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Abstract

Major problems in quantum molecular physics, such as quantum modeling of
chemical dynamics and studying atmospheres of hot exoplanets, pose prohibitive
computational challenges that are at the forefront of research efforts in numerical
analysis and scientific computing. In particular, it is often required in these appli-
cations to approximate a vast number of highly-oscillatory solutions of infinite-
dimensional eigenvalue problems and evolution equations in very high dimen-
sions. Such tasks are rather prohibitive using standard linear numerical schemes
due to the curse of dimensionality phenomena and the need for high resolution
for a reliable modeling of the oscillatory behavior. While nonlinear approximation
concepts, e. g., neural networks, promise to mitigate the curse of dimensionality
and offer better approximation abilities, they are rather fragile and not straight-
forward to use for large-scale problems in quantum molecular physics. This work
aims at reducing the computational costs of numerical quantum simulations of
molecular systems and their scaling via novel spectral and active learning algorithms.
The proposed algorithms expand the approximation capabilities of standard linear
methods while maintaining a high robustness.

In particular, standard spectral methods for solving differential equations
are extended to a spectral learning framework, where standard bases of inner-
product spaces are composed with invertible neural networks. I provide sufficient
conditions on the neural networks to guarantee that the resulting sequence of
functions is also a basis of the underlying inner-product space. This allows one
to define well-posed numerical schemes using these augmented bases to solve
various approximation problems. As application, I derive convergence guarantees
of spectral learning for approximating Schwartz functions and eigenvalues to
Schrödinger operators as the size of the truncated basis goes to infinity. Moreover,
it is shown that the convergence of spectral learning is faster than that of spectral
methods. This is achieved by showing that the total variation of compactly-
supported smooth functions with respect to the push-forward measures induced
by neural networks admit minima. Theoretical results are supported by numerical
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simulations to compute the spectra of linear infinite-dimensional operators that
characterize nuclear motions in polyatomic molecules. Results show a two order
increased accuracy over standard spectral methods upon the use of invertible
neural networks.

In addition, I consider the construction of molecular potential energy surfaces,
i. e., the solution of the parametric electronic Schrödinger equation in an active
learning paradigm. I derive an upper bound on the generalization error in an
active learning setting, which gives a theoretical insight into the construction of
active learning algorithms. I propose and implement an algorithm that follows this
insight and that allows one to infer the solution operator with minimial datasets.
Simulations are performed on polyatomic molecules and results indicate a roughly
two-times faster convergence than what is possible via common active learning
algorithms.
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Zusammenfassung

Wichtige Probleme der molekularen Quantenphysik, wie die quantenmechanische
Modellierung chemischer Dynamiken und die Untersuchung von Atmosphären
heißer Exoplaneten, stellen unüberwindbare Rechenschwierigkeiten dar, die an
der Spitze der Forschungsbemühungen im Bereich der numerischen Analyse
und des wissenschafltichen Rechnens stehen. In diesen Anwendungen ist es oft
erforderlich, eine große Anzahl stark oszillierender Lösungen von Eigenwertprob-
lemen unendlicher Dimensionlaität und Evolutionsgleichungen in sehr hohen
Dimensionen zu approximieren. Derartige Aufgaben sind mit linearen Standard-
verfahren aufgrund des Fluches der Dimensionalität und der Notwendigkeit einer
hohen Auflösung zur zuverlässigen Modellierung des oszillierenden Verhaltens
schwer zu lösen. Während nichtlineare Approximationskonzepte, z. B. neuronale
Netze, versprechen, den Fluch der Dimensionalität zu mildern, und bessere Ap-
proximationsfähigkeiten bieten, sind sie eher fragil und nicht einfach für groß
angelegte Probleme in der molekularen Qauntenphysik anzuwenden. Diese Arbeit
zielt darauf, die Rechenkosten numerischer quantenmechanischer Simulationen
von molekularen Systemen und deren Skalierung durch neuartige spektrale und
aktive Lernalgorithmen zu reduzieren. Die vorgeschlagenen Algorithmen erweit-
ern die Approximationsfähigkeiten von linearen Standardverfahren und zeigen
gleichzeitig eine hohe Robustheit.

Insbesondere werden spektrale Standardverfahren zur Lösung von Differen-
tialgleichungen in einem spektralen Lernrahmen erweitert, in dem Standardbasen
von Innenprodukträumen mit invertierbaren neuronalen Netzen komponiert wer-
den. Es werden ausreichende Bedingungen für die neuronalen Netze bereitgestellt,
um sicherzustellen, dass die resultierende Funktionenfolge ebenfalls eine Basis
des zugrunde liegenden Innenproduktraums ist. Durch die Verwendung dieser
erweiterten Basen können gut gestellte numerische Verfahren definiert werden,
um verschiedene Approximationsprobleme zu lösen. Als Anwendung werden
Konvergenzgarantien des spektralen Lernens zur Approximation von Schwartz-
Funktionen sowie Eigenwerten von Schrödinger-Operatoren abgeleitet, wenn die
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Größe der abgeschnittenen Basis gegen Unendlich geht. Darüber hinaus wird
gezeigt, dass die Konvergenz des spektralen Lernens schneller ist als die von
spektralen Verfahren. Dies wird dadurch gezeigt, dass die Variation von kompak-
ten glatten Funktionen bezüglich der durch neuronale Netze induzierten Push-
Forward-Masse Minima aufweist. Die theoretischen Ergebnisse werden durch
numerische Simulationen zur Berechnung der Spektren linearer unendlichdi-
mensionaler Operatoren gestützt, die nukleare Bewegungen in polyatomaren
Molekülen charakterisieren. Die Ergebnisse zeigen eine um zwei Ordnungen
höhere Genauigkeit gegenüber spektraler Standardverfahren durch die Verwen-
dung invertierbarer neuronaler Netze.

Zusätzlich betrachte ich die Konstruktion von Potentialenergieflächen von
Molekülen, d.h. die Lösung der parametrischen elektronischen Schrödingergle-
ichung in einem aktiven Lernparadigma. Ich leite eine obere Schranke für den
Generalisierungsfehler in einem aktiven Lernparadigma her, die Einblicke in die
Konstruktion aktiver Lernalgorithmen gibt. Diesem Ansatz folgend schlage ich
einen Algorithmus vor und setze ihn um. Er erlaubt, den Lösungsoperator mit
minimalen Datensätzen zu bestimmen. Simulationen werden an polyatomaren
Molekülen durchgeführt und die Ergebnisse deuten auf eine etwa doppelt so
schnelle Konvergenz hin als bei herkömmlichen aktiven Lernalgorithmen möglich
ist.
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Chapter 1

Introduction

Chemical reactions underlie the mechanisms of life. For instance, chemical reac-
tions between macromolecules enable the replication of genetic phenomena, and
the interplay of proteins with light define fundamental processes of nature, such
as photosynthesis. Observing ultrafast chemical reactions, i. e., molecules "in ac-
tion", has been a longstanding dream in the molecular sciences [1–3], whereby the
observation of the transition state1 [4], and the recording of nuclear and electronic
motions [5] during the breaking or formation of bonds is of particular interest. As
in the production of movies from a number of sequential images, observing such
reactions consists of taking several snapshots of the positions of the nuclei and
the electron densities that constitute molecules. Piecing these snapshots together
creates the so-called quantum-molecular movie. While cameras from our everyday
life capture light bouncing off objects, they do not work for imaging nature in its
smallest scales. Molecules are very tiny compared to everyday objects. Hence, one
would need cameras that operate at much shorter wavelengths than the visible
light, wavelengths that are comparable to atomic distances. For this purpose one
could use, e. g., x-rays or the light corresponding to energetic beams of electrons.
The technological developments of pulsed light and electron sources have, indeed,
paved way for important steps toward this dream. In particular, the so-called
pump-probe observation scheme [6] has emerged as a powerful tool to probe the
structure and dynamics of matter at atomic scale. In this scheme, a laser pulse

1A very short-lived configuration of atoms at a local energy maximum in a reaction coordinate.
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(pump) is used to trigger a chemical reaction, i. e., to put molecules "at work",
whereby defining the start of the reaction. Then another laser pulse (probe) is used
to monitor the progress of the reaction.

Accurate simulations of molecular motions and interactions with laser fields
provide crucial information for designing and elucidating ultrafast imaging ex-
periments [7–9] and are, hence, highly-required. Moreover, such simulations are
essential for interpreting observations and experiments in a variety of other ap-
plications, such as spectroscopy [10, 11], astrophysics [12, 13], and cold chemical
reactions [14]. Underlying these simulations is quantum mechanics, a theory that
explains nature at small scales. At its core, quantum mechanics models objects as
elements of complex Hilbert spaces and postulates that their physical properties
are characterized by unbounded linear operators on these spaces. The possible
outcomes of a certain measurement are mathematically represented by the spec-
trum of the corresponding operator. The state of the object as a function of time
is governed by the time-dependent Schrödinger equation, a fundamental law for
describing non-relativistic particles in physics and chemistry [15]. Throughout the
last hundred years, quantum mechanics and generalizations thereof have proved
an unprecedented ability to describe nature at small scales ranging from that of
quarks, the tiniest known particles, to that of atoms, electrons and relatively large
molecular systems such as proteins. However, Dirac’s observation2 on the imprac-
ticality of the quantum theory and the difficulty of subjugating it to numerical
approximations is as true today as it was in 1930. Nowadays, quantum dynamics
of molecules poses a variety of computational challenges that are at the forefront
of research efforts in the fields of approximation theory and numerical analysis [15,
16]. These challenges include the approximation of vast number of eigenfunctions
of unbounded linear operators and the simulation of ultrafast dynamics for long
times. Additionally, the target functions are often highly oscillatory, and lie in
high-dimensions [17].

The need to approximate highly-oscillatory functions is prevalent in quantum

2“For dealing with atoms involving many electrons the accurate quantum theory, involving a
solution of the wave equation in many-dimensional space, is far too complicated to be practical. One
must therefore resort to approximate methods.” P.A.M. Dirac, 1930
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physics applications. For example, when imaging chemical reactions, strong laser
fields can induce dissociation dynamics in molecules, i. e., the fragmentation of
molecules into several parts [18, 19]. An accurate quantum theoretical description
of such reactions requires the calculations of many eigenfunctions, i. e., molecular
wavefunctions, of a very oscillatory nature. This problem is also encountered
in computations of spectra of hot exoplanets, where hundreds and thousands of
eigenfunctions corresponding to different molecular motions are required [20]. A
reliable numerical approximation of many highly-oscillatory functions is rather
prohibitive [21]. Oscillation is, in a sense, an artifact of resolution, i. e., upon zoom-
ing enough all functions oscillate mildly [21]. Hence, increasing the resolution of
the underlying numerical scheme can, in principle, improve the accuracy of the
approximation. However, an increase in the oscillatory behavior necessitates an
exponential increase in resolution for a dependable approximation.

Another computational challenge in quantum simulations follows from the
intrinsic high dimensionality of quantum systems. For instance, describing static
and dynamic properties of two quantum particles, each having three degrees of
freedom, involves solving an infinite dimensional eigenvalue problem and an
evolution equation in six and seven dimensions, respectively, and the inclusion of
only one more particle increases the dimensionality of these problems by three.
This is particularly problematic for molecules. For example, benzene is composed
of 12 nuclei and 42 electrons, and the corresponding static Schrödinger equation
is, hence, 162-dimensional. The prohibitive difficulties in performing simulations
of such high-dimensional quantum systems prompted extensive research into
deriving reduced models, i. e., effective fundamental laws. For example, noting
that the electrons in a molecule are lighter than the nuclei by at least a factor of one
thousand gives rise to the famous Born-Oppenheimer approximation [17, 22, 23].
The Born-Oppenheimer approximation breaks the full-dimensional Schrödinger
equation of the nuclei into two lower-dimensional equations. The first equation,
known as the electronic Schrödinger equation, describes the motion of the elec-
trons in a field of static nuclei. Here, the spatial configuration, i. e., positions of
the nuclei act as a parameter to the equation. The second equation describes the
motion of the nuclei under an effective potential generated by the electrons. While
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separating the scales reduces the complexity of a full numerical treatment, simu-
lating the reduced dynamics remains difficult due to two reasons. First, solving
a reduced Schrödinger equation for the nuclei requires the computation of an
effective potential, known as the potential energy surface (PES). The PES of a
molecule is a function that maps spatial configurations of the nuclei to a certain
eigenfunction of the corresponding electronic Schrödinger equations. PESs of
molecules can be rough and high-dimensional. Their construction is often cast
as a statistical regression problem, a task that is rendered more complex by the
high expenses associated with generating the training data. Second, the standard
methods for simulating the reduced-order, yet still high-dimensional, dynamics,
such as finite volume [24, 25], finite differences [26, 27] or spectral methods [28–30]
suffer from the curse of dimensionality, i. e., their costs scale exponentially with the
dimension of the system.

The aforementioned bottlenecks, i. e., the high-oscillatory nature of solutions
and the curse of dimensionality can be formally illustrated by typical upper
bounds on the approximation error of classical approximation methods. Denoting
by f , f ∗ the function to be approximated, and the approximation, respectively.
Such bounds look like

‖ f − f ∗‖L2 ≤ C(d)‖ f ‖H2 ,

where C is often exponentially dependent on the dimension d of the problem and
the right-hand side converges to zero with an increasing resolution. The Sobolev
H2 norm of f has bigger values for highly-oscillatory functions, meaning that
approximating such functions suffers from a slower convergence.

The advent of nonlinear approximation methods in general and neural net-
works in particular has profoundly advanced simulations of quantum molecular
dynamics. One of the first applications in quantum molecular physics to witness a
revolution driven by the use of neural networks is the construction of PESs [31,
32]. The construction of PESs can be straightforwardly cast as a standard regres-
sion problem, and the potential of using neural networks to this end was, hence,
recognized as early as 1995 [33]. Indeed, the use of neural networks for building
PESs has been recognized as a paradigm shift for constructing PESs, especially
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in high-dimensions [31]. It led to neural networks that can predict a range of
chemical properties for molecules and materials [34], such as force-fields, and
polarizability.

Another, less mature and more recent application of neural networks for quan-
tum simulations is approximating solutions of Schrödinger equations. In many
applications of practical importance, the curse of dimensionality can be avoided
by selecting a nonlinear method of approximation rather than a linear method.
Indeed, nonlinear methods, e. g., neural networks, have shown impressive approxi-
mation capabilities in high-dimensional modeling of problems ranging from image
processing to natural language processing. This has prompted extensive investiga-
tions into the applicability of such methods for solving differential equations in
general [35–40], and Schrödinger equations in particular [41–49]. In practice, it was
shown that such models do, indeed, provide high-accuracy solutions for solving
high-dimensional differential equations, while promising smaller scaling with the
dimension of the problem than that of linear models. However, this comes at the
cost of less efficiency since a straightforward utilization of neural networks to
approximate solutions to differential equations is often not possible and extensive
architectural engineering is required. Moreover, direct ways of increasing the
accuracy of standard neural networks often do not exist. These difficulties render
the use of neural networks fragile [50]. Moreover, such nonlinear models do
not lend themselves straightforwardly to constructive convergence analysis, and
results herein are mainly limited to Barron spaces [50–52], which are specifically
tailored to neural networks. Indeed, several results on analyzing these nonlinear
models for solving differential equations assume that the solutions and the data of
the equation lie in Barron spaces [53–58]. As for approximating highly-oscillatory
functions via neural networks, less is known. While some theoretical results show
that the approximation error of neural networks decays exponentially in the num-
ber of non-zero weights in the network for approximating oscillatory textures [59],
the analysis assumes no constraints on the learning algorithm or on the size of
the dataset. In fact, it is demonstrated that standard neural networks with gradi-
ent descent optimization algorithms tend to fit training data by a low-frequency
function [60].
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This thesis

The present work tackles two major computational challenges encountered in
quantum simulations of molecules. Specifically, the challenges are related to
constructing PESs of molecules and solving static Schrödinger equations for the
nuclei. While the two problems being addressed are formally different, they are
both associated with the approximation of rough functions in high dimensions.

Chapter 2 provides a formal introduction to quantum molecular dyanmics,
the Born-Oppenheimer approximation, and the emergence, therefrom, of the
parametric electronic Schrödinger equation and an effective Schrödinger equation
for the nuclei. Afterwards, the problem of constructing PESs (Section 2.2) and the
Schrödinger equation for the nuclei in a variational formulation (Section 2.3) are
introduced.

Chapter 3 describes the first contribution of this work. It starts with an exten-
sive survey of the state-of-the-art approaches for constructing PESs in a supervised
learning paradigm and emphasizes limitations thereof. I then highlight the need
for constructing PESs in an active learning paradigm, where the choice of the train-
ing set in the regression task is optimized. I provide a theoretical insight for a
good choice of the dataset in terms of an empirical risk minimization principle
(Theorem 3.2). An algorithm that follows this insight is proposed (Algorithm 3)
and applied in a novel simulation to solve the electronic Schrödinger equation of
pyrrole(H2O) cluster. The proposed algorithm led to, roughly, two times faster
convergence than commonly used learning algorithms for the construction of the
PES of pyrrole(H2O).

Chapter 4 describes the second contribution of this work. I start the chapter by
introducing standard spectral methods for solving differential equations in gen-
eral and Schrödinger equations in particular. State-of-the-art methods for solving
Schrödinger equations and limitations thereof are surveyed. I propose and de-
velop spectral learning, a natural nonlinear extension of standard spectral methods
that is based on augmenting the expressivity of standard bases of inner-product
spaces using machine learning models. This idea mimics the use of normalizing
flows to augment the expressivity of base distributions for modeling of probability
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distributions. I characterize sufficient conditions on the utilized machine learning
models, for the resulting sequences of functions to define bases of the underlying
inner-product space (Theorem 4.1). Furthermore, it is shown that normalizing flows,
i. e., standard invertible neural networks, satisfy these conditions. As an applica-
tion, I prove that spectral learning is well-posed, in the sense that convergence
guarantees as the size of the truncated augmented basis increases to infinity can
be obtained for approximating Schwartz functions (Lemma 4.2) and eigenvalues
of Schrödinger operators (Theorem 4.2). I demonstrate that faster convergence
rates than linear spectral methods can be achieved via spectral learning (Theo-
rem 4.5). This is shown by proving that the total variation of the target function
with respect to the push-forward measures induced by the augmenting neural
networks admits minima. I performed numerical simulations using the proposed
nonlinear framework to compute the spectra corresponding to nuclear motions of
three-atomic molecules. Numerical results, reported in Section 4.3, agree with the
theoretical observations and show a 2-order of magnitude increase of performance.
Results are particularly relevant for approximating eigenfunctions corresponding
to large eigenvalues, which are typically highly-oscillatory.

I would like to draw the attention of the reader to the fact that the present
work is of an interdisciplinary nature. It was developed in the framework of
DASHH, Data science in Hamburg HELMHOLTZ Graduate School for the Struc-
ture of Matter, whose aim is to employ formal sciences, i. e., mathematics and
computer science, and advances in machine learning to solve problems in the
natural sciences. The work uses terminology and results from three different
research domains, that of mathematical/numerical analysis, machine learning and
quantum molecular physics. However, I made a special effort to make the text
accessible to mathematicians, physicists and computer scientists. In particular,
I assumed little to no previous expertise of the reader in various domains and
extended the main text with extensive appendices to provide the previous knowl-
edge necessary to grasp the contributions of the present work. I admit, though,
that the formal discussion of learning algorithms and of spectral learning may re-
main rather inaccessible to the non-expert formal scientist. To make contributions
more accessible, I made efforts to present the simulations of the proposed methods
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(Section 3.4 and Section 4.3) in a way that does not fully require the understanding
of the theoretical underpinnings.

Finally, I call on readers with a formal science background to note that the
proposed methods, although developed to solve problems in quantum molecular
physics, are applicable to a wide variety of other domains. In particular, the
proposed learning Algorithm 3 is applicable to any statistical inference problem
and the proposed spectral learning paradigm (Definition 4.3) can be used to solve
general differential equations. To facilitate the application of these methods to
other problems, the proposed tools were presented in an abstract formulation.
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Chapter 2

Quantum molecular dynamics

The simulations one requires for interpreting observations and experiments in
domains such as imaging ultrafast molecular dynamics, spectroscopy, and as-
trophysics are, essentially, based on solving the evolution equation of quantum
systems

ih̄
∂ψ

∂t
= (H + Ht)ψ (2.1)

with an appropriate initial condition. Here, i =
√
−1 is the imaginary unit, and

h̄ = h/2π where h is Planck’s constant. H, the Hamiltonian, is a differential
operator characterizing the total energy of the molecular system, while Ht is a
time-dependent operator that can model, e. g., external fields. (2.1) is called the
time-dependent Schrödinger equation. Generally, solving (2.1) starts by describing
static behavior of molecular objects, which is governed by the infinite dimensional
eigenvalue problem

Hψk = Ekψk, where
∫

Ω
|ψk|2 dµ = 1 for all k ∈N≥0, (2.2)

and Ω ⊆ Rd is open. (2.2) is called the time-independent Schrödinger equation
(TISE). Each eigenpair (ψk, Ek) of (2.2) represents a quantum state, ψk, and its
corresponding energy, Ek. Solutions of (2.2) are then used as a basis to solve (2.1).

The postulates of quantum mechanics represent quantum states as elements
of complex Hilbert spaces. In molecular physics, the Hilbert space is set to be
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L2. Since energies, as all other physically measurable quantities, are real values,
these postulates restrict the choice of Hamiltonians to those that have real spectra.
The statistical interpretation of quantum mechanics views |ψ|2 as the probability
density for the position of the particle to be located in a certain volume. The
restriction of this quantity to integrate to one corresponds to the certainty of
finding the particle somewhere in Ω. Denote by Nl , Nn the number of electrons
and nuclei in the molecule. Since each particle has three degrees of freedom, a
quantum description of a molecular system would, then, mean solving (2.2) in
3(Nn + Nl) dimensions, a task that is prohibitive even for small molecules.

The focus in this work is on solving (2.2). I start this chapter by introduc-
ing the generic Hamiltonian for molecular systems and the assumptions thereon
that comply with the postulates of quantum mechanics. I then discuss the Born-
Oppenheimer (BO) approximation that allows one to split (2.2) for molecules into
two TISEs. This model reduction theorem gives rise to the first research prob-
lem tackled in this work, mainly constructing potential energy surfaces (PESs).
This task is often posed as a supervised learning problem. I highlight numerical
difficulties that render the construction of PESs prohibitive for bigger molecular
systems. Finally, the framework of the second contribution of this work is out-
lined in Section 2.3, where spectral methods for solving the time-independent
Schrödinger equation (TISE) via the Rayleigh-Ritz principle are discussed, and
limitations thereof are highlighted.

The necessary mathematical definitions and results from the theory of Hilbert
spaces are summarized in Appendix A.

2.1 Modeling of quantum molecular mechanics

The Hamiltonian of a molecular system is a linear operator that is often composed
of two parts [15, 61], a kinetic energy operator

T = −1
2

∆,
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where ∆ denotes the Laplacian operator, and a multiplication operator V that is
called a potential energy term, i. e.,

V f (x) = V(x) f (x), x ∈ Ω,

which describes static forces in the quantum system. To comply with the statisti-
cal interpretation of quantum mechanics, the range of Hamiltonian operators is
assumed to be L2 defined on an open Ω in the Euclidean space Rd with functions
taking values in R. In what follows the dependence of functional spaces on the
domain is ignored for notational simplicity. Denote by 〈., .〉 the L2 inner product
and set ‖ · ‖ =

√
〈., .〉.

Since Hamiltonians correspond to real measurable quantities they should have
real spectra. The right mathematical condition to impose this requirement is
that of self-adjointness (see Theorem A.2). Denote by D(T) the domain of T. To
guarantee that the operator T : D(T) → L2 is self-adjoint set D(T) = H2. The
right conditions on the potential for H to remain self-adjoint was a subtle problem
in the development of quantum mechanics and was satisfactorily addressed by
Kato and Rellich [15, 62, 63].

Theorem 2.1 ([15]). Let T be a self-adjoint operator on a Hilbert space, and V be a
symmetric operator satisfying

‖Vψ‖ ≤ a‖ψ‖+ b‖Tψ‖ for all ψ ∈ D(T).

