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Abstract

In this treatise, we discuss the subject of parametric x-ray-optical wavemixing. We commence from

a theoretical point of view, deriving a coherent framework for the description of wavemixing pro-

cesses, such as x-ray-optical sum- and difference frequency generation as well as x-ray parametric down-

conversion. In contrast to earlier, often classical, approaches, our framework is rooted in first-principles,

non-relativistic Quantum Electrodynamics. It enables microscopic insights into the respective wavemix-

ing processes and likewise allows for quantitative predictions of their nonlinear scattering yields. On

the microscopic level, we could thereby identify the electronic observable, which underlies x-ray-optical

wavemixing to lowest order, to be a density–current-density correlator of the electronic system. Quan-

titatively, we benchmark our framework against existing reports of wavemixing and, more importantly,

engage in a series of experimental studies to validate our predictions. Among other things, we report

the experimental observation of x-ray-optical difference frequency generation, which shows promise for

application in nonlinear crystallography, and pursue tests of x-ray parametric down-conversion in two

different regimes. For its second case, namely x-ray-to-XUV conversion, these experiments furthermore

elucidate scattering features that have previously proven incomprehensible. Resolving the associated

conundrum, we develop a polaritonic explanation of parametric down-conversion and present a simple

model for its illustration.





Kurzfassung

In dieser Abhandlung widmen wir uns dem Thema parametrischer röntgen-optischer Mischprozesse.

Ausgehend von Seiten der Theorie entwickeln wir eine systematische Beschreibung für eine Klasse

von Wellenmischprozessen, die sowohl röntgen-optische Summen- und Differenzfrequenzerzeugung wie

auch parametrische Abwärtskonvertierung von Röntgenstrahlung umfasst. Im Gegensatz zu vorherge-

henden, zumeist klassischen, Beschreibungsansätzen entspringt unser Vorgehen aus fundamentalen

Prinzipien der nichtrelativistischen Quantenelektrodynamik. Dieses Vorgehen eröffnet uns einerseits

mikroskopische Einblicke in die jeweiligen Wellenmischprozesse und erlaubt uns andererseits, quantita-

tive Vorhersagen über deren Verteilung nichtlinearer Streuwahrscheinlichkeiten zu treffen. Auf

mikroskopischer Ebene konnten wir so die elektronische Observable, die der röntgen-optischen Wellen-

mischung in niedrigster Ordnung zugrunde liegt, als Dichte–Stromdichte-Korrelator des elektronischen

Systems identifizieren. Quantitativ untersuchen wir die Genauigkeit unserer Beschreibung im Vergle-

ich zu bereits bekannten Wellenmischexperimenten und, mehr noch, beteiligen uns an einer Reihe un-

abhängiger, experimenteller Studien, um unsere Vorhersagen zu validieren. Hieraus resultieren unter

anderem die experimentelle Beobachtung der röntgen-optischen Differenzfrequenzerzeugung, die sich

als vielversprechende Grundlage für nichtlineare Kristallographie erweist, und Tests der parametrischen

Abwärtskonvertierung von Röntgenstrahlung in zwei verschiedenen Regimen. Im zweiten dieser Fälle,

der Abwärtskonvertierung von Röntgenstrahlung in den XUV-Spektralbereich, klären diese Experimente

darüber hinaus Streubilder auf, die zuvor nicht eindeutig verstanden waren. Um die hiermit verbundenen

Fragen auch theoretisch zu adressieren, entwickeln wir eine polaritonische Anschauung der

parametrischen Abwärtskonvertierung und führen ein einfaches Modell zum Zweck ihrer

Veranschaulichung vor.
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Chapter 1

Introduction

1.1 What is wavemixing

Wavemixing is a nonlinear process, wherein multiple oscillating signals are compounded in such a way

that new signals—most often at new frequencies—arise. The term ‘mixing’, hereunto, derives from

radio-frequency applications, where ‘mixer’ or ‘mixing stage’ refers to an electronic circuit that, ideally,

converts two signals at frequencies ω1 and ω2 into signals at their sum- and difference-frequency, ω1+ω2

and |ω1−ω2|, respectively [1, 2].

More generally, the concept of wavemixing has spread across the electromagnetic spectrum and is

regularly applied with radio- and microwaves [3, 4], in infrared spectroscopy [5, 6] as well as using

visible and UV laser-light by now [7, 8]. In a further extension, our aim within this treatise will be to

investigate applications of wavemixing at even higher frequencies, namely in the x-ray regime.

In order to illustrate the fundamental working-principles of wavemixing, however, we think it is most

instructive to consider a simple example from electro-technics first:

At its outset, let us assume two electrical signals given by oscillating voltages

U1(t) = sin(ω1t) and U2(t) = sin(ω2t), (1.1)

which feature the aforementioned frequencies ω1 and ω2. In the following thought-experiment, we want

to trace the modulation of these signals through two different models of (electronic) amplifiers, namely,

a linear and a nonlinear one.

The linear amplifier is supposed to produce an output signal that is strictly proportional to its input:

Uout(t) = χ(1)×Uin(t), (1.2)

with a proportionality constant, i.e., amplification factor, χ(1). We have further visualized its linear

transfer-characteristic in Fig. 1.1 (a), where we use a straight line of slope χ(1) to graphically construct

the amplified signal.

Applying Eq. (1.2) to the sum of our model-signals, we generate a linear superposition of amplified

signals, unsurprisingly
Uout(t) = χ(1)×

(
U1(t)+U2(t)

)

= χ(1)× sin(ω1t)+χ(1)× sin(ω2t). (1.3)

2



1. Introduction

(a) (b)

Figure 1.1: Illustration of trasmission-curves for: (a) a linear amplifier and (b) a nonlinear amplifier. For both
cases the amplification of a sinusoidal signal is visualized. Its graphical construction proceeds by projecting the
incident signal (Uin) onto the transmission-curve and extrapolating the associated output voltage (Uout) to the right.
In the linear case (a) the output signal is fully proportional to the input signal, whereas in the nonlinear case (b),
the transmitted signal exhibits significant distortion. Even though undesirable in a ‘pure’ amplifier, this capability
to distort and cross-modulate signals will allow the nonlinear amplifier to act as a mixing stage ultimately. [We
gratefully acknowledge Dr. Christina Bömer’s help in rendering the above computer graphics.]

As the output does not contain any new frequency components vis-a-vis the input signals, we would not

consider this to be a case of wavemixing yet.

The situation changes markedly, if we consider a nonlinear amplifier instead. For a minimal example,

let us assume a device that features the following quadratic transmission behaviour:

Uout(t) = χ(2)×
(
Uin(t)

)2
. (1.4)

Here, we choose to label the new proportionality constant χ(2), with the small superscript (2) indicating its

correspondence to the 2nd-order of a polynomial in Uin. Analogous to the linear case, we have sketched

the transmission characteristics of the nonlinear amplifier-model in Fig. 1.1 (b). From this visualization,

it becomes apparent already that the bent transmission-curve will introduce distortions of the output

signal compared to the linear alternative (a).

We shall see below, how these distortions translate into the mixing of frequencies, once Eq. (1.4) is

itself applied to the sum of our model-signals:

Uout(t) = χ(2)×
(
U1(t)+U2(t)

)2 (1.5)

= χ(2)×
(
(U1(t))2 +2U1(t)U2(t)+(U2(t))2)

= χ(2)×
(
(sin(ω1t))2 +2sin(ω1t)sin(ω2t)+(sin(ω2t))2)

= χ(2)×
(1

2
[
1
↑

DC

− cos(2ω1t)︸ ︷︷ ︸
SHG

]
+
[

cos((ω1−ω2)t)︸ ︷︷ ︸
DFG

−cos((ω1 +ω2)t)︸ ︷︷ ︸
SFG

]
+

1
2
[
1
↑

DC

− cos(2ω2t)︸ ︷︷ ︸
SHG

])
.

In the last line, we have applied the well-known relations of powers and products of trigonometric func-

tions [9] to expose the emergence of several new frequency components. In particular, we find:

3



1. Introduction

• Constant contributions, which we have labelled DC for ‘direct current’1,

• Signal components, which have doubled in frequency, i.e., oscillating at 2ω1 or 2ω2. We label

these SHG for ‘second harmonic generation’.

• Finally, the cross-modulated terms DFG and SFG appear, which represent ‘difference-’ and ‘sum-

frequency generation’ from the input signals, respectively. They oscillate at ω1−ω2 or ω1 +ω2

and thereby fulfil our initial expectations for the output of an electronic mixing circuit.

We thus find that this simple, quadratic amplifier-model gives rise to a host of different phenomena

already. In fact, it anticipates most of the wave mixing processes that we shall discuss in greater com-

plexity later on. Most importantly, in our opinion, the model highlights the fact that wavemixing requires

a nonlinear element, which functions as the mixer. Generalizing from the simple, quadratic curve of

Eq. (1.4), we will ultimately investigate the nonlinear, quantum-mechanical response of electrons within

crystalline materials to the external ‘signals’ provided by x-ray and optical light-fields.

Before addressing such x-ray-optical wavemixing directly, we want to note in closing that the model

from Eq. (1.4) may gradually be extended towards greater complexity. As a first step, we could obviously

include nonlinearities beyond the quadratic term, e.g.,

Uout(t) = χ(1)×Uin(t)+χ(2)×
(
Uin(t)

)2
+χ(3)×

(
Uin(t)

)3
+ .... (1.6)

Here, we have written the output-response as a series expansion in Uin, with successive expansion coef-

ficients χ(n).

The next step—which is less obvious yet wide-spread in its application—would see us transfer the

whole model from oscillating voltages to oscillating electric fields in general

P(t) = χ(1) ·E(t)+χ(2) : E(t)E(t)+χ(3) : E(t)E(t)E(t)+ ... . (1.7)

In this largely analogous construction, the output of interest is the induced polarization P(t) that results

from nonlinear combinations of driving electric fields E(t) inside a medium. The ‘expansion coefficients’

χ(n) are referred to as n-th order (nonlinear) susceptibilities in this case and need to be of tensorial nature,

because E(t) and P(t) are themselves vectors already. The colon-notation χ(2) : EE is meant to symbolize

the respective tensor-vector multiplication (cf. Ref. [13]).

At this point, we have basically reached the foundations of modern nonlinear optics [11–14]. This

in itself is a seminal and prolific field of research, which facilitated numerous advances across science

and technology over the past decades and underpins many of today’s spectroscopic techniques (cf. Refs.

above as well as [15–20], for further examples).

Yet, as long as these techniques remain restricted to optical wavelengths, they will be fundamentally

unsuited to provide microscopic spatial insights in addition to their spectral information. In order to

lift this limitation and add atomic-scale resolution to wavemixing techniques, we shall study their exten-

sion into the x-ray-regime, where truly microscopic probes are available. Thus, we shall subsequently

investigate x-ray-optical wavemixing.

1We note that the production of dc-voltages from alternating inputs is typically the task of so-called rectifiers in electro-
technics. It would hardly be economical to use a high-frequency mixer-circuit for the sole purpose of performing rectification.
In a peculiar sleight of terminology-transfer, the nonlinear-optics community has, nevertheless, adopted this expression in the
term ‘optical rectification’, when referring to the creation of DC-components as of Eq. (1.5) from optical wavemixing (cf., for
examples, Refs. [10–12]).

4



1. Introduction

1.2 Introduction to x-ray-optical wavemixing

Looking beyond the well-established forms of wavemixing, we seek to study its extension into the

x-ray regime. More specifically, we shall address the combination of x-ray-and-optical wavemixing,

which promises to combine the spectroscopic selectivity of optical techniques with unprecedented spa-

tial resolution—provided via the diffractive imaging capabilities of x-rays.

Motivating this ansatz in greater depth, we shall present a short exposition of the subject’s origin and

context below. We note for reference that this equals verbatim our discussion in Ref. [21] to the same

end.

“Since their discovery in 1895, x-rays have been used to obtain insights into the structure of material

systems—with x-ray diffraction in particular serving as a microscopic probe of the electronic density

[22, 23]. Backed by the continuous improvement of sources and detectors, it has become routinely

possible nowadays, to reconstruct complicated protein structures from x-ray scattering measurements

[24], for example.

Notwithstanding its broad success, regular x-ray diffraction becomes very challenging, if micro-

scopic resolution of valence electron distributions is desired [25]. These weakly bound electrons, which

are the most relevant in chemical and technological terms, are typically spread dilutely across the solid.

As such, their scattering signal scales unfavorably compared to the well-localized (atomic) core elec-

trons.

In order to circumvent this problem and obtain a valence selective scheme, Freund and Levine sug-

gested to go beyond linear elastic scattering as early as 1970 [26]. Using nonlinear, parametric x-ray

optical wavemixing processes (XOWM), one can leverage the spectral selectivity of an additional optical

field to isolate the response of valence electrons. An example of this is the process of sum-frequency

generation (SFG), wherein a sample is illuminated by both x-ray (ωX ) and optical (ωO) photons, while

the detection focuses on scattered photons at the sum-frequency ωS =ωX +ωO. As this frequency cannot

be generated via elastic scattering, any measured signal thus provides a short-wavelength probe condi-

tional on the simultaneous interaction with the optical admixture. Tuning the optical photons resonantly

with valence excitations then establishes the desired selectivity.

Though promising in principle, x-ray wavemixing approaches were restricted to proof-of-principle

tests for a long time, because they were stifled by low count rates and cumbersome detection [27, 28].

Yet, with the arrival of storage-ring based x-ray sources and x-ray free-electron lasers (XFEL), a wide

range of nonlinear x-ray phenomena has become observable [29–45] and XOWM itself has attracted

renewed experimental interest [46–51].

Complementing these experimental developments, we want to address the theoretical understanding

of XOWM. To this end, we present a modern framework for its description, which we derive on the

basis of nonrelativistic Quantum Electrodynamics (QED) [52, 53]. So far, interpretations of XOWM

recurringly [46, 48, 54, 55] rely on the classical picture suggested by Eisenberger and McCall [27]. Their

model, in turn, was developed for wavemixing solely within the x-ray domain and treats the electronic

response in terms of free charges on classical trajectories. However, this treatment becomes invalid once

optical frequencies are admixed, for which the electronic response is instead dominated by discrete,

quantum mechanical transitions. These have to be incorporated from first principles, in order to obtain a

microscopically accurate description of XOWM.”

With our initial motivation thus reinforced, we will address our main goal of describing XOWM

in the following chapters. In this, we reach beyond merely qualitative explanations or singular case-
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1. Introduction

studies and, instead, seek to establish a framework of broad applicability. Starting from first-principles,

we shall derive a unified scattering expression for a class of XOWM processes, which covers sum- and

difference-frequency generation as well as x-ray parametric down-conversion on equal footing.

Beyond proposing this theory, we likewise engage in benchmarking and applying it. In particular,

we have sought several experimental applications ourselves—a fact that might be mildly obscured by

the overtly theoretical title of this treatise—and will report on them at some length. We emphasize

that—in our opinion—any theory is only as good as its applications and, as such, we are particularly

grateful to numerous people and various circumstances that have allowed our theory to manifest itself

experimentally.

In closing, we express our hope that, we can share some of our theoretical or experimental insights

in the following chapters. For a more detailed guide to the work’s structure, we refer the reader to the

next section. We wish for a pleasant and, hopefully, informative reading.

1.3 Reader’s guide

Following this introduction, the thesis is structured into four main chapters (2 - 5) followed by ‘Extras’

(6) and a concluding chapter (7).

In the course of the main part, we develop our theory for x-ray-optical wavemixing. To this end, we

establish the basic theoretical formalism in Chpt. 2 and derive the essential scattering equations needed to

describe parametric XOWM. From this point onwards, we pursue the evaluation of these equations under

realistic conditions. This requires substantial modelling, both on the side of the nonlinear electronic

response function and on the description of any electromagnetic field, which partakes in the mixing

process. These subjects are addressed in detail within Chpts. 3 and 4, respectively. Converging onto our

central objective, we combine our basic theoretical framework with the subsequently obtained models,

in order to evaluate different XOWM scenarios quantitatively in Chpt. 5. In the pertaining discussion,

we will likewise report on several experimental results, which were obtained during the course of this

thesis-work.

For readers, who are interested primarily in these experimental results on XOWM and their compar-

ison to theory, we note that they may skip ahead to said Chpt. 5 directly. The preceding development of

the theoretical framework and, in particular, the detailed discussions of constituent correlation functions

are not strictly required for its understanding.

Finally, we will present ‘extra’ work in Chpt. 6. While this chapter’s content is connected to our main

topic of XOWM, it already points beyond the scope of this thesis. In it, we will draw on concepts that

we have established in the preceding chapters and address two outstanding issues. Thereby, the chapter

provides an early outlook towards future research activities, before Chpt. 7 closes with a more general

conclusion as well as a more general outlook.

Conventions In closing, we want to collate some conventions, which concern the units and notation

used in the subsequent work. This collection is likely incomplete, yet we consider it a convenient starting

point, nonetheless.

Atomic units: Throughout our derivations, we will employ the conventional system of atomic units,

i.e., }= a0 = me = |e|= 1. In this, the symbols refer to the reduced Planck constant, the Bohr radius as

well as the mass and charge of an electron, respectively. Furthermore, we fix the speed of light in vacuo
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1. Introduction

in terms of the fine structure constant c = 1/α ≈ 1/137. The combination of these choices implies that the

prefactor of Coulomb’s law, i.e., 1/4πε0, reduces to unity.

Vectorial notation: Throughout our treatise we shall employ bold typesetting to indicate vectorial

quantities in R3. For example, x could be a position vector in real-space. In addition to this general

notation, we reserve certain letters for specific purposes and (largely) adhere to this guideline. Thus, for

spatial positions, we tend to employ x and y. Special emphasis is put on lattice vectors of crystals (i.e.,

translations on the lattice), which we denote by R. Momenta, instead, will usually be denoted by letters

k, p, q or Q. Once again, special emphasis is placed on momenta on the reciprocal lattice of a crystal,

which we denote by G. Regarding unit vectors, there is additional notation, which we explain next.

‘Hat’-notation: We employ a ‘hat’-notation on top of symbols to signify either of two things: Pri-

marily, we shall indicate quantum-mechanical operator by the use of an added ‘hat’-symbol, for example,

p̂ indicates the momentum operator or Ĥ indicates a Hamiltonian operator. In the absence of quantum-

mechanical operators, however, we employ the ‘hat’-notation to signify unit vectors. As such Ĝ denotes

the unit vector parallel to G. In case operators and unit vectors appear concurrently in a discussion, we

shall resort to an alternative notation for the latter. This will see the letter e in bold face used for a unit

vector—following the German word Einheit for unit.

Frequency nomenclature: Throughout this work, we will often make use of the symbol ω , whereby

we refer to an angular frequency in the vast majority of cases. As an example consider the oscillation

cos(ω t), which is understood to feature a period of T = 2π/ω. Diverging from the precise nomenclature,

however, we shall mostly refer to this quantity ω in an abbreviated fashion as a ‘frequency’. As a third

option, we may employ the designation ‘energy’ for ω as well—owing to the fact that energy and angular

frequency are interchangeable in atomic units E = }ω → ω (see above).

Fourier transformations: We outline our Fourier conventions—both for continuous and bounded

domains—in a dedicated Appendix A.2, along with more detailed follow-up sections.

Multiple integrals: During our initial derivation, we will—at times—encounter expressions, wherein

integrations abound. Usually, these are cases of multiple Fourier transforms or similar. In order to keep

these expressions readable, nonetheless, we seek to avoid printing accumulated integral signs individu-

ally. Instead, we will often opt for a ‘multiplicative’ notation that summarizes groups of integrals, which

pertain to similar differentials, e.g.,

∫
d3kL

∫
d3k′L

∫
d3kX

∫
d3k′X →

∫ ×4
d3kL d3k′L d3kX d3k′X . (1.8)
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Chapter 2

Theoretical framework for XOWM

In this chapter, we commence our efforts to formally describe x-ray-optical wavemixing (XOWM). Our

primary aim will be the derivation of a unified scattering expression for a class of XOWM processes—

comprising SFG, DFG as well as XPDC—which is amenable to quantitative, numerical evaluation later

on (see Chpt. 5). To this end, we will lay the theoretical foundations in the upcoming sections.

First of all, we shall give a general exposition of the basic theoretical framework, upon which we will

build our description of XOWM. In Sec. 2.1, we briefly outline the respective ‘first principles’, before

we proceed to the core of our derivation.

In said core part, namely the bipartite Sec. 2.2, we will approach XOWM from the perspective

of x-ray scattering: Initially (in Sec. 2.2.1), we derive an inelastic scattering expression, within the

perturbative limit, that concerns only the interaction of x-rays with matter. Subsequently (in Sec. 2.2.2),

we turn our attention towards the optical admixture, the effect of which we will include via further

perturbative expansion1.

After identifying the essential contributions to the desired XOWM signal, we process them into a

compact expression for an XOWM-observable. This will be summarized in Sec. 2.3—both in real- and

reciprocal-space.

1We note that at a far later stage of this treatise, we shall re-evaluate our purely perturbative tenet and explore non-
perturbative effects within the scope of a model system (cf. Chpt. 6, Sec. 6.1).
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2. Theoretical framework for XOWM

2.1 Basic framework

At the outset of our discussion of XOWM, we shall introduce the theoretical framework, wherein our

work will be rooted. We note up-front that the pertaining exposition will largely reproduce an analogous

discussion from our manuscript [21]. Readers, who are either familiar with its preprint or familiar with

works in related fields (such as Refs. [56–60], for instance), may consider to skip this section in its

entirety and focus on the actual derivations, starting in Sec. 2.2.

We set our description of XOWM within the well-established framework of nonrelativistic Quantum-

Electrodynamics (QED) [52, 53], wherein we closely follow the formalism outlined in Ref. [57]. Before

we quantize this field-theory, we impose the Coulomb gauge upon the electromagnetic vector potential,

i.e., ∇ ·A(x) = 0. Thereby, A(x) is rendered fully transverse, while any longitudinal coupling is relegated

into the scalar potential2 Φ(x).
For the quantized vector potential in free space, we adopt the expansion

Â(x) = ∑
k,λ

√
2π

V ωkα2

(
âk,λ εεεk,λ eik·x +h.c.

)
, (2.1)

where âk,λ (â†
k,λ ) is the annihilation (creation) operator for a photon of energy ωk = c |k| in the plane

wave mode of wave vector k and polarization εεεk,λ . We use the index λ to enumerate two distinct

polarization states, both of which satisfy the transversality condition εεεk,λ ·k = 0 as a consequence of the

Coulomb gauge. The theoretical quantization volume is labelled by V for the time being, however, it will

not feature in any physical observable (see discussion below).

Coupling the field to matter, we focus on the electronic charges and write the associated interaction

Hamiltonian in the familiar minimal coupling form 3:

ĤINT =
∫

d3x ψ̂†(x)
(
αp · Â(x)+

α2

2
Â2(x)

)
ψ̂(x). (2.2)

Here, the 2-component spinors ψ̂(x) (ψ̂†(x)) are electronic field operators. Analogous to the action of

âk,λ (â†
k,λ ) on photons, their electronic counterparts annihilate (create) an electron of particular spin state

at the position x.

Apart from their interaction with the light-field, we shall not concern ourselves any further with the

electrons’ description at this point. Suffices to state that any material properties (including electrostatic

interactions) will be captured by a pertaining Hamiltonian ĤMAT. We shall elaborate further on its ap-

plication (or approximation for that matter) in the later Chpt. 3. For the electromagnetic field itself, we

adopt the standard mode-based formulation ĤEM = ∑k,λ ωk(â
†
k,λ âk,λ +1/2). Together with Eq. (2.2),

these render the Hamiltonian of the overall light-matter system tripartite:

Ĥ = ĤMAT + ĤEM + ĤINT. (2.3)

2We note that, in the suggestively named ‘Coulomb gauge’, the scalar potential will take on the form of the well-known
Coulomb potential, i.e., Φ(x) = ∑i

qi
|x−xi| =

∫
d3y ρ(y)

|x−y| , for point charges or continuous charge distributions, respectively. We
remark further that this choice of gauge—far from being unique—is highly advantageous, when it comes to the interoperability
of our scattering theory with electronic structure methods later on. Most of these methods will rely on a basic Hamiltonian for
the electronic system, which posits the above form of the Coulomb potential.

3We emphasize that the interaction Hamiltonian as shown in Eq. (2.2) neglects any couplings of Â(x) to nuclear charges
and—more intricately—to the spin degrees of freedom, which are present in the material systems.
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2. Theoretical framework for XOWM

Based on this, we can formally account for the time-evolution of the full, coupled quantum-system

using either the time-dependent Schrödinger equation (TDSE) for state-vectors |Ψ(t)〉

i
∂
∂ t
|Ψ(t)〉= Ĥ |Ψ(t)〉 (2.4)

or the Liouville-von Neumann equation for the system’s density operator ρ̂(t)

i
∂ ρ̂(t)

∂ t
= [Ĥ, ρ̂(t)]. (2.5)

During the course of this work, we shall focus on the latter formulation, i.e., in terms of density operators.

We do so, because we consider this formalism more conducive to the discussion of partially coherent

systems—such as the light-fields emitted by synchrotron radiation sources or free-electron lasers.

In order to evaluate physically observable quantities, which are characterized by an operator Ô, we

will compute expectation values according to the prescription

〈Ô〉(t) = Tr {ρ̂(t)Ô}= Tr {Û(t, t0) ρ̂(t0)Û(t0, t) Ô} . (2.6)

Herein, we use the symbol Tr {...} to denote the trace over all operators enclosed by the curly brackets.

Furthermore, we note the introduction of so-called time-evolution operators Û(t, t0). These unitary op-

erators are constructed to satisfy the TDSE in place of a state-vector and may be used to formalize the

temporal propagation of either |Ψ(t)〉 or ρ̂(t), as above. Within the upcoming Sec. 2.2, such operators

Û(t, t0) will prove instrumental in the perturbative expansion of the time-evolution, which is driven by

external light fields. For a more detailed review of their properties and applications, as well as an intro-

duction to time-dependent perturbation theory itself, we refer the reader to an additional Appendix A.1.

Observable Recurring to Eq. (2.6), we emphasize the particular need to define an observable Ô that

suitably captures XOWM. Given that all x-ray-optical wavemixing processes should effectively ‘modify’

the initial x-ray field—for instance by (up-)conversion of an x-ray photon ωX → ωSFG = ωX +ωO during

sum-frequency generation—we decide to focus on such ‘modifications’ for detection. More formally

speaking, we adopt a scattering perspective and focus on the detection of x-ray photons that are scattered

out of an incoming field distribution into initially unoccupied modes of the field (cf. Eq. (2.1)). For any

such final mode k f ,λ f we can determine the probability of a single photon being scattered into it by

projecting onto the number state |1〉k f ,λ f
. Analogous procedures are widely used in the calculation of

far-field diffraction patterns from weakly scattering samples (see for instance Refs. [58, 61–63]). We can

write an according projection operator across the full radiative Fock-space as

Π̂k f ,λ f =
( ⊗

k6=k f ,λ 6=λ f

1̂k,λ
)
⊗|1〉〈1|k f ,λ f

. (2.7)

Once again, this singles out the probability for a (new) photon being in mode k f ,λ f . Combining this

with the identity on the material part, yields the desired observable for our purpose

Ôk f ,λ f := Π̂k f ,λ f ⊗ 1̂MAT =
( ⊗

k 6=k f ,λ 6=λ f

1̂k,λ
)
⊗|1〉〈1|k f ,λ f

⊗ 1̂MAT. (2.8)
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2. Theoretical framework for XOWM

We point out that this choice of an observable does entail a range of shortcomings, even though it will

prove very insightful for the scope of this work. Notable caveats to bear in mind comprise:

• The detection scheme, which is modelled by the photon-projector in Eq. (2.8), corresponds to an

intensity-type observable. Hypothetical analysis of the electric field, or its phase in particular, are

thus precluded a priori4.

• By extension of the above point, the observable should only be applied to far-field detection

schemes—avoiding scenarios of phase-contrast imaging or strong heterodyning fields.

• On the level of simple, intensity-based detection (i.e., photon counting), care should be taken

to restrict the scattering signal to an appropriately low count per mode5. By construction, our

observable would saturate for counts
〈

n̂k f ,λ f

〉
& 1.

• The above observable is, again by construction, wholly unsuited to the analysis of photon correla-

tions. This would concern the (hypothetical6) emission or scattering of multiple photons, of which

Eq. (2.8) could only capture one under any given circumstance.

As a final outlook towards the definition of more versatile observables, we note that a natural way forward

would consist in the adoption of detection-models on the basis of field correlation functions. This was

pioneered by Glauber [64] and has seen various extensions over time. For an example, on how to connect

the intensity as an observable quantity to an underlying field correlator, see derivations in App. A.10.

Regarding the application of Glauber-functions to the detection of correlated x-ray photons, a recent

example can be found in Ref. [65].

Physical observable In a final revision of the above, we have to ensure that any observable we compute

is ultimately independent of our modelling parameters. For the present case, this concerns in particular

the arbitrary quantization volume V , which we have introduced in the very beginning (cf. Eq. (2.1)). It

determines the mode spacing of our quantized field and is implicitly imprinted in any expectation value

〈Ôk f ,λ f 〉, which we could compute of the observable (Eq. (2.8)).

As a solution, we should take the continuum limit V → ∞ (cf. analogously App. A.4) and consider

the scattering probability into a differential mode-volume rather than a discrete, single mode. The corre-

sponding prescription to convert the observable into a double differential scattering probability reads (cf.

also Ref. [57]):

dPλ f (k f )

dΩ f dω f
=

V α3

(2π)3 ω2
f 〈Ôk f ,λ f 〉. (2.9)

4We comment that the restriction to intensity-based observables does not constitute a major impediment, as experimental
x-ray detectors, to-date, are themselves restricted to intensity-based detection.

5We note that the formal limitation of the scattering yield to a single photon per mode, has not posed a restriction to
practical applications yet.

6We note that an interest in photon correlations could indeed be justified. Considering, for instance, the process of x-ray
parametric down-conversion, we are faced with the scattering of an x-ray photon and the simultaneous emission of a so-
called ‘idler’-photon at lower energies. Measuring their correlation experimentally could not yet be achieved for x-ray-optical
scenarios, though.
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2. Theoretical framework for XOWM

2.2 Perturbative approach to XOWM

With the basic framework established, we focus our attention onto our main goal, i.e., the derivation

of a description for (parametric) XOWM processes. Given that these processes are typically weak, we

will rely on perturbative methods for their evaluation7. Overall, our description takes on a scattering

perspective, for which we derive (i.e., expand) the pertaining observable (cf. Eq. (2.8)) in two successive

steps:

1. In the first section, which follows below (Sec. 2.2.1), we will derive a perturbative expression

for general (inelastic) x-ray scattering (IXS). Herein, we shall not impose any conditions on the

optical light-matter interaction yet.

2. Subsequently (i.e., in Sec. 2.2.2), we will render the optical admixture explicit and include it at the

next order of perturbation theory. This expansion will build upon our previous IXS result.

For readers, who are familiar with IXS from works such as Refs. [59, 61, 66], we note that they may

skip the first part of our derivations (Sec. 2.2.1). The result recovers previous expressions [ibid.] and its

expansion in the following does not rely on earlier steps.

2.2.1 Resolution of (inelastic) x-ray scattering

In order to formalize our understanding of x-ray-optical wavemixing, we adopt a scattering description.

As such, we seek to describe the probability that an x-ray photon is scattered by the sample under the

influence of an optical admixture.

Our first step to this end, will see us evaluate the x-ray scattering part quite generally, before ad-

dressing details of the optical interaction later (Sec. 2.2.2). We recall from our earlier discussion that

we have already established an observable to measure x-ray scattering (Eq. (2.8)). In order to properly

quantify the scattering probability during an actual diffraction process, however, we still need to evaluate

its expectation value for the respective conditions. In general, we can write

〈Ôk f ,λ f 〉(t) = Tr {Û(t, t0)ρ̂(t0)Û(t0, t)Ôk f ,λ f } , (2.10)

which is simply a combination of Eqs. (2.6) and (2.8). In here, we find the time-evolution operators

Û(t0, t) that still pertain to the description (i.e., Hamiltonian) of the full, interacting light-matter system.

Its exact treatment is notoriously infeasible for realistic systems, such that we have to approach it via a

series of simplifications.

As pointed out earlier, we choose to employ (conventional) time-dependent perturbation theory

(TDPT) as a means to reduce the complexity of the problem8. To this end, we assume the light-matter

coupling—here for x-rays scattering off the sample—to be sufficiently weak, such as to allow the decom-

position of the fully interacting problem into two almost independent subsystems. For their description,

we can re-partition the overall Hamiltonian

Ĥ = ĤMAT + ĤEM︸ ︷︷ ︸
Ĥ0

+ĤINT
↓

ĤINT X

. (2.11)

7We note that the interested reader can find an exposition of the basic principles of time-dependent perturbation in the
Appendix A.1.

8See above footnote.
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2. Theoretical framework for XOWM

into one part for the non-interacting light and matter systems and a second part for their interaction. For

the moment, we shall ignore coupling to optical field components, which we can consider to be included

with Ĥ0 for convenience. Moreover, we shall restrict our discussion of x-ray scattering to non-resonant

scattering, which is dominantly mediated via the A2-part of Eq. (2.2), i.e.,

ĤINT X ≈
α2

2

∫
d3x ψ̂†(x)Â2(x)ψ̂(x) =

α2

2

∫
d3x n̂(x) Â2(x)

=
α2

2

∫
d3x n̂(x)

[
2Âx in(x)Âx out(x)+ Â2

x in(x)+ Â2
x out(x)

]
. (2.12)

In writing Eq. (2.12), we have identified ψ̂†(x)ψ̂(x) = n̂(x) as the operator pertaining to the electronic

density and further exploited its fully local nature to commute around Â(x). Regarding the vector poten-

tial itself: We have formally partitioned this into orthogonal components

Â(x) = Âx in(x)+ Âx out(x)+ Âopt(x)+ ..., (2.13)

where the listed components pertain to incoming x-ray modes, scattered (or outgoing) x-ray modes

as well as optical contributions to the electromagnetic field, respectively. The trailing ‘...’ indicate a

presently irrelevant remainder—for instance deep-IR modes, THz-waves or γ-rays.

To lowest order, the only relevant contribution to x-ray scattering—from incident into outgoing field

modes—would obviously stem from the cross-term involving Ax in ·Ax out inside ĤINT X. Thus, we shall

only consider

Ĥrelev.
INT X = α2

∫
d3x n̂(x)Âx in(x)Âx out(x) (2.14)

within the subsequent derivations.

Application of TDPT Acting on our premise that x-ray and matter subsystems should only interact

weakly during scattering processes, we partition the time-evolution operators from Eq. (2.10) and ap-

proximate the interaction part in accordance with prescription (A.12)—cf. App. A.1

Û(t, t0) = Û0(t, t0)ÛINT X(t, t0) (2.15)

≈ Û0(t, t0)
(

1̂− i
∫ t

t0
dt1Û0(t0, t1) Ĥrelev.

INT X Û0(t1, t0)
)
. (2.16)

As the identity in above’s equation does not contribute to any scattering processes, we may neglect it as

well and write our approximate observable as9

〈Ôk f ,λ f 〉(t)≈ Tr {
(∫ t

t0
dt1 Û0(t, t1) Ĥrelev.

INT X Û0(t1, t0)
)

ρ̂(t0)
(∫ t

t0
dt ′1 Û0(t, t ′1) Ĥrelev.

INT X Û0(t ′1, t0)
)†

Ôk f ,λ f } .
(2.17)

In order to process Eq. (2.17) further, we shall introduce some assumptions on ρ̂(t0). To very good

9We want to comment on the approximations leading up to / being included in Eq. (2.17): By restricting our description of
scattering—and thereby also XOWM processes—to first order contributions from Ĥrelev.

INT X (as of Eq. (2.14)), we have neglected
any contributions from p ·A-type scattering and also higher order interactions in A2.

The former are typically associated with resonant scattering or, for that matter, dispersive corrections. It is in line with our
premise of focusing on non-resonant XOWM processes to neglect them. However, we will thereby also neglect x-ray absorption
effects, which should form a natural loss channel to both in- and out-going x-rays, irrespective of any resonant condition.
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approximation, the x-ray subsystem will not be correlated with the other (i.e., optical or material) degrees

of freedom before the scattering process. Subsuming these parts as ‘REST’ below, we may factorize the

initial density operator as

ρ̂(t0) = ρ̂X(t0)⊗ ρ̂REST(t0). (2.18)

Using this within Eq. (2.17), we can factorize the trace over the x-ray and REST subspaces

〈Ôk f ,λ f 〉(t) = α4
∫ t

t0
dt1
∫ t

t0
dt ′1

∫
d3x

∫
d3x′ (2.19)

×TrREST {Û0(t, t1) n̂(x)Û0(t1, t0) ρ̂REST(t0)Û0(t0, t ′1) n̂(x′)Û0(t ′1, t) 1̂REST}
×TrX {Û0(t, t1) Âx in(x)Âx out(x)Û0(t1, t0) ρ̂X(t0)Û0(t0, t ′1) Âx in(x

′)Âx out(x
′)Û0(t ′1, t)Π̂k f ,λ f } .

In doing so, we implicitly understand Û0, but also Π̂k f ,λ f , to be appropriately restricted to the respective

subspace, upon which they are operating10.

Next, we partition ρ̂X(t0) analogous to the electromagnetic field in Eq. (2.13)

ρ̂X(t0) = ρ̂X IN(t0)⊗ ρ̂X OUT(t0), (2.20)

wherein we naturally assume all scattering modes to be unoccupied initially, i.e.,

ρ̂X OUT(t0) =
out⊗

k,λ
|0〉〈0|k,λ . (2.21)

This allows us to further decompose the trace over all x-ray modes into:

TrX {...}= TrX IN {Û0(t, t1)(Âx in(x))ρ Û0(t1, t0) ρ̂X IN(t0)Û0(t0, t ′1)(Âx in(x
′))σ Û0(t ′1, t) 1̂X IN}

×TrX OUT {Û0(t, t1)(Âx out(x))ρ Û0(t1, t0) ρ̂X OUT(t0)Û0(t0, t ′1)(Âx out(x
′))σ Û0(t ′1, t)Π̂k f ,λ f } .

(2.22)

Above and henceforth, we adhere to the convention that doubly occurring Greek indices will be summed

over.

It is important to note that Û0 (or Ĥ0, respectively) does not contain any x-ray-matter interaction

terms, at this point—nor does it contain any other terms that could mix x-ray modes among each other.

Thus, Û0 merely causes the free evolution of all x-ray field operators. This implies, in particular, that

Û0 conserves the occupation number of each photonic mode. Given that the outgoing modes are initially

unoccupied, this will therefore remain unchanged, unless a photon is created via Âx out(x).

The second point above pertains in particular to effects of multiple scattering, which we have hereby also excluded. Given
the low efficiency expected for XOWM processes, this will also be justified in many cases. Nonetheless, we should expect
modifications for large and mosaic sample crystals (cf. ‘secondary extinction’ [67]) or upon concurring, coherent diffractive
effects. This is to say that, XOWM processes could be strongly modified, if the field that drives them (Âx in(x)) is depleted
or structured due to coincident Bragg-diffraction. Given that XOWM processes tend to occur in close proximity to regular
Bragg-conditions (cf. discussion in Sec. 5.1.2.a, for instance), this interference may not always be trivial to prevent. Hereunto,
a unified description of linear and nonlinear scattering in a framework akin to dynamical diffraction theory [68] would be as
desirable as it is difficult.

As an overall take-away, it should be kept in mind that all of the above limits our description of XOWM, formally, to
kinematical diffraction or 1st Born-approximation.

10We note that we will apply operators such as Û0 several times in the following, always assuming that they are (implicitly)
adapted to the subspace, which they operate on. We shall cease to point this out, as long as it is trivial.
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2. Theoretical framework for XOWM

Thus, it suffices to focus on the photon creation by Âx out(x) in Eq. (2.22) and account for photon

annihilation by Âx in(x), conversely11. Phrasing this in terms of positive and negative frequency parts of

the respective operators yields, we find

TrX {...}= TrX IN {Û0(t, t1)(Â
(+)
x in(x))ρ Û0(t1, t0) ρ̂X IN(t0)Û0(t0, t ′1)(Â

(−)
x in(x

′))σ Û0(t ′1, t) 1̂X IN}
×TrX OUT {Û0(t, t1)(Â

(−)
x out(x))ρ Û0(t1, t0) ρ̂X OUT(t0)Û0(t0, t ′1)(Â

(+)
x out(x

′))σ Û0(t ′1, t)Π̂k f ,λ f } .
(2.23)

Rewriting the identity of the first line above, we can resolve the incoming trace as

TrX IN {Û0(t, t1)(Â
(+)
x in(x))ρ Û0(t1, t0) ρ̂X IN(t0)Û0(t0, t ′1)(Â

(−)
x in(x

′))σ Û0(t ′1, t)

1̂︷ ︸︸ ︷
Û0(t, t0)Û0(t0, t)}

=TrX IN {Û0(t0, t1)(Â
(+)
x in(x))ρ Û0(t1, t0) ρ̂X IN(t0)Û0(t0, t ′1)(Â

(−)
x in(x

′))σ Û0(t ′1, t0)}
=TrX IN {(Â(+)

x in(x, t1, t0))ρ ρ̂X IN(t0)(Â
(−)
x in(x

′, t ′1, t0))σ}
=TrX IN {(Â(+)

x in(x, t1))ρ ρ̂X IN(0)(Â
(−)
x in(x

′, t ′1))σ}
=: H(1)

σρ (x′, t ′1,x, t1). (2.24)

In here, we have defined the new object H(1)
σρ (x′, t ′1,x, t1), which marks a first-order coherence function

for the incoming x-ray field12. This definition closely follows Glauber’s lead, who adopted first- (and

higher-) order correlation functions to describe the coherence properties of quantized electromagnetic

fields [64]. The main difference to our definition is his focus on the field variable Ê(x, t), whereas we

consider the vector potential Â(x, t). For more details on the description and modelling of fields via

H(1)
σρ (x′, t ′1,x, t1), we refer the reader to Chpt. 4.

As a further remark on Eq. (2.24), we note the introduction of time-dependence into the field-

operators. We performed this in compliance with the usual Heisenberg-picture using the definitions

from App. A.1.0.b. Notably, the operators’ evolution has initially (i.e., in line three of Eq. (2.24)) been

referenced to the time t0, which we have subsequently shifted to the more conventionally used t0 = 0.

This may freely be done, as long as the density-operator is re-referenced (i.e., translated) accordingly to

ρ̂X IN(0).

Turning our attention to the second trace-expression of Eq. (2.23), we notice that all components

are fully determined at this point. We can evaluate it analytically by—first—applying the mode expan-

sion (Eq. (2.1)) to Â(...)
x out(...) and—second—using the following properties of the free evolution for any

involved â†
k,λ (âk,λ ):

Û0(t, t1) â†
k,λ = â†

k,λ eiωk(t1−t)Û0(t, t1) and (2.25)

âk,λ Û0(t ′1, t) = Û0(t ′1, t) âk,λ e−iωk(t ′1−t). (2.26)

11We note that this latter conclusion does not strictly follow from the mode occupation, but will manifest itself based on
energy conservation for sufficiently long integration times (t− t0).

12We note that the first order coherence function in Eq. (2.24)—more broadly speaking—corresponds to the 1-particle
reduced density-matrix for the electromagnetic field.
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2. Theoretical framework for XOWM

Therewith, we write the trace-expression for the outgoing modes as

TrX OUT {Û0(t, t1)(Â
(−)
x out(x))ρ Û0(t1, t0) ρ̂X OUT(t0)Û0(t0, t ′1)(Â

(+)
x out(x

′))σ Û0(t ′1, t)Π̂k f ,λ f }

=TrX OUT{Û0(t, t1) ∑
k1,λ1

√
2π

V ωk1α2 â†
k1,λ1

(εεε∗k1,λ1
)ρ e−ik1·xÛ0(t1, t0)

out⊗

k,λ
|0〉〈0|k,λ

× Û0(t0, t ′1) ∑
k2,λ2

√
2π

V ωk2α2 âk2,λ2 (εεεk2,λ2)σ eik2·x′ Û0(t ′1, t)Π̂k f ,λ f }

= ∑
k1,λ1,k2,λ2

2π
V α2√ωk1ωk2

(εεε∗k1,λ1
)ρ (εεεk2,λ2)σ e−ik1·x eik2·x′ eiωk(t1−t) e−iωk(t ′1−t)

×TrX OUT{â†
k1,λ1

Û0(t, t0)
out⊗

k,λ
|0〉〈0|k,λ Û0(t0, t) âk2,λ2 Π̂k f ,λ f }. (2.27)

In here, the time-evolution of the vacuum yields two cancelling phase factors and—in the presence of

Π̂k f ,λ f —the remaining expression is non-vanishing only, if k1 = k2 = k f and λ1 = λ2 = λ f . This way,

the trace is resolved as

TrX OUT {...}=
2π

V α2ω f
(εεε∗f )ρ (εεε f )σ e−ik f ·(x−x′) eiω f (t1−t ′1). (2.28)

As a matter of personal taste, we have switched from writing ωk f to ω f and εεεk f ,λ f to εεε f .

Collecting both results from Eq. (2.24) and Eq. (2.28), we can rewrite 〈Ôk f ,λ f 〉(t) as

〈Ôk f ,λ f 〉(t) =
2πα2

V ω f

∫ t

t0
dt1
∫ t

t0
dt ′1

∫
d3x

∫
d3x′ (εεε f )σ H(1)

σρ (x′, t ′1,x, t1)(εεε
∗
f )ρ e−ik f ·(x−x′) eiω f (t1−t ′1)

×TrREST {Û0(t, t1) n̂(x)Û0(t1, t0) ρ̂REST(t0)Û0(t0, t ′1) n̂(x′)Û0(t ′1, t) 1̂REST} . (2.29)

As a last step in this section, we shall rewrite the REST-trace slightly. We proceed analogous to

Eq. (2.24) and introduce a pair of propagators 1̂REST = Û0(t,0)Û0(0, t). Merging each with its neigh-

bouring form of Û0(t
(′)
1 , t), we can eliminate the dependence of Eq. (2.29) upon t. Furthermore, we

translate ρ̂REST(t0) to t = 0 via

ρ̂REST(t0) = Û0(t0,0) ρ̂REST(0)Û0(0, t0). (2.30)

Thereby, we have formally lifted the dependence upon t0 as well. The resulting observable reads

〈Ôk f ,λ f 〉(t) =
2πα2

V ω f

∫ t

t0
dt1
∫ t

t0
dt ′1

∫
d3x

∫
d3x′ (εεε f )σ H(1)

σρ (x′, t ′1,x, t1)(εεε
∗
f )ρ e−ik f ·(x−x′) eiω f (t1−t ′1)

×TrREST {Û0(0, t1) n̂(x)Û0(t1,0) ρ̂REST(0)Û0(0, t ′1) n̂(x′)Û0(t ′1,0)} . (2.31)

For this expression, we can finally perform the limits t→ ∞ and t0→−∞ and thereby obtain an expres-
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2. Theoretical framework for XOWM

sion that is formally time-independent13

〈Ôk f ,λ f 〉= lim
t→∞

lim
t0→−∞

〈Ôk f ,λ f 〉(t) =
2πα2

V ω f

∫ ∞

−∞
dt1
∫ ∞

−∞
dt ′1

∫
d3x

∫
d3x′ (εεε f )σ H(1)

σρ (x′, t ′1,x, t1)(εεε
∗
f )ρ

× e−ik f ·(x−x′) eiω f (t1−t ′1) TrREST {n̂(x, t1) ρ̂REST(0) n̂(x′, t ′1)} . (2.32)

This expression for x-ray scattering represents the essential result of this section. Before we continue to

expand upon it in the next section, we want to give some concluding comments:

• First of all, the limits in the above expression are—of course—only of formal nature. In more

practical terms, we may still use a well-defined, initial state that stems from some finite time-point

t0 (in contrast to requiring an infinitely removed state to begin with). This initial state would then

have to be propagated to t = 0, using Eq. (2.30), in order to obtain input for the above expression.

• Unsurprisingly, the above result reproduces our expectations for inelastic x-ray scattering (IXS)—

just as we set out to derive from the beginning. In particular, we find that the scattering-observable

is connected to an electronic density-density correlation function microscopically. This is in ac-

cordance with references, such as [59, 61, 66]. We note further that the Fourier transform of this

density-density correlator (provided it is evaluated in an equilibrium state of the system) goes by

the designation of ‘dynamic structure factor’ in the IXS-community [61].

• With regard to x-ray-optical wavemixing, we remark that the above may already be the most suit-

able formulation for some scenarios. In particular, if the optical light-matter coupling is strong, we

would have to account for full time-evolution of the combined REST-system—rather than attempt

further perturbative separation as in the upcoming Sec. 2.2.2. Scenarios, for which the separation

of ρ̂REST(0) may be futile, include strong-field laser-driving of the sample—a case studied by Dr.

Popova-Gorelova using Floquet-methods [70], for instance—but also embedding in a cavity with

ensuing polaritonic effects—see Refs. [71–73] for analogies. Finally, there potentially exist hybrid

cases, wherein polaritonic effects are present though their overall impact remains perturbatively

weak14

2.2.2 Inclusion of optical admixtures

Up to this point, we have developed a rather general expression for the description of non-resonant

(in)elastic x-ray scattering. This has been the result of the previous section and can be found in Eq. (2.32).

To all intents and purposes, said expression also comprises x-ray-optical wavemixing processes. This

fact is not obviously apparent, however, as the optical component is fully integrated with the material

degrees of freedom in the combined subsystem termed ‘REST’. Apart from being slightly opaque on

the conceptual side, this combined expression harbours the more crucial disadvantage of still remaining

prohibitively costly to solve. In other words, it is largely impractical to obtain the full evolution of the

combined (optical) light-matter system (REST), in order to interrogate the contained XOWM processes15.
13We note that a time-independent expression like Eq. (2.32) conforms better with typical pictures of scattering. As an

example, we may consider the usual S-matrix approach, wherein asymptotically unperturbed states are related via a ‘short’,
intermediate interaction, namely the scattering process [69].

14For more details on what we suspect to be a case of polariton-affected XOWM, which remains within quantitative reach
of perturbative treatments nonetheless, we refer the reader to Secs. 5.2.3.a and 6.1 as well as App. A.17.

15We want to clarify that the above statement does not extend to (highly) simplified model systems, of course. Our own
Sec. 6.1 provides an example, how the coupled (optical) light-matter system may be approximated in a drastic fashion, thereby
allowing its exact solution.

17



2. Theoretical framework for XOWM

In an attempt to simplify the situation further, we shall, instead, resort to a perturbative separation of

the coupled light-matter system again. Fully analogous to the way, in which we have separated x-ray and

REST components of the problem before (cf. Sec. 2.2.1), we will now factorize REST into its optical and

matter subsystems at an initial time-point t0

ρ̂REST(t0)≈ ρ̂MAT(t0)⊗ ρ̂OPT(t0). (2.33)

In addition, we will assume that subsequent interaction of the subsystems is weak and can be treated in

terms of a perturbative expansion16. Setting the stage thereunto, we split the time-evolution operator17

Û0(t, t0) = Û00(t, t0)ÛINT OPT(t, t0), (2.34)

of which we shall, later, expand the hind part to suitably low order. Alongside, we identify the respective

Hamiltonians that will govern each of the above time-evolutions

Ĥ00 = ĤMAT + ĤEM (2.35)

ĤINT OPT = α
∫

d3x ψ̂†(x)p · Âopt(x)ψ̂(x)+
α2

2

∫
d3x n̂(x)Â2

opt(x). (2.36)

These being established, we proceed to the core of our discussion. Hereunto, we pick the density-

density correlator from Eq. (2.32) and use it as the basis for the following perturbative expansion

〈n̂(x′, t ′1) n̂(x, t1)〉REST := TrREST {n̂(x, t1) ρ̂SYS(0) n̂(x′, t ′1)}
= TrREST {Û0(0, t1) n̂(x)Û0(t1,0) ρ̂REST(0)Û0(0, t ′1) n̂(x′)Û0(t ′1,0)}
= TrREST {Û0(t, t1) n̂(x)Û0(t1, t0) ρ̂REST(t0)Û0(t0, t ′1) n̂(x′)Û0(t ′1, t)} . (2.37)

To begin with, we have used some equivalent reformulations to re-instate the initial time t0 as well as a

‘final’ time-point t. Thereby, we ensure close analogy of all procedures to Sec. 2.2.1.

Next, we implement the factorization-approximation as of Eq. (2.33)

TrREST {...} ≈ TrOPT {TrMAT {Û0(t, t1) n̂(x)Û0(t1, t0)
(

ρ̂MAT(t0)⊗ ρ̂OPT(t0)
)

Û0(t0, t ′1) n̂(x′)Û0(t ′1, t)}} .
(2.38)

Furthermore, we introduce the reasonable assumption that the unperturbed solid is initially found in

16We note in terms of a caveat that our assumption to consider only weak coupling of optical light and matter may easily
become dubious. This is especially true close to optical resonances but also—and less obviously at first glance—in extended (yet
coherent) systems. To illustrate our point, we call to the reader’s attention that optical light, which propagates through—say–a
crystal, may deviate significantly from its vacuum behaviour. As it is subject to the (complex) refractive index of the medium
(n 6= 1), it undergoes macroscopically measurable changes. These changes are the effective result of repeated absorption and
re-emission on the microscopic scale, however.

This point serves to illustrate the fact that low order perturbation theory may well be inadequate to describe XOWM phe-
nomena in extended systems; in other words this corresponds to the breakdown of the 1st Born approximation.

In hindsight of our own later work, however, we know that a perturbative treatment can and does yield very satisfactory
results—despite these initial doubts. We thus ask the reader to follow our reasoning in a temporary leap of faith.

17We note that in exercising the perturbative expansion in this section, we follow the logic outlined in App. A.1 once again.
For more details on the general concept, the reader is referred there.
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2. Theoretical framework for XOWM

an incoherent sum of eigenstates18—weighted by normalized probabilities pI

ρ̂MAT(t0)≈∑
I

pI |I〉〈I| (2.39)

Inserting this into Eq. (2.38) and using an identical reformulation of the trace in terms of the same

eigenstates, i.e., TrMAT {...}= ∑F 〈F | ... |F〉, we obtain for the overall correlator

TrREST {...} ≈ TrOPT {∑
F
〈F |Û0(t, t1) n̂(x)Û0(t1, t0)

(
∑

I
pI |I〉〈I|⊗ ρ̂OPT(t0)

)
Û0(t0, t ′1) n̂(x′)Û0(t ′1, t) |F〉}

= TrOPT {∑
I,F

pI 〈F |Û0(t, t1) n̂(x)Û0(t1, t0) |I〉︸ ︷︷ ︸
left amplitude

〈I|⊗ ρ̂OPT(t0)Û0(t0, t ′1) n̂(x′)Û0(t ′1, t) |F〉︸ ︷︷ ︸
right amplitude

} .
(2.40)

The expression nicely separates into two equivalent amplitudes19, which shall save us half the work soon.

The next logical step towards a perturbative solution of Eq. (2.40) would consist in replacing any

Û0 via Eq. (2.34) and then expanding all occurring propagators ÛINT OPT in the spirit of usual TDPT. We

note with caution, however, that this would result in a multitude of terms. This stands in stark contrast to

our previous expansion of the x-ray diffraction process, which has been comparatively straight-forward.

Before we engage with any lengthy, explicit expressions of the new kind, we shall visualize the various

expansion-possibilities of the kernel 〈F | ... |F〉 up to order α2:

Figure 2.1: Visualization of the perturbative series that results from a low-order expansion of Eq. (2.40) in the
light-matter interaction ĤINT OPT. For an explanation of the used notation, please refer to the main text below. [We
gratefully acknowledge Dr. Christina Bömer’s help in rendering the above computer graphics.]

In Fig. 2.1, we represent the temporal evolution of the system in terms of primitive double-sided

Feynman diagrams. We begin on the left-hand side of Fig. 2.1 by depicting the evolution of the fully

coupled system (i.e., the complete REST-system). Starting symbolically from the initial state |I〉〈I| at

18We note that Eq. (2.39) does not present a considerable restriction after we have imposed the much more drastic decou-
pling of light- and matter-subsystems in Eq. (2.33) before. Left to its own devices, we would indeed expect a crystalline sample
to settle either into its ground state or into a thermally excited distribution of eigenstates. Both cases can be represented in terms
of Eq. (2.39).

19We acknowledge that, at this point, the two amplitudes do not appear to be exactly equivalent, because the right one
seemingly includes ρ̂OPT(t0). However, this is merely a consequence of the compact notation. Once expanded perturbatively,
any object pertaining to the optical system may be excluded completely from both amplitudes.
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time t0, we employ bold arrows to depict the action of Û0 leading up to the ‘final’ state |F〉〈F | at time

t. In between, we mark the occurrence of the original x-ray-scattering event by an ‘x’. At this point,

we would find the corresponding action of the electronic density operator n̂(x) within the individual

amplitudes. In all of this discussion, we suppress the optical density matrix for the sake of notational

simplicity.

In expanding the ‘full’ propagator Û0, we employ regular lines and dot-like vertices to signify the

action of a propagator Û00 and vertices from ĤINT OPT, respectively. These vertices may appear with a

single wiggly line attached—corresponding to a p ·A-type interaction—or with a pair of wiggly lines

attached to the same dot—corresponding to an A2-type interaction, conversely.

We sort the occurring terms both in the order of their expansion (i.e., powers of α) as well as their

contained types of vertices. Within established categories, we furthermore group terms that are related by

time-ordering within their amplitude (i.e., related by geometric re-ordering of vertices’ positions along

one line). The latter groups are indicated by grey-shaded boxes bearing the signature T̂ .

Solution for the parametric case As presumed earlier, we have found a multitude of contributing

diagrams. Their evaluation would still present a formidably laborious task—even though the complexity

has already been markedly reduced in comparison to the general (i.e., fully coupled) case. In order to

simplify our calculations yet further, we shall restrict our discussion to so-called parametric wavemixing

processes. These constitute the wavemixing analoga of elastic scattering, wherein the state of the matter

system is not changed by the overall light-matter interaction. Formally, we can enforce this by setting

the final state equal to the initial one, viz. |F〉 = |I〉. Notably, we automatically fix the energy content

of the matter system by imposing this constraint as well (EF → EI = EI). Thus, we force the XOWM

process to strictly conserve energy among the involved photonic modes alone, because there is no other

source (or drain) of energy left available.

Exploiting this fact, we can reduce the number of contributing diagrams significantly. To this end,

we observe that all but one class of diagrams in Fig. 2.1 feature (at least) one amplitude without optical

vertices. Obviously, no wavemixing can take place on such amplitudes and the solitary x-ray vertex is

consequently forced to be elastic itself. If—by choice of the observable energy ω f relative to the incident

x-ray energies—we require an energy transfer to happen, nevertheless, the contribution from any of the

aforementioned diagrams vanishes. Under such circumstances, only the four diagrams in the upper right

corner of Fig. 2.1 present viable options to produce a signal, namely via XOWM20

20We note in terms of a double-caveat that both of the required conditions in this paragraph are easily imposed theoretically,
but much harder to ensure experimentally.

First, we shall reconsider the desire to choose a scattered x-ray photon energy ω f , which lies outside the bandwidth of
the incoming x-ray pulse. While this condition is well-defined theoretically, it does require significant experimental effort to
suppress unwanted frequency components an experimental setup. Commonly used monochromators rely on Bragg-reflection
for energy filtering and entail the presence of extended spectral tails. For further discussion on this subject consider Sec. 5.2.1.c
as well as the more extended discussions in Refs. [51, 74] and the collected work of Dr. Bömer [75].

Concerning the parametric assumption |F〉 = |I〉, we have to note that this can hardly be controlled experimentally, lest
verified, because it is wholly unrealistic to ‘probe’ the final state of the matter system directly.

Not all is lost, however: It stands to be expected that a truly parametric process would show a distinct scattering pattern
compared to non-parametric, inelastic processes. To illustrate this hypothesis, we recall the previously raised analogy that
identified parametric XOWM processes as the wavemixing counterpart of elastic diffraction. Both processes leave the material
system ultimately unchanged and, as such, cannot be localized through their after-effect. By extension, this allows them to
proceed coherently across the full sample. For elastic scattering, this coherent diffraction gives rise to the well-known Bragg-
peaks. Vice-versa, the existence of Bragg-peaks clearly indicates the presence of elastic scattering. The same should hold true
in case of parametric XOWM. A coherent response across (a large volume of) the sample, will give rise to a distinct pattern,
by which to identify its present retro-actively. For further discussion of such characteristic scattering signatures, the reader is
referred to the explicit applications of the theory in Chpt. 5.
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With these constraints in mind, we shall, now, proceed to evaluate this restricted number of diagrams

explicitly. To this end, we recall Eq. (2.40) and implement the parametric approximation |F〉= |I〉 first

TrREST {...}= TrOPT {∑
I,F

pI 〈F |Û0(t, t1) n̂(x)Û0(t1, t0) |I〉〈I|⊗ ρ̂OPT(t0)Û0(t0, t ′1) n̂(x′)Û0(t ′1, t) |F〉}

≈ TrOPT {∑
I

pI 〈I|Û0(t, t1) n̂(x)Û0(t1, t0) |I〉︸ ︷︷ ︸
left amplitude⇒Eq. (2.42)

〈I|⊗ ρ̂OPT(t0)Û0(t0, t ′1) n̂(x′)Û0(t ′1, t) |I〉} .
(2.41)

From this, we focus on a single amplitude, into which we implement the first-order expansion for ÛINT OPT

on either side of the density operator:

〈I|Û0(t, t1) n̂(x)Û0(t1, t0) |I〉

≈〈I|Û00(t, t1)
[
1̂− i

∫ t

t1
dt2Û00(t1, t2) ĤINT OPT Û00(t2, t1)

]
n̂(x)

×Û00(t1, t0)
[
1̂− i

∫ t1

t0
dt̃2Û00(t0, t̃2) ĤINT OPT Û00(t̃2, t0)

]
|I〉

=〈I|Û00(t,0)
[
1̂− i

∫ t

t1
dt2 ĤINT OPT(t2)

]
n̂(x, t1)

[
1̂− i

∫ t1

t0
dt̃2 ĤINT OPT(t̃2)

]
Û00(0, t0) |I〉

≈〈I|Û00(t,0)(−i)α
(∫ t

t1
dt2
∫

d3y p̂(y, t2)·Âopt(y, t2) n̂(x, t1)

+ n̂(x, t1)
∫ t1

t0
dt̃2
∫

d3ỹ p̂(ỹ, t̃2)·Âopt(ỹ, t̃2)
)

Û00(0, t0) |I〉

=〈I|Û00(t,0)(−i)α
∫ t

t0
dt2
∫

d3y T̂
[
(p̂(y, t2))µ n̂(x, t1)

]
(Âopt(y, t2))µÛ00(0, t0) |I〉 . (2.42)

In the reformulation steps that we denoted as ‘approximate’ (viz. ‘≈’), we have imposed the restrictions

of diagrams as discussed above. First, we have limited any expansion of ÛINT OPT to lowest order, whereby

we exclude most of the diagrams on the lower right of Fig. 2.1. Secondly, we have inserted only the p ·A-

type interaction—eliminating any A2 diagrams—and dropped both the identity (1̂) and contributions at

order α2. If the same steps are applied for both amplitudes of Eq. (2.41), the result is a restriction to the

previously identified diagrams in the upper right corner of Fig. 2.1.

Simplifying the notation further, we have once again introduced time-dependent operators—absorbing

previously explicit time-evolution operators. In contrast to the pure x-ray case, these are defined with re-

spect to Û00 now, i.e., n̂(x, t) = Û00(0, t) n̂(x)Û00(t,0). Apart from this, they obviously follow the same

Heisenberg-picture-type logic, on which further information can be found in App. A.1.0.b.

As a novelty in the last line, we have introduced a time-ordering operator. This helps to render

Eq. (2.42) more compact in simply combining two terms, which differ in nothing but their temporal

arguments:

T̂ [(p̂(y, t2))µ n̂(x, t1)]

= Θ(t2− t1) (p̂(y, t2))µ n̂(x, t1)+Θ(t1− t2) n̂(x, t1)(p̂(y, t2))µ . (2.43)

In here, Θ(t) denotes the Heaviside-function; the overall definition of T̂ is in close alignment with typical

uses thereof (cf. Ref. [69], for instance).

Using the result for a single amplitude from Eq. (2.42), we can substitute it twice into Eq. (2.41) and
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2. Theoretical framework for XOWM

thereby obtain

TrREST {...}= TrOPT {∑
I

pI 〈I|Û0(t, t1) n̂(x)Û0(t1, t0) |I〉〈I|⊗ ρ̂OPT(t0)Û0(t0, t ′1) n̂(x′)Û0(t ′1, t) |I〉}

≈ α2
∫ t

t0
dt2
∫ t

t0
dt ′2

∫
d3y

∫
d3y′ TrOPT {(Âopt(y, t2))µ ρ̂OPT(0)(Âopt(y

′, t ′2))ν}

×∑
I

pI 〈I| T̂
[
(p̂(y, t2))µ n̂(x, t1)

]
|I〉
(
〈I| T̂

[
(p̂(y′, t ′2))ν n̂(x′, t ′1)

]
|I〉
)∗

. (2.44)

At this point, we are in a position to, finally, close the loop back to Eq. (2.32) or Eq. (2.31) for that

matter. Up to now, we have been discussing the density-density correlator (i.e., the TrREST {...}-object)

as an independent building block, but below, we shall re-insert it into the overall scattering observable

〈Ôk f ,λ f 〉(t) =
2πα4

V ω f

∫ t ×4

t0
dt1 dt ′1 dt2 dt ′2

∫ ×4
d3xd3x′ d3yd3y′ e−ik f ·(x−x′) eiω f (t1−t ′1)

× (εεε f )σ H(1)
σρ (x′, t ′1,x, t1)(εεε

∗
f )ρ TrOPT {ρ̂OPT(0)(Âopt(y

′, t ′2))ν (Âopt(y, t2))µ}

×∑
I

pI 〈I| T̂
[
(p̂(y, t2))µ n̂(x, t1)

]
|I〉
(
〈I| T̂

[
(p̂(y′, t ′2))ν n̂(x′, t ′1)

]
|I〉
)∗

. (2.45)

We note that we have introduced a new abbreviation here, namely the superscript ‘×4’ with the integrals.

This serves to indicate that there should be 4 integrals, i.e., an amount commensurate with the number of

differentials, however, we forgo the notational clutter of printing all of them.

In Eq. (2.45), we have basically arrived at the main result of our derivation. The expression holds

everything necessary to compute XOWM-scattering probabilities—with the paramount subsequent task

being to evaluate all the required constituents. Before we do so, however, we want to engage in a few,

final reformulations. Our aim here, will be to render the expression more compact and consistent.

To this end, we shall address the electronic transition amplitudes 〈I| ... |I〉 first of all. These constitute

the central quantity for our subsequent discussion of the nonlinear electronic response (cf. Chpt. 3) and

should receive a dedicated symbolic representation. We, therefore, define the nonlinear response function

(PI(y, t2, x, t1))µ := 〈I| T̂
[
(p̂(y, t2))µ n̂(x, t1)

]
|I〉 , (2.46)

which captures the correlation among an electronic current-density (viz. density of the momentum oper-

ator) and a scalar electronic-density over time and space.

Having isolated and defined the material subsystem’s response, we turn our attention towards the

optical fields’ expectation value (or correlator) from Eq. (2.45), viz.

〈(Âopt(y
′, t ′2))ν (Âopt(y, t2))µ〉= TrOPT {ρ̂OPT(0)(Âopt(y

′, t ′2))ν (Âopt(y, t2))µ} . (2.47)

It would be appealing to replace this expression by another Glauber-type correlation function, as we have

done for the incoming x-ray field prior. However, the above expression is more general than before (cf.

Eq. (2.24)), because we have not yet restricted it to photon-emission or -absorption, i.e., we have not

reduced it to negative and positive frequency parts, respectively. Seeking to retain this generality, we will

opt for a different reformulation, while keeping the structural similarity to Glauber’s functions intact.

Taking inspiration from the physical XOWM processes to be described, we recall that there will be

laser-driven cases (such as SFG / DFG) on the one hand, contrasted with spontaneous scattering (such as

XPDC) on the other. This offers reasonable ground for further distinction of the light-fields’ correlator:
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2. Theoretical framework for XOWM

Accounting for both possibilities—i.e., a coherent (classical) field and a remainder of quantum-

fluctuations—we split

Âopt(y, t) = Aopt avg(y, t)+ Âopt flu(y, t). (2.48)

Herein, the average field will be defined via the expectation value of its original operator and behaves

like a classical, C-number field

Aopt avg(y, t) = 〈Âopt(y, t)〉= TrOPT {ρ̂OPT(0) Âopt(y, t)} . (2.49)

As its complement, the remaining operator Âopt flu(y, t) satisfies

〈Âopt flu(y, t)〉= TrOPT {ρ̂OPT(0) Âopt flu(y, t)}= 0 (2.50)

and, therefore, captures only fluctuations around the average field.

The charm of this separation—while it is in itself exact—is that it provides a straight-forward avenue

for approximations. Whenever a spectral region is strongly affected by an external driving laser, we can

resort to its classical field alone, i.e., Eq. (2.47) becomes

TrOPT {ρ̂OPT(0)(Âopt(y
′, t ′2))ν (Âopt(y, t2))µ} ≈ (Aopt avg(y

′, t ′2))ν (Aopt avg(y, t2))µ . (2.51)

Conversely when such driving is absent, we expect any fluctuations to behave as they would in the

equilibrium case and write

TrOPT {ρ̂OPT(0)(Âopt(y
′, t ′2))ν (Âopt(y, t2))µ} ≈ TrOPT {ρ̂equ

OPT(Âopt flu(y
′, t ′2))ν (Âopt flu(y, t2))µ} . (2.52)

Formally, we will keep both options inside the expression

TrOPT {ρ̂OPT(0)(Âopt(y
′, t ′2))ν (Âopt(y, t2))µ}= (Aopt avg(y

′, t ′2))ν (Aopt avg(y, t2))µ

+TrOPT {ρ̂equ
OPT(Âopt flu(y

′, t ′2))ν (Âopt flu(y, t2))µ} , (2.53)

and will choose either of them according to the case at hand. For further brevity, we introduce the

Glauber-inspired short-hands:

H̄(1)
νµ (y′, t ′2,y, t2) = (Aopt avg(y

′, t ′2))ν (Aopt avg(y, t2))µ (2.54)

S̄(1)νµ(y′, t ′2,y, t2) = TrOPT {ρ̂equ
OPT(Âopt flu(y

′, t ′2))ν (Âopt flu(y, t2))µ} . (2.55)

Combining all of the above, we can write the overall observable as

〈Ôk f ,λ f 〉(t) =
2πα4

V ω f

∫ t ×4

t0
dt1 dt ′1 dt2 dt ′2

∫ ×4
d3xd3x′ d3yd3y′ e−ik f ·(x−x′) eiω f (t1−t ′1)

× (εεε f )σ H(1)
σρ (x′, t ′1,x, t1)(εεε

∗
f )ρ

(
H̄(1)

νµ (y′, t ′2,y, t2)+ S̄(1)νµ(y′, t ′2,y, t2)
)

×∑
I

pI (PI(y, t2, x, t1))µ
(
PI(y′, t ′2, x′, t ′1)

)∗
ν . (2.56)

Ultimately, we invoke the same reasoning that led to Eq. (2.32) and perform the limits t→ ∞, t0→−∞.
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2. Theoretical framework for XOWM

Thereby, we end this section with the time-independent observable

〈Ôk f ,λ f 〉= lim
t→∞

lim
t0→−∞

〈Ôk f ,λ f 〉(t)

=
2πα4

V ω f

∫ ×4
dt1 dt ′1 dt2 dt ′2

∫ ×4
d3xd3x′ d3yd3y′ e−ik f ·(x−x′) eiω f (t1−t ′1)

× (εεε f )σ H(1)
σρ (x′, t ′1,x, t1)(εεε

∗
f )ρ

(
H̄(1)

νµ (y′, t ′2,y, t2)+ S̄(1)νµ(y′, t ′2,y, t2)
)

×∑
I

pI (PI(y, t2, x, t1))µ
(
PI(y′, t ′2, x′, t ′1)

)∗
ν . (2.57)

2.3 XOWM observable in reciprocal-space

As an addendum to the preceding derivation, we note that the observable Eq. (2.57) can prove decidedly

more useful, if transformed into reciprocal-space. This comes as no great surprise for our intended use-

case, given that crystalline samples as well as the x-ray diffraction thereof lend themselves quite naturally

to a momentum-space-based point of view.

Setting out to transform our previously obtained result (Eq. (2.57)), we collect the Fourier-transformed

counterparts of all involved correlation functions. These amount to21:

H(1)
σρ (x′, t ′1,x, t1) =

1
(2π)8

∫
d3kX

∫
d3k′X

∫
dωX

∫
dω ′X e−i(k′X ·x′−ω ′X t ′1) ei(kX ·x−ωX t1) Z(1)

σρ(k′X ,ω
′
X ,kX ,ωX)

(2.58)

H̄(1)
νµ (y′, t ′2,y, t2) =

1
(2π)8

∫
d3kL

∫
d3k′L

∫
dωL

∫
dω ′L e−i(k′L·y′−ω ′X t ′2) ei(kL·y−ωLt2) Z̄(1)

νµ (k′L,ω
′
L,kL,ωL)

(2.59)

S̄(1)νµ(y′, t ′2,y, t2) =
1

(2π)8

∫
d3kL

∫
d3k′L

∫
dωL

∫
dω ′L e−i(k′L·y′−ω ′X t ′2) ei(kL·y−ωLt2) C̄(1)

νµ (k′L,ω
′
L,kL,ωL)

(2.60)

PI(y, t2, x, t1) = PI(y,0, x,(t1− t2)) =
1

(2π)7

∫
d3k1

∫
d3k2

∫
dω ei(k1·y+k2·x) e−iω(t1−t2) KI(k1,k2,ω).

(2.61)

In the last line, we have made use of the time-translation invariance of PI(y, t2, x, t1) in order to reduce the

number of time-arguments to be transformed effectively22. Substituting all of the above into Eq. (2.57),

21We note for reference that a collection of various Fourier relations among correlation functions may be found in App. A.8
22For reference, we note that the (symmetry-) properties of the nonlinear response function, among which is the time-

translation invariance, are further elaborated upon in Sec. 3.1.1.
We note further that the time-translational invariance is intimately tied to the fact that PI(y, t2, x, t1) constitutes a stationary

correlation function, viz. an equilibrium Green’s function of the electronic system. Similar reductions in complexity would not
be possible for a non-stationary, non-equilibrium Green’s function. By extension, a comparable reduction of time-arguments
is not generally possible for the x-ray and optical fields H(1)

σρ (x′, t ′1,x, t1) or H̄(1)
νµ (y′, t ′2,y, t2), respectively. As long as these

describe pulsed fields, they are inherently non-stationary and both of their time-arguments will have to be considered with
respect to the arrival-time of the pulse. The optical fluctuations’ correlator on the other hand is, in fact, assumed to be stationary
again. Herewith, we could have employed the same reduction as in Eq. (2.61), but refrained in order to keep the structural
symmetry with expression (2.59).
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2. Theoretical framework for XOWM

the fully expanded observable reads

〈Ôk f ,λ f 〉=
2πα4

V ω f

1
(2π)30 (εεε f )σ (εεε∗f )ρ

∫ ×4
dt1 dt ′1 dt2 dt ′2

∫ ×4
d3xd3x′ d3yd3y′ e−ik f ·(x−x′) eiω f (t1−t ′1)

×
∫ ×2

d3kX d3k′X

∫ ×2
dωX dω ′X e−i(k′X ·x′−ω ′X t ′1) ei(kX ·x−ωX t1)

∫ ×2
d3kL d3k′L

∫ ×2
dωL dω ′L e−i(k′L·y′−ω ′X t ′2)

× ei(kL·y−ωLt2)
∫ ×4

d3k1 d3k′1 d3k2 d3k′2

∫ ×2
dω dω ′ ei(k1·y+k2·x) e−iω(t1−t2) e−i(k′1·y′+k′2·x′) eiω(t ′1−t ′2)

×ZX IN
σρ (k′X ,ω

′
X ,kX ,ωX)

(
Z̄OPT

νµ (k′L,ω
′
L,kL,ωL)+C̄OPT

νµ (k′L,ω
′
L,kL,ωL)

)

×∑
I

pI

(
KI(k1,k2,ω)

)
µ

(
KI(k′1,k

′
2,ω

′)
)∗

ν
. (2.62)

Therein, we can identify several δ -function constraints, viz.
∫

d3x ei(k2+kX−k f )·x = (2π)3 δ 3(k2 +kX −k f ) (2.63)
∫

d3y ei(kL+k1)·y = (2π)3 δ 3(kL +k1) (2.64)
∫

dt1 ei(ω f−ωX−ω)t1 = (2π) δ (ω f −ωX −ω) (2.65)
∫

dt2 ei(ω−ωL)t2 = (2π) δ (ω−ωL) (2.66)

and analogous for the primed variables. Using most of these, we shorten Eq. (2.62) and obtain as an

observable for XOWM processes

〈Ôk f ,λ f 〉=
2πα4

V ω f

1
(2π)14

∫ ×4
d3kLd3k′Ld3kX d3k′X

∫ ×4
dωLdω ′LdωX dω ′X δ (ω f −ωX −ωL)δ (ω f −ω ′X −ω ′L)

× (εεε f )σ ZX IN
σρ (k′X ,ω

′
X ,kX ,ωX)(εεε

∗
f )ρ

(
Z̄OPT

νµ (k′L,ω
′
L,kL,ωL)+C̄OPT

νµ (k′L,ω
′
L,kL,ωL)

)

×∑
I

pI

(
KI(−kL,k f −kX ,ωL)

)
µ

(
KI(−k′L,k f −k′X ,ω

′
L)
)∗

ν
. (2.67)

This marks the final result of this chapter. We will subsequently dedicate Chpts. 3 and 4 to evaluate

the constituent electronic and field correlators respectively, before we return to the above expression in

Chpt. 5 again. There, we will ultimately evaluate scattering probabilities for several XOWM processes.

In closing, we want to observe two appealing aspects about Eq. (2.67):

1. As we have implied (and imposed) before, the expression indeed enforces energy conservation

among the different, parametrically mixed fields. This is most prominently apparent in the respec-

tive δ -function, viz. δ (ω f −ωX −ωL), which we have not yet resolved.

2. Depending on the choice of ω f in combination with the presence (or absence) of Z̄OPT, the above

expression is capable of describing different XOWM processes. For instance, it describes sum-

frequency generation (SFG), if a laser-drive is present and the observable photon energy is set

above the input ω f = ωX +ωL > ωX for (most of) the incident spectrum ωX . Alternative choices

can produce either DFG or XPDC as well. In this, we have reached our main goal to establish a

theoretical framework for the description of the aforementioned XOWM processes.
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Chapter 3

Nonlinear electronic response

In this chapter, we examine the previously introduced time-ordered correlation function

PI(x1, t1, x2, t2) = 〈I| T̂ [p̂(x1, t1) n̂(x2, t2)] |I〉 (3.1)

or

KI(k1,k2,ω) =
∫

d3x1

∫
d3x2

∫
dτ e−i(k1·x1+k2·x2) eiωτ PI(x1,0, x2,τ). (3.2)

Figure 3.1: Preview of the three-dimensional distribution of the nonlinear electronic response across the conven-
tional (cubic) unit cell of diamond. For further details, see Sec. 3.3.

We begin our discussion with a general overview of its properties in Sec. 3.1, which will cover—

among other things—symmetry properties that are important for our derivations (Sec. 3.1.1) and its

embedding in a periodic domain for crystal-structure calculations (Sec. 3.1.2).

Subsequently, we turn our attention towards the implementation of a mean-field model of

PI(x1, t1, x2, t2) in Sec. 3.2. This will provide the basis for later numerical evaluation of the nonlinear

response and first attempts to interpret its implications (3.3).

We will close this chapter by giving an outlook onto methods beyond the mean-field approximation,

which could be used to investigate PI(x1, t1, x2, t2) in the future.
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3. Nonlinear electronic response

3.1 General properties of PI

The nonlinear response function PI(x1, t1, x2, t2)—being a density–current-density correlator—arises

quite naturally in the context of light-matter interaction. It forms part of a more general 4× 4 re-

sponse tensor, which interlinks the electronic density-response with electronic current-density response

functions (see, for instance, Ref. [76]). In general, PI(x1, t1, x2, t2) is a manybody Green’s function—

sometimes referred to as a polarization propagator [77]—and as such it is sensitive to correlation effects

within electronic manybody systems. In maintaining this important aspect, our approach differs from

earlier descriptions of XOWM. Thus, we consider it to be a promising framework for in-depth investi-

gations of (correlated) electronic dynamics beyond with novel, nonlinear probes. We emphasize in par-

ticular, that the identification of this response function also renders the inverse problem accessible, i.e.,

its reconstruction from measured data (cf. Secs. 3.3 and 5.1.2.d). This would allow to extract response

properties of correlated systems from XOWM experiments, in order to feed them back into many-body

theory—instead of enabling merely the computation of scattering patterns in forward direction.

Regarding its numerical evaluation, PI(x1, t1, x2, t2) is amenable to a host of methods known from

electronic structure theory across atomic, molecular and solid-state physics. Beyond explicit Green’s

function techniques (see Refs. [76, 78, 79], for examples), these include Many-Body Perturbation Theory

[80–83], wave-packet propagation [84, 85], time-dependent density functional theory (TD-DFT) [86, 87]

or, eventually, its phenomenologic reduction to (analytically solvable) model systems1.

Comparison to previous electronic-structure models [21] Before we proceed to elaborate on our

evaluation of PI(x1, t1, x2, t2) in more detail, we briefly want to contrast our method with earlier ap-

proaches. Providing this context, we borrow the following discussion from our manuscript on XOWM

[21] verbatim:

“In contrast, previous approaches to perturbative XOWM remained restricted to single-particle treat-

ments. Most of these can be divided roughly into two classes: The first class comprises discussions such

as Refs. [46, 48, 54, 55], adopting the classical current-based picture that was introduced by Eisenberger

and McCall for wavemixing within the x-ray domain [27]. This captures the nonlinear electronic re-

sponse at high frequencies (cf. Ref. [88]), where individual electrons interact with the driving fields like

free, classical charges. However, this picture is not strictly transferable towards lower photon energies—

especially if optical admixtures are involved. Then, the bound nature of the electrons becomes essential

as their response is dominated by discrete, quantum-mechanical transitions. This aspect is taken more

prominently into account by the second class of previously published XOWM descriptions [26, 89–94].

