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“You’re entitled to say: if you’re so smart, why don’t you tell me what that dark matter is? –
And I’ll have to confess I don’t know. ”

Jim Peebles
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Abstract
This thesis explores wave dark matter and its intriguing phenomenological impli-
cations, namely the presence of wave-like signatures on astrophysical length scales.
Specifically, we assume the dark matter is composed of light bosons with masses
below 10 eV, allowing, due to the high phase space occupation number, for a clas-
sical wave description. We develop a formalism to describe the wave dark matter’s
response to gravity, accounting for the statistical properties of the field.

Our first subject of investigation is the behavior of the wave dark matter in the
Solar system. Here we study the phenomenon of gravitational focusing, where a
massive astrophysical object deforms the local distribution of dark matter, leading
to a local overdensity. We calculate the response of observationally-motivated dark
matter substructures to the Sun’s potential and find unique signatures in the local
overdensity and dark matter spectrum that can be relevant for direct detection ex-
periments.

The second topic of discussion is the behavior of wave dark matter in a small
dark matter halo. In particular, we investigate the wave dark matter response to the
adiabatic growth of a black hole in the center of the halo. This phenomenon leads
to a compression of the surrounding dark matter halo, resulting in a steeper density
profile. We find significant wave features in the density profile of the compressed
halo’s inner region, where the semiclassical approximation breaks down.

As an application, we investigate the gravitational waves produced by the inspi-
ral of a compact solar-mass object with a central intermediate-mass black hole within
the compressed wave dark matter halo. Due to the enhanced mass density, the com-
pressed halo exerts dynamical friction on the orbiting object which is stronger than
in the uncompressed case, leading to a characteristic dephasing of the gravitational
waves. This quantity being sensitive to the underlying dark matter model, we dis-
cuss concrete scenarios where the wave dark matter halo can be reconstructed from
gravitational wave observations.





Zusammenfassung
Diese Dissertation untersucht wellenartige Dunkle Materie und ihre faszinierenden
phänomenologischen Auswirkungen, insbesondere das Vorhandensein von wellenar-
tigen Signaturen auf astrophysikalischen Längenskalen. Wir nehmen an, dass die
Dunkle Materie aus leichten Bosonen mit Massen unter zehn Elektronenvolt besteht
und aufgrund der hohen Besetzungszahl des Phasenraums eine klassische Welle-
nbeschreibung ermöglicht. Wir entwickeln einen Formalismus, mit dem wir die Reak-
tion der wellenartigen Dunklen Materie auf Gravitation beschreiben, und berück-
sichtigen dabei die statistischen Eigenschaften des Feldes.

Unser erster Untersuchungsgegenstand ist das Verhalten der wellenartigen Dun-
klen Materie im Sonnensystem. Hier untersuchen wir das Phänomen der gravi-
tativen Fokussierung, bei dem ein massives astrophysikalisches Objekt die lokale
Verteilung der Dunklen Materie verformt, welches zu einer lokalen Überdichte führt.
Wir berechnen die Reaktion von Substrukturen der Dunklen Materie, welche durch
Beobachtungen motiviert sind, auf das Potential der Sonne und finden eindeutige
Signaturen in der lokalen Überdichte und im Spektrum der Dunklen Materie, die
experimentell relevant sein können.

Das zweite Thema ist das Verhalten der wellenartigen Dunklen Materie in einem
kleinen Halo Dunkler Materie. Insbesondere untersuchen wir die Reaktion der wellen-
artigen Dunklen Materie auf das adiabatische Wachstum eines Schwarzen Lochs im
Zentrum des Halos. Dieses Phänomen führt zu einer Kompression des umgeben-
den Halo der Dunklen Materie, was in einem steileren Dichteprofil resultiert. Wir
finden signifikante Merkmale der Wellennatur der Dunklen Materie im Dichtepro-
fil der komprimierten, zentralen Region des Halos, in welcher die halbklassische
Näherung nicht mehr gilt.

Als Anwendung untersuchen wir die Gravitationswellen, die emittiert werden,
wenn ein Objekts mit Sonnenmasse ein zentrales schwarzen Loch mittlerer Masse
innerhalb des komprimierten Halos der wellenartigen Dunklen Materie umkreist.
Aufgrund der erhöhten Massendichte übt der komprimierte Halo eine dynamis-
che Reibung auf das umlaufende Objekt aus, die stärker als im unkomprimierten
Fall ist und zu einer charakteristischen Phasenverschiebung der Gravitationswellen
führt. Diese Größe ist empfindlich gegenüber dem zugrunde liegenden Modell der
dunklen Materie, daher untersuchen wir konkrete Szenarien, in denen der Halo der
wellenartigen Dunklen Materie aus Gravitationswellenbeobachtungen rekonstruiert
werden kann.
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Introduction

Over the course of almost a century, the evidence for the existence of dark matter
(DM) has continued to grow. This evidence is supported by observations at var-
ious astronomical scales, ranging from galaxy-sized systems [1–3] to cluster [4–8]
and cosmological scales [9,10]. Alternative theories to dark matter, such as modified
gravity theories [11,12], have been proposed and studied, but they fail to explain all
astronomical observations without invoking dark matter [13, 14].

It is worth noting that all of the evidence for dark matter comes from its grav-
itational interaction with ordinary matter, and as of now, it has not provided any
insight into the possible interactions of dark matter with the Standard Model (SM)
of particle physics. Additionally, since gravity is described by the theory of General
Relativity (GR), we only possess information about the stress-energy tensor of dark
matter at various times and scales throughout the history of the Universe. On the ap-
propriate scales, the stress-energy tensor is typically represented through the perfect
fluid assumption and expressed statistically through the phase-space distribution in
the Boltzmann equation formalism. This provides information about the abundance
and spectrum of dark matter, which is characterized as cold and collisionless on cos-
mological scales.

The search for dark matter is a daunting task due to the lack of information on
non-gravitational interactions. As a result, the mass of potential candidates remains
elusive. The viable parameter space is staggering, spanning 90 orders of magnitude,
from ultra-light bosons with a mass of m ⇠ 10�22 eV to solar mass-sized objects
with m ⇠ 10 M� ⇠ 1067 eV, depending on the assumptions of the fundamen-
tal nature of DM. This leads to an enormous diversity of dark matter models and
production mechanisms, making the search even more challenging. Among these,
a particular class of DM candidates, namely weakly interacting massive particles
(WIMPs), has given particular attention in the last decades due to its predictive
power and theoretical motivations. However, it has escaped intense scrutiny of ter-
restrial DM searches [15] as well as cosmological and astrophysical probes, signaling,
perhaps, that either the couplings to SM or the mass of DM are not of the WIMP type.
Nonetheless, the lack of positive results has motivated the exploration of novel ideas
regarding the interplay of dark matter with the SM and its production mechanisms.

Given the challenges of dark matter detection, especially when taking into ac-
count the wide range of models and production mechanisms that exist, it is crucial
to find ways to optimize the experimental search for dark matter. This is where pre-
cise astronomical observations come into play, as they have the unique advantage
of probing a variety of scales and therefore, exploring larger areas in the parameter
space. By taking advantage of these observations, we can gain a better understand-
ing of the nature of dark matter and potentially detect it.
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Wave dark matter

One of the most general constraints on the dark matter mass comes indeed from
astronomical observations. The very existence of small dwarf galaxies implies that
fermionic dark matter cannot be lighter than roughly 100 eV – 1 keV due to the Pauli
exclusion principle: this is the Tremaine-Gunn bound [16–20]. This however does
not exclude that dark matter can be made of light particles.

Indeed bosons lighter than roughly 10 eV are compelling alternative dark matter
candidates. This mass scale appears to be a demarcation point in the vast available
mass spectrum of the DM mass [21]. This has to do with the wavelength associated
to a non-relativistic particle, the de Broglie wavelength ldB ⇠ (mv)�1, which is in-
versely proportional to the particle mass. We know that the density of dark matter
in typical galactic environment is of order of r ⇠ GeV/cm3 so we can compute the
particle mass for which there is a virialized dark particle per de Broglie volume l3

dB
and it turns out to be around 10 eV. For lighter masses, the occupation number in
a de Broglie volume then increases quickly as m�4. The huge occupation number
motivates a treatment of these candidates as classical waves, analogously to how we
describe photons in classical electrodynamics. Hence the collective name of wave
dark matter as opposed to particle dark matter, for any heavier candidate. Here the
word classical means that we can neglect quantum fluctuations in view of the large
occupation number.

Particular interest has been raised by ultra-light dark matter candidates with
mass around 10�22 � 10�21 eV [22–29], which show a fuzzy behavior [25] at galac-
tic (kpc) scales, due to the astronomically-sized de Broglie wavelength. This fuzzi-
ness has been advocated as a possible solution of the small-scales shortcomings of
the LCDM cosmological model [30]. Even though these small scale structure issues
might be resolved by purely baryonic physics [31, 32], the possibility of such a light
dark matter candidate is intriguing and phenomenologically interesting: astrophys-
ical observations are able to constrain fuzzy dark matter putting lower bounds on
the mass of these light bosons [33].

However, it would be very limiting to restrict the search for wave dark matter
only to the light end of the mass spectrum. The wave nature of dark matter can
manifest itself at various scales, depending on the mass and the velocity of the dark
matter. While the mass is fixed, but unknown to us, the velocity depends on the
system under consideration. For instances, just focusing on our surroundings, in
the Sun’s rest frame the speed of virialized dark matter component of our galactic
halo is about 200 km/sec, but other dark matter components can have a very differ-
ent speed, depending on their origin, or direction relative to the motion of the Sun
around the center of the Milky Way. Therefore, for a chosen value of the mass, dif-
ferent dark matter components can exhibit wave features at substantially different
scales. Also, the dark matter velocity dispersion can play an important role in eras-
ing or smoothing out interference effects. The dependence of observable quantities
on these effects can allow us to get some information on the wave nature of the dark
matter, that, if detected, can give a strong hint on the value of the mass, with crucial
implications for both theories beyond standard model and for experiments. For this
reason, the wave dark matter hypothesis is extremely interesting for its testability
and phenomenological value.
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FIGURE 1: An illustration of the light end of the wave dark matter mass
spectrum. We show the observational constraints based on the gravitational
interactions and the mass range explored in our work. The gray area shows
the natural mass ballpark for fuzzy dark matter, the purple band the range
in tension with structure formation, the orange band and the blue band
the regions probed via the superradiant instability effect with supermassive
black holes and black hole spins, respectively. The range in green is the one
mostly explored in this thesis, with GF (dark green) standing for the gravita-
tional focusing in the solar system (Chapter 3) and IMRI (intermediate-mass
ratio inspiral,teal) for the observation of wave dark matter spikes through
the detection of gravitational waves (Chapter 5). Figure inspired by the
cheatsheet in [34].

Remarkably, the density and velocity of wave dark matter particles are modified
by their gravitational interaction with massive objects. The interplay of gravity with
the wave nature of dark matter is crucial. First of all, in the unfortunate, but plausible
case in which the dark matter does not interact with SM states but only through
gravity, the wave nature might be the sole resource at our disposal to get hints on
the dark matter mass. Furthermore the distortion of the dark matter phase space
caused by the gravitational interaction with massive bodies is another way wave
effects can manifest at different physical length scales and has the advantage of being
independent on any assumption on the underlying model of dark matter.

In Figure 1 we show the wave dark matter mass spectrum constrained by ob-
servations based on the gravitational interaction. We also show the values of the
coherence length (mv)�1, timescale (mv2)�1 and frequency that correspond to the
value of the mass. The ultralight end of the spectrum, i.e. fuzzy dark matter, is in
tension with observations at small scales as structure formation is altered in cos-
mological scenarios involving m . 10�20 eV. Observations of quasi-monochromatic
gravitational radiation and gaps at large spin in the black holes spin-mass distri-
bution due to the phenomenon of superradiant instability [35–39] can constrain
heavier wave dark matter candidates. Constraints are already placed in the region
m ⇠ 10�14 � 10�11 eV, but future observations of supermassive black holes and
low-frequency gravitational waves could allow the detection of boson masses in the
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range m ⇠ 10�19 � 10�15 eV [39–41].
This thesis focuses on bosons roughly in the gap between these superradiant

constraints, as one can see in the bottom part of Figure 1. We will see how wave dark
matter can leave gravitational signatures at lengthscales around the astronomical
unit.

It is important to understand the origin of the wave features. The behavior of
collisionless particle dark matter is described via the Boltzmann equation formal-
ism in which the trajectories of individual particles are traced individually in phase
space [42]. The main quantity is therefore the phase space distribution f (t, x, v),
which solves the Liouville equation d f /dt = 0. Wave features are better described
in the formalism of a complex "wave function" y(t, x) that satisfies the so-called
Schrödinger-Poisson system [43]. The wave description allows for a reshuffling of
the information that is originally contained in the phase-space distribution f into a
wavefunction in position-space. This transformation can provide valuable insights,
especially in simulations [44, 45], that may have been difficult to discern otherwise.

In the case of a collisional system, where the dark matter experiences weak grav-
itational scatterings with other objects, the Boltzmann equation d f /dt = G[ f ] proves
to be a good formalism to describe both particle and wave dark matter, as long as
the high phase-space occupancy is taken into account. It is possible to approximate
this equation to the Fokker-Planck equation and describe the kinematics of objects
in a dark matter medium through diffusion coefficients. These coefficients can be
computed in the case of wave dark matter [46, 47] and can describe a plethora of
astrophysical phenomena [21,33], such as dynamical friction and gravitational cool-
ing, which are sensibly altered by the wave nature of dark matter, as well as predict
effects purely due to the stochasticity of the field .

It is crucial to remark that the wave description has to be equivalent to the parti-
cle one as soon as the typical length scale of the system under consideration is much
larger than the typical wave length ldB. In this limit we lose information not only on
the wave nature, as spatial oscillations are averaged out, but also on the dark matter
mass. Therefore, it is important to develop a formalism able to describe the interplay
of the wave dark matter with gravity, as well as its stochastic properties, and able to
recover the particle results in the appropriate limit. This formalism and its practical
application to concrete astrophysical system is the central topic of this thesis.

The standard halo model

Thanks to precise observations of local objects’ kinematics, we have gained an esti-
mate of the typical value of the density of the virialized dark matter component of
our galactic halo r ⇠ 0.4 GeV/cm3 [48–50], at distances around 8 kpc from the galac-
tic center, in the solar neighborhood, as well as its typical velocity dispersion, which
is approximately s ⇠ 10�3 in natural units [51]. This information is of crucial im-
portance for the design of detection experiments: we need to know how much dark
matter is there and its probable kinematic properties in order to be able to predict
what is the experimental reach of our detectors for a specific energy scale.

In other words, one crucial element in conducting terrestrial searches for dark
matter is the local distribution of dark matter. Typically, the starting point is to as-
sume that dark matter forms an isothermal halo and that its velocity follows the
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Maxwell-Boltzmann distribution [52, 53]. This widely accepted model is referred to
as the standard halo model and has been used as the basis for analyzing various
terrestrial dark matter searches. While the standard halo model is straightforward
and reasonably accurate, based on N-body studies [54, 55], it overlooks several im-
portant factors related to our current understanding of the local dark matter distri-
bution. These factors may be critical in accurately mapping the local dark matter
distribution.

First, the standard halo model fails to consider the possible presence of dark mat-
ter substructures in close proximity to the solar neighborhood. Recent studies em-
ploying precision astrometric data have identified a unique kinematic structure in a
nearby population of stars [56, 57]. Dubbed Gaia-Enceladus or Gaia-Sausage due to
its elongated shape in velocity space, this substructure is believed to have originated
from a merger event with a satellite galaxy of mass approximately 1010M� around 8-
10 billion years ago. It is expected that this same merger deposited dark matter into
the Milky Way, with numerical simulations indicating that the kinematic structure
of the accreted dark matter is very similar to its stellar counterpart [58, 59]. Conse-
quently, a significant fraction of dark matter in the inner halo is presumed to exist
in the form of substructures [60–62]. Besides Gaia-Enceladus, other substructures
with distinct kinematic properties could also exist, such as streams with character-
istically small velocity dispersion [63], and a dark disk that may have resulted from
the merger events that gave rise to the thick stellar disk in the Milky Way [64]. This
is of interest for this thesis: the variety of the kinematic properties of the different
substructures in the Solar neighborhood can leave interesting imprints in the distri-
bution of local dark matter, in particular if wave effects, that depend on the typical
dark matter velocity, are present.

Gravitational focusing within the solar system

The standard halo model has another limitation in that it does not take into account
the deformation of the local dark matter distribution caused by the Sun’s gravita-
tional potential. Since we are confined within the solar system, all our observations
are inevitably affected by the presence of the Sun. The gravitational potential of the
Sun modifies the trajectory of dark matter particles, resulting in the phenomenon
of gravitational focusing within the solar system. This effect causes an excess of dark
matter particles in the opposite direction to the solar system’s motion in the Milky
Way, creating a local overdensity. Therefore, it is crucial to study how the dark mat-
ter distribution near the solar system is influenced by the Sun, particularly along the
Earth’s orbital path.

Previous research has studied the gravitational focusing of dark matter in the
search for weakly interacting massive particles [65–70]. Although the event rate due
to the local overdensity remains low in the standard halo model, it can create a
unique DM flux pattern on the sky map [68, 69] and modify the dark matter annual
modulation signal [70].

In this thesis we investigate the gravitational focusing of wave dark matter and
the response of dark matter substructures to the Sun’s gravitational potential. Wave
dark matter diffracts around massive objects, creating an interference pattern of
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overdensity and underdensity fringes that depend on DM mass and velocity on typ-
ical length scale of ldB ⇠ (mv)�1. The wave gravitational focusing can have implica-
tions for theoretical predictions of the event rate and power spectrum of dark matter
in direct detection experiments such as haloscopes [71–94] (see [95–97] and the rela-
tive section in [98] for a review of ultralight dark matter direct detection). Wave fea-
tures in virialized halo components can be observed at wavelengths around or larger
than the Sun-Earth distance. However, colder DM components like dark streams [63]
can show a more definite interference pattern at smaller wavelengths due to smaller
velocity dispersion, preserving a characteristic wave oscillation pattern over smaller
angular scales. In the thesis we analyze the scenarios in which wave effects can have
an impact on direct detection experiments.

Adiabatic compression of a dark matter halo

Another process through which the dark matter phase space distribution is reshaped
by the gravitational potential of a massive body is the one of adiabatic compression.
In the case of an adiabatically growing massive black hole at the center of a dark
matter halo, the inner part of the halo gets compressed, leading to a steeper density
profile. This phenomenon has been studied for particle WIMP dark matter [99], in
particular in the context of dark matter annihilating into SM states [100]: the larger
density increases the annihilation rate by r2 and this could offer a striking indirect
detection signal.

In the case of wave dark matter, self gravitating halos, at small radii, show a
ground state, a cored solution of the Schrödinger-Poisson system, and at large radii
they are characterized by a Navarro-Frenk-White-like profile. In this thesis we in-
vestigate how the compression works in the wave case. We expect that the wave
halo can be analogously compressed by a growing central black hole and that, at
distances larger than the soliton size, the dark matter density shows a spike as in
the particle case. Depending on the values of the mass of the wave dark matter and
of the black hole, the soliton can either survive over cosmological time scales or be
absorbed by the central black hole, as already known in the literature [101].

Intermediate-mass-ratio inspirals in a dark matter spike

If we further assume the presence of a solar mass compact object orbiting around the
central black hole, we can extract information about the dark matter density profile
in the inner part of the halo. Due to the enhanced mass density, the compressed
dark matter medium in the halo exerts a stronger dynamical friction force on the
orbiting object: this is because the compact object is moving in a medium of dark
matter particles which exerts a gravitational drag force on it. This additional source
of energy loss causes a faster inspiral, hence a dephasing in the gravitational wave
emission of the binary, which carries the signature of the nature of dark matter. This
idea has appeared in the recent literature for the particle dark matter case [102–105].

The dephasing pattern will differ in the case of particle and wave dark matter be-
cause of the differences in the density profile and the different treatment of dynam-
ical friction, where the gravitational effects can be suppressed at distances shorter
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than the wavelength. In this thesis we study in which scenarios the wave dark mat-
ter halo can be reconstructed from gravitational wave observations and which infor-
mation we can get on the dark matter mass.

Outline

The gravitational phenomenology of wave dark matter is the focus of this thesis.
Therefore no assumption will be made regarding the specific particle model under
consideration. Let us present the outline of the thesis.

The goal of Chapter 1 is to provide a primer on the phenomenology of dark
matter that is useful for our discussion. We review the dark matter evidence on
difference scales, the theory of structure formation and dark matter halos and we
summarize important observational constraints on the dark matter candidates.

Chapter 2 is dedicated to an in-depth introduction on wave dark matter. We re-
view the main particle physics motivations behind light scalars and we describe the
properties of the wave field. First of all we consider the stochasticity of the field,
which is crucial for a correct computation of the observables, such as the density or
the field power spectrum, and we provide a formalism for the statistical description
of wave dark matter. Next, we dive into the interplay between wave dark matter
and gravity, mostly following [33]: we review why the wave field can be treated as
a collection of classical waves and the formalism of the Schrödinger-Poisson sys-
tem [43] through which the wave function embodies the field’s response to gravity.
The alternative fluid formulation, useful to study the small-scale suppression in the
matter power spectrum ,characteristic of wave dark matter, is also presented. Fur-
thermore, we overview some phenomenological consequences of the wave nature
of the field, which lead to astrophysical constraints. We conclude the Chapter with
an overview of the astrophysical and cosmological probes of wave dark matter and
of the experimental searches for light bosonic DM.

Chapter 3, based on our work [106], considers, for the first time in the literature,
the response of wave dark matter to the gravitational potential of a massive body.
We study the phenomenon of gravitational focusing, for which the phase space of
the dark matter medium is distorted by the presence of a massive object traveling
inside it. After briefly reviewing the features of the focusing effect for particle dark
matter, we move to the wave dark matter and show that we can find an analytical
solution of the Schrödinger-Poisson system and compute observables. To obtain a
physical understanding of the wave features of the system, we study to limits: (i) the
monochromatic limit, in which the medium is uniquely characterized by the velocity
of the dark matter and (ii) the semi-classical limit, in which the wave description has
to match the particle one. Throughout the discussion we pay particular attention in
highlighting the differences and similarities between wave and particle dark matter
gravitational focusing.

The second part of Chapter 3 is devoted to the application of the formalism to
dark matter components in the Solar system. We compute the density contrast and
power spectrum for the halo dark matter component as well as for motivate dark
matter substructures, which can constitute up to 10% of the local dark matter [60–62]:
the so-called Gaia sausage [56, 57] a dark disk [64] and streams [63]. All these sub-
structures have different response to gravitational focusing, due to their kinematic



8 Introduction

properties, which we trace from the stellar observations, as shown by numerical
studies [58, 59].

The adiabatic compression of a wave dark matter halo is the subject of Chapter 4,
which explains the results of our work [107], where this topic is addressed for the
first time in the literature. We review in detail the formation of the spike in the par-
ticle case, starting from a well-motivated initial Navarro-Frenk-White-like density
profile. Next we proceed to study a wave dark matter halo, as done in the first part
of [107]: as proven by numerical simulations [29,108], the profile looks like the parti-
cle one at large distances from the center and shows a solitonic core at small radii. To
describe the compression, we develop a semi-analytical approach: we model the ini-
tial halo as a superposition of wave functions as suggested in [93,109] and we assign
to these eigenstates the occupation numbers that reproduce a target density profile.
Then the compression naturally follows from the conservation of quantum numbers,
under the adiabatic assumption. The presence of the central black hole imposes pe-
culiar boundary conditions, which further imply a finite lifetime for the eigenstates
which form the halo. According to this, we find the final wave spike profile and we
check that the relaxation process happens on timescales larger than the Gyr for the
cases under inspection.

Chapter 5 explores a specific astrophysical scenario in which a wave dark matter
spike can be observed, again expanding on the work done in [107]. We investigate
the inspiral between a compact solar-mass object and an intermediate-mass black
hole located within the compressed wave dark matter halo. The compressed wave
dark matter halo exerts stronger dynamical friction on the orbiting object due to its
enhanced mass density, leading to a distinctive pattern of dephasing in the gravita-
tional waves emitted by the inspiral. This pattern of dephasing is different from that
of inspirals in the particle dark matter halo because of the differences in density pro-
file and the relatively suppressed dynamical friction force resulting from the wave
nature of dark matter. We discuss the potential for using data from future gravi-
tational wave detectors, such as the Laser Interferometer Space Antenna [110], to
reconstruct the wave dark matter spike and distinguish it from the particle one.

Throughout this work, we use natural units h̄ = c = 1, unless stated otherwise.
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Chapter 1

Dark Matter

In this Chapter we provide an overview on dark matter, constituting the necessary
theoretical background of this thesis.

The content of the Chapter is taken from various sources, as it will be specified in
each Section. Particular importance, was given to Section 1.2 where we produced the
Figures ourselves. Section 1.1 reviews the evidence for dark matter on various scales,
from galactic to the observable universe, Section 1.2 contains the computation of the
linear matter power spectrum and a discussion on the typical mass of dark matter
halos which will be of use in Chapter 4. We provide an overview on the standard
halo model and the constraints on local dark matter in Section 1.3, which will be of
use in Chapter 3. We conclude with a summary on the general properties of dark
matter in Section 1.4.

1.1 Evidence

In this Section, we provide a review of the most significant evidence for dark matter
accumulated by the scientific community in recent decades, following mostly [111–
114]. This evidence spans scales ranging from (sub-)galactic scales (parsecs to 100
kpc) and clusters of galaxies (1 to 100 Mpc) to cosmological scales up to the size of the
observable universe (100 to 104 Mpc). What is remarkable is that the abundance of
dark matter is inferred solely from its gravitational effects on visible matter (baryons
and radiation), and we presently have no information other than bounds regarding
interactions between dark matter and visible matter or among dark matter particles
themselves.

1.1.1 Galactic scales

In this work we take for granted the presence of dark matter in galaxies. Here we
provide a brief review of why we think that dark matter is essential in the galactic
dynamics.

Galactic rotation curves

Currently, the most compelling evidence for the presence of dark matter on a galac-
tic scale is derived from observing galactic rotation curves (GRCs), which measure
the circular velocity of stars and gas at varying distances from the galactic center.
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This is accomplished by combining observations of redshifts of the 21cm line with
optical surface photometry. Given the density profile of visible matter, organized in
a disk, rb(r), and the enclosed mass, M(r) = 4p

R
dr0 r02rb(r), we can derive the

expected circular velocity, v(r), of a visible object based on the equation of motion.
We assume that, given rch some kpc-scale characteristic radius which marks the size
of the galactic disk, the enclosed mass scales with volume for r < rch and saturates
for r > rch. So we have

v(r) =

r
GM(r)

r
µ

(
r r ⌧ rch M(r) µ rbr3

r�1/2 r � rch M(r) ' const
(1.1)

The Newtonian prediction based on visible matter is that the enclosed mass is in-
creasing with the volume inside the disk while it is saturated outside the disk. In
the top panel of Figure 1.1 we show how this prediction is in conflict with the actual
data. As an example, we take the rotation curve of the NGC 6503 galaxy among the
many analyzed in [115]: velocity data points flatten at large distances. The data can
be fit if we consider a superimposed dark density profile, a so-called dark matter
halo, with M(r) µ r at large radii, hence a density profile r(r) µ r�2 for r � rch.

At present, we possess a more extensive collection of GRCs, which comprise data
points beyond the 100 kpc range where no stars are present, but only hydrogen gas
layers. All of the galaxies observed so far exhibit flat velocity profiles at the great-
est probed radii. Among these galaxies, is our very own Milky Way, whose rotation
curve is crucial for determining the local dark matter density - a crucial parameter
for detecting dark matter in laboratories. The outcome of one of the earliest measure-
ments [116] is depicted in the lower panel of Figure 1.1. More recently, a study on
DM in the Milky Way [117] has been carried out, with the authors contending that
current data overwhelmingly refutes the notion of baryons as the sole constituents
in the galactic mass budget and positing the presence of a dark matter component,
regardless of any assumed distribution.

Another possible explanation for GRCs data, instead of dark matter, could be a
modification of Newton’s universal gravitation on galactic scales. This has led to the-
ories of modified gravity, such as MOND [11] and TeVeS [12], which have gained at-
tention for their ability to reproduce observations of hundreds of GRCs [111]. How-
ever, these theories have a large number of free parameters and they are rather phe-
nomenological descriptions that can hardly be derived from first principles. They
have not been able to consistently reproduce all observations on larger scales, such
as cluster scales [13]. TeVeS was definitively ruled out by the LIGO-Virgo observa-
tion of the gravitational wave signal GW170817 and the electromagnetic counter-
part [118], which showed that the gravitational wave propagation velocity is equal
to the speed of light up to a part over 1015.

Gravitational lensing

The main drawback of GRCs is that they can only provide information on the pres-
ence of dark matter halos up to a certain distance, roughly 100 kpc, limited by the
presence of light or neutral hydrogen. Therefore, they cannot precisely locate the
bulk of the dark matter, despite sensing the presence of a DM halo. To overcome this
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FIGURE 1.1: Top: the rotation curve of NGC 6503, from [115]. The contri-
butions of gas, disk, and DM are represented by the dotted, dashed, and
dash-dotted lines, respectively, while the solid line corresponds to the sum
of all contributions. Bottom: the rotation curve of the Milky Way from [116].
The dotted line represents the contribution of the bulge, while the filled cir-
cles, crosses, and circles represent the contributions from the stellar disk,
the HI gas layer, and the H2 gas layer, respectively. Finally, the dashed line
corresponds to the contribution of a smooth dark halo, and the solid line
represents the sum of all contributions.
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FIGURE 1.2: The radial mass density around elliptical galaxies, as observed
in the Hubble Space Telescope COSMOS survey, broken down into its con-
stituent components (see [119] and references therein). The blue solid curve
represents the total "galaxy-galaxy" weak gravitational lensing signal. On
small scales of approximately 10 kpc, the signal is dominated by the bary-
onic matter content of galaxies, as shown by the red dashed curve. On in-
termediate scales of around 100 kpc, DM halos become the dominant factor,
with the main r µ r�2 halo term represented by the green dotted curve, and
an additional contribution from subhalos hosting satellite galaxies shown
by the magenta triple-dot-dash curve. At larger scales above 3 Mpc, the
lensing signal is solely the cosmic shear signal from large-scale structure
surrounding the galaxy, as indicated by the grey dot-dash curve.

limitation, gravitational lensing can be used. This is the phenomenon predicted by
GR that causes mass to bend light as it passes nearby. In practice, the light emitted by
distant objects, such as quasars, is bent by the gravitational field of galaxies located
far (> 100 kpc) from their centers. Lensing measurements have confirmed the exis-
tence of enormous amounts of DM in both galaxies and clusters of galaxies, which
we will discuss in the next Section.

It is interesting to note that both the dark matter and baryonic components con-
tribute to the production of an isothermal density profile, with r µ r�2, out to very
large radii, as confirmed by both gravitational lensing and dynamical analysis. As
illustrated in Figure 1.2 extracted from [119], to account for the observed lensing
signal in this wide range of scales, several factors must be considered, including
baryonic matter at small scales, the dark matter halo of the galaxy, and the haloes of
neighboring galaxies at greater distances. Furthermore, the agreement between the
location of the transition from the host halo to large-scale structure and the expected
size of DM structures from N-body simulations provides compelling evidence for
the cold dark matter paradigm.

Additional support for the existence of DM, at both small and large scales, can
be found in numerous sources of data (see [111] for more details). These include
weak gravitational lensing measurements and velocity dispersion studies of dwarf
spheroidal galaxies and satellite galaxies of spiral galaxies, which exhibit subtle de-
viations from what can be explained by visible matter alone.
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1.1.2 Galaxy cluster scales

The presence of DM is also evident when observing clusters of galaxies, which are
gravitationally bound systems spanning from 1 to 10 Mpc in size. Clusters were
actually the first type of system where the evidence of dark matter was discovered.
Zwicky [4] measured the velocity dispersion of galaxies in the Coma cluster and
found it to be too large for the system to be stable if the mass was only due to visible
matter. In other words, he estimated a mass-to-light ratio of approximately 400 M�
by comparing the mass density obtained from the velocity dispersion using the virial
theorem with the value estimated from visible matter, which was the average mass
of a galaxy multiplied by the number of galaxies in the cluster: ⇠ 109 M� ⇥ 103.

A different approach for estimating the mass of a cluster involves comparing the
weak gravitational lensing signal with the observed X-ray emission profile, which
traces the distribution of hot gas in clusters. The presence of this gas in the cluster
can only be accounted for by the existence of a significant DM component, which
provides the gravitational potential necessary to keep the gas in hydrostatic equilib-
rium. Assuming that the gas is indeed in hydrostatic equilibrium and modeling it as
an ideal gas which is a good approximation, the pressure is P = kBT ⇥ [r/(µmp)]
where r, T are the gas mass density and temperature, kB is the Boltzmann constant,
mp is the proton mass and µ ' 0.6 the average molecular weight, we have

�GM(r)
r2 =

1
r

dP
dr

=
1
r


r

µmp
kBT

�
(1.2)

=
kB

µmp
⇥ T

r


d log r

d log r
+

d log T
d log r

�
.

Here M(r) is the mass of the gas within radius r. Assuming constant temperature
and r µ r�2 at large radii, we find that the temperature of the gas at hydrostatic
equilibrium should be of order of

kBT '
Gµmp M(r)

r
' 1.5 keV

✓
M

1014 M�

◆✓
1 Mpc

r

◆
, (1.3)

having normalized to typical cluster values, with M the enclosed baryonic mass.
This value of the temperature is an order of magnitude smaller than the observed
value, around 10 keV. This fact gives us the hint of the presence of a large amount of
dark matter in the cluster, about 6 times the visible matter.

These estimates can be compared to a gravitational map obtained from the lens-
ing of distant objects by the gravitational potential of the cluster. In a classic study
by Clowe et al. [8], this technique was applied to the Bullet cluster, a pair of merging
clusters, studying the gravitational lensing. The collision caused the distribution of
stars and galaxies to be spatially separated from the baryonic mass of the system,
which was traced by the hot gas emitting in the X-ray band. By comparing the X-ray
image to the lensing map, the authors found a significant 8s spatial offset between
the center of the total mass and the center of the baryonic mass. This offset cannot be
explained by modified gravity, providing further evidence for the existence of DM.
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1.1.3 Cosmological scales

While the evidence for dark matter on galactic and cluster scales is very robust, it
is challenging to precisely determine the total amount of DM in the universe based
on the observations discussed thus far. These observations only allow for rough es-
timates based on the mass-to-light ratio. However, observations on cosmological
scales, beyond redshift z > 0.03 or distances > 100 Mpc, such as Lyman-a forest,
galaxy surveys, or the Cosmic Microwave Background (CMB), can provide valuable
information on the energy budget of the universe. Only on such large scales does
DM reveal its intrinsic non-baryonic nature.

Cosmic Microwave Background

One of the strongest pieces of evidence for DM is derived from the analysis of the
fluctuations in the Cosmic Microwave Background (CMB), which also provides the
most precise estimate of its density. We briefly review the importance of dark matter
in the CMB analysis following the discussion in [120] and the review in [113].

The CMB is a background of radiation originating from the propagation of pho-
tons in the early universe decoupled from baryons at a temperature about 0.1 eV. It
has been extensively measured by various experiments over the past few decades,
and the most precise measurement was done by the Planck satellite [9, 121]. The
CMB has been found to resemble the spectrum of a black body at a temperature of
T0 = 2.726 K at an extreme level of precision. The CMB provides two main observ-
ables: the intensity of photons, which corresponds to temperature, and polarization,
which is less relevant for our discussion about dark matter. The physical quantity
of interest are temperature fluctuations, or anisotropies, in different directions in the
sky. Any deviation from an isotropic and homogeneous early universe, consisting of
a thermal bath of photons, baryons, neutrinos, and DM particles, is manifested as
a modification of the constant photon temperature over the so-called last scattering
surface, which is the way we can think of the CMB.

The main source of temperature fluctuation in the CMB is the relative motion of
observers such as the Earth, solar system, and Milky Way, with respect to the CMB.
By subtracting this dipole correlation, we obtain an isotropic background with tem-
perature fluctuations of approximately dT/T0 ' 10�5. The isotropy observed at such
large scales suggests the existence of an early inflationary phase. this has two main
outcomes. First, it offers a scenario where all scales were initially in causal contact.
Second, it provides the primordial seeds for large scale perturbations, including the
CMB anisotropies, from the density fluctuations of the field responsible for inflation.

The symmetry of the problem suggests to conveniently expand the temperature
fluctuations at a certain angular position dT(q, f) in spherical harmonics

dT(q, f) =
•

Ầ
=0

`

Â
m=�`

a`mY`m(q, f) . (1.4)

Observationally, the sum over the multipoles ` needs to start from ` = 2, because the
monopole is an overall nonphysical constant and the dipole has been subtracted. On
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the other hand, the sum has a upper cutoff at `max ⇠ p/qmin set by the resolution of
the experiment. The Planck satellite was able to reach `max ' 2500.

If the fluctuations are assumed to be Gaussian, all the information is included in
the power spectrum , which attains a diagonal form thanks to isotropy

ha`ma`0m0 i = C`d``0 dmm0 , (1.5)

We can compute the correlation between fluctuations at different angular position:

⌦
dT(qi, fi)dT(qj, fj)

↵
= Ầ(2` + 1)C`P`(cos qij) (1.6)

with P` the Legendre polynomial and qij the angle between the directions i and j.
The power spectrum coefficients C` encode the dependence of the observable on
the cosmological parameters. In Figure 1.3 we show the angular power spectrum
coefficients reparameterized as DTT

` = `(` + 1)C`/(2p) as measured by the Planck
satellite together with the best fit that allows for the estimation of cosmological pa-
rameters [9]. This power spectrum displays a set of peaks known as acoustic peaks,
where each peak corresponds to an angular scale with a significant contribution to
the temperature fluctuations. The acoustic peaks are generated by several physical
effects that must involve a non-baryonic dark matter component:

• acoustic oscillations of the coupled baryon-photon fluid. Initially, photons are
tightly coupled to electrons through Thomson scattering, and baryons are cou-
pled to electrons through Coulomb scattering. This fluid interacts gravitation-
ally with dark matter, which pulls it into gravitational wells. As the fluid falls
into these wells, it gets compressed adiabatically, increasing its pressure and
countering gravity. This results in an oscillation in the energy of the photons in
regions of high dark matter density. These oscillations can be decomposed into
a set of fluctuation modes in reciprocal space, each with an associated power
characterized by multipole moments. The power associated with each mode
is an imprint of the gravitational potential around the electron-photon decou-
pling.

• Sachs-Wolfe effect, the impact of gravity on the propagation of the photons
from the last scattering surface to us. The effect is mainly due to dark matter
overdensities , which create a time-dependent gravitational potential through
which the CMB photons travel to reach us. As the photons escape the poten-
tial wells, they lose energy due to the redshift effect, which dominates over the
temperature gain associated with the overdensity. Thus, the cold spots in the
CMB we observe today are associated with overdense regions at recombina-
tion, while hot spots are associated with underdense regions. The Sachs-Wolfe
effect, which is caused by the free-streaming of photons, results in a power
spectrum that depends on multipole moments as C` µ [`(` + 1)]�1.

Both of these effects demonstrate the important role played by DM in creating po-
tential wells that affect the oscillations of the photon-baryon fluid and the streaming
of decoupled photons.
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Fitting the positions of the CMB spectrum peaks, which depend in a non-trivial
way on the cosmological parameters, one can obtain best fit values for the energy
budget of the universe today t = t0 and the Hubble constant H0 = 100h km/s/Mpc
[9]:

Wb(t0)h2 = 0.0224 ± 0.0001 baryon density ,

Wm(t0)h2 = 0.142 ± 0.001 matter density

WL(t0)h2 = 0.684 ± 0.009 dark energy density , (1.7)

h = 0.674 ± 0.005 Hubble constant ,

|1 � W(t0)| < 10�3 flatness .

Notice the high precision of these parameters. Most importantly for us,

Wdm(t0)h2 = 0.1198 ± 0.0012 . (1.8)

Throughout the entire discussion, it was necessary to treat DM as a completely dis-
tinct component of the universe in comparison to baryons. This is because DM in-
teracts with CMB photons solely through gravitational interactions, unlike baryons.
This confirms that DM is non-baryonic in nature and cannot be composed of ultra-
faint ordinary matter objects.

There are at least two additional independent observables on cosmological scales
that can be used to probe Wbh2 and Wm. The former can be measured from Big Bang
Nucleosynthesis (BBN) in the very early universe [122], while the latter can be an-
alyzed through Supernovae Ia as a late universe measurement [123]. We will not
review these topics, but we mention that the consistency provides strong evidence
for the existence of dark matter as a crucial non-baryonic ingredient in the cosmic
inventory.

Structure formation

A common method to understand the necessity for dark matter at different length
scales is to compare the observed distribution of matter to the theory of structure
formation, which is discussed in greater detail in Section 1.2. The goal of this Section
is to outline why the dark matter is essential for the very existence of the Milky Way.

According to the standard paradigm, all the structures we observe in our uni-
verse, such as galaxies, clusters, and superclusters, originated from small primordial
inhomogeneities that were generated during the inflationary epoch. These initially
small and linear fluctuations evolved over time under the competing effects of grav-
ity and the Hubble expansion. The presence of DM played a pivotal role in allowing
the formation of such structures.

We want to study the properties of the matter density contrast. Here we param-
eterize as

d(x, t) =
r(x, t) � r̄

r̄
=
Z d3k

(2p)3 dk(t)e�ik·x , (1.9)
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FIGURE 1.3: The Planck 2018 temperature anisotropies power spectrum
from [9]. The upper panel displays the theoretical spectrum of the base-
LCDM model that best fits the Planck data, while the lower panel shows
the residuals relative to this model. The error bars represent the 1s diag-
onal uncertainties, accounting for cosmic variance. It is worth noting that
the vertical scale changes at ` = 30, which is also the point where the hor-
izontal axis switches from a logarithmic to a linear scale. This scale serves
as a boundary between large and small scales, which are analyzed using
different techniques.
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with r̄(t) is the background mean matter density. The evolution of non-relativistic
matter density fluctuations on sub-horizon scales, i.e. l < lH = H�1 can be de-
scribed by Newtonian gravity, or, better by the small scalar perturbation limit of the
Friedmann-Robertson-Walker metric (see Appendix A for more). Indeed, consider-
ing the Poisson equation for the gravitational potential F, on sub-horizon scales, for
small perturbations

r2F = 4pGr̄d =
3
2

H2d =) F ⇠
✓

l

lH

◆2
d ⌧ 1 (1.10)

consistently. One can show that combining the Poisson equation with the Friedmann
equations and the continuity and Euler equation for the matter fluid, in Fourier
space, the perturbation has to satisfy the Jeans equation

d̈k + 2Hḋk +


c2

s k2

a2 � 4pGr̄

�
dk = 0 . (1.11)

Here a is the scale factor and cs the matter sound speed, which is non-zero if the
matter has pressure, for example when baryons are coupled to photons. The brackets
contain the battle between gravity and pressure for the growth of the overdensity.
The scale at which these effects are balanced is called Jeans scale:

lJ =
2p

kJ
= 2p

✓
c2

s
4pGa2r̄

◆1/2

= 2prH

r
2
3

cs (1.12)

with rH = (aH)�1 the comoving Hubble radius. Perturbations on scales l < lJ get
washed out by pressure while those at larger scales l > lJ undergo gravitational
collapse. We can solve the Jeans equation in the different regimes.

• l ⌧ lJ , lH (perturbations on sub-Jeans and sub-horizon scales). The gravity
term can be neglected and the Jeans equation has the form of a damped har-
monic oscillator with frequency wk(a) = csk/a and amplitude of the form

dk(t) = Ak(t)e�iwt + Bk(t)eiwt (1.13)

Perturbations on sub-Jeans scales undergo damped acoustic oscillations.

• lJ ⌧ l < lH (perturbations on super-Jeans and sub-horizon scales). We
should consider two different cases. In radiation domination a µ t1/2, H =
(2t)�1 and r̄ is negligible, so the equation has the form d̈k + ḋk/t = 0 with
solution

dk(t) = Ak + Bk log t ⇠ Bk log a radiation domination . (1.14)

Perturbations grow only logarithmically in time.

In matter domination a µ t2/3, H2 = 8pGr̄/3 = 4/9 ⇥ t�2. The equation gets
d̈k + 4/3t�1ḋk � 2/3t�2dk = 0 with solution

dk(t) = Akt�1 + Bkt2/3 ⇠ Bka matter domination . (1.15)
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We can use the formula for the sub-horizon and super-Jeans perturbations in a
matter-dominated era to compute the density perturbations today. We know that
during decoupling dCMB ⇠ 10�5. We neglect the impact of the cosmological constant
at late times. Since in this regime d µ a, we obtain

d(t0) =
a(t0)

a(tCMB)
dCMB ' T(tCMB)

T(t0)
dCMB ⇠ 103 ⇥ 10�5 ⇠ 10�2 . (1.16)

The measured value of CMB fluctuations in the baryon-photon plasma is too small
to explain the existence of present structures, even on the largest scales where the
density perturbations are of the order of d ⇠ 1 � 105. The fact that we observe such
small fluctuations is a strong indication that we are missing a crucial ingredient in
the formation of structures: cold dark matter. DM provides the potential wells neces-
sary to allow the perturbations to go non-linear, and without it, the universe would
be still quite homogeneous, with just some percent fluctuations in density.

To understand the impact of DM on the theory of structure formation, we model
the fluctuations as Gaussian random fields with statistical properties described by
the linear matter power spectrum P(k), which is defined from the two-point function
of the Fourier perturbations.

hdk(t)dk0(t)i = (2p)3d(3)(k � k0)P(k) . (1.17)

This quantity is computed carefully in Section 1.2. For now, we just present in Fig-
ure 1.4 the result of the theoretical prediction of the LCDM model with the data
at the different cosmological scales. The agreement supports the evidence of dark
matter.

1.2 Dark matter structures

Cosmological structures on different scales, such as galaxies and galaxy clusters, are
formed through the process of gravitational instability, whereby small initial over-
densities grow due to gravity. Although the initial overdensities were incredibly
small (of the order of 10�4), the accumulation of matter over the age of the uni-
verse eventually led to the formation of the significant structures that we observe in
the present-day. The growth of perturbations and the resulting clustering of galaxies
depend on the contents of the universe in a non-trivial way. First of all, perturba-
tions on a given scale can only grow once that scale is smaller than the horizon scale
dhor = a(t)

R t
0 dt0/a(t0) ⇠ H�1. When the inverse of a comoving scale, k, is equal to

the comoving horizon scale H�1/a, i.e. k = aH, it is said to have "entered the hori-
zon". The specific time at which this happens depends on the cosmological history
of the universe. Secondly, interactions between the components of the universe are
important: dark matter perturbation start growing earlier than baryons, which are
coupled to photons until recombination and whose perturbation cannot grow. Af-
ter recombination baryons fall in the gravitational wells previously made by dark
matter and we can treat matter as a whole.

In this Section, we discuss the evolution of perturbations and the formation of
matter structures (halos), clarifying the notation and providing useful concepts for
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FIGURE 1.4: The theoretically predicted linear matter power spectrum from
the LCDM model (see Section 1.2 for details) compared to observations at
different scales: CMB (combination of [124] and [125]), SDSS galaxy count-
ing [126], lensing [127], Lyman-a forest [128] reanalyzed by [129]. Figure
from [126].
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the investigation of compressed dark matter halos in Chapter 4. The structure of
content of the Section relies on [120], focusing on the key points relevant for this
work.

1.2.1 Linear matter power spectrum

Consider the gravitational potential on the scale k at redshift z, related to the scale
factor as 1 + z = a0/a (a0 = 1 today, usually). At early times all of the modes are
outside the horizon k/(aH) ⌧ 1 and the potential is constant. At intermediate times
wavelengths enter the horizon and the matter content starts dominating the energy
density of the universe over radiation and therefore the potential evolves. At late
times, deep in matter domination epoch, the potential is constant again. This history
is expressed as [120]

F(k, z) =
3
5
R(k)T (k)(1 + z)D+(z) . (1.18)

We explain each contribution. R is the primordial curvature (adiabatic) perturbation
generated during inflation. T is the transfer function, which describes the evolution
of perturbations through the epochs of horizon crossing and radiation/matter tran-
sition, defined as

T (k) ⌘ F(k, zlate)
Fls(k, zlate)

, (1.19)

where zlate is a sufficiently late-time redshift, deep in matter domination (zlate ⌧
zeq) and Fls is the large-scale potential, i.e. solution of the gravitational potential for
modes that entered the horizon well in the matter-dominated epoch. In particular
it is 9/10 of the primordial potential. The growth factor D+(z) parameterizes the
evolution of perturbations, and it is defined as the ratio of the potential to its value
right after the transfer function regime, for z < zlate

(1 + z)D+(z) ⌘ F(k, z)
F(k, zlate)

. (1.20)

During matter domination, the potential is constant so D+(z) = 1/(1 + z) = a,
hence the normalization. Perturbations at late times grow in time µ D+(z).

In the late universe, i.e. well after recombination, baryons closely follow the dark
matter, so they are cosmologically described together in form of the total matter
overdensity field

d(x, z) =
rm(x, z)

r̄m
� 1 (1.21)

as a random field realized in space. The amplitude of the density perturbations at a
given time is quantified statistically via the power spectrum. Assuming homogene-
ity and isotropy makes the power spectrum diagonal in Fourier space

⌦
d(k, z)d(k0, z)

↵
= (2p)3d(k � k0)Pd(k, z) . (1.22)
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The dimensionless power spectrum is also introduced D2
d(k, z) = k3/(2p2)Pd(k, z).

