.

Figure 4.1: Illustration of instanta-
neous position measurement. Exem-
plary trajectories of the mechanical posi-
tion for a fixed ωm. Regardless of the ampli-
tude or phase, measurements at time t = 0
and t = T = 2π/ωm have the same out-
come. Hence, pulsed measurements allow to
make predictions about the position at spe-
cific times without any knowledge about the
momentum.
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Quantitatively, this optomechanical interaction can be described by the following input-
output relations [80, 188]

Xout
L = Xin

L , P out
L = P in

L + χXin
M , (4.6a)

Xout
M = Xin

M , P out
M = P in

M + χXin
L + ΩL. (4.6b)

Here, XL and PL are the amplitude and phase quadratures of the probe field, the super-
scripts in (out) identify the operators prior to (after) the interaction and ΩL denotes
the momentum transferred by the probe pulse. The amount of exchanged quadrature
information between light and mechanics is quantified by the measurement strength

χ =
8g0

√
ηN̄

κ
, (4.7)

where the constant η denotes the measurement efficiency affected by optical losses
and inefficient detection. The measurement strength can be understood as a figure
of merit for the pulsed measurement protocol, as it can be used to determine the
sensitivity of the measurement. Vice versa one can calculate the needed measurement
strength to resolve the zero point motion. By recalling the phase shift δϕr produced
by a resonator displacement xm (see section 3.1.1) we find the variation of the optical
phase due to a change of the displacement quadrature δXM to be δϕr = 4gmδXM/κ,
since xm ∝ δXM. Using the number-phase uncertainty relationship δϕδN ≥ 1/2 [189]
the required number of photons per pulse to reach a minimum quadrature imprecision
that corresponds to the zero-point motion (δXM = xzpf) can be estimated to [187]√

N̄ ≥ κ

8g0
. (4.8)

Here, g0 = gmxzpf and the photon number uncertainty given by the shot noise δN =
√

N̄

[189] was used. By comparing equations (4.7) and (4.8) and assuming ideal measurement
efficiency (η = 1) we arrive at the condition for the measurement strength that allows
to resolve the width of the ground state

χ ≥ 1. (4.9)

Fulfilling this requirement is a challenging task, as can be seen from the measurement
strengths χVanner = 2.1 · 10−4 [80] and χMuhonen = 0.079 [186]40 that were reported
until now. With our current setup41 we would need N̄ ≈ 12.7 · 109 photons per pulse
which is not within reach for us at the moment. The present limitations regarding the
measurement strength and possible experimental modifications to significantly improve
it will be discussed in section 4.3.1.

40This value is corrected by a factor of 1/
√

2 to provide comparability with Vanner et al.. It was
omitted by authors in their publication and therefore they stated χ = 0.11. We abide by the definition
used by Vanner et al. see equation (4.17).

41This refers to the parameters of the optomechanical system that can be found in section 2.3.
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4.1.2 Preparation and reconstruction of mechanical motional states

As already mentioned in the beginning of the chapter the preparation and manipu-
lation of quantum states by means of quantum optics is a promising route to study
non-classical behaviour of macroscopic objects. An important and yet to be experi-
mentally demonstrated task is to perform a complete optomechanical reconstruction
of a quantum state. A suitable technique for the reconstruction is to first transfer the
mechanical quantum state onto a light field and then perform optical homodyne tomog-
raphy [81, 190, 191]. Conveniently, the mechanical quadrature information is imprinted
automatically during the pulsed light-mechanics interaction (see (4.6a)). Homodyne to-
mography is originally performed by measuring the quadrature amplitudes of the light
field at various relative phases between the signal and LO beam for the characterization
of its quantum state. In order to map out the state of the mechanics a conceptually
similar scheme can be applied, which will be described further below.
The knowledge of the state of a system provides the ability to predict the outcome of
future measurements on the system [175] - for quantum states based on a probabil-
ity distribution. It is always defined with respect to a specific observer and due to its
probabilistic description it is incomplete. By performing a measurement on the system
the observers knowledge is increased and hence the state of the system is changed.
Such transfer from an undefined superposition of possible configurations to a specific
one is termed projective measurement in quantum measurement theory. The resulting
a-posteriori state can then be called a conditional state; conditioned by the outcome of
the measurement [175, 187].

In our case we want to describe the state of a mechanical resonator, which initially
is found in a thermal state that is defined by its environmental temperature T . Due
to its high Q-factor it can be approximated by a harmonic oscillator, whose position
and momentum in a thermal state are described by a Gaussian distribution with the
variances [192]

σ2
x = ℏ

meffωm
(n + 1

2) = kBT

meffω2
m

= 2nthx2
zpf (4.10a)

σ2
p = meffℏωm(n + 1

2) = meffkBT = ℏ2nth
2x2

zpf
, (4.10b)

where in the second step the equipartition theorem was used. If we now perform a mea-
surement of this state the result will be a new state with a distribution that depends
on the amount of information gained, i.e. the strength of the measurement. This new
state is prepared by the measurement.

Assuming we make an ideal measurement of the position quadrature XM at time t = 0
using a short light pulse, the best possible prediction for the position of the resonator at
later times is given according to (4.5a) by XM cos(θ) with θ = ωmt. It differs from the
actual position by x(t) − XM cos(θ) = PM sin(θ). This quantity vanishes periodically at
θ = nπ (with n ∈ N0), which shows that information about one quadrature allows
to predict the mechanical position every half-period (see figure 4.1). The conditional
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state is therefore a squeezed state of motion represented by an asymmetric Gaussian
in phase-space with narrow position and large momentum width.

Based on this principle M. Vanner et al. proposed a protocol to produce a conditional
mechanical state with reduced uncertainty [79], which is depicted in figure 4.2. One can
perform a subsequent pulsed measurement of the position quadrature after a quarter-
period of mechanical evolution. As a consequence of the first measurement, the mea-
surement backaction was imparted on the momentum quadrature PM. However, after a
quarter-period of oscillation the former momentum quadrature has evolved and become
the new position quadrature, with a large position uncertainty due to the backaction.
The second measurement now allows to reduce this uncertainty again by an amount
proportional to the measurement strength. Once more, the backaction of this second
pulse does not affect the measurement of the position quadrature. Since we now im-

Figure 4.2: Pulsed preparation and state reconstruction scheme. Upper panel: The
top graph shows the trajectory of the mechanical position according to equation (4.5a), whose
uncertainty is reduced by the pulsed measurement. The lower graph shows the pulse sequence
that is used for the preparation and tomography of the mechanical state (red bars). Lower
panel: Phase-space distributions according to equation (4.12) of the mechanical state at dif-
ferent times during the pulse sequence (indicated by the blue shaded areas). The dashed lines
depict the 2σ-widths of the initial (grey), squeezed (red) and ground state (black). Prior to
the first pulse the system is in a thermal state with nth = 40 (chosen to ensure reasonable
figure dimensions). After the pulsed measurement with measurement strength χ = 1 the state
is strongly squeezed in the XM quadrature. During a quarter-period of mechanical oscillation
the state evolves into a PM quadrature squeezed state before the second pulse is applied that
produces a high purity squeezed mechanical state. For χ ≥ 1 the width of the mechanical state
can be reduced below xzpf , regardless of the initial thermal occupation nth as can be seen in
(4.13b). Note, that the effect of the momentum transfer was omitted in these plots to illustrate
the variances σ2

θt
of the conditionally prepared state. The actual mechanical state is displaced

after each pulse by the amount of transferred momentum ΩL.
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plicitly measure the momentum via a position measurement, the conditional state can
be described by equation (4.5b) and yields p(t)/(meffωm) − PM cos(θ) + XM sin(θ) = 0.
This tells us that two subsequent ideal measurements of the position and the momen-
tum provide us with perfect knowledge of the state. However, in reality a measurement
is never ideal such that a residual uncertainty, given by the variances in equations (4.10)
remains.
The result is therefore a conditional state with strongly reduced uncertainty, compared
to the initial state. Due to the increased knowledge of the mechanical state its entropy
is reduced, which can be expressed in terms of an effective thermal occupation and
hence leads to „cooling by measurement” [80]. The method is rapid as the interaction
takes place within one mechanical oscillation period and has a considerable tolerance
to the initial thermal occupation as well as the surrounding thermal bath. Hence, it
does not require cryogenic operation and allows in principle to generate high purity
and quantum squeezed states of mechanical motion by measurement [80].