Herein, the quantum-mechanical nature of the response is related to single-particle wavefunctions fea-

turing in perturbative expressions. All of these approaches can be traced to the semi-classical response

formalisms presented by Armstrong et al. [95] as well as Jha et al. [96]. Despite being half a century old

though, these expressions have never been evaluated in their full form for XOWM. At most, Freund has

presented results for the simplified case of a ‘high-frequency’ limit [89], while in addition, bond-charge

1We note that the last evaluation option, i.e., in terms of phenomenological model systems, should not be over-rated.
While they appear appealing in their simplicity, they often require significant (hidden) a-priori insight into the structure of the
underlying problem, in order to reach effectiveness.
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3. Nonlinear electronic response

models [26] and toy-model semiconductors [94] have been considered 2.”

This being said, we will return our focus to the evaluation of PI(x1, t1, x2, t2) for our current needs.

To this end, we will first address the question of pertinent symmetries of the response. Subsequently, we

shall discuss intricacies in implementing it for crystalline solids, assuming periodic boundary conditions.

3.1.1 Symmetries of PI(x1, t1, x2, t2)

The nonlinear response function PI(x1, t1, x2, t2) exhibits a set of fundamental symmetries, which will

prove important during our later work. In particular, these comprise:

• Time-translation invariance, i.e., PI(x1, t1, x2, t2) = PI(x1, t1 + τ, x2, t2 + τ)

• Lattice-periodicity: PI(x1, t1, x2, t2) = PI(x1 +R, t1, x2 +R, t2) and

• Time-reversal anti-symmetry: PI(x1,0, x2,τ) =−PI(x1,0, x2,−τ)

The first two of these are easily proven using translation operators. Thus, we will not discuss them here

in detail3. We note, however, that these properties comply with our intuitive understanding of a periodic

solid resting in an energy eigenstate. That is to say, no absolute point in the lattice, nor in time for

that matter, should be outstanding with respect to others. Consequentially, there should be no change

in PI(x1, t1, x2, t2), if it was translated on an absolute scale (i.e., equally in both its arguments)—neither

in space nor in time. Relative changes of one argument versus the other,though, will of course entail

changes in the value of PI(x1, t1, x2, t2).

Concerning the third symmetry-property, this will requires a more involved derivation. We will

present this in the upcoming section and address a (formal) issue regarding the hermiticity of the operator

p̂(x) = ψ̂†(x)(−i∇ψ̂(x)) in doing so.

3.1.1.a Time-reversal (anti-)symmetry and a note on hermiticity

In the following, we will embark on the proof of time-reversal anti-symmetry of PI(x1, t1, x2, t2). To

begin with, we recall its definition and account for its two time-ordered constituents:

PI(x1, t1, x2, t2) = PI(x1,0, x2,τ) = 〈I| T̂ [p̂(x1,0) n̂(x2,τ)] |I〉
= Θ(τ) 〈I| n̂(x2,τ) p̂(x1,0) |I〉+Θ(−τ) 〈I| p̂(x1,0) n̂(x2,τ) |I〉 , (3.3)

2It should be noted that—outside the scope of models presented here—there was a single publication by Van Vechten and
Martin that also alludes to XOWM in the context of calculating local field effects in solids [97]. They conduct a full numerical
evaluation of the Adler-Wiser dielectric response in random-phase approximation [98, 99] and present a result to compare
with Ref. [26]. Unfortunately, they do not discuss this comparison in detail, even though their result likely presents the most
elaborate computation on XOWM-related response functions to-date.

3We remark for the interested reader: The proof of time-translation invariance can be carried out using time-evolution
operators (see also App. A.1). Rephrasing the time-dependent operators p̂(x1, t1) and n̂(x2, t2) within the response function, we
can render their ‘Heisenberg-picture’-type time-dependence explicit. Afterwards, we can exploit the fact that time-evolution
operators may be split or concatenated at will, to produce the desired shift by ∆t = τ . Finally, we can absorb this time-shift into
the reference state(s) 〈I| and |I〉, noting that the resulting phases will exactly compensate.
The proof for translational-invariance on the lattice proceed in the same fashion. However, it necessitates the definition of a
sensible, spatial translation-operator first. This will obviously take on a shape very similar to Û(t, t0), whereas the generator
of the translation will be the momentum rather than the energy. For an explicit reference, we recommend the discussion in
Ref. [76].
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3. Nonlinear electronic response

where τ = t2− t1. In order to explore the time-reversal property of this correlator, we will follow the

formalism outlined by Sachs in Ref. [100]. Before we can apply it in a convenient manner, however, we

have to address a subtle issue on the (non-)hermiticity of the momentum operator above.

While it has never appeared to be a problem so far, it should not go unnoticed that the momentum

density operator that is present within PI(x1,0, x2,τ) is not actually hermitian. Using its conventional

definition p̂(x) = ψ̂†(x)(−i∇ψ̂(x)), we face the issue that

(
p̂(x)

)†
=
(

ψ̂†(x)(−i∇ψ̂(x))
)†

= (∇ψ̂†(x)) iψ̂(x) (3.4)

is not obviously self-adjoint. Typically, this would be remedied by partial integration, because the relation

∇ψ̂†(x)ψ̂(x) = (∇ψ̂†(x))ψ̂(x)+ ψ̂†(x)(∇ψ̂(x)) (3.5)

allows to trade the last term of Eq. (3.4) for the original momentum density. This holds under the

provision that the surface term vanishes and there are no further complications to the integral. As a

matter of fact, this simple situation is actually ensured whilst we introduce our correlation function

PI(x1, t1, x2, t2). Specifically in Eq. (2.44), the momentum density enters only in combination with a

vector potential (stemming from a p ·A-type coupling term). As the derivative action vanishes on the

vector potential in Coulomb gauge, we can make easy use of relation (3.5)—at this point. Later on,

this is less obvious4. Taking unrestricted Fourier-transformations of PI(x1, t1, x2, t2) in its isolated form

(Eq. (3.3)), for instance, leaves no room to actually play the above trick and thus leaves us with a non-

hermitian momentum-density for better or for worse. However, we could redefine (and should maybe do

so at some point) PI(x1, t1, x2, t2) to involve the current-density

ĵ(x) =
1
2i

[
ψ̂†(x)(∇ψ̂(x))− (∇ψ̂†(x))ψ̂(x)

]
(3.6)

instead of the momentum-density. Within our initial derivation of the XOWM framework—at the stage of

Eq. (2.44)—this is a one-to-one replacement, without any need for further changes. The current density

is intrinsically hermitian, which will prove very useful in the following study of time-reversal.

Considering the constituent correlator of Eq. (3.3)—with a current density—we can insert the time-

reversal operator T̂inv as described by Sachs [100]. The resulting expression reads

〈I| n̂(x2,τ) ĵ(x1,0) |I〉∗ = 〈T̂invI| T̂inv

(
n̂(x2,τ) ĵ(x1,0) |I〉

)

= 〈T̂invI| T̂inv n̂(x2,τ)T̂−1
inv T̂inv ĵ(x1,0) T̂−1

inv T̂inv |I〉
=−〈I| n̂(x2,−τ) ĵ(x1,0) |I〉 . (3.7)

Now, using the hermiticity of both n̂ and ĵ, we can relate

−〈I| n̂(x2,−τ) ĵ(x1,0) |I〉= 〈I| n̂(x2,τ) ĵ(x1,0) |I〉∗

= 〈I| ĵ(x1,0) n̂(x2,τ) |I〉 . (3.8)

4We suppose that one might go as far as to say less correct.

29
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By extension to both constituents of Eq. (3.3), we can conclude

PI(x1,0, x2,τ) = Θ(τ) 〈I| n̂(x2,τ) ĵ(x1,0) |I〉 +Θ(−τ) 〈I| ĵ(x1,0) n̂(x2,τ) |I〉
= Θ(τ) (−1) 〈I| ĵ(x1,0) n̂(x2,−τ) |I〉 +Θ(−τ) (−1) 〈I| n̂(x2,−τ) ĵ(x1,0) |I〉
=−PI(x1,0, x2,−τ). (3.9)

Thereby, we have established that the nonlinear density–current-density response function is indeed anti-

symmetric upon time-reversal. We emphasize, once again, that this conclusion is only valid strictly, if

the current-density operator is used in place of its momentum counterpart.

As a further implication of the above result, it immediately follows the Fourier-transformed response

function KI(k1,k2,ω) will likewise sport an anti-symmetry. Here, it will be in its frequency dependence,

i.e.,

KI(k1,k2,ω) =−KI(k1,k2,−ω). (3.10)

We will be able to reproduce this particular anti-symmetry in our later, numerical studies of the response

in Sec. 3.3.

3.1.2 The response function on a periodic domain vs. free space

In addition to the translational symmetry that comes with the lattice of a crystal, we shall further elucidate

the subtleties that go along with choosing it fully periodic.

To begin with, we recall the Fourier-relations

KI(k1,k2,ω) =
∫

d3x1

∫
d3x2

∫
dτ e−i(k1·x1+k2·x2) eiωτ PI(x1,0, x2,τ) (3.11)

and

PI(x1,0, x2,τ) =
1

(2π)7

∫
d3k1

∫
d3k2

∫
dω ei(k1·x1+k2·x2) e−iωτ KI(k1,k2,ω), (3.12)

which we have used so far to relate the electronic correlation function between direct and reciprocal

space. In writing these infinite-domain Fourier transformations, we assume that PI(x1,0, x2,τ) pertains

to a realistic system, which occupies only a finite volume within the 3-dimensional direct space. This

way, the occurring spatial integrals are naturally finite as well.

However, in order to model PI or KI theoretically, it is often advantageous to adopt a domain that

is completely filled by the ‘bulk’ sample and fitted with periodic boundary conditions5 (PBC). On this

alternative domain—which we will henceforth denote by the subscript �—Fourier decompositions are

discretized. A priori, this is incompatible with the previous Eqs. (3.11,3.12). Instead, we shall use

KI�(q+G1,−q+G2,ω) =
∫

�
d3x1

∫

�
d3x2

∫
dτ e−i(q+G1)·x1 e−i(−q+G2)·x2 eiωτ PI�(x1,0, x2,τ) (3.13)

PI�(x1,0, x2,τ) =
1

V 2� 2π

1. BZ

∑
q

rec. latt.

∑
G1,G2

∫
dω ei(q+G1)·x1 ei(−q+G2)·x2 e−iωτ KI�(q+G1,−q+G2,ω).

(3.14)

5We note that several works of solid-state theory, refer to the aforementioned PBC more specifically in terms of ‘Born-
von-Karman boundary conditions’ (BvK) [76, 101] following Ref. [102]. In this work, we shall use both denominations
interchangeably, though.
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3. Nonlinear electronic response

In writing these, we have resorted to the discretized Fourier transform, which is detailed in App. A.4

and which incorporates the overall translational invariance of PI(x1,0, x2,τ) with respect to the crystal

lattice (cf. previous Sec. 3.1.1).

In order to bridge between the two descriptions, we adopt a convolution approach that is justified by

the following logic:

We consider Eq. (3.11) to be our starting point, with the included PI(x1,0, x2,τ) describing the properties

of a realistic material. As such a realistic system is finite, we can introduce two window functions around

it, which will not alter the numerical value of PI(x1,0, x2,τ) essentially, i.e.,

PI(x1,0, x2,τ) = w(x1) w(x2) PI(x1,0, x2,τ). (3.15)

These window functions are simply defined to delimit the volume of the sample

w(x) =





1 for x inside the sample

0 otherwise.
(3.16)

Within these windows, we may now approximate PI by PI�, provided the periodic domain � is chosen

(much) larger than the window. In this case, we essentially recover the bulk description within w(x) and

can write:

KI(k1,k2,ω)≈
∫

d3x1

∫
d3x2 e−i(k1·x1+k2·x2) w(x1) w(x2)

× 1
V 2�

1. BZ

∑
q

rec. latt.

∑
G1,G2

ei(q+G1)·x1 ei(−q+G2)·x2 KI�(q+G1,−q+G2,ω). (3.17)

Next, we rewrite this further by introducing the Fourier transform of the windows w(x) themselves:

w(x) =
1

(2π)3

∫
d3κ eiκ·x w̃(κ). (3.18)

Thus, we obtain from Eq. (3.17):

KI(k1,k2,ω)≈ 1
V 2�

1. BZ

∑
q

rec. latt.

∑
G1,G2

∫
d3κ1

∫
d3κ2 w̃(κ1) w̃(κ2) δ 3(κ1 +q+G1−k1)δ 3(κ2 +G2−q−k2)

×KI�(q+G1,−q+G2,ω)

=
1

V 2�

1. BZ

∑
q

rec. latt.

∑
G1,G2

w̃(k1−q−G1) w̃(k2 +q−G2) KI�(q+G1,−q+G2,ω), (3.19)

wherein the continuous window functions smoothly join the response function from the discretized do-

main KI� to its continuous counterpart KI . We note in closing, that comparable approaches are common

practice in regular crystallography. There, the window functions are often referred to as ‘form function’

or ‘shape function’ of the crystal (see Ref. [23], for instance).

3.1.2.a Practical caveat and approximation of KI�

As a caveat, we note that our previous derivation assumed V� > Vw. In other words, we took the bulk

volume of the theoretical crystal on a domain with PBC to be larger than the actual sample. For practical,
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3. Nonlinear electronic response

numerical simulations, however, it will most likely be infeasible to realize such a simulation volume for

a macroscopic system. Instead, numerically tractable sizes are typically much smaller (Vnum�Vw), such

that the corresponding (artificial) discretization in k-space might remain apparent despite the smoothing

effect of w̃(κ). There is no straight-forward way to resolve this issue without postulating any further

approximations6.

Fortunately, such approximations may not impose severe limitations on the (practical) validity of

KI�(q+G1,−q+G2,ω). In many cases, for instance, it may be reasonable to assume the response

function to be slowly varying in q. As such, we could interpolate it on the basis of much coarser results7.

The simplest approximation of this kind is of ‘dipole-approximation’-type, for which we shall see fur-

ther motivation in the following sections. It consists in assuming that the variation of

KI�(q+G1,−q+G2,ω) with respect to q—and thus the optical wave-vector of the XOWM process—is

negligible:

KI�(q+G1,−q+G2,ω)≈KI�(G1,G2,ω). (3.20)

Thereby, we can reformulate Eq. (3.19) as:

KI(k1,k2,ω)≈ 1
V 2�

1. BZ

∑
q

rec. latt.

∑
G1,G2

w̃(k1−q−G1) w̃(k2 +q−G2) KI�(G1,G2,ω)

=
1

V 2�

rec. latt.

∑
G1,G2

KI�(G1,G2,ω)
1. BZ

∑
q

w̃(k1−q−G1) w̃(k2 +q−G2)

=
1

V�

rec. latt.

∑
G1,G2

KI�(G1,G2,ω)
1

(2π)3

∫

1. BZ
d3q w̃(k1−q−G1) w̃(k2 +q−G2). (3.21)

In the last step, we made use of the fact that the approximated KI�(G1,G2,ω) no longer depends on q
explicitly. Thus, nothing forces us to stick to any numerically prescribed q-grid any more and, instead,

we can consider the respective summation in the continuum limit again. Furthermore, we can quite safely

assume that k1, which relates to the optical field, satisfies |k1| � |G1| for all non-trivial G1. These are

thereby rendered meaningless within a well-defined window w̃(k1−q−G1). This allows us to simplify

the integral expression further
∫

1. BZ
d3q w̃(k1−q) w̃(k2 +q−G2) = (w̃? w̃)(k1 +k2−G2) (3.22)

and interpret it as a convolution. Finally, we can invoke the convolution theorem (Eq. (A.195)) and use

the trivial multiplication-properties of w(x) to simplify:

(w̃? w̃) = (FT3(w)?FT3(w)) = (2π)3 FT3(w ·w)
= (2π)3 FT3(w) = (2π)3 w̃. (3.23)

6We regret to point out the obvious, namely: If we want the full structure, we have to calculate the full structure. It is as
simple as that.

7We note for caution, however, that the level of detail in q, by which KI�(q+G1,−q+G2,ω) is rasterized (i.e., ∆q), has
to be high enough to resolve the phenomena of interest. In particular in cases of long-range (electronic) order, |∆q| ∼ l−1

order has
to cover the respective length scale of the order parameter.
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3. Nonlinear electronic response

Implementing this result in Eq. (3.21), we obtain

KI(k1,k2,ω)≈
rec. latt.

∑
G

w̃(k1 +k2−G)
1

V�
KI�(0,G,ω) , (3.24)

for which the choice of k2 fixes the final G. Note that in here, the choice of V� and thus the k-space

mode density does no longer influence the functional form of KI(k1,k2,ω) on the left-hand side. Thus,

we can abandon the previous condition V� > Vw and may simply adopt the numerically used parameter

Vnum =V� for normalization8.

8Note that V� is seldom provided as an explicit parameter by numerical codes. Instead we may resort to the density of
states in reciprocal space. Recall that the usual discretization correspondence reads: ∑k↔V�/(2π)3 ∫ d3k, where the prefactor
could likewise be expressed as V�/(2π)3 = ρk = (# k-states)/(k-space unit volume) = (# k-states in 1. BZ)/(volume 1. BZ).
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3. Nonlinear electronic response

3.2 Mean-field models for the nonlinear response

In our first, and quintessential, attempt at evaluating the nonlinear response function, we shall restrict

ourselves to mean-field descriptions of the underlying material systems. To do so, we approximate the

fundamental Hamiltonian of the material system ĤMAT by an effectively non-interacting, single particle

Hamiltonian ĤMF. We take this to comprise a single-particle operator for the kinetic energy contribution

and an additional one-body potential for each electron. Such an ĤMF implies the existence of a corre-

sponding single-particle basis set, the states of which we will denote as orbitals ϕp(x). They satisfy the

eigenvalue equation9

ĤMF ϕp(x) = εp ϕp(x). (3.25)

From these single-particle orbitals, we can assemble any N-particle eigenstate of ĤMF by forming the

appropriate Slater-determinant [76, 103].

Besides representing eigenstates of ĤMF, we can likewise expand any electronic field-operator in this

orbital basis using

ψ̂(x) = ∑
p

ĉp ϕp(x), (3.26)

wherein ĉp denotes the fermionic annihilation operator that corresponds to the state ϕp.

By extension, we may apply this prescription to all field-operators that are contained within

PI�(x1,0, x2,τ). We recall its overall form first

PI�(x1,0, x2,τ) = 〈I| T̂ [p̂(x1,0) n̂(x2,τ)] |I〉
= Θ(τ)〈I| n̂(x2,τ) p̂(x1,0) |I〉+Θ(−τ)〈I| p̂(x1,0) n̂(x2,τ) |I〉 (3.27)

and proceed to apply Eq. (3.26) to its constituents

〈I| n̂(x2,τ) p̂(x1,0) |I〉= ∑
p,q,r,s

〈I| ĉ†
pĉqĉ†

r ĉs |I〉 ei(εp−εq)τ ϕ†
p(x2)ϕq(x2)ϕ†

r (x1)(−i∇)ϕs(x1) (3.28)

as well as

〈I| p̂(x1,0) n̂(x2,τ) |I〉= ∑
p,q,r,s

〈I| ĉ†
pĉqĉ†

r ĉs |I〉 ei(εr−εs)τ ϕ†
p(x1)(−i∇)ϕq(x1)ϕ†

r (x2)ϕs(x2). (3.29)

In rewriting the above, we have resolved the time-evolution of n̂(x2,τ) via

n̂(x2,τ) = Û00(0,τ) n̂(x2)Û00(τ,0) = ei ĤMATτ n̂(x2)e−i ĤMATτ ≈ ei ĤMFτ n̂(x2)e−i ĤMFτ . (3.30)

To this end, we have evaluated the action of ĤMF onto individual orbitals according to Eq. (3.25). Along-

side our approximation of ĤMAT ≈ ĤMF, we shall likewise assume that the initial state of the material

9We note two things:
a) For a finite coordinate space with periodic boundary conditions, the set of spatial eigenfunctions ϕp(x) is discretized.
b) Beyond its spatial component the ϕp(x) should initially be considered as a two component spinors that reflect the fermionic
nature of electrons.
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3. Nonlinear electronic response

system |I〉 is an eigenstate of this approximate Hamiltonian10. This allows us to resolve the N-electron

overlap 〈I| ĉ†
pĉqĉ†

r ĉs |I〉 straight-forwardly, namely by observing that all occurring ĉ-operators have to

contract among each other. Then, and only then, will the initial state be left unchanged by the over-

all process. Non-vanishing contributions will therefore stem from the following three, fully-contracted

classes of terms

〈I| ĉ†
pĉqĉ†

r ĉs |I〉 with p = q and r = s,but p 6= r, (3.31)

〈I| ĉ†
pĉqĉ†

r ĉs |I〉 with p = s and q = r,but p 6= q, (3.32)

〈I| ĉ†
pĉqĉ†

r ĉs |I〉 with all indices alike. (3.33)

Above, we have indicated the operators, which cancel each others effect by rectangular overarches. Of

the three possible classes, only the second case (p 6= q) features a non-trivial time-dependence due to

the exponential ei(εp−εq)τ . Thereby, it is the only class to support measurable Fourier components11 for

ω 6= 0. Focusing on this, we evaluate

〈I| ĉ†
pĉqĉ†

r ĉs |I〉
∣∣∣
ω 6=0

= δp,s δq,r 〈I| n̂p(1− n̂q) |I〉 with p 6= q, (3.34)

where n̂p = ĉ†
pĉp denotes the number operator as usual. Note that we can drop the condition of p 6= q,

as it will be enforced by the occupation numbers of the Slater-determinant anyway. Implementing the

above in Eq. (3.28), we obtain

〈I| n̂(x2,τ) p̂(x1,0) |I〉 = ∑
p,q
〈I| n̂p(1− n̂q) |I〉 ei(εp−εq)τ ϕ†

p(x2)ϕq(x2)ϕ†
q (x1)(−i∇)ϕp(x1)

= 2
occ.

∑
p

unocc.

∑
q

ei(εp−εq)τ ϕ∗p(x2)ϕq(x2)ϕ∗q (x1)(−i∇)ϕp(x1)︸ ︷︷ ︸
Mp,q(x2,x1)

, (3.35)

where we have rephrased the expectation value of the occupation-numbers as new limits on the pertaining

summations. Specifically, the sum in p traverses only orbitals that are occupied in |I〉, whereas the sum

in q traverses only unoccupied ones. Moreover, we have assumed that the mean-field Hamiltonian is

spin-independent, which allows us to trade the (implicitly) spinorial ϕp(x) for orbitals that are merely

spatial functions and a factor of two12. Furthermore, we have defined the abbreviation Mp,q(x2,x1) in an

attempt to shorten upcoming formulae.

10We note for consistency that we had previously assumed |I〉 to be an eigenstate of the full Hamiltonian. In switching to the
approximate Hamiltonian ĤMF, we should also approximate the initial state accordingly. While we would think this to be rather
self-evident, if consistency was desired, we nevertheless wanted to point out this second—maybe more subtle—approximation.

11We note that the contributions of terms (3.31) and (3.33) will, in fact, vanish completely. We have already established that
their time-dependence restricts them to exist only for ‘static’ Fourier components, i.e., at ω = 0. Yet in addition, we may invoke
the time-reversal anti-symmetry of KI(k1,k2,ω) to conclude that at this point (ω = 0) the response has to vanish exactly.

12We note that the assumption of a spin-independent mean-field may certainly be inappropriate for a wide range of materials.
These could be magnetic systems but also materials that involve strong spin-orbit couplings and associated band-splittings. On
the other hand, such systems are often ill-described by mean-field methods anyway. For the time-being, we shall stick with this
most simple model. Its extension to include spin-orbitals at the end is trivial: Remove the factor of 2 and sum over orbitals of
both spin-states explicitly.
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Analogously to the above, we can reformulate Eq. (3.29) as

〈I| p̂(x1,0) n̂(x2,τ) |I〉 = 2
occ.

∑
p

unocc.

∑
q

e−i(εp−εq)τ ϕ∗p(x1)(−i∇)ϕq(x1)ϕ∗q (x2)ϕp(x2)

= 2
occ.

∑
p

unocc.

∑
q

e−i(εp−εq)τ ϕ∗q (x2)ϕp(x2)ϕ∗p(x1)(−i∇)ϕq(x1)︸ ︷︷ ︸
Mq,p(x2,x1)

. (3.36)

We combine both terms in the overall correlation function and obtain

PI�(x1,0, x2,τ) = 2
occ.

∑
p

unocc.

∑
q

(
Θ(τ) ei(εp−εq)τ Mp,q(x2,x1)+Θ(−τ) e−i(εp−εq)τ Mq,p(x2,x1)

)
, (3.37)

which translates into the Fourier domain (following Eq. (3.13)) as:

KI�(q+G1,−q+G2,ω) = 2
occ.

∑
p

unocc.

∑
q

∫

�
d3x1

∫

�
d3x2 e−i(q+G1)·x1 e−i(−q+G2)·x2

×
(

Mp,q(x2,x1)
∫ ∞

0
dτ eiωτ ei(εp−εq)τ +Mq,p(x2,x1)

∫ 0

−∞
dτ eiωτ e−i(εp−εq)τ

)

= 2
occ.

∑
p

unocc.

∑
q

∫

�
d3x1

∫

�
d3x2 e−i(q+G1)·x1 e−i(−q+G2)·x2

∫ ∞

0
dτ

×
(

Mp,q(x2,x1)ei(ω−(εq−εp))τ +Mq,p(x2,x1)ei(−ω−(εq−εp))τ
)
. (3.38)

We proceed to regularize the temporal integration by means of the common adiabatic switching pre-

scription (see Ref. [57], for instance). That is, we include an infinitesimal damping factor of e−ετ and

find

KI�(q+G1,−q+G2,ω) = lim
ε→0+

2i
occ.

∑
p

unocc.

∑
q

(〈ϕp|e−i(−q+G2)·x̂ |ϕq〉 〈ϕq|e−i(q+G1)·x̂ p̂ |ϕp〉
ω− (εq− εp)+ iε

+
〈ϕp|e−i(q+G1)·x̂ p̂ |ϕq〉 〈ϕq|e−i(−q+G2)·x̂ |ϕp〉

−ω− (εq− εp)+ iε

)
. (3.39)

In writing Eq. (3.39), we have adopted Dirac’s notation for the inner product of wave functions on the

crystalline domain, such that

〈ϕp| Ô |ϕq〉=
∫

�
d3x ϕ∗p(x) Ôϕq(x). (3.40)

Our result (Eq. (3.39)) exhibits the familiar form of second-order perturbative expressions: It fea-

tures two transition amplitudes linking initial and final state (both of which are the same here) via a set

of intermediately excited states. The transition into these intermediate states comes along with a reso-

nant denominator for each ‘on-shell’ transition. In particular, Eq. (3.39) bears close resemblance to the

well-known Adler-Wiser response function [98, 99], which is ubiquitously used in density-response for-

malisms (see Ref. [104] and references therein). Notably though, the transverse nature of the response,

which is implied by the momentum operator p̂ in our case would be absent, for a pure density-density

response.

36



3. Nonlinear electronic response

3.2.1 The nonlinear response for the free electron gas

Having established a general expression for the nonlinear response function KI�(q+G1,−q+G2,ω) in

Eq. (3.39), we aim to develop an intuition for its behaviour in terms of limiting / model cases next. As

the simplemost case for the independent-particle approximation, we shall briefly consider a system of

quasi-free electrons and evaluate KI� in its eigenstates. The respective wave functions can be written as

plane-waves

ϕp(x) =
1√
V�

eikp·x, (3.41)

where the normalization is performed with respect to the periodically-bounded crystal volume (V�).

In accordance with our later treatment of Bloch waves, we choose to split the occurring wave-vector

kp = Gp +qp into a portion on the reciprocal lattice of the crystal and a remainder within the first Bril-

louin zone, respectively. Evaluating the matrix elements from Eq. (3.39), we find:

〈ϕp|e−i(−q+G2)·x̂ |ϕq〉=
1

V�

∫

�
d3x e−i(Gp+qp)·x e−i(−q+G2)·x̂ ei(Gq+qq)·x

=
1

V�

dir. latt.

∑
R

e−i(qp−q−qq)·R
∫

U(0)
d3x e−i(Gp+qp−q+G2−Gq−qq)·x

=
1

V�
Ncells

rec. latt.

∑
G

δqp,q+qq+G

∫

U(0)
d3x e−i(Gp+G2−Gq+G)·x

≈ 1
V�

Ncells δqp,q+qq

∫

U(0)
d3x e−i(Gp+G2−Gq)·x

=
1

V�
Ncells δqp,q+qq VU(0) δGp,Gq−G2 = δqp,q+qq δGp,Gq−G2 (3.42)

and analogously

〈ϕq|e−i(q+G1)·x̂ p̂ |ϕp〉 ≈ δqp,q+qq δGp,Gq+G1 (Gp +qp). (3.43)

In both cases, the summation ∑dir. latt.
R e−i(qp−q−qq)·R yields a non-trivial contribution, whenever the

exponent qp−q−qq matches a reciprocal lattice vector G. Bearing in mind that all three vectors stem

from the first Brillouin zone and q—moreover—is small even within that scope (optical photon), the

most likely contribution will result from qp−q−qq = 0. Further contributions to the sum might only

arise in cases, where qp and qq are located on opposite edges of the Brillouin zone and connect via q plus

a corresponding reciprocal lattice vector13. Given that the contributing k-space volume of these edges is

small, though, we shall neglect this option for the time-being.

The correlation function resulting from these matrix elements reads:

KI�(q+G1,−q+G2,ω)≈ lim
ε→0+

2i
occ.

∑
p

unocc.

∑
q

(δqp,q+qq δGp,Gq−G2 δGp,Gq+G1 (Gp +qp)

ω− (εq− εp)+ iε

+
δqq,q+qp δGq,Gp−G2 δGq,Gp+G1 (Gq +qq)

−ω− (εq− εp)+ iε

)
, (3.44)

where the eigenenergies of the plane waves are given by εp = G2
p/2 = (Gp +qp)

2/2 as usual.

At this point, we note that the Kronecker symbols impose two conditions, which are mutually in-

13Note that the implied scattering ‘around’ the Brillouin zone amounts to a kind of ‘Umklapp’-process [101].
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compatible with the assumed physical reality. In particular, we find for the first term

δGp,Gq−G2 ⇒ Gp = Gq−G2

δGp,Gq+G1 ⇒ Gp = Gq +G1 ⇒ 0 = G1 +G2 (3.45)

and an analogous condition for the second term, albeit with the indices p and q being exchanged through-

out. Physically, the above condition expresses the notion that strict momentum conservation on the free

electron system would require that XOWM can only take place, if the full momentum, which is trans-

ferred during the x-ray scattering, is compensated by the optical admixture (or vice versa). Given the

large difference of x-ray and optical photon momenta, this could only be achieved, if x-ray scattering

were to proceed in forward direction (i.e., if it induces a very low momentum transfer itself). On the

contrary, however, we are interested predominantly in scattering processes at large momentum transfer,

because these would enable high-resolution imaging of the sample.

Intuitively, we would expect this result: The free electron gas is a homogeneous system and, as

such, does not exhibit any non-trivial short range structure. However, some kind of structure at the

scale lstructure ∼ 1/ |G2| would be required, in order to find corresponding non-zero signatures at finite

momentum transfer (G2). Owing to its absence, there is no relevant information at higher-momentum

components in KI�(q+G1,−q+G2,ω) either.

In a closing thought, we conjecture that this reasoning should hold beyond the quasi-static case of

the electron gas. In particular, it should be applicable to low-q excitations of the electron gas, i.e., to

plasmon-oscillations [101], as well. These do not exhibit stark spatial modulations in themselves and

thus we do not expect them to show pronounced signatures in XOWM either. This, in turn, casts some

doubt on publications like Ref. [48], which claim to have used XPDC as a probe of this particular quasi-

particle14.

3.2.2 High-frequency limit of the nonlinear response

As a step beyond the free-electron treatment, Dr. Isaac Freund has suggested a high-frequency approx-

imation to the description of x-ray parametric down-conversion [89]. Specifically, he has addressed the

scenario, where the energy transfer ω is much larger than the characteristic binding energy of valence-

electrons, yet sufficiently below any core-level threshold15. Under these conditions, he postulates a

response that partially resembles free electrons, namely for the intermediate states. This renders his ap-

proximation reminiscent of the impulse-approximation used in the context of Compton scattering [105].

However, Freund relies on a decidedly more classical line of reasoning, despite starting out from the

(single-particle) quantum description of Armstrong et al. [95].

In the following, we adapt his arguments within the framework set by our Eq. (3.39). To begin with,

we impose the condition that the energy transfer is indeed much larger than the valence binding energy,

viz. the band gap, ω � EBG. At the same time, we assume ω � Ecore, which allows us to omit deeply

14We note with regard to Ref. [48] that we have are other, more fundamental, objections to it as well. These will be discussed
in greater length in Sec. 5.2.2.

15We want to note two things at this point:
First, we specify that for the case of XPDC, the energy transfer is associated with the idler photon’s energy. Thus, the above
conditions would translate to Evalence� ωi� Ecore.
Second, we emphasize that the aforementioned conditions may not be achievable for many realistic systems. Notably, Freund
himself has pointed out this observation alongside the very introduction of the model [89].
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bound orbitals in the following summation over occupied states (p):

KGS�(q+G1,−q+G2,ω) = lim
ε→0+

2i
occ. val.

∑
p

unocc.

∑
q

(〈ϕp|e−i(−q+G2)·x̂ |ϕq〉 〈ϕq|e−i(q+G1)·x̂ p̂ |ϕp〉
ω− (εq− εp)+ iε

+
〈ϕp|e−i(q+G1)·x̂ p̂ |ϕq〉 〈ϕq|e−i(−q+G2)·x̂ |ϕp〉

−ω− (εq− εp)+ iε

)
.

(3.46)

We emphasize that we will focus on a single reference state, namely the ground state |I〉 = |GS〉, in the

course of this derivation.

Moreover, we follow Freund in assuming that the dominant dielectric response stems from transitions

around the band gap, i.e., from a valence band (VB) of the material into a low-lying conduction band

(CB). In this case, εq− εp ≈ EBG for all relevant contributions. In addition, we still want to observe the

condition ω � EBG and may thus simplify the energy denominators of Eq. (3.46) as:

1
±ω− (εq− εp)+ iε

≈ 1
±ω−EBG + iε

≈ 1
±ω

. (3.47)

This, in turn, renders

KGS�(q+G1,−q+G2,ω)≈ 2i
ω

VB

∑
p

CB

∑
q

(
〈ϕp|e−i(−q+G2)·x̂ |ϕq〉 〈ϕq|e−i(q+G1)·x̂ p̂ |ϕp〉

−〈ϕp|e−i(q+G1)·x̂ p̂ |ϕq〉 〈ϕq|e−i(−q+G2)·x̂ |ϕp〉
)
. (3.48)

For further simplification, Freund postulates that the excited electrons will respond to the high-frequency

perturbation in the same way that a classical charge-density would respond to a high-frequency electro-

magnetic field (here: the idler field). The most straight-forward translation of this classical—respectively

free—electronic behaviour into quantum-mechanical terms would consist of adopting the impulse-

approximation (cf. Ref. [105]) during the intermediate-state propagation. However, this yields more

involved expressions than those obtained in Ref. [89]. Instead, we have to resort to a more abstract (and

also more drastic) interpretation of ‘free’ response. Namely, we shall consider the dynamics of an excited

electron within the manifold of intermediate states to be unhindered (i.e., unobstructed by other states).

Accordingly, we shall require that the projector ∑CB
q |ϕq〉 〈ϕq| , which is the remnant of the sum over

intermediate pathways, does not impose any restrictions, i.e.,

CB

∑
q
|ϕq〉 〈ϕq| ≈

all

∑
q
|ϕq〉 〈ϕq|= 1 ⇔ 0≈

all

∑
q
|ϕq〉 〈ϕq|−

CB

∑
q
|ϕq〉 〈ϕq| . (3.49)

This approximate equivalence requires two distinct conditions to be fulfilled:

• First of all, it is necessary for the restricted conduction band (CB) summation to actually represent

all of the relevant unoccupied states of the system. Within Eq. (3.48), where those states are

weighted by the transition moments, this condition is indeed implicitly incorporated, insofar as

all transitions into the non-included states are weighted by ∼ 0 (according to Freund’s original

approximation).

• The second condition is that the CB sum needs to be extended to account for all relevant occupied
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states of the system as well. Only then can it be considered as a full resolution of the identity. This

aspect has not been considered in the classical reasoning of Freund [89], though it may easily be

established based on the structure of Eq. (3.48).

On the second aspect, we quickly demonstrate below that the inclusion of occupied states into the second

sum does not contribute any additional terms indeed. Taking Eq. (3.48) and changing the q-summation

to occupied states

KGS� correction(q+G1,−q+G2,ω)≈ 2i
ω

occ.

∑
p

occ.

∑
q

(
〈ϕp|e−i(−q+G2)·x̂ |ϕq〉 〈ϕq|e−i(q+G1)·x̂ p̂ |ϕp〉

−〈ϕp|e−i(q+G1)·x̂ p̂ |ϕq〉 〈ϕq|e−i(−q+G2)·x̂ |ϕp〉
)

=
2i
ω

occ.

∑
p

occ.

∑
q

(
〈ϕp|e−i(−q+G2)·x̂ |ϕq〉 〈ϕq|e−i(q+G1)·x̂ p̂ |ϕp〉

−〈ϕp|e−i(−q+G2)·x̂ |ϕq〉 〈ϕq|e−i(q+G1)·x̂ p̂ |ϕp〉
)
= 0,

(3.50)

the expression obviously vanishes, as both terms cancel out upon exchanging the indices in the latter.

Therefore, we may indeed employ the reformulation of the projector into a non-restricting identity

(as of Eq. (3.49)) and rewrite Eq. (3.48) as follows:

KGS�(0,G2,ω)≈ 2i
ω

VB

∑
p

all

∑
q

(
〈ϕp|e−iG2·x̂ |ϕq〉 〈ϕq| p̂ |ϕp〉−〈ϕp| p̂ |ϕq〉 〈ϕq|e−iG2·x̂ |ϕp〉

)

=
2i
ω

VB

∑
p

(
〈ϕp|e−iG2·x̂ 1 p̂ |ϕp〉−〈ϕp| p̂1e−iG2·x̂ |ϕp〉

)

=
2i
ω

VB

∑
p
〈ϕp|

[
e−iG2·x̂ , p̂

]
|ϕp〉=

2i
ω

G2

VB

∑
p
〈ϕp|e−iG2·x̂ |ϕp〉

=
2i
ω

G2

∫

�
d3x ρVB(x)e−iG2·x =

2i
ω

G2 ρVB
G2

. (3.51)

Thereby, the overall correlation function is reduced to a Fourier-component of the valence-electron den-

sity weighted by its respective reciprocal lattice vector and the inverse of the energy transfer. This

provides a valuable limiting case, which we may use to cross-check more complicated approaches.

Formulation in Bloch waves In order to use, i.e., evaluate, the above result later on, we shall give an

expression for it in terms of Bloch waves (cf. App. A.5):

KGS�(0,G2,ω)≈ 2i
ω

G2

VB

∑
p

rec. latt.

∑
G

c∗np,kp
(G−G2) cnp,kp(G). (3.52)

This can be used in the following to evaluate the approximate correlation function numerically16.

16Note that we will mainly employ the ABINIT code [106] to compute orbitals from density-functional theory (DFT). This
code, in turn, relies on a Bloch-wave formulation of its orbitals.
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3.2.3 The nonlinear response from Kohn-Sham orbitals

As our final, and most comprehensive, approach to resolve the single-particle response function (3.39),

we combine our expression with density-functional theory (DFT) [107, 108]. DFT is a widely used

methodology for performing electronic-structure calculations with broad applications to solid-state prob-

lems [109]. One of its essential benefits is to achieve reasonably accurate results at comparatively low

computational cost. Its good performance is a consequence of its ‘simple’ mean-field nature, which can

be calibrated to the problem at hand by choice of an appropriate exchange-correlation (XC) functional.

Despite its success, there is a principal caveat to be borne in mind: DFT is inherently a theory that

addresses (only) the ground state of an electronic system. As such, it is not strictly valid to extract

excited-state properties from this framework. Irrespective of this caveat, the Kohn-Sham formulation

of DFT [108], which employs single-particle orbitals, lends itself quite naturally to an interpretation in

terms of occupied (i.e., ground state) orbitals and unoccupied (i.e., excited or rather excitable) states.

This interpretation is widely adopted, even though it entails some well-known errors—chief amongst

them is the notorious underestimation of band gaps from bare DFT orbitals [110].

For our present purpose, this caveat does not constitute a major obstacle. We shall, first and foremost,

use the Kohn-Sham orbitals computed for a given solid as a complete set of ‘mean-field’ eigenstates17

in the sense of Eq. (3.25). Combining this with appropriate counter-measures to the band-gap problem,

we may use DFT orbitals within the nonlinear response function to gain both qualitative intuition and

a (rough) quantitative assessment. More so, we may achieve both in an efficient and easily transferable

manner.

Subsequently, we will prepare our single-particle response function for its evaluation from Kohn-

Sham orbitals, starting from

KGS�(q+G1,−q+G2,ω) = lim
ε→0+

2i
occ.

∑
p

unocc.

∑
q

(〈ϕp|e−i(−q+G2)·x̂ |ϕq〉 〈ϕq|e−i(q+G1)·x̂ p̂ |ϕp〉
ω− (εq− εp)+ iε

+
〈ϕp|e−i(q+G1)·x̂ p̂ |ϕq〉 〈ϕq|e−i(−q+G2)·x̂ |ϕp〉

−ω− (εq− εp)+ iε

)
. (3.53)

Here, we limit our reference state |I〉= |GS〉 to the ground state once again—which is in accordance with

the ground-state reference of DFT itself.

Given our focus on lattice-periodic materials, we opt for a Bloch-wave based formulation [76, 101].

To this end, we invoke the (reasonable) assumption that the mean-field potential is itself lattice periodic18.

In conjunction with the periodic boundary conditions on the crystal domain (�), this allows us to identify

the orbitals

ϕp(x) = ϕnp,kp(x) =
1√
V�

eikp·x unp,kp(x) (3.54)

as Bloch waves (for details on these, see App. A.5).

17We note that the ‘mean-field’ pertaining to the Kohn-Sham DFT Hamiltonian may not be an ideal choice, but it is certainly
a valid and, notably, affordable choice.

18We note that one may still pose the question, whether the potential needs to be local in addition to being lattice-periodic?
Bloch’s theorem certainly works for local potentials, including local XC-potentials like LDA. In fact, it may well be more
general. However, we shall not pursue this question further at this stage.
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Using this decomposition of ϕp(x), we rewrite the scattering matrix element of Eq. (3.53) as

〈ϕp|e−i(−q+G2)·x̂ |ϕq〉=
1

V�

∫

�
d3x e−ikp·x u∗np,kp

(x) e−i(−q+G2)·x̂ eikq·x unq,kq(x)

=
1

V�

dir. latt.

∑
R

e−i(kp−q−kq)·R
rec. latt.

∑
G,G′

c∗np,kp
(G)cnq,kq(G

′)
∫

U(0)
d3x e−i(kp+G−q+G2−kq−G′)·x,

(3.55)

where we have made use of the Fourier expansion for each Bloch-functions (cf. Eq. (A.51)). If we

neglect contributions from Umklapp-processes19, we obtain the simplified expression:

〈ϕp|e−i(−q+G2)·x̂ |ϕq〉 ≈
1

V�
Ncells δkp,q+kq

rec. latt.

∑
G,G′

c∗np,kp
(G)cnq,kq(G

′)
∫

U(0)
d3x e−i(G+G2−G′)·x

=
1

V�
Ncells δkp,q+kq

rec. latt.

∑
G,G′

c∗np,kp
(G)cnq,kq(G

′) VU(0) δG,G′−G2

= δkp,q+kq

rec. latt.

∑
G

c∗np,kp
(G)cnq,kq(G+G2). (3.56)

For the photoabsorption / -emission matrix element of Eq. (3.53), we find analogously:

〈ϕq|e−i(q+G1)·x̂ p̂ |ϕp〉=
1

V�

∫

�
d3x e−ikq·x u∗nq,kq

(x) e−i(q+G1)·x̂ (−i∇) eikp·x unp,kp(x)

≈ 1
V�

Ncells δkq,kp−q

rec. latt.

∑
G,G′

c∗nq,kq
(G)cnp,kp(G

′) VU(0) δG,G′−G1 (kp +G′)

= δkq,kp−q

rec. latt.

∑
G

c∗nq,kq
(G)cnp,kp(G+G1) (kp +G+G1). (3.57)

‘Dipole-approximation’ For practical purposes, we shall introduce one further approximation, viz.

setting kq = kp−q≈ kp. This can be justified (see also Sec. 3.1.2) by recalling that q will be constrained

to the size of an optical photon’s momentum, which is significantly smaller than the scale of the 1.

Brillouin zone (BZ). For such small differences among crystal-momenta, we can assume the respective

Fourier coefficients cn,k(G) to be almost the same, because they vary slowly in k20. Thus, evaluating both

coefficients in Eqs. (3.56) or (3.57) at the same value of kp should not incur a significant difference. For

the basic expression of the scattering matrix element, this does not imply a large structural change—see

below:

〈ϕp|e−i(−q+G2)·x̂ |ϕq〉 ≈ δkp,kq

rec. latt.

∑
G

c∗np,kp
(G)cnq,kp(G+G2). (3.58)

19We recall from Sec. 3.2.1 that so-called Umklapp-processes arise in cases, where kp and kq are located on opposite edges
of the Brillouin zone and connect via q plus a corresponding reciprocal lattice vector [101]. As the coupling thus ‘flips’ (german:
‘umklappen’) around the Brillouin zone its name was coined respectively. We note further that the contributing k-space volume
at these edges of the Brillouin zone is small, which justifies neglecting Umklapp-processes for the moment.

20We note that many numerical approaches will opt for much coarser discretization of k-space within the 1. BZ than the scale
set by an optical photon. In Ref. [111], for instance, the authors compute Kohn-Sham orbitals as well as response properties of
diamond on a k-space grid with spacing of ∆k ≈

∣∣∣G(100)

∣∣∣/10 in each direction. An optical photon’s momentum, on the other
hand, will be 3 to 4 orders of magnitude smaller. The neglect of its momentum transfer during transitions will therefore not
make a relevant difference at all.
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We note, however, that the numerical simplification obtained through the above approximation may

be substantial21. For the momentum matrix element, we may adopt the same approximation q ≈ 0. In

addition, we extend our simplifications to the exact equality G1 = 0 for optical photons, thereby reducing

〈ϕq|e−i(q+G1)·x̂ p̂ |ϕp〉 ≈ δkq,kp

rec. latt.

∑
G

c∗nq,kp
(G)cnp,kp(G) (kp +G)

= δkq,kp

rec. latt.

∑
G

c∗nq,kp
(G)cnp,kp(G) G. (3.59)

In the last step, we have additionally invoked Eq. (A.53) and the knowledge that occupied (np,kp) and

unoccupied (nq,kq) can not agree in both of their indices.

Finally, we have obtained all necessary ingredients to evaluate the nonlinear response function

KGS�(0,G,ω) = lim
ε→0+

2i
occ.

∑
p

unocc.

∑
q

(〈ϕp|e−iG·x̂ |ϕq〉 〈ϕq| p̂ |ϕp〉
ω− (εq− εp)+ iε

+
〈ϕp| p̂ |ϕq〉 〈ϕq|e−iG·x̂ |ϕp〉
−ω− (εq− εp)+ iε

)
. (3.60)

In the following section, we shall discuss our numerical implementation of this expression and apply it

to the example of diamond.

21We note with reference to the previous footnote that the discretization of numerical approaches will often be much coarser
than the sampling, which is required to evaluate shifts by small q. In order to obtain proper Bloch waves at two mildly different
crystal momenta, nevertheless, we would thus require additional interpolation methods like k ·p-perturbation theory [101, 112].
We note that we have implemented this for testing purposes as well—just to verify its irrelevance.
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3.3 Numerical evaluation of the nonlinear response

Previously, we have established the formal pre-conditions to evaluate the nonlinear response function

KGS�(0,G,ω) numerically. These comprise the simplified expression for the response itself (Eq. (3.60))

combined with the Bloch-wave based matrix elements in Eqs. (3.58) and (3.59).

Now, we proceed to the actual, numerical evaluation thereof. At its outset, this requires a DFT-

calculation for the desired sample material, before the nonlinear response can be computed on top of the

DFT-orbitals.

For the first step in this computation, we have chosen the ABINIT program [106]. As a plane-wave

based DFT code, it is particularly suited to address solid-state problems—while at the same time, it is

computationally fast, due to its focus on valence electrons in pseudo-potentials (for details see Ref. [106]

and references therein).

The second step of our envisioned computation could not be achieve by any (openly) available

software at the time of this writing. Consequentially, we have developed a computer-program of our

own—MyLiO.x—to address this need. MyLiO.x implements a host of FORTRAN-routines for the

evaluation of KGS�(0,G,ω) as well as several related response functions. Moreover, it provides basic

I/O-capabilities and, importantly, interfaces the output of ABINIT for our calculations. For more details

on the program, we refer the reader to App. A.6, where we have attached our current version of the

‘manual’ for MyLiO.x.

Diamond as an example In the remainder of this section, we will apply both of the aforementioned

computational codes to the exemplary case of diamond. This material exhibits a range of beneficial

properties (e.g., hardness, high heat-conductivity and low optical / x-ray absorption), which make it a

popular sample for x-ray wavemixing experiments (cf. both Refs. [46–48, 50, 113–115] and our own

studies in Chpt. 5). As such, it is the most natural starting point for theoretical investigations as well.

For the DFT calculations that provide the basis of Kohn-Sham orbitals, we employ a basic LDA XC-

potential. Within ABINIT, this is combined with a norm-conserving pseudopotential for carbon22 and

evaluated in a plane-wave basis; the cut-off energy for the latter was taken to be 15 a.u.. The real-space

lattice of diamond is fixed to the cubic unit cell size of 6.741 a.u., while the Brillouin zone is initially

sampled at 60 k-points (symmetry adapted) to iterate the DFT calculation. Ultimately, the result is

extrapolated onto 2048 k-points spread homogeneously across the full Brillouin zone (without symmetry

adaption).

Following the DFT calculation, the orbital energies of all unoccupied states are shifted upwards

by a scissor correction of ∆E = 0.062 a.u. (∼ 1.7 eV), which we adopted from Ref. [111]. This shift

is performed within MyLiO.x at the stage of computing the nonlinear response function and aims to

correct for the incorrect band-gap energy, which we would otherwise obtain from LDA-DFT [110]. In

addition, we apply a finite regularization ε = 0.007 a.u. (∼ 0.2 eV) during the evaluation of Eq. (3.60).

This replaces the original limit of ε → 0+ and parallels earlier, all-optical calculations on diamond [116]

in its value.

22We note that we have used the standard pseudopotential that was in used for this atomic species in ABINIT in 2020.
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3.3.1 Spectral properties of KGS� (in diamond)

In a first case study, we want to investigate the spectral properties of KGS�(0,G,ω) in diamond. To this

end, we compute the response across a spectral range of ω =±1 a.u. (∼ 27.2 eV)—specifically for the

(111) component, i.e. at G = G(111).

We notice up front that KGS�(0,G(111),ω) appears to be very well aligned with G(111) itself23. Con-

sidering the difference in |KGS�|2− |Ĝ(111) ·KGS�|2 as a measure24, we find their mutual divergence to

be less than ∼ 10−7 across the whole studied domain (for reference: |KGS�|2 ≈ 10−4).

This alignment simplifies our subsequent discussion of the response function significantly: Instead of

analysing each of its vectorial components individually, we can focus on the projection

Ĝ(111) ·KGS�(0,G,ω) without loss of any information. We proceed to plot its real and imaginary part

in Fig. 3.2 below, further normalized to the computationally assumed crystal volume V�. Both real and

imaginary part are shown as a solid, red curve in their respective pane of the graph. In addition, we

also plot the imaginary and real part of diamond’s dielectric function (blue, dashed line). This was com-

puted via the Kubo-Greenwood formula [117] from the same Kohn-Sham orbitals as KGS� and serves for

illustration and comparison25.

As a first observation, we notice that KGS�(0,G111,ω) does indeed flip its sign at ω = 0. We have

expected this behaviour from the response function’s anti-symmetry upon time-reversal (cf. Eq. (3.10)

and pertaining discussion in Sec. 3.1.1).

Apart from this, we observe a prominent feature shortly below 0.5 a.u. (∼ 13.6 eV). In this region,

the real part of KI� comes to resemble the imaginary part of ε closely. The same holds true for the

second pair (i.e., Im(KGS�) and Re(ε)), respectively26. Such a similarity was to be expected to some

degree, because both types of response functions feature an inherently similar pole-structure. This is a

natural consequence of their respective origins at second order of perturbation theory, each. We could

take this congruence a step further and even think of the nonlinear response function KI� as a spatially

resolved view onto the material’s transverse dielectric response in some sense27. As a consequence of this

spatial resolution, KI� is intrinsically more sensitive to excitations at shorter length scales than the usual

(macroscopic) dielectric function. This enhances the visibility of spectral features at higher energies in

KI� compared to ε—see the region around ∼ 1.0 a.u. (∼ 27.2 eV). Such kind of enhanced sensitivity

might recommend XOWM for future applications in probing localized phenomena. For instance, we

could envision XOWM techniques to complement purely spectroscopic studies on orbital transitions or

Frenkel excitons beyond the zero-momentum-transfer limit [118, 119].

23We note that the alignment of KGS�(0,G,ω) along G is not overly surprising and could be guessed from earlier expressions
already. It featured most prominently in Eq. (3.51) for the high-frequency limit of KGS�. In this case, the current-/momentum-
operator evaluated directly proportional to the momentum transfer of the scattering process. More broadly speaking, a specific
reciprocal component of KGS�(0,G,ω) will naturally resolve currents that point along the same direction, viz. G.

24We note for clarity that—in the absence of quantum-mechanical operators—we employ the ‘hat’-notation to signify unit
vectors. As such Ĝ(111) denotes the unit vector parallel to G(111).

25We remark that the data for ε(ω) at negative frequencies was obtained by mirroring the positive part.
26We note that the mildly irritating flip from real to imaginary part is probably down to our initial definition of

PI(x1, t1, x2, t2). By accident (and ignorance at the time), we did not include a factor of −i, which appears to be common-
place in the realm of density-based response functions, though (cf. Ref. [104], for instance). As a consequence, our response
function features a phase-shift by π/2. We might want to remedy this issue in the future—for the sake of broader consistency.
Yet at the same time, we emphasize that this convention is fully inconsequential, when it comes to physical meaning.

27We note with caution that this analogy of KI� and ε(ω) should not be pushed too far—carelessly. While it is illustrative
and both functions certainly pertain to related response-phenomena, they also imply important differences. In particular, we
recall that the dielectric function typically describes the longitudinal coupling of the electronic density to a scalar potential
[104]. Instead, our nonlinear response function KI� involves the transverse coupling of a current-density to the vector-potential
A. Yet at the same time, its spatial resolution derives from the correspondingly correlated density.
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3. Nonlinear electronic response

In pursuit of a more comprehensive picture of KI�(0,G,ω), we shall turn our attention towards said

spatial resolution explicitly. This will feature in the upcoming Sec. 3.3.2.
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Figure 3.2: The real and imaginary part of the nonlinear response in diamond are given as red solid lines in the
upper and lower section of the graph, respectively. Specifically, we show the projection of KGS�(0,G111,ω) onto
Ĝ111 and normalize it by the numerical simulation volume V�. The nonlinear response is measured along the left-
hand ordinate. For comparison, the imaginary and real part of the dielectric function are juxtaposed as blue dashed
lines, respectively. They are measured along the right-hand ordinate each.
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Figure 3.3: Comparison of |KI�(0,G220,ω)|2 V−2
� computed from the full, DFT-model (red, solid line) versus the

high-frequency approximation following Freund (blue, dashed line).

3.3.1.a Cross-check of KGS� in the high-frequency limit

Before we conclude our discussion on the spectral behaviour of the nonlinear response function, we

want to address one final cross-comparison. Namely, we shall consider the high-frequency limit of

KI�(0,G,ω), for which we have previously obtained an approximate expression—recall Eq. (3.51) from

Sec. 3.2.2

KGS�(0,G,ω)≈ 2i
ω

G ρVB
G . (3.61)

Using its Bloch-wave formulation, as given in Eq. (3.52), we can evaluate the approximate response

function from the same DFT-orbitals as before. Thereby, we obtain a result that can be compared to our

first-principles correlation function on equal footing.

Evaluating both for the (220) orientation of diamond, we find the spectra plotted in Fig. 3.3. Herein,

the ‘full’ result according to Eq. (3.60) is shown as a red, solid line, whereas the high-frequency ap-

proximation appears in blue (dashes line). Both functions are plotted in terms of their absolute squares,

as these give a direct measure of the scattering yields in XOWM. We observe that our numerical result

approaches the asymptotic expression above ω ≈ 1 a.u. (≈ 27.2 eV). The precise point of convergence

depends on the reciprocal component in question, yet generally, we find good agreement of our full cor-

relation function with the approximate version at high energies. Observing the correct limiting behaviour

of KI�(0,G,ω) provides a re-assuring cross-check of our numerical implementation.

Of course, we may likewise invert our conclusion and judge Freund’s approximation on this basis.

As such, the above results suggest that Eq. (3.61), indeed, provides a good estimator for KI�(0,G,ω)

down to ω ≈ 1 a.u.. Even below this point, it may be used for a decent order of magnitude estimate.

Nevertheless, the smooth approximation is obviously inadequate for determining any spectral features.
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3. Nonlinear electronic response

3.3.2 Spatial properties KGS� (in diamond)

In addition to the spectral properties of KGS�, which we have discussed throughout Sec. 3.3.1, the non-

linear response during XOWM processes also offers unprecedented spatial insights into electronic dy-

namics. This distinguishes XOWM from most other probes, especially from all-optical techniques. The

latter lack any microscopic resolution due to the fundamental diffraction-limit of optical wavelengths. As

a case in point, we recall from Sec. 3.3.1 the (macroscopic) dielectric function, which could be probed

by optical absorption-, transmission- or reflection-spectrometry, for example [120]. We have already

discussed its spectral similarities with our nonlinear response function, but shall now elaborate on the

additional, spatial information28 provided by KGS�.

In order to analyze the spatial information of our numerically evaluated KGS�(0,G,ω), we first have

to understand the impact of its approximation vis-a-vis the full response function KI�(q+G1,−q+

G2,ω). We recall its original Fourier relation (Eq. (3.13))

KI�(q+G1,−q+G2,ω) =
∫

�
d3x1

∫

�
d3x2

∫
dτ e−i(q+G1)·x1 e−i(−q+G2)·x2 eiωτ PI�(x1,0, x2,τ), (3.62)

on which we shall impose the restrictions q = G1 = 0 and G2 = G. Thus, we find that the approximate

response function KGS�(0,G,ω) corresponds to a partially averaged quantity, viz:

KGS�(0,G,ω) =
∫

�
d3x2

∫
dτ e−iGx2 eiωτ

∫

�
d3x1 PGS�(x1,0, x2,τ), (3.63)

where: PGS�(x1,0, x2,τ) = 〈GS| T̂ [p̂(x1,0) n̂(x2,τ)] |GS〉 . (3.64)

In particular, we see that the first argument of the original density–current-density response function is

indiscriminately averaged across the full crystalline domain. This argument pertained to the current-

/momentum-contribution and mediated the optical coupling. It is fully in line with our application of a

‘dipole-approximation’-type treatment on this optical coupling (cf. Sec. 3.1.2.a) that its spatial depen-

dence is washed out.

On the other hand, we find that the spatial dependence, which is associated with the x-ray probe

(here: x2), remains intact. From this, we can reconstruct a nonlinear response density by Fourier inver-

sion

RGS�(x,ω) =
1

V�

rec. latt.

∑
G

eiG·x KGS�(0,G,ω)

=
∫

dτ eiωτ
∫

�
d3y PGS�(y,0, x,τ). (3.65)

Building on the DFT-calculations, which we have already performed for diamond, we shall pro-

ceed to compute multiple reciprocal components of KGS�(0,G,ω) and synthesize them into a real-space

picture. In doing so, we focus on an optical photon energy of ω = 0.057 a.u. (∼ 1.55 eV), because it

corresponds to the cases studied in Secs. 5.1.1 and 5.1.2 later on. In Fig. 3.4 (a), we show the resulting

spatial distribution of |RGS�(x,ω)|2 in a (11̄0)-plane of diamond across the conventional (cubic) unit cell.

For orientation and comparison, we show the density of valence electrons within the same plane next to

it, i.e., in Fig. 3.4 (b).

As we would expect, the nonlinear response correlates with the localization of valence charges along

28We note for completeness that the concept of a microscopic dielectric function exists, which could provide spatial infor-
mation as well. Options to probe this (or related quantities exist) but require challenging experiments in themselves; for an
overview consider Refs. [61, 121].
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Figure 3.4: (a) The nonlinear response of diamond is shown in terms of |RGS�(x,0.057)|2 across the (11̄0)-plane
of its conventional (cubic) unit cell. Next to it in (b), the valence-electron density ρ VAL

GS�(x) for the ground state is
given for reference.

the bonds directions, i.e., along the (111) and (111̄) diagonals of the plot. Yet at the same time, its

distribution exhibits characteristics that clearly distinguish it from the mere ground-state density. Most

notably, the nonlinear response exhibits clear nodal planes across the middle of each bond. Around these,
|RGS�(x,0.057)|2 is concentrated in two pronounced maxima, thus it takes on a noticeably ‘anti-bonding’

shape.

By recourse to the underlying equations, we can give further intuition to this observation. Starting

from the original density–current-density correlator of Eq. (3.1) or Eq. (3.64) above, we note that it incor-

porates both ground-state properties—from the bracketing states 〈GS| and |GS〉—as well as properties of

excited states, which are intermediately present. The latter becomes even more apparent, when looking

at the prescription for our mean-field or DFT-based model of the response function in Eq. (3.60). This

consists of transition-matrix elements that connect initially occupied orbitals (ϕp) to unoccupied inter-

mediate states (ϕq). The latter are of antibonding nature and thus shape the overall transition this way. In

combining contributions from ground and excited states, the nonlinear response function can be thought

of as probing transition densities inside the material. We re-iterate that it is only through x-ray-optical

mixing that these transition densities can be resolved microscopically, even though similar transitions

would implicitly be involved in all-optical response functions as well.

In order to analyze individual transition pathways more closely, we could envision to capitalize on

the spectral dependence of RGS�(x,ω). Experimentally, this would require laser sources, which can be

tuned in their frequency (ω) to address selected transitions via resonant optical driving.

For the presented case of diamond, driven at ω = 0.057 a.u. (∼ 1.55 eV), however, we would be far

off any resonance. Its nonlinear response under these circumstances reflects a weighted sum of (many)

energetically distant transitions. Within this sum, those transitions with intrinsically large oscillator

strength dominate, which—for diamond—are mostly localized at the pronounced spectral peak around

0.459 a.u. (∼ 12.5 eV) (cf. our discussion of Fig. 3.2). The dominance of a single major transition-band

leaves comparably little room for variation in the response function’s shape for diamond29. Signifi-

cantly different contours will, however, begin to appear in the high-frequency limit (see discussion in

29We note that this low degree of variation in the nonlinear response of diamond can also be seen by comparing Fig. 3.4 (a)
to its counterpart in Ref. [51]. There, we have published a largely identical same response density in Fig. 1 (a)—albeit being
evaluated at a higher energy of ω = 0.184 a.u. (∼ 5.0 eV), respectively. Both cases (1.55 and 5.0 eV) represent off-resonant
excitations and are thus dominated by the same transition-band ultimately.
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Sec. 3.3.2.a below).

In a last take on diamond’s nonlinear response at ω = 0.057 a.u. (∼ 1.55 eV), we shall visualize

it three-dimensionally. To this end, we give an extended rendering of |RGS�(x,0.057)|2 in Fig. 3.5.

It provides a view of the nonlinear response across the complete conventional unit-cell of diamond—

viewed along a (111)-axis. We have set the contour levels to 0.001 and 0.002 a.u. (green and yellow).

Figure 3.5: The nonlinear response of diamond is shown in terms of |RGS�(x,0.057)|2 across the conventional
(cubic) unit cell. The contour levels are set at 0.001 and 0.002 a.u. for green and yellow, respectively. Additionally,
red spheres are shown in place of the carbon nuclei to guide the eye.

In terms of a first assessment, we note that the three-dimensional visualization may indeed be help-

ful. In particular, when used in an interactive mode on a computer30, it renders individual features of

RGS�(x,ω) amenable to more intuitive analysis.

While the above graphics resulted from numerical simulations, we want to conclude on the thought

that it could also be obtained from experimental datasets. Performing such a Fourier reconstruction in

terms of ‘nonlinear crystallography’ (cf. proposal in Sec. 5.1.2.d) could open a new, visual window

onto electronic phenomena. Combined with its extension to more intricate (functional) materials, we

could envision to obtain interesting insights into exciton-dynamics, charge-transfer or, more generally,

electronic correlation effects in bulk.

30We point out that our three-dimensional visualizations were obtained using the mayavi-package for PYTHON.
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3. Nonlinear electronic response

3.3.2.a Example of RGS� in the high-frequency limit

In addition to discussing the ‘full’ response function’s spatial properties, we also include a visual example

for its simplified version in the high-frequency limit (see Sec. 3.2.2 for its initial discussion). In contrast

to Sec. 3.3.1.a, wherein we were still concerned with the validity of this approximation, we shall pursue

no such fundamental question in the present section. Instead, the following serves purely illustrative

purposes.

With a view to experimental studies on XPDC at high ‘idler’ photon energies (cf. Sec. 5.2.3.a),

we have evaluated the high-frequency approximation of KGS�(0,G,ω) at ω = 3.675 a.u. (∼ 100 eV)

for several crystal orientations. Using these to produce a reconstruction of the approximate nonlinear

response density, we obtain Fig. 3.6. Fully analogous to the previous Fig. 3.4, we use the sub-plot (a) to

show the spatial distribution of |RGS�(x,ω)|2 in a (11̄0)-plane of diamond across the conventional (cubic)

unit cell. To its right, i.e., in figure-pane (b), we add the valence electron density for comparison again.
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Figure 3.6: (a) The nonlinear response of diamond is shown in terms of |RGS�(x,3.675)|2 across the (11̄0)-plane
of its conventional (cubic) unit cell. Next to it in (b), the valence-electron density ρ VAL

GS�(x) for the ground state is
given for reference.

We find that this approximated response density at high-frequencies resembles the neighbouring

valence density much more closely than the low-frequency version did before in Fig. 3.4. Of course, this

is unsurprising, given that Freund’s type of approximation ended up being proportional to the reciprocal

components of said valence density—recall Eq. (3.51)

KGS�(0,G,ω) =
2i
ω

G ρVB
G . (3.66)

The additional presence of a multiplicative factor of G in this (reciprocal-space) expression translates

into a gradient on the real-space density. This explains, why the new response function is at its strongest

around the actual bonds. Namely, because on this path, which approaches the binding electrons, the gra-

dient is maximized. Conversely, where the bonds are strongest, i.e., the electronic density has maxima,

the respective gradient vanishes—leaving a zero valued trace along the strongest electronic localizations.

In closing, we remark with curiosity that further investigations of the nonlinear response function in

the high-energy regime—beyond mere illustration—could indeed be interesting. For instance, it would

be informative to observe the cross-over from low- to high-frequency regime. At this point, we should see

the nodal planes of the original function (cf. Fig. 3.4 (a))—which attest to the importance of a specific

class of quantized transitions—give way to the classical continuum behaviour of intermediately free
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electrons. Moreover, one could think of extending the computations even beyond the realm of valence

electrons, studying the interplay of valence and (semi-)core transitions.

3.4 Beyond mean-field approaches

In a final consideration on the nonlinear response function PI�(x1,0, x2,τ), we want to explore options

to compute this (or a related) object beyond the limits of a mean-field model.

As we have stated in the beginning of this chapter, possibilities abound for methods that could be

used as a basis to implement our nonlinear response [76, 78–87]. However, we acknowledge that for

many of the aforementioned approaches, this may require significant effort—both in terms of their ul-

timate computational cost but, more immediately still, in terms of initial work-load in programming.

Nevertheless, we see two paths forward that could be more amenable—for different reasons.

The first option to this effect consists in implementing our density–current-density correlation func-

tion in the framework of current-density functional theory (CDFT) or its time-dependent variant TD-

CDFT [104, 122], respectively. This conceptual extension of (TD)-DFT was developed to address issues

arising from non-locality in the original theory. In doing so, it spawned a framework that naturally ac-

counts for the current-density as its fundamental quantity. The regular electronic density, on the other

hand, is automatically included by virtue of the continuity equation. Regarding this aspect, TD-CDFT

would thus provide quite favourable conditions to implement the response function PI�(x1,0, x2,τ)
straight-away. There is one unfortunate counter-point to TD-CDFT, however. In that it has seen far less

wide-spread application than its density-based predecessor (TD-DFT). As such, there exist no general-

purpose TD-CDFT codes, to our knowledge, which would be benchmarked and applicable to an extent,

which compares to ABINIT, for example. Nevertheless, we could envisage possible applications of TD-

CDFT in the context of XOWM in the future.

The second option, which we want to outline, is intended to achieve more immediate progress on

the evaluation of PI�(x1,0, x2,τ). To this end, we propose to adapt existing computational capabili-

ties from density-response formalisms. In particular, we recall that several post-DFT (or post-Hartree-

Fock) methodologies involve the refinement of density-density response functions. Among others, there

is TD-DFT in its widely-used linear-response formulation [104], related to which—though separately

conceived—we find approaches built on the random-phase-approximation (RPA) [123], and in further

addition, there are ongoing efforts to solve the Bethe-Salpeter Equation (BSE) for two-point response-

functions [87, 124, 125]. All of these share the retarded density-density response function for the elec-

tronic system
χ(x1, t1, x2, t2) =−iΘ(t1− t2) 〈GS| [n̂(x1, t1), n̂(x2, t2)] |GS〉 . (3.67)

In order to utilize this for our purposes now, we would need to construct the density–current-density

correlator, which governs XOWM, from this purely density-based object. This presents a conceptual

problem immediately, in that the scalar response function of Eq. (3.67) contains less information than

our vectorial quantity PI(x1, t1, x2, t2)—recall the definition Eq. (3.68):

PI(x1, t1, x2, t2) = 〈I| T̂ [p̂(x1, t1) n̂(x2, t2)] |I〉 . (3.68)
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In order to appreciate this problem in more fundamental terms, we can consider the continuity equation

∂
∂ t

n(x, t) =−∇ · j(x, t). (3.69)

It is quite evident from this that we should always be able to derive the dynamics of the electronic-

density, if we know all three components of the current-density vector. In contrast, however, the opposite

inference (n→ j) is not generally possible31. Therefore, we cannot establish a general, bi-directional

connection among expressions (3.67) and (3.68).

An approximate connection of χ and KI� Nevertheless, we could (and will) propose an approxi-

mate connection. Therein, we focus on the limit of vanishingly small (optical) momentum transfer,

which is anyways what we have considered for KI�(0,G,ω) up to now (cf. discussion of the ‘Dipole-

approximation’ in Sec. 3.1.2.a). As a starting point for our derivations, we choose the simple Fourier

transform32

RI�(x,ω) =
1

V�
∑
G

eiGx KI�(0,G,ω) =
∫

dτ eiωτ
∫

�
dy PI�(y,0,x,τ). (3.70)

In the real-space expression PI�(x1, t1,x2, t2), we can identify and split two terms

PI�(x1, t1,x2, t2) = 〈I| T̂ [p̂(x1, t1)n̂(x2, t2)] |I〉
= Θ(t1− t2)〈I| p̂(x1, t1)n̂(x2, t2) |I〉︸ ︷︷ ︸

PT
I�(x1,t1,x2,t2)

+Θ(t2− t1)〈I| n̂(x2, t2)p̂(x1, t1) |I〉︸ ︷︷ ︸
PA

I�(x1,t1,x2,t2)

(3.71)

= Θ(t1− t2) i G>
� p,n(x1, t1,x2, t2)+Θ(t2− t1) (−i) G<

� p,n(x1, t1,x2, t2). (3.72)

We label the two amplitudes in reminiscence of the greater and lesser Green’s functions as defined in

Ref. [76], for instance. In addition, we also carry some legacy notation, in form of the two half-parts

of the time-ordered response function, viz. PT
I� and PA

I�. In all of the above, the subscript � serves as a

reminder that our quantities are defined on the periodic domain of the crystal.

Next, we shall simplify the individual amplitudes, starting with G>
� p,n. We recall that, in our case,

this amplitude will be integrated in x1 ultimately (cf. Eq. (3.70)) and thus write
∫

�
dx1i G>

� p,n(x1, t1,x2, t2) = 〈I|
∫

�
d3x1 p̂(x1, t1)n̂(x2, t2) |I〉

= 〈I|
∫

�
d3x1 p(x,0)

︸ ︷︷ ︸
p̂

n̂(x2, t2− t1︸ ︷︷ ︸
τ

) |I〉

= 〈I| p̂ n̂(x2,τ) |I〉 . (3.73)

Applying this integration has reduced the momentum-density operator into a simple momentum operator

according to its definition p̂ =
∫

d3x ψ̂†(x)(−i)∇ψ̂(x).

31We note that the mismatch of density- versus current-response, constitutes an extension (or an alternative facet, rather)
of the problem outlined earlier in Sec. 3.3.1. Namely, that our density–current-density response function couples transversely
to the vector-potential of the electromagnetic field, whereas many other response functions, including Eq. (3.67) above or the
conventional dielectric-function ε(ω), imply longitudinal coupling.

32We note as a reminder that the absence of any optical momentum transfer (q≈ 0) translates into the averaging integration
across y. In the original definition of KI�(q+G1,−q+G2,ω) from Eq. (3.13), this integration would otherwise have been part
of a second Fourier transformation.
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We note that the above amplitude is still a vectorial quantity. However, it will be more convenient for

our subsequent discussion to project it into a scalar. We can do so without loss of generality, as long as

we keep the direction of our projection arbitrary. Hence, we define a vector q that points into an arbitrary

direction and introduce its unit vector eq = q/ |q| with the preceding notation33. The projected amplitude

simply becomes

eq ·
∫

�
dx1i G>

� p,n(x1, t1,x2, t2) = 〈I|eq · p̂ n̂(x2,τ) |I〉 . (3.74)

In our next step, we introduce the replacement

eq ·p = lim
q→0+

1
q

∫
d3x [Ĥ,eiqx n̂(x)], (3.75)

which is a variation on the better known commutator-identity p̂ = i[Ĥ, x̂]. We note that there is a second

identity of similar form, which we shall introduce for later usage as well34:

∫
d3x [Ĥ,eiqx n̂(x)] =

∫
d3x

q2

2
eiqx n̂(x). (3.76)

In both cases, we have used the notation q = |q| interchangeably.

Substituting Eq. (3.75) into the projected amplitude (3.74), we can rephrase it to read

eq ·
∫

�
dx1i G>

� p,n(x1, t1,x2, t2) = lim
q→0+

1
q

∫

�
d3x〈I| [Ĥ,eiqx n̂(x)]n̂(x2,τ) |I〉

= lim
q→0+

1
q

∫

�
d3x
(
〈I| Ĥeiqx n̂(x) n̂(x2,τ) |I〉−〈I|eiqx n̂(x) Ĥ n̂(x2,τ) |I〉

)
.

(3.77)

In the last line, the Hamiltonian acting to the left in the first term would simply yield the energy of the

initial state; its action in the second term is less obvious, however. Thus, we rephrase it using another

commutator

〈I|eiqx n̂(x) Ĥ n̂(x2,τ) |I〉= 〈I|eiqx n̂(x) n̂(x2,τ) Ĥ |I〉+ 〈I|eiqx n̂(x) [Ĥ, n̂(x2,τ)] |I〉 (3.78)

and obtain for the overall amplitude

eq ·
∫

�
dx1i G>

� p,n(x1, t1,x2, t2)

= 〈I|eq · p̂ n̂(x2,τ) |I〉

= lim
q→0+

1
q

∫

�
d3x
(
〈I| Ĥeiqxn̂(x)n̂(x2,τ) |I〉−〈I|eiqxn̂(x)n̂(x2,τ)Ĥ |I〉−〈I|eiqxn̂(x)[Ĥ, n̂(x2,τ)] |I〉

)

(3.79)

Note, that the first two terms cancel, as the left and right (initial) states are equal and thus the action of

Ĥ onto them yields the same energy.

33We note that we would usually opt for the ‘hat’-notation q̂ to denote the aforementioned unit vector q/ |q|, however, we
consider it confusing in the presence of various operators, which sport the same type of ‘hat’.

34We note that both identities can be derived by interpreting the commutator with the Hamiltonian in terms of the Heisenberg
equations of motion, i.e., dn̂/dt = i [Ĥ, n̂] (cf. Sec. A.1.0.b). In addition, we can invoke the continuity equation (3.69) to
combine n̂ and ĵ.
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3. Nonlinear electronic response

In order to evaluate the last term, let us Fourier transform the whole equation

eq ·
∫

�
d3x2 e−iQ2x2

∫

�
d3x1 iG>

�p,n(x1, t1,x2, t2) =
∫

�
d3x2 〈I|eq · p̂ n̂(x2,τ) |I〉 e−iQ2x2

= lim
q→0+

1
q

∫

�
d3x

∫

�
d3x2 (−1)〈I|eiqxn̂(x)[Ĥ,e−iQ2x2 n̂(x2,τ)] |I〉 . (3.80)

The time dependence of n(x2,τ) commutes with Ĥ, thus, we can evaluate the commutator as in Eq. (3.76):

eq ·
∫

�
d3x2 e−iQ2x2

∫

�
d3x1 iG>

�p,n(x1, t1,x2, t2)

= lim
q→0+

1
q

∫

�
d3x

∫

�
d3x2(−1)〈I|eiqxn̂(x)

Q2
2

2
e−iQ2x2 n̂(x2,τ) |I〉

= lim
q→0+

1
q

∫

�
d3x

∫

�
d3x2(−1)

Q2
2

2
eiqx e−iQ2x2 〈I| n̂(x) n̂(x2,τ) |I〉 here: τ = t2− t1 < 0. (3.81)

Similarly, if we would have started with the other amplitude

(−i)
∫

�
d3x2 e−iQ2x2

∫

�
d3x1 G<

�p,n(x1, t1,x2, t2) =
∫

�
d3x2 e−iQ2x2 〈I| n̂(x,τ) p̂ |I〉 with: τ = t2− t1 > 0,

(3.82)

we would arrive analogously at

eq · (−i)
∫

�
d3x2 e−iQ2x2

∫

�
d3x1 G<

�p,n(x1, t1,x2, t2)

= lim
q→0+

1
q

∫

�
d3x

∫

�
d3x2 e−iQ2x2(−1)

Q2
2

2
〈I| n̂(x2,τ) n̂(x) |I〉eiqx. (3.83)

By combining both amplitudes, we find that our initial time-ordered correlator of density and current-

density (Eq. (3.72)) can indeed be related to a time-ordered density-density correlator35

eq ·
∫

�
d3x2 e−iQ2x2

∫

�
d3x1 PI�(x1, t1,x2, t2)

= lim
q→0+

1
q

∫

�
d3x

∫

�
d3x2 e−iQ2x2(−1)

Q2
2

2
〈I| T̂ [n̂(x1, t1) n̂(x2, t2)] |I〉︸ ︷︷ ︸

χTO(x1t1,x2t2)

eiqx. (3.84)

Finally, we need to relate the Fourier transformations above to sensibly partitioned Fourier transfor-

mations on the periodically-bounded crystalline domain �. These need to take a form like
∫

�
d3x

∫

�
d3x2 eiqxe−iQ2x2 ⇒

∫

�
d3x

∫

�
d3x2 e−i(q′+G1)xe−i(−q′+G2)x2 , (3.85)

wherein we have to identify the momenta q′, G1 and G2:

• For determining q′, we know from the definition of our discretized Fourier transforms that it should

be small—specifically within the first Brillouin zone. As such, it is sensible to identify it directly

with the previous q′ =−q, for which the smallness is ensured via the limit q→ 0+.

• With the above choice of q′, we have already fixed G1 = 0 as well.

35We note that the definition of this density-density correlator differs from the initially outlined version (Eq. (3.67)). On the
one hand, this is a time-ordered version while the initial one was retarded, but in addition, there is once again a factor of −(i)
differing.
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• The splitting of Q2, finally, will prove slightly ambiguous. Applying both of the above conditions

to Eq. (3.85), we would conclude Q2 = G2−q′ for full consistency. At the same time, we would

like to approximate Q2 ≈ G2, such that we retrieve KI�(0,G2,ω) from the Fourier transform of

Eq. (3.84). Given that the discrepancy merely amounts to the tiny momentum q, which vanishes

ultimately, we choose to apply both—formally different—identifications. That is, the former one

on the right-hand side and the latter one on the left-hand side of Eq. (3.84).

Accounting for these newly identified momenta, we can rewrite Eq. (3.84)

eq ·KI�(0,G2,ω) = eq ·
∫

dτ eiωτ
∫

�
d3x2 e−iGx2

∫

�
d3x1 PI�(x1, t1,x2, t2)

≈
∫

dτ eiωτ lim
q→0+

1
q
(−1)

(G2−q′)2

2

∫

�
d3x

∫

�
d3x2 e−i(−q′+G2)x2 e−iq′x χTO(x,0,x2,τ)

≈ lim
q→0+

−1
q

G2
2

2
χTO(q′+0,−q′+G2,ω)

= lim
q→0+

−1
q

G2
2

2
χTO(−q,q+G2,ω), (3.86)

where we have substituted our original q back in the last line.

In Eq. (3.86), we have achieved our main goal, i.e., we have obtained a relation that allows us to

express our density–current-density correlator by means of a (time-ordered) density-density correlator.

In the remainder of this section, we shall give some further remarks on its numerical evaluation. These

should be understood in terms of a future outlook, however, as their computational pursuit and benchmark

would extend beyond the scope of the present work.