Thanks to these definitions the ensemble average of the matter overdensity reads

⌦
d2(x, z)

↵
=
Z d3k

(2p)3 Pd(k, z) =
Z

d log k D2
d(k, z) . (1.23)

We want to express the power spectrum of the matter distribution as a function of
the gravitational potential F(k, z). The overdensity and the gravitational potential
are related by the Poisson equation. On sub-horizon scales k � aH and in matter
domination z < zlate,

F(k, z) =
4pGr̄ma2

k2 d(k, z) . (1.24)

We substitute r̄m = Wmrcr/a3 and H2
0 = 8pGrcr/3 and use Eq. (1.18)

d(k, z) =
2k2a

3WmH2
0

F(k, z) =
2k2

5WmH2
0
R(k)T (k)D+(z) . (1.25)

Therefore the linear matter power spectrum is written as

Pd(k, z) =
4

25W2
mH0

✓
k

H0

◆4
PR(k)D2

+(z)T 2(k) . (1.26)

The primordial curvature power spectrum is given by [120]

PR(k) = AR

✓
k
k?

◆ns�1
, (1.27)

with AR ' 2 ⇥ 10�9, ns = 0.968 and kp = 0.05 Mpc�1 [9]. The transfer function T (k)
can be obtained numerically, but it is enough for our purposes to use the analytical
expression by Eisenstein and Hu [130]. The growth function can be found solving the
evolution equation for the matter perturbation in a matter-dominated universe [120]

D+(z) =
5
2

Wm(t0)
H(z)
H0

Z •

z
dz0 (1 + z0)

H3
0

H3(z0)
. (1.28)

We can exploit D2
d(k, z) to find the scale knl(z) at which perturbations are non-linear.

This corresponds to D2
d(k, z) & 1. Solving for this condition at redshift z = 0 gives

knl(0) ' 0.25h Mpc�1. At higher redshifts, structures were not as evolved, so the
nonlinear scale was smaller, that means knl larger.

In Figure 1.5, we show the linear matter power spectrum today and at earlier
times for the fiducial LCDM cosmology. On large scales, where the transfer function
goes to unity, the spectrum goes as Pd µ kns . The spectrum shows a peak corre-
sponding roughly to the scale keq ' 0.015h Mpc�1 that enters the horizon at mat-
ter/radiation equality. This can be explained easily with the fact that scales smaller
than keq enter the horizon earlier, and the earlier they do, the later they start growing.
Thus, the power spectrum is a decreasing function of k on small scales.
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FIGURE 1.5: The linear matter power spectrum in the fiducial LCDM cos-
mology for Planck [121] parameters at different redshifts. The vertical dot-
ted lines show the scales knl at which linearities cannot be ignored.

1.2.2 Halos

Dark matter forms structures called halos. Even though the intricate structure of in-
dividual halos can be highly complex, their average characteristics are surprisingly
straightforward. Essentially, at a given point in time, the properties of a halo are
primarily determined by one factor: its mass. However, before leveraging this in-
formation, it is important to establish a clear definition of a halo’s mass. A practical
way is to consider all matter enclosed in a sphere of a certain radius to achieve an
enclosed density of some multiple D of the mean matter density r̄m = Wmrcr. A
common choice is to define the virial radius rvir and the virial mass

Mvir ⌘ Mdm(< rvir) =
4p

3
Dvirr̄m(zvir)r3

vir (1.29)

with zvir the redshift at which virialization happens. The other conventional way to
define the halo mass is through

M200 ⌘ Mdm(< r200) =
4p

3
D200rcr(zvir)r3

200 (1.30)

which is the mass enclosed within the radius r200 where the average mass density is
D200 = 200 times the critical density. This choice is motivated by the fact that, as we
are about to see, Dvir ⇡ 200.

Spherical collapse and critical overdensity

Let us consider briefly the spherical collapse model. According to this simple model,
the radius R of a spherical overdense region evolves via the parametric solutions to
the Friedmann equation for a closed universe. With di ⌧ 1 as the initial density of
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size Ri at time ti,

R =
Rta

2
(1 � cos q) =

Ri
2

3
5di

(1 � cos q) , (1.31)

t =
tta

p
(q � sin q) =

1
2Hi

3
5di

(q � sin q) . (1.32)

Here Rta is the size at turnaround, that happens at time tta. One can show that the
overdensity evolves as

1 + d =
9
2
(1 + di)

(q � sin q)2

(1 � cos q)3 ⇡ (1 + di)

✓
1 +

3q2

20

◆
. (1.33)

The last expression is the expansion for q ⌧ p, where the linear theory is valid.
At early times, q ⌧ p we have R µ t2/3 and the overdensity grows as d µ R.

The expansion subsequently slows down, and at q = p the region ”turns around”
and starts collapsing. However, even though R = 0 at q = 2p, the assumptions
behind spherical collapse that matter is in spherical shells with small random ve-
locities breaks down and the region actually reaches virialization. We can determine
the overdensity at collapse in the linear theory. We expand the formulae for t and
1 + d for q ⌧ p and eliminating q we get [131]

1 + d ⇡ (1 + di)


1 + di

✓
3
2

Hit
◆2/3�

. (1.34)

The spherical region collapses (and virializes) if the overdensity in the linear theory
exceeds the critical value dc = d(tc). We can find this by evaluating Eq. (1.34) for
tc = 2tta. We find

dc =
3
5

✓
3p

2

◆2/3

' 1.686 . (1.35)

The threshold for spherical collapse is used to identify which regions within an ini-
tial (linear) density field may undergo collapse to create halos. It is noteworthy that
the collapse threshold is independent of the size and mass of the collapsing region,
as a result of the scale-free characteristic of an Euclidean matter-dominated universe.

One can also estimate the typical overdensity within scale R during spherical
halo virialization. This is done by utilizing the fact that virialization necessitates the
kinetic energy to be �1/2 of the potential energy. Remarkably, the outcome is not
affected by the size or mass of the region and is determined to be, for a flat matter-
dominated universe, Dvir = 18p2 ' 180. This is why D = 200 is chosen as the
threshold density for defining halo mass and radius. Due to the rough nature of this
approximation, it has become the norm to round off the value of D to the nearest
whole number.

Including the cosmological constant L, no closed-form solution for the spherical
collapse exist. However the effect on Dvir and dcr is small. In [132], for example, it is
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found for c = Wm(zvir) � 1

Dvir ⇡ 18p2 + 82c � 39c2

c + 1
. (1.36)

The reason for this is that during the early stages of collapse in matter domination,
L is not the primary factor, while during the later stages when dark energy becomes
significant, the collapsing region has already achieved a much higher density than
the background and is mostly separated from the Hubble flow.

The mass variance

We want to describe the typical amplitude of a perturbation on scale R. We define a
smoothed density field on the (comoving) scale R

dR(x, z) =
Z

d3x0 WR(x � x0)d(x, z) , (1.37)

through a window function WR normalized to
R

d3x WR(x) = 1. We choose a top-hat
filter, which is unity inside the sphere of radius R and zero outside:

WR(r) =
3

4pR3 Q(R � r) . (1.38)

The typical amplitude of perturbations on scale R is given by the mass variance

s2
R(z) =

⌦
d2

R(x, z)
↵

=
1

2p2

Z •

0
dk k2|WR(k)|2Pd(k, z) , (1.39)

where WR(k) is the Fourier transform of the top-hat function

WR(k) =
3

(kR)3 [sin(kR) � (kR) cos(kR)] . (1.40)

The filter was introduced to regularize the integral in Eq. (1.39) defining s2
R, which

is divergent for the matter power spectrum. We can replace at will the filter over the
size R with a filter over the mass M(R) = 4pr̄m(0)R3/3 enclosed in R. In Figure 1.6
we show the mass variance of cosmological perturbation, averaged over a scale R
such that M(R) = M for different redshifts. The mass scales for which s2

M & 1 sig-
nals that structure formation is happening. The plot of mass variance shows that
small dark matter structures form first at every redshift, because their mass variance
is order one earlier than for larger masses. Smaller object formed from larger pertur-
bations, hence at earlier times. This is the essence of hierarchical clustering of cold
dark matter.

We want to compute the typical halo mass M at redshift z. A good statistical
description is given by the Press-Schechter formalism [133]. This method relies on
knowing the fraction of collapsed objects of mass M or smaller F(sM, dc), making
use of the critical overdensity found in the spherical collapse case. Assuming that dR
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FIGURE 1.6: The mass variance of cosmological perturbations filtered over
the mass scale M for different redshifts. This figure shows the hierarchical
clustering of CDM structure formation.

is a Gaussian random field, with variance sR, then it follows that [134]

F(sM, dc) = 2
Z •

dc

1p
2psR

e�d2
R/(2s2

R) = erfc
✓

np
2

◆
, (1.41)

with

n(z) =
dc

sM(z)
, (1.42)

the so-called peak height. This parameter tells us how rare (in ns terms) is to find
a certain structure with mass M at given redshift z. Typical halo masses formed
at redshift z in the LCDM cosmology are then obtained finding the value M from
Eq. (1.42) with n of order unity. Note that limM!0 F(sM, dc) = 1 as we expect (all the
structure collapse) thanks to the factor of 2, exactly introduced by Press & Schechter.

We show the results of this analysis in Figure 1.7. The lines are the isocontours
for the halo mass distribution as a function of redshift. For a fixed redshift, the most
likely values are the ones below the 1s contour line, while the halo masses above
become more and more unlikely. Notice that at high redshift large structures are
much more unlikely compared to today, where all the lines appear to be closer.

Navarro-Frenk-White density profile

Navarro, Frenk, and White [135, 136] found that the equilibrium density profile of
collisionless cold dark matter in N-body simulation are well fitted, over two orders
of magnitude in radius for a wide spectrum of halo masses and cosmological param-
eters by a universal profile of the form

rNFW(r) =
rcr(zvir)dch

(r/rs)(1 + r/rs)2 , (1.43)
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FIGURE 1.7: Typical halo masses formed at redshift z in the fiducial LCDM
cosmology. We choose the peak height n = 1, 2, 3, that correspond to the
contours in the M, z plane for values likely at the 1s, 2s, 3s level, respec-
tively.

where rs is the scale radius, i.e. the radius at which the logarithmic derivative of the
density profile is equal to �2:

d log rNFW

d log r

����
r=rs

= �2 . (1.44)

This definition is general and independent on the NFW profile itself. rcr(zvir) is the
critical density at halo formation and dch is the characteristic overdensity. The scale
density, i.e. the density at scale radius is then defined as rs = rcrdch. For r ⌧ rs,
rNFW µ r�1, so the inner NFW profile can be effectively described by a power-law
profile.

The enclosed dark matter mass and dark matter self-gravity potential are found
analytically [42]

MNFW(r) = 4psrsr3
s


log
✓

1 +
r
rs

◆
� r/rs

1 + r/rs

�
, (1.45)

FNFW(r) = �4prr3
s

r
log
✓

1 +
r
rs

◆
. (1.46)

Notice that the enclosed mass logarithmically diverge for large radii. This is why
the NFW profile cannot describe realistic bound halos at large radii, where r � rs,
rNFW µ r�3. The real halo profiles become steeper at r > rvir, r200. An exponential
cutoff at large radii is appropriate to parameterize this behavior.

1.3 Dark matter distribution

It is of crucial interest to understand the distribution of dark matter around us and
how it is shaped by gravity. This is the topic of Chapter 3, but for now we want to
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outline the formalism to model both the abundance and the kinematic properties
of the dark matter particles in our neighborhood. In other words we want to know
what observations of the kinematics of stars in the Milky Way tell us about the phase-
space distribution of dark matter. For this section we largely refer to the review [114]
and the references therein.

We denote with f (x, v, t) the phase space distribution. It is normalized such thatR
d3v f = r and

R
d3x d3v f = M. In the collisionless regime, the phase space distri-

bution has to satisfy the Liouville equation [42]

d f
dt

= 0. (1.47)

Once the total derivative is expanded, we find

∂ f
∂t

+ v · r f � rF · ∂ f
∂v

= 0 (1.48)

Here F is the potential, from the particle’s equation of motion v̇ = �rF. This equa-
tion tells us how the phase space distribution evolves on the particle’s trajectory.

Standard Halo Model We have seen in Section 1.2 that dark matter forms halos
which embed galaxies. For simplicity, the velocity distribution of the dark matter in
the Milky Way halo is taken to be a Maxwell-Boltzmann distribution,

f (v) =
r

(2ps2)3/2 exp


� v2

2s2

�
(1.49)

which corresponds to the assumption of a isothermal density profile, that provides a
flat galaxy rotation curve, having r µ r�2 at large radii. This is the so-called Standard
Halo Model (SHM) [52, 53]. This has been used as the basis for analyzing various
terrestrial dark matter searches. A feature of the isothermal sphere is that the circular
velocity is given by vc(r) = r[dF/dr] =

p
2s.

The density distribution isothermal sphere extends to infinity, which means that
the velocity distribution also would allow to infinite velocities. However, the Milky
Way halo is finite and particles with velocities greater than the escape speed of the
Milky Way ve(r) =

p
2|F(r)|, are not gravitationally bound to it. To account for this,

the velocity distribution is often truncated at the measured local escape speed.

Local density There are two categories of techniques used to constrain the local
dark matter density, namely local methods that use kinematics of nearby stars and
global ones that involve mass modeling of the Milky Way through rotation curves
and velocity dispersion of stars. While the error on the measurement can be small,
the estimates of r(R�) are spread in the 0.3 � 0.6 GeV/cm3 range, e.g. [48–50] indi-
cating that systematics may be relevant (see the reviews [137,138] for more details). It
is worth noticing that this value of the density appears when we average over scales
larger than the parsec, which is the average distance between local stars. Bounds on
the actual density inside the solar system are much weaker [139].
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Local circular speed The circular speed at the Sun’s position vc(R�) was deter-
mined in [140] from the proper motion of the Milky Way’s central black hole Srg
A? to be vc(R�)/R� = (30.3 ± 0.9) km/sec/kpc. From a recent precise determina-
tion of the radial distance of the Sun from the galactic center [141], we can obtain
vc(R�) = (248 ± 7) km/sec. A complementary method is a Jeans analysis through
tracer stars which give vc(R�) = (229.0 ± 0.2) km/sec [51]. We stick to this more
precise result.

Local escape speed The local escape speed v(R�) is estimated from the population
of high velocity stars. Using GAIA data without assumptions in the gravitational
potential, it is found ve(R�) = (580 ± 63) km/sec [142].

Shortcomings The standard halo model appears to be reasonably accurate, accord-
ing to N-body studies [54, 55], but does not take into account the history of mergers
that Milky Way has undergone, which could lead to peculiar dark matter substruc-
tures. In other words, the velocity distribution contains imprints of the archaeology
of Milky Way’s halo.

A considerable portion of the local dark matter belongs to the Gaia-Enceladus
sausage, which originated from the aftermath of a major merger with a M < 108 M�
dwarf galaxy about 8-10 billion years ago [57]. It is called so because the stellar com-
ponent has radially biased orbits, resulting in a sausage-like distribution of radial
velocity component [56]. The dark matter in the Gaia sausage constitutes about 10 to
30% of the local DM density. Ref. [60] presents an updated version of the standard
halo model that includes this component. In addition to this, the local stellar halo
has narrow tidal streams from smaller or more recent mergers such as S1 [143], the
Helmi streams [144] and Nyx [145]. Since all these components have characteristic
kinematic properties, they must be modeled independently and added to the total
local dark matter distribution.

1.4 General constraints and properties

The nature of dark matter is still unknown, although we know its abundance and
distribution in the universe, as well as its gravitational interaction and pressureless
fluid behavior. Its microscopic properties such as mass, spin, and couplings with
the visible sector are still uncertain, making the quest to unveil the DM theory one
of the main goals of physicists today. Despite decades of attempts to detect non-
gravitational interactions of DM particles, no success has been achieved. However,
the null results from dark matter searches have provided valuable information, as
we now know what DM cannot be. This chapter aims to overview the properties any
dark matter candidate must have. We follow the recent review [146].

Cosmological density Thanks to the fit of the CMB data by the Planck collabora-
tion [9] we know the present value of the mass density of dark matter on cosmolog-
ical scales:

Wdm(t0)h2 =
rdm

rcrh�2 = 0.1198 ± 0.0012 . (1.50)
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Coldness Based on constraints from structure formation, e.g. Lyman-a [147], it is
established that dark matter must be cold, meaning it was non-relativistic when the
universe was at a temperature of approximately T ⇠ keV, in order to avoid a ve-
locity dispersion that would hinder structure formation. Below this temperature,
dark matter behaves as a pressure-less fluid. This leads to the exclusion of thermal
candidates with mass m < 1 � 10 keV, such as Standard Model neutrinos. These
constraints imply that light DM candidates should be produced non-thermally.

Charge neutrality Dark matter is indeed dark because it does not interact electro-
magnetically. If it did, it would have been visible and would have had a significant
impact on the Cosmic Microwave Background (CMB) power spectrum due to its
coupling with the photon fluid. However, it is still possible that dark matter has a
tiny electric charge, although current observations do not completely rule out this
possibility, at least for a fraction of dark matter [148].

Self-interactions We have established that DM is a collision-less particle, which
means it has a weak interaction with itself. As a result, the DM halo around our
galaxy remains spherical: if dark matter had the ability to dissipate energy like bary-
onic matter, a dark matter disk would form. At present, the bounds on DM self-
interactions are derived from systems like the bullet cluster, which is a well-known
visual demonstration of evidence for DM. It consists of two colliding clusters, each
containing gas and a spherical dark matter halo. The gas is collisional, which pre-
vents the two gas clouds from passing through each other, leading to an increase
in temperature, which is observable through X-ray emission. Lensing observations
prove instead that the DM halos continue their motion, behaving in a collision-less
way. this allows to put a bound on the self-interactions [149]

sself
m

. 1 cm2g�1 ' 1 barn GeV�1 . (1.51)

This bound is actually weak, corresponding to a self-interaction cross-section smaller
than the typical strong interaction cross-section. Dark matter self interactions have
been advocated to alleviate the presence of too many structures at small scales [150].

Stability The particles accounting for the present dark matter relic density must
be stable over the timescale of the age of the universe H�1 ⇠ 14 Gyr ⇠ 4 ⇥ 1017 s.
However, the bound is stronger than this.

The most robust bound is independent on the decay products. its essence is the
fact that the decay products, whatever they are, must be much lighter than the DM:
this would imply a conversion of energy into radiation, affecting structure forma-
tion. The limit is [151]

tdm & 200 Gyr ⇠ 1019 s . (1.52)

If the decay products are visible, the bound is even stronger, since the CMB would
be affected: t & 1025�29 s [152].
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Mass There is no specific mass scale identified by astronomical observations for
the microscopic component of dark matter. If the DM is a new elementary particle it
has a natural upper bound at the mass Mpl. For super-Planckian values of the mass.
The Compton wavelength of the particle would be smaller than its Schwarzschild
radius, forming a black hole.

Lower bounds come from astronomical observations. We observe small dark
matter-dominated structures, such as dwarf spheroidal galaxies with size RdSph ⇠
kpc ⇠ 1026 eV�1. Dark matter needs to be localized within the length scale of these
systems. We know that the localization of the particles have to take into account the
statistics.

• Bosons. The smallest DM structures would be erased if particles could not be
confined in a system of size. this would be the case for very light dark matter,
see the next Chapter, for which the de Broglie wavelength is astronomical. If
we fix v ⇠ 100 km/sec and impose ldB < RdSph, we obtain the bound

m >
2p

vRdSph
' 10�22 eV . (1.53)

• Fermions. The constrain is inevitably much stronger for fermions because of
the Pauli exclusion principle. Let us consider the case in which all the energy
levels are occupied. We consider an isothermal dark matter sphere of radius
RdSph and mass MdSph = 4p

3 rR3
dSph. If DM is fermionic with g internal degrees

of freedom, the energy distribution is given by the Fermi-Dirac

f (E) =
g

exp[(E � µ)/T] + 1
, (1.54)

where µ is the chemical potential. For a degenerate system it is appropriate to
approximate f (E) as

f (E) ⇡
(

g E < µ

0 E > µ
. (1.55)

We can obtain the mass density integrating the phase space distribution over
all the occupied level, i.e. up to the Fermi velocity vF

r = m
Z d3 p

(2p)3 f (E) = g
m4

2p2

Z vF

0
dv v2 =

gm4v3
F

6p2 . (1.56)

Substituting this value of r in the formula for the mass and inverting to find
the Fermi velocity

vF =


9p

2g
MdSph

m4R3
dSph

�1/3

. (1.57)
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We can obtain a bound on the mass imposing the Fermi velocity is smaller than
the escape velocity ve = (2GMdSph/RdSph)1/2. We find

m >


9p

4
p

2g
1q

G3MdSphR3
dSph

�1/4

' 145 eV
✓

108 M�
MdSph

◆1/8 ✓ kpc
RdSph

◆3/8
.(1.58)

This is the so-called Tremaine-Gunn bound [16]. The direct implication is that
if dark matter is lighter than the 10-100 eV scale, it must be bosonic.
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Chapter 2

Wave Dark Matter

The goal of this Chapter is to provide an overview of the theoretical and phenomeno-
logical background on wave dark matter.

Wave dark matter can be simply defined as dark matter which exhibits wave
features on macroscopic, or even astronomic scales. The origin of these wave fea-
tures is the light mass of the dark matter candidate, smaller than roughly 10 eV.
Since this mass scale is roughly one order of magnitude smaller than the Tremaine-
Gunn bound [16–20], the particle candidates of wave dark matter are light bosons.
The Bose-Einstein statistics, unlike the Fermi-Dirac one, allows for huge occupation
numbers in phase space and this is the crucial feature which pushes for a wave de-
scription of dark matter.

Let us see what is special about the 10 eV mass scale. Astronomical measure-
ments in the Milky Way give us information about the dark matter mass density in
the solar neighborhood. Despite not being conclusive, all the measurements [48–50]
converge on values around r ⇠ 0.4 GeV/cm3. From this information, we are able
to compute the average dark matter inter-particle separation in a Milky Way-like
galaxy as a function of mass

d ⇠
⇣ r

m

⌘�1/3
' 3 ⇥ 10�3cm

✓
10 eV

m

◆�1/3
. (2.1)

Let us compare this distance with the de Broglie wavelength of a particle with mass
10 eV and with the typical virialized velocity in the solar neighborhood

ldB ⇠ 1
mv

' 3 ⇥ 10�3cm
✓

10 eV
m

◆✓
250 km/s

v

◆
. (2.2)

The fact that d ⇠ ldB allows us to set the value of the mass for which this happens
m ⇠ 10 eV as a demarcation point in the dark matter mass spectrum [21]. The num-
ber of particles in a de Broglie volume NdB = (r/m)l3

dB µ m�4 is a sharply increas-
ing function for a decreasing dark matter mass. This means that occupation number
gets so large that the dark matter particles is best described by classical1 waves, very
much similarly to how photons are described as electromagnetic waves. At the same
time, for smaller masses, the de Broglie wavelength gets larger and larger, reaching

1We will use the word classical in two ways: (i) to say that we can neglect quantum fluctuations,
thanks to the large occupation number (see Section 2.3); (ii) to express the transition between wave
dark matter and (classical) dark matter. The distinction should be clear based on the context.
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astronomical-sized values:

ldB ' 1 km
✓

10�6 eV
m

◆
,

' 0.1 AU
✓

10�14 eV
m

◆
, (2.3)

' 0.1 kpc
✓

10�22 eV
m

◆
.

Being the length scale at which wave features become observable, the de Broglie
wavelength will always be a central quantity in our analyses. Here we provided the
scalings according to three different values of the mass, for fixed v ⇠ 250 km/sec.
The 10�6 eV case corresponds to the ballpark of the QCD axion, where most of the
experimental searches have focused so far, see Section 2.1.1 and 2.7. The 10�14 eV
case is particularly interesting since the de Broglie wavelength is close to the distance
between Sun and Earth, for reasons that will be explored in Chapter 3. Other, slightly
larger values of the mass can have features in smaller systems, such as the inner part
of compressed dark matter halos, as we will see in Chapters 4 and 5. Finally, the
ultralight scenario, or fuzzy dark matter [25], m ⇠ 10�22 eV is the case in which wave
dark matter has the most striking phenomenological consequences. The idea of such
light scalars [22–29] has attracted recent interest to address small (sub kpc) scales
structure issues in the standard cold dark matter paradigm [30, 31] in the case they
cannot be solved by baryonic physics. Even lighter wave dark matter is excluded by
observations of small structures, such as dwarfs spheroidal galaxies, which would
be wiped out by interference effects. In this Chapter and throughout this thesis, we
will mostly focus on the (ultra)-light end of the spectrum m ⇠ 10�22 � 10�10 eV.

Most of the material presented in this Chapter is based on a number of reviews.
Section 2.1 follows [21, 33, 153] mainly. Section 2.2 is inspired by the discussion in
[153]. Section 2.3 presents our original work that can be found in the correspondent
section of [106]. The description of wave dark matter and gravity in Section 2.4 as
well as the main phenomenological implications in Section 2.5 integrate the content
from [21, 25, 33] with our own arguments and explanations. Section 2.6 is based on
the corresponding section of [96]. Finally, Section 2.7 borrows a lot of material and
references from [95–97].

The outline is the following. In Section 2.1 we present a few motivated particle
physics models that can accommodate for a wave dark matter candidate: these in-
clude axion-like particles (ALPs) and the dark photon. In the axion case, we show,
studying the evolution of the field in 2.2, that these candidates are able to repro-
duce the observed relic density. Section 2.3 presents our treatment of the wave dark
matter stochasticity and outlines the formalism we use in this thesis to describe the
statistical properties of the field. Section 2.4 reviews the formalism to describe the in-
terplay of wave dark matter and gravity: the Schrödinger-Poisson system, the fluid
description and its implication for perturbation theory and structure formation. In
Section 2.5 we present some phenomenological consequences on the gravitational
dynamics of wave dark matter: the gravitational cooling, or relaxation, wave fea-
tures in dynamical friction and the phenomenon of subhalo tidal disruption which
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is of importance in addressing wave dark matter substructures and small scales.
Section 2.6 reviews cosmological and astrophysical probes of ultralight scalars and
vectors and Section 2.7 concludes, attempting a review of the many ideas for direct
detection of wave dark matter.

2.1 Particle physics motivation

In this Section, we provide a brief theoretical overview of the particle physics models
motivating wave dark matter candidates. We mostly refer to the reviews [21,95,153].

Historically, the first appearance of beyond standard model bosons so light to
fall in the mentioned mass range characteristic of wave dark matter is the axion. This
scalar particle, specifically dubbed the QCD axion, was originally proposed in the
Peccei-Quinn (PQ) mechanism [154, 155] as a solution to the strong CP problem in
the standard model, which refers to the observed lack of charge-parity (CP) viola-
tion in strong interactions. Weinberg [156] and Wilczek [157] identified axions as
the pseudo-Nambu-Goldstone (pNG) boson of the newly broken global symmetry
proposed by Peccei and Quinn.

However, nowadays, the term axion more freely refers to scenarios involving a
pNG boson, with low mass and coupling that arises naturally from a broken sym-
metry at high energy scales. These models are usually less constrained than the QCD
axion and do not relate to the PQ mechanism.

Another possibility which we can consider is that wave dark matter is consti-
tuted by a new vector boson, rather than a scalar particle. A scenario studied in the
literature is the dark photon. The idea of adding to the SM a new U(1) gauge bo-
son [158,159], similar to the photon, was early on considered in the context of super-
symmetric theories [160, 161] and later extended to more general contexts [162, 163].
We consider the scenario in which the dark photon is light and makes up the wave
dark matter.

2.1.1 QCD axion

The strong CP problem The QCD Lagrangian suffers from the strong CP problem.
Let us explain why. The following CP-violating terms are allowed in the QCD La-
grangian

LQCD � q
as

8p
Ga

µnG̃µn
a �


q̄R Mqeiqq qL + h.c.

�
. (2.4)

Here Gµn is the gluon field, G̃µn ⌘ 1
2 eµnrsGrs, its dual, qL,R left and right quark fields,

Mq a quark mass matrix. The first term arises from the q-vacua of QCD, meaning that
q can be understood as an angle setting the vacuum of the theory (see Appendix A
of [153] and references therein for more details). Only a combination of the q and qq

parameter is physical. Indeed, performing a chiral rotation of the quark fields, the
second term disappears. However, the gauge anomaly implies that a term identical
to the first one appears but with arg det Mq in place of q. Therefore we are left with

LQCD � qQCD
as

8p
Ga

µnG̃µn
a , (2.5)
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where qQCD = q + arg det Mq. This CP-violating term has the phenomenological
consequence of predicting a electric dipole moment (EDM) for the neutron [164]

dn = 3.6 ⇥ 10�16qQCD e cm, (2.6)

with e the electron charge. However, experiments have not detected any neutron
EDM so far, with the most stringent current bound being |dn| < 1.8 ⇥ 10�26 e cm
[165], implying |qQCD| . 10�10. The strong CP problem is a fine tuning problem:
why is qQCD so small if it arises from two phases of different origin?

The Peccei-Quinn solution An elegant solution to the strong CP problem was pro-
posed by Peccei and Quinn [154,155]. They postulated a new U(1) global symmetry,
called the PQ-symmetry, which is spontaneously broken at a high energy scale fPQ.
This symmetry group acts as a chiral rotation, under which the SU(3) color group
is anomalous and produces the qGG̃ term. The fact that the PQ symmetry is sponta-
neously broken implies the existence of an uneaten Goldstone boson, whose phase
f, is a pseudoscalar field called the axion by Wilczek, as it is the field which washes
the strong CP problem away. Indeed, thanks to the PQ mechanism, the low energy
effective Lagrangian includes the term

LQCD � f

fPQ

as

8p
Ga

µnG̃µn
a , (2.7)

which replaces the qQCD term of Eq. (2.5) absorbing it into a redefinition of the axion
field f. The crucial point in the discussion is that the above term, below the non-
perturbativity QCD scale LQCD ⇡ 200 MeV is such that the axion gets a potential
which allows it to relax to the CP-conserving value f = 0 [166], solving the strong
CP problem.

The above coupling of the axions with the gluon field has important conse-
quences, which are to a certain extent, independent on the specific way the axion
is implemented in the SM. First of all it shows a suppression by a fPQ factor. This
implies that any phenomenological effect of axions will be suppressed. Indeed the
original model (PQWW) or Peccei-Quinn-Weinberg-Wilczek), which has fPQ at the
electroweak scale, could be excluded by lack of observation of the rare kaon decay
K± ! p±f. Values fPQ & 109 GeV are usually required, mainly because of astro-
physical bounds.

Secondly, the QCD non-perturbative effects generate a (small) mass for the axion
field through the mixing with QCD mesons, making the axion a pseudo-Nambu-
Goldstone boson. The mass is found to be

mf '
✓ p

mu/md
1 + mu/md

◆
mp fp

f
' 5.70 ⇥ 10�6 eV

✓
1012 GeV

fPQ

◆
(2.8)

and its small value is again due to the large value of fPQ. The fact that the mass is
determined by QCD dynamics is crucial: the only free parameter is fPQ. The axion
mass is actually temperature dependent, again due to QCD non-perturbative effects
and the value in the above equation is only valid at zero temperature. This fact is of
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importance when treating the cosmology of the QCD axion, see [167] and references
therein. We will not deal with this effect.

Thirdly, the presence of the fGG̃ operator in the Lagrangian naturally implies a
series of other couplings of the axion to the standard model field. After PQ symmetry
breaking and non-perturbative effects have switched on, i.e. at energies below LQCD,
the operators of interest are

Lf � f

fPQ

Cfgg

8p
Fµn F̃µn +

f2

f 2
PQ

C(2)
fgg

4p
FµnFµn (2.9)

+
∂µf

2 fPQ
Â

f
Cyȳgµg5 f y +

f2

f 2
PQ

Â
y

C(2)
y myȳy

� iCN

2
f

fPQ
N̄sµng5NFµn ,

i.e. the couplings to photons (first row) and to SM fermions (nucleons or leptons)
(second row), including the nucleon N (proton or neutron) EDM coupling (third
row). Here sµn = i

2 [gµ, gn]. Expressions for all standard model couplings of the QCD
axion can be found in [168] and the EDM coupling is discussed in [169]. Experimen-
tal searches of axions are based on these operators, see Section 2.7.

2.1.2 Axion-like particles

The above discussion can be generalized for any other U(1) spontaneously broken
at a high energy scale ff. In this case, the pNG boson arising is not linked to the
PQ mechanism or the strong CP problem whatsoever and therefore their mass m
doesn’t follow the relation with ff that we showed in Eq. (2.8), but a more general
one, depending on the considered potential for the theory. In this cases we talk about
axion-like particles (ALPs). For example we can think of a coupling of the type fGG̃
where G is now the field strength of a generic SU(N) that shows non-perturbative
effects at a scale L. ALPs which can be dark matter can also arise from the com-
pactification of theories with extra-dimensions, including string theory [170–173] or
from models which aim to solve either dynamically or anthropically the electroweak
hierarchy problem [174–182].

A common way to write the potential of these models is [21]

V(f) = L4


1 � cos
f

ff

�
. (2.10)

Here both ff and L are free parameters. At energy scales below L the ALP gets a
mass m ⇠ L2/ ff, which can be very tiny if ff is sufficiently high.

Finally, the couplings in Eq. (2.9), except the coupling to gluons which defines the
QCD axion, can be introduced in a effective theory approach or just derived from the
explicit model. If present, these operators can allow for direct detection of the ALPs,
see Section 2.7.
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2.1.3 Dark photon

Dark photons are another possibility for light bosonic dark matter. We refer to the
recent review [183] to summarize the main properties of these candidates.

The Lagrangian Consider the Lagrangian with two abelian U(1) gauge bosons
coupled, respectively to SM matter current Jµ and to dark-sector matter J0

µ.

L � �1
4

F1µnFµn
1 � 1

4
F2µnFµn

2 � e

2
F1µnFµn

2 + eJµ Aµ
2 + e0 J0

µ Aµ
1 . (2.11)

The kinetic part of the Lagrangian can be diagonalized with the rotation [158]
 

Aµ
1

Aµ
2

!
=

 1p
1�e2 0

� ep
1�e2 1

! 
cos q � sin q

sin q cos q

! 
A0µ

Aµ

!
. (2.12)

We now can identify Aµ with the ordinary photon and A0
µ with the dark photon.

The angle q is arbitrary if the gauge bosons are massless. This freedom allows, in the
massless case, either the dark photon to couple to both SM and dark current and the
photon to just the SM, or, for another choice of q, the dark photon couples only to
the dark sector and the photon to both SM and dark particles, which then become
"millicharged".

Instead, if the bosons get mass with a Higgs mechanism, the diagonalization of
the mass terms sets q to be the value required to rotate to the mass eigenstates. So
we cannot have the freedom to set one of the bosons to couple just to one current.
This is also what happens when the U(1) gauge bosons acquire a mass by means of
the Stueckelberg mechanism [184]. To diagonalize the Lagrangian

L � �1
2

M2
1 A1µ Aµ

1 � 1
2

M2
2 A2µ Aµ

2 � M1M2A1µ Aµ
2 , (2.13)

q is fixed by

cos q =
1 � dep

1 � 2de + d2
, (2.14)

with d = M2/M1 . However, the most frequent case is when only one of the gauge
boson gets a mass. In this case, the mass states are already diagonal. So, for d = 0,
we obtain that the ordinary photon couples only to visible matter and the massive
dark photon couples to the electromagnetic current of the SM as

L �


e0
p

1 � e2
J0µ � eep

1 � e2
Jµ

�
A0

µ + eJµ Aµ ⇡ [e0 J0µ � eeJµ]A0
µ + eJµ Aµ . (2.15)

This is the standard choice for the massive dark photon, and the portal interaction
to the visible matter is suppressed by the kinetic mixing parameter e. Notice that we
do not actually need to assume the existence of 0 dark sector current J0

µ.
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In another large class of models, the dark photon couples to the SM through
direct gauge couplings, with Lagrangian

L � �1
4

FµnFµn � 1
4

F0
µnF0µn +

1
2

m2
A0 A0

µ A0µ + eJµ Aµ � gJµ
SM A0

µ (2.16)

with Jµ
SM not necessarily the electromagnetic current. Examples include gauging of

the baryon number or U(1)B�L and/or U(1)Le�Lµ .

Dark photon dark matter If produced non-thermally as a condensate in the early
universe, a very light massive dark photon could be a candidate for dark matter
produced through the misalignment mechanism associated with an early inflation-
ary epoch [185–188]. However, it cannot be produced in the vanilla misalignment
mechanism, like in the case of ALPs [185]: a non-minimal coupling to gravity is
needed [186]. The mechanism involves the value of the field being frozen by the
rapidly expanding universe to the value it had at the initial moment. The rate of
expansion is much larger than the mass, and the field does not have time to relax
to the minimum of the potential. Although there is an unavoidable and problematic
violation of Lorentz invariance, it is estimated to be small and undetectable.

The Stueckelberg mechanism is responsible for the mass of the dark photon in
this scenario, requiring a non-minimal coupling to gravity. As the value of the Hub-
ble constant drops below the mass of the dark photon, its field begins to oscillate,
behaving like cold dark matter.

However, there are two important constraints that must be considered in this
dark photon scenario. Firstly, the initial value must be finely tuned to match the
critical density. Secondly, the decay into photons and SM leptons should not affect
the cosmic microwave background. This means that the mixing parameter e must
not exceed a certain threshold (roughly less than 10�9), and the mass mA0 should be
less than 1 MeV [186]. This is indeed not a problem if the dark matter is much lighter
than the eV scale.

Other possibilities for non-thermal production of dark photon dark matter in-
clude production via parametric resonances [189], tachyonic instabilities developed
via the rolling of an ALP [190–192] or the inflaton [193] and decay of topological
defects such as global cosmic strings [194].

2.2 Ultralight scalars in cosmology

We focus on ultralight scalars, as they will be the reference case considered in this
thesis; we put aside the dark photons for now. Axions are potentially crucial in vari-
ous cosmological scenarios, including inflation, dark radiation, dark energy, and the
physics of the cosmic microwave background. However, their most significant role
could be as a potential candidate for (wave) dark matter [195–198]. Being this light,
axions cannot be produced thermally, if they have to account for cold dark matter,
so a peculiar mechanism must be studied.

Considering generic ALPs, they appear after the spontaneous symmetry break-
ing of a global U(1). The most common production mechanism is the misalignment
mechanism, or vacuum realignment. At high temperatures, the field is stuck due
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to Hubble friction in a initial value qi = fi/ ff 2 [�p, p]. Later on, when non-
perturbative effects generate the axion mass and this value overcomes the Hubble
parameter, the field starts oscillating around the minimum, behaving as a perfect
cold dark matter candidate. We will see how the relic density can be reproduced.
Alternatives and modification to the standard misalignment, e.g. when the field has
an initial non-negligible kinetic energy, have also been studied [199–203], or when
the ALP potential is non periodic [204].

In a full cosmological context, the phase transition from which the ALP originates
can happen before inflation or after. This fact impacts the dynamics of the field. In
the first case, the pre-inflationary scenario, the value of qi is unique for the whole ob-
servable universe, but it is in principle unknown. In the post-inflationary scenario,
instead, qi takes random values in the angular domain in the different patches of
the universe, so an average value qi = p/

p
3 can be considered. However, in this

case, the topological defects that arise from the phase transition are not wiped out
by inflation so they can decay to produce lots of axions. Their contribution is sub-
ject of active debate, but the results seem to point to a contribution one [205, 206]
or two [207, 208] orders of magnitude larger than the one from misalignment, with
implications on the mass of the axion that reproduces the observed value of the dark
matter relic density.

2.2.1 Relic density

Let us understand the evolution of the ALP field in a cosmological context and show
that ALPs are good wave dark matter candidates. We taked a Friedmann-Robertson-
Walker (FRW) universe with metric

ds2 = dt2 � a2(t)dijdxidxj , (2.17)

where a is the scale factor. We consider the following Lagrangian for the ALP

Lf � 1
2

∂µf∂µf � V(f) , (2.18)

with V ⇡ m2f2/2 when the universe is colder than the strong coupling scale L. The
mass is given by m = L2/ f where f is the breaking scale of the U(1) defining the
axion. The stress-energy tensor of the field can be found Tµn = ∂µf∂nf � gµnL:

T0
0 = rf =

1
2

f 2q̇2 + V(q) , (2.19)

Ti
j = �Pfdi

j =


1
2

f 2
fq̇2 � V(q)

�
di

j . (2.20)

The equation of motion for the field is the Klein-Gordon equation (see Appendix A
for a derivation). We write it for q = f/ f :

q̈ + 3Hq̇ + m2q = 0 (2.21)

and appears to be the equation of motion of a damped oscillator. We have two
regimes
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• m ⌧ 3H. The axion field is frozen to the initial value qi by the Hubble friction
term. If f 2

fq̇2 ⌧ 2V the field slow rolls and w = Pf/rf ' �1, therefore the
axion behaves as a contribution to dark energy.

• m � 3H. As the universe cools down and H decreases, the ALP field begins
to coherently oscillate about the potential minimum. Let us focus on the os-
cillation phase. We denote with aosc the scale factor when m ⇡ 3H(aosc). The
field starts oscillating with frequency ⇠ m and, subsequently, in the fast oscil-
lation regime m � 3H. We average on timescales larger than 1/m and we find,
thanks to the virial theorem

⌦
rf
↵

=

⌧
1
2

f 2q̇2
�

+ hV(q)i = m2 f 2q2 , (2.22)
⌦

Pf
↵

= 0 . (2.23)

Therefore the axion-like field behaves as pressure-less matter, hence
⌦
rf
↵

µ a�3

like we expect from cold dark matter.

We can estimate f from the requirement that matter-radiation equality is achieved
at Teq. We assume that the oscillation started in the radiation-dominated era and
that the mass is temperature-independent. The temperature Tosc can be found from
m ⇡ 3H(aosc) ⇠ 3T2

osc/Mpl. So

Tosc ⇠
r

Mplm
3

⇠ 300 eV
⇣ m

10�22 eV

⌘1/2
. (2.24)

This is after BBN, so the axion behaves during BBN as a negligible contribution to
dark energy. At the Tosc the ratio of radiation and matter energy density is rr/rm ⇠
T4

osc/L4 and it grows as µ a�1 µ T. We impose the ratio to be about unity at matter-
radiation equality, Teq ⇠ eV and use L4 = m2 f 2. Assuming qi ⇠ 1

1 ⇠
rr(aeq)

rm(aeq)
=

T4
osc

m2 f 2
Teq

Tosc
, (2.25)

from which

f ⇠
M3/4

pl T1/2
eq

m1/4 ⇠ 0.5 ⇥ 1017 GeV
⇣ m

10�22 eV

⌘�1/4
. (2.26)

This is consistent with our assumptions on the ALP model with f < Mpl.
Let us find the relic density today, assuming as before, that aosc < aeq. After the

ALP has started to oscillate, the number of axions in a comoving volume is con-
served and rf µ a�3, so

Wf =
rf(aosc)

rcr
a3

osc . (2.27)

Substituting the Friedmann equation for a radiation-dominated universe, we can
find the value of aosc = (9WrH2

0 /m2)1/4 . Now we average over fast oscillations and
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assume rf(aosc) ⇡ m2 f 2q2 ⇠ m2 f 2q2
i , with qi the starting random value and obtain

Wf =
1
3
(9Wr)

3/4
✓

m
H0

◆1/2 ✓ f
Mpl

◆2
q2

i (2.28)

' 0.13q2
i

✓
Wr

10�5

◆3/4 ⇣ m
10�22 eV

⌘1/2
✓

f
1017 GeV

◆2
,

using again the fuzzy dark matter mass as a reference point. For larger values of the
mass, the value of f should be considered accordingly, as in Eq. (2.26). We see that
the ALP produced through the misalignment mechanism is able to reproduce the
dark matter relic density today.

2.2.2 Self-interactions

What is the impact of self-interactions? The ALP potential includes higher order
terms which may spoil the evolution of the field. We follow the discussion in [33].
Including the next-to-leading order in the equation of motion, we get

⇤q + m2q � m2

6
q3 = 0 . (2.29)

The box operator contains the contribution from gravity. The cubic term is attractive
and has to be compared to gravity. We can estimate ⇤q ⇠ Fm2q; therefore the q3

term will be important if q2 & F. We can test this condition in the early universe and
today.

At the temperature Tosc, we have q2 ⇠ 1, while the primordial gravitational per-
turbation is F ⇠ 10�5. Therefore q2 � F and self-interactions dominate over grav-
ity. However, q2 µ a�3 so q2 ⇠ F at temperatures 10�5/3Tosc ⇠ 7 eV, which is before
equality (we used the Tosc found in the computation of the relic density). So as soon
as matter perturbation can grow, gravity surely dominates, and structure formation
is not spoiled.

Consider instead a bound structure of ALPs of density r and size R in today’s
universe. From the Poisson equation F ⇠ rR2/(8pM2

pl). Since the density is r ⇠
f 2m2q2, we have that q2 & F when

R .
p

8pMpl

m f
⇠ 10 pc

✓
10�22 eV

m

◆✓
1017 GeV

f

◆
. (2.30)

This means that in a ALP structure of size greater than 10 pc, gravity dominates over
self interactions.

2.3 Statistical properties

In this section, our focus is on investigating the statistical properties of the wave
dark matter field. Our approach is based on the corresponding section in [106]. We
introduce a formalism that enables us to account for the stochastic nature of the field
and its behavior as a collection of classical waves in computing observable quantities
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such as correlation functions. While our analysis assumes a spinless boson with mass
m for simplicity, it can be readily extended to vector bosons.

We start from a QFT-like decomposition of the field, that is as a superposition of
(complex) wave modes ji and annihilation and creation operators. If the quantiza-
tion of the field is realized in a finite volume V, we can write

f̂(x) = Â
i

1p
2wiV

h
âi ji(x) + â†

i j?
i (x)

i
. (2.31)

The annihilation and creation operators âi, â†
i satisfy the canonical commutation re-

lations [âi, â†
j ] = dij. The sum over the index i denotes all the quantum numbers. If

the field is free in flat space-time, the mode functions take the simple plane wave
form ji = e�iki ·x. Here ki = (wi, ki) is the four-momentum associated to the plane
wave.

Usually the three-momentum k is taken itself as a quantum number for the free
particles and the continuum limit is performed. In this case the field has the expan-
sion

f̂(x) =
Z d3k

(2p)3
1p
2wk

h
âk jk(x) + â†

k j?
k(x)

i
, (2.32)

and the annihilation and creation operators satisfy the commutation relation in the
form [âk, â†

k0 ] = (2p)3 d(3)(k � k0). Our goal is to examine the statistical character-
istics of this field, specifically to determine the density operator, which is utilized to
calculate the expectation values of operators in this theory.

2.3.1 Density operator of a harmonic oscillator

We begin with a simple example: the harmonic oscillator in quantum mechanics
with Hamiltonian operator

Ĥ = w

✓
â† â +

1
2

◆
. (2.33)

The statistical properties of the harmonic oscillator are described by the density op-
erator r̂. A way to write the operator is in the bases constructed from the eigenstates
|ni of the number operator N̂ = â† â. Therefore we can write

r̂ = Â
n

Pn |ni hn| . (2.34)

The coefficients Pn are the probabilities of finding the oscillator in the eigenstate |ni.
They have to satisfy the following constraints:

Tr[r̂] = Â
n

Pn = 1 , (2.35)

Tr[N̂r̂] = Â
n

nPn = hni , (2.36)

with hni the occupation number of eigenstate |ni.
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We want to find the form of Pn that maximizes the von Neumann entropy

S = � Tr[r̂ log r̂] = � Â
n

Pn log Pn , (2.37)

subject to the above two constraints. The maximization can be performed introduc-
ing two Lagrange multipliers l1 and lN . We maximize

L = � Â
n

Pn log Pn + l1

 

Â
n

Pn � 1

!
+ lN

 

Â
n

nPn � hni
!

, (2.38)

that is

0 = dL = � Â
n

[log Pn + 1 � l1 � lNn] dPn. (2.39)

We find Pn = el1�1+nlN and imposing the constraints, we can rewrite the probability
coefficients as

Pn =
1

1 + hni

✓
hni

1 + hni

◆n
, (2.40)

from which the density matrix reads

r̂ =
1

1 + hni Â
n

✓
hni

1 + hni

◆n
|ni hn| . (2.41)

The above procedure applies as long as the statistical properties of the excitation
are chaotic, as detailed in [209]. Therefore, we can express the density matrix as a
function of the occupation number. This is of primary importance for our study of
the statistical properties of the scalar field.

As an example, one can verify this procedure in the case of thermal equilibrium.
If one throws in this assumption, with inverse temperature b, then the density oper-
ator is

r̂ =
1

Tr[e�bĤ ]
exp[�bĤ] . (2.42)

The occupation number is fixed in the thermal case by the Bose-Einstein distribution

hni =
1

ebw � 1
(2.43)

and one can see that this satisfies the form of Pn required to reproduce the thermal
form of r̂.