Note, that this cooling is only to be understood as a reduction of the size of the phase-
space probability distribution due to increased knowledge of the state and does not
decrease the real thermal phonon occupation of the resonator.

Finally, to measure the resulting conditional state its phase space probability distribu-
tion has to be mapped out by a tomographic measurement. This can be done by utiliz-
ing a third pulse after a variable wait time and requires many repetitions of the same
preparation and measurement sequence to record the necessary statistics. In contrast
to the classical homodyne tomography not the phase angle ϕlo between signal and LO
beam is varied, but the rotation angle θt of the mechanical state in phase-space, which
corresponds to different times of mechanical evolution after the preparation sequence.
In this way, different quadrature contributions of the mechanical state are projected
on the phase quadrature of the light and can be measured at the same homodyne an-
gle. The homodyne detection is operated at ϕlo = π/2 to measure the optical phase
quadrature PL. After many repetitive measurements of PL the measurement outcome
is given by a probability distribution [80]

Pr(PL) = 1√
π

∫
exp

[
−(PL − χXM)2

]
Pr(XM, θt) dXM, (4.11)

which is a convolution of the marginal distributions of the mechanical state Pr(XM, θt) =
⟨XM|ρin

M(θt)|XM⟩ and a kernel that depends on the shot noise and the measurement
strength χ of the probe pulse. For small χ the convolution washes out the features of the
marginal distribution, whereas for growing χ the optical phase quadrature probability
Pr(PL) approximates the marginals with increasing accuracy. The marginal distribu-
tions Pr(XM, θt) can be viewed as projections of the phase-space probability distribu-
tion onto the XM quadrature axis after different mechanical evolution angles θt. By
measuring the optical phase quadrature distributions Pr(PL) that approximate these
marginals for a set of angles θt, the phase-space distribution can be reconstructed via
a back-projection called inverse Radon transformation [191, 193].
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In the original proposal [79] the light-mechanics interaction is described by means of
nonunitary measurement operators [175, 194]. After action on an (in general) initially
thermal mechanical state that can be described by a Gaussian distribution they produce
the following dependence of the marginals

⟨XM|ρin
M(θt)|XM⟩ ∝ exp

[
−(XM − ⟨Xθt

M⟩)2

2σ2
θt

]
, (4.12)

where

⟨Xθt
M⟩ = χPL

χ2 + 1
1+2nth

cos(θt) − ΩL sin(θt) (4.13a)

σ2
θt = 1

2
cos2(θt)

χ2 + 1
1+2nth

+ 1
2
(
χ2 + 1 + 2nth

)
sin2(θt) (4.13b)

are the mean and variance of the resulting conditional state, respectively. From equation
(4.13b) the effect of squeezing one quadrature while anti-squeezing the other quadra-
ture, depending on the evolution angle θt and the measurement strength χ, becomes
evident. For large initial occupation nth ≫ 1, which is always fulfilled in our experiment,
we recover

(for θt = 0) → ⟨Xout
M ⟩ ≃ PL

χ
, σ2

Xout
M

≃ 1
2χ2 (4.14a)

(for θt = π

2 ) → ⟨P out
M ⟩ = ΩL, σ2

P out
M

=
(
χ2 + 1 + 2nth

)
2 . (4.14b)

Consistently with equation (4.11) the mechanical position quadrature is reproduced by
the optical phase quadrature for χ → 1. At the same time the width of the output state
is reduced below the ground state width (σXM < 1), regardless of the initial thermal
occupation nth.

4.2 Experimental realization

Pulsed optomechanics experiments require fast and intense light-matter interactions
on a time scale much shorter than the typical evolution time of the involved mechan-
ical resonator. The interaction strength of the used light pulses can be enhanced by
surrounding the investigated mechanical object with a cavity, forming a compound
optomechanical system. To accommodate such short light pulses the linewidth of the
cavity κ needs to exceed the mechanical angular frequency ωm by orders of magnitude.
In our system both requirements can easily be fulfilled as the cavity linewidth is much
larger than the mechanical frequency ωm/κ ≈ 10−6 and pulse lengths of several hundred
nanoseconds are short compared to the oscillation period of the resonator Tm ≈ 6.5µs.

In this section, the technical demands on pulsed preparation and measurement of me-
chanical motion will be discussed. Furthermore, these kinds of experiments require a
modification to the homodyne detection setup that will be elaborated in the following.
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Finally, first measurements of pulsed preparation and tomography in our setup will be
presented. The changes to the experimental setup, programming of the measurement
device, the first measurements as well as the writing of the evaluation code were carried
out together with C. F. Klein.

4.2.1 Generation and detection of short pulses

During the interaction with the mechanical resonator its motional quadrature informa-
tion is transferred onto the field quadratures of the optical mode. Consequently, the
quadrature information of interest is encoded in the phase of the light. Therefore, a
phase sensitive detection scheme is needed to read out this information. The standard
phase sensitive measurement technique is balanced homodyne detection [103], which is
capable of being quantum noise limited. Although it is commonly used in continuous
detection schemes, it can equally well be applied for the detection of laser pulses. How-
ever in this case a few more things have to be taken into account: The mode match
between the signal and the LO beam has not only to be regarded in the spatial but also
in the temporal domain. Whereas the spatial mode match is equally important for an
efficient detection in the continuous and pulsed case the temporal mode match needs
to be considered carefully in the pulsed domain. It is of vital importance that the path
lengths in the homodyne interferometer are equally long, as otherwise the signal and
LO pulses disperse on their way through the detection setup and consequently reduce
the detection efficiency due to lacking interference.

Short pulse generation

For the pulsed preparation and measurement scheme described in the previous sec-
tion 4.1.2 pulse trains with arbitrary pulse spacing, pulse duration and potentially also
pulse shape are needed. In order to produce such pulse trains two main ingredients are
necessary: an actuator that modulates the desired intensity pattern onto the light and
a suitable source to drive the actuator. As for the driving source arbitrary waveform
generators are the devices of choice. They are in principle capable of producing any
waveform with arbitrary complexity in a repetitive or single shot manner to probe or
drive a device under test. The time scales and complexity of the generated waveform
depend on the sampling rate as well as the available sample memory and vertical res-
olution of the device.
We use the UHF-AWG from Zurich Instruments with a sampling rate of 1.8GSa and
14bit vertical resolution, which gives us the flexibility to produce sufficiently short
pulses even for higher frequency resonators in the MHz range (like the one shown and
described in figure 2.27). The device also features an equally fast digitizer and a lock-
in amplifier with 600 MHz bandwidth that we use for all recording and measurement
applications in the continuous and the pulsed operation regime.
For the actuation only electro-optic modulators42 (EOMs) can exploit the full capa-

bility of powerful waveform generators as their modulation bandwidths extend into the
42In principle also AOMs together with rf-switches can be considered but in order to reach fast

actuation times very small beam diameters of ≈ 25 µm are needed. Also they are rather suited for fast
switching/production of rectangular pulses than arbitrary pulse shapes.
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Figure 4.3: Pulse generation and reproducibility. Left panel: Exemplary pulse train
like the ones used for pulsed preparation and tomography experiments. The first two pulses are
separated by a quarter oscillation period (1.64 µs) of the trampoline resonator and the third
pulse is applied after a variable wait time Tθ. The red line shows the waveform generated by the
AWG that is employed to produce a pulse train with Gaussian shaped pulses of 325 ns duration
using the amplitude modulator (blue line). Right panel: Exemplary pulses of different shapes
are displayed. For each shape 30 time traces of the pulses are plotted. They nearly perfectly
overlap with a timing jitter smaller than the resolution of the aquisition (2.2 ns) and a relative
amplitude jitter of ≈ 1.5 %. The used detector has a bandwidth of 500 MHz

