
Universität Hamburg

Dissertation

Methods for Enhanced Security Monitoring
and APT Detection in Enterprise Networks

vorgelegt von

Florian Wilkens

Dissertation zur Erlangung des Titels
Dr. rer. nat.

an der

Fakultät für Mathematik, Informatik und Naturwissenschaften
Fachbereich Informatik

Arbeitsgruppe Rechnernetze

eingereicht am 15.11.2022

https://uni-hamburg.de
https://www.min.uni-hamburg.de/en.html
https://www.inf.uni-hamburg.de/en.html
https://www.inf.uni-hamburg.de/en/inst/ab/net/home.html

Reviewers
Prof. Dr. Mathias Fischer
Prof. Dr. Christian Dörr

Date of the oral defense
28.04.2023

Unique Resource Name (URN)
urn:nbn:de:gbv:18-ediss-110970

Checksum of the submitted version (SHA-256)
c055dea8283aaf57d6e4fe2759648ba38bb4e369d8f2c48ebbfeb8902aae2c99

https://nbn-resolving.org/urn:nbn:de:gbv:18-ediss-110970

“The only truly secure system is one that is powered off, cast in a block of concrete and sealed
in a lead-lined room with armed guards—and even then I have my doubts.”

Eugene Spafford

v

Abstract
Methods for Enhanced Security Monitoring and APT Detection

in Enterprise Networks

by Florian Wilkens

Nowadays, pervasive attacks on IT systems have become the new normal ranging from
simple automated attacks to sophisticated and stealthy nation-state attacks, so-called
advanced persistent threats (APTs). To protect against these attacks, organizations
utilize security operations centers (SOCs)with expert analystswho investigate the vast
stream of alerts generated by security infrastructure. Detection of APTs is limited by
two central factors: missed event- and alert-data due to insufficient securitymonitoring
and analysts not investigating key alerts due to alert fatigue from the high overall alert
volume. Thus, this thesis presents five contributions to (i) enhance security monitoring
for better visibility on APT activity and (ii) support SOC analysts via novel mechanisms
for APT detection to cope with the high volume of alerts.

The first two contributions towards security monitoring increase both quality and
quantity of internal and external visibility. We introduce a concept for passive and
transparent TLS decryption via key sharing of cooperative endpoints. In contrast to
TLS interception via proxy servers, our approach is computationally more efficient
and prevents a major attack vector, as absolute trust in a single proxy is no longer
required. Our results indicate that transfer latency of key material shared by the
endpoints can be addressed by a small traffic buffer of about 40ms. In addition, we
present an approach to characterize brute-force attacker behavior via a collection of
established features and two novel metrics that we leverage to cluster and prioritize
attackers. In our evaluation on a real-world dataset of login attempts, we highlight
how our metrics helps to establish indicators for likely collusion between unrelated IP
addresses and potential APT reconnaissance activity of unclustered login attempts.

The remaining three contributions of this thesis support SOC analysts via novel
detection algorithms for APT stages and campaigns. We present an abstract algorithm
to reconstruct lateral movement activity based on security relevant host information
and incomplete alert sets as well as two concrete implementations. Our evaluation
indicates good detection performance for the variant based on k-shortest paths with
up to 90% true positive rate for insider attackers that deviate 80% from the expected
path. Furthermore, we describe a concept to explain classification decisions of graph-
based APT detection approaches that rely on anomaly detection. We achieve this by
systematically altering the input graphs and observing the changing anomaly scores.
The result is added context that is essential for quick incident response. Last, we
introduce an approach to reconstruct entire APT campaigns based on a novel Kill
Chain State Machine (KCSM) that is derived from established kill chain models. The
algorithm aggregates and links alerts along the state machine to obtain a compact
visual representation of the APT campaign that helps analysts to quickly assess it. Our
results show that our approachmassively reduces the alert volumedown to 0.3–3.5%of
the original alert set, while retaining the contextual information of the APT campaign.
Concluding, our five proposed approaches can be used individually or in conjunction
to improve the APT detection capabilities of a SOC for enterprise networks: enhanced
security monitoring helps to obtain indicators of APT activity, while our mechanisms
for detection support SOC analysts in coping with alert fatigue.

vii

Zusammenfassung
Anriffe auf IT-Systeme sind heute zur Normalität geworden. Diese reichen von simp-
len automatisierten Attacken bis zu komplexen nation-state Angriffen, den sogenann-
ten advanced persistent threats (APTs). Organisationen nutzen security operations
centers (SOCs) mit Analysten, um sich gegen diese Angriffe zu schützen. Die Analys-
ten untersuchen den Strom an generierten Alarmen der Sicherheitsinfrastruktur. APT
Detektion ist von zwei zentralen Faktoren beschränkt: fehlenden Ereignis- und Alarm-
daten aufgrund von unzureichendem Sicherheits-Monitoring und Analysten, die
von der hohen Alarmanzahl überfordert sind und daher wichtige Alarme übersehen.
Diese Dissertation präsentiert fünf Beiträge, die (i) Sicherheits-Monitoring verbessern,
um erhöhte Sichtbarkeit auf APT Aktivität zu erhalten und (ii) Analysten mit neuen
Mechanismen für APT Detektion unterstützen, das hohe Alarmvolumen zu bewältigen.

Die ersten beiden Beiträge im Bereich Sicherheits-Monitoring verbessern Qualität
und Quantität der intern und extern erreichten Sichtbarkeit. Zuerst wird ein Kon-
zept für passive und transparente Entschlüsselung von TLS-Verbindungen mittels
kooperativen Hosts vorgestellt. Im Gegensatz zum Aufbrechen von TLS mittels Pro-
xyservern, ist dieser Ansatz weniger rechenintensiv und minimiert eine zentrale
Angriffsmöglichkeit, da absolutes Vertrauen in einen Proxyserver nicht mehr erfor-
derlich ist. Die Ergebnisse zeigen, dass die Übertragungslatenz von Schlüsselmaterial
mithilfe eines Netzwerkpuffers von 40ms adressiert werden kann. Außerdemwird ein
Ansatz zur Charakterisierung des Verhaltens von brute-force Angreifern vorgestellt,
der auf einem Set an etablierten und zwei neuen Metriken basiert. Diese werden
verwendet, um Angreifer zu gruppieren und zu priorisieren. Die Evaluation auf
einem Echtweltdatensatz zeigt, wie die neuen Metriken helfen, mögliche Kollusion
zwischen unverbundenen IP Adressen und potentielle APT Aktivität, in Form von
Reconnaissance, aufzudecken.

Die verbleibenden drei Beiträge dieser Dissertation unterstützen SOC Analysten mit-
tels neuartiger Ansätze zur Detektion von APT Phasen und Kampagnen. Es wird
ein Algorithmus sowie zwei Implementationen zur Rekonstruktion von Lateral Mo-
vement vorgestellt, die sicherheitsrelevante Host-Informationen und unvollständige
Alarmsets kombinieren. Die Evaluation der Variante basierend auf k-kürzesten Pfa-
den zeigt eine Sensitivität von 90% für die Detektion von Insider-Angreifern, die 80%
vom erwarteten Pfad abweichen. Außerdem wird ein Konzept zur Erklärung von
Klassifikationsentscheidungen von graphbasierten APT Detektionsansätzen beschrie-
ben, die auf Anomalieerkennung basieren. Dies wird erreicht, indem Eingabegraphen
systematisch angepasst und die sich ändernden Anomaliewerte beobachtet werden.
Der zusätzliche Kontext hilft bei einer schnellen Vorfallsbehandlung. Zuletzt wird ein
Ansatz zur Rekonstruktion von APT Kampagnen vorgestellt, der auf einer neuartigen
Kill Chain State Machine (KCSM) basiert, die von etablierten Kill Chain Modellen
abgeleitet ist. Der Algorithmus aggregiert und verknüpft Alarme entlang des Auto-
maten, um eine kompakte Repräsentation der Kampagne zu erhalten, die Analysten in
deren Beurteilung unterstützt. Die Ergebnisse zeigen, dass das Alarmvolumenmassiv
auf 0.3–3.5% reduziert wird, während Kontextinformationen über die APT Kampagne
beibehalten werden. Zusammenfassend können die fünf vorgestellen Ansätze indivi-
duell oder zusammen verwendet werden, um die APT Detektionsfähigkeiten eines
SOC für Unternehmensnetzwerke zu stärken: verbessertes Sicherheits-Monitoring
hilft Indikatoren für APT Aktivität zu erhalten, während die Mechanismen zur Detek-
tion Analysten unterstützen, das hohe Alarmvolumen zu bewältigen.

ix

Acknowledgements
This thesis is the result of not only the time and effort invested by me, but also the
understanding and support of all those around me. This achievement would have
been impossible without you.

First and foremost, I want to thank my adviser Mathias Fischer, who roped me into
academia and offered me the chance to work on interesting problems with the con-
venient side effect to potentially earn a title at the end. Your encouragement and
valuable discussions shaped and improved this thesis tremendously. I also want to
thank my collaborators, namely Peter Kling and Dominik Kaaser for ensuring my
first paper stood on a solid formal foundation, Matthias Vallentin for your valuable
insights from “the real world”, and Johanna Amann for graciously offering both your
technical and academic expertise for everything related to Zeek. Similarly, I owe a
sincere thanks to the hard work of all my students, in particular Felix Ortmann, Felix
Welter, Jona Laudan, Henning Schütt, and Julian Frangopoulos. Your ideas and our
discussions were essential for this thesis.

I am genuinely grateful to all my colleagues from the working group “Security and
Privacy” who made my time as a PhD candidate enjoyable and fun. The thoughtful
discussions and overall atmosphere helped to make this possible. I fondly remember
our everchanging talks over lunch, shared retreats, and spontaneous hall conversa-
tions. Thank you Tatjana (Wingarz), Monina (Schwarz), Nurefsan (Sertbas-Bülbül),
Christian (Burkert), Tobias (Müller), Jens (Wettlaufer), and Matthias (Marx). A
special shoutout to our “Viererbüro” which provided just the right environment to
make significant progress in a publication or spend a relaxing day in the office couch
after an exhausting deadline. Thank you, Steffen (Haas) for being an overall awesome
friend and for signaling the rest of us to get back to work by putting your headphones
on when the office became too noisy. Thank you, David (Jost) for your tireless efforts
to help me fix Latex, Python, or any other technical problem I encountered during
this thesis. Thank you, Doğanalp (Ergenç) for motivating the whole office to squeeze
in some exercise into the work day and for your unrivaled talent to bring a smile to
everyone’s face. Last but not least, Tom (Petersen), some day I will beat you in chess
without you going easy on me. I am happy to have shared this journey with you and
thankful to be able to call all of you my friends.

My family also played a large role in the success of this thesis. My Mom Sabine, who
immediately encouraged me to start the PhD when I still had doubts. My Dad Sven
and his wife Kristin, who never failed to ask about my progress and dutifully listened
to my increasingly complex explanations. My brother Jannik, who dealt with my
varying time budget perfectly and always supported me in his own special way. I
know, I can always rely on all of you.

Finally, I want to thank my long-term partner Nadège for your unwavering support
and encouragement throughout the whole time I worked on this thesis. Out of all
people around me, you probably had to endure the most of my rants and doubts, yet
you never failed to find the right words to keep me motivated and confident. Thank
You for sticking with me through this intensive time!

xi

Contents

Abstract v

Zusammenfassung vii

Contents xi

1 Introduction 1
1.1 Problem Statement and Research Questions 1
1.2 Contributions . 2
1.3 Outline . 7

2 Background 9
2.1 APT Definition . 9
2.2 APT Models . 11

2.2.1 Intrusion Kill Chain (IKC) . 11
2.2.2 Kill Chain Variations . 12
2.2.3 MITRE ATT&CK® . 15
2.2.4 Unified Kill Chain (UKC) . 17

2.3 TLS Fundamentals . 18
2.3.1 TLS Handshakes . 18
2.3.2 TLS Key Derivation . 19

2.4 Chapter Summary . 20

3 Requirements and State of the Art 21
3.1 Requirements for APT Detection . 21
3.2 Classification of State of the Art . 22
3.3 Event-Level Monitoring . 24

3.3.1 Visibility into Encrypted Network Traffic 25
3.3.2 Data Provenance Generation . 30

3.4 Alert-Level Detection . 34
3.4.1 Signature- and Policy-based Detection 34
3.4.2 Anomaly Detection . 37

3.5 Alert Correlation . 46
3.6 APT Stage Detection . 51

3.6.1 Reconnaissance . 52
3.6.2 Command & Control . 54
3.6.3 Lateral Movement . 58

3.7 APT Campaign Detection and Reconstruction 61
3.8 Chapter Summary . 67

4 Approaches for Enhanced Security Monitoring 69
4.1 Transparent TLS Decryption for Network Monitoring 69

xii

4.1.1 Motivation and Objectives . 70
4.1.2 Approach Overview . 71
4.1.3 Approach Details . 72
4.1.4 Discussion and Evaluation . 74
4.1.5 Summary . 83

4.2 Characterization of Brute-Force Attackers 83
4.2.1 Motivation and Objectives . 84
4.2.2 Formal Model . 85
4.2.3 Established Features and Metrics 86
4.2.4 Novel Metrics: Brute-Force Sessions and Dictionary Entropy . 88
4.2.5 Characterization and Prioritization 90
4.2.6 Evaluation . 92
4.2.7 Summary . 100

4.3 Summary . 100

5 Approaches for APT Detection 103
5.1 Reconstruction of Attacker Lateral Movement 103

5.1.1 Motivation and Objectives . 104
5.1.2 Formal Model . 104
5.1.3 Approach Overview . 108
5.1.4 Implementation Variants . 109
5.1.5 Evaluation . 111
5.1.6 Summary . 120

5.2 Explainability for APT Detection on System Provenance Graphs . . . 120
5.2.1 Motivation and Objectives . 121
5.2.2 Approach Overview . 121
5.2.3 Modification Strategies . 123
5.2.4 Evaluation . 124
5.2.5 Summary . 129

5.3 APT Contextualization via Kill Chain State Machines 130
5.3.1 Motivation and Objectives . 131
5.3.2 The Kill Chain State Machine (KCSM) 132
5.3.3 Approach Overview and Example Scenario 134
5.3.4 APT Contextualization . 135
5.3.5 Extensions and Scenario Prioritization 140
5.3.6 Evaluation . 143
5.3.7 Summary . 156

5.4 Summary . 157

6 Conclusion 161
6.1 Summary of Contributions . 161
6.2 Future Work and Outlook . 164

A Appendix 167
A.1 Main Publications . 167
A.2 Additional Publications . 168
A.3 Datasets . 168
A.4 Supervised Theses . 168

Bibliography 169

Eidesstattliche Erklärung 197

xiii

Dedicated to my Mom

1

1 Introduction

In our digitizedworld, businesses, governments, and other large organizations heavily
rely on their IT infrastructure to operate and create value for their customers. Nat-
urally, this is not news to cybercriminals who seek to monetize these dependencies
by stealing sensitive data, deploying ransomware, or finding other creative ways to
extract money from their malicious activity. This results in amultitude of cyber attacks
on every system that is available to the open Internet ranging from generic password
guessing and simple denial of service (DoS) attacks to sophisticated nation-state
level attacks specifically tailored to their victims. These so-called advanced persistent
threats (APTs) pose a severe risk especially to governments, critical infrastructure
and other large organizations and companies as they often go unnoticed for weeks
to months and infiltrate large amounts of hosts across many subnets. While the
concrete goals differ greatly between attack campaigns, APTs are often politically
motivated and aim to maximize damage to their targets. This is in stark contrast to
the usual goal of cybercriminals to maximize monetary profits. Examples like Stuxnet
in 2005–2010 [Zet14], the attacks on the German Bundestag in 2015 [Beu+17] and
Democratic National Committee in 2016 [CNN16], and most recently the SolarWinds
supply chain attack in 2020 [CJ21] highlight the threat and various types of damages
(political, financial, reputational, and legal) APTs can inflict on their victims.

1.1 Problem Statement and Research Questions

Detection and mitigation of APT campaigns is an open challenged tackled by both
industry and academia. The process is limited by two major factors: (i) Due to their
low-and-slow nature, APTs leave only minimal traces on compromised hosts or in
the network resulting in very few alerts. Attackers often completely evade security
monitoring such that campaigns are detected months to years later after significant
damage has been done. (ii) If alerts (or events) are generated for APT activity, they are
greatly outnumbered by the flood of unrelated and false-positive alerts that security
analysts need to investigate. In the worst case, this alert fatigue causes them to miss
the few key alerts that may help to reveal the larger APT campaign.

To defend against these attacks and protect their assets, large organizations deploy
comprehensive security monitoring including network monitoring systems (NMSs)
and intrusion detection systems (IDSs) to obtain as much visibility into both internal
and external activity as possible. Both aspects are important for APT detection, these
complex attack rely on significant adversarial infrastructure that interacts with the
compromised hosts in the target network. However, existing systems and approaches
are not sufficient in matching the stealthiness of APT attacks and fail to detect key
activity like encrypted command & control (C2/C&C) communication or single login
attempts that is performed as part of target reconnaissance. The other important aspect
of the security infrastructure is the security operations center (SOC), a central entity in
the organizationwhere events and alerts obtained via securitymonitoring are collected

2 Chapter 1. Introduction

and further investigated. These security analytics approaches include fully-automated
processing concepts like alert correlation, human expert analysis that is supported
by semi-automated preprocessing and even proactive threat hunting for unknown
threats. While there are some approaches for mostly automated APT detection, they
are either (i) employ complex models that fail to provide the additional attack context
required for incident response or (ii) require highly detailed system information that
is practically infeasible to capture reliably in large enterprise networks.

Thus, contemporary research in the area of APT detection usually aims to support the
human SOC analysts in their manual investigative work. While the overall arms-race
between (APT) attackers and defenders is unlikely to end any time soon, sophisticated
automated analysis and preprocessing in combination with manual human-in-the-
loop expert investigation remains our best shot at detecting and mitigating these
attacks. Approaches that increase the effectiveness of this process, can help to reduce
the risk of complex cyber attacks. In summary, the overall focus of this thesis lies on
the detection of APT campaigns by enhancing both security monitoring and security
analytics to effectively support SOC analysts. More concretely, the following research
questions are answered in this thesis:

• RQ1: How can NMSs regain visibility into TLS-encrypted communication without
actively intercepting the connections on a central entity and breaking end-to-end guar-
antees?

• RQ2: How and to what extend can brute-force attempts on externally-accessible services
be categorized and screened for potential APT reconnaissance activity?

• RQ3: How can APT mitigation be supported by combining both alerts and security-
relevant host information, e. g., to estimate impacts of the attack?

• RQ4: Which techniques from explainable artificial intelligence (XAI) can be leveraged
to add attack context to classification decisions made by anomaly detection-based APT
detection approaches?

• RQ5: How can established kill chain-based APT models be leveraged for campaign
detection with only minimal assumptions about the lower-level alert set?

• RQ6: Which level of volume reduction can be achieved during APT campaign recon-
struction to lessen the impact of alert fatigue on SOC analysts?

The next section briefly summarizes the contributions made in this thesis to answer
these questions.

1.2 Contributions

This section briefly summarizes the main contributions of this thesis (as also listed
in Appendix A.1) and explains how they relate to the research questions. The Ap-
pendix also lists some additional publications that the author of this thesis contributed
to (in Appendix A.2) as well as published datasets (in Appendix A.3) and supervised
theses (in Appendix A.4).

1.2. Contributions 3

Passive, Transparent, and Selective TLS Decryption for Network Security
Monitoring

Encrypted traffic is becoming increasingly popular both for internal communication
in networks as well as on the public Internet. While this has several benefits for overall
privacy of users and organizations alike, the ubiquitous encryption with protocols
like TLS poses problems for NMSs and IDSs especially in enterprise networks. These
tools lose visibility into the (now encrypted) application-level payloads and thus
need to fall back on metadata-only analysis. Although simple checks and mitigations
like IP-based detection and blocking remains possible, complex analysis tasks like
signature-based malware detection or detection of data exfiltration become hard to
impossible without cleartext payloads. The predominant approach to address this
problem in enterprise settings is TLS interception via Man-in-the-Middle (MitM)
proxy servers (sometimes also referred to as “split” TLS). The proxy can then for-
ward cleartext payloads to the NMS or IDS. However, this poses several security and
privacy issues as outlined by several researchers in [Jar12], [dCM16], and [Dur+17].
As a consequence, multiple extensions to standard TLS have been proposed that add
explicit support for middleboxes including NMSs and IDSs such asMulti-Context TLS
(mcTLS) [Nay+15], Middlebox TLS (mbTLS) [Nay+17], Locally Operated Coopera-
tive Key Sharing (LOCKS) [Bie+17], and Middlebox-aware TLS (maTLS) [Lee+19].
However, at the time of writing, no proposal has managed to achieve significant
adoption mainly due to problems with incremental deployment.

This thesis proposes a generic system for passive inspection of TLS-encrypted com-
munication on trusted NMS without the need for a MitM proxy. Instead, we suggest
that endpoints selectively forward established TLS key material after handshake com-
pletion to the NMS, so that it can passively decrypt and analyze cleartext payloads
without actively intercepting or otherwise modifying the connection. In contrast to
other state-of-the-art approaches like TLS interception via MitM or the aforemen-
tioned TLS extensions [Nay+15; Nay+17; Bie+17; Lee+19], our approach: (i) works
without modifications of the TLS protocol, (ii) adds no additional latency to TLS
session establishment or data transfer, (iii) enables only trusted observers to inspect
cleartext payloads of TLS connections, (iv) supports policy-based, partial traffic in-
spection, that is enforced directly on endpoints, and (v) conceptually preserves the
end-to-end integrity of the TLS session for non-AEAD cipher suites as the NMS only
receives decryption keys but no integrity keys. To evaluate our approach, we built a
prototype implementation of TLS decryption as a module for the Zeek NMS [Zee22].
We then evaluated our approach in two experiments to measure the added overhead
introduced by performing TLS decryption in the NMS and the impact of key transfer
latency on decryption success rate.

This work has been peer-reviewed and published at IFIP SEC 2022 [Wil+22] prior
to publication of this thesis where it received both “Best Student Paper” and “Best
Paper” awards. The evaluation dataset [WHF22] was also published. Additionally, an
extended version of our prototype implementation of TLS decryption has beenmerged
into Zeek mainline as is publicly available starting from Zeek version v5.0.0 [AW22].

Data-driven Characterization of Brute-force Attackers

In their day-to-day work, SOC analysts and threat hunters are confronted with a
continuous stream of alerts that are generated by sensors, NMSs, and IDSs across the
organization’s network. Externally-accessible hosts are often among the hosts that

4 Chapter 1. Introduction

are referenced the most in this alert stream, as they are targeted by both automated
scanners andmanual attacks from the open Internet, e. g., by brute-force login attempts
on services such as telnet, SSH, or RDP. While the majority of these attacks can be
disregarded as regular Internet noise without meaningful threat, login attempts
are also part of reconnaissance activity as the first step of APT campaigns or other
complex attacks. Thus, SOC analysts need to carefully filter and prioritize login
attempts based on structural and behavioral metrics like IP address and dictionary.
Several of these metrics have been described by Owens and Mattews [OM08] and
Abdou et al. [ABvO16].

This thesis proposes two novel concepts to capture detailed attacker behavior from
brute-force login attempts: (i) brute-force sessions extend the existing timing-based
metrics and group multiple login attempts of the same IP address that are observed
in a defined timespan as a session. We then derive two metrics from the sequence
of sessions, namely Time-between-Logins (TbL) (per session) and Time-between-
Sessions (TbS) (across sessions). This provides fine-grained insights about the timing
behavior of returning attackers that were not previously considered. (ii) dictionary
entropy describes the information-theoretic complexity of the sequence of credentials
used by the attacker. While the attacker dictionary (also commonly referred to as
“password list”) itself has been analyzed by prior work, the dictionary entropy offers
novel insights into the changes in credential complexity as it evolves over time and
additional login attempts. In our evaluation, we show how the overall set of features
and metrics (both established and newly proposed) can be used in combination to
(i) cluster IP addresses with similar behavior and (ii) prioritize single IP addresses
or clusters based on the expected threat level. For this, we captured a dataset of
real-world brute-force login attempts on a publicly-accessible instance of our Hon-
eygrove [Hon+22] honeypot. This dataset contains about 2 000 000 malicious login
attempts captured in a three-month period.

This work has been peer-reviewed and published at IEEE CNS 2020 [WF20b] prior to
publication of this thesis. Additionally, the accompanying BLF2020 dataset [WF20a]
has been published to foster further research in this area.

Efficient Reconstruction of Attacker Lateral Movement

APT campaigns generally consist of a sequence of attack stages (that we describe in
more detail in Section 2.2) from reconnaissance and malware delivery up to objective
actions such as data exfiltration. Among these stages, lateral movement, i. e., the
compromise of new hosts in a previously entered network zone or new network
zone (depending on the definition used), is often highlighted as a key stage, as the
attacker solidifies their foothold in the network and obtains access to new hosts. Once
a campaign is detected, SOC analysts are tasked with identifying and cleaning the
hosts that were compromised during lateral movement. Based on an incomplete set
of alerts or indicators of compromise (IoCs), they aim to prioritize the set of potential
hosts for manual time-intensive investigation. This process is time-critical for two
reasons: (i) any hosts that are overlooked or investigated too late might be leveraged
by the attacker to re-enter and persist in the network and (ii) the set of compromised
hosts is essential to estimate the potential damage the APT campaign has caused, e. g.,
by compromising the central database server and exfiltrating sensitive customer data.

This thesis proposes a novel approach to reconstruct attacker lateral movement based
on a graph-based formal model consisting of a host model and three derived attacker

1.2. Contributions 5

classes ranging from basic attackers without any knowledge about the network’s inner
workings to a full-blown insider attacker with complete knowledge about all hosts in
the network. We then present an abstract algorithm that iteratively approximates the
unknown set of compromised hosts from the input alert set. The resulting ordered
set of hosts can then be leveraged by SOC analysts during their investigations. We
also show two concrete variants of the algorithm based on k-shortest path and biased
random walks. For our evaluation, we then generate network topologies according
to our graph-based network model as well as different attacks according to our at-
tacker model. As a real-world attacker might not exactly fall into one of our three
attacker classes, we also investigate how deviation from the idealized models impact
detection performance. This work has been peer-reviewed and published at ARES
2019 [Wil+19a] prior to publication of this thesis.

Explainability for APT Detection on System Provenance Graphs

Anomaly detection on (whole-)system provenance graphs is an active area of re-
search that regularly achieves high detection performance. Approaches like UNI-
CORN [Han+20] and Pagoda [Xie+20] consist of carefully trained normality models
that capture fine-grained host behavior and can thus detect even slight deviations as
anomalies. However, the complexity of the underlying model is also a large disadvan-
tage as it hinders explainability of classification decisions. This leaves SOC analysts
with an opaque alert that flags a certain host or subnet as compromised without
additional details, thus slowing mitigation and other incident response measures.
In recent years, the area of XAI has become popular as researchers in academia and
industry recognized the importance of reasoning for artificial intelligence (AI)-based
approaches across domains. Approaches like LIME [RSG16] and SHAP [LL17] aim to
explain single classification decisions or even entire models. However, they generally
focus on tabular data as the predominant format in data science.

This thesis proposes a general approach for added explainability for graph-based
anomaly detection approaches. More specifically, we apply it in the context of anomaly
detection-basedAPT detection on system provenance graphs. The concept is similar to
LIME [RSG16] and leverages a variation of permutation importance by systematically
modifying input graphs and observing the changing anomaly score they result in
when fed to the model to explain. This has the added benefit that our approach
treats the anomaly detection approach as a black box and thus is applicable to any
whole-graph classification problem. At the time of writing, this work is in the process
of peer-review and submitted to IEEE ICC 2023 [WWF23].

Multi-stage Attack Detection via Kill Chain State Machines (KCSM)

The most complex task SOC analysts and threat hunters are faced with today is
the detection of complete APT campaigns as they emerge in the network. While
some of the previously presented contributions of this thesis help to prioritize (and
potentially filter) the continuous alert stream, the remaining alerts still have to be
manually analyzed. Due to the complexity of APT attacks in general and differences
between specific campaigns, it is unlikely this task can be completely automated.
However, several approaches have been proposed to reconstruct potential APT activity
along the established kill chain models [HCA11; Pol21] to support the triage and
analysis processes. Approaches like HOLMES [Mil+19b], NoDoze [Has+19], and
POIROT [Mil+19a] (among others) generate graphical representations of the complex
interlinked information present in the alert and event data to enable analysts to quickly

6 Chapter 1. Introduction

{'D1'}{'Internet'}

{'E','C','D2'}

{'P','L'}{'10.1.0.4'}

{'P','L','O','S'}

{'10.2.0.3'}

{'Internet'} {'10.2.0.2,10.2.0.4,10.2.0.5'}

Figure 1.1: Example APT scenario graph

identify potential APT campaigns. However, most of these approaches rely on detailed
system provenance data, i. e., kernel-level logs about system activity, that is (i) high
volume, (ii) hard to capture reliably, and (iii) imposes a non-negligible performance
impact on the monitored hosts.

This thesis proposes a novel approach to contextualize and enrich existing alerts based
on a state machine that is derived from the comprehensive unified kill chain (UKC)
model [Pol21]. We leverage this so-called Kill Chain State Machine (KCSM) to link
potential APT activity and to synthesize a comprehensive visual representation that
we call APT scenario graphs. An example of such a graph is shown in Figure 1.1
containing sets of IP addresses as nodes and potential APT stage transitions as edges.
This enables SOC analysts to quickly grasp the affected hosts and the complexity of
the detected scenario. Compared to prior work, our approach does not rely on system
provenance but can in fact consume any network-based alert (without attached stage
labels) or pre-tagged alerts that may be generated by an existing security information
and event management (SIEM) or any other established approach for single-stage
APT detection. For untagged alerts, our approach then derives potential APT stages
based on the network direction of the alert. We then combine the input alert set
with pre-configured topology information to trace and reconstruct potential APT
activity in the network. Additionally, our approach offers scenario prioritization
based on a configurable scoring system to further support SOC analysts throughout
the remaining triage and analysis phase. Large parts of this work have been peer-
reviewed and published at CYSARM 2021 [Wil+21] prior to publication of this thesis.

Chapter Section RQs Contribution

Chapter 1: Introduction

Chapter 2: Background

Chapter 3: Requirements and State of the Art

Chapter 4 4.1 RQ1 IFIP SEC 2022 [Wil+22; WHF22]
4.2 RQ2 IEEE CNS 2020 [WF20b; WF20a]

Chapter 5
5.1 RQ3 ARES 2019 [Wil+19a]
5.2 RQ4 Submitted to: IEEE ICC 2023 [WWF23]
5.3 RQ5,RQ6 CYSARM 2021 [Wil+21]

Chapter 6: Conclusion

Table 1.1: Thesis Overview & Contributions

1.3. Outline 7

1.3 Outline

Table 1.1 gives an overview about this thesis and its contributions. This thesis is
structured as follows: Chapter 2 provides required background for this thesis on
the term advanced persistent threat (APT), models for APTs, and TLS fundamentals
about handshakes.

Chapter 3 derives requirements for comprehensive APT detection in large-scale net-
works and proposes a taxonomy for relevant literature in this area. Additionally, these
works are described in a detailed literature survey and compared to the formulated
requirements.

The two approaches presented inChapter 4 improve the visibility obtained by security
monitoring. The additional knowledge obtained this way, helps SOC analysts to
accurately judge the current threat landscape and activity in the internal network and
lays the foundation for additional higher-level correlation and detection approaches.

Chapter 5 describes three approaches that aim to improve the overall detection of
APTs. Due to the complex nature of this problem, three different areas are addressed:
(i) a stage-specific detection approach for lateral movement activity, (ii) a campaign-
based detection algorithm aiming to reveal complex stage chains, and (iii) an auxiliary
approach to improve explainability for AI-based approaches for APT detection.

This thesis concludes in Chapter 6 by summarizing the contributions made and
providing an outlook for future work in the areas of securitymonitoring and APT
detection.

9

2 Background

This chapter provides some background information required for this thesis. First,
in Section 2.1, the term advanced persistent threat (APT) is defined in the context of
this thesis based on existing definitions from literature. Next, in Section 2.2 several
established models that capture APT behavior are discussed. Lastly, in Section 2.3,
we briefly summarize information about handshakes and key derivation in the TLS
protocol.

2.1 APT Definition

APTs and their detection are central to this thesis and as such we need to define
the term precisely before we can move on to the main contributions. The term APT
was coined in 2007 by United States Air Force Colonel Greg Rattrey [Bej10; Hol13;
Bej20] likely to describe classified threat actors with non-military personnel. While
the exact details are unknown, the term was quickly picked up by security vendors
especially after Mandiant (later acquired by FireEye) released their report on Chinese
espionage activity by PLA Unit 61398 nicknamed “APT1”. The term has since gained
traction in the industry to describe both the overall threat landscape of nation-state
level attack campaigns as well as specific threat actors (and groups) such as the
aforementioned APT11, APT28 (presumably a Russian military unit)2, and APT41
(another presumably Chinese state-sponsored threat group)3.

Definitions of what exactly represents an APT also differ between security vendors
and organizations. In their initial M-Trends report in 2010 [Man10], Mandiant charac-
terizes APTs as highly skilled and professional attackers that target primarily govern-
ment and defense organizations as well as large private companies and organizations.
Primary goals are not financially motivated but rather focus on obtaining an informa-
tional advantage by exfiltrating sensitive information from their targets. The report
also highlights stealthy persistence as a differentiating factor to traditional attacks as
APTs adversaries aim to return later and steal more data. Furthermore, it is assumed
that APTs are state-sponsored as this explains the scale and complexity of the attacks.
While Mandiant attributes nearly all observed APT activity to China, it is important
to note that the report only contains attacks up to the publication data in 2010 and
that dependable attribution for cyber attacks is difficult in general.

Also in 2010, TaoSecurity’s Robert Bejtlich describes four key categories that all APT
objectives fall into: (i) economic objectives that include theft of proprietary intellectual
property of data either for direct financial gain or competitive advantage, (ii) political
objectives (e. g., suppressing “conflicting” ideologies in domestic settings or affecting
opinions in foreign discussions), (iii) technological objectives that further the group’s

1see: https://attack.mitre.org/groups/G0006/
2see: https://attack.mitre.org/groups/G0007/
3see: https://attack.mitre.org/groups/G0096/

https://attack.mitre.org/groups/G0006/
https://attack.mitre.org/groups/G0007/
https://attack.mitre.org/groups/G0096/

10 Chapter 2. Background

other interest, e. g.„ by stealing source code or studying defenses to improve later
attacks, and (iv)military objectives that aim to gain advantages for ongoing or potential
future combat situations [Bej10]. Especially the last two categories highlight the
difference between APTs and other complex attack campaigns that are usually focused
on direct financial gain.

A common definition for advanced persistent threat (APT), that is often referenced
in both academia and industry, was published by US National Institute of Standards
and Technology (NIST) in 2011:

“An advanced persistent threat is an adversary that possesses sophisticated levels
of expertise and significant resources which allow it to create opportunities to
achieve its objectives by using multiple attack vectors (e.g., cyber, physical, and
deception). These objectives typically include establishing/extending footholds
within the information technology infrastructure of the targeted organizations for
purposes of exfiltrating information, undermining or impeding critical aspects
of a mission, program, or organization; or positioning itself to carry out these
objectives in the future. The advanced persistent threat: (i) pursues its objectives
repeatedly over an extended period of time; (ii) adapts to defenders’ efforts to resist
it; and (iii) is determined to maintain the level of interaction needed to execute its
objectives.” — NIST Special Publication 800–39 [Ros11]

This definition highlights the complexity of APTs in regards to their attack vectors
that are usually not limited to just information systems and their extended persistence
over large periods of time. However, the description of objectives is rather limited only
mentioning data exfiltration or disruption of core services. While these are relatively
concrete actions an APT might take, the larger motivations behind the attack are not
covered by NIST’s definition.

We derive a definition of the term “advanced persistent threat (APT)” in the context
of this thesis based on Bejtlich’s descriptions of objectives [Bej10] and NIST’s overall
definition [Ros11]:

Advanced refers to the capabilities of the attacker both in terms of resources and
knowledge. While the term advanced alone might describe various complex
attacks, APTs nearly always describe nation-state level attacks which is also
represented in the campaign goals.

Persistent refers to the extensive time which APT campaigns span and remain in the
target network. Compared to regular attacks, APT attackers move stealthily and
try to stay undetected. Post-mortem analysis of these campaigns often shows
activity spanning multiple months or years.

Threat refers to the vast damages that APT campaigns cause in the financial, legal
or reputational sense. APTs often aim to manipulate core services and/or ex-
filtrate sensitive data of the target organization, the consequences are severe.
A significant difference to regular cyber attacks is the focus on non-financial
objectives such as political agendas as shown in the attack on the German Bun-
destag [Beu+17] and the Democratic National Committee in the US [CNN16].

This definition supports the research questions of this thesis: (i) the advanced nature
complicates the reliable detection of all attack steps of APT campaigns, (ii) the per-
sistent and stealthy nature of the long-spanning campaigns further detriments the
correlation and contextualization of detected events, and (iii) the high threat of APTs

2.2. APT Models 11

motivates our overall research into this direction to achieve more accurate and timely
detection.

2.2 APT Models

The modeling of APT campaigns and attacks has been the target of both academic
and industrial research over the years. Several models have been proposed to describe
multi-stage attacks in general and APTs more specifically, most of them based on the
notion of a sequence of attack stages. This section describes the most important works
in this field.

2.2.1 Intrusion Kill Chain (IKC)

The most commonly known model for APTs is the intrusion kill chain (IKC) introduced
by Lockheed Martin in 2011 [HCA11]. Heavily influenced by the background of the
company, the term is derived from kill chains that are used to model military attacks
in the physical world. The IKC consists of seven distinct stages that describe attacker
actions in APT scenarios. It describes seven consecutive stages that are executed
sequentially in a complex cyber attack such as an APT campaign. Note: While the term
IKC was used in the original academic publication, Lockheed Martin uses the term
Cyber Kill Chain® to refer to their model in marketing material and usage in academia
is mixed.

1. Reconnaissance: This stage describes the “research, identification and selection
of targets” [HCA11] that APT adversaries perform before any direct attack takes
place on the target organization or network. Nowadays, this often includes
open-source intelligence (OSINT) from public sources such as social media or
promotional material.

2. Weaponization: In this stage, the adversary weaponizes an exploit by combining
it with malware that later establishes remote control. The exploit may be either
technical in one of the organizations publicly accessible services or in internally
used software (such as office suites or document viewers) or organizational,
i. e., weak links in the personnel or processes.

3. Delivery: This stage describes the process of transmitting the weaponized mal-
ware to the target network or organization. Depending on the exploit that was
used, the delivery vector can be an attachment of a malicious email, a compro-
mised website that an employee is lured to, a direct exploit of a public service
or even a carefully placed USB drive with that contains the malware.

4. Exploitation: In this stage, execution of the malware is achieved by either ac-
tively exploiting a component inside the target network or other means such as
automatic execution from removable media or tricking the victim into macro
execution in office documents.

5. Installation: This stage describes the process of the malware persisting on the
initially infected device.

6. Command & control (C2/C&C): In this stage, the infected device contacts a
adversary-controlled server outside of the target environment to signal suc-
cessful infection and establish remote access. Once the channel to the C2/C&C

12 Chapter 2. Background

server is established, the attacker has complete control over the infected device
(within the permission set of the executed malware).

7. Actions on Objectives: This rather abstract stage describes all actions the APT
adversary aims to achieve in the target network such as data exfiltration including
collection and encryption thereof or manipulation of internal services. The IKC
also explicitly places lateral movement, i. e., compromise of additional systems
in the target network, in this stage.