Ultimately, we want to apply this statistical formalism to wave dark matter. Being
interested in a system with a large occupation number, it is convenient to rewrite
the above density matrix in the coherent state representation. Coherent states are
defined from number states as

|ai = e�|a|2/2
•

Â
n=0

an
p

n!
|ni . (2.44)
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They are constructed to be eigenstates of the annihilation operator, i.e. â |ai = a |ai,
with a a complex number. With the coherent state, the density operator can be ex-
pressed in the Glauber-Sudarshan representation [210, 211] as

r̂ =
Z

d2a P(a) |ai ha| , (2.45)

where P(a) is a quasi-probability distribution, defined as

P(a) =
1

p hni exp

� |a|2

hni

�
. (2.46)

For the density matrix in Eq. (2.45), the quasi-probability distribution has the desired
properties to be interpreted as a probability distribution for a complex number a; it
is positive P(a) � 0 and integrates to one

R
d2a P(a) = 1. Interestingly, it can be

factorized into two probability distributions, one for the modulus |a| and one for
the the phase q = arg(a) as

P(a) = P(|a|)P(q) , (2.47)

where the modulus follows the Rayleigh distribution and the phase is uniformly
distributed

P(|a|) =
2|a|
hni exp


� |a|2

hni

�
, (2.48)

P(q) =
1

2p
. (2.49)

Being equipped with an explicit form for the density matrix, we are able to com-
pute expectation values of any operator decomposed in annihilation and creation
operators, we denote as Â(â, â†)

⌦
Â
↵

= Tr[Âr̂] =
Z

d2a ha| Âr̂ |ai . (2.50)

As a simple example, we can compute the expectation value of the number operator:

⌦
N̂
↵

=
Z

d2a ha| â† âr̂ |ai (2.51)

=
Z

d2a
Z

d2a0 P(a0) ha| â† â
��a0↵ ⌦a0|a

↵

=
Z

d2a
Z

d2a0 P(a0)a?a0d(2)(a � a0)

=
Z

d2a P(a)|a|2 = hni ,

as we expected. If we were to compute the expectation value of N̂† instead, since
ââ† = â† â + 1, we would have obtained

⌦
N̂†↵ = hni + 1. However we are interested

in a situation in which hni is huge. Therefore, when computing expectation values,
we can safely ignore the non-commutativity of annihilation and creation operator,
knowing that the resulting terms will be suppressed by a 1/ hni factor.

The above exercise teaches us that, since the coherent states are eigenstates of the
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annihilation operator, we can replace the bracketed operator with a function A of
complex variables a, a?

ha| Â(â, â†) |ai = A(a, a?) + O
✓

1
hni

◆
(2.52)

up to terms suppressed by the occupation number. Consequently, modulo these sub-
leading terms,

⌦
Â
↵

⇡
Z

d2a P(a)A(a, a?) . (2.53)

2.3.2 Density operator of wave dark matter

Let us now consider the case of wave dark matter. Our field f̂ is decomposed in a
linear combination of modes. It is natural to consider each mode as an independent
harmonic oscillator. Therefore the density operator is given by the product of density
operators for each mode of quantum number i:

r̂ = ’
i

r̂i =

"

’
i

Z
d2aiP(ai)

#

|{ai}i h{ai}| . (2.54)

The form of the probability distribution for each ai is the same as in Eq. (2.46). We
have introduced a multi-mode coherent state, defined as âj |{ak}i = djkak |{ak}i.

The density operator in Eq. (2.54) completely determines the statistical proper-
ties of the scalar dark matter field, meaning that we are able to compute any op-
erator constructed from f̂. We can generalize what we understood for the single
mode harmonic oscillator. We can replace any operator Â(âi, â†

j ) with a function of
complex variables A(ai, a?

j ) each of which follows the probability distribution P(ai).
Any term arising from the non-vanishing commutation relations between creation
and annihilation operator is suppressed by the occupation number of the mode.

In other words, we find
D

â†
i âj

E
= dij hnii (2.55)

D
âi â†

j

E
= dij[hnii + 1] ⇡

D
â†

i âj

E

D
âi âj

E
=

D
â†

i â†
j

E
= 0

Therefore, any expectation value will be given by, up to sub-leading terms,

D
Â(âi, â†

j )
E

⇡
"

’
k=i,j

Z
d2ak P(ak)

#
A(ai, a?

j ) . (2.56)

From the discussion above, we deduce that, when computing expectation values
of the field f̂, we can instead consider the function

f(x) = Â
i

1p
2wiV

[ai ji(x) + a?
i j?

i (x)] . (2.57)
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We treat each ai as a random variable, following the probability distribution in
Eq. (2.46), while ignoring possible quantum fluctuation suppressed by 1/ hnii. In
depth, this is the essence of the treatment of wave dark matter as classical waves.
The huge occupation number in each mode allows us to neglect quantum fluctua-
tions and the field manifests a classical wave behavior, with all the related interfer-
ence and diffraction phenomena linked to it.

The discussion above can be easily generalized in case of continuous quantum
number(s) and the continuum limit can be performed. This formalism reproduces
the statistical properties of the scalar field obtained in other approaches [212,213] for
the plane wave decomposition ji(x) = e�iki ·x. The stochasticity of the field proves
to be crucial for wave dark matter detection experiments, as it may affect the correct
interpretation of the data as shown in [71–73, 212–216].

2.4 Wave dark matter and gravity

In this Section, we outline the formalism to describe the wave dark matter in pres-
ence of gravity, which is the central topic of this thesis. More details about the deriva-
tion of the various equations, under the different assumptions, are in Appendix A.

Let us consider a spinless bosonic dark matter particle with a mass m, minimally
coupled to gravity. We start from the action

S =
Z

d4x
p

�g

"
M2

pl

2
R +

1
2

gµn(∂µf)(∂nf) � 1
2

m2f2

#
. (2.58)

We make an assumption on the metric, which we take to be the perturbed Friedmann-
Robertson-Walker (FRW) metric [33] in Newtonian gauge

ds2 = [1 + 2F(t, x)]dt2 � a2(t)[1 � 2F(t, x)]dijdxidxj. (2.59)

here a(t) is the scale factor and F(t, x) is a (small) gravitational potential that is
treated perturbatively. As we explain in Appendix A, while it is possible to con-
sider even a more general metric, with two scalar potentials, F and Y, for most of
the applications involving wave dark matter, F = Y is enforced by the Einstein’s
equations.

We want to write the equation of motion for the wave dark matter field f in a
curved spacetime. This is the so-called Klein-Gordon equation

1p�g
∂µ[gµn

p
�g ∂nf] + m2f = 0 . (2.60)

The equations of motion, in general, are coupled to the equations for the scale fac-
tor, i.e. the Friedmann equations, and for the potential F, obtained from the Einstein
equations for the metric. We show the general form of both the Einstein and the
Klein-Gordon equations and their declination in the specific approximations in Ap-
pendix A.
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2.4.1 The Schrödinger-Poisson system

Wave dark matter is non-relativistic in most physical systems and scales. It is there-
fore useful to write the Klein-Gordon equation Eq. (2.60) in a form more suited for
the treatment of non-relativistic dark matter. The idea is to factor out the fast time
oscillations at frequency m and focus on the oscillations at smaller frequency mv2

where v ⌧ 1 is the dark matter velocity. In this way, we can study the de Broglie-
wavelength oscillations of the wave dark matter field.

We consider the field expansion in Eq. (2.57), we approximate wi ⇡ m + k2/(2m)
and factor out the fast time oscillation of the wave mode function, that is we intro-
duce wave functions for the single modes ji = yie�imt :

f(x) = Â
i

1p
2m


aiyi(x)e�imt + a?

i y?
i (x)eimt

�
. (2.61)

For compactness, we can introduce the wave function of the full system y(x), sum-
ming all the modes y = Âi fiyi with appropriate coefficients fi, we get then

f(t, x) =
1p
2m


y(t, x)e�imt + y(t, x)eimt

�
. (2.62)

Notice that y has mass dimension 3/2. Since the Klein-Gordon equation is linear
and homogeneous in f, the constant numerical prefactors do not matter, and we can
obtain easily an equation for either y or each i-mode, yi. To be consistent with our
non-relativistic expansion, we assume that the wave function is slowly varying, that
is |∂2

t y| ⌧ m|∂ty| i.e. the time scale over which y varies is much longer than 1/m.
Under these assumptions we obtain [33]

i


∂ty +
3
2

Hy

�
=


� r2

2ma2 + mF
�

y . (2.63)

The steps for the derivation of this equation from the general Klein-Gordon equa-
tions are outlined in Appendix A.

Notice that the above equation depends on a(t) and F(t, x). In our case, the equa-
tions for the background expansion of the universe, i.e. the Friedmann equations,
can be decoupled from the one of the perturbations and solved independently. Once
this is done, under the assumption that F is slowly-varying or time-independent,
the remaining part of the Einstein equation becomes the Poisson equation

r2F = 4pGa2(rext + rf) , (2.64)

as shown in Appendix A. This leads to the Schrödinger-Poisson (SP) system on cos-
mological scales, for which Eq. (2.63) and Eq. (2.64) have to be solved at the same
time. Indeed we see that the right-hand-side of the Poisson equation contains the
dark matter energy density rf = m|y|2 (in the non-relativistic approximation, as
shown in Appendix A) but may also include any external matter density rext. The
context imposes which one of the two terms dominates or if we have to consider
both.

For many galactic dynamics applications or on even smaller scales, it is a good
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approximation to set the scale factor to unity and the Hubble parameter to zero.
This will be the case for wave dark matter in the Solar system, which we investigate
in Chapter 3 and inside the inner part of wave dark matter halos, the subject of
Chapters 4 and 5. Under the small-scale assumption, we obtain the well-known SP
system [43]

i∂ty =


� r2

2m
+ mF

�
y , (2.65)

r2F = 4pG(rext + m|y|2) .

We stress that the y should be thought of as a (complex) classical field and not as
a quantum wave function. We will still refer to y as the wavefunction anyway. The
situation is very similar to the formalism adopted in modeling quantum fluids such
as Bose condensates, by means of a mean field approach (e.g. the Gross-Pitaevskii
equation). Notice that, in deriving the SP system, we treated perturbatively only
the gravitational potential, therefore the results will be valid even in the non-linear
regime in terms of density fluctuations around |y|2. This makes the SP system par-
ticularly suitable for simulations of structure formation on non-linear scales and in
general to deal with wave dark matter dynamics on small scales.

2.4.2 Fluid description

From the Schrödinger picture, it is easy to move to a fluid description of the wave
equation through the Madelung formulation [217, 218]. We rewrite the Schrödinger
equation in terms of a fluid density r(t, x) defined such as

y ⌘
r

r

m
eiq . (2.66)

The phase q(t, x) is the potential for the fluid velocity v(t, x):

v ⌘ 1
ma

rq =
1

2ima|y|2


y?ry � yry?
�

. (2.67)

Being the gradient of the phase, the velocity is irrotational, i.e. its curl is zero, r ⇥
v = 0. Moreover, the fluid velocity is a gradient flow, resembling that of a superfluid.
Substituting the new form of y in the Schrödinger-Poisson system, and splitting the
real and imaginary part of Eq. (2.63), we obtain the set of equations

∂tr + 3Hr +
1
a
r · (rv) = 0 ,

∂tv + Hv +
1
a
(v · r)v = �1

a
rF +

1
2a3m2 r

r2pr
p

r

�
, (2.68)

r2F = 4pGa2(rext + r) .

These are known as Madelung equations, generalized to a perturbed FRW metric.
They resemble the continuity (mass conservation) and Euler equations for a per-
fect unviscous fluid. These are the equations commonly used in the Jeans analysis
of linear perturbation theory and are well-suited to numerical simulations, because
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standard hydrodynamics codes can be modified to incorporate the additional term
in the Euler equation [29, 219, 220]. The Euler equation shows how the particle limit
is obtained: for large m, it reduces to that for a pressureless fluid, as it is appropriate
for particle dark matter.

The wave nature of the fluid provides us an additional term with respect to the
pressureless fluid case. It is called the quantum pressure term, even though it arises
from the classical wave description:

Q = � 1
2a3m2 r

r2pr
p

r

�
. (2.69)

Notice the minus sign: this term opposes gravity compression. An easy estimate
shows on which scales l the quantum pressure term beats the gravity gradient in a
self-gravitating system. We approximate, thanks to the Poisson equation, F ⇠ Grl2

quantum pressure
gravity gradient

=
1

a3m2l3
al

Grl2 & 1 , (2.70)

which gives

l & lJ =

✓
1

am
p

Gr

◆1/2

. (2.71)

As we shall prove in the next section, this is precisely the so-called Jeans scale in the
wave dark matter case, which sets the typical size of an overdense region that is
going to collapse under gravity, forming a bound structure. Notice that this scale
is the geometric mean of the Compton length 1/m and the dynamical scale of a
gravitating system (Gr)�1/2. The peculiarity of our system is actually even deeper:
the Jeans scale is the de Broglie wavelength of the ground state of a particle in the
gravitational potential well [25]. Notice that the velocity of the fluid is given by
v ⇠ Hr ⇠ (Gr)�1/2r, because of the Friedmann equation. Hence ldB ⇠ (mv)�1 ⇠
(Gr)�1/2(mr)�1. Setting r ⇠ ldB, returns the Jeans scale lJ .

We can understand this fundamental result from two main points of view. The
first is from the wave-particle duality: the stability below the Jeans scale is guar-
anteed by the uncertainty principle, since an increase in momentum opposes any
attempt to confine the particle further. The second is from the fluid picture: below
the Jeans-De Broglie scale the quantum pressure term prevents further confinement
of the fluid. The two pictures are of course equivalent and can be summarized in the
fuzziness property of our wave dark matter candidate.

2.4.3 Perturbation theory

The standard fluid picture we derived in the previous section is particularly suit-
able to study linear perturbations in Fourier space in order to see differences in the
evolution of perturbations with respect to (particle) cold dark matter.
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We start from the system of Eq. (2.68) and we linearly perturb it:

r(t, x) = r̄(t) + $(t, x) + O($2) ,

v(t, x) = v(t, x) + O(v2) (2.72)

F(x) = F̄ + e(x) + O(e2)

Notice that the velocity is already perturbed at first order, i.e. the background com-
ponent is zero. The background density follows ∂tr̄ + 3Hr̄ = 0. We obtain

∂t$ +
r̄

a
r · v = 0 ,

∂tv + Hv +
1
a
re � 1

2m2a3 rr2$

2r̄
= 0 , (2.73)

r2e � 4pGa2$ = 0 .

Now we spatially Fourier transform the system, obtaining

∂t$k + ik2 r̄

a
uk = 0 ,

∂tuk + Huk +
ik
a


� 4pGa2

k2 +
k2

4a2m2r̄

�
= 0 , (2.74)

e +
4pGa2$

k2 = 0 ,

where we have used vk = uk k̂, since the velocity is irrotational. Nevertheless, even
if some vorticity was there, the component orthogonal to k would disappear as the
universe expands: v? µ a�1. We introduce the density contrast dk = $k/r̄ and an
effective sound speed

c2
eff ⌘ k2

4a2m2 , (2.75)

which originates from the quantum pressure term. Now we differentiate the first
equation with respect to time, substitute ∂tuk from the second one and exploit uk =
ia∂tdk/k2, finding

∂2
t dk + 2H∂tdk +


c2

eff
k2

a2 � 4pGr̄

�
dk = 0 . (2.76)

Comparing this equation with the usual one for linear perturbations in cold dark
matter, we note that the only difference is in the effective sound speed. Also no-
tice that, requesting the square bracket to be zero, we obtain the same Jeans scale
predicted from dimensional arguments in the previous section, modulo order one
factors:

kJ = (16pGr̄)1/4(ma2)1/2 ' 70 Mpc�1
⇣ m

10�22 eV

⌘1/2
, (2.77)

where the scalings imply a = 1 and r̄ = 3H2
0 /(8pG). On large length scales k < kJ ,

gravity beats the quantum pressure while on small length scales k > kJ the latter
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dominates. The differences between cold dark matter and wave dark matter lay in
the different Jeans scale that causes a suppression in the power spectrum at small
scales.

Notice that the effective sound speed shows a pathology for a < k/2m, since it
overcomes the speed of light in vacuum. This is due to our assumption of the limit
k/am ⌧ 1 in the derivation of the fluid equation. If this limit is not satisfied, the
non-relativistic plus Newtonian approximation breaks down and the scalar field is
not in the oscillating phase, as it should to be dark matter, but behaves like a fluid
with ceff = 1. Therefore the two behaviors can simply be joined [25],

c2
eff =

8
>><

>>:

1 a  k
2m

k2

4a2m2 a >
k

2m

(2.78)

We have that kJ µ ar̄(a)1/4, hence it is constant in the radiation-dominated epoch,
while it slightly grows in the matter-dominated epoch as kJ µ a1/4: because of this,
it becomes easier and easier as time passes to form collapsed structures. We can also
rewrite the Jeans scale using the Friedmann equation as kJ µ a(Hm)1/2. Since the
wave dark matter starts oscillating in the radiation dominated epoch, at equality we
still have H > m. Hence kJ > kH, with kH the wavenumber corresponding to the
Hubble radius. The Jeans length will always be smaller than the Hubble radius dur-
ing the whole matter-dominated epoch, allowing for structure formation. However,
unlike cold dark matter, the wave dark matter perturbations on scales smaller than
the Jeans length at matter-radiation equality k > kJ(aeq) need to wait to gravita-
tionally collapse until k crosses the Jeans scale, at a? = aeq[k/kJ(aeq)]4. This feature
produces a sharp cutoff in the matter power spectrum [25] at a critical scale given by
the Jeans scale at equality

kJ(aeq) ' 9 Mpc�1
⇣ m

10�22 eV

⌘1/2
. (2.79)

In [25] the authors numerically found that the wave dark matter power spectrum is
suppressed with respect to the particle dark matter one by a transfer function

T2(k) ⌘ Pwave

Pparticle
⇡


cos ‚3

1 + ‚8

�2

. (2.80)

with ‚ = 1.61k/kJ(aeq)[m/10�22 eV]1/18. From this, one finds that the spectrum is
suppressed by a factor of 2 at

k1/2 ⇡ 4.5 Mpc�1
⇣ m

10�22 eV

⌘4/9
, (2.81)

which is very close to kJ(aeq). The sharp cutoff, provided by the transfer function,
can provide a suppression of small-lengthscale perturbations in the case of fuzzy
dark matter. This is interesting because it can solve small-scales shortcomings of
LCDM, in the case baryonic physics fails to explain them. In [221], by analyzing
subhalos in very massive halos similar to the Milky Way ones, the authors argue
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that indeed a sharp cutoff at k ' 4.5 Mpc�1 could solve both the cusp-core and the
missing satellite problems, see [31] for a review.

2.5 General gravitational phenomenology

In this Section, we present several implications of the wave dark matter at the phe-
nomenological level, considering only the gravitational interaction. In particular
we explore the existence of solitons, i.e. ground state solutions of the Schrödinger-
Poisson system and we sketch its properties. We then briefly review the process of
gravitational cooling or relaxation, which, in the wave dark matter case, is much
more effective than in the particle case, due to the high occupation number and the
wave granularity of the field. Particular wave features also appear in the context
of energy exchange through weak encounters with other massive bodies, leading
to differences in the dynamical friction and to new phenomena like stochastic heat-
ing. Another phenomenological implication, that regards the number of dark matter
structures, is the phenomenon of subhalo tidal disruption, which we briefly review.
The Section is inspired by the approach of [33].

2.5.1 Solitons and boson stars

The Euler equation and the Schrödinger-Poisson system provide a nice understand-
ing of the properties of non-linear bound wave dark matter structures. These stable
configurations are called solitons or boson stars.

A quick comparison of the relative importance of the gravity term versus the
quantum pressure term in the Euler equation Eq. (2.68) reveals that a bound struc-
ture of size R and mass M should satisfy

GM
R

⇠ 1
m2R2 . (2.82)

This implies that the size of such structure is inversely proportional to its mass

R & 1
GMm2 ' 1 kpc

✓
1010 M�

M

◆✓
10�23 eV

m

◆2

, (2.83)

' 10�3 pc
✓

10�4 M�
M

◆✓
10�13 eV

m

◆2

.

The scalings are for the fuzzy dark matter case and for the wave halos that can be
probed by intermediate mass ratio inspirals, that we consider in Chapters 4 and
5. This bound on the size directly comes from the fact that the particles constituting
the bound structure have to be localized in a volume smaller than the virial radius of
this structure. This is only possible if the de Broglie wavelength at the virial radius is
smaller than the virial radius. The inequality is saturated for the ground state stable
solution. This implies the size is determined by the solution of R ⇠ l(R)/(2p) ⇠
1/

p
GMm2/R which gives the same result as in Eq. (2.83).

The above size of the structure is just a lower bound, that is saturated for a soli-
ton. The soliton has also a maximum mass. If the size is given by Eq. (2.83), the max-
imum mass Mmax is the one for which this size corresponds to the Schwarzschild
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radius of a black hole of this mass:

Mmax ⇠ 1
Gm

' 1013 M�

✓
10�23 eV

m

◆
, (2.84)

' 103 M�

✓
10�13 eV

m

◆
.

Naturally, solitons are not the only bound structures that wave dark matter can
form. Indeed most dark matter halos are bound structures for which gravity is bal-
anced by virialized motion. This happens as long as the velocity is large enough
to beat the quantum pressure term. Therefore at small radii, where quantum pres-
sure dominates, a soliton core would form. Let us investigate the properties of this
solitonic solution.

Spherical ground state solutions of the SP system

We follow [33,167,222] and references therein. We start from the SP system on small
scales (i.e. with unit scale factor and zero Hubble expansion), Eq. (2.65). Since the
dark matter is self gravitating, the gravitational potential is sourced only by the dark
matter density via the Poisson equation. We look for eigenstate solutions of the time-
independent SP system. Therefore we consider [223, 224]

0 =
⇥
r2 � 2m2(F � e)

⇤
y (2.85)

r2F = 4pGm|y|2.

Here e is the energy per unit mass of the eigenstate. We assume both y and F are
regular at the origin and vanish at infinity. The wave function is normalized such as
the total mass M is

M =
Z

d3x r = m
Z

d3x |y|2 . (2.86)

We focus on spherical solutions, for which y(r) > 0 is real. The system becomes

y00 +
2
r

y0 + 2m2[e � F]y = 0 (2.87)

F00 +
2
r

F0 = 4pGmy2

here the prime denotes the derivative with respect to the radial coordinate. We can
rewrite the equation with dimensionless quantities y ! y/

p
4pGm3, r ! mr.

y00 +
2
r

y0 + 2[e � F]y = 0 (2.88)

F00 +
2
r

F0 = y2

The mass disappeared from the equations. It is important to note that the SP system
satisfies the scaling symmetry [225],

(r, y, F, e, M, r) ! (g�1r, g2y, g2F, g2e, gM, g4r) (2.89)
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where g is the scaling factor. Therefore, whichever the solutions, they can be rescaled,
e.g. for a system on a smaller spatial scale r0 = r/g, it will correspond a larger mass
M0 = gM. We can take the soliton mass M or the soliton size, e.g. the half-mass
radius r1/2, or whichever other quantity as the only free parameter of the SP system.

The solutions of the SP system can be obtained numerically. We list the energy
eigenvalue, the soliton energy per mass, the radius and the central density of the
ground state solitonic solution, i.e. the one with the smallest energy eigenvalue [33,
222–224]:

e = �0.16(GMm)2 , (2.90)

E/M = �0.05(GMm)2 , (2.91)

rc = 2.67(GMm2)�1 , (2.92)

r(0) = 0.004 M(GMm2)3 . (2.93)

The soliton radius rc is defined as the distance at which the density drops by a factor
of 2 compared to its central value, i.e. r(rc) = r(0)/2. Another parameter often used
is the soliton mass enclosed in rc, i.e. Mc = Mdm(< rc); this quantity is related to the
total mass by Mc ' 0.24M.

Soliton host-halo relation

Numerical simulations have also found a so-called soliton-host halo relation [29,
108], relating the mass of the soliton core Mc to the mass of the host halo Mvir. In
particular [108]

Mc ' 6.7 ⇥ 107 M�

✓
10�22 eV

m

◆✓
Mvir

1010 M�

◆1/3
. (2.94)

We do not provide right away the scalings for larger wave dark matter masses for
the following reason. The above relation is well-tested only for halo masses in the
limited range 108 � 1011 M� and redshifts z 2 [0, 10], see [108], because of the dif-
ficulty in simulating wave dark matter in large boxes (see the review of Hui [21])
while maintaining the necessary resolution.

The Mc µ M1/3
vir relation can be understood as follows. Assume the halo and the

soliton have the same gravitational potential at their respective sizes (that is, assume
a kind of isothermal equilibrium condition)

GMc

rc
⇠ GMvir

rvir
. (2.95)

Remember now that rc µ M�1
c from Eq. (2.83) and Mvir/r3

vir ⇠ const so that rvir µ
M1/3

vir . Then Mc µ M1/3
vir follows.

We can wonder why we have to assume this isothermality condition. Note that
Eq. (2.94) is originally written [108] in the form

GMcm =

s
Evir

Mvir
, (2.96)
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where on the right hand side we see total energy of the halo per unit mass. Notice
that this corresponds to Evir/Mvir ⇠ 0.05(GMm)2, very similar to what we obtained
for the soliton solution of the SP system. Indeed, Bar et al. [222, 226, 227] rewrite the
above condition as

r
K
M

����
soliton

⇡
r

K
M

����
halo

, (2.97)

where the two sides, under the square root, are the kinetic energy per unit mass of
the soliton and of the halo, respectively. All these arguments converge to indicate
that the prescription to determine the soliton-core mass, or equivalently the radius,
is

rc ⇠ 1
mvvir

, (2.98)

where vvir =
p

GMvir/rvir. Considering that vvir ' 0.33(GMm) from the SP sys-
tem ground state solution [33], we obtain exactly Eq. (2.98) once we consider rc '
2.67/(GMm2).

We come back to this prescription in Section 4.2.1. We will see that it provides un-
realistically small values for the core radius, hence huge core densities [228] when
applied to wave dark matter of mass m ⇠ 10�13 eV. The problem arises when the
dark matter de Broglie wavelength is hierarchically smaller than the size of the sys-
tem so that the virial velocity is not representative for the actual dark matter particle
velocity at the scale of the soliton. Hence the relation in Eq. (2.98) can be applied
only in the fuzzy dark matter case, where the wavelength is not hierachically distant
from the virial radius, which is at the kpc scale.

2.5.2 Relaxation

How does the soliton form in a wave dark matter halo? The condensation, or gravita-
tional cooling process, has a characteristic timescale [33], called relaxation timescale.
In a collisionless system of radius R filled with N stars, of mass m, the stars exchange
kinetic energy by an order-one factor after a timescale trelax ' 0.1tcrN/ log N [42].
Here tcr ⇠ R/v is the crossing time and the typical velocity is v ⇠

p
GNm/R for the

virial theorem. The system is approximately collisionless, i.e. the constituent parti-
cles move under the influence of the gravitational field generated by a smooth mass
distribution, rather than a collection of mass points, only for t < trelax. After trelax the
objects start exchanging energy. In standard cold dark matter models the particle
mass m is so small that the relaxation time is many orders of magnitude larger than
the age of the universe, hence it does not play any physical role.

The relaxation timescale can be estimated in the quasiparticle picture of wave
dark matter. The wave interference between different finite modes localized in the
halo produces granules, or quasiparticles of size of the de Broglie wavelength. Con-
sidering the inner part of a halo of radius R, the number of granules is NdB ⇠
(R/ldB)3. The condensation happens on a timescale for which these granules change
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their kinetic energy by some order-one factor. Therefore we get [33]

trelax ⇠ 0.1
2R
v

NdB ' 0.1 Gyr
✓

R
kpc

◆4 ✓ v
100 km/sec

◆2 ⇣ m
10�22 eV

⌘3
(2.99)

' 10�4 Gyr
✓

R
10�3 pc

◆4 ✓ v
0.1 km/sec

◆2 ⇣ m
10�13 eV

⌘3

We see that, for the fuzzy dark matter case, the relaxation time around the radii
corresponding to the typical de Broglie wavelength can be considerably shorter than
the age of the universe. In the larger wave dark matter case, where ldB is smaller, for
realistic values of halo size and velocity, the relaxation timescale around R ⇠ ldB is
even shorter. We will investigate this scenario in more detail in Section 4.2.2.

A wave halo develops a compact soliton from the mass originally in the radius
R, with R given by trelax(R) = tage with tage the age of the halo. A good defini-
tion of the relaxation timescale comes from the diffusion coefficients we discuss in
detail in Appendix C.2. The physical meaning of trelax is the timescale for which
the objects exchange order one kinetic energy, i.e. (DE)2/E2 ⇠ O(1). The diffu-
sion coefficient indicates the variation of the quantity in the unit time. Therefore
(DE)2/E2 ⇠ D[(DE)2]/E2 ⇥ t = v2D[(Dvk)

2]/v4 ⇥ t ⇠ 1, from which [42]

trelax ⌘ 1
3

v2

D[(Dvk)2]
. (2.100)

Some ambiguity still remains regarding the velocity to consider in the above for-
mula. It is reasonable to think that the velocity above has to be a representative of the
(quasi-)particles in the system, so depending on the speed distribution, the choice of
v can vary. For a Maxwell-Boltzmann speed distribution with one-dimensional ve-
locity dispersion s it is natural to consider v =

p
3s, hence the factor 1/3 in the

definition of the relaxation timescale.

2.5.3 Dynamical friction and stochastic heating

Wave dark matter impacts dynamical friction, which is one of the most important
sources of cooling of astrophysical objects. When a massive objects of mass M, like
a star, travels through the dark matter medium with velocity v, the particles get
focused, creating an overdensity wake which pulls the massive object, slowing it
down. This phenomenon was studied by Chandrasekhar in the context of friction
exerted on a test star moving through a medium of other stars [229–231]. Here we
just outline the main features of the wave dark matter in modifying the friction force.
As we will see in Chapter 3 the overdensity is smoothed at scales smaller than the de
Broglie wavelength. Effectively, the wavelength sets a lower cutoff on the minimum
impact parameter. An order-one deflection occurs if the impact parameter is b90 ⇠
GM/v2; the particle limit occurs when the de Broglie wavelength is smaller than this
value as no suppression of scales is imposed. We compare these scales

b90

ldB
⇠ GMm

v
⇠ 10�3

✓
M

106 M�

◆⇣ m
10�22 eV

⌘✓100km/sec
v

◆
. (2.101)
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Therefore, in the fuzzy dark matter case, the dynamical friction can be strongly sup-
pressed. Studies of dynamical friction in realistic scenarios with fuzzy dark mat-
ter [46, 232, 233] confirm the above estimate. We compute the dynamical friction for
the particle and wave case in Appendix E. We come back to the topic in Chapter 5 as
this effect will be of primary importance to the evolution of a binary in a wave halo.

The wave nature of dark matter can lead to an energy transfer to the massive
object traveling in the medium. The fluctuations of the wave dark matter can be
thought as quasiparticles with macroscopic mass meff = r(ldB/2)3 that continu-
ously hit the massive object, transferring energy to it [33,46,47]. This is called stochas-
tic heating. A full calculation of the wave effects in the case of weak gravitational
encounters is presented in Appendix C, where the diffusion coefficients describing
the dynamics of massive objects in a dark matter halo are derived.

2.5.4 Subhalo tidal disruption

We have seen that wave dark matter, specially in the fuzzy limit of the mass spec-
trum, leads to a considerable suppression of small scales structures. Another reason
why small-scales structures are suppressed is the vulnerability of subhalos to tidal
disruption. We review this phenomenon referring to [33].

There are two main reasons for the subhalo tidal disruption. Firstly, there is a
maximum value of the mass density of wave dark matter halos, and it is given by
the ground state value of the Schrödinger-Poisson system: r(0) = 0.004M(GMm2)3.
Secondly, the wave dark matter can tunnel through the gravitational potential bar-
rier out of the so-called tidal radius rt. Let us estimate the timescale of the subhalo
tidal disruption. The tidal radius is the equilibrium solution of the equation of mo-
tion of a test particle of mass M orbiting around a host mass Mhost, at distance R and
angular speed w:

rt ⌘ R
✓

M
2Mhost

◆1/3
. (2.102)

If the mass M is subject to a spherically symmetric tidal potential W = �3/2 ⇥ w2r2,
this has to be included in the Schrödinger-Poisson system through the replacement
F ! F + W. In contrast to the particle case, where particles can orbit forever if they
are inside the tidal radius, in the wave case, the Schrödinger equation allows a tun-
neling of the barrier at rt. The disruption timescale is found solving numerically the
Schrödinger-Poisson system with the added tidal potential; the energy eigenvalue
acquires an imaginary part, which is proportional to the mass rate Ṁ = 2MImE. A
typical massive galaxy (Milky Way-like) has circular speed of 100 km/sec so it or-
bits about 15(30 kpc/r) times in a Hubble time. If we impose that the soliton of the
subhalo survives at least for 10 orbits on a radius R around a host of mass Mhost,
we obtain that the soliton density is r & 60rhost. This implies a lower bound on the
subhalo soliton mass

M > 6.7 ⇥ 108 M�

✓
Mhost

1011 M�

◆1/4 ✓10 kpc
R

◆3/4 ✓10�22 eV
m

◆3/2

. (2.103)
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FIGURE 2.1: Overview of the current and future probes of wave dark mat-
ter (scalar, vector both from kinetic mixing and gauge coupling with SM).
Figure taken from [96]. See the main text for the details

This lower bound is consistent with numerical simulations which find that halo
substructure is suppressed below a few times 108M� [232]. These estimates can be
tested observationally determining the subhalo mass function. This can be accom-
plished by analyzing gravitational lensing of background galaxies by the subhalos
and studying the evolution of tidal streams.

2.6 Cosmological and astrophysical probes

The goal of this Section is to provide a broad but simple and exhaustive overview of
the cosmological and astrophysical probes of wave dark matter both in case it inter-
acts only gravitationally with ordinary matter and in the case it also has additional
interactions with the SM. The wave features at different scales have important phe-
nomenological consequences that can be translated into bounds on the mass or other
parameters once an explicit model is assumed. This section is heavily based on [96].
From this reference, we take Figure 2.1 that summarizes the type of constraints on
the wave dark matter mass spectrum. The Figure does not show exclusion or limits
but only which observables are able to probe which part of the spectrum, depending
on the assumption that wave dark matter is a scalar boson, or a vector boson, with
kinetic mixing or gauge coupling with the SM. Cosmological measurements probe
the light end of the wave dark matter mass spectrum because these candidates are
able to show wave-like features on astronomical lengthscales. As we discussed in
Section 1.2, the constraining power of these observation comes mainly from the fact
that wave dark matter suppresses power at scales smaller than the Jeans scale at
equality, which depends on the wave dark matter mass. Generally, these constraints
apply to all the wave DM candidates.
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Cosmic Microwave Background The CMB data from Planck [9] probe the mass
range 10�32 eV < m < 10�26 eV and exclude density fraction larger than the per-
cent. This is possible because such light scalars would spoil the standard picture of
structure formation. Future CMB experiments like Simons Observatory [234], CMB
Stage-4 [235] or CMB-HD [236] will improve the constraints and extend the mass
range. Additional information from the Sunayev-Zeldovich effect can further ex-
tend the range up to m ⇠ 10�22 eV [237]. Couplings to the electromagnetic sector
would also give detectable spectral distortions in the CMB, through cosmic birefrin-
gence [238–242].

High-redshift clustering Wave dark matter suppresses structure formation at high
redshift. This can be probed by measurement of the Lyman-a forest of neutral hy-
drogen absorption in the intergalactic medium for z ⇠ 5, effectively measuring the
quasi-linear matter power spectrum at scales smaller than the Mpc. The strongest
current bound is m > 2 ⇥ 10�20 eV at 95% if all the dark matter is ultralight [147,243–
245]. At even higher redshift, intensity mapping of lines like the neutral hydrogen
21 cm transition by surveys like HIRAX [246] and the Square Kilometre Array [247]
would be sensitive to a 10% density component with mass m < 10�22 eV [248]. Mea-
surements of the velocity acoustic oscillation feature in the power spectrum of the
21cm lines in e.g. HERA [249] could even probe m ⇠ 10�18 eV [250].

Galaxies and subhalos Wave dark matter suppresses galaxy formation and delays
cosmic reionization, excluding the possibility that wave dark matter with mass m <
10�23 eV makes 50% of the DM relic density via a combination of Hubble Space
Telescope Ultra Deep Field UV luminosity function and the CMB optical depth [251].
Measurements with the James Webb Space telescope can extend these constraints by
more than one order of magnitude in the spectrum. The wave suppression of the
matter power spectrum also translates into a low-mass cutoff subhalo abundance,
also due to the phenomenon of subhalo tidal disruption. Dark Energy Survey (DES)
detection of satellite galaxies [252], subhalos inferred from strong lensing [253, 254]
and stellar streams perturbations in the Milky Way impose m & 2 ⇥ 10�21 eV [255],
with possible improvements in future surveys.

Time oscillations In [256] it is shown that the wave nature of dark matter would
imply oscillations in the gravitational potential of the Milky Way on timescales

t ⇠ 6.6 yr
✓

10�23 eV
m

◆
, (2.104)

which is accessible by NANOGrav [257] and Parkes Pulsar Timing Array [258].
Indeed the claim of a recent detection of a stochastic background component by
NANO-Grav [259–261] could be a spectral feature of ultralight dark matter [262].
The survival of the star cluster in the dwarf galaxy Eridanus-II to time oscillations
of the potential impose bounds around 10�21 eV [263].
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Black hole superradiance When the Compton wavelength of ultralight bosons be-
comes comparable to the Schwarzschild radius of a black hole, a superradiant insta-
bility can be triggered. This phenomenon causes the rotational energy of the black
hole to be depleted, as discussed in [35, 171]. The ultralight bosons are excited and
form a macroscopic cloud around the black hole due to the gravitational interac-
tions of the particles, regardless of whether they are scalars or vectors. The efficiency
of this process is reduced for particles with large self-interactions and interactions
with the SM, which makes it an excellent complement to laboratory searches. There
are two main observable consequences of this process: quasi-monochromatic grav-
itational radiation and gaps at large spin in the BH spin-mass distribution [35–39].
The most promising range of interest for this phenomenon is for boson masses in
the range of m ⇠ 10�14 � 10�11 eV. Observations of supermassive black holes and
low-frequency gravitational waves in the future will be capable of detecting boson
masses within the range of m ⇠ 10�19 � 10�15 eV [39–41]. The whole mass range
probed by black hole superradiance is of interest for this thesis.

Neutron stars: pulsar binaries and mergers Ultralight bosons can affect neutron
star binaries. New vector-mediated forces can induce a faster decay of the orbital
period due to the emission of dark dipole radiation. Moreover, if light bosons couple
to muons, which are naturally abundant in neutrons stars, the neutron star merger
observed through gravitational waves would be modified by the additional Yukawa
force and radiation of the dark boson. This effect can probe masses m < 10�11 eV
[264, 265] in both the scalar and vector case.

Stellar cooling Particles that couple to SM states can be produced abundantly
within the cores of stars, resulting in unusual cooling [266–272]. Electromagnetic ex-
citations exist in the stellar plasma, and both transverse and longitudinal modes can
have unconventional dispersion relations. In the dark photon case, when its mass is
similar to the plasma frequency of the SM photon, resonant production of dark pho-
tons occurs, with the lower masses being suppressed due to the small kinetic mixing,
while heavier masses are Boltzmann suppressed. Scalars, in particular axions [272],
can mix with the longitudinal mode of photons and be produced resonantly at any
value of the small mass. Scalars with coupling to muons can be constrained through
horizontal branch stars and supernovae [273]. All the bounds span the whole mass
spectrum for wave dark matter and are often the dominant ones.

Galactic dynamics Finally, a category of observational constraints not included in
Figure 2.1 is the one of galaxy rotation curves and velocity dispersion of stars in
ultra-faint dwarf galaxies. In [227] find that the soliton-host halo relation in rotation-
dominated galaxies is disfavored for a broad ranges of masses, or, assuming the
validity of the soliton-host halo relation, ultralight DM is disfavored in the region
m ⇠ 10�24 � 10�20 eV for wave dark matter density fractions down to 30%. The
heating of stellar orbits in ultra-faint dwarf galaxies by wave dark matter is used
in [274] to put bounds on the fuzzy dark matter mass at the level of m > 3 ⇥ 10�19

eV.
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2.7 Experimental searches

The aim of this section is to give a partial overview of the perspective for detection
of wave dark matter, depending on the mass range under consideration and on the
couplings to the SM states, other than just the gravitational one. This field is experi-
encing an outstandingly rapid evolution [96–98].

In Figure 2.2, taken from [34], we illustrate the different timescales, lengthscales
of interest throughout the mass spectrum of wave dark matter as well as the di-
verse experimental strategies for direct detection of wave dark matter. The differ-
ent methodologies group together several experiments which share a common main
idea or experimental setup and are divided in different categories depending on the
underlying assumption on the dark matter coupling with SM states and spin (vector
or boson). From the Figure, we see that all the dark matter spectrum is covered by
various direct detection techniques and notably several searches populate the range
of interest for this thesis m ⇠ 10�15 ⇠ 10�13 eV. We consider these cases separately,
even though there can be intersections. We follow the reviews [95–97].

2.7.1 Coupling to photons

The coupling between ultralight dark matter and photons is of fundamental impor-
tance for experiments and it is common in most models.

Pseudoscalar coupling In the QCD axion case, the coupling to photon arises via
the mixing of the axion with pions. We can write it in a general way as

L � �
Cfg

f
a

2p
fFµn F̃µn = gfgE · B (2.105)

where E and B are the electric and magnetic fields, respectively. Here we refer to the
pseudoscalar coupling. In the case of a dark photon, the coupling with a photon is
the kinetic mixing, see Section 2.1.3. In most of the cases the phenomenology is the
same, so we consider the two cases together.

We already mentioned the importance of the CMB in probing ultralight dark
matter in Section 2.6.

Figure 2.2 includes the label Earth which represents the constraints imposed by
the oscillations of the terrestrial magnetic field when ultralight DM is coupled to
photons. This can happen either through kinetic mixing in the case of hidden pho-
tons [275, 276] or via ALP coupling to photons [277]. The presence of ultralight dark
matter induces a monochromatic oscillating magnetic field with a specific global
vectorial pattern. This pattern can be detected by using a network of unshielded
magnetometers, see below for more details.

The term Cavities in Figure 2.2 denotes collectively the conventional haloscopes
that enhance the conversion of ultralight fields to photons by exploiting the reso-
nance between the frequency of the cavity and the ultralight field. This process am-
plifies the power by the quality factor Q ⇠ 1/s2 ⇠ 106, and the photons produced
manifest as an excited mode of the cavity. A suitable port can be used to extract this
power from the cavity and connect it to a low-noise amplifier in a radio-frequency
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mates for the mass range reach of different experimental searches, explained
in the main text. Figure from [34].
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(RF) detection chain. Most of the constraints are around the µeV and the main disad-
vantage is the narrow band of the resonance, that implies the need of an inefficient
continuous scan of the mass spectrum. Many current and planned experiments ex-
ploit and improve this technique: ADMX [71–73], HAYSTAC [74, 75], CAPP [79],
ORGAN [81], QUAX a-g [82, 83], the last two being non-tunable. See [95, 97, 98] for
more details.

Birefringent cavity refers to haloscopes for ALPs with cavities that exhibit bire-
fringence between its two linearly polarized laser eigenmodes [278], allowing to ex-
plore smaller frequencies than with normal cavities.

Moving to higher frequencies necessitates completely different methods of detec-
tion. One of the most significant is the magnetized Dish antenna (or reflector) and
its derivative, the Dielectric haloscope. When a dielectric interface, such as a mirror
or the surface of a dielectric slab, is placed in a magnetic field parallel to its surface,
it should emit electromagnetic radiation perpendicular to its surface due to the pres-
ence of the dark matter axion field or dark photon [84]. This radiation is tiny and can
only be detected if the emission of a large surface is focused on a small point, such
as in the case of a spherical surface. This approach has the benefit of being broad-
band and sensitive to all axion masses simultaneously. Since there is no resonance
involved, the sensitivity can be scaled up increasing the area. Dielectric haloscopes
use this idea stacking together several dielectric slabs inside a magnetic field and
putting them in front of a metallic mirror, increasing constructed interference. This
is the functioning principle of the planned experiment MADMAX [80]

Another idea to detect dark matter at frequencies above the GHz is the Plasma
haloscope. When operating at high frequencies, the signal power in simple cavities
diminishes significantly due to their small size. To overcome this issue it has been
proposed [279, 280] to modify the wavelength of light inside the device, giving the
photon an effective mass, or plasma frequency. By matching the plasma frequency
with the dark matter mass, regardless of the size of the device, resonant conversion
can be achieved, enabling the search for high-mass axions between 5-50 GHz, de-
pending on the chosen detector technology. One way to tune the plasma is to use a
wire metamaterial [281, 282], so that, being the plasma frequency a function of the
wire geometry, it can be tuned easily. Using superconducting wires can further in-
crease the sensitivity of the device.

Detecting the oscillating magnetic field associated with axion dark matter or dark
photon field at much lower masses (well below µeV and therefore in the radio band)
can be more effective by placing a pick-up coil inside a large external constant mag-
netic field as explored in [76, 283, 284]. This is called Lumped element in Figure 2.2.
The detector can be operated in two modes: resonant, where the amplification is
obtained via an external LC circuit and, remarkably, broad-band [76]. The idea is
under development by different collaborations [76, 285, 286]. Among them, ABRA-
CADABRA [77, 287] and SHAFT [86] have released preliminary result for a smaller-
scale version of the planned experiment in the 10�11 � 10�8 eV mass range. We also
mention here BEAST [288] and BASE [87].

Another technique for particles in the radio band is the heterodyne method,
which can be used to detect axions using SRF (superconducting radio-frequency)
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cavities [91, 289, 290], dubbed SRF upconversion in Figure 2.2. This technique sepa-
rates the dark matter frequency from the mode frequency by using a superconduct-
ing cavity that contains an oscillating magnetic field. Although this method intro-
duces new sources of noise, it also significantly increases the signal power, partic-
ularly at low masses. Consequently, this approach achieves comparable sensitivity
without necessitating large, high-field magnets or quantum sensing methods.

Scalar coupling The linear and quadratic scalar coupling to photons are often pa-
rameterized as

L � defp
2Mpl

1
4

FµnFµn =
gfggf

4
FµnFµn , (2.106)

L �
g(2)

fggf2

4
FµnFµn , (2.107)

for both linear and quadratic interactions in f. Some of the techniques to detect this
operators are in common with the ones mentioned in the ALP case, see Table 2.1.
Note that, in the axion case, the quadratic coupling is allowed and arises at loop
level in the chiral Lagrangian, from fGG̃, while the linear one is forbidden. New im-
portant effects are present with fFF, f2FF operators. These terms effectively change
the electromagnetic fine structure constant to

a ! a

1 � gfggf
⇡ a(1 + gfggf) , (2.108)

a ! a

1 � g(2)
fggf2

⇡ a(1 + g(2)
fggf2) .

As a result, the coupling to the SM fields of the oscillating scalar DM field f =
f0 cos(mt) leads to an apparent oscillation of fundamental constants at frequency
equal to m in the linear case and 2m in the quadratic case. Such oscillations can alter
several physical quantities which experiments are sensitive to, such as energy levels
in atoms [40, 291] and the length of solids [291, 292].

A first class of experiments that is sensitive to the aforementioned effect is the one
of Atomic, molecular and nuclear clocks, often collectively dubbed quantum clocks.
These clocks have reached an outstanding frequency precision below 10�18 [293], be-
coming therefore sensitive to the oscillation of fundamental constants that leads to
variations in the atomic, molecular or nuclear spectra, changing the clock frequency.
These clock searches are broad-band and sensitive to masses m < 10�12 eV depend-
ing on the total measurement time and the clock specifics. If the period is longer
than the experiment’s timescale, the signal would arise as a peak in frequency space
at w = m. A dark matter signal could manifest in the oscillation of the ratio between
two reference frequencies n1, n2 which have different sensitivities to fundamental
constants. For the structure constant,

∂

∂t
log

n2

n1
= (K2 � K1)

∂

∂t
log a (2.109)
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where K1, K2 are dimensionless sensitivity factors that depend on the clock’s transi-
tion. All the presently operating clocks can be divided on the basis of the transition
type exploited: transitions between hyperfine substates of the atom’s ground state
are used in microwave clocks (GHz frequencies), while transitions between elec-
tronic levels are used in optical clocks [294] (1015 Hz frequencies). Optical clocks are
mainly sensitive to variations of a. Current bounds on ultralight dark matter come
from re-analyses of a drift data for Dy/Dy [295], Rb/Cs microwave clocks [296]
and Al+/Hg + optical clocks [297]. New experiments count clock-comparison se-
tups with Yb/Al+ and Yb/Sr clock pair limits [297] and comparison of H maser and
Sr optical clock with cryogenic crystalline Si cavity (H/Si and Sr/Si) [298]. We refer
to [96] for an overview of new ideas on molecular and nuclear clocks.

Atom interferometry is a method that utilizes the comparison of the phase ac-
cumulated by an atom cloud that is excited by laser pulses and moves in space. By
combining two atom interferometers that share common laser pulses from a single
laser, a clock gradiometer can be created to measure the phase difference between the
two interferometers, allowing for cancellation of laser noise. Ultralight dark matter
can influence the phase of the atom cloud by either affecting the internal energy split-
ting or by exerting an additional force on the cloud. In the first case, if dark matter
produces oscillations of fundamental constants, the atom levels will oscillate at the
Compton frequency of DM. In the second case, dark matter that causes acceleration
of the clouds can be searched comparing atom interferometers with clouds made of
different isotopes. Both scalars and vectors can be constrained by MAGIS-100, an
atom interferometer under development [299].

The variation of a directly implies the variation of the Bohr radius a = (mea)�1,
hence of the length of a solid dL/L = �da/a. Optical cavities use this phenomenon
to detect wave dark matter, as they are sensitive to the variation of the cavity refer-
ence frequency. Cavities can be compared with atomic clocks as mentioned above,
or with other cavities [300].

