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Abstract 

This thesis deals with multi-dimensional data sets sampled in the pelagic zone of the 

North Sea. Unlike terrestrial or benthic ecosystems, there are no readily observable 

differences in the pelagic zone. It is therefore difficult to define habitats or ecological 

niches and to predict the response of an ecosystem or its community to 

anthropogenic or environmental pressures. However, this is essential for sustainable 

management, especially in the face of global warming and increasing anthropogenic 

impacts on coastal ecosystems, such as offshore wind farms (OWFs). The results of 

this thesis highlight the potential of machine learning to improve our knowledge of the 

processes that shape plankton communities, but also its limitations. Fully automated 

methods are presented to (a) classify in-situ plankton images and (b) detect 

differences in the pelagic zone based on physical and biological measurements. The 

potential for detecting ecological niches and anthropogenic impacts on a highly 

dynamic ecosystem such as the North Sea is discussed. 

In chapter I (‘Automatic plankton image classification—can capsules and filters help 

cope with data set shift?’) the potential for automatic classification of in-situ plankton 

images using a Capsule Neural Network (CapsNet) was investigated. Data Set Shift 

(DSS) in this case describes the problem of shifting plankton communities in both 

spatial and temporal dimensions. The CapsNet was less affected by DSS than a 

standard convolutional neural network (CNN), but it also had a lower overall recall, 

especially for rare classes. The CNN classifications were more affected by DDS, but 

were still sufficient to reflect the spatial distributions observed in the field, at least in 

the case of the more abundant groups. For rare classes, an alternative method called 

‘top-3 accuracy’ is proposed to limit human effort while increasing the recall of 

individual target species to >95%. 

In chapter II (‘Automatic segregation of pelagic habitats’) an Autoencoder (AE) was 

used to detect patterns in a data set consisting of biotic and abiotic variables. Each 

variable contributed a single value to a multi-dimensional micro-habitat that was 

projected by the AE onto a two-dimensional plane. The projections were clustered 

and grouped into macro-habitats consisting of similar micro-habitats. The method 

consistently identified three distinct pelagic macro-habitats, a ‘surface mixed layer’, a 

‘bottom layer’ and a ‘productive layer’. Distinct plankton communities were observed 
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in the different macro-habitats. Furthermore, anthropogenic influences induced by an 

OWF were successfully identified. The predictive power of the variables varied 

between data sets from different cruises, an indication of the complexity of interacting 

factors shaping pelagic habitats. 

In chapter III (‘Identification of plankton habitats in the North Sea’) I investigated the 

potential for predicting ecological niches from high-frequency multivariate datasets in 

the North Sea. The combination of an AE and a density-based clustering algorithm 

detected several complex habitat patterns, but niche segregation of plankton species 

at the sub-mesoscale was likely superimposed by local hydrography. Upwelling-

downwelling dipoles (in the following simply dipoles) induced by offshore wind farms 

can develop similar characteristics as naturally occurring frontal systems and 

improve local productivity. Although of limited applicability at the sub-mesoscale, the 

model demonstrated the capability for rapid automated processing of multivariate 

datasets, a key requirement for future research given the increasing amount of data 

available to marine scientists and the complex dynamics of the pelagic zone. 
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Zusammenfassung 

Die vorliegende Dissertation befasst sich mit der Analyse multidimensionaler 

Datensätze der pelagischen Zone der Nordsee. Im Gegensatz zu terrestrischen oder 

benthischen Habitaten gibt es im Pelagial nur wenige offensichtliche Unterschiede. 

Das macht es schwierig, verschiedene Lebensräume oder ökologische Nischen zu 

definieren und die Reaktion des Ökosystems oder seiner Bewohner auf 

anthropogene oder klimatische Einflüsse vorherzusagen. Dieses Wissen ist jedoch 

für ein nachhaltiges Management unerlässlich, insbesondere im Hinblick auf den 

Klimawandel und den Einfluss des Menschen auf Küstenökosysteme, z.B. durch 

Windparks. Die Ergebnisse dieser Dissertation zeigen das Potenzial, aber auch die 

Grenzen des maschinellen Lernens auf. Zu diesem Zweck habe ich vollautomatische 

Methoden entwickelt, die (a) in-situ Planktonbilder klassifizieren und (b) Unterschiede 

in der pelagischen Zone basierend auf physikalischen und biologischen Messungen 

detektieren können. In der anschließenden Diskussion wird auf das Potential der 

Methoden, ökologische Nischen und anthropogene Einflüsse zu erkennen, näher 

eingegangen. 

In Kapitel I (‘Automatic plankton image classification - can capsules and filters help 

cope with data set shift?’) wurde das Potential einer neuartigen Modellstruktur, den 

‘Capsule Neural Networks’ (CapsNet), zur Klassifikation von in-situ Planktonbildern 

untersucht. Der Schwerpunkt lag dabei auf der räumlichen und zeitlichen Variabilität 

von Planktongemeinschaften, ein Phänomen, das im Englischen als ‘Data Set Shift’ 

(DSS) bezeichnet wird. Obwohl das CapsNet weniger stark von DSS betroffen war 

als ein gewöhnliches ‘Convolutional Neural Network’ (CNN), hatte es einen 

geringeren Recall-Wert, insbesondere für seltene Gruppen. Die Ergebnisse des 

CNN, das stärker durch den DSS beeinflusst wurde, reichten dennoch aus, um die 

räumliche Verteilung der häufigsten Arten im Feld wiederzugeben. Für seltenere 

Arten wird eine alternative Methode vorgeschlagen, um den manuellen Aufwand zu 

minimieren und gleichzeitig den Recall-Wert zu maximieren. Diese ‘top-3-accuracy’-

Methode erreicht einen durchschnittlichen Recall-Wert von >95%. 

In Kapitel II (‘Automatic segregation of pelagic habitats’) wurde ein Autoencoder 

(AE) verwendet, um Muster in einem Datensatz biologischer und physikalischer 

Variablen zu finden. Ein mehrdimensionales ‘Mikrohabitat’ wurde durch genau einen 
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Wert jeder Variablen in diesem Datensatz definiert und vom AE auf eine 

zweidimensionale Fläche projiziert. Die Projektionen wurden in Gruppen eingeteilt 

und zu Makrohabitaten zusammengefasst. Auf diese Weise wurden drei eindeutige 

pelagische Lebensräume identifiziert: eine ‘Oberflächenmischschicht’, eine 

‘Bodenschicht’ und eine ‘produktive Schicht’. In jedem dieser Habitate wurde eine 

andere Planktonzusammensetzung beobachtet. Zusätzlich konnten anthropogene 

Einflüsse durch einen Windpark nachgewiesen werden. Die große Variabilität der 

Relevanz verschiedener Variablen in zwei unabhängigen Datensätzen war ein 

Hinweis auf die Komplexität der Faktoren, die den pelagischen Lebensraum 

definieren. 

In Kapitel III (‘Identification of plankton habitats in the North Sea’) untersuchte ich 

das Potenzial zur Identifizierung ökologischer Nischen in der Nordsee mit Hilfe 

hochfrequenter multidimensionaler Datensätze. Obwohl die Kombination eines AE 

mit einem dichtebasierten Clusteralgorithmus verschiedene komplexe Habitatmuster 

identifizierte, war es nicht möglich, Rückschlüsse auf ökologische Nischen für 

einzelne Planktonarten zu ziehen. Auf der betrachteten sub-meso Skala wurde die 

Einnischung der Arten wahrscheinlich durch die lokale Hydrographie verhindert. 

Darüber hinaus zeigte sich, dass durch Windparks erzeugte ‘upwelling-downwelling 

Dipole’ ähnliche Eigenschaften wie natürliche Frontensysteme entwickeln und somit 

die Produktivität des lokalen Systems erhöhen. Obwohl das Modell auf der hier 

verwendeten Skala nur von begrenztem Nutzen war, konnte ich erfolgreich seine 

Fähigkeit demonstrieren, multidimensionale Datensätze vollautomatisch zu 

analysieren. Gerade vor dem Hintergrund der stetig wachsenden Datenmengen, die 

den Wissenschaftlern zur Verfügung stehen, und der komplexen Wechselwirkungen 

in der pelagischen Zone des Ozeans ist diese Fähigkeit zur schnellen und 

automatisierten Datenverarbeitung von besonderem Interesse. 
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General Introduction 

The North Sea is a shallow shelf sea (Huthnance, 1991; Lenhart et al., 1995; 

Sündermann and Pohlmann, 2011) with a long history of oceanographic research 

(Lee, 1980; Anderson, 2002; Sündermann and Pohlmann, 2011). It occupies an area 

of ~575000 km2, mainly between the European mainland and the United Kingdom 

(Eisma et al., 1997). The depth increases from the southern parts towards the north 

(Huthnance, 1991; Lenhart et al., 1995), but generally remains above 200 m (Eisma 

et al., 1997). It can be roughly divided into northern, central and southern parts by 

depth and continentality (Otto et al., 1990). The northern part is strongly influenced 

by Atlantic inflows (Huthnance, 1991; Lenhart et al., 1995), while the southern North 

Sea is connected to the Atlantic via the English Channel (Otto et al., 1990; Lenhart et 

al., 1995; Eisma et al., 1997) and increasingly influenced by river discharge towards 

the German Bight (Huthnance, 1991; Eisma et al., 1997). The high level of discharge 

and the low salinity of the Baltic inflows create density differences that produce 

estuarine-like circulations (Huthnance, 1991; Eisma et al., 1997), where the 

freshwater discharge flows seaward on top of the saltier marine water (Simpson and 

Nunes, 1981). This coastal zone is characterised by salinities <34 psu (Fransz et al., 

1991) and extends 50-200 km offshore (Lenhart et al., 1995). Typical North Sea 

water is characterized by a salinity range between 34 and 35 psu and is the result of 

mixed coastal and Atlantic water (Böhnecke (1922) in Fransz et al., 1991). Within the 

North Sea boundaries, an anticlockwise flow dominates (Otto et al., 1990; 

Huthnance, 1991; Eisma et al., 1997; Sündermann and Pohlmann, 2011) with the 

only outflow to the Atlantic along the Norwegian coast (Sündermann and Pohlmann, 

2011). The tidal wave enters the North Sea from both the north and the south and 

again moves in an anticlockwise direction, with stronger currents and ranges in the 

shallower parts along the coast (Huthnance, 1991; Eisma et al., 1997; Sündermann 

and Pohlmann, 2011). Partly due to the strong tidal current the coastal areas remain 

homogenized throughout the year whereas the deeper parts of the North Sea 

become seasonally stratified (Otto et al., 1990; Huthnance, 1991; Eisma et al., 1997; 

Sündermann and Pohlmann, 2011; Leeuwen et al., 2015). In addition to tidal 

currents, wind-driven circulation can have a significant impact on the hydrography of 

the North Sea (Huthnance, 1991; Blaas and Swart, 2001; Sündermann and 

Pohlmann, 2011). Both thermal and haline fronts result in areas of high productivity, 
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which periodically alternate between high and low oxygen concentrations (Eisma et 

al., 1997). The high productivity makes the North Sea a particularly important 

ecosystem for commercial fisheries (Eisma et al., 1997; Kirby et al., 2007). 

The exploitation of natural resources was part of humankind since the beginning of 

our civilization (Gupta, 2004; Tauger, 2010). Marine, and in particular coastal, 

ecosystems already provide a wide range of ecosystem services of great importance 

to our society (Peterson and Lubchenco, 1997). More recently, the installation of 

offshore wind farms (OWFs) to meet the demand for renewable energy has further 

increased human interest in coastal areas (Carpenter et al., 2016; Corbetta et al., 

2016). However, there is still a lack of tools to assess their potential impact on the 

marine environment (Burkhard et al., 2011; ICES, 2022). Unlike many other marine 

organisms, plankton species are rarely commercially exploited and their dynamics 

exhibit a strong relation to environmental changes (Hays et al., 2005). As a result, 

they have a unique potential to detect shifts in the marine ecosystem (Hays et al., 

2005; Lindegren et al., 2012), which can have severe consequences for 

commercially relevant species (Sguotti et al., 2022; Blöcker et al., 2023). 

Copepods are the numerically most abundant members of the holoplankton 

(Lombard et al., 2010). A comprehensive review of North Sea copepod species is 

given in Fransz et al. (1991), but here I will focus on the most relevant. 85% of the 

entire copepod biomass in the North Sea is generated by only four species: Acartia 

clausi Giesbrecht, 1889, Centropages hamatus Liljeborg, 1853, Temora longicornis 

Müller, 1785, and Pseudocalanus elongatus Boeck, 1865 (Hickel, 1975). There are 

seasonal differences in the abundance of different species, but the by far most 

abundant is P. elongatus (Fransz et al., 1991). Calanus finmarchicus Gunnerus, 

1770 is another common copepod in the North Sea which has been observed to 

retreat in more northerly regions with increasing temperatures (Planque and 

Fromentin, 1996; Falkenhaug et al., 2022). Calanus helgolandicus Claus, 1863 on 

the other hand shows an increasing trend in the North Sea (Planque and Fromentin, 

1996; Falkenhaug et al., 2022). It is therefore reasonable to assume that C. 

helgolandicus will become more important under global warming and could also be a 

good indicator of a regime shift in the North Sea (Beaugrand and Ibanez, 2004), next 

to other copepod species (Lindegren et al., 2012). A possible mechanism beside 
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seasonality supporting the high diversity in copepods is species-specific prey 

selection (Fransz et al., 1991). Copepods are important in the trophic cascade by 

linking primary producers to higher trophic levels (Cleary et al., 2016; Winder et al., 

2017). They are the preferred prey for larvae of commercially important species such 

as cod (Munk et al., 1995) and planktivorous fish and fish larvae in general 

(Möllmann et al., 2003). Contrary to long-held beliefs, this position in the food chain is 

no longer the exclusive preserve of copepods (Harbison and Gilmer, 1976). 

Contributions of gelatinous zooplankton like salps (Harbison and Gilmer, 1976; 

Sutherland and Madin, 2010) or appendicularians (Alldredge, 1981) has long been 

underestimated. 

After copepods, the next most abundant group of zooplankton are the 

appendicularians (Landry et al., 1994). Appendicularia are filter feeders that generally 

feed on particles <20 µm (Alldredge, 1981). They produce gelatinous filter nets called 

‘houses’ that are discarded several times a day due to clogging or growth of the 

individual under favorable conditions (Alldredge, 1976; Gorsky and Fenaux, 1998). 

Although appendicularia reduce their filtering activity at high particle densities, the 

houses clog more easily and therefore need to be discarded more often (Alldredge, 

1976). The houses and fecal pellets sink rapidly and are therefore important for 

benthopelagic coupling and vertical carbon export in the open ocean (Lombard et al., 

2010; Winder et al., 2017). The role of appendicularia in the ecosystem becomes 

even more interesting considering global warming. As temperatures rise, 

appendicularia have increased filtering rates (Alldredge, 1981) and shorter 

generation times (Paffenhöfer, 1976). In the North Sea, they had generation times of 

around 3 weeks (Paffenhöfer, 1976), allowing them to respond more quickly to rising 

temperatures than the copepods (Winder et al., 2017) with which they compete for 

food (Landry et al., 1994). While copepods have diurnal feeding rhythms (Landry et 

al., 1994) appendicularia feed 24h a day (Alldredge, 1981). Thus, under climate 

warming and ocean acidification, appendicularia are likely to replace copepods as 

the most abundant species, with major implications for vertical particle fluxes (Winder 

et al., 2017) and global ecosystems in general, as benthic communities will have a 

more ample food supply (Thorpe et al., 2022). 
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Laakmann et al. (2016) identified 31 species of Echinoderms in the North Sea, all of 

which have a pelagic larvae called pluteus larvae. A shift in the pelagic community 

from copepod-dominated to pluteus-dominated systems was observed in the 1980s, 

due to an increase in the macrobenthic biomass (Lindley et al., 1995). Such a regime 

would be strengthened in a system dominated by appendicularia. Furthermore, and 

despite the high diversity, most pluteus larvae in the North Sea belong to 

Echinocardium cordatum Pennant, 1777 (Kirby et al., 2007). The adult form of E. 

cordatum benefits from warm winter and spring temperatures (Kirby and Lindley, 

2005; Kirby et al., 2007), which will become more likely under warming conditions. An 

increase in pluteus larvae in a warming ocean is therefore very likely and will further 

increase competition for copepods. 

The examples above already indicate that global warming can have a major impact 

on pelagic communities and food webs in the oceans (Möller et al., 2015; Möllmann 

et al., 2021). Unfortunately, the processes that promote and maintain plankton 

diversity are largely understudied (Brun et al., 2015; Lindegren et al., 2020), and it is 

therefore essential that we gain a better understanding of the mechanisms that drive 

the spatio-temporal distribution of plankton (McGinty et al., 2018). The ecological 

niche was first mentioned in Grinnell (1917) and understanding a species niche will 

help to understand and forecast their biogeographic distribution (McGinty et al., 

2018) along environmental gradients. The fundamental niche, also known as the 

Grinnellian niche, defines the area where a species can survive (Hutchinson, 1957). 

The realized or Eltonian niche, usually only a fraction of the fundamental niche, is 

where a species dominates over its competitors (Elton, 1927). The original 

assumption of the realized niche was, that if two species occupied the same niche, 

one would consequently go extinct (Hutchinson, 1961). However, this is not 

compatible with the idea of functional groups or traits. Functional traits strongly affect 

organismal performance and are applicable to multiple species at once (McGill et al., 

2006), defining their ecological role. Multiple species that can provide the same 

ecological service are a key requirement for redundancy (Leibold and McPeek, 

2006), which is especially important considering the threat of global warming (McGill 

et al., 2006). However, the investigation of functional traits and realized niches 

requires data sets that include both, environmental gradients and species 

compositions, preferably at large scales. 
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In recent decades, traditional net-based plankton sampling was complemented by 

modern optical sampling methods. Using net-based samples, skilled taxonomists can 

sometimes even provide information about zooplankton life stages and sex (Ston et 

al., 2002; Johansson et al., 2004; Vuorio et al., 2005; Renz and Hirche, 2006; Peters 

et al., 2013). However, the spatial resolution and coverage is severely limited and the 

process itself time-consuming (Benfield et al., 2007; Irisson et al., 2022). Fortunately, 

the strengths and weaknesses of the sampling methods are reversed for modern 

optical samples. While it is very difficult to obtain information at least down to the 

family level (Batten et al., 2019), modern sampling devices provide information about 

plankton at spatial scales of cm and second (Davis et al., 1992; Benfield et al., 2007) 

along transects from 10’s (Floeter et al., 2017) to even 100’s (Davis and 

McGillicuddy, 2006) of nautical miles long. Most recently, the first estimation of a 

global zooplankton biomass was attempted, thanks to an optical sampling device 

called UVP5 (Drago et al., 2022). Still, the problem both methods had in common 

was the extremely long handling time. However, developments in machine learning 

models begin to erode this problem, at least for the modern optical samplers (Schmid 

et al., 2020). Hand-sorting millions of images is not practical and the magical 

threshold of 95 % proposed by Culverhouse et al. (2003) for a machine learning 

model to rival expert plankton ecologists was inaccessible for even the most modern 

applications. But especially in the last decade there were some breakthroughs. While 

rare species remain problematic, an application of filtering thresholds can provide a 

researcher with a reduced, yet accurate data set regarding species composition and 

distribution for the more common taxa (Faillettaz et al., 2016; Luo et al., 2018). Other 

than that, the combination of a feature-extracting Convolutional Neural Network 

(CNN) with a density-based clustering algorithm (HDBSCAN) brings together the 

speed gained by using machine learning techniques and the knowledge provided by 

trained human personal (Schröder et al., 2020). And further improvement is to be 

expected. 

This advancement however brought down a new challenge upon the unsuspecting 

plankton ecologist: how to handle the enormous new resources? Even worse, 

remotely operated towed vehicles (ROTV) like the TRIAXUS could simultaneously 

sample multiple different physical parameters like temperature or salinity, generating 

an even bigger wealth of data (Floeter et al., 2017). Extracting meaningful features 
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out of the ‘sea of data’ is a problem in its own right and requires the development of 

new tools and methods (Alvarez-Berastegui et al., 2014; North et al., 2016). Not only 

the amount of the data is a problem, but also the sparsity of plankton patches 

(Richerson et al., 1978; Benoit-Bird et al., 2013). The aggregation of particles around 

specific features like fronts or eddies is a long-known fact (Munk et al., 1995; Höffle 

et al., 2013; Munk, 2014; Swalethorp et al., 2015). Still, this produces a similar 

problem as with the plankton images itself: ~ 90% of all the captured images usually 

show only detritus or ‘marine snow’ (Lee et al., 2016; Luo et al., 2018). This huge 

imbalance is a major problem, not only in classifying plankton images (He and 

Garcia, 2009). The similarity lies in the relatively small areas of peak abundances of 

plankton and the comparably vast areas of low abundance (Lombard et al., 2019). 

On top of that, the pelagic realm is a very dynamic and unstable environment 

(Hinchey et al., 2008) and simultaneously the downward shift from meso- to 

submeso- to micro-scale is accompanied by a reduction of the operative scales in 

time and space at which processes act. This seemingly chaotic system and the 

unexpected high diversity of zooplankton taxa led to the formulation of the now 

famous ‘paradox of plankton’ (Hutchinson, 1961). The seemingly contradiction of 

many coexisting plankton species despite the absence of relatively stable ecological 

niches to thrive in, which should therefore extinct each other in their daily struggle to 

survive. 

These are the difficulties that arise if one deals with zooplankton and they all point 

towards the same fundamental question: is it possible to predict the distribution of 

plankton species? One possibility to answer this question are habitat maps. Habitat 

maps link species or communities to physically distinct areas (Harris and Baker, 

2012) and are a valuable addition to ecosystem models that support management 

decisions (Püts et al., 2020). Therefore, the general aim of this thesis was to extract 

habitat-based information from the high-resolution data available from the use of the 

ROTV Triaxus and similar devices. 

In Chapter I a deep learning CNN was trained to classify plankton images generated 

by the Video Plankton Recorder (VPR) that was attached to the Triaxus. The 

performance of the CNN was compared to a new type of model, a Capsule Network 

(CapsNet), which was a recent alternation from basic NNs (Hinton et al., 2011; 
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Sabour et al., 2017). It was tested, which of the two models could provide more 

reliable classifications over an extended period of years since data set shift is a 

known issue in the processing of plankton images from real-world applications. An 

existing data set of ~ 124.000 hand sorted images was used to train both models 

similarly. Both models were based on an existing weight set for the imagenet data set 

(Deng et al., 2009) which were adjusted to fit the task at hand. Three test sets with 

different degrees of data set shift were used to evaluate the performance of each 

model under realistic conditions. 

In Chapter II a fully-connected Autoencoder (AE) was trained from scratch to extract 

meaningful features from a multidimensional data set generated with the Triaxus. 

