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Abstract

Major problems in quantum molecular physics, such as quantum modeling of
chemical dynamics and studying atmospheres of hot exoplanets, pose prohibitive
computational challenges that are at the forefront of research efforts in numerical
analysis and scientific computing. In particular, it is often required in these appli-
cations to approximate a vast number of highly-oscillatory solutions of infinite-
dimensional eigenvalue problems and evolution equations in very high dimen-
sions. Such tasks are rather prohibitive using standard linear numerical schemes
due to the curse of dimensionality phenomena and the need for high resolution
for a reliable modeling of the oscillatory behavior. While nonlinear approximation
concepts, e. g., neural networks, promise to mitigate the curse of dimensionality
and offer better approximation abilities, they are rather fragile and not straight-
forward to use for large-scale problems in quantum molecular physics. This work
aims at reducing the computational costs of numerical quantum simulations of
molecular systems and their scaling via novel spectral and active learning algorithms.
The proposed algorithms expand the approximation capabilities of standard linear
methods while maintaining a high robustness.

In particular, standard spectral methods for solving differential equations
are extended to a spectral learning framework, where standard bases of inner-
product spaces are composed with invertible neural networks. I provide sufficient
conditions on the neural networks to guarantee that the resulting sequence of
functions is also a basis of the underlying inner-product space. This allows one
to define well-posed numerical schemes using these augmented bases to solve
various approximation problems. As application, I derive convergence guarantees
of spectral learning for approximating Schwartz functions and eigenvalues to
Schrodinger operators as the size of the truncated basis goes to infinity. Moreover,
it is shown that the convergence of spectral learning is faster than that of spectral
methods. This is achieved by showing that the total variation of compactly-
supported smooth functions with respect to the push-forward measures induced

by neural networks admit minima. Theoretical results are supported by numerical
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simulations to compute the spectra of linear infinite-dimensional operators that
characterize nuclear motions in polyatomic molecules. Results show a two order
increased accuracy over standard spectral methods upon the use of invertible
neural networks.

In addition, I consider the construction of molecular potential energy surfaces,
i.e., the solution of the parametric electronic Schrédinger equation in an active
learning paradigm. I derive an upper bound on the generalization error in an
active learning setting, which gives a theoretical insight into the construction of
active learning algorithms. I propose and implement an algorithm that follows this
insight and that allows one to infer the solution operator with minimial datasets.
Simulations are performed on polyatomic molecules and results indicate a roughly
two-times faster convergence than what is possible via common active learning

algorithms.



Zusammenfassung

Wichtige Probleme der molekularen Quantenphysik, wie die quantenmechanische
Modellierung chemischer Dynamiken und die Untersuchung von Atmosphéren
heifler Exoplaneten, stellen untiberwindbare Rechenschwierigkeiten dar, die an
der Spitze der Forschungsbemiihungen im Bereich der numerischen Analyse
und des wissenschafltichen Rechnens stehen. In diesen Anwendungen ist es oft
erforderlich, eine grofle Anzahl stark oszillierender Losungen von Eigenwertprob-
lemen unendlicher Dimensionlaitit und Evolutionsgleichungen in sehr hohen
Dimensionen zu approximieren. Derartige Aufgaben sind mit linearen Standard-
verfahren aufgrund des Fluches der Dimensionalitdt und der Notwendigkeit einer
hohen Auflosung zur zuverldssigen Modellierung des oszillierenden Verhaltens
schwer zu l6sen. Wahrend nichtlineare Approximationskonzepte, z. B. neuronale
Netze, versprechen, den Fluch der Dimensionalitdt zu mildern, und bessere Ap-
proximationsfahigkeiten bieten, sind sie eher fragil und nicht einfach fiir grofs
angelegte Probleme in der molekularen Qauntenphysik anzuwenden. Diese Arbeit
zielt darauf, die Rechenkosten numerischer quantenmechanischer Simulationen
von molekularen Systemen und deren Skalierung durch neuartige spektrale und
aktive Lernalgorithmen zu reduzieren. Die vorgeschlagenen Algorithmen erweit-
ern die Approximationsfidhigkeiten von linearen Standardverfahren und zeigen
gleichzeitig eine hohe Robustheit.

Insbesondere werden spektrale Standardverfahren zur Losung von Differen-
tialgleichungen in einem spektralen Lernrahmen erweitert, in dem Standardbasen
von Innenproduktraumen mit invertierbaren neuronalen Netzen komponiert wer-
den. Es werden ausreichende Bedingungen fiir die neuronalen Netze bereitgestellt,
um sicherzustellen, dass die resultierende Funktionenfolge ebenfalls eine Basis
des zugrunde liegenden Innenproduktraums ist. Durch die Verwendung dieser
erweiterten Basen konnen gut gestellte numerische Verfahren definiert werden,
um verschiedene Approximationsprobleme zu 16sen. Als Anwendung werden
Konvergenzgarantien des spektralen Lernens zur Approximation von Schwartz-

Funktionen sowie Eigenwerten von Schrodinger-Operatoren abgeleitet, wenn die
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Grofie der abgeschnittenen Basis gegen Unendlich geht. Dariiber hinaus wird
gezeigt, dass die Konvergenz des spektralen Lernens schneller ist als die von
spektralen Verfahren. Dies wird dadurch gezeigt, dass die Variation von kompak-
ten glatten Funktionen beziiglich der durch neuronale Netze induzierten Push-
Forward-Masse Minima aufweist. Die theoretischen Ergebnisse werden durch
numerische Simulationen zur Berechnung der Spektren linearer unendlichdi-
mensionaler Operatoren gestiitzt, die nukleare Bewegungen in polyatomaren
Molekiilen charakterisieren. Die Ergebnisse zeigen eine um zwei Ordnungen
hohere Genauigkeit gegentiber spektraler Standardverfahren durch die Verwen-
dung invertierbarer neuronaler Netze.

Zusitzlich betrachte ich die Konstruktion von Potentialenergieflichen von
Molekiilen, d.h. die Losung der parametrischen elektronischen Schrodingergle-
ichung in einem aktiven Lernparadigma. Ich leite eine obere Schranke fiir den
Generalisierungsfehler in einem aktiven Lernparadigma her, die Einblicke in die
Konstruktion aktiver Lernalgorithmen gibt. Diesem Ansatz folgend schlage ich
einen Algorithmus vor und setze ihn um. Er erlaubt, den Losungsoperator mit
minimalen Datensdtzen zu bestimmen. Simulationen werden an polyatomaren
Molekiilen durchgefiihrt und die Ergebnisse deuten auf eine etwa doppelt so
schnelle Konvergenz hin als bei herkommlichen aktiven Lernalgorithmen moglich
ist.
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Chapter 1

Introduction

Chemical reactions underlie the mechanisms of life. For instance, chemical reac-
tions between macromolecules enable the replication of genetic phenomena, and
the interplay of proteins with light define fundamental processes of nature, such
as photosynthesis. Observing ultrafast chemical reactions, i. e., molecules "in ac-
tion", has been a longstanding dream in the molecular sciences [1-3], whereby the
observation of the transition state! [4], and the recording of nuclear and electronic
motions [5] during the breaking or formation of bonds is of particular interest. As
in the production of movies from a number of sequential images, observing such
reactions consists of taking several snapshots of the positions of the nuclei and
the electron densities that constitute molecules. Piecing these snapshots together
creates the so-called quantum-molecular movie. While cameras from our everyday
life capture light bouncing off objects, they do not work for imaging nature in its
smallest scales. Molecules are very tiny compared to everyday objects. Hence, one
would need cameras that operate at much shorter wavelengths than the visible
light, wavelengths that are comparable to atomic distances. For this purpose one
could use, e. g., x-rays or the light corresponding to energetic beams of electrons.
The technological developments of pulsed light and electron sources have, indeed,
paved way for important steps toward this dream. In particular, the so-called
pump-probe observation scheme [6] has emerged as a powerful tool to probe the
structure and dynamics of matter at atomic scale. In this scheme, a laser pulse

1A very short-lived configuration of atoms at a local energy maximum in a reaction coordinate.
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(pump) is used to trigger a chemical reaction, i.e., to put molecules "at work",
whereby defining the start of the reaction. Then another laser pulse (probe) is used
to monitor the progress of the reaction.

Accurate simulations of molecular motions and interactions with laser fields
provide crucial information for designing and elucidating ultrafast imaging ex-
periments [7-9] and are, hence, highly-required. Moreover, such simulations are
essential for interpreting observations and experiments in a variety of other ap-
plications, such as spectroscopy [10, 11], astrophysics [12, 13], and cold chemical
reactions [14]. Underlying these simulations is quantum mechanics, a theory that
explains nature at small scales. At its core, quantum mechanics models objects as
elements of complex Hilbert spaces and postulates that their physical properties
are characterized by unbounded linear operators on these spaces. The possible
outcomes of a certain measurement are mathematically represented by the spec-
trum of the corresponding operator. The state of the object as a function of time
is governed by the time-dependent Schrodinger equation, a fundamental law for
describing non-relativistic particles in physics and chemistry [15]. Throughout the
last hundred years, quantum mechanics and generalizations thereof have proved
an unprecedented ability to describe nature at small scales ranging from that of
quarks, the tiniest known particles, to that of atoms, electrons and relatively large
molecular systems such as proteins. However, Dirac’s observation? on the imprac-
ticality of the quantum theory and the difficulty of subjugating it to numerical
approximations is as true today as it was in 1930. Nowadays, quantum dynamics
of molecules poses a variety of computational challenges that are at the forefront
of research efforts in the fields of approximation theory and numerical analysis [15,
16]. These challenges include the approximation of vast number of eigenfunctions
of unbounded linear operators and the simulation of ultrafast dynamics for long
times. Additionally, the target functions are often highly oscillatory, and lie in
high-dimensions [17].