Also Optical interferometers, including gravitational wave detectors, are sen-
sitive to scalar and vector wave dark matter. In a Michelson interferometer with
identical arms, scalars change the optical path length difference between the arms,
due to the oscillation in the beam-splitter thickness as well as of the beam-splitter
refractive index. Searches for these effects have been performed with old datasets
from GEO600 [301] and Fermilab Halometer [302]. If the interferometer has Fabry-
Perot cavities, the sensitivity to scalars is generally suppressed compared to the pure
Michelson interferometer, but can be improved exploiting mirrors with different
thickness in the two arms [303]. Wave DM can also exert time-varying accelerations
on test bodies, a µ rf, ∂tA0 for the scalar and the vector, respectively. In the scalar
case, the gradient gives a velocity suppression, while in the vector case there is no
such suppression, this is why optical interferometers are listed in the vector section
of Figure 2.2 and not in the scalar.

Another interesting idea is to use Torsion balances to detect ultralight DM [169].
Torsion balances can detect accelerations as small as 10�15 m/s2 on gram-mass ob-
jects. Torsion balances are used to search for equivalence principle violations, but
can be used to detect differential forces by dark matter or time. Bounds have been
obtained on vector DM with B � L gauge coupling from equivalence principle tests
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[304] and the Microscope satellite [305].
We have seen that the detection of ultralight dark matter can be achieved through

the measurement of the deformation of an elastic body produced by a weak force,
which is the basis of both torsion balances and optical-cavity-based ultralight DM
searches. If the elastic body has internal resonances at w = m, the deformation can
be amplified by the resonance Q factor, resulting in massive sensitivity enhancement
over a narrow bandwidth. There have been several proposals in recent years for Me-
chanical resonator-based detection, as summarized in [306]. These proposals span a
huge range in the mass m ⇠ 10�14 � 10�5 eV. Resonant mass detectors for scalars are
limited by the fact that the high-quality resonant enhancement comes at the price of a
small bandwidth. Constraints include the ones from AURIGA [307], DAMNED [308]
and Halometer [302]. The vector case may favor the use of Optomechanical detec-
tors, which involve a mechanical resonator coupled with an optical cavity made of
a different material [309]. This is because vectors cause an oscillating center-of-mass
acceleration of a test mass dependent on its material composition [310].

2.7.2 Coupling to fermions

The coupling of wave dark matter to fermions is also of primary importance for
detection.

Pseudoscalar coupling The first case is the pseudoscalar coupling to a fermionic
axial current, the one characteristic of ALPs, that we can write as

L �
∂µf

f Â
y

Cyȳgµg5ȳ . (2.110)

In the non-relativistic limit, this term corresponds to the Hamiltonian coupling with
spin Sy

H � � Â
y

2Cy

f
Sy · rf . (2.111)

This implies that the ALP can couple with nuclear spins like a fictitious magnetic
field and produce the precession of nuclear spins. This spin coupling can be ex-
ploited for detection in atomic Magnetometers [311, 312] and Comagnetometers
[313–315] (magnetometers that measure the nuclear spin precession of a material
containing two different nuclear spins, used as very sensitive gyroscopes). A detec-
tor exploiting nuclear magnetic resonances (NMR) is CASPEr [169, 316]. CASPEr-
electric uses precision solid-state magnetic resonance to search for an oscillating spin
torque induced by interaction of axion-like dark matter with nuclear spins, while
CASPEr-gradient is only sensitive to the nucleon spin gradient coupling [97].

An interesting approach is to use a network of quantum sensors based on spin.
The Global Network of Optical Magnetometers for Exotic physics searches (GNOME)
[317, 318] employs this strategy. It consists of over a dozen optical atomic magne-
tometers operating within magnetically-shielded environments at stations world-
wide [319].
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For ALPs detection, it has been proposed to utilize quantum non-demolition de-
tection of Magnons [320], collective spin excitations in a solid, that are expected to
be excited by the axion-electron interaction. The prototype detector includes a ferro-
magnetic sphere as an electronic spin target and a superconducting qubit, embedded
inside a microwave cavity to create a coherent effective interaction between the uni-
form magnetostatic mode in the ferromagnetic crystal and the qubit.

In general, an ALP can couple to gluons via the operator

L � CG
f

g2

32p2 fGa
µnG̃µn

a . (2.112)

This coupling induces an oscillating electric dipole moment (EDM) of a nucleon [169]

L � � iCN

2
f

f
N̄sµng5NFµn , (2.113)

and of atoms and molecules [321]. Searches for an oscillating neutron EDM constrain
CG/ f over 10�24 eV < m < 10�17 eV [165], while searching for oscillating EDM in
the HfF+ molecule constrains the range 10�22 eV < m < 10�15 eV [322]. It has been
also proposed to search for the ALP induced EDM in the future proton storage ring
to measure the static proton EDM [323]. We group these bounds as Nucleon-EDM.
The coupling to gluons can be detected also through nuclear magnetic resonance
(NMR) methods. The CASPEr project [169,316] is exploring this direction. The cou-
pling to gluons can be accessed also via the phenomenology of the quadratic oper-
ators that arise at loop level, such as f2FF and f2ȳy [324]. For this, we refer to the
discussions on these operators.

Scalar coupling The scalar coupling to fermions can be written as

L � � Â
y

gyfȳy � Â
y

g(2)
y f2ȳy . (2.114)

The second term arises also in the axion case from the chiral Lagrangian. These
operators effectively modify the mass of the fermions my ! my + gyf (or my !
my + g(2)

y f2 in the case of quadratic coupling) and produce oscillations in this quan-
tity at frequency m in the linear case and 2m in the quadratic case. The phenomeno-
logical consequences are clear: fundamental constants and parameters in the experi-
mental setup are modified and experience oscillations. Therefore, many of the above
mentioned experiments are also sensitive, even if with some suppression, to this cou-
plings. These include quantum clocks, atom interferometers, optical cavities, optical
interferometers, mechanical resonators and equivalence principle violation searches.

We conclude with Table 2.1, taken from [96], that summarizes experimental and
astrophysical probes for scalar and vector fields coupled to the SM states.
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DM Couplings Experimental and astrophysical probes

f

Gravity CMB, Matter power spectrum (Lyaf, Halo Mass Function)
Galactic rotation curves, Black hole superradiance

EP violation and fifth-force searches
Electromagnetism

�
fFµnFµn

�
All optical and microwave clocks, Optical cavities

Optical and atom interferometers (including GW detectors)
LC oscillators, Cosmic distance measurement
Stellar observations, DM stimulated emission

EP violation and fifth-force searches
Stellar observations

Electrons (fēe) Microwave and molecular clocks, Optical cavities
Optical and atom interferometers (including GW detectors)

Mechanical resonators, Molecular absorption
Muons (fµ̄µ) gµ � 2, Stellar observations, Neutron star mergers

Gluons
�
fGµnGµn

�
Microwave, molecular, and nuclear clocks

EP violation and fifth-force searches
Quarks (fq̄q) / Nucleons (fN̄N) Microwave, molecular, and nuclear clocks

EP violation and fifth-force searches

A0
µ

Gravity CMB, Matter power spectrum (Lyaf, Halo Mass Function)
Black hole superradiance

Kinetic Mixing Coulomb’s law, Light-shining-through-a-wall, CMB
Stellar observations, Resonant cavities, LC circuits

Quantum materials, Molecular absorption, Magnetometers
Broadband reflectors, Plasma haloscopes, Dielectric haloscopes

EP violation and fifth-force searches
Minimal Gauge Coupling (B, L, B � L) Stellar observations

Optical and atom interferometers (including GW detectors)
Molecular absorption
Mechanical resonators

Minimal Gauge Coupling (Lµ � Lt) Neutron star mergers

TABLE 2.1: Experimental and astrophysical probes for scalar and vector
fields coupling to the SM particles. Couplings that can be induced at loop
level are not considered. Pseudoscalar couplings are not included, see Fig-
ure 2.2 for axions. Table taken from [96] to which we refer for a full overview
of the mentioned probes.
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Chapter 3

Gravitational Focusing

In this Chapter, we study the distortion of the dark matter distribution via the grav-
itational interaction with a massive body, an effect called gravitational focusing. We
explore the gravitational focusing of light bosonic dark matter and its unique signa-
tures in the local overdensity and spectrum. We provide a formalism that captures
the gravitational focusing effects of wave dark matter and highlights the similarities
and differences with particle dark matter. While gravitational focusing effects are
generally small, they could be much larger for dark matter substructures. Where-
fore, we investigate how dark matter substructures (motivated by the observations
of stars whose kinematic properties suggest the presence of a non-halo DM coun-
terpart [58, 59] with same properties) respond to the gravitational potential of the
Sun. A cartoon description of the geometry of gravitational focusing is shown in
Figure 3.1.

The content of this Chapter is substantially based on [106]. The outline is the
following. In Section 3.1, we review the main features of the focusing effect in the
particle case mainly following [68, 69] for the sake of a later comparison with the
wave dark matter. In Section 3.2, we derive the wave DM response to the gravita-
tional potential of the massive object and we compute observables making use of the
statistical formalism presented in Section 2.3. To gain insights on the wave features
and to compare with particle DM, the monochromatic limit is explored as well as
the particle, or semi-classical limit in the discussion Section 3.3. The main applica-
tion of our formalism is presented in Section 3.4, devoted to the computation of the
response of wave dark matter components to the gravitational potential of the Sun.
We conclude in Section 3.5.

3.1 Particle focusing

We start reviewing the gravitational focusing of particle dark matter to set up the
notation and formalism for a comparison with the wave focusing, that is the topic of
next section. The treatment follows [68, 69].

3.1.1 Naive understanding

Let us consider the dark matter phase space distribution f (t, x, v). In the collision-
less system, the phase space density is conserved, i.e. d f /dt = 0. This is also the
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FIGURE 3.1: A cartoon illustrating the gravitational focusing effect. Dif-
ferent dark matter components, represented in the central figure, can be
present in the solar neighborhood. Due to its orbit in the Orion arm around
the Milky Way, the Sun experiences, in its rest frame, a dark matter "wind".
This wind is focused behind the Sun and the Earth experiences an overden-
sity around March due to the geometry of its orbit.
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case in the scenario under consideration, in which dark matter particles feel only an
(external) pull force due to the gravitational potential of a massive object.

We can have a first understanding of gravitational focusing thanks to Liouville’s
theorem. According to this result, the phase space volume is conserved along the
particle trajectory obtained by solving the equation of motion from the system’s
Hamiltonian.

Consider particles localized in an infinitesimal phase space volume d3x0 d3v0 ally
far away from a source of mass M. We work in the rest frame of the source. Let us
assume, for simplicity, that the phase space density f is constant over this volume,
that is, we choose this volume sufficiently small. When particles approach the source
they get pulled and, falling in its gravitational well, they accelerate. At distance r
from the source, the speed is

v(r) =
q

v2
0 + v2

e (r) . (3.1)

Here v0 is the asymptotic value of the particles’ speed, far away from the massive
body and v2

e (r) = 2GM/r is the escape velocity.
If we impose the conservation of the phase space volume by the Liouville’s theo-

rem, d3x0 d3v0 = d3x d3v, where the right-hand side is the volume at distance r from
the source, we find d3x = [v0/v(r)]d3x0, that is, the spatial volume is reduced by the
factor v0/v(r) < 1 and the dark matter particles are focused. As a consequence, the
density at r is enhanced from the asymptotic value r0

r(r) ⇡ r0v(r)
v0

= r0

s

1 +
v2

e (r)
v2

0
. (3.2)

This expression gives us the intuitive understanding that the focusing effect is stronger
closer to the source, where the escape velocity is larger, and is particularly important
for slow particles (in the rest frame of the massive body).

3.1.2 Quantitative analysis

Let us be more quantitative now. Our boundary condition is f = f (v0), the velocity
distribution at r ! •, which we assume independent on position and normalized asR

d3v0 f (v0) = 1. The mass in the infinitesimal phase space volume asymptotically
far away from M is, for the Liouville’s theorem,

r0 f (v0)d3x0 d3v0 = r0 f (v0)d3x d3v . (3.3)

The mass density at position x relative to the source is found by integrating the
velocity distribution, which is conserved

r(x) = r0[1 + d(x)] (3.4)

= r0

Z
d3v f (v0)

= r0

Z
d3v0 J(v0, x) f (v0) .
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The Jacobian J(v0, x) = |dv/dv0| is given by [68]

J(v0, x) =
1
2

2

4
✓

1 +
2v2

e /v2
0

1 � v̂0 · x̂

◆ 1
2

+

✓
1 +

2v2
e /v2

0
1 � v̂0 · x̂

◆� 1
2

3

5 . (3.5)

For a given velocity distribution, the integral in the third line of Eq. (3.3) can be
performed numerically. Alternatively, one can compute the integral in the second
line using the expression for v0(v, x) that can be obtained via the conservation of the
Laplace-Runge-Lenz vector [68, 69].

v0(v, x) =
v2

0v + 1
2 v2

e v0 x̂ � v0v(v · x̂)

v2
0 + 1

2 v2
e � v0(v · x̂)

. (3.6)

The expressions for J(v0, x) and v0(v, x) can be expanded in the case of small es-
cape velocity and analytical expressions can be obtained for a Maxwell-Boltzmann
distribution distribution [213].

To proceed, let us consider a Maxwell-Boltzmann distribution for the dark matter
velocity distribution asymptotically far away from the massive body

f (v0) =
1

(2ps2)3/2 exp

� (v0 � vdm)2

2s2

�
, (3.7)

with mean velocity vdm and dispersion s. In this way, the density contrast d of the
focused DM is completely determined once three parameters are specified

vdm/s, r/r̄, µ ⌘ v̂dm · x̂ . (3.8)

Here

(i) vdm/s is the asymptotic speed in units of the dispersion;

(ii) r/r̄ is the radial distance from the source in units of the radius of gravitational
influence

r̄ =
GM
s2 = 0.03 AU

✓
M

M�

◆✓
240 km/secp

2s

◆2
, (3.9)

where we normalized to the typical value of the dark matter velocity disper-
sion for the Milky Way virialized halo. An equivalent choice would be ve/s

instead of r/r̄.

(iii) µ ⌘ v̂dm · x̂ is giving the angular dependence.

We show the density contrast of focused particle dark matter in Figure 3.2. We
choose vdm = (�240, 0, 0) km/s and change the value of the ratio vdm/s. Increasing
this parameter, the dark matter approaches the monochromatic limit. We see that
if the dispersion is too large, the system is supported by pressure and the focusing
is very weak and isotropic, while for very cold dark matter a well defined order-
one overdensity tail forms. The central plot shows the case for virialized halo-like
dark matter, vdm/s =

p
2. The density contrast is invariant under the rotation with

respect to the v̂dm axis, due to the azimuthal symmetry of the system.
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FIGURE 3.2: The density contrast of the focused particle dark matter. We
choose vdm = (�240, 0, 0) km/s and the source mass to be the solar mass.
We plot the density contrast for increasing values of vdm/s.
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In the limit ve ⌧ s, we can obtain an analytic expression for the density contrast
[42]

d(x) ⇡ v2
e

2s2 exp


� v2
e

2s2 (1 � µ2)

�
erfc

✓
�vdmµp

2s

◆
. (3.10)

This expression can be used to study the dark matter substructures with ve < s.

3.1.3 Downstream density and angular average

To better understand the properties of the overdensity profile, we can consider two
quantities

dds(r) = d(r, µ = 1) , (3.11)

davg(r) =
1

4p

Z
dWx̂ d(x) =

1
2

Z
dµ d(r, µ) . (3.12)

dds is the density along the downstream direction (v̂dm · x̂ = µ = 1) and davg is the
density contrast averaged over a sphere of radius r. Although these quantities de-
pend on two parameters, vdm/s and r/r̄, they only depend on a specific combination
of them. For the downstream, we obtain

1 + dds ⇡
r

1 +
v2

e
s2 =

r
1 +

2r̄
r

. (3.13)

This approximation follows easily from the approximation in Eq. (3.10), if ve/s < 1.

Notice that 1
2
R 1

�1 dµ J(v0, µ) =
q

1 + v2
e /v2

0, so the exact result for davg is

1 + davg =
Z

d3v0 f (v0)

s

1 +
v2

e
v2

0
. (3.14)

However, since
⌦
v2

0
↵

=
R

d3v0 v2
0 f (v0) = v2

dm + 3s2, we can approximate

1 + davg =

*s

1 +
v2

e
v2

0

+
⇡
s

1 +
v2

e⌦
v2

0
↵ (3.15)

⇡
s

1 +
v2

e
v2

dm + s2 =

s
1 +

2r̄/r
1 + v2

dm/s2 .

We neglected the factor of 3 in front of the s2 for the sake of simplicity.
We validate these approximations numerically and present a comparison with

exact results in Figure 3.3. In the left panel, we plot dds for vdm/s 2 [0.1, 10] and
find that the result is weakly dependence on vdm/s. The red dashed line corre-
sponds to the approximation of dds in Eq. (3.13) matching the exact result within
a factor of two over a two-order-of-magnitude range of vdm/s. We repeat the exer-
cise in the right panel for davg and compare the exact result with the approximation
in Eq. (3.15). Again, for vdm/s 2 [0.1, 10] the approximation matches the exact re-
sult well. This agreement highlights the sensitivity of the result on the combination
(r/r̄)[1 + v2

dm/s2] only.
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FIGURE 3.3: Left: the density contrast dds of the focused particle dark matter
on the downstream direction, v̂dm · x̂ = 1. Right: the density contrast aver-
aged over the solid angle. In both panels, the lower and upper boundary of
the blue band correspond to vdm/s = 0.1 and 10, respectively.

Remarkably, the ratio davg/dds represents the angular scale over which the den-
sity contrast is non-vanishing. In the reasonable limit ve < s < vdm, one obtains the
following behavior, expanding the above approximations:

Dµ ⇠
davg

dds
⇡ s2

v2
dm

. (3.16)

Thus, the ratio of vdm/s alone can explain the angular scale of the density contrast.
This provides an explanation for the observations in Figure 3.2, as well as the transi-
tion to the monochromatic limit regime where the density contrast is highly concen-
trated around the downstream direction.

3.2 Wave focusing

In this Section, we develop the formalism to describe the focusing of wave dark mat-
ter. Much of this formalism was already established in Section 2.3 for the stochastic-
ity of the wave field and in Section 2.4 for the description of the wave dark matter in
curved space-time.

As previously done, we consider a free spinless bosonic dark matter particle with
a mass m, minimally coupled to gravity. The action of the system reads

S =
Z

d4x
p

�g

"
M2

pl

2
R +

1
2

gµn(∂µf)(∂nf) � 1
2

m2f2

#
. (3.17)

Here g = det gµn is the determinant of the metric tensor, gµn and Mpl is the reduced
Planck mass. We consider the weak-gravity metric

ds2 = (1 + 2F)dt2 � (1 � 2F)[dr2 + r2dW] , (3.18)

with F(x) the gravitational potential. We assume this gravitational potential to be
static, or that it evolves on timescales much longer than several years.
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To analyze non-relativistic dark matter, we adopt a similar approach as in Sec-
tion 2.4.1 by expanding the field and separating the fast oscillations due to the mass.
This allows us to focus on the wave oscillations at the characteristic wavelength
ldB ⇠ 1/k with k. In the continuum limit, the field is expressed in terms of modes
with wavenumber k = mv, which correspond to plane waves far from the gravita-
tional potential source. We approximate wk =

p
k2 + m ⇡ m + k2/2m and rewrite

the field as

f̂(x) =
Z d3k

(2p)3
1p
2m

h
âkyk(x)e�imt + â†

ky?
k(x)eimt

i
. (3.19)

The annihilation and creation operators âk, â†
k satisfy canonical commutation rela-

tions. To obtain ensemble averages of the field, which were discussed in Section 2.3,
we can rewrite the field in the following way

f(x) =
Z d3k

(2p)3
1p
2m

h
akyk(x)e�imt + a?

ky?
k(x)eimt

i
. (3.20)

Here, the annihilation and creation operators have been replaced with complex num-
ber a whose modulus follows the Reyleigh distribution and phase is uniformly dis-
tributed. These numbers reflect the stochastic nature of the wave field. Since the
occupation number is large, we can neglect the non-vanishing commutator between
the annihilation and creation operators.

On the other hand, the mode functions yk encode the response of wave dark
matter to the gravitational potential and are obtained by solving the equation of
motion. Assuming that yk is proportional to eik·x, where the gravitational potential F
vanishes, is a boundary condition for the problem, given the definition and physical
interpretation of the continuous quantum number k.

3.2.1 Wave function

Let us solve the equation of motion for the mode function. In Section 2.4.1, we found
that the Klein-Gordon equation Eq. (2.60) on small scales and in the non-relativistic
approximation gets into the form of the Schrödinger equation. Since this equation is
linear, we can write it for each mode function yk

i∂tyk =


� 1

2m
r2 + mF

�
yk . (3.21)

The gravitational potential F is determined by the Poisson equation,

r2F = 4pG(rM + rdm) , (3.22)

where rM and rdm are the mass density profile of the source and of the dark mat-
ter, respectively. We treat the source as point-like, of mass M, and we neglect the
self-gravity contribution rdm compared to rM. Under these assumptions, the gravita-
tional potential is a simple 1/r-central potential, F(r) = �GM/r and the Schrödinger
equation can be solved independently, with F treated an external potential. Actually,
the problem is identical to the Coulomb scattering of an electron with a proton: the
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wave dark matter plays the role of the electron, the point mass M of the proton and
the electromagnetic force is replaced by Newton’s gravitational pull.

To solve Eq. (3.21), we factor out the remaining plane wave time dependence
yk(t, x) = e�iEktyk(x) with Ek = k2/2m. The Schrödinger equation becomes


r2 + k2 +

2maG
r

�
yk(x) = 0 . (3.23)

Here aG = GMm is the gravitational fine structure constant, highlighting the anal-
ogy with the electron-proton scattering case. We impose a plane wave boundary
condition, i.e. yk = eik·x at r ! •. The analytical solution is given by [33, 325]

yk(x) = eik·xG[1 � ib]epb/2
1F1

h
ib, 1, ikr(1 � k̂ · x̂)

i
. (3.24)

Here b = GMm2/k = aG/v, G[z] is the Euler gamma function, 1F1(a, b, z) is the con-
fluent hypergeometric function. Let us have a physical intuition of this expression
considering the large and small distance asymptotic behaviors.

For a large argument |z| � 1 and arg(z) 2 (�p/2, 3p/2), the confluent hyper-
geometric function can be expanded as

1F1(a, b, z) ⇡ ezza�b

G[a]
+

eipaz�a

G[b � a]
. (3.25)

This limit corresponds to a large distance expansion. If we introduce cos q = k̂ · x̂
and q = kr(1 � cos q), we can rewrite the wave function in the large q limit in the
form

yk(x) ⇡ ei(k·x�b log q) +
fR(q)

r
ei(kr+b log q) , (3.26)

with the function fR(q) given by

fR(q) =
G[1 � ib]
G[1 + ib]

rb

q
=

G[1 � ib]
G[1 + ib]

maG

2k2 sin2(q/2)
. (3.27)

The asymptotic expansion shows that the solution is the sum of a plane wave eik·x,
as requested by the boundary conditions and an outgoing spherical wave after the
collision fR(q)eikr/r, modulo some logarithmic corrections. This large-distance ex-
pansion is the form predicted by the scattering theory of quantum mechanics and,
remarkably, it agrees with the Rutherford scattering cross section

ds

dW
= | fR(q)|2 =

m2a2
G

4k4 sin4(q/2)
. (3.28)

In the opposite limit, |z| ⌧ 1, the hypergeometric function approaches unity.
This corresponds to the small distance expansion. The squared wave function be-
comes

|yk(0)|2 =
2pb

1 � e�2pb
. (3.29)
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The above expression is identical to the Sommerfeld enhancement factor for dark
matter annihilation when the interaction is mediated by the Coulomb interaction
[326]. For large values of b = aG/v � 1, e.g. when the dark matter velocity is
smaller than aG, this expression shows indeed an enhancement proportional to b.
Instead, for b ⌧ 1 the value of the squared function at the origin converges to unity.

3.2.2 Density contrast and power spectrum

We can now use the density operator of the wave dark matter field f̂ found in Sec-
tion 2.3 to find ensemble averages, i.e. moments of the field. These physical quanti-
ties are directly connected to observables in dark matter detection experiments.

We are particularly interested in the second moment of the field
⌦
f̂2↵, because it

is related to the density contrast d of wave dark matter

1 + d(x) =

⌦
f̂2↵

f2
0

. (3.30)

Here f0 =
p

r0/m is the root mean square of the field value measured asymptoti-
cally far away from the source, which is determined by the asymptotic value of the
wave dark matter mass density r0 and mass m. The second moment of the field is re-
lated to the power of any dark matter signal; indeed, naively, it measures how much
energy is stored in the field in a given spatial position.

This information is of primary importance for wave dark matter direct detection
experiments such as in axion and axion-like particle searches relying on interactions
with the photon field mediated by the operator L � fFF̃, see Section 2.71, the total
signal power is proportional to

⌦
f̂2↵. The same holds for scalar dark matter searches

that look for couplings to fermions or photons L � fȳy, fFF via the oscillations of
fundamental constants as reviewed in Section 2.7 2.

Let us find an explicit expression for the second moment of the field. We can
write it in terms of the expectation value of products of annihilation and creator
operators, which have been computed in Eq. (2.55) exploiting the density operator
in Eq. (2.54). Explicity,

⌦
f̂2(x)

↵
=

1
2m

Z d3k
(2p)3

Z d3k0

(2p)3

 D
âk â†

k0

E
yky?

k0 +
D

âk âk0

E
ykyk0 e�2imt

+
D

â†
k âk0

E
y?

kyk0 +
D

â†
k â†

k0

E
yky?

ke2imt
�

. (3.31)

We adapt the results from Eq. (2.55) to the continuum limit,
D

â†
k âk0

E
= (2p)3d(3)(k � k0)nk , (3.32)

D
âk â†

k0

E
= (2p)3d(3)(k � k0)[nk + 1] ⇡

D
â†

k âk0

E

D
âk âk0

E
=

D
â†

k â†
k0

E
= 0 ,

1For instance, ADMX [71–73], HAYSTAC [74, 75], ABRACADABRA [76, 77, 287], DM-Radio [78],
CAPP [79], MADMAX [80], ORGAN [81] and so on.

2For instance, atomic clocks [40, 295, 296, 298, 308, 327, 328], atomic and molecular spectroscopy
searches [94, 329], and interferometry [301–303, 330, 331].
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where nk is the occupation number of mode k. It follows that

⌦
f̂2(x)

↵
=

Z d3k
(2p)3

nk
m

|yk(x)|2 . (3.33)

In the non relativistic limit, the three-momentum asymptotically far away from the
source is given in terms of the velocity k = mv. Therefore, it is natural to rewrite
the integral above as an integral over asymptotic velocities3. We define the velocity
probability distribution as

f (v) ⌘ m4

(2p)3
nk
r0

, (3.34)

normalized as
R

d3v f (v) = 1. Notice that any eiEkt factor in yk gets canceled and
|yk|2 has no time dependence. We can finally write the density contrast as

1 + d(x) =
Z

d3v f (v)|yv(x)|2 . (3.35)

This compact expression can be compared with the corresponding expression for
particle dark matter in Eq. (3.4): the Jacobian factor J(v0, x) in the second line of
Eq. (3.4) that describes the particle trajectory is now replaced with the squared am-
plitude of the wave function |yv(x)|2. Both factors are weighted by the velocity dis-
tribution asymptotically far away from the source to give the density contrast.

To proceed, we assume a Maxwell-Boltzmann velocity distribution Eq. (3.7) as in
Section 3.1.2. Then, the density contrast depends on four parameters

vdm/s, r/r̄, µ ⌘ v̂dm · x̂, 2pr̄/ldB . (3.36)

The first three parameters are the same introduced in Section 3.1.2 for the particle
dark matter. The fourth is (2p) times the ratio of the radius of gravitational influence
r̄ and the de Broglie wavelength

ldB =
2p

mv
' 1 AU

✓
10�14 eV

m

◆✓
240 km/s

v

◆
. (3.37)

where we scaled to typical values of interest. As we will see in the next section, the
de Broglie wavelength is a key quantity that controls the gravitational response of
the wave dark matter.

We also compute the spectrum of the field fluctuations in the frequency space.
The power of the field f̂ is defined as

Pf(x) ⌘ lim
T!•

1
T

Z T/2

�T/2
dt f̂2(t, x) =

Z •

�•

dw

2p
Sf(w, x) (3.38)

3Note that in Section 3.1 we used v0 to denote the particle dark matter velocity asymptotically far
away from the source. We omit the subscript here to ease the notation.
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and the power spectral density is

Sf(w, x) ⌘ lim
T!•

|f̂(w, x)|2
T

, (3.39)

with the Fourier component of the field obtained via

f̂(w, x) ⌘
Z •

�•
dt eiwtf̂(t, x) . (3.40)

Since f is a random field, both Pf and Sf have to be understood as random fields.
We can compute the ensemble averages of the quantities defined above. It is ev-

ident that
⌦

Pf
↵

= f2
0(1 + d), manifesting the important relation between the power

and the density contrast.
Instead, the ensemble average of the power spectral density requires a bit more

effort. The ensemble average of the Fourier component of the field reads

⌦
|f̂(w, x)|2

↵
= f2

0

Z
d3v f (v)|yv(x)|2

Z •

�•
dt dt0 eiw(t�t0) cos[wv(t � t0)] (3.41)

= pf2T
Z

d3v f (v)|yv(x)|2[d(w � wv) + d(w + wv)]

=
2pTf2

0
mv

f̄ (v, x)

����
v=

p
2(w/m�1)

.

We have used [d(w)]2 = d(w)d(0) = d(w)T/(2p) and wv = m + mv2/2. The result
is multiplied by a factor of two, summing positive and negative frequency contribu-
tions. We have defined the function

f̄ (v, x) ⌘ v2
Z

dWv̂ f (v)|yv(x)|2 . (3.42)

This f̄ (v, x) might be interpreted as the speed distribution of wave dark matter in-
cluding the gravitational focusing effect (due to which it acquires a spatial depen-
dence). From the result of Eq. (3.41) the power spectral density is trivially found

⌦
Sf(w, x)

↵
=

2pf2
0

mv
f̄ (v, x)

����
v=

p
2(w/m�1)

. (3.43)

So far, we have focused on the variance of the field itself. However, some of
axion and axion-like DM searches are based on interactions derived by the operator
L � ∂µfȳgµg5y, see Section 2.7 for more details4. In such cases, the signal power
as well as the power spectrum would depend on the variance of the gradient of the
field. The variance of the gradient can be obtained in the same way as explained
above. Introducing a detector sensitivity axis n̂, we have

⌦
|n̂ · rf|2

↵
= f2

0

Z
d3v f (v)|n̂ · ryv(x)|2 . (3.44)

4For instance, CASPEr [169, 316], atomic magnetometers [311, 312], and an oscillating neutron elec-
tric dipole moment experiment [165].
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The ensemble average of the power spectral density can be obtained as

⌦
Srf(w, x)

↵
=

2pf2
0

mv


v2

Z
dWv̂ f (v)|n̂ · ryv(x)|2

�

v=
p

2(w/m�1)

. (3.45)

While we have mainly focused on computing variances at the same location (be-
cause we are interested in the single detector’s response), it is straightforward to
compute correlations of fields at different locations with the same formalism. Such
correlations contain additional information on wave dark matter phase at different
locations, which can be used to extract further information, such as the directional-
ity of the dark matter velocity distribution, and the angular distribution of potential
dark matter substructures, from a network of wave dark matter detectors [332, 333].

3.3 Discussions

In this Section, we discuss the wave features that appear in the gravitational focus-
ing phenomenon. In particular, we study two limits: the monochromatic limit in Sec-
tion 3.3.1, in which the wave features appear clearly as they are not masked by the
velocity dispersion and the semi-classical, or particle, limit, in which the wave and
particle description match (see Section 3.3.3). The full treatment of wave DM with
non-negligible velocity dispersion is investigated in Section 3.3.2. The reader that is
not interested in this in-depth discussions can already dive into the application of
gravitational focusing of dark matter structures in the solar system in Section 3.4.

3.3.1 Monochromatic limit

In order to understand the distinct wave effects in the gravitational response of wave
dark matter, we investigate the monochromatic limit. In this scenario, the velocity
distribution is a Dirac delta function f (v) = d(3)(v � vdm), which assumes a narrow
flux of dark matter particles with velocity v = vdm. This limit is valuable as it allows
us to observe wave effects that are not obscured by a significant dark matter velocity
dispersion. Despite being a theoretical construct, the monochromatic limit is useful
in practical applications, as it accurately describes the behavior of very cold dark
matter components with vdm/s � 1, such as stream dark matter, as we will see in
Section 3.4.4.

Under the monochromatic limit assumption, the velocity integral in Eq. (3.35)
collapses to

1 + d(x) = |yv(x)|2 (3.46)

=
2pb

1 � e�2pb

���1F1[ib, 1, imvr(1 � v̂ · x̂)]
���
2

Here b = aG/v with v being the speed of dark matter far away from the source.
Since the maximum value of the hypergeometric function squared is unity, the mag-
nitude of the focusing is determined by the Sommerfeld enhancement factor. The
hypergeometric function is responsible for the oscillation pattern.
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Wave features

Figure 3.4 displays the density contrast for focused particle dark matter. The velocity
of the dark matter is chosen to be v = vdm = (�240, 0, 0) km/s, and the mass is
varied as m = 10�15, 10�14, 10�13 eV. As the parameter aG = GMm increases with
increasing mass, so does b, which increases the prefactor in Eq. (3.46) and enhances
the density contrast near the origin. Unlike the particle case, the density contrast
does not diverge at the origin but instead saturates to a constant value d ⇡ |yv(0)|2 �
1 for sufficiently small r. Moreover, since wave effects depend on the de Broglie
wavelength ldB, increasing the mass reduces the wavelength, leading to the distinct
interference patterns we see in the various panels.

To better understand the wave properties in the density wake, we examine Fig-
ure 3.5. We plot the density contrast in the direction µ = 0, normalized with re-
spect to the central value, i.e., d|µ=0/d(0), as a function of two parameters: r/r̄ and
2pr̄/ldB, where ldB = 2p/mv with v being the dark matter velocity far from the
source M. The black line corresponds to mṽ(r)r = 1, where ṽ =

p
v2 + 2GM/r is the

total velocity. From this velocity, we can define the real, or effective de Broglie wave-
length l̃dB = 2p/(mṽ), so that the condition mṽr = 1 corresponds to l̃dB/r = 2p.

We observe that the density contrast approaches a saturation value of d(0) for
sufficiently small r, i.e., when mṽ(r)r . 1. However, for mṽ(r)r & 1, the wave den-
sity contrast oscillates rapidly. When mṽ(r)r � 1, the density contrast is suppressed.
It is important to note that the decay pattern is similar to that of particle dark matter,
and this is the essence of the particle limit, which we discuss further in Section 3.3.3.

Comparison to particle dark matter

We can take advantage of the simplicity of the monochromatic limit to gain some
insight regarding the comparison between wave and particle dark matter density
contrasts. In the right panel of Figure 3.6, we plot the ratio of the density contrast
averaged over the solid angle for wave and particle dark matter. Since we are in
the monochromatic limit, the approximation in Eq. (3.15) becomes 1 + davg, p =p

1 + v2
e /v2. We observe that for mṽ(r)r & 1 the averaged density contrast for the

wave dark matter becomes increasingly similar to the particle result. Instead, for
mṽ(r)r . 1 the averaged density contrast is suppressed.

We can evince the suppression factor from Figure 3.7. In this plot we show again
the ratio between the density contrasts averaged over the solid angle for wave and
particle dark matter. However, in this figure we fix the ratio r/r̄ to different val-
ues and we vary mṽr. We observe that for mṽr < 1 the wave dark matter result is
suppressed with respect to the particle result by a factor davg, w/davg, p µ pmṽr. We
understand that the angle-averaged wave density contrast in the monochromatic
case goes as

1 + davg, w ⇡ p ⇥ 2pr
l̃dB

r
1 +

v2
e

v2 . (3.47)

Remarkably, the ratio davg, w/davg, p does not depend substantially on r/r̄.
Summing up, in Figures 3.5, 3.6 and 3.7 we observe that a key parameter con-

trolling the wave dark matter density contrast is the relative size of the de Broglie
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FIGURE 3.4: The density contrast for the wave dark matter in the monochro-
matic limit, i.e. with vanishing velocity dispersion. We choose v = vdm =
(�240, 0, 0) km/sec and m = 10�15, 10�14, 10�13 eV. The source mass is
chosen to be the solar mass.
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FIGURE 3.5: The density contrast in the orthogonal direction µ = x̂ · v̂ = 0
normalized to the value at the origin as a function of parameters r/r̄ and
2pr̄/ldB. A constant density contrast is observed for small radii satisfying
mṽ(r)r < 1. The black line corresponds to radii for which mṽr = 1.

wavelength computed with the total velocity l̃dB and the distance from the source r.
For mṽr & 1 the response of wave dark matter to the gravitational potential is sim-
ilar to the one of particle dark matter, albeit some oscillations, while for mṽr . 1,
wave features appear. In particular we observe suppression of the density contrast
at scales smaller than the de Broglie wavelength. The limit mṽr � 1 is the limit
at which the wave dark matter approaches to particle dark matter. This will be the
subject of Section 3.3.3.

3.3.2 Dispersed wave dark matter

The monochromatic results of Section 3.3.1 clearly show the role of de Broglie wave-
length in distinguishing the wave and the particle case. We now consider the density
contrast of wave dark matter with velocities distributed according to the Maxwell-
Boltzmann distribution with mean vdm and dispersion s, Eq. (3.7), to compare the
wave dark matter with particle dark matter on an equal and more general footing.

To compare with particle dark matter, we consider again the density contrast
along the downstream dds

1 + dds(r) =
Z

d3v f (v)|yv(r, µ = 1)|2 (3.48)

and the wake field averaged over the solid angle davg

1 + davg(r) =
Z

d3v f (v)
Z dµ

2
|yv(r, µ)|2 . (3.49)

We calculate these quantities for various values of r/r̄ while fixing vdm/s, simi-
lar to what we did for the particle case in Figure 3.3. The results for the downstream
density (left) and the density contrast averaged over angles (right) are presented in
Figure 3.8. Similar to the monochromatic case, the particle-to-wave transition occurs
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function of mṽr. Different solid lines correspond to different values of r/r̄.
All of them approach to the classical particle result for mṽr � 1. For mṽr <
1, instead, the averaged wave density contrast is suppressed with respect to
the particle case.
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FIGURE 3.8: The density contrast along the downstream direction Eq. (3.48)
(left) and averaged on the solid angle Eq. (3.49) (right) as a function of r/r̄
with non negligible velocity dispersion. In both plots we choose vdm/s = 1;
each color represents different values of msr̄; the circles represent the point
where mṽ(r)r = 1; the black dashed line is the exact result of particle dark
matter, obtained with Eq. (3.4).

when mṽ(r)r = 1, i.e., at the position of the dot(s) shown in the figure. However,
since we are now analyzing a dispersed dark matter medium, we must adjust the
definition of the total speed to incorporate the contribution from the velocity disper-
sion.

ṽ(r) ⌘
q

v2
dm + s2 + v2

e (r) . (3.50)

Given the above definition, the transition happens at mṽ(r)r ' 1, which can be
solved to find the value of r/r̄ for each choice of msr̄ and vdm/s. In the figure, the
black dashed line represents the (exact) result of particle dark matter, while colored
lines represent the result of wave dark matter with msr̄ = 0.5 (blue), 1 (orange), 2
(green).

Notice that, for mṽr . 1, the wave contrast saturates to

1 + d(0) =
Z

d3v f (v)|yv(0)|2 =
⌦
|yv(0)|2

↵
⇡ 2p hbi

1 � e�2phbi (3.51)

with

hbi =
aG

vdm
erf

hvdm
2s

i
. (3.52)

For mṽr & 1, the wave result converges to the particle dark matter result.

3.3.3 Semi-classical limit

In Sections 3.3.1 and 3.3.2 we have demonstrated that the wave outcome approaches
the classical particle dark matter result if the condition

mṽ(r)r � 1 (3.53)
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is satisfied, and an appropriate value for the total velocity ṽ is chosen. This limit
arises when the size of the system is significantly larger than the de Broglie wave-
length of the wave dark matter, necessitating a match between the wave and parti-
cle descriptions. In this Section, we briefly explain why both results converge in this
limit, reintroducing the reduced Planck constant h̄ for clarity.

WKB limit of the Schrödinger equation

Let us discuss the semi-classical limit in the Schrödinger equation. We write the
Schrödinger equation once more

ih̄∂tyk =

 
�h̄2

2m
r2 + V

!
yk . (3.54)

Here V is a generic (external) potential, for example V = mF, if F is the gravitational
potential. The wavefunction yk is characterized by the continuous quantum number
k = mv, the wavenumber of the plane wave far away from the source of mass M. If
we substitute yk(t, x) ! e�iEktyk(x), with Ek = k2/2m the energy eigenvalue, the
Schrödinger equation becomes


r2 +

2m(Ek � V)

h̄2

�
yk = 0 . (3.55)

We can perform a Legendre expansion of the wave function

yk(x) =
1
r

•

Ầ
=0

ck`(r)P`(cos q) , (3.56)

where cos q = x̂ · k̂. Substituting the expansion, we obtain the Schrödinger equation
for the radial wave function ck`,

c00
k` +

2m(E � V`)

h̄2 ck` = 0 (3.57)

where the prime denotes the derivative with respect to r and the potential V` is
defined as

V`(r) ⌘ V(r) +
h̄2

2m
`(` + 1)

r2 . (3.58)

Following [325], we seek for a solution of the form

ck`(r) = eis/h̄ = exp


i
h̄ Â

n
h̄ns(n)

`

�
. (3.59)

The Schrödinger equation becomes

s02 � ih̄s00 = 2m(E � V`) . (3.60)
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By solving the equation order by order in h̄, we find the first solutions to be

s(0)
` (r) =

Z r
dr0

q
2m(E � V`) ⌘

Z r
dr0 p`(r0) , (3.61)

s(1)
` (r) =

i
2

log p`(r) . (3.62)

Notice we have defined p`(r) =
p

2m[E � V`(r)], which is the radial momentum in
a central 1/r-potential in classical mechanics.

This semi-classical solution throught the WKB approximation of the Schrödinger
equation is valid as long as

����
kp0

`

p2
`

���� ⌧ 1 () d
dr

h̄
p`

⌧ 1 . (3.63)

Naively speaking, this condition is approximately h̄/(p`r) ⇠ ldB/r ⌧ 1, indicating
that the semi-classical limit is valid only when the size of the system is much greater
than the de Broglie wavelength. More specifically, if we define the radial force

F` = p0
` =

1
2mr3 [(mver)2 � 2h̄2`(` + 1)] , (3.64)

then the condition in Eq. (3.63) becomes

h̄m
p3

`

|F`| ⌧ 1 . (3.65)

For a given set of parameters, the dominant contribution in the series expansion of
the wave function arises at ` ⇠ mṽr, where ṽ is the total velocity ṽ(r) =

p
v2 + v2

e (r).
Since mṽr > mver, we see that

h̄m
p3

`

|F`| ⇡ h̄
p3

`r3 (mṽr)2 ⇡ h̄
mṽr

⌧ 1 (3.66)

Therefore the semi-classical, or WKB, approximation is valid as long as

mṽr � h̄ . (3.67)

From Schrödinger to Boltzmann

The concept of particle dark matter focusing centers on the phase space distribution
modified by the source’s gravitational potential. In Section 3.1, we have observed
that Liouville’s theorem guarantees that the total phase space volume remains con-
stant, while the particles undergo acceleration, which leads to a distinct density in
velocity space. Therefore, to investigate the limit in which the results for particle
and wave dark matter converge, we require a quantity similar to the classical phase
space distribution and that converges to it under appropriate conditions.

The quantum mechanical analog of the phase space distribution is given by the
quasi-probability distribution introduced by Wigner [334]

fW(t, x, p) =
Z

d3y eip·y/h̄
Z

d3v f (v)y?
v(t, x + y/2)yv(t, x � y/2) . (3.68)
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Remarkably, this function, when integrated over momenta, reproduces the variance
of the field

Z d3 p
(2p)3 fW(t, x, p) =

Z
d3v f (v)|yv(x)|2 =

⌦
f2↵ . (3.69)

Therefore the Wigner function can be used to compute expectation values of opera-
tors.

Let us study the time evolution of the Wigner function. We take the time deriva-
tive of Eq. (3.68)

∂t fW =
Z

d3y eip·y/h̄
Z

d3v f (v) (3.70)


∂ty
?
v(t, x + y/2)yv(t, x � y/2) + y?

v(t, x + y/2)∂tyv(t, x � y/2)

�
.

We can exploit the Schrödinger equation Eq. (3.54) to express the time derivatives of
the wave function.

∂t fW =
Z

d3y eip·y/h̄
Z

d3v f (v) (3.71)
⇢

� h̄
2im


yv(x � y/2)r2

xy?
v(x + y/2) � y?

v(x + y/2)r2
xyv(x � y/2)

�

� i
h̄


V(x + y/2) � V(x � y/2)

�
y?

v(x + y/2)yv(x � y/2)

�

= ∂t f (T)
W + ∂t f (V)

W .

We split the result in two terms, a “kinetic” term f (T)
W and a “potential” term f (V)

W .
We exploit rx y(x ± y/2) = ± 2ryy(x ± y/2) and integrate by parts, to obtain

∂t f (T)
W = � p

m
· rx fW(t, x, p) . (3.72)

For the second term, we assume that V can be expanded in a power series in x and
write

V(x + y/2) � V(x � y/2) = Â
s=0

1
22s(2s + 1)!

∂2s+1

∂x2s+1 V(x)y2s+1 . (3.73)

We are then able to rewrite this factor exploiting the term eip·y/h̄ in the integral, to
exchange y ! ih̄rp and resum the series. We finally obtain

∂t fW + v · rx fW +
i
h̄


V
✓

x +
ih̄
2

rp

◆
� V

✓
x � ih̄

2
rp

◆ �
fW = 0 . (3.74)

If all derivatives of V higher than the second order are zero, as for a free particle, a
constant force, and a harmonic oscillator, last term becomes �[rxV]rp fW .

More generally, we see that the leading term in the semi-classical limit in Eq. (3.74)
is identical to the Boltzmann (or Liouville) equation

∂t fW + v · rx fW � (rxV)rp fW = 0 . (3.75)
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This equation can also be solved in linear perturbation theory, giving, as a result for
the density contrast, (assuming ve < s) the one in Eq. (3.10).

From this discussion, we can conclude that the wave and particle dark matter
results should converge in the limit h̄ ! 0. This semi-classical limit is identical to
the one obtained from the semi-classical limit of the Schrödinger equation: mṽr � h̄,
see indeed Eq. (3.67).

3.4 Dark Matter in the solar system

Equipped with the formalism developed in Section 3.2 to describe gravitational fo-
cusing of wave dark matter, we apply our previous discussion to dark matter struc-
tures in the solar system. We work in the Galactic coordinate system where the origin
of coordinates is at the location of the Sun. Each component of (X, Y, Z) in the rectan-
gular Cartesian coordinate system points towards the Galactic center, the direction
of Galactic rotation, and the Galactic north pole, respectively. We provide a detailed
description of the Earth and a dark matter detector’s position in Galactic coordinates
in Appendix B. We will now clarify the relationship between the observables in the
detector rest frame and those in the Galactic frame.

Observables in detector rest frame and galactic coordinate frame

The Galactic coordinate system is utilized as the natural rest frame of the dark mat-
ter halo, and gravitational focusing effects can be isolated in these coordinates. It is
worth noting how observables, such as the density contrast and spectrum, change in
the detector’s rest frame of terrestrial experiments with respect to the Galactic frame.

Regarding the density contrast, it remains constant. Denoting x for the Galactic
coordinate and x0 for the detector’s proper coordinate, the density contrast is defined
from the two-point function of the scalar field

⌦
f̂2(x)

↵
. As this quantity is a scalar

under general coordinate transformations, it remains the same in both frames:

⌦
f̂2(x)

↵
=
⌦
f̂02(x0)

↵
. (3.76)

Note that, as previously found in Section 3.2.2, the density contrast is related to the
total power of the signal. Therefore, the density contrast is directly related to the
total power of the signal measured in detectors on Earth.

However, the spectrum requires a more careful discussion. The frequency w is
associated with the coordinate time t of the Galactic frame. The Fourier transform of
the field in the Galactic frame and in the detector frame are defined, respectively:

f̂(w, x) =
Z

dt eiwtf̂(x) , f̂0(w0, x0) =
Z

dt0 eiw0t0 f̂(x0) . (3.77)

If the detector is an inertial observer moving at a constant velocity with respect to
the Galactic frame, the proper coordinate can be related to the Galactic coordinate
as x0 = Lx, with the appropriate Lorentz transformation L. In this case, it can be
shown that the same expression for the spectrum, Eq (3.43), can be used in the de-
tector frame by replacing the velocity in the distribution with the velocity v = |k|/m
observed in the detector frame, k ! L�1k. Therefore, the spectrum in the detector’s
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rest frame can be calculated from the spectrum in the Galactic frame by applying the
appropriate Lorentz transformation.

The discussion above, however, becomes complicated by the orbital motion of
the Earth, as a detector on Earth is not a constant-velocity, inertial observer. There-
fore, replacing k ! L�1k to obtain the spectrum in the detector frame is only valid
if the data time series is shorter than the Earth’s orbital time scale. Attempting to
Fourier-transform the signal over a longer time scale introduces side-bands in the
frequency space. This is due to the frequency modulation induced by the Earth’s or-
bital motion and wave function oscillations. Additionally, for experiments sensitive
to the gradient, the Earth’s rotation further modulates the signal’s amplitude, creat-
ing side-bands in the spectrum. As a result, frequency space analysis becomes even
more complicated [215].