gigahertz range. However, in general EOMs require high drive voltages on the order of
hundreds of volts to reach their full modulation depth. Suitable electronic circuits can
switch such large voltages within a few nanoseconds but for arbitrary signal modulation
their bandwidth is not sufficient. The solution are fiber coupled waveguide modulators
that feature small electrode distances and can therefore work with very low modula-
tion voltages while still allowing for outstanding modulation frequencies. Their only
downside is the low power transmission that is limited by the high insertion loss on the
order of 4-7 dB. Depending on the used wavelength the maximum optical input power
lies between 10 mW and 300 mW. For our setup we chose the fiber coupled amplitude
modulator AM785b from Jenoptik, which has a very low half wave voltage Vπ = 1.83 V,
a minimum optical rise time of ≈ 500 ps and a maximum input power of 30 mW.
An exemplary pulse train produced with the amplitude modulator is depicted in the
left panel of Fig. 4.3. The red trace is the waveform that is applied to the modulator
and the blue trace shows the resulting pulse train recorded by the photodetector. The
right panel shows a zoom into a single pulse of such a pulse train. For each pulse shape
30 time traces are plotted to highlight the nearly perfect reproducibility of the pulses.
The reason for the distorted shape of the square pulse is the transient photocurrent
response of the detector, which depends on the properties of the detector material.

Short pulse detection

In order to be able to read out the mechanical quadrature information carried by the
light we employ the phase sensitive balanced homodyne measurement technique. The
main requirement for the detection is to be able to observe quantum noise on the op-
tical pulses in the time-domain under typical operating conditions.
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For that a detector with a flat amplification profile over a large bandwidth is needed
that provides sufficient time resolution to measure the optical pulses. The flat profile
prevents ringing of the detector response after a short pulse, which would degrade the
detection resolution and disturb the measurement. However, a high bandwidth comes
at the cost of low gain which can negatively affect the signal to noise ratio. This can
be overcome to some degree by using an increased detection power. Again, there is a
restriction on doing that, which is given by the detectors saturation threshold and its
capability to eliminate classical noise contributions [195]. The latter is called common
mode rejection ratio (CMRR) and depends not only on the detector electronics but also
on the careful alignment of the detection optics. In order to reach an optimal CMRR
the path lengths in the interferometer as well as the optical modes of the interfering
beams must be perfectly matched and their powers have to be optimally balanced on
the photodetectors. If the pulses and hence the measurement outcome were dominated
by classical noise it would not be possible to resolve the squeezing effect on the me-
chanical quadratures.

In our detection setup (see section 4.2.2) we use the commercially available balanced
detector from FEMTO43. All measurement data presented in this chapter were recorded
using this detector. To justify its suitability for pulsed optomechanics experiments a
series of characterization measurements were performed. First the linear amplitude
response of the detector was verified. For that each photodetector port was illuminated
with increasing power up to 640 µW (saturation limit), while the other port was blocked
and the differential signal was measured. For both photodetectors a linear response up
to 560 µW44 was measured. Higher powers resulted in a relative deviation of 3.5 % from
linear response (see appendix C.1).

Next the frequency response of the detector setup was measured to determine its sub-
traction capability. For that the signal beam was blocked and the LO was set to a fixed
power of 200 µW. Using the fiber EOM the light amplitude was slightly modulated
at Vπ/20 over a frequency range of 500 MHz45. The normalized results are shown in
the left panel of Fig. 4.4. The amplitude response was recorded for each detector port
individually (blue traces - PD+/PD−), for both ports at the same time (red trace - bal-
anced) and without illumination of the detector (grey trace - dark). In the frequency
range up to 10 MHz the average CMRR is better than 45 dB and then decreases due
to the increase of electrical noise by 10 dB/decade for frequencies above 100 kHz and
the roll-off of the detector response. The latter is most likely caused by a decreasing
(optical) intensity modulation depth from the EOM at higher frequencies, rather than
a limited bandwidth of the detector46. Nevertheless, this could not be verified by a
separate measurement.
Finally, we measured the optical noise variance on the detection light in our setup

43HBPR-500M-10K-SI-FS(T): DC...500 MHz, gain 2.55-5.1 kV/W, NEPmax 60 pW/
√

Hz @ 500 MHz
44The manufacturer specifies linear response for differential powers up to 400 µW.
45It was verified before the measurement that the voltage modulation amplitude is constant over the

whole bandwidth
46After consultation with the manufacturer we found that they calibrate their spectrum analyser

with a reference trace, recorded by a fast (GHz bandwidth) detector, to avoid this deleterious effect
during the characterization procedure.
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Figure 4.4: Characterization of the balanced detector setup. Left panel: Measured
frequency response of the used detector. Up to 10 MHz the CMRR is better than 45 dB. For
higher frequencies it decreases to a minimum value of 20 dB at 500 MHz due to the roll-off of
the detector response. The average shot noise clearance is 19 dB up to 500 kHz and reduces
to 6.9 dB with increasing frequency. Right panel: Measurement of the signal and LO noise
variance for different powers at a signal/LO ratio of 1:50. The insert shows the zoomed signal
data for low powers. For both, signal and LO the noise variance scales linearly in the range of
applicable powers, which indicates shot noise limitation. The unequal slopes can be explained
by a different setting of the input range of the data acquisition device for the signal beam
measurement.

for increasing photon number. The measurement was performed with the homodyne
detection in continuous and pulsed mode and in both cases yielded a linear increase
of the noise variance with increasing laser power (right panel of figure 4.4). Since the
photon statistics are described by a Poisson distribution the variance of the measured
intensity is proportional to the mean photon number σ2 = N̄ . From the observed lin-
ear behaviour we infer that the detection is shot noise limited in the range of applied
powers, which are constrained by the optical losses in the setup. The stated signal and
LO powers in this chapter are always measured behind PBS3 in figure 4.6.

Temporal overlap: In our experimental setup the signal beam is coupled into an
optical fiber that guides it to the optomechanical system inside the cryostat. Therefore,
we have an intrinsic path length difference in our homodyne interferometer as the light
travels slower through the fiber than through air. Since our homodyne detection setup
was used only for continuous signals in the past the path lengths outside the cryostat
were matched to ensure good spatial mode overlap. To characterize the effective path
length difference in the interferometer the temporal mode overlap was measured using
different pulse durations (see Fig. 4.5).
For the measurement the signal and LO beams were adjusted to be equally strong and
their polarization was set with the λ/2-plate at the splitting PBS to guide only the signal
or LO beam to either of the balanced photodiode ports. The resulting signal is shown in
the left panel of Fig. 4.5. When the first pulse impinges on the differential photodetector
it creates a spike in the signal until the second pulse arrives and their photocurrents are
subtracted. The second spike is caused by the fraction of the delayed pulse that does not
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Figure 4.5: Measurement of the temporal pulse overlap. To characterize the delay
between the arrival of the signal and LO pulses at the detector different pulse durations were
adjusted to measure the temporal overlap. The overlap is defined as (τpulse −τdelay)/τpulse. Left
panel: Single exemplary pulse trace for τpulse = Tm/4. The blue shaded area represents the
pulse duration and the red shaded area represents the pulse delay. Right panel: Temporal pulse
overlap versus applied pulse duration. The circles show the measured data whereas the solid
line denotes the expected functional behaviour for the measured delay of τdelay = (50.4±3.1) ns.
Each data point is the average of 20 pulses.

arrive simultaneous with the first pulse on the photodetector. Hence, both spikes are
equally wide and their width characterizes the delay τdelay between the pulses caused
by the effective path length difference. The blue shaded area depicts the applied pulse
duration τpulse. The overlap is calculated from the ratio of the simultaneously arriving
pulse fractions and the pulse duration (τpulse−τdelay)/τpulse. This measurement scheme is
well suited to optimize the temporal mode match by reducing the path length difference
as will be described in section 4.2.2.

