
an der Universität Hamburg eingereichte

Cumulative Dissertation

Resilience of Service-oriented and
Time-sensitive Mission-critical

Networks

Doğanalp Ergenç

Faculty of Mathematics, Informatics, and Natural Sciences
Department of Computer Science
Computer Networks (NET) Group

Hamburg, July 11, 2023

Reviewers

Prof. Dr.-Ing. Mathias Fischer
Dr hab. inż. Jacek Rak
Prof. Dr.-Ing. habil. Falko Dressler

Disputation date: 04.07.2023

Abstract

Modern mission-critical systems (MCSs) have become complex technological ecosys-
tems that consist of several inter-connected services with various quality of ser-
vice (QoS) and resilience requirements. Their increasing heterogeneity and con-
nectivity make MCSs vulnerable to further safety and security threats. Moreover,
traditional system design and networking technologies remain inadequate due to
their limitations on configurability and extensibility. Therefore, two new design
paradigms, service-oriented architecture (SOA) and IEEE 802.1 Time-sensitive Net-
working (TSN) protocols, have been recently employed in MCSs to fulfill their evolv-
ing requirements. SOA enables allocating service instances on top of virtualized
embedded nodes, which provides significant design flexibility. TSN unifies vari-
ous networking equipment and protocols to forward time-sensitive data streams on
top of standard Ethernet technologies that are less costly and easy to deploy. Both
paradigms enable novel countermeasures against safety and security threats, thus
increasing the resilience of MCSs. However, this induces additional complexity for
distributing services and configuring time-sensitive streams, which can introduce
additional safety and security threats that should be rigorously investigated.

Accordingly, in this cumulative thesis, we present several contributions to collectively
build resilient, service-oriented, and time-sensitive MCSs. These contributions con-
stitute the complementary design artifacts for the initial configuration, maintenance,
and protection of MCSs. They are further aligned with our primary resilience goals:
fault tolerance, autonomy, and security.

For resilient service-oriented design, we first optimally allocate resources for mixed-
criticality services and data routing satisfying their QoS requirements. This also in-
cludes reserving backup resources for fault tolerance in case of node and link failures.
Then, we develop a distributed and autonomous orchestration mechanism to main-
tain this service configuration without relying on a centralized controller. Lastly, we
model defensive strategies by redistributing services and rerouting their communi-
cation paths for an increased security against targeted attacks.

For resilient time-sensitive networking, firstly, we optimally schedule time-sensitive
streams by developing an autonomous configuration mechanism for a prominent
TSN scheduling protocol. We then propose a strategy to find the most reliable
redundant paths against multiple link failures and configure them for the only fault
tolerance protocol among TSN standards. Lastly, we explore potential attack vectors
against TSN protocols and propose an open-source security monitoring system.

Finally, we discuss several potential research topics to address further complexity,
interconnectivity, and security issues regarding MCSs as future work.

i

Zusammenfassung
Moderne missionskritische Systeme (MS) haben sich zu komplexen technologischen Ökosys-
temen entwickelt, die aus mehreren miteinander verbundenen Diensten mit unterschiedlich-
en Anforderungen an die Dienstgüte und Resilienz bestehen. Ihre zunehmende Heterogen-
ität und Konnektivität machen sie anfällig für weitere Sicherheitsbedrohungen. Darüber
hinaus sind herkömmliche Systemdesign- und Netzwerktechnologien aufgrund ihrer be-
grenzten Konfigurierbarkeit und Erweiterbarkeit nach wie vor unzureichend. Daher wer-
den in MS seit kurzem zwei neue Entwurfsparadigmen eingesetzt, um die sich entwick-
elnden Anforderungen zu erfüllen: Serviceorientiere Architektur (SOA) und IEEE 802.1
Time-sensitive Networking (TSN)-Protokolle. SOA ermöglicht die Zuweisung von Service-
instanzen auf virtualisierte eingebettete Netzwerkknoten, was eine erhebliche Designflexi-
bilität bietet und die Rekonfiguration im Falle eines Ausfalls oder Angriffs ermöglicht. TSN
vereinigt verschiedene Netzwerkgeräte und -protokolle, um zeitkritische Datenströme auf
der Grundlage von Standard-Ethernet-Technologien weiterzuleiten, die weniger kostspielig
und einfach zu implementieren sind. Beide Paradigmen ermöglichen neuartige Gegenmaß-
nahmen gegen Sicherheitsbedrohungen und erhöhen so die Resilienz von MSe. Dies führt
jedoch zu zusätzlicher Komplexität bei der Verteilung von Diensten und der Konfiguration
zeitkritischer Datenströme, was zusätzliche Sicherheitsbedrohungen mit sich bringen kann,
die gründlich untersucht werden sollten.

Dementsprechend stellen wir in dieser Arbeit mehrere Beiträge vor, die es zusammen er-
möglichen, resiliente, serviceorientierte sowie zeitkritische MS zu konstruieren. Diese Bei-
träge bilden die ergänzenden Design-Artefakte für die anfängliche Konfiguration, Wartung
und den Schutz von MSe. Weiterhin sind sie nach unseren primären Resilienzzielen aus-
gerichtet: Fehlertoleranz, Autonomie und Sicherheit.

Für ein belastbares serviceorientierts Design weisen wir zunächst die Ressourcen für Dienste
mit gemischter Kritikalität und für das Datenrouting optimal zu, sodass Anforderungen an
die Dienstgüte erfüllt werden. Dazu gehört auch die Reservierung von Backup-Ressourcen
für Fehlertoleranz im Falle von Knoten- und Verbindungsausfällen. Dann entwickeln wir
einen verteilten und autonomen Orchestrierungsmechanismus, um diese Servicekonfigura-
tion zu erhalten, ohne auf einen zentralen Controller angewiesen zu sein. Abschließend
modellieren wir defensive Strategien, indem wir Dienste umverteilen und ihre Kommu-
nikationspfade umleiten, um die Sicherheit gegen gezielte Angriffe zu erhöhen.

Für resiliente zeitkritische Netzwerke planen wir zunächst zeitkritische Streams optimal, in-
dem wir einen autonomen Konfigurationsmechanismus für ein bekanntes Scheduling-Protokoll
entwickeln. Dann schlagen wir eine Strategie vor, um die zuverlässigsten redundanten
Pfade gegen mehrere Verbindungsausfälle zu finden und sie für das einzige Fehlertoleranz-
Protokoll unter den TSN-Standards zu konfigurieren. Schließlich untersuchen wir poten-
zielle Angriffsvektoren gegen TSN-Protokolle und schlagen ein open-source Sicherheitssystem
basierend auf Monitoring vor.

Abschließend erörtern wir mehrere potenzielle Forschungsthemen, um weitere Komplexitäts-
und Sicherheitsprobleme in Bezug auf MSe als zukünftige Arbeit aufzuzeigen.

ii

Acknowledgement
They say PhD is like a marathon than a sprint: You have to run steadily with great
discipline over a long time. For me, it takes beyond endurance and dedication as
it exposes you to endless, various challenges that one could not naturally suffice or
anticipate. It is definitely not trivial to prevail alone.

Therefore, I would like to express my gratitude to the people who supported me
during these four years of continuous challenge. Firstly, and maybe most impor-
tantly, Prof. Mathias Fischer has been a great mentor and also a very good friend
to me throughout the journey. He has not only taught me a lot about science and
academia; we have laughed, played, enjoyed, and literally run a marathon together.
Prof. Jacek Rak helped and inspired me to develop new and exciting ideas from
the very beginning of my PhD. Prof. Ertan Onur pulled me into academia and im-
mensely encouraged me. He has always been there whenever I need his wisdom.
They have surely become the most inspiring figures in my academic life.

I feel fortunate to have all the great people of my research group running this
marathon beside me. Steffen warmly welcomed me to the team when I was a total
stranger in a new university - and a new country. August’s cheerful and easy-going
vibe made everything much more bearable. With Nurefsan, we have found our re-
search path together. I have always admired her endurance and ambition, and owe
her some papers to be written together. Thanks to Pascal, I had never felt alone in
the office when the whole campus was still empty after depressing quarantine days.
Last but not least, we have poured out our grieves to each other with Florian in
both our academic and personal lives. He is one of the funniest, smartest, and most
empathetic persons I have ever known.

Finally, I would like to thank those people who inspirited me ceaselessly. I could
not do it without the unconditional support of my family. I am really sorry to
make my mom concerned about my health and sanity all the time, and I sincerely
appreciate my dad’s immense effort to calm her down. My best friends, Aslıhan,
Burcu, Can, Cem, Mert, Tuğce, and Yağmur, have heartened me for the last ten
years. I cannot apologize enough for dozens of times when I could not pick up their
phone calls excusing paper deadlines. Ceren, my dearest, has been my sunshine at
the darkest times of this journey. She made me feel much stronger and loved with
her huge support and understanding in the last and by far the hardest year of my
PhD. Lastly, although she probably cannot read this, I should mention my adorable,
fluffy companion, Fındık. Adopting her was undoubtedly one of the best decisions
of my life.

At the end of the run, one might feel exhausted and weariful, but it is absolutely
worth all the sense of accomplishment. I hope this thesis could inspire and enlighten
the journey of many other young researchers like myself.

iii

Contents

1 Introduction 1
1.1 Motivation & Problem Statement . 1
1.2 Proposals & Research Questions . 2
1.3 Contributions . 7
1.4 Thesis Organization . 11

2 Resilient Service Allocation and Routing 14
2.1 Preliminaries . 15
2.2 Fault Tolerance . 18

2.2.1 Fault-tolerant Joint Service Allocation and Routing 19
2.2.2 Resource Efficiency via Shared Backup Protection 22

2.3 Autonomy via Bio-inspired and Distributed Service Orchestration 28
2.4 Security via Moving Target Defense for Service-oriented MCSs 36

3 Resilient Time-sensitive Networking 47
3.1 Preliminaries . 48
3.2 Autonomy . 53

3.2.1 SDN-supported Self-configuration of IEEE 802.1Qbv TAS 54
3.2.2 Dynamic Reconfiguration Strategies for IEEE 802.1Qbv TAS 58

3.3 Fault Tolerance . 62
3.3.1 Reliable Path Finding for IEEE 802.1CB FRER 63
3.3.2 Configuration and Orchestration of IEEE 802.1CB FRER 71

3.4 Security . 76
3.4.1 Security Threats of IEEE 802.1 TSN Protocols 77
3.4.2 Security Monitoring and Intrusion Detection for IEEE 802.1 TSN . . 81

4 Conclusion 87

Bibliography 93

Acronyms 98

iv

Appendices 101

A Service-based Resilience for Embedded IoT Networks 102

B Service-based Resilience via Shared Protection in Mission-critical Em-
bedded Networks 115

C Distributed Bio-inspired Configuration of Virtualized Mission-critical
Networks 131

D Moving Target Defense for Service-oriented Mission-critical Networks 138

E SDN-based Self-Configuration for Time-Sensitive IoT Networks 149

F Towards SDN-based Dynamic Path Reconfiguration for Time-sensitive
Networking 158

G On the Reliability of IEEE 802.1CB FRER 168

H Implementation and Orchestration of IEEE 802.1CB FRER in OMNeT++ 179

I On the Security of IEEE 802.1 Time-Sensitive Networking 186

J TSNZeek: An Open-source Intrusion Detection System for IEEE 802.1
Time-sensitive Networking 193

v

List of Figures

1.1 An in-vehicle network consisting of different types of services: Con-
trol services (red, wheel icon), peripheral services (green, camera
icon), telematics services (yellow, speaker icon), and management ser-
vices (blue, gear icon). 6

1.2 The main contributions of the thesis. 8

2.1 Service overlay on top of the underlay physical network. Dashed lines
show how basic service instances are assigned to physical nodes. Grey
nodes host the service instances, and directed edges show the paths
carrying traffic demands. 15

2.2 Impact of increasing demands for a topology with ten nodes. 21
2.3 Three phases of the JSAR-SP. 23
2.4 The correspondence between the heuristics and the JSAR-SP. 25
2.5 Probability of service failure in case of a single node failure. 27
2.6 Sharing efficiency. 27
2.7 Different redeployment strategies. 31
2.8 Resource utilization for increasing size of service overlay. 33
2.9 Reployment cost in terms of extra services and iterations. 34
2.10 An example of the PLADD game. 37
2.11 A single defensive schedule for multiple attack scenarios. 39
2.12 The overall optimization framework: PLSCH-MTD. 41
2.13 The impact of varying attack scenarios on the ACT. 45
2.14 The impact of defender budget on the ACT. 46

3.1 The basic structure of a TSN bridge with the TAS protocol. 49
3.2 An example deployment of FRER. 50
3.3 Different SRP configuration models. 51
3.4 The percentage of delayed TT frames. 57
3.5 Reconfiguration overhead regarding reconfiguration ratio and config-

uration time. 60
3.6 An edge-case scenario with three intersecting paths. 64
3.7 Calculation of reassurance for three paths between two endpoints. . . 67
3.8 Delivery ratio for increasing DoR. Note that the number of injected

link failures also increases with DoR, i.e., DoR− 1 failures. 69
3.9 Delivery ratio of enhanced sequence recovery function eSRF. 70

vi

3.10 The bridge architecture containing all data place functions and control
plane protocols. FRER functions are shown in different colors. 72

3.11 A decision tree for processing incoming frames. 73
3.12 TSN-specific threats matched with corresponding STRIDE threats. . . 78
3.13 The figure shows the overview of TSNZeek. The blue/dashed blocks

have been implemented from scratch. The red/dotted blocks are ex-
isting Zeek modules that we have extended and reconfigured. 81

3.14 CPU utilization of the monitoring and detection components. 85
3.15 Packet processing performance of the monitoring component. 85

vii

List of Tables

1.1 The organization of the thesis. 11

2.1 Terms and definitions in the optimization problem. Base type con-
tains the fundamental elements of the model. Constants are network-
and service-related parameters given as input. Variables represent the
parameters to be optimized. 16

2.2 The overview of the JSAR heuristics. 20

3.1 Mean and maximum latency of TT frames in milliseconds for varying
BE traffic rate. 57

3.2 The summary of reconfiguration strategies. 58

viii

Chapter 1

Introduction

1.1 Motivation & Problem Statement

Modern mission-critical systems (MCSs) such as autonomous vehicles, avionics, and
industrial networks are complex technological ecosystems. They are composed
of various critical and non-critical services that should communicate with strict
quality of service (QoS) requirements. For instance, recent autonomous cars from
Mercedes-Benz are equipped with more than 30 sensors [Mer22] for high-precision
environmental data processed for making potentially critical decisions in real-time.
Likewise, with Industry 4.0, intelligent cyber-physical systems evolve with collab-
orating robotics and embedded nodes [ZXKN17, Koe18] that require reliable and
time-sensitive communication. These MCSs might also be connected to others to
form, for example, complex vehicular networks or extended industrial facilities
with even more intricate and interdependent services. Most importantly, several
interconnected services perform critical tasks and thus should be resilient against
potential failures or attacks that can easily lead to hazardous safety and security
consequences.

While MCSs have been evolving with increasing heterogeneity, connectivity, and
resulting complexity, traditional system design and communication paradigms be-
come inadequate to satisfy their QoS and resilience requirements. Legacy system
architectures and communication protocols accordingly pose the following major
problems:

Problem 1. Static nodes with dedicated functions: Traditional MCSs are statically-
designed distributed networks of embedded nodes. In MCSs, each system node has
a dedicated function and is implemented with tightly-coupled hardware and soft-
ware modules. This static design brings a substantial manual effort to reconfigure
the system functions as they enforce the rewiring of the physical nodes. Accordingly,
it severely limits the configurability and extensibility of MCSs. Such limitations also
lead to further problems, such as a lack of adaptability in the case of emerging
resource requirements.

Problem 2. Lack of standardized network components: MCSs typically employ
tailored networking equipment and legacy protocols. For instance, while those pro-
tocols are Controller Area Network (CAN), Local Interconnected Network (LIN),

1

and Media Oriented System Transport (MOST) [TGH+15] in automotive, Avionics
Full Duplex Ethernet (AFDX) [SG12] addresses very similar communication needs
in avionics. The result of such diversity across domains is a lack of generic network-
ing equipment and protocols. This constraints design, evaluation, and improvement
of MCSs to a limited number of technology providers, which significantly increases
their design cost. Besides, potential technology transfers between different domains
remain challenging.

Problem 3. Limited and static resilience countermeasures: The limitations of the
system and network components also restrict the design of resilience countermea-
sures. For instance, legacy MCSs usually deploy duplicate static components, e.g.,
cold and hot backups, redundant links, with diverse software and hardware archi-
tectures for fault tolerance via redundancy. While this approach increases the cost
and complexity of their design and maintenance, it could be effective only against
predictable faults. Besides, all those active and redundant nodes and their inter-
communication are orchestrated by a centralized controller, or even manually con-
figured. It reduces (re-)configurability and autonomy of MCSs and hinders quick
reactions, e.g., local failovers, against safety and security incidents. A strong depen-
dency on a centralized controller also induces a risk of a single point of failure.

Lastly, since they were often closed-loop systems with restricted connectivity, MCSs
are equipped with limited security mechanisms s.t. relatively simple monitoring
and logging facilities for their domain-specific network protocols and static sys-
tem nodes. On the contrary, increasing connectivity and complexity render them
attractive targets for well-calibrated and persistent attacks. Traditional security ap-
proaches of MCSs remain ineffective against such threats.

Accordingly, the complexity arising due to the diverse requirements and increasing
connectivity of several services requires embracing novel system architecture and
networking approaches. While those approaches should ease the design and con-
figuration of MCSs with formidable QoS requirements, they should also guarantee
the resilience of MCSs against any safety and security incidents.

1.2 Proposals & Research Questions

To address the problems presented above, we1 propose the use of two new design
paradigms for developing next-generation resilient MCSs. The first paradigm is the
service-oriented architecture (SOA), which tackles the design inflexibility of MCSs
and their static configuration (Problem 1). The second paradigm is the employment
of new IEEE 802.1 Time-sensitive Networking (TSN) protocols to address the lack
of unified networking technologies (Problem 2).

1For better readability, the author refers to himself as we in the remainder of the thesis. His main
contributions are explicitly stated in case of collaboration with other authors.

2

We aim to utilize these paradigms to develop advanced resilience countermeasures
for an increased fault tolerance, autonomy, and security of modern MCSs (Problem
3). Fault tolerance is one of the prominent requirements of a reliable MCS. It has
been a part of even early design processes over decades as such systems cannot
tolerate more than a few minutes of disruption in a year, i.e., five to seven nines of
availability [Cur20]. Autonomy gives a system the capability of self-configuration
so that a MCS can at least perform its most critical functions in case of any failures
and attacks. It requires the deployment of advanced self-(re)configuration proce-
dures adding up further complexity to the system in exchange for increased system
resilience [DHM+19]. Lastly, security is one of the most significant yet usually
neglected aspects of the design of MCSs. Especially with their increasing connectiv-
ity, complexity, and heterogeneity, they have become an attractive target of several
sophisticated attacks [MKK+21]. Hence, new threat prevention, detection, and mit-
igation techniques should be developed using novel technologies.

Accordingly, in the remaining of this section, we present (i) the details regarding the
utilization of SOA and TSN for mission-critical networks (tackling Problem 1 and 2),
(ii) the main research questions regarding their utilization for the resilience goals
above (regarding Problem 3), and (iii) an example scenario to illustrate the benefits
of the coexistence of those novel paradigms in terms of resilience.

Service-oriented Architecture

Virtualization technologies are widely adopted in different mission-critical domains
to replace their rather static and inflexive system architecture (see Problem 1 above).
This trend can be observed in different application scenarios such as modern avion-
ics [ZAL19], smart cities [Con18], and future autonomous driving [BDDK20] that
require the flexible deployment of services and functions in embedded systems. Be-
yond that, there are ongoing standardization activities such as Automotive Virtual
Platform Specification [GEN20] and Future Airborne Capability Environment (FACE)
[The20] to introduce open-source virtualization technologies to the critical in-vehicle
networks.

Virtualization eventually enables service-oriented architecture (SOA) [SL18, KW19,
VMN21] that leverages virtualized system nodes to host multiple isolated services
[NHAM+18]. It allows flexible deployment of inter-connected services with varying
QoS requirements on virtualized physical networks. SOA also offers a significant
configurability to dynamically redistribute services and re-establish their intercom-
munication in case of failures and attacks.

However, SOA also brings considerable complexity to find the optimal service con-
figuration within limited resources. This configuration includes allocating services
on virtualized nodes with limited processing powers and finding end-to-end routes
with sufficient bandwidth between any nodes hosting inter-connected services.

3

In addition, those paths should fulfill the strict QoS requirements for time-sensitive
communication. Beyond the deployment of virtual services, it is also required to re-
serve sufficient resources for redundant instances and their data routing in-between
against potential node and link failures. It reduces the cost compared to having
a dedicated physical backup and enables service migrations in case of multiple
failures. Accordingly, the following question arises regarding the design of a fault-
tolerant SOA:

RQ.S1: How to deploy inter-connected services within the limited node and link
resources by ensuring fault tolerance against potential failures?

After the initial service configuration of active and redundant services, the system
should be able to modify this configuration autonomously, especially to mitigate
safety and security incidents quickly. This includes the methods to minimize its
dependency on an administrator or a (logically centralized) controller that may also
become a single point of failure. As a result, it brings the following question:

RQ.S2: How to deploy, maintain, and reconfigure mixed-criticality services au-
tonomously with minimal dependency on a controller?

Lastly, MCSs are typically targets of advanced threats, potentially including several
calibrated attacks that take extended periods to develop and conduct but can have
a devastating impact. The flexibility and reconfigurability of SOA enable service
redistribution and data rerouting as mitigation and recovery techniques against such
well-calibrated and persistent attacks. This raises the following question regarding
the development of security strategies leveraging SOA:

RQ.S3: How to develop defensive strategies to protect critical services against
persistent attacks by leveraging the flexibility of service-oriented architecture?

These questions lead to building resilient service-oriented MCSs by discovering the
principles of (i) fault-tolerant configuration of services (RQ.S1), (ii) their autonomous
orchestration (RQ.S2), and (iii) their security by dynamic reconfiguration (RQ.S3).

Time-sensitive Networking

To overcome the challenges due to the lack of standardized network components (see
Problem 2 above), IEEE 802.1 Time-Sensitive Networking (TSN) standards have re-
cently been proposed by the IEEE 802.1 Working Group. They address real-time

4

and deterministic communication requirements of time-sensitive and safety-critical
systems on top of the IEEE 802.3 Ethernet standard [IEE17a]. TSN offers several
protocols to manage different traffic classes, ensure deterministic communication
within a bounded delay, define filtering and networking policies, and improve com-
munication reliability by using redundant paths. Moreover, TSN allows the use
of commodity-off-the-shelf Ethernet switches for both best-effort and time-sensitive
critical communication simultaneously. As a result, it accelerates the development
of mission-critical networks by allowing the use of well-known Ethernet technology.

Since TSN protocols are relatively new, we still need to explore the principles for
their optimal and resilient deployment on MCSs. They first require an attentive
configuration with zero tolerance for any unexpected jitter. While it was relatively
easier in traditional closed-loop and static networks, modern MCSs should handle
hundreds of mixed-criticality data streams autonomously and adapt to changing
conditions, e.g., due to safety and security incidents, mobile system nodes, etc.
This brings the following question regarding the self-configuration of time-sensitive
streams:

RQ.T1: How to configure mixed-criticality and time-sensitive streams au-
tonomously, satisfying their strict latency requirements?

Beyond configuring time-sensitive communication, it is required to ensure the un-
interrupted operation of critical streams in case of failures. For fault tolerance, TSN
offers significant configuration flexibility for redundant communication, which en-
ables seamless recovery after node and link failures. However, this flexibility also
induces complexity to guarantee the intended degree of redundancy against various
failure scenarios. Accordingly, the following question arises:

RQ.T2: How to configure redundant communication reliably for time-sensitive
streams?

Lastly, employing (new) TSN protocols broaden the attack surface of MCSs by po-
tentially inducing new threats. Besides, their increasing connectivity eases the ex-
ecution of attacks against TSN protocols. Consequently, this raises the following
question related to designing security countermeasures against novel threats to-
wards TSN protocols:

RQ.T3: How to protect different mission-critical domains against new threats in-
troduced by TSN protocols?

5

These questions lead to establish resilient TSN communication in MCSs by discov-
ering the principles of (i) autonomous and dynamic configuration of time-sensitive
streams (RQ.T1), (ii) their seamless operation in case of failures (RQ.T2), and (iii)
their security monitoring and protection (RQ.T3).

An example scenario for the coexistence of SOA and TSN

To elaborate further on the employment of the proposed paradigms, an envisioned
service-oriented and time-sensitive automotive system is illustrated in Figure 1.1. In
this model, various services are hosted at virtualized nodes (grey blocks). Control
services (red, wheel icon) orchestrate powertrain and chassis domain functions, e.g.,
brakes and engine control. Peripheral services (green, camera icon) collect environ-
mental data via sensors for collision avoidance. While telematics services (yellow,
speaker icon) are for in-car infotainment, management services (blue, gear icon)
offer driver assistance that manages body functions, e.g., controlling door locks au-
tomatically. Note that some services, e.g., collision avoidance and driver assistance,
are hosted at the same node. The coexistence of critical services (e.g., control and
management services) and non-critical services (e.g., telematics services) requires
considering their varying QoS and resilience requirements.

Figure 1.1: An in-vehicle network consisting of different types of services: Control
services (red, wheel icon), peripheral services (green, camera icon), telematics ser-
vices (yellow, speaker icon), and management services (blue, gear icon).

Furthermore, most of the services shown in Figure 1.1 should communicate to per-
form certain system functions. To realize a critical automatic braking function, for

6

instance, the object detection service should recognize obstacles in real-time and
then signal the collision avoidance service hosted at a different node. Depending on
the avoidance decision, it might further initiate an emergency brake by communi-
cating an instance of chassis controller service. Moreover, for infotainment, multiple
music services can receive data streams from a single telematics controller.

In those examples, while the intercommunication for the automatic braking func-
tion requires highly time-sensitive and reliable transfer of event-driven and small
amounts of signaling data, the infotainment system requires more bandwidth for
continuous streaming with relaxed QoS. TSN protocols enable the coexistence of
mixed-criticality streams on unified networking equipment and establish proper re-
source provision for end-to-end deterministic communication.

Moreover, SOA and TSN together enable several novel resilience mechanisms. The
service-based design allows dynamic reconfiguration by reinitiating redundant ser-
vices or migrating services between nodes in case of a node failure [OSK+19, KJS19].
For example, in Figure 1.1, the redundant driver assistance service instance (grey,
on the top left) can be activated if the primary service instance (in the middle)
fails for any reason. However, it requires implementing effective service alloca-
tion, rerouting, and maintenance routines, which also introduce further complexity
to the system. Similarly, TSN standards provide an important versatility for reli-
able communication by enabling an arbitrary degree of redundancy for the selected
mixed-criticality streams. It further ensures deterministic packet delivery in MCSs
in which a loss or latent could be easily disruptive. However, they also require a
significant configuration effort for their optimal deployment, and the overall com-
plexity broadens the attack and failure surface.

1.3 Contributions

Accordingly, this thesis answers the stated research questions to discover the princi-
ples to build resilient service-oriented and time-sensitive MCSs. It specifically con-
siders three resilience goals: fault tolerance, autonomy, and security for the design,
configuration, and orchestration of MCSs. This section presents our contributions to
(i) resilient service allocation and routing, and (ii) resilient time-sensitive networking
regarding SOA and TSN, respectively. Figure 1.2 summarizes them concerning the
given resilience goals and the design paradigms. The complete list of our publications
related to the following contributions is also given at the end of this chapter.

Resilient Service Allocation and Routing

Our contributions to resilient service allocation and routing are (i) fault-tolerant
initial service distribution, (ii) an autonomous controlling scheme for service or-

7

Figure 1.2: The main contributions of the thesis.

8

chestration, and (iii) dynamic reconfiguration strategies for service protection.

C1. Fault-tolerant Joint Service Allocation and Routing with Shared Protection:
This contribution handles resource reservation for services and data traffic for the
initial fault-tolerant configuration of the system. Firstly, to address the RQ.S1, we
propose a set of mixed-integer linear optimization programming (MILP) models
that optimally allocate mixed-criticality services as well as redundant instances
against random failures in [ERF20] (Appendix A). They simultaneously establish
intercommunication between services over multiple redundant paths under tight
QoS requirements and limited system resources. Since these models reveal the com-
plexity of the joint service allocation and routing problem, we further extend them
with capacity-sharing models in [ERF21] (Appendix B) that saves backup resources
and allows allocating more services with better QoS.

C2. Bio-inspired and Autonomous Service Orchestration: After establishing the
initial service allocation and data routing, this contribution provides an autonomous
orchestration routine that can be used for reconfiguration of the service deployment.
We propose a distributed and bio-inspired joint service allocation and routing model
to answer the RQ.S2 in [ESF22] (Appendix C). This model utilizes the ant colony
optimization [DG97] to enable self-configuration and minimize the dependency on
a controller. Developing this model, we also show the pros and cons of a distributed
and autonomous orchestration scheme compared to the centralized approaches.

C3. Moving Target Defense for Service-oriented Mission-critical Systems: Lastly,
this contribution constitutes a protection layer on top of the initial configuration of
critical services and streams by leveraging their reconfigurability in SOA. We com-
bine our previous service distribution models with a theoretical attacker-defender
game to develop moving target defense (MTD) strategies in [ESKF23] (Appendix D)
and to answer the RQ.S3. These strategies enable reconfiguring service allocation
and rerouting service communication within a schedule to protect MCSs against
calibrated and persistent attacks.

Resilient Time-sensitive Networking

Our contributions to resilient time-sensitive networking include (i) autonomous
stream scheduling for initial time-sensitive communication, (ii) reliable redundant
path finding and configuration for fault tolerance, and (iii) security monitoring and
intrusion detection for time-sensitive data traffic.

C4. Dynamic Self-(re-)configuration of IEEE 802.1Qbv TAS: This contribution
handles the initial configuration of time-sensitive communication and also tackle dy-
namically changing traffic requirements. In order to answer the RQ.T1, we propose
an optimization model to configure the primary time-sensitive scheduling protocol,

9

IEEE 802.1Qbv Enhancements to Traffic Scheduling: Time-Aware Shaper (TAS), for
resource reservation and packet scheduling. This model is then integrated into a
Software-defined Networking (SDN)-based self-configuration scheme in [SBEF21]
(Appendix E) to automatically configure time-sensitive streams without partici-
pation of TSN endpoints. We lastly develop various self-configuration strategies
in [SBEF22] (Appendix F) by using our optimization model.

C5. Reliable Path Finding and Orchestration for IEEE 802.1CB FRER: On top of
initial scheduling of time-sensitive streams, this contribution handles configuration
and orchestration of redundant communication. First, we propose a path finding
strategy based on a novel graph metric to allocate the most reliable redundant paths
for the fault tolerance protocol, IEEE 802.1CB Frame Replication and Elimination for
Reliability (FRER), to answer the RQ.T2. We also improve its internal functions to
avoid potential degradation in redundant communication in [EF21b] (Appendix G).
Then, we propose a configuration framework including control plane functions for
path discovery and assignment for FRER in [EF21a] (Appendix H).

C6. Security Monitoring and Intrusion Detection for IEEE 802.1 TSN Protocols:
The last contribution provides a security analysis and protection of several TSN pro-
tocols. We first explore more than 30 potential attack vectors against all TSN stan-
dards and categorize them under a security framework in [EBN+21] (Appendix I).
Then, we develop an open-source monitoring and intrusion detection system (IDS)
against the explored attack vectors in [ESF23] (Appendix J) to answer the RQ.T3.

Further Contributions

Apart from the main contributions listed above, we proposed further solutions for
the resilient design of next-generation MCSs. For instance, we examine state-of-the-
art deep learning techniques for detecting advanced attacks on industrial control
systems in [GEF22]. We then discover the several uses of programmable network
components to develop reliable monitoring and intrusion prevention mechanisms at
in-line processing speed in the [SEO21], [SEO22], and [MSBEF21]. We also present
the general takeaways, potential use cases, and future research directions on the
security, fault detection, and recovery of virtualized service-oriented MCSs, and
the reconfigurability of time-sensitive networks in [EF20] and [BEF22]. Lastly, in
[EBF23], we present a prototype combining SOA and TSN protocols to demonstrate
different techniques to tackle failures and attacks leveraging these paradigms. We
exclude the details of these contributions to present a concise storyline through the
main contributions of this thesis.

10

1.4 Thesis Organization

In the remaining of this cumulative thesis, we present our publications in the con-
text of resilient service-oriented and time-sensitive mission-critical networks. We
describe the core ideas, the key results, and the takeaways of each publication un-
der the respective sections that are divided according to our resilience goals, i.e.,
fault tolerance, autonomy, and security. We rephrase and shorten many parts of
the publications for a more coherent text, and all original publications are given in the
appendices. Finally, the overall organization of the thesis is shown in Table 1.1.

Chapter 2 presents our contributions to resilient service allocation and routing. It
first introduces the fundamentals of joint service allocation and routing problem
and a formal problem definition in Section 2.1. Section 2.2 presents the details of
the contribution C1 regarding fault-tolerant SOA. Section 2.3 describes the dynamics
of the self-organized service configuration in the context of C2. Lastly, our moving
target defense model in C3 is presented in Section 2.4.

Table 1.1: The organization of the thesis.

Chapter Section Contribution Research
Question Publication

Chapter 1: Introduction

Chapter 2: Resilient
Service Allocation
and Routing

Section 2.2 Section 2.2.1
C1 RQ.S1

[ERF20]
Section 2.2.2 [ERF21]

Section 2.3 C2 RQ.S2 [ESF22]

Section 2.4 C3 RQ.S3 [ESKF23]

Chapter 3: Resilient
Time-sensitive
Networking

Section 3.2 Section 3.2.1
C4 RQ.T1

[SBEF21]
Section 3.2.2 [SBEF22]

Section 3.3 Section 3.2.2
C5 RQ.T2

[EF21b]
Section 3.3.2 [EF21a]

Section 3.4 Section 3.4.1
C6 RQ.T3

[EBN+21]
Section 3.4.2 [ESF23]

Chapter 4: Conclusion

Chapter 3 gives our contributions to resilient time-sensitive networking in detail.
Section 3.1 briefly introduces the related TSN protocols that are used and improved
in the following contributions. Section 3.2 presents the details of the optimal TAS
scheduling and TSN self-configuration scheme in the context of C4. In Section 3.3,
we present reliable redundant path finding and configuration methods for FRER to
establish fault-tolerant communication, regarding C5. Lastly, Section 3.4 introduces
several novel security threats against TSN protocols and the implementation details
of our open-source monitoring and intrusion detection module regarding C6.

Chapter 4 summarizes all contributions and presents further research directions.

11

Main Contributions

[EBN+21] Doğanalp Ergenç, C. Bruelhart, J. Neumann, L. Krueger, and M. Fischer.
On the Security of IEEE 802.1 Time-Sensitive Networking. IEEE Interna-
tional Conference on Communications (ICC), Workshop on Time-sensitive and
Deterministic Networking, 2021.

[EF21a] Doğanalp Ergenç and M. Fischer. Implementation and Orchestration of
IEEE 802.1CB FRER in OMNeT++. IEEE International Conference on Com-
munications (ICC), Workshop on Time-sensitive and Deterministic Networking,
2021.

[EF21b] Doğanalp Ergenç and M. Fischer. On the Reliability of IEEE 802.1CB
FRER. IEEE International Conference on Computer Communications (INFO-
COM), 2021.

[ERF20] Doğanalp Ergenç, J. Rak, and M. Fischer. Service-Based Resilience for
Embedded IoT Networks. IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), 2020.

[ERF21] Doğanalp Ergenç, J. Rak, and M. Fischer. Service-based Resilience via
Shared Protection in Mission-critical Embedded Networks. IEEE Trans-
actions on Network and Service Management (TNSM), Special Issue on Design
and Management of Reliable Communication Networks, 2021.

[ESF22] Doğanalp Ergenç, D. Sorejevic, and M. Fischer. Distributed Bio-inspired
Configuration of Virutalized Mission-critical Networks. IEEE Global Com-
munications Conference (GLOBECOM), 2022.

[ESF23] Doğanalp Ergenç, R. Schenderlein, and M. Fischer. TSNZeek: An Open-
source Intrusion Detection System for Time-sensitive Networking. IFIP
Networking Conference, International Workshop on Time-Sensitive and Deter-
ministic Networking (TENSOR), 2023.

[ESKF23] Doğanalp Ergenç, F. Schneider, P. Kling, and M. Fischer. Moving Tar-
get Defense for Service-oriented Mission-critical Networks. International
Conference on Computer Communications and Networks (ICCCN), 2023.

[SBEF21] N. Sertbaş Bülbül, Doğanalp Ergenç, and M. Fischer. SDN-based Self-
Configuration for Time-Sensitive IoT Networks. International Conference
on Local Computer Networks (LCN), 2021.

12

[SBEF22] N. Sertbaş Bülbül, Doğanalp Ergenç, and M. Fischer. Towards SDN-
based Dynamic Path Reconfiguration for Time-sensitive Networking.
IEEE/IFIP Network Operations and Management Symposium (NOMS), 2022.

Further Contributions

[BEF22] N. Sertbaş Bülbül, Doğanalp Ergenç, and M. Fischer. Evaluating Dy-
namic Path Reconfiguration for Time-sensitive Networks. Würzburg
Workshop on Next-Generation Communication Networks (WueWoWas’22),
2022.

[EBF23] Doğanalp Ergenç, C. Brülhart, and M. Fischer. Towards Developing
Resilient and Service-oriented Mission-critical Systems. 9th IEEE In-
ternational Conference on Network Softwarization (NetSoft), Demo Session,
2023.

[EF20] Doğanalp Ergenç and M. Fischer. Resilience of Virtualized Embedded
IoT Networks. 2. KuVS Fachgespräch “Network Softwarization”, 2020.

[GEF22] P. Gawehn, Doğanalp Ergenç, and M. Fischer. Deep Learning-based
Multi-PLC Anomaly Detection in Industrial Control Systems. IEEE
Global Communications Conference (GLOBECOM), 2022.

[MSBEF21] M. Mönnich, N. Sertbaş Bülbül, Doğanalp Ergenç, and M. Fischer. Mit-
igation of IPv6 Router Spoofing Attacks with P4. ACM Symposium on
Architectures for Networking and Communications Systems (ANCS), EuroP4
Workshop, 2021.

[SEO21] G. Simşek, Doğanalp Ergenç, and E. Onur. Efficient Network Monitor-
ing via In-band Telemetry. 17th International Conference on the Design of
Reliable Communication Networks (DRCN), 2021.

[SEO22] G. Simşek, Doğanalp Ergenç, and E. Onur. Reliable and Distributed
Network Monitoring via In-band Network Telemetry. arXiv, 2022.
https://arxiv.org/abs/2212.14876 (preprint).

13

https://arxiv.org/abs/2212.14876

Chapter 2

Resilient Service Allocation and
Routing

This chapter presents the main contributions of the thesis on resilient service allo-
cation and routing to design service-oriented mission-critical systems (MCSs). Sec-
tion 2.1 briefly introduces preliminaries on the service-oriented architecture (SOA)
and the Joint Service Allocation and Routing (JSAR) as a MILP model. We then
utilize and extend this model over the following contributions in this chapter. Af-
terwards, the rest of the sections are organized to present sequential building blocks
for developing a resilient service-oriented architecture as follows.

• In Section 2.2, the JSAR model is extended with fault tolerance constraints to de-
ploy redundant service instances and assign backup paths to tackle single node
and link failures [ERF20]. It is further combined with another model to share
backup link capacity between several services for resource efficiency [ERF21].
Those contributions address the initial service configuration of an MCS that con-
siders fault tolerance by design and answer the RQ.S1.

• In Section 2.3, we propose a distributed bio-inspired heuristic for autonomous
service allocation and routing for any additional service demand without de-
pending on a controller [ESF22]. The JSAR model is used for benchmarking to
compare the proposed distributed heuristic with the optimal centralized solution.
This contribution provides self-configuration procedures for service orchestration
on top of the initial configuration and addresses the RQ.S2.

• In Section 2.4, we develop moving target defense (MTD) strategies by formulat-
ing an attacker-defender game for security of critical services [ESKF23]. The JSAR

model is integrated into this game-theoretical model to find feasible service con-
figurations to be deployed periodically within MTD strategies. This contribution
eventually adds a protection layer above the initial service configuration, poten-
tially (but not necessarily) leveraging the existing orchestration procedures, and
addresses the RQ.S3.

After the preliminaries, we name the sections after their respective resilience goals,
i.e., fault tolerance, autonomy, and security. Each section is then structured to
present (i) a set of fine-grained research questions, (ii) our related publications, and
(iii) the summary of contributions and their takeaways.

14

2.1 Preliminaries

In SOA, an overlay network of services is embedded into an underlying physical
network to establish inter-service data traffic by fulfilling their latency and foremost
resilience demands. A service overlay O(S, D) consists of a set of services s ∈ S
and their communication demands d ∈ D. In a similar notation, a physical network
G(V, E) consists of nodes v ∈ V and links e ∈ E. Here, a service s represents a
function or virtual instance to be deployed on a physical node v. It has a certain
level of criticality, e.g., mission-critical or best-effort, and consumes an amount of
resources, τs, e.g., CPU or memory. Service criticality imposes a deployment con-
straint s.t. only particular nodes can host critical services, i.e., ksv = 1, to establish
their isolation and access control. Moreover, a demand d specifies inter-service com-
munication requirements between two service instances in terms of the end-to-end
latency ld and the amount of data traffic hd to be exchanged, e.g., required band-
width1.

Service Overlay

Physical Network

Figure 2.1: Service overlay on top of the underlay physical network. Dashed lines
show how basic service instances are assigned to physical nodes. Grey nodes host
the service instances, and directed edges show the paths carrying traffic demands.

Figure 2.1 gives an example of the embedding of a service overlay (black nodes) in
the underlying physical network (grey nodes). While a link between two services
(an edge between two black nodes) represents a demand, the connection of two
physical nodes (an edge between two grey nodes) is a physical link eE, i.e., having
a nominal bandwidth capacity, in the network. The overall deployment is restricted
by (i) the resource capacities rv of each node v and (ii) the bandwidth capacity

1The same notation is used for all the models in this chapter.

15

Table 2.1: Terms and definitions in the optimization problem. Base type contains
the fundamental elements of the model. Constants are network- and service-related
parameters given as input. Variables represent the parameters to be optimized.

Type Symbols Set Interval Definition

Base
u, v V Nodes in the network

e E Link (edges) between nodes
s, t S Basic services
d D A demand between a pair of services
p Puv An end-to-end path between nodes u and v

Constant

τs ℜ∗ [0,∞] Resource consumption of s
hd ℜ∗ [0,∞] Traffic volume of d
ce ℜ∗ [0,∞] Maximum link capacity of e
rv ℜ∗ [0,∞] Maximum resource capacity of v
ns Z∗ [0,∞] Required number of instances for s
ld ℜ∗ [0,∞] Latency requirement of d
l∗e ℜ∗ [0,∞] Latency in e
ksv Z∗ [0,1] Binary variable to indicate if v is capable to host s

Variable xdp ℜ∗ [0,∞] Flow allocated to path p of demand d
ysv Z∗ [0,1] Binary variable to decide if s is hosted by v

ce of each link e. Besides, since each link induces a certain delay le, an end-to-
end communication path p ∈ P between any two nodes hosting connected services
should be selected according to the latency requirement ld between those services.

In the next part, we introduce the JSAR model that formulates the problem above as
a mixed-integer linear programming (MILP) model. Table 2.1 summarizes all terms
and definitions of the formulation. For the rest of this chapter, while the term JSAR
problem refers to the overall joint service allocation and routing problem, the JSAR

(only) refers to the particular MILP model that we propose.

Joint Service Allocation and Routing Model (JSAR)

As introduced above, in the JSAR problem, each service instance s ∈ S should be
deployed to one node to satisfy communication demands in the respective service
overlay. A demand d is defined between a pair of service instances s.t. δ : D 7→ (SxS)
and δd = (s, t) s, t ∈ S to regulate inter-service communication. Besides requiring
an amount of data traffic between service instances, a demand also characterizes the
QoS and resilience requirements for inter-service communication.

xdp and ysv are two binary decision variables to indicate if demand d is assigned to

16

path p and if service s is deployed on node v, respectively.

min ∑
d∈D

∑
p∈P

xdp|p| (2.1)

∑
s∈S

ysvτs ≤ rv ∀v ∈ V (2.2)

∑
v∈V

ksvysv = 1 ∀s ∈ S (2.3)

xdp ≤ ysvytu + ytvysu ∀d ∈ D, ∀u, v ∈ V,

∀p ∈ Puv, (s, t) ∈ d (2.4)

∑
d∈D

∑
p∈P,
e∈p

xdphd ≤ ce ∀e ∈ E (2.5)

∑
e∈p

xdpl∗e ≤ ld ∀d ∈ D, ∀p ∈ P (2.6)

∑
p∈P

xdp = 1 ∀d ∈ D (2.7)

The (objective) Function 2.1 minimizes the length of selected paths, where |p| rep-
resents the path length. Minimizing the total path length can be considered as both
performance and cost optimization. That is, allocating shorter paths enables estab-
lishing low-latency communications, i.e., here with less hops, and decreasing the
number of occupied links, which is especially important for mission-critical net-
works to reduce the cost and the complexity of the system.

Constraint 2.2 and 2.3 ensure that v has sufficient resources to host s and s is de-
ployed on exactly one node that is capable to host s (e.g., equipped with the required
hardware). Constraint 2.4 restricts the flow assignment in a way that d can be de-
ployed on p if only the source and destination nodes u, v of p host required services
s and t. Constraint 2.5 ensures that each link e of p has sufficient resources, e.g.,
bandwidth, to carry the traffic of d if it is assigned to p. While Constraint 2.6 en-
sures that p is selected to satisfy the maximum tolerable latency for d, Constraint
2.7 guarantees that d is assigned exactly to one working path. Note that, as inferred
in the latest constraint, traffic demands are assumed to be non-bifurcated.

Note that the quadratic formulation in Constraint 2.4 is linearized using McCormick
envelopes [Mcc76] introducing extra variables and constraints to make the model
easily solvable by the existing linear optimization tools. Although the linearization
details are omitted here, it is extensively discussed in [ERF20]. Referring to this
linearized version, the JSAR is considered as a MILP in the rest of the thesis.

17

2.2 Fault Tolerance

This section introduces two fault tolerance extensions for the JSAR to answer the
RQ.S1. The resulting models provide fault tolerance by reserving required resources
for redundant service instances and rerouting in case of single node and link fail-
ures. The JSAR already provides an initial service allocation and routing scheme by
optimally allocating sufficient node and link resources and satisfying different QoS
requirements. However, critical services and data traffic in MCSs should also be
resilient against potential failure scenarios by design. The state of the art (and the
JSAR) does not holistically solve the joint service allocation and routing problem to-
gether with fault tolerance requirements, which can be significantly more complex
than the JSAR problem. Besides, they do not reflect the interdependency of services
in the mission-critical domain either. Therefore, the following questions arise in
addition to the RQ.S1:

• RQ.S1.1: To what extent is it possible to protect service-oriented MCS against
certain failure scenarios via dynamic service allocation and routing?

• RQ.S1.2: How much complexity and cost does the fault-tolerant SOA impose?

Accordingly, the following publication extends JSAR to reserve further resources for
redundant service instances and their intercommunication optimally to failover in
different failure states of a system2:

Doğanalp Ergenç, J. Rak, M. Fischer. Service-Based Resilience for

Embedded IoT Networks. IEEE/IFIP International Conference on De-

pendable Systems and Networks (DSN), 2020.

Beyond the initial configuration, reserving redundant resources for scaling and com-
plex service overlays is substantially more challenging. Therefore, we extend the
previous model further with a shared protection scheme, JSAR-SP, to share backup
resources between different service and communication demands for resource effi-
ciency instead of using dedicated backup capacity in the following publication2:

Doğanalp Ergenç, J. Rak, M. Fischer. Service-based Resilience

via Shared Protection in Mission-critical Embedded Networks. IEEE

Transactions on Network and Service Management (TNSM), Special Issue

on Design and Management of Reliable Communication Networks, 2021.

2In both publications, the whole contribution belongs to this thesis. The co-authors helped to
improve the quality of the papers with their valuable feedback.

18

In the rest of this section, we present two extended models together with their
key results in Section 2.2.1 and 2.2.2, respectively. The respective publications
[ERF20] and [ERF21] are also attached in Appendix A and B.

2.2.1 Fault-tolerant Joint Service Allocation and Routing

In order to enhance the JSAR to find alternative service configurations against poten-
tial failures, we modify it by defining failure states. Failure state design is a concept
where each state represents a failure scenario adding extra constraints to the opti-
mization model [PM04]. It may include node failures, link failures, or both, and each
state f ∈ F is represented by additional input parameters, such as indices of failed
nodes or links to characterize a failure. Only the initial state, i.e., f = 0, represents
the natural state of a system without any failure. The model eventually provides
alternative optimum deployments to be configured for each given failure scenario.
A scenario might typically be an arbitrary node failure due to an attack, software
failure, or power cut, affecting several service instances on the failed node(s). In
each failure scenario, a set of binary parameters av f is given as input to specify if
node v is available in failure state f ∈ F and ∑v∈V av f = |N| − 1 since only one node
is assumed to be failed in each state.

In case of a failure, two main steps should be taken. First, all service instances
hosted in the failed nodes must be deployed to other available nodes s.t.,

∑
v∈V

ksvysv f av f ≥ 1 ∀s ∈ S, ∀ f ∈ F (2.8)

where ysv f represents if service s is deployed to node v in case of failure scenario
f . Besides, if v hosts s in any f , there should be a reserved resource in v for s for
migration in case that f occurs. Therefore, Constraint 2.2 is extended as,

∑
s∈S

min(∑
f∈F

ysv f , 1)τs ≤ rv ∀v ∈ V (2.9)

Here, the term with min function indicates if s deployed to v in any number of
states, only τs amount of resource needs to be occupied in v to activate that service.

Second, rerouting should be reconsidered since (a) paths may be broken due to
failed nodes, and (b) the service deployment may change while migrating services
in different failure scenarios. Thus, Constraint 2.4 is extended as,

∑
u,v∈V

au f av f ∑
p∈Puv

ysu f ytv f θp f xdp ≥ hd

∀d ∈ D, δd = (s, t), s, t ∈ S, ∀ f ∈ F (2.10)

19

Table 2.2: The overview of the JSAR heuristics.

Heuristic Greedy Optimization Service Deployment Routing Resilience Scalability
RDDP ✓ ✓ ✓ ∼ ✓

RDDP + BSRP ✓ ✓ ✓ ✓ ✓

MLSP ✓ ✓ ✓ ✓

MLSP + POBS ✓ ✓ ✓ ✓ ✓

where θp f = ∏v∈V,v∈p av f indicates if path p is available in state f , i.e., if all inter-
mediate nodes in p are alive. We linearize this quadratic constraint to reduce the
fault-tolerant JSAR to a MILP model with extra variables and constraints.

Note that the solution constructs a service deployment and routing scheme that is
resilient to all single node failure scenarios. In this sense, such an approach can be
considered both (i) protective, as it reserves required capacity in advance, and (ii)
restorative, as it decides where to migrate services in case of related failure scenario
happens.

Heuristics

Since the JSAR problem is known to be NP-hard, we additionally propose two
heuristics, which cover all three dimensions of service deployment, inter-service
traffic routing, and resilience. Table 2.2 summarizes the heuristics, including their
approaches, i.e., greedy and optimized solutions, e.g., for service allocation, routing,
and resilience.

The first heuristic consists of two greedy approaches to find an initial service deploy-
ment and then the placement of backup service instances. First, for each demand,
Random Deployment with Disjoint Paths (RDDP) allocates services to a randomly
selected pair of nodes by starting from the ones that do not host any other service.
Then, two node-disjoint paths are allocated for the demand between selected nodes
as working and backup paths. After finding a basis predeployment scheme with
RDDP, Backups with Secondary Redundant Path (BSRP) selects a backup node for
each service for the migration in case of a node failure. Similar to RDDP, BSRP de-
ploys a backup service instance to the node with the highest available resources. As
a result, RDDP+BSRP constitutes the complete greedy heuristic that handles service
allocation, routing, and redundancy.

The second heuristic consists of three steps. Firstly, Maximum Load to Shortest Path
(MLSP) places the most data-intensive demands, i.e., with high bandwidth require-
ments, to the shortest available paths and deploys related services to end-hosts of
those paths, accordingly. Secondly, the rest of the demands, i.e., non-data-intensive
ones, are again given to the reduced optimization problem under fault tolerance con-
straints. Then, Post-Optimization Backup Scheme (POBS) reserves suitable backup
resources for the fixed services and demands that are priorly placed by MLSP in the

20

3 4 5 6 7
Number of demands

0

10

20

30

40

50

La
te
nc
y
co
st

Optimal
MLSP
MLSP+POBS
Optimal-R
RDDP+BSRP

(a) Latency cost

3 4 5 6 7
Number of demands

0

20

40

60

80

100

Pr
ob
ab
ilit
y
of
 se
rv
ice
 fa
ilu
re
 (%
)

Optimal
MLSP
MLSP+POBS
Optimal-R
RDDP+BSRP

(b) Probability of service failure

Figure 2.2: Impact of increasing demands for a topology with ten nodes.

first step by selecting the shortest backup paths between randomly selected nodes
of backup service instances. Consequently, MLSP+POBS is the second heuristic, in-
cluding both optimal and greedy solutions.

Further details of the heuristics can be found in the original paper [ERF20] (Ap-
pendix A).

Key Results

We evaluated fault-tolerant JSAR and the proposed heuristics in terms of latency
cost ((objective) Function (2.1)) and probability of service failure (PoSF) for increas-
ing number of services and demands. PoSF is the ratio of the number of services
without backup nodes (due to insufficient node resources) to the number of all ser-
vices. It represents the percentage of services that fail at most in case of an arbitrary
node failure and is used as the fault tolerance metric. For the experiments, we
used randomly generated topologies and service overlays. Our main goal for the
evaluation was to achieve 100% fault tolerance against single random node failures
with JSAR while satisfying all QoS requirements, and to reveal the computational
overhead required for the optimal solution.

Figure 2.2 compares heuristics with the resilient (Optimal-R) (i.e., extended fault-
tolerant JSAR) and non-resilient (Optimal) (i.e., the original JSAR). As shown in Fig-
ure 2.2a, the Optimal solution has the minimum latency cost, and MLSP gets close to
the optimum. However, MLSP induces a PoSF of 20-60% as depicted in Figure 2.2b
because of the pre-deployed services without backups. After Optimal-R (having 0%
PoSF), MLSP+POBS offers the highest fault tolerance, which gets better from 40% to
5% with an increasing number of demands. However, in the POBS phase, it cannot
find the optimum paths due to random search of the available nodes and becomes

21

2-4 times more costly compared to Optimum-R. While RDDP+BSRP is less costly than
MLSP+POBS in terms of latency, it is negatively affected by the increasing demands
and has a PoSF up to 50%. The reason is, increasing fault tolerance requires allo-
cating more redundant resources, which might be reserved for active demands to
assign shorter paths.

More comprehensive results on the model complexity, scalability, and parameter
analysis can be found in the original paper [ERF20] (Appendix A).

Takeaways

• Although heuristics can find near-optimal solutions for JSAR, it is not possible to
get similar results for fault-tolerant deployment, e.g., 0% PoSF, especially when
the service overlay becomes more connected, i.e., with an increased service in-
terdependency. Therefore, an accurate service overlay model should be defined
depending on the domain requirements to avoid redundant computational ef-
fort and to obtain better (yet accurate) results. This also answers the RQ.S1.1 by
revealing the success of both the optimal and heuristics fault-tolerant solutions.

• Even for small service overlays, e.g., from 3 to 7 demands, it takes a long time
with a decent computational cluster to find an optimal solution against all single
node failures due to the significant complexity of JSAR. Therefore, further meta-
heuristics are required for a better formulation. This takeaway also addresses the
RQ.S1.2 related to the complexity of the fault-tolerant design.

2.2.2 Resource Efficiency via Shared Backup Protection

As stated in the previous section, finding an optimal and fault-tolerant service de-
ployment and routing configuration against different failure scenarios is highly com-
plex. Therefore, we split that problem into three phases and develop different opti-
mization models that need to be solved subsequently. In this split model, JSAR-SP
(in which SP stands for shared protection), we employ a shared backup scheme
instead of reserving dedicated resources for each backup path to reduce necessary
backup capacity. By saving resources, it enables scaling an MCS with additional
services and demands with potentially better QoS, e.g., shorter working paths. Ac-
cordingly, the overall goal is reaching the optimal solution more quickly for larger
problem instances and also utilizing the existing resources more efficiently.

The three phases of the JSAR-SP is shown in Figure 2.3. In the bootstrapping phase,
the JSAR finds an initial service deployment and the shortest working paths. In
the second phase, shared backup protection, another MILP model Backup-ILP es-
tablishes shared backup paths against possible link failures on the working paths
found in the first phase. It minimizes the use of backup resources by maximizing
capacity sharing. In the service migration phase, the JSAR searches for the backup

22

Figure 2.3: Three phases of the JSAR-SP.

nodes, which communicate with other host nodes with minimum latency, to migrate
services in the case of node failures on a reduced problem set. Here, the JSAR is re-
formulated using column generation methods to solve larger problem instances. For
the rest of this section, the shared backup protection phase is presented in more de-
tail as the first, and the third phases are already variations of the JSAR. Besides, new
heuristics are introduced to perform backup capacity sharing for scaling problem
instances.

As presented in detail in [Rak12], for a demand d with the requested throughput hd,
the respective backup path at link e in the case of shared protection would require
the allocation of (i) no extra capacity if the amount of shareable capacity c+ already
allocated to backup paths at link e is at least hd or (ii) the extra capacity of hd − c+

in all other cases. The shareable capacity can be considered as the capacity already
reserved for a backup path of another demand q that is accepted earlier and not
affected by the same link failure affecting a working path of d. In case hq < hd, extra
capacity hd − hq needs to be reserved at the link even though hq amount of capacity
can be used by both q and d in case of (different) link failures.

Accordingly, the Backup-ILP is given below. Using the initial configuration (i.e.,
working paths) as the input, a set Hd is constructed for each d. It includes demands
{q1, q2...} that (i) induce shareable backup capacity with demand d as they have
disjoint working paths with d and (ii) have larger traffic demands hq > hd. As
a result, if q ∈ Hd is assigned on link e with the available capacity c∗e , hd is not
necessary to consume extra capacity. The binary decision variables zdp and z∗de
represent whether demand d is assigned to path p ∈ Pd̄ and link e, respectively.

23

Here, Pd̄ is a set of disjoint paths to the working path of d obtained from the previous
phase, and it is computed beforehand. The other decision variable gde shows if any
q ∈ Hd is already assigned to link e. ¯gde is the negation of gde.

min ∑
e∈E

∑
d∈D

z∗de ¯gdehd (2.11)

∑
p∈Pd̄

zdp = 1 ∀d ∈ D (2.12)

z∗de ≥ zdp ∀d ∈ D, ∀e ∈ E, p ∈ Pd̄ ∧ e ∈ p (2.13)

z∗de ≤ ∑
p∈Pd̄,
e∈p

zdp ∀d ∈ D, ∀e ∈ E (2.14)

gde ≥ z∗qe ∀d, q ∈ D, ∀m ∈ Hd, ∀e ∈ E (2.15)

gde ≤ ∑
q∈Hd

z∗qe ∀d ∈ D, ∀e ∈ E (2.16)

∑
d∈D

z∗de ¯gdehd ≤ c∗e ∀e ∈ E (2.17)

In the model, (objective) Function 2.11 minimizes the total backup resources by
enforcing capacity sharing. It eventually increases resource efficiency and decreases
the design cost of the system. Constraint 2.12 ensures exactly one backup path
assigned for each demand d. Constraints 2.13 and 2.14 configure z∗de for each link
e checking if p involving e is a backup path for demand d, i.e., zdp = 1. Similarly,
Constraint 2.15 and 2.16 configure gde checking if any demand q ∈ Hd is assigned
to link e. Lastly, Constraint 2.17 ensures that the required resources for d with the
highest traffic demand are reserved.

Heuristics

The three phases of JSAR-SP essentially handle (i) service deployment satisfying de-
mands, (ii) shared link protection scheme minimizing the use of link resources, and
(iii) service migration scheme for node protection. We also propose a 5-step heuristic
to cover these phases with significantly lower computational complexity. Figure 2.4
shows the corresponding steps. Step 1 (Service deployment) and step 3 (Finding
working paths) correspond to the bootstrapping phase, which performs initial ser-
vice deployment and assignments of shortest working paths. In step 2 (Shared link
protection), necessary backup paths are found for each demand in a way to maxi-
mize the shared use of links similar to the shared protection phase. Note that instead
of finding working paths in advance, the heuristics perform a shared link protection
scheme before assigning working paths, i.e., step 3 before step 2. The reason is that

24

the assignment of working paths restricts the available links to be used in backup
paths significantly, as they should be disjoint not to be affected by the same single
link failure (and be eligible for capacity sharing). However, after reducing the num-
ber of used links and required backup capacity by sharing, there are still sufficient
resources left to establish shorter working paths later. Step 4 (Assigning remaining
demands) plays a complementary role to steps 1-3 to ensure that the working and
backup paths are assigned for all demands with minimal path lengths and maximal
backup capacity sharing. Lastly, step 5 (Finding backup nodes) is to find alternative
service configurations utilizing the shortest available paths to set up in the case of
failures, corresponding to the service migration phase. In the rest of this part, steps
2 and 3 are explained in more detail as they directly correspond to the Backup-ILP

model introduced at the beginning of this section. The other steps reuse several
heuristics presented in Section 2.2.1.

Step 1. Service
deployment

Step 3. Finding
working paths

Step 5. Finding
backup nodes

Step 2. Shared Link
protection

Bootstrapping Shared Protection Service Migration

Step 4. Assigning remaining demands

H
eu

ri
st

ic
 S

te
p

s

Figure 2.4: The correspondence between the heuristics and the JSAR-SP.

A service hosted at a particular node can receive and send data to different services
on other nodes to satisfy various communication demands. This interdependency
leads to a chain of services. When such services are allocated at physical nodes,
it is convenient to define a communication backbone connecting and covering all
those nodes to be shared by multiple demands in case of failures. Accordingly,
in step 2, Secondary Backup Backbone (SBB) algorithm distinguishes the chain of
services whose host nodes can also be connected sequentially to form a backup
backbone. That is, the service chain in the service overlay is also reflected as a
chain of physical nodes forming a single backbone. For each service chain, SBB

constructs a modified Steiner tree [MP92] on the physical network. A Steiner tree
is defined as a connected subgraph including a set of selected nodes, e.g., terminal
nodes, belonging to a graph. SBB constructs a secondary Steiner tree, which selects
the shortest disjoint path to the shortest path between two terminal nodes so that
the shortest paths can be (potentially) used as working paths in the next step. As
a result, this backup backbone can be utilized by all services hosted at the terminal
nodes when their respective paths fail.

25

In the third step, the Mutually Disjoint Paths (MDP) algorithm calculates the working
paths. They should be mutually disjoint if the backup paths of the respective de-
mands are shared. Even though there is a single backup backbone constructed in the
previous step, each demand d ∈ D uses only a segment of the backbone GSteiner, i.e.,
a path between the nodes hosting the services of that demand, that could be shared
or not. Therefore, when finding a working path, it is first checked if d utilizes any
capacity shared with another demand q ∈ Hd with an assigned working path wq
and ensure that they are disjoint. Another important issue is, that the working path
of d, pw

d should be disjoint to the respective segment of the backup backbone pb
d used

for that demand. Those two steps eventually construct the fault-tolerant communi-
cation scheme employing capacity sharing. Further details of the heuristics can be
found in the original paper [ERF21] (Appendix B).

Key Results

We evaluated the JSAR-SP and the heuristics in terms of probability of service fail-
ure (PoSF) and sharing efficiency. The PoSF is the same measure used in Sec-
tion 2.2.1, and the sharing efficiency represents the capacity gain by sharing. It
is the ratio of the difference between shared and dedicated backup capacity to the
dedicated backup capacity without sharing. Our main goal in this evaluation is
to show that saving backup capacity with JSAR-SP enables more available resources
and allocating more services and demands while still achieving 100% fault tolerance
against single node failures.

We designed a realistic in-plane network topology with isolated aircraft partitions,
e.g., node, tail, wings, and cabin, and restricts the service placement according to
the nodes’ capabilities in different partitions. Besides, the generated service overlays
reflect well-defined service characteristics, including data demands and criticality.
For benchmarking, random topologies and service overlays are used as well. In
the figures below, while Optimal and Heuristic values represent the optimal and the
heuristic’s results for the given in-plane topology, Optimal-R and Heuristic-R/ show
the results for random networks of the same size.

Figure 2.5 shows the PoSF in case of a single node failure for increasing commu-
nication demands. As the optimal solution guarantees finding a backup path for
each demand and a backup node for each service, it protects the network against
all potential single node and link failures. Therefore, the optimal deployments at
both in-plane and random topology result in 0% PoSF. Similarly, the heuristic is also
successful in reserving the required capacity in backup paths for all the demands.
However, in the last stage of the heuristic, there are some scenarios where it fails to
find alternative nodes to migrate services due to (i) insufficient amount of node re-
source capacity, (ii) link capacity, or (iii) lack of suitable paths satisfying the latency
requirements. For the in-plane topology and random networks, our heuristic keeps
the PoSF below 5% and 10%, respectively.

26

9 12 15 18 21
Number of demands

0

10

20

30

40

50

Po
SF

 (%
)

Optimal
Heuristic
Optimal-R
Heuristic-R

Figure 2.5: Probability of service failure in
case of a single node failure.

9 12 15 18 21
Number of demands

20
30
40
50
60
70
80
90

100

Sh
ar
in
g
ef
fic
ie
nc
y
(%

) Optimal
Heuristic
Optimal-R
Heuristic-R

Figure 2.6: Sharing efficiency.

Figure 2.6 shows the sharing efficiency, which is the gain of using the shared ca-
pacity instead of dedicated capacity for increasing communication demands. While
Backup-ILP can utilize backup paths to decrease the required backup capacity by
50-75%, the heuristic gives steady results around 50% and 40% backup capacity
savings for in-plane (Heuristic) and random (Heuristic-R) topologies.

Further analysis of capacity sharing and scalability, and the details of in-plane topol-
ogy and service overlays can be found on the original paper [ERF21] (Appendix B).

Takeaways

• An efficient use of resources by capacity sharing leads to a better service deploy-
ment that leaves sufficient resources for backup service instances and paths. In
comparison to the results of the heuristics in Section 2.2.1, we obtain 4-5 times less
PoSF for larger problem instances. It eventually indicates better fault tolerance
with less computational effort and answers the RQ.S1.1.

• By rearranging backup paths, it is possible to save more than 70% of backup
resources, which substantially impacts the design cost and resource utilization.
This also addresses the RQ.S1.2 in terms of the cost of optimal and fault-tolerant
service-oriented design.

27

2.3 Autonomy
—via Bio-inspired and Distributed Service Orchestration

This section introduces a distributed and bio-inspired service orchestration frame-
work to solve the JSAR problem and to answer the RQ.S2. It minimizes the depen-
dency of MCSs on a controller and eventually provides autonomy for the service
configuration.

Currently, in different areas such as SDN and cloud computing, service alloca-
tion, and routing problems are handled by a controller with network-wide visi-
bility [MSRL+14]. Similarly, our first proposal JSAR can be solved centrally by a
computationally capable entity, i.e., by a dedicated controller or server. However,
centralized approaches usually have limited scalability and introduce a single point
of failure and thus safety risks for MCSs. Therefore, decentralized and distributed
orchestration techniques are required.

For distributed and self-organized task allocation, bio-inspired algorithms (BIAs)
are employed in various networking domains [LD07, DA10]. They adapt the colony
behavior of different animal species, such as ants and bees that collaborate in nature
via specific communication patterns to solve domain-specific problems. However,
those existing works on distributed service management do not reflect the char-
acteristics of mixed-criticality and interdependent services of MCSs. Besides, it is
usually not possible to justify their performance and complexity compared to the
centralized solutions. Therefore, the following questions arise in addition to the
RQ.S2:

• RQ.S2.1: How efficient is a self-organized service orchestration framework com-
pared to the traditional centralized approach?

• RQ.S2.2: What is the additional complexity and cost of a distributed service allo-
cation and routing solution?

Accordingly, the following publication introduces a bio-inspired ant colony opti-
mization (ACO) framework to solve the JSAR problem distributedly with minimum
dependency on a controller and compares it with JSAR3:

Doğanalp Ergenç, D. Sorejevic, M. Fischer. Distributed Bio-inspired

Configuration of Virtualized Mission-critical Networks. IEEE Global

Communications Conference (GLOBECOM), 2022.

3For the given publication, the main contribution belongs to this thesis. The second co-author
evaluated an early version of the proposed framework in the context of his master’s thesis. However,
it is here remodeled from scratch and extended with an optimization model. The evaluation is also
re-conducted with new metrics. The third co-author helped to improve the quality of the paper with
his valuable feedback.

28

In the rest of this section, we present the details for adaptation of ACO to the JSAR
problem and the results of this model to answer the mentioned questions. The
respective publication [ESF22] is also attached in Appendix C.

Bio-inspired and Distributed Service Orchestration

Our bio-inspired framework performs service allocation and routing consecutively
together with a redeployment phase in three stages.

1. First, all nodes are initialized with the information on available services and
inter-service communication demands. They start the service allocation stage by
selecting a set of services probabilistically within their available resources utiliz-
ing ACO functions4. They then broadcast their selections and obtain some of
them after reaching a consensus in multiple iterations.

2. Secondly, according to the given deployment, they initiate the path discovery and
routing stage leveraging a modified version of the distance-vector routing algo-
rithm and the adaptation of the ACO functions. Note that each node utilizes
two ACO functions for these stages: (i) the first function calculates the probabil-
ity of deploying a particular service, i.e., service probability, and (ii) the second
function is to select a forwarding link probabilistically for a particular demand.

3. When service allocation and routing are handled separately in sequence, a ser-
vice deployment may render inter-service routing infeasible due to the violated
QoS constraints or a lack of sufficient capacity on the particular paths. In the
redeployment stage, the respective services of the violated demands are migrated
to different nodes until finding feasible paths for their intercommunication.

In the formulation of each stage, we consider the safety requirements of MCSs by (i)
avoiding the deployment of several critical services to the same node physical node
and (ii) load-balancing the traffic load to widen the demand assignment instead of
relying on the dedicated shortest paths. Both prevent a system from a single point
of failure and performance bottlenecks, which may cause disruptions in critical ser-
vices and traffic.

In the rest of this section, we explain the different adaptations of ACO functions
to the service allocation and routing stages together and present two alternative
redeployment strategies.

4For the details of the ACO framework, interested readers can refer to the seminal paper by
Dorigo [DG97].

29

Service allocation

The service allocation stage imposes two constraints: A node can host (i) a limited
number of services within its resource capacity and (ii) a limited number of critical
services to avoid a single point of failure. Initially, each node obtains a list of services
S and demands D from a controller unit, which does not maintain or control the
system later on. Then, every node u ∈ V calculates a probability for each service
s ∈ S to decide on the set of services that they can host. The respective probability
function Pu(s) is given in Equation 2.18.

Pu(s) =
µu(s)β

∑t∈S µu(t)β
(2.18)

Here, β ∈ [0, 1] is the ACO learning parameter that adjusts the exploration behavior
of the ACO heuristic and increases the deployment probability of a service. The
threshold function µu(s) of ACO is calculated as

µu(s) =

{
0, if r∗u < τs

max{rv −∑t∈Su
ytu(λotτt + (1− ot)τt), 0} (2.19)

λ in Equation 2.19 represents the weighting factor for the critical services, i.e., os = 1.
It penalizes the deployment of an excessive number of services proportional to their
resource consumption. Each node then calculates a deployment probability starting
from the critical services. The increasing resource consumption here is reversely pro-
portional to the increasing pheromone level in the original ACO framework [DG97].

After deciding on the services to host, all nodes broadcast their decisions together
with the computed result of Pu(s). When there is more than one candidate node for
the same service, the one with the highest probability gets the respective service.
Meanwhile, nodes also identify the remaining unclaimed services. Then, for the
following iterations of the service allocation, they announce which of the remaining
services they can host additionally by calculating probabilities similar to the first
iteration.

Routing

In the routing stage, each node u utilizes two distance functions Du(v) and Di
u(v)

to calculate the probability of forwarding a traffic demand d from to the destination
node v via next-hop i. While Du(v) is the cost of the shortest path between u and
v, Di

u(v) is the cost of the path passing over i and destined to v. Accordingly,
Equation 2.20 computes the given probability as

Pi
uv(d) =

ri
uv(d)α

∑j∈Nu
rj

uv(d)α
(2.20)

30

s1
s2

s3

s3

s2

s1

(a) Strict

P
hy
si
ca
l

O
ve
rla
y

s1
s2

s3

s3

s2

s1

s2

(b) Flexible

Figure 2.7: Different redeployment strategies.

where α is the ACO learning parameter. Moreover, ri
uv(d) is the ACO threshold

function calculated as

ri
uv(d) =

{
0, if Di

u(v) > ld or c∗e < hd
γ1Du(v)

Di
u(v)

+ γ2c∗e
ce

, otherwise
(2.21)

where c∗e represents the available resources on link e ∈ (u, v) and γ1,2 are the weights
s.t. γ1 + γ2 = 1.0 to adjust the impact of the cost and resource utilization. Note that
the link with higher available bandwidth and leading to the path with a lower cost
has a higher probability according to Equation 2.21. Therefore, the link utilization
is reversely proportional to the pheromone level in ACO.

Redeployment

After the initial service allocation, some demands may not be satisfied since (i) the
distance, e.g., in terms of the number of hops, between the nodes u and v hosting
respective services s and t might be too far to satisfy the required QoS or (ii) there
might not be sufficient bandwidth on any available path between those two nodes.
In such cases, our framework follows one of the following redeployment strategies
by (i) deploying duplicate service instances to satisfy the remaining demands or (ii)
migrating the respective services of unsatisfied demands and embedding the service
overlay as it is. They are also illustrated in Figure 2.7.

Strict redistribution: Figure 2.7a illustrates the first redeployment strategy, bia-
strict. It deploys the service overlay as a whole, assuming that each service strictly
requires the data from the preceding service to process and send to the successor
service. In the figure, s2 is deployed on a node between the hosts of s1 and s3
to receive data from s1, process them, and forward to the s3 without losing any
contextual information contained in the input of s1. If the requirements of even one
of the corresponding demands cannot be satisfied, bia-strict migrates the service
instances starting from the services that are least common among deployed demands. In

31

this scenario, s2 could be moved until both demands between s1 − s2 and s2 − s3
are satisfied simultaneously. Eventually, bia-strict triggers several iterations of
redeployment until all demands are assigned. To minimize its convergence time,
bia-strict also penalizes the nodes that fail to host the selected services after each
iteration to avoid the same unsuccessful service allocation. We also propose another
redeployment strategy that trades off extra resource use for a better convergence
time.

Extra service deployment: If the services are not strictly interdependent, it is pos-
sible to deploy two instances of s2 to relax the service allocation constraints s.t.
satisfying s1 − s2 and s2 − s3 separately instead of forming a chain of services. For
such cases, the redeployment strategy bia-flex deploys duplicate service instances
flexibly to satisfy the different demands that utilize the same services. It accordingly
allows multiple nodes to host an instance for any remaining service. Consequently,
both demands between s1 − s2 and s2 − s3 can be assigned to the shortest paths
possible without potentially violating any QoS requirements, e.g., they induce only
1-hop latency in this scenario.

bia-flex loosens the assumption that services in the given overlay are tightly de-
pendent on each in a given order and extends the solution space. However, it also
costs extra node resources to host duplicate service instances.

Key Results

We evaluated our bio-inspired service orchestration framework regarding the fair-
ness in resource utilization and the redeployment cost. We also compared the in-
dividual results with the results of the centralized and optimal solution, which is
obtained from the JSAR by assuming that it is deployed in a centralized controller.
For that, the original objective function (2.1) is replaced with a multi-objective func-
tion (2.22) that ensures fairness by minimizing the maximum link utilization and
node resource consumption and is given below.

min
{

max
{

ϵl ∑
d∈D

∑
p∈P,
e∈p

xdphd : ∀e ∈ E
}

+ max
{

ϵn ∑
s∈S

ysuτs(1 + os(λ− 1)) : ∀u ∈ V
}}

(2.22)

Such an objective (i) balances the resource use, (ii) promotes further configurability
in case of continuous deployment of new services and demands, and (iii) reduces
the risk of a single point of failure that may happen many services and demands
are deployed on the same network elements. Our main goal in these experiments
is to achieve near-optimal results with our distributed framework with a negligible
control overhead.

32

(a) Node resource consumption (b) Link utilization

Figure 2.8: Resource utilization for increasing size of service overlay.

In all experiments, our framework successfully embedded all the services and de-
mands with varying resource utilization and control overhead depending on the
redeployment strategy. Figure 2.8 shows the node resource utilization and link uti-
lization, respectively. The box plots for optimal (orange, dotted), bia-flex (red,
solid), and bia-strict (blue, hatched) show the (averaged) minimum, maximum
(edges of the vertical lines), and mean (mid-line) utilization of the active network
components, and the standard deviation (boxes around the mid-line) in resource
consumption. While a smaller maximum value and standard deviation indicate a
fairer resource usage, the mean utilization shows resource efficiency when increas-
ing the service overlay size.

In Figure 2.8a, bia-flex leads to a higher utilization of node resources than bia-

strict because it requires placing extra service instances. The difference in the
maximum utilization stems from that the nodes with the highest connectivity, i.e.,
the most central ones, tend to host those instances more often. The reason is, that
after multiple redeployment iterations, most of the nodes still cannot satisfy the QoS
requirements of the remaining demands, and such high-connectivity nodes provide
the most suitable routes. In contrast, bia-strict stays closer to the optimal regarding
the mean utilization.

Figure 2.8b shows that bia-strict results in the highest maximum link utilization
and thus causes more link congestion. It leads to a denser service and data traffic
deployment, as all service instances should be connected strictly. In contrast, bia-
flex utilizes a broader range of different links by initiating extra service instances
on different nodes. Therefore, it enables the use of alternative routes. Accordingly,
for the link utilization, bia-flex gives closer results to the optimal solution.

Figure 2.9 shows the redeployment cost of our framework in terms of the extra
service placement and the redeployment (convergence) time. In Figure 2.9a, the

33

60 70 80 90 100
Number of services

5.0

7.5

10.0

12.5

15.0

17.5

20.0
Ex

tra
 se

rv
ice

 p
la

ce
m

en
t (

%
)

bia-flex
bia-strict

100

120

140

160

180

Re
de

pl
oy

m
en

t i
te

ra
tio

n

(a) Cost of redeployment strategies (b) Demand assignment distribution

Figure 2.9: Reployment cost in terms of extra services and iterations.

left y-axis (red) shows the percentage of the services that require extra instances for
bia-flex, and the right y-axis (blue) shows the required number of redeployment
iterations for bia-strict. Note that bia-flex also requires a negligible number of
redeployment iterations, e.g., less than 10 in the given scenarios. As seen in the
figure, while bia-flex can require up to 20% extra instances for the largest service
overlay, bia-strict takes more than 150 redeployment iterations, which induces
further convergence time and also data overhead for the consensus between the
nodes. Therefore, while the former costs extra node resources, the latter requires a
longer time to settle the service configuration.

Although bia-strict requires a high number of redeployment iterations for a
fully-functional network, both heuristics deploy the majority of the demands rather
quickly. Figure 2.9b shows the cumulative percentage of the demand assignment by
the number of redeployment iterations. While bia-flex (red, dashed) deploys all
services and demands under 10 iterations by placing extra service instances, bia-
strict can assign 80% of the demands in the first 30 iterations. The reason is that
the most connected services, i.e., the services utilized by many demands, should be
replaced until they satisfy the QoS requirements of all demands. More results on
scalability and QoS can be found in the original paper [ESF22] (Appendix C).