Then, H = T + V is self-adjoint with domain D(H) = D(T).

For example, any bounded potential satisfies the above condition and the
Hamiltonian is, thus, self-adjoint. To accommodate the Coulomb potential V =

|x|−1 one often adopts the following setting.

Assumption 2.1. V = V∞ + V2 with V2 ∈ L2, V∞ ∈ L∞.

This potential satisfies the above condition and H = T + V is a self-adjoint
operator with D(H) = H2. Note, however, that the Hamiltonian in this setting
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is an unbounded linear operator due to the V∞ term. This makes the analysis of
quantum systems nontrivial.

2.1.1 Molecular Hamiltonians

Consider molecules composed of Nn nuclei of masses Mj and electric charges Zje,
with Zj denoting the atomic number of the jth nuclei, and Nl electrons of masses
m and charges e.

Let xj, yl denote the spatial coordinates of the jth nucleus and lth electron,
respectively, and let (x, y) ∈ Ωnuc ×Ωel ⊆ Ω ⊆ R3(Nn+Nl) denote the electronic
and nuclear coordinates, respectively. I also call a certain x a nuclear/molecular
geometry. The molecular Hamiltonian is the sum of a kinetic and potential energy
parts [15, 61]

Hmol = Tnuc + Tel︸ ︷︷ ︸
T

+Vnn + Vne + Vee︸ ︷︷ ︸
V

, (2.3)

where Tnuc and Tel are the kinetic energy operators of the nuclei and the electrons,
respectively

Tnuc = −
Nn

∑
j=1

h̄2

2Mj
∆xj ,

Tel = −
Nl

∑
l=1

h̄2

2m
∆yl .

The potential is the sum of the nucleus-nucleus

Vnn(x) = ∑
1≤k<j≤Nn

ZkZje2

|xk − xj|
,

nucleus-electron

Vne(x, y) = −
Nl

∑
l=1

Nn

∑
j=1

Zje2

|yl − xj|
,
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and electron-electron interactions

Vee(y) = ∑
1≤j<l≤L

e2

|yj − yl |
.

The TISE for molecules is extremely high-dimensional even for small molecules.
Consequently, molecular quantum mechanics makes extensive use of reduced-
order modeling and approximation theorems. I present the Born-Oppenheimer
(BO) approximation, a model-reduction theory that allows for reducing the diffi-
culty of solving the TISE for molecules.

2.1.2 Born-Oppenheimer approximation

The BO approximation [15, 17, 22, 23, 61] rests on the observation that the mass
of the electrons is negligible in comparison to that of the nuclei. Given the same
amount of momentum, electrons would then move on a much faster timescale
than that of the nuclei. One can, hence, split the molecular TISE into two lower-
dimensional TISEs. The first, known as the electronic Schrödinger equation, is a
parametric Schrödinger equations that describes the motion of the electrons in a
field of static nuclei. The second is a TISE that describes the motion of the nuclei
in an effective field generated by the electrons.

Let Hel = Tel + Vne + Vee + Vnn denote the electronic Hamiltonian and note that
it parametrically depends on the positions of the nuclei through the potentials
Vne, Vnn. The electronic TISE reads

Helφel,k(y; x) = Eel,k(x)φel,k(y; x) for all k ∈N≥0. (2.4)

Note that (2.4) is a parametric differential equation, where the parameter x take
values in the uncountably infinite set Ωnuc, corresponding to different nuclear
(molecular) geometries.

Methods to compute the solutions of (2.4) exist [23] and are covered in the
wide field of quantum chemistry. I now discuss how to use these solutions to
solve the remainder of the molecular Schrödinger equation. Assume that the jth
eigenfunction ψj of (2.2) with the molecular Hamiltonian (2.3) can be written as
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ψj(x, y) = ∑k φel,k(y; x)φnuc,j(x). Substituting that into the molecular Schrödinger
equation one has

∑
k
(Tnuc + Hel)(φel,k(y; x)φnuc,j(x)) = ∑

k
Ejφel,k(y; x)φnuc,j(x).

Thus, using chain rule one has

∑
k
(Tnucφel,k(y; x)φnuc,j(x) + ∑

k
φel,k(y; x)(Tnucφnuc,j(x))−

− 2 ∑
k

Nn

∑
j=1

h̄2

2Mj
(∇xj [φel,k(y; x)).(∇xj φnuc,j(x))+

+ ∑
k

Eel,k(x)φel,k(y; x)φnuc,j(x) = ∑
k

Ejφel,k(y; x)φnuc,j(x).

Multiplying by φ∗el,p, the adjoint of φel,p, and integrating over Ωel one has

∑
k
〈φel,p, Tnucφel,k〉φnuc,j(x) + Tnucφnuc,j(x)−

− 2 ∑
k

Nn

∑
j=1

h̄2

2Mj
〈φel,p,∇xj φel,k〉.∇xj [φnuc,j(x)]+

+ Eel,p(x)φnuc,j(x) = Ejφnuc,j(x),

where I used the fact that eigenfunctions of (2.4) are orthonormal. Note that

〈φel,p, TnucHelφel,k〉 = Eel,k〈φel,p, Tnucφel,k〉
〈Helφel,p, Tnucφel,k〉 = Eel,p〈φel,p, Tnucφel,k〉.

Thus,

〈φel,p, Tnucφel,k〉 =
〈φel,p, [Hel, Tnuc]φel,k〉

Eel,p − Eel,k
,

where [., .] denotes the commutator between two operators. Assuming that the
eigenvalues of (2.4) are well separated, 〈φel,p, Tnucφel,k〉 is very small and can be
neglected. Same argumentation can be developed for 〈φel,p,∇xj φel,k〉. Thus, one



2.2. Electronic Schrödinger equations and potential energy surfaces 15

ends up with a TISE for the nuclei

(Tnuc + Eel,p)︸ ︷︷ ︸
Hnuc

φnuc,j = Ejφnuc,j for all j ∈N≥0, (2.5)

where Enuc,p : Ωnuc → R is a function, called the potential energy surface that, given
any arrangement x of the nuclei returns the corresponding pth eigenvalue of the
electronic Schrödinger equation (2.4). Fix p = 0, i. e., consider only the ground
electronic state, and drop the notational dependence of the potential energy surface
on it for simplicity.

2.2 Electronic Schrödinger equations and potential en-

ergy surfaces

The solution of the time-independent Schrödinger equation for the nuclei (2.5)
requires first the construction of the linear operator Hnuc. This, in turn, requires
finding the lowest eigenvalue of the parametric Schrödinger equation (2.4). Since
the nuclear geometries x take values in an uncountably infinite set, and an analytic
solution is often not achievable, this task is prohibitive. It is, therefore, replaced by
computing the smallest eigenvalue of (2.4) for some selected finite set of the nuclear
coordinates, and inferring the ground-state energy for other nuclear coordinates.
In particular, given a set of nuclear geometries x̂ = {xk}k, and the corresponding
electronic energies Ê = {Ek

el}k
1 the goal is to be able to infer the electronic energy

for a nuclear geometry x /∈ x̂. While this task can be performed via an interpolation
procedure of the dataset ẑ = {(xk, Ek

el)}k, this is not recommended in practice,
since solving (2.4) for the set x̂ is not an exact process and often contains errors.
Instead, this task is often performed via a linear or nonlinear regression where
both the input x and output Eel are interpreted as random variables and their
causal relation is assumed to be governed by a probability distribution P(x, Eel).
Given a class of hypothesis functions H one would then choose a function h∗ that

1Superscript refers to the observation, i. e., Ek refers to the kth empirical observation of the random
variable E.
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reproduces the dataset and generalizes well beyond it. In practice, the following
problem is solved

1
|D| ∑

(xk ,Ek
el)∈ẑ

l(Ek
el, h(xk)) + γβ(h(xk)) −→ min

h∈H
, (2.6)

where l is the loss function quantifying the discrepancy between the true energies
and the predicted ones, and β(h) is a regularization term that constraints the
complexity of the hypothesis h with λ ∈ R+. While this task is clearly easier than
solving (2.4) for any value of x, it is still complex since generating the dataset is
a dimension-dependent problem. In particular, one needs exponentially more
computational resources to generate the target values E for an increasing dimen-
sionality of the molecular system. Moreover, the quality of the minimizer h∗ of
(2.6) highly depends on the choice of D. In Chapter 3 I discuss an active learning
framework to extend the regression problem defined in (2.6) into an optimization
over the choice of the training dataset D as well.

2.3 Schrödinger equations for the nuclei

The nuclear Schrödinger equation (2.5) is the second step to characterize quantum
properties of molecules in the Born-Oppenheimer picture. Similar to the electronic
Schrödinger equation (2.4), the numerical treatment of this equation for polyatomic
molecules is not straightforward due to its high dimensionality, since the nuclear
geometries lie in R3Nn . Moreover, several applications require the computations
of many excited states that are often highly-oscillatory. These reasons render
numerical simulations challenging.

A first step of common methods to solve (2.5) is to write its weak formulation.
Multiplying by a test function v with enough regularity and taking the inner
product in L2, one has

〈v, (Tnuc + Eel,p)φnuc,j〉 = Enuc,j〈v, φnuc,j〉.
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Choose a trial solution γj ∈ H2 and drop the dependence on j for simplicity of
notation. In the special case v = γ where ‖γ‖ = 1, the weak formulation of (2.5)
reads

〈Gγ, Gγ〉+ 〈γ, Eelγ〉 = Enuc, (2.7)

where G = ∑Nn
j=1

h̄√
2Mj
∇. Define

ε(γ) := 〈Gγ, Gγ〉+ 〈γ, Eelγ〉 (2.8)

to be the linear form corresponding to the weak formulation (2.7). It turns out that,
under proper assumptions on the potential Eel, this linear form has a minimum
and this minimum corresponds to the smallest eigenvalue of (2.5).

2.3.1 A variational formulation

Several weak formulations of differential equations correspond to a variational
principle, i. e., the weak solution can be obtained by minimizing some energy
functional, such as, e. g., the Poisson equation with homogeneous Dirichlet bound-
ary conditions. One can, indeed, construct similar results for TISEs. The correct
assumptions on the potential function to obtain these results read as follows [63].

Assumption 2.2 (Conditions on the potential function).
for all d ≥ 3 : Eel ∈ L∞(Rd) + Ld/2(Rd)

d = 2, for all ε > 0 : Eel ∈ L∞(Rd) + L1+ε(Rd)

d = 1 : Eel ∈ L∞(Rd) + L1(Rd)

,

The variational result is based on the following two lemmas. The first lemma
tells us that ε(γ) is bounded from below.

Lemma 2.1 ([63]). Under Assumption 2.2 there exist C, D > 0 with

ε(γ) ≥ C
∫

Ωnuc
|∇γ|2 dµ− D‖γ‖2.
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In particular,
E0 := inf{ε(γ) | ‖γ‖ = 1} > −∞. (2.9)

The following result establishes a correct setting that guarantees the existence
of a minimum of ε(γ).

Lemma 2.2 ([63]). Under Assumption 2.2 the potential energy

P(γ) =
∫

Ωnuc
|γ|2 Eel dµ

is weakly continuous in H1. In other words, if γj → γ weakly in H1, then P(γj)→ P(γ)
as j→ ∞.

The stage is now ready to state the main theorem.

Theorem 2.2 (Existence of a minimum of the energy functional [63]). Under As-
sumption 2.2 and assuming that

E0 = inf{ε(γ) | γ ∈ H1, ‖γ‖ = 1} < 0

there exists γ0 ∈ H1, with ‖γ0‖ = 1 and ε(γ(0)) = E0. Moreover, (γ0, E0) solves the
Schrödinger equation (2.5) in the weak sense.

Proof. A proof is provided in the supplementary material section at the end of this
chapter.

Remark 2.1. It follows that E0 = infψ∈D(H),‖ψ‖=1 ε(γ) since D(H) is dense
in H1(D(H) is dense in H2 which is dense in H1).

Theorem 2.2 guarantees that the smallest eigenvalue of the Schrödinger equation
can be computed using a variational method. The same can be done for higher
eigenvalues. However, here the minimization is performed over spaces that are
orthogonal to the eigenfunctions corresponding for smaller eigenvalues. Define

E1 = inf{ε(γ) | γ ∈ H1, ‖γ‖ = 1, 〈γ, γ0〉 = 0}.
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Continuing recursively, define

Ek = inf{ε(γ) | γ ∈ H1, ‖γ‖2 = 1, 〈γ, γk〉 = 0 for all k = 0, . . . , k− 1}. (2.10)

The following theorem provide an equivalent of Theorem 2.2 for larger eigenval-
ues.

Theorem 2.3 ([63]). Under Assumption 2.2 and assuming Ek < 0, then, the infimum in
(2.10) is attained and the minimizer γk is such that Hγk = Ekγk.

Remark 2.2. While the analysis in this section was developed for the specific
nuclear Schrödinger equation, it is, in general, valid for any time-independent
Schrödinger equation where the potential satisfies Assumption 2.2 [63].

2.3.2 Spectral discretization and the curse of dimensionality

The established variational formulation of the TISE allows for practical algorithms
for computing its eigenpairs. In particular, given a certain approximation space,
one would then choose the function that minimizes the established energy func-
tional. This is often referred to as the Rayleigh-Ritz method [30]. Discretizing
the problem and constructing approximation spaces can be done via standard
methods, such as finite volume or finite differences methods [24–27]. However,
due to the often oscillatory nature of the solutions of TISEs and to the need to
model a vast number of eigenfunctions, a more common approach to discretize
the equations is based on spectral methods [28, 29] where one approximates the
eigenfunctions in a finite linear span of globally supported sequence of functions
(ϕn)n

φnuc,j(x) ≈
N

∑
n=1

cn,j ϕn(x) for all j = 0, 1, . . . . (2.11)

To have convergence guarantees as N → ∞ and quantify the convergence order
one would have to choose sequences with some density properties, i. e., the lin-
ear span of the sequence should be dense in some target functional spaces. In
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TABLE 2.1: The size of a truncated Hermite basis N that is re-
quired to compute the ground-state energy of a perturbed Har-
monic oscillator problem in 1,2 and 3 dimensions to a relative
absolute error < 10−1.

d 1 2 3
N 3 45 286

molecular physics, the functional space is often L2. Indeed, with such density prop-
erties, the method is reliable and well-posed for solving a variety of differential
equations [28], such as, e. g., determining the spectra of unbounded operators.

In spite of these positive features, the method suffers from the curse of dimension-
ality, as the size of the basis N needed to converge a certain amount of eigenpairs
scales exponentially with the number of nuclei Nn in the system. To exemplify this
problem I solved the Schrödinger equation for a perturbed quantum harmonic
oscillator problem, i. e., the TISE with a Hamiltonian H = T + V where

V =
1
4
|x|4 + 1

2
|x|2.

Table 2.1 shows the size of truncated Hermite basis that is needed in order to
converge the ground-state energy in several dimensions. Clearly, N increases
rapidly as a function of the dimension of the problem.

Another problem is the scaling with respect to the number of eigenpairs that
one would want to approximate. In practice, eigenfunctions to (2.5) corresponding
to high eigenvalues are highly oscillatory and, hence, the accuracy of spectral
methods decrease nonlinearly with the number of required states. Table 2.2 shows
the size of the Hermite basis required in order to converge the energies of the
first three states for the perturbed Harmonic oscillator problem in 2 dimensions.
Clearly, increasingly more linear terms are needed to converge higher states2.

One way to mitigate the curse of dimensionality with respect to the linear
parameter N is to allow for the use of an adaptive sequence of functions, i. e., a

2Technical details to reproduce this example are provided in the supplementary materials at the
end of the chapter.
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TABLE 2.2: The size of truncated Hermite basis N that is required
to compute the energies of the first three states of a perturbed
Harmonic oscillator problem in 3 dimensions to a relative absolute
error < 10−1.

State 1 2 3
N 45 300 555

sequence (ϕθ
n)n that depends on free parameters θ

φnuc,j(x) ≈
N

∑
n=1

cn,j ϕ
θ
n(x) for all j = 0, 1, . . . . (2.12)

One would then minimize the established upper bound with respect to both the
linear parameters, cn,j and the nonlinear ones, θ. Allowing for a set of functions
that is more suitable for the problem lessens the need for an exponentially big set
of fixed functions. However, the introduction of arbitrarily adaptive functions
without proven density properties make it difficult, if not impossible, to obtain
convergence guarantees. Neural networks have been lately under intensive in-
vestigations to this end 3. However, their use is not straightforward and often
requires a lot of engineering efforts. In Chapter 4 I propose and investigate another
alternative that is based on carefully deforming fixed bases into adaptive ones.

Remark 2.3. Solving (2.5) can be simplified by differentiating between three
kinds of motions in polyatomic molecules: a translational motion where the
Cartesian coordinates of all atoms are shifted by the same quantity and in
the same direction, a rotational motion of all the atoms, and a vibrational
motion where distances between atoms change. Under the potential energy
term consider in (2.5), the eigenvalues remain invariant with respect to a
translational motion of the nuclei. Thus, one can consider only the rotational
and vibrational (rovibrational) motions considered when solving (2.5). The

3Generally one uses one neural network, i. e., N = 1.
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equation describing the rovibrational motion can also be solved in three steps,
where, first, the (2.5) is solved for the vibrational degrees of freedom, then
for the rotational degrees, and eigenfunctions of both motions are then used
to solve the overall rovibrational equation [64]. In this work I only consider
the vibrational Schrödinger equation and hence reduce the space of the co-
ordinates to a set Ωnuc ⊂ R3Nn−6. The set Ωnuc contains often two kinds
of coordinates, radial coordinates describing the distance between pairs of
nuclei having values in R>0 and angular coordinates having values in (0, π)

describing angles between pairs of radial vectors. This set of coordinate is of-
ten called an internal set of coordinates. Moving from a Cartesian coordinate
systems to the internal one is described in Appendix B.

Supplementary material

The simulation ran to produce Table 2.1 and Table 2.2 was performed as follows. A
Bubnov-Galerkin numerical scheme was used to discretize the Schrödinger equa-
tion, where both the test and trial functions were modeled by Hermite functions.
For d > 1, the basis was generated from Hermite functions using the truncated
direct product (4.16) with wi = 1, for all i = 1, . . . , d and ni were varied from 1 to
30 for all i = 1, . . . , d. N = 1, . . . , 50 was used for d = 1 and d = 2 while I used
N = 1, . . . , 22 for d = 3. Hermite quadrature points were used to compute the inte-
grals with 50 quadrature points per dimension. Quadrature points corresponding
to weights < 10−34 were removed. I considered for true solutions those converged
with the largest basis.

Proof of Theorem 2.2. Set Ω = Ωnuc for simplicity of notation. Let γj be a sequence
in H1 with ‖γj‖ = 1 and ε(γj)→ E0 as j→ ∞. Lemma 2.1 implies that

ε(γj) ≥
1
2
‖∇γj‖2 − C,
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which implies the boundedness of ‖∇γj‖2
L2 , which, in turns, implies the bound-

edness of γj in H1 for all j. By the Banach-Alaoglu theorem there exists a subse-
quence γnj and γ0 ∈ H1 such that γnj → γ0 weakly in H1. The weak limit in the
norm can only get smaller, thus

‖γ0‖ ≤ 1, ‖∇γ0‖ ≤ lim inf
j→∞

‖∇γnj‖.

Since ‖γ0‖ ≤ 1 and E0 = ε(γ0) it holds

E0‖γ0‖2 ≤ ε(γ0)

= ‖∇γ0‖+ P(γ0)

= ‖∇γ0‖+ lim
j→∞

P(γnj)

≤ lim inf
j→∞

(‖∇γnj‖+ P(γnj))

≤ lim inf
j→∞

(‖∇γnj‖+ P(γnj))

=≤ lim inf
j→∞

ε(γnj)

= E0

where in the second equality I used Equation 2.9. Since E0 ≤ 0 by assumption, one
deduces that ‖γ0‖ ≥ 1. But ‖γ0‖ ≤ 1. Hence, ‖γ0‖ = 1.

To show that γ0 solves the Schrödinger equation take a perturbation γδ =

γ0 + δ f of γ0 with δ ∈ R. Define R(δ) = ε(γδ)
‖γδ‖2 .

Since E0 is a minimizer of ε it holds that R(δ) attains a minimum at δ = 0.
Thus,

0 =
dR(δ)

δ
|0

=
1
‖γδ‖4 (

dε(γδ)

dδ
−

d‖γδ‖2
L2(Rd)

dδ

ε(γδ)

‖γδ‖2
L2(Rd)

)|δ=0.
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Therefore,

0 = (
dε(γδ)

dδ
− d‖γδ‖2

dδ
E0)|δ=0,

where

dε(γδ)

dδ
=

d
dδ

(
∫

Ω
|∇γ0|2 dµ + δ2

∫
Ω
|∇γ0|2 dµ + 2δ

∫
Ω
∇ f .∇γ0 dµ+

+
∫

Ω
(γ0 + δ f )2V dµ),

hence,
dε(γδ)

dδ
|δ=0 = 2

∫
Ω
∇ f .∇γ0 dµ + 2

∫
Ω

f γ0 V dµ.

Similarly,

E0
d‖γδ‖2

dδ
|δ=0 = 2E0

∫
Ω

γ0 f dµ.

Whence,
0 =

∫
Ω
(−∆ + V − E0)γ0 f dµ for all f ∈ C∞

c ,

i. e., (E0, γ0) solves the Schrödinger equation in the weak sense.
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Chapter 3

Active learning for constructing
potential energy surfaces1

I outlined in Section 2.2 the problem of constructing potential energy surfaces, i. e.,
of inferring solutions of the parametric Schrödinger equation (2.4) in a statistical
manner. Here, the relationship between the nuclear geometries x and the electronic
energies E is assumed to be governed by a probability distribution Pz, called the
generating distribution, with z := (x, E). Given access to an initial set of independent
observations ẑ = {zk := (xk, Ek)}k, ẑ ∼ Pz of nuclear geometries x̂ = {xk}k and
their corresponding electronic energies Ê = {Ek}k

2 one aims at approximating Pz

by solving the regression problem defined in (2.6).
In recent years, many machine learning (ML) models [65–69] have been used

to model the hypothesis class H. The most extensively used models include
permutationally invariant polynomials [70–74], neural network (NN)s [32, 75–80],
Gaussian process (GP)s [81–87], and other kernel methods [16, 88–90].

The quality of the optimizer h∗ that solves (2.6) highly depends on the quality
and size of the dataset ẑ. The more data there is to learn from, the more accurate
the model is. However, computing the labels Ê of the input nuclear geometries
x̂ is computationally expensive. It requires solving the electronic Schrödinger

1This chapter is, in parts, based on this publication: Y. Saleh, V. Sanjay, A. Iske, A.Yachmenev, J.
Küpper, J. Chem. Phys. 155, 144109 (2021). My contribution to this publication was the development
and implementation of several active learning algorithms and writing the manuscript.

2In what follows denote the target in ẑ by Ek instead of Ek
el for notational simplicity.

https://aip.scitation.org/doi/full/10.1063/5.0057051
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equation (2.4) for a system of Nl electrons. High-accuracy solvers scale as O(n7)

with the size of the system n [23]. Hence, one would want to minimize the size of
the dataset ẑ that is needed to obtain an optimized model with a certain accuracy.
In other words, one would want to solve

1
|ẑ| ∑

(xk ,Ek)∈ẑ

l(Ek, h(xk)) + γβ(h(xk)) −→ min
ẑ,h∈H

. (3.1)

One learning paradigm that tackles such problems is active learning (AL) [91],
in contrast to the common passive learning (PL) paradigm, where the training
dataset is given a priori. Trying to minimize the size of the training dataset for
constructing potential energy surfaces (PESs), and reducing the amount of humans’
intervention in an AL paradigm became increasingly popular during the last few
years [92–103].