Considering to evaluate Eq. (3.86) numerically, there is still the formal challenge to take the (numer-

ical) limit q→ 0+. In order to avoid possible convergence problems, we would suggest one last, and

obvious, approximation. Namely, we suggest to settle for some finite but small ∆q instead of an actual,

infinitesimal limit36. Thereby, we arrive at

eq ·KI�(0,G,ω)≈ −1
∆q

G2

2
·χTO(−∆qeq,∆qeq +G,ω) (3.87)

We consider this to be a very promising result. Except for one remaining reformulation from time-

ordered to retarded response37, this expression provides everything needed to harness the computational

benefits of established density-response formalisms. In particular, it does not require any major changes

to existing numerical codes. Instead, it can be evaluated in the standardized fashion, with any transfor-

mation relegated into straight-forward post-processing steps.

Thereby, we have obtained an easily applicable method that allows exploration of the nonlinear

response function’s properties beyond mean-field models. Even within its intrinsic limitation, i.e., its

restriction to small optical momentum transfer, the expression promises a wide range of intriguing appli-

cations. Chief among these would be the investigation of (more) strongly correlated electronic systems—

studying the imprints, which these correlation effects leave upon KI�(0,G,ω).

36We note that—as a matter of practical application—a finite remainder of ∆q is always necessary, because together with eq
it defines the direction along which χTO(−∆qeq,∆qeq +G,ω) is evaluated. By virtue of the underlying limit, this corresponds
to the projection, which is produced of eq ·KI�.

37We note that the conversion from time-ordered to retarded response function can be carried out by means of few, algebraic
reformulations—for the energy-range of our interest. The derivation of the respective relations proceeds largely analogous to
our derivation of Eq. (A.170) in App. A.12. For more information, consider also Ref. [126].
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Chapter 4

Electromagnetic fields

In this chapter, we shall concern ourselves with the electromagnetic fields that are involved in XOWM

processes. Quite literally, these x-ray and optical fields constitute the essential ingredients for x-ray-

optical wavemixing. Only in their presence may the nonlinear response of the electronic system be

probed (recall Chpt. 3); and only if they are reasonably quantified can the nonlinear scattering yield be

accurately predicted (see Chpt. 5). Consequently, we aim to provide a quantitative description of these

fields, which integrates with our overall XOWM framework later on.

The central object, which we shall use to describe both x-ray and optical fields, will be their first-

order coherence function throughout most of our work. This type of function has famously been used

by Glauber to characterize the coherence of quantum fields in his seminal treatise [64]. More generally,

coherence functions have played a central role in signal- and coherence-analysis, dating back to the

1930’s at least [127].

In a first, introductory Sec. 4.1, we shall briefly recollect the general form of these coherence func-

tions in our case and discuss variations on them for later applications.

Subsequently, we will dedicate Secs. 4.2 and 4.3 to individual discussions of the incident x-ray and

optical fields, respectively. In both cases, we establish quantitative models1, which will be applied in our

simulations of XOWM throughout Chpt. 5.

In an additional section (4.4), we extend our model-building to include the quantitative characteriza-

tion of ‘vacuum’-fluctuations. This is a pre-requisite to describe spontaneous wavemixing processes, in

particular XPDC, accurately.

1In striving for quantitative modelling on an absolute scale, our approach differs from many instances of nonlinear spec-
troscopy in the all-optical or XUV-domain. In these regimes, proportionality assessments and intuitive, plane-wave based
modelling of the fields is often sufficient for comparison with experimental results. This is facilitated in particular, because the
corresponding nonlinear processes are strong enough to be found and fitted during routine measurements. In contrast, our pri-
mary concern with many XOWM processes will be more fundamental, namely, whether they can be observed at all. Searching
for them is, thus, greatly aided by quantitative predictions.
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4.1 Coherence functions for x-ray and optical fields

In deriving our central expressions for XOWM processes, i.e., Eqs. 2.57 or 2.67, we found that the effect

of the incident electromagnetic fields enters naturally in the form of first order coherence functions.

For the incoming x-ray field, we have identified its real-space formulation from Eq. (2.24) as

H(1)
µν (x1, t1,x2, t2) = TrX IN {ρ̂X IN(0)(Â

(−)
x in(x1, t1))µ (Â

(+)
x in(x2, t2))ν} , (4.1)

while its Fourier-related counterpart takes on the form

Z(1)
µν (k1,ω1,k2,ω2) =

∫
d3x1

∫
d3x2

∫
dt1

∫
dt2 ei(k1·x1−ω1t1) e−i(k2·x2−ω2t2) H(1)

µν (x1, t1,x2, t2)

= TrX IN {ρ̂X IN(0)(Â
(+)
x in(k1,ω1))

†
µ (Â

(+)
x in(k2,ω2))ν} . (4.2)

Similarly, we have found the correlation function for optical fields2 (Eq. (2.47)) to be

H(1)-full
νµ (y′, t ′2,y, t2) = TrOPT {ρ̂OPT(0)(Âopt(y

′, t ′2))ν (Âopt(y, t2))µ} , (4.3)

which we have subsequently split into a classical, average part and superimposed quantum-fluctuations

(recall Eqs. (2.54) and (2.55))

H̄(1)
νµ (y′, t ′2,y, t2) = (Aopt avg(y

′, t ′2))ν (Aopt avg(y, t2))µ (4.4)

S̄(1)νµ(y′, t ′2,y, t2) = TrOPT {ρ̂equ
OPT(Âopt flu(y

′, t ′2))ν (Âopt flu(y, t2))µ} . (4.5)

In essence, all of the above expressions are (closely) related to Glauber’s first order coherence

function[64]

G(1)
µν(x1, t1,x2, t2) = Tr {ρ̂(0)(E(−)(x1, t1))µ (E(+)(x2, t2))ν} . (4.6)

Their most notable difference results from the fact that we have formulated our framework on the basis

of electromagnetic vector potentials A(x, t) rather than electromagnetic fields E(x, t), which underlie

the majority of quantum-optics formulations (such as Refs. [53, 64, 128]). We can easily establish a

connection among the two, using

G(1)
µν(x1, t1,x2, t2) = α2 ∂

∂ t1

∂
∂ t2

H(1)
µν (x1, t1,x2, t2). (4.7)

This connection becomes all the more useful, as measurements or simulations pertaining to field

coherences are regularly reported in the field-based framework—many of them [129–136] resorting to

the cross-spectral density as their quantity of choice:

W (1)
µν (x1,ω1,x2,ω2) =

∫
dt1

∫
dt2 e−iω1t1 eiω2t2 G(1)

µν(x1, t1,x2, t2). (4.8)

Transferring relation Eq. (4.7) into the Fourier domain, we can make immediate use of this cross spectral

2We point out that the optical field’s correlation function differs slightly from the previous Eq. (4.1). The field-operators
above have been restricted to positive and negative frequency part, each, while the optical case’s expression involves full fields
in both positions. This is a reflection of the fact that we consider (optical) photo-emission (DFG, XPDC) and absorption (SFG)
in the same expression.
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density, in that it relates to Z(1)
µν :

Z(1)
µν (k1,ω1,k2,ω2) =

∫
d3x1

∫
d3x2 eik1·x1 e−ik2·x2

1
α2 ω1ω2

W (1)
µν (x1,ω1,x2,ω2). (4.9)

We note for further reference that we have collated a range of such interrelations in App. A.8.

On the basis of the coherence functions, which we have outlined above, we shall assess the x-ray and

optical fields individually in the following sections. There, our aim will be to find (approximate) models

for each of them, while remaining compatible to the overall framework.

4.2 Models for x-ray sources

Setting out to model the electromagnetic field correlators, which are needed to compute XOWM pro-

cesses from Eqs. (2.57) or (2.67), we concern ourselves with the contribution of x-rays first. Herunto,

we shall consider two conceptually different approaches:

The first will focus on so-called Gaussian Schell-model (GSM) beams. These provide a simple and

therefore analytically tractable model of the first order coherence of modern x-ray sources.

While the second approach—which we shall merely outline, but not discuss in detail—considers the

use of measured data or (numerical) simulation as an input for the cross spectral density.

4.2.1 Gaussian Schell-model for x-ray pulses

In our main attempt at describing the incoming x-ray-field for XOWM, we pursue a model-based for-

mulation, which has the benefit of keeping many expressions analytically tractable. In particular, we

focus on the Gaussian Schell-model (GSM)3. The GSM has seen wide-spread application to cases of

synchrotron radiation for quite some time [131, 138–142] and—while it has known shortcomings (cf.

Ref. [142])—it has also proven robust in its extension towards FEL pulses as well [129–131, 136]. As

such, the model provides a well-rounded basis for our developments. In addition, we can appreciate its

relative simplicity below.

In order to derive a suitable expression for Z(1)
µν in terms of pulsed GSM beams, we start from a

definition of the model akin to Dr. Singer’s Eq. (2.93) in Ref. [131]:

G(1)(x1, t1,x2, t2)⇒ G(1)((x⊥1 ,z0), t1,(x⊥2 ,z0), t2) = G0 exp
(
−(x⊥1 )2 +(x⊥2 )2

4σ2 − (x⊥2 −x⊥1 )2

2ξ 2

)

× exp
(
−(t1− t0)2 +(t2− t0)2

4T 2 − (t2− t1)2

2τ2
c
− iω0 (t2− t1)

)
. (4.10)

We note up-front that—at this point and throughout most of the following reformulation—we will use

a simplified form of G(1)(x1, t1,x2, t2) to ease the reading. In particular, we shall ignore / suppress the

tensorial nature of the correlation function, which encodes the polarization properties of the field, as

well as possible asymmetries of the beam profile. Both complications will be restored at the end of the

discussion.

The definition above concerns Glauber’s correlation function G(1)(x1, t1,x2, t2) for an x-ray beam

inside a single plane at z = z0. We take this plane as the source-plane of the radiation and associate it

3We note that the name Gaussian Schell model does not bear reference to the concept of a ‘shell’, but is instead a tribute to
Dr. A. C. Schell and his instrumental treatise on antennas[137].
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with the physical position of the undulator structure in a SR source or FEL. The model is parametrized

through:

• σ , which measures the transverse beam profile (at the source point),

• ξ , giving the transverse coherence length (again at the source),

• T , specifying the average pulse duration,

• τc, which marks the temporal coherence length,

• ω0, which gives the central photon energy of the beam and, finally,

• G0, as a measure of the overall intensity of the field.

For a detailed discussion on how to relate these parameters to experimental observations, we refer the

reader to App. A.11.

Deviating from Singer’s definition, we have adapted the phase term of Eq. (4.10) to be in line with

our field and Fourier-convention (cf. App. A.7). More importantly (see later discussion), we have added

the parameter t0, which can be used to calibrate the (average) arrival time of the pulse.

Converting Eq. (4.10) into the spectral domain, we write

W (1)((x⊥1 ,z0),ω1,(x⊥2 ,z0),ω2) =
∫

dt1
∫

dt2 e−iω1t1 eiω2t2 G(1)((x⊥1 ,z0), t1,(x⊥2 ,z0), t2)

W (1)(...) = G0 exp
(
−(x⊥1 )2 +(x⊥2 )2

4σ2 − (x⊥2 −x⊥1 )2

2ξ 2

)
ei t0(ω2−ω1)

∫
dt1

∫
dt2 e−iω1t1 eiω2t2

× exp
(
− t2

1 + t2
2

4T 2 −
(t2− t1)2

2τ2
c
− iω0 (t2− t1)

)
, (4.11)

where we have shifted both integrations by t0 resulting in an overall phase factor. Next, we make use of

the coordinate transformation

Θ = (t1 + t2)/2, τ = t2− t1 ⇔ t1 = Θ− τ/2, t2 = Θ+ τ/2, (4.12)

which has a Jacobian of modulus 1, and find

W (1)((x⊥1 ,z0),ω1,(x⊥2 ,z0),ω2) = G0 e
(− (x⊥1 )2+(x⊥2 )2

4σ2 − (x⊥2 −x⊥1 )2

2ξ 2 )
ei t0(ω2−ω1)

∫
dΘ eiΘ(ω2−ω1) e−Θ2/2T 2

×
∫

dτ eiτ(ω1+ω2)/2 e−iτ ω0 e−τ2/2τ2
c e−τ2/8T 2

. (4.13)

Adopting Singer’s abbreviations

ω̄ = (ω1 +ω2)/2, ∆ω = ω2−ω1 ⇔ ω1 = ω̄−∆ω/2, ω2 = ω̄ +∆ω/2 (4.14)

as well as Ω =

√
1

4T 2 +
1
τ2

c
, (4.15)

we shorten Eq. (4.13) and solve the commonplace Gaussian integrals4 to find:

W (1)(...) = G0 e
(− (x⊥1 )2+(x⊥2 )2

4σ2 − (x⊥2 −x⊥1 )2

2ξ 2 )
ei t0 ∆ω√2π T e−∆ω2T 2/2

√
2π Ω−1 e−(ω̄−ω0)

2/2Ω2
. (4.16)

4For a listing of common integrals and their solutions, see App. A.15 for integrals.
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We note that the cross spectral density, as it stands above, still refers to the electromagnetic field

in terms of E(x, t)5. However, we are interested in field correlators on the level of the electromagnetic

vector-potential A(x, t) instead. Thus, seeking to convert the cross spectral density of Eq. (4.16) into an

equivalent expression for vector-potentials, we can extend the reasoning of Eq. (4.7) to6:

V (1)(x1,ω1,x2,ω2) =
1

α2 ω1 ω2
W (1)(x1,ω1,x2,ω2). (4.17)

Applying this to Eq. (4.16), we obtain

V (1)((x⊥1 ,z0),ω1,(x⊥2 ,z0),ω2) =
2π G0 T

α2 ω1ω2 Ω
e
(− (x⊥1 )2+(x⊥2 )2

4σ2 − (x⊥2 −x⊥1 )2

2ξ 2 )

︸ ︷︷ ︸
J

ei t0 ∆ω e−∆ω2T 2/2 e−(ω̄−ω0)
2/2Ω2

︸ ︷︷ ︸
W

=
2π G0 T

α2 ω1ω2 Ω
J(x⊥1 ,x

⊥
2 ) ei t0 ∆ω W (ω1,ω2). (4.18)

In its last line, we have introduced two sub-functions for abbreviation-purposes. These are defined largely

in accordance with Ref. [136] and read7

J(x⊥1 ,x
⊥
2 ) = exp

[
− (x⊥1 )2 +(x⊥2 )2

4σ2 − (x⊥1 −x⊥2 )2

2ξ 2

]
(4.19)

W (ω1,ω2) = e−∆ω2T 2/2 e−(ω̄−ω0)
2/2Ω2

= exp
[
− (ω1−ω0)

2 +(ω2−ω0)
2

4Ω2 − (ω1−ω2)
2

2Ω2
c

]
. (4.20)

With Eq. (4.18) established, one final preparatory step is required, before we can Fourier transform

the correlation function into Z(1)
µν . This concerns the propagation of V (1)((x⊥1 ,z0),ω1,(x⊥2 ,z0),ω2) away

from the source-plane at z0. Only thereafter, would all coordinates of V (1)(x1,ω1,x2,ω2) be amenable to

transformation.

For simplicity, we consider the required propagation in its simplemost case, i.e., in terms of free

propagation8. Thereunto, we make use of the propagator derived in App. A.9 and, in particular, its

application to V (1) as of App. A.9.5. The full result of this operation, already including the Fourier

integrals, reads

Z(1)(k1,ω1,k2,ω2) =
(2π)3 G0 T
α2 ω1ω2 Ω

δ (kq1− kq1 0) δ (kq2− kq2 0) eiz0(kq1−kq2) ei t0 ∆ω e−∆ω2T 2/2 e−(ω̄−ω0)
2/2Ω2

×
∫

d2x⊥1

∫
d2x⊥2 eik⊥1 ·x⊥1 e−ik⊥2 ·x⊥2 e

(− (x⊥1 )2+(x⊥2 )2

4σ2 − (x⊥2 −x⊥1 )2

2ξ 2 )
. (4.21)

Herein, the newly introduced, longitudinal wave vectors kqi are constrained to the condition

kqi 0 =

√
α2ω2

i −
∣∣k⊥i
∣∣2 (cf. App. A.9).

The spatial integrations can be resolved analogously to the temporal ones above. To this end, we

5We should specify that—strictly—the cross spectral density given in Eq. (4.16) refers to something even simpler than
E(x, t), namely to a scalar version thereof. However, we think our general point is sufficiently clear in either case.

6We note that both relations (4.7) and (4.17) among correlation functions can, of course, be traced to the fundamental
relation of E(x, t) =−α(∂/∂ t)A(x, t) for transverse fields and vector potentials.

7We note with caution that—as of this writing—the definition of W (ω1,ω2) differs slightly from the version used in our
manuscript on XOWM [21]. There, the phase-term is included in its definition for brevity. However, the expressions turn out
to be more versatile in the form of Eq. (4.20).

8We note that we shall extend our modelling slightly beyond the case of trivial propagation later on, as we include a
monochromator’s transfer function as well. Once again, we recur to the developments of App. A.9 in doing so.
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introduce new variables

x̄⊥ = (x⊥1 +x⊥2 )/2, ∆x = x⊥2 −x⊥1 ⇔ x⊥1 = x̄⊥−∆x/2, x⊥2 = x̄⊥+∆x⊥/2, (4.22)

thus separating the integrals

∫
d2x⊥1

∫
d2x⊥2 eik⊥1 ·x⊥1 e−ik⊥2 ·x⊥2 e

(− (x⊥1 )2+(x⊥2 )2

4σ2 − (x⊥2 −x⊥1 )2

2ξ 2 )

=
∫

d2x̄⊥ei x̄⊥(k⊥1 −k⊥2 ) e−(x̄
⊥)2/2σ2

∫
d2∆x⊥ e−i∆x(k⊥1 +k⊥2 ) e−(∆x⊥)2/2δ 2

. (4.23)

Note that we have adopted the new notation δ−1 =
√

(2σ)−2 +ξ−2, again in congruence with Singer’s

use in Ref. [131]. Solving the above integrations provides us with the overall expression for the field:

Z(1)(k1,ω1,k2,ω2) =
(2π)5 G0 T σ2 δ 2

α2 ω1ω2 Ω
δ (kq1− kq1 0) δ (kq2− kq2 0) eiz0(kq1−kq2) ei t0 ∆ω e−∆ω2T 2/2

× e−(ω̄−ω0)
2/2Ω2

e−(k
⊥
2 −k⊥1 )

2σ2/2 e−(k
⊥
1 +k⊥2 )

2δ 2/8. (4.24)

This result is nicely compact and basically sufficient for our purposes. It clearly exhibits the Gaussian

properties of its ancestral GSM and, thus, conserves most of its analytical simplicity.

There is one aspect in the above expression, however, which would turn out to become annoying later

on—if kept unchecked. This concerns the prominent presence of the reference coordinate z0
9. To largely

rid ourselves of its influence, we can re-base our calculation to a reference point zr closer to the sample.

In doing so, we will encounter a few opportunities to simplify the expression further and act upon them.

The pertaining derivations will be outlined below.

4.2.1.a Propagation and the paraxial approximation

In this last section on the GSM for x-ray sources, we shall elaborate on the form of a propagated Gaussian

beam and discuss the paraxial approximation (for Z(1)) in the process.

As a first objective, we seek to obtain an expression for V (1)((x⊥1 ,zr),ω1,(x⊥2 ,zr),ω2), which no

longer resides at its initial source-plane (z0), but is instead propagated to a new ‘reference’-plane zr.

Of particular interest to us, will be reference planes close to the actual sample position. There are

two, equivalent, ways of reaching this expression. We may either start from the real-space expression of

V (1)((x⊥1 ,z0),ω1,(x⊥2 ,z0),ω2) in Eq. (4.18) and explicitly propagate this using the results from App. A.9.

Or alternatively, we may recall that we have effectively performed this propagation before, while deriving

Eq. (4.24). As a matter of fact, this reciprocal-space expression implies knowledge of V (1) across all of

9We note that the expression (4.24) can be acutely sensitive to the value of z0. This would not pose a problem, as long as
its ‘correct’ numerical value was known; however, most sources will state only order-of-magnitude estimates on these at best.
It is thus highly advisable to rid ourselves of this dependence—or reduce its influence at least.
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real-space. By simply transforming back, we may thus obtain the desired

V (1)((x⊥1 ,zr),ω1,(x⊥2 ,zr),ω2) =
1

(2π)6

∫
d3k1

∫
d3k2 e−ik⊥1 ·x⊥1 e−ikq1·zr eik⊥2 ·x⊥2 eikq2·zr Z(1)(k1,ω1,k2,ω2)

=
G0 T σ2 δ 2

2π α2 ω1ω2 Ω
W (ω1,ω2) ei t0 ∆ω

×
∫

d2k⊥1

∫
d2k⊥2 e−ik⊥1 ·x⊥1 eik⊥2 ·x⊥2 e−(k

⊥
2 −k⊥1 )

2σ2/2 e−(k
⊥
1 +k⊥2 )

2δ 2/8

×
∫

dkq1

∫
dkq2 e−ikq1·zr eikq2·zr δ (kq1− kq1 0) δ (kq2− kq2 0) eiz0(kq1−kq2). (4.25)

Before we perform the Fourier transformations in the transverse coordinates, we shall inspect the

phase-terms of the last line more closely. Combining all contributions into exp(i(z0− zr)(kq1 0− kq2 0)),

we find in this a good starting point for further approximation.

More specifically, we shall employ a version of the paraxial approximation, which we will motivate

below. Having used the δ -constraints, the longitudinal momenta in the phase-term are each given by

kqi 0 =

√
ω2

i
c2 −

∣∣k⊥i
∣∣2 ≈ ωi

c

(
1− 1

2

∣∣k⊥i
∣∣2

|ki|2
+

1
8

∣∣k⊥i
∣∣4

|ki|4
− ...

)
, (4.26)

which we have further expanded into its Taylor series. For typical x-ray beams at SR sources or FELs,

an early truncation of this series is a viable approximation, because their intrinsic divergence is very

small, i.e., Θ ∼ |k⊥|/|k| ∼ 10−6...10−4 (cf. Ref. [131], for instance, or parameters of Chpt. 5). In fact,

the contribution of the third term is already irrelevant for the exponential expression, if we assume

Singer’s values for |z0| ≈ 100...1000 m [131] in combination with even smaller values for zr and roughly

Ångström wavelength:

|z0|
ωi

c
1
8

∣∣k⊥i
∣∣4

|ki|4
= |z0|

2π
λi

1
8

∣∣k⊥i
∣∣4

|ki|4
. 1000

2π
10−10

1
8
(10−4)4� 2π. (4.27)

Employing this insight, we can write the remaining terms inside the phase-factor as

exp(i(z0− zr)(kq1 0− kq2 0))≈ exp
(

i(z0− zr)
(ω1

c
− ω2

c

))
exp
(

i
(z0− zr)c

2

((k⊥2 )2

ω2
− (k⊥1 )2

ω1

))

≈ e−i(z0−zr)α ∆ω ei (z0−zr)
2α ω̄ ((k⊥2 )

2−(k⊥1 )2)

= e−i(z0−zr)α ∆ω ei (z0−zr)
α ω̄ k̄⊥·∆k⊥ . (4.28)

In writing this paraxial approximation, we have also simplified each energy denominator to lowest order

in ω̄ (see below)

1
ω̄±∆ω/2

=
1
ω̄

(
1∓ ∆ω

2ω̄
± ...

)
. (4.29)
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Upon re-inserting Eq. (4.28) into our earlier expression for V (1) (Eq. (4.25)),

V (1)((x⊥1 ,zr),ω1,(x⊥2 ,zr),ω2) =
G0 T σ2 δ 2

2π α2 ω1ω2 Ω
W (ω1,ω2) ei t0 ∆ω

×
∫

d2k⊥1

∫
d2k⊥2 e−ik⊥1 ·x⊥1 eik⊥2 ·x⊥2 e−(k

⊥
2 −k⊥1 )

2σ2/2 e−(k
⊥
1 +k⊥2 )

2δ 2/8

× e−i(z0−zr)α ∆ω ei (z0−zr)
α ω̄ k̄⊥·∆k⊥ , (4.30)

we find the presence of two compatible phase-terms by now. Each of these involves ∆ω , viz. e−i(z0−zr)α ∆ω

and ei∆ω t0 . Both are related to a choice of reference frame—specifically, they determine the spatial (z0)

or temporal (t0) distance of the radiation source from the respective origin (0). While it will turn out to be

beneficial to have the spatial origin located at the center of the scattering target (thereby fixing upstream

values of z0 < 0), the choice of t = 0 is to some degree arbitrary.

In order to simplify our expression, we may therefore choose t0 = z0/c, making the aforementioned

exponentials largely cancel out10. Thereafter, the correlator reads

V (1)((x⊥1 ,zr),ω1,(x⊥2 ,zr),ω2) =
G0 T σ2 δ 2

2π α2 ω1ω2 Ω
W (ω1,ω2) eizr α ∆ω

∫
d2k⊥1

∫
d2k⊥2 e−ik⊥1 ·x⊥1 eik⊥2 ·x⊥2

× e−(k
⊥
2 −k⊥1 )

2σ2/2 e−(k
⊥
1 +k⊥2 )

2δ 2/8 ei (z0−zr)
α ω̄ k̄⊥·∆k⊥ . (4.31)

We can resolve the remaining transformations by switching to sum- and difference coordinates once

again, i.e.,

x̄⊥ = (x⊥1 +x⊥2 )/2, ∆x = x⊥2 −x⊥1 ⇔ x⊥1 = x̄⊥−∆x/2, x⊥2 = x̄⊥+∆x⊥/2 (4.32)

as well as

k̄⊥ = (k⊥1 +k⊥2 )/2, ∆k = k⊥2 −k⊥1 ⇔ k⊥1 = k̄⊥−∆k/2, k⊥2 = k̄⊥+∆k⊥/2. (4.33)

Thus, we find

V (1)((x⊥1 ,zr),ω1,(x⊥2 ,zr),ω2) =
G0 T σ2 δ 2

2π α2 ω1ω2 Ω
e−∆ω2T 2/2 e−(ω̄−ω0)

2/2Ω2
eizr α ∆ω

× (2π)2

δ 2 σ2 (∆(zr))2 e−(∆x⊥)2/2(δ∆(zr))
2

ei∆x⊥·x̄⊥α ω̄/R(zr)e−(x̄
⊥)2/2(σ∆(zr))

2

=
G0 T 2π

α2 ω1ω2 Ω(∆(zr))2 W (ω1,ω2)eizr α ∆ω e−(∆x⊥)2/2(δ∆(zr))
2

ei∆x⊥·x̄⊥α ω̄/R(zr)e−(x̄
⊥)2/2(σ∆(zr))

2
. (4.34)

This result represents a Gaussian beam in itself, albeit featuring scaled parameters σ → σ ∆(zr) and

δ → δ ∆(zr). In these, we have identified the scaling function

∆(z) =

√
1+
(

z− z0

zeff

)2

, where: zeff = α ω̄ σδ , (4.35)

which agrees with the definition by Singer as well [131].

10Note that the absolute choice of t = 0 is arbitrary, but the relative timing of external fields (and later possibly electronic
excitations) has to be maintained, of course. Besides the obvious simplification, our choice also complies with the convention
of scattering theory to locate the scattering event at t = 0. As an optional exercise, we note that the centring of the x-ray pulse’s
peak intensity around t = 0, may readily be shown using the expressions for an intensity observable derived in App. A.10.
Presuming the choice t0 = z0/c, this will show x-ray pulses reaching z = 0 at t = 0.
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In addition to the scaling factors, we find a spatially dependent phase term in Eq. (4.34). This is

well-known as the curvature phase from regular Gaussian beams. It was naturally absent from the model,

while we have been examining it merely at the source-plane (i.e., beam waist), but makes its appearance

now as an effect of outwards propagation. The radius of curvature imprinted on the wavefront is given

by

R(z) = (z− z0)

(
1+
(

zeff

z− z0

)2
)
. (4.36)

Having thus enhanced our understanding of the Gaussian beam-propagation within the context of our

GSM. We want to transfer the incurred simplifications back into our expression for Z(1). Even with the

new reference plane at zr, we can obviously transform Eq. (4.34) in the same way, as we did at z0 within

Eq. (4.21), i.e., applying

Z(1)(k1,ω1,k2,ω2) = (2π)2 δ (kq1− kq1 0) δ (kq2− kq2 0) eizr(kq1−kq2)

×
∫

d2x⊥1

∫
d2x⊥2 eik⊥1 ·x⊥1 e−ik⊥2 ·x⊥2 V (1)((x⊥1 ,zr),ω1,(x⊥2 ,zr),ω2). (4.37)

This leads us back to almost the same result as in Eq. (4.24), but, this time, within the newly-obtained

paraxial approximation

Z(1)(k1,ω1,k2,ω2)

≈ (2π)5 G0 T σ2 δ 2

α2 ω1ω2 Ω
W (ω1,ω2) δ (kq1− kq1 0) δ (kq2− kq2 0) e−(∆k⊥)2σ2/2 e−(k̄

⊥)2δ 2/2ei z0
α ω̄ k̄⊥·∆k⊥ . (4.38)

In essence, this is the main result of this section. In a final, but trivial, extension, we will generalize it

slightly such as to accommodate more realistic field distributions.

Final generalizations As indicated earlier, we could easily generalize our initial GSM model to ac-

count for more realistic beam parameters. This concerns the—up to now—circular beam profile as

well as the re-introduction of polarization. Neither addition would change the derivation up to this

point significantly—except for inflating its notation. Instead of re-iterating the derivations with minute

changes, we will, therefore, simply motivate the effects of generalizations on the basis of Eq. (4.38).

Considering an oblate beam profile first—like it is present at the SR source PETRA III in Ham-

burg, for example [143]—we may account for this by introducing separate Gaussian parameters for each

direction: σ → σ x, σ y and δ → δ x, δ y.

Moreover, we can reintroduce the notion of polarization: Given that typical x-ray beams at SR

sources or FELs are linearly polarized and well collimated (i.e., kq�
∣∣k⊥
∣∣), we can capture their polar-

ization property by a single unit vector εεεX . This can be chosen real and will be orthogonal to the main

propagation-direction of the beam, which we have conventionally defined to be along z (i.e., εεεX ⊥ ez).

This choice conserves the transversality of the field to good approximation for all relevant modes of Z(1)
µν .

We may thus write

Z(1)
µν (k1,ω1,k2,ω2) =

(2π)5 G0 T σ x σ y δ x δ y

α2 ω1ω2 Ω
(εεεX)µ (εεεX)ν W (ω1,ω2) δ (kq1− kq1 0) δ (kq2− kq2 0)

× e−(∆kx)2(σ x)2/2 e−(k̄
x)2(δ x)2/2e−(∆ky)2(σ y)2/2 e−(k̄

y)2(δ y)2/2 ei z0
α ω̄ k̄⊥·∆k⊥ . (4.39)
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In a final addition to this formula, we can include the effect of a simplified monochromator. This will

prove useful during our later discussion in Chpt. 5. To this end, we should follow the scheme outlined in

App. A.9 and insert an approximate transfer function11

Tm((x⊥m ,zm),ω)≈ Tm(ω). (4.40)

into the propagation that led to Eq. (4.39). Due to its purely spectral nature, however, Tm(ω) would

commute with any propagator therein anyway. Thus, it is effectively allowed to apply it a posteriori onto

Eq. (4.39) as well. The resulting expression reads:

Z(1)
µν (k1,ω1,k2,ω2) =

(2π)5 G0 T σ x σ y δ x δ y

α2 ω1ω2 Ω
(εεεX)µ (εεεX)ν W (ω1,ω2) δ (kq1− kq1 0) δ (kq2− kq2 0)

× e−(∆kx)2(σ x)2/2 e−(k̄
x)2(δ x)2/2e−(∆ky)2(σ y)2/2 e−(k̄

y)2(δ y)2/2 ei z0
α ω̄ k̄⊥·∆k⊥

× (Tm(ω1))
∗ Tm(ω2) . (4.41)

With this, we conclude our discussion of the Gaussian Schell-model for x-ray beams. For its further

application and the pertaining numerical parameters, we refer the reader to Chpt. 5.

4.2.2 Measurements and simulations as input for W (1)
µν

In contrast to all-analytical modelling, the recent accumulation of data on modern x-ray sources pro-

vides an alternative foundation, on which to model coherence functions numerically. Hereunto we note

that, along with the increasing degree of coherence of synchrotron radiation (SR) sources and x-ray free-

electron lasers (FELs), a broad range of investigations has been conducted into their respective beam

properties (cf. Refs. [130, 131, 136], for some examples). Moreover, the establishment of novel sources

has prompted the concomitant development of numerical tools to simulate their beams [132, 133, 135].

Facilitating a better understanding of x-ray experiments, these tools allow for the simulation, i.e., numer-

ical propagation, of x-rays along virtual beamlines—complete with optical elements up to the envisioned

target position.

Both approaches may yield data that is suitable to start the modelling of x-ray fields for XOWM

processes upon. Thus, we want to consider this option as an outlook in the following. In an advanced

word of caution, however, we emphasize that the required input for our simulations—which would most

likely be fully numerical in this case—would have to cover a sufficiently large spatio-temporal domain.

This condition may quickly result in prohibitively large data-structures—especially, if correlators like

H(1)
µν (x1, t1,x2, t2) (cf. Eq. (4.1)) are naı̈vely replicated in storage12.

Fortunately, the actual information-content of cited measurements is much smaller, yet still sufficient

to characterize the field. Typical experiments, would often be restricted to the analysis of beam-properties

within a single plane, perpendicular to the main propagation direction. For instance, these may yield the

11Note that Eq. (4.40) is obviously an approximation and not a particularly realistic one at that. In fact, the working principle
of any crystalline monochromator for x-rays (namely Bragg reflection) relies quint-essentially on the coupling of spectral and
spatial properties of the beam. Then again, for a double crystal monochromator, the ensuing dispersive effects can compensate
to a large extent and thus the filter-model in Eq. (4.40) may recover some validity. At any rate, we note that having a model is
better than lacking a model in this case. For better approaches consider Sec. 4.2.2 below.

12We note in continuation of our above comment, that the naı̈ve implementation of H(1)
µν (x1, t1,x2, t2) would, obviously,

require a 3× 3-tensor of complex values, each of which would formally depend on 8 independent coordinates in space and
time itself. If this was to be done at Å-scale resolution (∝ wavelength) across the µm-scale of a sample alone, the storage and
analysis of such an object would amount to a formidable computational task.
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cross spectral density W (1)
µν ((x⊥1 ,z0),ω1,(x⊥2 ,z0),ω2) in the plane at z1 = z2 = z0—perpendicular to the

z-direction. With this information at hand, we can propagate W (1)
µν retroactively across a certain range in

z1 and z2 and thereby allow for an approximate Fourier transform of the data.

In the simplest scenario, we can approximate the propagation of a predominantly uni-directional

beam by the free propagator—as of Eq. (A.92) in App. A.9:

(
Pz′,z(x′⊥,x⊥,ω)

)
µν

=
1

(2π)2

∫
d3k δµν δ (kq− kq0) eikq(z′−z) eik⊥·(x′⊥−x⊥). (4.42)

Herein, kq denotes the component of k along the main propagation direction, which we will—as a

convention for the incoming beam—assume to be along the z-direction. The value of kq0 is fixed to

kq0 =
√

α2ω2−|k⊥|2. Subsequent Fourier transformations13 yield the field correlator Z(1)
µν in a form that

is directly amenable for use in our original XOWM expression (2.67), namely

Z(1)
µν (k1,ω1,k2,ω2) =

(2π)2

α2 ω1ω2
δ (kq1− kq1 0) δ (kq2− kq2 0) eiz0(kq1−kq2)

×
∫

d2x⊥1

∫
d2x⊥2 eik⊥1 ·x⊥1 e−ik⊥2 ·x⊥2 W (1)

µν ((x⊥1 ,z0),ω1,(x⊥2 ,z0),ω2). (4.43)

With this connection being conceptually demonstrated, we note that its further pursuit extends be-

yond the scope of the current work. Nevertheless, we want to remark on a few additional points, thus

shaping an outlook onto future efforts:

In writing Eq. (4.43) we have, so far, applied the simplest continuation at hand. It implies the un-

hindered propagation of W (1)
µν across all of space and therein, in particular, also the free propagation

through the sample. Both aspects may be individually questionable. The first shortcoming is mostly

of formal nature and could be amended straight-forwardly by applying a windowed Fourier-approach,

which covers only the target-region14. The second shortcoming can be addressed through the use of

better (or different) propagators. Instead of assuming free-space like propagation throughout the sample,

these could additionally take into account its absorption or refractive corrections. For an example of such

propagators on short length-scales, see App. A.9.3.

As a further step in this modelling of the beam inside the sample, we point to the possible presence

of (self-)diffraction. This would be of particular importance, if XOWM is studied in close vicinity to

elastic Bragg-conditions (cf. also our speculation on multi-beam diffraction for XOWM in Sec. 5.1.2.d).

In a final remark—which is mostly a technical comment—we want to note that the temporal origin

associated with a measured or simulated cross spectral density (i.e., the definition of its frame of refer-

ence) may be quite arbitrary. As a consequence, significant, yet somewhat artificial phase-terms can arise

(cf. Sec. 4.2.1). In order to interpret these correctly, it is advisable to transform W (1)
µν into the time-domain

at some point and investigate its temporal structure relative to the rest of the scattering setup.

13For more details on field propagation, field correlation functions and their Fourier transforms, we refer the reader to
Apps. A.9 and A.8, respectively. There, we give—among other relations—the free propagation of V (1)

µν (Eq. (A.117)). This can

be related further to Z(1)
µν (via Eq. (A.81)) and W (1)

µν (via Eq. (A.83))—thus leading exemplarily to Eq. (4.43).
14We note that a windowed Fourier-approach will, to all intents and purposes, be required for actual numerical implementa-

tion anyway. While it takes care to mask the influence of unknown surroundings, its primary benefit would be the regularization
and stabilization of the transformation procedure itself. In its absence, we would expect numerical artefacts to spoil more naı̈ve
Fourier transforms.
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4.3 Models for optical sources

Following the establishment of a workable model for x-ray pulses, we shall shift our attention towards

the description of driving, i.e., external, optical fields in this section. With regard to this specification ‘ex-

ternal’, we recall that during the course of our earlier derivations, we have actually defined two instances

of optical fields for wavemixing. Namely, we have split the general field correlator of Eq. (2.47)

TrOPT {ρ̂OPT(0)(Âopt(y
′, t ′2))ν (Âopt(y, t2))µ}= H̄(1)

νµ (y′, t ′2,y, t2)+ S̄(1)νµ(y′, t ′2,y, t2) (4.44)

into an average, classical contribution H̄(1)
νµ , as of an external driving laser, and a remainder of quantum

fluctuations S̄(1)νµ (see later Sec. 4.4). With our focus on

H̄(1)
νµ (y′, t ′2,y, t2) = (Aopt avg(y

′, t ′2))ν (Aopt avg(y, t2))µ , (4.45)

wherein: Aopt avg(...) = TrOPT {ρ̂OPT(0) Âopt(...)} ,

we pursue its closer determination by considering a set of (experimental) constraints below. Subse-

quently, we will find that the respective conditions can be met by a Gaussian Schell-model once again.

The use of an external laser in XOWM, can be of importance for either sum- or difference-frequency

generation (SFG / DFG)—within the current scope of our framework. For both cases, we have experi-

mental references at hand, namely the demonstration of SFG by Glover and co-workers (cf. Ref. [46]

and Sec. 5.1.1) as well as our own experimental campaign on DFG (cf. Sec. 5.1.3). Inferring from these

scenarios, we may arrive at the following assumptions to guide our model building:

• First of all, we note that the laser-beams in both experiments have undergone mild focusing, before

propagating towards the sample. In this, their case differs slightly from the previously discussed x-

rays, for which the free-space propagation has been assumed as a slow expansion from the source

point. Nevertheless, the optical fields exhibited only a small divergence and, as such, retained their

(Gaussian) beam-like nature.

• The optical photon energy of the lasers amounted to }ωL = 1.55 eV (i.e., the well-known 800 nm of

Ti:Sa [144]). This ranged significantly below any electronic excitation thresholds of the respective

samples (each a diamond with Eband gap≈ 5.5 eV). As a consequence, the material could not absorb

the respective photons via linear processes and thus appears transparent to the laser.

• Considering the dielectric response of the material further, we note that—in the absence of

absorption—there may still be refractive effects to consider. For the macroscopic propagation

of the laser throughout the sample15, these effects can be subsumed in a (real-valued) refractive

index n(ωL).

• Moreover, we shall assume the optical pulse to be sufficiently monochromatic as to allow a non-

dispersive treatment of the refractive index, i.e., n(ωL) = n = const..

• By extension, the same monochromaticity also implies a rather slowly varying pulse form.

15We re-iterate an important caveat at this point; namely, that the proposed macroscopic picture is founded on an arbitrary
and somewhat inconsistent separation of the optical light-matter interaction into two regimes: The linear dielectric response,
which we approximate macroscopically, and the nonlinear response, which is the focus of our work and results in microscopic
resolution. As a future development goal, we strive for a more coherent treatment of both cases. For the time-being, however,
we acknowledge—aided by hindsight—that the proposed condition will provide reasonable results.
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• As a final simplification, we shall ignore refractive effects on the surfaces of the sample and instead

treat the optical field as if it were inside the medium at all times. While this may appear as a drastic

form of over-simplification—at first glance—we clarify that refraction could indeed be neglected

in Glover’s case. Here, the laser beam was adjusted for almost normal incidence on the sample,

thus negating any refractive effects. For our DFG experiment, the geometry has been slightly

different, yet the associated refractive effects could easily be converted into a correction of the

laser-beams pointing.

4.3.1 Gaussian Schell-model for optical pulses

Constructing a suitable correlator H̄(1) (or Z̄(1), respectively) under these conditions, we closely follow

(and reuse) our steps from the modelling of x-ray fields in Sec. 4.2.1. To begin with, we shall assume

that the laser beam propagates along the same positive z-direction as the x-rays did. Later on, we can

adjust this to the experimental reality. In particular, we may rotate the complete optical field distribution

Z̄(1), in order to account for any relative angles in the directions of x-ray and optical beams16.

As in the x-ray case, we denote the position of the focal plane by z = z0—noting, however, that it

may well lie considerably closer to, if not within, the sample this time. Inside the focal plane, we can

characterize the laser pulse by its carrier wave, its transverse spatial profile and its longitudinal, temporal

profile. Choosing Gaussian models again, we write17

E(+)((x⊥,z0), t) = E0 exp
(
−(x⊥)2

4σ2

)
exp
(
−(t− t0)2

4T 2 − iω0 (t− t0)− iϕ0

)
. (4.46)

The occurring quantities—notably without the ones related to (in)coherence—are functionally the same

as in the x-ray case as well: σ measures the beam profile, T the pulse length and ω0 gives the central

frequency. In contrast to the x-ray case, however, the carrier wave and its envelope have a well defined

phase relation here. This is expressed through the additional ϕ0. Note further that, for such a phase-stable

source, any time-translation of the pulse by t0 has to affect both envelope and carrier. From Eq. (4.46),

we can readily assemble a Glauber-type correlation function Ḡ(1) as

Ḡ(1)((x⊥1 ,z0), t1,(x⊥2 ,z0), t2) =
(

E(+)((x⊥1 ,z0), t1)+ c.c.
)(

E(+)((x⊥2 ,z0), t2)+ c.c.
)
. (4.47)

Equivalently, we may write the cross spectral density as

W̄ (1)((x⊥1 ,z0),ω1,(x⊥2 ,z0),ω2) =
∫

dt1
∫

dt2 e−iω1t1 eiω2t2 Ḡ(1)((x⊥1 ,z0), t1,(x⊥2 ,z0), t2)

=
(

E(+)((x⊥1 ,z0),−ω1)+(E(+)((x⊥1 ,z0),ω1))
∗
)(

E(+)((x⊥2 ,z0),ω2)+(E(+)((x⊥2 ,z0),−ω2))
∗
)

=
(

E(+)((x⊥1 ,z0),−ω1)+E(−)((x⊥1 ,z0),−ω1)
)(

E(+)((x⊥2 ,z0),ω2)+E(−)((x⊥2 ,z0),ω2)
)

= E(+)((x⊥1 ,z0),−ω1)E(+)((x⊥2 ,z0),ω2)+E(−)((x⊥1 ,z0),−ω1)E(+)((x⊥2 ,z0),ω2)

+E(+)((x⊥1 ,z0),−ω1)E(−)((x⊥2 ,z0),ω2)+E(−)((x⊥1 ,z0),−ω1)E(−)((x⊥2 ,z0),ω2). (4.48)

16We note that the transformation in reciprocal-space, i.e., on Z̄(1), which is required to rotate the field is naturally the
same as it would be in real-space on H̄(1). For reference, we have outlined the respective transformation properties of Fourier
transformations in App. A.3.

17Note that—just as before (Sec. 4.2.1)—we initially suppress the polarization of the beam as well as its (potentially) oblate
cross section.
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This can be regrouped in the following way

W̄ (1)((x⊥1 ,z0),ω1,(x⊥2 ,z0),ω2)

= E(−)((x⊥1 ,z0),−ω1)E(+)((x⊥2 ,z0),ω2)︸ ︷︷ ︸
absorption / SFG

+
(

E(−)((x⊥1 ,z0),ω1)E(+)((x⊥2 ,z0),−ω2)
)∗

︸ ︷︷ ︸
emission / DFG

+
∫

dt1
∫

dt2 e−iω1t1 eiω2t2 Re
[
E(+)((x⊥1 ,z0), t1)E(+)((x⊥2 ,z0), t2)

]
, (4.49)

where we can identify two important terms. If the above field was employed to model XOWM processes,

the first of these terms would allow for the absorption of optical photons, such as needed for SFG (‘up-

conversion’). On the contrary, the second term could mediate the (stimulated) emission of an optical

photon from the material system. Thereby, it would partake in laser-driven ‘down-conversion’ of x-ray

photons, viz. DFG. The cross term, finally, is mostly negligible.

Comment on photon-energy selection In the following, we shall provide some further reasoning as to

how and why the noted selection of photon energies comes about. As a starting point, we have to recall

our initial choice of the projection observable (Eq. (2.8)) for detecting XOWM. In this, we have focused

on a fixed outgoing frequency ω f . In order to produce this frequency via XOWM—provided it is not

included within the incident x-ray field distribution already—frequency components from the incident

x-ray (ωX ) and optical fields (ωL) have to add up (or subtract) correspondingly: ω f = ωX ±ωL. This is

reflected by the presence of δ -functions in our central wavemixing equation (2.67), which enforce the

required energy balance: δ (ω f −ωX −ωL) and δ (ω f −ω ′X −ω ′L).
In order to clarify the resulting selection of terms in Eq. (4.49), let us consider the example of a ‘clean’

case of SFG. That is to say, we intend to observe up-converted x-rays at a frequencies ω f > ωX ,ω ′X , i.e.,

ranging above all non-vanishing components of the incident x-ray field. By application of the above

δ -functions, this implies that ωL and ω ′L will be forced to take on positive values. At the same time,

we know that positive frequencies are only included with the positive frequency part of the fields, by

definition. It is thus easy to verify that only the first term of Eq. (4.49) can contribute to SFG in this

‘clean’ case.

The situation becomes more ambiguous, if the respective bandwidths of x-ray and optical fields are

large and overlap with the target frequency (ω f ) in such a way, as to allow admixtures from both E(+)

and E(−) to contribute to the overall result. In such cases, we may still impose a selection by resorting

to a rotating-wave approximation18. On the other hand, there could be cases, for which extreme overlap

is desirable in fact—cf. our amphodyne detection scheme outlined in Sec. 6.2—and thus all terms of

Eqs. (4.48) or (4.49) have to be taken into account.

END OF COMMENT

For the time being, we shall focus on the first two terms of Eq. (4.49) as needed for ‘clean’ SFG /

DFG and discuss more specialized cases when required. Performing the Fourier transform of a single

18We note that, for a realistic experiment, full separation of spectral components is elusive anyway. As such, there would
always be a contribution from both positive and negative frequency parts, even though one of them will often be minute. In the
following we shall thus make the mentioned rotating-wave approximation our implicit modus operandi.
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electric field from Eq. (4.46), we can assemble each of the two terms as

E(−)((x⊥1 ,z0),−ω1)E(+)((x⊥2 ,z0),ω2) =
|E0|2 2π T

Ω
e−((x

⊥
1 )

2+(x⊥2 )
2)/4σ2

ei t0 ∆ω e−∆ω2T 2/2 e−(ω̄−ω0)
2/2Ω2

(4.50)

and, by conjugation obviously,
(

E(−)((x⊥1 ,z0),ω1)E(+)((x⊥2 ,z0),−ω2)
)∗

=
|E0|2 2π T

Ω
e−((x

⊥
1 )

2+(x⊥2 )
2)/4σ2

ei t0 ∆ω e−∆ω2T 2/2 e−(ω̄+ω0)
2/2Ω2

.

(4.51)

Here, we have resorted to combined variables as before

ω̄ = (ω1 +ω2)/2, ∆ω = ω2−ω1 ⇔ ω1 = ω̄−∆ω/2, ω2 = ω̄ +∆ω/2 (4.52)

as well as: Ω =

√
1

4T 2 +
1
τ2

c
. (4.53)

We merely note that, as a slight peculiarity, the coherence time τc should be considered as infinitely long

for a perfectly coherent laser pulse. Its contribution to Ω thus vanishes.

We may now combine Eqs. (4.50) and (4.51) into the approximate cross spectral density

W̄ (1)((x⊥1 ,z0),ω1,(x⊥2 ,z0),ω2)

≈ E(−)((x⊥1 ,z0),−ω1)E(+)((x⊥2 ,z0),ω2)+
(

E(−)((x⊥1 ,z0),ω1)E(+)((x⊥2 ,z0),−ω2)
)∗

=
|E0|2 2π T

Ω
e−((x

⊥
1 )

2+(x⊥2 )
2)/4σ2

ei t0 ∆ω e−∆ω2T 2/2
(

e−(ω̄−ω0)
2/2Ω2

+ e−(ω̄+ω0)
2/2Ω2

)
. (4.54)

Apart from accounting for both positive and negative frequency components, we find W̄ (1) to be equiv-

alent to Eq. (4.16) from our x-ray discussion. Extending the analogy among the two models, we can

readily obtain Z̄(1) as of Eq. (4.24):

Z̄(1)(k1,ω1,k2,ω2) =
(2π)5 |E0|2 T σ2 δ 2

α2 ω1ω2 Ω
e−(k

⊥
2 −k⊥1 )

2σ2/2 e−(k
⊥
1 +k⊥2 )

2δ 2/8 e−∆ω2T 2/2 ei t0 ∆ω

×
(

e−(ω̄−ω0)
2/2Ω2

eiz0(kq1−kq2) δ (kq1− kq1 0) δ (kq2− kq2 0)

+ e−(ω̄+ω0)
2/2Ω2

e−iz0(kq1−kq2) δ (kq1 + kq1 0) δ (kq2 + kq2 0)
)
. (4.55)

Notably, the phase factor for the propagation of the negative frequencies is flipped with respect to the

positive ones. In conjunction with this change, the second root for kqi has to be considered inside the

δ -functions, such that the overall direction of propagation remains the same. Except for this, we can

make use of the previous results including the established notation, especially δ−2 = (2σ)−2 + ξ−2.

Analogous to the temporal (in-)coherence τc before, we may discard any spatial incoherence-effects by

taking simply taking ξ → ∞.

Upon considering the roots for kqi more explicitly, we encounter an additional alteration over the x-

ray case. Namely, we should incorporate refraction as required by our modelling guidelines above. We

recall that in the lead up to Eq. (4.24) for x-rays, we have assumed free propagation, i.e., no absorption

and no refraction (really no light-matter interaction at all). Whereas in the present case, we will modify
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the dispersion relation within the propagator to account for the refractive index n, viz19:

ω = c |k|= cvacuum |k| → ω = cmedium |k|= cvacuum |k|/n. (4.56)

By extension then, we see kqi0 of Eq. (4.55) changing into kqi0 =
√

α2ω2
i n2−

∣∣k⊥i
∣∣2.

This being implemented, we can continue our treatment of Z̄(1) along the lines of Sec. 4.2.1 and

generalize towards asymmetric beams besides also re-introducing the notion of polarization20:

Z̄(1)
µν (k1,ω1,k2,ω2) =

(2π)5 |E0|2 T σ x σ y δ x δ y

α2 ω1ω2 Ω
(εεεL)µ (εεεL)ν eiz0(kq1 0−kq2 0)ei t0 ∆ω e−∆ω2T 2/2

× e−(k
x
2−kx

1)
2(σ x)2/2 e−(k

x
1+kx

2)
2(δ x)2/8 e−(k

y
2−ky

1)
2(σ y)2/2 e−(k

y
1+ky

2)
2(δ y)2/8

×
(

e−(ω̄−ω0)
2/2Ω2

δ (kq1− kq1 0)δ (k
q
2− kq2 0)+ e−(ω̄+ω0)

2/2Ω2
δ (kq1 + kq1 0)δ (k

q
2 + kq2 0)

)
.

(4.57)

Finally, we may again invoke the assumption that the laser beam is well collimated (i.e., sporting

a small divergence Θ ≈ |k
⊥
L |
|kL| � 1), which allows for the approximative treatment of the spatial phase

term. In contrast to the x-ray case, however, we shall not remove the phase-term completely by choosing

t0 = z0n/c this time. Instead, we include an additional time delay in t0 = ∆t + z0n/c. Thereby, we

can accommodate either deliberate, relative time delays among x-ray and optical pulse or account for

inadvertent, temporal jitter. The final expression for Z̄(1)
µν now reads:

Z̄(1)
µν (k1,ω1,k2,ω2) =

(2π)5 |E0|2 T σ x σ y δ x δ y

α2 ω1ω2 Ω
(εεεL)µ (εεεL)ν e−∆ω2T 2/2 ei∆t ∆ω

× e−(k
x
2−kx

1)
2(σ x)2/2 e−(k

x
1+kx

2)
2(δ x)2/8 e−(k

y
2−ky

1)
2(σ y)2/2 e−(k

y
1+ky

2)
2(δ y)2/8 ei z0

α|ω̄|n ∆k⊥·k̄⊥

×
(

e−(ω̄−ω0)
2/2Ω2

δ (kq1− kq1 0)δ (k
q
2− kq2 0)+ e−(ω̄+ω0)

2/2Ω2
δ (kq1 + kq1 0)δ (k

q
2 + kq2 0)

)
,

(4.58)

where kqi0 =
√

α2ω2
i n2−

∣∣k⊥i
∣∣2. All further parameters can be determined as outlined in App. A.11—

accounting for ξ i→ ∞ and τc→ ∞.

Addendum on stretching There is an additional possible complication, which we will—for instance—

encounter with the SFG experiment by Glover and co-workers [46]. Namely, that the laser-pulses in use

can be stretched from being initially short, and thus necessarily broadband, into something long yet

broadband nonetheless. In case of Ref. [46] it appears to have been reasonable to model this in terms of

a linear frequency chirp (cf. methods discussion ibid.).

In order to accommodate for such stretching effect as well, we have to revisit Eq. (4.46) and change

19We note as a caveat that there are various ways, in which this simplified treatment of dielectric effects may be invalidated.
For instance, we do not account for dispersion, i.e., broad-bandwidth pulses or rapidly varying n(ω) would pose a problem.
Moreover, we discard the option of anisotropic dielectric properties (e.g., bi-refringence), which would become an issue, once
we re-instate polarization properties. Furthermore, as we have already indicated before, conceptual tensions arise from this
ad-hoc inclusion of linear dielectric effects vis-a-vis nonlinear light-matter interaction.

20Note on our generalizations, however, that we shall not go as far as to consider astigmatic beams, i.e., beams with different
focal planes per transverse direction, here.
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its phase behaviour

E(+)((x⊥,z0), t) = E0 exp
(
−(x⊥)2

4σ2

)
exp
(
−(t− t0)2

4T 2 − iγ0 (t− t0)2− iω0 (t− t0)− iϕ0

)
. (4.59)

We note to this end that we can think of the complex exponent as the series expansion of a general phase

function

φ(t− t0)≈ φ(t0)+
∂ φ(t)

∂ t

∣∣∣
t=t0

(t− t0)+
1
2

∂ 2 φ(t)
∂ t2

∣∣∣
t=t0

(t− t0)2 + ...

= ϕ0 +ω0 (t− t0)+ γ0 (t− t0)2 + .... (4.60)

wherein the second-order term describes a shift in frequency over time.

Up to this order, we can still evaluate the Fourier transform of Eq. (4.59) exactly by means of a

generalized Gaussian integral (see App. A.15). The transformed field reads

E(+)((x⊥,z0),ω) =
∫

dt eiωt E(+)((x⊥,z0), t)

= E0 exp
(
−(x⊥)2

4σ2

) ∫
dt eiωt exp

(
−(t− t0)2

4T 2 − iγ0 (t− t0)2− iω0 (t− t0)− iϕ0

)

= E0 exp
(
−(x⊥)2

4σ2

)
eiωt0−iϕ0

∫
dτ exp

(
−τ2

(
1

4T 2 + iγ0

)
− i(ω0−ω)τ

)

= E0
√

π |X |e−(x⊥)2/4σ2
eiωt0−iϕ0 e−(ω0−ω)2 X/4 ei 1

2 arg(X−1) , (4.61)

where the abbreviation X is meant to denote X = ( 1
4T 2 + iγ0)

−1. Using this result, we shall construct Z̄(1)

along the same line of reasoning as in the un-stretched case. In particular, we can write the ‘absorption’

and ‘emission’ components of W̄ (1) analogous to Eqs. (4.50) and (4.51) before

E(−)((x⊥1 ,z0),−ω1)E(+)((x⊥2 ,z0),ω2)

= |E0|2 π |X | e−((x⊥1 )2+(x⊥2 )
2)/4σ2

ei t0(ω2−ω1) e−(ω0−ω1)
2 X∗/4 e−(ω0−ω2)

2 X/4 (4.62)

and
(

E(−)((x⊥1 ,z0),ω1)E(+)((x⊥2 ,z0),−ω2)
)∗

= |E0|2 π |X | e−((x⊥1 )2+(x⊥2 )
2)/4σ2

ei t0(ω2−ω1) e−(ω0+ω1)
2 X/4 e−(ω0+ω2)

2 X∗/4. (4.63)

We can re-write the last two exponentials into the more familiar form

e−(ω0−ω1)
2 X∗/4 e−(ω0−ω2)

2 X/4 = exp
(
− (ω0−ω1)

2 (ReX− iImX)

4
− (ω0−ω2)

2 (ReX + iImX)

4

)

= exp
(
− ReX

2
(
(ω0− ω̄)2 +

1
4

∆ω2)+ iImX
2

(ω0− ω̄)∆ω
)
, (4.64)

and almost the same for

e−(ω0+ω1)
2 X/4 e−(ω0+ω2)

2 X∗/4 = exp
(
− (ω0 +ω1)

2 (ReX + iImX)

4
− (ω0 +ω2)

2 (ReX− iImX)

4

)

= exp
(
− ReX

2
(
(ω0 + ω̄)2 +

1
4

∆ω2)+ iImX
2

(ω0 + ω̄)∆ω
)
, (4.65)

where we have made use of ∆ω = ω2−ω1 and ω̄ = (ω1 +ω2)/2 again.
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Furthermore, we can introduce new parameters

T̃ =+
1
2

√
ReX and Ω̃ =+(

√
ReX)−1 =

√
Ω2 +4T 2γ2

0 ⇒ Ω̃2 =
1

4T̃ 2 (4.66)

and thus, highlight the similarity of the new W̄ (1) to our previous Eq. (4.54)

W̄ (1)((x⊥1 ,z0),ω1,(x⊥2 ,z0),ω2) =
|E0|2 2π T

Ω̃
e−((x

⊥
1 )

2+(x⊥2 )
2)/4σ2

ei t0 ∆ω e−∆ω2T̃ 2/2 (4.67)

×
(

e−(ω̄−ω0)
2/2Ω̃2

e−i2γ0T 2∆ω(ω0−ω̄)/Ω̃2
+ e−(ω̄+ω0)

2/2Ω̃2
e−i2γ0T 2∆ω(ω0+ω̄)/Ω̃2

)
.

The main modification compared to Eq. (4.54) is in the appearance of the additional phase terms

e−i2γ0T 2∆ω(ω0∓ω̄)/Ω̃2
. Those aside, the functional form of W̄ (1) has not changed much.

In particular, it should be noted that it has not changed with respect to its spatial part. Therefore,

we can consider the spatial propagation—wherein the spectral part plays only a parametric role—just as

before. Skipping over all analogous steps, we thus infer the stretched-pulse version of Eq. (4.58) to read

Z̄(1)
µν (k1,ω1,k2,ω2) =

(2π)5 |E0|2 T σ x σ y δ x δ y

α2 ω1ω2 Ω̃
(εεεL)µ (εεεL)ν e−∆ω2T̃ 2/2 ei t0 ∆ω

× e−(k
x
2−kx

1)
2(σ x)2/2 e−(k

x
1+kx

2)
2(δ x)2/8 e−(k

y
2−ky

1)
2(σ y)2/2 e−(k

y
1+ky

2)
2(δ y)2/8

×
(

e−(ω̄−ω0)
2/2Ω̃2

eiz0(kq1−kq2) e−i2γ0T 2∆ω(ω0−ω̄)/Ω̃2
δ (kq1− kq1 0) δ (kq2− kq2 0)

+ e−(ω̄+ω0)
2/2Ω̃2

e−iz0(kq1−kq2)e−i2γ0T 2∆ω(ω0+ω̄)/Ω̃2
δ (kq1 + kq1 0) δ (kq2 + kq2 0)

)
. (4.68)

There is one obvious, yet nonetheless important, point to be re-called about the above expression.

Namely that the described field is no longer transform limited, i.e., its product of pulse-length and band-

width is no longer minimal. Thus, while the parameter T still controls the overall pulse length—as can

be gathered from Eq. (A.130)—it is no longer the sole quantifier of the pulse’s bandwidth. Focusing

on the frequency resolved expressions W̄ (1) or Z̄(1) instead, we find the relevant spectral part to read

e−(ω̄−ω0)
2/2Ω̃2

, where Ω̃ does define the bandwidth now.
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4.4 Models for optical field-fluctuation

In contrast to laser-driven SFG or DFG, which involve an optical field in the form of its average correlator

H̄(1) (or Z̄(1)), the process of x-ray parametric down-conversion (XPDC), on the other hand, relies on

the alternative term S̄(1) (or C̄(1)) for fluctuations. For this correlator, we recall the general form from

Eqs. (2.52) or (4.5)

S̄νµ(x′, t ′, x, t) = TrOPT {ρ̂equ
OPT (Âopt(x

′, t ′))ν (Âopt(x, t))µ} (4.69)

wherein for each individual field: TrOPT {ρ̂equ
OPT (Âopt(x

′, t ′))ν}= 0. (4.70)

In order to appreciate the impact of these fluctuation operators, we shall consider the XPDC process

in more detail: During XPDC, an incident x-ray photon scatters at a net energy-loss (∆ω), while coin-

cidently a so-called ‘idler’-photon is emitted, which takes up the energy difference of ∆ω . This ‘idler’

photon emerges spontaneously in a mode of the electromagnetic field that has previously been entirely

unoccupied. Therefore, the only phenomenon capable of ‘stimulating’ or rather inducing this emission

are quantum-fluctuations of the field. We note that the all-optical analogon of XPDC is often referred to

as spontaneous parametric down-conversion (SPDC) [145] in view of its origin.

In the following, we present two approaches to quantify these fluctuations:

At first, we shall resort to the free-space form of the electromagnetic field (cf. Eq. (2.1)) and compute

proper ‘vacuum’-fluctuations on the basis of the pertaining operator algebra.

In the subsequent Sec. 4.4.2, we improve our modelling and take into account the dielectric nature of the

sample.

In both cases, we will end up with expressions for the fluctuations’ correlator in reciprocal-space,

such that it can be implemented in Eq. (2.67). We recall the general definition of its Fourier transform

below

C̄OPT
νµ (k′L,ω

′
L,kL,ωL) =

∫ ×2
d3xd3x′

∫ ×2
dt dt ′ e−i(kL·x−ωLt) ei(k′L·x′−ω ′Lt ′) S̄νµ(x′, t ′, x, t). (4.71)

4.4.1 Correlator of vacuum-fluctuations

If we want to obtain a first impression of the strengths and correlations among field fluctuations, we may

consider as the simplemost case the fluctuations occurring in proper vacuum and at temperature T = 0.

These can be resolved directly from the mode-expansion of the free field given in Eq. (2.1) initially.

Inserting the respective expansion for Â(x) into Eq. (4.70) for the correlation function, we obtain

S̄νµ(x′, t ′, x, t) = TrOPT {|vac〉〈vac| (Âopt(x
′, t ′))ν (Âopt(x, t))µ}

= 〈vac|(Âopt(x
′, t ′))ν (Âopt(x, t))µ |vac〉

= ∑
k,λ

2π
V α2ωk

(εεεk,λ )ν (εεε∗k,λ )µ eik·(x′−x) e−iωk(t ′−t) 〈vac| âk,λ â†
k,λ |vac〉

= ∑
k,λ

2π
V α2ωk

(εεεk,λ )ν (εεε∗k,λ )µ eik·(x′−x) e−iωk(t ′−t). (4.72)

In here, we have assumed the field to be in an absolutely unoccupied state, i.e., perfect vacuum

ρ̂equ
OPT = |vac〉〈vac|. The free time-evolution of âk,λ (â†

k,λ ) derives purely from the radiative Hamilto-

nian (outlined in Sec. 2.1) and can straight-forwardly be obtained from Heisenberg’s equation of motion
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(cf. Eq. (A.17)).

Taking the limit of large quantization volumes V → ∞, we can convert the summation into an inte-

gration, by the usual prescription

1
V ∑

k
...→ 1

(2π)3

∫
d3k .... (4.73)

Moreover, we shall eliminate the explicit summation over polarization states in favour of the transversal-

ity constraint

∑
λ
(εεεk,λ )ν (εεε∗k,λ )µ = δνµ −

(k)ν(k)µ

|k|2
. (4.74)

Employing both reformulations, Eq. (4.72) becomes

S̄νµ(x′, t ′, x, t) =
∫

d3k
1

(2π)2α2ωk

(
δνµ −

(k)ν(k)µ

|k|2
)

eik·(x′−x) e−iωk(t ′−t). (4.75)

Finally, we also render the vacuum dispersion-relation (ωk = c |k|) more prominently visible. Here-

unto, we introduce a formally independent integration over ω , which we constrain at the same time by

an additional δ -function: δ (ω− c |k|). Overalls, this leads to

S̄νµ(x′, t ′, x, t) =
∫

d3k
∫

dω δ (ω− c |k|) 1
(2π)2α2ω

(
δνµ −

(k)ν(k)µ

|k|2
)

eik·(x′−x) e−iω(t ′−t). (4.76)

Its Fourier transform according to Eq. (4.71) is then easily evaluated to be

C̄OPT
νµ (k′L,ω

′
L,kL,ωL) = δ 3(kL−k′L)δ (ωL−ω ′L)δ (ωL + c |kL|)

(2π)6

α2(−ωL)

(
δνµ −

(kL)ν(kL)µ

|kL|2
)
. (4.77)

This result for the vacuum-case represents a solid starting point to build further intuition on the desired

correlator of field-fluctuations. Moreover, it stands to be expected that even its quantitative assessment

of the fluctuation-strength may be useful as a first estimation. Nevertheless, there are good reasons to go

beyond the vacuum approximation as well—we shall do so below.

4.4.2 Optical field-fluctuations in dielectric materials

Having established the simplest description for the fluctuations of the optical field, we shall proceed to

include the complications associated with the presence of a dielectric material—instead of vacuum.

As indicated earlier, propagation effects inside such a dielectric can significantly modify the proper-

ties of the optical photon. In the mildest case, this might be limited to refractive effects, i.e., a change of

the dispersion relation

ωk = c |k| → ωk =
c
n
|k| , (4.78)

wherein we take n to denote a constant and real (!) refractive index for the moment. The quantization

of the electromagnetic field on top of such a ‘trivial’ dielectric background is possible and has been

discussed, for instance, by Drummond and Hillery [146]. Its most notable effect would, indeed, be

the manifestation of n within the dispersion-δ -function. While seemingly innocuous, the corresponding
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elongation of wave vectors |k| = α nωk through n can already affect the scattering geometry signifi-

cantly. An illustration of the phasematching-condition21 for XPDC in Fig. 5.13, later on, highlights this

difference for the example of diamond.

Beyond this geometrical effect, we point out (following Ref. [146]) the presence of a refractive index

will already modify the behaviour of spontaneous emissions, in that it alters the overall density of states

in the electromagnetic field. The change would be reflected in C̄OPT
νµ as a contribution to the denominator

C̄OPT
νµ (k′L,ω

′
L,kL,ωL) = δ 3(kL−k′L)δ (ωL−ω ′L)δ (ωL +

c
n
|kL|)

(2π)6

α2 n(−ωL)

(
δνµ −

(kL)ν(kL)µ

|kL|2
)
.

(4.79)

For more realistic materials, we should expect to find significantly more complicated alterations

being introduced. In particular, once electronic transitions may be excited by the photons involved, i.e.,

as soon as photoabsorption is present, we can expect non-trivial behaviour with pronounced frequency-

dependence (e.g., absorption resonances).

We note that comparable effects—more broadly: the nature of quantum field-fluctuations inside

matter—have received varied attention for almost a century; examples include but are not limited to

Refs. [146–152].

At its core, however, we may solve the complicated quest for quantum field-fluctuations by using

comparably simple insights from the realm of electrotechnics. Specifically, it was found and explained by

Johnson and Nyquist, respectively, that the intrinsic noise stemming from a (linear, dissipative) circuit—

most prominently grid-resistors on tube-amplifiers—can be related to the losses, which the same circuit

element exhibits when driven by an external current [153, 154]. This fundamental relation of noise

(i.e., fluctuations) to loss-properties (i.e., dissipation) marks the inception of the fluctuation-dissipation

theorem (FDT). It has famously been extended to quantum systems by Kubo [155] and shall be used in

a similar fashion towards our aims as well.

Following an elegant exposition by Landau [147], we note—first of all—that a correlator of micro-

scopic fluctuations can be related to a likewise microscopic response function of the system22. Focusing

for the latter on the retarded Green’s function, we can formulate the respective fluctuation-dissipation

theorem as (cf. Eq. (A.170) and App. A.12 more generally23)

C̃νµ(ω;x′,x) = i(1− e−βω)−1
(

D̃R
νµ(ω;x′,x)− (D̃R

µν(ω;x,x′))∗
)
. (4.80)

In the above, we can identify the Fourier transforms of the previously discussed fluctuation-correlator as

well as the retarded Green’s function

C̃νµ(ω;x′,x) =
∫

dτ eiωτ S̄νµ(x′,τ, x,0) (4.81)

D̃R
νµ(ω;x′,x) =

∫
dτ eiωτ DR

νµ(τ;x′,x). (4.82)

21For a conceptual discussion of ‘phasematching’, albeit with a focus on SFG / DFG, we refer the reader to Sec. 5.1.2.a.
22We note for clarification that, by use of the term ‘system’, we describe the electromagnetic quantum-field in presence of

dielectric matter at this point.
23We note that in App. A.12, we derive the full FDT as given in Eq. (4.80) and, in addition, elaborate more broadly on the

linear-response connection of micro- and macroscopic quantities therein.
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The latter is defined on the microscopic scale of field-operators as

DR
νµ((t

′− t);x′,x) =−iθ(t ′− t)TrOPT {ρ̂equ
OPT

[
(Âopt(x

′, t ′))ν ,(Âopt(x, t))µ
]
}

= Gret
A′,A(t

′− t). (4.83)

We remark that, in writing Eq. (4.83), we have adopted Landau’s notation for DR
νµ((t

′− t);x′,x), which

emphasizes the time-translation invariance of the response, i.e., being an equilibrium Green’s function.

The second line identifies the response with respect to our notation in App. A.12.

The last crucial step in obtaining a workable expression for the field fluctuations, consists in eval-

uating said Green’s function. Rather than doing this for the microscopic response—which would be

almost as difficult to calculate as the microscopic fluctuations—we identify DR
νµ with its macroscopic

counterpart. This identification is approximately valid in linear-response theory (see also Ref. [155]).

The macroscopic version of DR
νµ can easily be obtained in reciprocal-space and reads24

DR
νµ(ω;k′,k) =

4π
ω2 α2 ε(|ω|)−|k|2

(2π)3 δ 3(k′−k)
(

δνµ − (k)ν(k)µ/|k|2
)
, (4.84)

where ε(|ω|) denotes the scalar dielectric function of the sample. Notably, this is only valid for materials

that are practically isotropic at optical wavelengths—such as diamond. Extensions thereof are obviously

possible and would proceed in line with classical electrodynamics of an-isotropic or even structured

materials.

For the time being, we restrict ourselves to the isotropic case and insert the above result into the

fully Fourier transformed version of Eq. (4.80). Thereby, we ultimately obtain a correlator for the field-

fluctuations inside dielectric matter, namely

C̄OPT
νµ (k′L,ω

′
L,kL,ωL) = (2π)5 δ 3(kL−k′L)δ (ωL−ω ′L)(1− eβωL)

(
δµν −

(kL)µ(kL)ν

|kL|2
)
(−4) Im

( 1

ω2
L α2 ε̃(|ωL|)−|kL|2

)
. (4.85)

Disregarding the thermal correction factor (which can be neglected in almost all cases), we find that

the major difference with respect to the vacuum-result (Eq. (4.77)) lies in the more general dispersion

relation, i.e., in the imaginary-part expression25.

We note in closing, that the above expression implies the possibility that the dispersion may de-

viate around its fixed form of Eq. (4.78), viz. ω = c
n |k|. Especially, when absorption is strong (i.e.,

Im(ε̃(|ωL|))� 0), a broad range of frequencies can be associated with each wave vector. In this sense,

the spatial absorption (or decay) of the ‘idler’-photon introduces a line-broadening, which is otherwise

known from temporal decay (cf. lifetime-broadening of resonances).

24We note that the macroscopic version of DR
νµ is really just the Green’s function (or propagator) for the classical wave

equation of the electromagnetic vector potential inside a (largely) homogeneous dielectric. This dielectric, in turn, should
be characterized by a macroscopic, dielectric response ε(|ω|), which could at most be augmented to feature an additional,
slowly-varying dependence on its position.

25We note that the difference between Eq. (4.77) and Eq. (4.85), does infact vanish in the limit ε̃(|ωL|)→ 1. Thus the
latter result correctly recovers our original expression. Analogously, Eq. (4.79) may be recovered, if ε̃(|ωL|) is chosen to
approach on n2. This highlights the power of the fluctuation-dissipation theorem—it allows for a (relatively) simple inclusion
of non-perturbative effects, despite relying on linear response theory for the micro-to-macro matching.

79



Chapter 5

Application to experiments

In this chapter, we will discuss applications of our XOWM framework to several experimental scenarios.

Thereby, we seek to benchmark the range of its validity and—more generally—explore the burgeoning

field of XOWM itself. As such, the scope of this chapter extends beyond theoretical derivations and

likewise reflects the series of experiments1, which we have conducted in close collaboration with Dr.

Christina Bömer.

We begin in Sec. 5.1 by investigating x-ray-optical sum- and difference frequency generation

(SFG / DFG) more closely. As a first benchmark, we employ our framework to model the landmark

study of Glover et al., who demonstrated x-ray-optical SFG in 2012 [46]—see Sec. 5.1.1. Obtaining

excellent agreement, we continue to generalize our findings and comment on several further use-cases

in Sec. 5.1.2. Closing our discussion of laser-driven XOWM, we present an improved experimental

setup in Sec. 5.1.3. This is intended to render ‘nonlinear crystallography’ more efficient in terms of

alignment-time and was successfully tested at SwissFEL.

Subsequently, we turn our attention to scenarios of spontaneous XOWM, i.e., x-ray parametric down-

conversion (XPDC)—see Sec. 5.2. For this phenomenon, we shall address two regimes: XPDC with idler

photon energies below the band gap of the sample or far above it. Notably, we restrict our discussion

to (mono-)crystalline semiconductors as samples. In Sec. 5.2.1, we apply our theory below the band

gap of diamond and compare to a corresponding experiment of ours [51]. While both results are well

compatible with each other, they jointly contradict a series of earlier reportings on XPDC. The discrep-

ancy will be discussed separately in Sec. 5.2.2. Subsequently, we shift our focus towards the high-energy

scenario in Sec. 5.2.3. Hereunto, we present both theoretical modelling of the phenomenon as well as

preliminary, experimental results, which we have obtained using a novel detection scheme. Our results

show good agreement with earlier, more restricted reports by Tamasaku et al., while raising an interesting

conundrum. The latter will further be addressed in an ‘extra’ chapter 6.

We note in closing that our theoretical framework does not extend towards all-x-ray PDC at present.

As such, no direct comparison with the works of Eisenberger and McCall [27] or the HASYLAB-team

around Adams, Novikov and Materlik [88] could be drawn.

1During the course of this thesis’ research, we successfully applied for 12 beamtimes at synchrotron radiation sources and
XFELs. Six of these could be carried out under the constraints of the COVID-19 pandemic, viz. at Petra III: I-20190876 and
I-20211074 (both at beamline P09), at the ESRF: HC-4489 and HC-4907 (both at beamline ID20), at PAL-XFEL: 2021-2nd-
XSS-002 (at the FXS instrument) and at SwissFEL: 20212165 (at the Bernina endstation).
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5.1 Sum- and Difference-Frequency-Generation

In this section, we shall study different cases of x-ray-optical SFG and DFG. In other words, we aim

for the calculation / detection of nonlinearly scattered photons that posses as their energy either the sum

(ω f = ωX +ωO) or difference (ω f = ωX −ωO) of the incident x-ray and optical frequencies. As a matter

of fact, there will be no fundamental difference in their description, which is henceforth carried out in

parallel in many places. Ultimately, the desired set of frequency-components can be selected through the

choice of ω f directly or the setting of an appropriate analyser transmission.

5.1.1 Benchmark – SFG experiment by Glover et al.

For the first application of our XOWM-framework, we choose to study the case of sum-frequency gen-

eration reported by Glover et al. [46]. With their quantitative, experimental results at hand, we can

benchmark the performance of our theoretical description and—by extension— assess the validity of our

modelling assumptions.

In their experiment, Glover et al. super-imposed an x-ray beam of 8 keV photon energy with an

almost collinear optical laser, operating at 1.55 eV photon energy (i.e., 800 nm wavelength). Mixing

these inside a diamond sample, they obtained a measurable SFG signal at 8000+1.55eV photon energy,

which they discriminated for using an analyser crystal (two-bounce Si(220), channel-cut). The setup is

schematically depicted in Fig. 5.1—taken from Ref. [46]—alongside the study’s central results. In par-

ticular, the authors have studied the dependence of the SFG signal upon several different parameters in

Figure 5.1: Illustration of the setup (a) used by Glover et al. to measure x-ray optical sum-frequency generation.
The SFG signal was scanned for: (b)-its energy dependence, (c)-its angular dependence, (d)-its dependence upon
the polarization of the laser light and (e)-the temporal correlation of x-ray and optical field. The inset of (e) further
shows the scaling of the SFG signal with the laser’s pulse energy. Figure reproduced from Ref. [46].
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order to establish their observation conclusively. Besides the obvious scan for the signal’s energetic sig-

nature (Fig. 5.1 b), they have cross-checked the rocking-behaviour, i.e., the dependence of the SFG signal

upon change of the sample angle (Fig. 5.1 c). Moreover, they have rotated the laser’s polarization and

shifted the x-ray-optical time-delay. These resulted in a cosine-squared behaviour for the former (d) and

a variation with the temporal cross-correlation for the latter scan (e). All of these results are compatible

with an intuitive conception of x-ray-optical SFG and render the reported observation convincing.

Now, we aim to reproduce these findings from the theoretical side. In order to do so, we start from

our general expression Eq. (2.67)

〈Ô〉=2πα4

V ω f

1
(2π)14

∫ ×4
d3kLd3k′Ld3kX d3k′X

∫ ×4
dωLdω ′LdωX dω ′X δ (ω f −ωX −ωL)δ (ω f −ω ′X −ω ′L)

× (εεε f )σ (εεε∗f )ρ ZX IN
σρ (k′X ,ω

′
X ,kX ,ωX) Z̄OPT

νµ (k′L,ω
′
L,kL,ωL)

×∑
I

pI

(
KI(−kL,k f −kX ,ωL)

)
µ

(
KI(−k′L,k f −k′X ,ω

′
L)
)∗

ν
. (5.1)

In the following, we will specify its constituent functions to reflect the experimental situation and ap-

proximate the resulting expression such that it can easily be evaluated (semi-analytically).

We begin by modelling the x-ray field ZX IN
σρ . This consisted of a series of XFEL pulses generated by

the Linac Coherent Light Source (LCLS), which operated in SASE-mode at the time of the experiment

under consideration [156, 157]. As outlined earlier, the (coherence-) properties of such a source can be

modelled using a Gaussian-Schell model such as our Eq. (4.41)

ZX IN
σρ (k′X ,ω

′
X ,kX ,ωX) =

(2π)5 GX 0 TX σ x
X σ y

X δ x
X δ y

X
α2 ω ′X ωX ΩX

(εεεX)σ (εεεX)ρ δ (k′qX − k′qX 0)δ (kqX − kqX 0)

× (Tm(ω ′X))
∗Tm(ωX)e−(ω̄X−ωX 0)

2/2Ω2
X e−∆ω2

X T 2
X /2

× e−(∆kx
X )

2(σ x
X )

2/2 e−(k̄
x
X )

2(δ x
X )

2/2e−(∆ky
X )

2(σ y
X )

2/2 e−(k̄
y
X )

2(δ y
X )

2/2 ei zX 0
α ω̄X

k̄⊥X ·∆k⊥X . (5.2)

Here, we have reserved the transmission function Tm(ωX) to stand in for an additional monochromator.