Takeaways

• Depending on the redeployment strategy, it is possible to obtain closer results to
the optimal in terms of node and link resource utilization, while the JSAR with
multi-objective function can optimize both at once. However, our framework is
significantly faster than JSAR, which corresponds to a centralized solution. This
shows the efficiency of distributed and bio-inspired framework in comparison to
the centralized and optimal solution, and addresses the RQ.S2.1.

34

• It is possible to use bia-flex for dynamic or incremental service and demand as-
signment as it has more than 10 times better convergence time with up to 20% ex-
tra resource cost. Both can also be used together to first deploy a fully-functional
network with all demands in place using bia-flex and then to shift to bia-strict

for incoming service demands to have better resource efficiency. This answers the
RQ.S2.1 related to the cost of a distributed solution.

35

2.4 Security
—via Moving Target Defense for Service-oriented MCSs

Service-oriented architecture provides additional flexibility to MCSs to withstand
and mitigate attacks, e.g., by migrating critical services and data flows. Accordingly,
this section introduces a spatio-temporal model that reconfigures the services over
time by utilizing JSAR within moving target defense (MTD) strategies to answer
the RQ.S3. These strategies specify when and how to reconfigure a system to strip
attackers from their asymmetric advantage from long-term reconnaissance of MCSs
and prevent targeted attacks, e.g., advanced persistent threats (APTs).

However, MTD via service reconfiguration requires additional spare resources and
induces further reconfiguration overhead in terms of an increased delay and po-
tential service interruptions to migrate or reinitiate the services. Another challenge
is, a single MTD strategy should be effective against many likely attack scenarios.
Therefore, the following questions arise in addition to the RQ.S3:

• RQ.S3.1: How (often) should services be reconfigured to prevent calibrated at-
tacks and block persistent threats without interrupting service availability?

• RQ.S3.2: How effective is dynamic service (re-)configuration in hindering attack-
ers’ reconnaissance efforts and persistent threats?

Several works have revealed theoretical bounds for the cost of MTD strategies or
propose MTD solutions only for singular and domain-specific attacks. In contrast,
the following publication introduces a more realistic model for service-oriented
MCSs, combining JSAR with an attacker-defender game to optimally reconfigure
the service deployment over time5:

Doğanalp Ergenç, F. Schneider, P. Kling, M. Fischer. Moving Target

Defense for Service-oriented Mission-critical Networks. Interna-

tional Conference on Computer Communications and Networks (ICCCN),

2023.

In the remainder of this section, we first explain the basics of the attacker-defender
game. It is then formulated as a MILP model, PLSCH, to provide an optimal recon-
figuration schedule against various attack scenarios. Then, we combine JSAR and
PLSCH to find feasible service configurations within this schedule. The respective
publication [ESKF23] is attached in Appendix D.

5In the forementioned publication, the main contribution belongs to this thesis. The second
co-author contributed to writing preliminaries explaining an existing game-theoretical model. All
co-authors also helped to improve the quality of the paper with their valuable feedback.

36

Moving Target Defense for Service-oriented MCSs

MTD is an umbrella term that covers dynamic reconfiguration and adaptation strate-
gies for various systems to defend them against their respective security threats.
They should be developed regarding the critical assets of the target system and the
characteristics of its threats. In this thesis, MTD strategies are formulated within
an attacker-defender game, Probabilistic Learning Attacker and Dynamic Defender
(PLADD), which was originally proposed by Jones et al. [JOG+15, JOG+17]. The
PLADD model captures the varying timing characteristics of the attacks, especially
relevant to critical networks, which are exposed to various threats, from relatively
fast reconnaissance attempts to well-calibrated attacks. In the context of SOA, we
consider services, especially the safety-critical ones, as the most critical assets to be
protected with MTD strategies.

Time
horizon

Attack 1 Attack 2 Attack 3

time-to-success

Attack 1 is
successful

Take Morph

Attack 3 is
successful

Defender Defender Attacker Attacker

t0 t7 t10 t22t15

C
ap

tu
re

A
tt

ac
k

Sc
en

ar
io

Ev
en

ts

Figure 2.10: An example of the PLADD game.

Figure 2.10 shows the basics of the PLADD game. It involves (i) an attacker with
learning capabilities and (ii) a defender capable of two different actions competing
to gain control of the system within a given time horizon, i.e., the system’s opera-
tional time. An attacker can conduct successive attacks (red blocks) that each take a
certain time to be completed, i.e., having time-to-success. As a result of a successful
attack, the attacker takes control of the respective services or resources (light red
background from t7 to t10). When an attacker completes an attack, it might also
learn about the system, and its subsequent attack takes less time, e.g., attack 2 is
shorter than attack 1.

The role of a defender is to conduct defensive actions (vertical dashed lines) to pre-
vent an attacker from completing its attack and to keep control over the system.
A take action usually represents an instant intervention, e.g., resetting a service in-
stance, while a morph represents substantial system changes, e.g., migration of mul-
tiple service instances among the nodes with diverse configurations and rerouting
their inter-communication. After each action, the defender regains control over the
system in case it is compromised by the attacker. Additionally, after a morph action,
the attacker loses its insights on the system, i.e., what it learned from the previous

37

attacks, and thus has a longer time-to-success for its following attacks. Therefore,
the attacker immediately starts a new attack after each action. Accordingly, depend-
ing on the potential attack scenarios towards the target system, the defender should
implement a schedule of actions so that even though it cannot directly detect any
compromised assets or malicious attempts, it can block persisting attacks against
the critical parts of the system. As a restriction, it cannot take those actions too of-
ten since they may cause service interruptions and may hinder the strict availability
requirements of MCSs. Therefore, the defender has a limited budget to conduct its
defensive actions.

Eventually, the overall goal of the PLADD game is to find a schedule of sequential
defensive actions against potential security threats with certain timing characteris-
tics, considering the capabilities and limitations of both attacker and defender sides.

PLADD Scheduling (PLSCH)

We formulated the forementioned PLADD as a MILP model, PLADD-Scheduling
(PLSCH), to obtain concrete and optimal time schedules for defensive actions. This
formulation also renders its combination with the JSAR easier, whose details we
present in the following subsection. Originally proposed in [PPP+18], PLSCH repre-
sents the attacker-defender game as a combinatorial job assignment problem. It first
considers a system of m ∈ N machines over a time horizon of T ∈ R+ time units.
Each machine m comes with a job sequence Jm = (dm1, di2, . . .) of at most n + 1 jobs
which it must process. The duration dij > 0 of the jth job on machine m specifies
how long it takes machine m to process its jth job. In order to start processing the
jth job of Jm, machine m must have finished the first j − 1 jobs. Additionally, the
starting time of jobs is restricted to times t ∈ [0, T) at which one of up to n many
takes has been scheduled. So if a take is scheduled at time t (and only then), any
machine m idle (i.e., currently not processing a job) may start to process its next job
from Jm.

In the job assignment problem, each machine m represents an attack scenario, and
each job j represents an attack as a part of a particular attack scenario. Here, the
order of jobs on a machine indicates different, intentional, and organized attack
steps of, for instance, a well-calibrated and persistent attack. A finishing job after dmj
amount of time means a completed attack after which the attacker captures control
of (possibly certain parts of) the respective system. It is assumed that the starting
time of a job corresponds to when the defender takes action. This assumption infers
that the attacker starts to conduct a new attack as soon as the defender takes action.
Moreover, any time difference between the end of a job and the beginning of the next
job represents the time that the attacker captures control over the system. With this
interpretation, the objective in PLSCH becomes to schedule the maximum number of
jobs over all machines during [0, T] so that such an idle time between any two jobs
is minimized, i.e., minimizing the attacker’s capture time.

38

Note that the defender does not know which particular attack scenario could occur.
Instead, it aims to have a single schedule of defensive actions that could protect the
system against many potential attack scenarios at once. Figure 2.11 illustrates this
difficulty. While there is no idle time on the first machine (attack scenario 1), the
same schedule results in more idle times on the other machines (attack scenarios 2
and 3). It means that even though this MTD schedule would be effective against
the first attack scenario, the second and third scenarios would result in a higher
attacker’s capture time.

Sc
en

ar
io

 1
Sc

en
ar

io
 2

Sc
en

ar
io

 3

Take
Attacker
captures

Take Take Take

Figure 2.11: A single defensive schedule for multiple attack scenarios.

The model below formulates PLSCH as the described job assignment problem. It
takes (i) a number of machines with different sequences of jobs (potential attack
scenarios in the original problem) and (ii) a fixed defender budget as input. It results
in a schedule for the multiple-machine job assignment problem, which represents
an MTD schedule of take actions. The model uses two decision variables, xt and
ymjt. xt is a binary decision variable that represents if a take action is scheduled at
the time instance t < T. ymjt is the other binary variable to decide if a job j ∈ Jm of
machine m ∈ M is scheduled to start at the time instance t.

The (objective) Function 2.23 maximizes the number of assigned jobs to eventually
minimize the idle time (minimizing the attacker’s control over the system in the
PLADD problem). Constraint 2.24 ensures that j can be scheduled only once on m,
and Constraint 2.25 ensures that a job k cannot be scheduled on a machine m before
all other jobs j in the job set Jm s.t., j < k are placed. Constraint 2.26 ensures that
two consecutive jobs j and k s.t. k = j + 1 cannot overlap as the successor job k
restricted to start after the whole duration of j, dmj, s.t. t + dmj ≤ u, where t and u
are the starting times of j and k, respectively. Those three constraints guarantee that
all attacks of a potential attack scenario are considered in the given order, timing
characteristics, and interdependencies.

Constraints 2.27 and 2.28 represents the dependencies between two decision vari-
ables. Constraint 2.27 ensures that (i) no job j can be scheduled at t unless there is

39

a defender’s action s.t., xt = 1, and (ii) at most one job can be placed on machine
m at a given time instance t. Complementarily, Constraint 2.28 implies that there
should be at least one job scheduled in one of the machines if the defender takes
action. Note that these constraints are not directly parts of the original PLADD
model, but are related to the representation of the job assignment problem. Lastly,
Constraint 2.29 limits the budget β of the defender in terms of the number of actions.

max ∑
m∈M

∑
j∈Jm

T

∑
t=0

ymjtdmj (2.23)

T

∑
t=0

ymjt ≤ 1 ∀m ∈ M, ∀j ∈ Jm

(2.24)
T

∑
t=0

ymjt −
T

∑
t=0

ymkt ≥ 0 ∀m ∈ M, ∀j, k ∈ Jm, k = j + 1

(2.25)

(dmj + t)ymjt + (T − u)ymku ≤ T

∀m ∈ M, ∀j, k ∈ Jm, k = j + 1, ∀t, u ≤ T (2.26)

∑
j∈Jm

ymjt ≤ xt ∀m ∈ M, ∀t ≤ T

(2.27)

∑
m∈M

∑
j∈Jm

ymjt ≥ xt ∀t ≤ T

(2.28)
T

∑
t=0

xt ≤ β (2.29)

While this model specifies when to take actions for the defender, i.e., the temporal
schedule, it is also required to decide on which service configuration should be set,
i.e., the spatial configuration, for moving the critical assets within each defensive
action. Accordingly, we present the overall spatio-temporal framework, PLSCH-MTD,
in the next subsection.

PLADD-Scheduling MTD (PLSCH-MTD) Optimization Model

The PLADD-Scheduling MTD (PLSCH-MTD) combines JSAR (green blocks) and the
PLSCH (red blocks) as shown in Figure 2.12. It first utilizes JSAR to generate a set
of feasible service configurations and then PLSCH to schedule those configurations
within MTD actions. Here, an action is the reconfiguration of services by migrating

40

service instances and rerouting their communication paths. The PLSCH-MTD enforces
at least a certain amount of changes between successive configurations to increase
the chances that the attacker loses its insights on the service configuration. However,
excessive changes between two configurations potentially induce reconfiguration
overhead and may cause interruption of services. As a result, the distance between two
configurations deduces a trade-off between defensive capabilities and reconfiguration
overhead.

Figure 2.12: The overall optimization framework: PLSCH-MTD.

Having a large set of feasible configurations, a defender should decide which config-
uration it sets next as a defensive action. It requires evaluating which configurations
are eligible to be set consecutively so that this reconfiguration imposes a sufficient
amount of changes in the system. To measure that, we propose a new metric, dis-
tance, computed between two configurations c and e as

|c− e| =
∑s∈S ∑v∈V |qc

sv − qe
sv|+ ∑d∈D ∑p∈P |zc

dp − ze
dp|

|S|+ |D| (2.30)

In Equation 2.30, qc
sv and zc

dp represent the service deployment and demand assign-
ment variables (see Section 2.1) for the configuration c, respectively. The distance

41

between two configurations c and e is proportional to (i) the number of service mi-
grations, i.e., services migrated to different nodes than the previous configurations,
and (ii) reroutings, i.e., traffic streams moved to different paths. Equation 2.30 can
also be used to calculate the migration overhead that may cause a certain delay and
configuration effort for each reconfigured component.

The PLSCH-MTD calculates the eligibility of each combination of potential configura-
tions c ∈ C in advance, considering a threshold distance κ given as input. Two con-
figurations can be set consecutively only if there is a sufficient distance in-between
s.t., |c− e| > κ, which is represented as αce = 1. Accordingly, Constraint 2.31 ensures
that each action involves two eligible configurations satisfying the given threshold
distance as follows.

ymjt + ymk f − 1 ≤ ∑
c∈C

∑
e∈C

actae f αce

∀m ∈ M, ∀j, k ∈ Jm, k = j + 1, ∀t, f ≤ T (2.31)

act is a binary decision variable, s.t. act = 1 if the system has the service configura-
tion c at time instance t as a result of a defender action. Similar to the constraints
of the JSAR, this constraint is also linearized to simplify the overall model. Con-
straint 2.32 ensures that a respective configuration is assigned at t if a defensive
action is taken s.t. xt = 1.

∑
c∈C

act ≤ xt ∀t ≤ T (2.32)

Lastly, Constraint 2.33 avoids the reuse of the same configuration for the given
system duration T to prevent an attacker from estimating the next configuration.

T

∑
t=0

act ≤ 1 ∀c ∈ C (2.33)

Attack Scenarios

Several authors of related work tackle single attack scenarios, which cannot pro-
vide an optimal MTD schedule against multiple potential attack patterns [TEK14,
TMMI16]. More theoretical related work does not reflect realistic attacks well since
they only use probability distribution functions for attack generation [JOG+15, JOG+17].
Moreover, data on actual attacks against MCSs is limited to public reports and white
papers that partially include attack durations and lack details regarding a complete
attack timeline [Pol17]. Therefore, it is difficult to obtain the complete picture of spe-
cific attack paths and the duration of advanced attacks. Accordingly, we model dif-
ferent attack types and scenarios considering the recent security incidents in MCSs.
An attack scenario is the combination of several individual attack steps. Those sce-
narios are then used to evaluate the defensive strategies that PLSCH-MTD provides.

42

Timing characteristics of attack steps: We first define three attack types in terms
of their duration: long, medium-length, and short attacks. The length of an attack
represents its time-to-success value in the PLSCH model. Moreover, we introduce
a new variable, Λ, the attack scale, to set the relative lengths of different attacks in
proportion to a common design parameter. Accordingly, the length of each attack
is uniformly sampled from an interval proportional to Λ. While higher Λ values
provide a higher number of shorter attacks, the opposite results in fewer but longer
attacks. The attack types are characterized as follows:

• Long attack: It represents the longest phases of an attack scenario, e.g., recon-
naissance, developing necessary tools, and executing relatively complicated at-
tack steps. The length of long attacks is sampled from the range of [0.1Λ, 0.3Λ],
s.t., it lasts 20% of a scenario with 10% deviation for Λ = T.

• Medium-length attack: It represents a certain number of successive attack steps
that require significant time, e.g., encrypting a large amount of data or doing
lateral movement across different network components. A medium-length attack
is sampled from the interval [0.05Λ, 0.15Λ].

• Short attack: It represents a combination of successive attack steps with short
execution time, e.g., changing the configuration of a component, modifying log
files, etc. Their length is sampled from the interval [0.0025Λ, 0.075Λ] taking on
average 5% of an attack scenario.

Composition of attack scenarios: We also define four attack scenarios that re-
flect the characteristics of common security incidents that have recently occurred in
critical networked systems. They are composed of the attacks described above in
dependence on different attacker goals. Each attack scenario takes at most T time,
i.e., contains attack steps in a total duration less than T.

• Calibrated attacks: Calibrated attacks target specific components, technologies,
and protocols in an MCS. Therefore, they require detailed system-specific knowl-
edge and special exploits that induce long reconnaissance and development times.
After acquiring access to the system, the attacker conducts a well-targeted se-
quence of attacks to potentially multiple components. Accordingly, we compose
calibrated attack scenarios of (i) an initial long attack and then (ii) randomly se-
lected medium-length and short attacks.

• Lateral movement: After gaining access to the system, an attacker can move later-
ally through the network to find critical services or sensitive data. While this still
requires an initial reconnaissance time, the attacker should also discover further
vulnerabilities to continue its lateral movement [WHK+19], which imposes rela-
tively shorter discovery campaigns. Meanwhile, gaining access to the other com-
ponents potentially requires conducting more spontaneous attacks. Accordingly,

43

we compose lateral movement scenarios of (i) an initial long attack for reconnais-
sance, (ii) several short attacks for exploitation (between one to three attacks in our
model), (iii) medium-length discovery periods to move laterally, and (iv) repeating
(ii) and (iii) steps through the movement.

• Ransomware: Ransomware attacks spread a generic malware to encrypt files on
the target systems and make them inaccessible. These attacks usually start with a
phishing attempt or malvertising [OAMAr21]. Then, the attacker can wait a long
time to discover the most sensitive data or cause the most damage to the target
system at the right time. Lastly, it requires several operations for encrypting
and copying the respective data. Accordingly, we compose these scenarios of
(i) a medium-length penetration time using one of the mentioned techniques, (ii)
a long(er) discovery and activation time, and (iii) short operations for obtaining
encrypted data as many as their total duration stays under T.

• Zero-day: Lastly, zero-day scenarios represent the threats that have not been en-
countered and thus not analyzed yet. They are composed of randomly-selected
long, medium-length, and short attacks with a total duration of T.

Alternatively, it is possible to defend against different scenario types at once, e.g.,
generating several instances per scenario simultaneously, which is referred to as
mixed scenarios in the evaluation part. More details and examples of the attack
scenarios can be found in the original paper [ESKF23] (Appendix D).

Key Results

We evaluated PLSCH-MTD in terms of the attacker’s capture time (ACT) for an in-
creasing number of attack scenarios and defender budget. ACT is the percentage
of the time that the attacker gains control over the system after a successful attack
until the defender takes an MTD action. It is measured by the ratio of the total
gap between each consecutive job across all machines in PLSCH to the total length
of time horizons, i.e., T ∗ |M|. We generated many samples of the described attack
scenarios to evaluate the challenges that different compositions of varying attacks
impose. We also experimented with different values of the inter-configuration dis-
tance threshold. As a result, we set it to 15% as it provides several reconfiguration
options and still enforces the attacker to rediscover the service configuration. Lastly,
we generated random network topologies and service overlays. Our goal in these
experiments was to show that PLSCH-MTD can provide MTD strategies that protect
against several attack scenarios simultaneously, and they can be even more effective
proportional to the defensive budget.

Figure 2.13a shows the impact of an increasing number of attack scenarios on the
ACT. Regardless of the scenario, we observe only a subtle increase from 1% to 3% in
ACT. However, defending against multiple scenarios imposes a base challenge that

44

3 6 9 12 15
Number of attack scenarios

10

15

20

25

30
Av

g.
 a
tta

ck
er
 c
ap

tu
re
 ti
m
e
(%

) calibrated
lateral
ransomware

zeroday
mixed

(a) Increasing number of scenarios

9 10 11 12 13
Avg. number of attacks per scenario

10

15

20

25

30

35

40

Av
g.
 a
tta
ck
er
 c
ap
tu
re
 ti
m
e
(%
) calibrated

lateral
ransomware

zeroday
mixed

(b) Increasing number of attacks

Figure 2.13: The impact of varying attack scenarios on the ACT.

results in 15-25% ACT. The results indicate that although an MTD strategy remains
protective against an increasing number of attack scenarios, it is still difficult to
defend against even few concurrent scenarios.

The impact of the type of attack scenarios on ACT is more substantial than the im-
pact of their quantity. In Figure 2.13a, defending against ransomware is the most
challenging with 25% ACT since it consists of several short attacks that can be ac-
complished. Other scenarios are similarly threatening with 15-18% ACT. Therefore,
the effectiveness of PLSCH-MTD is highly dependent on the actual attack scenario.

To evaluate the impact of the number of attacks per scenario, we set T = 60 and
Λ ∈ [90, 50] (in a reversed order). Decreasing Λ shortens the length of individual
attacks and increases their number per scenario, which results in 9-13 attacks for the
given range of Λ values. Accordingly, Figure 2.13b shows the ACT measurements
for increasing attacks per scenario. In the figure, the ACT does not significantly
change for 9 to 12 attacks within each attack scenario as there is enough defender
budget (β = 12). This also affirms the results regarding the base challenge (15-25%)
of defending against multiple scenarios in Figure 2.13a. However, the attacker’s
success increases by 5-10% for 13 attacks due to the insufficient defender budget.

Figure 2.14 shows the impact of an increasing defender budget on the ACT for
different numbers of attacks per scenario, i.e., for 18 and 12 attacks by setting
Λ = {60, 90}. As seen in the figure, more budget strengthens the defender to hold
control of the resources with a decreasing ACT regardless of attack counts. When
the defender budget is less than the number of attacks per scenario (solid, blue line),
we can observe that a gradual increase in the budget decreases the ACT from 35%
to 20%.

As shown in Figure 2.14, it is not possible to obtain a complete protection, i.e., 0%
ACT, quickly with a linear increase in the budget after the ACT has converged to 10-

45

12 16 20 24 28
Defender budget (# action)

0
5

10
15
20
25
30
35
40

A#
g.
 a
tta

ck
er
 c
ap

tu
re
 ti
m
e
(%

)

Λ=60 (18 attack)
Λ=90 (12 attack)

Figure 2.14: The impact of defender budget on the ACT.

12% due to the challenges in defending against multiple attack scenarios. However,
PLSCH-MTD can still achieve protection of up to 90% of the system operational
time with a defensive budget β ≪ T. Further details on the experimental setup
and an in-depth discussion of the results are given in the original paper [ESKF23]
(Appendix D).

Takeaways

• Changing the service configuration more often does not simply give a better
chance to the defender as proportional to the increasing budget. It may require a
significant increase in the budget since, theoretically, any defender budget β ≥ T
should guarantee a complete defender occupation, e.g., when it can change the
configuration at every t ≤ T with a significant reconfiguration overhead. This
answers the RQ.S3.1, and also indicates a need for further defensive mechanisms
that should be in place together with the MTD strategies.

• It is shown that even a small number of attack scenarios brings a baseline chal-
lenge up to 25% ACT. However, rather than their quantity, the type of attack
scenarios with a unique combination of different attack types has a more notice-
able impact on the attacker’s success. Therefore, it is more important to identify
an accurate attacker model, e.g., regarding the composition of attack steps in our
model, than to be prepared for an increasing number of attack scenarios. This
also addresses the RQ.S3.2 by revealing the effectiveness of the dynamic service
configuration against various attack scenarios.

46

Chapter 3

Resilient Time-sensitive Networking

This chapter presents the main contributions of the thesis on resilient time-sensitive
networking for next-generation MCSs. Section 3.1 first briefly introduces the related
IEEE 802.1 Time-Sensitive Networking (TSN) protocols that we employ in our con-
tributions. Afterwards, the rest of the sections are organized to gradually develop
the configuration and maintenance methods for the resilience of the overall time-
sensitive communication. It includes utilizing those protocols for resilience of MCSs
as well as addressing the potential issues of their resilience.

• In Section 3.2, we present a MILP optimization model for joint bandwidth reser-
vation and packet scheduling for the primary time-sensitive traffic shaping pro-
tocol, IEEE 802.1Qbv Enhancements to Traffic Scheduling: Time-Aware Shaper
(TAS). This model is then deployed in a self-configuration framework that au-
tonomously configures time-sensitive streams by excluding the active participa-
tion of end-points [SBEF21], and utilized within various re-configuration strate-
gies [SBEF22]. These contributions establish the initial (self-)configuration of net-
working to fulfill strict timing requirements of critical streams and address the
RQ.T1.

• In Section 3.3, we propose a graph metric to configure redundant paths reli-
ably for the fault tolerance protocol, IEEE 802.1CB Frame Replication and Elim-
ination for Reliability (FRER) [EF21b]. We also develop a framework for the
joint use of data and control plane functions to orchestrate redundant paths in
FRER [EF21a]. These contributions establish reliability by redundancy over the
initial time-sensitive configuration and address the RQ.T2.

• In Section 3.4, we first discover the potential security threats against TSN pro-
tocols [EBN+21]. Then, we develop an open-source monitoring and intrusion
detection system to tackle the identified threats [ESF23]. Those contributions en-
able security monitoring for established configurations and several other security
threats and address the RQ.T3.

Similar to Chapter 2, we name the sections after their respective resilience goals, i.e.,
fault tolerance, autonomy, and security. Each section is then structured to present
(i) a set of fine-grained research questions, (ii) our related publications, and (iii) the
summary of contributions and their takeaways.

47

3.1 Preliminaries

TSN offers a spectrum of protocols to manage different traffic classes, ensure de-
terministic communication within a bounded delay, define filtering and network-
ing policies, and improved reliability by using redundant paths. Apart from the
core standards, it also includes further protocol extensions, complementary config-
uration and resource allocation techniques, and network data representation mod-
els [FMT+22]. Among more than 30 standards in total (by November 2022), this
thesis addresses the following core protocols with impact on the resilience of time-
sensitive networks.

1. IEEE 802.1Qbv Enhancements to Traffic Scheduling: Time-Aware Shaper (TAS)
is the primary protocol for scheduling of mixed-criticality streams. A scheduling
protocol is a prerequisite to guarantee deterministic communication and TAS
introduces a fine-grained configuration mechanism that helps to minimize the
end-to-end jitter.

2. IEEE 802.1CB Frame Replication and Elimination for Reliability (FRER) is the
only TSN protocol to establish fault-tolerant communication over multiple re-
dundant paths.

3. The Stream Reservation Protocol (SRP) is defined and extended in the standards
IEEE 802.1Qat and 802.1Qcc. It enables resource reservation and orchestration for
the TSN protocols including both TAS and FRER.

A common terminology is used in all three protocols concerning the actors of time-
sensitive networks. A TSN bridge is fundamentally an Ethernet switch to exchange
packets between endpoints and other bridges utilizing TSN protocols. A talker is
the source endpoint that the time-sensitive traffic is originated from. Similarly, a
listener is the destination endpoint in a time-sensitive communication. Lastly, a TSN
stream is a data flow between a talker and a listener and uniquely identified using
different identification functions. In the rest of this section, we introduce the relevant
mechanisms of TAS, FRER, and SRP protocols are given in more detail. Besides, at
the end of the section, a summary of their use in the contributions described in this
chapter is given.

IEEE 802.1Qbv Enhancements to Traffic Scheduling: Time-Aware
Shaper

TAS schedules frames of mixed-criticality streams per their priority class in fixed-
length time windows. This is very similar to traditional time-division multiple ac-
cess (TDMA) algorithms [IEE16]. TAS models eight different priority queues, i.e.,

48

Switching Fabric (Ingress)

TAS Gate 0

Transmission
algorithm

Queue 0

TAS Gate 1

Transmission
algorithm

Queue 1

TAS Gate 7

Transmission
algorithm

Queue 7

Gate Control List

M
is

si
on

-c
ri

ti
ca

l t
ra

ff
ic

M
is

si
on

-c
ri

ti
ca

l t
ra

ff
ic

Be
st

-e
ff

or
t

tr
af

fic

Switching Fabric (Egress)

00110011
01000001
11000000

 …

t :1

t :0

t :2

Figure 3.1: The basic structure of a TSN bridge with the TAS protocol.

a queue per TSN traffic class, with transmission gates that are controlled by a Gate
Control List (GCL). Periodically, i.e., for each consecutive time window, the GCL
opens the selected transmission gates according to the loaded configuration. Fig-
ure 3.1 shows the overall structure of this queueing mechanism. While the first two
queues are responsible for the transmission of mission-critical traffic, the last one
is for best-effort streams, which do not have time-sensitive requirements. The gate
control list is configured at the window t1 to allow only TAS gate 0 and 7 to be
open (solid, green lines) and the other is closed (dashed, red line) for the given time
instance of the network. Per queue, a transmission selection algorithm decides on
which frames should be forwarded first as there may be several streams belonging
to the same traffic class.

The transmission rate for a particular traffic class mostly depends on how often the
respective gate is open. Therefore, the configuration of the GCL is decisive on the
reserved bandwidth and also the time scheduling. Note that the overall configura-
tion of the network still requires that all participants of TSN networks should be
synchronized in time to guarantee the end-to-end deterministic communication.

IEEE 802.1CB Frame Replication and Elimination for Reliability

FRER is the primary solution for TSN to tolerate link and node failures. For that, it
offers a static redundancy mechanism by replicating Ethernet frames, via multiple,
preferably node-disjoint redundant paths. FRER also comes with an elimination

49

Sequence Generation

Stream Splitting

Sequence Encoding

Stream Recovery

Sequence Decoding

Stream Identification

Listener

Relay

Talker Member Stream 1

Member Stream 2-3

Figure 3.2: An example deployment of FRER.

mechanism that runs on TSN bridges and end-hosts to drop replica packets. This
mechanism avoids redundant transmissions across the same link and protects the
network against loops and babbling idiots, e.g., stuck senders sending the same
packets unintentionally [IEE17b].

Figure 3.2 shows the use of FRER in a network where three disjoint paths are as-
signed to a stream, e.g., two of them for redundancy. In the figure, both listener
and the bridge that forwards two member streams can drop redundant packets.
Generally, the talker performs:

• sequence generation by generating a unique identifier per packet of a stream to be
incremented for the other packets in the sequence.

• stream splitting by copying the packets and creating member streams to be sent
through k distinct paths.

• sequence encoding by assigning a sequence number to the copied packets via the
so-called Redundancy Tag (R-TAG).

A listener or a bridge performs:

• stream identification by applying a stream identification function, e.g., a function
taking destination MAC and VLAN ID of a packet as input, to distinguish a
stream.

• sequence decoding by extracting the sequence identifier of a packet to be compared
to the identified stream’s sequence information.

• stream recovery by deciding if a packet is duplicate and should be dropped or
forwarded, and lastly

50

(a) Centralized (b) Hybrid
ListenerTalker

TSN Bridges

(c) Distributed

Figure 3.3: Different SRP configuration models.

• latent error detection by counting if it has received the expected number of dupli-
cate packets to detect a node or link failure on the path of a member stream.

On the receiver side, the stream recovery stage consists of two functions. The se-
quence recovery function (SRF) processes all the packets received from different
ports of the switch, and thus, it can detect duplicate packets of a stream coming
from different paths. In contrast, the individual recovery function (IRF) processes
the stream coming from a single path (or port) and is effective against, for instance,
duplicate packets due to a stuck sender. Any recovery function utilizes an algo-
rithm to decide on packet forwarding or dropping. A timeout duration is set for
that function to reset the expected sequence number (and interval) to refresh the
recovery function in case of not forwarding any packet for the specified duration
due to occasional failures.

IEEE 802.1Qcc Stream Reservation Protocol

SRP introduces the resource reservation routines for time-sensitive streams to con-
figure all TSN components in the systems satisfying tight QoS requirements. It
proposes (i) a fully centralized network configuration (CNC) entity to configure the
TSN bridges in a network remotely and (ii) a centralized user configuration (CUC)
entity, which is responsible for the discovery of endpoints [IEE18]. Accordingly, it
offers different configuration schemes that utilize those entities.

Figure 3.3 illustrates (a) centralized, (b) hybrid, and (c) distributed models. In the
fully centralized model, endpoints directly communicate with CUC over a user/net-
work interface (UNI) (red lines) and request network resources for TSN streams
with certain requirements such as the worst-case latency and inter-arrival times.

51

CNC then configures the bridges according to the requests received by CUC (solid,
green lines). Figure 3.3b shows the hybrid centralized network/distributed user
model. Here, the edge TSN bridges, e.g., bridges that endpoints are directly at-
tached to, forward SRP requests to CNC with network-wide visibility (dashed, red
lines). Similar to the fully centralized model, it is then responsible for the configu-
ration of all TSN bridges (green lines). Both centralized models enable the use of
all TSN protocols that potentially requires network-wide configuration. Lastly, in
the distributed model shown in Figure 3.3c, TSN bridges forward SRP requests of
endpoints to each other to make necessary configurations individually. It is thus
restricted to configure only locally-optimum settings.

The SRP provides significant configuration flexibility over many parameters of time-
sensitive communication. Accordingly, it has a complex packet structure that allows
an endpoint to specify various requirements via type-length-value (TLV) fields and
recursive header groups. In the respective standard [IEE18] at Section 35.2 (p.105-
134), all possible fields and the concrete packet structure are explained in detail.

52

3.2 Autonomy

IEEE 802.1Qbv TAS is the most prominent TSN protocol to establish deterministic
end-to-end communication. This section introduces a self-configuration framework
to optimally schedule critical streams via TAS for addressing the RQ.T1.

IEEE 802.1Qbv TAS typically requires tedious configuration for both resource allo-
cation and packet queueing, which is not possible to perform manually for large-
scale and heterogeneous time-sensitive systems. While some solutions provide joint
scheduling and resource reservation for various channel partitioning protocols, TAS
requires the configuration of its gate control list, which is relatively more com-
plex. Besides, its configuration should quickly adapt to changing network condi-
tions without degrading service quality. Therefore, the following questions arise in
addition to the RQ.T1:

• RQ.T1.1: How to handle scheduling and routing time-sensitive streams optimally,
maximizing the service delivery ratio?

• RQ.T1.2: What are the efficient autonomous reconfiguration strategies for time-
sensitive streams in changing network conditions?

Accordingly, the following publication presents the Time-sensitive Optimal Routing
(TSOR) model to reserve sufficient link resources for the given time-sensitive streams
jointly and also finds an optimal gate configuration for TAS:

N. Sertbaş Bülbül, Doğanalp Ergenç, M. Fischer. SDN-based Self-

Configuration for Time-Sensitive IoT Networks. IEEE International

Conference on Local Computer Networks (LCN), 2021.

It further proposes a self-configuration framework that enhances edge TSN bridges
to automatically learn stream characteristics, so that TSOR can provide optimal TAS
configurations according to the stream requirements1.

Adapting stream scheduling and routing to changing network conditions leads
to sub-optimal configurations in terms of QoS. Therefore, the following publica-
tion proposes alternative reconfiguration strategies that utilize several variations of
TSOR2:

1In the first publication, the contributions of this thesis are modeling and implementing TSOR as
well as its complexity analysis and integration to the self-configuration framework. The first author
designed this framework, implemented a simulation model, and evaluated the overall proposal.

2In the second publication, the contribution of this thesis is designing and implementing re-
stricted and unrestricted variations of the TSOR. The first author proposed the overall idea, imple-
mented the other two variations in a simulation model, and conducted the evaluation. The third
author helped to improve the quality of the papers with his valuable feedback.

53

N. Sertbaş Bülbül, Doğanalp Ergenç, M. Fischer. Towards SDN-based

Dynamic Path Reconfiguration for Time-sensitive Networking. IEEE/I-

FIP Network Operations and Management Symposium (NOMS), 2022.

In the remaining of this section, Section 3.2.1 presents the details of the TSOR together
with its employment in our self-configuration model. Then, Section 3.2.2 shortly
introduces different stream reconfiguration strategies. The respective publications
[SBEF21] and [SBEF22] are given in Appendix E and F.

3.2.1 SDN-supported Self-configuration of IEEE 802.1Qbv TAS

Our self-configuration framework, SC-TSN, removes the end-host-related depen-
dencies of TSN configuration. As described in Section 3.1, conventionally, end hosts
should actively announce their communication requirements to a centralized entity
using IEEE 802.1Qcc SRP, so that a controller (or directly TSN bridges) can perform
resource allocation and scheduling. Instead, in SC-TSN, TSN bridges on the net-
work edge automatically learn stream characteristics and assist an SDN controller
in configuring the rest of the TSN bridges. The SDN controller utilizes TSOR to allo-
cate sufficient resources and to schedule time-sensitive streams via IEEE 802.1Qbv
TAS optimally.

Although SC-TSN does not remove the dependency on a controller, it offers a seam-
less configuration technique and allows low-power talkers and listeners, e.g., sensor
modules and robotics, to be deployed without explicit TSN support. It eventually
enables the overall system to configure itself autonomously.

The SC-TSN framework has two main mechanisms: stream learning and stream
placement. When a talker starts to send a stream, the respective edge TSN bridge
derives the date rate and volume of that stream and notifies this information to the
SDN controller. Meanwhile, the stream is forwarded through a preconfigured path
with only best-effort guarantees. The SDN controller acts as a CNC (in the context
of IEEE 802.1Qcc SRP, see Section 3.1) with network-wide visibility. If the stream is
deducted as a high-priority and critical flow, the controller runs the TSOR model to
allocate resources for the optimal end-to-end path and configure the IEEE gate lists
802.1Qbv TAS on every TSN bridge. Then, the stream is migrated to its dedicated
path.

As it is the main configuration of this thesis, the following section focuses on the
TSOR model. More details on the SC-TSN framework can be found in the original
paper [SBEF21] (Appendix E).

54

Time-sensitive Optimal Routing (TSOR) Model

The TSOR is a MILP model that finds optimal end-to-end paths for given traffic
streams. It includes allocating required resources for each link and configuring the
TAS gate lists for each TSN bridge on that path. Its overall objective is minimizing
the latency for critical streams. Given that the working principles of TAS are given
in Section 3.1, the rest of this section presents the formulation of TSOR.

min ∑
d∈D

∑
p∈Pd

∑
e∈E

∑
s∈S

xdpαep
[
lo
e + lq

e (1− ges)
]

(3.1)

∑
p∈Pd

xdp = 1 ∀d ∈ D (3.2)

∑
d∈D

∑
p∈Pd

xdpαephd ≤ ce ∀e ∈ E (3.3)

∑
s∈S

ges = 1 ∀e ∈ E (3.4)

∑
p∈Pd

∑
e∈E

xdpαep
[
lo
e + lq

e (1− ges)
]
≤ ld ∀d ∈ D (3.5)

ges − ∑
d∈D

∑
p∈Pd

xdpαep
hd
ce
≥ 0 ∀e ∈ E, ∀s ∈ S (3.6)

The TSOR has two optimization variables: xdp and ges. xdp is a binary variable
to decide if stream d ∈ D is assigned to directed path p ∈ Pd. Here, each d is
defined between a talker and a listener, where D is the set enumerating all streams.
Accordingly, Pd represents the set of paths computed between those two particular
endpoints. ges, is a continuous variable defined in [0, 1] and represents the opening
frequency of a gate on the egress port of link e ∈ E for the service class s. While
ges = 1 infers that the gate for s should be open all the time and the capacity of the
entire link e is used for the streams of service class s, ges ≈ 0 means that any stream
of service type s is not active at all on the respective port and thus, the gate can
stay closed. Eventually, the respective gate for the service class s on link e is open
as proportional to 0 < ges < 1. From this perspective, ges is dependent on the total
resources reserved for the streams of service type s.

The (objective) Function 3.1 minimizes the overall latency in the selected paths.
The variables in the objective function are explained in the context of the latency
Constraint 3.5. Constraint 3.2 ensures that each (non-bifurcated) stream d ∈ D is
assigned to exactly one path p ∈ Pd. Constraint 3.3 guarantees that each link e has
sufficient capacity ce to handle the total load hd of all streams d ∈ D assigned to
any path p including e, s.t. αep = 1. Constraint 3.4 limits the opening frequencies
of gates on egress port (or link) e since only a set of them can be practically open

55

at the same time proportional to stream load per service class s. Constraint 3.5
ensures that the end-to-end latency on path p is always smaller than the tolerable
latency for stream d, which is ld. Besides, the gate configuration ges on the respective
egress port of each link e that belongs to path p, s.t. αep = 1, impacts the end-to-
end latency. Constraint 3.6 forces ges to be proportional to the total traffic load
of service type s forwarded through link e. Note that lower values of ges increase
latency at link e, as it enables forwarding the traffic of service type s less often.
Accordingly, we weight the closing frequency 1 − ges with the delay factor lq

e to
represent the queueing delay. Beyond that, we added a base delay lo

e representing
the port and link characteristics, e.g., packet processing and propagation delay, to
each link. Those design parameters, lq

e and lo
e , can be set according to the system

and network properties.

xdp ≥ adp ∀d ∈ D, ∀p ∈ Pd (3.7)

Lastly, Constraint 3.7 is an additional pre-assignment constraint that helps to fix
the streams that are already assigned to a particular path p, i.e., adp = 1 from an
existing configuration. adp is given as input to the problem. For instance, using this
parameter, the existing configuration of high-criticality streams can be held intact
when a new flow is scheduled.

Key Results

We evaluated the overall SC-TSN framework in terms of the mean and maximum
end-to-end latency of time-triggered (TT) streams and the ratio of the delayed TT
frames, which arrive later than their deadline. It is then compared with the native
SRP protocol, where talkers announce their stream requirements, and a centralized
controller still uses TSOR to configure the TSN bridges. Accordingly, TSOR is the
primary configuration model for both methods, and the experiments allow to quan-
tify the overhead of the autonomous configuration process. Our primary goal in
the experiments was to achieve the QoS in terms of end-to-end latency equal to
the built-in TSN configuration method (SRP) without introducing a substantial self-
configuration overhead. The self-configuration framework is implemented in the
network simulator OMNeT++, and TSOR is implemented in the optimization tool
CPLEX and then integrated into the simulation model. Further details on the sim-
ulation parameters and considered network topologies can be found in the original
paper [SBEF21] (Appendix E).

In the experiments, we examined the impact of increasing interarrival times of the
best-effort (BE) frames, from 10ms to 1000ms. It represents the rate of background
traffic, which may cause congestion and render scheduling harder. We selected half
of the streams as critical TT and the other half as BE with more relaxed latency
requirements.

56

Table 3.1: Mean and maximum latency of TT frames in milliseconds for varying BE
traffic rate.

SRP SC-TSN
BE rate Mean Max. Mean Max.
10ms 1.31 10.52 1.35 17.30
20ms 1.30 4.31 1.32 11.44
50ms 1.29 2.67 1.30 8.08

Figure 3.4: The percentage of delayed TT frames.

Table 3.1 shows the mean and maximum latency of TT frames for varying BE load.
SRP and SC-TSN have nearly the same mean latency as both utilize TSOR, which
provides the optimal scheduling. However, SC-TSN induces a higher maximum
latency than SRP since all streams are forwarded through a default and potentially
sub-optimal route until the respective edge bridges extract their characteristics.

Figure 3.4 shows the percentage of the delayed TT frames with a 95% confidence
interval and also confirms the results in Table 3.1. For all varying BE loads, SC-TSN
results in a slightly higher, i.e., up to 0.25%, delayed frame ratio than SRP. That
small number of latent frames are the ones forwarded through the default path at
the beginning. Further results regarding the impact of the learning framework on
BE traffic can also be found in the original paper [SBEF21] (Appendix E).

Takeaways

• The enhancement in TSN bridges for automatically extracting stream character-
istics enables further autonomy in configuring time-sensitive streams. Besides, it
introduces only a slight delay in the delivery of the first few frames of a stream.
Therefore, its overhead is negligible, especially for long-lasting streams. Mean-
while, our model, TSOR, can handle the resource reservation and scheduling of

57

the streams optimally using these extracted (or learned) characteristics.

• A self-configuration method like SC-TSN should be employed as a part of a hy-
brid configuration scheme, where the most critical streams that cannot tolerate
additional jitter are manually configured or registered via SRP. The rest of the
arriving streams can still be placed autonomously. Those two takeaways reveal
the offerings and the limitations of a self-configuration scheme and thus answer
the RQ.T1.1.

3.2.2 Dynamic Reconfiguration Strategies for IEEE 802.1Qbv TAS

The TSOR model enables assigning upcoming time-sensitive streams continuously to
optimal paths among the available ones when utilized by the SC-TSN framework. Ac-
cordingly, it keeps the configuration of the active streams stable, i.e., TAS schedules
in bridges and link resource reservations, which prevents potential interruptions in
critical streams. However, it also hinders the flexibility in the overall configuration
that potentially remains sub-optimal in terms of QoS and resource utilization. This
section proposes four variations of TSOR as different reconfiguration strategies. They
differ in terms of reconfiguration frequencies, triggers, and amount of reconfigured
streams. Table 3.2 presents a summary of all strategies regarding their flexibility
in resource use, resulting QoS, and reconfiguration overhead, which are explained
below in more detail.

Table 3.2: The summary of reconfiguration strategies.

Strategy Reconfiguration Approach Flexibility QoS Overhead
TSOR-R Additive configuration Low Low Low
TSOR-U After every stream High High High
TSOR-P After every kth stream Medium Medium Medium
TSOR-T Exceeding threshold Medium Medium Medium

1. TSOR-R: This strategy fixes the configuration of all active streams and finds the
optimal scheduling for an upcoming stream within the remaining network re-
sources using TSOR. As it restricts the (re)configuration of active streams, the
strategy is named as restricted TSOR: TSOR-R. It eventually results in a stable con-
figuration with a minimum reconfiguration overhead. However, TSOR-R can uti-
lize only leftover resources from the existing streams to add a new one, which
leads to sub-optimal QoS and resource utilization.

2. TSOR-U: This strategy reconfigures all streams together without any restriction us-
ing TSOR whenever a new stream is registered. Therefore, it is named unrestricted
TSOR: TSOR-U. It eventually finds the optimal configuration for all streams, but po-
tentially requires reconfiguring several active streams, which imposes a trade-off
between QoS and reconfiguration overhead.

58

3. TSOR-P: This strategy reconfigures all streams after the registration of every kth
stream, which leads to fewer reconfigurations but still converges to the optimal
QoS. Since it imposes a (potentially irregular) reconfiguration period depending
on the arrival rate of new streams, it is named as TSOR-P. It eventually offers
better resource utilization and flexibility than TSOR-R and less reconfiguration
overhead than TSOR-U depending on the value of k.

4. TSOR-T: This strategy computes both TSOR-U and TSOR-R, and applies the solution
of TSOR-U only if the difference between the objective values of those two strate-
gies exceeds a predefined threshold value. It is named as TSOR-T, referring to the
threshold value. It eventually evaluates if the potential improvement in QoS in
terms of the overall latency is substantial after a network-wide reconfiguration.

Note that those strategies can handle further changes in stream configuration such
as removing and modifying the existing ones (beyond placing upcoming streams
as described above). For instance, TSOR-U can reconfigure the system after every
stream removal. Similarly, TSOR-P can be adapted to run every kth stream event
including both registration and unregistration.

Key Results

We evaluated our reconfiguration strategies in terms of their stream acceptance ratio
and reconfiguration overhead. The acceptance ratio is the proportion of the config-
ured streams, i.e., with reserved resources and scheduling, to all registered streams.
It implicitly represents the efficient use of available resources, as additional streams
can be placed on suitable end-to-end paths only if there are sufficient resources. For
the evaluation, we used the same simulation setup in Section 3.2.1, whose details
can be found in the original paper [SBEF22] (Appendix F). In the simulations, we
gradually added time-triggered (TT) streams to the network alongside a base (best-
effort) data traffic to demonstrate a dynamically increasing communication demand
in a system with limited resources. Our main goal in the experiments was to reveal
the tradeoff between the acceptance ratio (better use of available resources) and the
reconfiguration overhead.

We first compared the acceptance ratio for TSOR-R and TSOR-U, as they represent the
least and the most flexible strategies in terms of resource usage. Our evaluation
reveals that although it decreases for both strategies with an increasing number
of TT streams, TSOR-U achieves up to 5% more acceptance ratio depending on the
stream requirements in terms of increasing data rate and delay tolerance.

The difference in the reconfiguration overhead is more significant than the accep-
tance ratio. Figure 3.5 (top) shows the reconfiguration overhead of all strategies
for the same number of TT streams. In the figure, the reconfiguration ratio is the

59

TSOR-R TSOR-P TSOR-T TSOR-U
0

1

2

Re
co

nf
ig

ur
at

io
n

Ra
ti

o

0
0.44

1.58
2.13

TSOR-R TSOR-P TSOR-T TSOR-U
0

100

Co
nf

ig
ur

at
io

n
Ti

m
e

[
s]

17
63.7

137.4
189

Figure 3.5: Reconfiguration overhead regarding reconfiguration ratio and configu-
ration time.

proportion of the reconfigured streams to the number of total streams. The con-
figuration time represents the time elapsed until the communication starts after a
reconfiguration. While TSOR-R has no reconfiguration ratio as it does not reconfig-
ure the active streams (other than the upcoming one), TSOR-U has the highest ratio
since it potentially redistributes several streams after each new arrival. In contrast,
TSOR-T causes fewer reconfigurations since it performs only if there is a significant
QoS improvement. Note that the performance of TSOR-P and TSOR-T can vary de-
pending on the selection of their design parameters. Decreasing threshold and k
values in those strategies would approximate the results to TSOR-U.

The configuration time is directly affected by the number of reconfigurations, i.e.,
including all stream migrations to place an upcoming one. Therefore, the results
for the configuration time in Figure 3.5 (bottom) show a similar pattern with the
reconfiguration ratio. Frequent reconfigurations in TSOR-U result in a high config-
uration time, while fewer reconfigurations in TSOR-R cause less overhead. When
interpreted together with the acceptance ratio measurements, these results show
that while more flexibility in reconfiguration, i.e., the unrestricted configuration in
TSOR-U, results in a slightly better acceptance ratio, it also induces a significantly
more overhead compared to a restricted one, i.e., TSOR-R. As expected, TSOR-P and
TSOR-T perform in between the restricted and unrestricted configurations. More de-
tailed scalability and QoS analysis in different scenarios can also be found in the
original paper [SBEF22] (Appendix F).

Takeaways

• Since the TSOR does not directly optimize resource allocation but end-to-end la-
tency, the difference between acceptance ratios between different reconfiguration

60

strategies is not substantially high, even for tighter resources. This difference
mainly stems from a broader search space for scheduling in unrestricted TSOR. It
would be possible to deploy even more streams, i.e., higher acceptance ratio, with
potentially better resource efficiency and worse QoS when the objective function
of TSOR is adapted accordingly. In this sense, such changes in the formulation of
TSOR can also help to develop further reconfiguration strategies.

• Achieving up to 5% better acceptance ratio costs nearly ten times higher config-
uration time in our evaluation scenarios. Accordingly, the selection of a recon-
figuration strategy requires considering this trade-off, which might be relevant
to the scalability (placing more streams with a better acceptance ratio) and avail-
ability (less interruption time due to reconfiguration overhead) requirements of
the target system. Besides, these results depend on several aspects like avail-
able resources, QoS requirements of time-sensitive streams, and the amount of
background traffic. The design parameters of the selected strategies should also
be fine-tuned according to the forementioned requirements and network aspects.
These takeaways also address the RQ.T1.2.

61

3.3 Fault Tolerance

IEEE 802.1CB Frame Replication and Elimination for Reliability (FRER) is the pri-
mary fault tolerance solution among the current TSN protocols. It offers seamless
redundancy to cope with link failures by replicating time-sensitive Ethernet frames
on multiple redundant paths. This section introduces novel methods to select the
most reliable redundant paths and the best practices to configure FRER, and an-
swers the RQ.T2.

In contrast to the existing redundancy mechanisms such as Parallel Redundancy
Protocol (PRP) and the Highly-available Seamless Redundancy (HSR) [Net16], FRER
does not impose an explicit topological constraint on MCSs, e.g., having isolated net-
work partitions or a ring topology. However, poorly selected redundant paths can
inhibit fault tolerance and efficiency. For instance, when the configured redundant
paths intersect, FRER’s elimination function on the junction bridge could uninten-
tionally drop the duplicate frames. It results in the degradation of the degree of
redundancy and renders time-sensitive communication vulnerable to link failures.

While the complexity, overhead, and performance of FRER have been studied be-
fore, the redundant path selection and configuration issues have been overlooked.
Therefore, the following questions arise in addition to the RQ.T2:

• RQ.T2.1: How to select suitable redundant paths for the reliable configuration of
FRER?

• RQ.T2.2: What are the best practices for the configuration and orchestration of
FRER?

Accordingly, the following publication first identifies an implicit topological con-
straint of FRER regarding the selection of redundant paths. It then proposes a path
selection metric, reassurance, and also an improvement on FRER’s frame elimina-
tion mechanism to prevent unintentional drops of redundant frames and to maxi-
mize fault tolerance against random link failures3:

Doğanalp Ergenç, M. Fischer. On the Reliability of IEEE 802.1CB

FRER. IEEE International Conference on Computer Communications (IN-

FOCOM), 2021.

Although FRER provides all necessary functions for redundant communication (see
Section 3.1), it does not impose any internal configuration for those functions on a
TSN bridge. They could be enabled or disabled, or can be performed in different

3In both publications, the whole contribution belongs to this thesis. The co-author helped to
improve the quality of the papers with his valuable feedback.

62

orders. Besides, discovering alternative redundant paths and their orchestration
still require an external network discovery and management mechanism. However,
similar to its internal configuration, such mechanisms are not specified in the FRER
standard either. Accordingly, the following publication presents the implementation
details of the internal and external configuration of FRER, and presents an open-
source simulation framework3:

Doğanalp Ergenç, M. Fischer. Implementation and Orchestration of

IEEE 802.1CB FRER in OMNeT++. IEEE International Conference on

Communications (ICC), Workshop on Time-sensitive and Deterministic

Networking, 2021.

In the following, Section 3.3.1 introduces the reassurance metric and presents the
details of an improvement on the elimination function of FRER. Then, Section 3.3.2
shortly introduces a framework for the configuration and management of FRER. The
respective publications [EF21b] and [EF21a] are also attached in Appendix G and H.

3.3.1 Reliable Path Finding for IEEE 802.1CB FRER

FRER is topology-agnostic and provides significant flexibility for configuring redun-
dant paths. In an ideal scenario, a stream is replicated on k disjoint paths, so that no
relay node receives more than one copy of the same frame. For this scenario, a net-
work with a sufficient number of disjoint paths is a prerequisite, which is especially
costly for a large number of time-sensitive streams. If the network lacks such paths,
we identified the problem that the Sequence Recovery Function (SRF) of FRER may
induce unexpected packet drops due to the packet elimination on junction nodes,
which lies on the intersection of multiple paths. Figure 3.6 shows an edge-case
scenario where a talker and a listener communicate via three partially overlapping
paths, p1, p2, and p3 (black, green dashed, and blue dotted lines, respectively). r1, r2,
and r3 represent the junction nodes, i.e, relay bridges where multiple paths intersect.

In the figure, there are four stages ((a) to (d)) with respect to the junction nodes. The
number of frames in each redundant stream is investigated at the different stages.
While the numbers at the top show the distribution of traffic in each path by stage,
the ones at the bottom show the number of packets in the original stream protected
against one or two random failures as well as the number of the original frames that
have replicas on redundant paths. Note that the latter is expected to be 100, as all
packets should be protected by redundancy.

Stage (a): Initially, the stream has 100 frames replicated to p1, p2, and p3, i.e., the
degree of redundancy is three, in stage (a). All packets are replicated three times on
this setting, which can tolerate one or two link failures that may occur in p1, p2, and
p3.

63

Figure 3.6: An edge-case scenario with three intersecting paths.

Stage (b): At r1, only the first arriving packets from p1 and p2 will be forwarded
and all replicated packets will be dropped. Note that p1 and p2 can carry some
other streams whose amount and type, e.g., priority class, can affect which path can
deliver the packets faster to r1. Here, we assume that the total load is dynamically
changing on both paths and the stream is divided into p1 and p2 as 60 (i) and 40 (ii)
packets. Those 60 (i) packets in p1 and 40 (ii) packets in p2 are different, i.e., have
different sequence numbers, since r1 does not forward the same packet to the same
path due to the elimination of replicas. As a result, in stage (b), in case of a failure
in p3, the main stream would be delivered as two distinct member streams via p1
and p3, instead of two identical streams via two disjoint paths. In case of a second
failure, e.g., at p1 and p3, only 40 (ii) packets on p2 would be delivered. Moreover,
at maximum 60 out of 100 (i) packets are replicated on each path.

Stage (c): When the packets are forwarded faster on path p1, r2 drops 60 (ii) packets
coming from p3 since it has already received them from p1 before. Note that the 40
(ii) packets sent via p2 and p3 are the same packets as they remained as a result of
the elimination due to the traffic in p1. In case of the worst-case single node/link
failure after r2, i.e., p1 fails or any two failures, only 40 (ii) packets can be delivered
to the destination. Besides, the replicas of only 40 (ii) packets are forwarded through
p2 and p3 whereas 60 (i) packets in p1 are unique. Thus, in stage (c), the redundancy

64

drops to 40 (ii) packets in contrast to the initial 100 packets.

Stage (d): As p2 and p3 carry the same 40 (ii) packets, r3 eliminates the packets com-
ing from one of those paths, say p2. In stage (d), none of the three paths forwards
all 100 packets. The overall scheme cannot tolerate two simultaneous failures as the
number of replica packets is virtually 0 after the ones on p2 are eliminated.

This scenario shows that each junction node decreases the expected level of redun-
dancy by eliminating replicas. Therefore, for effective use of FRER in the absence of
node-disjoint paths, three important points should be considered:

• Number of redundant paths: In the absence of disjoint paths, using more than k
paths can still tolerate k− 1 failures by compensating for potential packet drops
at the junction nodes. Therefore, it is important to evaluate the degree of redun-
dancy to obtain the desired level of fault tolerance.

• Number of junction nodes: When two paths intersect, the unintended elimina-
tion of member streams occurs as shown in the scenario. Therefore, minimizing
the number of junction nodes between the selected paths is crucial.

• Position of junction nodes: An early intersection of two paths, e.g., within the
first few hops, can affect redundancy more severely as replicated packets are
eliminated quickly and the stream becomes vulnerable to link failures on the
remaining segments of redundant paths. Therefore, the position of junction nodes
impacts the number of protected links.

The next section introduces a novel graph metric that considers all three points to
evaluate the suitability of selected paths for the expected degree of redundancy.

Reassurance: A Path Selection Metric

The metric reassurance allows to select k different paths between two endpoints in
a way that their overlap is minimal and a potential junction node is close to the re-
ceiver. As a result, FRER-induced packet eliminations can be significantly decreased.
The metric is defined as τ ∈ [0.0, 1.0] for a set of paths to quantify how close their
overlapping part, i.e., junction nodes, is to the respective destination nodes if they
are not disjoint. When a junction node is closer to the packet destination, packet
eliminations can affect only shorter segments of the paths after the junction node.
Thus, FRER can effectively protect the longer segments, and it increases the fault
tolerance against random link failures. It is then extended to evaluate all sets of
k-paths between two endpoints to find their best k-combination.

Let G = (V, E) be a directed graph with nodes u, v ∈ V and e = (u, v) ∈ E is a
directed edge from u to v s.t., e : u→ v. A path p is defined as a sequence of distinct

65

nodes connected by edges in E s.t., p = (v1, v2, ..., vn) : ∃e ∈ E, e : vi → vi+1).
Accordingly, the Pk is the set of all k-combinations of the paths in the graph.

As any junction node can affect the forwarded traffic due to a potential packet
elimination, selecting paths with the junction node(s) farthest from the origin of the
path minimizes the number of links where a stream can be affected. Calculating
the longest disjoint segment of a path, ℓ(p, C), helps to quantify the probability of
unintentional frame elimination.

Definition 1: The longest disjoint segment of path p, ℓ(p, C), is defined as the
segment of p before the first junction node between p and any other path in a
particular k-combination of paths C ∈ Pk. Defining the overall set of junction nodes
shared by p and any pi ∈ C as VC

p =
⋃

pi∈C p∩ pi, the index of the first junction node
on p, t(p, C) is:

t(p, C) = min{i : ∀vi ∈ VC
p } (3.8)

and accordingly, ℓ(p; C) is

ℓ(p, C) = {vi : vi ∈ p ∧ i ≤ t(p, C)} (3.9)

Having the longest disjoint segments of k redundant paths, the reassurance metric
helps to calculate the ratio of these segments to the overall length of k paths. This
also provides the proportional segments of these paths that would not be affected
by unintentional frame eliminations.

Definition 2: Reassurance of a set of k paths C ∈ Pk, τ(C), is the ratio of the total
length of the longest disjoint segments of all p ∈ C to the total number of distinct
edges on those paths. When |ℓ(p, C)| and |p| are the lengths of the longest disjoint
segment of p and the whole p, respectively, τ(C) becomes

τ(C) =
∑p∈C |ℓ(p, C)|

∑p∈C |p|
(3.10)

Furthermore, to find the best set of paths between any two endpoints, i.e., the set
with the highest reassurance, all possible combinations of k paths between two
nodes u and v should be considered as the following.

Definition 3. Reassurance between two nodes u and v, τ(u, v, k) is defined as the
maximum reassurance among all k-combination of paths between u and v, Puv

k ∈ Pk
s.t., Puv

k = {pi = (v1, v2, ..., vj) : (v1 = u ∧ vj = v) ∧ i ≤ k}.

τ(u, v, k) = max{τ(C) : C ∈ Puv
k } (3.11)

Figure 3.7 shows a sample graph with three paths, p1, p2 and p3 between two nodes.
r1 and r2 are the junction nodes on p2 and p3, and p1 and p2, respectively. Here,

66

r1

r2

e1

e2

e3

e4

e5

e6

Figure 3.7: Calculation of reassurance for three paths between two endpoints.

any two link failures occured after r1 and r2 (namely on links e1-e6) can disrupt the
communication. For instance, when e3 and e6 fail at the same time and r1 eliminates
the traffic coming from p3, no packets are received by the listener. The length of
the longest disjoint segments of p1, p2 and p3 are 4, 1, and 2 (i.e., until r2 and
r1), respectively. Therefore, the reassurance is τ(C) = (4 + 1 + 2)/(13) = 0.54 for
C = {p1, p2, p3}.
Finally, τ(u, v, k) provides the optimal set of k-paths that minimizes unintentional
packet eliminations by considering the required number of redundant paths, the
potential number of junction nodes, and positions of those junction nodes. It can
be then used as a path-selection strategy to obtain any degree of redundancy in
time-sensitive communication.

Enhanced Stream Recovery Function

The main cause of unintended eliminations is that relay bridges are not aware of
whether they are junction nodes and drop redundant packets. When a relay can
infer its position as a junction node, it can forward a specified number of replicas in-
stead of eliminating them immediately. To establish that, we propose the enhanced
stream recovery function (eSRF) (also see Section 3.1 for the original SRF).

First, a bridge should know if it is a junction node for the configured paths. Then,
the SRF should forward the first k packets, where k is the junction degree, rather
than eliminating them. The junction degree of a bridge represents the number of
paths that include this bridge and are assigned to a particular stream. For a stream,
if the junction degree of a bridge is 0, it means that the bridge is not on any path
used by that stream. If it is 2, for instance, the bridge is expected to receive frames
for that stream from two different paths. Consequently, a junction node can evalu-
ate precisely how many replicas it should expect per packet of a stream using the
junction degree. Moreover, it can still eliminate the excessive number of replica
frames in case of, for instance, maliciously duplicated or misrouted packets after
forwarding the expected replicas.

67

Accordingly, for the reliable use of FRER, we enhance TSN bridges with two modi-
fications.

1. Detection of junction degree: In the first modification, a link-state routing pro-
tocol, Intermediate System to Intermediate System (IS-IS), is employed in TSN
bridges. IS-IS enables link layer routing [FAAS+12] and is the built-in routing
protocol for IEEE 802.1aq Shortest Path Bridging (SPB), which is envisioned to
be used for network discovery in TSN networks. It enables each bridge to have
a network-wide view so that they can compute a set of redundant paths for a
stream according to the given metric, e.g., the optimal path combination in terms
of reassurance. As a result, when a bridge knows the talker and the listener for
a stream, and the desired degree of redundancy k, it can automatically compute
the potential end-to-end paths and its own junction degree (in case it is a junction
node). These information can be sent via SRP (see Section 3.1).

2. Count of received duplicates: The second modification includes the deployment
of the latent error detection (LED) function of FRER (see Section 3.1) not only
on the listener but also on any intermediate relay. The LED normally counts
the number of received duplicates received by the listener to make sure that all
duplicate packets arrive and there is no failure in the network. Our eSRF uses
this counter at every bridge to ensure that a relay receives duplicate frames no
more than its junction degree. If it receives more, extra frames are still dropped.

As a result, the deployment of IS-IS configured with the reassurance metric and
the deployment of LED together with eSRF improve TSN bridges to detect junction
nodes and stop eliminating legitimate duplicate packets.

Key Results

We evaluated the reassurance-based path selection strategy and eSRF in terms of
the packet delivery ratio for an increasing degree of redundancy (DoR). DoR is
the number of redundant paths that are assigned to a stream. We also compared
the reassurance-based strategy with alternative strategies: random selection and
maximum-disjoint selection, i.e., selecting the paths with the minimum number of
intersections. In the evaluation, we injected k− 1 random link failures for a k-degree
of redundancy since it is the maximum number of random failures that the given
DoR can tolerate. Our main goal was to show that the reassurance-based strategy
can achieve the minimum amount of unintentional packet eliminations and results
in the highest packet delivery ratio in case of random link failures in the networks
lacking disjoint paths.

For the experiments, we used a real tier 1 network topology, UUNET4. It contains

4UUNET and other topology data sets are taken from http://www.topology-
zoo.org/dataset.html in the original paper.

68

49 nodes with an average node degree of 3,42. Furthermore, to test the performance
reassurance-based selection in a network supporting a higher degree of redundancy
than UUNET, we also generated smaller but denser random topologies with 30 to 50
nodes and a (fixed) average node degree of 4,2. Note that each node is considered as
a TSN bridge, and accordingly two endpoints are connected per bridge to simulate
time-sensitive communication between randomly selected endpoints.

Figure 3.8 shows the packet delivery ratio for each path selection strategy in depen-
dence on the DoR, i.e., the number of redundant paths used, for (a) UUNET and
(b) random topologies. Figure 3.8a shows the results for k− 1 random link failures
and k redundancy. For k = 2 and k = 3, the reassurance-based selection results in
the highest packet delivery ratio. Here, the expected number of frames to be deliv-
ered is the total number of distinct frames since the replicas are not expected to be
delivered in case of k− 1 failures. For k = 4, any combination of paths results in a
large number of frame eliminations as UUNET’s average node degree is less than
four and thus the paths are resulting to have a lot of overlap and junction nodes.

Note that no strategy achieves 100% packet delivery on average. In the scenarios
that a random failure affects (i) multiple paths simultaneously or (ii) the remaining
active redundant paths after unintentional eliminations, it is not possible to forward
the packets to the destination at all. This occurs more often for increasing number
of injected failures (two for DoR = 3 and three for DoR = 4). Therefore, in the
absence of disjoint paths in the network, packet loss is inevitable when multiple
failures occur, and reassurance-based strategy can only offer the best combination
among intersecting paths for FRER.

2 3 4
Degree of redundancy

0
10
20
30
40
50
60
70
80
90

De
liv

er
ed

 P
ac

ke
ts

 (%
)

Random Disjoint Reassurance

(a) UUNET

2 3 4
Degree of redundancy

0
10
20
30
40
50
60
70
80
90

De
liv

er
ed

 P
ac

ke
ts

 (%
)

Random Disjoint Reassurance

(b) Random networks

Figure 3.8: Delivery ratio for increasing DoR. Note that the number of injected link
failures also increases with DoR, i.e., DoR− 1 failures.

Figure 3.8b depicts the results of the same evaluation in random topologies. The
results show that with an increasing number of alternative paths, the reassurance-

69

based path selection results in a much higher delivery ratio than random and
maximum-disjoint selection strategies. Even for k = 4, as the denser topology in-
creases the number of disjoint paths, reassurance achieves a delivery ratio of more
than 70%.

2 3 4
Degree of redundancy

0

20

40

60

80

100

De
liv
er
ed

 P
ac
ke

ts
 (%

)

Random Disjoint Reassurance

Figure 3.9: Delivery ratio of enhanced sequence recovery function eSRF.

Lastly, Figure 3.9 shows the delivery ratio after we enhanced the relay bridges with
Enhanced Sequence Recovery Function (eSRF) in UUNET scenarios. Under k − 1
failures, maximum-disjoint and reassurance-based strategies offer up to 80-90% de-
livery ratio. Note that although their packet delivery performances are slightly
different, their mostly overlapping confidence intervals show that the eSRF enhance-
ment works equally well for both selection strategies. Besides, while all strategies
are still affected by the failures, they perform better in comparison to the results in
Figure 3.8a. Note that disjoint paths are required to obtain 100% delivery ratio since
no strategy could be effective when a single failure affects multiple paths in those
evaluation scenarios. Further analysis of the reassurance metric, the implementa-
tion details of eSRF, and a more extensive evaluation can be found in the original
paper [EF21b] (Appendix G).

Takeaways

• Deployment of fully disjoint paths is obvious and the most reliable solution for
redundant communication using FRER. However, in absence of them, it is not
enough only to minimize the number of intersections between paths but the posi-
tion of such junction points should be also considered. Therefore, the redundant
paths of FRER should be carefully selected using a comprehensive metric like
reassurance. This takeaway also answers the research question RQ.T2.1.

• Increasing number of alternative paths gives a larger search space to the reassurance-
based strategy and results in up to 40% more delivery ratio compared to the re-

70

sults in sparser networks with less connectivity (comparing Figure 3.8a and 3.8b).
Moreover, increasing number of redundant paths even decrease the delivery ratio
for other strategies since they do not consider the positions of junction nodes.
Therefore, adding more links can only increase fault tolerance when the redun-
dant paths are configured properly.

3.3.2 Configuration and Orchestration of IEEE 802.1CB FRER

IEEE 802.1CB FRER consists of data and control plane functions. While its data
plane functions perform stream identification, frame replication and elimination,
the control plane functions includes path discovery and orchestration mechanisms
to configure redundancy. This decoupled architecture requires configuring FRER (i)
internally regarding its data plane functions for frame processing and (ii) externally
regarding path finding and assignment for end-to-end communication.

The internal configuration refers to the placement of FRER functions (see Section 3.1)
in a logical order in the data plane. While some of those functions such as stream
identification and recovery are mandatory, others like latent error detection are op-
tional. Besides, mandatory functions have alternative configurations with different
parameters that are adaptable to different network settings. The external configura-
tion includes the integration of routing and path configuration protocols into FRER
for the discovery and assignment of redundant paths.

Figure 3.10 shows the relationships between data and control plane functions of
FRER over a TSN bridge architecture. We proposed this proof-of-concept archi-
tecture and implemented FRER and suitable control plane protocols in a network
simulator, OMNeT++ [VH08]. The rest of this section briefly presents the imple-
mentation and integration of data and control plane functions, which are essential
for the effective use of FRER.

Data plane

The configuration of the data plane consists of stream encoding/decoding, sequence
recovery, and latent error detection functions, which take over different roles for the
transmission and reception of TSN frames.

Outgoing frames are first sent to the StreamIdentification function to obtain the iden-
tifier for the respective stream they belong to. Currently, (i) null identifier, (ii) source
address and Virtual Local Area Network (VLAN), and (iii) destination address and
VLAN are available in the framework as identification functions [IEE17b]. Then, the
SequenceEncoder module queries streamSequenceTable to obtain the latest observed se-
quence number for that stream using its identifier. If it is not observed before, i.e.,
for the first frame of the stream, a random sequence number is generated via the
SequenceGeneration function, and the frame is encoded accordingly. Otherwise, the

71

IR

Seq. Rec.

TSN Relay

D
at

a
Pl

an
e

Po
rt

s
Stream Identification

Sequence Decoding
Stream Identification

Sequence Encoding
Stream Splitting

SI
IR
SI

IR
SI

IR
SI

IR
SI

Lat. Err.

IS-IS
SPB

Path
Reservation

Table

C
on

tr
ol

 P
la

ne

TSN Bridge

Figure 3.10: The bridge architecture containing all data place functions and control
plane protocols. FRER functions are shown in different colors.

existing sequence number is incremented and encoded into the frame. Lastly, en-
coded frames are split and sent via the configured ports. Stream splitting is not
designed as an independent module but as a configuration parameter, splitFactor,
that specifies the number of distinct paths that the duplicate frames are sent. The
configuration of those paths is handled by the control plane functions.

Incoming frames are processed as shown in Figure 3.11. On ingress ports, two
types of sequence recovery functions take place: Individual recovery and sequence
recovery. In the implementation, StreamRecovery module can be configured as one
of those functions via recoveryType parameter. After identifying the stream, the in-
dividual recovery function eliminates duplicates received on a particular port. For
the elimination, match or vector recovery functions can be used according to the
configuration of StreamRecovery module via the parameter streamRecoveryFunction.
Then, the frames are sent to the stream recovery function, which uses the stream
identification functions and the latent error detection module, implemented in La-
tentErrorDetection. This module detects missing or additional frames, i.e., fewer or
more duplicates than the expected number.

As stream recovery functions can be placed in both relays and end-points, the rest
of the process is node-dependent. After the sequence recovery process, the frame is
processed by the relay module, e.g., as any Ethernet frame. On the other hand, the
end-host makes the final decision to either accept or drop the frame, e.g., checking if

72

0. Packet received

2a. Update MAC tables

3a. Send to ISIS module

1c. Execute SRPRelay
logic

1a. Check IS-IS packet
type

1b. Execute stream
identification and decoding

2b. Ask SPB for
assigned paths

4b. Execute seq.
recovery

5b. Execute latent
error detection

3b. Discard packet

is HELLO?

yes no

is path assigned?

no

yes

packet type

IS-IS FRER otherwise

yes

6b. Forward packet

no

is duplicate?

Figure 3.11: A decision tree for processing incoming frames.

it is the destination nodes or the frame is a duplicate, and thus data plane processing
is completed at that point.

Control Plane

The control plane consists of IS-IS and SPB, which are envisioned to be the main
path reservation and orchestration mechanisms in TSN.

IS-IS is a distance-vector routing protocol realizing network discovery, topology
information sharing and verification as well as routing. In our implementation,
each bridge has a unique identifier, bridgeID, that can be used instead of MAC ad-
dresses to construct paths without keeping track of all MAC addresses for an easier
representation. Note that bridgeID-MAC address matchings are shared between
the bridges during the discovery. This identifier is incremented automatically for
each bridge during the initialization. The configuration parameters of IS-IS mod-
ule are updatePeriod and dbAnnouncePeriod, which specify the periods for sending
HELLO and DB_ANNOUNCE packets, respectively. HELLO packets are used for
the discovery of immediate neighbors and each bridge sends its isis database via
DB_ANNOUNCE packets. Those packets are distinguished by the IS-IS Ethernet
tag, which is 0x88cc.

When a HELLO packet is received, the IS-IS module of the bridge records the source
of the packet as its direct neighbor in its database. Similarly, after a database an-

73

nouncement packet is received, the module updates its IS-IS database. Lastly, the
module provides Dijkstra’s shortest path function to find end-to-end paths between
the given source and destination MAC addresses as well as the source and destina-
tion bridgeID in case of inter-bridge routing.

Utilizing the IS-IS module, the SPB module is responsible to assign multiple paths to
a stream between given end-hosts (or practically between given edge bridges). SPB
has the isid parameter representing the Service Identifier (ISID) that helps to define
extended virtualized domains together with Virtual Local Area Network (VLAN)
identifiers. Accordingly, IS-IS is modified to construct the paths only among the
bridges having the same isid, i.e., defining intra-domain paths. It also requires
disseminating ISIDs so that a bridge can know with which other bridges it is in
the same service group. ISID is thus embedded to the IS-IS HELLO packets.

In our implementation, the assignment of paths can be performed in alternative
ways. SPB can directly find k shortest paths s.t. k = splitFactor to satisfy the
redundancy requirements of FRER. Since TSNRelay has the splitFactor as a con-
figuration parameter, it can directly request the required number of paths to split
a stream. It is also capable to find k shortest-disjoint paths for the intended use
of FRER. The tie-breaking algorithms of SPB help to consistently select the same k
paths for each bridge locally. Another approach is the manual configuration, where
a network manager can directly provide paths specified by a sequence of bridgeIDs.
A centralized controller, for instance, directly configures SPB module to respond
with the given paths for the respective streams. For manual configuration, we pro-
vide a specific path encoding notation that could be used within existing network
configuration protocols. In both assignment approaches, SPB records the paths in
PathReservationTable that enables to store multiple paths per FRER stream.

We used this framework for evaluating our previous proposal that is presented in
Section 3.3.1, then extended and generalized it for the overall configuration of FRER.
The source code is published as open-source at https://github.com/UHH-ISS/omnet-
802.1cb. Further implementation details related to the internal modules of OM-
NeT++ can be found in the original paper [EF21a] (Appendix H).

Takeaways

• The IEEE 802.1CB FRER standard does not suggest a configuration for its func-
tions in terms of their interaction, execution order, or parameter setting. Its con-
figuration mostly depends on (i) which TSN component (relay or endpoint) the
FRER functions are deployed in and (ii) which features are essential for the spe-
cific use cases, e.g., latent error detection might be optional.. Besides, it should
still be investigated if its configuration impacts the time-sensitive communication,
e.g., inducing further processing delay.

• Although IS-IS and SPB are mentioned in the standards for the management of
TSN networks, their seamless integration without consideration of any TSN pa-

74

rameters is challenging. It is still required to configure those control plane proto-
cols with the related FRER parameters, e.g., split factor, to minimize the potential
manual configuration effort. These two takeaways also answer the RQ.T2.2 by
revealing the issues of data and control plane configurations for deploying FRER.

75

3.4 Security

While IEEE 802.1 TSN protocols ease the design and configuration of MCSs, they
might also introduce new attack vectors that broadly impact various mission-critical
domains. Accordingly, this section analyzes the potential security threats against
several TSN mechanisms and introduces an open-source intrusion detection sys-
tem (IDS) for the security monitoring to answer the RQ.T3.

QoS and reliability issues of IEEE 802.1 TSN standards have been discussed several
times, since their main goal is establishing end-to-end latency guarantees. Mean-
while, their security is usually overlooked. There is, in fact, not any work that sys-
tematically addresses potential vulnerabilities and attacks towards these standards.
Moreover, there is not an off-the-shelf monitoring or intrusion detection mechanism
for TSN protocols. Therefore, the following questions arise in addition to the RQ.T3:

• RQ.T3.1: What are the security threats and attack vectors against different mech-
anisms of IEEE 802.1 TSN protocols?

• RQ.T3.2: How to develop new monitoring and intrusion detection mechanisms
against new TSN-specific threats?

Accordingly, the following publication explores and categorizes more than 30 se-
curity threats against various TSN mechanisms such as scheduling, configuration,
redundancy, and time synchronization5:

Doğanalp Ergenç, C. Brülhart, J. Neumann, L. Krüger, M. Fischer.

On the Security of IEEE 802.1 Time-Sensitive Networking. IEEE In-

ternational Conference on Communications (ICC), Workshop on Time-

sensitive and Deterministic Networking, 2021.

Afterwards, the following publication introduces the first network monitoring and
intrusion detection system for IEEE 802.1 TSN protocols, TSNZeek, to identify the
explored security threats and to notice various other anomalies6:

Doğanalp Ergenç, R. Schenderlein, M. Fischer. TSNZeek: An Open-

source Intrusion Detection System for IEEE 802.1 Time-sensitive

Networking. IFIP Networking Conference, International Workshop on

Time-Sensitive and Deterministic Networking (TENSOR), 2023.

5In the first publication, the whole contribution belongs to this thesis. All co-authors helped to
improve the quality of the paper with their valuable feedback.

6In the second publication, the main contributions of this thesis are designing the overall IDS
framework, specifying attacks and their respective notices, and conducting the evaluation. The sec-
ond co-author implemented several parts of TSNZeek in the context of a master’s thesis. The third
co-author helped to improve the quality of the paper with his valuable feedback.

