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“It ain’t what you say, it’s the way that you say it, and the
context in which you say it. Words are how you use them.”

— Ludwig Wittgenstein (1889 – 1951)





Abstract

Natural language processing (NLP) is the task of processing potentially very
large text collections and structuring the contained information so that it can be
presented to the human user in a structured and condensed form. In linguistics
and philosophy, it has been stated that communication between humans can
be misleading and ambiguous and that the situational context is important to
resolve the intended and expected meaning of utterances. As intelligent beings,
however, humans can use the situational context to resolve ambiguities, such as
body language, gestures, tone, surroundings, and so on. But using computers
to achieve a goal based on natural language input or output is always prone
to ambiguity on various levels because the situational context cannot be easily
supplied. A computer task that involves NLP, e.g., to �nd documents given a query
or classify documents into pre-de�ned classes such as spam or ham (not spam),
often contains assumptions by the user, the human, that cannot be disambiguated
easily by the computer without the provision of proper context.

In this dissertation, several studies have been conducted to incorporate context
at various levels. First, we use the de�nition of a domain to set the context on a
vocabulary basis, i.e., by using datasets that contain mainly content words from the
desired domain, we narrow down the sample space of ambiguities. For instance,
consider searching for the word ‘virus’ in a search engine: without any domain
restriction, the best thing a computer can reply is the so-called major sense or
mixed results based on the processed data, i.e., documents about organisms or
computers or anything else will be returned if the underlying corpus was too
generic. By restricting the underlying dataset to the biology domain, computers
will reply mainly, or even exclusively in the ideal case, with documents from
the biology domain. To collect domain corpora that can be used as a basis for
NLP algorithms, we propose a simple yet e�ective technique for focused web
crawling using statistical language models. Focused web crawling is resource-
friendly since it ideally downloads only documents which are relevant to the
domain of interest. The domain of interest is de�ned by a statistical language
model created from a rather small corpus, e.g., we showed that a single Wikipedia
article combined with a simple Kneser-Ney three-gram model is su�cient to guide
the web-crawling process e�ciently.

Another option to supply context is the computational representation of words,
i.e., in NLP –which nowadays mainly relies on machine learning techniques –
words, documents, or more general samples are represented by mathematical
vectors, a.k.a. embeddings. Estimating such embeddings is an active area of
research; in this dissertation, we retro�t so-called static word embeddings, i.e., the
same static vector representation for each occurrence of a word, to so-called sense
embeddings, i.e., an embedding in the vector space represents a single, distinct,
sense of a word. Another popular representation is called contextualized word



embeddings, where the process of estimation is done by deep neural networks.
Here, the so-called attention module usually provides a �ow of information from
one word of a sequence to another, i.e., when supplying a sequence, the word
of interest is implicitly disambiguated, and the embedding mirrors the location
shift based on the sequential context. We investigate the ability of contextualized
word embeddings to model senses, analyze their performance in an information
retrieval setup, and test their suitability to induce semantic relations from text.
We show that contextualized embeddings are very suitable for modeling senses,
retrieving similar sentences regarding a certain objective, and inducing semantic
relations using unsupervised clustering methodologies. Finally, we can con�rm
that context certainly matters.







Zusammenfassung

Die Verarbeitung natürlicher Sprache (natural language processing, NLP) ist der
Prozess potentiell sehr große Textmengen zu verarbeiten und die enthaltenen
Informationen zu strukturieren, sodass sie für den menschlichen Benutzer in struk-
turierter und komprimierter Form dargestellt werden können. In der Linguistik und
in der Philosophie wurde bereits festgestellt, dass die menschliche Kommunikation
missverständlich undmehrdeutig sein kann, und dass der situative Kontext wichtig
ist, um die beabsichtigte und erwartete Bedeutung von Äußerungen aufzulösen.
Der Mensch, als intelligentes Wesen, ist, im Gegensatz zum Computer, in der Lage,
unterschiedliche Kontexte zu nutzen um Mehrdeutigkeiten aufzulösen, so z. B.
Körpersprache, Gesten, Tonfall, Umgebung, usw. Doch die Computerbenutzung
ein Ziel zu erreichen, welches die Ein- oder Ausgabe von natürlicher Sprache
beinhaltet, ist anfällig für Missverständnisse basierend auf Mehrdeutigkeiten auf
verschiedenen Ebenen, da situativer Kontext nicht auf einfacheWeise bereitgestellt
werden kann. Eine computergestützte Aufgabe, die NLP voraussetzt, z. B. das
Au�nden von Dokumenten anhand einer Suchanfrage, oder die Klassi�zierung
von Dokumenten in vorde�nierte Klassen, enthält oft Annahmen des Benutzers,
des Menschen, die von Computern ohne die Bereitstellung von Kontext nicht
ohne weiteres disambiguiert werden können.

In dieser Arbeit wurden mehrere Studien durchgeführt, Kontext auf ver-
schiedene Weisen einzubeziehen. Zunächst verwenden wir die De�nition einer
Domäne, um den Kontext auf der Grundlage des Vokabulars festzulegen, d. h.
durch die Verwendung von Datensätzen, die hauptsächlich Inhaltswörter aus der
gewünschten Domäne enthalten, wird der Ergebnisraum für Mehrdeutigkeiten
eingeschränkt. Nehmen wir als Beispiel die Suche nach dem Wort ‘Virus’ in einer
Suchmaschine: ohne jegliche Einschränkung der Domäne entspricht das Beste, was
ein Computer antworten kann, dem so genannten Hauptsinn (major sense) bzw. es
werden gemischte Ergebnisse auf der Grundlage der verarbeiteten Daten geliefert,
d. h. es werden Dokumente über Organismen oder Computer oder irgendetwas an-
derem zurückgegeben, wenn der zugrundeliegende Korpus zu allgemein ist. Durch
die Einschränkung des zugrundeliegenden Datensatzes auf Biologie-Dokumente
z. B., werden Computer hauptsächlich, oder im Idealfall sogar ausschließlich, mit
Dokumenten aus dem biologischen Bereich antworten. Um Domänenkorpora zu
sammeln, die als Grundlage für NLP-Algorithmen verwendet werden können,
schlagen wir eine einfache, aber e�ektive Technik für fokussiertesWeb-Crawling,
unter Verwendung statistischer Sprachmodelle, vor. Fokussiertes Web-Crawling
ist ressourcenschonend, da es im Idealfall nur Dokumente herunterlädt, die für
eine bestimmte Domäne relevant sind. Die Interessensdomäne wird durch ein
statistisches Sprachmodell de�niert, das aus einem relativ kleinen initialen Korpus
erstellt werden kann. Wir haben z. B. gezeigt, dass ein einzelner Wikipedia-Artikel
in Kombination mit einem einfachen Kneser-Ney-Drei-Gramm-Modell genügt,



um den fokussierten Web-Crawling-Prozess e�zient zu steuern.
Eine weitere Möglichkeit, Kontext zu bereitzustellen, ist die computergestützte

mathematische Repräsentation von Wörtern, d. h. im Bereich der natürlichen
Sprachverarbeitung (NLP) – bei dem heutzutage hauptsächlich Techniken des
maschinellen Lernens zum Einsatz kommen–werden Wörter, Dokumente oder
allgemeinere Muster durch mathematische Vektoren, auch Einbettungen (embed-
dings) genannt, dargestellt. Das Lernen solcher Einbettungen ist ein aktives For-
schungselement; in dieser Arbeit rüsten wir so genannte statische Einbettungen,
bei denen dieselbe Vektorrepräsentation für jedes Vorkommen einesWortes erstellt
wird, zu sinnbehafteten Einbettungen, welche die verschiedenen Bedeutungen
eines Wortes durch verschiedene Einbettungen im Vektorraum darstellt, auf.
Eine weitere, heutzutage populärere, Repräsentation ist die kontextualisierte
Worteinbettung, bei der das Lernen typischerweise von tiefen neuronalen Netzen
übernommen wird. Hier sorgt üblicherweise das so genannte Attentionmodul für
den Informations�uss von einem Wort einer Sequenz zum Anderen, d. h. in einer
gegebenen Sequenz werden Wörter implizit durch die Information der anderen
Wörter disambiguiert, die Einbettung im Vektorraum spiegelt die Ortsverschie-
bung basierend auf dem sequenziellen Kontext wider. In dieser Arbeit analysieren
wir die Fähigkeit kontextualisierter Einbettungen Bedeutungen zu modellieren.
Weiterhin untersuchen wir in einem Information Retrieval Ansatz ihre Eignung
semantische Relationen zu induzieren. Wir zeigen, dass kontextualisierte Ein-
bettungen sehr gut geeignet sind Bedeutungen zu modellieren und semantisch
ähnliche Sätze, mit Bezug einer bestimmten Klasse, hier semantische Relationen,
durch unüberwachte Clustering-Methoden zu induzieren. Abschließend wird
untermauert, dass Kontext eine große Rolle spielt.
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1
Introduction

Understanding natural human language is considered to be a key factor for current
challenges to achieve arti�cial intelligence (AI; e.g., Nilsson, 2010). In his seminal
work “ComputingMachinery and Intelligence”, Turing (1950) proposed his infamous
experimental setup where answers of a computer machine for a sequence of
related or unrelated questions are tested if they are distinguishable from answers
of intelligent humans. This test is commonly referred to as the Turing Test, and it
is one of the most anticipated goals, if not the actual goal, of current AI research.
To pass this test, a machine needs to process the information within the questions,
identify its meaning and intention and reply with an answer that is syntactically
reasonable as well as semantically coherent, even in the context of previous
questions and answers. Natural Language Processing (NLP) can be considered
as the branch of arti�cial intelligence (AI) that targets this kind of challenge,
and Natural Language Understanding (NLU) is sometimes considered the sub-
discipline that is mainly concerned with the meaning of texts, or – in some way –
the semantics part of NLP (Allen, 1995). Here, semantics refers to the study of the
relationship between words, phrases, or even longer expressions like sentences
and their associated meanings.

In order for an autonomous computer system to pass the Turing test, we could
say that various components have to conjoin, or better, the system must be able
to handle multiple objectives jointly. Speci�c constraints apply for automatic
systems as well as for humans to pass the Turing test: First of all, the questioner
and the test subject must speak the same language; and second, the questioner
and the test subject must have a common understanding of the domain they are
communicating in. Misunderstandings are otherwise unavoidable.

In this work, we �rst address the importance of domain-aware mechanisms in
NLP, particularly NLU. We borrow techniques from statistical language modeling
to generate domain-dependent data from the World Wide Web by focusing web
crawls on a particular domain of interest or topic. We show that domain-dependent
downstream tasks (particularly unsupervised approaches for in-domain taxonomy
induction) gain from domain-dependent data collected from the web (Chapter 2).
Next, we retro�t static word embeddings to represent di�erent senses and thus
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create so-called static sense embeddings, i.e., words that genuinely have poly-
semic usages will be represented by multiple (distinct) vectors in the embedding
space (Chapter 3). Also, in Chapter 3, we analyze the ability of contextual word
embeddings from pre-trained language models to represent sense-related usages
de�ned by the context they are currently used in. In Chapter 4, we expand
those �ndings and hypothesize that contextual word embeddings can be used
for the retrieval of semantic relations, where we also experiment with di�erent
vector representations using linguistic knowledge from automatic pre-processing
steps. Converting the retrieval process into a nearest neighbor classi�cation
approach, we can show that only a few data samples are necessary to reach a
decent and comparable performance. Chapter 5 continues this line of research
and addresses the question of automatically clustering instances of verbs using
their contextual vector representation – again exploiting linguistic knowledge
for enhanced representational strength – by experimenting with a local-global
word clustering approach.

The following sections will provide this dissertation’s theoretical and historical
foundations as well as background information.

1.1 Top-Down vs. Bottom-up
The concepts of top-down and bottom-up exist inmany contexts; most important for
this work is the AI perspective, which is inspired by cognition, and the knowledge
representation perspective. In both cases, it explains the conceptual �ow of
information. It is either passed downwards from the top (possibly by a given
entity) or assembled at the bottom and stacked upwards. In other terms, it can be
understood as a progression from the most general kind of information (at the
top) to the most speci�c one (at the bottom) or vice versa.

In cognition, top-down refers to perception based on one’s prior knowledge or
experience (schema-driven; Gregory, 1980), whereas bottom-up is understood as
the interpretation of signals being determined solely by the stimuli experienced
in the current (context-dependent) environment (data-driven; Gibson, 1971).

Top-down vs. bottom-up in AI dates back to Turing’s posthumously pub-
lished report “Intelligent Machinery” (1948), where Turing uses the cognitive
top-down and bottom-up processes to propose a neuron-inspired, intelligent
computing machine. Similar to the cognitive science de�nition, top-down refers to
schema-driven or the symbolic approach, and bottom-up refers to a data-driven or
connectionist approach. In the symbolic approach, rules and symbols are de�ned
manually to decompose a complex problem into smaller, easier-to-solve problems;
in computer science, this is also known as divide-and-conquer . On the other hand,
the connectionist approach is de�ned by abstract (hidden) units connected by
learning directly from the data.

In knowledge representation, the top refers to where the most general item
is located, and the bottom refers to where the most speci�c items, e.g., the
unprocessed data, are located. We adopt de�nitions by Sowa (2000) and Shapiro
(1987), where top-down and bottom-up refers to the construction or the design of
ontologies. Here, top-down refers to the process of building so-called heavy-weight
ontologies that are manually crafted and thus very precise but incomplete by design
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since they try to model the entire real-world knowledge. The �rst step in the
conceptualization is often the design of a certain schema which is then applied to
the concepts being modeled. Bottom-up refers to building so-called light-weight
ontologies, which are usually also domain-ontologies and designed with a speci�c
task in mind. Thus, concepts are often represented by the underlying data that
is to be represented by the data-driven approach, e.g., words. The hierarchy
of abstract concepts is usually relatively shallow, and the design is primarily
schema-less. Automatic approaches, such as proposed by Biemann (2012), can
support the creation process. The current work closely follows Biemann’s (2012)
bottom-up structure discovery (SD) approaches and turns to bring structure to
loose words in an unsupervised fashion.

1.2 Historical Foundations in Linguistics
Linguistics has a history as a scienti�c discipline for a couple of centuries, which
can still be considered a relatively young age within the humanities academic
disciplines. Computational linguistics, where computers are used to aid in the
analysis of written and spoken language, has a much shorter timeline, being an
active discipline for a little more than half a century. But it has only been for
a little more than two decades that language understanding reaches an active
industry awareness and touches the lives of billions of people, even if they
are unaware of its immediate and indispensable signi�cance. It has only been
during the last decade or so that language technology is evolving to a level that
can even surpass human performance1. Due to those reasons, researchers in
AI, particularly also NLP, are confronted with a new responsibility for society.
Still, the immersive success of strong and robust industrial applications is based
on practical and theoretical progress with core foundations also in knowledge
representation, which is rooted in the study of meaning in philosophy, dating
back several millennia. It has also in�uenced new scienti�c areas, e.g., the �eld of
cognitive science, an interdisciplinary scienti�c area loosely a�ected by linguistics,
psychology, philosophy, neuroscience, anthropology, arti�cial intelligence and
probably even more.

Early works in linguistics often had opposing views, and di�erent camps were
literally �ghting for recognition of their angle. The following paragraphs will
give a broad overview with the most relevant, but not continuous or cumulative,
milestones and pertinent achievements for this work as mainly summarized
by Campbell (2017).

Grammar - The Beginning of Linguistics The �rst linguistically recognized
texts were composed around 1900 BCE by the �rst notably accepted civilizations:
the Sumerians and the Akkadians. The Sumerian language, which then shifted to
Akkadian, lasted for roughly 2,500 years, and the discovered texts were mainly
of religious nature, recipes, or legal texts, but they still provided a sound basis
for further studies. Grammatical analysis of those texts then evolved around
600-500 BCE, which involved the origination of grammatical paradigms and multi-

1. ...for some tasks.
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lingual dictionaries. In parallel, descriptions of Sanskrit also date back to 500 BCE,
and during that time, Grammar was considered the most prestigious science in
India, which resulted in the Hindu grammatical tradition. Greek grammatical
tradition originates in the works of Homer (ca. 850 BCE), and themes found
herein have also been found in works from Plato, Aristotle, and the Stoics. The
most important ideas, such as morphology (word structure), etymology (word
origin), parts-of-speech (structural sentence components of words), grammatical
categories (structural elements of sentences across words), the relation between
language and thought (semantics), etc. have persisted throughout the history and
are still somewhat valid. E.g., the parts-of-speech (POS) categories have varied
only slightly, and this is probably due to the adaptation to other languages. Only
recently, within the last decade, several e�orts have been made to build a uni�ed
representation, which can be used to map POS tags of one language to tags of
another language, namely the universal dependencies project2. The main reason
those e�orts have been undertaken recently is probably of a technical nature,
because of the rise of computational models for e.g., machine translation (MT).

Greek philosophers studied aspects of languagemainly in the context of general
knowledge, i.e., the philosophia. The term linguistics was �rst coined by the Stoics
around 300 BCE, where initially the following three areas of interest were formed:

1. Etymology: the study of the origin of words

2. Phonetics: the study of characters and their relation to sound utterances

3. Grammar : the study of linguistic categories and terminology

The Stoics mainly studied the question if there is a “natural” relation between
a word and its meaning or if this relationship is, in fact, a matter of convention,
and to what extent Greek is characterized by such regularity, resp. irregularity.
Two controversies have then emerged:

1. Physis (nature, Socrates, Stoics) vs. nomos (convention, Aristotles): the
question was whether the meaning of a word originated in nature, i.e.,
words are formed by imitating things that exist, or whether convention,
i.e., the use of a word (within certain situational contexts) contributes to a
common understanding and give it its �nal meaning.

2. Analogy (Aristotles) vs. Anomaly (Stoics): the debate evolved around lan-
guage acquisition, i.e., are new concepts learned by comparing them by
(relational) similarity with other, known concepts (analogy), or are they
learned by �nding di�erences (di�erentiating) to other known concepts
(anomaly).

Because of those debates, more detailed analyses of form and meaning have been
conducted, which could be seen as the actual origin of linguistics as a �eld of study,
and this then formed another controversy of two models of scienti�c explanation:

1. Empiricist view: accurate records are collected, and data analysis is the basis
of hypotheses and explanations; the methodology is inductive.

2. https://universaldependencies.org/

https://universaldependencies.org/
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2. Epistemic view: science is treated as a cognitive activity, where theories are
built based on passed-down information, and new knowledge is acquired by
the cognitive process of the individual scientist, the methodology is rather
deductive.

P����������

This work is located in:

nomos because we apply contextual learning methodologies, i.e., the
meaning of a word is represented by the conventional use of the word
and its surrounding context, and not dictated by an oracle;

analogy because throughout this work, we represent the sense of a word
by a collection of other words which share a common concept;

empiricist view because we apply a data-driven, inductive bottom-up
approach instead of a deductive top-down approach.

Modern Linguistics (Structuralism) Although research in the linguistic �eld
and the evolution of languages continued throughout history, no particularly new
ideas have been formed that have not been addressed already by the Greeks, with
minor milestones in a) the middle ages, e.g., the use of Latin as Lingua Franca
for educational and intellectual discourse, and b) the Renaissance period, e.g., by
translating religious documents to a variety of commonly used languages or the
discovery of new continents and thus the exploration of previously unknown
languages.

A breakthrough has then taken place with Ferdinand de Saussure’s seminal
work “Cours de linguistique générale” (1983; orig. 1916). De Saussure is widely
considered the founder of modern linguistics or, more precisely, structuralism.
Among many thorough discussions regarding new approaches appearing by the
end of the 19th century, which can be found in his lecture notes published by his
disciples in 1916 after his death, he favored and promoted the idea of langue vs.
parole. i.e., linguistics should be primarily concerned with the study of systematic
regularities of the abstract language system shared by members of a language
community (langue) rather than the concrete use of language by an individual
(parole; Kortmann, 2005). At the heart of the structuralism idea stands the study
and description of individual elements of the abstract language system, as well as
the relationships between those elements on all structural levels, such as sounds,
words, sentences, constituents, etc.

De Saussure distinguishes two basic types of relationships that exist in any
language-related system:

1. syntagmatic relations: relationships of “chain”, or combination,

2. paradigmatic relations: relationships of “choice”, or interchangeability

In the sound system, for example, a paradigmatic relation exists between the initial
sounds of, e.g., ban, can, fan, van, ... and a syntagmatic relation holds between
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paradigmatic
(choice)

{b,c,f,v}   {æ}   {n}

syntagmatic

(chain)

(a)

syntagmatic
(chain)

paradigmatic
(choice)

A
The
This

man
girl

visitor

saw
loved
hit

my
your
our

horse
cat
baby

(b)

Figure 1.1: Syntagmatic and paradigmatic relationships on di�erent levels of the abstract
language system: (a) relationships on the sound system forming the words ban, can, fan
or van; and (b) relationships on the textual/sentence level.

sign signified

signifier/ʌmˈbɹɛlə/

[umbrella]

Figure 1.2: Illustration of de Saussures model of the linguistic sign, here on the example
of the English word ‘umbrella’.

the concatenation of all the sounds to form the �nal utterance, e.g., b-a-n (cf.
Figure 1.1a)3. Figure 1.1b shows an example of syntagmatic and paradigmatic
relation on the sentence level. Only the combination of choice and chain gives
the completed system’s speci�c construct its �nal incentive.

In de Saussure’s model of the linguistic sign, i.e., his view of the nature of
words, two constituents are inseparably connected: a) the signi�er (signi�ant), the
form/sound, utterance or a sequence of sounds, and b) the signi�ed (signi�é), a con-
cept/meaning, function. According to de Saussure, the signi�er and the signi�ed are
interlinked and purely conventional within members of a language community, i.e.,
it is based on a common understanding and an inherent agreement (cf. Figure 1.2).

Generative Linguistics (Formalism) vs. Functional Linguistics (Functionalism)
Another signi�cant milestone was led by Chomsky (1957, 1965) and his in�uential
idea of generative grammar . According to Chomsky, speakers of a language are
able to build in�nitely long sentences, of which many have not been ever produced
before, so the “competence” of a speaker to form those sentences would require
formal means to generate them, i.e., a generative grammar . Chomsky de�nes

3. Example adapted from (Kortmann, 2005).
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the “competence of a speaker” as what a speaker knows about language and the
world. A (generative) grammar is a formal system of rules and parameters that
uses �nite mechanisms to produce in�nite structures. Because of his radical
ideas and his in�uence in many scienti�c �elds, i.e., linguistics, philosophy,
mathematics, computer science, etc., Chomsky is considered one of the most
in�uential individuals of the 20th century: “Chomsky is currently among the ten
most-cited writers in all of the humanities (beating out Hegel and Cicero and
trailing only Marx, Lenin, Shakespeare, the Bible, Aristotle, Plato, and Freud) and
the only living member of the top ten.” — (Pinker, 1994; p.23).

Chomsky had a very radical view on scienti�c methods, i.e., linguists should
not rely on data to �nd regularities in language, but rather the goal should be
to investigate and describe the “competence” of a speaker. This basically split
the linguistic, scienti�c community into two camps:

1. Rationalists (symbolic): theories of language are built by applying logical
thinking and human reasoning, and

2. Empiricists (stochastic): knowledge about a language comes from observa-
tions and stochastic generalizations.

Empiricists favored a model in which language and meaning can be described by
means of statistical analysis following methods of functionalism. Functionalism
is the linguistic research direction concerned with the two questions: a) Why is
language what it is, and b) Why do speakers of a language prefer the use of one
word over semantically equivalent other words? Functionalists, such as Bloom�eld,
thus acknowledge that language is highly situational and context-dependent
and that language changes according to convention. In general, language, as
a system, has thus to be investigated by its primary function it serves, namely
communication, and this has to be done within its current setting (situation) and
by its present purpose (e.g., informational, social). Bloom�eld (1933) has thus
proposed the “discovery procedures”, which Chomsky argued so much against. One
of those procedures is the distributional analysis, which gave rise to immediate
constituent analysis through constituency relations, i.e., certain elements and their
constituency relation counterparts follow a particular distribution. This initiated
the �eld of contextual theory of language, where the Distributional Hypothe-
sis (DH) was introduced by (Harris, 1951, 1954), and which was described best
by Firth (1957; p.179) with his famous quote: “You shall know a word by the
company it keeps.”. With the rise of computational methods, the distributional
hypothesis gained more and more traction and is nowadays the theoretical basis
of modern language understanding systems.
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De Saussure’s paradigmatic relations directly relate to Harris’ distributional
hypothesis, which we use extensively, and syntagmatic relations can be seen
as the factor for the contextual disambiguation in the DH. We use grammar
as a means to resolve meaning from long-range dependencies within longer
sentences and use the DH to estimate meaning. The DH is also one of the
major themes of this work; it is the basic theoretical foundation for the
sense induction techniques introduced in Chapter 3, and it is implicitly used
in contextual embeddings used in Chapter 4 and Chapter 5.

1.3 Semantics in the Linguistic Field
Semantics, within the linguistic �eld, is de�ned as the study of words, phrases,
or longer textual units and their relationships with each other, which eventually
form their individual meanings (Ogden and Richards, 1923). Semantics occurs
on multiple levels of the language understanding system and can be roughly
categorized into formal, lexical, and conceptual semantics.

1. Formal semantics, which uses mathematical tools (arithmetics) and logical
constructs to analyze and reason about the information of the real world.

2. Lexical semantics is concerned with the relationship between words and
their meaning within their naturally occurring context.

3. Conceptual semantics deals with the meaning of words and their possible
interpretations before adding context, i.e., conceptual semantics studies the
prototypical meaning of a word.

Sense (Thought) and Reference Gottlob Frege (1848–1925) questioned the notion
of objects and concepts, their relationship within the language system, and
their logical notation in his seminal work: “Über Sinn und Bedeutung” (Frege,
1892). The main question Frege considers is: “What is the identity between two
objects/signs” (Frege, 1892). This is also commonly known as Frege’s puzzle to the
law of identity. For example, consider the phrases ‘Venus is the morning star’ and
‘Venus is the evening star’. Both sentences claim that the term ‘Venus’ is identical
to the terms ‘morning star’ and ‘evening star’. It follows that the ‘evening star’
and the ‘morning star’ should be identical too, but according to Frege, they are
not: one can be seen in the morning, and the other can be seen in the evening.
Frege thus distinguishes between the sense of an object and its reference, i.e., in
the example, ‘Venus’ can be considered as the thing both expressions ‘morning
star’ and ‘evening star’ refer to, i.e., the sense is the same, but the reference is
di�erent and cannot be used interchangeably. Frege thus derived that the sense
of a sentence, i.e., the thought, is its knowledge value, whereas the referent of
a sentence is its truth value.

Ogden and Richards (1923) proposed in their work “The Meaning of Meaning:
A Study of the In�uence of Thought and of the Science of Symbolism” the
semiotic triangle, also known as the triangle of meaning, or triangle of reference
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(cf. Figure 1.3), which illustrates the usage of a word with respect to its intended
meaning (thought) and the explicit object (referent). It can be roughly compared
to de Saussure’s model of the linguistic sign, where the sign is a composition of
its utterance in the language system and the thought it is supposed to invoke.
The semiotic triangle describes the relationship between a symbol or word that is
used to describe a thought or reference that, in turn, refers to a speci�c object or
referent. Consider as an example the referent being a concrete table the speaker
or hearer is currently looking at, and which is invoking a thought (‘that table’) or
a reference (‘table number two’), which is symbolized by a word or any kind of
symbol in the language system. Note that the symbol symbolizes the subjective
and individual interpretation, which does not necessarily overlap with the correct
referent. The triangle (in Figure 1.3) shows there’s no direct relationship from
a symbol to its referent it is supposed to stand for, without invoking the loose
thought. Thus the intended meaning of the symbol might not be the perceived
one, and the perceived meaning does not necessarily stem from the intended one,
and thus one has to consider the possible ambiguity of an utterance. This happens
particularly in situations where the context is not generally acknowledged by
all participants of the communication act.

The triangle can represent the composition of a message by an author or the
interpretation of a message by the recipient. Searle (1975) illustrated this setting of
a speech act by introducing the notion of direction-of-�t, which is more generally
used in philosophy than in speech act theory, which we cover here. The term
describes the �tting of a name to an item and the �tting of an item to a name.
Consider as an example the illustration in Figure 1.4 where the square represents
two combined semiotic triangles, one for the recipient of a message (the ‘reader’)
and one for the author of a message (the ‘writer’). The two cases of interest are:

word-to-world �t: a ������ retrieves a ���� for the �����, and

world-to-word �t: a ������ retrieves the ����� for a ����.

For completeness, Searle (1975) also identi�ed two more notable cases, the double
�t, which is a declarative act and includes the de�nition of a word to the world,
i.e., it is always a world-to-word-to-world �t, and the empty-�t, for expressions
that don’t contain any sentential �t.

Production and Comprehension That being said, it is important to ask the
question “How does linguistic meaning come into being?”. According to Miller
et al. (1960), a speech act is an action, i.e., it is goal-oriented, and it presumes that
the speaker and the listener share a speci�c task that has to be solved by acts of
communication. Three essential phases can be described by the intentions and
properties of speech comprehension and production (Gri�n and Ferreira, 2006):

1. Planning: forming a thought, the task is speci�ed, its conditions in the
instantaneous situation are studied, and a plan of action for solving the task
is designed and gradually elaborated;

2. Execution: communicating, the plan is executed, and the transition is made
from a purely intellectual activity to external activity;
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Thought or Reference

Symbol
'(the) table'{(a) table}
Referent

sy
mb

oli
ze

s refers to

stands for

Figure 1.3: Excerpt of the the semiotic triangle as de�ned by Ogden and Richards (1923).
Referent is the explicit object/thing we’re talking about, Thought or Reference is the
implied concept, and Symbo� is the sign/word used to evoke the thought.

Thought
Reader

World
Referent

Writer
Thought

Symbol
Word

encodedecode

extend

intend

Figure 1.4: Illustration of the direction-of-�t with regard to a speech act, which involves
the word-to-world and world-to-word �t. It contains two semiotic triangles, one for the
author or writer of a message and one for the reader or recipient.

3. Control: receiving feedback, the result achieved by the action is compared
with the goal set, and if the goal was achieved, i.e., the message and its
information have been received, and a common understanding has been
acknowledged, the action is considered completed; otherwise the subject
needs to return to the planning phase and re-elaborate or re�ne the plan of
action.

Meaning as Use LudwigWittgenstein (1889-1951) de�ned that a word’s meaning
and hence the message of a sentence depends on its use and can only be correctly
resolved in a common (social) context (Wittgenstein, 1953). Speakers form an
agreement on the situational context such that the meaning of a word or an
expression can be resolved by means of a common reference. Wittgenstein
introduces the notion of the so-called language game, which he uses as a metaphor
for the communication act being a tool for solving a particular task, not the
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communication act itself. It follows that communicative acts may be similar, but
they are still of di�erent use. Wittgenstein claimed, ‘In most cases, the meaning of
a word is its use’, i.e., many arguments in a conversation can already be resolved
by asking, ‘Are we even talking about the same thing?’.