Using the Galactic coordinate system, we calculate the density contrast and the
dark matter spectrum at Earth’s location during various times of the year. We ex-
amine various dark matter substructures with distinct kinematic properties, and for
the velocity distribution, we utilize the Maxwell-Boltzmann distribution (Eq. (3.7))
for the majority of them. This distribution is characterized by the mean velocity
hvi = vdm and the one-dimensional velocity dispersion s.

3.4.1 Halo dark matter

We begin with the relaxed halo dark matter component. In the Galactic coordinate,
the halo dark matter can be represented by the standard halo model with a mean
velocity in the Galactic coordinate [51, 335]

vdm = �v� = �(11, 241, 7) km/sec (3.78)

and velocity dispersion

s =
vc(R�)p

2
= 162 km/sec , (3.79)

where vc(R�) = 229 km/sec is the circular velocity of Milky Way at the position of
the Sun [51].

In Figure 3.9, we show the density contrast of wave dark matter (colored lines) at
the position of the Earth throughout the year of 2021 for different values of the mṽr
parameter, that is 2pr/l̃dB; since the velocity distribution and the orbit of the Earth
around the Sun is fixed, this amounts to change l̃dB, or just the wave dark matter
mass m. We express this mass, for shortness of notation, as multiples of m15 = 10�15

eV. Since ve(r�) ' 42 km/sec is much smaller than both s and vdm, we expect that
the overall amplitude of density contrast is d ⇠ v2

e /2s2 ⇠ 0.03, at least for the particle
dark matter, which is confirmed by the black dashed line in the figure. The maximum
of the density contrast takes place around March 1st since this is when µ = x̂� · v̂dm

takes the largest value over a year. This pattern can be seen also from the wave
dark matter density contrast with varying degree of annual modulation strength. We
observe that the density contrast flattens for small masses mṽr . 1, as l̃dB becomes
larger than the AU. Instead, for mṽr � 1, the result can be approximated as that of
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FIGURE 3.9: Density contrast for halo dark matter at the position of the
Earth during year 2021. The black dashed line is for the particle dark mat-
ter, while each colored line represents the wave dark matter result for l̃dB =
20, 3, 0.5 AU, respectively. Corresponding wave DM mass with respect to
m15 = 10�15 eV is also shown. The density contrast flattens for mṽr . 1,
while it approaches the particle dark matter result for mṽr & 1. Around
mṽr ⇠ 1, the wave density contrast becomes ⇠ 25 % larger than that of
particle dark matter.

particle dark matter. We also observe that the wave density contrast is enhanced by
⇠ 25 % compared to the particle at mṽr ⇠ 1.

In Figure 3.10, we show the modification of the speed distribution for the wave
dark matter. More specifically, we plot

D f̄ (v, x) = v2
Z

dWv̂ f (v)(|yv(x)|2 � 1) , (3.80)

that is the difference between the speed distribution with and without the gravita-
tional focusing. For the figures, we choose to show March 1st and September 1st.
As it is clear from the plots, the effect of gravitational focusing is prominent in the
low velocity tail, as the naive estimate in Section 3.1 suggests: the peak of the speed
distribution without focusing is located at much larger velocities >300 km/sec ; we
plot it, reduced by a factor of 100 for the visual comparison, as a dotted black line.
Each colored line represents wave dark matter for different values of mṽr, or the
wave dark matter mass, with the same choices made in Figure 3.9. The black dashed
line is the modification of the speed distribution in case of particle dark matter. The
difference between particle and wave dark matter is still visible even for l̃dB = 0.5
AU, while the density contrast modulations are almost impossible to distinguish: in
particular, on September 1st we see several oscillations in the spectrum.

In Figure 3.11, we show the daily modulation of the field gradient from the halo
dark matter component calculated with Eq. (3.44). As a benchmark we consider a
detector located in Hamburg, Germany (54°N, 10°E) with sensitivity axis pointing
towards the east direction on March 1st, 2021. We use the same benchmark choices
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FIGURE 3.10: Top: the difference of speed distribution with and without the
gravitational focusing on March 1st, 2021. Bottom: same as left panel but on
September 1st, 2021. Each colored line represents l̃dB = 0.5, 3, 20 AU as
in Figure 3.9. The black dashed line is the same result for the particle dark
matter, and the black dotted line is the rescaled speed distribution without
gravitational focusing.
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FIGURE 3.11: Daily modulation of the variance of the field gradient pro-
jected on the sensitivity axis of a detector located in Hamburg, Germany
and pointing in the east direction for halo dark matter on March 1st, 2021.
Colored lines are the results with gravitational focusing for different values
of l̃dB as in Figure 3.9. The black dotted line represents the asymptotic re-
sult far away from the solar system. The contrast of the focused result with
respect to the unfocused one (asymptotic) is shown in the bottom panel.

for mṽr as in Figure 3.9. The dotted black line shows the result with no focusing,
asymptotically far away from the solar system. In the bottom panels we show the
contrast dr between the focused lines and the asymptotic value far away from the
solar system. Explicitly

dr =

⌦
|n̂ · rf|2

↵

m2f2
0[(n̂ · vdm)2 + s2]

� 1 . (3.81)

The magnitude of the contrast is comparable to the density contrast, signaling the
effect is of order O(v2

e /s2).

3.4.2 Gaia sausage

We consider a dark matter substructure with anisotropic velocity distribution. Such a
dark matter substructure is motivated by the observation of a stellar population with
an anisotropic velocity distribution, referred to as Gaia-Sausage or Gaia-Enceladus
[56, 57]. It is inferred that this stellar component originates from a relatively recent
merger with a luminous satellite galaxy of mass M > 1010M�. It is naturally ex-
pected that not only stars but also dark matter is accreted onto the Milky Way from
the same event, contributing to the local density. Some studies [58, 59] have shown
that the kinematic properties of accreted stars and dark matter are similar and it
could constitute O(10%) of local dark matter.

Our analysis involves examining how the sausage-component dark matter re-
acts to the solar gravitational potential. Due to the anisotropic nature of the velocity
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FIGURE 3.12: Same as Figure 3.9 but for sausage dark matter component.
Around l̃dB = 2 AU, corresponding to mṽr = 3, the wave dark matter
contrast can be almost a factor two larger than the particle density contrast.
We also observe a slight underdensity around fall.

distribution of dark matter, we employ a three-dimensional Gaussian

f (v) =
1

(2p)3/2
p

det S
exp


� 1

2
(v � vdm) · S�1(v � vdm)

�
, (3.82)

where S is the covariance matrix. We parameterize the sausage component with
vdm = �v� and [56, 143, 336]

sr = 256 km/sec, sq = sf = 81 km/sec . (3.83)

with S = diag(s2
r , s2

q , s2
f). The covariance matrix reflects the high velocity anisotropy

of this substructure.
The density contrast for the sausage dark matter component is depicted in Fig-

ure 3.12. We observe a comparable pattern to the halo dark matter example. Despite
the highly anisotropic velocity distribution, the overall amplitude remains alike to
the halo dark matter component. Additionally, a small underdensity is noticeable
during the fall.

3.4.3 Dark disk

We now consider a disk-shaped dark matter substructure. This type of substructure
is motivated by the existence of a thick stellar disk in our own galaxy. Several scenar-
ios have been proposed to explain the vertical structure of the stellar disk, such as the
accretion of stars from satellite galaxies [337] or the heating of stars in a pre-existing
thin disk through merger events [338, 339]. It has been suggested that such merger
events could naturally lead to the formation of a thick dark disk as the accreted dark
matter is dragged to the disk plane through dynamical friction [64]. The resulting
dark matter disk co-rotates with the Galactic disk but has a slightly smaller circular
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FIGURE 3.13: Same as Figures 3.9 and 3.12, but for the disk dark matter
component. The density contrast’s amplitude is greater than previous dark
matter structures due to the small mean velocity and dispersion. We choose
a different benchmark point l̃dB = 6 AU with respect to the above figures,
since this is the choice that maximizes the density contrast on Earth.

velocity of Dv = 50 km/sec. While it is still unclear whether the aforementioned
merger scenario can fully explain the evolution of the stellar disk (see the review
in [340] and references therein), it is still worthwhile to investigate the response of
such a dark matter component to the gravitational potential of the Sun.

To study the dark disk, we parameterize its mean velocity and velocity disper-
sion as follows:

vdm = (0, �50, 0) km/sec and s = 50 km/sec . (3.84)

Although we refer to this component as the "dark disk," this structure has the po-
tential to serve as a substructure for any cold dark matter with a low mean velocity.
In Figure 3.13, the density contrast for the dark disk is displayed. The pattern of the
density contrast is comparable to earlier instances, see Figures 3.9 and 3.12 but with
a greater amplitude because of the reduced velocity and dispersion. In this specific
scenario, the dark matter disk can be focused, resulting in a density approximately
30 % greater near Earth’s orbital path than asymptotically further away from the
Sun.

In Figure 3.14 we show the daily modulation of the variance of the dark disk in
Hamburg on March 1st, 2021 and its contrast with the asymptotic result far away
from the Solar system. Compared to Figure 3.11, we have an order-of-magnitude-
larger contrast, that again agrees with the estimate d ⇠ dr ⇠ v2

�/s2 since s2 is an
order-of-magnitude smaller than in the halo case. An interesting effect due to gravi-
tational focusing that is particularly evident in the disk case, because of the smaller
velocities, is the modification of the position of the peaks in the daily modulation.
The change in the direction of the total dark matter velocity vector due to the grav-
itational potential of the Sun results in a velocity component acquired by the dark
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FIGURE 3.14: Same as Figure 3.11 but for the disk dark matter component.
The different colored lines correspond to the values of l̃dB chosen for Fig-
ure 3.13. Since the focusing effect is stronger, the feature of peak-shifting is
visible in this case. See the main text for more details.

matter, which affects the time when the peak value is reached.

3.4.4 Streams

As a last example, we examine dark matter streams, which share a kinematic struc-
ture similar to that of stellar streams. Stellar streams are coherent substructures of
stars, both spatially and kinematically. If these stellar streams originated from dwarf
galaxies, the presence of associated dark matter streams with similar kinematic prop-
erties is highly probable [58]. In the Milky Way’s rest frame, these streams typically
exhibit large streaming velocities with small velocity dispersions. Over the past few
decades, numerous streams and substructures have been observed in the inner halo,
providing valuable insights into the nature of dark matter. A comprehensive review
of stellar streams and substructures in the Milky Way can be found in [63].

To study the gravitational response of fast-moving cold objects like streams, we
consider the following mean speed and dispersion

vdm = 400 km/sec, s = 30 km/sec . (3.85)

Note that here the direction of the stream velocity can be diverse, so this value of the
mean speed is purely an assumption: the average speed of the stream dark matter
in the rest frame of the Sun might be much smaller than this, e.g. when the stream is
prograde, i.e. dark matter moves roughly in the same direction as the Sun. However,
in such cases, the kinematic properties of the stream would be very similar to the
ones of the dark disk component we studied in the previous section and so would
be the gravitational focusing of such substructure. Therefore, focusing on retrograde-
like streams, i.e. when the dark matter velocity is in roughly the opposite direction to
the Sun’s velocity, we consider two different inclination angles of the stream velocity
vdm with respect to the ecliptic plane, qdm = 0, p/6.
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FIGURE 3.15: Top: the density contrast of the stream wave dark matter for a
vanishing inclination angle qdm = 0. The density contrast is highly concen-
trated near March 1st, owing to the disparity between the mean velocity and
the dispersion. Even with a wave dark matter contrast of approximately 0.5
AU (which corresponds to an mṽr of around 10), the resulting contrast is
still quite different from the particle dark matter result. For further details,
see the main text. Bottom: the density contrast of the stream wave dark
matter for an inclination angle of qdm = p/6. Despite the stream having a
non-vanishing velocity dispersion, the oscillations of the wave function are
not entirely erased. As a result, this example yields a much faster oscillation
of density contrast, as particularly evident for small values of l̃dB.
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Figure 3.15 illustrates the density contrast of dark matter streams for two differ-
ent inclination angles. For the case of an inclination angle of qdm = 0, we observe
noteworthy differences between particle dark matter and wave dark matter. Even
for an mṽr of 10, the wave contrast is much wider than the particle contrast in the
time-axis. While we have argued that the wave dark matter contrast approaches the
particle contrast for mṽr greater than or equal to unity, this is based on quantities
such as davg that are averaged over the solid angle. Furthermore, we have observed
in Section 3.1 that for both particle and wave dark matter, there exists an angular
scale Dµ ⇠ davg/dds over which the density contrast takes a non-vanishing value.
For particle dark matter, this scale is typically Dµ ⇠ s2/v2

dm if ve ⌧ s, vdm due to
the non-zero velocity dispersion, whereas for wave dark matter, it is

Dµ ⇠ max


1
mṽr

,
s2

v2
dm

�
, (3.86)

owing to the de Broglie wavelength suppressing structures on scales smaller than
l̃dm. In the stream component under consideration, there exists a large disparity
between vdm and s, which means that the particle density contrast is non-vanishing
for only a relatively short period of time in a year, i.e., Dt ⇠ s2/v2

dm ⇠ 2 days.
For wave dark matter, with an mṽr of 10, the angular spread Dµ is still controlled
by (mṽr)�1 rather than s2/v2

dm. Therefore, the wave contrast in Figure 3.15 is much
less temporally (or spatially) localized than the particle contrast: it is localized on a
month timescale instead of a day timescale.

The same phenomenon can also be observed in the case of qdm = p/6. Here, the
density contrast for particle dark matter approaches zero, because it is very localized
on the ecliptic plane, while for wave dark matter, being more spatially spread, it re-
mains non-zero at a few percent level. Another interesting aspect is that the density
contrast pattern over a year shows faster oscillations compared to other substruc-
tures. This can be attributed to the small velocity dispersion, where it behaves more
like a monochromatic wave, allowing the characteristic oscillation patterns to sur-
vive even after mixing with waves of different wavenumbers.

3.5 Summary and conclusions

In this Chapter, we have explored the gravitational response of wave dark matter
to a central Newtonian potential and compared it to that of particle dark matter. We
began with a brief review of the gravitational response of particle dark matter in Sec-
tion 3.1, and then, in Section 3.2, we developed a simple formalism for investigating
wave dark matter in the presence of a gravitational potential due to an astrophysical
object of mass M.

Specifically, we considered a spinless bosonic field that is minimally coupled to
gravity, and expanded the dark matter field in terms of creation and annihilation op-
erators with a mode function, as is typical in the canonical formulation of quantum
field theories. By solving the Schrödinger equation, in Section 3.2.1 we determined
the response of each wave mode. Equipped with the formalism developed in Sec-
tion 2.3, this approach allowed us to examine both the gravitational response and
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the stochastic nature of wave dark matter. The main result of Section 3.2 is Eq. (3.35)
that provides the overdensity contrast around the massive object due to the focusing
of wave dark matter. The wave nature appears as a factor |yk|2 obtained from the
eigenfunction solution Eq. (3.24) of the Schrödinger equation, weighted by the ve-
locity distribution of wave dark matter asymptotically away from the massive body.

Comparing particle and wave dark matter, in Section 3.3.2 we found interesting
similarities and differences between the two. The monochromatic result, explored in
Section 3.3.1 indicates that the wave nature of dark matter becomes apparent only
when mṽr . 1, whereas for mṽr � 1, it closely approximates the result of particle
dark matter. A characteristic feature of wave dark matter is the presence of an ad-
ditional scale, the de Broglie wavelength, which is given by l̃dB = mṽr. The spatial
structure of the wave density contrast is smoothed over the scale of its de Broglie
wavelength, which is a commonly observed feature in the study of wave dark mat-
ter.

In Section 3.4, we have utilized the formalism to study wave dark matter in sub-
structures and halo dark matter in the solar system. To investigate the gravitational
response of wave dark matter, we have considered different substructures based on
recent astrometric data and theoretical models explaining the stellar substructures
in the Milky Way. By varying the mean velocity and velocity dispersion, we have
observed the clear manifestation of wave characteristics in all of the examples pro-
vided. For mṽr � 1, the wave response is nearly identical to that of particle dark
matter, whereas for mṽr ⌧ 1, the wave result becomes independent on the Earth’s
location. Remarkably, for mṽr ⇠ 1, we have found that the wave density contrast can
be at most twice that of particle dark matter. Moreover, when dealing with streams
with low velocity dispersion, the angular distribution of the density contrast may
still differ from that of particle density contrast.

Although the gravitational focusing effects are sub-leading in many of the cases
we have examined, they could provide significant insights into local dark matter
structures upon the detection of dark matter.
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Chapter 4

Adiabatic Compression

In this Chapter, we consider another deformation of the phase space of dark matter
via gravitational interaction. The adiabatic growth of a massive black hole at the cen-
ter of a halo could compress the surrounding dark matter halo, leading to a steeper
dark matter inner density profile. This phenomenon is called adiabatic compres-
sion. Since the dark matter density is greatly enhanced, indirect detection signals for
dark matter coupled to standard model states are compelling, as studied for particle
dark matter in [99]. The adiabatic compression of wave dark matter leads to a much
denser halo similar to particle dark matter in the semi-classical limit. However, the
compressed wave halo differs from that of the particle halo near the center, and the
central profile depends on dark matter and the central black hole mass. We also ex-
amine whether the soliton and the low angular momentum modes can survive over
the astrophysical time scale without being absorbed by the black hole.

This Chapter is divided into two parts. In the first part, Section 4.1, we review
how the particle halo responds to the adiabatic change of the system. We begin with a
general understanding of the compression phenomenon in Section 4.1.1, then we ex-
amine the phase space distribution of a power law density profile (4.1.2) and inves-
tigate how this distribution evolves as a result of the adiabatic change of the system.
We also check the cosmologically viability of the initial halo in Section 4.1.3, which
is assumed to host a growing black hole at high redshift. Finally, in Section 4.1.4, we
compute the density profile after the adiabatic change of the system taking also into
account the black hole horizon.

The second part of the Chapter, Section 4.2, investigates the compression of a
wave dark matter halo. We describe the construction of such a halo and its relaxation
timescale which leads to a NFW-like profile at large radii and a solitonic core in the
center (Sections 4.2.1, 4.2.2). We then decompose the wave halo into eigenmodes in
Section 4.2.3 and provide a semi-analytical understanding of the compression pro-
cess in Section 4.2.4. We then study the absorption of the low angular momentum
modes by the central black hole (Section 4.2.5), which leads to a peculiar broken
power law density profile. Finally, in Section 4.2.6, we check the relaxation time scale
for the compressed halo and obtain important constraints on the consistency of the
above mentioned density profile. We conclude in Section 4.3.

The Chapter follows the first part of [107], but it is substantially expanded with
more details, discussions and plots.
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4.1 Formation of a particle dark matter spike

In this Section, we review the formation of a dark matter spike in the center of a
dark matter halo through adiabatic compression. This occurs when the gravitational
potential of a massive baryonic object at the center of the system changes slowly
compared to the crossing time scale of the dark matter particles. The gravity of the
central baryonic object gradually dominates the gravitational potential at smaller
scales, inducing a contraction on the surrounding dark matter. For example, adi-
abatic compression may occur when a black hole forms and grows adiabatically at
the center of the system or when a gas cloud sinks to the center of the system through
dissipative effects.

Let us introduce this process exploiting conservation laws. We want to under-
stand why the dark matter develops a steeper inner density profile. We follow the
arguments in [341]. Let us assume the original inner density profile of the dark mat-
ter to be a simple power law ri µ r�g

i . This is the case, e.g. for the NFW halo profile,
introduced in Section 1.2.2. It is natural to assume that also the final dark matter den-
sity profile will be a power law profile, but with a different index, rf µ r�gsp

f . Then
we assume that in the initial configuration the system is sustained by the dark mat-
ter self gravity, while in the final state a central black hole of mass Mbh has grown
enough to dominate the gravitational potential. The dark matter angular momentum
has to be conserved. Assuming the dark matter follows circular orbits with velocity
vc, we have

vc(ri)ri = vc(rf)rf () Mdm(ri)ri = Mbhrf (4.1)

() r4�g
i µ rf

we have used vc(ri) =
p

GMdm(ri)/ri and vc(rf) =
p

GMbh/rf with Mdm(ri) µ
rir3

i µ r3�g
i the dark matter mass enclosed in the sphere of radius ri. Next, we

impose the conservation of the dark matter mass, so

Mdm(ri) = Mdm(rf) () r3�g
i µ r3�gsp

f (4.2)

Comparing the two equations above, we see that 4 � g = (3 � g)/(3 � gsp). This
gives us

gsp =
9 � 2g

4 � g
. (4.3)

We see, that for a common dark matter halo, say with 0  g  2, gsp 2 [2.25, 2.5]:
the final inner density profile is substantially steeper. In particular, for the NFW-like
profile, g = 1, we have gsp = 7/3.

4.1.1 General procedure

Let us be more quantitative and general. The dark matter system is described by the
phase space distribution f (t, x, v), which denotes the number of dark matter parti-
cles in the unit phase space volume. Assuming that the dark matter is collisionless,
the distribution function satisfies the collisionless Boltzmann equation, d f /dt = 0.
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The adiabatic change of the gravitational potential due to the growth of a central
black hole does not modify the phase space distribution and the integral of motion,
but alters the shape of the phase space volume. This implies that the number of
particles in the velocity space can change, leading to a different density profile. The
dark matter density profile is given by the velocity-space integral of the phase space
distribution

r(x) =
Z

d3v f (x, v) . (4.4)

For a steady-state solution, the distribution function depends on the phase space
coordinate only through the integrals of motion, i.e. a function of phase space vari-
ables, I(x, v), that satisfies dI/dt = 0. In a spherical system, the integrals of motion
are the energy and angular momentum. We denote these quantities, per unit mass,
respectively with (E, L). Assuming a spherically symmetric halo, we can rewrite the
density profile integral of Eq. (4.4) as

r(r) =
Z 0

F
dE

Z Lmax

Lmin

dL
4pL
r2vr

f (E, L) . (4.5)

We further assumed that the phase space distribution depends only on E and L =
|L|. Here

vr =

r
2[E � F(r)] � L2

r2 (4.6)

is the radial velocity. We have denoted with F(r) the gravitational potential, with
F ! 0 for r ! •. The upper bound on the energy integral denotes that we are con-
sidering only particles gravitationally bound to the system. The maximum value for
L is the one for which vr is vanishing, while the minimum value is either zero (radial
orbit) or some lower-cutoff, imposed by the boundary conditions of the system, e.g.
because of the presence of the black hole.

If the phase space distribution is ergodic, i.e. depends only on energy, the Eq. (4.5)
simplifies to

r(r) = 4p
Z 0

F(r)
dE f (E)

q
2[E � F(r)] . (4.7)

The above equation, Eq. (4.7), can be inverted. If the phase space distribution de-
pends only on the energy E, the phase space distribution for a density profile r(r) is
given by the Eddington’s formula [42]

f (E) =
1

2
p

2p2

d
dE

 Z 0

E
dF

dr/dFp
F � E

�
. (4.8)

Note that there is no guarantee that the f (E) from the formula above is positive defi-
nite. However, a density profile like in Eq. (4.7) can arise from an ergodic distribution
if and only if f (E) � 0.

Suppose now that the system changes slowly from t = ti to t = tf, i.e. the Hamil-
tonian of the system changes on a time scale longer than the crossing time scale but
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shorter than the halo relaxation time scale. During this slow evolution, called adia-
batic, invariants such as the angular momentum L and the radial action

Jr =
1

2p

I
dr vr (4.9)

are conserved. Using the conservation of the phase space distribution, we can write

f (Ef, Lf) = f (Ei(Ef, Lf), Li) . (4.10)

Since the angular momentum is an adiabatic invariant, Li = Lf. The relation between
the final energy and the initial energy Ei = Ei(Ef, Lf) is found from the conservation
of the radial action

Jr,f(Ef, Lf) = Jr,i(Ei, Li) . (4.11)

Notice that, despite the initial distribution being ergodic, independent on Li, the fi-
nal distribution function depends on angular momentum, causing a mild velocity
anisotropy of the compressed dark matter halo [342]. Once the phase space distribu-
tion as a function of final energy and angular momentum is known, we can integrate
to find the final density profile

rf(r) =
Z 0

Ff(r)
dEf

Z
dLf

4pLf
r2vr(Ef, Lf)

f (Ei(Ef, Lf), Lf) . (4.12)

This procedure is general, under the specified assumptions.

4.1.2 Power law density profile

We apply the above recipe to find the density profile for an initial power-law profile

ri(r) = rs

⇣ rs

r

⌘g
(4.13)

with 0 < g < 2. Let us assume a central Schwarzschild black hole of mass Mbh has
formed and grown via adiabatic processes. We have already found, through a naive
application of dark matter mass conservation and angular momentum conservation
for circular orbits, that the final density profile is given by a power law with index
gsp, given by Eq. (4.3). In Appendix D, we apply the general procedure outlined in
the previous Section to the power-law profile of the inner NFW halo Eq. (D.1). What
we find is the spike density profile

rf = rs

⇣ rs

r

⌘gs


Fs

Ff(rs)

�� 3�g
4�g G(b)

G(b � 3/2)

2

4
2B

⇣
3
2 , 1

2�g

⌘

p(2 � g)

3

5

6�g
4�g

I(g) (4.14)

Here I(g) an integral that evaluates numerically to I(g) 2 [0.5, 0.7] for 0  g  2
and Lmin = 0,

Fs =
4pGrsr2

s
(2 � g)(3 � g)

(4.15)
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and B(z1, z2) is the beta function, or Euler integral of the first kind.
Once the density profile rf(r) is known, we can derive an ergodic distribution

f (Ef) from it via the the Eddington inversion formula. The calculation is simplified
by the fact that the final potential is simply Ff = �GMbh/r. The result is

f (Ef) =
rf(r)

[�2pFf(r)]3/2
G(gsp + 1)

G(gsp � 1/2)

✓
Ff(r)

Ef

◆3/2�gsp

. (4.16)

This will be the form we use in the explicit calculations of quantities in the com-
pressed halo, and proves to be a good approximation to the much more complicated
formula that we show in Appendix D. An example proving the goodness of the er-
godic approximation is given in Appendix E, where the dynamical friction force on
an object is computed with the full distribution and with the ergodic one, and the
differences prove to be at percent level.

Spike size and parameterization

We want a simple parameterization for the spike density profile and we want to
make manifest the dependence of the spike parameters on the initial halo parameters
rs, rs, g and the black hole mass.

Up to which radius does the spike extend? In the derivation above, the key as-
sumption is that the central black hole dominates the gravitational potential, so that
we can ignore the dark matter self-gravity. This is valid approximately up to a ra-
dius rh, defined as the radius at which the total dark enclosed dark matter mass of
the spike equals twice the mass of the black hole [342]

Mdm(r < rh) = 2Mbh . (4.17)

We re-parameterize the density profile as a simple power law rf(r) = r? (r?/r)gsp .
The condition in Eq. (4.17), assuming the spike extends up until rh, is then

rh = r?


(3 � gsp)Mbh

2pr?r3
?

� 1
3�gsp

. (4.18)

However, since the self-gravity becomes important surely for r < rh, it is a stretch to
think that the spike extends up until that value. If we compute the value of r/rh for
which rf = ri we obtain, depending on the choice of g, a value of order few percent.
Careful numerical computations [342] find that the spike extends up to rsp ' 0.2 rh,
where then it converges to the initial power law profile ri(r).

Because of that, we parameterize

rf(r) = rsp

⇣ rsp

r

⌘gsp
. (4.19)

with rsp = ri(rsp) = rs(rs/rsp)g. The condition Mdm(r < rsp/0.2) = 2Mbh can be
rewritten to find rsp

rsp =


0.23�gsp(3 � gsp)Mbh

2prsp

�1/3

. (4.20)
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Substituting the expression for rsp, we arrive to an expression for rsp as function of
the black hole mass and the initial halo parameters g, rs, rs

rsp = rs


0.23�gsp(3 � gsp)Mbh

2prsr3
s

� 1
3�g

. (4.21)

This equation, together with the one for gsp, fully determines the spike profile once
the initial halo and the black hole mass are specified.

Black hole absorption

The presence of a central black hole is a boundary condition we have to take into
account. In particular, dark matter matter particles with angular momentum smaller
than L ⇠ 2RS, with RS = 2GMbh the Schwarzschild radius, get absorbed. This
causes a sudden depletion of the spike profile around the Schwarzschild radius.
We take this into account by imposing a lower cutoff in the angular momentum
Lmin = 2RS

rf(r) ⇡
Z

dEf

Z

2RS

dLf
4pLf
r2vr

f (Ef) (4.22)

and computing the density profile using the ergodic spike distribution Eq. (4.16).
Assuming r � 2RS, we obtain

rf(r) ⇡ rsp

⇣ rsp

r

⌘gsp
✓

1 � 2RS
r

◆gsp

, (4.23)

that amounts to the multiplication of the spike profile by a factor (1 � 2RS/r)gsp .
This approximate profile matches to relativistic results in Sadeghian et al. [343] with
an error less than 20% over all radii.

4.1.3 Cosmological viability of the initial halo

It is important to assess the cosmological viability of the adiabatic compression sce-
nario. In this Section we discuss the plausible cosmological setup, in LCDM cosmol-
ogy, under which adiabatic compression can take place. The adiabatic compression
of a dark matter halo is motivated by the presence of a supermassive black hole of
sufficient size in the center of the system. One case of interest is the compression
of halos at high redshift, which is motivated by the observation of black holes of
unclear origin at redshift z > 6. One of the explanations of the existence of such
black holes is the formation of an intermediate mass black hole Mbh ⇠ 103 M� at the
center of a dark matter halo at very high redshift z & 10 [344].

In the investigation of the adiabatic compression we take a slightly modified
version of the Navarro-Frenk-White (NFW) density profile discussed in Section 1.2.2
as the initial profile:

ri(r) =
rs

(r/rs)g(1 + r/rs)3�g
, (4.24)
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NFW is recovered for g = 1.
It is important to understand which is the phenomenologically viable halo pa-

rameter space for this particular choice. An important parameter in the description
of halos is the halo concentration c. Depending on the definition of the halo mass, ei-
ther through the virialization radius rvir or r200 as in Eq. (1.29) and Eq. (1.30), one has
cvir = rvir/rs or c200 = r200/rs. The characteristic overdensity can be found from the
concentration parameters exploiting the equations defining the halo mass (Mvir or
M200) in Eq. (1.29) and Eq. (1.30).

dch =
DvirWmc3

vir
3


log(1 + cvir) � cvir

1 + cvir

��1

(4.25)

=
D200c3

200
3


log(1 + c200) � c200

1 + c200

��1

.

It is clear that we can now find rs and rs once c and the size or mass of halo are
specified. The NFW halo is specified by fixing both the halo mass and the concentra-
tion parameter (M, c). However, these two parameters are correlated and the halo
concentration has a non-trivial dependence on the redshift at which the halo forms.
Understanding these relations is crucial to find which values of the scale radius and
density are characteristic of an halo of mass M formed at redshift z and then which
are the parameters of a NFW profile, that is likely to host a black hole and undergo
adiabatic compression.

To investigate the M vs c relation and the dependence on redshift we refer to
the model of Diemer and Joyce [345]. With their semianalytical treatment, we are
able to find the concentration parameter c200 as a function of the halo mass M200 for
given redshift z 2 [0, 20]. Diemer and Joyce claim that the model is able to reproduce
accurately the small concentration observed in simulations for the halos at very high
redshift z ⇠ 30. Once the concentration parameter is known, it is trivial to find the
scale radius rs and rs as function of M200 and z.

We show the findings in Figure 4.1. The different panels show the concentration
c200, the scale factor rs and the scale density rs as function of the halo mass M200 for
different redshifts. The dots indicate the values of the mass when the peak height n,
defined in Eq. (1.42) is 3, 5 or 7. We stop drawing lines for masses higher than the
one for which n = 7, considering higher values to be too unlikely.

4.1.4 A concrete example

We are now able to choose in a consistent way our benchmarks for the initial halo
that undergoes adiabatic compression at high redshift. For example we can choose
a halo formed at z = 20 with mass M200 = 106 M�. This choice corresponds to
peak height n ⇠ 3, so the halo is quite rare. According to the used model of [345],
we have a concentration of c200 ' 2.7 as one can read off Figure 4.1. This brings
rs ' 55 pc, rs ' 0.8 M�/pc3 and r200 ' 150 pc. This benchmark halo is similar to the
one considered by Eda et al. [103], with the differences probably due to a different
model for the concentration parameter.

Having motivated the viability of the benchmark, we present the initial NFW-
like density profile in Figure 4.2, with the parameters fixed by the benchmark used
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FIGURE 4.1: The concentration c200 (top), the scale factor rs (middle) and
the scale density rs (bottom) as functions of the halo mass M200 for different
redshifts, from z = 0 to z = 18. The dots increasing in size mark the values
of the mass when the peak height n, defined in Eq. (1.42), is 3, 5 or 7.
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z Mvir [M�] rs [pc] rs [M�/pc3] g
20 106 23.1 5.3 1

TABLE 4.1: Reference benchmark for a NFW halo hosting a black hole, be-
fore compression, used in [103].
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r s
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2R
S

FIGURE 4.2: The initial NFW density profile (blue) for the benchmark in
[103] and the formed spike (red, dashed) due to a central black hole of mass
103 M�. The initial halo parameters are in the benchmark of Table 4.1.

by Eda et. al. [103] to study intermediate-mass-ratio inspirals in dark matter spikes:
rs = 23.1 pc and rs = 5.3 M�/pc3 for a halo formed at z = 20 of mass Mvir = 106 M�
(see Table 4.1). From now on this will be our reference benchmark for halos which
then undergo compression.

We specialize to the NFW profile with g = 1. We also show the final dark matter
spike profile from the adiabatic compression due to a central black hole of mass
Mbh = 103 M�. The final resulting profile is

r(r) =

(
rsp(rsp/r)gsp r < rsp

ri(r) r > rsp
(4.26)

The presence of the black hole horizon results in a depletion of the density around
r ⇠ 2RS because of the factor we introduced to take into account the absorption of
the particles with low angular momentum. At radius rsp ' 0.54 pc, obtained from
Eq. (4.21), the spike transitions to the initial NFW profile rf ⇡ ri. The shown profile
assumes a vanishing dark matter interaction with the visible matter. In case of a non-
negligible interaction, the dark matter can decay into standard model particle and
the spike gets cored [99].
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4.2 Compression of a wave dark matter halo

In this Section, we explore how wave dark matter halos react to the adiabatic change
in the gravitational potential. We have observed that the adiabatic invariants are
conserved, and there is a relationship between the initial and final phase space dis-
tribution, as shown in Eq. (4.10).

To apply these observations to wave halos, we begin by discussing the initial
profile of the wave dark matter halo and how it can be described as a superposition
of eigenmodes. We then discuss its possible relaxation over short time scales. The
occupation numbers of the eigenmodes are the quantum analog of the phase space
distribution in the particle limit. We then utilize the Schrödinger equation and the
adiabatic theorem to demonstrate that the response of wave dark matter is compa-
rable to that of particle dark matter in the semi-classical limit. However, as we move
closer to the center of the compressed wave halo, we cannot rely on the semi-classical
approximation anymore. In this region, there may be a distinctive core with a profile
similar to the ground state solution of a hydrogen-like atom. The survival of this
core over cosmological times depends on the type of dark matter and the mass of
the central black hole, which we will discuss shortly.

As it will be further explained in Chapter 5, a compressed wave halo could be de-
tected through the observation of gravitational waves produced by inspirals of com-
pact objects orbiting a black hole that was responsible for the adiabatic compression.
For this reason, we will have in mind, throughout this Section, a benchmark point
characterized by:

• Central black hole masses of Mbh ⇠ 103 � 105 M�. The value of Mbh deter-
mines the radius of the innermost stable circular orbit rISCO = 6GMbh around
the black hole and also the distance between the black hole and the inspiralling
compact object five years (the observation time for a gravitational wave detec-
tor like LISA [110]) before the coalescence, dubbed r5yr. They are given by

rISCO ' 3 ⇥ 10�9 pc
✓

Mbh

104 M�

◆
, (4.27)

r5yr ' 3 ⇥ 10�8 pc
✓

Mbh

104 M�

◆1/2
. (4.28)

The proof for the second formula will be obtained rigorously in Section 5.3.

• Wave dark matter masses such as that the gravitational Bohr radius a = (GMbhm2)�1

happens to be smaller than r5yr for the wave nature to impact the compressed
density profile but not completely deplete it (the reason for this is explained in
Section 4.2.5 and it is due to the survival of the ground state in presence of the
black hole). This implies, from a . r5yr

m &
s

1
GMbhr5yr

' 10�15 eV
✓

Mbh

104 M�

◆�1/2 ✓ r5yr

3 ⇥ 10�8 pc

◆�1/2
. (4.29)
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Once the wave dark matter mass and the black hole mass are specified, one can
map an initial wave halo into the compressed one. The phenomenologically relevant
region of the compressed density profile will be r 2 [rISCO, r5yr].

4.2.1 Construction of a wave dark matter halo

We have seen that over distances that are large compared to the de Broglie wave-
length, wave dark matter behaves similarly to the standard collisionless cold dark
matter. In particular this is the case for dark matter structure on galactic scales such
as halos. Numerical simulations [29,108,219,220,346,347] found a characteristic soli-
ton, i.e. a cored stable self-gravitating structure at the center of wave dark matter
halo, surrounded by a Navarro-Frenk-White (NFW) outer profile. This profile is
characteristic for collision-less cold dark matter, as seen in Section 1.2.2.

We assume that the wave halo is given by

r(r) =

(
rsol(r) r < rt

ri(r) r � rt
(4.30)

where rsol(r) is the core profile and ri some unspecified NFW-like profile as in
Eq. (4.24). The transition happens at a radius rt that can be found numerically. The
soliton is characterized by a core mass Mc and a density profile given by [29, 108]

Mc = 6 ⇥ 109 M�

✓
10�23 eV

m

◆2 ✓kpc
rc

◆
, (4.31)

rsol(r) =
2 M�/pc3

[1 + 0.091(r/rc)2]8

✓
kpc
rc

◆4 ✓10�23 eV
m

◆2

. (4.32)

The core mass is the mass enclosed within the core radius rc, that is the radius at
which the soliton density drops by a factor of 2, i.e. rsol(rc) = rsol(0)/2. The to-
tal soliton mass M is related to the core mass as Mc = 0.24M. These expressions
come from the ground state solutions of the SP system that we have outlined in
Section 2.5.1.

We have seen that the SP system scaling symmetry is such that the properties
of the soliton are fixed once one parameter, e.g. the core radius rc is specified. We
determine this quantity as

rc =
cr

mvc(rc)
. (4.33)

Here vc is the circular velocity and cr ⇠ O(1) some constant. This implicit equation
fixes the core radius to the typical wavelength of dark matter, similarly to the proce-
dure in [167]. The core radius connects the property of the host halo to the soliton ra-
dius. The easiest way to see this is by rewriting the expression as rc = cr/(GMdm(<
rc)m2). Imposing the core radius relation Eq. (4.33) is equivalent to say that the soli-
ton mass is determined by the enclosed mass of halo within the typical wavelength
of dark matter.
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z Mvir [M�] rs [kpc] rs [M�/kpc3] g
0 1010 10 106 1

TABLE 4.2: Reference benchmark for a wave (fuzzy) dark matter halo, used
in [109] to study a eigenmode construction of a wave halo.
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FIGURE 4.3: A (fuzzy) wave dark matter halo for m = 8 ⇥ 10�23 eV (solid
blue). We see the soliton core rsol(r) (blue dotted line) embedded in a NFW
halo (dashed gray) with parameters of the benchmark in Table 4.2.

In Figure 4.3 we show an example of a wave halo for ultra-light wave dark mat-
ter in the fuzzy ballpark, m ⇠ 8 ⇥ 10�23 eV. The parameters correspond to a bench-
mark chosen in [109] to describe the construction of a fuzzy dark matter halo (see
Table 4.2). The soliton core is embedded in a large halo with rvir of several tens of
kpc.

In Section 2.5.1 we found another relation to fix the core radius from the halo
mass, Eq. (2.98), rc ⇠ 1/(mvvir). Comparing to Eq. (4.33), the sole contrast is the re-
placement of the circular velocity with the virial velocity of the halo. This relation
has been debated: see [348] for a recent review and also for the discussion on the
validity of soliton-host halo relation for larger particle mass. This dissimilarity is in-
significant provided that the size of the halo is roughly equivalent to the average
dark matter wavelength. Indeed for the small mass considered in Figure 4.3, the two
methods of Eq. (2.98) and Eq. (4.33) give rc ⇠ 0.78 kpc and rc ⇠ 0.91 kpc respec-
tively. Alternatively, if the core radius is not much smaller than the scale radius of
the halo, the circular velocity at the core radius is analogous to the virial velocity.
This is evident in most numerical simulations [29, 108, 220, 347].

A complication arises when the wavelength of dark matter is much smaller than
the system’s size. In this situation, the wave dark matter enters the inner part of the
halo, and utilizing the conventional soliton-host halo relation Eq. (2.98) naively may
underestimate the soliton’s size, as well as considerably overestimate the soliton’s
mass [228].

We visualize the huge difference in the two prescription in Figure 4.4. In this case
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FIGURE 4.4: Comparison of the wave dark matter halos obtained for a large
mass m = 10�13 eV using the prescription of Eq. (2.98) (red) and the one
of Eq. (4.33) (green) to determine the core radius rc. We consider the same
outer NFW-like halo of the pre-compression benchmark in Table 4.1. We see
that the Eq. (2.98) predicts a core radius which is considerably underesti-
mated, leading to a nonphysical core density.

we choose m = 10�13 eV and the benchmark shown in Table 4.1, that is the one of a
halo which can undergo adiabatic compression if a growing black hole is present in
the center. Unlike the one involving the virial velocity, the relation Eq. (4.33) provides
a gradual progression from an NFW-like profile to a cored profile when the radius is
approximately equal to the wavelength of dark matter.

As we will examine a wide range of wave dark matter masses, such as values up
to m ⇠ 10�13 eV, we use the core radius prescription in Eq. (4.33) for our analysis.

4.2.2 Relaxation of the wave halo

We have seen that the self-gravitating wave DM halo has a similar density profile
to the particle dark matter halo, except for the presence of a central soliton. Due to
small-scale fluctuations in the density, modeled by quasiparticles, the wave halo can
relax much faster than the particle halo. This can further change the density profile.
In Section 2.5.2, we estimated the relaxation timescale for fuzzy dark matter and we
have concluded that the relaxation is relevant up to scales of the kpc, which indeed
is similar to the core radius (see Figure 4.3). Due to the strong dependence on r, i.e.
trelax µ r4vvir µ r4rvir, the relaxation time for external shells is too large to be relevant.

What happens for larger values of the wave dark matter mass? In particular, we
would like to check whether the benchmark in Table 4.1 and the halo shown in the
green line of Figure 4.4 are consistent with the relaxation time at the relevant scales.
Indeed this is the NFW-like benchmark halo we will consider for compression. A
quick estimate in Section 2.5.2 gave a very short relaxation time.
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Let us check this estimate carefully. The relaxation timescale is [42, 46, 349]

trelax ⌘ 1
3

v2

D[(Dvk)2]
. (4.34)

For wave dark matter, the diffusion coefficient is given by [46] (see Appendix C.2 for
the proof)

D[(Dvk)
2](v) =

32p2G2meff log L
3


1
v3

Z v

0
dv0v04 feff(v0) +

Z •

v
dv0 v0 feff(v0)

�
. (4.35)

Here the effective mass and velocity distribution are defined from the dark matter
velocity distribution as

meff ⌘ (2p)3

m3

R
d3v f 2(v)R
d3v f (v)

, (4.36)

feff ⌘ f 2(v)

R
d3v f (v)R
d3v f 2(v)

. (4.37)

The Coulomb logarithm is given by log L = log(mrv). We have assumed an isotropic
velocity distribution, i.e. function only of v or of energy E. We are interested in the
wave halo density profile at radii r > rc but r ⌧ rs. This is because we know
that at larger radii the relaxation timescale would be considerably longer. Therefore,
a suitable choice of the distribution would be ergodic one found from the profile
r(r) = rs(rs/r) in the low energy limit, i.e. Eq. (D.6). Changing variable to velocity,
E = v2/2 + Fi(r),

f (v) ⇡ rs

(2pFs)3/2
G(b)

G(b � 3/2)


1
2

v2

Fs
+

✓
r
rs

◆2�g ��b

. (4.38)

If we specify g = 1 (b = 5/2).

f (v) ⇡ 3
p

p

4
rs

(2pFs)3/2


1
2

v2

Fs
+

r
rs

��5/2

. (4.39)

Here Fs = 2pGrsr2
s .

To understand which velocity we should exploit in Eq. (4.34), we can take a look
at the velocity distribution in the inner part of the halo. In Figure 4.5, we show the
speed distribution in Eq. (4.39) for the parameters of the pre-compression bench-
mark in Table 4.1 at radius r = 10�5rc. We evince that the circular velocity, shown as
a solid line, is more representative of the velocity of the particles at low radii than
the dispersion s, defined as

s2 =
1
3

R ve
0 d3v v2 f (v)
R ve

0 d3v f (v)
. (4.40)

The dispersion appears to be determined by a small number of very fast particles.
Therefore, if we consider the circular velocity, we can interpret trelax as the timescale
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FIGURE 4.5: The normalized speed distribution in Eq. (4.39) (solid blue
line), compared to the Maxwell-Boltzmann distribution with standard de-
viation equal to the s of Eq. (4.39). We fix r = 10�5rs. We consider the same
outer NFW-like halo of the pre-compression benchmark in Table 4.1. The
vertical lines show how the circular velocity vc is more representative of the
velocity of the particles than the dispersion s, being closer to the median v̄.

at which half of the particles at such radius are relaxed through gravitational inter-
action, while if we use v =

p
3s, it becomes the time scale at which almost all of

kinetic energy at such radius is relaxed through gravitational interaction.
We show the result of the computation in Figure 4.6 for the benchmark halo in

Table 4.1 and m = 10�13 eV. As predicted, the relaxation time using the velocity dis-
persion is considerably larger (three orders of magnitude) than the one computed
with the circular or median velocity. This is because it takes much longer to relax the
high velocity tail of the speed distribution than the average one. At scales compara-
ble to the de Broglie wavelength computed with the typical velocity of particles (vc

or v̄), the relaxation time scales for these fast particles is of the order of the Gyr. This
signals that the wave halo must have formed a soliton at scales r < 10�3 pc exactly
as we found with our prediction Eq. (4.33). The relaxation time sharply increases, as
µ r4.3, for larger radii, so that outer dark matter shells undergo relaxation in a much
longer time.

4.2.3 Eigenmode decomposition

Having discussed the density profile of wave dark matter, we consider an effective
description of wave dark matter halo with eigenmode decomposition, following pre-
vious works by Lin et al [93] and Yavets et al [109]. The occupation number for each
eigenmode plays a similar role as the phase space distribution in the particle halo.

Spherical solutions of the SP system

We describe the wave dark matter field as outlined in Section 2.4. We perform the
non-relativistic expansion of Eq. (2.62) and we obtain from the Einstein equations
coupled to the Klein-Gordon equation on small-scales the Schrödinger-Poisson (SP)
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FIGURE 4.6: The relaxation time scale in Eq. (4.34) computed with different
choices of the velocity: circular (blue), rms (orange) and median (green). We
consider the same outer NFW-like halo of the pre-compression benchmark
in Table 4.1. The vertical lines show the de Broglie wavelength computed
with the circular velocity (solid black) and the median v̄ (dotted red). The
relaxation time scales as µ r4.3,as shown by the dashed gray line.

system for self-gravitating wave dark matter

i∂ty =


� r2

2ma2 + mF
�

y , (4.41)

r2F = 4pGm|y|2 .

The wavefunction is normalized as
R

d3x |y(t, x)|2 = 1. We model the wave dark
matter halo as a superposition of eigenmodes of the SP system

hri = r̄ = m Â
i

fi|yi(t, x)|2 , (4.42)

where fi is the occupation number of each mode yi and the angle bracket is the
ensemble average defined in Eq. (2.56). To find the eigenmodes, we assume a time-
independent gravitational potential Ft obtained from the Poisson equation r2Ft =
4pGrt, where rt is an initial target profile, given by the soliton and the NFW-like
profile, that is the profile in Eq. (4.30). Then the eigenmodes can be found by solving
the time-independent Schrödinger equation for each mode

⇥
r2 � 2m2(Ft � Ei)

⇤
yi(x) = 0 , (4.43)

where Ei is the energy eigenvalue divided by the particle mass. We find the occu-
pation number for each mode fi such that r̄ ⇡ rt. Practically, this is achieved by
minimizing a cost function of the form [109]

D(rt, r̄) =
1
r

Z r

0
dr0 (rt � r̄)2

r2
t

. (4.44)
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To find a self-consistent profile, we iterate the above fitting procedure several times
by updating the target density profile and gravitational potential until the density
profile converges.

This construction is qualitatively identical to the particle halo construction with
phase space distribution. In the particle halo, we assume that the dark matter par-
ticles are distributed according to the phase space distribution, f (x, v), where each
trajectory evolves according to the Hamiltonian of the system, which is constructed
with the mean potential of the system F. The density profile r =

R
d3v f (x, v)

should then satisfy the Poisson equation, r2F = 4pGr, for self-consistency. In the
wave halo, we follow the same procedure, with the additional step of solving the
Schrödinger equation to find the eigenfunctions.

