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Abstract
Ultracold gases in optical lattices provide a versatile simulation platform of real solid-
state quantum systems as they offer clean systems with a high degree of control over
the systems parameters and access to additional observables. In this thesis, new
methods to get access to the real space density distribution and a dynamic control of
the systems geometry are presented and employed.
The first main result presented in this thesis is a new imaging approach, which

uses matter wave optics to magnify the density distribution in an optical lattice by
up to a factor of around 90. In combination with standard absorption imaging, this
allows sublattice resolved access to the integrated real space density in our 2D optical
lattice. At the heart of the method is a quarter period evolution time in a harmonic
potential following the shut off of the optical lattice, transforming the initial atomic
positions to their momenta. A subsequent free fall time transfers these momenta to a
magnified image of the initial positions. In this way, the depth of focus of the imaging
is very large, allowing to image 3D quantum systems. The method is characterized in
detail and using the single site populations high precision thermometry of the system
across the BEC phase transition is demonstrated. By utilizing magnetic resonance
techniques, also the addressing of individual lattice sites is shown.
In the next part, the control over our quantum system is improved by employing

a novel type of optical lattice. It uses different frequencies to allow for a dynamic
geometry control while offering high passive stability. In the case of our hexagonal
lattice beam arrangement, this allows to tune between honeycomb, boron nitride and
triangular lattices within a few microseconds. The geometry for a given set of lattice
wave vectors and beam balances is fully described by the newly introduced concept
of a geometry phase. Its fundamental importance is highlighted by also appearing as
a staggered flux in the corresponding momentum space lattices. Using the high tun-
ability, atoms are transferred into higher Bloch bands and their dynamics measured
in real space. The tunability can also be used as a tool for full state tomography mea-
surements, which is presented in a set of preliminary measurements. Furthermore,
exemplary realizations of a quasiperiodic and a 3D lattice in multifrequency design,
both featuring tunable geometry phases, are proposed.
The last part of this thesis reports on real space pattern formations in tilted lat-

tices of different geometries, resolved by using our quantum gas magnifier. This
allows in particular the observation of a spontaneously forming density-wave break-
ing the underlying translational symmetry of the triangular lattice, which is ascribed
to interaction-induced pair tunneling processes. Additionally, self-trapping and the
formation of ring structures along equipotential lines are observed.





Zusammenfassung
Ultrakalte Quantengase in optischen Gittern bieten eine vielseite Plattform zur Si-
mulation von Quantensystemen in echten Festkörpern, da sie der Erstellung reiner
Systeme mit hoher Kontrolle über deren Parameter und Zugang zu zusätzlichen Ob-
servablen ermöglichen. In dieser Arbeit werden neuer Methoden vorgestellt und ein-
gesetzt, um Zugang zur Ortsraumdichteverteilung sowie dynamische Kontrolle der
Geometrie des Systems zu erlangen.
Das erste zentrale Ergebnis dieser Arbeit ist ein neuer Abbildungsansatz, der ba-

sierend auf Materiewellenoptik die Dichteverteilung in einem optischen Gitter um bis
zu einem Faktor von etwa 90 vergrößert. In Verbindung mit einer üblichen Absorpti-
onsabbildung ermöglicht dies eine Auflösung unterhalb der Gitterkonstante und gibt
Zugang zu der integrierten Ortsraumdichte unseres optischen 2D Gitters. Der we-
sentliche Baustein dieser Methode ist eine Entwicklungszeit von einer viertel Periode
in einem harmonischen Potential im Anschluss an das Abschalten des optischen Git-
ters, die die anfänglichen Positionen der Atome auf ihre Impulse überträgt. Durch
eine anschließende freie Fallzeit werden diese Impulse auf ein vergrößertes Bild der
anfänglichen Positionen übertragen. Auf diese Weise ist die Tiefenschärfe der Abbil-
dung sehr groß, wodurch 3D Systeme abgebildet werden können. Die Methode wird
im Detail charakterisiert und mithilfe der Einzelplatzbesetzungen wird eine hochprä-
zise Thermometrie des Systems über den BEC Phasenübergang durchgeführt. Unter
Einsatz von Magnetresonanzen wird zudem das Ansprechen einzelner Gitterplätze
demonstriert.
Im folgenden Abschnitt wird die Kontrolle über das Quantensystem verbessert, in-

dem ein neuer optischer Gittertyp eingesetzt wird. Dieser verwendet verschiedene Fre-
quenzen um dynamische Kontrolle über die Geometrie bei gleichzeitig hoher passiver
Stabilitität zu erlangen. Im Fall unserer hexagonalen Gitterstrahlanordnung ermög-
licht dies, innerhalb weniger Mikrosekunden zwischen Honigwaben-, Bornitrit- und
Dreiecksgitter zu schalten. Die Geometrie eines gegebenen Satzes von Gittervektoren
und relativen Strahltiefen wird vollständig von der neu eingeführten Geometriephase
beschrieben. Deren fundamentale Bedeutung wird auch erkennbar durch ihr Auftau-
chen als gestaffelter Fluss im zugehörigen Impulsraumgitter. Unter Verwendung der
hohen Durchstimmbarkeit der Geometrie werden Atome in höhere Blochbänder über-
tragen und ihre Dynamik im Ortsraum gemessen. Die Durchstimmbarkeit kann auch
als Hilfsmittel für eine volle Zustandstomographie verwendet werden, was anhand
einiger vorläufiger Messungen vorgestellt wird. Darüber hinaus werden beispielhafte
Umsetzungen eines quasiperiodischen- und eines 3D-Gitters im Multifrequenzentwurf
vorgeschlagen, die ebenfalls jeweils verstimmbare Geometriephasen aufweisen.
Der letzte Teil dieser Arbeit beschäftigt sich mit entstehenden Dichtestrukturen im

Ortsraum in gekippten Gittern verschiedener Geometrien, die mittels unseres Quan-
tengasvergrößerers aufgelöst werden. Dies erlaubt insbesondere die Beobachtung einer



sich ausbildenden Dichtewelle, die spontan die Translationssymmetrie des zugrunde-
liegenden Dreiecksgitters bricht, was über wechselwirkungsinduzierte Paartunnelpro-
zesse erklärt wird. Weiterhin wird self-trapping und der Aufbau von Ringstrukturen
entlang von Äquipotentiallinien beobachtet.
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1. Introduction
Ultracold atoms offer the possibility to very flexibly engineer artificial states of matter
that can be used for the simulation of other, more complex or less accessible, quan-
tum systems, realizing an idea first proposed by Feynman [1]. They are well suited to
serve as a platform for such quantum simulations as they provide very versatile and
controllable systems with good access to different important observables [2]. Utilizing
quantum systems for the simulation themselves is necessary, because simulation of
many-body problems on classical computers quickly gets unfeasible. Ultracold atoms
allow both for clean realizations of interesting model Hamiltonians, important in the
description of known physical systems, as well as new ones without real world coun-
terparts. A crucial step for quantum simulation was to reach the quantum behavior
of dilute atomic gases by cooling their temperature down close to absolute zero where
quantum degeneracy is actualized. This was for the first time accomplished in 1995
for bosonic atoms leading to formation of Bose-Einstein condensates (BEC) [3–5] and
in 1999 for fermionic atoms [6]. Using this new access to quantum systems many
groundbreaking experiments have been performed ever since [7–9].
One fruitful direction is to load these ultracold quantum gases in optical lattices in

order to simulate solid-state systems [10, 11] as this constitutes an ideal realization
of the (Fermi)-Hubbard model [12] or Bose-Hubbard model [13], depending on the
statistics of the utilized atomic species. Here the interference patterns of multiple
laser beams are used to mimic the spatially periodic potential landscape of solid
crystals with the neutral atoms taking the place of electrons in the material. The
resulting potentials are defect free and the fundamental properties, the tunneling rate
and the particle interaction strength, can be tuned strongly by the utilized lattice
depth determined via the laser intensity and additionally by employing Feshbach
resonances [14]. Another difference is the realized lattice constant, which is typically
increased by several orders of magnitude compared to solid-state materials. The larger
spacing, together with the much larger particle weight of the atoms compared to single
electrons, also reduces the timescales of the dynamics in the system considerably and
thus makes resolving such processes easier. At the same time, this is connected to very
low energy scales in the system, demanding for correspondingly low temperatures of
the atoms in the lattice.
In order to make best use of a simulator it is of fundamental importance to have

access to the important observables of the investigated physical processes. To this
end ultracold gases offer a very powerful measurement possibility in a straightfor-
ward way by performing a free expansion time, converting the atomic momenta into
their final positions and thus allowing to image the momentum distribution of the



2 1. Introduction

system under study. Another essential property is the spatial distribution, which
gives access to central problems like transport phenomena, spontaneous formation
of domains or edge states in topological systems. By employing sophisticated tech-
niques, most notably quantum gas microscopy [15, 16] it is possible to reach single
site resolution in optical lattices. In this thesis I present a new technique which we
developed [17] following a different approach by increasing the spatial distribution
using matter wave optics. This allows us to get single-shot images of the real space
density of 2D lattices of tubes with high bosonic occupation numbers and sub-lattice
resolution. The technique is well suited for high precision thermometry measurements
with much less numerical effort than necessary from momentum space images [18–20]
and to follow density dynamics within single lattice sites, contrary to superresolu-
tion microscopy [21, 22] within single shots and on a local level, i.e. for individual
lattice sites. Another area which is explored in this thesis using the quantum gas
magnifier are phenomena of pattern formation and transport measurements. This
is an important field of research in quantum gas experiments [23–25] as transport
properties are essential in the description of many important phases in solid-state
materials. The new access to the single-shot real space density distribution of lattices
with high occupation numbers in particular allows us to identify an interaction driven
spontaneously symmetry breaking process far from equilibrium [26]. Such processes,
resulting in patterns which spontaneously break the spatial symmetry of the under-
lying potential landscape are a very fundamental phenomenon in physics [27], found
also for example in macroscopic systems like soliton trains in continuously driven
water. The different interesting regimes attainable with the quantum gas magnifier
illustrate its diverse possibilities as part of the toolbox of quantum gas simulation.
One part of the high versatility of ultracold gases in optical lattices comes from the

possibility to shape the periodic potential very freely via the number, orientations,
wavelengths and polarizations of the constituent lattice beams and thus simulate
very different solid-state materials. Many different geometries have already been
realized, in particular including complex nonseparable and bipartite lattices like for
example superlattices [28, 29], honeycomb lattices [30–32], Lieb lattices [33], Kagome
lattices [34] and quasicrystal lattices [35]. Interestingly, optical lattices also allow for
dynamical geometry changes beyond the possibilities given by solid-state materials. I
present a new concept for the design of optical lattices which we implemented [36]. By
employing different frequencies in a passively stable way, we are able to dynamically
tune the lattice geometry on the microsecond scale without the need for a phase lock.
In the case of our hexagonal lattice beam setup this allows to continuously tune the
geometry from the triangular lattice to the honeycomb lattice, which is for example
promising as a tool for creating and detecting topological effects [37].
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Thesis Outline
Chapter 2 gives an overview of the experimental sequence employed to reach a con-
densed sample of 87Rb atoms, which is used as the starting step for all experiments
throughout this thesis. It further introduces the concept of optical lattices and derives
the theoretical description of our system.
Chapter 3 introduces the quantum gas magnifier [17]. First the theoretical con-

cept and our realization of it, using a magnetic trap as the harmonic confinement
and magnifying the density distribution in our optical lattice, are presented. Follow-
ing this, characterization measurements are performed, showing the high resolution
available and how, via the suppression of interaction effects during the magnification
protocol, distortions only play a minor role in the final measurement. The technique
is then used to perform several benchmarking experiments. It offers the possibility
to perform thermometry measurements with very high precision and resolves density
features well below the lattice spacing. Finally addressing on the single site level is
demonstrated by targeting magnetic resonances.
Chapter 4 reports on our highly tunable multifrequency optical lattice setup [36].

The lattice geometry is described by the here introduced concept of the geometry
phase, to which we have direct access in this new lattice design. Following the deriva-
tion of the lattice description, our implementation is presented and characterized
in detail. In different measurements the possibilities given by our new setup are
demonstrated by exciting atoms into higher Bloch bands, achieving a new type of
spectroscopy and performing state tomography measurements. Furthermore the ge-
ometry phase concept is expanded to a general number of dimensions and lattice
beams and multifrequency setups for a quasiperiodic and a 3D optical lattice are
proposed.
Chapter 5 is dedicated to the measurement of different real space pattern forma-

tions, particularly the observation and investigation of a spontaneously symmetry
breaking density-wave emerging in a strongly dc-driven triangular lattice [26]. The
effect is described theoretically via an effective Hamiltonian as well as extensive c-
field simulations. The spontaneousness of the emergent density-wave is established,
its dynamics explored and the role of the effective tight-binding description studied
by varying the forcing direction relative to the lattice vectors. Additionally, self-
trapping effects are observed in a variety of regimes and an emergent ring structure
in transport experiments in the honeycomb lattice is investigated.
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2. Ultracold Atoms in Optical
Lattices

In this chapter, I will give an overview of our quantum simulation machine. With it,
we prepare ultracold bosonic atoms in optical lattices, which are the foundation of
the methods and effects presented in this thesis.
The first section describes the preparation of a BEC of 87Rb atoms at our experi-

mental apparatus, which was originally build as described in [38, 39]. It follows the
by now well established pattern of firstly trapping and cooling atoms in a magneto-
optical trap (MOT) [40], reducing their temperature further via an optical molasses
[41] and finally loading them into a conservative potential, a magnetic trap in our
case, to perform evaporative cooling [42] until the atomic cloud reaches the necessary
temperature and phase space density for condensation.
In the following section I will introduce optical lattices, in particular our lattice

geometries, which are used to simulate solid state Hamiltonians with ultracold gases.
They consist of periodic potentials for the atoms, formed via interference of laser
beams. The description of the resulting system by means of band structure calculation
is presented in the final section.

2.1. Preparation of the BEC
At the heart of our experimental setup is the vacuum chamber, in which the conden-
sation of an atomic sample of 87Rb and the subsequent studies of lattice Hamiltonians
take place well-guarded from disturbances from background collisions. In order to si-
multaneously allow for efficient loading rates of 87Rb atoms and decrease background
scattering as much as possible, the vacuum chamber is split in two parts. An upper
part with a glass cell containing the atomic source and a 2D MOT in which the atoms
are captured initially, held at a pressure of usually 2 to 3× 10−10 mbar, and a lower
part with a 2nd glass cell featuring a 3D MOT, the main magnetic trap and the
optical lattice at a pressure below 1× 10−11 mbar, leading to an increased lifetime of
the atoms in the system. Both parts are connected via a differential pumping stage,
i.e. a long and thin tube, able to conserve the pressure gradient.
The vapor of 87Rb atoms in the upper chamber is created by an electrically heated

dispenser. From it, atoms are captured in the 2D MOT. It consists of two pairs
of counterpropagating, red detuned and circularly polarized laser beams and a pair
of magnetic coils in anti-Helmholtz configuration. In this way it makes use of the
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Doppler effect to selectively excite those atoms moving towards one of the laser beams,
leading to a net momentum transfer oppositely to them and hence a cooling of the
atomic ensemble. A restoring force to the trap center is introduced via the magnetic
field, which gives rise to the Zeeman effect, making photon absorptions more likely
further away from the center. The plane of this 2D MOT is oriented perpendicular
to gravity and the captured atoms are transferred through the differential pumping
stage to the lower chamber via a blue detuned pushing beam along the direction
of gravity. Here the atoms are accumulated in a 3D MOT, with three beam pairs
covering all spatial directions. Depending on the performance of the machine this
step usually takes between 5 to 10 s.
So far the achievable temperature is limited by the Doppler temperature TDoppler =

~Γ/(2kB) through the natural linewidth Γ of the targeted D2 transition. To further
cool the atoms, a bright molasses is employed for a few milliseconds by switching off
the magnetic field of the MOT and adjusting the laser beam detuning. The molasses
uses polarization gradient cooling to get down near its theoretical limit of a single
photon recoil temperature.
However, the phase space density still needs to be significantly higher than possible

with the limitation from photon reemissions and thus evaporative cooling is necessary.
Therefore, we ramp up a magnetic guiding field and bring in a short light pulse to
pump the atoms to the hyperfine state F = 2, mF = 2, which has a nonzero magnetic
moment µF = −gFmFµB. Here µB denotes the Bohr magneton and gF the Landé
factor of the corresponding hyperfine state. This magnetic moment couples on the
external magnetic field and as a result, the atoms experience a potential

V (r) = −gFmFµB|B(r)|. (2.1)

Accordingly, atoms with gFmF > 0 experience potential minima at local minima of
the magnetic field. These states are therefore called low-field seeking states. Our
magnetic trap is a hybrid between a cloverleaf and a 4D trap, consisting of four pairs
of inner coils, with half of them having a reduced winding number, and an outer
pair of Helmholtz coils, which is also used in anti-Helmholtz configuration for the 3D
MOT. A schematic of the design is shown in Fig. 2.1, for more details see [39, 43, 44].
It offers the full 2π optical access in the plane between the coils and allows to work
in a regime with a harmonic potential for low-field seeking atoms without a magnetic
field of zero which would induce Majorana spin-flips to untrapped states and hence
atom losses. The resulting magnetic field close to the center can be described by
[44, 45]

B(x, y, z) = B0

 0
0
1

+B′

 x
−y
0

+ B′′

2

 −xy
−yz

z2 − 1/2(x2 + y2)

 , (2.2)
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Figure 2.1.: Winding scheme of our hybrid cloverleaf-4D magnetic trap.
The inner coils mostly follow a cloverleaf pattern, but with half of them having
significantly reduced windings causing axial curvature. Surrounding these is a pair
of Helmholtz coils. Adapted from [44].

with the bias field B0, the radial gradient B′ and the axial curvature B′′. From
this the magnetic field can be approximated in Taylor expansion using cylindrical
coordinates z and ρ =

√
x2 + y2 to

B(ρ, z) ≈ B0 + 1
2ρ

2B′′rad + 1
2z

2B′′, (2.3)

with the curvature in radial direction given by

B′′rad =
(
B′2

B0
− B′′

2

)
. (2.4)

With the dependency of the trap frequency of an atom with mass m in a harmonic
magnetic potential given by ω =

√
µF
m

d2B
dr2 , the trap frequencies in axial and radial

direction can be calculated using B′′ and B′′rad via

ωz =
√
gFmFµB

m
B′′ (2.5)

ωxy =
√
gFmFµB

m
B′′rad. (2.6)

Using the correct choice for the bias field the trap potential can be made isotropic,
which is used for loading the atoms in the magnetic trap, as it optimizes the overlap
with the symmetric cloud following the optical molasses. Subsequently the magnetic
trap is compressed in x- and y-direction by lowering the bias field, which is mostly
determined by the current through the Helmholtz coils, increasing the density and
thus allowing for efficient thermalization during the evaporative cooling. Here we use
the maximal current of 110.6A through the inner coils, resulting in B′ = 1.69·104 G/m
and B′′ = 7.12 · 105 G/m2. This maximal confinement in the radial direction, i.e. the
xy-plane, allows together with a bias field of B0 = 0.11G to reach a frequency of
ωxy = 2π ·649Hz. In the axial direction the confinement is much weaker, only leading
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to a frequency of ωz = 2π · 11Hz. For the evaporative cooling, radio frequency (RF)
radiation is brought to the atoms, resonant to the energy difference between the
different mF states. Since the potential depth of the atoms in the magnetic field is
proportional tomF (Eq. 2.1), they are transferred to anti-trapped states and lost from
the atomic cloud. At the same time the resonance condition is spatially dependent, as
the magnetic field rises approximately harmonically around the trap center (Eq. 2.3).
Using this, a cooling effect is reached by initially resonantly targeting a surface at high
potential value, i.e. far away from the trap center, where almost exclusively atoms
at highest temperatures are found. The remaining ensemble continually equilibrates
while the RF signal is lowered exponentially over typically 20 s from 18MHz to around
95 kHz. The chosen duration is a trade-off between the time needed to stay in thermal
equilibrium and the finite lifetime of the atoms in the trap. This finally sufficiently
increases the phase space density for the formation of a BEC.

2.2. The Optical Lattice
In a next step, the atoms are subjected to an optical lattice to simulate quantum
effects in periodic potentials. Such lattices work using the optical dipole force acting
on the induced atomic dipole moments in a light field [46, 47]. Its oscillating electric
field results in a shift of the atomic energy levels, such that the atoms experience a
conservative potential proportional to the light intensity I and inversely proportional
to the detuning between the light field and the atomic resonance. In order to limit
scattering events with the lattice laser beams providing the light field, their frequency
is far detuned compared to the atomic resonance frequencies of 87Rb. This simulta-
neously decreases the potential depth, however only linearly whereas the scattering
rate scales quadratically with the detuning, such that the desired potential depth can
in turn be reached by using sufficient laser beam powers. The sign of the potential
depends on the sign of the detuning. For light frequencies below the atomic reso-
nance as in our case, which are called red-detuned, the induced dipole moment is in
phase with the electric field, leading to an attractive force towards regions of high
light intensity. Oppositely, blue-detuned light fields, having higher frequencies than
the atomic resonance, feature repulsively interacting dipole potentials and hence have
potential minima at regions of low light intensities.
We work with 2D hexagonal optical lattices, constructed by overlapping three

laser beams with wavelength λ = 1064 nm, originating from a joint laser source,
and wavevectors ki = 2π

λ
(i = 1, 2, 3) in a single plane (xy-plane) under 120° angles

between each other. The beams are brought to the experimental chamber via three
polarization maintaining fibers and focused on the position of the atomic cloud with
Gaussian waists of 160µm [48, 49]. The laser beam polarizations can be set individu-
ally by combinations of a λ/4 and a λ/2 waveplate in two beams and a λ/2 waveplate
in the third beam. This allows to realize arbitrary ratios between polarizations in
the lattice plane, called p-polarization, and perpendicular to the lattice plane, called
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s-polarization, for all laser beams and additionally to tune their respective phases for
two of the laser beams. This is interesting, because with such a beam geometry and
red-detuned laser beams the s-polarization results in a triangular lattice potential
for the atoms, whereas the p-polarization results in the opposite potential landscape,
which has a honeycomb geometry with two lattice sites per unit cell. Thus for the
correct relative position between the two polarizations, which are set via their relative
phase delay, also boron nitride lattices are attainable. These feature the two minima
per unit cell of the honeycomb lattice, but with an energy offset between the two,
given by the ratio of the polarizations. More details on this setup and its possible
lattice geometries can be found in [49]. Throughout this thesis the polarizations are
set perpendicular to the lattice plane and the lattice geometry varied instead using
our new multifrequency approach, which is described in detail in chapter 4.
The optical dipole potential seen by the atoms is proportional to the intensity of

the summed electrical fields of the three lattice beams, which result from the complex
electrical fields as the absolute values squared. Consequently, the lattice potential is
described by [36]

Vpot(r, t) = κ
∣∣∣ 3∑
i=1
Ei(r, t)

∣∣∣2 = κ
3∑
i=1

∣∣∣Ei(r, t)
∣∣∣2 + κ

3∑
i=1

2<
(
Ei(r, t)E∗i+1(r, t)

)
(2.7)

= V0 + κ
3∑
i=1

2<
(
E

(0)
i E

∗(0)
i+1 e

i(ki−ki+1)r
)

= V0 + κ
3∑
i=1

2<
(
I

(0)
i eiφiei(ki−ki+1)r

)
(2.8)

= V0 + κ
3∑
i=1

2I(0)
i cos

(
(ki − ki+1)r + φi

)
. (2.9)

Here E4(r, t) = E1(r, t) and κ is the proportionality constant. In the second line we
used as definition of the complex fields Ei(r, t) = E

(0)
i ei(kr−ωt), which also shows that

the first summand is independent of position and time and is thus abbreviated to V0.
The products E(0)

i E
∗(0)
i+1 determine the intensities and phases of the three 1D lattices

and thus are replaced by I(0)
i eiφi . Lastly, when defining the single 1D lattice depths

as Vi = κI
(0)
i and the corresponding reciprocal lattice vectors as bi = ki − ki+1, with

k4 = k1, the potential is expressed by

Vpot(r) = V0 + 2
3∑
i=1

Vi cos(bi · r + φi). (2.10)

In total this gives an optical potential composed of an energy offset V0 and three
1D lattices with depths Vi, reciprocal lattice vectors bi and phases φi, which are
generally given by the relative phases and polarizations of pairs of lattice beams.
With our lattice beams enclosing angles of 120° the length of the reciprocal lattice
vectors is |bi| =

√
32π
λ

and their scalar products bi · bj = −6π2

λ2 for i 6= j. As derived
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in section 4.1.1 the lattice potential can be written in terms of the geometry phase
φg = φ1 + φ2 + φ3, which directly determines the lattice geometry:

Vpot(r) = V0 + 2
3∑
i=1

Vi cos(bi · r + φg/3). (2.11)

The potential depth V in the following is stated in units of the recoil energy of a
lattice photon

Erec = h2

2mλ2 , (2.12)

with Planck constant h and atomic mass m, which is given by Erec/h = 2.03 kHz
for our 87Rb atoms and refers to the balanced case V = V1 = V2 = V3, if not stated
differently. We usually determine it via Kapitza-Dirac scattering, as described in [50].
In order to load the atoms to the ground state of the optical lattice, its power is

ramped up exponentially within up to 600ms. Then, following the desired operations
in the lattice potential, we either realize the momentum distribution of the atoms by
performing standard time-of-flight free expansion or the real space distribution using
our quantum gas magnifier as described in chapter 3. Finally the realized atomic
distribution is measured via absorption imaging [51]. For this a resonant laser beam
is brought to the atoms along the z-direction, i.e. perpendicular to the lattice plane,
and its intensity distribution imaged on a CCD camera, such that the shadow cast
by the atoms due to photon absorption and reemission over the whole solid angle
can be compared to a subsequent unperturbed image of the intensity profile. Using
Lambert-Beers law this allow to reconstruct the integrated optical density along the
z-direction.

2.3. Band Structure Description
The physical systems we study are determined by the periodic potentials of our op-
tical lattice, mimicking solid-state systems. We can thus use the same successful
framework of Band theory, resulting in a dispersion of energy bands and correspond-
ing eigenstates, to describe our system. We limit the calculation of the energies and
eigenstates of the atoms in our optical lattice to the single particle case. Working
with bosonic atoms, a more thorough description would need to be based on the
many-body Hamiltonian and include interactions between the particles. In prac-
tice however, interaction effects are typically relatively small corrections on the band
structure of our systems and a good approximation of the energies and band gaps
can be inferred from the single-particle Hamiltonian. The important exception within
this thesis is found in the experiments in chapter 5 where interaction effects become
dominant due to large energy offsets between lattice sites mostly freezing out single
particle tunneling.
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The eigenstates in the non-interacting case follow from the time-independent Schrö-
dinger equation applied to the single-particle Hamiltonian Ĥ

Ĥψ(r) =
(
− p̂2

2m + Vpot(r)
)
ψ(r) = Eψ(r), (2.13)

with the periodic potential Vpot in our case given by Eq. 2.11. The discrete transla-
tional symmetry of the systems allows to use Blochs theorem [52], stating that the
eigenstates of the Hamiltonian can be written as the product of a lattice periodic
function uk(r) with plane waves,

ψ(r) = uk(r)eikr. (2.14)

In order to diagonalize the Hamiltonian we project it on the plane wave basis set
and numerically calculate the energies and eigenstates by restricting the system to
an N ×N reciprocal lattice, as described in detail in [49, 53]. Following the notation
in [49], we get as the matrix representation of Ĥ in the plane wave basis

Hkk′ = 〈k| Ĥ |k′〉 =
∫
d3reik·rĤe−ek′·r. (2.15)

By making use of the periodicity of the lattice potential we can substitute the
momentum vectors k(′) in terms of the reciprocal lattice vectors. These are the only
coupled momenta and are mediated via Bragg scattering processes in the optical
lattice. Thus, the momentum vectors are substituted by

k = m1b1 +m2b2 + s
k′ = n1b1 + n2b2 + q (2.16)

with integers m1,2, n1,2 and the quasimomenta s and q, which are defined within the
unit cell of the reciprocal lattice, the 1st Brillouin zone (BZ). However, neglecting the
effect of the external harmonic trap, there is no coupling between different quasimo-
menta included in the systems Hamiltonian. As such in the following we can restrict
to the case s = q given by

q = β1b1 + β2b2, (2.17)

with 0 ≤ β1,2 < 1. By plugging in the different parts of the Hamiltonian Ĥ into
Eq. 2.15 the matrix elements can be computed. This results in

∫
d3reik·r

p̂2

2me−ik
′·r = 3Erecδm1,n1δm2,n2δs,q

(
(n1 + β1)2 + (n2 + β2)2 − (n1 + β1)(n2 + β2)

)
(2.18)

for the kinetic part, which has to be described by a diagonal matrix (m1 = n1,
m2 = n2), because it does not couple different momenta. The matrix elements from
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the lattice potential conversely are off-diagonal terms as they are associated with a
change in momentum by ±b1, ±b2 or ±b3 = ±(−b1 − b2). Using Eq. 2.11 for Vpot
this gives

∫
d3reik·rVpot(r)e−ik′·r = V1

(
eiφg/3δm1,n1+1δm2,n2δs,q + e−iφg/3δm1,n1−1δm2,n2δs,q

)
+ V2

(
eiφg/3δm1,n1δm2,n2+1δs,q + e−iφg/3δm1,n1δm2,n2−1δs,q

)
+ V3

(
eiφg/3δm1,n1−1δm2,n2−1δs,q + e−iφg/3δm1,n1+1δm2,n2+1δs,q

)
.