P����������

We ground our work of computational unsupervised sense induction in
Chapter 3 on De Saussure’s notion of the linguistic sign, Frege’s notion
of sense and reference, and the notion of the semiotic triangle by Ogden
and Richards, which cover the philosophical distinction of words and their
activation in the human mind, i.e., what we think words mean. In Chapter 3,
4 and 5, we explore contextualized embeddings, which can be interpreted
as an instantiation of Wittgenstein’s notion of meaning as use. All of them
de�ne the notion of senses, whichwe cover as means for extrinsic evaluation
in Chapter 2 and Chapter 3 for unsupervised sense induction using static
and contextualized embedding approaches.

1.4 Modern Linguistics

Language Modeling and Information Theory Within the stochastic camp and
also in�uenced by other scienti�c �elds, such as electrical engineering and physics,
another direction of computationally-oriented linguistics emerged. Here, the rise
of probabilistic language models led to advancements in machine translation,
speech recognition, and many more.

To measure the performance and success of a language model (LM), concepts
from the �eld of information theory have been borrowed, for example, entropy,
perplexity or information gain, which themselves have been borrowed from the
�eld of thermodynamics (Shannon, 1948). Entropy is originally de�ned as a
measure of chaos, whereas here, it is used implicitly for measuring the information
content of a language – respectively a language model – and was �rst introduced
to information theory and linguistics by Shannon (1948), who was also the �rst
to measure the entropy of English.

With more computational power and easier access to data, neural language
models, i.e., neural networks trained with language modeling objectives, such as
next word prediction, lifted the performance of Natural Language Processing tasks
to an industry-ready level. Here, neural language models are pre-trained and
further employed as so-called feature generators, where the model either provides
the learned static weights of the training vocabulary (static word embeddings,
SWEs) or the model is applied to a sentence or sequence of strings, in a prediction
or �ne-tuning setup and the updated dynamic weights of the internal neural layers
are then used as features (contextualized word embeddings, CWEs) for solving
virtually any downstream task (see for example Devlin et al., 2019, sqq.).



12 1.5. Motivational Aspects

P����������

All our work is based on progress in modern linguistics. It provides
us with the necessary tools to analyze large data collections, �nd new,
hidden artifacts within a language, and help us, humanity, search and
�nd information in vast collections of data such as the World Wide Web
(WWW). Its presence is ubiquitous in everyday life; we, humanity, use those
tools actively and sometimes even unknowingly. In Chapter 2, we employ
statistical language models and perplexity for measuring domain a�nity. In
Chapter 3, we retro�t static word embeddings, created as a by-product from
a neural language model, to static sense embeddings, which we use for word
similarity tasks. We continue this line of research and further analyze more
recent contextualized word embeddings, which come from training very
large neural language models, and test their ability to implicitly encode
senses (Chapter 3), their suitability to be used for information retrieval
(Chapter 4), and their ability to be used for unsupervised modeling of
semantic relations (Chapter 5).

1.5 Motivational Aspects
However good existing pre-trained models are nowadays, due to the ambiguous
nature of language and because it is ever-changing and evolving, NLP systems
continue to make errors, however small they might seem. This stems mainly from
the complexity of ambiguities, which humans often can resolve easily because
of our ability to reason within the situational context. In this dissertation, we
highlight the importance of context and investigate methods to supply context on
di�erent levels. The work in this dissertation addresses two subject matters:

1. the enhancement of domain-dependent corpora to supply context on a
vocabulary level, and

2. the analysis of recent contextualized word embeddings.

We emphasize that context matters; a) on the level of domain-dependent data, as
well as b) more �ne-grained on the representation level.

1.5.1 Domain-Dependent Corpus Enhancement
Context can be supplied on various levels, and the biggest issue is the technical
feasibility and the algorithms to reason beyond a single source of data. Here, we
address the issue of domain-dependent natural language processing. Nowadays,
large collections of text corpora exist, which can be exploited and used to create
NLP models for various downstream tasks. However, models trained on generic
data often fail to produce precise results for domain-dependent tasks. To counter
this issue, the models are often trained on data of a particular language domain, e.g.,
the biomedical domain. By this, models are presented with a di�erent or limited
vocabulary, with di�erent sentence structures, and so on. This already de�nes
context on the level of input data. However, data is usually limited for special
domains. The research question we address in Chapter 2 can be formulated as:
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H�� �� ������� � ����� ����� ������ �� �����
����� �� �������� ���� �������� ����� �� ���
��������������, ��� ���� �� ��� ������� �� �����
������ ���� ���� ������� ����?

1.5.2 Semantic Structuring
Embeddings – static vectors, generated with matrix factorization or neural net-
works (NN�); or contextualized embeddings (CWEs), which are currently exclu-
sively generated with NN�– are essential tools in natural language processing
(NLP) for computationally representing elements of language such as words,
sentences, phrases, documents, etc. Standard vector space models (VSMs) of words
already provide inherent semantic properties since the features of a word depend
on the context of its occurrence, and thus, they implement the Distributional
Hypothesis (DH; Harris, 1954). The research questions we address in Chapters 3,
4 and 5 investigate the advantage of using contextualized word embeddings for
downstream tasks compared to static word embeddings:

H�� ��� ����������� �������� ������ �� ���� ��
������ ������, ��� ���� �� ��� ������� �� �������
�������� ���������� ���� ������ ���������� ���
����������� ��������� ��� �������� �����������
�����?

1.6 Vector Representations & Embeddings
Since we use the term embeddings extensively in this dissertation, we introduce
the most important concepts in this section.

Vectors are the computational representation of choice for lexical units (LUs),
such as words, phrases, sentences, or entire texts, for the use in machine learning
(ML) algorithms. The dimensions in these so-called feature vectors represent
the features of a lexical unit. Each feature activates a non-zero entry in its
respective dimension, and many options exist for what a good feature can be. In
the distributional space, cf. the distributional hypothesis (DH; Harris, 1954), a
feature is the context in which a word occurs. In one of the most straightforward
cases, the context is de�ned as the frequency value of the co-occurrence of a word
� with another word � when they appear in the same sentence, i.e., the bag-of-
words (BoW) approach. The �nal model, when collecting all co-occurrences of all
words in a corpus, is then also called a term-term matrix by sentence co-occurence,
and it is potentially very large (|� | ñ |� | where � is the vocabulary) and very
sparse, since word occurrences, as well as word-to-word co-occurrences, follow a
power-law distribution, i.e., a few words often co-occur with many other words,
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but many other words only co-occur with a few words (see for example Biemann
et al., 2022). This ‘standard’ vector space model (VSM) of words already provides
intrinsic semantic properties, just because the occurrence of a word is represented
as a feature (context) of another word; thus the DH is applied. VSMs span many
representations, feature engineering was once an art, where scientists were creative
about �nding the best features for representing lexical units, e.g., TF-IDF (term-
frequency inverse document frequency) is another popular representation of
documents or spans of text often used for information retrieval (IR). However,
those huge but sparse vectors in the explicit space are more complex to work with
computationally than lower-dimensional but dense vectors.

Embeddings (in NLP) are representations of the explicit huge vectors in a di�er-
ent space, typically a lower-dimensional dense space, where semantic properties
and mathematical operations of the original vector space, such as similarities
with respect to symmetry, re�exivity and transitivity are a) preserved, or b) even
facilitated certain phenomena such as non-overlap in certain dimensions due
to sparsity issues. Mathematically more formally: one space � is embedded in
another space � when the properties of � are the same as the properties of � , e.g.,
natural numbers N are embedded in integers Z, which are embedded in rationals
Q, which are embedded in reals R and so on. In our BoW example, vectors can
be modeled using natural numbers, e.g., �� � N|� |, but vectors in the embedded
space are modeled using real numbers, i.e., �� � R� , where the dimension � is
much smaller than the dimension in the BoW space � � |� |. Estimating such
representations has long been an active research area, and it continues to be,
although aspects have changed, i.e., nowadays, embeddings are mainly estimated
using deep neural networks (DNNs), and the art lies in engineering the network
architecture of the respective layers as well as in their analysis.

Static word embeddings (SWEs): The history of word embeddings is vast, rang-
ing from regression models such asW���S���� (Schütze, 1992b), and geometrical
matrix factorization methods like principal component analysis (PCA; Schütze,
1992a) or latent semantic analysis (LSA; Landauer and Dumais, 1997), over to prob-
abilistic topic modeling such as probabilistic latent semantic analysis (PLSA; Hof-
mann, 1999), or latent dirichlet allocation (LDA; Blei et al., 2003) to neural ap-
proaches such as skip-gram negative sampling (SGNS), continuous bag-of-words
(�BOW), which are both available in the W���2V�� toolkit (Mikolov, Chen, et al.,
2013), or global vectors (G��V�; Pennington et al., 2014), all of which build upon
neural network (NN) architectures and which were a signi�cant milestone in NLP
progress. Since we make extensive use of SWEs from the W���2V��4 toolkit,
we want to introduce it here schematically.

W���2V�� (Mikolov, Chen, et al., 2013) applies a neural language modeling
approach, where the goal is to predict a word �� at position � given its context ��, in
other words, the goal is to optimize the probability �(��|��). In neural approaches
to language modeling, weight matrices are learned as a by-product, representing
the activations of the hidden units of the network. Those weight matrices are the

4. The trained embeddings for various corpora and the source code are available at https:
//code.google.com/p/word2vec/

https://code.google.com/p/word2vec/
https://code.google.com/p/word2vec/
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lower-dimensional embedded representations of the vocabulary and are later used
as so-called static word embeddings (SWEs). In traditional language modeling
schemes, �� is de�ned to be the sequence of �� 1 words occurring directly in front
of ��, i.e., ���1

���+1, where ��
� refers to the sequence of words from position � to

position �. However, the de�nition of the context � varies for practical reasons
when focusing on semantic word representations. See, for instance, (Riedl, 2016)
for an overview of di�erent context types. Mikolov, Chen, et al. (2013) introduced
the SGNS (skip-gram-negative-sampling) architecture, where �� is used as input
and the surrounding words with window size � are used as optimization target,
i.e., {� � � |��+�

���}. Accordingly, in the continuous bag-of-words (�BOW) model, a
joint representation of context words is used as input to optimize the prediction
probability of the current word �� as the target. A projection matrix is learned
during this process, which exhibits syntactic and semantic properties and has
been shown to be bene�cial in various NLP tasks. E.g., Mikolov, Yih, et al. (2013)
showed that simple vector arithmetics, i.e., addition and subtraction, can be used
to address analogies, i.e., linguistic regularities like in the famous example

����
���� �

������� + ����������� � ���������� are implicitly modeled. However, static word embeddings
are estimated for the vocabulary, i.e., a word � is always represented by the same
vector, regardless of its occurrence in a sentence; they are thus context-unaware.

Contextualized word embeddings (CWEs): The next major milestone in NLP
progress, which provided even further improvements for NLP systems, even
beating human performance for some tasks, came with the introduction of pre-
trained language models (PLMs) for transfer learning (TL; Ruder, 2019; Ruder et al.,
2019), i.e., deep neural networks (DNNs; Goodfellow et al., 2016) are �rst trained
with a certain objective to solve a task A, and then task-dependent �ne-tuned
to solve other tasks di�erent from A. Most of these neural language models are
trained in a self-supervision scheme to jointly predict a) masked words within
the sequence, and b) the next sentence. Such language models are called masked
language models (MLMs) because their objective is di�erent from traditional
language modeling, which is estimated using an autoregressive objective. In
masked language modeling, the task is to predict words in a cloze-like fashion:
�(��|�1,… ,���1, [MASK],��+1,… ,��), i.e., given a sequence of words �1,… ,��,
the task is to predict the word at position � which is masked with the special
token [MASK] in the sequence.

One implementation of a masked language model, which we want to highlight
here because we use it in multiple chapters in this work, is BERT (Bidirectional
Encoder Representations from Transformers; Devlin et al., 2019), which imple-
ments the encoder stack of the Transformer architecture (Vaswani et al., 2017).
The Transformer is based on multiple self-attention layers, which allow a token
to access all other tokens in the sequence. Self-attention and thus the non-
directionality of the language modeling objective results in word embeddings
that are context-aware, i.e., so-called contextualized embeddings (CWEs). The
core idea of contextualized embeddings is compositionality, i.e., to compose static
word embeddings so that the outcome represents the meaning of a word in a
context-dependent fashion. Other models exist that provide contextualization
by employing variations of recurrent neural networks RNNs, such as Flair (Akbik
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et al., 2018) or ELMo (Embeddings from Language Models; Peters et al., 2018).
Further performance gains can be achieved by increasing the number of

parameters of a model, i.e., the trainable weights of a neural network and the
amount of training data. Zhao et al. (2023) present a summary of so-called large
language models, which are, metaphorically spoken, PLMs on steroids, i.e., PLMs
of a considerable size, consisting of hundreds of billions of parameters. However, it
is often economically not possible to e�ciently work with LLMs because they are
a) often not available due to proprietary access, and if they are available, they are
b) too large to handle for most institutions since training and prediction requires
multiple GPUs or even a computer cluster with multiple GPUs per cluster node.







2
Crawling / Corpus Expansion

2.1 Overview
It is commonly known that the quality of computational models increases when
exploiting more data. Halevy et al. (2009) explained the e�ect of simple methods
superseding more advanced and complex methods when using larger amounts
of input data, which is also supported by Brants and Franz (2006)’s or Banko and
Brill (2001)’s �ndings. With the increasing power of computing resources and
algorithms to process more and more data in less time and more e�ciently, the
demand for large text collections grows. The web, as a vast and dynamic resource,
is nowadays the main starting point for knowledge induction systems like NELL1
(Carlson et al., 2010) or machine reading2 (Etzioni et al., 2008), although its size is
more or less constant for the past two years3 its content is in a steady change.

Thus, a variety of generic linguistic corpora were compiled using the web as
a resource. E.g., large pre-trained language models such as BERT (Devlin et al.,
2019), T5 (Ra�el et al., 2020), GPT-{1,2,3,4} (Radford et al., 2018; Radford et al., 2019;
Brown et al., 2020; OpenAI, 2023), ELMo (Peters et al., 2018), etc. are trained using
web size corpora; they usually use the Common Crawl corpus4 as one element in
their collection of training corpora. The Common Crawl corpus is a collection of
raw HTML web pages, metadata, and extracted plain texts crawled from the web
and provided roughly every month as a snapshot of about (currently) 60 TB of
compressed data. TheWaCKy5 corpora (Baroni et al., 2009), which were created
from web documents of a particular top-level domain (tld) and by �ltering for
a particular language of interest, for example, ukWaC was created by limiting
a web crawl to the .uk top-level domain selecting only English documents are
available for a variety of languages. Another research initiative that produces such

1. Never Ending Language Learner: http://rtw.ml.cmu.edu/
2. http://ai.cs.washington.edu/projects/open-information-extraction or http://openie.cs.

washington.edu/
3. https://www.worldwidewebsize.com/: last accessed on March 2022
4. Common Crawl Project: https://commoncrawl.org
5. Web-as-Corpus Kool Yinitiative http://wacky.sslmit.unibo.it/
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http://openie.cs.washington.edu/
http://openie.cs.washington.edu/
https://www.worldwidewebsize.com/
https://commoncrawl.org
http://wacky.sslmit.unibo.it/
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corpora is the COW 6 (corpora from the web) project (Schäfer and Bildhauer, 2012),
which also provides compiled web corpora for di�erent languages from particular
top-level domains. In (Goldhahn et al., 2014), we crawl top-level domains for
under-resourced languages and use the WebCorpus7 toolkit (Biemann et al., 2013)
for processing the collected web data in a distributed manner. ClueWeb (Callan
et al., 2009), yet another corpus from the web, and the Common Crawl Project
provide mainly unprocessed HTML data. Those are further re�ned in various
e�orts, e.g., in (Pomikálek et al., 2012; Buck et al., 2014; Panchenko et al., 2018).

However, the data is largely collected without a notion of topical interest,
which makes sense when the focus is on properties of general language usage
and not on particular domains or genres. If an interest in a particular topic
exists, corpora have to undergo extensive document �ltering with simple and/or
complex text classi�cation methods. This leads to a lot of downloaded data
being discarded and lots of computational resources being unnecessarily wasted
for the crawling process.

One approach to work around these issues is to use the BootCat method (Baroni
and Bernardini, 2004), which collects, based on keyword lists, web documents by
sending combinations of keywords to a search engine provider. The returned URLs
(Uniform Resource Locators) are then �ltered by some heuristics like blacklisting or
whitelisting and then downloaded and processed such that HTML and boilerplate
content is removed. The resulting corpus is domain-dependent but usually of
limited size and the process requires the use of a search engine provider as a black
box, which makes it dependent on a) the general availability of the service, and
b) ranking of the results based on the provider’s (possibly subjective) choice
(Kilgarri�, 2007).

In (Remus, 2014) and (Remus and Biemann, 2016), we propose a tool for focused
web-crawling, which makes e�cient use of computational resources, since its
purpose is to download mainly websites of interest, i.e., those that cover a certain
topic of interest. The topic or domain of interest is de�ned by a statistical N-gram
language model or sample texts that can be used to create such a language model.
Search engine providers are not a required component of the system; however,
in practice, search engine providers can be used to create an initial starting seed
of URLs. In (Panchenko et al., 2016), we use the focused web crawler to enhance
given domain-dependent corpora to create unsupervised topical taxonomies. And
in (Remus et al., 2016), we present a robust tokenizer and POS tagging approach
for the diverse input that the web provides, i.e., the di�erent genres such as news
texts or socially interactive communication. We run several experiments to show
the e�ectiveness of the tools.

2.2 Focused Web Crawling
Focused (and general) web crawling use cases include the development of web
search engines (Chakrabarti et al., 1999; McCallum et al., 1999), compiling large
linguistic corpora (Baroni et al., 2009; Medelyan et al., 2006; Schäfer et al., 2014),
support for digital libraries (Qin et al., 2004; Pant et al., 2004), machine learning

6. http://corporafromtheweb.org/
7. http://sf.net/projects/webcorpus

http://corporafromtheweb.org/
http://sf.net/projects/webcorpus
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(ML) corpora for large language models (e.g., Devlin et al., 2019) and many more.
Building language-speci�c web corpora usually starts by limiting a web crawl to
a certain top-level domain (Biemann et al., 2013; Baroni et al., 2009), which we
refer to as bounded crawling, whereas for search engines, it is more important
to cover the entire web, hence unbounded crawling strategies are typically used.
Once a use case grows more speci�c, e.g., the empowerment of domain-speci�c
search engines, corpora, or digital libraries, the demand for saving precious time-
and computational resources becomes more and more important, and focused
crawling techniques are sought. The term ‘focused (web-) crawling’ (Chakrabarti
et al., 1999) also known as ‘topical crawling’ (Menczer et al., 2004) refers to the
process of crawling the web in a guided way with a focus on a speci�c topical
content. The main di�erence of standard web crawling and the main challenge
for the focused crawler is to decide which link to follow, i.e., which link might
lead to the desired topical content and which not. This can also be re-formulated
as a priority-oriented task, i.e., in which order should the crawler follow links
before actually downloading the content of their respective destination, all of
which happens during the actual crawling time (Chakrabarti et al., 1999). This
can either be seen as a classi�cation task (McCallum et al., 1999; Chakrabarti
et al., 1999; Medelyan et al., 2006) with binary decisions (follow or not follow)
or as a ranking problem with a priority queue where URLs with a high chance
to lead to relevant content are prioritized.

Obviously, the main issue is to estimate the relevance of a yet unknown
document with only a little prior information. Our approach di�ers from existing
approaches in that we employ a language model and perplexity as a measure of
relevance for a particular web page, whereas other approaches use features such
as individual components of the URL itself, e.g., server, path, query strings, etc.,
the surrounding context of the extracted hyperlink, the text of the parent webpage,
include lexical resources likeWordNet (Fellbaum, 1998), and many more (Safran
et al., 2012). One major advantage of the proposed methodology is the deliberate
omission of negative instances for modeling. This being said, the method does
not need labeled data (Blum and Mitchell, 1998), neither needs the focus to be
prede�ned as a certain category in a prede�ned taxonomy (Chakrabarti et al.,
1999), and it also does not require manually constructed lexical resources for
feature extraction (Safran et al., 2012), but only operates on an initially provided
corpus of plain texts, which serves as the domain de�nition. E.g., in one of our
experiments, we used only one Wikipedia article as the domain de�nition.

2.3 Methodology
Web pages of a certain genre or domain use a certain vocabulary (Biber, 1995), and
these web pages, in turn, link to other web pages of the same genre or domain. This
oversimplifying assumption is typically exploited in focused crawling (Chakrabarti
et al., 1999; Menczer et al., 2004; Safran et al., 2012; Medelyan et al., 2006). Our
approach follows previous work and relies heavily on this assumption by using
statistical language models (cf. Section 2.3.1) combined with perplexity as a measure
of relatedness (cf. Section 2.3.3). The priority, i.e., the relevance of an extracted
web link pointing to a topically relevant web page, is determined by the perplexity
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value of its parent document.

2.3.1 Modeling Domain Speci�city
Statistical language models (LMs) are a well-understood device in natural language
processing. The techniques are successfully employed in many applications and
downstream tasks, such as speech recognition (Kuhn and deMori, 1990) ormachine
translation (Koehn et al., 2007). N-gram language models, as used in this work, are
statistical models over short sequences of consecutive tokens called N-grams. The
probability of a sequence of � words, e.g., a sentence, is computed as:

�(�1 …��) �
�

�
�=1

�(��|���1
���+1) , (2.1)

where � is the order of the language model and �(��|���1
���+1) is the conditional

probability of observing word �� given its history of N-1 words. �� refers to the
word at position � and ��

� refers to the subsequence of words from position �
to position �. A vast amount of techniques can be used to compute the condi-
tional probability of an N-gram; see, for example, (Chen and Goodman, 1998) or
(Goodman, 2001) for an overview. Most of those methods are derived forms of
the simple maximum likelihood estimate (MLE):

�(��|���1
���+1) =

�(��
���+1)

�(���1
���+1)

, (2.2)

where �(��
�) is the frequency of the subsequence �� to �� in a training corpus.

Since this model does not handle unseen N-grams or words, a number of dif-
ferent techniques were proposed which support the conditional probabilities
for unknown sequences and words. Kneser and Ney (1995) introduced one of
the most successful language models, which, despite its age, still exhibits good
performance, especially for small corpora. Kneser and Ney apply interpolation
techniques based on the number of distinct words that follow an N-gram � (��

��),
the number of distinct words that precede an N-gram � (���

�), and the number
of distinct word combinations surrounding an N-gram � (���

��). The probability
of an is then computed as:

�(��|���1
���+1) =

max{0,� � �(��
���+1)}

�(���1
���+1)

+
� ñ � (���1

���+1�)
�(���1

���+1)

ñ �������(��|���1
���+2)

(2.3)

with � being a discount factor estimated from a held-out test split, and

�������(��|���1
���+2) =

� (���
���+2)

� (����1
���+2�)

(2.4)

being de�ned as the back-o� probability. More details regarding the Kneser-Ney
model can be found in (Kneser and Ney, 1995) or (Chen and Goodman, 1998)
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who, propose an improved version, the so-called Modi�ed-Kneser-Kney method,
which uses di�erent discount values for the number of distinct words following,
preceding or surrounding an N-gram. In this work, we follow the suggestions
of Chen and Goodman (1998) and �x the discount factor � to �1/(�1+2�2), where ��
represents the number of unique N-grams with count �, and apply interpolation
or smoothing to uni-gram probabilities. We also use a di�erent discount factor
for every N-gram cardinality. In most of our experiments, we used a 5-gram
model8. Also, we �ltered numbers and punctuation characters and considered
only sequences with a minimum length of �ve words. For segmentation purposes,
i.e., for splitting a character sequence into sentences and tokens, we used the
������ segmenter that we introduced in (Remus et al., 2016).9 We developed this
fast and robust segmenter, which is based on processing a set of rules, with the
goal to segment diverse, web-based documents, that might also come from short
social media texts, like Twitter10 or Reddit11.

Nowadays, neural variants of language models, more speci�cally, so-called
neural language models, e.g., as �rst proposed by Bengio et al. (2003), based on
neural network architectures, ormixture languagemodels (Tan et al., 2012) aremore
popular due to their pre-training objective and general applicability for virtually
any downstream task (e.g., Devlin et al., 2019). We refrain from following this line
of research in the focused web-crawling setup for reasons of computational and
conceptual complexity. Further, those models usually require lots of data to achieve
a decent performance, which is not in line with our corpus enhancement setup,
where the initial domain-de�ning corpus is de�ned to be of a rather small nature.

2.3.2 From HTML to Text
Structural elements of a web page, such as headers, footers, menus, etc., are rather
undesirable since they occur on many web pages and usually do not provide
valuable information. One of the processing steps is extracting important text
from the bulk of structuring HTML code, javascript, CSS, etc. of a web page. We use
the boilerpipe toolkit12 (Kohlschütter et al., 2010) forHTML stripping and boilerplate
removal. This step removes all parts of a web page that redundantly occur on
many web pages, like navigational elements, advertisements, etc. For textual
pre-processing, we �ltered numbers and punctuation characters and considered
only sequences with a minimum length of �ve words.

2.3.3 Perplexity Measure
We propose Perplexity (�� ) as the measure of compatibility of the language model
to an arbitrary text extracted from a web document. Perplexity measures the
surprise of an underlying probabilistic model that is being confronted with test

8. 5-grams were chosen because experience in preliminary experiments yielded better results
than other N-gram models.

9. The segmenter is available as an open source project under a permissive license: https:
//github.com/tudarmstadt-lt/seg.
10. https://twitter.com/
11. https://reddit.com/
12. https://code.google.com/p/boilerpipe

https://github.com/tudarmstadt-lt/seg
https://github.com/tudarmstadt-lt/seg
https://twitter.com/
https://reddit.com/
https://code.google.com/p/boilerpipe


24 2.3. Methodology

In-Domain 
Input 

Corpus

In-Domain
Language

Model

Web-
Document

with 
unclassified 

Links

download

Insert according to 
perplexity value

compute 
perplexity

Priority Queue

create 
LM

extract hyperlinks!

!

In-Domain
Output 
Corpus

save

In-Domain 
Output 
Corpus

Refined 
In-Domain 

Output 
Corpus

prune

Figure 2.1: Schematic overview of our focused crawling process.

samples � , where we de�ne � to be the set of N-grams extracted from the
usable text of a web page. Perplexity, often used to evaluate language model
performance, is de�ned as

��(� ) = 2� (� ) , where (2.5)

� (� ) = �
1
|� |

�
���

log2 �(�) . (2.6)

� (� ) is the cross entropy, and �(�) refers to the probability of a particular N-
gram in the set of test N-grams � .

URLs are prioritized based on the perplexity value of the parent document,
i.e., the document it was extracted from. We maintain a priority-queue-like
structure of URLs, which have been collected so far, and process this queue in
increasing order, i.e., a lower perplexity score is preferable over a higher value.
URLs extracted from documents that align better with the language model are thus
considered for download before others. Figure 2.1 shows a schematic overview of
this focused crawling procedure. Note that our proposed method does not rely
on any access to knowledge resources like taxonomies or WordNet (Safran et al.,
2012), nor does it rely on positively and negatively labeled HTML documents
or web links (Blum and Mitchell, 1998; Chakrabarti et al., 1999; McCallum et al.,
1999). The target domain is also not pre-de�ned and can deviate from ODP13

categories (Chakrabarti et al., 1999).

2.3.4 System Architecture
The open source crawler software Heritrix14 (Mohr et al., 2004) forms the basis of
our focused crawler. Following Baroni et al. (2009), Schäfer and Bildhauer (2012),
and Callan et al. (2009)15, we use Heritrix (Mohr et al., 2004) as the base crawler,
because it provides a well-established and sophisticated crawling framework and
is extensible due to its modular design.

13. Open Directory Project, http://dmoz.org
14. http://crawler.archive.org developed and used by the Internet Archive Project: https://

archive.org
15. For ClueWeb12 ( http://www.lemurproject.org/clueweb12.php/ ).

http://crawler.archive.org
https://archive.org
https://archive.org
http://www.lemurproject.org/clueweb12.php/
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Heritrix’s architecture follows suggestions by Manning et al. (2008) and uses
one queue per server; the set of all queues is called frontier . Our priority scheme
includes URL and server queues such that the highest priority of a member URL
determines the priority of a server queue. However, for more e�ciency in a
practical application, we introduce a bucketing strategy, which splits the perplexity
range into three buckets called ����, ������, and ������ in Heritrix terminology.
URLs in higher prioritized buckets will be downloaded before others, even if this
delays the overall crawling process. The boundaries, i.e., the perplexity value
ranges for the buckets, must be assigned by the user and can be determined by
running short test crawls. Using this strategy, it is possible to dynamically change
the behavior of the crawl during runtime by ignoring or reconsidering URLs from
lower prioritized buckets. In our experiments, we did not change the strategy after
a crawl started since this would lead to non-comparable results. URLs within the
buckets are still ordered by priority, and for further e�ciency reasons, we include
so-called budgeting costs. Each per-server queue in the crawler’s frontier has a
certain budget of being processed by a worker, i.e., URLs being downloaded. The
lowest budget a queue can have is 1, i.e., URLs will be processed with the lowest
possible priority in the current bucket. Note that a possible option is to remove the
server once its budget has been emptied, i.e., no further URLs from that server will
be downloaded. We did not use this option, though. Lower priority, respectively,
higher perplexity values will have higher costs for the per-server queue, which
means that if a particular server provides many irrelevant documents, it will have
a lower priority of being processed, although some individual documents might
be relevant. For this, the perplexity value which was assigned to a URL is mapped
to the interval [0, 127] � N (a technical requirement for Heritrix) and used as a
cost factor. After following a URL, the per-server queue budget is reduced by
the assigned cost of the URL’s underlying web document. Servers with many
‘bad’ URLs will exhaust their budget earlier than ‘good’ servers and will thus be
considered less often, even if some URLs are still queued with a high priority.

Note further that the general crawler architecture is designed to process
and download web pages in parallel. A URL’s priority value is superseded by
politeness settings regarding queued servers. Politeness is a self-imposed waiting
time between consecutive requests to the same server. This is an essential setting
since website administrators often block IP addresses of automated systems for
security reasons. Imagine that a web server has to decide between automated
crawling for a good cause and, e.g., a DDOS (Distributed Denial-of-service) attack,
where random requests are made to force a server downtime. For a crawler to
be considered a ‘good’ crawler, consecutive requests to the same server should
be reduced to a minimum.