For our present purposes, it is sufficient to use a simple Gaussian monochromator model to approximate

the central passwidth of the Si (111) double crystal monochromator2 (DCM) used by Glover et al. [46]:

Tm(ωX) = e−(ωX−ωm)
2/(4Ω2

m) with: Tm(ωX)Tm(ω ′X) = e−(ω̄X−ωm)
2/2Ω2

m e−∆ω2
X/8Ω2

m (5.3)

In the two equations above, we have introduced adapted coordinates

∆ωX = ωX −ω ′X and ω̄X = (ωX +ω ′X)/2 ⇔ ωX = ω̄X +∆ωX/2, (5.4)

∆kX = kX −k′X and k̄X = (kX +k′X)/2 ⇔ kX = k̄X +∆kX/2, (5.5)

which denote the central frequency (or wave-vector) and deviation from it. The latter is of particular use,

when establishing the range, over which the source is coherent. We can slightly rewrite ZX IN
σρ in terms of

2Note, that such a Si (111) DCM yields a spectral passwidth of ∼ 1eV (FWHM) under the given conditions, which will
drive the SFG process. In addition, there will be weak, yet extended, spectral tails up to tens of eV away from the central photon
energy. These will not present a problem for the case at hand, but re-emerge as a critical issue during our study of XPDC later
5.2.
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the average pulse energy measured before the monochromator

EX p =
GX 0 TX σ x

X σ y
X
√

π
α
√

2
(5.6)

rendering

ZX IN
σρ (k′X ,ω

′
X ,kX ,ωX) =

(2π)4
√

2π 2EX p δ x
X δ y

X
α ω ′X ωX ΩX

(εεεX)σ (εεεX)ρ δ (k′qX − k′qX 0)δ (kqX − kqX 0)e
−(ω̄X−ωX 0)

2 Ω2
X+Ω2

m
2Ω2

X Ω2m

× e−∆ω2
X (T

2
X +(2Ωm)

−2)/2 e−(∆kx
X )

2(σ x
X )

2/2 e−(k̄
x
X )

2(δ x
X )

2/2e−(∆ky
X )

2(σ y
X )

2/2 e−(k̄
y
X )

2(δ y
X )

2/2 ei zX 0
α ω̄X

k̄⊥X ·∆k⊥X . (5.7)

Here, we have also assumed that ωX 0 ≈ ωm, i.e., that the monochromator’s central energy is roughly

aligned with the intrinsic central energy of the source. This should be the natural choice, if you care not

to waste flux.

Describing the laser field, with which to mix the x-rays, we implement the stretched pulse model of

Eq. (4.68) for a radially symmetric beam that co-propagates with the incident x-rays:

Z̄OPT
νµ (k′L,ω

′
L,kL,ωL) =

(2π)5 |EL 0|2 TL σ2
L δ 2

L

α2 ω ′LωL Ω̃L
(εεεL)ν (εεεL)µ e−∆ω2

L T̃ 2
L /2 ei∆t ∆ωL

× e−(∆k⊥L )2σ2
L/2 e−(k̄

⊥
L )

2δ 2
L/2 e

i zL 0
α |ω̄L|n k̄⊥L ·∆k⊥L

×
(

e−(ω̄L−ωL 0)
2/2Ω̃2

L e−i2γ0T 2
L ∆ωL(ωL 0−ω̄L)/Ω̃2

L δ (k′qL − k′qL 0)δ (k
q
L− kqL 0)

+ e−(ω̄L+ωL 0)
2/2Ω̃L

2

e−i2γ0T 2
L ∆ωL(ωL 0+ω̄L)/Ω̃2

L δ (k′qL + k′qL 0)δ (k
q
L + kqL 0)

)
. (5.8)

Here, we have again made use of reduced coordinates

∆ωL = ωL−ω ′L and ω̄L = (ωL +ω ′L)/2 ⇔ ωL = ω̄L +∆ωL/2, (5.9)

∆kL = kL−k′L and k̄L = (kL +k′L)/2 ⇔ kL = k̄L +∆kL/2. (5.10)

Finally, for the electronic correlation function, we disregard the sum over incoherent excitations

(phonons) and consider only one ground state correlator. Furthermore, we employ the previously dis-

cussed simplification Eq. (3.24)

KI(−kL,k f −kX ,ωL)≈ w̃(k f −kX −kL−G)
1

V�
KGS�(0,G,ωL). (5.11)
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Inserting all of these elements into Eq. (5.1), we find3

〈Ô〉=2πα4

V ω f

1
(2π)14
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L ∆ωL(ωL 0+ω̄L)/Ω̃2

L δ (k′qL + k′qL 0)δ (k
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(5.12)

Reordering this slightly gives
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⊥
L )

2δ 2
L/2 e

i zL 0
α |ω̄L|n k̄⊥L ·∆k⊥L

×
(
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2/2Ω̃L

2
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L ∆ωL(ωL 0+ω̄L)/Ω̃2

L δ (k′qL + k′qL 0)δ (k
q
L + kqL 0)

)

× w̃(k f −kX −kL−G)(w̃(k f −k′X −k′L−G))∗
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V 2�

(
εεεL ·KGS�(0,G,ωL)
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εεεL ·KGS�(0,G,ω ′L)

)∗
.

(5.13)

In this expression, we find a number of window- and δ -functions that can be simplified, before we turn

towards approximations. First of all, we shall address the window functions w̃(...). In the simplest

case of an un-rotated cuboid block, the original windows factorize in real space w(x) = w(x) ·w(y) ·
w(z). Naturally, this carries over into reciprocal space (see also App. A.15). For a tilted crystal, these

components would be rotated among each other, however, we can neglect this minor complication for

the time-being and stick with the simplemost scheme of an un-rotated box4. In the transverse directions,

the sample may be chosen significantly larger than all relevant beam diameters. As such, the resulting

3Note that we employ the reduced coordinates, wherever they render the expression more compact. However, we keep the
differentials d3k and dω in their initial form—merely for compactness of notation.

4Notably, Glover et al. address the (111)-reflection in a diamond sample of (100)-surface-cut. This implies that the sample
only needs to be rotated by∼ 13 deg away from normal incidence. This deviation can safely be neglected in a rough description
of the SFG effect, but will make a re-appearance, should the precise rocking angle be calculated.
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k-space windows can be considered infinitely sharp, i.e., as δ -functions:

w̃(k⊥)≈ (2π)2 δ 2(k⊥). (5.14)

Here, the factor (2π)2 ensures the appropriate normalization of the window—as before (cf. App. A.15).

For the longitudinal component, we approximate the window function again by a Gaussian

w̃(kq)≈ lw e−(k
q)2σ2

w/2 with σw =
lw√
2π

. (5.15)

Its normalization is also chosen to accord with the integral of the original window (cf. App. A.15).

Our next step concerns the series of δ -functions, which are present in the above expression and

mostly refer to the old coordinate system (ω,ω ′). We shall rewrite all of them for use with the reduced

coordinates. To this end, we observe the integral relation

δ (ω f −ωX −ωL)δ (ω f −ω ′X −ω ′L) =
1

(2π)2

∫ ×2
dt dt ′ ei(ω f−ωX−ωL) t+i(ω f−ω ′X−ω ′L) t ′

=
1

(2π)2

∫ ×2
dt dt ′ ei(ω f−ω̄X−ω̄L)(t+t ′)+i(∆ωX+∆ωL)(t ′−t)/2

=
1

(2π)2

∫ ×2
dT dτ ei(ω f−ω̄X−ω̄L)T+i(∆ωX+∆ωL)τ

= δ (ω f − ω̄X − ω̄L)δ (∆ωX +∆ωL), (5.16)

which may analogously be employed for

δ (k′qX − k′qX 0)δ (kqX − kqX 0) = δ (k̄′qX − k̄′qX 0)δ (∆kqX +∆kqX 0) (5.17)

δ (k′qL − k′qL 0)δ (k
q
L− kqL 0) = δ (k̄′qL − k̄′qL 0)δ (∆kqL +∆kqL 0) (5.18)

δ (k′qL + k′qL 0)δ (k
q
L + kqL 0) = δ (k̄′qL + k̄′qL 0)δ (∆kqL−∆kqL 0) (5.19)

δ 2(k⊥f −k⊥X −k⊥L −G⊥)δ 2(k⊥f −k′⊥X −k′⊥L −G⊥) = δ 2(k⊥f − k̄⊥X − k̄⊥L −G⊥)δ 2(∆k⊥X +∆k⊥L ). (5.20)

In the same spirit follows for the longitudinal window:

e−(k
q
f−kqL−kqX−Gq)2σ2

w/2 e−(k
q
f−k′qL−k′qX−Gq)2σ2

w/2 = e−(k
q
f−k̄qL−k̄qX−Gq)2σ2

w e−(∆kqL+∆kqX )
2σ2

w/4. (5.21)
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Implementing all transformations, we obtain for the observable

〈Ô〉=
√
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(2π)4
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∣∣2
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1
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2Ω2
X Ω2m
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X +(2Ωm)

−2)/2 e−(∆kx
X )

2(σ x
X )

2/2 e−(k̄
x
X )

2(δ x
X )

2/2e−(∆ky
X )

2(σ y
X )

2/2 e−(k̄
y
X )

2(δ y
X )

2/2 ei zX 0
α ω̄X

k̄⊥X ·∆k⊥X

× e−∆ω2
L T̃ 2

L /2 ei∆t ∆ωL e−(∆k⊥L )2σ2
L/2 e−(k̄

⊥
L )

2δ 2
L/2 e

i zL 0
α |ω̄L|n k̄⊥L ·∆k⊥L

×
(

e−(ω̄L−ωL 0)
2/2Ω̃2

L e−i2γ0T 2
L ∆ωL(ωL 0−ω̄L)/Ω̃2

L δ (k̄qL− k̄qL 0)δ (∆kqL +∆kqL 0)

+ e−(ω̄L+ωL 0)
2/2Ω̃L

2

e−i2γ0T 2
L ∆ωL(ωL 0+ω̄L)/Ω̃2

L δ (k̄qL + k̄qL 0)δ (∆kqL−∆kqL 0)
)

× l2
w e−(k

q
f−k̄qL−k̄qX−Gq)2σ2

w e−(∆kqL+∆kqX )
2σ2

w/4 (2π)4 δ 2(k⊥f − k̄⊥X − k̄⊥L −G⊥)δ 2(∆k⊥X +∆k⊥L )

× 1
V 2�

(
εεεL ·KGS�(0,G,ωL)

)(
εεεL ·KGS�(0,G,ω ′L)

)∗
. (5.22)

Approximations In order to simplify this expression further, we shall introduce several approxima-

tions:

• Within the bandwidth of each light source, we can approximate the fraction

1
ω ′X ωX ω ′L ωL

≈ 1
ω2

X 0 ω2
L 0

(5.23)

with a minor error of ∼Ω/ω ∼ 10−4...10−2.

• For further spectral simplification, we take the material’s response to be a slowly varying function

of ω in the vicinity of the laser photon energy. In particular, this implies that we can approximate

it as constant across the laser’s bandwidth

KGS�(0,G,ωL)≈KGS�(0,G,ωL 0)≈KGS�(0,G,ω ′L). (5.24)

This simplification reflects the actual behaviour of the response function below the band-gap and

is consistent with our results of Chpt. 3.

• Not strictly important, but nice for conciseness: We can assume that the bandwidth after monochro-

matisation is significantly smaller than the intrinsic spectral width of the x-ray source5 (Ωm�ΩX ).

This, in turn, allows for the more compact exponent Ω2
X+Ω2

m
2Ω2

X Ω2
m
≈ 1/2Ω2

m.

• Last but not least, we can inspect the curvature phase term of the x-ray field, which holds the

exponent zX 0
α ω̄X

k̄⊥X ·∆k⊥X . We can rewrite and estimate this as

zX 0σX δX

ze f f
k̄⊥X ·∆k⊥L ≈

zX 0σX δX

ze f f

1
δX

1
σL

/
zX 0σX δX

ze f f

1
δX

1
∆(z = 0)σX

/ 1� 2π. (5.25)

Hereunto, we employ the notion of ze f f (see Sec. 4.2.1) first, before we fix ∆k⊥X via one of the

δ -functions in Eq. (5.22). Further, we estimate the momenta via their defining scales and observe

5After all, this is the reason to use a monochromator.
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that the laser should cover the expanded x-ray beam at the sample position (σL ' ∆(0)σX )—

for effective mixing6. Using the relations of zX 0 and ze f f with ∆(z = 0), we obtain the final

estimate—notably independent of the specific type of source and for either transverse direction!

To a reasonable degree of approximation, we may thus neglect the curvature term.

Applying these simplifying assumptions to Eq. (5.22), we arrive at

〈Ô〉=
√
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L δ 2
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V ω f ΩX Ω̃L ω2
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∫ ×2
dk̄qX d∆kqX
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×
(
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2
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)
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w/4 e
i zL 0

α |ω̄L|n k̄⊥L ·∆k⊥L . (5.26)

Now, we can shorten the expression by using all longitudinal δ -functions

〈Ô〉=
√

2π
α 2 l2
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X δ y
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L

V ω f ΩX Ω̃L ω2
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L 0
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∫ ×2
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∫ ×2
dω̄Ld∆ωL
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2/2e−(k̄
y
L)
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X )
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L )/2e−(∆ky
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L )/2

× e−(k
q
f∓k̄qL 0−k̄qX 0−Gq)2σ2

w e−(∓∆kqL 0−∆kqX 0)
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w/4 e
i zL 0

α |ω̄L|n k̄⊥L ·∆k⊥L , (5.27)

where the upper sign (∓) corresponds to the SFG case and the lower one to the DFG case. Our next step

concerns the remnants of the longitudinal window functions. We demonstrate in the following that—

given the surrounding conditions and reasonable beam divergences—we can approximate

e−(k
q
f∓k̄qL 0−k̄qX 0−Gq)2σ2

w e−(∓∆kqL 0−∆kqX 0)
2σ2

w/4 ≈ e−(k
q
f−Gq−α n ω̄L−α ω̄X )

2σ2
w e−(α (n−1)∆ωL)

2σ2
w/4. (5.28)

In order to resolve this, we shall expand each of the occurring k̄qi 0 = (kqi 0 + k
′q
i 0)/2 and ∆kqi 0 = ... . It is

as before:

kqi 0 =

√
n2

i ω2
i

c2 −
∣∣k⊥i
∣∣2 ≈ ni ωi

c

(
1− 1

2

∣∣k⊥i
∣∣2

|ki|2
+

1
8

∣∣k⊥i
∣∣4

|ki|4
− ...

)
, (5.29)

where we have re-introduced the absolute of the full wave-vector |ki|2 =α2 n2
i ω2

i to evoke reminiscences

to the beam divergence Θ≈
∣∣k⊥i
∣∣/|ki|. The refractive index is to be understood as either unity for x-rays

(i = X) or its respective optical value for the laser-field (i = L).

Considering the first ‘longitudinal’ exponential, it becomes slightly more cumbersome to decide

which terms to keep (as compared to Sec. 4.2.1), because we have to account for cross terms within the

6Note that we have verified this assumption later in private communication with Dr. David A. Reis.
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exponents:

exp
(
−σ2

w
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c
(k⊥L )2
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c
(k′⊥L )2

(k′L)2 − ...
))2)

.

In here, the pure squares of higher order terms, i.e.,

σ2
w

(1
4

ωX

c
(k⊥X )2

(kX)2

)2
=
( lw
√
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4λX

(k⊥X )2
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)2
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(500µm
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)2
� 1 (5.30)

σ2
w

(1
4

nωL
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(k⊥L )2
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)2
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2π n
4λL

(k⊥L )2
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)2
≈
(500µm
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)2
� 1. (5.31)

are negligible given the beam parameters from Ref. [46]. Therefore, we can focus on the remaining cross

terms

exp(−σ2
w mq2) exp

(
− σ2

wmq

2

(ωX

c
(k⊥X )2

(kX)2 +
ω ′X
c

(k′⊥X )2

(k′X)2 ±
nωL

c
(k⊥L )2

(kL)2 ±
nω ′L

c
(k′⊥L )2

(k′L)2

))
.

In here, the first exponential will limit the magnitude of the longitudinal mismatch to about |mq| ∼ 1/σw,

unless significant contributions from the second exponential can shift this. Thus, with |mq|/σw prelimi-

narily fixed to unity, we—once again—have to estimate the expressions of Eqs. (5.30) and (5.31)—just

without the overall square. Our previous conclusions remain valid, such that we may also neglect the

cross terms and finally write:

e−(k
q
f∓k̄qL 0−k̄qX 0−Gq)2σ2

w ≈ e−(k
q
f−Gq−α n ω̄L−α ω̄X )

2σ2
w . (5.32)

Similar arguments yield:

e−(∓∆kqL 0−∆kqX 0)
2σ2

w/4 ≈ e−(α (n−1)∆ωL)
2σ2

w/4. (5.33)

Deploying these approximations to our observable (5.27) almost leads to its factorization into spatial and

spectral parts. Only the curvature phase-term of the laser-field still bears a weak frequency dependence

of the form 1/ |ω̄L|, the effect of which is negligible to all intents and purposes
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Focusing on the spatial integrations, we can resolve the standard Gaussian integrals as7

∫
d∆k e−(∆k)2(σ2

X+σ2
L )/2 e

i zL 0
α |ω̄L|n k̄·∆k

=

√
2π

σ2
X +σ2

L
e
− z2

L 0
2α2 |ω̄L|2 n2 (σ2

X+σ2
L )

k̄2

. (5.35)

7Note that we present an arbitrary (single) spatial dimension here and omit its respective superscript in order to declutter
our notation. For the same reason, we omit the subscript L.
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In analogy to Eq. (4.35), we can define ze f f = α |ω̄L| nσL δL for the laser beam. Capitalizing on the

earlier assumption that σL � σX , the integral’s result simplifies to ∼
√

2πσ−1
L exp(−z2

L 0 z−2
e f f k̄2δ 2

L/2).

This may nicely be included in the remaining integration

∫
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2

2(δ2
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L (∆(zL 0))
2) , (5.36)

with ∆(zL 0) marking the scaling function known from Eq. (4.35). In the above, typically δL� δX , as we

can see from the following estimation:

δX δ−1
L ≈ λX

ΘX π
1

2σL
≈ 10−10m

10−6rad π
1

2 ·500 ·10−6m
≈ 1

10π
, (5.37)

which becomes more drastic for less ideal x-ray beams or if the effect of zL 0 6= 0 is included. Thus, we

may simplify integral 5.36 to ∼
√

2π(δL∆(zL 0))
−1 exp(−(k f −G)2δ 2

X/2). This reduces the observable

to
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where σL ∆(zL 0) gives the actual laser-beam size at the sample position. We can further simplify the

frequency part
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L ∆ωL(ωL 0∓ω̄L)/Ω̃2

L e−(k
q
f−Gq−α n ω̄L−α (ω f−ω̄L))

2σ2
w e−(α (n−1)∆ωL)

2σ2
w/4

=
∫

dωL e−(ω f−ωL∓ωL 0−ωX 0)
2/2Ω2

m e−ω2
L/2Ω̃2

L e−((ckqf−ω f−cGq)/(n−1)−ωL∓ωL 0)
2(n−1)2α2σ2

w

×
∫

d∆ωL e−∆ω2
L T 2

sum/2 ei∆ωL(∆t−2γ0T 2
L (∓ωL)/Ω̃2

L)

=
∫

dωL e−(ω f−ωL∓ωL 0−ωX 0)
2/2Ω2

m e−ω2
L/2Ω̃2

L e−((ckqf−ω f−cGq)/(n−1)−ωL∓ωL 0)
2(n−1)2α2σ2

w

×
√

2π
Tsum

e−(∆t−2γ0T 2
L (∓ωL)/Ω̃2

L)
2/2T 2

sum

=
∫

dωL e−(ω f−ωL∓ωL 0−ωX 0)
2/2Ω2

m e−ω2
L/2Ω̃2

L e−((ckqf−ω f−cGq)/(n−1)−ωL∓ωL 0)
2(n−1)2α2σ2

w

×
√

2π
Tsum

e−(∆t±BωL)
2/2T 2

sum , (5.39)

where Tsum =
√

T 2
X + T̃ 2

L +(2Ωm)−2 +[α(n−1)σw]
2 /2 and B = 2γ0T 2

L /Ω̃2
L. Note also, that we have

shifted the integration in ωL by the laser’s central frequency ωL 0 in the second line.
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Reinserting the result, the overall observable becomes

〈Ô〉= (2π)3 α 2 l2
w EX p δ x

X δ y
X |EL 0|2 TL σ2

L

V ω f ΩX Ω̃L ω2
X 0 ω2

L 0 (σL ∆(zL 0))2 Tsum

∣∣εεε f · εεεX
∣∣2 1

V 2�
|εεεL ·KGS�(0,G,ωL 0)|2

× e−(k
x
f−Gx)2(δ x

X )
2/2e−(k

y
f−Gy)2(δ y

X )
2/2

×
∫

dωL e−(ω f−ωL∓ωL 0−ωX 0)
2/2Ω2

m e−ω2
L/2Ω̃2

L e−((ckqf−ω f−cGq)/(n−1)−ωL∓ωL 0)
2(n−1)2α2σ2

w e−(∆t±BωL)
2/2T 2

sum .

(5.40)

Notably, the last remaining integral is again just of Gaussian type and could be solved analytically8.

However, we prefer to approximate the integrand a bit further and therein emphasize the physical con-

straints, which are at play.

We shall disregard the last exponential for the moment, as it depends on the time-delay ∆t and is

therefore inherently variable. Our task at hand is to identify the most restrictive of the remaining three

Gaussians, which thus selects the dominant spectral contribution in ωL:

• The monochromator’s bandwidth Ωm corresponds to ∼ 1 eV for a Si (111) DCM operating at

∼ 8 keV.

• The laser’s bandwidth Ω̃L is already significantly smaller, namely ∼ 68 meV in the case of Glover

et al., who use a pulsed (stretched) laser with a respectively broad bandwidth [46].

• Finally, the shape function of the crystal itself. This enters via the width σw, which represents the

∼ 500 µm thick sample.

Noting that 100 µm—if interpreted as a wavelength—corresponds to ∼ 10 meV in energy, we find the

last point to yield the most restrictive constraint. As such, it fixes the value of ωL according to the

root of its exponent, i.e., ωL ≈
ckqf−ω f−cGq

(n−1) ∓ωL 0. For compactness of notation, we will treat this ωL

as a defined constant in the following. Apart from this, we need to evaluate the approximated, single

Gaussian integral, which contributes an additional prefactor of
√

π
(n−1)ασw

.

We insert these findings into Eq. (5.40) and furthermore convert the observable 〈Ô〉 into a double

differential scattering yield9. To this end, we multiply by V α3

(2π)3 ω2
f (cf. Sec. 2.1) and find

d2Y
dω f dΩ f

=
α4 2π

√
2 lw ω f EX p δ x

X δ y
X |EL 0|2 TL σ2

L

(n−1)α ΩX Ω̃L ω2
X 0 ω2

L 0 (σL ∆(zL 0))2 Tsum

∣∣εεε f · εεεX
∣∣2 1

V 2�
|εεεL ·KGS�(0,G,ωL 0)|2

× e−(k
x
f−Gx)2(δ x

X )
2/2e−(k

y
f−Gy)2(δ y

X )
2/2 e−(ω f−ωL∓ωL 0−ωX 0)

2/2Ω2
m e−ω2

L/2Ω̃2
L e−(∆t±BωL)

2/2T 2
sum .

(5.41)

Before we analyse this result in greater detail, we want to conduct one last reformulation. This

concerns the chirp term e−(∆t±BωL)
2/2T 2

sum , which does not fully reflect our intuition about the SFG process,

yet. In particular, we would expect—not least from Glover’s results—that the SFG signal is emitted,

8We recall that the product of two Gaussians is again a Gaussian—merely sporting a more complicated exponent. Thus,
the four separate Gaussians could be condensed into a single one and integrated, albeit with a messy result.

9Note that we could likewise have termed this quantity the double differential scattering probability, as is more commonly
done in the context of atomic physics. However, we anticipate that the number can grow beyond unity if measured for suf-
ficiently large samples and integrated over large solid angles. This does not invalidate the probability interpretation for each
infinitesimal solid angle element, but it would nevertheless make for an awkward transition. Thus, we start out by calling it a
yield directly.
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when x-ray and optical pulse overlap (cf. Fig. 5.1 e). This should be reflected as ∼ e−∆t2/2T 2
cc , where Tcc

marks the mutual cross-correlation length of x-ray and optical pulses. It turns out that we can achieve

such a form by rewriting the last two exponentials in Eq. (5.41):

e−ω2
L/2Ω̃2

L e−(∆t±BωL)
2/2T 2

sum = exp
(
− ω2

L

2Ω̃2
L
− (∆t±BωL)

2

2T 2
sum

)
= exp

(
− ω2

L

2Ω̃2
L
− ∆t2±2∆tBωL +B2ω2

L

2T 2
sum

)

= exp
(
− ω2

L(T
2

sum + Ω̃2
LB2)

2Ω̃2
LT 2

sum
− ∆t2±2∆tBωL

2T 2
sum

)

= exp
(
− ω2

L(T
2

sum− T̃ 2
L +T 2

L )

2Ω̃2
LT 2

sum
− ∆t2±2∆tBωL

2T 2
sum

)
. (5.42)

Intermittently, we note that T 2
sum− T̃ 2

L + T 2
L = T 2

X + T 2
L + (2Ωm)

−2 +α2(n−1)2σ2
w/2 will be a useful

quantity that we shall abbreviate by T 2
tot henceforth10. Completing the square in ωL, we arrive at

e−ω2
L/2Ω̃2

L e−(∆t±BωL)
2/2T 2

sum = exp
(
− [ωL±

∆t2γ0T 2
L

T 2
tot

]2
1

2Ω̃2
L

T 2
tot

T 2
sum
− ∆t2

2T 2
tot

)

= exp
(
− [ωL±

∆t2γ0T 2
L

T 2
tot

]2
1

2Ω̃2
L

(
1− T 2

L

T 2
tot

+
T̃ 2

L

T 2
tot

)−1− ∆t2

2T 2
tot

)

= e−[ωL±∆tC]2D/2Ω̃2
L e−∆t2/2T 2

tot , (5.43)

with C = 2γ0T 2
L /T 2

tot and D =
(
1− T 2

L
T 2

tot
+

T̃ 2
L

T 2
tot

)−1
= T 2

tot
T 2

tot−T 2
L +T̃ 2

L
= T 2

tot
T 2

sum
.

This result nicely reflects our intuitive expectations about the temporal behaviour of SFG/DFG. The sig-

nal is suppressed as soon as the delay ∆t extends beyond the mutual overlap of x-ray (∼
√

T 2
X +(2Ωm)−2)

and optical pulse length TL
11. Together, they form Ttot =

√
T 2

X +T 2
L +(2Ωm)−2 +α2(n−1)2σ2

w/2. In

addition, there is some leeway on account of the speed-of-light mismatch across the sample, given by

(n− 1)ασw/
√

2. This results from the fact that optical and x-ray pulses experience different refractive

indices and thus travel at different group velocities. They may therefore overlap at different delay times

for different regions of the crystal—effectively broadening the overall cross-correlation condition. The

other exponential in Eq. (5.43) relates to the frequency-chirp of the optical pulse. At different time-delays

∆t, slightly different photon energies will be prevalent—varying across the overall bandwidth Ω̃2
L of the

original pulse. Without any chirp, this aspect will be irrelevant; the delay-controlled term will vanish as

γL0 = 0 inside C and consequently TL = T̃L and ΩL = Ω̃L.

With the newly formulated temporal dependence, our result for the observable SFG/DFG yield (upper

sign/lower sign, respectively) reads:

d2Y
dω f dΩ f

=
( dσ

dΩ f

)
Th

4π lw ω f EX p δ x
X δ y

X EL p

(n−1)
√

π ΩX Ω̃L ω2
X 0 ω2

L 0 (σL ∆(zL 0))2 Tsum

1
V 2�
|εεεL ·KGS�(0,G,ωL 0)|2

× e−(k
x
f−Gx)2(δ x

X )
2/2e−(k

y
f−Gy)2(δ y

X )
2/2 e−(ω f−ωL∓ωL 0−ωX 0)

2/2Ω2
m e−[ωL±∆tC]2D/2Ω̃2

L e−∆t2/2T 2
tot .

(5.44)

10Be aware that we have previously, i.e., in a draft version of this thesis, used the symbol Ttot to abbreviate what is now
Tsum—don’t confuse them.

11Note that the x-ray pulse may effectively be elongated due to monochromatisation. While its intrinsic pulse lengths is
given by TX , the additional term (2Ωm)

−1 will become relevant as soon as the monochromatised bandwidth can no longer
sustain a short pulse in terms of required Fourier-components. The length of the optical pulse TL is already understood to be
after stretching it.
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Herein, we have replaced the optical pulse-intensity |EL 0|2 with an expression for the pulse’s integrated

energy EL p =
|EL 0|2 TL σ2

L
√

π
α
√

2
, to highlight the symmetry of optical and x-ray input parameters. Moreover,

we have abbreviated the Thomson scattering cross section
(

dσ
dΩ f

)
Th

= α4
∣∣εεε f · εεεX

∣∣2.

At this point, our result is equivalent to Eq. (38) given in our XOWM article12 [21].

We want to emphasize that Eq. (5.44) could now be used to predict the nonlinear scattering pattern13 for

different pulse parameters, materials and chosen reciprocal components (G). Owing to our approximate—

yet analytical—treatment it is simple to apply and cheap to evaluate. In the following, we will apply this

expression in detail to the conditions of Ref. [46], before we discuss some more general features in the

subsequent sections.

Evaluation In order to compare our result quantitatively to the findings of Glover et al., we shall

employ their experimental parameters. Below, we give two tables that encompass all necessary values.

For the x-ray pulse we extract from Ref. [46]:

experimental value parameter in a.u.
photon energy 8 keV ω0X = 294
initial bandwidth 20 eV (FWHM) ΩX = 0.312
monochromator passwidth 1 eV (FWHM) Ωm = 0.016
pulse duration 80 fs (FWHM) TX = 1404
average pulse energy 5 ·1010 photons EX p = 1.47 ·1013

beam divergence 1.7 µrad δX = 6.46 ·105

Table 5.1: X-ray pulse parameters as of Ref. [46].

The optical pulse is respectively characterized by:

experimental value parameter in a.u.
photon energy 1.55 eV ω0L = 5.7 ·10−2

full bandwidth 68 meV (FWHM) Ω̃L = 1.06 ·10−3

pulse duration (stretched) 2 ps (FWHM) TL = 3.51 ·105

laser intensity 1.5 ·1010 W cm−2 IL = 3.8 ·10−6

Table 5.2: Optical pulse parameters as of Ref. [46].

Note that, in order to make use of the intensity information from Ref. [46], we have to define:

IL :=
Ēpulse L

8Σ2
L TL

=
Ēpulse L

8(σL ∆(zL 0))2 TL
. (5.45)

On the basis of this data, we shall now investigate each of the functional dependencies that were

studied by Glover et al.. Our results are graphically shown in Fig. 5.2 and may directly be compared to

Fig. 5.1.
12This statement pertains to the draft version of the article dated to the 28th of March 2022. To trace the equivalence of

both expressions conveniently, we note the use of further re-formulations: In the article, σL ∆(zL 0) was abbreviated as ΣL,
also 1/Tsum =

√
D/Ttot was used. The reference to DFG as a second solution was omitted in Ref. [21] and the exponentials in

control of the scattering angle were condensed in vectorial notation.
13Note that this scattering pattern is exceedingly boring, namely just a tiny Gaussian spot. As such, we do not give an

additional plot of it, but leave this visualization to the reader’s imagination.
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Figure 5.2: Evaluation of several parameter scans for the SFG signal on the basis of Eq. (5.44). The results can be
compared to the findings of Glover et al. in Fig. 5.1. Here, the signal was scanned for: (a)-its energy dependence,
(b)-its angular dependence, i.e., rocking behaviour, (c)-its dependence upon the polarization of the laser light and
(d)-the temporal cross-correlation of x-ray and optical field.

Energy dependence In addressing the energy dependence of the SFG signal, we have to appreciate

how Glover et al. actually discriminate SFG photons with respect to (elastic) background. Namely, they

employ a crystal analyser (two-bounce Si (220), channel-cut) as an energy filter—cf. illustration of their

setup in Fig. 5.1 (a). We may mimic the analyser’s spectral transmission by multiplying Eq. (5.44) with

an additional filter function14 Ta(ω f ) = e−(ω f−ωa)
2/2Ω2

a .

Subsequently, we shall integrate the yield over all possible ω f . The result will be constrained on the

one hand by the physical process itself and on the other hand by the analyser’s transmission. Technically,

the most restrictive exponential is e−[ωL±∆tC]2D/2Ω̃2
L , which incorporates the original bandwidth of the

optical laser Ω̃L—further reduced by a factor of D. Performing the integration limits ωL ≈ 0 and thereby

fixes ω f implicitly to ω f ≈ cGq±(n−1)ωL 0
(cos(θ f )−1) . Here, we neglect a tiny shift due to the chirp ∆tC, which would

fall within the bandwidth of the laser at most, i.e., . 68 meV (FWHM). The integral also yields an overall

14Note that this purely spectral treatment is not ideal, as crystal optics tend to convolute spatial (read: angular) transmission
properties with their wavelength dependence. In the present case, however, this simplified approach is sufficient to capture the
behaviour of Glover’s setup.
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prefactor of
√

2π(n−1)Ω̃L√
D(2sin2(θ f /2))

, resulting in a single differential yield of

dY
dΩ f

≈
( dσ

dΩ f

)
Th

2π
√

2 lw ω f EX p δ x
X δ y

X EL p

sin2(θ f /2)ΩX ω2
X 0 ω2

L 0 (σL ∆(zL 0))2 Ttot

1
V 2�
|εεεL ·KGS�(0,G,ωL 0)|2

× e−(k
x
f−Gx)2(δ x

X )
2/2e−(k

y
f−Gy)2(δ y

X )
2/2e−(ω f−ωa)

2/2Ω2
a e−(ω f∓ωL 0−ωX 0)

2/2Ω2
m e−∆t2/2T 2

tot . (5.46)

Henceforth, ω f should be considered fixed as above or—simplifying even further—approximated as

ω f ≈ ωX 0±ωL 0, if phase-matching is fulfilled. This will not change anything significant for the nu-

merical value any longer.

Taking the experimental values of ∼ 8 keV for the x-ray photon energy and ∼ 1.55 eV for their

optical counterpart, fixes }ω f ≈ 8001.55 eV. Obviously, the only remaining spectral dependence is then

imprinted in the exponential e−(ω f−ωa)
2/2Ω2

a , which models the analysers transmission function. Thus, we

reproduce the analyser scan from Fig. 5.1 (b) in our Fig. 5.2 (a) by simply varying ωa. Here, we assume

the same bandwidth of the analyser as given by the authors (0.3 eV FWHM)—which unsurprisingly

determines the peak width as well.

Angular dependence Subsequently, we can inspect the angular behaviour of the signal. This is set

largely by the exponentials of type e−(k
i
f−Gi)2(δ i

X )
2/2, which allow an angular spread of the same magnitude

as found in the incident x-ray beam (i.e., ∼ 1/δ i
X ). As such, the SFG signal should have approximately

the same divergence as the FEL beam, i.e., 1.7 µrad, for one fixed setting of sample and energy. Being

much sharper than the analyzer acceptance, which amounts to ∼ 17 µrad (FWHM), the signal is fully

transmitted through the analyzer onto the detector. This is consistent with the observations by Glover et

al. [46].

Next, we shall evaluate, how this confined signal beam precesses, when the sample is rocked in the

scattering plane (here taken to be y). To this end, we have to follow the exponentials peak, i.e., observe

the condition

ky
f −Gy !

= 0

αω f sin(θ f )−|G| cos(Ω)
!
= 0. (5.47)

In the second line, we have parametrized ky
f in spherical coordinates and expressed the orientation of

the reciprocal lattice vector G via the rocking angle of the sample (Ω). We may further substitute ω f ≈
cGq+(n−1)ωL 0
(cos(θ f )−1) , thus using the replacement for the SFG case found above.

0 !
= α sin(θ f )

(−sin(Ω)c |G|+(n−1)ωL 0

cos(θ f )−1

)
−|G| cos(Ω)

|G| cos(Ω) =
sin(θ f )

cos(θ f )−1
(−sin(Ω) |G|+α (n−1)ωL 0)

cos(θ f )−1
sin(θ f )

=
(−sin(Ω) |G|+α (n−1)ωL 0)

cos(Ω) |G| =
−sin(Ω) |G|
cos(Ω) |G| +

α (n−1)ωL 0

cos(Ω) |G|

−tan(
θ f

2
) =−tan(Ω)+

α (n−1)ωL 0

cos(Ω) |G| . (5.48)

As the second term on the right hand side is small compared to tan(Ω), we may use the expansion
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arctan(tan(a)− x)≈ a− cos2(a)x+ ... to finally obtain the rocking behaviour

θ f ≈ 2Ω− 2α (n−1)ωL 0 cos(Ω)

|G| . (5.49)

Consequently, the signal beam precesses by twice the angle that the sample is rocked (θ−2θ -behaviour).

This agrees well with the findings of Glover et al. and may be used to mimic their rocking curve scan

(i.e., Fig. 5.1 c). To this end, we can assume the signal beam to be perfectly collimated compared to

the angular acceptance of the analyser (1.7 µrad� 17 µrad (FWHM)). This implies that the signal

beam may be rotated within an effective rocking range of ∼ 17/2 µrad towards either side of the central

transmission without being suppressed by the analyser. This is modelled in Fig. 5.2 (b) by yet another

Gaussian transmission function, the width of which corresponds well to the experimental observation.

With respect to the (absolute) position—given with reference to the Bragg angle θB at 8 keV in

Fig. 5.2 (b)—our Eq. (5.49) is not fully accurate, though. This is unsurprising, as we have previously

neglected several, albeit small, angular deviations. For instance, we have assumed the sample to be

irradiated at normal incidence, instead of properly tilting it by a few degrees. Similarly, we have not

accounted for the non-collinearity of x-ray and optical beams. These effects may easily compound and

thus yield the absolute discrepancy of ∼ 130 µrad between our Fig. 5.2 (b) and Glover’s Fig. 5.1 (c).

Polarization dependence The dependence of the SFG signal on the polarization direction of the visible

light (cf. Fig. 5.1 (d)) is immediately obvious from our Eq. (5.44) or Eq. (5.46). We find the SFG-yield

to depend directly on the scalar product of the electronic response function KGS with the polarization

vector of the optical laser field εεεL—squared. This results in a cos2-dependence for their relative angle,

which we plot for completeness in Fig. 5.2 (c). There, the optical polarization is chosen to lie in the

scattering plane for 0◦ and perpendicular to the x-ray scattering plane at ±90◦. The resulting curve fully

reproduces the findings of Ref. [46].

Delay dependence Finally, we can obtain the dependence of the signal on the mutual delay of x-ray

and optical pulse (∆t) from the temporal exponential e−∆t2/2T 2
tot . This allows for the SFG signal to be

created as long as the mutual delay is on the order of Ttot . Obviously, this should yield a peak a ∆t = 0,

which is not fully reflected in the findings of Glover et al. (∼ 1 ps offset, cf. Fig. 5.1 (e)). However, this

may have various experimental reasons—let alone the definition of the absolute time delay15.

It is more instructive (and technically robust) to investigate the width of the cross-correlation region.

This marks the time-span during which (monochromatised) x-rays and optical photons overlap in some

region of the sample and may thus produce a mixing signal (cf. discussion below Eq. (5.43)). As stated

above, the width is given by Ttot =
√

T 2
X +T 2

L +(2Ωm)−2 +(α(n−1)σw)2/2, which sums up to 2.53 ps

(FWHM). Our result is in excellent agreement with the experimentally determined 2.5 ps (FWHM). For

completeness, we also plot the cross-correlation region as a function of ∆t in Fig. 5.2 (d).

We note in closing of this paragraph that we have neglected any influence of the laser’s frequency

chirp in our discussion. For the given setup’s broad energy distributions—both incident and accepted by

the analyser—this was a valid approximation. Should, however, the setup become much more selective,

then we would need to account more diligently for the exponential e−[ωL±∆tC]2D/2Ω̃2
L in Eq. (5.44). Herein,

15Recall, that we have defined the arrival time of each light pulse with respect to the absolute 0-position of our coordinate
system. For us, this coincides with the assumed center of the sample.
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variations of the photon energy are spread over the time (-delay) ∆t. Correspondingly, a setup with high

energy-selectivity would pick a specific temporal region, for which the energetic transmission is allowed.

Total yield In addition to the differential dependencies studied above, we may likewise benchmark our

theory in terms of total SFG-counts. To this end, we would have to integrate Eq. (5.44) over both the

spectral and angular degrees of freedom for the final state photon. For Eq. (5.46), respectively, wherein

the spectral integration (dω f ) was already carried out, we continue to integrate over dΩ f .

∫
dΩ f

dY
dΩ f

=
∫

dΩ f

( dσ
dΩ f

)
Th

2π
√

2 lw ω f EX p δ x
X δ y

X EL p

sin2(θ f /2)ΩX ω2
X 0 ω2

L 0 (σL ∆(zL 0))2 Ttot

1
V 2�
|εεεL ·KGS�(0,G,ωL 0)|2

× e−(k
x
f−Gx)2(δ x

X )
2/2e−(k

y
f−Gy)2(δ y

X )
2/2e−(ω f−ωa)

2/2Ω2
a e−(ω f∓ωL 0−ωX 0)

2/2Ω2
m e−∆t2/2T 2

tot . (5.50)

Recurring to the fact that the analyser’s angular acceptance is much broader than the extent of the SFG-

signal, we can simply solve16

∫
dΩ f e

−(kx
f−Gx)2(δ x

X )
2/2e−(k

y
f−Gy)2(δ y

X )
2/2 ≈ 2π

α2ω2
f cos(2θB)δ x

X δ y
X
. (5.51)

Here, we assume in addition that θ f ≈ 2θB—which is reasonable for x-ray optical SFG / DFG, as it occurs

very close to the elastic Bragg condition for the incident x-rays. Moreover, taking all other conditions to

be optimized as well, we find for the total yield

Y ≈
(dσ(2θB)

dΩ

)
Th

4π2
√

2 lw EX p EL p

α2cos(2θB)sin2(θB)ΩX ω f ω2
X 0 ω2

L 0 (σL ∆(zL 0))2 Ttot

1
V 2�
|εεεL ·KGS�(0,G,ωL 0)|2 .

(5.52)

We note in passing, that this expression features the linear dependence on the optical pulse energy, which

Glover et al. demonstrate in their inset to Fig. 5.1 (e). For our subsequent evaluation, however, we rather

want to employ the optical pulse’s intensity. Thus, we use our earlier definition of IL =
ĒL p

8(σL ∆(zL 0))2 TL
and

may finally re-write the yield as

Y ≈
(dσ(2θB)

dΩ

)
Th

4π2
√

2 lw EX p 8 IL TL

α2cos(2θB)sin2(θB)ΩX ω f ω2
X 0 ω2

L 0 Ttot

1
V 2�
|εεεL ·KGS�(0,G,ωL 0)|2 . (5.53)

Now, we can insert all pulse parameters from Tab. 5.1 and 5.2 as well as recall that Glover et al.

were using a 500 µm thick diamond crystal near a (111)-reflection. This implies a Bragg-angle of

θB = 22.104 degrees at }ωX 0 = 8 keV. Finally, we can collect the strength of the nonlinear response

function KGS�(0,G,ωL 0) from our discussion in Sec. 3.3. With all of the above in place, we would

predict an average yield of Y = 4835 SFG-photons obtainable per shot. This ranges significantly above

the experimentally reported yield of Yexp = 65 , however, we have not yet accounted for the imperfect

detection efficiency underlying the results of Ref. [46].

In order to obtain an estimate of the detection efficiency ηdet, we note from Ref. [46] that Glover et

al. have also measured the purely elastic rocking curve of the (111)-reflection. Starting from an incident

fluence of 5 · 1010 photons per pulse, they observe a maximum in reflectivity of 3 · 107 photons being

diffracted. This marked reduction is in part ascribable to the monochromator, which reduces the incident

16Note that there is an important factor α−2 resulting from the Jacobian in this integration. Its omission has lead to erro-
neously small yields in early drafts of Ref. [21]—thus, we advise to be very attentive regarding constant factors.

96



5. Application to experiments

bandwidth from 20 eV down to ∼ 1 eV. Beyond this factor of 20, however, losses are inherent to the

setup and may be subsumed in the detection efficiency ηdet ≈ 3·107

5·1010/20 = 0.012.

Incorporating the detection efficiency, our theoretical result is modified to Y ·ηdet ≈ 58. This is in

very good, quantitative agreement with the findings of Glover et al. ultimately. In combination with the

successful, preceding benchmarks on differential dependencies, we can thus conclude this section on a

distinctly positive note. Our XOWM theory has proven to be viable for the reproduction of experimental

SFG results. This is also re-assuring with regard to the validity of the successive approximation-steps

that we have undertaken during the course of our modelling endeavour.

With heightened confidence, we may now extract more general insights from our results and aim to

predict (or envision) future experiments.

5.1.2 Generalizable insights on SFG / DFG

While we have focused our discussion so far on the specific case study of Ref. [46], we may further

extract some generalizable insights on DFG / SFG from our above results. These comprise in order of

appearance:

1. The phase-matching condition of SFG / DFG,

2. the specific intensity dependence of SFG / DFG,

3. the prospects of XOWM applications at synchrotron sources vs. XFELs,

4. the prospects of ‘nonlinear crystallography’ as an application of SFG /DFG for structural insights.

5.1.2.a The phase-matching condition(s)

The occurrence of an XOWM signal is predicated on fulfilling the so-called phase-matching condition.

In other words, energy and momentum conservation has to be satisfied among all involved fields for the

mixing-process to be allowed kinematically17. This condition has been built into the our scattering ob-

servable early on. Regarding energy conservation, we find it implemented as a δ -function in Eqs. (2.67)

or (5.1), respectively, which sets:

ω f = ωX +ωL. (5.54)

Momentum conservation, on the other hand, enters in disguise of the sample’s shape function w̃(k)—
cf. Eqs. (3.24) or (5.11) above. This is in itself (almost) δ -like and constrains all involved momenta to

satisfy:

k f = kX +kL +G, (5.55)

where G denotes the reciprocal lattice vector that governs the nonlinear scattering process. Note that at

this stage, both ωL and kL may be chosen positive or negative to account for SFG or DFG, respectively.

Both of these conditions are naturally transmitted into the derivation of Sec. 5.1.1, although their

concrete shape is obscured at times. Thus, we want to recover them briefly and consider their more

general implications thereafter.
17Note that the necessity to conserve energy and momentum is not fully surprising, given that their conservation laws are

fundamental to all of physics. We mention it for completeness and because it allows to extract simple adjustment guidelines.
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Energy conservation akin to Eq. (5.54) is still well visible above in Eq. (5.44). Herein, the exponential

e−(ω f−ωL∓ωL 0−ωX 0)
2/2Ω2

m reproduces precisely the constraint that we would expect to find. In contrast, the

information on momentum conservation is distributed across two conditions. Transverse to the incident

beam, the scattered photon’s momentum is determined via the exponentials e−(k
x
f−Gi)2(δ i

X )
2/2 with i = x,y.

This fixes two components of Eq. (5.55)

k⊥f = 0+0+G⊥ (5.56)

= k⊥X +k⊥L +G⊥

under the assumption that k⊥X = 0 = k⊥L . For the longitudinal conservation of momenta, we have to look

into the condition ωL ≈
ckqf−ω f−cGq

(n−1) ∓ωL 0, which we found after integration of Eq. (5.40). If energy

conservation holds, i.e., ω f = ωX 0±ωL 0 and ωL ≈ 0, we can rewrite this condition as

ωL ≈
ckqf −ω f − cGq

(n−1)
∓ωL 0

0≈
ckqf −ωX 0∓ωL 0− cGq

(n−1)
∓ωL 0

0≈ kqf −αωX 0∓αωL 0−Gq∓ (n−1)αωL 0

kqf ≈ αωX 0︸ ︷︷ ︸
kqX 0

±nαωL 0︸ ︷︷ ︸
kqL 0

+Gq (5.57)

and thereby reveal the third component of Eq. (5.55).

With these phase-matching conditions being (re-)established, we shall briefly address their useful-

ness: By fundamental kinematics, these conditions determine the subset of scattering conditions, for

which a XOWM-signal can be created at all. As such, they allow to pre-plan an experimental setup and

aim for promising positions without exercising the full calculation of Sec. 5.1.1. Notably, there may still

be modulations in the scattering signal due to the strength of the nonlinear response function18 or the

(optical) polarization dependence (cf. discussion above).

In order to visualize the phase-matching condition for SFG / DFG, let us consider a two-dimensional

example first: Assume that all vectors of Eq. (5.55) are constrained to lie within one plane, viz., the

scattering plane. In Figs. 5.3 (a) and (b), we sketch these scenarios for SFG and DFG, respectively. For

varying inclination of the reciprocal lattice vector G—determined by rocking the sample about an angle

Ω—the momenta add up in slightly different constellations. This, in turn, affects the angle θ f , under

which the a nonlinear scattering signal may be observed. Plotting one angle against the other, we find the

phase-matching conditions to line out elliptical surfaces. In Figs. 5.3 (c) and (d), we show two examples

for SFG / DFG driven by incident x-rays at }ωX = 8 keV and optical photons at }ωL = 1.55 eV.

We note that both solutions are shifted with respect to one another, yet each envelopes the Bragg-

position for elastically scattered x-rays at energy ωX = c |kX |, indicated as a black star at coordinate

(0,0). An additional red or blue star indicates the hypothetical Bragg-position for elastically scattered

radiation at ωX ±ωL, respectively. In the case of Ref. [46], the authors chose a phase-matching position

very close to the fundamental Bragg-peak, namely shifted by ∼ 70 µrad≈ 0.004 deg.

Finally, we want to extend the above picture to three dimensions. To this end, we merely have to

18Note in particular, that there may be reciprocal components, for which the nonlinear response function vanishes completely
due to crystal symmetry.
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(a) (b)

(c) (d)

Figure 5.3: Illustration of the phase-matching conditions for SFG and DFG: Graphs (a) and (b) outline the mo-
mentum balance for the two processes, respectively. Note that each features a rotational symmetry axis (indicated
as dashed line), which translates into possible scattering solutions along a circle for fixed sample position and
variable laser-input. (c) and (d) outline the interrelation of the nonlinear scattering angle ω f and the rocking angle
of the sample Ω—again for SFG and DFG, respectively. [We gratefully acknowledge Dr. Christina Bömer’s help
in rendering the computer graphics of the sketches (a) and (b).]

recognize the inherent rotational symmetry of Figs. 5.3 (a) and (b). The combination of vectors k f −kL

(SFG) or k f +kL (DFG) may each be rotated around the dashed axis of their respective plot. This rotation

translates into circular solutions for the phase-matching condition at each sample angle. In other words,

the ellipses of Figs. 5.3 (c) and (d) can trivially be extended to 3D by continuing the vertical diameter at

each value of Ω into a circle that protrudes from the graphs’ plane.

5.1.2.b Intensity dependence of SFG / DFG

A feature of the SFG yield Eq. (5.52), which is particularly noteworthy, comes in its is bi-linear depen-

dence on the x-ray and optical pulse energy (or number of photons, respectively). This underlines the

fact that both x-ray and optical photons are equally necessary to produce the XOWM-signal.

There is an additional, more subtle dimension to the overall dependence on photon-flux or intensity,

however: The two pulse energies appear normalized to a combined time Ttot and cross-sectional area

(σL ∆(zL 0))
2. Thereby, we may define an effective intensity I = E/(T ·A) using either one of the pulse

energies. Especially in the limit of one pulse being significantly longer than the other, this effective

expression recovers the physically meaningful pulse intensity of the longer pulse. We may think of this

longer pulse to provide a ‘homogeneous’ background intensity, upon which the other pulse interacts.

This behaviour may be understood more readily from the original time-domain expression Eq. (2.57)

for the XOWM-signal, if reduced only to temporal aspects:

〈Ô〉 ∝
∫ ×4

dt1 dt ′1 dt2 dt ′2 eiω f (t1−t ′1) H(1)
X IN(t

′
1, t1) H̄(1)OPT(t ′2, t2)P(t2, t1)(P(t

′
2, t
′
1))
∗. (5.58)
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For simplicity, we neglect the vectorial nature of the nonlinear response and write

PI(..., t2, ..., t1)→ P(t2, t1) as a scalar function. Assuming further that we could collect all relevant emit-

ted frequencies, i.e., integrate over ω f , we produce a δ -function δ (t1− t ′1) from the leading exponential.

This assumption roughly mirrors our eventual treatment in Sec. 5.1.1. There, we had adopted yet another

approximation, namely:

KGS�(0,G,ωL)≈KGS�(0,G,ωL 0)≈KGS�(0,G,ω ′L). (5.59)

This remains valid as long as the bandwidth of the optical field is narrow compared to the spectral

variations of KGS�. Transforming Eq. (5.59) back into the time domain implies:

P(t2, t1) = P(0, (t1− t2)) ∝
∫

dω e−iω(t1−t2) K(ω)

∝ K(ωL 0)
∫

dω e−iω(t1−t2)

∝ K(ωL 0) δ (t1− t2). (5.60)

Collecting all of the above and substituting it into Eq. (5.58), we can simplify the observable down to a

single integration in dt

〈Ô〉 ∝
∫ ×4

dt1 dt ′1 dt2 dt ′2 δ (t1− t ′1)H(1)
X IN(t

′
1, t1) H̄(1)

OPT(t
′
2, t2)δ (t1− t2)δ (t ′1− t ′2) |K(ωL 0)|2

∝ |K(ωL 0)|2
∫

dt H(1)
X IN(t, t)︸ ︷︷ ︸
IX IN(t)

H̄(1)
OPT(t, t)︸ ︷︷ ︸
IOPT(t)

. (5.61)

The remaining expression contains an integral of the time-wise diagonal correlation functions of both in-

volved fields. As is well-known for Glauber-type correlation functions—or can be checked in App. A.10—

their time-diagonal value corresponds to the intensity of the respective field [64]. Thus, the integrated

XOWM-signal (∝ yield) behaves as the integral over the product of field intensities IX IN(t) · IOPT(t).

The simplified treatment of the XOWM-signal above reinforces our earlier interpretation19. Namely,

if one pulse is much longer than the other, it forms a quasi-uniform background intensity, upon which

the other pulse can contribute all its photons for mixing. Beyond this, however, Eq. (5.61) underlines

a different insight: XOWM benefits from high combined intensities. In particular, XOWM shows an

increase in yield, if a constant number of photons is forced to interact in a shorter time. In this, the

process bears clear resemblence to other nonlinear phenomena, such as second harmonic generation for

instance [12, 158].

Closing this discussion, we can draw a few simple conclusions:

• In order to make efficient use of all photons, the x-ray and optical pulse should be similar in length.

• Overall, shorter yet more intense pulses increase the mixing efficiency.

• As a consequence of the above, XOWM applications scale favourably at x-ray FELs compared to

synchrotron radiation sources, given that the former can produce much shorter (and more intense)

pulses.

• It is not advisable to try XOWM with an optical cw-laser. Even for large average power output,

19Note that we outline a slightly less simplified version of this derivation in App. A.16.
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the achievable intensity is far inferior to pulsed sources and thus fails to optimize yield according

to Eq. (5.61).

5.1.2.c Extrapolation for SFG / DFG at synchrotrons

In the previous section, we have concluded that XOWM scales favourably at FELs compared to syn-

chrotron radiation (SR) sources. Importantly, however, it does not negate its principle viability at syn-

chrotrons. Considering the paramount advantages of SR sources—such as high stability, high average

flux20 and sheer accessibility for users—we deem it important to conduct a dedicated case study.

For the sake of simplicity, we shall assume that the derivations from Sec. 5.1.1 roughly hold and use

Eq. (5.53) as a basis for extrapolation. Obviously, we have to choose new x-ray pulse parameters. Up

front, we know that SR pulses measure roughly 100 ps in length [159] compared to ∼ 80 fs at an XFEL

[46]. Thus, we would expect the total yield per shot to drop by roughly three orders of magnitude—

all else equal being equal. Disregarding the detection efficiency, this would entail roughly 1 SFG- /

DFG-photon to be available per shot.

For a complete numerical example, we closely follow our discussion from Ref. [21]. We shall assume

the following parameters on the x-ray part (which may be compared to the XFEL values from Tab. 5.1):

experimental value parameter in a.u.
photon energy 8 keV ω0X = 294
monochromator passwidth 1 eV (FWHM) Ωm = 0.016
pulse duration 100 ps (FWHM) TX = 1.76 ·106

average pulse energy 4 ·106 photons Emono
X p = 1.18 ·109

beam divergence 8 µrad δX = 1.37 ·105.

Table 5.3: Exemplary x-ray pulse parameters for SFG / DFG at a synchrotron radiation source.

These parameters characterize individual x-ray pulses, i.e., the emission from single bunches, at the

PETRA III synchrotron radiation source. In particular, we assume operation in the 40 bunch mode [159,

160] and generation of x-rays via the ‘standard’ 2 m undulator (U32) in a high-β section of the ring [161].

In contrast to the description of Sec. 5.1.1, we omit specifying an ‘initial bandwidth’ for this undulator21.

Instead, we work exclusively with the monochromator’s passwidth Ωm, such that the corresponding pulse

energy is to be understood after the monochromator. In order to apply this information properly, we have

to exchange ΩX for Ωm in Eq. (5.53):

Y ≈
(dσ(2θB)

dΩ

)
Th

4π2
√

2 lw Emono
X p 8 IL TL

α2cos(2θB)sin2(θB)Ωm ω f ω2
X 0 ω2

L 0 Ttot

1
V 2�
|εεεL ·KGS�(0,G,ωL 0)|2 . (5.62)

Beyond this, we copy the properties of the optical pulse from Tab. 5.2 in Sec. 5.1.1:

20Note that the lower peak intensities at SR sources may superficially be disadvantageous for the SFG / DFG-yield. How-
ever, they may anyways be necessary in order to avoid x-ray-induced sample damage. Factoring this in, it becomes a very
appealing prospect to use a source that delivers weaker, yet simply more pulses, which spreads the load and recovers some of
the yield.

21The overall bandwidth of radiation produced in the undulator would be rather broad and also rather irrelevant. After all,
we are not interested in pink-beam usage here.
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experimental value parameter in a.u.
photon energy 1.55 eV ω0L = 5.7 ·10−2

full bandwidth 68 meV (FWHM) Ω̃L = 1.06 ·10−3

pulse duration (stretched) 2 ps (FWHM) TL = 3.51 ·105

laser intensity 1.5 ·1010 W cm−2 IL = 3.8 ·10−6

Table 5.4: Optical pulse parameters assumed for SFG / DFG at a synchrotron radiation source.

This simplifies our comparison. Likewise, we consider the same sample—a 500 µm-thick diamond with

a (100)-surface cut—as well as the same scattering configuration, i.e., using a (111)-reflection at nominal

Bragg angle of θB = 22.104◦.

Evaluating Eq. (5.62) on the basis of the above parameters, we obtain an SFG yield of Y ≈ 0.2

photons per pulse. Very roughly, this is in line with our earlier estimate. Despite being much lower

than the yield per pulse at an XFEL, the resulting number of SFG photons is reasonably measurable. In

particular, we can recover a high average count-rate by capitalizing on the repetition rate of SR sources.

In the case of PETRA III this amounts to ∼ 5.2 MHz (timing mode) and thus a hypothetical gain of six

orders of magnitude. Realistically, it may prove hard to match this repetition rate with coincident optical

pulses22, yet any subharmonic synchronization at several kilo-Hertz would already enable a significant

increase in counts. Assuming 10 kHz for the sake of this argument and disregarding detection efficiencies

for the moment23, one could thus reach 2000 cts/s. Such a yield is on par with (or exceeds) linear, photon-

hungry techniques, such as RIXS (∼ 1000 cts/s [162]), non-resonant x-ray Raman scattering (∼ 100 cts/s

[163]) or nuclear resonant scattering (∼ 5 cts/s [164]). Therefore, we conclude that—using efficient x-

ray optics for the detection of the nonlinear signal—measuring XOWM is entirely within reach at present

synchrotron radiation sources.

Beyond this, we note that further improvements of SR sources are pending. These come as upgrades

towards fourth-generation, diffraction-limited storage-rings—for instance remodelling the ESRF into the

ESRF-EBS [165, 166]. For PETRA III, a corresponding upgrade is planned leading to PETRA IV [167].

This ultra-low emittance storage ring will provide outstanding conditions to pursue XOWM experiments.

For its latest design—using a Hybrid 6 Bend Achromat—a 40 bunch mode that is comparable to our as-

sumptions above will feature an emittance of merely 38 pm rad (r.m.s., horz.) and 8 pm rad (r.m.s., vert.)

[168]. If we aim for the same divergence as in our preceding example, i.e., 8 µrad (FWHM), this implies

that we can achieve natural focal-spot sizes of∼ 26.3 µm (horz.) and∼ 5.6 µm (vert.). Compared to our

starting point from Ref. [46], which measured 1 mm× 0.5 mm, this presents an improvement of more

than three orders of magnitude. More importantly, this improvement can be converted into an increase

in count rates, if the optical laser is focused accordingly. Thereby, both intensities increase as does the

yield, which depends bi-linearly upon them (cf. previous section).

In an additional extension of the machine’s capability, PETRA IV is envisioned to host five ‘flagship

beamlines’. These shall make use of extended insertion devices (10 m undulators) and thus provide ex-

ceptionally high brilliance—surpassing other SR sources by an order of magnitude or more [167]. At

such beamlines, XOWM signal-strength could respectively be boosted even further.

Thus in conclusion, we note that XOWM does not only appear feasible at present SR sources, but

22Note that one should probably not even try to match the storage rings repetition rate with the rate of optical laser
pulses—at least not at the given pulse energy of ∼ 1 mJ. After all, this would correspond to an average optical power of
1 mJ ·1 MHz = 1 kW, which provides a formidable thermal load on the sample.

23We recall that the detection efficiency in the case of Glover et al. [46] reached merely ηdet = 0.012.
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also harbours excellent prospects for upgraded storage rings. These findings raise hopes, in particular,

that the ensuing application of XOWM for ‘nonlinear crystallography’ could be pursued routinely at SR

sources in the future.

5.1.2.d Prospects for ‘nonlinear crystallography’

Stepping beyond the proof-of-principle for SFG at a single orientation (cf. Ref. [46]), the more gen-

eral appeal of XOWM derives from its crystallographic potential. Specifically, it allows for the (3D)

reconstruction of the sample’s microscopic nonlinear response. Recalling Eq. (5.53)

Y ≈
(dσ(2θB)

dΩ

)
Th

4π2
√

2 lw EX p 8 IL TL

α2cos(2θB)sin2(θB)ΩX ω f ω2
X 0 ω2

L 0 Ttot

1
V 2�
|εεεL ·KGS�(0,G,ωL 0)|2 , (5.63)

we may think of the essential response function KGS�(0,G,ωL 0) in direct analogy to the structure factors

of conventional (linear) crystallography F(G). Albeit, KGS� does not only encode spatial properties via

G but also characterizes the dynamics of the nonlinear response in terms of its spectral Fourier profile.

For a more detailed discussion, we refer the reader to Chpt. 3. At this point, it suffices for us to recall

that we can invert the spatial Fourier decomposition and thus obtain a response density

RGS�(x,ω) =
1

V�

rec.

∑
G

eiG·x KGS�(0,G,ω)

=
∫

dτ eiωτ
∫

�
d3y PGS�(y, t2, x, t1). (5.64)

This response density provides access to a partially averaged version24 of the density—current-density

correlator PGS�(y, t2, x, t1) (cf. Chpt. 3) or can be used to infer the charge-density response to a specific

optical pulse (cf. the upcoming M.Sc. thesis by F. Kerker [126]).

In its ideal form, i.e., at high resolution, this response density is depicted in Fig. 5.4. There, we

plot both a two-dimensional view of |RGS�(x,0.057)|2 in the (11̄0)-plane and a 3D-rendering of its dis-

tribution across the conventional (cubic) unit cell of diamond—in plots (a) and (b), respectively. The

presented example is based on the numerical simulations from Chpt. 3.

In order to achieve a similar reconstruction based on experimentally measured data, two major chal-

lenges have to be addressed:

1. The phase-problem has to be solved and

2. sufficiently many orientations have to be measured to reach the desired resolution.

Both issues are well known from regular crystallography.

1. Phase-problem A recent exposition of the conventional phase-problem, as well as a variety of

remedies is given in Ref. [169], for instance. Analogous to the situation in regular crystallography, our

Eq. (5.63) relates the scattering signal merely to the absolute value of the (nonlinear) structure factor, but

crucially misses its complex phase information. Thus, the Fourier inversion of Eq. (5.64) is not strictly

24Note that the partial averaging, viz. the averaging over coordinate y, is a consequence of our ‘dipole-approximation’-
type of treatment for the optical interaction. It is mirrored in the fact that KGS�(0,G,ωL 0) no longer carries any non-trivial
information in its first argument, for which we assumed kL ≈ 0. In particular, if we are interested in microscopic response
properties at the level of a single unit cell, this approximation is fully adequate, as indeed |kL| aunit cell� 1.
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Figure 5.4: (a) The nonlinear response is shown in terms of |RGS�(x,0.057)|2 for diamond in the (11̄0)-plane of its
conventional (cubic) unit cell. Data and interpretation correspond identically to Fig. 3.4 (a). (b) Three-dimensional
rendering of the same response density; contour levels are set at 0.001 and 0.002 a.u. (green and yellow).

possible without further augmentation. Fortunately, the analogy of linear and nonlinear crystallography

in this respect, allows to adopt or adapt25 the established solutions (see again Ref. [169]).

Beyond this, more elaborate methods of phasing could be envisioned, such as phasing through

multiple-beam diffraction [170]. Instead of using multiple Bragg-reflected beams though, the interdepen-

dence of the nonlinear signal beam and one Bragg-reflected beam should be monitored. We conjecture

that this could work both for a ‘typical’ 3-beam case, where SFG / DFG proceeds close to a reciprocal

lattice point G and another reflection is excited through H 6= G, but it could also work for the direct in-

terplay of XOWM close to G with its accompanying Bragg-beam. In the latter scenario, the two distinct

beams involve Heff. = G±kL and G itself, which can be excited simultaneously26 of course (cf. Fig. 5.3

(c) or (d)).

Any detailed investigation of these phasing-options is beyond the scope of this work27. It is

encouraging—and sufficient for the time-being—to know that viable options exist. In a pragmatic com-

promise, early prospective data may well be phased using the theoretical phase-information from our

numerical results anyways.

2. Resolution Regarding the second challenge, we will give a brief assessment based on our nu-

merical simulations of KGS�(0,G,ωL 0) for diamond. Starting from the high-resolution data underlying

Fig. 5.4, we can investigate the magnitude, and thus relevance, of individual nonlinear structure factors.

In Fig. 5.5, we plot the absolute values of KGS�(0,G,0.057) against the length of their pertaining recipro-

cal lattice vector up to a threshold of |G|. 5.36 a.u.. This limit corresponds to backscattering conditions

at 10 keV. In addition to the reciprocal-space scale, we indicate the correspondingly achievable resolution

25Note that some adaptation would—for example—be required, if direct phasing algorithms were considered. In addition
to the criterion of finite support, these often rely on the positivity of the electronic density. In contrast, RGS�(x,ω) may not be
positive, but complex-valued in fact. Thus, a positivity constraint would be rendered meaningless. However, it is possible to
re-introduce at least a reality-condition to similar effect. As we have shown in Chpt. 3, the time-dependent electronic density
(response), can be expressed through Rret

GS� in linear response theory. Suitable linear combinations of RGS� may therefore be
phased as real.

26As a matter of cautioning, we want to point out that the second option of 3-beam phasing may prove very challenging on
the experimental side. In fact, one would rather aim to avoid working close to the Bragg condition for G in order to reduce
elastic background scattering.

27Regarding more general, phase-sensitive scattering schemes, we want to mention our proposal for amphodyne detection
of XOWM signals. Capitalizing on the interference of linear and nonlinear diffraction, this method would provide access to the
scattering phase. For further discussion of amphodyne detection, we refer the reader to Chpt. 6.
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in Å at the upper edge of the plot. We recall for completeness that ωL 0 = 0.057 a.u. corresponds to an

optical photon energy of 1.55 eV.

Figure 5.5: Magnitude of the nonlinear structure factors |KGS�(0,G,0.057)| for diamond. The first six components
are labelled according to the conventional (cubic) system. The corresponding resolution can be read from the
secondary abscissa.

In order to obtain sub-Å resolution, we find that six distinct reciprocal components are required.

These are labelled explicitly in the graph above and comprise (111), (200), (220), (311), (222) as well

as (400). Notably, one of them, viz. (200), is trivial for symmetry reasons28. Based on this list, we can

model the outcome of an incomplete reconstruction. Accounting only for the six components (and all of

their equivalent orientations), we perform a restricted Fourier-synthesis and thus obtain Figs. 5.6 (a) and

(b). Apart from their reduced resolution, these are equivalent to Figs. 5.4 (a) and (b) and may thus be

compared directly.
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Figure 5.6: At reduced resolution of ∼ 0.89 Å, (a) the nonlinear response is shown in terms of |RGS�(x,0.057)|2
for diamond in the (11̄0)-plane of its conventional (cubic) unit cell. (b) Three-dimensional rendering of the same
respose density; contour levels are set at 0.0004 and 0.0008 a.u. (green and yellow).

28As an interesting (though ancillary) observation, we note that the ‘forbidden’ (222) component does not vanish; it is in
fact the strongest contribution according to Fig. 5.5. On closer inspection, this is unsurprising: The (222) reflection is strictly
forbidden only for the ideal diamond structure, assuming point-like atoms at each lattice site. Extended electron distributions in
between the lattice sites, however, result in a non-vanishing (222)-signal. This is precisely the case for diamond’s valence elec-
trons. Accordingly, the (222)-reflection could be measured in conventional crystallography—even in powders [171]. For our
XOWM-signal, which originates exclusively from valence electrons, the (222)-component naturally proves to be the strongest.
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While the resulting reconstructions still lack some definition compared to their high-resolution coun-

terparts, we find the main features of RGS� to be well reproduced. In particular, we can clearly identify

the two maxima of the response density along each C-C bond. Notably, these are not fully pronounced

yet—with their numerical values falling a factor of 2.5 short of the reference in Fig. 5.4—but they yield

an insightful picture of the valence-electronic response, nonetheless.

We want to dwell further on this notion and emphasize that ‘nonlinear crystallography’ can provide a

valence-sensitive probe at the outlined level of detail. To this end, it requires modest measurement effort

(here: six orientations) and is model-independent to a reasonable degree29. Increasing the complexity

of these measurements, one natural step would see the incorporation of successively higher reciprocal

components and thus increase the static resolution. While another path to extend the scope of the method

could capitalize further on its spectroscopic selectivity. Instead of probing at a single optical frequency

ωL 0, several data-points—even full spectra—could be acquired per reciprocal component. In particu-

lar, we note the possibility to address individual electronic transitions with spectroscopic precision and

subsequently visualize them through crystallographic reconstruction. By opening such a visual window

onto electronic phenomena, ‘nonlinear crystallography’ offers intriguing prospects for the broader study

charge-transfer or -correlation effects in various bulk materials.

5.1.3 Simplified setup for ‘nonlinear crystallography’

Having established the idea of ‘nonlinear crystallography’, we shall now proceed to scout for a (more)

suitable detection setup. Recalling the approach by Glover et al. (cf. Sec. 5.1.1 and Ref. [46]), we

observe that they follow a typical high-resolution x-ray diffraction scheme [172, 173]. Namely, they

implement a monochromatized source in conjunction with Ω−2θ rotations for the sample and detector-

arm, respectively (see illustration in Fig. 5.7). The detector arm further carries a channel-cut crystal

Figure 5.7: Illustration of a typical high-resolution x-ray diffraction setup—comparable to the approach by Glover
et al. [46]. A monochromatised x-ray source illuminates the sample, which may be rotated about the angle Ω. The
scattered signal is filtered by an analyser crystal before being measured with a detector. Both elements are mounted
on an independent detector-arm, which rotates about 2θ . [We gratefully acknowledge Dr. Christina Bömer’s help
in rendering the above computer graphics.]

29Note on the aspect of model-independence that we preclude the obvious fact of requiring a XOWM-theory to link the
nonlinear scattering signal to nonlinear structure factors. Once this is achieved—be it within the framework of this thesis or via
other theoretical means—however, the inversion problem can be solved on the basis of crystallographic measurements alone.
There is no necessity for accompanying electronic structure calculations. This is of particular importance in cases of highly
complex materials, for which present simulations may be far from accurate.
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analyser, which filters the scattered radiation. Notably, this does not only define an energy window for

the detection, but—crucially—it also curtails the angular acceptance of the detection setup significantly.

Consequently, this necessitates very precise adjustment of the detector arm for the scattering direction.

Any imprecision beyond the angular acceptance of the analyser (typically . 1 mdeg) will result in sup-

pression, i.e., effective loss, of the nonlinear signal. This renders it tedious to adjust the setup for the

phase-matching condition of either SFG or DFG, as it effectively requires the combined optimization of

three degrees of freedom (viz. sample, detector-arm and laser-direction).

While such adjustment efforts may have been bearable for the proof-of-principle study [46], they

seem prohibitively time-consuming for a routine experiment—in particular, if measuring several reflec-

tions in short succession is desired. Thus, a setup for ‘nonlinear crystallography’ requires some funda-

mental simplification. This could come in the shape of a bent-crystal analyser:

Bent-crystal analysers can offer a significantly larger angular acceptance, thereby eliminating the neces-

sity to adjust the detector arm at all. To this end, the curvature of the analyser’s surface (i.e., its bending

radius rbend) has to match the scattering angle in a particular way. Following the so-called Rowland ge-

ometry [174], monochromatic x-rays emanating from a source point (S) can be refocused by the analyser

into a detection point (D), if they are both located (symmetrically) on a circle of radius rRowland = rbend/2,

which is itself tangentially attached to the analyser’s surface30. An illustration of this geometry is shown

in Fig. 5.8 (a). The scattering angle on the crystal’s bent lattice is approximately the same for all rays

and—in order to obtain a reflection at all—has to equal the Bragg angle for the desired energy.

Analyser configurations of this kind find copious use, for instance in XES or HERFD-XAS applica-

Figure 5.8: Illustration of a bent analyser crystal used in Rowland geometry: A point source (S) on the Rowland-
circle is refocused into a detection point (D) via reflection at the bent crystal. [We gratefully acknowledge Dr.
Christina Bömer’s help in rendering the above computer graphics.]

30Note that the refocusing capability could only strictly be shown, if the reflection proceeded both specularly with respect
to the lattice planes of the bent crystal and at the actual surface of the Rowland circle. The proof may then be carried out via the
inscribed angle theorem. In reality, this condition is only met in a single point, namely, where the two circles touch tangentially
(cf. Fig. 5.8). Nevertheless, the re-focusing still works quite well, but incurs the so-called Johann error from regions off the
center.
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tions [175, 176], for RIXS [177, 178] and also for non-resonant x-ray Raman scattering or IXS [179–

181]. Of most immediate relevance at this point, however, is the fact that we have previously employed

bent-crystal analysers for the detection of XPDC signals with good success (see Sec. 5.2.3.a for details).

Encouraged by those results, it appears natural to try their performance in the laser-driven case as well.

For the beamtime no. 20212165 at SwissFEL [182], we thus evaluate the potential of a detection

setup based on a spherically-bent Si(660) analyser31. A sketch of the overall experimental arrangement

is given in Fig. 5.9, which comes at the courtesy of Dr. Christina Bömer.

Figure 5.9: Illustration of a bent-analyser-based setup for efficient DFG detection: A monochromatised x-ray
beam (kX ) is mixed inside a diamond sample with an optical laser beam (kL). If adjusted for the phase-matching
condition (see inset), a DFG signal (kDFG) is produced and can be captured by the bent-analyser. Note: In the
actual experiment, the analyser will deflect horizontally. [Image courtesy of Dr. Christina Bömer]

It shows a diamond sample in transmission configuration (close to a Laue-diffraction condition),

which is illuminated both by an optical laser (kL) and a monochromatised x-ray pulse (kX ). If the phase-

matching condition for DFG—which is recounted in the figure’s inset—is satisfied, a respective signal

beam (kDFG) is emitted from the sample. Ultimately, the signal reaches the bent-analyser and is reflected

towards the detector, while concurrent (elastic) background is being suppressed. It should be noted that—

for the sake of two-dimensional depiction—we show the analyser’s deflection (i.e., dispersive direction)

to be vertical. However, in the actual setup, we pursue horizontal deflection—thus avoiding to conflate

the signal’s scattering angle with the analyser’s energy resolution.

Before we address the implications of this setup for our theoretical modelling of XOWM-yields,

we want to conclude our discussion of bent analysers with two illustrating ray-tracing simulations32,

compiled into Fig. 5.10. In order to demonstrate the broad angular acceptance, which we have adver-

tised above, we employ a simplified setup (see Fig. 5.10 (a)). This comprises a confined source-point

(∼ 50 µm) at 1 m distance to the Si (660) analyser, which is spherically bent at 1 m radius. First, we

study the reflection of a well collimated beam (divergence 2 µrad). This scenario is close to ideal for the

analyser’s performance, even though it does not correspond completely to the SFG signal of Sec. 5.1.1

in terms of the beam’s footprint. In Fig. 5.10 (b), we show this tiny beam propagated up to the anal-

yser, where it covers a miniscule spot on the 10 cm large crystal. Note that we assume this signal to be

spectrally homogeneous around 9.7 keV—as indicated in the colour-coded spectrogram on the figure’s

right side. After Bragg reflection (θB = 86.896◦), the beam emerges spectrally filtered and propagates

back to the source plane, where we plot its ‘detectable’ cross section in Fig. 5.10 (c). From the simulated

spectrogram, we can conclude that the transmitted bandwidth comprises ∼ 42.9 meV (FWHM) for this

31Note that the particular choice of reflection, i.e., Si(660), for the analyzer setup was motivated primarily by the good
performance of similar crystals at the ESRF (again, cf. Sec. 5.2.3.a). There may be several other reasonable choices, but we
take the liberty to focus solely on the one at hand.

32All simulations and visualizations in Fig. 5.10 were performed using the XRT-package [133].
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(a)

(b) (c)

(d)

(e) (f)

Figure 5.10: Ray-tracing simulations of the transmission across a Si (660) backscattering analyser. First, we
consider a well collimated signal beam of∼ 2 µrad divergence emanating from a confined source-point of∼ 50 µm
diameter. (a) shows this setup with all measures are given in mm. (b) gives the cross section of the beam, which
illuminates the analyser with a uniform range of incident photon energies—centred at 9.7 keV (cf. coloured
spectrogram); (c) shows the reflected beam measured back at the source plane. The beam is filtered in energy
with a remaining bandwidth of ∼ 42.9 meV (FWHM)—still centred at 9.7 keV. Starting from (d), we repeat the
simulation with a highly divergent beam (100 mrad), plotting the same positions in (e) and (f) as previously in (b)
and (c). The simulations and visualizations were carried out using the XRT-package [133].
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scenario.

At the opposite extreme, in terms of beam divergence, we also consider a source that illuminates

the complete analyser crystal of 10 cm diameter (i.e., sporting a divergence of 100 mrad). This setup

is illustrated in Fig. 5.10 (d). Once again, we depict the beam on the analyzer—confirming its full

coverage—in Fig. 5.10 (e), followed by the back-reflected beam’s cross section in the source plane (f).

The effect of spectral filtering is likewise apparent in this case—though the large angular deviations

lead to a slight broadening (∼ 59.6 meV (FWHM)) as well as a dispersion of the beam’s footprint. Both

effects are a consequence of the intrinsic Johann error and can be considered as minor; more so, as crystal

imperfections and bending-strain tend to have a significantly larger impact on the analyser’s resolution

[183, 184].

Slight idealizations notwithstanding, our simulations confirm the initial proposition that bent-crystal

analysers offer an exceedingly large angular acceptance (∼ 100 mrad) compared to conventional channel-

cut analysers (∼ 17 µrad in case of Ref. [46]). Thus, we can positively conclude that they would prove

beneficial in simplifying the detection of SFG / DFG. In particular, we recapitulate that it would indeed

suffice to direct the SFG / DFG signal anywhere onto the analyser crystal in order to filter it for detection.

No precise adjustment of the detector arm with the analyser on it is required.

5.1.3.a Application of bent-crystal analyzer for DFG-detection at SwissFEL

As a concrete application of our above proposal, we shall discuss the detection of DFG under the condi-

tions of our recent SwissFEL campaign (proposal No. 20212165).

We recall with reference to Fig. 5.9 that, during this experiment, the x-ray FEL beam is monochroma-

tised around 9.7 keV, before it is mixed inside a diamond sample with an optical laser at 1.55 eV photon

energy. The resulting DFG signal at 9700 eV−1.55 eV is spectrally discriminated using a spherically-

bent Si(660) analyzer and subsequently detected using a Jungfrau detector module [185, 186].

As outlined earlier, the spectral width of this analyser measures only∼ 0.066 eV (FWHM) in contrast

to the much broader Si(220)-reflection used by Glover et al. [46], which was reported to cover ∼ 0.3 eV.

In order to match the incident bandwidth better to our narrow detection window, we have exchanged

the beamlines standard Si(111) monochromator for a Si(311)-based setup. This resulted in pulses of

∼ 0.4 eV bandwidth (FWHM) with 15 µJ pulse energy on average (i.e., ∼ 1010 incident photons per

shot). Notably, this input distribution will produce DFG photons across a bandwidth, which is still too

broad to be fully detected by our analyser.

As a consequence, the detectable DFG yield should not blindly be extracted from fully integrated

expressions like (5.52). Instead, one should pay closer attention to the effect of the analyser’s transmis-

sion function Ta(ω f ) = e−(ω f−ωa)
2/2Ω2

a—before evaluating Eq. (5.50). Alternatively, one could refine this

model at an even earlier stage. Starting from the original double-differential scattering yield Eq. (5.44),

one could use the predicted scattering distribution as initial conditions for a full ray-tracing simulation

through the detection setup (cf. our simulations leading to Fig. (5.10).

For simplicity, however, we shall do none of the above, but extract the detection setup’s transmission

function directly from the experiment. To do so, we consider the transmission of a Bragg reflection33—

just like we did in Glover’s case (see Sec. 5.1.1)—and obtain a combined34 detection efficiency ηdet,

33Note that the Bragg reflection presents a suitable probe for the transmission of the DFG signal, as both types of scattering
signals share (almost) the same divergence and bandwidth in this case.