Formally, in AL, the training dataset ŷ := {yi := (qi, Ei)}i is sampled from
a probability distribution Py that is not necessarily equal to Pz. However, both
distributions are assumed to follow the same conditional probability. Denoting by
pz, py the probability densities of Pz,Py, respectively, one has pz = px pE|x, py =

pq pE|x [104, 105], where px, pq denote probability densities over the nuclear ge-
ometries x and pE|x denotes the conditional probability, i. e., the probability of
energies given a certain nuclear geometry x. The aim of AL is to learn densities pq

as to solve (3.1). Algorithms that aim at constructing such pq are called query/policy
strategies/algorithms. A deep theoretical understanding of optimal query algorithms
is generally absent. Such algorithms are often constructed based on heuristic argu-
ments such as uncertainty sampling [91], where datapoints corresponding to high
uncertainties in their predictions are added to the training dataset.

A guiding concept in defining statistical learning algorithms is empirical risk
minimization principles [106]. Such principles are based on the observation that
the objective function in standard learning algorithms, such as (2.6), is an upper
bound of the true risk. In this chapter, a similar theoretical insight into con-
structing query algorithms is provided. It is shown that upper bounds on the
generalization error in PL can be extended naturally to AL (Theorem 3.2). This al-
lows one to propose the following empirical risk minimization principle to define
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query algorithms. The probability distribution Pq defining the query algorithm
should maintain a small integral probability metric from the generating proba-
bility distribution while still assigning a significant measure to scarce regions of
the generating distribution. This result can be seen as a general formulation of
[105] and [104], where specific integral probability metrics were used. Directly
optimizing the derived upper bound is rather impractical, whence I review some
more practical algorithms, referred to as pool-based algorithms [91]. I survey the
state-of-the-art AL algorithms employed for construction of PESs. I propose a
novel AL learning algorithm (Algorithm 3) that complies with the derived upper
bound. It is a regression version of random query by forest [107].

I validate the proposed algorithm for modeling the PESs of weakly-bound
molecules3. Such a task is complex [108–111], since higher levels of theory need to
be employed to produce correct asymptotic behavior of the training dataset [112].
Furthermore, the landscape of these PESs is complex because of the loosely bound
character of intermolecular interactions. Thus, a larger number of grid points is
generally required to sample the complete configuration space. Moreover, due to
the importance of dynamical electron correlation (dispersion) and its slow basis-set
convergence [113], calculations for the noncovalent long-range parts of the PES are
generally more costly than the ones at short-range. In particular, I model the PES
of pyrrole(H2O). I show that the proposed algorithm reduces the computational
costs of constructing the PES of pyrrole(H2O). It leads to a roughly two times
faster convergence with respect to the size of training dataset than other commonly
used AL algorithms.

3.1 Formal setting and notation

Throughout this chapter consider a probability space (Ω,F , P). For an open
X ⊆ Rm (given a molecular system with Nn nuclei, one often has m = 3Nn) I
model the nuclear geometries x as a random vector x : Ω → X. Endow X with
the Borel σ−algebra and the Lebesgue measure µm. Set Px = x#µm. Further,

3Weakly-bound molecules are complexes characterized by relatively low interaction energies
between the constituent molecules
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assume that Px is absolutely continuous with respect to µm and denote by px

the corresponding density. The nuclear geometries chosen by a query strategy
are modeled by a random vector q : Ω → X with a distribution Pq = q#µm

and a density pq. Similarly, for an open E ⊆ R consider the electronic energies
to be a random variable E : Ω → E. Endowing E with the Borel σ−algebra
and the Lebesgue measure µ set PE = E#µ and denote by pE the corresponding
probability density. Given the random vector x and the random variable E define
z := (x, E), z : Ω → X× E =: Z to be the joint random vector. Similarly, set,
y := (q, E), y : Ω → Z. Endowing Z with the product σ−algebra and the
Lebesgue-measure µm+1 set Pz = z#µm+1, Py = y#µm+1 and denote by pz, py the
corresponding probability densities.

3.2 Empirical risk minimization principles and gen-

eralization errors

The goal in a supervised learning task is to infer the probability distribution Pz

governing the relationship between two random variables x, E. Given a hypothesis
class H, this translates into solving

RPz(h) =
∫

Z
l dPz −→ min

h∈H
, (3.2)

where RPz(h) is called the true risk or generalization error of a hypothesis h and
l : E×X→ R>0 is a loss function quantifying the discrepancy between true values
E and predicted ones h(x). In other words, one tries to find the function h that
would minimize the discrepancy between the predicted values and the true values
along the joint probability of the problem [68, 106].

However, in practice, one has access only to a dataset ẑ of a finite size. It is
reasonable to try to solve (2.6) where

R̂ẑ∼Pz(h) :=
1
|ẑ| ∑

(xk ,Ek)∈ẑ

l(Ek, h(xk))
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is called the empirical risk of a hypothesis h with respect to a dataset ẑ. Let h∗, ĥ∗

denote the solutions of (3.2) and (2.6), respectively. Approximating h∗ by ĥ∗ is
called the inductive empirical risk minimization principle [106]. Characterizing under
what conditions such an approximation is valid is one of the main elements of a
learning theory [68, 106].

I start this section by introducing an upper bound to the generalization error in
a PL setting, i. e., where a dataset ẑ is given a priori, and optimization is performed
only over the hypothesis class H. To this end one needs the following concepts.

Definition 3.1 (Representativeness of a dataset [68]). Given a loss function l and a
hypothesis class H, define the representativeness of a dataset ẑ

Rep(ẑ) := sup
h∈H

(RPz(h)− R̂ẑ∼Pz(h)),

i. e., the representativeness of a dataset is the biggest generalization error
achievable over a certain hypothesis class. Now consider the practical problem of
having to compute the representativeness of a dataset ẑ. This is not doable since
the computation of RPz(h) needs access to the true distribution of data which is
not available. However, an estimate of the representativeness can be obtained by
diving the dataset ẑ into two sets ẑ1, ẑ2 and computing the empirical estimate

ˆRep(ẑ) = sup
h∈H

(R̂ẑ1∼Pz(h)− R̂ẑ2∼Pz(h)).

To compactify this notation, assume that |ẑ1| = |ẑ2| = m
2 and let σ = (σ1, .., σm) be

such that σi = 1 if (xi, Ei) ∈ ẑ1 and σi = −1 if (xi, Ei) ∈ ẑ2. Then, the empirical
representativeness can be simplified to

ˆRep(ẑ) =
2
m

sup
h∈H

m

∑
i

σil(Ei, h(xi)).

Rademacher complexity generalizes this idea by considering the average empirical
representativeness for a random choice of σ with Prob[σi = 1] = Prob[σi = −1] =
0.5. This can be understood as taking the average empirical representativeness
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over all possible choices of ẑ1, ẑ2 of equal sizes.

Definition 3.2 (Rademacher complexity [68]). Given a loss function l and a hy-
pothesis class H define the Rademacher complexity

Rad(ẑ) :=
1

2m
Eσ∼{±1}m [ ˆRep(ẑ)]

=
1
m

Eσ∼{±1}m [ sup
h∈H

m

∑
i

σil(Ei, h(xi))].

3.2.1 Upper bound to the true risk in passive learning

Theorem 3.1 (upper bound on the true risk [68]). Assume that |l(Ei, h(xi))| ≤ c <
∞ for all (xi, Ei) ∈ ẑ, h ∈ H. Then, with probability of at least 1− δ, for all h ∈ H

RPz(h) ≤ R̂ẑ∼Pz(h) + 2Rad(ẑ) + 4c

√
2 ln( 4

δ )

|ẑ| . (3.3)

In particular, this holds for ĥ∗ that solves (2.6).

Remark 3.1. Note that, in practice, the upper bound derived on the general-
ization error justifies approximating solutions of (3.2) with solutions of (2.6).
The upper bound in (3.3) contains the empirical risk and the Rademacher
complexity. The latter is connected to the complexity of the optimizer h∗ [114].
Hence, solving (2.6) is actually equivalent to minimizing an upper bound to
the generalization error.

Similarly, an upper bound on the generalization error in AL can provide some
insight into a good choice of the probability distribution Pq of a query strategy.

3.2.2 Upper bound to the true risk in active learning

Here I derive an upper bound to the generalization error in AL. As in PL case,
the upper bound would depend on the empirical risk, i. e., the training error,
and on the complexity of the hypothesis class. However, the distribution of the
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training data Py in AL is not equal to the generating distribution Pz. Therefore,
it is reasonable to expect the upper bound on the generalization error in AL to
depend on some notion of a distance between Py and Pz. While there are several
possibilities of defining distances between measures, integral probability metrics
follow naturally in the settings under consideration.

Consider the measure space (X,B(X)) (see Section 3.1).

Definition 3.3 (Integral probability metric [115, 116]). Given a class of real-valued
bounded measurable functions F on (X,B(X)), the integral probability metric
between two measures P, Q on (X,B(X)) is defined as

dF (P, Q) := sup
f∈F
|
∫

X
f dP−

∫
X

f dQ|. (3.4)

Remark 3.2. Note that (3.4) is generally not a metric but a pseudometric,
since dF (P ,Q) = 0 does not imply P = Q. However, for the two special
choices of F that I later discuss (3.4) is a metric. Moreover, note that, in
general, the distance between two probability measures is allowed to be
infinite [116, 117].

The stage is now ready to state an upper bound on the generalization error
in an AL setting in terms of the integral probability metric. Later, I specify some
useful function classes F . Recall that, in AL, the distribution of the training
data and the generating distribution have the same conditional probability, i. e.,
pz = px pE|x and py = pq pE|x.

Let x̂ ∼ Px, q̂ ∼ Pq be two finite datasets. And let ẑ, ŷ denote the same datasets
with the corresponding labels, i. e., the electronic energies.

Theorem 3.2. Define α :=
∫

E
l dPE|x. Given a function class F and assuming α ∈ F

the following holds with probability at least 1− δ

RPz(h) ≤ R̂ŷ∼Py(h) + dF (Px,Pq) + 2Rad(ŷ) + 4c

√
2 ln( 4

δ )

|ŷ| . (3.5)
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Proof. for all h ∈ H assume that the loss function is bounded for all elements of q̂.
Using Theorem 3.1 the following holds with probability 1− δ

RPy(h) ≤ R̂ŷ∼Py(h) + 2Rad(ŷ) + 4c

√
2 ln( 4

δ )

|ŷ| .

Adding RPz(h) to both sides and rearranging

RPz(h) ≤ (RPz(h)− RPy(h)) + R̂ŷ∼Py(h) + 2Rad(ŷ) + 4c

√
2 ln( 4

δ )

|ŷ| .

Consider the first term and note that

RPz(h)− RPy(h) =
∫

Z
l dPz −

∫
Z

l dPy

=
∫

X

∫
E

l pE|x dµpx dµm −
∫

X

∫
E

l pE|x dµ pq dµm

=
∫

X
α px dµm −

∫
X

α pq dµm.

Since α ∈ F , it holds

RPz(h)− RPy(h) ≤ sup
g∈F
|
∫

X
g px dµm −

∫
X

g pqdµm|

= dF (Px,Pq).

Theorem 3.2 establishes an upper bound to the true risk in terms of any generic
integral probability metric. By imposing some conditions on the loss function and
the conditional probability one can derive from the upper bound in (3.5) various
upper bounds. For example, under some conditions on on the loss function F =

Cb, i. e., the space of continuous and bounded functions. This is, indeed, a good
choice since it allows for a unique identification of identical probability measures.
In other words, given two probability measures P ,Q, one can show [116] that
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P = Q if and only if ∫
X

f dP =
∫

X
f dQ for all f ∈ Cb.

Another possibility would be to impose conditions on the loss function l such that
α is a Lipschitz continuous function with a Lipschitz constant less than one. In
such a case, and assuming that Px,Pq have bounded supports, the Kantorovich
metric is recovered, which is the dual of the Wasserstein 1-distance between two
probability measures [118]. The following proposition specifies conditions on the
loss function l in order recover these two special cases.

Proposition 3.1. (i) Let l(E0, ·) : Rm → R be continuous for all E0 ∈ R and l(·, x0) :
R→ R be bounded for all x0 ∈ Rm. It follows that α ∈ Cb(X).

(ii) Let l(E0, ·) : Rm → R be Lipschitz-continuous with Lipschitz constant L for all
E0 ∈ R and l(·, x0) : R→ R be bounded for all x0 ∈ Rm by some B > 0. Furthermore,
assume that max(L, 2B) ≤ 1. Then α is Lipschitz-continuous with Lipschitz constant
≤ 1.

Proof. Proof is provided in the supplementary material at the end of this section.

In light of Proposition 3.1, Theorem 3.2 can be regarded as a more generic form
of [105] and [104], where an upper bound on the generalization error in AL in
terms of the Wasserstein distance and using a reproducing kernel Hilbert space4,
respectively, were derived.

The result established in Theorem 3.2 can be used to derive an empirical risk
minimization principle for AL. Denote by ẑ(0) ∼ Pz a set of already labeled
data. The upper bound suggests a query strategy that chooses data ŷ and a
hypothesis h such that the empirical risk R̂ŷ∪ẑ(0)(h) is small. For a fixed hypothesis
h, examples that correspond to a high loss function will then be added to the
training set in order to have an overall low empirical loss. Assume that the fixed
hypothesis h is obtained through a standard training procedure using the already

4While the authors here assume F to be a reproducing kernel Hilbert space, the conditions they
impose on the loss function l do not guarantee that.
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labelled data ẑ(0). Since the initially labeled data ẑ(0) follows Pz, the regions
in X, on which one expects the empirical loss to be high are actually outliers,
i. e., they have a small measure under Px. On the other hand, the upper bound
suggests sampling a set q̂ that does not have a big integral probability metric
from a dataset ∼ Px. Hence, the upper bound suggests sampling points that are
both representative of the underlying distribution of the unlabeled data Px and
points that are outliers, and in a sense, informative for any hypothesis h. This
argumentation is in perfect accordance to a vast literature on the need for querying
informative and representative samples in an AL strategy [104, 105, 119–121].

An algorithm to directly minimize the upper bound in (3.3) can be formulated,
although it is not clear what statistical distance is best to employ. One point to
take into account here is the computational costs of estimating the chosen integral
probability metric. For example, methods to estimate the Wasserstein distance are
often rather expensive. For constructing PESs, I found out that directly minimizing
such upper bounds is extremely impractical and leads to poor results. I observed
query strategies that indirectly minimize the upper bound to work better. I outline
some of them in the next subsection.

3.3 Practical pool-based active learning

One of the most practical and successful AL frameworks is called pool-based
active learning [91]. Here, AL is performed in an iterative manner where the query
algorithm is given access to a pool of unlabeled data ŝ(0) = {(xi, )}l

i=1 and is then
asked to query a set of samples B from this pool and add it to the already labeled
data ẑ(0) = {(xi, Ei)}m

i=1, where m � l. Then, a test is run to judge whether the
currently labeled data are enough for a reliable prediction. If not, another set B
of datapoints are sampled from the pool, labeled, and added to the labeled data.
This process continues until one has enough datapoints. Algorithm 1 summarizes
this procedure.

The procedure performed to judge whether a certain amount of data is enough
for a reliable modeling is often based on training a ML model on the labeled data
and evaluating its accuracy on a test set. Note here that, due to the iterative nature
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Fix batch size NB, t = 1 ;
Input: Pool of unlabeled data ŝ(t−1), an initial labeled data. ẑ(0)

while performance is unsatisfactory do
a) Select a batch B of size NB from ŝ(0).
b) Label this set to obtain ẑ(t).
c) Set ŝ(t) = ŝ(t−1) \ B, ẑ(t) = ẑ(t−1) ∪ ẑ(t).
d) t = t + 1.

end
Algorithm 1: Basic steps of a generic pool-based AL strategy. In each
active learning iteration, NB datapoints are chosen from the pool, labeled,
and added to the training data.

of pool-based AL, the execution speed and the scaling with the amount of data is
a main concern in designing query algorithms.

A simple example of a query algorithm is uniform random sampling (RS) from
the pool. Note that such a strategy is representative by construction and results in
a small statistical distance in the upper bound (3.5). However, uniform random
points from the pool are not informative and would hence lead to a high empirical
error.

Another criterion for defining a query algorithm is prediction uncertainty,
where an ML model predicts the targets of unlabeled datapoints from the pool,
and those corresponding to the highest uncertainties in their predictions are
queried. For probabilistic models like GPs, the uncertainties can be directly calcu-
lated [95, 97, 98, 102]. For the ML models that do not offer a direct way to compute
uncertainties, these can be inferred by training a diverse ensemble of models on
the currently labeled training set and selecting the points about which the models
disagree the most. This algorithm is called query by committee (QBC) [122]. This
procedure is formalized in Algorithm 2.

Note that diversity of the ML models is crucial in this algorithm. If the models
are not diverse, their predictions for a certain unlabeled datapoint would be almost
the same and hence one would not be able to infer the uncertainty. Practically, the
diversity of models is introduced through random perturbations to the learning
process. For example, when the ML models consisting the ensemble are NNs,
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Fix the number of models n in the ensemble.
Result: A batch B from ŝ(t).
Input: ŝ(t), ẑ(t), NB.
a) Train an ensemble {Ti}n

i=1 of models on data ẑ(t).
b) Compute predictions Êi = Ti(xk) for all xk ∈ ŝ(t), for all i.
c) Compute the community disagreement

q(xk) = std (Êi) for all xk ∈ ŝ(t).
d) Take NB elements from the unlabeled data that have the highest q.

Algorithm 2: Basic steps of a query by committee algorithm for regression
problems. n models are trained on the labeled datasets and asked to
make predictions on the whole unlabeled dataset. The dataset B chosen
to be labeled are those that maximize the standard deviation (std) of the
prediction among the n models.

diversity can be achieved by randomly initializing their weights, and choosing
different architectures and regularization parameters.

Uncertainty-based algorithms aim to minimize the empirical risk in (3.5) by
querying points corresponding to high uncertainties, which correspond to under-
populated/sparse areas of Px, i. e., outliers [91, 123], which is a clear downside.
Interestingly, the vast majority of AL applications to PESs used uncertainty-based
sampling [92, 94–100]. When all sparse regions of the pool can be clearly identified,
e. g., as points with high energy, or if prior knowledge about the minima and
saddle points exists, the downside of uncertainty-based algorithms can be solved
by introducing a weighting function [93, 102]. In a more general setting, one
can combine the uncertainty-based query algorithm with a molecular-dynamics
sampler starting from various known critical points of the PES [70, 94, 99].

I choose, however, to correct this behavior at a more fundamental level by
constructing a probability density function from the QBC-estimated uncertainties.
Then, querying grid points is performed through random sampling according
to this density function. Algorithm 3 formalizes this idea. In contrast to QBC,
points with small uncertainties may still be queried if they fall in high-density
regions. In other words, Algorithm 3 respects the statistical information in the
pool that is defined a priori by the expert. Note that accounting for the statistical
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Fix the number of models n in the ensemble.
Result: B elements from ŝ(t).
Input: ŝ(t), ẑ(t), NB.
a) Train an ensemble {Ti}n

i=1 of n models on data ẑ(t).
b) Compute predictions Êi = Ti(xk) for all xk ∈ ŝ(t), for all i.
c) Compute the community disagreement

q(xk) = std (Êi) for all xk ∈ ŝ(t).
d) Compute the weights:

L(x) = q(x)−qmin
qmax−qmin

, and the sampling probability p(x) = L(x)
Σx L(x) where

qmin = min
x∈ŝ(t)

q(x) and qmax = max
x∈ŝ(t)

q(x).

e) sample NB elements from the unlabeled data with probabilities p(x).
Algorithm 3: Stochastic query by committee algorithm: Data to query
are chosen by sampling according to a probability distribution that gives
more weights to datapoints whose predictions are uncertain. Uncertainty
is inferred by a standard query by committee algorithm.

information in the pool using QBC can also be performed by considering only
a few unlabeled datapoints sampled independently of the input distribution as
candidates to query [120], which is very similar in spirit to Algorithm 3. However,
I empirically observed Algorithm 3 to work better than this approach.

3.4 Simulations on pyrrole(H2O)

In what follows I apply the acRS algorithm, Algorithm 2 and Algorithm 3 for
building a PES for pyrrole(H2O) molecules with a reduced number of datapoints.

Due to the highly fluxional nature of the hydrogen bond in pyrrole(H2O),
the intermolecular motions are highly delocalized, rendering the calculation and
representation of the PES very challenging. The intramolecular vibrations in the
pyrrole and water moieties can be described with a relatively simple, though multi-
dimensional, single-minimum PES and thus, for simplicity of calculations, were
not considered here. The structures of pyrrole and water monomers were fixed
to the experimentally determined values [124, 125], see supplementary material
at the end of this chapter, and varied the six intermolecular coordinates, shown
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FIGURE 3.1: Internal intermolecular coordinates R, θ, φ, α, β, γ of
pyrrole(H2O).
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FIGURE 3.2: The probability density distribution of the energies
corresponding to all molecular geometries in the pool. The his-
togram was calculated for a bin width of 34.5 cm−1 and has a
peak at 1600 cm−1, corresponding to the dissociation limit of
pyrrole(H2O).
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in Figure 3.1. These are defined as follows: the relative position of water with
respect to pyrrole is described by the three spherical coordinates R = [0.2, 1] nm,
θ = [0, π], φ = [0, π] and the relative orientation of water is defined by the three
Euler angles α = [0, π], β = [0, π], γ = [0, π]. The angles φ, α, and γ were
restricted to the ranges [0, π] exploiting the C2v(M) symmetry of the complex.

The pool of molecular configurations was generated a priori as the direct
product of one-dimensional grids for every degree of freedom and contained 57500
different molecular geometries covering the potential energy up to 5000 cm−1

above dissociation. All coordinates were sampled more densely in the vicinity
of the equilibrium geometry. Also, the angular coordinates were sampled more
densely for small radial distances R ≤ 500 pm with a sparser grid for 500 <

R ≤ 1000 pm. This led to a nonuniform distribution of energies in the pool,
shown in Figure 3.2. Note that a direct-product grid is not essential for the
accumulation of the pool of unlabeled geometries and the test dataset. Here,
it was used mainly because it allows the coverage of the whole configuration
space that is relevant for the subsequent quantum dynamics’ simulations, and
hence prevents biases and holes in the pool and test data. While this method is
not arbitrarily extendable to systems with more degrees of freedom, other pool
accumulation methods [94] could be used without modifications to the stochastic
query by forest (SQBF) approach. The electronic structure calculations employed
the density-fitting explicitly-correlated DF-MP2-F12 level of theory [126–128] in the
frozen-core approximation using aug-cc-pVDZ-F12 [129] atomic orbital, cc-pVDZ-
F12+/OPTRI [130] resolution of the identity, and aug-cc-pVDZ/MP2FIT [131]
density fitting bases. The geminal exponent was fixed at 1.0. The electronic
structure calculations, i. e., solving the electronic Schrödinger equation (2.4) were
carried out using Molpro [132–134]. A subset of 10 % of the total number of points
in the pool was randomly selected as a test set and taken out of the pool (OOP).
5 % of the remaining data was randomly selected as a validation set. I employed
two different machine learning models, RFR, and NN, to fit the data. Exponential
functions of interatomic distances were used, with all distances considered, as
molecular descriptors, see supplementary materials at the end of the chapter.
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Furthermore, I tested the SQBF algorithm and an NN model on the PES of the
N4 molecule using previously reported electronic structure data [135].

In Algorithm 2 and Algorithm 3 it remains to specify the ensemble of models
used to estimate uncertainty. While any ensemble of ML models can be used,
I propose to use the trees of a random forest regressor (RFR) as members of
this ensemble. I argue that choosing regression trees for inferring uncertainty is
advantageous because of relatively low-training complexity and a straightforward
diversification-ability. The reader is referred to Appendix D for more information
on RFR models. The RFR combined with Algorithm 3 gives rise to a regression
version of the stochastic query by forest algorithm (SQBF) [107], employed in this
study.