Four environmental parameters were selected to generate maps of potential habitats 

in the pelagic realm. The aim of the chapter was to detect and segregate features like 

tidal mixing fronts or upwelling-downwelling dipoles in the North Sea. The 

communities in the predicted habitats were compared using different aggregation 

indices to see if the identified habitats were occupied by different communities. 

Finally, in chapter III both approaches were combined to identify ecological niches. 

The model trained in chapter I was used to provide information about plankton 

abundances which were simultaneously processed with the environmental 

parameters by a new AE. The prospect was that the combination of species 

abundances and physical parameters would lead to the identification of different 

plankton communities along the physical gradients. This would help to understand 

the niches that species occupy and predict changes under changing environmental 

conditions (e.g. global warming). In addition, key parameters driving habitat 

segregation and the extent of their influence were identified. 
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Abstract 

The general task of image classification seems to be solved due to the development 

of modern convolutional neural networks (CNNs). However, the high intra-class 

variability and inter-class similarity of plankton images still prevents the practical 

identification of morphologically similar organisms. This prevails especially for rare 

organisms. Every CNN requires a vast amount of manually validated training images 

which renders it inefficient to train study-specific classifiers. In most follow-up studies 

the plankton community is different than before and this data set shift (DSS) reduces 

the correct classification rates. A common solution is to discard all uncertain images 

and hope that the remains still resemble the true field situation. The intention of this 

North Sea Video Plankton Recorder (VPR) study is to assess if a combination of a 

Capsule Neural Network (CapsNet) with probability filters can improve the 

classification success in applications with DSS. Second, to provide a guideline how 

to customize automated CNN & CapsNet deep learning image analysis methods 

according to specific research objectives. In community analyses our approach 

achieved a discard of uncertain predictions of only 5 %. CapsNet and CNN reach 

similar precision scores, but the CapsNet has lower recall scores despite similar 

discard ratios. This is due to a higher discard ratio in rare classes. The recall 

advantage of the CNN decreases with increasing DSS. We present an alternative 

method to handle rare classes with a CNN achieving a mean recall of 96 % by 

manually validating an average of 6.5 % of the original images. 

Introduction 

State-of-the-art sampling with towed optical devices provides anthropocenic marine 

planktologists with a wealth of data that even their most recent ancestors could only 

have dreamed of. Old-school planktologists had to spent hours sitting over the 

microscope hand-sorting net samples. They were rewarded with snapshots of 

plankton communities in space and time at the highest possible taxonomic level, 

sometimes even down to ontogenetic life stages, sex and clutch sizes (Hansson et 

al., 1990; Ston et al., 2002; Johansson et al., 2004; Vuorio et al., 2005; Renz and 

Hirche, 2006; Peters et al., 2013). 

Modern plankton sampling devices provide information from the other ends of these 

scales: millions of images at a spatio-temporal resolution of cm and seconds (Davis 
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et al., 1992; Wiebe and Benfield, 2003; Benfield et al., 2007) sampled continously 

over transects 10’s (Floeter et al., 2017) or even 100’s (Davis and McGillicuddy, 

2006) of nautical miles long. 

The subsequently necessary automatic plankton image classification has followed 

the trends in machine learning from Support Vector Machines (SVMs, Hu and Davis, 

2005; Sosik and Olson, 2007), later on Neural Networks (NNs, Tang and Stewart, 

1996) to modern Random Forest (RF, Bell and Hopcroft, 2008; Orenstein et al., 

2015; Faillettaz et al., 2016) and Convolutional Neural Networks (CNNs, LeCun et 

al., 2015; Krizhevsky et al., 2017), though the use of manually engineered features 

such as in SVMs is still relatively common (e.g. Nanni et al., 2019). Since the year 

2015, when the Microsoft Research Asia team (He et al., 2015) had won the annual 

ImageNet challenge (Russakovsky et al., 2015) by reaching an accuracy of 96.4 % in 

classifying high-resolution color images into 1,000 different categories, image 

classification seemed to be solved (Chollet, 2017). At first sight, plankton images are 

no exception, because recent efforts have resulted in > 90% average classification 

accuracy (Al-Barazanchi et al., 2016; Luo et al., 2018). 

However, the taxonomic resolution is also almost always diametrically opposed to the 

increasing scales, providing densities for coarse zooplankton groups such as 

“jellyfish” or “calanoid copepods” and reaching the family-, or for very distinct 

organisms the genus-level at best (e.g., Pseudocalanus spp. in the Baltic Sea - 

Möller et al., 2015; Pitois et al., 2018). This is certainly not sufficient for biodiversity 

monitoring (Batten et al., 2019). However, in many cases coarse groups are suitable 

for ecological process studies, especially targeting the meso- (Floeter et al., 2017) 

and microscale (Möller et al., 2012; Ohman et al., 2019). 

Further on, the specific success of an automatic plankton image classification task 

depends on a number of factors: first on the desired taxonomic resolution, i.e. the 

research question, and second on technical properties as the number of training 

images and their distribution among classes (e.g. Orenstein et al., 2015). 

Additionally, the image quality can have an effect (e.g., how many suspended 

particles have scattered the flashlight), as the GIGO Principle (Garbage In - Garbage 

Out) still prevails in times when machines are learning. 
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Some plankton classes are very abundant while others are scientifically more in 

focus but rare. Coupled with the usually high intra-class variability and inter-class 

similarity this leads to the first unsolved problem in real world applications of 

automatic plankton image classification: the correct identification of rare and/or 

morphologically similar organisms (Culverhouse et al., 2003; Benfield et al., 2007; 

Bell and Hopcroft, 2008). The second remaining problem of plankton classification 

with machine learning methods in production mode applications is related to data set 

shift (DSS, Moreno-Torres et al., 2012), more specifically in form of “covariate shift” 

(Moreno-Torres et al., 2012; Webb et al., 2018). DSS can be a problem when, e.g., a 

machine learning model fitted to images of one region such as the North Atlantic is 

applied in an apparently similar region in the adjacent North Sea (Webb et al., 2018). 

Covariate shift is a specification of DSS and can occur when a model that is fitted to 

images sampled from one plankton distribution needs to be applied to another 

plankton community sampled some weeks later at the same location. 

One approach to cope with these challenges in the production mode application of 

machine learning methods in plankton image classification is the introduction of 

probability thresholds, which discards images with uncertain (i.e., likely erroneous) 

classifications (Faillettaz et al., 2016). This method leads to considerable 

improvements in average precision but simultaneously to high discard rates of 30-

70% of the original images, which artificially changes their abundances (Luo et al., 

2018). As some of the discarded images were correctly identified objects, the recall 

(i.e., the proportion of the true total number of objects of a class that are correctly 

predicted in that class) is reduced. The resulting key question is whether any 

subsequent analyses still yield ecological patterns that resemble the truth (Faillettaz 

et al., 2016; Luo et al., 2018). This is usually fulfilled for research questions that 

target common taxa at coarse spatial resolutions. When validated images in the 

order of magnitude of the test data set are easily obtainable for each new data set, a 

multiplication factor can be computed from the F-score based confusion matrix to 

calculate post-filtering corrected concentrations (Hu and Davis, 2006; Briseño-Avena 

et al., 2020; Schmid et al., 2020). 

However, when the scientific focus is on rare organisms or alpha biodiversity, recall 

is more important than mean precision and a filtering method may be impedimental. 
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The second main challenge is the consistency of model performance over time and 

space, i.e. data set drift (Bell and Hopcroft, 2008; Al-Barazanchi et al., 2016; 

González et al., 2017). The Capsule Network (CapsNet) is a recently developed 

machine learning architecture (Hinton et al., 2011; Sabour et al., 2017), which could 

overcome this issue. CapsNets group neurons into so called Capsules, which learn 

specific properties of an object or segment such as size or rotation. This makes the 

predictions of a CapsNet invariant to the viewpoint, i.e., variations in position and 

orientation, and to variations in scale and lighting. It can theoretically improve the 

performance on overlapping objects, thus it could be useful to detect e.g. grazing 

interactions with marine snow particles (Möller et al., 2012). Instead of dropout layers 

a CapsNet uses a reconstruction autoencoder for regularization. This autoencoder 

should be able to reconstruct an object of the predicted class based on the features 

learned for that class (Sabour et al., 2017; Xi et al., 2017). So far CapsNets have 

been successfully applied to “baseline” data sets such as MNIST or CIFAR10 

(Sabour et al., 2017; Xi et al., 2017; Rajasegaran et al., 2019) but only to a limited 

number of “real-world” applications such as brain tumor recognition (Afshar et al., 

2018). 

The theoretical advantages of the CapsNet over a common CNN led us to the 

assumption, that a CapsNet should be able to adapt better to changing field 

conditions and therefore yield better results in production mode applications. By 

following González et al. (2017) recommendations for the development of unbiased 

input data sets reflecting the class distribution in the field we describe the whole 

training process for a deep learning CNN and a CapsNet to classify plankton images 

in 26 different classes. This includes pre-processing, classification and 

postprocessing of the images. Subsequently, we apply our models in production 

mode, i.e. without updating the training, to three different North Sea field data sets 

with increasing temporal and structural distance. 

In our analysis we demonstrate how the filtering method and a CapsNets can help 

coping with DSS in automatic plankton image classification. Specific research tasks 

typically focus on predicting broad scale plankton community properties in unseen 

samples or on classifying each image correctly, also for rare organisms. 
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To assess whether filtering methods and CapsNets can be customized to 

successfully cope with data set and covariate shift, we compare two different 

scenarios: a baseline scenario (BL) without any filtering and a high precision scenario 

(P95) with probability filters aimed to maximise precision in a fully automated 

analyses of plankton communities. Second, we show how to customize the method 

to maximise the recall for classes, individually, supporting studies focusing on 

specific classes exclusively. To measure the potential advantage of the CapsNet, we 

compare the results of a simultaneously trained CNN with those of our CapsNet. 

Material and procedures 

Description of instrument 

We used a Video Plankton Recorder (VPR, Seascan Inc., Falmouth, MA02540, USA) 

mounted on a MacArtney TRIAXUS ROTV which was connected to a research 

vessel with a fibre optic cable to record high resolution images of in-situ plankton 

organisms. The ROTV was towed at a speed of 8 knots (4.1 m s-1) with a three-

degree lateral offset to lessen any disturbance from the vessels wake. During most 

transects the ROTV was undulating with a vertical speed of 0.1 m s-1 from ~ 4 m 

below the sea surface to ~ 8 m above the sea floor. The VPR was equipped with a 

high-resolution digital camera (Pulnix TM-1040) that records up to 25 fps. A 

synchronized strobe (Seascan - 20 W Hamamatsu xenon bulb) provided the 

illumination for the images at a pulse of 1 µs. The resulting images consist of 1392 x 

1024 pixels with a size of 9.0 x 9.0 µm. The chosen field of view was 24 x 24 mm 

with a focal depth of ~ 60 mm at 246 mm from the lens. The image volume was thus 

34.93 mL. Imaged particles were extracted as regions of interest (ROIs) by the 

Autodeck image analysis software (Seascan Inc.) and saved to the computer hard 

drive as TIFF files. 

Description of hard- and software 

The German Climate Computing Center (DKRZ) provided computing time with the 

High Performance Computer System for Earth System Research (HLRE-3, Mistral), 

which consists of more than 3,000 compute nodes, providing a peak compute 

performance of 3.6 PFLOPs and was used to train our models. We used two Mistral 

computing nodes (2x 18-core Intel Xeon (E5-2695 v4) with a single Nvidia Tesla 
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V100 GPU and 512 GB RAM) for the training of our models 

(https://www.dkrz.de/up/systems/mistral/configuration, 2020 August 04. 16:35:40). 

Training and application of deep learning models were done with a GPU supported 

Tensorflow (Abadi et al., 2015) backend for Keras (Chollet, 2015) under Python 3.7 

(Van Rossum and Drake, 2009). Subsequent data analyses were done with the 

statistical package R (RCoreTeam, 2020). Visualisations were created using ggplot2 

(Wickham, 2016) while data management was mainly done with dplyr (Wickham et 

al., 2020). We calculated the t-test modified by Dutilleul (Dutilleul et al., 1993) using 

SpatialPack (Osorio and Vallejos, 2019). The Bray-Curtis dissimilarity (Bray and 

Curtis, 1957) between the validated training set and the predicted field sets was 

calculated using the implementation in vegan (Oksanen et al., 2019). 

Field sampling 

We used ~ 124,000 hand sorted and labelled images to train our models, of which ~ 

90 % were sampled on the FS Heincke cruise HE446 on the 4th of June 2015 

between 07:00 and 13:00 (UTC). The remaining 10 % of the images originate from 

the period June to August of 4 years (2014 - 2017) and cover all 24 hours of a day. 

Most of our images (94 %) were sampled in the inner German Bight of the North Sea, 

including the three unlabelled field data sets (Figure 1) which we used in our 

production mode analysis. The remaining 6 % originated from the Baltic Sea and 

provided images for the classes ‘eggs’ and ‘larvae’ which were not represented 

otherwise. 

https://www.dkrz.de/up/systems/mistral/configuration
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Figure 1: Core area of the sampling transects with the VPR in the North Sea. The red 

transect provided ~90 % of the labelled training images. black: remaining training set; 

field sets - green: FS446 (#1; 2015; 55,302 images); brown: FS466                             

(#2; 2016; 7,798 images); orange: FS534 (#3; 2019; 31,848 images). Blue shading: 

depth contours from 20 to 50 m. 

Evaluation of the performance consistency of our final classifiers in production mode 

was done using the three field data sets. The similarity of the unvalidated 

classifications (i.e. predictions) of the field data sets and the training set (TS) was 

assessed calculating the Bray-Curtis dissimilarity. Field set 1 (FS446) originated from 

the same HE446 cruise in 2015 as the majority of our training images. However, the 

field set was sampled in the morning from 06:00 to 09:00 (UTC, 55,302 images). The 

second field set (HE466) was sampled in June 2016 between 18:00 and 19:00 (UTC, 

7,798 images). The third field set (HE534) was sampled in June 2019 from 11:00 to 

12:00 (UTC, 31,848 images). All field set model predictions were manually checked 

and if necessary corrected by a human zooplankton expert to obtain the “true” 

classification. 

Table 1: Models were trained on 26 classes, including 2 classes with none-living 

objects (‘marine snow’ and ‘rod’) and 2 classes for unrecognized objects (‘unknown’ 
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and ‘blurry’). The numbers for the training- (TS) and field sets (FS) correspond to the 

‘true’ distribution obtained by manual classifications. 

class label 
TS 

[N] 

FS446 

[N] 

FS466 

[N] 

FS534 

[N] 
example image 

actinotrocha act 208 0 5 11 

 

amphipods amp 241 0 0 0 

 

appendicularia app 545 28 147 198 

 

appendicularia 

with house 
app 837 270 204 899 

 

bipinnaria bip 473 79 11 8 

 

blurry blu 1,187 101 1,313 1,014 

 

copepods cop 2,258 151 627 2,219 

 

diatoms dia 6,984 3,190 346 16 
 

echinodermata ech 100 0 0 0 
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class label 
TS 

[N] 

FS446 

[N] 

FS466 

[N] 

FS534 

[N] 
example image 

eggs egg 416 5 0 0 

 

larvae lar 230 15 7 1 

 

malacostraca mal 376 22 43 87 

 

medusae med 394 76 144 24 

 

mnemiopsis mne 739 144 1 7 

 

noctiluca noc 834 348 20 3,696 

 

phaeocystis pha 224 0 0 0 

 

pilidium pil 142 0 56 19 

 

pluteus plu 
14,71

3 
9,861 212 1,343 
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class label 
TS 

[N] 

FS446 

[N] 

FS466 

[N] 

FS534 

[N] 
example image 

polychaeta pol 802 363 16 22 

 

pteropods pte 587 0 0 0 

 

rod rod 264 2,034 814 22 

 

marine snow sno 
68,31

1 
37,675 3,578 20,519 

 

unknown unk 509 208 176 758 

:  

veliger vel 249 0 34 47 

 

worms wor 2,103 705 37 913 

 

zoea zoe 274 27 7 25 

 

Image pre-processing 

As CNNs require equally sized images, based on our most common regions of 

interest (ROI) size we chose a size of 240 x 240 pixel. Smaller images were 

extended by placing the original ROI image in the center and adding pixels. The new 

pixel values were set to the median of the ROI pixel values since most ROI images 
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were mainly filled with black background. ROI images that were greater than 240 

pixels in one or both dimensions were first squared by adding pixels with median 

values to keep the proportionality of the objects before rescaling them to 240 x 240 

pixels. Initial experiments showed that classification accuracy did not benefit from 

coloured images, so we transformed our images to greyscale by multiplying the rgb 

values with 0.299 (r), 0.587 (g) and 0.144 (b). The resulting matrix was replicated two 

times to create the required three channel image input format. When fed to the 

model, images greater than 240 pixels were reduced to 240 pixels. 

Images were fed to the model in small batches using an Image Data Generator 

function provided by Keras. The batch size was adapted to the respective model and 

image set (1 - 40). Since deep learning models usually perform better with 

homogeneous, small values (Bishop, 1995) all pixel values were divided by 255. 

Data augmentation was applied during the training but not in the validation and test 

step. Images were rotated, shifted in both directions, sheered, zoomed and 

horizontally flipped randomly with fill mode set to “nearest”. This was done to 

increase the generalization of the deep learning model by providing slightly altered 

images during each training cycle (= epoch). 

While CapsNets don’t necessarily need data augmentation to achieve the 

performance of similar CNNs trained with data augmentation (Jiménez-Sánchez et 

al., 2018), data augmentation nevertheless can increase the performance especially 

for small classes (Toraman et al., 2020). Thus, we also applied data augmentation 

during the training with the CapsNet. 

Automated image classification 

Workflow 

We combined a two-step training procedure suggested by Lee et al. (2016) and the 

application of different filtering thresholds, as suggested by Faillettaz et al. (2016), to 

optimize our model performance. In step 1, the model was trained with a balanced 

data set and rated according to the performance with a balanced test set, both of 

which were subsets of the imbalanced labelled data set. On this basis we continued 

to train the same model with an imbalanced training set, using the final weights from 

step 1 in the initialization and all available labelled images. As is common practice in 

deep learning, we split the entire data sets into training-, validation- and test-subsets. 
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Based on the predictions for the imbalanced test set, we calculated filter values 

which can be applied to tailor the results for specific research questions in production 

mode, i.e., application to new field data sets without updating the training procedure. 

Convolutional neural network 

We used the convolutional base (ConvBase) of the Xception V1 model with weights 

pre-trained on ImageNet available for download using the Tensorflow backend from 

Keras (https://keras.io/api/applications/xception/, 2019 December 10. 15:06:15). The 

input size was changed to 240 x 240 pixel from 299 x 299 pixel. We added an 

additional convolutional layer (ConvLayer - SeparableConv2D) using the Keras 

functional API before the flatten operation and the final Dense-Layer. The ConvLayer 

had a convolutional window with kernel size 3 x 3 and padding set to “same”. We 

chose “Rectified Linear Unit” as activation function. The resulting filter stack of 2,560 

filter maps with size 8 x 8 was flattened and the final Dense-Layer with softmax 

activation was used to classify the images into 26 different classes. The final model 

had 30,385,218 parameters (Figure 2). 

 

Figure 2: Our model architectures. Both models were based on the ConvBase of the 

Xception V1 (for details see Chollet (2017)). We changed the input size to 240 x 240, 

so the output of the ConvBase was a feature stack of 2,048 filter maps with size 8 x 

8. CNN: a convolutional layer with kernel size 3 x 3 returning 2,560 filter maps 

https://keras.io/api/applications/xception/
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followed by a flatten layer. The final softmax layer had length 26 (for 26 classes). 

CapsNet: a convolutional layer with 240 kernels of 6 x 6 and strides 2. The output 

was grouped into 80 primary capsules with 24 dimensions, each of which 

represented 1 property of the feature learned by the respective capsule. Plankton 

Capsules returned 26 capsules (one for each class) with 16 dimensions (one for 

each property) after 3 cycles of routing-by-agreement (RBA). 

Training the models 

In a first training step we used only 100 images of each class (2,600 images in total) 

for the training set and 10 images for validation (260) and testing (259) respectively. 

The smallest class had only 9 test images. The validation set is used to monitor the 

ability of the model to generalize during the training process, while the test set is a 

final evaluation prior to the application in production mode. ConvLayers “learn” by 

applying small weights to each input. Those weights store the “learned” information. 

We successively adapted more layers of the pre-trained ConvBase to our images 

during training, starting with the topmost (last) layers, going deeper in each 

successive phase (Table 2). This is called “transfer learning” (Pan and Yang, 2010; 

Kornblith et al., 2019). The Keras callback “ReduceLROnPlateau” was used with 

patience 2 and factor 0.6 and the weights of the best model achieved during training 

were saved by another callback “ModelCheckpoint”. Using the Adam optimizer 

(Kingma and Ba, 2014) and a categorical crossentropy loss function the model was 

trained with an initial learning rate of 2 × 10-5 (CNN) or 5 × 10-5 (CapsNet), using 

accuracy for evaluation. 

Table 2: Training procedure for the CNN and the CapsNet. Training the CNN was 

initialized using weights pre-trained on ImageNet, while the training of the CapsNet 

was initialized using the weights received at the end of step 1 with the CNN. Due to 

overfitting, the CapsNet was trained only for 4 phases in step 2, while the CNN was 

trained for 5 phases. The ConvBase had 40 layers in total. 

model 
training 
step 

training 
phase 

epochs 
ConvBase 
trainable layers 

CNN 1 1 7 2 

CNN 1 2 7 11 

CNN 1 3 7 20 

CNN 1 4 7 29 
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model 
training 

step 
training 

phase 
epochs 

ConvBase 

trainable layers 

CNN 2 1 3 2 

CNN 2 2 3 11 

CNN 2 3 3 20 

CNN 2 4 3 29 

CNN 2 5 5 35 

Cap 1 1 7 2 

Cap 2 1 3 2 

Cap 2 2 3 11 

Cap 2 3 4 20 

Cap 2 4 3 29 

 

In a second training step the same model was initialized with the final weights from 

step 1 and trained on a heterogenous data set. The distribution of the training images 

represented the distribution observed in the labelled data set (Table 1). 84 % of all 

images in a class were used as training set and 8 % as validation and test set 

respectively. The smallest class (echinodermata) had 100 (0.1 %) training images 

while the largest (marine snow) had 68,311 (65.7%). We used class weights (CW, 

eq. 1) to account for this imbalance: 

(1) 𝐶𝑊𝑖 = 𝑙𝑜𝑔(
𝑁𝑚𝑎𝑥

𝑁𝑖
) 

The CW of class i was calculated as natural logarithm of the ratio of the maximum 

number of images over all classes (Nmax) and the number of training images of class i 

(Ni). The CW of the largest class marine snow was set to 1 and the CWs of the other 

25 classes increased logarithmically with decreasing number of available training 

images up to a factor of 6.5 for the smallest class ‘echinodermata’. Again, we used 

‘transfer learning’ to benefit from the features learned during the first training step, 

especially in less abundant classes. 