(2.19)

Overall the energies and eigenstates of the system for one quasimomentum s = q
can hence be obtained by solving the eigenvalue problem for a N × N matrix Hkk′ ,
with the band structure following from the eigenvalues E(n)

q as a function of the
quasimomentum q throughout the 1st BZ and the band index n ∈ {1, ..., N2}. The
eigenstates result in the plane wave basis, weighted by the Bloch coefficients: |ψ(n)

q 〉 =∑N2

k=1 c
(n)
k |k〉. From them the real space orbitals for atoms in a certain band with some

specified quasimomentum can be computed. At the position r in the xy-plane the
real space density ρ is proportional to

ρ(n)
q (r) =

∣∣∣ 〈r|ψ(n)
q 〉

∣∣∣2 ∝ ∣∣∣∣ N
2∑

k=1
c

(n)
k,qe

ikr

∣∣∣∣2 (2.20)
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3. Quantum Gas Magnification
For the experimental study of complex quantum mechanical processes, it is essential to
have access to the relevant observables, with one particularly fundamental observable
being the real space density of the system. However, due to the small scales at
which the quantum nature of matter takes over, imaging such systems has proven
to be a challenging task. In the context of ultracold quantum gases this has been
made possible most prominently by quantum gas microscopes [15, 16], which offer
single atom sensitivity and single site resolution of optical lattices allowing even for
the study of quantum correlations [54, 55]. Despite their potency there are several
limitations connected to their approach. Besides the very high technical complexity,
they suffer from a narrow depth of focus, due to the high numerical aperture that
is necessary for the high optical resolution, restricting the systems under study to
2D planes. Additionally, light-assisted collisions lead to parity projections during the
imaging times. Similarly, alternative approaches come with their own strengths and
drawbacks. With electron [56] or ion microscopes [57] it is possible to avoid the strong
limitation of the depth of focus at the cost of a low single atom detection fidelity,
preventing the study of correlations. Using super-resolution microscopes [21, 22] even
sublattice density information is accessible, but they use scanning techniques to do
so. Generally, these approaches focus on increasing the resolution of the measurement
to reach the density information.
In contrast, our technique [17] works by magnifying the quantum system thus

increasing its length scale and making it easily resolvable using standard absorption
imaging. In this way, we realize sublattice resolution of 3D systems with a 2D lattice
structure, imaged by integrating along the third direction. In order to magnify the
density distribution we use matter wave optics, analogous to lenses leading to optical
magnification.
The matter wave lens is realized by a harmonic potential with a trap frequency

ωho in which the atomic distribution evolves for a quarter period. This maps the
initial position X0 to the momentum P . Via a subsequent free expansion time, the
so-called time-of-flight, another Fourier transform takes place, resulting in the final
position being determined by the initial position X = M X0, with a magnification
M ≈ ωhotToF reaching up to around 90 in our case. The concept is illustrated in
Fig. 3.1, where the initial triangular lattice is strongly magnified using two different
harmonic confinements, allowing to image the complete density distribution with
sublattice resolution in single shots.
In the next sections, I will present our quantum gas magnifier, starting with the

derivation of the focusing condition and our experimental realization of the concept.
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k1

k2

k3

Harmonic Trap
Time of Flightω1

ω2

Momentum P = mω X0Initial Position X0

1 μm

1 μm

i Final Position X = ω t   0ToFi X

Figure 3.1.: Working principle of the quantum gas magnifier. The density
distribution in the optical lattice is magnified using matter wave optics. Starting
from the left, the ultracold atoms are loaded in a hexagonal optical lattice and
suddenly released in a harmonic trap of variable confinement ωi. The result of
different confinements is highlighted by the two rows, with ω1 < ω2. After a T/4
duration in the harmonic trap the initial position distribution is converted into the
momentum distribution. Following this, the atoms are released and after a free
expansion time tToF the final position of the atoms is given by X = MX0 with a
magnification M = ωitToF. The magnified distribution is measured via absorption
imaging. The two exemplary images of a triangular lattice on the right are done
using M = 46(1) and M = 84(1).

Following this, the method is characterized by investigating the realized resolution
and imaging aberrations from atomic interactions and the trap anharmonicity. As a
next step, the possibility for high precision measurements is demonstrated by measur-
ing the thermal-to-BEC phase transition and using the very high resolution available,
dynamics within a single unit cell are studied. Finally, preparation options are dis-
cussed using magnetic resonance techniques.
The concept was implemented and the measurements taken together with my PhD

colleagues Luca Asteria and Henrik Zahn under the supervision of Klaus Sengstock
and Christof Weitenberg.

3.1. Theoretical Description

In the following, the focusing condition of the matter wave optics will be derived,
i.e. the evolution time necessary in the harmonic oscillator to reach faithful imaging
of the initial position distribution without influence of the initial momenta of the
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particles. As will be seen, this importantly can be done with finite free expansion
times by correctly adjusting the time in the harmonic potential.
For the derivation, we will use the Heisenberg picture and limit the system to 1D.

However, the results can straightforwardly be expanded to 2D and 3D for ωx = ωy =
ωz. We start with the Hamiltonian of the harmonic oscillator with angular frequency
ωho and a particle mass of m:

Ĥho = p̂2

2m + mω2
hox̂

2

2 . (3.1)

This leads to the equations of motions given by

˙̂x = i

~
[
Ĥ, x̂

]
= p̂

m
(3.2)

˙̂p = i

~
[
Ĥ, p̂

]
= −mω2

hox̂. (3.3)

These equations are solved after an evolution time tho in the harmonic oscillator by
the operators x̂ and p̂ defined as

x̂(tho) = x̂(0) cos(ωhotho) + p̂(0)
mωho

sin(ωhotho), (3.4)

p̂(tho) = p(0) cos(ωhotho)−mωhox̂(0) sin(ωhotho). (3.5)

Subsequently the potential is turned off and the atoms experience a free expansion
time at fixed momenta. The resulting position operator is thus given by

x̂(tho + tToF) = x̂(tho) + p̂(tho)tToF

m

= x̂(0)
(
cos(ωhotho)− ωhotToF sin(ωhotho)

)
+ p̂(0)

( 1
mωho

sin(ωhotho) + tToF

m
cos(ωhotho)

)
. (3.6)

The focusing condition is now met for

tan(ωhotho) = −ωhotToF, (3.7)
allowing to simplify x̂(tho + tToF) to

x̂(tho + tToF) = x̂(0)
(
cos(ωhotho) + tan(ωhotho) sin(ωhotho)

)
= x̂(0) 1

cos(ωhotho)

= x̂(0) 1
cos(arctan(ωhotToF)) = x̂(0)

√
1 + (ωhotToF)2. (3.8)
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The magnification of the density distribution after the sequence is hence given by
M =

√
1 + (ωhotToF)2 ≈ ωhotToF. The approximation holds for ωhotToF � 1, which

is very well fulfilled in our typical realizations. The error from the approximation in
the perceived effectively realized confinement ωho in the upper image of Fig. 3.1 for
example is only 0.03%.
In Fig. 3.2 the focusing condition is demonstrated graphically. It shows the time-

dependent coefficients cx(t) and cp(t) of the decomposed position operator x̂(t) =
cx(t)x̂(0) + cp(t)p̂(0). In this diagram the time evolution in the harmonic potential
leads to a circular trajectory around (cx, cp) = (0, 0) from the starting point A to point
B after tho. The angle spanned by this evolution is given by ωhotho. With the onset
of the time-of-flight the momentum operator p̂(t) stays constant, leading to a straight
line tangentially touching the circle at point B with length ωhotToF. Here the focusing
condition (Eq. 3.7) appears via the 2nd angle, θToF = arctan(ωhotToF) = −ωhotho +nπ
with n ∈ Z, since ωhotho + θToF = π must be fulfilled in order to end up at point C
with cp = 0. The magnification can be read out as the hypotenuse of the triangle
OBC yielding the expected M =

√
1 + (ωhotToF)2. The graphic also connects back to

the intuitive picture with the evolution time in the harmonic potential simply being
T/4. This is reached in the far field limit, since ωhotToF →∞ leads to ωhotho → π/2.
Additionally, the graphic shows that the magnified position is actually also inverted
for every second odd multiple of T/4, because cos(ωhotho + θToF) is negative for tho ≈
(1 + 4n)T/4 and positive only for tho ≈ (3 + 4n)T/4. As this has no importance for
our images, we conventionally always state |M |.
The derivation can of course be performed in the Schrödinger picture as well, il-

lustrating that the matter wave can be magnified faithfully [58]. When reaching

-5 -4 -3 -2 -1 0 1

-1

0

1

A

B

C

M

tof

cx(t)

c p
(t
)

O
hoho

tofho

Figure 3.2.: Visualization of the focusing condition. Depicted is the time
evolution of the operator x̂ = cx(t)x̂(0) + cp(t)p̂(0) during the matter wave mag-
nification protocol. Starting from A the particle follows a circle in the coefficient
space during the evolution in the harmonic potential until B. The arc between A
and B encompasses an angle ωhotho. At that point the confinement is switched off,
resulting in a straight line until the end of the free expansion and thus of length
ωhotToF ending at point C. The corresponding angle being θToF ensures the focusing
condition is met, i.e. C is placed at cp = 0. The magnification M can be found as
the distance of C from the origin. Adapted from [58].



3.2. Experimental Application 17

single-atom resolution, this method would thus also give access to the study of quan-
tum correlations. Furthermore, it can be expanded to a time dependent confinement
during the matter wave lensing. As long as the confinement remains harmonic, there
exists a time tho in the harmonic trap that is not dependent on p̂(0) and faithfully
reproduces the initial density distribution [58].
Alternatively, by choosing cot(ωhotho) = ωhotToF, the final distribution is indepen-

dent of the initial position and instead determined solely by the initial momentum:
x̂ = Mp̂0. This allows to compensate for the finite free expansion time tToF and
results in a freely tunable magnification in between 1 in the case of pure T/4 evo-
lution in the harmonic confinement [59–61] and around ωhotToF in the limit of pure
free expansion time. Although this avoids deviations from the far-field approxima-
tion, one would need to check for aberrations during the matter wave part, especially
from interactions between the particles, for the trade-off in a concrete system under
consideration.

3.2. Experimental Application
With the theoretical concept of the quantum gas magnifier established, I now want to
introduce the concrete realization and typical experimental sequence in our system.
As described in section 2.1, we reach condensation of 87Rb atoms, previously

pumped to the stretched |F = 2,mF = 2〉 state, via evaporative cooling in a mag-
netic trap. Since it is in very good approximation harmonic with equal frequencies
ωx = ωy within the lattice plane, it serves as the matter wave lens. We thus keep
the BEC in the magnetic trap while typically the 2D optical lattice is adiabatically
ramped up. The system overall is 3D, since the confinement out-of-plane is much
weaker, ωx � ωz, leading to a hexagonal array of 1D tubes with up to around 1,000
atoms per tube. The magnifier protocol is started by suddenly switching off the op-
tical lattice via acousto-optic modulators (AOMs). This is effectively instantaneous
with regard to the atoms, as it only takes on the order of 102 ns for the RF signal
to travel the refractive material. Then the atoms evolve for approximately a quar-
ter period in the harmonic potential, tho ≈ T/4 = 2π/(4ωho). Following this, the
magnetic trap is switched off within around 40µs using IGBTs. With only gravity
left, the atomic distribution, Fourier transformed via the matter wave lens, freely
expands during the time-of-flight such that the momentum distribution is mapped
to the position once again. After some 20ms of free expansion we perform standard
absorption imaging. The imaging pulse has a duration of only 50µs as to limit the
distance the atoms fall down during the imaging. Finally the shadow of the atomic
cloud gets imaged after an optical magnification of Mopt = 2.04, on a CCD camera.
Additionally, we have the option to tune both the system size and the magnification

by varying the current send through the coils generating the magnetic potential. In
order to have efficient evaporation, we always start with the BEC in a tight xy-
confinement of ωsys = 2π × 610Hz, realized for a current of 110.6A. As depicted
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in Fig. 3.3 we vary the system size by exponentially ramping the current within
100ms to a desired value. Due to the changing gravitational sag this induces dipole
oscillations of the BEC, which are damped by long loading times of the optical lattice
of up to 600ms. If we want to once more change the confinement directly prior to
the imaging, to usually get ωho > ωsys, i.e. a larger magnification, we need to fix the
atomic distribution during the ramp of the magnetic trap. This is done by quenching
the lattice depth to around the deepest value attainable, typically V = 6Erec, which
corresponds to a tunnel coupling of only around J ≈ 0.001Hz in the triangular lattice,
and quickly ramping the current in 1ms to realize the desired magnetic confinement.
Freezing the atoms in a deep lattice not only allows to more freely tune the harmonic

confinement, but also effects another property of high importance to the matter wave
dynamics, which is the coherence of the atoms. If the atoms are coherent across the
system they will form interference patterns of reincreased density, so-called Talbot
revivals [62], periodically during expansion [58, 63]. This results in many instances
of high atomic density, in particular at the start of the dynamics in the harmonic
trap. In addition, when realizing the momentum distribution at the end of the T/4
pulse, the atoms reassemble in small regions at the Bragg peaks. Because we are
working with interacting particles these times of high density lead to changes in the
trajectories, significantly reducing the lattice signal at the end of the magnifying
sequence. For the measurements, we typically thus either end by freezing out the
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Figure 3.3.: Experimental sequences of the quantum gas magnifier.
a Sketches of the magnetic trap frequency in Hz (blue, left axis) and the lattice
depth in Erec (red, right axis) for the most straightforward magnifying sequence.
Region I is the ending of the evaporative cooling, followed by an adiabatic loading
into a lattice of V = 6Erec (III). After some measurement in this lattice (IV) it is
switched off for the T/4 pulse in region VII, while the harmonic confinement stays
constant at 610Hz. Finally, this is switched off as well, starting the time-of-flight
(VIII). b Experimental protocol including in addition to the previous steps an in-
crease of the system size by ramping down the magnetic trap after the evaporation
(II), freezing of the atoms combined with a second ramp of the confinement to
increase the magnification (V) and a final hold time before the matter wave lensing
(VI). For more details on step VI see section 3.3.4. The x-axis is not to scale to
better visualize the shorter time steps.
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coherence of the system since this does not change the lattice site populations or
immediately load with the corresponding lattice depth to also image the sublattice
density distribution of the system. Suppressing the tunneling can be done relatively
easily in the case of the triangular lattice, which is characterized by all three 1D
lattices which make up the optical lattice having overlapping potential minima (see
section 4.1.2). The potential barriers of the honeycomb lattice on the other hand
only have 1/8 the height for the same lattice beam intensities. Thus we have to use
the deepest lattice available to freeze out coherence in honeycomb and boron nitride
lattices. It is however insufficient to keep the atomic distribution unaltered during
a ramp of the magnetic trap, limiting our studies on such lattice structures with
sub-lattice resolution to comparatively small systems of around 20 to 50 lattice sites.
Some exemplary images of 87Rb atoms in the 2D optical lattice taken with the

quantum gas magnifier are shown in Fig. 3.4. For a and b triangular lattices are used,
while c has images from a honeycomb and a boron nitride optical lattice. In Fig. 3.4a
the system size is kept constant at a confinement of ωsys = 2π × 225Hz by always
ramping the current through the coils down to 100A in step II, whereas the harmonic
confinement is varied from 362 to 543 and 641Hz, resulting in magnifications of
M = 46(1), 69(1) and 84(1). The confinements are simple approximations supposing
ωho = 2π/(4T/4) exactly and the magnifications are obtained by fitting the imaged
lattice constants together with the known pixel size of 13µm and the separately
confirmed optical magnification of Mopt = 2.04. For Fig. 3.4b the system size is

a
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Figure 3.4.: Example images after quantum gas magnification. a Ultracold
87Rb atoms in a triangular lattice with system size given by a harmonic confinement
of ωsys = 2π×225Hz and magnifications ofM = 46(1), 69(1) and 84(1). b Image of
a triangular lattice with ωsys = 2π×89Hz andM = 46(1). c Images of a honeycomb
lattice and a boron nitride lattice with ωsys = 2π×610Hz andM = 83(1). Adapted
from [17].
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strongly increased to ωsys = 2π×89Hz and the magnification set again to M = 46(1)
by appropriately ramping the confinement. Finally the images in Fig. 3.4c have
ωsys = ωho = 2π×610Hz leading toM = 83(1). Such magnifications allow us to easily
resolve the two lattice sites within the unit cell for the depicted lattice geometries.
The first image features a graphene or honeycomb lattice with equal on-site energies
and the second one a boron nitride lattice with an energy offset between the A- and
B-sites of 4.3 kHz, leading to strong population differences in the ground state.

3.3. Characterization
In the following section, the characteristics and limitations of our realization of the
quantum gas magnifier will be examined more closely. For this, we experimentally ver-
ify the optimal focusing of the matter wave lens and check the resolution, particularly
in dependence of the strength of the interaction effects. We also confirm aberrations
due to anharmonicity to only have a very minor contribution to the magnified density
and discuss how to experimentally lower the effect of the interactions.

3.3.1. Focusing of the Matter Wave Lens
We start the characterization by looking at the precise focusing conditions in the
experiment depending on the systems parameters. To quantify the focusing we define
the lattice contrast of the quantum gas magnifier as the integrated strength of the
peaks in the 2D Fourier transformations of the measured density distribution nor-
malized to the total atom number. The strength is determined by integrating the
signal in three circular masks, with each including the signal at one of the recipro-
cal lattice vectors. The resulting contrast as a function of the evolution time in the
harmonic trap tho for different atom numbers is depicted in Fig. 3.5. An independent
measurement of the trapping frequency utilized here results in ωho = 2π × 305Hz.
In order to get a sharp image of the initial real space distribution it is necessary to
finely adjust the evolution time in the trapping potential to its effective frequency
during the evolution pulse ωpulse. In Fig. 3.5a are four images each for atom numbers
of roughly 30,000 and 120,000 atoms in the lattice. The evolution times are changed
from the focusing times by up to several percent, severely worsening the lattice reso-
lution. In our case, using tens of thousands of interacting atoms, we have a noticeable
influence on the exact focusing time and the possible lattice contrast from interaction
effects. As shown in Fig. 3.5b, the maximal contrast decreases to about 60% when
changing the atom number from 30,000 to 120,000. Additionally, we observe a shift
of the focusing time towards longer times, which can be explained by an effectively
lower trapping potential seen by the individual atoms due to mean field repulsion.
This is displayed for varying atom numbers in Fig. 3.5c, where the focusing time is
determined for each 1D direction separately.
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Figure 3.5.: Lattice contrast of the quantum gas magnifier. a Shown are
example images at four evolution times in the harmonic trap, tho = 0.77, 0.79,
0.81, 0.83ms, for a low (30,000) and a high (120,000) number of atoms in the
triangular lattice. Every time a system size of ωsystem = 2π × 134Hz, a harmonic
trapping frequency of ωho = 2π × 305Hz and a time-of-flight of tToF = 18.5ms are
used. The inset in the first panel defines the three 1D lattice directions. b Contrast
of the lattice structure for both atom numbers from a as a function of tho. Blue
(red) symbols represent measurements with around 30,000 (120,000) atoms. The
lines are Gaussian fits, yielding a difference in focusing times of 13.4 ± 1.5µs and
widths of 12.8 ± 0.5 and 15.3 ± 1.4µs. c Evolution times of maximal contrast
and corresponding effective trap frequencies as a function of the atom number.
The symbols correspond to the focusing times of the three directions marked in a
(direction 1: dark blue circles, direction 2: middle blue triangles, direction 3: light
blue crosses). The error bars denote the 68% confidence interval of the centers of
Gaussian fits as those depicted in a. Adapted from [58].
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The effect of the harmonic trap on the final lattice contrast can be increased by
comparing the situation at different odd multiples of T/4. Since the harmonic po-
tential transforms position to momentum or momentum to position for every quarter
period, this results repeatedly in images of the magnified spatial distribution. How-
ever the impact of aberrations during the hold time increases, leading to a decrease in
signal quality (Fig. 3.6a). At 3T/4 for example, the maximal contrast ratio between
120,000 and 30,000 atoms has already dropped to below 10%. When increasing the
interaction effects further by keeping the coherence between different tubes, we can
barely recover the lattice structure after evolution times of 3T/4 even for low atom
numbers.

Using more relay imaging steps, we also find increased differences in the focusing
times for the three 1D lattice directions (Fig. 3.6b). In particular the two directions
partially along gravity (1 and 3 in the inset of Fig. 3.5a) have longer times, i.e.
see a weaker harmonic potential, than the 1D lattice perpendicular to gravity. We
attribute this to the gravitational sag, leading to a small flattening of the potential
along gravity. However, since the effect is very minor, with a resulting ellipticity on
the order of 1%, this does not prohibit us from simultaneously focusing the lattice
both in x- and y-direction.
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Figure 3.6.: Image contrast for different number of relay imaging steps.
a The lattice contrast is shown around the expected times for (2n+1)T/4 with n =
0, ..., 5, for 30,000 (65,000, 120,000) atoms in blue (yellow, red). b Differences in
focusing times in directions 1 (dark blue circles) and 3 (light blue crosses) compared
to direction 2 (definitions in the inset in Fig. 3.5a). The focusing times result from
Gaussian fits to the blue data of a for the shown relay imaging steps. For n = 5
the fit fails, as there is no sufficient recovery of the lattice contrast. Adapted from
[58].
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3.3.2. Resolution Analysis
In a second characterization step, we will investigate the resolution we reach using the
quantum gas magnifier more quantitatively. For this, we fit a grid of 1D Gaussians
with a global width and individual amplitudes to central cuts along all the three 1D
directions of the magnifier images. To account for atoms scattered during the T/4
evolution and general imperfections the fit also includes a much broader background
Gaussian and a constant offset. The fit function of the optical density ρOD is hence
described by

ρOD(x) = c0 + cbg exp
(
−(x− xbg)2

2σ2
bg

)
+

N∑
n=1

cn exp
(
−(x− xn)2

2σ2
site

)
, (3.9)

with xn = x0 +alat(n− N+1
2 ). Here σsite is the desired global 1/

√
e width of the lattice

sites, alat is the fitted lattice constant and N is the number of Gaussians in the grid.
In the following we choose N = 21, which is sufficient to include all relevant lattice
sites in single lines at the utilized system sizes. A set of example images with the
fitted cuts for three different magnifications are plotted in Fig. 3.7a.
From this we determine the lattice site widths as a function of the magnification

and the number of atoms in the system as shown in Fig. 3.7b and c. According to
the Rayleigh criterion, the lattice sites are well resolved if σsite < 0.35 alat is fulfilled,
which ensures the distance of two sites alat to be larger than the radius of the first
minimum of the diffraction patterns of the sites. The experimentally observed widths
can in first approximation be described as a convolution of the magnified size of the
wave function at a lattice site σwf and the optical resolution of the absorption imaging
σopt, resulting in

σsite(M) =
√
σ2

opt + (Mσwf)2. (3.10)

This functional dependency is fitted to the measured widths, averaged over all differ-
ent atom numbers, in Fig. 3.7b (solid brown line), leading to σopt = 5.2(2)µm and
σwf = 118(3) nm. The graph also contains the Rayleigh criterion in blue, showing
that according to the fit, a resolution of around 23 would already be sufficient to
reach single site resolution. With a standard time-of-flight duration at our setup of
20ms this would require a trapping frequency of ωho = 2π × 183Hz.
In a next step, we further include interaction effects in the resolution analysis by

measuring the site widths for different atom numbers. As discussed in the previous
section, the aberrations due to atomic interactions can also be enhanced by taking
higher odd multiples of T/4 into account. This is shown in Fig. 3.7c for atom numbers
between around 20,000 and 130,000 using two different magnifications via trapping
frequencies of ωho = 2π× 633 and 305Hz and by including the 0th, 1st and 2nd relay
imaging steps. For an analytical description we use a heuristic model, introducing an
interaction-induced broadening σint and matter wave aberrations of single particles
σlens to Eq. 3.10:
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Figure 3.7.: Resolution of the quantum gas magnifier. a Exemplary im-
ages together with central cuts through the distribution using magnifications of
M = 83(1), 56(1), 38(1). The position of the cuts are marked by the lines through
the images in the corresponding colors. The lines to the data points result from fits
of Eq. 3.9. b Shown are the fitted lattice site widths for varying magnifications and
atom numbers (from black to light brown: N = 45(2), 54(3), 64(3), 72(2) ×103).
The brown line is the simplified theoretical descritption of Eq. 3.10 using aver-
ages over the four atom numbers, whereas the dashed lines result from fits using
Eq. 3.11. Additionally, the Rayleigh criterion, i.e. the widths with σsite < 0.35 alat,
is represented by the blue line. c Fitted lattice widths for magnificationsM = 38(1)
(left panel) and M = 79(1) (right panel) and three different odd multiples of T/4
(dark blue circles: n = 0, middle blue triangles: n = 1, light blue crosses: n = 2)
versus the number of atoms in the lattice. The lines come from a common fit to all
data points using Eq. 3.11. The error bars provide the 68% confidence interval of
the three 1D directions (as marked in a). Adapted from [58].
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σ2
site(M,N, n) =σ2

opt + (Mσwf)2 + ([2n+ 1]p1Np2Mσint)2

+ ([2n+ 1]p3σlens)2. (3.11)

A single Fit to the data of Fig. 3.7c yields σopt = 5.3(3)µm, σwf = 68(24) nm, σint =
4.2(4) nm, σlens = 0.42(46)µm and for the exponents p1 = 0.29(5), p2 = 0.33(5) and
p3 = 1.6(7). We compare these results to the more detailed magnification dependence
from Fig. 3.7b, using the stated values for σlens and p1,2,3. Fitting the other parameters
to these data points leads to σopt = 5.2(1)µm, σwf = 75(10) nm, σint = 3.6(3) nm, in
good agreement with the previous fit. Since the values for σopt are stated as 1/

√
e-

widths they correspond to a Rayleigh resolution of about r0 = σopt/0.35 = 15µm.
In conclusion, we find the measured optical density of the real space distribution

to be well described by a convolution of the original wave function and a good optical
resolution, with comparatively minor additions from single particle aberrations and
atomic interactions, provided the coherence across the lattice is frozen in a sufficiently
deep lattice. Thus, via the quantum gas magnification the density distribution can
be enlarged far beyond the single site resolution.

3.3.3. Single Particle Aberrations of the Imaging Protocol
In the following, I will discuss single particle aberrations that occur during the matter
wave optics in our magnetic trap. Most importantly, anharmonicities in the trapping
potential used to realize the Fourier transform of the initial atomic distribution could
severely limit the accuracy of the magnified image of the lattice.
In this regard, a magnetic trap is especially well suited to serve as the harmonic

potential, because it can be very smooth and isotropic and also comparatively broad,
as the potential region is not limited to the typically smaller waist of an optical dipole
trap. Nevertheless, the potential does get more anharmonic at larger distances from
the trap center. This gets visible for very large magnifications and populated lattice
sites far from the center, as depicted in Fig. 3.8a. Here we shift the atomic distribution
away from the trap center and utilize a trap frequency of ωho = 2π × 641Hz in the
image plane. In this way, the populated lattice sites reach the outer part of the
potential where the slope gets more linear.
As presented in section 2.1, the magnetic trap can be described by Eq. 2.2. The

parameters are given by B0 = 0.11G, B′ = 1.69 · 104 G/m and B′′ = 7.12 · 105 G/m2.
Extending the Taylor expansion of B(ρ) from Eq. 2.3 to the quartic term, i.e. includ-
ing the main anharmonicities of the magnetic trap, the potential is given by

Vtrap/h = 78.4 kHz + 1.78 kHz
( ρ

µm
)2
− 7.2 Hz

( ρ

µm
)4
. (3.12)

The constant term gives the resonance to the mF = 1 state at the trap center. For
small distances from the center, the slope is dominated by the quadratic term and gets
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Figure 3.8.: Aberrations from the trap anharmonicity. a Sum of two images
with different displacements between the atomic cloud and the magnetic trap center
(gray circle). The harmonic confinement is set to ωho = 2π × 641Hz. The straight
black line is a guide to the eye, highlighting the distortion of the lattice site positions
far from the center. b Simulation using classical point particles leading to the same
lattice distortion. Adapted from [58].

increasingly more anharmonic via the quartic term. To compare our measurement to
the expected distortion from the magnetic trap, Fig. 3.8b shows the velocity distribu-
tion after a quarter period evolution time in the magnetic trap for classical particles
initially located at the lattice sites in a 19 × 19 region. The resulting distortion fits
well to the measured lattice site positions.

In conclusion, imaging aberrations due to anharmonicity are negligible in our sys-
tem. We do however notice deviations when comparing the realized magnification
of the distribution with the expectations resulting from the independently measured
angular frequency of the harmonic confinement ωho and the experimentally optimized
evolution time in the trap tho. The differences are shown in Fig. 3.9, with Fig. 3.9a
referencing to the actually measured magnifications and Fig. 3.9b referencing the
different observables to the frequency of the harmonic confinement measured by ex-
citing dipole oscillations of a cold atomic cloud via shifting the trap with respect to
the atoms. The expected magnification M = ωhotToF from ωho is consistently around
15% smaller than the observed one and the expectation from the optimized evolu-
tion time in the trap M = 2πtToF/(4tho) is around 10% smaller. The changes with
the atom number included in Fig. 3.9b reveal, that the deviations from interactions
are significantly smaller than this, with the extrapolation to zero interactions even
increasing the discrepancy, as our repulsive interaction leads to an effective lowering
of the trap frequency. The origin of these mismatches is not fully understood. The
best candidate is the ramp of the confinement during the switch-off, which takes ap-
proximately 40µs, bringing the trap frequency from the optimal evolution time more
in line with the independent measurement of the frequency.
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Figure 3.9.: Comparison of different accesses to magnification and trap
frequency. a Shown are the magnifications determined in three ways for five
different systems as function of the actually measured magnification. Thus the
measured magnification from the fitted lattice constant alat viaM = alat

2/3λ
lpixel
Mopt

(blue
circles) lie on the dashed angle bisector. Here lpixel is the camera pixel side length
of 13µm. Additionally, the magnification obtained via the evolution time tho, used
to yield a focused image, calculated as M = 2πtToF/(4tho) (red crosses) and the
magnification following ideally from the independent trap freqency measurement as
M = ωhotToF (green triangles) are plotted. b Comparison of the same methods by
their respective expectations of the trap frequency as function of the independent
frequency measurement. The different colors for the two other cases demonstrate
the comparatively low influence from mean-field repulsion, showing the cases for
around 45,000 atoms (dark blue circles and dark red crosses) and around 75,000
atoms (light blue circles and light red crosses).