Since we consider a spherically symmetric system, it is more convenient to de-
compose the wavefunction into a radial wavefunction and spherical harmonics,

yi = yn`m`
(x) = Rn`(r)Ym`

` (q, f) =
1
r

cn`(r)Ym`
` (q, f) . (4.45)

The radial wave function satisfies

c00
n` +


2m2(En` � Ft) � `(` + 1)

r2

�
cn` = 0 . (4.46)

The mean density is then given by

r̄(r) =
m

4pr2 Â
n`

(2` + 1) fn`|cn`|2 , (4.47)

where we assume that the occupation number does not depend on the magnetic
quantum number as we consider a spherically symmetric system.

Wave-particle correspondence

For the following discussion, it is useful to see how the above wave dark matter
construction Eq. (4.47) compares to the particle dark matter one Eq. (4.5). The cor-
respondence between particle and wave halo becomes clearer in the semi-classical
limit [109] (see also Section 3.3.3). We can approximate the discrete sum in Eq. (4.47)
with a continuous integral as

r̄ =
Z

dE
Z

dL
4pL
vrr2


m4

(2p)3 fn`

� ✓
p

m
dn
dE

◆
(vr|cn`|2) , (4.48)

where dn/dE is the density of the states. In the semi-classical limit mvr � h̄ (notice
we reintroduced the reduced Planck constant for now), the WKB approximation can
be used to find a radial wavefunction as

cn`(r) =
c±p

mvr(r)
exp


± im

h̄

Z r
dr0vr(r0)

�
. (4.49)

While for unbound particles the above two solutions represent left- and right-moving
particles, in bound systems the WKB solution is subject to boundary conditions
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which fix the coefficients c±. We find [350]

c�
n` =

Nn`p
mvr

cos


m
h̄

Z r

rmin

dr0vr(r0) � p

4

�
, (4.50)

c+
n` =

Nn`p
mvr

cos


m
h̄

Z rmax

r
dr0vr(r0) � p

4

�
, (4.51)

where rmin and rmax are solutions to vr(r) = 0. The normalization constant is found
from

R
d3x |y|2 = 1. The two solutions must be identical c+

n` = c�
n`.

|Nn`|2 =

����
I dr

mvr(r)
cos2


m
h̄

Z r

rmin

dr0vr(r0) � p

2

����� ⇡
����
I dr

2mvr(r)

����
�1

, (4.52)

where we have assumed the wave function to be non-vanishing only in the r 2
[rmin, rmax] classical region and the cosine squared term to average to 1/2 because of
the fast oscillations. From the c+

n` = c�
n` condition, we arrive to the semi-classical

Bohr-Sommerfeld quantization, for ` 6= 0

p

✓
n +

1
2

◆
= m

I
dr vr(r) = 2pmJr . (4.53)

We see that the right-hand side is proportional to the radial action Jr. We compute
the density of states from the quantization condition

dn
dE

=
m
p

I dr
vr

⇡ 2m2

p|Nn`|2
. (4.54)

We substitute this expression in Eq. (4.48) and we find

r̄ =
Z

dE
Z

dL
4pL
r2vr


m4

(2p)3 fn`

�
. (4.55)

Therefore, the correspondence between the occupation number and classical phase
space distribution is found as [109]

f (E) ⇡ m4

(2p)3 fn` , (4.56)

allowing us to interpret the occupation number as a phase space distribution in the
semi-classical limit.

In Figure 4.7, we show the density profile constructed according to the method
described above, as well as the occupation number. As an example, we consider as
target profile an initial soliton and NFW profile (gray line) with parameters from
Table 4.2 and fuzzy particle mass m = 8 ⇥ 10�23 eV. Next, we derive the gravita-
tional potential by using the target density profile. Then, we solve the Schrödinger
equation and determine a set of occupation numbers for each mode that can best
replicate the initial profile. To achieve this, we group the energy eigenvalues and
assign the same occupation number to the modes that share the same energy bin.
We repeat this process three times to ensure that the halo is self-consistent. The final
halo, which is formed by the superposition of eigenmodes, is represented by a red
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FIGURE 4.7: The initial and wave halo profile for the benchmark in Table 4.2
and m = 8 ⇥ 10�23 eV. The initial target profile is given by Eq. (4.30) (gray).
The red solid line is the density profile obtained by fitting the occupation
numbers such that r̄ ⇡ rt.
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FIGURE 4.8: The normalized occupation number in the halo considered in
Figure 4.7. The dotted line is the phase space distribution of NFW profile
obtained from rNFW Eq. (4.24) via the Eddington’s formula, the dashed line
is the phase space distribution of target density profile obtained by the Ed-
dington inversion formula f (E), and the crosses are the corresponding oc-
cupation numbers for wave halo fn`[m4/(2p)3] obtained from the fit.

line. The corresponding occupation number is shown in Figure 4.8. As expected, the
occupation number fn`[m4/(2p)3] closely follows the classical phase space distribu-
tion f (E) except for the ground state. The ground state occupation number is simply
given by f0 ' Msol/m with the total soliton mass Msol.

4.2.4 Wave dark matter spike

We are now ready to consider the adiabatic change of the system. Suppose that the
initial Hamiltonian Hi = H(ti) adiabatically changes to Hf = H(tf), as in the particle
case. According to the adiabatic theorem, an eigenstate of the Hamiltonian at an ini-
tial time ti remains as an instantaneous eigenstate of the Hamiltonian as the system
evolves. If the initial density profile is given by

r̄i = m Â
j

f j|y(i)
j (r)|2 , (4.57)
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where y(i)
j is the eigenmode of the initial Hamiltonian Hi, the final density profile is

given by

r̄f = m Â
j

f j|y(f)
j (r)|2 =

m
4pr2 Â

n`

(2` + 1) fn`|c(f)
n` (r)|2 , (4.58)

with the eigenmode y(f)
j = c(f)

n` Ym`
` /r of the final Hamiltonian Hf. The occupation

number remains the same fn0`0 = fn`. We denote with primes the quantum numbers
after the compression.

To see how this compressed wave halo compares to the compressed particle halo,
we consider the semi-classical limit mvr � 1. In this limit, the initial wave dark
matter density profile is approximated as in Eq. (4.55) with fn`[m4/(2p)3] ⇡ f (E, L)
and L2 = `(` + 1)/m2. Since the eigenstate stays in the same eigenstate during the
adiabatic evolution, the quantum number before and after the adiabatic evolution is
the same: n = n0 and ` = `0. The conservation of quantum numbers is translated into
the conservation of classical adiabatic invariants. For instance, the condition `0 = `
leads to Lf = Li = L, while the condition n0 = n leads to

I
dr v(i)

r (r) =
I

dr v(f)
r (r) , (4.59)

from the semi-classical Bohr-Sommerfeld quantization condition Eq. (4.53). Given
the definition of the radial action in Eq. (4.9), this condition is identical to the con-
servation of the radial action J(i)

r (Ei, Li) = J(f)
r (Ef, Lf), which we use to derive Ei =

Ei(Ef, Lf) for the compression of the particle halo, as explained in Section 4.1.1. From
these arguments, we see that the adiabatic compression proceeds in the same way
as in the particle case, as long as the semi-classical approximation is valid, i.e. at
sufficiently large distances.

The semi-classical approximation becomes unreliable when considering small
values of r. At these radii, the profile is primarily influenced by modes with low
angular momentum, particularly the ground state solution. If we assume that the
ground state is the primary contributor to the central profile, then the core profile
before adiabatic compression can be described as follows

r(i)
sol = m f0|y(i)

0 (r)|2 = Msol|y(i)
0 (r)|2 , (4.60)

where y(i)
0 is the ground state wave function of the initial system H0 and f0 =

Msol/m is the ground state occupation number. The above form is a simple repa-
rameterization of the soliton profile rsol(r) Eq. (4.32). Being the occupation number
conserved, the final core profile is

r(f)
sol = m f0|y(f)

0 (r)|2 = Msol|y(f)
0 (r)|2 (4.61)

We have to determine y(f)
0 , the ground state of the final Hamiltonian Hf. If the central

black hole of mass Mbh dominates the gravitational potential of the final system, the
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Hamiltonian Hf can be approximated as

Hf ⇡ p2

2m
� GMbh

r
, (4.62)

and, therefore, the ground state wave function is given by the ground state wave
function of the hydrogen atom

y(f)
0 (r) ⇡ e�r/a

p
pa3/2 , (4.63)

with a the gravitational Bohr radius

a ⌘ 1
GMbhm2 . (4.64)

The final compressed wave dark matter halo consists of the central soliton and the
outer particle-like cuspy profile

rf =

(
r(f)

sol(r) r < rt

rsp(rsp/r)gsp rt < r < rsp
, (4.65)

where rt is defined such that rsp(rsp/rt)gsp = r(f)
sol(rt). The profile for r > rt is the

same as the compressed particle halo, rsp(rsp/r)gsp , which is valid up to r ⇠ rsp,
after which it converges to the uncompressed profile. In summary, the central part
is replaced by the soliton and the outer part is the same as compressed particle dark
matter halo.

In the top panel of Figure 4.9, we present the compressed wave halo obtained
by solving the final Hamiltonian’s, Hf, Schrödinger equation, using the occupation
numbers determined in the previous section. We choose Mbh = 3 ⇥ 109 M� for illus-
tration purposes. The resulting compressed profile is displayed as a blue solid line,
featuring a central core and an outer spike profile similar to the compressed parti-
cle halo. The central density profile corresponds to the ground state wave function
of hydrogen. Moreover, we compare this numerical result to the analytical profile
presented in Eq. (2.62), represented by a red dashed line, which agrees with the nu-
merical outcome. To ensure the compressed halo’s self-consistency, we iterate the
process three times.

4.2.5 Survival of the core

If a massive black hole is at the center of the halo, it may swallow the low angular
momentum modes over an astrophysical timescale. It is exactly the reason why the
particle halo density profile sharply drops at r = 2RS (see Figure 4.2).

The absorption of wave modes by the central black hole can occur in a similar
manner, with the survival of a particular mode dependent on both the central black
hole mass and the wave dark matter mass. To study this phenomenon, we consider
the Schwarzschild black hole for simplicity. Although the system is analogous to
the hydrogen atom in the non-relativistic regime, the energy eigenvalue acquires an
imaginary component due to the boundary condition at the black hole horizon [351].



124 Chapter 4. Adiabatic Compression

10�2 10�1 100 101

r [kpc]

10�6

10�4

10�2

100

102

104

�
[M

�
/p

c3 ]

target

initial

analytical model

numerical contraction

�s = 106M�/kpc3

rs = 10 kpc
� = 1
m = 8 ⇥ 10�23 eV
Mbh = 3 ⇥ 109 M�

FIGURE 4.9: The initial and compressed wave halo profile with parameters
given in Table 4.2 and for m = 8 ⇥ 10�23 eV. The black solid line is the red
line in Figure 4.7, the initial profile obtained from the eigenmode decom-
position, the gray line is the target profile. The blue line is the compressed
wave halo, which consists of the central solitonic core and outer spike pro-
file that is similar to the particle dark matter halo. For this, we assume an
adiabatic formation of the central black hole of mass Mbh = 3 ⇥ 109M�. The
red dot-dashed line is the analytical model in Eq. (4.65) which is in a good
agreement with the numerical result of the contraction.

The imaginary part of the energy eigenvalue is interpreted as a decay rate and is
given by

Gn` ⇡ ma4`+5
G

24`+3(n + `)!
n2`+4(n � ` � 1)!


`!

(2`)(2` + 1)!

�2 `

’
k=1

[k2 + (4aG)2] , (4.66)

where we take the Schwarzschild limit of the result obtained in the Kerr geometry
[351,352]. Here aG = GMbhm is the fine structure constant of the gravitational atom.
Including the possible decay of modes into the black hole, i.e. the wavefunction finite
lifetime, the wave dark matter halo density at a given age thalo is

r̄(r) =
m

4pr2 Â
n`

(2` + 1)|cn`(r)|2e�2Gn`thalo . (4.67)

Compared to the previous wave dark matter profile, we have an additional expo-
nential decay factor due to the absorption. The above estimation assumes that the
central black hole dominates the dynamics of the system. We only consider such
cases in this work. The decay of the central soliton given by Eq. (4.66) agrees with
full numerical simulations [101].

The decay rate of the ground state scales as G µ ma5
G. For the example shown in

Figure 4.9, the gravitational fine structure constant is aG ⇠ 2 ⇥ 10�3 and the decay
rate is G00 ⇠ (103Gyr)�1; the solitonic core of the compressed wave halo survives
over the age of the universe in this case. Note, however, that whether the soliton
and low angular momentum modes can survive over the age of the halo crucially
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depends on aG = GMbhm. For larger wave dark matter masses and smaller black
hole masses, aG can get of order unity and the decay rate increases sharply. This is
the case of the intermediate-mass ratio inspirals to be discussed in Chapter 5 where
low angular momentum modes, not only the soliton, are indeed unstable over the
age of the halo as the central black hole absorbs them. The decay of wave modes
leads to a distinctive compressed wave halo compared to the one studied above.
In particular, it can be described with a broken power-law profile, which will be
discussed below.

To illustrate the density profile in the case where the low angular momentum
modes get absorbed by the black hole, let us consider the wave dark matter mass
around m ⇠ 10�14 eV and a black hole mass of Mbh = 104 M�. The Bohr radius in
this case is a = (GMbhm2)�1 ⇠ 10�8pc, roughly Earth-Moon distance, and, as we
will see in Chapter 5 the separation between such a black hole an a compact solar-
mass companion object five years before coalescence. In this case, the gravitational
fine structure constant is

aG ' 0.74 ⇥
✓

Mbh

104 M�

◆⇣ m
10�14

⌘
, (4.68)

while the decay rate of the ground state is given by Eq. (4.66) by G ' 300 Hz: the
ground state decays and cannot survive over the Gyr time scale and the central black
hole swallows the whole soliton in a short time scale. This conclusion holds for the
parameter ranges which will be of our interest: the mass of the central black hole
being Mbh ⇠ 103 � 105 M� and the Bohr radius being a ⇠ 10�9 � 10�8 pc, again
in the ballpark of the distance between the objects in an intermediate mass ratio
inspiral several years before coalescence 1.

The most straightforward way to compute the density profile including the de-
cay, is to use Eq. (4.67), which is shown in Figure 4.10. We choose the initial halo
benchmark of Table 4.1 compressed with a black hole of mass Mbh = 104 M� and
we vary the Bohr radius a 2 [10�12, 10�9] pc, corresponding to wave dark matter
masses m 2 [3 ⇥ 10�13, 10�14] eV. As one can see, the core is absent and the inner
part of density profile behaves as a power-law profile of r µ r2`c where the critical
angular momentum `c is defined such that

2 max
n

Gn`c thalo = 1 . (4.69)

The modes with `c are the modes with the lowest angular momentum that survive
over the age of the halo. Note that, for very small Bohr radii a, the profile converges
to the particle one, shown as a thick gray dot-dashed line, (because this implies
larger masses and the semi-classical limit kicks in). Due to the particle-wave cor-
respondence, at large radii the density profile has to converge to r µ r�gsp , therefore
the resulting profile has a broken power law, with a smooth interpolation between
the two regimes characterized by a smaller r µ r`c slope and a shallow peak.

For a later numerical purpose, being the Riemann sum in Eq. (4.67) computa-
tionally slow, we provide a simple analytical expression for the density profile. Since
low angular momentum modes are absorbed, and the density profile begins to have

1For further on the response of ultralight dark matter soliton to external perturbations see [353,354]
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FIGURE 4.10: The density profile of a compressed wave halo. The soliton,
as well as other low angular momentum modes, are absorbed by the central
black hole, leading to a broken power-law profile. At large radii, the profile
behaves as r µ r�gsp , while at small radii, it behaves as r µ r2`c , with `c
given by the solution of Eq. (4.69). The gray dot-dashed line is the profile
of particle dark matter halo Eq. (4.23). Colored lines show the compressed
wave halo profiles for different values of the Bohr radius a = 1/(GMbhm2).
The dashed lines are the analytical approximations given in Eq. (4.71) with
integer b`cc, while dotted lines consider a real `c. We fix Mbh = 104 M�
and we use the spike parameters derived from the halo in Table 4.1. The
gray shaded areas show radii smaller than the innermost stable circular or-
bit (ISCO) for a binary with masses Mbh and M� and radii larger than the
distance between these two objects five years before mergers. We will see in
Chapter 5 that the physically interesting region is in the unshaded area.
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survive cosmological time thalo = 10 Gyr for different back hole masses. The
lines show the solutions of Eq. (4.69) with `c real (solid) and b`cc (dashed).
We also see that `c & 2.8aG.

non-vanishing value at r � a, taking the continuum limit is a good approximation in
most cases. We approximate the discrete sum in Eq. (4.67) to the continuous integral

r̄ ⇡
Z

dE
Z

Lc

dL
4pL
r2vr

f (E) . (4.70)

where we have taken m4/(2p)3 fn` ! f (E) and put a low angular momentum cutoff
Lc = a`c(`c + 1)/2, where `c is the solution of Eq. (4.69) where we fix n = max(` +
1, 1

3

p
(` + 1)(` + 2)(2` + 3)), which is an approximate value maximizing the decay

rate for a given angular momentum `. The value of `c is shown in Figure 4.11 for
different choice of the black hole mass and as a function of aG. The value of `c can
either be rounded to integer or taken as a real number. The momentum cutoff gets
rid of all the modes which have a short lifetime. A useful expression for f (E) is
given by the spike distribution in Eq. (4.16) and it is the same distribution we used
to compute the particle spike profile, with a cutoff given by 2RS, instead. Therefore
a simple substitution RS ! Lc/2 = Rc/2 in Eq. (4.23), with Rc = a`c(`c + 1) gives

r̄ ⇡ rsp

⇣ rsp

r

⌘gsp
✓

1 � Rc

2r

◆gsp

. (4.71)

This approximation reliably reproduces the profile from the discrete summation for
`c � 1. As one can see in Figure 4.10, a subtlety arises when we choose to take `c

as a real number or the integer part b`cc if `c is not large enough. This difference
however is not crucial for the description of the profile.

One can check if the relevant modes are safely non-relativistic. The energy (over
mass) of the modes is E = �a2

G/(2n2). If |E| < 1, the mode is non-relativistic. This
happens if n > aG/

p
2. The minimum value of n is `c + 1 so it is sufficient to prove

that `c > aG/
p

2 � 1. Actually, as one can see from Figure 4.11, `c & 2.8aG, so the
modes are non-relativistic.
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4.2.6 Relaxation of the compressed wave halo

In Section 4.2.2, we studied the relaxation of the wave halo to the ground state and
we checked that a soliton forms at radius rc. During the adiabatic compression, the
density profile of the dark matter on the smallest scales changes considerably. Grav-
itational interaction among wave dark matter can modify the compressed halo pro-
file over time through the relaxation process. In particular, this process replenishes
the lower angular momentum modes which are absorbed by the black hole, being
the relaxation most efficient at small radii. It is therefore important to check if the
relaxation takes place in the system that we considered in the previous section.

We can estimate the relaxation time scale in the wave halo by considering the
gravitational interaction between quasiparticles [33]. These quasiparticles have a
size equal to the wavelength of dark matter and a mass equivalent to the total mass
enclosed within the de Broglie volume. The timescale for relaxation in the wave halo
can be estimated as the time taken for quasiparticles to exchange kinetic energy by
an order of magnitude. This is referred to as the relaxation timescale and can be
approximated as [42, 349]

trelax =
v2

3D[(Dvk)2]

����
v=

p
3s

. (4.72)

We are considering the compressed halo, so we compute the velocity dispersion and
the diffusion coefficient using the analytical distribution in Eq. (4.16). This distribu-
tion is a reliable approximation for both the particle and the wave case. We find

s2 =
1

3r

Z
d3v v2 f (v) =

1
3

R 0
F dE[2(E � F)]3/2 f (E)
R 0

F dE[2(E � F)]1/2 f (E)
=

v2
c

1 + gsp
. (4.73)

we used v =
p

2[E � F] and f (E) µ (F/E)3/2�gsp . Here v2
c = GMbh/r is the circular

velocity. An equivalent form of the diffusion coefficient for the wave dark matter,
with respect to Eq. (4.35), is [47, 355]

D[(Dvk)
2] =

32p2G2 log L
3

(2p)3

m3 (4.74)

⇥


1
v3

Z v2
2 +F

F
dE [2(E � F)]3/2 f 2(E) +

Z 0

v2
2 +F

dE f 2(E)

�

=
32p2G2 log L

3
r2(r)
m3v4

c


G(gsp + 1)

G(gsp � 1/2)

�2

I(v/vc, gsp) ,

where log L ' log(msr) is the Coulomb logarithm and I is defined as

I(x, gsp) =
1
x3

Z 1

1� x2
2

de
[2(1 � e)]3/2

e3�2gsp
+
Z 1� x2

2

0

de

e3�2gsp
. (4.75)

With this diffusion coefficient, the relaxation time reads

trelax =
m3s6

G2r2 log L

⇢
3

32p2


G(gsp � 1/2)

G(gsp + 1)

�2 (gsp + 1)2

I(
q

3/(1 + gsp), gsp)

�
. (4.76)
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FIGURE 4.12: The relaxation time scale between rISCO and r5yr for three dif-
ferent values of the black hole mass. As we increase the mass of the central
black hole, the relaxation time scale generally increases. If the relaxation
time scale is significantly smaller than Gyr time scale, it is expected that the
wave halo profile is further suppressed as the low angular momentum will
be replenished through the relaxation process. The colored bands show the
interval between rISCO (lower bound) and r5yr (upper bound and line).

The quantity in the square brackets has a mild dependence on gsp: it takes values
[0.070, 0.075] for gsp 2 [2.25, 3.00]. Notice that r(r) depends on the mass of the black
hole, since rsp and rsp do.

Let us have a physical intuition of this timescale. We saw in Section 2.5.2 that for
a self-gravitating system, like the initial halo, trelax ⇠ 0.1 r/v ⇥ Mdm(< r)/meff, with
Mdm(< r) the enclosed mass in r and meff = r(ldB/2)3 the mass of the quasiparticle.
The relaxation time is proportional to v4 and in the compressed halo this quantity is
increased by a factor of (Mbh/Mdm(< r))1/2. Therefore we expect

tcompressed
relax ⇠ 0.1

r
v

⇥ Mdm(< r)
meff

⇥
✓

Mbh
Mdm(< r)

◆2

(4.77)

and this confirms the result we obtained in the careful computation.
After the relaxation time scale, wave modes have exchanged energy by an order-

one factor, replenishing low angular momentum modes that are subsequently ab-
sorbed by the central black hole, suppressing the wave halo density further.

As we anticipated in the previous Section and in the introduction of Section 4.2,
we are mostly interested in the density profile in a specific range of radii, for reasons
we will explore in Chapter 5. Considering a compact object of mass ⇠ M� orbiting
the black hole Mbh, we are interested in the region r 2 [rISCO, r5yr], corresponding
to the distances between the innermost stable circular orbit rISCO = 6GMbh and the
separation at 5 years before coalescence Eq. (4.28).

We compute the relaxation time scales for r 2 [rISCO, r5yr] as a function of the
Bohr radius, for Mbh = 103, 104, 105 M� and show the results in Figure. 4.12. For
Mbh = 103M�, the relaxation timescale becomes smaller than the Gyr scale for a &
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10�11 pc (m & 2 ⇥ 10�13 eV). In such cases, the wave halo is subject to relaxation at
scales smaller than r5yr and hence the density profile is further suppressed from what
we discussed in the previous section. To correctly model the density profile, one
needs to investigate the dynamical evolution of the wave modes due to gravitational
interactions, which is beyond the scope of this work. We also compute the relaxation
time scale for the other black hole masses. As the mass of central black hole increases,
the relaxation time scale also increases at a given Bohr radius. In the Figure, we see
that the relaxation time scale for these two benchmark scenarios can be Gyr time
scale even for a > 10�11 pc. Since the relaxation time scale is comparable to thalo,
we expect that the wave profile is given approximately by Eq. (4.67) and does not
significantly change over the age of halo.

4.3 Summary and conclusions

This Chapter explored the response of wave dark matter to the adiabatic growth of
a black hole. The first Section focuses on the formation of a spike from the inner part
of a halo, while also checking the cosmological viability of the initial halo. Details on
the computation of the density profile are in Appendix D.

Next, in Section 4.2, we consider a benchmark halo where the wave nature of
dark matter is relevant, constructing the halo using the self-gravitating SP system.
The resulting wave halo profile exhibits a solitonic core at the center that transitions
smoothly to a NFW-like outer halo. The correct soliton-host halo relation is found to
determine the soliton core radius based on the typical de Broglie wavelength of the
dark matter particle. However, the wave nature of the halo can lead to gravitational
cooling effects, so it is important to check that the wave halo forms a solitonic core
in the age of the halo timescale without fully relaxing to the ground state.

The discussion then moves to finding the compressed wave profile. The com-
pressed wave halo possesses a solitonic core near the central region, which may
or may not be absorbed by the black hole depending on the system. Two exam-
ples are presented, one where the central soliton survives over the astrophysical
timescale, and another where it does not. If the soliton and other low angular mo-
mentum modes are absorbed, the wave density profile exhibits a broken-power law
that follows the typical spike profile at large radii. The main result of the Chapter is
Eq. (4.71), which provides a simple but accurate formula to describe the compressed
wave dark matter halo, being Eq. (4.67) the exact result.

It is also crucial to check the relaxation timescale of the compressed halo to en-
sure that the above-mentioned compressed wave halo profile is stable. Low angu-
lar momentum eigenmodes, i.e., the inner part of the halo, may decay to modes
with shorter lifetimes and be absorbed by the black hole. We find that the profile in
Eq. (4.67) is valid for black hole masses Mbh > 103 M� and Bohr radii a & 10�11 pc.

We have previously stated that the wave dark matter spike profile can be in-
vestigated via the inspiral of a solar-mass compact object around the central black
hole. The inspiral process can be detected via gravitational wave emission and can
be sensitive to the wave nature of dark matter. In Chapter 5, we will examine this
astrophysical scenario as a way to probe the inner part of a compressed wave dark
matter halo.
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Chapter 5

Intermediate-Mass-Ratio Inspirals

In this Chapter, we consider a concrete astrophysical application of the adiabatic
compression scenario discussed in detail in Chapter 4. The adiabatic growth of a
black hole in the center of a halo causes the concentration of the mass density of the
dark matter towards the central region.

This compression of the dark matter profile has been previously studied in the
literature. Due to the enhanced mass density, celestial objects orbiting inside the adi-
abatically compressed halo experience larger dynamical friction and it has been sug-
gested that it could cause the gravitational wave signals from a binary system to lose
coherence, as discussed e.g. in [102–105,356,357]. This effect could potentially be ob-
served by future gravitational wave detectors like the Laser Interferometer Space
Antenna (LISA) [110, 358]. It might also be used to test interactions between dark
matter and standard model particles [359,360]. Interestingly, indirect evidence of the
dark matter spikes has been recently reported from the observations of anomalously
fast orbital decays of companion stars near black holes [361].

We explore the possibility of using an intermediate-mass ratio inspiral (IMRI)
scenario, where a solar-mass compact object m2 inspirals towards an intermediate-
mass black hole m1 ⇠ 103 � 105 M� at the center of the halo. We investigate if the
gravitational wave observations from such an inspiral could provide information
about the wave dark matter halo surrounding the black hole.

The outline of the Chapter is the following. In Section 5.1, we introduce the topic
of intermediate mass black holes. Section 5.2 is dedicated to the detailed study of the
intermediate-mass-ratio inspirals in a dark matter halo: we summarize the proper-
ties of the density profiles in the wave and particle case and we describe energy loss
contributions to the evolution of the system, i.e. the gravitational wave emission and
dynamical friction. Next, in Section 5.2.1, we take into account the backreaction due
to the injection of energy into the compressed halo by the companion’s inspiral. The
next subsections comment on the approximations exploited to write such a formula:
we discuss the choice of impact parameters in the Coulomb logarithm appearing in
the expression for the dynamical friction and we motivate why quasiparticle effects
and accretion by the companion object are negligible.

Section 5.3 is dedicated to the description of the gravitational wave radiation
emitted by such a binary. We find that the phase is particularly sensitive to the pres-
ence of dark matter and its nature, producing a dephasing with respect to the wave-
form in absence of dark matter or with a different dark matter model.
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We specify the dephasing intuition with a proper statistical analysis in Section 5.4.
We perform a likelihood analysis in order to understand which information can be
extracted about the system via the observation of gravitational waves with the LISA
detector. We also discuss the cases in which we can distinguish the wave nature of
dark matter. We conclude in Section 5.5.

Most of the content of the Chapter is adapted form the second part of [107] and
expanded with further details and plots when needed, such as in Sections 5.2.1 and
5.2.2.

5.1 Intermediate Mass Black Holes

Before we dive into the scenario of a IMRI in a dark matter halo, we briefly review
the origin of intermediate mass black holes.

In recent years, the possibility of intermediate mass black holes (IMBHs) has
gained increasing support both theoretically and observationally, challenging the
previous assumption of a mass gap between stellar black holes (about 1 � 100 M�)
and supermassive black holes (SMBHs, about 106 � 109 M�). The formation of IMBHs
as SMBH "seeds" at high redshift is attractive due to the difficulty of creating a SMBH
in less than a Gyr, as observed in high redshift [362–364] quasars. While a stellar-
mass black hole would need to accrete at the Eddington limit for its entire lifetime to
achieve such mass, a more massive IMBH seed would provide a head start for black
hole growth, allowing them to reach supermassive sizes more quickly. Some obser-
vations have identified potential candidates in the IMBH mass range (102 � 105 M�).
Indeed, if seed formation is truly a high-redshift event that occurs in small halos, due
to the hierarchical structure formation of LCDM, some of these small halos will re-
main small throughout their lifetimes and exist in the local universe as dwarf galax-
ies. Some recent works have found evidence for SMBHs in dwarf galaxies and some
of them have masses diving into the IMBH range [365–367].

There are several proposed theories to explain the origin of SMBH seeds: the
candidates include (i) remnants of Population III stars (102 � 103 M�) that formed
at redshifts between 15 and 30 [368], (ii) direct collapse black holes from a molec-
ular cloud (104 � 106 M�) that formed at redshifts between 10 and 20 [369], and
(iii) runaway collision of objects in dense star clusters (⇠ 103 M�) that formed at
either high or low redshifts [370]. Only the first two cases are relevant for the adia-
batic compression scenario. Each of these models for SMBH seed formation also has
different predicted efficiencies. Population III stars, for instance, are expected to be
widespread in the early universe, forming in every galaxy during its initial epochs
of star formation. On the other hand, direct collapse black holes are anticipated to
be less common, as they require a specific set of circumstances in order to develop.
See [344] for a complete review on IMBHs. The underlying astrophysical origin of
the IMBH has an impact on the dark matter halo which is most likely to host such
IMBH and then undergo adiabatic compression, as we have seen in Section 4.1.3.

If the estimation of the number of IMBHs in the local universe is characterized
by some uncertainties, the estimate of the number of IMRIs in the universe or in the
Milky Way is an ever more complex task that requires detailed knowledge of the
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astrophysical processes that give rise to these events. The difficulty is due to the fact
that it is not clear how a IMRI would form, i.e. how likely is the encounter between a
IMBH and a compact object and the mechanisms leading to the energy loss necessary
to form a bound system. Several authors have estimated the rate at which stellar
remnants are captured by a IMBH, with results between ⇠ 10�6 � 10�8 yr�1 for a
⇠ 106 M� black hole [371–374]. When combined with the uncertainty in the number
density IMBHs, the net predicted number of detections that LISA will make spans
three orders of magnitude, from a few to a few thousand events per year. If these
events do occur, they will result in an extremely strong gravitational wave signal,
that can easily be detected. We refer to [375] for an extensive review on IMRIs.

5.2 IMRI in a Dark Matter Halo

Let us present the system under consideration. We gather the useful information
about adiabatic contraction from Chapter 4.

We investigate an initial (outer) NFW-like profile. The halo’s density profile is
given by the expression

ri =
rs

(r/rs)g(1 + r/rs)3�g
, (5.1)

where rs, rs, and g = 1 are the parameters listed in Table 4.1. This halo formed at
z = 20 with a virial mass of Mvir = 106 M�, as discussed in Eda et al [103]. Our
investigation focuses on the scenario where an intermediate-mass black hole with
a mass of m1 = 103 � 105 M� forms at the center of the halo through the collapse
of Population III stars [368] or a direct collapse of a gas cloud [369]. This formation
process results in the compression of the surrounding dark matter halo, as explained
in the previous Chapter. Such intermediate-mass black holes could potentially serve
as seeds for supermassive black holes that are observed at high redshifts [362–364].

It is worth noting that the compressed halo may be compromised by off-center
formation, merger events, and DM-star interactions [341, 376, 377]. A more detailed
discussion on this topic and an estimate of the number of compressed halos with-
out major merger events can be found in [378, 379]. Since the radius of gravitational
influence of such intermediate black holes is much smaller than rs, the adiabatic com-
pression takes place mainly in the inner part of the halo, where the density profile
can be approximated by a single power-law

ri ⇡ rs

⇣ rs

r

⌘g
. (5.2)

The construction of an initial wave halo is discussed in Section 4.2.1, but it is not
relevant to the following discussion.
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After the adiabatic compression, a dark matter spike has formed. For the particle
halo and the wave halo we consider the density profiles, for r < rsp

r
p
f (r) ⇡ rsp

⇣ rsp

r

⌘gsp
✓

1 � 2RS
r

◆gsp

, (5.3)

rw
f (r) ⇡ rsp

⇣ rsp

r

⌘gsp
✓

1 � Rc

2r

◆gsp

, (5.4)

with RS = 2Gm1 and Rc = a`c(`c + 1), `c taken as a real number from the solution
of Eq. (4.69) with fixed n = max(` + 1, 1

3

p
(` + 1)(` + 2)(2` + 3)), a = 1/GMbhm2

the Bohr radius. These profiles have been motivated in Section 4.1.2 and 4.2.4 re-
spectively. Albeit not exact, the wave profile is a good approximation to study the
IMRI. In any case the huge astrophysical uncertainties in the spike density parame-
ters make up for any factor of 2 differences in the assumed density profile. The spike
parameters as function of the initial halo parameters are given by

gsp =
9 � 2g

4 � g
, (5.5)

rsp = rs


(3 � gsp)0.23�gsp m1

2prsr2
s

� 1
3�g

, (5.6)

rsp = rs


2prsr3

s
(3 � gsp)0.23�gsp m1

� g
3�g

. (5.7)

The last two equations can be easily derived from rsp = ri(rsp) and rsp = [(3 �
gsp)0.23�gsp m1/(2prsp)]1/3.

Consider now the inspiral between the central intermediate-mass black hole and
a solar-mass compact object in a quasi-circular orbit within the compressed wave
halo. The quasi-circular assumption is a good assumption in IMRI embedded in a
dark matter spike [357]. The change of the orbital energy of the companion object
given by

dEo

dt
= �

✓
dEGW

dt
+

dEDF

dt

◆
. (5.8)

This is the master equation describing the evolution of the system due to gravita-
tional wave emission and dynamical friction exerted by the dark matter halo. Here

Eo = �Gm1m2

2r
(5.9)

is the orbital energy of the companion object, with r the distance between the objects.
The first term of Eq. (5.8), dEGW/dt represents the energy loss due to gravitational
wave emission and it is given as [380]

dEGW

dt
=

32
5G

(GMcp fGW)10/3 , (5.10)

where the chirp mass Mc = µ3/5M2/5 with the reduced mass µ = m1m2/(m1 + m2)
and the total mass M = m1 + m2. The gravitational wave frequency is related to the
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orbital frequency fo = vc/(2pr) via

fGW = 2 fo =
1
p

r
GM
r3 . (5.11)

The second term dEDF/dt is due to the friction induced by the dark matter halo,
called dynamical friction and it is the contribution we are mostly interested in. The
dynamical friction energy loss can be written as

dEDF

dt
⇡ 4p(Gm2)2rf(< v)

v
C(v) , (5.12)

where v =
p

GM/r is the circular velocity of the companion object and

rf(< v) = 4p
Z v

0
dv0v02 f (v0) ' 0.6 ⇥ rf(r) , (5.13)

is the mass density of dark matter particles whose velocity is smaller than v. The
numerical factor ' 0.6 depends on the spike power-law index gsp. We study the
origin and the underlying approximations more carefully in Appendix E.

The microscopic nature of dark matter affects both the density profile rf(r) and
the Coulomb logarithm factor C(v). Therefore, it is this dynamical friction energy
loss that can potentially allow us to probe the nature of dark matter. We are inter-
ested in how the dynamical friction changes the waveform of gravitational waves
during five years of inspiral before the coalescence.

We compute the explicit form of the Coulomb logarithm factor C(v) in Appendix E
exploiting the approximation for which the C factor is assumed constant. Note that
we evaluate C in the circular velocity, assuming that the velocity dispersion is negli-
gible with respect to v, as it is the case since s2 = v2/(1 + gsp) < v.

For the particle dark matter one finds [33, 42]

Cp(v) =
1 + L

L
log


1 + L +

q
L(L + 2)

�
�
r

1 +
2
L

. (5.14)

The parameter L is given by

L =
bmax

b90
=

v2r
Gm2

. (5.15)

here bmax is the maximum impact parameter in the dark particle-object collision
and b90 = Gm2/v2 is the impact parameter at which the encounter results in 90�

deflection of the trajectory. In the limit L � 1, the above expression reproduces
Cp ⇡ log L.

For the wave dark matter the Coulomb-logarithm factor becomes [33]

Cw(kr) ⇡ cin(2kr) � 1 +
sin(2kr)

2kr
, (5.16)

where k = mv = 2p/ldB is the wavenumber of dark matter. The cosine integral
is defined as cin(z) =

R z
0 dt (1 � cos t)/t. This expression is valid as long as the de
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Broglie wavelength is larger than the b90, so that the wave interference effects set a
scale for the minimum impact parameter, in formulae, b90/ldB ⌧ 1. Since r5yr, the
orbital separation 5 years before coalesce is the largest radius we are interested in,

b90

ldB
⇠ Gm2m

v
⇠ 0.003

⇣ m
10�13 eV

⌘✓ m2

M�

◆✓
104 M�

m1

◆1/2 ✓ r5yr

10�8 pc

◆1/2
. (5.17)

We see that b90/ldB ⌧ 1 is always satisfied in our parameter space of interest. In the
limit of large distances from the Bohr radius, kr =

p
r/a � 1, we have a Coulomb

log-like expression Cw ⇠ log 2kr.

5.2.1 Backreaction

The orbit of the companion decays more rapidly as a consequence of dynamical
friction. Consequently, the companion transfers energy into the halo, and when this
energy is comparable to the gravitational binding energy, it could alter the density
profile of the halo. The impact of this backreaction on the halo was first studied by
Kavanagh et al [104] through numerical solutions of the kinetic equation. The study
showed that when the mass ratio q = m2/m1 is on the order of 10�4 or larger, the
injected energy on the dark matter spike becomes significant and greatly reduces
the importance of dynamical friction. In this discussion we will refer to particle dark
matter, as the implications for wave dark matter are the same.

To account for the backreaction effect without solving numerically the kinetic
equation, a model was proposed as follows: if the energy loss through dynamical
friction is greater than the gravitational binding energy of the halo at the radial po-
sition r where the companion object is located, the dark matter particles are heated,
leading to a decrease in dark matter density and effectively stopping dynamical
friction. Based on this, it is assumed that the maximum amount of energy that can
be dissipated from the companion is limited by the kinetic energy stored in a halo
shell of thickness Dr at r, which is approximately half of the corresponding gravita-
tional binding energy. The maximum energy loss is then given by min(DEDF, DU/2),
where DU is the gravitational binding energy of the halo shell

DU = ��G[m1 + Mdm(< r)]
r

⇥ 4pr2Dr , (5.18)

with Mdm(< r) = 4p
R r

0 dr0 r02r(r0) the enclosed mass. In other words, we replace
the dynamical friction energy loss in Eq. (5.8) with

dEDF

dt
�! dE0

DF
dt

= min
✓

dEDF

dt
,

1
2

dU
dt

◆
⇡ 1

1/ĖDF + 2/U̇
, (5.19)

where the second expression represents the practical implementation of the model
in our numerical analysis. The factor of two is due to the fact that we assume virial-
ization, i.e. that half of the dark matter binding energy is sufficient kinetic energy to
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evaporate the respective shell. Eq. (5.8) becomes

dEo

dt
=

1
2U0


� ĖDF(E0

o + U0) � ĖGWU0 (5.20)

+
q

[ĖGWU0 + ĖDF(E0
o + U0)]2 � 4ĖGWU0ĖDFE0

o

�

with primes denoting 0 ⌘ d/dr. We call this prescription the improved shell model.
We can observe the impact of the improved shell model prescription on the rel-

ative importance of the dynamical friction with respect to the gravitational wave
emission energy loss and the binding energy. In the top panel of Figure 5.1 we show
the ratio of the dynamical friction energy loss and half the binding energy of par-
ticle the dark matter shell for the three values of m1 = 103, 104, 105 M�, keeping
m2 = M�. The thick lines are for the improved shell model prescription, while thin
lines without treating the backreaction. We only show lines in the range rISCO to r5yr

for each case. We see that in the case in which the black hole is lightest the dynamical
friction, as it is, is several orders of magnitude larger than the binding energy. Our
model avoids that. For larger values m1, this is less of an issue.

In the bottom panel of Figure 5.1, we show the ratio of the gravitational wave
and dynamical friction energy loss to understand the importance of the two contri-
butions of Eq. (5.8) at different radii. In every case, the gravitational wave emission
dominates over the dynamical friction by several orders of magnitude. Without a
proper treatment of backreaction, we would have a dominating dynamical friction
for r ⇠ r5yr in the m1 = 103 M� case.

5.2.2 Discussions

In what follows, we discuss the limits of applicability of Eq. (5.8) and Eq. (5.12) and
other possible effects that could potentially complicate the description of the system.
The discussion about impact parameters and backreaction regard both particle and
wave dark matter in the same way so we discuss the effect for particle dark matter
only. Instead, the quasiparticle contribution and accretion are peculiar in the wave
case. The reader not interested in these subtleties can already skip to Section 5.3.

Impact parameters and dynamical friction

Let us comment on the use of the classical Chandrasekhar [229–231] formula for the
dynamical friction, Eq. (5.12). In the case of particle dark matter, C ⇠ log bmax

bmin
: this

factor regularizes the infrared and ultraviolet logarithmic divergences due to the
long-range nature of gravity. We explain the choices for the maximum and minimum
impact parameters. bmax ⇡ min(r, R) is intuitively determined by the fact that the
system has a finite size R and for a central system of orbital size r, the encounters
with b 2 [r, R] average to zero [46]. Instead, the UV cutoff bmin ⇡ max(b90, d) is
determined by the maximum momentum exchange, corresponding to a 90 degree
deflection of the trajectory b90 = Gm2/v2 or the finite size d of the scatterer m2.

For the wave dark matter, the same arguments can be applied, with the de Broglie
wavelength entering the expression of the Coulomb logarithm [33] as the smallest
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FIGURE 5.1: Top: the ratio of the dynamical friction energy loss in the dark
matter shell and the gravitational binding energy of the same shell as a func-
tion of the m1 � m2 distance r. The thick lines take into account the backre-
action according to the improved shell model, the thin lines do not. Bottom:
same as above, but we show the ratio of the energy loss via gravitational
wave emission and the dynamical friction. In both panels, a particle dark
matter halo is assumed and the only parameter varying is the central black
hole mass m1, m2 = M�, rsp and rsp are found from this value. The bands
show the radii between the ISCO and the distance between the objects 5
years before coalescence.
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scale at which the dark matter responds to the test mass. Indeed, in the limit b90 ⌧
ldB, we can use Eq. (5.16), which, in the limit kr =

p
r/a � 1, gives Cw ⇠ log r/ldB,

consistently with bmax = r and bmin = ldB. We notice that for our binary inspiral
study we are always in the regime where Cw ⇠ log r/ldB: the dark matter spike
forms only for r > Rc = a`c(`c + 1), because modes with ` < `c, that dominate at
radii smaller than Rc, get absorbed in the black hole on a timescale less than 10 Gyr.

One has to bear in mind that the Chandrasekhar formula is strictly valid for an
object traveling in an infinite homogeneous medium. However, it was found that
the Chandrasekhar formula works well also in inhomogeneous medium [381, 382]
up to a factor of two. We will therefore stick for its simplicity and reliability to this
formula for the computation of dynamical friction.

A common approach in galactic astrophysics is to use the Coulomb logarithm, as
a fitting parameter. This was done in [104], where various N-body simulations of the
IMRI in a dark matter spike were performed, finding a dynamical friction roughly
half of the one predicted by the Chandrasekhar formula. The authors explained this
fact exploiting as bmax the radius of gravitational influence of m2, which is smaller
than r, i.e. bmax =

p
m2/m1r < r. This choice, in the particle case, suppresses C by

a factor of 2. However, it is not clear whether the smaller dynamical friction is due
to a smaller maximum impact parameter or, rather, some other effects such as the
self-gravity of the response to the wake caused by the orbiting object [381].

We show in Figure 5.2 that the results of [104] can be equally well fit by the
following formula

log L =
1
2

log
rq

b2
90 + e2

, (5.21)

with e the softening length used in the N-body simulation, whereas in [104]

log L = log
p

m2/m1rq
b2

90 + e2/4
(5.22)

was used. Therefore, in our analysis, we stick to bmax = r, in both particle and wave
cases.

Backreaction: comparison with Kavanagh et al

Our model of backreaction reproduces the numerical result obtained by Kavanagh et
al [104], as shown in Figure 5.3. To compare with the result of [104], we compute the
number-of-cycles difference in the particle dark matter halo. This quantity measures
effectively the phase difference in the gravitational waves emitted by the system
assuming the presence of a particle dark matter halo or neglecting it, see Section 5.3.
The number-of-cycles is defined as

N( f ) =
Z fISCO

f
d f 0 [( f 0/ ḟ 0)p � ( f 0/ ḟ 0)v] . (5.23)
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Ė
D

F
/E

[s
�

1 ]

m1 = 100 M�
m1 = 300 M�
m1 = 1000 M�

log � = 1
2 log rp

b2
90+�2

log � = log
p

m2/m1rp
b2
90+�2

FIGURE 5.2: The dynamical friction energy loss normalized to orbital en-
ergy. The dots are the results from the N-body simulations in [104]. The
solid lines are for our prescription of the Coulomb log times a factor of 1/2
and the dashed lines are obtained with the prescription used in [104]. Differ-
ent colors are for different values of m1, all below the actual range of interest
in our work.

10�2 10�1 100

f [Hz]

101

102

103

104

105

106

N
(f

)

improved shell model

Kavanagh et al (20)

FIGURE 5.3: The difference in the number-of-cycles N( f ) between the cases
with and without a particle dark matter halo, computed from the ISCO. The
solid line is obtained from our analytical modeling (improved shell model)
described in the main text, while the dashed line is the numerical result
taken from [104]. For this figure, we choose m1 = 1400 M�, m2 = 1.4 M�,
gsp = 7/3 and rsp = 226 M�/pc3.



5.2. IMRI in a Dark Matter Halo 141

and corresponds to the gravitational wave phase difference (Fp � Fv)/(2p) as in
Eq. (5.48). In the formula, f is the gravitational wave frequency, related to the sep-
aration r via Eq. (5.11). The change in frequency ḟ = d f /dt can be found trivially
from

dr
dt

= � r
Eo

dEo

dt
. (5.24)

with dEo/dt given by Eq. (5.20). The subscripts "p" and "v" in Eq. (5.23) denote the
evolution of gravitational wave frequencies with and without a particle dark matter
halo, i.e. where Eq. (5.20) contains the friction term and the DM binding energy or
just the gravitational wave energy loss factor, respectively.

Quasiparticle contributions and heating

Granular structures, which represent fluctuations of the gravitational potential, have
been observed in numerical simulations of fuzzy dark matter [29]. These fluctuations
of the wave dark matter halo can be described as quasiparticles with a size of the or-
der of their de Broglie wavelength and a mass given by the mass enclosed within
the de Broglie volume [33,46]. The kinetic energy imparted to stellar objects by these
quasiparticles can be non-negligible, depending on their mass. As we shall see, we
can have an additional contribution to dynamical friction, i.e. a cooling effect, for
which quasiparticles absorb the energy of the compact object and also a stochastic
heating of the orbiting body. Both effects can affect the orbital evolution of com-
panion object and, therefore, potentially alter the gravitational wave emission of the
binary system.

Let us compute the impact of the quasiparticles on the inspiral. We neglect the
gravitational wave emission and focus on the compact object orbiting in the wave
dark matter halo. The energy change of the compact object in the wave limit is given
by the energy diffusion coefficient [46]

dE
dt

= D[DE] . (5.25)

As shown in Appendix C.2, the energy diffusion coefficient is given by

D[DE] = m2

✓
vD[Dvk] +

1
2

D[(Dv)2]

◆
. (5.26)

Adapting Eq. (C.69) and considering m ⌧ m2, meff, for wave dark matter, we have
[46, 47, 355]

vD[Dvk] = �16p2G2

v
log L

Z v

0
dv0 v02


m2 f (v0) + meff feff(v0)

�
, (5.27)

and

1
2

D[(Dv)2] = 16p2G2meff log L
⇢ Z v

0
dv0 v02

v
feff(v) +

Z •

v
dv0 v0 feff(v)

�
(5.28)
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While the first term has negative sign, signaling it is the cooling term, i.e. dynamical
friction, the second term is positive, hence is the heating term. In both terms we
consider the ergodic spike distribution found from the Eddington formula from the
simple spike profile Eq. (4.16), changing variables to velocity, E = v02/2 + Ff =
v2/2 � v2

e /2, where v2
e = 2Gm1/r is the escape velocity from the central black hole,

f (v) =
rf(r)

[pv2
e ]3/2

G(gsp + 1)

G(gsp � 1/2)

⇥
1 � (v/ve)

2⇤gsp�3/2 . (5.29)

and meff and feff are defined in Eq. (C.46) and Eq. (C.45).
Let us consider the first contribution vD[Dvk]. It consists of a term proportional

to the compact object mass and a term proportional to the effective mass. Given
that f and feff are of the same order, the importance of the second term, which we
neglected in Eq. (5.12), is given by the ratio meff/m2. If meff ⌧ m2, then Eq. (5.27)
reproduces Eq. (5.12) (except for some caveats about the C factor, see Appendix E).
To see whether this approximation is justified, we have to compute meff.

meff =
(2p)3

m3

R ve
0 dv0 v02 f 2(v0)
R ve

0 dv0 v02 f (v0)
(5.30)

= rf(r)

" p
2p

mv(r)

#3 
G(gsp + 1)

G(gsp � 1/2)

�2 G(2gsp � 2)

G(2gsp � 1/2)
.