The first training needed a computing time of ~ 20 minutes while second training 

required ~ 24 hours (1,440 minutes) for the CNN and ~ 21 hours for the CapsNet. 

As CNNs are a gradient-based method, the chosen starting point may be crucial for 

the final fit of the model, and one way of assessing and reducing the effect of start 
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conditions are multi-start approaches (Subbey, 2018). We repeated the first training 

step 100 times with randomly changed image sequences fed into the CNN. The 

second training was only performed once based on the model from step 1 which 

achieved the best test accuracy. Repeating the second training step was not feasible 

due to long computing times. 

The same best step 1 CNN model was used to train the CapsNet. Before we started 

the training with the heterogenous data set in the same way as described for the 

CNN, we repeated step 1 once in a reduced form (Figure 3) to adjust the weights of 

the last three layers of the ConvBase to the new Capsule-Layers, which replaced the 

Dense- and Flatten-Layers used in the CNN (Figure 2). 

 

Figure 3: Schematic visualisation of model training. Training step 1 was repeated for 

the Capsule Network in a reduced form (Table 2), which is indicated by the dashed 

arrow. Both our models shared the ConvBase with the Xception V1 model, but we 

replaced the final classifying layers with our own choice of layers as indicated by the 

coloured part of the cylinders and the red and green arrow in the top left corner. C-

Base: Convolutional Base, C-Layer: Convolutional-Layer, D-Layer: Dense-Layer, 

Xcep V1: Xception V1, CNN: Convolutional Neural Network, CAP: Capsule Network. 
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Model performance 

To compare the different models, we calculated the class-wise as well as average 

training-, validation- and test-accuracies (Acc), which is the percentage of correctly 

classified images. Training-, validation- and test-accuracies are related to the 

respective image subsets. In case of the balanced data set for the first training step 

that means 100 images per class for training and 10 images for each, validation and 

testing. While this is sufficient for homogenous data sets such as the one used during 

the first training, accuracy fails to account for the imbalance in a heterogenous data 

set as used during the second training step (González et al., 2017). Therefore, we 

also calculated the F1 score (eq. 2), which is the harmonic mean of the classification 

metrics precision (P - “purity”, eq. 3) and recall (R - “completeness”, eq. 4) and is 

more sensitive to wrong predictions in highly skewed data (He and Garcia, 2009). 

Precision and recall are calculated using true positives (TP), false positives (FP, type 

I error) and false negatives (FN, type II error). A correctly identified copepod image in 

the copepod class is a TP. A copepod identified as a diatom is a FN for the copepod 

class and at the same time a FP for the diatom class. FPs and FNs are class specific 

and make sense only from the viewpoint of the respective class. Images which truly 

belong to a class, though they are sorted into other classes, count as FNs, while all 

images which don’t belong to a class, though they are sorted into that class, count as 

FPs. Precision is the proportion of correctly classified objects in a predicted class and 

recall is the proportion of the true (i.e., manually labelled) number of objects of a 

class that are correctly predicted in that class. 

(2) 𝐹1𝑖 =
2 × 𝑃𝑖 × 𝑅𝑖
𝑃𝑖 + 𝑅𝑖

 

(3) 𝑃𝑖 =
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖
 

(4) 𝑅𝑖 =
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑁𝑖
 (= 𝐴𝑐𝑐𝑖) 

Probability filtering and top-k predictions 

All 100 models of the first training step were used to create predictions for an 

identical test set of 259 images to assess the final model performance. After the 

second training step, a labelled test set of 9,903 images was used to validate the 
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model performance on new, unseen data sets. The three unlabeled field sets were 

only predicted (i.e. classified) once by the final model after the second training step, 

since initial results suggested that field set predictions after step 1 were not 

meaningful. For a given image, CNNs compute a probability for each class. In an 

ideal case, the class with the highest probability resembles the true taxonomic class 

of the imaged object. The filtering method of Faillettaz et al. (2016) takes advantage 

of those probabilities and accepts only predictions above a user specified threshold. 

The assumption is, that TPs have a higher probability than FPs and thus more wrong 

than correct predictions are discarded, ultimately increasing the precision. We used 

the labelled test set to calculate probability filters for each class individually. All 

images assigned to a class (TP + FP) were sorted in increasing order of their 

probability to belong to that class. All images with a lower probability than the chosen 

threshold but correctly classified as class i were then nevertheless treated as FN’s 

and thus decreased the recall and subsequently the F1-score. Precision was 

calculated using only images with a higher probability than the chosen threshold, 

since the “purity” of a class can only be affected by images assigned to this class. 

Therefore, FP’s with a lower probability than the chosen threshold had no influence 

on the calculated precision. This method can of course only be applied with data sets 

that have been manually validated and labelled to obtain the “true” classifications. 

Tailoring to specific research questions 

During the validation of the final model the filters were stepwise increased from the 

lowest to the highest probability and the corresponding classification metrics were 

calculated. This enables the researchers to pick their favorite set of class-specific 

filters along the trade-off continuum between the best average precision and the best 

recall. In Luo et al. (2018), classes with n < 25 of 75,000 randomly drawn images 

were excluded to achieve a mean precision of 90.7 %. This threshold (n = 25) divided 

classes into a ‘pure’ (precision > 90 %) and an ‘uncertain’ (precision < 90 %) group. 

In addition to the class-wise filters aiming to maximise the precision (P95) we chose 

for each model and field set a class unspecific threshold (t) of n images to separate a 

‘pure’ group of classes (mean precision > 90 %) from a ‘uncertain’ group of classes 

(mean precision < 90 %). In a larger scale community distribution-oriented research 

question, this sorts classes classified on a human-like level into the ‘pure’ group and 

leaves classes with poor performances in the ‘uncertain’ group (Luo et al., 2018). The 
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threshold was chosen based on the sum of the TP’s and the FP’s of the predictions 

of the three field sets (n = TP + FP). 100 bootstraps were performed using randomly 

chosen 75 % of the images that remained after P95-filtering to increase the 

confidence in the chosen threshold. 

However, a reduced recall is problematic if rare taxa like fish larvae are specifically in 

the focus of the research question. Thus, we assessed whether the deep-learning 

practice of the Top-5-Accuracy can be used to increase the recall and significantly 

reduce the time needed for manual classification. We accepted the k highest 

predictions for each image, stepwise increasing k from 2 to 5, and treated an image 

as ‘correct classified’ if the correct class was assigned within one of the top-k 

probabilities. Subsequently, the user has to manually classify all top-k images in the 

classes which are in focus of the research question. In this case, the trade-off 

between the recall and the number of images that have to be manually classified is of 

particular interest. 

Representativeness of field set classifications 

For research questions involving the detection of ecological patterns in high 

frequency data sets, particularly for common taxa, precision could be more important 

than recall (Faillettaz et al., 2016). This arises because the distribution of images 

could resemble the field plankton community even when large fractions of images 

that cannot be classified with sufficient certainty are discarded. 

As in Faillettaz et al. (2016), we tested the spatial distributions of our filtered 

predictions against the spatial distribution of the manual classification using the t-test 

modified by Dutilleul (Dutilleul et al., 1993). We aggregated our data in 1 m depth 

bins and by Latitude (0.01 decimal degree (DD) bins) for North-South transects or 

Longitude (0.01 DD bins) for West-East transects. Since the filtered predictions are 

per definition a subset of the original data set, we compared relative abundances 

instead of the absolute ones as Faillettaz et al. (2016) suggested. 
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Results 

Model training 

The dynamics of training and validation accuracy of the 100 models during the first 

CNN training step were slightly different each time, despite the fact that all were 

trained in the same way and with the same training images. At the end of step 1, the 

training accuracies (mean: 75 %) usually slightly exceeded the validation accuracies 

(mean: 71 %; Figure 4). Further increasing the number of adjustable layers or 

training epochs only led to strong overdispersion, which indicates decreasing 

generalization of the model. Even though the general trends during the 100 training 

runs were similar, the final test accuracies ranged from 54.4 % to 84.6 %, indicating 

that different runs produced different convergence progressions and therefore 

different outcomes. The oppositional pattern of validation- and trainings-accuracy 

between phase 1 and all following phases was probably due to the fact that the 

model was trained to the verge of overfitting in each phase and thus was already 

close to overfitting when training started in phase 2 (and following phases). 

 

Figure 4: Convolutional neural network training step 1. The vertical lines separate the 

different training phases 1-4 during the first step (training with homogenous data set), 

where successively more layers were trained in each phase. Black boxplots: training 

accuracy of 100 models; red boxplots: validation accuracy of 100 models. 

The training progress during the second step using the heterogenous data set 

differed between the CapsNet and the CNN. The training and validation accuracy of 

the CNN increased gradually to ~ 95 % (AccTr = 95.2; AccVal = 94.9). The final test 
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accuracy was 94.67 %. The CapsNet instead deteriorated during the last of the five 

phases, even though more weights were released for training compared to the phase 

before. While training (AccTr = 95.9 %) and validation (AccVal = 94.3 %) accuracy 

were similar at the end of phase 4, the validation accuracy decreased to AccVal = 89.5 

% in phase 5 while the training accuracy increased further to AccTr = 96.3 % (Figure 

5). The CapsNet reached a slightly lower test accuracy of 89.72 %. 

 

Figure 5: Training step 2, heterogenous data set. Upper panel shows the loss, which 

is an index of the difference between prediction and truth. The lower panel shows the 

accuracies as for training step 1. Solid: during training; dashed: during validation; 

green: CapsNet; blue: CNN; grey: period of overdispersion, the changes during these 

epochs were not included in the final model. 

Test set predictions 

Classes with a high mean test accuracy over all 100 models in step 1 had small 

confidence intervals (CI; 95 %), while classes with lower mean test accuracies could 

range from 0 to 80 % correctly classified images, depending on the model run, even 

though all classes were trained with the same amount of 100 images (Figure 6). 
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Figure 6: Increasingly sorted mean test accuracies for the 26 classes based on the 

predictions of the 100 models trained during step 1. Error bars: 95% confidence 

interval (CI). 

In step 2, classes with high abundances generally achieved high F1-scores, whereas 

the opposite was not true as low abundant classes could have low, medium or high 

F1-scores (Figure 7). In general, the CNN achieved better results than the CapsNet 

after step 2. However, the CapsNet outperformed the CNN in four classes (‘diatoms’, 

‘echinodermata’, ‘noctiluca’, and ‘pteropods’), at least in precision and the F1-score. 

Only the ‘marine snow’ recall of the CapsNet was superior to the CNN. Both models 

had difficulties with the class ‘rod’, which contains unidentified elongated objects. 

Another common weakness was the ‘unknown’ class with low recall scores (Figure 

7). Most of the images labelled as ‘unknown’ by a human are recognized as a 

specific class by both models, mainly as ‘marine snow’ or ‘appendicularia with 

houses’. 
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Figure 7: F-metrics (F1, precision, and recall) by class for the CapsNet (a) and the 

CNN (b). Classes were sorted by increasing F1-score from left to right. Class keys 

were presented in Table 1. The upper right panel in each plot presents the F1-score 

in relation to the abundance. 

Image filtering 

All classes shared a common pattern in regard to the assigned probability filters: at a 

high threshold, precision was high while recall was low. Thus, only correct 

classifications were accepted at the cost of discarding most of the correct, less 

confident classifications together with the wrong classifications. With decreasing 

probability filters, this was reversed at some point since more and more correctly 

identified images of the respective class were kept, while simultaneously the chance 

increased that incorrect classifications were kept as well. As long as the recall was 

close to 0, the F1-score tended to follow the recall. This was due to the fact, that the 

harmonic mean (F1) tends to be 0 as soon as one of the components is 0 (recall, 

Figure 8). We selected class-specific filters aiming to achieve at least 95 % precision 

in each class. All of the following results were based on these set of filters (P95). 
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Figure 8: Example plot (class ‘diatoms’) of a filter selection. Probability filters reflect 

the confidence of the model in the predicted class. The sub panel is the sub - section 

from the whole plot where the metrics reach values >= 80 %. Green: precision; red: 

recall; black: F1-score; grey dashed lines: probability at which precision reaches 95 

%. 

The final filters varied from 36.44 - 92.36 % (CapsNet) and from 21.17 - 98.65 % 

(CNN), depending on the class. In general, after filtering the CNN was still superior to 

the CapsNet. However, for single classes the results of the CapsNet could overcome 

those of the CNN (Figure 9). 

Applying the filters to our test set increased the mean precision of the CNN by 14 % 

from 84 % to 98 % and of the CapsNet by 15 % from 78 % to only 93 %, as 6 classes 

did not achieve the target of 95 % precision. Seven percent of all predictions had to 

be discarded using the CapsNet to maximise precision (5 % for the CNN). 
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Figure 9: Comparing the F1-score and the precision between the CapsNet and the 

CNN with (P95) and without (BL) filtering the predictions. The size of each dot 

represents the logarithms of the abundance of the respective class in the labelled 

test set. Upper panels: with filtering; lower panels: without filtering; left panels: F1-

score; right panels: precision; orange: CapsNet superior to CNN; blue: CNN superior 

to CapsNet. 

Field set predictions 

The Bray-Curtis (BC) dissimilarity for the field set predictions, not the manually 

validated FSs, confirmed as expected, that FS446 (BCCNN = 0.45; BCCap = 0.44) was 

closest to the TS as it was sampled in the same geographical region 12 hours after 

the majority of our training images. FS534 (BCCNN = 0.69; BCCap = 0.67) was closer 

to our training data and to FS446 than FS466 (BCCNN = 0.92; BCCap = 0.92). Thus, 

DSS is highest for FS466, lowest for FS446 and in-between for FS534 

(Supplementary Figure S 1). 
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With increasing DSS the threshold (t) to separate ‘pure’ from ‘uncertain’ classes for 

the CapsNet increased according to an exponential function of distance (Figure 10): 

(5) 𝑡 = 𝑎 × 𝑒(𝑏×𝐵𝐶) 

with a = 0.64 and b = 5.21. The simulated thresholds for FS466 followed a bimodal 

distribution. As the two groups were clearly separated, we chose to include only the 

higher group of thresholds in the estimation of the model. Therefore, it is less likely 

for the model to underestimate the true threshold. The observed thresholds (t446 = 5; 

t466 = 65; t534 = 25) were close to the average simulated thresholds (t446 = 3; t466 = 65; 

t534 = 23). No reasonable relationship could be established for the CNN and 

simulated and observed thresholds did not match either. 

 

Figure 10: Thresholds to differentiate between ‘pure’ and ‘uncertain’ classes based 

on the Bray-Curtis dissimilarity between the three field sets and the training set. For 

each field set, 100 bootstraps were performed using randomly chosen 75 % of the 

images remaining after P95-filtering. The labels are valid for the black and the red 

dots alike. Black: CNN; red: CapsNet. 

Filtering generally increased the mean precision and reduced the mean recall as 

expected. Excluding three none-biological classes from the analyses, namely ‘blurry’, 

‘unknown’, ‘rod’ and additionally ‘marine snow’, the thresholds between ‘pure’ (mean 

precision > 90 %) and ‘uncertain’ classes were always ~ 3 times higher for the CNN 
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compared to the CapsNet, e.g. in FS446 all classes with 5 assigned images by the 

CapsNet already belonged to the ‘pure’ group while the CNN had to assign at least 

15 images to all classes to reach a mean precision > 90 % in the ‘pure’ group (Table 

3). 

Both models successfully detected a similar amount of classes in the field sets, but 

the CapsNet predictions had more classes contribution to the ‘pure’ group compared 

to the CNN. So overall, the CapsNet was better in the generation of ‘pure’ groups. 

The CapsNet predicted less images in classes, which were not occupied in the field 

set (ntrue = 0 & npred > 0), thereby creating so-called empty classes with only FPs. In 

the predictions of the field set least similar to the training set (FS466) neither model 

achieved a mean precision > 90 %. The selected threshold only maximised the mean 

precision to 87 % for the CNN (1 ‘pure’ class) and to 76 % for the CapsNet (3 ‘pure’ 

classes, Table 3). 

The recall of the CapsNet was always lower compared to the CNN, but this CNN 

advantage was reduced by increasing DSS. Neither model dominated the other one 

regarding the discard ratio, i.e. the number of images that had a lower probability 

than the class specific filter for certain predictions (P95) compared to uncertain 

predictions. The discards ranged from 3 % to 45 % for the CNN and from 5 % to 41 

% for the CapsNet (Table 3). 

For illustrative purposes, we will give an interpretation of the first row in Table 3 

(predictions of FS446 by the CNN). The field set included 18 classes that were also 

present in the training set: prior to P95-filtering, the model predicted 22 classes 

including 4 empty classes (TP = 0). 12 classes included more than 15 predicted 

images (t = 15). Those 12 classes had a mean F1-score of 77 %, a mean precision of 

77 % and a mean recall of 80 %. After applying the P95-filter set, 17 classes 

remained including now only 3 empty classes. The ‘pure’ group of classes (TP + FP 

> 15) included 8 classes of which none were empty (TP = 0). Those had a mean F1-

score of 89 %, a mean precision of 94 % and a mean recall of 87 %. Only 3 % of the 

images belonging to the 18 ‘true’ classes (TP > 0) were discarded after filtering. 

Table 3: Changes in model performance for biological classes induced by class-wise 

P95-filtering. The numbers give the actual result after filtering, while the numbers in 

the brackets give the difference from pre- to post-filtering. Mean F-scores (F1, 
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precision, and recall) were calculated using only classes with TP + FP > t (group of 

‘pure’ classes after filtering). True and empty refer to the respective number of 

classes predicted by the model for the respective FS. Discard is the percentage of 

images predicted with unsufficient certainty for the P95-filter set. 

mod data 
classes pure classes 

t mean F1 
mean 

Precision 
mean 

Recall 
discard [%] 

true empty true empty 

CNN 446 
14 

(+0) 
3 

(-1) 
8 

(-3) 
0 

(-1) 
15 

0.89 

(+0.12) 
0.94 

(+0.17) 
0.87 

(+0.07) 
3 

CNN 466 
16 

(+0) 
4 

(+0) 
1 

(-2) 
0 

(+0) 
190 

0.74 

(+0.09) 
0.87 

(+0.29) 
0.64 

(-0.16) 
33 

CNN 534 
15 

(-1) 
5 

(+0) 
5 

(+0) 
0 

(-2) 
85 

0.68 

(+0.05) 
0.98 

(+0.35) 
0.61 

(-0.03) 
45 

CAP 446 
13 

(-1) 
1 

(-1) 
8 

(-5) 
0 

(+0) 
5 

0.59 

(-0.13) 
0.94 

(+0.06) 
0.53 

(-0.15) 
5 

CAP 466 
16 

(+0) 
3 

(-1) 
3 

(-1) 
0 

(-1) 
60 

0.55 

(+0.05) 
0.76 

(+0.19) 
0.5 

(-0.02) 
41 

CAP 534 
15 

(-1) 
3 

(-2) 
6 

(-4) 
0 

(-2) 
25 

0.61 

(+0.03) 
0.91 

(+0.28) 
0.59 

(-0.01) 
33 

Top-k predictions 

We investigated the relationship between k and the mean recall based on the 

predictions for FS446 (n = 55,302). The recall scores of the CNN always exceeded 

those of the CapsNet and simultaneously the number of images to validate manually 

was always lower. We therefore only present the results for the CNN. With k = 2 the 

mean recall increased from 63 % (Supplementary Table S 1) to 93 % (Table 4), while 

on average 7.8 % of the images had to be validated. Only three classes required 

manual classification of more than 10 % of the original data set images (‘diatoms’, 

‘pluteus’, and ‘snow’), but those were the most abundant classes. The majority (12 

classes) required less than 3 % of the original data set to be manually classified. With 

k = 3, the increase in recall (+ 2.9 %) was similar to the increase in images (+ 3.3 %), 

but further increasing k was less effective. We therefore selected k = 3 for all field 

sets. 
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Table 4: The development of the mean recall and the mean percentage of images to 

validate with increasing k for FS446, where k was the number of most likely 

predictions accepted for each image. If the true class belonged to the k accepted 

predictions, an image was counted as ‘true positive’. N images: 55,302. 

N k = 2 

[%] 

recall k 

= 2 

N k = 3 

[%] 

recall k 

= 3 

N k = 4 

[%] 

recall k 

= 4 

N k = 5 

[%] 

recall k 

= 5 

7.8 93.4 
11.1 

(+3.3) 

96.3 

(+2.9) 

14.5 

(+3.5) 

97.2 

(+0.9) 

18.6 

(+4.1) 

97.6 

(+0.4) 

The classes ‘blurry’ and ‘unknown’ included per definition a wide range of different, 

unidentified objects which made them scientifically uninteresting. They were 

therefore not included in the analyses. We also excluded the class ‘marine snow’ 

because of the extraordinary size. For the remaining classes the mean recall with k = 

3 exceeded 90 % for the low- (FS446; 96 %, n = 17,318) and medium-shift data sets 

(FS534; 95 %, n = 9,557), while the mean recall for the high-shift data set (FS466; n 

= 2,731) was only 86 %. The supplementary material includes a complete table with 

all classes and field sets (Supplementary Table S 2), here we described only the 

results for the first field set (FS446) in detail. 

Only two classes had a recall below 90 % (‘malacostraca’ and ‘medusae’). All other 

classes, even the rarest, had a recall above 95 %. For especially rare classes like 

‘eggs’ (n = 5) and ‘larvae’ (n = 15) less than 1 % of the original data set needed 

manual validation to achieve a recall score of 100 % at k = 3. However, rare classes 

usually had lower ratios between TP’s and FP’s compared to more abundant classes. 