4.2.2 Modification of the homodyne detection setup

As mentioned earlier the transition from continuous to pulsed measurements requires
some modifications in the detection setup that shall be discussed in this section. The
modified setup is depicted in Fig. 4.6 and will be explained in the following.
The first major difference to the previously used detection setup (see figure 2.8) is the
utilization of a fiber coupled waveguide EOM for the generation of the short pulses.
The EOM is used in a hybrid continuous/pulsed mode as will be explained in section
4.2.3 and can therefore be applied to control the homodyne intensity as well. It guides
the light from the laser system to the detection setup through a PM fiber. There is
only one drawback to using a fiber EOM for the pulse generation and that is limited
transmitted power. For our working wavelength the low damage threshold of the EOM
leads to a maximally transmitted optical power of Ptrans ≈ 5.5 mW 47. We are aware
that this significantly restricts the achievable measurement strength but our focus lies
first on the investigation of the applicability of the pulsed measurement scheme in our

47For 780 nm the specified maximum input power is 30 mW but due to an insertion loss of 5.6 dB only
7.5 mW can be transmitted. Additionally, the fiber coupling efficiency and losses due to a PM mating
sleeve that is used to extend the fiber into the lower laboratory have to be regarded.
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Figure 4.6: Modified homodyne setup for pulsed optomechanics. The detection light
from the fiber EOM is split at PBS1 into a signal and LO beam with an adjustable splitting
ratio. Care is taken that both beams cover the same distance before they are coupled into the
cryostat and the delay stage, respectively (dark red beam paths between the orange highlighted
elements). A fraction of the LO beam is picked up for the intensity control of the detection
light. After reflection from the MiM system and the piezo mirror the signal and LO beams are
overlapped again at PBS3 and again the green and light red beam paths are equally long. All
stated signal and LO powers in this chapter are measured behind PBS3. Finally, the polar-
izations of the superimposed beams are rotated by 45◦ and split with a 50/50 ratio at PBS4,
before being focused onto the differential detector.

system and the identification of possible pitfalls. Feasible measures to improve the mea-
surement strength will be discussed in section 4.3.1.
Instead of a 50/50 beam splitter we now use a polarizing beam splitter (PBS1 - shaded

orange in Fig. 4.6) to be able to adjust variable splitting ratios between the signal and
LO beam. The signal beam is reflected at PBS1 and guided to the cryostat telescope
where it is coupled into an SM fiber that leads the light to the MiM system. Fiber polar-
ization controllers (FPCs) are employed to adjust the polarization of the backreflected
signal beam. The LO beam is guided to to a delay stage composed of a 3.5 m long SM
fiber embedded in FPCs as well and a ≈ 1.5 m free-space optical beam path. At its end
the light is retroreflected from a piezo mirror that is mounted on a translation stage for
fine tuning of the free space beam path. The piezo mirror is used to stabilize the phase
between the signal and LO beam. To ensure optimal mode match all fiber couplers48

used in the setup are identical and the beampaths of the dark red beams between the
orange highlighted elements in Fig. 4.6 are equally long. For the delay stage we measure
a round-trip efficiency of ηdelay = 63 %, which could be improved in a future setup by
cutting the fiber to the right length and applying a highly reflective coating to its end
face.

48Except for the outcoupler in the delay stage as this one has nothing to do with the mode match
between the signal and LO beam.
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The reflected LO beam (light red) passes a beam shaping telescope that is used to op-
timize its waist size to match the signal beams shape and is spatially overlapped with
the signal beam (green) on PBS3. Again the beam paths of the reflected signal and LO
beams are adjusted to be equally long for best spatial overlap. At PBS4 both beams
are in the same spatial mode but have perpendicular polarizations and can therefore be
split exactly 50/50 by rotating their polarization by 45◦. Finally, the combined beams
are focused onto the photodiodes of the differential detector. Their alignment is checked
before each measurement run and we observe interference visibilities of V = 95 − 99 %.
The delay stage is used to compensate for the path length difference introduced by the
fiber that leads to the cryostat. Its length was not exactly known and had therefore
to be estimated by the pulse delay measurement shown in Fig. 4.5. We decided to set
up a combined fiber/free space delay stage as a purely free-space delay stage would
require a path length of ∼15 m and would probably severely deteriorate the stability of
the homodyne interferometer. The length of the free-space beam path can be adjusted
using a similar measurement to the one shown in the left panel of Fig. 4.5. When the
path length difference is consecutively reduced the spikes approach each other until
they coincide and vanish completely.

4.2.3 Experimental sequence

The reconstruction of mechanical motional states requires many repeated measurements
of the same, equally prepared state. Since every light pulse transfers momentum to the
resonator the application of a pulse train can either lead to an excitation or damping
of the mechanical motion, dependent on the timing of the pulses with respect to the
mechanical oscillation period. If many pulse trains are applied in rapid succession this
predominantly leads to an excitation of the mechanical motion and thus to heating.
In order to provide similar starting conditions for each measurement one can either
wait until the excitation has subsided or actively drive the resonator into the same
initial state by active feedback cooling. Due to the high Q-factor of our resonator its
damping rate on the order of a few mHz would require minutes of waiting between the
measurements. Therefore, we decided to apply moderate feedback to deterministically
prepare the initial state, prior to the pulsed measurement.
Another important aspect is the phase sensitive readout of the homodyne signal. The
mechanical motion is encoded in the phase quadrature of the reflected light from the
cavity and thus it is necessary to set the LO phase to ϕlo = ±π/2. This results in
a fluctuation of the differential homodyne signal around zero according to equation
(2.13). During the experiment cycle we operate the homodyne detection in a hybrid
continuous and pulsed manner. In order to apply feedback cooling the resonator dis-
placement has to be tracked the whole time and the LO phase needs to be stabilized.
During the a pulse train the detection light is switched off for a short period of time,
between the pulses and subsequently switched on again. This is achieved by regulating
the homodyne intensity with the EOM to a constant value at all times, except during
the pulse train. Consequently, for the duration of a pulse train we must rely on the
passive phase stability of the system. The measurement procedure can be understood
by looking at figure 4.7, which illustrates the important time scales of the sequence.
The experiment is performed at a measurement rate of 800 mHz, which allows to record
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Figure 4.7: Dissection of time scales in
the pulsed experiment protocol. Top
panel: Zero-span measurement of the ho-
modyne signal phase quadrature demodu-
lated at the resonator frequency ωm/(2π) =
152.3646 kHz with a demodulator band-
width Bd = 1.5 kHz. The amplitude is di-
rectly proportional to the resonator displace-
ment and shows its time evolution dur-
ing a pulsed experiment sequence. The blue
and red shaded areas denote the applica-
tion of feedback cooling and measurement
pulse trains, respectively. The measurement
rate is 800 mHz. Central panel: Time trace
of the phase-locked homodyne signal for an
off-resonant cavity setting. The pulsed mea-
surement is triggered on a zero-crossing of
the phase-lock signal to measure at the most
phase sensitive point. Lower panel: Exem-
plary pulse train recorded for an off-resonant
cavity setting and the phase-lock slightly off-
set from zero.