76

In the remaining of this section, Section 3.4.1 first describes various TSN-specific
security threats. Then, Section 3.4.2 presents the design and implementation details
of the TSNZeek. The respective publications [EBN+21] and [ESF23] are also attached
in Appendix I and J.

3.4.1 Security Threats of IEEE 802.1 TSN Protocols

The security threats for IEEE 802.1 TSN protocols overlap with several attack vectors
of legacy protocols and mechanisms in traditional MCSs. Here, we analyze several
TSN threats from the academic literature and industrial reports, and extend those
with additional TSN-specific vulnerabilities. Then, following the well-known threat
modeling framework, STRIDE [SHLO06], we further categorize them into the main
TSN mechanisms. STRIDE covers Spoofing (red), Tampering (orange), Repudiation,
Information disclosure, Denial of service (blue), and Elevation of privilege (green)
threats against and specifies a guideline for secure system design. Although it is ini-
tially proposed for identifying attack vectors against software components, STRIDE
also helps to model the primary threats against networks categorically. Figure 3.12
shows a threat tree that illustrates all identified threats categorized into the TSN
mechanisms and STRIDE.

The rest of this section briefly describes the threats for the protocols presented in
Section 3.1, namely for scheduling, redundancy, and orchestration mechanisms. We
also consider those particular threats to develop the intrusion detection system given
in Section 3.4.2. More detailed explanations of all threats, i.e., also related to time-
synchronization and policing, can be found in the original paper [EBN+21] (Ap-
pendix I).

Scheduling Threats

IEEE 802.1Qbv TAS is the primary protocol to establish deterministic communica-
tion via scheduling time-sensitive streams (see Section 3.1). Its port-based gate con-
trol list can be configured locally or via an external controller, e.g., IEEE 802.1Qcc
SRP. The remote configuration can be vulnerable to packet tampering and forgery
on the management protocol such as Network Configuration Protocol (NETCONF)
or Simple Network Management Protocol (SNMP). Even though those protocols
can operate on top of security protocols like Secure Shell (SSH) and Transport Layer
Security (TLS) [Was11, BLS15], older password-based authentication schemes are
still valid and pose security risks. As a result, while an attacker can assign higher-
priority and exceeding resources to low-priority traffic, it can also reduce the band-
width for critical streams, which can lead to missed deadlines due to network con-
gestion.

77

TSN Threats

Time SynchronizationScheduling

Reservation and
Orchestration

Policing and
Redundancy

PolicingRedundancy

Reservation Orchestration

● Compromised or impersonated master clock
■ Intervening the grandmaster selection
■ Unauthorized join as master clock

● Sabotaging the grandmaster

● Delaying packets

● Tampering or forging synch. packets
■ Altering time stamps
■ Mixing protocol version specifications

● Tampering or forging config. packets
■ Malicious and inconsistent scheduling

● Injecting excessive high-priority traffic

● Calibrated attacks on backbone nodes

● Promoting low-priority traffic

● Forging malicious packets with fake seq. numbers
■ Deceiving late error detection

● Tampering packets by manipulating seq. numbers
■ Deliberate changes for replay attacks
■ Changing by random seq. numbers

● Malicious multipath configuration
■ Assigning intersecting paths
■ Configuring delay-induced paths

● Intervening resource request propagation
■ Blocking control packets on ports and VLANs

● Flooding management database

● Tempering or forging request packets
■ Modifying announced stream characteristics
■ Exhausting resources by malicious reservation

● Loosening filtering and rate-limiting rules

● Misconfiguration or contradicting configuration

● Compromised or impersonated controller
■ Malicious configuration of streams and

resource reservations
■ Adding malicious end-points and bridges

● Sabotaging the controller

● Targeting various interfaces

● Spoofing
● Tampering
● Repudiation

● Information disclosure
● Denial of service
● Elevation of privilege

Figure 3.12: TSN-specific threats matched with corresponding STRIDE threats.

When an attacker has access to a TSN bridge, there is no mechanism integrated
into the scheduling protocols to validate if it satisfies QoS requirements or if no
service class is blocked due to congestion. Therefore, malicious and inconsistent
scheduling cannot be detected.

Moreover, it is possible to abuse the existing gate list configuration without access-
ing a bridge. For instance, injecting excessive high-priority traffic creates high
congestion and queueing delays that can cause packet drops and missed deadlines.
Similarly, promotion of low-priority frames to high-priority ones (assuming that
the attacker knows the configured VLAN and priority matchings) can hinder the
scheduling scheme.

Lastly, as TSN scheduling enables deterministic end-to-end communication, it is eas-
ier to conduct calibrated attacks on tightly-scheduled nodes for an attacker [R. 18].
That is, the attacker can identify (i) when high-priority frames are forwarded or (ii)
where exactly they are processed at a given. Even though it is not a threat to the

78

scheduling mechanisms per se, it still stems from tight scheduling and deterministic
communication.

Control and Orchestration Threats

Attacks towards TSN orchestration and reservation mechanisms, especially towards
IEEE 802.1Qcc SRP, can hinder the allocation of required resources in terms of band-
width and time-scheduling, as well as redundant resources for reliability. As SRP
depends on the propagation of stream advertisements, any compromised bridge
intervening in the advertisement propagation can block forwarding of the respec-
tive stream. Similarly, a malicious configuration of a bridge can interrupt the com-
munication in the target domains by blocking control packets on particular ports
or forwarding to certain VLANs. Instead of an intervention, tampering with the
announcement packets to modify maximum frame size and packet sending fre-
quency of a stream can mislead other bridges to miscalculate the expected latency,
which eventually causes missed deadlines.

Apart from manipulating the existing stream announcements, an attacker can forge
stream reservation requests as a malicious talker to exhaust available resources.
Such malicious requests can threaten the internal resources of bridges by flooding
limited size of management information database, where the stream registration
objects are stored. Flooding attacks are common threats for legacy protocols like
the Address Resolution Protocol (ARP), and they are effective in the absence of
rate-limiting and filtering on bridges.

The centralized configuration scheme of SRP (see Section 3.1) inherits the char-
acteristics of the SDN architecture [STB19] including its security considerations
[ANYG15, DEz+19]. The controller is responsible for configuring almost all TSN
protocols, except the time-synchronization mechanism. Therefore, a a compromised
or impersonated controller can have a disastrous impact on the overall TSN system.
While it can result in malicious misconfiguration of streams, reserved resources, or
endpoints, an attacker can also sabotage the controller with more severe denial of
service (DoS) attacks. For such scenarios, even though TSN standards do not specify
the design of multiple decentralized controllers, redundancy of the controller can
help against a single point of failure. Note that even subtle changes in the configu-
ration, for example, rerouting critical streams to more delay-prone paths, can affect
the system long-term by degrading the QoS or causing a missing deadline.

Moreover, indirect threats, i.e., not against the orchestration but using orchestra-
tion mechanisms, such as adding new malicious endpoints or bridges, can enable
multi-step propagating attacks [MG20]. A centralized controller also requires dif-
ferent interfaces to enable configuration between the controller, bridges, and end-
points. Consequently, there is an increased attack surface, where an attacker can
target multiple interfaces between all these TSN components.

79

Redundancy Threats

The replication and elimination functions of IEEE 802.1CB FRER are vulnerable to
security threats. The elimination mechanism of FRER allows a bridge to forward
only the first copy of a frame; it should drop the second copy, i.e., replicated for
redundancy, when it is received by the same bridge to prevent stuck senders and
loops (see Section 3.1 and 3.3.1). An attacker can forge malicious packets with
fake sequence numbers so that even the original packets with the same sequence
numbers are dropped since they would be identified as duplicates. Similarly, even
if an attacker sends forged packets later than the original packets, it can deceive the
late error detection mechanism by disguising a failed link with those additional
packets. Apart from such calibrated attacks, tampering packets by changing their
sequence numbers randomly can easily induce unexpected packet drops and de-
livery of out-of-order packets to the listener. Although those attacks do not directly
interrupt any services, it undermines redundancy and could be only realized when
an actual failure occurs.

FRER does not guarantee in-order delivery of multiple member streams. As a result,
an attacker can maliciously configure multiple paths of redundant streams to in-
duce extra delay to the redundant paths and trigger out-of-order packet delivery.
It hinders seamless redundancy in case of failures and causes degradation in QoS.
Another issue of path selection is related to the elimination mechanism. While other
redundancy mechanisms of Ethernet guarantee the existence of disjoint paths, e.g.,
through isolated networks or a ring topology [Net16], FRER introduces the elimina-
tion function to tackle duplicate packets. As a result, rerouting the stream through
intersecting paths can cause unexpected packet drops and decrease the intended
level of redundancy (see Section 3.3.1).

Takeaways

• The principles of several TSN standards are similar to traditional real-time com-
munication protocols, e.g., Precision Time Protocol (PTP) for time synchronization
and NETCONF for remote configuration. Therefore, potential security counter-
measures for IEEE 802.1 TSN protocols should include (i) current security mecha-
nisms for existing real-time systems, (ii) built-in security mechanisms of TSN such
as stream filtering and policing, and (iii) further monitoring and intrusion detec-
tion mechanisms for the novel threats. This also answers the research questions
RQ.T3.1.

• The identified threats should be analyzed further in the context of particular at-
tacker models. While some attacks are only possible in case of a compromised
TSN bridge or controller, others can be conducted by any attacker connected to
the network. Therefore, they should be considered according to the domain-
specific conditions, e.g., connectivity and accessibility of the target network.

80

TSNZeek

Monitoring Component
(Original Zeek)

TSN Parser

Event Engine

Notice Engine

Intrusion Detection Component

Detection Engine

1a) Send raw
Ethernet frames

1b) Parse FRER/SRP
packets

2) Convert and send packets between engines

4) Raise notices

3) Push notices

BrokerBroker

Network traffic

Logs and alarms

Figure 3.13: The figure shows the overview of TSNZeek. The blue/dashed blocks
have been implemented from scratch. The red/dotted blocks are existing Zeek mod-
ules that we have extended and reconfigured.

3.4.2 Security Monitoring and Intrusion Detection for IEEE 802.1
TSN

While existing security countermeasures can protect MCSs against certain attacks,
several TSN-specific threats described in Section 3.4.1 require a security solution
that can monitor TSN protocols. This solution should be able to (i) process the new
and extended frame structures of the TSN protocols, such as IEEE 802.1 FRER and
IEEE 802.1Qbv SRP, and (ii) detect unusual patterns in those protocols. Accordingly,
we propose an open-source security monitoring and intrusion detection system,
TSNZeek, to analyze the new TSN protocols and to detect TSN-specific attacks7. It
extends Zeek, an a network monitoring solution popularly deployed in real systems
and used in academia for research purposes8.

TSNZeek consists of monitoring and intrusion detection components shown in Fig-
ure 3.13. The monitoring component processes and log the received TSN traffic.
The intrusion detection component obtains the processed frames from the monitor-
ing component and implements the attack recognition logic for TSN-specific attacks.
It mainly focuses on threats against FRER and SRP, since they (i) are the critical pro-
tocols addressing communication reliability and configuration and (ii) have specific
network behavior with new packet types.

The overall operation of TSNZeek can be described as follows: the event engine distin-
guishes the incoming packets by their EtherType values, which is a standard header

7The source code is available at https://github.com/UHH-ISS/tsnzeek.
8Zeek Project, https://zeek.org

81

https://github.com/UHH-ISS/tsnzeek

type of Ethernet frames. SRP and FRER frames are parsed by the TSN parser ac-
cording to the proposed parsing grammar. Those parsed frames are then sent to the
broker to be translated into Zeek datatypes. It forwards the frames to the notice en-
gine and the Detection Engine. The former module logs the traffic and specific events
using built-in Zeek functionalities, and the latter implements our attack detection
rules. The detection engine then pushes notices back to the notice engine when an
attack is recognized. The rest of this section briefly presents the capabilities and
implementation details of those engines.

Monitoring Component

The monitoring component corresponds to the original Zeek in terms of its working
dynamics. It consists of the event engine, the TSN parser, the broker, and the notice
engine. The TSN parser (blue, dashed lines in Figure 3.13) has been implemented
from scratch. The event and notice engines (red, dashed, and dotted lines) are
existing Zeek components that we extended further.

Event Engine: The event engine registers the protocol analyzers during initialization
to specify the parsing grammar for respective protocols. Besides, further events
are registered in this engine for (i) internal logging facilities and (ii) the broker
component to pass incoming packets in a suitable format to other modules. When
a registered event is triggered, it calls the respective packet processing function
implemented in the TSN parser to parse the whole TSN frame and extract header
information.

TSN Parser: This module introduces the functions to parse complex packet struc-
tures with many recursive header types. We implemented the parser using spicy
v1.4.0, which is a grammar generation framework for network protocols and file for-
mats9. It strictly follows the definition of frame structure in the respective standards
of SRP and FRER to parse any stream that originated from a standard-compliant
component. After parsing TSN packets by spicy grammar, the extracted data should
be converted back to Zeek data types for further processing. Eventually, the parsed
packets are sent to the broker to be distributed to all other related components of
TSNZeek.

Broker: This is the built-in publish/subscribe messaging framework of Zeek. We
implement three event topics in the broker: FRER, SRP talker, and SRP listener.
Whenever a respective type of frame is received, the broker publishes its content,
which is provided by the parser. The notice and detection engines subscribe to those
topics and obtain the content of the frames for further analysis accordingly.

Notice Engine: The notice engine flags certain security events and logs received TSN
traffic. We used the built-in notice facility of Zeek for this module. We configure

9Zeek spicy, https://docs.zeek.org/projects/spicy

82

the notice engine to log the received FRER and SRP frames partially to avoid an
excessive amount of logs. A security event could be an anomaly in the configuration
and network behavior, or a detected attack. The detection engine recognizes those
events and then respective notice alerts are raised by the notice engine. Those two
engines communicate over the broker, and all alerts are published on a specific
topic of notice. The complete list of available notices can be found in the original
paper [ESF23] (Appendix J).

Intrusion Detection Component

The intrusion detection component consists of the detection engine and another
broker to communicate with the monitoring module. It performs traffic analysis to
(i) keep the current states of different streams and their configurations, (ii) make
per-frame or periodical examinations to detect potential anomalies. Accordingly, it
publishes the respective alerts via the broker to be logged by the notice engine.

The detection engine in this component introduces a set of functions to detect var-
ious SRP and FRER threats listed in [EBN+21] (Appendix I). These functions are
analogous to the rules in a rule-based IDS. Therefore, they are extendable to de-
tect further threats simply as adding new rules. The following lists describe the
detection functions together with the attacks they can recognize for SRP and FRER.

• A1.SRP. Unusual SRP request: An attacker can send malicious SRP requests
to demand a bulky network bandwidth for a stream or register several streams
to exhaust available resources. The detection engine detects such scenarios by
comparing the requested stream traffic specifications with a predefined threshold
value for the maximum bandwidth and frame rates, and raises an alert. It also
keeps the rolling average of those values to recognize if an attacker attempts ma-
licious stream reservations whose traffic characteristics significantly differ from
the previous ones.

• A2.SRP. Flooding SRP requests: An attacker can flood SRP requests to exhaust
available resources quickly. The detection engine limits the rate of incoming re-
quests by a predefined threshold and raises an alert for excessive requests.

• A3.SRP. Changing an existing allocation: An attacker can forge an SRP request
for an already registered stream to reduce its reserved resources to degrade its
service quality or increase its reserved resources to exhaust available resources.
For each SRP request, it checks if there already exists an active stream and raises
alerts. Note that since a legitimate user can also reallocate an active stream, this
alert should be considered accordingly.

• A4.SRP. Dangling resources: An attacker can reserve network resources to ma-
nipulate resource utilization and scheduling without sending any real data traffic

83

since it can also be detected and filtered by firewalls or network policies. For
such cases, the detection engine checks if the reserved resources are in use within
a predefined time threshold and triggers a notice.

To detect the listed threats, TSNZeek should be able to monitor all SRP traffic, which
is forwarded depending on its configuration model, i.e., centralized, hybrid, or dis-
tributed (see Section 3.1). While the centralized configuration imposes a centralized
TSNZeek deployment, a distributed one requires observing the traffic on the edge
bridge priorly. Therefore, depending on the targeted threats, multiple TSNZeek in-
stances might be required.

• A5.FRER. Forging fake sequence numbers: If an attacker can observe the cur-
rent sequence number of a FRER stream, it can inject malicious frames with that
sequence number so that the legit frame would be dropped by the sequence re-
covery function in TSN bridges. If the attacker injects a frame with the upcoming
sequence number, the detection engine triggers a notice when it detects more
than one frame with the same sequence number. If the attacker searches for the
legit sequence number by sending frames with the random sequence numbers,
the detection engine triggers another notice for an out-of-order frame. This also
requires monitoring TSN bridges locally to detect where malicious frames are
injected and dropped.

• A6.FRER. Malicious rerouting: An attacker can subtly reroute the redundant
stream through intersecting paths to force the elimination mechanism of FRER (see
Section 3.3.1) to drop the duplicate packets and hinder the redundancy. There-
fore, the detection engine examines the configured FRER routes, e.g., against
malicious misroutings, and intersecting paths. This requires TSNZeek to be cen-
trally deployed in collaboration with the network controller that handles the path
configuration. It further raises an alert when it detects a missing duplicate packet
due to a potential malicious rerouting.

• A7.FRER. Triggering timeout: An attacker can enforce FRER functions on TSN
bridges for a timeout if it can block all member streams of a FRER stream. This
revokes the expected sequence number of the respective stream and enables the
attacker to become the valid originator with a forged initial sequence number.
The detection engine recognizes the absence of the original member streams by
measuring the time passed after the reception of the last frame of the respective
streams. It also detects if an active stream has a new sequence number. Both can
be detected by only monitoring the edge bridge to which the destination endpoint
is attached.

84

Key results

We evaluated the resource usage of TSNZeek and its intrusion detection capabilities
in a real TSN testbed. For intrusion detection, the typical evaluation metrics for
an IDS, e.g., accuracy, sensitivity [TFM19], are not directly fitting for a rule-based
IDS as it can only detect the specific traffic behavior according to the implemented
rules. Therefore, we tested the effectiveness of the detection module against the
given attacks. As a result, it successfully detects all the listed attacks and raises the
respective notices in real-time.

Since IEEE 802.1 TSN protocols perform in the data link layer (Layer 2 in the OSI
model), processing the events starting from such low-level communication may eas-
ily lead to high resource usage. Accordingly, we measured the CPU utilization of
the monitoring and detection components, as well as the packet processing rate and
delay of TSNZeek. Figure 3.14 shows the CPU usage of the monitoring (Zeek module
extended with TSN grammar, red and solid line), the detection (blue and dashed
line) components, and also the CPU consumption of Zeek without TSN support
(processing non-TSN Ethernet frames, black and dotted line) for an increasing data
load from 50 to 250 Mbit/s. When increasing the traffic load, the CPU utilization
of the monitoring component increases from 25% at 50Mbit/s to 45% at 250Mbit/s.
As shown in the figure, TSNZeek consumes only ∼5% more CPU power than the
Zeek instance without TSN support. The detection module has a constant resource
utilization of around 25% as it only processes singular events sent by the monitoring
module.

Figure 3.14: CPU utilization of the
monitoring and detection compo-
nents.

Figure 3.15: Packet processing perfor-
mance of the monitoring component.

Figure 3.15 shows the packet processing rate and lag that are particularly important
for real-time intrusion detection on time-sensitive traffic. The packet processing lag
describes the time passed between the reception and parsing of a frame. The figure

85

shows that the packet processing rate (black, solid line) increases proportionally
with an increasing data load without packet drops. Increasing load also leads to
a higher packet processing lag of up to 2 ms (green, dashed line). For any lag in
milliseconds, time-sensitive frames with submillisecond latency requirements may
already be delivered before an intrusion alert.

Further details of the implementation, design parameters, testbed setup, and se-
lected attacks can be found in the original paper [ESF23] (Appendix J).

Takeaways

• The effectiveness of an IDS for TSN protocols does not only depend on its detec-
tion capabilities, e.g., detection functions and rules, but also its architecture (local,
centralized, or distributed), its context awareness (coupling with the information
on TSN bridges), and configuration according to the characteristics of the target
network. Accordingly, it cannot be only an out-of-the-box solution security solu-
tion on the network edge but should be deployed concerning the configuration of
TSN protocols. This takeaway also answers the RQ.T3.2.

• Critical time-sensitive streams may require sub-millisecond end-to-end latency.
Therefore, although it is not critical for a monitoring module, any packet process-
ing lag in the range of a few milliseconds could induce a substantial latency for a
real-time intrusion prevention (IPS) system. The integration of TSNZeek into an IPS
thus requires further optimization, potentially shifting the control plane detection
functions to the data plane by utilizing network programmability.

86

Chapter 4

Conclusion

Modern mission-critical systems (MCSs) such as autonomous vehicles, avionics, and
industrial networks have evolved from static and closed-loop systems to complex
technological ecosystems. They can host a multitude of critical and non-critical ser-
vices that are interdependent and communicate via different networking technolo-
gies. While increasing heterogeneity and connectivity render them more vulnerable
to failures and attacks, traditional system design and networking paradigms become
incapable of tackling neither stringent QoS nor strict resilience requirements. As a
result, the Service-oriented Architecture (SOA) and IEEE 802.1 Time-Sensitive Net-
working (TSN) are introduced to mission-critical domains to dynamically configure
services over virtualized embedded nodes and establish their inter-communication
with standardized Ethernet equipment enhanced with time-sensitive capabilities.
Those design paradigms enable flexible design and configuration of MCSs, thus im-
plementing novel countermeasures against safety and security threats. However,
they also induce additional design complexity and potentially new fault and attack
surfaces. Therefore, several research questions have arisen regarding their effective
use to design resilient, service-oriented, and time-sensitive MCSs.

Accordingly, in this cumulative thesis, we discover the methods of optimal and re-
silient design of next-generation MCSs focusing on two novel design pillars men-
tioned above. We first define several research questions regarding the resilience
of service-oriented (identified with RQ.S) and time-sensitive (identified with RQ.T)
MCSs. Then, throughout ten research articles, we address those questions align-
ing with three primary resilience goals, fault tolerance, autonomy, and security.
Finally, we present the details and results of those articles under six main contri-
butions (identified with C) to resilient service allocation and routing, and resilient
time-sensitive networking. Our contributions aligned with the respective research
questions are summarized as follows.

Resilient Service Allocation and Routing: Our contributions to resilient service
allocation and routing consist of (C1) fault-tolerant and optimal joint service alloca-
tion and routing for initial service configuration, (C2) a distributed and autonomous
controlling scheme for service orchestration, and (C3) service reconfiguration and
data rerouting strategies as proactive security countermeasures.

87

RQ.S1: How to deploy inter-connected services within the limited node and link
resources by ensuring fault tolerance against potential failures?

C1. Service-oriented MCSs require to place virtual services on physical network
and to establish communication between them. Accordingly, we propose an
optimization model, JSAR, to reserve node and link resources for mixed-critical
services and their intercommunication demands within the limited resource
capacity of MCSs. We further extend it with additional constraints to allocate
redundant resources against several potential node and link failure scenarios
in [ERF20] (Appendix A). After revealing the complexity of the overall fault-
tolerant service allocation and routing problem in that study, we propose an-
other model in [ERF21] (Appendix B), JSAR-SP, that shares backup capacity
between different services, so that more services and demands can be allocated
in the remaining resources. Although JSAR-SP can be solved for larger prob-
lem instances than JSAR, we develop several heuristics for finding near-optimal
solutions for substantially bigger network and service overlay sizes. As a re-
sult, we obtain the optimal initial service distribution for SOA by guaranteeing
resilience against all potential single node failures and saving up to 70% of
backup resources compared to reserving dedicated backup capacity as in tradi-
tional approaches.

RQ.S2: How to deploy, maintain, and reconfigure mixed-criticality services au-
tonomously with minimal dependency on a controller?

C2. JSAR and its extensions are rather static models that a centralized controller can
compute with its network-wide visibility. However, this controller is a poten-
tial single point of failure and may hinder quick and local reactions to failures.
Therefore, we propose an autonomous and distributed service orchestration
framework in [ESF22] (Appendix C) that discards the need for a controller.
This framework utilizes the bio-inspired ant colony optimization algorithm that
helps to formulate probabilistic task distribution and path finding models. We
further adapt this framework with two heuristics, bia-strict and bia-flex,
to enable selecting between better resource utilization or faster computational
time for service distribution depending on the system requirements and con-
ditions. Our distributed framework results in near-optimal resource utilization
compared to the centralized JSAR.

88

RQ.S3: How to develop defensive strategies to protect critical services against
persistent attacks by leveraging the flexibility of service-oriented architecture?

C3. Although SOA enables dynamically allocating services, a static service config-
uration can still be a target of well-calibrated and persistent attacks that MCSs
are typically threatened by. Accordingly, we propose a spatio-temporal moving
target defense framework in [ESKF23] (Appendix D), PLSCH-MTD, to dynami-
cally reconfigure services and their data routing in an optimal time-schedule
that minimizes the impact of advanced attacks. This framework combines JSAR
with an attacker-defender game to find feasible service configurations and re-
configuration schedules with a limited defensive budget. PLSCH-MTD provides
MTD strategies that can protect MCSs up to 90% of their operational time de-
pending on the complexity of potential attack scenarios and the available de-
fensive budget.

Resilient Time-sensitive Networking: The contributions to resilient time-sensitive
networking include (C4) dynamic and autonomous stream scheduling for initial net-
work configuration, (C5) reliable redundant path finding and orchestration for fault-
tolerant communication and (C6) security monitoring for TSN protocols.

RQ.T1: How to configure mixed-criticality and time-sensitive streams au-
tonomously, satisfying their strict latency requirements?

C4. First, we formulate an optimization model, TSOR, for reserving bandwidth and
scheduling TSN bridges for mixed-criticality streams. TSOR provides the opti-
mal configuration of IEEE 802.1Qbv Enhancements to Traffic Scheduling: Time-
Aware Shaper (TAS), which is the most fine-grained scheduling protocol among
TSN standards. Then, we utilize TSOR in a self-configuration framework in
[SBEF21] (Appendix E) to discard end-points from participating stream con-
figuration process. In this framework, TSN bridges autonomously extract the
traffic characteristics of incoming data streams, and a centralized controller
uses TSOR to schedule the bridges and deploy the streams according to their
characteristics. The resulting configuration results in a slightly increased end-
to-end latency with only 0.25% more delayed frames than the established TSN
stream configuration protocol, IEEE 802.1Qcc SRP. Furthermore, we develop
several dynamic reconfiguration strategies over TSOR in [SBEF22] (Appendix F).
They achieve to maintain a similar QoS with varying configuration overhead
for increasing communication demands.

89

RQ.T2: How to configure redundant communication reliably for time-sensitive
streams?

C5. Beyond their time-sensitive delivery, critical streams in MCSs should not be
disrupted by failures. The IEEE 802.1CB Frame Replication and Elimination for
Reliability (FRER) protocol enables a flexible configuration of redundant paths
for fault tolerance and offers several functions for duplicating and eliminating
time-sensitive frames. However, this flexibility can also cause unintended frame
eliminations due to poorly selected redundant paths that potentially degrade
the degree of redundancy. Therefore, we propose the reassurance metric in
[EF21b] (Appendix G) to select the most reliable redundant paths for an arbi-
trary degree of redundancy. We then use it to develop a path selection strategy
that achieves up to a 40% increase in packet delivery ratio in case of multiple
link failures. Besides, we implement an enhanced version of the FRER’s elimi-
nation function, eSRF, to prevent TSN bridges from dropping duplicate frames
unintentionally. Lastly, we propose several control plane functions for network
discovery and practical configuration of FRER in [EF21a] (Appendix H). To
demonstrate the overall framework, we implement these control plane func-
tions and FRER in the OMNeT++ network simulator. This implementation is
publicly available at https://github.com/UHH-ISS/omnet-802.1cb.

RQ.T3: How to protect different mission-critical domains against new threats
introduced by TSN protocols?

C6. TSN protocols are envisioned to take place in various critical domains, and
thus they are potential targets of advanced attacks towards MCSs. Accord-
ingly, we first identify more than 30 attack vectors against these protocols and
systematically categorize them using the STRIDE threat modeling framework in
[EBN+21] (Appendix I). However, despite several identified threats against TSN
protocols, there is not an established security monitoring solution that can ana-
lyze TSN traffic. For that, we build the first open-source intrusion detection sys-
tem in [ESF23] (Appendix J), TSNZeek, by extending an existing monitoring tool,
Zeek. It has a new packet parser to process TSN protocols and several functions
to detect attacks against time-sensitive redundancy and configuration protocols
in real-time. TSNZeek successfully notices the attacks listed in [EBN+21] with
only 5% CPU overhead compared to the original Zeek in a real TSN testbed.
The source code of TSNZeek, including the new TSN parser and intrusion detec-
tion functions, is publicly available at https://github.com/UHH-ISS/tsnzeek.

90

https://github.com/UHH-ISS/omnet-802.1cb
https://github.com/UHH-ISS/tsnzeek

Future Work

Along with our contributions, we discover several other research gaps that remain
as future work:

Addressing complexity in coexisting SOA and TSN: Service distribution prob-
lems of SOA and scheduling problems of TSN are known to be NP-hard. Therefore,
we have developed distinct models to address them separately but not holistically.
However, a fully-operating MCS requires to reserve resources for services and their
inter-communication (see Section 2.2) and to configure the respective TSN protocols
(see Section 3.2 and 3.3) simultaneously, which imposes a joint solution. As a re-
sult, system configuration and orchestration procedures (see Section 2.3) should also
consider these problems altogether. Therefore, as future work, we will design joint
models for a holistic design of SOA and TSN. Here, it requires more comprehensive
models than static optimization problems to reflect the complex and interdepen-
dent design aspects, e.g., distinct QoS and criticality classes of services and streams,
different failure models for nodes and links, etc.

Resilient topology design for MCS: For all contributions of this thesis, we made
various assumptions on the topological aspects of MCS due to the lack of available
topologies for service-based time-sensitive networks. Therefore, as future work, we
will develop topology synthesis models that jointly consider the requirements and
constraints of SOA and TSN. These constraints include (i) the connectivity con-
straints of Ethernet and TSN equipment, (ii) the weight and cost of the overall
system, (iii) following domain-specific architectural trends such as zonal design or
physical isolation of network parts, and (iv) fault tolerance concerns such as de-
ploying redundant resources and avoiding highly-connected components against a
single point of failure. While traditional methods such as linear optimization mod-
els can help to synthesize QoS or cost-optimal topologies with limited scalability,
more recent approaches like reinforcement learning can more quickly adapt MCS
topologies for different service overlays with near-optimal results.

Interconnectivity of TSN systems: The connectivity in MCSs such as industrial
networks and smart cars has significantly increased, and at the same time, they be-
come more interconnected with other systems with wireless networking technolo-
gies like 5G and WiFi. The emerging 5G technologies are currently being standard-
ized for the use of both within wired TSN and between TSN systems for wireless
communication. However, the research and engineering problems arising from the
complexity of their joint deployment have not been systematically analyzed yet. For
instance, configuring the scheduling, reliability, and management protocols of 5G
and TSN holistically for end-to-end communication requires new design and veri-
fication models that cover their complex interdependencies. From an engineering
standpoint, designing interfaces between the protocol stacks of 5G and TSN, and

91

a common definition of their distinct service classes are essential to build a uni-
fied networked system. Therefore, as future work, we will explore arising issues
regarding their integration to design resilient hybrid 5G-TSN networks.

Advanced intrusion detection for TSN systems: Traditional MCSs usually have a
static network configuration and repetitive communication patterns. It is relatively
easier to detect attacks in such setups since a malicious attempt quickly manifests as
an anomaly in typical system behavior. However, modern MCSs with increasing het-
erogeneity and (inter-)connectivity have more complex and dynamic behavior, and a
broadened attack surface. Although our intrusion detection system (see Section 3.4)
can protect time-sensitive communication against the identified threats, advanced
anomaly detection models are still required to recognize internal and external zero-
day attacks. Therefore, as future work, we will develop further anomaly-detection
models for TSN networks. This requires modeling benign network behavior of time-
sensitive networking using state-of-the-art machine learning algorithms, which have
already been proven effective against advanced security threats in several domains.
Besides, it requires a realistic depiction of TSN-based systems in terms of topology
and communication aspects to represent such benign behavior.

92

Bibliography

[ANYG15] I. Ahmad, S. Namal, M. Ylianttila, and A. Gurtov. Security in Software
Defined Networks: A Survey. IEEE Communications Surveys Tutorials,
17(4), 2015.

[BDDK20] O. Burkacky, J. Deichmann, G. Doll, and C. Knochen-
hauer. Rethinking Car Software and Electronics Architec-
ture. McKinsey & Co, 2020. https://www.mckinsey.

com/industries/automotive-and-assembly/our-insights/

rethinking-car-software-and-electronics-architecture.

[BLS15] M. Badra, A. Luchuk, and J. Schoenwaelder. Using the NETCONF
Protocol over Transport Layer Security (TLS) with Mutual X.509 Au-
thentication. RFC 7589, 2015.

[Con18] Consorzio Nazionale Interuniversitario per le Telecomunicazioni
(CNIT). Fed4IoT. 2018. https://fed4iot.org.

[Cur20] P.M. Curtis. An Overview of Reliability and Resiliency in Today’s Mission
Critical Environment. 2020.

[DA10] F. Dressler and Ö.B. Akan. Bio-inspired Networking: From Theory to
Practice. IEEE Communications Magazine, 48(11):176–183, 2010.

[DEz+19] A. Demirpolat, D. Ergenç, E. Öztürk, Y. Ayar, and E. Onur. Software-
defined network security. In Enabling Technologies and Architectures for
Next-Generation Networking Capabilities. IGI Global, 2019.

[DG97] M. Dorigo and L.M. Gambardella. Ant colony System: A Cooper-
ative Learning Approach to the Traveling Salesman Problem. IEEE
Transactions on Evolutionary Computation, 1(1):53–66, 1997.

[DHM+19] S. Dobson, D. Hutchison, A. Mauthe, A. Schaeffer-Filho, P. Smith,
and J.P.G. Sterbenz. Self-Organization and Resilience for Networked
Systems: Design Principles and Open Research Issues. Proceedings of
the IEEE, 107(4):819–834, 2019.

93

https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/rethinking-car-software-and-electronics-architecture
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/rethinking-car-software-and-electronics-architecture
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/rethinking-car-software-and-electronics-architecture
https://fed4iot.org

[FAAS+12] D. Fedyk, D. Allan, P. Ashwood-Smith, N. Bragg, J. Farkas, M. Ouel-
lete, M. Seaman, and P. Unbehagen. RFC 6329: IS-IS Extensions Sup-
porting IEEE 802.1aq Shortest Path Bridging. Technical report, Inter-
net Engineering Task Force, 2012.

[FMT+22] T. Fedullo, A. Morato, F. Tramarin, L. Rovati, and S. Vitturi. A Com-
prehensive Review on Time Sensitive Networks with a Special Focus
on Its Applicability to Industrial Smart and Distributed Measurement
Systems. Sensors, 22(4):1638, 2022.

[GEN20] GENIVI. Automotive Virtual Platform Specification. 2020.
https://at.projects.genivi.org/wiki/display/DIRO/Automotive+

Virtual+Platform+Specification.

[IEE16] IEEE 802.1 TSN Task Group. IEEE Standard for Local and Metropoli-
tan Area Networks – Amendment 25: Enhancements for Scheduled
Traffic. IEEE 802.1Qbv-2015, 2016.

[IEE17a] IEEE 802.1 TSN Task Group. IEEE 802.1 Time-Sensitive Networking
(TSN), 2017.

[IEE17b] IEEE 802.1 TSN Task Group. IEEE Standard for Local and Metropoli-
tan Area Networks – Frame Replication and Elimination for Reliability
(FRER). IEEE 802.1CB-2017, 2017.

[IEE18] IEEE 802.1 TSN Task Group. IEEE Standard for Local and Metropoli-
tan Area Networks – Amendment 31: Stream Reservation Proto-
col (SRP) Enhancements and Performance Improvements. IEEE Std
802.1Qcc-2018, 2018.

[JOG+15] S.T. Jones, A.V. Outkin, J.L. Gearhart, J.A. Hobbs, J.D. Siirola, C.A.
Phillips, S.J. Verzi, D. Tauritz, S.A. Mulder, and A.B. Naugle. Evalu-
ating Moving Target Defense with PLADD. Technical report, Sandia
National Lab.(SNL-NM), Albuquerque, NM (United States), 2015.

[JOG+17] S.T. Jones, A.V. Outkin, J.L. Gearhart, J.A. Hobbs, J. Siirola, J.D. Daniel,
A.P. Cynthia, S.J. Verzi, D. Tauritz, S.A. Mulder, and A.B. Naugle.
PLADD: Deterring Attacks on Cyber Systems and Moving Target De-
fense. In INFORMS Computing Society Conference, 2017.

[KJS19] P. Karhula, J. Janak, and H. Schulzrinne. Checkpointing and Migration
of IoT Edge Functions. In 2nd International Workshop on Edge Systems,
Analytics and Networking, pages 60–65. ACM, 2019.

[Koe18] A. Koenig. Integrated Sensor Electronics with Self-X Capabilities for
Advanced Sensory Systems as a Baseline for Industry 4.0. In 19th
ITG/GMA-Symposium Sensors and Measuring Systems, 2018.

94

https://at.projects.genivi.org/wiki/display/DIRO/Automotive+Virtual+Platform+Specification
https://at.projects.genivi.org/wiki/display/DIRO/Automotive+Virtual+Platform+Specification

[KW19] J. Klaus-Wagenbrenner. Zonal EE Architecture: Towards a Fully Au-
tomotive Ethernet-based Vehicle Infrastructure. In IEEE Standards As-
sociation (IEEE-SA) Ethernet & IP at Automotive Technology Day, 2019.

[LD07] T.H. Labella and F. Dressler. A Bio-inspired Architecture for Division
of Labour in SANETs. In Advances in Biologically Inspired Information
Systems, pages 209–228. Springer, 2007.

[Mcc76] G.P. Mccormick. Computability of Global Solutions to Factorable
Nonconvex Programs: Part I – Convex Underestimating Problems.
Mathematical Programming, 10(1):147–175, 1976.

[Mer22] Mercedes-Benz. Redundancy for safe conditionally au-
tomated driving. https://group.mercedes-benz.com/

innovation/product-innovation/autonomous-driving/

redundancy-drive-pilot.html, 2022.

[MG20] T. Mizrahi and E. Grossman. Deterministic Networking (DetNet) Se-
curity Considerations. Internet-Draft draft-ietf-detnet-security-11, In-
ternet Engineering Task Force, 2020. Work in Progress.

[MKK+21] G.M. Makrakis, C. Kolias, G. Kambourakis, C. Rieger, and J. Benjamin.
Industrial and Critical Infrastructure Security: Technical Analysis of
Real-Life Security Incidents. IEEE Access, 9:165295–165325, 2021.

[MP92] K. Makki and N. Pissinou. The Steiner Tree Problem with Minimum
Number of Vertices in Graphs. In 2nd Great Lakes Symposium on VLSI,
pages 204–206, 1992.

[MSRL+14] R. Mijumbi, J. Serrat, J. Rubio-Loyola, N. Bouten, F. De Turck, and
S. Latré. Dynamic Resource Management in SDN-based Virtualized
Networks. In 10th International Conference on Network and Service Man-
agement (CNSM), pages 412–417, 2014.

[Net16] Industrial Communication Networks. High availability automation
networks - Part 3: IEC 62439-3:2016 RLV Parallel Redundancy Protocol
(PRP) and High-availability Seamless Redundancy (HSR). 2016.

[NHAM+18] M. Nkomo, G.P. Hancke, A.M. Abu-Mahfouz, S. Sinha, and A.J. Onu-
manyi. Overlay Virtualized Wireless Sensor Networks for Application
in Industrial Internet of Things: A review. Sensors, 18(10), 2018.

[OAMAr21] M.N. Olaimat, M. Aizaini Maarof, and B.A.S. Al-rimy. Ransomware
Anti-Analysis and Evasion Techniques: A Survey and Research Direc-
tions. In 3rd International Cyber Resilience Conference (CRC), 2021.

95

https://group.mercedes-benz.com/innovation/product-innovation/autonomous-driving/redundancy-drive-pilot.html
https://group.mercedes-benz.com/innovation/product-innovation/autonomous-driving/redundancy-drive-pilot.html
https://group.mercedes-benz.com/innovation/product-innovation/autonomous-driving/redundancy-drive-pilot.html

[OSK+19] K. Ogawa, H. Sekine, K. Kanai, K. Nakamura, H. Kanemitsu, J. Katto,
and H. Nakazato. Performance Evaluations of IoT Device Virtualiza-
tion for Efficient Resource Utilization. In Global IoT Summit (GIoTS),
2019.

[PM04] M. Pióro and D. Medhi. Routing, Flow, and Capacity Design in Commu-
nication and Computer Networks. Elsevier, 2004.

[Pol17] P. Pols. The Unified Kill Chain. Cyber Security Academy (CSA) Thesis,
Hague, 2017. https://www.unifiedkillchain.com/.

[PPP+18] O.D. Parekh, C.A. Phillips, V. Powers, N. Sakr, and C. Stein. A
Scheduling Problem Motivated by Cybersecurity and Adaptive Ma-
chine Learning. Technical report, Sandia National Lab.(SNL-NM), Al-
buquerque, NM (United States), 2018.

[R. 18] R. Hummen and O. Kleineberg. Cyber-security for Modern TSN Au-
tomation Networks. Industrial Ethernet Book, 104, 2018.

[Rak12] J. Rak. Fast Service Recovery Under Shared Protection in WDM Net-
works. Journal of Lightwave Technology, 30(1):84–95, 2012.

[SG12] S. Schneele and F. Geyer. Comparison of IEEE AVB and AFDX. In
IEEE/AIAA 31st Digital Avionics Systems Conference (DASC), 2012.

[SHLO06] A. Shostack, S. Hernan, S. Lambert, and T. Ostwald. Uncover Security
Design Flaws Using The STRIDE Approach, 2006.

[SL18] W. Sim and J.S. Lee. End-to-end Connectivity Design with Automotive
Ethernet & Service-oriented Architecture. In IEEE Standards Associa-
tion (IEEE-SA) Ethernet & IP at Automotive Technology Day, 2018.

[STB19] S.B.H Said, Q.H. Truong, and M. Boc. SDN-Based Configuration Solu-
tion for IEEE 802.1 Time Sensitive Networking (TSN). SIGBED Review,
16(1), 2019.

[TEK14] M. Thompson, N. Evans, and V. Kisekka. Multiple OS-rotational Envi-
ronment and Implemented Moving Target Defense. In 7th International
Symposium on Resilient Control Systems (ISRCS), 2014.

[TFM19] L.N. Tidjon, M. Frappier, and A. Mammar. Intrusion Detection Sys-
tems: A Cross-Domain Overview. IEEE Communications Surveys &
Tutorials, 21(4):3639–3681, 2019.

[TGH+15] S. Tuohy, M. Glavin, C. Hughes, E. Jones, M. Trivedi, and L. Kilmartin.
Intra-Vehicle Networks: A Review. IEEE Transactions on Intelligent
Transportation Systems, 16(2):534–545, 2015.

96

[The20] The Open Group. Future Airborne Capability Environment (FACE) Tech-
nical Standard Edition 3.1. 2020. https://www.opengroup.org/face.

[TMMI16] M. Thompson, M. Mendolla, M. Muggler, and M. Ike. Dynamic Appli-
cation Rotation Environment for Moving Target Defense. In Resilience
Week (RWS), pages 17–26, 2016.

[VH08] A. Varga and R. Hornig. An Overview of the OMNeT++ Simulation
Environment. In 1st International Conference on Simulation Tools and
Techniques for Communications, Networks and Systems & Workshops, 2008.

[VMN21] J. Villaneueva, J. Migge, and N. Navet. QoS-Predictable SOA on TSN:
Insights from a Case-Study. In Automotive Ethernet Congress, 2021.

[Was11] M. Wasserman. Using the NETCONF Protocol over Secure Shell
(SSH). RFC 6242, 2011.

[WHK+19] F. Wilkens, S. Haas, D. Kaaser, P. Kling, and M. Fischer. Towards
Efficient Reconstruction of Attacker Lateral Movement. In 14th Inter-
national Conference on Availability, Reliability and Security (ARES), 2019.

[ZAL19] ZAL Center of Applied Aeronautical Research. Distributed, Extend-
able, Lightweight, Open, Reliable, Service-oriented Architecture for Next-
Gen Mobility (DELIA). 2019. https://delia-project.com.

[ZXKN17] R.Y. Zhong, X. Xu, E. Klotz, and S.T. Newman. Intelligent Manufac-
turing in the Context of Industry 4.0: A Review. Engineering, 3(5):616
– 630, 2017.

97

https://www.opengroup.org/face
https://delia-project.com

Acronyms

BSRP Backups with Secondary Redundant Path.

JSAR-SP Joint Service Allocation and Routing with Shared Protection.

JSAR Joint Service Allocation and Routing.

MDP Mutually Disjoint Paths.

MLSP Maximum Load to Shortest Path.

PLSCH-MTD PLADD-Scheduling MTD.

PLSCH PLADD-Scheduling.

POBS Post-Optimization Backup Scheme.

RDDP Random Deployment with Disjoint Paths.

SBB Secondary Backup Backbone.

TSOR Time-sensitive Optimal Routing.

eSRF Enhanced Sequence Recovery Function.

ACO Ant Colony Optimization.

ACT Attacker’s Capture Time.

AFDX Avionics Full Duplex Ethernet.

ARP Address Resolution Protocol.

BE Best-effort.

CAN Controller Area Network.

DoR Degree of Redundancy.

FRER IEEE 802.1CB Frame Replication and Elimination for Reliability.

GCL Gate Control List.

98

HSR Highly-available Seamless Redundancy.

IDS Intrusion Detection System.

IPS Intrusion Prevention System.

IS-IS Intermediate System to Intermediate System.

ISID Service Identifier.

LIN Local Interconnected Network.

MAC Media Access Control.

MCS Mission-critical System.

MILP Mixed Integer Linear Programming.

MOST Media Oriented System Transport.

MTD Moving target Defense.

NETCONF Network Configuration Protocol.

PLADD Probabilistic Learning Attacker and Dynamic Defender.

PoSF Probability of Service Failure.

PRP Parallel Redundancy Protocol.

QoS Quality of Service.

SDN Software-defined Networking.

SNMP Simple Network Management Protocol.

SOA Service-oriented Architecture.

SPB IEEE 802.1aq Shortest Path Bridging.

SRF Sequence Recovery Function.

SRP IEEE 802.1Qat Stream Reservation Protocol (SRP) and IEEE 802.1Qcc Enhance-
ments to SRP and Centralization Management.

SSH Secure Shell.

STRIDE Spoofing, Tampering, Repudiation, Information disclosure, Denial of ser-
vice, Elevation of privilege.

99

TAS IEEE 802.1Qbv Enhancements to Traffic Scheduling: Time-Aware Shaper.

TLS Transport Layer Security.

TSN IEEE 802.1 Time-Sensitive Networking.

TT Time-triggered.

VLAN Virtual Local Area Network.

100

Appendices

101

Appendix A

Service-based Resilience for
Embedded IoT Networks

Abstract

Embedded IoT networks are the backbone of safety-critical systems like smart factories,
autonomous vehicles, and airplanes. Therefore, resilience against failures and attacks should
be a prior concern already in their design stage. In this study, we introduce a service-based
network model as an MILP optimization problem for the efficient deployment of a service
overlay to the embedded network by meeting QoS and resilience requirements. We show
the complexity and boundaries of the problem and propose several heuristics to relax the
service deployment phase and increase the fault-tolerance against node and link failures.
Our results indicate that the heuristics achieve results close to the optimum for small sizes
of the problem with up to 108 time faster solution time. We also show that the heuristics can
solve larger problem sizes and can maintain the service availability for 90% of all potential
single node failures.

Reference

Doğanalp Ergenç, J. Rak, M. Fischer. Service-Based Resilience for

Embedded IoT Networks. IEEE/IFIP International Conference on De-

pendable Systems and Networks (DSN), 2020.

Contribution

In the forementioned publication, the whole contribution belongs to this thesis. The co-
authors helped to improve the quality of the paper with their valuable feedback.

102

Service-based Resilience for Embedded IoT
Networks

Doğanalp Ergenç
Universität Hamburg, DE

ergenc@informatik.uni-hamburg.de

Jacek Rak
Gdansk University of Technology, PL

jrak@pg.edu.pl

Mathias Fischer
Universität Hamburg, DE

mfischer@informatik.uni-hamburg.de

Abstract—Embedded IoT networks are the backbone of safety-
critical systems like smart factories, autonomous vehicles, and
airplanes. Therefore, resilience against failures and attacks
should be a prior concern already in their design stage. In
this study, we introduce a service-based network model as an
MILP optimization problem for the efficient deployment of a
service overlay to the embedded network by meeting QoS and
resilience requirements. We show the complexity and boundaries
of the problem and propose several heuristics to relax the service
deployment phase and increase the fault-tolerance against node
and link failures. Our results indicate that the heuristics achieve
results close to the optimum for small sizes of the problem with up
to 108 time faster solution time. We also show that the heuristics
can solve larger problem sizes and can maintain the service
availability for 90% of all potential single node failures.

Index Terms—Resilience, service overlay, optimization, embed-
ded IoT, systems

I. INTRODUCTION

Embedded IoT systems as used in autonomous vehicles, air-
planes, and industrial networks have become complex ecosys-
tems. For instance, the latest Tesla autopilot1 is supported
by eight cameras and twelve ultrasonic sensors for high
precision and high-quality environmental data. Similarly, with
Industry 4.0 intelligent cyber-physical systems emerge that are
composed of a multitude of collaborating embedded devices
[1], [2]. These devices might also host safety-critical services,
where any failure can induce huge damage - in the worst-case
up to the loss of human lives.

Moreover, we currently observe that trends from conven-
tional computer networks, like more powerful devices and vir-
tualization, are widely adopted in the (embedded) IoT domain.
This can be observed in application scenarios such as modern
avionics2 and smart cities3. In both scenarios, there is the need
for a non-static and thus flexible deployment of services and
functions in embedded systems. As a result, these systems
can take over more complex tasks and can operate multiple
virtualized services on top of a physical node by maintaining a
certain level of process isolation [3], [4]. Furthermore, it allows
using node resources more efficiently by starting additional
services on demand and even to migrate services in between
physical nodes. The increased flexibility of embedded nodes
by using virtualization techniques enables dynamic failover
schemes like migrating/recovering services after a node failure

1Tesla, https://www.tesla.com/autopilot
2DELIA, https://delia-project.com
3Fed4IoT, https://fed4iot.org

Powertrain
Controller

Chassis
Controller

Traffic
Sign

Detection
Driver

Assistance

Music

Object
Detection

Object
Detection

Switch
Pedestrian
Detection

Music

Switch

Telematics
Controller

Virtual
Assistant

Switch

Music

Music

Switch

Switch

Brake

Brake Brake

Brake

Switch

Lock

Lock

Control Services
Peripheral Services

Telematics Services
Management Services

Chassis
Controller

Collision
Avoidance

Fig. 1: A simplified reference model for the in-vehicle network
consisting of different types of services: Control services (red, wheel
icon), peripheral services (green, camera icon), telematics services
(yellow, speaker icon), and management services (blue, gear icon).

[5], [6]. Furthermore, as devices become more powerful, more
flexible repair and recovery mechanisms during and in the
aftermath of failures and attacks can be used, e.g., protection
cycles and resilient routing layers [7]. However, all of this
comes at the expense of increased complexity, so that these
systems become more error-prone and vulnerable. Standard
safety concepts like replicating devices and services alone
are not sufficient anymore in the presence of sophisticated
attackers. Resilience can bring together the safety and security
domain by maintaining availability in the presence of failures
and attacks, to provide graceful degradation in worst-case, and
to recover again [8], [9].

Embedded IoT networks host various potentially intercon-
nected services with specific demands, e.g., communication
with bounded delay or recovery from a certain number of node
and link failures. Thus, services need to be deployed in the IoT
network by considering the capacity and capabilities of nodes
and their interconnection. Hence, two degrees of freedom are
the result: the service placement on nodes and the routing of
data flows in between these nodes.

An example of how we imagine an all Ethernet-based in-
vehicle network with virtualized services is given in Fig. 1.
Automotive Ethernet will be widely deployed in the future
[10]. It allows more flexibility in network configuration and
allows the usage of COTS equipment. Therefore, it is a
promising solution for evolving in-vehicle networks and the
dynamic management of more and more hosted services, e.g.,

for improved fail-over [11]. In Fig. 1 different types of services
are deployed for the reference model: Control Services to
orchestrate powertrain and chassis domain functions, e.g.,
brakes and engine control, Peripheral Services to collect
required data from the environment via (Object and Pedestrian)
detectors for collision avoidance, Telematics Services for in-car
infotainment, e.g., music, and Management Services to offer
driver assistance managing body functions, e.g., controlling
door locks automatically or informing the driver about the
traffic signs on the road. Note that, some of the services, e.g.,
Collision Avoidance and Driver Assistance, are hosted by the
same virtualized component.

To realize an automatic braking system, for instance, a
group of sensor-connected components host an object detec-
tion service to detect objects on the road. Another component
hosts a collision avoidance service that processes information
received by the object detection and initiate an emergency
brake by informing the component that hosts a chasis con-
troller service. In such a service-based architecture service can
be easily migrated, e.g., the collision avoidance service can be
migrated to any other component with sufficient processing
power. The driver assistance service, as another example, can
utilize the components hosting the music infotainment service
to maintain a virtual assistant service that guides the driver
vocally in case its actual component hosting it fails. From
this point of view, enabling the dynamic service deployment
changes the dimension of the resilient communication by
benefiting from the flexible design of up-to-date embedded
devices [12].

The main contribution of this paper is a model and an opti-
mization problem formulation for the embedding of complex
inter-connected services in an IoT network by meeting Quality
of Service (QoS) and robustness requirements. Our model
results in a fault-tolerant deployment scheme against arbitrary
node failures. The resulting system becomes resilient against
failures and attacks when it is coupled with an additional
dynamic function migration mechanism. We formulate the
whole model as a Mixed Integer Linear Program (MILP) to
(i) discuss the complexity of the problem that is known to
be NP-hard in the literature and (ii) find solutions for the
optimum network deployment as a basis for several heuristics
we propose additionally. The results indicate that our heuristics
achieve results close to the optimum for small sizes of the
problem. We also show that the heuristics are getting closer
to the optimum when sacrificing resilience. The results also
indicate that the heuristics can solve larger problem sizes
and allow to embed complex service compositions 106 − 108

time faster so that the resulting embedding assures the service
availability for 90% of all potential single node failures.

The remaining part of the paper is organized as follows:
In Section II, we discuss the related work. Section III intro-
duces the details of our service-based model and optimization
problem together with QoS and resilience extensions. In
Section IV, we discuss the complexity of the problem. In
Section V, we present a heuristic scheme to implement such
a model in real systems. We discuss optimization results in

different scenarios and constraints in Section VI. Section VII
summarizes the paper and proposes future work.

II. RELATED WORK

In this section, we first summarize related work on service
allocation and second we describe approaches to enhance the
network resilience of embedded IoT networks.

A. Service Allocation

In cloud computing, Software-Defined Networking (SDN),
and Network Function Virtualization (NFV) domains, a service
represents a movable (or relocatable) function that has certain
type and characteristics and is allocated to physical nodes. In
cloud computing, a service generally provides some specific
content, an application, or a platform to users under Service-
Level Agreements (SLAs) minimizing the operational costs
at the same time. It requires accurate resource orchestration
regarding where, when, and how many service instances are
deployed [13], [14]. Besides, the dependencies of services
to each other [15], service migrations [16], load-balancing
[17], and task scheduling [18], are other issues that affect the
provider’s cost and the user experience.

SDN/NFV services are considered as virtual functions to
(i) process and regulate the communication such as fire-
walls, routers, and load balancers, or (ii) provide network-
wide services such as DNS and AAA policies. The proper
allocation of a service composition [19], [20] is important
to, for instance, minimize operational costs [21] and physical
resource fragmentation [22] for the providers, and maximize
the service quality [21] and responsiveness [23] for the user
experience. Various other studies also address the optimum
service allocation and routing problem jointly to deploy the
services on the optimal paths [24], [25] to utilize network
resources optimally while guaranteeing to satisfy SLAs.

Contrary to the existing works, the service deployment in
our study, i.e., in emerging virtualized IoT networks, define the
whole communication scheme of an embedded network. That
is, as the communication traffic is defined between services,
inter-service relationships are decisive for network design con-
sidering both service deployment and the traffic engineering.
In this sense, a service may be a traffic source, destination, or
both depending on the system design. Therefore, it is a joint
service allocation and inter-service traffic routing problem
where routing depends on the service allocation. Moreover,
adding resilience requirements to such a dynamic deployment
scheme renders the problem even more challenging.

B. Network Resilience

Many traditional approaches leverage graph-related prop-
erties of networks to increase their robustness. Against link
failures, for instance, finding primary and redundant directed
trees [26] as well as multiple disjoint paths [27] are proposed.
Some other related studies propose the optimization problems
with resilience constraints. In [28], the authors optimize virtual
cloud topologies having k redundant instances under network
constraints. Similarly, [29] creates survivable virtual groups

for each service to guarantee their availability and formulate
the deployment of the groups to an underlying network as
an optimization problem. Both studies focus on cloud service
characteristics as mentioned in Section II-A. In [30], a resource
allocation model is proposed for SDN/NFV including fault-
tolerance constraints. The authors of [31] consider topology
synthesis, routing, and scheduling problems jointly for fault-
tolerance in Time-Sensitive Networks (TSN) without including
any resource utilization constraint.

In this study, we consider the resilience of services together
with optimal resource allocation and routing for inter-service
communication. This is in contrast to the state of the art in
which the problem is not solved holistically. Other solutions
that embody resilience requirements in the optimization for-
mulation only reflect their respective domain characteristics.
None of them fits our problem as mentioned in Section II-A.

Furthermore, in conventional safety-critical systems, crit-
ical components usually have multiple redundant replicas
for failover. From an applicability perspective, our approach
allows to maintain this replication factor in the presence of
node failures, and thus to tolerate more failures than the
replication factor would allow normally. For that, our service-
oriented model presumes additional resources as part of the
network design.

Table I summarizes the discussion here with a qualitative
comparison between our work and the presented studies con-
cerning the criteria discussed in this section. Resource Effi-
ciency and Optimal Routing represent if a study considers the
optimality in resource and network utilization for the service
deployment and traffic engineering, respectively. Resilience
represents if related study proposes any solution for resilience
against failures or attacks. Lastly, Inter-service Dependency
shows whether related study considers the relationship, e.g.,
hierarchy or communication, between different services as we
mentioned its necessity for embedded IoT networks. While
none of those studies satisfies all criteria, our work addresses
all of them as we show in the rest of the paper.

III. SERVICE-BASED MODEL FOR EMBEDDED NETWORKS

The service-based model aims to embed an overlay net-
work of services into an underlying physical network so that
the resulting assignment maintains inter-service data traffic,
latency, and foremost resilience demands. In this sense, the
service overlay describes a communication scheme between
service instances. It can implicitly reflect redundancy for a
service, e.g., including multiple instances of the service in a
distributed manner. Fig. 2 gives an example for the embedding
of a service overlay (black nodes) in the underlying physical
network (grey nodes). A service instance can be allocated on a
single node to establish communication with other nodes that
host neighboring service instances. The overall service and
traffic deployment should be restricted by the node and link
capacities. Our main goal is to find the optimum allocation
of service overlay to the physical network and we present the
optimization model in this section. Table II summarizes all
terms and definitions of the formulation.

Service Overlay

Physical Network

Fig. 2: Service overlay on top of underlay physical network. Dashed
lines show how basic service instances are assigned to physical nodes.
Grey nodes host the service instances and directed edges show the
paths that carry traffic demand.

A. Optimization Problem

A physical network G(V,E) consists of nodes v ∈ V
and links e ∈ E. A service overlay O(S,D) consists of a
set of services s ∈ S and demands d ∈ D. Each service
instance s ∈ S should be deployed to one node to satisfy
traffic demands of service overlay. A demand d is defined
between a pair of service instances s.t. δ : D 7→ (SxS) and
δd = (s, t) s, t ∈ S to regulate inter-service communication.
Besides requiring an amount of data traffic between service
instances, a demand also characterizes the QoS and resilience
requirements for inter-service communication.

Services consume node resources, e.g., CPU or RAM. A
service has a resource demand of τs that needs to be provided
by a hosting node v. The total resource consumption of node v
to host a number of services is limited by its resource capacity
rv as follows:

∑

s∈S
ysvτs ≤ rv ∀v ∈ V (1)

ysv is a binary variable to decide if s is hosted by v.
Since each s ∈ S should be hosted by a node, the following
constraint needs to be satisfied:

∑

v∈V
ysv ≥ 1 ∀s ∈ S (2)

Inter-service communication is established between source
and destination nodes u and v via different paths p ∈ Puv .
Puv is the set of all possible paths between those nodes. The
set of all paths P is pre-computed and given as input to the
problem. To satisfy demand d from s to t s.t. δd = (s, t), we
should ensure that (i) any two nodes u and v host services
s and t, and (ii) the total data flow through paths p ∈ Puv

should be at least the traffic volume hd of demand d as:
∑

u,v∈V

∑

p∈Puv

ysuytvxdp ≥ hd

∀d ∈ D, δd = (s, t), s, t ∈ S (3)

TABLE I: The comparison of the state-of-the-art studies.

Study Resource Efficiency Optimal Routing Resilience
Inter-service
Dependency

Espling et al. [15] 3 3
Breitgand et al. [16] 3

Pu et al. [17] 3 3
Gawali & Shinde [18] 3 3

[21], [22], [23], [24], [25] 3 3
Medard et al. [26] 3 3

Lee et al. [27] 3 3
Barla et al. [28], Xu et al. [29] 3 3 3

Beck et al. [30] 3 3
Atallah et al. [31] 3 3

TABLE II: Terms and definitions in the optimization problem. Base type contains the fundamental elements of the model. Constants are
network- and service-related parameters given as input. Variables represent the parameters to be optimized.

Type Symbols Set Interval Definition

Base

u, v V Nodes in the network
e E Link (edges) between nodes
s, t S Basic services
d D A demand between a pair of services
p Puv An end-to-end path between nodes u and v
f F A failure scenario/state

Constant

τs <∗ [0,∞] Resource consumption of s
hd <∗ [0,∞] Traffic volume of d
ce <∗ [0,∞] Maximum link capacity of e
rv <∗ [0,∞] Maximum resource capacity of v
ns Z∗ [0,∞] Required number of instances for s
ld <∗ [0,∞] Latency requirement of d
l∗e <∗ [0,∞] Latency in e
ksv Z∗ [0,1] Binary variable to indicate if v is capable to host s
avf Z∗ [0,1] Binary variable to indicate if v is available in failure state f
θpf Z∗ [0,1] Binary variable to indicate if p is available in failure state f

Variable
xdp <∗ [0,∞] Flow allocated to path p of demand d
ysv Z∗ [0,1] Binary variable to decide if s is hosted by v
ysvf Z∗ [0,1] Binary variable to decide if s is hosted by v in scenario f

xdp is the flow allocated to path p of demand d. A path
p consists of a set of links and each link e ∈ p should have
sufficient link capacity to carry the flows on p as:

∑

d∈D

∑

p∈P,
e∈p

xdp ≤ ce ∀e ∈ E (4)

ce is the capacity of e and P is the set of all paths s.t.
P =

⋃
u,v∈V Puv .

B. Further QoS and Resilience Extensions

Until here, we have presented the main problem as the de-
ployment of services to physical nodes to satisfy inter-service
communication demands under resource and link capacity
constraints. In this section, we extend the problem with the
additional QoS and resilience constraints.

Latency requirements. Apart from the traffic volume Con-
straint (3), a demand d also requires to be satisfied within a
bounded delay ld. Therefore, each demand flow xdp should
be allocated to path p that guarantees end-to-end latency less
than ld. The latency in a path depends on the characteristics
of each link forming the path. Here, l∗e is the delay on link e

and the end-to-end latency is calculated as sum of the delays
in each link. Accordingly, the constraint

xdp(
∑

e∈p
l∗e − ld) ≤ 0 ∀d ∈ D, ∀p ∈ P (5)

ensures any active path s.t. xdp > 0 should be suitable for the
corresponding demand. Note that the delay l∗e on a link is not
influenced by the traffic and it is assumed as a constant given
as input.

Node capability. Even though assuming that every node
is capable to host any service gives significant flexibility
for the service deployment, it is not always possible in real
systems. Embedded nodes may be equipped with different
hardware modules and designed for specific tasks. Besides,
a system designer might want to ensure that specific services
run on specific nodes, because of QoS and security reasons.
Therefore, a binary input parameter ksv to specify if node v
is capable (and permitted) to host service s is added to the
problem. Accordingly, Constraint (2) is extended as,

∑

v∈V
ksvysv ≥ 1 ∀s ∈ S (6)

to assign services only to capable nodes.
Single-node demand allocation. Demands are defined be-

tween a pair of different services, not necessarily between

different physical nodes. Services s and t with demand d
s.t. δd = (s, t) can be deployed at the same node. However,
the traffic volume hd is not allocated to any physical path in
that case, since it does not require data transfer through the
network. Instead of defining extra constraints to enable such
a scenario, we modify the definition of a path such as,

p =

{
{} if p ∈ Puv and u = v

{e1, e2...ei} ei ∈ E otherwise
(7)

This modification introduces self-paths that are defined within
nodes themselves and do not include physical links s.t. p = {}.
When a flow is allocated to self-paths, it does not affect
the link capacity Constraint (2) since none of the links is
associated with them. Similarly, latency is omitted in self-paths
and it makes a self-path p eligible to be assigned any demand
if both services s and t of a demand d are allocated to the same
node. Therefore, it does not violate latency and link capacity
constraints.

Failure protection. Safety-critical systems should be re-
silient against different failure scenarios by design. From a
modeling perspective, failure state design is a concept where
each state represents a failure scenario adding extra constraints
to the optimization model [32]. A failure state may include
node failures, link failures or both, and each state f ∈ F
is represented by additional input parameters such as indices
of failed nodes or links to characterize a failure. Only the
initial state i.e., f = 0 represents the natural state of a system
without any failure. The model reiterates through all states to
find an optimum deployment that is resilient against all given
failure scenarios. Here, we focus on arbitrary node failures
that happen due to an attack, software failure or power cut
and affect several service instances on the failed node(s).
Such failures may occur in arbitrary nodes independent from
the service deployment scheme. Our failure model includes
one node failure per state and covers all single node failure
scenarios as we define one state for each node in the network.
In each failure scenario, a set of binary parameters avf is
given as input to specify if node v is available in failure
state f ∈ F and

∑
v∈V avf = |N | − 1 since only one

node is assumed to be failed in each state. Note that the
model can be extended to consider k-random failures easily
by defining further scenarios where each has multiple failed
nodes satisfying

∑
v∈V avf = |N | − k.

In case of a failure, two main steps should be taken. First, all
service instances hosted in the failed nodes must be deployed
to other available nodes s.t.,

∑

v∈V
ksvysvfavf ≥ 1 ∀s ∈ S, ∀f ∈ F (8)

where ysvf represents if service s is deployed to node v in
case of failure scenario f . Besides, if v hosts s in any f , there
should be a reserved resource in v for s for migration in case
of that f occurs. Therefore, Constraint (1) is extended as,

∑

s∈S
min(

∑

f∈F
ysvf , 1)τs ≤ rv ∀v ∈ V (9)

Here, the term with min function indicates if s deployed to v
in any number of states, only τs amount of resource need to
be occupied in v to activate that service.

Second, routing scheme should be reconsidered since (a)
paths may be broken due to failed nodes and (b) the service
deployment may change while migrating services in different
failure scenarios. Thus, Constraint (3) is extended as,

∑

u,v∈V
aufavf

∑

p∈Puv

ysufytvfθpfxdp ≥ hd

∀d ∈ D, δd = (s, t), s, t ∈ S, ∀f ∈ F (10)

where θpf =
∏

v∈V,v∈p avf indicates if path p is available in
state f , i.e., if all intermediate nodes in p are alive.

Note that the solution constructs a deployment and routing
scheme that is resilient to all single node failure scenarios.
In this sense, such an approach can be considered as both (i)
protective as it reserves required capacity in advance and (ii)
restorative as it decides where to migrate services in case of
related failure scenario happens. We focus on the single node
failure case first to keep the problem size relatively smaller
as more complex cases significantly increase the number of
possible scenarios, variables, and constraints. However, the
model enables us to design such scenarios where multiple
failed nodes can be selected arbitrarily, e.g., due to hardware
issues, and accidents as well as adjunctly, e.g., connected
nodes failed due to a zonal power cut.

C. Objective Function

As we consider bounded-latency as the main QoS metric in
our formulation, our objective is the minimization of end-to-
end latency. This objective function is decisive to both place
services and demands, since the optimal traffic allocation is
dependent on the service deployment scheme.

Traffic demands can be forwarded through multiple paths
and the whole demand is satisfied when the data on the longest
path is received by the destination. In this sense, two end-to-
end delay objectives can be considered. Minimization of the
longest active path length is useful for the type of services
that require the complete data to operate. Maximum amount
of data in shortest time approach is better for the services
that do not require to receive the entire data. Equation (11) is
formulated for the latter one,

min
∑

d∈D

∑

p∈P

∑

e∈p
l∗exdp (11)

to allocate high traffic demands to the paths with low-delay
links.

IV. COMPLEXITY OVERVIEW

Joint resource allocation and routing combinatorial opti-
mization problems are shown to be NP-hard [33]. The sizes
of the physical network and service overlay affect problem
complexity in terms of the number of variables and constraints.
In this section, we analyze the individual impact of network
elements to show the complexity of the problem and develop
efficient heuristics presented in Section V. Besides, we show

the complexity of constraints and at which cost we linearize
them to use profound LP solvers that are already capable to
solve complex problems efficiently. Table III shows the new
variables introduced after the linearization processes.

Constraint complexity. The traffic demand constraints (3)
and (10) include a cubic formulation to ensure that the demand
flows are allocated only on the paths between the nodes
that host related services. We apply a two-stage linearization
process.

a) Linearization of service deployment constraints: The
term ysuytv s, t ∈ S, u, v ∈ V is used to guarantee that
required services s and t for demand d s.t. δd = (s, t)
are allocated two nodes u and v. The multiplication of two
binary variables can be linearized by introducing a new binary
variable wstuv ∈W under such constraints

wstuv ≤ ysu (12)
wstuv ≤ ytv (13)
wstuv ≥ ysu + ytv − 1 (14)

for each combination of ysu and ytv and it introduces
O(|S|2|V |2) new binary variables. However, it is possible to
eliminate many wstuv if @d ∈ D s.t. δd = (s, t). Then, |W |
is reducted to O(|D|).

b) Linearization of flow allocation constraints: In con-
trast to the service deployment part, this stage includes a
binary variable wstuv and a continuous variable xdp instead
of two binary variables. A similar linarization process can be
applied to define qdpstuv ∈ Q under those constraints

qdpstuv ≤ min(ce)wstuv e ∈ p (15)

qdpstuv ≤ xdp (16)

qdpstuv ≥ xdp − (1− wstuv)min(ce) e ∈ p (17)

qdpstuv ≥ 0 (18)

where min(ce) e ∈ p is the lowest capacity link in path p and
defines the upper bound of xdp. After we filter only matching
service-demand pairs, |Q| can be reduced to O(|D||P |).

Constraint (9) has also a non-linear term, min function,
to distinguish if service s is deployed to v in any failure
state. Linearization of min requires the definition of two
binary variables msv and m∗sv to represent (i) the result of
min function and (ii) the relationship between the parameters
of min function (e.g., which one is bigger than the other),
respectively. Accordingly, the following constraints are added

1− αsvf ≤ |F |m∗sv (19)
αsvf − 1 ≤ |F |(1−m∗sv) (20)
msv ≤ αsvf (21)
msv ≤ 1 (22)
msv ≥ αsvf − |F |(1−m∗sv) (23)
msv ≥ 1− |F |m∗sv (24)

where αsvf =
∑

f∈F ysvf and |F | is the number o failure
states. Therefore, additional 2|S||V | variables and 6|S||V |
constraints are introduced. As a result of the linearization

process, O(|D||P |+ |S||V |) new variables and constraints are
added to the problem.

Impact of the resilience constraints. Each failure state
leads to finding an alternative deployment for the specific
scenario. Therefore, the number of failure states |F | signif-
icantly affects the solution time. Since we limited our design
to single node failure scenarios, each state includes exactly one
failed node and |F | = |V | is sufficient to address all possible
scenarios. As a result, the service deployment Constraint (8)
adds O(|S||V |), the resource capacity Constraint (9) adds
O(|V |), and the traffic Constraint (10) adds O(|D||V |) con-
straints. Eventually, O(|V |(|D|+ |S|)) extra constraints stem
from the resilience design. For number of variables, it costs
extra O(|S||V |2) service allocation variables, ysvf . Besides,
the linearization constraints and variables are also multiplied
as discussed in the Constraint complexity.

Table IV shows how resilience extension affects the problem
complexity in terms of the number of constraints and variables,
and solution time. Apart from the increasing number of vari-
ables and constraints, the solution time significantly increases
due to search for a much more restricted deployment for
resilience. Table IV shows the impact of resilience constraints
in terms of the number of variables, constraints, and solution
time.

Impact of the number of links and paths. The number
of links |E| and paths |P | are directly correlated. In fact,
even one additional link can lead to dozens of alternative
paths especially in large networks. While |P | affects (i) the
number of variables due to xdp by O(|D||P |) and (ii) the
number of constraints due to Constraint (3) by O(|D||P |), |L|
adds a number of constraints bounded by O(|E|) due to Con-
straint (4). Even though it is not possible to eliminate a link
without restraining the number of solutions, we can remove a
path if none of the demands can be allocated on it due to the
latency constraint. The paths that cannot satisfy even the most
flexible delay requirement i.e., the demand with the highest
delay tolerance cannot be used in the optimal deployment.
Since the possible delay on a path is calculatable using link
characteristics as in Constraint (5), we used the highest delay
requirement as the cutoff parameter checking if path delay
conforms that parameter. Removing non-conforming ones, the
search space for routing is significantly reduced.

Impact of the number of services and demands. Services
and demands are the main components to construct a network
and their quantities are decisive for the problem complexity.
While the number of services |S| multiplies the number of
deployment variables ysv , the number of demands |D| deter-
mines the number of flow allocation variables xdp. Since |P | is
the highest variant in the problem, |D| considerably changes
the total number of variables multiplying it. According the
results shown in Table V, increasing |D| causes an exponential
increase in both number of variables and the solution time in a
topology with 20 nodes, average node degree of 3, and ∼1600
paths. Note that the most basic scenario without resilience
constraints is considered for those experiments. The impact of
|D| under resilience constraints is much higher, and shown in

TABLE III: New variables introduced after linearization of the non-linear constraints.

Symbols Set Interval Definition
wstuv Z∗ [0,1] Binary variable to specify if s and t are hosted by u and v respectively
qdpstuv Re∗ [0,1] Flow allocated to p between u and v to satisfy traffic requirements of d
msv Z∗ [0,1] Binary variable to decide if s is hosted by v in any failure scenario
m∗

sv Z∗ [0,1] An intermediary binary variable to decide msv

TABLE IV: Impact of the number of failure states on the number of variables and solution time for the failure-resilient deployment for
|D| = 2.

Nodes Non-Resilient Resilient
Variables Constraints Solution Time Variables Constraints Solution Time

8 530 1200 0.55s 3008 8181 270.45s
10 3939 7260 0.81s 15947 42434 2710.21s
12 5270 9371 1.13s 28242 77051 9560.57s
14 13751 22170 4.28s 72815 197668 >12h
16 71171 143445 21.53s 439640 1246625 >12h

TABLE V: Impact of the increasing number of demands without
resilience constraints on the number of variables and solution time.

Demands Variables Solution Time

1 2537 0.55s
3 13037 8.76s
5 27919 32.67s
7 37859 1372.25s
9 50653 17463s

Section VI.

V. HEURISTICS

Heuristics should cover three dimensions of our problem
which are service deployment, inter-service traffic routing,
and resilience. To find a complete solution, we first develop
greedy heuristics for service deployment and routing since they
are directly related. Then, we search for backup nodes and
redundant paths to increase resilience against arbitrary node
failures. However, even though such a two-stage deployment
is quite flexible, it cannot easily optimize networks for all
dimensions. Therefore, we design a hybrid heuristic that
leverages both a greedy approach and MILP formulation for
a better convergence to the optimum solution. However, the
involvement of MILP formulation decreases scalability of the
heuristic. Table VI summarizes the heuristics including their
approaches, i.e., greedy and/or optimized solutions, e.g., for
service allocation, routing, and resilience. In the following,
we explain these heuristics in detail.

A. Random Deployment with Disjoint Paths (RDDP)

Random Deployment with Disjoint Paths (RDDP) is the
greedy heuristic consisting of two phases, service deployment
and routing. In the first phase, the services are allocated to a
randomly selected pair of nodes that do not host any other
service for each demand. If every node hosts at least one
service, the active nodes starting from the ones with the highest
available resources are selected next. In the second phase,
two node-disjoint paths are allocated for the demand between
selected nodes, one for the main use and the other one as a
redundant backup. If disjoint paths cannot be found between

Algorithm 1: Random Deployment with Disjoint Paths
(RDDP)

1 D ← Demands in descending traffic requirements
2 limit ← 50
3 for demand ∈ D do
4 services← demand.services
5 i← 0
6 while demand is not allocated and i ≤ limit do
7 . First phase: Node selection
8 i← i+ 1
9 u, v ← Random nodes that can host services

10 if Any of services deployed then
11 u, v ← Pick host node

12 if u, v can host services then
13 . Second phase: Path selection
14 p1, p2 ← Shortest disjoint paths from Puv

15 if ∃p1, p2 ∈ Puv and p1, p2 can carry
demand.traffic then

16 Allocate demand
17 Update p1, p2 and u, v capacity

those nodes, they are reselected by following the same greedy
approach. Algorithm 1 summarizes RDDP.

Note that there is a limit parameter in Algorithm 1 to repeat
the random node selection process until finding a pair of nodes
that can accommodate the services and for which disjoint
paths for carrying the respective traffic demand exist. The
parameter can be selected according to the network size and
the number of demands. limit = 50 was sufficiently high for
all network sizes that we used in our experiments. Therefore,
the complexity of RDDP becomes O(limit|D|). Note that the
complexity of finding disjoint paths is excluded as they are
given as input parameters.

Even though finding redundant paths increases the resilience
of the network traffic, the services on the failed nodes should
be still migrated to other nodes. For that RDDP is extended
with another greedy heuristic.

TABLE VI: Overview of the proposed heuristics.

Heuristic Greedy Optimization Service Deployment Routing Resilience Scalability
RDDP 3 3 3 ∼ 3

RDDP + BSRP 3 3 3 3 3
MLSP 3 3 3 3

MLSP + POBS 3 3 3 3 3

B. Backups with Secondary Redundant Path (BSRP)

After finding a basis predeployment scheme with RDDP,
Backups with Secondary Redundant Path (BSRP) heuristic
selects a backup node for each service for the migration in
case of a node failure. Similar to RDDP, BSRP deploys a
backup service instance to the node with the highest available
resources in at most O(|S||V |) iterations. Then, a secondary
redundant path, i.e., different from the one offered by RDDP,
for each demand between the backup nodes is selected starting
from the ones with the lowest cost. This phase induces costs
of O(|D||P |). Algorithm 2 summarizes BSRP.

C. Maximum Load to Shortest Path (MLSP)

As the complexity analysis in Section IV shows the drastic
impact of the number of demands on the solution time, we aim
to reduce the problem size by allocating some of the demands
greedily. Maximum Load to Shortest Path (MLSP) heuristic
places the most data-intensive demands to the shortest, e.g.,
path with the lowest delay, available paths and deploys related
services to end-hosts of those paths, accordingly. If any
service is already deployed to a node, one of the shortest
paths including that node as the end-host is selected. Then,
those services and satisfied demands are excluded from the
optimization problem. The rest of the demands, i.e., non-data-
intensive ones are again given to the reduced optimization
problem under resilience constraints.