An exception from this trend was the class ‘polychaeta’ with n = 363 and a ratio 

between TP and FP of 1 : 29. Thus, ~ 20 % of the original data set needed to be 

manually validated in order to achieve 97.5 % recall for this class (Table 5). 
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Table 5: Results of the Top-k-method with the CNN and k = 3 applied to FS446. The 

variable ‘n’ is the number of images that need to be manually validated to maximize 

the recall. The variable ‘N’ is the number of images in FS446 (55,302) including the 

three classes ‘unknown’, ‘blurry’, and ‘marine snow’. When recall is empty, the model 

sorted images in a class which was not occupied in the field data set (TP = 0). The 

ratio ‘TP:FP’ provides the number of false images to be manually sorted for one true 

image found. 

class recall CC n n / N [%] CC:FC 

amp  0 4824 8.7  

app 0.997 298 6331 11.4 1:20.2 

bip 0.987 79 171 0.3 1:1.2 

cop 0.98 151 3601 6.5 1:22.8 

dia 1 3190 11172 20.2 1:2.5 

ech  0 321 0.6  

egg 1 5 346 0.6 1:68.2 

lar 1 15 85 0.2 1:4.7 

mal 0.773 22 122 0.2 1:4.5 

med 0.789 76 4353 7.9 1:56.3 

mne 0.986 144 184 0.3 1:0.3 

noc 0.971 348 5197 9.4 1:13.9 

plu 0.998 9861 11675 21.1 1:0.2 

pol 0.975 363 10896 19.7 1:29 

pte  0 81 0.1  

rod 0.954 2034 5684 10.3 1:1.8 

vel  0 90 0.2  

wor 0.991 705 2731 4.9 1:2.9 

zoe 1 27 77 0.1 1:1.9 

Mean: 
0.96 ± 

NA 
1155 3576 6.46 1:15 
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class recall CC n n / N [%] CC:FC 

Median: 0.987 79 2731 4.9 1:13.9 

Spatial distributions 

We calculated Dutilleuls modified t-test to assess whether our P95 filtered model 

predictions were representative for the true plankton community in our field sets. 

While p < 0.05 was sufficient to accept the representativeness of a class prediction, 

we generally assumed the model with the lower p-value to be superior. While the 

CapsNet was superior to the CNN in 11.1 % of all classes in FS446 (low DSS), this 

increased to 21.1 % in FS534 (medium DSS). However, the CNN was superior to the 

CapsNet in 50 % of all classes in FS446 and in 36.8 % classes in FS534. While this 

gave hope for a trend reversal in high DSS situations, in the high-shift field set FS466 

the CNN is still superior in 55 % of all classes and the CapsNet is only superior in 10 

% of the classes. Spatial distributions predicted by both models did not show any 

significant deviations from those of manually validated images, when two conditions 

were met: ntrue > 50 images and recall > 20 %, regardless of the level of DSS 

(Supplementary Table S 3). Figure 11 shows two exemplary distributions of 

copepods predicted by our models in the field sets FS446 and FS534, demonstrating 

the difficulties the CapsNet had with low abundant classes (Supplementary Table S 3 

a). 
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Figure 11: Spatial distribution of the relative copepod abundances in FS446 (a) and 

FS534 (b) aggregated by Longitude/ Latitude (0.01 DD) and depth (m). The 

predictions of the CapsNet (left panel) and the CNN (right panel) were compared to 

the manual validation (central panel). R: recall; n: absolute abundance. 

Discussion 

The intention of this study was to provide a guideline to efficiently process not only 

common, but also rare biotic taxa using automated analyses of in situ plankton 

images, which is even more challenging than laboratory imagery of plankton 

according to Faillettaz et al. (2016). 
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During the first step of the model training we observed a great variability of the final 

test accuracies, even though the procedure was exactly the same each time, except 

for the sequence of the images. All classes were trained with the same number of 

images during step 1, but some classes had persistently lower mean test accuracies 

than others. However, the lower the mean test accuracy, the greater were the CI’s. 

For those classes, e.g. ‘polychaeta’, 100 images were clearly not sufficient to reflect 

the class variability of the full data set. Some of the 100 models probably learned 

more relevant patterns, most likely by chance (González et al., 2017). This highlights 

one of the drawbacks of gradient-based algorithms as described by Subbey (2018) 

and the importance of a vast amount of training images, especially if different classes 

contain similar organisms (like ‘amphipods’ and ‘copepods’) and additionally one or 

more similar classes have high intra-class variability (e.g. already due to frontal, 

dorsal or lateral viewpoints). E.g., images of ‘veliger’ were frequently misinterpreted 

as ‘pilidium’ and in case of the CapsNet even vice versa (Supplementary Table S 4). 

For ecological studies it is sometimes more important that an image is correctly 

classified into a certain group rather than the exact class (González et al., 2017). 

E.g., one way to cope with the high intraspecific variability in plankton classes is to 

divide images of a single species into multiple classes according to morphological 

distinctions (Luo et al., 2018). In this study, initial experiments with our classifier 

showed that the separation of the images with appendicularians in ‘appendicularia’ 

and ‘appendicularia with house’ yielded much better results compared to the 

classification of a single, combined class. Since both classes were treated as one in 

the subsequent analyses, a misclassification of an ‘appendicularia’ into 

‘appendicularia with house’ was ultimately a correct classification, thus increasing the 

performance of our model in a way of a Top-2 accuracy. This method is probably 

even more relevant for more detailed image sets that allow for a higher taxonomic 

resolution than our images (e.g. flowcam images), but is somewhat limited by the 

number of available training images. Within this context, different sizes of plankton 

can have different biological meaning, like ontogenetic stages, and thus could be 

worth including. However, the true size information is unfortunately not available from 

VPR-images as the distance to the lens is unknown. 
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Filtering 

Our approach reduced the discard of uncertain predicted images, which are removed 

by filtering, from 35.7 % in Luo et al. (2018) to 5 %. In Luo et al. (2018), classes with 

n < 25 of 75,000 randomly drawn images were excluded to achieve a mean precision 

of 90.7 %. This threshold (n = 25) divided classes into a ‘pure’ (precision > 90 %) and 

an ‘uncertain’ (precision < 90 %) group. However, an evaluation using n is probably 

misleading since some classes in the field set had a true n = 0, which was below the 

threshold of n < 5, and simultaneously had FP > 5, which was above that threshold. 

Thus, without human interference (i.e. validation), classes with n < 5 could be 

erroneously categorized as ‘pure’ (and vice versa). Therefore, we used the sum of 

TP’s and FP’s instead to divide between ‘pure’ (i.e. trustworthy) and ‘uncertain’ 

classes (i.e. classes that need to be validated). The major advantage of this 

approach is that this threshold is applicable without knowledge of the true distribution 

of the classes since it is based on the predictions instead of the true abundance. 

Furthermore, we found a correlation between the threshold and the Bray-Curtis 

dissimilarity that separates the distribution of the TS from the distribution of the new 

field set. Remarkably, this new method increased the threshold from n < 5 to TP + FP 

< 15 for the CNN while it decreased the threshold for the CapsNet (n < 25; TP + FP < 

5). This threshold to separate ‘pure’ from ‘uncertain’ classes using the CapsNet was 

below the threshold of the CNN and therefore the CapsNet is superior in extended 

production mode applications. Summarizing, the CapsNet had similar discard ratios 

but lower mean recall scores compared to the CNN. Thus, while it produced more 

‘pure’ classes, the drawback was a stronger filter pressure on rare classes. 

However, each optical sampler is designed to target a different component of the 

zooplankton (Owens et al., 2013) which encompasses organisms that vary greatly in 

terms of size, shape and behavior (Pitois et al., 2018). This and varying 

environmental conditions and ecosystem compositions may affect the difficulty of 

classification tasks (Luo et al., 2018) and might contribute to the differences found 

between different studies. 

The fraction of ‘pure’ classes decreased for the CapsNet from 57 % in FS446 (CNN: 

57 %) with a low amount of DSS to 38 % (CNN: 31 %) in FS534 with the medium 

amount of DSS. The high amount of DSS in FS466 overcharged both models 
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similarly, as no class actually reached > 90 % precision. This trend observed 

between the threshold ‘t’ and DSS (measured as Bray-Curtis dissimilarity) was not 

reflected in the F-metrics. No obvious pattern for biological classes was observed 

regarding the F-score, recall, or precision, indicating that the community structure, 

and thus the difficulty of the classification task, is probably an evenly strong driver of 

model performance as DSS. Considering all classes, the CapsNet could not achieve 

as high scores as the CNN under a low amount of DSS, but the decrease with 

increasing DSS was also lower. However, for the CapsNet to overcome the CNN an 

amount of DSS is probably necessary that precludes a practical application of either 

model. 

The performance of regionally trained classifiers tends to decline with increasing 

environmental dissimilarity, whereas a globally trained classifier achieved similar 

results in all areas, but at the cost of lower accuracies for rare taxa (Chang et al., 

2012). Continually increasing the training set and adapting the model to new 

situations could therefore help coping with unknown community structures and 

keeping the amount of DSS at a lower level, but this was not investigated in this 

study. 

Spatial distributions 

Both models accurately predicted the spatial distributions of filtered classes with ntrue 

> 50 and recall > 20 %, regardless of the amount of DSS. Due to better recall scores, 

the CNN could predict the spatial distributions of more classes compared to the 

CapsNet, especially more smaller classes. Most classes which spatial distributions 

were correctly predicted belonged to the ‘pure’ group. However, the opposite was not 

given. Due to low recall scores not all predictions for classes from the ‘pure’ group 

reflected the spatial distribution in the field, as some ‘pure’ classes had a high 

precision but a low recall (e.g. CapsNet FS446 ‘appendicularia’: precision = 100 %, 

recall < 1 %). Thus, a categorization in trustworthy and misleading predicted spatial 

distributions generally requires knowledge of the recall and therefore manual 

validation. 

Top-k predictions 

The application of filters enables a user to automatically detect a wide range of taxa 

with a high precision. However, less abundant classes are still difficult to predict, 
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especially if DSS occurs. Since filters are per definition not appropriate to increase 

the recall and make it more likely to detect rare classes, we instead employed the 

concept of the Top-5-Accuracy used in machine learning. Here, the correct class of 

an image doesn’t have to have the highest probability. Instead, the correctly 

predicted class is among the five highest probabilities. Using already the Top-3-

Accuracy, we increased the mean recall by 33.3 % to 96.3 % and reduced the 

average number of images that needed manual validation to 6.5 % of the original 

amount. This method significantly reduces the required human efforts if the research 

focuses on rare classes, like fish larvae, that are most likely not detected at a 

sufficient rate using only the highest probability. Such an approach is certainly limited 

by the size of a potential data set and the number of classes, but so far it is probably 

the most effective way if spatial distributions are equally important as total 

abundances. 

Comments and recommendations 

The effectivity of a classifier is not solely determined by the final model performance. 

Particularly, the specific objectives of a research task need to be considered to tailor 

the best model. Research targeting rare classes usually requires a quantitative 

classification (i.e. high recall) rather than a qualitative classification (i.e. high 

precision) which is more important for a study of community structures and 

biodiversity. The assessment of spatial distributions requires qualitative and 

quantitative classifications which is, without manual validation, currently limited to 

dominant classes (> 1 % of the whole data set). As a general guideline we propose 

the following scheme (Figure 12): either model can be used to classify a given data 

set using the P95-filter set. Subsequently, a cluster analyses to estimate the similarity 

of the new data set (predictions) and the training data set (validated) is needed. As 

we have not investigated how the thresholds behave for increasing data set sizes, 

currently a subset of the original data set of 30,000 - 50,000 images is recommended 

to estimate the threshold for ‘pure’ classes based on Eqn. 5. Recall scores of the 

CapsNet fluctuate less strong with varying levels of DSS and the threshold ‘t’ can be 

adapted dynamically, which is important for the comparison of different samples. The 

spatial distributions of a particular sample should be investigated using a CNN due to 

better recall scores in general, but without manual validation this is limited to the 



60 

 

dominant taxa. Rare taxa should be targeted using a CNN and the Top-3-Accuracy to 

maximise the recall at a limited amount of human effort. Thus, the only benefit in 

using a CapsNet in fact arises under the presumption of DSS. 

 

Figure 12: Suggested workflows for three research target specific automated 

plankton image analysis methods. 

Data availability statement 

All manually classified images from the full training set and test sets (124 K 

probability filtering set and 94 K random field sets), as well as text files containing 

predicted and validated classes for all test sets will be available on Zenodo.org (doi: 

10. 5281/zenodo.4431509). 
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Supplementary material 

Supplementary Table S 1: Changes in model performance induced by class-wise 

P95-filtering. The numbers give the actual result after filtering, while the numbers in 

the brackets give the difference from pre- to post-filtering. Mean F-scores (F1, 

precision, and recall) were calculated using only classes with TP + FP > t (group of 

‘pure’ classes after filtering). True and empty refer to the respective number of 

classes predicted by the model for the respective FS. Discard is the percentage of 

images predicted with insufficient certainty for the P95-filter set. 

mod data 
classes pure classes 

thres mean F1 
mean 

Precision 
mean 

Recall 
discard 

[%] 
 

true empty true empty 

CNN 446 
18 

(+0) 
3 

(-1) 
- - 0 

0.53 

(-0.09) 
0.78 

(+0.12) 
0.5 

(-0.13) 
5 

A
L
L
 C

L
A

S
S

E
S
 

CNN 466 
20 

(+0) 
4 

(+0) 
- - 0 

0.34 

(-0.12) 
0.52 

(+0.03) 
0.33 

(-0.18) 
29 

CNN 534 
19 

(-1) 
5 

(+0) 
- - 0 

0.45 

(-0.09) 
0.64 

(+0.11) 
0.41 

(-0.2) 
20 

CAP 446 
17 

(-1) 
1 

(-1) 
- - 0 

0.33 

(-0.25) 
0.75 

(+0.02) 
0.3 

(-0.24) 
3 

CAP 466 
20 

(+0) 
3 

(-1) 
- - 0 

0.26 

(-0.13) 
0.53 

(+0.02) 
0.23 

(-0.19) 
22 

CAP 534 
19 

(-1) 
3 

(-2) 
- - 0 

0.34 

(-0.15) 
0.62 

(+0.08) 
0.3 

(-0.21) 
14 

CNN 446 
18 

(+0) 
3 

(-1) 
18 

(+0) 
0 

(-2) 
5 

0.61 

(-0.07) 
0.91 

(+0.19) 
0.58 

(-0.12) 
5 

P
U

R
E

 C
L
A

S
S

E
S

 (
T

P
 +

 F
P

 >
 T

h
re

s
) 

CNN 466 
20 

(+0) 
4 

(+0) 
3 

(-3) 
0 

(+0) 
190 

0.71 

(+0.02) 
0.92 

(+0.18) 
0.63 

(-0.09) 
17 

CNN 534 
19 

(-1) 
5 

(+0) 
8 

(+0) 
0 

(-2) 
85 

0.69 

(+0) 
0.98 

(+0.28) 
0.6 

(-0.09) 
20 

CAP 446 
17 

(-1) 
1 

(-1) 
10 

(-6) 
0 

(+0) 
5 

0.58 

(-0.1) 
0.95 

(+0.09) 
0.53 

(-0.1) 
2 

CAP 466 
20 

(+0) 
3 

(-1) 
5 

(-1) 
0 

(-1) 
60 

0.53 

(-0.02) 
0.79 

(+0.16) 
0.52 

(-0.04) 
16 

CAP 534 
19 

(-1) 
3 

(-2) 
9 

(-4) 
0 

(-2) 
25 

0.56 

(-0.05) 
0.91 

(+0.25) 
0.53 

(-0.09) 
13 

CNN 446 
14 

(+0) 
3 

(-1) 
- - 0 

0.55 

(-0.07) 
0.74 

(+0.12) 
0.54 

(-0.11) 
7 

B
IO

L
O

G
IC

A
L
 

C
L
A

S
S

E
S
 

CNN 466 
16 

(+0) 
4 

(+0) 
- - 0 

0.32 

(-0.12) 
0.47 

(+0.02) 
0.33 

(-0.18) 
45 
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mod data 
classes pure classes 

thres mean F1 
mean 

Precision 
mean 

Recall 
discard 

[%] 
 

true empty true empty 

CNN 534 
15 

(-1) 
5 

(+0) 
- - 0 

0.43 

(-0.08) 
0.57 

(+0.1) 
0.4 

(-0.2) 
45 

CAP 446 
13 

(-1) 
1 

(-1) 
- - 0 

0.35 

(-0.29) 
0.75 

(-0.03) 
0.31 

(-0.29) 
7 

CAP 466 
16 

(+0) 
3 

(-1) 
- - 0 

0.26 

(-0.14) 
0.5 

(+0.02) 
0.22 

(-0.22) 
45 

CAP 534 
15 

(-1) 
3 

(-2) 
- - 0 

0.34 

(-0.14) 
0.6 

(+0.07) 
0.29 

(-0.22) 
34 

CNN 446 
14 

(+0) 
3 

(-1) 
8 

(-3) 
0 

(-1) 
15 

0.89 

(+0.12) 
0.94 

(+0.17) 
0.87 

(+0.07) 
3 

P
U

R
E

 B
IO

L
O

G
IC

A
L
 C

. 
(T

P
 +

 F
P

 >
 T

h
re

s
) 

CNN 466 
16 

(+0) 
4 

(+0) 
1 

(-2) 
0 

(+0) 
190 

0.74 

(+0.09) 
0.87 

(+0.29) 
0.64 

(-0.16) 
33 

CNN 534 
15 

(-1) 
5 

(+0) 
5 

(+0) 
0 

(-2) 
85 

0.68 

(+0.05) 
0.98 

(+0.35) 
0.61 

(-0.03) 
45 

CAP 446 
13 

(-1) 
1 

(-1) 
8 

(-5) 
0 

(+0) 
5 

0.59 

(-0.13) 
0.94 

(+0.06) 
0.53 

(-0.15) 
5 

CAP 466 
16 

(+0) 
3 

(-1) 
3 

(-1) 
0 

(-1) 
60 

0.55 

(+0.05) 
0.76 

(+0.19) 
0.5 

(-0.02) 
41 

CAP 534 
15 

(-1) 
3 

(-2) 
6 

(-4) 
0 

(-2) 
25 

0.61 

(+0.03) 
0.91 

(+0.28) 
0.59 

(-0.01) 
33 
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Supplementary Table S 2: Results of the Top-k-method with the CNN and k = 3. The 

variable ‘n’ is the number of images that need to be manually validated to maximize 

the recall. The variable ‘N’ is the number of images that belong to the respective field 

set (446: 55,302; 466: 7,798; 534: 31,848) including the three classes ‘unknown’, 

‘blurry’, and ‘marine snow’. When recall is empty, the model sorted images in a class 

which was not occupied in the field data set (TP = 0). The ratio ‘CC:FC’ (correct 

classified:false classified) provides the number of false images to be manually sorted 

for one true image found. 

class 

FS446 FS466 FS534 

recall TP n 
n / N 

[%] 
CC:FC recall TP n 

n / N 

[%] 
CC:FC recall TP n 

n / N 

[%] 
CC:FC 

amp  0 4824 8.7   0 353 4.5   0 5641 17.7  

app 0.997 298 6331 11.4 1:20.2 0.932 351 1050 13.5 1:2 0.987 1097 4760 14.9 1:3.3 

bip 0.987 79 171 0.3 1:1.2 0.818 11 38 0.5 1:2.5 1 8 56 0.2 1:6 

cop 0.98 151 3601 6.5 1:22.8 0.992 627 3364 43.1 1:4.4 0.999 2219 5638 17.7 1:1.5 

dia 1 3190 11172 20.2 1:2.5 0.991 346 1982 25.4 1:4.7 1 16 588 1.8 1:35.8 

ech  0 321 0.6   0 58 0.7   0 72 0.2  

egg 1 5 346 0.6 1:68.2  0     0 5034 15.8  

lar 1 15 85 0.2 1:4.7 0.571 7 14 0.2 1:1 1 1 27 0.1 1:26 

mal 0.773 22 122 0.2 1:4.5 0.907 43 308 3.9 1:6.2 0.908 87 571 1.8 1:5.6 

med 0.789 76 4353 7.9 1:56.3 0.847 144 1164 14.9 1:7.1 0.875 24 1124 3.5 1:45.8 

mne 0.986 144 184 0.3 1:0.3 1 1 19 0.2 1:18 0.857 7 35 0.1 1:4 

noc 0.971 348 5197 9.4 1:13.9 0.9 20 100 1.3 1:4 0.996 3696 16092 50.5 1:3.4 

plu 0.998 9861 11675 21.1 1:0.2 0.939 212 510 6.5 1:1.4 0.967 1343 2804 8.8 1:1.1 

pol 0.975 363 10896 19.7 1:29 0.625 16 328 4.2 1:19.5 0.818 22 977 3.1 1:43.4 

pte  0 81 0.1   0 558 7.2   0 1787 5.6  

rod 0.954 2034 5684 10.3 1:1.8 0.914 814 1193 15.3 1:0.5 1 22 395 1.2 1:17 

vel  0 90 0.2  1 34 98 1.3 1:1.9 0.936 47 1599 5 1:33 

wor 0.991 705 2731 4.9 1:2.9 0.811 37 702 9 1:18 0.993 913 2435 7.6 1:1.7 

zoe 1 27 77 0.1 1:1.9 1 7 260 3.3 1:36.1 0.92 25 126 0.4 1:4 

Mean

: 
0.96 1155 3576 6.46 1:15 0.86 161 588 7.53 1:8 0.95 562 2272 7.12 1:14 
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Supplementary Table S 3: Statistical comparison between model predictions and 

field data sets regarding the spatial distribution of plankton organisms. F-statistic, 

recomputed degrees of freedom and p-value of Dutilleuls modified t-test are 

presented for the CNN and the CapsNet. ‘n’ is the true abundance of the respective 

class (manual classification), while the recall was estimated after filtering (automatic 

classification). Class keys refer to Table 1. 