The need to approximate highly-oscillatory functions is prevalent in quantum

2“For dealing with atoms involving many electrons the accurate quantum theory, involving a
solution of the wave equation in many-dimensional space, is far too complicated to be practical. One
must therefore resort to approximate methods.” P.A.M. Dirac, 1930
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physics applications. For example, when imaging chemical reactions, strong laser
fields can induce dissociation dynamics in molecules, i.e., the fragmentation of
molecules into several parts [18, 19]. An accurate quantum theoretical description
of such reactions requires the calculations of many eigenfunctions, i. e., molecular
wavefunctions, of a very oscillatory nature. This problem is also encountered
in computations of spectra of hot exoplanets, where hundreds and thousands of
eigenfunctions corresponding to different molecular motions are required [20]. A
reliable numerical approximation of many highly-oscillatory functions is rather
prohibitive [21]. Oscillation is, in a sense, an artifact of resolution, i. e., upon zoom-
ing enough all functions oscillate mildly [21]. Hence, increasing the resolution of
the underlying numerical scheme can, in principle, improve the accuracy of the
approximation. However, an increase in the oscillatory behavior necessitates an
exponential increase in resolution for a dependable approximation.

Another computational challenge in quantum simulations follows from the
intrinsic high dimensionality of quantum systems. For instance, describing static
and dynamic properties of two quantum particles, each having three degrees of
freedom, involves solving an infinite dimensional eigenvalue problem and an
evolution equation in six and seven dimensions, respectively, and the inclusion of
only one more particle increases the dimensionality of these problems by three.
This is particularly problematic for molecules. For example, benzene is composed
of 12 nuclei and 42 electrons, and the corresponding static Schrodinger equation
is, hence, 162-dimensional. The prohibitive difficulties in performing simulations
of such high-dimensional quantum systems prompted extensive research into
deriving reduced models, i. e., effective fundamental laws. For example, noting
that the electrons in a molecule are lighter than the nuclei by at least a factor of one
thousand gives rise to the famous Born-Oppenheimer approximation [17, 22, 23].
The Born-Oppenheimer approximation breaks the full-dimensional Schrodinger
equation of the nuclei into two lower-dimensional equations. The first equation,
known as the electronic Schrodinger equation, describes the motion of the elec-
trons in a field of static nuclei. Here, the spatial configuration, i. e., positions of
the nuclei act as a parameter to the equation. The second equation describes the

motion of the nuclei under an effective potential generated by the electrons. While
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separating the scales reduces the complexity of a full numerical treatment, simu-
lating the reduced dynamics remains difficult due to two reasons. First, solving
a reduced Schrodinger equation for the nuclei requires the computation of an
effective potential, known as the potential energy surface (PES). The PES of a
molecule is a function that maps spatial configurations of the nuclei to a certain
eigenfunction of the corresponding electronic Schrodinger equations. PESs of
molecules can be rough and high-dimensional. Their construction is often cast
as a statistical regression problem, a task that is rendered more complex by the
high expenses associated with generating the training data. Second, the standard
methods for simulating the reduced-order, yet still high-dimensional, dynamics,
such as finite volume [24, 25], finite differences [26, 27] or spectral methods [28-30]
suffer from the curse of dimensionality, i. e., their costs scale exponentially with the
dimension of the system.

The aforementioned bottlenecks, i. e., the high-oscillatory nature of solutions
and the curse of dimensionality can be formally illustrated by typical upper
bounds on the approximation error of classical approximation methods. Denoting

by f, f* the function to be approximated, and the approximation, respectively.
Such bounds look like

1f = f N2 < C@D] fll e,

where C is often exponentially dependent on the dimension d of the problem and
the right-hand side converges to zero with an increasing resolution. The Sobolev
H? norm of f has bigger values for highly-oscillatory functions, meaning that
approximating such functions suffers from a slower convergence.

The advent of nonlinear approximation methods in general and neural net-
works in particular has profoundly advanced simulations of quantum molecular
dynamics. One of the first applications in quantum molecular physics to witness a
revolution driven by the use of neural networks is the construction of PESs [31,
32]. The construction of PESs can be straightforwardly cast as a standard regres-
sion problem, and the potential of using neural networks to this end was, hence,
recognized as early as 1995 [33]. Indeed, the use of neural networks for building
PESs has been recognized as a paradigm shift for constructing PESs, especially
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in high-dimensions [31]. It led to neural networks that can predict a range of
chemical properties for molecules and materials [34], such as force-fields, and
polarizability.

Another, less mature and more recent application of neural networks for quan-
tum simulations is approximating solutions of Schrodinger equations. In many
applications of practical importance, the curse of dimensionality can be avoided
by selecting a nonlinear method of approximation rather than a linear method.
Indeed, nonlinear methods, e. g., neural networks, have shown impressive approxi-
mation capabilities in high-dimensional modeling of problems ranging from image
processing to natural language processing. This has prompted extensive investiga-
tions into the applicability of such methods for solving differential equations in
general [35—40], and Schrodinger equations in particular [41-49]. In practice, it was
shown that such models do, indeed, provide high-accuracy solutions for solving
high-dimensional differential equations, while promising smaller scaling with the
dimension of the problem than that of linear models. However, this comes at the
cost of less efficiency since a straightforward utilization of neural networks to
approximate solutions to differential equations is often not possible and extensive
architectural engineering is required. Moreover, direct ways of increasing the
accuracy of standard neural networks often do not exist. These difficulties render
the use of neural networks fragile [50]. Moreover, such nonlinear models do
not lend themselves straightforwardly to constructive convergence analysis, and
results herein are mainly limited to Barron spaces [50-52], which are specifically
tailored to neural networks. Indeed, several results on analyzing these nonlinear
models for solving differential equations assume that the solutions and the data of
the equation lie in Barron spaces [53-58]. As for approximating highly-oscillatory
functions via neural networks, less is known. While some theoretical results show
that the approximation error of neural networks decays exponentially in the num-
ber of non-zero weights in the network for approximating oscillatory textures [59],
the analysis assumes no constraints on the learning algorithm or on the size of
the dataset. In fact, it is demonstrated that standard neural networks with gradi-
ent descent optimization algorithms tend to fit training data by a low-frequency

function [60].
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This thesis

The present work tackles two major computational challenges encountered in
quantum simulations of molecules. Specifically, the challenges are related to
constructing PESs of molecules and solving static Schrodinger equations for the
nuclei. While the two problems being addressed are formally different, they are
both associated with the approximation of rough functions in high dimensions.

Chapter 2 provides a formal introduction to quantum molecular dyanmics,
the Born-Oppenheimer approximation, and the emergence, therefrom, of the
parametric electronic Schrodinger equation and an effective Schrodinger equation
for the nuclei. Afterwards, the problem of constructing PESs (Section 2.2) and the
Schrodinger equation for the nuclei in a variational formulation (Section 2.3) are
introduced.

Chapter 3 describes the first contribution of this work. It starts with an exten-
sive survey of the state-of-the-art approaches for constructing PESs in a supervised
learning paradigm and emphasizes limitations thereof. I then highlight the need
for constructing PESs in an active learning paradigm, where the choice of the train-
ing set in the regression task is optimized. I provide a theoretical insight for a
good choice of the dataset in terms of an empirical risk minimization principle
(Theorem 3.2). An algorithm that follows this insight is proposed (Algorithm 3)
and applied in a novel simulation to solve the electronic Schrédinger equation of
pyrrole(H,O) cluster. The proposed algorithm led to, roughly, two times faster
convergence than commonly used learning algorithms for the construction of the
PES of pyrrole(H,O).

Chapter 4 describes the second contribution of this work. I start the chapter by
introducing standard spectral methods for solving differential equations in gen-
eral and Schrodinger equations in particular. State-of-the-art methods for solving
Schrodinger equations and limitations thereof are surveyed. I propose and de-
velop spectral learning, a natural nonlinear extension of standard spectral methods
that is based on augmenting the expressivity of standard bases of inner-product
spaces using machine learning models. This idea mimics the use of normalizing

flows to augment the expressivity of base distributions for modeling of probability
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distributions. I characterize sufficient conditions on the utilized machine learning
models, for the resulting sequences of functions to define bases of the underlying
inner-product space (Theorem 4.1). Furthermore, it is shown that normalizing flows,
i.e., standard invertible neural networks, satisfy these conditions. As an applica-
tion, I prove that spectral learning is well-posed, in the sense that convergence
guarantees as the size of the truncated augmented basis increases to infinity can
be obtained for approximating Schwartz functions (Lemma 4.2) and eigenvalues
of Schrodinger operators (Theorem 4.2). I demonstrate that faster convergence
rates than linear spectral methods can be achieved via spectral learning (Theo-
rem 4.5). This is shown by proving that the total variation of the target function
with respect to the push-forward measures induced by the augmenting neural
networks admits minima. I performed numerical simulations using the proposed
nonlinear framework to compute the spectra corresponding to nuclear motions of
three-atomic molecules. Numerical results, reported in Section 4.3, agree with the
theoretical observations and show a 2-order of magnitude increase of performance.
Results are particularly relevant for approximating eigenfunctions corresponding
to large eigenvalues, which are typically highly-oscillatory.

I would like to draw the attention of the reader to the fact that the present
work is of an interdisciplinary nature. It was developed in the framework of
DASHH, Data science in Hamburg HELMHOLTZ Graduate School for the Struc-
ture of Matter, whose aim is to employ formal sciences, i. e., mathematics and
computer science, and advances in machine learning to solve problems in the
natural sciences. The work uses terminology and results from three different
research domains, that of mathematical /numerical analysis, machine learning and
quantum molecular physics. However, I made a special effort to make the text
accessible to mathematicians, physicists and computer scientists. In particular,
I assumed little to no previous expertise of the reader in various domains and
extended the main text with extensive appendices to provide the previous knowl-
edge necessary to grasp the contributions of the present work. I admit, though,
that the formal discussion of learning algorithms and of spectral learning may re-
main rather inaccessible to the non-expert formal scientist. To make contributions

more accessible, I made efforts to present the simulations of the proposed methods
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(Section 3.4 and Section 4.3) in a way that does not fully require the understanding
of the theoretical underpinnings.