After the IKC stages are introduced, the publication provides examples how it can be
used to better understand APT intrusions by either backtracking through the stages
once a later stage has been detected or synthesizing the following stages from an
incident to anticipate the next steps in the campaign. Furthermore, the authors explain
how the analysis of multiple intrusions over long timespans can leverage the IKC to
find overlap and thus correlate the intrusions.

The IKC provides a solid model to describe large parts of an APT attack campaign.
However, researchers and other security experts have since identified several weak-
nesses with it [Eng14]:

• Strictness: The IKC explicitly assumes a sequential model of all six stages and
states that an attack campaign can only proceed from one stage to the next once
its objectives are met. This implies that a valid defense strategy can be centered
around stopping a single stage which thus prevents the overall attack from
proceeding. While this is certainly true for some stages, later reports have shown
that APT campaigns can also skip certain stages or execute them in another order.
Examples for this would be insider attacks that may lack any execution or remote
control as the adversary uses regular tooling from withing the organization or
an APT campaign that first establishes remote control through C2/C&C before
persisting.

• Coarseness/Missing stages: As mentioned before, the last stage of the IKC,
Action on Objectives, is highly coarse and captures a wide range of attacker
behavior after the initial compromise such as data collection, exfiltration and
lateral movement. While the single stage allows the model to stay generic and
map to many APT campaigns, the lack of details also makes this stage hard to
detect and mitigate.

• Lack of domain-specifics: The IKC was proposed as a general model for APT
campaigns and thus does not tailor to specialized domains of either APT cam-
paigns or application domains. While not a weakness of the model in itself, this
limits the applicability of the IKC in specialized scenarios.

In summary, the IKC provides a promising foundation to model APT campaigns and
attack steps based on its notion of chained stages. However, due to the weaknesses
describes above, the original variant is not commonly used in today’s analyses and
instead is superseded by variations that we describe in the next section.

2.2.2 Kill Chain Variations

In recent years, several variations of the IKC have been proposed to address some of
the weaknesses outlined above. These variations either (i) address specific challenges
for APT detection in selected domains, (ii) aim to improve on the overall model by

2.2. APT Models 13

suggesting additional stages that are generally applicable either from academia or
based on analysis of real-world case studies.

Domain-specific Variations

Hahn et al. [Hah+15] propose a security analysis framework for attacks on cyber
physical systems (CPSs) based on the cyber-physical system kill-chain that (i) adds
additional stages relevant for CPS and (ii) distributes the stages across three layers,
namely cyber, control, and physical. The cyber layer focusses on the aspects of regular
IT operations and thus is the layer where the complete IKC [HCA11] is located. The
control layer describes the industrial control components that are in place throughout
the target system including the sensors, actuators, and control algorithms that govern
it. The physical layer models the physical process that the target system control includ-
ing physical properties of the machines and materials used as well as environmental
properties such as safety and stability or resource constraints. The first three stages
from the IKC (reconnaissance, weaponization, delivery) are modeled across the lay-
ers followed by a new phase titled cyber execution that encompasses the IKC stages
exploitation, C2/C&C and action on objectives. To model the impact the attacker aim
to generate on the process, a separate stage the expresses this intent is introduced on
both non-cyber layers: perturb control on the control layer and physical objective on the
physical layer. The combination of these three new layers more accurately describes
how the attack transitions from cyber across control to the physical layer to achieve
the campaign objectives.

The ICS Cyber Kill Chain [AL15] proposed by Assante and Lee in a publication for the
SANS institute adapts the IKC [HCA11] to model cyber attacks on industrial control
systems (ICSs). The model consists of two stages that are both divided into multiple
(sub-)phases that partially map to IKC stages. The first stage is called Cyber Intrusion
Preparation and Execution and focuses on the attack of the IT-systems of the target
network. It encompasses the following sub-phases: planning, preparation, cyber
intrusion, management & enablement, and sustainment, entrenchment, development
& execution. While the focus of this stage is on the intrusion to the IT-systems, the
adversary may also collect information about the ICSs in the network. At the end of
this stage, the APT has persisted in the network and starts to access ICSs. The second
stage, ICS Attack Development and Execution, models the adversary’s intentional attacks
on the ICSs in the network. This distinction is important as the attacker may have
interactedwith the ICSs for intelligence gathering purposes resulting in “unintentional
attacks”. This is due to the fact that ICSs generally are more fragile when faced with
unexpected interactions and thus fail easier than IT-systems. The second stage consists
of the following sub-phases: attack development & tuning, validation, and ICS attack.
The authors highlight that large parts of this stage, specifically attack development
and validation, are usually performed offline on dedicated hardware matching the
target specifications to avoid detection. Additionally, the difficulty of attacking an
ICS is determined based on the type of intended impact with loss as the easiest type
of impact to achieve, denial with moderate difficulty, and manipulation as the most
difficult type of impact. The publication also includes two case studies that match the
proposed two-stage model to prominent APT campaigns that involved ICSs: Havex
and Stuxnet. Reports for Havex show a successful stage 1 attack according to the ICS
Cyber Kill Chain. The adversaries performed three attacks using spearphishing and
the watering hole technique and obtained access beyond the target organization’s
demilitarized zone (DMZ) to the internal ICS networks. However, as no malware was

14 Chapter 2. Background

delivered to an ICS and thus no ICS attack took place, stage 2 has to be considered
failed or unsuccessful. Stuxnet can be characterized as a successful stage 2 attack
according to the ICS Cyber Kill Chain. The adversaries gained intelligence on the
target networks and ICSs over multiple years. The malware was then first delivered
to and distributed in the target networks (including the air-gapped parts) without
any ICS payload. The reconnaissance, planning, and delivery sub-phases map to
stage 1 of of the model and were successfully executed. Next, the ICS malware was
developed, tested offline, and configured to activate once the correct centrifuges were
infected. Finally, this payload was delivered using the previously established malware
instances. The successful activation of the payloads triggering the physical destruction
of the centrifuges marked the end of the campaign and stage 2 of the ICS Cyber Kill
Chain.

Kim et al. [KKK19] propose a revised kill chain model for multimedia service environ-
ments that focuses internal threats. This new model reflects this by consisting of two
levels representing internal and external threats respectively and providing backlinks
between certain key stages. This helps to represent the persistent nature of APTs more
accurately. Both levels share five stages from the IKC [HCA11], namely reconnais-
sance, weaponization, delivery, exploitation, and installation. However, the model
emphasizes differences in methodology between the internal and external versions
of each stage, e. g., external delivery uses sociotechnical techniques while internal
delivery is usually implemented via technical means. The authors also highlight how
their revised model can help to take countermeasures against internal threats. As
these threats can be modeled explicitly instead of being included in the C2/C&C stage
of the IKC, defenders can deploy measures beyond simple IP/domain blocking, e. g.,
endpoint protection/host intrusion detection systems (HIDSs).

Haseeb et al. [HMW20] propose the Internet of Things Kill Chain (IoTKC) model that
is derived from the IKC [HCA11], but focusses on details about attack characteristics
and attacker behavior specific to IoT devices. The model is based on an empirical
study consisting of 300 335 attacks on a medium-interaction honeypot simulating a
vulnerable IoT device. The authors first derived five core research questions concerning
target identification, initial compromise, command distribution, and goals of attacks
on IoT devices with the goal of exploring differences between IoT-based attacks and
attacks following the IKC. A dataset consisting of 300 335 attacks from 29 046 distinct
IP addresses was then captured over a four-month period via a modified version of
the Cowrie honeypot [OT22] to empirically evaluate these questions. The honeypot
was configured to listen on 14 ports commonly associated with IoT devices such as
remote administration protocols (SSH and telnet), web protocols (DNS, HTTP, and
HTTPS) and vendor-specific protocols, e. g., from Amazon Echo or Philips Hue smart
bulbs. In their analysis the authors identified nine stages that characterize attacks on
IoT devices and form the IoTKC: discovery of devices, entering the devices, getting
device information, preparing the device, downloading the package, preparing the
package, installing the package, removing traces, and performing actions. While some
of the stages are generic to attacks on any networked device, some stages describe key
steps specific to IoT intrusions such as the removal of previous malware in the device
preparation stage or the establishment of SSH tunnels to use the device for further
actions to external targets in the last stage. Overall, the IoTKC represents a specialized
kill chain tailored to a single use-case. The paper confirms this by comparing the
IoTKC with the IKC and highlighting the core differences. While the IKC helps to
generalize a large class of complex attacks, namely advanced persistent threats (APTs),
the IoTKC provides a linear model for a smaller subset of attacks on IoT devices.

2.2. APT Models 15

Generic Model Improvements

Malone [Mal16] proposes an expanded kill chain model consisting of three sub-models,
namely original IKC [HCA11], an internal kill chain and a target manipulation kill
chain. The extended model offers additional depth for modeling the actions on the
objectives and host that an adversary performs after the network is initially breached.
Overall the model consists of seventeen sub-stages starting from the beginning of the
IKC (external reconnaissance) to execution as the last action the adversary performs
to achieve their overall goal.

The Bryant Kill-Chain Model [BS17] is a framework to model APT activity for the
forensic context that extends existing kill chain models with a relational database
to enable data aggregation and improve analysis. The model is divided into four
key phases (network, endpoint, domain, and egress) that contain seven stages in
total. The authors apply the framework in forensic postmortem analyses to evaluate
existing detection and correlation approaches regarding missed stages. Additionally,
a proprietary security information and event management (SIEM) system was used
to highlight how existing deployments can benefit from including the model in their
detection rules.

Other kill chain-based model are based on the analysis of disclosed real-world APT
attack reports. Li et al. [Li+16] propose an APT lifecycle model consisting of four
high-level stages and eleven sub-stages based on 89 reports obtained from the aptnotes
repository [BC22]. While the authors argue that their proposed model captures
insights from the public APT reports, the concrete choice of stages is not clearly
justified based on the surveyed reports. Furthermore, the sub-stages offer little benefit
over the existing IKC [HCA11] and simplify the process by only including four high-
level stages that are also strictly sequential. Ussath et al. [Uss+16] analyze twenty-two
public APT reports and group the malicious activity into a model consisting of three
high-level stages, namely initial compromise, lateral movement, and C2/C&C, with ten
highly-specific sub-stages. While the resulting model is well suited to the surveyed
APT campaigns, it is questionable if it is applicable to other campaigns that might
deviate significantly.

2.2.3 MITRE ATT&CK®

The MITRE ATT&CK® framework [The22b] is a knowledge base derived from past
real-world cyber attacks that can be used to model potential and specific attack sce-
narios or threat actors. While it is not specifically tailored or limited to APTs, it is
often considered an alternative model to the IKC [HCA11] for modeling APT sce-
narios. ATT&CK it freely accessible and continuously updated by both MITRE and
a surrounding community with bi-annular major releases via GitHub4. The latest
available release at the time of writing is ATT&CK (for enterprise) v11.3.

The framework is structured into tactics, techniques, sub-techniques, data sources, miti-
gations, groups, and software. This facilitates accurate descriptions of adversaries and
their behavior on all required levels of abstraction from high-level goals down to
concrete low-level/operational attacks. The following briefly describes each category
and provides an example:

Tactics describe the high-level goals attackers aim to achieve such as “Lateral Move-
ment”. These abstract goals are often compared to attack stages from kill chain

4see: https://github.com/mitre/cti/releases/

https://github.com/mitre/cti/releases/

16 Chapter 2. Background

models such as the IKC [HCA11]. This similarity is also reflected in the number
of tactics present. ATT&CK v11.3 contains fourteen tactics compared to the
seven stages of the IKC.

Techniques describe processes how attackers achieve a tactic without specifying
concrete tools or exploits. This intermediate representation already includes
detailed information such as platform and OSs affected but usually does not
reference concrete tools. However, techniques already reference potential mit-
igation approaches and data sources that can be leveraged for detection. An
example technique to achieve the aforementioned “Lateral Movement” tactic is
be “Remote Service Session Hijacking”. ATT&CK v11.3 contains 191 techniques.
Compared to the fourteen tactics, this number already demonstrates the lower
level of abstraction.

Sub-techniques describe concrete and detailed implementations of techniques that
have been encountered in-the-wild. They can include exploits, known malware
strains or information about threat actors that are known to have used the
technique in question. Mitigation approaches and detection data sources are
also referenced and can be identical to their parent items or more specific to
the sub-technique. An example sub-technique for the “Remote Service Session
Hijacking” technique is “SSH Hijacking”. ATT&CK v11.3 contains 386 sub-
techniques.

Data Sources describe elements or components in the network that can provide data
for detection with a common example being “Network Traffic”. The category is
further divided into Data Components that reference a domain such as enterprise
or ICS and contain backreferences to techniques and sub-techniques. ATT&CK
v11.3 contains thirty-nine data sources.

Mitigations describes measures to lower the impact of specific (sub-)techniques.
They are usually on a medium abstraction level and do not mention concrete
tools similar to techniques. However, they providemore specific guidance linked
to the referenced (sub-)techniques. As a consequence the absolute number of
mitigations is rather low (43 for ATT&CK v11.3). An examples mitigation
measure for the “SSH Hijacking” sub-technique is “Password Policies”.

Groups describe clusters of threat activities that are attributed to a common adversary
or group of adversaries. They link both (sub-)techniques and software used by
the respective group and provide publicly available references for the claims. As
the naming scheme between different security vendors is highly diverse, other
names for the same group are also mentioned. Examples are the APT groups
mentioned in Section 2.1 (APT1, APT28, and APT41) or the “Carbanak” group.
ATT&CK v11.3 contains 134 groups.

Software describes concrete applications and tools used by adversaries such as mal-
ware and other tools that are either commercial, open-source, built-in, or pub-
licly available. Examples include PsExec, mimikatz, or the infamous Stuxnet
malware. ATT&CK v11.3 contains 680 pieces of software.

With its various categories ATT&CK acts as a knowledge base to model adversaries,
attack campaigns, and defense measures. However, the framework does not enforce or
promote any higher-order modeling strategy. Combined with the fact, that all entities
can be accessed by unique identifiers makes the framework a perfect reference that
can be embedded into other tool or approaches across the whole defense stack. Other

2.2. APT Models 17

Figure 2.1: APT stages according to UKC [Pol17; Pol21]

frameworks, standards, and publications from industry or academia frequently link
to certain ATT&CK entities or the framework as a whole. Additionally, MITRE offers
integrations with several programming languages or tools such as Bro/Zeek ATT&CK-
based Analytics and Reporting (BZAR) [The22a] which provides Zeek [Zee22] scripts
to detect certain (sub-)techniques from ATT&CK in network traffic.

2.2.4 Unified Kill Chain (UKC)

The most comprehensive general model to-date is the unified kill chain (UKC) pro-
posed by Pols in 2017 [Pol17] as part of a thesis and subsequently released as a
whitepaper in 2021 [Pol21]. The model is based on both a literature review of exist-
ing academic models as well as analysis of real-world incident reports of exemplary
APT campaigns and thus unifies both academic and industry knowledge. This is also
reflected in its usage across both industry [Sea21; Sen22] and academia [NDD21;
MC21]. Note: While the publication uses the terms tactic (as in tactics, techniques,
and proceduress (TTPs)) and phase nearly interchangeably to describe a step in the
overall kill chain. To align this section with the rest of the thesis, we will use the term
(attack) stage.

The UKC consists of three phases encompassing a total of eighteen attack stages as
shown in Figure 2.1. While the UKC suggests a rough ordering of stages, it explicitly
highlights the diversity in APT campaigns resulting in different orders for each attack.
The three stages represent “milestones” or intermediate goals the attacker aims to
achieve in the overall campaign. Interestingly, the UKC envisions all three phases as
loops that are executed until the attacker achieves the respective intermediate goal
with variations and adaptions in both the attack stages that are executed as well as
the underlying operational tactics that are used to implement the stage. (i) stages 1–9
form the first phase titled Initial Foothold. Here the attacker aims to breach the network
and gain access to systems and/or data that are part of the trusted environment.
This encompasses stages like (initial) reconnaissance, (malware) delivery, social

18 Chapter 2. Background

engineering, and command & control. Loops in this phase represent failed attempts
and the following adaptions the attacker performs until the network is breached (or
the campaign is aborted). (ii) stages 9–14 belong to the second phase titled Network
Propagation. This phase is only executed if the initially compromised systems do
not offer the required data or access the attacker requires to execute their target
actions. Common examples are lateral movement (e. g., to a central database server)
or credential access and subsequent privilege escalation to increase the attacker’s
reach into the network. Loops in this phase are executed until the attacker reaches the
systems required for the following target actions. (iii) stages 15–18 are part of the third
phase titledAction on Objectives that contains all attack stages that the attacker executes
to achieve their overall campaign goal. This includes collection and exfiltration of
sensitive data or impact on systems or processes that impede the target organization.
Loops in this phase can be expected until the campaign is either discovered or the
attacker fulfills an overall goal that does not warrant extended stay in the target
network, e. g., destruction of OT components in the case of Stuxnet [Zet14].

The publication further describes how the UKC can be leveraged to describe specific
adversaries or attack campaigns by instantiating the UKC as attacker specific kill chains
or actor specific kill chains as also possible with the original IKC [HCA11]. Additionally,
the common assumption from the IKC, that all stages must be completed by the
attacker to achieve their objective and thus mitigating a single stage is a feasible
defense strategy, is challenged by the fact that single stages may be bypassed or
skipped (as revealed by the surveyed literature). The authors instead suggests a more
in-depth defense strategy that focuses on frequently observed stages and hinders the
attacker further by employing network segmentation and zoning. Furthermore, the
UKC is compared with the IKC [HCA11] and MITRE’s ATT&CK by comparing the
stages present in the respective approaches. The comparison emphasizes that the
UKC offers the most comprehensive model that is able to model and represent the
various aspects of APTs and other high-profile cyber threats.

2.3 TLS Fundamentals

This section gives a brief overview about required background on handshakes and key
derivation in the TLS protocol. This is auxiliary information refer to in our approach
for passive TLS decryption on network monitoring systems (NMSs) that we present
in Section 4.1. Note: As of 2022, all version belowTLS 1.2 have been deprecated [MF21],
as such we will only cover TLS 1.2 [RD08] and 1.3 [Res18].

2.3.1 TLS Handshakes

TLS was designed to protect confidentiality and data integrity between two com-
munication partners. All TLS connections start with a handshake between the two
endpoints. In this handshake both endpoints agree on a cipher suite to protect ap-
plication data, and establish the necessary cryptographic material. To authenticate,
the endpoints can also verify each other’s identity via X.509 certificates. During a
standard TLS handshake only the server authenticates towards the client, while the
client authenticity is usually checked on the application-level by other means, e. g., by
entering user credential on the website retrieved.

For new connections without any preceding communication a full TLS handshake
is performed (as shown in Figure 2.2. Since no prior information is available, both

2.3. TLS Fundamentals 19

Client Server

[Application Data]

Figure 2.2: TLS 1.2: Full handshake (gray indicates encrypted data)

endpoints negotiate a cipher suite and perform a key exchange to establish shared
cryptographic material. The exact type of key material depends on the TLS version
with TLS 1.2 using (pre-)master secret and TLS 1.3 differentiating between seven
different types of secrets including early traffic secrets, handshake secrets and traffic
secrets.

Additionally, both TLS versions supports session resumption mechanisms that allow
the endpoints to retain some cryptographic material to reduce the operations required
to establish subsequent connections. TLS 1.2 offers session IDs as well as session tickets
with the latter containing all cryptographic state to relieve the server from storing this
material. The adapted handshakes are shown in Figure 2.3a and Figure 2.3b.

TLS 1.3 supports resumption through a modified session ticket approach based on
PSK. The overall concept remains unchanged: (i) in full handshakes a key exchange
scheme is used to establish a shared secret. (ii) resumed handshakes skip this and
used established key material in form of a PSK. However, the PSK is altered for every
new connection and sent encrypted compared to session IDs and tickets that are both
sent in the clear.

2.3.2 TLS Key Derivation

After a shared secret has been established, integrity and confidentiality keys are
derived by both endpoints. In the following we describe the process for TLS 1.2 (as
shown in Listing 2.1). First, amaster secret is derived by using the TLS pseudo-random
function (PRF) as defined in RFC 5246 [RD08]. This function uses a cryptographic

Client Server

[Application Data]

(a) Via SessionID

Client Server

[Application Data]

(b) Via Session Ticket

Figure 2.3: TLS 1.2: Resumed handshakes (gray indicates encrypted data)

20 Chapter 2. Background

hash function depending on the selected cipher suite. Next, the PRF is used again to
derive up to three sets of secrets containing one secret for server and client, respectively.
The encryption keys (client_key, server_key) are always used. The integrity of the
encrypted data is either ensured via a separate HMAC or by using an AEAD cipher
that integrates data integrity checks into the decryption process. TLS 1.3 only supports
AEAD ciphers and derives keys via HKDF [KE10] instead of TLS PRF but ultimately
obtains the same set of keys. Once keys for encryption and integrity protection are
available, all following application data in the TLS connection is both integrity and
confidentiality protected using the negotiated cipher suite.

1 pre_master_secret = <obtained from key exchange >

2 master_secret = TLS_PRF(

3 pre_master_secret ,

4 "master secret",

5 client_random + server_random)

6 key_buffer = TLS_PRF(

7 master_secret ,

8 "key expansion",

9 server_random + client_random);

10
11 client_MAC = key_buffer [0..31]

12 server_MAC = key_buffer [32..63]

13 client_key = key_buffer [64..79]

14 server_key = key_buffer [80..95]

15 client_IV = key_buffer [96..99]

16 server_IV = key_buffer [100..103]

Listing 2.1: TLS 1.2: Key derivation from pre-master secret

2.4 Chapter Summary

This chapter provided background information required for this thesis. We first de-
fined the term advanced persistent threat (APT) based on existing definitions from
literature. This definition highlights the problems and challenges that APT detec-
tion approaches face when compared with traditional or legacy intrusion detection
approaches such as their stealthiness and tendency to remain undetected for large
timespans. The next section gave an overview about approaches and frameworks
that have been proposed to model APT campaigns and other related activity. Kill
chain-based models highlight the interdependencies between different steps such
complex attacks with the UKC [Pol21] emerging as the most comprehensive model to
date. In the last section, we briefly summarizes information about handshakes and
key derivation in (modern) TLS as auxiliary information for our approach to passively
decrypt TLS payloads via cooperative endhosts that we present in Section 4.1.

The following chapter establishes key requirements for APT detection in large-scale
networks and presents a taxonomy that classifies relevant literature from both industry
and academia. Next, all publications are discussed in detail and compared with the
established requirementswhere applicable to identify gaps andmotivate our following
contributions.

21

3 Requirements and State of the
Art

This chapter defines requirements for effective detection of advanced persistent threats
(APTs) and summarizes the state of the art approaches in this area. After the re-
quirements are introduced in Section 3.1, a taxonomy for all relevant areas of the
detection process is presented in Section 3.2. The remaining sections discuss and ana-
lyze relevant literature in the five main areas covered by the taxonomy: (i) event-level
monitoring in Section 3.3, (ii) alert-level detection in Section 3.4, (iii) alert correlation
in Section 3.5, (iv)APT stage detection in Section 3.6, and (v)APT campaign detection
and reconstruction in Section 3.7. Lastly, Section 3.8 summarizes the chapter and
briefly introduces the following two chapters with the main contributions of this
thesis.

3.1 Requirements for APT Detection

APT detection can be seen as a specialized form of intrusion detection and thus shares
many of the same requirements for a potential ideal solution. This section describes
seven essential requirements for an intrusion detection system (IDS) aimed at APT
detection in enterprise networks.

R1: Accuracy The key requirement for any intrusion detection approach is how accu-
rate attacks and attack campaigns are detected. This usually entails a high true
positive rate (TPR), i. e., the percentage of attacks that are correctly detected, as
well as a low false positive rate (FPR), i. e., the percentage of benign activity that
is wrongly classified as an attack.

R2: Explainability After a security incident has occurred, security operations center
(SOC) analysts need to investigate the impact and mitigate potential damages
caused by the attackers. This process is massively simplified if the generated
alerts are explainable, i. e., describe the incident precisely and offer additional
context that is required to assess the attacker’s actions.

R3: Low overhead To minimize the damage caused by attacks—be it traditional at-
tacks or complex APTs—detection should operate in real-time to detect in-
trusions as they happen. Low overhead, especially in terms of computation, is
essential to achieve this, as vast amounts of security-relevant data need to be
consumed and timely processed.

R4: Scalability As enterprise networks grow larger, the detection approach needs to
be able to sufficiently process the increasing amounts of data from both network
traffic and host activity. To achieve this, the approach has to scale linearly with
its available resources [Hil90].

22 Chapter 3. Requirements and State of the Art

R5: Security IDSs are often targeted by sophisticated attackers, either by directly
compromising the machine or by circumvention via other means. Therefore, an
IDS should be secure and (i) exhibit a minimal threat surface, i. e., make it hard
to be compromised by an emergent attacker and (ii) strive to give the attacker
as little impact as possible if the underlying machine is compromised.

R6: Privacy The data that is used for APT detection is usually extremely sensitive
as it contains host and network activity of employees and other users in the
organization. Ideally, an IDS should balance the needs of SOC analysts and
privacy of users by only collecting and processing as much data as required.

R7: Deploy- & Maintainability APTs target large organizations and enterprise net-
works with large amounts of hosts. At this scale, maintenance of security infras-
tructure becomes a challenge of its own. Thus, detection approaches should
be (comparatively) easy to deploy and maintain in enterprise contexts with
minimal impact to overall network operations.

3.2 Classification of State of the Art

Comprehensive APT detection is a complex process across multiple layers of monitor-
ing and detection: (i) on the lowest level, event-level monitoring provides visibility into
host information and network traffic. (ii) Above that alert-level detection describes pro-
cesses that strive to generate low-level/high-volume indicators of malicious activity
from the underlying events. (iii) Alert correlation approaches connect and match alerts
according to pre-defined rules and/or shared attack characteristics. (iv) The area of
APT stage detection contains detection algorithms specifically tailored to key stages
from kill chain-based APT models (as introduced in Section 2.2). (v) Approaches
for APT campaign detection and reconstruction combine information obtained on the
lower layers to reveal complete APT campaigns. Figure 3.1 shows a taxonomy of these
different research areas with more fine-grained subclasses for the first four areas. The
remaining sections of this chapter discuss relevant literature along this taxonomy and
compare it with the requirements established in the previous section.

Event-Level Monitoring

The area of event-level monitoring encompasses approaches which aim to obtain visi-
bility into low-level host activity and network traffic & metadata. This layer represents
the foundation for intrusion detection in general and APT detection specifically, as
data has to be collected and processed to be available for further higher-level analysis
and correlation. Most of event-level monitoring is conceptually simple but poses
diverse technical challenges. As a consequence, academic research in this area is
limited and usually focused on specific problem domains and questions. The two
subclasses of literature, that are discussed in Section 3.3, are thus chosen according to
the contributions in this thesis, namely:

• Visibility into encrypted network traffic [CHK21; Nay+15; Nay+17; Bie+17;
Lee+19]

• Data provenance generation [KC03; KC05; Poh+12; BBM15; Pas+17].

3.2. Classification of State of the Art 23

Event-Level Monitoring

Alert-Level Detection

Alert Correlation
[RCM11; FA16; HF18;

HF19; HWF19]

APT Stage Detection

A
PT

D
et
ec
tio

n

Visibility into Encrypted
Network Traffic
[CHK21; Nay+15;

Nay+17; Bie+17; Lee+19]

Data Provenance
Generation

[KC03; KC05; Poh+12;
BBM15; Pas+17]

Policy-based
[Ope22; Pax99; Zee22]

Signature-based
[Cis22; Ope22]

Anomaly Detection
[Fri+15; MMA16; Liu+18;
Rub+18; Han+20; Xie+20]

Lateral Movement
[Tia+19; Ami+21]

Command & Control
[SR11; Bor+17; AM21]

Reconnaissance
[Yam+15; HWF20]

Other Stages

APT Campaign Detection and Reconstruction
[BYG14; Pei+16; Hos+17; Mil+19b; Has+19; Mil+19a]

Figure 3.1: Taxonomy of APT detection. Gray elements are out of scope for this thesis.

Alert-Level Detection

The area of alert-level detection contains approaches which strive to identify malicious
activity present in the generated events. The exact methods vary from approach to
approach but usually produce an alert that has a one-to-one mapping to an event,
e. g., a single connection or even packet in the network traffic or execution of a binary
in the host context. While alerts obtained this way are valuable, they usually can-
not detect large and complex attacks or fail to provide sufficient context for proper
incident response and mitigation in APT scenarios. Relevant literature is discussed
in Section 3.4 and is further divided into the following three subclasses:

• Signature-based detection [Cis22; Ope22] (out of scope for this thesis)

• Policy-based detection [Ope22; Pax99; Zee22] (out of scope for this thesis)

• Anomaly detection [Fri+15; MMA16; Liu+18; Rub+18; Han+20; Xie+20]

24 Chapter 3. Requirements and State of the Art

Alert Correlation

The area of alert correlation encompasses approaches that link, combine, and other-
wise correlate multiple alerts according to common properties. Typical examples are
clustering of related alerts that are believed to belong to the same attack or merging of
alerts with common metadata such as IP addresses. This step aims to reduce the anal-
ysis burden on security experts as clusters can be filtered or triaged more efficiently
instead of single alerts. In APT contexts, classic alert correlation can still be used
to achieve this goal, but usually falls short to correctly cluster stealthy attack steps
employed by the attacker as part of an overarching APT campaign. As this research
area is rather large, exemplary relevant works are discussed in Section 3.5.

APT Stage Detection

The area of APT stage detection contains approaches that aim to detect a single
stage from a kill chain-based APT reference model such as the intrusion kill chain
(IKC) [HCA11] or the unified kill chain (UKC) [Pol17; Pol21] (see: Section 2.2). While
this is usually not sufficient to completely reveal or prevent APT campaigns, detection
of a single stage can aid in reconstruction efforts (as presented in the next taxonomy
class). This is especially true when multiple approaches are used in conjunction.
Relevant literature is discussed in Section 3.6 and covers three essential APT stages
(as identified by Ussath et al. [Uss+16]):

• Reconnaissance [Yam+15; HWF20]

• Command & control [SR11; Bor+17; AM21]

• Lateral movement [Tia+19; Ami+21]

APT Campaign Detection and Reconstruction

The area of APT campaign detection and reconstruction encompasses approaches
that strive to achieve the same overall goals of this thesis of comprehensive detection
of entire APT campaigns. As a consequence, the requirements presented earlier in
this chapter, are highly applicable to these approaches. They usually leverage an
underlying kill chain-based APT model (see: Section 2.2) to reconstruct indicators of
single stages or other malicious activity towards a full campaign view that is aimed at
supporting human SOC analysts or threat hunters.

3.3 Event-Level Monitoring

This section discusses relevant approaches for event-level monitoring which provide
the foundation for all higher-level intrusion detection. The goal of these approaches
are to generate visibility in both network and host contexts that can then be used for
further analysis. As this area is quite applied and not generally well represented in
academia, the two relevant subclasses are directly relevant for contributions made
in this thesis. Approaches in this taxonomy class are further structured into two
subclasses (see: Section 3.2): (i) visibility into encrypted network traffic and (ii) data
provenance generation. It is also important to note that both R1: Accuracy and R2:
Explainability are not directly applicable to approaches in this section and are thus
skipped in the discussions.

3.3. Event-Level Monitoring 25

Workstation Webserver
NMS/IDS

MitM Proxy

Network Stack

TLS TLS

Cleartext
Processing

Enterprise Network Internet

Figure 3.2: Overview: TLS interception via MitM proxy servers

3.3.1 Visibility into Encrypted Network Traffic

Encrypted network protocols are increasingly popular and beneficial to overall security
in both the Internet and private networks. TLS is especially prevalent even in purely
network-internal communication to protect against potential insider attackers with
access to the network. This poses problems to monitoring systems as they can no
longer directly access the cleartext of connections and need to fall back to metadata-
only analysis. This section presents approaches that aim to restore this capability to
network monitoring systems (NMSs) and network-based IDSs.

TLS interception via Man-in-the-Middle (MitM) proxy servers such as mitmproxy
[CHK21] (sometimes also referred to as “split” TLS) is the predominant approach
to obtain access to cleartext traffic for security monitoring in enterprise networks.
Figure 3.2 shows a typical deployment where the proxy server is deployed at the
network edge to act as the central gateway to Internet servers. Client hosts inside
the enterprise network (e. g., workstations) are mandated via policy and network
configuration to only access the Internet via this gateway such that all cleartext traffic
can be passed to an NMS/IDS adjacent to the proxy. Additionally, the proxy can
perform other kinds of analysis on the cleartext traffic, e. g., filtering, or compliance
checks.

This approach works decently in enterprise environments where network policy can
enforce proxy usage across clients and security concerns take precedence over privacy
concerns. However, it has several problems as outlined in the literature [Dur+17]: (i)
The certificate authority, the proxy uses to generate certificates for the visited domains,
needs to be fully trusted by all endpoints in the network. As the proxy essentially
masquerades as the target server, it needs to generate certificates that the endpoint
accepts as valid. This is a potential threat vector as certificate authority would enable
an attacker to arbitrarily MitM any connection if they obtain the associated private
key. (ii) TLS interception breaks mutual authentication as the client endpoint does
not see the actual server endpoint and also cannot use its own certificate towards
the server. Additionally, practices like certificate pinning break as the proxy cannot
offer the pinned certificate. (iii) Performance is suboptimal as the proxy needs to
establish and maintain two separate TLS connections per original connection. This
overhead is even worse for typical web scenarios where short-lived connections are
used to retrieve assets of a web page as the initial setup burden imposed by the

26 Chapter 3. Requirements and State of the Art

handshakes accumulates on the proxy.1 (iv) The security infrastructure like NMS/IDS
conceptually obtain access to all payloads even for special cases where this would be
unwanted or even not permitted such as medical contexts. While many enterprise
settings may favor absolute visibility over user privacy, this is certainly not true for all
contexts. However, as the proxy intercepts all TLS connections, users have to trust the
network operators that sensitive data (like online banking) is not forwarded.

Based on the two TLS connections that need to be established for each middle-
box/proxy, R3: Low overhead is not fulfilled. Similarly, R4: Scalability is also not met
as the centralized aspect of TLS interception hinders horizontal scaling. R5: Security
is not checked as each middlebox/proxy gains full read/write access to all cleartext
payloads thus massively impacting the overall security of the approach. Furthermore,
clients have to place absolute trust in the certificate authority, thus making this a
very attractive target for attackers. The unlimited access to cleartext payloads also
prevents R6: Privacy from being checked. Lastly, R7: Deploy- & Maintainability is party
checked as the configuration of clients is suboptimal but manageable. Overall, TLS
interception is not a good solution to our original goal of obtaining visibility (i. e.,
read-only access) into encrypted communication.

Multi-Context TLS (mcTLS) [Nay+15] aims to support in-network functionality
like performance monitoring or intrusion detection in TLS as an extension to the
standard that attaches so-called contexts to the protocol’s header. These contexts
allow the endpoints to explicitly grant fine-grained access to different parts of the
transmitted payloads (e. g., HTTP header or body) to middleboxes.

The design of mcTLS was guided by five key requirements: (i) entity authentication,
i. e., authentication of all communication partners including middleboxes, (ii) data
secrecy as targeted by standard TLS, (iii) data integrity & authentication i. e., detection of
modifications including the distinction between communication endpoint and trusted
middlebox, (iv) explicit control & visibility, i. e., both endhosts must consent to allow a
new middlebox to the connection, and (v) principle of least privilege by only granting
middleboxes the minimum level of access to the payloads required to perform their
task. Additionally, the protocol should not impose significant overhead to either
performance or maintenance.

Based on these requirements, mcTLS extends TLS by adding a context byte to the
record format and an extended handshake sequence that ensures that the respective
middleboxes obtain two halves of their respective context keys from both endpoints.
This results in each entity (endpoints and middleboxes) with a set of contexts and
keys that can then be used to encrypt and decrypt the mcTLS records of the respective
context. This achieves the requirements as long as no participant shares key material
out of band (a scenario that also applies to standard TLS) or multiple middleboxes
collude. The context can then be used tomodel higher-level application behavior either
by using contexts for different sections of the payload or by using it as a permission
system and systematically placing parts of the payload in the appropriate context.
The authors discuss several application scenarios including intrusion detection and
HTTP/2 streams.

The authors implement a prototype of mcTLS on-top of TLS 1.2 by modifying the
OpenSSL library [TYH22] in version v1.0.1j. The prototype is then evaluated in four
aspects across one lab environment on a single machine and a wide-area environment

1For an expanded description of handshakes in modern TLS refer to Section 2.3.1.

3.3. Event-Level Monitoring 27

between three Amazon EC2 instances across the globe. The first set of experiments
focuses on time overhead and separately investigates handshakes, file transfers, andpage
loads in via HTTPS. Their results indicate that mcTLS does not substantially impact
real-world scenarios. The second set of experiments focuses on data volume overhead
and reveals that mcTLS introduces less than 2% additional overhead compared to
standard TLS. The third set of experiments concerned CPU overhead. Their results
indicate that server performance decreases by 23–25% while middlebox performance
increases by 45–75% due to the reduced number of handshakes compared to TLS
interception. The last experiment evaluates deployment overhead by modifying the
Ruby SSL library as well as OpenSSL benchmarking facilities to estimate the effort
required to port existing applications to mcTLS. Although the selection of applications
is limited in some aspects, the results show that only few lines of code are required
(10–250 depending on the scenario).

mcTLS does not fulfill R3: Low overhead due to the significant latency introduced by
the modified handshake. R4: Scalability is also not met as the additional computations
required by server limit the effectiveness of this approach in enterprise settings. R5:
Security and R6: Privacy are partially met as middleboxes are separately authenticated
and are encouraged to use the principle of least privilege. Lastly, R7: Deploy- &
Maintainability is not met as mcTLS is not incrementally deployable and thus unlikely
to ever reach mass adoption.

Middlebox TLS (mbTLS) [Nay+17] it an approach to support trustedmiddleboxes
(running on potentially untrusted hardware) in a TLS connection that is backward
compatible, i. e., inter-operates with standard TLS implementations. This is realized
by leveraging trusted computation technologies like Intel’s Software Guard Extensions
(SGX) to ensure that themiddlebox runs trusted application code and the keymaterial
does not leave the secure enclave.

The protocol is carefully designed based on an analysis of the overall design space of
encrypted multi-party communication that the authors discuss first. They conclude
that achieving all desired properties is extremely difficult and thus focus on three core
requirements: (i) immediate deployability by backward compatibility with standard
TLS, (ii) protection for outsourced middleboxes, i. e., measure to protect payloads against
potentially untrusted middlebox infrastructure, and (iii) middlebox accountability, i. e.,
verification of middlebox application code to increase trust for endpoints. As expected,
a minimal amount of added overhead is also an implicit goal.

To achieve these requirements, mbTLS adds a MiddleboxSupport TLS extension (to
indicate support for the protocol by both communication endpoints) and two new TLS
record types, namely MiddleboxAnnouncement (for optimistic registration of server-
side middleboxes) and Encapsulated (to wrap TLS records exchanged between one
endpoint and one of their middleboxes). The standard TLS handshake is extended in
a backward compatible way with optional additional handshakes between endpoints
and their respective middleboxes. This ensure that connections consisting of one
mbTLS endpoint can still make use of middleboxes even with the other endpoint
running standard TLS. Additionally, the handshake is extended with optional remote
attestation (to verify middlebox code) and payloads are encrypted with unique per-
hop keys to ensure that a network-based attacker cannot learn if a middlebox modified
payloads.