Dataset class 
CNN CapsNet 

n 
recall 

F df p F df p CNN CapsNet 

FS446 egg 0.48 297.10 0.000 NA NA NA 5 0.80 0.00 

FS446 lar 0.00 266.64 0.824 NA NA NA 15 0.73 0.00 

FS446 mal 0.07 89.90 0.017 NA NA NA 22 0.36 0.00 

FS446 zoe 0.46 125.43 0.000 0.08 126.81 0.001 27 0.93 0.11 

FS446 med 0.01 72.98 0.535 0.01 68.48 0.403 76 0.17 0.11 

FS446 bip 1.78 69.50 0.000 0.50 69.83 0.000 79 0.96 0.80 

FS446 blu 0.07 89.90 0.017 0.00 92.00 0.778 101 0.29 0.01 

FS446 mne 4.16 108.19 0.000 0.30 113.74 0.000 144 0.95 0.58 

FS446 cop 0.46 125.43 0.000 0.08 126.81 0.001 151 0.73 0.15 

FS446 unk 0.01 177.45 0.293 0.01 171.36 0.348 208 0.13 0.04 

FS446 app 0.00 266.64 0.824 0.00 252.42 0.580 298 0.05 0.01 

FS446 noc 0.00 283.83 0.492 0.00 263.99 0.642 348 0.03 0.01 

FS446 pol 0.48 297.10 0.000 0.22 290.81 0.000 363 0.53 0.02 

FS446 wor 163.52 298.45 0.000 25.71 298.62 0.000 705 0.99 0.80 

FS446 rod 0.07 991.48 0.000 NA NA NA 2034 0.01 0.00 

FS446 dia 65.29 741.96 0.000 33.21 730.92 0.000 3190 0.89 0.85 

FS446 plu 273.12 41.07 0.000 80.81 39.58 0.000 9861 0.98 0.93 

FS446 sno 1321.22 453.18 0.000 442.50 480.06 0.000 37675 0.99 1.00 

FS466 mne 0.45 233.10 0.000 0.01 30.98 0.680 1 1.00 1.00 

FS466 act 0.45 233.10 0.000 NA NA NA 5 0.40 0.00 

FS466 zoe 0.45 233.10 0.000 0.01 30.98 0.680 7 0.86 0.14 
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Dataset class 
CNN CapsNet 

n 
recall 

F df p F df p CNN CapsNet 

FS466 lar 0.45 233.10 0.000 NA NA NA 7 0.14 0.00 

FS466 bip 0.45 233.10 0.000 0.01 30.98 0.680 11 0.82 0.73 

FS466 pol NA NA NA NA NA NA 16 0.00 0.00 

FS466 noc 0.45 233.10 0.000 0.01 30.98 0.680 20 0.10 0.25 

FS466 vel NA NA NA 0.01 30.98 0.680 34 0.00 0.15 

FS466 wor 0.01 35.17 0.589 NA NA NA 37 0.35 0.00 

FS466 mal 0.01 42.21 0.498 NA NA NA 43 0.67 0.00 

FS466 pil 0.32 51.61 0.000 0.32 51.61 0.000 56 0.05 0.05 

FS466 med 0.20 127.62 0.000 0.27 119.79 0.000 144 0.38 0.31 

FS466 unk 0.00 141.64 0.566 NA NA NA 176 0.02 0.00 

FS466 plu 0.70 158.16 0.000 0.53 163.26 0.000 212 0.65 0.61 

FS466 dia 0.45 233.10 0.000 0.83 203.56 0.000 346 0.31 0.59 

FS466 app 0.03 231.85 0.015 0.01 272.00 0.052 351 0.25 0.02 

FS466 cop 0.38 483.81 0.000 0.05 485.90 0.000 627 0.64 0.31 

FS466 rod 0.00 235.48 0.895 0.00 254.22 0.887 814 0.11 0.02 

FS466 blu 0.75 463.74 0.000 0.00 444.78 0.398 1313 0.31 0.07 

FS466 sno 18.35 126.00 0.000 9.52 143.48 0.000 3578 0.95 0.99 

FS534 mne 0.06 17.29 0.341 0.05 17.81 0.368 7 0.86 0.43 

FS534 bip 0.02 14.35 0.617 0.05 34.31 0.197 8 0.87 0.62 

FS534 act 0.02 14.35 0.617 NA NA NA 11 0.55 0.00 

FS534 dia 0.02 14.35 0.617 0.05 34.31 0.197 16 0.50 0.87 

FS534 pil 0.02 14.35 0.617 0.05 34.31 0.197 19 0.16 0.16 

FS534 rod 0.02 14.35 0.617 NA NA NA 22 0.14 0.00 

FS534 pol 0.03 16.58 0.518 NA NA NA 22 0.27 0.00 

FS534 med 0.06 17.29 0.341 0.05 17.81 0.368 24 0.42 0.37 

FS534 zoe 0.24 14.82 0.081 0.02 12.95 0.646 25 0.80 0.16 

FS534 vel NA NA NA 0.05 34.31 0.197 47 0.00 0.04 
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Dataset class 
CNN CapsNet 

n 
recall 

F df p F df p CNN CapsNet 

FS534 mal 0.43 55.28 0.000 NA NA NA 87 0.53 0.00 

FS534 unk 0.49 223.96 0.000 0.12 242.92 0.000 758 0.34 0.11 

FS534 wor 92.62 22.50 0.000 51.49 22.34 0.000 913 0.93 0.89 

FS534 blu 1.19 251.94 0.000 0.31 203.43 0.000 1014 0.50 0.16 

FS534 app 0.45 141.98 0.000 0.09 199.37 0.000 1097 0.15 0.03 

FS534 plu 54.66 16.62 0.000 47.46 16.48 0.000 1343 0.92 0.90 

FS534 cop 25.66 28.53 0.000 5.72 27.47 0.000 2219 0.87 0.60 

FS534 noc 0.68 58.03 0.000 1.13 47.73 0.000 3696 0.16 0.21 

FS534 sno 214.65 10.09 0.000 142.02 11.22 0.000 20519 0.94 0.99 
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Supplementary Table S 4: Most frequent misinterpretations for each class pooled for 

all three field data sets. FPmax is the number of images of ‘Class’ that were predicted 

as ‘Pred’, while FPtotal is the number of all wrong predictions for ‘Class’ (including 

FPmax). 

class 
CNN CapsNet 

pred FPmax FPtotal pred FPmax FPtotal 

actinotrocha bipinnaria 2 5 marine snow 6 11 

appendicularia unknown 324 503 marine snow 594 799 

bipinnaria polychaeta 2 6 marine snow 15 20 

blurry marine snow 324 895 marine snow 1084 1276 

copepods blurry 43 123 marine snow 209 445 

diatoms marine snow 118 178 marine snow 317 317 

eggs mnemiopsis 1 1 mnemiopsis 1 1 

larvae appendicularia 2 8 marine snow 3 5 

malacostraca copepods 19 55 marine snow 22 69 

medusae marine snow 43 115 marine snow 114 182 

mnemiopsis eggs 3 7 marine snow 7 15 

noctiluca marine snow 203 284 marine snow 1740 1778 

pilidium pteropods 16 37 veliger 27 62 

pluteus marine snow 145 343 marine snow 709 851 

polychaeta marine snow 17 60 marine snow 166 182 

rod diatoms 2004 2260 diatoms 2334 2851 

marine snow noctiluca 758 1789 appendicularia 101 242 

unknown pteropods 138 423 marine snow 417 792 

veliger pilidium 43 55 pilidium 15 41 

worms appendicularia 27 93 diatoms 86 156 

zoea bipinnaria 2 8 marine snow 10 11 
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Abstract 

It remains difficult to segregate pelagic habitats since structuring processes are 

dynamic on a wide range of scales and clear boundaries in the open ocean are non-

existent. However, to improve our knowledge about existing ecological niches and 

the processes shaping the enormous diversity of marine plankton, we need a better 

understanding of the driving forces behind plankton patchiness. Here we describe a 

new machine-learning method to detect and quantify pelagic habitats based on 

hydrographic measurements. An Autoencoder learns two-dimensional, meaningful 

representations of higher-dimensional micro-habitats, which are characterized by a 

variety of biotic and abiotic measurements from a high-speed ROTV. Subsequently, 

we apply a density-based clustering algorithm to group similar micro-habitats into 

associated pelagic macro-habitats in the German Bight of the North Sea. Three 

distinct macro-habitats, a ‘surface mixed layer’, a ‘bottom layer’ and an exceptionally 

‘productive layer’ are consistently identified, each with its distinct plankton 

community. We provide evidence that the model detects relevant features like the 

doming of the thermocline within an Offshore Wind Farm or the presence of a tidal 

mixing front. 

Introduction 

Submesoscale features like eddies, fronts or filaments structure the pelagic realm at 

spatial scales of O(1-10km) (Lévy et al., 2012; Shulman et al., 2015; Buckingham et 

al., 2016) and temporal scales that range from several hours to a few days (Baschek 

and Maarten Molemaker, 2010; Thompson et al., 2016). Associated processes 

determine nutrient fluxes (Omand et al., 2015; Thompson et al., 2016) as well as 

plankton patchiness (Levy and Martin, 2013; Shulman et al., 2015; Lévy et al., 2018) 

and thereby even shape the seascape for top predators like sea birds (Bertrand et 

al., 2014). 

Recent advances in marine remote sensing technology (Wedding et al., 2011) 

enabled scientists to separate benthic structures into mosaic-like patterns of different 

habitat classes (Hinchey et al., 2008; Pittman et al., 2011) following the role model of 

terrestrial ecosystems. However, what is well known and trivial in landscape ecology 

can be quite challenging in seascape ecology. While it remains difficult to segregate 

pelagic habitats, which exhibit no clear boundaries (Hinchey et al., 2008; Pittman et 
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al., 2011; Wedding et al., 2011) and can be quite dynamic on a wide range of scales, 

benthic habitat maps can give an impression of physically distinct areas that 

consistently occur together with particular species communities (Harris and Baker, 

2012). Some effort has been undertaken to characterize fish habitats (e.g. Amorim et 

al., 2018; Bellido et al., 2008; Giannoulaki et al., 2011; Tugores et al., 2011; Laman 

et al., 2017; Friedland et al., 2020; Funk et al., 2020), but fewer studies focused on 

zooplankton (e.g. Alvarez-Berastegui et al., 2014; Labat et al., 2009; Espinasse et 

al., 2014). Thus, mechanisms contributing to the enormous diversity of plankton, a 

fundamental component of pelagic food webs, are still not fully understood (Sano et 

al., 2013; North et al., 2016). Understanding the processes shaping plankton 

communities is essential to improve our knowledge of existing ecological niches 

(Houliez et al., 2021). Despite the growing awareness of the importance of spatial 

structure for ecology and management (Pittman et al., 2011; Wedding et al., 2011), 

there is still a lack of concepts and techniques applicable to characterize the spatial 

structure of the seascape in pelagic environments (Alvarez-Berastegui et al., 2014). 

Mainly, because traditional oceanographic methods are inadequate for observing the 

submesoscale (Baschek and Maarten Molemaker, 2010) due to insufficient resolution 

and range (Marmorino et al., 2018). Recent advances in instrumentation partially 

closed this gap, but there still is a need for novel analysis methods to take advantage 

of the existing data (North et al., 2016). Some machine learning techniques are 

specifically designed to identify and characterize features in a ‘sea of data’, which 

makes it very promising to apply them also in this challenging field of research. 

Autoencoders (AE) are a common tool in the machine learning community which 

consist of an encoding and a decoding part (Hinton, 2006). Initially devised to reduce 

(Encoder) and recover (Decoder) the dimensionality of their inputs (Hinton, 2006), 

they have been soon applied to a wide range of tasks like denoising (e.g. Vincent et 

al., 2010) or anomaly detection (e.g. Chen et al., 2018; Zhao et al., 2017). 

AEs do not classify or detect specific elements or objects in their inputs, but learn 

meaningful low dimensional representations, i.e. relevant high-level abstractions, of 

their inputs (Bengio et al., 2006) so that the original data can be reconstructed as 

similar as possible by the decoder part. The input data don’t need any pre-

processing, e.g. labelling of subsets, by humans, since the target the network aims to 
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reconstruct is basically the original input. The compressed representations of the 

encoder can also be used as input for subsequent modelling, e.g. in a Convolutional 

Neural Network (CNN) application. In that case the unsupervised pre-training of a 

CNN embedded in an AE can help to capture more intricate dependencies (Erhan et 

al., 2009) and better initialize the weights of the extended model (Bengio et al., 

2006). Thus, the (local) minimum in the loss surface of the AE corresponds to a good 

transformation of a high dimensional input to a lower dimensional intermediate output 

(output of the Encoder-part) (Bengio et al., 2006), which would become the input for 

the classifier in a CNN. In this setting, the final output of the AE, the reconstructions, 

are secondary. However, a low reconstruction error of the AE ensures that the 

compressed signal incorporates the important features of the original high 

dimensional input data. 

In this study we take advantage of this specific application of AEs. Instead of 

substituting the decoder part with a classification or regression network we use the 

compressed signal of the encoder as input for a subsequent clustering algorithm. We 

use a fully connected AE to reduce a high dimensional input consisting of a variety of 

abiotic and biotic oceanographic measurements to a lower dimensional meaningful 

representation (intermediate output), skip the decoding part after the training is 

completed and cluster the encoded features to macro-habitats. Similar micro-habitats 

lead to similar representations and therefore regions with different characteristics are 

segregated as different macro-habitats. These macro-habitats correspond to distinct 

pelagic habitats in the southern North Sea, whose plankton communities are 

compared and analyzed. 

Material and Procedures 

Data acquisition and preparation 

Physical and biological oceanographic measurements were recorded on a North Sea 

summer cruise with the RV Heincke (HE429, July 19-24, 2014) with a MacArtney 

TRIAXUS Remotely Operated Towed Vehicle (ROTV). For a detailed description of 

the device see Plonus et al. (2021). The ROTV transects were located in the direct 

vicinity of two Offshore Wind Farms (OWF) BARD Offshore 1 (BARD) and Global 

Tech I (GTI) (Figure 1). The map was generated using QGIS v3.18 (QGIS.org, 2021) 
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with bathymetric metadata and Digital Terrain Model data products from the 

EMODnet Bathymetry portal (http://www.emodnet-bathymetry.eu, 15.7.21). The 

ROTV was towed at a speed of 8 knots (4.1 m s-1) with a three-degree lateral offset 

to lessen any disturbance from the vessels wake. During most transects the ROTV 

was undulating with a vertical speed of 0.1 m s-1 from ~ 4 m below the sea surface to 

~ 8 m above the sea floor. The horizontal resolution between two surface peaks was 

~ 560 m, while the vertical resolution was ~ 0.3 m. The ROTV measured water 

temperature, salinity, oxygen, and chlorophyll-a at a frequency of 1 Hz and was 

equipped with a Video Plankton Recorder (VPR, Seascan Inc., Falmouth, MA02540, 

USA) which provided zoo- and phytoplankton densities on the taxonomic family-, and 

sometimes even genus-level. For a detailed description of the VPR plankton image 

classification see Floeter et al. (2017). We used a similar summer cruise with the RV 

Heincke five years later (HE534, June 16-21, 2019) as a test data set. For our 

analyses we selected the following variables: temperature (°C), salinity (PSU), 

oxygen (µmol•l-1), density (kg * m-1), and chlorophyll-a (RFU). For each of the 

variables, we calculated the horizontal (grid cell to the left, i.e. ~ 25 m) and vertical 

(grid cell above, i.e. 1 m) gradient. Furthermore, we had sufficient density data (N•l-1) 

available for the taxa ‘Appendicularia’, ‘Copepoda’, ‘Dinoflagelattes’, ‘Gastropoda’, 

‘Jelly’, ‘Marine snow’, ‘Nauplii’, ‘Ophiuroida’, ‘Pilidium’, ‘Pluteus’, and ‘Polychaeta’. 

Transect diagrams were generated using Ocean Data View (ODV, Schlitzer, 2020) 

with the embedded spatial interpolation software DIVA (Troupin et al., 2012) and 

exported as grids with a resolution of ~ 25 m length x 1 m depth. Abiotic 

measurements as well as density values were normalized and rescaled to range from 

-1 to 1. This was necessary since deep learning models generally perform better with 

homogeneous, small values (Bishop, 1995). 

http://www.emodnet-bathymetry.eu/
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Figure 1: Sampling transects from HE429 (black) and HE534 (blue) in the German 

Bight of the North Sea. Green dots: Wind turbines. Depth ranges from 10 m (red) to 

50 m (yellow). 

To check for multicollinearity between our variables we calculated the variance 

inflation factor (VIF) in R (RCoreTeam, 2020) using functions provided by Zuur et al. 

(2009). A threshold of VIF > 3 was applied to identify highly collinear variables and 

exclude them from further analyses (Zuur et al., 2010). The exported grids for each 

selected parameter were stacked and transformed into feature-vectors where each 

grid cell became one vector with 4 features (1 parameter = 1 feature). In our 

definition, a pelagic micro-habitat with a spatial extent of ~25 m x 1 m corresponds to 

one of those feature-vectors (Figure 2). 
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Figure 2: Schematic data processing from measurements to feature-vector. Step 1: 

original measurements: Step 2: gridded parameter table; Step 3: stacked grids; Step 

4: feature-vector for 1 of the 91 grid-cells. 

Based on these feature-vectors the AE was trained to reconstruct the original micro-

habitats and thereby learn relevant abstractions that represent important patterns in 

the pelagic environment. We used a GPU supported Tensorflow backend (Abadi et 

al., 2015) for Keras (Chollet, 2015) under Python 3.7 (Van Rossum and Drake, 2009) 

to build and train our AE. 

Model description 

The AE consisted of two fully connected layers in the Encoder and Decoder, 

respectively. The Decoder used the transposed weights of the Encoder in reversed 

order, e.g. the weights of the first Encoder-Layer were shared with the last Decoder-

Layer. The first layer of the Encoder inflated the 4-dimensional feature-vector to a 

100-dimensional feature-vector, which was reduced to a 2-dimensional feature-vector 

by the second layer (4 - 100 - 2). The Decoder did the same in reverse (2 - 100 - 4). 

The batch size (number of inputs that are processed simultaneously) was set to 38 

and the learning rate followed a sawtooth-like scheme, initialized at 5e-8. Each input 

feature-vector corresponds to one micro-habitat and includes 1 measurement of each 

parameter selected for the analyses. The model was trained using the data from 

HE429 exclusively. Approximately ~ 13 % of the data was separated to validate the 

training process based on the remaining 87 %. Data from HE534 was used as a final 

test set. As an AE is a gradient-based method, the chosen starting point may be 

crucial for the final fit of the model (Hinton, 2006), and one way of assessing and 

reducing the effect of start conditions are multi-start approaches (Subbey, 2018). 

Therefore, we trained multiple models and selected the one with the smallest final 

validation RMSE. 
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Habitat segregation 

By applying the trained Encoder only, we projected all micro-habitats into a xy-

coordinate system using the 2-dimensional intermediate output. We will refer to the 

encoded outputs as ‘Encoded Components’ in the following. Micro-habitats with 

similar characteristics were projected closer to each other than micro-habitats with 

different characteristics. We used the Euclidean distance to calculate the dissimilarity 

matrix for the Encoded Components of the micro-habitats, which was clustered by 

the HDBSCAN algorithm (McInnes et al., 2017). HDBSCAN uses a density-based 

linkage function, defining clusters by the size of the area in which a certain number of 

neighbors is found. Micro-habitats in ‘sufficiently dense’ regions were assigned to a 

macro-habitat. Obviously, the parameters ‘size of the neighborhood’ (Epsilon) and 

the ‘critical number of neighbors’ (min_samples) are determining the resulting 

clusters (dense areas) with HDBSCAN. Thus, we checked the resulting macro-

habitats for multiple different combinations of these two parameters as well as 

‘min_cluster_size’. The parameter ‘min_cluster_size’ is the threshold that separates 

‘sufficiently dense’ regions (clusters) from the random background noise. All micro-

habitats that were not assigned to a specific macro-habitat by HDBSCAN got the 

label ‘-1’. Homogeneous regions in the transect produced more dense regions in the 

2-dimensional surface that were more likely to trespass the ‘min_cluster_size’ 

threshold and were separated from other homogeneous water masses by less dense 

regions. We used the silhouette method (Rousseeuw, 1987) to select the best 

segregation of micro-habitats. The silhouette score ranges from ‘-1’ to ‘1’ and 

indicates how well each point fits into the assigned cluster (macro-habitat) and is one 

of the best performing indices available (Arbelaitz et al., 2013). ‘-1’ is probably wrong 

labeled, ‘0’ is close to the decision boundary of two clusters and ‘1’ means this 

specific point is far away from points of other clusters. The silhouette scores were 

calculated using the scikit-learn module (Pedregosa et al., 2011) for python. 

Analyses 

We used ODV to add a transect plot of the identified macro-habitats to the original 

measurements and plankton densities. Isolines of selected parameter measurements 

were overlayed on the macro-habitat plots to investigate which feature characteristics 

contributed to the segregation and to assess the associated plankton communities. 
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We furthermore described the macro-habitat plankton communities by modified 

Species-Abundance-Plots (SAP). We calculated the relative number of micro-

habitats by plankton density and taxonomic group for each cluster. As is common for 

SAPs we used a log2 scale for density. That way we visualized the shift in specific 

species densities between the macro-habitats of different segregations of the same 

ROTV survey transect. 

Pelagic submesoscale features often are highly productive areas and aggregate 

particles (Levy and Martin, 2013; Lévy et al., 2018). Therefore, we calculated Lloyd’s 

mean crowding (Lloyd’s MC) and Lloyd’s index of patchiness (Lloyd’s IP) with the R-

function ‘agg_index’ from the ‘epiphy’ package (Gigot, 2018) and compared the 

results for different segregations of the same transects. Lloyd’s index is > 1 if species 

were aggregated, 1 if the distribution is random and < 1 indicates an overdispersed 

distribution compared to a homogeneous distribution. The Index of aggregation 

proposed by Bez (2000) (Bez’s IoA) was calculated in addition to Lloyd’s IP. 

Data handling was done with R (RCoreTeam, 2020) and some tidyverse packages 

(Wickham et al., 2019), namely purrr, tibble, dplyr, ggplot2, and tidyr. 

Results 

In the initial VIF analysis with the full dataset a couple of parameters had VIF > 3. 

After removing ‘density’ which had the highest score, no further parameter exceeded 

this threshold (Supplementary Table S 1). After a detailed analysis of model 

sensitivities and reconstruction quality we decided to limit the final parameter 

selection to (1) vertical temperature difference to the grid cell above, (2) salinity, (3) 

oxygen and (4) chlorophyll-a concentration. 

Model training 

The root mean squared error (RMSE) after the first epoch ranged roughly between 

0.7 and 1.0. Each training epoch took 10 - 15 seconds using a graphic card with 768 

gpu-cores and we trained each model for 15 epochs until a plateau was reached 

(Supplementary Figure S 1). The final training and validation RMSE of our selected 

model were RMSETr ~ 0.33 and RMSEVal ~ 0.35 (Figure 3). 
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Figure 3: History of model training. black: validation, blue: training, grey: learning rate 

(sec. axis). 

Clustering 

Depending on the HDBSCAN parameter selection, micro-habitats were grouped into 

2 - 20 macro-habitats that ranged in size from < 0.1 % to 97 % of all micro-habitats in 

a transect. We present exemplary the results for the segregation of T3 into different 

numbers of macro-habitats. Different parameter combinations could lead to an 

identical number of segregations. We chose an inverse size-cluster-relationship in 

the figure since more macro-habitats were usually ecologically less plausible (Figure 

4). Mostly, ‘epsilon’ had a great impact on the segregation with specific combinations 

of ‘min_cluster_size’ and ‘min_samples’ but less influence with other tested 

combinations of those two parameters, indicating that segregations changed 

discontinuously with slopes and plateaus (Supplementary Figure S 2). 
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Figure 4: Number of segregated macro-habitats. The Figure was produced with    

Epsilon = 0.32. yellow cross: selected segregation. 

Even though the label ‘-1’ is used by HDBSCAN to indicate the lack of belonging to a 

specific cluster, we observed a close relationship between micro-habitats labelled ‘-1’ 

and exceptionally strong chlorophyll-peaks throughout all transects. Therefore, we 

decided to treat ‘-1’ as a macro-habitat of its own instead of unclassified micro-

habitats. Micro-habitats labelled as ‘-1’ were also frequently located between the BL 

and the SL. 