Note that, in Algorithm 3, the balance between sampling points from the
sparse and high-density regions is controlled by the function L, which is linear
with respect to the community disagreement. The probability of a point being
sampled decreases linearly with the decrease of the point’s uncertainty. One can
have more freedom on this balance by considering powers of this function, i. e.,
Lα, where α ∈ R+. For α ∈ (0, 1), the algorithm will sample more points with low
uncertainty and conversely less for α ∈ (1, ∞). We performed a heuristic study
of the effect of different powers α. At each AL iteration, I ran SQBF algorithm
for different values of α ∈ {0.5, 0.75, 1, 1.25, 1.75}. The α that led to the largest
improvement in generalization error was picked the corresponding queried points
were collected. I proceeded to AL using this batch as part of the pool. The whole
procedure was repeated at every AL iteration. I found only minor improvements
of the accuracy when using multiple, optimized, values of α. I explored a few
other heuristics of similar nature, but none of them yielded significantly better
results. Hence, throughout the paper I report results obtained with a single value
of α = 1.

3.4.1 Performance

For pyrrole(H2O) I compared the performance of the RS, QBC, and SQBF AL
query algorithms considering the convergence rate and the fitting accuracy. All
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TABLE 3.1: Out-of-the-pool RMS errors (in cm−1) of the random
forest regressor and neural network models, listed as RFR/NN,
computed for various fractions of the total pool data collected by
the different AL query.

AL query 20 % 40 % 60 % 80 % 100 %
RS 183/57 117/31 81/20 52/15 39/11
QBC 141/43 74/21 49/13 41/11 38/11
SQBF 88/27 37/14 36/12 38/11 39/11

query algorithms started from the same fixed amount of m = 2458 labeled samples
and queried the same equal number of m samples at every AL iteration. For every
iteration and query algorithm, I used the RFR and NN models to fit the data.
The fitting error is defined as the RMS error of the ML models in predicting the
energies on the OOP dataset. This dataset was the same for all query algorithms
and followed the joint distribution of the problem P . The accuracy of a model on
this dataset is an estimate of the generalization error.

The fitting errors of the RFR and NN models for different query algorithms
are plotted in Figure 3.3 as functions of the AL iteration, i. e., size of labeled data.
The SQBF strategy with RFR model leads to the fastest convergence of the error.
QBC strategy outperforms RS. Similar convergence behavior of different query
algorithms can be observed for the NN model. For our dataset, the fitting error of
NN was smaller than that of RFR for all AL iterations and for all strategies by an
average factor of 3.3. Table 3.1 summarizes these results. The better performance
of NNs is partially due to the fact that NNs are easier to train to higher accuracy
and can approximate complex functions with a better control on the bias-variance
trade-off, which was enabled by using an early stopping criterion on the validation
set, see the supplementary material at the end of the chapter. The AL iterations
were terminated when the pool became empty. In practice, the iterations are to be
terminated when the derivative of the fitting error with respect to the amount of
labeled data is less than a predefined value [97] or simply when the fitting error of
the model is small enough.
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FIGURE 3.3: RMS error of out-of-the-pool datasets using (up) the
random forest regressor and (down) the neural network models
for the RS (triangles), QBC (circles), and SQBF (squares) query.
The SQBF has the fastest convergence. A neural network model,
trained on 30 % of the total amount of datapoints in the pool
achieves an RMS error of 16 cm−1. The RMS error on the full
dataset is 11 cm−1. The neural networks trained on data collected
by the QBC or RS algorithms show worse performance. The same
convergence patterns hold when using a random forest regressor
to train on the data instead of a neural network, albeit at overall
somewhat slower convergence.
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TABLE 3.2: RMS mean errors and standard deviations using the
available data (in cm−1) of NN using the AL SQBF algorithm
with a NN to fit the data (present work) and latin hypercube
sampling with GPs to fit the data [136], applied to PES data of the
N4 molecule [135].

No. training data NN (cm−1) GP (cm−1)
240 36518 ± 2697 13300 ± 2770
480 26207 ± 1871 10027 ± 1371
720 11192 ± 1200 8401 ± 1102
960 8111 ± 668 7544 ± 972

1200 6201 ± 462 6806 ± 962
1680 4704 ± 612 —- ± -.–
1800 4494 ± 633 5551 ± 951
1920 4284 ± 658 —- ± -.–
2400 3557 ± 675 5012 ± 832

Similarly, for the N4 molecule the SQBF algorithm was used to query geome-
tries from the pool of 16421 molecular geometries reported [135]. The OOP and
validation datasets were each generated using 10 % of the uniform-randomly
sampled pool data. An initial batch of 240 geometries was uniform-randomly
sampled from the pool and the SQBF algorithm queried 240 geometries at each
AL iteration. The same molecular descriptor as described above was used to trans-
form the data and an NN model was used for fitting; details on the NN design are
provided in the supplementary materials. This procedure was repeated 100 times
and the mean and standard deviation of the resulting NN errors on the entire
dataset as a function of the number of training examples is reported in Table 3.2.
The SQBF results are compared with the ensemble of 100 GPs used to fit the data
collected by the Latin hypercube sampling algorithm [136]. The GP method shows
a better performance for the first few AL iterations. I attribute this to the fact that
it is hard to prevent overfitting with a neural network with a very small set of
randomly selected training data. However, already at 1200 training points the two
models result in comparable accuracy. With 1680 training points, our SQBF/NN
approach achieves the same accuracy as GP with 2400 points, which corresponds
to a 30 % reduction in the size of the training dataset. All the following further
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investigations are performed for pyrrole(H2O).
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FIGURE 3.4: Normalized probability density distributions of the
number of data points N/Ntot across the potential energies plot-
ted for the data collected by the RS, QBC, and SQBF query at
different AL iterations corresponding to 20 %, 40 %, and 60 % of
the total pool. The bin width of the histograms is 34.5 cm−1.

3.4.2 Distribution of queried data

In Figure 3.4 I plotted the normalized distributions of the samples’ electronic ener-
gies of pyrrole(H2O) collected by different AL query algorithms at three different
iterations corresponding to 20 %, 40 %, and 60 % of the total pool. Compare these
with the distribution of energies in the total pool Figure 3.2, which has a peak
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around 1600 cm−1, corresponding to the dissociation limit of pyrrole(H2O). The
densities were computed using 200 equally-sized bins covering the energy range
from 0 to 6874 cm−1 and normalized to the bin width of 34.5 cm−1. Evidently, the
probability density of data sampled by the acRS query most closely resembles the
pool distribution. On the other hand, it is clear that the QBC algorithm samples
more data with higher energies, whereas SQBF keeps a balance between both
the RS and QBC tendencies. As the number of the labeled data increases, all
probability density distributions become more similar to the distribution in the
pool.

It is reasonable to expect that a model built on a dataset sampled by QBC
algorithm will tend to have a better performance for the high-energy regions. This
is demonstrated in Figure 3.5 showing the 2D histograms of OOP energies and the
absolute errors of the RFR and NN models in predicting these energies, plotted
for different query algorithms. The histograms were computed using 20 and 50
equally-sized bins for the energy and absolute errors, respectively. The size of the
training dataset here corresponds to 40 % of the pool’s size. We clearly see that RS
achieves good accuracy for the points with low energies, QBC works best for the
points with high energies, and the SQBF maintains a more regular accuracy across
the whole energy spectrum.

3.4.3 Batch size and size of initially labeled dataset

I repeated the above calculations with a smaller batch size of 122 points instead
of the initially used 2458, starting from the same initially labeled dataset. The
convergence of the RFR fitting error with the number of training data is plot-
ted in Figure 3.6 for different query algorithms. Here, note that both QBC and
SQBF strategies benefit slightly from using a smaller batch size. This is in accor-
dance with previous studies that showed a decreasing performance of QBC with
increasing batch size, which is due to collecting many similar samples [137].

I also studied the effect of changing the size of initially labeled dataset. Fig-
ure 3.7 shows the RFR fitting errors for different query algorithms obtained from
initial datasets of 100 and 2458 samples with the batch size of 2458. Observe that
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FIGURE 3.5: 2D histograms of discrepancies between the predic-
tions of random forest regressor and neural network models
(trained on 40 % of the pool) and the potential energy of the
out-of-the-pool data for different query algorithms; 20 and 50
bins were used for energy and absolute error, respectively. Mod-
els trained on data collected by QBC tend to perform better on
high-energy regions than on low-energy regions. The opposite is
true for RS. In contrast, models trained on data collected by SQBF
have a more uniform accuracy across the whole energy spectrum.

RS query algorithm outperforms QBC, and that the accuracy of QBC declines
significantly. This suggests that with a fewer number of initially labeled data,
an AL strategy should focus on collecting grid points from dense regions of the
configuration space rather than sampling points with high uncertainties in their
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FIGURE 3.6: Effect of the size of initially labeled data on the out-
of-the-pool error of an RFR model trained using data collected
by the RS (blue, triangles), QBC (red, circles), and SQBF (orange,
squares) query. Solid (points) and dashed lines correspond to 100
and 2458 initially labeled data, respectively.

predictions. Notably, the SQBF performance is not affected by the size change.

3.5 Summary and Conclusion

The first principles calculations of molecular PESs, especially for molecules with
many fluxional degrees of freedom, are computationally expensive. One of the
major bottlenecks originates from the need to solve the high-dimensional elec-
tronic Schrödinger equation (2.4) for tens and hundreds of thousands of different
molecular geometries. In particular, standard methods for such calculations suffer
from the curse of dimensionality which render them prohibitive. Algorithms that
allow to reduce the number of necessary single-point calculations with controlled
accuracy of the resulting PES are thus highly demanded. For small molecules,
grid reduction algorithms were found beneficial in calculations employing high-
level electron correlation, bases, and relativistic corrections, which are usually
computationally affordable only for a relatively small number of points [138–141].
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FIGURE 3.7: Effect of the size of initially labeled data on the out-
of-the-pool error of an RFR model trained using data collected
by the RS (blue, triangles), QBC (red, circles), and SQBF (orange,
squares) query. Solid (points) and dashed lines correspond to 100
and 2458 initially labeled data, respectively.

I presented in this chapter a theoretical insight into AL, a learning paradigm
that allows one to perform statistical inference while minimizing the number
of required training datasets. In particular, I presented an upper bound on the
generalization error in AL. It suggests that AL algorithms should sample datasets
corresponding to high uncertainties in their predictions while not deviating much
from the true distribution of the data. I then surveyed practical query algorithms
and their applications for constructing PESs. I proposed a regression version
of SQBF, a pool-based AL algorithm to generate a compact grid of molecular
geometries and the RFR and NN ML-models to construct the six-dimensional
intermolecular PES of the weakly-bound pyrrole(H2O) complex. I argued that
this algorithm is in accordance to the empirical risk minimization principle (3.5).
The proposed algorithm led to a roughly two times faster convergence with respect
to the number of grid points than the commonly used QBC algorithm to represent
the PES to an accuracy of about 16 cm−1.

Furthermore, the PES fitted on the data sampled by SQBF exhibited a more
uniform accuracy across the whole energy spectrum in comparison to QBC. I
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empirically showed that the SQBF method is not very sensitive to a variation of
parameters such as the size of initially labeled data and size of the batch.

In addition, the proposed method is computationally cheap and scales well
with the size of the labeled data N, i. e., as Θ(M · K · Ñ log2

2 Ñ), where K, M denote
the number of random features sampled at each splitting and the number of trees,
respectively, Ñ = 0.632N (see Appendix D). This makes the method attractive for
developing universal ML-potentials where large datasets are needed [142–144].
In the case when the accuracy of the RFR is not sufficient for the application of
the PES, I showed that the data can be used equally-well by other ML models like
NNs. An alternative would be to employ Algorithm 3 with any other ensemble of
models or even with a model that offers a direct computation of uncertainty.

Overall, the presented procedure is general and can be applied to the PESs
of any polyatomic molecule. It can also be used to model other physical proper-
ties like dipole-moment or polarizability surfaces. The major advantage of the
proposed method over more popular QBC approach is the heuristic sampling
procedure that preserves the distribution of data in the pool while keeping the
uncertainty as the primal selection criterion. I believe that in the future the gen-
eral approach can be improved even further by a better tuned balance between
uncertainty and representativeness.

Supplementary Material

The regression trees used to implement the QBC and SQBF algorithms were both
built using the scikit-learn (sklearn) Python package [145]. All AL algorithms
used here were written based on the Libact Python package [146]. For both the
QBC and SQBF algorithms I used an ensemble of 100 trees. The training during
all AL iterations used an exponential function of the intermolecular distances as
a molecular descriptor: 1− exp(−(r− r0)) where r, r0 denote the actual distance
and equilibrium distance between two nuclei, respectively. The perturbation of
the learning process is controlled through two parameters: (i) a bootstrapping
parameter γ that determines the fraction of data sampled by each tree and (ii)
the number of features β sampled randomly by each tree. For the batch sizes



50 Chapter 3. Active learning for constructing potential energy surfaces

used in the simulations we experimented with several combinations of these
parameters and obtained the best convergence for γ = 0, β = 12 for simulations
on pyrrole(H2O) and γ = 0, β = 4 for simulations on N4. The same parameters
were used for uncertainty estimation in both the QBC and SQBF algorithms.
Minimal cost complexity pruning was used to reduce the overfitting of RFR with
complexity parameter c = 0.01. Since I require that Algorithm 3 queries exactly
|B| geometries, one may run into a situation where the number of entries with
non-zero probabilities of the distribution p is less than |B|. In such a case I chose
to query the elements with the highest uncertainty. The effect of this choice on
the simulations conducted in the manuscript is negligible since this case was only
encountered once in one of the last AL iterations.

The NN used is a multilayer perceptron and training was implemented using
the Python Tensorflow package [147]. The NN has three hidden layers with
256, 512, and 256 neurons, respectively, and a single neuron output layer. The
second and third layers were l2-regularized with a regularization parameter of
10−5. All hidden layers used “ReLU” as the activation function. The ReLU
activation function could be substituted with a smooth approximation such as
Softplus to yield a smooth PES. The same aforementioned molecular descriptor
was used. The networks were trained for 250 epochs using the Adam optimization
algorithm [148], with an initial learning rate of 0.0025 and a decaying learning rate
schedule (lrcurrent = 0.9825× lrprevious). An early stopping callback was employed
on the validation set that was taken out-of-the-pool with patience of 25. The NN
hyperparameters were set to obtain a sufficiently accurate NN, with test error of
around 10 cm−1 when using all the training data.

Proof of Proposition 3.1. To prove (i) let ε > 0. Since l is continuous with respect to
its second argument there exists δ > 0 such that |x− x0| ≤ δ implies |l(E0, x)−
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l(E0, x0)| ≤ ε for all x0 ∈ X, E0 ∈ E. Note that

|α(x)− α(x0)| =
∫

E
l(., x)pE|x dµ−

∫
E

l(·, x0)pE|x0
dµ

=
∫

E

(
l(·, x)− l(·, x0)

)
pE|x dµ +

∫
E

l(·, x0)
(

pE|x − pE|x0

)
dµ

≤ ε +
∫

E
l(·, x0)

(
pE|x − pE|x0

)
dµ

≤ ε + 2B︸ ︷︷ ︸
:=γ

,

i. e., for any γ > 0, x0 ∈ X there exists δ > 0 such that |x − x0| ≤ δ =⇒
|α(x)− α(x0)| ≤ γ and hence, α is continuous.

Since l is bounded with respect to its second argument and pE|x is a finite
measure for any x ∈ X it follows that α is bounded.

To prove (ii) take x1, x2 ∈ X and note that

|α(x2)− α(x1)| ≤
∫

E
|l(·, x2)− l(·, x2)| |pE|x2

| dµ +
∫

E
|l(·, x1)

(
pE|x2

− pE|x1

)
| dµ

≤ L|x2 − x1|+ 2B

≤ max(L, 2B) |x2 − x1|.

Thus, α is Lipschitz-continuous with Lipschitz constant≤ 1 if max(L, 2B) ≤ 1.
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Chapter 4

Spectral learning: augmenting bases
with normalizing flows1

The discretization scheme (2.11) proposed to model eigenpairs of (2.5) belongs to
the popular class of spectral methods, where the target function is expanded by a
linear span from a globally defined basis of some function space. Spectral methods
were studied quite extensively [28–30], and enjoy an increasing popularity in
various applications from computational and engineering sciences. This is mainly
due to some favorable approximation to properties of spectral methods, such
as their relatively high accuracy and fast convergence for smooth solutions [29,
30]. Moreover, spectral methods are generally a popular and effective choice
for modeling highly-oscillatory functions [30]. In fact, spectral methods are the
basic building block for a variety of advanced variational techniques to solve
Schrödinger equations for the nuclear motion, such as TROVE [149–152], MULTI-
MODE [153], TheoRets [154], GENIUSH [155, 156], and others [157, 158]. Despite
such favorable approximation properties, spectral methods have high memory
requirements and their convergence rate degrades exponentially at increasing

1This chapter is, in parts, based on the publications: Y. Saleh, A. Iske, A.Yachmenev, J. Küpper, Proc.
Appl. Math. Mech. 23 (1), e202200239 (2023), Y. Saleh, A. Iske, A.Yachmenev, J. Küpper, in preparation
(2023), and Y. Saleh, A. F. Corral, A. Iske, A.Yachmenev, J. Küpper, in preparation (2023). Notation was
modified when necessary. My contribution to these publications was the development, analysis and
implementation of the underlying methods and writing the manuscripts.

https://doi.org/10.1002/pamm.202200239
https://doi.org/10.1002/pamm.202200239
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problem dimension2. This phenomenon, referred to as the curse of dimensional-
ity, leads to severe limitations, e. g., in applications of quantum mechanics and
dynamics, where the systems of interest are inherently high-dimensional.

An alternative linear expansion in an adaptive sequence of functions (2.12) may
lessen the need for exponentially many functions at increasing problem dimen-
sion. Recently, adaptive nonlinear models, such as neural networks, have been
under intensive investigations for approximating solutions to (partial) differential
equations [35–37, 41–49, 51]. Their efficiency in approximating high-dimensional
functions for challenging applications [159], ranging from image recognition to nat-
ural language processing, hints at a great potential for solving high-dimensional
differential equations, in particular equations that lend themselves to variational
formulations. One important problem class is that of infinite dimensional eigen-
value problems, e. g., static Schrödinger equations. Such problems are strongly
related to variational simulations of numerous physics phenomena and, moreover,
they often demand solutions for many eigenvalues which correspond to highly-
oscillatory functions. Indeed, neural networks were successfully applied to various
finite- [41, 43] and infinite-dimensional [42, 46, 47] quantum systems, yielding
high accuracies at a lower computational scaling [42, 46], compared to traditional
methods. Approximating functions by standard neural network architectures,
such as multilayer perceptrons, is, however, rather fragile/not reliable [50] due
to the sensitivity of the approximations to the learning parameters, e. g., the net-
work’s architecture and training parameters. This results in a need for tedious and
elaborate engineering efforts to obtain accurate converged results. This complexity
manifests itself clearly in solving static Schrödinger equations [47, 49, 160]. It
was shown, for example, that variational schemes that use neural networks to
approximate excited states of electronic Schrödinger equations suffer from con-
vergence issues if not initialized to reproduce lower-resolution solutions [47]. I
also empirically observed that such standard neural networks are incapable of
simultaneously computing many eigenpairs of (2.5). For 3-dimensional molec-
ular systems, I managed to compute only 5 eigenpairs. Trials to compute more

2See the demonstrative simulations in Chapter 2. For a rigorous numerical analysis, look at, e. g.,
error bounds for approximating Schwartz functions in the linear span of Hermite functions [15].
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eigenpairs often went below the variational minima, a clear hint that the approxi-
mation space of the employed neural network falls out of the function space of
the variational formulation (H2 space in case of (2.5), see Theorem 2.2). These
empirical difficulties in utilizing neural networks for solving differential equations
is often accompanied by a lack of practical convergence guarantees. Formally,
neural networks can be used to uniformly approximate any continuous function
in L∞(K), where K is compact [161]. Neural networks can be used to approximate
any Sobolev function as well. Here, convergence guarantees and rates can be
derived with errors measured in Lp spaces assuming that certain Sobolev embed-
ding conditions hold [162]. However, convergence rates here suffer from the curse
of dimensionality. Various universal approximation theorems with dimension-
independent convergence properties were derived mainly in Barron space3 [50,
51]. However, solutions to differential equations often lie in Sobolev spaces. This
renders the use of such approximation theorems less straightforward. Indeed,
several results on analyzing neural networks for solving differential equations
assume that the solutions and the data of the equation lie in Barron spaces [53–55].

In this chapter I propose and study a special construction of reliable nonlinear
approximators. It is, conceptually, based on carefully deforming standard bases
via special neural networks. The following example illustrates the basic idea.

Example 4.1. [Approximating a Gaussian - a motivating example of spectral
learning] Denote by (γn)n∈N>0

4, γn : R → R the sequence of Hermite
functions. This is defined by

γn(x) := anhn(x) exp(−x2/2), (4.1)

where hn denotes the nth Hermite polynomial, and an is a normalizing
coefficient. Figure 4.1 shows these functions for n = 1, . . . , 5. Let f be
a normalized Gaussian function centered around a point a, i. e., f (x) =√

2√√
π

exp(−(x− a)2/2), x ∈ R, and consider approximating f in the linear

3Function spaces that are tailored to neural networks.
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span of (γn)n≤N for some N ∈N>0. Hermite functions (γn)n is an orthonor-
mal basis of L2(R). Thus, such an approximation problem is well-posed in
the sense that convergence guarantees can be obtained as N goes to infinity.
It appears, however, that an exaggerate approximation method is being used
to approximate f since γ1 is actually a Gaussian function. In other words,
it does not seem that one needs a very large N to obtain a good approxima-
tion. However, it turns out that the approximation error in L2 becomes small
from N > e

2 a2 onward5 [15]. In other words, the number of functions one
needs to have a good approximation depends nonlinearly on the center of
the Gaussian a.

Consider now the slightly modified basis (γh
n)n where γh

n = γn ◦ h and
h(x) = x − a. Note that f = γh

1 , i. e., one needs only one function of the
sequence (γh

n)n to reproduce the target function exactly.
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FIGURE 4.1: The figure shows Hermite functions (4.1) for n =
1, . . . , 5.

4From here onward I write (γn)n for notational simplicity.
5To see this observe Lemma 4.2. Compute the quantity A f and use Stirling’s formula for N!
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The previous example shows that the composition operation with an appropri-
ate function can dramatically decrease the computational costs of linear approx-
imation methods. The main thesis of the second contribution of my work is to
learn such appropriate functions.

While bases of generic functional spaces can be considered, I restrict the choice
to the relevant case of L2(µ) where µ denotes the Lebesgue measure. In particular,
given a basis (γn)n of L2(µ) I seek approximate solutions of generic approximation
problems and (2.5) in particular via the ansatz

φN,h = ∑
n≤N

cnγn ◦ h |det Dh|1/2, (4.2)

where h is a function that belongs to a hypothesis class of bijections H, and mul-
tiplying by the determinant of the Jacobian of h serves to conserve the possible
orthonormality of (γn)n. For a fixed N ∈ N>0 consider the family of sequences
induced by H {

(γn ◦ h |det Dh|1/2)n | h ∈ H
}

. (4.3)

Formally, applying the non-linear ansatz (4.2) is equivalent to identifying a specific
h∗ from H that yields the optimal approximation of the target function within the
linear span of the truncated sequence (γn ◦ h∗ |det Dh∗|1/2)n≤N .

While this scheme has already been proposed in [163] with H being a class of
normalizing flows [164, 165], it was only applied to toy quantum models, and no
convergence analysis was performed4. This chapter aims at providing a rigorous
theoretical analysis of approximation schemes based on (4.3) through answers to
three main questions.

First, under what conditions on H, if any, are members of the family (4.3) bases of
L2(µ)? If such conditions exist and can be practically imposed, approximations
in the linear span of any truncated sequence (γn ◦ h |det Dh|1/2)n≤N would be
well-posed. I provide an answer based on studying the push-forward measures

4In the original paper [163] such approximating schemes were proposed to solve Schrödinger
equations, where they were referred to as quantum flows. I recognize the applicability of such models
in approximation problems unrelated to differential equations or quantum mechanics, and therefore
refrain from using this terminology.
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h#µ. It is shown that essential boundedness conditions on their Radon-Nikodym
derivatives are sufficient to this end. Furthermore, it is shown that common
implementations of normalizing flows, such as invertible residual networks, satisfy
these conditions. I, therefore, proceed to implement a Bubnov-Galerkin numerical
scheme for solving differential equations using (4.3). This scheme is called spectral
learning.