Finally, I call on readers with a formal science background to note that the
proposed methods, although developed to solve problems in quantum molecular
physics, are applicable to a wide variety of other domains. In particular, the
proposed learning Algorithm 3 is applicable to any statistical inference problem
and the proposed spectral learning paradigm (Definition 4.3) can be used to solve
general differential equations. To facilitate the application of these methods to
other problems, the proposed tools were presented in an abstract formulation.



Chapter 2

Quantum molecular dynamics

The simulations one requires for interpreting observations and experiments in
domains such as imaging ultrafast molecular dynamics, spectroscopy, and as-
trophysics are, essentially, based on solving the evolution equation of quantum

systems

ihaaif — (H+H)y @1)

with an appropriate initial condition. Here, i = v/—1 is the imaginary unit, and
h = h/2m where h is Planck’s constant. H, the Hamiltonian, is a differential
operator characterizing the total energy of the molecular system, while H; is a
time-dependent operator that can model, e. g., external fields. (2.1) is called the
time-dependent Schridinger equation. Generally, solving (2.1) starts by describing
static behavior of molecular objects, which is governed by the infinite dimensional
eigenvalue problem

Hyy = Exypy, where /Q lyp|>du =1 forallk € N, (2:2)

and O C R? is open. (2.2) is called the time-independent Schrodinger equation
(TISE). Each eigenpair (i, Ex) of (2.2) represents a quantum state, §, and its
corresponding energy, Ej. Solutions of (2.2) are then used as a basis to solve (2.1).

The postulates of quantum mechanics represent quantum states as elements
of complex Hilbert spaces. In molecular physics, the Hilbert space is set to be
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L2. Since energies, as all other physically measurable quantities, are real values,
these postulates restrict the choice of Hamiltonians to those that have real spectra.
The statistical interpretation of quantum mechanics views |i|? as the probability
density for the position of the particle to be located in a certain volume. The
restriction of this quantity to integrate to one corresponds to the certainty of
finding the particle somewhere in (). Denote by Nj, N,; the number of electrons
and nuclei in the molecule. Since each particle has three degrees of freedom, a
quantum description of a molecular system would, then, mean solving (2.2) in
3(Ny + N;) dimensions, a task that is prohibitive even for small molecules.

The focus in this work is on solving (2.2). I start this chapter by introduc-
ing the generic Hamiltonian for molecular systems and the assumptions thereon
that comply with the postulates of quantum mechanics. I then discuss the Born-
Oppenheimer (BO) approximation that allows one to split (2.2) for molecules into
two TISEs. This model reduction theorem gives rise to the first research prob-
lem tackled in this work, mainly constructing potential energy surfaces (PESs).
This task is often posed as a supervised learning problem. I highlight numerical
difficulties that render the construction of PESs prohibitive for bigger molecular
systems. Finally, the framework of the second contribution of this work is out-
lined in Section 2.3, where spectral methods for solving the time-independent
Schrodinger equation (TISE) via the Rayleigh-Ritz principle are discussed, and
limitations thereof are highlighted.

The necessary mathematical definitions and results from the theory of Hilbert

spaces are summarized in Appendix A.

2.1 Modeling of quantum molecular mechanics

The Hamiltonian of a molecular system is a linear operator that is often composed

of two parts [15, 61], a kinetic energy operator

1
T=—2A,
2
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where A denotes the Laplacian operator, and a multiplication operator V that is
called a potential energy term, i.e.,

which describes static forces in the quantum system. To comply with the statisti-
cal interpretation of quantum mechanics, the range of Hamiltonian operators is
assumed to be L2 defined on an open Q) in the Euclidean space R? with functions
taking values in R. In what follows the dependence of functional spaces on the
domain is ignored for notational simplicity. Denote by (.,.) the L? inner product
andset| || =+ (., .).

Since Hamiltonians correspond to real measurable quantities they should have
real spectra. The right mathematical condition to impose this requirement is
that of self-adjointness (see Theorem A.2). Denote by D(T) the domain of T. To
guarantee that the operator T : D(T) — L? is self-adjoint set D(T) = H?. The
right conditions on the potential for H to remain self-adjoint was a subtle problem
in the development of quantum mechanics and was satisfactorily addressed by
Kato and Rellich [15, 62, 63].

Theorem 2.1 ([15]). Let T be a self-adjoint operator on a Hilbert space, and V be a
symmetric operator satisfying

Vol <algll + b Tyl forally € D(T).

Then, H = T + V is self-adjoint with domain D(H) = D(T).

For example, any bounded potential satisfies the above condition and the
Hamiltonian is, thus, self-adjoint. To accommodate the Coulomb potential V =
|71

|x|~" one often adopts the following setting.

Assumption 2.1. V = Vi + Vs with V, € L2, Ve € L.

This potential satisfies the above condition and H = T + V is a self-adjoint
operator with D(H) = H2. Note, however, that the Hamiltonian in this setting
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is an unbounded linear operator due to the Vi term. This makes the analysis of

quantum systems nontrivial.

2.1.1 Molecular Hamiltonians

Consider molecules composed of N, nuclei of masses M; and electric charges Zje,
with Z; denoting the atomic number of the jth nuclei, and Nj electrons of masses
m and charges e.

Let x;,y; denote the spatial coordinates of the jth nucleus and /th electron,
respectively, and let (x,y) € Qnuc X Qe € Q C R3(Na+N1) denote the electronic
and nuclear coordinates, respectively. I also call a certain x a nuclear/molecular
geometry. The molecular Hamiltonian is the sum of a kinetic and potential energy
parts [15, 61]

Hmol = Thuc + Tel + Van + Ve + Vee, (2.3)
—_—
T \%

where Ty, and T are the kinetic energy operators of the nuclei and the electrons,

respectively

N, 712
Tnuc = - 2 TZ\/Iijj’

=1
N hz

Tel - — 121 %Ayl

The potential is the sum of the nucleus-nucleus

ZyZie*
Van(x) = ﬁ’
1<k<j<N, 17k 7 4]

nucleus-electron
N; N, Z] 32

Vhe(x,y) = — Z Z

= =l
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and electron-electron interactions

&2

Vee(y) = —
° 1<j<I<L ‘yj - yl|

The TISE for molecules is extremely high-dimensional even for small molecules.
Consequently, molecular quantum mechanics makes extensive use of reduced-
order modeling and approximation theorems. I present the Born-Oppenheimer
(BO) approximation, a model-reduction theory that allows for reducing the diffi-
culty of solving the TISE for molecules.

2.1.2 Born-Oppenheimer approximation

The BO approximation [15, 17, 22, 23, 61] rests on the observation that the mass
of the electrons is negligible in comparison to that of the nuclei. Given the same
amount of momentum, electrons would then move on a much faster timescale
than that of the nuclei. One can, hence, split the molecular TISE into two lower-
dimensional TISEs. The first, known as the electronic Schrodinger equation, is a
parametric Schrodinger equations that describes the motion of the electrons in a
field of static nuclei. The second is a TISE that describes the motion of the nuclei
in an effective field generated by the electrons.

Let Hey = Tol + Ve + Vee + Van denote the electronic Hamiltonian and note that
it parametrically depends on the positions of the nuclei through the potentials
Vhe, Van. The electronic TISE reads

He1¢el k(v X) = Eeri(x)¢eix(y;x)  forallk € Nxo. (2.4)

Note that (2.4) is a parametric differential equation, where the parameter x take
values in the uncountably infinite set (Qpyc, corresponding to different nuclear
(molecular) geometries.

Methods to compute the solutions of (2.4) exist [23] and are covered in the
wide field of quantum chemistry. I now discuss how to use these solutions to
solve the remainder of the molecular Schrodinger equation. Assume that the jth

eigenfunction ¥; of (2.2) with the molecular Hamiltonian (2.3) can be written as
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$i(x,¥) = Lk Pelk(¥; X)Pruc,j(x). Substituting that into the molecular Schrodinger

equation one has

Z(TnuC+Hel)(¢el,k(y; )4)nuC] ZE(,belk yx )¢nuC]( )

k

Thus, using chain rule one has

Z(Tnuc(l)el,k (]/; x)(PnuC,j(x) + Zk:‘Pel,k(y/' x) (Tnuc(l)nuc,j (x>)_

k
N, hZ

_ZZZ 2M Vx [‘Pelk(y/ ))-(ijgbnuc,j(x))—i-

+2Eelk )Pel k(Y5 X) Pruc,j(x) ZE Pet k(¥ %) Pruc, ()
Multiplying by 4):147’ the adjoint of ¢ 5, and integrating over ()| one has

Z <(Pel,p/ Trluc(,bel,k> (Pnuc,j (X) + Tnuc (Pnuc,j (X) -
k

Ny 2

h
-2 Z Z M <¢el,p/ ij¢el,k>-vxj [‘Pnuc,j(x)]_'_
r =1 =M
+ Eel,p(x)(;bnuc,j(x) = Ej(Pnuc,j(x)/

where I used the fact that eigenfunctions of (2.4) are orthonormal. Note that

(¢e1,pr Tnuc HeiPel k) = Eel k{Pel,p, TnucPer k)
<Hel§bel,p/ TnuC¢el,k> = Eel,p <(Pel,pr Tnuc¢el,k> .

Thus,
(¢el,ps [Hels Tnuc] et k)

Eel,p Eel,k

7

<¢el,p/ TnuC¢el,k>

where [.,.] denotes the commutator between two operators. Assuming that the
eigenvalues of (2.4) are well separated, <4>e1,p, Trucel k) is very small and can be
neglected. Same argumentation can be developed for (¢ei,, Vel k). Thus, one
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ends up with a TISE for the nuclei

(Tnuc + Eel,p) ¢nuc,j = Ej¢r1uc,j for aH] € N>, (2.5)
—_—————

Hnuc

where Enyc,p : Onue — R is a function, called the potential energy surface that, given
any arrangement x of the nuclei returns the corresponding pth eigenvalue of the
electronic Schrodinger equation (2.4). Fix p = 0, i.e., consider only the ground
electronic state, and drop the notational dependence of the potential energy surface
on it for simplicity.