Projections 

While cluster-labelling was not consistent in that cluster ‘0’ always referred to e.g. the 

‘surface mixed layer’, the projections of the ‘surface mixed layer’ micro-habitats were 

always located in a similar position throughout all projection plots. Thus, while the 

cluster denotations related to a macro-habitat were not consistent, the position 

indicated the affiliation to a specific macro-habitat (Figure 5). 
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Figure 5: Projections for different segregations of all transects from HE429. The 

number of segregated macro-habitats is indicated by the last digit in the panel 

header.            BL: Bottom layer (blue); SL: Surface mixed layer (yellow-red); TC: 

Thermocline Layer; PL: Productive layer (white). Numbers were used to indicate that 

e.g. more than 1 “Bottom layer” was segregated (e.g. B1/ B2 instead of BL). 

Silhouette method 

The segregation into three macro-habitats gave the highest average silhouette-

scores in most cases: notably high chlorophyll-peaks were merged into one macro-

habitat (1) and two further macro-habitats were separated at around 17°C in an 

upper surface mixed layer (2) and a lower bottom layer (3). There was only one 

exception from this rule in T1 where in the northern, deeper area the bottom layer (3) 

was replaced with the layer including the chlorophyll-peaks (1). Another anomaly 

occurred in T2, where one of the basic macro-habitats was further separated into two 

‘sublayers’ so that a total of four macro-habitats were segregated. The highest 

silhouette-scores ranged from 0.35 (T1) to 0.59 (T5) (Table 1). 

In the following we will use abbreviations for the three main layers and their 

sublayers, namely ‘PL’ for the productive layer with the high chlorophyll values, ‘BL’ 

for the bottom layer and ‘SL’ for the surface mixed layer. A segregation into more 

than one layer is indicated using numbers, e.g. ‘SL1’/ ‘SL2’ instead of ‘SL’. 
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Table 1: Silhouette method to select the best clustering. The numbers in 

‘Segregation’ give the number of micro-habitats by macro-habitat, e.g. X_Y_Z 

indicates 3 macro-habitats with X, Y and Z micro-habitats, respectively. 

Transect 
Silhouette 

score 
Segregation 

HE429 T1 0.35 14583_21220_22015 

HE429 T1 0.11 24657_21940_1949_9272 

HE429 T1 0.07 12983_596_682_589_21028_21940 

HE429 T2 0.54 5221_24912_12213 

HE429 T2 0.56 6548_25232_5138_5428 

HE429 T3 0.44 18748_21014_56730 

HE429 T3 0.34 21660_56167_1371_15859_1435 

HE429 T4 0.46 2054_5928_8107 

HE429 T4 0.39 3202_5928_605_6354 

HE429 T5 0.59 1729_4823_9331 

HE429 T5 0.39 4582_5148_990_5163 

HE429 T6 0.45 5558_14792_12965 

HE429 T6 0.18 14589_12789_1229_4708 

HE534 T1 0.40 7488_15344_53469 

HE534 T2 0.26 21737_15535_123541 

HE534 T2 -0.08 22248_4062_2099_132404 

HE534 T2 -0.04 24788_15535_4115_1977_113215_1183 

HE534 T3 -0.08 18944_2382_1156_1597_7140_9128 

Habitat maps 

We present T2 exemplarily for all transects of HE429 (Figure 6). Segregating the 

output of the Encoder into 3 macro-habitats, we got the typical scheme of a SL with 

temperatures above 17°C, a macro-habitat which was strongly associated with 

extraordinary high chlorophyll-peaks (PL) and a BL as a third macro-habitat. The 

average silhouette-score for the entire transect was 0.54 (Table 1). However, this 

clustering did not account e.g. for the intrusion of marine snow particles into the SL in 
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the eastern half of the transect. When accepting 4 different macro-habitats, the BL 

and PL macro-habitats were mostly unaffected, while the SL was further separated 

into 2 different macro-habitats. One corresponded to the area where marine snow 

particles were predominant while the second macro-habitat corresponded to the area 

where pluteus larvae were observed in high densities. Segregating characteristics of 

the two macro-habitats were a salinity difference of 0.2 and a shallowing of the 

thermocline from 10 m to 5 m water depth. Notably, this change around section 

distance 18-20 km was located at the entry point of the transect into the Offshore 

Wind Farm BARD. This segregation increased the average silhouette-score for the 

entire transect to 0.56 (Table 1). 

 

Figure 6: Habitatmap of T2 (HE429) with marine snow density (A, B) and pluteus 

density (C, D) as isolines. A, C: 3 segregated macro-habitats, B, D: 4 segregated 

macro-habitats. 

Species Abundance Plots 

The segregation into four macro-habitats was further supported by the modified 

SAPs. The relative amounts of PL and BL did not change much between 3 and 4 

macro-habitats. However, SL1 included all micro-habitats with copepod densities > 8 

N•l-1 and basically all micro-habitats where pluteus larvae occurred. SL2 instead 

included micro-habitats with copepod densities < 8 N•l-1 and generally less 
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chlorophyll, but most micro-habitats where appendicularia occurred. Thus, the SL1 

and SL2 plankton communities were clearly distinct (Figure 7). 

 

Figure 7: Relative count of density by macro-habitat for selected species on transect 

T2 (HE429). A: 3 macro-habitats, B: 4 macro-habitats. App: appendicularia (N•l-1); 

Chl-a: chlorophyll-a (RFU); Cop: copepoda (N•l-1); Mar snow: marine snow (N•l-1); 

Plu: pluteus (N•l-1). 

Lloyd 

Lloyd’s mean crowding underpinned the SAP results. Patchiness in PL and BL did 

not change for ‘marine snow’ and ‘pluteus’ but differed clearly between SL1 and SL2, 

indicating a higher pluteus aggregation in SL1 and a higher aggregation of marine 

snow in SL2 (Table 2). 



89 

 

Table 2: Lloyd’s mean crowding and Bez’s Index of aggregation for 3 and 4 

segregated macro-habitats for transect T2 (HE429). Presence gives the relative 

number of micro-habitats with density > 0. ms: marine snow; plu: pluteus. 

Number of 

macro-

habitats 

macro-

habitat 

Plankton 

group 
Lloyd's MC Presence 

Index of 

Aggregation 

3 PL ms 0.79 0.37 5.61e-04 

3 BL ms 2.35 0.78 6.72e-05 

3 SL ms 0.43 0.25 2.67e-04 

4 PL ms 0.65 0.34 4.50e-04 

4 BL ms 2.35 0.77 6.66e-05 

4 SL1 ms 0.23 0.07 1.02e-03 

4 SL2 ms 0.43 0.41 4.14e-04 

3 PL plu 2.19 0.14 2.10e-03 

3 BL plu 0.00 0.01 6.75e-04 

3 SL plu 3.56 0.36 3.78e-04 

4 PL plu 3.39 0.20 1.51e-03 

4 BL plu 0.00 0.01 6.58e-04 

4 SL1 plu 3.56 0.67 4.63e-04 

4 SL2 plu 0.36 0.06 1.57e-03 

Test dataset HE534 

The temperature maximum during HE534 was around 15 °C, i.e. 2 °C lower than the 

threshold that separated SL and BL in HE429. Consequently, no thermal stratification 

was detected by the Encoder trained with HE429 measurements. However, this 

model segregated an oxygen-rich layer that, based on the projections of the Encoder, 

resembled a similar habitat as the SL in HE429. This oxygen driven stratifications 

were not consistent over the entire range of a transect and in some areas the macro-

habitat with projections similar to BL in HE429 comprised the entire water column, 

indicating a mixed water column closer towards the coast. Notably, plankton 

aggregations were commonly located at the border between oxygen-stratified and 
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mixed water columns (Figure 8). The highest average silhouette-scores were 

reached with three segregated macro-habitats. However, the scores were much 

lower compared to HE429 with a maximum between 0.26 and 0.40. 

 

Figure 8: Habitat maps for T1 and T2 from HE534. The isolines give the densities 

(N•l-1) of pluteus for T1. Isolines in the figure of T2 include pluteus, marine snow and 

dinoflagellates (all in N•l-1). A: T1, B: T2. 

Discussion 

Selection of parameters 

When training the model, we got the best results with a limited selection of 

parameters compared to the entire set of available data. The selected parameters 

are however in accordance with previous findings that physical properties contribute 

most to differences in habitat utilization by plankton organisms (Schulz et al., 2012; 

Friedland et al., 2020). In contrast to Alvarez-Berastegui et al. (2014), we did not 

benefit from the combination of gradients with the original measurements. However, 

a prior wavelet analysis as in North et al. (2016) could help to identify relevant spatial 

scales for the derivation of gradients. It is also possible, that the architecture of the 

model limited the amount of compressed information accessible to the clustering 

algorithm. In convolutional AEs, the size of the bottleneck (intermediate output) limits 

the generalization of the model (Manakov et al., 2019). This is also true for the fully 

connected AE architecture of this model and might limit the potential of including 

more variables like species densities and environmental gradients. 



91 

 

Reconstruction loss 

The loss for the optimization of an AE is based on the difference between the 

reconstruction and the original input. However, driving forces behind habitat 

partitioning vary with study region and season and specific parameters have a higher 

contribution than others (Schulz et al., 2012; Espinasse et al., 2014; Friedland et al., 

2020). Thus, we deemed it more important to accurately reconstruct specific features 

(parameters) compared to entire vectors (micro-habitats). Accordingly, we calculated 

the sum of the batchwise RMSE between the specific feature-values 

(e.g. temperature) of each input and the corresponding feature-values of the 

reconstructions and not the RMSE of an entire feature-vector (micro-habitat) and its 

reconstruction. This forced the AE to learn all parameters individually and 

furthermore made it possible to give specific parameters a higher priority if 

appropriate. 

Aggregation 

Lloyd’s IP is an area-related quality measure for Lloyd’s MC and thus sensitive to 

zeros. As can be seen in our example (Table 2), the ‘spillover’ from a crowded to an 

empty macro-habitat in the area of the decision boundary leads to misleadingly high 

Lloyd’s IP and, to a lesser degree, misleadingly high Bez’s IoA, even though this 

Index is supposedly insensitive to zeros. In accordance with the recommendation by 

Bez (2000) we therefore suggest Lloyd’s MC as a measure of aggregation within a 

macro-habitat. Lloyd’s IP and Bez’s IoA might still be informative if the overall 

colonialization of the macro-habitat is considered. 

Pelagic habitats 

The model segregated three (four) distinct pelagic habitats in HE429: (1) a SL (SL1/ 

SL2) mainly characterized by temperatures > 17 °C, (2) a BL on the other side of that 

threshold and (3) a PL dominated by high chlorophyll concentrations. In contrast to 

SL and BL, PL was not a true cluster by the definition of HDBSCAN, which indicates 

a great variability within the micro-habitats belonging to PL. That makes them 

‘special’ or at least ‘different’ from common micro-habitats in SL and BL. Micro-

habitats of PL were usually located around the 17 °C isoline and at the occurrence of 

exceptionally strong chlorophyll-peaks. 
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In the North Sea, peaks of primary production following the spring bloom were 

observed in subsurface layers (Richardson et al., 1998, 2000). The PL most likely 

resembles such areas of subsurface productivity. 

Furthermore, the model detected an upwards doming of the thermocline within an 

OWF, probably caused by enhanced vertical mixing (Segtnan and Christakos, 2015; 

Floeter et al., 2017; Schultze et al., 2020). The upwards doming and the resulting 

temperature differences are comparable to those observed within cyclonic eddies 

(Dong and McWilliams, 2007; Marmorino et al., 2018), indicating that OWF’s can 

influence the pelagic realm in the same order of magnitude as natural (sub-) 

mesoscale processes like eddies. The doming of colder, nutrient-rich water can 

produce chlorophyll peaks (Munk et al., 1999), indicating the potential for an 

enhanced primary production in this area. 

Cumulative effects of single foundations might lead to a blocking effect around 

OWF’s, similar as observed for islands (Simpson et al., 1982), which has the 

potential to produce submesoscale eddies (Dong and McWilliams, 2007) in addition 

to local upwelling fronts (Floeter et al., 2017). Common properties that are used to 

describe hydrographic eddies and fronts include water velocity, vorticity and the 

Rossby number (e.g. Lévy et al., 2012; Marmorino et al., 2018), all of which were not 

available to us, which makes it less likely to detect such features. 

The situation during HE534 was fundamentally different from HE429, most likely due 

to the weather conditions prior to the cruise that dispersed a thermal stratification. 

However, the projections indicated that similar SL and BL as in HE429 were 

detected. In case of HE534, segregations occurred along an oxygen isoline (> 235 

µmol•l-1) instead of temperature (> 17 °C) as during HE429. This is in accordance 

with findings of Friedland et al. (2020) and references within that the predictive power 

of variables might change. This variable nature inherently present in pelagic data 

(Hinchey et al., 2008; Thompson et al., 2016) makes it so challenging to accurately 

predict pelagic habitats. The temperature isolines in T1 and T2 (Supplementary 

Figure S 3) clearly indicate the presence of a tidal mixing front (see Hill et al., 1993). 

A convergence slick, which is typically associated with such tidal mixing fronts (Hill et 

al., 1993), would also explain the observed aggregation of plankton particles at the 

intersection of the two macro-habitats (Figure 8). 
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There exists plenty of evidence that physical properties also structure the marine 

plankton communities (e.g. Leeuwen et al., 2015; Swalethorp et al., 2015; Lindegren 

et al., 2020). However, the generated habitat maps have only limited explanatory 

power considering the observed plankton communities. This is not unexpected since 

physical properties are merely incomplete predictors for the community structure 

which is most likely further shaped by niche-based processes and interactions 

(Houliez et al., 2021). 

Top predators aggregate in areas with the highest prey-patch densities (not to be 

confused with the area of highest prey densities!) (Benoit-Bird et al., 2013) and peak 

abundances of zooplankton and fish larvae are frequently observed in the direct 

vicinity of frontal convergence zones (Munk et al., 1995, 2002; Höffle et al., 2013; 

Munk, 2014; Swalethorp et al., 2015). In addition to the horizontal agglomerations, 

thermo- and haloclines can produce further vertical structuring (Höffle et al., 2013; 

Lindegren et al., 2020). Thereby, more pronounced differences lead to a stronger 

niche separation and less overlap between different species (Lindegren et al., 2020). 

Changes in nitrate (Scharfe and Wiltshire, 2019) and silicate (Wiltshire et al., 2015) 

availability produce a temporal succession of different dominant taxa in the tidal 

advected phytoplankton community. Especially the plankton community is thus 

shaped by complex spatio-temporal dynamics and local prey patches have the 

potential to shape the distribution of higher trophic levels (Pope et al., 1994; Burkhard 

et al., 2011; Benoit-Bird et al., 2013; Defriez et al., 2016), even though this might be 

of less importance for ecosystem services in a highly diverse and partly functionally 

redundant plankton communities like that of the North Sea (Atkinson et al., 2015). 

Comments and recommendations 

Future work should aim to include species densities and water current related 

measurements in order to accurately predict not only physical habitats but also 

realized ecological niches and hopefully improve our understanding of the complex 

dynamics shaping the pelagic realm. 

Our approach offers beneficial properties to solve this challenge: the AE is a highly 

non-linear tool to reduce the dimensionality of a nearly unlimited amount of data that 

can be extended as needed. Additionally, HDBSCAN is a cluster algorithm that 
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makes as few assumptions as possible, i.e. regarding number or shape of clusters. 

HDBSCAN can also handle outliers on it’s own in opposite to e.g. k-means, and even 

enables to treat them in our case as an own macro-habitat. While machine learning 

might not give insight into the underlying mechanistic, it can give a starting point from 

which to begin future investigations (Friedland et al., 2020). 
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Supplementary material 

Table 

Supplementary Table S 1: Final parameter collecting and respective VIF values. NS: 

vertical gradient; WE: horizontal gradient. 

Parameter GVIF 

dtNS 1.98 

dtWE 1.59 

Oxygen 2.16 

doNS 1.84 

doWE 1.57 

Salinity 1.36 

dsNS 1.09 

dsWE 1.07 

Chlorophyll_a 1.17 

dcNS 1.12 

dcWE 1.03 

Appendicularia 1.04 

Copepoda 1.25 

Pluteus 1.13 

MarineSnow 1.30 

Dinoflagelattes 1.02 
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Figures 

 

Supplementary Figure S 1: Prolonged history of model training. black: validation, 

blue: training. 
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Supplementary Figure S 2: Influence of Epsilon regarding the segregation of macro-

habitats. dn/deps is the difference in segregated macro-habitats at a specific range in 

Epsilon (0.2 - 0.32). 
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Supplementary Figure S 3: Habitat maps of T1 (A) and T2 (B) from HE534 overlayed 

by temperature isolines. 
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Chapter III 

Identification of plankton habitats in the North Sea 

Rene Plonus, Rolf Riethmüller, Jens Floeter 

Abstract 

The definition of an ecological niche makes it possible to anticipate the responses of 

a species to changing environmental conditions. Broad tolerance limits and a paucity 

of readily observable niches in the pelagic zone make it difficult to anticipate 

responses of the plankton community related to anthropogenic or environmental 

changes. Plankton distributions are closely linked to climate change and shape the 

seascape for higher trophic levels, so monitoring plankton distributions and defining 

ecological niches will help to understand and predict ecosystem responses. Here we 

apply a machine learning autoencoder and a density-based clustering algorithm to 

high-frequency datasets sampled with a ROTV Triaxus and a SCANFISH in the 

North Sea. The results indicate that in the highly dynamic North Sea, local 

hydrography prevents niche-based separation of plankton species at the sub-

mesoscale, despite the availability of different habitats. Plankton patches were 

associated with naturally occurring frontal systems and anthropogenically induced 

upwelling-downwelling dipoles in the vicinity of offshore wind farms (OWFs). This 

highlights the potential for OWFs to induce local productivity patches and temporarily 

alter the seascape for higher trophic levels. 

Introduction 

The concept of an ‘ecological niche’ was first applied by Grinnell (1917) and referred 

to the abiotic demands of a species towards its environment and the behavioral 

adaptations of the species to the same (Grinnellian niche). A formal definition of the 

concept followed in Hutchinson (1957), describing an ecological niche as a ‘n-

dimensional hypervolume’, where each dimension is influenced by a different 

environmental parameter. A further specification by Hutchinson (1957) was the 

distinction between fundamental and realized ecological niches. While the 
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fundamental niche represents the total area that allows a population to survive, the 

realized niche describes the area in which a species dominates over other 

competitors. The latter refers more to the ‘Eltonian niche’, which focuses on the 

interaction of different species (Elton, 1927), especially in the more modern 

differentiation of the two (Dehling and Stouffer, 2018). The original understanding of 

the Eltonian niche as stated by Hutchinson (1957) assumes that co-occurring species 

occupy different niches that do not intersect. The paucity of readily observable 

physical niches in the pelagic zone (Behrenfeld et al., 2021) and a seemingly 

unstructured environment (Martin et al., 2021) had let to the formulation of the 

‘paradox of plankton’ by Hutchinson (1961): the co-existence of relatively many 

species in an apparently homogeneous environment, even though species richness 

tends to increase with habitat heterogeneity (MacArthur and MacArthur, 1961; 

Lapointe and Bourget, 1999). However, niche-based models do not explain 

redundancy (Leibold and McPeek, 2006) or the existence of functional groups or 

traits (Barton et al., 2013; Dehling and Stouffer, 2018), both of which have been 

observed in plankton communities and are generally considered positive aspects of 

biodiversity (Leibold and McPeek, 2006). ‘Neutral community models’ see 

communities as assemblages of ecologically similar species in the absence of 

predation (Bell, 2001). It has been suggested that meaningful insights could be 

gained by the synthesis of niche-based and neutral theories (Leibold and McPeek, 

2006). In addition, the traditional view of turbulence homogenized plankton 

communities has been challenged by recent studies, suggesting that biological and 

physical processes create a structured realm at scales down to few centimeters 

(Mitchell et al., 2008; Basterretxea et al., 2020). 

Plankton communities in turn shape the seascape for higher trophic levels (Bertrand 

et al., 2014) and are considered sentinels of ocean changes (Drago et al., 2022), 

which makes it an important task to understand and monitor their spatio-temporal 

variation (Hays et al., 2005; McGill et al., 2006; McGinty et al., 2018; Friedland et al., 

2020). However, traditional methods in plankton ecology have been time consuming 

and thus prevented the up-scale to pan-oceanic observations (Irisson et al., 2022). 

This paucity of data and the inconsistency in sampling methods and scales has 

limited our understanding of the factors and processes determining abundance or 

diversity of plankton (Lombard et al., 2019). New optical sampling methods have 



108 

 

emerged in the last decade which produce a wealth of information (Irisson et al., 

2022), but their scientific use was limited by the concepts and methods applicable to 

the huge amount of data they generate (Alvarez-Berastegui et al., 2014; North et al., 

2016; Lombard et al., 2019; Irisson et al., 2022). 

That’s where machine learning excels. But even though machine learning has 

already successfully brought insights into pelagic ecology in the past, fully automated 

predictions can still only be trusted for the most abundant species (Plonus et al., 

2021a; Irisson et al., 2022). Fortunately, plankton communities are usually highly 

diverse (Siegel, 1998) but dominated by a few, very abundant taxa (Fuhrman, 2009). 

Still, the dynamic environment of plankton communities makes it challenging to 

determine and predict ecological niches and community structures (Beaugrand et al., 

2013; Brun et al., 2015; Barth and Stone, 2022). In addition, partially functional 

redundant species make niche predictions an even more complex task (Fuhrman, 

2009; Atkinson et al., 2015; Brun et al., 2015), especially in diverse ecosystems such 

as the North Sea. The study of plankton communities is a constantly changing field 

(Brun et al., 2015) and becomes ever more precarious due to the tight coupling 

between plankton and climate change (Hays et al., 2005; Beaugrand et al., 2009; 

Barton et al., 2013; Matus-Hernández et al., 2019). However, there has been 

evidence that plankton community changes are predictable and can help to anticipate 

responses in a changing world (Beaugrand et al., 2009; Fuhrman, 2009). 

The basis of these predictions are habitat maps, which link bio-physically distinct 

areas to specific species communities (Harris and Baker, 2012). However, due to the 

high variability of relevant spatial and temporal scales in the pelagic environment 

(Hinchey et al., 2008; Thompson et al., 2016) it is a daunting task to accurately 

determine pelagic habitats and identify associated plankton communities. Here we 

present a fully automated method of mapping plankton communities to physically 

distinct habitats. Our approach takes advantage of machine learning speed to pry 

information from a wealth of data and make it accessible to human researchers. 