Second, what conditions, if any, can one impose on H such that approximations in
the linear span of any truncated sequence (γn ◦ h |det Dh|1/2)n≤N converge, in some
sense, as the truncation parameter N goes to infinity? I call such a convergence a
linear convergence. I answer this question for approximating Schwartz functions
and static Schrödinger equations, in particular (2.5), under some assumptions on
the Hamiltonian. I provide convergence guarantees in L2 and characterize the
convergence order. I show that standard numerical analysis can be recovered from
these results by setting h = id.

Third, does spectral learning achieve faster linear convergence than standard spectral
methods? More specifically, does there exist h∗ ∈ H such that an approximation in the
linear space of (γn ◦ h∗ |det Dh∗|1/2)n≤N converges faster than an approximation in the
linear space of (γn)n≤N as N goes to infinity? I answer this question positively by
studying the push-forward measures h#µ induced by all h ∈ H.

In addition to the theoretical results, I report simulations I performed to solve
(2.5) for polyatomic molecules demonstrating the theoretical findings on the ad-
vantages of using spectral learning. In particular, numerical simulations show a
two-order increase in accuracy upon the use of approximation schemes based on
(4.3).

While the dimension d does not play a crucial role in the discussion throughout
this chapter, the theoretical results are, nevertheless, presented for an arbitrary
dimension. The aim here is to allow for future studies on the effect of dimension
on convergence rates for solving approximation problems using augmented bases.
This chapter assumes familiarity with neural networks and gradient descent
optimization algorithms. It also assumes familiarity with basic measure theory.
Fundamental results are, however, provided in Appendix D.
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4.1 Augmenting expressivity via normalizing flows

Normalizing flows [164, 165] are a powerful tool for generative and discriminative
modeling of probability distributions, i. e., in data-based modeling one can use
normalizing flows to infer the labels of unseen data and to generate new data
examples that have, approximately, the same probability distribution of the train-
ing data. Normalizing flows are based on augmenting the expressivity of base
distribution that are often easy to evaluate and sample from. I start by pushing
this idea to augmenting the expressivity of bases of L2(µ).

4.1.1 Augmenting the expressivity of base distributions

Consider the standard example of supervised learning, where one aims at inferring
the probability distribution Px,E governing the relation between two random
variables or vectors x, E from a finite dataset that is sampled from this distribution.
One can approximate Px,E via a trial probability distribution, e. g., a Gaussian P0.
The approximation process consists of optimizing the parameters of P0, i. e., its
width and center, in order to minimize some loss function5. However, in cases
of very simple base distribution, such as Gaussians, there is not much one can
do to approximate potentially complex distributions Px,E. One way forward is
to increase the expressivity of such base distributions by composing them with a
function h, i. e.,

Ph := (P0 ◦ h)|det Dh|,

where the multiplication with the determinant of the Jacobian guarantees that Ph

integrates to 1, i. e., that it is a valid probability distribution. The task, then, is to
find an h in a hypothesis class H that would minimize some discrepancy between
Ph and Px,E.

In practice, the class H is modeled by smooth bijections [164, 165] to allow for
generative and discriminative modeling of Px,E. Such classes are referred to as
normalizing flows. A common approach to model H is via neural networks. There
are several ways to produce invertible neural networks [164, 165]. The following

5See also the introduction to supervised learning in Chapter 3.
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example illustrates one way to construct a normalizing flow using standard neural
networks.

Example 4.2. [Invertible residual neural networks] Consider, residual neural
network (ResNet), i. e., a neural network composed of concatenated blocks of
the form

h(x) = x− K(x), (4.4)

where K is a standard concatenation of linear layers and nonlinear activation
functions. It can be shown that such a model is invertible if K in each block
is Lipschitz continuous with a Lipschitz constant < 1. To guarantee that all
linear transformations Wi in a neural network satisfy this condition one can
divide by the biggest singular value σi [166], i. e.,

W̃i =

 c Wi
σi

: c
σi
< 1

Wi otherwise
,

where c < 1 is a hyperparameter. The overall neural network is, hence,
invertible upon using, e. g., a Lipswish nonlinearity

σ(x) =
1

1.1
· x

1 + exp(−x)
. (4.5)

Next, augmenting the expressivity of bases for solving differential equations is
proposed and discussed.

4.1.2 Augmenting the expressivity of bases of L2(µ)

Given a basis (γn)n of square integrable real-valued functions L2(µ) and a hypoth-
esis class H I study the family of sequences (4.3) induced by H. An answer to the
first question posed in the introduction of this chapter is provided.

While most of the following results hold for an abstract measure space under
the sole constraint of the measure being σ-finite, the analysis is restricted to the
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relevant case of (Ω ⊆ Rd,B(Ω), µ) (see Remark D.1) where B denotes the Borel σ-
Algebra generated by Ω. Denote by 〈., .〉 its inner-product.

An important property of mappings for the discussion of this chapter is that of
non-singularity.

Definition 4.1. A measurable mapping h : Ω → Ω is said to be non-singular if
µ(h−1(B)) = 0 whenever µ(B) = 0 for all B ∈ B.

Throughout this chapter let

H = {h : Ω −→ Ω | h is a non-singular bijective measurable mapping}

be a hypothesis class. Note that H induces a class of linear operators {Ch | h ∈ H}
on L2(µ) that send any function f into the linear space of all measurable functions
on Ω defined by

f ◦ h for all h ∈ H.

Since µ is σ−finite the non-singularity assumption of h guarantees the existence
of the Radon-Nikodym derivative dh#µ

dµ of the push-forward measures h#µ for all
h ∈ H, and for all B ∈ B(Ω) (see Lemma D.1 and Theorem D.1). To guarantee well-
posedness of the following definition assume that dh#µ

dµ 6= 0 µ- almost everywhere
and note that this implies µ � h#µ. Since also h#µ � µ it follows that h#µ is
equivalent to µ.

Next, I restate (4.3) in an abstract measure-theoretic formalism.

Definition 4.2 (augmented sequence of functions). For h ∈ H, define the augmented
sequence of functions (γh

n)n with

γh
n := (γn ◦ h︸ ︷︷ ︸

:=γ̃h
n

)|dh#µ

dµ
|−1/2. (4.6)

The family of sequences {(γh
n)n | h ∈ H} is called a family/class of augmented

sequences (induced by H).
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Remark 4.1. [On notation] In what follows I will use the hypothesis class H to
define several operations and families. To this end, the following terminology
is used. I say that a certain property holds for H whenever this property
holds for all h ∈ H. For example, H is Lipschitz or smooth means that any
h ∈ H is Lipschitz, smooth, respectively.

Fix h ∈ H. To develop a framework, where all sequences in an H−augmented
family (Definition 4.2) form bases of L2(µ) one needs well-defined projections
〈 f , γh

n〉 of any f ∈ L2(µ), for all n ∈ N>0. Since h : Ω → Ω is a measurable
bijection on (Ω,B(Ω)) it follows that the inverse is also measurable, i. e., h(A) ∈
B(Ω) for any A ∈ B(Ω) [167]. Therefore, one can write

〈γn ◦ h
1

(dh#µ/dµ)1/2 , f 〉 = 〈γn, f ◦ h−1(dh#µ/dµ)1/2〉.

Denote by 〈., .〉h−1
# µ

the L2 inner-product on the weighted space with respect to

the push-forward measure h−1
# µ, i. e.,

〈 f , g〉h−1
# µ

=
∫

Ω
f g dh−1

# µ.

The main result in this section are sufficient conditions on the class H for (4.6)
to be a basis of L2(µ) for all h ∈ H.

Theorem 4.1 (Augmented basis [168]). Let (γn)n be an orthonormal basis of L2(µ)

and H be as above. For all h ∈ H it holds that

(i) (γ̃h
n)n (see (4.6)) is an orthonormal basis of L2(h−1

# µ).

(ii) If, in addition, the Radon-Nikodym derivative dh#µ
dµ is bounded µ−almost ev-

erywhere, and bounded away from zero µ-almost everywhere, then (γh
n)n is an

orthonormal basis for L2(µ).
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Remark 4.2. For all h ∈ H one can show that (by noting that h#µ is locally
finite and applying Theorem D.2)

dh#µ

dµ
=

1
|det Dh| .

By the inverse function theorem

1
|det Dh| = |det Dh−1|.

Assuming H is differentiable and under the assumption (ii) of Theorem 4.1, H
is bi-Lipschitz [169]. This remark is important, since it links the assumptions
of Theorem 4.1 to invertible ResNets (4.4). For the rest of this chapter set r, R
to be the lower and upper bounds on the determinant, i. e.,

rd ≤ |det Dh| ≤ Rd,

and
1/Rd ≤ |det Dh−1| ≤ 1/rd.

Proof of Theorem 4.1. Fix an arbitrary h ∈ H. The orthonormality of (γ̃h
n)n can

readily be seen by a simple change of variable. To prove that (γ̃h
n)n is a basis for

L2(h−1
# µ), take one f ∈ L2(h−1

# µ) satisfying f ⊥ γ̃h
n for all n. In this case

0 = 〈γ̃h
n, f 〉h−1

# µ

=
∫

Ω
γn f ◦ h−1 dµ for all n.

Since f ∈ L2(h−1
# µ), one has that f ◦ h−1 ∈ L2(µ) and since (γn)n is a basis of

L2(µ), Ch−1 f = f ◦ h−1 ≡ 0. Since h−1 is invertible, f ≡ 0. Conclusion follows by
Proposition A.3.
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To prove that (γh
n)n is a basis for L2(µ) take f ∈ L2(µ) such that

0 =
∫

Ω
f (γn ◦ h)|det Dh|1/2 dµ

=
∫

Ω
( f ◦ h−1)γn|det Dh−1|1/2 dµ for all n.

Note that ∫
Ω

f 2 ◦ h−1|det Dh−1| dµ ≤ ‖ f ◦ h−1‖2
L2(µ)‖det Dh−1‖L∞(µ)

< ∞,

since the Radon-Nikodym derivative of h#µ is bounded from below and above.
Thus,

f ◦ h−1|det Dh−1|1/2 ∈ L2(µ).

Since (γn)n is a basis for L2(µ) one has that f ◦ h−1|det Dh−1|1/2 = 0, and thus,
f ≡ 0 and (γn ◦ h |det Dh|1/2)n is a basis for L2(µ) by Proposition A.3.

I provide an alternative proof for (ii). Given an arbitrary f ∈ L2(µ) one saw
that f ◦ h−1|det Dh−1|1/2 ∈ L2(µ). Define

fN =
N

∑
n=1
〈 f ◦ h−1|det Dh−1|1/2, γn〉γn.

Since (γn)n is a basis for L2(µ), one has that

lim
N→∞

∫
Ω

N

∑
n=1
|〈 f ◦ h−1|det Dh−1|1/2, γn〉|2γ2

n dµ =
∫

Ω
f 2 ◦ h−1|det Dh−1| dµ.

Hence,

lim
N→∞

∫
Ω

N

∑
n=1
|〈 f , γn ◦ h|det Dh|1/2〉|2γ2

n ◦ h|det Dh| dµ =
∫

Ω
f 2 dµ.

Therefore, (γh
n)n is a basis for L2(µ).
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Remark 4.3. [On the restrictivity of the conditions on H] In order to have
augmented sequences of functions with density properties in L2(µ) one had
to adopt the restrictive conditions that H is a class of bijections and that

‖det Dh‖L∞(µ) < ∞

‖det Dh−1‖L∞(µ) < ∞,

for all h ∈ H. Assuming H is also differentiable, this means that H is bi-
Lipschitz. This is, indeed, a very restrictive condition on the hypothesis class.
Enforcing Lipschitz constraints on machine learning models is linked to less
expressivity [169, 170]. However, machine learning models with Lipschitz
constraints also have some advantages, e. g., they were linked with better
generalization capabilities [171]. In addition, models with small Lipschitz
constants are more stable during training [172] and less prone to numerical
errors.

This constraint is particularly relevant since several of the most popular
normalizing flows are bi-Lipschitz functions, e. g., the invertible residual
neural network (4.4).

The hypotheses of Theorem 4.1 are connected to the study of composition
operators CH on Lp(µ) spaces [173, 174]. As these connections might serve for
a further development of adaptive bases, I comment on them in the following
remark.

Remark 4.4. [On connections to composition operators] For an arbitrary
h ∈ H, note that dh#µ

dµ < ∞ µ−almost everywhere is a necessary and sufficient
condition for the induced composition operator Ch : L2(µ) → L2(µ) to be
bounded [173, 174]. Hence, the hypothesis of Theorem 4.1 implies that both
Ch and Ch−1 are bounded. Moreover, the hypothesis implies that Ch is an
invertible operator and that the inverse C−1

h = Ch−1 [173, 174].

The stage is now ready to employ the augmented family
{
(γh

n)n | h ∈ H
}

for
approximation problems.
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4.2 From spectral methods to spectral learning

Spectral methods are a powerful tool for solving approximation problems appear-
ing in partial differential equations. For an open domain Ω ⊆ Rd and a mapping
u : Ω→ R, I introduce spectral method for the generic case of solvingLu = f x ∈ Ω

Bu = 0 x ∈ ∂Ω
, (4.7)

where L,B are some linear operators and f : Ω→ R is given. One can allow for
less regular solutions of (4.7) by adopting a weak formulation. This is derived by
multiplying by a test function v and integrating

∫
Ω (Lu) v dµ =

∫
Ω f v dµ∫

dΩ (Bu) v dµ = 0
. (4.8)

Note that the strong (4.7) and weak (4.8) formulations are equivalent when the
solutions are smooth. However, the weak formulation can allow for less regular
solutions by imposing regularity assumptions on the test function v. It can be
shown that the weak solutions solve the strong formulation (4.7) in the sense of
distributions [29]. Unlike finite difference methods, spectral methods often adopt
the weak formulation to construct the solutions [28–30]. Spectral methods are
based on approximating solutions of the weak formulation (4.8) by ũN , a linear
combination of elements of a truncated sequence of globally-supported functions

ũN(x) =
N

∑
n=1

cnγn(x).

(γn)n is a sequence with some density properties, i. e., the linear span of (γn)n is
dense in some function space. This allows one to derive convergence guarantees
as N grows to infinity. One can differentiate between different spectral methods
based on the choice of the test function v [29]. Choosing v = ũN with Bγn(x) = 0
for all n results in a so-called Bubnov-Galerkin spectral method. While choosing
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v = ũN where γn do not satisfy the boundary conditions is referred to as the Tau
method [28–30].

Example 4.3. [Spectral discretization of the nuclear TISE] Using an orthonor-
mal basis (γn)n of L2(µ) to discretize (2.5) in a Bubnov-Galerkin framework
and noting the variational formulations obtained in Theorem 2.2 and Theo-
rem 2.3 one obtains

H̃C̃n = ẼnC̃n for n = 1, . . . , N, (4.9)

where H̃ is an N × N matrix whose ijth entry is H̃[i, j] = 〈γi, Hγj〉, and C̃n

in (4.9) is a vector of length N. Hence, solving (2.5) boils down to solving
the finite dimensional eigenvalue problem (4.9), i. e., to finding all eigenpairs
(Ẽn, C̃n) that satisfy (4.9).

Given a basis (γn)n I showed in the previous section that it is possible to obtain
a family

{
(γn)n | h ∈ H

}
where each member of this family is a basis of L2(µ).

Extending spectral methods to an optimization over this family, i. e., allowing for
an optimization of the basis, is straightforward. To this end, consider the family of
linear spans of truncated basis for some N ∈N>0{

span (γh
n)

N
n=1 | h ∈ H

}
. (4.10)

Definition 4.3 (Spectral learning). Given a basis (γn)n of L2(µ), and a hypothesis
class H that induces a family of bases of L2(µ), an approximation paradigm where
an approximate solution of a differential equation is looked for in (4.10) is called
spectral learning.

I now proceed to employ spectral learning to solve concrete approximation
problems. I consider approximating eigenvalues of infinite-dimensional operators
in general and (2.5) in particular. For this purpose, I also study approximation of
Schwartz functions. Here, questions number two and three in the introduction
of this chapter guide the analysis. While the analysis can be carried out for a
generic basis of L2(µ), I set (γn)n to be the sequence of Hermite functions (4.1) for
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simplicity. Note that this sequence of functions is a basis of L2(R). In multiple
dimensions I define the direct product basis

γ(n1,n2,...,nd)
(x1, . . . , xd) := γn1(x1) . . . γnd(xd).

The size of the full direct product increases exponentially with the dimension d. I
use, therefore, the hyperbolic reduced tensor-product basis [15]

N = N (d, N) := {(n1, . . . , nd) : nj ≥ 0,
d

∏
j=1

(1 + nj) ≤ N}. (4.11)

4.2.1 Linear convergence analysis

It is shown in this section that the use of any truncated augmented basis (γh
n)n≤N

for solving approximation problems is well-posed, in the sense that convergence
guarantees can be obtained as N grows to infinity.

The reduced direct product (4.11) of Hermite functions is augmented, in the
sense of Definition 4.2, by a hypothesis class H that induces a family of bases.
The approximation space is of the form (4.10). For a target function f note that H
induces a family of projection operators

{
P̃h
N | h ∈ H

}
where

P̃h
N f (x) := ∑

n∈N
〈 f , γ̃h

n〉h−1
# µ

γ̃h
n(x),

where the range of P̃h
N is span (γ̃h

n)n∈N . Set P̃h,⊥
N := I − P̃h

N . Similarly, one has the

family
{

Ph
N | h ∈ H

}
where

Ph
N f (x) := ∑

n∈N
〈 f , γh

n〉γh
n(x),

and Ph,⊥
N := I − PN . I drop the notational dependence of all these projection

operators on h for simplicity. In what follows I set ‖ · ‖ = ‖ · ‖L2(µ).
I present the following lemma on the relation between the L2(µ) space and

weighted spaces induced by H.
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Lemma 4.1. Let H satisfy the hypothesis (ii) of Theorem 4.1 and let r, R be as in Re-
mark 4.2. It holds that L2(µ) = L2(h−1

# µ) = L2(h#µ) for all h ∈ H.

Proof. Provided in the supplementary material at the end of this chapter.

The following quantity is required for the linear convergence analysis.

Definition 4.4 (Dirac ladder operator). The Dirac ladder operator Aj is given by

Aj =
1√
2
(qj + d/dxj), (4.12)

where xj is the jth component of x ∈ Rd, qj is the momentum operator defined by
(qj f )(x) = xj f (x).

Set A∗j to be the adjoint of Aj on the Schwartz space S , i. e.,

〈A∗j ψ, γ〉 = 〈ψ, Ajγ〉 for all γ, ψ ∈ S .

For a multi-index σ = (σ1, . . . , σd), set Aσ = Aσ1
1 . . . Aσd

d , i. e., apply the Dirac-
ladder operator a different number of times in all dimensions.

Note that Hermite functions satisfy the following useful recurrence relations [15]
for any n ∈N>0 γn+1 = 1√

n+1
A∗γn

γn−1 = 1√
n Aγn.

(4.13)

The eigenfunctions that solve (2.5) belong to L2(µ). However, it is more conve-
nient to work with Schwartz functions. This is not a problem due to the density of
Schwartz functions in L2 with respect to the L2 norm. I start the analysis by provid-
ing convergence guarantees for approximating Schwartz functions via augmented
Hermite functions.

To characterize the conditions on H for such results one needs the following
definition.



70 Chapter 4. Spectral learning: augmenting bases with normalizing flows

Definition 4.5 (Symbols of the Schwartz space [175]). Let h ∈ H be smooth. h is
called a symbol for Schwartz space if f ◦ h ∈ S for all f ∈ S .

Lemma 4.2. Suppose that H satisfy the hypothesis of Theorem 4.1. Let r be as in Re-
mark 4.2. Furthermore, assume that h−1 is smooth and that it is a symbol for S for all
h ∈ H. For every fixed non-negative integer s ≤ N, for all f ∈ S and for all h ∈ H, it
holds that

‖ f − P̃N f ‖ ≤ (1 + s)sd/2 1
rd N−s/2 max

|σ|∞≤s
‖AσCh−1 f ‖,

where the maximum is taken over all σ = (σ1, . . . , σd) with 0 ≤ σj ≤ s for each j.

Proof. The proof extends Lubich’s result on approximating Schwartz functions
by Hermite functions [15]. Fix an arbitrary h ∈ H. Note that f ∈ L2(h−1

# µ) for
any f ∈ L2(µ). For every multi-index n = (n1, . . . , nd) define the multi-index σ(n)
by the condition σ(n)j = nj − (nj − s)+(with a+ = max{a, 0}) fo all j = 1, . . . , d.
Note that

P̃⊥N f = ∑
n/∈N
〈 f , γ̃h

n〉h−1
# µ

γ̃h
n

= ∑
n/∈N
〈 f ◦ h−1, γn〉γ̃h

n

= ∑
n/∈N

an,s〈 f ◦ h−1, (A∗)σ(n)γn−σ(n)〉γ̃h
n

= ∑
n/∈N

an,s〈Aσ(n) f ◦ h−1, γn−σ(n)〉γ̃h
n,

where in the first equality I used result (i) from Theorem 4.1, in the third equal-
ity I used the recurrence relations (4.13), and in the fourth equality I used the
assumption that h−1 is a symbol for S . One has

an,s =
d

∏
j=1

1√
(1 + (nj − 1)+) . . . (1 + (nj − s)+)

.

Note that, for n /∈ N , and b = 1, . . . , s

d

∏
j=1

(1 + (nj − b)+) =
d

∏
j=1

(1 + (nj − b)+)
1 + nj

1 + nj
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> N
d

∏
j=1

1 + (nj − b)+
1 + nj

> N
d

∏
j=1

1
1 + nj

> N(1 + b)−d

> N(1 + s)−d.

Hence,

|an,s|2 ≤ N−s(1 + s)sd.

Taking inner product in L2(h−1
# µ)

‖P̃⊥N f ‖2
L2(h−1

# µ)
= ∑

n/∈N
|an,s|2|〈Aσ(n) f ◦ h−1, γn−σ(n)〉|2

≤ N−s(1 + s)sd ∑
n/∈N
|〈Aσ(n) f ◦ h−1, γn−σ(n)〉|2

≤ N−s(1 + s)sd max
|σ|∞≤s

‖Aσ f ◦ h−1‖2.

Since |det Dh| ≥ rd almost everywhere one has that rd‖P̃⊥N f ‖2
L2(µ)

≤ ‖P̃⊥N f ‖2
L2(h−1

# µ)

(see Lemma 4.1).

Note that ‖P⊥N f ‖ ≤ c(r, R)‖P̃⊥N f ‖ assuming an upper bound on the L2 norm of
D2h−1. Similar result can be proved for approximating eigenvalues of Schrödinger
operators. One needs the following technical lemma.

Lemma 4.3. Let H satisfy hypothesis of Theorem 4.1 with r, R as in Remark 4.2. Then
ψ(det Dh−1)1/2 ∈ S for all ψ ∈ S and h ∈ H.

Proof. Provided in the supplementary materials at the end of this chapter.

I impose the following constraints on the Hamiltonian.
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Assumption 4.1. Assume that the Hamiltonian is compact and that its spectrum is
of cardinality K < ∞. Further, assume that the true eigenvalues {Ek}K

k=1 and the
approximate ones {Ẽk}K

k=1 are ordered, i. e., E1 < E2 < . . . and Ẽ1 < Ẽ2 < . . . .

Considering the augmented basis defined above, the following theorem pro-
vides convergence guarantees for approximating eigenvalues of linear Hamiltoni-
ans in quantum mechanics using Hermite functions that are augmented by a class
of normalizing flows H.

Theorem 4.2. Let H satisfy the hypotheses of Lemma 4.2 and assume H is a symbol for
S . Under Assumption 4.1 let

f ∗ = argmax‖ f ‖=1, f∈D(H)‖P⊥NH f ‖.

For an arbitrarily small ε > 0 let

f̃ ∈ S be such that ‖H f ∗ − f̃ ‖ ≤ ε.