28 Chapter 3. Requirements and State of the Art

The authors evaluate mbTLS in two ways: (i) a security analysis is performed that
qualitatively describes how the protocol fulfills the respective security requirements.
(ii) a set of real-world experiments demonstrates that it is immediately deployable and
evaluates the overheads imposed by the added security benefits. For this, a prototype
implementation of mbTLS based on OpenSSL [TYH22] in version v1.1.1-dev and the
Intel SGX SDK is built as well as an example middlebox function in form of an HTTP
proxy performing header insertion. Their interoperability results indicate that mbTLS
handshakes are not dropped and their client can connect to the vast majority of Alexa
top 500 websites that support HTTPS. For their performance evaluation, the authors
compare mbTLS handshakes in various middlebox configurations through a micro-
benchmark with both standard TLS as well as “split” TLS (i. e., interception via MitM
proxy). Their results indicate that the protocol does increase the computation time
with an increasing number of middleboxes (as expected due to additional secondary
handshakes) but improves handshake time for the middlebox (as it only needs to
do one additional handshake compare to two for “split” TLS). However, real-world
experiments show, that overall handshake latency is only increased on average by
0.7%. In the last experiment, the authors evaluate the impact on network performance
imposed by using the secure enclave. Their results indicate that processing inside the
secure enclave does not have a noticeable impact on overall throughput which is likely
the result of overall high interrupt rates in both scenarios (with or without enclave).

mbTLS partially meets R3: Low overhead based on the results obtained in the runtime
performance evaluation as the performance impact from using the secure enclave is
negligible. Similarly, R4: Scalability is also partially fulfilled as the approach scaled
decently with additional middleboxes added to the connection. R5: Security and R6:
Privacy are also both partially checked as the middleboxes are explicitly added and ex-
ecution in the secure enclave increases trust in the running code. Lastly, while mbTLS
improves upon mcTLS in terms of backward compatibility, the hard requirement of a
secure enclave does not fulfill R7: Deploy- & Maintainability.

Locally Operated Cooperative Key Sharing (LOCKS) [Bie+17] is an approach
to enable trusted middleboxes in an enterprise setting to obtain TLS session keys
from endhosts in the network to decrypt and analyze the encrypted payloads. In
comparison to MitM proxy servers, this leaves the security guarantees of TLS intact
as the connection is not intercepted or otherwise modified. The evaluation in a real-
world setting shows promising results for both the added overhead imposed by the
decryption and the added latency.

The architecture of LOCKS is composed of (i) client endpoints inside the enterprise
network, (ii) trusted agents that cache and provide TLS session keys, and (iii) middle-
boxes that perform NMS or IDS functionality by passively receiving encrypted traffic
and obtaining session keys from the trusted agent and subsequently decrypting and
analyzing decrypted payloads. After the TLS handshake is completed by the client,
it forwards the newly established session keys to the trusted agent and pauses the
connection pauses the connection until keys are stored in the trusted agent. This
ensures that keys are received but adds latency to the connection.

The authors implement a prototype of LOCKS consisting of two core components:
the client is represented by a modified Firefox browser [Fir22] with a modified NSS
library [NSS22] that implements the key sharing and pause logic. The IDS compo-
nent is implemented in Bro [Pax99; Zee22]. Additionally, a trusted middlebox is
implemented but not closely described. Unfortunately, no implementation is publicly

3.3. Event-Level Monitoring 29

available although all underlying libraries and tools are open-source. The evaluation
is divided into three parts: (i) the impact on download latency is measured in both
local and cloud scenarios and compared with unmodified TLS and a MitM scenario
with active TLS interception. The results indicate that the download latency between
LOCKS and MitM are insignificant compared to regular variations in network behav-
ior. (ii) the authors conducted a user study on an unspecified number of “alpha users”
to measure usability. Based on the System Usability Scale (SUS) [Bro96], the results
show a normalized usability percentage of 97%. (iii) the impact on the IDS induced
by adding TLS decryption is measured through packet loss. The results indicate a
moderate overhead that can be addresses by increasing the computational resources
allocated for the IDS.

LOCKS partially fulfills R3: Low overhead as the overhead is limited to client machines
needing to forward key material and briefly pausing the connection until receiving a
confirmation. Similarly, the approach should scale decently well as the middleboxes
can be scaled up horizontally, although this was not explicitly tested. R4: Scalability is
thus partially checked. Both R5: Security and R6: Privacy are fulfilled as the endhosts
remain in control of the keymaterial and the authors even briefly discuss the possibility
of selective decryption. Lastly, R7: Deploy- & Maintainability is partially met as the
deployment involves updates to endhost software which can be complex in enterprise
settings.

Middlebox-aware TLS (maTLS) [Lee+19] is TLS extension aimed at auditing
middleboxes by explicitly adding them to the TLS connection via so-called middlebox
certificates that are additionally logged in middlebox transparency logs. maTLS builds
upon these auditable middleboxes and splits the connection from client to server into
segments between each endpoint and middlebox respectively. This is effectively a
variant of MitM proxies/“split” TLS with additional auditing measures. The authors
verify the security goals of maTLS via Tamarin [Mei+13] and also evaluate a prototype
implementation for various performance metrics.

maTLS extends the TLS 1.2 handshake by including the Middlebox_Aware extension
to the ClientHello message. This allows each middlebox to insert their own segment
keys (on the way to the server) and their own certificates (on the way back to the
client) into the respective *Hello messages. Additionally, each middlebox establishes
an accountability key with each of the two connection endpoints that allows them to
audit the middleboxes participating in the connection. After the handshake, key
material is established for each connection segment in the TLS connection and both
endpoints obtained key material and certificates from all middleboxes. Afterwards,
data can be transmitted as usual with each middlebox being able to read and write on
the payloads (depending on the capabilities indicated in their certificate).

The evaluation consists of two sections and a discussion: (i) The security proper-
ties of maTLS are evaluated using Tamarin, an automated verification tool built on
logic formulae that represents the protocol as a series of states which is a multiset
of valid facts. The analysis shows that maTLS satisfies the intended security goals
with the Tamarin implementation being openly available. (ii) A prototype based on
OpenSSL [TYH22] is evaluated for HTTP load time, data transfer time, integrity verifi-
cation time, and CPU processing time. Their results across three testbeds indicate that
maTLS adds about 10–32ms of delay to HTTP loads, that verification takes negligible
time, and that both verification time and overall CPU time in the handshake scales
linearly with the number of middleboxes as expected. (iii) The authors discuss several

30 Chapter 3. Requirements and State of the Art

Requirement TL
S
In

te
rc
ep

tio
n

m
cT

LS
[N

ay
+
15

]

m
bT

LS
[N

ay
+
17

]

LO
C
K
S
[B

ie
+
17

]

m
aT

LS
[L

ee
+
19

]

R1: Accuracy — not applicable —
R2: Explainability — not applicable —
R3: Low overhead ✗ ✗ ○ ○ ✗

R4: Scalability ✗ ✗ ○ ○ ○

R5: Security ✗ ○ ○ ✓ ✓

R6: Privacy ✗ ○ ○ ✓ ○

R7: Deploy- & Maintainability ○ ✗ ✗ ○ ○

Table 3.1: Requirement Comparison: Visibility into Encrypted Network Traffic
✓ ∶= fully met ○ ∶= partially met ✗ ∶= not met ◌ ∶= unknown/neutral

aspects of maTLS, namely potential incremental deployment, mutual authentication,
abbreviated handshakes, and compatibility with TLS 1.3.

As maTLS effectively builds upon regular TLS interception with explicit middlebox
certificates, R3: Low overhead is not met. R4: Scalability is partially checked due to
the option of horizontally scaling middleboxes if required. The addition of explicit
middlebox transparency logs and accountability checks R5: Security. R6: Privacy is
improved compared to regular TLS interception due to the addition of capabilities.
However, endhosts have no way to conceptually prevent middleboxes from reading
selected connections, thus only partially fulfilling the requirement. Lastly, R7: Deploy-
& Maintainability is also partially met as the deployment is similar to regular TLS
interception with some additional efforts for the transparency log.

Summary Table 3.1 gives an overview about the requirements fulfilled by the ap-
proaches for visibility into encrypted network traffic discussed in this section. As
the table shows there is no approach that fulfills all our requirements although R1:
Accuracy and R2: Explainability are not applicable to this area of research as discussed
in the introduction. The results also reveal that approaches that extend TLS in a
non-backward compatible way (like mcTLS [Nay+15]) or require specific hardware
(like mbTLS [Nay+17]) are highly unlikely to fulfill R7: Deploy- & Maintainability or
reach adoption. While all approaches improve over the predominant practice of TLS
interception, LOCKS [Bie+17] looks most promising when we consider our require-
ments. While it still has some problems related to the delay induced by pausing the
connection until key material is transmitted, its architecture is promising. For this
reason, LOCKS served as inspiration when we designed our approach for passive
TLS decryption at the NMS that we present in Section 4.1.

3.3.2 Data Provenance Generation

Reliable monitoring of host activity is another important data source for successful
APT detection, as large parts of the campaign are local to compromised hosts and do
not produce any network traffic (see: Section 2.2.4). Recently, (whole-system) data
provenance has been established as state-of-the-art for host activity monitoring due

3.3. Event-Level Monitoring 31

to its comprehensive tracking of fine-grained actions on kernel-level. This section
presents academic approaches that aim to efficiently and reliably capture and process
graph-based data provenance.

BackTracker [KC03; KC05] aims to detect an intruder’s point of entry into a com-
promised system by backtracking from the detection point to potential entry points
or vulnerabilities. It is one of the first works that analyzes kernel-level objects (e. g.,
processes, files, sockets…), events (e. g., read, write, connect…), and their intercon-
nections as a graph. While the term data provenance is not used, King et al. employ a
graph format that is similar to the later established provenance graphs.

BackTracker consists of two components: (i) an on-line component called EventLog-
ger, that collects kernel-level events on monitored hosts and (ii) an off-line component
called GraphGen, that builds a dependency graph from the detection point of an
observed attack. Both components were implemented as prototypes for Linux. Event-
Logger leverages a VM monitor to collect event data about the VM guest on the VM
host. GraphGen offers five rules to filter and prioritize events to reduce the complexity
of the dependency graph, e. g., ignoring certain high-volume folders and files such as
/tmp or special handling of helper processes that introduce common patterns in the
generated graph.

The authors evaluate BackTracker on three real attacks that were captured on a
honeypot system running RedHat Linux 7.0 and one simulated attack. The evaluation
covers the effectiveness of the proposed filtering rules used by GraphGen as well as
the (storage) space and (computation) time overhead imposed by collecting kernel-
level events via EventLogger. Their results indicate that the filtering rules strongly
reduce the size of the dependency graph to about 2.39%–0.28% of the unfiltered graph
with absolute sizes of 20–56 objects and 25–81 events. Furthermore, overhead varies
greatly between scenarios: space overhead was measured between 0.002 GB/day and
1.2 GB/day while the data collection imposed a computational slowdown between
0% and 9%. Overall, this makes BackTracker feasible for real-world deployments
especially on modern hardware.

Hi-Fi [Poh+12] is a kernel-level module that is able to collect high-fidelity whole-
system provenance data on Linux hosts. Based on the Linux Security Modules (LSM)
framework, Hi-Fi induces only a low overhead between 1% and 6% depending on
the workload. The approach is able to capture complete provenance traces from early
kernel initialization to system shutdown as the first of its kind.

Hi-Fi consists of three distinct components: (i) the provenance collector is a LSMmodule
on kernel-level that subscribes to kernel events, (ii) the provenance log is a buffer at
the boundary between kernel- and user-space that receives events from the collector
and offers them to user-space as a file, and (iii) the provenance handler is a user-space
program that accesses the file offered by the log and processes or stores the resulting
provenance records.

The evaluation focuses on both correctness (by executing malicious actions on a mon-
itored host and inspection of the generated provenance trace) and performance (by
measuring per system-call overhead in various scenarios). Their results indicate that
malware behavior is accurately present in the generated provenance traces while
incurring an overhead of about 3% in “representative workloads”. Overall, Hi-Fi
represents a strong baseline for Linux-based whole-system provenance capture as

32 Chapter 3. Requirements and State of the Art

the authors explicitly did not investigate further application scenarios for provenance
data.

Linux ProvenanceModules (LPM) [BBM15] is a framework to facilitate trusted and
secure (whole-)system provenance capture on Linux. The publication contains three
core contributions: (i) the authors present Linux Provenance Modules (LPM) and
discuss its design and threatmodel, (ii) LPM is leveraged to build a secure provenance-
aware deployment by porting Hi-Fi [Poh+12] and supporting SPADE [GT12] (two
existing provenance environments), and (iii) the authors introduce and implement a
scheme for provenance-based data loss prevention to highlight one useful application
scenario of trustworthy provenance data.

The underlying threat model of LPM is a provenance-aware host (i. e., a host which
has a provenance monitor installed and running) that has been compromised by a
remote attacker who might want to add, remove, or otherwise modify the captured
provenance data either directly on the host or in transit to long-term storage. LPM now
aims to protect a trusted computing base (TCB) consisting of three components: the
kernel mechanisms for provenance capture, the provenance recorder (in user-space),
and the (potentially remote) storage backend. Additionally, the authors define five
system goals for secure provenance monitors based on McDaniel et al. [McD+10] and
other past work in the area. They should be: (i) complete (leave no gaps in the record
of system activity), (ii) tamperproof (TCB cannot be disabled or modified from user-
space), (iii) verifiable (LPM itself and user-attestable kernel), (iv) be transmitted over
an authenticated channel, and (v) enable attested disclosure for low integrity provenance
from user-space applications.

To achieve these goals, LPM is implemented as a parallel framework to LSM to inherit
some formal assurances. Similar to LSM hooks, LPM adds provenance hooks that
enable provenancemodules to obtain provenance data from system calls. Additionally,
NetFilter hooks are used to implement a cryptographic message commitment protocol
based on Digital Signature Algorithm (DSA). The signature is placed in the IP options
field and can then be verified on a remote provenance-aware host to ensure continuity
of the provenance log. The authors implemented two provenance modules using the
provided hooks: ProvMon (an extended version of Hi-Fi [Poh+12]) and a modified
version of SPADE [GT12]. Next, the publication describes how a system configured
with a trusted platform module (TPM) can be configured to establish an attestable
chain of trust for a kernel running LPM including support for integrity checking
of provenance-aware applications in user space. After the system has booted, the
runtime integrity of the TCB can be retained via standard utilities like SELinux.

The evaluation consists of three parts: (i) a security analysis confirms a secure deploy-
ment as described prior using ProvMon and LPM fulfills the five system goals. (ii) a
scheme and corresponding implementation of provenance-aware data loss prevention
(in form of a file transfer application) demonstrates a novel application scenario for
whole-system data provenance. (iii) a performance evaluation indicates that LPM
offers comparable performance in both capture overhead and space requirements to
previous provenance approaches while delivering additional security assurances.

CamFlow [Pas+17] is an approach for whole-system provenance capture that aims
for broad adoption especially in PaaS environments. It addresses several shortcomings
that prevented previous proposals from gaining significant traction and is evaluated
via three application scenarios: compliance, fault/intrusion detection, and data loss

3.3. Event-Level Monitoring 33

prevention. Its design takes inspiration from PASS [Mun+06], LPM [BBM15], and
Hi-Fi [Poh+12] with authors from the first two approaches also appearing on this
publication. Based on that, the publication defines four design goals for CamFlow:
(i) easy maintenance, (ii) usage of existing kernel mechanisms, (iii) no duplication
of existing mechanisms, and (iv) potential for integration into the mainline Linux
kernel. To achieve this, CamFlow leverages LSM and NetFilter hooks as well as
relayfs [Zan+03] to efficiently transfer provenance data from kernel to user space.

CamFlow’s features set includes several key features fromprevious approaches. Cross-
host provenance is possible by tracking incoming packets through an LSM hook and
outgoing packets via a NetFilter hook and including them as entities in the provenance
graph. A hardware root of trust can be supported through usage of TPMs and can be
verified by remote attestation. System provenance can be augmented by additional
application-level provenance. In the presented concept this is realized by ingesting log
files (e. g., from webservers or databases) and attaching the application activity to the
respective items in the provenance graph. A novel feature introduced by CamFlow is
selective provenance via a fine-tuned configuration file. While whole-system provenance
capture is possible, users can tailor the provenance capture (and thus the volume
of generated data) in several ways including defining “object of interest” such that
any activity involving them is captured or marking objects as opaque such that any
activity involving these objects is discarded. Objects can be selected by path name,
network address (and port), LSM security context, cgroups, or user and group IDs.
Alternatively, the configuration can also limit provenance capture to a subset of system
calls.

The authors evaluate CamFlow in regard to maintainability and performance as well
as the impact of selective provenance on data volume. Maintainability was mainly
accessed through LoC compared to previous two approaches (PASS [Mun+06] and
Hi-Fi/LPM [Poh+12; BBM15]) as well as the changes required to port CamFlow be-
tween Linux kernel versions. The results indicate that CamFlow is significantly more
self-contained and thus interacts with the kernel in clearly defined interfaces. Com-
pared to PASS and LPM which were never ported to newer kernel releases, CamFlow
often required no changes at all for new releases (especially between minor kernel
versions). The performance evaluation is twofold and contains micro-benchmarks for
selected system calls as well as a macro-benchmark simulating realistic system activity.
The results indicate that CamFlow imposes overhead in the same order of magnitude
that its predecessors with up to 22% overhead in worst case. Furthermore, an exem-
plary evaluation with selective provenance highlights that tailoring the provenance
output can reduce data volume by about 20% compared to whole-system provenance
capture. Next to the quantitative evaluation, the authors discuss four application sce-
narios for data provenance and how CamFlow can support those, namely compliance,
intrusion detection, data loss prevention, and retrofitting of existing applications.
While CamFlow generally supports all scenarios, data loss prevention especially prof-
its from selective provenance and the taint mechanism to both reduce data volume and
perform the actual data loss check in constant time. Overall, CamFlow is a promising
option for whole-system and selective provenance that is likely to emerge as one of
the default provenance systems.

34 Chapter 3. Requirements and State of the Art

3.4 Alert-Level Detection

This section discusses relevant approaches for alert-level detection, i. e., approaches
that aim to identify malicious activity present in the low-level events. One alerts
usually relates to a single event such as a network packet or connection or a single
host activity. As no other context across multiple alerts is available, the information
added via the alert is usually limited and the volume (and FPR) of these alerts
is rather high. Nonetheless, they represent an important part of the overall APT
detection process as alerts can be produced for single malicious actions as part of
a larger campaign. Approaches in this taxonomy class are further structured into
three subclasses (see: Section 3.2): (i) signature-based detection, (ii) policy-based
detection, and (iii) anomaly detection. The first two subclasses are usually not capable
of reliably detecting traces of APT activity and are thus only covered very briefly in
this thesis.

3.4.1 Signature- and Policy-based Detection

Signature- and policy-based detection are conceptually simple approaches to generate
alerts from events. Signatures describe patterns or fingerprints of previously detected
malicious activity that can be used to efficiently detect the same threats again such
as checksums of malicious executables or recurring byte-patterns in botnet traffic.
As they are usually static, they offer limited to no protection against new threats (as
commonly seen in APT campaigns) and may even change for known threats, e. g., if
new compiler version are employed by the attackers that change the checksum of the
executable. Policy-based detection aims to identify malicious behavior as deviations
from manually established policies such as allowed communication patterns. While
this is conceptually similar to anomaly detection, traditional policies are “handwritten”
and prone to under- or overspecifying. This section briefly highlights exemplary tools
for signature- and policy-based detection in network contexts, namely Snort [Cis22],
Suricata [Ope22], and Zeek [Pax99; Zee22].

Snort [Cis22] is an open-source (dual licensed: GPL-2 and non-commercial custom)
intrusion prevention system (IPS) mainly developed by Cisco that focuses on rule-
based alerting. It has three main operation modes: (i) as a packet sniffer that prints
information to the terminal (similar to tcpdump [Tcp22]), (ii) as a packet logger that
writes observed packets to storage, or (iii) as a rule-based IDS that optionally can stop
packets inline (IPS).
alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (sid :123; rev :1;

msg:"HTTP POST request with 'malware ' in URI"; fast_pattern;

flow:established , to_server; http.method; content:"POST";

http.uri; content:"malware"; classtype:bad -unknown ;)

Listing 3.1: Snort rule for outbound HTTP POST requests with “malware” in its URI

Snort rules follow a simple format that specifies the addresses, ports, and protocols
that a packet has tomatch aswell as certain protocol specific information such asHTTP
method or payloads. Listing 3.1 shows an example of such rules that generates an alert
for all outbound HTTP POST requests to URIs that contains the keyword “malware”.
While rules can be written manually, Snort offers two rule sets maintained by Cisco
Talos that catch known threats. The Community Ruleset is freely available, maintained
by the community and receives only QA by Cisco Talos. The Snort Subscriber Ruleset
is available as a subscription and developed and tested by Cisco Talos.

3.4. Alert-Level Detection 35

Suricata [Ope22] is an open-source (GPL-2 license) NMS/IDS/IPS primarily devel-
oped by the Open Information Security Foundation (OISF). Its feature set roughly
covers three categories:

• Protocol logging

• Rule-based alerting

• Lua-based scripting interface for advanced analysis tasks

Suricata ships with a protocol detection engine similar to Zeek [Zee22] and attaches
protocol information to its JSON-based Extensible Event Format (EVE) output format.
This is useful for security and non-security use cases alike such as performance
monitoring or network-based intrusion detection. Additionally, Suricata is able to
optionally extract and store TLS certificates from observed handshakes as well as files
that were transmitted through any of its supported protocols.
alert http $HOME_NET any -> $EXTERNAL_NET any (sid :123; rev:1;

msg:"HTTP POST request with 'malware ' in URI"; fast_pattern;

flow:established , to_server; http.method; content:"POST";

http.uri; content:"malware"; classtype:bad -unknown ;)

Listing 3.2: Suricata rule for outbound HTTP POST requests with “malware” in its URI

Next to its pure monitoring capabilities, Suricata is well-known for fast and efficient
rule-based alert generation. Listing 3.2 shows an example of such rules that generates
an alert for all outbound HTTP POST requests to URIs that contains the keyword
“malware”. Although remarkably similar to the same rule for Snort (Listing 3.1), the
Suricata rule is more flexible, as http can be directly specified as the protocol while the
ports can be set to any due to Suricata’s protocol detection capabilities. Rules can be
loaded from a repository hosted by the OISF via the bundled suricata-update utility
or written manually and loaded via the configuration file. The repository contains
many well-known rulesets like the “Emerging Threats Open Ruleset”2 or rulesets
from abuse.ch3 or SecureWorks4.

For use cases beyond rulematching, Suricata offers a Lua scripting interface to perform
advanced analysis tasks. A valid script defines two functions (init and match) and
can access various parts of the current packet or connection in so-called “buffers” to
perform detection tasks. At the time of this writing, Suricata supports twenty-three
buffers including protocol-specific ones like DNS, HTTP, SMTP, SSH, and TLS as
well as accessors for raw payloads. Scripts then define which buffers they require in
their init function and can access them in match to perform the analysis task at hand.
Finally, the return value of match determines if an alert is raised.

Zeek (formerly known as Bro) [Pax99; Zee22] is an open-source (BSD license)
passive NMS with a Turing-complete scripting language that allows for flexible de-
ployments. This flexibility makes it appealing to several network-based problem
fields such as performance and QoS monitoring, protocol debugging, and naturally,
network-based intrusion detection. It produces detailed log files for all supported
50+ supported protocols across both transport and application layer. Listing 3.3
shows the well-known conn.log that contains details of all observed TCP and UDP
communication.

2see: https://rules.emergingthreats.net/
3see: https://abuse.ch
4see: https://secureworks.com

https://rules.emergingthreats.net/
https://abuse.ch
https://secureworks.com

36 Chapter 3. Requirements and State of the Art

{

"ts": 1658153792.723982 ,

"uid": "CFJ2mL343OmjIYRUnl",

"id.orig_h": "10.0.1.13",

"id.orig_p": 40408,

"id.resp_h": "40.114.177.156",

"id.resp_p": 443,

"proto": "tcp",

"service": "ssl",

"duration": 0.10236883163452148 ,

"orig_bytes": 679,

"resp_bytes": 254,

"conn_state": "SF",

"missed_bytes": 0,

"history": "ShADFadRfR",

"orig_pkts": 6,

"orig_ip_bytes": 975,

"resp_pkts": 4,

"resp_ip_bytes": 470

}

Listing 3.3: Zeek: example entry from conn.log in JSON format

Zeek’s architecture is divided into two components: (i) the event engine that reduces
the monitored network stream to discrete events that express high-level activity such
as “new connection”, and (ii) the policy script interpreter that interprets handlers for
these events written in a domain-specific language (DSL) called zeek script (formerly
bro script).

The original publication from 1999 [Pax99] focuses primarily on the design aspects of
Zeek and its embedded script language as well as a discussion about the potential
attacks on networkmonitors. While a specific evaluation section is not present, Paxson
describes the application-level processing of the four protocols Zeek supported at
that time, namely Finger, FTP, Portmapper, and Telnet. This already showed Zeek’s
support for simple rule-based alerting as these can be expressed via zeek script.

Since then, Zeek has evolved significantly both directly from active development by
International Computer Science Institute (ICSI) members and Corelight5 employees,
as well as the largely community-driven package ecosystem6. At the time of this
writing, Zeek is highly capable for deployments in both IT and (to some extent) OT
environments and can detect several potential attacks by default, e. g., Heartbleed.
The aforementioned package registry offers a large number of drop-in packages
that require little to no customization and can perform various task from intrusion
detection to performance monitoring. Examples for this include a framework to detect
tactics, techniques, and proceduress (TTPs) fromMITREATT&CK7 (see: Section 2.2.3)
or SSL/TLS fingerprinting via JA38. As a consequence, Zeek is established as a
popular open-source network monitor with usage in several high-profile companies
and organizations.

This large script ecosystem combinedwith the growing set of protocols scripts shipped
by Zeek as part of the distribution, enables security experts to leverage both complex
rule-based alerting as well as sophisticated policy-based alerting algorithms. Due to

5see: https://corelight.com
6located at: https://packages.zeek.org
7see: https://packages.zeek.org/packages/view/cd5997f2-9348-11eb-81e7-0a598146b5c6
8see: https://packages.zeek.org/packages/view/cebd1c8c-9348-11eb-81e7-0a598146b5c6

https://corelight.com
https://packages.zeek.org
https://packages.zeek.org/packages/view/cd5997f2-9348-11eb-81e7-0a598146b5c6
https://packages.zeek.org/packages/view/cebd1c8c-9348-11eb-81e7-0a598146b5c6

3.4. Alert-Level Detection 37

the event-based architecture, all information extracted by third-party packages can
be consumed in custom event handlers for higher-level detection logic. While some
packages like the aforementioned JA3 are a perfect fit for rule-based alerting (on their
fingerprints), the events generated for each TTPs from MITRE ATT&CK can be used
as their own alerts or combined and correlated in Zeek to obtain higher-order meta
alerts. Listing 3.4 shows a comparatively simple event handler for SMB that can detect
transfer of executable files through the protocol.

1 @load base/frameworks/notice

2 @load base/frameworks/files

3 @load base/protocols/smb

4
5 module MyModule;

6
7 export {

8 redef enum Notice ::Type += {

9 MyModule :: SMB_Executable_File_Transfer

10 };

11 }

12
13 event file_state_remove(f: fa_file) {

14 if (f$source != "SMB" || ! f?$info || ! f$info?$mime_type ||

f$info$mime_type != "application/x-dosexec" || ! f?$conns) {

15 return;

16 }

17 for (id in f$conns) {

18 local conn = f$conns[id];

19 NOTICE ([

20 $note = SMB_Executable_File_Transfer ,

21 $uid = f$info$fuid ,

22 $msg = "Executable file transfer via SMB",

23 $ts = f$info$ts ,

24 $id = id,

25 $suppress_for = 1hrs ,

26 $identifier = cat(id$orig_h , id$resp_h , id$resp_p)

27]);

28 }

29 }

Listing 3.4: Zeek example script to detect transfer of executable files via SMB

Overall, Zeek remains a valuable asset in any security infrastructure that can be
adapted to many different scenarios. Although, rule- and signature-based detection
alone is not sufficient to detect APT activity, Zeek can be leveraged as part of the APT
detection process for tasks ranging from security monitoring to security analytics. We
also chose Zeek as the underlying NMS to implement our approach for passive TLS
decryption via cooperative endhosts.

3.4.2 Anomaly Detection

Anomaly detection has increasingly been used for alert generation in APT contexts.
Compared to traditional policy-based detection, these approaches autonomously learn
models of normality based of benign system activity and are able to mark anomalous
events, which deviate from this model, as alerts. This is especially interesting for
APT campaigns as they are known to leverage and misuse existing benign tools that
oftentimes do not trigger alerts in traditional systems.

38 Chapter 3. Requirements and State of the Art

Friedberg et al. [Fri+15] propose a novel approach to detect APT activity based on
anomaly detection of system events via log line analysis. The approach is an extension
of [SFF14] and is meant to complement existing alerting solutions such as IDSs/IPSs
and provides an additional source of alerts that can be analyzed in a higher-level
security system such as a security information and event management (SIEM). The
evaluation is performed on three datasets that were generated by a semi-synthetic
data generation approach combining synthetic data and productive log data.

The approach is based on a model of normality that is derived from log files and is
learned without any prior knowledge about their syntax or semantics. This system
model is defined as a four-tuple: 𝑀 = {ℙ,ℂ,ℍ,ℝ}, where

• ℙ are search patterns used to classify information from ingested log lines;
• ℂ are event classes classifying log lines according to the search patterns;
• ℍ are hypotheses describing logical implications between log lines; and
• ℝ are rules that represent proven hypotheses (proven by a hypothesis holding

across extended periods of evaluation time).

The algorithms consists of four consecutive phases that are executed iteratively: (i)
during log-event extraction single log atoms (e. g., a line in line-based logging or one
XML-element) are timestamped and emitted as a log event, (ii) during fingerprint
generation each log atom is vectorized to a fingerprint using the search patterns 𝑃
from the system model, (iii) during fingerprint classification the previously generated
fingerprint is classified to [0, |ℂ|] event classes and emitted as an event 𝐸𝐶 =< 𝑡, 𝐶 >
that consists of the timestamp of the log event 𝑡 and the event class 𝐶, and (iv) during
rule evaluation the relations between log events are examined, hypotheses are updated,
and potentially upgraded to rules, and an alert is raised if a rule is violated. All phases
besides the first also contain a refinement Component that generates and updates ℙ,
ℂ, andℍ/ℝ respectively.

The authors evaluate their approach on three semi-synthetic datasets generated by an
approach previously presented in [Sko+14]. Scripts were used to simulate users on
virtual machines which were monitored. The behavior of these virtual users is based
on an analysis of a similar productive system over three months. Two of the three
datasets only contain clean systems without any anomalies, while the third dataset is
divided into a clean training phase of seven hours and an attack phase consisting of
two time slots that each contain four malicious actions executed consecutively. The
attack scenarios were selected to approximate APT behavior with attacks like data
exfiltration or disabling of logging facilities to remain undetected.

The evaluation covers: (i) the configuration parameters of the approach, (ii) the
detection performance, and (iii) applicability of the approach in industrial control
systems (ICSs)/cyber physical systems (CPSs). In the first experiment, the two
clean datasets are used to iteratively find stable configuration parameters based on
six metrics including number of patterns, event classes, and rules and FPR. As the
dataset is clean, all detected anomalies can be classified as a false positive. The results
indicate that a stable configuration is highly dependent on the target network, which
is expected. Nonetheless, the evaluation can be interpreted as a guideline how to tune
the approach to a custom network. The second experiment focuses on the general
detection performance of the approach using the default classification metrics FPR
and TPR but based on single rule evaluations. The results indicate solid detection
performance for both attack scenarios. In the first case, the TPR ranges between
40% and 80% (depending on the configuration and with one outlier) with a FPR

3.4. Alert-Level Detection 39

between 2% and 9%. The approach performed better in the second scenario with a
consistent TPR around 80% and a FPR between 2% and 8%. In the third experiment,
the authors briefly discuss the applicability of their approach in an ICS scenario. Based
on a one-hour dataset obtained from an Austrian utility provider that consists of a
firewall, a switch, and a supervisory control and data acquisition (SCADA) system,
the approach was able to detect an injected anomaly with a TPR of 100% and a FPR of
“nearly zero”. This suggests that the approach is very well suited to ICS environments,
which is however not surprising as OT system act much more consistently that IT
systems and are thus relatively easy to capture in an anomaly detection model.

Based on the evaluation results, R1: Accuracy is marked as partially fulfilled. While
the raw TPR and FPR values are good, only single anomalies were injected which
is not representative of complex attacks. As each anomaly is related to a learned or
predefined rule that should offer some limited context about the attack, R2: Explain-
ability is partially met. R3: Low overhead is also fulfilled as the approach is based on log
files which usually impose a tolerable overhead. However, R4: Scalability is marked as
unknown, as no explicit runtime or scalability experiments were performed. Similarly,
R5: Security cannot be assessed from the information provided in the publication. R6:
Privacy is partially fulfilled as no explicit effort was taken to minimize the processed
information obtained from coarse-grained log files. Lastly, R7: Deploy- & Maintainabil-
ity is met as the approach relies on log files that are usually either available already
or can be easily collected. Thus, the system should be relatively easy to deploy and
maintain.

StreamSpot [MMA16] is a clustering-based approach for anomaly detection prob-
lems in heterogeneous streaming graphs. The approach is able to process multi-
ple interleaved graphs in parallel with constant space and time requirements and
achieves speeds of up to 100𝐾 edges per secondwhile detecting anomalies in real-time.
StreamSpot uses a novel similarity function based on k-shinglings to maintain update-
able graph sketches that are clustered via a centroid-based scheme. The distance to
the closest centroid is then used to score the updated graph and potentially report it
as anomalous. While the problem area is not limited to APT detection, the authors
explicitly chose it as their motivation and design their evaluation accordingly.

StreamSpot is evaluated in two ways using the same dataset of simulated system-
call flow graphs of three scenarios containing a variety of benign activity as well
as a drive-by download attack. First, the static evaluation analyzes StreamSpots
overall detection performance to spot anomalous graphs in offline data and given
unbounded memory. The results indicate that, given the optimal values for the
parameters 𝐶 (chunk length of the shingles) and 𝐾 (number of medoids used in
clustering), StreamSpot is outperforming the baseline of iForest [LTZ08] reliably.
However, another experiment analyzes the impact of the percentage of the dataset
that is used for training on the precision indicates that StreamSpot has problems with
small training sets (< 40%). In the second section, the authors investigate StreamSpots
performance for its intended purpose, namely classification of streaming graphs. Their
results indicate that the arrival of new graphs in the streaming process cause repeated
drops in both accuracy and average precision. While the performance essentially
“recovers” after each dip, the results raise questions on the real-world applicability of
the approach, as decisions often need to be made in real-time and without ground
truth available. The remaining results indicate that the approach is resource efficient
(in both time and memory) as claimed in the introduction. Overall, the evaluation

40 Chapter 3. Requirements and State of the Art

presents StreamSpot as a decent anomaly detector for streaming graphs with some
caveats regarding its accuracy.

The detection performance evaluation has some caveats that impede StreamSpot’s
accuracy, thus only partially fulfilling R1: Accuracy. R2: Explainability is not met as the
resulting anomalies do not offer any additional context about the attack and thus need
heavy manual investigation. The overhead of system-call capture is not investigated in
the paper and thus R3: Low overhead is marked as unknown. R4: Scalability is fulfilled
as StreamSpot should be able to scale to large numbers of hosts with its bounded
resource requirements. Based on the data available in the publication neither R5:
Security nor R6: Privacy can be assessed. Lastly, R7: Deploy- & Maintainability is not
met as reliable capture and transfer of the high-volume system-call data remains an
open challenge that is not explicitly addressed in this contribution.

PrioTracker [Liu+18] is a priority-based approach for attack causality analysis on
system provenance data. It uses a concept of event rareness based on a referencemodel
of typical host behavior derived from collected data of 150 machines in a real-world
enterprise network. The approach supports human threat analysts in their forensic
analysis of APT attack campaigns by highlighting abnormal causal relations in the
provenance graph during incident response.

PrioTracker was designed with three core requirements: accuracy (i. e., capture the
malicious system events), time effectiveness (i. e., find the maximum amount of
abnormal behavior under time constraints), and runtime efficiency (i. e., introduce
as little overhead as possible to the underlying causality tracker). According to the
authors, the focus on timeliness is new and has not been considered in related work.
A threat model based on previous work is also given in form of a TCB consisting of
the kernel mechanisms, storage database, and the causality tracker. However, the
adversary is expected to have full knowledge of “normal” activities on the host in
the network, such that intentional manipulation is possible. The aforementioned
reference model was derived from provenance data from 150 hosts (54 Linux- and
96 Windows-based) in an enterprise network. As the model is highly dependent on
being homogeneous, the overall model is divided into three submodels corresponding
to three internal departments in the observed network. Events were normalized and
abstracted into Backus-Naur form (BNF) to enable matches between different hosts
independent from system details. Furthermore, events were counted in time windows
to prevent poisoning from repeated malicious activities. Each submodel then contains
a reference score for each system event as the accumulative occurrence of this event
across all hosts in the submodel.

The core algorithm in Priotracker is based on the algorithm to track event causality
by King and Chen [KC03; KC05]. The algorithm (as shown in Figure 3.3 iteratively
builds a dependency graph starting from an intrusion point 𝑠𝑒 until either no more
dependencies can be explored, or the time limit is reached (line 4). Instead of a regular
queue, PrioTracker leverages a priority queue based on a priority score describing the
event’s abnormality. This ensures that the abnormal events from the set of currently
available events are processed first. Newly discovered events are inserted into the
queue with their priority (line 9) that is calculated from three factors: (i) the event
rareness (how the event compares to the reference model), (ii) fanout (the amount
of direct dependencies the event generated), and dataflow termination (a penalty for
events that touch read-only or write-only files). The optimal weights used to calculate
the priority were obtained via the Hill Climbing algorithm [RN03].

3.4. Alert-Level Detection 41

Figure 3.3: PrioTracker: Dependency tracking algorithm [Liu+18]

The authors evaluate PrioTracker on a dataset captured from the same 150 hosts that
were used to derive the reference model across one week. It contains 1TB of 2.5 billion
system events. The authors then injected eight attacks that are representative of com-
mon APT activity into the dataset and compared PrioTracker with a reimplementation
of [KC03] as a baseline. The extensive results indicate that PrioTracker is able to
outperform the baseline implementation in both accuracy and timeliness. Largest
improvements are seen in the timeliness category, where PrioTracker significantly
reduces the time to find critical events of an attack. The evaluation also covers three
attacks in more detail to explore how event prioritization speeds up the analysis.
The case studies show how various properties of the attacks such as non-standard
paths for common programs or abnormal transitions between processes result in
high priorities and thus faster discovery of the related dependencies in PrioTracker.
Runtime overhead in the analysis phase is also measured as low as 0.95𝜇s on average
which is mostly attributed to efficient query caching.

The results presented in the evaluation indicate a good detection performance for
the injected attacks thus checking R1: Accuracy. The highlighted anomalous edges
and nodes support SOC analysts in their investigations, however, the visualizations
does not show larger overlapping context between incidents. R2: Explainability is thus
marked as partially fulfilled. The low overhead stated in the publication is related
to query time during the investigation and does not include the provenance capture
on live systems. This leaves R3: Low overhead also at partially met. R4: Scalability is
fulfilled given the scale and scope of the evaluation test data set. Based on the data
available in the publication neither R5: Security nor R6: Privacy can be assessed. Lastly,
like other system-call/data provenance-based systems, R7: Deploy- & Maintainability
is not met as the deployment and maintenance of network-wide provenance capture
remain difficult.