Note that, except the order-one factors depending on gsp, the effective mass is ap-
proximately given by the dark matter mass in the de Broglie volume, with v the
circular velocity around m1. As it is clear from the expression, the quasiparticle mass
increases as r decreases because both rf and v increase, indicating that the quasipar-
ticle mass would be the largest at the smallest radius we probe. This would naturally
be the innermost stable circular orbit, rISCO but we check for r = Rc = a`c(`c + 1)
which is the value for which the dark matter density profile gets suppressed because
of the central black hole absorption. In Figure 5.4, we compute the mass of quasipar-
ticle at the radius Rc. We see that the quasiparticle mass is always much smaller than
m2, therefore the quantum term in Eq. (5.27) is negligible and Eq. (5.12) is justified.

Now we come back to Eq. (5.28), the second term in the diffusion coefficient for
the energy and which provides us stochastic heating of the companion object by the
wave dark matter medium. The relative importance of this term with respect to the
cooling term is again proportional to meff/m2 which we just proved to be very small
on the scales and benchmarks of interest. We conclude that the stochastic heating is
negligible for our discussion.

Accretion

Assuming a constant companion mass m2 may not hold true in the case of a black
hole companion, as it can potentially accrete mass from the surrounding dark matter
halo. This can have significant effects on both the dynamical friction, dEDF/dt µ m2

2,
and the gravitational wave emission, dEGW/dt µ m2

2. The rate at which the mass is
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FIGURE 5.4: The effective mass of quasiparticles for each benchmark choice
of the black hole mass. For all range of the gravitational Bohr radius, the
effective mass is several orders of magnitude smaller than the companion
mass.

accreted is given by

dm2

dt
= rf(sabsv) , (5.31)

where the absorption cross section sabs has been computed by Unruh [383]:

sabs = 16p(Gm2)
2|yv(0)|2 = 16p(Gm2)

2
✓

2pb

1 � e�2pb

◆
(5.32)

= 16p(Gm2)
2 ⇥

(
1 2pb . 1

2pb 2pb & 1
.

Here |yv(0)|2 is the wavefunction at the position of the companion object, i.e. the
Sommerfeld enhancement factor of Eq. (3.29). Here b = Gm2m/v, so the behavior
depends on the velocity v, whether it is larger or smaller than the critical value vcr

vcr = 0.004 ⇥
✓

m2

M�

◆⇣ m
10�13 eV

⌘
. (5.33)

The circular velocity for r < r5yr is larger than the critical value for all the central
black hole masses m1 > 103 M�, therefore we are always in the regime for which

dm2

dt
⇡ 16p(Gm2)

2rf(r) . (5.34)

The total value of the accreted dark matter mass will depend on the inspiralling
pattern: since the density drastically increases as the companion gets closer to the
central black hole, the crucial information to estimate the total accretion is dr/dt,
which is given taking into account the gravitational wave and dynamical friction
energy losses through Eq. (5.8), i.e. dEo/dt = �Eo/r ⇥ dr/dt. We therefore need
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to check numerically if Dm2/m2 ⌧ 1 over five years before the coalescence. We
compute

Dm2 =
Z rISCO

r5yr

dr
dm2

dt


dr
dt

��1
. (5.35)

We find that Dm2/m2 ⇠ O(10�4) in the parameter space under consideration, as
shown in Figure 5.5. More detailed analyses can be found in [384, 385], where the
dynamical friction and the accretion effect are derived in a consistent framework.

5.3 Dephasing of Gravitational Waves

In this Section, we investigate how the dynamical friction from the compressed halo
affects the waveform of the emitted gravitational waves (GW).

We refer to Appendix F for the explicit computation of the waveform. The detec-
tor output without noise is h( f ) = F+h+( f ) + F⇥h⇥( f ), where F+,⇥ are the detector
pattern functions and h+,⇥ are the strains for each polarization state. For simplicity,
we consider the strain averaged over the sky position, polarization, and inclination
angle. We then obtain [386]

h( f ) =

r
4
5

A( f )eiY( f ) , (5.36)
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with amplitude and strain given by

A( f ) =
2

DL

(GMc)5/3(p f )2/3

ḟ 1/2
, (5.37)

Y( f ) = 2p[t0 + t( f )] � F0 � F( f ) , (5.38)

where DL is the luminosity distance of the event, t0 and F0 are some reference time
and constant phase factor, and

t( f ) =
Z f

d f 0 (1/ ḟ 0) , (5.39)

F( f ) = 2p
Z f

d f 0 ( f 0/ ḟ 0) . (5.40)

The phase F here is the key quantity to study the contribution due to dynamical
friction, as it enters the time evolution of the GW frequency, which depends on the
energy loss formula Eq. (5.8), that contains the dark-matter-dependent dynamical
friction contribution Eq. (5.12).

Vacuum

If there is no dark matter, Ėo = �ĖGW and we obtain the compact expression

ḟ
f

����
v

=
96
5

(GMc)
5/3(p f )8/3 , (5.41)

from which we can obtain the time and phase referred to coalescence (t0, F0):

tv( f ) = � 5
8p f

(8pGMc f )�5/3 , (5.42)

Fv( f ) = �2(8pGMc f )�5/3 . (5.43)

Since the energy loss via gravitational wave emission largely dominates the dy-
namics of the system, the time to coalescence will not depend strongly on the dark
matter profile around the black hole. Thanks to this, we can find a formula for the
orbital distance five years before the coalescence r5yr.

We first find the frequency f5yr of the GW emitted when m1 and m2 are separated
by the distance r5yr; assuming f (t0) � f5yr, we get

f5yr ⇡ 1
8pGMc

✓
GMc

yr

◆3/8
(5.44)

and using Eq. (5.11),

r5yr ⇡ 4yr1/4(GM)1/3(GMc)
5/12 (5.45)

' 3 ⇥ 10�8 pc
✓

m2

M�

◆1/4 ✓ m1

104 M�

◆1/2
, (5.46)

where in the last line we assume m1 � m2. We see that as long as the hierarchy
between m1 and m2 is huge, the 5 years distance depends only weakly on both m1
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and m2. Using Eq. (5.11), we deduce that the above values of r5yr corresponds to the
GW frequency

f5yr =
1
p

s
GM
r3

5yr
' 0.01 Hz

✓
m1

104 M�

◆�1/4 ✓ m2

M�

◆�3/4
. (5.47)

The weak dependence of f5yr on m1 and m2 in the case m1 � m2, that is characteristic
of the IMRIs, has very important consequences.

Remember that the dynamical friction is most important, compared to the GW
emission energy loss only when the sources are further away (see the bottom panel
of Figure 5.1 for a comparison of the GW and friction contributions): this implies
that the frequency band close to f5yr is the most sensitive to the presence and the
nature of dark matter. This frequency being around 0.01 Hz makes LISA [110] the
ideal detector to target this effect in IMRIs; future detectors, sensitive to higher fre-
quency GW such as the Einstein Telescope [380] will be able to detect the final phase
of the coalescence and the merger, which are by many orders of magnitude domi-
nated by energy loss via the GW emission, which is an in-vacuum effect, not due
to the DM compressed halo. On the other hand, detectors sensitive to slightly lower
frequencies, in the milli-Hz could be relevant for inspirals with m1 � 105M�, but
they would imply a much longer observation time. We will focus on the case of LISA
for simplicity.

Dark matter

Since the dynamical friction modifies the gravitational wave frequency evolution
through Eq (5.8), it affects the waveform by changing the amplitude A( f ) and, most
importantly, the phase Y( f ).

The effect on the amplitude A( f ) is found to be small. When considering the
inspiral’s evolution several years before coalescence, as shown in the bottom panel
of Figure 5.1, we have demonstrated that the orbital energy loss from dynamical
friction is less significant than the energy loss due to gravitational wave emission.
This means that the frequency evolution ḟ / f is dominated by the gravitational wave
emission, and thus, the gravitational wave energy loss dominates A( f ) at leading
order. The role of dynamical friction in determining A( f ) is therefore sub-leading.

However, the phase can be considerably altered by dynamical friction as it ac-
cumulates over time. To illustrate this, we compute the phase difference between
the gravitational waves from the black hole binary with and without the dynamical
friction from the compressed halo

F � Fv = 2p
Z fISCO

f
d f 0


( f 0/ ḟ 0) � ( f 0/ ḟ 0)v

�
, (5.48)

where ( f / ḟ )v is the gravitational wave frequency evolution without the dynamical
friction, i.e. Eq. (5.41). The phase difference, or dephasing, for the particle halo and
wave halo with respect to the vacuum case is presented in the top panel of Figure 5.6.
It is observed that the phase difference can accumulate over several years to become
much larger than unity by many orders of magnitude.
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In the bottom panel of Figure 5.6, we demonstrate the phase difference between
gravitational waves from the wave halo and the particle halo

Fw � Fp = 2p
Z fISCO

f
d f 0


( f 0/ ḟ 0)w � ( f 0/ ḟ 0)p

�
. (5.49)

The selected Bohr radii lead to a significant phase difference, primarily due to the
variations in the density profile and Coulomb logarithm factor as in Eq. 5.12.

5.4 Statistical analysis

Two natural questions arise: (i) does the phase difference in the emitted gravita-
tional waves that we studied in the previous Section allow us to reconstruct the
compressed wave halo parameters, such as the Bohr radius or the wave dark matter
mass? (ii) are we able to distinguish the wave dark matter spike from the particle
dark matter compressed halo? To answer these questions, we need to perform a
proper statistical analysis by means of a matched filtering technique with the sensi-
tivity of LISA [110].

5.4.1 Parameter estimation

Let us start from the first question, by performing a parameter estimation, to un-
derstand up to which confidence level we can detect a wave dark matter spike and
reconstruct the parameters of the binary and the halo.

There are 5 parameters of interest related to the system:

q = {Mc, q, r6, gsp, a} , (5.50)

where Mc = (m1m2)3/5/(m1 + m2)1/5 is the chirp mass, q = m2/m1 is the mass
ratio, gsp is the power law index of the compressed halo profile and a is the grav-
itational Bohr radius. Instead of rsp, we use the density at r6 = 10�6 pc and r6 =
rsp(rsp/r6)gsp following [105]. There are three more parameters in the waveform
qc = {DL, t0, F0}, called extrinsic parameters, but for the parameter estimation we
maximize the likelihood with respect to these parameters in order to reduce the com-
putational cost.

The detector output is d(t) = h(t) + n(t) where h(t) is the gravitational wave
strain, see Eq. (5.36), and n(t) is the Gaussian detector noise. Under the Gaussian
noise assumption, the likelihood function is

L(q, qc) = N exp


� 1
2
(d � h|d � h)

�
, (5.51)

where N is the normalization constant. The inner product (a|b) is defined as

(a|b) = Re
Z •

�•
d f

a?( f )b( f )
1
2 Sn( f )

. (5.52)
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Mc [M�] q r6 [1015M�/pc3] gsp a [pc] DL [Mpc]
qtrue 39.8 10�4 25 7/3 10�11 203

TABLE 5.1: Benchmark values for the wave dark matter spike for the pa-
rameter estimation.

Here Sn( f ) is the noise power spectral density defined as

⌦
n?( f 0)n( f )

↵
=

1
2

d( f � f 0)Sn( f ) . (5.53)

For the LISA sensitivity, we use the Sn( f ) provided in Robson et al [386].
We maximize the likelihood L(q, qc) over the extrinsic parameters qc. The maxi-

mization over DL can be done analytically. We obtain

L(q, t0, F0) = exp


(d|h)2

2(h|h)

�
. (5.54)

Notice that the signal to noise ratio

SNR =
q

(h|h) (5.55)

is independent on t0 and F0 since these quantities only appear in the phase Y of h( f ).
Therefore we need to maximize (d|h) only. For F0 it is enough to replace the real
part selection in the definition of the inner product with an absolute value because
the phase maximizing the scalar product will be the one such that the projection
to the real axis is exactly the absolute value of the complex number. Instead, for t0,
since (d|h) is an inverse Fourier transform as a function of t0, we can just maximize
over t0 effectively taking the maximum value. After these steps, the log-likelihood
becomes [387]

log L =
2 maxt0

��R •
0 d f e2pi f t0 h?( f )d( f )/Sn( f )

��2
R •

0 d f |h( f )|2/Sn( f )
. (5.56)

Here the waveform should be understood as h( f ; q) = h( f ; q)|F0=0, t0=0. The quan-
tity in the numerator is indeed the maximum of the Fourier transform of h?d/Sn.

For the parameter estimation, we inject the signal according to the compressed
wave dark matter halo, while ignoring the detector noise, i.e. we set d = h(qtrue)
with qtrue given by the benchmark values in Table 5.1. In terms of black hole masses,
the chosen qtrue corresponds to m1 = 104 M� and m2 = M�. The density r6 is
obtained from the benchmark halo in Eq. (5.1) with parameters given in Table 4.1
and m1 = 104 M�. We assume that LISA measures the last five years of inspiral
before the coalescence. Therefore we impose a lower bound on the frequency inte-
gration in the log-likelihood Eq. (5.56) flower = f5yr. The upper bound is chosen to be
fupper = min(1 Hz, fISCO), with fISCO the frequency of the gravitational wave at the
innermost stable circular orbit rISCO = 6Gm1. For the numerical sampling of the pos-
terior distribution, we use the publicly available nested sampler dynesty [388]. The
benchmark in Table 5.1 has DL chosen such that the signal-to-noise ratio is SNR ' 15.
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Figure 5.7 displays the 1D and 2D marginalized posterior distribution of the
wave dark halo in the benchmark scenario. The 1D marginalized distribution of cer-
tain parameters such as the chirp mass (Mc), mass ratio (q), and Bohr radius (a)
exhibit resolved peaks near the true value with relatively small errors. However,
the posterior distribution for this scenario does not provide strong information on
the other two parameters, r6 and gsp. We also observe strong degeneracy among
parameters, such as between r6 and gsp, and between r6 and log10 q. These paramet-
ric degeneracies can be understood looking at the form of the density profile in the
dynamical friction term.

From this likelihood analysis and Figure 5.7, we see that the compressed wave
halo chosen as a benchmark can be successfully reconstructed with five years of
gravitational wave observations before the coalescence. The value of the wave dark
matter mass that corresponds to the gravitational Bohr radius of a = 10�11pc is
m ' 10�13 eV. The implication is that we are able to both detect the wave dark
matter spike and also have a strong, and model-independent, hint on the value of
the wave dark matter mass from the gravitational waves emitted by the IMRI.

5.4.2 Distinguishing the wave spike from the particle spike

We move on to answering the second question quantitatively. For which regions of
the parameter space we can successfully distinguish the wave dark matter spike
from the particle one? The qualitative answer can be guessed from the behavior of
the wave spike density profile varying the Bohr radius, see Figure 4.10. If the Bohr
radius is too small the density profile of the wave and the particle are very similar
so the only difference between the two scenario is the Coulomb log factor C. On
the other hand, if the Bohr radius is larger, the density profile is suppressed and the
effect of dynamical friction might be not enough to even detect the spike.

The quantitative answer relies on a Bayesian analysis. We compute the Bayes
factor to see if the gravitational waves from wave halo can be distinguished from
those of a particle halo. The Bayes factor is defined as

B(d) =
Zw(d)
Zp(d)

, (5.57)

where the evidence Zi is given by

Zi =
Z

dqLi(q)pi(q) , (5.58)

and i = w, p, representing the wave and the particle spike models, respectively. Here
pi(q) is the prior on the parameters. Since we are integrating over the parameters,
the choice of this prior is crucial.

To compute the evidence, we inject the signal according to a wave dark matter
halo, and compute the evidence with the wave halo model and also with the particle
halo model. For the Bayes factor computation, we choose three benchmarks, labeled
B1, B2 and B3 and shown in Table 5.2.

B1 corresponds to m1 = 1400 M� and m2 = 1.4M�, as in [105], while B3 cor-
responds to m1 = 105 M� and m2 = M�. B2 is the same as the one considered for
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FIGURE 5.7: Posterior distribution for an IMRI within the compressed wave
halo. The signal-to-noise ratio is SNR ' 15. The numbers quoted in the
panel titles of the corner plot on the top of the 1D histograms represents
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1.5, 2s levels. The compressed wave halo can be successfully reconstructed
with five years of gravitational wave observations before the coalescence.
The value of the wave dark matter mass that corresponds to a = 10�11pc is
m ' 10�13 eV.

Mc [M�] q r6 [1015M�/pc3] gsp DL [Mpc]
B1 22.2 10�3 6.8 7/3 83
B2 39.8 10�4 25 7/3 203
B3 100 10�5 120 7/3 750

TABLE 5.2: Benchmark scenarios for the evidence computation.
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FIGURE 5.8: The difference of the log-evidence between the wave and the
particle halo models, when the input is generated according to a black hole
binary in a compressed wave dark matter halo. We consider the benchmark
scenarios listed in Table 5.2.

the parameter estimation, see Table 5.1. We do not set a value for the Bohr radius for
each benchmark because we scan a 2 [10�12, 2 ⇥ 10�10] pc, as it is what determines
the difference between particle and wave density profile. For all the benchmarks
we set the prior range as Mc/M� = Mc,true/M� ± 10�2, log10 q = log10 qtrue ± 0.5,
gsp 2 [2.25, 2.5] and log10(a/pc) 2 [�13, �9]. For r6 we choose r6/(1015M�/pc3) 2
[0, 20], [0, 100], [0, 500] for B1, B2, B3, respectively. Notice that all our models include
the vacuum case, for which r6 = 0.

The Bayes factor is shown in Figure 5.8. In all cases, if the Bohr radius is suffi-
ciently small, the log-Bayes factor approaches zero. This means that even though the
data is generated according to the wave model, the particle halo can still fit the data.
This is because, as expected, the wave density profile becomes similar to that of the
particle halo for small Bohr radius. Although there will always be some difference
due to the Coulomb logarithm, it is not significant enough to distinguish between
the wave and particle halos. However, as the gravitational Bohr radius increases, the
log-Bayes factor increases as well, indicating a preference for the wave model over
the particle model. Specifically, for B2, the log-Bayes factor reaches values of around
O(1) at relatively small Bohr radius, roughly few ⇥ 10�12 pc. This suggests that the
most promising physics scenarios for identifying the wave nature of dark matter
from gravitational wave observations occur at benchmark values similar to those of
B2. This is important, because the fact that the log-Bayes factor increases at large
values of a, and so the wave spike becomes distinguishable from the particle one,
can be due to the fact that the density profile is more and more suppressed, and then
similar to vacuum. Therefore, a large log-Bayes factor may not be directly associated
with a prominent detection of a wave spike halo. For B2 instead, the log-Bayes factor
is large enough also at relatively small Bohr radii and as we saw in the parameter
estimation Section, the wave spike can be distinguished from the vacuum at 2s (see
Figure 5.7 for the reconstruction of the r6 and a parameters).
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5.5 Summary and conclusions

After the discussion about the adiabatic compression of wave dark matter in Chap-
ter 4, we explored an exciting astrophysical application involving the detection of
gravitational waves from intermediate mass-ratio inspirals.

After reviewing the present knowledge about intermediate mass black holes and
binaries in Section 5.1, we studied the intermediate mass ratio inspiral of a binary
embedded in a compressed dark matter halo. In the presence of compressed wave
dark matter, the inspiral experiences energy loss through dynamical friction. This is
an additional dissipation effect with respect to the sole energy loss via GW emission,
as shown in Eq. (5.8).

We study in detail this effect in Section 5.2 with the aid of the additional material
in Appendix E. We arrived to a simple description of dynamical friction by means of
Eq. (5.12) that encodes the nature of dark matter through the density profile, stud-
ied in Section 4.2 and the C factor, carefully detailed in Appendix E. By analyzing
the density and Coulomb logarithm factor in the dynamical friction term, we found
that the companion object experiences a distinctive drag force from the wave halo,
compared to what it would experience in a particle halo.

It is important to notice that, for the cases under consideration, the feedback of
the inspiral on the compressed dark matter halo, both in the particle and wave case,
has to be taken into account. In Section 5.2.1 we use a simple analytical model based
on an upper bound on the dynamical friction imposed by the realistic condition that
dynamical friction is bounded from above by the gravitational binding energy of the
halo, since particle excited by the inspirals cannot contribute to the drag forc.

The simple formula of Eq. (5.8), with the backreaction prescription, needs fur-
ther discussions. First of all, Eq. (5.8) neglects some effects which can be relevant
in different regimes, such as cooling and heating by the granules, or quasiparticles,
that characterize wave dark matter with large de Broglie wavelengths. We carefully
check that these effects are negligible in the cases under consideration and that the
dynamical friction Eq. (5.12) is the dominant contribution that depends on the na-
ture of dark matter. Another possible phenomenon that can occur during the IMRI
inside a dark matter halo and spoil the simple description via Eq. (5.8), is the accre-
tion of dark matter by the companion object in the case it is a black hole: we check
that accretion is not relevant in the parameter space under examination.

In Section 5.3, with details in Appendix F, we derived the waveform of the grav-
itational waves emitted by the IMRI and we studied the dephasing of gravitational
wave signals which tells us how the wave dark matter spike can be detected through
observations. In Section 5.4, we performed a likelihood analysis with matched fil-
tering technique in order to understand how much information about the binary
and the dark matter we can extract via the observation of gravitational waves. We
demonstrated that the wave halo can be reconstructed through future LISA mission
observations, for certain benchmark values, and can be distinguished from the par-
ticle halo. This presents an intriguing opportunity to explore the microscopic nature
of dark matter.

While we focused on the wave halo in this study, it would be worthwhile to in-
vestigate other types of particle dark matter, such as self-interacting dark matter or
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degenerate fermionic dark matter, which can form cored profiles and predict unique
Coulomb logarithm factors for dynamical friction. Such studies could potentially re-
veal new insights into the properties of dark matter and its behavior in astrophysical
systems.
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From the phenomenological point of view, the idea that dark matter exhibits wave
features on astrophysical scales is intriguing [21,33]. A significant portion of the dark
matter mass spectrum is populated by light bosons with a macroscopic, and perhaps
even astronomical-sized, de Broglie wavelength and large occupation numbers in
phase space. As a result, dark matter exhibits wave properties such as interference
effects, oscillation patterns, granularity, and order-one density fluctuations that can
potentially be observed in astrophysical systems through the gravitational interac-
tion, which is currently the only known interaction between visible and dark matter.

In cases where dark matter does not interact with standard model particles via
any other means than gravity, wave signatures could offer valuable information on
the mass of these elusive particles. Astrophysical observations play a critical role
in the study of wave dark matter due to (i) the enormous range of length scales
involved, which allows us to explore a wide range of particle masses, and (ii) the
diversity of environmental settings in which the dark matter phase space distribu-
tion can be peculiarly distorted to produce an observational signature (e.g. higher
density, higher or lower velocities, and dispersion). It is clear that investigating the
wave-like properties of dark matter offers an exciting avenue for exploring the mys-
teries of the universe.

In this thesis, we investigated the phenomenology of dark matter based only on
the minimal assumptions that it is constituted by ultra-light bosons with mass in
the right ballpark to produce wave effects on the studied systems. In particular, we
considered the behavior of wave dark matter under the gravitational influence of
a massive body. We developed a formalism to describe the response of wave dark
matter to an external gravitational potential, both in the solar system [106] and in the
case of a self-gravitating dark matter halo undergoing adiabatic compression [107]
due to the growth of a central black hole or the gravitational collapse of a large gas
cloud. In the solar system, we predicted distortions in the local density and spectrum
of wave dark matter, which could be of interest for direct detection. In the case of
a compressed wave halo, we proposed an intriguing idea to gain some hints on
the microscopic nature of dark matter. An intermediate mass ratio inspiral, i.e. a
binary composed of a central black hole and a compact companion, can probe the
inner part of a compressed wave halo, where the dark matter density is sufficiently
high to exert a significant dynamical friction force on the inspiralling object. This
dragging effect is dependent on the wave nature of dark matter. It could be detected
by studying the gravitational waves emitted by the binary. In fact, we derived the
dephasing with respect to the case in which a compressed halo is absent, or the dark
matter lacks wave properties.
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Below, we synthesize the main results of this work and we discuss possible fu-
ture research directions.

Chapter 1 provided a comprehensive overview of dark matter, setting the stage
for our investigations into its potential wave nature in Chapter 2. We briefly de-
scribed several compelling particle physics models that predict the existence of ul-
tralight bosons capable of exhibiting wave properties. An important feature of such
candidates is their stochastic nature: in Section 2.3 we provide a formalism to de-
scribe the wave dark matter as a linear superposition of wave mode functions with
complex amplitudes drawn from a known probability distribution. The knowledge
of the density matrix and the high occupation number, which allowed to neglect the
non-commutativity of the field, led us to a compact description of the wave dark
matter field, exploited in concrete physical applications [106, 107].

While the complex coefficients describe the stochasticity of the field, the wave
functions contain the response of the wave dark matter to gravity. In the next sec-
tions, we reviewed the interplay between the wave dark matter and gravity de-
scribed via the Schrödinger-Poisson system [33] and discussed the main phenomeno-
logical consequences, such as the existence of a stable ground state, known as soliton,
and the process of relaxation, or gravitational cooling [219, 389–391], which leads to
the formation of a core in the center of dark matter halos, confirmed by numerical
simulations [29, 108, 219, 346]. These concepts are the main theoretical background
for this thesis. We concluded by summarizing observational constraints and the sta-
tus of experimental searches of ultra-light dark matter.

In Chapter 3, we investigated the phenomenon of gravitational focusing i.e. the
deformation of the dark matter distribution by the gravitational field of a massive
object traveling inside the dark matter medium. In particular, gravity distorts the
dark matter phase space leading to an overdensity tail behind the massive body.
While already known in literature as the reason for the dynamical friction force on
an object moving in a homogeneous medium of massive particles [229–231], this
focusing effect was so far only studied for particle dark matter [68, 99] or in regimes
in which the dark matter wavelength was negligible [213]. Therefore we studied for
the first time the impact of the wave dark matter nature in the focusing effect, finding
different features in both the overdensity field and the power spectrum. We also
successfully retrieved the particle results in the large distance, or small de Broglie
wavelength limit.

As an application, we focused on the local dark matter and the distortions caused
by the Sun. We extended the analysis to any possible component of the local dark
matter, including the virialized halo component as well as substructures such as
the so-called Gaia sausage [56, 57], a dark disk component [64, 337–340], and dark
streams [63]. Those are all well-motivated by the recent observation of specific kine-
matic features in the Milky Way stars [57, 63] under the reasonable assumption that
the dark matter shares the same phase-space properties of these stars [58, 59]. The
phenomenon of focusing is particularly relevant for "slow" dark matter particles and
the wave features are most apparent in cold structures, where the small-wavelength
oscillations are not "washed away" by a large velocity dispersion. Therefore, despite
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constituting just a few percent or more of the local dark matter, some prograde dark
matter streams could give us valuable information about the nature of the dark mat-
ter. It warrants further investigation to develop a map of all the dark matter sub-
structures in the solar neighborhood to see which ones are the most promising for
wave dark matter detection. Upon detection, the wave nature could prove crucial
to develop a detailed map of local dark matter and a precious tool for Milky Way
archaeology.

An important aid to detection could come from a network of wave dark matter
detectors [332, 333]. Making can make use of the wave DM phase at different loca-
tions can provide information on the directionality of the dark matter and angular
distribution of substructures. It would be therefore interesting to compute correla-
tion of wave fields at different locations with the formalism developed in Chapter 3.

A necessary extension of the formalism would include effects due to the orbital
motion of the observer on Earth. On timescales longer than the orbital period and
the coherence timescale of wave dark matter, side-bands in the frequency space due
to the frequency modulation induced by the orbital motion of Earth and the oscil-
lations of the wave function would appear in the spectrum. Additionally, once the
rotation of the Earth is included, the frequency space analysis for experiments sen-
sitive to the gradient of the wave field can be much more complicated, as outlined
in [215].

We investigated another instance of distortion of the distribution of dark matter
in Chapter 4. Due to conservation laws, the inner part of a dark matter halo can
be compressed to form a so-called "spike" if an adiabatically growing black hole or a
collapsing molecular cloud is located in the center of the halo. This phenomenon has
been studied in the literature for particle, WIMP-like dark matter [99] as the larger
dark matter density would enhance the annihilation rate into SM states, e.g. gamma
rays. For the first time in the literature, we extended the formalism to study the
interplay between the adiabatic compression and the wave nature of dark matter. We
constructed the wave halo as a superposition of eigenfunctions as in [93, 109] with
appropriate occupation numbers to reproduce the profile observed in simulations
[219, 389–391]. For the discussion, we focused on the ultralight end of the spectrum,
considering fuzzy dark matter halos, but the scaling symmetry of the Schrödinger-
Poisson system allowed us to consider larger masses under the appropriate scales.
The soliton size in this case is determined by the typical wavelength of dark matter
in the halo, as explained in Section 4.2.1: this prescription is different from the one of
fuzzy dark matter halos [108], for which the typical de Broglie wavelength is of the
same scale of the halo virial radius.

Due to the characteristic length scales of the system we considered, where an
intermediate mass black hole is responsible for the compression of the halo, we had
to take into account wave dark matter masses several orders of magnitude larger
than the fuzzy dark matter case, i.e. m ⇠ 10�13 eV. For these masses, the relaxation
time scale at small radii is short enough so that we are sure a soliton has formed in
the inner region of the halo. However, the lifetime of such low angular momentum
states is much shorter than the age of the halo and they are absorbed by the central
black hole. This led us to a peculiar density profile for the compressed wave dark
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matter halo as a broken power law (see Figure 4.10), at small radii µ r2`c with `c the
lowest angular momentum of the surviving states, and at large radii µ r�gsp as in
the particle case.

Further investigation reveals that the compressed halo can relax in timescales
less than the Gyr if, for a fixed black hole mass, the mass of the wave dark matter
is small enough, as shown in Figure 4.12 for our benchmarks. This would replenish
the low momentum states which would be absorbed into the black hole spoiling
the profile discussed above. We therefore limit our analysis to the cases in which
the inner part of the halo does not have the time to relax. It would be of interest to
understand the relaxation process in presence of a central black hole swallowing the
low angular momentum modes and to predict the resulting power law index of the
steady configuration: this profile could have some important universal features and
attractive phenomenological properties.

Another question of interest is how wave dark matter self-interactions would
affect the adiabatic compression of a wave dark matter halo. For a suitable self-
interaction cross section we expect a core at some radius as self-annihilations would
forbid high densities. This scenarios are worth to be explored, specially in light of
possible interesting phenomenological consequences.

A concrete astrophysical scenario in which a compressed wave dark matter halo
can be observed is described in Chapter 5. The idea is simple and it was already
explored for particle dark matter [102–105]: if a compact object orbits around the
intermediate-mass black hole it can probe the inner part of the halo and we can get
information on the dark matter environment through the emission of gravitational
waves. These intermediate-mass-ratio inspirals (IMRIs) are one of the primary tar-
gets of the LISA [110] mission. Due to the high dark matter density, if the halo had
been compressed, the orbiting object would experience a dragging force via dynam-
ical friction which would leave a detectable imprint in the gravitational wave signal.
Indeed, once the binary has been detected, in the scenarios under consideration, the
predicted waveform would be out-of-phase from the no-dark matter scenario by
several orders of magnitude. What is even more remarkable is that the dynamical
friction force depends naturally on the dark matter model under assumption in two
ways: (i) via the density profile, as we saw in Chapter 4, the wave profile is distinct
from the particle one at sufficiently low masses and (ii) via the Coulomb logarithm
which has to do with the range of impact parameters over which the encounters
between the dark matter and the companion object contribute to the friction; the
smallest scale is given by the de Broglie wavelength which replaces the maximum
momentum transfer for a 90 degree collision.

Other contributions to the dynamical evolution of the system could come more
directly from the wave nature of dark matter itself: order-one fluctuations in the den-
sity of the size of the de Broglie wavelength could exchange energy with the orbiting
compact object. We checked that in the case under consideration these effects, such
as stochasting heating and cooling via quasiparticles can be neglected as they are
suppressed by the ratio of the quasiparticle mass over the companion mass. How-
ever, these effects can be relevant in other systems, e.g in the case we consider a more
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massive central black hole. Another effect is the accretion of dark matter by the com-
panion object in the case it is a black hole. We showed that this effect is negligible for
sufficiently massive central black holes. Another problem that can arise if the central
black hole is not massive enough, say less than 104M�, is the feedback of the inspiral
on the dark matter halo: the energy lost by the companion because of the dynami-
cal friction is injected into the dark matter and these can be energetic enough to be
excited to outer shells. Therefore we have to realistically impose that the dynamical
friction energy loss is bounded from above by the gravitational binding energy of
the dark matter.

It would be of interest to further verify our backreaction model with some N-
body simulations of an IMRI in a dark matter halo. A computational approach could
also shed some light on some ambiguities in the choice of the appropriate maximum
impact parameter which is important for a correct modeling of the dynamical fric-
tion. A more challenging investigation would be to perform a simulation of wave
dark matter in such a system.

Assuming our simple analytical model of the density profile and dynamical fric-
tion for the wave dark matter, we performed a proof of concept statistical analysis
of the gravitational wave signal that a detector as LISA could be dealing with. We
exploited the matched filtering technique and we constructed a likelihood function
to perform a parameter estimation. We wanted to answer the simple question of
how well we can reconstruct the parameters of the compressed halo and the wave
dark matter mass, that we parameterized via the gravitational Bohr radius, and in
which parameter space. The answer we obtained is shown in Figure 5.7: for a IMRI
detected with signal-to-noise ratio 15 with five years of gravitational wave observa-
tion before its coalescence, a dark matter spike would be detected at the 2s level and
we would obtain a tight constrain on the gravitational Bohr radius for a ⇠ 10�11 pc,
corresponding to m ⇠ 10�13 eV.

We showed that this specific benchmark represents the most promising scenario
for identifying the nature of dark matter in this kind of systems through a Bayesian
analysis. We computed the evidence of a wave halo against the evidence of a particle
halo for data generated according to the wave model. We found out that our bench-
mark lies in a sweet spot where the wave compressed halo can be distinguished from
the particle spike as well as being consistent with out assumptions on the wave pro-
file and not being suppressed enough to be indistinguishable from the vacuum case.

While we concentrated our interest on the wave dark matter in this work, the
analysis could be extended to other types of particle dark matter. Models involving
self interactions, for instance, can form a core and possibly be distinguished from
the non-interacting scenario. It would be interesting to extensively study the dark
matter zoo to explore which differences can arise in the density profile and in the
dynamical friction that can be hopefully observed through a detection of gravita-
tional waves dephasing.

The prospect of uncovering the wave-like properties of dark matter through
gravitational wave observation is an intriguing one, to say the least. With the im-
pressive precision of laser interferometry employed by existing gravitational wave
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detectors like LIGO [392], VIRGO [393], and KAGRA [394] as well as upcoming mis-
sions like LISA [110] and the Einstein Telescope [395], we now have unprecedented
opportunities to investigate the wave-like behavior of dark matter across different
scales. Moreover, the study of various astrophysical systems could provide crucial
insights into the phenomenology of wave dark matter, offering valuable clues for
experimental searches and setting important constraints on the mass of dark mat-
ter. The potential for discovering the wave-like properties of dark matter through
gravitational wave observation is a tantalizing prospect that should be further in-
vestigated.
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Appendix A

Scalar matter field and gravity

In this Appendix, we derive useful equations for the interaction of a scalar field
with gravity. To be general and cover a variety of cases, we consider an expanding
and perturbed universe. Explicitly, we treat the Friedmann-Robertson-Walker metric
with scalar perturbations in the Newtonian gauge, that is

ds2 = [1 + 2F(t, x)]dt2 � a2(t)[1 � 2Y(t, x)]dijdxidxj. (A.1)

Here a(t) is the scale factor, parameterizing the expansion of the universe and F, Y
are the scalar perturbations. In this background, we consider a spinless bosonic dark
matter particle with a mass m, minimally coupled to gravity, with action

S =
Z

d4x
p

�g

"
M2

pl

2
R + Lf

#
, (A.2)

where Mpl = (8pG)�1/2 is the reduced Planck mass and

Lf =
1
2

gµn(∂µf)(∂nf) � 1
2

m2f2 , (A.3)

is the Lagrangian for the free scalar field, which constitutes the only matter content
of our theory under consideration.

In the following Sections, we derive the field equations, i.e. the Einstein equations
for the above metric and the equation of motion for the scalar field. For each, we
specify the cases and approximation of interest.

A.1 Einstein equations

The Einstein equations are derived varying the action in Eq. (A.2) with respect to the
metric and imposing dS = 0

Gµn = Rµn � 1
2

gµnR = 8pGTµn . (A.4)

Here Rµn is the Ricci tensor, R is the Ricci scalar and Tµn is th energy-momentum
tensor for f, which is obtained from the variation of the Lagrangian in Eq. (A.3)

Tµn ⌘ gµnLf � 2
dLf

dgµn = (∂µf)(∂nf) � gµnLf . (A.5)
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We are particularly interested in the 00 component and in the trace of the ij compo-
nents of the Einstein equations

G00 = 8pGr , (A.6)

Tr[Gij] = 8pG Tr[Tij] . (A.7)

Let us write the left hand-sides of these equations explicitly

G00 = 3H2
✓

1 � 2
H

∂0Y
◆

+
2
a2 r2Y , (A.8)

Tr[Gij] = 2∂2
0Y + 2r2(F � Y) (A.9)

�(6aä + 3a2H2)[1 � (F + Y)] + 2H∂0(F + 3Y) . (A.10)

We compute the components of the energy momentum tensor explicitly

r = T00 =
1
2


(∂0f)2 +

1
a2 [1 + 2(F + Y)](rf)2 + [1 + 2F]m2f2

�
, (A.11)

T0i = (∂0f)(∂if) , (A.12)

Tij = (∂if)(∂jf) (A.13)

+
1
2

a2dij


[1 � 2(F + Y)](∂0f)2 � 1

a2 (rf)2 � [1 � 2Y]m2f2
�

.

We recognized r = T00. Moreover, the trace of the spatial component is equal to
three times the pressure

3a2P = Tr[Tij] =
3
2

a2

[1 � 2(F + Y)](∂0f)2 � 1

3a2 (rf)2 � [1 � 2Y]m2f2
�

. (A.14)

If we are interested in the first solutions for the perturbations, we can ignore the
feedback of the gravity perturbation on the energy momentum tensor, so that

r = T00 =
1
2


(∂0f)2 +

1
a2 (rf)2 + m2f2

�
, (A.15)

T0i = (∂0f)(∂if) , (A.16)

Tij = (∂if)(∂jf) +
1
2

a2dij


(∂0f)2 � 1

a2 (rf)2 � m2f2
�

, (A.17)

Tr[Tij] =
3
2

a2

(∂0f)2 � 1

3a2 (rf)2 � m2f2
�

. (A.18)

A.1.1 Unperturbed metric, cosmological scales

Specializing the Einstein equations derived above to the unperturbed case F, Y = 0,

G00 = 3H2 , (A.19)

Tr[Gij] = �3(ȧ2 + 2aä) , (A.20)
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and equating to the energy momentum tensor, we recover the Friedmann equations
for a flat universe

H2 =
8pGr

3
, (A.21)

ä
a

= �4pG
3

(r + 3P) . (A.22)

A.1.2 Time-independent perturbations

In case the perturbations are time-independent, the Einstein equations simplify con-
siderably. We neglect the background component F = 0, Y = 0, i.e. the Friedmann
equations and focus on the perturbations dG = G � G(0)

dG00 =
2
a2 r2Y , (A.23)

Tr[dGij] = 2r2(F � Y) + (6aä + 3a2H2)(F + Y) . (A.24)

Also the energy density and pressure are perturbed r = r(0) + dr, P = P(0) + dP
Equating to the energy-momentum tensor,

r2Y = 4pGa2dr , (A.25)

r2(F � Y) = 12pGa2P . (A.26)

The first equation is the cosmological version of the Poisson equation. The second
equation imposes F = Y for pressureless matter (P = 0, not just dP = 0).

Now we take the small-scale limit of equations (A.25) and (A.26), setting the scale
factor to 1. The equations simplify to

r2Y = 4pGdr , (A.27)

r2(F � Y) = 12pGP . (A.28)

We recognize the Poisson equation in the usual form.

A.1.3 Non-relativistic field

This approximation regards the scalar field, hence the energy momentum tensor side
of the Einstein equation. If we expand the field f in plane waves, it is clear that every
term ∂if ⇠ mvif ⌧ mf will be suppressed by velocity vi ⌧ 1. Moreover, since the
energy of the field can be expanded as w ⇠ m + mv2/2, ∂0f ⇠ mf + mv2f ⇠ mf. To
be more quantitative, we expand the field in the following way

f(t, x) =
1p
2m


y(t, x)e�imt + y?(t, x)eimt

�
, (A.29)

allowing for some non-plane wave dependence of the modes. Notice y has mass
dimension 3/2. We assume that the modes satisfy |∂2

0y| ⌧ |∂0y| ⌧ m|y| and
|ry| ⌧ m|y|. The components of the energy-momentum tensor become, at zero
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order in the velocity,

r = T00 = m|y|2 + O(v2) , (A.30)

T0i = O(v) , (A.31)

Tij = O(v2) , (A.32)

Tr[Tij] = O(v2) . (A.33)

Therefore, in the case of time-independent perturbations, the Einstein equations for
the perturbations read

r2Y = 4pGa2m|y|2 + O(v2) , (A.34)

r2(F � Y) = O(v2) . (A.35)

The second equation enforces F = Y at zero order in velocity.

A.2 Klein-Gordon equation

In this Section, we focus on the equation of motion for the scalar field, which, in gen-
eral will be coupled to the Einstein equations. We write the Euler-Lagrange equa-
tions

∂L
∂f

=
1p�g

∂µ

p
�g

∂L
∂∂µf

�
, (A.36)

so the equation of motion, called Klein-Gordon equation, is given by

1p�g
∂µ[gµn

p
�g ∂nf] + m2f = 0 . (A.37)

Let us now compute explicitly the let hand side of Eq. (A.37) in order to simplify the
equation of motion. Since our metric is diagonal, the left-hand side breaks into two
terms, one for µ = n = 0 and the other(s) for µ = n = i. We compute them

1p�g
∂0[g00p�g ∂0f] = (1 � 2F)∂2

0f (A.38)

+[3H(1 � 2F) � ∂0(F + 3Y)]∂0f

1p�g
∂i[giip�g ∂if] = � 1

a2


(1 + 2Y)r2f + r(F � Y) · rf

�
(A.39)

We divide all terms by (1 � 2F) and we sum them, obtaining

0 = ∂2
0f + [3H � (1 + 2F)∂0(F + 3Y)]∂0f + (1 + 2F)m2f (A.40)

� 1
a2


(1 + 2Y + 2F)r2f + (1 + 2F)r(F � Y) · rf

�
.

This equation looks rather complicated, but it is the most general. In the following,
we perform several approximation for the case of interests in this thesis.
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A.2.1 Unperturbed metric

In the case of F, Y = 0, we retrieve the classical Klein-Gordon equation in the ex-
panding FRW universe.

∂2
0f + 3H∂0f �


r2

a2 � m2
�

f = 0 . (A.41)

Under the further assumption of homogeneity of the field f = f(t), the Laplacian
term disappears. This is the equation that is used to track the evolution of the f field
over the history of the universe, i.e. under the effect of the Hubble friction.

A.2.2 Time-independent perturbations

It is a common to assume that the perturbations vary slowly in time or are time-
independent. In this limit the Klein-Gordon equation simplifies to

0 = ∂2
0f + 3H∂0f + (1 + 2F)m2f (A.42)

� 1
a2


(1 + 2Y + 2F)r2f + (1 + 2F)r(F � Y) · rf

�
.

This form is still rather complicated and not of particular use.

A.2.3 Non-relativistic field

The Klein-Gordon equation heavily simplifies in the non-relativistic limit for the
field, in particular when coupled to the Einstein equations. We consider indeed
Eq. (A.34) and Eq. (A.35). Using that F = Y at v2 order, we reach the coupled system

0 = ∂2
0f + 3H∂0f + (1 + 2F)m2f � 1

a2 (1 + 4F)r2f , (A.43)

r2F = 4pGa2dr . (A.44)

We use the expansion in Eq. (A.29) and the same assumptions |∂2
0y| ⌧ |∂0y| ⌧

m|y|. We obtain obtain the so-called Schrödinger - Poisson (SP) system.

i


∂ty +
3
2

Hy

�
=


� r2

2m
+ mF

�
y , (A.45)

r2F = 4pGa2m|y|2 .

Once the equations are coupled, it is clear that variations of the field are sourced by
the gravitational field, that is will be proportional to F. This implies that the term in
the Klein-Gordon equation Fr2f is higher order and can be neglected.

The SP system can be further specified on small (galactic) scales, if we set the
Hubble parameter to zero and the scale factor to unity.

i∂ty =


� r2

2m
+ mF

�
y , (A.46)

r2F = 4pGm|y|2 .
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Appendix B

Galactic reference frame

In this Appendix, we provide the transformation matrices, coordinates and formulae
to describe the motion of the Earth and the orientation of a terrestrial detector in the
Galactic frame. The notation and conventions are mostly borrowed from [396].

B.1 Position of the Earth in galactic coordinates

In the Galactic frame, the orbital plane of the Earth is spanned by two vectors [396]:

ê1 =

0

B@
0.993821
0.110992
0.000352

1

CA+

0

B@
0.001316

�0.011851
0.021267

1

CA T ,

ê2 =

0

B@
�0.054876
0.494109

�0.867666

1

CA+

0

B@
0.024232
0.002689

�1.546 ⇥ 10�6

1

CA T . (B.1)

The time dependence in the vector is small. T is a parameter, called epoch of date
that measures the (fractional) number of days n from a reference moment, chosen
to be the January 1st 2000 at noon (J2000.0), normalized to the number of days in a
Julian century

T =
n

36525
. (B.2)

We can find the fractional number of days n from J2000.0 using the algorithm to
convert a date (Y year, M month, D day), in the Gregorian calendar (the commonly
used one) to the Julian day number (from J2000.0)

n =

�
1461

4

✓
Y + 4800 +

M � 14
12

◆⌫
+

�
367
12

(12 � 11M)

⌫
(B.3)

�
�

3
400

✓
Y + 4900 +

M � 14
12

◆⌫
+ D � 32075 � n0 , (B.4)

where n0 = 2451545 is the Julian day number at J2000.0.
The position of the Earth in the Galactic frame is then given by a linear combina-

tion of ê1 and ê2

x� = r�(ê1 sin `E(n) � ê2 cos `E(n)) , (B.5)
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where r� ⇠ 1 a.u., `E is the time-dependent ecliptic longitude in the orbital plane
[396]

`E(n) = L(n) + 2e sin g(n) +
5
4

e2 sin 2g(n) + O(e3) , (B.6)

where e = 0.01671 is the Earth’s orbit eccentricity and the mean longitude L and the
mean anomaly g are given by [396]

L(n) = 280�.460 + 0�.98564736 ⇥ n , (B.7)

g(n) = 357�.528 + 0�.98560028 ⇥ n . (B.8)

B.2 The detector vector in galactic coordinates

We want to represent the detector orientation vector d̂, originally expressed in terres-
trial horizontal coordinates (in the basis given by zenith, east and north unit vectors),
into galactic coordinates. We know how to relate the rectangular equatorial coordi-
nates at J2000.0 to galactic coordinates, by means of a linear transformation

xgal = Mxeq(J2000.0) . (B.9)

The components of the matrix M are given in [396]. We now need to relate the equa-
torial coordinates (x, y, z)eq to horizontal coordinates (x, y, z)hor = xhorẑ + yhorê +
zhorn̂ with (ẑ, ê, n̂) a set of unit vectors pointing to the zenith, the east and the north
of the detector, respectively. The transformation matrix between the two reference
frames is given by

xhor = ABxeq , (B.10)

where the matrices A and B are given by

A =

0

B@
cos fO 0 sin fO

0 1 0
� sin fO 0 cos fO

1

CA , B =

0

B@
cos qL sin qL 0

� sin qL cos qL 0
0 0 1

1

CA . (B.11)

Here fO is the observer latitude (53.55� N for Hamburg), qL is the local sidereal time
which accounts for the daily rotation of the Earth and the observer longitude qO

(9.99� E for Hamburg):

qL = qO + 280�.46061837 + 360�.98564736629n + 0�.000387993T2 � T3/38710000 .
(B.12)

Therefore the transformation of coordinates for the detector vector in the galactic
frame is given by

d̂gal = MBTATd̂hor . (B.13)
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Appendix C

Fokker-Planck equation

In this Appendix, we review the Fokker-Planck equation formalism for galactic dy-
namics. Parts of the discussion follows the Binney and Tremaine textbook [42], chap-
ter 7 and Appendix L.