Then, for any non-negative integer s ≤ N and all h ∈ H one has

|Ẽk − Ek| ≤
√

2N−s 1
rd (1 + s)sd max

|σ|∞≤s
‖AσCh−1 f̃ ‖+O(ε) (4.14)

for all k = 1, . . . , K, where the right-hand side goes to zero as N goes to infinity, and σ is
as in Lemma 4.2.

Proof. The proof extends the analysis of spectral methods for eigenvalue prob-
lems provided in [176] to augmented spectral methods. Fix an arbitrary h ∈ H.
Assume that the operator PNHPN is self-adjoint. Under Assumption 4.1 and by
Theorem A.4 one has

|Ẽk − Ek| ≤ ‖H − PNHPN ‖
= sup
‖u‖=1,u∈D(H)

‖(H − PNHPN )u‖ .
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Define v := (H− PNHPN )u. One has ‖v‖ = ‖PN v + P⊥N v‖ and ‖v‖2 ≤ ‖PN v‖2 +

‖P⊥N v‖2. Plugging in the definition of v

‖PN v‖ = ‖(PNH − PNHPN )u‖
= ‖PNHP⊥N u‖
≤ ‖PN ‖‖HP⊥N ‖‖u‖
≤ ‖HP⊥N ‖‖u‖,

since ‖PN ‖ = sup
u∈D(H)

〈PN u,PN u〉
〈u,u〉 = sup

u∈D(H)

∑i<N |ci |2
∑i |ci |2 ≤ 1. For the second term one

has

‖P⊥N v‖ = ‖(P⊥NH − P⊥N PNHPN︸ ︷︷ ︸
=0

)u‖

= ‖P⊥NHu‖
≤ ‖P⊥NH‖‖u‖
= ‖HP⊥N ‖‖u‖.

Noting that P⊥NH = HP⊥∗N and that adjoint operators have the same operator
norm one has

|Ẽk − Ek| ≤
√

2‖P⊥NH‖
=
√

2 sup
‖ f ‖=1, f∈D(H)

‖P⊥NH f ‖

=
√

2‖P⊥NH f ∗‖.

By the density of S in L2 it holds that there exists f̃ ∈ S such that ‖H f ∗ − f̃ ‖ ≤ ε.
Therefore,

|Ẽk − Ek| ≤
√

2
(
‖P⊥N (H f ∗ − f̃ )‖+ ‖P⊥N f̃ ‖

)
≤
√

2
(
‖P⊥N ‖ε + ‖P⊥N f̃ ‖

)
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≤ O(ε) +
√

2‖P⊥N f̃ ‖.

Using Lemma 4.2 for approximating f̃ (4.14) is attained. It remains to check
that PNHPN is self-adjoint where H = T + V. Clearly, PN vPN is self-adjoint
and PN TPN is self-adjoint if T is self-adjoint, which is correct on Schwartz-
functions. Since γn ∈ S for all n ∈N>0 and h is a symbol for S then γ̃h

n ∈ S and
γ̃h

n(det Dh)1/2 ∈ S by Lemma 4.3.

These results are, indeed, generalizations of spectral methods.

Remark 4.5. Using a normalizing flow h = id the augmented basis (γh
n)n is

exactly Hermite functions. In this case, Lemma 4.2 and Theorem 4.2 are con-
vergence guarantees of using spectral methods for approximating Schwartz
functions, and eigenfunctions to Schrödinger equations, respectively. Hence,
Lemma 4.2 and Theorem 4.2 can be regarded as an extension of the numerical
analysis of spectral methods to augmented spectral methods, i. e., spectral
learning.

The upper bounds in Lemma 4.2 and Theorem 4.2 explain some limitations of
spectral methods and spectral learning.

Remark 4.6. [On difficulty of approximating high-dimensional and highly-
oscillatory functions] The upper bounds in Lemma 4.2 and Theorem 4.2
depend nonlinearly on the dimension of the problem d. This is a major
drawback of linear approximation concepts. Moreover, it can be shown that
the quantity ‖AσCh−1 f ‖ increases for an increasing oscillatory behavior of the
target function f . This means that the convergence rate degrades at increasing
oscillation behavior.

However, the derived upper bounds depend on a hypothesis class via
‖AσCh−1 f ‖. In the next subsection I discuss the possibility of minimizing the
upper bound and its scaling with d by optimization over H.

I conclude the linear analysis by showing that invertible ResNets satisfy the
assumptions of Lemma 4.2, and hence, maintain the convergence property as N
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grows to infinity. I have already shown that invertible residual networks satisfy
hypothesis of Theorem 4.1. It remains to check that invertible residual networks
are symbols for S . The following theorem characterizes symbols. d is set to one
for simplicity.

Theorem 4.3 (Charachterization of symbols [175]). A function φ ∈ C∞(R) is a
symbol for S(R) if and only if the following conditions are satisfied

• For all j ∈N≥0 there exist C, p > 0 such that, for every x ∈ R

|φ(j)(x)| ≤ C(1 + φ(x)2)p.

• There exists k > 0 such that |φ(x)| ≥ |x|1/k for all |x| ≥ k.

Assumption 4.2. Set H to be the set of invertible ResNets of the form (4.4) and fix the
number of their layers to one. Fix an arbitrary h ∈ H. Write h−1 = x− k and assume
that k is a decreasing function of x.

Without loss of generality I set h−1(0) = 0.

Theorem 4.4. h−1 is a symbol for S .

Proof. Provided in the supplementary material at the end of the chapter.

The next section deals with the third and final question posed in the introduc-
tion of this chapter.

4.2.2 Faster convergence rates via normalizing flows

So far I proposed to compose standard bases (γn)n of L2(µ) with a class of map-
pings H to augment their expressivity. I showed that, under some conditions on
H, sequences in the induced family {(γn ◦ h | det Dh|1/2)n| h ∈ H} form bases of
L2(µ). Later, I proposed to use such bases in the framework of spectral methods
to solve approximation problems. The density property of this family allowed
one to derive convergence guarantees as the size of the truncated basis N goes
to infinity. However, such convergence guarantees are already achievable for the
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special normalizing flow h = id. The question that arises now is whether there
exist special functions h such that a faster linear convergence can be achieved
using augmented bases than a standard basis. Example 4.1 indeed hints at such a
possibility.

Next, I show that this is achievable as well for approximating Schwartz func-
tions and eigenvalues of Schrödinger operators. In particular, I show that the
upper bounds in Lemma 4.2 and Theorem 4.2 admit minima over the hypothesis
class H, and that a minimizer h∗ 6= I. In other words, a faster linear convergence
is achievable via the use of a truncated basis (γh∗

n )n≤N compared to the use of
(γn)n≤N .

Instead of considering an optimization problem over the derived upper bound
that depends on h via ‖AσCh−1 f ‖, I consider a simpler and more informative
upper bound. Without loss of generality set s = 1, σ = (1, 0, . . . , 0) and consider
f ∈ C∞

c
6. By considering approximations to compactly supported functions

instead of Schwartz functions one needs no longer assume that H−1 is a symbol
for S to prove Lemma 4.2. Indeed, for all f ∈ C∞

c one has that Ch−1 f ∈ C∞
c for all

h ∈ H due to the non-singularity of these mappings. Without loss of generality, let
supp( f ) = U, U ∈ B(Ω) with µ(U) = 1. Assume that for all x ∈ U there exists
c > 0 such that ‖Dh−1(x)‖F < c. Under such settings, for every h ∈ H it holds

‖ACh−1 f ‖2
L2(µ) =

∫
Ω
((|x|2 + 1)Ch−1 f )2 dµ +

∫
Ω
| d
dx1

Ch−1 f |2 dµ

≤
∫

Ω
((|x|2 + 1)Ch−1 f )2 dµ +

∫
Ω
|DCh−1 f |2 dµ

≤ C1

∫
U
|DCh−1 f |2 dµ

= C1

∫
U
|Ch−1 D f · Dh−1|2 dµ

= C1

∫
U
|D f |2‖Dh−1‖F dh−1

# µ

≤ C2

∫
U
|D f |2 dh−1

# µ

6Since C∞
c functions are dense in S with respect to the norm ‖ f ‖a,b =

supx∈Rd |xaDb f |, for all a, b ∈Nd
≥0.
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≤ C2 ‖D f ‖L∞(µ)

∫
U
|D f | dh−1

# µ,

where I used Poincare’s inequality.
I consider an optimization problem over this upper bound, i. e.,

inf
{∫

U
|D f | dh−1

# µ︸ ︷︷ ︸
l(h):=

| h ∈ H
}

, (4.15)

where H satisfies the hypothesis of Theorem 4.1 with r, R as in Remark 4.2, and l
stands for a loss function.

Remark 4.7. [On relationship of the optimization problem to total variation]
The main motivation of considering an optimization problem over H for a
looser upper bound than the ones derived in Lemma 4.2 and Theorem 4.2 is,
indeed, simplicity. Proving the existence of minimizers is easier in this setting
since the optimization problem is over induced measures h−1

# µ. Under such
setting there is a variety of similar useful results, especially from the field of
optimal transportation [177]. This upper bound comes also with the advan-
tage of more interpretability. Note that the loss function l(h) is actually the
total variation of a function f with respect to the induced measure h−1

# µ. The
total variation of a function serves as an appropriate measure of oscillatory
behavior. Hence, this looser upper bound explains the limited capabilities of
approximating functions of large l(h), i. e., of large total variation. Specifically,
a larger oscillatory behavior means a larger total variation, which translates
into a slower convergence of the underlying truncated basis.

The optimization problem in (4.15) can be understood as looking for an
induced measure, with respect to which f has a small total variation.

Consider (U,B(U), µ) as an abstract measure space, where µ is the restriction
of the Lebesgue measure on U, and denote byM(U) the space of Radon measures
on U. EndowM(U) with the total variation norm ‖λ‖M = |µ|(U). Note that,
under the assumption µ(U) = 1, the induced measures h−1

# µ for all h ∈ H are
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actually probability measures. Denote by P(U) the set of probability measures on
U.

The main result in this section requires the introduction of some lemmas.

Lemma 4.4 (Pushforward measures are Radon measures). The induced measure
h−1

# µ for all h ∈ H where H is the hypothesis class in the optimization problem (4.15) is a
Radon measure.

Proof. Note that h−1
# µ(U) = µ(h(U)). Since h is measurable, one has that h(U) ∈

B. Since µ is inner-regular it follows that h−1
# µ is inner-regular as well.

Now take x ∈ U and a compact neighborhood of it, Nx and note that the image
of Nx under h is compact due to the Lipschitz continuity of h. One has

h−1
# µ(Nx) = µ(h(Nx)) < ∞,

since µ is locally finite. Hence, h−1
# µ is Radon (see Definition D.7).

The following result shows the existence on invertible mappings that induce
certain measures on (U,B(U)). It follows as a direct corollary from a more abstract
result (Theorem D.4).

Lemma 4.5 (Existence of mappings that induce certain measures7). Let ν be a
measure on (U,B(U)) such that ν(U) = µ(U), ν({x}) = 0 for all x ∈ U. There exists
a bi-measurable mapping T : U → U such that T#µ = ν.

Proof. There exists a bi-measurable map T1 : U → [0, 1] such that T1#µ = µ|[0,1]

(see Theorem D.4). Similarly, under the hypothesis on ν there exists a bi-measurable
T2 : U → [0, 1] such that T2#ν = µ[0,1]. Set T : U → U, T = T−1

2 ◦ T1. One has
T#µ = ν.

Note thatM(U) is the topological dual of C(U). The main result depends on
the notion of weak−∗ convergence of a sequence (λn)n ∈ M(U).

7I would like to acknowledge the input of Alp Uzman [178] and Oliver Díaz [179] herewith on
math stackexchange [180].
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Definition 4.6 (Weak−∗ convergence). A sequence (λn)n ∈ M(U) converges
∗−weakly to λ ∈ M(U) if

lim
n→∞

∫
U

f dλn =
∫

U
f dλ

for any f ∈ C(U).

The following two lemmas characterize important results of a ∗−weakly con-
verging sequence inM(U).

Lemma 4.6 ([177]). Let f : U → R∪ {∞} be a lower semi-continuous function. Define
F : P(U) → R ∪ {∞}, F(µ) =

∫
U f dµ. Then, F is lower-semi continuous for the

∗−convergence inM(U), i. e., for (λn)n, λ ∈ M(U) such that λn converges ∗-weakly
to λ it holds

F(λ) ≤ lim inf
n→∞

F(λn).

Similarly, if f is upper semi-continuous, it holds

F(λ) ≥ lim sup
n→∞

F(λn).

Lemma 4.7. Let (λn)n ∈ M(U) be a sequence of finite measures on (U,B(U)) that
converges ∗−weakly to a λ ∈ M(U). Assume that (λn)n is absolutely continuous
with respect to the Lebesgue measure µ with the Radon-Nikodym derivatives satisfying
dλn
dµ ≤ L < ∞ µ−almost everywhere. Then λ is absolutely continuous with respect to µ.

Proof [181]. Choose k ∈ C∞(U) and define

γ(k) :=
∫

U
k dλ.

Note that

|γ| ≤ lim sup
n→∞

∫
U

k
∂λn

∂µ
dµ

≤ M‖k‖2
L2(µ).
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Thus, γ can be extended to a linear operator on L2(U). By Riesz representation
theorem there exists f ∈ L2(U) such that

γ(g) =
∫

U
f g dµ.

Therefore, λ is absolutely continuous with respect to µ with Radon-Nikodym
derivative f .

The stage is ready for the main result.

Theorem 4.5 (Minimizer of (4.15)). The optimization problem defined in (4.15) admits
a minimizer.

Proof. Note that l(h) is bounded from below. Let (hn)n ∈ H be a minimizing
sequence, i. e.,

lim
n→∞

l(hn) = E0 with E0 = inf
{

l(h) | h ∈ H
}

.

By Lemma 4.4, h−1
# µ is a Radon measure. One has that

‖h−1
n #µ‖M(U) = |

∫
U

dh−1
# µ/dµ dµ|

= ‖dh−1
# µ/dµ‖L∞(µ)|µ|(U)

< ∞,

i. e., (h−1
n #µ)n is bounded inM. SinceM is the topological dual of C(U) which

is a separable space, by the Banach-Alaoglu theorem (Theorem E.2) there exists
a subsequence of induced measures (h−1

nj #µ)j that converges ∗−weakly to α∗ ∈
M(U). By Lemma 4.7, α∗ is absolutely continuous and by Lemma 4.6 it holds∫

U
|D f | dα∗ ≤ lim inf

j→∞

∫
U
|D f | dh−1

nj #µ

≤ Rd
∫

U
|D f | dµ.
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Thus, ∂α∗
∂µ ≤ Rd. Similarly, ∂α∗

∂µ ≥ rd. It remains to show that there exists h∗ ∈ H

such that h−1∗
# µ = α∗. Since α∗ is absolutely continuous with respect to µ one has

that α∗({x}) = 0 for all x ∈ U. Note that, by Lemma 4.6

α∗(U) =
∫

U
dα∗

≤
∫

U
lim inf

j→∞
dh−1

nj#
µ

= 1.

Similarly, α∗(U) ≥ 1. Hence, α∗(U) = 1. It follows by Lemma 4.5 that there exists
a bi-measurable h∗ : U → U such that h−1∗

# µ = α∗. Moreover, h∗ ∈ H.

Choosing r > 1 in Lemma 4.2 one can conclude that a minimizer is not equal
to identity.

This completes the analysis defined by the three questions in the introduction of
this chapter. Next, I report simulations on computing nuclear spectra of polyatomic
molecules, where results confirm the theoretical analysis.

4.3 Computing the spectra of polyatomic molecules

Here, I report simulations to approximate solutions of the vibrational Schrödinger
equation (2.5) for hydrogen sulfide H2S in a Bubnov-Galerkin framework (4.9).
The aim is to study convergence patterns of spectral learning (Definition 4.3) and
compare it to convergence of standard spectral methods.

The problem under consideration is three-dimensional. The coordinates are
defined by the internal vibrational degrees of freedom (r1, r2, θ) (see Appendix D)
of H2S, where r1, r2 ∈ (0, ∞) denote the stretching coordinates, and θ ∈ (0, π)

denotes the bending coordinate.
For standard spectral methods Hermite functions (primitive basis) are used,

and for spectral learning Hermite functions are augmented with an invertible
ResNet (basis!augmented). Note here that invertible ResNets satisfy the assump-
tions of Theorem 4.1. However, the minimization problem (4.15) was considered
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TABLE 4.1: Size of the index set N for different values of the
polyad number.

N 1 3 5 7 9 11 13 15 17 19 21 23
|N | 2 8 20 40 70 112 168 240 330 440 571 723

in a class of more general mappings H, i. e., mappings that are not necessarily
differentiable. The 3-dimensional approximating functions were constructed from
the one-dimensional Hermite functions (4.1) via the reduced tensor product

N (N) = {(n1, n2, n3) : nj ≥ 0 forj = 1, 2, 3, w1n1 + w2n2 + w3n3 ≤ N}, (4.16)

where N = 1, 2, . . . , 18„ w1, w2 correspond to the two stretching modes and w3

corresponds to the bending mode. The aim here is to study the approximate
energies for an increasing N, i. e., an increasing size of linear expansion. I chose
w1 = w2 = 2, w3 = 1. This choice is suitable since the density of the bending
states is two times larger than that of the stretching states. I refer to N by polyad
number. Table 4.1 shows the size |N (N)| of the set N (N) for different values of N.
Note that the number of approximate eigenvalues for each N is equal to |N (N)|.
Define the set of approximate eigenvalues

E(N) = {Ẽn}n∈N (N), N = 1, 2, . . . , 18.

To find the coefficients C̃n and the approximate eigenvalues Ẽn of (4.9) I used
a direct eigensolver. For augmented Hermite functions, the coefficients and the
approximate eigenvalues depend on the parameters of the neural network. Follow-
ing the variational formulation derived for Schrödinger equation in Theorem 2.2
one has that

∑
n∈N (N)

Ẽn ≥ ∑
n∈N (N)

En,

i. e., the sum of the approximate eigenvalues is always bigger than that of the true
eigenvalues. I defined the sum of the approximate eigenvalues as a loss function
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and used a first order optimizer to optimize the parameters of the normalizing
flow.

To compute the matrix elements of the projected Hamiltonian H̃, I used Gauss-
Hermite quadrature.

The eigenvalues were calculated in the units of inverse centimeters. For spec-
troscopic applications, a high accuracy correspond to < 1 cm−1 error.

More extensive information on the architecture of the neural network, training
procedure and numerical integrations are provided in the supplementary material
at the end of this chapter.

4.3.1 Convergence of the numerical schemes

Here, the convergence of the approximate eigenvalues, i. e., approximate vibra-
tional energies, that solve (4.9) as a function of the truncation parameter N for
the two discretization schemes is reported. Since I consider many eigenvalues,
it is more convenient to consider the convergence of energy bands. While there
are many ways to group the energies, grouping them according to their polyad
number is the one often used in physics literature.

To formally introduce this grouping define subsets of the set of indices N (N)

as follows

Ni(N) := {n ∈ N : n = (n1, n2, n3), w1n1 + w2n2 + w3n3 = i}

for i = 1, . . . , N,. Note that N (N) = ∪i=1,...,NNi(N). Similarly, define the energy
subsets

Ei(N) := {Ẽn}n∈Ni(N).

I denote by Ẽi(N) the average energy over the band Ei(N), i. e.,

Ẽi(N) =
∑E∈Ei(N) E
|Ei(N)| .
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To characterize the convergence of both discretization schemes I studied the
quantities

∆Ẽi(N) := Ẽi(N)− Ẽi(N + 1), i = 1, . . . , M ≤ N, N = 1, . . . , 17.

A decreasing ∆Ẽi(N) means that the eigenvalues are converging. I studied this
quantity for M = 9. In other simpler words, I studied the convergence of the
average (over group) energy of the first nine groups of energies as a function of
the truncation parameter N.

Figure 4.2 shows ∆Ẽi for the primitive and augmented basis. For both schemes
∆Ẽi decreases as a function of the polyad number N. However, the this quantity
converges faster as a function of N for the augmented basis and increasing the
polyad number results in an improvement of less than 1 cm−1, the usually required
accuracy in my field of application.

I concluded that the 40 eigenvalues corresponding to polyad numbers up to 7
are converged for the augmented basis. I note that the absolute values for these
eigenvalues are lower than that of the primitive basis for the same polyad number.
Hence, I consider the approximate eigenvalues obtained using the augmented
basis to be the true reference values.

4.3.2 Error quantification

I compared the lowest 40 converged eigenvalues with reference calculations using
symmetry adapted vibrational basis functions (TROVE) [149]. I note that the
Hamiltonian in TROVE calculations includes a pseudopotential that I excluded
from the calculations due to the high expenses of its computation and its relatively
small contribution to the overall Hamiltonian.

Table 4.2 shows the absolute error between the approximate eigenvalues8 and
the reference ones. All energies differ from the reference ones by less than 1 cm−1.
This indicates a very good agreement with reference simulations.

8To be accurate I compared relative eigenvalues, i. e., I subtracted the smallest eigenvalue from
all eigenvalues before comparing to reference simulations. This is a common procedure in physics
literature.
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FIGURE 4.2: Convergence of the first 9 energy bands for two dis-
cretization schemes, Hermite functions (primitive basis) and aug-
mented Hermite functions (augmented basis).

Next, I compared the absolute error in the approximate eigenvalue bands
for both discretization schemes as a function of the polyad number. The correct
energies here are considered to be those of augmented Hermite functions for
a polyad number 18. Figure 4.3 shows these results. One observes that the
approximate eigenvalues of the augmented basis converge fast as a function of N,
while only the first band in the primitive basis reaches the desired error tolerance
of < 1 cm−1. Moreover, approximation by Hermite functions is particularly poor
for larger-eigenvalue bands, which correspond to more oscillatory functions. For
augmented Hermite functions, the convergence of these energies is slower as
well, but the desired accuracy can, nevertheless, be achieved. Moreover, the
deterioration in approximation capabilities for higher energy bands is smaller than
that encountered when using Hermite functions. This indicates that augmentation
with invertible neural networks can improve approximations of highly-oscillatory
functions.
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FIGURE 4.3: The absolute error (in cm−1) in the computation of
the the first 7 vibrational polyad bands (in different colors) of
H2S using augmented Hermite functions (augmented basis) and
Hermite functions (primitive basis).

4.3.3 Loss function

Figure 4.4 shows the convergence of the total loss function for polyad number
N = 7, i. e., the sum of all the 40 eigenvalues at each nonlinear training iteration
t, plotted for the two discretization schemes. The fast convergence of the loss
function in the augmented scheme demonstrates the high quality of the inductive
bias provided by Hermite functions. The smoothness of the convergence can be
partially attributed to that fact that the sequence of augmented functions used for
the approximation of energies is always a basis in the limit N → ∞ for any values
of the parameters of the ResNet (Theorem 4.1).

4.3.4 Accessing of the approximate eigenfunctions

To assess the quality of the approximate eigenfunctions I computed another observ-
able. A physical quantity of interest is the electric dipole moment µ which takes
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FIGURE 4.4: The training loss, i. e., the sum of the approximate
eigenvalues as a function of training iteration t for the two dis-
cretization schemes.

values in R3. It can be calculated from electronic structure theory [23]. Denote
by h∗ the optimized neural network for the polyad number 18. The projection of
the dipole moment on the approximate eigenfunctions is a matrix D whose nmth
element is given by

D[n, m] = C̃nC̃m〈γh∗
n , |µ|γh∗

m 〉, (4.17)

where C̃n, C̃m are the coefficients of the approximate eigenfunctions. I computed
this quantity for n = m for the first 35 converged eigenfunctions and compared
against results from TROVE [149]. Table 4.3 summarizes this comparison. Note
again that TROVE calculations include a pseudopotential that I ignore. Neverthe-
less, results show an agreement up to the second decimal number.

4.4 Summary and outlook

Motivated by the curse of dimensionality and the difficulty of approximating
highly-oscillatory functions encountered in spectral methods, I discussed the
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augmentation of standard bases of L2(µ) with a hypothesis class H. I derived
sufficient conditions on H to guarantee that the resulting augmented sequences
form bases of L2(µ) (Theorem 4.1). An interesting question here is whether one
can derive weaker conditions to this end. Furthermore, I showed that invertible
ResNets satisfy these assumptions.