34Note that—in addition to the bare analyser transmission—this detection efficiency will also account for effects, such as
air absorption, self-absorption inside the sample, misalignments or the detector’s (quantum) efficiency.
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specifically for the case at hand. This detection efficiency can subsequently be multiplied onto the simple,

integrated DFG yield (found from Eqs. like (5.52), (5.53) or (5.62)), which we had initially discarded

as an option, and reduce it to the appropriate magnitude indeed. More specifically, we shall resort

to the formulation of Eq. (5.62), because we have accurate knowledge of the pulse energy after the

monochromator available:

Y ≈
(dσ(2θB)

dΩ

)
Th

4π2
√

2 lw Emono
X p 8 IL TL

α2cos(2θB)sin2(θB)Ωm ω f ω2
X 0 ω2

L 0 Ttot

1
V 2�
|εεεL ·KGS�(0,G,ωL 0)|2 . (5.65)

For our numerical example, we focus on the (111) orientation of the diamond sample. Hereunto, the

fundamental Bragg angle is given by θ (111)
B = 18.080◦, while the nonlinear response—including the

polarization factor—amounts to 1/V 2
� |εεεL ·KGS�(...)|2 ≈ 2.07 ·10−6. Below, we compile further relevant

beam parameters as measured or estimated for this experiment:

experimental value parameter in a.u.
photon energy 9.7 keV ω0X = 356.5
initial bandwidth ∼ 20 eV (FWHM) ΩX = 0.312
average pulse energy 850 µJ EX p = 1.95 ·1014

monochromator passwidth ∼ 0.4 eV (FWHM) Ωm = 6.24 ·10−3

monochromatised pulse energy 15 µJ ∼ 1010 photons EX p = 3.44 ·1012

pulse duration 60 fs (FWHM) TX = 1053
beam divergence ∼ 3.5 µrad (FWHM) δX = 3.14 ·105

beam diameter ∼ 450 µm (FWHM) σX = 3.61 ·106

Table 5.5: X-ray pulse parameters for SwissFEL beamtime no. 20212165

The optical pulse is respectively characterized by:

experimental value parameter in a.u.
photon energy 1.55 eV ω0L = 5.7 ·10−2

full bandwidth 52 meV (FWHM) Ω̃L = 8.12 ·10−4

pulse duration (stretched) 250 fs (FWHM) TL = 4389
laser intensity 5.2 ·1010 W cm−2 IL = 8.06 ·10−6

Table 5.6: Optical pulse parameters for SwissFEL beamtime no. 20212165

Using these values, we compute a potentially achievable yield of ∼ 29000 DFG photons/shot. In order

to convert this number into detectable counts, we shall evaluate actual detection efficiency next.
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Preliminary experimental results35 As outlined before, we can infer the transmission (or detection)

efficiency of the experimental setup by benchmarking on a Bragg reflection. More specifically, we shall

focus on the (111)-reflection, which is both broad in its acceptances and reaches almost unit reflectivity

intrinsically. Therefore, if we find significant loss of signal on this reflection, this can almost entirely be

attributed to the detection setup itself.

Figure 5.11: Rocking curve scan across the (111)-Bragg condition of our diamond sample at SwissFEL. Measured
data is shown as blue dots on a line, while an additional, Lorentzian fit to the data is shown as an orange line.
Sample angle as well as fit-parameters are given in angular degrees.

Reviewing a rocking curve scan36 across the Bragg reflection (111) in Fig. 5.11, we find its maximum

to amount to ∼ 1.15 ·104 cts/shot. This scan was conducted under the conditions outlined in Tab. 5.5—

except for the fact the overall pulse energy was purposefully attenuated37 by a factor of ∼ 1000. Thus,

the detection efficiency can be estimated as:

ηdet =
# detected photons

# Bragg reflected photons
≈ # detected photons

1×# incident photons

=
1.15 ·104

1×1010×10−3 = 1.15 ·10−3. (5.66)

Combining this result with our previous prediction of the DFG yield, we would expect the detectable

35Note that there are two important points that should be borne in mind regarding this experimental section:

1. The presented results are preliminary in nature. This implies that data processing has not advanced far beyond the initial
conversion of detector images (incl. I0-correction) nor has any in-depth analysis of the experiment taken place at the
time of this writing. As such, our findings and conclusions may be subject to changes upon later review.

2. Performing the measurements that led to the presented results has been a large, collaborative effort—far exceeding the
scope of this theoretical work. Besides the invaluable collaboration with Dr. Christina Bömer in planning, organiz-
ing and conducting the experiment, further support on-site was kindly given by (in alphabetical order): Dr. Andrei
Benediktovitch, Fridtjof Kerker, Daniele Ronchetti, Dr. Maria Weseloh and Lennart Wollenweber as well as the staff
members of the Bernina beamline. In addition, we gratefully acknowledge countless contributions, discussions and
support off-site.

36Note regarding terminology that, here and later on, we imply the rotation of the sample when we speak of rocking
curve scans. In particular, this concerns a rotation about the axis which is itself normal to the scattering plane. The angle
corresponding to this rotation is termed Ω in Fig. 5.9.

37Note that this attenuation is necessary in order to avoid overexposure of the detector.

112



5. Application to experiments

fraction of the wavemixing signal to be

Y detectable
DFG = YDFG×ηdet = 29 ·103 cts/shot×1.15 ·10−3 ≈ 33 cts/shot. (5.67)

This value may now be compared directly to our next experimental observation. In Fig. 5.12, we present

another rocking curve scan—this time discriminating for the DFG signal at ∼ 9700 eV− 1.55 eV—

around the predicted phasematching condition.

Figure 5.12: Rocking curve scan across the phasematching condition for DFG close to the (111)-Bragg condi-
tion in diamond. First pane shows (normalized) data with and without laser admixture as blue and orange lines,
respectively. The DFG signal is visible as a difference of the curves around ∼ 73.3724◦. Second pane explicitly
shows the difference of laser-on and laser-off signal from uppermost pane, further normalized to the background
level. This difference signal is rescaled to absolute photon counts per shot in the lowest pane. Abscissa is scaled
in degrees.

Here, the first pane shows the detected scattering signal in the presence of the optical laser field for

wavemixing (“ON” in blue) or its absence (“OFF” in orange). Both are normalized with respect to the

incident flux and thus rendered comparable. The overall trend, i.e., the increasing slope from left to

right, is indicative of the nearby Bragg-remainder (elastic line at 73.3818◦). The essential DFG feature,

however, is the found in the difference of both curves around φkap readback ≈ 73.3724◦. Rendering this

feature more apparent, the normalized difference of the two curves (i.e., “ON”−“OFF”
“OFF” ) is plotted in the

second pane of Fig. 5.12. Finally, a rescaled version of the second fills the third pane. This last one

is adjusted to show the absolute difference in detected photon counts per shot, thus directly measuring

the DFG yield. Its maximum amounts to ∼ 6 photons/shot, which ends up being a factor of 5.5 lower

than the value expected from Eq. (5.67). This presents a reasonably good agreement of theory and

experiment—especially when taking the very coarse nature of our preliminary analysis into account.
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In closing, we want to report that our team was able to measure a total of five different crystal ori-

entations during the course of the SwissFEL campaign (proposal No. 20212165). These comprise the

orientations (111), (220), (311), (222) and (400). By means of the pertaining data, a crystallographic re-

construction of the nonlinear response function—as envisioned in Sec. 5.1.2.d—is within reach. Notably,

the use of a spherically-bent analyser has indeed provided sufficient simplification of the experimental

procedure to render all of these measurements possible in short succession. This notwithstanding, fur-

ther investigation of the analyser’s transmission properties will be necessary to optimize the detection

efficiency (far) beyond the current value of ηdet = 1.15 ·10−3.
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5.2 X-ray parametric down-conversion

In this section, we will investigate a third class of XOWM processes, namely x-ray parametric down-

conversion (XPDC). While it is closely related to the previously discussed SFG / DFG processes, it does

not involve any external optical fields, such as the driving laser in Sec. 5.1. Instead during XPDC, an

incident x-ray photon splits spontaneously into a pair of scattered photons through nonlinear interaction

with a medium. The analogous process in the all-optical regime is therefore often termed spontaneous

parametric down-conversion (SPDC) [145]. In this section, we shall adhere to the convention of calling

the incident photon ‘pump’ (ωp) and denoting the scattered pair by ‘signal’- and ‘idler’-photon (ωs and

ωi), respectively.

As a parametric scattering process, XPDC obeys energy conservation within the photonic subsystem,

i.e., ωp = ωs +ωi. This obviously coincides with the energetic constraint for DFG (cf. Sec. 5.1.2).

Instead of mixing x-rays with optical photons from a laser, though, XPDC relies solely on idler-photons,

which originate from the intrinsic fluctuations of the electromagnetic ‘vacuum’ field38.

In this section, we adapt our general XOWM expression (2.67) to the case of XPDC and discuss its

application to two different scenarios, namely: XPDC with idler-photon energies below (Sec. 5.2.1) and

far above (Sec. 5.2.3) the band gap of the sample. As both scenarios share some common derivations,

we shall perform those up front. For reference, note that an abbreviated version of these derivations may

be found in Ref. [51].

Adaptation of Eq. (2.67) to the general case of XPDC We begin our derivations for XPDC by recall-

ing the aforementioned XOWM expression from Chpt. 2:

〈Ô〉XOWM =
2πα4

V ωs

1
(2π)14

∫ ×4
d3kid3k′id

3kpd3k′p

∫ ×4
dωidω ′i dωpdω ′p δ (ωs−ωp−ωi)δ (ωs−ω ′p−ω ′i )

× (εεεs)σ (εεε∗s )ρ ZX IN
σρ (k′p,ω

′
p,kp,ωp)

(
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νµ (k′i,ω
′
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′
i ,ki,ωi)

)
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I

pI

(
KI(−ki,ks−kp,ωi)

)
µ

(
KI(−k′i,ks−k′p,ω

′
i )
)∗

ν
. (5.68)

Notably, we have adapted the designation of all involved photons to comply with our new nomenclature.

The identification with the original Eq. (2.67) is as follows: ωX→ωp, ω f →ωs and the ‘optical’ ωL→ωi

(analogous for the primed variables). In contrast to the laser-driven cases (SFG / DFG), we will drop the

contribution due to external optical fields Z̄OPT
νµ . Instead, we keep the correlation function C̄OPT

νµ , which

accounts for spontaneous fluctuations of the electromagnetic field. Drawing on our results from Sec. 4.4,

we can identify these fluctuations on the basis of Eq. (4.85):

C̄OPT
νµ (k′i,ω

′
i ,ki,ωi) = (2π)5 δ 3(ki−k′i)δ (ωi−ω ′i )(1− eβωi)

(
δµν −

(ki)µ(ki)ν

|ki|2
)

Im
( −4

ω2
i α2 ε̃(|ωi|)−|ki|2

)
. (5.69)

38Note that our expression “ ‘vacuum’ field” is slightly ambiguous. We imply that these fluctuations occur in a state of
the photon field, which is otherwise devoid of excitations (vulgo: empty). Globally speaking, however, these fluctuations
do not strictly occur in vacuo but are instead contained (and possibly shaped) by the material system, which mediates the
down-conversion process.
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Upon substitution into Eq. (5.68), we can simplify

〈Ô〉XPDC =
α4

V ωs

1
(2π)8

∫ ×3
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)
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)∗
ν
. (5.70)

For our next step, we invoke the ‘dipole approximation’ for KI as of Eq. (3.24)

KI(−ki,ks−kp,ωi)≈ w̃(ks−kp−ki−G)
1

V�
KGS�(0,G,ωi), (5.71)

which we have already made ubiquitous use of in Sec. 5.1. We re-iterate for completeness that w̃(k) stems

from the window-function that marks the extent of the crystalline sample. Furthermore, the subscript GS

indicates that we restrict our analysis to the ground state contribution to the nonlinear response39. Thus,

our XPDC observable is modified to read:

〈Ô〉XPDC ≈
α4

V ωs

1
(2π)8

∫ ×3
d3kid3kpd3k′p

∫ ×2
dωidωp δ (ωs−ωp−ωi)(εεεs)σ (εεε∗s )ρ ZX IN

σρ (k′p,ωp,kp,ωp)

× (1− eβωi)
(

δµν −
(ki)µ(ki)ν

|ki|2
)

Im
( −4

ω2
i α2 ε̃(|ωi|)−|ki|2

)

× w̃(ks−kp−ki−G)
1

V�

(
KGS�(0,G,ωi)

)
µ

(
w̃(ks−k′p−ki−G)

)∗ 1
V�

(
KGS�(0,G,ωi)

)∗
ν
.

(5.72)

From the above expression, we isolate the double convolution

Jσρ(k,ω) =
∫ ×2

d3kpd3k′p ZX IN
σρ (k′p,ω ,kp,ω ) w̃(k−kp)

(
w̃(k−k′p)

)∗
, (5.73)

which we can interpret as a generalized spectral flux. In particular, if we assume ZX IN
σρ to describe an

x-ray pulse, then the above expression (5.73) is proportional to the pulse’s total number of photons,

specifying their distribution across its spectrum (dω) and wave-vector spread (d3k). More accurately, we

can define the effective40, differential flux

Φσρ(k,ω) =
1

(2π)11
αω
2 lw

∫ ×2
d3kpd3k′p ZX IN

σρ (k′p,ω ,kp,ω ) w̃(k−kp)
(

w̃(k−k′p)
)∗

, (5.74)

the diagonal of which is indeed normalized to the number of photons Nph contained in the pulse41.

39Phrased differently: We assume that only the ground state (GS) response function, will have a reasonably large con-
tribution probability pI=GS ≈ 1, while all other possible initial states I will not feature significant population to begin with
pI 6=GS ≈ 0.

40Note that the quantity Φσρ constitutes an effective flux in the sense that it does not merely describe the incident field,
but also incorporates aspects of the sample geometry through w̃(k). More specifically, it thus incorporates the phase-matching
constraint. If it is evaluated sensibly, Φσρ therefore quantifies those photons, which are indeed able to partake in the XPDC
process effectively. It remains to be seen, whether this formulation proves to be useful in the long run. For the time-being it
works with all subsequent examples.

41We remark that one way to see the normalization of Φµµ consists in transforming back into real space—analogous to
Eq. (A.172). Upon integrating said expression over both dω and d3k, we should further assume the x-ray pulse to be reasonably
narrow in bandwidth, to propagate in a beam-like fashion and to feature a cross section that is smaller than the transverse sample
size (encoded in w(x)). Further helpful relations to express the integral can be found in Appendices A.8 and A.10.
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Using this, we can rewrite Eq. (5.72) in a significantly more concise form:

〈Ô〉XPDC =
2α3 lw (2π)3

V ωs

∫
d3ki

∫
dωi (εεεs)σ (εεε∗s )ρ

1
ωs−ωi

Φσρ(ks−ki−G,ωs−ωi) (1− eβωi)

× Im
( −4

ω2
i α2 ε̃(|ωi|)−|ki|2

) 1
V 2�

(
|KGS�(0,G,ωi)|2 −|ki ·KGS�(0,G,ωi)|2 / |ki|2

)
. (5.75)

Here, we have not only implemented the new flux, but also evaluated the δ -function to fix ωp = ωs−ωi.

Furthermore, we have contracted the summation in µ , which coupled the transversality constraint to the

nonlinear response function.

Finally, we can convert our observable into a double differential scattering probability using the

prescription (2.9). Thereunto, we multiply by V α3

(2π)3 ω2
s and find:

dPXPDC(ks)

dΩsdωs
= 2α6 lw ωs

∫
d3ki

∫
dωi (εεεs)σ (εεε∗s )ρ

1
ωs−ωi

Φσρ(ks−ki−G,ωs−ωi) (1− eβωi)

× Im
( −4

ω2
i α2 ε̃(|ωi|)−|ki|2

) 1
V 2�

(
|KGS�(0,G,ωi)|2 −|ki ·KGS�(0,G,ωi)|2 / |ki|2

)
.

(5.76)

Apart from the remaining Boltzmann-factor, this result is equivalent to Eq. (7) of Ref. [51]—note the

sign of ωi though. By means of Eq. (5.76), we will be able to examine different scenarios of XPDC in

the following sections.

A note on Φσρ Before we proceed further on XPDC, we shall briefly introduce a model for the differen-

tial flux Φσρ . This model will be common to all subsequent case-studies—just as Eq. (5.76) itself—and

thus warrants an early mention.

Building on our previous steps, the most obvious choice for Φσρ derives from the Gaussian-Schell

model beams of Chpt. 4, once again. Assuming in the simplest scenario that the sample is weakly

absorbing and does not significantly alter the shape of the free-propagating beam42 ZX IN
σρ , we can evaluate

Eq. (5.74) on the basis of Eq. (4.41), for instance

ZX IN
σρ (k1,ω1,k2,ω2) =

(2π)5 G0 T σ x σ y δ x δ y

α2 ω1ω2 Ω
(εεε p)σ (εεε p)ρ W (ω1,ω2) (Tm(ω1))

∗ Tm(ω2) δ (kq1− kq1 0)

×δ (kq2− kq2 0) e−(∆kx)2(σ x)2/2 e−(k̄
x)2(δ x)2/2e−(∆ky)2(σ y)2/2 e−(k̄

y)2(δ y)2/2 ei z0
α ω̄ k̄⊥·∆k⊥ .

(5.77)

Inserting the above into the definition of Φσρ , we can find after some manipulation of the expression

Φσρ(k,ω) =
Nph δ x

p δ y
p c

(2π)3/2 Ωp
(εεε p)σ (εεε∗p)ρ e−(ω−ωp0)

2/2Ω2
p e−(k

xδ x
p)

2/2 e−(k
yδ y

p)
2/2 δ (ω− c |k|). (5.78)

This model satisfies our normalization constraint
∫

dω
∫

d3k Φσσ = Nph and also exhibits the Gaussian

shapes of spectrum and divergence, which we would intuitively expect from Eq. (5.77).

For a different—and more extendible—derivation of the above result, we refer the reader to App. A.13.

42We recall that neglecting the ‘linear’ interaction of the x-ray beam with the sample, i.e., neglecting its refraction, ab-
sorption and potentially diffraction, has been an essential approximation throughout Chpts. 4 and 5 so far. In particular for
diamond samples (avoiding Bragg-reflection), this approximation has proven to be viable, but is expected to fail gradually
towards heavier elements.
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5.2.1 XPDC below the band gap

Having assembled all essential components for the general description of XPDC, we shall turn our atten-

tion towards the first case study. Specifically, we focus on scattering scenarios with idler photons being

energetically smaller than the band gap of the sample (i.e., ωi < Eband gap). In an ideal experiment, these

events would be selected by measuring XPDC signal-photons very close to the incoming x-ray photons’

energy (i.e., ωs ≈ ωp). Energy conservation would thus restrict the co-emitted idler photon to be small

ωi = ωp−ωs.

We note that real measurements of XPDC in this regime are very challenging, due to limited fidelity

in discriminating ωs from ωp. As a consequence, elastic background scattering tends to contaminate any

detection significantly. Despite multiple attempts at measuring XPDC under these conditions, there are

no verifiable observations of the effect to-date43. In contrast to the case of SFG, we will thus develop

the theory for XPDC without definitive experimental guidance. We do command an experimental cross-

check—at least to a certain degree—though. Namely, we have pursued the detection of XPDC at the

(400)-orientation of diamond without positive result. This yields an upper bound on the nonlinear signal

strength, which we will explore and compare in Sec. 5.2.1.c.

We begin our derivations by combining Eqs. (5.76) and (5.78) into a complete expression for the

XPDC scattering probability:

dPXPDC(ks)

dΩsdωs
= 2α6 lw ωs

∫
d3ki

∫
dωi (εεεs)σ (εεε∗s )ρ

1
ωs−ωi

(1− eβωi) (5.79)

×
Nph δ x

p δ y
p c

(2π)3/2 Ωp
(εεε p)σ (εεε∗p)ρ e−(ωs−ωi−ωp0)

2/2Ω2
p e−(k

x
s−kx

i−Gx)2(δ x
p)

2/2 e−(k
y
s−ky

i−Gy)2(δ y
p)

2/2

×δ (ωs−ωi− c |ks−ki−G|)

× Im
( −4

ω2
i α2 ε̃(|ωi|)−|ki|2

) 1
V 2�

(
|KGS�(0,G,ωi)|2 −|ki ·KGS�(0,G,ωi)|2 / |ki|2

)
.

Here, we note a peculiarity of our expression: The idler photon’s energy ωi in the present convention is

negative. This is an innate property of our underlying XOWM framework; as we aimed to treat energy

increase of the scattered x-ray photon—such as in SFG—via positive admixtures (or ‘idler’-energies), the

opposite processes of DFG / XPDC, which involve energy loss of the scattered photon, require negative

‘idler’-energies. Apart from its mildly peculiar appearance, this is of no significant consequence, though.

Our next steps are directed at some obvious simplifications of Eq. (5.79):

• We shall approximate 1
ωs−ωi

≈ 1
ωp0

. According to the exponential, which governs the incident

spectrum, this will incur an error of∼ Ωp
ωp0

at most. Typically, this is on the order of∼ 10−4 or less.

• We can neglect the Boltzmann-factor eβωi . Given that ωi is negative and will have a magnitude of

∼ 1 eV for band gaps of interest, the exponential is vanishingly small.

• We can merge the dot-products of (εεεs)σ (εεε∗s )ρ ...(εεε p)σ (εεε∗p)ρ = |εεεs · εεε p|2. Furthermore, we can

combine this polarization factor with α4 to give the differential Thomson scattering cross section

43Notably, there have been several claims to the observation of XPDC with low idler photon energies, however, these are
likely based on a systematic misinterpretation of elastic background. We shall address this issue in more detail in the subsequent
Sec. 5.2.2.
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in atomic units44:
(

dσ
dΩ f

)
Th

= α4 |εεεs · εεε p|2.

Applying the above leads to

dPXPDC(ks)

dΩsdωs
=
( dσ

dΩ f

)
Th

ωs

ωp0

2α lw Nph δ x
p δ y

p

(2π)3/2 Ωp

∫
d3ki

∫
dωi δ (ωs−ωi− c |ks−ki−G|)

× e−(ωs−ωi−ωp0)
2/2Ω2

p e−(k
x
s−kx

i−Gx)2(δ x
p)

2/2 e−(k
y
s−ky

i−Gy)2(δ y
p)

2/2

× Im
( −4

ω2
i α2 ε̃(|ωi|)−|ki|2

) 1
V 2�

(
|KGS�(0,G,ωi)|2 −|ki ·KGS�(0,G,ωi)|2 / |ki|2

)
.

(5.80)

Following these technicalities, we will invoke more physical reasoning to simplify the scattering

expression further. In particular, we shall make proper use of the fact that the idler energy is chosen

below the band gap. In other words, |ωi| is smaller than any relevant (electronic) transition-energies

of our target crystal, which therefore appears fully transparent. Thus, its dielectric function ε̃(|ωi|) is

basically real and equals the square of the refractive index n(|ωi|). In this limit, the imaginary-part

expression can be rephrased as (cf. Eqs. (4.79,4.85)):

Im
( −4

ω2
i α2 ε̃(|ωi|)−|ki|2

)
→ δ (α n(|ωi|)ωi + |ki|)

(−2π)
α n(|ωi|)ωi

. (5.81)

In the simplemost case, where n(|ωi|) = n is constant, we can use the equivalent

δ (α nωi + |ki|)
(−2π)
α nωi

= δ (ωi +
c
n
|ki|)

2π
α n |ki|

(5.82)

to fix ωi. For practical purposes, it suffices that n(|ωi|) is slowly varying within the bandwidth, which is

probed by XPDC45. In our case, we shall approximate n(|ωi|) ≈ n(
∣∣ω f −ωp0

∣∣) = neff ≈ const. accord-

ingly46. Thereby, we can employ Eq. (5.82) and rewrite our XPDC observable as:

dPXPDC(ks)

dΩsdωs
=
( dσ

dΩ f

)
Th

ωs

ωp0

2α lw Nph δ x
p δ y

p

(2π)3/2 Ωp

∫
d3ki

∫
dωi δ (ωs−ωi− c |ks−ki−G|)

× e−(ωs−ωi−ωp0)
2/2Ω2

p e−(k
x
s−kx

i−Gx)2(δ x
p)

2/2 e−(k
y
s−ky

i−Gy)2(δ y
p)

2/2

×δ (ωi +
c

neff
|ki|)

2π
α neff |ki|

1
V 2�

(
|KGS�(0,G,ωi)|2 −|ki ·KGS�(0,G,ωi)|2 / |ki|2

)
.

(5.83)

Before we process this any further, we want to highlight the impact of phasematching (i.e., momentum

conservation). The constraints on the transverse momentum components are already evident from the

44Note that there exist alternative definitions of the Thomson cross section, which incorporate an additional factor of
ωout/ωin. Such definitions can be found in the IXS community, for instance [61], and—just to make matters more confusing—
will be used in our Sec. 6.1. As is apparent from Eq. (5.79), this definition could just as well be employed here, given that an
equivalent factor ωs

ωs−ωi
does already appear.

45Note that close to the band gap, n(|ωi|) could vary more rapidly. Then—in order to find the proper constraint on the
idler photon energy in Eq. (5.81)—one would have to resort to the general statement: δ (α n(|ωi|)ωi + |ki|) = δ ( f (ωi)) =
δ (ωi−ωroot) (| f ′(ωi)|)−1. Here, ωroot labels a root of f (ωi), i.e., it is defined by 0 = αωroot n(|ωroot|)+ |ki|. This condition
can be solved (numerically) for the required range of |ki|. Note further, that for typical semiconductors (cf. Ref. [120]),
n(ω)—and thereby f (ω)—is sufficiently well behaved below the bandgap to define a unique root. One may also see this quite
generally from a simple Lorentz oscillator model for any dielectric. Below the (first) resonance (i.e., band gap), n(ω) will form
the monotonous flank of a dispersion line.

46Note that for diamond below the band gap, this approximation is accurate to within less than 10% error.
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two exponentials e−(k
j
s−k j

i−G j)2(δ j
p)

2/2, each of which fixes one direction of k⊥i ≈ k⊥i0 = k⊥s −G⊥. In

addition, there is δ (ωs−ωi−c |ks−ki−G|), which holds an implicit constraint for kqi . In order to make

this more apparent, we shall use the conversion Eq. (A.89) found in our appendix A.9:

δ (ω− c |k|) = δ (kq− kq0)
|k|
ckq0
≈ α δ (kq− kq0) (5.84)

with kq0 =
√

ω2/c2− (k⊥)2 for ‘forward’-propagating pump-beam. More specifically, this allows us to

rewrite

δ (ωs−ωi− c |ks−ki−G|)≈ α δ
(
(kqs− kqi −Gq)−

√
(ωs−ωi)2/c2− (k⊥s −k⊥i −G⊥)2

)
, (5.85)

which determines

kqi0 = kqs−Gq−
√
(ωs−ωi)2/c2− (k⊥s −k⊥i −G⊥)2

≈ kqs−Gq−
√
(ωs−ωi)2/c2−0

≈ kqs−Gq−αωp0. (5.86)

In the penultimate step, we have already approximated k⊥i ≈ k⊥i0 to simplify the expression, before we

made use of ωs−ωi ≈ ωp0 in the last step.

Using the above on Eq. (5.83), we can simplify the expression to read

dPXPDC(ks)

dΩsdωs
=
( dσ

dΩ f

)
Th

ωs

ωp0

2α lw Nph δ x
p δ y

p

(2π)1/2 Ωp

1
neff |ki0|

e−(ωs+
c

neff
|ki0|−ωp0)

2/2Ω2
p

× 1
V 2�

(
|KGS�(0,G,−c |ki0|/neff)|2 −|ki0 ·KGS�(0,G,−c |ki0|/neff)|2 / |ki0|2

)

×
∫

d2δk⊥L e−(δkx
i )

2(δ x
p)

2/2e−(δky
i )

2(δ y
p)

2/2. (5.87)

In here, we have still kept the integrations of the respective remainders in δk⊥i = k⊥i −k⊥i0, even though

we assume that the main expression does not (or only weakly) depend on the explicit value of δk⊥i .

Nonetheless, it is important to include the numerical value of the integrals, viz.

∫
dδk j

i e−(δk j
i )

2(δ j
p)

2/2 =

√
2π

δ j
p

. (5.88)

This finalizes our nonlinear scattering expression for XPDC below the band gap:

dPXPDC(ks)

dΩsdωs
=
( dσ

dΩ f

)
Th

ωs

ωp0

√
8π α lw Nph

Ωp neff |ki0|
e−(ωs+

c
neff
|ki0|−ωp0)

2/2Ω2
p

× 1
V 2�

(
|KGS�(0,G,−c |ki0|/neff)|2 −|ki0 ·KGS�(0,G,−c |ki0|/neff)|2 / |ki0|2

)
, (5.89)

which should be used in tandem with the prescriptions:

kqi0 = kqs−Gq−αωp0 and k⊥i0 = k⊥s −G⊥. (5.90)

Before we discuss the implications of Eq. (5.89) in more detail, let us briefly note that this result is
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(almost47) directly analogous to Eq. (10) of our discussion in Ref. [51].

5.2.1.a Approximate evaluation of the XPDC signal

Having established Eqs. (5.89) and (5.90) to describe the XPDC signal, we want to embark on its eval-

uation in more detail. To begin with, we shall obtain rough estimates of both strength and shape of

the signal. Thereby, we can build some intuition, ere we proceed to evaluate the full XPDC pattern

numerically.

Concerning the strength of a detectable XPDC signal, we can reduce Eq. (5.89) to the following

essential contributions:

dPXPDC(ks)

dΩsdωs
≈
( dσ

dΩ f

)
Th

lw Nph

Ωp |ωi0|
1

V 2�
|KGS�(0,G,ωi0)|2 , (5.91)

with |ki0| ≈ α |ωi0|. Notably, the above yields a differential scattering probability still; thus, we need

to integrate over the spectral (dωs) and angular (dΩs) acceptance of a hypothetical detection setup, in

order to reduce Eq. (5.91) into a proper scattering probability. For simplicity, we shall assume the

detection bandwidth to equal the incident bandwidth dωs→∆ωs≈Ωp. Furthermore, we take the angular

acceptance to be ∼ 1 mdeg. This provides a reasonable scale48 and corresponds to ∼ 17.4 µrad. The

resultant scattering probability per pulse reads

PXPDC ≈ α4 (17.4 ·10−6)2 lw Nph

|ωi0|
1

V 2�
|KGS�(0,G,ωi0)|2 . (5.92)

We can simplify this into a ‘conversion efficiency’—which is a popular measure in the pertinent literature

[28, 46, 47]—by normalizing to the incident number of photons Nph. Fixing the remaining parameters,

we choose a sample of length 500 µm (i.e., lw ≈ 107 a.u.), an idler photon energy at 5 eV (i.e., ωi0 ≈
0.18 a.u.) and read the corresponding strength of |KGS�|2 /V 2

� from Fig. 3.2 for the (111) orientation of

diamond: ∼ 4 ·10−5. Thus, we find a conversion efficiency on the order of

ηXPDC ≈ α4 (17.4 ·10−6)2 107

0.18
4 ·10−5 ≈ 2 ·10−15. (5.93)

This is not a particularly strong signal. Even if the details of setup, material and chosen orientation

may still introduce variations around this scale, we can already conclude that the fundamental process of

XPDC will be rather weak49.

Next, we turn to the geometry of the scattering signal. We can gather a reasonable first impres-

sion hereof by studying the phase-matching condition, i.e., momentum conservation among the scattered

photons. This is already laid out in Eq. (5.90)—apart from the peculiar sign convention, which renders

ki0 ‘negative’. Upon closer inspection of Eq. (5.89), we find this to be irrelevant anyways, as ki0 only

appears in terms of its absolute value. For all intents and purposes, we may thus use the intuitive mo-

47The main difference in between the two expressions consists in a slightly different treatment of kqi0 and a factor resulting
from its δ -function derivative.

48Note that ∼ 1 mdeg corresponds approximately to the angular acceptance of a Si (111)-reflection. Thus, it gives a rough
scale for the angular acceptance of crystal-based analyzer setups.

49Note that the weakness of XPDC is largely predetermined through its proportionality to the Thomson cross section(
dσ

dΩ f

)
Th

= α4 ≈ 3 · 10−9. This is a characteristic property of non-resonant x-ray scattering processes, which XPDC shares
with many flavours of inelastic x-ray scattering (IXS) [61]. While many IXS signals are diffuse and benefit from large collection
angles [181], however, XPDC also suffers from being confined to a small angular range around the phase-matching condition.
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mentum balance kp0 +G = ki0 +ks. This, in turn, is the same as we have found for DFG in Sec. 5.1.2,

specifically in Figs. 5.3 (b) and (d). For illustration, we adapt both the momentum balance diagram and

the corresponding phase-matching ellipse in Fig. 5.13 below50.

(a) (b) (c)

(d) (e)

Figure 5.13: Illustration of the phase-matching conditions for XPDC: Graphs (a) through (c) outline the momen-
tum balance for the process. Note the rotational symmetry axis (indicated as dashed line), which allows the initial
configuration to be flipped (b) or indeed be rotated freely (c). This generates possible scattering solutions along a
circle for any fixed sample position. The upper and lower scattering solution shown in (b) trace out an ellipse, if the
sample is rocked through Ω. This is indicated in (d), for a medium with unit refractive index as well as diamond
(n = 2.64). The circular nature of the XPDC signal becomes most apparent, if the scattering is resolved for both
in- and out-of-plane scattering angles. To this end, a locally orthogonal system of coordinates 2θ , χ is defined
in the three-dimensional illustration (e). [We gratefully acknowledge Dr. Christina Bömer’s help in rendering the
computer graphics of the sketches (a) - (c) as well as (e).]

We recall that the momentum balance has an inherent symmetry, indicated by the dashed line through-

out (a) - (c). Within the scattering plane that is defined by kp0 and G, this allows for two possible so-

lutions: ks and ki0 may form a triangle with the dashed line either from above or from below. This

is shown explicitly in Fig. 5.13 (b). Rocking the sample through Ω, these solutions will be modified

as the triangles adapt to the ensuing tilt of G. Obviously, the range of admissible scattering solutions

is constrained by two extremal points: Here, the triangles are either maximally stretched or maximally

compressed—i.e., ks and ki0 are aligned parallel or anti-parallel, respectively. Tracing across the range

in between these two points, the scattering angles for XPDC (θs) map out an ellipse, if plotted against

the rocking angle Ω. This is visualized in Fig. 5.13 (d) and occurs fully analogous to the DFG case. In

contrast to DFG, however, all (or most) of these scattering solutions should indeed be observable simul-

taneously. While in the case of DFG, the optical laser has to be re-adjusted to phase-match at different

points of the ellipse, the spontaneous idler photons of XPDC are intrinsically generated for (almost) all

directions. For further reference in Fig. 5.13 (d), we indicate the elastic Bragg position of ωp0 by a black

star and likewise show the pair of angles, for which the signal energy (ωp0−5 eV) would undergo elastic

diffraction (blue star). Notably, both could be found on the XPDC-ellipse, if the sample had a refractive

50In the present case, we choose a different orientation of diamond, viz. (400), with a view to the subsequent experimental
discussion. Likewise, we employ different pump and idler photon energies at 11.216 keV and 5.0 eV, respectively.
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index of unity (green line). In diamond, however, the idler photon’s momentum is effectively extended

through refractive corrections, such that the resulting ellipse (blue line) is larger by a factor of n = 2.64.

As the next step in visualizing the XPDC scattering pattern, we shall extend our view out of the

scattering plane. While sketch 5.13 (b) emphasized the scattering solutions inside the plane defined by

kp0 and G, we can also rotate ks out of this plane and find a matching idler photon—see illustration (c).

Overall, the XPDC signal can thus be emitted on a whole cone of possible ks. If detected by an ideal,

spatially resolving detector, this would translate into a circular XPDC pattern for any given orientation

of the sample. This situation is further illustrated in Fig. 5.13 (e). There, we have already introduced

a locally orthogonal system of angular coordinates (2θ , χ), which we can use to plot these scattering

patterns later on. The in-plane scattering angle 2θ is equivalent to the polar angle θs for an azimuth of

φs = π/2, whereas χ measures the out-of-plane component.

Finally, we want to connect the circular signature of the XPDC cone (e) back to the ellipse (d). Such

a cone of XPDC signal photons is emitted for each admissible rocking angle of the sample (Ω). The

diameter of each cone equals the vertical dimension of the ellipse at the corresponding Ω, because they

are both determined by the upper and lower solutions of sketch (b). Equivalently: If the individual XPDC

patterns (i.e., circles in 2θ , χ) were stacked for different Ω into a three-dimensional shape, then, its cut

in the plane of Ω-2θ would reproduce the ellipse of Fig. 5.13 (d).

5.2.1.b Numerical evaluation of the XPDC signal

Having established our expectations on the XPDC signal in the preceding discussion, we will embark on

its detailed numerical investigation next. To this end, we have implemented a set of numerical routines,

which—at their core—evaluate Eq. (5.89) on a two-dimensional grid of scattering angles (i.e., 2θ , χ).

These routines are bundled into a PYTHON-package—correspondingly named XPyDC.

In the following, we shall make use of this numerical framework to study XPDC in diamond. Specif-

ically, we will concern ourselves with the nonlinear scattering signal that is generated for the (400) orien-

tation of the sample and its respective reciprocal component of the nonlinear response KGS�(0,G(400),ωi).

These calculations were originally performed in anticipation of an experimental campaign at the P09

beamline of PETRA III (Hamburg) [187] and published together with its findings in a joint article (see

Ref. [51]). Our discussion of the scenario in this (and the next) section, will closely follow said report.

The defining beam parameters for the x-ray field—both for the simulation and for the subsequent

experiment—are summarized in Tab. 5.7.

experimental value parameter in a.u.
photon energy 11.216 keV ωp0 = 412.2
monochromator passwidth 1 eV (FWHM) Ωm = Ωp = 0.016
average photon ‘flux’ 4 ·1012 photons/s Nph = 4 ·1012× texposure

beam divergence 8 µrad δp = 1.37 ·105

Table 5.7: X-ray beam parameters for XPDC measurements at P09

Regarding the sample, we chose a∼ 500 µm thick specimen of diamond that featured a (100)-cut sur-

face. As such, the aimed for (400)-reciprocal component could easily be found in symmetric reflection

geometry, for which the Bragg angle of regular x-ray diffraction measures θ (400)
B = 38.304◦. Further-

more, we have focused our main effort on the detection of XPDC at an idler photon energy of 5 eV, i.e.,
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shortly below the band gap of diamond. For the corresponding value of ωi = 0.184 a.u., we have evalu-

ated the nonlinear response function KGS� numerically. Thereunto, we proceeded in an analogous fashion

to previous computations, i.e., using our MyLiO.x code (cf. Secs. 3.3 and A.6) to obtain KGS� on the ba-

sis of Kohn-Sham orbitals. Its absolute value is found to be∣∣KGS�(0,G(400),0.184)
∣∣2 /V 2

� ≈ 5.4 ·10−6.

Combining these ingredients, we are—almost—in a position to evaluate Eq. (5.89) for the nonlinear

scattering pattern. All that is left to do, is to specify an appropriate conversion of the average photon

‘flux’ from Tab. 5.7 into photon numbers51. Alternatively, we may simply divide Eq. (5.89) by Nph

and thus obtain the conversion efficiency rather than the absolute yield (or scattering probability). We

have discussed this option already in the previous section (cf. discussion following Eq. (5.92)) and shall

adhere to it henceforth. On this basis, we give a set of simulated scattering patterns in Fig. 5.14.

(a) (b)

(c) (d)

Figure 5.14: Simulated scattering patterns for XPDC at different rocking angles of the sample. Figs. (a) through
(d) correspond to rocking Ω−ΩB = −50, 0, 50, 100 mdeg, respectively. We take the (400) Bragg condition at
the pump photon energy of }ωp0 = 11.216 keV as a reference point, fixing ΩB = θB. Similarly, we center each
plot around the direction of Bragg-reflection, i.e., at 2θ = 2θB. Individual pixels correspond to a solid angle of
1 mdeg×1 mdeg and are colour-coded to show the efficiency for down-conversion by 5 eV±25 meV leading to
nonlinear scattering there. [The plots are equivalent to Fig. 2 of Ref. [51].]

51Note that we are using the term ‘flux’ in a somewhat colloquial fashion here. Instead of the number of photons traversing
a unit-area per unit-time, which is often taken as the definition of flux, we shall use the term in quotation marks (i.e., ‘flux’) to
subsume any kind of quantifier regarding the incident field’s magnitude.
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These plots pertain to different rocking angles of the sample from (a) through (d)—corresponding

to settings of Ω−ΩB = −50, 0, 50, 100 mdeg, respectively. For conciseness, we have referenced all

angular positions to the nearby Bragg condition (i.e., ΩB = θB = 38.304◦) for elastic diffraction of the

pump photons at an energy of }ωp0 = 11.216 keV. Each of the plots gives the distribution of normalized

scattering probability (i.e., scattering efficiency) across the two-dimensional plane that is mapped out

by the scattering angles 2θ and χ (cf. discussion at Fig. 5.13 (e)). The center of each plot is chosen

to coincide with the hypothetical position of the Bragg-spot, provided the pump beam was diffracted

elastically within the (vertical) scattering plane, i.e., at 2θ = 2θB and χ = 0◦. The individual pixels of

the plots subtend an angular range of 1 mdeg×1 mdeg, for which the integrated conversion efficiency is

indicated through their colour-code. Herein, the XPDC signal is integrated for signal photon energies in

the range 11.211 keV±25 meV.

Contemplating the plots, we can immediately arrive at two important conclusions vis-a-vis our earlier

estimates:

1. The conversion efficiency per pixel is even lower than we have estimated in Eq. (5.93) for the

same angular range. In part, this can be attributed to KGS�, which—at }ωi = 5 eV—is intrinsically

weaker for the (400) orientation than it was for the (111) case before. In addition, the integrated

energy range (±25 meV) for each pixel is smaller than in our earlier example.

2. The XPDC scattering pattern does indeed unfold as a circular shape in the two-dimensional 2θ -χ-

plane. This agrees well with our earlier assessment in Sec. 5.2.1.a.

On further inspection, we can add to our observations that the circular scattering patterns exhibit addi-

tional modulation around the ring. As such, we find a horseshoe-shaped pattern in Fig. 5.14 (b) with

two pronounced side-lobes or ‘bananas’52. Proceeding to Fig. 5.14 (c), i.e., rocking the sample further,

the opening of the horseshoe-shape has flipped downside-up, while the ‘bananas’ have merged into an

extended crescent.

We can trace this modulation back to the difference expression |KGS�|2−
∣∣k̂i0 ·KGS�

∣∣2 in Eq. (5.89)

and—more fundamentally—to the transverse coupling of the optical field during XPDC. Starting at the

former (more obvious) expression, we notice that it vanishes naturally, if k̂i0 aligns parallel to KGS� such

that the second term assumes the same magnitude as the first53. In addition, we recall that KGS�(0,G,ω)

tends to align, in turn, with the reciprocal component G, at which it is probed. In conjunction, this implies

that the XPDC signal vanishes, whenever phasematching would force the idler photon’s momentum

ki0 to be parallel to G. Looking back to Fig. 5.13 (b), for example, we find both upper and lower

scattering solutions to be rather unfavourable in this sense. The situation changes, however, for scattering

outside the vertical plane, as indicated in the neighbouring sketch 5.13 (c). For the outer extrema of the

scattering circle, ki would be almost perpendicular to G and thus harness the maximal signal strength.

This behaviour gives rise to the aforementioned side-lobes or ‘bananas’. It is, furthermore, quite apparent

that the specific shape of this modulation will vary, depending on variations in the orientation of either

ki or G. During rocking-curve scans, the latter is systematically tilted and thus traverses several possible

configuration for the modulation. This is reflected in the different shapes found in Fig. 5.14.
52Note that we could experimentally resolve—and thus prove the existence of—these side-lobes in a later experiment (see

Sec. 5.2.3.a). When faced with an early experimental image thereof, a collaborator of ours joyfully declared the discovery of
the ‘bananas’. In fond memory of this moment—and acknowledging the undeniable pictorial value of the expression—we shall
adopt ‘bananas’ as equivalent terminology for XPDC side-lobes.

53We recall for completeness that we employ the common-place ‘hat’-notation to signify unit vectors. As such k̂i0 denotes
the unit vector parallel to ki0.
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Having established this basic understanding of the modulation from closer inspection of Eq. (5.89),

we want to go one step further still. Namely, we want to highlight the origin of the difference expression
|KGS�|2−

∣∣k̂i0 ·KGS�
∣∣2. Upon review of Sec. 5.2, we find that the difference in question was embedded in

the the dyadic structure of Eq. (5.69) and proliferated through our derivation from there. Fundamentally,

this dyadic ensures transversality of the optical wavefield. In other words, it forces the polarization εεε i of

the idler field to be perpendicular to its wavevector εεε i ⊥ ki. This is satisfied, if the optical field’s correla-

tion function C̄OPT
νµ (k′i,ω ′i ,ki,ωi) in Eq. (5.69) vanishes along the direction of ki or k′i, respectively—just

like the XPDC signal later on. Therefore, we are led to conclude that the origin of the modulation, which

we have found in Fig. 5.14, can ultimately be traced to the transverse polarization of the idler field. It is

curious to find such a profound imprint caused by a fundamental property of electromagnetic waves.

In a closing remark on this observation, we want to point out that the transversality condition may

be broken in special cases. As stated, it stems from the transverse nature of the (idler) wave-field,

however, this is strictly ensured only in free-space or in an isotropic, homogeneous medium. Changing to

anisotropic media—featuring birefringence, for instance—we may be able to alter the polarization state

via the linear dielectric properties of the sample. The resulting change in the field’s (mode) structure

could be passed onto the XPDC scattering pattern54.

For a second observation—independent of the previous modulation aspect—we turn our attention

to the edges of the rocking range, i.e., towards Figs. 5.14 (a) and (d). On these, we note that the cir-

cular scattering patterns have each collapsed into a cohesive, point-like feature. Thereby, most of the

XPDC signal is concentrated into a (relatively) small solid angle of the scattering plane. These loci of

concentration have previously been identified by Kleinman [188] as well as Freund and Levine [189],

who have coined the term ‘edge enhancement’ and speculated about its usefulness in efforts to enhance

XPDC-detection. It should be noted, however, that the practically achievable enhancement interdepends

on the (angular) acceptance of the employed detection setup.

Post-processing for experimental comparison While the above results are fascinating in terms of

their unique shapes, they boded impossible to resolve experimentally at the time. This is in part due

to the minuscule conversion efficiency and in other part due to the challenge in rasterizing the two-

dimensional scattering plane precisely. Thus, we have opted to search for a more integrated signal.

Anticipating the analyser setup of Sec. 5.2.1.c, we expect the vertical resolution (i.e., along 2θ ) to remain

at∼ 1 mdeg but the horizontal acceptance (i.e., along χ) to comprise up to∼ 57 mdeg around the central

χ = 0◦ line. Similarly, we expect an energy passwidth of 1 eV (FWHM) around }ωs = 11.211 keV.

We can integrate and convolute our scattering patterns across these respective ranges and thereby obtain

scattering distributions as ‘seen’ through the detection setup.

Having integrated in χ , the remaining distributions are one-dimensional lineouts along 2θ for differ-

ent rocking angles of the sample (Ω). We may stack these along Ω to obtain a so-called rocking-curve

map or angular space map (cf. Refs. [51, 74]). Structurally, this map covers the same ranges as the

phasematching plot which we have discussed earlier (namely, Fig. 5.13 (d)). As such, it is unsurprising,

that its elliptical shape re-appears here—see Fig. 5.15 below.

54Note that in an extension of the above proposal, cavity structures could be envisioned to modulate the XPDC pattern as
well. The utility of such manipulations may be questionable, though.
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Figure 5.15: Rocking-curve map of XPDC conversion efficiency as predicted for the experimental conditions of
Sec. 5.2.1.c. We take the angular acceptance to be: 57 mdeg× 1 mdeg—hor. × ver. and spectral acceptance to
be 1 eV (FWHM). The signal replicates the distinct elliptical signature, which we found from our phasematching
considerations in Fig. 5.13 (d) before. For direct comparison, an elliptical trace is superimposed as a solid white
line. [The plot is equivalent to Fig. 3 of Ref. [51].]

This elliptical shape follows the upper and lower extrema of each phasematching circle, if sequen-

tially aligned along an Ω-axis. Providing a rather unique signature, it can be used to detect XPDC and,

in particular, discriminate it against other scattering effects. Despite this helpful fingerprint, however,

we should expect any attempt at detecting XPDC under these conditions to remain highly challenging,

due to the low conversion efficiency of ∼ 10−14. For illustration, we recall that the incident ‘flux’ at the

P09 beamline was measured at ∼ 4 ·1012 photons/s. The product of the two values implies that the total

count rate for XPDC would likely remain around 0.04 counts/s. This is meagre even by the standards of

photon-hungry experiments (cf. discussion in Sec. 5.1.2.c).

5.2.1.c Experimental cross-check for diamond (400)

Concomitant to our theoretical studies, we have likewise participated in an experimental investigation

into XPDC. These efforts were led by Dr. Christina Bömer and aimed to detect down-conversion under

the conditions outlined earlier. The experiment (proposal No.: I-20190876) was performed at the P09

beamline55 of the synchrotron-radiation source PETRA III in Hamburg [187]. It was described in great

detail in the aforementioned Ref. [51], with a full account of it far exceeding the scope of the present

work.

At this point, we merely seek to summarize few important aspects of the experiment in order to

contextualize our theoretical predictions. As such, we will briefly outline the setup below (Fig. 5.16),

55We gratefully acknowledge the immense help of Dr. Sonia Francoual and Julian Bergtholdt at the P09 beamline. Without
their tireless support and open-mindedness in the face of contradicting publications (cf. our later discussion in Sec. 5.2.2) the
critical work described in this section would not have been possible.
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before we report on the experiment’s essential finding.

Figure 5.16: Experimental setup used in search of XPDC at PETRA III - P09. The incident beam is filtered
by a Si(111) double crystal monochromator (DCM) as well as an additional 4-bounce stage. A diamond sample
is adjusted close to its (400)-Bragg condition, fulfilling phasematching for XPDC (see inset graphic for illustra-
tion). The vertically scattered radiation is filtered through a 4-bounce analyser and subsequently detected. [Image
courtesy of Dr. Christina Bömer. The plot is equivalent to Fig. 5 of Ref. [51].]

The setup follows a high-resolution x-ray diffraction scheme analogous to the concept outlined in

Sec. 5.1.3 (Fig. 5.7). Incident radiation from an undulator is filtered through a succession of crystal-

based monochromators before diffracting off the sample towards the detection side. The latter comprises

a second set of crystal-optics, namely channel-cut analysers that discriminate for the desired signal en-

ergy (ωs) prior to detection. All crystal-optics components were chosen to use Si(111) reflections, as their

large bandwidth (∼ 1 eV (FWHM)) conserves much of the incident flux. The large number of successive

reflections ensured, in turn, high suppression of photon energies that lie outside the desired bandwidth.

This is aided further by their specific arrangement in ‘Bartels’-configuration [190] for both the monochro-

mator and the analyser side. At 5 eV offset from the central pump photon energy (}ωp = 11.216 keV),

spectral remainders were measured to be suppressed significantly indeed—namely by ∼ 10−7.

Using this setup, we have scanned the angular range of the previously discussed rocking-curve map.

The result is plotted in Fig. 5.17 and shows no sign of the XPDC signal at the expected phasematching

condition.

While the scan shows a visible remainder of the elastic Bragg spot at Ω = ΩB = θ (400)
B and

2θ = 2θ (400)
B , the rest of the plane exhibits merely homogeneous background at ∼ 50 counts/s. Notably,

this is background is much stronger than our theoretical prediction for XPDC under these circumstances,

viz. 0.04 counts/s (cf. previous section). Thus, we would not expect to observe any structure related to

XPDC, unfortunately. Nevertheless, the experiments serves to provide an important experimental bound

on the conversion efficiency. Normalizing for the incident ‘flux’ of 4 ·1012 photons/s, we can specify the

conversion efficiency, at which the setup would still be sensitive to XPDC, to be ∼ 1.25 ·10−11.

The above result is easily compatible with our theoretical findings. However, it casts severe doubts

on earlier reports of XPDC efficiencies which ranged much higher [47–49, 55]. This discrepancy will be

the subject of a separate discussion, given in the next section (5.2.2).

5.2.2 Discrepancy towards earlier reports on XPDC

In this section, we want to address an ongoing controversy about XPDC. Specifically, this concerns

a significant discrepancy in between our theoretical findings as well as experimental results, gathered

under the lead of Dr. Christina Bömer, on the one hand and claims to the observation of XPDC by Dr.

Sharon Shwartz and co-workers on the other (cf. Refs. [47–49, 55]). In the following, we will voice our

concern on several problematic aspects of these publications.
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Figure 5.17: Rocking-curve map around the phasematching condition for XPDC at diamond’s (400) orienta-
tion. The pump photon energy was set at }ωp = 11.216 keV and detection proceeded at }ωs = 11.211 keV—
corresponding to idler photons of 5 eV. A white, solid line indicates the kinematically expected phasematching
ellipse (cf. Figs. 5.13 and 5.15). The reference position at (0,0) is given by the elastic Bragg spot, which shows a
visible remainder still. Notably, the characteristic scattering signature of XPDC is absent. [Image courtesy of Dr.
Christina Bömer. The plot is equivalent to Fig. 8 of Ref. [51].]

The first—and most substantial—case for us to consider, is their claim of observing XPDC into idler

photons in the optical regime (e.g., }ωi = 2.2 ...4.4 eV) using a diamond sample near a (220) reflection

[47]. Their measurements reach count rates of 3000 counts/s (Fig. 3, ibid.56) and more (Fig. 4, ibid.),

which the authors interpret as XPDC. These correspond to conversion efficiencies in excess of ∼ 10−10

and are thoroughly incompatible with our theoretical predictions for the given scenario.

As per our theory, the nonlinear response for diamond’s (220) orientation does not differ dramatically

from the (111) case, which we have analysed initially (cf. Sec. 5.2.1.a). At an idler photon energy of

}ωi = 5 eV, for instance, it amounts to
∣∣KGS�(0,G(220),0.184)

∣∣2 /V 2
� ≈ 2.9 · 10−5. Using this value

to repeat our estimate of Eq. (5.93) for this orientation, consequentially yields a theoretical conversion

efficiency of merely ∼ 1.5 ·10−15. This is, at least, five orders of magnitude smaller than their reported

signal. Even if broader angular integration ranges were accounted for, this discrepancy could not be

bridged.

We have spent significant effort—both theoretically and experimentally57—in order to resolve this

discrepancy. Ultimately, this work culminated in the studies of Ref. [51], which we have discussed in the

preceding section. Its results consistently point to much smaller count rates for XPDC.

While said study [51] provides a strong counter-indication to the claims of Shwartz and co-workers

in itself, we want to extend our criticism by referencing an alternative interpretation of their ‘signal’

as well. This interpretation was put forward by Dr. Christina Bömer, who attempted to reproduce the

findings of Shwartz and co-workers independently after participating in the measurements that led up

56Note that we shall refrain from reproducing any figures from the publications by Shwartz and co-workers in this work.
Instead, we ask the reader to consult their data in its original context. In doing so, we seek to avoid misrepresentation of their
results. We acknowledge with regret that this prevents quick, visual reference and apologize to the reader for this inconvenience.
We emphasize, however, that we consider it to be instructive for any reader to acquire a first-hand impression of their work.

57We want to emphasize that the experimental work on this subject was primarily conducted by Dr. Christina Bömer. Large
parts of it fall outside the scope of this treatise and can be reviewed from her monograph on ‘Energy resolved diffraction for
investigating x-ray parametric down-conversion’ [75]. Nevertheless, we had the pleasure to join in later experimental campaigns
and collaborated on the interpretation of some results.
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to Ref. [47]. More so, she aimed to characterize the supposed XPDC signal and obtain its first two-

dimensional rocking-curve map. The expected ellipse (cf. our discussion in Secs. 5.2.1.a and 5.2.1.b)

would have allowed for an unequivocal identification of the down-conversion process. However, her

measurements (accessible through Refs. [74, 75]) revealed linear streaks rather than the phasematching

ellipse. On closer inspection, Dr. Bömer could explain these features in terms of elastic scattering, which

produces background artefacts that are known from high-resolution x-ray diffraction (see, for instance,

Refs. [173, 191]). Crucially, these streaks appear to coincide with the signals that Shwartz and co-

workers have previously interpreted as XPDC. As such, their reports may likely be founded on a simple

but fundamental misinterpretation.

Our subsequent study of Ref. [51] lends further credit to this hypothesis. Using a more refined setup,

we could achieve much higher suppression of unwanted spectral components than before. As a result,

the observable streaks shrank significantly—as would be expected for elastic scattering artefacts. At the

same time, no evidence for XPDC could be found, even though the sensitivity of our setup (∼ 10−11)

would have covered the range reported by Shwartz and co-workers ( & 10−10).

In a closing remark on this point, we want to note that Shwartz and co-workers have recently pub-

lished further reportings on XPDC [192]. Besides claiming a dubious polarization dependence therein,

they also comment on our preceding criticism. However, they remain adamant that any discrepancies

would result from differences in the respective setups and that their findings of XPDC signals would

indeed be valid. Most remarkable—if not ironic—about said publication is the fact that the authors

did adopt our practise of plotting rocking-curve maps of the supposed signal (cf. Fig. 4 in Ref. [192]),

whereby they find linear streaks instead of an XPDC-phasematching ellipse. Even though their plot

clearly corroborates Dr. Bömer’s interpretation of this ‘signal’ being just artefacts of elastic diffraction

(recall Refs. [74, 75]), Shwartz and co-workers do not pursue any closer inspection.

Thus re-alarmed, we emphasize the need for independent reproduction of these measurements and

caution against any efforts to build upon the results of Refs. [47–49, 55, 192] without prior scrutiny.

Furthermore, we conclude that the first detection of parametric down-conversion from x-rays into the

optical regime is—most likely—still outstanding and thus remains a challenge for future experiments to

achieve.

In the following we shall briefly address three additional issues about the quoted reports, which

appear questionable and call for dedicated criticism in our opinion:

Criticism on: Internal inconsistencies of earlier works In at least two cases, Shwartz and co-workers

report on supposed XPDC signals in diamond, which show little to no dependence on changes in their

energy-/phasematching settings. These can be found in Ref. [47], Fig. 4 and Ref. [55], Fig. 3 (a). In

the former case, three instances of a 2θ -scan are presented, of which each is supposed to contain the

XPDC signal for 2.2, 3.3 or 4.4 eV idler photons, respectively. Apart from variations in the strength

of the residual Bragg peak, however, no significant change of the ‘signal’ is visible among them. This

is particularly remarkable, as the authors super-impose plots of their theoretical expectations, which do

change in position—both absolute and relative to the ‘signal’.

The second example contains three—nominally different—analyzer scans, wherein the authors claim

to measure XPDC at phasematching for three different idler photon energies (here: 30, 40 and 50 eV).

Yet again, all three curves fall into the very same location, which is particularly obvious in this case, as
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they are super-imposed directly58.

Both reportings raise the question, why the signals—if they represented XPDC—should co-locate in

the same place and shape, despite originating from a nonlinear process at considerably different phase-

matching conditions. An interpretation of the signal as originating from other, linear scattering processes,

on the other hand, would not necessarily suffer such inconsistencies.

Criticism on: Claim of XPDC-plasmon coupling In a separate publication [48], Shwartz and co-

workers report on the parametric conversion of x-rays into the deep UV regime (i.e., involving idler

photons of 28–54 eV). In addition to claiming the observation of XPDC in this regime, they claim, more

specifically, to have found evidence for XPDC coupling to plasmons.

We shall not focus on their primary claim here, which we have reason to doubt in itself (viz., by

extension of our previous arguments). Instead, we want to comment on the proposition that XPDC

couples to plasmonic excitations from our theoretical vantage point. We deem this to be very unlikely,

because the two phenomena involve mutually orthogonal types of coupling (transverse vs. longitudinal).

Expanding on this thought, we first recall from our fundamental derivation that any optical field

couples to the electronic system via the p ·A-term of the interaction Hamiltonian (cf. Eq. (2.2)). In the

coupling process, the inherently transverse nature of the electromagnetic field59 is imprinted onto any

electronic excitations, which is driven by it: A transverse field drives a transverse electronic current60. In

the case of XPDC, this electronic current forms part of the nonlinear, current-density–density response

function
PI(x1, t1, x2, t2) = 〈I| T̂ [p̂(x1, t1) n̂(x2, t2)] |I〉 (5.94)

and its Fourier transform KI , which govern all of the wavemixing processes discussed in this work (cf.

Chpt. 3 and Eq. (3.1) therein).

Plasmons61, on the other hand, represent a longitudinally-coupled phenomenon [193]. They can be

visualized as density oscillations of the (macroscopically homogeneous) electron gas of a solid. Their

coupling is mediated directly through Coulomb-interaction along their line of propagation62. Prominent

methods to excite such plasmons in bulk-materials rely on electron energy loss spectroscopy (EELS)

or non-resonant x-ray Raman-scattering (i.e., IXS) [163, 194, 195], both of which probe an electronic

density–density correlator and can in themselves be considered as longitudinally-exciting processes.

Given these fundamental differences, we reiterate our earlier assessment that we deem the coupling

of XPDC to (bulk-)plasmon excitations to be very unlikely. Shwartz and co-workers could clarify this

matter further, if they provided evidence that the measured phenomenon did indeed follow a plasmonic

dispersion-relation—in addition to satisfying XPDC-phasematching.

58We note that Shwartz and co-workers do address this immobile peak, in that they conjecture, it may be the result of an
underlying resonance. However, we doubt that this would invalidate phasematching. After all, phasematching dictates the
position of the signal as a consequence of the fundamental principle of momentum-conservation. This should hold irrespective
of any resonances—rendering their argument moot.

59We recall for completeness that propagating electromagnetic fields in vacuo (or inside ‘simple’ dielectric media) take on
the form of transverse wave-fields. That is, their field vector is polarized perpendicular to their propagation direction, i.e., per
each mode i, we have εεε i ⊥ ki. In our framework of non-relativistic QED, we have made this circumstance particularly manifest
through the choice of the Coulomb-gauge ∇ ·A = 0.

60We remark for completeness that the inverse case is obviously also possible, i.e., an existing electronic current can couple
to the electromagnetic field (or vacuum) thus emitting a photon rather than absorbing one. This photon will again be of
transverse nature.

61We want to specify—as do Shwartz and co-workers in Ref. [48]—that we focus on bulk plasmons here.
62We note that a good analogy for such a longitudinal wave is the propagation of sound in air, namely the forward propaga-

tion of density/pressure modulations.

131



5. Application to experiments

Criticism on: The extrapolation of nonlinear properties from the optical into the x-ray domain
In yet another publication, Shwartz and co-workers claim to have measured XPDC in Gallium-Arsenide

(GaAs)—among other samples [49]. For its (111) orientation, they report an astonishing conversion

efficiency of ∼ 10−6 for the XPDC process. This presents a dramatic increase compared to their own

previous claim for XPDC in diamond (10−10) [47] and exceeds even the measured efficiency of laser-

driven wavemixing in diamond (∼ 10−9, cf. Sec. 5.1). Shwartz and co-workers attribute the reported

increase to a structural difference of GaAs over diamond, namely its lack of inversion symmetry. Mo-

tivating this proposition, they invoke an analogy with the all-optical regime. At optical frequencies,

so-called ‘second-order nonlinearities’, which are responsible for SPDC or all-optical SFG/DFG, are

known to vanish for inversion-symmetric materials (see Refs. [12–14] or similar).

However, this rule does no longer hold true at shorter wavelengths. As a matter of fact, it is only valid

in conjunction with the dipole-approximation (cf. Ref. [13]) and relaxes as soon as the former loses its

applicability. For x-ray-optical wavemixing, there is thus no reason to assume that the sample’s inversion

symmetry plays a relevant role—a priori.

Going beyond this general argument, we shall further review the proposition of Shwartz and co-

workers against the backdrop of our theoretical XOWM framework. As we have derived this from first

principles, its description of XPDC naturally takes the symmetry of the sample into account. Specifically,

it does so via the nonlinear response functions KI (cf. Chpt. 3): Should the inversion symmetry of

diamond versus the lack thereof in GaAs imply different XPDC signal strenghts, this would be reflected

in their respective magnitudes of the nonlinear response function. We will therefore proceed to compare

KI for both materials on the prominent (111) reciprocal component.
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Figure 5.18: Comparison of the nonlinear response function KI at the (111) orientation for diamond (red, solid
line) and GaAs (blue, dashed line).

Based on Kohn-Sham DFT calculations63, which incorporated the crystal symmetry in the construc-
63We note for completeness that both DFT calculations were performed with ABINIT [106] using simple LDA exchange.

Both employed the norm-conserving pseudopotentials, which were standard for their atomic sub-species in ABINIT in 2020.
The plane-wave basis was limited by an energy cut-off at 15 a.u.. For both crystals, the (cubic) unit cell sizes were fixed to
their literature value, i.e., 6.741 a.u. for diamond and 10.6831 a.u. for GaAs. In processing the resulting band-structures with
MyLiO.x, we implemented individual ‘scissor’ corrections—thereby approximating more realistic values for the respective
band gaps. For diamond, the correction was taken to be ∆E = 0.062 a.u. (∼ 1.7 eV) adopted from Ref. [111] and for GaAs
∆E = 0.029 a.u. (∼ 0.8 eV) adopted from Ref. [196].
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tion of their basis sets, we compute spectral outlines of the nonlinear response using our MyLiO.x

program. The results are plotted in Fig. 5.18, with the diamond case given as a red, solid line and GaAs

represented by the dashed, blue curve. Notably, both show comparable strengths at the marks of 10 eV

and 20 eV, which are two points reported by Shwartz and co-workers in Ref. [49].

In conclusion, we see no indication that XPDC signals should prove (significantly) stronger in GaAs

than in diamond64. By extension, we disagree decidedly with the more general proposition by Shwartz

and co-workers that the inversion symmetry of a material would influence their nonlinear response prop-

erties for XOWM. There is neither a valid, general rule that would support this hypothesis nor do our

explicit simulations back this claim for the particular case at hand.

We shall close our criticism by recalling that a characteristic signature of XPDC should be mapped

out, in order to provide solid evidence of the nonlinear effect. Individual, selective measurements of

photons being transmitted through a detuned analyser, on the other hand, are insufficient to prove down-

conversion. We emphasize the importance of this identification especially in view of relatively strong,

coincident background effects. Crucially, all of the aforementioned publications by Shwartz and co-

workers fail to provide this essential evidence.

5.2.3 XPDC (far) above the band gap

As a second scenario for XPDC, we shall investigate the conversion effect far above the band gap of

the sample. That is, we assume the idler photon’s energy to range above any valence excitations and,

moreover, to be non-resonant with any ‘other’ transitions admitted by the material’s electronic structure.

This regime of XPDC has been studied intensively by Tamasaku et al. [50, 113, 114] and thus promised

to provide a good benchmark for our theory. More recently still, we succeeded in characterizing this

conversion regime ourselves in two experimental campaigns (proposals No. HC-4489 and HC-4907)

at beamline ID20 of the European Synchrotron Radiation Facility (ESRF) [181]. These measurements

achieved the first angular-resolved view of circular XPDC scattering patterns—including the resolution

of the aforementioned side-lobes (‘bananas’). As such, they provide a reference that is unprecedented in

its quality and shall form the guideline for our theoretical narrative.

Aiming to evaluate our theory in the outlined regime, we can resort to our earlier work and adapt it.

In particular we may start out from the scattering-expression (5.76) and merge it with the effective flux

model of Eq. (5.78) to arrive at Eq. (5.80), as we saw earlier:
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)
.

(5.95)

From here on, our derivation will diverge (slightly) from the path of Sec. 5.2.1. Given that the

64We add as a sidenote that we have evidence for the contrary, namely the XPDC signal in GaAs being weaker than in
diamond, effectively. This is mainly caused by the much stronger absorption of x-rays in GaAs, which prevents illumination-
depths on par with large diamond samples. We have observed this disadvantage of GaAs for XPDC at idler energies of
}ωi ≈ 100 eV in measurements at the ESRF.
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idler photon’s energy is now assumed to range above the threshold for valence-excitations, it can suffer

losses from absorption. Consequentially, it is no longer possible to rephrase the dispersion-term, i.e.,

Im(...), within Eq. (5.95) into the δ -function of a virtually transparent medium (cf. our reasoning at

Eq. (5.81)). Instead, we will maintain its form for the moment and concentrate on simplifying other

aspects of Eq. (5.95).

First of all, we impose our knowledge that the correlation function KGS�(0,G,ωi) does not exhibit

much spectral structure (far) above valence excitations65. Ergo, we can assume it to be roughly con-

stant around its value of ωi0 = ωs−ωp0. At this point, we want to recall, once again, that our model

entails negative idler photon energies by convention. Apart from its peculiar looks, this has no adverse

consequences (cf. also discussion in Sec. 5.2.1).

As the next step for simplification, we address the exponentials, which constrain k⊥i . These are very

narrow on the scale of all involved momenta. As such, we can reasonably well approximate them with

straight-forward δ -functions, like:

δ x
p√
2π

e−(k
x
s−kx

i−Gx)2(δ x
p)

2/2 ≈ δ (kx
s − kx

i −Gx). (5.96)

In this—and the analogous step for the y-component—we have to bear in mind the proper normalization.

Finally, it would be convenient to convert the δ -function that represented the x-rays’ dispersion

relation, into a shape, where it directly impacts longitudinal momentum components. To this end, we

recall from our appendix A.9 the relation Eq. (A.89):

δ (ω− c |k|) = δ (kq− kq0)
|k|
ckq0
≈ α δ (kq− kq0) (5.97)

with kq0 =
√

ω2/c2− (k⊥)2 for ‘forward’-propagating pump-beam.

Combining all of the above, we find
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, (5.98)

where kq0 =
√
(ωs−ωi)2/c2− (−k⊥i +k⊥s −G⊥)2. Once, we make use of all δ -constraints, we can fix

ki in all of its components:

k⊥i0 = k⊥s −G⊥ and (5.99)

kqi0 = kqs−Gq−α(ωs−ωi)≈ kqs−Gq−α ωp0 (5.100)

as would be dictated by kinematical momentum conservation. In this, our results are the same as before,

in fact. Even if we feed these simplifications back into our scattering probability, we are very close to

65We recall that in the spectral region above ∼ 30 eV, the nonlinear response function for diamond is approximated quite
accurately by Freund’s model (cf. Sec. 3.2.2) actually. Its only spectral structure is a monotonic 1/ωi-type decline. Similarly,
KGS�(0,G,ωi) will be slowly varying in other materials, as long as ωi is sufficiently far off any resonant structure.
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the earlier Eq. (5.89). The main difference is in the remaining integral in ωi:
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In the following, we will show that this integral is basically the convolution of a Gaussian with

a (relativistic) Breit-Wigner profile and may be simplified into a so-called Voigt-profile for our case.

To see this, we first approximate the dielectric function within the imaginary-part expression as slowly

varying with energy. This step rests on the same arguments that we have invoked before when simplifying

KGS�(0,G,ωi)→KGS�(0,G,ωi0). Applied to ε(|ωi|)→ ε(|ωi0|), we can rewrite
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, (5.102)

where we have used the abbreviation εr = Re[ε(|ωi0|)] and εi = Im[ε(|ωi0|)], respectively. We proceed

to reformulate

4εi ω2
i α2

(ω2
i α2εr−|ki0|2)2 +(α2ω2

i εi)2
=

4εi

α2 ε2
r

ω2
i

(ω2
i − c2 |ki0|2 /εr︸ ︷︷ ︸

ω̄2

)2 +(ω2
i εi/εr)2

=
4εi

α2 ε2
r

ω2
i

((ωi− ω̄)(ωi + ω̄))2 +(ω2
i εi/εr)2

≈ 4εi

α2 ε2
r

ω̄2

((−2ω̄)(ωi + ω̄))2 +(ω̄2εi/εr)2

=
εi

α2 ε2
r

1
(ωi + ω̄)2 +(ω̄εi/2εr)2 . (5.103)

Herein, we have identified the two possible roots ±ω̄ , of which only the negative one is relevant at this

point (recall our convention that ωi < 0 for XPDC). Furthermore, we note that we will be interested

only in a small range of frequencies ωi around the value of ω̄ . Thus, we can quite safely approximate

the non-resonant term with a constant value. The above already sports the appearance of a Lorentzian;

subsequently, we shall re-insert this into its convolution with the Gaussian energy distribution from

Eq. (5.101)
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In the final step, we have switched the sign of the integration variable ωi →−ωi, in order to ease the

following identification: The convoluted expression we find in Eq. (5.104) is simply a Voigt profile:

V (x;σ ,γ) =
∫

dx′
1

σ
√

2π
e−(x

′)2/2σ2 γ/π
(x− x′)2 + γ2 . (5.105)
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More specifically adapted to our case, this reads
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Using this, within our scattering expression for XPDC, finally, yields
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As a brief reminder, the occurring abbreviations are: ω̄ = c |ki0|/εr, εr =Re[ε(|ωi0|)] and εi = Im[ε(|ωi0|)].
In addition, the components of ki0 are fixed through phasematching as:

k⊥i0 = k⊥s −G⊥ and kqi0 = kqs−Gq−α ωp0 (5.108)

Connection to low-energy case of XPDC Notably, our above result has the same structure as our

earlier scattering expression (5.89) from Sec. 5.2.1

dPXPDC(ks)

dΩsdωs
=
( dσ

dΩ f

)
Th

ωs

ωp0

4π α lw Nph

neff |ki0|
1

Ωp
√

2π
e−(ωs+

c
neff
|ki0|−ωp0)

2/2Ω2
p

× 1
V 2�

(
|KGS�(0,G,−c |ki0|/neff)|2 −|ki0 ·KGS�(0,G,−c |ki0|/neff)|2 / |ki0|2

)
. (5.109)

This similarity is unsurprising, given that these two situations basically describe very similar physics.

Namely, XPDC at an idler energy that is sufficiently far away from material resonances, in order for

KGS�(0,G,ω) to be a slowly varying function. Their distinguishing feature is the absence of absorption

(of the idler photon) below the band gap. If we were to impose the same onto Eq. (5.107), i.e., prescribing

εi → 0, we would find the same result. In this case, we can simplify the Lorentzian within the Voigt-

profile into a δ -function:

lim
γ→0
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1
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√
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e−(x)
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Thereby, its remainder reduces to a Gaussian and correspondingly Eq. (5.107) reduces directly to Eq. (5.109)—

with
√

εr = neff as we would expect66.

66We note for practical application: The scipy-implementation of Voigt-profiles seems to handle small (vanishing) γ well.
As such, the more general routine from the high energy regime may be applied for the low-energy cases, too.
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5.2.3.a Experimental results and numerical comparison

With positive validation of our theory on XPDC still pending at optical idler photon energies, we have,

separately, attempted to detect parametric conversion of x-rays into XUV photons in the meantime.

For this regime, there was reliable evidence established by Dr. Kenji Tamasaku and co-workers that

scattered x-ray photons could, in fact, be detected, which were compatible with expectations for XPDC

in many respects. Specifically, this concerned XPDC in the non-resonant, high-frequency limit, featuring

∼ 100 eV idler photons [50, 113–115].

Notably though, the results of Tamasaku and co-workers covered only a restricted angular range of

phasematching parameters, as they focused their measurements on the ‘outer edge’ of the phasematching

ellipse. In this, they chose the region of scattering space that is furthest removed from the elastic Bragg-

condition67. We illustrate their situation below in Fig. 5.19.

Figure 5.19: Illustration of the parameter range studied by Tamasaku and co-workers for parametric down-
conversion of 11.0 keV x-rays into 100 eV idler photons: We show the complete phasematching ellipse for XPDC
(green, solid line), while superimposing the scanned range of Refs. [113, 114] as a grey, hatched parallelogram. As
an angular reference, we use the elastic Bragg-spot at θ (111)

B = 15.883◦ for the pump photon energy, respectively.
For completeness, we note that phasematching for XPDC is expected to include refractive effects (cf. Eq. (5.107)).
Nevertheless, we indicate a simplified version using n = 1 as well (blue, solid line).

Here, the phasematching ellipse for down-conversion into ∼ 100 eV idler photons (green, solid line)

is given relative to the regular Bragg-condition—the latter being marked by a blue star. The full solution

of the phasematching problem takes corrections of the refractive index into account, while a reference

pattern at n = 1 is likewise shown (blue, solid line). Finally, we indicate the angular range covered

during the scans of Refs. [113, 114] by a grey, hatched parallelogram68. It is immediately apparent from

this illustration that the approach of Tamasaku and co-workers could probe only a minute fraction of

the phasematching ellipse. Moreover, their setup was integrating across both scattering angles 2θ and χ
and thus lacked any resolving power that would be required to investigate two-dimensional patterns as

predicted earlier (cf. Fig. 5.14 in Sec. 5.2.1.b).

67We note that the Bragg condition for Tamasaku’s setting, i.e., using incident pump photons at an energy of
}ωp = 11.0 keV, the nominal Bragg angle would be θ (111)

B = 15.883◦ for a diamond (111) reflection.
68We note that the extent of this parallelogram was constructed on the basis of the published scan range∼±1◦ (horizontally)

[113, 114] as well as a defining aperture of ∼ 0.242◦ (vertically, i.e., in 2θ ) [114] [augmented via private communications by
Dr. Kenji Tamasaku]. The slope of the parallelogram follows the angular prescription given below Eq. (2) in Ref. [113].
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In contrast, our own experiments in this regime have pioneered a new, angularly resolving setup for

XPDC-studies. This setup has been implemented and refined throughout two experimental campaigns

at the ESRF (proposals No. HC-4489 and HC-4907)—once again led by Dr. Christina Bömer69—using

the x-ray Raman spectrometer at beamline ID20 [181]. At its core, the setup makes use of a single,

spherically-bent crystal analyser as previously described in Sec. 5.1.3. Crucially, we have employed this

analyser in an asymmetric configuration, for which the source-point was located on the Rowland circle

but the detection plane was not (in contrast to Fig. 5.8 earlier). Instead, the latter was shifted inside the

Rowland-circle, such that the XPDC-cone—after being reflected off the analyser—intersects the detector

plane and is imaged at a finite diameter. We attach a sketch of the overall experimental setup below for

further illustration (Fig. 5.20).

Figure 5.20: Illustration of the bent-analyser-based setup used at ID20: A monochromatised x-ray beam (kp)
scatters vertically off a diamond sample. If adjusted for the phase-matching condition (see inset), an XPDC signal
cone (ks) is generated, besides background scattering, and can be captured by the bent-analyser. Discriminated
for its energy, the XPDC-cone (green arrows) is reflected towards the detector, where its cross section is imaged.
Note: In the actual experiment (HC-4907), the analyser deflected horizontally. [Image courtesy of Dr. Christina
Bömer]

It shows a diamond sample in reflection geometry (close to the symmetric (111) Bragg-condition),

which is illuminated by a monochromatised x-ray ‘pump’ beam (kp). If the phasematching condition

for XPDC—which is recounted in the figure’s inset—is satisfied, a cone of XPDC signal photons (ks)

is emitted from the sample. Once this signal reaches the bent analyser, it is energetically filtered, i.e.,

concurrent background at photon energies other than }ωs = }ωp−100 eV is suppressed. The remaining

signal is reflected towards the detector, where the cone of signal photons is imaged, before it could re-

converge into a point. We note that—for the sake of two-dimensional depiction—we show the analyser’s

deflection (i.e., dispersive direction) to be vertical. However, in the actual setup of experiment HC-4907,

we have used a horizontally deflecting analyser to detect the data shown below.

This setup allowed us to map out the two-dimensional scattering patterns of XPDC, which we have

predicted before in Secs. 5.2.1.a and 5.2.1.b. Transferring these predictions to the regime of high idler-

photon energies, i.e., employing Eq. (5.107), we can simulate the corresponding two-dimensional distri-

butions of signal photons for the case at hand. To this end, we shall make use of our PYTHON-package:

XPyDC again. Therein, we have implemented another, dedicated, subroutine for treating the high-energy

dispersion. The nonlinear response function needed for these simulations was obtained in the high-

frequency limit as described in Sec. 3.2.2. A first, exemplary result for the simulated scattering patterns

69We note that, similar to previously described experiments, the efforts involved here extended far beyond the scope of our
own work—and beyond the scope of this thesis, in particular. Besides the invaluable collaboration with Dr. Christina Bömer in
planning, organizing and conducting the experiment, we gratefully acknowledge the immense help and continuous inspiration
provided by Dr. Blanka Detlefs and Dr. Christoph Sahle at the ID20, as well as Dr. Simo Huotari remotely. During the second
campaign, our measurement efforts were further supported by Fridtjof Kerker and Dr. Maria Weseloh.
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can be found in Fig. 5.21.

The defining beam parameters for the x-ray field—both for the simulation and for the subsequent

experiment—are summarized in Tab. 5.8.

experimental value parameter in a.u.
photon energy 9.787 keV ωp0 = 360
monochromator passwidth 1 eV (FWHM) Ωm = Ωp = 0.016
average photon ‘flux’ 5 ·1013 photons/s [181] Nph = 5 ·1013× texposure

beam divergence ∼ 150 µrad δp = 7.31 ·103

Table 5.8: X-ray beam parameters for XPDC measurements at ID20

Regarding the sample, we have used a ∼ 1.1 mm thick specimen of diamond that featured a (111)-

cut surface. Its Bragg-angle for the (111) reflection at 9.787 keV amounts to θ (111)
B = 17.914◦, which

is rather shallow. This results, in turn, in a long projection of the sample’s depth along the beam-path,

namely ∼ 3.6 mm. Given that this exceeds the absorption-length at the ‘pump’ photon energy, i.e.,

labs ≈ 1.2 mm, though, we shall rather consider the latter to delimit our effective sample length.

(a) (b)

Figure 5.21: Simulated scattering patterns for XPDC at a rocking angle of Ω−ΩB = 1.0◦. For the numerical
evaluation of Eq. (5.107), we have employed an angular grid at 5 mdeg pixel-spacing (a) and interpolated the
observable pattern to the experimental rasterization of 20 mdeg later on (b). Using the beam parameters of Tab. 5.8,
we can provide absolute count-rate estimates for the corresponding experiment. The energy acceptance on the
detection side was approximated as a Gaussian window of 1.5 eV (FWHM).

Our first numerical result (Fig. 5.21) agrees well with earlier findings; the XPDC pattern is circular

with an additional modulation on top. We present two versions of the same scattering scenario (i.e.,

sample is set for phasematching at Ω−ΩB = 1.0◦): First in Fig. 5.21 (a), we provide a fine-grained

picture on an angular grid of 5 mdeg pixel-spacing, which was used for the simulation intrinsically.