the required statistics in relatively short time and enables reproducible initial state
preparation. The top panel of figure 4.7 shows an exemplary section of the demodu-
lated homodyne signal that represents the time evolution of the resonator displacement.
The blue shaded areas show intervals of τfb = 250 ms duration (20 % duty cycle), where
feedback cooling is applied. Subsequently, the resonator evolves freely for τth = 400 ms
before a pulse train is applied (red shaded areas). After the pulse train another free
evolution period of τth = 600 ms duration follows and then the cycle is repeated.
In order to ensure best phase sensitivity during the pulsed measurement the AWG,
which generates the pulse train, is triggered on a zero-crossing of the phase-locked homo-
dyne signal as depicted in the central panel of figure 4.7. The displayed homodyne signal
carries low frequency noise with dominant contributions at 50 Hz, 150 Hz and 450 Hz49

and has a noise amplitude of V rms
noise = 11.3 mV. Thus, randomly timed pulse train appli-

cation would result in larger scattering of the measurement outcomes. The transition
from the continuous to the pulsed measurement can be seen in the bottom panel of
figure 4.7. The trace shows a pulse train that was recorded for an off-resonant cavity
setting, where the light does not carry any mechanical quadrature information. The
LO phase is adjusted to deviate slightly from ϕlo = π/2 on purpose. We use such traces
for the pulse position localization in the data evaluation and therefore term them cali-
bration traces. Furthermore, one can clearly identify the transition from the continuous
measurement to the pulsed measurement. In continuous operation the intensity is reg-
ulated by operating the fiber EOM at the 50 % working point as described for the
feedback beam in section 2.2. During the pulse train the EOM is switched between no

49Our detector is power supplied with batteries to avoid electrical noise contributions from the line
voltage and electrically isolated from the optical table but still we see noise at multiples of 50 Hz, whose
source is not identified yet.
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transmission and full transmission to produce the pulses. Therefore, the pulse levels
exceed the voltage level prior to and after the pulse train. The pulse trains are recorded
with a sampling rate of 450 MSa/s and 12 bit vertical resolution using the digitizer
functionality of our lock-in amplifier.

4.3 First experimental results

The results presented in this section show the feasibility of pulsed preparation and
measurement of conditional mechanical states in our system. The experiment was per-
formed at cryogenic temperatures of TMiM = 10 K measured in proximity of the MiM
system. The determined homodyne calibration was presented in section 2.2.2 and yields
∂ϕx/∂xm = (0.56 ± 0.01) rad/nm. For the characteristic parameters of the resonator
measured at this temperature refer to table 2.1.

When choosing the pulse length one has to make a trade-off regarding the used photon
number. On the one hand, the best possible measurement strength is needed, which
scales with the total number of photons (see equation (4.7)). On the other hand the
pulses have to be short compared to the mechanical oscillation period, which limits the
amount of photons per pulse. Therefore, we decided to use pulses of τpulse = 325 ns
duration, which corresponds to a fraction of the oscillation period of Tm/20 and is
comparable to the ratio between pulse length and oscillation period used in [186]. For
the data presented here we use a ratio between the signal and LO power of 1/50 at a
maximum LO power of P cw

lo = 1.5 mW. The mechanical conditional state is prepared
using two preparation pulses P

(1)
L and P

(2)
L separated by a quarter mechanical oscillation

period Tm/4 = π/2 and is subsequently measured with a third tomography pulse P
(3)
L .

For the tomography we record 10 marginal distributions separated by θt = 0.1 π. Each
marginal distribution is obtained by constructing a histogram from the measurement
outcomes of 600 recorded pulse trains. As described in section 4.1.2 we can calculate the
conditional state from the measurement outcomes by making the assignments XM →
P

(1)
L and PM → P

(2)
L and hence obtain

C(θt) = P
(3)
L − P

(2)
L cos(θt) + P

(1)
L sin(θt). (4.15)

Phase noise elimination

In order to conveniently extract the mechanical information from the signal we have
to process the data before final evaluation. This means that we have to separate the
phase information that was imprinted on the light by a displacement of the resonator
from the residual phase fluctuations, which appear on the detection light. Figure 4.8
illustrates the procedure.
In contrast to the pulse train depicted in figure 4.7 the pulse train in the top panel

of figure 4.8 is applied on resonance with the cavity and for ϕlo = π/2. Ideally, the
resulting signal should resemble a flat line with three pulses differing from zero by
an amount proportional to the photon shot noise and the phase shift induced by the
interaction with the resonator. Since we know that the pulses sample the harmonic
oscillation of the resonator we fit the averaged pulse amplitudes with a sine at the
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Figure 4.8: Residual phase noise subtraction scheme. Top panel: Exemplary pulse train
for a resonant cavity setting during a pulsed measurement at θt = 0.9 π. Despite triggering on
a zero-crossing of the phase-lock signal we observe disruptive phase noise on the signal that
leads to an offset of the mechanical motion induced phase information. We fit a sine at the
resonator frequency to the measured pulse levels with the amplitude, phase and offset as free
fit parameters. The fitted offset is subtracted from the pulse levels to cancel the effect of the
parasitic phase noise. Lower panel: Exemplary histograms for the measurement outcomes
of the first, second and third pulse at θt = 0.9 π, showing how the phase noise broadens the
pulse level distribution. The pulse levels are converted into resonator displacement using the
homodyne calibration.

resonator frequency and the amplitude, phase and offset as free fit parameters. By
subtracting the fitted offset from all pulse amplitudes we can eliminate the effect of the
phase fluctuations and recover the undistorted phase information encoded in the pulse
amplitudes, as their relative distances remain unchanged.
Pulse trains that probe the resonator in a more excited state exhibit clearly visible
oscillations in the grey shaded regions whose amplitude and phase match the fitted
sine curve very well and hence confirm the applicability of the fit (see appendix C.1).
Note however, that this scheme works only well for tomography pulses in a distance
of approximately one mechanical period from the second preparation pulse. For larger
pulse separations the amplitudes can not be unambiguously fitted any more. The lower
panel of figure 4.8 shows the effect of the phase noise elimination on the measurement
outcomes of the first, second and third pulse for one exemplary tomography angle
θt = 0.9 π. The average pulse amplitude is converted into a resonator displacement
using our homodyne calibration.
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Mechanical state reconstruction

Using the processed measurement outcomes the mechanical state can be reconstructed.
First, by only regarding the first pulse P

(1)
L of each pulse train it is possible to map

out the initial thermal state of the resonator. Since every pulse represents a measure-
ment the first pulse samples the random thermal distribution prior to the interaction.
Thus, comparing the measurement outcomes of the first pulse for all tomography an-
gles should yield equally wide Gaussian distributions. A subset of histograms (blue) for
various tomography angles is shown in figure 4.9. Indeed, we recover similarly broad
normal distributions for the measurement outcomes of the first pulse at every tomog-
raphy angle with a mean width of σ̄th = (11.01 ± 1.57) pm = (2568 ± 367) xzpf .
In contrast to the thermal state, the width of the conditional state (red) changes with

the tomography angle and is strongly squeezed at θt = π, exactly as it is expected.
Recalling the scheme presented in figure 4.2 the second pulse P

(2)
L produces a „double”

squeezed state that is narrower in the XM quadrature than in PM. A measurement
after free evolution of θt = π results in a repeated probing of the XM quadrature
and hence should reproduce the semi-minor axis of the ellipse. Similarly, a measure-
ment after θt = π/2 corresponds to probing of PM and therefore samples the semi-
major axis of the ellipse. For the conditional state we measure a minimum width of
σ

(θt=π)
cond = (137 ± 4) fm = (32 ± 0.9) xzpf , which corresponds to 38 dB of thermal noise

Figure 4.9: Measured marginal distributions for different tomography angles. The
subset of histograms show the width of the thermal state (blue) corresponding to the measure-
ment outcomes of the first pulse, the width of the conditionally prepared state (red) calculated
from the measurement outcomes of all three pulses according to equation (4.15) and the width
of the off-resonant measurement outcome distribution (grey). The corresponding widths for
each tomography angle are specified above the respective histograms and are scaled in units of
the resonator zero point motion xzpf = 4.28 fm.
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squeezing in the position variance [81].
To reconstruct the phase-space distribution of the mechanical state an inverse Radon

transformation50 is performed on the measured mechanical marginals for all tomog-
raphy angles θt. If the marginals are treated as projections of the phase-space distri-
bution, the inverse Radon transformation can be regarded as a back-projection of the
marginal distributions that restores the original phase-space distribution. The resulting
reconstructed phase-space distributions are shown in figure 4.10. From the widths of the
thermal and conditional state the effective temperature of the states can be determined
according to equation (4.10):

T th
eff = meffω2

mσ̄2
th

kB
and T cond

eff = meffω2
mσ

(θt=0)
cond σ

(θt=π/2)
cond

kB
. (4.16)

The results show that the pulsed preparation and measurement scheme can be success-
fully applied in our setup and that we are able to detect squeezed conditional states
of mechanical motion. However, there is a lot of room for improvement. In order to
specify the requirements to resolve the mechanical zero-point motion we need to con-

50We use the MATLAB function iradon for the transformation and feed it with a kernel distribution
fit of the histograms to reproduce their shape.