These results allowed one to provide convergence guarantees for approxi-
mating Schwartz functions (Lemma 4.2) and eigenvalues of bounded operators
(Theorem 4.2) in the linear span of truncated augmented bases as the truncation
parameter grows to infinity. While the analysis here was limited to augmented Her-
mite functions, extension to other bases is straightforwardly achievable by noting
the underlying recurrence relations of the bases. For example, Legendre polynomi-
als in one dimension (Pn)n satisfy the recurrence relation Pn−1(x) = BPn(x) where
the operator B reads B( f ) = (q− q2−1

2
d

dx )( f ). Similar to the recurrence relations
of Hermite functions (4.13), this can be used to derive convergence guarantees for
augmented Legendre functions upon noting the space on which B∗ is defined and
imposing correct conditions on H to be a symbol of this space. It is also possible to
analyze augmented bases for a generic underlying basis assuming it satisfies some
recurrence relations. Another restriction of the current analysis is that Theorem 4.2
is limited to bounded quantum Hamiltonian operators. While a convergence
behavior is empirically observed also for unbounded Hamiltonians [168, 182], the
proof technique used in Theorem 4.2 is not suitable to show that.

I derived a looser upper bound to the approximation errors in Lemma 4.2 and
Theorem 4.2 in terms of the total variation of the target function f with respect to
push-forward measures induced by H. This upper bound shows that both Hermite
functions and augmented Hermite functions suffer from a slower convergence at
an increasing oscillation of f . However, I showed that this upper bound admits
a minimum over H (Theorem 4.5). This means that faster convergence can be
achieved for augmented Hermite functions. One interesting research problem is
to quantify the improvement in accuracy possible upon the use of normalizing
flows and how this relates to their parameters. This can be possibly accomplished
via constructive approximation theories of normalizing flows [183]. Moreover,
further research is needed to see whether normalizing flows can directly decrease
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the scaling of the computational costs with the dimensionality of the problem.
I reported simulations to compute the vibrational spectrum of H2S. The results

agreed qualitatively with the theoretical insights. In particular, I demonstrated
numerically the convergence of a numerical scheme based on augmented Hermite
functions as a function of the truncation parameter. Moreover, I showed that this
convergence is indeed faster than what is achievable via standard spectral methods.
In particular, one gained a 2-order of magnitude improvement in accuracy. The
increased accuracy is particularly important for approximating highly-oscillatory
functions. Furthermore, the results agreed well with reference values computed by
the TROVE variational method [149–152]. I note that high-dimensional quadrature
rules should be further discussed in order to successfully apply spectral learning
for bigger systems. In the performed calculations, I used Gauss quadratures. These
are not suitable for higher dimensions because their size grows exponentially
with the number of dimensions. A possible remedy may be to use sparse grid
approaches, such as Smolyak grids [158]. Stochastic estimations of integrals,
such as Monte-Carlo methods, may provide a dimension-independent scaling at
the expense of lower accuracy. Another approach may be the use of collocation
methods, which are equivalent to solving the Schrödinger equation by demanding
that it is satisfied at a set of points, i. e., no integration is necessary [184].

Overall, the proposed spectral learning framework is theoretically sound, in the
sense that it can be well-analyzed for solving differential equations. It improves
the approximation capabilites of standard methods, especially for approximating
highly-oscillatory functions. The training procedure in this framework is stable.
These advantages make spectral learning a promising tool for investigating large
scale computational problems, such as modelling ultrafast molecular dynamics [7–
9].

Supplementary material

The normalizing flow I used for training has the form

h−1(x) = tanh( fγ(tanh−1(x− β)/α)) ∗ α + β,
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where f is an invertible residual neural network, whose parameters are denoted
by γ. The neural network f is composed of 2 layers with 64 hidden units, with
Lipswish activation functions, i. e., functions of the form

σ(x) =
1

1.1
· x

1 + exp(−x)
.

Through a fixed scaling procedure, the input to the tanh−1 function is guaranteed
to lie within [−1, 1]. To solve the optimization problem I use Adam algorithm [148].
To compute integrals in (4.9) I used Hermite Gauss quadratures. During training,
I used different data batches that I constructed by varying the order per dimen-
sion of the quadrature in {30, 25, 21, 26, 22, 29}. I ran all calculations using 200
training epochs. The final eigenvalue calculations after the nonlinear training
were performed using 70 quadrature points per dimension. The 3−dimensional
quadrature grid was generated by taking a direct product on the 1D grids while
eliminating points corresponding to a quadrature weight of < 10−34. To ensure
that I did not run into an overfitting problem, i. e., the weights of the normalizing
flow are not sensitive to the training data, I compared the eigenvalues computed
using 29 quadrature points per dimension to 70 quadrature points per dimension.
The maximum difference per eigenvalue between the two integration schemes
over the first 70 eigenvalues is 0.0196. Hence, I conclude the absence of overfitting.

Proof of Lemma 4.1. For all f ∈ L2(h#µ) one has

‖ f ‖2
L2(h#µ) =

∫
Ω
| f |2 dh#µ

=
∫

Ω
| f |2|det Dh−1| dµ

≥ 1/Rd
∫

Ω
| f |2dµ

= 1/Rd‖ f ‖2,

i. e., f ∈ L2(µ) and thus, L2(h#µ) ⊆ L2(µ). Similarly, for all f ∈ L2(µ)

‖ f ‖2
L2(h#µ) ≤ 1/rd

∫
Ω
| f |2dµ
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= 1/rd‖ f ‖2,

and thus, L2(µ) ⊆ L2(h#µ). The same can be done to show that L2(µ) = L2(h−1
# µ).

Proof of Lemma 4.3. ψ(det Dh−1)1/2 ∈ S if there exists Cn,β > 0 such that

sup
x∈Ω
|xβDα(ψ(det Dh−1)1/2)| ≤ Cn,β,

where

Dα(ψ(det Dh−1)1/2) = ∑
β,β≤α

(
α

β

)
(Dβψ)(Dα−β(det Dh−1)1/2).

Let f (x) =
√

x, and d(x) = det Dh−1 and let |v| = n. By Faà di Bruno
formula [185] one has

Dv f ◦ d =
n

∑
j=1

f (j) ◦ d
n

∑
s=1

∑
ps(v,j)

(v!)
s

∏
j=1

1

(k j!)[lj!]
kj
[D

lj
x d],

where ps(v, j) = {(k1, . . . , ks; l1, . . . , ls) : ki > 0, 0 ≺ l1 ≺ · · · ≺ ls. ∑s
i=1 ki =

j, ∑s
i=1 kili = v} and where ki is a scalar and li is a d-dimensional vector for all i.

Note that f (l) ◦ d = (−1)(l−1) (2l−3)!!
2l (d)0.5−l (formula for lth derivative of square

root) which is bounded since d ≥ r everywhere. Thus, the whole derivative is
bounded.

Proof of Theorem 4.4. Clearly, h−1 is smooth upon the use of smooth activations,
e. g., sigmoid functions. Assume that the activation functions are sigmoid and are
appropriately scaled to have a Lipschitz constant < 1. For a neural network with
one layer one can see

|h−1(x)| = |x− k(x)| ≥ |x| − |k(x)| ≥︸︷︷︸
h is bilipschitz

(1− L)|x| = 1
2
|x| ≥ |x|1/3
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for all |x| ≥ 3, where I sat L = 1/2. It remains to check the first condition of
Theorem 4.3. Note that dn

dxn h−1(x) ≤ dn

dxn x + | dn

dxn σ(wx + b)| for any n ∈ N and
where σ is the sigmoid function. Using Faà di Bruno’s formula where f = σ and
g = wx + b one can write

dn

dxn σ(wx + b) = ∑
l

n!
m1! . . . mn!

σ(

Ml︷ ︸︸ ︷
m1 + · · ·+ mn)(wx + b)wm1 ,

where

σ(Ml) =
Ml

∑
k=0

k

∑
j=0

(−1)j(j + 1)(Ml)

(
k
j

)
σk+1

≤
Ml

∑
k=0

k

∑
j=0

(j + 1)(Ml)

(
k
j

)
1 = cl

since the sigmoid function is bounded and hence, all derivatives of the normalizing
flow are bounded. Thus,

dn

dxn σ(wx + b) ≤∑
l

n!
m1! . . . mn!

clwm1

≤ Lm1 ∑
l

n!
m1! . . . mn!

cl = C ≤ C(1 + |h−1(x)|2).
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TABLE 4.2: Discrepancy between approximate eigenvalues of
(4.9), discretized with augmented Hermite functions, and cal-
culations by symmetry adapted vibrational basis (TROVE) [149].
Numbers are rounded to the second decimal number.

State Trove (cm−1) Augmented Hermite functions (cm−1) Absolute error
1 1182.57 1182.69 0.12
2 2353.91 2354.16 0.25
3 2614.39 2614.27 0.12
4 2628.46 2628.33 0.14
5 3513.7 3514.1 0.4
6 3779.19 3779.22 0.03
7 3789.27 3789.26 0.01
8 4661.61 4662.16 0.56
9 4932.69 4932.84 0.15
10 4939.13 4939.24 0.11
11 5145.03 5144.87 0.17
12 5147.17 5146.94 0.23
13 5243.16 5242.94 0.22
14 5797.21 5797.97 0.76
15 6074.57 6074.99 0.43
16 6077.63 6077.91 0.28
17 6288.14 6288.34 0.2
18 6289.13 6289.18 0.05
19 6385.32 6385.4 0.08
20 6920.08 6921.04 0.96
21 7204.31 7204.74 0.43
22 7204.44 7205.0 0.57
23 7419.85 7420.09 0.24
24 7420.08 7420.21 0.13
25 7516.83 7517.0 0.18
26 7576.42 7576.46 0.04
27 7576.6 7576.6 0.0
28 7752.34 7752.74 0.4
29 7779.35 7779.07 0.28
30 8029.81 8031.1 1.29
31 8318.69 8319.44 0.76
32 8321.87 8322.99 1.13
33 8539.58 8540.43 0.86
34 8539.83 8540.79 0.96
35 8637.16 8638.02 0.85
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TABLE 4.3: Absolute error in the dipole moment calculations
for H2S where the reference calculations are performed using
TROVE [149]. Numbers are rounded to the 4th decimal number.

State Trove (cm−1) Augmented Hermite functions (cm−1) Absolute error
1 0.9703 0.9745 0.0041
2 0.9751 0.9711 0.0041
3 0.98 0.98 0.0
4 0.9652 1.0034 0.0382
5 0.9674 1.001 0.0336
6 0.985 1.0212 0.0362
7 0.9695 0.9698 0.0004
8 0.9717 0.9801 0.0084
9 0.99 0.9543 0.0357
10 0.9738 0.9216 0.0523
11 0.9762 0.9538 0.0224
12 0.9596 0.937 0.0226
13 0.9602 0.9738 0.0135
14 0.9628 0.9869 0.0241
15 0.9952 0.9265 0.0687
16 0.9782 0.9683 0.01
17 0.9808 0.9366 0.0441
18 0.9633 0.9515 0.0118
19 0.9638 0.9623 0.0015
20 0.9665 0.9626 0.0039
21 1.0005 0.9568 0.0437
22 0.9855 0.9724 0.0132
23 0.9828 1.0537 0.0709
24 0.9671 0.9939 0.0268
25 0.9675 1.0441 0.0766
26 0.9702 0.997 0.0268
27 0.9496 0.9471 0.0025
28 0.9497 0.9319 0.0178
29 0.954 0.9042 0.0498
30 0.9587 0.9348 0.0238
31 1.0058 0.9452 0.0605
32 0.9904 0.976 0.0145
33 0.9875 1.0017 0.0142
34 0.9713 0.9385 0.0328
35 0.9711 0.9418 0.0293
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Chapter 5

Conclusions and outlook

Numerical modeling of quantum chemical dynamics poses computational chal-
lenges at the focus of research efforts in numerical analysis and computer science.
For example, constructing potential energy surfaces of weakly-bound complexes,
such as pyrrole(H2O), requires the use of high-resolution numerical methods to
solve the electronic Schrödinger equation. Furthermore, the landscape of these
potential energy surfaces is complex due to the loosely bound character of in-
termolecular interactions. Thus, a large number of points is usually required to
sample the complete configuration space. In addition, a correct description of the
dissociation dynamics of such molecular systems requires the computation of a
vast number of highly-oscillatory eigenfunctions of unbounded linear operators
that lie in high dimensions. The present work proposed two novel machine learn-
ing algorithms that allow for more accurate quantum simulations of molecules
than what is possible using state-of-the-art methods, while enjoying a high-level
of robustness.

First, constructing potential energy surfaces of polyatomic molecules in a su-
pervised learning paradigm was considered. Due to the high-computational costs
of generating the training dataset, this problem has been under extensive recent
investigations in an active learning paradigm that allows for optimizing the choice
of the training dataset. However, an understanding of optimal strategies to mini-
mize the size of the training dataset is still lacking, and common approaches are
rather heuristic. To this end, I proposed an upper bound to the generalization error
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for active learning (Theorem 3.2) which allows for an empirical risk minimization
principle. It suggests that optimal strategies should sample points with high
uncertainties in their predictions and such that their distribution does not deviate,
in the sense of integral probability metrics, much from the true distribution of data.
This result can be seen as a general formulation of similar results where distances
between probability distributions is measured via the Wasserstein metric [105], or
the maximum mean discrepancy over reproducing kernel Hilbert spaces [104]. I
proposed an algorithm based on this empirical risk minimization principle (Algo-
rithm 3) and used it to reduce the computational costs of constructing the potential
energy surface of pyrrole(H2O). Simulations [121] (also reported in Section 3.4)
showed that accurate potential energy surfaces can be constructed with a roughly
two times smaller dataset than what is possible via other common active learning
algorithms. The proposed algorithm is general, can be applied to any molecular
system, and can be combined with quantum chemistry packages to solve the
electronic Schrödinger equation. For a thorougher technical discussion into the
down-, upsides of the proposed framework and its prospective see Section 3.5.

Second, the present work considered solving static Schrödinger equations
that describe nuclear motions in molecules. To this end, it proposed augmenting
the expressivity of standard bases of L2 via composition with invertible neural
networks. The work identified sufficient conditions on the neural networks for the
resulting sequence of functions to form a basis for L2 (Theorem 4.1). I put forward
a spectral learning framework for solving differential equations (Definition 4.2)
where augmented bases are used for spatial discretization of differential equations.
As applications of the density property of augmented bases in L2, I provided
convergence guarantees for approximating Schwartz functions (Lemma 4.2) and
eigenvalues of some Schrödinger operators (Theorem 4.2) as the truncation pa-
rameters goes to infinity. I showed that the total variation of target functions with
respect to the push-forward measures induced by the neural networks that satisfy
the assumptions of Theorem 4.1 admit minima. A direct corollary of this result
is that spectral learning enjoys a faster convergence for approximating Schwartz
functions and eigenvalues of Schrödinger operators than standard methods. I
employed spectral learning to compute eigenpairs of the vibrational Schrödinger



Chapter 5. Conclusions and outlook 97

equation for polyatomic molecules. Results demonstrate a two-order of mag-
nitude increased accuracy upon the use of neural networks. Spectral learning
showed a robust training process with little sensitivity to training parameters.
This can be attributed to the fact that the augmented sequence of functions is a
basis for any values of the parameters of the neural network. The robust train-
ing process renders spectral learning more attractive for approximating many
eigenfunctions of operators as opposed to standard neural networks, which are
generally fragile. Currently, I am investigating the applicability of spectral learn-
ing to higher-dimensional problems, which are inaccessible to standard numerical
techniques, e. g., the computation of the vibrational spectra of higher-dimensional
weakly-bound systems. For a thorougher technical discussion on the limitations
and prospective of the proposed spectral learning see Section 4.4.

Overall, the proposed active and spectral learning algorithms extend the bound-
aries of accuracy and scalability achievable via available state-of-the-art methods.
They provide powerful tools for modeling quantum chemical dynamic. Furthre-
more, they are applicable to a wide range of other domains. In particular, the
proposed active learning algorithm (Algorithm 3) can be applied for any standard
regression task. Similarly, spectral learning can also be straight-forwardly em-
ployed for spatial discretizations of other partial differential equations, such as
time-dependent Schrödinger equations1, or the Hamilton-Jacobi-Bellman equa-
tions from control theory.

1In fact, this is currently under investigation in the framework of a DASHH project by Álvaro
Fernández Corral with the aim of simulating strong field ionization processes.
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Appendix A

Hilbert spaces and linear operators
thereon

Quantum mechanics is formulated in the language of Hilbert spaces and makes
extensive use of (unbounded) linear operators thereon to describe physical mea-
surable quantities. Here, relevant results and definitions are collected with special
emphasis on bases of Hilbert spaces, which are extensively used to define the
spectral learning paradigm (Definition 4.3). Familiarity with the definition of inner
products and Hilbert spaces is assumed. SetH to be a complex Hilbert space with
inner-product 〈., .〉, taken anti-linear in its first and linear in its second argument.
Set ‖.‖ =

√
〈., .〉. The reader is referred to [63] for thorougher discussion on

mathematical quantum mechanics.

A.1 Bases of Hilbert spaces

Bases of functional spaces are a crucial tool in approximation theory, as they allow
approximating function of these spaces to an arbitrary accuracy.

Definition A.1. LetH be a Hilbert space. A sequence (φn)n is called orthonormal
if 〈φn, φm〉 = δnm.
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Definition A.2. An orthonormal sequence (φn)n in a Hilbert spaceH is called an
orthonormal basis ofH if for all ψ ∈ H one can write

ψ = ∑
n
〈ψ, φn〉φn.

Proposition A.1 (Bessel’s inequality). Let (φn)n be an orthonormal sequence in a
Hilbert spaceH. for all ψ ∈ H it holds that

‖ψ‖2 ≥
N

∑
n=1
|〈φn, ψ〉|2 for all N ∈N>0. (A.1)

Example A.1. The Hermite functions (γn)n defined by

γn(x) = hn(x) exp(−x2/2),

where hn denotes the nth Hermite polynomial, is a basis set for the Hilbert
space L2(R).

Example A.2. The sequence (φn)n, φn(x) = 1√
2π

exp(inx) is a basis set for

the Hilbert space L2([0, 2π]).

Proposition A.2. A Hilbert space is separable if and only if it contains an orthonormal
basis.

One has the following characterization of orthonormal bases.

Proposition A.3. An orthonormal sequence (φn)n is an orthonormal basis ofH if and
only if

〈φn, ψ〉 = 0 for all n =⇒ ψ = 0. (A.2)

Proof. Let (φn)n be a basis and let 〈φn, ψ〉 = 0 for all n and some ψ ∈ H. By
Definition A.2 ψ = 0.
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Now take χ ∈ H. By Bessel’s inequality Proposition A.1

N

∑
n=1
|〈χ, φn〉|2 ≤ ‖χ‖2.

The sequence on the left-hand side is non-decreasing and bounded, thus, its limit
exits and

lim
N→∞

N

∑
n=1
|〈χ, φn〉|2 = ∑

n
|〈χ, φn〉|2.

Now define ψ = χ−∑n |〈χ, φn〉|φn. Clearly ψ ∈ H. Assuming it satisfies (A.2), it
holds that ψ = 0 and thus, χ = ∑n |〈χ, φn〉|φn, i. e., (φn)n is a basis.

A.2 Linear operators on Hilbert spaces

The measurement of physical quantities in quantum mechanics is mathematically
formulated as computing the spectrum of unbounded linear operators on Hilbert
spaces. Basic definitions on such operators are collected here with a special
emphasis on self-adjoint operators. L(H) denotes the set of bounded linear
operators u : H → H.

An important consequence of the Riesz representation theorem for Hilbert
spaces is the existence and uniqueness of adjoints of bounded linear operators. In
particular, for each A ∈ L(H) there exists a unique bounded operator A∗ such
that

〈Aψ, φ〉 = 〈ψ, A∗φ〉 for all ψ, φ ∈ H.

A∗ is called the adjoint of A.

Definition A.3 (Symmetric and self-adjoint operators). A linear operator H :
D(H) ⊆ H → H is called symmetric if

〈Hψ, φ〉 = 〈ψ, Hφ〉 for all ψ, φ ∈ D(H).
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It is called self-adjoint if for any φ, η ∈ H the relation

〈Hψ, φ〉 = 〈ψ, η〉 for all ψ ∈ D(H)

implies φ ∈ D(H) and η = Hφ.

Every self-adjoint operator is symmetric, but the converse is not true for un-
bounded operators. Every self-adjoint operator is closed, i. e., for any sequence
(φn)n in D(H), the convergence φn → φ, Hφn → η implies φ ∈ D(H) and η = Hψ.

Definition A.4 (Unitary operators). An operator U onH is unitary if it preserves
the inner product

〈Uψ, Uφ〉 = 〈ψ, φ〉 for all ψ, φ ∈ H,

or equivalently if ‖Uψ‖ = ‖ψ‖ for all ψ ∈ H.

Definition A.5 (Direct sum of Hilbert spaces). LetH1,H2 be two Hilbert spaces.
Then, their direct sum is defined as

H1 ⊕H2 := H1 ×H2,

equipped with the scalar product

〈φ, ψ〉H1⊕H2
:= 〈φ1, ψ1〉H1 + 〈φ1, ψ1〉H2 .

(H1 ⊕H2, 〈, 〉H1⊕H2) is a Hilbert space.

Definition A.6 (Graph of an operator, closed operator, closure). • The graph of
a linear operator T : D(T) ⊆ H → H is the space

G(T) = {(φ, Tφ) ∈ H⊕H | φ ∈ D(T)} ⊂ H⊕H.

• An operator T is called closed if G is a closed subset ofH⊕H.

• An operator T is called closable if it admits a closed extension. In such a case,
the smallest closed extension T̄ is called the closure of T.
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Remark A.1. An operator T : D(T) ⊆ H → H is said to be densely defined
if D(T) is dense inH.

One has the following criterion for self-adjoint operators.

Theorem A.1. Let T : D(T) ⊆ H → H be a densely defined and symmetric linear
operator. Then, the following are equivalent.

• T is self-adjoint.

• T is closed and ker(T∗ ± i) = {0}.

In what follows results concerning spectra of linear operators are introduced.

Definition A.7 (Resolvent, resolvent set and spectrum). Let T : D(T) ⊆ H → H
be a linear operator onH. The resolvent set of T is defined as

ρ(T) := {z ∈ C | (T − z) : D(T)→ H is a bijection with continuous inverse}.

For z ∈ ρ(T)′ define the resolvent of T at z as

Rz(T) := (T − z)−1 ∈ L(H).

The spectrum of T is defined as the compliment of the resolvent set

σ(T) := C \ ρ(T).

Remark A.2. For closed operators, the continuity requirement in the defini-
tion of the resolvent set can be dropped as a consequence of the closed graph
theorem, stating that a linear map T : X → Y between two Banach spaces
X, Y is continuous if and only if it is closed.

Proposition A.4. If T is not closed, then ρ(T) = ∅.

Definition A.8 (Partition of the spectrum of a closed operator). Let (T, D(T)) be
a closed, linear operator. One can partition its spectrum σ(T) according to the
following criteria.
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• σp(T) = {z ∈ C | T − z is not injective} is called the point spectrum, and it
coincides with the set of eigenvalues of the operator.

• σc(T) = {z ∈ C | T− z is injective, not surjective, with dense range} is called
the continuous spectrum.

• σr(T) = {z ∈ C | T − z is injective, not surjective, with no dense range} is
called the residual spectrum.

Example A.3. Consider the position operator q with the domain

D(q) = {ψ ∈ L2(R) | xψ ∈ L2(R)}.

Define by
q : ψ→ xψ.

The operator (q− z)−1 is equivalent to the multiplication by (x− z)−1, which
is bounded for all z ∈ C \R. Thus, σ(q) = R.

The map (q− λ) has a dense range for all λ ∈ R. To see this, define for
all ψ ∈ L2

φn := χ
R\[λ− 1

n ,λ+ 1
n ]

ψ

1− λ
.