Parallelism and politeness, are advantageous and necessary design principles
for modern web crawler systems (Manning et al., 2008; pp. 451-453), but unfor-
tunately they interfere with the priority ordering in a focused crawling setting.
Parallelism de�nes how many server queues are processed from the frontier, i.e.,
only entire servers are processed in parallel. As an example, consider three URLs;
two URLs refer to one server and have a higher priority than the remaining URL,
which refers to another server. Since by default, the crawler fully respects the
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robots.txt speci�cation16 and is con�gured to be polite concerning the number of
consecutive requests to the same server, the lesser prioritized URL can, and will, be
considered before the second higher prioritized URL because the �rst request will
impose a delay to the second request to the same server. In our evaluation, we show
the advantage of our approach in a single-threaded and blocking environment,
although this is not useful in practice. Preliminary experiments also show cleaner
topic-dependent corpora when parallelism is deactivated for the price of longer
waiting times to reach the same amount of data (if even possible) as opposed
to a larger parallelism value.

2.4 Evaluation

Automatic techniques for measuring the relevance of webpages regarding some
constraints have to be applied post-hoc because manual labeling of webpages is
simply non-economical in terms of manpower. Even evaluating only a portion of
the web is too much e�ort or does not mirror real-life conditions.

Chakrabarti et al. (1999) treat focused crawling as a binary classi�cation task
where URLs are classi�ed as pointing to topically related webpages using several
features of the source webpage. Features are, for example, the structured parts
of a URL, such as domain, server, path, etc., the anchor text where the web
link is embedded in the source document and its surrounding context. Gold
labels for training the classi�er are extracted by choosing a certain category
from the Open Directory Service (ODP)17. In (Menczer et al., 2004), an evaluation
framework is presented, which operates only on the set of ODP pages. Relevance
is measured directly from the ODP hierarchy, such that recall and precision can
be exactly calculated. Also, a lexical similarity score is computed based on the
cosine similarity to previously extracted topic de�nitions for collected pages that
are not in the ODP, e.g., links from ODP leaf pages. Safran et al. (2012) used
the set of URLs retrieved from a search engine for evaluation. However, this
strategy is non-deterministic because of the black-box behavior of web search
engines. A di�erent approach is presented by Meusel et al. (2014), who focus on
structured data in the so-called semantic web. Evaluation is done by considering
webpages that contain structured data as relevant. Schäfer et al. (2014) presented
a focused crawling approach, focusing on linguistically clean data, i.e., webpages
that can be used to construct web corpora. The very same function for cleaning
a webpage is applied to assess relevance.

Note that we do not attempt to re-implement other focused crawling strategies
because they rely on expensive supervision or are limited to domains de�ned by
ODP categories. Here, the primary goal is to enhance a small given text corpus
by crawling the web for more texts of the “same kind”. We evaluate the system
in intrinsic and extrinsic settings.

16. http://www.robotstxt.org
17. Open Directory Project: https://www.dmoz.org/

http://www.robotstxt.org
https://www.dmoz.org/
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2.5 Intrinsic Experiments
In this section, we conduct two intrinsic experiments to compare our focused
crawling strategy to the standard breadth-�rst web crawling strategy:

1. focused vs. non-focused small scale, single-threaded crawls, limited to seed
websites, and

2. focused vs. non-focused large scale, parallelized crawl for the German
educational domain.

The notion of ‘non-focused’ is the default breadth-�rst-search-like crawling
strategy in Heritrix.

For the �rst experiment , we de�ned four seed URLs, coming from two di�erent
languages and topical domains, i.e., a pair of URLs is either the same language or
the same topical domain, but not both. We chose the topics cats and technology
in English and German. The web crawls are limited to the websites de�ned by
the seed URLs, where the assumption is that those websites are comprised of
more web pages from the respective topic. We abort the crawl after collecting
100 documents in a non-focused setting for reference purposes and in the follow-
ing focused-crawling settings: We created two language models, one from the
English Wikipedia article for cat18 and one from the German Wikipedia article
for Hauskatze19 (eng. domestic cat) and initialized two focused crawls for each
language model. We then count the number of documents that were downloaded
from each of thewebsite servers. We hypothesize that the focused crawls download
more documents from the websites corresponding to their domain and language
de�nition.

For the second experiment , we conduct a more extensive crawl and collect
roughly 500GB of HTML data on the German educational domain in a non-focused
and focused setting. The initial domain de�ning corpus is provided by Nam
et al. (2014), and its size is around 800K unique sentences. We split the corpus into
two equally-sized training and test sets, using the training set for initialization of
the language model and the test set for testing the crawler’s performance after
the crawl has ended. The language of the original data is mainly German but
contains small amounts of other languages. We do not explicitly apply language
�ltering since the number of languages other than German is negligible, and the
small impurities also test the robustness of the proposed method. The distribution
of languages in the corpus is listed in Table 2.1.

We then build di�erent language models using the training set plus the cleaned
plain text data from the crawls. This is done in intervals after collecting certain
amounts of data during the crawl. At each interval, the resulting language models
are evaluated using the test set. Further, we handled sentence de-duplication such
that each sentence occurs only once for training the individual language models.

For evaluation, we calculate perplexity of the language model trained on the
aggregated corpora on the test set. We hypothesize that a more focused crawl

18. http://en.wikipedia.org/w/index.php?title=Cat&oldid=651849595
19. http://de.wikipedia.org/w/index.php?title=Hauskatze&oldid=139331448

http://en.wikipedia.org/w/index.php?title=Cat&oldid=651849595
http://de.wikipedia.org/w/index.php?title=Hauskatze&oldid=139331448
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Table 2.1: Distribution of languages in % in the train and test set as well in the focused (� )
and non-focused (�� ) crawl.

Language ����� ���� � ��

�� 96.81 96.83 92.31 15.51
� � 0.57 0.56 0.62 3.09
�� 0.00 0.00 4.50 73.19
�� 0.02 0.02 0.22 0.55
�� 0.00 0.00 0.26 1.58
�� 0.01 0.01 0.32 1.16
����� 2.59 2.58 1.78 4.91

Table 2.2: Number of downloaded web pages for a non-focused crawl and two focused
crawls based on an English and German language model for the domain ‘cats’. The crawls
were bound to the given websites and limited to 100 documents in total.
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lets the perplexity value decline faster. We manually selected about 20 seed
URLs, which refer to web pages related to the German educational domain. The
maximum perplexity score achievable for the language model on the training data
is around 107, which happens only for documents with lots of unknown words.
We discard links from documents with a perplexity larger than 105. The crawls
are not bound by any other limitation than perplexity scores. Hence, webpages
are collected from arbitrary top-level domains, another advantage over corpora
created with top-level domain crawling (Goldhahn et al., 2014).

2.6 Results Intrinsic Evaluation
Results of the �rst experiment, shown in Table 2.2, indicate that the focused
crawler is able to focus on the speci�ed topic. As expected, the non-focused
crawl collects documents from all four websites in equal quantities. On the
other hand, the focused crawls mainly collect documents from servers that cor-
respond to their topic de�nition. E.g., the focused crawl based on the English
Wikipedia article for cat downloads most documents from catchanne�.com, a
website containing cat-related content in English, and the focused crawl based
on the German Wikipedia article for Hauskatze downloads most documents from
meine-katze.de, a website containing cat related content in German. The non-
focused crawl, however, downloads equally many documents from all seed URLs
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(catchanne�.com, techcrunch.com, meine-katze.de and heise.de).
The second experiment on the large-scale German educational crawl provides

more insights into the behavior of parallelized focused web crawls. The crawler
was started with 16GB of memory and 25 threads, which download and process
URLs in parallel. Politeness settings were applied, and the robots.txt was
respected, possibly leading to incompatible results. We experienced an average
download rate of 2MB/s and a maximum speed of 8MB/s. After the �rst 24 hours,
the crawler collected roughly 200GB of raw HTML data.

2.6.1 Adapting to Language

Because the crawler is generally un-bound, we collect URLs from a variety of
top-level domains and also documents containing texts from di�erent languages,
something which obviously happens to a much larger extent in the non-focused
setting (cf. Table 2.1). English is the primary interfering language since it is also
the prevalent language used in the web. Although all seed URLs refer to domain-
related German web pages, the non-focused crawl mainly collects web pages in
English. The focused crawl still collects roughly equal proportions of languages
as in the training corpus. This fact strengthens the point that an N-gram language
models and perplexity is also a useful method for putting the focus just on a
particular language. However, below, we show that the proposed approach is
even able to capture domain aspects.

2.6.2 Adapting to Domain

As described in Section 2.5, we built separate languagemodels at intervals, i.e., after
certain amounts of data have been collected. The perplexity value on the held-out
test set decreases with increasing corpus size in the focused crawl and increases
with increasing corpus size in the non-focused crawl (cf. Figure 2.2a). While the
former is expected, the latter seems surprising since the assumption might be that
perplexity decreases with more data but at a much slower rate. However, due
to the fact of incorporating a signi�cant amount of non-target language data in
the non-focused crawl, an overwhelming amount of out-of-vocabulary words are
introduced, which eventually increases the perplexity of the entire set.

Since German is the prevalent language in our test corpus, with roughly
96%, we re-evaluated the test set perplexity for the same chunks of data by
selecting only German documents.20 Figure 2.2b shows that the focused crawler
can harvest language and domain-relevant documents throughout the crawl;
only a tiny fraction was discarded due to non-target language data, whereas
almost half of the downloaded data was discarded for the non-focused crawl.
When only considering German documents from the crawled data, the focused
crawl yields consistently lower perplexity values; this di�erence increases as the
crawl progresses. However, while more data is collected, the fractional amount of
relevant / German vs. irrelevant / non-German data becomes even more prominent.
I.e., after downloading 300M tokens, the unfocused crawl’s usable German data

20. We use JLani from the ASV-toolbox (Biemann et al., 2008) for automatic language identi�-
cation.



30 2.7. Extrinsic Experiments

+1M +10M +30M +100M +300M
additional corpus size in #tokens

400

500

600

700

800

900

1000
P

P

f(oov)

nf(oov)

f(no oov)

nf(no oov)

(a)

+1M +10M +30M +100M +300M
additional corpus size in #tokens

400

500

600

700

800

900

1000

P
P

f(oov)

nf(oov)

f(no oov)

nf(no oov)

(b)

size downloaded 100� 300� 1� 3� 10� 30� 100� 300�

size (de) � 87� 267� 868� 2.66� 9.12� 27.78� 93.8� 277.30�
size (de) �� 34� 95� 216� 558� 2.31� 9.45� 26.82� 61.12�

(c)

Figure 2.2: Perplexity on the test set by crawl size for German educational data (a)
and crawls �ltered for German (b) comparing focused(� ) and non-focused(�� ) crawling.
Perplexity is measured on the test set, where out-of-vocabulary (OOV) words based on
the train set are considered (���) or removed (�� ���). The corpus size is given in terms of
the number of additional tokens for the training set. Table (c) shows the absolute number
of tokens of German data vs. downloaded data for both crawls.

amounts to 61M tokens, and the focused crawl’s usable data yields 277M tokens,
which increases the usable harvest quantity by a factor of over 4.5.

2.7 Extrinsic Experiments
In this section, we evaluate the focused crawling application in extrinsic down-
stream task settings. We evaluate the crawler’s performance on three topical
domains and use the task of inducing in-domain taxonomies as an example
application for the purpose of the extrinsic evaluation. Inducing knowledge bases
from text is essential for knowledge management applications such as reasoning
over facts and the new discovery of the like. In (Panchenko et al., 2016), we present
����, a semi-supervised system for taxonomy induction purely from texts, which
makes use of additionally crawled data and is applied to in-domain data.

2.7.1 Taxonomy Induction
Algorithms, like the ones presented in ����, and applied for in-domain tasks,
often still lack the desired input data size to create models that reasonably assess
in-domain tasks.

Taxonomy induction is the task of inducing a taxonomy from text. Taxonomies,
ontologies, knowledge graphs or, more general, knowledge bases are means for
structuring information with application values in exploration or higher-level
downstream tasks involving reasoning (Sowa, 2000), e.g., question answering or
entity linking. In particular, a taxonomy can be seen as a hierarchical subset of



2. Crawling / Corpus Expansion 31

Mammal

Animal

Reptile

Rabbit Crocodile… …

…

…

…

… …

Figure 2.3: Example of a very simple taxonomy.

an ontology, containing only entities and relations that form tree-like structures
between concepts with is-a resp. subclass-of relations. In linguistic terminology, a
broader term is called a hypernym of a more speci�c hyponym; the relation is then
hypernymic/hyponymic. Taxonomies are used in many �elds, but the probably
best-known example is the taxonomy used in biology to describe the biological
ecosystem. Figure 2.3 depicts a simple taxonomy, in which a rabbit is a mammal,
a mammal is an animal, a crocodile is a reptile, and a reptile is an animal too,
among other instances and relations. Reasoning using the transitivity property
then allows to infer that a rabbit is also an animal.

Usually, the information in such taxonomies is hand-crafted, thus expensive to
create and maintain in terms of manpower. Hence, an active �eld of NLP research
is concerned with automatic methodologies to build or extend taxonomies or
knowledge bases from textual data without human assistance. Also, unsupervised
or semi-supervised methods for taxonomy induction typically rely on a lot of text
data. Needless to say, the textual domain dominates the topic of the concepts in
the taxonomy. Many methods exist that use the web as a resource for such data
simply because of the necessity of large amounts of data. Since the scope of the
taxonomy depends on the scope of the used data and because taxonomies are
often created using web data, most unsupervised taxonomies de�ne a general
domain. General domain corpora often miss important concepts if speci�c in-
domain knowledge is required. Here, we use our focused crawling approach to
collect in-domain data to induce in-domain taxonomies.

Inducing taxonomies by extracting taxonomic relationships from text is a well-
known challenge; see, e.g., (Biemann, 2005) for a survey. Hypernymic relations
can be extracted using various methodologies, e.g., by exploiting lexical patterns
(Hearst, 1992; Oakes, 2005), to more complex statistical techniques (Agirre et al.,
2000; Ritter et al., 2009) or methods based on neural methods. Snow et al. (2004)
use a distant supervision approach where known hypernyms are selected, and
parse trees are used as features to train a hypernym classi�er, which is then
used to extract new hypernyms. Also, the features can be interpreted as patterns,
and highly activated features can be used as patterns for hyponym-hypernym
discovery.

In (Yang and Callan, 2009), a semi-supervised taxonomy induction framework
was presented, which integrates co-occurrence, grammatical dependencies, lexical-
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syntactic patterns, and other features to learn an ontology metric, which is calcu-
lated in terms of the semantic distance for each pair of terms in a taxonomy. Terms
are incrementally clustered on the basis of their ontology metric scores. In their
experiments, Yang and Callan (2009) only use the word senses within a particular
WordNet sub-hierarchy to ensure there is no ambiguity. Evaluation was done
by replicating hypernyms of 12WordNet sub-hierarchies, like ‘building’, ‘milk’,
and ‘meal’. Snow et al. (2006) perform incremental construction of taxonomies
using a probabilistic model. They combine evidence from multiple supervised
classi�ers trained on large training datasets of hyponymy and co-hyponymy
relations. The taxonomy learning task is de�ned as the problem of �nding the
taxonomy that maximizes the probability of individual relations extracted by
the classi�ers. However, rather than learning a new taxonomy from scratch,
this approach aims at attaching new concepts under the appropriate nodes of
an existing taxonomy, e.g., WordNet. A related, weakly-supervised approach
aiming at categorizing named entities and attaching them to WordNet leaves was
proposed by Pasca (2004). Other approaches mostly use formal concept analysis
(Cimiano et al., 2005), probabilistic and information-theoretic measures to learn
a taxonomy from a folksonomy (Tang et al., 2009), Markov logic networks, and
syntactic parsing applied to domain text (Poon and Domingos, 2010).

Kozareva and Hovy (2010) start from a set of root terms and use Hearst-
like lexico-syntactic patterns to harvest hypernyms from the Web. For example,
running a search pattern like ‘* such as lion and cat’ using a web search engine,
‘feline’, can be obtained as a new intermediate concept. The extracted hypernym
relation graph is subsequently pruned. Bordea et al. (2015) presented the �rst
shared task on Taxonomy Extraction Evaluation (TExEval) focusing on taxonomies
in di�erent domains. The challenge was continued in (Bordea et al., 2016) and the
���� system, which uses our focused crawling approach, ranked �rst (Panchenko
et al., 2016). Mainly because ���� provides a relatively simple and open-source
solution to in-domain taxonomy induction, and since the challenge’s evaluation
framework is readily available for applicability, it makes it a good candidate for
the purpose of evaluating the quality and usability of focused crawling results.
Since we use ���� for extrinsic evaluation, we introduce the system in more
detail in the next section.

2.7.2 The TAXonomy Induction system (����)
The TAXonomy Induction system (����) by Panchenko et al. (2016) is based on
two principles: scalability and simplicity. The general idea of ���� is to receive
a set of domain-de�ning terms as input, processes text corpora, and output a
taxonomy. It is based on the following four general steps:

1. Domain-speci�c corpora are collected and merged with general-purpose
corpora (e.g., with texts from Wikipedia).

2. Candidate hypernyms are extracted based on substrings and lexico-syntactic
patterns, such as de�ned by (Hearst, 1992)

3. Candidates are then pruned, such that each term has only a few salient
hypernyms
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4. Optimization of the overall taxonomy structure, such as removing cycles
and inserting links for disconnected components, is the last step in this
procedure.

In (Panchenko et al., 2016), we argue that it is more important to be able to process
large input data rather than performing complex extraction inference on little
data. The system takes a text corpus as input and outputs a topically relevant
taxonomy de�ned by the corpus. In our case, we limit the set of corpora to the
singleton set of each crawled corpus and one general corpus. Having the data
�xed, ���� induces a taxonomy in 4 steps:

1. candidate based substring matching for seed terms,

2. corpus-based pattern matching, for instance, generation,

3. �ltering of noisy relations by means of statistical measures, and

4. �nal taxonomy construction by removing graph cycles, etc.

For substring matching, the following score is applied: Consider the (possibly
multi-word) candidate expressions � and � , where |� | >= |� |, i.e., � is longer
than � , the hypernymy score �(� , � ) is then calculated as:

�(� , � ) =

����
�����

|� |
|� | if |� | � 3 and

{�� � � , �� � � � � � | �1�|� | � ���|� |}
0 otherwise.

(2.7)

which is intuitively described as: The score is larger than one i� the expression �
is at least three characters long and it matches a subsequence at the end of term � .
Consider as an example the hyponym/hypernym instance ‘apple tree’ is a ‘tree’. In
some cases, �(� , � ) is changed such that � must match the beginning of � , e.g., for
French expressions or English expressions containing a preposition, for example,
in ‘sandwich with ham’. This method typically provides high precision results,
although false positive examples will naturally occur, for example, ‘money laundry’
is a ‘laundry’ would be a wrong prediction. However, those instances are much
rarer and are accepted mistakes. Despite its high precision, or maybe even because
of it, the substring method is not applied in our scenario because it is corpus
independent and only considers seed terms. While it might improve �nal results
for each tested corpus equally, we do not want to interfere with the independent
evaluation of the downloaded corpora. We want to measure the importance of
the focused corpora, hence we are ignoring the substring matching method.

In the corpus-based method, candidate hypernyms are extracted via lexico-
syntactic patterns à la (Hearst, 1992), often also referred to as Hearst-patterns. We
follow ���� and rely on the PatternSim (Panchenko et al., 2012) implementation.21
To reduce the number of noisy relations, e.g., wrongly inferred hypernym rela-
tions in both directions, an asymmetric pattern-based hypernymy score between
candidate terms is applied. This score is also neglected in this work since we are
evaluating only one corpus collection at a time. Further pruning strategies on

21. https://github.com/cental/PatternSim

https://github.com/cental/PatternSim
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loose relation candidates are applied as detailed in (Panchenko et al., 2016). Finally,
the full taxonomy graph is built by removing cycles and connecting disconnected
components to the root node (Faralli et al., 2015).

2.7.3 Evaluation Procedure
Although we extrinsically evaluate the crawler’s performance here, we actually
test the crawler’s performance in a two-fold setup, intrinsically by data analysis
and extrinsically by measuring the performance of the tasks using the data. First,
we present the perplexity values during runtime and show that the crawled
corpora indeed improve over time. We do this again by creating di�erent language
models at di�erent intervals and measuring perplexity regarding the test data.
We then test the crawler’s performance extrinsically using the task of in-domain
taxonomy induction. We use three di�erent topics from the trial dataset provided
by the SemEval challenge on taxonomy induction (TExEval; Bordea et al., 2015).
The challenge provides the input data and the evaluation framework for the
automatically generated in-domain taxonomies:

1. arti�cial intelligence (AI),

2. plants,

3. vehicles.

For each domain (topic), a list of terms is provided that de�nes the domain
of interest. The lists contain single word and multi word expressions (MWEs),
e.g., ‘neural networks’, ‘apple tree’, etc. Our focused crawler, which we named
T���C������, takes as input:

1. an initial languagemodel or a text corpus that can be used to train a language
model, and

2. seed URLs as the crawler’s starting point.

Similar to Panchenko et al. (2016), we use articles from the topic’s respective
Wikipedia category for initialization, i.e., we use them for training, and a random
subset of articles from each subcategory of a particular category is retrieved and
used for testing. In order to generate the seed URLs, we use web queries as used
by the BootCat method (Baroni and Bernardini, 2004). BootCat takes as input a list
of terms, creates tuples, triples, quadruples, or more, with random permutations
of the terms, sends the tuples/triples/quadruples/... as a query to a web search
engine, and returns a list of URLs. We generated 1, 000 random query triples
per domain and limited the search result to the top 10 hits. An overview of the
initial data is listed in Table 2.3.

2.7.4 Intrinsic Evaluation: Crawled Data
In order to test the language model capabilities, we chose to evaluate di�erent
values of �, i.e., di�erent sizes of language models. We tested � = 1, which
represents a simple bag-of-words (bow) approach vs. � = {2, 3, 5}, which take the
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Table 2.3: Data as provided by the TExEval organizers and collected by BootCat.

Domain ai plants vehicles
Terms 2,218 513 93
Queries 1,000 1,000 1,000
URLs 1,605 6,620 7,414
#Articles (train) 263 85 49
#Sentences (train) 11,371 4,915 1,696
#Tokens (train) 212K 82K 30K
#Articles (test) 250 250 250
#Sentences (test) 12,901 5,753 14,473
#Tokens (test) 212K 96K 294K

Table 2.4: Collected data using di�erent crawler parameter settings.

ai plants vehicles
nf 5-gram nf 5-gram nf 5-gram

downloaded size
(raw HTML) 234GB 141GB 292GB 172GB 394GB 168GB
downloaded size
(plain text) 21GB 14GB 13.5GB 15.3GB 12.5GB 15.1GB

# documents 36M 17M 3.6M 2.2M 4.1M 2M
# sentences 98M 176M 209M 117M 119M 193M
# relevant sentences 35M 26M 16M 37M 6.6M 3.9M
# unique rel. sent. 24M 14M 13M 16M 5.5M 7.6M

sequence of words into account. Each crawl ran for about �ve days. On average,
about 15 GB of text data, which amounts to roughly 230 GB of raw HTML data
and 10 million downloaded documents, were harvested by each crawl. Table 2.4
summarizes some properties of the collected data.

To measure the quality of a crawl during runtime, we de�ne the harvest
rate at time � to be:

������� ����(�) �=
����(�, �)
����(�,�)

,where

����(�, �) �=
�

�
�=1

�(��, �) , and

�(�, �) �=

�
1 if ��(�) < �
0 otherwise ,

(2.8)

In words: after crawling � documents, we measure the ratio of good documents
(documents below a threshold �) out of all documents downloaded at time �. In
the experiments, the same perplexity threshold value was used to select ‘good
documents’ as was used throughout crawling to prevent links from queuing up.
Since perplexity values are subject to a particular language model, and to compare
the di�erent runs qualitatively across di�erent models, we computed a perplexity
value for each downloaded document regarding a reference 3-gram languagemodel.
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Figure 2.4: Harvest rate vs. time: the ratio of perplexity pruned documents to downloaded
documents at time � (top row). The bottom row shows the harvest rate from � = 1 to
� = 30ñ104, i.e., the beginning of each crawl.
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Figure 2.5: Number of downloaded seed URL documents from 0 to 10,000 on a logarithmic
scale (y-axis) vs. download time as from �rst to 8 millionth document.

The results of this study are shown in Figure 2.4, top row. As expected, the di�erent
models used for crawling show similar asymptotic behavior for each value of �
across the di�erent topics; namely, they have a larger and apparently convergent
harvest rate. In the long run, the sequence-based models (� = {2, 3, 5}) are not
clearly distinguishable, i.e., all seem to converge to a higher harvest rate than the
bow model (� = {1}) or the non-focused model. For illustrative purposes, consider
ai; here, more than 80% of the documents are considered good under a focused
crawl with a sequence language model, even after crawling 600K documents,
whereas the non-focused crawl ‘loses its focus’ over time, and the bow models
perform not as stable as the sequence models. To summarize, all sequence-based
models (� >= 2) perform relatively stable across di�erent topics; the bag-of-words
model (� = 1) performs worse but still better than the non-focused model.

Another interesting observation is that the non-focused crawl has a better or
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Figure 2.6: Number of downloaded seed URL documents from 0 to 2,000 (y-axis) vs.
download time as from the �rst to the 80 thousandth document. The last bar includes the
number of seed URLs downloaded after the 80 thousandth document.

similar harvest rate for the �rst nearly 15K documents (cf. Figure 2.4, bottom row),
whereas the focused crawl needs a ‘heating phase’ until its harvest rate starts to
grow. Simply put, the focused crawls seem to explore uninteresting documents
�rst, whereas the non-focused crawl explores more interesting documents �rst.
As this seems counterintuitive, we believe the only explanation comes from the
di�erent strategies for seed processing and also the actual document quality of a
seed URL regarding further usability for corpus creation. Note that a good seed
URL is a good hub, i.e., it contains a lot of URLs to interesting web documents,
while it might still be a bad authority for our scenario, i.e., it does not contain
much valuable text (Kleinberg, 1999).

Since Heritrix’s default queuing strategy, mixed with parallelism and politeness
settings, is inconclusive to some extent – it is nearly impossible to analyze the
timeline exhaustively –we investigated the processing of seed URLs in time and
show the results in Figure 2.5 for 8M documents and in Figure 2.6 for the �rst 80K
documents. As becomes apparent, the default (non-focused) strategy downloads
seed documents regularly over a long period of time, e.g., for vehicles and for
plants, more than 1,400 seed URLs are downloaded after downloading 80K other
documents, in fact, the last few seed URLs were processed after 7.5 million
downloaded documents. Note that Heritrix’s default crawling strategy is not
strictly breadth-�rst nor depth-�rst, but a mix of both, which is relatable since its
main purpose is to download entire ‘snapshots’ of the web. However, in the focused
crawling strategy, however, seed URLs are initialized with the highest possible
priority score to guarantee quick processing. It might still happen, though, that
politeness settings limit the access to the seed URL documents; parallel processing
of the queue leads to other URLs being crawled �rst.

Another way of measuring the quality of a downloaded corpus from a language
modeling perspective is to create a web-size language model from the downloaded
corpora and measure perplexity regarding held-out test documents from the same
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Figure 2.7: Perplexity tested on test documents, with one LM at certain intervals of the
crawl.
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Figure 2.8: Amount of OOVs tested on test documents regarding a certain LM, with one
LM at certain intervals of the crawl.

domain – similar to Section 2.5. For this, we again created a language model from
each of the crawls after speci�c amounts of tokens. We added the data to the
training corpus to model a corpus enhancement scenario. The initial training
corpus size can be seen in Table 2.3, and the resulting perplexity values are plotted
in Figure 2.7. The results con�rm that the di�erence in the domain a�nity between
� = 2 and � = 5 is marginal, but a substantial di�erence exists to � = 1 and the non-
focused setting. We also see the same e�ect as in the harvest rate evaluation, i.e.,
for roughly the �rst 10 to 30 million tokens, approximately around 20K documents,
the non-focused crawls perform on par or better than the focused strategies. More
importantly, we can also see a decline in the number of out-of-vocabulary words
(OOVs) regarding the LMs at each interval (cf. Figure 2.8). The relative di�erences
seem only marginal, though. For further evaluations, we used only those corpora
crawled with the 5-gram model since it performs most stable across the domains.

2.7.5 Extrinsic Evaluation: Taxonomy Induction
The ���� system is then applied using the collected data. To compare the perfor-
mance of ���� with a commonly used standard corpus, we included Wikipedia.
For a fairer evaluation, we adjusted the size of the crawled data to the size of
Wikipedia, which means that we used only the �rst 11GB of plaintext data crawled
in each scenario because our Wikipedia amounts to 11GB. We calculate precision,
recall, and F1 measures according to TExEval (Bordea et al., 2015). Table 2.5 to
Table 2.7 list the results of the system on the taxonomy induction task. On the
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Table 2.5: Results on the taxonomy induction task for ai. Relation density is computed as
the ratio of unique in-domain relations to corpus size in million.

wiki nf 5-grams
# unique relations 8.1M 3.0M 3.1M

# unique in-domain relations 34K 34K 53K
relation density 20.0 25.9 30.2

P .66 .68 .64
R .07 .08 .10
F1 .13 .15 .18

Table 2.6: Results on the taxonomy induction task for plants. Relation density is computed
as the ratio of unique in-domain relations to corpus size in million.

wiki nf 5-grams
# unique relations 8.1M 3.6M 4.2M

# unique in-domain relations 52K 55K 112K
relation density 30.1 45.6 63.8

P .78 .67 .58
R .54 .45 .56
F1 .52 .39 .57

one hand, most relations are created from Wikipedia; on the other hand, more
in-domain relations are created with each focused crawl. We tested in-domain
relations by measuring vocabulary overlap with the gold data, i.e., if one part of a
relation (hyponym or hypernym) exists in the target taxonomy’s vocabulary, we
count it as in-domain. The results show that the focused crawls perform best in
terms of F1 score in all domains, whereas a higher recall generally dominates the
�1 score, which can be attributed to higher coverage. Note that for the domains ai
and plants, the focused crawl attains more unique in-domain relations with fewer
unique relations in total than, for example, Wikipedia. Interestingly, this is not
the case for the vehicles domain. By looking into the data, this can be attributed to
the high number of web pages o�ering cars for sale, which o�er fewer taxonomic
relations. Also, relation density, i.e., the ratio of in-domain relations vs. corpus size
in millions of tokens, is in two out of three domains higher for the focused crawls,
which we explain with a much higher domain focus. Since the lower precision
for the focused crawls, in general, seems rather counterintuitive, we explain
this phenomenon as follows: As the size of the corpus grows, more pruning is
needed in order to distinguish good relations from noisy relations since eventually,
frequent words tend to be related to everything else. For the focused crawls,
domain-speci�c words are essentially frequent words; thus, we’d need to adjust
the pruning parameter in ���� to balance the number of relations for each corpus.