Figure 4.10: Preparation and
state reconstruction of me-
chanical motion using pulsed
measurement scheme. Pulse
protocols (blue - preparation, red
- tomography) and reconstructed
phase-space distributions from the
measured mechanical marginals.
(a): Reconstruction of the initial
thermal state driven by thermal
noise. The blue dashed circle with
radius σ denotes the width of the
initial thermal state. (b): Recon-
struction of the conditionally pre-
pared mechanical state. Clearly a
reduction of the state width as well
as squeezing in the XM quadrature
is visible (indicated by the red el-
lipse). Both phase-space distribu-
tions are normalized for better vi-
sualization. The effective temper-
atures are calculated according to
equation (4.16).
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textualize the obtained results in terms of the measurement strength. To determine
the measurement strength experimentally we need to measure the optical phase distri-
bution without the contribution of mechanical position fluctuations. This can be done
by applying identical pulses away from the cavity resonance and evaluating the distri-
bution of the average pulse amplitudes again. The only difference is that we have to
account for the higher reflectivity of the cavity away from resonance. We do this by
reducing the signal power by the amount that corresponds to the cavity reflectivity on
resonance. Also for the off-resonant data we have to eliminate the contribution from
the fluctuating phase, which we do by subtraction of the mean of the pulse ampli-
tudes. By this we cancel the random offset that is equal for all three pulses without
affecting the relative scattering of the amplitudes within each pulse train. Exemplary
histograms (grey) are depicted in figure 4.9 together with the marginals for the thermal
and conditional state. Considering all off-resonantly measured distributions we obtain
a mean width of σ̄off = (269.6 ± 12.8) fm = (63 ± 3) xzpf . Using this result we retrieve
the measurement strength via equation (4.14b)

χ ≃ 1√
2σ

= 0.011. (4.17)

Hence, with the current measurement setup we achieve a measurement strength that
is a factor of 7 lower than the one published by J. Muhonen et al. [186].

4.3.1 Conclusion

We have demonstrated the application of a pulsed preparation and measurement tech-
nique that allows to measure a single mechanical quadrature with a precision below the
standard quantum limit in a first experiment with our setup. Although, we do not reach
this precision yet we observe a significant reduction of the conditional state variance
compared to the initial thermal state of the mechanical resonator. This is the first step
towards the conditional preparation of non-classical states of mechanical motion at our
experiment.
In order to achieve this, we have to increase the measurement strength χ = 8g0

√
ηN̄p/κ,

which is currently in progress. We are preparing for an exchange of the fiber cavity for
another one with a higher finesse. At present, we have fiber cavities with a ten times
higher finesse and a reflectivity on resonance of σref = 0.83 available51. Also, we are
conferring with other manufacturers about achievable coating specifications to evaluate
possible plano-concave cavity configurations with an even higher finesse. An increased
finesse would lead to a reduction of the cavity linewidth and thus enhance the measure-
ment strength. With the available cavities we could already improve the measurement
strength by a factor of 10 without changing any other parameters.
A significant limitation of our current proof-of-principle setup are the optical losses in
the LO delay branch, which we will have to eliminate. Furthermore, the available opti-
cal power in the signal beam will have to be increased by a factor of ∼100. A possible
solution to achieve this is to use a pulsed signal beam and interfere it with a continuous
LO. In this way all the transmitted power from the fiber EOM can be used for the probe

51They were in-house produced by C. F. Klein [196] and coated by LASEROPTIK
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pulses which should suffice to reach χ ≈ 1. Furthermore, the detection efficiency can be
improved by identification and elimination of the present electrical noise sources. For
example the use of a line trigger can help to reduce the low frequency noise at 50 Hz
and multiples thereof by synchronization of the experiment with the mains frequency.
Another deleterious effect that adds to the phase noise is the excitation of the sec-
ond symmetric mode s2 at ω

(s2)
m /(2π) = 531.665 kHz (see figure 2.12) of the resonator,

which we occasionally observe on the pulse trains (shown in figure C.1). Its occurrence
will have to be studied more systematically and its effect could be omitted by data
post-selection or the application of a Kalman filter [197, 198], which is a powerful tool
for optimal state estimation.
An alternative, but related approach was proposed in [199] and relies on the study of
conditional dynamics driven by stroboscopic pulse trains of equidistant pulses. These
can realize conditional squeezing and quantum state preparation in a similar manner
to the method with only few pulses, but in contrast alleviate the demanding require-
ment of a single pulse measurement strength of χ = 1. The authors derive a condition
for achieving ground state resolution with stroboscopic driving that depends on the
mechanical Q-factor and the occupation of the thermal bath

χstrobo >
√

2π(n̄ + 1/2)/Q. (4.18)

At cryogenic conditions, assuming a bath temperature of Tbath = 5 K that is realistically
achievable in our system and the measured Q-factor of Q = 8.9 · 107 a measurement
strength of χstrobo = 0.22 would suffice for quantum state preparation.
In this respect, we are confident that the aforementioned actions will enable us to further
increase our measurement strength and to observe non-classical mechanical states in
the near future.



Appendix A

Atom-light interaction

A.1 Derivation of the atom-light coupling constants

Starting from equation (2.62) in chapter 2 the atom light coupling constants G0, G1
and G2 shall be derived:

ĤI = Ŝ0Â0 + Ŝ1Â1 + Ŝ2Â2 + Ŝ3Â3 (A.1)

with the operators Âk representing the atomic observables

Â0 = g

(
2
3α(0)ÎF + α(2)

(
Nat∑

i
f̂ (i)

z − 1
3F (F + 1)ÎF

))
, (A.2)

Â1 = gα(2)
Nat∑

i

(
f̂ (i)

x f̂ (i)
x − f̂ (i)

y f̂ (i)
y

)
, (A.3)

Â2 = gα(2)
Nat∑

i

(
f (i)

x f (i)
y + f (i)

y f (i)
x

)
, (A.4)

Â3 = gα(1)
Nat∑

i
f̂ (i)

z . (A.5)

Using F̂k ≡
∑Nat

i f̂
(i)
k equation (A.1) can be recast in a from that represents the depen-

dence on the atomic polarizabilities α(0), α(1) and α(3)

Ĥ
(0)
I = 2

3gα(0)Ŝ0ÎF

Ĥ
(1)
I = gα(1)Ŝ3F̂z (A.6)

Ĥ
(2)
I = gα(2)

[
Ŝ0

(
F̂ 2

z − 1
3F (F + 1)ÎF

)
+ Ŝ1

(
F̂ 2

x − F̂ 2
y

)
+ Ŝ2

(
F̂xF̂y + F̂yF̂x

)]
with

g = ωL

2ϵ0V
= π

ϵ0λ

1
Aτ

where V = Aτc (A.7)
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The rank-0, rank-1 and rank-2 components of the polarizability tensor α̂ are given by
[142]

α(0) = (−1)(2F )∑
F ′

αF ′
F

(
(2F − 1)δF ′

F−1 + (2F + 1)δF ′
F + (2F + 3)δF ′

F +1

)
(A.8)

α(1) = (−1)(2F )∑
F ′

αF ′
F

(
−2F − 1

F
δF ′

F−1 − 2F + 1
F (F + 1)δF ′

F + 2F + 3
F + 1 δF ′

F +1

)
(A.9)