3.3.4. Interaction Effects

In order to correctly transfer the initial positions of the atoms to their momenta at the
end of the quarter period evolution time, they should only be accelerated through the
harmonic trap. As we are working with interacting particles, we thus have to avoid
high densities during the dynamics. A first significant density reduction is achieved
by switching off the optical lattice at the start of the evolution time. As stated
previously, we then suppress subsequent appearances of high densities due to Talbot
revivals during the evolution time by removing the coherence between the lattice sites.
We find the typically very fast increase of the lattice depth to V = 6Erec for the
freezing to induce breathing oscillations along the z-direction, changing the lengths
of the tubes. The resulting changes in the density have a significant influence on the
observed lattice contrast, as shown in Fig. 3.10. The lattice contrast is optimal for
large widths along the z-direction during the dynamics, when the density is minimal.
This corresponds to small cloud widths in Fig. 3.10, because in this direction we only
have a confinement of up to ωz = 2π×11Hz, and thus measure the momentum width
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Figure 3.10.: Contrast oscillation after freezing. Shown is the contrast of the
image via the relative strength of the Fourier peaks of the lattice structure in
blue and the measured cloud width along the z-direction in red. Broader clouds
have a smaller width during the quarter period evolution time and hence enhanced
interactions, leading to a smaller contrast of the quantum gas magnifier. Adapted
from [58].

instead of the real space one. In our typical parameter regime we find a hold time of
12ms after the increase of the lattice depth to yield the best image contrast.
In the future, it would be very interesting to perform the magnification protocol

with an atomic species featuring Feshbach resonances, such that interaction effects
could be entirely switched off. This would allow getting sharp images also of coherent
systems.

3.4. Precision Thermometry
Having investigated the different characteristics and aberrations of our quantum gas
magnifier and especially checked the reliability of the access to the single lattice sites,
we will now make use of it to perform a first benchmark experiment. The idea is to
study the well-known thermal-to-BEC phase transition in real space images, as they
allow for an easier identification of the systems temperature compared to standard
momentum space images.
For this measurement we prepare the system at different temperatures and atom

numbers, by changing both the final frequency of the evaporation ramp from 80 to
140 kHz, which acts correlatedly on the resulting temperature and atom number, and
the duration of the subsequent hold time from 1ms to 5 s. During the latter the
RF signal is still active, 15 kHz above the respective final frequency, to act as a RF
shield, preventing heating and thus mainly acting on the atom number. Following
this, the magnetic confinement is ramped to ωho = 2π × 305Hz and then the atoms
are adiabatically loaded into a triangular lattice of V = 1Erec depth, corresponding
to a tunneling energy, approximated in tight-binding description as nine times the
width of the 1st band, of J/h = 13Hz. Alternatively put, the bandwidth of the 1st
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band is kB × 5.4 nK and the following 1st band gap has a width of kB × 290 nK.
Prior to the magnifying sequence, i.e. the switch off of the lattice potential, the
coherence is removed by a 15ms hold time at a lattice depth of V = 6Erec, i.e.
J/h = 1mHz. From the resulting density distributions we then extract the single
lattice site populations by overlapping the images with a lattice of Wigner-Seitz cells
and integrating the optical density over each of them (see Fig. 3.11a). This is done
by firstly finding the currently realized lattice constant via fitting a periodic function
to the integrated density profiles. Subsequently the position of the lattice sites with
respect to the camera is determined by maximizing the signal in an array of circular
masks placed on top of the measured density. For more details on the read-out off
the lattice site populations see [17, 50].
The resulting data can be modeled by a bimodal density distribution, consisting

of a condensed part in the center of the system, to find the ratio of atoms in the
BEC, and a thermal part, from which the clouds temperature can be extracted.
The density of the condensed part of the cloud can be described in Thomas-Fermi
approximation, leading to an inverted parabolic shape given by the confinement of the
system ωsys in the lattice plane. For the thermal part, we use a semi-ideal approach,
describing the atoms as an ideal gas in a potential composed of the harmonic trap
and a repulsive term from the condensed fraction, which is necessary because of the
high atomic density in the condensate. From a combined fit we extract the ratio of
condensed atoms f0 and the temperature of the thermal part T with high precision as
demonstrated by the very good description of the data depicted as projections versus
the radial position in Fig. 3.11c and d.
Using the varying temperatures and atom numbers, this allows us to quantitatively

study the BEC phase transition. When plotting the BEC fractions as a function of
the measured temperature (Fig. 3.11e) the different realizations are spread in the 2D
plane and do not fall on a single line, because the critical temperature for condensation
T 0
c depends on the atom number of the atomic cloud. In order to normalize the

temperature to the critical temperature we calculate the latter analytically in non-
interacting approximation. As a result, the data points collapse onto a single curve,
as depicted in Fig. 3.11f. However, we find a shift of the critical temperature Tc
towards lower values compared to the non-interacting theoretical description. The
non-interacting case is approximated by a power law for the density of states g(E) =
CαE

α−1, which leads to a dependency f0 = 1− (T/T 0
c )α with α = 2.69(1), shown as

the green line in Fig. 3.11f. This value of α reflects our system being in a complex
regime in between a lattice, which is relevant for the density of states only for energies
smaller than the 1st band gap, and a 3D harmonic oscillator. The error, as usual,
gives the 68% confidence interval of the fitted coefficient. From this we extract the
interaction shift by fitting a scaled critical temperature Tc to the data points with
f0 > 0.1, using f0 = 1 − (T/Tc)2.69. This results in Tc/T

0
c = 0.901(4). The high

precision of the thermometry measurement is reflected by the small statistical error
found by the fit. On top of the statistical error we have an estimated error on the
determined total atom number of 3%, leading to a systematic error on Tc of 1%. The
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Figure 3.11.: Thermal-to-BEC phase transition in an optical lattice using
real space images. a Read-out of the lattice site populations by overlapping the
optical density images with a grid of Wigner-Seitz cells. The system has a tempera-
ture of T = 171(1) nK and 37, 000(400) atoms. b Shown are the atoms numbers per
lattice site at T = 310(1) nK and a total atom number of 106, 000(600) . c,d Atom
number per tube projected to the distance from the clouds center corresponding to
the measurements shown in a and b, respectively. The lines represent the bimodal
fit (purple) and its components, the BEC part (blue) and the thermal part (red).
e,f Condensate fraction as a function of the temperature and the normalized tem-
perature, originating from bimodal fits as depicted in c and d. The color encodes
the total atom number and the error bars denote the 68% confidence interval of
the fits. In f the green line gives the non-interacting power law approximation and
the black line the fit to the data by rescaling the critical temperature. Adapted
from [17].

data points with less than 10% of the atoms in the BEC are disregarded in the fit,
because of the strong smoothing at the phase transition.
The shift we find is expected in a system of finite-size and including interactions

[64] and similar yet less pronounced shifts were already measured in 3D harmonic
traps [65, 66]. However, so far there is no full theoretical description available of
our crossover regime between the 2D lattice and the overall 3D system, including the
relevant contribution from the external harmonic confinement. These peculiarities
might also explain the strong smoothing of the phase transition we observe. For
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more details on the modeling of our system and effects on the shift of the critical
temperature see [17, 50].

3.5. Sub-Lattice-Site Resolution
Owing to the strong harmonic confinement achievable in our setup we can magnify the
real space density of the atoms in the lattice by almost two orders of magnitudes. This
allows going beyond the single site occupation numbers and resolving features well
within single lattice sites. To demonstrate this we measure the dynamics initialized
via a quench of the lattice potential from a deep balanced boron nitride lattice to a
lattice of dimers with energy offset and compare it to a non-interacting simulation of
the density ρ based on Eq. 2.20.
The atoms are adiabatically loaded in a boron nitride lattice with V = 32Erec and

a large energy offset between the A- and B-sites of ∆AB = 12 kHz, such that initially
all atoms are located on the lower A-sites. Then the dynamics is started by setting
the intensities of two beams to half the balanced value: I2 = I3 = I1/2. This displaces
pairs of lattice sites towards each other, such that they form dimers, as visualized in
Fig. 3.12. As a consequence, the tunneling barriers between the sites within dimers are
lowered significantly and the lattice site positions are slightly displaced which induces
a dynamic between the sites of the dimers and also oscillations in the positions of the
atoms within lattice sites. Due to the feedback control of the laser beams the lowering
of the intensities is not just given by a step function, but by an exponential decrease
with a small overcorrection, in total taking around 70µs until the final situation is
reached.
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Figure 3.12.: Initializing the dynamics. The potential landscapes show the initial
balanced boron nitride lattice and the dimerized case with two lattice beams at half
the intensity. On the right cuts through a pair of A- and B-sites are shown before
(light blue line) and after (dark blue line) the lattice depth quench. It changes
both the position of the minima and lowers the potential barrier between them.

We measure the density distribution after a magnification of M = 93(1) in 10µs
steps from 10µs to 390µs, taking six repetitions each, and determine the lattice
position in each shot separately. To follow the dynamics, cuts of one pixel width
through the center of each dimer are taken. With our magnification we have alat =
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10.9 pixel and thus one pixel corresponds to 65 nm. Then the resulting distribution is
calculated as the average over all single dimers with a summed optical density larger
than half the maximal optical density in each respective single shot. These density
distributions are plotted underneath each other as a function of the evolution time in
Fig. 3.13b. This clearly reveals both an oscillation of the position of the lower lattice
site and tunneling processes to the second site.
To the left of the experimental results in Fig. 3.13b the simulated results are shown,

which agree well when including a broadening of the distribution via a Gaussian filter
of 76 nm. In the simulation we include the evolution of the lattice beam depths as
measured on the photo diodes of the feedback control in steps of δt = 5µs. For this we
perform a band structure calculation with the actually realized lattice depths for each
time step as described in section 2.3, with the short time scale of the measurement
justifying the use of a non-interacting simulation. The resulting instantaneous band
energies E(n)

q,m and eigenstates |ψ̃(n)
q,m〉 at the mth time step are then used to obtain

the time evolution of the initially realized wave function given by the eigenstate
|ψ(1)

0 〉 = ∑
k c

(1)
k |k〉 in the 1st band (n = 1). As simplification the calculation can be

restricted to the quasimomentum at the Γ point in the center of the BZ (q = 0), since
the dimers are effectively decoupled, leading to flat bands and hence no influence from
the quasimomentum. Thus the wave function at the mth time step is given by

|ψm〉 =
∑
n

〈ψ̃(n)
m |ψm−1〉 e−

iE
(n)
m δt

~ |ψ̃(n)
m 〉 . (3.13)

Using Eq. 2.20 with the wave function for each time step we calculate the real space
density distribution and cut out the signal across one dimer to get the left image in
Fig. 3.13b. In the simulation, the external trap is not included, as we see no depen-
dence of the dynamics on the position of a dimer within the cloud in the experiment.
The good agreement between the measured and simulated time evolution demon-

strates that the large magnification of our setup indeed allows to faithfully image the
real space density well within the unit cell.
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Figure 3.13.: Nanoscale dynamics in an optical boron nitride lattice.
a Shown are three exemplary images 10, 50 and 90µs after the quench reveal-
ing the onset of a tunneling dynamic between the different types of lattice sites.
The images are taken with a magnification of M = 93(1) b Time evolution of the
density distribution within the dimers. The left images are from the simulation
described in the text with the middle one having a Gaussian filter of 76 nm width
and a background added for the comparison to the experimental results on the
right. The latter are extracted by averaging cuts of single pixel width through all
dimers with above 1/2 of the maximal dimer signal, resulting in on average 6.5
utilized dimers per single shot. Adapted from [17].
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3.6. Local Addressing on the Single Site Level

To make use of the quantum gas magnifier as a general tool for quantum simulation,
it is also beneficial to achieve local addressing for the preparation of specific desired
states. In quantum gas microscopes this is done using the high-resolution objectives
for the imaging, which also allow to get light beams focused onto the system with
waists on the order of the lattice constant [67]. Similarly, single sites can be targeted
and depleted by using electron beams [68] or by constructing the lattice potential
via spatial light modulators with single site resolution [69]. We achieve single site
addressing by means of magnetic resonance techniques [70] via the RF antenna used
for the evaporative cooling. The local addressing is possible due to the magnetic trap
shifting the resonance between the different mF levels depending on the distance from
the trap center.
The mechanism is visualized in Fig. 3.14. With our 87Rb atoms in the F = 2

state, there are five mF states connectable via the RF signal. According to Eq. 2.1
the magnetic potential depth is proportional to the mF state of the atom, resulting
in different slopes of the potential as a function of the radius from the trap center.
At different lattice sites the resonance condition to drive atoms away from the initial
mF = 2 state thus varies. Atoms brought into the mF = 1 state are subject to a loss
channel, as they can collisionally decay to the F = 1 manifold. Additionally, the RF
radiation leads to the population of the lower mF states which do not see a trapping
potential from the magnetic field, further increasing the loss of such atoms from the
system. However, it does still take typically tens of ms to fully deplete a lattice site.
Addressing large regions of the lattice by ramping the frequency of the signal thus
takes up to several hundreds of ms. In order to suppress tunneling between the sites
during this process, which would wash out the addressing resolution, we thus freeze
the atoms in a deep lattice.

RF

Loss

F=1

F=2

Fm =1

Fm =0

Fm =2

Fm = 0-1-2 1 2

Loss
RF

a b

Figure 3.14.: Scheme of local addressing using magnetic resonance. a Po-
tential depth of different mF levels in the magnetic trap. The transition frequency
differs, depending on the distance from the trap center. b Sketch of the F = 1 and
2 manifolds of 87Rb in the presence of a magnetic field. The RF radiation couples
the stretched mF = 2 level to the others, leading to collisional losses. Adapted
from [17].
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As stated above, the resonance is dependent on the distance of a certain lattice
site from the magnetic trap center. In principal, the resonance condition is of course
fulfilled over an entire iso-magnetic field surface in 3D space. Due to the strong
ellipticity of our magnetic trap, with much weaker confinement along the z-direction
vertical to the lattice plane, compared to the 3D lattice system where the 1D tube
lengths are dominated by the lattice beams with waists of around 160µm, the iso-
magnetic surface can be as thin as a single lattice site over the entire lengths of the
tubes. We can thus target ring structures in the lattice, without at the same time
addressing all lattice sites within such a ring by crossing the outer parts of their 1D
tubes. The form of the magnetic trap now allows for two basic shapes of the targeted
region. By keeping it centered on the populated lattice sites, we can address ring-like
areas. This is shown in the upper row of Fig. 3.15, where we used a sweep to deplete
all lattice sites outside a three-site radius and single frequencies, to either target a ring
of sites or, when going to the resonance in the magnetic trap center, a single lattice
site. It is also possible to very rapidly shift the position of the magnetic trap away
from the atoms via offset fields. When shifting the trap far enough, the curvature
of an iso-magnetic surface across the atomic cloud becomes negligible, allowing to
target straight lines across the system, as depicted in the middle row of Fig. 3.15.
Here we shifted the trap center perpendicular to one of the lattice vectors by around
14 to 16µm, which at a trap confinement of 543Hz, is equivalent to approximately
two system sizes. As a result, we can address regions with straight borders by again
sweeping the utilized frequency, to e.g. cut away half of the system or only leave
a single populated line of lattice sites. Alternatively, using only a single frequency
allows targeting a single line. The resonance and thus the targeted region also is
sharper when shifted away from the center than directly around the center. This
is due to the slope of the resonance frequency rising linearly away from the center
making the neighboring lattice sites increasingly more off resonant. On top of that
the ratio between the system size in z-direction and the extent of the iso-magnetic
surface in z-direction is more favorable, as the latter increases away from the center,
while the size of atomic cloud stays unchanged. The width of the targeted region
is, however, still on the scale of a lattice constant and hence it is not possible to
only target a single lattice site by shifting the trap under an incommensurate angle.
Lastly, images 7 and 8 give the situation for a much faster addressing time of 11ms,
while the RF signal is ramped to be resonant for around 3/4 of the system. The
magnetic field is chosen such that the atoms in the usual mF = 2 level experience a
trapping potential of ωmF=2

ho = 2π × 472Hz, leading to a sharp image of their spatial
distribution for T/4 = 530µm (image 7). At the same time, there is a significant
amount of atoms in the mF = 1 state, which experience a weaker confinement of
ωmF=2

ho = ωmF=1
ho /

√
2 = 2π × 334Hz. We can image their spatial distribution by

accordingly reducing the pulse time of the magnetic trap, as done for image 8. The
lattice contrast is much lower, because of the large background of unfocused mF = 2
atoms.
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Figure 3.15.: Example images of the RF addressing. In the upper row the mag-
netic trap is centered on the atomic cloud and has a frequency of 543Hz (658Hz)
in image 1 and 2 (3). The RF signal duration is 100ms in each case, being ramped
from 150 to 110 kHz in image 1 and held constant at 108.5 kHz (67.2 kHz) in im-
age 2 (3). On the right, the corresponding regions targeted by the RF signal are
sketched. In the middle row the magnetic trap always has a frequency of 543Hz
and is shifted to the right by 14.1µm (15.7µm) in image 4 and 6 (5). The RF signal
duration is 200ms in each case. For image 4 it is ramped from 360 to 290 kHz, while
it is held constant at 360 kHz for image 6. For image 5 two ramps are used, going
from 420 to 486 kHz and from 494 to 540 kHz. On the right a simplified sketch
of the targeted regions is shown, which omits the 1.6µm shift difference. In the
bottom row are two images which are prepared with the same RF sweep covering
the left part of the cloud as sketched on the right side of the images. Different to
the previous images, the RF signal here only has a duration of 11ms. In the region
covered by the sweep some of the atoms are thus transferred to different mF states
and not yet lost. Image 7 is as usual focused on the mF = 2 atoms and image 8 on
the mF = 1 atoms, which are magnified by a factor of 1/

√
2 less due to the smaller

magnetic moment. Adapted from [17].
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These localized cuts into the system also allow for the appraisal of the realized
position stability. On the one hand, the fact that we reliably see such sharp patterns
after shining in RF radiation for 200ms (Fig. 3.15 image 5) gives a hard upper limit
for the movement within this time. On the other hand, since the lattice beams are not
phase locked, the position of the lattice sites differs from shot to shot. As a result,
when trying to prepare a single line, in a sizeable ratio of the images the position
does not match the gap in between the two RF ramps, leading to defects in the final
pattern, exemplified in Fig. 3.16.

O
D

 (
a.

u
.)

Figure 3.16.: Repeated preparations of single populated lines. The system
parameters are as for image 5 of Fig. 3.15 for all 15 consecutively measured real-
izations. The RF ramps always leave out the region between 486 and 494 kHz. We
reliably find regions of around one lattice constant populated. However, due to
position instabilities of the lattice between shots, the populated region can be split
between two neighboring lines of lattice sites.

Apart from this, the combination of shifting the relative positions of the trap center
and the atomic cloud as well as targeting single sites by going to the resonance at the
trap center, would generally allow for the preparation of arbitrary density patterns.
In practice however, the long depletion times necessary due to the waiting for the
collisional losses, make this approach unfeasible. It would therefore be promising to
instead use microwave radiation to directly transfer the atoms to the F = 1 manifold
in combination with an optical push-out beam, which should significantly lower the
depletion time.

3.6.1. Thermalization Dynamics after Shaping the System
Using the RF addressing, we now want to exemplarily investigate the relaxation
dynamics of a system as prepared in image 4 of Fig. 3.15. This starting situation
is reminiscent of the one used in [71], where an addition of disorder to the lattice
system above a critical threshold was found to result in many-body localization,
meaning the interacting system does not thermalize. Making use of the 3D character
of our system, we investigate the situation with large bosonic filling on individual
lattice sites prepared in a highly nonequilibrium state, monitoring its thermalization.
In order to quantify the asymmetry of the density distribution between the initially

depleted left side and the populated right side we calculate the imbalance I, defined
as
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I = NR −NL

NR +NL
, (3.14)

with NR being the number of atoms in the right half of the trap and NL the one in
the left half. We measure this as a function of the hold time after the preparation and
for different temperatures of the atomic cloud. In between the preparation, where the
magnetic trap is shifted by 14.1µm to target a straight line through the system and
the varying hold time, the magnetic trap is shifted back to the previous center of the
cloud, so the energy offsets between neighboring sites during the relaxation dynamics
are negligible. Fig. 3.17a shows the resulting density distribution integrated along
the edge cut by the RF radiation for an initial temperature of Tinit = 0.76(2)µK,
where the imbalance decays to zero within around 1.3 s. The extracted imbalances
for all starting temperatures of the system are depicted in Fig. 3.17b, revealing that
the imbalance does also decay for much lower temperatures, but on a much longer
time scale, not going to zero within the experimental observation time of 3.2 s.
The temperatures of the different initial realizations are determined by fitting a

bimodal model to the lattice site populations in the right half of the trap, consisting
of an inverted parabola, which accounts for the condensed fraction and a Gaussian
function modeling the thermal part and giving the sought-after temperature. Here
we omit the interaction between the two parts, as its effect on the thermal wings of
the distribution is significantly below the fit error. From the Gaussian width σ the
temperature is given by T = mω2

sysσ
2/kB. An example of this is shown in Fig. 3.17c

in blue, projected to 1D by only giving the radii of the lattice sites, but including
a sign which encodes the position of a site being on the left or right side. We also
use this fitting routine to verify the thermalization of the final situation for clouds
which reach I = 0 within the observation time, in this case using the lattice site
populations in both halves of the system. Indeed, we find very good agreement with
the model demonstrating that the system did reach thermal equilibrium (see red curve
of Fig. 3.17c).
Next we extract the thermalization rate Γ as a function of the initial temperature,

by fitting an exponential decay I(t) = I0 exp(−Γt) to every curve of Fig. 3.17b. We
find an almost constant rate for temperatures below 350 nK followed by an increas-
ingly steep growth for higher temperatures. This behavior can be modeled by the
Arrhenius law, usually used to describe chemical reactions, but also suitable to model
thermal hopping in optical lattices [72]. In this case, it describes the excitation to
states beyond the trapping in the optical lattice. In our case of a triangular lattice,
this barrier can either be identified with 8/9 of the total potential depth, which is the
potential depth between different sites, or with the total potential depth, enabling
the atoms to freely move over long distances across the lattice system. With our def-
inition of the lattice depth, independently calibrated to V = 3Erec in this case, this
results in a potential barrier of VB/kB = 2.3 or 2.6µK. The hopping rate Γh of the
Arrhenius law is determined as the product of an attempt rate Γa and the probability
P (E > VB) for the energy to be larger than the barrier. We modify the formula by
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Figure 3.17.: Thermalization dynamics after preparation of a nonequilib-
rium state. a Shown is the optical density integrated along the edge cut through
the system for an initial temperature of Tinit = 0.76(2)µK and seven hold times,
which are offset from each other for clarity. b Measured imbalances versus the
hold time after the preparation for eight different initial temperatures. c The blue
(red) symobols denote the lattice site populations averaged over 27 iterations after
50ms (3.2 s) hold time, with the blue data shifted upwards for clarity. A bimodal
fit to the right half of the blue data (solid blue line) yields Tinit = 0.68(5)µK.
The fit to the second set of populations, corresponding to Tinit = 0.76(2)µK, gives
Tinit = 1.25(4)µK (solid red line). d Decay rate Γ of the imbalance for different
initial temperatures (color-coding as in b), with the error bars denoting the 68%
confidence intervals. The data is modeled by a fit of the modified Arrhenius law of
Eq. 3.15. Adapted from [17].

adding an offset rate Γ0 to represent quantum tunneling. This leads to a hopping
rate given by

Γh ≈ ΓaP (E > VB) + Γ0 = Γa

kBT

∫ ∞
VB

e
− E
kBT dE + Γ0 = Γae

− VB
kBT + Γ0. (3.15)

Fitting this expression to the data of Fig. 3.17d yields an attempt rate of Γa =
52(44)Hz, an offset rate of Γ0 = 0.23(8)Hz and an activation barrier of VB =
2.4(6)µK in good agreement with the expected barrier height from the independent
lattice depth calibration.
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To summarize we find that the initial highly excited state of a half-filled system of
interacting bosonic atoms in a triangular lattice does decay to equilibrium, although
the thermalization happens on a similar time scale as the lifetime in our lattice. Thus,
thermal equilibrium is only reached for comparatively hot atomic clouds which give
rise to thermal hopping.

3.7. Conclusion and Outlook
In conclusion, we realized a novel imaging technique, which uses matter-wave optics
to magnify the density distribution, gaining single-shot access to the 2D integrated
real space density of 3D systems. We used it to image different 2D lattice geometries,
including the first real space measurements of atoms in honeycomb and boron nitride
optical lattices, with high occupation numbers, making it a promising tool for the
simulation of many-body effects. By choosing sufficiently large magnification factors,
this allows us to extract information of the density distribution with sub-lattice reso-
lution. In comparison to other real space imaging methods it features a lower degree
of technical complexity.
The concept is based on a Fourier transform of the matter wave by means of a

quarter period evolution time in a harmonic trap. We derived theoretically that
in this way the quantum mechanical wave function of the system can be faithfully
magnified. Through the precise adjustment of the evolution time in the harmonic trap
also errors arising from the finite free expansion time can be compensated and the
concept also holds for dynamically varying confinements as long as the harmonicity
is conserved [58].
We implemented the quantum gas magnification via an elliptical magnetic trap,

isotropic in the lattice plane of our 2D optical lattice and performed extensive char-
acterization measurements, verifying the high harmonicity in the trap center and
showing the importance of suppressing interaction effects during the evolution time
in the harmonic trap.
Using the real space access, we performed several benchmarking experiments. By

extracting the lattice site populations in a triangular lattice we were able to perform
very precise temperature measurements of the system and to map out the thermal-
to-BEC phase transition, allowing determining the interaction shift of the critical
temperature with a very small error. The sublattice resolution was shown by following
the oscillation and tunneling dynamics across single unit cells initialized by quenching
a balanced boron nitride lattice to a lattice of dimers. With a further increase of the
magnification, also the differences in the real space distributions of different on-site
orbitals could be imaged. Beyond reliable access to important observables like the
real space density, another important part for a versatile quantum simulator is the
possibility to precisely prepare and manipulate the system under study. To that end
we implemented an addressing scheme in our optical lattice for targeting single lattice
sites via magnetic resonance. This allows us to depopulate targeted lattice sites and
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prepare for example small defects in the system or single occupied lines, which we
used to exemplary follow the rethermalization of a cloud in a triangular lattice after
cutting away all atoms on one half of the system.
Additionally, since the quantum wave function is magnified, our imaging technique

gives access to density fluctuations. A detailed analysis on this, showing both ther-
mal and quantum fluctuations, can be found in [50]. For further studies on density
fluctuations and correlations with the quantum gas magnifier it would be very im-
portant to reach single-atom sensitivity by means of free-space fluorescence imaging
[73, 74], which is estimated in [58]. This would allow to measure correlation functions
in strongly interacting systems also with atomic species, which cannot be used in
quantum gas microscopes. Another very interesting prospect is the study of position
dependent and short-range coherence properties within the system. One option is
to make use of the Talbot effect [62]. It leads to revivals of the lattice structure
at regular time intervals due to interference, which could be measured in real space
to gain access for example to the coherence length. By acting on the atoms after
the evolution time in the harmonic trap it would also be possible to apply masks in
Fourier space [75]. More information on these possibilities can be found in [58, 63].
The single-shot, real space access is also very helpful for studying pattern formation
and transport properties in optical lattices, which is the subject of chapter 5.
A promising further route is to use a smooth optical dipole trap with sufficiently

large harmonical region in the center for the harmonic evolution pulse as it offers
faster switching times than a magnetic trap. This would also make the study of
spin mixtures much more straightforward, because one could omit complicated spin
changing protocols before the harmonic trap evolution time, which in general are
necessary for a magnetic trap to have the same frequency for all atoms in all states.
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4. Dynamic Lattice Geometry
Control via a Multifrequency
Optical Lattice

Optical lattices for ultracold atoms offer a versatile tool for the study of quantum
phases, allowing for an alternative approach compared to their solid-state counter-
parts due to the high degree of control over the system [11, 76]. In particular, the
possibility of dynamic tuning of the lattice potential provides interesting benefits. At
the same time the tunability typically comes with great challenges in the realization,
as such setups include intrinsic instabilities making the lattice geometry dependent
on phase noise and adding heating sources to the system. Contrarily, optical lat-
tices build by only d + 1 laser beams in d dimensions have an intrinsically stable
lattice geometry [77]. The realized geometry is then solely determined by the lattice
beam polarizations, which severely limits the tuning possibilities due to the typically
slow adjustments. In the case of the triangular [30, 78] to honeycomb optical lattice
[31, 32], tunability was previously realized by turning the magnetic quantization axis
of the atoms in a near-detuned optical lattice [79] and by including a phase lock
between different underlying lattices [31, 80, 81].

Our approach of the multifrequency lattice [36] offers an alternative way to realize
dynamic geometry control, including tuning on the single microsecond scale and thus
much faster than the typical atomic time scales in our lattice, in combination with
passive geometry stability. The basic idea is to realize the three 1D lattices which
make up the hexagonal optical lattice with independent phases from one another.
This allows defining and directly targeting what we call the geometry phase, which
is a single periodic parameter, defining the lattice geometry from honeycomb over
boron nitride to triangular lattice.

In the following sections, I will explain the concept of the multifrequency lattice
by deriving the mentioned geometry phase and presenting our lattice potential and
its dispersion relation versus this phase. Then the concrete experimental realization
and characterization are presented and the relevance of the geometry phase in the
corresponding momentum space lattice is discussed, where it determines a staggered
flux. This is followed by the discussion of several measurements highlighting the
possibilities of the dynamic geometry tunability.
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The multifrequency lattice was set up and characterized and the subsequent mea-
surements taken together with my PhD colleagues Luca Asteria and Henrik Zahn
under the supervision of Klaus Sengstock and Christof Weitenberg.

4.1. Tunable Lattice Geometry

Now I want to introduce our concept of constructing a 2D hexagonal nonseparable
optical lattice via three different laser frequencies. The basic design is depicted in
Fig. 4.1. It consists of three laser beams with relative angles of 120° in a single
plane, which contain two different laser frequencies each. The resulting 1D lattices
from pairwise interference can be accessed independently, leading to a highly tunable
geometry of the total 2D lattice potential.

k2

k1

k3

Figure 4.1.: Concept of the multifrequency lattice. Three laser beams with
relative angles of 120° are superimposed. Every beam consists of two frequencies,
leading to pairwise interference. This results in three independently tunable 1D
lattices. Adapted from [36].