Using a fully connected Autoencoder (AE) and a density-based clustering algorithm 

we generate habitat maps from high-frequency data including physical and biological 

variables, sampled using a Remotely Operated Towed Vehicle (ROTV). 
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Material and methods 

Data acquisition and preparation 

Physical and biological oceanographic measurements were recorded on different 

North Sea surveys with the RV Heincke (Knust et al., 2017) using a MacArtney 

TRIAXUS ROTV, complemented by a Video Plankton Recorder (VPR), and a 

ScanFish Mark III. A detailed description of the TRIAXUS and the associated 

sampling procedure can be found in Plonus et al. (2021a) and Plonus et al. (2021b). 

A detailed description of the SCANFISH sampling is given in Zhao et al. (2019). The 

map was generated using ggplot2 in R (Figure 1). For our analyses we selected the 

following parameters to determine bio-physical niches in the pelagic realm: 

temperature (°C), salinity (psu), oxygen (µmol•l-1), and chlorophyll-a (RFU). 

Furthermore, we had sufficient VPR derived density data (N•l-1) available for the 

plankton groups ‘Appendicularia’, ‘Copepoda’, ‘Dinoflagelattes’, ‘Marine snow’, and 

‘Pluteus larvae’. 

 

Figure 1: Sampling transects from HE466 (T1 - T6) and the Scanfish cruises. Red 

dots: Wind turbines. Depth ranges from 0 m (white) to 50 m (dark blue). A map of the 

cruises HE429 and HE534 was provided in Plonus et al. 2021b. 
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Transect diagrams were generated using Ocean Data View (ODV, Schlitzer, 2020) 

with the embedded spatial interpolation software DIVA (Troupin et al., 2012) and 

exported as grids with a resolution of ~ 25 m length x 1 m depth. Abiotic 

measurements were normalized and rescaled to range from -1 to 1. All plankton 

density values and chlorophyll a measurements were transformed using the 

logarithm of x + 1 prior to normalization. The euclidean distances in the 

multidimensional space defined by the plankton densities and the chlorophyll a 

concentration between each grid cell and the top left grid cell of each transect were 

calculated (Harris et al., 2020). Those distances were again normalized and rescaled 

as described above. This was necessary since deep learning models generally 

perform better with homogeneous, small values (Bishop, 1995). 

The exported grids for each selected parameter and the above calculated distance 

measure were stacked and transformed into feature-vectors where each grid cell 

became one vector with 4 features (1 parameter = 1 feature). In our definition, a 

pelagic micro-habitat with a spatial extent of ~25 m x 1 m corresponds to one of 

those feature-vectors, which reflect the niche space at this point (Colwell and Rangel, 

2009). 

Based on these feature-vectors the AE was trained to reconstruct the original micro-

habitats and thereby learn relevant abstractions that represent important patterns in 

the pelagic environment. We used a GPU supported Tensorflow backend (Abadi et 

al., 2015) for Keras (Chollet, 2015) under Python 3.7 (Van Rossum and Drake, 2009) 

to build and train our AE. 

Model description 

The AE consisted of four fully connected layers in the Encoder and Decoder, 

respectively. The Decoder used the transposed weights of the Encoder in reversed 

order, e.g. the weights of the first Encoder-Layer were shared with the last Decoder-

Layer. The first layer of the Encoder inflated the 4-dimensional feature-vector to a 

200-dimensional feature-vector, which was reduced to a 100-, 50- and 4-dimensional 

feature-vector by the following layers (4 - 200 - 100 - 50 - 4). The Decoder did the 

same in reverse (4 - 50 - 100 - 200 - 4). The batchsize (number of input micro-

habitats that are processed simultaneously) was set to 100 and the learning rate 

followed a sawtooth-like scheme, initialized at 5e-8. Each input feature-vector 
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corresponded to one micro-habitat and included 1 measurement of each parameter. 

The model was trained using data recorded during the research cruises HE429 (July 

2014) and HE534 (June 2019). The best performance was achieved using a limited 

training set of only 50.000 randomly selected micro-habitats over 250 epochs while 

reserving the remaining ~200.000 micro-habitats for validation. 

Micro-habitat segregation 

The final model was tested using data generated on the research cruise HE466 

(June 2016). In opposite to the human validated plankton densities from HE429 and 

HE534, the plankton densities for HE466 were estimated exclusively automatic using 

the threshold procedure proposed by Faillettaz et al. (2016). By applying the trained 

Encoder only, we created 4-dimensional representations of the original input. In the 

following we will refer to the processing of the micro-habitats by the Encoder as 

‘projection’. Micro-habitats with similar characteristics were projected closer to each 

other than micro-habitats with different characteristics. HDBSCAN calculates the 

Euclidean distance to build clusters from the, in this case, 4-dimensional inputs 

(McInnes et al., 2017). For more information regarding the clustering see Plonus et 

al. (2021b). Further testing was conducted using data sampled during SCANFISH 

cruises HE308, HE331, HE353 and HE397. 

Macro-habitat segregation 

A drawback of HDBSCAN is the inconsistency between transects. Cluster 0 in 

transect A is not necessarily a similar macro-habitat to cluster 0 in transect B. 

Therefore, we calculated the ‘center of gravity’ (COG) for each cluster to identify 

similar macro-habitats in the entirety of all transects. Here, a COG is basically the 

average location of a cluster within the 4-dimensional space of the projections. We 

used a weighted average location based on the probabilities generated by 

HDBSCAN, which indicated whether a point was close to the center (1) of an 

assigned cluster or in the periphery (–> 0). In the final segregation step, the COGs 

were also clustered using HDBSCAN to identify global (including all transects) 

instead of local (each transect alone) ‘groups of macro-habitats’. Thus, we make a 

distinction between local macro-habitats (MH) and global macro-habitats (GMH). 

GMHs do not necessarily occur in every transect, but at least in one (Figure 2). 
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Figure 2: Schematic of the workflow. Micro-habitats from each transect are projected 

and clustered into macro-habitats (MH). Centres of gravity (COG) are calculated for 

each macro-habitat and all COGs are clustered again to identify global macro-

habitats (GMH). Each symbol in the “transect” and “projection” maps represents 1 

micro-habitat, while each symbol in “COG” represents the COG of one of the macro-

habitats. 

Macro-habitats in smaller transects (< 50 km) were grouped with macro-habitats from 

other transects exclusively. Macro-habitats of longer transects were sometimes also 

grouped with neighboring macro-habitats of the same transect, indicating a 

differentiation less meaningful by HDBSCAN or a suboptimal setting of the 

parameters. In such cases we merged all local macro-habitats within the transect of 

the same global macro-habitat and then updated the COG. 

Identification of key parameters 

While very deep architectures can easily become some kind of ‘black box’, it was 

quite possible to trace individual inputs in our relatively shallow model which on top 

consisted only of fully connected Dense-Layers and did not rely on convolutional 

filters. Fully connected layers take a n-dimensional input which is multiplied by a pre-

defined number ‘X’ of weight sets of length n, resulting in a weight matrix of n x X 

weights. Basically, the output of a Dense-Layer is the dot product of the input and the 

weight matrix fed into some nonlinear activation function and thus the weights 

ultimately define the relative influence of a given input upon the final output. Weights 

close to zero result in minor changes in the output even if the input variable varies a 

lot while increasing weights (positive as well as negative) can facilitate major 
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changes in the output. Thus, analyzing the final weights after completion of the 

training phase revealed the relative influence each input variable had upon a specific 

output dimension of the Encoder, regardless of the analysed transect. A similar 

approach has been used in Drago et al. (2022) to evaluate the importance of single 

nodes in a random forest algorithm. 

Sensitivity analysis 

Sensitivity analysis (SA) estimates the importance of an input variable for the model 

output. We applied a global SA following Sobol (2001) to estimate the importance of 

each output dimension (D1 - D4) of our AE. In a global sensitivity analysis, all 

parameters are varied simultaneously, allowing not only the contributions of 

individual parameters to be assessed, but also the contribution of their interactions to 

the variability of the model output. 

HDBSCANs prediction method performed poorly on the randomly generated inputs 

for the SA, likely due to the ‘curse of dimensionality’ (Bellman and Dreyfus, 2015). 

Randomly generated points were unlikely to be close to HDBSCAN’s pre-estimated 

‘core points’ and were therefore usually classified as outliers. Thus, we trained a 

Support Vector Machine (SVM) to separate the clusters identified by HDBSCAN and 

to predict the randomly alternating data for the SA. SVMs define boundaries between 

existing clusters by maximizing the distance between the boundary and each 

adjacent cluster. Because HDBSCAN forms clusters from spatially distinct groups, 

SVMs are uniquely qualified to assign randomly generated data points to the closest 

cluster despite the ‘curse of dimensionality’. The SVM was trained in R (Meyer et al., 

2023) and the SA was performed in python (Iwanaga et al., 2022). 

Data handling was done with R (RCoreTeam, 2020) and the tidyverse packages 

purrr, tibble, dplyr, ggplot2, rstatix, and tidyr (Wickham et al., 2019). 

Results 

Model training 

Each training epoch took ~ 5 seconds using a graphic card with 768 gpu-cores and 

we trained the model for 250 epochs. The final training and validation RMSE of our 

model were RMSETr ~ 0.69 and RMSEVal ~ 0.48 (Figure 3). 
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Figure 3: History of the model training. Root-mean-squared error (RMSE - dotted) 

and validation RMSE (dashed). 

Identification of key parameters 

Temperature had the highest impact upon the output dimension 1 (D1) with a ~ 46 % 

share on the final outcome, followed by salinity with ~ 36 % and the euclidean 

distance (~ 17 %). Variations in oxygen had likely no effect on D1 since the oxygen 

components were weighted down to a share of only ~ 1 %. D2 was dominated by the 

euclidean distance (~ 45 %). Temperature and salinity had an equal share of ~ 23 % 

and oxygen had again the least influence but with ~ 9 % more than on D1. D3 was 

affected by all input variables similarly with shares between 19 - 29 %. D4 was most 

sensible towards salinity (~ 39 %) followed by temperature (~ 27 %), oxygen (~ 20 %) 

and finally the euclidean distance (~ 14 %). Temperature was twice as influential on 

D1 than on any other output dimension. Variations in oxygen had nearly no effect in 

D1 but increasingly so on D2, D4 and D3. Overall, salinity was the most influential 

variable but was never as dominant as temperature or euclidean distance on a single 

output dimension. Similar to temperature the euclidean distance was twice as 

influential on D2 as on any other output dimension. 
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Table 1: Influence of each input variable upon an output variable. Output variables 

(dimensions) in rows and input variables in columns. 

Dimension/Variable Temperature Oxygen Salinity Euclidean 

D1 0.462 0.007 0.359 0.171 

D2 0.234 0.091 0.225 0.449 

D3 0.194 0.288 0.291 0.228 

D4 0.273 0.197 0.386 0.144 

Sensitivity 

The most sensitive dimension was D3 in more than half of the cases (Figure 4). 

Conversely, D4 was the least sensitive dimension in almost 50% of all cases. D1 and 

D2 were similarly important, with both rank 1 and rank 4 more often on the side of 

D1, leaving D2 as the second or third most important dimension in most cases (~ 73 

%). 

 

Figure 4: Count of Sobol sensitivity rankings for all transects by dimension. Fixing the 

dimension with the highest rank (1) would result in the greatest average reduction in 

variability in output. 

Both transects of April cruises (HE353 and HE397), which exhibited fully mixed water 

columns, were most sensitive towards D1 and thus temperature and to a slightly 
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lower extend also salinity. The Sobol sensitivity was ST = 0.86 for HE353 and ST = 

0.95 for HE397. Without interactions, D1 would have been the only variable with any 

significant effect. The temperature range for HE353 was 5.37 - 5.63°C (55 km 

transect) and that of HE397 was 2.69 - 3.34°C (100 km transect). 

Characterisation of macro-habitats 

The habitat map of HE466 T5 (Figure 5) features everything one could expect from a 

tidal mixing front as it was described in Hill et al. (1993). At the beginning of the 

transect is a stratified water column. The surface layer (GMH3) is outlined by the 240 

µmol•l-1 isoline for oxygen, with higher concentrations within the GMH. The bottom 

layer (GMH8) is characterized by temperatures below 12.25 °C. GMH16 probably 

resembles the area of density-driven circulation and is framed by the 13 °C isoline for 

temperature. Towards the end of the transect (GMH5) there is a fully mixed water 

column with salinity below 33.95 psu. The area left out by those isolines belongs to 

GMH1, which shows the typical characteristics of an along front jet, namely reduced 

temperatures and upward dooming of bottom front isolines. 
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Figure 5: Habitat maps for T1 and T5 of haul 5 from HE466. Dotted: temperature 

isolines [°C], dashed: salinity isolines [psu], solid: oxygen isolines [µmol•l-1], dot-

dashed: pluteus larvae abundance [ind / micro-habitat]. Each global macro-habitat is 

represented by a different colour. Yellow areas denote transition areas (originally 

labeled -1). 

At the beginning of transect T1 there is a stratified water column with the surface 

layer this time limited to temperatures above 13.5 °C (GMH3). The bottom layer 

(GMH1) is outlined by the 34.3 psu salinity isoline, with higher salinities within the 

GMH. In this case, the area of the density-driven circulation (GMH14) is 

characterized by oxygen concentrations below 225 µmol•l-1. There is no fully mixed 

water column towards the end of the transect, however what is clustered into GMH24 

has mostly pluteus larvae densities above 5 individuals per micro-habitat (ind•mh-1). 

While one could assume that GMH24 is the along front jet as in T5, the temperatures 

do not fully support this (Figure 6). However, it is possible that the transect did not 

fully cross the tidal mixing front and this could affect the predictive ability of the 

model. As with GMH1 in T5, GMH24 in T1 shows the highest densities of copepods 

and pluteus larvae, indicating an accumulation of particles as would be expected by 

an along front jet. However, T1 also shows strong evidence of an upwelling-

downwelling dipole (Floeter et al., 2022), with the upwelling pole aligned closely with 

the surface temperature minimum. 

 

Figure 6: Map of temperature for HE466 haul 5 T1. 
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As can be seen in Figure 5, the boundaries of global macro-habitats tend to fit the 

observed parameter isolines very well. It is noticeable that different parameters 

contribute to the respective isolines, in T1 there is even a GMH that is most closely 

related to the increased abundance of pluteus larvae. Despite this fairly accurate 

segregation of potential different habitats, copepods, appendicularians and pluteus 

larvae tend to share the same MH where they occur at maximum abundance within a 

transect. However, only in one case the MH are from the same GMH, even if the 

GMH occurs in several transects, such as GMH3 in T1, T2, T3, and T5. 

Discussion 

Model inputs 

We used values normalized within a transect as model inputs. Thus, peak 

temperatures in April were treated equally to peak temperatures in August, even 

though they were naturally much lower. A possible solution would be to use an 

overall normalisation. In this case, however, we lose the within-transect contrast 

because the April cruises would have had too narrow an input range, as the initial 

temperature variance was much smaller than later cruises. 

The model had difficulty interpreting plankton abundance, most likely due to the 

skewness of the data. The patchiness of plankton produces many zeros and only 

relatively few high abundances. Using the Euclidean distance had two main 

advantages. First, the distance was no longer biased towards zero. Secondly, the 

euclidean distance combined the data on the resident plankton communities, using 

chlorophyll a as a proxy for phytoplankton abundance, into one variable. Thus, the 

input for the model did not vary between different regions which had different 

communities as was the case for our SCANFISH data for example. During the 

SCANFISH cruises, no plankton abundances were available which reduced the 

‘community’ information to just chlorophyll a. The mahalanobis distance 

(Mahalanobis, 1936) might be an even better distance measure for this purpose 

(Beaugrand et al., 2011). Unfortunately, it requires at least two dimensional inputs 

which was not the case for the SCANFISH data. 
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Global macro-habitats 

A drawback of HDBSCAN was the inconsistency of macro-habitat labels across 

transects. However, following the logic that similar micro-habitats form a single 

macro-habitat, the COGs of similar macro-habitats should be close to each other 

even across transects. Thus, we used clustered the COGs to find types of similar 

macro-habitats across transects. Since the macro-habitats of a single transect were 

selected under the prejudice of forming the best possible clustering among the tested 

variations, they should ideally only be grouped with clusters from other transects. The 

fact that some COGs were assigned the same type despite originating from the same 

transect indicated an inferior solution by the previous clustering step which formed 

the local macro-habitats. However, even though only three parameters, minimum 

sample size, minimum cluster size, and epsilon, were involved in finding different 

sets of local macro-habitats, it was quite time-consuming to calculate the silhouette 

scores even within the parameter space we routinely sampled. Therefore, it was 

quite possible that we found at a local optimum instead of a global one. Logically, the 

search for global macro-habitats reduced the parameter space from three to one. 

First, the minimum number of samples within a cluster was set to 2, since it was likely 

that some types of macro-habitats were less common than others and could thus 

also occur only once or twice. Local macro-habitats that occurred only once were 

declared as outlier during the COG clustering. Second, if minimum cluster size was 

two the number of required neighbors had to be 1 by consequence. Therefore, only 

Epsilon (size of the neighborhood) was left to vary. Additionally, clustering ~ 100 

COGs was computationally much less expensive compared to clustering multiple 

thousand micro-habitats. We therefore accepted global macro-habitats as the global 

optimum and rejected local macro-habitats as the inferior local optimum in our loss-

surface in cases of conflict, e.g. when COGs of local macro-habitats on the same 

transect were grouped within the same global macro-habitat. 

Key factors behind habitat segregations 

A fully mixed water column along an entire transect was only present in the two April 

cruises HE353 and HE397 (Supplementary Figure S 1, Supplementary Figure S 2). 

For both cruises the local macro-habitats exhibited a high sensitivity to AE output 

dimension 1 which had temperature as key parameter. Most of the other transects 

with stratified water columns were instead most sensitive to AE output dimension 3 (6 
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out of 9 cases), with salinity as the main key parameter. Temperature had a strong 

influence on a vertical segregation, which was also observed in Plonus et al. (2021b). 

Salinity was likely stronger involved in a horizontal segregation. Neither oxygen nor 

chlorophyll displayed any general patterns. However, in the mixed water columns, 

the temperature had mainly a horizontal gradient. Therefore, the most influential 

dimensions tended to be those that best reflected the horizontal gradients. This is 

consistent with previous findings that including horizontal gradients improved the 

predictive power of a distribution model (Alvarez-Berastegui et al., 2014). Important 

traits defining the realized niche of a species will probably strongly react to physical 

gradients (McGill et al., 2006). Therefore, it was to be expected that the dimension 

that best reflected the horizontal gradients should be the most important one in the 

prediction of the potential habitats. 

Bio-physical characteristics of macro-habitats 

The habitat maps showed the results of a variety of different processes. The 

transects in HE308 (Supplementary Figure S 1) and HE325 (Supplementary Figure S 

2) crossed a salinity or plume front. The habitat map of HE308 featured distinct 

surface and bottom habitats towards the deeper parts of the transect, whereas the 

habitat map of HE325 generally showed a fully mixed water column on both sides of 

the front. The most obvious explanation for this difference was the time offset 

between the two cruises. While HE308 took place in August (2009), HE325 took 

place already in May (2010). The GMHs of the two transects appeared to be 

confusing at first sight, but despite the fact that both maps showed a salinity front, the 

situations that generated these fronts were very different. The haline front in HE325 

was based on land-based run-off since it was much closer to the shore than the one 

in HE308 (Krause et al., 1986). GMH15 represented the area of surface convergence 

which is usually associated with a tidal intrusion front (Simpson and Nunes, 1981). 

The front itself (GMH2) consisted of cold, oxygen-rich water. The haline front in 

HE308 was further offshore and depicted the boundary between North Sea and 

Atlantic water. In this case GMH15 represented the bottom water immediately to the 

front, but as in HE325 it was an area of reduced oxygen concentration. The relatively 

high chlorophyll a concentrations in nearby GMH1 indicated an ongoing subsurface 

bloom. Such subsurface blooms occur in the vicinity of bottom fronts in the North Sea 

at depth > 25m and fuel the pelagic production during summer (Richardson et al., 
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1998; Richardson et al., 2000; Jónasdóttir and Koski, 2011). Dead particles were 

probably transported towards the front and caused the oxygen minimum by 

decomposition processes. 

Transects T1 to T6 of HE466 (Supplementary Figure S 5 - Supplementary Figure S 

10) were not only in the immediate vicinity of an offshore wind farm (OWF), but partly 

also crossed a tidal mixing front (Hill et al., 1993). While in T1 - T3 all GMHs had 

mean salinities >34 psu, there was a decreasing trend in salinity in the transects T4 - 

T6, indicating a shift from North Sea to coastal water (Lee, 1980). Only T5 had a MH 

that spanned the entire water column with a mean salinity <34 psu, indicating a fully 

mixed habitat with characteristics of coastal water. T4 and T6 did not extend into the 

mixed coastal water. However, all three transects had a similar MH (GMHs 7, 16 & 

17) with increased temperature (~ .8 °C) and decreased salinity (~ .2 psu) compared 

to the adjacent bottom habitat. The MH directly above those three had always the 

highest plankton abundances (GMHs 1, 4 & 15), indicating an aggregation of 

particles in this specific area. Tidal mixing fronts are basically slowly rotating, near-

geostrophic currents (Hill et al., 1993). The rotation creates an upwelling effect on the 

mixed coastal side of the front, which leads to surface convergence on the stratified 

offshore side and hence particle aggregation along the front (Hill et al., 1993). It is 

therefore reasonable that the surface habitats resembled the area of convergence 

with increased plankton abundance and the bottom habitats the area of the frontal 

jet. 

Transects T1 - T3 showed an upwelling-downwelling dipole (Floeter et al., 2022). 

Plankton aggregations similar to those in T4 - T6 were located adjacent to the 

upwelling pole on the coastal side. The upwelling pole, which was perpendicular to 

the tidal currents, acted as a barrier, accumulating particles like the convergence 

zone of the tidal mixing front. While the salinity was not different between the MHs in 

T1 - T3, there was a distinct oxygen pattern with reduced oxygen concentrations in 

GMH 14 and 16 in the bottom oriented MHs. While the bottom habitats in T1 and T3 

were correlated with the upwelling and downwelling poles respectively, the area of 

reduced oxygen concentrations in T2 encompassed the entire dipole. It is therefore 

unlikely that the presence of the dipole caused the observed differences between the 

MHs, and its main effect was to change the mixed layer depth. 
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Although very similar to T1 and T2 in terms of temperature and salinity, T3 had lower 

oxygen concentrations leading to the closer relationship with T5. T4 was closest to 

OWF Global Tech I and had little similarity to the other transects. Apart from T4, the 

surface habitat was always GMH3, while there was a shift at the bottom from 

GMH1/14 to GMH8/16. Thus, while the surface habitat remained the same across all 

transects, there was a change in the bottom waters in a northwesterly direction 

parallel to our transects. T6, like T4, had no GMHs in common with the other 

transects despite a similar parameter range. The main difference was in the oxygen 

concentrations, indicating an effect of the downwelling pole on T1 and T2. 