Note that the MLSP heuristic includes both greedy service
deployment and flow allocation as well as the optimization for

Algorithm 2: Backups with Secondary Redundant Path
(BSRP)

1 PR← Basis predeployment scheme
2 D ← Demands in descending traffic requirements
3 N ← Nodes in descending available resource capacity
4 for service deployed in PR do
5 . Select backup nodes
6 for node ∈ N do
7 if node 6= service.host and node can host service

then
8 node← Candidate backup node

9 for demand ∈ D do
10 . Find redundant paths
11 services← demand.services
12 u, v ← Backup nodes for services
13 Puv ← Paths betwen u and v in ascending cost
14 for p ∈ Puv do
15 if p can carry demand.traffic then
16 Update p and u, v capacity

different failure scenarios. The services which are placed in
advance are assumed to be fixed and their host nodes are not
subject to failures. In a real-life scenario, those nodes can be
considered as the critical ones whose aliveness is guaranteed
by hot-backups. The time complexity of MLSP is O(|D||P |)
as can be derived from Algorithm 3.

For MLSP, we categorize all demands having more than h∗

(as a design parameter) traffic requirements as data-intensive.
It is suitable to optimize the objective function in Equation 11,
but such a predeployment can also be performed regarding,
e.g., demand priority and criticality.

D. Post-Optimization Backup Scheme (POBS)

After obtaining the optimal deployment with some fixed
nodes by MLSP, it is still possible to find a suitable Post-
Optimization Backup Scheme (POBS) for the fixed nodes and
services, given that resources are available for it. Algorithm 4
summarizes the POBS construction. We take the base state,
f = 0, as the reference deployment where all nodes are alive.
Then, we create a new failure scenario for each host node
selected by MLSP and move the services on that node to a
randomly selected one with sufficient resources. In this case,
it is required to reallocate all demands that leverage any of
the migrated services, i.e., Dservice, as well. The demands are
moved to the shortest paths between the randomly-selected

Algorithm 3: Maximum Load to Shortest Path
(MLSP)

1 D ← Demands in descending traffic requirements
2 P ← Paths in ascending cost
3 for demand ∈ D do
4 . Deploy data-intensive demands to nodes
5 Psearch ← P
6 if demand.traffic ≥ h∗ then
7 services← demand.services
8 if services already deployed then
9 u, v ← services.hosts

10 Psearch ← Puv

11 else if Only one service already deployed then
12 u← services.hosts
13 Psearch ← Pu

14 . Find paths for demands
15 for p ∈ Psearch do
16 u, v ← path.hosts
17 if u, v can host services and p can carry demand

then
18 Allocate demand
19 Update p and u, v capacity

Algorithm 4: Postoptimization Backup Scheme
(POBS)

1 V ← Fixed nodes by MLSP
2 for node ∈ V do
3 u← A random node other than node
4 for service hosted by node do
5 . Find a backup node
6 if u can host service then
7 for demand ∈ Dservice do
8 v ← Node hosting other service of demand
9 for p ∈ Puv do

10 . Migrate traffic and service
11 if p can carry demand.traffic then
12 Update p and u capacity

node (by POBS) and the optimally-deployed host (by MILP)
to obtain minimum latency.

Even though POBS finds backup nodes and redundant paths
for only limited set of services, it is still asymptotically
bounded by O(|V ||P ||D|) iterations.

VI. EVALUATION

In this section, we evaluate our optimization model and
compare it to our heuristics. We first describe our experimental
setup, our metrics and then present and discuss results from
a detailed performance analysis. This includes a discussion
of the scalability of the greedy heuristic RDDP+BSRP and
the impact of the data-intensiveness threshold h∗ on MLSP
and MLSP+POBS. Note that since it does not provide service
resilience by itself (but resilience against node and link failures
via disjoint paths), RDDP is considered together with BSRP
as an enhanced heuristic scheme.

A. Experimental Setup

The optimization problem was implemented in CPLEX
12.7.0 and all experiments (including the ones presented
in Section IV) were conducted in a server with 64-core
Intel Xeon 2.10Ghz CPU and 256GB RAM. Most of the
experiments were conducted for different topologies with 10
nodes and 2.5 node average degree to limit the size of the
MILP problem. For the model with resilience constraints, the
optimizer utilizes all cores and consumes around 120GB RAM
in the initial phases of reduction and optimization of the linear
problem. CPLEX leverages the branch-and-bound method and
the resource usage reduces significantly to around 10GB while
CPU utilization remains high, e.g., around 80% of the cores
are actively used in the later phases of the optimization. The
heuristics, on the other hand, can be solved in a much shorter
time (under a second for RDDP and a couple of minutes for
MLSP) and thus we do not observe a considerable resource
consumption.

Various sample service overlays were generated for the
experiments. For n services, [n− 1, 3n/2] demands (in which
maximum half of them are data-intensive) were defined en-
suring that each service communicates at least one other

TABLE VII: Intervals for randomly generated parameters.

Parameter Interval

Link capacity (ce) [2.0, 4.0]
Node resource capacity (rv) [1.0, 3.0]

Service resource consumption (τs) (0.0-2.0]
Demand traffic requirement (hd) [1.0, 5.0]
Data-intensiveness threshold (h∗) [0.5, 2.5]

service, i.e., there is no service without a traffic demand.
Both topologies and service overlays are random networks
where the links/demands are created probabilistically between
nodes/services. Table VII presents the intervals in which
each parameter is generated with uniform distribution. The
convenience of networks, e.g., connectivity of the network,
sufficient capacity for demands and services, are confirmed
for each generation.

B. Metrics

We measured the solution time, the latency costs, and
the probability of service failure. Solution time is the time
needed to compute solutions for the optimization model and
the heuristics. Latency cost is defined in Equation 11 and
used as the objective function for our model. Probability of
Service Failure (PoSF) is the ratio of the number of services
without backup nodes (due to insufficient node resources) to
the number of all services. It represents the percentage of
services that fail at most in case of an arbitrary node failure
and is used as the resilience metric. While 0% PoSF represents
the absolute resilience against any arbitrary node failure, 100%
PoSF indicates the failure of all services.

C. Results

a) Solution Time: Fig. 3 shows the solution time for
the MILP and heuristics in small topologies with 10 nodes.
Fig. 3a shows that the increasing number of demands affect
the solution time exponentially between 0.15-100 hours in the
optimal and single node failure resilient (Optimal-R) scenario.
In Fig. 3b, on the other hand, sub-optimal solutions are found
in seconds for the same topologies and service overlays. Since
MLSP and MLSP+POBS still solve a reduced MILP, they are
slower than RDDP+BSRP. Here, while MPLS+POBS is up
to x106 times faster than the Optimal-R, the greedy approach
RDDP+BSRP offers x108 times better solution time.

b) Performance Comparison: Even if greedy heuristics
are significantly faster than solving the optimization prob-
lem, they cannot assure the optimal solution and maximum
resilience againt single random node failures. Fig. 4 compares
heuristics with the resilient (Optimal-R) (i.e., where all ser-
vices are alive in case of any single node failure) and non-
resilient (Optimal) (i.e., service deployment and routing with-
out any resilience constraint) solutions in terms of the latency
cost and PoSF. As shown in Fig. 4a, the Optimal solution
has the minimum latency cost and MLSP gets close to the
optimum. However, MLSP induces a PoSF of 20-60% as de-
picted in Fig. 4b, because of the pre-deployed services without
backups. After Optimal-R (having 0% PoSF), MLSP+POBS

3 4 5 6 7 8
Number of demands

0

20

40

60

80

100
So
lu
tio

n
tim

e
(h
)

Optimal-R

(a) Solution time in hours

3 4 5 6 7 8
Number of demands

0
1
2
3
4
5
6
7

So
lu
tio

n
tim

e
(s
)

MLSP
MLSP+POBS
RDDP+BSRP

(b) Solution time in seconds

Fig. 3: Impact of increasing number of demands on the solution time for a topology with 10 nodes.

offers the best fault-tolerance and improvement from 40% to
5% with increasing number of demands. However, in POBS
phase, it cannot find the optimum paths due to random search
of the available nodes and becomes 2-4 times more costly in
comparison to Optimum-R. While RDDP+BRSP is less costly
than MLSP+POBS in terms of latency, it is negatively affected
by the increasing demands and has a PoSF up to 50%. Note
that latency cost and fault-tolerance are directly related to each
other. Further fault-tolerance requires to allocate the redundant
load to maintain communication in case of failures. In this
sense, fault-tolerance costs additional node resources and link
capacity.

c) Scalability: Since RDDP+BRSP is the only approach
without an optimization stage, it enables us to design larger
networks conveniently. Fig. 5a and Fig. 5b show the perfor-
mance of RDDP+BSRP for increasing demands and nodes,
respectively. In Fig. 5a, the PoSF is increasing up to 30%
as it is harder to find redundant resources for increasing
demands in a fixed-size topology, i.e, 100 nodes. Latency cost
is expectedly increasing since the increasing demand should
be assigned to the longer paths after shorter ones are priorly
utilized.

Fig. 5b, on the other hand, reflects the impact of increasing
available resources, i.e., the number of nodes and paths,
with a fixed number of demands, i.e., 80 demands. When
the number of nodes and demands are equal, i.e., 80 nodes
and demands, the PoSF can rise up to 50% but it drops to
20% with increasing number of nodes as a consequence of
the increased available resources. Being able to deploy more
redundant services also results with increasing latency cost as
it requires to utilize further paths to ensure communication
between redundant services. Note that satisfying a demand
already requires the deployment of two services that should
also have backup nodes and paths. There should be at least
four nodes (and some paths depending on link capacities) per
demand to offer such a resilience scheme without a flexible
service deployment model. In this sense, RDDP+BSRP offers
a scalable and computationally simple solution that can satisfy
the resilience requirements to a certain extent.

d) Data-intensiveness Threshold: The efficiency of
MLSP and MLSP+POBS depends on the data-intensiveness

threshold, h∗. Lower h∗ indicates a higher number of greedily
deployed demands, a more reduced problem size, and a harder
POBS stage. Fig. 6 shows the impact of h∗. As shown in
Fig. 6b, MLSP can place more demands for h∗ ≤ 1.0 and
it results in a higher number of services without backups
and around 40% PoSF which can also go up to 50% for
some topologies and service overlays. When it is enhanced by
POBS, the PoSF drops to 10% and the deployment becomes
fully resilient to single node failures for h∗ > 2.0. However,
2-3 times lower PoSF leads to a proportional latency cost as
seen in Fig. 6a due to the redundant traffic loads allocated for
resilience.

e) Takeaway: As a concrete takeaway, our heuristics
show the tradeoff between QoS-optimality, resilience, and
scalability. Accordingly, they can be preferred with respect to
the desired balance between those design requirements. In the
presence of static services, e.g., pre-allocated, non-migratable,
or data-intensive, MLSP+POBS can be leveraged to reduce the
problem size and can provide a near-optimal solution with a
small decrease in resilience, i.e., a slightly higher probability
of service failure. However, as it still requires to solve an
MILP, it offers only limited scalability. Nevertheless, being
a greedy heuristic, RDDP+BSRP offers good scalability at
the expense of decreased QoS and resilience. Considering the
pros and cons of them, it can be concluded that MLSP+POBS
is convenient for relatively small networks having strict QoS
requirements and many mission-critical services and commu-
nication while RDDP+BSRP can scale to larger networks (in
terms of the number of components and services) in which
failure-resilience has higher priority than QoS.

VII. CONCLUSION AND FUTURE WORK

Embedded IoT networks take over safety-critical tasks and
their resilience against failures should be a prior concern al-
ready in the design stage. In this study, we presented a service-
based network design where the functionalities of a system are
defined by inter-service communications, or demands, having
certain requirements. We formulated joint service deployment
and routing problem as an MILP model and extended it
with resilience constraints against random single node failures.
The problem is NP-hard, but we also discussed the problem

3 4 5 6 7
Number of demands

0

10

20

30

40

50
La
te
nc
y
co
st

Optimal
MLSP
MLSP+POBS
Optimal-R
RDDP+BSRP

(a) Latency cost

3 4 5 6 7
Number of demands

0

20

40

60

80

100

Pr
ob
ab
ilit
y
of
 se
rv
ice
 fa
ilu
re
 (%
)

Optimal
MLSP
MLSP+POBS
Optimal-R
RDDP+BSRP

(b) Probability of service failure

Fig. 4: Impact of increasing number of demands for a topology with 10 nodes.

40 50 60 70 80
Number of demands

240

260

280

300

320

340

360

La
te
nc
y
co
st

RDDP+BSRP

40 50 60 70 80
Number of demands

17.5

20.0

22.5

25.0

27.5

30.0

Pr
ob

ab
ilit

y
of

 se
rv

ice
 fa

ilu
re

 (%
)

RDDP+BSRP

(a) Impact of increasing number of demands for a topology with 100 nodes.

80 90 100 110 120
Number of nodes

100

200

300

400

500

La
te
nc
y
co
st

RDDP+BSRP

80 90 100 110 120
Number of nodes

20

30

40

50

60

Pr
ob

ab
ilit

y
of
 se

rv
ice

 fa
ilu

re
 (%

)

RDDP+BSRP

(b) Impact of increasing number of nodes for a service overlay with 80
demands.

Fig. 5: Scalability of RDDP+BSRP for increasing number of demands and nodes.

0.5 1.0 1.5 2.0 2.5
Data-intensiveness threhold

10

20

30

40

50

60

La
te
nc

y
co

st

MLSP
MLSP+POBS

(a) Latency cost

0.5 1.0 1.5 2.0 2.5
Data-intensiveness threhold

0

10

20

30

40

50

Pr
ob

ab
ilit

y
of
 se

rv
ice

 fa
ilu

re
 (%

)

MLSP
MLSP+POBS

(b) Probability of service failure

Fig. 6: Impact of increasing h∗ for a topology with 10 nodes and a service overlay for 8 demands.

complexity on the basis of the MILP formulation and the
resulting scalability issues. As we concluded that the number
of demands is the most decisive factor in the solution time, we
proposed heuristics to reduce the problem size and find near-
optimum greedy solutions. The experiments showed that there
is a tradeoff between optimum QoS and resilience and our
heuristics promise well-balanced solutions depending on the
problem size more than 106 times faster than MILP solution.

Considering the problem complexity, we limited the failure
scenarios to single node failures. Even though single random
failures are frequently used to cover common failure scenarios

in networks and distributed systems, more structured massive
node failures due to software crashes and vulnerabilities or
cyber-attacks are also real threats for embedded IoT networks.
Those scenarios will be also considered in our future work
in alternative topologies that reflect domain-specific network
characteristics.

REFERENCES

[1] R. Y. Zhong, X. Xu, E. Klotz, and S. T. Newman, “”Intelligent
Manufacturing in the Context of Industry 4.0: A Review”,” Engineering,
vol. 3, no. 5, pp. 616 – 630, 2017.

[2] A. Koenig, “Integrated Sensor Electronics with Self-X Capabilities for
Advanced Sensory Systems as a Baseline for Industry 4.0,” in Sensors
and Measuring Systems; 19th ITG/GMA-Symposium, pp. 1–4, June
2018.

[3] I. Khan, F. Belqasmi, R. Glitho, N. Crespi, M. Morrow, and P. Polakos,
“Wireless Sensor Network Virtualization: A Survey,” Communications
Surveys and Tutorials, IEEE Communications Society, vol. 18, pp. 553
– 576, Jan. 2016.

[4] M. Nkomo, G. P. Hancke, A. M. Abu-Mahfouz, S. Sinha, and A. J.
Onumanyi, “Overlay virtualized wireless sensor networks for application
in industrial Internet of Things: A review,” Sensors (Switzerland),
vol. 18, no. 10, pp. 1–33, 2018.

[5] K. Ogawa, H. Sekine, K. Kanai, K. Nakamura, H. Kanemitsu, J. Katto,
and H. Nakazato, “Performance Evaluations of IoT Device Virtualization
for Efficient Resource Utilization,” in 2019 Global IoT Summit (GIoTS),
pp. 1–6, June 2019.

[6] P. Karhula, J. Janak, and H. Schulzrinne, “Checkpointing and migration
of iot edge functions,” in Proceedings of the 2Nd International Workshop
on Edge Systems, Analytics and Networking, EdgeSys ’19, (New York,
NY, USA), pp. 60–65, ACM, 2019.

[7] M. Brinkmeier, M. Fischer, S. Grau, G. Schäfer, and T. Strufe, “Methods
for Improving Resilience in Communication Networks and P2P Over-
lays,” PIK - Praxis der Informationsverarbeitung und Kommunikation,
vol. 32, no. 1, 2009.

[8] J. P. G. Sterbenz, D. Hutchison, E. K. Çetinkaya, A. Jabbar, J. P. Rohrer,
M. Schöller, and P. Smith, “Resilience and survivability in communica-
tion networks: Strategies, principles, and survey of disciplines,” Comput.
Netw., vol. 54, pp. 1245–1265, June 2010.

[9] J. Rak, Resilient Routing in Communication Networks. Springer, 2015.
[10] P. Hank, S. Müller, O. Vermesan, and J. Van Den Keybus, “Automotive

ethernet: In-vehicle networking and smart mobility,” in 2013 Design,
Automation Test in Europe Conference Exhibition (DATE), pp. 1735–
1739, March 2013.

[11] S. Tuohy, M. Glavin, E. Jones, M. Trivedi, and L. Kilmartin, “Next gen-
eration wired intra-vehicle networks, a review,” in 2013 IEEE Intelligent
Vehicles Symposium (IV), pp. 777–782, June 2013.

[12] G. Heiser, “Virtualizing embedded systems - why bother?,” in 2011 48th
ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 901–905,
June 2011.

[13] J. Chenni Kumaran and M. Aramudhan, “A survey on resource allo-
cation strategies in cloud,” International Journal of Reasoning-based
Intelligent Systems, vol. 10, no. 3-4, pp. 328–336, 2018.

[14] N. K. Pandey, S. Chaudhary, and N. K. Joshi, “Resource allocation
strategies used in cloud computing: A critical analysis,” 2nd Interna-
tional Conference on Communication, Control and Intelligent Systems,
CCIS 2016, pp. 213–216, 2017.

[15] D. Espling, L. Larsson, W. Li, J. Tordsson, and E. Elmroth, “Modeling
and Placement of Cloud Services with Internal Structure,” IEEE Trans-
actions on Cloud Computing, vol. 4, no. 4, pp. 429–439, 2016.

[16] D. Breitgand, A. Marashini, and J. Tordsson, “Policy-driven service
placement optimization in federated clouds,” IBM Research Division,
Tech. Rep, vol. 9, pp. 11–15, 2011.

[17] L. Pu, L. Jiao, X. Chen, L. Wang, Q. Xie, and J. Xu, “Online resource
allocation, content placement and request routing for cost-efficient edge
caching in cloud radio access networks,” IEEE Journal on Selected Areas
in Communications, vol. 36, no. 8, pp. 1751–1767, 2018.

[18] M. B. Gawali and S. K. Shinde, “Task scheduling and resource allocation
in cloud computing using a heuristic approach,” Journal of Cloud
Computing, vol. 7, no. 1, 2018.

[19] X. Li and C. Qian, “A survey of network function placement,” 2016 13th
IEEE Annual Consumer Communications and Networking Conference,
CCNC 2016, pp. 948–953, 2016.

[20] B. Yi, X. Wang, K. Li, S. k. Das, and M. Huang, “A comprehensive sur-
vey of Network Function Virtualization,” Computer Networks, vol. 133,
pp. 212–262, 2018.

[21] B. Addis, D. Belabed, M. Bouet, and S. Secci, “Virtual network func-
tions placement and routing optimization,” 2015 IEEE 4th International
Conference on Cloud Networking, CloudNet 2015, pp. 171–177, 2015.

[22] M. F. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba, and O. C.
M. B. Duarte, “Orchestrating Virtualized Network Functions,” IEEE
Transactions on Network and Service Management, vol. 13, no. 4,
pp. 725–739, 2016.

[23] J. Liu, W. Lu, F. Zhou, P. Lu, and Z. Zhu, “On Dynamic service function
chain deployment and readjustment,” IEEE Transactions on Network and
Service Management, vol. 14, no. 3, pp. 543–553, 2017.

[24] M. C. Luizelli, L. R. Bays, L. S. Buriol, M. P. Barcellos, and L. P.
Gaspary, “Piecing together the NFV provisioning puzzle: Efficient
placement and chaining of virtual network functions,” Proceedings of
the 2015 IFIP/IEEE International Symposium on Integrated Network
Management, IM 2015, pp. 98–106, 2015.

[25] G. Lee, M. Kim, S. Choo, S. Pack, and Y. Kim, “Optimal flow
distribution in service function chaining,” ACM International Conference
Proceeding Series, vol. 08-10-June-2015, pp. 17–20, 2015.

[26] M. Médard, S. G. Finn, R. A. Barry, and R. G. Gallager, “Redundant
trees for preplanned recovery in arbitrary vertex-redundant or edge-
redundant graphs,” IEEE/ACM Transactions on Networking, vol. 7,
no. 5, pp. 641–652, 1999.

[27] P. P. Lee, V. Misra, and D. Rubenstein, “Distributed algorithms for secure
multipath routing in attack-resistant networks,” IEEE/ACM Transactions
on Networking, vol. 15, no. 6, pp. 1490–1501, 2007.

[28] I. B. Barla, D. A. Schupke, M. Hoffmann, and G. Carle, “Optimal
design of virtual networks for resilient cloud services,” in 2013 9th
International Conference on the Design of Reliable Communication
Networks (DRCN), pp. 218–225, March 2013.

[29] J. Xu, J. Tang, K. Kwiat, W. Zhang, and G. Xue, “Survivable virtual
infrastructure mapping in virtualized data centers,” in 2012 IEEE Fifth
International Conference on Cloud Computing, pp. 196–203, June 2012.

[30] M. T. Beck, J. F. Botero, and K. Samelin, “Resilient allocation of
service function chains,” in 2016 IEEE Conference on Network Function
Virtualization and Software Defined Networks (NFV-SDN), pp. 128–133,
Nov 2016.

[31] A. A. Atallah, G. B. Hamad, and O. A. Mohamed, “Fault-Resilient
Topology Planning and Traffic Configuration for IEEE 802.1Qbv TSN
Networks,” 2018 IEEE 24th International Symposium on On-Line Test-
ing and Robust System Design, IOLTS 2018, pp. 151–156, 2018.

[32] M. Pióro and D. Medhi, Routing, Flow, and Capacity Design in
Communication and Computer Networks. Elsevier, 2004.

[33] J. Gil Herrera and J. F. Botero, “Resource Allocation in NFV: A
Comprehensive Survey,” IEEE Transactions on Network and Service
Management, vol. 13, pp. 518–532, Sep. 2016.

Appendix B

Service-based Resilience via Shared
Protection in Mission-critical
Embedded Networks

Abstract

Mission-critical networks, which for example can be found in autonomous cars and avion-
ics, are complex systems with a multitude of interconnected embedded nodes and various
service demands. Their resilience against failures and attacks is a crucial property and has
to be already considered in their design phase. In this paper, we introduce a novel approach
for optimal joint service allocation and routing, leveraging virtualized embedded devices
and shared backup capacity for the fault-tolerant design of mission-critical networks. This
approach operates in phases utilizing multiple optimization models. Furthermore, we pro-
pose a new heuristic that ensures resource efficiency and fault-tolerance against single node
and link failures as pre-requisite for resilience. Our experiments for different application
scenarios indicate that our heuristic achieves results close to the optimum and provides
50% of capacity gain compared to a dedicated capacity protection scheme. Moreover, our
heuristic ensures fault-tolerance against at least 90% of all potential single node failures.

Reference

Doğanalp Ergenç, J. Rak, M. Fischer. Service-based Resilience

via Shared Protection in Mission-critical Embedded Networks. IEEE

Transactions on Network and Service Management (TNSM), Special Issue

on Design and Management of Reliable Communication Networks, 2021.

Contribution

In the forementioned publication, the whole contribution belongs to this thesis. The co-
authors helped to improve the quality of the paper with their valuable feedback.

115

Service-based Resilience via Shared Protection
in Mission-critical Embedded Networks

Doğanalp Ergenç
Universität Hamburg, DE

ergenc@informatik.uni-hamburg.de

Jacek Rak
Gdansk University of Technology, PL

jrak@pg.edu.pl

Mathias Fischer
Universität Hamburg, DE

mfischer@informatik.uni-hamburg.de

Abstract—Mission-critical networks, which for example can
be found in autonomous cars and avionics, are complex systems
with a multitude of interconnected embedded nodes and various
service demands. Their resilience against failures and attacks is a
crucial property and has to be already considered in their design
phase. In this paper, we introduce a novel approach for optimal
joint service allocation and routing, leveraging virtualized embed-
ded devices and shared backup capacity for the fault-tolerant
design of mission-critical networks. This approach operates in
phases utilizing multiple optimization models. Furthermore, we
propose a new heuristic that ensures resource efficiency and fault-
tolerance against single node and link failures as pre-requisite
for resilience. Our experiments for different application scenarios
indicate that our heuristic achieves results close to the optimum
and provides 50% of capacity gain compared to a dedicated
capacity protection scheme. Moreover, our heuristic ensures fault-
tolerance against at least 90% of all potential single node failures.

Index Terms—Mission-critical networks, embedded, resilience,
shared protection

I. INTRODUCTION

Mission-critical embedded systems as used in autonomous
vehicles, airplanes, and industrial networks have evolved to
complex ecosystems. For instance, the latest Tesla autopilot1

is supported by eight cameras and twelve ultrasonic sensors for
high precision and high-quality environmental data. Similarly,
together with Industry 4.0 intelligent cyber-physical systems
emerged that are composed of a multitude of collaborating
embedded devices [1], [2] that run safety-critical services.

Moreover, we currently observe that trends from conven-
tional computer networks, like more powerful devices and
virtualization, are widely adopted in the (embedded) IoT
domain. McKinsey & Company, for example, considers the
virtualization as a key technology to satisfy the latency and
reliability requirements of the future autonomous driving [3].
Furthermore, there is ongoing standardization activities such
as Automotive Virtual Platform Specification [4] and Future
Airborne Capability Environment (FACE) [5] that are prepar-
ing the usage of open source virtualization technologies in
critical in-vehicle and military systems. As a result and in the
future, these systems can host multiple virtualized services on
a physical node by maintaining process isolation [6], [7].

From a system design perspective, safety- or mission-critical
embedded networks host various potentially interconnected

1Tesla, https://www.tesla.com/autopilot

services with specific demands, e.g., certain resource con-
sumption or communication with bounded delay. Virtualiza-
tion techniques helps to place those services over the physical
network and then establish their inter-communication accord-
ing to their requirements. Besides, as especially the safety-
critical services should be protected against any disruption
such as attacks or failures, the virtualization enables dynamic
failover schemes like migrating/recovering services after node
failures [8], [9]. When standard safety concepts like replicating
devices and services alone are not sufficient in the presence
of sophisticated attackers, such a flexibility in design provides
resilience against failures and attacks, maintaining availability
with graceful degradation in worst-case or full recovery again.

Eventually, services need to be deployed in the embedded
network by considering the capacity and capabilities of nodes
and their interconnection. Hence, two degrees of freedom
are the result: the service placement on nodes and the rout-
ing of data flows in between these nodes. Meanwhile, this
configuration should guarantee a certain degree of resilience
against the potential malfunctions or threats. To satisfy those
requirements, we have modeled the resilient service placement
and routing problem addressing single node failures in our pre-
liminary work [10]. Leveraging virtualized embedded devices
and virtual services, we have found alternative configurations
of the network to reserve required resources for migrating
services and flows in case of failures. From this point of view,
enabling the dynamic service deployment changes the dimen-
sion of the resilient communication by benefiting from the
flexible design of up-to-date embedded devices [11]. However,
as we also show in [10], the resilient service placement and
routing problem is very complex and thus impractical to solve
for larger problem sizes.

In this paper, we advance our previous work by utilizing
capacity sharing for path protection against single link failures.
In comparison to the previous approach that we allocated
dedicated backup capacity for traffic demands, we aim to
further improve the resource-efficiency by enabling shared
capacity use with proper service and demand configurations.
We formulate a new optimization scheme extending the one
in [10] and then dividing it into multiple steps to reduce
its complexity for the embedding of complex inter-connected
services by meeting Quality of Service (QoS) and robustness
requirements. While our previous model can find the optimal
solution for only small-size network, our new multi-step model
can scale better ensuring the same degree of fault-tolerance

TABLE I: The comparison of the state-of-the-art studies.

Study Resource Efficiency Optimal Routing Resilience
Inter-service
Dependency

Shared
Protection

Ergenc et al. [10] 3 3 3 3
Espling et al. [12] 3 3

Breitgand et al. [13] 3
[14], [15], [16], [17], [18], [19], [20] 3 3
Medard et al. [21], Lee et al. [22] 3 3

Barla et al. [23], Xu et al. [24] 3 3 3
Beck et al. [25] 3 3

Atallah et al. [26] 3 3
[27], [28], [29] 3 3 3
He et al. [30] 3 3

against node and link failures. Accordingly, we evaluate the
new model in a more realistic topology, which reflects the
characteristics of an avionic network architecture. The result-
ing system becomes resilient against failures and attacks when
it is coupled with a dynamic function migration mechanism
that realizes the configuration found by our optimization
scheme. Concerning our contributions, we

• propose three separate optimization models to solve (i)
service placement and routing, (ii) allocation of backup
paths with shared capacity use against link failures and
(iii) a service migration scheme in case of node failures.
While our service allocation and routing model finds
the optimal working paths, the shared backup capacity
model results in up to 70% capacity gain in comparison
to reserving dedicated backup capacity.

• implement the column generation method to enhance our
previous model and to solve the extended problem for
larger topologies and service overlays more effectively.
The resulting model provides fault-tolerance against all
single node failures.

• design a new heuristic utilizing Steiner trees to promote
shared backup capacity use and improve resource effi-
ciency. Our heuristic results in near-optimal results for the
shared backup capacity allocation. It provides more than
90% fault-tolerance against single random node failures
that can happen on the host nodes.

The rest of the paper is organized as follows: Section II
summarizes related work. In Section III, we introduce our
service-based resilience model and the optimization models
for the resilient service deployment and routing problem under
shared backup capacity. Also, we introduce and explain our
heuristic in Section IV. Section V presents our experimental
setup and results in detail. Lastly, we summarize our solution
and findings in Section VI.

II. RELATED WORK

In this section, we shortly summarize the requirements of
our problem. Then, we summarize related work on service
allocation, network resilience, and lastly, capacity sharing for
backup protection schemes.

Table I shows the requirements for optimal resilient em-
bedded network design that we used as criteria to compare

all other studies presented in the rest of this section quali-
tatively. Resource Efficiency and Optimal Routing represent
the optimality in resource and network utilization for service
deployment and traffic engineering, respectively. Resilience is
one of the main concerns to protect networks against failures
or attacks and should be considered for an optimal design of a
mission-critical network. Inter-service Dependency represents
the relationship, e.g., hierarchy or communication, between
different services since they are interconnected having specific
requirements. Lastly, Shared Protection is a concept to use
network resources more effectively and is important for the
networks that should be more compact and low cost, e.g., for
a car or airplane to be lighter and cheaper. In the rest of this
section, we discuss the related work according to those criteria.

Service Allocation. In the domains of cloud computing,
Software-Defined Networking (SDN), and Network Function
Virtualization (NFV), a service represents a movable (or relo-
catable) function of a particular type and characteristics that
is allocated to physical nodes. In cloud computing, a service
generally provides some specific content, an application, or
a platform to users under certain Service-Level Agreements
(SLAs) and by minimizing the operational costs at the same
time. It requires accurate resource orchestration regarding
where, when, and how many service instances are deployed
[31], [32]. Besides, the dependencies of services on each other
[12], service migrations [13], load-balancing [14], and task
scheduling [15] affect the costs of providers and also impact
the user experience as well.

SDN/NFV services are considered as virtual functions to
process and regulate the communication such as firewalls,
routers, and load balancers, or provide network-wide services
such as Domain Name System (DNS) and authentication,
authorization, and accounting (AAA) services. The proper
allocation of those services [33], [34] is important to, for in-
stance, minimize operational costs [16] and physical resource
fragmentation [17] for the providers, and maximize the service
quality [16] and responsiveness [18] for the user experience.
Various other studies address the optimum service allocation
and routing problem jointly to deploy the services on the paths
[19], [20] to utilize network resources optimally.

Contrary to existing works, the service deployment scheme
proposed in this paper focuses on emerging virtualized em-
bedded networks. As the communication traffic is defined

between services, inter-service relationships are decisive for
network design considering both service deployment and the
traffic engineering. Therefore, it is a joint service allocation
and inter-service traffic routing problem where routing also
depends on the service allocation. Moreover, adding resilience
requirements to such a dynamic deployment scheme renders
the problem even more challenging.

Network Resilience Many traditional approaches leverage
graph-related properties of networks to increase their robust-
ness. Against link failures, for instance, finding primary and
redundant directed trees [21] as well as multiple disjoint
paths [22] have been proposed. Some other related studies
present the optimization problems with resilience constraints.
In [23], the authors optimize virtual cloud topologies having k
redundant instances under network constraints. Similarly, [24]
creates survivable virtual groups for each service to guarantee
their availability and formulate the deployment of the groups to
an underlying network as an optimization problem. Both stud-
ies focus on cloud service characteristics. In [25], a resource
allocation model is proposed for SDN/NFV, including fault-
tolerance constraints. The authors of [26] consider topology
synthesis, routing, and scheduling problems jointly for fault-
tolerance in Time-Sensitive Networks (TSN) without including
any resource utilization constraint.

In our preliminary work [10], we have considered the
resilience of services together with optimal resource allocation
and routing for inter-service communication but only for small
random networks, i.e., up to ten nodes and seven services.
In comparison to other studies here, our new approach can
find both the optimal and resilient communication scheme
for mission-critical embedded networks in a more resource-
efficient manner.

Shared Backup Protection. Shared backup protection in-
creases the resource efficiency in network design as it enables
using an amount of capacity mutually between different flows
or demands under certain conditions. It is especially prevalent
in optical networks where the backup paths can share wave-
length links when their working paths are disjoint [35], [36].
In [27], the authors calculate shared backup paths to protect
content-connectivity between users and optical datacenters in
case of disasters. They propose an ILP and a heuristic to
minimize the total number of spectrum slots for optical con-
nections. [28] proposes an efficient shared protection scheme
without increasing the length of backups paths compared to
the respective working paths and thus promotes fast service
recovery. The author formulates the shared protection problem
as an ILP for the networks utilizing wavelength-division
multiplexing (WDM) and presents heuristics to solve that
NP-complete problem. In [30], the authors leverage capacity
sharing for survivable virtual network embedding in optical
networks to decrease the rejection ratio of an incoming de-
mand due to the lack of resources. They propose a polynomial-
time heuristic to calculate shared backup paths. Lastly, [29]
utilizes shared protection for a fault-tolerant topology design
against more than one failure optimizing capacity usage with
two ILP models. Even though all of those studies offer a

Service Overlay

Physical Network

Fig. 1: Service overlay on top of the underlay physical network.
Dashed lines show how basic service instances are assigned to
physical nodes. Grey nodes host the service instances and directed
edges show the paths that carry the traffic demands.

degree of resilience against node and link failures via shared
protection, they assume only static demands that are predefined
between certain nodes. Similar to our discussion for the
service allocation problems, one of our primary concerns is
the deployment of service instances together with working
and backup paths where the allocation of demands depends
on such deployment and thus is dynamic. Additionally, we
have to ensure the resilience of the service deployment, not
only the data traffic.

Consequently, in state of the art, the studies do not focus
on the problems of service allocation, routing, and resilience
jointly in a resource-efficient manner. Those problems are
highly relevant for the design of mission-critical networks,
which is an avionic network in our use case shown in
Section V-A. In that use case, we reflect the domain-specific
aspects regarding the topology and service overlay. Adding our
shared capacity scheme on top of that, we aim to reduce the
resource use and thus the cost of the system. Accordingly, we
propose heuristics that solve those problems altogether. From
those perspectives, we believe that we propose a solution to a
problem that has not been studied holistically yet. Although in
our former work [10] we addressed most of those problems,
that approach cannot find optimal solutions for networks of
reasonable size.

III. SERVICE-BASED MODEL FOR EMBEDDED NETWORKS

Our model aims to embed an overlay network of services
into an underlying physical network so that the resulting
assignment maintains the inter-service data traffic, latency,
and foremost resilience demands. In this sense, the service
overlay describes a communication scheme between service
instances having certain inter-communication demands. It can
also implicitly reflect redundancy for a service, e.g., including
multiple service instances in a distributed manner. In this
section, we propose an optimization scheme to find the optimal
embedding of a service overlay to the physical network. First,
we give an overview of the model and our optimization
approach that consists of three optimization phases. Then, we
explain each phase in more detail.

A. Overview of the Model and the Optimization Scheme

In the service-based model, a service s ∈ S is defined as a
function or virtual instance to be deployed on a physical node
v ∈ V . Each s has certain resource requirements τs, e.g., CPU
or memory, and different criticality levels, e.g., mission-critical
or best-effort. Those levels impose a deployment constraint
in which only particular nodes can host the service instances
with certain criticality, i.e., ksv = 1. Another important
term, demand d ∈ D, specifies inter-service communication
requirements in terms of the end-to-end latency ld and the
amount of data traffic hd to be exchanged, e.g., required
bandwidth. That is, a demand is defined between two service
instances and it conditions the data communication in between.

Fig. 1 gives an example for the embedding of a service
overlay (black nodes) in the underlying physical network (grey
nodes). While a link between two services (an edge between
two black nodes) represents a demand, the connection of two
physical nodes (an edge between two grey nodes) is a physical
link e ∈ E, i.e., having a nominal bandwidth capacity, in
the network. A service instance can be allocated on a single
node to establish communication with other nodes that host
neighboring service instances. The overall deployment should
be restricted by (i) the node resource capacities, i.e., rv for
node v, consumed by the services and (ii) link capacities, i.e.,
ce for link e, required by the inter-service demands. Besides,
the delay induced by path p ∈ P between two nodes hosting
the communicating services imposes a further restriction on
the latency on the respective demand.

Fig. 2: Multiple steps for the optimal configuration of a resilient
virtualized network.

As shown in [10], a single optimization model that reflects
optimal service deployment, optimal routing configuration,
and fault-tolerance under different failure scenarios results
in high complexity. Thus, even for small networks and few
services, it might take up to several days to find a configura-
tion with minimum communication latency and a guaranteed
resilience against single node failures. For this reason, we
split the problem into three phases and different optimization

models that need to be solved subsequently as a part of the
whole optimization scheme. Those phases that are shown in
Fig. 2 are:

1) Bootstrapping: In this phase, we find an initial con-
figuration with service deployments and working paths.
For that, we formulate an integer linear problem (ILP),
namely Bootstrapping-ILP, to find the shortest working
paths within the limited node and link resources.

2) Shared backup protection: We establish shared backup
paths against possible link failures on the working paths
found in the phase 1. Using the solution of the previ-
ous phase as input, we formulate another ILP, namely
Backup-ILP, to minimize the use of backup capacity by
maximizing shared protection.

3) Service migration: We search for the backup nodes,
which communicate with other host nodes with min-
imum latency, to migrate services in the case of node
failures. In this phase, we formulate another optimization
model, namely Migration-LP.

Splitting the model into three phases eases the formula-
tion of the constraints. For instance, finding working and
backup paths, in phases 1 and 2, could also be considered
as a single phase as they are highly dependent. However,
it eventually results in complex non-linear constraints, i.e.,
having complexity higher than quadratic equations. Apart
from avoiding such constraints to a certain extent, we also
linearize the remaining non-linear constraints to make the
overall optimization scheme easily solvable by the existing
linear optimization tools. As we solve those linearized models
in our experiments, we here introduce the original models as
ILP and LP omitting further linearization details. For that,
we utilize the McCormick envelopes [37] introducing extra
variables and constraints, whose details and complexity are
extensively discussed in our preliminary study [10].

Note that splitting the problem into the different optimiza-
tion phases results in individual optimal solutions for each
phase, not a global optimum for the whole scheme involving
all constraints at once. We consider this reduction as a trade-off
to get a solution which is closer to the optimal one for larger
problem instances. Nevertheless, computing the approximation
ratio of the split model to a possible singular model requires
to formulate and solve such a complex model, which is not
practical as we discussed in [10].

In the following subsections, the respective optimization
models are presented. Table II briefly summarizes all terms
and definitions used in those optimization models.

B. Bootstrapping

In the bootstrapping phase, we solve the optimization
model, Bootstrapping-ILP, to find the initial configuration
where the service instances and traffic demands are placed
on the nodes and working paths. This phase constitutes a base
configuration to build further reconfigurations, i.e., service and
flow migrations, in the case of node failures and to find backup
paths against link failures. The description of all relevant
parameters is given in Table II.

TABLE II: Terms and definitions in the optimization problem. Base type contains the fundamental elements of the optimization scheme.
Constants are network- and service-related parameters given as input. Variables represent the parameters to be optimized.

Type Symbols Set Interval Definition

Base

u, v V - Nodes in the network
e E - Link (edges) between nodes
s, t S - Basic services
d, q D - A demand between a pair of services
q Hd - A demand that can share backup capacity with demand d
p Puv - A path between nodes u and v
p Pd̄ - A backup path which is disjoint to the working path of d
f F - A failure scenario

Constants

τs <∗ [0,∞] Resource consumption of s
hd <∗ [0,∞] Traffic volume of d
ce <∗ [0,∞] Maximum link capacity of e
c∗e <∗ [0,ce] Reduced link capacity of e
rv <∗ [0,∞] Maximum resource capacity of v
r∗v <∗ [0,rv] Reduced resource capacity of v
ld <∗ [0,∞] Latency requirement of d
l∗e <∗ [0,∞] Latency in e
ksv Z∗ [0,1] Indicates if v is capable to host s
avf Z∗ [0,1] Indicates if v is available in failure state f
θpf Z∗ [0,1] Indicates if p is available in failure state f
αpe Z∗ [0,1] Indicates if p includes e
xdp0 Z∗ [0,1] Indicates if a flow is allocated to path p of demand d in a non-failure scenario (f = 0)
ysv0 Z∗ [0,1] Indicates if s is hosted by v in a non-failure scenario (f = 0)

Variables

xdp Z∗ [0,1] Decides if d is assigned to p
xdpf Z∗ [0,1] Decides if d is assigned to p in scenario f
ysv Z∗ [0,1] Decides if s is hosted by v
ysvf Z∗ [0,1] Decides if s is hosted by v in scenario f
zdp Z∗ [0,1] Decides if d is assigned to backup path p
z∗de Z∗ [0,1] Decides if d is assigned to e
gde Z∗ [0,1] Decides if any demand q ∈ Hd is assigned to e

Bootstrapping-ILP is given below. xdp and ysv are two
binary decision variables to indicate if demand d is assigned
to path p and if service s is deployed on node v, respectively.

min
∑

d∈D

∑

p∈P
xdp|p| (1)

∑

s∈S
ysvτs ≤ rv ∀v ∈ V (2)

∑

v∈V
ksvysv = 1 ∀s ∈ S (3)

xdp ≤ ysvytu + ytvysu ∀d ∈ D,∀u, v ∈ V,
∀p ∈ Puv, (s, t) ∈ d (4)

∑

d∈D

∑

p∈P,
e∈p

xdphd ≤ ce ∀e ∈ E (5)

∑

e∈p
xdpl

∗
e ≤ ld ∀d ∈ D,∀p ∈ P (6)

∑

p∈P
xdp = 1 ∀d ∈ D (7)

The objective function (1) minimizes the length of selected
paths, where |p| represents the path length. Minimizing the
total path length can be considered as both performance and
cost optimization. That is, allocating shorter paths enables
establishing low-latency communications, i.e., here with less
hops, and decreasing the number of occupied links, which is

especially important for mission-critical networks to reduce
the cost and the complexity of the system.

Constraint (2) and (3) ensure that v has sufficient resources
to host s and s is deployed on exactly one node that is
capable to host s (e.g., equipped with the required hardware).
Constraint (4) restricts the flow assignment in a way that d can
be deployed on p if only the source and destination nodes u, v
of p host required services s and t. Constraint (5) ensures that
each link e of p has sufficient resources, e.g., bandwidth, to
carry the traffic of d if it is assigned to p. While constraint (6)
ensures that p is selected to satisfy the maximum tolerable
latency for d, constraint (7) guarantees that d is assigned
exactly to one working path. Note that, as inferred in the latest
constraint, traffic demands are assumed to be non-bifurcated.

There are two significant uses of the bootstrapping for
the next two phases: In the shared protection phase, the
bootstrapping eases finding the optimal shared backup paths
by providing an initial configuration to (i) detect disjoint
working paths that can share backup capacity and (ii) select
disjoint backup paths for the given working paths. Formulating
mutual disjoint paths, i.e., a working path which is disjoint
to both its backup path and other working paths to leverage
shared capacity, together with the service allocation results in
a complex optimization model (e.g., having cubic constraints).
Therefore, computing working paths in advance and then
formulating the shared backup protection problem is more
convenient to be solved by existing optimization tools. In the
service migration phase, the bootstrapping provides a basis
of nodes, i.e., host nodes, whose failures are disruptive and

result in the unavailability of service instances. Besides, it
enables us to keep a part of the initial deployment and to
avoid the migration of services and flows on non-failed nodes.
Therefore, the bootstrapping phase reduces the search space
of the optimization problem, i.e., the number of node failures
to consider and the services and flows to reconfigure.

Lastly, in Bootstrapping-ILP, as constraint (4) conforms to
both service allocation and routing restrictions, it increases the
complexity of the model in O(|D||P ||S|2|V |2) in terms of the
number constraints. However, practically, only a limited num-
ber of such constraints are effective as (i) only the respective
services and (ii) only the paths are considered for each demand
and each pair of nodes, respectively. Moreover, as it is also a
non-linear constraint, the linearization of the multiplication of
two binary variables adds extra constraints as well. In terms of
variables, due to xdp and ysv , Bootstrapping-ILP is bounded
by O(|D||P |+ |S||V |) variables.

C. Shared Backup Protection

In this phase, we formulate another ILP, Backup-ILP, to
find backup paths for each demand. Providing communication
resilience using dedicated backup paths is generally costly. In
particular, if 100% of requested throughput has to be available
after a failure, the amount of resources (link capacities) needed
to set up the backup path is higher than the resources needed
for establishing the working path. To improve the resource
efficiency, the concept of sharing the link capacities assigned
to backup paths can be applied in such scenarios [38]. In
general, sharing the link capacity among several backup paths
at a given link is possible if these backup paths protect against
different failure scenarios as illustrated in Fig. 3. In the figure,
three demands are assigned to the working paths v1-v2-v3, v4-
v5-v6, and v9-v10-v11-v6, and the backup paths v1-v7-v8-v3,
v4-v1-v7-v8-v6, and v9-v3-v8-v6, respectively. Accordingly,
the shared backup capacities are reserved at links v1-v7 and
v7-v8 by the first and second backup paths, at link v3-v8

by the first and third backup paths, and at link v6-v8 by
the second and third backup paths for the case of protection
against a single node failure as the respective working paths
are disjoint and thus subject to different scenarios of single
failures. In particular, concerning the scenario of a single link
(or a single node) failure covering the majority of failure cases
[39], backup path sharing is possible if the respective working
paths are mutually link-disjoint (or node-disjoint) [28], [40].

As presented in detail in [28], for a demand d with the
requested throughput hd, the respective backup path at link e
in the case of shared protection would require the allocation
of (i) no extra capacity if the amount of shareable capacity
c+ already allocated to backup paths at link e is at least
hd or (ii) the extra capacity of hd − c+ in all other cases.
Here, the shareable capacity can be considered as the capacity
already reserved for a backup path of another demand q that
is accepted earlier and not affected by the same link failure
affecting a working path of d. In case hq < hd, extra capacity
hd−hq needs to be reserved at the link even though hq amount

Working path

Backup path

v2

v3

v1

v4

v7

v8

v5 v6

v11

v10

v9

Fig. 3: Example scenario of sharing the backup path capacity.

of capacity can be used by both q and d in case of (different)
link failures.

Our model Backup-ILP is given below. Before formulating
the problem for a topology G, we update link capacities
ce to c∗e to denote the capacity not allocated for working
paths. Using the initial configuration (i.e., working paths)
as the input, we construct a set Hd for each d. It includes
demands {q1, q2...} that (i) induce shareable backup capacity
with demand d as they have disjoint working paths with d
and (ii) have larger traffic demands hq > hd. As a result,
if q ∈ Hd is assigned on link e, hd is not necessary to
consume extra capacity. The binary decision variables zdp and
z∗de represent whether demand d is assigned to path p ∈ Pd̄

and link e, respectively. Here, Pd̄ is a set of disjoint paths to
the working path of d obtained from the previous phase and
it is computed beforehand. The other decision variable gde
shows if any q ∈ Hd is already assigned to link e. ¯gde is the
negation of gde.

min
∑

e∈E

∑

d∈D
z∗de ¯gdehd (8)

∑

p∈Pd̄

zdp = 1 ∀d ∈ D (9)

z∗de ≥ zdp ∀d ∈ D,∀e ∈ E, p ∈ Pd̄ ∧ e ∈ p (10)

z∗de ≤
∑

p∈Pd̄,
e∈p

zdp ∀d ∈ D,∀e ∈ E (11)

gde ≥ z∗qe ∀d, q ∈ D,∀m ∈ Hd,∀e ∈ E (12)

gde ≤
∑

q∈Hd

z∗qe ∀d ∈ D,∀e ∈ E (13)

∑

d∈D
z∗de ¯gdehd ≤ c∗e ∀e ∈ E (14)

In the model, the objective function (8) minimizes the total
shared backup capacity. It aims to increase the resource-

efficiency and eventually decrease the design cost of the
system by occupying less backup resources.

Constraint (9) ensures exactly one backup path assigned for
each demand d. Constraints (10) and (11) configure z∗de for
each link e checking if p involving e is a backup path for
demand d, i.e., zdp = 1. Similarly, constraints (12) and (13)
configure gde checking if any demand q ∈ Hd is assigned
to link e. Lastly, constraint (14) ensures that the required
resources for d with the highest traffic demand are reserved.

As an exception, if demand d is not suitable to use any
amount of shared capacity with another demand, then Hd =
{}. In this case, gde = 0 holds strictly and the full amount
of traffic for demand d should be assigned to the respective
links without considering any shared capacity. Constraint (14)
implicitly considers this scenario as well.

Lastly, in terms of complexity, Backup-ILP is bounded by
O(|D||E||P |) constraints and O(|D|(|E| + |P |)) variables
including linearized the non-linear constraint, which contains
the multiplication of z∗de and gde.

D. Service Migration

Backup paths protect traffic demands against the failures
in the intermediate nodes and links of the respective working
paths. However, the failure of one of the end nodes hosting
a service still disrupts the services and demands. In the last
phase, we formulate Migration-LP to find alternative nodes
for each service hosted by failed nodes. Defining failure
scenarios f ∈ F/{0}, we consider the failure case of each
node that hosts a service according to the given bootstrapping
configuration.

Before formulating the problem for the topology G, we
update node and link capacities according to the deployments
in the previous phases. In Migration-LP, xdpf and ysvf are the
binary decision variables that represent whether demand d is
assigned on path p and if service s is deployed on node v in the
failure scenario f , respectively. Each scenario f is represented
by a vector of binary variables avf that specficies whether
node v is not failed in scenario f . Services can be hosted at
node v only if avf = 1. θpf is another binary variable that
represents if path p is not broken, i.e., is usable, in scenario
f and is decided by the availability of the nodes on p s.t
θpf =

∏
v∈V,
v∈p

avf . According to the service configuration from

the bootstrapping phase, the failure scenarios are defined in
such a way that each one represents the failure of a single host
node, i.e.,

∑
v∈V avf = 1. Therefore, the number of scenarios

|F | equals to the number of distinct nodes hosting services in
the initial configuration. Eventually, the resulting configuration
of Migration-LP gives an alternative deployment to update the
bootstrapping configuration in the case of the respective failure
scenarios.

Migration-LP is given below. The objective function (15)
minimizes the length of selected paths. Constraints (16)-(21)
resemble to constraints (2)-(7) in the bootstrapping phase.
Constraints (22) and (23) ensure that if the initial flow
assignment and service deployment are not affected by the
failure in scenario f , their configuration is kept to avoid the

unnecessary reconfiguration of the network. Here, xdp0 and
ysv0 are given as input according to the initial configuration
from the bootstrapping phase.

min
∑

d∈D

∑

p∈P

∑

f∈F
xdpf |p| (15)

∑

s∈S
ysvfτs ≤ r∗v ∀v ∈ V, ∀f ∈ F (16)

∑

v∈V
ksvysvfavf = 1 ∀s ∈ S, ∀f ∈ F (17)

xdpf ≤ θpf
[
ysufytvf + ytvfysuf

]

∀d ∈ D,∀u, v ∈ V,∀f ∈ F
∀p ∈ Puv, (s, t) ∈ d (18)

∑

d∈D

∑

p∈P
xdpfθpfαpehd ≤ ce ∀e ∈ E,∀f ∈ F (19)

∑

e∈E
xdpfαpel

∗
e ≤ ld ∀d ∈ D,∀p ∈ P,∀f ∈ F (20)

∑

p∈P
xdpfθpf = 1 ∀d ∈ D, ∀f ∈ F (21)

xdpf ≥ θpfxdp0 ∀d ∈ D,∀p ∈ P,∀f ∈ F (22)
ysvf ≥ θpfysv0 ∀s ∈ S,∀v ∈ V,∀f ∈ F (23)

Finding the optimal solution of the service migration prob-
lem is highly complex mostly due to the introduction of
multiple failure scenarios, and it can not be easily found in a
reasonable time even for small network instances. Therefore,
we apply the column generation method in Migration-LP,
adding the candidate paths iteratively to reduce the initial
number of variables and constraints to be considered. To be
able to apply the method, we use the linear relaxation of binary
variables and thus solve the problem as an LP (rather than an
ILP).

After solving an initial instance of the service migration
problem with a limited set of paths, including working and
backup paths, which are found beforehand, we add a new set
of candidate paths that possibly improve the objective value.
This process is shown as Step 3 and 4 in Fig. 2. To select a
candidate path p∗, we define the reduced cost function (24)
derived from the Langrangian function (25) of the model using
the dual variables of LP2. As the paths with positive reduced
cost can contribute to the existing feasible solution taken from
Step 3, those are added to the used set of paths. Then, the LP
is re-solved with the extended set of paths.

cp∗f = −
(∑

d∈D

∑

e∈E
αp∗eνefθp∗fhd − |p∗|

)
(24)

2Further details for the column generated method, dual variables, and cost
functions can be found in many studies such as [41]–[43].

L∗(xdpf , ηuvdpf , νef , ρdpf , πdpf , φe) =

−
∑

p∈P

∑

d∈D

∑

f∈F
xdpf |p|+

∑

u,v∈V

∑

d∈D

∑

p∈P

∑

f∈F
ηuvdpf (xdpf − ysvfytufθpf)+

∑

e∈E

∑

f∈F
νef (

∑

d∈D

∑

p∈P
xdpfθpfαpehd − ce)+

∑

d∈D

∑

p∈P

∑

f∈F
ρdpf (

∑

e∈E
xdpfαpel

∗
e − ld)−

∑

d∈D

∑

p∈P

∑

f∈F
πdpf (xdpf − θpfxdp0) (25)

Lastly, as Step 5 in Fig. 2, if there is no path left to include,
e.g., all remaining paths have a non-positive reduced cost,
the reduced problem is solved as an ILP (i.e., without linear
relaxation) using only the obtained set of all useful paths.

In terms of complexity, Migration-LP has the high-
est number of constraints and variables in comparison to
Bootstrapping-ILP and Backup-ILP. Solving a very similar
problem with Bootstrapping-ILP for multiple failure scenar-
ios, it is bounded by O(|D||P ||F ||S|2|V |2) constraints and
O(|F |(|D||P |+ |S||V |)) variables.

IV. HEURISTIC

As described in Section III, three phases constitute the
essence of the problem: (i) Service deployment satisfying
demands, (ii) shared link protection scheme minimizing the
use of link resources, and (iii) service migration scheme for
node protection. We propose a 5-step heuristic covering those
three phases referring to our optimization scheme. Fig. 4
shows the corresponding steps of the heuristic addressing the
same objective as the optimization models. Step 1 (Service
deployment) and Step 3 (Finding working paths) correspond to
the bootstrapping phase, where the initial service deployment
and assignments of working paths are performed, aiming
at minimizing the working path lengths. In Step 2 (Shared
link protection), backup paths are found for each demand
in a way to maximize the shared use of links similar to
the shared protection phase. Note that the order of steps
for finding working and backup paths are different than the
optimization scheme, which is justified in more detail later on
in the paper. Step 4 (Assigning remaining demands) plays a
complementary role for Steps 1-3 to ensure that the working
and backup paths are assigned for all demands with minimal
path lengths and maximal backup capacity sharing. Lastly,
Step 5 (Finding backup nodes) is to find alternative service
deployment schemes utilizing the shortest available paths to
set up in the case of failures, corresponding to the service
migration phase. In the rest of this section, we describe each
step in more detail.

Step 1. Service deployment: In this step, the services are
assigned to physical nodes with sufficient resources. As each

Step 1. Service
deployment

Step 3. Finding
working paths

Step 5. Finding
backup nodes

Step 2. Shared Link
protection

Bootstrapping Shared Protection Service Migration

Step 4. Assigning remaining demands

H
eu

ri
st

ic
 S

te
p

s

Fig. 4: The correspondence between the steps of the heuristic and
the optimization phases.

demand is defined between a pair of services, the locations of
host nodes are restrained by the latency and data requirements
of demands. The host nodes are selected starting from the ones
with the highest connectivity, e.g., the highest number of direct
neighbors, to ease finding disjoint working and backup paths
afterward. For each pair of services utilized by a demand,
we ensure that there is at least a path with sufficient link
resources and latency cost for the respective demand. Among
the alternative deployments, we select the closest nodes for
a better quality of service in terms of latency and less link
resource consumption at the end.

Note that a service can be utilized by multiple demands.
In this case, only a single instance of the related service is
placed to the selected node. Accordingly, this node should
satisfy latency and data requirements of any demand utilizing
that service.

Step 2. Shared link protection scheme: When some of
the services are utilized by multiple demands as mentioned
in the previous step, they form chain of services as it is also
seen in Fig. 1. For instance, while a node hosting a service
receives data for a traffic demand, that node can send data
from the same service to another node to satisfy a different
demand. When such services are allocated at physical nodes, it
is convenient to define a communication backbone connecting
and covering all those nodes to be shared by multiple demands
in case of failures. In this step, we utilize our Secondary
Backup Backbone (SBB) algorithm to define the chain of
services whose host nodes can also be connected sequentially
to form the backup backbone. That is, the service chain in
the service overlay is also reflected as a chain of physical
nodes forming a single backbone, i.e., a connected subgraph.
In contrast to the order of optimization phases in Section III,
instead of finding working paths first together with the service
deployment, we apply a shared link protection scheme before
assigning working paths. The reason is that the assignment
of working paths restricts the available links to be used in
backup paths significantly as they should be disjoint. However,
when we maximize the shared use of backup links, i.e., by
decreasing the number of used links and the total capacity,
there are still sufficient resources left to establish shorter
working paths.

Algorithm 1: Secondary Backup Backbone (SBB)

1 vterminal ← [v1, v2, v3...vn]
2 vselected ← ∅
3 vSteiner ← ∅
4 v ← random node ∈ Vterminal
5 vselected ← Vselected ∪ {v}
6 vterminal ← Vterminal \ {v}
7 while vterminal 6= ∅ do
8 p∗ ←∞
9 for v1 ∈ Vterminal do

10 v2 ← vn ∈ Vselected closest to v1

11 if v2 is close enough to ∀vn ∈ Vterminal then
12 p← secondary shortest path between v1-v2

13 if p is shorter than p∗ then
14 p∗ ← p
15 v ← v2

16 vselected ← Vselected ∪ {v}
17 vterminal ← Vterminal \ {v}
18 vSteiner ← VSteiner ∪ {vn ∈ p∗}

For each service chain, SBB constructs a modified Steiner
tree [44] on the physical network where each host node is
considered as a terminal node and any intermediate node,
which belongs to the tree, is a Steiner node. A Steiner tree is
defined as a connected subgraph, e.g., a tree, including a set
of given nodes, i.e., terminal nodes. All other nodes to be used
to connect terminal nodes are called Steiner nodes. Generally,
the construction of a Steiner tree refers to finding a minimal
subgraph, or the shortest tree, having all terminal nodes with
a minimum number of Steiner nodes, and it is known to be an
NP-complete problem [45]. However, according to our initial
experiments, finding the shortest tree eliminates the possible
use of shortest paths as working paths afterward. Since the
working paths are the most used ones until a failure occurs,
keeping them shorter leads to a better QoS. Therefore, we
use a simple heuristic to construct a secondary Steiner tree,
which utilizes the shortest disjoint path to the shortest path
between two nodes, i.e., the secondary shortest path, instead
of directly using the shortest one. Algorithm 1 briefly describes
those steps of SBB.

Iterating through the elements of vterminal including all
host nodes obtained from the previous step, SBB forms the
secondary shortest paths between the nodes verifying that the
latency requirement for each demand is satisfied for the backup
communication through the backbone. In line 11, SBB ensures
that v2 does not violate such requirements for a demand
between the services on v2 and any other terminal nodes in
vselected. Then, the nodes in the shortest path excluding the
end hosts, e.g., terminal nodes, are added to the set vSteiner as
Steiner nodes. After connecting each node in Vselected∪VSteiner,
SBB returns that secondary Steiner tree satisfying demand
requirements.

Step 3. Finding working paths: After forming the backup

Algorithm 2: Mutually Disjoint Paths (MDP)

1 for d ∈ D do
2 v1, v2 ← Host nodes of d
3 pwd ← Backup segment between v1 − v2 ∈ GSteiner
4 for p ∈ Pd do
5 if p and {pwq | ∀q ∈ Hd} disjoint then
6 if p and pbd disjoint then
7 if p satisfies ld then
8 pwd ← p

backbone in Step 2, we use the Mutually Disjoint Paths
(MDP) algorithm to calculate working paths in this step.
Algorithm 2 shows how MDP calculates the working paths
for demands whose backup paths are defined in a particular
backup backbone GSteiner.

There are three essential aspects to be considered when
calculating working paths. First, they should be mutually
disjoint if the backup paths of the respective demands are
shared. Even though we have formed a single backbone, each
demand d ∈ D uses only a segment of the backbone GSteiner,
i.e., a path between the nodes hosting the services of that
demand, that could be shared or not. Therefore, when finding
a working path, we first check if d utilizes any capacity shared
with another demand q ∈ Hd with an assigned working path
wq and ensure that they are disjoint (line 5). The second
issue is, the working path of d, pwd should be disjoint to the
respective segment of the backup backbone pbd that is used
that demand (line 6). Lastly, pwd should satisfy the latency
requirements of d (line 7). Note that similar to the optimization
scheme, we have found all paths in advance and added them to
the problem as an input. Therefore, checking the disjointness
of paths is a matter of comparison between their nodes and
links.

Fig. 5 shows an example construction of a backup backbone
and the respective working paths. Initially, three services are
deployed to v1, v2, and v3 where two demands are defined
between v1-v2 and v1-v3. Using additional Steiner nodes v4

and v5, SBB constructs the backup backbone among the nodes
v1-v5. Accordingly, MDP calculates two disjoint working
paths v1-v6-v7-v2 and v1-v8-v3. Note that those paths are
both mutually disjoint and concerning their relation with the
backbone. In the backbone, the links between v1-v4 and v4-v5

are shared.
Step 4. Assigning remaining demands: As a result of

Step 2 and 3, the working and backup paths are calculated
around backbones tightly for each service chain. In particular
cases such as the lack of disjoint paths and limited available
link resources, some demands may not be assigned according
to the initial service deployment in Step 1. To cope with
such scenarios, we utilize an improved version of our previous
heuristic Random Deployment with Disjoint Paths (RDDP) in
[10]. RDDP is a greedy heuristic consisting of two phases,

Working path

Backup backbone

v1

v8

v3v5

v4

v2

v7

v6

Terminal node

Steiner node

Fig. 5: Backup backbone (dashed black) with host (terminal) nodes
v1, v2, v3, Steiner nodes (dashed) v4, v5, and respective working
paths (straight purple and blue). Two demands are defined between
nodes v1-v2 and v1-v3. In this case, the links between v1-v4 and
v4-v5 are shared between those demands.

service deployment and routing. In the first phase, it allocates
the services to a randomly selected pair of nodes not hosting
other services. If every node hosts at least one service, RDDP
selects the node with the highest available resources. We
improve RDDP to select the nodes whose secondary shortest
path maximizes the use of shared capacity. In the second
phase, it allocates two node-disjoint paths for the inter-service
demand between selected nodes, one for the main use and the
other one as a redundant backup. If disjoint paths cannot be
found between those nodes, they are reselected by following
the same greedy approach.

Note that RDDP selects the feasible nodes and paths for
each demand after a limited number of trials where the pairs
of nodes are examined randomly as it is explained in [10].
The design parameter limit can be selected according to
the network size as the number of possible 2-combinations
of nodes is proportional. In our experiments, we applied
limit = 100.

Step 5. Finding backup nodes: Although we have estab-
lished backup paths for protection against single link failures
so far, any failure occurring in host nodes can still disrupt
the communication as the hosted services would fail. In the
last step of the heuristic, we utilize another heuristic from
our former work, namely Backups with Secondary Redundant
Path (BSRP). It simply finds an alternative node for each host
node in the initial deployment to migrate its services in the
case of a failure.

When an alternative node is selected to host a service,
three criteria are important to satisfy the requirements of
all demands which utilize that service: The alternative node
should (i) have sufficient resource capacity to host the respec-
tive service, (ii) have required paths with sufficient capacity
in-between the nodes hosting the other services for related
demands, and (iii) be in a position to comply with the latency
requirements of all related demands. In BSRP, we search
for alternative nodes starting from the ones with the highest

Wing Nose

CabinTail

Fig. 6: A potential in-plane topology.

remaining resource capacity for each service. Among the
candidates, the node with the minimum total length of paths
to the other services for the respective demands utilizing the
migrated service is selected. Eventually, the alternative paths to
be used after a service migration consume network resources
minimally.

V. EVALUATION

To measure the performance of our optimization scheme
and heuristic, we considered a number of scenarios and used
a set of metrics. In this section, we present our experimental
setup and discuss our numerical results in detail.

A. Experiment Setup

In this section, we describe (i) our computational resources
and tools used to run our experiments, (ii) our topology and
service overlay generation approach, (iii) what we measured
and related parameters, and lastly (iv) the metrics we used for
the comparisons.

1) Computational Resources: The optimization models
were implemented in CPLEX 12.7.0, and all experiments were
conducted in a server with 64-core Intel Xeon 2.10GHz CPU
and 256GB RAM. The resource utilization varied for the
different phases of the optimization scheme. For the largest
instances of the problem, i.e., 35 nodes and 21 demands, phase
3 (service migration) kept the CPU utilization around the level
of 80% for all the cores and used all available RAM. As
we used pre-computed paths in the model, it also occupied
an amount of memory proportional to the network size and
connectivity. On the contrary, phase 1 and 2 were executed
more easily using the CPLEX branch-and-bound method and
utilizing the presolver.

2) Topology and Overlay Generation: We evaluated the
performance of the optimization models and the heuristic
for different types of topologies and service overlays. First,
we created a potential in-plane topology shown in Fig. 6 as
avionics is one of the key safety-critical domains to make use
of service-based flexible network design. In this topology, we
considered a cabin network that is interconnected with the
nose, tail, and wings of the plane. Note that in traditional
in-plane networks, there might be tens of end-systems, sub-
systems, and hundreds of signals between critical components
[46]. Here, we included the cabin also giving services with

Fig. 7: Probability of service failure in case
of a single node failure.

Fig. 8: Sharing efficiency. Fig. 9: Shared link ratio.

higher traffic loads, e.g., infotainment, and combined it with
the rest of the network to have a complete model of a
connected aircraft. The entire topology has 35 nodes with
different service-hosting capabilities and the average node
degree of 3.7. Eventually, this network can be extended to any
other mission-critical domain having varying traffic demands
to be satisfied within a bounded latency.

For the given in-plane topology, we defined a service over-
lay with certain characteristics. Tables III and IV show those
characteristics for the services and demands, respectively. In
Table III, we present three types of services concerning their
resource demand, criticality, possible position to be placed in
the topology, and their quantity. The set S1 consists of low
resource demand and high criticality, e.g., control signals, that
can be in nose, tail, and cabin. A quarter of all the services
belongs to that type. S2 represents medium resource demands
and criticality services that can be placed anywhere. Lastly,
S3 consists of the services with high-resource demand and
low-criticality to be placed in cabin and half of the services
are defined in that type. We generated the exact values, e.g.,
traffic and latency requirements of demand, for each type of
service randomly keeping their interrelation.

TABLE III: Characteristics of the services that are used in the
experiments.

Service
Set

Resource
demand Criticality Position Quantity

S1 Low High Nose, cabin, tail |S|/4
S2 Medium Medium Any |S|/4
S3 High Low Cabin, tail |S|/2

We considered three types of demands shown in Table IV
utilizing the types of services from Table III. D1 consists of
demands with low data traffic and being time-sensitive, e.g.,
with tight latency constraints, and defined between the services
of S1, i.e., the most critical ones. D2 represents the demands
with medium data traffic with best-effort QoS between the
services of S1, S2, and S3. Lastly, D3 represents the high-
traffic demands, mostly defined for the cabin part. We defined
half of the demands in D3 as proportional to the number of
nodes in the cabin part, and the rest of the demands were
equally distributed between D1 and D2.

Apart from a very regular in-plane topology where the

TABLE IV: Characteristics of the demands that are used in the
experiments.

Demand
Set

Traffic
demand Latency Services Quantity

D1 Low Time-sensitive S1 ↔ S1 |D|/4

D2 Medium Best-effort

S1 ↔ S2,
S2 ↔ S2,
S3 → S2 |D|/4

D3 High Best-effort S3 ↔ S3 |D|/2

majority of the nodes have similar connectivity, we also used
random networks with the same number of nodes and similar
connectivity. As nodes do not have particular roles, e.g., either
in nose, cabin, tail, or wings, we did not restrict the position
of the services. That is, we used the same characteristics for
the service overlay, excluding the positional constraints.

3) Measurements and Parameters: For most of the ex-
periments, we measured Optimal and Heuristic values that
represent the optimal and the heuristic’s results for the given
in-plane topology, Optimal-R and Heuristic-R, in contrast,
show the results for random networks of the same size.

We evaluated the models and the heuristic for the increasing
number of demands. In the end, we also show the scalability
of the heuristic for the increasing number of nodes generating
larger random topologies (50-70 nodes) with the average node
degree of 2.8. In the scalability scenarios, we used a fixed-
size service overlay with 50 demands. For each scenario,
the experiments were repeated 30 times and the results are
given with a 95% confidence interval. For all experiments, the
optimality gap was defined as 5%, which means the results
could deviate from the optimum at most by 5%.

4) Metrics: We used the metrics listed below to evaluate
the performance of all phases of the optimization scheme and
the heuristic.
Probability of service failure: It is the ratio of the number
of services that cannot be migrated to an alternative node to
all services.
Sharing efficiency: It is the ratio of the difference between
shared and dedicated backup capacity to the dedicated backup
capacity without sharing. The latter is calculated by disabling
capacity-sharing and reserving dedicated capacity on the con-
figured backup paths. The sharing efficiency represents the
capacity gain by sharing. We compare our capacity sharing ap-

Fig. 10: Total backup capacity use. Fig. 11: Total capacity use. Fig. 12: Total length of bootstrapping and
service migration phases.

proach with the dedicated one as it is a broadly-used approach
for the redundancy in mission critical systems. Besides, this
comparison helps to emphasize the improvements made by us
following our preliminary work, where we used the dedicated
backup capacity approach.
Shared link ratio: It is the ratio of the shared links to
all backup links. The sharing ratio measures the efficiency
of backup capacity allocation where the backup links can
be shared only if the respective working paths are mutually
disjoint. Any link utilized as a backup link by multiple
demands is counted as a shared link.
Total length of working paths: As Bootstrapping-ILP and
Migration-LP optimize the total path length in terms of number
of hops, this metric represents the total objective value of those
two phases.
Backup capacity use: It is the total link capacity, i.e.,
bandwidth, required for all the backup paths. As Backup-ILP
minimizes the use of backup capacity by utilizing shared
capacity, this metric also represents the resulting value of the
objective function.
Total capacity use: It is the total link capacity required for all
the paths, i.e., both working and backup paths. Especially for
the heuristic, it shows the efficiency of working path selection.
Prolongation factor: Prolongation factor between two paths
is the ratio of the length of one path to the other’s length. We
consider (i) backup to working path and (ii) selected backup to
the ideal backup path prolongation factors to show the balance
between backup and working paths, and the efficiency of the
selected paths, respectively.
Solution time: It is measured for each individual phase of
the optimization scheme. As the heuristic solves the target
problem in a neglectable time, e.g., seconds to a few minutes,
the solution time is considered for only the optimization
scheme to evaluate the increasing complexity by the number
of demands.

B. Results

In this section, we present the experiment results using the
selected metrics and scenarios for different topologies and
service overlays.

1) Fault-tolerance: Fig. 7 shows the probability of service
failure (PoSF) during a single node failure as a function of

the number of demands. As the optimal solution guarantees to
find a backup path for each demand against link failures and a
backup node for each service against node failures, it protects
the network against all single link failures and any single
failure of the host nodes. Therefore, the optimal deployments
at both in-plane and random topology result in 0% PoSF.
Similarly, in our experiments, our heuristic is also successful
to reserve the required capacity in backup paths for all the
demands. However, in the last stage of the heuristic, there
are some scenarios where it fails to find alternative nodes to
migrate services due to (i) insufficient amount of node resource
capacity, (ii) link capacity, or (iii) lack of suitable paths
satisfying the latency requirements. For the in-plane topology
and random networks, our heuristic keeps the PoSF below 5%
and 10%, respectively. As the service deployment may spread
through the network without node capability constraints and
random connectivity, Step 5 in the heuristic fails more often to
migrate all services in random networks satisfying especially
case (iii) above.

Note that some mission-critical services cannot tolerate any
failure at all and require replicated hardware or software
to ensure seamless failover in case of single failures. Our
heuristic can be considered as an additional fault-tolerance
mechanism for such cases, thus avoiding replication costs.
Furthermore, our optimization model can be used to compute
the desired level of fault-tolerance for all services. Hence, it
can be used during the network design stage to plan the whole
backup scheme despite its longer solution time.

2) Sharing Efficiency: Fig. 8 shows the sharing efficiency,
which is the gain of using the shared capacity instead of
dedicated capacity, depending on an increasing number of
demands. While the optimization scheme (only Backup-ILP)
can utilize backup paths to decrease the required backup
capacity by 50-75%, our heuristic gives steady results around
50% and 40% backup capacity savings for in-plane (Heuristic)
and random (Heuristic-R) topologies.

Similar to sharing efficiency, Fig. 9 shows the shared link
ratio to measure the effective use of backup paths for an
increased shared capacity. The optimal deployment results in
60-80% of the backup links used by several backup paths at
once. For the in-plane topology, our heuristic results in 70-
85% shared link use, which is quite similar to the results of the

optimization scheme. Note that since maximizing the shared
link ratio is not the objective of the optimization scheme, the
heuristic can give better results for small number of demands.
However, with an increasing number of demands, while the
result of the optimization scheme converges to 80% shared link
ratio, our heuristic shows a decreasing trend as it gets harder
to find Steiner trees promoting mutually disjoint working and
backup paths. On the other hand, the establishment of disjoint
working paths is easier even for an increasing number of
demands in random networks as node capability constraints
are neglected, and demands can be placed more flexibly. In
that case, Heuristic-R results in 45-70% shared link ratio.

Considering Fig. 8 and Fig. 9, the number of shared links
does not have to be proportional to the sharing efficiency as
the latter also depends on the load and sharing links for small
loads may not affect the efficiency so much.

3) Objective Functions: As presented in Section III, there
are two different objectives for the three phases of our opti-
mization scheme: (i) Minimizing the path lengths that are used
as working paths at bootstrapping and after service migration,
and (ii) minimizing the reserved resources for backup capacity.
Figs. 12 and 10 show the comparison of the optimal solution
and the results of our heuristic in terms of those two objectives.

Fig. 10 shows the total backup capacity utilization referring
to the objective function (8). For the in-plane topology, our
Heuristic give near-optimal results. However, for random
topology, when we removed node capability restriction, e.g.,
any service can be placed to any node, the heuristic (Heuristic-
R) may tend to spread the services to the farther nodes,
which may result in longer Steiner trees. It is also related
to the limit parameters as we examine a limited number of
node combinations among the suitable nodes, e.g., having the
capability to host a certain service, and select the best ones.
This variety in possible changes can also be shown in the larger
confidence interval in Heuristic-R. Such difference is also
reflected in Fig. 11 and our heuristic requires a slightly higher
capacity in random networks than in the more structured in-
plane topology.

Fig. 12 shows the length of all working paths representing
the results of the objective functions (1) and (15) for an
increasing number of demands. For both in-plane and random
topologies, the optimal results and the one from our heuristic
scale proportionally. Even though we build secondary Steiner
trees via SBB as described in Section IV instead of the shortest
ones, some of the possible shortest paths are still used by the
backup paths in the heuristic before constructing the working
paths. Moreover, longer working paths might be utilized.
However, as we embed latency requirements for demands to
both working and backup finding processes, in our heuristic,
the upper bound for the length of each working path is always
restricted to satisfy such requirements.

4) Path Selection: The differences between the length of
working and backup paths indicates the possible degradation
in the QoS in case of a failure. That is, when a backup
path is longer than the respective working path, shifting from
a working to a backup path might result in an increased

Fig. 13: Prolongation w.r.t
working paths.

Fig. 14: Prolongation w.r.t.
ideal backup paths.

communication delay. Selecting shorter backup paths may
consume resources that could be normally utilized by working
paths. Fig. 13 shows the prolongation factor for backup and
working paths (i.e., the ratio of the length of backup paths to
working paths). The optimal solution on the in-plane topology
(itOptimal), results in backup paths that are almost constantly
2.5 times longer than the corresponding working paths. In
contrast, in random networks, the prolongation factor stays
within 2 and 3 with larger confidence intervals. The structure
of the random network seems to have a significant influence on
the results. For the heuristic, as we first obtain backup paths by
finding a backup backbone, some of the shorter paths are used
for the backup before they can be chosen as working paths.
It results in a greater number of working and backup paths
of similar length, which manifests in prolongation factors in
between one and two.

Fig. 14 shows the prolongation factor between the obtained
backup paths and the ideal backup paths. An ideal backup
path is defined as the secondary shortest path that is disjoint
to the shortest path between two nodes. In the best case,
where only a few demands exist in a large network, such a
configuration for working and backup paths would give the
best QoS and protect against any single link failure. As seen
in Fig. 14, the optimal configuration provides 1.2-1.3 times
longer backup paths in comparison to the ideal one. Our
heuristic usually calculates shorter backup paths as it utilizes
the backup backbone first. Therefore, the prolongation factor
is 0.7-1.2, occasionally below 1.0.

5) Scalability: We evaluated the scalability of our heuristic
for some of the selected metrics for an increasing topology
size. Fig. 15 shows the sharing efficiency for 50 demands
depending on the node count. Apart from calculating the
total backup load on the selected segments of the backup
backbone considering shared and dedicated backup capacity
(Selected backup path), according to our definition of sharing
efficiency, we also considered another scenario where we
reserved dedicated backup capacity on the ideal backup path
(Ideal backup path) as it is defined in Section V-B4. The
figure shows that our heuristic can again provide 50% capacity
gain even for larger networks similar to the results for small
topologies. Moreover, our shared backup capacity scheme
seems to achieve 40-50% gain compared to a dedicated backup
scheme for the ideal paths.