2.2 Electronic Schrodinger equations and potential en-

ergy surfaces

The solution of the time-independent Schrédinger equation for the nuclei (2.5)
requires first the construction of the linear operator Hp,c. This, in turn, requires
finding the lowest eigenvalue of the parametric Schrédinger equation (2.4). Since
the nuclear geometries x take values in an uncountably infinite set, and an analytic
solution is often not achievable, this task is prohibitive. It is, therefore, replaced by
computing the smallest eigenvalue of (2.4) for some selected finite set of the nuclear
coordinates, and inferring the ground-state energy for other nuclear coordinates.
In particular, given a set of nuclear geometries # = {x}, and the corresponding
electronic energies £ = {E’él} «! the goal is to be able to infer the electronic energy
for a nuclear geometry x ¢ £. While this task can be performed via an interpolation
procedure of the dataset £ = {(x*, EX)}, this is not recommended in practice,
since solving (2.4) for the set £ is not an exact process and often contains errors.
Instead, this task is often performed via a linear or nonlinear regression where
both the input x and output E are interpreted as random variables and their
causal relation is assumed to be governed by a probability distribution P(x, Eq).

Given a class of hypothesis functions §) one would then choose a function i* that

ISuperscript refers to the observation, i. e., EF refers to the kth empirical observation of the random
variable E.
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reproduces the dataset and generalizes well beyond it. In practice, the following

problem is solved

L ) I(EK, h(x%)) + yB(h(x*)) — min, (2.6)

D] (xk B )2 hes

where [ is the loss function quantifying the discrepancy between the true energies
and the predicted ones, and B(h) is a regularization term that constraints the
complexity of the hypothesis & with A € R™. While this task is clearly easier than
solving (2.4) for any value of x, it is still complex since generating the dataset is
a dimension-dependent problem. In particular, one needs exponentially more
computational resources to generate the target values £ for an increasing dimen-
sionality of the molecular system. Moreover, the quality of the minimizer h* of
(2.6) highly depends on the choice of D. In Chapter 3 I discuss an active learning
framework to extend the regression problem defined in (2.6) into an optimization
over the choice of the training dataset D as well.

2.3 Schrodinger equations for the nuclei

The nuclear Schrodinger equation (2.5) is the second step to characterize quantum
properties of molecules in the Born-Oppenheimer picture. Similar to the electronic
Schrodinger equation (2.4), the numerical treatment of this equation for polyatomic
molecules is not straightforward due to its high dimensionality, since the nuclear
geometries lie in R3N". Moreover, several applications require the computations
of many excited states that are often highly-oscillatory. These reasons render
numerical simulations challenging.

A first step of common methods to solve (2.5) is to write its weak formulation.
Multiplying by a test function v with enough regularity and taking the inner

product in L2, one has

<U/ (THHC + Eel,p)¢nuc,j> = Enuc,j <0/ 47nuc,]'>'
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Choose a trial solution v; € H? and drop the dependence on j for simplicity of

notation. In the special case v = 7y where ||| = 1, the weak formulation of (2.5)

reads

<G'Y/ G7> + <'Yr Eel')’> = Enuc, (2-7)
where G = Ejli"l ;’M]_ V. Define

e(7) == (G7,GY) + (7, Ear) (2.8)

to be the linear form corresponding to the weak formulation (2.7). It turns out that,
under proper assumptions on the potential Eg, this linear form has a minimum

and this minimum corresponds to the smallest eigenvalue of (2.5).

2.3.1 A variational formulation

Several weak formulations of differential equations correspond to a variational
principle, i. e., the weak solution can be obtained by minimizing some energy
functional, such as, e. g., the Poisson equation with homogeneous Dirichlet bound-
ary conditions. One can, indeed, construct similar results for TISEs. The correct

assumptions on the potential function to obtain these results read as follows [63].

Assumption 2.2 (Conditions on the potential function).

foralld > 3: E, €L°°<]Rd)+Ld/2(]Rd)
d=2, foralle >0: E, € L®(RY) + L1€(RY) ,
d=1: Eg € L®(RY) + L1 (R?)

The variational result is based on the following two lemmas. The first lemma

tells us that €(7y) is bounded from below.

Lemma 2.1 ([63]). Under Assumption 2.2 there exist C, D > 0 with

e(1)=C [ VP du—Dlv?:
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In particular,
Eo := inf{e(7) | [l7]| = 1} > —co. 29)

The following result establishes a correct setting that guarantees the existence

of a minimum of (7).
Lemma 2.2 ([63]). Under Assumption 2.2 the potential energy
P(7) = / |71 Ee dp
Qnuc
is weakly continuous in H'. In other words, ifvj — 7y weakly in H', then P(vj) — P(7)
as j — oo.
The stage is now ready to state the main theorem.

Theorem 2.2 (Existence of a minimum of the energy functional [63]). Under As-
sumption 2.2 and assuming that

Eo =inf{e(7) |y € H |7l =1} <0

there exists g € H', with ||yo|| = 1 and e(y(0)) = Eg. Moreover, (o, Eg) solves the
Schrodinger equation (2.5) in the weak sense.

Proof. A proof is provided in the supplementary material section at the end of this
chapter. O

Remark 2.1. It follows that Ey = infycp(p),||y|=1€(7) since D(H) is dense
in HY(D(H) is dense in H? which is dense in H').

Theorem 2.2 guarantees that the smallest eigenvalue of the Schrodinger equation
can be computed using a variational method. The same can be done for higher
eigenvalues. However, here the minimization is performed over spaces that are
orthogonal to the eigenfunctions corresponding for smaller eigenvalues. Define

Ey =inf{e(y) | v € H', [|7] = 1, (7, 70) = 0}.
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Continuing recursively, define
Er=inf{le(y) |y € HL |72 =1, (7,7%) =0forallk =0,...,k—1}. (2.10)

The following theorem provide an equivalent of Theorem 2.2 for larger eigenval-

ues.

Theorem 2.3 ([63]). Under Assumption 2.2 and assuming E < 0, then, the infimum in
(2.10) is attained and the minimizer 7y is such that Hvy, = Epyy.

Remark 2.2. While the analysis in this section was developed for the specific
nuclear Schrodinger equation, it is, in general, valid for any time-independent
Schrodinger equation where the potential satisfies Assumption 2.2 [63].

2.3.2 Spectral discretization and the curse of dimensionality

The established variational formulation of the TISE allows for practical algorithms
for computing its eigenpairs. In particular, given a certain approximation space,
one would then choose the function that minimizes the established energy func-
tional. This is often referred to as the Rayleigh-Ritz method [30]. Discretizing
the problem and constructing approximation spaces can be done via standard
methods, such as finite volume or finite differences methods [24-27]. However,
due to the often oscillatory nature of the solutions of TISEs and to the need to
model a vast number of eigenfunctions, a more common approach to discretize
the equations is based on spectral methods [28, 29] where one approximates the
eigenfunctions in a finite linear span of globally supported sequence of functions

(@n)n
N
Pruc,j(x) ~ Y. cnjpn(x) forallj=0,1,.... (2.11)
n=1
To have convergence guarantees as N — oo and quantify the convergence order

one would have to choose sequences with some density properties, i.e., the lin-
ear span of the sequence should be dense in some target functional spaces. In
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TABLE 2.1: The size of a truncated Hermite basis N that is re-
quired to compute the ground-state energy of a perturbed Har-
monic oscillator problem in 1,2 and 3 dimensions to a relative
absolute error < 1071

d 1 2 3
N 3 45 286

molecular physics, the functional space is often L2. Indeed, with such density prop-
erties, the method is reliable and well-posed for solving a variety of differential
equations [28], such as, e. g., determining the spectra of unbounded operators.

In spite of these positive features, the method suffers from the curse of dimension-
ality, as the size of the basis N needed to converge a certain amount of eigenpairs
scales exponentially with the number of nuclei N, in the system. To exemplify this
problem I solved the Schrodinger equation for a perturbed quantum harmonic
oscillator problem, i. e., the TISE with a Hamiltonian H = T 4 V where

1 1
V= 1\x\4 + §|x|2.

Table 2.1 shows the size of truncated Hermite basis that is needed in order to
converge the ground-state energy in several dimensions. Clearly, N increases
rapidly as a function of the dimension of the problem.

Another problem is the scaling with respect to the number of eigenpairs that
one would want to approximate. In practice, eigenfunctions to (2.5) corresponding
to high eigenvalues are highly oscillatory and, hence, the accuracy of spectral
methods decrease nonlinearly with the number of required states. Table 2.2 shows
the size of the Hermite basis required in order to converge the energies of the
first three states for the perturbed Harmonic oscillator problem in 2 dimensions.
Clearly, increasingly more linear terms are needed to converge higher states.

One way to mitigate the curse of dimensionality with respect to the linear
parameter N is to allow for the use of an adaptive sequence of functions, i.e., a

2Technical details to reproduce this example are provided in the supplementary materials at the
end of the chapter.
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TABLE 2.2: The size of truncated Hermite basis N that is required
to compute the energies of the first three states of a perturbed
Harmonic oscillator problem in 3 dimensions to a relative absolute
error < 1071,

State 1 2 3
N 45 300 555

sequence (¢9), that depends on free parameters 0

N
Pruc,j(X) = Y cn,jq)g(x) forallj =0,1,.... (2.12)
n=1

One would then minimize the established upper bound with respect to both the
linear parameters, Cn,j and the nonlinear ones, 6. Allowing for a set of functions
that is more suitable for the problem lessens the need for an exponentially big set
of fixed functions. However, the introduction of arbitrarily adaptive functions
without proven density properties make it difficult, if not impossible, to obtain
convergence guarantees. Neural networks have been lately under intensive in-
vestigations to this end 3. However, their use is not straightforward and often
requires a lot of engineering efforts. In Chapter 4 I propose and investigate another
alternative that is based on carefully deforming fixed bases into adaptive ones.