Rubio et al. [Rub+18] describe a graph-based approach to model, detect, and
track APT activity in OT environments. The proposed algorithm is based on their
previous work in [RAL17] and uses opinion dynamics to capture APT behavior and
persistence. The authors simulate and evaluate their algorithm in Matlab based on
insights obtained from a literature study of past APTs.

The approach is based on a graph model that represents an industrial control network
with IT, OT, and firewall components. The graph 𝐺(𝑉, 𝐸) can be divided into the

42 Chapter 3. Requirements and State of the Art

respective subgraphs𝐺(𝑉𝐼𝑇, 𝐸𝐼𝑇) and𝐺(𝑉𝑂𝑇, 𝐸𝑂𝑇)with firewall nodes𝑉𝐹𝑊 connecting
both sections. To match real-world deployments, IT network sections are modeled
according to a small-world network distribution, while OT network sections follow
a power-law distribution of type 𝑦 ∝ 𝑥−𝛼. Next, the authors describe how APT cam-
paigns can be modeled based on the graph model and the commonly used kill chain
models (see: Section 2.2). Each campaign is represented by a sequence of attack stages
𝑎𝑡𝑡𝑎𝑐𝑘𝑆𝑒𝑡𝐴𝑃𝑇 where each stage is one of nine available attack stages (initialIntrusion,
compromise, targetedLateralMovement, controlLateralMovement, spreadLateralMovement,
exfiltration, destruction, and idle). Each attack stage is defined on 𝐺(𝑉, 𝐸), e. g., ran-
domLateralMovement is defined as malware delivery from a node 𝑛𝑖 to a random
neighboring node 𝑛𝑗 (from 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠(𝑛𝑖)). Noteably this approach requires relatively
concrete knowledge of the APT in question, i. e., which attack stages are used and in
what order. The sequence 𝑎𝑡𝑡𝑎𝑐𝑘𝑆𝑒𝑡𝐴𝑃𝑇 can then be used as input for the detection
algorithm.

The detection algorithm is a multi-agent algorithm that uses agents that detect local
malicious activity as opinions (e. g., via anomaly detection), that are iteratively ad-
justed by the weighted averages of other agents in the network. The weight factor
in this update is based on the distance between nodes as well as a notion of node
criticality. This results in clusters of similar opinions once an attack is detected by
a single agent. The algorithm iteratively calculates the opinion scores of all agents
as well as aggregated delta indicators for the entire network as well as the IT and OT
sub-networks that describe the overall anomaly score for this network (section). This
enables analysts to both assess the general state of the network as well as to trace
APT campaigns as they traverse the network as the opinion clusters move with the
adversary.

The authors evaluate their approach in a small simulated industrial control network
implemented in Matlab. The network is composed of three IT and OT components as
well as a connecting firewall. The experiment Consists of a simulated Stuxnet attack
that is modeled as a sequence of nine attack stages. Meanwhile, the opinions are
iteratively updated and captured to evaluate how the attack influences them. The
results indicate that the approach is able to successfully trace APT activity as the
opinion across the nodes moves with the campaign progressing. Furthermore, the
delta indicators reflect the attack progressing from the IT section to the OT section.

R1: Accuracy is marked as partially fulfilled based on the decent simulation-based
evaluation results. As the opinions indicate which node was affected, but do not
offer extended context about the attack, R2: Explainability is also partially checked.
Unfortunately, as the authors also acknowledge, the simulated nature of the evaluation
limits the comparison with most of the requirements. As such, R3: Low overhead, R4:
Scalability, R5: Security, and R6: Privacy are marked as unknown. Lastly, the limited
amount of data required for the approach marks R7: Deploy- & Maintainability as
partially fulfilled.

UNICORN [Han+20] is an anomaly detection-based approach to detect APT activ-
ity in provenance data. The supervised machine learning (ML) approach summarizes
growing provenance graphs as fixed-size sketches to enable efficient computation of
graph statistics and ultimately learn a model of benign system execution. Anomalies
to that model are then classified as APT attacks during testing. UNICORN operates
in a four-step pipeline (as shown in Figure 3.4): (i) a streaming provenance graph
is captured during live operation, (ii) UNICORN periodically summarizes graph

3.4. Alert-Level Detection 43

features of the streaming graph into variable-sized histograms, (iii) the variable-sized
histograms are converted to fixed-size sketches via Histosketch [Yan+17], and (iv)
UNICORN clusters the obtained sketches into a normality model that is later used for
classification.

While the approach is not directly limited to APT detection, the authors made several
design decisions to address the specific challenges that APT campaigns incur on
detection such as the timely dispersion. Specifically, UNICORN uses exponential
weight decay [Kli04] for its histogram elements to gradually phase out older data
points while retaining causality. This enables the approach to focus on new host
activity while still being able to track stealthy intrusion attempts that stay idle for
extended periods of time after the initial infection.

The authors evaluate UNICORN with three distinct datasets: (i) the approach is
compared to StreamSpot [MMA16] via their dataset comprising six scenarios. This
evaluation demonstrates UNICORN’s overall performance as an anomaly detector
without specific APT focus. The results show that it offers precision and accuracy
improvements compared to StreamSpot. (ii) UNICORN is specifically evaluated for
APT detection performance via three APT trace sets captured as part of the fifth adver-
sarial engagement from the Defense Advanced Research Projects Agency (DARPA)
Transparent Computing program [DAR20]. Here, the approach reaches near-perfect
F1 scores with 0.99, 0.99, and 1.0, respectively. (iii) the authors create two simulated
APT supply-chain attack datasets to specifically evaluate runtime performance in
terms of processing speed and resource efficiency. In this last section, the authors
demonstrate that UNICORN’s runtime if not influences by its parametrization and
that is exhibits low CPU utilization andmemory usage. Overall, the evaluation results
indicate that UNICORN is a capable anomaly detector that can be used to detect APT
attacks on host-level via data provenance.

Given the good detection results, R1: Accuracy is fulfilled. However, this missing
context in the output alarm is the reason that R2: Explainability is not checked. R3:
Low overhead and R4: Scalability are met as the runtime analysis indicates that resource
usage scales with the number of patterns in the graph. Furthermore, a single host
running UNICORN should be able to process provenance data from numerous hosts
in the network. R5: Security and R6: Privacy cannot be assessed from the data in the
publication. R7: Deploy- & Maintainability is not fulfilled due to the problems with
reliable data capture as with other systems based on system-call/data provenance
graphs.

Figure 3.4: UNICORN: Pipeline overview [Han+20]

44 Chapter 3. Requirements and State of the Art

Pagoda [Xie+20] is an approach to detect APT activity by performing anomaly detec-
tion on provenance graphs. Compared to the authors’ previous work PIDAS [Xie+16],
Pagoda calculates anomaly scores not only for single paths in the provenance graph
but for the whole graph as well, thus increasing detection performance.

Pagoda aims to fulfill three design goals that are based on requirements for general
intrusion detection9: detection accuracy, real-time capabilities, and low overhead.
The authors specifically mention that overhead encompasses three areas: disk space
to build and store provenance data, memory overhead required by the detection
mechanism, and the performance overhead the provenance collection imposes on
normal system activity. From an architectural standpoint, Pagoda consists of six
modules:

1. Provenance collection: in the reference implementation, provenance data is col-
lected via PASS [Mun+06], but other frameworks are explicitly supported;

2. Provenance pruning: this component removes unneeded data from the prove-
nance stream by filtering it. This encompasses (i) short-lived entities such as
temporary files or pipe and (ii) all entities attributes besides name and relation-
ship as Pagoda only requires this information;

3. Provenance storage and maintenance: captured provenance data and relations
are stored in four non-volatile Redis [ST22] databases for quick access. Many-
to-one relations (e. g., multiple files accessed by a single process) are merged
into a collection in Redis to lower the storage overhead and improve detection
performance;

4. Rule building and deduplication: rules that describe normal system activity in
the provenance data are also stored in Redis. This component maintains this
database and builds new rules based on observed dependency relationships in
provenance graphs of benign behavior;

5. Detection process: this component is responsible for detecting intrusions and
generating alarms. The algorithm first calculates anomaly scores for all paths
starting on a head node (node without incoming edges) based on edge anomaly
scores and raises an alert if a predefined path threshold is exceeded. Otherwise,
the anomaly score of the whole graph is calculated, by taking aweighted average
across all paths, and an alarm is raised if a predefined graph threshold is crossed;
and

6. Forensic analysis: the last module supports forensic queries after an attack has
been detected. An analyst can use the four provenance databases to execute
forward and backward queries from known point(s) of intrusion to gain more
insights about the adversarial actions that took place.

The authors evaluate Pagoda on real provenance traces from related [Ma+17] and own
prior work [Xie+13; Xie+16]. The scenarios include multiple benign scenarios with
varying system load such as benchmarks, kernel compilation, and regular developer
activity as well as multiple attack scenarios that feature real vulnerabilities there were
exploited to perform an attack. Overall, the dataset consists of 3 613 provenance traces
across seventeen applications/scenarios.

The comprehensive evaluation features six sections that analyze (i) detection rate and
FPR, (ii) both path and graph thresholds, (iii) detection time, (iv) query time, and
(vi) overhead. In the experiments, Pagoda is compared with a baseline publication
from 1998 [HFS98] as well as the authors’ previous work PIDAS [Xie+16]. The

9In fact, two of those goals are directly reflected in the requirements section of this thesis (Section 3.1)

3.4. Alert-Level Detection 45

Requirement Fr
ie
db

er
g
et

al
.[

Fr
i+

15
]

St
re
am

Sp
ot

[M
M

A
16

]

Pr
io
Tr

ac
ke

r[
Li

u+
18

]

Ru
bi
o
et

al
.[

Ru
b+

18
]

U
N
IC

O
RN

[H
an

+
20

]

Pa
go

da
[X

ie
+
20

]

R1: Accuracy ○ ○ ✓ ○ ✓ ✓

R2: Explainability ○ ✗ ○ ○ ✗ ✗

R3: Low overhead ✓ ◌ ○ ◌ ✓ ✓

R4: Scalability ◌ ✓ ✓ ◌ ✓ ✓

R5: Security ◌ ◌ ◌ ◌ ◌ ◌

R6: Privacy ○ ◌ ◌ ◌ ◌ ◌

R7: Deploy- & Maintainability ✓ ✗ ✗ ○ ✗ ✗

Table 3.2: Requirement Comparison: Anomaly Detection
✓ ∶= fully met ○ ∶= partially met ✗ ∶= not met ◌ ∶= unknown/neutral

results indicate that Pagoda consistently outperforms the competitors in at least
detection performance or FPR (or both). While the exact performance differs across
the scenarios, the approach produces solid detection rates roughly ranging between
0.5 and 1.0. In the second experiment, the authors evaluate the impact of different
(path and graph) thresholds on detection performance and ultimately recommend
a path threshold of >= 0.3 and a graph threshold of 0.5. The next two experiments
evaluate detection and query time, respectively. The results indicate that again Pagoda
consistently improves upon the compared approaches. However, comparisons with a
Redis-based PIDAS indicate that some parts of the improvements can be attributed to
the memory database. The last experiment Considers the various aspects of overhead
mentioned in Pagoda’s design goals. The results indicate that Pagoda improves upon
PIDAS in size of the rule database while also requiring less memory during detection.
The employed provenance pruning reduces the size of captured provenance compared
to the raw size and a brief section mentions that runtime overhead of provenance
capture is comparatively low with 0.69–6.30%.

The good results for both detection rate and FPR mark R1: Accuracy as fulfilled.
However, as the alarms do not offer further context about the detected attack, R2:
Explainability is not met. The remainder of the evaluation confirms that both R3:
Low overhead and R4: Scalability are fulfilled as the overhead (including provenance
capture) is comparatively low and the system scales well with available resources.
As with many other approaches in this taxonomy class, R5: Security and R6: Privacy
cannot be assessed from the available data in the publication. Lastly, again similar to
other system-call/data provenance-based approaches, R7: Deploy- & Maintainability is
left unfulfilled as the provenance capture remain a challenge.

Summary Table 3.2 gives an overview about the requirements fulfilled by the ap-
proaches for alert-level anomaly detection discussed in this section. As the table
shows, there is no solution that checks all our requirements. Additionally, there are
two interesting facts to note: (i) no approach manages to achieve both R1: Accuracy

46 Chapter 3. Requirements and State of the Art

and R2: Explainability. This supports our hypothesis that complex anomaly detection
models (that are able to achieve good detection performance) fail to provide accurate
explanations for their results thus not effectively supporting human SOC analysts. (ii)
both R5: Security and R7: Deploy- & Maintainability are not usually explicitly covered
by the surveyed approaches. While this is somewhat expected as the systems do not
directly interact with any hosts in the network and just ingest the collected monitoring
data, the requirements remain important nonetheless and should be discussed at least
briefly. To address the missing combination of R1: Accuracy and R2: Explainability, we
developed an approach to restore explainability for graph-based anomaly detection
system that we present in Section 5.2. Our concept is based on a commonly applied
technique from explainable artificial intelligence (XAI), namely input permutation
importance, and we evaluate is using UNICORN [Han+20] as a black box approach.
UNICORNwas chosen as it checks some important requirements such as R1: Accuracy,
R3: Low overhead, and R4: Scalability and is openly available.

3.5 Alert Correlation

This section discusses relevant approaches for alert correlation, i. e., approaches that
aim to identify clusters of related alerts that share common properties or belong
to the same underlying attack. They are not APT specific and usable for “general-
purpose” intrusion detection. Techniques include clustering via various similarity
metrics or merging of similar alerts, e. g., based on overlapping source or destination
IP addresses. While they can offer decent results for simple and lightly complex
attacks, alert correlation approaches usually fail to correctly identify alerts from APT
campaigns due to their low volume and overall stealthiness. As this area of research is
large and not directly related to APT detection, this section only highlights a selection
of four relevant approaches.

Roschke et al. [RCM11] propose an algorithm for alert correlation based on attack
graphs (AGs) that aims to reveal attack scenarios from a set of alerts. The publica-
tion describes the underlying formal model and a prototype implementation that is
evaluated on a dataset captured at the authors’ university. The algorithm consists
of five steps: (i) preparation, (ii) alert mapping, (iii) aggregation, (iv) alert depen-
dency graph generation, and (v) search for related alert subsets. During preparation,
the required information including system and network information, alert classi-
fications and the AG for the network is loaded. In the prototype implementation,
MulVAL [OGA05] is used to generate the AG.

The remaining steps are then based on the formal model, that basically describes
how alerts are matched to specific steps in the AG. The authors define an AG as a set
of vertices and edges: 𝐴𝐺 = (𝑉, 𝐸). Each vertex is a tuple of 𝑣 = (𝑖𝑚, ℎ, 𝑟) where 𝑖𝑚
describes the impact, ℎ the host, and 𝑟 the referenced vulnerability of the vertex. Based
on that, a mapping function with different match modes Φ(𝑎, 𝑣) can be defined that
map alerts to vertices. The authors define five match modes that are later evaluated:
cvesrcdst, cvedst, cve, srcdst, and dst that each use different information from the
alert to perform the match. For the following steps, the model defines how alerts are
aggregated based on similarity and temporal closeness, how dependencies of alerts
are identified, and the strategy to search for related alert as part of scenario detection.

The authors evaluate their algorithm on a dataset captured at their university network
consisting of alerts in IntrusionDetectionMessage Exchange Format (IDMEF) [SEC22]

3.5. Alert Correlation 47

format generated by Snort [Cis22]. To obtain an attack trace, a dedicated subnet with
a Snort instance and vulnerable hosts was set up and subsequently attacked. The
obtained traces were then injected into the larger, clean trace of the whole university to
obtain a realistic dataset. The first experiment analyzes the impact of match modes on
alert filtering performance. The results indicate that the match modes that included
CVE information perform best with a filtering rate of 99.98% while srcdst and dst

achieve 95.78% and 95.58% respectively. In the second experiment the impact of the
temporal aggregation threshold is investigated. The results indicate that a threshold
of 60 seconds helps to aggregate 67.86% of alerts without loosing accuracy in the best
case.

The evaluation results indicate a good detection performance for the simulated multi-
step attack especially if CVE-based matching is used. However, R1: Accuracy is only
partially fulfilled as details of the multi-step attack are missing and results for the
other matching modes are less convincing. R2: Explainability is also partially met as
the correlation is based on AGs which offer some additional context although the
evaluation does not cover this and only measures the number of correctly correlated
alerts. R3: Low overhead is checked as the approach relies on low-overhead alert
properties only. R4: Scalability cannot be reliably assessed from the information
given as the authors only briefly mention an underlying platform based on “multi-
core hardware”. R5: Security and R6: Privacy cannot be evaluated from the data
in the publication. Lastly, R7: Deploy- & Maintainability is partially checked as the
approach relies on common alert data only that should be available in enterprise
settings. However, the requirement is not specifically measured or discussed.

Daneshgar and Abbaspour [FA16] present an approach for fuzzy online alert
clustering that is based on a causal relationship criterion represented by a correlation
strength matrix. The correlation of the continuous alert stream is handled via a fading
model compared to the usual sliding window-based approaches. This has the benefit
that window size does not have to be defined and alert can be correlated across larger
timespans as the lifetime of a pattern is dynamically derived from its activity. The
authors evaluate their approach on two well-known intrusion detection datasets:
DARPA2000 [MIT00] and ISCXIDS2012 [Shi+12].

The proposed alert correlation framework consists of two modules: the online incre-
mental fuzzy clustering module and the offline fuzzy frequent pattern mining module. The
first modules is responsible for clustering the online alert stream into fuzzy attack
events. For this it leverages the usual similarity features of source and destination
IP addresses as well as the correlation strength matrix, a data structure that stores
the relationships among alert types. The second module ingests the attack events
generated by the first module and applies fuzzy pattern mining, more specifically
an adaption of frequent inter transaction item set mining [Chi+11], to continuously
refine the matrix. This allows the approach to gradually adapt to environmental
changes. While the statistical analysis required to update the correlation strength
matrix is computationally intensive, the combination of online and offline processing
enables the overall framework to process the alert stream in real-time.

The authors evaluate their approach in three experiments: (i) the online module
processes the DARPA2000 [MIT00] dataset with an empty correlation strength matrix
to estimate the detection performance without any statistical knowledge (neither
predefined nor learned). Their results indicate that the both scenarios (LLDOS1.0 and

48 Chapter 3. Requirements and State of the Art

LLDOS2.0.2) are mostly clustered as attack events based on IP addresses and times-
tamps alone but miss a crucial attack step as the attacker uses IP spoofing as part of the
attack which causes the approach to not include the alert in the attack event. (ii) the
same scenarios from DARPA2000 are processed again with the initialized correlation
strength matrix that was learned from the first experiment. As expected, the detection
now improves and includes all relevant alerts as the statistical information obtained
in the first experiment informs the online clustering process through the matrix. (iii)
in the last experiment, the approach processes the ISCXIDS2012 dataset [Shi+12]
again in to passes. The results here are unclear, as they appear identical across both
runs, but the author mention the statistical information again improving the attack
event. Overall, the evaluation is decent but lacks details about the improvements
made through the correlation strengthmatrix and does not cover other relevant details
about the approach such as the fading function.

While the evaluation shows good results, it has three problems thus not fulfilling R1:
Accuracy: (i) it uses DARPA2000 for the first two experiments, an out of time dataset
that is no longer representative of contemporary attacks, (ii) the second experiment
using the new ISCXIDS2012 dataset assumes knowledge from the DARPA2000 exper-
iment in the correlation strength matrix, and (iii) the results for the newer dataset are
unclear with two identical tables that and conflicting results mentioned in the text. R2:
Explainability is partially met as the statistically learned data offers some context about
correlated attack events. R3: Low overhead is also partially checked as the approach
only relies on few alert features but requires potentially significant computations
in the pattern mining module. R4: Scalability, R5: Security, and R6: Privacy cannot
be assessed from the information available in the publication. Lastly, R7: Deploy- &
Maintainability is also partially fulfilled as the required alert information should be
already present in network-based alerts in enterprise environments and the approach
is designed in a modular fashion.

Graph-based Alert Correlation (GAC) [HF18; HF19] is an approach to reveal
multi-stage attacks in large seemingly unrelated alert sets. The process consists of
three consecutive phases: (i) alerts are clustered based on the connection tuples (IP
addresses and ports). (ii) during context supplementation the communication patterns
inside each cluster are identified and used to identify the potential scenario the cluster
represents. (iii) matching clusters are interconnected to reconstruct the underlying
multi-stage attack.

Graph-based Alert Correlation (GAC) leverages a variation of community clustering,
namely the clique percolation method (CPM) [DPV05], to cluster the alerts in the first
phase. For this algorithm, the choice of the clique size parameter 𝑘 is essential as it
defines the minimum size of a cluster. For GAC this could either mean, that small
clusters are found, which are too specific and contain only a part of the attack or too
broad clusters that contain alerts from multiple unrelated attacks. In the second step,
the communication patterns (One-to-One, One-to-Many, Many-to-One, and Many-
to-Many) are identified for each cluster and depending on which attributes from the
alerts overlap, a scenario label is assigned, e. g., worm, DDoS, etc. These labels help to
characterize the attack in the cluster and are also used to connect multiple attacks in
the last phase. Here the Jaccard distance is used to calculate overlap between attacker
and victims host sets to ultimately reveal a multi-stage attack.

The authors evaluate GAC in two ways: (i) synthetic datasets are used to separately
analyze the first two phases of GAC. With the available ground truth, the authors

3.5. Alert Correlation 49

Figure 3.5: Haas et al.: Four nodes generated for an alert in the CSG [HWF19]

systematically measure the performance of alert clustering and context supplementa-
tion in the presence of multiple overlapping attacks and false positives via a blurring
parameter 𝛽. The results indicate that 𝑘 should be chosen from the interval [24, 80] to
achieve best results in both alert filtering and attack isolation. Furthermore, GAC is
highly resilient against false positives when identifying the respective scenario of a
cluster and can maintain a TPR of 1 until the blurring parameter 𝛽 becomes larger
than 0.3. (ii) GAC is evaluated on real-world data obtained from DShield [SAN22]
without available ground truth. However, the results show that GAC retains high
confidence for a majority of cluster labels (higher than 0.9 on average). Combined
with the results from the synthetic evaluation, this indicates a near-complete TPR of 1.
Additionally, a subset of labels was investigated manually and confirmed.

Contrary to the good evaluation results R1: Accuracy is not met as the evaluation
is heavily based on large attack volumes that are not common in APT scenarios.
Furthermore, the evaluation of the scenario reconstruction based on the real-world
dataset is insufficient for our purposes as DShield does not offer APT datasets and
the hashed labels make complete reconstruction impossible. R2: Explainability is
also not fulfilled as the scenario reconstruction and multi-stage linkage offer very
limited context to the threat hunter, which is also too coarse-grained to aid detection
in APT scenarios. Due to the low resource usage for the approach itself and the
lightweight alert format that it requires (only connection tuples), R3: Low overhead
and R4: Scalability are fulfilled. R5: Security and R6: Privacy cannot be assessed from
the available data. Lastly, R7: Deploy- & Maintainability is partially fulfilled as the
required alert features (connection tuple) are available in enterprise contexts although
this was not specifically evaluated.

Haas et al. [HWF19] propose an alert correlation algorithm to find and identify
attack scenarios based on network motifs [Mil+02]. Alert clusters are transformed
into communication structure graphs (CSGs) from which fixed-size motif signatures
are calculated. These signatures are about 1% in size of the original alerts and can
thus be efficiently exchanged in a collaborative setting.

The approach consists of four steps: (i) alert clustering/correlation, (ii) graph gen-
eration from alert clusters, (iii) motif signature calculation, and (iv) motif signature
comparison. The first step is out of scope for this publication as related approaches
can be used. Instead, the authors focus on correlation of clustered alerts. The CSG
consists of four nodes for each alert. Figure 3.5 shows the four nodes that are generated
for a single alert that describes communication from source host 𝑆with source port
𝑇 to destination host 𝐷 and destination port 𝐿 as well as the edges between them.
After all alerts have been added and the CSG is finalized, its motif signature can be
calculated. This is done by enumerating all subgraphs of size 𝑛 of the CSG, deriving
the respective 𝑛-motifs for them, and counting the occurrences for all motifs. The
resulting fixed-size vector is then converted to a Z-score (c.f. [Mil+02]) to enable
comparison of multiple graphs independent of their absolute size. This Z-score is then

50 Chapter 3. Requirements and State of the Art

called the motif signature of the alert cluster. In the last step, these motif signatures
are compared to find similar clusters. The authors chose a similarity function that
interprets both signatures as vectors in a multidimensional space and uses the angle 𝜙
between them to be independent of the vector length. The resulting function, as given
in Equation (3.1) is used on conjunction with a threshold 𝜏 to decide if two signatures
(and the alert clusters they were generated from) belong to the same attack scenario.

𝑠𝑖𝑚 =
𝑐𝑜𝑠−1(𝜙)

𝜋
(3.1)

This similarity based on motif signatures can then be used for three use cases: (i)
signature-based classification, (ii) unsupervised clustering to dynamically learn new
attack scenarios, and (iii) derivation of reference scenarios from an attack cluster.
For signature-based classification the signature of an unknown cluster is compared
with references signatures from a representative scenario, e. g., worm or DDoS. If the
signatures match according to the similarity function, the cluster is labeled with the
scenario. To learn new scenarios, hierarchical clustering with the threshold 𝜏 can be
used to dynamically group similar clusters. The resulting clusters then represent new
attack scenarios with unknown labels. The last application scenario takes unknown
attack scenarios from the previous use case and derives a reference signature from
the cluster. This is achieved by selecting the signature that has the highest similarity
to all other signatures in the cluster.

The authors evaluate their approach on both synthetic alert sets and real-world alert
data from DShield [SAN22]. In the first experiment, the intra-class similarity (i. e., the
similarity between attack clusters from the same scenario) and inter-class similarity (i. e.,
the similarity between attack clusters from different scenarios) are used to evaluate if
the approach fulfills the core classification requirement. The results indicate that the
intra-class similarity consistently exceeds the inter-class similarity independently of
the number of hosts in the scenario. This suggests that the classification is sound for the
synthetic data. In the second experiment, the influence of 𝜏 on the number of learned
scenarios is examined. The authors predefine six core scenarios in this experiment and
show how 𝜏 impacts the accuracy of the hierarchical clustering. Next, the real-world
dataset from DShield is classified according to the six reference scenarios of which
signatures were obtained from synthetic data. The results indicate that 76%–96% of
attacks could be labeled with one reference scenario depending on the choice of 𝜏
with DDoS as the predominant attack scenario. The last experiment evaluates the
unsupervised learning of new scenarios from the remaining real-world data.

While the evaluation results indicate a good detection performance, the evaluated
scenarios like distributed denial of service (DDoS) and worm spreading are highly
untypical for APT campaigns and thus the obtained performance cannot be assumed
for their detection. R1: Accuracy is thus not checked. However, the additional context
through the motif signatures adds some value for the SOC analyst, especially as
the signatures can also be exchanged efficiently. As a result R2: Explainability is
partially fulfilled. Due to the lightweight nature of the signatures, R3: Low overhead
andR4: Scalability are fullymet, asmotif processing can also be distributed throughout
the network if required. R5: Security and R6: Privacy cannot be assessed from the
information in the publication. Lastly,R7: Deploy- &Maintainability is partially fulfilled

3.6. APT Stage Detection 51

Requirement Ro
sc
hk

e
et

al
.[

RC
M

11
]

D
an

es
hg

ar
/A

bb
as

po
ur

[F
A
16

]

G
A
C

[H
F1

8;
H
F1

9]

H
aa

se
ta

l.
[H

W
F1

9]

R1: Accuracy ○ ✗ ✗ ✗

R2: Explainability ○ ○ ✗ ○

R3: Low overhead ✓ ○ ✓ ✓

R4: Scalability ◌ ◌ ✓ ✓

R5: Security ◌ ◌ ◌ ◌

R6: Privacy ◌ ◌ ◌ ◌

R7: Deploy- & Maintainability ○ ○ ○ ○

Table 3.3: Requirement Comparison: Alert Correlation.
✓ ∶= fully met ○ ∶= partially met ✗ ∶= not met ◌ ∶= unknown/neutral

as the approach is designed to be deployed distributed in the network although this
was not explicitly evaluated.

Summary Table 3.3 gives an overview about the requirements fulfilled by the ap-
proaches for alert correlation discussed in this section. As the table shows, there is no
solution that checks all our requirements. More specifically, the statement from the
beginning of this section is reinforced as not a single approach manages to fully meet
R1: Accuracy—arguably the most important requirement. Similar with the anomaly
detection approaches discussed in Section 3.4.2, we also see a lack of focus on R5:
Security and R6: Privacy. One the positive side, we can see a partial focus on R3: Low
overhead and R4: Scalability which is helpful when running these approaches in large
enterprise settings as common in APT scenarios. Although the missing accuracy
makes it unfeasible to only rely on alert correlation approaches, they can still be
valuable as part of the overall APT detection pipeline to reduce alert volume by pre-
clustering alerts before further processing takes place. We also employ this technique
in our approach for APT campaign reconstruction based on Kill Chain State Machines
(KCSMs) that we describe in Section 5.3.

3.6 APT Stage Detection

This section discusses relevant approaches for APT stage detection, that aim to identify
malicious activity from single, selected APT stages as described in the established
kill chain models (see: Section 2.2). While research has shown that defense against
a single APT stage is not sufficient (as once potentially suggested in the original
IKC [HCA11]), reliable detection of single stages is still important as a layered defense-
in-depth strategy, e. g., by incorporating stage-specific alerts into higher-level detection
approaches such as APT campaign detection and reconstruction discussed in the next

52 Chapter 3. Requirements and State of the Art

section. Approaches in this taxonomy class are further structured into three subclasses
that match three selected APT stages that are recognized as highly important by
literature [Uss+16]: reconnaissance, command & control (C2), and lateral movement.
For detailed descriptions of these (and other) APT stages, we refer the reader to the
UKC [Pol21] as covered in Section 2.2.4.

3.6.1 Reconnaissance

Reconnaissance is usually the earliest APT stage that can be detected in the target
network. In this stage, attackers aim to obtain information about the target network
they can later use to breach it and achieve the initial compromise. While the stage
also contains steps completely outside of the target network such as research about
the target infrastructure from publicly available data sources, attacker might also
probe selected externally-accessible hosts to detect running software versions or other
valuable information. As such, such services (especially related to authentication) like
telnet, RDP, or SSH need to be monitored. This is also an active area of research with
proposals approaches to detect brute-forcing activity on such services, e. g., by Najad-
abadi et al. [Naj+15], Hynek et al. [Hyn+20] or Hossain el al. [Hos+20]. However,
these approaches usually aim to differentiate between failed login attempts or benign
users and systematic brute-force login attempts. As such they cannot be leveraged
directly for detection of APT reconnaissance activity. Javed and Paxson [JP13] define
their threat model as “stealthy, distributed” brute-force attacks. While this is similar to
tactics employed by APT adversaries, the authors also name failed logins of legitimate
users as the baseline. As such, these approaches are not further evaluated with regard
to our overall requirements that we formulated in Section 3.1. However, the informa-
tion contained in the login attempts is still valuable for reconnaissance detection and
can provide behavioral indicators that can help to categorize IP addresses. Owens and
Matthews [OM08] as well as Abdou et al. [ABvO16] both propose several features
and metrics for such characterization of brute-force login activity. We leverage these
metrics and two novel ones in our contribution for brute-force characterization that
we present in Section 4.2. The resulting clusters and metric results can be used to,
e. g., filter IP addresses that engage in automated high-volume scanning and focus on
the remaining login attempts.

Yamada et al. [Yam+15] describe an approach for real-time detection of remote
access trojan/remote administration tool (RAT)-based APT reconnaissance activity in
internal networks. This is highly relevant as APTs often leverage legitimate remote
administration tools once a network zone has been breached. While the authors define
this as reconnaissance, other models such as the UKC [Pol21] describe such activity
as pivoting. The approach analyzes a limited set of features of the communication
such as duration of the connection or presence of encryption to distinguish between
legitimate user traffic and malicious reconnaissance.

Before the approach is proposed, the authors discuss behavior of both malicious RAT
tools and SMB-based remote administration tools like PsExec. This results in a set
of five features for RAT and a sequence of three actions for SMB-based tools that
are identified to indicate malicious activity. Additionally, the publication discusses a
combined attack that leverages RAT for probing and access from the Internet to an
internal host and a SMB-based tool to move inside the target network as common
with APTs. Unfortunately, the detection approach is only discussed briefly and not
described in great detail.

3.6. APT Stage Detection 53

The authors evaluate a prototype implementation of their approach in two ways: (i)
they execute each discussed RAT in combination with one of four SMB-based remote
management tools. The results indicate that the approach is able to detect 99.29% of
the possible combinations only missing a single one. (ii) the prototype is deployed
in an internal network of an unnamed organization where it records and analyzes
50–60 million TCP connections over a 22-hour period. The results indicate that the
approach is robust against false positives in real-world settings as none are recorded
during this experiment. Overall, the evaluation shows promising results. However,
the scope and lack of detail in the description of the experiments leaves some doubts
about the approach’s effectiveness.

Given the limited evaluation, especially the lack of detailed description of the first
experiment, R1: Accuracy is not fulfilled. R2: Explainability is marked as partially met,
as the set of features is limited and thus should allow the SOC analyst to obtain some
context about detected incidents. Due to missing information in the evaluation, the
requirements R3: Low overhead, R4: Scalability, R5: Security, and R6: Privacy cannot
be assessed. Lastly, R7: Deploy- & Maintainability is partially checked as the sensor is
network-based and seem to not require complicated deployments.

Haas et al. [HWF20] describe a correlation algorithm for distributed port scan
campaigns based on ten key features that describe both attacker intention and the
tools used to perform the scan. These features include typical connection attributes
such as source and destination ports and IP version as well as per-IP statistics such as
number of target hosts, attempts per host/port combination or geolocation data of the
source IP address, among others. The authors also give a similarity definition for each
feature ranging from 0 (no match) to 1 (exact match).

The correlation algorithm first calculates the features for every IP that has been ob-
served in any incoming connection to obtain a feature-based fingerprint. Next, a
weighted average over the similarity of the features is used to determine if two scanning
IP addresses are colluding in a joint scan campaign. To find these collaborative scan-
ners in large alert sets, the approach uses unweighted pair group method with arithmetic
mean (UP-GMA) [SS62], a variant of hierarchical clustering. This has the advantage
that the number of clusters does not need to be known in advance and themost similar
scan attempts are clustered first as the algorithm operates in a bottom-up manner. To
adapt to different scenarios, the algorithm is configurable by three core parameters:
(i) the number of ports 𝑋 that are considered few and not many, (ii) the minimum
number of scan probes an IP address must perform before it is considered part of a
larger campaign 𝜖, and (iii) the similarity threshold for clustering t.

The authors evaluate their scan correlation algorithm on a dataset captured by the
MAWILab project [Fon+10]. More specifically, the trace file consists of IP, and
TCP/UDP headers with randomized last bytes in all IP addresses from a 15-minute
window captured by MAWILab on 2019-05-05. While this is the only dataset used
for evaluation, the authors simulate smaller networks by filtering traffic by subnet to
reduce visibility. The resulting scenarios are Internet backbone (baseline/all traffic),
Internet Service Provider (netmask 133.242.0.0/16), and enterprise network (netmask
133.242.179.0/24). For traffic analysis the Zeek NMS [Pax99] is used as it can detect in-
complete TCP handshakes that are most likely the result of a port scan. The evaluation
is split into two parts: (i) a parameter study is conducted to determine their optimal
values for the dataset. The authors arrive at 𝑋 = 10, 0 < 𝜖 < 10 and 𝑡 = 0.15, although
the justification is based on limited observations. (ii) The campaigns obtained by the

54 Chapter 3. Requirements and State of the Art

approach are evaluated on an exemplary basis. Out of 1955 total detected campaigns
from the dataset, the authors analyze two in greater detail across the three scenario
visibility levels. Their results indicate that large parts of the features stay stable across
the scenarios and thus allow a solid clustering even with restricted visibility. While
the absolute numbers of target hosts vary (due to the scans not being limited to the
respective visibility level), key characteristics like the choice of source ports remain
stable. Overall, the approach seems to provide some good indicators of colluding
scanner activity, although the improvement over some previous work is not always
clearly visible.

The presented results are promising but somewhat limited and thus R1: Accuracy is
partially fulfilled. The same is true for R2: Explainability as the correlation does help
to find potential collusion but offers limited additional context about the detected
clusters. R3: Low overhead is also partially met as the required data can be captured on
network-level without much overhead on the endhosts, although overhead for the
approach itself is not measured. The requirements R4: Scalability, and R5: Security
cannot be assessed based on the data in the publication. R6: Privacy is partially met,
as the required data for the approach is limited but not explicit privacy considerations
are included. Similarly, R7: Deploy- & Maintainability is checked as the needed data
can be easily captured on network-level.

3.6.2 Command & Control

Command & control (C2/C&C) is another important stage in APT campaigns as it
solidifies the attackers’ foothold in the network by establishing outbound connections
to servers under their control. This allows attackers to obtain access to the compro-
mised machines (e. g., via tunneled or reverse shells) and thus to expand their reach
by subsequently compromising additional machines. As enterprise environments
are usually tightly controlled, attacker leverage common application protocols like
HTTP/HTTPS to perform C2/C&C communication as exotic or custom protocols are
highly likely to get filtered at the network edge. As a result, most approaches in this
section also focus on detecting C2/C&C communication based on HTTP/HTTPS.

DUMONT [SR11] aims to detect covert outbound HTTP communication by learn-
ing profiles of normal HTTPS requests of users of the monitored network. By deriving
the profile from both structure and content of the outbound connections, DUMONT
detects anomalies from the normality model and tags them as tunnels or other covert
channels.

The approach is based on seventeen features that can be categorized in four seman-
tic groups: length features, structural features, entropy features, and temporal features.
DUMONT then uses a One-Class support vector machine (SVM) with Gaussian ker-
nels [Mül+01] to learn a model of normality for the different features extracted from
HTTP requests. The individual detectors for the separate features are combined in
hierarchical layers to enable cross-feature detection of anomalous requests that are
deemed normal in single-feature detection but exhibit anomalous patterns across
multiple features. DUMONT’s training process consists of two core steps: (i) during
model selection two core hyperparameters (the width of the Gaussian kernel and the
“softness” of the One-class SVM) are optimized for each feature detector. The selection
process is driven by the FPR as well as the number of support vectors in the respective
model. (ii) in the automatic calibration phase, the model of each detector is further
improved by selecting an optimal soft margin radius of the SVM. This process favors a

3.6. APT Stage Detection 55

low FPR over a high detection rate as false positives of the individual detectors accrue
across the hierarchical detection layers.

The authors evaluate DUMONT on two datasets: (i) a benign dataset obtained via an
opt-in HTTP proxy server at their institute. This dataset consists of 182 996 requests
from six different users across 90 days of capture. (ii) a malicious dataset obtained
from executing 2 765 malicious executables and PDF documents as well as two open-
source tools to establish covert communication that were executed in a controlled
environment resembling a typical enterprise environment. This dataset includes
12 899 HTTP requests across 695 sessions.