α(2) = (−1)(2F )∑
F ′

αF ′
F

( 1
F

δF ′
F−1 − 2F + 1

F (F + 1)δF ′
F + 1

F + 1δF ′
F +1

)
(A.10)

with the Kronecker-delta

δj
i =

1, if i = j,

0, if i ̸= j
and αF ′

F = α0DF,F ′(−1)J+J ′+2I(2J ′ + 1)
{

J ′ F ′ I

F J 1

}2

(A.11)

where

α0 = 3ϵ0ℏΓλ3

8π2 and DF,F ′ = ∆F,F ′

∆2
F,F ′ + Γ2/4 . (A.12)

Setting the nuclear spin I = 3/2, J = 1/2, J ′ = 3/2 and F = 2 we get and hence A.8
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α(2) = α0
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. (A.15)

Inserting equations (A.12) and (A.7) into (A.6) we obtain

Ĥ
(0)
I = ℏ

τ

Γλ2

40πA
(−D2,1 − 5D2,2 − 14D2,3)︸ ︷︷ ︸

:= G0

Ŝ0ÎF (A.16)
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Ĥ
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A.2 Larmor-precession data

For completeness all traces that were evaluated for the insert in figure 2.26 are presented
here. In some traces we note a collapse and revival of the oscillation envelope that might
be caused by the non-adiabatic magnetic field switching. However, its origin was not
further investigated.

Figure A.1: Larmor-precession traces.
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Figure A.2: Fourier transforms of the Larmor-precession traces. To evaluate the
magnetic field dependence of the Larmor-frequency fL the traces in figure A.2 were Fourier
transformed and the resulting frequency spectra are depicted here. There are two magnetic
field independent features in each spectrum, one at f1 = 182 kHz and the other at f2 = 1 MHz.
f1 is the second harmonic of the etalon dithering frequency inside the TiSa laser cavity, which
is used to stabilize the laser frequency, and should in normal operation be suppressed by a noise
eater circuit. Yet, at the time of the Larmor-precession measurement this part of the Laser was
not functional, which led to frequency components of 91 kHz and 182 kHz on the TiSa light. f2
originates from the sampling rate of the oscilloscope in the measurement and is only an artefact.
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Coupling lattice

B.1 Coupling lattice losses

The most relevant losses in the coupling lattice setup presented in figure 3.11 are
depicted here in figure B.1. T1 is the transmittance of the pellicle that we use for the
alignment of the auxiliary beam with respect to the back-reflected beam and T2 is the
transmittance of the substrate S1, which is used for the intensity control of the lattice
and to monitor the back-reflected beam from the cavity. T3 is the total transmittance
of the glass cell but for the daily power balancing in the experiment we use the more
relevant single surface transmittance

√
T3 ≈ 0.95 to calculate the power at the site of

the atoms.

splices

Atom - MiM coupling

100%

23.5%
glass
cell

substrate S1

substrate S2

pellicle

Figure B.1: Optical losses of the coupling lattice beam. Sketch of the most relevant
optical losses measured in the coupling lattice setup depicted in figure 3.11. For a lattice incident
power of 100 % at the site of the atoms approximately 23.5 % of the light is reflected from the
MiM device (cavity on resonance). The exact value varies from day to day and depends on the
alignment of the individual components. The measured power transmittances of each element
are given in the table. For the elements where the losses have a strong dependency on the
alignment the typical error margin is stated. For the atom-MiM coupling only the transmittances
in the grey shaded area are relevant.
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In practice we measure the power of the incident and auxiliary beam directly in front
of the glass cell (at the position of the green dot after S1) and calculate the power at
the position of the atoms using

√
T3. The power of the back-reflected beam is measured

behind substrate S1 and its amount at the atomic site is calculated using
√

T3 and T2.
T4 is the transmittance of the second pellicle and T5 is the transmittance of substrate
S2, which we use for the superposition of the auxiliary beam with the back-reflected
beam. T6 includes the fiber coupling losses and T7 are the losses on a single pass through
the fiber splices. The reflectivity of the cavity on resonance is denoted by σcav and its
value for the off-resonant cavity corresponds to the reflectivity of the coating on the
cavity incident fiber σcav,off = 0.92.

B.2 Further simulation results

As described in section 3.3.2 a few additional results of the numerical simulation shall
be presented here.

Figure B.2: Detuning sweep for red and blue lattice detuning ∆at,L. Simulated atomic
response for a variation of the lattice detuning. In order to keep the lattice depth constant the
power Pinc is varied in proportion to ∆at,L. The simulation result looks nearly identical for
red and blue lattice detuning. Parameters: reflectivity R = 0.22, incident power Pinc = 10 µW-
100 µW, atomic damping rate Γat = 0.3 ωm, atom number Nat = 2.2 · 107 and number of beam
splitters NBS = 10.
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For a better understanding of the collective behaviour we varied several other param-
eters in the simulation. Figure B.2 shows the atomic response for a variation of the
lattice detuning ∆at,L. The incident power Pinc was varied correspondingly to maintain
the same lattice depth for every detuning. In the asymmetric lattice (R = 0.22) we
recover the response of a single beam splitter for large enough detuning. With decreas-
ing detuning the atomic polarizability increases as ζ ∼ Nat

∆at,L
and thus collective effects

start to occur below |∆at,L/(2π)| = 2.7 GHz for the set atom number Nat. Notably, the
simulation produces almost identical results for red and blue lattice detuning, indicat-
ing that the atomic backaction is independent of the sign of the detuning. Although the
lattice configuration changes due to the contraction of the lattice constant the dynamic
effects seem to play a more significant role. The experimentally observed, detuning de-
pendent behaviour has most likely two reasons. First, the hyperfine structure of the
excited state, which becomes relevant for red lattice detuning if ∆at,L < ∆HFS is not
included in the simulation. Furthermore, for these detunings the atomic polarizabil-
ity can not be assumed purely dispersive any more and one has to take into account
Im(ζ) as well. Secondly, due to the attractive potential in the red detuned lattice higher

Figure B.3: Sweep of the atomic damping rate Γat. Simulated atomic response for a
variation of the atomic damping rate at two different atom numbers Nat = 0.4 · 107 (left panel)
and Nat = 5.5 · 107 (right panel). If the damping strong enough it can suppress the collective
atomic dynamics that occur for large atom numbers. The position of the resonance is shifted
towards lower frequencies due to the increased atom number (compare figure 3.6). Parameters:
reflectivity R = 0.22, incident power Pinc = 100 µW, detuning ∆at,L/(2π) = −4.55 GHz and
number of beam splitters NBS = 10.
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atomic densities occur at the intensity maxima in the red detuned lattice than at the
intensity minima in the blue detuned lattice, which is also not included in the simula-
tion. Therefore, one observes collective effects due to the increased atomic polarizablity
ζ by the factor of Nat in the experiment.

Figure B.3 shows the atomic response for a variation of the atomic damping rate Γat.
For low atom numbers and a moderate damping we recover a response very similar to
the ideal damped driven harmonic oscillator like depicted in the left panel of figure 3.6.
With increasing damping the resonant amplitude response is suppressed and the phase
lag is increased. For larger atom numbers however, strong damping can even suppress
the collective dynamics (right panel). Yet, this regime is experimentally not accessible.

In figure B.4 the number of beam splitters NBS was varied between 1 and 15 for different
atom numbers Nat. For only one beam splitter collective effects can not occur and the
response is given by the single beam splitter model as expected. Already for two atomic
beam beam splitters intra-beam splitter effects set in that lead to a deformation of the
atomic response from the single beam splitter shape. For more than three beam splitters
the response does not change any more. At large atom numbers exceeding Nat = 8 · 107

the simulation does not return a stable solution for a single beam splitter any longer.
In the experiment the number of lattice sites amounts to NBS = 2Rat/(λ/2) ≈ 104.
A simulation with this amount off lattice sites is not reasonable due to the extensive
computing time.