Remark 2.3. Solving (2.5) can be simplified by differentiating between three
kinds of motions in polyatomic molecules: a translational motion where the
Cartesian coordinates of all atoms are shifted by the same quantity and in
the same direction, a rotational motion of all the atoms, and a vibrational
motion where distances between atoms change. Under the potential energy
term consider in (2.5), the eigenvalues remain invariant with respect to a
translational motion of the nuclei. Thus, one can consider only the rotational
and vibrational (rovibrational) motions considered when solving (2.5). The

3 Generally one uses one neural network, i.e, N = 1.
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equation describing the rovibrational motion can also be solved in three steps,
where, first, the (2.5) is solved for the vibrational degrees of freedom, then
for the rotational degrees, and eigenfunctions of both motions are then used
to solve the overall rovibrational equation [64]. In this work I only consider
the vibrational Schrodinger equation and hence reduce the space of the co-
ordinates to a set Qnue C R3N1=6. The set Qnue contains often two kinds
of coordinates, radial coordinates describing the distance between pairs of
nuclei having values in Ry and angular coordinates having values in (0, 77)
describing angles between pairs of radial vectors. This set of coordinate is of-
ten called an internal set of coordinates. Moving from a Cartesian coordinate
systems to the internal one is described in Appendix B.

Supplementary material

The simulation ran to produce Table 2.1 and Table 2.2 was performed as follows. A
Bubnov-Galerkin numerical scheme was used to discretize the Schrodinger equa-
tion, where both the test and trial functions were modeled by Hermite functions.
For d > 1, the basis was generated from Hermite functions using the truncated
direct product (4.16) with w; =1, foralli =1,...,d and n; were varied from 1 to
30foralli=1,...,d. N=1,...,50 was used for d = 1 and d = 2 while I used
N =1,...,22 ford = 3. Hermite quadrature points were used to compute the inte-
grals with 50 quadrature points per dimension. Quadrature points corresponding
to weights < 10734 were removed. I considered for true solutions those converged
with the largest basis.

Proof of Theorem 2.2. Set () = Qnyc for simplicity of notation. Let y; be a sequence
in H! with [|7;]| = 1and €(7;) — Eg as j — co. Lemma 2.1 implies that

1
(1) = 51IVyl* - ¢,



2.3. Schrédinger equations for the nuclei 23

which implies the boundedness of || V; H%z, which, in turns, implies the bound-
edness of y;in H 1 for all j. By the Banach-Alaoglu theorem there exists a subse-
quence vy, and g € H! such that Yn; = Y0 weakly in H'. The weak limit in the
norm can only get smaller, thus

[70ll <1, [[Vyoll < Hminf ||V, |-
]*)OO
Since [|7o|| < 1and Eg = e(p) it holds

Eo||v0l* < €(70)
= IVl + P(70)
= [|[Vyoll + lim P(yy,)
j—ro0

< liminf(||V’7nj Il + P('Yn]-))
J—roo

< lim inf (|| Voyn, || + P(s;))
J—7®

=<liminfe(y,.)
j—oo U

:EO

where in the second equality I used Equation 2.9. Since Ep < 0 by assumption, one
deduces that ||yo|| > 1. But ||yo|| < 1. Hence, ||y = 1.

To show that 7 solves the Schrodinger equation take a perturbation s =
Yo + 6f of yo with 6 € R. Define R() = ﬁ%ﬂ)z

Since Ej is a minimizer of € it holds that R(¢) attains a minimum at 6 = 0.

Thus,

_ dR(3)
O_ 5 |0
2
1 delyy)  Wlliamy  e(y) Vsco
lysll*™ do N .
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Therefore,
de d 2
0= ( égé) - ”;g” Eo)|s—o0,
where
de(ys) _d 2 2/ 2 /
e = 190 dn 0 [ Va0 dp+20 [ V1V dp+
+ [ (ro+8?V dy),
hence,
)| =2 [ Vivwdnt2 [ Ve
dé - Q Q
Similarly,
’ d|lvs?
Eg T\(s:o ZZEO/Q’Yofd#-
Whence,

0:/0(—A+V—Eo)'yofdy forall f € C°,

i.e., (Eg, 70) solves the Schrodinger equation in the weak sense. O



25

Chapter 3

Active learning for constructing
potential energy surfaces'

I outlined in Section 2.2 the problem of constructing potential energy surfaces, i.e.,
of inferring solutions of the parametric Schrédinger equation (2.4) in a statistical
manner. Here, the relationship between the nuclear geometries x and the electronic
energies E is assumed to be governed by a probability distribution P, called the
generating distribution, with z := (x, E). Given access to an initial set of independent
observations 2 = {zF := (xk, EX)}4, 2 ~ P, of nuclear geometries £ = {x*}; and
their corresponding electronic energies £ = { E};2 one aims at approximating P,
by solving the regression problem defined in (2.6).

In recent years, many machine learning (ML) models [65-69] have been used
to model the hypothesis class §. The most extensively used models include
permutationally invariant polynomials [70-74], neural network (NN)s [32, 75-80],
Gaussian process (GP)s [81-87], and other kernel methods [16, 88-90].

The quality of the optimizer h* that solves (2.6) highly depends on the quality
and size of the dataset 2. The more data there is to learn from, the more accurate
the model is. However, computing the labels E of the input nuclear geometries
% is computationally expensive. It requires solving the electronic Schrodinger

1This chapter is, in parts, based on this publication: Y. Saleh, V. Sanjay, A. Iske, A.Yachmenev, J.
Ktupper, J. Chem. Phys. 155, 144109 (2021). My contribution to this publication was the development
and implementation of several active learning algorithms and writing the manuscript.

2In what follows denote the target in 2 by E¥ instead of Ef, for notational simplicity.
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equation (2.4) for a system of N; electrons. High-accuracy solvers scale as O(n”)
with the size of the system # [23]. Hence, one would want to minimize the size of
the dataset 2 that is needed to obtain an optimized model with a certain accuracy.
In other words, one would want to solve

| —

| Y l(Ek,h(xk))—l—’y/%(h(xk))—>2n;ér}j. (3.1)
(xk,EK)ez ’

D>

One learning paradigm that tackles such problems is active learning (AL) [91],
in contrast to the common passive learning (PL) paradigm, where the training
dataset is given a priori. Trying to minimize the size of the training dataset for
constructing potential energy surfaces (PESs), and reducing the amount of humans’
intervention in an AL paradigm became increasingly popular during the last few
years [92-103].

Formally, in AL, the training dataset § := {y' := (¢', E")}; is sampled from
a probability distribution Py that is not necessarily equal to P,. However, both
distributions are assumed to follow the same conditional probability. Denoting by
pz, py the probability densities of P, Py, respectively, one has p; = pxpg|,, py =
PqPE|x [104, 105], where py, py denote probability densities over the nuclear ge-
ometries x and pg|, denotes the conditional probability, i.e., the probability of
energies given a certain nuclear geometry x. The aim of AL is to learn densities p,
as to solve (3.1). Algorithms that aim at constructing such p, are called query/policy
strategies/algorithms. A deep theoretical understanding of optimal query algorithms
is generally absent. Such algorithms are often constructed based on heuristic argu-
ments such as uncertainty sampling [91], where datapoints corresponding to high
uncertainties in their predictions are added to the training dataset.

A guiding concept in defining statistical learning algorithms is empirical risk
minimization principles [106]. Such principles are based on the observation that
the objective function in standard learning algorithms, such as (2.6), is an upper
bound of the true risk. In this chapter, a similar theoretical insight into con-
structing query algorithms is provided. It is shown that upper bounds on the
generalization error in PL can be extended naturally to AL (Theorem 3.2). This al-
lows one to propose the following empirical risk minimization principle to define
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query algorithms. The probability distribution P; defining the query algorithm
should maintain a small integral probability metric from the generating proba-
bility distribution while still assigning a significant measure to scarce regions of
the generating distribution. This result can be seen as a general formulation of
[105] and [104], where specific integral probability metrics were used. Directly
optimizing the derived upper bound is rather impractical, whence I review some
more practical algorithms, referred to as pool-based algorithms [91]. I survey the
state-of-the-art AL algorithms employed for construction of PESs. I propose a
novel AL learning algorithm (Algorithm 3) that complies with the derived upper
bound. It is a regression version of random query by forest [107].

I validate the proposed algorithm for modeling the PESs of weakly-bound
molecules®. Such a task is complex [108-111], since higher levels of theory need to
be employed to produce correct asymptotic behavior of the training dataset [112].
Furthermore, the landscape of these PESs is complex because of the loosely bound
character of intermolecular interactions. Thus, a larger number of grid points is
generally required to sample the complete configuration space. Moreover, due to
the importance of dynamical electron correlation (dispersion) and its slow basis-set
convergence [113], calculations for the noncovalent long-range parts of the PES are
generally more costly than the ones at short-range. In particular, I model the PES
of pyrrole(H,0). I show that the proposed algorithm reduces the computational
costs of constructing the PES of pyrrole(H,O). It leads to a roughly two times
faster convergence with respect to the size of training dataset than other commonly
used AL algorithms.