Table 2.8 shows some correctly and in-correctly extracted examples. The last
example for vehicles nicely shows the domain di�erence to the general domain,
i.e., generally spoken, a ‘rocket’ is considered to be a ‘missile’, but in the ‘vehicles’
domain, the term ‘rocket’ is a short form of ‘rocket car’, a dragster car powered
by a rocket engine and is thus considered to be a vehicle.
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Table 2.7: Results on the taxonomy induction task for vehicles. Relation density is
computed as the ratio of unique in-domain relations to corpus size in million.

wiki nf 5-grams
# unique relations 8.1M 2.3M 3.1M

# unique in-domain relations 27K 12K 23K
relation density 15.9 9.7 13.5

P .70 .64 .50
R .38 .35 .50
F1 .49 .45 .50

Table 2.8: Examples for extracted relation in the di�erent domains.

Domain Hyponym Hypernym correct
ai ability cognitive skill no
ai act event yes
ai active learning instructional method yes
plants hellebore poisonous plant yes
plants helianthemum rockrose no
plants redbud angiospermous tree yes
vehicles armored personnel

carrier
armored vehicle yes

vehicles rocket vehicle yes
vehicles rocket missile no

2.8 Conclusion
Due to the dynamic nature of the web, evaluating focused crawling methods is
a non-trivial task. We presented a focused crawling approach using statistical
N-gram modeling and combined the evaluation with an extrinsic task based on
in-domain taxonomy induction. Also, we evaluated the T���C������ system in
depth regarding its languagemodel parameters and showed that a bowmodel could
be su�cient for guiding a crawl. Still, at least a 2-gram model is recommended.
We con�rm that it is bene�cial to use the sequence capabilities of language models,
where the di�erence in performance is not signi�cantly larger between a 2-gram
model and a 5-gram model. The 5-gram model still performs constantly better,
though it comes with higher costs for construction, i.e., longer initialization time
and slower computation time because of more back-o� calculations and more
memory consumption. However, since the initial input data is typical of a rather
small nature, for example, a couple of hundred documents, those drawbacks are
of minor importance. If computational resources are short, though, falling back
to a 3-gram or 2-gram model will yield decent results.

We conclude that while the intrinsic performance evaluation suggests that the
focused methods have a large margin to the non-focused method (cf. harvest rate
in Figure 2.4), the extrinsic evaluation based on taxonomy induction suggests that
either a) general domain terms still dominate in-domain taxonomies, or b) focused
web crawls cannot gather the data needed for the in-domain taxonomies. This
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suggests that focused crawling should be evaluated on more extrinsic tasks, and
only a common improvement will be expressive enough.

We note that the results of the extrinsic evaluation show that the presented
approach to focused crawling provides corpora, which yield higher recall than
Wikipedia due to higher coverage of in-domain terms. Overall, this research shows
that it is possible to automatically extend corpora based on focused crawling
with language models. It is bene�cial not only for constructing better language
models of the targeted domain but also in applications requiring large in-domain
collections, such as taxonomy induction. In times where many NLP systems rely
on large background corpora for, e.g., computing word embeddings or N-gram
language modeling, focused crawling is a viable and straightforward way to grow
one’s relevant background text collection. Note that even more precise in-domain
corpora can be compiled by further pruning the downloaded documents using
the same ranking methodology as during crawl time, i.e., the same language
model and perplexity scoring.

All software packages are made available as open-source applications under
permissive licenses.22,23

22. https://tudarmstadt-lt.github.io/topicrawler/
23. https://github.com/tudarmstadt-lt/seg

https://tudarmstadt-lt.github.io/topicrawler/
https://github.com/tudarmstadt-lt/seg
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3
Sense Induction

In this chapter, we discuss semantic structuring on various levels, e.g., grouping
semantically related words into clusters is one form of semantic structuring,
where the result could also be interpreted as topics. We present ideas of measuring
semantic similarity (or semantic relatedness) between words and use similarity
graphs to cluster those words into so-called sense clusters.

Word embeddings – generated with neural networks (NN) or other matrix fac-
torization techniques – are an important tool in natural language processing (NLP).
Embeddings are lower dimensional dense representations of a larger, potentially
very sparse vector space. Unless stated otherwise, we refer toword embeddings, i.e.,
dense vector space representations of words, tokens, or word-pieces (Baeza-Yates
and Ribeiro-Neto, 1999), when we mention the more general term embeddings in
this work. Standard vector space models (VSMs) of words already provide intrinsic
semantic properties, just because its original dimensions, or more generally, the
features of a word during the optimization process, depending on the context
of the occurrence of a word (Mikolov, Yih, et al., 2013), thus the Distributional
Hypothesis (DH; Harris, 1954) is implicitly applied by design.

In this work, we focus mainly on embeddings generated by NN�– so-called
neural word embeddings – because of their superior performance and ongoing
impact in NLP research. However, we note that our �ndings apply to other
types of embedded word vector spaces too –we present experiments with similar
outcomes using LSA vector representations.

3.1 Sense Induction by Retro�tting Static Word Em-
beddings

An essential issue with static word embeddings (SWEs) is the lack of sense-
awarenes, i.e., a word and its vector share a bijective mapping and ignore the
multiplicity of meanings a word can bear, e.g., the word ‘iron’ may refer to an
atomic element, a device for smoothing clothes, a golf club, a color, and, due
to the changing nature of language, potentially in�nitely many more. W����
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N�� (Fellbaum, 1998) de�nes four di�erent interpretations of ‘iron’. All of those
di�erent meanings, however, share the same point in the vector space, and still,
these vectors are used in downstream tasks such as sentiment analysis, named
entity recognition, question answering and many others, which might lead to
misinterpretations and error propagation.

In this work, we will empirically show that word embeddings mainly keep
dominant senses in the vicinity of an ambiguous word, as de�ned by the back-
ground corpus they were estimated from; and we illustrate this issue based on
multiple examples. Sense inventories are required to distinguish di�erent word
senses, and we argue that meanings, rather than words, should be represented
in the vector space. We strive for several distinguished vectors per ambiguous
word, corresponding to its senses (Navigli, 2009; Denkowski and Lavie, 2014).
In addition, we show that embeddings can hardly be used for unsupervised
word sense induction (WSI), i.e., to create such sense inventories automatically.
Accordingly, we use external resources as sense-inventory (manually created and
automatically generated), showing substantial relative improvement for multiple
word-similarity tasks. Also, we believe senses cannot be ’hard-coded’, i.e., the
number of senses and their distinctions depend on time and domain, which is why
we argue for inducing word senses in an unsupervised fashion, i.e., clustering in
a post-processing sense-induction scenario, see, e.g., (Navigli, 2009; Denkowski
and Lavie, 2014) for further details.

Hypothesis: In (Remus and Biemann, 2018), we hypothesize that retro�tting
existing word embeddings to gain sense-aware word embeddings, or so-called
sense vectors, is bene�cial, even for word similarity computations. For this, we
use word sense induction techniques and apply the resulting sense vector repre-
sentations to the word-similarity task. Particularly for rare word combinations,
we expect that minor senses will have a more balanced e�ect, whereas without
retro�tting, major senses dominate in word-similarity computations. We verify
our hypothesis for multiple embeddings from four monolingual corpora and
one corpus computed from paraphrases. We present relative improvements on
various word similarity benchmark datasets and show that minor senses are indeed
the reason for improvements. Additionally, we show two alternative baselines:
A���E����� (Rothe and Schütze, 2015) and A��G��� (Bartunov et al., 2016),
which model senses as part of the training process for so-called neural sense
embeddings. To the best of our knowledge, we were the �rst to employ word
sense induction techniques for retro�tting single word vectors to the multiplicity
of their meanings, creating new word-sense vectors, and using those for semantic
similarity by pro-actively addressing minor senses (Remus and Biemann, 2018).

3.1.1 Related Work

Although word similarities are rarely used explicitly in downstream tasks, it goes
without saying that semantic properties such as semantic similarity are implicitly
necessary. A number of word similarity benchmarks exist for the purpose of
intrinsically testing semantic properties of word embeddings (Hill et al., 2014;
Finkelstein et al., 2001; Bruni et al., 2014; Gerz et al., 2016). Word similarities are
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usually measured with cosine similarity of two given vectors � and �

cos (�, �) =
���

||�|| ñ ||�||
. (3.1)

� and � can be represented by words or senses; we will outline further details
in the next subsections.

Sense Embeddings

Integrating sense information in embeddings is still an active line of research. For
reference, we compare our results to existing projection models, which include
sense induction or sense labeling in their learning process. Rothe and Schütze
(2015), for example, introduced A���E�����, a neural network model which
enriches existing embeddings with word sense information by explicitly learning
the representations.1 The sense inventory is taken from W���N�� but Rothe and
Schütze (2015) particularly emphasize that any lexical or semantic resource could
be used. We tested their provided embeddings, which extend Mikolov, Chen, et
al. (2013)’s ����model and used them for comparison. Neelakantan et al. (2014) and
Bartunov et al. (2016) present neural architectures which gather sense information
purely from monolingual text. We compare to A��G��� (Bartunov et al., 2016)
as an additional baseline because it compares favorably to (Neelakantan et al.,
2014). A��G���’s main parameter essentially regulates the maximum number of
senses per word, but the algorithm �nds the number of senses automatically in
this range. Eventually, each word has one or more corresponding sense vector.
We report the results of this method in Section 3.1.4.

Retro�tting

Retro�tting is the process of editing or �tting a given item for a speci�c task.
Faruqui et al. (2015) de�nes retro�tting as a post-processing objective that improves
existing word embeddings. Multiple objectives have been de�ned, e.g., Faruqui
et al. (2015) and Kiela et al. (2015) use lexical resources for the retro�tting objective,
while, for instance, Wieting et al. (2015) uses a database of aligned paraphrases.

3.1.2 Methodology
In the remainder of this section, we will use � to refer to a word and � to refer
to �’s corresponding word vector.

Unsupervised Sense Inventory

Our proposed method solely relies on a word vector space and an appropriate
sense inventory. We de�ne a synset for a word � to be the set of similar words that
express the same meaning, i.e., one shared meaning, and the sense inventory of �
to be the collection of its synsets, i.e., the di�erent senses � can bear. We follow
Dorow and Widdows (2003), Pantel and Lin (2002), and Pelevina et al. (2016), and
use an unsupervised WSI method, which provides us with so-called unsupervised

1. http://www.cis.lmu.de/~sascha/AutoExtend/

http://www.cis.lmu.de/~sascha/AutoExtend/
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synsets. The simpli�ed procedure to compute an unsupervised synset given the
word � is the following:

1. compute the top � nearest neighbors

2. compute a similarity score between every pairwise combination of neighbor-
ing words which renders a similarity matrix or a so-called fully connected
similarity graph

3. compute a clustering, where ideally, each cluster of words represents a
di�erent sense of �.

This general methodology has been proven to perform su�ciently well on a
number of NLP tasks, although details of the procedure might vary. We test
various parameters in each step of this methodology, which we explain in more
detail in the next sections.

Similarity Matrix Computing a similarity matrix� between terms � and � from
the respective embedding matrix is straightforward: we use the cosine similarity
such that the entry ��� = ��� = cos(�, �). Computing a similarity matrix � for
symbolic/graph-based thesauri is done by retrieving the top 50 similar terms for
every word �� and setting ��� = 1 for every word �� � �� i� �� is contained in
��’s list of top 50 similar terms or vice versa:

��� = ��� = 1 i� �� � top50(��) � �� � top50(��) . (3.2)

Clustering Since words cannot be expected to have a �xed number of senses,
we tested two graph-based clustering algorithms, where the algorithm itself
determines the number of clusters. Because of its symmetry, the similarity
matrix can be interpreted as an adjacency matrix for an undirected similarity
graph. We tested the following graph clustering algorithms: 1.) CW (Chinese
Whispers; Biemann, 2006), 2.) MCL (Markov Clustering; van Dongen, 2000).2
Graph clustering algorithms perform best if the adjacency matrix is sparse. To
make the fully connected dense similaritymatrix sparse, we prune� by a threshold
parameter ����:

��� = 0 i� ��� < ���� . (3.3)

Apart from that, we use the default parameter settings suggested by Biemann
(CW; 2006) and van Dongen (MCL; 2000). Singleton clusters, i.e., clusters which
contain only one element –which occur frequently for large ���� – are merged into
one ‘residual’ cluster. The resulting clustering represents the collection of synsets
�� of the word �; we refer to a particular synset or sense � of � as ��� . We want to
stress that � is not contained in any of its synsets, i.e., ��� = ��� � � per de�nition.

Additionally, we use an unsupervised sense inventory, pre-computed by
Biemann and Riedl (2013) and Riedl (2016) using the J�B��T��� (JBT) framework,

2. We also tested other clustering algorithms, such as k-means and self-organizing-maps, for
comparison purposes but report results only for CW andMCL since they do not depend on the
number of clusters as a parameter and yield visually better clusters.
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which produces a graph-based sparse model.3 JBT also applies the CW algorithm
for inducing word senses based on counting context overlaps, but JBT allows to
do this on a large scale due to its implementation in a multi-computer setup using
the hadoop ecosystem4. This resource provides a di�erent, more diverse set of
neighboring words than the vector space neighborhoods, as we shall examine
in Section 3.1.4.

Retro�tting Word Embeddings

The main idea of retro�tting word vectors to sense vectors is to �nd a unique
representation for a particular sense of a word. Using sense inventories, the
individual word vectors from a particular synset, which describe a unique sense of
the target word, are merged such that a di�erent vector will represent each sense
of a word (resp. synset). For a target word �, we average all vectors � of words �
in the synset ��� and add the vector � with weight � in order to compensate for
semantic drift, for which we found strong indications in preliminary experiments:

�� = �� + (1 � �)�
�����

�
|��� |

, (3.4)

where � is a scalar weighting factor in [0, 1]. A geometric interpretation of this
is �rst to �nd a cluster’s center and then shift the center by � into the direction
of the target word. Note that the clustering for any word � is performed without
� itself, i.e., it is not contained in the sense inventory, cf. (Dorow and Widdows,
2003), hence the shifting.

We experimented with the size of ��� . This stems mainly from the observation
that clusters naturally have di�erent sizes during clustering. The largest clusters
often refer to major senses, whereas smaller clusters are usually minor senses –
as de�ned by the background corpus from which the model was estimated. To
alleviate the e�ect of averaging noisy words in large clusters, we select only the
top � words in a synset, as de�ned by the clustering.

Sense-Aware Word Similarities

We tested di�erent procedures for computing sense-aware similarities between
any two words � and �:

sim(�, �) = argmax
�

cos(��, �) (3.5)

sim(�, �) = argmax
�

cos(�, ��) (3.6)

sim(�, �) = argmax
�, �

cos(��, ��) . (3.7)

Equations (3.5-3.7) involve �nding the nearest senses � and � for the words �
and �. We compare these metrics to the standard cosine similarity cos(�, �),
which is not sense-aware.

3. see http://ltmaggie.informatik.uni-hamburg.de/jobimviz (Ruppert et al., 2015)
4. https://hadoop.apache.org/

http://ltmaggie.informatik.uni-hamburg.de/jobimviz
https://hadoop.apache.org/
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3.1.3 Experimental Setup
Word-similarity Benchmark Datasets

Hill et al. (2014) de�ne that there must be strong distinction between similarity
and relatedness between word pairs. While related words roughly �t into the same
topic, similar words are more speci�c; they �t into the same topic and constitute
(partial) substitutability. Consider, for example, the words student and professor,
which are undoubtedly related but not similar because they share only a few
contexts in which the two words can be exchanged unconditionally, hence they
are considered highly dissimilar due their antonymic nature, while lecturer and
professor might be exchangeable in more context depending on the situation and
are thus related and more similar.

TheW���S��353 (Finkelstein et al., 2001) dataset describes relatedness values
of 353 noun pairs, and the S��L��999 dataset represents word similarity for 666
noun pairs, 222 verb pairs and 111 adjective pairs. Particularly the latter’s emphasis
is to model opposite meanings (antonym-like) as very non-similar.

Another dataset is the MEN5 dataset (Bruni et al., 2014), which models, analog
toW���S��353, relatedness or association rather than similarity. Bruni et al. (2014)
randomly sampled 3, 000word pairs from words that occur at least 700 times in the
ukWaC + Wackypedia combined corpora.6 MEN comprises of inter part-of-speech
word pairs, e.g., pairs like (apple, noun : orange, adjective) or (bear, verb : boxer,
noun). It is also worth noting thatMEN comes in two forms, a) in a lemmatized
form with POS-tags, and b) in natural surface form. We report results on the
former, lemma form with POS-tag information.

The ������� dataset (Gerz et al., 2016) can be interpreted as a larger version
of the verb part of S��L��999, exclusively containing 3, 500 verb pairs, allowing
more meaningful benchmarking with more and better-represented examples due
the use of external resources such as V���N��.

Embedding Matrices

We used pre-trained word vectors provided by Mikolov, Chen, et al. (2013), which
were trained on Google News texts containing 6 Billion words.7 Using those
pre-trained SGNS embedded vectors and cosine similarity between words yields
a baseline Spearman correlation score of � = 0.44 on the S��L��999 dataset.
Additionally, we use G��V�8 (global vectors; Pennington et al., 2014) embeddings,
which yield a baseline correlation score of � = 0.37 for S��L��999.

Schwartz et al. (2015) de�ned the context of a word to be the symmetric pattern
it occurs with. A symmetric pattern is a shallow pattern in the form of ’X or Y’, ’X
and Y’, ’X as well as Y’, ’X rather than Y’, where particular instances ofX and Y occur
in both positions, e.g., ’cats and dogs’ and ’dogs and cats’ are considered instances
of a symmetric pattern, while, e.g., ’point of view’ cannot be altered without losing

5. https://sta�.fnwi.uva.nl/e.bruni/MEN
6. http://wacky.sslmit.unibo.it/
7. We used the 300-dimensional model trained on Google News. The model and the source

code are available at https://code.google.com/p/word2vec/.
8. We use the 6 Billion word, 300-dimensional model available at http://nlp.stanford.edu/

projects/glove/.

https://staff.fnwi.uva.nl/e.bruni/MEN
http://wacky.sslmit.unibo.it/
https://code.google.com/p/word2vec/
http://nlp.stanford.edu/projects/glove/
http://nlp.stanford.edu/projects/glove/
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its meaning, the pattern ’X of Y’ is thus asymmetric. Some symmetric patterns are
considered to be particularly indicative for antonymy, e.g., ’either X or Y’ or ’rather
X than Y’. Schwartz et al. (2015) used symmetric patterns to build an antonym-
sensitive embeddingmodel frommonolingual corpora. We use their 10K dimension
model built on an 8G words corpus9 and refer to this embedding type as ������.
We tested the 300 and 500-dimensional vectors provided by Schwartz et al. (2015),
but the 10K version achieved the best results among the ������ embeddings. All
������ reported results are thus based on the 10K dimensional embedding.

Wieting et al. (2015) used PPDB (paraphrase database; Ganitkevitch et al., 2013)
pairs to train a projection matrix called ��������. The matrices are initialized
with the G��V� embeddings and �tted to match with PPDB’s paraphrases. By
using PPDB, the model is already guided to represent synonymous expressions
with similar vectors, as opposed to expressions with opposite meanings. Wieting
et al. (2015) further tuned the matrices, e.g., they performed hyperparameter opti-
mizations onW���S��353, resulting in ��������WS, and S��L��999, resulting in
��������SL. These embeddings are thus tuned for either relatedness or similarity
and build a strong baseline with a correlation score of � = 0.68 on S��L��999.

Wieting et al. (2016) later introduced ��������� embeddings which further
improved on the S��L��999 task by using character �-grams so that the model can
also account for unknown words that are not in the training corpus. Noteworthy
is also the work by Recski et al. (2016), who further improved the S��L��999
results by using concept networks and strong supervision, and Mrkšić et al. (2016)
who used counter-�tting, a synonymy versus antonymy injection method, and im-
proved results up to � = 0.77 and � = 0.74 respectively. However, we deliberately
do not go into details here since these supervised models are out of the scope of
this work: we focus on the relative improvement of monolingual embeddings by
exploiting unsupervised WSI methods and stay agnostic as to whether antonyms
are similar or dissimilar since they are mostly similar except in one semantic
dimension. We are thus independent of any manually developed resource.

We also make use of two LSA(latent semantic analysis) embeddings trained
on English corpora and provided by Günther et al. (2015).10 Both models are
based on a 2-Billion-word corpus and use a positive pointwise mutual information
weighting scheme (PPMI) before applying singular value decomposition (SVD) with
300 target dimensions and a vocabulary of 100K words. We refer to the model
based on a bag-of-word representation of documents as LSA��� and to the model
applying a HAL-like (Hyperspace Analog to Memory) context representation
as LSA��� (following terminology of Günther et al., 2015). HAL is based on a
10-word moving word window, where words that are used in related contexts
(within the same window) have high similarity (Burgess, 1998).

3.1.4 Results
Word Sense Induction
We compute the top 500 neighboring terms from a word vector by means of cosine
similarity. Clearly, the number of nearest neighbors de�nes the vocabulary of the

9. http://homes.cs.washington.edu/~roysch/papers/sp_embeddings/sp_embeddings.html
10. Models are available for download under http://www.lingexp.uni-tuebingen.de/z2/

LSAspaces/.

http://homes.cs.washington.edu/~roysch/papers/sp_embeddings/sp_embeddings.html
http://www.lingexp.uni-tuebingen.de/z2/LSAspaces/
http://www.lingexp.uni-tuebingen.de/z2/LSAspaces/
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Table 3.1: Examples of related words according to the respective technique. Superscript
numbers refer to senses, * is another syntactic form of the query word.

word SGNS JBT

iron irons�, wood1, wedge1, fairway1,
niblick1, putter1, mashie1, tee1,
bunker1, steel2, . . .

steel2, metal2, aluminum2, copper2,
zinc3, calcium3, putter1, wedge1,
sand1, . . .

mob Mob�, gangsters1, mobs�, mafia2,
mobsters2, mobster2, gangster1, . . .

gang1, crowd3, protester4,
demonstrator4, Mafia2, thug1,
horde3, rioter4, militia4, gunman1,
. . .

class classes�, classs�, Class�,
grade1, middle2, precalculus1,
semesterlong1, grades1, studens1,
. . .

lesson4, Class�, workshop2,
instructor3, seminar2, training4,
course2, session4, classroom5,
lecture2, autumn5, test6,
exercise6, department5, college5,
. . .

Table 3.2: Average number of clusters for varying �cos and the two graph clustering
algorithms for three embeddings.

����

0.3 0.4 0.5 0.6 0.7 0.8 0.9

MCL SGNS 1.7 13.5 34.5 50.4 38.5 10.2 2.4

��������WS 11.0 33.7 60.3 78.0 78.4 59.1 23.1

LSA��� 1.1 1.4 2.6 8.0 24.0 47.7 44.3

CW SGNS 1.4 3.0 7.9 16.2 15.0 4.0 1.5

��������WS 2.5 5.3 12.3 25.4 33.5 25.3 8.0

LSA��� 1.1 1.2 1.6 2.7 5.9 13.0 14.1

sense inventory of a word. We can con�rm the observation of Faruqui et al. (2016)
and Schnabel et al. (2015) that within neural word embeddings, the frequency
rank of a word’s neighbor depends on the frequency rank of the word itself. This
is clearly an issue because the frequency of a word’s sense also correlates with
the frequency of a word’s occurrence. It makes local sense clustering challenging
because words indicating di�erent senses are not found in a word’s vicinity but
stretch across the entire vocabulary space. Cosine similarity can account for that,
words referring to di�erent senses will point to di�erent directions, but in order
to do local sense clustering, one would need to cluster the entire vocabulary,
which is computationally too expensive to be considered in practice. On the
other hand, it is well-known that graph-based methods can hardly be used to
compute word similarities between arbitrary words because of the nature of its
computation, i.e., there is often no context overlap between words after the graph
pruning step (Riedl, 2016).
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Table 3.3: Cosine similarity (cos) and similarity by the number of shared contexts (#ctx),
next to the relative rank regarding cos for SNGS and #ctx for JBT with respect to the
query word ’iron’.

SGNS JBT

related term cos rank #ctx rank
sense
labelp

putter 0.46 17 36 128 golf
sportswood 0.47 11 119 15

copper 0.37 252 206 9 metallic
elementsaluminum 0.35 427 206 8

salt 0.23 23, 731 31 158
nutrition

fiber 0.20 47, 072 77 38

steam 0.12 416, 270 28 181 smoothing
clothesshirt 0.12 415, 080 – –

Table 3.4: Spearman correlation scores on the di�erent datasets and embeddings. Sense-
aware similarities are marked with ’�S’. The best-performing method is underlined or
marked in bold. We distinguish underlined values to be the winning system with a slight
margin (< 0.03) and boldface values with a larger margin. We marked ��������SL and
��������WS for S��L��999 and W���S��353 in gray since the method’s hyperparame-
ters were optimized on the respective dataset, thus, the results are not comparable. The
lower part evaluates only the noun pair parts of the datasets.
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S��L��999 0.45 0.29 0.44 0.46 0.37 �.�� 0.54 0.55 0.30 �.�� 0.27 �.�� 0.68 0.64 0.66 0.64

MEN 0.72 0.67 0.77 0.78 0.73 �.�� 0.53 �.�� 0.67 �.�� 0.71 �.�� 0.77 �.�� 0.80 0.81

������� 0.43 0.27 0.36 �.�� 0.23 �.�� 0.37 �.�� 0.15 �.�� 0.19 �.�� 0.53 0.53 0.51 0.50

W���S��353 0.58 0.61 0.70 0.69 0.61 �.�� 0.47 �.�� 0.67 0.66 0.59 �.�� 0.72 0.73 0.77 0.75

S��L��999�N 0.44 0.33 0.45 �.�� 0.39 �.�� 0.48 �.�� 0.32 �.�� 0.34 �.�� 0.68 0.66 0.64 0.64

MEN�N 0.72 0.68 0.77 0.79 0.76 �.�� 0.57 �.�� 0.71 0.73 0.73 �.�� 0.78 �.�� 0.80 0.82

Recap, to identify senses, the �rst step is to generate a vocabulary to be
divided into synsets, or sense descriptions. Since the vocabulary for these sense
descriptions is considered to be related to the original word, it is generated by
searching in the neighborhood of a word in the vector space. In the case of
embeddings (neural or factorized), however, the immediate neighborhood of a
word consists mainly of one dominating sense.

Table 3.1 illustrates this issue by showing neighboring/related words for a
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few selected polysemous example words (‘iron’, ‘mob’, ‘c�ass’). For conciseness
and comparison purposes, we only present neighboring words according to SGNS
embedding similarity and JBT. For illustration, we manually labeled the top 40
words and tried to pick expressive examples with di�erent senses. As can be seen
from the example, SGNS neighbors cover fewer senses than JBT. This is clearly
related to the frequency issue described in more detail by Schnabel et al. (2015).

For clustering senses from the embeddings, we tested di�erent values of
���� (Eq. 3.3). Table 3.2 presents an overview of the results, where we show the
average number of obtained clusters/senses. For brevity, we only show results for
one of each embedding type, i.e., SGNS as an input embedding, ��������WS as a
retro�tted input embedding, and LSA��� as a non-neural word embedding. Those
results highlight the sensitivity of the clustering methods regarding input the type
of input embedding. E.g., while ���� changes from 0.6 to 0.7 MCL delivers roughly
�12 clusters for SGNS, almost the same number of clusters for ��������WS and
+16 clusters for LSA���. Based on this initial experiment, we �x ���� = 0.5 and
use CW because this con�guration gives us the most stable clusterings across
di�erent embeddings, with an average number of clusters being around 7. For the
JBT resource, we use the pre-computed sense clusters, which have been computed
by using CW too, and that have 3.73 clusters on average.

Initial experiments revealed that directly clustering word embeddings using
their vector similarity is not bene�cial. We observed a decline in Spearman
correlation scores, and data analysis reveals that mostly only one sense per word
is obtained. For illustration purposes, consider the example given in Table 3.3,
where we highlight scores and ranks for the polysemous word ‘iron’ to some
selected words representing di�erent senses of ‘iron’. Mainly terms referring
to a ‘golf sports’ related sense can be found in the immediate vicinity of ‘iron’,
while other terms referring to common senses are further, equally far, away from
‘iron’. We have observed this e�ect consistently for many terms. Because of those
shortcomings, we focus our further analysis on utilizing existing JBT clusterings
since they have proven helpful for sense induction in the past, e.g., in (Panchenko,
Ruppert, Faralli, et al., 2017).

Sense-Aware Word Similarities
Throughout the evaluation, we use the Spearman rank-correlation coe�cient �.
As one of the baselines, we also used all top � neighbors of a word and treated it as
a clustering with one synthetic cluster when computing sense-aware similarities as
described in Section 3.1.2. We evaluated all datasets for all methods but restrict our
discussion to the most interesting results. Selecting the top 5 cluster words proved
most useful; in our experiments, we found �uctuating best-performing values
between top 3 and top 10, with 5 being among the best values. Also, Equation (3.7)
distinguished itself as the best-performing method with � = 0.5. Other similarity
computations, Equations (3.5;3.6), perform non-satisfactory, sometimes even with
a decline in performance. In the remainder of this work, we refer to embeddings
with the su�x �S to the sense-aware similarities, which performed best in our
previous experiments using the �xed parameters � = 5 and � = 0.5.

We report A���E����� (Rothe and Schütze, 2015) and A��G��� (Bartunov
et al., 2016) scores for comparison. Table 3.4 shows the �nal results using sense-
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unaware similarities, i.e., standard cosine similarity, and our new sense-aware
similarities based on the JBT sense inventory.

The results clearly show that sense-aware similarities perform consistently
better than their sense-unaware counterparts, e.g., the improvement for the sense-
unaware ������ to the sense-aware �������� is impressive 0.15. The di�erence
between most sense-unaware systems to their sense-aware counterpart is between
0.02 and 0.15. Particularly, previously inferior embeddings regarding the similarity
or relatedness task, e.g., G��V� or both LSA embeddings, gain most and more
consistent from this representation. The loss of performance with the ��������*
embeddings is mainly due to the fact that they have already been optimized for
synonymy and antonymy. Injecting the JBT sense inventory –which has no special
treatment for antonyms – attracts antonymous or unrelated words again. In fact,
this happens to a large extent on adjectives, causing the largest losses. We see
consistent improvements across all datasets when looking at the performance
for nouns (lower part of Table 3.4).

We observe minor sense selections in 3, 953 out of 7, 734 examples across all
datasets for SGNS�S, that is �52%. Summarizing, a minor sense was selected in
about half of the labeled word pairs. This is most consistent across nouns and
varies for verbs and adjectives, which could be attributed to coverage issues11,
or inadequate clusterings for adjectives and verbs since the JBT sense clustering
mainly focusses on nouns.