Fig. 16 shows that the shared link ratio increases up to 70%

Fig. 15: Sharing efficiency with respect to
ideal and selected backup paths.

Fig. 16: Shared link ratio. Fig. 17: Prolongation with respect to ideal
backup paths and working paths.

with increasing topology size implying larger set of potential
backup paths. Lastly, we show the prolongation factor of
shared backup paths with respect to the ideal backup paths
and working paths combining in Fig. 17. As can be seen in
the figure, for larger networks, our heuristic can find backup
paths close to the ideal ones, i.e., with a prolongation factor of
nearly 1.0, and better working paths with a lower prolongation
factor 1.6 to 1.2 in comparison to smaller networks where this
factor goes up to 2.0.

6) Solution Time: The phases of the optimization scheme
require a considerable amount of time when increasing the
size of the service overlay. As we have summarized in the
complexity discussion of our previous work [10], finding the
optimal configuration, which is resilient to all single node fail-
ures without considering any shared capacity, might take days
as it is formulated as a single linear problem. Here, with three
improvements, namely (i) dividing the whole optimization
problem into three phases, (ii) finding disjoint backup paths
against link failures instead of finding a new configuration for
each failure and (iii) applying column generation method for
the reduced problem (i.e., a fewer number of failure scenarios
addressing only the failure of the host nodes), we improved the
solution time considerably. Table V shows the problem size
in terms of number variables and constraints and the solution
time per each optimization phase.

Eventually, the service migration phase has more constraints
and variables (when all the paths are added at the end of the
column generation) than the other phases as it finds multi-
ple configurations for different single node failure scenarios.
Therefore, it was the decisive phase for the overall solution
time with durations from 18 minutes to 11.5 hours. The overall
solution took from 21 minutes to 14 hours, depending on the
overlay size. It is a significant improvement for three times
larger networks in comparison to our previous work [10].

VI. CONCLUSION

Mission-critical systems typically include several safety-
critical services, which require considering their resilience
against failures and attacks and already at the design stage.
In this study, we present a service-based network design
in which we embed an overlay of services and the traffic
demands as well as QoS requirements between them in a

mission-critical embedded network in a fault-tolerant manner.
Extending our previous work in [10], we formulate the joint
service deployment and routing problem as a series of op-
timization models to obtain a resource-efficient and resilient
network model that provides fault-tolerance against single link
and node failures leveraging shared backup protection and
service migration schemes. To solve larger problem instances,
we apply the column generation method in our optimization
models. As finding the optimal solution for that joint problem
is known to be NP-hard, we also propose a heuristic. We
have evaluated the performance of the optimization scheme
and the heuristic in different scenarios with various metrics.
Our experiment results indicate that our heuristic can allocate
near-optimal backup capacity offering up to 50% capacity gain
compared to using dedicated backup capacity. Moreover, while
our optimization scheme can find service configurations that
are completely fault-tolerant to single link and node failures,
our heuristic can tolerate the single failure of 90% of all nodes.

In the future work, we plan to extend our objectives focusing
on the different aspects of the network design, e.g., minimum
energy consumption and minimum node or link deployment,
as well as examining the impact of relevant parameters, e.g.,
the optimality gap.Moreover, although we assumed a single-
failure model in this study as it is frequently considered in the
literature, we intend to address more advanced models, e.g.,
correlated and cascading failures, under different assumptions
such as shared risk link and node groups.

REFERENCES

[1] R. Y. Zhong, X. Xu, E. Klotz, and S. T. Newman, “Intelligent Manufac-
turing in the Context of Industry 4.0: A Review,” Engineering, vol. 3,
no. 5, pp. 616 – 630, 2017.

[2] A. Koenig, “Integrated Sensor Electronics with Self-X Capabilities for
Advanced Sensory Systems as a Baseline for Industry 4.0,” in 19th
ITG/GMA-Symposium of Sensors and Measuring Systems, pp. 1–4, 2018.

[3] O. Burkacky, J. Deichmann, G. Doll, and C. Knochenhauer, Rethinking
Car Software and Electronics Architecture. McKinsey & Co, 2020.

[4] Automotive Virtual Platform Specification. GENIVI, Jul 2020.
[5] Future Airborne Capability Environment (FACE) Technical Standard

Edition 3.1. The Open Group, Jul 2020.
[6] I. Khan, F. Belqasmi, R. Glitho, N. Crespi, M. Morrow, and P. Polakos,

“Wireless Sensor Network Virtualization: A Survey,” IEEE Comm.
Surveys and Tutorials, vol. 18, no. 1, pp. 553 – 576, 2016.

[7] M. Nkomo, G. P. Hancke, A. M. Abu-Mahfouz, S. Sinha, and A. J. Onu-
manyi, “Overlay Virtualized Wireless Sensor Networks for Application
in Industrial Internet of Things: A review,” Sensors, vol. 18, no. 10,
pp. 1–33, 2018.

TABLE V: Problem size and solution time values for the given topology from Fig. 6 and the increasing number of demands

demands Bootstrapping-ILP Backup-ILP Migration-LP
Variables Constraints Sol. Time Variables Constraints Sol. Time Variables Constraints Sol. Time

9 262314 344840 2.5m 223614 9593 41s 786744 1377508 18.4m
12 362184 515016 9.7m 298152 18474 54s 1676340 2995976 74.6m
15 483270 712880 16m 372690 19467 65s 3257940 6166825 3h
18 607572 938372 28.3m 447228 31989 103s 3663252 7277190 9h
21 741090 1191512 88.3m 521766 37935 204s 5736780 11920629 11.4h

[8] K. Ogawa, H. Sekine, K. Kanai, K. Nakamura, H. Kanemitsu, J. Katto,
and H. Nakazato, “Performance Evaluations of IoT Device Virtualization
for Efficient Resource Utilization,” in Global IoT Summit (GIoTS),
pp. 1–6, 2019.

[9] P. Karhula, J. Janak, and H. Schulzrinne, “Checkpointing and Migration
of IoT Edge Functions,” in 2nd Int. Workshop on Edge Systems,
Analytics and Networking, EdgeSys, pp. 60–65, ACM, 2019.

[10] D. Ergenc, J. Rak, and M. Fischer, “Service-Based Resilience for
Embedded IoT Networks,” in 50th IEEE/IFIP International Conf. on
Dependable Systems and Networks (DSN), pp. 540–551, 2020.

[11] G. Heiser, “Virtualizing embedded systems – why bother?,” in 48th
ACM/EDAC/IEEE Design Automation Conf. (DAC), pp. 901–905, 2011.

[12] D. Espling, L. Larsson, W. Li, J. Tordsson, and E. Elmroth, “Modeling
and Placement of Cloud Services with Internal Structure,” IEEE Trans-
actions on Cloud Computing, vol. 4, no. 4, pp. 429–439, 2016.

[13] D. Breitgand, A. Marashini, and J. Tordsson, “Policy-driven service
placement optimization in federated clouds,” IBM Research Division,
Tech. Rep, vol. 9, pp. 11–15, 2011.

[14] L. Pu, L. Jiao, X. Chen, L. Wang, Q. Xie, and J. Xu, “Online Resource
Allocation, Content Placement and Request Routing for Cost-efficient
Edge-caching in Cloud Radio Access Networks,” in IEEE Journal on
Selected Areas in Communications, vol. 36, pp. 1751–1767, 2018.

[15] M. B. Gawali and S. K. Shinde, “Task Scheduling and Resource
Allocation in Cloud Computing using a Heuristic Approach,” Journal
of Cloud Computing, vol. 7, no. 1, 2018.

[16] B. Addis, D. Belabed, M. Bouet, and S. Secci, “Virtual Network
Functions Placement and Routing Optimization,” in IEEE Int. Conf. on
Cloud Networking, CloudNet, pp. 171–177, IEEE, 2015.

[17] M. F. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba, and O. C.
M. B. Duarte, “Orchestrating Virtualized Network Functions,” IEEE
Transactions on Network and Service Management, vol. 13, no. 4,
pp. 725–739, 2016.

[18] J. Liu, W. Lu, F. Zhou, P. Lu, and Z. Zhu, “On Dynamic Service Function
Chain Deployment and Readjustment,” IEEE Transactions on Network
and Service Management, vol. 14, no. 3, pp. 543–553, 2017.

[19] M. C. Luizelli, L. R. Bays, L. S. Buriol, M. P. Barcellos, and L. P.
Gaspary, “Piecing Together the NFV Provisioning Puzzle: Efficient
Placement and Chaining of Virtual Network Functions,” in IFIP/IEEE
Int. Symp. Integrated Netw. Mgmt. (IM), pp. 98–106, 2015.

[20] G. Lee, M. Kim, S. Choo, S. Pack, and Y. Kim, “Optimal Flow Distri-
bution in Service Function Chaining,” in ACM International Conference
Proceeding Series, vol. 08-10-June-2015, pp. 17–20, 2015.

[21] M. Médard, S. G. Finn, R. A. Barry, and R. G. Gallager, “Redundant
trees for preplanned recovery in arbitrary vertex-redundant or edge-
redundant graphs,” IEEE/ACM Transactions on Networking, vol. 7,
no. 5, pp. 641–652, 1999.

[22] P. P. Lee, V. Misra, and D. Rubenstein, “Distributed algorithms for secure
multipath routing in attack-resistant networks,” IEEE/ACM Transactions
on Networking, vol. 15, no. 6, pp. 1490–1501, 2007.

[23] I. B. Barla, D. A. Schupke, M. Hoffmann, and G. Carle, “Optimal
Design of Virtual Networks for Resilient Cloud Services,” in Int. Conf.
on Design of Reliable Comm. Networks (DRCN), pp. 218–225, 2013.

[24] J. Xu, J. Tang, K. Kwiat, W. Zhang, and G. Xue, “Survivable Virtual
Infrastructure Mapping in Virtualized Data Centers,” in IEEE 5th Inter-
national Conference on Cloud Computing, pp. 196–203, June 2012.

[25] M. T. Beck, J. F. Botero, and K. Samelin, “Resilient Allocation of
Service Function Chains,” in IEEE Conf. on Network Function Virtual-
ization and Software Defined Networks (NFV-SDN), pp. 128–133, 2016.

[26] “Fault-Resilient Topology Planning and Traffic Configuration for IEEE
802.1Qbv TSN Networks,” in IEEE 24th International Symposium on
On-Line Testing and Robust System Design (IOLTS), pp. 151–156, 2018.

[27] Xiaolong Xie, Xin Li, Shanguo Huang, Bingli Guo, Shan Yin, Qian
Kong, Tao Gao, and Wensheng Zhai, “Design for Shared Backup Path

Protection based on Content Connectivity Against Disaster in Elastic
Optical Datacenter Networks,” in 15th International Conference on
Optical Communications and Networks (ICOCN), pp. 1–3, 2016.

[28] J. Rak, “Fast Service Recovery Under Shared Protection in WDM
Networks,” Journal of Lightwave Technology, vol. 30, no. 1, pp. 84–
95, 2012.

[29] B. Todd and J. Doucette, “Demand-wise Shared Protection Network
Design and Topology Allocation with Dual-failure Restorability,” in
11th International Conference on the Design of Reliable Communication
Networks (DRCN), pp. 73–80, 2015.

[30] F. He, T. Sato, and E. Oki, “Survivable Virtual Network Embedding
Model with Shared Protection over Elastic Optical Network,” in IEEE
Int. Conf. on Cloud Networking (CloudNet), pp. 1–3, 2019.

[31] J. Chenni Kumaran and M. Aramudhan, “A Survey on Resource
Allocation Strategies in Cloud,” International Journal of Reasoning-
based Intelligent Systems, vol. 10, no. 3-4, pp. 328–336, 2018.

[32] N. K. Pandey, S. Chaudhary, and N. K. Joshi, “Resource Allocation
Strategies used in Cloud Computing: A Critical Analysis,” in IEEE Conf.
on Communication, Ctrl. and Intelligent Syst. (CCIS), 2017.

[33] X. Li and C. Qian, “A Survey of Network Function Placement,” pp. 948–
953, 2016.

[34] B. Yi, X. Wang, K. Li, S. k. Das, and M. Huang, “A Comprehensive Sur-
vey of Network Function Virtualization,” Computer Networks, vol. 133,
pp. 212–262, 2018.

[35] Canhui Ou, Jing Zhang, Hui Zang, L. H. Sahasrabuddhe, and B. Mukher-
jee, “New and improved approaches for shared-path protection in WDM
mesh networks,” Journal of Lightwave Technology, vol. 22, no. 5,
pp. 1223–1232, 2004.

[36] G. Ellinas, D. Papadimitriou, J. Rak, D. Staessens, J. P. Sterbenz, and
K. Walkowiak, “Practical issues for the implementation of survivability
and recovery techniques in optical networks,” Optical Switching and
Networking, vol. 14, pp. 179 – 193, 2014. Special Issue on RNDM’13.

[37] G. P. Mccormick, “Computability of Global Solutions to Factorable
Nonconvex Programs: Part I – Convex Underestimating Problems,”
Math. Program., vol. 10, p. 147–175, Dec. 1976.

[38] S. Ramamurthy, L. Sahasrabuddhe, and B. Mukherjee, “Survivable
WDM Mesh Networks,” Journal of Lightwave Technology, vol. 21, no. 4,
pp. 870–883, 2003.

[39] J. Rak and D. Hutchison, eds., Guide to Disaster-Resilient Communica-
tion Networks. Computer Comm. and Networks, Springer, 2020.

[40] J. Tapolcai, P. Ho, D. Verchere, T. Cinkler, and A. Haque, “A New
Shared Segment Protection Method for Survivable Networks with Guar-
anteed Recovery Time,” IEEE Transactions on Reliability, vol. 57, no. 2,
pp. 272–282, 2008.

[41] M. Ruiz, M. Pióro, M. Żotkiewicz, M. Klinkowski, and L. Velasco,
“Column Generation Algorithm for RSA Problems in Flexgrid Optical
Networks,” Photonic Network Communications, vol. 26, no. 2-3, pp. 53–
64, 2013.

[42] C. Rocha and B. Jaumard, “A Unified Framework for Shared Protection
Schemes in Optical Mesh Networks,” Pesquisa Operacional, 2007.

[43] L. S. Lasdon, “Duality and decomposition in mathematical program-
ming,” IEEE Transactions on Systems Science and Cybernetics, vol. 4,
no. 2, pp. 86–100, 1968.

[44] K. Makki and N. Pissinou, “The Steiner Tree Problem with Minimum
Number of Vertices in Graphs,” in 2nd Great Lakes Symposium on VLSI,
pp. 204–206, 1992.

[45] A. Biniaz, A. Maheshwari, and M. Smid, “On the hardness of full Steiner
tree problems,” Journal of Discrete Algorithms, vol. 34, 2015.

[46] B. Annighoefer, C. Reif, and F. Thieleck, “Network Topology Optimiza-
tion for Distributed Integrated Modular Avionics,” in IEEE/AIAA 33rd
Digital Avionics Systems Conference (DASC), 2014.

Appendix C
Distributed Bio-inspired Configuration of
Virtualized Mission-critical Networks

Abstract

Modern mission-critical embedded systems such as autonomous cars and avionics consist of
a multitude of interconnected nodes and services with various QoS requirements. Virtual-
ization provides further flexibility, configurability, and isolation to such systems by enabling
dynamic service placement to off-the-shelf virtualized hardware. Although the service-
oriented systems usually rely on a single centralized controller for the service configuration
and maintenance as well as establishing their inter-communication, more autonomous and
self-driven control schemes are required to cope with their increasing scalability and het-
erogeneity. Accordingly, bio-inspired algorithms (BIAs) offer distributed self-organization
methods by adapting the natural phenomena such as collaborating bee and ant colonies
for the requirements of modern networked systems. In this paper, we leverage ant-colony
optimization to solve the joint service allocation and routing (JSAR) problem distributedly,
where mixed-criticality services should be distributed and communicated under strict QoS
requirements on a virtualized, physical network. We also introduce an integer linear pro-
gram (ILP) to find the optimal solution for JSAR that can be computed by a centralized
controller. Our experiments show that our heuristics successfully solve JSAR for even scal-
ing scenarios. Besides, utilizing different redeployment strategies, they can be adapted to
obtain near-optimal results in terms of resource efficiency.

Reference

Doğanalp Ergenç, D. Sorejevic, M. Fischer. Distributed Bio-inspired

Configuration of Virutalized Mission-critical Networks. IEEE Global

Communications Conference (GLOBECOM), 2022.

Contribution

In the given publication, the main contribution belongs to this thesis. The second co-author
evaluated an early version of the proposed framework in the context of his master’s thesis.
However, it is here remodeled from scratch and extended with an optimization model. The
evaluation is also re-conducted with new metrics. The third co-author helped to improve
the quality of the paper with his valuable feedback.

131

Distributed Bio-inspired Configuration of
Virtualized Mission-critical Networks

Doganalp Ergenc, David Sorejevic, Mathias Fischer
University of Hamburg, Germany

name.surname@uni-hamburg.de

Abstract—Modern mission-critical embedded systems such as
autonomous cars and avionics consist of a multitude of intercon-
nected nodes and services with various QoS requirements. Virtu-
alization provides further flexibility, configurability, and isolation
to such systems by enabling dynamic service placement to off-the-
shelf virtualized hardware. Although the service-oriented systems
usually rely on a single centralized controller for the service
configuration and maintenance as well as establishing their
inter-communication, more autonomous and self-driven control
schemes are required to cope with their increasing scalability and
heterogeneity. Accordingly, bio-inspired algorithms (BIAs) offer
distributed self-organization methods by adapting the natural
phenomena such as collaborating bee and ant colonies for the
requirements of modern networked systems. In this paper, we
leverage ant-colony optimization to solve the joint service alloca-
tion and routing (JSAR) problem distributedly, where mixed-
criticality services should be distributed and communicated
under strict QoS requirements on a virtualized, physical network.
We also introduce an integer linear program (ILP) to find the
optimal solution for JSAR that can be computed by a centralized
controller. Our experiments show that our heuristics successfully
solve JSAR for even scaling scenarios. Besides, utilizing different
redeployment strategies, they can be adapted to obtain near-
optimal results in terms of resource efficiency.

Index Terms—service allocation, routing, bio-inspired, ACO

I. INTRODUCTION

Modern mission-critical systems (MCSs) such as aircraft
and industrial facilities have become more complex with
numerous inter-connected services and functions. To cope with
this complexity, new design paradigms such as virtualization
and service-oriented architecture (SOA) are developed. The
virtualization of services enables further flexibility for such
systems, and is being currently embraced in different domains
like avionics [1] and automotive [2]. It allows hosting multiple
functions on a single physical node by ensuring isolation and
performance guarantees via virtualization [3].

However, SOA also requires the deployment of virtual ser-
vices and their inter-communication within limited resources
and tight quality of service (QoS) requirements. In different
areas such as software-defined networking (SDN) and cloud
computing, such service allocation and routing problems are
handled by centralized controllers that have network-wide visi-
bility [4]. However, they have limited scalability and introduce
a single point of failure and thus safety risks. Therefore, decen-
tralized and distributed management techniques are required
for further self-organization and reconfiguration capabilities.

Accordingly, bio-inspired algorithms (BIAs) are employed
in various domains for distributed task allocation [5], [6]. They

adapt the colony behavior of different animal species such as
ants and bees that collaborate in nature via certain communica-
tion patterns to solve domain-specific problems. In this work,
we utilize the ant colony optimization (ACO) for distributed
service allocation and routing in virtualized MCSs. Besides,
we present an optimization model representing a centralized
controller to compare the centralized and distributed solutions.
Our contributions are as follows:

• We propose bio-inspired heuristics for distributed service
allocation and routing utilizing the ACO.

• We propose an integer linear programming (ILP) opti-
mization model to solve the joint service allocation and
routing (JSAR) problem, which can be utilized by a
centralized controller. For this, we modified our previous
optimization model first presented in [3] by implementing
a new fairness multi-objective function and extending the
service distribution constraints.

• We compare the efficiency and performance of our dis-
tributed bio-inspired heuristics and centralized optimal
solution as well as discuss the scalability and the over-
head of our heuristics.

The rest of the paper is organized as follows. Section II
presents the related work. Section III presents the JSAR
optimization model. In Section IV, we give the details of
our distributed bio-inspired heuristics. Section V presents the
experiment results and Section VI concludes the paper.

II. RELATED WORK

In this section, we briefly present the related work on BIAs
and methods for distributed service allocation and routing.

Bio-inspired approaches in networking. BIAs are used in
various networking problems that require self-organization
without the availability of a centralized management [6],
[7]. In this work, we specifically utilize the ant colony
optimization (ACO) algorithm [8] as it introduces certain
flexibility for designing task distribution and routing problems.
In nature, ants leave their pheromone on the trail they travel. A
higher pheromone intensity is an indicator that the respective
trail is used by more ants and thus preferred by ants, as
a well-explored path. Accordingly, without any centralized
intelligence, ants can individually find their paths to perform
certain tasks. Such an approach is analytically modeled
by defining (i) threshold functions to update the level of
pheromone per trail, (ii) probabilistic selection functions to

select among the available options, e.g., to decide a trail
with a certain level of pheromones, and (iii) various design
parameters to tune given functions. In networking, [9] utilizes
those functions for routing, where increasing pheromone
implies the shortest paths. In [10], the authors adapt ACO
for energy-efficient routing in wireless networks. The authors
of [11] use ACO for coordination and pathfinding for UAVs.
Extending routing approaches, [5] first utilize a set of ACO
functions for task distribution among robotic agents in a
sensor/actuator network and then another set to establish
communication between them.

Distributed service allocation and routing. Various
techniques are proposed for the distributed service allocation
problem. In [12], the authors propose greedy heuristics that
can be run by each node individually to improve QoS for
service coordination and routing. The authors of [13] leverage
the particle swarm optimization to improve the performance
of their distributed heuristics to tackle with the same problem.
In [14], the authors propose a MILP to model hierarchical
and decentralized service distribution and routing framework.
Instead of a fully self-coordinated approach, they divide
a network into multiple autonomous parts to be organized
individually. Another approach in [15] uses machine learning
by employing reinforcement learning agents to every node in
the network; however, it still requires training those agents
offline in a centralized manner. In comparison to the related
work, we propose a new problem statement for MCSs and
compare the optimal centralized solution with our ACO-based
distributed solution reflecting the QoS requirements of the
services with mixed-criticality.

III. OPTIMAL JOINT SERVICE ALLOCATION AND ROUTING

In this section, we present our joint service allocation and
routing (JSAR) model to find the optimal service deployment
via a centralized controller. We then use JSAR to compare
the optimal solution with the results of our distributed bio-
inspired heuristics. We modify our previous model presented
in [3] to distinguish between critical and non-critical services
and to include additional constraints and a new objective
function for fairness in resource utilization. In this sense, the
optimal scheme provides a deployment that (i) satisfies all
QoS requirements of mixed-critical services within limited
system resources and (ii) minimizes the deviation in resource
utilization between distinct nodes and links.

Fig. 1 illustrates the JSAR. In the figure, black nodes
represent the connected services s ∈ S in a service overlay.
Each service has a binary criticality indicator os and certain
resource requirements τs. Services have to be placed to the
physical nodes u, v ∈ V within their limited resources ru.
Besides, routing should be performed between the host nodes
(grey nodes) satisfying given QoS requirements of the com-
munication demands d ∈ D. Each demand is defined between
two services, and requires a certain bandwidth hd for data
traffic and has a maximum latency requirement ld. They should
be placed to assigned to the end-to-end paths p ∈ P , which

Service Overlay

Physical Network

Fig. 1: Service overlay on top of the underlay physical network [3]

consist of edges e ∈ p with a limited bandwidth capacity ce
and induced delay l∗e .

min

{
max

{
ϵl
∑

d∈D

∑

p∈P,
e∈p

xdphd : ∀e ∈ E
}

+max
{
ϵn

∑

s∈S

ysuτs(1 + os(λ− 1)) : ∀u ∈ V
}}

(1)

∑

u∈V

ysu = 1 ∀s ∈ S (2)

∑

s∈S

ysuτs(1 + os(λ− 1)) ≤ rv ∀u ∈ V (3)

xdp ≤ ysvytu + ytvysu ∀d ∈ D,∀u, v ∈ V,

∀p ∈ Puv, (s, t) ∈ d (4)
∑

d∈D

∑

p∈P,
e∈p

xdphd ≤ ce ∀e ∈ E (5)

∑

e∈p

xdpl
∗
e ≤ ld ∀d ∈ D,∀p ∈ P (6)

∑

p∈P

xdp ≥ 1 ∀d ∈ D (7)

We introduce two binary decision variables xdp and ysv
that represent if demand d is assigned to path p and if
service s is deployed on node v, respectively. The multi-
objective function (1) ensures fairness by minimizing the
maximum link utilization and node resource consumption.
Such an objective (i) balances the resource use, (ii) promotes
further configurability in case of continuous deployment of
new services and demands, and (iii) reduces the risk of a
single point of failure that may happen many services and
demands are deployed on the same network elements. ϵl and
ϵn are the weighting parameters for two objectives and set to
ϵl = ϵn = 0.5 as both link and node resource capacity values
are adjusted in a similar numerical interval.

Constraint (2) ensures the service s is deployed on exactly
one node. Constraint (3) restricts the number of services
deployed on node u to guarantee that their total resource
requirements do not exceed the node resource ru. Here, the
resource consumption τs of critical services (s.t. s is critical

if os = 1) is weighted by factor λ > 1.0 to avoid deployment
of too many critical services on a single node, that can
induce single point of failures, performance bottlenecks, or
poor resource isolation. Constraint (4) restricts a demand d
is assigned on path p only if the required services s and t
are deployed on the source and destination nodes of path p,
i.e., u and v. Constraint (5) ensures that each link e of path
p has sufficient resources ce to carry the load of demand d.
Constraint (6) ensures a path p satisfies the maximum tolerable
latency ld for d. Here, l∗e represents the latency induced by
edge and the end-to-end latency of p is the accumulated delay
after each link e ∈ p. Lastly, constraint (7) guarantees that d
is assigned exactly to one path.

Constraint (4) is quadratic and linearized using McCormick
envelopes [16] as described in [3] to make the overall problem
solvable by the state-of-the-art linear optimization tools. The
non-linear multi-objective function is also adapted as follows:
We define an auxiliary variable z with an additional constraint
z ≥ ∑

d∈D

∑
p∈P,e∈p xdphd ∀e ∈ E, i.e., greater than the

total utilization of every link e. Similarly, we introduce for an-
other variable q to bound the resource consumption. Then, the
objective becomes minimizing ϵlz+ϵnq to minimize the upper-
bound of the utilization per-link and per-node simultaneously.
Consequently, it introduces |E|+|V | extra constraints. Further
discussion on the complexity of the model can be found in [3].

IV. BIO-INSPIRED DISTRIBUTED JSAR

In this section, we present our bio-inspired service allocation
and routing heuristics. We perform those two parts consecu-
tively together with a redeployment phase. Accordingly, our
heuristics have three main processes. First, we assume that
all nodes are initialized with the information on available
services and inter-service communication demands. Nodes
start the service allocation process by selecting a set of ser-
vices probabilistically within their available resources utilizing
ACO. They then broadcast their choices and all services are
deployed in multiple iterations until they reach a consensus
on the overall service deployment. Secondly, according to
the given deployment, they initiate the path discovery and
routing process leveraging a modified version of the distance-
vector routing algorithm and another adaptation of the ACO
functions. Note that each node utilizes two ACO functions
until then: (i) the first function calculates the probability to
deploy a particular service, i.e., service probability, and (ii) the
second function is to select a forwarding link probabilistically
for a particular demand. As the service allocation is performed
before routing, a deployment may render inter-service routing
infeasible due to the violated QoS constraints or a lack of
sufficient capacity on the particular paths. To overcome that,
thirdly, we also design a redeployment phase, in which the
respective services of the violated demands are placed at the
different nodes following the same distribution procedure until
all demands are assigned.

Similar to JSAR model, we consider the safety requirements
of MCSs by (i) avoiding the deployment of several critical
services to the same node physical node and (ii) load-balancing

the traffic load to widen the demand assignment instead of
relying on dedicated shortest paths. Both prevent a system
from a single point of failure and performance bottlenecks,
which may cause disruptions in the critical services and traffic.

A. Service allocation

We introduce two constraints for service allocation: A node
can host (i) a limited number of services within its resource
capacity and (ii) a limited number of critical services. We
assume that initially, each node obtains a list of services S and
demands D from a controller unit, which does not maintain or
control the system later on. Each node decides which services
it requests according to the function Pu given in Eq. 8.

Pu(s) =
µu(s)

β

∑
t∈S µu(t)β

(8)

Here, β ∈ [0, 1] is the ACO learning parameter that adjusts the
exploration behavior of the ACO heuristic and increases the
probability of service to be deployed. The threshold function
µu(s) of ACO is calculated as

µu(s) =

{
0, if r∗u < τs

max{rv −
∑

t∈Su
ytu(λotτt + (1− ot)τt), 0}

(9)

Note that λ in Eq. 9 represents the weighting factor for the
critical services, s.t. os = 1. It penalizes the deployment of
an excessive number of services proportional to their resource
consumption. Each node calculates a deployment probability
starting from the critical services. The increasing resource
consumption here is reversely proportional to the increasing
pheromone level in ACO.

After each node u has evaluated the probability to host a
service s, Pu(s), for every service, they broadcast the set of
services they decide to host together with the computed result
of Pu(s). When there is more than one candidate node for
the same service, the one with the highest probability gets
the respective service. Meanwhile, the nodes also detect the
remaining unclaimed services. For the following iterations of
the service allocation, hosts announce which of the remaining
services they can host additionally similar to the first iteration.

B. Routing

For routing, we modify the traditional distance-vector rout-
ing (DVR). DVR requires only local information sharing and
recording that directly fits our needs to compute the best
next-hop for distributed routing decisions. Here, we extend
this mechanism not only to find the shortest path but obtain
a shortest path per adjacent neighbor so that the node can
probabilistically select among a set of suitable paths.

Eq. 10 calculates the shortest distance between u and v in
DVR, where C(u, i) defines the cost between nodes u and i
on a particular link and corresponds with the parameter l∗e of
JSAR in Section III. Nu represents the set of neighbors of u.

Du(v) = min{C(u, i) +Di(v) ∀i ∈ Nu} (10)

Although this approach provides the shortest paths in terms
of the given cost function, it is not convenient to assign a

higher number of flows to a single shortest path due to resource
constraints. Therefore, we extend the potential next-hops by
calculating the shortest paths through each neighbor i of a node
u to be then selected probabilistically conforming resource
and QoS requirements of different flows. Accordingly, Eq. 11
calculates the cost from u to v via next-hop i and it is recorded
by v for each i inNu in its routing table instead of keeping
only the next-hop providing the shortest path.

Di
u(v) = C(u, i) +Di(v) (11)

We utilize the given distance functions to calculate the
probability to assign a flow demand d from v to u via next-hop
i within ACO as Eq. 12

P i
uv(d) =

riuv(d)
α

∑
j∈Nu

rjuv(d)α
(12)

where α is the ACO learning parameter and riuv(d) is the ACO
threshold function calculated as

riuv(d) =

{
0, if Di

u(v) > ld or c∗e < hd
γ1Du(v)
Di

u(v)
+

γ2c
∗
e

ce
, otherwise

(13)

where c∗e represents the available resources on link e ∈ (u, v)
and γ1,2 are the weights s.t. γ1 + γ2 = 1.0 to adjust the
impact of the cost and resource utilization. Note that the
link with higher available bandwidth and leading to the path
with a lower cost has higher probability according to Eq. 13.
Therefore, the link utilization is reversely proportional with
the pheromone level in ACO.

This process only provides best-case cost estimation for the
latency but does not guarantee the utilization of the shortest
one as each node selects the next hops probabilistically in a
distributed manner. If a node receives the same packet twice,
it directly bounces it back to the sender node together with
a notification message so that the sender node can re-route it
through another link to avoid loops.

C. Redeployment

After the deployment, some demands may not be satisfied
since (i) the distance between the nodes u and v hosting
respective services s and t, e.g., in terms of number of hops,
might be too far to satisfy the required QoS or (ii) there might
be insufficient bandwidth on the available paths between those
two nodes. In such cases, we follow one of those strategies
shown in Fig. 2 for the service and demand redistribution: (i)
deploying duplicate service instances to satisfy the remaining
demands or (ii) migrate the respective services of unsatisfied
demands and embed the service overlay as it is.

Extra service deployment. In Fig. 2a, s1, s2 and s3 should
communicate and s1 and s3 are deployed on the given nodes.
If s3 does not necessarily use the data originated from s1 and
processed at s2, two duplicate instances of s2 can be placed
to satisfy the inter-service demands separately. For such cases,
we propose bia-flex that deploys duplicate service instances

P
hy
si
ca
l

O
ve
rla
y

s1
s2

s3

s3

s2

s1

s2

(a) Flexible

s1
s2

s3

s3

s2

s1

(b) Strict

Fig. 2: Different redeployment strategies

flexibly to satisfy the different demands that utilize the same
services. Consequently, both demands between s1 − s2 and
s2− s3 can be assigned to the shortest paths possible without
potentially violating any QoS requirements, e.g., they induce
only 1-hop latency in this scenario. Accordingly, a similar
service allocation and routing processes (cf. Section IV) are
repeated only for the remaining demands and extra service
instances in each redeployment iteration.

bia-flex loosens the assumption that services in the given
overlay are tightly dependent on each in a given order and
extends the solution space. However, it also costs extra
node resources to host redundant services. To avoid that,
we developed another strategy, where each service is only
deployed once and reused by all demands utilizing it.

Strict redistribution. Fig. 2b illustrates the second
redeployment strategy, bia-strict. It is analogous to the
optimal distribution presented in Section III and deploy the
service overlay as a whole assuming that each service strictly
requires the data coming from the preceding service to
process and send to the successor service. In the figure, s2 is
deployed on a node between the hosts of s1 and s3 to receive
data from s1, process them, and forward to the s3 without
losing any contextual information contained in the input of
s1. The challenge is, if the requirements of even only one
of the corresponding demands cannot be satisfied, bia-strict
migrates the service instances starting from the services that
are least common among deployed demands. In this scenario,
s2 could be moved until both demands between s1 − s2 and
s2 − s3 are satisfied. Eventually, it triggers several iterations
of redeployment until all demands are assigned.

After the migration of a service instance, the threshold
function of the node u that currently hosts that service µu(s)
(and similarly µv(t)) are reduced s.t. µ∗

u(s) = η×µu(s), where
η ∈ [0, 1] to avoid the same deployment without completely
blocking u to host the same services. Similarly, riuv(d) is
modified to ri∗uv(d) = η × riuv(d) to penalize the routes that
have lead to an unsatisfying assignment before a migration is
triggered. Note that nodes should disseminate the information
for failing demands and the migrated services to update the
threshold functions of the respective nodes.

V. EVALUATION

In this section, we summarize our experiment results. We
evaluated (i) the fairness in resource utilization with respect to
the increasing size of service overlay in small scenarios, (ii)

the scalability of heuristics in terms of resource consumption
and QoS, and (iii) the redeployment cost of our heuristics in
terms of the number of extra services deployed in bia-flex and
the number of redeployment iterations. For all experiments,
all of the services and demands are successfully embedded
in the physical network, i.e., the optimal and heuristic results
are given for the 100% deployment ratio. For the network
topologies, we generated random networks with an average
node degree of 2.5. Service overlays are also randomly gen-
erated with similar connectivity. All experiments are repeated
40 times for the heuristics and 20 times for the optimal results.

Our heuristics have numerous parameters as we described
in Section IV. We set β = 0.8, α = 0.8, λ = 1.8, µ =
0.8, γ1 = 0.3, γ2 = 0.7 and µ = 0 as they give the optimal
results regarding Eq. 1 as a result of our sensitivity analysis.

Resource utilization. Fig. 3 shows the node resource
utilization and link utilization for an increasing size of service
overlay. The box plots for optimal (orange, dotted), bia-flex
(red, solid), and bia-strict (blue, hatched) show the (averaged)
minimum, maximum (edges of the vertical lines), and mean
(mid-line) utilization of the active network components,
and the standard deviation (boxes around the mid-line) in
resource consumption. While a smaller maximum value and
standard deviation indicate a fairer resource usage, the mean
utilization shows resource efficiency when increasing the size
of the overlay. For those experiments, we set the number of
demands more than the number of services s.t. |D| = |S|+10
to ensure that multiple demands utilize the same services, and
thus a more challenging service overlay can be embedded
into the network. The network size is set to 20 nodes.

In both Fig. 3a and 3b, the optimal placement results in the
minimum deviation and maximum value in resource utiliza-
tion, which means every node and link used in deployment
has a similar amount of load. In Fig. 3a, bia-flex leads to
a higher utilization of node resources than bia-strict. This
is mainly because it requires placing extra service instances.
The difference in the maximum utilization stems from that the
nodes with the highest connectivity, i.e., the most central ones,
tend to host the extra service instances more often. The reason
is, that after multiple redeployment iterations, most of the
nodes still cannot satisfy the QoS requirements of the demands
requiring extra service instances, and such high-connectivity
nodes provide the most suitable routes. In contrast, bia-strict
stays closer to the optimal regarding the mean utilization.

Fig. 3b shows that bia-strict results in more congested
links. It leads to a denser service and data traffic deployment
as all service instances should be connected strictly. In
contrast, bia-flex utilizes a wider range of links by initiating
extra service instances on different nodes. Therefore, it
enables the use of alternative routes. Accordingly, for the link
utilization, bia-flex gives closer results to the optimal solution.

Scalability. Fig. 4 shows the scalability of our heuristics in
terms of node and link utilization for larger service overlays.
The network size is set |V | = 50 and the number of demands

(a) Node resource consumption (b) Link utilization

Fig. 3: Resource utilization for increasing size of service overlay

(a) Node resource consumption (b) Link utilization

Fig. 4: Resource utilization for scaling service overlay

is |D| = |S| + 20. Note that the optimization model cannot
be solved in a reasonable time due to its complexity and thus
only the results of the heuristics are presented here. In both
Fig. 4a and Fig. 4b, the results show a similar trend with the
ones in the smaller scenarios (cf. Fig. 3). Therefore, regardless
of the size, it can be concluded that while bia-flex achieves
better link utilization in less connected networks, bia-strict
achieves better results for the networks of low-capacity nodes.
Apart from the resource efficiency, Fig. 5 shows the average
latency of inter-service communication in terms of the ratio
of the average length of allocated routes to the network
diameter, which is the longest shortest path in the network.
We normalized the length, i.e., the number of hops, to present
it as proportional to the network size. Supporting our findings
in Fig. 3b and Fig. 4b, bia-flex (red, dashed) results in lower
latency and better QoS by selecting shorter paths as it can
leverage a more flexible service deployment. Note that both
bia-flex and bia-strict satisfy the QoS requirements of all
demands strictly; however, bia-flex induces better routes.

Fig. 5: Latency (normalized with network diameter)

(a) Cost of redeployment strategies (b) Demand assignment distribution

Fig. 6: Reployment cost in terms of extra services and iterations

Redeployment cost. Fig. 6 shows the redeployment cost in
our heuristics in terms of the extra service placement and the
redeployment time. In Fig. 6a, we show the percentage of the
services that require extra instances for bia-flex on the left
y-axis (red) and the required number redeployment iterations
for bia-strict on the right y-axis (blue). Note that bia-flex also
requires a neglectable number of redeployment iterations, e.g.,
less than 10 in the given scenarios, and thus it is not shown
in the figure. As seen in the figure, while bia-flex can require
up to 20% extra instances for the largest service overlay,
bia-strict takes more than 150 redeployment iterations, which
induces further convergence time and also data overhead for
the consensus between the nodes. Therefore, while the former
costs extra node resources, the latter requires a longer time
to settle the whole service deployment.

Although a high number of redeployment iterations is
required in bia-strict for a fully-functional network, both
heuristics deploy the majority of the demands rather quickly.
Fig. 6b shows the cumulative percentage of the demand assign-
ment by the number of redeployment iterations. bia-flex (red,
dashed) deploys all services and demands under 10 iterations
by placing extra service instances. bia-strict can assign 80% of
the demands in the first 30 iterations and the rest takes further
time. The reason is that the most connected services, i.e., the
services utilized by many demands, should be replaced until
they satisfy the QoS requirements of all respective demands.
Initially, the search space, i.e., the available nodes and links,
for those is rather large but after some iterations (120 in the
figure) it converges much faster as many nodes and links are
blacklisted due to QoS violations. Accordingly, it is possible
to use bia-flex for dynamic or incremental service and demand
assignment as it has more than 10 times better convergence
time with up to 20% extra resource cost. Both can also be
used together to first deploy a fully-functional network with
all demands in place and then to shift to the strict embedding
of the service overlay in time for better resource efficiency.
The optimal solution, on the other hand, takes significantly
longer time than the heuristic results even for small scenarios.

VI. CONCLUSION

Mission-critical systems (MCSs) has started to leverage vir-
tualized service-based architecture for further design flexibility
and dynamicity. However, it introduces configuration overhead

to efficiently allocate all required services and communication
demands. They usually require a centralized controller with
network-wide visibility for such configuration, which offers
limited scalability and is at the risk of being a single point
of failure. In this paper, we propose bio-inspired joint ser-
vice allocation and routing (JSAR) heuristics for virtualized
MCSs to reduce the dependency to a centralized entity. We
adapt the analytical framework of the ant-colony optimization
technique to distribute mixed-criticality services and establish
routes for the data traffic with various QoS requirements.
We also introduce an integer linear program (ILP) to find
an optimal configuration scheme that can be computed by
a centralized controller to compare the performance of the
centralized and distributed approaches. Our evaluation shows
that the proposed heuristics perform close to the optimal
results in terms of resource efficiency and fairness by adapting
different redeployment strategies. Our heuristics can be used
in different scenarios depending on the available resources,
time, or necessity of dynamic service deployment.

REFERENCES

[1] Future Airborne Capability Environment (FACE) Technical Standard
Edition 3.1. The Open Group, Jul 2020.

[2] Automotive Virtual Platform Specification. GENIVI, Jul 2020.
[3] D. Ergenc, J. Rak, and M. Fischer, “Service-Based Resilience for

Embedded IoT Networks,” in 50th IEEE/IFIP International Conf. on
Dependable Systems and Networks (DSN), pp. 540–551, 2020.

[4] R. Mijumbi, J. Serrat, J. Rubio-Loyola, N. Bouten, F. De Turck,
and S. Latré, “Dynamic resource management in sdn-based virtualized
networks,” in 10th Int. Conf. on Network and Service Management
(CNSM), pp. 412–417, 2014.

[5] T. H. Labella and F. Dressler, “A bio-inspired architecture for division
of labour in SANETs,” in Advances in Biologically Inspired Information
Systems, pp. 209–228, Springer, 2007.

[6] F. Dressler and O. B. Akan, “Bio-inspired networking: from theory to
practice,” IEEE Comm. Mag., vol. 48, no. 11, pp. 176–183, 2010.

[7] C. Zheng and D. C. Sicker, “A survey on biologically inspired algorithms
for computer networking,” IEEE Comm. Surveys & Tut., vol. 15,
pp. 1160–1191, 2013.

[8] M. Dorigo and L. M. Gambardella, “Ant colony system: a cooperative
learning approach to the traveling salesman problem,” IEEE Transac-
tions on evolutionary computation, vol. 1, no. 1, pp. 53–66, 1997.

[9] G. Di Caro, F. Ducatelle, and L. M. Gambardella, “AntHocNet: an adap-
tive nature-inspired algorithm for routing in mobile ad hoc networks,”
European Trans. on Telecom., vol. 16, no. 5, pp. 443–455, 2005.

[10] A. S. Sharma and D. S. Kim, “Energy efficient multipath ant colony
based routing algorithm for mobile ad hoc networks,” Ad Hoc Networks,
vol. 113, p. 102396, 2021.

[11] Y. He, Q. Zeng, J. Liu, G. Xu, and X. Deng, “Path planning for indoor
UAV based on Ant Colony Optimization,” in 25th IEEE Chinese Control
and Decision Conference (CCDC), pp. 2919–2923, 2013.

[12] S. Schneider, L. Dietrich Klenner, and H. Karl, “Every Node for Itself:
Fully Distributed Service Coordination,” in 16th Int. Conf. on Network
and Service Management (CNSM), 2020.

[13] A. Song, W.-N. Chen, T. Gu, H. Yuan, S. Kwong, and J. Zhang,
“Distributed virtual network embedding system with historical archives
and set-based particle swarm optimization,” IEEE Trans. on Systems,
Man., and Cybernetics, vol. 51, no. 2, pp. 927–942, 2021.

[14] S. Schneider, M. Jürgens, and H. Karl, “Divide and Conquer: Hierar-
chical Network and Service Coordination,” in IFIP/IEEE International
Symposium on Integrated Network Management (IM), pp. 54–62, 2021.

[15] S. Schneider, H. Qarawlus, and H. Karl, “Distributed Online Service
Coordination Using Deep Reinforcement Learning,” in IEEE 41st Int.
Conf. on Dist. Computing Systems (ICDCS), pp. 539–549, 2021.

[16] G. P. Mccormick, “Computability of Global Sol. to Factorable Non-
convex Programs: Convex Underestimating Problems,” Math. Program.,
vol. 10, pp. 147–175, Dec. 1976.

Appendix D
Moving Target Defense for Service-oriented
Mission-critical Networks

Abstract

Modern mission-critical systems (MCS) are increasingly softwarized and connected. As a
result their complexity increased and so their vulnerability against cyber-attacks. However,
the current adoption of virtualization and service-oriented architectures (SOA) in MCSs
provides additional flexibility that can be leveraged to withstand and mitigate attacks, e.g.,
by moving critical services or data flows. This enables the deployment of strategies for
moving target defense (MTD), which allows to strip attackers from their asymmetric advan-
tage from long-reconnaissance of MCSs. However, it is challenging to design such an MTD
mechanism, given the diverse threat landscape, resource limitations, and without degrading
the availability of services. In this paper, we combine different optimization models to ex-
plore feasible service distributions and routing configurations for SOA-based systems and
to derive optimal MTD sequences and schedules, i.e., to decide on subsequent system con-
figurations and on their timing, based on an attacker-defender game. Our results indicate
that even for challenging and diverse attack scenarios, it is possible to defend the system by
up to 90% of the system operation time with a limited MTD defender budget.

Reference

Doğanalp Ergenç, F. Schneider, P. Kling, M. Fischer. Moving Target

Defense for Service-oriented Mission-critical Networks. Interna-

tional Conference on Computer Communications and Networks (ICCCN),

2023.

Contribution

In the forementioned publication, the main contribution belongs to this thesis. The sec-
ond co-author contributed to writing preliminaries explaining an existing game-theoretical
model. All co-authors also helped to improve the quality of the paper with their valuable
feedback.

138

Moving Target Defense for Service-oriented
Mission-critical Networks

Doğanalp Ergenç, Florian Schneider, Peter Kling, Mathias Fischer
Universität Hamburg, DE

name.surname@uni-hamburg.de

Abstract—Modern mission-critical systems (MCS) are increas-
ingly softwarized and interconnected. As a result, their complex-
ity increased, and so their vulnerability against cyber-attacks.
The current adoption of virtualization and service-oriented ar-
chitectures (SOA) in MCSs provides additional flexibility that can
be leveraged to withstand and mitigate attacks, e.g., by moving
critical services or data flows. This enables the deployment
of strategies for moving target defense (MTD), which allows
stripping attackers of their asymmetric advantage from the long
reconnaissance of MCSs. However, it is challenging to design
MTD strategies, given the diverse threat landscape, resource
limitations, and potential degradation in service availability. In
this paper, we combine two optimization models to explore
feasible service configurations for SOA-based systems and to
derive subsequent MTD actions with their time schedule based
on an attacker-defender game. Our results indicate that even for
challenging and diverse attack scenarios, our models can defend
the system by up to 90% of the system operation time with a
limited MTD defender budget.

Index Terms—moving target defense, game theory, service-
oriented architecture

I. INTRODUCTION

Modern mission-critical systems (MCSs), like smart cars
and avionics, consist of interconnected services that carry out
collaborative tasks. This results in additional complexity and
thus, a broader surface for cyber-attacks. To cope with the ad-
ditional complexity, service-oriented architectures (SOA) and
virtualization are increasingly adopted in different mission-
critical domains [1]–[3]. SOA can accommodate the system
design by enabling flexible and isolated service deployment
on virtualized hardware. Such flexibility also enables a recon-
figuration of systems to handle failures and to withstand and
recover from cyber-attacks.

From a security perspective, attackers have an asymmetric
advantage against traditional MCSs since they can conduct a
long reconnaissance before they carry out their attacks [4].
Besides, an attacker can remain in stealth for months to make
the highest impact even after infiltrating a system [5]. Here,
the longer the system remains in its static configuration, the
higher the probability of a successful attack is. Defenders,
however, have only a limited time to detect and mitigate it.
Moving target defense (MTD) can balance this asymmetry by
reconfiguring critical assets [6], e.g., shuffling IP addresses
or changing the allocation of critical services. It renders the
attacker’s knowledge about the system obsolete and thus im-
pedes attacks. SOA and virtualization ease the development of

MTD strategies as they enable the migration and replacement
of services and reconfiguration of their inter-communication.

However, MTD via service reconfiguration requires ad-
ditional spare resources and induces reconfiguration costs
for increased delay and packet loss. Furthermore, without
a precise understanding of potential attacks and failures, an
MTD strategy causes too frequent or ineffective reconfigura-
tions [7]–[9]. Therefore, we need an effective MTD strategy
that determines which services must be changed, how they
are changed (e.g., migrate or re-instantiate), and when they
are changed. To address those questions, various attacker-
defender games have been proposed in the context of game
theory, e.g., FlipIT [10] or the probabilistic learning attacker
and dynamic defender (PLADD) model [11]. Although they
have already derived asymptotical bounds for optimal MTD
strategies, they do not provide concrete steps to reconfigure
systems. Moreover, these models do not include network
design constraints for resource management and quality of
service, which is especially important for MCSs.

This paper proposes an optimization framework to deter-
mine subsequent service configurations within optimal MTD
strategies based on an attacker-defender game. Accordingly,
our contributions are:

• We repurpose our linear programming model for joint
service allocation and routing (JSAR) [1], [12] to identify
a set of feasible service configurations satisfying resource
and QoS requirements of SOA-based MCSs.

• We formulate a novel optimization model, PLADD-
scheduling (PLSCH) based-on the PLADD game [11], to
find optimal MTD schedules against various attacks.

• We develop a composite model, PLSCH-MTD, to deploy
the resulting configurations of JSAR for each MTD action
over the time-schedule provided by PLSCH.

• We create several attack scenarios reflecting the time char-
acteristics of recent security incidents in MCSs to evaluate
PLSCH-MTD.

In the rest of the paper, Section II introduces the prelim-
inaries for the considered attack-defender game. Section III
presents related work on SOA design and MTD. Section IV in-
troduces our optimization models JSAR, PLSCH, and PLSCH-
MTD. Section V describes the attack scenarios that are used
to evaluate PLSCH-MTD. Section VI presents the evaluation
results, and Section VII concludes the paper.

II. BACKGROUND

In this section, we describe two essential concepts of this
study: The probabilistic learning attacker and dynamic de-
fender (PLADD) model and the PLADD-scheduling problem.
We also note our assumptions and modifications that make the
formulation of these models more convenient for this study.

A. Probabilistic Learning Attacker and Dynamic Defender

Time
horizon

Attack 1 Attack 2 Attack 3

time-to-success

Attack 1 is
successful

Take Morph

Attack 3 is
successful

Defender Defender Attacker Attacker

t0 t7 t10 t22t15

C
ap

tu
re

A
tt

ac
k

Sc
en

ar
io

Ev
en

ts

Fig. 1: An example of the PLADD game.

PLADD introduces an attacker-defender game that involves
(i) an attacker with learning capabilities and (ii) a defender
with various actions competing to gain control of the system
within a given time horizon that represents a certain frame of
the system’s operation time [11]. Fig. 1 shows its fundamen-
tals. An attacker can conduct successive attacks (red blocks)
that each takes a certain time to be completed, i.e., having
time-to-success. As a result of a successful attack, the attacker
captures the resources (indicated by the light red background,
e.g. from t7 to t10). When an attacker completes an attack, it
might learn about the system, and its subsequent attack takes
less time accordingly, e.g., attack 2 is shorter than attack 1.

The role of a defender is to conduct certain actions (vertical
dashed lines) to prevent an attacker from completing its attack.
A take action usually represents an instant intervention, e.g.,
resetting a service instance, while a morph action refers to
more substantial system changes, e.g., migrating multiple
services over the system nodes with diverse configurations.
After the defender morphs the system, the attacker loses her
knowledge obtained after successful attacks and thus should
spend a longer time for its upcoming attacks (e.g., attack 3 in
Fig. 1 is longer than attack 2). Similar to the take action, the
defender captures the resources back after morph.

Both an attacker and a defender have limited budget. An
attacker can have only limited attacking opportunities, and
lengthy attacks require more effort. A defender cannot recon-
figure the system too often, and the cost of a reconfiguration
is usually proportional to the changes in the system, as they
usually cause service interruptions. Therefore, the defender
should conduct its actions within an effective time-schedule
against potential attacks within its budget.

Eventually, in the PLADD model, the goal of the attacker
is to complete a sequence of attacks and gain control over
the system after each successful attack. The defender aims to
develop a strategy that determines (i) the type of defensive
action to prevent an attack and (ii) a schedule to conduct a

sequence of actions against particular attack scenarios within
its limited budget.

We mainly focus on PLADD as it can model different types
of MTD actions and their effective scheduling to minimize the
attacker’s advantage. Furthermore, it can capture the time char-
acteristics of several attacks, which can vary from relatively
fast reconnaissance attempts to long-term advanced persistence
threats (APTs) in MCSs. In our formulation, we assume that
the time-to-success of an attack is independent of the previous
successful attacks, i.e., the attacker does not learn. It enables
us to develop defensive strategies against potential attack
scenarios, whose characteristics can be modeled in advance.
As a result, we consider a single type of defensive action (take
or morph), referred to as the infinite model in [11]. This action
corresponds to morph in the original PLADD model regarding
its impact since the service migrations over the system lead to
a significant reconfiguration. Lastly, we have not limited the
attacker to a certain budget and assume that it can conduct
attacks whenever the defender regains control over the system.

B. PLADD-Scheduling

PLADD-Scheduling (PLSCH) leverages the PLADD game
to provide an exact schedule for the defensive strategy, e.g.,
when to conduct take or morph actions. Originally proposed
in [13], it formulates the attacker-defender game as a combina-
torial job assignment problem. Here, we first describe the job
assignment problem and then explain how it corresponds to
the original PLADD model. It considers a system of m ∈ N
machines over a time horizon of T ∈ R+ time units. Each
machine m comes with a job sequence Jm = (dm1, dm2, . . .)
of at most n + 1 jobs which it must process. The duration
dmj > 0 of the jth job on machine m specifies how long
it takes machine m to process its jth job. In order to start
processing the jth job of Jm, machine m must have finished
the first j− 1 jobs. A job on any machine can only start after
a starting action, which affects all machines simultaneously,
is taken. However, the number of those actions is limited and
thus, they should be scheduled effectively to initiate several
jobs across multiple machines. The time between the end of
a job and the beginning of a subsequent job, i.e., if the jobs
cannot be scheduled adjacently, is idle machine time.

To see the connection to the PLADD game, we interpret
each machine as one of m possible, equally likely attack
scenarios. A job j corresponds to an individual attack within
an attack scenario, and its duration is the time-to-success
value for the respective attack. A finished job means that the
attacker captured the resources. The starting action for the jobs
corresponds to the instantaneous time that the defender retakes
control of a potentially compromised system, i.e., a take
action in the PLADD model. The limitation on the number
of starting actions represents a limited defender budget. Note
that the attacker continuously conducts attacks right after each
defender action competing for the system resources.

With this interpretation, the goal in PLSCH becomes to
schedule the jobs such that the total idle time over all machines
is minimized. This time also corresponds to the duration

when the resources are under the attacker’s control. Note that
minimizing the idle time is equivalent to maximizing the total
time any machine is active (not idle).

Sc
en

ar
io

 1
Sc

en
ar

io
 2

Sc
en

ar
io

 3

Take
Attacker
captures

Take Take Take

Fig. 2: A single defensive schedule for multiple attack scenarios.

In PLSCH, a single action determines the job assignment
on multiple machines. That is, the jobs on all machines initiate
simultaneously according to a single schedule of starting ac-
tions. The reason lies in the formulation of the PLADD model:
The defender cannot know the actual attack scenario and, thus,
must develop the most effective strategy to defend against all
likely attack scenarios. Accordingly, all the jobs are generated
in advance as input to the model, reflecting the potential
attack scenarios against the target system. Fig. 2 illustrates the
difficulty of scheduling jobs over multiple machines, which
corresponds to protecting the system against various attack
scenarios simultaneously. While there is no idle time on the
first machine, i.e., complete protection against the first attack
scenario, the same schedule results in more idle times on the
other machines, i.e., resulting in the attacker’s success.

III. RELATED WORK

In this section, we present the state-of-the-art on (i) SOA-
based network design, (ii) moving target defense, and (iii)
game-theoretical approaches for network security.

Service Distribution and Network Design: In SOA-based
mission-critical networks, the critical services and flows are
the assets to be protected. Therefore, a reconfiguration in
the context of MTD involves a service allocation and flow
assignment problem. A proper service allocation [14], [15]
is important to, for instance, minimize operational costs [16]
and physical resource fragmentation [17] for the providers,
and maximize the service quality [16] and responsiveness
[18] for the user experience. It usually requires an accurate
resource orchestration regarding where, when, and how many
service instances are deployed [19], [20]. Besides, the de-
pendencies of services on each other [21], service migrations
[22], load-balancing [23], task scheduling [24], and power-
awareness [25] are some of the design constraints that are
addressed in the literature. Other studies address the service
allocation and routing problem jointly to deploy the services
on the paths aiming for optimal resource utilization [26], [27].
Recent studies include the service protection and availability
issues as well [1], [12], [28].

In this work, we use our previous service allocation and
flow assignment scheme [1] as it directly reflects the SOA
requirements of the MCSs. Moreover, it offers configurability
with dynamic services and flows, which gives a large recon-
figuration space for potential MTD strategies.

Moving Target Defense: MTD is a well-studied field that
enables the development of defensive strategies by moving
the critical assets in a system. The authors of [29] implement
multiple diverse platforms with different software packages,
operating systems, and processor architectures. The system
functions are then moved among such platforms keeping the
state information. Similarly, in [30], a pool of diverse virtual
systems is orchestrated by a controller to fluctuate the attack
surface by switching on and off the redundant resources on
different components. In [31], it is argued that any configura-
tion parameter may impact the overall security. They propose
a genetic algorithm to find the best suitable (re)configuration
to minimize the chance of a successful attack. The authors
of [32] focus on mutating the network configuration, e.g., IP
addresses, ports, and destination addresses. In [8] and [9], they
circulate the virtual machines with different operating systems
as well as change network addressing schemes to prevent both
OS- and network-targeted persistent attacks.

In contrast to the related work, we consider the services
and flows as our critical assets in the SOA context. Although
several studies merely focus on migrating virtual instances, we
propose an optimization framework to find feasible and timely
system-wide reconfiguration.

Game theory: Game theory offers solid analytical tools to
develop attacker and defender interactions to develop effective
defensive strategies [33], [34]. The same authors of PLADD
extend their evaluation with further insights in [35]. According
to the practical implications of the study, it is always possible
to push a rational attacker out of the PLADD game even
though it might not be cost-optimal for the defender. PLADD
has also been considered for the security modeling of various
networking areas. In [36], the authors utilize PLADD to
defend power grid infrastructure. They analyze the optimal
schedule to reset access controls of the system to minimize the
probability of a successful attack. In [37], the authors focus on
the multi-attacker and defender games for massive machine-
type communications (mMTC) in 5G. They formulate a non-
zero-sum differential game with attack and defense alliances
and propose an optimal defensive strategy algorithm. In [38],
the authors address APTs toward cloud systems. In this game
model, two parties compete to set their attack and scan
intervals based on their subjective decisions. In [39] and [40],
the authors formulate spatio-temporal Stackelberg games to
find optimal configurations for web applications over time.

In comparison to the related work, we model various attack
scenarios in terms of their time characteristics against MCSs
rather than focusing on smaller-scale web applications. We
also evaluate different types of attacks beyond specific vul-
nerabilities of their target applications. In addition, we address
the complex interdependencies of connected services regarding
their resource consumption and QoS in SOA-based MCSs.

IV. PLADD-SCHEDULING MTD (PLSCH-MTD)
OPTIMIZATION MODEL

A. Solution Overview

Fig. 3 shows the steps of the overall model, PLSCH-
MTD, which consists of two optimization processes: (i) Joint
Service Allocation and Routing (JSAR) and (ii) PLADD-
Scheduling (PLSCH). While JSAR provides the possible con-
figurations to be used within MTD actions (green blocks),
PLSCH finds a schedule for the defender’s actions by changing
respective configurations to defend against the considered
attack scenarios (red blocks). In the rest of this section, we
discuss, first, the PLSCH process for scheduling and then
present the integration of MTD to the given model accordingly.

Fig. 3: The overall optimization framework: PLSCH-MTD.

B. PLADD-Scheduling (PLSCH) Model

In this section, we formulate the PLSCH problem described
in Section II-B as an integer linear program (ILP). The idea
of such combinatorial model is introduced in [13] and we
modify and extend the model by implementing time-to-success
requirements and with further constraints. Table I shows all
related variables and parameters.

TABLE I: Variables and parameters of PLSCH.

Type Symbol Set Definition

Base
m M A machine
j, k Jm A job to be scheduled on machine m
t, u Z∗ Discrete time instance

Constant dmj Z∗ Duration of job j on machine m
β Z∗ Defender budget

Variable xt Z∗ Decides if an action taken at t
ymjt Z∗ Decides if j scheduled on m at t

As explained in Section II-B, we represent each attack
scenario as a machine and individual attacks in each scenario
as jobs in the PLSCH model. The PLSCH takes (i) a number
of machines with different sequences of jobs and (ii) a
fixed action budget as input. It provides a schedule for the
multiple-machine job assignment problem that corresponds an
MTD schedule for the defender. Accordingly, there are two
optimization variables, xt and ymjt. xt is a binary decision
variable that represents if any starting action is schedule at
the time instance t < T to initiate a job, where T is the
system’s operational time, i.e., time horizon. ymjt is the other
binary variable to decide if a job j ∈ Jm of machine m ∈M
is scheduled to start at the time instance t. Note that the
number of starting actions are limited by the action budget,
which corresponds to the defender budget in PLADD. All
other constraints are given as follows.

T∑

t=0

ymjt ≤ 1 ∀m ∈M,∀j ∈ Jm (1)

Constraint 1 ensures that j can be scheduled only once on m.

T∑

t=0

ymjt −
T∑

t=0

ymkt ≥ 0 ∀m ∈M,∀j, k ∈ Jm, k = j + 1

(2)

Constraint 2 ensures that a job k can take place on machine
m only if its predecessor job j, i.e., k = j + 1, is scheduled
on m at a time instance t. It implies that a job k cannot be
scheduled on a machine m before all other jobs j in the job
set Jm s.t., j < k are placed. Accordingly, all attacks in each
attack scenario are defended in the given order.

(dmj + t)ymjt + (T − u)ymku ≤ T

∀m ∈M,∀j, k ∈ Jm, k = j + 1,∀t, u ≤ T (3)

Constraint 3 ensures that two consecutive jobs j and k s.t.
k = j + 1 in a single attack scenario cannot overlap as the
successor job k restricted to start after the whole duration of
j, dmj , s.t. t + dmj ≤ u, where t and u are the starting
times of j and k, respectively. Besides, the finishing time of
j is constrained by the total operating time of the system, T ,
in case there is not successor job scheduled. Note that non-
overlapping jobs in a machine in PLSCH formulation could
imply that there cannot be concurrent attacks in an attack
scenario in PLADD game. However, the PLSCH handles that
by introducing multiple machines so that the resulting strategy
can defend against multiple attack scenarios simultaneously.

∑

j∈Jm

ymjt ≤ xt ∀m ∈M,∀t ≤ T (4)

∑

m∈M

∑

j∈Jm

ymjt ≥ xt ∀t ≤ T (5)

Constraints 4 and 5 represent the dependencies between two
decision variables. Constraint 4 ensures that (i) no job j can

be scheduled at t unless there is a starting action s.t., xt = 1
and (ii) at most one job can be placed on machine m at a
given time instance t. Complementarily, constraint 5 implies
that there should be at least a job scheduled in one of the
machines if a starting action takes place at the given time.
Those constraints also model the dynamics of the PLADD
game, s.t., an attacker is expected to conduct a new attack right
after the defender takes an action and regains the control.

T∑

t=0

xt ≤ β (6)

Lastly, constraint 6 limits the number of starting actions by β.
In PLADD, it corresponds to the limited defender budget in
terms of the number of MTD actions.

The objective function 7 maximizes the occupation of a
machine with respective jobs. This corresponds to the time
spent by the attacker to conduct attacks when the defender
holds control of the system. It also implies the minimization of
the idle time of all the machines, i.e., decrease the time when
the attacker captures the system [13]. Therefore, it eventually
aims to protect the system from being occupied by the attacker
considering all (given) potential attack scenarios.

max
∑

m∈M

∑

j∈Jm

T∑

t=0

ymjtdmj (7)

C. JSAR: Network Configuration Model

Besides scheduling MTD actions, the defender must decide
which configuration to apply to take adequate measures. A
configuration consists of (i) allocating mixed-criticality ser-
vices over virtualized MCS nodes and (ii) establishing their
intercommunication within limited system resources. This
decision is highly dependent on the structure of the network.
In [1], we proposed JSAR as an optimization model for the
design of mission-critical networks according to the given
definition. Here, we utilize the model to generate a feasible
solution space, e.g., a set of sub-optimal configurations, that
can be used by the defender to change the deployment of the
network. We present the details of JSAR in this section.

The JSAR takes (i) a network of nodes with different
processing capacities and connected via links with limited
bandwidth and (ii) a service overlay with inter-connected
services with certain QoS demands. zdp and qsv are two binary
decision variables that represent if demand d is assigned to
path p and if service s is deployed on node v, respectively. The
objective function (8) minimizes the length of selected paths,
where |p| represents the path length. Minimizing the total
path length can be considered as both performance and cost
optimization by establishing low-latency communications, i.e.,
here with fewer hops, and decreasing the number of occupied
links. Depending on the various goals of the defender as a
network designer, the objective function can be easily adapted.

Constraint (9) and (10) ensure that v has sufficient resources
to host s and s is deployed on exactly one node that is
capable to host s (e.g., equipped with the required hardware).

Constraint (11) restricts that d can be deployed on p only if
the required services s and t are deployed on the source and
destination nodes of path p, which are u and v. This quadratic
constraint is linearized using McCormick envelopes [41].
Constraint (12) ensures that each link e of p has sufficient
resources to carry the traffic of d if it is assigned to p.
While constraint (13) ensures that p is selected to satisfy the
maximum tolerable latency for d, constraint (14) guarantees
that d is assigned exactly to one path.

min
∑

d∈D

∑

p∈P

zdp|p| (8)

∑

s∈S

qsvτs ≤ rv ∀v ∈ V (9)

∑

v∈V

osvqsv = 1 ∀s ∈ S (10)

zdp ≤ qsvqtu + qtvqsu ∀d ∈ D,∀u, v ∈ V,

∀p ∈ Puv, (s, t) ∈ d (11)
∑

d∈D

∑

p∈P,
e∈p

zdphd ≤ ce ∀e ∈ E (12)

∑

e∈p

zdpl
∗
e ≤ ld ∀d ∈ D,∀p ∈ P (13)

∑

p∈P

zdp ≥ 1 ∀d ∈ D (14)

D. PLSCH-MTD: Integrating PLSCH and JSAR

In this section, we propose the integrated model, PLSCH-
MTD, to make use of a set of feasible network configurations
according to their eligibility together with PLADD schedules.
We extend PLSCH to set suitable configurations obtained via
JSAR for each scheduled action of the defender. An action
represents the replacement of services and re-routing, consum-
ing the limited budget of the defender. At the same time, we
enforce a minimum amount of changes between successive
configurations. Note that changing the whole configuration
may force the attacker to perform a complicated attack once
more, but it comes with a certain cost to re-design the network.
Eventually, the distance between two configurations deduces
a trade-off between reconfiguration overhead and defensive
capabilities, e.g., creating a degree of obscurity.

Having a large set of configurations, a defender should
decide which configurations can be set after a particular con-
figuration, e.g., which are eligible to be the next configuration.
To quantify the eligibility, we propose the following metric,
distance between two configurations. It is calculated between
two configurations c and e as

|c− e| =
∑

s∈S

∑
v∈V |qcsv − qesv|+

∑
d∈D

∑
p∈P |zcdp − zedp|

|S|+ |D|
(15)

where qcsv and zcdp represent the service deployment and
demand assignment variables (cf. JSAR) for the configuration
c, respectively. The distance between two configurations c

and e is proportional to (i) the number of service migrations,
i.e., services migrated to different nodes than the previous
configurations, and (ii) reroutings, i.e., traffic streams moved
to different paths. Eq. 15 can also be used to calculate the
migration overhead that may cause a certain delay and config-
uration effort for each reconfigured component. We evaluate
its effectiveness further in Section VI.

TABLE II: Extended variables and parameters of PLSCH-MTD.

Type Symbol Set Definition

Base c, e C A configuration

Constant κ Z∗ Distance threshold
αce Z∗ Indicates if e can be configured after c

Variable act Z∗ Decides if configuration c set at t

In PLSCH-MTD, we calculate the eligibility of each combi-
nation of potential configurations c ∈ C in advance, consider-
ing a threshold distance κ given as input. Two configurations
can be set consecutively only if there is a sufficient amount of
changes in-between s.t., |c − e| > κ, which is represented as
αce = 1. Table II shows the new parameters and variables
introduced with PLSCH-MTD. Accordingly, constraint 16
ensures that any consecutive MTD actions involve two eligible
configurations satisfying the given threshold distance.

ymjt + ymkf − 1 ≤
∑

c∈C

∑

e∈C

actaefαce

∀m ∈M,∀j, k ∈ Jm, k = j + 1,∀t, f ≤ T (16)

act is a binary decision variable representing if the system
is reconfigured with configuration c at time instance t. The
quadratic expression in constraint 16 is linearized by using
McCormick envelopes [41] to solve the problem easily with
state-of-the-art linear optimization tools. Constraint 17 ensures
that a respective configuration is assigned at t if there is a
defensive action taken s.t. xt = 1.

∑

c∈C

act ≤ xt ∀t ≤ T (17)

Lastly, Constraint 18 avoids the reuse of the same configura-
tion for the given system duration T to prevent an attacker to
deduct a reconfiguration pattern.

T∑

t=0

act ≤ 1 ∀c ∈ C (18)

Note that PLSCH-MTD is an offline solution in which
the defender develops a strategy in advance against several
potential attack scenarios. Therefore, an increasing variety
of considered attack scenarios could offer better strategies
against broader threats. Besides, it does not require attack
detection but can still prevent ongoing attacks by changing the
service configuration. It also forces an attacker to rediscover
the system with a new configuration. In this sense, it is also
a complementary security solution to reactive security mech-
anisms such as intrusion detection and prevention systems.

V. ATTACK SCENARIOS

Several authors of related work tackle single attack scenar-
ios conducted via real security tools. However, they cannot
provide an optimal MTD schedule against multiple potential
attack patterns [8], [9]. More theoretical related work does
not reflect realistic attacks well since they only use proba-
bility distribution functions for attack generation [11], [35].
Moreover, data on actual attacks against MCSs is limited to
public reports and white papers that partially include attack
durations and lack details regarding a complete attack time-
line [42]. Although we know rough estimations on the time
required for detecting advanced persistent threats [5], [43] and
detailed technical analysis of some infamous cyber-attacks and
malware [44], [45], it is difficult to obtain the complete picture
of specific attack paths and the duration of advanced attacks.

Accordingly, we model different attack types and scenarios
considering the recent security incidents in MCSs. An attack
scenario is the combination of several individual attack steps
as modeled in Section II-B. Those scenarios are then used to
evaluate the defensive strategies that PLSCH-MTD provides.

A. Time Characteristics of Individual Attacks

We define three attack types in terms of their duration: long,
medium-length, and short attacks. The length of an attack
represents its time-to-success value in the PLSCH model.
Moreover, we introduce a new variable, Λ, the attack scale, to
set the relative lengths of different attacks in proportion to a
common design parameter. It is defined in a similar scale with
the time horizon T (see Section II-B) for a consistent repre-
sentation of time-related variables. Accordingly, the length of
each attack is uniformly sampled from an interval proportional
to Λ. The attack types are characterized as follows:
• Long attack: It represents the longest phases of an attack

scenario, e.g., reconnaissance, developing necessary tools,
and executing relatively complicated attack steps. The length
of long attacks is sampled from the range of [0.1Λ, 0.3Λ],
s.t., it lasts 20% of a scenario with 10% deviation for Λ = T .

• Medium-length attack: It represents a certain number of
successive attack steps that require significant time, e.g.,
encrypting a large amount of data or doing lateral movement
across different network components. A medium-length
attack is sampled from the interval [0.05Λ, 0.15Λ], s.t. it
typically takes 10% of a scenario with 5% time deviation.

• Short attack: It represents a combination of successive
attack steps with short execution time, e.g., changing the
configuration of a component, modifying log files, etc. Their
length is sampled from the interval [0.0025Λ, 0.075Λ] taking
on average 5% of an attack scenario.

B. Composition of Attack Scenarios

We in the following define four attack scenarios that
reflect recent security incidents targeting critical networked
systems [4], [44], [46], [47]. They are composed of the attacks
described above in dependence on different attacker goals as
illustrated in Fig. 4. The duration of an attack scenario, i.e.,
the total lengths of its individual attack steps, is limited by the

time horizon T as it is also considered as the operational time
of the system in the PLSCH model.

• Calibrated attacks: Calibrated attacks target specific com-
ponents, technologies, and protocols in an MCS, e.g., al-
though Stuxnet only damages a particular software that
operates nuclear centrifuges [4]. Therefore, they require
detailed system-specific knowledge and special exploits that
induce long reconnaissance and development times. After
acquiring access to the system, the attacker conducts a
well-targeted sequence of attacks to potentially multiple
components. Depending on the target, such attack steps can
take different duration to reconnaissance and can be repeated
several times [44]. Accordingly, we compose calibrated
attack scenarios of (i) an initial long attack and then (ii)
randomly selected medium-length and short attacks as many
as their total duration stays under T .

• Lateral movement: After gaining access to the system,
an attacker can move laterally through the network to find
critical services or sensitive data. While this still requires
an initial reconnaissance time, the attacker should also
discover further vulnerabilities to continue its lateral move-
ment [46], which imposes relatively shorter discovery cam-
paigns. Meanwhile, gaining access to the other components
potentially requires conducting more spontaneous attacks,
e.g., acquiring credentials, patching legitimate software, etc.
Accordingly, we compose lateral movement scenarios of (i)
an initial long attack for reconnaissance, (ii) several short
attacks for exploitation (between one to three attacks in
our model), (iii) medium-length discovery periods to move
laterally, and (iv) repeating (ii) and (iii) steps through the
movement until their total duration reaches to T .

• Ransomware: Ransomware attacks spread a generic mal-
ware to encrypt files on the target systems and make them
inaccessible. These attacks usually start with a phishing at-
tempt, malvertising, or exploiting vulnerabilities in widely-
used software [47]. Then, the attacker can wait a long time to
discover the most sensitive data or cause the most damage
to the target system at the right time. Lastly, it requires
several operations for encrypting and copying the respective
data. Accordingly, we compose these scenarios of (i) a
medium-length penetration time using one of the mentioned
techniques, (ii) a long(er) discovery and activation time, and
(iii) short operations for obtaining encrypted data as many
as their total duration stays under T .

• Zero-day: Lastly, zero-day scenarios represent the threats
that have not been encountered and thus not analyzed yet.
They are composed of randomly-selected long, medium-
length, and short attacks with a total duration of T .

Note that Λ only sets the proportion of time-to-success
for individual attacks, and its value is not dependent on or
limited by T . While higher Λ values provide a higher number
of shorter attacks, the opposite results in fewer but longer
attacks. This enables us to specify attack scenarios for the
desired time duration (depending on T) but still varying timing
characteristics (depending on Λ) independently.

Fig. 4: Different attack scenarios.

For all scenarios, service reconfiguration within MTD ac-
tions helps to invalidate the attacker’s knowledge about the
system. For instance, service migrations can misorient at-
tackers’ movements in lateral movement scenarios. Similarly,
against calibrated attacks, service reinitiations can recover
the infected services and thus prevent their repetitive ma-
licious behaviors. Finally, in ransomware scenarios, moving
the backup data within database services, which is potentially
discovered by the attacker, can prevent losing the sensitive
data permanently and even disrupt the copying and the en-
cryption processes. These changes also require establishing
communication between reconfigured services and the rest of
the system, i.e., rerouting data traffic over the network. In
this sense, depending on the attack scenarios, the scope of the
service reconfigurations can be specified for an MTD strategy.

VI. EVALUATION

PLSCH-MTD provides (i) feasible service configurations
in terms of resource management and QoS for SOA-based
MCSs via JSAR and (ii) optimal MTD schedules on the basis
of these configurations to minimize the chance of a successful
attack via PLSCH. Accordingly, in this section, we evaluate
PLSCH-MTD by answering two main research questions:

RQ1: How to find a sequence of effective service
configurations that utilize the available configuration
space efficiently and render the attacker’s previous effort
obsolete?
RQ2: To which extent can an MTD schedule, which is
restricted by a limited defender budget, protect the system
against several potential attack scenarios?

In the remainder of this section, we present our evaluation
setup, the evaluation metrics, and the experimental results.

A. Evaluation Setup

We implemented our optimization models in CPLEX 12.7.0.
All experiments were conducted on a server with 64-core
Intel Xeon 2.10GHz CPU and 256GB RAM. We generated
random network topologies with |V | = 20 and an average

connectivity of 1.7, and service overlays with |D| = 15
for each experiment as input to the JSAR. The default time
horizon T and attack scale Λ values are set to 60. Since we
calculated the average number of attacks per scenario as 12 for
the T = Λ = 60, and the time characteristics of attacks (see
Section V-A), we set the defender budget to 12 as well, i.e.,
sufficient budget to prevent all attacks in an ideal scenario.
The inter-configuration distance is set to 15% in the joint
model, PLSCH-MTD. All other parameter values are given
within the respective experiment below. Lastly, we perform
20 iterations per scenario to compute the average results with
95% confidence interval.

B. Evaluation Metrics

We evaluate JSAR and PLSCH-MTD with different metrics:
• Percentage of eligible configurations (PoEC): This is

the percentage of configurations that satisfy the minimum
amount of required changes between two configurations,
i.e., the inter-configuration distance. It indicates how flexible
we can use the configuration space for successive MTD
reconfigurations.

• Probability of retain (PoR): It is the probability that a
service instance or a data flow is not migrated after a
reconfiguration. It represents whether an attacker can retain
access to the same service or the data traffic keeping its
position, e.g., on the same node or link.

• Average attacker capture time (ACT): It is measured by
the ratio of the sum of all gaps between consecutive jobs
across all machines in PLSCH to the total length of time
horizons, i.e., T ∗ |M |. The ACT represents the percentage
of the total time that the attacker controls the system after
a successful attack until the defender takes an MTD action.
While the PoEC and the PoR measures the effective use

of the configuration space regarding RQ1, the average at-
tacker capture time (ACT) measures the effectiveness of MTD
scheduling to examine RQ2.

C. Experimental Results

In this section, we present our numerical results. For our
experiments, we use several attack scenarios described in
Section V. Multiple instances of a particular scenario type vary
due to the randomness in timing characteristics of each attack
in a scenario, but still show similar scenario-specific patterns
in terms of the order and length distribution of attacks. Then,
PLSCH-MTD takes the generated scenarios for each type as
input and provides an optimal MTD strategy against them.
Alternatively, it is possible to defend against different scenario
types at once, e.g., generating several instances per scenario
simultaneously, which is referred to as mixed scenarios in
Section VI. However, note that the length of individual attacks
is selected consistently only within a respective scenario type.
For instance, while a long attack in calibrated attack scenarios
can take months, it might be only days in a ransomware
scenario. Therefore, it requires selecting a time scale for Λ
and T that reasonably models all scenarios.