To start the discussion of our tunable multifrequency optical lattice, I will first
derive the geometry phase as the central concept of the design. It follows directly
from the general expression of the lattice potential and is the single tuning param-
eter between the triangular lattice, which is the hexagonal Bravais lattice and the
geometrically frustrated honeycomb lattice with its two distinguishable lattice sites
per unit cell. Following this, the precise behavior of the lattice potential and the
corresponding energy bands as a function of the geometry phase will be presented.
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4.1.1. Derivation of the Geometry Phase
The total lattice potential resulting from our three laser beams, as described in sec-
tion 2.2, results in

Vpot(r) = V0 + 2
3∑
i=1

Vi cos(bi · r + φi). (4.1)

The three independent relative phases of this potential result in three degrees of
freedom. Two are defining the position of the lattice in 2D space and the third
determines the shape of the potential, which we call the geometry phase φg. Its
dependence on the three 1D lattice phases can be derived by considering a translation
r → r + δr of the potential. Using Eq. 4.1 it immediately follows, that this is
equivalent to a transformation of the 1D lattice phases given by φi → φi + biδr.
Generally, such a change of the phases would vary both the lattice position and its
geometry. However, by choosing the correct basis, two linear combinations of the
1D phases lead to two orthogonal translations, whereas the third independent linear
combination only effects the lattice geometry. With the choice of the beam vectors
under 120° towards each other, we have ∑3

i=1 bi = 0. The linear combination of phase
transformations

3∑
i=1

niφi →
3∑
i=1

niφi + δr ·
3∑
i=1

nibi, (4.2)

is thus independent of δr for n1 = n2 = n3. The most fundamental choice of ni = 1
leads to the definition of the geometry phase:

φg =
3∑
i=1

φi. (4.3)

4.1.2. Characteristics of the Lattice Potential
Having established the definition of the lattice potential (Eq. 4.1) and the tuning
parameter, the geometry phase (Eq. 4.3), I will now present the resulting optical
lattices for equal 1D lattice depths (Fig. 4.2). As derived previously, the lattice
geometry is given by the relative positions of the three 1D lattices. If the potential
minima of all three lattices intersect in single points, the minima of the sum form
a triangular pattern, which corresponds to φg/(2π) = (m + 0.5), m ∈ Z, and is
depicted in the first and last images of Fig. 4.2a. This also naturally results in the
configuration with the deepest potential wells. When we now vary the geometry phase
φg, we equally shift the minima position of the 1D lattices along their respective
lattice vectors. The potential wells thus are static in position and flatten as the
intersections enclose increasingly larger triangles. In the center between the triangular
configurations, i.e. at φg/(2π) = m, the potential maxima of all 1D lattices coincide
in single points and the 1D lattices form a honeycomb lattice. The two distinguishable
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lattice sites per unit cell are marked in the central image of Fig. 4.2a. Close around
this symmetric situation the potential energies of the two sites move away from each
other, forming boron nitride lattices. This is shown in Fig. 4.2b in cuts through the
potential along the symmetry points for different lattice geometries. Thus in total we
can tune the lattice geometry via φg very rapidly from a triangular across a boron
nitride to a honeycomb lattice. From Fig. 4.2b it is also apparent, that the effective
depth of these different geometries vary significantly. In the triangular lattice 8/9
of the total depth account for the barriers between different lattice sites, while in
the honeycomb lattice, which is actually just the sign inverted triangular lattice, the
barriers are only 1/9 of the total depth. Together with the smaller distance between
neighboring sites this explains the much larger tunneling couplings in the honeycomb
case compared to the triangular one for a given lattice depth V .
To gain a better insight on the effect on the atoms in this lattice structure, we now

investigate the band structure of the system as a function of the geometry phase. The
integrated energy bands over the entire 1st BZ versus the geometry phase are plotted
in Fig. 4.3a and b and for certain values of φg the band structures are shown quasi-
momentum resolved along a high-symmetry path through the 1st BZ in Fig. 4.3c.
For the honeycomb lattice this yields relatively broad bands and a closed band gap
between the two s-bands, the 1st and 2nd band, at the K and K’ points. The tri-
angular lattice however only has a single site per unit cell and hence only a single
s-band. Due to the constant depth, the lower bands are almost completely flat in this
case. In between these two configurations, their different order of even and odd bands
enforces a series of band crossings between higher bands. Starting from φg = 0, the
lowest band gap increases in good approximation linearly, until the system reaches
the first triple band crossing. Here the higher s-band hybridizes with the p-bands
located at the energetically lower sites. When calculating the band structure across
the 1st BZ for this φg, the 2nd, 3rd and 4th bands show dispersion relations as known
from the three s-bands of the Lieb lattice with a flat dispersion of the middle band.
Beyond this geometry phase, the 4th band increases linearly in energy up to the next
triple band crossing, in this case between the 4th, 5th and 6th band, which form
dispersion relations reminiscent of the three s-bands of the Kagome lattice, where
the highest band of the triplet is flat. This sequence of band crossings continues
until the system reaches the triangular phase. The exact geometry phases at which
the different higher band crossings happen depend on the lattice depth. This can
be explained by different scalings with V for different bands. The lower scaling of
higher bands compared to the 2nd band leads to earlier crossings for deeper lattices.
The well-known band structures that appear at these crossings usually require more
complex optical lattice designs, as they result from lattices with three sites per unit
cell. By choosing the correct geometry phase of this comparatively simple design,
their geometric properties could then be studied using wave packet dynamics [82].
For completeness it should be added that this setup allows to realize all configura-

tions of a three beam, single frequency, triangular lattice conventionally set via the
ratio of s- and p-polarizations and the phases between them in every lattice beam
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Figure 4.2.: Lattice potential tuned via the geometry phase. a Potential
landscapes for nine different geometry phases (φg/(2π) = -0.5, -0.25, -0.12, -0.03,
0, 0.03, 0.12, 0.25, 0.5). The potential minima of the three underlying 1D lattices
are marked by dashed lines. The hexagon in the top left shows a possible choice
of the unit cell. b Cuts along a triangle through the potentials for φg/(2π) = -0.5,
-0.12, 0, 0.12 and 0.5. The corners of the triangles are marked in the central image
of a.
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Figure 4.3.: Band structure from honeycomb to triangular lattice tuned
via the geometry phase. a Shown are the band structures from numerical
calculation corresponding to Eq. 4.1 with lattice depth V = 3Erec. The colors
mark the different bands and the widths are given by integration over the 1st BZ.
The band structure is symmetric under reflection around φg/(2π) = 0 and 0.5 (not
shown). The honeycomb lattice on the left is connected to the triangular lattice on
the right by a series of higher band crossings as a function of the geometry phase.
b Same numerical calculations at V = 6Erec. The energy difference between the
two sites is higher, leading to a larger band gap. Furhermore the band crossings
appear at smaller φg due to the lower dependence on the lattice depth of the higher
bands compared to the 2nd band. c Band structures at V = 6Erec along a high
symmetry path in the 1st BZ for φg/(2π) = 0, 0.03, 0.066, 0.138 and 0.5. The
3rd and 4th panels show the triple band crossings between the 2nd to 4th and the
4th to 6th bands, respectively. The inset in the 5th panel shows the 1st BZ of the
lattice system. Style adapted from [36].
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Figure 4.4.: Further attainable lattice geometries. Shown are different geome-
tries realized by changing the balancing of the three underlying 1D lattices and
the geometry phase φg. a 1D chains using V1 = V3 = 4/3V2 with φg = 0. b Stag-
gered 1D chains with V1 = V3 = 4/3V2 and φg/(2π) = 0.03. c 1D chains using
V1 = V3 = 1/0.3V2 at φg/(2π) = 0.5. d Balanced dimers using V1 = V3 = 4/5V2
and φg = 0. e A-B-dimers using V1 = V3 = 4/5V2 and φg/(2π) = 0.02. f Distorted
square lattice with V1 = V3 = 1/5V2 and φg/(2π) = 0.5.

(see e.g. [49]). Here we can realize them by using beam imbalances and the geometry
phase while keeping the polarizations constant. These include several effectively 1D
systems and a distorted square lattice, shown in Fig. 4.4. In the upper line are 1D
chains, realized by having one dominant 1D lattice. For φg = 0 neighboring sites are
strongly coupled, whereas for φg/(2π) = 0.5 and a stronger imbalance the sites of
the chains consist of much deeper potential wells. Staggered chains can be realized
using a boron nitride configuration with this type of imbalance. By alternatively
lowering one 1D lattice compared to the other two, dimers can be created around
φg = 0, with the energy offset between the two sites again given by the precise value
of the geometry phase. Going towards a stronger imbalance at φg/(2π) = 0.5 leads
to a potential wall forming between two of the six nearest neighbors of the triangular
lattice, resulting in a distorted square lattice.

In total, the analysis of the optical lattice potential and its band structure illustrates
the high degree of tunability possible, when attaining direct control over the geometry
phase.
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4.1.3. Spatial Variation of the Lattice Geometry
A consequence of using different laser frequenies in order to construct the total optical
lattice are slight differences in the 1D lattice constants. Put differently, the property∑3
i=1 bi = 0, used in the derivation of the geometry phase, is not actually met exactly.

Thus the precise value of φg is spatially dependent. Following Eq. 4.2, the geometry
phase at position r is defined by

φg(r) = φg(0) +
3∑
i=1
bi · r. (4.4)

However, with our system parameters of λ = 1064 nm and frequency differences of
some MHz (see section 4.2) this deviation is completely negligible. For |∑3

i=1 bi| this
results in 0.33 rad/mm, which only is a change of some µrad over our system size.
It might be interesting though to increase this effect on purpose. By going to

a setup with frequency differences in the GHz regime, the geometry phase would
vary by tens of mad over the system size. By choosing appropriate parameters, this
could be used to engineer topological interfaces in the system and thus have access
to domains of different topology. The width of the interface region would depend
both on the selected frequencies and the lattice depth. Due to the linear change in φg
with position it would be expected to be comparatively broad, although the topology
would of course still have to change at some point in space.

4.1.4. Generalization to N 1D Lattices in d Physical Dimensions
After presenting the concrete case of the multifrequency lattice potential we realized,
I now want to briefly present the extension of the derivation of φg to the general
case of any number N of 1D lattices in d physical dimensions. This includes the
general option of the potential to be periodic in D dimensions with D > d, such that
its incommensurate projection to the physical dimensions results in a quasiperiodic
lattice.
The dimensionality D is defined as D = N−Niis, with Niis the number of rationally

independent integer sequences n(c)
i , ..., n(0)

N and c = 1, ..., Niis which yield

N∑
i=1

n
(0)
i bi = 0. (4.5)

From this the number of components of the geometry phase φg follows as the difference
between the N distinct phases φi and the number of translations of the D periodic
potential, meaning N−D = Niis. To get the description of any component of φg, φgc,
we again perform a translation, here in the generalD-dimensional space: r′ → r′+δr′.
This directly leads to

φgc → φgc + δr′ ·
N∑
i=1

n
(c)
i b

′
i = φgc, (4.6)
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which gives the components φgc analogous to Eq. 4.3 as

φgc =
N∑
i=1

n
(c)
i φi. (4.7)

In Eq. 4.6 we used that from ∑N
i=1 n

(c)
i bi = 0 follows ∑N

i=1 n
(c)
i b

′
i = 0. This also holds

in the dimensions beyond the physical ones, because only D of the b′i are independent,
with the remaining ones being defined by integer sums of the independent vectors.

4.2. Implementation

In the following, I will describe our realization of a hexagonal multifrequency optical
lattice as depicted in Fig. 4.1.
We start from a single laser source, a COHERENT 25W Mephisto, resulting in

a laser beam at λ = 1064 nm. It is split via λ/2 waveplates and polarizing beam
splitters into three beams used to construct the hexagonal 2D lattice structure at the
position of the cold atomic cloud. Each of the beams is then guided through an electro-
optic modulator (EOM) (Qubig, resonant high-Q electro-optic phase modulator with
adjustable resonance frequency), run at different frequencies to add sidebands to the
laser spectrum at positive and negative multiples of να = 2.22MHz, νβ = 7.77MHz,
νγ = 9.99MHz, respectively. Afterwards, each laser beam is shifted to the +1st order
of an AOM, adding the frequencies νc = ν0 + νγ, νb = ν0 + νβ and νa = ν0, with
ν0 = 105.005MHz, to the carriers and sidebands (Fig. 4.5a). In this way every pair
of lattice beams has, in very good approximation, only one frequency in common
(Fig. 4.5b).
The frequencies are chosen as multiples of 1.11MHz, hence this 1.11MHz is the

smallest frequency difference, besides perfect resonance, that is present between the
different beams. This is much higher than the kinetic energy scale of the 87Rb atoms in
our lattice given by Erec/h = 2.03 kHz, so they cannot follow the very fast movement
of such optical lattices. Additionally, the desired frequencies of every AOM stay
within a window of 10 MHz. This allows us, despite the limited efficiency range of
the AOMs, to use the same ones as we did in the past with the conventional approach
of running all of them at the same frequency (110MHz).
Another very important aspect is to ensure the fixed difference between the three

EOM frequencies, as this is the condition for a constant geometry phase of the optical
lattice. To show this, we derive the time dependencies of the 1D lattice phases
including the modulations from the AOMs and EOMs. For φ1, corresponding to the
1D lattice with b1 = k1 − k2, this follows from νb = νc − να in beam one and νb
directly from beam two (see Fig. 4.5b). With analogous considerations for φ2 and φ3
the time dependencies of the φi are thus given by
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Figure 4.5.: Experimental realization of the multifrequency approach.
a Schematic depiction of the optical lattice setup. The laser beam is split into
three parts, with each passing through an EOM to add a sideband and an AOM to
get the necessary frequency shift and amplitude tunability. The RFs used by the
EOMs are generated by a single 4-channel source and να in particular is derived via
mixing the other two frequencies. b Frequency spectra of the three lattice beams
resulting from the setup in a. Every pair of beams has one frequency in common,
a carrier of one beam with a 1st sideband of the other beam. Adapted from [36].

∂tφ1 = (νc − να)− νb
∂tφ2 = (νb − νβ)− νa (4.8)
∂tφ3 = (νa + νγ)− νc.

In the overall time dependence of φg the contributions of the AOMs thus cancel out:

∂tφg =
3∑
i=1

∂tφi = νγ − να − νβ, (4.9)

leading to a constant φg if να = νγ − νβ.
To do so, we derive all three RF signals from a single digital source, which was

developed and custom-made in our group [53, 83]. The finite frequency resolution
however would result in a phase drift between the different RF signals, consequently
varying the geometry phase. We avoid this by mixing νβ and νγ and filtering out the
sum of both frequencies via a low-pass filter. The remaining frequency νγ − νβ = να
then ensures the stability condition is met. The same considerations also hold for the
frequency source of the AOMs, although in this case a phase difference between the
RF signals acts on two 1D lattices in opposite directions, canceling out the effect on
the geometry phase and leading to a movement of the lattice in space. However, we
find this effect to be negligible in our case, since in stability measurements with hold
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times in the lattice of up to six seconds the average magnified center position of the
cloud only changes by less than one lattice constant.
A consequence of this setup is that we lose lattice depth for constant lattice beam

powers as compared to the single frequency case. Every 1D lattice is now made by the
interference of a carrier from one beam (i) with a 1st sideband from another beam (j),
so its depth is proportional to J0(ni)J1(nj), with J0,1 being Bessel functions of the first
kind and ni,j the modulation indices used for the corresponding beams. In order to
maximize all 1D depths simultaneously, we maximize the product J0(n)J1(n), which
results in n = nα = nβ = nγ ≈ 1.08. This modulation index is then set by coupling
every lattice beam in a Fabry-Pérot cavity and tuning the RF amplitude until the
corresponding ratio of carrier to sidebands is met. Still, the maximal lattice depth
is then reduced by a factor of J0(1.08)J1(1.08) ≈ 0.34. On the other hand, since the
geometry is not set by the ratio of the polarizations in-plane and out-of-plane anymore
(see section 2.2), we use fully out-of-plane polarized beams as their interference term
is twice as strong and hence the resulting optical potential is a factor of two deeper
than with in-plane polarization. Thus, especially for the graphene-like region which
otherwise needed in-plane polarization and where the tunneling couplings per lattice
beam power are the highest, we gain a factor of two and have an overall depth
of around 0.68 compared to the old realization. The out-of-plane polarization also
ensures that there is no mF dependency in our potential, which would otherwise be
the case for a red-detuned honeycomb lattices [84].
The concrete choice for the carrier frequencies of 2.22, 7.77 and 9.99MHz where

done, because in this configuration undesired resonances between higher order side-
bands only occur for especially high combinations of EOM orders and can safely be
neglected. The first such resonance is between the +6th order with να and the +2nd
order with νβ both resulting in 128.315MHz, yielding a product of the Bessel func-
tions around 5 orders of magnitude below the carrier with 1st sideband product at
their optimal modulation index of 1.08.

4.3. Characterization
At this point, we have three 1D optical lattices rotated by 120° with respect to each
other in the 2D lattice plane. The next step is to measure the actually realized lattice
geometry, i.e. to calibrate the geometry phase and to analyze its stability. Due to
delays in the RF setup the geometry phase has an ab initio unknown offset φoff with
respect to the phases of the three EOM RF signals in the form:

φg = φa + φb − φc + φoff . (4.10)
The sign difference for φc originates from the fact that it uses a sideband of opposite
sign compared to the 1D lattices with φa and φb. In order to calibrate and regularly
check the phase offset we have different options. I will describe the three ways we
typically use in the following and afterwards analyze the systems stability.
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4.3.1. Calibrating the Lattice Geometry
The first one is the method best suited to roughly find the RF phase for φg = 0, if its
value is completely unknown, as the parameters can easily be chosen such that it is
sensitive over the entire 2π range of a RF phase. The other two we found to be more
precise as the observables strongly change by slightly deviating from the symmetric
situation at φg = 0, so we used these in order to routinely measure and account for
small changes in the exact RF phase. In all of these measurements we only vary the
phase of φa, or more precisely the phase of a single RF signal with frequency νγ used
to derive να via the mixer depicted in Fig. 4.5a.
The first rough calibration is done by adiabatically loading a BEC in an unbalanced

lattice. For this, we lower the intensity of one of the three lattice beams via its AOM
to about half the symmetric case, resulting in weaker momentum couplings along two
directions compared to the third one. The situation is measured by quenching off
all confinements and imaging the momentum distribution of the atoms formed after
standard time-of-flight free expansion. The resulting Bragg peaks then of course are
not 6-fold symmetric. However, the strength of the imbalance of the three pairs of
Bragg peaks depends on the underlying lattice geometry. By repeating the measure-
ment for different RF phases we find a broad maximum in the imbalance around the
honeycomb phase φg = 0 (Fig. 4.6). The approximate RF phase offset φoff can then
easily be determined by fitting heuristic Gaussian functions to the different Bragg
peak populations. As shown by the dashed lines in Fig. 4.6 though, the measure-
ments also agree well with a single particle theoretical expectation. These lines are
given by the normalized absolute value squared of the eigenvectors of the different 1st
order momentum modes from exact diagonalization, with the three 1D lattice depths
as fit parameters.
This response to the geometry phase can be explained by a staggered magnetic

flux appearing in the momentum space lattice. Due to different phases attained by
changing from one momentum mode to another, the momentum plaquettes have a
staggered flux of Φ = π + φg (for more details on this see section 4.4). As a result,
two competing effects weigh in differently depending on the geometry phase. On the
one hand the Bragg peaks with ±b2 tend to get higher populations due to higher
intensity of the corresponding 1D lattice. On the other hand the energy is lowered by
delocalization over all momentum modes, i.e. similar populations for all Bragg peaks.
The latter effect is most prominent for the triangular lattice with Φ = 0, whereas for
the honeycomb lattice with Φ = π the system is frustrated and the delocalization less
energetically favorable.
In addition, this measurement can easily be tuned from being responsive across

the entire 2π range of φg, enabling one to quickly get a good guess on the phase
offset, to being more precise and giving a more reliable calibration. For relatively
weaker lattices, the delocalization is more prominent for all phases, broadening the
imbalance peak further. Going to deeper lattices however gives a larger and narrower
peak. Due to the relatively smaller tunneling couplings for the triangular lattice at
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Figure 4.6.: Relative strengths of the Bragg peaks of an imbalanced lattice
as a function of the geometry phase. Shown is the ratio of the populations
in the three different pairs of Bragg peaks, denoted by the three colors and three
exemplary time-of-flight distributions at the top. The symbols follow from the
integrated OD in masks around the six 1st order peaks, with one experimental
shot per data point. The center is determined by three heuristic Gaussian fits to
the data (solid lines), which yield δφ0

rf = 0.00153 × 2π = 9.58mrad. Additionally,
the theory curves from single particle description are shown (dashed lines), fitted to
the data using the determined δφ0

rf and yielding 1D lattice depths of (V1, V2, V3) =
V · (0.5, 1, 1), V = 1.6(1)Erec. Adapted from [36].

the same lattice intensity, the coherence is easily removed for most phases in deep
lattices and the Bragg peaks only appear closely around the honeycomb lattice.
As a final remark to this measurement, it is also apparent that balancing the three

lattice beams is best being done in the honeycomb lattice, since it is the most sensi-
tive to deviations from perfect balance.

Another calibration method is to use band spectroscopy and measure the ratio of
atoms excited to the 2nd band by band mapping, i.e. lowering the lattice depth
adiabatically in between the spectroscopy and time-of-flight such that the higher
bands are mapped to higher BZs. By choosing a modulation frequency resonant to
a small sublattice offset ∆AB we get a double-peaked response, as most atoms get
excited at the corresponding geometry phases φg = ±φ∆, symmetric around φg = 0
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Figure 4.7.: Population of the 2nd band after spectroscopy as a function of
the geometry phase. Shown is the relative 2nd band population after sublattice
modulation spectroscopy of a boron nitride lattice at a fixed frequency of 2.8MHz.
The different Bloch band populations are read out from band mapping images.
In the top row are three exemplary images overlapped with the 1st and 2nd BZs.
The symbols in the graph are experimental data with 3 to 4 images per data
point. The center is determined by fitting eq. 4.11 to the data (solid line), yielding
δφ0

rf = 0.00016× 2π = 0.98mrad. Adapted from [36].

(Fig. 4.7). Again we extract the center of the signal by fitting a heuristic function,
here given by

n2nd(φ) = a1 exp
(

(φ− φ0 − φ∆)2

2σ2
1

)
+a2 exp

(
(φ− φ0)2

2σ2
2

)
+a3 exp

(
(φ− φ0 + φ∆)2

2σ2
3

)
+c

(4.11)
with the relative population of the 2nd band n2nd and a constant offset c. The chosen
modulation type for the spectroscopy here is sublattice modulation (for more details
on this see section 4.6). We found this calibration method to be very precise, however
comparatively costly in measurement time, as both resonances need to be resolved
well to give a small error in φ0

rf . This also includes that the chosen spectroscopy
frequency needs to be finely adjusted to the utilized lattice depth.
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Finally, our most typically used calibration method is to image the atoms in the
lattice in real space via our quantum gas magnifier. In this way, the A- and B-site
populations can be imaged directly, with both being equal in the honeycomb lattice
and diverging approximately linearly for small energy offsets. The measurement con-
sists of loading the atoms in a comparatively deep lattice, in order to freeze out the
coherence for sharp real space images, and magnifying the distribution by a factor of
80 to 90. Since we have no phase lock, the position of the lattice is then determined
for every image individually to read out the populations of the A- and B-sites. By
simultaneously fitting two heuristic linear functions to the two relative populations
we get a stable and precise result for the RF phase offset with comparatively few data
points needed (Fig. 4.8).
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Figure 4.8.: Populations of the A- and B-sites as a function of the geometry
phase. Shown are the relative populations of the two lattice sites in masks as de-
picted in the three exemplary images in the top row. The remainder to 100% is
located at the areas corresponding to the potential maxima. The symbols are ex-
perimental data with the error bars denoting the standard deviation of 2 iterations.
The center is determined as the crossing of two heuristic linear functions, which
yield δφ0

rf = 0.00011× 2π = 0.68mrad. Adapted from [36].

For comparison, the numerically calculated A- and B-site populations across φg = 0
are shown in Fig. 4.9. The curves are calculated by performing single particle band
structure calculations for all lattice depths and geometry phases. The real space
images of the ground state follow by Fourier transformation of the eigenstates cor-
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Figure 4.9.: Theoretical expectation of A- and B-site populations. Shown
are the simulated single particle population ratios on the A- and B-sites across the
honeycomb phase. The solid (dashed, dotted) lines corresponds to a lattice depth
of V = 2 (3, 4)Erec respectively. A constant background is added to the real space
density distribution to give a better comparison to the experimental data. The
gray bars denote the region in φrf shown in Fig. 4.8.

responding to the lowest Bloch band at zero quasimomentum (see section 2.3). Af-
terwards the images are treated the same way as the experimental images, meaning
the different populations are read out by using masks as depicted in the top row of
Fig. 4.8. Of course, for large energy differences between the two sites, the ground
state is located only at the lower lattice site. By the same consideration, the slope
of the lattice site change around φg = 0 depends on the depth of the lattice, with a
stronger localization at the lower lattice site for a given geometry phase in a deeper
lattice. It is important to note that between the modeled slope and our experimental
observations there is a systematic shift. Due to the repulsive interaction between the
atoms at our lattice sites, the energetically higher site has a larger population than
the non-interacting theory. By independently calibrating the utilized lattice depth,
this can be used to estimate the interaction shift. However, as the atom number per
site changes over the system, the analysis should be limited to a small region within
the lattice, which is possible using the real space information given by the magnifying
approach.

4.3.2. Stability of the Lattice Geometry
After having found the phase offset, i.e. calibrated the lattice geometry, we can inves-
tigate its stability on different time scales. In order to perform precise measurements
using the multifrequency design it is of course necessary to have a constant lattice
geometry from shot to shot. This is especially important around the honeycomb lat-
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tice, where the band energies depend strongly on the exact value of φg. In order to
characterize the stability we repeatedly performed calibration measurements via the
magnifier (as shown in Fig. 4.8). Each calibration contains 44 images, four iterations
of eleven RF phases, and took approximately 26min. The resulting φ0

rf versus time
are presented in Fig. 4.10a. We find as the standard deviation of the different mea-
surements δφ0

rf = 0.0004 × 2π = 3mrad. In the most critical case of the honeycomb
lattice, an unwanted shift to φg = 3mrad would lead to a band gap of around 76Hz
or 11% of the 1st band width for a lattice depth of V = 5Erec. As this ratio has an
approximately quadratic dependence on the lattice depth, the deviations for deeper
lattices can become significant. When working in the boron nitride regime however,
this error in φg is already very minor, leading to an almost depth independent change
in ∆AB of around 1% for φg/(2π) = 0.04. For precision measurements in deep hon-
eycomb lattices, it might be advisable to replace the current RF source by a possibly
more stable one and also thoroughly check the following components of the RF setup
for instabilities. On the single-shot scale we measure average fluctuations around the
fitted curves of usually roughly 9mrad. This is however rather an upper boundary
for the actual φg fluctuations, as the exact A to B ratio of the populations measured
in a single shot is quite susceptible to noise.
Additionally, Fig. 4.10b shows the long term stability over around four months. We

only find minor shifts of tens of mrad for up to around two months and occasionally
isolated jumps from one day to another, most likely due to some external influence
on the RF setup. An important part of reaching this level of stability is the temper-
ature stabilization of the crystals in the EOMs, which is done using Peltier elements.

a b

Figure 4.10.: Stability of the geometry phase. a Consecutive φrf0 calibration
results over a span of 16 hours, with one result every 26 minutes. They yield a
standard deviation of δφrf0 = 0.0004× 2π = 3mrad. b Long term evolution of φrf0 .
Every point in both graphs results from a calibration measurement as in Fig. 4.8
and the error bars describe the 68% confidence interval of φrf0 . Adapted from [36].
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This is necessary, because the resonance frequency of the EOMs depends on their
temperature. Thus, a drift would directly change the balancing of the lattice, as the
precisely chosen carrier-to-sideband ratio would change. In addition, due to slight
variations in the accumulated phase, this would also change the geometry phase.
As a last point, we need to ensure a reasonable short term stability of the geometry

phase, referring to the hold times within the lattice of typically tens to hundreds of
milliseconds. However, as φg is by construction only determined by the sidebands of
the laser beams, all sorts of e.g. mechanical noise on the fibers would simply move
the lattice as a whole. We thus do not expect relevant noise on φg, which is in line
with the absent of worryingly large heating of the atoms when held in our lattice.