For illustration of adequacy, consider the word pair (‘iron’ : ‘vitamin’) from
the S��L��999 dataset. Figure 3.1 provides details for the example word pair,
including scores and the induced sense inventory. We can see that the S��L��999
score is in the mid-range (5.55 out of 10), standard cosine similarity ranks12 this
example at position 212 with a similarity score of 0.22, which is rather low. The
sense-aware similarity score selects a link between two suitable minor senses.
The particular sense inventory with the top 5 terms can be found in Table 3.1 too.
In the example, averaging the sense terms yields a sore of 0.88, which results in
a far too high rank of 763, but shifting seems to exploit the perfect balance. The
visualization shows the two words and their cluster terms, as well as the averaged
cluster centers on the unit circle. Projection was done with ��SNE (Maaten and
Hinton, 2008). For better illustration, we mapped cluster terms for each word on
a di�erent circle, but note that each circle preserves directions and represents a
scaled unit circle. In this visualization, it is easily recognizable that the vectors for
‘iron’ and ‘vitamin’ are still quite far apart, whereas, for example, the retro�tted
vectors iron2 and vitamin3 are nearby in terms of their cosine similarity.

We computed cross-correlation scores between themethods, e.g., the Spearman
correlation score between SGNS and SGNS�S embeddings yield � = 0.85. This sug-
gests that the individual scores di�er, although �nal S��L��999 correlation scores
do not seem to bene�t drastically (e.g., +0.02 di�erence for SGNS to SGNS�S).

11. Coverage is around 98% for ������ and 99% for others.
12. Note that Spearman correlation compares ranks.
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S��L��999 / rg(S��L��999) 5.55 / 622
SGNS / rg(SGNS) 0.22 / 212

SGNS�S / rg(SGNS�S) 0.59 / 488
|��iron| {88, �, 98}

|��vitamin| {59, 88, ��}
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Siron = { {zinc, calcium, magnesium, potassium,
mineral},

{sugar, salt, grain, soy, starch},
{steel, metal, copper, aluminum,
titanium} }

Svitamin = { {supplement, hormone, pill, medication,
medicine},

{nutrient, calcium, antioxidant, acid,
potassium},

{sugar, salt, oils, starch, herb} }

Figure 3.1: Scores achieved by sense-aware and sense-unaware word similarity com-
putation for the word pair (‘iron’ : ‘vitamin’). rg(�) refers to the rank regarding the
S��L��999 dataset. Selected clusters by the method are written in boldface or underlined.
Visualization is based on terms on the unit circle. Every circle represents a unit circle in a
joined plot for illustration purposes. The inner circle shows the di�erent sense vectors
and the original vectors, the middle circle shows clustered terms generated by the word
‘iron’, and the outer circle represents clustered words generated by the term ‘vitamin’.
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To quantify the minor sense e�ect, we took the S��L��999 dataset and com-
puted an interestingness score for each word pair. The interestingness is de�ned
as a combination of rank di�erences:

interestingness = ( max(rg(S��L��999))
� | rg(S��L��999) � rg(SGNS�S| )

+ | rg(SGNS�S � rg(SGNS)|
(3.8)

The intuition of this score is to maximize the di�erence of the baseline system
(SGNS) compared to the improved system (SGNS�S) while minimizing the di�er-
ence of the human rating (S��L��999) to SGNS�S. Sorting the list of examples
in descending order by interestingness provides an overview of which examples
were predicted wrong by the baseline system but correct by our system. Sorting
the list in ascending order gives us examples of both systems performing equally
bad compared to the human rating. The interestingness score of the (‘iron’ :
‘vitamin’) example is 1040. We use this scoring and quantify the selection of
minor senses in Figure 3.2.

As expected, we found that minor senses are most bene�cial for ambiguous
examples, which were mispredicted before, but at the same time, the method
introduces more noise for words that are rather unambiguous or antonymy has
already been modeled. Minor senses are mainly chosen in the midrange to the
top range of interesting examples. We have thus proven our hypothesis that
sense-aware word similarities are indeed bene�cial.

3.1.5 Testing Multiple Languages
In (Logacheva et al., 2020), we test the system’s performance for multi-language
lexical similarity and relatedness tasks. More speci�cally, we use the S��R�11
datasets13 (Barzegar et al., 2018), which provide manually annotated word similar-
ity or relatedness scores in 11 di�erent languages. Barzegar et al. (2018) collected
the S��R�11 data by canonically translating the English similarity/relatedness
benchmarks including Miller & Charles (��, Miller and Charles, 1991), Rubenstein
& Goodenough (��; Rubenstein and Goodenough, 1965), WordSimilarity-353
(W���S��353; Finkelstein et al., 2001), and Simlex-999 (S��L��999; Hill et al.,
2015). We thus evaluate the system for Arabic (ar), German (de), Spanish (es), Farsi
(fa), French (fr), Italian (it), Dutch (nl), Portuguese (pt), Russian (ru), Swedish (sv),
Chinese (zh), and English (en). We integrated the evaluation into our senseasim
framework14 (Remus and Biemann, 2018), where the extracted sense inventories
and fastText15(Mikolov et al., 2018) embedding vectors for each of the S��R�11
languages and English are used as a basis. One signi�cant advantage of fastText
is that sub-word units are modeled rather than words. Out-of-vocabulary words
(OOVs) are thus unlikely to appear. Grave et al. (2018) provide embedding
models for 157 languages, which we use as the basis for testing the 12 languages
(Logacheva et al., 2020).

Unfortunately, we do not have the sense inventories as per J�B��T��� for
a large fraction of the 12 languages. In (Logacheva et al., 2020), we thus use a

13. https://github.com/Lambda-3/Gold-Standards/tree/master/SemR-11
14. https://github.com/uhh-lt/senseasim
15. https://fasttext.cc/

https://github.com/Lambda-3/Gold-Standards/tree/master/SemR-11
https://github.com/uhh-lt/senseasim
https://fasttext.cc/
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Figure 3.2: Visualization of minor sense selection with respect to our interestingness
score. The top row shows for each POS in the S��L��999 dataset a histogram for the
number of examples (Y-axis) where at least one word sense was chosen which is not the
major sense (biggest cluster) for some interval in the interestingness score (X-Axis). The
bottom row shows the relative amounts of the counts in each interval.

slight variation of the methodology presented in Section 3.1.2. As discussed, a
major drawback of our clustering methodology used in Section 3.1.2 is the lack
of multiple senses in the list of nearest neighbors of a word. A workaround for
that might be to increase the number of nearest neighbors to generate or even
use the entire vocabulary. This, however, generates too much noise, such that
the similarity graph contains too many unrelated words, which has a negative
in�uence on the representation for the clustering algorithm, which will then fail
to �nd good clusterings of neighboring words. In (Logacheva et al., 2020), we thus
suggest making use of linguistic regularities in neural embedding models by using
vector arithmetics such as addition and subtraction, as described by Mikolov, Yih,
et al. (2013). Consider the infamous example

����
���� ��������+����������� � ����������, where

gender is implicitly modeled as a linguistic regularity. The idea is to use vector
subtraction to �nd pairs of dissimilar words and construct the graph only from
the words from those so-called ‘anti-edges’. The procedure is as follows:

1. For a particular word �, extract a list of � nearest neighbors: nn+(�,� ) =
{�1 … �� }.

2. Compute a list � = {�1 . . .�� }, where �� = � � ��. A vector �� is supposed to
be dissimilar to �� with respect to �.

3. For a particular word � and its nearest neighbors �… �, generate nn��(�) =
{�1 … �� }, where �� is the nearest word vector to ��. nn��(�) thus contains
words that are highly dissimilar to the aligned nearest neighbors nn+(�).



3. Sense Induction 59

For illustration purposes, consider the target word � =
������
������, its top

similar term �1 =
����
���� and the resulting anti-word �� =

�����
�����, which is the

nearest word vector to �1 =
������
�������

����
����. Together they form an anti-edge

(��, ��) = (
����
����,

�����
�����), i.e., nodes that should not be connected.

4. Construct the graph �� = (� , �), where � = {� � � � nn+(�)� � � nn��(�)}
is the set of nodes which contain only words which appear in both lists
nn+(�) and nn��(�). We thus only add words to the graphwhich are nearest
neighbors and might help to distinguish di�erent senses of �. The set of
edges is constructed by � = {(��, ��) � �� � nn+(��)� �� � � ��� � � ��� � ��},
i.e., for each neighbor �� of �, we generate the � nearest neighbors �1 … ��
and add an edge (��, ��) if �� is a node in the graph, i.e., it is also a nearest
neighbor of � and in the list of anti-words, but it does not explicitly form
an anti-edge with ��.

Note that the di�erence between � , the number of nearest neighbors for the
target word �, and � , the number of nearest neighbors of ��, is that the former
de�nes the number of nodes in the graph, and the latter de�nes the edge density
between nodes. Unfortunately, the perfect setting for the parameters � and �
depend on the target word �; we thus set � = � and test 50, 100, and 200. After
the graph construction, the clustering is performed using the Chinese Whispers
algorithm (CW; Biemann, 2006). To reduce computational complexity, we reduce
the vocabulary size for each of the 157 languages to the top 100, 000 words for
pre-computing the sense inventories.

For evaluation, we keep all other parameters aligned with the English bench-
mark setup. Since we are using fastText, we are able to generate a vector for
each query word even if it did not appear in the fastText vocabulary due to
fastText’s inherent possibility of using subword information. However, for
words not appearing in the pre-computed sense inventory, the senseasim system
uses the original word vector as a single sense heuristic. Using this back-o�
strategy, a similarity score can be computed for every word pair in the evaluation
datasets, but we note that this also results in the standard cosine similarity if both
words of a particular sample pair do not appear in the sense inventory. Details of
the coverage of words and word pairs, as well as the average number of senses
for each dataset, can be found in Table 3.5. Summarizing, we cover at least 85%
of words (minimum) and 97% of word pairs (minimum). This suggests that the
sense vectors are the determining factor of the following evaluation results. We
follow our previous experiments and use the maximum cosine similarity between
any of the sense vectors for each word pair.

Results
Table 3.6 summarizes the results by showing the average di�erence of correlation
scores for each sense inventory to the standard cosine similarity per language:
�(��������, ����) = mean(����� ,�������� � ����,��������), where � refers to Pearson’s
correlation score. We summed and averaged the results (last two columns of
Table 3.6) and conclude that our methodology provides improved results in the
average case. Parameterwise, top200 seems to be the most e�ective setting with
an average improvement of 0.019, which con�rms our hypothesis that sense



60 3.1. Sense Induction by Retro�tting Static Word Embeddings

Table 3.5: Coverage: �rst sub-column: average number of senses per word; second
sub-column: coverage percentage of words; third sub-column: coverage percentage of
word-pairs.

�� �� S��L��999 W���S��353 �

ar
top100 4.3 | 95% | 100% 4.4 | 92% | 100% – 4.5 | 95% | 100% 4.4 | 94% | 100%
top200 4.2 | 95% | 100% 4.1 | 92% | 100% – 3.5 | 95% | 100% 4.0 | 94% | 100%
top50 4.2 | 95% | 100% 4.0 | 92% | 100% – 4.4 | 95% | 100% 4.2 | 94% | 100%

de
top100 3.8 | 97% | 100% 4.0 | 98% | 100% 5.2 | 96% | 99% 5.4 | 99% | 100% 4.6 | 97% | 100%
top200 2.6 | 97% | 100% 2.7 | 98% | 100% 3.9 | 96% | 99% 4.0 | 99% | 100% 3.3 | 97% | 100%
top50 4.5 | 97% | 100% 4.9 | 98% | 100% 6.3 | 95% | 99% 6.8 | 98% | 100% 5.6 | 97% | 100%

en
top100 5.3 | 100% | 100% 5.5 | 100% | 100% 6.7 | 100% | 100% 5.6 | 100% | 100% 5.8 | 100% | 100%
top200 1.1 | 100% | 100% 1.0 | 100% | 100% 12.6 | 100% | 100% 11.3 | 100% | 100% 11.0 | 100% | 100%
top50 3.4 | 100% | 100% 3.4 | 100% | 100% 3.9 | 100% | 100% 3.2 | 100% | 100% 3.4 | 100% | 100%

es
top100 12.9 | 100% | 100% 11.4 | 100% | 100% 1.2 | 98% | 100% 11.0 | 96% | 100% 11.4 | 99% | 100%
top200 9.2 | 100% | 100% 8.0 | 100% | 100% 7.4 | 98% | 100% 8.1 | 96% | 100% 8.2 | 99% | 100%
top50 13.2 | 100% | 100% 12.4 | 100% | 100% 11.8 | 98% | 100% 12.8 | 96% | 100% 12.5 | 99% | 100%

fa
top100 3.8 | 90% | 100% 4.3 | 93% | 100% – 3.8 | 93% | 99% 4.0 | 92% | 100%
top200 3.3 | 90% | 100% 3.5 | 93% | 100% – 3.4 | 93% | 99% 3.4 | 92% | 100%
top50 3.9 | 88% | 100% 4.5 | 92% | 100% – 3.9 | 92% | 99% 4.1 | 91% | 100%

fr
top100 12.8 | 100% | 100% 13.0 | 98% | 100% 1.8 | 95% | 99% 12.5 | 98% | 100% 12.3 | 98% | 100%
top200 9.9 | 100% | 100% 9.9 | 98% | 100% 8.4 | 95% | 99% 9.6 | 98% | 100% 9.5 | 98% | 100%
top50 13.6 | 100% | 100% 13.4 | 98% | 100% 12.1 | 95% | 99% 13.9 | 98% | 100% 13.2 | 98% | 100%

it
top100 12.9 | 95% | 97% 11.7 | 95% | 98% 1.5 | 98% | 100% 12.7 | 98% | 100% 11.9 | 97% | 99%
top200 9.8 | 95% | 97% 8.7 | 95% | 98% 7.8 | 98% | 100% 9.4 | 98% | 100% 8.9 | 97% | 99%
top50 12.6 | 95% | 97% 12.1 | 95% | 98% 11.6 | 98% | 100% 13.6 | 98% | 100% 12.5 | 97% | 99%

nl
top100 7.2 | 100% | 100% 7.2 | 97% | 100% 8.9 | 97% | 100% 9.0 | 99% | 100% 8.1 | 98% | 100%
top200 5.5 | 100% | 100% 5.2 | 97% | 100% 7.4 | 97% | 100% 7.1 | 99% | 100% 6.3 | 98% | 100%
top50 7.5 | 100% | 100% 7.1 | 97% | 100% 9.0 | 97% | 100% 8.8 | 99% | 100% 8.1 | 98% | 100%

pt
top100 11.1 | 100% | 100% 1.3 | 100% | 100% 1.1 | 98% | 100% 11.0 | 99% | 100% 1.6 | 99% | 100%
top200 7.2 | 100% | 100% 6.8 | 100% | 100% 7.4 | 98% | 100% 7.6 | 99% | 100% 7.3 | 99% | 100%
top50 12.2 | 100% | 100% 11.3 | 100% | 100% 12.0 | 98% | 100% 12.8 | 99% | 100% 12.1 | 99% | 100%

ru
top100 6.2 | 88% | 97% 6.8 | 86% | 98% 5.6 | 89% | 98% 7.7 | 94% | 99% 6.6 | 90% | 98%
top200 4.8 | 88% | 97% 5.1 | 86% | 98% 4.3 | 89% | 98% 5.7 | 94% | 99% 5.0 | 90% | 98%
top50 7.5 | 88% | 97% 8.1 | 86% | 98% 6.9 | 89% | 98% 9.3 | 94% | 99% 7.9 | 90% | 98%

sv
top100 5.3 | 88% | 97% 5.7 | 85% | 98% 7.8 | 95% | 99% 8.6 | 97% | 100% 6.9 | 91% | 99%
top200 5.3 | 88% | 97% 4.7 | 85% | 98% 7.1 | 95% | 99% 7.2 | 97% | 100% 6.1 | 91% | 99%
top50 5.6 | 88% | 97% 5.3 | 85% | 98% 7.5 | 95% | 99% 7.9 | 96% | 99% 6.6 | 91% | 98%

zh
top100 4.3 | 100% | 100% 4.9 | 98% | 100% – 4.6 | 97% | 100% 4.6 | 98% | 100%
top200 2.8 | 100% | 100% 3.2 | 98% | 100% – 3.3 | 97% | 100% 3.1 | 98% | 100%
top50 5.2 | 100% | 100% 5.1 | 98% | 100% – 5.5 | 96% | 100% 5.3 | 98% | 100%
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Table 3.6: Averaged di�erence of Pearson’s correlation score for all datasets per language
with regard to the cosine similarity baseline.

ar de en es fa fr it nl pt ru sv zh � �

top100 -.004 +.058 -.004 -.004 +.060 +.018 -.003 -.012 +.006 +.060 -.023 +.032 +.183 +.015
top200 +.011 +.065 -.008 +.009 +.080 +.017 -.023 -.010 +.007 +.060 -.014 +.040 +.233 +.019
top50 +.021 +.072 -.005 -.004 +.071 +.017 -.018 -.011 +.014 +.057 -.015 +.026 +.225 +.019

vectors are helpful not only for the English language. However, we also note
that while the sense vectors help on average, performance is also hurt for some
of the tested languages. This is particularly prevalent for Italian (it), Dutch (nl),
and Swedish (sv), where all of the tested inventories perform slightly worse
than standard cosine similarity. Also, we found that not a particular inventory
setting is clearly bene�cial for all languages, although top200 still performs best
on average. For completeness, we list the full results in Table 3.7, which shows
Pearson’s correlation scores of the lexical similarity/relatedness datasets for the 12
languages and parameterized inventories compared to standard cosine similarity.

3.2 Analyzing Sense Modeling Abilities of Contextual
Embeddings

Contextualized word embeddings (CWE) such as provided by ELMo (Peters et
al., 2018), Flair NLP (Akbik et al., 2018), or BERT (Devlin et al., 2019) were a
massive innovation in NLP when they were introduced. In contrast to static word
embeddings (SWEs), which provide a single word embedding regardless of their
use, CWEs provide a semantic vector representation of a word depending on its
current context, thus covering compositionality. Their advantage over static word
embeddings has been shown for several tasks, such as text classi�cation, sequence
tagging, or machine translation. Since vectors of a particular word vary with the
use of the word depending on the current context it is used in, they implicitly
provide a model for word sense disambiguation (WSD). In (Wiedemann et al.,
2019), we introduced a simple but e�ective approach to WSD using a nearest
neighbor classi�cation using CWEs and analyzed the implicit sense modeling
abilities of such CWEs. We compared the performance of di�erent CWE models
for the task and report improvements over state-of-the-art approaches for two
standard WSD benchmark datasets at the time of writing. We also showed that the
pre-trained BERT model can place polysemic words into distinct sense regions of
the embedding space, while ELMo and Flair NLP do not seem to possess this ability.
In the following sections, we present our �ndings from (Wiedemann et al., 2019).

3.2.1 Synonymy and Polysemy of Word Representations
Lexical semantics is characterized by a high degree of polysemy, i.e., the meaning
of a word changes depending on the context it appears in (Harris, 1954). Word
Sense Disambiguation (WSD) is the task of identifying the sense of a word within its
use from a (usually) �xed inventory of senses. For the English language, WordNet
(Fellbaum, 1998) is the most commonly used sense inventory, providing more
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Table 3.7: Full results of the di�erence of the Pearson’s correlation score for all datasets
per language with regard to the cosine similarity baseline. Note that the missing values in
S��L��999 are due to missing translations in the S��R�11 dataset.

�� �� S��L��999 W���S��353 � �

ar
top100 +.021 -.031 – -.003 -.012 -.004
top200 +.042 -.001 – -.006 +.034 +.011
top50 +.045 +.010 – +.007 +.062 +.021

de
top100 +.137 +.078 -.005 +.023 +.233 +.058
top200 +.147 +.097 -.005 +.020 +.259 +.065
top50 +.177 +.103 -.012 +.021 +.288 +.072

en
top100 -.028 -.013 +.032 -.007 -.016 -.004
top200 -.010 -.027 +.015 -.010 -.032 -.008
top50 -.020 -.022 +.021 -.001 -.022 -.005

es
top100 -.020 -.000 +.012 -.005 -.014 -.004
top200 +.006 +.016 +.016 -.005 +.034 +.009
top50 -.012 +.004 +.019 -.026 -.014 -.004

fa
top100 +.079 +.038 – +.062 +.179 +.060
top200 +.125 +.048 – +.065 +.239 +.080
top50 +.091 +.049 – +.075 +.214 +.071

fr
top100 +.011 -.021 +.072 +.011 +.073 +.018
top200 +.004 -.003 +.058 +.010 +.068 +.017
top50 -.001 -.008 +.077 -.001 +.068 +.017

it
top100 +.002 -.021 -.011 +.017 -.013 -.003
top200 -.039 -.044 -.012 +.003 -.093 -.023
top50 -.044 -.008 -.016 -.005 -.074 -.018

nl
top100 -.018 -.032 -.000 +.002 -.049 -.012
top200 -.013 -.020 -.011 +.004 -.040 -.010
top50 -.004 -.043 +.001 +.001 -.045 -.011

pt
top100 -.007 +.011 +.015 +.006 +.025 +.006
top200 +.009 -.004 +.009 +.013 +.027 +.007
top50 +.018 +.016 +.022 -.000 +.056 +.014

ru
top100 +.180 +.042 -.034 +.052 +.238 +.060
top200 +.201 +.050 -.053 +.042 +.241 +.060
top50 +.182 +.043 -.034 +.035 +.226 +.057

sv
top100 -.090 -.014 +.020 -.009 -.094 -.023
top200 -.075 -.008 +.017 +.010 -.057 -.014
top50 -.056 -.006 +.012 -.010 -.061 -.015

zh
top100 +.008 +.008 – +.079 +.095 +.032
top200 +.017 +.005 – +.097 +.120 +.040
top50 +.008 +.004 – +.065 +.077 +.026



3. Sense Induction 63

than 200K word-sense pairs.
To train and evaluate WSD systems, a number of datasets have been published,

for example, in the SemEval16 workshop series. In the lexical sample task, a
training set and a test set is provided, where each sentence contains exactly one
annotated word with a sense identi�er, and the task is to disambiguate only this
one given word (Kilgarri�, 2001; Mihalcea et al., 2004). In the all-words task, all
(potentially ambiguous) words of a sentence are annotated with a sense identi�er,
and the task is to predict all words’ senses jointly (Edmonds and Cotton, 2001;
Snyder and Palmer, 2004). To facilitate the comparison of WSD systems, e�orts
have been made to provide a comprehensive evaluation framework, such as in
(Raganato et al., 2017), and to unify publicly available datasets for the English
language, such as in (Vial et al., 2018b).

Word sense disambiguation systems rely on some methodology of context
representation to predict the correct sense. The context is typically modeled using
dictionary resources linked with senses. Approaches to WSD can be roughly
distinguished into three types:

knowledge-based approaches utilize language resources such as dictionaries,
thesauri, and knowledge graphs to infer senses and can be implemented
with any kind of supervision.

supervised approaches train a (multiclass) classi�er to predict a sense given
the target word and its context based on the annotated training dataset.
However, in (Levy et al., 2015), for example, we argue that supervised
distributional approaches do not necessarily learn such kind of relations;
they instead learn prototypical patterns in the data, in this case, prototypical
senses that simply occur with too many samples in the dataset.

semi-supervised approaches extend manually created training sets by large cor-
pora of unlabeled data to improve WSD performance and coverage.

A fundamental assumption in structuralist linguistics is the distinction between
signi�er and signi�ed as introduced by de Saussure in the early 20th century
(cf. Section 1.2; de Saussure, 1983; orig. 1916). Computational approaches implicitly
assume identity between signi�er and signi�ed when using character strings as the
only representation of word meaning. Di�erent word senses are collapsed into the
same exact string representation. In this respect, word counting and dictionary-
based approaches to analyze natural language texts have been criticized as pre-
Saussurean (Pêcheux, 2022). In contrast, the Distributional Hypothesis (DH; cf. Sec-
tion 1.2; Harris, 1951) not only states that meaning is dependent on context, but
it also states that words occurring in the same contexts tend to have a similar
meaning. Hence, a more elegant way of representing meaning is to use the context
of a word as an intermediate semantic representation that mediates between
signi�er and signi�ed. For this, explicit vector representations, such as the bag-of-
words, TF-IDF, or latent vector representations – embeddings such as Word2Vec
or LSA–have been widely used.

Semantic vector representations allow synonymous terms to occur in the same
vicinity in the vector space, which can be exploited for modeling virtually any

16. Formerly known as SensEval.
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downstream NLP task. Still, a polysemic term is represented by only a single
vector representing all its di�erent senses. To model polysemy as well as syn-
onymy, we introduced the idea of sense embeddings instead of word embeddings
(cf. Section 3.1). However, employing sense embeddings in a downstream NLP
task requires a reliable WSD system to decide how to choose the appropriate
embedding from the sense inventory.

Hence, recent e�orts try to model the usage of a sense implicitly by simply
employing the context, which makes �xed word sense inventories obsolete for
end2end systems. Using contextualized word embeddings (CWE), a word will be
composed by a unique vector representation for each unique context it appears in,
thus also addressing the idea of vector compositionality within a sentence. The
contextualized vector representation is supposed to encode the meaning of a word
within the current context. This enables downstream tasks to actually distinguish
the two levels of signi�er and signi�ed, allowing more realistic modeling of natural
language. The advantage of such contextually embedded token representations
compared to static word embeddings has been shown for a number of tasks, such
as text classi�cation (Zampieri et al., 2019) or sequence tagging (Akbik et al., 2018),
among many more. In the following, we distinguish between the terms type and
token. The term type is used to refer to a vocabulary entry of a word, and the term
token is used to refer to a word in its use, i.e., within a sentence or phrase.

In (Wiedemann et al., 2019), we show that CWEs can be utilized directly to
approach the WSD task due to their nature of providing distinct vector represen-
tations for the same type, i.e., for a token. To analyze the semantic capabilities of
CWEs, we employ a simple yet interpretable approach to WSD using a �-nearest
neighbor classi�cation (kNN) approach. We compare the performance of three
di�erent CWEmodels on four standard benchmark datasets. Our evaluation yields
that not all contextualization approaches are equally e�ective in dealing with
polysemy and that the simple kNN approach su�ers severely from sparsity in
training datasets. Yet, by using kNN, we can include provenance into our model,
which allows for investigating the training sentences that lead to the classi�er’s
decision. Thus, we are able to study to what extent polysemy is captured by a
speci�c contextualization approach. At the time of writing, we were even able
to report new state-of-the-art (SOTA) results for two datasets. The following
section introduces approaches to WSD based on neural network architectures
and approaches to contextualized word embeddings.

3.2.2 Neural Word Sense Disambiguation
Several e�orts have been made to induce vectors for the multiplicity of senses a
word can express. Bartunov et al. (2016), Neelakantan et al. (2014), or Rothe and
Schütze (2015) induce so-called sense embeddings in a pre-training fashion. While
Bartunov et al. (2016) induce sense embeddings in an unsupervised way and only
�x the maximum number of senses per word, Rothe and Schütze (2015) requires
a pre-labeled sense inventory such as WordNet. Other approaches include the
reuse of pre-trained word embeddings to induce new sense embeddings, such as
S����G��� (Pelevina et al., 2016) or ��������� (cf. Sec. 3.1, Remus and Biemann,
2018). In (Logacheva et al., 2020), we also use induced sense embeddings for
the downstream task of WSD similar to Panchenko, Marten, et al. (2017). An
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overview of further word sense modeling approaches can be found in (Camacho-
Collados and Pilehvar, 2018).

With regard to our approach, Melamud et al. (2016) and Yuan et al. (2016) are
most related, i.e., they both compute sentence context vectors for ambiguous target
words and select nearest neighbors of context vectors to determine the target
word sense in the prediction phase. Yuan et al. (2016) additionally use unlabeled
sentences with label propagation in a semi-supervised setting to overcome the
sparsity issue within the training data. Further, Kågebäck and Salomonsson (2016)
employ a recurrent neural network (RNN) to classify sense labels for ambiguous
target words given their contexts. Contrary to many previous approaches, which
rely on feature engineering, Taghipour and Ng (2015) use only pre-trained GloVe
word embeddings by (Pennington et al., 2014) to achieve SOTA results on two
English lexical sample datasets. For the all-words WSD task, Vial et al. (2018a)
employ a recurrent neural network where they sequentially classify sense labels
for all tokens within a sentence. They also introduce an approach to collapse the
sense vocabulary fromWordNet to unambiguous hypersenses, which increases the
label-to-sample ratio for each label (sense identi�er). By training their system on
the large sense annotated datasets SemCor17 (Miller et al., 1993) and the Princeton
WordNet Annotated Gloss Tags Corpus18 based onWordNet synset de�nitions (Fell-
baum, 1998), they achieve SOTA results on most all-words WSD benchmarks. A
similar architecture with an enhanced sense vocabulary compression was applied
in (Vial et al., 2019), but instead of static GloVe embeddings, contextualized BERT
wordpiece embeddings (Devlin et al., 2019) are used as input for training, where
particularly the BERT embeddings improved the overall performance.

3.2.3 Contextualized Word Embeddings

For most downstream NLP tasks, using CWEs drastically improved the perfor-
mance of neural architectures compared to SWEs. However, the contextualization
methodologies are di�erent. Because of that, we hypothesize that they are also
di�erent in their ability to capture polysemy.

Like static word embeddings, CWEs are pre-trained on large amounts of
unlabeled data by a language modeling objective. Because of their popularity,
we investigate three widely applied approaches: Flair (Akbik et al., 2018), ELMo
(Embeddings from Language Models; Peters et al., 2018), and BERT (Bidirectional
Encoder Representations from Transformers; Devlin et al., 2019).

Flair: For contextualizing a particular word vector, Akbik et al. (2018) concate-
nate the static pre-trained word embedding vector of a word, e.g., the GloVe
word embeddings (Pennington et al., 2014), with the left and right neighboring
word vectors, the context. The context vectors are computed by two RNNs, one
character language model trained from left to right and one from right to left.
Their approach has been applied successfully for sequence tagging tasks such as
named entity recognition and part-of-speech tagging.

17. http://web.eecs.umich.edu/~mihalcea/downloads.html#semcor
18. https://wordnetcode.princeton.edu/glosstag.shtml

http://web.eecs.umich.edu/~mihalcea/downloads.html#semcor
https://wordnetcode.princeton.edu/glosstag.shtml
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ELMo: Peters et al. (2018) approaches contextualization similarly to Flair, but
instead of two character language models, two stacked RNNs for words are trained,
again one from left to right and another from right to left. For CWEs, outputs
from the embedding layer and the two bidirectional recurrent layers are collapsed
into one layer by a weighted, element-wise addition.

BERT: In contrast to the previous two approaches, Devlin et al. (2019) pro-
vide contextualized wordpiece embeddings in an end-to-end language model
architecture. For this, a self-attention based Transformer architecture is used,
which, in combination with a masked language modeling objective, allows the
model to ‘see’ all left and right context wordpieces of a target word at the same
time. Self-attention (Vaswani et al., 2017) and thus non-directionality of the
language modeling objective result in substantial performance gains compared
to previous approaches.

Next, we present our experiments and results from (Wiedemann et al., 2019)
and investigate our hypothesis that contextual embeddings can identify polysemy
using the contextualized models.