10 15 20 25 30
Distance (%)

0

20

40

60

80

100

Po
EC

 (%
)

|V|=20,|D|=10
|V|=28,|D|=15
|V|=35,|D|=20

(a) The impact on the PoEC

10 15 20 25 30
Distance (%)

0

5

10

15

20

25

30

Po
R
(%

)

|V|=20,|D|=10
|V|=28,|D|=15
|V|=35,|D|=20

(b) The impact on the PoR

Fig. 5: The impact of inter-configuration distance.

1) Effective use of the configuration space: We first evalu-
ate the effective use of the potential configurations for MTD
actions in terms of PoEC and PoR to answer the RQ1.

The utilization of configuration space: Fig. 5a shows
PoEC for a changing percentage of the minimum inter-
configuration distance (κ). The figure contains different graphs
for the increasing size of network (|V |) and service overlays
(|D|). An increased minimum distance reduces the PoEC
for each network size since it is getting harder to find
configurations that are different enough, i.e., with a high
inter-configuration distance due to stricter resource utilization.
For small networks (blue, star), the percentage converges
to nearly 0% at 30% minimum distance requirement. For a
larger network (green, dot), in contrast, still around 60% of
the potential configurations can be used to reconfigure the
service distribution and routing. The results in Fig. 5a indicate
that the distance parameter is decisive on (i) having several
potential configurations with fewer differences in between or
(ii) fewer configurations with more substantial changes. On
the one hand, the former enables a defender to utilize distinct
configurations for a longer time frame and thus it is harder
to detect a reconfiguration pattern for an attacker. On the
other hand, a defender should use the same configurations
repetitively in the latter scenario, which makes an MTD
strategy easier detectable by attackers.

The impact of MTD reconfiguration on attackers:
Fig. 5b shows the PoR for an increasing inter-configuration
distance and different network sizes. While the 10% distance
threshold (κ) gives the attacker on the average a 20-25%
chance to access the same service or data that he attacked
before the reconfiguration, it converges to nearly 0% for small
networks with 30% minimum inter-configuration distance. For
larger networks, the PoR is still as low as 10% with a large
confidence interval. The reason is, that although the solution
space is larger, we do not select particular configurations, e.g.,
with the maximum distance, but arbitrarily select any two
configurations that satisfy the minimum distance requirement.
Although an arbitrary selection makes the next configuration
less predictable for the attacker, the selection strategy can be
adapted, e.g., selecting the configuration with the kth highest
distance, to increase his reconnaissance effort. Consequently,
a higher inter-configuration distance leads to further changes
and enforces the attacker to rediscover the new configuration.

3 6 9 12 15
Number of attack scenarios

10

15

20

25

30

Av
g.
 a
tta

ck
er
 c
ap

tu
re
 ti
m
e
(%

) calibrated
lateral
ransomware

zeroday
mixed

(a) Increasing number of scenarios

9 10 11 12 13
Avg. number of attacks per scenario

10

15

20

25

30

35

40

Av
g.
 a
tta
ck
er
 c
ap
tu
re
 ti
m
e
(%
) calibrated

lateral
ransomware

zeroday
mixed

(b) Increasing number of attacks

Fig. 6: The impact of varying attack scenarios on the ACT.

However, it may also cause service interruptions.
2) Effectiveness of MTD scheduling: We measure the im-

pact of various parameters on the ACT to answer RQ2, i.e.,
how protective an optimal MTD schedule is.

The impact of variety in attack scenarios: We evaluate
PLSCH-MTD for each type of attack scenario as well as
for mixed scenarios that include randomly-selected scenarios
simultaneously. Fig. 6a shows the impact of an increasing
number of attack scenarios on the ACT. Regardless of the
scenario, we observe only a subtle increase from 1% to 3% in
ACT. However, defending against multiple scenarios imposes
a base challenge that results in 15-25% ACT. The results
indicate that although an MTD strategy remains protective
against an increasing number of attack scenarios, it is still
difficult to defend against even few concurrent scenarios.

The impact of the type of attack scenarios on ACT is
more substantial than the impact of their quantity. In Fig. 6a,
defending against ransomware is the most challenging with
25% ACT since it consists of several short attacks that can be
accomplished. Other scenarios are similarly threatening with
15-18% ACT. Therefore, the effectiveness of PLSCH-MTD is
highly dependent on the actual attack scenario.

To evaluate the impact of the number of attacks per scenario,
we set T = 60 and Λ ∈ [90, 50] (in a reversed order). Decreas-
ing Λ shortens the length of individual attacks and increases
their number per scenario, which results in 9-13 attacks for the
given range of Λ values. Accordingly, Fig. 6b shows the ACT
measurements for increasing attacks per scenario. In the figure,
the ACT does not significantly change for 9 to 12 attacks
within each attack scenario as there is enough defender budget
(β = 12). This also affirms the results regarding the base
challenge (15-25%) of defending against multiple scenarios in
Fig. 6a. However, the attacker’s success increases by 5-10%
for 13 attacks due to the insufficient defender budget.

The impact of defender budget: Fig. 7 shows the impact
of an increasing defender budget on the ACT for different
numbers of attacks per scenario, i.e., for 18 and 12 attacks
by setting Λ = {60, 90} and T = 90. As seen in the figure,
more budget strengthens the defender to hold control of the
resources with a decreasing ACT regardless of attack counts.
When the defender budget is less than the number of attacks
per scenario, i.e., for β = 12− 16 and Λ = 60 (solid, blue
line), we can observe that a gradual increase in the budget

decreases the ACT from 35% to 20%.

12 16 20 24 28
Defender budget (# action)

0
5

10
15
20
25
30
35
40

A#
g.
 a
tta

ck
er
 c
ap

tu
re
 ti
m
e
(%

)

Λ=60 (18 attack)
Λ=90 (12 attack)

Fig. 7: The impact of defender budget on the ACT.

Theoretically, any defender budget β ≥ T should guarantee
a complete defender occupation. This enables moving the
system at every possible time instance t ≤ T (which is
infeasible in practice due to its high overhead) and thus leaves
the attacker no chance to accomplish an attack. However, as
shown in Fig. 7, it is not possible to obtain that level of
protection quickly with a linear increase in the budget after
the ACT has converged to 10-12% due to the challenges in
defending against multiple attack scenarios.

Note that a single successful attack step may not give
the attacker total control over the system as assumed in
the PLADD game, but it requires several attack steps to be
accomplished. In this sense, our ACT measurements represent
the worst case that each attack is equally effective. As a result,
PLSCH-MTD can still achieve protection of up to 90% of the
system operational time with a defensive budget β ≪ T .

VII. CONCLUSION

Service-oriented architecture (SOA) enables the flexible
design of mission-critical systems (MCSs) by dynamically
distributing virtual services and establishing their inter-
communication. This flexibility can also be utilized to imple-
ment moving target defense (MTD) strategies for the security
of MCSs. By reconfiguring the critical services and data
traffic periodically within MTD strategies, it is possible to
protect MCSs against advanced cyber-attacks. In this work,
we propose an optimization framework (PLSCH-MTD) by
combining a joint service allocation and routing model (JSAR)
with an attack-defender game (PLSCH) to find effective MTD
strategies for SOA-based MCSs. While PLSCH provides an
optimal schedule of subsequent MTD actions against potential
threats, JSAR generates feasible service configurations for
each action. Furthermore, we model several attack scenarios
inspired by the security incidents in MCSs to evaluate PLSCH-
MTD. The experiments reveal that the PLSCH-MTD can
utilize the service configuration space efficiently to force
attackers to rediscover the system. Moreover, it can protect
an MCS for up to 90% of its operational time1.

1A preprint of this paper is also submitted to arXiv with the same title.

REFERENCES

[1] D. Ergenc, J. Rak, and M. Fischer, “Service-Based Resilience for
Embedded IoT Networks,” in 50th Annual IEEE/IFIP Int. Conf. on
Dependable Systems and Networks (DSN), pp. 540–551, 2020.

[2] J. Villaneueva, J. Migge, and N. Navet, “QoS-Predictable SOA on TSN:
Insights from a Case-Study,” in Automotive Ethernet Congress, 2021.

[3] T. Cucinotta, A. Mancina, G. F. Anastasi, G. Lipari, L. Mangeruca,
R. Checcozzo, and F. Rusina, “A Real-Time Service-Oriented Archi-
tecture for Industrial Automation,” IEEE Transactions on Industrial
Informatics, vol. 5, no. 3, pp. 267–277, 2009.

[4] T. M. Chen and S. Abu-Nimeh, “Lessons from Stuxnet,” Computer,
vol. 44, no. 4, pp. 91–93, 2011.

[5] M. . FireEye, “M-Trends Special Report,” tech. rep., Mandiant &
FireEye, 2020. https://content.fireeye.com/m-trends/rpt-m-trends-2020.

[6] S. Sengupta, A. Chowdhary, A. Sabur, A. Alshamrani, D. Huang, and
S. Kambhampati, “A Survey of Moving Target Defenses for Network
Security,” IEEE Communications Surveys and Tutorials, vol. 22, no. 3,
pp. 1909–1941, 2020.

[7] H. Zhang, K. Zheng, X. Wang, S. Luo, and B. Wu, “Efficient Strategy
Selection for Moving Target Defense Under Multiple Attacks,” IEEE
Access, vol. 7, pp. 65982–65995, 2019.

[8] M. Thompson, N. Evans, and V. Kisekka, “Multiple OS rotational envi-
ronment an implemented Moving Target Defense,” in 7th International
Symposium on Resilient Control Systems (ISRCS), 2014.

[9] M. Thompson, M. Mendolla, M. Muggler, and M. Ike, “Dynamic
Application Rotation Environment for Moving Target Defense,” in
Resilience Week (RWS), pp. 17–26, 2016.

[10] M. Van Dijk, A. Juels, A. Oprea, and R. L. Rivest, “FlipIt: The game
of stealthy takeover,” Journal of Cryptology, vol. 26, no. 4, 2013.

[11] S. T. Jones, A. V. Outkin, J. L. Gearhart, J. A. Hobbs, J. D. Siirola,
C. A. Phillips, S. J. Verzi, D. Tauritz, S. A. Mulder, and A. B. Naugle,
“Evaluating moving target defense with PLADD,” tech. rep., Sandia
National Lab.(SNL-NM), 2015.

[12] D. Ergenç, J. Rak, and M. Fischer, “Service-Based Resilience via Shared
Protection in Mission-Critical Embedded Networks,” IEEE Trans. on
Net. and Service Manag., vol. 18, no. 3, pp. 2687–2701, 2021.

[13] O. D. Parekh, C. A. Phillips, V. Powers, N. Sakr, and C. Stein, “A
Scheduling Problem Motivated by Cybersecurity and Adaptive Machine
Learning,” tech. rep., Sandia National Lab.(SNL-NM)), 5 2018.

[14] X. Li and C. Qian, “A Survey of Network Function Placement,” in 13th
IEEE Annual Consumer Communications and Networking Conference
(CCNC), pp. 948–953, 2016.

[15] B. Yi, X. Wang, K. Li, S. k. Das, and M. Huang, “A Comprehensive Sur-
vey of Network Function Virtualization,” Computer Networks, vol. 133,
pp. 212–262, 2018.

[16] B. Addis, D. Belabed, M. Bouet, and S. Secci, “Virtual Network
Functions Placement and Routing Optimization,” in IEEE Int. Conf. on
Cloud Networking, CloudNet, pp. 171–177, IEEE, 2015.

[17] M. F. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba, and O. C. M. B.
Duarte, “Orchestrating Virtualized Network Functions,” IEEE Trans. on
Net. and Service Manag., vol. 13, no. 4, pp. 725–739, 2016.

[18] J. Liu, W. Lu, F. Zhou, P. Lu, and Z. Zhu, “On Dynamic Service Function
Chain Deployment and Readjustment,” IEEE Trans. on Net. and Service
Manag., vol. 14, no. 3, pp. 543–553, 2017.

[19] J. Chenni Kumaran and M. Aramudhan, “A Survey on Resource
Allocation Strategies in Cloud,” International Journal of Reasoning-
based Intelligent Systems, vol. 10, no. 3-4, pp. 328–336, 2018.

[20] N. K. Pandey, S. Chaudhary, and N. K. Joshi, “Resource Allocation
Strategies used in Cloud Computing: A Critical Analysis,” in IEEE Conf.
on Communication, Ctrl. and Intelligent Syst. (CCIS), 2017.

[21] D. Espling, L. Larsson, W. Li, J. Tordsson, and E. Elmroth, “Modeling
and Placement of Cloud Services with Internal Structure,” IEEE Trans-
actions on Cloud Computing, vol. 4, no. 4, pp. 429–439, 2016.

[22] D. Breitgand, A. Marashini, and J. Tordsson, “Policy-driven service
placement optimization in federated clouds,” IBM Research Division,
Tech. Rep, vol. 9, pp. 11–15, 2011.

[23] L. Pu, L. Jiao, X. Chen, L. Wang, Q. Xie, and J. Xu, “Online Resource
Allocation, Content Placement and Request Routing for Cost-efficient
Edge-caching in Cloud Radio Access Networks,” in IEEE Journal on
Selected Areas in Communications, vol. 36, pp. 1751–1767, 2018.

[24] M. B. Gawali and S. K. Shinde, “Task Scheduling and Resource
Allocation in Cloud Computing using a Heuristic Approach,” Journal
of Cloud Computing, vol. 7, no. 1, 2018.

[25] A. Varasteh, B. Madiwalar, A. Van Bemten, W. Kellerer, and C. Mas-
Machuca, “Holu: Power-Aware and Delay-Constrained VNF Placement
and Chaining,” IEEE TNSM, vol. 18, no. 2, pp. 1524–1539, 2021.

[26] M. C. Luizelli, L. R. Bays, L. S. Buriol, M. P. Barcellos, and L. P.
Gaspary, “Piecing Together the NFV Provisioning Puzzle: Efficient
Placement and Chaining of Virtual Network Functions,” in IFIP/IEEE
Int. Symp. Integrated Netw. Mgmt. (IM), pp. 98–106, 2015.

[27] G. Lee, M. Kim, S. Choo, S. Pack, and Y. Kim, “Optimal Flow Distri-
bution in Service Function Chaining,” in ACM International Conference
Proceeding Series, pp. 17–20, 2015.

[28] L. Askari, M. Tamizi, O. Ayoub, and M. Tornatore, “Protection Strate-
gies for Dynamic VNF Placement and Service Chaining,” in Int. Conf.
on Computer Comm. and Networks (ICCCN), 2021.

[29] H. Okhravi, A. Comella, E. Robinson, and J. Haines, “Creating a
cyber moving target for critical infrastructure applications using platform
diversity,” International Journal of Critical Infrastructure Protection,
vol. 5, no. 1, pp. 30–39, 2012.

[30] Y. Huang and A. K. Ghosh, “Introducing diversity and uncertainty
to create moving attack surfaces for web services,” in Moving Target
Defense, pp. 131–151, Springer, 2011.

[31] M. Crouse and E. W. Fulp, “A moving target environment for com-
puter configurations using Genetic Algorithms,” in 4th Symposium on
Configuration Analytics and Automation (SAFECONFIG), 2011.

[32] E. Al-Shaer, “Toward network configuration randomization for moving
target defense,” in Moving Target Defense, pp. 153–159, Springer, 2011.

[33] B. Alese, O. Ibidunmoye, D. Haruna, A. Thompson, and I. Otasowie,
“Game-based Analysis of the Network Attack-Defense Interaction,”
Lecture Notes in Engineering and Computer Science, vol. 1, 07 2014.

[34] F. Liu, H. Gao, and Z. Wei, “Research on the game of network secu-
rity attack-defense confrontation through the optimal defense strategy,”
Security and Privacy, vol. 4, no. 1, p. 136, 2021.

[35] S. T. Jones, A. V. Outkin, J. L. Gearhart, J. A. Hobbs, J. D. Siirola,
C. A. Phillips, S. J. Verzi, D. Tauritz, S. A. Mulder, and A. B. Naugle,
“PLADD: Deterring Attacks on Cyber Systems and Moving Target
Defense,” in INFORMS Computing Society Conference, 1 2017.

[36] Y. C. Chen, V. J. Mooney, and S. Grijalva, “Grid cyber-security strategy
in an attacker-defender model,” Cryptography, vol. 5, no. 2, 2021.

[37] Q. Gao, H. Wu, J. Zhang, Y. Zhang, N. Zhang, and X. Tao, “Multi–
Attacker Multi–Defender Interaction in mMTC Networks via Differen-
tial Game,” in IEEE/CIC International Conference on Communications
in China (ICCC), pp. 1250–1255, 2020.

[38] D. Xu, L. Xiao, N. B. Mandayam, and H. V. Poor, “Cumulative prospect
theoretic study of a cloud storage defense game against advanced
persistent threats,” in IEEE INFOCOM Workshops, pp. 541–546, 2017.

[39] H. Li, W. Shen, and Z. Zheng, “Spatial-Temporal Moving Target
Defense: A Markov Stackelberg Game Model,” in 19th Int. Conf. on
Autonomous Agents and Multiagent Systems, p. 717–725, 2020.

[40] S. Sengupta, S. G. Vadlamudi, S. Kambhampati, A. Doupé, Z. Zhao,
M. Taguinod, and G.-J. Ahn, “A Game Theoretic Approach to Strategy
Generation for Moving Target Defense in Web Applications,” in 16th
Int. Conf. on Autonomous Agents and Multiagent Systems, p. 178–186,
2017.

[41] G. P. Mccormick, “Computability of Global Solutions to Factorable
Nonconvex Programs: Part I – Convex Underestimating Problems,”
Math. Program., vol. 10, p. 147–175, Dec. 1976.

[42] P. Pols, “The unified kill chain,” Cyber Security Academy (CSA) Thesis,
Hague, 2017. https://www.unifiedkillchain.com/.

[43] Mandiant, “APT1: Exposing One of China’s Cy-
ber Espionage Units,” tech. rep., Mandiant, 2021.
https://www.mandiant.com/sites/default/files/2021-09/mandiant-apt1-
report.pdf.

[44] D. Albright, P. Brannan, and C. Walrond, “Stuxnet malware and natanz,”
tech. rep., Institute for Science and International Security, 2011.

[45] X. Zhang, O. Upton, N. L. Beebe, and K.-K. R. Choo, “IoT Botnet
Forensics: A Comprehensive Digital Forensic Case Study on Mirai
Botnet Servers,” Forensic Science International: Digital Investigation,
vol. 32, p. 300926, 2020.

[46] F. Wilkens, S. Haas, D. Kaaser, P. Kling, and M. Fischer, “Towards
Efficient Reconstruction of Attacker Lateral Movement,” in 14th Int.
Conf. on Availability, Reliability and Security (ARES), 2019.

[47] M. N. Olaimat, M. Aizaini Maarof, and B. A. S. Al-rimy, “Ransomware
anti-analysis and evasion techniques: A survey and research directions,”
in 3rd International Cyber Resilience Conference (CRC), 2021.

Appendix E

SDN-based Self-Configuration for
Time-Sensitive IoT Networks

Abstract

The convergence of Information Technology (IT) and Industrial Operations Technology (OT)
results in efficient network management solutions for automotive and industrial automation
environments. However, configuring real-time Ethernet networks while maintaining the
desired QoS is challenging due to the dynamic nature of OT networks and the high number
of configuration parameters. This paper introduces a Software-Defined Network (SDN)-
based self-configuration framework for the time-sensitive networks (TSNs). Unlike standard
TSN, we remove end-host-related dependencies and put streams initially on default paths to
extract traffic characteristics by monitoring network traffic at edge switches. Communicated
to a central SDN controller, these characteristics allow moving streams to optimal paths
while maintaining hard real-time guarantees, for which we also formulate an optimization
problem. According to the results, although the proposed approach increases the average
delay of critical frames by less than 1%, a certain level of real-time guarantee can be provided
without prior knowledge of the streams.

Reference

N. Sertbaş Bülbül, Doğanalp Ergenç, M. Fischer. SDN-based Self-

Configuration for Time-Sensitive IoT Networks. IEEE International

Conference on Local Computer Networks (LCN), 2021.

Contribution

In the forementioned publication, the contributions of this thesis are modeling and im-
plementing the main optimization model (TSOR) as well as its complexity analysis and in-
tegration to the self-configuration framework. The first author designed this framework,
implemented a simulation model, and evaluated the overall proposal. She also wrote the
majority of the text except the respective section describing the optimization model. The
third co-author helped to improve the quality of the paper with his valuable feedback.

149

SDN-based Self-Configuration for
Time-Sensitive IoT Networks

Nurefşan Sertbaş Bülbül , Doğanalp Ergenç, Mathias Fischer
Department of Computer Science, University of Hamburg, Germany

Email:{sertbas, ergenc, mfischer}@informatik.uni-hamburg.de

Abstract—The convergence of Information Technology (IT)
and Industrial Operations Technology (OT) results in efficient
network management solutions for automotive and industrial au-
tomation environments. However, configuring real-time Ethernet
networks while maintaining the desired QoS is challenging due
to the dynamic nature of OT networks and the high number
of configuration parameters. This paper introduces a Software-
Defined Network (SDN)-based self-configuration framework for
the time-sensitive networks (TSNs). Unlike standard TSN, we
remove end-host-related dependencies and put streams initially
on default paths to extract traffic characteristics by monitoring
network traffic at edge switches. Communicated to a central SDN
controller, these characteristics allow moving streams to optimal
paths while maintaining hard real-time guarantees, for which
we also formulate an optimization problem. According to the
results, although the proposed approach increases the average
delay of critical frames by less than 1%, a certain level of real-
time guarantee can be provided without prior knowledge of the
streams.

Index Terms—self-configuration, time-sensitive networks, soft-
ware defined networking, network management

I. INTRODUCTION

The advent of Industry 4.0 and the Industrial Internet of
Things (IIoT) enable new manufacturing scenarios that in-
clude advanced robotics, artificial intelligence, smart sensors,
and cloud computing. In such scenarios, control of physical
processes assumes a time- and safety-critical (and therefore
guaranteed) delivery of messages. The IEEE 802.1 working
group has proposed time-sensitive networking, TSN, standards
to empower regular switched Ethernet with real-time (RT)
capabilities. As a result, TSN enables the coexistence of criti-
cal time-sensitive and traditional Ethernet traffic with various
QoS classes, such as low priority and best effort (BE). It
also offers a wide range of functions for RT systems, such
as time synchronization, reliability, scheduling, and network
management.

In TSN, the management and configuration of a network
are described in the IEEE 802.1Qcc stream reservation pro-
tocol (SRP) standard [3]. SRP specifies how to schedule
a time-sensitive stream by allocating the required network
resources. Moreover, the standard defines alternative network
configuration and management schemes that leverage SRP.
Several studies are suggesting that complementing the TSN
with a networking concept such as software-defined networks,
SDN, is a beneficial configuration solution [4], [5], [18]. With
additional protocols (e.g., Netconf and Openflow), SDN allows
for instant configuration of routes and transport schedules

based on a central control plane [10]. It also allows split up
flows for transmission on multiple paths for load-balancing,
using the available bandwidth more efficiently, and making
network-wide configurations such as time-synchronization.

However, the proposed configuration schemes rely on the
active participation of end hosts to communicate service
features and communication requirements to a centralized or
decentralized management component. This approach requires
the manual configuration of highly heterogeneous edge hosts
to demand the necessary resources from the network. It can
be edge hosts, low-power sensors and actuators, entire cyber-
physical systems, or robots that may or may not support the
required TSN registration protocols. For large systems and
many connected end hosts, even with SDN, their configuration
can be cumbersome and requires ongoing maintenance. There-
fore, we believe that plug-and-play self-configuration can help
adopt existing TSN protocols for future networks and devices.
However, the self-configuration of TSN networks is not part
of the current standards.

The main contribution of this paper is a novel SDN-based
self-configuration approach for TSN networks in IoT scenar-
ios. In our approach, end-hosts do not need to be TSN-aware,
and they obtain the required network resources transparently.
With that, we eliminate the talker responsibility of propagating
new traffic parameters each time. That eases the configuration
specifically for highly dynamic environments with a large
number of hosts. Accordingly, our contributions are:

• We introduce a self-configuration approach on the basis
of SDN for TSN networks and this at the expense of
marginal additional delay for the routing of streams.

• We formulate the time-sensitive optimal routing (TSOR)
model as a mixed-integer linear programming (MILP)
model. TSOR considers the optimal routing problem
together with the service-based stream configuration re-
garding the main characteristics of TSN.

• We propose a learning component that detects traffic
characteristics and eases the SRP process for various
scenarios.

• We evaluate our approach via realistic OMNet++ simula-
tions. Our evaluation results indicate that we can extract
related traffic parameters in near real-time. That results
in a slight increase in end-to-end delay only for less than
1% of time-triggered (TT) traffic.

The remainder of this paper is structured as follows: Section

II summarizes related work on TSN stream registration. Sec-
tion III describes current TSN configuration approaches. In
Section IV, we introduce our overall architecture. We evaluate
our approach and describe our simulation results in Section
V. Finally, Section VI concludes the paper and summarizes
future work.

II. RELATED WORK

In this section, we present the literature survey on the
configuration of TSNs. Offline scheduling approaches as in
[13] statically allocate network resources for the given com-
munication patterns, e.g., TT traffic. That approach works
in specific scenarios, e.g., automotive systems, where the
communication streams are already known at design time.
However, to meet the high priority QoS requirements of future
industrial networks, dynamically routing packets depending on
the current state, e.g., switch workloads, requires a dynamic
configuration, including a dynamic resource allocation.

For TSN, a configuration of the network resources to
transfer TT traffic is described in IEEE 802.1Qcc [3] on
the architectural level. Due to lack of concrete specification,
the authors of [6] propose a configuration architecture named
Software-Defined Flow Reservation based on OpenFlow pro-
tocol. However, they only describe the essential components
as proof of concept to manage network resources in RT and
register time-sensitive streams while routing and scheduling
mechanisms are left out of scope. In [12], a generic concept
for secure and time-sensitive communication in industrial net-
works is described. Similar to [6], there is no further evaluation
or the details of implementation. Besides, the configuration of
the RT traffic is left as an open issue.

In [8], a stream-specific bandwidth and buffer capacity
reservation mechanism is proposed. Global knowledge of the
controller is used in routing to compute an appropriate network
configuration. They also simplify the end-hosts by removing
clock synchronization and employ a time-division multiple
access mechanism. However, their MILP-based path-finding
approach is too complex to deliver results in RT. In [16], a
combined routing and scheduling algorithm is proposed for
incrementally adding or removing time-sensitive streams at
runtime. The approach schedules transmission at the edges,
which requires only limited schedule updates. While it does
not require any configuration on switches, it assumes that hosts
have proper clock synchronization and are involved in the
scheduling process.

These studies mainly focus on TT traffic under significant
assumptions such as having apriori information about the
traffic and TSN-aware clock synchronized hosts. Authors in
[9] propose a concept of a configuration agent including a
monitor, an extractor, and a scheduler component to make
RT switches self-configurable. However, they consider only
TT traffic and left sporadic traffic as future work. Also, they
propose an abstract end-to-end architecture and do not evaluate
the overall system.

III. BACKGROUND ON IEEE 802.1QCC

In TSN, the configuration starts at end-hosts named talkers
and listeners, the source and destination nodes. A talker sends
its specific traffic requirements to the edge switch to request
network resources and scheduling. Then, this switch either (i)
computes the required resources and schedules for the related
traffic and forwards the request to other switches or (ii) directly
forwards the request to a central controller that can configure
all the switches on the path towards the listener accordingly.
Afterward, the talker starts sending frames to the network.

In the rest of this section, the background information on the
TSN configuration models is given, including the description
of the models, user configuration parameters, and the stream
reservation protocol.

A. TSN Configuration Models

In the current standard, three configuration schemes are
described at the architectural level.

In the fully distributed model, an end-host communicate
with the edge switch to declare its traffic requirements, and the
switch forwards the requirements to the other core switches in
the network (See Fig. 1-a). Here, switches are not configured
by a central entity but in a distributed manner with their
local knowledge. Such a configuration is not suitable for
mechanisms that require collaboration between bridges, e.g.,
scheduling via time-aware shapers [2].

In the centralized network/distributed user model, user
configuration is still distributed, and edge switches share re-
quirements of the end-hosts with a central entity named central
network configuration (CNC) instead of propagating them
through other switches (see Fig. 1-b). Since some scenarios,
such as gate configuration at the switches, require network-
wide knowledge and high computational power, CNC offers

Talker Listener

Talker

Centralized User
Configuration

Centralized Network
Configuration

Listener

Talker

Centralized Network
Configuration

Listener

Management User/Network Conf Info

(a)

(b)

(c)

Fig. 1: TSN configuration models.

a better configuration with its global knowledge and higher
computational capabilities than forwarding plane elements.

In the fully centralized model, both user and network
configurations are centralized by centralized user configuration
(CUC) and CNC (see Fig. 1-c). End-hosts communicate
directly with the CUC for requirement declaration. Unlike the
previous models, the CUC configures the end-hosts, and this
also involves further interaction with the end-hosts. In this way,
packet transmission schedules of the end-hosts are configured,
which might be required to satisfy strict timing requirements.

Regardless of the model, there are two types of config-
uration information exchanged between end-hosts and the
network; talker/listener request and status as a reply. The
talker/listener request includes several fields such as transmis-
sion parameters (e.g., max frame size and frame interarrival
time) and stream identifier. A reply message contains status
information such as related StreamID, the status of the current
stream configuration, and failure information if a failure exists.

B. Stream Reservation Protocol
SRP is an extension of the IEEE 802.1Q standard that

describes how to manage resource reservations in LANs [3].
It defines how to specify and propagate talker registrations
through the network with guaranteed QoS. SRP runs at bridges
by recording relevant information about the connected end-
hosts, such as communication latency between a talker and a
listener and current stream registrations. The bridges use such
information to provide guaranteed QoS for the TSN streams.

SRP can be used in a centralized and a distributed manner
as defined in [3]. A distributed model only helps to configure
a limited number of parameters with the local information
in a switch. In the centralized model, SRP can be used to
communicate between the talker/listener and CNC. Initially,
the talker requests the required bandwidth resources for a
stream. As long as there are sufficient bandwidth resources
on a selected path for the stream, that capacity is allocated for
the related stream, and the switches are configured accord-
ingly. SRP also enables talkers/listeners to join later or leave.
However, it requires direct messaging between the end-hosts
and the switches.

As mentioned, SRP requires the active involvement of the
end-hosts through that resource reservation process. Here,
our goal is to remove such end-host-related dependencies.
Accordingly, in the next section, we present our TSN self-
configuration approach in detail.

IV. TSN SELF-CONFIGURATION APPROACH

In this section, we introduce our SDN-based dynamic self-
configuration approach for TSN that we name SC-TSN. In SC-
TSN, we remove end-host-related dependencies of standard
TSN in which hosts need to actively communicate their traffic
requirements. Instead in SC-TSN, edge-switches automatically
learn traffic characteristics by routing streams via default paths
first and then migrating them once the characteristic is known.

In the remainder of this section, we first describe the
overall framework, then we explain how we extract traffic
characteristics, and how we compute paths for TSN streams.

OPCE

CNC

Monitoring

(i)
Local

Learning

Traffic
parameters

Path
Configuration

TED

RE

Talker

Optimized
Paths

DPCE Default
Paths

(ii)

(iii) (iv)

Fig. 2: Overall system architecture.

A. SC-TSN Overall System

We follow the distributed user and centralized network
configuration model for our system design as shown in Fig. 2.
In contrast to standard TSN, end-hosts directly start commu-
nicating via the edge switch (i) and the edge switch extracts
traffic characteristics seamlessly (ii). Here, switch treats the
traffic like low priority traffic until the traffic characteristics
are extracted. Then, the extracted characteristics are forwarded
to the SDN-enhanced CNC (iii). The global network view of
the CNC enables highly optimized flow assignments and a
fast response to varying demands. For that, the CNC computes
paths and installs the required flow rules (iv).

All streams are initially perceived as BE traffic unless
otherwise is declared, e.g., pre-configuration might still be
necessary for safety-critical applications. Then, these streams
are forwarded via the default paths without resource reserva-
tion until we have successfully obtained their characteristics
(see Section IV-B). A default path is defined as a path
with sufficient link capacity for immediate and temporary
use but not necessarily optimal. With that, we decrease the
configuration delay until an optimal path is being found.
Such paths are computed in the background by the Default
Path Computation Element (DPCE) (see Section IV-C). The
required information for computing paths such as network
topology and current network status, e.g., link utilization, is
obtained via the Monitoring Module. It collects OpenFlow
statistics from the data plane and stores them in the Traffic
Engineering Database (TED). Then, DPCE uses this informa-
tion to compute paths based on the current network status.

In the meantime, the edge switch analyzes the received
streams to learn their traffic characteristics and derive their
resource and scheduling requirements. For that, we empower
edge switches with learning capabilities to extract the traffic
patterns such as the frame period p and the maximum frame
interarrival time pmax . Suppose the stream is classified as TT
after a certain time. In that case, the Optimal Path Computation
Element (OPCE) computes an optimal path for that stream
on the fly by solving the optimization model TSOR (see
Section IV-D). Then, the stream is migrated to the new path
via the reconfiguration element(RE). We also monitor streams

in the aftermath to ensure that they still transmit with the
extracted traffic parameters. When the characteristics of a
stream change, we calculate the deviation from the previously
extracted period, restart the learning procedure, and update the
configuration, which might induce another stream migration.

Note that SC-TSN does not intend to replace the existing
SRP mechanism completely. Instead, it is a hybrid mechanism
compatible with the current standards. Even though SC-TSN
does not presume information about stream characteristics,
we might still use an SRP-like stream registration to de-
clare end-host requirements directly. Since switches support
802.1Q priority levels, such a configuration can be used to
ensure a certain level of service guarantee for highly critical
applications. SC-TSN is helpful for less critical application
scenarios that generate sporadic traffic, e.g., BE or event-
triggered (ET), which starts at an arbitrary time. Even though
abruptly changing traffic patterns in critical systems is not
very common, hosts can change their traffic behavior during
runtime. With SC-TSN, we could directly handle such changes
dynamically without waiting for further end-host declarations.
Thus, SC-TSN helps to configure small to large-scale systems
where different traffic types such as cyclic/periodic (e.g.,
signal transmission) or acyclic/sporadic (e.g., event-driven) can
coexist.

B. Learning Traffic Parameters

As explained previously and according to the TSN stan-
dards, the talker informs the network controller about its traffic
requirements before the actual communication starts. That
requirement specification includes frame size and interarrival
time of the frames, which are used to allocate the required re-
sources. In contrast, in SC-TSN the edge switches learn traffic
parameters by observing the traffic at the network’s ingress.
These edge switches are enhanced by learning capabilities to
analyze receiving traffic to extract related parameters. Since
we try to learn traffic characteristics at the edge, we do not
need to consider interference from other traffic as in switch-
to-switch links. However, we still need an intelligent solution
here instead of getting the average interarrival time as a period.

In the signal processing literature [7], [17] analyzing se-
quences in the frequency domain with Fourier transformation
and autocorrelation for periodicity detection is widely used.
The Fourier transformation works well for short periods, but
may generate many false positives. Thus, the authors of [19]
combine Fourier transformation and autocorrelation to detect
both short and long periods. In this paper, we use this approach
for learning the necessary TSN stream characteristics.

We record the arrival time of the frames for each stream
and then try to find the period in the frequency domain.
For that, we first transform observations to a time sequence
xt = xt1 , xt2 , ...xtn where xtk = 1 means that a frame
arrived at tk. Then, we look at the signal power spectral
density by computing the discrete Fourier transform to iden-
tify the frequencies that carry most of the energy. In other
words, the power spectral density analysis can discover the
most dominant periods. These periods are then validated with

Fig. 3: Period extraction for a sample sequence.

autocorrelation. In that phase, if the candidate period stays
at the valley of the autocorrelation function, it is interpreted
as a false alarm and is discarded. Otherwise, it is considered
a valid period. The period extraction steps are illustrated in
Fig. 3. As can be seen from the power spectrum, there are
several period candidates that need to be further analyzed by
autocorrelation. The periods that stay at the hill (as seen in
the autocorrelation plot) are verified as an exact period. When
the Learning Module detects this period, it triggers the OPCE
to compute the optimal paths for the extracted parameters.

C. Default Path Computation

To compute default paths for low priority streams, we use
a link-utilization-based shortest path algorithm. Furthermore,
we use dynamic link weights that the SDN controller updates
based on the current link utilization.

To increase the stability of the forwarding tables and limit
path changes, we follow the methodology proposed by [20].
We summarize this methodology in pseudo code in Algo-
rithm 1. For each link, we map the current link utilization,
ui, to the link weight, Wn

i , via a linear weight mapping
function f . Due to the used mapping function, the link weights
remain fixed for low utilization values, which keeps the routing
overhead low. Then, we compute the weighted average of the
last three-link weights, Wnew

i . We only update the link weight
if the change exceeds the threshold, e.g., θ = 20% of its

Algorithm 1: Link Weight Update Process
Current link utilizations U ← [u1, u2, u3, ...uk]
foreach ui ∈ U do

Wn
i = f(ui)

Wnew
i = α1W

n
i + α2W

n−1
i + α3W

n−2
i

if (Wnew
i −Wn−1

i) ≥ θ then
Wn

i ← set to Wnew
i

else
Wn

i ← set to Wn−1
i

previous value. Finally, we compute the shortest paths with
the updated link weights.

With that, DPCE can dynamically update link weights and
computes new paths with the shortest path algorithm. In case
of path changes, it will send new flow rules to update the flow
tables of the related switches. Then, these paths are stored to
be used for low-priority streams.

D. Optimal Path Computation

By utilizing the Learning Module and DPCE, our system
can extract the traffic characteristics of an incoming stream at
edge switches. Depending on the link utilization, it selects the
default paths to deploy low priority streams, which does not
always require to assign them to their optimal paths.

However, high-priority streams with strict timing require-
ments cannot be assigned to the default paths as it might result
in missing deadlines. Once a stream is classified to have a high
priority, its extracted parameters are passed to the OPCE to
compute the optimal path. Accordingly, we formulate TSOR
as a MILP model to be used by OPCE as an optimization
framework to migrate high-priority streams to suitable paths
regarding their time-sensitive requirements.

Using the model, we find (i) end-to-end paths for given
demands under different QoS requirements within limited
network resources and (ii) gate configurations for each switch
that minimizes the overall end-to-end communication latency.
The gate configuration is the primary mechanism of the core
TSN protocol, IEEE 802.1Qbv Time-aware Shaper (TAS)
that ensures end-to-end deterministic communication via strict
time-division scheduling for the streams of different QoS
classes [2], [15]. In TAS, on each (egress) port of a switch,
there are eight priority queues that store frames of streams
with different priorities, including best-effort, before they are
forwarded to the destination. Each queue is controlled by
a gate to forward a frame. When a gate is open, the next
frame in the respective queue is sent at a given time. Eight
gates corresponding to the eight priority classes are configured
by a gate driver via a gate control list (GCL) that decides
which gate(s) should be open at which time. This mechanism
overall constitutes a frame-forwarding schedule with respect
to the priority classes to satisfy strict timing requirements.
Eventually, the gate configuration is the prominent feature
of the optimization model that enables to derive port-based
flow assignment regarding capacity and delay requirements
and combines the routing problem with the characteristics of
TSN.

In TSOR, we utilize two optimization variables. xdp is a
binary variable to decide if demand d ∈ D is assigned to
directed path p ∈ Pd. Here, each d is defined between a talker
and a listener, where D is the set enumerating all demands.
Accordingly, Pd represents the set of paths computed between
those two particular end-points. ges, is a continuous variable
defined within [0, 1] and represents the frequency of an open
gate on the egress port of link e ∈ E for the service class
s. Thus, ges specifies the priority given to service class s on
a directed link e. While ges = 1 infers that the gate for s

should be open all the time and the capacity of the entire link
e is used for that type of demands, ges ≈ 0 means that any
demand of service type s is not active at all on the respective
port and thus, the gate is closed. Otherwise, the respective
gate for the service class s on link e is open as proportional
to 0 < ges < 1. From this perspective, ges is affected by
the total required resources for the demands of service type s
as the available capacity, e.g., bandwidth, of e is distributed
among those demands according to their service type. Note
that each demand is associated with a service class according
to the evaluation of the Learning Module.

The constraints and the objective function of TSOR are
described below.

∑

p∈Pd

xdp = 1 ∀d ∈ D (1)

Constraint (1) is defined to ensure that each demand d ∈ D
is assigned to exactly one path p ∈ Pd. Note that we assume
here that all flows are non-bifurcated, e.g., not divided into
multiple paths.

∑

d∈D

∑

p∈Pd

xdpαephd ≤ ce ∀e ∈ E (2)

Constraint (2) is the link capacity constraint and guarantees
that each link e has sufficient capacity ce to handle the total
load hd of all demands d ∈ D assigned to any path p having
e, s.t. αep = 1.

∑

s∈S

ges = 1 ∀e ∈ E (3)

Constraint (3) represents the configuration of the gate control
list of e for each class of service s. As the gates, i.e., enabling
queues of an egress port, share limited link resources, only a
set of them can be practically open at the same time. Here, a
gate for class s is decided to be open on link e as proportional
to the value of ges.

∑

p∈Pd

∑

e∈E

xdpαep

[
loe + lqe(1− ges)

]
≤ ld ∀d ∈ D (4)

Constraint (4) is the latency constraint to ensure that the
end-to-end latency on path p is always below the latency
requirement of demand d, which is ld. Considering that s is the
service class of d, the gate configurations ges for that service
class through the all link e belongs to path p, s.t. αep = 1,
impacts the end-to-end latency. Note that while higher values
of ges positively impact the latency at link e as it enables
the traffic of service type s more often, smaller ges causes
an increased latency due to queueing delay in the respective
gate. Accordingly, we add the delay factor lqe to proportion
1− ges and to represent the queueing delay. Apart from that,
a base delay loe representing the port and link characteristics,
e.g., packet processing and propagation delay, is considered
for each link. While those design parameters, lqe and loe , can
be set according the system and network properties, we use

lqe = 0.5 and loe = 1.0 in our simulations.

ges −
∑

d∈D

∑

p∈Pd

xdpαep
hd

ce
≥ 0 ∀e ∈ E,∀s ∈ S (5)

Constraint (5) forces ges to be proportional to the total traffic
load of service type s forwarded through the link e. Otherwise,
it would lead to packet drops due to the congestion.

xdp ≥ adp ∀d ∈ D,∀p ∈ Pd (6)

Lastly, constraint (6) fixes the demands that are already
assigned to a certain path p, i.e., adp = 1. Using adp,
TSOR can assign incoming demands incrementally without
violating a potential set of already-assigned demands. adp is
given as input to the problem. Note that although keeping
the previous demands fixed before allocating a new demand
reduces the flexibility of routing, it is essential to have a
stable configuration scheme, especially for the critical and
high-priority demands. That is, reconfiguring the network
also has a certain cost, e.g., delay for migrating demands,
sending control packets to the switches, and can hinder the
deterministic communication requirements. The evaluation of
that cost might be critical for real deployments, but it is out
of the scope of this paper.

min
∑

d∈D

∑

p∈Pd

∑

e∈E

xdpαep

[
loe + lqe(1− ges)

]
(7)

Our objective function (7) minimizes the overall latency of
the selected paths, which is calculated similar to the latency
constraint (4).

Regarding the complexity, TSOR has O(|D||P |+ |E|) op-
timization variables where the number of paths is proportional
to the total number of links |E|. Note that even though ges
depends on the number of service classes |S|, it is fixed
to eight at the TSN context and thus, we assume that as
a constant. In terms of the number of constraints, TSOR
is bounded by O(|D||P | + |E|) constraints with the same
assumption on the number of services.

Another important complexity issue of TSOR is the lin-
earization of non-linear constraints and the objective function.
The model with all linear equations makes the problem more
convenient to be solved by state-of-the-art linear optimization
tools. Therefore, we linearized the multiplication of a binary
variable xdp and non-binary variable ges in the constraint (4)
using McCormick envelopes [14] introducing some additional
complexity.

V. EVALUATION

This section evaluates SC-TSN and compares it to a TSN
configuration with SRP for varying traffic load and topology
sizes. First, we explain the evaluation setup and metrics. Then,
we summarize our evaluation results.

A. Experimental Setup

We implemented SC-TSN in OMNeT++ v5.5.1 using its
INET framework and extending the SDN4CoRE framework
[10]. SDN4CoRE enables to configure both SDN and TSN
capable switches. We developed four applications: OPCE,
DPCE, Monitoring, and the switch learning module. To find
the optimal path assignment for streams, we implemented the
TSOR presented in Section IV-D in CPLEX 12.7.0.

In our experiments, we used three real-world network
topologies from the Topology Zoo dataset: Getnet, Integra, and
Garr201001 as summarized in Table I [11]. A given topology
node is mapped to an edge switch with learning capabilities
if its node degree is smaller than the average node degree and
as a backbone switch otherwise. We assumed that end-hosts
are connected only to edge switches.

Since different service classes (e.g., TT and BE) can coexist
in the same TSN network, we generated mixed traffic scenarios
for a comprehensive evaluation. For TT traffic, we uniformly
selected talker-listener pairs whose packet sending periods
are chosen uniformly between 2-20 ms as stated in [1]. We
initiated the TT traffic at different time instances and set the
fixed frame size as 1522 bytes as in [10]. For BE traffic, we
use the same packet size (i.e., 1522 byte) and exponentially
distributed packet interarrival times [15]. We set the same
packet generation rate at each BE traffic source and configured
them to start transmission at the beginning of the simulation.
We also set our simulation time to 50 seconds and statistic
collection period to 2 seconds for link weight updates. The
results are given with a 95% confidence interval.

We compare our approach with SRP, which is explained
in Section III-B. In SRP, everything is given, and all the
conditions for an optimal deployment are already there before
the actual communication starts. Thus, it is the ultimate
competent for SC-TSN. Since SC-TSN needs sufficient time
to extract traffic behavior with confidence, we want to show
that frames handled during that phase will not suffer from
significantly increased latencies. For that, we use the following
metrics:

• End-to-end (E2E) latency: The latency of frames until
they reach their destination.

• Delayed TT frame rate: The ratio of TT frames whose
E2E latency is larger than its period to the total frames.

• Classification rate (CR): The ratio of correctly classified
TT and BE frames to the total frames.

• The true negative rate (TNR): The ratio of correctly
classified BE frames.

TABLE I: Topologies used in simulation.

Metrics \ Networks Getnet Integra Garr201001
Average node degree 2.29 2.67 2.52
of edge switches 4 16 38
of backbone switches 3 11 16
of edges between switches 8 36 68
of hosts per switches 10 5 2
Total number of nodes 47 107 130

Fig. 4: Classification performance of the learning module.

B. Results

In this section, we first summarize our results on the
performance of the learning module at edge switches. Then,
we compare SC-TSN with the SRP-based configuration in
terms of the end-to-end latency.

1) Performance of learning traffic parameters: We eval-
uated the classification performance of our learning module
for BE and TT traffic under different BE loads. For that, we
kept the same TT streams for each experiment and varied the
interarrival time of BE frames, and measured CR and TNR.
Fig. 4 shows the accuracy independent of the interarrival time
of BE frames. The results indicate that we can classify in
between 99.52% and 99.85% of TT and BE frames correctly.
We also see that the TNR is between and 94.84% and 99.52%
for different rates of BE traffic. For light BE load, e.g., when
the mean of BE traffic is 1000ms, we can classify almost
all BE streams correctly. However, when the interarrival time
decreases, our learning approach starts to classify BE frames
as TT. We run these experiments directly in the simulation
environment because even though we use the same traffic
loads, different factors such as queuing delays affect the
frames’ arrival time.

To sum up, our results indicate that the BE classification
rate does not change significantly with an increasing load. In
case of the misclassification of BE traffic as a TT, we use the
optimal paths instead of the default ones. This may decrease
the E2E latency of BE frames. However, the misclassification
of TT traffic around 0.5% does not significantly affect E2E TT
latency because only the first few frames of each TT stream
are misclassified. In that case, only those frames are sent via
the preconfigured default paths.

TABLE II: E2E latency of TT frames for varying BE load.

SRP SC-TSN
Mean BE

traffic
Mean
[ms]

Max
[ms]

Mean
[ms]

Max
[ms]

10ms 1.31 10.52 1.35 17.30
20ms 1.30 4.31 1.32 11.44
50ms 1.29 2.67 1.30 8.08
100ms 1.29 2.48 1.30 6.24

1000ms 1.29 2.47 1.29 5.80

Fig. 5: Delayed TT frame rate.

2) Impact of learning on the delivery performance: We
measure how the delay of TT streams is affected by an
increasing BE traffic. We used the Integra topology and set
the number of TT streams to half of the number of nodes
and BE streams to half of the number of the TT streams.
Then, we repeated the experiment for different interarrival
times (µ) of the BE frames, from 10ms to 1000ms as in Table
II. We measured the latency and the delayed frame rate. As
expected, SRP and SC-TSN are quite close; they have nearly
the same average and minimum TT latency values. Since we
use stream priorities at the switches, the average latency of
the TT frames is not significantly affected by the increasing
load of the BE traffic. However, we observe an increase in
the maximum latency. Our approach has a higher maximum
latency than SRP because of the learning process. Before the
extraction of the exact period, the received frames are routed as
low priority traffic; if otherwise is not preconfigured, and send
via the default routes. Therefore, they might be significantly
delayed. To check this, we measure the delayed TT frame rate,
as seen in Fig. 5 and we observe that SC-TSN has a higher
delayed frame rate as expected.

Our learning module may classify BE frames as high pri-
ority and send over optimal paths as explained previously. We
see that SC-TSN has lower BE latency than the SRP between
10 ms to 50ms. Even though it seems like the BE classification
rate increases in that interval (see Fig. 4), the number of BE
frames is also increasing. In contrast, the number of TT frames
remains the same. Thus, the effect of misclassified BE frames
becomes more visible and we observe lower BE latency in
SC-TSN, as shown in Table III.

Lastly, we measure how TT frames are affected by network

TABLE III: E2E latency of BE frames for varying BE load.

SRP SC-TSN
Mean BE

traffic
Mean
[ms]

Max
[ms]

Mean
[ms]

Max
[ms]

10ms 1.57 119.85 1.54 121.24
20ms 1.56 121.2 1.55 121.50
50ms 1.45 115 1.45 118.28
100ms 1.38 102.1 1.36 101.1

1000ms 1.38 73.77 1.36 72.57

Fig. 6: Performance comparison for varied sized topologies.

topologies of different sizes as given in Table I. As in
the previous experiments, we set the number of TT streams
proportional to the number of nodes in the network. Thus,
we have 23 TT and 11 BE sources in Getnet, 53 TT and
26 BE sources in Integra, and 65 TT and 32 BE sources in
Garr201001 topologies. Fig. 6 shows that the time for solving
the optimization problem does not significantly affect the E2E
latency for small topologies such as Getnet. However, for
medium- and large-size topologies, Integra and Garr201001
in our setup, we observe that the latency increases quickly.
A critical finding at that experiment is that the latency of TT
and BE frames converges in the larger topologies since the
solution time of the optimization problem increases with the
topology size.

VI. CONCLUSION

Configuration of TSN is a challenging task and requires
considerable engineering efforts. Although the alternative con-
figuration schemes have been introduced in the IEEE 802.1Qcc
standard, the self-configuration of TSN is not covered. This
paper proposes an SDN-based hybrid self-configuration frame-
work for the TSN networks, SC-TSN, in accordance with
the plug-n-play nature of Ethernet networks. In that sense,
end-hosts do not need to declare their traffic requirements
in advance. Instead, the SC-TSN adapts itself to the stream
traffic requirements and reserve the required resources for
routing the data traffic. SC-TSN also allows for an SRP-like
stream registration procedure via the SDN Northbound API for
highly critical traffic. Experiments indicate that SC-TSN can
successfully detect traffic characteristics with an over 97.85%
classification rate. Moreover, it does achieve results close to
SRP with a minimal increase in the E2E latency and the
delayed frame rate.

As explained in [2], bounded latency for TT frames can be
assured by configuring which 802.1Q priorities are allowed
to pass through a particular port at a specific time. Other-
wise, E2E latencies are negatively affected by each traversed
switches’ queuing delays on the multi-hop routes. Since we
do not use time-aware gates at switches, it is challenging to

guarantee bounded latency. However, the configuration of gate
control lists is possible with the SDN, as shown in [10]. As
we consider the gate configuration in our optimization model,
TSOR, it is also a valuable future work to extend our whole
design, including gate-configuration features.

As a part of future work, we plan to examine the perfor-
mance of SC-TSN with more comprehensive scenarios where
the traffic patterns are dynamically change and eventually
triggers re-routings much more often. Also, evaluating SC-
TSN in network failure scenarios requiring sudden route
changes could be another possible study.

REFERENCES

[1] “Time sensitive networks for flexible manufacturing testbed -
description of converged traffic types.” [Online]. Available: https:
//www.google.com/url?sa=t%2C

[2] “IEEE Standard for Local and Metropolitan Area Networks–Bridges
and Bridged Networks - Amendment 25: Enhancements for Scheduled
Traffic,” pp. 1–57, 2016.

[3] “IEEE standard for local and metropolitan area networks–bridges and
bridged networks - amendment 31: Stream reservation protocol enhance-
ments and performance improvements,” 2018.

[4] J. L. Du and M. Herlich, “Software-defined networking for real-time
ethernet,” ICINCO, 2016.

[5] M. Ehrlich, D. Krummacker, C. Fischer, R. Guillaume, S. S. P. Olaya,
A. Frimpong, H. de Meer, M. Wollschlaeger, H. D. Schotten, and
J. Jasperneite, “Software-defined networking as an enabler for future
industrial network management,” in ETFA. IEEE, 2018.

[6] T. Gerhard, T. Kobzan, I. Blöcher, and M. Hendel, “Software-defined
flow reservation: Configuring ieee 802.1 q time-sensitive networks by
the use of software-defined networking,” in ETFA. IEEE, 2019.

[7] R. Gove and L. Deason, “Visualizing automatically detected periodic
network activity,” in VIS. IEEE, 2018.

[8] J. W. Guck and W. Kellerer, “Achieving end-to-end real-time QoS with
software defined networking,” in CloudNet. IEEE, 2014.

[9] M. Gutiérrez, W. Steiner, R. Dobrin, and S. Punnekkat, “A configuration
agent based on the time-triggered paradigm for real-time networks,” in
IEEE WFCS, 2015.

[10] T. Häckel, P. Meyer, F. Korf, and T. Schmidt, “SDN4CoRE: A simulation
model for software-defined networking for communication over real-
time ethernet,” in International OMNeT++ Community Summit, 2019.

[11] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The internet topology zoo,” JSAC, 2011.

[12] T. Kobzan, S. Schriegel, S. Althoff, A. Boschmann, J. Otto, and
J. Jasperneite, “Secure and time-sensitive communication for remote
process control and monitoring,” in ETFA. IEEE, 2018.

[13] R. Kumar, M. Hasan, S. Padhy, K. Evchenko, L. Piramanayagam,
S. Mohan, and R. B. Bobba, “End-to-end network delay guarantees for
real-time systems using SDN,” in RTSS. IEEE, 2017.

[14] G. P. Mccormick, “Computability of Global Solutions to Factorable
Nonconvex Programs: Part I – Convex Underestimating Problems,”
Math. Program., 1976.

[15] A. Nasrallah, A. S. Thyagaturu, Z. Alharbi, C. Wang, X. Shao,
M. Reisslein, and H. Elbakoury, “Performance comparison of IEEE
802.1 TSN time aware shaper and asynchronous traffic shaper,” IEEE
Access, 2019.

[16] N. G. Nayak, F. Dürr, and K. Rothermel, “Incremental flow scheduling
and routing in time-sensitive software defined networks,” IEEE Trans-
actions on Industrial Informatics, 2017.

[17] T. Puech, M. Boussard, A. D’Amato, and G. Millerand, “A fully auto-
mated periodicity detection in time series,” in International Workshop
on Advanced Analysis and Learning on Temporal Data. Springer, 2019.

[18] S. Schriegel, T. Kobzan, and J. Jasperneite, “Investigation on a dis-
tributed SDN control plane architecture for heterogeneous TSNs,” in
WFCS. IEEE, 2018.

[19] M. Vlachos, P. Yu, and V. Castelli, “On periodicity detection and struc-
tural periodic similarity,” in International conference on data mining.
SIAM, 2005.

[20] H. Wang and M. R. Ito, “Dynamics of load-sensitive adaptive routing,”
in ICC. IEEE, 2005.

Appendix F

Towards SDN-based Dynamic Path
Reconfiguration for Time-sensitive
Networking

Abstract

Future networks will need to support a large number of low-latency flows. In time-sensitive
networks (TSN), paths for data flows are usually established at startup time of an application
and remain untouched until the flow ends. There is no way to migrate existing flows eas-
ily to alternative paths without inducing significant additional delay or wasting resources.
Therefore, the resource-utilization of TSN might degrade over time leading to a sub-optimal
flow assignment. In this paper we address this problem by combining Software-defined
Networking (SDN) that provides better control on network flows with TSN to be able to
seamlessly migrate time-sensitive flows. We propose a SDN-based dynamic path reconfig-
uration algorithm for accommodating TSN flows and formulate it as optimization problem.
By exploiting the control plane’s global view, we evaluate different dynamic path configu-
ration strategies under deterministic communication requirements. Our simulation results
indicate that reconfiguring the flow assignments from time to time can improve the latency
of time-sensitive flows and can increase the number of flows embedded in the network in
worst-case scenarios.

Reference

N. Sertbaş Bülbül, Doğanalp Ergenç, M. Fischer. Towards SDN-based

Dynamic Path Reconfiguration for Time-sensitive Networking. IEEE/I-

FIP Network Operations and Management Symposium (NOMS), 2022.

Contribution

In the forementioned publication, the contribution of this thesis is designing and imple-
menting restricted and unrestricted variations of the optimization model. The first author
proposed the overall idea, implemented the other two variations in a simulation model, and
conducted the evaluation. The third co-author helped to improve the quality of the paper
with his valuable feedback.

158

Towards SDN-based Dynamic Path Reconfiguration
for Time Sensitive Networking

Nurefşan Sertbaş Bülbül , Doğanalp Ergenç, Mathias Fischer
Department of Computer Science, University of Hamburg, Germany

Email:{sertbas, ergenc, mfischer}@informatik.uni-hamburg.de

Abstract—Future networks will need to support a large num-
ber of low-latency flows. In time-sensitive networks (TSN), paths
for data flows are usually established at startup time of an appli-
cation and remain untouched until the flow ends. There is no way
to migrate existing flows easily to alternative paths without induc-
ing significant additional delay or wasting resources. Therefore,
the resource-utilization of TSN might degrade over time leading
to a sub-optimal flow assignment. In this paper we address this
problem by combining Software-defined Networking (SDN) that
provides better control on network flows with TSN to be able to
seamlessly migrate time-sensitive flows. We propose a SDN-based
dynamic path reconfiguration algorithm for accommodating TSN
flows and formulate it as optimization problem. By exploiting
the control plane’s global view, we evaluate different dynamic
path configuration strategies under deterministic communication
requirements. Our simulation results indicate that reconfiguring
the flow assignments from time to time can improve the latency
of time-sensitive flows and can increase the number of flows
embedded in the network in worst-case scenarios.

Index Terms—SDN, dynamic flow migration, reconfiguration,
TSN, path computation, consistent updates

I. INTRODUCTION

Real-time Internet of things (IoT) driven by 5G networks
and autonomous vehicular networks rely on low-latency and
deterministic networking. Many safety-critical applications
served by such networks, e.g., robots in automation envi-
ronments, require a bounded latency and a reliable delivery
of data. A violation of latency constraints can, in the worst
case, result in physical damage. To address real-time and
deterministic communication requirements of time-sensitive
and safety-critical systems, TSN standards are proposed by the
IEEE 802.1 working group. TSN offers several protocols to
enable the coexistence of different traffic classes with varying
communication requirements in the same network.

The IEEE 802.1Qcc Stream Reservation Protocol (SRP)
standard describes the management and configuration of TSN
[1]. End-hosts declare their traffic requirements in the TSN
before the actual communication. Then, these time-critical
transmissions are scheduled to bound the undesired queuing
delays, and underlying networking elements on the routing
path are enforced to obey these schedules. However, new time-
sensitive flows cannot be directly embedded in high traffic
scenarios due to capacity limitations on certain links and
the effect of link usage on latency. Hence, accommodating
new flows at runtime and adapting existing flows accordingly
becomes a challenging problem.

The authors of [2] show that both path splitting, i.e., sending
flows over multipath and path migration lead to more flexible
embeddings and better resource utilization. For that, already
occupied resources need to be released by migrating flows to
other paths. It requires to reconfigure the data plane while
maintaining the quality of service (QoS). However, in time-
sensitive networks, flow configuration is done initially, and re-
lated flow assignments remain fixed. During a reconfiguration,
it is required to take down the related flow and make a new
reservation, which consumes time. Therefore, reconfiguration
in standard TSN networks is not efficient.

In this paper, we address the problem of dynamic path
(re)configuration for TSN networks on the basis of SDN to
enable the migration of network flows under strict latency
constraints. The application of SDN concepts like global
network view on real-time networks enables the collection and
inclusion of application requirements into the configuration of
network resources. Our main contributions are:

• We formulate the time-sensitive optimal routing problem
(TSOR) with mixed-integer linear programming (MILP).
We propose four different path configuration strategies by
adding varying degrees of routing constraints to TSOR.

• Solving the MILP is not the same as a realistic evalu-
ation in a real-time network. Apart from the number of
embedded flows, the (re)configuration overhead should be
considered. Therefore, we have built a realistic simulation
of a TSN network in OMNeT++ and solve TSOR to
obtain the optimal solution. With that we quantify the
reconfiguration cost for a TSN network.

• We evaluate the presented strategies regarding the number
of flows embedded into the network, reconfiguration
time, and their effect on time-sensitive traffic latency.
The simulation results indicate that our alternative path
configuration strategies can embed more flows up to 4%
without any additional delay to the time-sensitive traffic.

The remainder of this paper is structured as follows:
Section II summarizes the related work on state of the art
approaches for path migration problem. In Section III, we sum-
marize our overall system and introduce the TSOR. Section IV
describes our evaluation results. Section V concludes the paper
and summarizes future work.

II. RELATED WORK

Several approaches can be adapted to this domain to solve
the flow migration problem, such as deploying and migrating978-1-6654-0601-7/22/$31.00 © 2022 IEEE

virtual network functions (VNFs). In [3], the VNF mapping
and scheduling problem is formalized as a mixed-integer prob-
lem (MIP) considering the VNF requirements such as delay
and priority. If delay requirements are violated, they trigger
delay-aware rescheduling, including the existing VNFs into
the reconfiguration for a higher acceptance ratio. The authors
of [4] formalize the delay-aware VNF placement and routing
as an NP-hard optimization problem. Then, they solve it via an
approximation, which achieves close-to-optimal performance
in terms of acceptance ratio and maximum link load ratio.
In [5], different approaches for a dynamic rescheduling of
the placement of VNFs are proposed. The re-optimization ap-
proach strictly preserves latency constraints by being triggered
at every time instance but requires many VNF migrations.
Alternatively, they also propose time-triggered re-optimization
with either fixed or dynamically updated (depending on the
network resources and controlled by the operator) trigger
times. In [6], the authors propose a MILP optimization model
to decide between either migration of VNFs or their re-
instantiation. In addition to VNF related constraints such as
availability of VNFs’ services, maximum delay, and maximum
resource consumption, e.g., memory and CPU, they also
consider the update time for the data plane as a convergence
constraint derived from SDN.

Our work extends these concepts and maps them to the
real-time flow migration problem with more strict real-time
constraints. If VNFs are in the data path, the migration of
stateful VNFs requires additional mechanisms and protocols
to keep the states throughout the migration process. However,
in this study, we focus on the flows only.

There is limited literature focusing on the incrementally
adding flows in TSN. However, most related papers as-
sume that routing paths are known apriori and left the path
(re)configuration out of scope. In [7] authors propose an SDN-
based resource allocation mechanism for accommodating new
flows at runtime. They also propose an indirect path migration
algorithm in case direct path migration is not feasible. How-
ever, they focus on the feasibility of migration, and migration
overhead (e.g., end-to-end latency and number of reconfigured
paths) is not analyzed. Also, their flow migration definition
only involves routing path changes; does not take schedule
changes into account. Since TSN is designed to isolate flows
either spatially through different routes or temporally through
different schedules, separating routes from schedules may limit
the QoS. In contrast to the related work so far, few publica-
tions address scheduling together with the path computation
problem [8], [9]. In [10], an SDN-based self-configuration
framework for TSN networks has been presented. The central
SDN controller, initially puts streams to the default paths and
then moves streams to optimal paths based on the extracted
stream characteristics. To find optimal paths that maintain hard
real-time guarantees, not only the path length but also the
latency deriving from the schedule configurations are taken
into account.

Our work partially intersects with these studies by com-
bining routing paths with schedules. However, as in some

PCECNC

Path
Configuration

Talker

Computed
Paths

Listener

Path
Request

Reservation
Handler

Traffic
Requirements

CE

Fig. 1. Overall system block diagram

of the mentioned studies, we do not compute time-division
multiple access-based schedules in which multiple frames
are transmitted one after the other, each using its time slot.
Instead, we embed the gate opening frequency into our path
computation formalization as we explain in the following
section. Moreover, unlike the existing optimization models that
solve path assignment problems with rather simple metrics
such as path lengths and link weight, our model includes
the gate configuration as a TSN-specific aspect. We defined
the optimal routing problem together with the service-based
stream configuration regarding the main characteristics of
TSN. At that point, we differ from the related work.

III. SYSTEM DESIGN

In this section, we introduce our SDN-based dynamic re-
configuration solution for TSNs. We first describe the overall
framework, and afterward, we explain four different path
configuration strategies in detail.

A. Overall System

We propose a (re)configuration framework for the time-
sensitive networks by benefitting from the SDN. The global
view of the centralized SDN controller enables the deployment
of centralized routing algorithms and eases the configuration.
Thus, routing paths could be reconfigured dynamically on
the runtime considering the requirements of the time-sensitive
environments.

We illustrate our SDN-based framework in Fig. 1. To
communicate in such a network, the end-host, a talker in TSN,
needs to inform the network to allocate required resources
before the actual communication. The talker initiates that
process by sending a talker-advertise message to the edge
switch. Then, the edge switch forwards the traffic requirements
of the flow, which are obtained from the talker-advertise
message to the SDN-supported centralized network controller
(CNC). The global network view of the CNC enables effi-
cient use of network resources and fast responses to varying
network conditions. Here, the reservation handler records the

OpenFlow
 Switch ListenerTalker Reservation

Handler PCE CE

talker
advertise

trigger computed
paths

forwarding rules

listener
ready

transmission

Central Network Controller

Fig. 2. Time sequence of the overall system

received request and triggers the path computation element
(PCE). Then, PCE computes a new path considering the traffic
requirements, current resource utilization, and the topology.
The computed path is sent to the configuration engine (CE),
and related forwarding rules are distributed via the data plane,
guaranteeing the consistency of the data plane.

In some cases the computed path may not be free and
requires the migration of existing flows. Here, CE migrates
flows sequentially, ensuring consistency, and then the new flow
is accommodated. After all forwarding rules are successfully
updated at the respective switches, the reservation handler
sends a listener-ready message to the talker. Then, since
required resources for the transmission have already been
provided, the talker starts to send data via the allocated path.
This procedure has been illustrated in the time chart in Fig. 2.

B. Path Computation Engine

In the following, we present the time-sensitive optimal
routing (TSOR) problem with varying degrees of routing
constraints. Removing such constraints from the model im-
proves the solution quality regarding accommodating flows
while adding computational complexity. Figure 3 illustrates
the flowchart for the path computation and configuration
processes. If all constraints can be satisfied, PCE returns with
a solution that may require changes in the previous flow
assignments. Otherwise, it rejects the flow without embedding.

1) Problem Formulation: We formulate TSOR as a MILP
model to migrate high-priority flows to suitable paths. Using
the model, we find (i) end-to-end paths for given demands
under different QoS requirements within limited network
resources and (ii) gate configurations for each switch that
minimizes the overall end-to-end communication latency.

The gate configuration is the primary mechanism of the core
TSN protocol, 802.1Qbv Time-aware Shaper (TAS) that en-
sures end-to-end deterministic communication for the streams
of different QoS classes via strict time-division schedul-
ing [11], [12]. In TAS, on each (egress) port of a switch,
there are eight priority queues that store frames of streams
with different priorities, including best-effort, before they are
forwarded to the destination. Each queue is controlled by a
gate to forward a frame. When a gate is open, the next frame
in the respective queue is sent at a given time. Eight gates

corresponding to the eight priority classes are configured by
a gate driver via a gate control list (GCL) that decides which
gate(s) should be open at which time. This mechanism overall
constitutes a frame-forwarding schedule with respect to the
priority classes to satisfy strict timing requirements.

min
∑

d∈D

∑

p∈Pd

∑

e∈E

xdpαep

[
loe + lqe(1− ges)

]
(1)

∑

p∈Pd

xdp = 1 ∀d ∈ D (2)

∑

d∈D

∑

p∈Pd

xdpαephd ≤ ce ∀e ∈ E (3)

∑

s∈S

ges = 1 ∀e ∈ E (4)

∑

p∈Pd

∑

e∈E

xdpαep

[
loe + lqe(1− ges)

]
≤ ld ∀d ∈ D (5)

ges −
∑

d∈D

∑

p∈Pd

xdpαep
hd

ce
≥ 0 ∀e ∈ E,∀s ∈ S (6)

The formulation of TSOR is given in Equations 1-6. Table I
also summarizes all the variables and parameters used in the
model. To formalize our problem, we utilize two optimization
variables: xdp and ges. xdp is a binary variable to decide if
demand d ∈ D is assigned to directed path p ∈ Pd. Here,
each d is defined between a talker and a listener, where D is
the set enumerating all demands. Accordingly, Pd represents

elementary
flow

 migrationsn-step
migration

talker starts transmission

New demand : Dn+1

Previous paths : P1, ... , Pn

PCE computes new paths
P'1, ... , P'(n+1)

Yes

No

Solution
exist

Yes

Is migration
necessary?

Dn+1 is not
embedded

No

Dn+1 is
embedded

Fig. 3. Flowchart for the path configuration

TABLE I
TERMS AND DEFINITIONS IN THE OPTIMIZATION PROBLEM. Base TYPE CONTAINS THE FUNDAMENTAL ELEMENTS OF THE MODEL. ConstantS ARE

NETWORK- AND SERVICE-RELATED PARAMETERS GIVEN AS INPUT. VariableS REPRESENT THE PARAMETERS TO BE OPTIMIZED.

Type Symbols Set Interval Definition

Base

d D A demand between a pair of nodes
p Pd A (candidate) path to be assigned to demand d
e E A link (edge) between nodes
s S [0, 7] A quality of service class

Constant

ce ℜ∗ [0,∞] Maximum link capacity of e
hd ℜ∗ [0,∞] Traffic volume of d
αpe ℜ∗ [0,1] Binary variable to indicate if link e belongs to path p
ld ℜ∗ [0,∞] Latency requirement of d
lqe ℜ∗ [0,∞] Queueing delay factor on link e
loe ℜ∗ [0,∞] Default latency on link e due to port and link characteristics
adp Z∗ [0,1] Binary variable to indicate if demand d allocated to path p in the previous configuration

Variable
xdp ℜ∗ [0,∞] Binary variable to decide if demand d allocated to path p
ges Z∗ [0,1] Opening frequency of the gate for service class s on link e

the set of paths computed between those two particular end-
points. ges, is a continuous variable defined within [0, 1] and
represents the frequency of an open gate on the egress port
of link e ∈ E for the service class s among eight possible
classes. Thus, ges specifies the priority given to service class
s on a directed link e. While ges = 1 infers that the gate for s
should be open all the time and the capacity of the entire link
e is used for that type of demands, ges ≈ 0 means that any
demand of service type s is not active at all on the respective
port and thus, the gate is closed. Otherwise, the respective
gate for the service class s on link e is open as proportional
to 0 < ges < 1. From this perspective, ges is affected by
the total required resources for the demands of service type s
as the available capacity, e.g., bandwidth, of e is distributed
among those demands according to their service type. Note
that each demand is associated with a particular service class
randomly and given as an input.

Our objective function (1) minimizes the overall latency of
the selected paths. The variables in the objective function are
explained in detail in the context of the latency constraint (5).
Constraint (2) ensures that each demand d ∈ D is assigned
to exactly one path p ∈ Pd. Here, we assume that all flows
are non-bifurcated. Constraint (3) guarantees that each link
e has sufficient capacity ce to handle the total load hd of
all demands d ∈ D assigned to any path p including e, s.t.
αep = 1. Constraint (4) represents the configuration of the gate
control list of e for each class of service s. As the gates, i.e.,
enabling queues of an egress port, share limited link resources,
only a set of them can be practically open at the same time
but proportional to the value of ges. Constraint (5) ensures that
the end-to-end latency on path p is always smaller than the
maximum allowed latency for demand d, which is ld. Besides,
the gate configuration ges on the respective egress port of each
link e that belongs to path p, s.t. αep = 1, impacts the end-
to-end latency. Constraint (6) forces ges to be proportional to
the total traffic load of service type s forwarded through link
e. Note that while higher values of ges positively impact the
latency at link e, as it enables the traffic of service type s
more often, a smaller ges causes an increased latency due to
queueing delay in the respective gate. Accordingly, we add

the delay factor lqe to the proportion 1 − ges to represent the
queueing delay. Apart from that, a base delay loe representing
the port and link characteristics, e.g., packet processing and
propagation delay, is considered for each link. While those
design parameters, lqe and loe , can be set according to the system
and network properties, we use lqe = 0.5 and loe = 1.0 in our
simulations.

xdp ≥ adp ∀d ∈ D,∀p ∈ Pd (7)

Constraint (7) is the pre-assignment constraint that fixes the
demands that are already assigned to a certain path p, i.e.,
adp = 1 from an existing configuration. adp is given as input
to the problem. For instance, when a new flow has to be
scheduled, the former configuration with existing flows can be
held intact to find a new path with a suitable gate configuration
only for the new flow. Note that although keeping the previous
demands fixed before allocating a new demand reduces the
flexibility of routing, it is important to have a stable con-
figuration scheme especially for the critical and high-priority
demands. That is, reconfiguring the network has also a certain
cost, e.g., delay for migrating flow, sending control packets
to the switches, and can hinder the deterministic communica-
tion requirements. Therefore, enabling reconfiguration by flow
migrations requires to involve such costs in the end-to-end
latency. The use of the preassignment constraint is discussed
further in the following section.

Considering the complexity, TSOR has O(|D||P | + |E|)
optimization variables where the number of paths are directly
related to the number of links. Note that even though ges
depends on the number of service classes, it is, at least in
TSN context, defined as eight (including best-effort) and thus
we assume that as a constant. In terms of the number of
constraints, TSOR is bounded by O(|D||P |+ |E|) constraints
with the same assumption on the number of services. Another
important complexity issue is the non-linear constraints and
the objective function. It is easily possible to linearize the
multiplication of a binary variable xdp and non-binary variable
ges using, for instance, McCormick envelopes [13] introducing
some additional complexity. Therefore, we take TSOR as a

linear problem that makes it more convenient to be solved by
the state-of-the-art linear optimization tools.

2) Path Configuration Strategies: Incremental flow
scheduling in TSN will change the link and switch utilization
over time, affecting the end-to-end latency of chosen paths.
Thus, we present different path configuration strategies with
varying degrees of routing constraints.

a) Reconfiguration at every path request: To maximize
the number of flows embedded via TSOR, replanning all
path configurations from scratch is a strategy. For that, we
remove the pre-assignment constraint from TSOR and present
unrestricted version as TSOR-U. With that, we allow all
flows to be reconfigured, e.g., migrated to different paths
changing the gate configuration as well, to find the optimal
allocation, including newly arriving flows, with a certain
cost of reconfiguration. Here, the cost includes the delay of
frames due to the control packets exchanged between the
controller and switches to configure the data plane for each
migrated flow. Therefore, even though it can flexibly configure
the network resources, it introduces additional configuration
overhead, which may hinder the deterministic communication
requirements. To address that issue, we also present the
following strategies:

b) Restricted path reconfiguration: The strict time con-
straints of such time-sensitive environments lead to the ac-
commodation of flows on certain paths and leave these paths
untouched as long as the path meets the delay requirements.
Therefore, we have a pre-assignment constraint in our opti-
mization problem that keeps the previous assignments fixed.
We name this restricted version of our optimization problem,
TSOR-R. Although such a constraint reduces the flexibility of
routing, it is important to have a stable configuration scheme,
especially for critical and high-priority demands.

c) Reconfiguration at every k-th path request: To shorten
the time for finding paths, we can still use TSOR-R for embed-
ding new flows. However, this will lead to inefficient use of
resources, especially for a larger number of flows. Therefore,
another solution is to reconfigure the assignments from time to
time to ensure better resource utilization. For that, we propose
TSOR-P that reconfigures the network after having received
k flow requests. Therefore, it can adapt the reconfiguration
period dynamically in dependence on the arrival rate of flows.
This strategy can also be improved by monitoring the system
and extracting a pattern for the latency violations to compute
optimal reconfiguration times.

d) Threshold-triggered reconfiguration: The most
straightforward strategy TSOR-T a network operator can
apply is to use TSOR-R to embed a new flow and to compute
TSOR-U to measure how close the resulting solution is to
TSOR-U. Then, we only reconfigure if the computed objective
exceeds a pre-defined threshold.

We use Fig. 4 to describe two scenarios for explaining
the difference between our path configuration strategies. For
simplicity, we have three flows, f1, f2, and f3 with the same
size, and each link has one flow capacity. Suppose initially

only f1 is routed in the network as in Fig. 4-a. Two different
situations can arise for new arriving flows, either (b) or (c):

In the first case, f2 flow arrives and assume that the
computed optimal path for f2 is S2 to S4, which is not used
by other flows. Therefore, f2 can be directly placed on this
path as seen in Fig. 4-b. Here, all path configuration strategies
produce this selection as an optimal solution without a flow
migration.

In the second case, let us assume that f3 flow arrives and
the computed optimal path for f3 is S3 to S4, which is already
occupied by flow f1. Here, the migration of f1 is required to
another path (e.g., S1-S2-S4), and this can happen directly
as in Fig. 4-c and then the link between S3 to S4 becomes
free. With TSOR-U, since it reconfigures the network from
scratch, it finds the solution by migrating f1 to its new path
first and then accommodating f3. However, since TSOR-R does
not allow for a reconfiguration, it does not accommodate f3
in the network and reject. It depends on the current network
state whether TSOR-T and TSOR-P can find a solution for f3
or not.

C. Configuration Engine

The CE is responsible for applying the flow rules for the
paths generated by the PCE consistently. Since all switches
may not be updated simultaneously, changes in the network
configuration may cause incorrect forwarding behavior and
performance disruptions. In literature, this is known as network
update problem [14]. To ensure correct forwarding behavior
when changing the flow assignments, we use a two-phase
tagging mechanism proposed in [14]. With that, both the
initial and final rules are installed on all switches, and the
packets are tagged with the version number of the respective
forwarding rule. All switches on the path are updated with
the new flow rules, and each updated switch sends an ACK
to the controller. When the controller has received an ACK
from all related switches, packets entering the network are
tagged with the new version number to match the new flow
rule. As a drawback, this mechanism doubles the number of
flow entries on switches. However, this could be solved by
regularly deleting old rules.

IV. EVALUATION

In this section, we evaluate the reconfiguration overhead for
time-sensitive traffic by applying the strategies introduced in
Section III-B. First, we briefly explain the evaluation setup and
metrics. Then, we evaluate the performance of the proposed
strategies at varying traffic loads. Finally, we summarize our
evaluation results.