4.4. Staggered Flux in the Momentum Space Lattice
In the following, I will address another consequence of the geometry phase, showing its
relevance in the description of our hexagonal lattice structure. As already mentioned
in subsection 4.3.1 we see the effect of a staggered flux in the momentum space
interpretation of our lattice, only dependent on the realized value of φg. I will first
define the staggered flux of our system and then investigate its effect on the dynamics
in the momentum space lattice by looking at Kapitza-Dirac scattering.
In momentum space the system has a triangular lattice geometry for all φg, with the

different "sites" differing by multiples of the reciprocal lattice vectors. By "tunneling"
between the sites, i.e. Bragg reflections, the atoms acquire the relative phase of the
two lattice beams forming the corresponding 1D lattice. Accordingly, the phases
imprinted in momentum space are given by the three 1D lattice phases φ1,2,3 and by
tunneling around one plaquette the sum of these Peierls phases is thus given by the
geometry phase. We follow the convention of tunneling couplings in tight-binding
Hamiltonians to include a minus sign. The couplings Ji are thus given by

Ji = −〈q + bi|Vpot(r)|q〉 = −〈q + bi|2
3∑
i=1

Vi cos
(
bi · r + φi

)
|q〉

= −Vieiφi = |Vi|ei(π−φi). (4.12)

With that the staggered flux through the triangular plaquettes Φ is given by

Φ =
3∑
i=1

(π + φi) = π + φg (4.13)

as depicted in Fig. 4.11a. It is thus independent of the choice of the origin, in
contrast to the Peierls phases. The flux in this system has to be staggered, because
time reversal symmetry is not broken.
Because of the starting situation, with all atoms on a single site of the momentum

space lattice, it is very well suited to study dynamics. Important to note is, that in
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Figure 4.11.: Momentum space lattice with staggered flux. a Shown is the
triangular momentum space lattice built up by the reciprocal lattice vectors b1,2,3,
with the Peierls phases assigned to the different couplings in colors. The resulting
flux is staggered. b Coupling of one 1D lattice by its wave vector bi (red arrows).
Higher momentum modes are coupled increasingly off resonant (black arrows).
Adapted from [36].

our realization of single frequencies for every coupling direction, an important part
of the dynamics arise from the increasing energy mismatch between the momentum
modes, due to the higher kinetic energy of the higher momentum modes (Fig. 4.11b).
We realize a quantum walk in the momentum space lattice by Kapitza-Dirac scat-

tering, i.e. pulsing the lattice on for times short enough for the real space movement
of the atoms to be negligible. In order to do so, we start by detuning two of the
AOMs of our lattice by several hundred Hz and turning on the lattice beam intensi-
ties. The resulting beam frequencies are sufficiently off resonant for the atoms to only
see a dipole confinement. After the feedback control has stabilized the lattice beam
intensities at the desired values, we change the RF frequencies back on resonance for
the Kapitza-Dirac pulse to start. The pulse is ended by turning off the RF signals,
which is again much faster than the pulse times of some microseconds. In this way
the feedback control of the lattice beams does not change the shape and duration of
the lattice pulses. The choice to use the AOMs and not the EOMs for the control of
the pulses is made for stability purposes, because thermal phase drifts of the EOMs
would vary the geometry phase. Finally, the atomic distribution is measured after
time-of-flight. Some example images at a constant pulse duration of tp = 4.7µs with
varying geometry phases are shown in Fig. 4.12. As an effect of the staggered flux we
detect the breaking of inversion symmetry for all φg except the special cases of the
triangular and honeycomb lattices, which both yield Φ = −Φ. In the former this is
due to the staggered flux vanishing completely, in the latter because −Φ = −π = π.
In all other cases the system thus either favors tunneling against (2nd image from
left) or along (4th image from left) the reciprocal lattice vectors b1,2,3, depending on
the sign of the flux. We read out the effect by integrating the signal in circular masks
around the six 1st order peaks and averaging over the three related ones. The result-
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Figure 4.12.: Inversion symmetry breaking via staggered flux. a The relative
populations of the 1st order Bragg peaks are shown as a function of the geometry
phase. The symbols are the average of the three related peaks, as highlighted in
the 1st image in the top row, from a single experimental shot, with the colors
denoting the populations in the peak along the reciprocal lattice vectors pa (green)
and opposite to them po (red). The error bars give the standard deviation of the
mean of the three related peaks. b Shown is the imbalance between the populations
of panel a according to eq. 4.14. The lines in a and b are numerically calculated
for a lattice depth of V = 6.5Erec. Adapted from [36].

ing average relative populations pa and po are shown in Fig. 4.12a and the imbalance
between the two, defined as

I = pa − po
pa + po

, (4.14)

in Fig. 4.12b.
The theoretical modelling is done by numerically calculating the energies En and

eigenstates |ψn〉 of the static, non-interacting lattice Hamiltonian in plane wave basis
considering a reciprocal lattice of N ×N , N = 11, sites. With the pulse time tp and
the unperturbed state with k = 0 as initial state, the relative population of the plane
wave k is then given by



4.4. Staggered Flux in the Momentum Space Lattice 63

nk(t) =

∣∣∣∣∣∣
N2∑
n=1
〈k|ψn〉 e−iEntp/~ 〈ψn|k = 0〉

∣∣∣∣∣∣
2

. (4.15)

Because the imbalance of the two triplets of Bragg peaks is sensitive over the entire
2π range of φg it can be used similarly to the measurements of the ground-state Bragg
peak populations in subsection 4.3.1. However, an important difference is, that the
observable in this case, the imbalance, disappears both for the honeycomb and for
the triangular lattice.
The interpretation of the inversion symmetry breaking via the staggered flux also

gives a physical picture for previous Kapitza-Dirac measurements performed in hon-
eycomb optical lattices [85, 86].
In another measurement, we follow the dynamics of the atoms for three different

geometry phases (φg/(2π) = 0, 0.25, 0.5). The quantum walks show complex behav-
ior of positive and negative interference on certain sites and times (Fig. 4.13a and
full data set in Appendix A). The width of the distributions is shown in Fig.4.13b.
The increasing energy mismatch causes an effective harmonic trap for the momentum
space lattice, leading to a halting of the expansion and oscillating behavior after-
wards. Underneath the dominating effect of the harmonical trap confinement, the
distribution expands and oscillates slightly stronger in the case without the staggered
flux.
This approach of inducing a quantum walk in a momentum space lattice visualizes

the Bloch coefficients of the real space lattice, as these determine the populations
of the different momentum modes. Thus the difference of the Bloch coefficients of
the different lattice geometries from honeycomb to triangular lattice can, in this
picture, be interpreted as a consequence of the staggered flux Φ. Contrarily, in other
setups where the momentum space was used as artificial dimensions, the different
transitions were realized by using several different frequencies, to account for the
increasing kinetic energy and stay resonant for higher momentum modes [87, 88].
This method can also be used to create rectified magnetic fluxes [89, 90].
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a

b

Figure 4.13.: Time dynamics of quantum walk in momentum space lat-
tice. a Shown are exemplary atomic distributions for four pulse durations tp and
three geometry phases φg. b Time evolution of the root mean square with of the
distribution from experimental data (symbols) and numerical calculation (lines)
for φg/2π = 0 (dark blue, circles), φg/2π = 0.25 (middle blue, triangles) and
φg/2π = 0.5 (light blue, crosses). The calculation is done using V = 6.5Erec.
Adapted from [36].
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4.5. Excitations into Higher Bands
After having established the concept of the geometry phase as the parameter directly
controlling the geometry of our lattice, i.e. the size of the energy offset between the
two sites, I now want to present some options that arise from the high dynamic control
of our multifrequency lattice design. In the following I will start by looking into the
effects of rapidly changing φg, in particular inverting its sign, both in momentum-
and in real space.

4.5.1. Preparation of Higher Bands
First I will discuss the possibility of transferring the atoms into higher bands of the
lattice, as done previously for checkerboard [91–94] and hexagonal lattices [80, 86, 95].
For this we use a lattice depth of V = 6.3Erec and start at φg/(2π) = −0.048, where
all condensed atoms are localized at the energetically lower lattice site and fill up the
entire 1st band thermally. We then perform a rapid sweep of the geometry phase of
typically around 60µs across φg = 0 to excite the atoms into certain higher bands,
depending on the final geometry phase at the end of the sweep. In order to do so, we
vary the frequencies of the sidebands for a time tsweep according to

∆ν(α/β/γ) = (+/+ /−) ∆φg/3
2πtsweep

. (4.16)

The minus sign for νγ is necessary because it uses an opposite sideband compared to
the other two. By equally detuning all 1D lattices, we ensure that only the geometry
phase changes, whereas the position of the lattice sites remains constant. Afterwards
we keep the system in the final configuration for 500µs and then image the resulting
band populations via band mapping, which is shown in Fig. 4.14. By inversing the
offset to φg/(2π) = 0.048 (leftmost situation in Fig. 4.14) we run through one band
crossing, between the 1st and 2nd band, and stop the sweep with still a considerable
energy offset to the next higher bands. Thus, most of the atoms are transferred
to the 2nd band. For shorter sweep times the situation corresponds increasingly to
a phase quench and the ratio of atoms projected to even higher bands grows. For
longer sweep times of hundreds of µs this effect vanishes, however the ratio of the 1st
band increases, as more tunneling events to the other lattice site occur. This tunnel
coupling is of course much higher when ending at a resonance between bands at the
different lattice sites as shown in the next column of Fig. 4.14. Here the geometry
phase is sweeped up to φg/(2π) = 0.064, so that it stops at the 2nd band crossing,
where the 2nd, 3rd and 4th band touch at the Γ point. As a consequence, these three
bands are populated roughly equally in this case. By increasing the energy offset of
the final configuration even further, the atoms can be transferred to e.g. the 4th and
7th bands (right part of Fig. 4.14).
In our system we find lifetimes in the 2nd band of several hundreds of millisec-

onds, but were so far not able to see recondensation in the 2nd band when starting
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Figure 4.14.: Preparation of higher bands by sweeping the geometry phase.
a Cuts through the potential of one A-B-site pair before and after four different
sweeps. The populated orbitals are marked in red. b Band mapping images,
corresponding to the final situation in a, after linear sweeps from φg/(2π) = −0.048
to φg/(2π) = 0.048, 0.064, 0.095, 0.153 and a subsequent hold time in the final
geometry of 500µs. The sweeps are done in 60µs for the 1st to 3rd image and
20µs for the 4th. The atoms are found in the 2nd band, 2nd+3rd+4th bands, 4th
band and 7th band, respectively. These BZs are highlighted in the sketches below.
c Band structure of the hexagonal lattice as a function of the geometry phase. The
lattice depth is V = 6.3Erec as in b and the final values of φg are marked by the
arrows. Adapted from [36].
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with a BEC. The recondensation would occur at the K points, which are the poten-
tial minima of the 2nd band. This would be an important step for studying exotic
higher-band physics, like for example chiral superfluids [80]. In combination with the
quantum gas magnifier, this could be used to directly image the on-site vortices of
the chiral superfluid.

4.5.2. Dynamics in Real Space
In addition to measuring the different band populations via band mapping, we can
also investigate the populations on the A- and B-sites in real space. The following
measurements were done by performing a quench of the geometry phase, directly
inverting the energy offset ∆AB.
Here we use a lattice depth of V ≈ 3Erec with different initial geometry phases.

After adiabatic loading of the lattice we proceed by an almost instantaneous inversion
of the energy offset ∆AB. This is done by changing the phase offsets of the EOM
RF signals from ∆φinit

(α/β/γ) = (−/ − /+)∆φg/3 to ∆φfinal
(α/β/γ) = (+/ + /−)∆φg/3.

The resulting dynamics is then captured by imaging magnified real space densities
after hold times in the final situation between 10µs and up to 6ms. The single site
populations are read out as described for the real space calibration in subsection 4.3.1
and plotted in Fig. 4.15 for ∆φg = 0.6 and 0.8. In the semi logarithmic plot, we find
three distinct behaviors for three different time scales. The A-site population, now
localized at the energetically higher potential minimum, quickly diminishes, while
the B-site population rises. After around 102 µs the populations are relatively static
with some signs of damped oscillations. Then beyond around 103 µs the dynamics is
dominated by a slow reassembling on the now energetically lower B-sites, until after
several ms the starting ratio between the sites is reached with the energy presumably
going into excitations in the tubes and being carried away by the loss of around 30%
of the atoms during the dynamics.
The theoretical description is done starting with the same numerical approach as

in the case of the quench to a lattice of dimers in section 3.5, for now also including
the restriction to quasimomentum 0, i.e. the Γ point. In this quench protocol how-
ever, the final potential is reached much faster than via a lattice depth quench and
thus the evolution can be simulated by directly projecting the wave function of the
ground state to the eigenstates of the final situation. In the case of a non-interacting
particle without energy losses for such relatively small final offsets this results in an
oscillation between the A- and B-sites dominated by the frequency given by the band
gap between the 1st and 2nd band. The first half period fits well to the initial dy-
namic with the used lattice depth of 3Erec, as this yields band gaps at the Γ point of
5 kHz (φg = 0.3) and 6.3 kHz (φg = 0.4). To get a quantitative agreement also in the
relative populations, the numerically calculated density distributions have an added
background once again, increasing the signal on the third of the Wigner-Seitz cell
not associated with either the A- or the B-sites to the experimental level of roughly
25%. Due to repulsive interactions of our atoms leading to larger populations on
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Figure 4.15.: Dynamics between A- and B-sites following an offset inver-
sion. Shown are the measured population (symbols) on the A-sites (red) and the
B-sites (blue) after quenching the geometry phase from φg = −0.3 to φg = 0.3 (a)
and from φg = −0.4 to φg = 0.4 (b) at a lattice depth of V = 3Erec. The solid
lines are a heuristic model following numerical calculation and the corresponding
parameters are listed in table 4.1. Additionally the intermediate steps of the sim-
ulation are shown. The dotted lines follow from the adjusted populations ñA and
ñB (Eq. 4.17) and the dashed lines give the effective populations of Eq. 4.18 for
adec = 0, i.e. withouth the long term decay. The number of iterations per hold
time is three (a) and two (b), respectively.

the energetically higher lattice sites, it is also necessary to decrease the A-site pop-
ulations and increase the B-site populations of the numerical calculations by several
percentage points. For longer times, the data does not follow the simple oscillation
anymore. This is accounted for by a damping term, freezing the oscillations and an
exponential decay from the A-sites to the B-sites, describing a de-excitation of the
atoms from 2nd to 1st band. The unaltered populations from numerical calculation
nA,B are thus first adjusted and renormalized (not shown) to

ñA(t) = nA(t) + dbg − dAB

ñB(t) = nB(t) + dbg + dAB, (4.17)

with dbg giving an overall background and dAB describing the interaction-induced
population offset between the sites during the dynamic oscillations. From this the
plotted lines in Fig. 4.15, including the damping and decay to the lower sites, follow
as
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neff
A = (ñA − ñA)e−λdampt + ñA − adec

(
1− e−λdect

)
neff

B = (ñB − ñB)e−λdampt + ñB + adec
(
1− e−λdect

)
, (4.18)

with ñA (ñB) being the mean values of ñA (ñB).
Thus in total there are five free fit parameters, two for adjusting the relative pop-

ulations of the simulation to the experimental ones, the background dbg and the A-B
redistribution dAB, and three to account for the differences on longer times scales, the
oscillation damping via the damping constant λdamp and the long time decay to the
lowest band via the decay constant λdec and the decay amplitude adec. Since the band
structure calculation takes significantly longer, it is kept outside of the fit and the
lattice depth is instead roughly optimized by hand to be V = 3Erec, which is around
15% below the result of an independent calibration via Kapitza-Dirac scattering. The
fitted values used for the lines in Fig. 4.15 are stated in table 4.1.

Table 4.1.: Parameters used for the simulations in Fig. 4.15.
Sub figure λdamp (1/ms) λdec (1/ms) adec dbg dAB
a (∆φg = 0.6) 24(4) 0.35(6) 0.072(5) 0.96(1) 0.160(5)
b (∆φg = 0.8) 10(2) 0.25(5) 0.098(11) 0.98(2) 0.170(6)

Using the heuristic model, we thus can describe the observed relative populations
of the A- and B-sites and find a strong suppression of the energy conserving single-
particle oscillations as well as a short lifetime on the energetically higher sublattice
site. Interestingly, the extracted damping constant is smaller for the larger offset
quench. This should however be taken with caution, because the available data
set only had two iterations and high noise on the signal during the intermediate
times between roughly 102 and 103 µs, which mostly determine the fitted damping,
could be interpreted by the fitting routine as oscillations and thus lower the damping
constant. In order to get reliable dependencies of the damping and decay times on
the system parameters like the geometry phase, larger data sets should be measured.
A simplification used here is to limit the band structure calculation to the Γ point.
In practice, the quasimomentum distribution is a Gaussian including a considerable
part of the 1st BZ. Because the dispersion is not flat, this leads to a small damping of
the oscillation already without the damping term in the heuristic model. Assuming
the extreme case of a constantly filled 1st BZ for Fig. 4.15a for example decreases
the damping constant λdamp found by the fitting algorithm by around 15%. To lower
the systematic error on λdamp the realized momentum distribution could be extracted
by a time-of-flight measurement and used for the calculation. The relatively short
decay times are most likely due to the low lattice depth compared to the parameters
in section 4.5.1, leading to a significantly smaller energy offset between the A- and
B-sites.
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Measuring the higher band excitations in real space would be especially interest-
ing if a position dependent analysis is necessary, as the relative populations can be
compared locally. In this exemplary measurement the distance from the trap center
does not seem to make a difference, however, with the very few repetitions available
no solid conclusions can be made.

4.6. Sublattice Modulation Spectroscopy
The dynamical control of the geometry of our lattice can also be used for a new type
of periodic modulation of the optical lattice. By periodically changing the geometry
phase, the two distinct lattice sites per unit cell are subject to opposite, linear changes
in energy. This driving, which breaks inversion symmetry, can be used to perform
spectroscopy measurements of atoms in the optical lattice potential and we refer to
it as sublattice modulation spectroscopy. In the following, the sublattice modulation
will be compared to different modulation techniques, namely symmetric amplitude
modulation and circular shaking of the lattice potential.
We realize the sublattice modulation by periodically changing the detuning of the

sideband frequencies, yielding a symmetric phase shift of all the 1D lattices with
frequency νspec described by

φ1,2,3(t) = φ1,2,3(0)(+/+ /−)δφg

3 sin(2πνspect). (4.19)

For the circular lattice shaking we also periodically vary the frequency, however in
this case of the RF signals for the AOMs. As explained previously, this changes the
lattice position without changing the geometry phase. The amplitude modulation is
simply realized by periodically changing the intensity setpoint of the feedback control
system with frequency νspec. In all cases, we start by loading the BEC in our lattice
and fill up the entire 1st band thermally. At that point, we start one of the different
modulation types using relatively low modulation amplitudes, i.e. staying in the linear
response regime. The duration of the modulation is chosen as a tradeoff between a
small Fourier broadening for small spectroscopy frequencies and avoidance of heating
for long times. Here we used 10ms at a given modulation strength, however we
find the qualitative behavior to not depend strongly on the duration or modulation
strength. The modulation indices are set to εsm = 0.02 (sublattice modulation),
εam = 0.05 (amplitude modulation) and εcs = 600Hz/νspec (circular shaking), chosen
to give a good signal for all frequencies at the selected modulation time of 10ms.
Lastly we image the different band populations by band mapping. For larger bands,
we find the corresponding BZs to be strongly distorted, which we attribute to the
harmonical confinement, gravity effects during the band mapping and experimental
imperfections. Thus we calculate BZ masks using a principal component analysis
(PCA), instead of the ideal ones (for more details see Appendix B).
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The resulting band populations for the three spectroscopy types, using φg/(2π) =
0.024, are shown in Fig. 4.16. Additionally, the expected transition frequencies for a
lattice depth of V = 9.3Erec are marked as red shaded region. The widths of these is
determined by the smallest and largest band gap to the 1st band for the full 1st BZ,
i.e. all quasimomentum preserving transition frequencies. For the 2nd band and
the higher bands the transition frequencies via 2-photon processes are also marked.
The population peaks in the higher bands roughly fit these numerically calculated
transition frequencies despite the relative simplicity of the model, assuming a single
particle in a perfect lattice. For a precise quantitative description it would probably
need to include the complete dynamics imprinted by the modulation pulses, possible
finite-size effects on the band structure, the overlaying harmonical confinement seen
by the atoms and of course interaction effects.
In all three cases we find a population peak in the 2nd band at around 7 to 8 kHz

spectroscopy frequency, although there is an unexpected shift of some 500Hz between
the peak position from sublattice modulation and the two other methods. The relative
excitation strength is clearly stronger to the 2nd band for sublattice modulation, as
we also find a pronounced two-photon resonance to the 2nd band at approximately
3.7 kHz in this case, despite the signal at the higher bands being smaller than with
amplitude modulation or shaking. These excitations, to the 3rd and 4th band at
around 16 to 17.5 kHz and to the 5th band broadly around 22 kHz, are again found in
all the spectra. Additionally though, we see excitations to different higher bands at
around 15 kHz for amplitude modulation and circular shaking, which are absent using
sublattice modulation. They might be explained by stronger higher order processes
to the 7th band and partial decays from there to the 3rd band. Such processes could
also explain the much broader resonance around 22 kHz, where especially amplitude
modulation results in a wide plateau of excitations to different higher bands from 20 to
23 kHz. Given the significantly cleaner spectrum via sublattice modulation, it might
be better suited for selectively coupling higher bands and off resonant preparation of
Floquet systems, as we would expect comparatively lower heating rates.
For an interpretation of these results we calculate the transition matrix elements

and integrate them over the 1st BZ to get an estimation of the different resonant
excitation strengths. This is done for the three types of perturbations in linear re-
sponse theory. The resulting excitation strengths up to the 7th band are depicted
in Fig. 4.17 for three lattice geometries: honeycomb lattice, boron nitride lattice at
φg/(2π) = 0.024 as used in the spectroscopy measurements in Fig. 4.16 and triangular
lattice. The derivations are presented in Appendix C.
As expected, they show strong differences towards one another and also depend sig-

nificantly on the lattice geometry. Especially the results for circular lattice shaking
exhibit strongly different behavior, as the calculated excitation strengths are mostly
independent of the targeted band. This can be explained by the simple analogy to
a harmonic oscillator, in which also all levels are coupled via shaking the system,
whereas the levels have to have the same parity, in order to be coupled via amplitude
modulation. The suppression of certain excitations following from that argument can
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Figure 4.16.: Band resolved excitation spectra of a boron nitride lattice
with φg/(2π) = 0.024 for three different types of modulation. The rela-
tive population of the 1st, 2nd, 3rd, 4th, 5th+6th and higher bands are shown as a
function of the spectroscopy frequency. The symbols and colors mark the different
modulation methods: sublattice modulation (dark blue circles), symmetric ampli-
tude modulation (middle blue triangles) and circular lattice shaking (light blue
crosses). The lines are spline interpolations of the data as guides to the eyes. The
modulation indices are set to 0.02, 0.05 and 600Hz/νspec, chosen to yield a good
signal at the modulation time of 10ms. The dark red shaded regions indicate the
resonance frequencies to different higher bands from numerical calculation at a lat-
tice depth of V = 9.3Erec and the light red regions indicate resonance frequencies
via two-photon processes. Adapted from [36].
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Figure 4.17.: Resonant excitation strengths to higher bands. The transition
matrix elements from the 1st band for sublattice modulation (dark blue circles),
amplitude modulation (middle blue triangles) and circular lattice shaking (light
blue crosses) are integrated over the 1st BZ and logarithmically plotted as a function
of the targeted band. The modulation strengths are taken from the measurement,
meaning εsm = 0.02, εam = 0.05 and for the frequency dependent case of circular
shaking: εcs = 0.08 (resonance to 2nd band), 0.035 (resonance to 3rd and 4th
band), 0.028 (resonance to 5th and 6th band), 0.021 (theoretical expectation for
resonance to 7th band). A lattice depth of V = 9.3Erec is used and the three panels
correspond to the geometry phases of φg/(2π) = 0, 0.024 and 0.5 from left to right.
Adapted from [36].

be found to the 3rd and the 6th band, both for amplitude modulation and sublat-
tice modulation. For amplitude modulation, the same holds for excitations of the
2nd band. However, in the case of sublattice modulation it is very pronounced for
geometry phases close to the honeycomb lattice.

Despite the theoretical descriptions of the excitation strengths suffering the same
drawbacks as the numerically calculated transition regions, as they again exclude the
full dynamics and any interaction effects, we do find similar qualitative features to
the experimental measurements. Especially when comparing the relative excitation
strengths to the 2nd and 4th band with the different methods in boron nitride lattices
we find the strongest 2nd band ratio via sublattice modulation, as observed in the
experiment. The strong differences in excitation strengths to the 3rd and 6th band
are hard to compare, because the band gaps to the 4th and 5th band respectively are
closed, which in practice would populate these bands anyway. Another accordance
between theory and experiment is the pronounced 2nd order excitation of the 2nd
band via sublattice modulation, as this term appears as a higher-order process in the
perturbation operator.
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A possible further application of sublattice modulation might be to probe the bond
order wave in the ionic Hubbard model. Here the conceptually related superlattice
modulation spectroscopy is predicted to be beneficial, as it allows accessing both the
finite charge and spin gaps [96]. It also has similarities to phasonic modulation, where
an additional, incommensurate optical lattice is moved through the system, which
proved to be very effective in coupling via higher-order multiphoton transitions [97].

4.7. State Tomography with Interactions
Another application of the very fast lattice geometry change possible with our setup
is to use this as a projection for Bloch state tomography measurements in order to
extract topological properties of the system. In the following this is demonstrated
in a set of preliminary measurements using the same approach as proposed in [37]
and implemented in [32, 98, 99], which were done at this experimental apparatus as
well. Further information on the experiment and the theoretical description allowing
to reconstruct the Berry curvature can also be found in [49, 53]. Recently also a full
Bloch state tomography was realized with bosons in a Raman lattice by targeting the
atomic spin polarizations [100].
The main idea is to prepare a topologically interesting state in the boron nitride

lattice with the Bloch states for every quasimomentum being given by a superposition
of states purely situated on either the A- or the B-sites and to project it for the
measurement onto decoupled flat bands. Here the eigenstates are associated only
with one sublattice site and can be written |q, A〉 and |q, B〉. To achieve such a
projection, they prepared the initial system via Floquet engineering by circularly
shaking the lattice potential. This shaking amplitude was adiabatically ramped up
for the preparation and quenched off to project back on the static system, which had a
large energy offset between the A- and B-sites and hence a flat band structure. This is
visualized in Fig. 4.18a and b, taken from [32]. The situation can be nicely described
on the Bloch sphere, with the decoupled states |q, A〉 and |q, B〉 pointing to its two
poles. As shown in Fig. 4.18c, the prepared superimposed state is characterized by
being oriented under some angle compared to the pole-axis, such that the projection
back to decoupled states initializes a precession around this axis with a frequency
νq determined by the band gap at the corresponding quasimomentum of the static
system. This oscillation can then be measured in time-of-flight images by varying
the precession time and measuring the resulting interference density from the A- and
B-sites for every quasimomentum. The time-dependent density is given by

n(q, t) = f(q)
(
1− sin(θq) cos(φq + 2πνqt)

)
, (4.20)

with the polar angle θq, the azimuthal angle φq and the Wannier envelope f(q). In
practice, the amplitude of the modulation a = sin θq is measured and the modulation
is damped, such that the population of every quasimomentum versus the hold time
in the decoupled system is fitted via
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Figure 4.18.: Bloch state tomography via dressing. a Sketch of the experi-
mental protocol used in [32]. The driving amplitude is ramped up for the system
preparation and quenched off to project onto the static system, which has flat s-
bands. b Band structures of the two band system at the different time steps of
a. c Bloch sphere representation during the protocol, starting at |q, B〉 and being
brought into a quasimomentum-dependent superposition of |q, B〉 and |q, A〉 by
the ramp-up of the driving strength. With the subsequent projection to flat bands
the states rotate on the Bloch sphere at the frequency of the final band gap νq.
Adapted from [32].

n(q, t) = f(q)
(
1− ae−t/τ cos(φq + 2πνqt)

)
, (4.21)

with the damping time τ .
With the tunability of the multifrequency lattice, we now avoid having to start

from decoupled bands in order for the projection to work. This allows to indepen-
dently choose the preparation and precession parameters, which should be beneficial
in taking tomography measurements of topologically nontrivial systems. Beyond this
change in the sequence we now also changed the atomic species compared to the
measurements in [32, 99], from spin-polarized fermionic 40K to bosonic 87Rb atoms.
This makes following the density oscillation across the entire 1st BZ harder, because
it is not equally filled. To reach a sufficient population of all quasimomenta for re-
solving the oscillations and being able to fit Eq. 4.21 to the data, we employ thermal
atoms by increasing the temperature of the cloud. This is done by increasing the
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final frequency of the RF-knife used for the evaporative cooling. The strongly differ-
ent populations at different quasimomenta can then be compensated by the Wannier
envelope f(q). Another drawback is the significantly larger mass of the Rubidium
atoms, which reduces the reciprocal lattice vector length to less than one half and thus
lowers the quasimomentum resolution. A very interesting difference is the addition of
interaction effects from our weakly interacting bosons compared to the spin-polarized
fermions, which might allow us to effectively perform tomography measurements of
the system’s Bogoliubov modes. In the first preliminary measurements presented
here, we simplified the situation by studying static lattices.
The measurement results and analysis for the tomography of one initial system

is visualized in Fig. 4.19. Here the atoms are loaded adiabatically in a lattice very
close to the honeycomb case with φg/(2π) = 0.003 and projected to a large energy
offset between the A- and B-sites at φg/(2π) = 0.077. The resulting momentum
resolved density oscillations are imaged in 20µs steps from 20 to 400µs and fitted
using Eq. 4.21. From the measured oscillation frequencies across the 1st BZ from
roughly 8 kHz at the Γ point to around 6 kHz at the M points a lattice depth of
V = 3.3Erec is concluded. When looking at the corresponding band structure this
system only has a very small band gap between the 2nd and the higher bands, yet
at the same time still a considerable band curvature, as evidenced by the varying
oscillation frequencies found. This is due to experimental limitations preventing the
use of deeper optical lattices at the time. However, we found no significant differences
in the results when using smaller A-B-offsets for the projection. The higher bands
might not be very impactful, because the atoms are for symmetry reasons mostly
projected to the two s-bands.
The initial state for every quasimomentum, except for the knowledge of the hemi-

sphere on the Bloch sphere it points to, is described by the fitted oscillation ampli-
tude a = sin θq and the azimuthal phase φq, which are depicted in the left column
of Fig. 4.20. The phase profile fits to the expectation of a graphene or boron nitride
lattice with topological defects at the K and K’ points, where the Dirac cones are
situated in the graphene lattice. They manifest as vortices in the phase, with opposite
winding on the K and K’ points. For the amplitude one would in first approximation
expect a very strong amplitude modulation throughout the 1st BZ except for the
regions around the K and K’ points, since every state is a superposition located both
on the A- and B-sites. Instead we surprisingly find a ring-shaped feature around the
Γ point, i.e. the region of highest density. With all coefficients freely determined via
the fitting routine this ring actually reaches a = 1, implying that the state points
to the equator of the Bloch sphere and thus might reach into the other hemisphere
going towards the Γ point. This value of a = 1 has to be taken with caution though,
as it depends on the damping constant varying significantly across the 1st BZ. This
can be seen from Fig. 4.19b, where panel 4 presents the oscillation at the Γ point and
panel 5 the situation on the amplitude ring. The latter only reaches unit amplitude
due to extrapolation of the modulation to zero because of the comparatively strong
damping. For now, it is not clear that this full modulation is indeed physical and not
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Figure 4.19.: Visualization of density oscillations in the momentum dis-
tribution. a Shown are five exemplary density distributions after 20, 100, 180,
260 and 340µs hold time after the projection to flat bands. Each distribution is
averaged over around nine iterations. Initially the system has a very small energy
offset at around φg/(2π) = 0.003 and is projected to φg/(2π) = 0.077 at a lattice
depth of V = 3.3Erec. The hexagons mark the 1st BZ. b Population on single
pixels as function of the hold time from experimental images as in a (symbols) and
fits to the data using Eq. 4.21 (lines). The position of the pixels are marked in the
first image of a.

an artifact from the measurement. However, even when forcing a constant intermedi-
ate damping constant across the entire 1st BZ, the amplitude ring persists as a local
maximum, although not reaching a = 1 anymore. Using the full state tomography,
the topological properties can be attained via the Berry curvature [32, 37], which is
dependent on the amplitude a and the derivatives of θq and φq. The result is plotted
in Fig. 4.20c under the assumption that θq folds back to the same side of the Bloch
sphere within the ring structure. By integrating the Berry curvature over the 1st BZ
the Chern number of the populated Bloch band can be calculated, which is a topo-
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Figure 4.20.: State tomography across the merging transition. Visualization
of the momentum resolved fitted coefficients for the system used in Fig. 4.19. From
left to right the lattice is increasingly imbalanced: V1 = V2 = V3, V1 = 0.94V2 =
0.94V3 and V1 = 0.88V2 = 0.88V3. a Depicted is the amplitude a = sin θq of
the oscillation. In a ring around the Γ point it reaches 1, meaning the signal on
the corresponding pixels is fully modulated. Close to the K/K’ points almost no
modulation of the signal is measured. b Azimuthal phase φq across the merging
transition. The increasing imbalance of the lattice moves the phase vortices at pairs
of K and K’ points towards each other until they merge at the halfway positioned
M points. c From the fitted angles φq and θq the Berry curvature in the 1st BZ is
calculated as described in [32]. The distribution is quite irregular, but the sum is
at most 0.1% away from the expected quantized value of Chern number 0.

logical invariant. As expected for the static system, it has a quantized value of 0 with
only a small error of 0.05%. For the sake of completeness, it should be noted that the
measured Chern number also is 0 when folding the amplitude within the ring on the
opposite hemisphere. As a first test to the robustness of our measurement protocol
we map out the merging transition of the two Dirac points in the 1st BZ by varying
the beam imbalance (Fig. 4.20) as proposed in [101] and previously demonstrated
in [31, 102, 103]. As expected the phase vortices follow the Dirac points, which are
brought closer to each other until pairs from a K and a K’ point merge at an imbal-
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ance of around 0.9. Thus the topological defects annihilate and we see a continuous
phase profile in the right column as well as a merging of the amplitude a = 0 regions
associated with the phase vortices.
Returning to the extracted amplitude ring, we want to study its dependence on the

interaction strength in the system, since the change to interacting atoms is the most
important change compared to the earlier tomography measurements as described
in Fig. 4.18 ([32, 99]). With 87Rb not offering Feshbach-resonances to deliberately
tune the interaction strength, we instead lower its impact on the system in two
different ways. Firstly by starting with a hotter cloud and secondly by lowering the
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Figure 4.21.: . a Exemplary momentum distributions at a higher temperature, but
otherwise identical parameters to the first line of Fig. 4.19a. b Momentum resolved
amplitude a and azimuthal phase φq using the higher temperature demonstrated
in a. Instead of the amplitude ring a hill around the Γ point is found. c The
temperature is again lowered to be roughly equal to Fig. 4.20 and the lattice depth
is lowered to around V = 0.5× 3.3Erec (left column) and V = 0.3× 3.3Erec (right
column). At half the original lattice depth the amplitude ring around the Γ point
is already significantly weaker and at 30% it has disappeared. The phase profiles
are not qualitatively affected be these changes.
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lattice depth such that in both cases the atomic density gets lowered. The resulting
fitted amplitudes a are plotted in Fig. 4.21 and feature much weaker to no ring
structures, suggesting that this feature does indeed originate from interaction effects.
The amplitude distributions of the outer-lying copies of the Γ point are neglected in
the analysis because of the vastly lower signal to noise ratio.
In conclusion, these first preliminary measurements demonstrate the usefulness of

the tunability of the multifrequency setup for performing a full state tomography in
the optical lattice. Regarding the amplitude ring, further studies are necessary to
confirm it as arising from interaction effects and develop a theoretical understanding.
Especially the measurements should be repeated in a deeper lattice, allowing to reach
decoupled flat bands while at the same time keeping a large band gap to the higher
bands, to work in a more clean system. To further investigate interaction effects it
would be beneficial to change the atomic species, to be able to tune the interaction
strength via Feshbach-resonances. Additionally, building on these measurements, it
would be very interesting to include periodic driving to the initial system, in order
to engineer and measure topologically nontrivial states [104, 105].