3.2.4 Nearest Neighbor Classi�cation for WSD
We approach WSD by using k-nearest neighbor classi�cation (kNN) to investi-
gate the semantic properties of contextualized word embeddings. Compared to
other classi�cation approaches such as support vector machines (SVMs) or neural
networks (NNs), kNN has the advantage that it can be used to investigate the
training examples that lead to a certain decision.

In its simplest form, the kNN classi�cation algorithm assigns a label to an
unseen test sample based on the majority of the assigned labels of the k-nearest
training samples in its vicinity based on some distance metric (Cover and Hart,
1967). Although complex weighting schemes for kNN exist, we stick to the
non-parametric version of the algorithm to be able to investigate the semantic
properties of the individual contextual embedding approaches. As a distance
measure for kNN, we rely on the cosine distance of the contextual embeddings.
The cosine distance is the inverse of the cosine similarity. Note that any similarity
metric can be converted to a dissimilarity (distance) metric by means of inversion.
The approach considers only senses for a target word observed during training. We
use spaCy19 (Honnibal and Johnson, 2015) for pre-processing and the lemmatized
form of a word.

Since BERT uses wordpieces, i.e., subword units of words, we re-tokenize the
sentence with BERT’s wordpiece tokenizer and average all sub-word CWEs that
belong to the target word or phrase. Moreover, for the experiments with BERT
embeddings20, we follow the heuristic by Devlin et al. (2019) and concatenate the
averaged wordpiece vectors of the last four layers.

We test di�erent values for our single hyperparameter � � {1… 10, 50, 100, 500,
1000}. Like words, word senses also follow a power-law distribution, which makes

19. https://spacy.io/
20. We use the bert-�arge-uncased model.

https://spacy.io/
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Table 3.8: Properties of the used datasets. For the test sets (Te), we do not report �� since
they are not used as kNN training instances.

SE-2 (Tr) SE-2 (Te) SE-3 (Tr) SE-3 (Te) S7-T7 (coarse) S7-T17 (�ne) SemCor WNGT
#sentences 8,611 4,328 7,860 3,944 126 245 37,176 117,659

#CWEs 8,742 4,385 9,280 4520 455 6,118 230,558 1,126,459
#distinct words 313 233 57 57 327 1,177 20,589 147,306

#senses 783 620 285 260 371 3,054 33,732 206,941
avg #senses p. word 2.50 2.66 5.00 4.56 1.13 2.59 1.64 1.40

avg #CWEs p. word & sense 11.16 7.07 32.56 17.38 1.23 2.00 6.83 5.44
avg �� 2.75 - 7.63 - - - 3.16 2.98

simple baseline approaches for WSD, like the most frequent sense (MFS) baseline,
strong competitors, and hard to beat. Other e�ects of the skewed distribution are
imbalanced training sets. Many senses described in WordNet only have one or two
example sentences in the training sets or are not present at all. This is severely
problematic for larger � because the majority class dominates the neighborhood
of a word. To counter this e�ect a little, we modify the majority voting of kNN
to �� = ���(�, |�� |) where �� is the set of CWEs with the least frequent training
examples for a given word sense �. Larger values of � are thus only used if the
number of training examples support this and are reduced dynamically if they
do not show this support.

3.2.5 Datasets

We conduct our experiments with the help of four standard WSD benchmark
datasets, two lexical sample tasks and two all-words tasks. The lexical sample
tasks, SensEval-2 (SE-2; Kilgarri�, 2001) and SensEval-3 (SE-3; Mihalcea et al.,
2004) provide a training and test set each. The all-words tasks of SemEval 2007
Task 7 (S7-T7; Navigli et al., 2007) and Task 17 (S7-T17; Pradhan et al., 2007)
provide only test data and both contain a substantial overlap of documents with
each other. The two sets di�er in granularity, though. While ambiguous terms
in Task 17 are annotated only with their exact WordNet synset id, in Task 7,
ambiguous terms are annotated additionally with WordNet synset ids coming
from traversing hypernymy relations. Labels in Task 7 are thus considered coarser
and less �ne-grained than in Task 17.

For training a system for the all-words tasks S7-T7 and S7-T17, we employed
a) the SemCor dataset (Miller et al., 1993), and b) the PrincetonWordNet Annotated
Gloss Tags corpus (WNGT; Fellbaum, 1998) separately to investigate the in�uence
of di�erent training sets on our approach. For all experiments, we utilized the
mentioned datasets provided by the UFSAC framework21 (Vial et al., 2018b). An
overview of the data, including some statistics, can be found in Table 3.8. The
table shows that the SE-2 and SE-3 training datasets provide many more examples
per word and sense than SemCor or WNGT.

21. Uni�cation of Sense Annotated Corpora and Tools. We used version 2.1: https://github.
com/getalp/UFSAC

https://github.com/getalp/UFSAC
https://github.com/getalp/UFSAC


68 3.2. Analyzing Sense Modeling Abilities of Contextual Embeddings

Table 3.9: kNN with � = 1 WSD performance (F1%). The best results for each test set are
marked in bold.

Model SE-2 SE-3 S7-T7 (coarse) S7-T17 (�ne)
SemCor WNGT SemCor WNGT

Flair 65.27 68.75 69.24 78.68 45.92 50.99
ELMo 67.57 70.70 70.80 79.12 52.61 50.11
BERT 76.10 78.62 73.61 81.11 59.82 55.16

3.2.6 Evaluation
We conduct two experiments to determine whether contextualized word embed-
dings can be used to address WSD. In our �rst experiment, we compare di�erent
pre-trained embeddings with � = 1. In our second experiment, we test multiple
values of � and use only BERT embeddings and WNGT for S7-T7 and Semcor
for S7-T17, since – spoiler ahead – this combination performed best in the �rst
experiment. By testing multiple values of �, we attempt to estimate and report
an optimal value for �. Further, we examine the results qualitatively to analyze
typical successful predictions, i.e., true positives (TP), and typical error cases,
i.e., false positives (FP), of our approach.

Testing CWEs
To compare di�erent CWE approaches, we use � = 1 nearest neighbor classi�-
cation. Table 3.9 shows the results have a high variance in performance. Simple
kNN with ELMo or BERT embeddings yield the best results, which, at the time
of writing, happened to be state-of-the-art on the lexical sample task SE-2 (cf.
also Table 3.10). Also, BERT embeddings substantially outperform other model
embeddings. For S7-T7 and S7-T17, the content and structure of the out-of-domain
(OOD) SemCor and WNGT training datasets di�er drastically from those in the
test data. In fact, the similarity of the results regarding contextualized embeddings
largely relies on semantically and syntactically similar contexts of polysemic target
words. Hence, the more example sentences can be used for a sense, the higher are
the chances that a nearest neighbor expresses the same sense. As can be observed
from Table 3.8, the SE-2 and SE-3 training datasets provide more CWEs for each
word and sense, and our approach performs better with an increasing number
of CWEs, even with a higher average number of senses per word than in SE-3.
We thus conclude that the nearest neighbor approach su�ers speci�cally from
data sparseness. Other aspects of the target word, such as syntax, also strongly
in�uence the kNN decision. This is probably due to the fact that the di�erent
layers of, e.g., BERT, can be accounted for di�erent properties of language, such
as syntax, grammar, semantics on various levels, etc.

Optimizing �
To obtain more robust nearest neighbor classi�cation and potentially even better
results, we optimized the hyperparameter �. Table 3.10 shows our best results
using BERTs embeddings combined with results from related work. For these
experiments, we focused on the best-performing setups from Table 3.9, hence
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Table 3.10: Best kNN models vs. most frequent sense (MFS) and state of the art (�1). The
best results are in bold, the previous SOTA is in italics, and our best results are underlined.

k SE-2 SE-3 S7-T7 (WNGT) S7-T17 (SemCor)
1 76.10 78.62 81.11 59.82
2 76.10 78.62 81.11 59.82
3 76.52 79.66 80.94 59.38
4 76.52 79.55 80.94 59.82
5 76.43 79.79 81.07 60.27
6 76.43 79.81 81.07 60.27
7 76.50 80.02 81.03 60.49
8 76.50 79.86 81.03 60.49
9 76.40 79.97 81.03 60.49
10 76.40 80.12 81.03 60.49
50 76.43 79.66 81.11 60.94
100 76.43 79.63 81.20 60.71
500 76.38 79.63 81.11 60.71
1000 76.38 79.63 81.11 60.71

MFS 54.79 58.95 70.94 48.44
Kågebäck et al. (2016) 66.90 73.40 - -

Yuan et al. (2016) - - 84.30 63.70
Vial et al. (2018a) - - 86.02 66.81
Vial et al. (2019) - - 90.60 71.40

(a) BERT (b) Flair (c) ELMo

Figure 3.3: t-SNE plots of di�erent senses of ‘bank’ and their contextualized embeddings.
The legend brie�y describes the respective WordNet synsets and the frequency of
occurrence in the training data. Here, the SE-3 training dataset is used.

BERT embeddings and WNGT for SE-T7 and SemCor for SE-T17. For SE-2 and
SE-3, we achieve new state-of-the-art results using � = 3 for SE-2 and � = 10 for
SE-3.22 We observe convergence with higher � values since our �� normalization
heuristic dominates. We also achieve minor improvements for both S7-T* datasets
with a higher � (� = 100 and � = 50, respectively).

22. At the time of writing.
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Visualizing Senses in the CWE Vector Space
A natural question arises: How well do di�erent CWE models encode sense
information in their vector space? We use ��SNE (T-distributed stochastic neighbor
embedding; Maaten and Hinton, 2008) to visualize contextual word embeddings
in two dimensions. Figure 3.3 shows ��SNE plots of six di�erent senses of the
word ‘bank’ in the SE-3 training dataset encoded by the three di�erent CWE
methods. For visualization purposes, we exclude senses with a frequency of less
than two. Although the ��SNE process loses information, we can clearly see
that Flair embeddings hardly allow any separation of clusters as most senses
are scattered across the entire plot. In the ELMo embedding space, the major
senses are slightly more separated in di�erent regions of a single cloud. Visually,
senses are clearly separated as distant clusters in the BERT embedding space,
where related senses are still nearby, e.g., ‘bank’ as a �nancial institution and
‘bank’ as a building are still somewhat related; unrelated senses, however, are far
away, e.g., the �nancial institution versus the river bank. Also, within the larger
clusters, single senses are spread mostly in separated regions of the cluster. Thus,
we conclude that BERT embeddings do encode some form of sense knowledge,
which also explains why kNN performs so much better with BERT than with the
other approaches. Still, a more powerful non-linear classi�cation approach such
as the one presented by Vial et al. (2019) can learn clearer decision boundaries
in higher dimensions. Such clear decision boundaries seem to solve the data
sparseness issue of kNN successfully.

Error analysis
By analyzing the true positive (TP) and false positive (FP) predictions from
a qualitative point of view, we can infer some semantic properties of BERT
embeddings within the used training corpora. Table 3.11 shows selected examples
of polysemic words in di�erent test sets, including their nearest neighbor from
the respective training set.

For instance, the word overlap within the contexts leads to correct predictions,
as can be seen in ‘along the bank of the river’ and ‘along the bank of the river
Greta’ (2). Another example is ‘little earthy bank’ and ‘huge bank [of snow]’ (3),
where even semantically similar context words (‘little’ and ‘huge’) overlap. On
the other hand, vocabulary overlap and semantic relatedness, as in ‘land bank’ (5),
can also lead to false predictions. Another interesting example of the latter is the
confusion between ‘grass bank’ and ‘river bank’ (6), where the nearest neighbor
sentence in the training set shares some military context (‘grenade’ and ‘gun’)
with the target sentence. The correct sense bank[Sloping Land] and the predicted
sense bank[A Long Ridge or Pile (of earth)] share a strong semantic similarity, too. In the
example, they could even be used interchangeably.

In Example (10), the target sense is an action, i.e., a verb sense, while the
predicted sense is a noun. In general, this could be easily �xed by restricting
the classi�er decision to the desired syntactic class. On the other hand, consider
Example (12): Although it is a false positive, it shows nicely that the approach
is able to �nd semantically and syntactically similar nearest neighbors even
though BERT never learned syntactic classes explicitly. This e�ect has been
investigated in-depth by Jawahar et al. (2019), who found that each BERT layer
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Table 3.11: Example predictions based on nearest neighbor sentences. The word in
question is marked in boldface, subset with a short description of its WordNet synset (true
positives green, false positives red).

Example Sentence Nearest Neighbor
SE-3 (test) SE-3 (train)

(1) President Aquino, admitting that the death of Ferdinand Marcos
had sparked a wave of sympathy for the late dictator, urged
Filipinos to stop weeping for the man who had laughed all the
way to the bank[A Bank Building].

They must have been �lled in at the bank[A Bank Building] either
by Mr Hatton himself or else by the cashier who was attending
to him.

(2) Soon after setting o� we came to a forested valley along the
banks[Sloping Land] of the Gwaun.

In my own garden the twisted hazel, corylus avellana contorta,
is underplanted with primroses, bluebells and wood anemones,
for that is how I remember them growing, as they still do, along
the banks[Sloping Land] of the rive Greta

(3) In one direction only a little earthy bank[A Long Ridge] separates
me from the edge of the ocean, while in the other the valley goes
back for miles and miles.

The lake has been swept clean of snow by the wind, the sweep-
ings making a huge bank[A Long Ridge] on our side that we have
to negotiate.

(4) However, it can be possible for the documents to be signed
after you have sent a payment by cheque provided that you
arrange for us to hold the cheque and not pay it into the
bank[A Financial Institution] until we have received the signed deed
of covenant.

The purpose of these stubs in a paying – in book is for the holder
to have a record of the amount of money he had deposited in his
bank[A Bank Building].

(5) He continued: assuming current market conditions do not
deteriorate further, the group, with conservative borrowings,
a prime land bank[A Financial Institution] and a good forward sales
position can look forward to another year of growth.

Crest Nicholson be the exception, not have much of a land
bank[Supply or Stock] and rely on its skill in land buying.

(6) The marine said, get down behind that grass bank[A Long Ridge],
sir, and he immediately lobbed a mills grenade into the river.

The guns were all along the river bank[Sloping Land] as far as I
could see.

S7-T17 SemCor
(7) Some 30 balloon[Large Tough Nonrigid Bag] shows are held annually

in the U.S., including the world’s largest convocation of ersatz
Phineas Foggs – the nine-day Albuquerque International Balloon
Fiesta that attracts some 800, 000 enthusiasts and more than
500 balloons, some of which are fetchingly shaped to resemble
Carmen Miranda, Gar�eld or a 12-story-high condom.

Homes and factories and schools and a big wide federal highway,
instead of peaceful corn to rest your eyes on while you tried
to rest your heart, while you tried not to look at the bal-
loon[Large Tough Nonrigid Bag] and the bandstand and the uniforms
and the �ash of the instruments.

(8) The condom balloon[Large Tough Nonrigid Bag] was denied o�cial
entry status this year.

Just like the balloon[Large Tough Nonrigid Bag] would go up and you
could sit all day and wish it would spring a leak or blow to hell
up and burn and nothing like that would happen.

(9) Starting with congressman Mario Biaggi (now serving a jail sen-
tence[The Period of Time a Prisoner Is Imprisoned]), the company began
a career of bribing federal, state and local public o�cials and
those close to public o�cials, right up to and including E. Robert
Wallach, close friend and adviser to former attorney general Ed
Meese.

When authorities convicted him of practicing medicine
without a license (he got o� with a suspended sen-
tence[The Period of Time a Prisoner Is Imprisoned] of three years because
of his advanced age of 77), one of his victims was not around to
testify: he was dead of cancer."

(10) Americans it seems have followed Malcolm Forbes’s hot-air lead
and taken to balloon[To Ride in a Hot-Air Balloon] in a heady way.

Just like the balloon[Large Tough Nonrigid Bag] would go up and you
could sit all day and wish it would spring a leak or blow to hell
up and burn and nothing like that would happen.

(11) Any question as to why an author would believe this plaintive,
high-minded note of assurance is necessary is answered by
reading this book[A Published Written Work] about sticky �ngers and
sweaty scammers.

But the book[A Written Version of a Play] is written around a some-
what dizzy cartoonist, and it has to be that way.

(12) In between came lots of co�ee drinking while watch-
ing[To Look Attentively] the balloons in�ate and lots of standing
around deciding who would �y in what balloon and in what
order [. . . ].

So Captain Jenks returned to his harbor post to
watch[To Follow With the Eyes or the Mind; observe] the scouting
plane put in �ve more appearances, and to feel the certainty of
this dread rising within him.

learns di�erent structural aspects of language. Example (12) also emphasizes
the di�culty of distinguishing verb senses because verb senses are very �ne-
grained in WordNet and thus harder to distinguish even by humans, i.e., in the
example, the correct label is watch[look attentively] whereas the nearest neighbor is
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Table 3.12: Best POS-sensitive kNN models. Bold numbers are improved results over
Table 3.10.

k SE-2 SE-3 S7-T7 S7-T17
SemCor WNGT SemCor WNGT

1 76.10 78.62 79.30 85.23 61.38 61.98
3 76.52 79.66 79.44 85.01 60.94 62.64
7 76.50 80.02 79.35 85.05 62.50 62.20
10 76.40 80.12 79.40 85.10 62.72 62.20
30 76.43 79.66 79.40 85.14 63.17 61.98
70 76.43 79.61 79.35 85.23 62.95 61.98
100 76.43 79.63 79.35 85.32 62.95 61.98
300 76.43 79.63 79.35 85.32 62.95 61.98

Table 3.13: Percentage of senses with a certain POS tag in the corpora.

Noun Adj Verb Other
avg #POS
per word

SE-2 (tr) 41.32 16.57 42.11 0.00 1.0
SE-2 (te) 40.98 16.56 42.46 0.00 1.0
SE-3 (tr) 46.45 3.94 49.61 0.00 1.0
SE-3 (te) 46.17 3.98 49.86 0.00 1.0
S7-T7 49.00 15.75 26.14 9.11 1.03
S7-T17 34.95 0.00 65.05 0.00 1.01
SemCor 38.16 14.70 38.80 8.34 1.10
WNGT 57.93 21.57 15.55 4.96 1.07

watch[follow with the eyes or the mind; observe]. Those senses are strongly related, and the
latter sounds like a de�nition of the former.

POS-informed Prediction
Addressing the issue of mixed POS senses, we ran a further experiment in which
we restricted words to their lemma and their POS tag. Table 3.12 con�rms our
hypothesis that including the POS restriction increases the F1 scores for S7-T7 and
S7-T17. The results are roughly aligned with the number of di�erent POS tags in
the corpora (cf. Table 3.13). The results for SE-2 and SE-3 did not change drastically,
which can be explained by the average number of POS tags a particular word is
labeled with, i.e., in SE-2 and SE-3, no POS overlap exist between di�erent word
classes, senses are only labeled within the same POS class. For SE-7*, SemCor,
and WNGT, this property has a stronger variance.
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4
Retrieval of Semantic Relations

Pre-trained language models based on the Transformer neural network architec-
ture quickly became state of the art in machine learning to numerous natural
language processing (NLP) tasks. In these models, natural language text is repre-
sented as a sequence of subtokens called wordpieces. Due to the attention layers
in the transformer architecture, wordpieces are embedded into a context-sensitive
semantic vector space (Vaswani et al., 2017). In contrast to static word embeddings
(SWE), such as Word2Vec, where a token is always aligned with the same vector
representation, these contextualized embeddings (CWEs) allow more complex,
compositionally aligned, and thus disambiguated semantic representations. In this
chapter, which is aligned with the �ndings in (Remus et al., 2022), we investigate
the semantic capabilities of pre-trained contextualized word embeddings (CWEs),
such as BERT (Devlin et al., 2019), in combination with lexical, syntactical or
grammatical information, to perform semantic retrieval of semantic relations for
various datasets, i.e., given a query, the goal is to �nd more instances with the same
encoded semantic information. We show that the aggregation of task-agnostic
CWE representations with di�erent strategies along syntactic or grammatical
dimensions allows for highly precise retrieval and competitive simple nearest
neighbor classi�cation of complex categories such as semantic relations. In (Remus
et al., 2022), we even extend the list of use cases to a number of tasks of varying
complexity, such as coarse and �ne-grained named entity recognition, short text
retrieval, and classi�cation, and retrieval and classi�cation of verb frames, next to
the semantic relation retrieval and classi�cation as presented in this work.

4.1 Introduction
Neural language models (NLMs) producing contextualized word embeddings
(CWEs) such as BERT (Bidirectional Encoder Representations from Transform-
ers; Devlin et al., 2019), or its many successors, ELMo (Embeddings from Language
Models; Peters et al., 2018), or FLAIR (Akbik et al., 2018) are a huge improvement
factor for multiple NLP tasks. One major reason for this is the fact that NLMs

75
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can produce a composed vector space representation of a word (or subtoken)
based on the sequential context it is currently appearing in, thus representing its
compositional meaning. CWEs implicitly disambiguate the meaning of a word
(cf. Section 3.2) up to a certain degree, such that, for example, sequence tagging
models are able to distinguish two identical surface forms (types) when used in
di�erent contexts. For example, both instances of the words ‘can’ and ‘open’ in
the following two sentences ‘A�ice opens the can.’ and ‘A�ice can open the
box.’ will be represented with distinct locations in the vector space. Whereas the
two associated vectors for the word ‘open’ are expected to be very similar, the
two vectors for the word ‘can’ are expected to be inherently di�erent, indicating a
strong syntactic and semantic shift. In a way, the word ‘can’ from the �rst sentence
is supposed to be located in the same vicinity as the word ‘box’ from the second
sentence due to the properties of the distributional hypothesis (DH; Harris, 1954).

However, Htut et al. (2019) show that, although certain dependency relations
are implicitly encoded in BERT, no equivalent to holistic parsing of syntactical or
grammatical structures can be inferred from BERT’s attention mechanism. We
thus hypothesize that downstream NLP tasks bene�t from exploiting explicit
syntactical and grammatical cues derived from linguistic knowledge in addition to
the contextualized embeddings. To investigate this hypothesis, we de�ne a set of
linguistic patterns for aggregating CWEs along linguistically informed dimensions.
However, instead of well-researched classi�cation problems in the supervised
learning paradigm, we aim to e�ciently �nd semantically similar sequences in
a given dataset. To investigate the capabilities of CWEs in such an information
retrieval scenario, we refrain from evaluating complex classi�er architectures
and �ne-tuning models. Instead, we focus on retrieval evaluation measures and
simple nearest neighbor classi�cation to properly assess the quality of CWEs
regarding linguistic patterns. Our retrieval evaluation shows that CWE-based
retrieval �nds semantically similar sequences with a higher precision than SWE-
based retrieval, as produced by, e.g., Word2Vec (Mikolov, Chen, et al., 2013) or
GloVe (Pennington et al., 2014). More importantly, we also show in our experiments
that, depending on the task, the CWE-based retrieval pro�ts from incorporating
additional explicit linguistic knowledge.

In summary, this chapter’s contribution is threefold: a) we de�ne and use
structural linguistic information for di�erent aggregation strategies; b) we evaluate
those strategies in a retrieval setup to �nd semantically similar sequences as
de�ned by the particular downstream task; c) we evaluate a retrieval-inspired
k-nearest neighbor classi�cation approach to validate downstream tasks in a
classi�cation framework.

4.2 Related Work
Strubell et al. (2018) showed the bene�t of injecting syntactic information into
a neural network using self-attention for multi-task learning and called their
approach LISA (linguistically-informed self-attention). LISA was applied for
dependency parsing, part-of-speech tagging, predicate detection, and semantic
role labeling, where the results for all tasks showed signi�cant improvements over
previous SOTA, particularly when using contextualized embeddings provided
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by ELMo (Peters et al., 2018). In (Wiedemann et al., 2019) and Section 3.2, we
showed that contextualized embeddings, particularly BERT (Devlin et al., 2019)
inherit a strong degree of sense representation, i.e., polysemous words appear in
di�erent areas of the embedding space depending on their use. Wang et al. (2019)
implement Elman (1990)’s theory, which says that neural language models are
sensitive to word order regularities in simple sentences by explicitly exploiting
the inner-sentence structure (word-level ordering) and inter-sentence structure
(sentence-level ordering) as training objectives. Wang et al. (2019) argue that
their StructBERT model successfully captures the structure of sentences during
pre-training. This is achieved by pre-shu�ing trigrams that are not used as
masked tokens within sentences and using three di�erent sentence prediction
objectives: next sentence prediction, previous sentence prediction, and random
sentence prediction.

Htut et al. (2019) and Clark et al. (2019) analyze to which extent the attention
layers within BERT’s encoder stack can be exploited to infer linguistic knowledge.
Both works conclude that some attention layers specialize in syntactic structure.
Wu et al. (2020) use this fact and speci�cally measure the impact one word has on
another in a sentence by using their so-called perturbed masking technique. Wu
et al. (2020) are able to derive a syntax tree from this word-to-word representation
matrix. Baldini Soares et al. (2019) used a so-called masking technique to force the
model to learn named entity locations within a sequence. By doing so, speci�c
representations for particular relations within text can be learned.

Speci�cally related to the information retrieval part of this line of work is
SBERT (SentenceBERT; Reimers and Gurevych, 2019). SBERT is an extension
to pre-trained transformer architectures such as BERT or RoBERTa, which is
speci�cally targeted for sentence similarity search, i.e., �nding similar sentences
by using cosine similarity, while drastically decreasing search time of standard
cosine similarity. SBERT outperformsmost other embedding strategies formultiple
sentence similarity tasks. However, SBERT requires labeled data in the form of
similar and dissimilar sentences, and the training data also de�nes the architecture
of the siamese network, which disquali�es the evaluation of SBERT in our scenario.

4.3 Retrieval by Linguistic Patterns
We approach the retrieval of semantically similar sequences by using linguistic
patterns as a nearest neighbor problem, which can be formally described as follows:
Let S �= [�1,… , ��] be a training dataset with � instances, where �� represents
a sequence that contains a particular relation, and let � = [�1,… , ��] be their
corresponding class labels. Instances are decomposed into a set of �ner-grained
structures by applying linguistic patterns, such as tokens, chunks or dependency
paths, etc., which we then use for aggregation of the respective CWEs and as
keys for an inverted index, with the sequence and its label as value. Retrieval of
a query sequence can then be performed by the same decomposition and CWE
aggregation strategy and then looking for the nearest neighbors in the inverted
index. More formally, each instance �� is decomposed into a unique set of ��

structures by using a particular linguistic pattern:

�� � { �1� ,… , ��
�

� } , (4.1)



78 4.3. Retrieval by Linguistic Patterns

index (train)

query (test)

Figure 4.1: Overview of the indexing (training) and retrieval (testing) process.

and its �� label is replicated accordingly:

�� � �� �= { �1
� ,… , ���

� } . (4.2)

Further, let ��� represent a single aggregated embedding extracted by applying a
particular pattern and aggregated by the resulting structure’s constituent CWEs.
For example, it could be the representation of the actual sequence using an average
of all wordpiece embeddings (bag-of-word approach), or it could be the word
embedding of a single token in ��. In the former case, �� equals 1; in the latter case,
�� equals the number of tokens in ��. We call ��� a structured embedding, refer to
�� as the set of all structured embeddings extracted from a particular sentence ��,
and de�ne � to be the entire index of training examples, i.e., the superset of all
structured embedding sets �� collected across all training sentences �� … ��.

During test time, the goal is to retrieve the � most relevant unique sequences
[�1,… , ��] and their target labels for a given query sequence � from the index
� by applying the same linguistic pattern and aggregation strategy that was
used for indexing:

� � �� �= { ��1,… , ���
�
} (4.3)

[ �1,… , �� ] �= top�
�� � �

{ argmax
� � { 1,…,�� }
� � { 1,…,�� }

{ sim( ���, ��� ) } } , (4.4)

where top� is de�ned as a function that selects the top � indices as an ordered
list from the entire set of training instances regarding their maximum similarity
score of one of their respective structured embeddings. The sim function is
de�ned to be a similarity function for two feature vectors, where we chose to
use cosine similarity for our experiments. For evaluation purposes, we consider
�� a relevant retrieved instance i� ��� equals the class label of the test instance �.
The entire process of indexing and querying (training and testing, respectively)
is illustrated in Figure 4.1.
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Bob             parked             and             killed             the             engine             .

[CLS] bob park ##ed and kill ##ed the engine . [SEP]

[CLS] bob park ##ed and kill ##ed the engine . [SEP]

[CLS] bob parked and killed the engine . [SEP]
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Figure 4.2: Structured embedding extraction process using linguistic patterns. In this
example the dep-path pattern is illustrated.

4.4 Linguistically-Informed Patterns
We de�ne various linguistic structure extraction patterns, which we test for their
suitability to retrieve indexed sequences that are supposed to be semantically
similar to a query sequence and its encoded semantic relation. Most of the patterns
which we de�ne in this section are general purpose patterns, i.e., they can be used
to retrieve similar sequences without special treatment or extra information. For
pre-processing, i.e., tokenization, part-of-speech tagging, and dependency parsing
we use spaCy1, and for chunking we use �airNLP2. To obtain an embedding vector
for a token using CWEs based on RoBERTa (Robustly optimized BERT approach; Y
Liu et al., 2019) wordpiece tokenization, we sum the output of the last four attention
layers of the model and average all wordpieces of the particular token. Each of
the following patterns, which involve multiple tokens, comes with an aggregation
strategy to obtain the �nal sructured embedding. The entire process is illustrated
in Figure 4.2. We use the following linguistically-informed patterns to �nd similar
sentences with respect to the objective of semantic relation classi�cation:

token: Each token of a sentence is considered to be a unique structure.

word: Same as token where punctuation is omitted.

word-NS: Same as word where stop-words are omitted.

1. https://spacy.io/
2. https://github.com/�airNLP/�air

https://spacy.io/
https://github.com/flairNLP/flair
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[CLS] The Prime Minister left Brasilia on Monday for Lima .
DT NNP NNP VBD NNP IN NNP IN NNP .

nsubj dobjcompound pobjpobj
det prep

prep
punct
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[CLS] The Prime Minister left Brasilia on Monday for Lima .
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(b)

[CLS] The Prime Minister left Brasilia on Monday for Lima .
d1 d2

nsubj

(c)

[CLS] The Prime Minister left Brasilia on Monday for Lima .
d2 d2 d1

compound
det

(d)

[CLS] The Prime Minister left Brasilia on Monday for Lima
e1 p p e2pobjnsubj prep

(e)

Figure 4.3: (a) shows the automatically extracted dependency graph and syntax features.
(b-e) Linguistic patterns: (b) shows the aggregation strategy for token (t), word (w),
word-NS (w-ns), chunk (c), and chunk-NS (c-ns). (c) shows the aggregation strategy for
dep-{concat,avg} for a single dependency edge, i.e., �1 and its dependency head �2. (d)
illustrates the dep-depavg strategy for the word ‘Minister’, where �1 is the actual word
and all �2 are dependents of �1. (e) shows the task dependent dependency-path pattern
for relation classi�cation.

chunk: Each chunk of a sentence is considered to be a unique structure, where
constituent token embeddings within a chunk are averaged.

chunk-NS: Same as chunk, but stop-words are omitted.

dep: Dependency relations are encoded as a combined vector of the relation’s head
word and its tail word. We test three strategies to encode the dependency
relations as structured embeddings: a) both embeddings are concatenated
(-concat) b) both embeddings are averaged (-avg) c) for each token of the
sentence, we concatenate its embedding with the averaged embeddings of
its dependent tokens, i.e., its tail words (-depavg). If a word does not depend
on other words, i.e., it has no tail words attached, we concatenate an empty
vector of the same size, i.e., a vector where all values are set to zero.

dep-path: The shortest dependency path between two given entities has been
proven to be a bene�cial feature for relation extraction in previous works
(cf. for example among others: Lin and Pantel, 2001; Bunescu and Mooney,
2005; Remus, 2014). For this purpose, we de�ne the structured embedding �
of a sample to be the concatenation of the vectors for each entity �{1,2} and the
path �: � �= �1 � �2 � �. , Each individual vector (��, ��, �) is the average of
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all constituent word vectors. This pattern can be considered task-dependent
since it requires the two entities to be given in advance. However, we want
to stress that entities could be extracted in a NER pre-processing step and
that each permutation of an entity pair could be used as a structure.