Second, we interpolate this to a coarser pixel size of 20 mdeg, which corresponds to the experimental

situation. In both cases, we have assumed the energy acceptance of the detection setup to span 1.5 eV

(FWHM), in accordance with Ref. [181], and approximated the analyser’s transmission function by a

Gaussian of unit peak-transmissivity.
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In the next step, we shall compare our simulations to the experimental findings. These come in the

form of Fig. 5.22, which has kindly been provided to us by Dr. Christina Bömer.

Figure 5.22: Compilation of nonlinear scattering patterns as recorded in experiment HC-4907 at ID20 (ESRF). At
a pump energy of }ωp = 9.787 keV and idler photon setting (i.e., energy loss) of }ωi = 100 eV, the series of images
covers several phasematching positions of the sample: From top left to bottom right, these traverse Ω−ΩB = 0.2◦

up to 1.8◦ in steps of 0.2◦. All images have been corrected for background scattering by subtracting a reference
image from outside the phasematching condition. The contrast in the first image is insufficient to discern the
nonlinear scattering signal. [Image courtesy of Dr. Christina Bömer]

In this series of pictures, we see the observable scattering patterns at several different phasematching

positions of the sample: From top left to bottom right, these traverse Ω−ΩB = 0.2◦ up to 1.8◦ in

steps of 0.2◦. Thus, the center-most image corresponds to Ω−ΩB = 1.0◦ and can directly be compared

to Fig. 5.21. We note that the experimental images appear rotated by 90 degrees (i.e., their 2θ -axis

lies horizontally) as well as flipped in χ compared to Fig. 5.21. All images have been corrected for

background scattering by subtraction of a reference image that was taken outside the phasematching

ellipse, i.e., an image containing only homogeneous background from (inelastic) scattering.

In each of the above sub-plots, we can identify a large circular shape—which marks the (difference-)

image of the complete analyser surface—as well as a smaller circular signature in the center of eight of

these plots. The latter is the nonlinear scattering pattern and appears indeed in the position expected from

XPDC-phasematching. For comparison, we give a plot of the corresponding theoretical simulations in

the subsequent Fig. 5.23. From this comparison, we can draw four remarkable observations:

1. The positions of the individual scattering patterns (circular signatures) from the experiment agree

very well with the corresponding predictions for XPDC based on our theory. Even though the

diameter of the circles appears to expand and contract slightly more rapidly in the theoretical
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simulations70.

2. The scattering patterns do indeed exhibit the modulation around the circle, which we have expected

from our earlier simulations and reasoning (cf. Sec. 5.2.1.b). In particular, we are able to identify

well-visible XPDC side-lobes (i.e., ‘bananas’71).

3. In stark contrast to our simulation, the experimental signature exhibits not one but strictly two

circular features. More specifically, there appears a positive as well as a negative72 pattern—

concentrically aligned.

4. Apart from this qualitative difference, which is certainly significant, we note with some surprise

that our theory is, nevertheless, in good quantitative agreement with the absolute scale of the effect.

While the experiment shows a swing in count rates from −15 to +15 counts/s, the maximal value

that our theory predicts ranges around ∼ 35 counts/s.

Of all these observations, the alternating scattering signatures (±) are certainly the most intriguing

feature. We note for reference that indications of this behaviour have been found before as well. In

fact, Tamasaku and co-workers have observed the impact of the same effect on their integrated, one-

dimensional scattering profiles (cf. Refs. [50, 113–115]). They proposed an interpretation in terms

of XPDC interfering with the background, which consists mostly of Compton scattering. Quantum-

mechanically, such an interference should be forbidden, as both processes feature distinct final states.

Notably, Tamasaku and co-workers have remained critical of this explanation themselves and pointed

out that “[...] the microscopic mechanism is an open question” [114].

We have pursued this question further at other points of this work. Thereby, we have arrived at the

preliminary conclusion that the sustained interaction of the idler photon with the medium plays a crucial

role for the phenomenon. We have progressed towards this conclusion in two stages:

First, we have re-considered our perturbative approach. In a derivation presented in App. A.17,

we investigate at lowest order, how the ‘XPDC’ process is affected by the possibility that an XUV-

idler photon may be readily re-absorbed by the medium. If this occurs in a coherent process, we could

demonstrate that the result resembles both Compton-scattering and XPDC. In particular, it follows the

same phase-matching condition as the latter, but does not produce a real idler photon. Most significantly,

we show that its perturbative amplitude will be subtracted from the regular Compton background.

In a second step, we have extended our reasoning on the idler photon even further. Considering

scenarios beyond a single re-absorption event, we assume the idler photon to be re-absorbed and re-

emitted on a perpetual basis, instead. The hybrid system of light and matter, which arises from this

perpetual coupling represents a Polariton (cf. Refs. [149, 197]). Formalising our intuition on this in

70We note that the slightly different behaviour in expansion of the circular scattering signature in the experiment vis-a-vis
our theory could originate from several factors. On the theory side, for instance, the effects of beam-divergence have been
integrated out approximately. However, they may lead to modifications of the phasematching pattern as they introduce new
(and broader) angles. On the experimental side, several cross checks are themselves still outstanding and the data should be
considered as preliminary to some degree

71We fondly recollect the moment during our experimental campaign HC-4489, when a first clear image of these side-lobes
could be obtained. Given their unique and immediately recognizable shape, they re-assured us of the presence of nonlinear
conversion and, thus, prompted relief and joy among the whole collaboration. At this moment, a collaborator of ours joyfully
declared the discovery of the ‘bananas’. As we have pointed out earlier already, we shall continue to employ this terminology
in reminiscence of that moment.

72We point out that this ‘negative’ part of the scattering patterns is not truly negative, of course. It merely appears negative
after subtracting the background. More precisely, we should say that the ‘negative’ features mark areas, where the scattering
signal is smaller than the average background.
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Figure 5.23: Compilation of nonlinear scattering patterns as simulated vis-a-vis Fig. 5.22. The series of images
covers several phasematching positions of the sample: From top left to bottom right, these traverse Ω−ΩB = 0.2◦

up to 1.8◦ in steps of 0.2◦.

Sec. 6.1, we derive a simple model system, which allows us to explain the alternating scattering features

found earlier.

With this outlook in mind, we want to conclude on the primary observation and simulations of XPDC

given in this section. We remark in closing that these results have been instrumental in shaping our

understanding of XOWM, specifically, and light-matter interaction, more generally73. By extension,

further exploration of XPDC in this realm appears highly desirable and both theoretical and experimental

efforts are, in fact, foreseen to this end.

73We note that publications pertaining to the presented results are in preparation and will elaborate further on (experimental)
details and progress, which we could not cover at this point.
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Chapter 6

Extras

In this chapter, we will present work that is connected to our main topic of XOWM yet, at the same time,

points beyond the scope of this thesis—hence ‘extra’. It draws on concepts that we have previously es-

tablished and combines them with the latest insights from our thesis. The results address two outstanding

issues and provide an outlook towards future research activities.

As a first topic, we concern ourselves, once again, with the intriguing scattering patterns of XPDC

at high idler energies (cf. Sec. 5.2.3.a). Hereunto, we develop a simple polariton-inspired model of the

scattering process, which can account for the qualitative features of our observations (see subsequent

Sec. 6.1).

The second topic, which we will re-visit, is laser-driven wavemixing. In particular, we shall briefly

sketch an idea how to enhance the scattering yield—drawing on inspiration from radio-technology once

again (see Sec. 6.2)

144



6. Extras

6.1 A polariton picture of XPDC (and Compton scattering)

In the previous chapter, we have seen how XPDC at high idler-photon energies shows a remarkable

experimental signature. Instead of the single, circular scattering pattern, which we would expect from

phase-matching considerations as well as from our original perturbative approach (cf. Figs. 5.21 and

5.23), we find two circular features of alternating intensities in the experiment (cf. Fig. 5.22). One

feature exhibits suppressed scattering (dark circular feature) and the other, inner, feature shows enhanced

scattering (bright circular feature). Both are nevertheless found in the vicinity of the phase-matching

condition, which suggests an intimate connection with the XPDC process. We reproduce one of the

previous experimental images below for renewed reference (Fig. 6.3).

It is noteworthy that Tamasaku and co-workers have previously reported similar modulations of the

scattered intensity in multiple XPDC experiments [50, 113–115]. In their cases, these modulations were

observed during the course of rocking curve scans, i.e., when they rotated their sample across a range of

diffraction conditions. An exemplary plot is reproduced from Ref. [114] in Fig. 6.1.

Figure 6.1: Rocking curve measured by Tamasaku and co-workers for XPDC in diamond close to the (111)
reflection. The plot is reproduced from Ref. [114] and commented by the authors as: “The rocking curve of the
nonlinear diffraction measured at ∆E−100 eV. Dashed line is polynomial fitting to the Compton background. The
solid line is fitting with (7).”

Given that the modulation of the scattering signal resembled a Fano-profile [198], Tamasaku and

co-workers sought for an interpretation that could connect to an underlying interference effect. As such,

they identified inelastic (Compton) scattering and parametric conversion (XPDC) as two different chan-

nels, which would interfere. At the same time, they have noticed conceptual shortcomings with this

interpretation, because the aforementionned processes have clearly distinguishable final states and there-

fore should not interfere at all. Instead, they conclude that the proper “[...] microscopic mechanism is an

open question” [114].

Based on our q-resolved measurements, we can offer a new interpretation of the modulation—tracing

it to a fundamental phenomenon of coupled light-matter systems, namely Polaritons. Polaritons con-

stitute hybrid excitations of photonic and material degrees of freedom; they can be considered as a

quasi-particle description of photons in matter or quanta of a suitably defined displacement field D
[146, 197, 199–201]. While they occur in various forms, often enhanced through the use of optical
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cavities [202], our situation is slightly different and novel for the x-ray regime1. In the present case,

inelastic x-ray scattering (IXS—or equivalently: non-resonant x-ray Raman-scattering) excites an XUV-

polariton inside the sample. This forms the precursor state for both XPDC and Compton scattering—see

illustration 6.2.

Figure 6.2: Inelastic x-ray scattering excites a polariton inside the sample, i.e., a hybrid of electronic and photonic
excitation—symbolized as e− and γ , respectively. The polariton carries the energy difference of incident pump
photon (ωp = c |kp|) and scattered signal photon (ωs = c |ks|)—as well as a fraction of the transferred momentum.
Upon decay of the polaritonic excitation at the sample’s boundary, it may either emerges as a photon (viz., the idler
photon of XPDC) or appear as an electron (viz., the remainder of Compton scattering). [We gratefully acknowledge
Dr. Christina Bömer’s help in rendering the above computer graphics.]

Depending on the detection setting (ks), different components of the polariton can be probed. As a

matter of fact, our q-resolved, 2D-scattering images thus show a mapping of the polariton dispersion,

with the curious modulation marking the anti-crossing of two dispersion-branches.

In the following, we will provide a simple two-level model to illustrate this proposition further. We

will start from a general description of inelastic x-ray scattering (IXS) based on the dynamic structure

factor2:

dσ
dΩsdωs

=
( dσ

dΩs

)
Th

ωs

ωp
S(Q,ω) with: ω = ωp−ωs, Q = kp−ks. (6.1)

In this discussion, our sign convention will differ from the previous work. It is chosen in accordance with

Schülke [61] and our experimental collaborators at the ESRF [163] and considers the energy transfer ω
into the sample as a positive number. The same holds for the momentum transfer Q into the sample as

well3. The dynamic structure factor of Eq. (6.1) relates to the density-density correlation function of

electronic operators as

S(Q,ω) =
1

2π

∫ ∞

−∞
dt eiωt

∫
d3x

∫
d3x′ e−iQ·(x−x′) 〈 n̂(x, t)n̂(x′,0)〉. (6.2)

In the following, we shall briefly discuss basic Compton scattering using this expression, before turning

1To our knowledge, the connection between parametric conversion and polariton scattering has likewise been noticed in
the optical regime. Klyshko, for instance, reports on the subject in Ref. [149]. In this case, the polariton arises as a hybrid
excitation of photon and phonon, while the parametric conversion of interest is still an electronically mediated process.

2Note that we could likewise use an expression akin to Eq. 2.32. As this would, however, incorporate the correlation
properties of the driving x-ray field explicitly, it would prove decidedly more cumbersome to carry through these derivations.
Besides this, the results would not differ significantly, as long as the x-ray field is reasonably incoherent.

3Note that this sign convention contrasts with the typical usage in the x-ray diffraction community, where instead the
change of momentum that is imparted onto the scattered photon is measured ∆k = ks−kp. During our previous discussion of
nonlinear diffraction for structural analysis, we have adhered to this diffraction-convention in fact.
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towards our polariton model.

Compton scattering: As an initial warm-up, let us recall another—possibly more familiar—formulation

of Compton scattering. Introducing explicit electronic states into Eq. (6.2), we can rewrite
∫ ∞

−∞
dt eiωt 〈 n̂(x, t)n̂(x′,0)〉

=
∫ ∞

−∞
dt eiωt 〈I| Û(0, t)n̂(x,0)Û(t,0)n̂(x′,0) |I〉

=
∫ ∞

−∞
dt eiωt eiEIt 〈I| n̂(x,0) ∑

F
|F〉〈F|Û(t,0) ∑

F ′
|F ′〉〈F ′| n̂(x′,0) |I〉 . (6.3)

Here, we take |I〉 to denote the initial eigenstate of the governing Hamiltonian Ĥ, i.e., most likely the

ground state. The complete sets of (final) states |F〉 and |F ′〉 can likewise be taken as eigenstates of

Ĥ. Under these conditions, the time-evolution operator Û(t,0) is diagonal. Specifically, it becomes

e−i Ĥt = e−iEF t upon application to any |F〉. We can thus continue expression (6.3) as

∫ ∞

−∞
dt eiωt 〈 n̂(x, t)n̂(x′,0)〉

=
∫ ∞

−∞
dt eiωt eiEIt 〈I| n̂(x,0) ∑

F,F ′
|F〉〈F |e−iEF t |F ′〉︸ ︷︷ ︸

diagonal

〈F ′| n̂(x′,0) |I〉

=∑
F

2π δ (EF −EI−ω)〈I| n̂(x,0) |F〉〈F | n̂(x′,0) |I〉 . (6.4)

Transferring this back into the dynamic structure factor of Eq. (6.2), we obtain

S(Q,ω) = ∑
F

δ (EF −EI−ω)

∣∣∣∣
∫

d3x e−iQ·x 〈I| n̂(x) |F〉
∣∣∣∣
2

. (6.5)

In this expression, we recover the typical shape of Fermi’s golden rule, featuring the square of a transition-

matrix element and an associated δ -function for energy selection. Notably, this δ (EF −EI−ω) implies

that from the vast range of final states |F〉 only those are actually addressed, which satisfy energy con-

servation. Thereby, we are left with merely a handful of suitable states—quite likely a single one—per

scattering condition. This will become a useful insight in the next step.

Polariton model: Now, let us extend our view and consider modelling of the polariton. In the above

discussion of Compton scattering, we have implicitly assumed that the (final) states F and F ′ are of

electronically excited nature. On top of this, we shall add the option that the system ends up in a photon-

ically excited state. Consider for instance the case, where a previously excited electron drops back into

its ground state and emits a photon in the process. This would lead to states of the form

|Fγ〉= |Iel,ki〉 , (6.6)

where Iel signifies that the electronic system has returned to its initial state, while ki indicates that a

photon of said momentum has been emitted. We have deliberately attached a subscript i to allude to an

‘idler’ photon, because this is the kind of final state, which we would expect from XPDC, in fact.

It is important to note at this point that the designation ‘final state’ becomes problematic. Outside

of the sample, we may still identify final states asymptotically, but inside the sample, they are coupled
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through light-matter interaction. Thus, they become non-stationary. Formally, we can see this notion

being enforced further, if we look at Eq. (6.3) again, where F and F ′ actually only serve as basis states

for the intermediate time-evolution.

For our polariton model, we shall take this very notion at face value. We will employ an electronically

excited state |Fel〉 and the photonically excited state |Fγ〉 as of Eq. (6.6)—both serving as mere basis

states. Within this very rudimentary basis, we can write the governing Hamiltonian as a 2× 2 matrix

and solve the intermediate time-evolution exactly. As we will see, this procedure will provide a full,

qualitative description of the curious scattering features observed in Sec. 5.2.3.a.

So, let us assemble all necessary components of the model starting from Eq. (6.3)
∫ ∞

−∞
dt eiωt 〈 n̂(x, t)n̂(x′,0)〉

≈
∫ ∞

−∞
dt eiωt eiEIt 〈I| n̂(x,0)

two level

∑
F
|F〉〈F|Û(t,0)

two level

∑
F ′
|F ′〉〈F ′| n̂(x′,0) |I〉 . (6.7)

The first of our two intermediate basis states is supposed to be the electronically excited |Fel〉 with a bare

energy Eel
F = Eel

I +ωexc. This is composed of the ground state energy as a reference and the electronic

excitation energy on top. The second basis state is |Fγ〉, for which the bare energy is also a composite

Eγ
F = Eel

I +ωi = Eel
I + c |ki|= Eel

I + c |Q+G| . (6.8)

Here, the electronic system is truely in its ground state—thus contributing Eel
I —whereas the energy of

the co-existing photon is denoted ωi. If we assume the vacuum dispersion relation ωi = c |ki| to be valid,

we can further connect this energy to the overall momentum transfer via the phasematching condition

for XPDC: ki = kp +G−ks. Identifying the two basis states with two-component column-vectors

|Fel〉=
(

1

0

)
and |Fγ〉=

(
0

1

)
, (6.9)

we can write the associated Hamiltonian as

Ĥ = 1 ·EI +

(
ωexc 0

0 ωi

)
+

(
0 V

V ∗ 0

)
. (6.10)

Here, V denotes the light-matter coupling and—in a more formal derivation—would be related to p ·A-

type matrix elements 〈Fel|p ·A |Fγ〉. This Hamiltonian can be diagonalized by a unitary transformation

ŜĤŜ† = Ĥdiag, featuring eigenenergies of the well-known form4

E± = Eel
I +

ωexc +ωi

2
±
√

1
4
(ωexc−ωi)2 + |V |2 (6.11)

for its eigenstates

|φ±〉=
(

c1±
c2±

)
=

1√
1+ |V |2 /(E±− (EI +ωi))2

(
1

V ∗/(E±− (EI +ωi))

)
. (6.12)

4We point out that—for the reader’s convenience—we have solved this rather trivial exercise of diagonalization in Ap-
pendix A.18.
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Next, we embed this diagonalization in Eq. (6.7):
∫ ∞

−∞
dt eiωt 〈 n̂(x, t)n̂(x′,0)〉

≈
∫ ∞

−∞
dt eiωt eiEIt 〈I| n̂(x,0)

two level

∑
F

two level

∑
F ′
|F〉〈F| Ŝ† ŜÛ(t,0) Ŝ†

︸ ︷︷ ︸
e−i Ĥdiagt

Ŝ |F ′〉〈F ′| n̂(x′,0) |I〉 . (6.13)

Besides the simplified time-evolution, we note two further aspects:

1. The transition-matrix element 〈I| n̂(x,0) |F〉, involves an operator that is purely electronic in na-

ture. Starting from the state 〈I|, which is likewise purely electronic, the state |F〉, therefore has to

be restricted to |Fel〉. In other words, no photon could be created in this step yet, rendering the

sum over states superfluous.

2. The operation Ŝ |Fel〉 = ∑±i c1i |φi〉 relates the old and new eigenstates and may therefore be ex-

pressed through the expansion coefficients found above in Eq. (6.12).

This simplifies expression (6.13) into
∫ ∞

−∞
dt eiωt 〈 n̂(x, t)n̂(x′,0)〉

≈
∫ ∞

−∞
dt eiωt eiEIt 〈I| n̂(x,0) |Fel〉∑

i=±
c∗1i 〈φi|e−i Ĥdiagt ∑

j=±
c1 j |φ j〉〈Fel| n̂(x′,0) |I〉

=
∫ ∞

−∞
dt eiωt eiEIt 〈I| n̂(x,0) |Fel〉∑

i=±
|c1i|2 〈φi|e−iEit |φi〉〈Fel| n̂(x′,0) |I〉

= ∑
i=±
|c1i|2 2π δ (Ei−EI−ω) 〈I| n̂(x,0) |Fel〉〈Fel| n̂(x′,0) |I〉 . (6.14)

As in the Compton-case, we can transfer this result into the dynamic structure factor and obtain almost

the same result (cf. Eq. (6.5)):

Spol(Q,ω) = ∑
i=±
|c1i|2 δ (Ei−EI−ω)

∣∣∣∣
∫

d3x e−iQ·x 〈I| n̂(x) |Fel〉
∣∣∣∣
2

. (6.15)

The subtle difference is that the electronic final state |Fel〉 does not emerge from a range of final states—

being effectively singled out by energy conservation—but instead we have chosen it a priori by assuming

that energy conservation will be in place. On top of this, the two branches of the polariton (±) are

explicitly visible now. Crucially, they are themselves subject to energetic selection.

In order to set the overall scale of the scattering signal, we can push the analogy of Eqs. (6.5) and

(6.15) even further. We note that—sufficiently far away from any phasematching condition—we would

naturally expect the unmodified dynamic structure factor to show up, because these regions of scattering

space are dominated by regular Compton scattering. Formalizing this intuition, we consider a detection

scenario ωdetect ∼ ωexc � ωi. We can enforce the latter inequality by looking at scattering for large

momentum transfers Q = ki−G. Pushing the optical momentum into the limit |ki| → ∞ entails ωi→ ∞
on grounds of Eq. (6.8), respectively. In this limit, the two dispersion branches of the polariton (E+ and

E−) clearly separate—sporting the asymptotic forms

E+ −−−→ωi→∞
Eel

I +ωi and E− −−−→ωi→∞
Eel

I +ωexc. (6.16)
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Simultaneously, their expansion coefficients become

(
c1+

c2+

)
−−−→
ωi→∞

(
0

1

)
and

(
c1−
c2−

)
−−−→
ωi→∞

(
1

0

)
(6.17)

and thereby, only one coefficient (viz. c1−) is still relevant in expression (6.15). We can identify this re-

mainder with regular Compton scattering, which involves only the on-shell electronic excitation. Finally,

we incorporate this insight about the limiting behaviour into Eq. (6.15), by blending it with the orignal

Compton-expression (Eq. (6.5)) in a slightly informal way:

Spol(Q,ω)≈ ∑
i=±
|c1i|2 δ (Ei−EI−ω) S(Q,ω). (6.18)

Herein, the regular dynamic structure factor S(Q,ω) sets the overall scale of the scattering signal. On

top of this, our addition of the two polaritonic branches will introduce the circular scattering pattern of

XPDC—including the alternating (±) modulation that we have observed before.

6.1.1 Comparison with experiment

If we want to compare our polariton model with the experimentally observed scattering signal, we have

to engage in one further adaptation. Namely, we should relate Eq. (6.18) to an observable scattering

yield. In fact, we would not directly observe the dynamic structure factor in any experiment, but rather

the energy filtered scattering yield per element of solid angle (here: detector pixel). Modelling this, we

write

Ypix ≈
∫

pix
dΩs

∫
dωs Tanalyzer(ωs)

dσpol

dΩsdωs
Jin =

∫

pix
dΩs

∫
dωs Tanalyzer(ωs)

( dσ
dΩs

)
Th

ωs

ωp
Spol(Q,ω) Jin

≈
( dσ

dΩpix

)
Th

S(Q̄pix,ωdetect) Jin

∫
dω e−(ω−ωdetect)

2/2Ω2
detect ∑

i=±
|c1i|2 δ (Ei−EI−ω)︸ ︷︷ ︸

implicit dependence upon Q̄pix

∝ ∑
i=±
|c1i|2 e−(Ei−EI−ωdetect)

2/2Ω2
detect . (6.19)

In the first line, we have used relation (6.1) to connect the dynamic structure factor to a scattering cross

section. Multiplying the latter by an appropriate flux of incident photons Jin and considering the inte-

gration over scattered photons (subscript s) gives the sought after yield. We factor the slowly varying

dependencies out of the integral and ignore them ultimately. As of Eq. (6.18), we already know that

our signal will be proportional to the regular Compton background. Most importantly in this discussion,

we need to specify a transmission function for the crystal analyser Tanalyzer(ωs). For convenience, we

approximate this energy filter by a simple Gaussian as we have repeatedly done before (cf. Eq. (5.3), for

instance)

Tanalyzer(ωs) = e−(ω−ωdetect)
2/2Ω2

detect . (6.20)

This transmission model considers the detection of photons at an energy transfer ω within a window of

width Ωdetect around the central value ωdetect, which would be set by the experimenter.
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Applying the above, we can evaluate5 a scattering pattern as depicted in Fig. 6.3 (b). For comparison

the experimental reference data at the same rocking angle Ω−ΩB = 1.0◦ is shown to its left (a). The

latter is an enlarged view of the data shown in the central frame of Fig. 5.22.

(a)

(b)

(c)

Figure 6.3: Nonlinear scattering patterns at phasematching condition for XPDC (rocking angle Ω−ΩB = 1.0◦).
Experimental data (a)—taken from the central frame of Fig. 5.22—is compared to theoretical simulations within
our polariton model (b) and (c). The experiment shows alternating bright and dark features (i.e., regions above and
below average counts, respectively), which follow the circular phasematching condition for XPDC. Moreover, it
exhibits a mirror-symmetric modulation around the circle. Our simple polariton model (b) reproduces the alter-
nating intensities, while only the model’s extension towards polarization-dependence (cf. Eq. (6.21)) captures the
modulation as well—see frame (c). This final result is in good qualitative agreement with the experiment. [Image
(a) courtesy of Dr. Christina Bömer]

Quite obviously, our simple approach still features an unrealistic radial symmetry. Apart from this,

however, it captures the alternatingly bright and dark features nicely. In order to introduce the modu-

lation around the circular pattern, we resort to an insight from our perturbative analysis of XPDC (see

Sec. 5.2.1.b, in particular). We recall that the modulation reflects the polarization-dependence of the

light-matter coupling strength: The nonlinear current-response of the material is driven by the transverse

polarization of the idler photons (here the polariton)

XPDC ∝

idler
polarizations

∑
λ

|εiλ ·KGS(0,G,ω)|2 = |KGS(0,G,ω)|2−|ki ·KGS(0,G,ω)|2 / |ki|2

≈ |KGS(0,G,ω)|2
(

1− |ki ·G|2

|ki|2 |G|2

)
. (6.21)

We have seen the first reformulation in use throughout Sec. 5.2, whereas the last step is merely a con-

venient approximation for the present case, which is in line with our discussion below Fig. 5.14. Given

that no definitive (nonlinear) response function is known for the polariton, we simply extend our gen-

5We note with respect to the simulation underlying Fig. 6.3 that we have used the following numerical parameters: }ωexc =
100 eV, }ωdetect = 100.5 eV and }Ωdetect = 0.5 eV. We have further chosen an arbitrary coupling strength of V = 1 meV and
fixed the pixel size to the experimental value from Sec. 5.2.3.a, i.e., 20× 20 mdeg2. The rocking position of the sample is
Ω−ΩB = 0◦.
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eral observation that the ‘G-component’ of KGS(0,G,ω) points roughly along the eponymous vector.

Transferring this insight to our polariton model, we modify the coupling strength

V →V · [1− (|ki ·G|2)/(|ki|2 |G|2)]. (6.22)

Repeating the previous simulation (b) with the modified coupling yields the scattering pattern of Fig. 6.3

(c). The latter is in good overall agreement with the experimentally observed features (a).

Having validated the polariton model on our XPDC-data, we want to take a step back and consider

the broader picture. In particular, we shall address the long-standing question by Tamasaku and co-

workers, as to the origin of the ‘Fano-type’ features in their XPDC rocking-curve measurements (recall

Refs. [50, 113–115]). Hereunto, we point out, first of all, that no rocking-curve scans are required to

observe these ‘Fano-type’ features. Instead, our model exposes—in agreement with our experimental

observations—that such features are already present in a single scattering pattern. We illustrate this

observation in Fig. 6.4 below, where we reproduce the pattern from Fig. 6.3 (c) at higher resolution and

take a line-out across its central features (lower left-hand side). This line-out clearly shows the ‘Fano-

type’ fringes at the intersection of the line-out with each XPDC side-lobe.

However, these alternating imprints need not be interpreted as the result of interfering processes

(Compton vs. XPDC). Instead, we emphasize that they should be thought of as two branches of the same

phenomenon: Namely, they are the two dispersion branches of the polariton, which is excited in the

system through IXS. This aspect becomes more obvious still, if the two-dimensional scattering pattern

is paired explicitly with a dispersion-plot of the polaritonic eigenenergies E± as on the lower right-

hand side of Fig. 6.4. Herein, the two energetic branches of the polariton are related to the underlying

phasematching condition for the ‘idler’-photon according to Eq. (6.8), parametrized via χ . As a result,

we find that their characteristic anti-crossing occurs precisely at the zero-crossing of the detected signal.

Thus, the scattering really just images the transition from one polariton branch to the other, giving rise

to a modulation of the observable signal in the process.

By extension, we can conclude that the same effect shows during rocking-curve scans as performed

by Tamasaku and co-workers—it is merely projected onto a different coordinate axis. As such, we

note that our polariton model could indeed address (and solve) the conundrum posed by the results of

Refs. [50, 113–115].

This elating conclusion, notwithstanding, our new-found interpretation of the phenomenon raises a

host of future questions as well. On the theoretical side, there is the pre-eminent challenge to extend

our polariton interpretation beyond its model character. In this, the development of a polariton-based

or polariton-inspired theory from first principles would be highly desirable6. Moreover, we note that a

more general application of this, i.e., to all kinds of XOWM processes, beyond the spontaneous case is

conceivable.

Shared between experiment and theory, we notice the opportunity to employ XPDC in the given

regime as a means to map out the full dispersion relation of XUV-polaritons in matter. In principle, we

have already achieved this—considering that the assembly of patterns in Fig. 5.22 can be considered as

a tomographic assembly of dispersion planes like Fig. 6.4. While their combined map might appear rea-

sonably trivial for diamond, the extension to more complicated, even nano-structured, materials should
6We comment on the above notion of a fully first-principles theory that this may not require highly non-perturbative

approaches. While these are common-place in many polariton-focused theories (cf. Ref. [202] for examples), the present case
seems to be well within reach of perturbative methods. In particular, we recall to this effect that our perturbative simulations in
Sec. 5.2.3.a could adequately capture the magnitude of the nonlinear effect.
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Figure 6.4: Illustration of the polaritonic imprint onto the scattering patter. Upper images show a reproduction
of Fig. 6.3 (c) at higher resolution (5 mdeg). We juxtapose the scattering pattern once with a line-out of itself
(lower left-hand side). At fixed 2θ −2θB = 0.2◦, the line-out gives the scattering profile along χ; two ‘Fano-type’
features are visible—each corresponding to the cross section of an XPDC side-lobe (correspondence is highlighted
by dashed lines). On the lower right-hand side, the same scattering pattern is juxtaposed with the underlying
polariton dispersion along the same (aforementioned) line-out. Here, the zero-crossings of the scattering pattern’s
side-lobes are seen to correspond with the characteristic anti-crossing of the polaritonic dispersion branches.

hold very interesting discoveries.

Before addressing either of these prospects, we note in terms of a more immediate outlook, that we

will apply our polariton model to the resonant case of XPDC, which Tamasaku and co-workers have

investigated in Ref. [115]. Preliminary simulations to this end suggest that our model is fully capable

of reproducing even the shift in line-shapes, which have been reported in Fig. 2 of cited work. Refined

experimental measurements on these scenarios have been obtained in collaboration with Dr. Christina

Bömer and will be published in the future7.

7We also refer the interested reader to an upcoming thesis (M.Sc.) by Fridtjof Kerker, which will elaborate on some of the
pertaining issues [126].
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6.2 Amphodyne detection for SFG / DFG

Before we conclude our treatise on XOWM altogether, we want to entertain a final train of thought on

laser-driven wavemixing. The pertaining theoretical explorations below, which have seen no experimen-

tal application yet, should be considered as a proposal for—or outlook onto—future XOWM activities.

To set the stage, we recall from Chpt. 5 that XOWM signals have been relatively weak up to now,

despite gradually becoming measurable at x-ray FELs. The conversion efficiency for SFG / DFG ranges

around 10−10...10−9, thus requiring a large amount of incident photons to reliably detect nonlinear scat-

tering. As a consequence, we are tempted to ask, whether there is a way to actively enhance this signal—

other than improving the passive detection efficiency of our measurement setups.

In order to obtain an affirmative answer, we shall, once again, take inspiration from electro-technics—

thereby coming full circle to our introductory thoughts of Sec. 1.1. As a matter of fact, radio receivers

have long faced the problem of detecting and discriminating weak, high-frequency (HF) signals among a

broad spectrum of competing background noises (in their case, e.g., other radio broadcasts, spark noises

and various other electrical disturbances). A remarkably efficient—as well as elegant—solution to this

problem has been established in the form of the heterodyne detection technique [1, 2], which uses a

locally produced reference-wave (the so-called ‘local oscillator’) to enhance the detection of the desired

signal.

Below, we shall illustrate the concept of heterodyne detection on electronic signals and attempt to

transfer it into the realm of XOWM subsequently.

6.2.1 Heterodyne detection for electronic HF signals

Commencing to describe the detection of HF signals, let us briefly recall their model description in terms

of an oscillating voltage

Usig(t) = us sin(ωst). (6.23)

We note that—augmenting the even simpler signal of Eq. (1.1) in our exposé of wavemixing—we have

introduced an explicit scale of the signal’s strength us in the present case.

Regarding the actual detection of such HF signals, we posit that these will have to be converted

into a low frequency (LF), or even DC-type, electronic output in the end. Examples of such low-end,

LF-outputs could comprise the audible emission of a radio programme via loudspeaker or the (slowly

varying) reading on an intensity meter, for instance. Such outputs are typically generated on the basis of

the time-averaged signal power:

Pdet =
1
T

∫ T

0
dt Psig(t) =

1
T

∫ T

0
dt Usig(t) Isig(t)

=
1
T

∫ T

0
dt Usig(t)

Usig(t)
R

. (6.24)

In the last line, we have applied Ohm’s law, assuming that the signal’s power will be detected on some

kind of linear, resistive device. The most straight-forward way of demodulating an input signal Usig(t)

into such an average power, is to feed it directly into the detection circuit. In our model’s terms this

corresponds to substituting Eq. (6.23) directly into the above Eq. (6.24). Assuming further that the aver-

aging interval T is much longer than a single period of the signal, i.e., T � 2π/ωs, we can approximately
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evaluate

Pdet =
1
T

∫ T

0
dt

(Usig(t))2

R
=

1
T

∫ T

0
dt

(us sin(ωst))2

R

=
u2

s

R
1
T

∫ T

0
dt

1
2
[
1− cos(2ωst)︸ ︷︷ ︸

≈0, if integral averages
over several periods

]

≈ u2
s

2R
. (6.25)

This simple detection scheme is often referred to as homodyne, because the signal Usig(t) is detected in

the presence of only itself or—in some sense—in the presence of only the same signal. Thus the greek

prefix homo which literally means ‘the same’, has been adopted for its designation. We observe that the

detected power depends quadratically upon us and will diminish for weak signal amplitudes.

Heterodyne detection, on the other hand, will see the signal detected together with ‘another’ or ‘dif-

ferent’ input, which inspired the opposite prefix hetero8. To achieve this combined detection, a local

oscillator is first used to produce a secondary voltage

ULO(t) = uLO sin(ωLOt), (6.26)

which is, subsequently, superimposed with Usig(t) and jointly fed into the detection circuit. Writing out

their combined detectable power

Pdet =
1
T

∫ T

0
dt

(Usig(t)+ULO(t))2

R
=

1
R

1
T

∫ T

0
dt
(
us sin(ωst)+uLO sin(ωLOt)

)2
, (6.27)

we recognize that its quadratic form can produce mix-terms among the two frequencies, just as the

nonlinear mixer described in Eq. (1.5) of Sec. 1.1 would do. In direct correspondence to Eq. (1.5), the

resultant power

Pdet =
1
R

1
T

∫ T

0
dt
(
us sin(ωst)+uLO sin(ωLOt)

)2

=
1
R

1
T

∫ T

0
dt
(
(us sin(ωst))2 +2usuLO sin(ωst)sin(ωLOt)+(uLO sin(ωLOt))2)

=
1
R

1
T

∫ T

0
dt
(u2

s

2
[
1
↑

DC

− cos(2ωst)︸ ︷︷ ︸
SHG

]
+usuLO

[
cos((ωs−ωLO)t)︸ ︷︷ ︸

DFG

−cos((ωs +ωLO)t)︸ ︷︷ ︸
SFG

]

+
u2

LO
2
[
1
↑

DC

− cos(2ωLOt)︸ ︷︷ ︸
SHG

])
(6.28)

contains DC-terms, which we have identified for detection earlier (cf. remainder of Eq. (6.25)); it con-

tains several high-frequency components (SHG or SFG), which will simply average out over the detection

8We note that the definition of homo- vs. heterodyne detection varies among different contexts and authors. For radio-
frequency applications, there is a tendency to classify detection as homodyne for any scenario, wherein signals of only one (i.e.,
the same) frequency are detected—even though there may be superimposed waves akin to Eq. (6.27) they would all feature the
same ω = ωs = ωLO. Heterodyne detection would, conversely, correspond to any scheme that superimposes signals of different
frequencies for detection ( Ref. [203] gives an example from laser-spectroscopy, which also follows this convention).

We shall adopt a different convention—as we have already outlined—in that we consider the origin of the detected wave as a
criterion for its denomination. If all detected power can be traced to the intrinsic (spontaneous) signal, i.e., it is detected in and
of itself, we shall refer to the detection as homodyne, whereas any detection that is aided (i.e., modified or stimulated) by the
admixture of a differently-sourced wave shall be termed heterodyne. This convention is closer to the use of terminology with
Refs. [11, 204] and related works.
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time, and—most crucially—it contains a difference-frequency contribution (DFG)

PDFG =
1
R

1
T

∫ T

0
dt usuLO cos((ωs−ωLO)t). (6.29)

Upon integration, this particular mix-term yields

PDFG =
us uLO

R
1
T

∫ T

0
dt cos((ωs−ωLO)t)

=
us uLO

R
1

T (ωs−ωLO)
sin((ωs−ωLO)t)

∣∣∣
T

0
=

us uLO

R
sin((ωs−ωLO)T )

T (ωs−ωLO)

=
us uLO

R
sinc((ωs−ωLO)T ), (6.30)

which can contribute significantly to the overall detection, if the local oscillator is tuned close to the

signal’s frequency, i.e., if ωs−ωLO� π/2T .

Combining the above with the non-vanishing terms of Eq. (6.28), we obtain

Pdet ≈
u2

s

2R
+

us uLO

R
sinc((ωs−ωLO)T )+

u2
LO

2R
. (6.31)

In here, the first term marks the familiar quadratic contribution from homodyne detection9. Our reasoning

on this remains unchanged: If the initial signal is weak, this term will yield only diminishing amounts of

detectable power. There is an analogous term for the local oscillator, i.e., u2
LO/2R, for which uLO is anyways

known by design—thus it can be ignored (or subtracted at will). The essential novelty of Eq. (6.31)

resides in the mix-term, which is linear in both us and uLO. Thereby, it provides access to the unknown

signal strength us at an amplified scale, which can be set deliberately via uLO. The significance of this

newly-obtained scaling property is hard to overstate; it allows for unprecedented detection efficiency,

simply by ad-mixing a well-known reference signal in the detection channel.

If a transfer of this concept into the x-ray domain was possible, it could—in principle—serve to

enhance our XOWM signals as well. The next section will explore this idea further and assess how

‘simple’ or difficult such ad-mixing of a reference would really turn out to be.

6.2.2 Transfer of the heterodyning concept to x-ray detection

In the previous section, we have illustrated how the ad-mixture of a reference wave (or local oscillator)

can enhance the detection of weak HF-signals. Now, we shall explore transferring this concept into the

x-ray domain.

As a first observation, we note that the overall detection observable of Eq. (6.24)—although sim-

plified for illustration purposes—behaves analogous to typical x-ray detectors. To-date, the latter are

incapable of resolving the electromagnetic vector potential A(x, t) at the time-scale of its intrinsic oscil-

lations. Instead, any observation has to focus on the detection of (ideally individual) photons, i.e., energy

quanta (cf. also our discussion in Sec. 2.1). Their measurable energy deposition is effectively the result

of the detector’s exposure to the irradition by the electromagnetic field integrated over a certain time T .

Analogous to Eq. (6.24), the detection of such a time-integrated intensity will depend quadratically

upon the field amplitude (here: ∼ (A(x, t))2 or ∼ (E(x, t))2). This can most prominently be seen in the

explicit intensity observable given in Eq. (A.129) of App. A.10, but may likewise be concluded from the

9We note that the purely homodyne detection scenario would obviously be recovered by Eq. (6.31), if uLO→ 0.
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quadratic presence of Âx out(x, t) within our XOWM observable in Eq. (2.27), for instance.

Given these structural similarities, in the fundamental detection, a transfer of the heterodyne detection

concept towards shorter wavelength should be possible—in principle. As a matter of fact, heterodyne

detection has already enjoyed a successful extension into the optical regime, where phase-stable laser-

sources provide for excellent ‘local oscillator’-type reference signals (cf. Refs. [203, 205, 206], for

instance).

For our designated x-ray application, however, no stable reference source exists. While there have

been some (purely theoretical) proposals of using heterodyne detection on x-ray wave mixing signals,

such as Ref. [207] for SFG in molecules, these elude the practical question of how to achieve it. Given

that the use of a secondary—let alone phase-stable—x-ray-laser seems fantastically unrealistic with to-

day’s x-ray FEL sources, we would require a reference signal of alternative origin to enable a quasi-

heterodyne approach nonetheless.

Our proposal for such an alternative is to derive a phase-stable reference beam in-situ from the elastic

diffraction off the sample that is produced concurrently with XOWM. In other words, we propose to use

the mixed detection of linear elastic and nonlinear parametric scattering in an effort to boost the latter

by help of the former. Regarding the classification of this new measurement scheme, we notice that it

features elements of both hetero- and homodyne detection:

Using a reference signal (or ‘local oscillator’) to enhance the detection process clearly bears the hallmark

of heterodyne detection. While at the same time, the scheme sees the ‘local oscillator’ being created

within the sample. Rather than involving an explicit external reference, this implies, therefore, that all of

the detected signals stem from a single source, which marks a key characteristic of homodyne detection.

Accounting for this ambiguity, we shall adopt the moniker amphodyne detection, wherein the prefix

ampho signifies ‘both’10.

In order to describe XOWM paired with such an amphodyne detection process, we—first of all—

have to extend our original framework to include the description of the ‘local oscillator’ (i.e., linear

diffraction). We shall do so in the following.

Observable for amphodyne detected XOWM In deriving an actual scattering observable for XOWM

with the provision for amphodyne detection, we shall proceed largely analogous to Sec. 2.2.2, where we

have obtained the original (homodyne) XOWM observable.

We resume the IXS-type scattering signal of Eq. (2.32) as a starting point

〈Ôk f ,λ f 〉= lim
t→∞

lim
t0→−∞

〈Ôk f ,λ f 〉(t) =
2πα2

V ω f

∫ ∞

−∞
dt1
∫ ∞

−∞
dt ′1

∫
d3x

∫
d3x′ (εεε f )σ H(1)

σρ (x′, t ′1,x, t1)(εεε
∗
f )ρ

× e−ik f ·(x−x′) eiω f (t1−t ′1) TrREST {n̂(x, t1) ρ̂REST(0) n̂(x′, t ′1)} . (6.32)

More specifically, we focus once again on the density-density correlator, which is contained therein

〈n̂(x′, t ′1) n̂(x, t1)〉REST := TrREST {n̂(x, t1) ρ̂SYS(0) n̂(x′, t ′1)}
= TrREST {Û0(0, t1) n̂(x)Û0(t1,0) ρ̂REST(0)Û0(0, t ′1) n̂(x′)Û0(t ′1,0)}
= TrREST {Û0(t, t1) n̂(x)Û0(t1, t0) ρ̂REST(t0)Û0(t0, t ′1) n̂(x′)Û0(t ′1, t)} (6.33)

10We note that concepts similar to amphodyne detection have been proposed as ‘Self-Referenced Coherent Diffraction’ for
molecular samples [208] or ‘Self-heterodyned detection’ in the context of HHG spectroscopy [209]. Its potential application to
‘time-resolved Bragg peaks in crystals’ has been recognized in Ref. [210].
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and—following the same steps that have led up to Eqs. (2.40) and (2.41)—simplify this into two equiva-

lent parametric amplitudes again

TrREST {...} ≈ TrOPT {∑
F
〈F |Û0(t, t1) n̂(x)Û0(t1, t0)

(
∑

I
pI |I〉〈I|⊗ ρ̂OPT(t0)

)
Û0(t0, t ′1) n̂(x′)Û0(t ′1, t) |F〉}

= TrOPT {∑
I,F

pI 〈F |Û0(t, t1) n̂(x)Û0(t1, t0) |I〉〈I|⊗ ρ̂OPT(t0)Û0(t0, t ′1) n̂(x′)Û0(t ′1, t) |F〉}

≈ TrOPT {∑
I

pI 〈I|Û0(t, t1) n̂(x)Û0(t1, t0) |I〉︸ ︷︷ ︸
left amplitude⇒Eq. (6.35)

〈I|⊗ ρ̂OPT(t0)Û0(t0, t ′1) n̂(x′)Û0(t ′1, t) |I〉} .
(6.34)

We recall further from Sec. 2.2.2 that our next steps consisted in partitioning the propagators

Û0 = Û00 ÛINT OPT (cf. Eq. (2.34)) and then expanding all resulting ÛINT OPT in low orders of the optical

interaction. Visualizing the resulting terms, we have previously introduced a diagrammatic classification

(cf. earlier Fig 2.1). We reproduce this scheme in Fig. 6.5 below11.

Figure 6.5: Visualization of the perturbative series that results from a low-order expansion of Eq. (6.34) in the
light-matter interaction ĤINT OPT. For an explanation of the used notation, please refer to the figure’s original
introduction in Sec. 2.2.2 or the pertaining footnote below. [We gratefully acknowledge Dr. Christina Bömer’s
help in rendering the above computer graphics.]

From this point onwards, our derivation will deviate from the earlier case. While we have focused on

the pure (double-sided) XOWM terms, which are depicted in the upper-right corner of Fig. 6.5, during

our initial discussion in Sec. 2.2.2, we shall now focus on the terms at order α1. These diagrams involve

11For convenience, we also recall the construction principles underlying these diagrams from Sec. 2.2.2:
In Fig. 6.5, we represent the temporal evolution of the system in terms of primitive double-sided Feynman diagrams. We
begin on the left-hand side of Fig. 6.5 by depicting the evolution of the fully coupled system (i.e., the complete REST-system).
Starting symbolically from the initial state |I〉〈I| at time t0, we employ bold arrows to depict the action of Û0 leading up to the
‘final’ state |F〉〈F | at time t. In between, we mark the occurrence of the original x-ray-scattering event by an ‘x’. At this point,
we would find the corresponding action of the electronic density operator n̂(x) within the individual amplitudes. In all of this
discussion, we suppress the optical density matrix for the sake of notational simplicity.

In expanding the ‘full’ propagator Û0, we employ regular lines and dot-like vertices to signify the action of a propagator
Û00 and vertices from ĤINT OPT, respectively. These vertices may appear with a single wiggly line attached—corresponding
to a p ·A-type interaction—or with a pair of wiggly lines attached to the same dot—corresponding to an A2-type interaction,
conversely.

We sort the occurring terms both in the order of their expansion (i.e., powers of α) as well as their contained types of vertices.
Within established categories, we furthermore group terms that are related by time-ordering within their amplitude (i.e., related
by geometric re-ordering of vertices’ positions along one line). The latter groups are indicated by grey-shaded boxes bearing
the signature T̂ .
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one wavemixing amplitude, but also one unperturbed amplitude. The latter corresponds to a purely linear

scattering event, such as we require for the generation of the ‘local oscillator’ in the amphodyne detection

scenario.

In a seemingly minute change, we account for these linear terms in our derivation, by simply not

neglecting the unit-contribution in Eq. (2.42), i.e.,

〈I|Û0(t, t1) n̂(x)Û0(t1, t0) |I〉

≈〈I|Û00(t, t1)
[
1̂− i

∫ t

t1
dt2Û00(t1, t2) ĤINT OPT Û00(t2, t1)

]
n̂(x)

×Û00(t1, t0)
[
1̂− i

∫ t1

t0
dt̃2Û00(t0, t̃2) ĤINT OPT Û00(t̃2, t0)

]
|I〉

=〈I|Û00(t,0)
[
1̂− i

∫ t

t1
dt2 ĤINT OPT(t2)

]
n̂(x, t1)

[
1̂− i

∫ t1

t0
dt̃2 ĤINT OPT(t̃2)

]
Û00(0, t0) |I〉

≈〈I|Û00(t,0)
[
n̂(x, t1)− iα

(∫ t

t1
dt2
∫

d3y p̂(y, t2)·Âopt(y, t2) n̂(x, t1)

+ n̂(x, t1)
∫ t1

t0
dt̃2
∫

d3ỹ p̂(ỹ, t̃2)·Âopt(ỹ, t̃2)
)]

Û00(0, t0) |I〉

=〈I|Û00(t,0) n̂(x, t1)Û00(0, t0) |I〉

−〈I|Û00(t,0) iα
∫ t

t0
dt2
∫

d3y T̂
[
(p̂(y, t2))µ n̂(x, t1)

]
(Âopt(y, t2))µÛ00(0, t0) |I〉 . (6.35)

Re-inserting this result for both amplitudes in Eq. (6.34), we shall neglect all terms beyond order α1.

For the time-being, we shall still retain the original unit-contribution. Thereby, we obtain an overall

expression for the expanded correlator TrREST {...} that reads

TrREST {...} ≈∑
I

pI

(
〈I| n̂(x, t1) |I〉 〈I| n̂(x′, t ′1) |I〉 (6.36)

+α(−i)
∫ t

t0
dt2

∫
d3y〈I| T̂

[
(p̂(y, t2))µ n̂(x, t1)

]
|I〉(Aopt avg(y, t2))µ 〈I| n̂(x′, t ′1) |I〉

+α(i)
∫ t

t0
dt ′2

∫
d3y′ 〈I| n̂(x, t1) |I〉 〈I| T̂

[
(p̂(y′, t ′2))ν n̂(x′, t ′1)

]
|I〉∗︸ ︷︷ ︸

(PI(y′,t ′2,x′,t
′
1))
∗

(Aopt avg(y
′, t ′2))ν

)
.

We emphasize that, in writing the above, we could already exchange Âopt(y, t2) for its classical average

Aopt(y, t2). This is due to the trace over the optical sub-system, which is inherent in

TrREST {...}= TrOPT {TrMAT {...}}—via Eq. (2.49) it enforces

Aopt avg(y, t) = 〈Âopt(y, t)〉= TrOPT {ρ̂OPT(0) Âopt(y, t)} . (6.37)

Furthermore, we have identified the density–current-density response function at the heart of the XOWM

contribution once again. Notably, though, the expression (6.36) is only linear in PI(y, t2, x, t1).
On closer inspection of Eq. (6.36), we find that we can combine the two terms at order α1 into a

single, real-part expression

TrREST {...} ≈∑
I

pI

(
〈I| n̂(x, t1) |I〉 〈I| n̂(x′, t ′1) |I〉 (6.38)

+Re
{

α(−i)
∫ t

t0
dt2

∫
d3y (PI(y, t2, x, t1))µ (Aopt avg(y, t2))µ 〈I| n̂(x′, t ′1) |I〉

})
.
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Concluding our main derivation, we substitute the above trace-expression back into the original IXS-

observable (Eq. (6.32)) and obtain

〈Ôk f ,λ f 〉= lim
t→∞

lim
t0→−∞

〈Ôk f ,λ f 〉(t)

≈ 2πα2

V ω f

∫ ∞

−∞
dt1
∫ ∞

−∞
dt ′1

∫
d3x

∫
d3x′ (εεε f )σ H(1)

σρ (x′, t ′1,x, t1)(εεε
∗
f )ρ e−ik f ·(x−x′) eiω f (t1−t ′1)

×∑
I

pI

(
〈I| n̂(x, t1) |I〉 〈I| n̂(x′, t ′1) |I〉

+Re
{

α(−i)
∫ ∞

−∞
dt2

∫
d3y (PI(y, t2, x, t1))µ (Aopt avg(y, t2))µ 〈I| n̂(x′, t ′1) |I〉

})
, (6.39)

wherein we have exercised the limits t→∞ and t0→−∞ just as we did towards the end of Sec. 2.2.2. This

gives the combined observable for (elastic) background scattering, i.e., the part exclusively dependent on

the density expectation values, and amphodyne detected XOWM, as of the last line.

For further simplification, we may note that any individual expectation value of the electronic density

is a constant in time 〈I| n̂(x, t1) |I〉 = 〈I| n̂(x,0) |I〉 =: nI(x) by way of time-translational invariance.

Splitting Eq. (6.39) for background and amphodyne XOWM, we arrive at the final results in real-space:

〈Ôk f ,λ f 〉elastic =
2πα2

V ω f

∫ ×2
dt1 dt ′1

∫ ×2
d3xd3x′ (εεε f )σ H(1)

σρ (x′, t ′1,x, t1)(εεε
∗
f )ρ e−ik f ·(x−x′) eiω f (t1−t ′1)

×∑
I

pI nI(x)nI(x′) (6.40)

and

〈Ôk f ,λ f 〉ampho =
2πα3

V ω f

∫ ×3
dt1 dt ′1 dt2

∫ ×3
d3xd3x′ d3y (εεε f )σ H(1)

σρ (x′, t ′1,x, t1)(εεε
∗
f )ρ e−ik f ·(x−x′) eiω f (t1−t ′1)

×∑
I

pI Re
{
(−i)(PI(y, t2, x, t1))µ (Aopt avg(y, t2))µ nI(x′)

}
. (6.41)

At this point, we want to emphasize the importance of computing both the amphodyne signal and its

elastic background. For contrast, we recall that we have previously omitted the explicit numerical evalu-

ation of the latter. This was permissible on conceptual grounds, given that we could expect the scattering

patterns of the XOWM signal vs. the background to be sufficiently distinguishable (at least in theory)12.

For amphodyne detection of XOWM, the situation is conceptually different, however. Hereunto, the

presence of elastic scattering, which produces the ‘local oscillator’-type reference signal, is mandatory

in order for the amphodyne detection to succeed. Thus, the elastic and amphodyne signal necessarily

overlap in their occurrence and cannot be distinguished geometrically. Instead, we will have to rely on the

same reasoning as in the radio-frequency case before, namely, knowing and subtracting the contribution

that stems solely from the ‘local oscillator’ (cf. Eq. (6.31) and the term u2
LO/2R therein). Therefore, we

strongly advise for the explicit computation of Eq. (6.40) in this scenario.

Apart from this cautionary reminder, we have reached an expression that can serve as a basic

amphodyne-XOWM observable in Eq. (6.41). In other words, we have obtained the analogue of our

earlier Eq. (2.57) but for amphodyne detected wavemixing.

12We note as a cautioning reminder that—in spite of the conceptually clear separation between XOWM an background—
contaminations from background scattering have obviously posed a considerable practical challenge, when trying to experi-
mentally detect XOWM, nevertheless.
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Observable for amphodyne detected XOWM in reciprocal-space Retracing our earlier steps on

the original XOWM observable Eq. (2.57), we likewise want to convert the amphodyne scenario into

reciprocal-space, before we close this final section. To do so, we recall all relations outlined in Eqs. (2.59)

to (2.61) as well as the Fourier transform of the bare electromagnetic vector potential as given in

Eq. (A.67). Using these, we can rewrite

〈Ôk f ,λ f 〉elastic =
2πα2

V ω f

∫ ×2
dt1 dt ′1

∫ ×2
d3xd3x′ (εεε f )σ

1
(2π)8

∫ ×2
d3kX d3k′X

∫ ×2
dωX dω ′X e−i(k′X ·x′−ω ′X t ′1)

× ei(kX ·x−ωX t1) Z(1)
σρ(k′X ,ω

′
X ,kX ,ωX)(εεε

∗
f )ρ e−ik f ·(x−x′) eiω f (t1−t ′1)

×∑
I

pI
1

(2π)3

∫
d3k eik·xñI(k)

1
(2π)3

∫
d3k′ e−ik′·x′(ñI(k′))∗ (6.42)

and

〈Ôk f ,λ f 〉ampho =
2πα3

V ω f

∫ ×3
dt1 dt ′1 dt2

∫ ×3
d3xd3x′ d3y (εεε f )σ

1
(2π)8

∫ ×2
d3kX d3k′X

∫ ×2
dωX dω ′X e−i(k′X ·x′−ω ′X t ′1)

× ei(kX ·x−ωX t1) Z(1)
σρ(k′X ,ω

′
X ,kX ,ωX)(εεε

∗
f )ρ e−ik f ·(x−x′) eiω f (t1−t ′1)

×∑
I

pI Re
{
(−i)

1
(2π)7

∫ ×2
d3k1 d3k2

∫
dω ei(k1·y+k2·x) e−iω(t1−t2) (KI(k1,k2,ω))µ

× 1
(2π)4

∫
d3kL

∫
dωL (Aopt avg(kL,ωL))µ ei(kL·y−ωLt2) 1

(2π)3

∫
d3k′ e−ik′·x′(ñI(k′))∗

}
,

(6.43)

which can be further condensed to read:

〈Ôk f ,λ f 〉elastic =
α2

(2π)5 V ω f

∫ ×2
d3kX d3k′X

∫ ×2
dωX dω ′X δ (ω f −ωX)δ (ω f −ω ′X)

× (εεε f )σ Z(1)
σρ(k′X ,ω

′
X ,kX ,ωX)(εεε

∗
f )ρ ∑

I
pI ñI(k f −kX)(ñI(k f −k′X))

∗ (6.44)

and

〈Ôk f ,λ f 〉ampho =
α3

(2π)9 V ω f

∫ ×3
d3kX d3k′X d3kL

∫ ×3
dωX dω ′X dωL δ (ω f −ωX −ωL)δ (ω f −ω ′X)

× (εεε f )σ Z(1)
σρ(k′X ,ω

′
X ,kX ,ωX)(εεε

∗
f )ρ

×∑
I

pI Re
{
(−i)(KI(−kL,k f −kX ,ωL))µ (Aopt avg(kL,ωL))µ(ñI(k f −k′X))

∗
}
. (6.45)

In writing the above, we have employed the Fourier transform of the electronic density. However, we

note that in the context of crystallography, we might as well identify its Fourier components with the

more widely used structure factor, which results from the restricted transformation of a single unit cell:

F(Q) =
∫

unit cell
d3x eiQ·x nI(x) =

Vunit cell

Vcrystal
ñI(Q). (6.46)

Note that the last equality holds strictly only for a perfectly periodic crystal.
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In terms of Eqs. (6.44) and (6.45), we have ultimately obtained two expressions, which allow for the

evaluation of (nonlinear) scattering distributions in an analogous fashion to our discussions in Chpt. 5.

An in-depth analysis of its features is beyond the scope of the current treatise, however. Instead, it should

serve as a basis for—as well as outlook onto—future applications of XOWM.

In a first attempt at realizing the proposed methodology, we have initiated a renewed collaborative

effort that seeks to implement the amphodyne detection scheme at the Linac Coherent Light Source

(LCLS) in Stanford [156, 157]. For further insights on the concept, we attach the respective proposal as

an Appendix (A.19) to this work13.

With this particular outlook being hinted at already, we shall conclude our presentation of ‘extra’-

content and proceed to give a more general summary as well as broader outlook onto future XOWM

activities in the closing chapter.

13We emphasize—as has been the case with previous experimental efforts—that the referenced proposal is a product of
collaborative efforts despite drawing its inspiration from the above theory. To maintain this distinction from our own work, we
abstain from including it directly at this point.
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Chapter 7

Summary and Outlook

7.1 Summary

Theory: At the beginning of this work, we set out to formulate a description for x-ray-optical wavemix-

ing processes.

To do so, we have started from first principles—in our case from non-relativistic Quantum-

Electrodynamics—and successively simplified a general x-ray-scattering expression into a theoretical

framework dedicated to parametric XOWM. Within this framework, we are capable of describing a class

of popular wavemixing processes, namely sum- and difference-frequency generation as well as x-ray

parametric down-conversion on equal footing. Notably, we have intended this framework to be modular

in its structure and quantitatively predictive in its output. In pursuit of modularity, we could partition

our overall XOWM-observable into constituent correlation functions, each capturing the description of a

specific sub-system, i.e., the x-ray field, the optical field and the electronic response to both of the priors

(cf. Chpt. 2). In our subsequent modelling of these building blocks, we have upheld our goal of reaching

quantitative predictability, bearing the required realism firmly in mind (see Chpts. 3 and 4 for details).

As one of our central theoretical findings, we could identify the microscopic electronic response,

which governs XOWM to lowest order. Namely, we found that this can be captured by a density–

current-density correlation function of the electronic system. In this detailed insight, our theory exceeds

many earlier models of x-ray wavemixing, which have often proposed ad-hoc descriptions in terms of

simply a driven, i.e., time-dependent, electronic density, or others, which have argued purely on the basis

of classical currents.

We have attempted to establish a better understanding of this novel correlation function by elaborat-

ing on its general properties but also studying a concrete example for the case of diamond.

Most importantly—in our opinion—we have attempted to render the density–current-density correla-

tion function accessible for a broader community of solid-state and computational physicists by deriving

expressions that are amenable to numerical implementation and evaluation. Hereunto, we have discussed

two promising options at different levels of numerical cost:

1. The first option consists in a mean-field model for the nonlinear response. We have derived its for-

mulation in single-particle orbitals within Sec. 3.2.3 and demonstrated its numerical evaluation on

the basis of Kohn-Sham DFT-orbitals subsequently. Comparable implementations on the basis of

wide-spread DFT-codes appear entirely feasible and, as a matter of fact, one such implementation

is currently under way.
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2. The second option extends beyond mean-field treatments and has been introduced in Sec. 3.4.

Therein, we derive an approximate connection of our density–current-density correlation function

to more commonly used density–density response functions. We appreciate the latter as a point for

interfacing with alternative computational methods, as it features prominently in techniques related

to RPA, (LR)-TD-DFT or BSE1. While the connection to any of these post-mean-field treatments

could allow for new insights into (more) correlated electronic systems, we note that they also come

at a significantly increased computational cost, compared to bare DFT.

Experiment Beyond deriving our XOWM framework theoretically, we could also—and more impor-

tantly in our opinion—confirm its practical viability. To do so, we have put the quantitative nature of

the framework to the test and benchmarked its predictions on published data as well as on independent

measurement results (cf. Chpt. 5).

In order to obtain the latter, we have proposed, promoted, organized and conducted XOWM-

experiments2 at several international x-ray sources and in different XOWM-regimes. Of these exper-

imental campaigns, we want to highlight two essential outcomes:

1. First of all, we have been able to demonstrate the—unsurprising, yet up to that time unconfirmed—

existence of x-ray-optical difference frequency generation. Moreover—going beyond a singular

confirmation—we could demonstrate DFG measurements for a series of crystalline orientations

in the pertaining beamtime at SwissFEL. In line with our proposal of Sec. 5.1.2.d, we have thus

established the experimental proof-of-principle for ‘nonlinear crystallography’.

2. In a second noteworthy effort, we have studied x-ray parametric down-conversion in the high-

energy regime of XUV-idler photons (cf. Sec. 5.2.3.a). Therein, we have re-visited earlier studies

by Tamasaku and co-workers using a much improved setup. In fact, we have pioneered angle-

resolved detection for XPDC and could observe its characteristic, circular scattering signature for

the first time. We could further confirm our predictions of XPDC side-lobes in the resulting images

as well as the intimately connected polarization-dependence of the effect.

Besides the aforementioned confirmations, however, the last experiment also raised new challenges

for our theory. In particular, we could experimentally retrieve an alternating modulation of the XPDC

scattering pattern, which could not be explained on the basis of our current XOWM framework alone.

Closely related observations had likewise been reported by Tamasaku and co-workers about a decade

earlier and remained an open question ever since. We could resolve this long-standing conundrum by

developing a separate, polaritonic picture of XPDC. In its first approximate implementation as a simple

model, it could reproduce all features of the remarkable scattering patterns qualitatively (cf. Sec. 6.1).

With the above in mind, we conclude that we could achieve significant progress on the description

and application of parametric XOWM over the past years. Nevertheless, there are several open chal-

lenges, such as the re-conciliation of our framework with the polariton-picture or simply its extended

application to new materials and setups—on some of which we will give an outlook below.
1For the convenience of readers, who have skipped the intermediate chapters, we repeatedly explicate the above abbrevi-

ations: RPA - random-phase approximation, (LR)-TD-DFT - (linear response) time-dependent density-functional theory and
BSE - Bethe-Salpeter equation.

2We want to re-iterate our acknowledgement—at this point and for all related mentionings of experiments—that these
have only been possible as collaborative efforts. As such, we cannot overstate our gratitude towards various collaborators for
their respective support. While more detailed acknowledgements of individual contributions may be found with the respective
experimental discussions, we want to highlight the singular efforts of Dr. Christina Bömer at this point again. Without her,
most of the advances in this project would not have materialized in their presented form.
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7.2 Outlook

Before closing this work, we want to complement our previous retrospection with an outlook into the

future. As we have indicated earlier, several challenges lie ahead. Yet more importantly, we are convinced

that opportunities abound for pushing XOWM research further, for consolidating our understanding of

the underlying nonlinear responses and—above all—for addressing novel materials beyond elemental

group-IV semiconductors.

To these effects, we will comment on several up-coming strands of research below. We loosely group

these into four categories for, but note that they should be seen as mutually supporting efforts.

Numerical advances As a first big field of continuative research efforts, we identify the advancement

of theoretical /numerical methods for evaluating electronic nonlinear responses. Already at the present

level of mean-field DFT, there are several paths to pursue—with the extension towards more material

classes being of prime importance. This could both inform future experiments but conversely also serve

as a broader (and thus less biased) base for benchmarking our XOWM framework, as soon as more

experimental references are available.

Beyond extending towards simply more computations, another logical pursuit would concern evolv-

ing towards better computations. Benchmarking different exchange-correlation potentials at the level of

DFT would mark a first step to this end, whereas a methodical extension beyond mean-field approaches

form a clear, additional goal. Once higher-order methodologies become available for XOWM calcula-

tions (cf. for example our proposal in Sec. 3.4), genuinely new insights can be expected into the nonlinear

response of correlated electronic systems. A prime example—especially with a view to later polaritonic

coupling—can be found in the prospective study of (band gap-) excitons and their influence on XOWM

signals. Going further beyond this still, we could envision to investigate the imprints of more elaborate

electronic-order phenomena as well.

In an alternative approach, we could also imagine to turn above’s reasoning on its head—using the

experiment to inform theory rather than the other way around. After all XOWM provides access to a

nonlinear, two-particle response function of the electronic system. This could either be used directly to

fit theoretical expressions at the same level of complexity or it could be integrated downwards in the

spirit of hierarchical Green’s function methods and thereby provide additional correlation-information at

the level of one-particle observables.

Nonlinear crystallography Transitioning from theory into the experimental realm, we see the second

major field of future research presenting itself in the application of (laser-driven) XOWM for nonlinear

crystallography. As with the aforementioned theoretical efforts, large emphasis will be placed on the

method’s extension towards a broader range of samples first. These new, and likely ‘less-than-perfect’,

crystals will entail a range of challenges. These include:

• lower scattering yields (from smaller crystals),

• higher signal-to-background ratios (from crystals of lower quality) and

• premature losses of input or output fields (in crystals featuring stronger absorption)

to name but a few. Many of these issues may be off-set, to some degree, by refining our experimen-

tal setup—both with regard to higher detection efficiency for the signal and with regard to even better
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discrimination against background.

One variable of the setup, which has seen no modification yet, but would immediately recommend

itself for an investigation is the driving laser. Changing—or better still—tuning its photon energy away

from ∼ 1.55 eV, we could explore the spectroscopic potential of XOWM on top of its spatial resolution.

On a more conceptual side, nonlinear crystallography faces an imminent challenge in achieving the

spatial reconstruction of the nonlinear response density from its structure factors. This requires the

solution of the well-known phase-problem (cf. our discussion in Sec. 5.1.2.d). In contrast to regular

crystallography, where strong constraints on the observable density can be harnessed to simplify the

problem, our nonlinear response function poses a more complex problem—quite literally. Irrespective

of these outstanding developments, hybrid approaches—combining theoretical and experimental data—

can provide us with first insights into three-dimensional responses already (see Fig. 7.1, for an example

below).

In the broader context of phasing the XOWM signal, we have previously alluded to the idea of

investigating multi-beam diffraction as well (similarly, see Sec. 5.1.2.d). While such delicate diffraction-

phenomena may be far from the reach of our current experimental method, they certainly provide a

challenging long-term outlook. At the same time, the prospect of multi-beam diffraction may already

serve to inspire further theoretical studies as a near-term precursor.

Amphodyne detection In a conceptually different take on the subject of interfering beams, we have

introduced the concept of ‘amphodyne’ detection. This marks its own route of future research, harbinging

the possibility of amplifying the—otherwise often weak—wavemixing signals. At the same time, this

approach faces its very own challenges: It is, in fact, sensitive to the scattering phase, which could be

considered a seminal advantage. However, it would need to be implemented in the highly fluctuating

environment of today’s x-ray FELs. Here the effect’s sensitivity to phases becomes a manifest dis-

advantage, as it results in the signal being washed out over the course of successive FEL-shots.

Nevertheless, we have proposed an exploratory study on ‘amphodyne’ detection at the LCLS and

expect future developments around its concept to yield very fruitful results on the mixing process at its

core.

Polariton The final cluster of research, on the prospect of which we want to comment, concerns the

polaritonic imprints that we have found in XPDC (cf. Sec. 5.2.3.a). An immediate goal for its theoretical

description is obviously the reconciliation with our overall XOWM framework—as stated above. Given

the promising indications from our perturbative pre-study (cf. Sec. A.17), we envision a possible solution

along this route—likely involving the need for renormalization techniques, though.

Retaining an explicit polariton perspective, on the other hand, we could likewise envision the de-

velopment of non-perturbative approaches. These could focus on the polariton itself—in terms of an

effective field theory—or consider the coupled light-matter system in a Floquet-type approach (cf. our

earlier reference to Dr. Popova-Gorelova’s work).

On the experimental side of research into x-ray-induced polaritons, we perceive a rich field of future

applications. On the one hand, such a polariton is of fundamental interest itself—especially noting that

it is not created by the usual cavity-coupling—on the other hand, it also harbours great potential as a

secondary probe. Illustrating our latter thought further, we recall that the carrier-wavelength of a polari-

ton at ∼ 100 eV energy amounts to ∼ 10 nm. Therefore, it should prove rather sensitive to nanoscopic
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structures or disturbances, which are present at the same length-scale. We add to this the notion that

it is possible to map the full, three-dimensional polariton-dispersion in a tomographic fashion, simply

by tracing the XPDC signal across its complete phasematching range. The combination of these two

aspects strongly suggests the polariton’s ability to act as an in-situ diffracting nano-probe. First exper-

imental schemes to verify this hypothesis, which should use layered and nano-structured samples, are

currently being designed.

With a view to this multitude of prospective research activities, we feel confident to conclude our

study of XOWM on a positive outlook. With challenging, yet potentially very insightful, questions

ahead, we hope that XOWM can evolve further and form a lasting as well as meaningful contribution to

the (nonlinear) toolkit of x-ray scientists and facilities.

In closing, we want to leave the reader with a literal outlook, namely onto the first nonlinear response

density, which we have reconstructed using experimental data3.

Figure 7.1: A final outlook onto the nonlinear response density |R(x,ω)|2 as reconstructed from preliminary
experimental data (cf. SwissFEL campaign of Sec. 5.1.3.a). The photon energy of the driving laser has been
}ω = 1.55 eV and the nonlinear reflections (111), (220), (311), (222) and (400) have been used for the three-
dimensional reconstruction. The resolution reaches sub-Å level and can directly be compared to our expectations
in Fig. 5.6.

3We note that the experimental data underlying Fig. 7.1 stems from the SwissFEL campaign (proposal No. 20212165),
which we have reported on in Sec. 5.1.3.a. The reconstruction relies on nonlinear scattering yields from five different reflections,
viz. (111), (220), (311), (222) and (400), while for their phase information, we resorted to the theoretical values in this
preliminary case. We recall, in passing, that phase-retrieval for nonlinear crystallography will remain a future challenge and
outlook as well.
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Appendix A

Appendices

In addition to the main body of this thesis, we have curated a set of appendices. These contain supplemen-

tary material in terms of further specifications, documentation, and derivations, which are included to act

as quickly accessible references for the reader (and author). Notably, the contents of these appendices—

by and large—hold no claim to novelty, but might prove convenient nonetheless.

In these appendices, the succession of topics roughly mirrors the structure of the thesis:

• At the outset, we provide further background on the quantum-mechanical time-evolution operator

and underpin its perturbative expansion (as it was used in Chpt. 2).

• In addition, we briefly summarize our convention for Fourier transformations (App. A.2), before

elaborating on two main blocks of topics;

• the first pertaining to electronic structure aspects (App. A.4 - App. A.6)

• and the second focusing on the electromagnetic field (App. A.7 - App. A.13).

• After these blocks, we include further appendices on miscellaneous subjects, such as a reference

list of useful integrals, for instance (see App. A.15).
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A.1 Fundamentals of time-evolution operators and time-dependent per-
turbation theory

Our theoretical description of x-ray-optical wavemixing is (mostly) formulated using time-dependent

perturbation theory (TDPT). In the following, we will briefly introduce this approximative method on

the basis of time-evolution operators and their equations of motion1. This will lead us to the well-known

Dyson equation and iterative solutions thereof, viz. Dyson series (cf. Refs. [69, 211], for example).

To begin with, we recall the time-dependent Schrödinger equation (TDSE) as the governing principle

of non-relativistic quantum mechanics:

i
∂
∂ t
|Ψ(t)〉= Ĥ |Ψ(t)〉 . (A.1)

In here, Ĥ denotes the Hamiltonian operator pertaining to the system of interest. The TDSE prescribes

the unitary evolution of a quantum state vector (vulgo: wave-function) |Ψ(t)〉 through time. In fact, its

solution for |Ψ(t)〉 at any possible t is unique and fully determined through a single initial condition at

some time t0. In other words, the TDSE provides a unitary mapping

|Ψ(t)〉 TDSE←−−− |Ψ(t0)〉 (A.2)

|Ψ(t)〉= Û(t, t0) |Ψ(t0)〉 , (A.3)

which can be expressed equivalently by using a time-evolution operator Û(t, t0). Formally, this operator

incorporates all changes that the quantum state would undergo in between time t0 and time t. Applying

it to |Ψ(t0)〉 thus propagates the wave-function through time.

In order for the resultant |Ψ(t)〉 to be a proper solution to the TDSE, the time-evolution operator itself

has to comply with the TDSE2:

i
∂
∂ t

Û(t, t0) = ĤÛ(t, t0). (A.4)

As such, Û(t, t0) is basically the Green’s function of the TDSE, even though it rather goes by the name of

‘time-evolution operator’ or ‘propagator’. It features the following intuitive—yet important—properties:

• Concatenation: Û(t3, t2)Û(t2, t1) = Û(t3, t1)

• Inversion: (Û(t2, t1))† = (Û(t2, t1))−1 = Û(t1, t2)

• Identity: Û(t1, t2)Û(t2, t1) = Û(t1, t1) = 1

Concluding on the general aspects of time-evolution operators, we want to emphasize that it is usually

impossible to obtain their exact form for realistic problems. Just as the solution of the fundamental TDSE

(Eq. (A.1)) is elusive for most cases, so likewise is its counterpart for Û . At this point, approximative

methods are required.

1Note that there are many equivalent ways of phrasing TDPT in principle. However, we consider the present one, which
uses time-evolution operators, to be conceptually most appealing. It provides an intuitive, yet comprehensive, picture and can
be applied to wave-functions and density matrices alike.

2Note that Eq. (A.4) can easily be reasoned by inserting Eq. (A.3) into Eq. (A.1) and requiring that the result be valid for
any arbitrary quantum state.
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A.1.0.a Towards time-dependent perturbation theory

The approximative method, which we shall focus on in the following, is time-dependent perturbation

theory (TDPT). It is most suited for scenarios, wherein the time-evolution of the unperturbed (e.g., static)

system is known, while some additional interaction creates weak, yet possibly complicated, deviations

from this evolution. A system of this kind could be described by a partitioned Hamiltonian of the form:

Ĥ = Ĥ0 + ĤINT. (A.5)

Here, Ĥ0 refers to that part of the system, for which a solution to the TDSE is supposed to be known.

ĤINT, on the other hand, signifies the additional interaction. For example, this may be an external field

driving the system or an intrinsic coupling between two subsystems of Ĥ0, which would otherwise be

separated3.

In this setting, the goal of TDPT is to simplify the general equation that governs time-evolution (i.e.,

Eq. (A.4)) by capitalizing on the solution for the unperturbed part, which already exists:

i
∂
∂ t

Û0(t, t0) = Ĥ0Û0(t, t0) ⇒ Û0(t, t0) = e−i Ĥ0(t−t0). (A.6)

If this operator dominates the dynamics of the overall system—with small corrections from the

perturbation—then, it seems sensible to account for the latter via a product-ansatz4:

Û(t, t0) = Û0(t, t0)ÛINT(t, t0). (A.7)

Using this, we can search for an equation of motion that is specific to the interaction-based time-evolution

operator. To this end, we combine Eqs. (A.4), (A.5) and (A.7) and find

i
∂
∂ t

Û(t, t0) = Ĥ Û(t, t0)

i
∂
∂ t

(
Û0(t, t0)ÛINT(t, t0)

)
=
(

Ĥ0 + ĤINT

)(
Û0(t, t0)ÛINT(t, t0)

)

(
i

∂
∂ t

Û0(t, t0)
)

ÛINT(t, t0)+Û0(t, t0)
(

i
∂
∂ t

ÛINT(t, t0)
)
=
(

Ĥ0 + ĤINT

)(
Û0(t, t0)ÛINT(t, t0)

)

Ĥ0Û0(t, t0)ÛINT(t, t0)+Û0(t, t0) i
∂
∂ t

ÛINT(t, t0) =
(

Ĥ0 + ĤINT

)
Û0(t, t0)ÛINT(t, t0)

Û0(t, t0) i
∂
∂ t

ÛINT(t, t0) = ĤINT Û0(t, t0)ÛINT(t, t0)

i
∂
∂ t

ÛINT(t, t0) = Û0(t0, t) ĤINT Û0(t, t0)︸ ︷︷ ︸
Ĥ I

INT(t,t0)

ÛINT(t, t0). (A.8)

3Note that in principle, the interaction Hamiltonian could even be chosen to include an explicit time-dependence (i.e.,
ĤINT(t)). In fact, this is often done in cases of external fields driving a system—think of an atom exposed to an external
laser beam. However, this superficially innocuous addition poses noteworthy conceptual challenges. It formally voids energy
conservation—which may be visualized on the previous example as well: There, the laser can impart energy to the atom that it
did not possess originally. Effectively, this converts the originally ‘closed’ quantum system, which was described by Ĥ0 alone,
into an ‘open’ quantum system. In extreme cases, this may even jeopardize the unitarity of time-evolution. With this note of
caution put forth, we shall abstain from introducing an explicit time-dependence to ĤINT here. We note further, however, that it
would not change the resulting equations up to and including Eq. (A.15).

4Note that we motivate the product-ansatz (Eq. (A.7)) in the context of small perturbative corrections, but its validity
extends beyond. In fact, it is possible to factorize the time-evolution operator according to any arbitrary partitioning of the
Hamiltonian—it may not be useful to do so, though.
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This is once again a Schrödinger-type equation, which governs the evolution of ÛINT(t, t0), but notably

contains an effectively time-dependent Hamiltonian. In fact, this is the TDSE in the so-called ‘interaction

picture’—a hybrid in between the more common ‘Schrödinger picture’ (i.e., our starting point) and the

‘Heisenberg picture’ (see, for instance, Ref. [211]). The involved Hamiltonian is ‘dressed’ by the free

time-evolution and represents the original interaction Hamiltonian in the interaction picture:

Ĥ I
INT(t, t0) := Û0(t0, t) ĤINT Û0(t, t0) = ei Ĥ0(t−t0) ĤINT e−i Ĥ0(t−t0). (A.9)

Here, the second equality draws on the explicit solution of Eq. (A.6) and may be more familiar from

common quantum mechanics textbooks.

Pursuing further reformulation of Eq. (A.8), we can formally integrate in time and obtain

ÛINT(t, t0) = 1− i
∫ t

t0
dt ′ Û0(t0, t ′) ĤINT Û0(t ′, t0) ÛINT(t ′, t0)

= 1− i
∫ t

t0
dt ′ Ĥ I

INT(t
′, t0) ÛINT(t ′, t0) (A.10)

or, upon including Û0(t0, t):

Û(t, t0) = Û0(t, t0)ÛINT(t, t0) = Û0(t, t0)− iÛ0(t, t0)
∫ t

t0
dt ′ Û0(t0, t ′) ĤINT Û(t ′, t0). (A.11)

These recursive expressions are known as Dyson equations and constitute the starting point for actual

perturbation theory.