4.8. Extension of the Geometry Phase Concept to
more complex Optical Lattices

In the last section, I want to show the relevance of the geometry phase concept
also for more complex types of lattice potentials. Using the multifrequency design,
similar phases, which invert the potential landscape and target the energies of single
sublattice sites, can be tuned also for various kinds of lattice potentials. In the
following subsections, the examples of quasiperiodic lattices and 3D lattices will be
presented.

4.8.1. Quasiperiodic Optical Lattice with Geometry Phase

Quasiperiodic lattices are defined by possessing long-range order without actually
being translationally symmetric, meaning they do not originate from translations
of some unit cell. Since quasiperiodically ordered potentials can be interpreted as
incommensurate projections of a periodic structure in higher dimensions, studying
quasicrystals allows to address the physics in such high-dimensional objects, including
for example their topology [106, 107].
To investigate the role of the geometry phase in a quasicrystal lattice, we chose a

fivefold rotationally symmetric potential, as it is the most straightforward symmetric
2D quasicrystal with a geometry phase. The situation can be described very similarly
to our realized setup, but using five equally distributed lattice beams, i.e. under 72°
to their nearest neighbors, instead of three. The resulting potential can be written as
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Vpot(r) = 2
5∑
i=1

Vi cos(bi · r + φi). (4.22)

When realizing this geometry in a multifrequency approach, there are two equally
valid options. One can either bring frequencies from neighboring lattice beams on
resonance, or frequencies from next-nearest neighboring beams. The potential shape
is of course the same in both cases, but the 1D lattice constants and thus the entire
potential landscape are a factor sin(36◦/2)

sin(72◦/2) = 0.526 smaller in the latter case. For
the same intensity, this would increase the energy scale of the band structure by a
factor of 2.6, allowing to reach effectively cooler atomic ensembles in the lattice since
the temperature is smaller compared to the eigenenergies. Both versions with the
corresponding reciprocal lattice vectors are schematically shown in Fig. 4.22. In the
following I will assume the situation from the right side of Fig. 4.22.
For the choice of the frequencies, we start with the same limiting considerations

as in our hexagonal multifrequency lattice. On the one hand, the lowest running
waves in the system must be much faster than the energy scales of the atoms in the
lattice potential and on the other hand it would help in the realization to stay within
several MHz. Thus in the examples of Fig. 4.22 there are three lattice beams using
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Figure 4.22.: Sketch of a fivefold quasicrystal lattice in two realizations.
Five laser beams with relative angles between neighboring beams of 72° are superim-
posed. Every beam consists of two frequencies with overall five unique frequencies.
Depending on whether the resonant frequency components are in neighboring (left)
or next-neighboring (right) beams, the lattice vectors and corresponding reciprocal
lattice vectors change. The reciprocal lattice vectors are defined as bi = ki − ki+1
with k6 = k1 (left) and bi = ki − ki+2 with k6 = k1 and k7 = k2 (right).
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the -1st order sidebands (k1, k2, k4) and two lattice beams using the +1st order
sidebands (k3, k5). There are plenty possible sideband frequency combinations to
fulfill the pairwise resonance requirement without the opposite sideband coming into
resonance with any of the other main frequencies. In order to simultaneously stay
within a small frequency region and of course to also suppress higher order resonances
as much as possible, a good combination we found is: +να = 4MHz, +νβ = 13MHz,
−νε = −10MHz, −νδ = −2MHz, −νγ = −5MHz (Fig. 4.23). Here να/β/γ/δ/ε is
the sideband used on the carrier frequency with the corresponding latin letter which
are ordered in frequency and the modulation frequencies are chosen as multiples of
1MHz. In this case the first unwanted resonance appears between the +4th order of
νδ and the +2nd order of νγ, forming a 1D lattice of only 0.1% the relative depth of
the five desired ones. Its impact is very limited, because its wave vector is oriented
parallel to one of the five desired ones, such that it only leads to a very minor change
in the depth of this 1D lattice. The first resonance between two beams that are not
supposed to interfere and that hence leads to an additional 1D lattice not included
in the quasiperiodic geometry is even weaker at a relative depth of 0.05%.
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Figure 4.23.: Possible choice of frequency spectra for a fivefold quasicrystal.
As in the simpler case of a three beam lattice (Fig. 4.5) every lattice beam contains
two relevant frequencies, a carrier and a 1st order sideband, which are each in
resonance with a different 1st order sideband and carrier in two different lattice
beams, respectively. The sideband frequencies are chosen as να = 4MHz, νβ =
13MHz, νγ = 5MHz, νδ = 2MHz and νε = 10MHz. The spectra are numbered
according to the right configuration of Fig. 4.22.

The set of reciprocal lattice vectors bi has four incommensurate vectors, since only
one at a time can be described by the negative sum of the other four. This means that
the realized 2D potential can be described as an incommensurate projection of a 4D
periodic potential. In this special case of the argumentation from section 4.1.4 with
D = N − Niis = 4 and d = 2, the five independent phases φi thus give control over
two translational degrees of freedom in the physical space, two phasonic degrees of
freedom, which are translations in the not physically accessible space, and additionally
a geometry phase. Analogous to the hexagonal case, the geometry phase is given by
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φg =
5∑
i=1

φi, (4.23)

as this expression acts symmetrically on all 1D lattices and hence does not couple to
any translations in the 4D space of the potential.
Consequently, the other degrees of freedom can be accessed by changing the 1D

lattice phases while keeping their sum constant. With symmetry considerations and
phase shifts of π/2 between the two orthogonal directions for both types of transla-
tions, this can be written as

Vpot(r) = 2
5∑
i=1

Vi cos
(
bi·r+t1 cos

(2πi
5
)
+t2 sin

(2πi
5
)
+p1 cos

(4πi
5
)
+p2 sin

(4πi
5
)
+φg

5

)
.

(4.24)
Here the two orthogonal translations in physical space are set by the parameters t1
and t2 and the two phasons by p1 and p2.
We find the geometry phase to have a similar effect on the quasiperiodic potential as

on the hexagonal potential. For φg/(2π) = m, with integer m, the potential features
many relatively shallow local minima, akin to the honeycomb lattice, whereas for
φg/(2π) = m+ 1/2 there are less yet more pronounced local minima, resembling the
triangular lattice. Around φg/(2π) = m, the tenfold symmetric patterns are broken
with offsets appearing between even and odd minima, as in the boron nitride phase.
The difference in the potential minima are illustrated in Fig. 4.24c and d. When
all occurring potential values from the landscapes plotted above are normalized and
plotted as histograms, we find, that for φg = 0 the slope of the lowest potential
values is higher than for φg/(2π) = 0.5. Similarly, when restricting the analysis to
local minima of the potentials, they only start to appear at higher potential depths,
but more quickly at φg = 0. Again the different local minima distributions can be
attributed to a flux in momentum space given by Φ = π + φg through a pentagonal
plaquette (Fig. 4.24b), which is maximal in the frustrated case φg = 0.
To give a more conclusive picture of this quasiperiodic potential, a phasonic de-

gree of freedom, p1 from Eq. 4.24, is changed in Fig. 4.25. The lattice geometry is
unchanged and thus the local minima distribution is unchanged as well.
Following this scheme would allow realizing for the first time a quasiperiodic op-

tical lattice with tunable geometry. In the first setup using ultracold atoms in a
quasicrystal, the latter was constructed by four 1D lattices with 45° angles between
neighboring ones [35]. The resulting four degrees of freedom thus correspond to two
translations and two phasons and do not contain a geometric degree of freedom. In
addition to accessing phasonic degrees of freedom, as done for phasonic spectroscopy
[97] and as part of charge pump protocols [107–109], a multifrequency realization of
a quasicrystal would allow to use further dynamic tuning possibilities. This could be
used to quench the lattice geometry to perform tomography of the eigenstates, or to
excite the atoms into higher states via geometry sweeps. It might also be promising to
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Figure 4.24.: Fivefold quasiperiodic potential tuned via the geometry
phase. a Potential landscapes for five different geometry phases (φg/(2π) = 0,
0.12, 0.25, 0.5, -0.5). b Pentagonal plaquette in momentum space constructed by
the reciprocal lattice vectors bi with a flux Φ = π + φg. c Histograms of the nor-
malized potential values from the potentials in a for φg = 0, 0.25 and 0.5. The
lines are fitted to the lowest 10%, emphasizing the larger number of lattice sites of
similar energy at φg = 0. d All local minima in the regions shown in a shown with
their potential energy. The color denotes the geometry phases: φg = 0 (dark blue),
φg/(2π) = 0.25 (middle blue), φg/(2π) = 0.5 (light blue). This also shows the
higher amount of lattice sites at a similar energy for φg = 0, while at φg/(2π) = 0.5
there are fewer but deeper lattice sites. Adapted from [36].
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Figure 4.25.: Fivefold quasiperiodic potential tuned via a phason. For
φg/(2π) = 0.25 the value of the phason p1 from Eq. 4.24 is varied from p1 =-0.9
(top left) in steps of 0.3 to p1 =1.2 (bottom right). The potential landscape stays
self-similar; it is neither translated in physical space nor is its geometry changed.
Adapted from [36].

study the phase diagram as a function of the lattice geometry, since the local variation
in the number of nearest neighbors was shown to strongly impact the phase diagram
by theoretically studying an eightfold quasicrystal [110]. Similarly, controlling the
width of the distribution of on-site energies via φg could help by introducing an im-
portant tuning parameter in the investigations of Bose glasses [111] and many-body
localization [112].

4.8.2. Generalization to 3D Optical Lattices
In the following, I will show how the multifrequency concept can also be used to
generate dynamically tunable 3D optical lattices for the special case of a nonseparable
lattice with three sites per unit cell. The realization of 3D nonseparable optical
lattices for ultracold atoms would allow for the simulation of more complex solid
state materials, featuring for example topological phenomena like in Weyl semimetals
[113, 114] or higher-order topological insulators [115, 116]. With the fastly tunable
geometry this would also enable Floquet engineering of new topological phases [117].
Here we consider a 3D lattice constructed by four lattice beams, such that phase

noise once again would only couple to the position of the resulting interference pattern,
not its geometry [77]. The four noncoplanar wave vectors ki give rise to six 1D lattices
defined via their reciprocal lattice vectors bi, which are given by bi = ki− k(i mod 3)+1
for i ∈ {1, 2, 3} and bi = k4−ki−3 for i ∈ {4, 5, 6}. To again have direct control over
each 1D lattice individually every lattice beam would now contain three frequencies
of which one would uniquely appear in one additional beam. The resulting potential
can be written as
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Vpot(r) = V0 + 2
6∑
i=1

Vi cos(bi · r + φi), (4.25)

offering the six phases φi as degrees of freedom. These comprise three degrees of free-
dom defining the position of the lattice potential in space and three for the geometry
of the lattice, following from the generalization in section 4.1.4 for N = 6 1D lattices
forming a D = 3 periodic potential. In general the components are defined as in
Eq. 4.7, yielding as an independent triplet for example

φg =

φg1
φg2
φg3

 =

φ1 + φ2 + φ3
φ1 + φ4 − φ5
φ2 + φ5 − φ6

 . (4.26)

The individual components each define the geometry of a 2D lattice build by three
of the four wave vectors. In the case of φg1 these are k1,2,3, for φg2 the three corre-
sponding reciprocal lattice vectors are construct from k1,2,4 and for φg3 from k2,3,4.
Accordingly, each component could be calibrated individually as demonstrated in our
2D multifrequency lattice.
One possible realization would be to add a perpendicular lattice beam to our setup,

i.e. along the z-direction, k4 = 2π/λẑ and ensure interference between all beams by
using linear in-plane polarization for the 1st to 3rd beam and circular polarization
for the 4th beam. This allows to write the total potential as sum of a 2D and a 3D
lattice:

Vpot(r) = V0 +V2D(r)+V3D(r) = V0 +2V2D

3∑
i=1

cos(bi ·r+φi)+2V3D

6∑
i=4

cos(bi ·r+φi).

(4.27)
Here for simplification the balanced situations V2D = V1 = V2 = V3 and V3D = V4 =
V5 = V6 are assumed. Using a stronger z dependent part, e.g. V3D = 1.9V2D for
φg1/(2π) = 0.29 the 1D tubes resulting from V2D can be split into separate minima.
This results in a 3D lattice of trimers in xy-planes, which are nontrivially coupled
to trimers in neighboring layers along the z-direction as visualized in Fig. 4.26. By
appropriately choosing the ratio of V2D and V3D the tunnel coupling to the four nearest
neighbors could also be balanced. Additionally, the multifrequency approach allows
to shift the two parts of the potential, V2D(r) and V3D(r), with respect to each other
via φg2 and φg3 and thus to engineer energy offsets between the three sites per unit
cell. This can be done arbitrarily by combining a change of one site with respect to
the other two by shifting along the y-direction and an increasing change between all
sites by shifting along the x-direction. This proposal would expand on the previous
realization of an optical lattice of tunable trimers [118], which is 2D and does not
possess passive stability.
Beyond the example presented here, there is a very large parameter space of possible

3D lattice geometries with four noncoplanar lattice beams, including all 14 3D Bravais
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Figure 4.26.: 3D multifrequency lattice of nonseperable trimers. The first
three subplots show potential landscapes in the xy-plane of size 2λ× 2λ for seven
different values of z. a Balanced 2D potential V2D(r) with φg1/(2π) = 0.29. b Bal-
anced 3D potential V3D(r) with φg2 = φg3 = φg1/3 and V3D = 1.9V2D. c Re-
sulting total potential Vpot(r) featuring layers of trimers with distances of λ/3 in
z-direction. The color map is cropped to emphasize the potential minima. d Shown
is the same 2λ× 2λ region at z = −λ/6 with different energy offsets between the
three minima set by shifting V3D(r) along the y- (2nd image) and x-direction (3rd
image) via combinations of φg2 and φg3. Adapted from [36].

lattices [119] and more multisite lattices, e.g. the diamond lattice [77, 120], which
could also be considered in a multifrequency design.

4.9. Conclusion and Outlook
In this chapter I presented our new optical lattice setup based on a multifrequency
design, which features a full dynamical control of the lattice geometry via the di-
rect access to the newly introduced lattice geometry phase φg. In this way, we can
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rapidly tune the geometry from a triangular lattice over a boron nitride lattice with
adjustable sublattice offset to a honeycomb lattice. By construction, phase noise on
the lattice beams does not couple on the geometry phase, making the lattice geom-
etry passively stable. In different calibration measurements, we demonstrated both
the high precision achievable in determining and varying the geometry as well as its
stability on different time scales.
The relevance of the introduced geometry phase is further supported by appearing

as a staggered flux in the complementary momentum space lattice, where we measured
it to break inversion symmetry in Bragg scattering experiments in excellent agreement
with the numerical prediction.
Making use of the dynamic tunability we illustrated the possibility of this setup to

excite the atoms into higher Bloch bands. The next step here would be to achieve
condensation in the higher bands, as they feature many exotic quantum states [121].
In particular boron nitride optical lattices are under study [122, 123] and recently the
realization of a chiral superfluid in the 2nd Bloch band was reported [80]. In this con-
text a combination with our quantum gas magnifier would be fascinating, to achieve
real space imaging of the higher orbitals. In the case of the chiral superfluid these ex-
hibit vortices which could then be observed directly. The combination of higher band
excitations with quantum gas magnification demonstrated in this thesis enabled us
to follow the real space dynamics after the excitation, giving a complementary access
to the system.
Furthermore, it allows to utilize a new lattice modulation type by modulating

the energies of the A- and B-sites with opposite signs, which we found to couple
less to higher bands than the other modulation techniques. It could therefore be an
interesting method for novel Floquet protocols, since heating of the atoms is one of the
primary practical problems in Floquet engineering [124, 125]. In combination with the
already successfully implemented driving approaches of lattice shaking [32, 104] and
amplitude modulation [126], it would also allow for more complex Floquet protocols
and give access to more complex systems possibly featuring new topological phases.
Another very interesting application of the dynamic geometry control are state

tomography measurements [32, 37, 99], where a quench to a different lattice geometry
allows to independently prepare a physical system of interest from the measurement
geometry, giving access to a larger range of systems to study. This was demonstrated
in a set of preliminary measurements for a static system, where the merging transition
was measured and an interaction strength dependent ring in the oscillation amplitude
was found. For more comprehensive studies of interacting topological systems it would
be promising to combine a multifrequency setup with an atomic species featuring a
Feshbach resonance and as such a tunable interaction strength and also to go beyond
static initial systems to prepare topologically nontrivial states. Similarly, quenching
onto a different lattice geometry is an important part of proposed schemes for the
detection of many-body phases [127, 128].
By setting the geometry via the relative positions of three independent 1D lattices,

we avoid the dependence on the lattice beam polarization and can thus completely
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avoid vector light shifts [46] by using out-of-plane polarization as done throughout
this thesis. On the other hand this decoupling of the lattice geometry and the beam
polarizations gives the opportunity to employ the vector light shift deliberately and
vary the dependence of the lattice potential on themF state of the atom. Additionally,
one could think of realizing a in-situ Stern-Gerlach separation of different spin states
by dynamically tuning the lattice geometry to introduce a 2nd site within the unit
cell and allowing a spin resolved measurement in a triangular lattice, as done using
1D chains in [129].
Finally, proposals of a quasiperiodic and a 3D optical lattice using the multifre-

quency approach were presented, which also feature dynamically tunable geometry
phases. Such complex geometries would be interesting for the possibility to engineer
new topological phases [117] and the tunable lattice geometry would again allow for
interesting options like excitations of atoms into higher states and quenches onto
different dispersions. Such changes in the energy spectrum would for example be
interesting when studying Bose glasses in quasicrystals [111].
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5. Pattern Formation in dc Driven
Lattices

In this chapter, I will present measurements of various dynamical effects of interacting
quantum systems in optical latices. Due to the high measurement precision and
tunability, optical lattices have proven to be a valuable platform for the study of
dynamics and transport properties in closed quantum systems [47, 130–132]. As an
additional tool for the observation, we make use of our quantum gas magnifier to
investigate the dynamics in our 2D lattice of tubes with high bosonic occupation
numbers. One area of particular interest within the wider realm of out of equilibrium
phenomena is the emergence of patterns spontaneously breaking the symmetry of
the underlying Hamiltonian of the system [133–136]. I report on our experimental
finding of such a process as a transient state during the equilibration process in a
system dominated by a constant driving force.
For all of these measurements the system is brought out of equilibrium by tilting it

to apply a force to the atoms. The subsequent dynamics can then be measured in real
space with single-shot access to the entire density distribution within the 2D lattice
plane, revealing the spontaneous formation of a symmetry breaking density-wave. The
quantum gas magnifier allows to investigate this effect compared to other detection
methods. The patterns we induce would not be detectable using interference images
in momentum space as the coherence is almost fully destroyed during the dynamics
and even with coherence, the spontaneously forming domains within the density-
wave would not be accessible. Similarly the averaging over multiple realizations that
is part of scanning techniques, would not give access to the dynamics, since it breaks
the translational symmetry of the optical lattice and washes out the emergent density
pattern. Finally, large single-site populations are necessary to trigger the dynamically
induced higher order processes which give rise to the density-wave, preventing it from
forming in 2D systems with parity projection. It should be noted that this effect is
distinctly different from previous observations in tilted lattices, which find suppressed
decay of initially prepared density-waves in the unit occupation regime [137, 138].
An overview of the observed dynamics in a tilted triangular lattice is shown in

Fig. 5.1, revealing different phenomena in the different regimes of the tunneling
strength compared to the applied force and its orientation relative to the primi-
tive lattice vectors. Applying a strong tilt perpendicular to one of the lattice vectors
for example leads to the formation of a density-wave on top of the lattice structure
(Fig. 5.1a,b), which as will be demonstrated in the following happens spontaneously.
We find the same spontaneous symmetry breaking also for different tilt angles, though



92 5. Pattern Formation in dc Driven Lattices

x

y

Distance from center in x-direction (μm)

D
is

ta
nc

e 
fr

om
 c

en
te

r 
in

 y
-d

ire
ct

io
n 

(μ
m

)

a

b

c

e
f

d

Figure 5.1.: Various tilt strengths and directions in a triangular lattice.
Shown are ultracold atomic clouds in a triangular lattice of depth V = 1Erec
after a hold time of 80ms at varying energy offsets between adjacent lattice sites,
determined by the shift distance of the cloud from the center of the magnetic trap,
and at different shift angles, covering one quadrant in 15° steps. The different
images are separated more strongly in the figure to avoid overlaps. Single clouds
have a diameter of around 8µm. We find large parameter regimes supporting the
emergence of density-waves with spontaneous symmetry breaking. The dashed red
ellipses mark parameter regimes looked at more closely in the following sections.
a,b Tilt perpendicular to a lattice vector leading to an especially noticeable density-
wave order (see section 5.2.3). c,d Tilt along a lattice vector yielding a more
irregular density-wave (see section 5.2.5). e Incommensurate tilt with the density-
wave forming outside the initial position (see section 5.2.6). f Small tilts lead to
more significant mass transport within the cloud and an accumulation of atoms at
the lower edge due to self-trapping (see section 5.2.7).
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resulting in more irregular density patterns. One special case among these is a paral-
lel orientation between the tilt and one lattice vector (Fig. 5.1c,d). As I will present
in the following, the much stronger irregularity of the density-wave in this case arises
from the suppression of tunneling perpendicular to the tilt. Another interesting obser-
vation is a change in the center-of-mass perpendicular to the tilt at incommensurate
angles in between the previous two special orientations (Fig. 5.1e), which I will present
in the subsequent section. A very different behavior can be observed for smaller tilt
strengths where the atoms accumulate at the lower edge of the system independently
of the tilt angle (Fig. 5.1f), exhibiting interaction-induced self-trapping of the atoms
in the tilted system [139]. By changing to a strongly tilted honeycomb optical lattice,
the buildup of a ring structure by atoms tunneling along equipotential lines around
the external trap center, as numerically predicted in [140], is analyzed. The dynam-
ics can also be altered by slowly increasing the tilt via detuning the lattice beams,
such that the atoms are dragged upwards the slope of the external confinement in-
stead of tilt quenches. An outlook into such transport measurements in triangular
lattices, featuring strong self-trapping edges and further rich dynamics is provided in
Appendix D.
The measurements were taken and the data analyzed together with my PhD col-

leagues Henrik Zahn and Luca Asteria under the supervision of Klaus Sengstock
and Christof Weitenberg. The theoretical description was developed in collaboration
with Ludwig Mathey, Lukas Freystatzky and Vijay Singh, who also performed the
numerical simulations.

5.1. Transport Protocol
In the following I will describe our experimental protocol to add a dc drive to the
system via displacing the external magnetic confinement with respect to the atoms
and introduce the parameters we used to discover the dynamically forming density-
wave. We initialize the dynamics by switching off Helmholtz-like offset coils placed in
three sets of three pairs of coils, with one set each for the x-, y− and z-direction. More
details on the magnetic trap setup can be found in section 2.1 and [39, 44]. To reduce
the time scale of the switching as much as possible the coils are run with the desired
currents starting from the evaporative cooling and switched off via MOSFETs to shift
the position of the magnetic trap very fast compared to our typical tunneling time
scales. For the measurements in the triangular lattice as summarized in Fig. 5.1 we
always use a lattice depth of V = 1Erec, which results in a tunnel coupling J = 13Hz.
Depending on the desired angle of the tilt with respect to the lattice vectors we use
corresponding combinations of x- and y-coils, i.e. shift within the 2D lattice plane.
At the slope of the magnetic trap the atoms in the lattice experience a constant force
for varying evolution times. Subsequently we increase the lattice depth to around
V = 6Erec, effectively freezing the distribution, and switch off a second set of x- and y-
coils with opposite wiring to bring the atoms back into the center of the harmonic trap,
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which is necessary to minimize imaging aberrations during the harmonic evolution
of the magnifier protocol. On top of that the magnetic confinement is increased
following the freezing to combine a larger system size using ωsys = 2π×135Hz with a
magnification sufficient for single site resolution via ωho = 2π×305Hz. The resulting
shift in the gravitational sag is taken into account and leads to a difference in coil
currents for the initial shift to the slope and the final shift to the new trap center for
the imaging.
Due to the relevant tunnel coupling in the initial system we start these dynamics

experiments with coherence throughout the system and find it to be a necessary
ingredient for the pattern formation to take place [26, 50].
Alternatively we can add a tilt in a continuous way through a detuning of the

lattice beams, because a frequency offset ∆ν between two interfering lattice beams
leads to a running wave of velocity v = alat∆ν. Thus, the atoms in the lattice are,
depending on the velocity, lattice depth and strength of the external confinement,
dragged upwards the slope or have to move through the lattice to stay in the trap
center. Slow shifts are used in section 5.2.7 where they lead to strong self-trapping
effects.

5.2. Spontaneous Density-Wave Formation in the
Triangular Lattice

One of the most striking features found in the overview in Fig. 5.1 is the formation
of a staggered density-wave which spontaneously realizes one of two possible phases
on top of the triangular lattice. It appears in a metastable regime where the atoms
are Stark localized on the slope of the external confinement with its energy offset
between neighboring lattice sites as the dominant energy scale and move back to the
trap center within several hundred milliseconds. For the following analysis we use an
energy offset of ∆/h = 1.4 kHz resulting from a 15µm shift of the external trap with
respect to the atoms, whereas the tunnel coupling in the lattice is J/h = 13Hz.