It holds that (x − λ)φn → ψ in L2 and hence, the range of x − λ is dense.
Thus, σ(q) = σc(q) = R.

One has the following results on the spectrum of self-adjoint operators.

Theorem A.2. Let T : D(T) ⊆ H → H be a symmetric operator. T is self-adjoint if and
only if σ(T) ∈ R.

Remark A.3. Quantum mechanics postulates that the outcomes of physi-
cal measurements can be represented by the spectrum of linear operators.
Since the outcomes of physical measurements are always real quantities, one



A.2. Linear operators on Hilbert spaces 105

would want to describe measurements with operators having real spectrums,
whence the importance of self-adjoint operators in quantum mechanics.

One has the following result on the spectrum of compact self-adjoint operators.

Theorem A.3 (Spectral theorem for compact, self-adjoint operators). Let A : H →
H be a compact, self-adjoint operator. There is an orthonormal basis of H consisting of
eigenvectors of A. The nonzero eigenvalues of A form a finite or countably infinite set
{λk}k of real numbers and

A = ∑
k

λkPk, (A.3)

where PK is the orthogonal projection onto the finite-dimensional eigenspace of eigenvectors
with eigenvalues λk. If the number of nonzero eigenvalues is countably infinite, then the
series in (A.3) converges to A in the operator norm.

I finish this appendix by reporting a result that characterizes the effect of
perturbations to self-adjoint operators on their spectrum.

Theorem A.4 (Weyl’s inequality [186]). Let V1, V2 be self-adjoint compact operators
and denote by En(V1), En(V2) their respective eigenvalues which are assumed to be
positive. Set V = V1 + V2 and denote by En(V) its eigenvalues. It holds that

|En(V)− En(V1)| ≤ ‖V2‖.
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Appendix B

From Cartesian to internal coordinates
of molecules

Consider a molecule composed of N nuclei. Its state can be described by the
position p and velocity v of each atom, thus requiring 6N variables. However,
the number of independent variables can be effectively reduced. Assume that
the bonds between nuclei are always fixed, i. e., the distances between nuclei do
not change. In such a case, one is left with two kinds of motion for the molecule,
rotational and translational. Unless an external field is present, properties of
molecules, e. g., spectra, are invariant with respect to the translational motion. A
common way to effectively describe motions in molecules is using Euler angles, a
simple physical extension of spherical polar coordinates. One starts by fixing a
Cartesian coordinate system to the center of mass of the molecule. This coordinate
system is called a body-fixed frame. One aligns the body-fixed frame with a space fixed
frame, also called laboratory axis, so that the body-fixed x, y, and z axes coincide
with the space-fixed X, Y, and Z axis. Secondly, the body and its frame are rotated
actively over a positive angle α, around the z-axis. Thirdly, one rotates the body
and its frame over a positive angle β around the y-axis. The z-axis of the body-fixed
frame has after these two rotations the longitudinal angle α and the colatitude
angle β, both with respect to the space-fixed frame. A last rotation around its
z-axis is necessary to specify its orientation completely. The last rotation angle is
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called γ. The total matrix of the three consecutive rotations is the product

D =

cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1


 cos(β) 0 sin(β)

0 1 0
− sin(β) 0 cos(β)


cos(γ) − sin(γ) 0

sin(γ) cos(γ) 0
0 0 1

 .

Thus, the positions of nuclei of the molecule in the laboratory frame are given by

q = R + D · r, (B.1)

where R ∈ R3 denotes the position of the center of mass, while r ∈ R3N−6

describes the positions of the nuclei with respect to the body-fixed frame. In the
rigid model, this vector assumes a fixed value. So, one can see that the total system
has 6 degrees of freedom, 3 rotational and 3 translational. In a non-rigid model,
one has 3N − 6 more degrees of freedom, known as vibrational degrees of freedom.
As an example let us consider a water molecule. It has three nuclei and 2 bonds.
Thus, one has have 3 vibrational degrees of freedom. Two corresponding to the
change of the bonds-length and one corresponding to the change of the angle
between the bonds. For such a model equation B.1 is still valid but r is not any
more constant. Hence, to describe the whole system one needs 3N degrees of
freedom.
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Appendix C

Random forest regressors

Regression trees are a non-parametric way of solving a regression problem. They
are based on the intuition that the output value can be inferred by partitioning
the input space. In particular, for solving a regression problem with datapairs
{(xi, Ei)}l

i=1, a Tree-Regressor aims at finding J distinct and non-overlapping re-
gions R1 . . . RJ in the feature space that minimize

J

∑
j=1

∑
i; xi∈Rj

(Ei − ĒRj)
2,

where
ĒRj = ∑

i; Xi∈Rj

Ei/mj

is the average target value of mj examples in region Rj [187]. This problem is
NP-complete [188]. Therefore, only near-optimal solutions are considered by
restricting ourselves to hyper-rectangular regions and using recursive binary
splitting, a greedy algorithm to obtain a near-optimal segmentation. A prediction
for a new input x is done by assigning the input to one of the regions. The
prediction for this input is then the average value of all examples in the training
dataset that fall in this region. A major drawback of tree regressors is their large
variance [187]. A powerful approach to mitigate this problem is to consider an
ensemble of trees. The key idea is that averaging a set of independent random
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variables, which have comparable variances, reduces their overall variance [187].
In an ensemble method, a random perturbation is introduced to the learning
process in order to produce different learners from the same training set. Thus,
taking the average of the predictions of the ensemble would result in a reduction
of variance. Such a random perturbation can be introduced by bootstraping,
which gives rise to bootstrap aggregation (bagging) methods. Here, B different
bootstrapped datasets of size mb are generated. A tree is built on each model. For
a new data point, a prediction is made by taking the average of the predictions of
all trees

Tbag(x) =
1
B

B

∑
i=1

Ti(x).

A further random perturbation in tree models can be introduced by consid-
ering, at each split, only a randomly drawn subset of all possible features. This
gives rise to the random forest regressor (RFR) [189]. Thus, one can see that RFR
employs a 2-fold randomization procedure. The ensemble can be made even
more diverse by introducing further randomization in the learning process, e. g.,
extremely randomized trees [190]. RFR is an inherent ensemble method encom-
passing diverse learners. This makes the model a very attractive option for a query
by committee-based algorithm like Algorithm 2 or Algorithm 3.

Another advantage of using the trees of an RFR in Algorithm 2 and Algo-
rithm 3 is its relatively low training complexity. An AL paradigm is a dynamic
paradigm that needs to be performed iteratively until one is satisfied with the
performance. One wishes to be able to perform these iterations quickly. Otherwise,
the time saved from performing redundant electronic structure calculations would
be wasted in performing AL iterations. Building an RFR is relatively cheap. It has
an average time complexity of Θ(M · K · Ñ log2

2 Ñ) [191] where K, M denote the
number of random features sampled at each splitting and the number of trees, re-
spectively, and Ñ ≈ 0.632N with the number N of training examples.1 This should
be compared to the computational cost of training a Gaussian process, which scales

1The probability of not selecting a point in n draws of n samples with replacement is (1− 1/n)n,
which converges in the limit of n→ ∞ to e−1. Hence, bootstrap samples draw, on average, 1− 1/e ≈
63.2 % of unique samples [191, 192].
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as O(N3) [84]. With extremely randomized trees the average time complexity for
training is Θ(M · K · N log2 N) [190]. The average inference complexity of RFR
is Θ(M log N) [190]. Thus, one AL iteration scales as O(M ∗ K ∗ Ñ log2

2 Ñ) with
the number of so-far-labeled data N. The complexity of RFR is asymptotically
inferior to that of a neural network (NN), which has a training time complexity2

of O(NeN(∑l−1
i Ni Ni+1)) with the number of epochs Ne needed for the NN to

converge and the number of neurons Ni in layer i. However, in the data size
regime of our application, the computational costs of an RFR are smaller than that
of the NN.

2This bound can be straightforwardly obtained by noting that matrix multiplications are the most
expensive computations in the forward and backward passes of the NN training. We assume here that
matrix multiplication scales as Θ(N3).
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Appendix D

Measure theory

The proposed spectral learning paradigm (Definition 4.3) and the discussion
of active learning are formulated using the language of measure theory. Some
relevant definitions and results are collected here. The reader is referred to [193]
for a deeper discussion on standard measure theory and to [194] for extensive
results on probability measure spaces.

For what follows set (X,A, λ) to be an abstract measure spaceM to be the
families of real-valued measurable functions u : (X,A) → (R,B(R)), where B
denotes the Borel σ−algebra.

Remark D.1. Given a measure space (X,A, λ) and A ∈ A one would
sometimes want to define a new measure space (A,AA, λA) on A. This
appears, e. g., when X = R. A formal way to do that is to set

AA = {M ∈ A, M ⊆ A},

and
λA = λ|A.

Definition D.1 (Bi-measurable functions). A bijection f : X → X is said to be a
bi-measurable or an isomorphism if both f and f−1 are measurable.
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D.1 Push-forward measures

In Chapter 4 normalizing flows are required to be transformations that are well-
behaved in the following sense.

Definition D.2 (Non-singular measurable transformations). A measurable trans-
formation or mapping h : X → X is said to be non-singular if λ(T−1(S)) = 0
whenever λ(S) = 0.

Measurable transformations induce measures in the following way.

Definition D.3 (Push-forward measure). Given a measure space (X,A, λ) and a
measurable mapping h : X → X the push-forward measure of λ is

h#λ(A) = λ(h−1(A)) for all A ∈ A.

The push-forward measure is sometimes denoted by λh−1.

Push-forward measures relate to composition operators in the following sense.

Example D.1. [Integrating a function with respect to a push-forward mea-
sure] Given a measurable mapping g : X → X it holds∫

X
g dh∗λ =

∫
X

g dλh−1

=
∫

X
g ◦ h dλ.

D.2 The Radon-Nikodym theorem

Radon-Nikodym theorem is an important result that establishes relationships
between measures on the same measurable space. It has important applications,
e. g., in probability theory.

The following is an important property of measures.
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Definition D.4. Let λ, ν be two measure on the measurable space (X,A). ν is said
to be absolutely continuous with respect to λ if

for all A ∈ A with λ(A) = 0 =⇒ ν(A) = 0.

If this holds write ν� λ.

The push-forward of a measure λ is absolutely continuous assuming some
regularity on the underlying transformation.

Lemma D.1 ([173]). If a measurable transformation h : X → X is non-singular, then
h#λ� λ.

Radon-Nikodym theorem characterizes absolute continuity of measures.

Theorem D.1 (Radon-Nikodym [193]). Let λ, ν be two measures on a measurable space
(X,A). If λ is σ−finite the following is equivalent:

• ν� λ.

• ν(A) =
∫

A f dλ for all A ∈ A for some almost everywhere unique f ∈ M, f ≥ 0.

f is called the Radon-Nikodym derivative and is denoted by dν
dλ .

As an example, one can see that the integration against a push-forward mea-
sure induced by a non-singular transformation can be written using the Radon-
Nikodym derivative ∫

X
g dh#λ =

∫
X

g
dh#λ

dλ
dλ.

Finally, I collect some fundamental results for the case X = R,A = B, and λ is
the Lebesgue measure.

Definition D.5. A measure λ on (R,B) is said to be locally finite if for all x ∈ X
there exists a neighborhood Nx of x such that λ(Nx) < ∞.

The following theorem is a corollary of Lebesgue’s differentiation theorem
which links Radon-Nikodym derivatives with definitions of derivatives from
standard calculus.
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Theorem D.2 (Lebesgue differentiation [193]). Let ν be a locally finite measure on
(Rd,B(Rd)) that is absolutely continuous with respect to λ. Set

Dµ := lim
r→0

ν(Br(x))
λ(Br(x))

.

Then Dµ exists Lebesgue almost everywhere and coincides almost everywhere with the
Radon-Nikodym derivative dν

dλ .

D.3 Radon measures and a Riesz representation the-

orem

A very useful measure theoretic tool is the Radon measure, since it characterizes
the topological duals of important functional spaces. Such results are important,
e. g., in the field of optimal transportation, where they allow for proving that the
Kantorovitch formulation of optimal transport admit minima [177]. For what
follows, set X = R, and A = B(R) = B.

Definition D.6. A measure λ on (R,B) is said to be inner-regular if for any U ∈ B
one has

λ(U) = sup{K : K ⊆ U, K is compact}.

Definition D.7 (Radon measure). A Radon measure on (R,B) is a measure that is
both inner-regular and locally finite. Denote byM(R) = M the set of Radon
measures on (R,B).

Remark D.2. Note that Radon measure are usually introduced for locally
compact Hausdorff spaces but analysis here is restricted to the only relevant
case of X = R.

Example D.2. [The Lebesgue measure is Radon] note that the Lebesgue
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measure restricted to (X,B) is locally-finite and inner-regular. Hence, it is a
Radon measure.

The importance of Radon measures stems from their relations to the topological
duals of spaces of continuous functions. EquipM with the total variation norm

‖γ‖M := |γ|(X).

Equip the space C(R) with the sup-norm.

Theorem D.3 ([193]). The topological dual of C can be identified with M with the
duality pairing

γ( f ) = 〈γ, f 〉M,C =
∫

R
f dγ, for γ ∈ M, f ∈ C.

D.4 Probability theory

Finally, some relevant results from probability measure theory are collect. Consider
(X,A) to be a measure space. Denote by P an arbitrary probability measure and
by P(X) the set of probability measures over X. It is common to refer to any
A ∈ A by an event.

Definition D.8 (Independent events). Two events A, B are said to be independent if

P(A ∩ B) = P(A)P(B).

Given an index set I, a family (Ai)i∈I of events is said to be independent if

P(∩j∈J Aj) = ∏
j∈J

P(Aj) for all J ⊂ I.

One can extend the notion of independence of family of events to independence
of family of classes of events.

Definition D.9. Let I be an index set and consider Ei ∈ A for all i ∈ I. The
family (Ei)i∈I is called independent if, for any finite subset J ∈ I and any choice of
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Ej ∈ Ej, j ∈ J, one has
P(∩j∈J Ej) = ∏

j∈J
P(Ej).

Definition D.10 (Random variables/distributions). (i) A measurable map-
ping V : X → R is called a real random variable.

(ii) The push-forward measure PV := V#P induced by a real random variable
V is called the distribution of V.

The following is an important family of random variables that one often en-
counters in machine learning and statistics.

Definition D.11 (Independent and identically distributed random variables). Let
I be an index set and (Vi)i∈I be a family of real random variables. Endow R by
the Borel-σ algebra B.

(i) The family (Vi)i∈I is said to be identically distributed if

PVi = PVj for all i, j ∈ I.

(ii) The family (Vi)i∈I is said to be independent if the family of generated sigma
algebras (σ(Vi))i∈I , where σ(Vi) = V−1

i (B) is independent.

A family of real random variables satisfying both conditions is said to be i.i.d. In
such a case set P = PVi .

Given ν ∈ P(X) an interesting question is whether one can find a measurable
mapping T : X → [0, 1] such that the induced push-forward measure T#ν coincides
with µ|[0,1], i. e., the Lebesgue measure on [0, 1]. This question turns out to be
essential in the nonlinear analysis of spectral learning carried out in Chapter 3.
The following theorem provides an answer under some particular settings.

Theorem D.4 ([167] (Theorem 17.41)). Let X be a standard Borel space and assume
that ν ∈ P(X) satisfies

ν({x}) = 0 for all x ∈ X.
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Then, there exists a bi-measurable mapping T : X → [0, 1] such that

T#ν = µ|[0,1].
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Appendix E

Functional analysis

Some important results to prove the existence of minimizers to the variational
formulation of Schrödinger equation Theorem 2.2 and optimization problem
defined in (4.15) are collected here.

Denote by X a normed vector space, and by X∗ its topological dual.

Theorem E.1 (Banach-Alaoglu). Let X be separable, then the closed unit ball in X∗ is
compact in the weak-* topology.

The following is a very important corollary.

Theorem E.2. Any bounded sequence in X∗ has a weak∗ converging subsequence.
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Notation and terminology

Sets

(i) N≥0 = set of non-negative integers. Nd
≥0 = the d−fold Cartesian product

of N≥0. Similarly, denote by N>0 the set of positive integers.

(ii) Given a set D, denote by |D| its cardinality.

(iii) Given two sets A, B, denote by A \ B, and A∪ B the set difference between,
and the union of A, B, respectively. A× B denotes the Cartesian product.

Enumeration

(i) I use enumeration over N>0 for sequences, i. e., I write, (an)n∈Nn>0 for
arbitrary sequences. The indexing is, however, left off for notational
simplicity, i. e., I write (an)n.

(ii) I use ∑n to denote ∑n∈N>0
.

(iii) Sometimes I define sequences indexed by an index set N. I write (an)n∈N .

(iv) I sometimes call a sequence of elements a family of elements.

Matrices

(i) tr(A) = trace of a matrix A.

(ii) det A = determinant of a matrix A.
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(iii) AT = transpose of a matrix A.

(iv) ‖A‖F = Forbenius norm of a matrix, i. e.,

‖A‖F =
√

∑
i≤N

∑
j≤M
|aij|2

, where N, M denote the number of rows, columns in A, respectively.

Geometry

(i) Rd = d− dimensional real Euclidean space. R≥0 = set of non-negative
real numbers. Rd

>0 = the set of positive real numbers.

(ii) ei = (0, . . . , 0, 1, . . . , 0) = ith standard coordinate vector.

(iii) A typical point in Rd is x = (x1, . . . , xd).

(iv) For an open Ω ∈ Rd denote by ∂Ω its boundary. Ω̄ = Ω ∪ ∂Ω = closure
of Ω.

(v) Br(x) = {y ∈ Rd | |x− y| < r} = open ball in Rd with center x and radius
r > 0.

(vi) Given a = (a1, . . . , ad) and b = (b1, . . . , bd) in Rd set

a.b =
d

∑
i=1

aibi, |a| =
(

d

∑
i=1

a2
i

)1/2

.

Differential operators

Assume f : Ω→ Rd.

(i) ∂ f
∂xi

(x) = limh→0
f (x+hei)− f (x)

h , provided the limit exists.

(ii) Multi-index notation:
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• A vector α = (α1, . . . , αd), α ∈Nd is called a multi-index of order

|α| =
d

∑
i=1

αi.

Set

α! =
d

∏
n=1

(αn!).

Given l = (l1, . . . , ld) ∈ Rd set

lα =
d

∏
n=1

lαn
n

• given a multi-index α

Dα f (x) =
∂|α| f (x)

∂xα1
1 . . . ∂xαd

d
=

∂α1

∂xα1
1

. . .
∂αd

∂xαd
d

f (x),

• if k ∈N

Dk f (x) := {Dα f (x) | |α| = k},

the set of all partial derivatives of order K.

• |Dk f | =
(

∑|α|=k |Dα f |2|
)1/2

.

• If k = 1 consider the elements of D f to be arranged in a vector, i. e.,

D f := (
d f
dx1

, . . . ,
d f
dxd

) = gradient vector.

Similarly, if k = 2 regard the elements of D2 f as elements of a matrix,
i. e., the Hessian matrix.

• ∆ f = tr(D2 f ) = Laplacian of f .
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Functions and functional spaces

(i) For an open Ω ⊆ Rd, and two functions f , g : Ω → R I write f ≡ g to
mean that f is identically equal to v, i. e., the two functions agree for all
values of their arguments.

(ii) For an open Ω ⊆ Rd, and two functions f : Ω→ R, and g : Ω→ Ω, f ◦ g
denotes the composition of f with g. f ≡ g means that f is identically
equal to v, i. e., the two functions agree for all values of their arguments.

(iii) A function f is said to be smooth provided it is infinitely differentiable.

(iv) Denote by supp( f ) the support of a function f .

(v) For an open Ω ∈ Rd function f : Ω×Ω→ R, (x, y) 7→ f (x, y) and a fixed
y ∈ Ω I write f (·, y) to denote the mapping Ω 3 x 7→ f (x, y) ∈ R.

(vi) Let Ω ⊆ Rd be open. I use the following notation for functional spaces.

• Ck(Ω) = { f : Ω→ Rd | f is k−times continuously differentiable}.

• Cb(Ω) = { f : Ω→ Rd | f is continuous and bounded}.

• C∞(Ω) = { f : Ω→ Rd | f is infinitely differentiable}.

• C∞
c (Ω) = { f : Ω→ Rd | f ∈ C∞and f is compactly supported}.

• Consider a measure space (Ω,A, µ). Define

Lp(µ) := { f : Ω→ R | f is µ−measurable, ‖ f ‖Lp(Ω)} < ∞,

where

‖ f ‖Lp(µ) :=
(∫

Ω
| f |pdµ

)1/p
(1 ≤ p < ∞).

L∞(µ) := { f : Ω → R | f is Lebesgue measurable, ‖ f ‖L∞(µ) < ∞},
where

‖ f ‖L∞(µ) := inf{c > 0 | µ({|u| ≥ c}) = 0}.
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When the choice of either the measure µ is clear the explicit depen-
dence of Lp spaces thereon is omitted, i. e., sometimes I write, ‖ f ‖Lp .
Similarly, I sometimes write Lp(A) or Lp(Ω) if I intend to stress the
underlying space or σ−algebra. Hk(Ω): the Sobolev space of func-
tions that are L2 together with their weak derivatives up to the kth
order.

• S = { f : Ω→ R | f ∈ C∞, ‖ f ‖a,b < ∞ for all a, b ∈ N d}, where

‖ f ‖a,b = sup
x
|xa(Db f )(x)|.

S is called the space of Schwartz functions.

(vii) Given a measure space (X, Σ, µ) and a measurable function f denote by∫
X

f dµ

the integral of f over X with respect to the measure µ.

(viii) For a set E denote by χE the indicator function of E, i. e.,

χE(x) =

 1 if x ∈ E

0 if x /∈ E
.

Operators

Let T be a linear operator between two vector spaces X, Y.

(i) Denote by D(T) its domain.

(ii) ker(T) = kernel of T, i. e.,

ker(T) = {v ∈ X | Tx = 0}

.
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Measure and probability theory

I generally use calligraphic letters to denote σ−algebras. By B(X) denote the Borel
σ−algebra over a set X. Unless otherwise specified denote by µ the Lebesgue
measure.

Let (X,A, µ) denote a σ−finite measure space.

(i) Given a measurable mapping T : X → X denote by T#X the push-forward
measure.

(ii) Given another σ−finite measure space (Y,B, µ) denote by µ2 the product
measure defined on the measurable space (X×Y,A⊗B), where A⊗B
denotes the product σ−algebra. Similarly, µm for m ∈N>0 is the product
measure on the m− product measurable spaces. When the dimensionality
of the underlying space is clear, or not relevant for the discussion, I simply
write µ for µm.

Let (X,A,P) be a probability measure space. Generally, I use small letters to
denote random variables (Definition D.10). Given a random variable x, I use Px

to denote the probability distribution of x. Write x̂ to denote a finite dataset of
evaluations that have distributions Px. I refer to elements of x̂ by observations or
(training) examples, in accordance with machine learning literature. I write x̂ ∼ Px

to say that the observations have distribution Px.
Denote the expected value of x by E∼P [x], i. e.,

E∼P [x] =
∫

X
x dP .

Machine learning

In Chapter 3 and Chapter 4 I denote byH the hypothesis class. By this I mean the
set of all admissible functions that is used for learning, e. g., for a neural network of
a fixed architecture, H denotes all possible functions that one obtains for different
values of the parameters.
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Quantum physics

Following quantum physics’ terminology I sometimes refer to eigenvalues and
eigenfunctions of Hamiltonians (2.2) by energies and eigenfunctions, respectively.
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A statement on data availability and
reproducibility

The data and codes for reproducing results on actively learning potential energy
surfaces, originally published in [121] and reported in Chapter 3, are available at
https://github.com/CFEL-CMI/Active-Learning-of-PES.

The codes for reproducing results on augmenting bases for solving quantum
problems, originally published in [168], are available at https://github.com/
CFEL-CMI/FlowBasis.

https://github.com/CFEL-CMI/Active-Learning-of-PES
https://github.com/CFEL-CMI/FlowBasis
https://github.com/CFEL-CMI/FlowBasis
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