3.1 Formal setting and notation

Throughout this chapter consider a probability space (Q), F,IP). For an open
X C R™ (given a molecular system with N, nuclei, one often has m = 3N,,) I
model the nuclear geometries x as a random vector x : () — X. Endow X with
the Borel c—algebra and the Lebesgue measure u". Set Py = xyu™. Further,

3Weakly-bound molecules are complexes characterized by relatively low interaction energies
between the constituent molecules
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assume that Py is absolutely continuous with respect to ™ and denote by py
the corresponding density. The nuclear geometries chosen by a query strategy
are modeled by a random vector g : () — X with a distribution P; = gsu™
and a density p,. Similarly, for an open E C R consider the electronic energies
to be a random variable E : ) — [E. Endowing E with the Borel c—algebra
and the Lebesgue measure y set Pg = E4u and denote by pg the corresponding
probability density. Given the random vector x and the random variable E define
z:= (x,E),z: Q - X xE =: Z to be the joint random vector. Similarly, set,
y = (qE), y : Q — Z. Endowing Z with the product c—algebra and the
Lebesgue-measure p" 1 set P, = zyu"™ 1, P, = y4u™ ! and denote by p., py the
corresponding probability densities.

3.2 Empirical risk minimization principles and gen-

eralization errors

The goal in a supervised learning task is to infer the probability distribution P,
governing the relationship between two random variables x, E. Given a hypothesis
class $, this translates into solving

Rp, (h

z

/ 1dP, — mm (3.2)

where Rp_(h) is called the true risk or generalization error of a hypothesis & and
I:E x X — R is aloss function quantifying the discrepancy between true values
E and predicted ones h(x). In other words, one tries to find the function / that
would minimize the discrepancy between the predicted values and the true values
along the joint probability of the problem [68, 106].

However, in practice, one has access only to a dataset Z of a finite size. It is
reasonable to try to solve (2.6) where

Reop, ()= L 1(ESh())

(xk,EK)ez

| -
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is called the empirical risk of a hypothesis h with respect to a dataset 2. Let h*, h*
denote the solutions of (3.2) and (2.6), respectively. Approximating #* by f* is
called the inductive empirical risk minimization principle [106]. Characterizing under
what conditions such an approximation is valid is one of the main elements of a
learning theory [68, 106].

I start this section by introducing an upper bound to the generalization error in
a PL setting, i. e., where a dataset Z is given a priori, and optimization is performed

only over the hypothesis class §). To this end one needs the following concepts.

Definition 3.1 (Representativeness of a dataset [68]). Given a loss function / and a
hypothesis class $), define the representativeness of a dataset 2

Rep(2) := sup(Rp, (h) — Rewp, (1)),
hes
i.e., the representativeness of a dataset is the biggest generalization error
achievable over a certain hypothesis class. Now consider the practical problem of
having to compute the representativeness of a dataset Z. This is not doable since
the computation of Rp, (1) needs access to the true distribution of data which is
not available. However, an estimate of the representativeness can be obtained by

diving the dataset Z into two sets 21, Z, and computing the empirical estimate

Rep(2) = sup (R ~p, (h) — Re,p. ().

he$
To compactify this notation, assume that |2;| = |2;| = 5 and let o = (07, .., o) be
such that o; = 1if (x!,E) € 2; and 0; = —1if (x/, E') € %,. Then, the empirical

representativeness can be simplified to

~ 2 Z ; ;
Rep(£) = = sup Y _oil(E', h(x")).
M ey 5
Rademacher complexity generalizes this idea by considering the average empirical
representativeness for a random choice of ¢ with Prob[o; = 1] = Prob[o; = —1] =
0.5. This can be understood as taking the average empirical representativeness
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over all possible choices of 21, 2, of equal sizes.

Definition 3.2 (Rademacher complexity [68]). Given a loss function [ and a hy-
pothesis class $) define the Rademacher complexity

. 1 PR
Rad(%) := %an{il}m [Rep(2)]

1 m ; ;
alEm{il}m[SuP Y ail(E", h(x'))].
hesy i

3.2.1 Upper bound to the true risk in passive learning
Theorem 3.1 (upper bound on the true risk [68]). Assume that |I(E!, h(x'))| < ¢ <
oo forall (x',E") € 2,h € $. Then, with probability of at least 1 — 6, forall h € £

" . 21n(%)

In particular, this holds for * that solves (2.6).

Remark 3.1. Note that, in practice, the upper bound derived on the general-
ization error justifies approximating solutions of (3.2) with solutions of (2.6).
The upper bound in (3.3) contains the empirical risk and the Rademacher
complexity. The latter is connected to the complexity of the optimizer /* [114].
Hence, solving (2.6) is actually equivalent to minimizing an upper bound to
the generalization error.

Similarly, an upper bound on the generalization error in AL can provide some

insight into a good choice of the probability distribution P; of a query strategy.

3.2.2 Upper bound to the true risk in active learning

Here I derive an upper bound to the generalization error in AL. As in PL case,
the upper bound would depend on the empirical risk, i. e., the training error,
and on the complexity of the hypothesis class. However, the distribution of the
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training data Py in AL is not equal to the generating distribution P,. Therefore,
it is reasonable to expect the upper bound on the generalization error in AL to
depend on some notion of a distance between P, and P,. While there are several
possibilities of defining distances between measures, integral probability metrics
follow naturally in the settings under consideration.

Consider the measure space (X, B(X)) (see Section 3.1).

Definition 3.3 (Integral probability metric [115, 116]). Given a class of real-valued
bounded measurable functions F on (X, B(X)), the integral probability metric
between two measures P, Q on (X, B(X)) is defined as

17(2,Q) = sup) [ fap= [ faQl (3.4)

Remark 3.2. Note that (3.4) is generally not a metric but a pseudometric,
since dx(P, Q) = 0 does not imply P = Q. However, for the two special
choices of F that I later discuss (3.4) is a metric. Moreover, note that, in
general, the distance between two probability measures is allowed to be
infinite [116, 117].

The stage is now ready to state an upper bound on the generalization error
in an AL setting in terms of the integral probability metric. Later, I specify some
useful function classes F. Recall that, in AL, the distribution of the training
data and the generating distribution have the same conditional probability, i. e.,
Pz = Px PEjx and py = pg PEjx-

Let £ ~ Py, § ~ P, be two finite datasets. And let Z, § denote the same datasets
with the corresponding labels, i. e., the electronic energies.

Theorem 3.2. Define a := [ dPg|. Given a function class F and assuming « € F
the following holds with probability at least 1 — 6

ZIH(%)

Rp, () < Ryp, (h) + dr(Py, Py) + 2Rad(§) + 4c " (3.5)
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Proof. for all h € § assume that the loss function is bounded for all elements of 4.
Using Theorem 3.1 the following holds with probability 1 — ¢

. 2In(%
pr (h) < RyApr (h) +2Rad(7) + 4c y(|5)
Adding Rp, (h) to both sides and rearranging

2In(3)

Rp () < (Rp. (1) = Rp, (1) + Ry, () + 2Radl(9) +dey | =5 0

Consider the first term and note that
Rp.(h) — R h:/ldP—/ldP
p.(h) — Rp, (h) AP — | 1dPy

= l d d’"—//l d du™
/X/]E pE|x HPx a1 X JE pE|x M Pa K
_ xdm / du™.
—/XIXP ]1 — X[qu ,‘I/l

Since « € F, it holds

Rp.(h) = Rp, (h) < sup| [ g pxdy™ [ g pyu"]
SEF X

=dr(Px, Py).
O

Theorem 3.2 establishes an upper bound to the true risk in terms of any generic
integral probability metric. By imposing some conditions on the loss function and
the conditional probability one can derive from the upper bound in (3.5) various
upper bounds. For example, under some conditions on on the loss function F =
Cp, i. e., the space of continuous and bounded functions. This is, indeed, a good
choice since it allows for a unique identification of identical probability measures.

In other words, given two probability measures P, Q, one can show [116] that
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P = Qif and only if

/deP:/deQ forall f € G

Another possibility would be to impose conditions on the loss function / such that
« is a Lipschitz continuous function with a Lipschitz constant less than one. In
such a case, and assuming that Py, P; have bounded supports, the Kantorovich
metric is recovered, which is the dual of the Wasserstein 1-distance between two
probability measures [118]. The following proposition specifies conditions on the
loss function [ in order recover these two special cases.

Proposition 3.1. (i) Let [(Ey,-) : R™ — R be continuous forall Eg € Rand (-, x) :
R — R be bounded for all xo € R™. It follows that x € Cy(X).

(ii) Let I(Eo, ) : R™ — R be Lipschitz-continuous with Lipschitz constant L for all
Ey € Rand I(-,xg) : R — R be bounded for all xy € R™ by some B > 0. Furthermore,
assume that max(L,2B) < 1. Then « is Lipschitz-continuous with Lipschitz constant
<1

Proof. Proof is provided in the supplementary material at the end of this section.
O

In light of Proposition 3.1, Theorem 3.2 can be regarded as a more generic form
of [105] and [104], where an upper bound on the generalization error in AL in
terms of the Wasserstein distance and using a reproducing kernel Hilbert space?,
respectively, were derived.

The result established in Theorem 3.2 can be used to derive an empirical risk
minimization principle for AL. Denote by 2(0) ~ P, a set of already labeled
data. The upper bound suggests a query strategy that chooses data § and a
hypothesis & such that the empirical risk R U20) (h) is small. For a fixed hypothesis
h, examples that correspond to a high loss function will then be added to the
training set in order to have an overall low empirical loss. Assume that the fixed
hypothesis / is obtained through a standard training procedure using the already

“While the authors here assume F to be a reproducing kernel Hilbert space, the conditions they
impose on the loss function ! do not guarantee that.
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labelled data 2(?). Since the initially labeled data 2() follows P, the regions
in X, on which one expects the empirical loss to be high are actually outliers,
i.e., they have a small measure under P,. On the other hand, the upper bound
suggests sampling a set § that does not have a big integral probability metric
from a dataset ~ P,. Hence, the upper bound suggests sampling points that are
both representative of the underlying distribution of the unlabeled data Py and
points that are outliers, and in a sense, informative for any hypothesis . This
argumentation is in perfect accordance to a vast literature on the need for querying
informative and representative samples in an AL strategy [104, 105, 119-121].
An algorithm to directly minimize the upper bound in (3.3) can be formulated,
although it is not clear what statistical distance is best to employ. One point to
take into account here is the computational costs of estimating the chosen integral
probability metric. For example, methods to estimate the Wasserstein distance are
often rather expensive. For constructing PESs, I found out that directly minimizing
such upper bounds is extremely impractical and leads to poor results. I observed
query strategies that indirectly minimize the upper bound to work better. I outline

some of them in the next subsection.