These two datasets are used to evaluate the detection performance of DUMONT in
isolation and in comparison with Webtab [BP04], an approach that aims to detect
covert communication via filters, trained rules, and thresholds. The results indicate
that DUMONT is able to reliably detect covert communication via HTTP with (av-
erage) TPRs between 89.3% and 100% depending on the class of malicious traffic
(tunnels, web backdoors, and malware) while also maintaining an (average) FPR
of 0.35%. Additionally, the authors show that DUMONT is largely resistant to user
agents masquerading (a technique often employed by malware to evade detection).
DUMONT’s (average) TPR drops only slightly from 89.3% to 82.0% while Webtab’s
TPR drastically decreases from 100% to 3.7%.

Given the good results especially in the presence of masquerading, R1: Accuracy is
met. However, as the underlying model is opaque and only tags anomalies without
additional context, R2: Explainability is not fulfilled. R3: Low overhead is partially
checked, as the system operates on HTTP data that can be captured without imposing
a lot of overhead on the hosts. However, no explicit measurements were taken for the
calculation. Which leaves R4: Scalability as unknown. R5: Security and R6: Privacy
cannot be assessed from the given information. Lastly, R7: Deploy- & Maintainability is
marked as partially fulfilled as HTTP capture can usually be facilitated in enterprise
context without much additional work.

DECANTeR [Bor+17] is an approach to passively fingerprint applications that com-
municate via the HTTP protocol. These fingerprints are then used to detect unknown
malware, backdoor/C2/C&C communication or data exfiltration. To address the
problems of incomplete datasets and changing host configurations, the approach is
able to adapt the learned fingerprints over time.

As typical with learning-based approaches, DECANTeR runs in two different modes:
training (to passively learn application fingerprints) and testing (to detect anomalous
fingerprints). The training phase consists of two steps: (i) during labeling HTTP
requests are clustered according to their User-Agent field. This is done to efficiently
identify benign applications that use this header to identify themselves. Next, these
clusters are labeled either background (communication not directly influenced by user
input that is often highly predictable) and browser (unpredictable communication
from interactive user input). This labeling is achieved by a novel algorithm to generate
a Referrer Graph to effectively reconstruct the standard browser behavior of cascading
HTTP requests from dynamic web content. (ii) during fingerprint generation the
previously established clusters are tagged with a fingerprint based on a selection of
features out of six total features (Host, Constant Header Fields, Average Size, User Agent,
Language, and Outgoing Information). After the training phase is finished, DECANTeR

56 Chapter 3. Requirements and State of the Art

has learned a set of fingerprints of benign applications running on the host in the
monitored time span.

In testing mode, DECANTeR continues to generate fingerprints as in training but also
adds a detection step to identify anomalous fingerprints. This is done by computing
similarities between the newly found fingerprints 𝐹𝑡𝑒𝑠𝑡 and the known fingerprints
from training 𝐹𝑡𝑟𝑎𝑖𝑛. If any new fingerprint is distinct from 𝐹𝑡𝑟𝑎𝑖𝑛 DECANTeR estimates
if the new fingerprint is the result of a software update to update the knowledge
base. If this is not the case, the approach raises an alert if the new fingerprint either
resembles a browser user agent (as this is common malware behavior) or contains an
amount ofOutgoing Information is above a configured threshold 𝜎 (which may indicate
a data exfiltration attempt). The authors evaluate DECANTeR on four datasets that
represent different use cases: (i) a user dataset (UD) obtained by capturing HTTP
traffic of university researchers during working hours, (ii) an organization dataset (OD)
comprised of outgoing HTTP traffic of a large international organization captured via
Zeek [Pax99], (iii) a dataset based on communication generated by Data Exfiltration
Malware (DEM) samples that were analyzed using Cuckoo Sandbox [Cuc22], and
(iv) a ransomware (RAN) dataset consisting of 287 pcaps from ShieldFS [Con+16] that
contain communication from ransomware samples that produced at least 100 bytes of
HTTP traffic.

At the start of the evaluation the authors briefly discuss the trade-offs when choosing
the two configuration parameters of DECANTeR: the trigger threshold 𝜎 and the
aggregation time during testing t. Based on the UD dataset, the authors describe
how both parameters influence FPR and response time and set 𝑡 = 10minutes and
𝜎 = 1000 bytes for the following experiments. The evaluation of the detection perfor-
mance on the UD, RAN, and DEM datasets shows satisfactory results with regard
to both TPR (76–88%) and FPR (0–2%) respectively. Additionally, a comparison
with DUMONT [SR11] revealed that DECANTeR consistently outperforms it on a
per-request basis (instead of DECANTeR’s regular per-fingerprint mode) for UD,
RAN, and DEM. A discussion of the obtained results from the OD dataset, potential
evasion techniques, future improvement opportunities, and DECANTeR capabilities to
detect data exfiltration attempts concludes the paper.

R1: Accuracy is fulfilled based on the good results (especially compared to DU-
MONT [SR11]). Additionally, DECANTeR is also usable to detect data exfiltration
further improving it’s usefulness. However, as the system also does not directly offer
additional context about the detected anomalies, R2: Explainability is not met similarly
to DUMONT. R3: Low overhead is partially met as the approach is also based on HTTP
fingerprinting (thus incurring low overhead on hosts) but no explicit experiments
have been conducted in this direction. R4: Scalability, R5: Security, and R6: Privacy
cannot be assessed from the given information. Lastly, R7: Deploy- & Maintainability
is partially checked due to the availability of HTTP data in enterprise scenarios.

Hawk-Eye [AM21] is an approach to extract and detect APT C2/C&C domains
from pcap files. The classification is done via a random forest that uses semantic,
contextual, and hybrid features of domain names and associated data such as WHOIS
and NS. The authors selected those features based on an extensive literature study
spanning 63 APT campaigns of the last 13 years.

The result of this study is a three-phase APT model that focuses on C2/C&C channel
establishment and usage throughout the campaign. In the first phase, prepare C2/C&C

3.6. APT Stage Detection 57

infrastructure, the adversaries set up a complex network of domains and fall-back op-
tions depending on the strategic properties of the target such as geographical location
or used services. Domain names and associated nameservers are then chosen that
could belong to the target and thus be overlooked by SOC analysts, e. g., by typosquat-
ting trusted domains (0ffice.com instead of office.com). The second phase, prepare
attack vectors, describes activities that happen between C2/C&C establishment and
usage, e. g., reconnaissance, weaponization, delivery, and exploitation, among others.
The authors consider domains used exclusivity as part of this phase out of scope.
In the third and final phase, attack management, the adversaries have partial control
about the target network and carry out further actions. This phase effectively spans
from first usage of the C2/C&C infrastructure to campaign end and thus can cover
large timeframes. The authors observed key findings such as frequently changing IP
addresses in the DNS A records, IP address reuse across or even in the same campaign
and abuse of TXT records for data exfiltration or command distribution.

Based on the proposed model and underlying information extracted from literature,
the authors compile a list of 70 metrics in total across three categories: (i) semantic
features describe the properties of the fully-qualified domain name (FQDN) itself such
as typosquatting/TLD squatting or usage of technical words to confuse analysts. This
includes character features like number of vowels or consonants, the ratio between
vowels and consonants, or simply the length of the FQDN and lexical features based
on the tokenized words in the FQDN. (ii) contextual features describe the underlying
DNS infrastructure that host themalicious domains. This includes feature like domain
suffix, domain age, and registrar or nameserver reputation. (iii) hybrid features describe
semantic features of additional entities (mainly domains and FQDNs) that were
retrieved for the analysis of contextual features such as registrar or nameserver. In
other words, the features from the first category are applied to entities queried in
the second category. While 20 of these metrics have been used in previous work to
identify malicious domain names, the remaining 50 metrics are newly proposed in
this paper (mainly from the hybrid category).

Hawk-Eye consists of four modules: (i) the parser module extracts FQDNs from the
DNS queries of a given pcap file and segments them into host, entity level domain,
and suffix. These segments are then used to calculate semantic features and passed
on further information retrieval. (ii) the crawler module obtains additional data such
WHOIS and nameserver information as required for contextual and hybrid features
and calculates them. To support past campaigns, Hawk-Eye is able to query both live
information and historical data obtained from SecurityTrail’s API [Sec22]. (iii) the
preprocessor module normalizes the calculated metrics and encodes them for the ML-
based classifier. (iv) the classifier module labels each FQDN based on the calculated
features. While Hawk-Eye conceptually supports multiple types of classifiers, the
authors chose a random forest.

Hawk-Eye is evaluated on a newly designed dataset [AM20] that consists of FQDNs
from the analyzed APT campaigns as well as legitimate domains from Alexa and
phishing FQDNs from PhishTank [Gro22]. The authors build three configurations
of the dataset: HEAL (Hawk-Eye APT and Legitimate), HEAP (Hawk-Eye APT and
Phishing), and HEALP (Hawk-Eye APT, Legitimate and Phishing). Additionally, two
feature sets to use with Hawk-Eye are defined: holistic, that includes all 70 metrics as
well as a literature baseline for comparison consisting of 20 features previously proposed
in related work.

58 Chapter 3. Requirements and State of the Art

The authors evaluate Hawk-Eye in two main dimensions: detection performance and
feature importance. Hawk-Eye is executed in the two feature configurations across
all three dataset configurations. The results indicate a strong detection performance
for the holistic feature set across all three dataset configurations with F1 scores of
98.53% (HEAL), 88.66% (HEAP), and 98.39% (HEALP) respectively. The biggest
improvement over the literature baseline is obtained for the HEAP configuration
where the baseline only reached 79.34%. The evaluation of the feature importance
shows that the most important feature for most classification decisions is domain age
(a feature that is already established for detection of malicious domains). However,
several other features in the ten key features are newly proposed, thus explaining the
improved performance for the holistic feature set. A discussion about details of the
training and testing process as well as current limitations of the prototype rounds
out the evaluation section. Overall, Hawk-Eye shows promising results for use cases
in real-time APT C2/C&C detection and forensic work and the evaluation results
support the proposed holistic feature set.

Due to the good results across all three configurations R1: Accuracy is checked. R2:
Explainability is not fulfilled as the opaque model offers no context for the detected
anomalies. As the system focuses on pcap files, which are relatively simple to capture,
R3: Low overhead is partially met. R4: Scalability, R5: Security, and R6: Privacy cannot be
assessed from the given information. Lastly, R7: Deploy- & Maintainability is fulfilled
due to the simplicity of pcap capture in enterprise networks.

3.6.3 Lateral Movement

Lateral movement is another important stage of APT campaigns as it describes the
compromise of additional machines. Every newly infected machine thus increases
the attackers’ foothold in the network and potentially grants access to new network
resources like databases or CPSs. Detection of lateral movement is difficult as attack-
ers usually leverage legitimate tooling like PsExec (in Windows-based networks) or
SSH (in Unix-based networks). This has two key advantages as (i) no additional
executables need to be delivered to the compromised machines and (ii) the resulting
network traffic is less likely to be noticed as it blends in with legitimate traffic.

CloudSEC [Tia+19] is an approach to detect lateral movement in cloud or edge
computing scenarios in real-time via evidence reasoning networks (ERNs) that are
based on system vulnerabilities and environmental information. The resulting evi-
dence chain helps the cloud operator to estimate the impact of the attack and supports
mitigation.

CloudSEC consists of two components: the EventTracker and the AlertCorrelator. The
EventTracker is deployed inside each VM or container running on the edge cloud
host machine. One instance of the AlertCorrelator is deployed inside each cloud
environment and correlates alerts generated by network-based IDSs in it. Both com-
ponents feed information to the ERN instance for the respective cloud environment.
Additionally, the authors describe a central management unit, which is used for
information exchange and for evaluation. The ERN describes vulnerability correla-
tions of one network and is a directed graph 𝐺 described by the following five-tuple:
𝐺 = {𝑁, 𝐸, 𝐿,𝑊,𝐷}, where

• 𝑁 is a set of vertices that describe vulnerability information;
• 𝐸 is a set of edges that connect correlated vulnerability vertices;

3.6. APT Stage Detection 59

• 𝐿 is a set of logical expressions that describe the relationships expressed by the
edges 𝑒 ∈ 𝐸 as either AND or OR;

• 𝑊 is a set of risk weights for each vulnerability vertex 𝑛 ∈ 𝑁 describing the
likelihood this vulnerability is successfully exploited; and

• 𝐷 is a set of data structures associated to each vulnerability vertex 𝑛 ∈ 𝑁 includ-
ing evidence storage and pointers to parent vertices.

𝐺 is generated from the topology of the target network, its vulnerabilities (which can
be detected by tools such as nmap [Ln22] or Nessus [Ten22]) and the predetermined
set of risk weights𝑊. The publication further illustrates this process with an example
network.

The ERN can now be used for evidence chain reasoning. Given a list of evidence
from an attack in the network, each piece of evidence can be mapped to a vertex
in the ERN based on the vulnerability used and other auxiliary data such as the
timestamp. After all evidence has been mapped, a breadth-first search (BFS) is
executed to trace the path through the graph that represents the attack chain that
generated the evidence. In addition to the regular evidence chain reasoning process,
the authors also propose a timing-independent evidence chain reasoning method to
account for incorrectly timestamped evidence.

The authors evaluate CloudSEC in two experiments using the DARPA2000 [MIT00]
and Treasure Hunt [UC 04] datasets. In the first experiment, evidence chains were
generated for the LLDOS1.0 and LLDOS2.0.2 campaigns from DARPA2000. For
LLDOS1.0 all malicious events were captured, resulting in a confidence of 1.0. The
evidence chain also matches the descriptions provided by the creators of the dataset.
For LLDOS2.0.2 some events were missed by the sensor, thus reducing the confidence
to 0.86. However, the chain was successfully reconstructed for the remaining events.
The second experiment uses the Treasure Hunt dataset [UC 04] which was generated
in a network with three subnets at UC Santa Barbara. According to the authors, the
dataset is similar to edge cloud environments as there are amultitude of attacks present
in the dataset. Here CloudSEC generated two evidence chains with confidences of
0.92 and 0.33, respectively. A brief performance evaluation indicates that CloudSEC
is capable of real-time analysis.

While the obtained results indicate good performance, they have been generated from
comparatively old datasets, thus only partially fulfilling R1: Accuracy. The ERNs
offer some context about the detected activity but fail to concisely summarize the
details. This leaves R2: Explainability also partially checked. R3: Low overhead and
R4: Scalability are also both marked as partially met due to the brief performance
evaluation that indicates overall low resource usage of the approach. R5: Security and
R6: Privacy cannot be assessed from the available data in the publication. Lastly, R7:
Deploy- & Maintainability is not met, as the EventTracker needs to be present on each
host/VM significantly hindering simple enterprise deployments.

Amin et al. [Ami+21] leverage hidden Markov models (HMMs) to predict lateral
movement and use the predictions to deploy decoy nodes to hinder the attacker’s
progress. If the attacker does not follow the predicted path, the approach suggests
partially observable Monte-Carlo planning (POMCP) as a second layer of defense to
assess available mitigation strategies.

The approach works in three stages: (i) HMM parameters are trained offline based on
observations of past lateral movement attacks, that were detected prior (e. g., bymeans

60 Chapter 3. Requirements and State of the Art

of employing an IDS) and a CVE database with information about vulnerabilities. (ii)
during online detection, an IDS generates alerts that are post-processed via an alert
correlation module. These correlated alerts are then fed to the HMM prediction module
to predict likely attack paths and attack probabilities based on Bayesian attack graphs
(BAGs). (iii) once a lateral movement attack is detected and an attack path has been
predicted, decoy modules are deployed and a defense policy assessment module aid the
defender in luring the attacker towards the decoy nodes.

The HMM parameters are trained via the Baum-Welch method based on historical
alert observation from lateral movement attacks. The algorithm starts with initializing
the HMM parameters (𝐴, 𝐵,Π) randomly. Next, the probability of transitioning from
state 𝑖 to state 𝑗 at time 𝑡 as well as the marginal probability over state 𝑗 is calculated.
Last, these two values are used to compute the converging and thus locally maximized
HMMparameters. During online detection, alerts are first deduplicated and correlated
to obtain attack chains via depth-first search (DFS). This alert log is then passed to the
prediction unit which uses the trained HMM parameters as well as a preconfigured
BAG to capture success probability of exploits. This BAG needs to be predefined by
an administrator or another security professional. The module then calculates the
attacker’s most likely next step based on the information available.

The defense assignment aims to solve two core defender goals: (i) it quantifies the
security state and attacker’s progression through the network and (ii) it recommends
the optimal defense action based on the current state and the defender’s capabilities.
The security state is modeled as an exploit dependency graph that contains the set
of security conditions as well as the set of exploits and their pre- and postconditions.
Additionally, a belief matrix is employed to represent the defender’s partial knowl-
edge about the security state and the attacker type. The defense algorithm based on
POMCP [SV10] simulates available mitigation actions based on the current security
state and an estimation of the attacker’s options to recommend an optimal solution.

The authors evaluate their approach on two large-scale network simulations that
resulted in 100–110 million security state respectively. MulVAL [OGA05] is used to
generate the attack paths and ArcSight enterprise security manager (ESM) [Mic22] to
extract the attack sequence from an alert set. The results indicate that the approach is
able to generate a comparatively small set of likely online attacks paths that contains
the path the attacker took. Furthermore, decoy nodes were effectively used to deter
the attacker from the real goal and thus hinder the lateral movement.

The results obtained in the evaluation are mostly promising but slightly unclear to
correctly judge as no clear definition of accuracy or precision is given. R1: Accuracy is
thus marked as partially fulfilled. The forecast about potential next steps the attacker
might take can support SOC analysts thus checkingR2: Explainability. R3: Low overhead
was not a focus of this work and is thus left as unknown. To address runtime efficiency,
the authors mention offline precomputations of selected steps, but as not concrete
scalability experiments were performed, R4: Scalability is marked as partially met. R5:
Security and R6: Privacy cannot be assessed given the data in the publication. Lastly,
R7: Deploy- & Maintainability is not fulfilled as the required data is very detailed and
is non-trivial to obtain in enterprise contexts.

Summary Table 3.4 gives an overview about the requirements fulfilled by the ap-
proaches for detection of single APT stage discussed in this section. The table high-
lights, that there is no approach for either of the three selected APT stages, that

3.7. APT Campaign Detection and Reconstruction 61

Rec. C2 LM

Requirement Ya
m
ad

a
et

al
.[

Ya
m
+
15

]

H
aa

se
ta

l.
[H

W
F2

0]

D
U
M

O
N
T
[S

R1
1]

D
EC

A
N
Te

R
[B

or
+
17

]

H
aw

k-
Ey

e
[A

M
21

]

C
lo
ud

SE
C

[T
ia
+
19

]

A
m
in

et
al
.[

A
m
i+

21
]

R1: Accuracy ✗ ○ ✓ ✓ ✓ ○ ○

R2: Explainability ○ ○ ✗ ✗ ✗ ○ ✓

R3: Low overhead ◌ ○ ○ ○ ○ ○ ◌

R4: Scalability ◌ ◌ ◌ ◌ ◌ ○ ○

R5: Security ◌ ◌ ◌ ◌ ◌ ◌ ◌

R6: Privacy ◌ ○ ◌ ◌ ◌ ◌ ◌

R7: Deploy- & Maintainability ○ ✓ ○ ○ ✓ ✗ ○

Table 3.4: Requirement Comparison: APT Stage Detection.
✓ ∶= fully met ○ ∶= partially met ✗ ∶= not met ◌ ∶= unknown/neutral

checks all our requirements. Additionally, as established in Section 3.2, stage-specific
approaches alone are not sufficient to detect complete APT campaigns anyway. Fur-
thermore, the table shows three interesting facts to note: (i) only approaches aimed at
revealing C2/C&C communication are able to achieve R1: Accuracy but consistently
fail to meet R2: Explainability. This is a similar trend we also observed for alert-level
anomaly detection as discussed in Section 3.4.2. (ii) contributions in this section put
less focus on the performance characteristics as expressed by R3: Low overhead and
R4: Scalability. (iii) there is no approach aimed at detecting lateral movement that
fully checks R7: Deploy- & Maintainability, which is an important factor in enterprise
environments. To address the shortcomings in the area of lateral movement detec-
tion, we propose an approach to reconstruct attacker lateral movement based on a
generalized network model that we present in Section 5.1. Our proposal abstracts
from vulnerability and topology information, that is also commonly employed by the
approaches discussed here, into a formal graph-based model that we use to derive
attacker models and to reconstruct likely infected hosts from an incomplete alert set.
The abstraction helps with R7: Deploy- & Maintainability specifically as we abstract
from the concrete alerts and available system information.

3.7 APT Campaign Detection and Reconstruction

This section discusses relevant approaches for APT campaign detection and recon-
struction, i. e., approaches that aim to address the overall goals of this thesis. To
achieve this, data from all lower levels is leveraged to reconstruct the overall APT
campaign, e. g., by mapping alerts, alert clusters, and even events to a kill chain-
based model (see: Section 2.2). The added contextual information is essential for
SOC analysts & threat hunters and can be used for incident response and mitigation
measures.

62 Chapter 3. Requirements and State of the Art

Bhatt et al. [BYG14] propose a Hadoop-based framework to identify APT stages
and reconstruct the overall attack campaign based on semi-structured log files. The
framework consists of five modules: (i) The logging module collects logs from IDSs
(host- and network-based) as well as other security related logs and services such as
web and mail servers. (ii) The log managementmodule stores and preprocesses all logs
in the HDFS and makes them accessible via queries. (iii) The malware analysis module
investigates potential malware samples in a virtualized lab environment via code anal-
ysis or behavioral analysis. (iv) The intelligence module provides core functionalities
of log correlation, kill chain stage detection, and APT scenario reconstruction. (v) The
control module enables the administrators to configure and maintain the framework
by deploying new rulesets or testing hypotheses via the intelligence module.

The proposed architecture describes awell-organized framework to detect APT attacks,
however the description of some component is intentionally left out of scope (malware
analysis) while others are only briefly explained. This hinders the comparison with
the requirements established in Section 3.1. Additionally, the evaluation is shallow
and only contains a single simulated APT campaign without detailed description of
the simulated environment and the campaign itself.

R1: Accuracy cannot be assessed from the limited information given about the con-
ducted experiment. The campaign reconstruction based on the IKC [HCA11] is not
highly detailed but provides some useful context to SOC analysts. Thus, R2: Explain-
ability is partially met. As the proposed system is based on log files, which can usually
be obtained with limited overhead, R3: Low overhead is also partially fulfilled. R4:
Scalability is also partially checked as Hadoop can be extended with additional cluster
nodes, although this was not explicitly investigated in the publication. R5: Security
and R6: Privacy cannot be assessed from the given information. Lastly, R7: Deploy-
& Maintainability is partially met as the framework is divided into clearly separated
components (thus simplifying deployment) and ingests log files that are likely already
present in enterprise deployments.

HERCULE [Pei+16] is an approach to detect APT detection and scenario reconstruc-
tion based on log correlation. The authors model multi-stage intrusion detection as a
community discovery problem common in social network analysis. The implementation
correlates lightweight log entries per host on commodity hardware and discovers
so-called attack communities embedded in the graph structures. The paper mentions
six log sources that implementation is able to process (DNS, WFP connect, HTTP,
process create, object access, and authentication) and 20 features that are extracted
from them. The graph is built from log events as vertices while edges are added if
one of 29 rules matches the properties of two vertices, e. g., same destination port
or process name for both vertices. The resulting multidimensional graph is then
searched for community cliques that are marked as attack communities.

The authors evaluate HERCULE on sixteen APT scenarios that they derived from
previous reports and simulated on two victim and one attacker machine. While
the scenarios are diverse and well selected, the limitation to three machines raises
questions about the accuracy of the simulated attacks. This is especially important
for lateral movement that the authors also identified as a key stage. Nonetheless,
HERCULE shows decent results for accuracy and FPR for most simulated scenarios.

Due to these results, R1: Accuracy is marked as fulfilled. R2: Explainability is only
partially checked, as HERCULE helps to reconstruct the attack story but still requires

3.7. APT Campaign Detection and Reconstruction 63

significant human investigation as the authors also acknowledge. While the authors
include a section about “logging overhead”, the results are not sufficient to check
R3: Low overhead so it is marked as partially met. R4: Scalability cannot be assessed
as a no runtime performance evaluation is included. Similarly, R5: Security and R6:
Privacy can not be assessed from the data given in the publication. Lastly, R7: Deploy-
& Maintainability is partially fulfilled as the system processes lightweight log files that
are likely already present in enterprise context.

SLEUTH [Hos+17] is a tag- and policy-based approach to detect and reconstruct
complex attack campaigns (including APT scenarios) via provenance-based depen-
dency graphs. The overall process is divided into four steps: (i) The provenance data is
captured on the target systems. (ii) Platform-neutral dependency graphs are constructed
where vertices represent processes, files, sockets, and other kernel-level objects and
edges model audit events such as read, write, connect or bind. (iii) Attack detection
is performed based on tags and pre-defined policies. For SLEUTH tags are coarse-
grained labels that encode trustworthiness and sensitivity of the kernel objects. (iv)
For alerts detected in the previous step, tags are once again leveraged to perform
root-cause and impact analysis. The result are compact scenario graphs that describe the
attack visually and aid the threat hunter in their analysis.

The attack detection uses policies to initialize and propagate tags through the prove-
nance graph. Alerts are then raised if one of four core conditions aremet: (i) untrusted
code execution, (ii) modification by subjects with lower code trustworthiness tag,
(iii) confidential data leak, and (iv) preparation of untrusted data for execution. This
captures the expectation that attackers need to run untrusted code to compromise
a machine and aim to exfiltrate data at some point during the campaign. The final
bidirectional analysis aims to identify entry points and impacts of the attack and
reconstructs the potential scenario by pruning, merging, and filtering the provenance
graph.

The authors evaluate SLEUTH on eigth APT campaigns that were conducted by a
professional red team as part of an unspecified adversarial engagement of the DARPA
Transparent Computing program [DAR15]. From these campaigns, the approach
correctly identified 174 out of 176 total malicious entities and was able to largely
reconstruct the scenario graph. Additionally, the authors describe how custompolicies
can help to reduce false positives, e. g., for software update scenarios where untrusted
code is read and potentially executed.

The positive results obtained for both detection performance and scenario reconstruc-
tion indicate that R1: Accuracy and R2: Explainability are fulfilled. The low runtime
and memory use would check R3: Low overhead but as overhead on the capturing
machines was not investigated it is marked as partially fulfilled. This also applies
to R4: Scalability as the overhead is especially important when scaling the approach
to multiple monitored hosts. R5: Security and R6: Privacy are left as unknown and
cannot be further assessed from the data available. R7: Deploy- &Maintainability is not
fulfilled, as the reliable setup and maintenance of provenance-based systems remains
an open challenge for now.

HOLMES [Mil+19b] aims to detect ongoing APT campaigns via provenance anal-
ysis as they are happening and to provide high-level explanations of the different
actions as a graph. It achieves this by generating alerts for kernel-level events that
map to stages in the IKC [HCA11] and correlating them based on information flow

64 Chapter 3. Requirements and State of the Art

on provenance level to reconstruct the scenario. The resulting graphs are then pruned
and prioritized for manual analysis by a human threat hunter based on a threat score.
This score is assigned to each graph based on the APT stages it includes and their
severity rating in CVSS [For15]. Similar to previous work, HOLMES assumes a thread
model based on a TCB consisting of kernel mechanisms and the provenance capture
system. Additionally, the system is assumed to start in a benign state, such that any
attacks originate from outside the enterprise network.

To map low-level provenance activity to high-level kill chain stages, HOLMES uses
an intermediate layer based on TTPs from Mitre ATT&CK (see: Section 2.2.3). TTPs
are then defined as matches on the underlying directed provenance graph, the de-
pendencies between events, and other prerequisites that can include specific folder,
executable names, or other TTPs. Matched TTPs are then correlated to a High-level
Scenario Graph (HSG) that represents them as nodes while information flow and
causality relations are modeled as edges. Each HSG also carries a threat score that
reflects how likely the graph contains an actual APT campaign. The score is based
on subscores for all seven considered APT stages that are combined via a weighted
product with configurable weights allowing the analyst to prioritize certain stages
over others. Additionally, a detection engine computes the weighted sum of all HSGs
obtained from a provenance graph and raises an alert if a threshold is surpassed.

The authors evaluate HOLMES on nine APT scenarios that were conducted as part
of the third adversarial engagement from the DARPA Transparent Computing pro-
gram [DAR18]. To measure the detection performance the threat score of benign and
attack graphs are compared. The highest score for benign graphs was 338 while the
lowest score of an attack graph was 608. This indicates that attacks were successfully
separated from benign operations. Additionally, the authors derive a recommendation
for the detection threshold based on F1 score. Finally, further experiments positively
rate HOLMES’ runtime performance and memory usage with experiments running
on a machine with moderate resources (150GB of RAM and an 8 core CPU at 2.5GHz).

R1: Accuracy and R2: Explainability are fulfilled as the threat score helps to accurately
identify attack graphs that additionally also describe the attack stages well visually.
While the evaluation showed low resource consumption for the detection and recon-
struction parts, overhead on the capturing machines was not measured. This leaves
R3: Low overhead and R4: Scalability as partially met. R5: Security and R6: Privacy are
left as unknown as they have not been evaluated in the publication. As HOLMES
also relies on provenance data and does not improve the deployment story of reliable
capture, R7: Deploy- & Maintainability is also marked as not fulfilled.

NoDoze [Has+19] is an approach to rank provenance-based alerts by propagating
anomaly scores throughout the corresponding dependency graphs based on historical
context. Human analysts can then leverage the aggregated scores to better triage alerts
for investigation. Additionally, NoDoze addresses the problem of graph explosion by
using behavioral execution partitioning to reduce the size of the graphs to analyze while
keeping causal dependencies of anomalous events.

The approach is deployed additionally to an existing provenance-based IDS and adds
additional context to already generated alerts. The process is divided into four steps:
(i) NoDoze assigns an anomaly score to all events in the dependency graph of newly
detected alerts. This is based on historical frequencies of similar events occurring
on all monitored hosts. (ii) the previously assigned anomaly scores are propagated

3.7. APT Campaign Detection and Reconstruction 65

and aggregated along the graph via a novel network diffusion algorithm. This step
simplifies the identification of related events later on. (iii) the dependency graph is
assigned an aggregate anomaly score that can be used to triage the corresponding
alert. (iv) NoDoze extracts the subgraph with the highest anomaly score from the
dependency graph. Due to the propagation in step two, the extracted graph contains
the most anomalous sequence of events that are highly likely to have caused the alert in
question.

The authors evaluate NoDoze on a real-world dataset containing provenance data of
191 hosts across 5 days collected at NEC Labs America. In this timeframe, ten APT
attacks as well as 40 malware samples were executed and a commercial IDS generated
364 total alerts. This dataset is then used to evaluate NoDoze in both its effectiveness
and accuracy as well as its runtime overhead. The results indicate that the approach
is able to reduce the size of the dependency graph by two orders of magnitude while
retaining nearly all edges of the malicious actions. In the worst case NoDoze achieves
88% TPR for control dependency and 84% data dependency, thus capturing large
parts of the attack scenario. Furthermore, the ranking based on aggregate anomaly
scores significantly improves triaging as true positives are ranked higher. Based on
estimations of 10–40 minutes for investigation of a single alert [Bro17; Cis18], the
authors estimate that the triaging saves roughly 90 employee-hours in their five-day
evaluation period. For their runtime evaluation the results indicate that NoDoze is
able to respond in less than 200 seconds for 95% of alerts including time consumed by
the underlying provenance tracker, this makes the approach feasible for near real-time
deployments.

The results obtained for detection performance and the graph examples produced
by NoDoze fulfill R1: Accuracy and R2: Explainability. The runtime evaluation shows
some promising results in regard to response time but does not address computational
and especially memory requirements directly, thus R3: Low overhead and R4: Scalability
are only partially met. The add-one character of NoDoze also partially checks R5:
Security as a failure or compromise of the system should not impact the remaining
detection infrastructure. R6: Privacy cannot be assessed from the data available in
the publication. Lastly, R7: Deploy- & Maintainability is not fulfilled as reliability and
maintenance of the provenance capture and IDS are not directly addressed.

POIROT [Mil+19a] is an approach to correlate provenance data with cyber threat
intelligence (CTI) to aid threat hunters in their search for APT activity. More con-
cretely, the authors formalize the threat hunting problem as a graph pattern matching
(GPM) problem of a query graph (i. e., a graph representation of a set of indicators of
compromise (IoCs) that belong to the same APT attack) in a (larger) provenance graph
from the monitored host. As the generalized GPM problem is NP-complete [DRT09],
POIROT leverages an approximation function as well as a novel similarity metric based
on (sub-)graph alignment to reduce the problem’s complexity.

The authors describe the process of transforming intelligence reports into labeled,
typed, and directed query graphs similar to the construction of provenance graphs.
Entities (e. g., processes, sockets, files…) are represented as nodes while relationships
between them (e. g., read, write, bind…) are modeled as directed edges between them.
Additionally, the reports are generalized, e. g., by replacing concrete executable or
file names by wildcards or substituting IP addresses with subnets or even just zones
like “internal” and “external”. For structured and semi-structured formats such as
STIX [OAS21], OpenIOC [Man13] and MISP [MIS22] this process can be automated

66 Chapter 3. Requirements and State of the Art

with some manual fine-tuning while reports in natural language have to be converted
by human analysts. With both graphs in place, POIROT tries to find subgraphs in the
provenance graph that resemble the generalized query graph. In addition to GPM
inherent complexity this is further complicated as a single edge in the query graph is
more high-level than one in the provenance graph and thus likely represents a path
in the provenance graph on its own. To address this, a novel graph pattern matching
technique based on subgraph alignment is used. Once a match is found, POIROT
calculates a similarity score between the query graph and the provenance subgraph
and further raises an alert if this score is higher than a configured threshold.

The authors evaluate POIROT in four experiments to analyze its effectiveness in
detecting real-world APT attacks. (i) provenance data of the third adversarial en-
gagement from the DARPA Transparent Computing program [DAR18] is used. For
the ten attacks that were investigated, the similarity scores vary between 0.54 and
1.00 (i. e., complete match of the query graph). This indicates that the approach
offers good detection performance if the query graphs are precise enough. (ii) the
authors select seven real-world incidents with publicly available threat descriptions in
natural language and reproduce the attacks by executing their binaries in a controlled
environment. The results indicate that POIROT is consistently able to find large parts
of the query graphs with similarity scores between 0.62 and 1.00 even for malware
mutations that were not part of the original threat reports. Three other analyzed tools
only detect superficial properties such as exact hash signature or file name matches
and, in some case, even fail to detect any malicious activity at all. (iii) the benign
dataset from [DAR18] is used to analyze the FPR of POIROT on benign data and the
optimal value for the threshold parameter. The results indicate that the approach
is largely resistant to false positives as the largest similarity score for benign data
is 0.16 and thus below the threshold of 0.33. (iv) the authors investigate runtime
performance and show that POIROT is capable of real-time processing with search
times below 1 minute and runtime overhead below 2%.

While the detection performance is evaluated well and shows promising results,
R1: Accuracy is only partially met as the approach heavily relies on precise threat
descriptions that are often unavailable a-priori for sophisticated APT attacks. R2:
Explainability is fulfilled as even partially matched query graphs offer valuable context
to SOC analysts and threat hunters. The runtime results and in particular the runtime
overhead fulfill R3: Low overhead and R4: Scalability. R5: Security and R6: Privacy
are marked as unknown and cannot be further assessed from the data available.
Comparable to the other provenance-based approaches, R7: Deploy- & Maintainability
is not checked as reliable and maintainable data capture is not addressed.

Summary Table 3.5 gives an overview about the requirements fulfilled by the ap-
proaches for APT campaign detection and reconstruction discussed in this section.
As the table shows, there is no solution that checks all our requirements. Additionally,
there are three things to note: (i) most approaches are able to fulfill R1: Accuracy and
R2: Explainability while also partially addressing runtime and scalability concerns
expressed by R3: Low overhead and R4: Scalability. Compared to anomaly detection-
based approaches (as discussed in Section 3.4.2) the added explainability is somewhat
expected as the campaign reconstruction offers significant context to SOC analysts.
(ii) R5: Security and R6: Privacy are never met (with one exception) similar as with
approaches from previous sections. (iii) R7: Deploy- & Maintainability remains an
open challenge for approaches based on (whole-)system provenance as in previous

3.8. Chapter Summary 67

Requirement Bh
at
te

ta
l.
[B

YG
14

]

H
ER

C
U
LE

[P
ei
+
16

]

SL
EU

TH
[H

os
+
17

]

H
O
LM

ES
[M

il+
19

b]

N
oD

oz
e
[H

as
+
19

]

PO
IR

O
T
[M

il+
19

a]

R1: Accuracy ◌ ✓ ✓ ✓ ✓ ○

R2: Explainability ○ ○ ✓ ✓ ✓ ✓

R3: Low overhead ○ ○ ○ ○ ○ ✓

R4: Scalability ○ ◌ ○ ○ ○ ✓

R5: Security ◌ ◌ ◌ ◌ ○ ◌

R6: Privacy ◌ ◌ ◌ ◌ ◌ ◌

R7: Deploy- & Maintainability ✓ ○ ✗ ✗ ✗ ✗

Table 3.5: Requirement Comparison: APT Campaign Detection and Reconstruction
✓ ∶= fully met ○ ∶= partially met ✗ ∶= not met ◌ ∶= unknown/neutral

sections. To address the need for campaign reconstruction concepts that are able to
both achieve high accuracy and remain simple to deploy & maintain, we developed
a reconstruction approach based on KCSMs that we describe in Section 5.3. It is
based on KCSMs that we derived from the UKC [Pol21] and does not rely on detailed
(and thus hard to capture) system provenance data. To simplify deployment and
integration with other tools in the detection stack, our approach is able to ingest alerts
that are pre-tagged with a specific APT stage (as generated by the systems presented
in Section 3.6) as well as untagged network-based alerts for which we generate stage
mappings based on network direction.

3.8 Chapter Summary

This chapter introduced key requirements for comprehensive APT detection as well
as a taxonomy of the research field. Literature from the five key areas of the taxonomy,
namely event-level monitoring, alert-level detection, alert correlation, APT stage detection,
and APT campaign detection and reconstructionwas classified according to the taxonomy
and compared with the proposed requirements. This evaluation highlighted that
most approaches do not fully meet our stated requirements for APT detection.

Event-level monitoring encompasses approaches to obtain low-level visibility into
both host- and network-activity. This visibility is the foundation for any higher-
level detection and usually defined by technical challenges instead of open research
questions. The presented approaches for (i) visibility into (TLS-)encrypted network
traffic and (ii) data provenance generation closely relate to the main contributions of
this thesis and were thus selected.

Alert-level detection approaches that aim to identify malicious behavior in the col-
lected events and to generate corresponding alerts that describe this activity. Both
signature- and policy-based detection are established concepts in this area, that are not
sufficient for APT detection when used in isolation and thus not covered in detail in
this thesis. Instead, relevant approaches based on anomaly detection were discussed

68 Chapter 3. Requirements and State of the Art

that specifically target APT activity. The comparison with our stated requirements
revealed missing approaches that combine both R1: Accuracy and R2: Explainability.

Alert correlation describes approaches that link and cluster related alerts according to
predefined rules or shared behavior. While this is useful to reduce overall alert volume
and to reveal connected alerts for high-volume attacks, APTs usually produce fewer
alerts thus limiting the effectiveness of traditional alert correlation. The comparison
with our stated requirements confirmed our hypothesis that alert correlation alone is
not sufficient to detect APT attacks as none of the discussed approaches fully checked
R1: Accuracy.

APT stage detection approaches target single (or a limited set) of APT stages to
maximize detection performance. The presented approaches were aimed at three
key stages: reconnaissance, C2/C&C, and lateral movement. While detection of
single stages alone is not sufficient to effectively mitigate APT campaigns, the high-
confidence alerts for single stages can help as part of larger reconstruction efforts. The
comparison with our stated requirements revealed that no approach achieves both
R1: Accuracy and R7: Deploy- & Maintainability.