5.2.1. Effective Model
In order to get a handle on the underlying physics leading to the observed formation of
dynamical density-waves in the tilted triangular lattice of high occupation numbers,
we, together with our theoretical collaborators from the group of Ludwig Mathey,
developed an effective Hamiltonian to describe our system. The idea is to start from
the Bose-Hubbard model and include the dominant energy offset from the strong
tilt in a high-frequency approximation, leading to a center-of-mass conserving pair
tunneling process to drive the emergence of the density-wave.
Our lattice system can be described by the Bose-Hubbard Hamiltonian with an

additional summand to include the tilt:
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Ĥ0 = −J
∑
〈jk〉

(
b̂†j b̂k + b̂†kb̂j

)
+ U

2
∑
j

n̂j(n̂j − 1) +H∆, (5.1)

with

H∆ = ∆
a1D

∑
j

xjn̂j. (5.2)

Here b̂†j (b̂j) is the bosonic creation (annihilation) operator, n̂j = b̂†j b̂j is the occupation
operator on site j and 〈jk〉 restricts the summation to nearest neighbors. The energy
offset ∆ is oriented perpendicular to one of the primitive lattice vectors, here along
the x-direction. It is referring to the offset between neighboring lattice site columns,
which are at a distance of a1D =

√
3/2alat and xj gives the x-position of site j. In

our system with ∆ � J, U the additional term is dominant and for the effective
description we thus go to the interaction picture with respect to H∆. As a result we
obtain

ĤI = eiĤ∆t/hĤ0e
−iĤ∆t/h = ĤU + ĤJ + Ĥ1e

−i∆t/h + Ĥ−1e
i∆t/h (5.3)

consisting of

ĤU = U

2
∑
j

n̂j(n̂j − 1), (5.4)

ĤJ = −J
∑
〈jk〉y

b̂†j b̂k + b̂†kb̂j, (5.5)

Ĥ1 = −J
∑
〈jk〉x+

b̂†j b̂k, (5.6)

Ĥ−1 = −J
∑
〈jk〉x−

b̂†j b̂k. (5.7)

Now ĤJ is restricted to nearest neighbors along the y-direction 〈jk〉y and 〈jk〉x±
describe those nearest neighbors oriented along x such that the potential energy due
to the tilt on site k is higher (lower) than on site j. As it turns out, Eq. 5.3 is periodic
with a frequency defined by ∆, allowing to simplify the expression using a Magnus
expansion [141–143]. This leads to the effective Hamiltonian

Ĥeff = ĤU,eff + ĤJ⊥ + ĤP (5.8)
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Figure 5.2.: Effective Hamiltonian of the tilted lattice. a Sketch of the tri-
angular lattice with energy offset ∆ in x-direction per lattice site column in the
Bose-Hubbard model, featuring a single particle tunneling J and an on-site inter-
action U . b Sketch of the respective effective model, which includes a renormalized
single particle tunneling perpendicular to the tilt J⊥ and on-site interaction Ueff as
well as nearest neighbor interaction V and pair tunneling P . Adapted from [26].

with

ĤU,eff =
(
U

2 − 4sU
)∑

j

n̂j(n̂j − 1) + 4sU
∑
〈jk〉x

n̂jn̂k, (5.9)

ĤP =− sU
∑
〈jkl〉×

b̂†j b̂
†
j b̂kb̂l + b̂†l b̂

†
kb̂j b̂j, (5.10)

ĤJ⊥ =−
∑
〈jk〉y

(Jb̂†j b̂k + sUb̂†jn̂j b̂k + sUb̂†jn̂kb̂k + h.c.)

+ 2sU
∑
〈jkl〉4

(b̂†jn̂lb̂k + b̂†kn̂lb̂j). (5.11)

The sum of HP runs over all pairs of bonds sharing a site j in the middle and with one
bond up and one bond down the tilt, and 〈jkl〉4 includes all triangular plaquettes of
sites having j and k as nearest neighbors along the y-direction. The scaling factor s
is given by the ratio of the bare tunneling J and the energy offset ∆ as s = (J/∆)2.
This effective Hamiltonian features interesting non-standard terms whose strengths

depends on the scaling parameter s. Most important is the aforementioned pair tun-
neling in Eq. 5.10 as the only tunneling term along the tilt direction, which describes
a correlated tunneling of two atoms, either both towards or away from one lattice site
with one lowering and the other one increasing its potential energy by ∆. Addition-
ally we find a nearest neighbor repulsion given by the second term of Eq. 5.9 as well
as a density dependent tunneling perpendicular to the tilt given by the second term
of Eq. 5.11. On top of that the lattice parameters from the unchanged Bose-Hubbard
Hamiltonian get minor renormalizations, changing the interaction scaling to U −8sU
and the tunneling transverse to the tilt to J − 2sUn. The different processes are
illustrated in a sketch in Fig. 5.2.
In order to test the effect of the pair tunneling process in a simplified way, we

consider a simple 1D chain of lattice sites starting with homogeneous filling and
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apply increasing numbers of pair tunneling events. Looking at the correlations of
changes of the initial population, we indeed recover an increasing staggered pattern,
with nearest neighbors having opposite changes in the population and next nearest
neighbors having changes of the same sign (for more details see [26, 50]). Thus, the
pair tunneling can indeed be associated with a density-wave formation as observed
in the experiment, which also form reliably with a period of two lattice site columns
along the tilt direction.

5.2.2. Numerical Modeling of the Dynamics

Additional to the derivation of an analytical model the system is also simulated
numerically to get a direct comparison with the experimental data. This is done
via a classical-field (c-field) method as described in [144]. The starting situation is
again a Bose-Hubbard model, but the 1D tube character of the single lattice sites
perpendicular to the lattice plane is included and instead of approximating the tilt
by a homogeneous energy offset between neighboring columns the complete external
harmonic trap potential is considered:

Ĥ = −
∑
〈ij〉

Jij(b̂†i b̂j + b̂ib̂
†
j) + Ũ

2
∑
i

n̂2
i +

∑
i

Vin̂i. (5.12)

Here Vi is the trap potential at site i and Ũ is the on-site interaction energy. The tun-
neling energies Jij depend on the direction of the bond, with tunnel couplings across
the 2D lattice in the xy-plane given by the experimental value of J = 13Hz, whereas
couplings along the z-direction are set to the much larger Jz = 27.9 J following from
the chosen discretization length in z-direction of `z = 0.4µm. This also leads to a
rescaling of the on-site interaction to Ũ = g1D/`z = 17.6 J (see [145]), with the effec-
tive 1D interaction strength along the tubes g1D = g3D/(2πa2

osc) and aosc the oscillator
length calculated using the lattice depth. As part of the c-field concept the operators
b̂ in Eq. 5.12 and the equations of motion are replaced by complex numbers. To match
the effects from the atom number the central tube population is chosen according to
the experimental value, while the experimentally harder to confirm temperature of
the atomic cloud is adjusted in the simulation to fit the experimental observations
and stated individually in the following. It is used to determine the initial state of
the system in a grand-canoncial ensemble, which is then propagated via the classical
equations of motion. Here the tilting is included by, at the start of the time propaga-
tion, quenching the position of the external harmonic trap by the same distance and
in the same direction as in the experiment. The overall system in the simulation has
a size between 50 and 100 sites in x- and y-directions and a fixed size in z-direction
of 81 sites. Finally, as motivated in section 5.2.4, an additional atomic loss rate γ,
drawn from the experimental data, is included.
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An exemplary comparison of single shots from the experiment and c-field simulation
is shown in Fig. 5.3, revealing their good qualitative agreement and allowing for
quantitative comparisons as done in the following sections.
The simulation also offers the possibility to check the importance of the inhomo-

geneity of the tilt, which is due to the curvature of the magnetic trap used to generate
the tilt in the experiment. Staying otherwise close to the experimental regime, we find
a very similar behavior with the emergence of a staggered density-wave within tens of
milliseconds using a homogeneous tilt. This helps to validate the analytical approach
of approximating the tilt as a homogeneous energy offset and thus the importance of
the pair tunneling process for the emergent density-wave.
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Figure 5.3.: Comparison with c-field simulation. a Two exemplary experimen-
tal images of the density-wave after a 60ms hold time at energy offset per lattice
site column of ∆/h = 1.4 kHz. b Atomic distributions for the same parameters
using c-field simulation with T = 30J/kB. Here the on-site populations are plot-
ted, as the density modulation within lattice sites is not included in the model.
Adapted from [26].

5.2.3. Spontaneous Symmetry Breaking
As introduced previously, the density-wave we find in the tilted system features a
period of two lines of lattice sites of the underlying triangular lattice. Accordingly,
there are two equally valid options for the position of this superlattice pattern, lead-
ing to a spontaneous realization of one of them. In order to quantitatively confirm
the spontaneousness, we extract the domains of the period two pattern of single re-
alizations by comparing them to a staggered reference pattern. In this analysis the
probabilistic appearance of defects in the period two pattern are interpreted as walls
between domains in phase and out of phase with the reference pattern.
We use 132 repetitive measurements at the same parameters as stated in the pre-

vious section, i.e. after 60ms hold time at a tilt leading to an energy offset between
neighboring lines of ∆/h = 1.4 kHz. The analysis starts by extracting the single
lattice site populations as explained in section 3.4. In order to get quantitative infor-
mation on the domains, we calculate the difference of every site compared to a lattice
population without the density-wave. This reference pattern is taken by averaging
over all identically prepared images, since this washes out the arbitrarily positioned
density-wave, already pointing to the spontaneousness of the process. Another option
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would be using systems without hold time at the tilt for the references. However,
this proved to be not ideal, as despite the Stark localization at the slope there is
a minor mass transport to the sides of the system along the highly populated lines
and downwards along the tilt, leading to systematic errors in the residues. From the
patterns of residues, the domains are assigned by element-wise multiplying them with
a staggered reference pattern of alternating signs. The resulting staggered residues
then have all positive values if the underlying density-wave has a perfect period of two
without domain walls and is aligned with the reference pattern, all negative values
if it has the other superlattice phase realized and domains of positive and negative
values if the image featured domain walls. The calculation is visualized in Fig. 5.4a
and a set of eight typical resulting staggered residue images is shown in Fig. 5.4b,
usually consisting of one or two domains of random signs. To combine the information
of the staggered residues of all measurements a histogram of the occurring staggered
residues is plotted in Fig. 5.4c. The values used are limited to the lattice sites in a
small circle around the center of the system as to reduce noise on the residues due
to the significantly decreasing lattice site populations at the outer regions. Here the
region of interest is set to a radius of three lattice sites as marked by the dashed circle
in Fig. 5.4b. The histogram has a clear symmetric double peak structure, confirm-
ing the spontaneousness of the symmetry breaking, with equal probability for both
domain signs. Performing the same analysis on results from c-field simulations at
the experimental parameters, with very similar statistics and a cloud temperature of
T = 250J/kB, leads to very good agreement with the experimental histogram (dashed
line in Fig. 5.4c).
To verify that the phase of the density-wave really is independent of the starting

situation, we have to include the random lattice position with respect to the external
confinement of the magnetic trap to the analysis. This lattice phase is already deter-
mined for every shot as it is necessary to correctly overlap the grid of Wigner-Seitz
cells with an image for the read-out of the lattice site populations. The mask positions
are fitted with a single pixel accuracy. As we used a magnification leading to a lattice
constant of around five pixels in the measurement, the lattice position was thus fitted
for five lattice phases in each direction. Here only the different phases along the tilt
are relevant, because using this tilt direction the domains of the density-wave extend
across the entire system perpendicular to the tilt. Consequently, we can differenti-
ate between five relative positions between lattice and external trap. The resulting
five histograms after this postselection are depicted in Fig. 5.5a. All of them clearly
show a double-peak structure despite the now more limited statistics. This confirms
that the density-wave indeed spontaneously breaks the translational symmetry, in-
dependent from the lattice phase. Additionally, the spontaneousness is checked via
the spatial distribution of the domain walls across the system. If the density-wave
forms randomly the probability for a domain wall should be constant along the tilt
direction, which agrees well with the experimental observation (Fig. 5.5b). In this
analysis, we again postselect the data via the lattice phase along the tilt direction and
integrate the staggered residues perpendicular to the tilt. From this the likelihood of
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Figure 5.4.: Spontaneous symmetry breaking. a Calculation of the staggered
residues of an exemplary density-wave. From the determined single site populations
the residues are calculated by subtracting the mean of all repetitions taken at the
same parameters. The staggered residues, which visualize the domains, follow by
element-wise multiplication with a reference pattern of perfect period two. b Stag-
gered residues for a set of representative single realizations of the density-wave. The
atoms are held for 60ms at a shifted position with energy offset ∆/h = 1.4 kHz. The
dashed circle represents the region of interest used in the following. c Histogram
of all staggered residues within the region of interest from all 132 individual real-
izations. The dashed line shows the same analysis on 130 distributions generated
via c-field simulation with T = 250J/kB. Adapted from [26].



5.2. Spontaneous Density-Wave Formation in the Triangular Lattice 101

P
or

b
ab

ili
ty

 o
f o

cc
ur

en
ce

 (
%

)

Staggered residues

0

4

8

12

-300 -200 -100 0 100 200 300

a

P
or

b
ab

ili
ty

 o
f d

om
ai

n 
w

al
l o

cc
ur

en
ce

 (
%

)

Position along tilt (lattice sites)

20

40

60

80

100

0

2010 30

La
tti

ce
 p

ha
se

 (
2π

)

0

0.2

0.4

0.6

0.8
b

Figure 5.5.: Lattice phase resolved spontaneous symmetry breaking. a His-
tograms of the staggered residues as in Fig. 5.4c after postselection depending on
the lattice phase (colors), i.e. the lattice position with respect to the external
confinement. b Spatial distribution of domain walls after postselection on the lat-
tice phase (colors) and the lattice phase independent average (black dashed line).
Shown is the probability to find a domain wall at a given position along the tilt
after integrating the signal in the perpendicular direction. For reference, an exem-
plary single-shot density-wave is plotted in gray. The error bars correspond to the
68% confidence interval. Adapted from [26].

a domain wall to appear at any x-position is calculated. The probabilities are within
the experimental uncertainty compatible with a homogeneous distribution at values
of around 15% within the central part of the populated region, with a small increase
towards the right end of the central region. This we attribute to the onset of a pinning
of the density-wave pattern down the slope due to self-trapping (see section 5.2.7). In
the outer part the probability strongly rises, even above the uncorrelated expectation
of 50%, which is due to the absence of a staggered pattern at the outer region of
the system and increasing systematic errors in the analysis mostly from the density
envelope.
The different checks all confirm the spontaneous nature of the observed symmetry

breaking in the emergent density-wave.

5.2.4. Evolution of the Density-Wave

So far we limited the considerations on measurements of the density-wave to hold
times in the tilted system of 60 and 80ms. In the following section the dynamic
process from the emergence of the density-wave order to its very slow decay will be
presented.
To quantify the dynamics, we calculate the power spectral density (PSD) of the

density-wave after integrating the site populations along the emergent pattern, i.e.
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along the y-direction (compare Fig. 5.2), leading to the 1D density nx, since there is
no systematic feature perpendicular to the tilt. The PSD is defined as

|nk|2 = |(Fnx)(k)|2
N2

tot
, (5.13)

with the Fourier transform F and normalized to the total atom number Ntot. The
result is plotted logarithmically as function of the hold time at the tilt and wave
vector k in Fig. 5.6a. As seen previously the density-wave emerges with a strongly
dominant period of two, appearing here as a peak in |nk|2 at ka1D/(2π) = ±1/2,
with a1D =

√
3/2alat. Within around half a second the peak moves to roughly ±1/3,

meaning the density-wave changes towards a period of three lattice rows. Due to the
relatively small system size, we cannot meaningful differentiate between a pattern
of period two with an increasing number of domain walls and a pattern with period
three. Exemplary density distributions from measurement (c-field simulation) after
hold times of 1 (0), 60 (64) and 1600ms (1560ms) are shown in Fig. 5.6b illustrating
the change in the density-wave during the dynamics. As overall measure of the
contrast of the density-wave c we thus integrate the PSD from ka1D/(2π) = 1/5 to
1/2, normalized by the entire range from 0 to 1/2:

c =
∫ 1/2
1/5 |nk|2d(ka1D/2π)∫ 1/2
0 |nk|2d(ka1D/2π)

. (5.14)

It is depicted in Fig. 5.6c for three tilt strengths. The contrast emerges within few
tens of milliseconds, most quickly for the weakest of the three tilts. Here the contrast
stays mostly constant after the first 100ms, while the density-wave slowly increases
in period and the metastable cloud at the shifted position loses atoms, mostly tun-
neling to the trap center. For stronger tilts, the dynamics is slower, but reaches
larger maximal density-wave contrasts. In all three cases, the contrast decay is very
slow and compatible with moving towards a finite value. The experimental con-
trast is compared to the same measure calculated from c-field simulation. It agrees
reasonably well with the initial formation, but shows a much quicker decay to an ap-
proximately vanishing density-wave contrast after around one second (dashed-dotted
lines in Fig. 5.6c). However, the long-time dynamics is captured well by including
the experimentally observed significant atom number losses from the system, mostly
towards the external trap center, in the simulation (dashed lines in Fig. 5.6c). This
can be explained by the pair tunneling term being density dependent, which leads
to a freezing of the dynamics as the density drops. The individual loss rates of the
different time series are set to each mimic the experimental data and thus increase
with the tilt strength.
The dynamics of the c-field simulation without added atom losses also confirms the

scaling expected from the effective Hamiltonian (Eq. 5.8). This is shown in Fig. 5.6d,
where the contrast curves for different tilts collapse on each other after rescaling the
time by the pair tunneling time tp and the density-wave contrast by the energy offset
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Figure 5.6.: Dynamical evolution of the density-wave. a Logarithm of the
PSD as function of hold time and wave vector as defined in Eq. 5.13. The dots
mark the exact parameters of the taken data, which had a constant energy offset
from the tilt of ∆/h = 1.4 kHz. The gray solid lines mark ka1D/(2π) = ±1/5.
b Measured (simulated) exemplary site populations after hold times of 1 (0), 60
(64) and 1600ms (1560ms). c Evolution of the density-wave contrast c (Eq. 5.14)
for energy offsets of ∆/h = 1.1 kHz (blue), 1.4 kHz (red) and 1.7 kHz (black).
The symbols represent experimental data, the dashed-dotted (dashed) lines c-field
simulation without (with) added atom losses as observed in the experiment and
using a temperature T = 100J/kB. The error bars correspond to the 68% confidence
interval. d Scaled density-wave contrast from the simulation without atom losses
for varying tilt strengths. By scaling the time with the pair tunneling time tp and
the contrast with the energy offset squared ∆2 the different curves collapse on each
other. Adapted from [26].
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squared ∆2. Similarly, one recovers the interaction-driven nature of the density-wave
formation by varying the total atom number in the system, which increases the atom
number per site in the central region. This leads to a shortening of the time scale
of the formation, consistent with the atom number dependence of the pair tunneling
time. A quantitative comparison can be found in [26].

5.2.5. Role of the Transverse Tunneling

The density-wave investigated in the preceding sections always formed in a triangular
lattice with the tilt perpendicular to one of the three primitive lattice vectors. Despite
the very strong energy offsets from the tilt compared to the tunnel coupling in the
lattice J , the system therefore had a significant tunneling perpendicular to the tilt,
connecting 1D stripes within the system. In the following, this situation will be
compared to the case of a tilt rotated by 90°, i.e. parallel to one of the lattice vectors.
As a result, there are no 1st order tunneling processes unaffected by the tilt anymore,
leading to a very strong suppression of transverse tunneling.
The couplings for both situations are schematically drawn in Fig. 5.7a and b. To

more easily compare the two by having the tilt point in the same direction, the
images in the second case are turned by 90° with respect to the orientation used
otherwise throughout the thesis. The 1st order coupling along the tilt in Fig. 5.7b
can be neglected, since it has twice the energy offset, slowing the dynamics by a
factor four compared to the neighboring rows of lattice sites. Another difference is
the smaller distance of these rows from each other amounting to only alat/2

a1D
≈ 0.58

of the other tilt direction. This can be easily compensated though by increasing the
shift distance accordingly, as on the outer part of the external potential its slope
is to very good approximation linear. In total, this shows the strong similarities
in the tight-binding descriptions in both cases, with the exception of the transverse
tunneling. Nevertheless, we see a strong difference of the emergent density-waves,
which already became apparent in Fig. 5.1a and c. Two examples each after read-out
of the lattice site populations for the same energy offset between adjacent lines of
1.4 kHz are shown in Fig. 5.7c and d, with the density-wave having no transverse
tunneling being much more irregular than the stripe-like patterns looked at so far.
The visual impression is somewhat misleading though, as actually both cases have the
same staggered pattern of more and less populated rows of lattice sites perpendicular
to the tilt. However, with the tilt oriented along a lattice vector the nearest sites of
different rows of the density pattern are closer together than the neighboring sites
within single rows, which leads to the visual appearance of lines along the tilt.
For a quantitative comparison we calculate the density-density correlations for both

cases in a region of interest around the center of the clouds of again three sites
radius (dashed circle in Fig. 5.2.3b). To extract the density-wave we again start by
computing the residues as in section 5.2.3. Then the covariance is computed between
all sites within the region of interest according to
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Figure 5.7.: Importance of transverse tunneling for the density-wave.
a Sketch of the triangular lattice with blue and grey columns perpendicular to
the tilt, which include a 1st order tunnel coupling. a Sketch of a system now ro-
tated by 90° with a tilt again pointing to the left. The columns perpendicular to
the tilt thus have almost no internal tunnel coupling. c,d Exemplary density dis-
tributions in the respective above lying orientations after a hold time of 60ms at
an energy offset between adjacent columns of ∆/h = 1.4 kHz and maximum initial
atom numbers per tube of 900 and 850, respectively. Adapted from [26].

covjkj′k′ = 1
N − 1

N∑
i=1

δN
(i)
jk δN

(i)
j′k′ . (5.15)

Here δN (i)
jk is the residue at lattice site (j, k) of shot i and N the total number of shots.

Finally, the results are averaged for all equal and exactly opposite distance vectors
and normalized to the square of the mean initial highest single site population. The
resulting density correlations as functions of the lattice site distances are shown in
Fig. 5.8a and b. Indeed, we find a much stronger pattern for the tilt perpendicular to
a lattice vector, reflecting the almost complete absence of domain walls perpendicular
to the tilt in the case with transverse tunneling. Despite this, the difference in the
staggered correlations along the tilt directions is actually very small (Fig. 5.8c-f).
Fitting a heuristic staggered exponential decay cd = c0(−1)de−d/L‖ with distance in
sites d to both yields, within the errors, the same decay lengths L‖ = 2.1(7) and
2.3(5) with and without transverse tunneling. Perpendicular to the tilt however,
the decay lengths vary drastically. With transverse tunneling the density correlation
function is heuristically described by a Gaussian with a width of around the system
size, whereas without the transverse coupling its described by a monotone exponential
decay cd = c0e

−d/L⊥ yielding only short range order with L⊥ = 1.2(3).
As a result, this shows the importance of the transverse tunneling for the alignment

of the phase of the emergent density-wave perpendicular to the tilt, leading to long-
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Figure 5.8.: Importance of transverse tunneling for the correlations of the
residues. a Density correlations between different lattice sites as function of dis-
tance vector between the sites with transverse tunneling (Fig. 5.7a). b Density
correlations without transverse tunneling (Fig. 5.7b). c-f Cuts through the respec-
tive above lying density correlations a and b. The red lines are fits to the data with
functionalities as described in the main text, the blue lines result from the same
analysis applied on images from c-field simulation at T = 50J/kB. c Following a
zigzag path (compare dashed line in Fig. 5.7a) starting from the center. d Fol-
lowing a zigzag path (compare dashed line in Fig. 5.7b) starting from the center.
e Following a straight path (compare dotted line in Fig. 5.7a) starting from the
center. f Following a straight path (compare dotted line in Fig. 5.7b) starting from
the center. Adapted from [26].

range order across the entire system in the case with transverse tunneling and on
average several domain walls perpendicular to the tilt without it. The staggered
density signal however is independent of this, showing the same decay lengths in
both cases.
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5.2.6. Incommensurate Tilt Direction

Besides the two specific tilt directions, oriented either exactly orthogonal or parallel to
one of the lattice vectors, we can also realize incommensurate tilt direction by shifting
the magnetic trap under different angles. In a similar regime of energy differences,
this mostly leads to the emergence of less regular density-waves. Applying a tilt
closely to perpendicular to a lattice vector though leads to an interesting additional
effect.
Already with the 15° rotation of the tilt direction in Fig. 5.1e we find parts of the

atoms forming a regular period two density-pattern partially to the side of the initial
cloud position. Going to a 10° angle to the perpendicular tilt direction and varying
the hold time of the system, the effect becomes much more apparent as shown in
Fig. 5.9. As illustrated by the arrows in the last panel, the force on the atomic cloud
sitting at the slope of the magnetic potential can be decomposed into a component
perpendicular and one parallel to a lattice vector. In the former the atoms are again
Stark localized due to the large energy offsets along the tilt. In the latter though
tunneling is not suppressed. This leads to the density-wave forming mostly outside

O
D

 (
a.

u.
)

Figure 5.9.: Incommensurate tilt direction. The tilt is oriented 10° away from
perpendicular to a lattice vector. The images show hold times from top left to
bottom center of 1, 100, 300, 600 and 1200ms. The initial cloud position is marked
by the black ring. In the last panel the local orientation of the tilt is shown by the
red arrows. At the initial position it can be decomposed into a part perpendicular
to one lattice vector and a small part parallel to it (orange arrows). The latter
vanishes at the shifted position of the emergent density-wave. Adapted from [26].
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the starting position, with the tilt oriented in a commensurate direction and the
component along the tilt vanishing. Interestingly, the shifted pattern shows a higher
contrast than usual in the case of a perpendicular tilt, while the unmoved fraction
of the cloud shows almost no density-wave. Since we know that coherence of the
system is a necessary prerequisite for the density-wave to form, this points towards
the shifted fraction being the intially condensed part of the atomic cloud. This is
reminiscent of the distinct behaviors of the superfluid and the thermal parts of an
atomic cloud in an array of Josephson junctions, where the former moves while the
latter is mostly fixed in position [130, 146]. It might therefore be possible to make
use of the observed separation to prepare a fully condensed sample at the slope.

5.2.7. Self-Trapping at the Edge of the System
Due to the dominance of the energy offset compared to the tunnel coupling, we only
see a very small mass transport during the build-up of the density-wave. However, for
longer hold times the single-particle tunneling, which contrary to the pair tunneling
term can lead to a change in the center-of-mass, seems to play an increasing role.
As shown in Fig. 5.10 we find an interesting pinning dynamic of the density-wave to
the energetically lower end of the cloud. For the first around 100ms of the dynamics
the emergent density-wave is washed out in the averaged site populations integrated
perpendicular to the tilt as discussed in section 5.2.3. However, there is a first change
of the envelope from a symmetric Gaussian distribution to an increasing skewness,
with the steeper slope pointing to the external trap center, which increases for longer
hold times. This is most likely due to self-trapping, as observed in a 1D lattice in [139],
meaning tunneling beyond the populated region is suppressed by the strong change in
interaction energy. Following the formation of this steep slope, the averaged density
increasingly shows the pattern of the underlying density-waves of the single-shot
realizations from the energetically lower end inwards into the cloud. This increasing
alignment or pinning of the patterns during the evolution points to a slow tunneling
of the density-wave downwards within the system up to the self-trapping edge, which
brings the different initial realizations of the staggered phase in phase with each other.
The same trapping of the atoms within the initial cloud size can also be observed

outside the parameters of our effective Hamiltonian leading to a density-wave. For
sufficient energy offsets between lattice sites a steep population wall forms from atoms
tunneling down along the tilt direction (see Fig. 5.1f and Fig. 5.11a).
Another way of producing such patterns is to detune the lattice beams slightly

to create running waves and let the atoms get transported upwards the magnetic
potential slope by the moving optical lattice. In Fig. 5.11b-d are exemplary density
distributions using a triangular lattice of similar depth, with more data series and
observations provided in Appendix D. Here we also find the appearance of intriguing
structures, from very clean accumulations at straight edges for slow shifts up to small
energy offsets, to rows of lattice sites populated beyond this edge, stretching to the
sides, i.e. perpendicular to the tilt. Furthermore, by sufficiently lowering the shift
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Figure 5.10.: Pinning of the density-wave. Shown are integrated density-waves
for different hold times. The red lines are exemplary single-shot profiles of the site
populations, the blue lines are averaged density profiles and both are normalized by
the total atom number. The hold time from top left to bottom right is given by 5,
20, 60, 100, 150 and 400ms, revealing the crossover from the initially spontaneous
pattern to the pinning for longer times, which propagates from the edge with lower
potential energy through the system. Adapted from [26].
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Figure 5.11.: Self-trapping of the atoms at the systems edge. a Density
distribution after 80ms hold time at an energy offset per column of around ∆/h =
0.5 kHz. b-e Density distribution, also in a triangular lattice, after transporting
the atoms up the magnetic potential slope by moving the optical lattice. From left
to right the lattice is shifted within 50, 45, 45, 40ms by 17.5, 25, 32.5, 32.5 alat
and held constant for 60ms at the final position. The transport is oriented along
one of the lattice vectors and the atoms are not brought back to the trap center
prior to imaging, leading to changes in the position and consequently sharpness.
The tilt orientation is given by the red arrows. For more exhaustive data series see
Appendix D.
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velocity, the system undergoes a transition and no buildup of a density edge can be
observed. More information on these preliminary measurements with dynamically
increasing tilt strength is presented in Appendix D.
In conclusion, we find rich dynamics beyond the so far studied emergence of a

spontaneous density-wave in different driving regimes of the lattice versus the external
harmonic confinement. Finding precise descriptions of these effects is left for future
work.