Figure 4.3 (b-e) shows the di�erent structures for an example sentence, where
Figure 4.3c only shows a single dependency relation as an example and is re-
peatedly applied for all dependency relations as exempli�ed in Figure 4.3a, and
Figure 4.3d only shows a single example structure of the word ‘Minister’ and
is repeatedly applied for all words. We compare the sentence-level structures
with the following two baseline approaches, which produce a single structured
embedding for the entire sentence:

CLS: Weuse the arti�cial [CLS] token of BERT-basedmodels (or the equivalent for
non-BERT-based models such as RoBERTa) that is added to every sentence
as a meta-token and which is often used as a vector representation for the
entire sequence in downstream tasks.

BoW: All embeddings of all tokens are averaged to form a single embedding (bag-
of-words).

4.5 Experiments
We investigate the retrieval performance using precision at � (P@k) and mean
average precision (mAP) metrics. We use annotated datasets to evaluate the
retrieval performance based on gold standard data, which means each sentence is
labeled with one speci�c target class. The standard train and test splits are used
for indexing and querying as indicated by each dataset. We also run a simple
classi�cation benchmark test using the same datasets for comparison purposes. As
a classi�cation approach, we opted to use a k-nearest neighbor (kNN) approach,
which heavily relies on the retrieval performance, and thus, we implicitly evaluate
the retrieval performance too. The kNN method groups and counts the class labels
of the top-� retrieved training samples and uses the most prominent class label as
a classi�cation result. In case of ties, a random label of the most prominent classes
is chosen. We report F1 scores on the test sets and determine the hyperparameter
� by using the validation set of the respective task benchmarks. If an explicit
validation set is not supplied, we use an 80/20 split of the original training set
and use a random subset for validation and training.

The identi�cation of semantic relations is typically a multi-class classi�cation
problem, where our chosen datasets contain between 10 and 19 classes. We use
three standard benchmarks from the SemEval3 challenges for semantic relation
classi�cation: SE’07 (SemEval 2007; Girju et al., 2007), SE’10 (SemEval 2010; Hen-
drickx et al., 2010) and SE’18 (SemEval 2018; Gábor et al., 2018). Girju et al. (2007)
andHendrickx et al. (2010) focus on the classi�cation of semantic relations between
pairs of nominals. e.g., ‘tea’ and ‘ginseng’ are in an ENTITY-ORIGIN(e1,e2)
relationship in the sentence ‘The cup contained tea from dried ginseng.’. Gábor
et al. (2018) focuses on domain-speci�c semantic relations from scienti�c articles

3. https://semeval.github.io/

https://semeval.github.io/
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Table 4.1: Results for the semantic retrieval of semantic relations. mAP refers to mean
average precision, P@k refers to precision at �, w2v refers to the static word2Vec
embedding and RB refers to the contextualized RoBERTa embedding.
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SE’18
(w2v)

- 32.9 31.1 30.4 31.2 31.0 30.9 30.6 30.8 31.2 36.8 mAP
- 39.1 33.1 29.7 30.3 30.6 31.4 25.7 27.7 31.7 46.0 P@1
- 34.6 30.9 31.7 33.4 31.4 31.3 27.1 30.2 31.1 43.3 P@5

SE’18
(RB)

31.9 34.5 32.1 31.4 32.0 32.1 32.2 31.8 32.2 32.4 35.3 mAP
35.4 40.3 29.7 32.0 34.9 37.7 32.9 33.7 32.9 34.9 52.9 P@1
34.6 37.8 33.5 32.2 35.0 33.4 34.9 35.0 33.4 34.1 46.9 P@5

SE’10
(w2v)

- 12.7 9.0 9.5 9.8 10.8 10.6 11.1 11.3 11.4 22.2 mAP
- 35.5 9.9 14.4 15.6 21.9 21.8 22.7 22.5 23.0 58.6 P@1
- 30.3 10.0 11.3 14.6 19.3 19.2 19.7 19.9 20.4 50.0 P@5

SE’10
(RB)

10.3 14.1 11.5 12.6 12.3 12.8 13.2 15.1 13.5 15.5 26.5 mAP
31.6 40.6 26.0 26.8 27.3 32.0 32.4 38.3 27.5 37.6 73.0 P@1
27.0 35.9 22.0 23.3 23.5 28.6 29.0 34.0 26.3 33.4 66.5 P@5

SE’07
(w2v)

- 32.2 29.2 29.6 29.8 30.5 30.4 30.5 30.6 30.8 37.9 mAP
- 39.2 17.9 15.1 32.8 31.9 33.2 37.0 35.2 34.8 53.6 P@1
- 36.5 20.2 22.9 30.2 32.2 32.4 31.8 32.6 33.3 49.3 P@5

SE’07
(RB)

30.8 31.6 30.6 31.2 31.5 31.1 31.3 32.2 31.3 32.5 37.0 mAP
36.8 39.9 36.2 37.7 40.4 40.8 39.5 43.2 34.8 43.7 61.9 P@1
33.7 37.3 32.9 34.9 35.6 37.2 35.3 39.9 34.3 38.6 53.8 P@5

and provides entire paragraphs instead of single sentences. In our information re-
trieval setup, we attempt to �nd semantically similar relation instances (sentences)
from the training sets for every test set instance of the respective dataset.

Semantic Retrieval Results:
The results in Table 4.1 show that using RoBERTa in comparison to Word2Vec
is bene�cial, i.e., contextualized embeddings are more valuable than static word
embeddings, however, the bene�t is rather marginal, which is an interesting
�nding given that contextualized embeddings need way more data and compu-
tational resources for training. A common observation for all datasets is that
simple linguistic patterns do not necessarily perform better in terms of small
P@k values than the baseline BoW approach. Among the generally applicable
linguistic patterns, the dependency-depavg performs consistently better than
other patterns. Also, the baseline BoW approach consistently produces better
results than the baseline CLS approach, which questions the practical usability of
the [CLS] meta-token for downstream tasks. The specialized dependency-path
pattern, however, improves the results by a large margin, almost doubling the BoW
results and even tripling the token based results (cf. P@1, SE’10, RB).
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Table 4.2: Concise classi�cation results using kNN. Only the best settings and their scores
are shown here, and complete results can be found in Table 4.3.

Data Embedding Masking � F1
SE’07 w2v dep-path 1 43.4
SE’10 RB dep-path 5 78.7
SE’18 RB dep-path 5 35.9

Table 4.3: Classi�cation results using kNN showing the best identi�ed hyperparameter �
and the F1 score.
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SE’18 10 4 14 15 18 38 27 25 2 20 5 k
(RB) 21.5 26.6 21.6 17.3 20.2 15.2 16.5 24.1 25.0 17.6 35.9 F1

SE’10 - 65 11 24 16 41 30 23 24 22 107 k
(w2v) - 40.7 9.6 11.3 17.2 22.7 22.4 24.4 27.8 24.4 67.0 F1

SE’10 14 17 90 28 28 42 49 38 15 9 5 k
(RB) 33.9 50.5 24.8 29.0 30.0 34.8 34.1 31.2 40.2 41.7 78.7 F1

SE’07 - 1 16 6 10 2 7 2 1 16 1 k
(w2v) - 22.3 8.6 7.0 8.6 12.6 12.6 14.7 16.5 11.3 43.4 F1

SE’07 6 2 5 4 10 3 3 11 3 1 12 k
(RB) 11.0 22.4 13.4 13.4 10.8 18.8 14.4 17.2 23.0 26.5 41.6 F1

kNN Classi�cation Results
The results from our kNN classi�cation experiments are concisely summarized
in Table 4.2, where we show only the best-performing setup identi�ed using a
held-out validation set and tested on the held-out test set. Interestingly, the best
classi�cation setups correlate with the MaP scores from the retrieval setup, not
the precision� scores as one would intuitively expect. While the classi�cation
results are far from beating the state of the art, they con�rm our hypothesis that
contextualized embeddings encode more valuable semantic information than static
word embeddings since they perform consistently better (except on the SE’07 task).
For completeness, the list of all results can be found in Table 4.3.

kNN Classi�cation Results w/ Increasing Data
In a further experiment, we measure the classi�er’s performance regarding the
amount of data necessary to produce usable results. We randomly select subsets
of the training data with an increasing amount of sentences and plot the results
in Figure 4.4. We only show the best setups that were identi�ed in Table 4.2. For
SE’07 and SE’10, we can see that the available training data seems insu�cient
since the performance gradient is still high when reaching the maximum available
training data. For SE’10, we can see that as few as 1, 000 samples are su�cient to
reach a decent performance as compared to using the entire training data.
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Figure 4.4: kNN performance for increasing training dataset sizes for relation classi�cation.
Only the best settings and their scores are shown.

4.6 Conclusion
We presented an analysis of di�erent linguistically informed aggregation strategies
for word embeddings in an information retrieval setting to �nd semantic units
of the same class for di�erent relation extraction datasets. For this, we used
contextual word embeddings and linguistic structures as a means for indexing
words or sentences and their class labels. We showed that the rather complex tasks
bene�t from both, linguistic structures and contextualized word embeddings. We
also showed that for simple � nearest neighbor classi�cation, only a certain amount
of training data is su�cient to reach a decent performance. Use cases of this work
include support for rapid training data collection, manual coding/annotation of
datasets, e.g., in social science and humanities applications, retrieval of similar
language use in eDiscovery tasks, and many more. In (Remus et al., 2022), we even
extended this line of research and the experimental setup to more NLP tasks and
showed that the bene�t depends on the granularity of the task, i.e., the number of
class labels. With �ner-grained tasks, i.e., more class labels, the bene�t of more
advanced and task-dependent linguistic structures, such as the dependency path
for relation extraction, becomes more apparent, whereas for simpler tasks, such
as o�ensive language classi�cation, which is a two-class classi�cation problem,
more super�cial structures such as token or chunk perform best.
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5
Unsupervised Semantic Relation

Extraction

In this chapter, we present methodologies for clustering contextualized word
embeddings (CWEs) with the goal of generating groups of words that are used
to evoke similar semantic relations. We focus on verbs in this chapter because of
their predicate-like authority in semantic relations, i.e., verbs are considered the
main contributors for predicate-argument structured semantic relations (Nastase
et al., 2013). Our motivation is a) to distinguish between the di�erent senses
a word can have in certain contexts, i.e., split polysemic word instances, and
b) to �nd words and contexts that describe the same sense, i.e., merge synonymic
words. A naïve approach to this could be to directly cluster all word instances
within a corpus of su�cient size, such that it contains multiple occurrences of
words expressing several senses. This, however, leads to severe resource issues
because, even for small corpora and only verb instances, the list of contextualized
embeddings for all words becomes too large to handle on a single computer. We
parallelize this process by conceptually addressing polysemy �rst, i.e., we collect
all sentences in which a particular word is used, cluster these instances into a
manageable number of clusters per word, and run a secondary joint clustering on
all word clusters as single instances, which, conceptually, addresses synonymy
by merging clusters. Although the process is slightly di�erent, we follow Ustalov
et al. (2019) and call this process local-global clustering.

5.1 Related Work
Ustalov et al. (2019) presentedW�����, a meta-algorithm that essentially performs
fuzzy clustering of words in two hard clustering stages, i.e., by �rst resolving
sense ambiguities of a word by using a symbolic neighborhood graph as input, and
creating a so-called intermediate sense graph using vector comparison for further
disambiguation of interrelated words. In more detail, a similarity graph of words
is used as the input representation, although Ustalov et al. (2019) stress that the

87
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Figure 5.1: Schematic overview of the local-global clustering procedure.

approach itself is independent of words and just needs a similarity graph of any
kind of object, they use word similarities in their experiments. Each subgraph of
similarities that spans a particular word is then clustered into di�erent senses, such
that each neighbor of a word is assigned to a particular cluster. This procedure –
called the local step – closely follows Dorow and Widdows (2003); more details
can be found in (Ustalov et al., 2019; pp.10). For the so-called global step, the
local cluster elements are disambiguated in order to form a global graph of senses
instead of words. For this, the local clusters are aligned by maximizing a similarity
measure, speci�cally the cosine similarity of adjacency encoded vectors (Ustalov
et al., 2019, pp.13). In contrast to Ustalov et al. (2019), we do not rely on the
disambiguation step of sense-related terms since ambiguities are modeled by the
contextualized embeddings already (cf. Chapter 3.2). The globally disambiguated
graph of senses is then clustered to create groups of senses, whereas the sense labels
are removed in order to form proper synsets, i.e., sets of synonyms. TheW�����
meta-algorithm is designed to be independent of the type of input nodes and the
speci�c clustering algorithm. Hence, the clustering algorithms, and their respective
parameterizations, are included as hyperparameters. We follow this setup and
test the three following clustering methods Chinese Whispers (CW; Biemann,
2006), Markov Clustering (MCL; van Dongen, 2000), and MaxMax (MM; Hope
and Keller, 2013).

5.2 Local-Global Clustering of CWEs
Given a su�ciently large corpus, our proposed procedure is as follows:

1. Collect all contexts �� that contain a particular verb � from a de�ned set of
verb types � .

�� = { �1, ..., �� | � � �� � � � � } (5.1)
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2. Cluster �� such that � is split into �� di�erent senses while keeping a
reference to the original context and its source sentence. We do this in
order to provide provenance for analysis and explainability. The explicit
clustering algorithm might create hard- or soft clusterings, i.e., clusters are
allowed to have overlapping elements, but they do not necessarily have to
overlap.

clusterlocal(�) �= { ��1,… , ���� | �
�
� � �� } (5.2)

� = �
� � � �

clusterlocal(�) (5.3)

(5.4)

� is then the combined set of all local clusters.

3. Cluster � such that the local clusters are organized into � global clusters
while still keeping a reference to a local cluster and the source contexts of
its elements. This continues to serve provenance. The speci�c clustering
algorithm might be di�erent from the local clustering algorithm and might
again create hard- or soft clusterings.

clusterglobal(�) �= { ��1 ,… , ��� | ��� � � } (5.5)
� = clusterlocal(�) (5.6)

� is then the set of all global clusters, i.e., the �nal clustering.

The procedure is based on a split-and-merge idea, i.e., we split polysemic verb
tokens of a particular verb type (local-step) and merge synonymic verb usages
across all verb types (global step), see Figure 5.1 for an illustration of our proce-
dure. Each step has its own design choices and parameterizations, which will be
described in more detail in the following subsections.

5.2.1 Collecting Contexts (1)
We explore di�erent contextualized vector representation extraction strategies
for a particular verb �. Based on our previous �ndings in Chapter 4, where we
have shown that contextualized embeddings, in combination with aggregation
strategies based on linguistic knowledge, are helpful in building more discrimi-
native representations of sentences, phrases, or words with special regard to a
particular task (Remus et al., 2022; Chapter 3 and 4). Inspired by our experiments
in Chapter 4, and the linguistic patterns we used for information retrieval; we
investigate the e�ect of linguistic patterns as a masking strategy in the self-
attention layers (Bahdanau et al., 2015) of transformer architectures (Vaswani
et al., 2017). This gives us a linguistically-informed contextualizedword embedding
(CWE), which is internally estimated instead of externally aggregated as has been
done in Chapter 4. While we averaged the contextualized embeddings based on
a linguistic pattern in Chapter 4, we deviate from this strategy and utilize the
internal attention mechanism of transformers to force the model to attend only
to tokens that match a linguistic pattern. Below, we list the linguistic patterns
we examined in this chapter:
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She parked and killed the engine .
PRP VB CC VB DT NNP .

nsubj cc det
conj dobj

punct

(a)

She parked and killed the engine .
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She parked and killed the engine .
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A2

V1 V2 A2
Agent Device

Agent

(d)

Figure 5.2: Linguistic patterns used for masking verb instances using attention. (a) shows
the dependency graph for reference; (b) shows two verbs that are going to be used as
the verb of interest by the patterns; (c) shows the non-stop-words which are used for
attention; (d) shows the semantic roles provided by FrameNet annotations (sr�-*).

a��: default self-attention mask, where every word piece and special token has
access to every other word-piece or special token,

a��w: a self-attention mask, where every proper word, i.e., excluding special
tokens, punctuation, etc., has access to every other proper word,

verb: only the verb of interest � has access to all other words,

sr�-args: � has access to its arguments, but not to itself; additionally the argu-
ments have access to themselves,

sr�-argsv: � has access to its arguments and to itself; additionally the arguments
have access to themselves and the verb �.

See Figure 5.2 for an illustration of the patterns and Figure 5.3 for a sketch of the
collection procedure. For the sr�-* strategies we use semantic role labeling (SRL)
annotations provided by FrameNet1 (Baker et al., 1998). We use the FrameNet
annotations here for convenience because our experiments are based on the
FrameNet corpus (cf. Section 5.4.1). Automatic SRL parser exist, which can be
employed if no such annotations are at hand.

We also experiment with two di�erent versions of input provisioning, i.e., the
estimation of the structured embedding, for the sr�-* patterns. First, we run the
original sentence through the respective CWE model and use the attention masks
for each verb in the sentence. For the second method, we gather all tokens of
a frame, i.e., all its roles including the verb, and build a pseudo sentence from a
particular pattern, which we then treat as a normal sentence to run through the

1. FrameNet version 1.7: https://framenet.icsi.berkeley.edu

https://framenet.icsi.berkeley.edu
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CWE model for further processing and representation. Note that a single sentence
might result in more than one pseudo sentence. The structure is used before the
extraction process, whereas in the original extraction process, the structure is used
in the embedding aggregation step. The incentive behind the latter strategy is to
avoid noisy input from longer, possibly nested, sentences, with the possible pitfall
of error propagation due to automatic parsing errors and incomplete sentences.
Henceforth, the pseudo sentence strategy is marked with the subscript ps and
the Figures 5.3a and 5.3b illustrate the two strategies.

Rogers et al. (2020) provide an extensive overview of the internal analyses
of BERT (Devlin et al., 2019) and BERT-related models. Tenney et al. (2019)
have shown, that di�erent self-attention layers of the respective model behave
di�erently for certain tasks. For example, while semantic properties are supposed
to be spread across multiple layers, the �rst layers of a model are considered to
be responsible for low-level syntactic properties of language such as parts-of-
speech, chunks, etc., while subsequent layers are supposed to be responsible for
higher level syntactical or grammatical properties, such as dependency parses
or semantic roles, and the �nal layer is known to be most representative for
task-speci�c semantic properties. Thus, the �nal layers often perform worse than
medium range to penultimate layers for semantic clustering (NF Liu et al., 2019).
Since we are interested in semantic clustering, we introduce the selection of the
layer as a hyperparameter, where we restrict the choice to any permutation of
the �nal three layers (i.e., [0,1,2], [0,1], [1,2], [0,2], [0], [1], [2], where 2 is the �nal
layer, 1 is the penultimate layer, and 0 is the layer before that) and concatenate
or average the respective layers.

Devlin et al. (2019) suggested using only some wordpiece embeddings mapped
by a token. We follow their suggestion and the commonly applied policy but
also test the most common strategies, such as:

first use only the �rst wordpiece of a token,

�ast use only the last wordpiece of a token,

avg average the embeddings of each wordpiece of a token.

The entire extraction process is illustrated in Figure 5.3. We collect all verbs within
a corpus and build a matrix �� for each verb type �.

5.2.2 Locally Clustering Verbs in Context (2)
For a speci�c verb type � and its collection of contextualized word embeddings,
we begin locally clustering the individual instances by feature transformation, i.e.,
the embeddings are transformed to a sparse vector representation of interpretable
similarities. Here, we use cosine similarity and de�ne di�erent techniques for
thresholding:

� (�) � R� � R� (5.7)

The matrix �� � R�ñ� is transformed to �� � R�ñ�, where � is the embedding di-
mension, � is the number of instantiations of �, and an entry��� � �� = sim(��, ��)
represents the similarity value between the embedding �� and �� . �� can be
interpreted as an adjacency matrix where each row � and column � represents a
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[SEP]
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[SEP]
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[SEP]

AT
TE
NT
IO
N

SE
LF

MA
SK

AT
TE
NT
IO
N

SE
LF

MA
SK

apply
model
with
linguistically
informed
attention
strategy

use
token
embedding
of


verb
of
interest

(b)

Figure 5.3: Contextualized word embedding extraction process using linguistic patterns.
(a) shows the default process for a particular verb �, in the example ‘killed’; (b) shows the
special case pseudo sentences construction before applying the model.
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node and the similarity de�nes the weight of an edge between � and � . Pruning
the matrix, by removing edges whose weights are below a speci�ed threshold
value, makes the graph sparse and transforms it into a so-called small-world
network (Milgram, 1967), which can then be used for graph clustering. In a small-
world network, nodes are de�ned to have only a few neighbors. We use the
following methodologies for pruning edges from the initially fully connected
graph. Pruning edges between nodes � and � in the adjacency matrix is done
by setting the value ��� = 0.

static� : delete all edges whose weight is below a given static threshold �.

auto����: delete all edges whose weight is below the average value of ��,

auto������: delete all edges whose weight is below the median value of ��,

auto����0: delete all edges whose weight is below the average value of ��, where
only values ��� > 0 are used for computing the mean value,

auto������0: delete all edges whose weight is below the median value of��, where
��� > 0, where only values��� > 0 are used for computing the median value,

top�: for each node, keep the top � (outgoing) edges, where symmetry is forced
by adding (incoming) edges since the similarity graph is bi-directional.

cc� : iteratively delete the lowest valued edge while the estimated clustering
coe�cient is below a certain threshold �. Since we want the graph to
be symmetric, we always delete both edges between nodes � and � , i.e.,
��� = ��� = 0.

Additionally, we delete self-loops (��� = 0) and optionally binarize edge weights
that are greater than zero after pruning, i.e.,

��� =

�
1 i� ��� > 0

0 otherwise
(5.8)

Graph clustering algorithms exploit the small-world network property and try
to �nd clusters of nodes that are highly connected, i.e., nodes that have higher intra-
connections than inter-connections across other clusters. We opted for algorithms
with a small set of hyperparameters for the clustering procedure. We argue that
especially the number of clusters should never be set as a hyperparameter because
truly unsupervised learning algorithms will �nd di�erences between samples that
are not obvious to humans and do not necessarily correlate to human-assigned
categories or even the number of categories. The following clustering algorithms
ful�ll our chosen criteria:

mc�: MarkovClustering (vanDongen, 2000) implements a randomwalker paradigm
similar to the page-rank algorithm (Page et al., 1999).2

2. We stick to the recommended default parameters since we did not perceive any substantial
changes when adjusting them.
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mm: MaxMax (Hope and Keller, 2013) is a parameterless soft graph-clustering
algorithm, whichmeans that nodesmight be assigned to one ormore clusters
with a certain probability. The algorithm transforms any undirected graph
into a directed graph and �nds longest paths, where each path is going to
be a cluster, and each node on a path is a cluster element.

cw{��� ,��,��}: Chinese Whispers (Biemann, 2006) is an e�cient graph clustering
algorithm based on the idea of label propagation and comes with a tiny set
of hyperparameters.

Spectral Clustering (Shi and Malik, 2000), A�nity Propagation (Frey and Dueck,
2007), andDBSCAN (Ester et al., 1996) have been tested in preliminary experiments
with the conclusion that they mainly fail to scale to large amounts of data samples.3
For Chinese Whispers, we de�ne some novel label propagation variants (see
Section 5.3), where we use the current task for evaluating their performance.
We thus have the following variations for Chinese Whispers:

cw��� : speci�es the default maximum class label strategy of Chinese Whispers.

cw��: here, we use the sampling method for class labels propagated from a node’s
neighbors as described in Section 5.3.

cw��: here, we use the sampling method for neighbors as described in Section 5.3.

We stick to the recommended default parameter set for weighting individual nodes.
Clustering the localized samples, i.e., the verbs in their de�ned context, is

then straightforward using the speci�c clustering algorithm. The result is a local
clustering for each verb type �, where we de�ne � to be the union of all clusters
across all verbs, i.e., � is the joint set of all local clusters. In the local clustering
step, we conceptually dissolve the polysemous verb type � and group ambiguous
instantiations of � into clusters in �.

5.2.3 Globally Clustering Local Clusters (3)
The global clustering step groups the clusters from the local clustering step across
verb types. The main idea behind this step is to resolve synonymous expressions
or clusters. For this, we examine the same clustering methods as we did for the
local clustering step: mc�, mm, cw{��� ,��,��}. To �nd a suitable vector representation
for a local cluster, we de�ne the following two heuristics:

average: the most straightforward approach is to average all the elements of a
local cluster.

first: here, we rank the elements of a cluster and use the embedding repre-
sentation of the �rst element as a representation for the entire cluster.
This ranking heavily depends on the local clustering algorithm’s ability to
produce intra-cluster element rankings. MaxMax, for example, comes with
an inbuilt ranking of clustered nodes due to using the longest path; here, we
use the root node to represent the cluster. In Chinese Whispers and Markov

3. We used the implementations provided by scikit-learn https://scikit-learn.org/.

https://scikit-learn.org/
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Clustering, we use the node with the highest degree and choose a random
node in case of ties.

rand: here, a random node is chosen to represent the cluster.

Each local cluster in � is thus represented by a single vector; we collect all vectors
and call the resulting matrix �� and apply the same feature transformation steps
as in the local clustering step, i.e., we a) transform �� into an adjacency matrix
�� by computing pairwise similarities, and b) prune the graph such that it ful�lls
the small-world network property. We test the same options and techniques as
listed above. Additionally, we remove edges between clusters generated from the
same verb type. Once �� is pruned, we apply the same techniques for clustering
as described above, namely mc�, mm, or cw{��� ,��,��}.

5.3 Chinese Whispers with Sampling
Chinese Whispers (CW; Biemann, 2006) is a type of a label propagation algorithm
within the family of graph clustering algorithms. Each node is initially assigned a
unique class label and iteratively propagates its label to neighboring nodes. The
label of a node is updated by choosing one of the class labels from the neighboring
nodes, where the default strategy is to select the highest-ranked class label within
the local neighborhood of a node. The rank of a class is computed as the sum of
the weights of each neighboring node that is currently assigned the particular
class label. Biemann (2007) introduced multiple scoring functions that consider
the edge weight between the two nodes and the incoming and outgoing degree of
the propagating node. The pseudo-code for the generic algorithm can be found
in Listing 5.1 and Listing 5.2. Further details can also be found in (Biemann,
2006, 2007, 2012).

Since Chinese Whispers also constitutes properties of a random walker in a
Markov process, we added two variants, which, instead of computing the argmax
of neighboring labels, use sampling from a probability distribution. Consider the
pseudo algorithm in Listing 5.2: in Lines 8-10, the weights of neighboring nodes
are aggregated and form a local score for each label given a node �. The default
procedure is then to use the label with the highest score for label propagation
(Line 13). However, we argue that a probabilistic interpretation might help to
bring more stability to CW’s non-deterministic behavior. In Line 17, we introduce
a sampling variant that treats the scores of labels as a local probability distribution
�(�|�) of a class � given a node � and draws a (label) sample from this distribution.
We call this method cw�� (sample label). In Line 21, we introduce a sampling variant
that treats the weights of neighboring nodes as a local probability distribution
�(�|�) of a neighbor � given a node �. Similar to cw��, the idea is to draw a node
� from �(�|�) and use its class label �� as the new class label for �. We call this
method cw�� (sample neighbor). For both methods, the law of large numbers
provides the foundation of our idea that the selected label should converge to
the most probable label in its vicinity.

However, we note that in theory, cw�� and cw�� should yield the same result
because the probability mass of a label is the sum of the probabilities of the
neighboring vertices with that label. The di�erence is that cw�� implicitly scatters
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Listing 5.1: The generic Chinese Whispers (CW) algorithm. Vertices with the same class
label build the �nal clusters.

1 // initia�ize c�ass �abe�s

2 for � = 1 to |� | do
3 �� � �
4 end for
5 // convergence is reached if

6 // - the maximum number of iterations is reached, or

7 // - changes are neg�ectab�e

8 until ����������� do
9 // update c�ass �abe�s

10 for each � � shu�e(� ) do
11 �� � select_label(�)
12 end for
13 end for�

(a) (b)

Figure 5.4: Illustration for the distribution of probability masses for class labels collected
from neighboring nodes. The entire circle represents 100 percent. Colors and �1 … �4 refer
to classes; �1 … �9 refer to neighboring nodes with the color being the assigned class. (a)
shows the distribution of classes when aggregated over the neighbors; (b) shows the
distribution of classes when not aggregated.

probabilities of labels whereas cw�� collects it in a bulk (cf. Figure 5.4 for illustration).
This di�erence, we believe, might have an in�uence in a practical setting; we
thus treat and test both strategies independently.

5.4 Experiments

5.4.1 Dataset
Experiments are performed using FrameNet (Baker et al., 1998)4. We collect
only sentences where the frame evoking lexical unit is a verb, i.e., each sentence
contains at least one verb-frame. FrameNet provides multiple sentences per frame,

4. We use FrameNet version 1.7 provided by the NLTK Framework (Bird et al., 2009).
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Listing 5.2: Label propagation (selection) strategies for Chinese Whispers (CW). Details of
the ’weight(� , �)’ function, to compute the local weight of node, can be found in (Biemann,
2012).