Plankton niches 

The low taxonomic resolution of the VPR makes it impossible to distinguish 

morphological similar species that might have entirely different traits and distributions 

(Martin et al., 2021). For example, there are 31 species known to have pluteus larvae 

in the North Sea (Laakmann et al., 2016). However, Echinocardium cordatum 

Pennant, 1777 is the most abundant one, probably due to higher winter temperatures 

(Kirby et al., 2007), complemented by Amphiura spp. (Lindley et al., 1995). Since the 

1980s, pluteus larvae have become even more abundant than copepods at times 

(Lindley et al., 1995; Kirby et al., 2007). 

An extensive overview of copepod species in the North Sea was provided by Fransz 

et al. (1991). Even though there are a number of different species, 4 of them provide 

85% of the biomass, namely Acartia clausi Giesbrecht, 1889, Centropages hamatus 

Liljeborg, 1853, Temora longicornis Müller, 1785, and Pseudocalanus elongatus 

Boeck, 1865 (Hickel, 1975; Beaugrand et al., 2002a). The by far most abundant one 

is P. elongatus (Fransz et al., 1991). None of these species showed any correlation 

with hydrographic conditions, suggesting that they all coped quite well across the 

North Sea (Hickel, 1975). Two other copepod species are common in the North Sea, 

Calanus helgolandicus Claus, 1863 and Calanus finmarchicus Gunnerus, 1770, the 

latter being a cold-boreal species that prefers lower temperatures (Planque and 

Fromentin, 1996). Although restricted to cooler bottom waters, C. finmarchicus can 

contribute significantly to copepod biomass even in summer (Jónasdóttir and Koski, 

2011). However, the preferred temperatures of < 9 °C (Jónasdóttir and Koski, 2011) 

were clearly exceeded in the present sampling area ( > 12 °C) and therefore the 



123 

 

occurrence of C. finmarchicus is very unlikely (Wilson et al., 2016). The warm-

temperate C. helgolandicus is of Atlantic origin and, despite its wide temperature 

tolerance, generally prefers warmer waters (Planque and Fromentin, 1996). A 

northward shift in the distribution of C. helgolandicus has been repeatedly reported, 

suggesting that it has by now replaced C. finmarchicus in the North Sea (Beaugrand 

et al., 2002b; Beaugrand et al., 2009; Villarino et al., 2015; Wilson et al., 2016), at 

least during peak summer temperatures. 

Second in abundance only to copepods (Landry et al., 1994), appendicularians are of 

special importance for the vertical particle fluxes in the worlds oceans (Winder et al., 

2017). Due to their affinity for higher temperatures and tolerance towards more acidic 

conditions, it is likely that their importance will increase under global warming 

(Winder et al., 2017). The most abundant species in European coastal waters are 

Oikopleura longicauda Vogt, 1854, Oikopleura dioica Fol, 1872, Oikopleura fusiformis 

Fol, 1872, and Fritillaria borealis Lohmann, 1896 (Lopez-Urrutia et al., 2005). 

Although all species tolerate the range of temperatures and salinities observed in this 

study (Lopez-Urrutia et al., 2005), O. dioica dominates the other species at 

temperatures below 20 °C (Lombard et al., 2010) and F. borealis declines in 

abundance as early as May (Wyatt, 1973). 

Despite the great biodiversity of the North Sea, it is therefore likely that the most 

abundant taxa are dominated by single most common species and that their behavior 

and their spatial niches can potentially be estimated from VPR images. However, 

peak plankton abundances for all groups considered were always found in areas of 

surface convergence, whether or not the area was identified as a distinct habitat. 

Since plankton is, per definition, subjected to the currents that shape the pelagic 

environment, the strong velocities associated with upwelling-downwelling dipoles 

(Broström, 2008) and frontal jets (Hill et al., 1993) have the potential to superimpose 

behavioral niche segregation (Hidalgo et al., 2012). These results are in accordance 

with findings of Beaugrand and Ibañez (2002) and Beaugrand et al. (2001), that local 

hydrography is a primary driver of biodiversity. Peak copepod abundances in the 

central and northern North Sea were usually close to the thermocline and not at the 

surface as in our transects (Daro, 1988). Furthermore, niche segregation has been 

reported to be more pronounced under extreme conditions, probably above 35 psu or 



124 

 

below 10-12 °C (Martin et al., 2021), neither of which were met in transects of 

HE466. Prey selection is another relevant factor for niche diversity (Fransz et al., 

1991; Cleary et al., 2016), which is not revealed using VPR images. Thus, niche 

separation of plankton species probably takes place at much smaller (Mitchell et al., 

2008) or bigger (Iglesias-Rodríguez et al., 2002; Barton et al., 2013; Brun et al., 

2015; McGinty et al., 2018) scales than observed in this study. 

Other studies found a strong like between water masses and zooplankton 

communities at bigger scales (Beaugrand et al., 2002a; Swalethorp et al., 2015). At 

this wider scale, our model can help to monitor the shifts in associated species. This 

information is crucial for the successful management of commercially important 

species such as cod (Beaugrand and Kirby, 2010; Edwards et al., 2013). In general, 

the inclusion of plankton species improves predictions of distributions at higher 

trophic levels using species distribution models (Beaugrand and Kirby, 2010; 

Friedland et al., 2020). Close monitoring of plankton distributions under global 

warming is therefore essential. Changes in mixed layer depth (MLD) were reliably 

detected, indicating the potential to monitor anthropogenic effects as well as naturally 

occurring frontal systems. This will be of particular interest for the expansion of 

OWFs in the deeper North Sea or in the Baltic Sea (Christiansen et al., 2022). 

Although clearly limited at the scales investigated in this study, we have 

demonstrated the ability of our model to objectively process large amounts of data 

and produce reasonable habitat maps despite the changing importance of different 

variables. The method does not require any manual pre-processing and we have 

shown that, despite the current black box perception, machine learning models allow 

the influence of different inputs on outputs to be assessed. Fast, autonomous 

processing is a prerequisite for extracting information from the rapidly growing data 

available to marine biologists, and will advance our understanding of complex 

ecosystems. 
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Supplementary Material 

 

Supplementary Figure S 1: Gridded parameters and habitat map for HE308. The 

lower left panel shows the location of the transect. For comparison, the parameter 

ranges are the same as for HE325. 
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Supplementary Figure S 2: Gridded parameters and habitat map for HE325. The 

lower left panel shows the location of the transect. For comparison, the parameter 

ranges are the same as for HE308. 
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Supplementary Figure S 3: Gridded parameters and habitat map for HE353. The 

lower left panel shows the location of the transect. For comparison, the parameter 

ranges are the same as for HE397. 
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Supplementary Figure S 4: Gridded parameters and habitat map for HE397. The 

lower left panel shows the location of the transect. For comparison, the parameter 

ranges are the same as for HE353. 
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Supplementary Figure S 5: Gridded parameters and habitat map for HE466 T1. The 

lower left panel shows the location of the transect. The parameter ranges are the 

same for all transects of HE466. 
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Supplementary Figure S 6: Gridded parameters and habitat map for HE466 T2. The 

lower left panel shows the location of the transect. The parameter ranges are the 

same for all transects of HE466. 
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Supplementary Figure S 7: Gridded parameters and habitat map for HE466 T3. The 

lower left panel shows the location of the transect. The parameter ranges are the 

same for all transects of HE466. 
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Supplementary Figure S 8: Gridded parameters and habitat map for HE466 T4. The 

lower left panel shows the location of the transect. The parameter ranges are the 

same for all transects of HE466. 
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Supplementary Figure S 9: Gridded parameters and habitat map for HE466 T5. The 

lower left panel shows the location of the transect. The parameter ranges are the 

same for all transects of HE466. 
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Supplementary Figure S 10: Gridded parameters and habitat map for HE466 T6. The 

lower left panel shows the location of the transect. The parameter ranges are the 

same for all transects of HE466. 
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General Discussion 

The role of data set shift 

The issue of data set shift (DSS, Moreno-Torres et al., 2012; Webb et al., 2018) 

arises from the variability of plankton communities and renders classifications of 

trained models for newly generated field data insufficient. In chapter I I investigated 

the potential benefit of using a new type of model called ‘Capsule Network’ (CapsNet, 

Hinton et al., 2011; Sabour et al., 2017) to cope with this problem. I could show that 

the CapsNet was indeed better at maintaining a similar performance level under the 

prejudice of DDS, but at the drawback of having a generally lower recall. While recall 

is not a big issue in the more common classes, it is essential for rare classes like fish 

eggs or larvae (Walker and Orenstein, 2021). For some, if not most, applications, the 

rare classes are of more interest than the common ones, making the reduced recall 

of the CapsNet problematic. Our CapsNet might not have reached the full potential 

since the feedback mechanism of image reconstruction was not fully functional, 

which could explain the limited capacity of the model. Still, I reached comparable 

results using a common CNN which also kept a stable precision (> 90 %) under 

moderate levels of DSS. Although higher than that of the CapsNet to begin with, the 

recall of the CNN suffered under DSS (- 30 %). This should be kept in mind when 

comparing different data sets, since a difference in the recall produces the illusion of 

a different abundance which might not resemble the truth. 

How to handle rare species? 

The blind spot of machine learning models, and to some extent optical sampling 

methods, is the detection of rare species (Langenkämper et al., 2019). Those 

however are of particular importance at times. For example fish eggs and larvae are 

routinely surveyed to improve stock assessments for some species (Kallasvuo et al., 

2017; Ratcliffe et al., 2021). While certainly not perfect, I offer a possible solution to 

this problem in chapter I. What I refer to as the ‘Top-3-Accuracy’-method is designed 

to significantly reduce the haystack in which to look for the proverbial needle. Rather 

than a fully automated process, it relies on human knowledge for accuracy, providing 

only a pre-selected sub-sample of the total data for manual identification of the target 

classes (Pizarro et al., 2008; Walker and Orenstein, 2021). In this case, I take 

advantage of the naturally skewed distribution of plankton particles, which is usually 
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dominated by marine snow particles and a few dominant species like copepods. 

Those are quite readily classified and can therefore be reliably eliminated. The 

method reduces handling time by ~90%, and up to ~99% for rare species. While not 

fully automatic, this would allow to routinely update and monitor a specific species 

and make use of the data in annual reports and the like. 

Is automatic classification sufficient? 

The big advantage of optical sampling methods is the reduced handling time when 

used in concert with machine learning (Pizarro et al., 2008; Schmid et al., 2020). 

However, the advantage of speed at the expense of accuracy is not progressive. 

While clearly not of sufficient accuracy to predict the abundance of plankton, our 

CNN managed to reflect the true distribution of plankton organisms in the field 

correctly. Therefore, automatic classification is sufficient to analyse the spatial 

distribution of common taxa and identify agglomerations e.g. during blooming 

conditions or at physical fronts, but does not allow for biomass estimations or other 

quantitative analyses (Faillettaz et al., 2016; Luo et al., 2018; Pitois et al., 2018). At 

least not without time consuming manual validation. This however fits the strengths 

of the optical sampling, which has a much higher spatial resolution compared to the 

traditional net-based sampling (Davis et al., 1992; Wiebe and Benfield, 2003; 

Benfield et al., 2007). Furthermore, abundance estimates derived from different 

sampling gears are not easily comparable (Pitois et al., 2018) and the value of 

abundance estimates increases when they are supported by a long term time-series 

like the ‘Helgoland Roads’ (Lindegren et al., 2012). Until the scientific community can 

establish equally long standardized time-series using optical devices there is time to 

improve the accuracy of machine learning models to the desired level. Additionally, 

preparing such time series will provide scientists with more and better training data 

which will help to improve the models as well (Lombard et al., 2019; Conradt et al., 

2022). 

Another question that remains is: is the taxonomic resolution of the VPR sufficient to 

capture species-specific behavior? Most optical samplers, and the VPR is no 

exception, have only limited taxonomic resolution (Batten et al., 2019) and the North 

Sea is a highly diverse ecosystem (e.g. Fransz et al., 1991; Laakmann et al., 2016). 

However, previous studies have successfully detected behavioral patterns in 
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zooplankton (Möller et al., 2015; Faillettaz et al., 2016). As I argued in the 

introduction, the majority of the biomass is contributed by only a few key species, and 

therefore species-specific distributions should be evident from the VPR images, at 

least for those abundant taxa. 

What drives plankton spatial distributions? 

Since plankton shapes the seascape even for top-predators (Bertrand et al., 2014), it 

is essential to identify the processes that produce the patchiness of plankton itself 

(McGinty et al., 2018). With multiple parameters at hand that can affect the 

distribution of plankton, like salinity or temperature, it can be difficult to disentangle 

the effect of single variables. Habitat maps link species communities to physically 

distinct areas (Harris and Baker, 2012) and can help to identify niches in the multi-

dimensional space that makes up the environment. The AE in chapter II transformed 

4-dimensional feature vectors (micro-habitats) into 2-dimensional projections, 

creating areas of varying density (macro-habitats). Projections of similar macro-

habitats were always located in the same general area of the coordinate system, 

making it possible to infer the physical properties of a macro-habitat from the location 

of the projections of the micro-habitats. For example, micro-habitats originating from 

the surface mixed layer were usually projected in the upper half of the coordinate 

system. In the case of several different macro-habitats in the surface mixed layer, 

they were all projected in the upper part of the coordinate system, but still formed 

distinct areas separated by regions with fewer projections. This became particularly 

relevant in chapter III, where I applied HDBSCAN to the ‘centers of gravity’ of each 

macro-habitat to merge similar macro-habitats across different transects into what I 

called a ‘global macro-habitat’ (GMH). This allowed us to track local macro-habitats 

with similar characteristics across all transects and identify the GMH most commonly 

associated with a particular species or community. I investigated the distribution of 

copepods, appendicularia and pluteus larvae. Copepods and appendicularia are the 

most abundant members of the oceanic zooplankton (Landry et al., 1994) and 

pluteus larvae seasonally dominate the zooplankton in the North Sea since the 1980s 

(Lindley et al., 1995; Kirby et al., 2007). In the North Sea the three groups are 

numerically dominated by P. elongatus (Fransz et al., 1991), E. cordatum (Kirby et 

al., 2007) and Oikopleura dioica Fol, 1872 (Lombard et al., 2010) respectively. It is 

therefore reasonable to assume that the distribution of the groups reflects the 
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habitats preferred by the three species. Still, peak abundances of all three groups 

regularly occurred within the same macro-habitat in each transect. Moreover, the 

respective macro-habitats did not belong to the same GMH, indicating no clear 

preference for a particular hydrographic environment. The plankton peaks observed 

in chapter III were associated with either a dipole (Floeter et al., 2022) or a tidal 

mixing front (Hill et al., 1993). Plankton, by definition not or hardly capable to move 

against a current (Lombard et al., 2019), is passively aggregated along fronts and 

eddies (Munk et al., 1995; Hidalgo et al., 2012; Swalethorp et al., 2015; Schmid et 

al., 2020), such that hydrography has been suggested as a driver of local biodiversity 

in previous studies (Beaugrand et al., 2001; Beaugrand and Ibañez, 2002; Hidalgo et 

al., 2012). Thus, the local flow field superimposed behavior and potentially increased 

competition between the three groups at the sub-mesoscale. Considering the 

geographical (e.g. along-front) and seasonal distribution of plankton, especially 

meroplankton such as pluteus or fish larvae, the spawning activity of adult individuals 

is certainly an important factor (Belgrano et al., 1990; Marteinsdottir et al., 2000; 

Knutsen et al., 2007; Van Ginderdeuren et al., 2014; Sandø et al., 2020). Another 

factor influencing the geographical distribution is mortality, either due to unfavorable 

conditions (Hidalgo et al., 2012) or predation (Behrenfeld et al., 2021). However, the 

data from all six transects were collected during one day in a geographically small 

area and therefore do not allow any conclusions to be drawn about these factors. 

Climate change is another factor behind plankton spatial distributions which will act 

differently on individual species (Beaugrand and Ibanez, 2004; Hays et al., 2005; 

Lindegren et al., 2020). A prominent example in the North Sea are C. finmarchicus 

and C. helgolandicus (Planque and Fromentin, 1996; Falkenhaug et al., 2022), but 

similar trends have been observed around the globe (Beaugrand and Ibanez, 2004). 

Apart from compositional changes, rising temperatures favor smaller species (Landry 

et al., 1994; McGinty et al., 2018). Such changes also affect higher trophic levels 

(Möllmann et al., 2003; Hays et al., 2005; Thorpe et al., 2022). Not only temperature 

but also acidification will make a difference (Hays et al., 2005). Appendicularia thrive 

under warmer and more acidic conditions (Winder et al., 2017) and have the potential 

to replace calanoid copepods in the diet of fish larvae (Alldredge, 1976; Paffenhöfer, 

1976; Gorsky and Fenaux, 1998; Winder et al., 2017). However, a change from a 

copepod-dominated system to one dominated by appendicularia would have 
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significant implications for the entire ecosystem. Appendicularia provide a shortcut in 

the microbial loop (Alldredge, 1976; Flood, 1978; Gorsky and Fenaux, 1998), thereby 

increasing the energy available to higher trophic levels. Short generation times of 

appendicularia (Gorsky and Fenaux, 1998) and increasing filtering rates at higher 

temperatures (Alldredge, 1981) allow them to respond quickly to increasing food 

densities and thus efficiently exploit temporary limited phytoplankton aggregations, 

e.g. by dipoles, further increasing the impact of OWFs. In addition, discarded houses 

and fecal pallets are a major source of marine snow and contribute significantly to 

vertical carbon fluxes (Alldredge et al., 2005; Winder et al., 2017). This would 

increase the amount of food available to benthic communities and significantly alter 

the bentho-pelagic coupling. A regime shift in the North Sea plankton community in 

the late 1980s was associated with increased abundance of the macrobenthos, and 

species such as Amphiura filiformis O. F. Müller, 1776 respond to organic enrichment 

with increased abundance (Lindley et al., 1995). E. cordatum also benefits from rising 

temperatures (Kirby and Lindley, 2005; Kirby et al., 2007). Seasonal spawning 

events of meroplanktic pluteus larvae further increase competitive pressure on 

holoplankton species such as copepods (Fransz et al., 1991; Kirby et al., 2007). 

Such peaks could become common in the vicinity of OWFs (Inger et al., 2009; 

Floeter et al., 2017). 

High abundances of appendicularia alone have the potential to deplete local 

phytoplankton contingents (Alldredge, 1981) and thereby increase the competition for 

food, even though production in itself is supposed to increase with increasing 

temperatures as well (Thorpe et al., 2022). The current regime in the North Sea is 

dominated by calanoid copepods, which have shown high sensitivity to climate 

change (Beaugrand and Ibanez, 2004). Copepods, forced into competition by local 

hydrography, may decrease in abundance as temperatures increase. This will be 

even more the case if anthropogenic hydrographic changes caused by OWFs 

increase the areas of higher competitive stress. Regime shifts are characterized by 

non-linear, discontinuous dynamics and tend to cause unexpected changes in 

ecosystem services (Sguotti et al., 2022; Blöcker et al., 2023). Especially in the 

context of climate change, such changes may become irreversible, with catastrophic 

ecological, economic and social consequences (Möllmann et al., 2021; Sguotti et al., 

2022; Blöcker et al., 2023). Predicting responses to global warming has been 
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attempted (Thorpe et al., 2022), but such attempts are challenging and precarious, 

especially considering potential regime shifts (Beaugrand and Ibanez, 2004). One 

possible precaution to anticipate regime shifts is long-term spatially resolved time 

series of key organisms (Lindegren et al., 2012). While general considered sentinels 

to climate change (Hays et al., 2005; Möller et al., 2015; Batten et al., 2019; Drago et 

al., 2022), the utilities to inform about forthcoming regime shifts differs between 

species and ecosystems (Lindegren et al., 2012). This highlights the need to develop 

and establish near real-time monitoring for multiple classes, preferably without 

human support (Pizarro et al., 2008; Lombard et al., 2019; Walker and Orenstein, 

2021). Improved habitat characterization and monitoring can help identify 

representative areas and thus focus limited resources (Leeuwen et al., 2015). 

Remote sensing is also a great opportunity for trait-based ecology (McGill et al., 

2006). Functional traits are strongly linked to a species’ realized niche (McGinty et 

al., 2018) and potentially improve our understanding of co-occurrences and spatial 

distributions (McGill et al., 2006; Lindegren et al., 2020). Species with similar traits do 

not necessarily occupy the same realized niche (Lindegren et al., 2020) and thus the 

maintenance of vital ecosystem services continues under changing conditions. 

Therefore, a trait-based approach may be better suited to predict change (McGinty et 

al., 2018) and identify impending regime shifts. VPR images are not detailed enough 

to allow trait-based analysis. Nevertheless, the method proposed in Chapter III fulfills 

some of the key requirements for efficient ecosystem monitoring and thus 

sustainable management of marine resources. The method automatically separates 

marine pelagic habitats and detects areas of increased plankton abundance. In 

combination with a VPR, it has the potential to monitor plankton groups in the North 

Sea and at least detect changes between dominant groups, as suggested in the 

discussion above, e.g. between copepods and appendicularia. Provided with more 

details on plankton composition or even traits, it is a promising tool for future 

ecosystem assessment. 

Conclusion and outlook 

In summary, this thesis has presented new methods for dealing with high-frequency, 

multi-dimensional datasets that provide information at high spatial resolution in near 

real time. I have demonstrated the ability of a machine learning CNN to reliably 

extract spatial distributions from in-situ plankton images of common (and abundant) 
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groups. Combined with habitat information extracted from a fully unsupervised 

trained Autoencoder, I used this knowledge to investigate plankton distribution 

patterns in a highly dynamic ecosystem, the North Sea. Our results add to the 

evidence that at the sub-mesoscale, plankton spatial distributions in the North Sea 

are directed by local hydrography. Anthropogenic impacts from offshore wind farms 

are of limited importance for the current plankton community. However, in 

combination with global warming, their influence may increase considering a possible 

regime shift from a copepod dominated system to one dominated by appendicularia. 

In combination with wind-induced upwelling-downwelling dipoles, which have been 

shown to aggregate plankton to a similar extent as naturally occurring frontal 

systems, OWFs have the potential to alter the seascape of higher trophic levels. 

This, together with the proposed change in the plankton community, is likely to trigger 

pronounced changes in the whole ecosystem and food web. Such changes could 

initiate another regime shift in the North Sea, as was previously observed in the late 

1980s, the consequences of which are difficult to predict. The proposed method is a 

valuable tool for monitoring plankton communities as a precautionary approach to 

detect early warning signals of a regime shift, a prerequisite for sustainable 

management of commercially important fish stocks. In addition, I have demonstrated 

how machine learning can help to provide information on the spatial distribution of 

rare plankton groups, such as fish larvae, in a reasonably short time. Such 

information can be used to further improve the assessment of commercially exploited 

stocks and helps to define areas of high vulnerability. 
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