A. Experimental Setup

To measure the reconfiguration overhead and its effects
on the time-critical communication, solving MILP-based path
configuration as standalone is insufficient. Thus, we imple-
mented the presented path configuration strategies in CPLEX
12.7.0 and simulated the TSN network in OMNeT++ v5.5.1.
For that, we used the INET framework and extended the

S1

S3

S4

S2
S5

f1

(a) Initial state (b) No migration case

S1

S3

S4

S2
S5

(c) Migration case

f1

f3

S1

S3

S4

S2
S5

f1

f2

Fig. 4. Example scenario

SDN4CoRE framework [15] that enables the configuration of
SDN and TSN capable switches. We developed three appli-
cations for the control plane: a reservation handler module, a
path computation element, and a configuration engine, whose
details are presented in Section III.

For our experiments, we used the Integra topology, as
represented in Fig. 5, whose average node degree is 2.67,
from the Topology Zoo dataset [16]. It contains 27 switches
and 36 edges. We consider all nodes in the topology to be
OpenFlow-enabled TSN switches. Since the relative results
are not changed, we set the link capacity to 30Mbps for the
sake of simplicity.

Since there is no publicly available data set for TSN traffic,
we obtained the traffic generation parameters from TSN papers
and tried to model TSN traffic as realistic as possible.

As time-triggered (TT) traffic, we used cyclic traffic and
select the transmission period uniformly between 2-20 ms and
a data size between 50 and 1000 bytes as defined in [17].
Thus, the data rate can take values in between [0.02-4.0]
Mbps. We also generated traffic using pareto, uniform, and
normal distributions in the given data rate range. With that,
we tried to evaluate in more diverse traffic scenarios. In
pareto distribution, a large portion of the generated traffic has
low data rates. In contrast, uniform and normal distributions
represent medium data-rated applications in this setup. A
typical application for the cyclic traffic is the input/output
updates exchanged between actuators, sensors, and PLCs in
an industrial facility.

Since different service classes coexist in the same TSN
network, we also generated best-effort (BE) traffic that has
no timing guarantee. For that, we set the packet size to 1500
bytes and use exponentially distributed packet inter arrival
times [12]. We set the same packet generation rate at each
BE traffic source and start BE traffic at the beginning of the

Fig. 5. The Integra topology used in the evaluation [16]

TABLE II
SIMULATION PARAMETERS

Category Parameter Value

Time-triggered traffic
Transmission period Uniform(2,20) ms
Frame size 50-1000 bytes
Data-rate distribution pareto, uniform, normal

Best-effort traffic Transmission period Exponentially distributed
Frame size: 1500 bytes

Topology Num. of switches 27
Num. of edges 36
Link capacity 30Mbps

Simulation Duration 50 sec

simulation. A typical example for the BE traffic can be retriev-
ing application data (e.g., telemetry). Table II summarizes the
simulation parameters.

B. Evaluation Metrics

We used the following metrics to evaluate our path config-
uration strategies:

• Acceptance Ratio: The ratio of TT flows that can be
successfully served by the network.

• Missing Deadline Ratio: The ratio of delayed frames
whose delay exceeds the delay requirement to the re-
ceived frames.

• Reconfiguration Ratio: The ratio of the number of paths
changed during reconstruction to the number of flows.

• Configuration Time: The time before the actual commu-
nication starts. Thus, it includes the potential migration
latency and the tag-based data plane configuration time.

C. Results

This section compares the path configuration strategies
in terms of their acceptance ratio and reconfiguration overhead.

Acceptance Ratio We measured only the acceptance ratio
of TSOR-R and TSOR-U to draw the limits of our optimization
problem. Since different data rates affect how flexible TSOR
can accommodate flows, we measured the average acceptance
ratios independence on different data rate distributions as
shown in Fig. 6.

The experiments were repeated 100 times for each scenario,
and the results are given with a 95% confidence interval. Here
the acceptance rate does not differ a lot thus the confidence
intervals are very small. Since TSOR-U can fully utilize all
data plane resources, it has higher acceptance ratio on the

100 500 700 1200
0.75
1.00 1.00 0.94 0.88

0.74

1.00 0.94 0.86
0.71

Pareto(k = 0.02, = 1.1)

50 100 150 200
0.75
1.00 1.00

0.88 0.80 0.69

0.99
0.86 0.77 0.66

Uniform (a = 0.02, b = 4)

50 100 150 200
0.75
1.00 1.00 0.95

0.83
0.72

1.00 0.94
0.81

0.68

Normal (= 2.01, = 0.6)

Num of TT flow requests

Ac
ce

pt
an

ce
 R

at
io

TSOR-U TSOR-R

Fig. 6. Acceptance ratio with varying data rate distributions

average in all distributions. However, TSOR-R leaves less
room to accommodate new flows, as the previously installed
flows are not touched. So this limits the acceptance ratio of
TSOR-R. Also, the difference between TSOR-R and TSOR-U
becomes more visible when the number of TT flow requests
increases due to limited flexibility of TSOR-R. The difference
becomes more significant around 4% in some cases (e.g.,
200 TT flows case in normal distribution). Also, between the
distributions we see that the lower data rates as in pareto
allow accommodating more flows than other medium-sized
distributions, which are uniform and normal in this setup.

Reconfiguration Overhead To measure the reconfiguration
overhead and its effects on the delivery of TT traffic, we
simulated a TSN network in OMNeT++. Since the relative
results do not change significantly for different distributions,
we generated 200 normally distributed TT and 50 BE flows.
Then, we measured the reconfiguration overhead with pre-
sented evaluation metrics.

Table III shows the simulation results for TSOR. Note that,
even though we simulated also BE traffic in the network, we
do not count it while we compute accept ratio. For that reason,
accept ratios seems lower here. We measured the missing
deadline ratio, which is mainly related to the quality of chosen
paths. Since TSOR-R cannot flexibly change the assigned
paths based on the current network status, some links may be
overloaded while there are spare link resources. Thus, it has

TABLE III
OMNET RESULTS WITH BEST-EFFORT TRAFFIC

TSOR-U TSOR-R TSOR-P TSOR-T
Acceptance
Ratio [%] 52.81 49.2 51.18 51.93

Missing Deadline
Ratio [%] 5.41 5.83 4.94 4.47

0 20 40 60 80 100 120
Num of accepted flow requests

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

of
 D

el
ay

ed
 F

ra
m

e
Ra

te

TSOR-U
TSOR-R
TSOR-P
TSOR-T

Fig. 7. Missing deadline ratio respect to number of accepted flows

the highest missing deadline ratio. Here the first expectation
is that TSOR-U has the lowest missing deadline ratio since
it can flexibly use the resources. However, there is a hidden
effect: the network utilization directly influences the delay, but
the impact gets more significant the more utilized a network
is. In other words, since TSOR-U can embed more flows, the
network load and therefore the average TT latency increases,
which also increases the missing deadlines.

To highlight this, we also plotted the cumulative density
function of the missing deadline ratio in dependence on the
number of accepted flows in Fig. 7. Here, for the same number
of accepted flows, we can see that TSOR-U has the lowest
delayed frame rate, which supports our claim. In TSOR-P, we
set k to 20, so that reconfiguration is triggered for every 20th
received request. Therefore, it can adapt resources depending
on the received traffic rate. In TSOR-T, reconfiguration is only
triggered if the solution quality in terms of latency exceeds a
certain threshold, e.g., 1%. Thus, both TSOR-P and TSOR-
T perform better than TSOR-R and are close to TSOR-U.
However, after a certain point, which is around 110 flows in
this experiment, the number of delays increases significantly in
TSOR-U. Thus, even though it has the lowest missing deadline
ratio until there, it will not performs better than the TSOR-P
and TSOR-T after that point.

Fig. 8 shows the reconfiguration overhead of TSOR versions
for the same number of flows. In Fig. 8 top, TSOR-R has
the smallest reconfiguration ratio, i.e., zero, since it does
not allow reconfiguration. However, TSOR-U has the highest
due to frequent reconfigurations. In TSOR-P, the number of
reconfigurations is directly related to the number of flows
and independent of the current network status. Therefore,
it increases with a higher number of flows. Even though
TSOR-T is triggered per received request, the thresholding
mechanism avoids unnecessary reconfigurations. However, the
performance of TSOR-P and TSOR-T is highly related to the
chosen parameters. Decreasing the threshold in TSOR-T and

TABLE IV
PATH (RE)CONFIGURATION STRATEGIES

Strategy Reconfiguration Trigger Flexibility Time-sensitive
traffic latency

Configuration
Overhead

TSOR-U After every critical flow High Medium High
TSOR-R No reconfiguration Low High Low
TSOR-P After every k-th critical flow Medium Low Medium

TSOR-T After every critical flow that requires
sufficient* changes Medium Low Medium

k-value in TSOR-P will approximate solutions to the TSOR-U.
We defined the configuration time as the potential migration

latency and the data plane configuration time. Thus, it is
directly affected by the number of reconfigurations and re-
configured switches on the path. Therefore, we see the similar
results in Fig. 8 bottom, which shows the configuration time
of the TSOR. Frequent reconfigurations in TSOR-U increase
configuration time, while limited reconfigurations in TSOR-
R result in lower configuration time. As in the Fig. 8 top,
both TSOR-P and TSOR-T performs in between TSOR-R and
TSOR-U.

In our simulations we excluded the time to solve the MILP
optimization models, i.e., they were solved in zero time, to
fairly compare the different embedding methods. However, the
actual time required to solve the MILP is still in a reasonable
range, e.g., around 7.3s for 100 flows. This is a significant
overhead for TSN, but only in TSOR-U the MIP needs to be
solved for every new flow. TSOR-R builds upon the previous
solution. Thus, sorting in a new flow for TSOR-R requires
only around 4 ms in our settings. The other strategies (TSOR-
T/P) require to solve the optimization model for all flows from
time to time. They will then migrate embedded flows from
their potentially sub-optimal paths to their optimal ones. Even
tough their performance is highly related to the configuration
parameters such as k in TSOR-T and the triggering threshold
in TSOR-P, this migration can be done seamlessly without
packet loss and increased latencies. We summarize our path
reconfiguration strategies in Table IV.

TSOR-R TSOR-P TSOR-T TSOR-U
0

1

2

Re
co

nf
ig

ur
at

io
n

Ra
ti

o

0
0.44

1.58
2.13

TSOR-R TSOR-P TSOR-T TSOR-U
0

100

Co
nf

ig
ur

at
io

n
Ti

m
e

[
s]

17
63.7

137.4
189

Fig. 8. Reconfiguration overhead for TSOR

V. CONCLUSION

This paper presents and evaluates dynamic path configura-
tion strategies for SDN-enabled time-sensitive networks. We
defined a restricted optimal flow placement model that adapts
path assignments based on the current resource utilization.
Then, we present three heuristics to maximize the number of
accepted flows while meeting the communication requirements
of TT applications. Our restricted optimization model yields
the results in terms of configuration time and serves as a
benchmark for other heuristic solutions.

We believe that a proper reconfiguration strategy can be
selected depending on the requirements of the environment.
For example, in a highly dynamic small or medium scale
environment where flows are added and removed over time,
reconfiguring at every path request would be more appropriate
for utilizing all resources more efficiently. Our simulation
results indicate that it increases the number of flows that can
be embedded by up to 4%. However, it may not be desired
for large-scale networks to migrate flows that frequently.
Alternatively, reconfiguring at every k-th path request and
reconfiguring only when the solution deviates more than a
threshold from the optimal solution achieve a larger number
of accepted flows at moderate configuration overhead. For that,
the parameter selection plays an important role. The selection
of lower k values and reconfiguration thresholds increases the
reconfiguration frequency. Therefore, they appear as promising
reconfiguration solutions for time-sensitive scenarios.

We envision that due to failures or dynamic traffic patterns,
flow migration would be triggered more often. However, in
such cases the performance becomes a significant design
criteria, especially for time-sensitive networks. Therefore, we
showed the feasibility of such migrations in real-time with
this paper. As future work, we would like to include different
aspects, e.g., minimizing the required flow migrations and
splitting flows into multiple paths. Such aspects enable more
balanced flow placement with better resource utilization.

REFERENCES

[1] “IEEE standard for local and metropolitan area networks–bridges and
bridged networks - amendment 31: Stream reservation protocol enhance-
ments and performance improvements,” 2018.

[2] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual network
embedding: Substrate support for path splitting and migration,” ACM
SIGCOMM Computer Communication Review, vol. 38, pp. 17–29, 2008.

[3] J. Li, W. Shi, P. Yang, and X. Shen, “On dynamic mapping and
scheduling of service function chains in sdn/nfv-enabled networks,” in
IEEE GLOBECOM, 2019, pp. 1–6.

[4] S. Yang, F. Li, S. Trajanovski, X. Chen, Y. Wang, and X. Fu, “Delay-
aware virtual network function placement and routing in edge clouds,”
IEEE Transactions on Mobile Computing, vol. 20, pp. 445–459, 2021.

[5] R. Cziva, C. Anagnostopoulos, and D. P. Pezaros, “Dynamic, latency-
optimal vnf placement at the network edge,” in IEEE INFOCOM, 2018.

[6] H. Hawilo, M. Jammal, and A. Shami, “Orchestrating network function
virtualization platform: Migration or re-instantiation?” in IEEE Cloud-
Net, 2017.

[7] P. Danielis, G. Dán, J. Gross, and A. Berger, “Dynamic flow migration
for delay constrained traffic in software-defined networks,” in IEEE
GLOBECOM. IEEE, 2017, pp. 1–7.

[8] A. Alnajim, S. Salehi, and C.-C. Shen, “Incremental path-selection and
scheduling for time-sensitive networks,” in IEEE GLOBECOM, 2019.

[9] N. G. Nayak, F. Dürr, and K. Rothermel, “Incremental flow scheduling
and routing in time-sensitive software-defined networks,” IEEE Trans-
actions on Industrial Informatics, vol. 14, no. 5, pp. 2066–2075, 2017.

[10] N. S. Bülbül, D. Ergenç, and M. Fischer, “SDN-based self-configuration
for Time-Sensitive IoT Networks,” in 2021 IEEE 46th Conference on
Local Computer Networks (LCN), 2021, pp. 73–80.

[11] “IEEE Standard for Local and Metropolitan Area Networks–Bridges

and Bridged Networks - Amendment 25: Enhancements for Scheduled
Traffic,” pp. 1–57, 2016.

[12] A. Nasrallah, A. S. Thyagaturu, Z. Alharbi, C. Wang, X. Shao,
M. Reisslein, and H. Elbakoury, “Performance comparison of ieee 802.1
TSN time aware shaper (TAS) and asynchronous traffic shaper (ATS),”
IEEE Access, vol. 7, pp. 44 165–44 181, 2019.

[13] G. P. Mccormick, “Computability of Global Solutions to Factorable
Nonconvex Programs: Part I – Convex Underestimating Problems,”
Math. Program., 1976.

[14] D. Li, S. Wang, K. Zhu, and S. Xia, “A survey of network update in
SDN,” Frontiers of Computer Science, vol. 11, no. 1, pp. 4–12, 2017.

[15] T. Häckel, P. Meyer, F. Korf, and T. Schmidt, “SDN4CoRE: A simulation
model for software-defined networking for communication over real-
time ethernet,” in International OMNeT++ Community Summit, 2019.

[16] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The internet topology zoo,” IEEE Journal on Selected Areas in Com-
munications, vol. 29, no. 9, pp. 1765–1775, 2011.

[17] A. Ademaj, D. Puffer, D. Bruckner, G. Ditzel, L. Leurs, M.-P. Stanica,
P. Didier, R. Hummen, R. Blair, and T. Enzinger, “Industrial automation
traffic types and their mapping to QoS/TSN mechanisms,” 2019.

Appendix G

On the Reliability of IEEE 802.1CB
FRER

Abstract

The introduction of IEEE Time-sensitive Networking (TSN) enables the design of real-time
and mission-critical networks based on Ethernet technologies. Apart from providing nec-
essary tools for near-deterministic scheduling, TSN comes with further functionalities for
configurability, security, and reliability. IEEE 802.1CB Frame Replication and Elimination
(FRER) is the only protocol in the TSN toolbox for adding fault-tolerance via sending the
same packets via redundant paths. Although its core functions are defined by the standard,
its effective use mainly depends on the actual deployment scenario and the path selection
strategy. In this paper, we show that FRER can induce unintentional elimination of packets
packets when the paths chosen for a particular packet flow are non-disjoint. We propose the
new metric reassurance that can be used in FRER path selection. Besides, we propose an addi-
tional enhancement to FRER that can prevent unintended packet eliminations independent
from the deployment scenario. Our simulation results indicate that the reassurance-based
path selection performs better than random or maximum-disjoint path selection in random
failure scenarios.

Reference

Doğanalp Ergenç, M. Fischer. On the Reliability of IEEE 802.1CB

FRER. IEEE International Conference on Computer Communications (IN-

FOCOM), 2021.

Contribution

In the forementioned publication, the whole contribution belongs to this thesis. The co-
author helped to improve the quality of the paper with his valuable feedback.

168

On the Reliability of IEEE 802.1CB FRER
Doğanalp Ergenç

Universität Hamburg, DE
ergenc@informatik.uni-hamburg.de

Mathias Fischer
Universität Hamburg, DE

mfischer@informatik.uni-hamburg.de

Abstract—The introduction of IEEE Time-sensitive Network-
ing (TSN) enables the design of real-time and mission-critical
networks based on Ethernet technologies. Apart from providing
necessary tools for near-deterministic scheduling, TSN comes
with further functionalities for configurability, security, and relia-
bility. IEEE 802.1CB Frame Replication and Elimination (FRER)
is the only protocol in the TSN toolbox for adding fault-tolerance
via sending the same packets via redundant paths. Although its
core functions are defined by the standard, its effective use mainly
depends on the actual deployment scenario and the path selection
strategy. In this paper, we show that FRER can induce uninten-
tional elimination of packets packets when the paths chosen for
a particular packet flow are non-disjoint. We propose the new
metric reassurance that can be used in FRER path selection.
Besides, we propose an additional enhancement to FRER that
can prevent unintended packet eliminations independent from
the deployment scenario. Our simulation results indicate that the
reassurance-based path selection performs better than random
or maximum-disjoint path selection in random failure scenarios.

Index Terms—time-sensitive networks, fault-tolerance, FRER

I. INTRODUCTION

From autonomous cars to smart factories, modern safety
critical-systems consist of a multitude of interconnected com-
ponents such as sensors, processors, and embedded controllers.
Those components are distributed over the system and require
a reliable, efficient, and mostly time-sensitive communication
service to operate in concert. In different domains, specifically
tailored networking equipment and dedicated protocols are
being used to satisfy various communication requirements.
For instance, Controller Area Network (CAN), Local Intercon-
nected Network (LIN), and Media Oriented System Transport
(MOST) are designed for an application in the automotive do-
main with its latency and bandwidth requirements [1]. Avion-
ics Full Duplex Ethernet (AFDX) is used and standardized
for avionics to satisfy similar needs [2]. As a result of such
diversity across different domains, there has been a lack of
generic networking equipment and protocols for safety-critical
networks. To overcome this, Time-sensitive Networking (TSN)
standards are recently proposed by the IEEE 802.1 Working
Group to address real-time and deterministic communication
requirements of time-sensitive and safety-critical systems on
top of the IEEE 802.3 Ethernet standard [3]. TSN offers
a spectrum of protocols to manage different traffic classes,
ensure deterministic communication within a bounded delay,
define filtering and networking policies, and improved reli-
ability by using redundant paths. Moreover, TSN allows to
use commodity-off-the-shelf hardware, i.e., Ethernet switches
supporting TSN protocols.

802.1CB Frame Replication and Elimination for Reliability
(FRER) is the primary solution for TSN to tolerate link
and node failures [4]. For that, it offers a static redundancy
mechanism by replicating each packet, i.e., Ethernet frame,
via multiple, preferably node-disjoint redundant paths. FRER
also comes with an elimination mechanism that runs on relay
systems, i.e., Ethernet switches, and end-hosts to drop replica
packets. This mechanism deletes redundantly received packets
and protects the network against loops and babbling idiots,
e.g., stuck senders sending the same packets unintentionally.

When disjoint paths are not possible, finding paths that
maximize fault-tolerance should be the main concern. As the
replica elimination of FRER drops redundant packets, i.e.,
packets with the same sequence number, a relay used in two
paths will drop one replicated flow of packets. Therefore,
poorly selected paths can inhibit both communication reli-
ability and efficiency. Although FRER provides redundancy
via multiple paths, selecting those paths are mostly a matter
of configuration handled by an external network discovery
mechanism such as 802.1Qca Path Control and Reservation
(PCR) [5], which is an extension of 802.1aq Shortest Path
Bridging (SPB) [6] and leverages the Intermediate System to
Intermediate System (IS-IS) routing protocol. In this paper,
we discuss the main issues of FRER and propose different
approaches to use it effectively to ensure reliability. Accord-
ingly, our contributions are:

• We have analyzed FRER and have identified a shortcom-
ing in its packet elimination mechanism that results in
lost packets at the destination in cases where non-disjoint
redundant paths are used.

• We propose a new graph metric, reassurance, to find
redundant paths between given endpoints that maximize
fault-tolerance in case of random node and link failures.
The metric enables selecting suitable paths, independent
from the FRER stack design.

• We enhance the FRER sequence recovery function, to
select better paths and to avoid unintended packet elimi-
nations.

The rest of this paper is structured as follows. Section
II introduces the basics of FRER and describes the main
problem with its elimination mechanism. Section III presents
reassurance as a new graph metric to be used as an effective
path selection strategy. In Section IV, we explain our FRER
enhancements to overcome the described problem. In Section
V, we compare the reassurance-based path selection with
other path selection strategies and show the efficiency of our

Sequence Generation

Stream Splitting

Sequence Encoding

Stream Recovery

Sequence Decoding

Stream Identification

Listener

Relay

Talker Member Stream 1

Member Stream 2-3

1) Talker replicates
packets into 3
member streams

2b) Listener eliminates
duplicates in compound
stream

2a) Relay eliminates
duplicates in the intersection
of streams

Fig. 1: A brief deployment of FRER with two redundant paths

protocol enhancement. Section VI presents the related work.
Lastly, in Section VII, we present a short discussion and the
conclusion.

II. IEEE 802.1CB FRER
FRER is currently the only TSN standard that offers seam-

less protection against packet losses due to link or node
failures, and malfunctioning nodes. In this section, we present
a short overview of FRER and introduce the elimination
problem that hinders its effective use.

A. Protocol Overview

FRER has two main mechanisms: (i) Replication of streams
via different paths at the source node, i.e., TSN talker and (ii)
elimination of replica packets per stream at the relay nodes
or the destination node, i.e., TSN listener. In this section,
we briefly discuss the enabler functions of FRER to realize
those mechanisms. Fig. 1 shows the use of FRER in which
three disjoint paths are assigned to a stream, e.g., two of them
for redundancy. In the figure, both listener and the relay that
forwards two member streams can drop the replicate packets.
Generally, the talker performs

1) Sequence Generation: For each packet of a stream, a
sequence number is generated and it is incremented after
each packet in the same stream.

2) Stream Splitting: k copies are generated for each packet
in a stream to be forwarded via k distinct paths, i.e.,
divided into member streams. Those paths are statically
assigned using, for instance, PCR. While the packets in
a member stream arrive in order, there is no guaran-
teed order for the packets of a compound stream, i.e.,
composed by all member streams across multiple paths.

3) Sequence Encoding: The generated sequence number is
assigned to each packet, so that the same number is used
for each k copies. It is stored in the Redundancy Tag (R-
TAG) in the Ethernet frame. Note that R-TAG requires
a sufficient size to represent the maximum sequence
number for a long stream.

A listener or relay, i.e., an Ethernet switch, performs
1) Stream Identification: It identifies which stream the re-

ceived packet belongs to so that the sequencing informa-
tion associated with that stream can be used. Alternative

stream identification methods such as using source or
destination MAC, and VLAN ID in the Ethernet frame
can be used to distinguish a stream.

2) Sequence Decoding: In decoding, the sequence number
in the received packet is extracted to be compared to the
identified stream’s sequence information.

3) Sequence Recovery: Using the sequencing information
and the decoded number, it discards or accepts the
packet. If the packet is a replica due to (i) being a
redundant member stream or (ii) being sent multiple
times due to an erroneous sender or relay, it is dropped.

4) Latent Error Detection: It detects whether all expected
packets received. It requires a preconfiguration to indi-
cate the exptected number of redundant streams.

Here, the sequence recovery stage is worth further attention:
(i) and (ii) correspond to sequence recovery function (SRF)
and individual recovery function (IRF), respectively. While
SRF processes all paths assigned to a compound stream,
i.e., composed by member streams, IRF processes the stream
coming from a single path, i.e., operating at a single port.
A recovery function utilizes a recovery algorithm to make
packet accept/forward or drop decision. The match recov-
ery algorithm (MRA) keeps track of the received sequence
numbers and drop a packet with a repeating number. The
vector recovery algorithm (VRA), on the other hand, uses
an acceptance interval and forwards only the packets with a
sequence number in that interval to drop outdated or much
ahead packets. A timeout duration is set for both algorithms
to reset the expected sequence number (and interval) to refresh
the recovery function in case of not forwarding any packet for
the specified duration due to occasional failures.

Those functions coexist in each component with many other
Ethernet protocols through the packet processing pipeline.
Therefore, other intermediate functions can be performed, e.g.,
packet filtering rules, in-between. Further details about those
functions, frame structure, and alternative stream identification
methods can be found in the standard specification [4].

B. Problem Statement: Unintended Packet Elimination

In the ideal scenario, a stream is replicated on k disjoint
paths, so that no relay node receives more than one copy of the
same packet. Even if FRER promises a seamless integration, a
network with sufficient number of disjoint paths is needed. If
the network lacks such paths, the SRF may induce unexpected
packet drops due to the packet elimination on junction nodes
which lays on the intersection of multiple paths. Fig. 2 shows
an edge-case scenario where a FRER-enabled talker T and
listener L communicate via three partially overlapping paths,
p1, p2, and p3 (black, green dashed, and blue dotted lines,
respectively). r1, r2, and r3 represent the junction nodes, i.e,
relay systems where multiple paths intersect.

The number of stream packets is investigated at the different
stages between two junction nodes in the figure. While the
numbers at the top show the distribution of traffic in each path
by stage, the ones at the bottom show the amount of packets
in the original stream protected against one or two random

Fig. 2: An edge-case scenario with three intersecting paths

failures as well as the number of packets that have replicas
on redundant paths. Note that the latter is expected to be 100,
as all packets should be protected by redundancy. Stage (a).
Initially, the stream is assumed to have 100 packets replicated
to p1, p2, and p3, i.e., the degree of redundancy is three, in
stage (a). All packets are replicated three times on this setting
and one or two failures that may occur in p1, p2, and p3, can
be tolerated.

Stage (b). At r1, only the first arriving packets from p1
and p2 will be forwarded and all replicated packets will be
dropped. Note that p1 and p2 can carry some other streams
whose amount and type, e.g., priority class, can affect which
path can deliver the packets faster to r1. Here, we assume
that the total load is dynamically changing on both paths and
the stream is divided into p1 and p2 as 60 (i) and 40 (ii)
packets. Those 60 (i) packets in p1 and 40 (ii) packets in p2
are different, i.e., have different sequence numbers, since r1
does not forward the same packet to the same path due to
the elimination of replicas. As a result, in stage (b), in case
of a failure in p3, the main stream would be delivered as two
distinct member streams via p1 and p3, instead of two identical
streams via two disjoin paths. In case of a second failure, e.g.,
at p1 and p3, only 40 (ii) packets on p2 would be delivered.
Moreover, at maximum 60 out of 100 (i) packets are replicated
on each path.

Stage (c). When the packets are forwarded faster on path p1,
r2 drops 60 (ii) packets coming from p3 since it has already
received them from p1 before. Note that the 40 (ii) packets
sent via p2 and p3 are the same packets as they are remained
as a result of the elimination due to the traffic in p1. In case
of the worst-case single node/link failure after r2, i.e., p1 fails
or any 2-failures, only 40 (ii) packets can be delivered to the
destination. Besides, the replicas of only 40 (ii) packets are
forwarded through p2 and p3 whereas 60 (i) packets in p1 are
unique. Thus, in stage (c), the redundancy drops to 40 (ii)

packets in contrast to the initial 100 packets.
Stage (d). As p2 and p3 carry the same 40 (ii) packets,

r3 eliminates the packets coming from one of those paths,
say p2. In stage (d), none of the three paths forwards all 100
packets. The overall scheme cannot tolerate 2-failures at all as
the number of replica packets is virtually 0 after the ones on
p2 are eliminated.

The scenario shows that each node decreases the expected
level of redundancy by eliminating replicas. For an effective
use of FRER in the absence of node-disjoint paths, three
important points should be considered:
• Number of redundant paths: In the absence of disjoint

paths, it may be possible to use more than k paths to
tolerate k − 1 failures and compensate for the possible
inefficiency due to the junction nodes. Therefore, it is
important to evaluate the degree of redundancy to obtain
the desired level of fault-tolerance.

• Number of junction nodes: When two paths intersect,
the unintended elimination of member streams occurs as
shown in the scenario. Therefore, minimizing the number
of junction nodes between the selected paths is crucial.

• Position of junction nodes: An early intersection of
two paths, e.g., within the first few hops, can affect
redundancy worse as replicated packets are eliminated
quickly and the stream becomes vulnerable to any failure
throughout the remaining path. Therefore, this impacts
the number of links ensured to be protected.

In the next section, we propose a graph metric that considers
all three points to evaluate the suitability of selected paths for
their expected degree of redundancy.

III. REASSURANCE AS FRER PATH SELECTION METRIC

In this section, we introduce the novel graph metric reas-
surance that allows to select k different paths between two
endpoints, so that their overlap is minimal and a potential
junction node is close to the receiver. As a result, FRER-
induced packet eliminations can be significantly decreased to
increase fault-tolerance. We define reassurance, τ ∈ [0.0, 1.0]
for a set of paths to quantify how close their overlapping part,
i.e., junction nodes, is to the respective destination nodes if
they are not disjoint. The closer to the destination, the possible
packet elimination on a junction node affects shorter segments
of the paths, and thus it increases the fault-tolerance against
node or link failures. We then extend our definition to evaluate
(i) all set of k-paths between two endpoints to find the best
combination and (ii) a whole graph to check its suitability for
the use of FRER by considering all combinations of endpoints
and k-path in-between.

Let G = (V,E) be a directed graph with nodes u, v ∈ V and
e = (u, v) ∈ E is a directed edge from u to v s.t., e : u→ v.
A path p is defined as sequence of distinct nodes connected
by edges in E s.t., p = (v1, v2, ..., vn) : ∃e ∈ E, e : vi →
vi+1). Accordingly, the set Pk contains the possible set of
k-combinations of the paths in the graph.

As any junction node can affect the forwarded traffic on
either path due to a potential packet elimination, selecting

paths with the junction node(s) farthest from the origin of
the path minimizes the number of links where the traffic can
be affected. Therefore, we define the longest disjoint segment
of a path, `(p, C), that does not affect any intersection.

Definition 1. The longest disjoint segment of path p,
`(p, C), is defined as the segment of p before the first
junction node between p and any other path in a particular
k-combination of paths C = {p, p1, p2, ..., pk−1} and C ∈ Pk.
Defining the overall set of junction nodes between p and
pi ∈ C as V C

p =
⋃

pi∈C p ∩ pi, the index of the first junction
node on p, t(p, C) is:

t(p, C) = min{i : ∀vi ∈ V C
p } (1)

and accordingly, `(p;C) is

`(p, C) = {vi : vi ∈ p ∧ i ≤ t(p, C)} (2)

Corollary 1. The longest disjoint segment of path p is equal
to p when V C

p = ∅. Accordingly, the traffic on p is not a
subject to any elimination. However, the selection of other
paths in the same combination C is still important to obtain
the expected degree of redundancy.

In the absence of disjoint paths, we can partially reassure
the protection against a number of failures, but not all possible
failures on those k paths. Accordingly, the metric reassurance
is defined to evaluate the proportion of path segments where
the flows are protected against any k − 1 failures. Thus, the
end-to-end communication is surely protected via redundancy
against any failure on those segments.

Definition 2. Reassurance of a set of k paths C ∈ Pk,
τ(C), is the ratio of the total length of the longest disjoint
segments of all p ∈ C to the total of number of distinct edges
on those paths. When |`(p, C)| and |p| are the lengths of the
longest disjoint segment of p and the whole p, respectively,
τ(C) becomes

τ(C) =

∑
p∈C |`(p, C)|∑

p∈C |p|
(3)

Reassurance enables us to evaluate a set of paths in terms of
the three factors described in Section II-B. To find the best set
of paths between two endpoints, i.e., the set with the highest
reassurance, we should consider all possible combinations of
k paths between two nodes u and v.

Definition 3. Reassurance between two nodes u and v,
τ(u, v, k) is defined as the maximum reassurance among all
k-combination of paths between u and v, Puv

k ∈ Pk s.t.,
Puv
k = {pi = (v1, v2, ..., vj) : (v1 = u ∧ vj = v) ∧ i ≤ k}.

τ(u, v, k) = max{τ(C) : C ∈ Puv
k } (4)

From a practical perspective, apart from the value τ(u, v, k),
it is important to obtain the best combination of paths C ∈
Puv
k to be used in the configuration of FRER. That selected

combination is the one we have used in our simulations for
randomly selected pairs of endpoints.

Lastly, the evaluation of the whole graph reveals to which
extend it allows an effective configuration of FRER. To

r1

r2

e1

e2

e3

e4

e5

e6

Fig. 3: A small graph to illustrate the calculation of reassur-
ance of three paths between two nodes

evaluate the whole graph, we get the average reassurance
between all possible pairs of nodes in the graph.

Definition 4. Reassurance of a graph for k-redundancy
is the average reassurance of all node pairs in terms of k-
combinations of paths.

τ(G, k) =

∑
u,v∈V τ(u, v, k)(|V |

2

) (5)

Corollary 2. If there are k disjoint paths between any pair
of nodes in G, τ(G, k) is 1.0 and all links are protected against
k − 1 failures. In that case, a listener node is guaranteed to
be received the expected amount of redundant traffic. For any
value 0.0 < τ(G, k) < 1.0, even though some replica pakets
might be dropped on the fly, the partial protection against the
node and link failures is proportional to τ(G, k). Fig. 3 shows
a sample graph with three paths, p1, p2 and p3 between two
nodes. r1 and r2 are the junction nodes on p2 and p3, and p1 and
p2, respectively. Here, any two link failures occured after r1
and r2 (namely on links e1-e6) can disrupt the communication.
For instance, when e3 and e6 fail at the same time and r1
eliminates the traffic coming from p3, no packets are received
by the listener. The length of the longest disjoint segments of
p1, p2 and p3 are 4, 1, and 2 (i.e., until r2 and r1), respectively.
Therefore, the reassurance is τ(C) = (4+1+2)/(13) = 0.54
for C = {p1, p2, p3}.

In Section V, we evaluate the effectiveness of the reas-
surance as a path selection strategy. We also present a brief
analysis by comparing it with several graph metrics from the
literature.

IV. SEQUENCE RECOVERY ENHANCEMENTS

Although our prior goal is utilizing a path selection strategy
without modifying the protocol implementation, it is also
possible to utilize SRF more effectively to avoid unintended
eliminations. Note that, as discussed in Section VII, the
FRER standard suggests alternative designs for the packet
processing stack according to different use cases and network
architectures. However, those designs may induce further
complexity, where each switch utilizes different set of FRER
functions and is individually configured for stream splitting
and elimination. In this section, we enhance the SRF by
combining it with the latent error detection function (LED) of
FRER to avoid unintended eliminations without re-designing
and reconfiguring the packet processing stack for each switch.

The main cause of unintended eliminations are relay sys-
tems that are not aware of whether they are junction nodes
and that drop redundant packets. When a relay can infer its
position as a junction node, it can forward a certain number of
replicas instead of eliminating them immediately. To establish
that, we made two modifications to SRF. First, a switch as
part of its control plane detects by itself if it is a junction
node. Second, the SRF tolerates the first k packets, where
k is the junction degree, and forward rather than eliminate
them. The junction degree of a switch represents the number of
paths, that include the switch and are assigned to a particular
stream. For a stream, if the junction degree of a switch is
0, it means that the switch is not on a path used by that
stream. If it is 2, for instance, the switch expected to receive
packets for that stream from two different paths. Eventually,
a junction node can evaluate precisely how many replicas it
should expect per packet of a stream using the junction degree
and eliminate the excessive number of packets in case of,
for instance, maliciously duplicated or misrouted packets after
forwarding the expected replicas. Therefore, it minimizes the
number of replicas to avoid unintended eliminations.

For those modifications, we assume that

1) On the control plane, we used a simplified version of
PCR embracing SPB. As SPB leverages IS-IS, which
is a link-state routing protocol to enable link layer
routing, relays can obtain a network-wide view and thus
end-to-end paths between talkers and listeners [7]. Path
configuration and assignments are currently planned to
be handled by PCR in the TSN standards.

2) The LED is used not only by the listener but also
by intermediate relays to track the number of received
replica packets per stream.

The use of IS-IS enables each relay to have a broader view
of the network beyond its direct neighbors to forward packets.
When utilized with a metric, for instance with reassurance,
each relay can find end-to-end paths for a stream and calculate
their junction degree. Note that as all relays have the same
network view, all relay will calculate the same paths. Apart
from that, if paths are configured by a controller as specified
in PCR, relays could still detect how many paths they are
involved in.

A relay can compute the expected number of replicas for
a stream by calculating its junction degree without further
configuration. It still needs to keep track of the number of
received replicas to eliminate more than the expected number
specified by the junction degree. Erroneous packet forwarding,
malicious packet injections, or stuck senders may result in
nodes receiving packets received from unexpected ingress
ports. Here, the main function of LED is counting the number
of packets received for a stream and alarming, for instance
a controller, in those cases. Note that LED requires to be
configured with the expected number of replicas (or degree
of redundancy), which is computed locally as junction degree
in our approach, to detect if there is any packet absent. We
utilize the output of LED to forward a number of replicas

IR

eSRFLED

SPB
Ju

n
ctio

n

d
egree

ISIS

PCR

IR

IR

IR

1c) Forwarding rules or
explicit path
configuration

2c) Calculating junction
degree according to
forwarding configuration

3c) Configuring sequence
recovery function with
junction degree per stream

1d) Eliminating
replicas per port

2d) Counting replicas
for possible error
detection

3d) Eliminating if replicas are received
more than junction degree

4d) Forwarding to
relaying logic

C
o

n
tr

o
l P

la
n

e
D

at
a

P
la

n
e

Relay Unit

Fig. 4: Simplified TSN switch model describing control and
data plane modules

limited by junction degree before elimination. Doing so, we
only allow the number of replicas as many as the number of
paths assigned to the stream. Any further replicas that might
be received due to any error are still eliminated. Accordingly,
Fig. 4 shows the main modules related to FRER and our
enhancements to the packet processing pipeline of a TSN
switch. From the configuration in the control plane of the
switch to applying enhanced sequence recovery on the data
plane, all steps are briefly shown in the figure. On the control
plane of the switch, the following steps are carried out:

1) The relay is configured to forward the packets of stream
s through given egress ports by a controller or requested
to find k paths with respect to given metric, for instance
maximal-disjoint or reassurance. In a distributed config-
uration scheme, such requests can be handeld via the
Stream Reservation Protocol (SRP) [8].

2) The relay calculates the junction degree concerning the
number of configured ports or calculated paths.

3) The SRF is configured with the calculated junction
degree for the given stream, which is identified by the
stream identification function.

When a packet is received, the following steps are carried out:

1) On each ingress port, incoming packets are identified
by the stream identification function and processed by
the individual recovery function, e.g., match recovery,
if they have an R-TAG indicating the use of the FRER
protocol. If a replica packet is received, it is directly fil-
tered without forwarding it to the relay unit. Otherwise,
packets are forwarded to the relay unit. Note that it only
considers the replicas received on a single port.

2) The LED function counts the number of replicas re-
ceived for stream s.

3) The enhanced SRF (eSRF) checks if a received packet
is a replica or has a sequence number within an accept-
able interval, e.g., in the acceptance window of vector
recovery function. If the packet is a replica, the eSRF
checks the number of received replicas for s. If that
number is smaller than the relay’s junction degree, the
packet is not eliminated but forwarded.

4) The forwarding logic applies the remaining forwarding
rules, e.g., applying any other Ethernet protocol.

V. EVALUATION

In this section, we evaluate the performance of reassurance-
based path selection and our enhancement for sequence re-
covery, eSRF. We compare reassurance-based path selection
with random selection and maximum-disjoint selection, i.e.,
selecting the paths with the minimum number of intersections,
strategies for increasing degree of redundancy (DoR), i.e.,
more redundant streams for protection against a higher number
of possible failures. In accordance with the factors discussed
in Section II-B, random, maximum-disjoint, and reassurance-
based strategies represent the impact of the number of selected
paths selected without any further consideration, the number
of junction nodes, and the position of junction nodes, respec-
tively. Note that apart from the position of junction nodes,
reassurance-based selection also minimizes their numbers to
maximize the protected segments of the paths.

After the selection of paths, we simulate k− 1 random link
failures for k redundancy. It is not possible to guarantee the
desired redundancy without completely disjoint paths; thus, we
aim to protect the communication against most of the failure
scenarios, e.g., increasing the probability of fault-tolerance. As
we examine different k, the effect of an increasing number of
failures is also observed.

For the simulations, we use a very similar architecture
presented in Fig. 4 without (i) the function for determining
the junction degree and (ii) the eSRF for the basic, i.e., not
enhanced, model. We implemented the basic and enhanced
models in OMNeT++ 5.5.1v, including control plane pro-
tocols. The selected topology is analyzed offline to calcu-
late maximum-disjoint and reassurance-based paths. Based on
these precalculated paths, we simulate our FRER framework.

A. Simulation Setup

For our simulations, we used a real topology of the tier 1
network UUNET 1 as shown in Fig. 5. The network contains
49 nodes with an average node degree of 3,42. We have
simulated this topology by converting UUNET nodes to TSN
switches and connecting two endpoints, e.g., possible listeners
and talkers, to each switch. To test higher degrees of redun-
dancy in more connected topologies, we have also made the
same conversion for randomly generated higher-connectivity
topologies. For each simulation run, two nodes (connected to
different switches) are randomly selected as talker and listener
provided that they have a certain number of redundant paths
in-between. For network traffic, we have generated a best-
effort stream with 100-150 packets and uniformly-distributed
interarrival time for 60 seconds.

As FRER is designed for time-sensitive systems, the se-
lected UUNET topology as a distributed backbone network
may not completely reflect their characteristics. However, due
to the lack of TSN topology datasets, e.g., in-vehicle networks,

1The topology datasets in Table I and Fig. 5 are taken from
http://www.topology-zoo.org/dataset.html

Fig. 5: UUNET in USA, 2011

we chose UUNET as a network of reasonable size and
connectivity (3,42 average node degree) and thus a sufficient
number of redundant paths between nodes.

B. Results

In this section, we compare the path selection strategies
in terms of packet delivery performance, path lengths and
length variances as well as the position of junction nodes.
Moreover, we compare reassurance with other graph metrics
in the literature and show the effectiveness of our enhancement
to the SRF.

Delivery Performance. Fig. 6 shows the packet delivery
ratio for each path selection strategy in dependence on the
DoR, i.e., the number of redundant paths used, (a) with and
(b) without simulated failures. Fig. 6a shows the results for
k − 1 random link failures and k redundancy. For k = 2 and
k = 3, the reassurance-based selection results in the highest
packet delivery ratio. Here, the expected number of packets
to be delivered is the total number of distinct packets since
the replica packets are not expected to be delivered in case of
k− 1 failures. For k = 4, any combination of paths results in
a large number of packet eliminations as UUNET’s average
node degree is less than four and thus the paths are resulting to
have a lot of overlap and junction nodes. Note that no strategy,
including our approach, achieves 100% packet delivery. In
the absence of suitable paths in the network, the packet loss
is inevitable and reassurance can only offer the best among
already-intersecting FRER-paths.

Fig. 6b shows the normalized number of delivered packet
for the scenarios without failures. This time, the expected
number of packets (yellow bar) includes the replicas as they
would also be delivered to the listener if not eliminated on the
junction nodes. The figure depicts that whereas the number of
replica packets is increasing with the degree of redundancy,
the number of delivered packet does not significantly change
because they were eliminated before being delivered to the
destination. As more replicas are eliminated on the junction
nodes, it results in a decreasing delivery ratio considering the
increasing number of replica packets.

To test the performance reassurance-based selection in a net-
work supporting a higher degree of redundancy than UUNET,
we also generated smaller but denser random topologies with
30 to 50 nodes and a (fixed) average node degree of 4,2.
Fig. 7 shows the delivery ratio in presence of k − 1 failures

2 3 4
Degree of redundancy

0
10
20
30
40
50
60
70
80
90

De
liv

er
ed

 P
ac

ke
ts

 (%
)

Random Disjoint Reassurance

(a) With failure

2 3 4
Degree of redundancy

0

20

40

60

80

De
liv
er
ed

 P
ac
ke

ts
 (N

or
m
al
ize

d)

Expected
Random

Disjoint
Reassurance

(b) Without failure

Fig. 6: Delivery ratio for increasing DoR in UUNET

for a degree of redundancy of k. We observe that with an
increasing number of alternative paths, the reassurance-based
path selection results in a much higher delivery ratio than
random and maximum-disjoint selection strategies. Even for
k = 4, as the denser topology increases the number of disjoint
paths, reassurance achieves a delivery ratio of more than 70%.

2 3 4
Degree of redundancy

0
10
20
30
40
50
60
70
80
90

De
liv

er
ed

 P
ac

ke
ts

 (%
)

Random Disjoint Reassurance

Fig. 7: Delivery ratio in a random network with failures

In case of an immediate intersection of paths, i.e., early
junction nodes at first a few hops of the paths, the possibility
of packet loss would be higher. The reason is that the number
of links or nodes, whose failures can disrupt the service due to
the unintended elimination in the early junction node, would
also be higher. The reassurance-based selection gives better
results since it considers the positions of those critical junction
nodes and minimizes the number of those risk-induced links
and nodes.

Path Lengths. The maximum-disjoint- and reassurance-
based selection both take the number of junction nodes into
account. Although both strategies can provide better paths for
an effective use of FRER, they also have disadvantages, e.g.,
selecting longer paths for the sake of fewer junction nodes.
Especially in TSN, longer paths require further configuration
and maintainance of the traffic shapers that are decisive for the
communication end-to-end latency. In fact, the maximum end-
to-end latency of time-sensitive traffic classes is guaranteed
up to seven hops in IEEE standards [9]. Besides, paths that
differ in length significantly can lead to out-of-order packet
delivery and degradation in service quality if the shorter path

fails. Annex C.9 of [4] discusses that issue in more detail. Fig.

2 3 4
Degree of redundancy

0.0

2.5

5.0

7.5

10.0

12.5

Av
er
ag

e
pa

th
 le

ng
th

Random
Disjoint

Reassurance
Shortest

(a) Length

2 3 4
Degree of redundancy

0

1

2

3

4

Av
g.
 st

d.
 d
ev

ia
tio

n

Random Disjoint Reassurance

(b) Standard deviation in length

Fig. 8: Path length analysis for increasing DoR in UUNET

8a and Fig. 8b show the average path length and the average
standard deviation in path lengths for different path selection
strategies in UUNET, respectively. As depicted in Fig. 8a,
while the average length of shortest paths is 2,5, both, the
maximum-disjoint and the reassurance-based selection result
in paths of 6,5-7,5 hops on average. Note that even though
it mainly depends on the network size and characteristics,
selecting redundant paths comes at the cost of an increased
delay. However, both strategies still offer shorter paths than a
random path selection.

Fig. 8b shows the average standard deviation in path lengths.
One of the desired properties for FRER is having redundant
paths that provide close end-to-end latency so that there is
not a considerable jitter at the listener in case of a failure. As
can be seen in the figure,, maximum-disjoint and reassurance-
based selections can find paths with more than 3,5 hops
deviation, which results in up to 11 hops for the average
end-to-end path. Without further constraints to limit the path
length, such a selection would violate the quality of service
requirements of time-sensitive traffic classes that are defined
for at most 7-hop paths [9]. That restriction can be satisfied
by limiting the length of candidate paths in advance. Apart
from such practical concerns on the standard-compliance,
reassurance-based selection has no more disadvantages than
the maximum-disjoint strategy.

Position of Junction Node. A junction node closer to the
talker decreases the resilience against random failures due
to the elimination mechanisms as discussed in Section II-B
and III. The main advantage of a reassurance-based path
selection is that paths are selected that do not overlap at
all or when they overlap they do that closer to the actual
destination. Fig. 9 shows the distribution of the position of
junction nodes for each selection strategy in the first quarter
(Q1), half, and third quarter (Q3). On the left-most histogram,
most of the paths given by random selection strategy overlap
on Q1, i.e., close to the talker, and thus packets get eliminated
very early. As the maximum-disjoint selection does not take
the position of nodes at which paths intersect into account,
the paths also overlap close to the talker very often. The
reassurance-based path selection results in overlapping paths

closer to the listener, which decreases the early elimination
of packets significantly and increases the fault-tolerance with
less impact of unintended eliminations.

Q1 Ha
lf Q3

0

2

4

6

8

Q1 Ha
lf Q3 Q1 Ha

lf Q3

Position of Junction Nodes

De
ns

ity

Random Disjoint Reassurance

Fig. 9: Position of junction nodes in UUNET

Analysis of Reassurance. We compare reassurance and
several well-known metrics to examine their possible use to
evaluate the reliability of FRER in a given network. Table I
shows the results of different metrics for some sample topolo-
gies to compare with the reassurance. Here, eccentricity of a
node is the longest hop count between that node and any other
node. Betweenness of a node is the number of shortest paths
traversing that node [10]. Closeness of a node is the reciprocal
of the sum of all shortest paths from that node to all other
nodes [11]. Assortivity of a graph represents the correlation
between the degrees of neighbor nodes to measure if nodes
connect to nodes with similar degree [12]. Lastly, clustering
coefficient of a node quantifies how close its neighbours are
to being a clique [13]. All node metrics are extended to be
used for the whole graph by taking average of the metric
values for all member nodes. Table I also shows the correlation
between selected metrics and reassurance. Here, reeassurance
has a strong negative correlation (-0.97) with eccentricity
and a strong positive correlation (0.99) with closeness. While
eccentricity is increasing with the presence of longer paths,
closeness is higher in a network with closer nodes, or shorter
paths. Then, according to the correlation results, reassurance
is expected to be higher in denser networks where the shortest
distances between nodes are relatively shorter. Besides, those
two metrics can be also used to evaluate a whole graph
for an effective use of FRER. Even though eccentricity and
closeness give similar results fo the whole graph, we can use
reassurance to obtain the best combination of paths for end-
to-end communication. In comparison to other metrics, it has
a huge practical advantage for the deployment of FRER.

Performance of eSRF. As described in Section IV, we
modify the SRF to provide switches a limited ability to avoid
the unintended elimination of packets due to path intersections.
Fig. 10 shows the results for the same scenarios in UUNET
whose results are given in Fig. 6a. Under k − 1 failures,
maximum-disjoint and reassurance-based strategies offer up to

80-90% delivery ratio. Note that although their packet delivery
performances are slightly different, their mostly overlapping
confidence intervals show that our enhancement works equally
well for both selection strategy. Besides, while all strategies are
still affected by the failures, they perform better in comparison
to the results in Fig. 6a. For further improvements, networks
with more preferably disjoint paths are required.

2 3 4
Degree of redundancy

0

20

40

60

80

100

De
liv
er
ed

 P
ac
ke

ts
 (%

)

Random Disjoint Reassurance

Fig. 10: Delivery ratio of enhanced sequence recovery function

Note that one of our assumptions for eSRF design is
the existence of a link-state routing protocol, IS-IS, which
enables path finding without a centralized controller that has
a network-wide view. It may not be directly suitable for TSN
that requires a tedious configuration, not only for routing but
also for scheduling and time-synchronization as well. When
a centralized controller exists, it can directly configure relays
with their junction degrees, so that they can tolerate a certain
number of duplicate packets before starting to eliminate them.
The design of eSRF allows such a configuration, independent
from the routing technique.

VI. RELATED WORK

In this section, we briefly present the existing works on
redundancy mechanisms in Ethernet and TSN, and other
studies that analyze FRER.

Redundancy in Ethernet. The Parallel Redundancy Pro-
tocol (PRP) and the Highly-available Seamless Redundancy
(HSR) are two standards that are proposed by the International
Electrotechnical Commission (IEC) and provide seamless
failover similar to FRER [14]. PRP offers a layer two redun-
dancy and invisible to any higher-level network protocols. A
node has to have two Ethernet interfaces with the same MAC
address that are connected to two independent LANs, one for
the main communication and the other one is for redundancy.
Packet traffic is mirrored to both LANs to the destination
nodes, which are also connected to both LANs. They process
only the first arriving copy of a packet and ignore the second.
In this sense, PRP provides an end-to-end redundancy, i.e.,
replica packets are eliminated at the end nodes.

HSR, on the other hand, is designed for networks following
a ring topology without switches. A source node sends packets
through opposite directions via two ports at the same time.
The copies traverse the ring via both directions and the first
arriving copy is processed by the destination. In this case,

TABLE I: Calculation of reassurance for k = 3 in various network and its correlation between well-known graph metrics

Network Nodes Edges
Average
Degree Reassurance. Eccentricity Betweenness Closeness Assortivity

Clustering
Coefficient

Bell Canada 48 64 2.6 0.21 10.14 0.09 0.19 -0.22 0.15
Columbus Networks 70 85 2.4 0.12 13.7 0.09 0.14 -0.16 0.04

Colt Telecom 153 177 2.3 0.04 15.11 0.04 0.12 -0.32 0.03
UUNET 49 84 3.42 0.41 5.97 0.04 0.31 0.54 0.14
GTS CE 149 193 2.6 0.07 16.30 0.05 0.11 -0.09 0.08

Pearson correlation between reassurance -0.97 -0.06 0.99 0.75 0.78

all intermediate nodes should support HSR, even if replica
packets are eliminated at the end nodes.

While PRP can be easily implemented in the network stack,
e.g., as a software component, HSR requires special hardware.
As a result, a HSR network uses HSR nodes and modified
HSR packets and requires extra interfaces to integrate standard
Ethernet equipment. PRP, in contrast, can be directly deployed
on Ethernet switches and uses standard Ethernet packets. In
comparison to PRP and HSR, FRER is a more generic solution
as it is topology-agnostic, permits communication between
Ethernet devices and FRER capable ones, and thus enables
seamless integration. A brief overview of those protocols and
their comparison is shown in Table II.

Other Ethernet protocols such as Rapid Spanning Tree
Protocol (RSTP) [15] and 802.1aq Shortest Path Bridging
(SPB) [16] also offer dynamic failover. However, they do not
offer real-time recovery as they switch to redundant paths
only after detecting the failure, i.e., being reactive protocols.
Moreover, there are other redundancy protocols such as Cross-
network Redundancy Protocol (CRP) and Media Redundancy
Protocol (MRP), which have quite similar aspects with PRP
and HSR and thus omitted here.

TABLE II: Comparison between PRP, HSR, and FRER

PRP HSR FRER

Implementation Software Hardware Software
Frame Type Ethernet Custom Ethernet

Topology Parallel Ring Any
Redundancy Active Active Active

Seamless integration No No Yes

Redundancy in TSN. There are limited standardized re-
liability mechanisms offered by the IEEE TSN Task Group.
Only FRER offers zero recovery time, i.e., being proactive, by
redundancy [17]. In [18], the authors compare pros and cons of
two different protocol stack designs for redundancy protocols:
decoupled with or integreated to the stream reservation. Lastly,
[19] investigates the domain-specific use of FRER focusing on
real-time components in the Industry 4.0.

FRER Analysis. Existing test and simulation platforms
mostly focus on time-based scheduling features of TSN pro-
tocols [20], [21]. In [22], the authors propose a simulation
model for redundancy management and realize various failure
scenarios to show the impact of FRER. In [23], a detailed
overview of FRER is presented. Besides, the authors imple-
ment a standard-compliant model and verify the effectiveness
of FRER without discussing any numerical result.

The authors of [24] present the use of FRER in various
topologies and discusses practical issues and working princi-
ples. In [25], the authors discuss the limitations of FRER and
specifically address buffer dimensioning for sequence num-
bers, inadequacy of error feedback mechanism, out-of-order
delivery, extra network load, and its sensitive configuration.

Consequently, even though its dynamics, certain limitations,
and coexistence with other time-based TSN protocols are
discussed in a few studies, the impact of the path selection
and the use of elimination mechanism are not investigated for
FRER yet. In this study, we aim to address that gap.

VII. CONCLUSION

In conclusion, as IEEE TSN standards are very promising
to become the backbone of modern safety-critical networks,
FRER will be their primary reliability mechanism. For this
reason, we have to ensure that it provides the expected degree
of fault-tolerance. Here, we have discussed a possible misuse
of the packet elimination mechanism of FRER that may cause
unintended packet drops and hinder fault-tolerance.

There are alternative FRER stack designs suggested by
the standards. They require further configuration of stream
splitting on switches to avoid unintended packet eliminations.
The functions of FRER can be flexibly positioned within the
packet processing pipeline in different orders or availability,
on a talker, listener, or relay nodes as described in Annex
C [4] (namely Annex C). Even though such flexibility in
design might be advantageous, it is often not necessary, and if
implemented naı̈vely, can increase the complexity [4]. Apart
from flexible positioning, there are also alternative usages of
internal parameters, e.g., passing stream handlers through the
packet processing stack to enhance the recovery logic. In this
paper, we have mostly focused on the path selection to avoid
possible shortfalls of the elimination mechanism regardless
of different stack designs or implementation details. Fewer
junction nodes results in a decreased probability that a single
failure can affect multiple paths at the same time. For that,
we proposed the novel metric, reassurance, to evaluate the
suitability of paths to be used for FRER. Our simulation results
indicate that reassurance can be utilized in an effective path
selection strategy. It is less affected by random node failures in
comparison to a random and maximum-disjoint path selection.

Moreover, we have introduced an enhancement on the
sequence recovery function (eSRF) independent and show that
it overcomes the unintended elimination of packet.

REFERENCES

[1] S. Tuohy, M. Glavin, C. Hughes, E. Jones, M. Trivedi, and L. Kilmartin,
“Intra-Vehicle Networks: A Review,” IEEE Transactions on Intelligent
Transportation Systems, vol. 16, pp. 534–545, April 2015.

[2] S. Schneele and F. Geyer, “Comparison of IEEE AVB and AFDX,” in
IEEE/AIAA 31st Digital Avionics Systems Conference (DASC), pp. 7A1–
1–7A1–9, Oct 2012.

[3] “Time-Sensitive Networking (TSN) Task Group.” Available at
https://1.ieee802.org/tsn/.

[4] “IEEE Standard for Local and Metropolitan Area Networks–Frame
Replication and Elimination for Reliability,” IEEE Std 802.1CB-2017,
pp. 1–102, Oct 2017.

[5] “IEEE Standard for Local and Metropolitan Area Networks Bridges and
Bridged Networks Amendment 24: Path Control and Reservation,” IEEE
Std 802.1Qca-2015, pp. 1–120, March 2016.

[6] “IEEE 802.1aq Shortest Path Bridging (SPB).” Available at
https://1.ieee802.org/tsn/802-1aq-shortest-path-bridging/.

[7] D. Fedyk, D. Allan, P. Ashwood-Smith, N. Bragg, J. Farkas, M. Ouellete,
M. Seaman, and P. Unbehagen, “RFC 6329: IS-IS Extensions Supporting
IEEE 802.1aq Shortest Path Bridging,” tech. rep., Internet Engineering
Task Force, 2012.

[8] “IEEE Standard for Local and Metropolitan Area Networks–Virtual
Bridged Local Area Networks Amendment 14: Stream Reservation Pro-
tocol (SRP),” IEEE Std 802.1Qat-2010 (Revision of IEEE Std 802.1Q-
2005), pp. 1–119, 2010.

[9] “IEEE Standard for Local and Metropolitan Area Networks–Audio
Video Bridging (AVB) Systems,” IEEE Std 802.1BA-2011, pp. 1–45,
2011.

[10] U. Brandes, “On Variants of Shortest-Path Betweenness Centrality and
their Generic Computation,” Social Networks, vol. 30, no. 2, 2008.

[11] L. C. Freeman, “Centrality in social networks conceptual clarification,”
Social Networks, vol. 1, no. 3, pp. 215 – 239, 1978.

[12] M. E. J. Newman, “Mixing patterns in networks,” Phys. Rev. E, vol. 67,
p. 026126, Feb 2003.

[13] T. Schank and D. Wagner, Approximating clustering-coefficient and
transitivity, vol. 2004 of Interner Bericht. Fakultät für Informatik,
Universität Karlsruhe. Universität Karlsruhe, Karlsruhe, 2004.

[14] “Industrial communication networks - High availability automation
networks - Part 3: Parallel Redundancy Protocol (PRP) and High-
availability Seamless Redundancy (HSR),” IEC 62439-3:2016 RLV,
pp. 1–540, March 2016.

[15] “IEEE Standard for Local and Metropolitan Area Networks: Media
Access Control (MAC) Bridges,” IEEE Std 802.1D-2004 (Revision of
IEEE Std 802.1D-1998), pp. 1–281, June 2004.

[16] M. Seaman and D. Fedyk, “IEEE Std 802.1aq Shortest Path Bridging,”
tech. rep., IEEE 802.1 Working Group, 2012.

[17] A. Nasrallah, A. S. Thyagaturu, Z. Alharbi, C. Wang, X. Shao,
M. Reisslein, and H. ElBakoury, “Ultra-Low Latency (ULL) Networks:
The IEEE TSN and IETF DetNet Standards and Related 5G ULL
Research,” IEEE Communications Surveys Tutorials, vol. 21, pp. 88–
145, Firstquarter 2019.

[18] S. Kehrer, O. Kleineberg, and D. Heffernan, “A comparison of fault-
tolerance concepts for IEEE 802.1 Time Sensitive Networks (TSN),”
in Proceedings of the 2014 IEEE Emerging Technology and Factory
Automation (ETFA), pp. 1–8, Sep. 2014.

[19] F. Prinz, M. Schoeffler, A. Lechler, and A. Verl, “End-to-end Redun-
dancy between Real-time I4.0 Components based on Time-Sensitive
Networking,” in IEEE 23rd International Conference on Emerging
Technologies and Factory Automation (ETFA), vol. 1, pp. 1083–1086,
Sep. 2018.

[20] J. Jiang, Y. Li, S. H. Hong, A. Xu, and K. Wang, “A Time-sensitive
Networking (TSN) Simulation Model Based on OMNET++,” in IEEE
International Conference on Mechatronics and Automation (ICMA),
pp. 643–648, Aug 2018.

[21] J. Falk, D. Hellmanns, B. Carabelli, N. Nayak, F. Dürr, S. Kehrer, and
K. Rothermel, “NeSTiNg: Simulating IEEE Time-sensitive Networking
(TSN) in OMNeT++,” in 2019 International Conference on Networked
Systems (NetSys), pp. 1–8, IEEE, 2019.

[22] M. Pahlevan and R. Obermaisser, “Redundancy Management for Safety-
Critical Applications with Time Sensitive Networking,” in 28th In-
ternational Telecommunication Networks and Applications Conference
(ITNAC), pp. 1–7, Nov 2018.

[23] S. Qian, F. Luo, and J. Xu, “An Analysis of Frame Replication and
Elimination for Time-Sensitive Networking,” in Proceedings of the 2017
VI International Conference on Network, Communication and Comput-
ing, ICNCC 2017, (New York, NY, USA), p. 166–170, Association for
Computing Machinery, 2017.

[24] G. Ditzel, “High Availability in EtherNet/IP Systems Using Frame
Replication and Elimination for Reliability (FRER) as defined in the
TSN Standard IEEE 802.1CB-2017,” in ODVA 18th Industry Conference
and Annual Meeting, October 2018.

[25] R. Hofmann, B. Nikolić, and R. Ernst, “Challenges and Limitations of
IEEE 802.1CB-2017,” IEEE Embedded Systems Letters, pp. 1–1, 2019.

Appendix H

Implementation and Orchestration of
IEEE 802.1CB FRER in OMNeT++

Abstract

IEEE 802.1 Time-Sensitive Networking (TSN) family of standards enables real-time and de-
terministic networks on top of standard Ethernet. It also offers a seamless redundancy
protocol, IEEE 802.1CB Frame Replication and Elimination for Reliability (FRER), to protect
the network against node and link failures. Although its effective use is currently being
studied by many researchers, the management of FRER can be complicated and limited to
only small topologies. Manual configuration of switches is required as there is not any im-
plemented management protocol yet. In this paper, we describe our implementation of the
FRER protocol in OMNeT++. Besides, we implement additional control plane protocols, In-
termediate System to Intermediate System (IS-IS) and IEEE 802.1aq Shortest Path Bridging
(SPB), for network discovery and link layer routing to configure FRER properly for multi-
path communication. As SPB is the main instrument of the path reservation mechanism in
TSN, our framework enables to simulate large-scale time-sensitive networks together with
reliability and orchestration mechanisms. The whole implementation is available as open-
source.

Reference

Doğanalp Ergenç, M. Fischer. Implementation and Orchestration of

IEEE 802.1CB FRER in OMNeT++. IEEE International Conference on

Communications (ICC), Workshop on Time-sensitive and Deterministic

Networking, 2021.

Contribution

In the forementioned publication, the whole contribution belongs to this thesis. The co-
author helped to improve the quality of the paper with his valuable feedback.

179

Implementation and Orchestration of
IEEE 802.1CB FRER in OMNeT++

Doğanalp Ergenç, Mathias Fischer
University of Hamburg

{ergenc, mfischer}@informatik.uni-hamburg.de

Abstract—IEEE Time-sensitive Networking (TSN) family of
standards enables real-time and deterministic networks on top of
standard Ethernet. It also offers a seamless redundancy protocol,
802.1CB Frame Replication and Elimination for Reliability
(FRER), to protect the network against node and link failures.
Although its effective use is currently being studied by many
researchers, the management of FRER can be complicated and
limited to only small topologies. Manual configuration of switches
is required as there is not any implemented management protocol
yet. In this paper, we describe our implementation of the FRER
protocol in OMNeT++. Besides, we implement additional control
plane protocols, Intermediate System to Intermediate System
(IS-IS) and 802.1aq Shortest Path Bridging (SPB), for network
discovery and link layer routing to configure FRER properly for
multipath communication. As SPB is the main instrument of the
path reservation mechanism in TSN, our framework enables to
simulate large-scale time-sensitive networks together with relia-
bility and orchestration mechanisms. The whole implementation
is available as open-source.

Index Terms—TSN, FRER, SPB, IS-IS, simulation, OMNeT++

I. INTRODUCTION

The family of Time-sensitive Networking (TSN) standards
have been recently proposed by the IEEE 802.1 Working
Group. They extend IEEE 802.3 Ethernet standard [1] to
satisfy time-sensitive communication requirements of mission-
critical systems, e.g., in automotive, aviation, and industrial
networks. TSN offers a set of protocols, which can be im-
plemented on commodity-off-the-shelf Ethernet hardware, to
manage different traffic classes, ensure deterministic commu-
nication within a bounded delay, define filtering and network-
ing policies, and improve reliability by seamless redundancy.

802.1CB Frame Replication and Elimination for Reliability
(FRER) is the primary solution for TSN to tolerate link
and node failures [2]. For that, it offers a static redundancy
mechanism by replicating each packet, i.e., Ethernet frame,
via multiple redundant paths. FRER also comes with an
elimination mechanism that runs on relay systems and end-
hosts to drop replica packets. This mechanism drops replica
packets and protects the network against loops and babbling
idiots.

Although FRER introduces a set of functions to implement
reliable communication, it still requires a tedious configuration
scheme to utilize those functions. In the standard, alternative
deployments and configurations are specified. For example,
while it is possible to assign multiple static redundant paths
between a talker and listener, configuring each intermediate

switch on an end-to-end path to initiate packet duplications
on the fly is also an alternative that provides further flexibility
in spite of requiring manual configuration. Therefore, we have
to deploy a controlling mechanism, preferably following the
(control plane) architectures in the respective standard TSN
[3], to find multi-hop end-to-end paths and utilize FRER
effectively.

Currently, there are only a limited number of providers
implementing TSN protocols in their equipment. Besides, as
TSN has not been broadly deployed in the real systems yet,
researchers mostly rely on the simulation tools and frameworks
to evaluate the protocols. Accordingly, in this study, we imple-
ment the FRER framework, including a controlling scheme in
one of the most popular network simulators, OMNeT++ [4].
The main contributions of our paper are:

• We extended the open-source and actively developed
OMNeT++ framework CoRE4INET [5] by our FRER
implementation.

• We described our implementation of the link layer routing
protocol Intermediate System to Intermediate System (IS-
IS) and a simplified version of the network management
protocol 802.1aq Shortest Path Bridging (SPB) [6] to
configure FRER. Note that SPB is the protocol used as
a basis for the path configuration mechanism of TSN
as specified in the standard 802.1Qca Path Control and
Reservation (PCR) [3].

• We described additional FRER configuration extensions
to enable assigning static end-to-end paths in the simula-
tion environment.

The rest of the paper is organized as follows. Section II
introduces the related work on FRER analysis and imple-
mentation and the control plane of TSN. Section III briefly
explains FRER and related control plane protocols. Section
IV summarizes the implementation details of our framework
as well as the remaining features. Section V concludes the
paper.

II. RELATED WORK

Several studies analyze different aspects of FRER [7]–
[9] but only a few provides a practical simulation tool or
framework. In [10], the authors propose a simulation model for
temporal properties and redundancy management, e.g., FRER,
in TSN networks and realize various failure scenarios to show
the impact of FRER. Their implementation is in Riverbed
(formerly OPNET) and it is not an open-source framework.

Sequence Generation

Stream Splitting

Sequence Encoding

Stream Recovery

Sequence Decoding

Stream Identification

Listener

Relay

Talker Member Stream 1

Member Stream 2-3

Fig. 1. An example deployment of FRER

In [11], a detailed overview of FRER is presented. Besides,
the authors implement a standard-compliant model and verify
the effectiveness of the features of FRER without discussing
any numerical result. However, it is not possible to use it
with other existing TSN simulation frameworks. Lastly, [12]
proposes another FRER implementation for an older version
of OMNeT++. It enables to test the functions of FRER only
in small setups as it does not have any control plane routing
and configuration protocol.

There are only some limited works focusing on the control
plane protocols addressing IS-IS and SPB. [13] proposes an
SPB simulation framework for the network simulator NS-3. In
[14], the authors implement IS-IS in a custom testbed, which
is now outdated. However, there is not a single platform to use
FRER and the control plane protocols together. Accordingly,
we implemented them holistically in OMNeT++ utilizing the
existing TSN framework CoRE4INET.

III. BACKGROUND

In this section, we briefly introduce FRER and alternative
controlling mechanisms to configure FRER.

A. IEEE 802.1CB Frame Replication and Elimination for
Reliability (FRER)

FRER has two main mechanisms: (i) Replication of streams
through different paths (or links) in the source node, i.e., TSN
talker and (ii) elimination of replica packets per stream in the
relay nodes or the destination node, i.e., TSN listener. In this
section, we briefly discuss the enabler functions of FRER to
realize those mechanisms.

Fig. 1 shows the use of FRER in which three disjoint paths
are assigned to a stream, e.g., two of them for redundancy.
In the figure, both listener and the relay that forwards two
member streams can drop the replicate packets. Generally, the
talker performs (i) sequence generation by generating a unique
identifier per packet of a stream to be incremented for the
other packets in the sequence, (ii) stream splitting by copying
the packets and creating member streams to be sent through
k distinct paths, and (iii) sequence encoding by assigning a
sequence number to the copied packets via the Redundancy
Tag (R-TAG).

A listener or relay, i.e., an Ethernet switch, performs
(i) stream identification by applying a stream identification
function (e.g., a function taking destination MAC and VLAN
ID of a packet as input) to distinguish a stream, (ii) sequence
decoding by extracting the sequence identifier of a packet to
be compared to the identified stream’s sequence information
(iii) stream recovery by deciding if a packet is duplicate and
should be dropped or forwarded, and lastly (iv) latent error
detection by counting if it has received the expected number
of duplicate packets to detect a node or link failure on the
path of a member stream.

Here, the stream recovery stage consists of two functions.
The sequence recovery function (SRF) processes all the pack-
ets received from different ports of the switch, and thus, it
can detect the duplicate packets of a stream coming from
different paths. The individual recovery function (IRF), on
the other hand, processes the stream coming from a single
path (or port) and is effective against, for instance, duplicate
packets due to a stuck sender. Any recovery function utilizes
a recovery algorithm to make packet accept/forward or drop
decision. Match recovery algorithm (MRA) keeps track of the
received sequence numbers and drop a packet with a repeating
number. Vector recovery algorithm (VRA), on the other hand,
uses an acceptance interval and forwards only the packets with
a sequence number in that interval to drop outdated or much
ahead packets. A timeout duration is set for both algorithms to
reset the expected sequence number (and interval) to refresh
the recovery function in case of not forwarding any packet for
the specified duration due to occasional failures.

B. Intermediate System to Intermediate System (IS-IS)

IS-IS is a link-state routing protocol, operating by flooding
topological information through the network so that each
bridge can have a network-wide topological view. It supports
both link and network layer routing and enables routers or
bridges to build a database of network topology [15]. IS-IS
utilizes Dijkstra’s shortest path algorithm to find end-to-end
paths between network elements.

IS-IS assumes that the network is divided into non-
intersecting areas. Inside an area, Level 1 (intra-area) bridges
exchange information to update their link state databases. For
inter-area communication, Level 2 bridges are deployed in the
backbone of the network. Lastly, Level 1-2 bridges take a
gateway role connecting Level 1 and Level 2 bridges in differ-
ent areas. This area-division helps to create isolated domains,
which are easier to configure and manage by different tenants.

Each bridge periodically sends HELLO packets to establish
adjacency between neighbor bridges. Apart from that, they
periodically send their databases to maintain the topological
view and detect any inconsistency in-between. As a result of
that consistency-check, a bridge can request a partial database
to confirm the differences and update if necessary. Lastly, the
communication scheme of IS-IS allows to the definition of
custom packets by extending the existing ones with extra type-
length-values (TLVs) to modify the protocols.

C. IEEE 802.1aq Shortest Path Bridging (SPB)

IEEE 802.1aq Shortest Path Bridging (SPB) is a native
Ethernet solution that offers a significant level of isolation
through virtual networks, improves drawbacks of Spanning
Tree Protocol (STP), and has strong features for traffic en-
gineering in link layer [6], [16]. SPB extends the use of
logical networks defining Service Identifiers (ISIDs) beyond
standard virtual local area networks (VLANs). It enables
to create more extensive broadcast domains. In Backbone
Edge Bridges (BEB), i.e., bridges that end hosts are directly
connected to, ISIDs are configured and matched with VLAN
IDs that hosts/ports are registered. To perform end-to-end
routing, BEBs discover all other bridges, e.g., other BEBs and
also backbone core bridges (BCBs) that are not connected to
any host nodes but connect other switches and corresponding
ISIDs they serve.

For network discovery, SPB deploys IS-IS, whose details
are briefly explained in Section III-B, as its control plane to
obtain a network-wide view. SPB then enables the assignment
of the shortest paths to streams, and also supports multipath
configuration for the best QoS. For the shortest path selection,
SPB utilizes 16 different equal-cost path tie-breaking (ECT)
algorithms so that when all bridges are configured to use the
same ECT, they can select the same shortest paths without any
further configuration by, for example, a centralized controller.
As a result, ECTs provide congruency and symmetry for the
path selection.

SPB comes with two modes, SPBV and SPBM, using (i)
seamless address and VLAN translation and (ii) MAC-in-
MAC encapsulation respectively to manage extended logical
networks. SPBV is designed for smaller enterprise networks
and enables data plane MAC learning in accordance to the
plug-and-play nature of Ethernet. In contrast, SPBM leverages
MAC learning in the control plane, manages those addresses,
and thus enables the orchestration of larger-scale networks
with comprehensive virtual networking features.

Lastly, SPB is utilized by 802.1Qca Path Control and Reser-
vation (PCR) as the path configuration mechanism for TSN
[3]. Therefore, it is an important protocol for the management
of static paths in TSN-enabled systems.

IV. IMPLEMENTATION

In this section, after giving an overview of the main modules
of our implementation, we describe each in more detail in the
following sections. Besides, we list the remaining features that
are not included and left as future work.

We implemented FRER and the control plane protocols on
top of OMNeT++ v5.5.1; and the frameworks INET v3.6.7
and CoRE4INET [5] with the latest version by June 2020
supporting given OMNeT++ and INET versions. CoRE4INET
is an extension to the INET framework for real-time Ethernet
simulation. It includes several TSN standards, including fil-
tering, traffic shaping, and time synchronization protocols, as
well as older Audio Video Bridging (AVB) standards. Here, we
extend CoRE4INET with the redundancy protocol FRER and
the control plane protocols inheriting some of its modules and

IR

Seq. Rec.

TSN Relay

D
at

a
Pl

an
e

Po
rt

s

Stream Identification
Sequence Decoding
Stream Identification

Sequence Encoding
Stream Splitting

SI
IR
SI

IR
SI

IR
SI

IR
SI

Lat. Err.

IS-IS
SPB

Path
Reservation

Table

C
on

tr
ol

 P
la

ne

TSN Bridge

Fig. 2. Overall bridge architecture containing all modules. FRER functions
are shown in different colors. The functions with the same color are the same
modules utilized for different stages of packet processing.

nodes. More details on the extensions and additional features
are given in the rest of this section.

A. General Overview

We have implemented five main modules, as shown in
Table I with respect to the extended OMNeT++ modules and
their types. Note that type represents if respective module is
designed as network description files (NED), implemented in
C++ and have a source code (code), only configured as a
parameters in another module (parameter), or a message file
(message).

TSNBridge is the main component that contains all other
modules and defines their relationships, e.g., connected via
input/output ports to or direct access among each other,
and it is an extended version of TSNEtherSwitch defined by
CoRE4INET. TSNRelay extends SRPRelay by reimplementing
packet forwarding and adding FRER functions and control
plane protocols. SPB and ISIS are the control plane protocols
for link layer routing and path assignment. Lastly, FRER is not
implemented in a single module but as individual functions to
be distributed to the different stages of packet processing.

Fig. 2 shows the overall bridge architecture, which repre-
sents TSNBridge. It illustrates inter-module relationships in
control and data plane as well. In the following sections,
we present the details of those components under different
categories.

B. Bridge and Relay

TSNBridge utilizes all FRER functions as shown in Fig. 2.
Ingress and egress ports are suited with different functions,
which do not have to be actively used in each bridge. For
instance, while edge bridges may require sequence encoding
and splitting, core bridges can directly forward received pack-
ets after stream identification. By default, we have deployed
all functions as illustrated. Note that, from an implementa-
tion perspective, TSNBridge has not been programmed, i.e.,

TABLE I
DESCRIPTION OF THE MAIN MODULES

Module Extension (of) Type Description

TSNBridge TSNEtherSwich (CoRE4INET) NED and code Contains all other modules and define intermodule relationships
TSNRelay SRPRelay (CoRE4INET) NED and code Defines packet forwarding logic instrumenting other modules

FRER N/A NED, code, message A set of functions implementing FRER features
SPB cSimpleModule NED, code, message Implements paths allocation utilizing IS-IS and path reservation table
ISIS cSimpleModule NED, code, message Implements link layer routing and network discovery

0. Packet received

2a. Update MAC tables

3a. Send to ISIS module

1c. Execute SRPRelay
logic

1a. Check IS-IS packet
type

1b. Execute stream
identification and decoding

2b. Ask SPB for
assigned paths

4b. Execute seq.
recovery

5b. Execute latent
error detection

3b. Discard packet

is HELLO?

yes no

is path assigned?

no

yes

packet type

IS-IS FRER otherwise

yes

6b. Forward packet

no

is duplicate?

Fig. 3. Processing received packets in TSNRelay. Grey boxes show the
external modules (implemented or inherited) used by the relay.

does not have source code, but it only defines inter-module
relationships, i.e., by network description (NED) modules in
OMNeT++.