3.3 Practical pool-based active learning

One of the most practical and successful AL frameworks is called pool-based
active learning [91]. Here, AL is performed in an iterative manner where the query
algorithm is given access to a pool of unlabeled data §*) = {(x/,)}!_, and is then
asked to query a set of samples B from this pool and add it to the already labeled
data 20 = {(x/, E")}",, where m < I. Then, a test is run to judge whether the
currently labeled data are enough for a reliable prediction. If not, another set B
of datapoints are sampled from the pool, labeled, and added to the labeled data.
This process continues until one has enough datapoints. Algorithm 1 summarizes
this procedure.

The procedure performed to judge whether a certain amount of data is enough
for a reliable modeling is often based on training a ML model on the labeled data
and evaluating its accuracy on a test set. Note here that, due to the iterative nature
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Fix batch size Ng,t =1;
Input: Pool of unlabeled data $(=1) an initial labeled data. 2()
while performance is unsatisfactory do
a) Select a batch B of size N from §(%).
b) Label this set to obtain 2(1).
¢) Set §(t) = g(t=1)\ B, 2(t) — 2(t=1) y 2(1),
dyt=t+1
end

Algorithm 1: Basic steps of a generic pool-based AL strategy. In each
active learning iteration, Ny datapoints are chosen from the pool, labeled,
and added to the training data.

of pool-based AL, the execution speed and the scaling with the amount of data is
a main concern in designing query algorithms.

A simple example of a query algorithm is uniform random sampling (RS) from
the pool. Note that such a strategy is representative by construction and results in
a small statistical distance in the upper bound (3.5). However, uniform random
points from the pool are not informative and would hence lead to a high empirical
error.

Another criterion for defining a query algorithm is prediction uncertainty,
where an ML model predicts the targets of unlabeled datapoints from the pool,
and those corresponding to the highest uncertainties in their predictions are
queried. For probabilistic models like GPs, the uncertainties can be directly calcu-
lated [95, 97, 98, 102]. For the ML models that do not offer a direct way to compute
uncertainties, these can be inferred by training a diverse ensemble of models on
the currently labeled training set and selecting the points about which the models
disagree the most. This algorithm is called query by committee (QBC) [122]. This
procedure is formalized in Algorithm 2.

Note that diversity of the ML models is crucial in this algorithm. If the models
are not diverse, their predictions for a certain unlabeled datapoint would be almost
the same and hence one would not be able to infer the uncertainty. Practically, the
diversity of models is introduced through random perturbations to the learning
process. For example, when the ML models consisting the ensemble are NN,
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Fix the number of models 7 in the ensemble.

Result: A batch B from §().

Input: §), 2(), Np.

a) Train an ensemble {T;}” ; of models on data 20,

b) Compute predictions E; = T;(x¥) for all x € §), foralli.

c) Compute the community disagreement

g(x*) = std (E;) forall x* € 8,

d) Take Np elements from the unlabeled data that have the highest 4.
Algorithm 2: Basic steps of a query by committee algorithm for regression
problems. n models are trained on the labeled datasets and asked to
make predictions on the whole unlabeled dataset. The dataset B chosen
to be labeled are those that maximize the standard deviation (std) of the
prediction among the n models.

diversity can be achieved by randomly initializing their weights, and choosing
different architectures and regularization parameters.

Uncertainty-based algorithms aim to minimize the empirical risk in (3.5) by
querying points corresponding to high uncertainties, which correspond to under-
populated/sparse areas of Py, i. e., outliers [91, 123], which is a clear downside.
Interestingly, the vast majority of AL applications to PESs used uncertainty-based
sampling [92, 94-100]. When all sparse regions of the pool can be clearly identified,
e.g., as points with high energy, or if prior knowledge about the minima and
saddle points exists, the downside of uncertainty-based algorithms can be solved
by introducing a weighting function [93, 102]. In a more general setting, one
can combine the uncertainty-based query algorithm with a molecular-dynamics
sampler starting from various known critical points of the PES [70, 94, 99].

I choose, however, to correct this behavior at a more fundamental level by
constructing a probability density function from the QBC-estimated uncertainties.
Then, querying grid points is performed through random sampling according
to this density function. Algorithm 3 formalizes this idea. In contrast to QBC,
points with small uncertainties may still be queried if they fall in high-density
regions. In other words, Algorithm 3 respects the statistical information in the
pool that is defined a priori by the expert. Note that accounting for the statistical
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Fix the number of models n in the ensemble.
Result: B elements from §().
Input: §), 2(), Np.
a) Train an ensemble {T;}” ; of n models on data 58,
b) Compute predictions E; = T;(x¥) for all x € 5, foralli.
c) Compute the community disagreement
g(x*) = std (E;) forall x* € 8,
d) Compute the weights:
L(x)

NiE where

L(x) = %, and the sampling probability p(x) = s

Jmin = min g(x) and gmax = max g(x).
xes®) xes®)

e) sample Nj elements from the unlabeled data with probabilities p(x).

Algorithm 3: Stochastic query by committee algorithm: Data to query
are chosen by sampling according to a probability distribution that gives
more weights to datapoints whose predictions are uncertain. Uncertainty
is inferred by a standard query by committee algorithm.

information in the pool using QBC can also be performed by considering only
a few unlabeled datapoints sampled independently of the input distribution as
candidates to query [120], which is very similar in spirit to Algorithm 3. However,
I empirically observed Algorithm 3 to work better than this approach.

3.4 Simulations on pyrrole(H,0)

In what follows I apply the acRS algorithm, Algorithm 2 and Algorithm 3 for
building a PES for pyrrole(H,O) molecules with a reduced number of datapoints.

Due to the highly fluxional nature of the hydrogen bond in pyrrole(H,0),
the intermolecular motions are highly delocalized, rendering the calculation and
representation of the PES very challenging. The intramolecular vibrations in the
pyrrole and water moieties can be described with a relatively simple, though multi-
dimensional, single-minimum PES and thus, for simplicity of calculations, were
not considered here. The structures of pyrrole and water monomers were fixed
to the experimentally determined values [124, 125], see supplementary material
at the end of this chapter, and varied the six intermolecular coordinates, shown
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FIGURE 3.1: Internal intermolecular coordinates R, 6, ¢, «, B, 7y of
pyrrole(H,O).
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FIGURE 3.2: The probability density distribution of the energies
corresponding to all molecular geometries in the pool. The his-
togram was calculated for a bin width of 34.5 cm~! and has a
peak at 1600 cm~!, corresponding to the dissociation limit of
pyrrole(H,O).
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in Figure 3.1. These are defined as follows: the relative position of water with
respect to pyrrole is described by the three spherical coordinates R = [0.2,1] nm,
6 = [0, 7], ¢ = [0, r] and the relative orientation of water is defined by the three
Euler angles « = [0, 7|, B = [0, 7], v = [0,71]. The angles ¢, a, and y were
restricted to the ranges [0, 7] exploiting the Cp, (M) symmetry of the complex.
The pool of molecular configurations was generated a priori as the direct
product of one-dimensional grids for every degree of freedom and contained 57500
different molecular geometries covering the potential energy up to 5000 cm ™}
above dissociation. All coordinates were sampled more densely in the vicinity
of the equilibrium geometry. Also, the angular coordinates were sampled more
densely for small radial distances R < 500 pm with a sparser grid for 500 <
R < 1000 pm. This led to a nonuniform distribution of energies in the pool,
shown in Figure 3.2. Note that a direct-product grid is not essential for the
accumulation of the pool of unlabeled geometries and the test dataset. Here,
it was used mainly because it allows the coverage of the whole configuration
space that is relevant for the subsequent quantum dynamics’ simulations, and
hence prevents biases and holes in the pool and test data. While this method is
not arbitrarily extendable to systems with more degrees of freedom, other pool
accumulation methods [94] could be used without modifications to the stochastic
query by forest (SQBF) approach. The electronic structure calculations employed
the density-fitting explicitly-correlated DF-MP2-F12 level of theory [126-128] in the
frozen-core approximation using aug-cc-pVDZ-F12 [129] atomic orbital, cc-pVDZ-
F12+/OPTRI [130] resolution of the identity, and aug-cc-pVDZ/MP2FIT [131]
density fitting bases. The geminal exponent was fixed at 1.0. The electronic
structure calculations, i. e., solving the electronic Schrodinger equation (2.4) were
carried out using Molpro [132-134]. A subset of 10 % of the total number of points
in the pool was randomly selected as a test set and taken out of the pool (OOP).
5 % of the remaining data was randomly selected as a validation set. I employed
two different machine learning models, RFR, and NN, to fit the data. Exponential
functions of interatomic distances were used, with all distances considered, as

molecular descriptors, see supplementary materials at the end of the chapter.
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Furthermore, I tested the SQBF algorithm and an NN model on the PES of the
N4 molecule using previously reported electronic structure data [135].

In Algorithm 2 and Algorithm 3 it remains to specify the ensemble of models
used to estimate uncertainty. While any ensemble of ML models can be used,
I propose to use the trees of a random forest regressor (RFR) as members of
this ensemble. I argue that choosing regression trees for inferring uncertainty is
advantageous because of relatively low-training complexity and a straightforward
diversification-ability. The reader is referred to Appendix D for more information
on RFR models. The RFR combined with Algorithm 3 gives rise to a regression
version of the stochastic query by forest algorithm (SQBF) [107], employed in this
study.