APT campaign detection and reconstruction describes approaches that aim to detect
APT campaigns as a whole usually by correlating activity along a kill chain-based
model such as the UKC [Pol21]. The generally good detection performance is mostly
achieved by consuming large amounts of fine-grained system provenance data which
poses challenges in enterprise environments. Consequently, the comparison with our
stated requirements showed missing approaches that achieve both R1: Accuracy and
R7: Deploy- & Maintainability similar as for stage-based APT detection approaches.

In summary, this chapter showed that APT detection is a complex process that relies
on several different factors. Stage-specific approaches are too narrow to be used in
isolation, but can help to identify key stages as part of the larger campaign. Existing ap-
proaches for APT detection can offer decent performance but often lack explainability
(in the case of anomaly detection-based approaches) or require detailed provenance
data for campaign reconstruction, which is hard to reliably capture and process. Thus,
the following chapters of this thesis aim to advance the state-of-the-art for APT de-
tection. Chapter 4 presents two approaches from the area of security monitoring to
improve visibility on (i) the external threat landscape for brute-force login attempts
and (ii) payloads of TLS encrypted communication inside the network. Chapter 5
presents three approaches in the area of APT detection: (i) a stage-specific detection
algorithm for lateral movement primarily aimed at forensic scenarios, (ii) a campaign-
based reconstruction approach based on a notion of kill chain state machines and (iii)
a concept to restore explainability for blackbox APT detection approaches on graph
data.

69

4 Approaches for Enhanced Secu-
rity Monitoring

This chapter describes two main contributions that both aim to increase visibility
for network security monitoring, i. e., information about activity (both benign and
malicious) on network level. As briefly discussed in Section 3.2, this visibility on the
lowest level is essential to obtain signs of advanced persistent threat (APT) activity
in the first place. Higher-level detection approaches (as also proposed in the next
chapter) can then correlate and otherwise process this information to reveal hidden
interconnections. If approaches on this visibility level miss certain activity, it is “lost”
throughout the detection process. The first contribution has been published at IFIP
SEC 2022 [Wil+22] and received both Best Student Paper and Best Paper awards. It
describes an approach for transparent TLS decryption in enterprise environments that
leaves endhosts in control of the key material and thus allows for selective decryption.
The approach offers substantial improvements for both security of the network as well
as the privacy of users compared to the predominant approach of TLS interception
and is described in Section 4.1. The second contribution was published at IEEE CNS
2020 [WF20b] and describes a collection of metrics that can be used to characterize
and cluster brute-force login attempts. This way security operations center (SOC)
analysts can gain an overview about the external threat landscape through this attack
vector and obtain indicators to distinguish between “harmless” login attempts caused
by automated scans and potential APT reconnaissance activity. This approach is
described in Section 4.2. Both approaches improve security monitoring for increased
internal and external visibility which is the foundation for higher-level APT detection
and reconstruction algorithms, e. g., as presented in the next chapter.

4.1 Transparent TLS Decryption for Network Monitoring

This section presents an approach to restore access to cleartext communication pay-
loads for network monitoring systems (NMSs) in enterprise environments. Regaining
visibility into encrypted traffic of workstations is essential for APT detection as initial
infections often occur via these machines. Overall, this contribution aims to answer
research question RQ1 as introduced in Section 1.1:

RQ1 How can NMSs regain visibility into TLS-encrypted communication without actively
intercepting the connections on a central entity and breaking end-to-end guarantees?

We address this problem by deploying a daemon on all endhosts in the network that
cooperatively forwards TLS key material to the NMS such that it can passively decrypt
network traffic for further analysis. Compared to TLS-interceptingMan-in-the-Middle
(MitM) proxies, our approach lowers the threat surface and can conceptually enable
users to selectively retain privacy for some connections. This contribution is based
on preliminary work from a Master’s thesis [Sch20] supervised by the author of this

70 Chapter 4. Approaches for Enhanced Security Monitoring

thesis. Furthermore, this section shares material with the corresponding conference
publication [Wil+22] that revises and extends the approach developed in the Master’s
thesis.

4.1.1 Motivation and Objectives

Internet traffic is increasingly encrypted. Out of the 100 top non-Google websites
(which account for about 25% of worldwide traffic according to Google), 97 default to
HTTPS with the remaining three at least fully supporting it [Goo22]. This has tremen-
dous privacy and security benefits for users as their data is protected against unwanted
eavesdropping or modification by nosy ISPs, intelligence services, or cybercriminals.
However, encrypted network traffic is troublesome in enterprise environments as it
cannot be inspected by NMSs/intrusion detection systems (IDSs) anymore. As a
result, these systems have to fall back to metadata-only analysis that is usually not
sufficient to reveal indicators of APT activity. The predominant approach to address
this are TLS-intercepting proxy servers that effectively MitM any TLS connection leaving
the internal network. The proxies act as cryptographic endpoints of the connections
between clients and servers. As a consequence, the proxy gains access to the cleartext
payloads which can be forwarded to the existing detection systems to further analyze
them. However, this approach has several drawbacks as outlined in Section 3.3.1.

To address this problem, this contribution aims to achieve the following objective:
restore visibility into encrypted TLS traffic for a trustedNMS. In contrast to established
practices like TLS interception and approaches from literature [Nay+15; Nay+17;
Lee+19], the following functional requirements should be satisfied (in addition to the
overall requirements formulated in Section 3.1):

1. No interception: TLS is a well-designed protocol to ensure end-to-end data
confidentiality and integrity between two endpoints. Entities, that intercept
TLS connections represent new and unwanted attack vectors that may weaken
the security of the connection and break mutual authentication. Thus, a proper
solution should not intercept the TLS connection.

2. No protocol modification: TLS is deployed widespread across a wide variety
of devices and networks. Thus, changes on the protocol-level are unlikely to
gain enough traction for widespread adoption. To strive for real-world usage, a
solution should not require any changes to the existing TLS standards.

3. No additional latency: While security and network monitoring is an important
topic in any enterprise network, it should not deter the user experience by
introducing additional latency to the connection.

4. End-to-end data integrity: The NMS needs to break end-to-end confidentiality
between client and server to perform analysis tasks on the cleartext. However,
this process does not require integrity violation as application data only needs
to be read by the NMS. Thus, a good solution should maintain end-to-end data
integrity for inspected TLS connections if possible.

5. Support for selective decryption: Endpoints should be able selectively influence
which connections are allowed to be decrypted by the NMS to let the user retain
some privacy for sensitive or personal data. While high-security environments
might require inspection of all network traffic, there are also scenarios in which
complete visibility is not feasible, e. g., for legal or compliance reasons. A good
solution should support such scenarios by enabling fine-tuned configuration

4.1. Transparent TLS Decryption for Network Monitoring 71

Endpoint

NMS1

2

4

Web

1

2

4

Obtain TLS Keys on Endpoints

Filtering of Sensitive Connections

Passive TLS Decryption at NMS

TLS Stack

3
3 Transferring Keys to NMS

Figure 4.1: Overview: Passive TLS decryption via cooperative endpoints

about which connections are allowed to be decrypted and ideally enforce the
decision on a conceptual level.

6. Low maintenance effort: Security monitoring is an essential service in an enter-
prise network and as such should require low maintenance for regular opera-
tions. This is both relevant for client machines and any middleboxes deployed
in the network.

The remainder of the section is structured as follows: Section 4.1.2 gives a high-
level overview about our approach for transparent TLS decryption via cooperative
endhosts. Section 4.1.3 describes the four stages of our approach in more detail from
key collection on endhosts to actual TLS decryption on the NMS. In Section 4.1.4
we discuss conceptual advantages of our approach compared to the current state-of-
the-art and evaluate it on a dataset comprised of real-world web traffic including a
comparison with the requirements formulated in Section 3.1.

4.1.2 Approach Overview

Figure 4.1 gives an overview about the complete process and components involved.
First, the local daemon obtains TLS session keys. Second, it filters the key for sensitive
connections according to policy. Third, they transfer the keys to the NMS. Fourth,
the NMS matches the keys to connections and starts passive decryption and further
analysis. Steps 1–3 are executed directly on the endpoint and do not require direct
user interaction.

Keeping authority over keys on the endpoints and performing the decryption directly
at the NMS offers increased flexibility. (i) The endpoint can enforce policy-based
control about which connections are allowed to be decrypted by the NMS by with-
holding keys for sensitive connections. (ii) The NMS can opt to skip decryption
for performance reasons, e. g., for video conferencing or streaming content. Both
use-cases are not easily possible with current state-of-the-art MitM proxies. A concern
compared to enterprise MitM deployments might be that visibility might be lost if an
attacker should manage to disable the endpoint protection daemon thus disabling
key transfer and preventing decryption. However, such an incident would already be
detected and flagged even in legacy deployments, as the endpoint protection daemon
is already monitored for liveness.

72 Chapter 4. Approaches for Enhanced Security Monitoring

4.1.3 Approach Details

4.1.3.1 Obtain Key Material on Endhosts

In the first step, TLS keys need to be obtained from the client machines as they
represent the cryptographic endpoint. This is done in the context of the privileged
endpoint protection daemon that has access to the network stack. A typical TLS
connection, uses multiple secrets as well as session keys for different purposes. The
simplest solution would be to obtain the pre-master secret and forward it to the NMS
with the client random as the connection identifier. The NMS would then perform
key derivation as shown in Listing 2.1 and obtain all session keys (and initialization
vectors (IVs) if an AEAD cipher suite is used) to decrypt the encrypted application
data packets. However, this enables the NMS to derive all session keys including the
integrity keys. This would allow a compromised NMS to forge packets on behalf of
both endpoints and thus introduce an additional attack vector to the network. For
non-AEAD ciphers, we can mitigate this by only forwarding encryption keys to the
NMS and keeping the integrity keys used by the HMAC on the client. Unfortunately,
AEAD ciphers require both encryption keys and IVs to decrypt the data even if no
integrity checks need to be performed by the NMS. From now on, we use the term
keys synonymously with either just the encryption keys (if the cipher suite allows for
that) or encryption keys and associated IVs.

The keys can be obtained in multiple ways depending on operating system, cryp-
tographic library, and application. The simplest way is the SSL keylog interface
[MDN22] supported bywidely used cryptographic libraries such asOpenSSL [TYH22]
and NSS [NSS22]. If enabled, the libraries write TLS pre-master secrets and the cor-
responding client randoms to the file specified in an environment variable. While
this approach is easy to deploy, it might introduce some problems: (i) The logfile is
readable by the user, as the browser process is running with user permissions. (ii)
Writing secrets to a file and reading them in the aftermath via an application adds
additional latency. While this can be partially addressed by using a RAM disk, the
NMS might receive the keys too late and the first few packets of a TLS connection
cannot be decrypted.

The in-kernel Transport Layer Security (kTLS) interface [Wat16] offers another way
to obtain the desired keys. kTLS was introduced to the Linux kernel in version 4.13
and moves the TLS packet handling to kernel space. At the time of writing only a
limited subset of AEAD cipher suites is supported. To use it, an application opens
a regular socket and performs a normal TLS setup via key exchange and derivation.
Next, it configures the encryption key as well as IV for the socket via a setsockopt

system call. From that point on, regular send and receive operations can be used
with the kernel performing encryption and integrity checks. A process with elevated
permissions can monitor this system call for keys, extract them and forward them to
the NMS.

4.1.3.2 Client-side Filtering of Sensitive Connections

Once the keys have been obtained by the daemon on the endpoint, it has to decide
if the keys should be forwarded to the NMS to enable decryption of the associated
connection. This filtering process considers connections attributed like IP addresses,
hostnames and domains name to mark a connection as sensitive according to both
network and user policy. For sensitive connections, the daemon does not transfer the
keys to the NMS, forcing it to fall back to metadata-only analysis.

4.1. Transparent TLS Decryption for Network Monitoring 73

Overall the decision to mark connections as sensitive is governed by:

• Network policy: It establishes the baseline for which connections must be de-
crypted and thus which keys need to be always forwarded. This will oftentimes
be a “forward-by-default” policy, as the organization naturally wants as much
visibility as possible. However, there are cases where full visibility must not be
required, e. g., legal or compliance scenarios in which certain information is not
allowed to be decrypted. An example would be the healthcare-sector where
medical data is transferred through the network. Such scenarios require a more
sensible network policy, that enforces visibility for selected services only and
cannot use existing state-of-the-art MitM proxies that decrypt all TLS traffic.

• User policy: It compliments the network policy by allowing the user to opt-out
of decryption for selected services that are not covered by the network policy
already. The user policy can be implemented via a self-serve portal where
users can submit opt-out requests for certain domains (or in special cases IP
addresses/hostnames). After review the updated policy is installed on the
endpoint. Naturally, the user policy has to be sanctioned by security personnel
and thuswill likely not allow the user to retain privacy for all desired services. In
these cases the network policy would likely overrule the user choice. However,
the conceptual mechanism to include user choices itself already offers a large
advantage compared to MitM proxies that decrypt all communication without
any direct user involvement.

The concrete filtering process can be implemented via cryptographically signed policy
lists that are validated via a network internal public-key infrastructure (PKI). Each
connections’ attributes are matched to identifiers in the policy lists and marked ac-
cordingly. The daemon then transfers keys for non-sensitive connections to the NMS.
Validation failure of the list integrity implicates unauthorized modification and could
even be used as an additional indicator of compromise (IoC). In this case, the daemon
would fall back to forwarding all keys to the NMS to aid security personnel during
investigation of the incident.

Overall, we recognize that selective decryption is (i) not feasible in all scenarios (es-
pecially high-security environments) and (ii) may impose additional challenges on
security personnel. However, it first and foremost offers a choice to organizations
to support users in retaining some privacy which is not possible with the current
state-of-the-art. Moreover, we believe, that the improved user privacy can outweigh
the disadvantages in many scenarios or even enable the use of NMS in certain sce-
narios that have previously not been possible because of legal or compliance reasons,
e. g., medical institutions. Finally, especially in times of increasing home-office work,
the lines between private and work activity are blurred and often crossed. In such
cases, users have legitimate reasons to conceal certain private connections from the
organization’s NMS which is enabled by our approach.

4.1.3.3 Transferring Keys to the NMS

After the filtering process is completed or skipped, the keymaterial is forwarded to the
NMS. The actual transmission method used is dependent on the NMS in question and
conceptually trivial. However, the transport channel should be chosen carefully, as the
key material is highly sensitive. Mutually authenticated TLS connections also based
on the internal PKI between endpoints and NMS are a solid choice. The transmission
should be direct without additional intermediaries to minimize the threat surface and

74 Chapter 4. Approaches for Enhanced Security Monitoring

prevent unauthorized decryption outside of the NMS. However, if the network policy
requires it, keys could be also stored to a secured database to perform authorized
offline decryption of dumped traffic at a later point in time.

4.1.3.4 Passive TLS Decryption at the NMS

Once the NMS receives TLS key material from the endpoint, it needs to identify the
connection the key material belongs to. This identifier differs for TLS versions and
different implementations of session resumption. To identify a connection that was
established via a full TLS 1.2 handshake, as shown in Figure 2.2, the client random that
is sent with the ClientHello uniquely identifies the connection and thus can be used to
match keymaterial. For subsequent resumed connections, the NMS then needs to also
associate the key material with the session identifier. This is either session ID, session
ticket or TLS 1.3 PSK depending on TLS version and implementation. If the session
identifier is then encountered in a resumed handshake, the NMS can match the key
material as for full handshakes. In TLS 1.2 this process is trivial as both session ID
and session ticket are sent in cleartext and thus can be easily stored. The TLS 1.3 PSK
approach is slightly more complicated as the PSK is already encrypted when sent
from the server in the first connection and additionally exchanged after the first use
in the resumed connection. However, this does not pose a problem to our approach
as the NMS can already decrypt the first connection with key material from the client
and thus also store the encrypted PSK for later use.

Once the connection has been identified, the NMS uses the obtained secrets to de-
crypt TLS application data packets in the connection. This process poses two major
challenges: (i) Cipher diversity: The different TLS versions support varying cipher
suites that the NMS needs to implement. This can be addressed by reusing popular
cryptographic libraries such as OpenSSL [TYH22] or NSS [NSS22]. An incremental
approach with a subset of supported cipher suites is also possible starting with popu-
lar ciphers. (ii) Missing key material: Key material might not be available, once the
first encrypted packet of a TLS connection arrives. This can happen either because
the endpoint withheld the key material due to filtering or because the key material
is simply still in transit to the NMS. In the first case, the NMS should simply skip
decryption, while the second case would require the NMS to buffer packets until the
key material arrives. However, this might introduce a denial of service (DoS) attack
vector if the NMS needs to buffer too many packets for connections especially as the
NMS cannot know in advance if key material will arrive at some point in the future.
To solve this problem, a traffic buffer in front of the NMS should be deployed that
delays only the encrypted traffic for a short time before it is forwarded to the NMS.
This way keys can arrive in time for complete decryption. Connections for which no
key is present at that time are considered filtered and thus not decrypted. We quantify
the impact of the key transfer latency on the decryption and recommend a buffer size
in our evaluation (see: Section 4.1.4.4).

4.1.4 Discussion and Evaluation

In this section, we first discuss the computational complexity our approach induces
and compare it to the commonly deployed TLS intercepting MitM proxy. Next, we
describe the features and limitations of the proof-of-concept (PoC) prototype we
implemented to test and evaluate our concept. Finally, we describe the results from
two experiments in which we measured the decryption overhead and the impact of key
transmission latency on the decryption success rate, respectively.

4.1. Transparent TLS Decryption for Network Monitoring 75

Approach CV KE 𝐸𝑠𝑦𝑚 𝐷𝑠𝑦𝑚

TLS Client 1 1 𝑠 𝑟
TLS Server 0 1 𝑟 𝑠
Intercepting Proxy 1 2 𝑠 + 𝑟 𝑠 + 𝑟
Decrypting and passive NMS 0 0 – 𝑠 + 𝑟

Table 4.1: Simplified computational complexity for typical TLS connections

4.1.4.1 Computational Complexity

We compare the computational overhead of our approach on a conceptual level with
intercepting MitM proxies. TLS adds non-negligible computation overhead to every
connection and the proxy has to setup andmaintain two TLS connections per endpoint
connection. A decrypting NMS remains passive and thus does not directly initiate
TLS connections. Instead, it only decrypts the encrypted payloads to gain access to
cleartext data.

Table 4.1 summarizes the simplified computational costs of establishing TLS connec-
tions for the TLS client and server respectively, but also for aMitM proxy and a passive
NMS. We assume the default behavior in HTTPS where the client authenticates the
server only. The TLS client performs a certificate validation (CV) for the server certificate
and a key exchange (KE) to establish session keys. The exact number of cryptographic
operations here differs based on the cipher suite used, but usually involves CPU
intensive asymmetric cryptography. Once the key material is established, the client
encrypts the 𝑠 bytes of its request via the symmetric cipher 𝐸𝑠𝑦𝑚 that was selected
in the handshake and sends them to the server. After a response is received, the 𝑟
number of bytes are decrypted. The TLS server performs a similar number of opera-
tions, but usually without certificate validation as TLS clients rarely use certificates
in HTTPS. The number of encrypted and decrypted bytes are switched as request
bytes from clients 𝑠 have to be decrypted and response bytes 𝑟 encrypted. However,
as a symmetric cipher is used with identical costs of encryption and decryption, the
overall computation effort should be nearly identical.

The MitM proxy acts as TLS server to the client and as the client for the requested TLS
server and thus performs the combined computations of both endpoints. While the
KE results in a predictable amount of computation, 𝑠 and 𝑟 vary in different scenarios.
For small connections such as simple websites, the doubled amount of symmetric
cryptography is less impactful, while large connections such as a large file download
via HTTPS introduce significant amounts of additional computation on the proxy.
The decrypting NMS in our approach has one large conceptual advantage to the MitM
proxy: due to its passive analysis, it only needs to decrypt all bytes 𝑠 + 𝑟 of a single
connection once to achieve cleartext access to the payloads. As no TLS connection is
actively established, no KE needs to be performed and even validation of the server
certificate is not strictly required as the client would rightfully reject the connection in
case of failure. However, analysis of the server certificate might be interesting as a
regular NMS analysis outside of decryption.

Additionally, our approach offers some further potential performance gains compared
to MitM as the NMS can decide on-demand to skip decryption if cleartext data is not
required. This might make sense for common use cases like video-conferencing or
streaming services (if allowed at all in the network) which are notorious for their high

76 Chapter 4. Approaches for Enhanced Security Monitoring

bandwidth demands and thus comparatively high decryption cost. While a MitM
proxy in theory could skip decryption of the associated connections, e. g., by detecting
the domain and transparently forwarding the ClientHello instead of terminating it, the
NMS can simply skip decryption as it is only a passive part of the connection. This
can help to reduce 𝐷𝑠𝑦𝑚 below the maximum of 𝑠 + 𝑟. Furthermore, our approach
offers yet again greater flexibility, as the NMS can adapt this decision based on the
current threat level or other intelligence, e. g., by enabling decryption of all available
connections if a current attack is taking place or other imminent threats are expected.

In summary, our passive approach conceptually requires less computational intensive
operationswhen comparedwith the commonly deployed approach of TLS intercepting
MitM proxy servers. While symmetric cryptography is continuously becoming faster
to execute on modern hardware due to special instruction sets, it still represents the
largest share of computation in a proxy and thus dictates howmachine resources need
to be scaled for high-bandwidth deployments. Our approach requires significantly less
computation and greater flexibility aboutwhich connections to decrypt at all while still
enabling the NMS to perform analysis on cleartext payloads. However, the lowered
computational load is shifted from proxymachines to NMSmachines which have to be
scaled up accordingly. Thus, our first experiment, that we describe in Section 4.1.4.3,
aims to quantify this impact of added decryption on NMS performance to estimate
the required changes for real-world deployments.

4.1.4.2 Implementation of Prototype

We implement our approach for passive and transparent TLS decryption as a proof-of-
concept prototype for the Zeek NMS [Pax99]. While some features were intentionally
left out to reduce complexity, our prototype is able to successfully decrypt TLS con-
nections and perform analysis tasks on the cleartext application data payloads in
real-world scenarios. Our prototype currently consists of a patched Zeek version
based on v3.2.3 and a simple Python daemon that runs on endpoints and forwards
key material. Both TLS key derivation and the actual decryption is performed by
openSSL, as Zeek already links to this library.

Obtaining TLS Key Material on Endpoints For simplicity, we obtain key material
via the SSL keylog interface as described in Section 4.1.3.1. We instrument the Firefox
browser to write TLS pre-master secrets and client randoms to a file monitored by our
Python daemon which are then forwarded to Zeek. Additionally, we configure Firefox
to offer TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 as the only supported cipher suite
in the TLS handshakes to ensure that our Zeek version can decrypt the established
connections. While we opted for Firefox, our setup it not limited to this browser, as
other popular browsers like Google Chrome can be configured to dump TLS pre-
master secrets in the same format.

Client-side Filtering of Sensitive Connections The daemon currently does not
perform any filtering and thus does not support selective decryption. Instead all client
randoms and pre-master secrets are forwarded to Zeek independent of the domains
involved. A complete implementation would need to match connections identifiers
and secrets to domains as this information is not directly present in the SSL keylog file
alone. This could be implemented in a browser extension (as the two data points can
be linked there) or via direct modification of the cryptographic library in use. This

4.1. Transparent TLS Decryption for Network Monitoring 77

would enable all applications that use the patched library to be compatible with our
approach.

Transferring Keys to the NMS The Python daemon maintains a connection to the
Zeek instance via broker, Zeek’s default communication library, and transfers new secrets
to Zeek once they appear in the file.

Passive TLS Decryption at the NMS Our patched Zeek version is able to receive
both pre-master secrets or derived TLS session keys. In the first case, the TLS key
derivation is performed once the first packet of thematching connection is encountered
and the resulting session keys are cached for later use. Once session keys are available,
Zeek decrypts the TLS application data and forwards the cleartext to its internal protocol
detection engine and subsequent analyzers.

Current Limitations Our prototype was explicitly built as a proof-of-concept. It is
capable of passively decrypting real-world TLS trafficwithout actively intercepting the
connection. However, it currently exhibits some limitations that prevent complete real-
world deployments: (i) Our prototype only supports a single, but actually one of the
most popular, cipher suite, namely TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384. This
cipher suite was chosen as it is commonly used in TLS 1.2 and exhibits several features
of a modern cipher suite like perfect forward secrecy. It uses the ECDHE key exchange
with RSA for authentication and AES in GCM for symmetric encryption of payload
data. GCM is favorable to our prototype as it was designed with parallel processing
in mind and allows each block to be decrypted separately. Thus, our prototype is
in worst-case also able to start the decryption in the middle of the connection if
some initial packets could not be decrypted. (ii) Our prototype does not perform
any traffic buffering either directly in Zeek or elsewhere and thus may encounter an
encrypted packet before the respective keys are received. If this happens, it prints
a debug message and skips decryption for this packet only. This results in partial
decryption of the overall connection. Usually, this means that the contained HTTP/2
data cannot be fully parsed and analyzed. This limitation is however not directly tied
to our implementation, as a real-world deployment likely would not buffer packets
in the NMS itself anyway (as this opens up a potential DoS vector) but rather by a
dedicated hardware or software appliance in front of it. The required size of this
network buffer to avoid missing the beginning of the connection is an important
question. Thus, we estimate this size for small networks in second experiment, that
we describe in Section 4.1.4.4. (iii) Support for TLS session resumption is currently
not implemented, but can be added by linking the respective connection identifier
(Session IDs, tickets or PSK) to the received key material. The different identifiers are
encountered in varying parts of the connections andmay even be encrypted. However,
the NMS retains complete visibility into all payloads (if key material is available in
time for the first packet) and can thus retrieve and store the relevant identifiers. While
it was left out in our prototype to reduce complexity, it should definitely be supported
in a full implementation, as TLS session resumption is used widely across the web
especially for large content delivery networks (CDNs).

Summary In summary, we build a prototype that serves as a proof-of-concept NMS
and that is able to decrypt TLS traffic in a passive manner. Given either pre-master
secrets or the respective session keys, our patched Zeek version is able to analyze TLS-
encrypted HTTP/2 traffic as if it were captured in cleartext. Currently, our prototype

78 Chapter 4. Approaches for Enhanced Security Monitoring

Client mitmproxy Any cipherPolarProxy WebAES_256_GCM_SHA384

TLS Keys Enc. PCAP Dec. PCAP

Non-HTTP/S traffic

Noise PCAP

firefox-headless
Any cipher

Figure 4.2: Experimental Setup: Dataset capture for decryption overhead

exhibits some limitations that prevents it from real-world usage. However, these
limitations, such as lack of cipher suite diversity or missing support for TLS session
resumption, are mostly engineering-focused problems that can and will be solved
with time and existing concepts and libraries. Furthermore, the addition of new
cipher suites should not negatively impact performance while adding (and using)
selective decryption through filtering increases performance as the NMS needs to
decrypt less bytes. Thus, our results obtained in our experiments should provide a
solid indication of the performance of a full implementation. The prototype is fully
available on GitHub1 and meanwhile has been merged into Zeek mainline [AW22].

4.1.4.3 Experiment I: Decryption Overhead

In this first experiment we evaluate the central performance metric for our prototype
implementation: decryption overhead, i. e., the additional runtime added by perform-
ing TLS decryption. This metric is important when deploying TLS decryption, as
NMS machines need to be scaled up to accommodate for the additional computation
requirements. There are two interesting scenarios to consider:

1. In the first scenario, an organization is currently not deploying MitM proxies
to terminate and decrypt TLS connections. Instead, a regular NMS is used to
analyze encrypted traffic at the network boundary. Due to the encryption, the
NMS is only able to analyze connection meta-data resulting in a comparatively
low resource utilization.

2. In the second scenario, the organization follows industry best-practices and
deploys a MitM proxy that forward payloads from terminated TLS connection
to a NMS. In this case, the NMS has full cleartext access to all connections and
can perform a more sophisticated analysis, which results in higher resource
utilization.

In both scenarios the NMS machines need to be scaled up, as more computation will
be performed. However, in the second scenario, MitM proxies are no longer required
and their previously allocated resources can be used for monitoring. To evaluate
the decryption overhead for both scenarios, we design a capture environment that
simulates both deployments.

Setup and dataset Figure 4.2 shows the setup we used to capture the dataset for this
experiment. The client machine runs Firefox in headless mode that visits all Alexa
Top 1000 websites one after the other. The traffic is transparently routed through
mitmproxy [CHK21] to extract the TLS pre-master secrets and force the cipher suite
that our prototype implements. The outgoing traffic from this machine is then routed
differently based on the destination port. Web traffic destined for the ports 80/443 is

1see: https://github.com/UHH-ISS/zeek

https://github.com/UHH-ISS/zeek

4.1. Transparent TLS Decryption for Network Monitoring 79

forwarded to another host running PolarProxy [NET21], while all remaining non-web
traffic is routed directly to the Internet. We use PolarProxy as it can export decrypted
HTTP/2 traffic directly to a pcap file, a feature that mitmproxy does not support. This
pcap represents the commonly deployed second scenario described above in which
the NMS receives decrypted traffic from a TLS intercepting proxy. The encrypted
traffic and noise traffic is also captured and stored in different pcap files. These pcaps
represent the aforementioned first scenario in which the NMS analyzes encrypted
traffic only.

The resulting dataset captured from our deployment comprises the TLS pre-master
secrets extracted from mitmproxy and pcaps for encrypted web traffic, other noise traffic
as well as the decrypted HTTP/2 payloads. The dataset consisting of pcaps and the
captured TLS pre-master secrets are publicly available [WHF22].

Results By using our captured datasets, we can now compare the runtime of both,
the unmodified Zeek version and our prototype. Please note that this first experiment
focuses on decryption performance and overhead alone. As such, we configure
our Zeek prototype to load all TLS pre-master secrets from disk at the start of the
experiment and let Zeek analyze the respective scenario pcaps. This results in all
keys being instantly available, which is not comparable to real-world deployments.
To address this, we analyze the impact of real-time transmission of TLS keys and their
delayed arrival at the NMS in the second experiment (see: Section 4.1.4.4).

Figure 4.3 shows the decryption overhead by comparing the runtime of the unmodified
Zeek version and our prototype for three different traffic profiles. Each traffic profile
is defined in both decrypted and encrypted fashion as follows: (i) https contains only
traffic that was originally sent via HTTPS. This includes most websites from Alexa top
1000 minus a few that did not support TLS at all. The decrypted variant is built from
the decrypted pcapwritten by PolarProxywhile the encrypted variants is derived from
the pcap captures between mitmproxy and PolarProxy. All captures are filtered by
destination port 443 to limit to HTTPS traffic. (ii) web consists of the same pcaps but
removes the port filter and consists of all HTTP and HTTPS traffic. (iii) all extends the
previous traffic profile by adding non-web noise traffic. The decrypted variant simply
merges the decrypted pcap by PolarProxy with the noise pcap and the encrypted
variant merges the pcap captured between the proxy machines with the noise pcap.

The first two bars per traffic type show the runtime for the cleartext traffic for both
the unmodified Zeek and our prototype. For all three traffic types, the runtime is
nearly identical. This is expected as no decryption has to be performed and both
version perform identical analysis tasks on cleartext data. These measurements thus
resemble the NMS runtime in a typical MitM proxy deployment without including the
runtime of the proxy itself. The third bar shows the runtime of the unmodified Zeek
version analyzing encrypted traffic. The runtime is smaller than for the cleartext traffic,
as this Zeek version cannot decrypt the payloads and thus falls back to metadata
only analysis. This difference is most visible for the HTTPS dataset as no noise or
HTTP data is present, which would be in cleartext and thus potentially triggering
complex analysis scripts. This measurement also establishes a baseline for the first
scenario described in the introduction of this section: a NMS processes encrypted
network traffic and no MitM proxy is deployed. The fourth bar shows the runtime our
prototype that decrypts the TLS connections and analyzes the contained payloads.
The added decryption results in a comparatively large runtime overhead as expected.
Compared to the MitM baseline (cleartext traffic), we see an increase by a factor of 2.5.

80 Chapter 4. Approaches for Enhanced Security Monitoring

all web https

0

50

100

150

200

250

Traffic profile

Ru
nt

im
e
[s
]

Zeek v3.2.3 (Cleartext)
Prototype (Cleartext)
Zeek v3.2.3 (Encrypted)
Prototype (Encrypted)

Figure 4.3: Results: Decryption overhead for passive TLS decryption

Client

Zeek

Webfirefox-headless

brokerPython daemon

 SSL Keylog File
Traffic pcap

tls-timestamp.zeek

Timestamped
TLS pre-master

secrets

Figure 4.4: Experimental Setup: Dataset capture for key transmission latency

An administrator should scale the resources of NMS machines by this factor when
switching from an MitM proxy deployment to our approach. As MitM proxies are no
longer needed in this scenario their resources could be repurposed. Compared to the
first scenario (encrypted traffic), the overhead grows to about 3 times. However, this
is reasonable, as no decryption was performed previously (neither by a MitM proxy
nor the NMS). The previous comparison and our discussion in Section 4.1.4.1 show
that deploying a MitM proxy would likely result in higher overall resource usage.

Note: While this experiment can be considered a micro-benchmark, especially as our
prototype currently only supports a single cipher suite, the results should give a
good estimation of the expected decryption overhead in most scenarios. Especially as
the missing features are not expected to negatively impact performance. Combined
with the previous discussion, we are confident that our approach reduces overall
computation efforts compared to a MitM proxy deployment.

4.1.4.4 Experiment II: Key Transmission Latency

In the second experiment, we evaluate the real-world viability of our approach by
examining the delay between the key material being made available on the client
machine and the arrival at the NMS after transmission through the network. This is

4.1. Transparent TLS Decryption for Network Monitoring 81

especially relevant, when considering cipher suites that require the cleartext of the
previous packet when decrypting a newly arriving packet. For these ciphers either
the key material needs to be available once the first encrypted packet arrives, the NMS
needs to buffer packets, or the network traffic needs to be delayed before being passed
to the NMS.

Setup and dataset We design a deployment to capture timestamped TLS pre-master
secrets for this experiment that we show in Figure 4.4. The client machine again runs
Firefox in headless mode and is configured to only offer the prototype’s supported
cipher suite. We then browse the Alexa top 1,000websites andwrite the SSL keylog file
as usual. Our python daemon also runs on the client machine and watches the keylog
file for changes via inotify. New pre-master secrets are immediately forwarded
to Zeek via its broker communication library. On arrival, Zeek timestamps the key
material to document the arrival time. Additionally, the machine running Zeek is
used as the gateway for the client host which allows Zeek to capture the traffic as a
pcap. The resulting dataset comprises the traffic pcap as well as the timestamped TLS
pre-master secrets. It is also available as part of [WHF22].

Results For our second experiment, the timestamped TLS pre-master secrets are
again pre-loaded in our prototype that then analyzes the captured pcap file. However,
the timestamp now dictates when Zeek starts to actually use the key. For the default
case, it only starts decryption once the network timestamp in the pcap is larger than
the timestamp of the corresponding pre-master secret. This resembles a real-world
deployment without any traffic buffering. For simulating this traffic buffering, we
have two options: (i) we can alter the timestamps in the pcap file by the respective
time interval while leaving the pre-master secret timestamps untouched. This closely
resembles delayed traffic. (ii) we can use the pcap as is and simply add the desired
time interval to the current network time in the comparison operation in Zeek. For
simplicity we chose the second option as the delay can easily be configured in a script.
In the experiment runs, we count the number of TLS payload bytes that could be
decrypted. As our implemented cipher suite can start to decrypt from any packet in
the connection, this can be anything between 0 (if the key arrives after the connection
is already finished) or the full amount of payload bytes in the connection. Additionally,
we consider a connection completely decryptable if the key is available before the
first encrypted payload packet is encountered. This is important for two reasons:
(i) some cipher suites can only decrypt all or no packets in a connection as packet
payload is used as IV in decryption of the next packet. (ii) especially for HTTP/2
the first bytes of the connection are important for the NMS as they contain the client
request. If they are missed, the NMS cannot analyze the protocol level. The decryption
performance is then calculated as the ratio of decrypted bytes/connections and total
bytes/connections respectively.

Our results are shown in Figure 4.5. The x-axis shows the simulated traffic delay in
milliseconds and the y-axis the decryption success rate, i. e., the respective percentage
of bytes and connections that could be correctly decrypted. In a real-time deployment
and without any delay only 1.3% of all connections are completely decryptable. This
is expected as the key transfer latency prevents the first packets from being decrypted.
However, 98.9% of all TLS payload bytes can already be decrypted. This indicates that
already only few of the first bytes are missed. This is confirmed in the first few 1ms
steps as the success rate for connections increases sharply. At 5ms traffic delay already
65.3% of all connections can be decrypted while 10ms delay results in a success rate of

82 Chapter 4. Approaches for Enhanced Security Monitoring

0 10 20 30 40 50 60 70 80 90 100

0

0.2

0.4

0.6

0.8

1

Traffic delay [ms]

D
ec

ry
pt

io
n
su

cc
es

sr
at
e

Connections
TLS bytes

Figure 4.5: Results: Decryption success rate depending on traffic delay

91.3% for connections and 99.96% of TLS bytes respectively. The success rates steadily
increase until at 40ms effectively 100% of both bytes and connections can become
decrypted.

The results from our second experiment indicate that only a small delay is required
(in our setting 40ms) to achieve nearly complete coverage for decryption. For real-
world deployments, traffic can be sufficiently buffered before passing it to the NMS.
Depending on the utilization of the tapped network link, this results in a buffer size of
up to 400M for a typical 10G uplink in a medium sized network. It is important to note
that this small delay is only required before passing traffic to the NMS and thus does
not impact other hosts in the network. Problems may arise if the NMS is also used as
an intrusion prevention system (IPS) and thus controls a firewall. In these scenarios,
the delay may result in the IPS reacting too slow to effectively block intrusion attempts.
Especially in cases like these, it might be advisable to implement the buffering as part
of the TLS parsing layer of the NMS itself—which is more complex, but in turn does
not increase reaction latency.

In summary, the discussion and evaluation of our approach for passive TLS decryption
for NMSs show promising results especially compared with the current state-of-the-
art in the form of TLS-intercepting MitM proxy servers. Our approach is conceptually
less demanding in terms of computations as communication data only needs to be
decrypted once. Our experiments demonstrated that overhead imposed by decryption
is moderate with about 2.5 times total runtime while the latency of key material
transmission can be addressed by introducing a small traffic buffer as small as 40ms
in front of the NMS.

4.1.4.5 Requirement Comparison

Based on the description and evaluation results, we can now compare our approach for
passive TLS decryption via cooperative endpoints with our requirements formulated
in Section 3.1. As this approach does not perform any kind of intrusion or APT
detection, R1: Accuracy and R2: Explainability are not applicable and thus not rated.
Our approach fulfillsR3: Low overhead partially as there are less required computations
compared toMitM proxies, although endhosts need to run an agent to forward the key

4.2. Characterization of Brute-Force Attackers 83

material. R4: Scalability is met since our approach can scale horizontally with more
available resources for decryption. In addition, it is easier to distribute load across
multiple hosts running an NMS compared to the conceptually single proxy host. Due
to the lesser attack vector exposed by a passive NMS compared to an active MitM
proxyR5: Security is fully checked. This is especially true for non-AEAD ciphers as our
approach can limit the potential damage inflicted by a compromisedNMS even further
in this case. R6: Privacy is fulfilled as our approach can leverage selective decryption to
conceptually let users retain some privacy for selected websites. While some scenarios
do not allow for this, our solution is likely optimal under the circumstances. Lastly, R7:
Deploy- & Maintainability is partially checked as our approach relies on an important
infrastructure of cooperating endhosts that need to run our daemon to obtain reliable
visibility.