Apart from FRER functions, TSNRelay and control plane
protocols are deployed in TSNBridge. The relay module or-
chestrates the packet processing stages such as where and
when to apply FRER functions on frames and how to access
and update routing information by employing other modules.
It extends existing SRPRelay module to support not only SRP
packets but IS-IS and FRER frames as well. Fig. 3 shows
a flow chart that represents the overall logic of the relay,
mainly implemented as a single packet handling function, i.e.,
handleMessage(cMessage) in the source code. According to
its type, a frame is processed either by ISIS module (1a-3a),
FRER functions (1b-6b), or inherited SRPRelay (1c). IS-IS
control packets are sent to the ISIS module. Before that only
HELLO packets are also used to update the MAC table of
the relay for neighborhood discovery. FRER frames, on the
other hand, are processed by FRER functions and forwarded
according to the paths assigned by SPB. For the rest of the
frames, the relay inherits the behavior of SRPRelay, which is
provided by CoRE4INET.

Note that, before a frame received by TSNRelay, it is already

processed by an individual recovery function. It represented
as separated from the relay module in Fig. 2 and thus is
not shown in Fig. 3. Besides, in the steps shown as grey
rectangles, the frames are sent to other modules, which are
connected internally under TSNBridge. Their details are given
in the following sections.

C. Data Plane

In the data plane, we have implemented stream encod-
ing/decoding, sequence recovery, and latent error detection
functions of FRER. Table II shows the implemented FRER
functions, corresponding OMNeT++ modules and their types,
and relevant parameters to configure the modules.

TABLE II
FRER FUNCTIONS, MODULES AND THE RELEVANT DATA PLANE

PARAMETERS

Module Type Parameters

Stream Identification NED sidFunction
SequenceGeneration Code N/A

SequenceEncoder NED and code N/A
Stream splitting Parameter splitFactor

StreamRecovery NED and code recoveryType
streamRecoveryFunction

LatentErrorDetection NED and code splitFactor
FREREthernetFrame Message sequenceNumber

Outgoing frames are first sent to StreamIdentification func-
tion to obtain its identifier for the respective stream. Then,
SequenceEncoder module, where the configured stream iden-
tification function is executed queries streamSequenceTable to
obtain the latest observed sequence number for that stream
using the identifier. If it is not observed before, i.e., the first
frame of the stream, a random sequence number is generated
via SequenceGeneration function, and the frame is encoded
accordingly. Otherwise, the existing number is incremented
and encoded to the frame.

Note that stream identification and generation functions
are not defined as distinct OMNeT++ modules but a set of
static functions in StreamIdentification and SequenceGener-
ation modules respectively to be used by all other modules
without requiring extra intra-module connections. Stream iden-
tification is designed as a single function getting the frame
and the function type, sidFunction, as parameters, as FRER
standard enable the use of multiple identification functions.
Currently, (i) null identifier, (ii) source address and VLAN,
and (iii) destination address and VLAN are available in the
framework [2].

Lastly, encoded frames are splitting through the ports that
are configured by the control plane protocols. Stream splitting
is not desgined as an independent module but a configuration
parameter of TSNRelay, splitFactor, that specifies the number
of distinct paths that the duplicate frames are sent. The
configuration of those paths are explained in Section IV-D.

Incoming frames are processed as shown in Fig. 3. On
ingress ports, two types of sequence recovery function take
place: Individual recovery and sequence recovery. In the
implementation, StreamRecovery module can be configured as
either function via recoveryType parameter. After the stream
identification, the individual recovery function eliminates du-
plicates received on a particular port. For the elimination,
match or vector recovery functions can be used according to
the configuration of StreamRecovery module via the parameter
streamRecoveryFunction. Then, the frames are sent to the
stream recovery function, which uses stream identification
functions and latent error detection module, implemented in
LatentErrorDetection. This module detects missing or injected
frames, i.e., fewer or more duplicates than the expected
number. To implement further alarming schemes, this module
should also be configured the same value with splitFactor.

As stream recovery functions can be placed in both relays
and end-host, the rest of the process is node-dependent.
After the sequence recovery process in a relay, the frame is
processed by the relay module and reinjected to the packet
processing loop to be forwarded, if not dropped. On the other
hand, the end-host makes the final decision to either accept
or drop the frame, e.g., checking if it is the destination nodes
or the frame is a duplicate, and thus data plane processing is
completed at that point.

Lastly, apart from the FRER functions, It is required to
define an extended Ethernet frame including R-TAG, which
carries the sequence number and EtherType representing FRER
frames. For this, we implement FREREthernetFrame extend-
ing existing IEEE 802.1Q frames. The type of those frames,
i.e., in EtherType field, is hardcoded as 0xF1C1.

D. Control Plane

The control plane consists of IS-IS and SPB. Accordingly,
we have implemented NED modules, source codes, and cus-
tom messages for both modules. Table III summarizes the im-
plemented modules including their configuration parameters.

TABLE III
CONTROL PLANE MODULES

Module Type Parameters

ISIS NED, code, message

bridgeID
hostID

updatePeriod
dbAnnouncePeriod

SPB NED and code isid
paths

PathSelectionTable NED and code timeout

IS-IS works as the main routing protocol realizing network
discovery, topology information sharing and verification, and

routing, as explained in Section III-B. In the implementation,
each bridge has a unique identifier, bridgeID, that can be
used instead of MAC addresses to construct paths without
keeping track of all MAC addresses for an easier representa-
tion. Note that bridgeID-MAC address matchings are indeed
shared between the bridges during the discovery. This iden-
tifier is incremented automatically for each bridge during the
initialization. The configuration parameters of IS-IS module
are updatePeriod and dbAnnouncePeriod, which specify the
periods for sending HELLO and DB ANNOUNCE packets,
respectively. HELLO packets are used for the discovery of
immediate neighbors and each bridge sends its isis database
via DB ANNOUNCE packets. For broadcasting, the existing
IS-IS multicast address in OMNeT++ is used. That address
is also used to distinguish received isis packets on the relay
as well as the IS-IS Ethernet tag, which is 0x88cc. We have
implemented a new ISISPacket extending EthernetIIFrame to
embed the required meta data, e.g., bridgeID, VLAN IDs, link
cost etc.

When a HELLO packet is received, the IS-IS module of the
bridge records the source of the packet as its direct neighbor in
its database. Similarly, after a database announcement packet
is received, the module updates its IS-IS database. Lastly,
the module provides Dijkstra’s shortest path function to find
end-to-end paths between given source and destination MAC
addresses as well as the source and destination bridgeID in
case of inter-bridge routing.

For a simpler and more extensive network discovery, we
have also defined an end-host IS-IS agent that enables end-
hosts to announce their MAC addresses to edge bridges. While
using the same mechanism described above, only the database
announcement process is excluded as path finding is irrelevant
to end-hosts. Instead of a bridgeID, an end-host is represented
by a unique hostID

Utilizing the IS-IS module, SPB module is responsible to
assign multiple paths to a stream between given end-hosts
(or practically between given edge bridges). SPB has isid
parameter representing the Service Identifier (ISID) that helps
to define extended virtualized domains together with VLAN
IDs. Accordingly, we have modified the path-finding function
of IS-IS module to construct the paths only among the bridges
having the same isid so that we can define intra-domain paths.
However, it also requires to disseminate ISIDs so that a bridge
can know with which other bridges it is in the same service
group. ISID is accordingly embedded to the IS-IS HELLO
packets. Note that as IS-IS enables to define custom packet
fields via TLVs, such an embedding is easy in practice.

In contrast to the IS-IS module, SPB does not have any
proactive mechanisms to be maintained periodically. Instead,
as shown in Fig. 3 3b., it responds with the respective paths
that are assigned to a stream when the relay module requests.
The assignment of paths can be performed in alternative ways.
SPB can directly find k shortest paths s.t. k = splitFactor
to satisfy the redundancy requirements of FRER. In our im-
plementation, as TSNRelay has splitFactor as a configuration
parameter, it can directly request the required number of paths

to split a stream. We have also implemented k shortest-disjoint
path finding for the intended use of FRER. The tie-breaking
algorithms of SPB helps to consistently select the same k
paths for each bridge locally. Another approach is the manual
configuration that a network manager can directly provide
paths specified by a sequence of bridgeIDs. For instance,
a centralized controller directly configures SPB module to
respond with the given paths for the respective streams.
We have defined a parameter paths that takes semicolon-
separated paths. In this format, each path is represented as
T : R1, R2, ... : L, where T and L are the bridgeID of the edge
bridges that talker and listener are connected to. Similarly, Ri

is the identifier of any intermediate relays along the path.
In both assignment approaches, SPB records the paths in

PathReservationTable that enables to store multiple paths to
be used for the incoming packets of the same stream within a
specified timeout duration. It is an extended MAC table that
stores end-to-end paths instead of only the next hops. However,
the default MAC table also exists to forward non-FRER traffic.
The timeout is configured by the parameter timeout.

E. Remaining Features

We highlight some of the remaining features to encourage
the readers to contribute and behold when using the the
framework.

We have implemented most of the features of FRER in a
modular fashion. Some features are simplified to reduce the
complexity of the framework. Those simplications are:

• The sequence generation function does not keep track of
the generated numbers, which is required to ensure that
no number is repeated within a certain period.

• Only the stream identification functions utilizing layer 2
packets headers are implemented. IP headers can also be
included as given in the standard.

• The splitFactor parameter is set for each node, not for
each stream. Therefore, all FRER-tagged streams have
the same level of redundancy.

We list some of the simplified features of IS-IS as:
• The area-division logic has not been implemented and all

bridges are assumed to be Level 1.
• A bridge updates its database with the most recent topol-

ogy announcement packet instead of requesting partial
databases in case of inconsistency.

Similar, SPB has also some limitations, which are:
• Our implementation includes the features of both SPBV

and SPBM without a strict distinction.
• Only two ECTs are implemented. There might be a need

for more to select a higher number of shortest paths for
an increased redundancy for FRER.

• The manual configuration only lets the injection of pre-
configured paths, whether before initialization or at a
specific simulation time.

V. CONCLUSION

In this paper, we present our implementation of 802.1CB
Frame Replication and Elimination for Reliability (FRER),

which is the only reliability mechanism for IEEE Time-
sensitive Networking (TSN), and the required management
protocols for an effective use of FRER. We have extended an
existing TSN framework in the network simulator OMNeT++
with FRER, IS-IS, and SPB to enable multipath redundancy,
network discovery, and routing in larger-scale time-sensitive
networks. As IS-IS and SPB are the main protocols that are
used to implement the path reservation mechanism in TSN,
those modules are important to have a more extensive TSN
simulation environment. A more detailed configuration and
respective numerical results obtained by the use of this frame-
work can be found in our predecessor study [9] that we analyze
the reliable use of FRER. Lastly, the framework is published
as open-source at https://github.com/UHH-ISS/omnet-802.1cb.

REFERENCES

[1] “Time-Sensitive Networking (TSN) Task Group.” Available at
https://1.ieee802.org/tsn/.

[2] “IEEE Standard for Local and Metropolitan Area Networks–Frame
Replication and Elimination for Reliability,” IEEE Std 802.1CB-2017,
pp. 1–102, Oct 2017.

[3] “IEEE Standard for Local and Metropolitan Area Networks Bridges and
Bridged Networks Amendment 24: Path Control and Reservation,” IEEE
Std 802.1Qca-2015, pp. 1–120, March 2016.

[4] A. Varga and R. Hornig, “An Overview of the OMNeT++ Simulation
Environment,” in Proc. of the 1st Int. Conf. on Simulation Tools and
Techniques for Communications, Networks and Systems & Workshops,
2008.

[5] T. Steinbach, H. Dieumo Kenfack, F. Korf, and T. C. Schmidt, “An
Extension of the OMNeT++ INET Framework for Simulating Real-
time Ethernet with High Accuracy,” in Proc. of the 4th Int. Conf. on
Simulation Tools and Techniques, SIMUTools ’11, 2011.

[6] “IEEE 802.1aq Shortest Path Bridging (SPB).” Available at
https://1.ieee802.org/tsn/802-1aq-shortest-path-bridging/.

[7] F. Prinz, M. Schoeffler, A. Lechler, and A. Verl, “End-to-end Redun-
dancy between Real-time I4.0 Components based on Time-Sensitive
Networking,” in IEEE 23rd Int. Conf. on Emerging Technologies and
Factory Automation (ETFA), Sep. 2018.

[8] R. Hofmann, B. Nikolić, and R. Ernst, “Challenges and Limitations of
IEEE 802.1CB-2017,” IEEE Embedded Systems Letters, 2019.

[9] D. Ergenc and M. Fischer, “On the Reliability of IEEE 802.1CB FRER,”
in IEEE Int. Conf. on Computer Communications (INFOCOM), 2021.

[10] M. Pahlevan and R. Obermaisser, “Redundancy Management for Safety-
Critical Applications with Time Sensitive Networking,” in 28th Int.
Telecom. Networks and Applications Conf. (ITNAC), Nov 2018.

[11] S. Qian, F. Luo, and J. Xu, “An Analysis of Frame Replication and
Elimination for Time-Sensitive Networking,” in Proc. of the 2017 VI
Int. Conf. on Network, Communication and Computing, ICNCC 2017,
(New York, NY, USA), 2017.

[12] P. Heise, F. Geyer, and R. Obermaisser, “TSimNet: An Industrial Time
Sensitive Networking Simulation Framework Based on OMNeT++,” in
8th IFIP Int. Conf. on New Technologies, Mobility and Security (NTMS),
2016.

[13] Y. Chang and S. A. Ajila, “Design and implementation of experimental
SPB network simulator on NS-3,” in 26th IEEE Canadian Conf. on
Electrical and Computer Engineering (CCECE), 2013.

[14] Mijeong Yang, Jinho Hahm, Youngsun Kim, and Sangha Kim, “Design
and implementation of the IS-IS routing protocol with traffic engineer-
ing,” in 9th Asia-Pacific Conf. on Communications, 2003.

[15] D. Fedyk, D. Allan, P. Ashwood-Smith, N. Bragg, J. Farkas, M. Ouellete,
M. Seaman, and P. Unbehagen, “RFC 6329: IS-IS Extensions Supporting
IEEE 802.1aq SPB,” tech. rep., Internet Engineering Task Force, 2012.

[16] D. Allan, P. Ashwood-Smith, N. Bragg, J. Farkas, D. Fedyk, M. Ouellete,
M. Seaman, and P. Unbehagen, “Shortest Path Bridging: Efficient
Control of Larger Ethernet Networks,” IEEE Communications Magazine,
no. 10, 2010.

Appendix I

On the Security of IEEE 802.1
Time-Sensitive Networking

Abstract

IEEE 802.1 Time-sensitive Networking (TSN) standards are envisioned to be the backbone
of mission-critical networks in the near future. Such networks have strict latency and re-
liability requirements, and any missed deadline for critical services may have hazardous
consequences. Low-latency and deterministic communication scheme in TSN makes the
network potentially susceptive for various attacks. Therefore, protecting time-sensitive net-
works against security threats is a crucial design concern. In this paper, we discuss more
than 30 potential security issues and threats of IEEE 802.1 TSN protocols. Our goal is to
explore attack surfaces on such systems to be more extensively analyzed and eventually
protected.

Reference

Doğanalp Ergenç, C. Brülhart, J. Neumann, L. Krüger, M. Fischer.

On the Security of IEEE 802.1 Time-Sensitive Networking. IEEE In-

ternational Conference on Communications (ICC), Workshop on Time-

sensitive and Deterministic Networking, 2021.

Contribution

In the forementioned publication, the whole contribution belongs to this thesis. All co-
authors helped to improve the quality of the paper with their valuable feedback.

186

On the Security of IEEE 802.1
Time-Sensitive Networking

Doğanalp Ergenç
Universität Hamburg

ergenc@informatik.uni-hamburg.de

Cornelia Brülhart
ZAL GmbH

cornelia.bruelhart@zal.aero

Jens Neumann
ZAL GmbH

jens.neumann@zal.aero

Leo Krüger
ZAL GmbH

leo.krueger@zal.aero

Mathias Fischer
Universität Hamburg, DE

mfischer@informatik.uni-hamburg.de

Abstract—IEEE 802.1 Time-sensitive Networking (TSN) stan-
dards are envisioned to be the backbone of mission-critical
networks in the near future. Such networks have strict latency
and reliability requirements, and any missed deadline for critical
services may have hazardous consequences. Low-latency and
deterministic communication scheme in TSN makes the network
potentially susceptive for various attacks. Therefore, protecting
time-sensitive networks against security threats is a crucial design
concern. In this paper, we discuss more than 30 potential security
issues and threats of IEEE 802.1 TSN protocols. Our goal is to
explore attack surfaces on such systems to be more extensively
analyzed and eventually protected.

Index Terms—Time-Sensitive Networking, IEEE 802.1, Secu-
rity

I. INTRODUCTION

In several mission-critical domains such as aviation, auto-
motive, and industrial networks, IEEE 802.1 Time-Sensitive
Networking (TSN) standards are considered as an important
building block to guarantee deterministic communication. The
standards improve existing Ethernet protocols with real-time
capabilities and offer a complete toolset for synchronization,
management, and reliability of time-sensitive communication.
These advantages, e.g., in the areas of quality of service
(QoS), low latencies and bandwidth reservation may aid with
implementing new superior technologies. Therefore, in the
near future, TSN is promising to replace existing protocols in
mission-critical domains, bringing a wider homogeneity and
standardization in the networks.

In time-sensitive networks, time itself is an attack vector.
A missed deadline in critical services due to an unexpected
delay induced by an attacker can lead to severe consequences.
Therefore, latency is not only the primary performance metric
but a matter of safety and security. Various aspects of TSN
such as time synchronization, scheduling of data traffic, and
orchestration and reservation of network resources are appeal-
ing for the attackers to hinder deterministic communication
where only a micro- to millisecond jitter is tolerable. As a
result, the security of time-sensitive networks should be a prior
design concern.

Although several studies review TSN [1], [2] and discuss
the open issues of TSN protocols [3], [4] and security concerns
of deterministic networking [5], there is not a comprehensive

work addressing the security aspects of TSN protocols. Ac-
cordingly, in this paper, we discuss a multitude of possible
threats against the TSN protocols. As a result, we list more
than 30 threats for different classes of the protocols that con-
stitute the main mechanisms such as scheduling, configuration,
redundancy, and synchronization. In the rest of this paper, we
present a summary of some TSN protocols in Section II. The
threats against different mechanisms of TSN are discussed in
Section III. Lastly, Section IV concludes the discussion and
the potential extensions of this study.

II. IEEE 802.1 TIME-SENSITIVE NETWORKING

The collection of standards for TSN consists of base
standards, such as the IEEE 802.1Q-2018, which contains
sections to describe TSN transmission mechanisms for real-
time applications, as well as ongoing standards for project
improvement. The TSN standard set covers a wide range of
quality of service (QoS) transmission requirements and can
be classified in categories as seen in Fig. 1. Some of the
main components in TSN networks are: End-points, bridges,
as well as flows and are often used to describe communication
mechanisms in various TSN protocols. Here, TSN bridges
switch the Ethernet packets between end-points, which can
either be a traffic generating instance, also called Talker, or
the packet destination, also referred to as Listener. Finally,
TSN flows describe the time-critical communication between
end devices and are identified uniquely in the network. To give
a short overview, the following section describes only some
of the most prevalent industrially used TSN standards in their
classification.

1) Time Synchronization: IEEE 802.1AS Time Synchro-
nization for Time Sensitive Applications (AS): Network-
wide deterministic communication and a uniform frame refer-
ence for all network participants require time synchronization
of all TSN network entities. IEEE 802.1AS [6] gPTP ensures
the desired time synchronization by applying the generic
Precision Time Protocol (gPTP), which establishes a master-
slave clock hierarchy between TSN network participants. The
Best Master Clock Algorithm (BMCA) allows the selection of
a network root timing reference, called grandmaster, or Clock
Master (CM), which is defined as the bridge with the most

TSN Protocols

Time Synchronization Scheduling Control and
Orchestration

Policing and
Redundancy

● 802.1AS Time Synchronization
for Time-sensitive Applications

● 802.1Qbv TAS
● 802.1Qch CQF
● 802.3bu Frame Preemption
● 802.1Qcr ATS
● 802.1Qav FQTSS

● 802.1Qat SRP
● 802.1Qca PCR
● 802.1Qcc SRP Enhancements
● 802.1CM

● 802.1Qci PSFP
● 802.1CB FRER

Fig. 1. IEEE 802.1 TSN protocols. It illustrates the published protocols excluding data models and the complementary protocols under IEEE 802.1

accurate clock. Following this, gPTP passes messages between
CM and Clock Slaves (CSs) to calculate the propagation delay
between CSs. The frame residence time of each CS also
describes the required time for transmission from ingress to
egress port. This allows for a time synchronization of the real-
time clocks of gPTP devices, which are time-aware, as well as
passive and active non-gPTP devices, which do not contribute
to time synchronization and the BMCA of the TSN network.

2) Scheduling: IEEE 802.1Qbv Enhancements to Traffic
Scheduling: Time-Aware Shaper (TAS): The time-aware
Qbv [7] TAS scheduler partitions Ethernet network communi-
cation in time-windows of fixed length, to which one of eight
Ethernet priorities can be assigned. Each priority receives its
dedicated transmission window, which prevents traffic frame
starvation and ensures the transmission medium reservation
for high priority traffic. Additionally, to prevent the effects
of blocking and overlapping of time-critical transmission win-
dows, the TAS puts a time slice called guard band, before
time-critical traffic. Applying preemptive frame transmission
allows to reduce the guard band to the smallest Ethernet frame
fragment and a more selective QoS. However, to guarantee
that scheduled traffic can not be interfered by lower priority
traffic, the Qbv requires all TSN network participants to be
synchronized in time. The configuration of the TAS, such as
the opening and closing of queue gates based on the current
time can be defined by the Gate Control List (GCL), which is
loaded statically before runtime.

IEEE 802.1Qch Cyclic Queuing and Forwarding (CQF):
The Qch [8] allows a cyclic synchronized LAN bridge frame
transmission without congestion loss and latency issues. De-
pending on the network topology and switches, worst-case
delays may occur. These networks benefit therefore greatly
from the synchronized enqueue and dequeue operations of
the CQF, as it allows a synchronized transmission between
bridges. Setting a worst-case deterministic delay of two times
the cycle time between sender and receiver results in a
topology independent latency.

IEEE 802.3br and 802.1Qbu Interspersing Express Traf-
fic (IET) and Frame Preemption: The combination of these
two standards [9] IET aims to decrease some of the drawbacks
of the guard band, implemented by the TAS, which is, e.g., the

potentially wasted transmission time. For this, the egress port
is separated into two MAC service interfaces: Preemptable
MAC (pMAC) and express MAC (eMAC). Express frames
may preempt the preemptable frames, which are held on to
the transmission medium to be transmitted after the express
frame completion. This results in a reduced guard band down
to the transmission time of the shortest low priority frame
segment, as in the worst case the low priority frame fragment
is completed before the start of the next high priority frame.

IEEE 802.1Qcr [10] and IEEE 802.1Qav [11] are the other
TSN standards related to scheduling.

3) Control and Orchestration: IEEE 802.1Qca Path Con-
trol and Reservation (PCR): This standard [12] is based on
Shortest Path Bridging (SPB) and specifies bridging on explicit
paths. Multiple paths for unicast and multicast frame trans-
mission can be determined, depending on the topologies, e.g.
internal spanning tree (IST), equal cost tree (ECT) or shortest
path. After collecting any network topology information from
nodes to find redundant paths, the PCR instruments the nec-
essary bandwidth and resource reservation for redundant and
optimal network traffic transmission.

IEEE 802.1Qat Stream Reservation Protocol (SRP) and
IEEE 802.1Qcc Enhancements to SRP and Centralization
Management: Guaranteed network resources along transmis-
sion paths and acceptance or rejection of flows are provided
through the admission controls of the IEEE 802.1Qat SRP.
This distributed P2P protocol allows the reservation of network
resources and stream advertisement as required by the QoS
requirements in packet switched networks. The SRP utilizes
the Multiple Registration Protocol (MRP), which identifies and
registers traffic streams by a 64-bit unique identifier, called
StreamID. It consists of the 48-bit Extended Unique Identifier
(EUI-48) concatenated with a 16-bit UniqueID. Resources
for a stream are reserved by the SRP based on the latency
traffic class and bandwidth requirements through the use of
three signaling protocols: Multiple MAC Registration Protocol
(MMRP), Multiple VLAN Registration Protocol (MVRP), and
Multiple Stream Registration Procol (MSRP). These proto-
cols supervise the VLAN membership and group registra-
tion propagation, as well as distributed network resource
reservation and data stream advertisement. IEEE 802.1Qcc

enhances SRP with additional network tools for a global
network management. It adds a User Network Interface (UNI)
for the requesting of link layer services and a Centralized
Network Configuration (CNC) node for a centralized resource
reservation and scheduling to the SRP. The CNC interacts
with the UNI by using remote management protocols, such
as NETCONF/RESTCONF and offers data modeling com-
patability to, e.g. IETF YANG/NETCONF. IEEE 802.1Qcc
allows three different configuration and resource management
models. In the fully centralized model, a talker provides stream
requirements to the CNC that calculates and selects possible
transmission time-slots. The decentralized model relies on the
message exchange between nodes and not on a centralized
control for the path setup. Lastly, the hybrid model utilizes
SRP by the end-points for requirement advertisement but
where the CNC may still be used for reservation coordination.

4) Policing and Redundancy: IEEE 802.1Qci Per-Stream
Filtering and Policing (PSFP): Only a few TSN standards
aim at increasing security within the network. Among those,
IEEE 802.1Qci PSFP [13] improves robustness by policing
ingress data flows. Here, rule matching and per-flow filtering
prevents traffic overload and Denial of Service (DoS) attacks.
PSFP identifies streams by individual StreamIDs and improves
network robustness by matching frames on ingress ports with
specified stream IDs and priority levels. All streams are coor-
dinated by the PSFP stream gate, which allows the subsequent
application of other policy actions such as dropping or queuing
a packet.

IEEE 802.1CB Frame Replication and Elimination for
Reliability (FRER): Additional improvements of reliable
TSN frame transmission and network reliability can be en-
forced by employing the IEEE 802.1CB FRER [14] stand-
alone standard. FRER allows frame redundancy of critical
traffic by sending duplicate frames over disjoint paths. It also
provides mechanisms to eliminate packet duplicates, if both
frames reach their destination. This prevents congestions loss,
as well as package loss, e.g., due to path failure. Packet
replication can be further configured, by assigning traffic
classes, while path information is selected through the TSN
stream identification and a sequence generation function, to
save frame redundancy information in the Redundancy Tag (R-
TAG). FRER packets are handy for critical traffic transmission,
as frame sequence numbers and timing information is also
needed to limit the required memory for duplicate frame
elimination.

III. TSN THREATS

We have reviewed several TSN threats from the academic
literature and the industrial talks and extended those with the
threats we envision following the well-known threat mod-
eling framework, STRIDE [15]. STRIDE covers the threats
Spoofing (red), Tampering (orange), Repudiation, Information
disclosure, Denial of service (blue), and Elevation of privilege
(green) threats against system components and is used as a
guideline for secure system design. Here, we do not consider
repudiation and information disclosure threats. Nevertheless,

some of the given threats can fall into multiple categories,
including repudiation and information disclosure threats. We
have then categorized them according to the classification
of TSN protocols in Section II to give a complete view
of the TSN mechanisms from a security perspective. Fig. 2
summarizes the review of the threats.

Note that we do not assume a particular attacker model for
our threat model. Therefore, we review the threats within a
broader scope from more destructive DoS attacks to subtle
attacks that can result in QoS degradation. In the rest of the
section, those threats are explained in detail.

A. Time Synchronization Threats

Time synchronization protocols have been widely used in
various systems and domains and studied in depth [16]–[18],
including their security aspects [4], [19], [20]. There are
also further attempts specifying the requirements and attack
scenarios on such mechanisms [5], [21].

Even though IEEE 802.1AS simplifies the configuration
of the standard PTP, it still inherits several attack vectors.
Since it requires a similar deployment with PTP, there should
be a grandmaster(s) taking the role of a master clock that
distributes the reference time to the slave nodes, i.e., other
nodes syncing to the common time. Here, a compromised or
impersonated grandmaster results in spreading false or in-
consistent timing information. The impersonation, for instance,
might be conducted intervening the distributed grandmaster
election process while nodes announce their priority to be
selected as the master clock. Similarly, unauthorized joins
as a master clock bypassing the election may override the
elected grandmaster. In the case of a usage of a single clock
master, sabotaging the master clock may result in a short
asynchronization until a new master is elected or switching
over a redundant (passive). For such cases, multiple redundant
master clocks can be selected.

Targeting the master clock is challenging as it is usually one
of the protected assets in the network. Tampering and forging
time synchronization packets is another way to intervene in
the time synchronization process. Altering the timestamps
is the most straightforward attack after tampering [19], which
can be partially avoided by encryption and integrity protection
of the packets. However, meta-information such as protocol
specifications can still be neglected as confidential informa-
tion. For instance, as PTPv2 is not backward compatible
with PTPv1, mixing protocol version specifications can
hinder a consistent time synchronization process in the overall
network. Moreover, even though cryptography is a solution
to protect against malicious packet modifications, it is not
effective against delaying attacks that result in incorrect
measurements of hop-to-hop latency, which is used to readjust
timing information eliminating propagation delays [22].

B. Scheduling Threats

IEEE 802.1Qbv TAS is the main protocol to establish
deterministic communication via scheduling. It requires the
configuration of port-based gate control lists that can be

TSN Threats

Time SynchronizationScheduling

Reservation and
Orchestration

Policing and
Redundancy

PolicingRedundancy

Reservation Orchestration

● Compromised or impersonated master clock
■ Intervening the grandmaster selection
■ Unauthorized join as master clock

● Sabotaging the grandmaster

● Delaying packets

● Tampering or forging synch. packets
■ Altering time stamps
■ Mixing protocol version specifications

● Tampering or forging config. packets
■ Malicious and inconsistent scheduling

● Injecting excessive high-priority traffic

● Calibrated attacks on backbone nodes

● Promoting low-priority traffic

● Forging malicious packets with fake seq. numbers
■ Deceiving late error detection

● Tampering packets by manipulating seq. numbers
■ Deliberate changes for replay attacks
■ Changing by random seq. numbers

● Malicious multipath configuration
■ Assigning intersecting paths
■ Configuring delay-induced paths

● Intervening resource request propagation
■ Blocking control packets on ports and VLANs

● Flooding management database

● Tempering or forging request packets
■ Modifying announced stream characteristics
■ Exhausting resources by malicious reservation

● Loosening filtering and rate-limiting rules

● Misconfiguration or contradicting configuration

● Compromised or impersonated controller
■ Malicious configuration of streams and

resource reservations
■ Adding malicious end-points and bridges

● Sabotaging the controller

● Targeting various interfaces

● Spoofing
● Tampering
● Repudiation

● Information disclosure
● Denial of service
● Elevation of privilege

Fig. 2. TSN threats matching with corresponding STRIDE threats

configured locally or via an external controller, whose details
are given in IEEE 802.1Qcc. Such a remote configuration
can be a subject to packet tampering and forgery on the
management protocol such as Network Configuration Proto-
col (NETCONF) or Simple Network Management Protocol
(SNMP). Even though those protocols can operate on the
top of the secure protocols like Secure Shell (SSH) and
Transport Layer Security (TLS) [23], [24], older password-
based authentication schemes are still valid and pose risks. As
a result, while an attacker can assign higher-priority and thus
more resources to low-priority traffic, it can also reduce the
bandwidth for critical streams, which quickly leads to missed
deadlines due to congestion.

Assuming that the attacker has access to a TSN bridge,
there is no mechanism integrated into the scheduling protocols
to validate if it satisfies the QoS requirements and even
ensures that no service class is blocked, i.e., never having
open gates. Therefore, a lack of validation mechanism can
lead to malicious and inconsistent scheduling that is hard
to detect. Even though the scheduling validation tools have
become popular, especially in the automotive industry [25],

[26], they are only performed in the initial network design
stage.

It is also possible to abuse the existing gate list configura-
tion without accessing the actual configuration. For instance,
injecting excessive high-priority traffic creates high con-
gestion and queueing delays that can lead to packet drops
and missed deadlines. Whereas injection attacks can threaten
scheduling mechanisms, the bucketing logic of some of the
scheduling methods can be utilized as a countermeasure to
limit the impact of congestion due to those attacks [27].
However, especially in preemptive mode [9], this congestion
may also interrupt low priority traffic. Similarly, promotion
of low-priority frames to high-priority ones (assuming that
configured VLAN and priority matchings are known by the
attacker) can hinder given scheduling scheme.

Lastly, as TSN scheduling provides at most determinism for
end-to-end communication, it is easier to conduct calibrated
attacks on tightly-scheduled nodes for an attacker [28].
That is, the frames of high-priority streams are known to (i)
when being forwarded by a particular TSN node or (ii) where
being processed at the given time since there is less room

for unexpected delays, out of order packets, rerouting, etc. in
TSN. Even though it is not a threat to the scheduling mech-
anisms per se, it is now a threat caused by tight scheduling
and deterministic communication. Therefore, the scheduling
configuration is a valuable system design parameter.

C. Control and Orchestration Threats

Attacks towards TSN orchestration and reservation mech-
anisms can hinder the allocation of required resources in
terms of bandwidth and time-scheduling, as well as redundant
resources for reliability. IEEE 802.1Qat SRP is a relatively
mature TSN protocol that has been revised since the design
of Audio Video Bridging (AVB) systems. In the standard, a
number of security considerations are addressed [29]. As SRP
depends on the propagation of talker stream advertisements,
where the required resources and the stream characteristics are
announced to be accepted by the listener and also to arrange
network resources, any compromised bridge intervening the
advertisement propagation can block forwarding of the
frames for the respective stream. Similarly, a malicious con-
figuration of a bridge to block control packets on particular
ports or forwarding to certain VLANs can disturb the com-
munication for only targeted domains of a network. Instead
of an intervention, tampering the announcement packets to
modify maximum frame size and packet sending frequency
of a stream can mislead other bridges to miscalculate the
expected latency, which eventually causes missed deadlines.

Apart from manipulating the existing stream announce-
ments, an attacker can forge stream reservation requests as a
malicious talker to exhaust available resources. Such malicious
requests can threaten the internal resources of bridges by
flooding limited size of management information database
(MIB) where the stream registration objects are stored. Flood-
ing attacks are common threats for legacy protocols like the
Address Resolution Protocol (ARP) and can be effective in
case of lack of rate-limiting and filtering on bridges.

TSN offers more than the distributed stream reservation
protocol and enables network-wide orchestration and man-
agement with centralized controlling schemes and end-to-end
path reservations. IEEE 802.1Qcc [30] proposes two other
centralized controlling schemes other than the distributed one,
which directly leverages SRP. The new centralized schemes
inherit the characteristics of a software-defined networking
(SDN) architecture [31] including its security considerations
[32], [33]. The controller is responsible for the configuration
of almost all TSN protocols, except the time-synchronization
mechanism [30]. Therefore, a a compromised or imperson-
ated controller can have a disastrous impact in the overall
TSN system. While it can result in malicious misconfigu-
ration of streams, reserved resources, or end-points, an
attacker can conduct more hazardous attacks by completely
sabotaging the controller for a DoS. For such scenarios, even
though TSN standards do not specify the design of multiple
decentralized controllers, redundancy of the controller can help
against a single point of failure. Note that even subtle changes
in the configuration, for example, re-routing critical streams to

more delay-prone paths, can affect the system in long-term by
degrading the QoS or causing a missing deadline. Moreover,
indirect threats, i.e., not against the orchestration but using
orchestration mechanisms, such as adding new malicious
end-points or bridges by using controller can enable multi-
step propagating attacks [5].

A centralized controller requires different interfaces to en-
able configuration between (i) the end-points and the central-
ized configuration unit (CUC), which has an important role in
centralizing SRP protocol in one of the controlling schemes,
(ii) bridges and the centralized network controller (CNC), and
(iii) CUC and CNC. Consequently, there is an increased attack
surface where an attacker can target multiple interfaces
between end-points, bridges, and controller units. Note
that while (i) inherits the threats against SRP, (ii) and (iii)
correspond to the southbound and northbound interfaces of
SDN, respectively and thus may suffer from similar threats.

D. Policing and Redundancy Threats

IEEE 802.1CB FRER does not have any built-in security
mechanism and thus its two main functions, replication and
elimination, are open to particular threats. Some studies in
the literature have addressed possible problems of FRER [3],
[34]. Several vulnerabilities have also been identified in the
correspondent redundancy protocols operating above link layer
[5] and having similar principles with FRER.

The elimination mechanism of FRER allows a bridge to
forward the first copy of the processed packet and drops the
second copy, i.e., replicated for redundancy, when it is received
by the same bridge. An attacker can forge malicious packets
with fake sequence numbers so that the original packets
with the same sequence numbers are dropped. Similarly,
even if an attacker sends forged packets later than original
packets, it can deceive the late error detection mechanism
by introducing forged replicas to compensate, e.g., a failed
or compromised redundant stream. That is, even though the
redundant communication is stonewalled by the attacker, it can
still create an illusion of a working redundancy mechanism
with forged packets containing no actual data. Apart from
such calibrated attacks, tampering packets by changing their
sequence numbers randomly can easily induce unexpected
packets drops and delivery of out-of-order packets to the
listener. Changing the sequence number of a replica packet
to forward it again can lead to replay attacks as well.

The FRER standard defines a set of functions to be im-
plemented and configured by network designers. Its proper
configuration and integration to the packet processing pipeline
of TSN bridges are on-going issues. For instance, FRER does
not guarantee in-order delivery of multiple member streams.
As a result, an attacker can maliciously configure multiple
paths of redundant streams to induce extra delay to the
redundant paths and trigger out-of-order packet delivery
that hinder seamless redundancy in case of failures and cause
degradation in QoS. Another issue of path selection is related
to the elimination mechanism. While other redundancy mech-
anisms of Ethernet guarantee the existence of disjoint paths,

e.g., through isolated networks or a ring topology [35], FRER
eliminates duplicates to ensure that no copies are forwarded by
the same bridge. As a result, rerouting the stream through
intersecting paths can result in the unexpected elimination of
packets and decrease intended level of redundancy [3].

Lastly, IEEE 802.1Qci PSFP offers data plane filtering
and policing mechanism. Similar to FRER, it coexists with
other reliability protocols and filtering mechanisms of bridges.
Therefore, its misconfiguration configuration with the other
protocols can lead some packets to be unintentionally filtered
out or the malicious ones to be forwarded. Similarly, by
loosening filtering and rate limiting rules, an attacker can
launch more impactful DoS attacks, e.g., by flooding, in the
next step. However, at the end, PSFP is designed to protect
the network and TSN devices, while its configuration is the
only protection mechanism among the TSN standards.

IV. CONCLUSION

After the explanation of some of the most prominent TSN
standards, we present more than 30 threats to state possible
attacks for the mentioned standards and consequently offer in-
sight about potential weaknesses in TSN networks. For future
work, we would like to discuss potential countermeasures and
attack mitigation techniques in concrete scenarios and develop
strategies to strengthen TSN networks against various attacker
types. Additionally, we plan to develop different attacker
models, e.g., the different capabilities of an internal or external
attacker, to evaluate the described threats in more detail.

REFERENCES

[1] A. Nasrallah, A. S. Thyagaturu, Z. Alharbi, C. Wang, X. Shao,
M. Reisslein, and H. ElBakoury, “Ultra-low latency (ull) networks: The
ieee tsn and ietf detnet standards and related 5g ull research,” IEEE
Communications Surveys Tutorials, vol. 21, no. 1, 2019.

[2] L. Lo Bello and W. Steiner, “A Perspective on IEEE Time-Sensitive
Networking for Industrial Communication and Automation Systems,”
Proc. of the IEEE, vol. 107, no. 6, 2019.

[3] D. Ergenc and M. Fischer, “On the Reliability of IEEE 802.1CB FRER,”
in IEEE Int. Conf. on Computer Communications (INFOCOM), 2021.

[4] C. DeCusatis, R. M. Lynch, W. Kluge, J. Houston, P. A. Wojciak, and
S. Guendert, “Impact of Cyberattacks on Precision Time Protocol,” IEEE
Transactions on Instrumentation and Measurement, vol. 69, no. 5, 2020.

[5] T. Mizrahi and E. Grossman, “Deterministic Networking (DetNet) Secu-
rity Considerations,” Internet-Draft draft-ietf-detnet-security-11, Internet
Engineering Task Force, 2020. Work in Progress.

[6] “IEEE Standard for Local and Metropolitan Area Networks–Timing and
Synchronization for Time-Sensitive Applications,” IEEE Std 802.1AS-
2020 (Revision of IEEE Std 802.1AS-2011), pp. 1–421, 2020.

[7] “IEEE Standard for Local and metropolitan area networks – Bridges and
Bridged Networks - Amendment 25: IEEE 802.1Qbv-2015 Enhance-
ments for Scheduled Traffic,” 2015.

[8] “IEEE Standard for Local and metropolitan area networks–Bridges and
Bridged Networks–Amendment 29: Cyclic Queuing and Forwarding,”
pp. 1–30, 2017.

[9] “IEEE Standard for Local and metropolitan area networks – Bridges and
Bridged Networks – Amendment 26: Frame Preemption,” 2016.

[10] “IEEE Standard for Local and Metropolitan Area Networks–Bridges
and Bridged Networks - Amendment 34: IEEE 802.1Qcr-2020 Asyn-
chronous Traffic Shaping,” 2020.

[11] “IEEE Standard for Local and metropolitan area networks– Virtual
Bridged Local Area Networks Amendment 12: IEEE 802.1Qav-2009
Forwarding and Queuing Enhancements for Time-Sensitive Streams,”
2010.

[12] “IEEE Standard for Local and Metropolitan Area Networks Bridges
and Bridged Networks Amendment 24: IEEE Std 802.1Qca-2015 Path
Control and Reservation,” March 2016.

[13] “IEEE Standard for Local and metropolitan area networks–Bridges and
Bridged Networks–Amendment 28: IEEE 802.1Qci-2017 Per-Stream
Filtering and Policing,” 2017.

[14] “IEEE Standard for Local and Metropolitan Area Networks–Bridges
and Bridged Networks– IEEE Std 802.1CB-2017 Frame Replication and
Elimination for Reliability,” Oct 2017.

[15] A. Shostack, S. Hernan, S. Lambert, and T. Ostwald, “Uncover Security
Design Flaws Using The STRIDE Approach.”

[16] W. Jingchao, Z. Ruohan, and G. Weiwen, “Time Synchronization in
Networks: A Survey,” in Proc. of the 2nd Int. Conf. on Control and
Computer Vision, ICCCV 2019, (New York, NY, USA), Association for
Computing Machinery, 2019.

[17] D. Fontanelli and D. Macii, “Accurate time synchronization in PTP-
based industrial networks with long linear paths,” in IEEE Int. Symp.
on Precision Clock Synchronization for Measurement, Control and
Communication, 2010.

[18] H. Lim, D. Herrscher, L. Völker, and M. J. Waltl, “IEEE 802.1AS time
synchronization in a switched Ethernet based in-car network,” in IEEE
Vehicular Networking Conf. (VNC), 2011.

[19] B. Moussa, C. Robillard, A. Zugenmaier, M. Kassouf, M. Debbabi, and
C. Assi, “Securing the Precision Time Protocol (PTP) Against Fake
Timestamps,” IEEE Communications Letters, vol. 23, no. 2, 2019.

[20] E. Shereen, F. Bitard, G. Dán, T. Sel, and S. Fries, “Next Steps in
Security for Time Synchronization: Experiences from implementing
IEEE 1588 v2.1,” in IEEE Int. Symp. on Precision Clock Synchronization
for Measurement, Control, and Communication (ISPCS), 2019.

[21] T. Mizrahi, “Security requirements of time protocols in packet switched
networks,” RFC 7384, October 2014.

[22] M. Ullmann and M. Vögeler, “Delay attacks — Implication on NTP
and PTP time synchronization,” in 2009 Int. Symp. on Precision Clock
Synchronization for Measurement, Control and Communication, 2009.

[23] M. Wasserman, “Using the NETCONF Protocol over Secure Shell
(SSH),” RFC 6242, June 2011.

[24] M. Badra, A. Luchuk, and J. Schoenwaelder, “Using the NETCONF
Protocol over Transport Layer Security (TLS) with Mutual X.509
Authentication,” RFC 7589, June 2015.

[25] O. Creighton, N. Navet, P. Keller, and J. Migge, “Towards Computer-
Aided, Iterative TSN-and-Ethernet-based E/E Architecture Design,” in
IEEE-SA Ethernet & IP at Automotive Technology Day, 2020.

[26] R. Oliveira, I. Raghupatruni, D. Martini, and A. Henkel, “A Framework
to Virtually Validate QoS Contracts in Ethernet-based Vehicle Data
Infrastructures for Automotive Cyber-physical Systems,” in IEEE-SA
Ethernet & IP at Automotive Technology Day, 2020.

[27] P. Meyer, T. Häckel, F. Korf, and T. C. Schmidt, “DoS Protection through
Credit Based Metering–Simulation Based Evaluation for Time-Sensitive
Networking in Cars,” arXiv preprint arXiv:1908.09646, 2019.

[28] Hummen, René and Kleineberg, Oliver, “Cyber-security for Modern
TSN Automation Networks,” Industrial Ethernet Book, vol. 104, 2018.

[29] “IEEE Standard for Local and metropolitan area networks–Virtual
Bridged Local Area Networks Amendment 14: IEEE Std 802.1Qat-2010
Stream Reservation Protocol (SRP),” 2010.

[30] “IEEE Standard for Local and Metropolitan Area Networks–Bridges
and Bridged Networks – Amendment 31: IEEE Std 802.1Qcc-2018
Stream Reservation Protocol (SRP) Enhancements and Performance
Improvements,” 2018.

[31] S. B. H. Said, Q. H. Truong, and M. Boc, “SDN-Based Configuration
Solution for IEEE 802.1 Time Sensitive Networking (TSN),” SIGBED
Rev., vol. 16, Feb. 2019.

[32] I. Ahmad, S. Namal, M. Ylianttila, and A. Gurtov, “Security in Software
Defined Networks: A Survey,” IEEE Communications Surveys Tutorials,
vol. 17, no. 4, 2015.

[33] A. Demirpolat, D. Ergenç, E. Ozturk, Y. Ayar, and E. Onur, “Software-
defined network security,” in Enabling Technologies and Architectures
for Next-Generation Networking Capabilities, IGI Global, 2019.

[34] R. Hofmann, B. Nikolić, and R. Ernst, “Challenges and Limitations of
IEEE 802.1CB-2017,” IEEE Embedded Systems Letters, vol. 12, no. 4,
2020.

[35] “Industrial communication networks - High availability automation
networks - Part 3: IEC 62439-3:2016 RLV Parallel Redundancy Protocol
(PRP) and High-availability Seamless Redundancy (HSR),” March 2016.

Appendix J
TSNZeek: An Open-source Intrusion
Detection System for IEEE 802.1
Time-sensitive Networking

Abstract

IEEE 802.1 Time-sensitive Networking (TSN) standards are envisioned to replace legacy
network protocols in critical domains to ensure reliable and deterministic communication
over off-the-shelf Ethernet equipment. However, they lack security countermeasures and
can even impose new attack vectors that may lead to hazardous consequences. This pa-
per presents the first open-source security monitoring and intrusion detection mechanism,
TSNZeek, for IEEE 802.1 TSN protocols. We extend an existing monitoring tool, Zeek, with
a new packet parsing grammar to process TSN data traffic and a rule-based attack detection
engine for TSN-specific threats. We also discuss various security-related configuration and
design aspects for IEEE 802.1 TSN monitoring. Our experiments show that TSNZeek causes
only ∼5% CPU overhead on top of Zeek and successfully detects various threats in a real
TSN testbed.

Reference

Doğanalp Ergenç, R. Schenderlein, M. Fischer. TSNZeek: An Open-

source Intrusion Detection System for IEEE 802.1 Time-sensitive

Networking. IFIP Networking Conference, International Workshop on

Time-Sensitive and Deterministic Networking (TENSOR), 2023.

Contribution

In the forementioned publication, the main contributions of this thesis are designing the
overall IDS module, specifying attacks and their respective notices, and conducting the
evaluation. The second co-author implemented several parts of TSNZeek in the context of
a master’s thesis. The third co-author helped to improve the quality of the paper with his
valuable feedback.

193

TSNZeek: An Open-source Intrusion Detection
System for IEEE 802.1 Time-sensitive Networking

Doğanalp Ergenç, Robin Schenderlein, Mathias Fischer
University of Hamburg, Germany

name.surname@uni-hamburg.de

Abstract—IEEE 802.1 Time-sensitive Networking (TSN) stan-
dards are envisioned to replace legacy network protocols in
critical domains to ensure reliable and deterministic communi-
cation over off-the-shelf Ethernet equipment. However, they lack
security countermeasures and can even impose new attack vectors
that may lead to hazardous consequences. This paper presents
the first open-source security monitoring and intrusion detection
mechanism, TSNZeek, for IEEE 802.1 TSN protocols. We extend
an existing monitoring tool, Zeek, with a new packet parsing
grammar to process TSN data traffic and a rule-based attack
detection engine for TSN-specific threats. We also discuss various
security-related configuration and design aspects for IEEE 802.1
TSN monitoring. Our experiments show that TSNZeek causes
only ∼5% CPU overhead on top of Zeek and successfully detects
various threats in a real TSN testbed.

Index Terms—intrusion detection, security, IEEE 802.1 TSN

I. INTRODUCTION

Modern mission-critical systems are composed of several in-
terconnected components and services that require reliable and
time-sensitive communication. To satisfy such requirements
and reduce the dependency on domain-specific networking
technologies, IEEE 802.1 Time-sensitive Networking (TSN)
task group has proposed a set of standards. These standards
enable low-latency, fault-tolerant, and deterministic communi-
cation on top of standard Ethernet protocols. However, IEEE
802.1 TSN protocols also induce several security threats across
the domains and systems deploying them [1]–[3]. Timely
detection of such threats is crucial, especially in safety-critical
systems, in which a successful attack may lead to hazardous
results.

Since the TSN standards are relatively new and prioritize the
tight quality of service (QoS) requirements of critical systems,
there is no comprehensive security solution against TSN-
specific threats. Although a built-in traffic policing protocol
is a part of the standards [4], it provides limited filtering ca-
pabilities to ensure that critical data streams receive sufficient
resources. However, an effective solution requires monitoring
time-sensitive streams over TSN protocols and recognizing
malicious attempts. Accordingly, in this paper, we introduce an
open-source network monitoring and intrusion detection sys-
tem for IEEE 802.1 TSN protocols, TSNZeek1. We extended
an existing monitoring tool, Zeek (former Bro [5]), to ana-
lyze the new TSN protocols and detect several TSN-specific
attacks. Zeek is a well-established open-source network mon-
itoring solution that is popularly deployed in real systems as

1A preprint of this paper is available at arXiv with the same title.

well as used in academia for research purposes2. We focus on
the threats against two TSN protocols, IEEE 802.1CB Frame
Replication and Elimination for Reliability (FRER) and IEEE
802.1Qcc Stream Reservation Protocol (SRP), since they (i)
are the critical protocols addressing communication reliability
and configuration, and (ii) have specific network behavior with
new packets types and architectural aspects. Our contributions
are listed as follows:
• We implement a new packet parser using a grammar defini-

tion language, spicy, to process SRP and FRER traffic via
Zeek. To the best of our knowledge, this renders TSNZeek
the first TSN-aware security monitoring tool.

• We implement an intrusion detection engine connected to
Zeek to recognize several attacks described in our previous
paper [1].

• We test our proposal in a TSN testbed and confirm that it
successfully detects various threats with negligible overhead.

• We publish TSNZeek open-source together with the traffic
and attack generation tools3.
The remainder of this paper is organized as follows. Sec-

tion II introduces the TSN protocols that TSNZeek is capable
of processing, SRP and FRER. Section III presents the related
work. Section IV describes the design and implementation
of TSNZeek. Section V gives the experiment setup and
evaluation. Lastly, Section VI concludes the paper.

II. BACKGROUND ON IEEE 802.1 TSN

This section describes two TSN protocols: IEEE 802.1Qcc
SRP and IEEE 802.1CB FRER. In comparison to other TSN
protocols, SRP and FRER introduce their own interfaces,
packet structures, and configuration schemes that impose sev-
eral security threats. Therefore, we mainly focus on them in
this study.

A. IEEE 802.1Qcc Stream Reservation Protocol (SRP)

IEEE 802.1Qcc SRP introduces the resource reservation
routines for time-sensitive streams to configure all TSN com-
ponents in the systems satisfying tight QoS requirements.
It proposes two main components: (i) a network configu-
ration (CNC) entity to configure the TSN bridges remotely
and (ii) a user configuration (CUC) entity to discover the

2Zeek Project, https://zeek.org
3The source code is available at https://github.com/UHH-ISS/tsnzeek

endpoints [6]. It further offers three configuration schemes
utilizing those entities.
• In the fully centralized model, endpoints directly com-

municate with CUC over a user/network interface (UNI)
and request network resources for TSN streams with certain
requirements such as the worst-case latency and inter-arrival
times. CNC then configures the bridges according to the
requests received by CUC.

• In the centralized network/distributed user model, edge
TSN bridges, e.g., bridges that endpoints are directly at-
tached to, forward SRP requests to CNC with network-
wide visibility. Similar to the fully centralized model, it is
responsible for configuring all TSN bridges.

• In the distributed model, TSN bridges forward SRP re-
quests to each other to handle configurations individually.
SRP imposes a complex packet structure that allows an

endpoint to specify various requirements via type-length-
value (TLV) fields and recursive header groups. The respective
standard [6] at Section 35.2 (p.105-134) explains the whole
packet structure in detail.

B. IEEE 802.1CB Frame Replication and Elimination for
Reliability (FRER)

IEEE 802.1CB FRER enables redundancy against link fail-
ures by sending duplicate TSN flows, which are called member
streams [7]. The talker sends member streams through mul-
tiple redundant paths configured in advance. An incremental
sequence number is embedded in FRER frames within the
R-TAG header, and the duplicate frames across the member
streams have the same sequence number. The member streams
rejoin at one or more points (e.g., at the listener or an edge
bridge) in the network, where duplicate frames are discarded
by their sequence number. Finally, the listener receives the
original compound stream.

To discard the duplicate frames and obtain the original
stream, FRER utilizes various stream recovery functions.
These functions consider the sequence number of the most
recently received frame to perform frame elimination. For
instance, the match recovery function eliminates all the frames
with a sequence number smaller than the recently observed
one. The frame elimination helps to drop the duplicate packets
received due to stuck senders or misrouting.

III. RELATED WORK

In this section, we briefly present related work that inves-
tigates the security threats against IEEE 802.1 TSN protocols
and proposes security solutions.

Regarding security threats, in [8], the authors discuss the
security threats in TSN-based industrial control systems. In
[9], they analyze the impact of denial-of-service attacks on
TSN protocols. In [1], we listed more than 30 attack vectors
against several TSN mechanisms.

Some of the existing TSN protocols can be utilized against
such security threats. For example, in [3], the authors employ
IEEE 802.1Qav Credit-based Shaper (CBS) to prevent denial
of service attacks. The authors of [10] and [2] combine

IEEE 802.1Qci Per-Stream Filtering and Policing (PSFP)
protocol [4] with a centralized controller to enforce ingress
policies for packet inter-arrival times and rates, and stream
bandwidth. Similarly, in [11], the effectiveness of PSFP is
analyzed for the security of TSN-based automotive networks.
Lastly, in [12], the authors discuss security policies via PSFP
enforced by a centralized policy server.

There are more practical design and implementation efforts
for the monitoring and protection of time-sensitive systems. In
[13], the authors propose a monitoring system for the bridge
and link status as well as time-synchronization accuracy, ex-
cluding security and intrusion detection aspects. [14] presents
a security module to improve TSN protocols with hardware
encryption and authentication. IEEE 802.1AE Media Access
Control (MAC) standard also enables authentication, integrity,
and confidentiality in Ethernet-based data traffic [15].

None of the works above offers security monitoring or
an IDS for IEEE 802.1 TSN protocols with specific packet
structures, traffic characteristics and requirements, and thus
security threats. In contrast, we propose an open-source and
extendable IDS solution to address TSN-specific attacks.

IV. TSNZEEK: DESIGN AND IMPLEMENTATION

TSNZeek consists of monitoring and intrusion detection
components shown in Fig. 1. The monitoring component
processes and log the received TSN traffic. The intrusion
detection component obtains the processed frames from the
monitoring component and implements the attack recognition
logic for TSN-specific attacks.

The overall operation of TSNZeek can be described as
follows: the event engine distinguishes the incoming packets
by their EtherType values, which is a standard header type
of Ethernet frames. Then, TSN parser processes SRP and
FRER packets according to the new parsing grammar that we
developed. After parsing, the broker disseminates those frames
to the notice engine and detection engine. While the former
engine logs the traffic and specific events using built-in Zeek
functionalities, and the latter implements our attack detection
rules. The detection engine then pushes notices back to the
notice engine when an attack is recognized.

In the rest of this section, we elaborate on those modules
together with the notices and alerts that TSNZeek can raise.

A. Monitoring Component

The monitoring component corresponds to the original Zeek
in terms of its working dynamics. It consists of the event
engine, the TSN parser, the broker, and the notice engine. The
TSN parser (blue, dashed lines in Fig.1) has been implemented
from scratch. The event and notice engines (red, dashed, and
dotted lines) are existing Zeek components that we extended
further. For the engines, we used Zeek v4.2.0.

1) Event Engine: The event engine registers the protocol
analyzers during initialization to specify the parsing grammar
for respective protocols. Fig. 2 shows a sample registration
process for SRP and FRER. When an SRP or FRER frame is
recognized by its Ethernet header (e.g., with type 0x22EA and

TSNZeek

Monitoring Component
(Original Zeek)

TSN Parser

Event Engine

Notice Engine

Intrusion Detection Component

Detection Engine

1a) Send raw
Ethernet frames

1b) Parse FRER/SRP
packets

2) Convert and send packets between engines

4) Raise notices

3) Push notices

BrokerBroker

Network traffic

Logs and alarms

Fig. 1: The overview of TSNZeek. The blue/dashed blocks have been implemented from scratch. The red/dotted blocks are existing Zeek
modules that we have extended and reconfigured.

0xF1C1, respectively), the event engine calls the respective
packet parsing function implemented in the TSN parser.

event zeek init() {
if (!PacketAnalyzer::try register packet analyzer by name(”Ethernet”,

0xF1C1, ”spicy::FRER”))
print ”Cannot register IEEE 802.1CB FRER analyzer”;

if (!PacketAnalyzer::try register packet analyzer by name(”Ethernet”,
0x22EA, ”spicy::SRP”))

print ”Cannot register IEEE 802.1Qcc SRP analyzer”; }

Fig. 2: Registration of packet parsers.

The event engine registers further events to trigger logging
facilities and inter-module packet dissemination via the broker.
Both use the frame content provided by the protocol analyzers,
i.e., for the received and parsed SRP and FRER frames. In the
source code, all event registrations are implemented in the
scripts main.zeek and tsn.zeek via Zeek scripting language.

2) TSN Parser: This module introduces the parsing func-
tions for complex packet structures with many recursive header
types. We implemented the parser using spicy v1.4.0, which
is a grammar generation framework for network protocols and
file formats4. We follow the packet definitions in the standards
of SRP and FRER so that our parser can process any TSN
traffic originated from a standard-compliant talker.

Fig. 3 shows an example spicy function to parse the talker
information from an SRP frame. It extracts various traffic
specifications and requirements given by a talker. Moreover,
we define several FRER and SRP-specific header types, e.g.,
FRER R-TAG for sequence numbers, to be used within the
parsing functions. In the source code, the files with spicy
extension define the header types and parsing functions.

3) Broker: The broker is the built-in publish/subscribe mes-
saging framework of Zeek. We implement three event topics
in the broker: FRER, SRP talker, and SRP listener. Those
topics are defined in TSN.evt in the source code. Whenever
a respective type of frame is received, the broker publishes

4Zeek spicy, https://docs.zeek.org/projects/spicy

function makeTalker(obj: SRP::Talker): TSNZeek::Talker {
local lendStationInterfaces = makeEndStationInterfaces(obj.

endStationInterfaces);
local ldataFrameSpecification = makeDataFrameSpecification(obj.

dataFrameSpecification);
local ltSpecTimeAware = makeTSpecTimeAware(obj.tSpecTimeAware);
local luserToNetworkRequirements =

makeUserToNetworkRequirements(obj.
userToNetworkRequirements);

local linterfaceCapabilities = makeInterfaceCapabilities(obj.
interfaceCapabilities);

return (
makeStreamID(obj.streamID), makeStreamRank(obj.streamRank),
lendStationInterfaces, ldataFrameSpecification,
makeTrafficSpecification(obj.trafficSpecification),
ltSpecTimeAware, luserToNetworkRequirements,
linterfaceCapabilities); }

Fig. 3: Parsing function for SRP talker group.

its content, which is provided by the parser. The notice and
detection engines subscribe to those topics and obtain the
content of the frames for further analysis accordingly. For
TSNZeek, we used Zeek Broker v2.2.0.

4) Notice Engine: The notice engine flags certain security
events and logs received TSN traffic. We used the built-in
notice facility of Zeek for this module. We configure the notice
engine to log the received FRER and SRP frames partially to
avoid an excessive amount of logs. A security event could
be an anomaly in the configuration and network behavior,
or a detected attack. The detection engine recognizes those
events and then respective notice alerts are raised by the notice
engine. The available notices are listed as follows.
• N1.SRP. Excessive resource request: If any talker demands
more network resources than a predefined threshold, the notice
engine raises this notice.
• N2.SRP. Deviating resource request: This notice alerts the
resource demands that are marginally different from the pre-
vious SRP requests as it may indicate a malicious reservation.
• N3.SRP. Too many requests: It alerts if too many requests
are received in a time interval, as it can indicate a stuck talker
or an attack to exhaust the network resources.
• N4.SRP. Changing existing allocation: This notice alerts

in case of an attempt to change an existing SRP reservation.
• N5.SRP. Dangling resources: This notice alerts the dan-
gling resources if they are still not used after a predefined time
after their registration, as it may indicate a faulty endpoint.
• N6.FRER. Out of order frames: An out of order FRER
frame might indicate a malicious packet injection or a faulty
endpoint. This notice alerts any out of order frame and if
it should be dropped following the same mechanism as the
stream recovery function in the corresponding TSN bridges.
• N7.FRER. Excessive member streams: FRER duplicates
member streams based on the configured degree of redun-
dancy. This notice is raised if the number of received duplicate
packets for a stream is more than the degree of redundancy.
• N8.FRER. Terminated member streams: This notice
alerts if a member stream is not active, as it may indicate
a node or link failure as well as an attack.

B. Intrusion Detection Component

The intrusion detection component consists of the detection
engine and another broker to communicate with the moni-
toring module. We implemented the detection engine purely
in Python v3.9.2. It performs traffic analysis to (i) keep the
current states of different streams and their configurations, (ii)
make per-frame or periodical examinations to detect potential
anomalies. Accordingly, it publishes the respective alerts via
the broker to be logged by the notice engine. Note that while
the first broker (attached to the monitoring component in
Fig. 1) disseminates the frames from the event engine to
others, this one establishes the communication between the
notice and detection engines. It enables us to design the
intrusion detection component as a standalone module that
can be replaced by any other intrusion detection logic.

The detection engine in this component introduces a set
of functions to detect various SRP and FRER threats listed
in [1]. These functions are analogous to the rules in a rule-
based IDS. Therefore, they are extendable to detect further
threats simply as adding new rules. In the remaining of this
section, we describe the detection functions together with the
attacks they can recognize. We also note on the alternative
placements of TSNZeek in the network, i.e., centralized, local,
or peripheral in the network to detect the described attacks.

• A1.SRP. Unusual SRP request: An attacker can send
malicious SRP requests to a CNC or an edge TSN bridge such
as (a) demanding a bulky network bandwidth for a stream or
(b) registering several streams to exhaust available resources.
The detection engine detects such scenarios by comparing
the requested stream traffic specifications extracted from the
TrafficSpecification header of SRP frames with pre-
defined threshold values for the maximum bandwidth and
frame rates. It also keeps the rolling average of those values
to recognize if an attacker requests stream reservations whose
traffic characteristics significantly differ from the average.
• A2.SRP. Flooding SRP requests: An attacker can flood
SRP requests to exhaust available resources quickly. The
detection engine limits the rate of incoming requests and

alerts for excessive requests. The rate limit is predefined and
configured by the administrator.
• A3.SRP. Changing existing allocation: An attacker can
forge an SRP request for an already registered stream to (i)
reduce its reserved resources to degrade its service quality
or (ii) increase its reserved resources to exhaust available
resources without injecting any new stream that could be
easily recognizable otherwise. The detection engine can au-
tomatically deduce if a request is accepted by checking the
TalkerStatus group header of an SRP response. Then, for
each SRP request, it checks if there already exists an accepted
stream and alerts for one of the scenarios above.
• A4.SRP. Dangling resources: An attacker can reserve
network resources to manipulate resource utilization without
sending any real data traffic since it can also be detected and
filtered by firewalls or network policies. For such cases, the
detection engine periodically checks if the reserved resources
are in-use. It alerts for the streams without any processed
frames within a predefined time threshold.

TSNZeek should monitor all SRP traffic to detect the
listed SRP-specific attacks. Therefore, while a centralized
SRP configuration (see Section II-A) imposes a centralized
TSNZeek deployment, a distributed one requires monitoring
edge bridges.

• A5.FRER. Forging fake sequence numbers: If an attacker
can observe the current sequence number of a FRER stream, it
can inject malicious frames with that sequence number so that
the legit frame would be dropped by the sequence recovery
function in TSN bridges. If the attacker injects a frame
with the upcoming sequence number, the detection engine
alerts when it detects more than one frame with the same
sequence number. Besides, it deduces the expected degree of
redundancy, i.e., the number of expected duplicate frames for
a stream, by processing the NumSeamlessTrees header in
the UserToNetworkRequirements group header of the
SRP request during registration of the respective stream. If the
attacker searches for the legit sequence number by sending
frames with the random sequence numbers, the detection
engine raises an alert for an out of order frame.
The detection engine mimics the stream recovery function of
FRER to keep track of the legitimate intervals of the expected
sequence numbers. Thus, it needs to be configured with the
same recovery function, match or vector recovery used by the
TSN bridges in the system. This also requires monitoring TSN
bridges locally to detect where exactly malicious frames are
injected and dropped.
• A6.FRER. Malicious rerouting: If there are intersections
between redundant paths, it eliminates duplicate packets be-
ing forwarded through the same bridge [16]. Instead of di-
rectly sabotaging the communication, an attacker could subtly
reroute the redundant stream through intersecting paths to
force FRER to drop the duplicate packets and hinder the redun-
dancy. Therefore, TSNZeek examines the configured FRER
routes, e.g., against malicious misroutings, intersecting paths
etc. This requires the TSNZeek attached to the SRP controller,

TABLE I: The overview of the notices, attack detection functions, and other aspects of the intrusion detection component.

Protocol Detection Notices Frequency Deployment Context
Per-frame Period. Central. Local Edge Manual Stateful

SRP

A1.SRP N1.SRP, N2.SRP ✓ – ✓ – ✓ Resource threshold Reservations
A2.SRP N1.SRP, N2.SRP, N3.SRP ✓ – ✓ – ✓ Rate-limit –
A3.SRP N1.SRP, N2.SRP, N4.SRP ✓ – ✓ – ✓ – Reservations
A4.SRP N5.SRP ✓ ✓ ✓ ✓ – Reservations

FRER
A5.FRER N6.FRER, N7.FRER ✓ – – ✓ – – Seq. numbers
A6.FRER N7.FRER ✓ – – ✓ ✓ – Seq. numbers
A7.FRER N7.FRER, N8.FRER ✓ ✓ – – ✓ Timeout Seq. numbers

i.e., centralized or hybrid, to access to the configuration of
redundant paths.
• A7.FRER. Triggering timeout: An attacker can en-
force FRER functions on TSN bridges to raise a
RECOVERY_TIMEOUT event [7] if it can block all member
streams of a FRER stream. Consequently, the expected se-
quence number of that stream is revoked. Once the attacker
sends the first frame after this event, it becomes the valid
originator of the stream with the forged initial sequence
number. The detection engine recognizes the absence of the
original member streams by measuring the time passed after
the reception of the last frame of the respective streams. It also
detects if the same stream has a new sequence number by per-
frame examinations. Both can be detected by monitoring the
edge bridge that the destination endpoint is attached to.

Table I summarizes attack detection and notices with several
related aspects discussed above. These aspects are (i) how
frequently TSNZeek investigates an attack, i.e., per-frame or
periodically, (ii) how TSNZeek instances should be deployed
to detect an attack, i.e., centralized, local, or to the edge,
and (iii) what TSNZeek needs for the detection, i.e., manual
configuration and the current state of stream reservations.

V. EVALUATION

This section presents our experimental setup and evaluation
results for the efficiency and performance of TSNZeek.

A. Experimental Setup

For our experiments, we set up a real TSN testbed shown
in Fig. 4. It consists of three TSN bridges (TSN1, TSN2, and
TSN3) connected in a ring topology. An endpoint (EP1) is
attached to TSN3, and another (EP2) is attached to TSN2.
TSNZeek is deployed on a computer with an Intel Core i3-
9100 3.60Ghz CPU and connected to TSN1. A malicious
endpoint (MEP) is also attached to TSN1 to conduct attacks.
In our application scenario, EP1 first sends an SRP request
for a resource reservation to stream a video. Then, it sends the
data over two redundant paths, TSN2-TSN1-TSN3 and TSN2-
TSN3, to EP2 and EP3 using FRER. TSNZeek monitors
FRER frames forwarded over TSN1.

Since there is not any public TSN dataset including mali-
cious traffic, we also implemented attacks described in Sec-
tion IV-B in Python (available in the source code).

B. Results

We evaluated the resource usage and intrusion detection
capabilities of TSNZeek. For resource usage, we measured the

Fig. 4: Testbed setup.

CPU utilization of the monitoring and detection components,
as well as the packet processing rate and delay of TSNZeek.
For intrusion detection, the typical evaluation metrics for an
IDS, e.g., accuracy, sensitivity [17], are not directly fitting for
our rule-based IDS as its objective is detecting the specific
threats according to the implemented rules. Therefore, we
tested the effectiveness of the detection module against the
attacks described in Section IV-B.

1) Resource usage: Since IEEE 802.1 TSN protocols de-
fine data link layer protocols, processing the events starting
from such low-level communication may easily lead to high
resource usage. Accordingly, we measured the CPU usage of
TSNZeek for an increasing data load from 50 to 250 Mbit/s.
This interval of data load is reasonable for the number of
critical streams in a TSN network and mainly limited by
the processing capacity of the TSN bridges in our testbed.
We generated the load using iperf, which is a network speed
test tool. Fig. 5 shows the resource usage of the monitoring
component (Zeek module extended with TSN grammar, red
and solid line), the detection component (Python program
running at the control plane, blue and dashed line), and also
the CPU consumption of native Zeek without TSN support
(processing non-TSN Ethernet frames, black and dotted line).

Fig. 5: CPU utilization of the monitoring and detection components.

Fig. 6: Packet processing performance of the monitoring component.

When increasing the traffic load, the CPU utilization of the
monitoring component increases from 25% at 50Mbit/s to 45%
at 250Mbit/s. As shown in the figure, TSNZeek consumes
only ∼5% more CPU power than the Zeek instance without
TSN support. The detection module has a constant resource
utilization of around 25% as it only processes singular events
that are sent by the monitoring module.

Fig. 6 shows the packet processing rate and lag of
TSNZeek. The packet processing lag describes the time
passed between the reception and parsing of a frame. The
figure shows that the packet processing rate (black, solid line)
increases proportionally with an increasing data load without
any packet drops, e.g., due to a potential congestion. Increasing
load also leads to a higher packet processing lag of up to 2 ms
(green, dashed line). For any lag in milliseconds, time-sensitive
frames with submillisecond latency requirements may already
be delivered before an intrusion alert. Although it is not critical
for a monitoring module, a potential time-sensitive intrusion
prevention system utilizing TSNZeek might require further
improvements in data processing speed.

”date”: ”2022−10−26−16−41−02”,
”timestamp”: 1666802462.036670,
”note”: ”TSN::POTENTIAL ATTACK 6”,
”protocol”: ”FRER”,
”msg”: ”Out of order frame is discarded for stream 29695 − seq.nr.

7148 < 54972”,
”actions”: ”Notice::ACTION LOG”

Fig. 7: A sample intrusion alert in json format.

2) Intrusion detection: In our experiments, TSNZeek can
successfully detect all the listed attacks in Section IV-B and
raise the respective notices in real-time. Fig. 7 shows N6.FRER
(in json format) in the log stream of the notice engine against
the attack A5.FRER, i.e., the frame injection with the sequence
number 7148, while the expected one is 54972.

However, we still observe redundant notifications in partic-
ular scenarios. For instance, when we connect an Ethernet hub
between TSN1 and TSN3, e.g., extending the network with a
non-TSN network component, a member stream delivers out of
order packets due to the delayed frames. TSNZeek notices this
as a malicious attempt because of highly deviating sequence
numbers. Although this is unusual for strictly configured TSN
systems, TSNZeek should still be configured considering such
network conditions.

VI. CONCLUSION

Although IEEE 802.1 TSN standards propose emerging
time-sensitive communication protocols for critical systems,
they still lack security countermeasures against potential attack
vectors. In this paper, we present the first open-source security
monitoring and intrusion detection system, TSNZeek, for
IEEE 802.1 TSN protocols. We implement TSNZeek by
extending an existing monitoring tool, Zeek, with a new packet
parsing grammar and the stream analysis engines addressing
TSN-specific security events and attacks. We evaluate its
resource usage and confirm that it can successfully detect
various attacks against the prominent TSN protocols, SRP
and FRER. For future work, we aim to improve our detection
engine to minimize redundant and false alerts by accurately
modeling the usual TSN behavior.

REFERENCES

[1] D. Ergenç, C. Brülhart, J. Neumann, L. Krüger, and M. Fischer, “On
the Security of IEEE 802.1 Time-Sensitive Networking,” in IEEE Int.
Conf. on Communications Workshops (ICC Workshops), 2021.

[2] P. Meyer, T. Häckel, S. Reider, F. Korf, and T. C. Schmidt, “Network
Anomaly Detection in Cars: A Case for Time-Sensitive Stream Filtering
and Policing,” CoRR, vol. abs/2112.11109, 2021.

[3] P. Meyer, T. Häckel, F. Korf, and T. C. Schmidt, “DoS Protection through
Credit Based Metering - Simulation Based Evaluation for Time-Sensitive
Networking in Cars,” CoRR, vol. abs/1908.09646, 2019.

[4] IEEE 802.1 TSN Task Group, “IEEE Std. for Local and Metro. Area
Net. – Bridges and Bridged Networks – Amendment 28: Per-Stream
Filtering and Policing,” IEEE Std 802.1Qci-2017, 2017.

[5] V. Paxson, “Bro: A System for Detecting Network Intruders in Real-
Time,” in 7th USENIX Security Symposium, Jan. 1998.

[6] IEEE 802.1 TSN Task Group, “IEEE Std. for Local and Metro. Area Net.
– Amendment 31: Stream Reservation Protocol (SRP) Enhancements
and Performance Improvements,” IEEE Std 802.1Qcc-2018, 2018.

[7] IEEE 802.1 TSN Task Group, “IEEE Std. for Local and Metro. Area Net.
– Frame Replication and Elimination for Reliability,” IEEE 802.1CB-
2017, 2017.

[8] F. Fischer and D. Merli, “Security considerations for ieee 802.1 time-
sensitive networking in converged industrial networks,” in Int. Conf. on
Electrical, Computer, Communications and Mechatronics Engineering
(ICECCME), pp. 1–7, 2022.

[9] M. Topsakal and S. Cevher, “Impact Analysis of Denial of Service
Attacks in IEEE 802.1 Time Sensitive Networking,” in 30th Signal
Processing and Communications Applications Conference (SIU), 2022.

[10] P. Meyer, T. Häckel, F. Korf, and T. C. Schmidt, “Network Anomaly
Detection in Cars based on Time-Sensitive Ingress Control,” in IEEE
92nd Vehicular Technology Conference, 2020.

[11] F. Luo, B. Wang, Z. Fang, Z. Yang, Y. Jiang, and K. Demertzis, “Security
Analysis of the TSN Backbone Arch. and Anomaly Det. System Design
Based on IEEE 802.1Qci,” Sec. and Comm. Networks, 2021.

[12] R. Barton, M. Seewald, and J. Henry, “Management of IEEE 802.1Qci
Security Policies for Time Sensitive Networks (TSN),” tech. rep.,
Technical Disclosure Commons, 10 2018.

[13] T. Bu, Y. Yang, X. Yang, W. Quan, and Z. Sun, “TSN-Insight: An
Efficient Network Monitor for TSN Networks,” APNet, 2019.

[14] L. Muguira, J. Lázaro, S. Alonso, A. Astarloa, and M. Rodriguez,
“Secure Critical Traffic of the Electric Sector over Time-Sensitive
Networking,” in IEEE 35th Conference on Design of Circuits and
Integrated Systems (DCIS), 2020.

[15] IEEE 802.1 TSN Task Group, “IEEE Std. for Local and Metro. Area
Net. – Media Access Control (MAC) Security,” IEEE Std. 802.1AE-
2018, 2018.

[16] D. Ergenç and M. Fischer, “On the Reliability of IEEE 802.1CB FRER,”
in IEEE Int. Conf. on Computer Communications (INFOCOM), 2021.

[17] L. N. Tidjon, M. Frappier, and A. Mammar, “Intrusion Detection
Systems: A Cross-Domain Overview,” IEEE Communications Surveys
& Tutorials, vol. 21, no. 4, pp. 3639–3681, 2019.

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Dissertationsschrift selbst ver-
fasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

Ort, Datum Unterschrift

Ich bin damit einverstanden, dass meine Arbeit in den Bestand der Bibliothek eingestellt
wird.

Ort, Datum Unterschrift

	Title
	Abstract
	Zusammenfassung
	Acknowledgement
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation & Problem Statement
	1.2 Proposals & Research Questions
	1.3 Contributions
	1.4 Thesis Organization

	2 Resilient Service Allocation and Routing
	2.1 Preliminaries
	2.2 Fault Tolerance
	2.2.1 Fault-tolerant Joint Service Allocation and Routing
	2.2.2 Resource Efficiency via Shared Backup Protection

	2.3 Autonomy via Bio-inspired and Distributed Service Orchestration
	2.4 Security via Moving Target Defense for Service-oriented MCSs

	3 Resilient Time-sensitive Networking
	3.1 Preliminaries
	3.2 Autonomy
	3.2.1 SDN-supported Self-configuration of IEEE 802.1Qbv TAS
	3.2.2 Dynamic Reconfiguration Strategies for IEEE 802.1Qbv TAS

	3.3 Fault Tolerance
	3.3.1 Reliable Path Finding for IEEE 802.1CB FRER
	3.3.2 Configuration and Orchestration of IEEE 802.1CB FRER

	3.4 Security
	3.4.1 Security Threats of IEEE 802.1 TSN Protocols
	3.4.2 Security Monitoring and Intrusion Detection for IEEE 802.1 TSN

	4 Conclusion
	Bibliography
	Acronyms
	Appendices
	A Service-based Resilience for Embedded IoT Networks
	B Service-based Resilience via Shared Protection in Mission-critical Embedded Networks
	C Distributed Bio-inspired Configuration of Virtualized Mission-critical Networks
	D Moving Target Defense for Service-oriented Mission-critical Networks
	E SDN-based Self-Configuration for Time-Sensitive IoT Networks
	F Towards SDN-based Dynamic Path Reconfiguration for Time-sensitive Networking
	G On the Reliability of IEEE 802.1CB FRER
	H Implementation and Orchestration of IEEE 802.1CB FRER in OMNeT++
	I On the Security of IEEE 802.1 Time-Sensitive Networking
	J TSNZeek: An Open-source Intrusion Detection System for IEEE 802.1 Time-sensitive Networking