Instead of finding the exact solution for ÛINT(t, t0), it often suffices to iterate Eq. (A.10) in low orders

and thus find approximations as follows:

1. order:

Û (1)
INT(t, t0) = 1− i

∫ t

t0
dt ′ Ĥ I

INT(t
′, t0) 1, (A.12)

2. order:

Û (2)
INT(t, t0) = 1− i

∫ t

t0
dt ′ Ĥ I

INT(t
′, t0)

(
1− i

∫ t ′

t0
dt ′′ Ĥ I

INT(t
′′, t0) 1

)

= 1− i
∫ t

t0
dt ′ Ĥ I

INT(t
′, t0)−

∫ t

t0
dt ′
∫ t ′

t0
dt ′′ Ĥ I

INT(t
′, t0) Ĥ I

INT(t
′′, t0)

= 1− i
∫ t

t0
dt ′ Ĥ I

INT(t
′, t0)−

1
2

∫ t

t0
dt ′
∫ t

t0
dt ′′ T̂

[
Ĥ I

INT(t
′, t0) Ĥ I

INT(t
′′, t0)

]
, (A.13)
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3. order:

Û (3)
INT(t, t0) = 1− i

∫ t

t0
dt ′ Ĥ I

INT(t
′, t0)

(
1− i

∫ t ′

t0
dt ′′ Ĥ I

INT(t
′′, t0)

(
1− i

∫ t ′′

t0
dt ′′′ Ĥ I

INT(t
′′′, t0) 1

))

= 1− i
∫ t

t0
dt ′ Ĥ I

INT(t
′, t0)−

∫ t

t0
dt ′
∫ t ′

t0
dt ′′ Ĥ I

INT(t
′, t0) Ĥ I

INT(t
′′, t0)

+ i
∫ t

t0
dt ′
∫ t ′

t0
dt ′′

∫ t ′′

t0
dt ′′′ Ĥ I

INT(t
′, t0) Ĥ I

INT(t
′′, t0) Ĥ I

INT(t
′′′, t0)

= 1− i
∫ t

t0
dt ′ Ĥ I

INT(t
′, t0)−

1
2

∫ t

t0
dt ′
∫ t

t0
dt ′′ T̂

[
Ĥ I

INT(t
′, t0) Ĥ I

INT(t
′′, t0)

]
(A.14)

+ i
1
6

∫ t

t0
dt ′
∫ t

t0
dt ′′

∫ t

t0
dt ′′′ T̂

[
Ĥ I

INT(t
′, t0) Ĥ I

INT(t
′′, t0) Ĥ I

INT(t
′′′, t0)

]

and so forth.

In the last step of Eqs. (A.13) and (A.14), respectively, we have introduced the time-ordering operator

T̂ to obtain a slightly different formulation5.

For completeness, we want to point out that the Dyson series may formally be extended ad infinitum.

Re-summing it and making excessive use of T̂ will result in a time-ordered exponential operator as the

general solution

ÛINT(t, t0) = T̂
[
e−i

∫ t
t0

dt ′ Ĥ I
INT(t

′,t0)
]
. (A.15)

We should emphasize that this form is essentially analogous to the solutions for Û(t, t0) or Û0(t, t0) (cf.

Eq. (A.6)), but accounts for the additional time-dependence that each Ĥ I
INT(t

′, t0) carries from Eq. (A.8).

In closing, we note that—despite its elegance—the compact expression above is often of little practical

value, as its evaluation usually requires the re-expansion of the whole series.

A.1.0.b Remark on the Heisenberg picture and its EOM

In our above discussion, we have briefly touched upon the distinction of the Schrödinger and Heisenberg

pictures of quantum-mechanical time-evolution. For completeness, we want to point out that the usage

of time-evolution operators allows to convert one into the other in a straight-forward manner.

As a starting point, we recall that Heisenberg put the emphasis of his formulation of quantum-

mechanics (namely, matrix-mechanics [212–214]) onto the time-evolution of operators instead of quan-

tum states. This can be motivated from the simple observation that (time-dependent) expectation values

of specific operators may be (re-)written either way:

〈
Ô(t)

〉
= 〈Ψ(t)| Ô |Ψ(t)〉= 〈Ψ(t0)|Û(t0, t) Ô Û(t, t0)︸ ︷︷ ︸

=:ÔH(t,t0)

|Ψ(t0)〉= 〈Ψ(t0)| ÔH(t, t0) |Ψ(t0)〉 . (A.16)

Here, we have defined the operator in the Heisenberg picture ÔH(t, t0) to incorporate the time-evolution

that would otherwise (i.e., in the Schrödinger picture) have been associated with the quantum-state
|Ψ(t)〉—reducing the latter to a static initial condition at t = t0 (viz., |Ψ(t0)〉).

5We recall that the time-ordering operator T̂ [...] acts on all following operators, which are included by its brackets.
Specifically, it sorts them according to their (first) time-argument, such that later operators are found further left. Formally,
its general function can be expressed using Heaviside functions: T̂ [A(ta, t0)B(tb, t0)] = Θ(ta − tb)A(ta, t0)B(tb, t0) +Θ(tb −
ta)B(tb, t0)A(ta, t0).
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Importantly, we keep track of the time-point, which is associated with this initial condition, by car-

rying t0 as a second argument. This follows the same spirit as Eq. (A.9) earlier. For the most conven-

tionally used case, when t0 = 0 to begin with, we shall simplify this notation and drop the reference

ÔH(t, t0 = 0) = ÔH(t)

Using this definition of ÔH(t, t0) as well as the TDSE for time-evolution operators (see Eq. (A.4)

earlier), we can easily derive Heisenberg’s equations of motion (EOM) for operators as follows:

d
dt

ÔH(t, t0) =
d
dt

(
Û(t0, t) Ô Û(t, t0)

)

=
( ∂

∂ t
Û(t0, t)

)
Ô Û(t, t0)+Û(t0, t)

( ∂
∂ t

Ô
)

Û(t, t0)+Û(t0, t) Ô
( ∂

∂ t
Û(t, t0)

)

=
( ∂

∂ t
Û(t, t0)

)†
Ô Û(t, t0)+0+Û(t0, t) Ô

( ∂
∂ t

Û(t, t0)
)

=
(
− i ĤÛ(t, t0)

)†
Ô Û(t, t0)+Û(t0, t) Ô

(
− i ĤÛ(t, t0)

)

= iÛ(t0, t) [Ĥ, Ô] Û(t, t0)

d
dt

ÔH(t, t0) = i [ĤH, ÔH(t, t0)] = i [Ĥ, ÔH(t, t0)]. (A.17)

In this, we assume the operator Ô not to exhibit any intrinsic time-dependence in its native, Schrödinger-

picture form. Similarly, we take the governing Hamiltonian to be time-independent, which allows for

the last equality to be stated strictly. Otherwise, the EOM will only be valid given the exclusive use of

Heisenberg-picture operators, i.e., the penultimate equality of Eq. (A.17).
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A.2 Conventions for Fourier transformations

At this point, we want to briefly establish our Fourier conventions—both for the case of infinite, contin-

uous domains and periodic, semi-discrete cases. While each scenario will be discussed in its own right

later on (cf. A.7 and A.4, respectively), this section is simply intended as a quick reference.

Continuous Fourier transform In the case of an infinite, continuous domain (usually time t ∈ R1 or

space x ∈ R3), we concern ourselves with the Fourier transformation of complex-valued functions f (t)

or f (x), which should ideally be square-integrable6.

Considering functions of time, we apply the following Fourier relations:

f̃ (ω) =
∫ ∞

−∞
dt eiωt f (t) (A.18)

f (t) =
1

2π

∫ ∞

−∞
dω e−iωt f̃ (ω). (A.19)

Here, we have used an additional tilde to denote the Fourier-transformed quantity.

For spatial functions, we adopt the opposite sign in the exponent, which proves convenient in the

context of wave-like phenomena (see also App. A.7):

f̃ (k) =
∫

d3x e−ik·x f (x) (A.20)

f (x) =
1

(2π)3

∫
d3k eik·x f̃ (k). (A.21)

Regarding the distribution of the 1
(2π)n factors, we follow the “π goes with p”-rule, i.e., placing the factors

with the momentum (frequency) space integrations in all cases.

Discrete Fourier transform In the case of a finite, but periodic domain, we employ the Fourier pair:

f̃ (k) =
∫

�
d3x e−ik·x f (x) (A.22)

f (x) =
1

V�
∑
k

eik·x f̃ (k). (A.23)

In terms of exponentials and placement of the normalization factor, these follow the same convention as

their continuous counterparts above. However, the restricted domain—here indicated by V� or simply

�—leads to a discretization of allowed momenta k. This is reflected in the discrete sum in Eq. (A.23)

with a mode volume per k-point of (2π)3

V�
.

6Note that we will be deliberately sloppy on this point of square-integrability, in order to accommodate for δ -‘functions’
and their Fourier representation without invoking distribution theory.
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A.3 Spatial transformations and the Fourier transform

In the following notes, we briefly ponder the influence of spatial transformations, i.e., translations and

rotations onto Fourier transformed quantities. This could be of particular use for the transformation of

light-source correlation functions—from model to lab-frame.

Rotations In the course of transforming field correlators for x-ray and optical beams, we may need to

account for rotations, i.e., beams at an angle. Below, we will find that spatial rotations affect real-space

functions in the same way as they affect their Fourier transformed counterparts:

f (x) = f ′(x′) = f ′(Ox) ⇔ f̃ (k) = f̃ ′(k′) = f̃ ′(Ok). (A.24)

Here, the tilde indicates Fourier transformed quantities and O denotes a rotation matrix (orthogonal

transformation7.

In the following, we will arrive at this result for a scalar function f (x). Its component-wise gener-

alization to vectors etc. is straight-forward. For illustration, we imagine a situation, where a scalar field

is described in two different reference frames (see Fig. A.1). Namely, we use f (x) for the first situation

(a) and f ′(x′) for the second situation (b). Now, obviously, the coordinates of physically identical points

(a) (b)

Figure A.1: Description of scalar field f in two different reference frames—namely un-primed (a) and primed (b)
coordinates. [We gratefully acknowledge Dr. Christina Bömer’s help in rendering the computer graphics of the
above illustrations.]

must be related. Here, this is through a rotation

x′ = Ox, (A.25)

where O denotes the orthogonal rotation matrix. Moreover, the value of the field at the same physical

location has to be the same, i.e.,

f (x) = f ′(x′) = f ′(Ox). (A.26)

Of course, there is a Fourier transformation native to each reference frame, viz.

f̃ (k) =
∫

dx e−ikx f (x) and f̃ ′(k′) =
∫

dx′ e−ik′x′ f ′(x′). (A.27)

7Orthogonal transformations—as usual—obey OOT = 1.
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These are again related, as we can see from the replacement

f̃ (k) =
∫

dx e−ikx f ′(Ox). (A.28)

We can transform the coordinates x→ x′ = Ox with unit Jacobian dx→ dx′ (due to the orthogonality of

the transformation), i.e.,

f̃ (k) =
∫

dx e−ikOT x′ f ′(x′). (A.29)

We note that the dot product implies k ·x = kT x = kT OT x′ = (Ok)T x′ and thus follows

f̃ (k) =
∫

dx e−ikOT x′ f ′(x′) =
∫

dx e−i(Ok)T x′ f ′(x′)

= f̃ ′(Ok). (A.30)

Ultimately, this means that we can perform a Fourier transformation in the frame of our choice (i.e.,

convenience) and relate it into the coordinate frame of our needs simply by rotating its argument.

Translations The effect of spatial translations on Fourier transformations is even simpler and merely

results in a phase shift:

f (x) = f ′(x′) = f ′(x+a) ⇔ f̃ (k) = f̃ ′(k′) = eika f̃ ′(k). (A.31)

Once again, we denote the Fourier transformed counterpart of a function with a tilde. The correspondence

can easily be shown by simply rewriting the transformation integral with a shifted argument.
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A.4 Discretized Fourier transformations

In an earlier section (A.2), we have discussed the general structure and convention for our Fourier trans-

forms. Therein, our primary placed on “finite” (i.e., square-integrable) systems embedded in an infinite

domain. These produce continuous Fourier transforms on a likewise infinite reciprocal domain and will

be discussed in further detail in App. A.7.

For the description of crystalline (electronic) systems, however, it is often methodically advantageous

to adopt a description on a finite domain, which is augmented by periodic boundary conditions (PBC).

On this finite (periodic) domain, which we shall indicate by the symbol �, the Fourier transform pair

reads:

f (k) =
∫

�
d3x e−ikx f (x) (A.32)

f (x) =
1

V�
∑
k

eikx f (k), (A.33)

where the set of allowed momenta k is discretized with a mode volume of (2π)3

V�
.

We note for consistency that the above equations will transition into our normal Fourier relations of

Eqs. (A.18) and (A.19) upon relaxing the volume constraint (V�→ ∞). To this end, we have to impose

the conventional continuum limit for the summation, i.e.,

(2π)3

V�
∑
k
−−−−→
V�→ ∞

∫
d3k (A.34)

In order to prove the inverse nature of Eqs. (A.32) and (A.33), we directly evaluate their concatenation

f (k) =
∫

�
d3x e−ikx f (x) =

∫

�
d3x e−ikx 1

V�
∑
k′

eik′x f (k′)

= ∑
k′

(
1

V�

∫

�
d3x eix·(k′−k)

)
f (k′) = ∑

k′
δk,k′ f (k′) = f (k). (A.35)

Here, the normalized integral can be seen to yield 1, if k = k′, and 0 otherwise on grounds of periodicity;

thus, it functions like, and can be represented as, a Kronecker δ .

Evaluating the opposite direction, we encounter the discrete representation of a (periodic) Dirac-δ :

f (x) =
1

V�
∑
k

eikx f (k) =
1

V�
∑
k

eikx
∫

�
d3x′ e−ikx′ f (x′)

=
∫

�
d3x′

(
1

V�
∑
k

eik·(x−x′)

)
f (x′) =

∫

�
d3x′ δ 3

� (x−x′) f (x′) = f (x). (A.36)

Analogous to the Fourier transform itself, this transitions into the conventional Dirac δ -function for

V�→ ∞. Using Eq. (A.34), we find

δ 3
� (x−x′) =

1
V�

∑
k

eik(x−x′) −−−−→
V�→ ∞

1
(2π)3

∫
d3k eik(x−x′) = δ 3(x−x′). (A.37)

If—in addition to the PBC—there is also the notion of a lattice present (here, using real-space lattice

vectors {R}), we can introduce a lattice in reciprocal-space as well. The corresponding reciprocal lattice
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vectors are {G} and satisfy GR = n · 2π for any R. Using these, we can re-write the Fourier transform

pair as:

f (q,G) =
∫

�
d3x e−i(q+G)·x f (x) (A.38)

f (x) =
1

V�

1. BZ

∑
q

rec. latt.

∑
G

ei(q+G)·x f (q,G), (A.39)

for which we have split the original momentum k = G+q into an amount captured by full reciprocal

lattice vectors G and a remainder q, which falls into the so-called first Brilloun zone (1. BZ) [101]. The

latter momentum is—by definition—smaller than any G.

For general f (x), this is just an equivalent reformulation of Eqs. (A.32) and (A.33), but as soon as

f (x) = f (x+R) exhibits lattice periodicity, it becomes more obviously useful:

f (q,G) =
∫

�
d3x e−i(q+G)·x f (x)

= ∑
R

∫

U(0)
d3x e−i(q+G)·(R+x) f (R+x)

= ∑
R

e−iqR
∫

U(0)
d3x e−i(q+G)·x f (x). (A.40)

Above, U(0) denotes the single unit cell of the real-space lattice which is associated with R = 0. Given

the general periodicity of the setup (recall the PBC), we can equate

∑
R

e−iqR = δq,0 Ncells = δq,0
V�

VU(0)
(A.41)

and thus find for Eq. (A.40) the simplification

f (q,G) = ∑
R

e−iqR
∫

U(0)
d3x e−i(q+G)·x f (x)

= ∑
R

δq,0
V�

VU(0)

∫

U(0)
d3x e−i(q+G)·x f (x)

= δq,0

∫

�
d3x e−iGx f (x)

= δq,0 f (0,G). (A.42)

Thus, we can conclude that we can fully represent a lattice-periodic function using its reciprocal compo-

nents alone.

The above reasoning can be extended to functions of several spatial arguments. For the case of sim-

ple lattice periodicity in all arguments (individually), the generalization is trivial. As a more complicated

case, which is relevant for our nonlinear response function, we shall consider the scenario that transla-

tional invariance on the lattice holds only for combined shifts in two arguments (cf. symmetry discussion

in Sec. 3.1.1).

To this end, we assume a function g(x1,x2) that satisfies g(x1,x2) = g(x1 +R,x2 +R) for any real-
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space lattice translation R. Its most general Fourier transform on the lattice can be written as

g(q1 +G1,q2 +G2) =
∫

�
d3x1

∫

�
d3x2 e−i(q1+G1)·x1 e−i(q2+G2)·x2 g(x1,x2)

=
1

Ncells
∑
R

∫

�
d3x1

∫

�
d3x2 e−i(q1+G1)·x1 e−i(q2+G2)·x2 g(x1,x2)

=
1

Ncells
∑
R

∫

�
d3x1

∫

�
d3x2 e−i(q1+G1)·x1 e−i(q2+G2)·x2 g(x1 +R,x2 +R)

=
1

Ncells
∑
R

∫

�
d3x1

∫

�
d3x2 e−i(q1+G1)·(x1+R) e−i(q2+G2)·(x2+R) g(x1,x2)

=
1

Ncells
∑
R

e−iq1R e−iq2R

︸ ︷︷ ︸
δq1 ,−q2

∫

�
d3x1

∫

�
d3x2 e−i(q1+G1)·x1 e−i(q2+G2)·x2 g(x1,x2).

(A.43)

In order to expose the lattice symmetry, we have proceeded step-wise. First, we have introduced a

summation over all lattice-sites, for which we normalized by dividing by the number of summands (here

the number of unit-cells of the lattice Ncells). Subsequently, we have chosen to introduce a shift to the

spatial arguments of g. Owing to its periodicity, this action would not change the overall expression

either. Following-up on this step, we can shift each of the integration variables by R, thus formally un-

doing the shift in the arguments of g. As a trade-off, we obtain two shifted exponentials. The latter can be

simplified by observing that GR = n ·2π and thus e−iGR = 1. The remainder of the shifted exponentials

can ultimately be combined with the summation and interpreted as a Kronecker-δ . In this, the last step

is analogous to case for a single argument above.

Finally, we can conclude from this Kronecker-δ that the Fourier transform of a function, which

exhibits lattice translational-invariance in its combined arguments, implies that we need only a single

component q1 for its low-momentum representation.

g(q1 +G1,q2 +G2) = δq1,−q2

∫

�
d3x1

∫

�
d3x2 e−i(q1+G1)·x1 e−i(q2+G2)·x2 g(x1,x2)

= δq1,−q2 g(q1 +G1,−q1 +G2). (A.44)

We remark that the extension to our nonlinear response function proceeds fully analogously. It yields

the Fourier relations (cf. Eqs. (A.45) and (A.46))

KI�(q+G1,−q+G2,ω) =
∫

�
d3x1

∫

�
d3x2

∫
dτ e−i(q+G1)·x1 e−i(−q+G2)·x2 eiωτ PI�(x1,0, x2,τ) (A.45)

PI�(x1,0, x2,τ) =
1

V 2� 2π

1. BZ

∑
q

rec. latt.

∑
G1,G2

∫
dω ei(q+G1)·x1 ei(−q+G2)·x2 e−iωτ KI�(q+G1,−q+G2,ω).

(A.46)
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A.5 Bloch waves

For a single particle Hamiltonian ĥ0 featuring a lattice periodic potential, i.e.:

ĥ0 =
p̂2

2
+V (x) with V (x) =V (x+R), (A.47)

all spatial eigenfunctions exhibit the following translational symmetry:

ϕk(x+R) = eik·R ϕk(x). (A.48)

This statement amounts to the well-known Bloch theorem (see, e.g., Ref. [101]) and can be confirmed

along the same line of reasoning as used to establish the translational symmetry of the correlation func-

tion PI . As a consequence, we can rewrite these eigenfunctions in the form

ϕn,k(x) =C eik·x un,k(x), (A.49)

where we restrict k to lie within the 1. BZ while introducing an additional band index n to compensate for

this constraint. Furthermore, the function un,k(x) is understood to be fully lattice periodic and C serves

as a normalization constant (to be fixed later). This particular form separates the eigenvalue problem

ĥ0 ϕn,k(x) =C eik·x
( (p̂+k)2

2
+V (x)

︸ ︷︷ ︸
ĥk

)
un,k(x) = εn,k ϕn,k(x), (A.50)

into independent problems per k-point involving effective Hamiltonians ĥk
8.

Given that the functions un,k(x) are assumed to be lattice periodic, we can furthermore expand them

into a Fourier series on the reciprocal lattice (cf. App. A.4):

un,k(x) =
rec. latt.

∑
G

eiG·x cn,k(G). (A.51)

With these points established, we can proceed to fix our normalization conditions—ultimately deter-

mining C: As usual, we require the overall single-particle wave functions to be normalized with respect

to the inner product (on the crystal domain �)
∫

�
d3x ϕ∗n,k(x)ϕn′,k′(x) = δn,n′ δk,k′ , (A.52)

yet in addition, we shall adopt the condition

rec. latt.

∑
G

c∗n,k(G)c∗n′,k(G) = δn,n′ (A.53)

in pragmatic congruence with the ABINIT package for DFT calculations [106]. Evaluating the l.h.s. of

8Note (mostly to myself): This was quite useful for shifting Bloch functions slightly or doing kp-perturbation theory.
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Eq. (A.52), we find:
∫

�
d3x ϕ∗n,k(x)ϕn′,k′(x) = |C|2

∫

�
d3x e−ik·x u∗n,k(x) eik′·x un′,k′(x)

= |C|2
dir. latt.

∑
R

ei(k′−k)·R
∫

U(0)
d3x ei(k′−k)·x u∗n,k(x) un′,k′(x)

= |C|2 Ncells δk,k′

∫

U(0)
d3x u∗n,k(x) un′,k′(x), (A.54)

where we made use of the lattice-translational invariance of the un,k(x), in order to reduce the required

integration to a single unit cell (here denoted U(0)). This integration—in turn—can be rephrased via

Eq. (A.51)

∫

U(0)
d3x u∗n,k(x) un′,k(x) =

∫

U(0)
d3x

rec. latt.

∑
G1

e−iG1·x c∗n,k(G1)
rec. latt.

∑
G2

eiG2·x cn,k(G2)

=
rec. latt.

∑
G1,G2

c∗n,k(G1) cn,k(G2)
∫

U(0)
d3x ei(G2−G1)·x

=
rec. latt.

∑
G1,G2

c∗n,k(G1) cn,k(G2) δG1,G2 VU(0), (A.55)

leaving essentially the previously fixed expression A.53. Overall, we can conclude the unsurprising

normalization of:

C =
1√

NcellsVU(0)
=

1√
V�

. (A.56)

Miscellaneous properties of Bloch functions

Among other things, Bloch waves satisfy the following relation

ϕn,k(x) = ϕn,k+G(x). (A.57)

This can be shown from Fourier decomposition of u.

Inspired by Jones and March [112], we want to list another relation

e−iκ·x ϕn,k+κ(x) = ∑
m

χn,m ϕm,k(x). (A.58)

This connection of Bloch waves at (slightly) different momenta can be put to application when attempting

to formulate k ·p-perturbation theory, for instance.
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A.6 Introduction to MYLIO.X

In the course of this work, we have implemented numerical routines in order to evaluate the nonlinear

response function KI . The main implementation of this kind is bundled into the Fortran-based program

MYLIO.X. It works off an input of Kohn-Sham DFT orbitals for the material of interest, which have to

be pre-computed using external electronic-structure codes.

In the following pages, we attach an introduction to MYLIO.X discussing both its concept, certain

aspects of its programmatic implementation as well as the typical workflow for this program. Notably,

this introduction has originally been written as a stand-alone document. As such the numbering scheme

of its sections does not match the remainder of this work, neither are its references integrated with the

overall bibliography for that matter—references are attached separately.
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MYLIO.X - My Little Observable
a coarse guide to computing the current-density—density response

D. Krebs

Abstract

In this document, we will outline the working principles behind MYLIO.X. This code implements

the numerical evaluation of a current-density—density response function on the basis of Kohn-Sham

DFT orbitals. The response function in question is significant, as it mediates (or—depending on your

point of view: is probed by) several x-ray-optical wavemixing (XOWM) processes.

1 Basics

We have recently developed a theoretical framework to describe x-ray optical wavemixing (XOWM)

phenomena [1]. This was motivated by two overlapping interests: On the one hand, the unprecedented

accessiblity of these processes at modern x-ray sources, viz. at synchrotron radiation sources (SR) or

x-ray free-electron lasers (XFEL), prompted the interest to obtain a theoretical explanation for them.

On the other hand, we were motivated to reach beyond a first, fundamental explanation and explore the

intriguing prospect of using these XOWM processes as novel probes of matter. For this latter purpose,

a thorough theoretical description—including structural nuances—was (and remains) imperative. In our

discussion of XOWM, we focus on the related processes of x-ray optical sum- and difference-frequency

generation (SFG/DFG) as well as x-ray parametric down-conversion (XPDC). All of these promise to

provide diffractive imaging capabilities similar to regular x-ray diffraction, yet with additional spectro-

scopic selectivity that is tunable via the optical wave. Importantly, this selectivity would allow specific

probing of valence responses or—more broadly speaking—imaging/visualizing valence electron dynam-

ics with atomic-scale resolution.

0 2 4 6 8
[110] in a.u.

0

1

2

3

4

5

6

[0
01

] i
n 
a.
u.

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

0.00200

0.00225

0.00250

|R
|2  

in
 a
.u
.

(a) (b)

Figure 1: Illustrations from Ref. [1] (a) The nonlinear response is shown in terms of |RGS(x,0.057)|2 for
diamond in the (11̄0)-plane of its conventional (cubic) unit cell. The DFT-model predicts a localization
of the response in two maxima along each bond, reflecting transition from the ground state (bonding
character) into excited states of dominantly anti-bonding character. (b) A 3D-rendering of the same
response throughout the whole (cubic) unit cell.
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The nonlinear electronic response is essentially captured by

(PI(y, t2, x, t1))µ = 〈I| T̂
[
(p̂(y, t2))µ n̂(x, t1)

]
|I〉 , (1)

which denotes the time-ordered correlation function of the electronic system’s density n̂(x, t1) with its

current density p̂(y, t2) = ψ̂†(y, t2)(−i∇) ψ̂(y, t2)—measured in the state |I〉. This state will mostly be

taken to be the ground state |I〉= |GS〉 only.

Presently, we evaluate this correlator on the basis of ground-state DFT. More specifically, we use the

Fourier transform of PI (viz. KI = FT{PI}) and compute it from Kohn-Sham orbitals. Its expression in

terms of single-particle matrix elements reads:

KI�(q+G1,−q+G2,ω) = lim
η→0+

2i
occ.

∑
p

unocc.

∑
q

(〈ϕp|e−i(−q+G2)·x̂ |ϕq〉 〈ϕq|e−i(q+G1)·x̂ p̂ |ϕp〉
ω− (εq− εp)+ iη

+
〈ϕp|e−i(q+G1)·x̂ p̂ |ϕq〉 〈ϕq|e−i(−q+G2)·x̂ |ϕp〉

−ω− (εq− εp)+ iη

)
. (2)

For our current purposes, it is sufficient to consider only a simplified range of momentum transfers,

namely KI(0,G,ω), where G are vectors of the reciprocal lattice. This reduction in complexity results

from a dipole-approximation-like treatment of the optical field’s interaction (q ≈ 0,G1 ≈ 0). From the

remaining information-content of KI , we can nonetheless reconstruct a nonlinear response density by

Fourier-synthesis:

RI(x,ω) =
1

V�

rec.

∑
G

eiG·x KI(0,G,ω). (3)

It is illustrated at its present numerical level (LDA-DFT) for diamond in Fig. 1.

2 The MYLIO.X code

The main purpose of the MYLIO.X code is to evaluate KI(0,G,ω) (via Eq. (2)) on the basis of Kohn-

Sham DFT orbitals. Specifically, it post-processes data from the ABINIT DFT code (cf. Sec. 2.1), which

takes the form of Bloch-wave states expanded into a plane-wave basis.

The code is structured as follows:

A small main-routine initializes the input parameters (global variables.f90) for the computa-

tion and starts the required numerical routine from the module electronic cfct.f90—see Fig. 2.

At the same time, these three modules mark all points where user input may be processed. Notably,

MYLIO.X does not use an explicit, human-readable input file. Instead, user-inputs are hard coded and

thus implemented through re-compilation of the program1—see Sec. 2.1 for details.

Further routines that are involved in the operation of MYLIO.X are read ABINIT files.f90,

vec functions.f90 and error handling.f90. For all of them, the purposes are self-evident

from their nomenclature. It should be borne in mind for later reference, however, that the module

read ABINIT files.f90 initializes the essential data structures, which are accessed during later

stages of the computation. These are described in more detail in Sec. 2.2.

1This form of minimal I/O-operation was adopted to streamline the development process. Later conversion to more com-
fortable formats appears dispensable given the future transition to FHIAIMS.
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Figure 2: Overall structure of the MYLIO.X code

Observables MYLIO.X may provide several observables of the underlying electronic system.

• First and foremost, it can compute the nonlinear response function KI(0,G,ω) at DFT level. The

output may be given in two distinct forms: Either as a spectral scan (ω) for a single, fixed reciprocal

component G, or as a set of reciprocal components for a fixed value of ω . The latter option is

valuable for 3D-reconstruction or visualization purposes.

• In addition, a simplified version of KI(0,G,ω) can be computed. The implemented approxima-

tion reflects a high-energy limit, where the frequency ω is set far above all relevant valence-energy

scales yet below core-electron excitation thresholds. It was first suggested by Freund [2] and thus,

the respective routines are named accordingly inside the code (calculate KI Freund) and

(get electronic cfct Freund). While the approximation has a limited range of applica-

tions, it nevertheless proves useful from time to time (e.g., for diamond ω ∼ 100 eV. Output

options are the same as for the regular K.

• The (valence) electronic density ρ(x) = 〈n̂(x)〉 can likewise be assembled using MYLIO.X. This

is mostly a convenience function and had some debugging purposes. It is not strictly necessary, be-

cause ABINIT could produce this observable as well. The output is given as reciprocal components

of the electron density analogous to the respective output of K.

• Finally, the MYLIO.X code can compute the dielectric function of solid-state materials on the

level of the Kubo-Greenwood formula [3]. While this does not provide outstandingly realistic

results—infact it is often advisable to use tabulated dielectric functions instead—it is very helpful

for cross-comparison to other numerical frameworks, which do not incorporate K as an observable.

Moreover, this function allows us to get estimates of ε(ω) for materials without proper reference

3
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data available. The output is given as a spectrum (ω) analogous to the respective spectral output

of K.

2.1 Input data

In order to operate MYLIO.X, three types of input are required:

Choice of observable Inside the main.f90-routine, several different observables can be chosen by

uncommented the respective option. The following excerpt showcases the situation for the computation

of KI(0,G,ω) at fixed energy ω but for a range of reciprocal components G:
1 ! run t h e c a l c u l a t i o n o f o b s e r v a b l e ( s )
2 ! uncomment t h e t a s k , which you need
3
4 ! c a l l p r i n t e l e c t r o n i c c f c t ! P r i n t s t h e s p e c t r u m of K f o r a f i x e d G
5 c a l l p r i n t c f c t s t r u c t u r e ! P r i n t s K f o r v a r i o u s G b u t a t f i x e d e n e r gy
6 ! n i c e r t o use when you want t o r e c o n s t r u c t a t one en e r gy
7 ! c a l l p r i n t e l e c t r o n i c d e n s i t y ! P r i n t s t h e e l e c t r o n i c d e n s i t y / i t s r e c i p r o c a l components
8
9 ! c a l l c a l c u l a t e o b s d i e l e c ! Computes and p r i n t s t h e d i e l e c t r i c f u n c t i o n

10 ! based on t h e Kubo−Greenwood f o r m u l a
11
12 ! run d i r e c t l y from e l e c t r o n i c module − r o u t i n e s f o r t e s t i n g
13 ! c a l l c a l c u l a t e o b s e r v a b l e d i p t e s t
14 ! c a l l r u n s i g t e s t

Other possible options are likewise apparent from the excerpt—with the last two being not recommended

for any production-runs, as they serve merely for debugging purposes.

Approximate observable KFreund In case, the high-energy approximation of KI(0,G,ω) should be

computed, this can also be done by choosing either of the “K-options” outlined above. However, it

requires further modifications inside the module electronic cfct.f90. Should a spectrum be

generated for KFreund, the function to modify is print electronic cfct, specifically the section

that determines the mode of computing K, obviously.
1 ! a l l o c a t e and f i l l K
2 a l l o c a t e ( K i n i ( 1 : 6 , 1 : g omega n ) )
3 ! c a l l g e t e l e c t r o n i c c f c t ( K i n i )
4 c a l l g e t e l e c t r o n i c c f c t F r e u n d ( K i n i )
5 ! c a l l g e t e l e c t r o n i c c f c t n e w ( K i n i )

Uncommenting the second of the three get electronic cfct-options gives the ‘Freund’-version.

In case the reciprocal components of KFreund at a fixed energy are desired, the function to modify is

instead get electronic cfct component.
1 ! t h e n f i l l t h e K a r r a y wi th K
2 dummy vec = 0 . d0
3 !K = c a l c u l a t e K I ( dummy vec , dummy vec , omega )
4 K = c a l c u l a t e K I F r e u n d ( dummy vec , vecG , omega )
5 K = K / m v o l c r y s t a l

In here, the call to either subroutine calculate KI must be chosen according to need.

Global variables The majority of numerical parameters for any MYLIO.X-run is set in the

global variables.f90-file. In the following, we show a minimal example (for diamond) and

discuss the components subsequently.
1 ! ===================================================================
2 ! A l l sys tem / n u m e r i c a l p a r a m e t e r s f o l l o w h e r e
3 ! Some may f o r m a l l y be p a r a m e t e r s , o t h e r s need t o be i n i t i a l i z e d
4 ! ( e . g . , by b e i n g c o n v e r t e d / c a l c u l a t e d )
5 ! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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6 ! The f o l l o w i n g p a r t p e r t a i n s t o t h e e l e c t r o n i c s t r u c t u r e c a l c u l a t i o n
7 ! i . e . ABINIT d e f i n i t i o n s / p a r a m e t e r s f o r t h e c a l c u l a t i o n o f K
8
9 ! r e c i p r o c a l l a t t i c e v e c t o r s − f i l l e d by i n i t r o u t i n e

10 d oub l e p r e c i s i o n : : g p r i m k r e d ( 3 , 3 )
11 d oub l e p r e c i s i o n : : g r e d
12
13 ! r e c i p r o c a l l a t t i c e v e c t o r used f o r s c a t t e r i n g − g i v e r e d u c e d c o o r d i n a t e s
14 ! w. r . t . t h e above p r i m i t i v e v e c t o r s
15 d oub l e p r e c i s i o n , p a r a m e t e r : : g k 2 t i l d e ( 1 : 3 ) = ( / 1 . d0 , 1 . d0 , 1 . d0 / ) ! c o n v e n t i o n a l 111
16
17 ! number o f o c c u p i e d bands
18 i n t e g e r , p a r a m e t e r : : g n o c c b a n d =4 ! 4 f o r Diamond
19
20 ! f r e q u e n c y g r i d f o r KI c a l c u l a t i o n
21 ! n o t e t h a t you may choose a n e g a t i v e s t a r t i n g e n e r gy
22 d oub l e p r e c i s i o n : : g o m e g a s t a r t = −2.0 ! i n a t o m ic u n i t s
23 d oub l e p r e c i s i o n : : g o m e g a f i n a l = 2 . 0 ! i n a t om i c u n i t s
24 ! s t e p s i z e
25 d oub l e p r e c i s i o n : : g o m e g a d e l t a = 1 . 0 e−3
26 ! f i n a l l y , t h e r e w i l l be a number o f s t e p s a s s o c i a t e d wi th t h e above ,
27 ! t h i s i s d e t e r m i n e d by t h e i n i t r o u t i n e
28 i n t e g e r : : g omega n = 0 ! s e t by i n i t r o u t i n e
29
30 ! r e g u l a r i z a t i o n p a r a m e t e r
31 ! can be seen as e x c i t o n l i f e t i m e
32 d oub l e p r e c i s i o n , p a r a m e t e r : : g e t a = 7 . 0 e−3 ! B e n e d i c t e t a l .
33
34 ! s c i s s o r c o r r e c t i o n
35 d oub l e p r e c i s i o n , p a r a m e t e r : : g s c i s s o r = 0 . 0
36 ! d oub l e p r e c i s i o n , p a r a m e t e r : : g s c i s s o r = 0 .062 ! i n a tom ic u n i t s −> Diamond − S i l v a n a B o t t i e t a l .
37
38 ! Addon 2020−10−15 − c o m p u t a t i o n o f v a r i o u s r e c i p r o c a l components o f K
39 ! f o r s t r u c t u r a l r e c o n s t r u c t i o n
40
41 ! o p t i c a l e ne r gy a t which t o e v a l u a t e K
42 d oub le p r e c i s i o n : : g o m e g a f i x = 0 . 057 ! i n a . u . 0 .057 c o r r e s p o n d s t o 1 . 5 5 eV
43
44 ! r e s o l u t i o n up t o which t o e v a l u a t e
45 ! g i v e t h i s i n t e r m s of an i n c i d e n t x−r a y w a v e l e n g t h
46 ! from t h i s c a l c u l a t e Ewald ’ s s p h e r e − r e s o l u t i o n = d i a m e t e r
47 d oub l e p r e c i s i o n : : g lambda = 1 . 0 ! i n a to mi c u n i t s
48 ! 3 .347 au = 1 . 7 7 Ang / 7keV s h o u l d j u s t r e s o l v e 400 (C)
49 ! i n a d d i t i o n , g i v e maximal M i l l e r i n d i c e s t o t e s t
50 i n t e g e r : : g max idxh = 2
51 i n t e g e r : : g max idxk = 2
52 i n t e g e r : : g m a x i d x l = 2

In addition, there is a later section of the file, which contains the function g init module and within

it the initialization of the lattice parameters.
1 ! r e c i p r o c a l l a t t i c e v e c t o r s
2 ! t h e s e a r e t h e t h r e e p r i m i t i v e G v e c t o r s a s used by A b i n i t
3 ! t a k e n from t h e r e s p e c t i v e o u t p u t f i l e o f my A b i n i t c a l c u l a t i o n
4 ! ! t h e y s a t i s f y G( 1 ) *R ( 1 ) = 1 i n s t e a d o f t h e u s u a l G( 1 ) *R( 1 ) = 2 p i
5
6 ! f i r s t G v e c t o r − G( 1 ) − c a r t e s i a n c o o r d i n a t e s i n Bohr**−1
7 ! Diamond
8 g p r i m k r e d ( 1 , 1 ) = −0.1483536
9 g p r i m k r e d ( 2 , 1 ) = 0 .1483536

10 g p r i m k r e d ( 3 , 1 ) = 0 .1483536
11
12 g p r i m k r e d ( 1 , 2 ) = 0 .1483536
13 g p r i m k r e d ( 2 , 2 ) = −0.1483536
14 g p r i m k r e d ( 3 , 2 ) = 0 .1483536
15
16 g p r i m k r e d ( 1 , 3 ) = 0 .1483536
17 g p r i m k r e d ( 2 , 3 ) = 0 .1483536
18 g p r i m k r e d ( 3 , 3 ) = −0.1483536
19
20 g r e d = 2 . 0 * 3.141592653589793 ! Use i t t o r e c o v e r 2 p i
21 ! a s ABINIT d e f i n i t i o n o f G i s w i t h o u t s . a .

2.2 Conversion of ABINIT data

In the module read ABINIT files.f90, all necessary information about the electronic structure

is read in. This comprises both the actual Kohn-Sham orbitals and information on the numerical grid,
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which was used to compute them in the first place (i.e., in the ABINIT-calculation).

The essential components are the single particle Kohn-Sham orbitals, which take the form of Bloch-

waves in a periodic solid:

ϕn,k(x) =
1√
V�

eik·x un,k(x). (4)

Here we restrict k to lie within the 1. Brillouin-zone (BZ) while introducing an additional band index

n to compensate for this constraint. Furthermore, the function un,k(x) is understood to be fully lattice

periodic and normalized to the (numerical) crystal volume V�.

Given the periodicity of un,k(x), we can expand it into a Fourier series on the reciprocal lattice:

un,k(x) =
rec. latt.

∑
G

eiG·x cn,k(G). (5)

The respective data from ABINIT is stored as follows: The central object is the array of expansion co-

efficients cn,k(G), namely m cg k(i,n,G,k). This is a 4-dimensional array, wherein the indices

correspond to

• i: ranging from 1 to 2, gives the real and imaginary part of each coefficient,

• n: ranging from 1 to m nband, marks the respective band n of the Bloch-function,

• G: ranging from 1 to m maxnpw, specifies which reciprocal component G of the Bloch-function

is considered and

• k: ranging from 1 to m nkpt, specifies the k-kpoint of the 1. BZ, for which the Bloch-function is

evaluated.

Note that the first index is shed (converted) upon transfer into the electronic cftc.f90-module,

because there, a complex data-type is used. As such, the distinction of the two complex components is

handled automatically.

There is a copuple of further things to note here. Obviously, there is a limited number of bands,

which are numerically reproduced. This number was chosen during the ABINIT computation and is

passed on via the wfk.bin-file to MyLiO.x. The respective parameter is m nband. The same is

the case for the number of k-points inside the 1. BZ, which is read into m nkpt and a third important

(range of) parameter(s), namely m maxnpw. This last one specifies the number of plane-waves, i.e.,

G-components, which are used at each k-point to expand the Bloch-functions. Notably, this number is

non-uniform and depends on various cut-off settings chosen within ABINIT. Thus, m maxnpw is actually

a (one-dimensional) array indexed for each k-point from 1 to m nkpt.

Next up, the G-vectors themselves; while these could be constructed on the basis of the minimal

(reciprocal) unit cell at each request, it is more economical to have their numerical values computed

once and stored. This is done in the array m g k(i,G,k), where the indexing is similar to the above

• i: ranging from 1 to 3, gives the three vector components of G in direct coordinates

• G: ranging from 1 to m maxnpw, specifies which G-vector is desired and

• k: ranging from 1 to m nkpt, specifies the k-kpoint of the 1. BZ, for which G is read.
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A similar data-structure exists for the numerical values of the k-points as well: m kpt(i,k). This holds

the respective vectors k inside the 1. BZ, which formed the numerical grid of the ABINIT calculation.

The indexing proceeds as expected:

• i: ranging from 1 to 3, gives the three vector components of k in direct coordinates and

• k: ranging from 1 to m nkpt, specifies the k-kpoint of the 1. BZ, for which k is read.

Finally, also the eigenenergies of each Bloch-wave is stored. These are the Kohn-Sham orbital energies

εn,k, which are stored in the structure m eig(n,k). The indexing proceeds as expected:

• n: ranging from 1 to m nband, marks the respective band n of the Bloch-function and

• k: ranging from 1 to m nkpt, specifies the k-kpoint of the 1. BZ, for which the orbital energy is

read.

Note in closing that the Bloch-waves should satisfy the following orthonormality condition at each k-

point of the Brillouin zone:

rec. latt.

∑
G

c∗n,k(G)c∗n′,k(G) = δn,n′ . (6)

However, if the SCF-calculations of ABINIT did not converge properly (or other errors occurred) this

condition is sometimes broken. To check this explicitly, the module read ABINIT files.f90 in-

corporates a test function test wfct orthogonality, which is run at the end of the read-in and

initialization procedure.

2.3 Implementation of matrix elements

In order to evaluate KI according to Eq. (2), we essentially need to compute the matrix elements
〈ϕp|e−i(−q+G2)·x̂ |ϕq〉 and 〈ϕq|e−i(q+G1)·x̂ p̂ |ϕp〉. This constitutes the main task of MYLIO.X and, as

such, we want to specify its implementation in more detail. In particular, we shall present explicit expres-

sions for both matrix elements when written for Bloch-functions as specified above (i.e., in Eqs. (4) and

(5)). In doing so, we give the general case first, i.e., the case of full momentum dependence, before we

further simplify both matrix elements along the lines of the previously mentioned dipole-approximation.

Beginning with the scattering matrix element of Eq. (2), we can write:

〈ϕp|e−i(−q+G2)·x̂ |ϕq〉=
1

V�

∫

�
d3x e−ikp·x u∗np,kp

(x) e−i(−q+G2)·x̂ eikq·x unq,kq(x)

=
1

V�

dir. latt.

∑
R

e−i(kp−q−kq)·R
rec. latt.

∑
G,G′

c∗np,kp
(G)cnq,kq(G

′)
∫

U(0)
d3x e−i(kp+G−q+G2−kq−G′)·x,

(7)

where we have made use of the Fourier expansion of the Bloch-functions (Eq. (5)). If we neglect contri-
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butions from Umklapp-processes, we obtain the simplified expression:

〈ϕp|e−i(−q+G2)·x̂ |ϕq〉 ≈
1

V�
Ncells δkp,q+kq

rec. latt.

∑
G,G′

c∗np,kp
(G)cnq,kq(G

′)
∫

U(0)
d3x e−i(G+G2−G′)·x

=
1

V�
Ncells δkp,q+kq

rec. latt.

∑
G,G′

c∗np,kp
(G)cnq,kq(G

′) VU(0) δG,G′−G2

= δkp,q+kq

rec. latt.

∑
G

c∗np,kp
(G)cnq,kq(G+G2). (8)

For the photoabsorption/-emission matrix element, we find analogously:

〈ϕq|e−i(q+G1)·x̂ p̂ |ϕp〉=
1

V�

∫

�
d3x e−ikq·x u∗nq,kq

(x) e−i(q+G1)·x̂ (−i∇) eikp·x unp,kp(x)

≈ 1
V�

Ncells δkq,kp−q

rec. latt.

∑
G,G′

c∗nq,kq
(G)cnp,kp(G

′) VU(0) δG,G′−G1 (kp +G′)

= δkq,kp−q

rec. latt.

∑
G

c∗nq,kq
(G)cnp,kp(G+G1) (kp +G+G1). (9)

Now, we proceed to apply the dipole-approximation-like treatment, which consists in setting

kq = kp− q ≈ kp. This can be justified by recalling that q will be constrained to the size of an op-

tical photon’s momentum, which is significantly smaller than the scale of the 1. Brillouin zone (BZ).

For such small differences among crystal-momenta, we can assume the respective Fourier coefficients

cn,k(G) to vary slowly at most2. Thus, evaluating both coefficients at the same value of kp is not expected

to incur a significant difference—neither in Eq. (8) nor in Eq. (9), respectively. For the implementation

of the scattering matrix element, this does not imply a large structural change—although the numerical

simplification incurred can be substantial3

〈ϕp|e−i(−q+G2)·x̂ |ϕq〉 ≈ δkp,kq

rec. latt.

∑
G

c∗np,kp
(G)cnq,kp(G+G2). (10)

For the momentum matrix element, we can go further than approximating q ≈ 0 and also extend to

G1 = 0, which is an exact equality for the case of optical transitions. Its effect is

〈ϕq|e−i(q+G1)·x̂ p̂ |ϕp〉 ≈ δkq,kp

rec. latt.

∑
G

c∗nq,kp
(G)cnp,kp(G) (kp +G)

= δkq,kp

rec. latt.

∑
G

c∗nq,kp
(G)cnp,kp(G) G. (11)

In the last step, we have additionally invoked Eq. (6) and the knowledge that occupied (np,kp) and

unoccupied (nq,kq) can not agree in both of their indices.

Within the MYLIO.X code, the computation of these matrix elements is located in the module

electronic cfct.f90. Here, the function calculate S pertains to the evaluation of Eq. (10)

2In fact, many numerical approaches will opt for much coarser discretization within the 1. BZ than the scale set by an
optical photon [4]. The neglect of the optical photon’s momentum transfer will often be referred to as “vertical transitions”.

3As indicated in the previous footnote, the discretization of numerical approaches will often be much coarser than the
sampling required to evaluate shifts by q. If we wanted to obtain wavefunctions at two mildly different crystal momenta, we
would therefore require additional interpolation methods like k ·p-perturbation theory [5]. We even implemented this at some
point—just to verify its irrelevance...
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and the function calculate gam implements the evaluation of Eq. (11).

3 Workflow

The typical workflow when employing MYLIO.X proceeds as follows:

1. Run the (modified) ABINIT code to obtain the electronic structure of the desired crystal. In its last

step, this should already produce the output kpt.bin and eig.bin.

2. Run the modified CUT3D code from the ABINIT-package to convert the wavefunction data into the

wfk.bin-file.

3. Specify all numerical parameters for a MYLIO.X-run in the global variables.f90-file and

choose the desired observable (main.f90).

4. Recompile MYLIO.X and copy the executable into the place, where the electronic structure data

(kpt.bin, eig.bin and wfk.bin) are located.

5. Execute MYLIO.X and redirect the output into a text-file.
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A.7 Fourier transformation and the electromagnetic field

A central object of all our considerations is the electromagnetic field, which we (mostly) represent

through the vector potential Â(x, t). For the non-interacting case (cf., Eq. (2.1) in Chpt. 2), we can

write its operator/mode decomposition as [52, 53]:

Â(x, t) = ∑
k,λ

√
2π

V ωkα2

(
âk,λ εεεk,λ eik·x−ωkt + â†

k,λ εεε∗k,λ e−ik·x−ωkt
)
. (A.59)

Here, V denotes the quantization volume and ωk = c |k| = |k|/α . The âk,λ (â†
k,λ )—in turn—mark the

annihilation or creation operators per mode. Analogous to their classical counterparts, they measure the

weight of a mode within the expansion. Rendering such a mode expansion possible in the first place, is

the fact that the freely propagating field Â(x, t) satisfies the wave-equation:

( 1
c2

∂ 2

∂ t2 −∆
)

Â(x, t) = 0. (A.60)

This is solved by a set of independent solutions, which are generally referred to as modes—specifically,

plane-waves as can be read off Eq. (A.59). For these modes, we adopt the convention [53, 128, 215] of

calling the subset

Â(+)(x, t) = ∑
k,λ

√
2π

V ωkα2 âk,λ εεεk,λ ei(k·x−ωkt) (A.61)

the positive frequency part of Â(x, t). The remainder of Eq. (A.59) forms Â(−)(x, t)—the negative fre-

quency part—respectively. On the basis of these complementary definitions, we fix our convention for

the Fourier transformation. Namely, we choose

f (ω) =
∫ ∞

−∞
dt f (t) eiωt (A.62)

f (t) =
1

2π

∫ ∞

−∞
dω f (ω) e−iωt , (A.63)

which ensures that the positive frequency part has indeed positive frequencies. For spatio-temporal

Fourier transformations, we follow the wave-nature of fields and choose the k and ω exponents with

opposite sign:

f (k,ω) =
∫ ∞

−∞
dt
∫

d3x f (x, t) e−i(k·x−ωt) (A.64)

f (x, t) =
1

(2π)4

∫ ∞

−∞
dω

∫
d3k f (k,ω) ei(k·x−ωt). (A.65)

Regarding the distribution of the 1
(2π)n factors, we follow the “π goes with p”-rule, i.e., placing the factors

with the momentum (frequency) space integrations.

The above being said, we could likewise have chosen these Fourier conventions a priori and subse-

quently obtained the decomposition into positive and negative frequency parts. To this end, we remark

at first that the temporal Fourier transform of Â(x, t) satisfies the Helmholtz-equation in the spectral
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domain:

(ω2

c2 +∆
)

Â(x,ω) = 0. (A.66)

From this, we can conclude that all spectral components evolve independently, allowing us to form

arbitrary superpositions. The obvious one being the Fourier recombination

Â(x, t) =
1

2π

∫ ∞

−∞
dω Â(x,ω) e−iωt , (A.67)

for which its observable (and thus hermitian) nature implies:

Â(x, t) =
(
Â(x, t)

)†
=

1
2π

∫ ∞

−∞
dω

(
Â(x,ω)

)†
eiωt =

1
2π

∫ ∞

−∞
dω

(
Â(x,−ω)

)†
e−iωt

⇒
(
Â(x,−ω)

)†
= Â(x,ω). (A.68)

Using two alternative mode combinations with positive (or negative) frequency content only, we can find:

Â(+)(x, t) =
1

2π

∫ ∞

0
dω Â(x,ω) e−iωt and (A.69)

Â(−)(x, t) =
1

2π

∫ 0

−∞
dω Â(x,ω) e−iωt , (A.70)

fully analogous to our first approach. These two fields form a pair of hermitian adjoints

Â(+)(x, t) =
(

Â(−)(x, t)
)†

(A.71)

as we can easily show by means of Eq. (A.68). Moreover, each of the two parts satisfies the wave-

equation independently, i.e.,

( 1
c2

∂ 2

∂ t2 −∆
)

Â(+)(x, t) = 0 =
( 1

c2
∂ 2

∂ t2 −∆
)

Â(−)(x, t). (A.72)

Finally, note that we may, at times, extend the notation for the positive (or negative) frequency part

into the spectral domain—by writing, e.g., Â(+)(x,ω). We take this to be the positively restricted spectral

component

Â(+)(x,ω) =
∫ ∞

0
dω ′ δ (ω−ω ′) Â(x,ω ′) (A.73)

and vice-versa for Â(−)(x,ω).
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A.8 Correlation functions of the em-field and their Fourier relations

In this section of the Appendix, we have collated a (rather random) collection of Fourier relations among

correlation functions of the electromagnetic field. As this list keeps growing and changing, we reserve

an empty page for notes at its end.

To begin with, we recall the basic object of our concern

H(1)
µν (x1, t1,x2, t2) = TrX IN {ρ̂X IN(0)(Â

(−)
x in(x1, t1))µ (Â

(+)
x in(x2, t2))ν} (A.74)

or its Fourier-related counterpart

Z(1)
µν (k1,ω1,k2,ω2) =

∫
d3x1

∫
d3x2

∫
dt1

∫
dt2 ei(k1·x1−ω1t1) e−i(k2·x2−ω2t2) H(1)

µν (x1, t1,x2, t2)

= TrX IN {ρ̂X IN(0)(Â
(+)
x in(k1,ω1))

†
µ (Â

(+)
x in(k2,ω2))ν} . (A.75)

Further relations comprise, among others:

H(1)
µν (x1, t1,x2, t2) =

1
(2π)8

∫
d3k1

∫
d3k2

∫
dω1

∫
dω2 e−i(k1·x1−ω1t1) ei(k2·x2−ω2t2) Z(1)

µν (k1,ω1,k2,ω2),

(A.76)

W (1)
µν (x1,ω1,x2,ω2) =

∫
dt1

∫
dt2 e−iω1t1 eiω2t2 G(1)

µν(x1, t1,x2, t2), (A.77)

G(1)
µν(x1, t1,x2, t2) =

1
(2π)2

∫
dω1

∫
dω2 eiω1t1 e−iω2t2 W (1)

µν (x1,ω1,x2,ω2), (A.78)

G(1)
µν(x1, t1,x2, t2) = α2 ∂

∂ t1

∂
∂ t2

H(1)
µν (x1, t1,x2, t2), (A.79)

Z(1)
µν (k1,ω1,k2,ω2) =

∫
d3x1

∫
d3x2 eik1·x1 e−ik2·x2

1
α2 ω1ω2

W (1)
µν (x1,ω1,x2,ω2), (A.80)

Z(1)
µν (k1,ω1,k2,ω2) =

∫
d3x1

∫
d3x2 eik1·x1 e−ik2·x2 V (1)

µν (x1,ω1,x2,ω2), (A.81)

V (1)
µν (x1,ω1,x2,ω2) =

∫
dt1

∫
dt2 e−iω1t1 eiω2t2 H(1)

µν (x1, t1,x2, t2), (A.82)

V (1)
µν (x1,ω1,x2,ω2) =

1
α2 ω1ω2

W (1)
µν (x1,ω1,x2,ω2), (A.83)
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Z(1)
µν (k1,ω1,k2,ω2) =

∫
d3x1

∫
d3x2 eik1·x1 e−ik2·x2 V (1)

µν (x1,ω1,x2,ω2) (A.84)

=
∫

d3x1

∫
d3x2 eik1·x1 e−ik2·x2 TrX IN {ρ̂X IN(0)(Â

(+)
x in(x1,ω1))

†
µ (Â

(+)
x in(x2,ω2))ν} ,

and more.

—Space for notes—
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A.9 Propagation of the em-field

During our studies, we repeatedly encounter situations, wherein we happen to know the electromagnetic

field of a radiation beam across a source plane—though not in the remainder of space. In order to

complete our knowledge, we require a propagation formula. Focusing on the positive frequency part9 of

A(x,ω), this would translate to:

A(+)((x′⊥,z′),ω) =
∫

d2x⊥ Pz′,z(x′⊥,x⊥,ω) A(+)((x⊥,z),ω). (A.85)

By way of our notation, we anticipate a propagation predominantly along the z-direction and a source

plane perpendicular to it (x⊥). We note, furthermore, that the ‘propagator’ P is—in general—of tensorial

nature, as it relates the three components of the source vector-potential to another three-dimensional

output.

A.9.1 Free-field case / vacuum propagation

For the freely evolving field A(x, t), the above propagator may be inferred straight-forwardly from its

mode-decomposition. To do so, we first recall that A(x, t) satisfies the wave equation component-wise—

as does A(x,ω) for the Helmholtz equation (cf. App. A.7). Thus, we can focus our discussion on a

single (scalar) component for the time being. For this, we write the decomposition into independent

solutions/modes as:

A(+)(x, t) =
∫

d3k a(k) ei(k·x−ωt)

=
∫

d3k
∫

dω δ (ω− c |k|) a(k) ei(k·x−ωt), (A.86)

where in the second step, we have rendered the dispersion relation δ (ω − c |k|) explicit. By Fourier

transformation, we obtain:

A(+)(x,ω) =
∫ ∞

−∞
dt eiωt A(+)(x, t) = 2π

∫
d3k δ (ω− c |k|) a(k) eik·x, (A.87)

which allows for the following observation: The composition of the field (i.e., all the a(k)) is almost

uniquely determined from the values of A(+)((x⊥,z0),ω) in a single plane of points x⊥ at z = z0 alone.

In order to see this more clearly, we apply a spatial Fourier transform
∫

d2x⊥ e−ik′⊥·x⊥ A(+)((x⊥,z0),ω) =
∫

d2x⊥ e−ik′⊥·x⊥ 2π
∫

d3k δ (ω− c |k|) a(k) eik·x

= 2π
∫

d3k δ (ω− c |k|) a(k) eikqz0

∫
d2x⊥ e−i(k′⊥·x⊥−k⊥·x⊥)

= (2π)3
∫

d3k δ (ω− c |k|) a(k) eikqz0 δ 2(k′⊥−k⊥), (A.88)

9Note that the negative frequency part may be obtained via Eq. (A.68).
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In the above, kq denotes the component of k parallel to the z-direction and k⊥ those components perpen-

dicular to it, respectively. Rephrasing further

δ (ω− c |k|) = δ (ω− c
√

(kq)2 +(k⊥)2) = δ ( f (kq))

=
δ (kq− kq0)∣∣ f ′(kq0)

∣∣

= δ (kq− kq0)
|k|
ckq0

, (A.89)

wherein the roots of f (kq) are given by kq0 = ±
√

ω2/c2− (k⊥)2, we find the δ -functions in Eq. (A.88)

capable of uniquely fixing k apart from the sign of the root. The latter may be deliberately chosen (+

in our case), if we assume beam-like propagation in only one direction (along positive z-direction in our

case). Thereby, we obtain from Eq. (A.88):

a(k) =
1

(2π)3
ckq

|k| e−ikqz0

∫
d2x⊥ e−ik⊥·x⊥ A(+)((x⊥,z0),c |k|). (A.90)

Reinserting the above into Eq. (A.87) and comparing to Eq. (A.85), we identify the propagator:

Pz′,z(x′⊥,x⊥,ω) =
1

(2π)2

∫
d3k δ (kq− kq0) eikq(z′−z) eik⊥·(x′⊥−x⊥) (A.91)

with definite kq0 =+
√

ω2/c2− (k⊥)2.

Following the component-wise logic, the extension towards a tensorial structure is trivially given by:

(
Pz′,z(x′⊥,x⊥,ω)

)
µν

=
1

(2π)2

∫
d3k δµν δ (kq− kq0) eikq(z′−z) eik⊥·(x′⊥−x⊥). (A.92)

However, a note of caution is in order here: While the above is suitable for relating a correct initial field

into an equally correct output, it is not fail-safe in the case of ‘wrong’ (e.g., approximate) initial fields.

In particular, Eq. (A.92) does not enforce the transversality of an em-wave10. If this should be ensured

additionally, it is advisable to convolute Eq. (A.92) with a transverse δ -dyadic:

(
Pz′′,z(x′′⊥,x⊥,ω)

)
µν

=
∫

d3x δ⊥µρ(x
′′−x′)

(
Pz′,z(x′⊥,x⊥,ω)

)
ρν

(A.93)

=
1

(2π)2

∫
d3k

(
δµν −

(k)µ(k)ν

|k|2

)
δ (kq− kq0) eikq(z′−z) eik⊥·(x′⊥−x⊥),

which effectively results in the replacement δµν → δµν − (k)µ(k)ν/ |k|2

A.9.2 Consistency checks and the Fresnel propagator

In a next step, we should make sure that our exact, plane-wave propagator behaves reasonably, if we want

to use it over more commonly employed propagators. An example of the latter, established propagators is

the Fresnel propagator, which is ubiquitously used in Singer’s work [131], for instance. Subsequently, we

shall exercise some consistency checks and actually derive the Fresnel propagator from our expression

(A.92).
10We recall that ∇Â(x) = 0 is explicitly set (but also required) in the Coulomb-gauge. If approximate initial conditions

invalidate this condition, there is no innate correction mechanism embedded in the theory.
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First of all, we require that our propagator should reproduce the trivial case of no propagation (iden-

tity). Setting z′ = z in Eq. (A.92), we trivially find:

(
Pz,z(x′⊥,x⊥,ω)

)
µν

=
1

(2π)2

∫
d3k δµν δ (kq− kq0) eikq0 eik⊥·(x′⊥−x⊥)

= δµν δ 2(x′⊥−x⊥), (A.94)

i.e., the identity operator within a d2x⊥-integration as of Eq. (A.85).

As a second check, we expect our propagator to exhibit a concatenation property of the kind:

Pz′′,z(x′′⊥,x⊥,ω) =
∫

d2x′⊥ Pz′′,z′(x′′⊥,x′⊥,ω) Pz′,z(x′⊥,x⊥,ω). (A.95)

This may easily be established via:

∫
d2x′⊥ P(...)P(...) =

∫
d2x′⊥

( 1
(2π)2

∫
d3k δ (kq− kq0) eikq(z′′−z′) eik⊥·(x′′⊥−x′⊥)

)

×
( 1
(2π)2

∫
d3k′ δ (k′q− k′q0 ) eik′q(z′−z) eik′⊥·(x′⊥−x⊥)

)

=
1

(2π)2

∫
d3k δ (kq− kq0) eikq(z′′−z′)

∫
d3k′ δ (k′q− k′q0 ) eik′q(z′−z)

× ei(k⊥·x′′⊥−k′⊥·x⊥) δ 2(k⊥−k′⊥)

=
1

(2π)2

∫
d3k δ (kq− kq0) eikq(z′′−z) eik⊥·(x′′⊥−x⊥)

= Pz′′,z(x′′⊥,x⊥,ω), (A.96)

where we made use of the occurring δ -constraints.

For a final cross check, we should be able to obtain the Fresnel propagator via approximating

Eq. (A.91) (for simplicity, we focus on the scalar case again). It is:

Pz′,z(x′⊥,x⊥,ω) =
1

(2π)2

∫
d3k δ (kq− kq0) eikq(z′−z) eik⊥·(x′⊥−x⊥)

=
1

(2π)2

∫
d3k δ (kq− kq0) eikq0(z

′−z) eik⊥·(x′⊥−x⊥)

=
1

(2π)2

∫
d3k δ (kq− kq0) ei

√
ω2

c2 −(k⊥)2(z′−z) eik⊥·(x′⊥−x⊥). (A.97)

Using the notion of a well-collimated beam, i.e., ω/c = |k| �
∣∣k⊥
∣∣, we expand:

√
ω2

c2 − (k⊥)2 ≈ ω
c

(
1− 1

2
c2
∣∣k⊥
∣∣2

ω2 +
1
8

c4
∣∣k⊥
∣∣4

ω4 − ...
)
. (A.98)

In particular, we shall adopt the beam condition from Singer’s thesis [131]:

θ ≈
∣∣k⊥
∣∣

|k| �
4

√
8π

|k|(z′− z)
⇔ 1

8
c4
∣∣k⊥
∣∣4

ω4 � π
|k|(z′− z)

, (A.99)

by which the third term in Eq. (A.98) is rendered irrelevant for the propagation. The approximate prop-
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agator so far reads:

Pz′,z(x′⊥,x⊥,ω)≈ 1
(2π)2 ei(z′−z)ω/c

∫
d2k⊥ e−ic|k⊥|2(z′−z)/2ω eik⊥·(x′⊥−x⊥). (A.100)

For each component of k⊥, the respective integration can be solved by the method of stationary phase,

which is not even an approximation in this case, as the exponent is at most quadratic11. The result is just:

Pz′,z(x′⊥,x⊥,ω)≈ 1
2π i

ω
c(z′− z)

ei(z′−z)ω/c eiω(x′⊥−x⊥)2/2c(z′−z), (A.101)

which—upon replacement of ω/c = k— is the same formula as used by Singer (Eq. (2.6) in Ref. [131]).

A.9.3 Simplified propagation on short distances

Up to now, we have considered the free propagation of the radiation field—both in its general form and

in the Fresnel approximation for well defined beams. In addition, we briefly want to discuss the situation,

when we encounter a well defined beam and concern ourselves only with the propagation across rather

short distances.

This will prove particularly useful, if we include the effects of weakly interacting matter, as it will

allow us to describe the transmission of optically ‘thin’ samples. In order to do so, we modify the free-

space Helmholtz-equation (A.66) to include the presence of a dielectric material through its complex

refractive index n2(x,ω). We assume the properties of this dielectric to vary slowly in space on the scale

of the fields wavelength12. In doing so, we largely follow Paganin’s reasoning in Ref. [216]. We begin

by generalizing

(
ω2

c2 ·n
2(x,ω)+∆

)
A†(x,ω) = 0. (A.102)

Next, we impose our presumption of dealing with a rather well defined beam (conventionally along

coordinate z) and separate off the corresponding central phase-term of A†(x,ω):

A†(x,ω) = eikzA†
s (x,ω). (A.103)

Here, we denote k = αω . Re-inserting this—up to now exact—ansatz into Eq. A.102, we obtain

eikz
(

∆+2ikω
∂
∂ z

+ k2(n2−1)
)

A(+)
s (x,ω) = 0. (A.104)

This yields the paraxial wave equation for A†
s (x,ω), wherein we have neglected the second order cou-

pling of longitudinal and transverse propagation13 (i.e., ( ∂
∂ z)

2As ≈ 0).

Then again, we may simplify Eq. A.104 even more radically, by neglecting all second order deriva-

tives. For short range evolution of A†
s (x,ω), such an approximation is justified, as the linear term of Eq.

11We note that some additional treatment of these integrals leads towards the eponymous ‘Fresnel-integrals’. Their solution
is listed in App. A.15.

12We note that in assuming the dielectric to be ‘slowly-varying’, we neglect its constituting microscopic properties, of
course. After all, any material is still made up of atoms/electrons microscopically, which exhibit structural variation down
below the Å-scale. Instead, we adopt a macroscopic view of the electromagnetic field in writing Eq. A.102.

13Note that this approximation closely resembles our treatment of the ‘beam-propagation’-case in the previous section.
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A.104 will dominate the behaviour. The resulting equation

∂
∂ z

A†
s (x,ω)≈− ik

2
(
1−n2(x,ω)

)
A†

s (x,ω) (A.105)

can easily be solved by

A†
s (x
⊥z2,ω)≈ exp

(
− ik

2

∫ z2

z1

dz (1−n2(x,ω))

)
A†

s (x
⊥z1,ω) (A.106)

and, thus, implies the simplified propagator

Pz2,z1(x
⊥
2 ,x

⊥
1 ,ω)≈ eik(z2−z1)e−

ik
2
∫ z2

z1
dz (1−n2(x,ω)) ·δ 2(x⊥2 −x⊥1 ). (A.107)

For further convenience in the x-ray regime, we may rewrite the refractive index into the more con-

ventional

n(x,ω) = 1−δ (x,ω)+ iβ (x,ω) (A.108)

and, thus, include both slight refraction and absorption14. For both δ and β being much smaller than 1,

we can further approximate

1−n2 ≈ 2(δ (x,ω)− iβ (x,ω)) (A.109)

and thereby arrive ultimately at

Pz2,z1(x
⊥
2 ,x

⊥
1 ,ω)≈ eik(z2−z1)e−ik

∫ z2
z1

dz (δ (x,ω)−iβ (x,ω))δ 2(x⊥2 −x⊥1 ). (A.110)

A.9.4 Inclusion of optical elements

In addition to the (mostly) free propagation of radiation beams, it is sometimes desirable to include

the effect of optical elements as well. These could consist of lenses, mirrors, slits/apertures, filters/

monochromators etc.. Any one of them may coarsely be modelled by the inclusion of an additional

transfer function15. For an example, consider Fig. A.2.

The first depicted case (a) reflects the free propagation of a beam from z = z0 to z = z f , while the second

case (b) is modified by a slit at z = zs.

The corresponding propagators read:

a) Pz f ,z0(x
′⊥,x⊥,ω) =

∫
d2x⊥s Pz f ,zs(x

′⊥,x⊥s ,ω) Pzs,z0(x
⊥
s ,x

⊥,ω) (A.111)

b) Pz f ,z0(x
′⊥,x⊥,ω) =

∫
d2x⊥s Pz f ,zs(x

′⊥,x⊥s ,ω) Tslit(x⊥s ,ω) Pzs,z0(x
⊥
s ,x

⊥,ω), (A.112)

14Note that this absorption feature makes it all the more necessary to stick to short range propagation and—in particular—to
not propagate backwards. This would lead to an artificial increase of the field, instead of absorption. As such, this propagator
is not appropriate to generate full space fields for Fourier transforms, for instance.

15Here, we rely on the procedure used by Singer [131], whereto the reader is referred for further information.
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Figure A.2: Illustration of the effect of optical elements: (a) beam propagating freely from z0 to z f versus (b)
beam traversing the same distance but being shaped (restricted) by a slit at zs. [We gratefully acknowledge Dr.
Christina Bömer’s help in rendering the above computer graphics.]

where Tslit(x⊥s ,ω) denotes the transfer function of the slit. It may, for instance, be given by:

Tslit(x⊥s ,ω) =





1 for |xx
s |< d = const.

0 otherwise
(A.113)

for a slit of width 2d along the y-direction. Two final remarks should be given regarding the above:

1) Depending on the degree of approximation involved in writing transfer functions, it may become

increasingly more important to check/enforce the transversality of the em-field and correct for other

artefacts (→ stability of the propagator).

2) For more involved combinations of optical elements, useful numerical propagation routines may

be found with several synchrotron radiation software packages, see Refs. [132, 133, 135].

A.9.5 Propagation of correlation functions

In this last section regarding the propagtion of em-fields, we want to extend the treatment from single

fields towards correlation functions. We begin by noting that our previous construction of Pz′z(...) relied

solely on the fact that Â((x, t)) satisfies the wave-equation, which allowed for our mode-decomposition.

Analogously,

H(1)
µν (x1, t1,x2, t2) = TrX IN {ρ̂X IN(0)(Â

(−)
x in(x1, t1))†

µ (Â
(+)
x in(x2, t2))ν} (A.114)

being composed of two fields, satisfies a wave-equation for each of its coordinate pairs:

( 1
c2

∂ 2

∂ t2
1
−∆1

)
H(1)

µν (x1, t1,x2, t2) = 0 =
( 1

c2
∂ 2

∂ t2
2
−∆2

)
H(1)

µν (x1, t1,x2, t2). (A.115)

Therefore, we may reuse our previous result as a means of propagating each pair of coordinates indepen-

dently as well. For Vµν(x1,ω1,x2,ω2), which we recall to be (cf. App. A.8):

V (1)
µν (x1,ω1,x2,ω2) =

∫
dt1

∫
dt2 e−iω1t1 eiω2t2 H(1)

µν (x1, t1,x2, t2), (A.116)

204



A. Appendices

we write accordingly

V (1)
µν (x1,ω1,x2,ω2) =V (1)

µν ((x⊥1 ,z1)ω1,(x⊥2 ,z2),ω2)

=
∫

d2x′⊥1

∫
d2x′⊥2

[(
Pz1,z′1

(x⊥1 ,x
′⊥
1 ,ω1)

)
µρ

]† (
Pz2,z′2

(x⊥2 ,x
′⊥
2 ,ω2)

)
νσ

×V (1)
ρσ ((x′⊥1 ,z′1),ω1,(x′⊥2 ,z′2),ω2). (A.117)
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A.10 Intensity observable for the electromagnetic field

In this section, we will establish a relation between the first-order coherence function G(1)
µν(x1, t1,x2, t2)

(or some derivation thereof) with an intensity observable. To this end, we start from the quantum-

mechanical Poynting operator16 as used by Loudon [53], for instance:

Sµ(x, t) =
1

4πα
1
2

(
E(−)(x, t)×B(+)(x, t)−B(−)(x, t)×E(+)(x, t)

)
µ

(A.118)

In here and below, we use Greek-style lettering to index the components of a vector or matrix. For

completeness, we also recall the Fourier relations for the fields

B(+)(k,ω) =
∫

d3x
∫

dt e−i(kx−ωt) B(+)(x, t) (A.119)

B(+)(x, t) =
1

(2π)4

∫
d3k

∫
dω ei(kx−ωt) B(+)(k,ω), (A.120)

where the same naturally holds for E(+)(x, t) as well.

Next, we recall that B(x,ω) satisfies Maxwell’s equations in vacuum:

∇×E(x,ω) =
iω
c

B(x,ω), (A.121)

which also holds independently for the positive / negative frequency part, such that

⇒ B(+)(x, t) =
1

2π

∫
dω e−iωt(− ic

ω
)∇×E(+)(x,ω). (A.122)

Therewith, the Poynting-operator may be re-written as

Sµ(x, t) =
−1

4πα
1
2

[
E(−)(x, t)×

( 1
2π

∫
dω e−iωt(− ic

ω
)∇×E(+)(x,ω)

)

−
( 1

2π

∫
dω e−iωt(− ic

ω
)∇×E(−)(x,ω)

)
×E(+)(x, t)

]
µ

(A.123)

Next, by employing the decomposition into k-components, we can make use of

∇×E(x,ω) = ∇× 1
(2π)3

∫
d3k eikx E(k,ω) =

1
(2π)3

∫
d3k eikxik×E(k,ω) (A.124)

to reformulate Sµ further:

Sµ(x, t) =
−1

8πα
1

(2π)4

∫
d3k

∫
dω

ic
ω

e−iωteikω i

·
[
E(−)(x, t)× (k×E(+)(k,ω))− (k×E(−)(k,ω))×E(+)(x, t)

]
µ
. (A.125)

Applying the identities a× (b×c) = (a ·c)b− (a ·b)c and (a×b)×c = (a ·c)b− (b ·c)a this transforms

16We note that, in this section, we omit the ‘hat’-notation on operator-valued fields. This is intended to improve the overall
readability; all equations are valid for quantum- as well as classical fields.
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into

Sµ(x, t) =
1

8πα
1

(2π)4

∫
d3k

∫
dω

c
ω

e−iωteikω
[
(E(−)(x, t) ·E(+)(k,ω))k− (E(−)(x, t) ·k)E(+)(k,ω)

−E(−)(k,ω)(k ·E(+)(x, t)))+(E(−)(k,ω) ·E(+)(x, t))k
]

µ
.

(A.126)

At this point, we note that due to the transversality of the electromagnetic field, i.e., k⊥ E, terms of

the type k ·E(+/−)(x, t)→ 0 will vanish. This simplifies the Poynting observable into

Sµ(x, t) =
1

8πα
1

(2π)4

∫
d3k

∫
dω

c
ω

e−iωteikx(k)µ

[
E(−)(x, t) ·E(+)(k,ω)+E(−)(k,ω) ·E(+)(x, t)

]
.

(A.127)

For simplicity, we will only be interested in energy flow through a surface perpendicular to the average

propagation direction kavg–for which we denote the corresponding unit vector k̂avg.

k̂avg ·S(x, t) =
1

8πα
1

(2π)4

∫
d3k

∫
dω

c
ω

e−iωteikx k̂avg ·k︸ ︷︷ ︸
≈ω/c

[
E(−)(x, t)E(+)(k,ω)+E(−)(k,ω)E(+)(x, t)

]

≈ 1
8πα

1
(2π)4

∫
d3k

∫
dω e−iωteikx

[
E(−)(x, t)E(+)(k,ω)+E(−)(k,ω)E(+)(x, t)

]

=
1

8πα

[
E(−)(x, t)E(+)(x, t)+E(−)(x, t)E(+)(x, t)

]

=
1

4πα

[
E(−)(x, t)E(+)(x, t)

]
(A.128)

Such that on taking the expectation value

Tr{ρ(k̂avg ·S(x, t))}=
1

4πα
Tr{ρE(−)(x, t)E(+)(x, t)}

=
1

4πα ∑
µ

G(1)
µµ(x1, t1,x2, t2)

= 〈I(x, t)〉, (A.129)

we find our Poynting observable to be related to the diagonal elements of Glauber’s correlation function

G(1)
µµ . We may identify this quantity with the expectation value of the field’s intensity.

In addition to the above result, we also want to relate the intensity observable to some Fourier domain

quantities. Starting from

〈I(x, t)〉= 1
4πα

G(1)
µµ(x, t,x, t), (A.130)

we can insert the transformation to W (1)
µµ as of Eq. (A.78) and obtain

〈I(x, t)〉= 1
4πα (2π)2

∫
dω1

∫
dω2 eiω1t e−iω2t W (1)

µµ (x,ω1,x,ω2). (A.131)

In particular, this can be time-integrated and gives for the resultant quantity (namely, the radiant expo-
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sure)

H(x) =
∫

dt 〈I(x, t)〉= 1
8π2α

∫
dω W (1)

µµ (x,ω,x,ω). (A.132)

We may further normalize the latter by the average photon energy and find the local fluence:

F(x) =
H(x)
ωavg

=
1

8π2α ωavg

∫
dω W (1)

µµ (x,ω,x,ω). (A.133)

Bear in mind that all of the above quantities are supposed to be evaluated on a plane perpendicular

to the beam propagation-direction kavg.
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A.11 Retrieve Parameters for GSM beams

In this appendix, we will address how to relate the beam parameters used in our Gaussian Schell-models

(cf. Secs. 4.2.1 and 4.3.1) to observable quantities.

The overall magnitude G0

The most straight forward option for obtaining G0 is via an (experimental) specification of the peak

intensity. In this case, we may directly employ Eq. (A.130) in combination with Eq. (4.10) to see that

Ipeak = 〈I(0,0)〉=
1

4πα
G(1)

µµ(0,0,0,0)

=
1

4πα
G0. (A.134)

This holds, provided that the peak intensity is specified for the unfiltered / unmodified field of course.

Instead of the peak intensity, however, a more commonly found quantifier, in particular, for x-ray

pulses is their average pulse energy Epulse. This relates to Eq. (A.130) via time- and cross-sectional

integration:

Epulse =
∫

d2x⊥
∫

pulse
dt 〈I(x, t)〉=

∫
d2x⊥

∫

pulse
dt

1
4πα

G(1)
µµ((x⊥,z), t,(x⊥,z), t) (A.135)

or for the cross spectral density

Epulse =
∫

d2x⊥
1

8π2α

∫
dω W (1)

µµ ((x⊥,z),ω,(x⊥,z),ω). (A.136)

Choosing for convenience z = z0, we can employ W (1) similar to Eq. (4.11). Additionally, we shall

account for non-cylindrical beams and include a monochromator of the form

Tm(ω) = e−(ω−ωm)
2/4Ω2

m . (A.137)

Thus, we find

Epulse =
∫

d2x⊥
1

8π2α

∫
dω

∣∣∣e−(ω−ωm)
2/4Ω2

m

∣∣∣
2 G02πT

Ω
(εεε · εεε )e−(

xx
σx )2/2−( xy

σy )2/2e−(ω−ω0)
2/2Ω2

=
G0T

4παΩ
2π σ xσ y

√
2πΩ2

mΩ2

Ω2
m +Ω2 e−(ωm−ω0)

2/2(Ω2
m+Ω2)

=
G0T σ xσ yΩm

√
π

α
√

Ω2
m +Ω2

√
2

e−(ωm−ω0)
2/2(Ω2

m+Ω2). (A.138)

By inversion, we have

G0 =

√
2
π

√
Ω2

m +Ω2αEpulse

T σ xσ yΩm
e+(ωm−ω0)

2/2(Ω2
m+Ω2) (A.139)

or for the simpler case of irrelevant monochromator Ωm→ ∞

G0 =

√
2
π

αEpulse

T σ xσ y (A.140)

209



A. Appendices

Also, note that Epulse = Nphoton ·ω0.

The temporal extent T

In order to specify the temporal extent of our GSM pulses, we consider the average intensity profile in

time. Starting again from Eq. (A.130) and using the form given in Eq. (4.10), we find

〈I((0,z0), t)〉= G0 e−(t−t0)2/2T 2
, (A.141)

where we have chosen x⊥ = 0 on-axis and z = z0 for convenience (though this is not a necessary re-

striction). The maximum is obviously reached at t − t0 = 0, while half of it is attained for t − t0 =

±
√

2ln(2) T , such that we can identify the temporal full width at half maximum (FWHM) as

FWHMt = 2
√

2ln(2) T ⇔ T =
FWHMt

2
√

2ln(2)
. (A.142)

The spectral width Ω

By a similar reasoning as above, we arrive at a quantifier for the bandwidth Ω. Considering the spectrally

resolved radiant exposure (generalizing Eq. (A.132)) and taking the expression for W (1)
µµ from Eq. (4.11),

we find

H((0,z0),ω) =
2πG0T

Ω
e−(ωm−ω0)

2/2Ω2
. (A.143)

Here, we have again chosen x⊥ = 0 on axis and z = z0 for convenience. Fully analogous to Eq. (A.142),

we obtain the spectral FWHM as

FWHMω = 2
√

2ln(2)Ω⇔Ω =
FWHMω

2
√

2ln(2)
. (A.144)

Note, that for chirped optical pulses as discussed in Sec. 4.3.1, Ω will be replaced by Ω̃ =
√

Ω2 +4T 2γ0.

Coherence time τcoh / chirp γ0

With both T and Ω known, we can obtain the coherence time τcoh (for partially coherent fields) or the

chirp parameter γ0 (for chirped coherent fields) according to the relations

Ω =

√
1

4T 2 +
1

τ2
coh
⇔ τcoh =

(√
Ω2− 1

4T 2

)−1
(A.145)

Ω̃ =
√

Ω2 +4T 2γ2
0 and Ω2 =

1
4T 2 ⇔ γ0 =

1
4T

√
4T 2Ω̃2−1 (A.146)

The δ -parameter / divergence

Regarding the transverse beam parameter the situation is more complicated, as measurements are less

detailed and their results typically interdependent (cf. Ref. [217], for instance). A well accessible

quantity—at any rate—is given by the far-field divergence angle Θ of the beam, which is related to
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δ via

Θ =
λ0

δ 2π
. (A.147)

This agrees with Singer’s convention on p. 25 of Ref. [131].