Figure B.4: Sweep of the number of atomic beam splitters in the system. Simulated
atomic response for a variation of the number of beam splitters between 1 and 15 at three
different atom numbers. Above Nat = 8 · 107 the simulation does not return a meaningful result
for a single beam splitter in the asymmetric lattice. Parameters: reflectivity R = 0.22, incident
power Pinc = 100 µW, detuning ∆at,L/(2π) = −4.55 GHz, atomic damping Γat = 0.3 ωm and
atom numbers Nat as denoted in the plots.
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Figure B.5: Sweep of the reflectivity R.
Simulated atomic response for a variation
of the reflectivity R. With decreasing reflec-
tivity the phase lag on resonance increases.
Parameters: incident power Pinc = 100 µW,
detuning ∆at,L/(2π) = −4.55 GHz, atomic
damping Γat = 0.3 ωm, number of atoms
Nat = 10 · 107 and number of beam splitters
NBS = 10.

In figure B.5 the atomic response for decreasing reflectivity R and hence increasing
pump asymmetry is depicted. In the balanced lattice we recover the single beam split-
ter response and for increasing asymmetry the phase lag on resonance becomes more
pronounced.

Considering the simulation of the asymmetric lattice shown in the right panel of figure
3.6 in section 3.3.2, we have seen that the phase lag at the resonator frequency exceeds
the threshold lag of ∆ϕ = −180◦ for atom numbers larger than Nat = 5.5 · 107. The
development of the phase lag can also be observed in the atomic displacement explicitly.
Figure B.6 shows how the beam splitter displacement from the equilibrium position
ξeq(t) = xj(t) − xss

j evolves in time at four distinct points in figure 3.6. For small
atom numbers (on resonance, where ω/(2π) = 154 kHz), all beam splitters oscillate in
phase indicating that the intra-beam splitter interaction is negligible (top left panel in
figure B.6). For atom numbers, where the phase lag exceeds ∆ϕ = −180◦ on resonance
(bottom left and top right panel) the beam splitters do not oscillate in phase any more
but exhibit a phase shift throughout the ensemble. The shift becomes more pronounced
for larger atom numbers. Evidently, the macroscopic phase lag that we observe on the
outgoing light to the left is caused by the sum of the individual phase lags between
the beam splitters, which only occurs for asymmetric lattice pumping and large atom
numbers. At driving frequencies ω above resonance the system exhibits two oscillation
modes that are completely out of phase (bottom right panel) and can lead to the
destruction of the lattice for even higher atom numbers.
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Figure B.6: Simulated beam splitter evolution in asymmetric lattice. The plots show
the beam splitter displacements from their equilibrium position ξeq = xj(t) − xss

j as a function
of time in units of the oscillation period Tosc = 2π/ω. The titles show the corresponding atom
number Nat and drive frequency ω that correspond to different points in the right panel of
figure 3.6.
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B.3 Cryogenic sympathetic cooling in PAC lattice

In order to test the performance of the PAC lattice we wanted to repeat the measure-
ments presented in chapter 3.5 at cryogenic temperatures. After an extended warm-up
period and multiple pump and flush cycles we were convinced that the blockage in our
helium lines, which caused the cryostat to warm up in the first place, was dissolved.
Unfortunately, shortly after the cooldown the blockage occurred again and caused the
cryostat temperature to rise slowly. Because the sympathetic cooling experiments were
performed on different days within one week, the blue detuned data were taken at
T blue

MiM = 1.5 K and the red detuned data at T red
MiM = 11 K. The temperature TMiM refers

to a temperature sensor that is placed inside the cryostat in direct proximity to the
MiM system.
The measurements show qualitatively the same behaviour as the ones presented in 3.5
but this time the cooling performance in the red detuned PAC lattice is slightly better
than in the blue detuned case. This can be seen in figure B.7, where the sympathetic
cooling rates for all three lattice configurations that allow for cooling are depicted. The
dashed lines in figures B.9 and B.8 denote the measured mode temperatures that were
obtained by averaging the recorded time traces for all measurements (see exemplary
trace in figure 3.16) before the initial cooldown. For the measurements at cryogenic
temperatures we determined a homodyne calibration of | ∂ϕx

∂xm | = (0.56 ± 0.01) rad/nm.
The sympathetic cooling rates were calculated according to equation (3.15) using the
measured bath temperatures Tbath and mode temperatures Tmode. From the sympa-
thetic cooling rates the hybrid cooperativities are calculated using equation (3.25) and
the results are summarized here:

red/blue lattice T min
mode Γmax

sym Chybrid

without PAC (214.7 ± 44.0) mK (4.8 ± 1.0) Hz (347 ± 72)
with PACblue (587.8 ± 118.0) mK (1.8 ± 0.4) Hz (130 ± 29)
with PACred (489.5 ± 103.0) mK (2.2 ± 0.5) Hz (159 ± 36)

Figure B.7: Resonance behaviour of
Γsym(ωat) for MOT cooling in red and
blue detuned lattice. Sympathetic cooling
rate Γsym calculated with equation (3.15) us-
ing the temperatures Tmode and Tbath from
figures B.8 and B.9. Data points with de-
creasing Γsym for large ωat are omitted. The
solid lines are fits according to equation
(3.17), which are used to obtain the atomic
cooling rate Γat and to rescale the x-axis.
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Figure B.8: Sympathetic cooling with and without pump asymmetry compensa-
tion in red detuned lattice at TMiM = 11 K. Minimum resonator mode temperature Tmode
during sympathetic cooling with a high OD MOT as a function of the resonant lattice depth.
Left panel: The lattice power is held constant and the detuning ∆2,1 is varied to tune the
lattice depth. The circles show the resulting mode temperature due to coupling mediated via
an imbalanced lattice and the triangles denote the measured mode temperature with applied
auxiliary lattice beam. Dashed lines depict the measured bath temperatures Tbath = 68.8 K
and T PAC

bath = 91.6 K from the time traces before the initial cooldown. Right panel: Tmode as a
function of the (calibrated) atomic trapping frequency ωat in units of the resonator frequency
ωm. Parameters: Pinc = 102.6 µW, Pback = 21.6 µW, Paux = 102.6 µW, ϕaux,back = 0.77 π.
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Figure B.9: Sympathetic cooling with and without pump asymmetry compensation
in blue detuned lattice at TMiM = 1.5 K. Minimum resonator mode temperature Tmode
during sympathetic cooling with a high OD MOT as a function of the resonant lattice depth.
Left panel: The lattice power is held constant and the detuning ∆2,3 is varied to tune the
lattice depth. The circles show the resulting mode temperature due to coupling mediated via
an imbalanced lattice and the triangles denote the measured mode temperature in a balanced
lattice. Dashed lines depict the measured bath temperatures Tbath = 74.4 K and T PAC

bath = 70.9 K
from the time traces before the initial cooldown. Right panel: Tmode as a function of the
(calibrated) atomic trapping frequency ωat in units of the resonator frequency ωm. Parameters:
Pinc = 102 µW, Pback = 22.6 µW, Paux = 102.6 µW, ϕaux,back = 0.57 π.
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Pulsed optomechanics

C.1 Supplementary plots

Figure C.1: Exemplary traces showing the excitation of the s1 and s2 mode. Both
traces were recorded at different θt and were selected to illustrate the excitation of the first and
second symmetric modes shown in the upper and lower panel, respectively. In both cases one
can see, that the sinusoidal fit for the offset subtraction (only the three average pulse amplitudes
are fitted) matches the the oscillation at the frequency of the fundamental mode.
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Figure C.2: Confirmation
of the linear detector re-
sponse for the HBPR-
500M-10K-SI-FS. For in-
creasing incident power Pin
up to 644 µW on each detec-
tor PD+ and PD− the output
voltage was measured. Red
dashed/dotted lines are linear
fits to the data and the verti-
cal dotted line denotes the lin-
earity threshold specified by
the manufacturer.
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