5.3. Transport in the Honeycomb Lattice
All the pattern formation experiments above are performed with a triangular lattice
geometry. Here we set the geometry phase to the honeycomb lattice and study its
effect on the dynamics by again applying a constant force to the atoms. This allows
us to observe the emergence of a ring structure, with some atoms tunneling along
equipotential lines at a constant distance to the center (Fig. 5.12a), as predicted for
this lattice geometry [140].
In these experiments we suddenly shift the magnetic trap by approximately 12µm

equivalent to 17 alat and follow the subsequent transport dynamics in the lattice. The
magnetic trap frequency is held constant at ωsys = ωho = 2π × 208Hz, leading to
a magnification of 27 which corresponds to around 3 pixels per a1D. With this the
resulting energy offsets between adjacent A- and B-sites along the tilt are 1.8 kHz
in the center of the cloud and thus only around 30% larger than in the previous
measurements for the spontaneous density-wave. However, the tunnel coupling in
the honeycomb lattice is much stronger. For a lattice depth of V = 2.5Erec it is
approximately J = 330Hz which is only around a factor 5 smaller than the energy
offset, compared to it only being around 1% of the energy offset in the triangular
lattice for the density-wave. Consequently, single particle tunneling within the 2D
plane plays a much more important role. Together with the buildup of a ring structure
we see energy non-conserving movement down the potential slope, weakening the
ring contrast and limiting the outer wings to around half a circle. The importance
of heating for the movement to the center is clearly visible, since these atoms show
a much weaker lattice contrast, pointing to excitations in higher bands with larger
orbitals or beyond the optical lattice.
To gain qualitative understanding we integrate the atomic density in a region be-

yond the initial position, split in an outer part given by two ring segments for the
atoms following equipotential lines and an inner part covering the central area of the
external potential, as depicted in the 2nd image of Fig. 5.12a. From this, we com-
pute the population in the ring segments compared to the entire masked region as a
measure of the ring strength. It is shown for different hold times after the shift and
different lattice depths in Fig. 5.12b. The ring strength maximizes for hold times of
around 30 to 40ms relatively independently of the lattice depth, with the fraction
accumulating at the center getting more dominant for longer times. For fixed hold
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Figure 5.12.: Ring structure due to transport in honeycomb lattice. a Shown
are the real space densities in a honeycomb lattice with V = 3.25Erec 10, 40 and
60ms after displacing the magnetic trap by 17 alat. The new trap center is marked
by the gray dots. To quantify the strength of the ring the atom number in two
segments of an annulus is compared to the population including the inner circle.
The masks are sketched in the 2nd image. b Relative strength of the outer ring
as function of the lattice depth. The color denotes different hold times. c Same
parameters as in b, but an independent 1D lattice with V = 6.8Erec is added
perpendicular to the 2D lattice plane, which severely reduces the ring strength.

times the strength also features optimal depths, because for low depths the emerging
ring is overshadowed by more atoms quickly moving down the slope, whereas deep
lattices more strongly suppress tunneling along the ring. The full data is shown in
Appendix E. To check the effect of the lattice sites being 1D tubes we compare this
with a 3D lattice, consisting of the same 2D honeycomb lattice and an independent
lattice in z-direction with λ = 826 nm. We find this to both suppress the build-up
of the ring structure as well as increase the accumulation at the center, leading to
significantly smaller ring strengths (Fig. 5.12c). This might be explained by the larger
energy offsets due to interactions in the 3D lattice, which make tunneling processes
more off resonant. Additionally, our 3D system suffers from larger heating rates,
reducing the time scale of the movement to the trap center.
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In a next step we investigate the dependence of the ring formation on the geometry
phase of the lattice (Fig. 5.13). We find an energy offset between A- and B-sites
of the honeycomb lattice to again significantly lower the ring strength. Instead of
a sizable fraction of the atoms following the equipotential lines, the form of the
wave packet stays almost unchanged while it shifts down the slope. Of course, the
geometry phase, by changing the energy difference between the sites, also impacts
the tunneling strength within the lattice. To more directly target the dependence on
the systems geometry, it would be interesting to vary the lattice depth such that the
single particle tunneling J stays constant. For a larger change of the geometry phase
this is very demanding though, given that the respective J differ by around three
orders of magnitude when comparing a honeycomb lattice to a triangular lattice for
V = 2.5Erec. Despite this change in J we can however already see the importance of
the geometry in our data by comparing it to the measured dependence on the lattice
depth in Fig. 5.12b. There we find the ring strength to increase between V = 2.5
and 3.5Erec for the same 50ms hold time as used here, which leads to a reduction
of J . By instead changing the geometry phase away from the honeycomb lattice we
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Figure 5.13.: Ring structure as function of the geometry phase. Honeycomb
and boron nitride lattices with a lattice depth of V = 2.5Erec are displaced by
17 lattice sites relative to an external confinement of ωho = 2π × 208Hz and the
following dynamic imaged after a 50ms hold time. The relative ring strength is
calculated using the masks from Fig. 5.12a on a single experimental run. The
images in the top row show the situations at φg/(2π) = −0.01, 0, 0.007 and 0.024.
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make J increasingly off resonant. In this case, we conversely see a reduction of the
ring strength. This is also reminiscent of the simulation in [140], where they instead
compared a honeycomb to a square lattice of equal tunnel coupling and similarly
found no tunneling along the equipotential lines.
With our high-resolution access and dynamic tuning possibilities it would be in-

triguing to further study the transport properties of graphene. One interesting option
would be to mimic strained graphene by introducing an imbalance to the lattice beams
[31, 102, 103] and study its anisotropic transport properties [147].

5.4. Conclusion and Outlook

In this chapter, we investigated different pattern formation in dc driven hexagonal
optical lattices by using our quantum gas magnification to gain access to the real
space density distribution of the system.
By going to a metastable regime on the slope of the external confinement with

a strong energy offset between lattice sites compared to their tunnel coupling, we
experimentally found the buildup of a density-wave on top of the underlying trian-
gular lattice. As verified by extensive investigations, this density-wave spontaneously
breaks the system’s discrete translational symmetry. In cooperation with the theory
group of Ludwig Mathey we were able to explain the dynamics in a Floquet picture
via pair tunneling processes appearing in the effective Hamiltonian of the system.
The observations also agree very well with a c-field simulation using the parameters
of the experiment. Following the density evolution in the system after subjecting it
to the strong driving, we found a freezing of the interaction-induced processes due
to particle losses down the slope and thus very long lifetimes of the density-wave.
Additionally, we varied the effective tight-binding description of the system to sup-
press tunneling transversely to the tilt direction. This leads to a density-wave, which
still has the same staggered correlation length along the tilt direction, but only a
very short correlation length perpendicular to it, leading to significantly more do-
main walls in the emerging pattern. The necessity of the pair tunneling process from
the effective model for the description of the dynamics suggests that also dc driven
systems [148, 149] might be an interesting approach for Floquet engineering of ex-
tended Hubbard models [150, 151]. In the future, by also adding an ac drive to break
time reversal symmetry, topological states could be engineered, which might allow
for the further study of, for example, topological band gap solitons [152] and Stark
time crystals [153]. In our case the density-wave emerges as a nonequilibrium process,
but by engineering stronger non-standard Hubbard terms, such effects could also be
investigated in ground states [154, 155]. Since the magnifier in principle also enables
the measurement of coherence properties, it would also be promising for the study
of spontaneous symmetry breaking of phase patterns, engineered via driving of the
lattices [156, 157] or for example the observation of twisted superfluids [158]
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In another set of experiments, using the honeycomb optical lattice and again a
strong driving applied to the system, a ring structure along the equipotential lines
emerges. Its strength significantly decreases as a function of the lattice geometry,
i.e. by introducing an energy offset between the A- and B-sites of the lattice. In
the future, the parameter regime could be expanded to, for example, also simulate
strained graphene via adding an imbalance to the optical lattice [31, 102, 103].
In the triangular lattice we further observed a bunching of the atoms at the edge

of the populated region, both on the long time scale in the staggered density-wave
regime, as well as even more pronounced for lower tilt strengths. This self-trapping
[139] gets especially strong by dynamically increasing the tilt strength (Appendix D),
with large fractions of the atoms accumulating at very few lattice sites. Here we
see several interesting phenomena during the dynamics. To precisely map out and
explain the underlying processes further work is necessary.
Beyond the examples shown in this thesis it would also be fascinating to study

topological transport, like the recently demonstrated observation of chiral edge modes
[159]. For the preparation of interesting topological systems, also our high lattice ge-
ometry tunability could be useful. The largest challenge for such realizations with our
setup though would most likely be to engineer sufficiently sharp topological bound-
aries for the edge modes to stay localized.
In conclusion, the real space density access to new regimes of 3D systems via our

quantum gas magnifier allows the observation of rich dynamics and further work
regarding pattern formation and transport properties of such systems would be very
interesting.
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Appendix A.

Quantum Walk in Triangular
Momentum Space Lattice

Figure A.1.: QuantumWalk in momentum space lattice with φg = 0. Shown
is a series of 20 pulse times in 2.5µs steps using a lattice depth of V = 6.5Erec and
a geometry phase of φg = 0. From these images the dark blue line in Fig. 4.13b is
calculated. Adapted from [36].
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Figure A.2.: Quantum Walk in momentum space lattice with φg = π/2.
Shown is a series of 20 pulse times in 2.5µs steps using a lattice depth of V = 6.5Erec
and a geometry phase of φg/(2π) = 0.25. From these images the middle blue line
in Fig. 4.13b is calculated. Adapted from [36].
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Figure A.3.: Quantum Walk in momentum space lattice with φg = π.
Shown is a series of 20 pulse times in 2.5µs steps using a lattice depth of V = 6.5Erec
and a geometry phase of φg/(2π) = 0.5. From these images the light blue line in
Fig. 4.13b is calculated. Adapted from [36].
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Appendix B.

PCA of Distorted Brillouin Zones

In the following I present our approach of getting an improved assignment of band
mapping data to the different BZs via PCA, which is a useful tool for a wide range
of applications [160], because it lowers the dimensionality of a data set. The prob-
lem arises from increasing distortions of the higher order BZs compared to the ideal
ones as demonstrated in the three exemplary band mapping images in Fig. B.1a.
We observe a shift along gravity, which is pointing downwards in the images, and
deformations leading to washed-out contours in a reproducible way and independent
of the modulation type used to excite the atoms to the given bands. This can be
explained by a combination of multiple reasons, in particular by the external mag-
netic confinement, both in itself as well as through a possible mismatch between the
potential trap center of the optical lattice and the magnetic confinement and also
by gravity, acting on the atoms throughout the band mapping process. Instead of a
combined numerical simulation using estimations of the different distortion sources,
we reconstruct the distortions from the experimental findings themselves. For this
we use the combined data set behind Fig. 4.16 from the three different modulation
types, consisting of 147 images in total.
The PCA itself is done as described in [161] by first combining the data in a matrix

D of size N × P , where N is the total number of images and P the total number of
pixels. It contains at Dji the value of pixel j in image i after subtracting the average
value of j of all images to center the data around 0. This allow to calculate the real
and symmetric N×N matrix C̃ = DDT/(N−1). It features the same spectrum of up
to N eigenvalues λi as the much larger P × P covariance matrix C = DTD/(N − 1).
From the corresponding eigenvectors Vi, defined as C̃Vi = λiINVi with the N×N unit
matrix IN , the PCs follow as PCi = DTVi/

∑
j(DTVi). They are sorted in relevance

by sorting their eigenvalues in decreasing order. The resulting nine most relevant PCs
are depicted in Fig. B.1d.
In a next step we use the correlated regions found in the PCs to define masks for

the distorted BZs. Since the distortions of the 1st and 2nd BZs are very small we stay
with the ideal ones for them as shown by the orange and red regions in Fig. B.1b.
The higher order BZs are constructed using those PCs with the strongest contrast to
each other and to the outer region. For this we start with the 2nd PC and binarize it
using as threshold the middle of the full range, visualized in the color map as white,
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Figure B.1.: PCA of distorted BZs. a Exemplary band mapping images over-
lapped with the ideal BZs represented by the black lines. For higher BZs this
demonstrates significant distortions. b Masks of the first six distorted BZs ob-
tained via PCA. The outermost region gives the combined distorted 5th and 6th
BZs. c The first nine ideal BZs in the same pixel resolution for comparison. The
6th BZ here is the outer orange region, instead of having the same color as the
5th BZ as in a. d The first nine PCs of the full data set of band mapping images.
Some of which carry information on the experimentally distorted BZs. Adapted
from [36].
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meaning red regions are set to one and blue regions to zero. We identify the resulting
mask as the distorted 5th+6th BZ. The reasoning is that these bands touch during
the entire ramping of the lattice depth such that we do not expect to be able to
distinguish between them and that the mask contains significant parts of both ideal
BZs. This is also consistent with the extracted mask size being roughly twice as large
as the ideal size of a single BZ. The combined mask is depicted in Fig. B.1b in light
blue. With this outer mask combined with the known ideal masks for the 1st and 2nd
BZs we also get the combined region of the 3rd and 4th distorted BZs. To best locate
their border we use the sum of both the 4th and 6th PCs after normalizing each such
that they span the same range of values and again use the middle of this range as
threshold for the binarization. Additionally, pixels inside the already known masks
are forced to be zero. Using only one of these PCs to identify the border between 3rd
and 4th BZ yields very similar but slightly more fuzzy boundaries. Despite this there
are still small islets of pixels which are clearly mislabeled between the two BZs. We
correct for this by switching the assignment of all unconnected groups of less than
ten pixels within large regions of opposite assignment, with the latter having sizes
above 50 pixels. The resulting distorted 3rd and 4th BZs are shown in purple and
dark blue in Fig. B.1b.
These distorted BZs are used for the read-out of the different relative band popu-

lations in Fig. 4.16.
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Appendix C.

Derivation of Resonant Excitation
Strengths
Here I will describe the derivation of the resonant excitation strengths to higher
bands via amplitude modulation, sublattice modulation and circular lattice shak-
ing. The results are used for the calculations shown in Fig. 4.17. For each method,
the quasimomentum dependent excitation rates are approximated in time-dependent
perturbation theory. The derivation follows closely our presentation in [36].
First, the rate for balanced amplitude modulation is derived. Here the perturbation

consists of a periodic modulation of the intensity Ii of every lattice beam i with equal
frequency ω/(2π) and equal strength εam. The time periodic intensities are thus given
by

Ii(t) = Ii,0 + εamIi,0 sin (ωt). (C.1)

Since we also restrict the measurement to modulations of balanced lattices the situa-
tion simplifies to I1,0 = I2,0 = I3,0. The resulting total lattice potential, starting from
Eq. 4.1 and omitting constant terms, then is

Vam(r, φg, t) = 2V (1 + εam sin(ωt))
∑
i

cos
(
bi · r + φg

3

)
= Vpot(r, φg) + sin(ωt)Vpot

′(r, φg), (C.2)

with the time-independent perturbation operator

Vpot
′(r, φg) = εamVpot(r, φg). (C.3)

The resonant excitation strength of this time-dependent potential is calculated us-
ing time-dependent perturbation theory. According to Fermi’s golden rule, the excita-
tion rate Γq,q

′

B,B′ from an initial quasimomentum q in B = 1 to a final quasimomentum
q′ in band B′ is given by

Γqq
′

B,B′ ∝
∣∣∣∣∣
∫
d3rψqB(r)Vpot

′(r)ψq
′∗
B′ (r)

∣∣∣∣∣
2

. (C.4)
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The corresponding states ψq
(′)

B(′) are eigenstates of the static lattice Hamiltonian Ĥ
and can thus be expressed as a Fourier series of Bloch waves

ψq
(′)

B(′)(r) = e−iq
(′)·r∑

u

cq
(′),B(′)

u e−iku·r. (C.5)

Here cq,Bu are the Bloch coefficients and ku are integer linear combinations of the
reciprocal lattice vectors bi.
In order to calculate the excitation strength we now plug in Eq. C.3 and Eq. C.5

into Eq. C.4. In a first step we only take into consideration the first summand,
V ′1 = εam2V cos(b1r+φg/3), of the perturbation operator Vpot

′ for the sake of clarity.
This results in

∫
d3rψqBV

′
1ψ

q′∗
B′ = εamV

∫
d3re−i(q−q

′)·r
(∑

u

cq,Bu e−iku·r+ib1·r+iφg/3
)(∑

u′
c∗q
′,B′

u′ eiku′ ·r
)

+ εamV
∫
d3re−i(q−q

′)·r
(∑

u

cq,Bu e−iku·r−ib1·r−iφg/3
)(∑

u′
c∗q
′,B′

u′ eiku′ ·r
)

= εamV δq,q′
∑
u,u′

(
eiφg/3δku+b1,ku′ + e−iφg/3δku−b1,ku′

)
cq,Bu c∗q

′,B′

u′

= εamV δq,q′

(∑
u

c∗q,B
′

u

(
cq,Bku+b1e

−iφg/3 + cq,Bku−b1e
iφg/3

))
. (C.6)

Including all three summands of Eq. C.3 leads straightforwardly to the excitation
rate as

Γqq
′

B,B′ ∝ δq,q′εam
2V 2

∣∣∣∣∣∣
(∑

u

c∗q,B
′

u

(
cq,Bu+b1e

−iφg/3 + cq,Bu−b1e
iφg/3

))

+
(∑

u

c∗q,B
′

u

(
cq,Bu+b2e

−iφg/3 + cq,Bu−b2e
iφg/3

))
+
(∑

u

c∗q,B
′

u

(
cq,Bu+b3e

−iφg/3 + cq,Bu−b3e
iφg/3

)) ∣∣∣∣∣∣
2

.

(C.7)

In combination with our band structure calculation, giving the needed Bloch coeffi-
cients for the different band indices B = 1, B′ = 2, ..., 7 and discretized quasimomenta
throughout the 1st BZ q = q′, the relative excitation rates can be calculated for each
quasimomentum. To approximate the total excitation strengths shown in Fig. 4.17
these results are summed up over the entire 1st BZ. This will tend to overestimate
the influence of higher quasimomenta, since condensed bosons would be found around
the Γ point. However, during the spectroscopy we find the atoms to already be dis-
tributed over the 1st BZ and thus use the integrated excitation rate for a qualitative
comparison with our measurement.
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Next, the excitation rates for sublattice modulation are derived. Here the 1D lattice
phases φi are periodically modulated with equal frequency and amplitude Asm, which
keeps the lattice position fixed and changes the geometry phase φg by 3Asm (4.19).
The time-dependent lattice potential is therefore

Vsm(r, φg, t) = 2V
(∑

i

cos
(
bi · r + φg

3 + Asm

3 sin(ωt)
))

= 2V
∑

i

cos
(
bi · r + φg

3

)
cos
(
Asm

3 sin(ωt)
)
−

sin
(
bi · r + φg

3

)
sin
(
Asm

3 sin(ωt)
)

≈ 2V
(∑

i

cos
(
bi · r + φg

3

)
+ sin

(
bi · r + φg

3

)
Asm

3 sin(ωt)
)

= Vpot(r, φg) + 2V cos
(
bi · r + φg

3 + π

2

)
Asm

3 sin(ωt)

= Vpot(r, φg) + Vpot(r, φg − π/2)εsm sin(ωt)
= Vpot(r, φg) + sin(ωt)Vpot

′(r, φg − π/2), (C.8)

with εsm = Asm/3. The approximation in the 3rd line consists of restricting the Taylor
series of sine and cosine of

(
Asm

3 sin(ωt)
)
to their first order, because the perturbation

is kept very small. Including also higher order terms leads to the appearance of terms
modulated with multiples of ω. In first order, the perturbation operator for sublattice
modulation compared to amplitude modulation only acquires an additional phase and
has a different prefactor. Plugging it into Eq. C.4 thus results in

Γqq
′

B,B′ ∝ δq,q′εsm
2V 2

∣∣∣∣∣∣
(∑

u

c∗q,B
′

u

(
cq,Bu+b1e

−i(φg/3+π/2) + cq,Bu−b1e
i(φg/3+π/2)

))

+
(∑

u

c∗q,B
′

u

(
cq,Bu+b2e

−i(φg/3+π/2) + cq,Bu−b2e
i(φg/3+π/2)

))

+
(∑

u

c∗q,B
′

u

(
cq,Bu+b3e

−i(φg/3+π/2) + cq,Bu−b3e
i(φg/3+π/2)

)) ∣∣∣∣∣∣
2

. (C.9)

Last, the excitation rates for circular lattice shaking are determined. The modu-
lation in this case is done by periodically modulating the frequencies of two of the
three lattice beams with amplitude ∆ν:
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δν1(t) = 0
δν2(t) = 2∆ν

(
cos(ωt) +

√
3 sin(ωt)

)
δν3(t) = 2∆ν

(
− cos(ωt) +

√
3 sin(ωt)

)
. (C.10)

This can be equivalently stated as detunings of the sideband frequencies and thus as
the detunings of the individual 1D lattices making up our lattice. The corresponding
detunings of the sideband frequencies να,β,γ are

δνα(t) = δν1 − δν2 = −2∆ν
(

cos(ωt) +
√

3 sin(ωt)
)
,

δνβ(t) = δν2 − δν3 = 4∆ν cos(ωt), (C.11)
δνγ(t) = δν3 − δν1 = −2∆ν

(
cos(ωt)−

√
3 sin(ωt)

)
.

The detunings to all times add up to zero, ∑i δνi = 0, showing that indeed only
the position of the lattice changes, while its geometry stays constant. The detunings
are connected to the 1D lattice phases via their time derivatives, φ̇ = 2πδνi, which
leads to

φα = Acs
(

sin(ωt)−
√

3 cos(ωt)
)
,

φβ = 2Acs sin(ωt), (C.12)
φγ = Acs

(
sin(ωt) +

√
3 cos(ωt)

)
,

with modulation amplitude Acs = 4π∆ν/ω. These phases are added to the lattice
potential in order to get the time-dependent potential for circular shaking:
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Vcs(r, φg, t) = 2V
(

cos
(
b1 · r + φg

3 − Acs
(

sin(ωt)−
√

3 cos(ωt)
))

+ cos
(
b2 · r + φg

3 + 2Acs sin(ωt)
)

+ cos
(
b3 · r + φg

3 − Acs
(

sin(ωt) +
√

3 cos(ωt)
)))

≈ 2V
(

cos
(
b1 · r + φg

3

)
+ cos

(
b1 · r + φg

3 −
π

2

)
Acs

(
sin(ωt)−

√
3 cos(ωt)

)
+ cos

(
b2 · r + φg

3

)
+ cos

(
b2 · r + φg

3 + π

2

)
2Acs sin(ωt)

+ cos
(
b3 · r + φg

3

)
+ cos

(
b3 · r + φg

3 −
π

2

)
Acs

(
sin(ωt) +

√
3 cos(ωt)

))

= Vcs(r, φg) + εcs2V
(

1
2 cos

(
χ1 −

π

2

)(
sin(ωt)−

√
3 cos(ωt)

)
+ cos

(
χ2 + π

2

)
sin(ωt) + 1

2 cos
(
χ3 −

π

2

)(
sin(ωt) +

√
3 cos(ωt)

))
.

(C.13)

The corresponding modulation strength in this case is given by εcs = 2Acs and in
the last expression χi = bi · r + φg/3 is used. The approximation again results from
limiting the sine and cosine functions with sin(ωt) in the argument to the 1st order.
Finally, the modulated part of Vcs(r, φg, t) is plugged into Eq. C.4, yielding

Γqq
′

B,B′ ∝ δq,q′εsm
2V 2

∣∣∣∣∣∣
(

1
2 + i

√
3

2

)(∑
u

c∗q,B
′

u

(
cq,Bu+b1e

−i(φg/3−π/2) + cq,Bu−b1e
i(φg/3−π/2)

))

+
(∑

u

c∗q,B
′

u

(
cq,Bu+b2e

−i(φg/3+π/2) + cq,Bu−b2e
i(φg/3+π/2)

))

+
(

1
2 −

i
√

3
2

)(∑
u

c∗q,B
′

u

(
cq,Bu+b3e

−i(φg/3−π/2) + cq,Bu−b3e
i(φg/3−π/2)

)) ∣∣∣∣∣∣
2

.

(C.14)
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Appendix D.

Dynamic Increase of the Tilt
Strength in the Triangular Lattice

In this section, I present an overview of different transport effects measured in the
triangular lattice geometry with a dynamically increasing tilt strength. Contrary
to the approach in chapter 5 where the tilt was initialized by suddenly quenching
the external magnetic confinement, resulting in an immediate constant driving force
applied to the atoms, here the lattice beams are detuned with respect to each other
leading to a constant movement of the optical lattice upward the magnetic potential
slope. For a sufficient lattice depth the atoms are dragged along, which in turn
dynamically increases the tilt strength experienced by them.
As exemplified in Fig. 5.11 this can result in very strong accumulations of the

atoms at the energetically lower side of the system. In the correct parameter regime,
the relatively slow movement of the lattice upward the slope allows for most of the
atoms to tunnel downwards the slope, minimizing their increase in potential energy.
Tunneling downwards outside of the populated region however is suppressed due to
the large change in interaction energy. This nonlinear self-trapping [139, 162] restricts
the movement of the atoms along the tilt direction, leading to accumulations of a large
fraction of the atoms on very few lattice sites at the edge of the initial system. For
these measurements we used a lattice depth of V ≈ 1.5Erec, corresponding to a tunnel
coupling of J ≈ 3Hz, and varied the shift velocity and duration of the optical lattice
as well as the subsequent hold time at the slope after the detuning is turned off. To
give a more conclusive picture of the density evolution in this system Fig. D.1, D.2
and D.3 each show a series of increasing shift velocities. Going to the higher velocities
depicted here, we find a fascinating phenomenon of atoms tunneling to lattice sites
beyond the self-trapping bulges. Initially this happens only from the center and
then the feature extends to the sides, i.e. along equipotential lines, as visible when
comparing single images from Fig. D.1 and D.2 which only differ in the hold time after
the detuning of 10 and 60ms. Furthermore, the images feature density modulations
within the atomic cloud, possibly pointing towards standing waves building up in
the system due to reflections at the edges. More work is needed here to identify the
underlying processed leading to this tunneling across the self-trapping bulge and the
density-waves. It should be noted that in these measurements the atomic cloud was
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not shift back to the center of the magnetic trap for the matter wave optics. This here
results in distortions of the real space distribution most likely due to the Talbot effect
(see [58, 63] for more details). Specifically, for most of the final positions imaged in
these measurements, we see the inverse lattice structure, probably arising from an
inverse Talbot revival due to anharmonic aberrations slightly changing the necessary
time for sharp imaging. With the distortions, the atomic signal is found on the edges
of hexagons. For the read-out of the overall atomic distribution, this is no problem,
since the signal coming from a certain lattice site is still reliably found within one
lattice site. However, its shape gets strongly deformed which for example leads to
the single lattice sites in the lines beyond the self-trapping edge featuring two local
maxima despite each only arising from single sites as evidenced by the corresponding
lattice constant known from the matter wave protocol, which is illustrated in Fig. D.4.
Using very slow shift velocities the emerging edge gets increasingly wider and starts

to encircle the trap center, forming ring structures along equipotential lines as dis-

OD (a.u.)

Figure D.1.: Density in a shifted triangular lattice. The lattice beam detuning
is varied in 50Hz steps from 250 to 850Hz with constant detuning times of 50ms
resulting in shift distances between 12.5 and 42.5 alat. Afterwards the atoms are
held at the external trap slope for 10ms. The lattice depth is V ≈ 1.5Erec. In
the first panel the trap center is marked by a gray dot and the movement direction
specified by an arrow
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cussed in section 5.3. This effect is strongest close to the trap center and for long hold
times in the system, shown in Fig. D.5. By comparing the density distribution 120ms
after the shift up the slope (D.5a) with the situation after 500ms (D.5b) we further
see a pour out of the atoms from behind the self-trapping edge to the trap center,
completely erasing the edge and resulting in a symmetric population around the trap
center. The more atoms surpass the barrier the smaller the barrier becomes, speeding
up the process, which leads to a depletion of the self-trapping bulge. Additionally,
for very slow lattice velocities combined with short hold times following the shift, as
depicted in Fig. D.6, we again do not reliably observe self-trapping. Actually, the dif-
ferent realizations of the same experimental parameters plotted within the columns of
Fig. D.6 show distinctly different behavior. Sometimes we find a sharp self-trapping
edge and in other shots the atoms are situated in the trap center. Considering the
much shorter final hold times than in D.5, the atoms in the latter case probably
did not form a self-trapping edge during the dynamics. This might point towards a
regime below some critical velocity, underneath which the atoms have enough time to
simply follow the changing position of the trap center. The effect might be connected

OD (a.u.)

Figure D.2.: Density in a shifted triangular lattice. The lattice beam detuning
is varied in 50Hz steps from 250 to 850Hz with constant detuning times of 50ms
resulting in shift distances between 12.5 and 42.5 alat. Afterwards the atoms are
held at the external trap slope for 60ms. The lattice depth is V ≈ 1.5Erec.
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to the critical velocity observed in [146] by displacing a 1D chain of BECs from the
trap center, which separates a superfluid and an incoherent regime. For more con-
clusive results it would be helpful to continue the measurements for even slower shift
velocities than so far. Similarly, the seemingly broken determinism in the resulting
distribution that might suggest a fluctuation dependent buildup of the self-trapping
edge should be studied more in detail.
In total we find a rich behavior of the density distribution when dragged upward

the external potential slope, which would be very interesting to investigate more in

OD (a.u.)

Figure D.3.: Density in a shifted triangular lattice. The lattice beam detuning
is varied in 33Hz steps from 167 to 567Hz with constant detuning times of 75ms
resulting in shift distances between 12.5 and 42.5 alat. Afterwards the atoms are
held at the external trap slope for 120ms. The lattice depth is V ≈ 1.5Erec.

O
D

 (
a
.u

.)

Figure D.4.: Visualization of the imaging aberration. Two exemplary im-
ages are overlapped with grids of Wigner-Seitz cells, positioned to illustrate the
deformations. The signal from the triangular lattice is found on edges of hexagons.
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depth in the future. The same protocol could then also be applied to honeycomb and
boron nitride optical lattices.

OD (a.u.)

a

b

Figure D.5.: Density in the shifted triangular lattice as function of the
shift velocity. The triangular lattice of depth V ≈ 1.5Erec is shifted by 12.5 alat.
In both subfigures the shift duration is varied from top left to bottom right from
25 to 75ms in 5ms steps. Subsequently the atoms are held at the slope for 120ms
(a) and 500ms (b).
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500 HzLattice beam detuning 312.5 Hz 192.3 Hz 166.7 Hz

Figure D.6.: Density in the shifted triangular lattice as function of the
shift velocity. The triangular lattice of depth V ≈ 1.5Erec is shifted by 12.5 alat.
The shift duration is increased from left to right, using 25, 40, 65 and 75ms.
Within every column repetitions of the same experimental parameters are shown.
Following the shift upwards the atoms are held for 10ms at the slope.
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Appendix E.

Transport in the Honeycomb Lattice

O
D
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.)

Figure E.1.: Varying the geometry phase. The images show the density distribu-
tion 50ms after shifting the atoms 12µm from the trap center using a lattice depth
of V = 2.5Erec. From these images the relative population in the ring segments in
Fig. 5.13 is read out.
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Figure E.2.: Following the transport dynamics in the honeycomb lattice.
The images show the density distribution for different lattice depths and hold times
after shifting the atoms 12µm from the trap center. From these images the relative
population in the ring segments in Fig. 5.12b is read out.
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Figure E.3.: Following the transport dynamics in 2D honeycomb lattice
planes. The images show the density distribution for different 2D lattice depths
and hold times after shifting the atoms 12µm from the trap center. Perpendicular
to the 2D lattice a 1D lattice from retroreflection with λ = 826 nm and V =
6.8Erec is added. From these images the relative population in the ring segments
in Fig. 5.12c is read out.
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