4.1.5 Summary

This section presented an approach for passive TLS decryption on trusted NMSs via
key sharing from cooperative endhosts to answer our formulated research question
RQ1:

RQ1 How can NMSs regain visibility into TLS-encrypted communication without actively
intercepting the connections on a central entity and breaking end-to-end guarantees?

This visibility is essential as workstations are often the initial attack vector of APT
campaigns. Our approach shows how cooperative endhosts can alleviate the need
for a central intercepting entity as the key material is proactively transmitted to
the NMS such that it can decrypt the communication passively. Compared to TLS
interception via MitM proxy servers, we discussed how our approach (i) requires
less computations, (ii) keeps the security guarantees of the original TLS connection
intact and (iii) conceptionally reduces the threat surface as absolute trust in a single
entity (i. e., the MitM proxy and its certificate authority) is no longer required. We
implemented our approach as a Zeek [Pax99; Zee22] module that is able to receive
keys from endhosts and decrypt the corresponding TLS connections. In our evaluation,
we measured the additional overhead induced by adding decryption to the NMS
as well as the impact of key transfer latency on the decryption success. Our results
indicate that a moderate increase of computational resources of about 2.5 times is
required while a small network buffer of 40ms is sufficient to bridge the time required
for key transfer in our testbed. Additionally, our Zeek prototype has been extended
and merged into Zeek mainline as of version v5.0.0 [AW22]. Overall, our approach
described how passive TLS decryption can be achieved without actively intercepting
the connection via a MitM proxy and thus provides an answer to RQ1.

This contribution enhances security monitoring via improved internal visibility into
TLS-encrypted payloads. The next section introduces a mechanism for additional
external visibility through characterization of brute-force attacker behavior. The
approach leverages a collection of both established and novel metrics to cluster and
prioritize brute-force attackers to support SOC analysts in their investigation.

4.2 Characterization of Brute-Force Attackers

This section introduces an approach to characterize behavior of brute-force attackers
that target services that are available from the open Internet. This is important as
large parts of these malicious login attempts are caused by simple automated scans

84 Chapter 4. Approaches for Enhanced Security Monitoring

that are (comparatively) harmless. However, APT adversaries may attempt a limited
number of logins as part of their reconnaissance efforts. Thus, SOC analysts need to
carefully investigate these attempts. Overall, this contribution aims to answer our
research question RQ2 as introduced in Section 1.1:

RQ2 How and to what extend can brute-force attempts on externally-accessible services be
categorized and screened for potential APT reconnaissance activity?

To address this problem, we discuss metrics established in previous literature and
introduce two novel ones that can be leveraged to characterize brute-force attacker
behavior. This is useful for both estimating the attacker’s sophistication level as well
as to detect potential collusion between otherwise unrelated IP addresses. The result-
ing characterization helps analysts to distinguish between low-effort/high-volume
attempts (that are less likely to succeed) and targeted attempts (that could signal
the start of a larger APT campaign). The content of this section is based on the
corresponding publication [WF20b] and shares material with it.

4.2.1 Motivation and Objectives

Every service on the open Internet gets probed by malicious login attempts that range
from automated scripts continuously trying default passwords on every available IP
address to targeted login attempts that may use stolen credentials to access internal
services. For organizations that poses a problem, as certain services need to be exposed
to the Internet (to be available for customers or remote workers) but doing so opens
up a potential attack vector. Due to the flood of automated attempts it is tempting
to ignore any alerts generated from brute-force login attempts to lower the load on
analysts that need to sift through them. However, this strategy also ignores the
targeted attempts in between that in the worst case might be the beginning of an APT
campaign. As no ground truth about attacker behavior can be obtained and every
attack is different, the analyst has to adapt to a changing threat landscape and needs
to infer as much as possible from the data available. While there are approachhes
that aim to simply detect brute-force attacks (as we discussed in Section 3.6.1), they
focus on distinguishing between failed benign login attempts and malicious attacks
and are thus not applicable to APT campaigns. Additionally, standard metrics for
login attempts (as proposed in [OM08; ABvO16]) are helpful but fail to capture
certain complex attack behavior. To the best of our knowledge, there are no structured
threat hunting approaches for brute-force attack scenarios that aim to systematically
estimate attacker behavior and sophistication. To address this open challenge, this
contribution aims to achieve the following objectives:

1. Survey existing metrics for brute-force login attempts from related work, that
give insights about attacker behavior.

2. Introduce novel metrics with the same goal that maximize information gain
from the limited data present in the login attempts.

3. Discuss and evaluate how the combined set of metrics can be used in isolation or
in selected pairs to support analysts, i. e., as indicators for estimated threat-level
or potential collusion between multiple IP addresses, which they can leverage
to filter, prioritize, and mitigate attacks.

4. Evaluate these threat-level indicators based on real-world data that is obtained
from a host connected to the open Internet.

4.2. Characterization of Brute-Force Attackers 85

5. Publish the resulting dataset to foster further research in this area.

The remainder of the section is structured as follows: Section 4.2.2 briefly explains
the underlying formal model that is used throughout the section. Section 4.2.3 de-
scribes established metrics to characterize brute-force attacks that have already been
proposed in the literature. Section 4.2.4 proposes novel metrics that aim to capture
brute-force attacker behavior in greater detail based on a notion of brute-force ses-
sions and dictionary entropy. Next, Section 4.2.5 highlights how the combined set of
established and novel metrics can be used to characterize attacker behavior. In Sec-
tion 4.2.6 we evaluate our approach on a real-world dataset obtained via our own
Honeygrove [Hon+22] honeypot and compare it with the requirements formulated
in Section 3.1.

4.2.2 Formal Model

Asmentioned in the introduction, the basis for this work are login attempts on publicly
exposed services. We formalize this problem as follows: Given the sequence of
malicious login attempts 𝐿, we aim to identify behavioral patterns of the attacking
IP addresses. The definition of 𝐿 is given in Equation (4.1) using a sequence-builder
notation that is similar to common set-builder notation. Each login attempt 𝑙 ∈ 𝐿
can be described by the following features: a timestamp (𝑡𝑠), the source IP address,
the protocol the attacker used (𝑝𝑟) and the credentials (𝑢𝑠𝑒𝑟, 𝑝𝑤). For simplicity, we
assume 𝐿 to be ordered by timestamp (𝑡𝑠(𝑙𝑖) ≤ 𝑡𝑠(𝑙𝑖+1)). Based on this and somemetrics,
attackers with similar behavior are clustered. Finally, the threat level of both, the
clusters or selected attackers inside a cluster, can be estimated by comparing metrics
to prioritize defensive countermeasures.

𝐿 = �𝑙𝑖 ∣ 𝑙𝑖 = (𝑡𝑠, 𝑖𝑝, 𝑝𝑟, 𝑢𝑠𝑒𝑟, 𝑝𝑤) ∧ 𝑡𝑠(𝑙𝑖) ≤ 𝑡𝑠(𝑙𝑖+1)� (4.1)

Although the source IP address can be easily switched by the attacker, e. g., by using
proxy servers such as Tor or moving between hosting providers, it represents the
basis for all other metrics in this section. As an attacker is much more likely to switch
IP addresses rather than change their behavior, the goal is to cluster different IP
addresses that belong to the same attacker. For later analysis we group login attempts
𝑙𝑖 ∈ 𝐿 by source IP. Equation (4.2) formalizes this by introducing the sequence of login
attempts per IP 𝐿𝑥 that contains all attempts by IP address 𝑥.

𝐿𝑥 = �𝑙𝑖 ∣ 𝑙𝑖 ∈ 𝐿 ∧ 𝑖𝑝(𝑙𝑖) = 𝑥� (4.2)

Note: we assume clear-text passwords. However, most metrics can also be calculated
with hashed passwords or to some extent without any password information at all.
This enables characterization in real-world deployments where password logging
might be turned off for security reasons. Additionally, we assume the data to contain
only malicious login attempts as other approaches like [HS19] can be used to dis-
tinguish between malicious and legitimate attempts. In these cases it might even be
possible to still log clear-text passwords, while discarding this sensitive information
for legitimate logins.

86 Chapter 4. Approaches for Enhanced Security Monitoring

4.2.3 Established Features and Metrics

In this section we present the set of features and metrics from previous works, that
we believe to be suitable for the characterization of brute-force attackers. We call
information that is intrinsic to the login attempts (or that can be derived in very
simple ways) features. Examples for this would be source IP or the set of credentials
used by the attacker. Based on these features we are calculating metrics. However, the
difference is not always straightforward and as such some features that we showmight
have been called metrics in previous work. Both, features and metrics, can be divided
in three categories, that will be discussed in the next three section respectively:

• Connection-based features are based on the netflow attributes of the underlying
connection such as IP addresses and protocols used.

• Credential-based features and metrics are based on the sequence of credentials
used by the attacker and their relation among each other.

• Lastly, Timing-based features and metrics are based on the timestamps of the
login attempts and derive additional insights off intervals and frequency.

4.2.3.1 Connection-based Metrics

Metadata of the connection the attacker used to perform the login attempts already
reveals some information about their origin and characteristics. Furthermore, a set
of additional features can be obtained by querying openly available sources. The Set
of Protocols 𝑃𝑥 as defined in Equation (4.3) already offers some insights about their
targeted services. In many cases this is SSH as it is the most popular remote shell
protocol for Unix-like operating systems. However, an attacker might target multiple
protocols at the same time. As shown in Equation (4.3) 𝑃𝑥 is obtained by just taking
the unique set of protocols across all attempts of the IP.

𝑃𝑥 = �𝑝𝑟(𝑙𝑖) ∣ 𝑙𝑖 ∈ 𝐿� (4.3)

The rDNS entry of attacking host also offersweak indicators and can be easily obtained.
While a sophisticated attacker might use a shared, static one (like no-reverse-dns-
configured.com) or even provide explicitly fake entries, the default configurations of
hosters often include a unique name that hints at the company or even the respective
customer. The /24 subnet of an attacker can help to reveal naive attackers that, e.g., use
consecutive IP addresses in the same subnet. Furthermore, autonomous system (AS)
membership results in AS number, owner and country as additional features to correlate
attackers across subnet borders. For attackers that use the same cloud provider for all
login attempts either the AS number matches directly or the AS owner is the same.
For attackers that use multiple providers the country might still match. Finally, the
source IP can be matched against a list of known Tor exit nodes. However, this makes
correlation extremely difficult as multiple attackers might use the same Tor exit node
or a single attacker might switch exit nodes during the session. Both cases might
invalidate an analysis that is primarily based on IP addresses. Thus, requests from Tor
exit nodes (or other proxy/VPN services if the IP addresses can be obtained) should
be removed from the dataset and analyzed manually.

4.2. Characterization of Brute-Force Attackers 87

4.2.3.2 Credential-based Metrics

The credentials, that a brute-force attacker uses, are one of the strongest indicators for
their sophistication. Two features are relevant when considering these credentials:

• The ordered Credential Sequence 𝐶𝑥 that contains credential pairs from all login
attempts of the attacker which might include duplicates. The definition for 𝐶𝑥

is given in Equation (4.4).

• The set of unique credentials pairs (also called Dictionary) 𝐷𝑥 that is obtained
by removing duplicates from 𝐶𝑥 as shown in Equation (4.5).

As 𝐶𝑥 is directly derived from 𝐿𝑥 it is implicitly ordered by timestamp to support
meaningful analysis while 𝐷𝑥 is by definition an unordered set.

Metrics based on the attacker’s credentials are covered in related work, e. g., in [OM08;
ABvO16]. Therefore most credential-based metrics are taken from these works. They
rely on some form of password information being present in the requests (clear-text
or hashed) and are of limited applicability if only usernames are considered.

𝐶𝑥 = ��𝑢𝑠𝑒𝑟(𝑙𝑖), 𝑝𝑤(𝑙𝑖)� ∣ 𝑙𝑖 ∈ 𝐿𝑥� (4.4)

𝐷𝑥 = �𝑐𝑖 ∣ 𝑐𝑖 ∈ 𝐶𝑥� (4.5)

The size of the attacker’s dictionary is one of the simplest metrics and can help to
differentiate between naive attackers that use a small set of credentials (such as default
credentials of specific IoT devices) and generic attackers that (usually) try a large
number of credentials before moving on to the next target. We can formalize this as
the cardinality of the dictionary |𝐷𝑥|. Furthermore, it is important how “unique” their
dictionary is when compared with the dictionaries of all other attackers. The Total
Dictionary Overlap 𝑜𝑡(𝐷𝑥) measures this by calculating the set intersection between
the dictionary of the attacker 𝐷𝑥 and all other attackers in the dataset. Equation (4.6)
calculates 𝑜𝑡(𝐷𝑥) as the mean of these values across the dataset.

𝑜𝑡(𝐷𝑥) =
∑ �|𝐷𝑥⋂𝐷𝑖| ∣ 𝑖 ∈ 𝑖𝑝(𝐿) ∧ 𝑖 ≠ 𝑥�

|𝑖𝑝(𝐿)| − 1
(4.6)

As only dictionaries are compared, the overlap can also be computed for any set of
dictionaries. A special case of this is the Subnet Dictionary Overlap 𝑜𝑠(𝐷𝑥). Instead of
all other dictionaries this metric is obtained by calculating the mean overlap between
all other IP addresses in the same /24 subnet. Related work and our own results show,
that some attackers use multiple IP addresses from the same subnet [ABvO16] and
this overlap can help to reveal coordinated dictionary splits (𝑜𝑠(𝐷𝑥) = 0). Additionally,
we can consider a known credential leak as a potential dictionary to compare to. We
call this metric Leak Dictionary Overlap 𝑜𝑙(𝐷𝑥). A high value for this metric directly
implies a lesser threat level for this attacker, as they did not attempt custom tailored
credentials but instead relies on leaked credentials that should have been blocked in
the organization anyway.

Finally, we use two boolean metrics to further analyze the complexity of the dictionary.
We check, if an attacker uses duplicate credentials in either the same session (see next

88 Chapter 4. Approaches for Enhanced Security Monitoring

section) or at all. The first hints at either a bug in the attacker toolkit or a poorly
designed credential list, while the second might be the result of an attacker returning
to the same host and retrying credentials.

4.2.3.3 Timing-based Metrics

The timing of login attempts might also provide some insights into how an attacker po-
tentially distributes their brute-force attempts. With multiple points of data collection
as presented in [ABvO16], it is possible to also consider the time it takes the attacker
to move between the targets and thus estimate the size of the scanned IP range. We
chose the Login Frequency 𝜈(𝐿, 𝑥) (as given in Equation (4.7)) for our approach as it
captures the amount of investment the attacker devotes towards the target. However,
this metric does not account for persistent attackers, that return to the target multiple
times. Thus, it scores similar values for an attacker that performs a large amount
of attempts in one session and for an attacker that carries out a smaller number of
attempts each day.

𝜈(𝐿, 𝑥) =
|𝐿𝑥|

𝑡𝑠𝑚𝑎𝑥(𝐿) − 𝑡𝑠𝑚𝑖𝑛(𝐿)
(4.7)

4.2.4 Novel Metrics: Brute-Force Sessions and Dictionary Entropy

We introduce two new metrics to provide additional insights about the attacker’s be-
havior, namely Brute-Force Sessions and Dictionary Entropy. In this section, we describe
both concepts, derive useful metrics and highlight the impact on both classification
and prioritization of attackers in a defensive context.

4.2.4.1 Brute-force Sessions

The timing of a sequence of login attempts offers insights about the attacker’s strategy.
To capture these sequences and analyze them in conjunction, we introduce the concept
of brute-force sessions—the set of login attempts that were observed within a certain
timeout 𝜏 after each other. This is visualized in Figure 4.6: in the first line, 𝜏 is set
to a shorter value and the first session S1 ends accordingly after 𝑙1 as the timeout is
exceeded between 𝑙3 and 𝑙4. However, if 𝜏 is set to a higher value, as shown in the
second line, S1 is extended to include 𝑙3. This grouping and related metrics enable us
to differentiate between, e. g., an attacker that scans each IP address in their search
space once a day with exactly fifteen credential combinations and an attacker that
scans each target only once every two weeks with a massive credential list of 20 000
different combinations.

Given an IP address 𝑥, an ordered sequence of malicious login attempts by that IP
address 𝐿𝑥 and a session timeout 𝜏, we can compute a set of scanning sessions as
shown in Equation (4.8). 𝜏 hereby represents the duration threshold after which the
following login attempt is considered to start a new session.

𝑆𝑥𝜏 = ��𝑙𝑖 ∣ 𝑙𝑖 ∈ 𝐿𝑥 ∧ 𝑡𝑠(𝑙𝑖) − 𝑡𝑠(𝑙𝑖−1) ≤ 𝜏�� (4.8)

The choice of 𝜏 impacts the size of 𝑆𝑥. Higher values of 𝜏 results in fewer overall
sessions as smaller sessions are merged. Depending on the attacker’s strategy and 𝜏,
all their login attempts might be grouped into a single session. However, the choice

4.2. Characterization of Brute-Force Attackers 89

l1 l2 l3 l4 l5

l1 l2 l3 l4 l5

S1

S1

S2 S3

S2

𝜏1

Lx

𝜏2

Lx

Figure 4.6: Example: Brute-force sessions. The parameter 𝜏 defines when a new session
is started. In the first line, this happens after 𝑙3, in the second line 𝑙3 is included in S1

and the session ends after 𝑙4.

of 𝜏 does not impact runtime performance nor memory demands. Thus, small values
of 𝜏 should be preferred to avoid incorrect merging. In Section 4.2.6.1 we give a
recommendation for 𝜏 based on the results from our real-world dataset.

Based on 𝑆𝑥𝜏 we define several related metrics to characterize attackers based on their
session behavior. The Session Frequency 𝜈𝑠(𝐿, 𝑥) represents themean number of sessions
an attacker initiated in a given timespan. Depending on the duration the dataset was
obtained in, this can be seconds, days or even months. 𝜈𝑠(𝐿, 𝑥) can be calculated
by dividing the session count |𝑆𝑥𝜏| by this duration. Furthermore, we measure the
number of login attempts in a session as Session Length 𝑙(𝑆𝑥𝜏) (see Equation (4.9)) and
the time in seconds between first and last login attempt of a session as Session Duration
𝑑(𝑆𝑥𝜏) (see Equation (4.10)). Based on these two integer sequences, we compute
mean (represented by 𝑥) and standard deviation (𝑠) to estimate how (ir-)regular the
attacker behaves when considering their timing.

𝑙(𝑆𝑥𝜏) = �|𝑠𝑖| ∣ 𝑠𝑖 ∈ 𝑆𝑥𝜏� (4.9)

𝑑(𝑆𝑥𝜏) = �𝑡𝑠𝑚𝑎𝑥(𝑠𝑖) − 𝑡𝑠𝑚𝑖𝑛(𝑠𝑖) ∣ 𝑠𝑖 ∈ 𝑆𝑥𝜏� (4.10)

Two additional metrics aim to analyze more subtle timing behavior in a session as
well as amongst sessions. The Time-between-Logins (TbL) (𝛿𝑙(𝑆𝑥𝜏)) describes the time
that passes between successive login attempts in a single session and is formalized
in Equation (4.11). In combination with the session length this allows to differentiate
between attackers that quickly scan (often with a predefined set of credentials) and
ones that try to stretch out their login attempts over larger timespans to evade detection.
The metric calculates a sequence of length |𝑠𝑖| for each brute-force session in 𝑠𝑖 ∈ 𝑆𝑥𝜏.

𝛿𝑙(𝑆𝑥𝜏) = ��𝑡𝑠(𝑙𝑖+1) − 𝑡𝑠(𝑙𝑖) ∣ 𝑙𝑖 ∈ 𝑠𝑖� ∣ 𝑠𝑖 ∈ 𝑆𝑥𝜏� (4.11)

The Time-between-Sessions (TbS) (as shown in Equation (4.12) is a similar metric that
describes the time that passes between consecutive sessions of the same attacker.
Hence, this metric describes how quickly an attacker returns to the same target.

𝛿𝑠(𝑆𝑥𝜏) = �𝑡𝑠(𝑠𝑖+1) − 𝑡𝑠(𝑠𝑖) ∣ 𝑠𝑖 ∈ 𝑆𝑥𝜏� (4.12)

90 Chapter 4. Approaches for Enhanced Security Monitoring

4.2.4.2 Dictionary Entropy

We also introduce a new metric to measure the complexity of the credential sequence
𝐶𝑥 and how it evolves over time. The Dictionary Entropy 𝐸𝑥 is the sequence of cumu-
lative Shannon entropies 𝐻 [Sha48] of 𝐶𝑥. Equation (4.13) formalizes this concept
using sequence indexing notation. Given a credential sequence 𝐶𝑥 = (𝑐0, 𝑐1… , 𝑐𝑛)
the dictionary entropy is defined as 𝐸𝑥 = �𝐻(𝑐0, 𝑐1), 𝐻(𝑐0, 𝑐1, 𝑐2), … ,𝐻(𝑐0, … , 𝑐𝑛)�. This
means that the entropy is increasing as long as new credentials are attempted, that
use different characters. For highly similar credentials or duplicates 𝐸𝑥 will decrease.

𝐸𝑥 = �𝐻�(𝐶𝑥
𝑘)𝑖𝑘=1� ∣ 𝑖 ∈ N0 ∧ 𝑖 < |𝐶𝑥|� (4.13)

𝐸𝑥 is mostly interesting to estimate the complexity of an attacker dictionary. The
entropy increases if credentials with different characters are attempted. For credentials
that are similar to previously used ones, the increase is lower ormight even be negative
if only a few characters differ such as number permutations appended to wordlists.
Given the two credential sequences 𝐶1 and 𝐶2:

𝐶1 = ('root:root', 'admin:admin', 'foo:bar')
𝐶2 = ('root:root', 'root:root1', 'root:root2')

the entropy for the first sequence 𝐸1 is higher than for 𝐸2. The 'root:root' part is
present in every credential in the second sequence and thus lowers the increase in
entropy after the first credential.

During analysis the sequence itself can be used to evaluate the evolution of credential
complexity over time, i. e., to detect duplicates and their frequency, while the mean
acts as a general indicator for prioritization of countermeasures. Additionally, both
values can be used for clustering as well.

4.2.5 Characterization and Prioritization

Table 4.2 summarizes all features and metrics discussed in this paper. They can be
used to address the two goals in the problem statement, namely:

• grouping of IP addresses/attackers that (partially) share behavioral patterns

• prioritization of countermeasures regarding single attackers or clusters based
on sophistication and expected threat-level to the organization

Clustering can be leveraged for both goals depending on the features and metrics
used as well as the parameters of the respective clustering algorithm. Running the
clustering algorithm with high similarity thresholds, results in clusters of attackers
that behave highly similar with respect to the features/metrics selected. However, this
potentially results in a large number of clusters and outliers as the clustering is stricter.
This is useful for the first goal of grouping attackers/IP addresses. If the threshold is
decreased, fewer and larger clusters are formed. Depending on the metrics that are
used, these larger clusters are useful for prioritization. The largest clusters usually
represent the big part of low-threat attackers with low sophistication and thus can be
mostly ignored.

Independent of how clusters were formed, the features and metrics can then be used
to calculate intra- and inter-cluster outliers. This is most effective when different

4.2. Characterization of Brute-Force Attackers 91

Ty
pe

Fo
rm

ul
a

N
am

e
D
es

cr
ip
tio

n

Feature

𝐿𝑥
Lo

gi
n
at
te
m
pt

s
Se

qu
en

ce
of

al
ll
og

in
at
te
m
pt

sp
er
fo
rm

ed
by

IP
ad

dr
es

s𝑥
—

rD
N
S

Fu
lly

qu
al
ifi

ed
ho

st
na

m
e
(h
o
s
t
.
d
o
m
a
i
n
.
t
l
d
)

—
Su

bn
et

(/
24

)
Su

bn
et
-tr

ip
le

w
ith

ou
tn

et
m
as

k
(0

.0
.0
–2

55
.2
55

.2
55

)
—

A
ut

on
om

ou
sS

ys
te
m

nu
m
be

r
N
um

be
ro

ft
he

A
S
th

e
so

ur
ce

IP
be

lo
ng

st
o
(1

–6
44

95
)

—
A
ut

on
om

ou
sS

ys
te
m

co
un

tr
y

C
ou

nt
ry

co
de

ac
co

rd
in
g
to

IS
O

36
11

—
A
ut

on
om

ou
sS

ys
te
m

ow
ne

r
C
om

pa
ny

/O
rg

an
iz
at
io
n
na

m
e
(f
re
e-
te
xt
)

𝑃𝑥
Pr

ot
oc

ol
s

Se
to

fp
ro

to
co

ls
us

ed
by

th
e
at
ta
ck

er
—

Is
-T
or

T
r
u
e
if
th

e
so

ur
ce

IP
be

lo
ng

st
o
a
kn

ow
n
To

re
xi
tn

od
e

Feature

𝐶𝑥
C
re
de

nt
ia
ls

eq
ue

nc
e

Se
qu

en
ce

of
cr
ed

en
tia

ls
us

ed
by

th
e
at
ta
ck

er
𝐷

𝑥
D
ic
tio

na
ry

Se
to

fu
ni
qu

e
cr
ed

en
tia

ls
us

ed
by

th
e
at
ta
ck

er
|𝐷

𝑥 |
D
ic
tio

na
ry

si
ze

N
um

be
ro

fu
ni
qu

e
cr
ed

en
tia

ls
us

ed
by

th
e
at
ta
ck

er
|𝐶

𝑥 |
≠
|𝐷

𝑥 |
D
up

lic
at
e
cr
ed

en
tia

ls
(t
ot
al
)

T
r
u
e
if
𝐶 𝑥

co
nt

ai
ns

du
pl

ic
at
e
cr
ed

en
tia

ls
—

D
up

lic
at
e
cr
ed

en
tia

ls
(s
am

e
se

ss
io
n)

T
r
u
e
if
du

pl
ic
at
e
cr
ed

en
tia

ls
w
er
e
se

en
in

a
si
ng

le
se

ss
io
n

Metric

𝑜 𝑡
(𝐷

𝑥)
To

ta
lD

ic
tio

na
ry

O
ve

rla
p

Pe
rc
en

ta
ge

of
cr
ed

en
tia

ls
al
so

se
en

by
ot
he

ra
tta

ck
er
s(
[0
,1
])

𝑜 𝑠
(𝐷

𝑥)
Su

bn
et

D
ic
tio

na
ry

O
ve

rla
p

Pe
rc
en

ta
ge

of
cr
ed

en
tia

ls
al
so

se
en

in
th

e
sa

m
e
su

bn
et

([
0,
1]
)

𝑜 𝑙(
𝐷

𝑥)
Le

ak
D
ic
tio

na
ry

O
ve

rla
p

Pe
rc
en

ta
ge

of
cr
ed

en
tia

ls
fo
un

d
in

pr
ev

io
us

le
ak

s(
[0
,1
])

—
U
se

rn
am

e
=
=
pa

ss
w
or

d
T
r
u
e
if
an

at
te
m
pt

w
ith

us
er

na
m
e
=
=

pa
ss
w
or

d
w
as

se
en

𝐸𝑥
D
ic
tio

na
ry

en
tr
op

y
(𝑥
/𝑠)

Sh
an

no
n-

en
tr
op

ie
so

ft
he

w
or

ds
in

th
e
cr
ed

en
tia

ls
eq

ue
nc

e
𝐶𝑥

Metric

𝑆𝑥
𝜏

Se
ss
io
ns

pe
rI

P
Se

qu
en

ce
of

br
ut

e-
fo
rc
e
se

ss
io
ns

𝜈 𝑙
(𝐿
,𝑥
)

Lo
gi
n
fr
eq

ue
nc

y
M

ea
n
nu

m
be

ro
fl
og

in
at
te
m
pt

sp
er

da
y

𝜈 𝑠
(𝐿
,𝑥
)

Se
ss
io
n
fr
eq

ue
nc

y
M

ea
n
nu

m
be

ro
fs

es
si
on

sp
er

da
y

𝑙(𝑆
𝑥𝜏
)

Se
ss
io
n
le
ng

th
(𝑥
/𝑠)

N
um

be
ro

fl
og

in
at
te
m
pt

si
n
a
se

ss
io
n

𝑑(
𝑆𝑥

𝜏)
Se

ss
io
n
du

ra
tio

n
(𝑥
/𝑠)

D
ur

at
io
n
be

tw
ee

n
fir

st
an

d
la
st

at
te
m
pt

in
a
se

ss
io
n
(s
ec

on
ds

)
𝛿 𝑙
(𝑆

𝑥𝜏
)

Ti
m
e-
be

tw
ee

n-
Lo

gi
ns

(T
bL

)
(𝑥
/𝑠)

Ti
m
e
be

tw
ee

n
su

bs
eq

ue
nt

lo
gi
ns

in
a
se

ss
io
ns

(s
ec

on
ds

)
𝛿 𝑠
(𝑆

𝑥𝜏
)

Ti
m
e-
be

tw
ee

n-
Se

ss
io
ns

(T
bS

)
(𝑥
/𝑠)

Ti
m
e
be

tw
ee

n
su

bs
eq

ue
nt

se
ss
io
ns

(s
ec

on
ds

)

Ta
bl

e
4.
2:

Fe
at
ur

es
an

d
M

et
ric

s:
C
ha

ra
ct
er
iz
at
io
n
of

br
ut

e-
fo
rc
e
at
ta
ck

er
s

92 Chapter 4. Approaches for Enhanced Security Monitoring

Feature/Metric dataset

Total number of login attempts (|𝐿|) 1 953 965
Mean number of login attempts per day ∼ 65 132
Total number of IPs 14 393
Mean number of login attempts per IP ∼ 136
Number of SSH login attempts 1 748 229 (89.47%)
Number of Telnet login attempts 200 125 (10.24%)
Remaining login attempts 5 611 (00.29%)

Table 4.3: Dataset Overview: BFL2020

categories are chosen for clustering and prioritization, e. g., credential- and timing-
based metrics. For large clusters the analyst might then find intra-cluster outliers
based on the cluster mean and for small clusters prioritize them based on inter-cluster
comparison of the metric.

4.2.6 Evaluation

In this section we analyze the BFL2020 dataset [WF20a] of brute-force logins that
was obtained through Honeygrove [Hon+22]. In comparison other available hon-
eypots [Vas+13], Honeygrove was specifically designed to collect brute-force login
attempts for multiple protocols. This implies that all login attempts found in the
dataset can be considered malicious. Although we do not have ground truth about
the attackers’ behavior, sophistication, and threat level the evaluation offers indicators
that can be taken into account for manual analysis. It is also important that this
analysis neither claims to be complete nor generally applicable for all datasets. The
goal is to demonstrate the effectiveness of the selected metrics to obtain (additional)
indicators for attacker attribution that can can be used in the context of threat hunting
and manual security analysis in a SOC. The exact choice of metrics and algorithm
parameters varies from organization to organization and even across time as multiple
attackers appear on the threat-landscape.

The dataset consists of about 2 000 000 password-based login attempts on a single
Honeygrove instance in a three month period between 2019-12-03 and 2019-06-13.
Table 4.3 shows some characteristics of the dataset. It is freely available online to
enable further research on the behavior of brute-force attackers.

4.2.6.1 Results of Single-Metric Analysis

The features and metrics shown in Section 4.2.3 and Section 4.2.4 provide a basis
for characterization of brute-force attackers. Depending on the attacker’s behavior,
a distinct combination of metrics might identify them in the pool of attacking IP
addresses. In this section, we show results for selected metrics for our dataset and
highlight their relevance for distinguishing attacker behavior.

Dictionary size The dictionary size |𝐷𝑥| is one of the most intuitive features to
roughly estimate the sophistication level of the attacker. Figure 4.7 shows the cumu-
lative distribution function (CDF) for this feature in our dataset. Most IP addresses
use a relatively small dictionary with about 80% of them trying 30 unique credentials
combinations or less. Interestingly the graph rises sharply around a size of 85–86

4.2. Characterization of Brute-Force Attackers 93

0 20 40 60 80 100 120 140

0

0.2

0.4

0.6

0.8

1

Dictionary Size |𝐷𝑥|

C
D
F:

IP
ad

dr
es

se
s

Figure 4.7: CDF: Dictionary Size |𝐷𝑥|

indicating that a comparatively large number of IP addresses exhibited that dictionary
size. This indicates that either a similar dictionary is used by multiple IP addresses or
that this value was often chosen for other reasons such as to avoid detection, e. g., an
attacker might switch IP addresses after this number of login attempts. The largest
observed dictionary size is 14 120, which is not included in the graph anymore for
visibility.

As noted above, the dictionary size alone does allow for an accurate assessment of the
attacker’s threat level to the organization. A small dictionary might be the result of
the guessing of default passwords or a highly targeted attack via credentials obtained
from spearphishing. Similarly a large dictionary can be obtained by using a large and
complex wordlist or by guessing numeric permutations of a small wordlist such as
root123, root124…. Thus, this feature should be used as part of a comprehensive
analysis in conjunction with other features and metrics.

Total DictionaryOverlap The total dictionary overlap 𝑜𝑡(𝑥, 𝐿) can be used to estimate
the threat-level of an attacker. Figure 4.8 shows the CDF for our dataset. It is clearly
visible, that the overall overlap is quite low with a maximum value of roughly 22%.
This is expected, as the metric is calculated as the mean overlap between all other IP
addresses in the dataset and large dictionaries score lower values for this metric when
comparedwith smaller ones, because the overlap is computed for all other dictionaries
and small dictionary can only contain a fraction of a larger dictionary. Given that
most dictionaries are small (≤100), the small values for 𝑜𝑡(𝑥, 𝐿) are expected.

As the effective range for the total dictionary overlap is small (in our dataset), differ-
ences between attackers are more significant than in other metrics. Especially very
low values in the range (0,0.01) are interesting, because this indicates either a new dic-
tionary that not many attackers use yet or a targeted attack that uses potentially valid
credentials that consequently do not appear in any other dictionaries. The metric can
therefore be used as a prioritization metric when applied to either single IP addresses
or clusters. Additionally, a threat hunter could calculate the dictionary overlap for
any other combination of selected attackers or clusters to further analyze potential
collusion or similarity in behavior.

94 Chapter 4. Approaches for Enhanced Security Monitoring

0 0.05 0.1 0.15 0.2

0.2

0.4

0.6

0.8

1

Total Dictionary Overlap 𝑜𝑡(𝐷𝑥)

C
D
F:

IP
ad

dr
es

se
s

Figure 4.8: CDF: Total Dictionary Overlap 𝑜𝑡(𝐷𝑥)

0 2,000 4,000 6,000 8,000 10,000

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mean Time-between-Logins (TbL) [s]

C
D
F:

IP
ad

dr
es

se
s

𝜏 = 1h
𝜏 = 2h
𝜏 = 6h
𝜏 = 12h

Figure 4.9: Influence of session timeout 𝜏 on Time-between-Logins (TbL)

Time-between-Sessions/Logins When considering brute-force sessions, it is impor-
tant how 𝜏 is chosen. As described in Section 4.2.4, 𝜏 describes the session timeout
between two login attempts. Intervals larger than 𝜏 start a new session.

Unfortunately, it is not possible to recommend an optimal value for this parameter,
as there is not a single metric this decision can be based on. Figure 4.9 shows the
influence of 𝜏 on TbL while Figure 4.10 covers TbS. The mean TbL 𝛿𝑙(𝑆𝑥𝜏) increases
for larger values of 𝜏. In the CDF this results in a lower curve as more IP addresses
exhibit larger values. This is expected, as the maximum timeout inside a session is
increasing and thus the mean. However, we can see that all graphs exhibit the same
trends shifted on the y-axis. For TbS the impact is even less severe and all four graphs
overlap nearly completely. This is somewhat expected as this results indicates that
the TbS is significantly larger than 𝜏 and thus not influenced by it.

Ultimately, we recommend setting 𝜏 to a relatively low value such as 1 hour, as it

4.2. Characterization of Brute-Force Attackers 95

0 5 10 15 20 25 30 35 40 45 50

0.5

0.6

0.7

0.8

0.9

1

Mean Time-between-Sessions (TbS) [days]

C
D
F:

IP
ad

dr
es

se
s

𝜏 = 1h
𝜏 = 2h
𝜏 = 6h
𝜏 = 12h

Figure 4.10: Influence of session timeout 𝜏 on Time-between-Sessions (TbS)

has no impact on the runtime of the algorithm prevents the merging of sessions as
described in Section 4.2.4. This allows for more fine-grained session metrics. The
parameter has massive impact on the single case but negligible impact on the means
of the metrics. However, the risk of merged sessions for larger values of 𝜏 outweighs
the benefits of fewer sessions that need to be processed for computation of further
metrics. Consequently, all following analyses were conducted with 𝜏 = 1 hour.

Dictionary Entropy The dictionary entropy 𝐸𝑥 offers a rough indication about how
the attempted passwords change in relation to another over time. A low mean value
or average change between attempts indicates a credential sequence that is changing
slowly, a property that is often explained by either ordered wordlists (similar initial
characters) or multiple number suffixes. Both might indicate a low-threat attacker
that is non-targeted and attacks a broad set of targets. A higher value or average
change thus hints a more sophisticated attacker that either uses a tailored credential
list or at least tries credentials at random to divert the analyst. As we do not expect
many high-threat attacks in our dataset, the expected results for our dataset should
be low to medium. Figure 4.11 shows a CDF for mean, maximum and minimum values of
𝐸𝑥 for our dataset.

4.2.6.2 Clustering Results

A single metric is not sufficient to capture an attacker’s behavior. While the analysis of
single metrics gives a good indication of the general threat landscape the organization
faces, they show their true potential when used in combination. In this section, we
show clustering on multiple metrics can reveal common behavior shared across IP
addresses as well as help prioritizing certain attackers that appear as outliers in the
clustering process. All clustering in this section was performed via DBSCAN [EKX96]
with varying parameters and data was normalized to unit variance before clustering.
We performed most of the metric calculation in Rust and supplementary calculation
and clustering in Python using scikit-learn [Ped+11].

96 Chapter 4. Approaches for Enhanced Security Monitoring

0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

Dictionariy Entropy 𝐸𝑥

C
D
F:

IP
ad

dr
es

se
s

mean
max
min

Figure 4.11: CDF: Dictionary Entropy 𝐸𝑥

Dictionary Size and Total Dictionary Overlap Clustering based on Dictionary
Size and Total Dictionary Overlap together is useful because it highlight certain
combinations that are especially interesting. For |𝐷𝑥| both low and high values can be
interesting, as a small dictionary might indicate a very targeted attack while a large
dictionary is useful to learn about potential new wordlists. The overlap is usually
most interesting for low values as this shows, that the credentials are not usually
found in other dictionaries. We used these two metrics to cluster the dataset via
DBSCAN (𝜖 = 0.15/min_points =2). Figure 4.12 shows the color-coded clusters
without outliers (unclustered IP addresses).

We obtained 18 clusters and 52 outliers this way. The graph also shows that two
clusters are by far the largest (shaded in dark red around 0 on the x-axis). These
two clusters with 12 170 and 2 055 IP addresses respectively account for 95% of all IP
addresses. All other clusters range between 2 and 42 IP addresses. These amounts
are much more manageable for manual analysis than the full dataset.

After obtaining these clusters, the analyst would have to do manual follow-up inspec-
tion of the clusters and outliers to reveal potential cooperation or prioritize defensive
measures. While our own analysis is not exhaustivewe found that the two /24-subnets,
that we already found suspicious during initial manual analysis, were largely clus-
tered together accordingly. 218.92.0.0/24 and 58.242.82.0/24 both contain attackers
with very similar dictionaries and partially directly following IP addresses. While this
shared behavior is easily detectable by basic features such as subnet and dictionary
size, these results show that clustering in this case indeed found potentially colluding
attackers and is thus useful to correlate IP addresses.