We study the distribution f (x, v, t) of objects (e.g. stars) under the influence of a
smooth potential F(x). The distribution obeys the collisionless Boltzmann equation
d f /dt = 0; this derivative is taken along the phase-space trajectory of a given object,
and therefore the phase space distribution on this path is constant. This is the essence
of the Liouville’s theorem. In the presence of encounters the phase-space density
around a star changes with time, at a rate determined by the collision operator G[ f ],
in formulae, d f /dt = G[ f ].

Let us compute G. We denote the phase-space coordinates as u = (x, v). Let
Y(u, Du)d6(Du)Dt be the probability that a star with coordinates u is scattered to
the volume d6(Du) around u + Du during the timescale Dt. Note that this Y doesn’t
take into account the acceleration by the gravitational potential, which is already
taken into account by the Liouville equation. Encounters can scatter the stars in (+)
and out (�) the phase-space volume

∂ f
∂t

����
�

= �
Z

d6(Du)Y(u, Du) f (u) , (C.1)

∂ f
∂t

����
+

= +
Z

d6(Du)Y(u � Du, Du) f (u � Du) . (C.2)

The sum of this two terms is equal to the collision term. Therefore we obtain the
so-called master equation.

d f
dt

=
Z

d6(Du) [Y(u � Du, Du) f (u � Du) � Y(u, Du) f (u)] . (C.3)

An important fact about this equation is that it is not time-reversible, unlike the Li-
ouville equation: a distribution that is localized near a single point in phase space
spreads on a larger volume under the influence of the encounter operator. The irre-
versibility is based on the assumption that Y(u, Du) and f (u) are statistically inde-
pendent so they can be multiplied. Physically, this is the assumption that field stars
and the subject we are following are statistically independent.

The master equation can be simplified in the case of gravitational encounters, i.e.
weak encounters. Consider a subject star embedded in a system of size R containing
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N stars. Gravitational encounters induce mean-square changes in velocity [42]

Dv2 ⇡ 8v2

N
log

R
b90

(C.4)

where b90 is the impact parameter for a 90� deflection. This formula tells us that
equal decades of impact parameters contribute equally to the velocity perturbation.
Therefore, most of the contribution will come from b � b90, being R/b90 ⇠ N � 1
for the virial theorem. The fractional velocity change in an encounter dv/v ⇠ b90/b,
therefore we understand that most of the evolution of the phase space is due to weak
encounters, for which dv ⌧ v.

From this observation, we can expand the first term of the master equation Eq. (C.3)
in a Taylor series for small |Du|

Y(u � Du, Du) f (u � Du) = Y(u, Du) f (u) (C.5)

�Dui
∂

∂ui
[Y(u, Du) f (u)]

+
1
2

DuiDuj
∂2

∂ui∂uj
[Y(u, Du) f (u)] + O(Du3) .

The Fokker-Planck approximation consists of truncating the series at second order,
obtaining the Fokker-Planck equation

d f
dt

= � ∂

∂ui
{D[Dui] f (u)} +

1
2

∂2

∂ui∂uj

�
D[DuiDuj] f (u)

 
. (C.6)

The quantities

D[Dui] ⌘
Z

d6(Du) Y(u, Du)Dui , (C.7)

D[DuiDuj] ⌘
Z

d6(Du) Y(u, Du)DuiDuj . (C.8)

are called diffusion coefficients, and they describe the rate at which stars diffuse through
phase space due to scatterings. While the first-order coefficient D[Dui] represents
a steady drift contribution, the second-order coefficient D[DuiDuj] sets the rate at
which the subject star diffuses, i.e. performs a random walk in phase-space.

We can further simplify the Fokker-Planck equation. Again, since all decades in
the impact parameter contribute equally to the scattering, most of the contribution
is due to short-range, local encounters, i.e. for which b ⌧ R. This fact is in perfect
agreement with the statistic independence of stars: close encounters are rare. other
consequences follow: (i) since b/v ⌧ R/v, i.e. the encounter time is short with re-
spect to the crossing time, the position of the interacting stars is not affected; (ii)
during the encounter, the stars can be thought to follow a Keplerian hyperbolic tra-
jectory, unaffected by the large-scale potential; (iii) the effects of encounters at x can
be computed as if the stars were embedded in an infinite homogeneous medium
in which f is everywhere equal to the f (x). Then Y(u, Du) is zero unless Dx = 0,
and as a consequence, all the coefficients D[Dxi], D[DxiDxj], D[DxiDvj] vanish. The
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only relevant diffusion coefficients will then be D[Dvi] and D[DviDvj], so the Fokker-
Planck equation becomes

d f
dt

= � ∂

∂vi
{D[Dvi] f (v)} +

1
2

∂2

∂vi∂vj

�
D[DviDvj] f (v)

 
. (C.9)

We compute these coefficients in Section C.2, using the formalism we develop in
what follows.

C.1 From Boltzmann to Fokker-Planck

In this Section, we show that the Fokker-Planck equation can be obtained from the
Boltzmann equation for the phase space distribution of an object we label “1” under-
going gravitational scatterings with objects we label “2”. This approach, introduced
in [397], leads us to a formalism to deal with the case in which the occupation num-
ber in the phase space is high and cannot be neglected. This is indeed the wave dark
matter scenario.

We consider the scattering

1(p1) + 2(p2) ! 1(p0
1) + 2(p0

2) . (C.10)

We are interested in the evolution of objects 1, so we write the Boltzmann equation
for its distribution f1

d f1(p1)
dt

= G[ f1] . (C.11)

The collision term is written as [398]

G[ f1] =
1

2E1

Z
dP2dP0

1dP0
2 (2p)4d(4)(p1 + p2 � p0

1 � p0
2)|M|2 (C.12)

n
f1(p0

1) f2(p0
2)[1 ± f1(p1)][1 ± f2(p2)]

� f1(p1) f2(p2)[1 ± f1(p0
1)][1 ± f2(p0

2)]
o

. (C.13)

Here dPi = [d3 pi/(2p)3]gi/(2Ei) is the Lorentz invariant phase-space with gi the
number of internal degrees of freedom of object i. The momentum distribution is
normalized such that, when integrated over momenta, it gives the number density
of 1-type objects

Z d3 p
(2p)3 f1(p) =

r1

m1
. (C.14)

The ± factors account for the quantum statistics of the objects, if they are particles.
The matrix element averaged over all the degrees of freedom |M|2 mediates the
gravitational interaction between the objects. We know that in the non-relativistic
limit the gravitational potential and the Coulomb potential are identical upon the
replacement of the fine structure constant a with aG = Gm1m2. Therefore the matrix
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element for the weak gravitational encounters in the non-relativistic limit is

|M|2 =
(16paG)2m2

1m2
2

|q|4 , (C.15)

where q = p0
1 � p1 is the momentum transfer. This reproduces the central gravita-

tional potential V = �Gm1m2/r.

C.1.1 Transition probability

We can rewrite the Boltzmann equation in a fashion similar to the master equation
by defining a transition probability from p1 to p0

2, we call it W(p1, p0
1)

W(p1, p0
1) =

1
4E1E0

1

Z
dP2dP0

2 (2p)4d(4)(p1 + p2 � p0
1 � p0

2) (C.16)

⇥|M|2 f2(p2)[1 ± f2(p0
2)] . (C.17)

Notice that this probability can be split in two contributions, a classical and a wave
one W = Wcl + Ww. In the first we keep only terms linear in f2, in the second the
quadratic ones, which are relevant only in case of high phase-space occupancy.

Wcl(p1, p0
1) =

1
4E1E0

1

Z
dP2dP0

2 (2p)4d(4)(p1 + p2 � p0
1 � p0

2)|M|2 f2(p2) , (C.18)

Ww(p1, p0
1) = ± 1

4E1E0
1

Z
dP2dP0

2 (2p)4d(4)(p1 + p2 � p0
1 � p0

2)|M|2 f2(p2) f2(p0
2) .

For future usage, we want to simplify these expressions in the non-relativistic limit.
We start from the classical contribution.

Wcl(p1, q) ⇡ 2p

16m2
1m2

2

Z d3 p2

(2p)3 d(q0 � E2 + E0
2)|M|2 f2(p2) (C.19)

=
p

8m2
1m2

2

1
q

Z d3 p2

(2p)3 d


q̂ ·

✓
p1

m1
� p2

m2

◆
+

q
2µ

�
|M|2 f2(p2) ,

where we used the conservation of energy in the non-relativistic limit

q2

2
+ q · pcm = 0 , (C.20)

with pcm = µ(p1/m1 � p2/m2) the center-of-mass momentum and µ = m1m2/(m1 +
m2) the reduced mass. We expand the delta function for small q and obtain

Wcl(p1, q) ⇡ p

8m2
1m2

2

1
q

✓
1 +

m1

2µ
q · ∂

∂p1

◆
(C.21)

⇥
Z d3 p2

(2p)3 d


q̂ ·

✓
p1

m1
� p2

m2

◆�
|M|2 f2(p2) . (C.22)
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Now we do the same for the wave contribution

Ww(p1, q) ⇡ 2p

16m2
1m2

2

Z d3 p2

(2p)3 d(q0 � E2 + E0
2)|M|2 f2(p2) f2(p0

2)] (C.23)

=
p

8m2
1m2

2

1
q

Z d3 p2

(2p)3 d


q̂ ·

✓
p1

m1
� p2

m2

◆
+

q
2µ

�
|M|2 f2(p2) f2(p2 � q) .

We expand f2(p2 � q) ⇡ f2(p2) � q · ∂p2 f2(p2), integrate by part and use

∂

∂p2
d


q̂ ·

✓
p1

m1
� p2

m2

◆�
= �m1

m2

∂

∂p1
d


q̂ ·

✓
p1

m1
� p2

m2

◆�
. (C.24)

We therefore get

Ww(p1, q) ⇡ p

8m2
1m2

2

1
q

✓
1 +

1
2

q · ∂

∂p1

◆
(C.25)

⇥
Z d3 p2

(2p)3 d


q̂ ·

✓
p1

m1
� p2

m2

◆�
|M|2 f 2

2 (p2) . (C.26)

C.1.2 Collision operator

We can write the collision operator as

G[ f1] =
Z d3 p0

1
(2p)3

⇢
W(p0

1, p1) f1(p0
1)[1 ± f1(p1)] (C.27)

�W(p1, p0
1) f1(p1)[1 ± f1(p0

1)]

�
. (C.28)

For practical reasons, we can decompose this result in a classical and a quantum
(wave) contribution G[ f1] = Gcl[ f1] + Gw[ f1]

Gcl =
Z d3 p0

1
(2p)3

⇢
W(p0

1, p1) f1(p0
1) � W(p1, p0

1) f1(p1)

�
, (C.29)

Gw = ±
Z d3 p0

1
(2p)3 [W(p0

1, p1) � W(p1, p0
1)] f1(p1) f1(p0

1) . (C.30)

Under the Fokker-Planck approximation, the momentum transfer in the encounter
is smaller than the momenta of the scatterers and the Boltzmann equation can be
rewritten in the form of the Fokker-Planck equation. To show that, we multiply the
Boltzmann equation by an arbitrary auxiliary function s(p1) and integrate over the
p1 momenta. We treat the classical and wave contribution independently

Z d3 p1

(2p)3 s(p1)Gcl =
Z d3 p1

(2p)3
d3 p0

1
(2p)3 s(p1)

⇢
W(p0

1, p1) f1(p0
1) � W(p1, p0

1) f1(p1)

�

=
Z d3 p1

(2p)3
d3 p0

1
(2p)3 [s(p0

1) � s(p1)]W(p1, p0
1) f1(p1) (C.31)
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We can Taylor expand the square brackets as p0
1 = p1 + q:

s(p0
1) � s(p1) ⇡ qi

∂h
∂pi +

1
2

qiqj
∂2h

∂pi∂pj . (C.32)

Substituting, integrating by parts and rearranging, we get to

Gcl = � ∂

∂pi
1
[Di f1(p1)] +

1
2

∂2

∂pi
1∂pj

1

[Dij f1(p1)] , (C.33)

where we have introduced diffusion coefficients for momentum transfer

Di(p) =
Z d3 p0

(2p)3 (p0 � p)iW(p, p0) , (C.34)

Dij(p) =
Z d3 p0

(2p)3 (p0 � p)i(p0 � p)jW(p, p0) . (C.35)

Notice that, if we assume f 2
1 ⌧ 1, then Gcl dominates and we obtain the Fokker-

Planck equation for f1:

d f1

dt
= � ∂

∂pi
1
[Di(p1) f1(p1)] +

1
2

∂2

∂pi
1∂pj

1

[Dij(p1) f1(p1)] . (C.36)

Let us consider the wave collision term
Z d3 p1

(2p)3 s(p1)Gw = ±
Z d3 p1

(2p)3
d3 p0

1
(2p)3 s(p1)[W(p0

1, p1) � W(p1, p0
1)] f1(p1) f1(p0

1)

= ±
Z d3 p1

(2p)3
d3 p0

1
(2p)3 [s(p0

1) � s(p1)]W(p1, p0
1) f1(p1) f1(p0

1) .

We want to exploit the same diffusion coefficient defined above, so we expand f1 at
first order: f1(p0

1) ⇡ f1(p1) + qi∂pi
1

f1(p1). Putting all the pieces together

Gw = ⌥ ∂

∂pi
1
[Di f 2

1 (p1)] ±
1
2

⇢
∂2

∂pi
1∂pj

1


Dij f1(p1

2)

�
� ∂

∂pi
1


Dij

∂

∂pj
1

f 2
1 (p1)

��
. (C.37)

Summing the classical and wave contributions, we obtain a non-linear version of the
Fokker-Planck equation

d f1

dt
= � ∂

∂pi
1
{Di f1[1 ± f1]} +

1
2

∂2

∂pi
1∂pj

1

{Dij f1[1 ± f1]} ⌥ 1
2

∂

∂pi
1


Dij

∂

∂pj
1

f 2
1

�
. (C.38)

C.2 Diffusion coefficients

The next step is to compute the diffusion coefficients defined in Eqs. (C.34) and (C.35)
for our gravitational encounters, parameterized by the matrix element in Eq. (C.15),
that depends only on |q|�4. We exploit the results for the transition probability in
the non-relativistic limit.
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C.2.1 First-order coefficient

We start from the drift coefficient. We compute the classical contribution

Dcl
i =

Z d3q
(2p)3 qiWcl(p, q) (C.39)

=
p

8m2
1m2

2

Z d3q
(2p)3

qi
q

✓
1 +

m1

2µ
q · ∂

∂p1

◆

⇥
Z d3 p2

(2p)3 d


q̂ ·

✓
p1

m1
� p2

m2

◆�
|M|2 f2(p2) .

It is clear that the first term in the round brackets vanishes, because of the symmetry
of the integrand under q ! �q. We will use multiple times the useful relation [46]

∂

∂xj1
. . .

∂

∂xj`

Z
dWk̂ k̂i1 . . . k̂in d(k̂ · x) =

∂

∂xi1
. . .

∂

∂xin

Z
dWk̂ k̂ j1 . . . k̂j` Dn�`(k̂ · x) (C.40)

with

Dn�`(y) =

8
>>><

>>>:

1
2(n � ` � 1)!

yn�`

|y| n > `

dn�`

dyn�`
d(y) n  `

(C.41)

Therefore,

Dcl
i =

p

16m1m2
2µ

∂

∂pj
1

Z d3q
(2p)3 q q̂iq̂j|M|2

Z d3 p2

(2p)3 d


q̂ ·

✓
p1

m1
� p2

m2

◆�
f2

=
p

16m1m2
2µ

∂

∂pi
1

Z d3q
(2p)3 q|M|2

Z d3 p2

(2p)3 d


q̂ ·

✓
p1

m1
� p2

m2

◆�
f2 (C.42)

=
p

16m1m2
2µ

∂

∂pi
1

Z d3q
(2p)3 q|M|2

Z d3 p2

(2p)3
f2(p2)��� p1

m1
� p2

m2

���

= 4pG2(m1 + m2)m1 log L
∂

∂vi
1

Z
d3v2

f2(v2)
|v1 � v2|

.

We applied the above formula for n = ` = 0 to bring the i index outside of the inte-
gral. Notice we changed normalization for the distribution as a function of velocity,
such that f (v) = [m4/(2p)3] f (p) and

Z
d3v f (v) = r . (C.43)

The integral goes under the name of (first) Rosenbluth potential

h[ f ](v) =
Z

d3v0 f (v0)
|v � v0| . (C.44)

The wave contribution can be computed in a similar way. The only difference with
respect to the classical one is f2(p) ! f 2

2 (p2) = [(2p)3/m4
2]

2 f 2
2 (v2) and a factor
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µ/m1 overall, so:

Dw
i = 4pG2m1

(2p)3

m3
2

log L
∂

∂vi
1

Z
d3v2

f 2
2 (v2)

|v1 � v2|
.

We can rewrite this contribution in the same form as the classical one, once we intro-
duce the following quantities

feff = f 2
2

R
d3v f2R
d3v f 2

2
, (C.45)

meff =
(2p)3

m3
2

R
d3v f 2

2R
d3v f2

. (C.46)

meaning f 2
2 = meff feff[m3

2/(2p)3]. We obtain

Dw
i = 4pG2m1meff log L

∂

∂vi
1

Z
d3v2

feff(v2)
|v1 � v2|

.

So the total diffusion coefficient is

Di = 4pG2m1 log L
∂

∂vi
1


(m1 + m2)h[ f2](v1) + meffh[ feff](v1)

�
. (C.47)

We can get a more explicit form for the Rosenbluth potential if we assume an isotropic
distribution fs ⌘ f2(v). we have

h[ f2](v1) = 2p
Z

dv2 v2
2 f2(v2)

Z
d cos q

1
|v1 � v2|

(C.48)

= 2p
Z

dv2 v2
2 f2(v2)

Z
d cos q Ầ min(v2, v1)`

max(v2, v1)`+1 P`(cos q)

= 4p

 Z v1

0
dv2

v2
2

v1
f2(v2) +

Z •

v1

dv2 v2 f2(v2)

�
,

having used
R 1

�1 dµ P`(µ) = 2d`0. Note ∂/∂vi = ∂v/∂vi ⇥ ∂/∂v = vi/v ⇥ ∂/∂v, so

Di =
vi

1
v1

4pG2m1meff log L


m1 + m2

meff
h0[ f2] + h0[ feff]

�
. (C.49)

If we further assume f2 = fMB

fMB(v; s) =
r

(2ps2)3/2 e�v2/(2s2) , (C.50)

we have

h[ fMB](v1) =
r2

v1
erf(X1) , (C.51)
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where X1 ⌘ v1/
p

2s2. In the MB case meff = p3/2r2/(m4
2s3) and feff = fMB(v, seff)

with s2
eff = s2/2. To compute the derivative, we use

∂

∂vi
erf(X)

v
=

vi

v
∂

∂v
erf(X)

v
= �vi

v
G(X)

s2 , (C.52)

where

G(X) =
1

2X2


erf(X) � 2Xp

p
e�X2

�
. (C.53)

We substitute the result and obtain

Di = �vi
1

v1

4pG2r2m1meff

s2
eff

log L


m1 + m2

meff

s2
eff

s2 G(X1) + G(Xeff)

�
. (C.54)

This expression reproduces the result in [46], except for a factor of m1 in numerator,
due to the fact that Di is a diffusion coefficient for momentum and not velocity. Our
formula automatically includes the dynamical friction contribution, as we will see.

C.2.2 Second-order coefficient

We now compute the second-order coefficient. We start from the classical contribu-
tion. The steps are the same for the computation of Di.

Dcl
ij =

Z d3q
(2p)3 qiqjWcl(p, q) (C.55)

=
p

8m2
1m2

2

Z d3q
(2p)3

qiqj

q

✓
1 +

m1

2µ
q · ∂

∂p1

◆

⇥
Z d3 p2

(2p)3 d


q̂ ·

✓
p1

m1
� p2

m2

◆�
|M|2 f2(p2)

In this case, the second term in the round brackets doesn’t contribute because of the
symmetry of the integrand. We follow the same steps as above, using Eq.(C.40) for
n = 2, ` = 0

Dcl
ij =

p

8m2
1m2

2

Z d3q
(2p)3 q q̂iq̂j|M|2

Z d3 p2

(2p)3 d


q̂ ·

✓
p1

m1
� p2

m2

◆�
f2

=
p

16m2
2

∂2

∂pi
1∂pj

1

Z d3q
(2p)3 q|M|2

Z d3 p2

(2p)3

����q̂ ·
✓

p1

m1
� p2

m2

◆���� f2

=
p2

8m2
2

∂2

∂pi
1∂pj

1

Z dq
(2p)3 q3|M|2

Z d3 p2

(2p)3

����
p1

m1
� p2

m2

���� f2(p2)

= 4pG2m2
1m2 log L

∂2

∂vi
1∂vj

1

Z
d3v2|v1 � v2| f2(v2) .

The integral is the second Rosenbluth potential

g[ f ](v) =
Z

d3v0��v � v0�� f (v0) . (C.56)
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We compute the wave contribution using f2(p) ! f 2
2 (p2) = [(2p)3/m4

2]
2 f 2

2 (v2) and
introducing meff and feff

Dw
ij = 4pG2m2

1meff log L
∂2

∂vi
1∂vj

1

Z
d3v2|v1 � v2| feff(v2) . (C.57)

Therefore,

Dij = 4pG2m2
1 log L

∂2

∂vi
1∂vj

1


m2g[ f2](v1) + meffg[ feff](v1)

�
. (C.58)

We compute the Rosenbluth potential

g[ f2](v1) = 2p
Z

dv2 v2
2 f2(v2))

Z
d cos q

v2
1 + v2

2 � 2v1v2 cos q

|v1 � v2|
(C.59)

= 2p
Z

dv2 v2
2 f2(v2)

Z
d cos q Ầ min(v2, v1)`

max(v2, v1)`+1

⇥P`(cos q)(v2
1 + v2

2 � 2v1v2 cos q)

= 2p
Z

dv2 v2
2 f2(v2)


2(v2

1 + v2
2)

max(v2, v1)
� 4v1v2 min(v2, v1)

3 max(v2, v1)2

�

=
4p

3

 Z v1

0
dv2

✓
3v1v2

2 +
v4

2
v1

◆
f2(v2) +

Z •

v1

dv2
�
v2

1v2 + 3v3
2
�

f2(v2)

�
.

Now we have to take the derivatives of this potential. We use

∂2g
∂vi∂vj =

vivj

v2


g00(v) � g0(v)

v

�
+ dij

g0(v)
v

, (C.60)

from which

Dij = 4pG2m2
1meff log L (C.61)

⇥
⇢

m2

meff


vi

1vj
1

v2
1


g00[ f2](v1) � g0[ f2](v1)

v1

�
+ dij

g0[ f2](v1)
v1

�

+


vi

1vj
1

v2
1


g00[ feff](v1) � g0[ feff](v1)

v1

�
+ dij

g0[ feff](v1)
v1

��
.

Now we assume f2 = fMB. We have

g[ fMB](v1) =

p
2r2s

X


(1 + X2)erf(X) � X2G(X)

�
(C.62)

and

g0

v
=

r2p
2Xs

(erf(X) � G(X)) , (C.63)

g00 =

p
2r2

Xs
G(X) , (C.64)
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so

∂2g
∂vi∂vj =

r2p
2s


XiXj

X3 [3G(X) � erf(X)] + dij
erf(X) � G(X)

X

�
, (C.65)

from which

Dij = 4pG2m2
1meff log L

r2p
2seff

(C.66)

⇥
⇢

m2

meff

seff
s


XiXj

X3 [3G(X) � erf(X)] + dij
erf(X) � G(X)

X

�

+


Xi

effX
j
eff

X3
eff

[3G(Xeff) � erf(Xeff)] + dij
erf(Xeff) � G(Xeff)

Xeff

��
.

C.2.3 Other diffusion coefficients

We can rewrite the diffusion coefficients in the form [42]

Di
m1

= D[Dvi] =
vi

v
D[Dvk] , (C.67)

Dij

m2
1

= D[DviDvj] (C.68)

=
vivj

v2

✓
D[(Dvk)

2] � 1
2

D[(Dv?)2]

◆
+

1
2

dijD[(Dv?)2]

We read off these projected coefficients:

D[Dvk] = �16p2G2meff

v2
1

log L
Z v1

0
dv v2


m1 + m2

meff
f2(v) + feff(v)

�
, (C.69)

D[(Dvk)
2] =

32p2G2meff
3

log L
⇢ Z v1

0
dv

v4

v3
1


m2

meff
f2(v) + feff(v)

�
(C.70)

+
Z •

v1

dv v


m2

meff
f2(v) + feff(v)

��
,

D[(Dv?)2] =
32p2G2meff

3
log L (C.71)

⇥
⇢ Z v1

0
dv

✓
3v2

v1
� v4

v3
1

◆ 
m2

meff
f2(v) + feff(v)

�

+2
Z •

v1

dv v


m2

meff
f2(v) + feff(v)

��
.

Notice that D[Dvk] depends only on the total number density of objects of mass m2

traveling slower than the subject mass m1.
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In case of Maxwell-Boltzmann distributions,

D[Dvk] = �4pG2r2meff

s2
eff

log L


m1 + m2

meff

s2
eff

s2 G(X1) + G(Xeff)

�
, (C.72)

D[(Dvk)
2] =

4
p

2pG2r2meff
seff

log L


m2

meff

seff
s

G(X)
X

+
G(Xeff)

Xeff

�
, (C.73)

D[(Dv?)2] =
4
p

2pG2r2meff
seff

log L (C.74)

⇥


m2

meff

seff
s

erf(X) � G(X)
X

+
erf(Xeff) � G(Xeff)

Xeff

�
.

These expressions reproduce the results of [46].
Based on the velocity diffusion coefficients, we can compute other diffusion coef-

ficients. In particular, we are interested in the diffusion coefficients for kinetic energy,
as this is intimately connected to the dynamical friction.

The change in kinetic energy per unit mass is given by

DE =
1
2
(v + Dv)2 � 1

2
v2 = v · Dv +

1
2
(Dv)2 . (C.75)

The energy diffusion coefficients are

D[DE] = vD[Dvk] +
1
2

D[(Dvk)
2] +

1
2

D[(Dv?)2] , (C.76)

D[(DE)2] = v2D[(Dvk)
2] . (C.77)

We finish by noticing the important relation between diffusion coefficients:

D[Dvi] =
1
2

∂

∂vj D[DviDvj] . (C.78)

This implies, given the expression of the diffusion coefficients in terms of the Rosen-
bluth potentials, that

Dii

m2
1

= D[(Dv)2] = 8pG2 log L


m2h[ f2](v1) + meffh[ feff](v1)

�
(C.79)

= 32p2G2meff log L
⇢ Z v1

0
dv2

v2
2
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
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meff
f2(v2) + feff(v)

�

+
Z •

v1

dv2 v2


m2

meff
f2(v2) + feff(v)

��
,

which is of use in the computation of D[DE].
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Appendix D

Adiabatic Compression of a
power-law Dark Matter profile

We apply the procedure described in Section 4.1.1 to find the compressed density
profile for an initial power-law profile

ri(r) = rs

⇣ rs

r

⌘g
(D.1)

with 0 < g < 2. We assume a Schwarzschild black hole of mass Mbh grows adiabat-
ically in the center of the halo.

We start by solving the Poisson equation r2Fi = 4pGri to find the initial gravi-
tational potential. We use the Green function’s method

Fi(x) � Fi(0) = �G
Z

d3x0 ri(x0)
|x � x0| (D.2)

= �2pG
Z •

0
dr0 r02ri(r0)

Z
dµ

•

Ầ
=0

min(r, r0)`

max(r, r0)`+1 P`(µ)

= �4pG
Z •

0
dr0 r02 ri(r0)

max(r, r0)

= Fs

✓
r
rs

◆2�g

,

where

Fs =
4pGrsr2

s
(2 � g)(3 � g)

. (D.3)

Note that Fi(0) is not determined, because it would be obtained from the condition
that Fi(•) = 0, which is not the case because the potential difference would be infi-
nite in our case. For the NFW case of Section 1.2.2, of which the potential constitutes
the inner part, we would have Fi(0) = �2Fs. We can easily find ri(Fi)

ri(Fi) = rs

✓
Fi � Fi(0)

Fs

◆ g
g�2

(D.4)
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to exploit in the Eddington formula, from which we can obtain f (Ei). The result is
analytical,

f (Ei) =

p
prs(b � 3/2)

2(2pFs)3/2b


� Fs

Fi(0)

�b
Fi(0)

Ei

�3/2

(D.5)

⇥


1 +
Ei � Fi(0)

Fi(0) 2F1

✓
1, b � 1

2
, �1

2
,

Ei

Fi(0)

◆ �
,

having defined b = (6 � g)/[2(2 � g)]. This complicated expression is however
interesting only for Ei ' Fi(0), because we want to investigate the behavior of the
inner part of the halo. Therefore we expand in this limit. We obtain

f (Ei) ⇡ rs

(2pFs)3/2
G(b)

G(b � 3/2)


Fs

Ei � Fi(0)

�b

. (D.6)

This reproduces the result in [99].
The next step is to compute the radial actions and solve Eq. (4.11) to find the

relation Ei(Ef, Lf). The final radial action is straightforward to find, thanks to the
simple form of the final potential, Ff = �GMbh/r, where the black hole dominates

Jr,f(Ef, Lf) =
1
p

Z rmax

rmin

dr

s

2
✓

Ef +
GMbh

r

◆
�

L2
f

r2 =
GMbhp
�2Ef

� Lf . (D.7)

The values of rmax and rmin are the zeroes of the integrand.
The initial radial action is, instead

Jr,i(Ei, Li) =
1
p

Z rmax

rmin

dr
q

2(Ei � Fi(0) � Fs(r/rs)2�g) � L2
i /r2 . (D.8)

Unfortunately, an analytic expression for the radial action integral does not exist
except in the extreme cases of a radial and a circular orbit. We can make use of these
results and find an analytical approximation valid for any angular momentum. In
the first case, Li = 0, the radial orbit, we find

Jr(Ei, 0) =

p
2Fsr2

s
p(2 � g)

✓
Ei � Fi(0)

Fs

◆ 4�g
2(2�g)

B
✓

3
2

,
1

2 � g

◆
. (D.9)

Here B(z1, z2) is the beta function, or Euler integral of the first kind. Equating this
result to Eq. (D.7), with Lf = 0, i.e. Jr,i(Ei, 0) = Jr,f(Ef, 0) we obtain the following
scalings

[Ei � Fi(0)] µ E
� 2�g

4�g

f . (D.10)

Using this, we can already estimate the r-dependence of the final density profile

rf(r) µ
Z 0

F
dEf

q
2(Ef � Ff)E�b

i µ
Z 0

Ff

dEf

q
2(Ef � Ff)[�Ef]

b(2�g)
4�g µ (�Ff)

gsp .(D.11)

This result already confirms the rough estimate we did in the previous section, where
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we found rf µ r�gsp . Let us prove that the energy scaling also holds for purely cir-
cular orbits. If the orbit is circular the initial radial action vanishes, as vr does. We
exploit the conservation of momentum

Li =
q

GMdm(r)r , (D.12)

Lf =
p

GMbhr , (D.13)

with Mdm(r) = 4p
R r

0 dr0 r02ri(r0). We invert E = v2
c(r)/2 � F(r) to find r(E) and

substitute in the expression for the angular momentum. We find

Li =

p
2Fsr2

s (2 � g)

(4 � g)
4�g

2(2�g)

✓
E � Fi(0)

Fs

◆ 4�g
2(2�g)

, (D.14)

Lf =
GMbhp
�2Ef

. (D.15)

Imposing Li = Lf, we find the same scaling relation Eq. (D.10). We can try to guess
the form of the initial radial action designing an expression that reproduces the ob-
tained result for the radial and circular orbits. We approximate as in [99]

Jr,i(Ei, Li) ⇡
B

⇣
3
2 , 1

2�g

⌘

p(2 � g)

⇢q
2Fsr2

s

✓
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Fs
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(D.16)
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2

◆ 1
2�g

�
.

While the first term is just the radial action for purely radial orbits, the second term
is designed to cancel the first in the circular orbit case. This form reproduces at the
percent error the numerical integration in Eq. (D.8) in a large part of parameter space.
We are finally able to find Ei(Ef, Lf)

Ei(Ef, Lf) � Fi(0)
Fs

=

2

4 p(2 � g)
p

2Fsr2
s B

⇣
3
2 , 1

2�g

⌘

3

5

2(2�g)
4�g 

GMbhp
�2Ef

� g(g)Lf

� 2(2�g)
4�g

, (D.17)

where we defined, to shorten the notation,

g(g) = 1 �
B

⇣
3
2 , 1
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⌘

p(2 � g)

✓
4 � g

2 � g

◆ 1
2
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2
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. (D.18)

We find the inner (low energy) compressed energy distribution

f (Ef, Lf) ⇡ rs

(2pFs)3/2
G(b)

G(b � 3/2)

2

4 p(2 � g)
p

2Fsr2
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3
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We compute the final density profile using Eq. (4.12). We change integration vari-
ables to e = E/Ff(r), ` = Lf/Lmax, with Lmax = r

p
�2Ff

p
1 � e. We obtain

rf = rs

⇣ rs

r

⌘gs


Fs

Ff(rs)

�� 3�g
4�g G(b)
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2
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3
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I(g) , (D.20)

with

I(g) = 2p�1/2
Z 1

0
de

Z 1

Lmin
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d` `

p
1 � ep
1 � `2

✓
1p
e

� 2g(g)`
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1 � e

◆� 6�g
4�g

. (D.21)

This integral evaluates numerically to I(g) 2 [0.5, 0.7] for 0  g  2 and Lmin = 0.
We found the expression for the spike density profile. Once the density profile rf(r)
is known, we can write a more compact version of the final phase space distribution

f (Ef, Lf) ⇡ rf(r)
[�2pFf(r)]3/2 I(g)

s
Ff(r)

Ef
� g(g)

s

� 2
Ff(r)

L2

r2

�� 6�g
4�g

. (D.22)

An even better phase space distribution to be used in practical applications can
be derived assuming the power-law density profile from scratch for the final halo,
let us say rf = rsp(rsp/r)gsp . If we can neglect the dependence on angular momen-
tum and are interested in an ergodic distribution, which proves to be a very good
approximation (see Appendix E for an example), we can exploit the Eddington in-
version formula and find f (Ef). The calculation is simplified by the fact that the final
potential is simply Ff = �GMbh/r. The result is

f (Ef) =
rsp(rsp/r)gsp

[�2pFf(r)]3/2
G(gsp + 1)

G(gsp � 1/2)

✓
Ff(r)

Ef

◆3/2�gsp

. (D.23)
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Appendix E

Dynamical friction

In this Appendix, we compute the dynamical friction force on a point-mass object,
i.e. a test object moving through a dark matter medium. We present the classical
result for particle dark matter and then we generalize it to the wave case.

We choose a coordinate system centered on the test object of mass M. The force
acting on this object traveling through a dark matter medium with velocity V and
density r is

FDF = M
dV
dt

=
Z

d3x r(x)rF(x) , (E.1)

where we call F = �GM/r the gravitational potential around the test object. Notice
that if we decompose the density in a background plus a overdensity components,
r(x) = r̄[1 + d(x)], thanks to the symmetry of the system, only the non-uniform
part contributes to the dynamical friction. If we assume, without loss of generality,
v = vẑ, we have

FDF =
Z

d3x d(x)
∂F
∂z

ẑ . (E.2)

The force is directed in the same direction as the dark matter “wind”, V.
It is convenient to parametrize the dynamical friction with the C coefficient [33]

C ⌘ FDF

Frel
, (E.3)

where

Frel ⌘ 4pr̄G2M2

V2 . (E.4)

We will now compute the coefficient C in various cases of interest. Note that we are
assuming a monochromatic dark matter medium. We will see how how to generalize
our results in the case of a dispersed flux.

E.1 Particle dark matter

Let us consider a gas of dark particles. A convenient way to obtain the dynamical
friction is to compute it as the surface integral of the fluid’s momentum flux density
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tensor Pij = rvivj which satisfies

∂t(rvi) + ∂jPij + r∂iF = 0 . (E.5)

Note that v here is the dark matter velocity at position x. The force explicitly reads,
as we wrote above,

Fi
DF = �

I
dSjPji = �

Z
d3x ∂jPji =

Z
d3x r∂iF . (E.6)

We can compute the dynamical friction in the z-direction via the momentum flux
through a sphere of radius r centered in the position of M from hyperbolic Keplerian
orbits that are parallel to the z-axis as z ! •:

Cp =
FDF

Frel
= � 1

Frel

Z
dW r2r(x)(x̂ · v)vz (E.7)

= �r(r)
V2r2

4pG2M2r̄

Z 2p

0
df

Z 1

�1
dµ µvvz

Here µ = x̂ · v̂ and v2 = V2 + 2GM/r. We saw in Section 3.1 that the angle-averaged
density profile around the test mass is r(r) = r̄

q
1 + 2GM

rV2 . We use the formula from
[69] to relate the velocity at x to the one at infinity V:

V =
V2v + V(GM/r)x̂ � Vv2v̂µ

V2 + (GM/r) � Vvµ
. (E.8)

We can obtain the expression for vz projecting V on v/V:

vz =
Vv2 + vµ(GM/r) � v3µ

V2 + (GM/r) � Vvµ
. (E.9)

Furthermore, we introduce the parameter

L =
V2r
GM

=
r

b90
. (E.10)

With this choice we solve the integral in Eq. (E.7), we obtain

Cp =
1 + L

L
log


1 + L +

q
L(2 + L)

�
�

r
1 +

2
L

. (E.11)

This expression, for L � 1, that is r � b90, converges to Cp ⇡ log 2L � 1 + O(L).

E.2 Wave dark matter

We now consider wave dark matter with mass m. From Section 3.2, where we stud-
ied gravitational focusing, we know the solution of the Schrödinger equation with
plane wave boundary conditions at infinity and a central potential F = �GM/r. In
the monochromatic case where all the dark matter particles have velocity V = Vẑ,
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the density profile is given by [106]

r(x) = r̄|yk(x)|2 = r̄|yk(0)|2 |1F1[ib, 1, ikr(1 � z/r)]|2 (E.12)

where k = mV and b = GMm/V = 2pb90/ldB and

|yk(0)|2 = epb|G(1 � ib)|2 =
2pb

1 � e�2pb
. (E.13)

The modulus of force is then

FDF = 2pGMr̄|yk(0)|2
Z r

0
dr0 r02

Z r0

�r0
dz

z
r03 |1F1[ib, 1, ikr(1 � z/r)]|2 (E.14)

= 2pGMr̄|yk(0)|2
Z 2kr

0
dq |1F1(ib, 1, iq)|2

Z r

q/2k
dr0 1

kr0

⇣
1 � q

kr0

⌘

= 2pGMr̄|yk(0)|2 1
k

Z 2kr

0
dq |1F1(ib, 1, iq)|2


q
kr

� 2 � log
q

2kr

�

=
4pG2M2r̄

V2 C(b, kr) .

The coefficient C is then given by

C(b, kr) =
|yk(0)|2

2b

Z 2kr

0
dq |1F1(ib, 1, iq)|2


q
kr

� 2 � log
q

2kr

�
, (E.15)

as in [33]. The expression and value of C factor will determine the behavior of dy-
namical friction. In general the integral in the above equation is difficult to compute,
because of the hypergeometric function. However, we can rely on approximations.

In the b ⌧ 1 limit, i.e. when b90 ⌧ ldB, |yk(0)|2 ⇡ 1 + pb and the hypergeomet-
ric function can be approximated as [33]

1F1(ib, 1, iq) ⇡ 1 � b si(q) � ib cin(q) + O(b2) , (E.16)

where

si(z) =
Z z

0
dt

sin t
t

, cin(z) =
Z z

0
dt

1 � cos t
t

. (E.17)

At leading order in b, |1F1(ib, 1, iq)|2 ⇡ 1 � 2b si(q), therefore,

C(b ⌧ 1, kr) ⇡ �
Z 2kr

0
dq


q
kr

� 2 � log
q

2kr

� Z q

0
dt

sin t
t

(E.18)

⇡ �
Z 2kr

0
dt

sin t
t

Z t

0
dq


q
kr

� 2 � log
q

2kr

�

⇡ �
Z 2kr

0
dt


t

2kr
� 1 � log

t
2kr

�
.

Solving this integral and using
R z

0 dt log t sin t = (1 � cos z) log z � cin(z), we obtain

C(b ⌧ 1, kr) ⇡ cin(2kr) � 1 +
sin(2kr)

2kr
+ O(b) . (E.19)
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FIGURE E.1: Comparison of the exact dynamical friction coefficient C(b, kr)
with the various approximations. The dashed lines are for the particle result
with L = kr/b.

For kr � 1, C ⇡ log(2kr), while for kr ⌧ 1, the Coulomb log is suppressed as
C ⇡ (kr)2/3.

If instead b90 � ldB, the dark matter wavelength does not act as a cutoff for the
Coulomb interaction as the largest momentum transfer and we are in the particle
limit. We show in Figure E.1 the exact C factor for dynamical friction computed with
Eq. (E.15) and compare to the various approximations and to the particle limit.

E.3 Dispersed dark matter medium

To obtain the dynamical friction in case of a dispersed dark matter medium, we
need to convolute the dragging force for the monochromatic case with the velocity
distribution of the particles. We can write

FDF = FrelV2
Z

d3v f (v)
(V � v)
|V � v|3 C(|V � v|) , (E.20)

which gives the monochromatic result, i.e. the definition of C, once f (v) = d(3)(v).
Notice here the distribution function is normalized as

R
d3v f (v) = 1. Let us define

the averaged C coefficient as

hCi = V2
Z

d3v f (v + Vẑ)
vz

v3 C(v) , (E.21)

so that the dynamical friction force can be rewritten as in the monochromatic case
but with C replaced by hCi.

Usually, in the computation of dynamical friction, the C coefficient is pulled out
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of the integral, even if it is velocity dependent. We want to quantify the error associ-
ated to this approximation. If the distribution is isotropic and C is constant,

V2
Z

d3v f (v)
(V � v)
|V � v|3 C(|V � v|) ⇡ �C

∂

∂V

Z
d3v

f (v)
|v � V| (E.22)

= �CV2 V
V

h0[ f ](V)

= 4pC
V
V

Z V

0
d3v v2 f (v) .

Note that this is the derivative of the Rosenbluth potential we computed in Sec-
tion C.2. Therefore, under this approximation,

FDF =
16p2G2r̄M2

V2 C
Z V

0
d3v v2 f (v) . (E.23)

This friction force corresponds to FDF = MD[Dvk] (the minus sign due to the differ-
ent frame convention) with D[Dvk] in Eq. (C.69).

The comparison of the exact result and the constant C approximation shows a
good agreement in the case of a Maxwell-Boltzmann distribution, as long as we
compute C as the monochromatic C evaluated in the typical velocity of dark mat-
ter particles, e.g. v̄ =

p
V2 + s2, where s is the velocity dispersion defined as the

second moment of f . We will stick to this approximation from now on.
A second assumption is that the velocity distribution is isotropic. As we saw in

Chapter 4 and Appendix D, this is not the case for adiabatically compressed dark
matter halo. To check this approximation, we have to compare the first and last term
of Eq. (E.22) with C = 1. The full spike velocity distribution, up to a normalization
constant is given by

f (u, µ) µ


1p
1 � u2

� 2u
q

1 � µ2
✓

1 � (4 � g)
4�g

2(2�g)

2
1

2�g
p

2 � g

B
⇣

3
2 , 1

2�g

⌘

p(2 � g)

◆�� 6�g
4�g

, (E.24)

as a function of u = v/ve, the escape velocity (the dark matter is bound) and µ =
v̂ · V̂. The ergodic distribution is instead,

f (u) µ (1 � u2)
6�g

2(4�g) = (1 � u2)gsp�3/2 . (E.25)

We normalize such that
R ve

0 d3v f (v) = 1, so below f is intended as normalized. We
obtain, for g = 1 and V = ve/

p
2,

V2V̂
Z

d3v f (v)
(V � v)
|V � v|3 = (E.26)

= V2
Z ve

0
dv v2

Z
df

Z
dµ

V � v cos f
p

1 � µ2

(v2 + V2 � 2vV cos f
p

1 � µ2)3/2
f (v/ve, µ)

⇡ 0.5937



190 Appendix E. Dynamical friction

0.6 0.8 1.0 1.2 1.4
�

1.02

1.03

1.04

1.05

1.06

1.07

1.08

F
D

F
/F

is
o

D
F

particle

wave

FIGURE E.2: The ratio between the dynamical friction force computed with
the full distribution and under the ergodic assumption, for particle (blue)
and wave (orange) dark matter. The error is about 2% and 8% for particle
and wave, respectively. The vertical line g = 1 is the reference value.

4p
Z V

0
d3v v2 f (v/ve) =

R 1/
p

2
0 du u2(1 � u2)gsp�3/2

R 1
0 du u2(1 � u2)gsp�3/2

(E.27)

=
B1/2(3/2, gsp � 1/2)

B(3/2, gsp � 1/2)
⇡ 0.5821

This is where the factor 0.6 comes from in Eq. (5.13). We see that the error is minimal.
We can scan the error as a function of g in the case of particle and wave dark matter.
For the particle case, we compute, for V = ve/

p
2 and as a function of g,

FDF

Fiso
DF

����
p

=
V2 R

d3v f (v) (V�v·V̂)
|V�v|3

4p
R V

0 dv v2 f (v)
. (E.28)

For wave dark matter, the distribution gets replaced by feff and we have a factor of
meff that replaces M in Frel. The "effective" quantities are defined in Eq. (C.45) and
Eq. (C.46), respectively: they both depend on f , therefore on the ergodicity (isotropy)
assumption. We compute

FDF

Fiso
DF

����
w

=
meff

miso
eff

FDF

Fiso
DF

=

R
d3v f 2(v)R
d3v f 2(v)

V2 R
d3v f 2(v) (V�v·V̂)

|V�v|3

4p
R V

0 dv v2 f 2(v)
. (E.29)

We show the results in Figure E.2. We see that for particle dark matter the error is
roughly 2% over the values of g of interest, while for wave dark matter is roughly
8%. This procedure can be generalized to arbitrary distributions to check the good-
ness of the ergodic approximation.
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Appendix F

Gravitational Waves from a binary

In this Appendix, we show the derivation of the gravitational waveform exploited
in Chapter 5 to study the dephasing of the gravitational wave signal caused by the
dynamical friction exerted by the dark amter halo.

Let us consider the GW emission during the inspiral phase of the binary in a
quasi-circular orbit, i.e. ḟo ⌧ f 2

o . The strain of the two GW polarizations emitted
from the binary is [380]

h+ =
G

DL
(M̈11 � M̈22)

����
t�DL

, (F.1)

h⇥ =
2G
DL

M̈12

����
t�DL

, (F.2)

where Mij =
R

d3x xixjT00 are the quadrupole moment components and DL is the
luminosity distance between the observer and the binary. We introduce coordinates
in the orbital (x, y) plane

x(t) = r(t) sin[F(t)/2], y(t) = r(t) cos[F(t)/2] , (F.3)

where Fo(t) = F(t)/2 is the orbital phase, related to the GW frequency f via

F(t) =
Z t

dt0 2p f (t0) . (F.4)

We compute the waveform explicitly. In the center-of-mass frame Mij = µxixj

has the explicit form

M(t) =
µr(t)2

2

0

B@
1 � cos F(t) sin F(t) 0

sin F(t) 1 + cos F(t) 0
0 0 0

1

CA . (F.5)

When computing the time derivatives of M, we can neglect terms of order ḟ ⌧
f and ṙ ⌧ r f or higher, thanks to the quasi-circular approximation. Taking into
account the inclination i, i.e. the angle between the observer’s line of sight and the
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normal to the orbital plane, we obtain

h+(t) =
4

DL
(GMc)

5/3[p f (t)]2/3 1 + cos2 i

2
cos[F(t)]

����
t�DL

, (F.6)

h⇥(t) =
4

DL
(GMc)

5/3[p f (t)]2/3 cos i sin[F(t)]
����
t�DL

. (F.7)

However, we are interested in the strain in frequency space. Let us consider the +
polarization for now

h+( f ) =
1
2

Z
dt a(t)


e2pi f t+iF(t) + e2pi f t�iF(t)

�
, (F.8)

where a(t) contains all the factors except cos[F(t)]. The main time dependence is
in the exponential factor, so we can use the saddle point approximation to extract
the main contribution. If t? is the point for which the phase is stationary, i.e. 2p f =
Ḟ(t?). Notice that, given the definition of F, we have F(t?) = F0 + F( f ) and t? =
t0 + t( f ). We expand

F(t) ⇡ F(t?) + 2p f (t � t?) +
1
2

F̈(t?)(t � t?)2, (F.9)

we drop the first exponential factor and write

h+( f ) ⇡ 1
2

a(t?)e�iF(t?)+2p f t?
Z

dt e� i
2 F̈(t?)(t�t?)2

(F.10)

=
1
2

a(t?)e�iF(t?)+2p f t?�ip/4

s
2p

F̈(t?)
.

We therefore obtain

h+,⇥( f ) = A+,⇥( f )eiY+,⇥( f ) , (F.11)

where the amplitudes are given by

A+( f ) =
2

DL

1 + cos2 i

2
(GMc)5/3(p f )2/3

ḟ 1/2
, (F.12)

A⇥( f ) =
2

DL
cos i

(GMc)5/3(p f )2/3

ḟ 1/2
, (F.13)

and the phases are

Y+( f ) = 2p[t0 + t( f )] � F0 � F( f ) � p

4
, (F.14)

Y⇥( f ) = 2p[t0 + t( f )] � F0 � F( f ) +
p

4
. (F.15)
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