Note that, in Algorithm 3, the balance between sampling points from the
sparse and high-density regions is controlled by the function L, which is linear
with respect to the community disagreement. The probability of a point being
sampled decreases linearly with the decrease of the point’s uncertainty. One can
have more freedom on this balance by considering powers of this function, i.e.,
L*, where « € R*. For a € (0,1), the algorithm will sample more points with low
uncertainty and conversely less for « € (1,00). We performed a heuristic study
of the effect of different powers a. At each AL iteration, I ran SQBF algorithm
for different values of a € {0.5,0.75,1,1.25,1.75}. The « that led to the largest
improvement in generalization error was picked the corresponding queried points
were collected. I proceeded to AL using this batch as part of the pool. The whole
procedure was repeated at every AL iteration. I found only minor improvements
of the accuracy when using multiple, optimized, values of «. I explored a few
other heuristics of similar nature, but none of them yielded significantly better
results. Hence, throughout the paper I report results obtained with a single value
of x = 1.

3.4.1 Performance

For pyrrole(H,O) I compared the performance of the RS, QBC, and SQBF AL
query algorithms considering the convergence rate and the fitting accuracy. All
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TABLE 3.1: Out-of-the-pool RMS errors (in cm 1) of the random
forest regressor and neural network models, listed as RFR/NN,
computed for various fractions of the total pool data collected by
the different AL query.

AL query 20 % 40 % 60 % 80 % 100 %

RS 183/57 117/31 81/20 52/15 39/11
QBC 141/43 74/21 49/13 41/11 38/11
SQBF 88/27 37/14 36/12 38/11 39/11

query algorithms started from the same fixed amount of m = 2458 labeled samples
and queried the same equal number of m samples at every AL iteration. For every
iteration and query algorithm, I used the RFR and NN models to fit the data.
The fitting error is defined as the RMS error of the ML models in predicting the
energies on the OOP dataset. This dataset was the same for all query algorithms
and followed the joint distribution of the problem P. The accuracy of a model on
this dataset is an estimate of the generalization error.

The fitting errors of the RFR and NN models for different query algorithms
are plotted in Figure 3.3 as functions of the AL iteration, i. e., size of labeled data.
The SQBF strategy with RFR model leads to the fastest convergence of the error.
QBC strategy outperforms RS. Similar convergence behavior of different query
algorithms can be observed for the NN model. For our dataset, the fitting error of
NN was smaller than that of RFR for all AL iterations and for all strategies by an
average factor of 3.3. Table 3.1 summarizes these results. The better performance
of NNs is partially due to the fact that NNs are easier to train to higher accuracy
and can approximate complex functions with a better control on the bias-variance
trade-off, which was enabled by using an early stopping criterion on the validation
set, see the supplementary material at the end of the chapter. The AL iterations
were terminated when the pool became empty. In practice, the iterations are to be
terminated when the derivative of the fitting error with respect to the amount of
labeled data is less than a predefined value [97] or simply when the fitting error of
the model is small enough.
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FIGURE 3.3: RMS error of out-of-the-pool datasets using (up) the
random forest regressor and (down) the neural network models
for the RS (triangles), QBC (circles), and SQBF (squares) query.
The SQBF has the fastest convergence. A neural network model,
trained on 30 % of the total amount of datapoints in the pool
achieves an RMS error of 16 cm~!. The RMS error on the full
dataset is 11 em 1. The neural networks trained on data collected
by the QBC or RS algorithms show worse performance. The same
convergence patterns hold when using a random forest regressor
to train on the data instead of a neural network, albeit at overall
somewhat slower convergence.
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TABLE 3.2: RMS mean errors and standard deviations using the
available data (in cm™1) of NN using the AL SQBF algorithm
with a NN to fit the data (present work) and latin hypercube
sampling with GPs to fit the data [136], applied to PES data of the
N4 molecule [135].

No. training data NN (cm 1) GP (em™T)

240 36518 2697 13300 £ 2770
480 26207 £1871 10027 + 1371
720 11192 £1200 8401 £ 1102
960 8111 + 668 7544 £ 972
1200 6201 £ 462 6806 £ 962
1680 4704 £ 612 — =+ -~
1800 4494 + 633 5551 + 951
1920 4284 + 658 — L --
2400 3557 £+ 675 5012 £ 832

Similarly, for the Ny molecule the SQBF algorithm was used to query geome-
tries from the pool of 16421 molecular geometries reported [135]. The OOP and
validation datasets were each generated using 10 % of the uniform-randomly
sampled pool data. An initial batch of 240 geometries was uniform-randomly
sampled from the pool and the SQBF algorithm queried 240 geometries at each
AL iteration. The same molecular descriptor as described above was used to trans-
form the data and an NN model was used for fitting; details on the NN design are
provided in the supplementary materials. This procedure was repeated 100 times
and the mean and standard deviation of the resulting NN errors on the entire
dataset as a function of the number of training examples is reported in Table 3.2.
The SQBF results are compared with the ensemble of 100 GPs used to fit the data
collected by the Latin hypercube sampling algorithm [136]. The GP method shows
a better performance for the first few AL iterations. I attribute this to the fact that
it is hard to prevent overfitting with a neural network with a very small set of
randomly selected training data. However, already at 1200 training points the two
models result in comparable accuracy. With 1680 training points, our SQBF/NN
approach achieves the same accuracy as GP with 2400 points, which corresponds
to a 30 % reduction in the size of the training dataset. All the following further
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investigations are performed for pyrrole(H,O).
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FIGURE 3.4: Normalized probability density distributions of the
number of data points N/ Niot across the potential energies plot-
ted for the data collected by the RS, QBC, and SQBF query at
different AL iterations corresponding to 20 %, 40 %, and 60 % of
the total pool. The bin width of the histograms is 34.5 em L.

3.4.2 Distribution of queried data

In Figure 3.4 I plotted the normalized distributions of the samples” electronic ener-

gies of pyrrole(H,O) collected by different AL query algorithms at three different

iterations corresponding to 20 %, 40 %, and 60 % of the total pool. Compare these

with the distribution of energies in the total pool Figure 3.2, which has a peak
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around 1600 cm !

, corresponding to the dissociation limit of pyrrole(H,O). The
densities were computed using 200 equally-sized bins covering the energy range
from 0 to 6874 cm ! and normalized to the bin width of 34.5 cm™~!. Evidently, the
probability density of data sampled by the acRS query most closely resembles the
pool distribution. On the other hand, it is clear that the QBC algorithm samples
more data with higher energies, whereas SQBF keeps a balance between both
the RS and QBC tendencies. As the number of the labeled data increases, all
probability density distributions become more similar to the distribution in the
pool.

It is reasonable to expect that a model built on a dataset sampled by QBC
algorithm will tend to have a better performance for the high-energy regions. This
is demonstrated in Figure 3.5 showing the 2D histograms of OOP energies and the
absolute errors of the RFR and NN models in predicting these energies, plotted
for different query algorithms. The histograms were computed using 20 and 50
equally-sized bins for the energy and absolute errors, respectively. The size of the
training dataset here corresponds to 40 % of the pool’s size. We clearly see that RS
achieves good accuracy for the points with low energies, QBC works best for the
points with high energies, and the SQBF maintains a more regular accuracy across
the whole energy spectrum.

3.4.3 Batch size and size of initially labeled dataset

I repeated the above calculations with a smaller batch size of 122 points instead
of the initially used 2458, starting from the same initially labeled dataset. The
convergence of the RFR fitting error with the number of training data is plot-
ted in Figure 3.6 for different query algorithms. Here, note that both QBC and
SQBEF strategies benefit slightly from using a smaller batch size. This is in accor-
dance with previous studies that showed a decreasing performance of QBC with
increasing batch size, which is due to collecting many similar samples [137].

I also studied the effect of changing the size of initially labeled dataset. Fig-
ure 3.7 shows the RER fitting errors for different query algorithms obtained from
initial datasets of 100 and 2458 samples with the batch size of 2458. Observe that
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FIGURE 3.5: 2D histograms of discrepancies between the predic-
tions of random forest regressor and neural network models
(trained on 40 % of the pool) and the potential energy of the
out-of-the-pool data for different query algorithms; 20 and 50
bins were used for energy and absolute error, respectively. Mod-
els trained on data collected by QBC tend to perform better on
high-energy regions than on low-energy regions. The opposite is
true for RS. In contrast, models trained on data collected by SQBF
have a more uniform accuracy across the whole energy spectrum.

RS query algorithm outperforms QBC, and that the accuracy of QBC declines
significantly. This suggests that with a fewer number of initially labeled data,
an AL strategy should focus on collecting grid points from dense regions of the
configuration space rather than sampling points with high uncertainties in their
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FIGURE 3.6: Effect of the size of initially labeled data on the out-
of-the-pool error of an RFR model trained using data collected
by the RS (blue, triangles), QBC (red, circles), and SQBF (orange,
squares) query. Solid (points) and dashed lines correspond to 100
and 2458 initially labeled data, respectively.

predictions. Notably, the SQBF performance is not affected by the size change.

3.5 Summary and Conclusion

The first principles calculations of molecular PESs, especially for molecules with
many fluxional degrees of freedom, are computationally expensive. One of the
major bottlenecks originates from the need to solve the high-dimensional elec-
tronic Schrodinger equation (2.4) for tens and hundreds of thousands of different
molecular geometries. In particular, standard methods for such calculations suffer
from the curse of dimensionality which render them prohibitive. Algorithms that
allow to reduce the number of necessary single-point calculations with controlled
accuracy of the resulting PES are thus highly demanded. For small molecules,
grid reduction algorithms were found beneficial in calculations employing high-
level electron correlation, bases, and relativistic corrections, which are usually
computationally affordable only for a relatively small number of points [138-141].
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FIGURE 3.7: Effect of the size of initially labeled data on the out-
of-the-pool error of an RFR model trained using data collected
by the RS (blue, triangles), QBC (red, circles), and SOBF (orange,
squares) query. Solid (points) and dashed lines correspond to 100
and 2458 initially labeled data, respectively.

I presented in this chapter a theoretical insight into AL, a learning paradigm
that allows one to 