For spectrally coherent beams, this (and knowledge of z0) gives a full characterization of their trans-

verse properties17 Note for divergences, which have been specified with respect to vacuum propagation,

that these may roughly be related to their in medio value by θvac = n · θmed (for quasi-monochromatic,

low dispersion beams).

The beam width σ

The beam width parameter σ of GSM beams is harder to assess than the above, because it is only directly

observable in the source (/focal) plane, i.e., at z = z0. There, an argument analogous to Eq. A.142 allows

to refer σ from the transverse intensity profile as

FWHMtrans = 2
√

2ln(2)σ ⇔ σ =
FWHMtrans

2
√

2ln(2)
. (A.148)

Away from this focal plane, however, the measurable beam width Σ(z) is scaled as Σ(z) =σ
√

1+ (z−z0)2

z2
e f f

,

where the determination of ze f f will, in turn, require knowledge of ξ .

Alternatively, we may also try and refer σ directly to δ via knowledge of ξ using

1
δ 2 =

1
4σ2 +

1
ξ 2 ⇔

(
1

δ 2 −
1

ξ 2 =
1

4σ2

)
(A.149)

σ2 =
1
4

(
1

δ 2 −
1

ξ 2

)−1

(A.150)

In particular, we want to highlight the case of largely coherent FEL radiation (ξ ∼ σ ). Hereunto, we

shall adopt Singer’s notation for a q-parameter [131] and write ξ = qσ , i.e.,

1
δ 2 =

1
4σ2 +

1
q2σ2 ⇒ σ = δ

√
1
4
+

1
q2 , (A.151)

where q∼ 1 for largely coherent beams.

17Note that 1
δ 2 = 1

4σ 2 +
1

ξ 2 ⇒ 1
4σ 2 determines the beam width, if ξ → 0 and 2σ = w0 can be identified with the usual

Gaussian beam waist.
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A.12 Fluctuation-Dissipation Theorem

The fluctuation-dissipation theorem (FDT)—as the name suggests—relates the fluctuations of observ-

ables in a system to its dissipative response [153–155]. Though it may occur in various, slightly different

flavours, the general principle of the FDT is always the same. Namely, it provides an algebraic reformu-

lation of some general (often: two-point) correlation function in terms of more easily accessible response

functions.

Despite this rather plain appearance, it may be profoundly useful. In particular, there exists a wide

range of circumstances, for which it is actually very hard to obtain (i.e., calculate or measure) the corre-

lation of two observables in general. Yet, one may well be able to get a hold of the response behaviour

of any one of them with respect to the other.

For classical systems, this is all there is to it already18. For quantum systems on the other hand, it

may still be prohibitively complicated to obtain the ‘simpler’ response functions, especially when dealing

with macroscopically large systems. Experimentally, there is often no chance to measure a microscopic

response in a macroscopic sample, while from a theoretical point of view, such macroscopic systems are

typically just too large to be treated at all.

This is, where an approximation can save the day: In linear response theory, a small change of a

(macroscopic) observable with respect to its unperturbed behaviour, i.e.,

δ 〈Â(t)〉= 〈Â(t)〉−〈Â0(t)〉
= Tr {ρ̂ Â(t)}−Tr {ρ̂ Â0(t)} (A.152)

may be identified with the desired microscopic response term

δ 〈Â(t)〉 ≈ −i
∫ t

−∞
dt ′ f (t ′)〈

[
Â0(t), B̂0(t ′)

]
〉. (A.153)

Here, we take the latter response to be produced under the action of19

ĤINT(t) = f (t) B̂, (A.154)

wherein f (t) denotes a weak driving force, which may be of macroscopic nature itself, that couples to

the system through the operator B̂.

In this way, one can set out to:

1. measure the macroscopic response behaviour,

2. use it as an approximation for the microscopic response behaviour (Eq. (A.153)) and

3. thereby obtain information about delicate quantum fluctuations ultimately20.

18We emphasize further that this is already pretty awesome in its own right. The FDT has found various applications
throughout electronics, stability analysis, thermodynamics and more.

19Note that we make use of an interaction-picture approach at this point. As such, we separate an interaction Hamiltonian
ĤINT(t) off a remaining Ĥ0. The latter is understood to govern the free time-evolution—as usual. The freely evolving operators,
respectively, are marked by the subscript ‘0’, whereas those undergoing the full time-evolution remain notationally blank. The
difference of the two is evaluated perturbatively. For a broader discussion of the interaction picture as well as time-dependent
perturbation theory, see App. A.1.

20We consider this to be quite a stroke of genius actually and admit that it took us a long time to appreciate its potential—
even remotely.
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Next we want to develop the FDT in more detail as well as better suited to our needs (cf. Chpt. 4

Sec. 4.4.2). To this end, we start from Eq. (A.153) and note that it contains the retarded Green’s function

Gret
A,B(t, t

′) =−iθ(t− t ′)〈
[
Â0(t), B̂0(t ′)

]
〉. (A.155)

For time-independent Ĥ0 (as in our case), this is invariant under time-translations and can likewise be

written using a single argument only:

Gret
A,B(t− t ′) =−iθ(t− t ′)〈

[
Â0(t− t ′), B̂0(0)

]
〉. (A.156)

While the above is arguably one of the most basic response functions imaginable, it is not the one, we

are interested in, if we care for fluctuations. In view of our XPDC problem, we are particularly interested

in a correlator of the form

CA,B(t) = 〈Â0(t)B̂0(0)〉, (A.157)

more specifically, we can identify it with the initially introduced correlator S̄νµ (cf. Eq. (2.55)):

CA′,A(t ′− t) = S̄νµ(x′, t ′, x, t)

= TrOPT {ρ̂equ
OPT (Âopt(x

′, t ′))ν (Âopt(x, t))µ} . (A.158)

Subsequently, our attention will focus mainly on the Fourier transform of this quantity, i.e.,

C̃A,B(ω) =
∫

dt eiωt CA,B(t). (A.159)

Our aim is to assemble this from Gret
A,B, for which a good starting formulation is given by the following

combination of terms

i
(

Gret
A,B(t)−Gret

B,A(−t)
)

= i
(
− iθ(t)〈Â0(t)B̂0(0)− B̂0(0)Â0(t)〉− (−i)θ(−t)〈B̂0(−t)Â0(0)− Â0(0)B̂0(−t)〉

)

= θ(t)〈Â0(t)B̂0(0)〉+θ(−t)〈Â0(0)B̂0(−t)〉−θ(t)〈B̂0(0)Â0(t)〉−θ(−t)〈B̂0(−t)Â0(0)〉
= 〈Â0(t)B̂0(0)〉︸ ︷︷ ︸

CA,B(t)

−〈B̂0(0)Â0(t)〉. (A.160)

Besides simple reordering, we have essentially made use of the time translation invariance—shifting

−t → 0 or 0→ t in some correlators. Half of the above expression already agrees with our target of

finding CA,B. This leaves only the remainder 〈B̂0(0)Â0(t)〉 to be dealt with.

To this end, we inspect its Fourier transform in more detail
∫

dt eiωt 〈B̂0(0)Â0(t)〉=
∫

dt eiωt Tr {ρ̂ B̂Û0(0, t) ÂÛ0(t,0)} . (A.161)

In order to proceed beyond this point, we have to decide upon an actual density operator ρ̂ . Given, that

we assume equilibrium conditions for the optical field (at least for those spectral regions without laser

driving—cf. Sec. 2.2.2), a thermalised ensemble is a reasonable choice. Moreover, as we are dealing
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with photons, we can quite safely assume a canonical distribution21 ρ̂ = Z−1 e−β Ĥ0 , where the precise

choice of ensemble would probably be irrelevant anyway, as we are interested in photon energies ω such

that βω � 1 and thermal corrections will be negligible.

With this choice and the exponential solution for Û0(t,0) = exp(−iĤ0t), we can rewrite Eq. (A.161)

as
∫

dt eiωt 〈B̂0(0)Â0(t)〉=
∫

dt eiωt Z−1 Tr {e−β Ĥ0 B̂ei Ĥ0t Âe−i Ĥ0t} . (A.162)

Formally introducing a basis of energy eigenstates, this becomes
∫

dt eiωt 〈B̂0(0)Â0(t)〉=
∫

dt eiωt Z−1 ∑
m,n
〈m|e−βEm B̂ |n〉〈n|eiEnt Âe−iEmt |m〉 (A.163)

and can be reshuffled to read
∫

dt eiωt 〈B̂0(0)Â0(t)〉=
∫

dt eiωt Z−1 ∑
m,n

e−βEm eiEnte−iEmtBm,n An,m

= Z−1 ∑
m,n

e−βEm 2π δ ((ω +En)−Em))Bm,n An,m

= Z−1 ∑
m,n

e−β (ω+En) 2π δ ((ω +En)−Em))An,m Bm,n

=
∫

dt eiωt e−βω Z−1 ∑
m,n
〈n|e−βEn eiEnt Âe−iEmt |m〉〈m| B̂ |n〉 . (A.164)

Finally, we can retract the eigenstate expansion again, condensing the above to
∫

dt eiωt 〈B̂0(0)Â0(t)〉=
∫

dt eiωt e−βω Z−1Tr {e−β Ĥ0 ei Ĥ0t Âe−i Ĥ0t B̂}

=
∫

dt eiωt e−βωTr {ρ̂ Û0(0, t) ÂÛ0(t,0) B̂}

= e−βω
∫

dt eiωt CA,B(t) = e−βω C̃A,B(ω). (A.165)

Using this result in combination with Eq. (A.160), we find

i
∫

dt eiωt
(

Gret
A,B(t)−Gret

B,A(−t)
)
= C̃A,B(ω)− e−βω C̃A,B(ω)

= (1− e−βω)C̃A,B(ω) (A.166)

or equivalently

C̃A,B(ω) = i(1− e−βω)−1
∫

dt eiωt
(

Gret
A,B(t)−Gret

B,A(−t)
)
. (A.167)

While we can directly identify the first term on the right-hand side with the Fourier transform of

Gret
A,B(t), we spend some final effort to do the same with the second. The obvious option is

∫
dt eiωtGret

B,A(−t) =
∫

dt e−iωtGret
B,A(t) = G̃ret

B,A(−ω). (A.168)

21We note in further explanation of our above reasoning: Photons are massless bosons, i.e., there is no ‘chemical potential’
required in a pertaining density operator. On the other hand, we might want to bear in mind that this situation could change for
polaritons or optical band gaps. Then again, the whole approach via FDT should be reconsidered first under such conditions.
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We note, however, that this result could prove slightly cumbersome in application, because it requires

knowledge of G̃B,A at two apparently different frequencies ω and −ω . Instead, we continue rewriting

G̃ret
B,A(−ω) =

∫
dt e−iωtGret

B,A(t)

=
∫

dt e−iωt (−i)θ(t)〈
[
B̂0(t), Â0(0)

]
〉

=
∫

dt
(

eiωt
)∗

(i)∗ θ(t)〈
[
Â0(0), B̂0(t)

]
〉∗

=
∫

dt
(

eiωt (i)θ(t)〈
[
Â0(0), B̂0(t)

]
〉
)∗

=
(∫

dt eiωt (−i)θ(t)〈
[
B̂0(t), Â0(0)

]
〉
)∗

=
(∫

dt eiωt Gret
B,A(t)

)∗

=
(

G̃ret
B,A(ω)

)∗
. (A.169)

Here, we have employed the identity 〈
[
B̂, Â

]
〉∗ = 〈

[
Â, B̂

]
〉 for self-adjoint operators Â and B̂, as well as

usual commutator properties.

Using Eq. (A.169) in Eq. (A.166), we can finally write the fluctuation-dissipation theorem as

C̃A,B(ω) = i(1− e−βω)−1
(

G̃ret
A,B(ω)− (G̃ret

B,A(ω))∗
)
. (A.170)
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A.13 XPDC flux-model from thin systems’ propagator

During our discussion of XPDC in Chpt. 5, we have introduced an effective, differential flux for the

concise description of the incident x-ray field. This quantity

Φσρ(k,ω) =
1

(2π)11
αω
2 lw

∫ ×2
d3kpd3k′p ZX IN

σρ (k′p,ω ,kp,ω ) w̃(k−kp)
(

w̃(k−k′p)
)∗

, (A.171)

presents a convolution of field-properties with the form-factor of the sample.

While we have already introduced a model for Φσρ in Eq. (5.78), we want to use this section to give

a more physical derivation of it. Moreover, this will open a perspective for further evolution. Namely, we

want to obtain the same expression by tracing the actual propagation of x-rays through the sample. To

this end, we shall use the thin-systems’ propagator from App. A.9.3 applied to the involved correlation

function (following App. A.9.5). As this requires returning to real-space, we apply the convolution

theorem Eq. (A.195) once again and obtain:

Φσρ(k,ω) =
1

(2π)5
αω
2 lw

∫ ×2
d3x1d3x2 eik·x1 e−ik·x2 V X IN

σρ (x1,ω,x2,ω) w(x1)w(x2) . (A.172)

We can render this expression more convenient still, if we reference the integrand V X IN
σρ to an overall

input field from outside of the integration volume. To this end, we choose a reference plane (at zref)

Figure A.3: Illustration of the slab geometry that underlies our reasoning in this section. An x-ray beam, which
is fully characterized in a reference plane up-stream of the sample (at zref), illuminates a (possibly tilted) crystal
centred at x⊥ = 0, z = 0. The sample’s lateral dimensions are assumed larger than the beam’s diameter and for
each entry-point zin(x⊥) of x-rays on the frontal face of the crystal, there is a corresponding exit-point zout(x⊥) on
the same ‘height’ (x⊥) yet at the opposite face of the slab. [We gratefully acknowledge Dr. Christina Bömer’s help
in rendering the above computer graphics.]

outside the finite sized target crystal (cf. Fig. A.3). From this plane onwards, we can relate V X IN
σρ into the

integration domain via the propagation relation (A.117), yielding:

Φσρ(k,ω) =
1

(2π)5
αω
2 lw

∫ ×2
d3x1d3x2 eik·x1 e−ik·x2 w(x1)w(x2)

∫ ×2
d2x′⊥1 d2x′⊥2

[(
Pz1,zref(x

⊥
1 ,x

′⊥
1 ,ω)

)
σ µ

]†

×
(
Pz2,zref(x

⊥
2 ,x

′⊥
2 ,ω)

)
ρν V X IN

µν ((x′⊥1 ,zref),ω,(x′⊥2 ,zref),ω). (A.173)

Given that the individual distances are rather short (∼crystal size), we can approximate the propagator
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with the result from App. A.9.3 for thin systems:

(
Pzi,zref(x

⊥
i ,x

′⊥
i ,ω)

)
µν ≈ δµν δ 2(x⊥i −x′⊥i ) eiα ω (zi−zref) e−iα ω

∫ zi
zref

dz(δ (x⊥i ,z,ω)−iβ (x⊥i ,z,ω))
. (A.174)

We assume further that our target may be well represented by a rectangular slab of constant ‘optical’

parameters22 (see also sketch A.3). Thereby we can simplify the integration within the exponent of

Eq. (A.174), which thus covers constant intervals only

∫ zi

zref

dz(δ (x⊥i ,z,ω)− iβ (x⊥i ,z,ω)) =
∫ zin(x⊥i )

zref

dz 0 +
∫ zi

zin(x⊥i )
dz(δ − iβ )

= zi (δ − iβ )− zin(x⊥i )(δ − iβ ). (A.175)

Next, we can re-insert this result together with Eq. (A.174) into Eq. (A.173). For improved readability,

we shall focus on a single ‘side’ of the correlation function V X IN
σρ , here (viz. the side with subscript 2):

∫
d3x2 e−ik·x2 w(x2)

∫
d2x′⊥2

(
Pz2,zref(x

⊥
2 ,x

′⊥
2 ,ω)

)
ρν V X IN

µν (...,(x′⊥2 ,zref),ω)

≈
∫

d3x2 e−ik·x2 w(x2) eiα ω (z2−zref) e−iα ω [z2 (δ−iβ )−zin(x⊥2 )(δ−iβ )] V X IN
µρ (...,(x⊥2 ,zref),ω)

=
∫

w
d2x⊥2 e−ik⊥·x⊥2 V X IN

µρ (...,(x⊥2 ,zref),ω)
(∫ zout(x⊥2 )

zin(x⊥2 )
dz2 eiz2 (−kq+α ω (1−δ+iβ ))

)
e−iα ω zref eiα ω zin(x⊥2 )(δ−iβ )

=
∫

w
d2x⊥2 e−ik⊥·x⊥2 V X IN

µρ (...,(x⊥2 ,zref),ω)
(∫ lw

0
dz2 eiz2 (−kq+α ω (1−δ+iβ ))

)
e−iα ω zref eizin(x⊥2 )(−kq+α ω).

(A.176)

In the last line, we made use of the fact that the effective thickness of a (tilted) rectangular slab

zout(x⊥2 )− zin(x⊥2 ) = lw is the same for all23 points of its cross section x⊥2 .

With the other side of the integration treated analogously—except for complex conjugation—we

arrive at the overall expression

Φσρ(k,ω) =
1

(2π)5
αω
2 lw

∣∣∣∣
∫ lw

0
dzeiz(−kq+α ω (1−δ+iβ ))

∣∣∣∣
2 ∫ ×2

w
d2x⊥1 d2x⊥2 eik⊥·(x⊥1 −x⊥2 )

×V X IN
σρ ((x⊥1 ,zref),ω,(x⊥2 ,zref),ω) ei(zin(x⊥2 )−zin(x⊥1 ))(−kq+α ω). (A.177)

This provides a nice starting point for rather general investigations.

For the time being, however, we shall focus only on a particularly simple realization thereof. We

take the crystal to be non-absorbing (β = 0), oriented perpendicular to the z-axis24 and—in its transverse

22Note that the constancy of δ and β is in itself a simplification, as it implies homogeneity of the sample on the scale of the
probing wavelength. For x-rays this is obviously untrue and will fail spectacularly, if the crystal is tuned onto Bragg-conditions,
for instance. Aside from these occurrences, it works reasonably well though and is certainly better than assuming the sample
to behave like vacuum.

23Strictly, the effective thickness of the crystal will obviously change towards its edges (cf. Fig. A.3). However, we shall
neglect this minor issue or—even more likely—assume that the beam does not reach there anyways.

24Note that the precise orientation is not really an issue for most of the cases that we study. It mostly affects the phasefactor,
which as quite irrelevant to begin with. This can be seen from the same estimates as in Eq. (4.26).
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dimensions—much larger than the relevant beam area. The above then simplifies into

Φσρ(k,ω) =
1

(2π)5
αω
2 lw

∣∣∣∣
∫ lw

0
dzeiz(−kq+α ω (1−δ ))

∣∣∣∣
2 ∫ ×2

d2x⊥1 d2x⊥2 eik⊥·(x⊥1 −x⊥2 )

×V X IN
σρ ((x⊥1 ,zref),ω,(x⊥2 ,zref),ω), (A.178)

wherein we can identify the integral by the sinc function and an irrelevant phase (cf. App. A.15)

Φσρ(k,ω) =
1

(2π)5
αω
2 lw

∣∣lw sinc((−kq+α ω (1−δ )) lw/2)
∣∣2
∫ ×2

d2x⊥1 d2x⊥2 eik⊥·(x⊥1 −x⊥2 )

×V X IN
σρ ((x⊥1 ,zref),ω,(x⊥2 ,zref),ω). (A.179)

Finally, we can rewrite V X IN
σρ through the inverse Fourier transform of ZX IN

σρ and find:

Φσρ(k,ω) =
1

(2π)7
αω
2

lw sinc2((−kq+α ω (1−δ )) lw/2)

×
∫ ×2

dkq1 dkq2 e−izref(kq1−kq2) ZX IN
σρ ((k⊥,kq1),ω,(k⊥,kq2),ω). (A.180)

Note that in ZX IN
σρ , almost all arguments are diagonal, except for kq1 and kq2, which are seemingly different

still. Implicitly, however, these will also be fixed to the same value. More specifically, there will be a

dispersion relation for any realistic field that ZX IN
σρ could describe, connecting kq1 and kq2 to k⊥ and ω .

Thereby, the former will always be identical and we only require the diagonal component ot ZX IN
σρ .

This observation is in line with our earlier model of the effective, differential flux. It entails that—

from the overall information content of the field correlator ZX IN
σρ —we only need to know about the

distribution of the total photon number across the spectrum → ω and its wave-vector spread → k. In

some sense, this gives the total intensity (not field) decomposed into all plane-wave components of the

pulse.

Note furthermore that the sinc-function above encodes the dispersion relation of the x-rays inside the

medium. We can render this into the more familiar shape of a dispersion-delta, by taking the limit

a
π

sinc2(ax) −−−→
a→∞

δ (x) (A.181)

which corresponds to:
lw
2π

sinc2((−kq+α ω (1−δ )) lw/2)−−−→
lw→∞

δ (−kq+α ω (1−δ ))≈ cδ (ω (1−δ )︸ ︷︷ ︸
nx-rays

−c |k|). (A.182)

In the last step, we imply that the x-ray beam ins well-collimated, such that kq ≈ |k|.
Using Eq. (A.180) or similar, propagation based expressions provides a good starting point to explore

the influence of refracting or absorbing matter onto the subsequent nonlinear processes.

Consistency check Concluding this section, we briefly want to come full circle and verify that the

above reproduces our initial flux model Eq. (5.78) on the basis of GSM beams. To this end, we recall
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Eq. (4.41)

Z(1)
µν (k1,ω1,k2,ω2) =

(2π)5 G0 T σ x σ y δ x δ y

α2 ω1ω2 Ω
(εεεX)µ (εεεX)ν W (ω1,ω2) (Tm(ω1))

∗ Tm(ω2) δ (kq1− kq1 0)

×δ (kq2− kq2 0) e−(∆kx)2(σ x)2/2 e−(k̄
x)2(δ x)2/2e−(∆ky)2(σ y)2/2 e−(k̄

y)2(δ y)2/2 ei z0
α ω̄ k̄⊥·∆k⊥

(A.183)

and insert it into Eq. (A.180). As we require only diagonal components of ZX IN
σρ , all expressions involving

∆’s vanish immediately. Likewise, we can ignore any seeming differences in kq1− kq2:

Φσρ(k,ω) =
1

(2π)7
αω
2

lw sinc2((−kq+α ω (1−δ )) lw/2)

× (2π)5 G0 T σ x σ y δ x δ y

α2 ω2 Ω
(εεε p)σ (εεε p)ρ W (ω,ω) |Tm(ω1)|2 e−(k

x)2(δ x)2/2e−(k
y)2(δ y)2/2

×
∫ ×2

dkq1 dkq2 δ (kq1− kq1 0)δ (k
q
2− kq2 0) . (A.184)

Now, the last two integrals contribute merely unity. For further simplification, we ignore the transmission

function of a hypothetical monochromator and simply focus on the spectral properties intrinsic to the

pulse (cf. Eq. (4.20)):

W (ω,ω) = e−(ω−ω0)
2/2Ω2

. (A.185)

Furthermore, we shall render the prefactor more compact by using the average pulse energy

Ēpulse =
G0 T σ x σ y

α

√
π
2

(A.186)

as found in App. A.11. As a result, Eq. (A.184) reduces to

Φσρ(k,ω) =
1

(2π)3/2

Ēpulse δ x δ y

ω Ω
lw
2π

sinc2((−kq+α ω (1−δ )) lw/2)

× (εεε p)σ (εεε p)ρ e−(ω−ω0)
2/2Ω2

e−(k
x)2(δ x)2/2e−(k

y)2(δ y)2/2. (A.187)

Finally, we can employ the dispersion-delta of Eq. (A.182) and invoke the notion that Ēpulse/ω = Nph.

Thus, we would arrive at a result, which compares identically to the model expression (5.78) used earlier.
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A.14 Convolutions and the convolution theorem

At several stages throughout this thesis, we made use of convolutions or, more specifically, the con-

volution theorem. In this Appendix, we want to provide some background on said concept, which is

intimately related to Fourier transformations.

For convolutions, we employ the usual definition:

( f ?g)(t) =
∫ ∞

−∞
dτ f (τ)g(t− τ) =

∫ ∞

−∞
dτ f (t− τ)g(τ) = (g? f )(t). (A.188)

Some general properties of the convolution are:

( f ? (g?h)) = (( f ?g)?h) (associativity) (A.189)

( f ? (g+h)) = ( f ?g)+( f ?h) (distributivity) (A.190)

( f ?g)∗ = ( f ∗ ?g∗) (conjugation) (A.191)
d
dt

( f ?g)(t) =
(

f ′ ?g
)
=
(

f ?g′
)

(differentiation) (A.192)

( f ?δ ) = f (convolution with Dirac delta). (A.193)

All of these may simply be derived from the definition in Eq. (A.188).

Next, we shall address the convolution theorem in itself. This relates the Fourier transformations

(FT) of a convolution to the simple product of the underlying Fourier transforms:

FT ( f ?g) = FT ( f ) ·FT (g) FT−1 ( f ?g) = 2π FT−1 ( f ) ·FT−1 (g) (A.194)

2π FT ( f ·g) = (FT ( f )?FT (g)) FT−1 ( f ·g) =
(
FT−1 ( f )?FT−1 (g)

)
. (A.195)

These relations may again be proven by simply reformulating the respective definitions. For the exem-

plary case of Eq. (A.194)—first part—we have:

FT ( f ?g) =
∫ ∞

−∞
dt eiωt

∫ ∞

−∞
dτ f (τ)g(t− τ). (A.196)

By shifting the integration from t→ θ = t− τ , we obtain directly:

FT ( f ?g) =
∫ ∞

−∞
dθ eiωθ g(θ)

∫ ∞

−∞
dτ eiωτ f (τ) = FT ( f ) ·FT (g) (A.197)

Proofs of the other identities proceed in the same fashion.
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A.15 Useful integrals

In this section of the Appendix, we have collected a series of integrals and their solutions. While this

content can certainly be found in the pertinent literature (cf., Ref. [9], for example), we wanted to have

these results easily at hand for quick reference as well as possible reuse.

The integrals are listed in no particular order:

Gaussian exponential

∫ ∞

−∞
dx eiax e−bx2

=

√
π
b

e−a2/4b (A.198)

Product of Gaussian exponentials

∫ ∞

−∞
dω e−a(ω−Ωa)

2
e−b(ω−Ωb)

2
=

√
π

a+b
e−ab(Ωa−Ωb)

2/(a+b) (A.199)

Proof If we want to integrate the product of two Gaussian-type exponentials, we can—of course—

explicitly manipulate the exponents, such as to find a new, single quadratic form. However, we can

likewise make use of the convolution theorem from App. A.14 in the following way. Starting from the

l.h.s. of Eq. (A.199), we shift the integration variable such that ω → ω ′ = ω−Ωa and obtain

...=
∫ ∞

−∞
dω ′ e−a(ω ′)2

e−b((Ωb−Ωa)−ω ′)2
. (A.200)

This can be seen as the convolution of the two functions

fa(ω) = e−aω2
and fb(ω) = e−bω2

, (A.201)

where the outwardly apparent variable will be X = Ωb−Ωa

...=
∫ ∞

−∞
dω ′ fa(ω ′) fb((Ωb−Ωa)−ω ′) = ( fa ? fb)(X). (A.202)

Next, we use the trivial identity

( fa ? fb)(X) = FT
(
FT−1 ( fa ? fb)

)
, (A.203)

in order to prepare the usage of the actual convolution theorem (cf., Eq. (A.194))

FT−1 ( fa ? fb) = 2π FT−1 ( fa) ·FT−1 ( fb) . (A.204)

This renders

( fa ? fb)(X) =
∫ ∞

−∞
dteiXt 2π

(∫ ∞

−∞

dω
2π

e−iωt e−aω2 ·
∫ ∞

−∞

dω ′

2π
e−iω ′t e−bω ′2

)
, (A.205)
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which in turn can be simplified by using the result from Eq. (A.198) to yield

( fa ? fb)(X) =
∫ ∞

−∞
dteiXt 2π

1
2π

√
π
a

e−t2/4a · 1
2π

√
π
b

e−t2/4b =
1

2
√

ab

∫ ∞

−∞
dt eiXt e−ct2

. (A.206)

Herein, c = 1
4a +

1
4b = a+b

4ab . Applying Eq. (A.198) again, gives the final result as of Eq. (A.199) (see

above).

As a closing remark, note that there is a good-looking short report by P. A. Bromiley, which may be

consulted on more general Gaussian products [218].

Product of three Gaussians

∫ ∞

−∞
dω e−a(ω−Ωa)

2
e−b(ω−Ωb)

2
e−c(ω−Ωc)

2
=

√
π

a+b+ c
e−[(a+b+c)(aΩ2

a+bΩ2
b+cΩ2

c)−(aΩa+bΩb+cΩc)
2]/(a+b+c)

(A.207)

Proof via multiplication of three Gaussians, for instance.

Complex Gaussian exponential / Fresnel integrals

∫ ∞

−∞
dx eiax2

=

√
π
|a| e

sign(a) iπ/4 (A.208)

In the context of em-propagators, but also in the context of more general oscillatory integrals, which

we might want to approximate via the stationary phase approximation, we encounter the above integral.

Assuming a > 0 and using Euler’s identity, it can be unfolded into
∫ ∞

−∞
dx eiax2

=
∫ ∞

−∞
dx cos(ax2)+ i

∫ ∞

−∞
dx′ sin(ax′2), (A.209)

which, in turn, can be related to the well-known Fresnel integrals—each at the value of 1
2

√
2π:

...=
1√
a

(∫ ∞

−∞
ds cos(s2)+ i

∫ ∞

−∞
ds′ sin(s′2)

)

=
1√
a

(1
2

√
2π + i

1
2

√
2π
)

=

√
π
2a

(1+ i). (A.210)

For a < 0, we use the replacement b =−a and the same reasoning as above to find:

...=

√
π
2b

(1− i). (A.211)

The unified expression for both is then given by Eq. (A.208).

Sine cardinalis

∫
dk sinc(ak) =

π
a

(A.212)

222



A. Appendices

In order to see this, we first go the other way around: We note that we can obtain the sinc function as the

Fourier transform of a box window with the following properties

w(x) =





1 for |x| ≤ l/2

0 otherwise
. (A.213)

Fourier transforming this window, we find

w̃(k) =
∫

dx e−ikx w(x) =
∫ l/2

l/2
dx e−ikx =

1
−ik

(
e−ikl/2− eikl/2

)

=
2
k

sin(kl/2) = l sinc(kl/2), (A.214)

which is the sinc function.

The inverse relation is, instead, given by

w(x) =
1

2π

∫
dk eikx w̃(k) =

1
2π

∫
dk eikx l sinc(kl/2). (A.215)

For x = 0 and a = l/2, the integral reproduces the l.h.s. of Eq. (A.212) and we find:

1 = w(x = 0) =
2a
2π

∫
dk sinc(ak)⇒

∫
dk sinc(ak) =

π
a
. (A.216)

Approximation of the box window Regarding the use of the box-type window function as a shape-

function for our crystallographic discussions, we want to comment on a particularly simple, if drastic,

approximation. Namely, we can identify the central peak of the sinc-function with a Gaussian, i.e.,

sinc(k lw/2)≈ e−(k σw)
2/2 (A.217)

with the adjustment: σw = lw/
√

2π , to make their integrals equal. Apart from reproducing the central

peak, we call for caution on this approximation, because the tails of either function are significantly

different.

A second identification of this kind could be done at the level of their squares (i.e., for use in transition

rates rather than amplitudes):

(sinc(k lw/2))2 ≈ e−(k σw)
2/2. (A.218)

Given that the integrals of sinc and sinc squared are equal, we arrive at the same adjustment for

σw = lw/
√

2π .
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A.16 Derivation notes for XOWM with simplified time-dependence

Having established the overall functionality of our approach, we now want to pursue a slightly different

road towards the same or similar result—hopefully. This makes use of a simplification discussed earlier,

viz. around Eq. (5.58). In particular, we observe that we repeatedly have employed the approximation

KI(k1,k2,ω)≈ w̃(k1 +k2−G)
1

V�
KI�(0,G,ω)≈ w̃(k1 +k2−G)

1
V�

KI�(0,G,ωL 0), (A.219)

where the last simplification results from the fact that K(...)—far off resonances—varies slowly with

frequency. Consequently, it gives roughly the same response for all frequencies contained in the driving

laser’s pulse. This, in turn allows to simplify the Fourier-inverse (Eq. (3.2)):

PI(x1,0, x2,τ) =
1

(2π)7

∫
d3k1

∫
d3k2

∫
dω ei(k1·x1+k2·x2) e−iωτ KI(k1,k2,ω)

≈ 1
(2π)7

∫
d3k1

∫
d3k2

∫
dω ei(k1·x1+k2·x2) e−iωτ w̃(k1 +k2−G)

1
V�

KI�(0,G,ωL 0)

=
1

V�
KI�(0,G,ωL 0) δ (τ)δ 3(x1−x2)eiG·x1 w(x1). (A.220)

This can now be used directly inside the real space expression of our observable (Eq. (2.57))

〈Ô〉= 2πα4

V ω f

∫
dt1 dt ′1 dt2 dt ′2

∫
d3xd3x′ d3yd3y′ e−ik f ·(x−x′) eiω f (t1−t ′1)

· (εεε f )σ H(1)
σρ (x′, t ′1,x, t1)(εεε

∗
f )ρ

(
H̄(1)

νµ (y′, t ′2,y, t2)+ S̄(1)νµ(y′, t ′2,y, t2)
)

·∑
I

pI (PI(y, t2, x, t1))µ
(
PI(y′, t ′2, x′, t ′1)

)∗
ν . (A.221)

Again, we assume only the ground state I = GS to be relevant for our consideration and find

〈Ô〉= 2πα4

V ω f

∫
dt1 dt ′1 dt2 dt ′2

∫
d3xd3x′ d3yd3y′ e−ik f ·(x−x′) eiω f (t1−t ′1)

× (εεε f )σ H(1)
σρ (x′, t ′1,x, t1)(εεε

∗
f )ρ

(
H̄(1)

νµ (y′, t ′2,y, t2)+ S̄(1)νµ(y′, t ′2,y, t2)
)

× 1
V�

(KI�(0,G,ωL 0))µ δ (t1− t2)δ 3(y−x)eiG·x w(x)

× 1
V�

(KI�(0,G,ωL 0))
∗
ν δ (t ′1− t ′2)δ 3(y′−x′)e−iG·x′ w(x′). (A.222)

Cleaned up, this reads:

〈Ô〉= 2πα4

V ω f

∫
dt1 dt ′1

∫
d3xd3x′ e−i(k f−G)·(x−x′) eiω f (t1−t ′1) w(x)w(x′)

× (εεε f )σ H(1)
σρ (x′, t ′1,x, t1)(εεε

∗
f )ρ

(
H̄(1)

νµ (x′, t ′1,x, t1)+ S̄(1)νµ(x′, t ′1,x, t1)
)

× 1
V 2�

(KI�(0,G,ωL 0))µ (KI�(0,G,ωL 0))
∗
ν . (A.223)

Note that we have carried the spontaneous optical correlator along, because we might want to use it to

investigate XPDC as well. In contrast to our result Eq. (5.61), we have stopped short of simplifying the

integration in ω f , as it may well be constrained by the detection setup. In its present form, the above

224



A. Appendices

may serve as a convenient starting point for more concrete derivations.

We note in closing that the particular way, in which the field correlation-functions are Fourier trans-

formed above, lends itself to a new interpretation. Namely, these Fourier transforms are restricted to the

difference coordinates x−x′ and t1− t ′1 only, while keeping the center-of-mass coordinates in real-space

(or real-time, respectively). This is characteristic for so-called Wigner functions25 [220], which have

found some popularity in quantum-optics of late (for examples, cf. Refs. [221–223]. They have the in-

triguing property of bridging between a quantum-inspired, coherence description of the field and a more

classical point of view, which may simplify all the way down to ray-optics. Further investigations along

this route are foreseen in the future.

25We note that Ref. [219] gives a convenient introduction, adopting a perspective of (optical) signal-processing.
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A.17 First perturbative model of ‘negative’ scattering signal

Our experimental results from the ESRF campaign(s) raised the issue of ‘negative’ scattering signals at

the phasematching condition for XPDC with high-energy idler photons. More accurately, the scattering

patterns showed circular scattering signatures, for which the count rate was smaller than the average

around it (i.e., dips into the background). We raised the possibility of this being connected to the strong

re-absorption of idler photons in the XUV regime. In the following, we shall elaborate further on this

idea and derive an expression for the scattering signal, which supports this hypothesis to some extent.

We recall that we started our initial derivation of the XOWM signal from the IXS-type scattering

expression (Eq. (2.32))

〈Ô〉= lim
t→∞

lim
t0→−∞

〈Ô〉(t) = 2πα2

V ω f

∫ ∞

−∞
dt1
∫ ∞

−∞
dt ′1

∫
d3x

∫
d3x′ (εεε f )σ H(1)

σρ (x′, t ′1,x, t1)(εεε
∗
f )ρ

· e−ik f ·(x−x′) eiω f (t1−t ′1) TrREST {n̂(x, t1) ρ̂REST(0) n̂(x′, t ′1)} . (A.224)

For the next order of perturbation theory—leading to XOWM—we have assumed that the optical admix-

ture would happen symmetrically on both legs of the density matrix. Recall the set of diagrams shown

in the upper right corner of Fig. 2.1—an exemplary diagram follows in Fig. A.4.

Figure A.4: The derivation of our XOWM framework in Chpt. 2 relied on diagrams, for which optical vertices
(here connected to wiggly lines) appeared symmetrically on both legs. [We gratefully acknowledge Dr. Christina
Bömer’s help in rendering the above computer graphics.]

Regarding ‘XPDC’ with idler energies in the XUV-regime, however, we are potentially faced with a

different situation. Given that the idler photon is quickly absorbed, we should also consider diagrams,

wherein this absorption is incorporated as a second vertex on one side. In fact, it may not even be

appropriate to think of the idler photon as independent—but rather consider it as a combined, polaritonic

excitation of the light-matter system26. Just like the aforementioned scenario, we may attempt to model

this situation to lowest order in terms of the emission and reabsorption of a photon. This would lead to a

‘bubble-insertion’ into the diagram27 (cf. Fig. A.5).

In order to include this ‘bubble’ into our perturbative expression for XOWM, we start out from the

density-density correlator in Eq. (A.224), which we may write as

TrREST {...}= TrOPT {TrMAT {Û0(t, t1) n̂(x)Û0(t1, t0)ρ̂REST(t0)Û0(t0, t ′1) n̂(x′)Û0(t ′1, t)}} . (A.225)

We shall, once again, factorize the initial density matrices—even though this is likely inappropriate for a

26Note that we followed-up on this line of thinking in Sec. 6.1. Ultimately, this proved to be very convincing.
27We note that we could push this thinking further by iterating the bubble—analogous to electronic RPA. Thus, we should

find the polariton as a quasi-particle in the same way one would normally find the plasmon from RPA.
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(a) (b)

Figure A.5: Extending the scope of the above diagram to include re-absorption of the idler photon; notably, we
remain at the same overall order of perturbative insertions, i.e., two optical vertices (here connected to wiggly
lines) but spread them asymmetrically across both legs. [We gratefully acknowledge Dr. Christina Bömer’s help
in rendering the above computer graphics.]

polaritonic scenario:

ρ̂REST(t0)≈ ρ̂MAT(t0)⊗ ρ̂OPT(t0), (A.226)

then, we try to capture any light-matter interaction at second order of perturbation theory. To this end,

we partition the time-evolution operator as before

Û0(t, t0) = Û00(t, t0)ÛINT OPT(t, t0) (A.227)

implying the following Hamiltonians for the non-interacting systems and their coupling, respectively:

Ĥ00 = ĤMAT + ĤEM (A.228)

ĤINT OPT = α
∫

d3x ψ̂†(x)p · Âopt(x)ψ̂(x). (A.229)

The object(s), which we would want to expand ultimately, are the time-evolution operators to the

very left and very right in Eq. (A.225). They mark the evolution of the system after x-ray scattering has

deposited energy in the material system. Thus, here is the chance to create a polariton. Following the

splitting in Eq. (A.227), we can expand the interaction part and find to second order (cf. Eq. (A.13))

Û0(t, t0)≈ Û00(t, t0)
(

1̂− i
∫ t

t0
dt1Û00(t0, t1) ĤINT OPT Û00(t1, t0)

−
∫ t

t0
dt1

∫ t1

t0
dt2Û00(t0, t1) ĤINT OPT Û00(t1, t0)Û00(t0, t2) ĤINT OPT Û00(t2, t0)

)
.

(A.230)

Of this, both the identity and the second order term

Û (2)
0 (t, t0) = Û00(t, t0)(−1)

∫ t

t0
dt1

∫ t1

t0
dt2Û00(t0, t1) ĤINT OPT Û00(t1, t0)Û00(t0, t2) ĤINT OPT Û00(t2, t0)

(A.231)

are relevant to us. Using them, we can identify three interesting contributions following from Eq. (A.225)
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up to order α2

TrREST {...}= TrMAT {Û00(t, t1) n̂(x)Û00(t1, t0)ρ̂MAT(t0)Û00(t0, t ′1) n̂(x′)Û00(t ′1, t)}
+TrOPT {TrMAT {Û (2)

0 (t, t1) n̂(x)Û00(t1, t0)
(

ρ̂MAT(t0)⊗ ρ̂OPT(t0)
)

Û00(t0, t ′1) n̂(x′)Û00(t ′1, t)}}
+TrOPT {TrMAT {Û00(t, t1) n̂(x)Û00(t1, t0)

(
ρ̂MAT(t0)⊗ ρ̂OPT(t0)

)
Û00(t0, t ′1) n̂(x′)Û (2)

0 (t ′1, t)}}
= TrMAT {Û00(t, t1) n̂(x)Û00(t1, t0)ρ̂MAT(t0)Û00(t0, t ′1) n̂(x′)Û00(t ′1, t)}
+TrOPT {TrMAT {Û (2)

0 (t, t1) n̂(x)Û00(t1, t0)
(

ρ̂MAT(t0)⊗ ρ̂OPT(t0)
)

Û00(t0, t ′1) n̂(x′)Û00(t ′1, t)}}

+
(

TrOPT {TrMAT {Û (2)
0 (t, t ′1) n̂(x′)Û00(t ′1, t0)

(
ρ̂MAT(t0)⊗ ρ̂OPT(t0)

)
Û00(t0, t1) n̂(x)Û00(t1, t)}}

)†
.

(A.232)

Herein, the purely material part will be responsible for normal, Compton-type IXS and need not bother

us in the following. Instead, we shall seek a nice reformulation of the latter two terms—which are

structurally identical.

For a first simplification, we observe that the operators pertaining to the optical electromagnetic field

are solely contained within the interaction Hamiltonians inside Û (2)
0 (t, t1). Focusing on these electro-

magnetic bits for the moment, we can contract the optical trace and all relevant time-translations around

them:

TrOPT[Û
(2)
0 (t, t1)...Û00(t1, t0)ρ̂OPT(t0)...Û00(t0, t ′1)...Û00(t ′1, t)]

=TrOPT[Û00(t, t1)(−1)
∫ t

t1
dt2

∫ t2

t1
dt3Û00(t1, t2) ĤINT OPT Û00(t2, t1)Û00(t1, t3) ĤINT OPT Û00(t3, t1)

...Û00(t1, t0)ρ̂OPT(t0)...Û00(t0, t ′1)...Û00(t ′1, t)]

=TrOPT[Û00(t,0)(−1)
∫ t

t1
dt2

∫ t2

t1
dt3Û00(0, t2) ...(Âopt(y2))µ Û00(t2,0)Û00(0, t3) ...(Âopt(y3))ν Û00(t3,0)

...Û00(0, t0)ρ̂OPT(t0)...Û00(t0, t ′1)...Û00(t ′1, t)]

=(−1)
∫ t

t1
dt2

∫ t2

t1
dt3TrOPT[ρ̂OPT(0)(Âopt(y2, t2))µ(Âopt(y3, t3))ν ]. (A.233)

Here, we have made use of the Heisenberg picture defined earlier by writing

Û00(0, t2)(Âopt(y2))µ Û00(t2,0) = (Âopt(y2, t2))µ—see also below Eq. (2.44) for the same procedure. We

can go even further and identify the remaining optical trace with the (spontaneous) correlation function

seen in Eq. (2.55)

S̄(1)µν(y2, t2,y3, t3) = TrOPT {ρ̂equ
OPT(Âopt flu(y2, t2))µ (Âopt flu(y3, t3))ν} . (A.234)

Having the optical part simplified, we return to the full expression. Herein, we reintroduce all relevant

time-evolution operators as well as the electronic remainder of the interaction Hamiltonians, namely the
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p̂-operators. We start from the second-to-last line of Eq. (A.232)

TrOPT {TrMAT {Û (2)
0 (t, t1) n̂(x)Û00(t1, t0)

(
ρ̂MAT(t0)⊗ ρ̂OPT(t0)

)
Û00(t0, t ′1) n̂(x′)Û00(t ′1, t)}}

=(−1)TrMAT[Û00(t, t1)
∫ t

t1
dt2

∫ t2

t1
dt3Û00(t1, t2)α

∫
dy2 p̂(y2)Û00(t2, t1)Û00(t1, t3)α

∫
dy3 p̂(y3)Û00(t3, t1)

× n̂(x)Û00(t1, t0)ρ̂MAT(t0)Û00(t0, t ′1) n̂(x′)Û00(t ′1, t)]S̄
(1)
µν(y2, t2,y3, t3)

=(−1)α2
∫ t

t1
dt2

∫ t2

t1
dt3

∫
dy2

∫
dy3 TrMAT[p̂(y2, t2) p̂(y3, t3) n̂(x, t1)ρ̂MAT(0) n̂(x′, t ′1)] S̄(1)µν(y2, t2,y3, t3).

(A.235)

Next, we shall introduce some further simplifying assumptions. First—and not very restrictive—we shall

assume our initial state to be in a set of energy eigenstates weighted by their probability (as we did in

Chpt. 2)

ρ̂MAT(0)≈∑
I

pI |I〉〈I| (A.236)

This is reasonable for a thermal ensemble close to the ground state. As a matter of fact, we will be

focusing on said ground state alone very soon.

Starting from this initial state |I〉, the system is kicked by the action of n̂(x, t1) into an excited state,

before it de-excites by ‘emitting’ a photon (rather: exciting a polariton) through the coupling at p̂(y3, t3).

In this de-excitation step, it is not unreasonable to assume that the previously created excitation vanishes

completely again. Thus, the material system would return to its initial state while the virtual photon

carries its excess energy. If this is true, we can insert another projector |I〉〈I| between the two momentum

operators with impunity (cf. Fig. A.5). Doing so factorizes the above expression into a shape that is oddly

familiar from the initial derivation of our XOWM expressions

(−1)α2 ∑
I

pI

∫ t

t1
dt2
∫ t2

t1
dt3
∫

dy2

∫
dy3 TrMAT[p̂(y2, t2) |I〉〈I| p̂(y3, t3) n̂(x, t1) |I〉〈I| n̂(x′, t ′1)] S̄(1)µν(y2, t2,y3, t3)

=(−1)α2 ∑
I

pI

∫ t

t1
dt2

∫ t2

t1
dt3

∫
dy2

∫
dy3 〈I| n̂(x′, t ′1)p̂(y2, t2) |I〉〈I| p̂(y3, t3) n̂(x, t1) |I〉 S̄(1)µν(y2, t2,y3, t3)

=(−1)α2 ∑
I

pI

∫ t

−∞
dt2

∫ ∞

−∞
dt3

∫
dy2

∫
dy3Θ(t2− t1)Θ(t3− t1)Θ(t2− t3)

(
〈I| p̂(y2, t2)n̂(x′, t ′1) |I〉

)∗

×〈I| p̂(y3, t3) n̂(x, t1) |I〉 S̄(1)µν(y2, t2,y3, t3). (A.237)

Here, we have pushed the temporal interdependence of the integrals into the respective Heaviside func-

tions Θ(...). It is noteworthy that the newly appearing correlation function in combination with this time

constraint can actually be written in terms of our earlier (time-ordered) correlation function

Θ(t3− t1) 〈I| p̂(y3, t3) n̂(x, t1) |I〉= Θ(t3− t1)PI(y3, t3, x, t1). (A.238)

If we are willing to approximate a bit further, we can actually extend this to the other correlation function

as well. Strictly, this will depend on t ′1, for which no time-constraint is given. However, we know that t1
and t ′1 will differ only up to the coherence time of the x-ray source. Especially for synchrotron sources,
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this may be small enough to justify setting t1 ≈ t ′1, which renders the overall expression:

≈ (−1)α2 ∑
I

pI

∫ t

−∞
dt2

∫ ∞

−∞
dt3

∫
dy2

∫
dy3
(
Θ(t2− t ′1)PI(y2, t2 x′, t ′1)

)∗ Θ(t3− t1)PI(y3, t3, x, t1)

×Θ(t2− t3) S̄(1)µν(y2, t2,y3, t3). (A.239)

Plugging this back into our earlier expression for the perturbatively expanded IXS-correlator (Eq. (A.232)),

we find the above term paired up with its adjoined counterpart

TrMAT {n̂(x, t1) ρ̂MAT(0)n̂(x′, t ′1)}

+(−1)α2 ∑
I

pI

∫ t

−∞
dt2

∫ ∞

−∞
dt3

∫
dy2

∫
dy3
(
Θ(t2− t ′1)PI(y2, t2 x′, t ′1)

)∗ Θ(t3− t1)PI(y3, t3, x, t1)

×Θ(t2− t3) S̄(1)µν(y2, t2,y3, t3)

+(−1)α2 ∑
I

pI

∫ t

−∞
dt2

∫ ∞

−∞
dt3

∫
dy2

∫
dy3 Θ(t2− t1)PI(y2, t2 x, t1)

(
Θ(t3− t ′1)PI(y3, t3, x′, t ′1)

)∗

×
(
Θ(t2− t3) S̄(1)µν(y2, t2,y3, t3)

)∗
. (A.240)

For a last simplification, we will rename the variables subscripted with 2 into 3 and vice versa in the last

term, as well as exchanging µ and ν . Moreover we make use of the fact that

(
S̄(1)µν(y2, t2,y3, t3)

)∗
= S̄(1)νµ(y3, t3,y2, t2), (A.241)

and combine the last two terms28.

Now, we can re-insert this into the IXS-observable, from which we started (i.e., Eq. (A.224)) and

obtain

〈Ô〉= lim
t→∞

lim
t0→−∞

〈Ô〉(t) = 2πα2

V ω f

∫ ∞

−∞
dt1
∫ ∞

−∞
dt ′1

∫
d3x

∫
d3x′ (εεε f )σ H(1)

σρ (x′, t ′1,x, t1)(εεε
∗
f )ρ

· e−ik f ·(x−x′) eiω f (t1−t ′1)
(

TrMAT {n̂(x, t1) ρ̂MAT(0)n̂(x′, t ′1)}+(−1)α2 ∑
I

pI

∫ ∞

−∞
dt2

∫ ∞

−∞
dt3

∫
dy2

∫
dy3

×
(
Θ(t2− t ′1)PI(y2, t2 x′, t ′1)

)∗ Θ(t3− t1)PI(y3, t3, x, t1) S̄(1)µν(y2, t2,y3, t3)
)
. (A.242)

Here, the first term gives the regular (inelastic) x-ray scattering, while the second term is responsible

for ‘wavemixing’ in the present case. Importantly, this second term is structurally equivalent to the

wavemixing observable that we have obtained in the last section Eq. (2.57), i.e., for normal XPDC or

SFG / DFG. The only two differences are:

• A slightly different correlation function, namely bearing a causal imprint, and

• the minus sign carried by this term since the beginning of our treatment in second order of pertur-

bation theory.

The latter is the paramount result of this derivation. It implies—all else the same—that we will indeed

end up with a term that subtracts from the regular IXS signal and thus shows a negative signature on top

of the Compton background!

28Note that—strictly—we can not yet combine them, because the limits of the integrals are still different. However, we aim
to take the limit t→ ∞ anyways, which will remedy this situtation.
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While this result is an encouraging sign that our polariton-hypothesis may be true, we caution against

pre-mature excitement. As a matter of fact, the above description likewise fails to reproduce our XPDC

results at high idler energies completely. Even though it facilitates a negative component, it now lacks

the positive signal. A more compelling solution to the conundrum is given in Sec. 6.1.
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A.18 Diagonalization of a two-level system

In this appendix to the main thesis, we will exercise the diagonalization of a two-level system. This is in

support of the earlier polariton model on XPDC (and Compton scattering)—see Sec. 6.1. The notation

is largely analogous to the aforementioned section; however, we use the shorter ωexc→ ωc and strip the

homogeneous energy-offset EI from the Hamiltonian.

As such, we start from the 2×2-matrix to be diagonalized

H ′ =

(
ωc V

V ∗ ωi

)
with:

(
1

0

)
' |Fel

c 〉 and:

(
0

1

)
' |Fγ〉 . (A.243)

Here, the identification of basis states with 2-component vectors proceeds analogous to Sec. 6.1.

We diagonalize H ′ by solving the characteristic polynomial

H ′ |φi〉= Ei |φi〉 ⇒ (H ′−1Ei) |φi〉= 0, (A.244)

i.e.,

0 = det(H ′−1Ei)

= det

(
ωc−Ei V

V ∗ ωi−Ei

)

= (ωc−Ei)(ωi−Ei)−|V |2

= E2
i −Ei(ωc +ωi)+ωcωi−|V |2. (A.245)

We add |V |2−ωcωi to both sides of the equation and obtain

E2
i −Ei (ωc +ωi)︸ ︷︷ ︸

2ω̄

= |V |2−ωcωi with: ω̄ := (ωc +ωi)/2

(Ei− ω̄)2 = |V |2 + 1
4
(ωc +ωi)

2−ωcωi

= |V |2 + 1
4
(ω2

c +2ωcωi +ω2
i −4ωcωi)

= |V |2 + 1
4
(ωc−ωi)

2 with: ∆ := ωc−ωi

Ei− ω̄ =±
√

1
4
(ωc−ωi)2 + |V |2. (A.246)

Thus, we finally solve for Ei and find the two eigenvalues

Ei =
ωc +ωi

2
±
√

1
4
(ωc−ωi)2 + |V |2

= ω̄±
√

1
4

∆2 + |V |2. (A.247)

If we sketch out the energy dependence (e.g., their variation with change in ωi) of these two solutions,

we find two anti-crossing branches. Asymptotically—both at low and high energies—they will approach

the energy value of one of the eigenstates of the uncoupled Hamiltonian, i.e., ωc or ωi, respectively. The

anti-crossing in between is determined in its strength by the coupling parameter V . An illustration of this

232



A. Appendices

is given below in Fig. A.6.

Figure A.6: Sketch of the dispersion of the eigenvalues Ei as a function of ωi. This schematic anticipates the
later use in the context of our polariton model. By (obvious) convention, the two branches are referred to as
upper (UP) and lower (LP) polariton branch, respectively. The dashed lines in the background indicate the energy
of the uncoupled states, with the electronic excitation ωc pertaining to ‘Compton’-scattering, while the photonic
excitation of energy ωi would pertain to an ‘idler’-photon of XPDC (here labeled by γ). The essential characteristic
of the polaritonic dispersion is the avoided crossing of the two branches, which is determined by the coupling
strength V among the photonic and electronic states. [We gratefully acknowledge Dr. Christina Bömer’s help in
rendering the above computer graphics.]

In order to obtain an asymptotic identification of the two branches, we consider the limit of very

small ωi→ 0:

Ei ≈
ωc

2
±
√

1
4

ω2
c + |V |2 ≈

ωc

2
± ωc

2





ωc : + solution

∼ 0 : - solution.
(A.248)

Thus, we can identify the + solution as the upper polariton branch (UP) and the − solution as the lower

polariton branch (LP).

Next, we find the eigenvectors of the diagonal matrix or, equivalently, the transformation coefficients

to diagonalize it formally. Starting from the eigenvalue-problem

H ′ |φi〉= Ei |φi〉 (A.249)

once again, we can represent φ in the 2-component basis of Eq. (A.243) using expansion coefficients c:

|φ±〉=
(

c1±
c2±

)
. (A.250)

Then, the eigenvalue-problem takes on the form

(
ωc V

V ∗ ωi

)(
c1±
c2±

)
= E±

(
c1±
c2±

)

(
ωc−E± V

V ∗ ωi−E±

)(
c1±
c2±

)
= 0 (A.251)

From this set of equations, we can take a single line, for example

⇒ (ωc−Ei)c1i +V c2i = 0,
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and thereby fully determine c1i in relation to c2i or vice versa. Note that we use the index i to indicate

either + or − here; it is not related to the label on ωi, though.

In order to fix the overall magnitude of the coefficients, we should, furthermore, involve the normal-

ization condition

1 = |c1i|2 + |c2i|2. (A.252)

If we simply set c1i = 1 to begin with, then we can write the non-normalized eigenstate as

(
c1i

c2i

)
=

(
1

−(ωc−Ei)/V

)
=

(
1

−V ∗/(ωi−Ei)

)
. (A.253)

In here, both forms are equivalent and merely depend on the choice of either upper or lower line of the

matrix equation (A.251).

Adopting the latter version and normalizing it, we find

(
c1i

c2i

)
=

1√
1+ |V |2

(Ei−ωi)2

(
1

V ∗/(Ei−ωi)

)
(A.254)

Finally, we return to the task of specifying transformation-matrices that diagonalize H ′. We recall the

Hamiltonians diagonal shape as well as the mathematical fact that this diagonalization should be affected

by unitary matrices (here labelled S):

(
E+ 0

0 E−

)
= SH ′S†

= S

(
ωc V

V ∗ ωi

)
S†

=

(
S11 S12

S21 S22

)(
ωc V

V ∗ ωi

)(
S∗11 S∗21

S∗12 S∗22

)
. (A.255)

By means of sharp observation, we conclude that

(
S∗11

S∗12

)
=

(
c1+

c2+

)
, (A.256)

for the symbolic “+”-eigenvector

(
1

0

)
to behave inside Eq. (A.255) in the same way as its original

counterpart

(
c1+

c2+

)
would have behaved in the old basis, where H ′ was not diagonal (cf. Eq. (A.251)).

Analogously, we identify

(
S∗21

S∗22

)
=

(
c1−
c2−

)
or equivalently:

(
S11 S12

S21 S22

)
=

(
c∗1+ c∗2+
c∗1− c∗2−

)
. (A.257)
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A.19 Proposal for XOWM using amphodyne detection at LCLS

On the following pages, we attach our proposal for a demonstration experiment on amphodyne-detected

XOWM. We note that the majority of its content derives from our theory on XOWM as well as its exten-

sion to amphodyne detection as of Sec. 6.2. Nevertheless, there have also been significant collaborative

efforts entering its draft, such that we would consider it in-appropriate to present it as ‘our own’ within

the main body of the thesis.

At this point, we acknowledge our collaborators—first and foremost—Dr. Christina Bömer as well

as (in order of the proposal’s name listing):

• Dr. Nina Rohringer,

• Dr. Agostino Marinelli,

• Dr. Jerome Hastings,

• Dr. David Reis and

• Dr. Diling Zhu.
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Upscaling nonlinear x-ray diffraction by amphodyne detection 

 

Abstract 
We propose the upscaling of weak nonlinear diffraction signals – here stemming from x-ray-optical wavemixing 

– by implementing an amphodyne detection scheme. Similar to heterodyne detection, this uses the interference 

of the weak signal with a stronger reference beam. In the proposed amphodyne case, this reference is generated 

in-situ through elastic diffraction. Detecting the nonlinear signal mixed with the reference, we expect an 

effective magnification by several orders of magnitude compared to conventional detection. 

Successful demonstration of amphodyne detection will allow us to extend the scope of x-ray-optical wavemixing 

to a wide range of technically-relevant – but weakly scattering – samples. By magnifying the weak nonlinear 

signal, crystallographic application will become feasible, which allows to image valence-electron dynamics 

with atomic-scale resolution.  

Furthermore, the amphodyne detection scheme can provide direct access to the scattering-phase in an ideally 

stable (i.e., jitter-free) scenario. In the presence of timing jitter, however, this absolute phase will be lost. 

Nevertheless, the x-ray-optical time-delay will be encoded in the signal’s fluctuation. This opens up further 

avenues to develop the technique into light-by-light streaking diagnostics.  

The amphodyne detection scheme capitalizes on ultrashort x-ray pulses with broad coherent bandwidth – only 

available at LCLS – and will pave the way towards broader applicability of nonlinear x-ray scattering processes.  

Introduction 
Nonlinear optics, specifically wavemixing processes such as sum- and difference-frequency generation (SFG, 

DFG) as well as parametric down-conversion (PDC) are frequently used in the optical regime. There, they find 

applications throughout a broad field of science and technology. However, the transfer of nonlinear optics into 

the x-ray regime has only succeeded for very few proof-of-principle experiments [1, 2]. 

Any routine application of these processes is currently prevented by their challengingly low conversion 

efficiencies, which can reach from 10−7for x-ray-optical SFG [1] down to 10−14 for PDC in similar samples 

[3]. Yet, precisely these x-ray-optical wavemixing (XOWM) processes would deliver unprecedented insights 

into matter by probing valence-charge dynamics with atomic-scale spatial resolution. This has been showcased 

experimentally in a XUV-mixing scenario [2], while recent theoretical predictions (among others by the authors) 

emphasize the power of nonlinear techniques with optical admixtures [4,5,6]. 

In order to overcome the outstanding challenge of measuring such weak nonlinear diffraction signals, we 

propose the implementation of an amphodyne detection scheme. This is a hybrid between both (hence ‘ampho’) 

heterodyne and homodyne detection. Analogous to usual heterodyne detection, we aim to mix the weak 

nonlinear signal with a stronger reference field (‘local oscillator’). The measurable interference of both fields 

effectively scales up the nonlinear component – facilitating its detection. In contrast to all-optical heterodyne 

setups, however, no phase-stable x-ray source exists to provide such a ‘local oscillator’ externally. Instead, we 

propose to generate a phase-stable reference beam in-situ from carefully tuned elastic diffraction (see illustration 

Fig. 1a). Overall, only scattered radiation will be used for the detection – lending the scheme a homodyne aspect 

as well. A similar concept has been proposed as ‘Self-Referenced Coherent Diffraction’ for molecular samples 

[7], while Mukamel et al. recognized the feasibility for ‘time-resolved Bragg peaks in crystals’ [8].  

Specifically, for crystalline samples, the elastic diffraction can be tuned precisely enough to enable controlled 

interference with nonlinear scattering signals. Extending our own theoretical framework [3,6], we could 

identify experimental conditions and phase-matching points, for which amphodyne detection can be achieved. 

Once verified, the scheme can be generalized to a broad range of crystalline samples. This would ultimately 

enable routine (crystallographic) investigation of valence-charge dynamics in functional materials with 

atomic-scale spatial resolution.  
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Scientific Case and Impact of Proposed LCLS Experiments 
With the proposed experiment we intend to answer the question, whether a weak x-ray-optical wavemixing 

signal can be scaled up by means of interference with a stronger, concurrent scattering process. As such, we 

propose the amphodyne detection scheme for nonlinear diffraction. 

 

As outlined above, this amphodyne detection (ampho, Greek for ‘both’) combines characteristics of ‘homo-’ 

and ‘heterodyne’ detection methods. While it focuses on measuring scattered radiation only – as a homodyne 

scheme would – it likewise implements the interference of a weak signal with a stronger reference – as is typical 

for heterodyne schemes. The weak signal of our interest stems from x-ray-optical SFG. Specifically, from 

combining x-ray photons at energy ħ𝜔𝑥 = 10 keV with optical photons at ħ𝜔𝑜𝑝𝑡 = 1.55 eV to yield nonlinear 

diffraction at 𝜔𝑆𝐹𝐺  = 𝜔𝑥+𝜔𝑜𝑝𝑡. The corresponding scattering process is diagrammatically depicted in the upper 

half of Fig. 1 a). Intrinsically, this process has a low conversion efficiency (𝜔𝑥→ 𝜔𝑆𝐹𝐺) of ~𝟏𝟎−𝟕
[1] or weaker. 

In order to boost the detectable signal, we aim to observe its interference with a stronger ‘local oscillator’. This 

reference field will be generated concurrently by elastic scattering of higher energy photons (ħ𝜔′𝑥 = 10.00155 

keV) from a sufficiently broad incident spectrum into the same final state 𝜔𝑆𝐹𝐺  = 𝜔′𝑥. The corresponding linear 

process is depicted in the upper half of the diagram in Fig. 1 a). This establishes two scattering pathways with 

equivalent final state, that can interfere if the incident photons (𝜔𝑥, 𝜔′𝑥.) are coherent. The required coherent 

bandwidth has to cover the difference ħ(𝜔′𝑥–𝜔𝑥) = ħ𝜔𝑜𝑝𝑡 = 1.55 eV and can be achieved at LCLS. Using 

ultrashort hard x-ray pulses, the transform limited nature of individual spikes (~< 1fs) automatically implies 

coherent bandwidth in excess of 1.55 eV [9].  

 

Figure 1: (a) Schematic principle of amphodyne detection: Nonlinear scattering (𝝎𝒙 + 𝝎𝒐𝒑𝒕 → 𝝎𝑺𝑭𝑮) interferes with linear diffraction 

(𝝎′𝒙 → 𝝎′𝒙 = 𝝎𝑺𝑭𝑮). (b) Phase-matching conditions of elastic diffraction (black line) and the nonlinear SFG-process (red ellipse) for 

a diamond-(111) reflection. Positions of Bragg peaks for ħ𝝎𝒙 = 10 keV and ħ𝝎′𝒙. = 10.00155 keV are indicated by black and red 

stars, respectively. (c) Reflectivity (Darwin) curve for diamond-(111) reflection at ħ𝝎′𝒙. = 10.00155 keV.  

Beyond spectral coherence, the amphodyne interference process also relies critically on momentum 

conservation (phase-matching) for both linear and nonlinear diffraction. While linear, elastic scattering follows 

the well-known Ω-2𝜃 relation (black line in Fig 1 b), the nonlinear SFG process exhibits an ellipsoidal phase-

matching surface (shown in red in Fig. 1 b). Here, Ω specifies the rocking angle of the sample and 2𝜃 denotes 

the angle at which the scattering signal is expected. Both diffraction conditions can be satisfied simultaneously 

in the vicinity of two crossing points. Notably, these points do not correspond to the actual Bragg condition for 

x-rays at 𝝎𝑺𝑭𝑮  = 𝝎′𝒙 (the Bragg spot’s position is marked by a red star in Fig. 1 b). Instead, the amphodyne 

phase-matching points are detuned by ΔΩ = -8.8 mdeg and 11.6 mdeg, respectively. Thus, the elastic diffraction, 

which produces the ‘local oscillator’ occurs in the tails of the crystal’s Darwin curve – as shown in Fig. 1 c. 

Here, the overall reflectivity has dropped to the level of 10−3, which provides a strong ‘local oscillator’ 

compared to the purely nonlinear signal at ~10−7. At the same time, it also determines the most dominant 

background contribution. 

In order to quantify both signal and background, we have derived an expression for the overall scattering yield 

based on non-relativistic QED. This builds upon our existing XOWM-formalism [3,6] and newly includes the 
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amphodyne mixing effect. As expected, we find the observable yield to consist of elastic background and a 

mixed contribution Y = 𝑌𝑒𝑙 + 𝑌𝑎𝑚𝑝ℎ𝑜, where 

The amphodyne contribution is determined equally through linear, elastic diffraction – as connected with the 

sample’s structure factor F(G) – and the nonlinear XOWM amplitude. The latter connects to the response 

function K(0, G, 𝝎𝒐𝒑𝒕), which is fundamentally given as a correlation function of electronic density and current-

density. This correlator provides access to valence-charge dynamics beyond the static ground state density [6]. 

Importantly, the expression scales with two spectral dependencies S(𝝎), which naturally require both the driving 

frequency for the nonlinear process (𝝎𝒙 = 𝝎𝑺𝑭𝑮  – 𝝎𝒐𝒑𝒕) and the ‘local oscillator’ (𝝎′𝒙 = 𝝎𝑺𝑭𝑮) to be 

transmitted up to the sample. Further factors include a geometric correction term A(Ω, ϕ) and an exponential 

that enforces temporal overlap of x-ray and optical pulses. Zero time-delay corresponds to ∆t = 0. Finally, there 

is a sinusoidal modulation, which affirms the fact that the amphodyne contribution fundamentally results from 

interference. The phase of this modulation could only be accessed, if the jitter in the time-delay was kept below 

the optical field’s period, i.e., ∆t < 2π/𝝎𝒐𝒑𝒕. As this is not currently feasible, we expect the amphodyne 

contribution to fluctuate around the elastic background level. An adequate observable for this fluctuating 

contribution is the overall variance of the yield: 

 

To be detectable, the squared magnitude of the amphodyne contribution thus needs to exceed the fluctuations 

of the elastic background, which for Poissonian statistics corresponds to 𝜎𝑒𝑙
2 ~ 𝑌𝑒𝑙. Contrary to previous 

criticism by reviewers, this Poissonian approach is justified, given the independent origin of the dominant 

fluctuation in 𝑌𝑎𝑚𝑝ℎ𝑜. We have simulated both the elastic yield (using raytracing [10]) and the amphodyne 

contribution (using our QED expression (1)) – finding 𝑌𝑒𝑙 ~ 104 and 𝑌𝑎𝑚𝑝ℎ𝑜 ~ 103, photons per shot, 

respectively. This assumed rather moderate parameters and already shows good contrast of the detectable 

fluctuations (𝜎𝑒𝑙
2 = 104 << <𝑌²𝑎𝑚𝑝ℎ𝑜> = 106). Specifically, we have assumed x-ray pulses of 1 fs duration 

(i.e., 4 eV bandwidth (FWHM)), but merely 10 uJ pulse energy – before the monochromator. The simulated 

setup followed the scheme outlined below (experimental details). The optical laser was assumed to provide an 

intensity of 1010 W/cm² – following Ref. [1]. 

For future applications in more delicate samples, it is possible to decrease the laser intensity considerably. The 

square-root-dependence √𝐼𝑜𝑝𝑡 found in Eq. (1) allows this with sub-linear loss in yield. Conversely, the use of 

stronger x-ray pulses can be employed to (over-)compensate using the regular, linear dependence on 𝐸𝑥
𝑝𝑢𝑙𝑠𝑒. 

Thus, the amphodyne detection scheme – once established – promises to enable detection of weak nonlinear 

scattering signals from a wide range of presently inaccessible samples. Studies of transport, charge-migration, 

correlation dynamics or collective excitations in functional solids can be significantly enhanced by amphodyne-

detected XOWM signals, for instance. Their spectroscopic sensitivity combined with atomic-scale resolution 

can provide unprecedented insights into valence-charge dynamics and potentially enable nonlinear x-ray 

crystallography as a routine procedure. 

Besides this, our demonstration of the amphodyne fluctuations would automatically confirm the presence of the 

phase-sensitive modulation factor sin(𝝎𝒐𝒑𝒕* ∆t+ ϕ𝛴). Owing to the timing jitter in ∆t, this cannot currently 

provide stable access to the scattering-phase accumulated in ϕ𝛴. However, the fluctuations of the sine can be 

used as a timing diagnostic, mapping the relative time-delay of x-ray and optical pulse within the period of the 

optical field. Effectively, this provides a light-by-light streaking mechanism based in (nonlinear) crystal optics. 

Choosing far-infrared driving fields in future iterations of amphodyne detection schemes, would enable timing-

diagnostic across tens of femtoseconds. Most notably, this perturbative, nonlinear scheme would only weakly 

disturb the diagnosed x-ray beam. 
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The experiment in its proposed form is uniquely feasible at LCLS. While XOWM experiments in general require 

XFEL pulses to make efficient use of the wavemixing nonlinearity (cf. Ref. [6]), the amphodyne detection 

scheme additionally requires a large coherent bandwidth. At LCLS, the required coherence can be achieved by 

producing ultrashort pulses in the hard x-ray regime, which intrinsically feature a large coherent bandwidth 

within individual spikes. In addition, the XPP instrument offers the necessary synchronized optical laser and 

diffraction equipment as well as enormous expertise on nonlinear and pump-probe experiments among the 

instrument’s scientists. 

 

Experimental Details 
The experimental setup basically implements a 𝜃 − 2𝜃 diffraction setup in the horizontal plane, which is 

schematically presented in Fig. 2. Using ultrashort (~1 fs) x-ray pulse of ~10 keV central energy, we expect the 

incident beam to provide a coherent bandwidth of up to 4 eV (FHWM) - see Fig. 2 inset (b). We employ the 

beamline’s Si111 DCM at a slight detuning from the central energy (+0.6 eV) to filter the incident spectrum to 

~1.4 eV (FWHM) – ranging from 10 keV upwards (Fig. 2, inset (c)). Importantly, the high-energy tail of the 

resulting spectral distribution remains coherent and contains the required energy ħ𝝎′𝒙 = 10.00155 keV to 

generate the ‘local oscillator’ for the proposed amphodyne detection scheme. The collimated and filtered x-ray 

beam then impinges on the sample – a (111)-cut diamond crystal (500 µm thickness). Simultaneously, the 

synchronized optical laser pulse (ħ𝝎𝒐𝒑𝒕 = 1.55 eV) impinges on the sample. The rocking angle of the sample 

(Ω) as well as the incidence angle of the laser beam are adjusted to fulfill the required phase-matching conditions 

for amphodyne mixing, i.e., both linear and nonlinear diffraction conditions. A schematic representation of the 

momentum balance is given in Fig. 2 inset (a). As the sample is detuned from any exact Bragg condition by 

several millidegrees, the elastically diffracted spectrum is suppressed and reshaped further (Fig. 2, inset (c)). 

The elastic diffraction as well as its desired interference is detected at 2𝜃 = 2Ω by an ePix10k module. In 

between the sample and detector we place a channel-cut crystal analyzer (Si 220, bandwidth of 0.5 eV) to 

discriminate the amphodyne-mixed signal from background due to the broad spectral remainder. The effective 

reduction is visible from the simulations in shown in Fig. 2 inset (d) transitioning to inset (e). 

 
Figure 2: Experimental setup for amphodyne detection: The ultrashort (~1 fs) x-ray pulse with broad coherent bandwidth (b) is 

monochromatized (c) before it impinges on a diamond sample ((111)-oriented). Together with the optical pulse (𝑘𝒐𝒑𝒕) phase-matching 

is fulfilled for SFG, driven by x-ray photons 𝑘𝒙 (a). Simultaneously, elastic scattering of photons 𝑘′𝒙 into the same final wave vector 

𝑘𝑺𝑭𝑮 is possible. The interference of both scattering pathways produces the amphodyne mixed signal. After filtering the scattered 

radiation by an analyzer to reduce the elastic background from (d) to (e), the detection proceeds with a pixel detector.   

 

In order to account for spectral jitter of the ultrashort x-ray pulses around the desired central energy, we will 

monitor the pulse energy before and after the monochromator on a shot-to-shot basis. Based on the transmission 

ratio, fitting pulses can be post-selected and the remaining fluctuations be included in the analysis. Additional 

spectral diagnostics downstream of the sample, such as XPP’s bent crystal spectrometer [11] could provide 

further refinements, but are not required.  
 

With an aligned and calibrated setup, we intend to perform several scans:  
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i) By rocking the sample crystal (in a range of several tens of millidegrees), we scan around both phase-matching 

conditions for amphodyne mixing. We expect sharply localized XOWM features (fluctuations) to be detectable 

on top of the otherwise smooth elastic background. 

ii) We scan the incident laser intensity to verify the √𝐼𝑜𝑝𝑡-dependence of the amphodyne mixing signal. 

iii) We scan the shift of the monochromator’s central energy. Thereby, we can adjust the relative strength of x-

rays driving the nonlinear process (𝝎𝒙) and ‘local oscillator’ for the amphodyne detection (𝝎′𝒙) and explore 

this non-trivial dependence. 

iv) If time permits, we scan the dependence of the amphodyne mixing signal on the laser’s polarization direction. 

We expect a cosine behavior in contrast to the cosine-square behavior of regular SFG [1]. 

The channel-cut crystal analyzer (Si 220) is available together with piezo-electronic motor stages for precise 

alignment. Both items will be brought by the experimental team. The motors are compatible with beamline 

electronics, appearing outwardly as conventional stepper motors.  

X-ray and Laser Parameters (or other key parameters) 

The main requirement towards the x-ray pulses is their coherent bandwidth, of at least 1.55 eV (FWHM). For 

more reliable amphodyne mixing, we propose to start from significantly broader coherent bandwidth, namely ~ 

4 eV – corresponding to ~ 1 fs pulses. High pulse intensities are preferable, however, we have verified 

theoretically that the amphodyne scheme is viable for moderate pulse energies of 10 uJ (pink beam) already. 

We propose to conduct the experiment at 10 keV, yet any photon energy in the range of 9 – 11 keV is acceptable, 

especially if higher pulse energies or more reliable operation can thus be achieved. We intend to work with a 

collimated or lightly focused x-ray beam, with a spot size >~ 100 µm. Repetition rate is aimed to be 120 Hz, 

but can be adapted for beam delivery with higher pulse energy.  

The central wavelength of the laser should be 800 nm (1.55 eV) with a pulse length stretched beyond the x-ray-

optical timing jitter ideally (>~ 200 fs). The beam should preferably be collimated or weakly focused to a spot 

size of ~ 500 µm, while providing an intensity of ~1010 W/cm². In order to perform the laser intensity scan, the 

intensity should be adjustable (downwards). The repetition rate of the laser should match the x-ray repetition 

rate, i.e., 120 Hz.  

The optical beam hits the sample collinearly to the incident x-ray beam. This configuration remains fixed for 

the whole experiment after initial adjustment. The laser should ideally be synchronized to the incident x-ray 

pulse, however, at sufficient stretching, no precise synchronization is needed. An additional timing tool for post-

processing analysis with a view to the diagnostic application of amphodyne mixing would be interesting, but is 

not necessary.   

 

Feasibility assessment 

Judging from extensive simulations (see scientific case), the experiment appears feasible. Using our QED-

framework [3,6], we have obtained the magnitude of the observable amphodyne fluctuations <𝑌²𝑎𝑚𝑝ℎ𝑜> ~ 106, 

which far exceed the concurrent elastic effects at 𝜎𝑒𝑙
2 = 104. The latter has been obtained from 3D raytracing 

simulations [10]. Notably, both simulation results are compatible with simpler estimates derived from elastic 

reflectivity curves and the known efficiency of SFG [1]. 

Technical feasibility has likewise been established.  The experimental setup geometry (𝜃 -2𝜃 -diffraction) in 

combination with a synchronized laser system is readily available at XPP – as is the Si111 DCM. Using a 

horizontal scattering scheme, the experiment benefits from the newly available vertical polarization of LCLS. 

Detection via the ePix10k is feasible at XPP as are optional beam monitoring features for spectral and temporal 

characterization – though not necessary. The parameters of the laser system are within the routine operation 

range and have been cross checked with the beamline scientists.  

Finally, the ultrashort (~1fs) x-ray pulses delivering the desired coherent bandwidth are available and pulse 

energies exceeding 10 uJ appear feasible. These developments are discussed in close collaboration with A. 

Marinelli. 
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Experimental protocol 

We request 5 shifts to conduct the experiment: 

Shift 1 will be used for adjusting the machine to short pulse mode and for calibrating the setup, i.e., the 

monochromator alignment and the additional crystal analyzer calibration.  

Shift 2: finding spatial and temporal overlap of optical and x-ray pulses, measuring various phase-matching 

conditions for a fixed time delay. 

Shift 3: we scan the incident laser intensity to verify the √𝐼𝑜𝑝𝑡-dependence. 

Shift 4: We scan the shift of the monochromator’s central energy. Thereby, we can adjust the relative strength 

of x-rays driving the nonlinear process. 

Shift 5: we scan the dependence of the amphodyne mixing signal on the laser’s polarization, expecting a cosine 

behavior. 
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page limit of the proposal. 

The ‘Spokesperson’ is the primary point of contact for the proposed experiment 

The ‘Lead PI’ and Co-PIs (where relevant) are the senior intellectual leaders of the proposed experiment.   

 

Experimental team 

Name email Project Role Experience Position 

Prof. Nina 

Rohringer1,2 

nina.rohringer@desy.de Lead PI A,B,C,D Professor 

Dr. Christina 

Boemer1 

christina.boemer@desy.de  Spokesperson, Co-PI,  

Experiment, Analysis 

C,D Postdoc 

Dietrich Krebs2 dietrich.krebs@desy.de  Co-PI, Theory, Experiment, 

Analysis 

C,D PhD student 

Dr. Agostino 

Marinelli3 

marinelli@SLAC.Stanford.EDU Experiment, Machine 

coordination 

A,B,C,D Asst Professor 
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Prof. Jerome 

Hastings3 

jerome.hastings@stanford.edu Experiment, Analysis A,B,C,D Professor 

Prof. David Reis3 dreis@stanford.edu Experiment, Analysis A,B,C,D Professor 

Dr. Diling Zhu3 dlzhu@stanford.edu  Experiment, Analysis A,B,C,D Senior Scientist 

(1) Deutsches Elektronen Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany  

(2) Universität Hamburg, Mittelweg 177, 20148 Hamburg, Germany 

(3) LCLS and Stanford PULSE Institute, SLAC, Menlo Park, CA 94110, USA 

 [A] Prior LCLS publications, [B] Prior LCLS experience, [C] Other FEL experience, [D] Synchrotron experience 

 

Parameter Table for XPP  

Sample Sample(S) description Single crystal diamond  

 

Temperature range [C]  Room temperature 

X-ray Parameters X-ray Energy Fixed to 10 keV 

X-ray Pulse Duration ~1 fs / short pulse mode 

X-ray Focal spot size within 10 to 200 µm  100-200 µm 

Detector Detector positioning range, 

List of Bragg reflections and typical scattering angles. 

ePix10k 

Bragg reflection 111 

Optical beam 

parameters 

Wavelength [nm]  800  

Pulse duration [fs]  > 200 fs 

Maximum Pulse Energy [µJ]  Intensity ~ 10^10 W/cm² 

Focal size (FWHM) [µm]  500 µm 

Polarization requirements?  linear 

Minimum fluence on sample [mJ/cm2]  Intensity ~ 10^10 W/cm² 

Geometry Collinear 

X-ray Beam Time Number of shifts 

[1 shift = 12 hr] 

 5 

Any additional comments   
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