1 function select_label
2 input : node �
3 // se�ect a new �abe� by the maximum weight of the neighbor�s c�ass �abe�s

4 �et ���� be the set of weighted *incoming* edges of �
5 �et � ��

� be the set of neighboring nodes of � in ����
6 �et ���

� be the set of unique c�ass �abe�s of nodes in � ��
�

7 // initia�ize aggregated c�ass �abe� scores

8 for � = 1 to |���
� | do

9 �� � �(�,�)�����
weight(u,v) ñ �� == ��

10 end for

12 // OPTION: cw��� (defau�t)

13 �� � argmax(�)

15 // OPTION: cw��
16 // treat aggregated c�ass scores as a probabi�ity distribution and samp�e from it

17 �� � draw_sample_class(�)

19 // OPTION: cw��
20 // treat weights of nodes � � � ��

� as a probabi�ity distribution and samp�e from it

21 � � draw_sample_node({ weight(�, �) � � � � ��
� })

22 // get the c�ass of samp�ed node

23 �� � ���

which might be evoked by one or more verb types. We can thus use it directly to
evaluate polysemy and synonymy. We treat the annotated frame for a sentence,
and the frame-evoking verb, as a gold cluster label, and the collection of all frames
and sentences de�nes our gold clustering. Table 5.1 lists some statistics of the
dataset. Figure 5.5 (b & c) show some statistics about the distribution of verb types
across frames and their contextualized instances within the sentences. Figure 5.5a
shows the distribution of sentences for the verb types. Figure 5.5b shows the
distribution of frames per verb type, i.e., here, we can read the synonymic nature
of frames in the FrameNet data. For example, we can see that roughly 175 frames
are instantiated by only one verb type, i.e., there’s no verbal synonymy present in
the data, whereas a few frames are instantiated by 20 verbs or more; those frames
can be considered highly synonymous. The polysemic nature of the data can be
read in Figure 5.5c, which shows the distribution of verb types per frame. For
instance, we can see that roughly 1,900 verb types instantiate only a single frame,
i.e., in this case, there is no expected ambiguity of the verb. However, we can also
see that more than 1,000 verb types instantiate two or more frames, and a few verb
types even instantiate �ve or more frames; those verb types can be considered
highly polysemic. We can observe that all distributions follow a power-law pattern,
e.g., many frames are evoked by only a few verb types, and only a few frames are
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Table 5.1: FrameNet statistics. Note that the numbers refer only to frame-evoking lexical
units that are verbs. The number of frames implicitly de�nes the number of gold clusters.
Sentences might invoke multiple frames (cf. the example in Figure 4.2).

#verb types 2, 663
#frames 642 de�nes the target number of global clusters

#verb-frames 3, 877 de�nes the target number of total local clusters
#sentences 76, 763

#frame instances 82, 623
#tokens 1, 868, 156

vocabulary size 77, 624

evoked by multiple verb types (cf. Figure 5.5b), this directly translates to resolving
synonymy in our global clustering step. Also, in Figure 5.5c, we can see that
many verb types can be associated with only a few frames, whereas only a few
verb types can be associated with multiple frames, which translates to resolving
polysemy in our local clustering step. Sentences are distributed in a power-law
fashion too, i.e., many verb types occur in only a few sentences, whereas only
a few verb types occur in many sentences (cf. Figure 5.5a).

5.4.2 Embedding Models
We use the following contextualized embedding models but note that those can
be easily exchanged by other (contextualized) embedding models since the model
only provides features for the procedure itself. The only constraint we set to the
pre-trained model architecture is the internal use of the attention mechanism
(Bahdanau et al., 2015) so that we can evaluate strategies regarding attentionmasks.
For ease of use, we stick to models implementing variants of the transformer
architecture �rst proposed by Vaswani et al. (2017).

BERT (Bidirectional Encoder Representations from Transformers) was intro-
duced by Devlin et al. (2019) and is probably the �rst and most popular choice of
the transformer architecture because at the time of publication, BERT achieved
state-of-the-art results in many NLP downstream tasks. Its introduction also
o�ered easy access to pre-trained models in di�erent sizes, i.e., di�erent numbers
of trainable parameters, etc. Since its introduction, many successor architectures
have been proposed.

R�BERT� (Robustly optimized BERT approach) is a BERT successor model by
Y Liu et al. (2019), which uses a dynamic token masking and prediction strategy
for pre-training, which enables the easier exchange of underlying dataset. BERT,
on the other hand, applied the token masking during pre-processing per sentence,
and thus, the model is always presented the same statically masked tokens when
making a pass over the data.

S���BERT is another pre-training method based on BERT’s architecture pro-
posed by Joshi et al. (2020). S���BERT is designed to represent the prediction of
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(a)

(b)

(c)

Figure 5.5: Histograms generated from the FrameNet where the lexical units invoking
frames are verbs. (a) shows the distribution of the number of sentences per verb type;
(b) shows the distribution of frames per verb type, i.e., here we can read the synonymic
nature of the verb type data; and (c) shows the distribution of the number of frames a
verb type can invoke, i.e., here we can read the polysemic nature of verbs.

text spans better than the individual and independent prediction of single tokens.
Thus, a mask can represent either a phrase of multiple tokens or a single token,
e.g., in the sentence “I love [MASK]”, the special token “[MASK]” can be used to
predict a single word like “Berlin” or a span like “the city of New York”.

5.4.3 Clustering Evaluation Metrics
Many metrics exist for comparing gold clusterings with generated clusterings.
In (Remus, 2012; Remus and Biemann, 2013), we explored several clustering
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Table 5.2: Scores of the top 20 �nal global clusterings as de�ned by the combined relative
ranking across all clusters.

model mask token emb emb layer local clustering r�����(�) global clustering local cluster repr FMI r(FMI) AMI r(AMI) PUF1 r(PUF1) NMI r(NMI) ARI r(ARI) �(�(�))

BERT all avg [ 2 ] cw��(cc.5) 104 cw���(auto������) avg .080 546 .621 3 .484 384 .681 268 .052 228 286
BERT all avg [ 2 ] cw��(cc.5) 104 cw���(auto����) avg .080 545 .621 1 .484 387 .681 269 .052 227 286
BERT all avg [ 2 ] cw��(cc.5) 104 mm avg .080 543 .621 2 .484 398 .681 271 .052 226 288
S���BERT all avg [ 1 ] cw��(cc.5) 77 cw���(auto������) avg .093 98 .612 11 .453 779 .673 473 .075 125 297
S���BERT all avg [ 1 ] cw��(cc.5) 77 cw���(auto����) avg .093 98 .612 12 .453 779 .673 473 .075 125 297
S���BERT all avg [ 1 ] cw��(cc.5) 77 mm avg .093 98 .612 13 .453 779 .673 474 .075 125 298
S���BERT all �rst [ 1 ] cw��(cc.5) 76 cw���(auto������) avg .091 127 .607 26 .448 853 .670 540 .074 126 334
S���BERT all �rst [ 1 ] cw��(cc.5) 76 cw���(auto����) avg .089 166 .608 20 .446 867 .672 494 .073 129 335
S���BERT all �rst [ 1 ] cw��(cc.5) 76 mm avg .089 165 .607 22 .446 876 .671 513 .073 128 341
BERT all avg [ 1 ] cw��(cc.5) 117 cw���(auto����) avg .080 548 .613 8 .479 446 .671 506 .049 246 351
BERT all avg [ 1 ] cw��(cc.5) 117 mm avg .080 538 .612 10 .478 453 .671 523 .050 244 354
BERT all avg [ 1 ] cw��(cc.5) 117 cw���(auto������) avg .079 585 .613 9 .479 445 .672 495 .049 255 358
BERT all avg [ 2 ] cw��(cc.5) 129 cw���(auto����) avg .076 755 .611 14 .483 410 .673 455 .045 312 389
BERT all avg [ 1,2 ] cw��(cc.5) 121 mm avg .077 745 .609 18 .479 439 .671 516 .047 281 400
BERT all avg [ 2 ] cw��(cc.5) 129 cw���(auto������) avg .076 793 .611 15 .481 431 .673 464 .044 324 405
BERT all avg [ 2 ] cw��(cc.5) 129 mm avg .075 846 .610 16 .480 437 .673 478 .044 330 421
S���BERT all avg [ 1 ] cw��(cc.5) 115 cw���(auto����) avg .083 359 .602 36 .446 872 .665 688 .063 157 422
S���BERT all �rst [ 1 ] cw��(cc.5) 107 mm avg .085 300 .598 46 .442 936 .663 785 .066 145 442
BERT all avg [ 1,2 ] cw��(cc.5) 121 cw���(auto����) avg .075 840 .607 25 .474 493 .669 565 .046 300 445
S���BERT all �rst [ 1 ] cw��(cc.5) 107 cw���(auto����) avg .085 295 .597 48 .441 955 .662 797 .066 144 448

comparison measures and con�rmed previous �ndings that the perfect clustering
evaluation metric does not exist. In this work, we use a combination of the
following metrics: AMI (adjusted mutual information); FMI (Fowlkes-Mallows
Index, also known as the pairwise F1); PUF1 (Purity F1); NMI (normalized mutual
information), which gives same score as the default V-measure, which is com-
puted as the weighted harmonic mean of Homogeneity (H) and Completeness
(C) (cf. Remus, 2012); and ARI (adjusted rank index).

Because each metric is not necessarily normalized or limited by an upper
bound, simple averaging strategies cannot be applied, but since we compute many
clusterings with di�erent hyper-parameter setups, we can compute a relative rank
for every clustering and metric. We denote the rank of a clustering regarding a
metric with �(������). Using the ranks, we are able to aggregate all ranks of each
metric to produce a single rank as our �nal score: �(�(�)) denotes the average
rank of all metrics and is used for sorting clusterings.

5.4.4 Evaluation Procedure
Using grid search, we compute all clusterings for several combinations of param-
eters listed in Section 5.2, which amounts to roughly 10K di�erent clusterings.
Since the cluster evaluation metrics do not necessarily correlate, we �rst compute
the rankings for each of the �ve metrics and compute the average of the ranks,
which provides an approximation of the agreement between the metrics w.r.t. their
relative rank performance across di�erent clusterings. The average rank can then
be used as a meta-score for comparison purposes with a single evaluation score.

5.4.5 Results
Results of the entire local-global clustering procedure are listed in Table 5.2. We can
see that the top hyper-parameter setups often share the same hyper-parameters
from the local clustering step, i.e., the top entries come in triples, meaning they
share the same local clustering setup and only di�er in the global clustering
method. Here, cw��� method alternates with the auto������ and auto���� pruning
strategy. This seems intuitive since the auto���� and auto������ pruning strategies
remove a similar amount of graph edges, the di�erence is negligible, and they
even produce very similar scores, such that the �nal average ranks are in fact
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Table 5.3: Scores of the top 20 local clusterings as de�ned by the combined relative ranking
across all clusters.

(a) Local clustering results.
id����� model mask token emb emb layer local clustering FMI r(FMI) AMI r(AMI) PUF1 r(PUF1) NMI r(NMI) ARI r(ARI) �(�(�))

1 RB allps avg [ 1 ] mc�(top10) .783 1 .926 1 .882 1 .965 1 .780 1 1
2 RB allps avg [ 0,1,2 ] mc�(top10) .782 2 .925 2 .881 2 .965 2 .779 2 2
3 RB allps �rst [ 0,1,2 ] mc�(top10) .782 3 .924 3 .879 3 .964 3 .778 3 3
4 RB allps avg [ 2 ] mc�(top10) .779 4 .923 4 .879 4 .964 4 .776 4 4
5 RB allps �rst [ 1 ] mc�(top10) .779 5 .923 5 .878 5 .964 5 .776 5 5
6 RB all avg [ 1 ] mc�(top10) .777 6 .922 6 .877 6 .964 6 .773 6 6
7 RB all avg [ 0,1,2 ] mc�(top10) .776 8 .922 7 .876 7 .964 7 .773 8 7
8 RB allps �rst [ 2 ] mc�(top10) .776 7 .921 8 .876 8 .963 8 .773 7 8
9 RB all avg [ 2 ] mc�(top10) .772 9 .919 10 .874 9 .962 10 .769 9 9
10 BERT allw avg [ 2 ] mc�(top10) .770 10 .920 9 .874 10 .963 9 .768 10 10
11 BERT allw avg [ 0,1,2 ] mc�(top10) .762 17 .917 11 .871 11 .962 11 .760 18 14
12 RB all �rst [ 0,1,2 ] mc�(top10) .762 16 .915 13 .869 12 .961 13 .760 17 14
13 S���BERT allps avg [ 2 ] mc�(top10) .765 13 .914 15 .867 17 .960 15 .762 14 15
14 BERT allw �rst [ 0,1,2 ] mc�(top10) .760 21 .916 12 .869 13 .961 12 .758 20 16
15 RB allw avg [ 2 ] mc�(top10) .766 11 .913 17 .865 21 .960 17 .763 13 16
16 BERT all avg [ 1 ] mc�(top10) .765 12 .911 21 .867 16 .960 20 .764 11 16
17 BERT all avg [ 2 ] mc�(top10) .765 14 .911 20 .868 15 .960 19 .763 12 16
18 RB all �rst [ 1 ] mc�(top10) .760 22 .914 14 .868 14 .960 14 .758 22 17
19 S���BERT allps avg [ 0,1,2 ] mc�(top10) .760 20 .913 18 .866 19 .960 18 .758 21 19
20 S���BERT all avg [ 0,1,2 ] mc�(top10) .759 23 .912 19 .866 20 .959 21 .757 23 21

(b) Global clustering results by using only the top 20 local clusterings.
id����� global clustering local cluster repr FMI r(FMI) AMI r(AMI) PUF1 r(PUF1) NMI r(NMI) ARI r(ARI) �(�(�)) r(�)
10 cw���(auto����) avg .072 1062 .551 336 .432 1160 .608 1800 .028 911 1054 144
10 cw���(auto������) avg .073 1055 .550 346 .430 1190 .607 1811 .028 906 1062 146
10 mm avg .073 1016 .549 350 .429 1221 .605 1842 .028 892 1064 149
11 mc�(top10) avg .058 2505 .548 361 .487 327 .677 359 .019 1990 1108 158
10 mc�(top10) avg .057 2661 .553 319 .490 258 .681 282 .018 2060 1116 163
10 mc�(cc.5) avg .057 2675 .554 317 .491 249 .681 283 .018 2071 1119 164
14 mc�(cc.5) avg .059 2461 .544 394 .488 306 .675 430 .018 2049 1128 165
11 mm avg .074 906 .537 437 .416 1432 .592 2020 .029 857 1130 167
14 mc�(top10) avg .058 2471 .544 396 .488 307 .675 433 .018 2058 1133 168
11 mc�(cc.5) avg .058 2575 .548 363 .486 332 .677 363 .019 2043 1135 169
11 cw���(auto����) avg .074 930 .536 446 .417 1423 .592 2014 .028 866 1136 170
11 cw���(auto������) avg .073 998 .537 441 .419 1392 .594 1998 .028 910 1148 173
20 mc�(cc.5) avg .068 1556 .497 767 .513 37 .640 1336 .016 2544 1248 215
20 mc�(top10) avg .068 1567 .496 777 .513 36 .640 1334 .016 2551 1253 219
15 mc�(cc.5) avg .077 740 .462 1244 .519 11 .611 1771 .016 2579 1269 228
15 mc�(top10) avg .077 736 .462 1245 .519 9 .611 1770 .016 2593 1271 230
5 mc�(top10) avg .054 3024 .553 325 .492 228 .680 308 .016 2563 1290 237
13 mc�(top10) avg .068 1536 .492 842 .512 38 .636 1401 .016 2702 1304 246
5 mc�(cc.5) avg .054 3023 .552 333 .490 261 .678 340 .016 2568 1305 248
13 mc�(cc.5) avg .067 1596 .491 846 .511 46 .634 1420 .015 2776 1337 256

the same. The third algorithm that performs in the same range is mm, which is
surprising since it does not require explicit pruning of edges by a hyperparameter.
As expected, it also becomes apparent that the metrics do not correlate, e.g., the
top entries are ranked relatively high with respect to the AMI metric, whereas
the values for the other metrics are in the higher range. Also, according to the
ranks, the best local clusterings are not contributing to the best global clustering
performance; their rank performance ranges from 76 to 129. The preferred global
clustering mainly depends on the BERT model, the a�� attention mask across
the entire source sentence, simple word piece averaging (avg), the �nal layer
([ 2 ]) or pen-ultimate layer ([ 1 ]), or the concatenation of both ([ 1,2 ]), and
mainly on the Chinese Whispers with sampling algorithm (cw�� or cw��) with
cluster coe�cient threshold pruning (cc.5). Only eight of all local clusterings are
represented in the top 20 �nal clusterings.

Tables 5.3a and 5.3b show results for the individual steps, i.e., �rst, we present
results for the local clustering step in Table 5.3a, where we split gold clusters by
their lemmas for evaluation. Because of this, the total number of gold clusters
amounts to 3, 877 (cf. Tab. 5.1) and are thus more �ne-grained. Second, we present
results of the global clustering step by using only the top 20 local clusterings
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Figure 5.6: Final clusters where the word ‘run’ is involved and their gold labels as de�ned
by FrameNet. The outermost circle represents the sentences in which the respective word
of the local clusters (second outermost circle) occur. The legend covers the frame’s name,
evoked by the verb in the sentence (only outermost colors).

from Table 5.3a in Table 5.3b.
Interestingly, for the local clusterings, each metric coheres with the �nal top-

ranked approaches, i.e., all of the hyperparameter combinations are ranked very
high for each of the chosen metrics. We believe this is due to the structure of the
gold clustering, i.e., many clusters in total and most are relatively small, i.e., only
a few elements are contained (cf. Figure 5.5 a & c). All of the top local clusterings
are using the Markov Clustering algorithm (mc�) with the ‘keep top 10 edges
per node’ pruning strategy (top10). Also, the R�BERT� model seems to perform
best, where only the representation of the feature embeddings di�er slightly,
i.e., using the a�� attention mask with or without building pseudo sentences,
using the average (avg) or only the first wordpiece embedding, and using any
combination of the �nal layers ([ 0,1,2 ]).

The top 20 global clusterings using only the top 20 local clusterings show no
clearly distinctive or best clustering algorithm or pruning strategy (cf. Table 5.3b).
Also, the �nal global clusterings range from rank 144 to 256, and the metrics do
not necessarily correlate and mix within the top 20, e.g., while the AMI metric
ranks the best clustering relatively high (336), the PUF1 metric ranks it rather low
(1, 160), and when PUF1 ranks a clustering high (9), AMI ranks it low (1, 245). This
shows again that there is no de�nitive ‘best’ clustering evaluation metric to trust.
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5.4.6 Examples

We present hand-picked examples for the best clustering in Table 5.2, which
demonstrate interesting phenomena, e.g., we observe clusters based on similarities
in various levels of the language system such as semantic (Figure 5.6) or stylistic
(Figure 5.7).

Figure 5.6 shows the clusterings (local and global) and gold clustering for the
example verb ‘run’. We can see that the largest cluster (G1) maps mainly to the
frame ‘se�f motion’, mixed with ‘quitting a p�ace’ and ‘f�eeing’, which
suggest that these verbs can be used to evoke semantic relations that involve some
movement of a person. G2 exclusively maps to sentences that express frames about
‘liquids’, e.g., ‘f�uidic motion’, ‘cause to be wet’, etc. However, cluster G3
showsmixed semantic relations such as ‘operating a business’ and ‘operating
a system’. Since this is the smallest cluster, we believe this is rooted in the fact
that those frames do not come with enough sentences in the training data.

Figure 5.7 shows clusterings for the verb ‘grunt’. Instead of showing the frame
name, we show parts of the frame structure, i.e., its �rst argument type. Note
that the entire structure of a frame is too �ne-grained to be visualized as class
labels. In the example, we can observe two global clusters. The second global
cluster ‘G2’ is cleaner than ‘G1’ and shows nicely that the clustered sentences
evoke ‘Communication Noise’ frames with ‘Message’ as the �rst argument. This
suggests sentences being in passive voice, e.g., a sentence from this cluster is
‘“Huh!” he grunted disbe�ieving�y.’, i.e., the ‘Message’ beeing uttered by
a speaker. In the larger cluster ‘G1’, we observe mixed sentences, but visually
more sentences with an active voice, e.g., a sentence from this cluster is ‘She
grunted a rep�y and offered coffee.’, i.e., a ‘Speaker’ uttering a message.
This example shows nicely that our method also treats stylistic phenomena as
semantic information. We believe this is due to the CWE representation.

5.5 Conclusion
We presented a resource-friendly clustering approach using contextualized embed-
dings. Since the list of contextual embeddings for all words of a corpus becomes too
large to handle on a single computer or GPU, we used and adapted the local-global
clustering as presented in (Ustalov et al., 2019).

The approach is re-implemented in PyTorch5, has GPU support, and is available
as an open-source package under a permissive license.6 Due to the local-global
clustering strategy, the approach is memory e�cient. Samples are �rst collected
for each verb type, then clustered in the local step –which can be done in parallel –
and the global step then groups the local clusters and the elements within. Samples
can be traced to their original occurrence in the corpus, i.e., the provenance of the
input samples is provided.7. While the local clustering step addresses splitting of
polysems, i.e., the instantiations of a particular word are grouped into di�erent
categories, which can roughly be resolved to di�erent senses, the global clustering

5. https://pytorch.org/
6. https://github.com/remstef/loglo, Apache License V2.
7. A demo is available at http://ltdemos.informatik.uni-hamburg.de/unframes

https://pytorch.org/
https://github.com/remstef/loglo
http://ltdemos.informatik.uni-hamburg.de/unframes
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step addresses the grouping of synonyms, i.e., the local groups (local senses) are
joined with samples across di�erent verbs.

We experimented with various pre-trained transformer models and their
contextualized vector representations. Di�erent masking strategies within the
attention mechanism to include linguistic knowledge have been tested, and
we conclude that the attention mechanism does not gain from explicit masked
linguistic structures since the top clusterings utilize the a�� mask, where every
token as access to every other token, which is the default strategy. In our
unsupervised frame induction experiments, we evaluate clusterings produced
by di�erent parameterizations, compare them to FrameNet as gold clustering
using several clustering evaluation metrics, and provide a set of hyperparameters
that perform reasonably well. While we focused on verbs in this chapter, we note
that the procedure itself is independent of the particular part of speech.

In the future, we plan to align the clusters with classes of a downstream task,
e.g., with annotated relation classes, by exploiting the attention mechanism and
using probabilities for words given a cluster as anchors. This would open new
possibilities on traceability and interpretability of neural network models. Another
line of research opens the possibility of semisupervised clustering, i.e., by adapting
the label propagation procedure of Chinese Whispers to only update labels of
unlabelled nodes, i.e., where class labels are not provided. This way, we could
enrich a given annotated dataset with new examples and new classes.
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Figure 5.7: Final clusters where the word ‘grunt’ is involved and their labels as de�ned
by the FrameNet. The outermost circle represents the sentences in which the respective
word of the local clusters (second outermost circle) occur. For illustrative purposes, the
legend covers the name (a) or the �rst argument type (b) of the frame, which is evoked by
the verb in the sentence (only outermost colors).





6
Conclusion

The work in this dissertation is dedicated to two themes: a) the expansion of
domain-dependent corpora, and b) the analysis of contextualized word embed-
dings for semantic structuring tasks. We highlighted the importance of domain
dependent data for domain tasks, i.e., NLP tasks performed within a particular
language domain. We note that context matters, both on the level of domain data,
as well as more �ne-grained on the vector representation level. In this chapter,
we summarize the �ndings of this dissertation and highlight its contributions.
Afterward, we conclude this dissertation with a summary and �nal remarks,
including an outlook into possible future work.

6.1 Summary

Chapter 2 covered the expansion of domain corpora. We proposed a novel but
simple approach to focused web-crawling based on the assumption that web
links of a relevant webpage mainly point to other relevant web pages. Given a
small initial domain de�ning corpus, the relevance of a URL is de�ned by the
compatibility of its enclosed webpage to belong to that domain. The domain
is modeled as a statistical language model –more speci�cally, we employed a
Kneser-Ney model (Kneser and Ney, 1995) –which is built only from the given,
initial corpus. The relevance of a web document is then measured in terms
of perplexity with respect to the in-domain language model. The size of the
corpus can be as small as a single webpage, e.g., among our experiments, we
tested the approach using a single featured Wikipedia article.1 Due to the limited
corpus size, we argue that currently, more popular neural language models, such
as transformer-based models, are not suited for this task because they require
enormous amounts of data to perform well.

1. A featured article in Wikipedia is considered to be of high quality, suitable as a guide for
writing and editing other articles. The textual content is usually larger than a random Wikipedia
article.
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We provide our focused web crawling system called T���C������2 as an
open-source extension to the popular general web crawling framework Heritrix3
(Mohr et al., 2004), which is used by the Internet Archive, a non-pro�t library
of internet content, such as archival snapshots of websites and media content.
Because of the dynamic nature of the web, evaluating web crawling methods, in
general, is a non-trivial task. We thus evaluated our approach a) intrinsically, by
comparing the perplexity scores of collected corpora with a test split of the source
corpus, and b) extrinsically, by the downstream task application of Taxonomy
Induction. Our �ndings show that in-domain corpora help for domain-dependent
downstream tasks and that only a tiny fraction of in-domain data is needed to
increase the entire in-domain data amount quickly and, by this, increase the
performance of downstream tasks. We showed that it is possible to automatically
extend corpora with focused crawling techniques that make use of language
models. It is bene�cial not only for constructing more accurate language models
of the target domain but also for increasing performance for unsupervised tasks
such as taxonomy induction for example, which require large (in-domain) corpora.
In times where many NLP systems rely on large background corpora for pre-
training or �ne-tuning, computing word embeddings, or modeling language in
general, focused crawling is a viable and straightforward way to grow existing
domain-dependent background text collections.

Further, since a word can be interpreted and mapped to many senses, a single
representation in the vector space is unreasonable. Chapter 3 covered modeling
senses in the vector space instead of words. More speci�cally, we explained how
di�erent word senses can be modeled by distinct, static sense vectors instead of a
single static word vector. We combined symbolic clustering methods with static
word embeddings, tested clustering approaches in the word vector space directly,
and analyzed the e�ectiveness of contextualized word embeddings for implicit
sensemodeling and explicit word sense disambiguation. Our results con�rmed that
sense embeddings do help to resolve word similarities, and we presented consistent
improvements over all tested languages, embedding models, sense inventories,
and datasets. Furthermore, we found that WSD can be surprisingly e�ective using
CWEs from pre-trained models only. Our experiments revealed that contextual
word embeddings (CWEs) are generally able to capture senses, i.e., words, when
used in a di�erent sense, are placed in di�erent regions of the vector space.

Based on those �ndings, we used contextualized word embeddings to index and
retrieve semantic relations in Chapter 4. We analyzed di�erent explicit embedding
extraction and aggregation strategies to include general linguistic knowledge and
showed that more speci�c and task-dependent representations, such as the path in
the dependency graph, help for retrieving similar sentences expressing the same
semantic relation, which again helps for simple nearest neighbor classi�cation in
few-shot learning scenarios. Based on the success of this strategy, we continued
this line of research and showed in Chapter 5 the unsupervised extraction of
semantic relations. Because of computational bene�ts and the success in previous
work, we used a local-global clustering approach to cluster occurrences of verbs
into so-called relation clusters. With the local-global paradigm, we approached

2. https://tudarmstadt-lt.github.io/topicrawler/
3. http://crawler.archive.org

https://tudarmstadt-lt.github.io/topicrawler/
http://crawler.archive.org
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the ambiguity of verbs by explicitly modeling polysemy (local step) and synonymy
(global step). We compare our fully unsupervised approach to the verb fraction of
FrameNet, which we de�ne as a relation repository and the gold clustering. Among
our many experiments, we showed that it is possible to group instantiations of
verbs, i.e., verbs occurring in a sentence, which evoke similar frames, in our
case: relations. We found that similarities can be found on di�erent levels of the
language system; namely, we found clusters with semantically similar sentences,
which was our initial hypothesis, but we also found sentences expressing similar
behavior in terms of style. This comes from the representation provided by CWEs.
Here, we also found that internal infusion of linguistic knowledge by adapting
the attention mechanism of transformer-based models, which di�ers from our
external knowledge infusion approach in Chapter 4, does not necessarily produce
better clusterings, quantitatively and qualitatively.

6.2 Outlook (Future Work)
The central theme in this dissertation is concerned with the unsupervised ex-
traction of information from text, tightly following Biemann’s (2012) structure
discovery (SD) paradigm. Supervised approaches are desirable for completely
de�ned tasks, i.e., a clear target can be identi�ed, data and annotations are
not an issue, and the de�nition does not change over time. Because of this
characterization, supervised approaches are usually more precise. But language
evolves, changes, and more complex tasks often change over time, or annotations
and data are just too expensive to come by. Here, unsupervised approaches
can support the creative process of a basis that can be used and re�ned for
supervised approaches.

Depending on the task, web crawling, in general, might appear obsolete due
to the vast availability of datasets, e.g., the Common Crawl (CC)4. Even domain-
dependent tasks can be addressed by �ltering the vast general datasets for the
domain of interest. However, there is often a lot of detail missing on the premises
of the dataset creation, e.g., �ltering certain websites, parsing details, etc. We argue
that our approach for focused web-crawling can be used to gain the most recent
information directly from the web, e.g., as needed by applications that report
and rely on daily information such as the network of the day5 (NOD; Benikova
et al., 2014) or S����������6 (Remus et al., 2017). Filtering and other data-altering
operations are fully transparent, and the collected data is up-to-date. Imagine
domain-dependent applications handling daily data like NOD, an incremental
learning paradigm, which updates its background language model for focused
crawling on the basis of, e.g., yesterday’s data, which might be a bene�cial
application. More extensions to this might even employ the human in the loop
(HITL) paradigm, such as in S����������.

Also, combining supervised and unsupervised approaches for a task might be
a desirable extension. e.g., extending Chapter 5, we are exploring techniques for

4. https://commoncrawl.org/
5. http://tagesnetzwerk.de/

https://www.inf.uni-hamburg.de/en/inst/ab/lt/resources/demos/network-of-the-day.html
6. https://uhh-lt.github.io/story�nder/

https://commoncrawl.org/
http://tagesnetzwerk.de/
https://www.inf.uni-hamburg.de/en/inst/ab/lt/resources/demos/network-of-the-day.html
https://uhh-lt.github.io/storyfinder/
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semi-supervised clustering of frames to enrich a given collection of sentences with
frames with more sentences and potentially new, previously unknown frames.

Also, our sense induction technique might appear obsolete with the invention
of CWEs, but we argue that inducing senses on a CWE level might also help for
downstream tasks, and equally interesting is the analysis of language in general,
i.e., independent of a downstream task, analyzing senses periodically using CWEs
might reveal new insights on the use and generation of language.

Further, we analyzed CWEs and showed their superior performance for down-
stream tasks, but when computing similarities, they often indicate unclear or
unexpected similarities, e.g., on a stylistic level than on a semantic level. Constraint-
based pre-training of neural language models by adding more or other contexts,
which might even be provided manually, could yield further insights and appli-
cation domains, e.g., retro�tting text to a speci�c style like poems. Another line
of active research is the interpretability of language models and neural language
models in general, i.e., we advocate for more traceability and provenance of
data samples and their in�uence in algorithmic decisions. This might involve
explainability within a certain context, e.g., given context of some form, what are
the reasoning steps of a model trained on generic data, ‘does the context �t?’.
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