Mean Session Duration and Mean Time-between-Logins (TbL) Another interest-
ing combination of metrics is (mean) session duration and (mean) TbL. The session
duration is a potential indicator of the configuration in the attacking tools or scripts.
Login attempts are often interleaved with breaks to avoid detection. We clustered the
dataset by these two metrics via DBSCAN (𝜖 = 0.15/min_points = 2) and obtained
66 clusters and 152 outliers. These clusters are visualized in Figure 4.13.

4.2. Characterization of Brute-Force Attackers 97

Figure 4.12: DBSCAN: Dictionary Size and Total Dictionary Overlap (no outliers)

Figure 4.13: DBSCAN: Mean Session Duration and Mean TbL (no outliers)

98 Chapter 4. Approaches for Enhanced Security Monitoring

Cluster IP addresses 𝐸𝑥 𝜈𝑙(𝐿, 𝑥)
1 12 170 3.7717 0.1409
2 2 055 4.6324 0.9706
3 42 4.6173 130.4454
4 2 4.5007 14.2738
5 8 4.5246 3.4849
6 3 4.7320 2.0620
7 3 4.7680 996.1524
8 16 4.7132 3.6055
9 10 *4.6617 *2.8451

10 4 4.6419 19.4871
11 11 4.7058 1.4431
12 2 4.6441 4.6825
13 4 4.6965 3.6129
14 2 4.6102 2.9367
15 3 4.2565 45.2264
16 2 4.8489 12.7381
17 2 4.6735 85.4704
18 2 4.5982 11.1378

Table 4.4: Results: Priorization for clusters

While both the cluster and outlier count is higher then for the previous metric combi-
nation, the results still offer some interesting insights. The visualization clearly shows
the largest cluster containing a large amount of attackers that score relatively low in
both metrics. Besides that, several lines of clusters are visible that are very linear with
some small clusters further away. These lines indicate a linear relation between the
two metrics as the quotient between the session duration and TbL remains constant
on a line. This might be the result of attackers using the same timeout between login
attempts but different number of maximum attempts before a larger break is inserted,
i. e., a new session is recorded. Unfortunately we could not achieve clustering of
separate lines with DBSCAN, so new algorithms could be evaluated for this metric
combination. Nonetheless, an analyst could not examine clusters on the same line in
conjunction and try to find other common behavior such as similar patterns in the
credential sequence indicating similar tool usage. Also the relatively high amount of
outliers (152) would have to be evaluated further.

4.2.6.3 Metric-based Prioritization

Features andmetrics can also be used to prioritize either single IP addresses or clusters
of IP addresses obtained as described in the previous section. The selection of the
concrete metric is dependent on the goal the analyst aims to achieve. While most
metrics focus on estimating attacker sophistication (and therefore threat-level), some
corner cases might have other goals such as selecting a large cluster of low-threat
attackers that can be dealt with easily. In this section we calculate selected metrics for
the clusters obtained via the metric combination “Dictionary Size and Total Dictionary
Overlap” and describe the results.

As mentioned earlier we obtained 18 clusters and 52 outliers. We chose two metrics to
prioritize the cluster for further analysis. Both metrics serve different purposes and a

4.2. Characterization of Brute-Force Attackers 99

threat hunter would have to carefully select which metrics to follow up first as this is
extremely dependent on the scenario. First, we chose (mean) Dictionary Entropy 𝐸𝑥
as a general indicator of the attacker sophistication. Second, we selected the (mean)
Login Frequency 𝜈𝑙(𝐿, 𝑥) under the assumption that an APT attacker would try to
perform as few login attempts per day as possible to remain undetected. Table 4.4
contains the results for these two metrics as well as the number of IP addresses in the
clusters.

As the table shows 𝐸𝑥 is significantly lower for the largest cluster indicating that the
password used there are less complex than in the other clusters. However, it proves
to be not as good for further prioritization as the other values are very close to each
other. Combined with the size of the cluster however, it might still prove useful and
is still less complex than looking at the dictionaries manually. 𝜈𝑡(𝐿, 𝑥) shows some
interesting differences between the clusters. Cluster 7 scores by far the highest value
while many other clusters contain attackers that performed less login attempts per
day. Depending on the scenario the threat hunter could not investigate either cluster
7 or cluster 11 when expecting APT attackers.

We also discovered a very strong indicator for collusion between IP addresses in
cluster 9. This cluster contains ten IP addresses from distinct subnets that look benign
on the first look. However, they scored exactly the same values for both 𝐸𝑥 and 𝜈𝑙(𝐿, 𝑥)
with a standard deviation of 0.0 among them. This strongly indicates cooperation or
at least usage of the same scripts and would have been difficult to detect otherwise.
The threat hunter could now follow up an investigate if any other IP addresses from
other clusters scored the same for these twometrics. In any case this result shows, that
clustering based on our set of metrics can correlate otherwise unrelated IP addresses
and thus support the threat hunter effectively.

In summary, our evaluation indicates that feature- and metric-based analysis of brute-
force login attempts can provide valuable insights into their behavior and help to
better assess the resulting part of the external threat landscape. The combination of
the previously proposed feature and our two newly proposed metrics can be used to
(i) cluster login attempts from unrelated IP addresses to reveal potential collusion
and (ii) prioritize both single attackers or clusters of attackers. While ground truth
for real-world brute-force logins is not available, the analysis of our dataset obtained
through ourHoneygrove [Hon+22] honeypot revealed interesting behavioral patterns
and clustering yielded groups of unrelated IP addresses that exhibited highly similar
behavior and are likely colluding.

4.2.6.4 Requirement Comparison

Based on the description and evaluation results, we can now compare our approach
for metric-based characterization of brute-force attackers with our requirements
formulated in Section 3.1. R1: Accuracy is difficult to assess as there is no ground
truth available for malicious brute-force login attempts. However, we obtained solid
indicators of collusion and thus mark it as partially fulfilled. R2: Explainability is
fully met as the set of metrics (and especially our two novel metrics) allow for deep
insights into attacker behavior that support SOC analysts in their investigations. As our
approach uses common features that are usually captured by security infrastructure,
R3: Low overhead is also checked. While not explicitly measures, we rate R4: Scalability
as fulfilled as our calculations are not computationally intensive and easy to parallelize,
e. g., by dividing the incoming attempts per IP and distributing these streams to

100 Chapter 4. Approaches for Enhanced Security Monitoring

different machines. Both R5: Security and R6: Privacy are not directly applicable
as our approach only processes data provided by “publicly” over the Internet by
attackers. The only potential impact would be the credentials of legitimate traffic,
however an organization could leverage an approach as presented by Herley and
Schechter [HS19] to distinguish between legitimate and malicious attempts before
applying our metrics. Lastly, R7: Deploy- & Maintainability is fully met as the required
information is lightweight (and thus usually available in enterprise contexts) and our
approach does not rely on other components that would need to be deployed and
maintained.

4.2.7 Summary

This section introduced an approach to characterize behavior of brute-force attackers
using a collection of established and novel metrics to answer our formulated research
question RQ2:

RQ2 How and to what extend can brute-force attempts on externally-accessible services be
categorized and screened for potential APT reconnaissance activity?

Wedescribed how the features andmetrics of login attempts can be used in conjunction
or in isolation to cluster and prioritize IP addresses for analysis. The set of metrics
obtained from our brief literature survey is enhanced with two novel concepts that
enable detailed insights into attacker timing behavior of connected attempts as well
as entropy of their dictionary. In our evaluation, based on real-world login attempts
collected by our honeypot Honeygrove [Hon+22], we show examples how single
metrics or combinations of them can be used to find clusters of similar behavior.
The resulting clusters can then be further analyzed by several metric combinations,
e. g., to estimate their threat level. The resulting information can be used during
manual investigation by SOC analysts: while large clusters are probably the result
of automated scanners or similar attacks, unclustered or otherwise abnormal login
attempts might be results of adversarial reconnaissance activity, i. e., the first stage
in a future APT campaign. Overall, our evaluation demonstrated how our approach
can help to estimate attacker sophistication and thus potentially help to identify APT
reconnaissance activity and answering RQ2. The resulting information can act as
additional indicators for attacker attribution among other intelligence.

4.3 Summary

Security monitoring and the resulting visibility is the foundation for any successful
intrusion detection and especially important for stealthy APT attacks that aim to stay
undetected. This chapter introduced two core contributions of this thesis that provide
better visibility into the threat landscape of brute-force login attempts as well as into
payloads of TLS-encrypted communication. Together, these two approaches improve
the overall internal and external visibility that can leveraged for security analytics
such as the detection approaches presented in the next chapter.

Section 4.1 described an approach for passive TLS decryption for NMSs based on key
material that is shared by cooperative endhosts. This significantly improves upon the
predominant approach of TLS interception in enterprise networks, i. e., deployment
of MitM proxies that intercept all TLS connections at the network edge and forward
cleartext payloads to a NMS. In contrast, our approach (i) preserves the end-to-end
integrity guarantees of TLS, (ii) conceptually supports selective decryption and thus

4.3. Summary 101

allows users to retain privacy in some scenarios, and (iii) reduces the threat surface
slightly by shifting the access to cleartext payloads from active proxies to passive
NMSs. Our results indicate that our prototype implementation is feasible for real-
world scenarios with decent overhead imposed by the encryption and minimal traffic
buffering required in front of the decrypting NMS. Furthermore, an extended version
of our prototype has been merged into Zeek mainline and is included by default
starting from version v5.0.0 [AW22].

The approach presented in Section 4.2 aims to characterize behavior of brute-force
attackers. The combination of established metrics from literature as well as two novel
metrics (brute-force sessions and dictionary entropy) can be used to both cluster
and prioritize IP addresses for analysis. Our evaluation based on our real-world
dataset BFL2020 [WF20a] obtained through Honeygrove [Hon+22], showed that
strong indicators for collusion between otherwise unrelated IP addresses could be
obtained and which metric combinations were promising for prioritization. While the
results are highly dependent on the data and are likely to differ for other scenarios, the
results are promising and indicate that our metrics can support analysis of brute-force
login attempts.

In summary, this chapter introduced two methods to improve security monitoring
for both internal and external visibility. Approaches in this area are essential as they
provide the foundation for higher-level correlation and detection. Both contributions
can be used in parallel or individually and acts as enablers for other algorithms,
e. g., detection scripts in Zeek [Zee22] that can leverage the restored visibility into
TLS payloads for deep packet inspection on application layer. The next chapter
proceeds to the area of security analytics and introduces one stage-specific approach
to identify hosts affected by lateral movement of an APT campaign, a concept to
restore explainability to graph-based APT campaign detection approaches, and a
whole-campaign reconstruction approach based on the Kill Chain State Machine
(KCSM) that generates compact visual representations for SOC analysts. These five
approaches in total represent the main contribution of this thesis.

103

5 Approaches for APT Detection

This chapter contains three contributions that can be used to detect advanced per-
sistent threats (APTs) detection and thus offer different approaches to effectively
support security operations center (SOC) analysts in their investigations. The first
contribution has been published at ARES 2019 [Wil+19b] and describes an algorithm
to reconstruct lateral movement activity in a forensic setting based on a formal model
of security-relevant host properties. We propose an abstract algorithm as well as two
concrete implementations that ingest an incomplete set of alerts/indicators of compro-
mise (IoCs) and generate a set of hosts that were likely compromised during lateral
movement. The second contribution was submitted to IEEE ICC 2023 [WWF23] and
describes an approach to explain classification results of anomaly detection-basedAPT
detection systems. Our approach leverages a variation of permutation importance
(an established technique from explainable artificial intelligence (XAI)) and can be
applied to any graph-based anomaly detection approach across application domains.
The third contribution has been published at CYSARM 2021 (co-located with ACM
CCS 2021) [Wil+21] and describes an approach to reconstruct APT campaign activity.
The foundation of this process is the Kill Chain State Machine (KCSM), a formaliza-
tion of the comprehensive unified kill chain (UKC) [Pol21], that describes pre- and
post-conditions of APT stages and thus can be used to link alerts based on it.

Each of these three approaches improves a relevant part of the overall APT protection
process. The lateral movement reconstruction approach generates stage-specific
alerts that can be used in higher-level detection algorithms. For enterprise scenarios,
which already leverage systemprovenance-based detection systems, our explainability
approach helps to establish attack context to support SOC analysts. Both types of
alerts, stage-specific and anomaly-based, can then be used as part of our approach for
APT campaign reconstruction via KCSM. As a result, this thesis offers solutions to
singular problems along the APT detection process (the first two contributions of this
chapter) as well as a higher-level reconstruction approach that can ingest alerts from
several detection systems (both from literature and the proposals in this thesis).

5.1 Reconstruction of Attacker Lateral Movement

This section presents an approach to reconstruct lateral movement of different classes
of attackers based on a notion of host criticality. This helps to estimate the impact of
an APT campaign and thus speeds up incident response. Overall, this contribution
aims to answer research question RQ3 as introduced in Section 1.1:

RQ3 How can APT mitigation be supported by combining both alerts and security-relevant
host information, e. g., to estimate impacts of the attack?

Criticality, a host attribute of the formal model our approach is based on, emphasizes
hosts that are both highly relevant for the overall network function and also vulnerable,
making them a prime target for APT attackers. We propose an abstract algorithm

104 Chapter 5. Approaches for APT Detection

to reconstruct potential lateral movement activity from an incomplete alert set (as
commonly present in forensic analysis) as well as two concrete implementations
based on (i) random walks and (ii) k-shortest paths. The resulting ordered list helps
analysts to prioritize hosts for analysis, thus speeding up incident response time
which is especially critical in APT scenarios. This contribution is based on preliminary
work from a Bachelor’s thesis [Fra17]. Furthermore, this section shares material with
the corresponding conference publication [Wil+19a] that significantly revises and
extends the approach developed in the Bachelor’s thesis.

5.1.1 Motivation and Objectives

Lateral movement is one of the key phases of complex multi-stage attacks such as
APT campaigns. Attackers continuously expand their reach in the target network
until they either reach their campaign goals or are detected and thus deterred. After
detection, it is thus critical to reveal which hosts were infected as part of the campaign.
Knowing this set of infected hosts is important to both understand the campaign
and attacker behavior and for cleanup measures during incident response. However,
as detection only yields an incomplete set of IoCs or alerts, reconstruction of the
attacker’s lateral movement to obtain the set of infected hosts remains difficult. In the
worst case, security experts have to assume the whole network is compromised and
inspect and cleanup all hosts, a very time-consuming task that is detrimental both
financially and reputational as public services might not be available during incident
response. To address this problem, this contribution aims to achieve the following
objectives while also fulfilling our overall requirements formulated in Section 3.1:

• Design a model to capture both auxiliary data of the underlying network infras-
tructure as well as attacker behavior during lateral movement.

• Devise an algorithm to systematically reconstruct lateral movement activity
based on a given network topology and an incomplete set of IoCs.

• Evaluate the approach based on data that approximates real-world lateral move-
ment activity as close as possible.

The remainder of this section is structured as follows: Section 5.1.2 introduces the for-
mal models for network and attacker the approach is based on. Section 5.1.3 describes
the high-level algorithm to reconstruct attacker lateral movement. Section 5.1.4 details
two concrete variants of the proposed algorithm based on (i) k-shortest paths and (ii)
biased random walks. In Section 5.1.5 we evaluate our approach based on simulated
alert data and compare it with the requirements formulated in Section 3.1.

5.1.2 Formal Model

Detecting APT attacks, especially with respect to the attacker’s lateral movement,
requires a thorough understanding of how an attacker potentially spreads within the
network in question. Therefore, we propose formal models for both the network and
different classes of attackers. This is the prerequisite to quantify attacker interest in
different hosts and to reconstruct their lateral movement through the network.

5.1. Reconstruction of Attacker Lateral Movement 105

S

T

S

T

S

T

(a) Basic

S

T

S

T

S

T

(b) Directional

S

T

S

T

S

T

(c) Insider

Figure 5.1: Lateral movement graphs for different attacker models. Attackers move
from start host 𝑆 towards target host 𝑇. Orange-dashed represents the area of the lateral
movement graph, black hosts have been compromised, gray hosts remain untouched.

5.1.2.1 Network Model

The network model is based on a directed reachability graph 𝐺𝑅 = (𝑉, 𝐸) as this
matches the possibilities an attacker has during lateral movement. Hosts are mod-
eled as vertices 𝑉 while edges 𝐸 represent connectivity between them. The model
uses a simplified definition of connectivity that does not consider advanced routing
configurations. That is, if any connection can be established from host 𝑢 to host 𝑣, 𝐺𝑅
contains the edge (𝑢, 𝑣). This is in contrast to other approaches which usually consider
connectivity based on port/service.

Furthermore, we define two vertex attributes, Importance and Vulnerability, that repre-
sent properties of the corresponding host that are visible to an attacker. This includes
security properties and appliances such as network-based intrusion detection system
(IDS), host sensors, and other endpoint protection solutions.

The Importance 𝐼(𝑣) ∈ (0, 1] represents the value of the host for the network. Hosts
which run core services such as application and database servers are therefore rated
high while regular workstations typically receive a low value. The lower bound
explicitly excludes 0 as any compromised host represents a security risk and therefore
should not be ignored. 𝐼(𝑣) can be semi-automatically derived from installed software
when applying the approach to an existing network. Each software is rated with a
certain value which ultimately results in a cumulative Importance score for each host.
An attacker can estimate 𝐼(𝑣) by scanning a host for open ports or monitoring network
traffic to deduce which services are running on the host.

The Vulnerability 𝑉(𝑣) ∈ (0, 1] represents the difficulty for an attacker to compromise
the host. This attribute is influenced by a variety of factors such as patch level of
the operating system and installed software, known vulnerabilities matching the
system configuration, and security policies implemented in the network. The lower
bound explicitly excludes 0 to account for zero-day exploits as they can be used to
compromise even the most secure hosts. Similarly to 𝐼(𝑣), 𝑉(𝑣) can be derived semi-
automatically from the installed (security) applications on the respective hosts and
automated vulnerability scans such as Nessus [Ten22] or other CVSS-based [For15]
scanners. The Vulnerability also allows to account for the human factor in IT-security
by increasing the value for all hosts that are regularly used by employees, e. g., work-
stations or even employee-owned smart devices. An attacker can also estimate𝑉(𝑣) by

106 Chapter 5. Approaches for APT Detection

deducing software versions from banners, raw network packets or other fingerprinting
techniques.

𝐶(𝑣) = 𝐼(𝑣) ⋅ 𝑉(𝑣) (5.1)

Based on these attributes we can assign a Criticality 𝐶(𝑣) ∈ (0, 1] value to each host
in the network as given in Equation (5.1). This value represents a prioritization
score of the attacker. As these scores can be compared among the hosts, they are
used in our attacker model to approximate which hosts an attacker most likely tried
to compromise in each lateral movement step. We chose the product over a linear
combination of 𝐼(𝑣) and𝑉(𝑣) to highlight hosts which are both important and vulnerable
as especially critical. It is therefore important to compute accurate values for both 𝐼(𝑣)
and 𝑉(𝑣)when applying our approach to a real network. While a certain mismatch
between the knowledge base of the security administrator and the attacker can be
expected (and addressed in our approach), a more accurate estimation is expected to
boost our algorithm’s performance.

5.1.2.2 Attacker model

Based on the formal network model we can define three attacker models to capture
the distinct behavior of different classes of attackers. We differentiate between basic
attackers, directional attackers and insider attackers. These three attacker classes differ
mainly in their knowledge about the target network.

In our model, all attackers start from a random vulnerable host in the network and
target an important host, e. g., the production database or a crucial gateway system.
This closely resembles real attack scenarios, where the initial point of compromise is
generally hard to influence by the attacker, but most often is one of the more vulnerable
hosts. The attackers then move laterally through the network and aim to find the best
path to the target host. The Criticality 𝐶(𝑣) hereby models the cost function an attacker
tries to maximize when deciding which host to compromise next. Depending on the
attacker’s knowledge this results in either a straight path or tree like movement to
find the target host.

While these models describe an “idealized” attacker of the respective class, a real
intruder will probably deviate from the expected path. This can either be explained
by the different knowledge bases of attacker and security administrator mentioned
in Section 5.1.2.1 or additional reasons specific to each class of attackers.

Basic attackers These are intruders with strong technical skill that lack detailed
information about the target network. To find the best path to the target host, basic
attackers have to gradually explore the network while prioritizing hosts with high
Criticality. Therefore, they generally compromise large parts of the network before
reaching the target host. Their lateral movement forms a broad tree-like graph that
is visualized in Figure 5.1a. Reason for deviation from the best path, besides the
aforementioned mismatch of knowledge, could be exploits (possibly even zero-days)
that enable the attacker to compromise an otherwise secure host.

The behavior of basic attackers can be modeled by Dijkstra’s algorithm [Dij59]. The
link distance function 𝑑(𝑢, 𝑣) can be modeled by taking the inverse of the Criticality
of the destination node as given in Equation (5.2). However, in contrast to most

5.1. Reconstruction of Attacker Lateral Movement 107

applications of Dijkstra’s algorithm, the lateral movement consists of all nodes that
were explored instead of the shortest path only. This represents the explorative nature
of the lateral movement of basic attackers.

𝑑(𝑢, 𝑣) =
1

𝐶(𝑣)
(5.2)

Directional attackers Intruders with limited, structural information on the network
are referred to as directional attackers. They also have to gradually explore the network
to find the best path to the target node, but can use their knowledge to make better
decisions which host to compromise next. An attacker from this class might know in
which subnet the target host is located as well as how subnets are connected. They
can then use this information to disregard a host with otherwise high Criticality and
instead compromise another host that is reachable in different subnet close to the target
host. Thus, their lateral movement graph is usually a medium-sized tree as multiple
branches have to be explored to find the optimal path to the target. Figure 5.1b shows
an example graph for this attacker class.

The behavior of directional attackers can be modeled by the A* algorithm [HNR68].
The heuristic hereby represents the attacker knowledge and limits the search space
the attacker has to explore. It is therefore highly important to choose an appropriate
function that closely approximates real behavior.

We chose an euclidean heuristic based on node coordinates assigned by a multidi-
mensional scaling algorithm. Each node gets embedded in a two dimensional plane
based on their connecting edges. This results in (𝑥, 𝑦) coordinates for each node which
represent an abstract location of the host in the network. This could represent a
particular subnet or even real geographic coordinates. The heuristic then just cal-
culates the euclidean distance between the target host 𝑣 and the current host 𝑢 (as
shown in Equation (5.3)). The lateral movement graph consists of all nodes that were
explored by the A* algorithm.

𝐻(𝑢, 𝑣) = �(𝑋(𝑣) − 𝑋(𝑢))2 + (𝑌(𝑣) − 𝑌(𝑢))2 (5.3)

Directional attackers might deviate from the best path for the same reasons as basic
attackers, but especially if the heuristic does not accurately model the knowledge of
the real attacker.

Insider attackers We refer to intruders that know the complete network topology,
as well as the security properties of each individual host, as insider attackers. Their
total knowledge enables them to traverse the network directly from the initial point
of compromise to the target host in the most efficient way possible. As a result their
lateral movement graph is usually a simple path through the network (visualized
in Figure 5.1c). However, insider attackers might still deviate from the optimal path
for various reasons such as

• (zero-day) exploits (which by definition cannot be considered when calculating
host vulnerability),

• legitimate credentials,

108 Chapter 5. Approaches for APT Detection

• when attackers try to avoid security appliances, or

• if an attacker explicitly tries to cover their tracks by, e. g., partially behaving like
an attacker of a different class.

This class of attacker can be modeled by any shortest path algorithm that accepts
custom edge costs. In the concrete case of directed reachability graphs, Dijkstra’s
algorithm is again sufficient and the resulting shortest path represents the attacker’s
lateral movement. In the next section we will present algorithms to efficiently approx-
imate the lateral movement of these three attacker classes from an incomplete set of
IoCs.

5.1.3 Approach Overview

After an APT attack has been discovered, it is essential to efficiently identify which
hosts were compromised during the attacker’s extended presence in the network to
recover quickly and harden the network against future attacks. We present an ap-
proach to compute a candidate set of hosts which most likely have been compromised
based on the IoCs that could be obtained from the attack.

We assume preprocessed IoCs that have been verified and attributed to the APT attack
in question. In particular, we assume that there are no false positives in the IoC set.
For alerts from IDSs this usually involves some kind of aggregation or correlation
such as presented in [HF18]. For simplicity, we also assume a IoC was detected on
the first and last node in the lateral movement graph, i. e., entry point and target host
are known.

The considered problem can then be stated as follows: Given a weighted reachability
graph𝐺𝑅 that has been annotated according to our networkmodel (see: Section 5.1.2.1)
and a set of strictly ordered IoCs 𝐼∗, we aim to identify the target set of hosts the attacker
compromised on their way to the target host 𝑉𝑡. As the lateral movement cannot be
fully reconstructed without human validation, the algorithm returns an approximated
candidate set of compromised hosts 𝑉𝑐. Additionally, 𝑉𝑐 should be ordered, such that
the nodes that are most likely compromised, can be inspected first.

Input : 𝐺𝑅, 𝐼∗, 𝜏
Output : 𝑉𝑐

1 𝑖 ← 0;
2 𝑉𝑐 ← ∅;
3 while |𝑉𝑐| < 𝜏 do
4 foreach (𝑢, 𝑣) ∈ 𝐼∗ do
5 nodes ← GetNodes(𝐺𝑅, 𝑢, 𝑣, 𝑖);
6 Update(𝑉𝑐, nodes);
7 end
8 𝑖 ← 𝑖 + 1
9 end
10 return 𝑉𝑐

Algorithm 1: Lateral movement reconstruction from incomplete alert sets

The abstract algorithm we designed to address this problem is shown in Algorithm 1.
The basic idea is to approximate 𝑉𝑡 by repeatedly iterating the IoC pairs in 𝐼∗ and
obtaining nodes between them, until the result set is large enough (|𝑉𝑐| < 𝜏). The

5.1. Reconstruction of Attacker Lateral Movement 109

candidate set 𝑉𝑐 then contains an approximation of the unknown target set of com-
promised nodes 𝑉𝑡. The desired size of 𝑉𝑐 is given by the parameter 𝜏 ∈ (0, 1] and
expressed as a percentage of all nodes in the graph |𝐺𝑅|. Note: The algorithm specifies
neither GetNodes nor Update and thus only provides a blueprint how lateral move-
ment can be reconstructed. However, any implementations should ensure that 𝑉𝑐is
an ordered set of nodes, to use this order for prioritization of hosts during manual
security analysis.

5.1.4 Implementation Variants

We implemented two variants of the abstract algorithm proposed in the previous
section to evaluate our idea. One variant based on k-shortest paths and one based on
biased random walks. This section motivates and explains both variants in more detail.

5.1.4.1 K-shortest Paths

Shortest paths are the intuitive choice to find nodes connecting two IoCs. The first
variant thus leverages a k-shortest paths algorithm with the distance function based
on “inversed Criticality” that is also used as the basis for our attacker models in Sec-
tion 5.1.2.2. As the algorithm repeatedly calls GetNodes to obtain increasing numbers
of nodes, we need an efficient implementation to compute multiple shortest paths
between 𝑢 and 𝑣. Yen’s k-shortest paths algorithm [Yen71] provides this, as it is able to
compute multiple shortest paths with increasing length while keeping state between
iterations to avoid costly recomputations. The resulting concrete algorithm is shown
in Algorithm 2.

Input : 𝐺𝑅, 𝐼∗, 𝜏
Output : 𝑉𝑐

1 𝑖 ← 0;
2 𝑉𝑐 ← ∅;
3 while |𝑉𝑐| < 𝜏 ⋅ |𝐺𝑅| do
4 foreach (𝑢, 𝑣) ∈ 𝐼∗ do
5 nodes ← K-Shortest-Path(𝐺𝑅, 𝑢, 𝑣, 𝑖);
6 Update(𝑉𝑐, nodes);
7 end
8 𝑖 ← 𝑖 + 1
9 end
10 return 𝑉𝑐

Algorithm 2: Lateral movement reconstruction via k-shortest paths

Compared to the abstract algorithm, GetNodes is specialized to K-Shortest-Paths

with the iteration parameter 𝑖 used as the 𝑘 parameter. The result set 𝑉𝑐 is an append-
only list of nodes and thus directly fulfills our order requirement. Nodes are added in
the order they are discovered by the k-shortest paths algorithm. The Update function
then appends new nodes found in the current iteration to the 𝑉𝑐 by first checking for
duplicates.

The first variant represents an intuitive approach for lateral movement reconstruction
based on the underlying formal model. The k-shortest path function should perform
decent for all three attacker models as the distance function is identical. However,

110 Chapter 5. Approaches for APT Detection

this assumes knowledge parity between attacker and defender which would result in
identical scores for 𝐼(𝑣), 𝑉(𝑣), and 𝐶(𝑣). Most likely, this will not generally hold for
real-world scenarios. Additionally, the detection performance will likely decline for
deviating attackers as deviations are unlikely to be on the shortest path. This is also the
motivation for the next variant.

5.1.4.2 Biased RandomWalks

The second variant is based on biased random walks. Compared to the previous
approach, this algorithm should be more robust against attackers, that deviate from
the proposed idealized attacker models. However, pure random walks without any
other factors would completely disregard the attacker models and thus likely achieve
a worse performance. To address this, we use biased random walks with a modified
transition probability adapted to our attacker model. This second variant is shown
in Algorithm 3. The outer loop is changed from the conditional while loop that
checks |𝑉𝑐| to a for loop that is executed until the newly introduced limit parameter
is reached. The inner loop still iterates over the IoC pairs as previously, however
the GetNodes function is specialized to RandomWalk. As the random walks can only
specify a start node, which is 𝑢 in this case, the algorithm has to check if the target
node 𝑣was hit before updating 𝑉𝑐 with the hit counts of the walk. As the candidate
set then also contains hit counts instead of just an ordered set of nodes, this variant
has to OrderAndTruncate 𝑉𝑐 to meet our goals specified in the abstract algorithm.

Input : 𝐺𝑅, 𝐼∗, 𝜏, limit
Output : 𝑉𝑐

1 𝑉𝑐 ← ∅;
2 for 𝑖 ← 0 to limit do
3 foreach (𝑢, 𝑣) ∈ 𝐼∗ do
4 hitcounts ← RandomWalk(𝐺𝑅, 𝑢, 𝑣);
5 if 𝑣 in hitcounts then
6 Update(𝑉𝑐, hitcounts);
7 end
8 end
9 end
10 return OrderAndTruncate(𝑉𝑐, 𝜏 ⋅ |𝐺𝑅|)

Algorithm 3: Lateral movement reconstruction via biased random walks

Each random walk simulates a single attacker which moves laterally through the
network starting from 𝑢 to 𝑣. RandomWalk returns after either 𝑣 was hit or the random
walk timed out, performing more than a predefined amount of maximum steps. The
return value is a set of node hit counts that contains each node that was visited by
the random walk. If 𝑣 is in this set, the walk reached the target node and 𝑉𝑐 gets
Updated with the new hit counts. Instead of exiting the loop when enough results
have been obtained, this algorithm takes a limit parameter. This parameter sets the
number of random walks that are performed and thus directly influences the runtime
of this variant. As each random walk roughly takes the same amount of time, the
limit parameter offers fine-grained control over the runtime. In contrast the variant
on k-shortest paths is harder to predict, as the runtime of each iteration takes more
time as the shortest paths get longer.

5.1. Reconstruction of Attacker Lateral Movement 111

After the loop was exited, 𝑉𝑐 contains the cumulative hit counts for all nodes that
were hit in at least one random walk. 𝑉𝑐 is then ordered by hit counts descending and
truncated to the desired size of 𝜏 ⋅ |𝐺𝑅|. The result is an ordered list of the nodes that
were hit the most in all successful random walks.

𝑃𝑡(𝑢, 𝑣) =
1

|𝑆(𝑢)|
(5.4)

𝑃′𝑡(𝑢, 𝑣) =
𝐶(𝑣)
∑

𝑠∈𝑆(𝑢)
𝐶(𝑠)

(5.5)

In order to adapt the random walks to our attacker model, we modify the transition
probability 𝑃𝑡(𝑢, 𝑣) to be biased towards 𝐶(𝑣). 𝑃𝑡(𝑢, 𝑣) describes how likely a random
walk transitions from node 𝑢 to node 𝑣. As shown in Equation (5.4) the conventional,
unbiased function simply factors in the out-degree of 𝑢 and assigns each possible
successor 𝑠 ∈ 𝑆(𝑢) the same probability. The biased transition function prioritizes
nodes with higher Criticality as given in Equation (5.5). The transition probability is
essentially a “relative Criticality” value normalized by the sum of Criticalities of all
neighbors. This resembles the basic assumption of all three of our attacker models:
Each attacker generally compromises hosts with higher values for 𝐶(𝑣) to find the best
combination of Vulnerability and Importance out of all available hosts.

5.1.5 Evaluation

We implemented both variants of the algorithm in a Python-based prototype and
evaluated the performance in different scenarios. In this section, we first describe the
general experiment setup and datasets that were used followed by a discussion of the
results.

5.1.5.1 Experimental Setup and Datasets

There are no datasets openly available for either real enterprise network topologies and
few data sets containing IoC data. Large organizations fear the knowledge contained
in these sets might enable future attacks. Therefore, we evaluated our approach on
datasets consisting of two types of generated graphs as well as IoC sets from synthetic
lateral movement.

We evaluated our algorithm on standard preferential attachment graphs as they are
structurally similar to Internet or data center topologies [Gre+09; ALV08]. While these
networks do not exactly match our targeted enterprise networks, the graphs should
provide a decent approximation. The graphswere generated using the Barabási-Albert
algorithm [AB02] with𝑚 = 4—i. e., 4 edges were added from a newly generated node
to the existing graph.

Node Attributes After the graphs have been generated, they have to be prepared
for the algorithm following our network model (see: Section 5.1.2.1). We assign
Importance and Vulnerability attributes to all nodes to represent the security properties
of the corresponding hosts. Both attributes are sampled from certain probability
distributions to approximate real-world networks.

112 Chapter 5. Approaches for APT Detection

0 0.2 0.4 0.6 0.8 1

0

1

2

𝐼(𝑣)

Re
la
tiv

e
lik

el
ih
oo

d

Figure 5.2: Probability distribution for 𝐼(𝑣) (𝛼 = 4, 𝛽 = 0.075)

In a typical enterprise network the important services (such as web servers, SSH
gateways, or databases) are usually deployed on a small number of hosts, while the
majority of the IP address space is occupied by regular workstations with relative low
impact on the overall network function. Therefore, we sampled 𝐼(𝑣) from a gamma
distribution with 𝛼 = 4 and 𝛽 = 0.075 and limited the result to a maximum of 1 to fit
our model. The corresponding probability density function is shown in Figure 5.2.
The mode of this distribution is about 0.3 which matches an average workstation,
while hosts with an attribute value of more than 0.6 are sampled less likely to account
for typical server setups.

We assume that the Vulnerability of hosts is distributed inversely to their Importance.
The majority of workstations are more likely to be outdated, uniquely configured or
set up with a local administrative account controlled by the user. All of these factors
increase 𝑉(𝑣) for these hosts compared to centrally provisioned server machines with
automatic security updates. As a result, we sample𝑉(𝑣) from 1−𝑔𝑎𝑚𝑚𝑎(𝛼 = 4 and 𝛽 =
0.075) and limit the value to the required interval (0, 1].

As mentioned previously in Section 5.1.2.2, our implementation of the directional
attacker requires node coordinates for the euclidean heuristic. We used Gephi [Gep22]
with a plugin based on [Alg09] to perform multidimensional scaling and embed the
nodes into the two-dimensional plane.

Attack generation After 𝐺𝑅 has been prepared with node attributes, we generate
synthetic attacks based on lateralmovement along the three attacker classes. Moreover,
we use a deviation parameter 𝛿 ∈ [0, 1] that determines how much the synthetic attack
deviates from the idealized attacker model. 𝛿 is applied on the graph by selectively
setting the edge cost of a percentage of edges to 263 − 1, the maximum value of an
64-bit integer. For 𝛿 = 0.2 this means that the cost for every fifth edge is set to this
value, effectively removing it from the graph for the shortest path calculation. This
simulates an attacker that deviates in 20% of cases, because 20% of edges in the graph
will (most likely) not be on the shortest path to the target node.

The start and end nodes of each lateral movement graph are chosen based on our
assumption that an attack starts on a vulnerable host and targets an important one
(see: Section 5.1.2.2). To account for this we calculated all shortest paths between
the nodes with the top 10% of Vulnerability 𝑉(𝑣) and the top 10% of Importance 𝐼(𝑣)
according to the algorithm for the respective attacker class. We then choose the
lateral movement graph from one of the 10% longest paths to have enough nodes
to reconstruct later. For insider attackers that is just the path itself—for both other

5.1. Reconstruction of Attacker Lateral Movement 113

Basic attacker Directional attacker Insider attacker

|𝑉| |𝑉𝑐| |𝐼∗| |𝑉𝑐| |𝐼∗| |𝑉𝑐| |𝐼∗|
200 151 76 93 47 8 5
500 383 185 270 131 11 6

Table 5.1: Dataset Overview: Reconstruction of attacker lateral movement

attacker classes the lateral movement graph consists of all visited nodes. Lastly, the
result stored as an ordered set of nodes.

Alert placement After the lateral movement has been generated, IoCs were ran-
domly placed on the set of nodes. We introduce another node attribute called De-
tectability 𝐷(𝑣) ∈ [0, 1] that indicates how likely a compromise is detected on the host.
When applying the approach to a production network 𝐷(𝑣) can be derived from the
installed security appliances in the network and on the hosts. For our synthetic net-
works, we assume a balanced security setup with some hosts protected by IDSs and
some honeypots deployed in the network (which carry a high detectability). There-
fore, we sample𝐷(𝑣) from a normal distributionwith 𝜇 = 0.5 and 𝜎 = 0.15. To place the
alerts a random number from [0, 1] is generated for each node in the lateral movement
graph. If that number exceeds 𝐷(𝑣), an IoC is placed on the node. Additionally, the
first and last node always receive an IoC—following our assumption that point of
entry and target of the attack are known.

Datasets For our experiments, we generated two datasets differingmainly in the size
of the preferential attachment graphs. Table 5.1 gives an overview across both datasets.
Next to the number of nodes in 𝐺𝑅 we also highlight the number of compromised
nodes |𝑉𝑡| for each attacker class on average and the average number of alerts placed
on these nodes |𝐼∗|. The numbers give a rough overview about the dimensions of an
attack from the respective attacker class. Basic attackers compromise about 75% of
nodes on average while directional attacker reach the target node after compromising
46–50% respectively. Insider attackers only need to compromise 2–4% of all nodes
as they can take the shortest path directly. Initially, all experiments were performed
on both datasets but we saw that network size (at least between 200 and 500 nodes)
had no significant impact on the results. Therefore, all graphs in the following section
were obtained from the result set with |𝑉| = 200with 50 repetitions to reduce runtime.

5.1.5.2 Metrics

To evaluate our algorithm, we performed multiple experiments based on the setup
described in the previous section. In the following, we treat the two algorithms as
binary classifiers,i. e., the hosts that are contained in 𝑉𝑡 are classified as compromised,
while the remaining ones are classified as non-compromised. This is formalized
in Equation (5.6). The true positive rate (TPR) is calculated by dividing the number of
correctly labeled host by the total number of compromised hosts 𝑉𝑐.

114 Chapter 5. Approaches for APT Detection

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

𝜏

Tr
ue

po
si
tiv

e
ra
te

(T
PR

)

Basic Attacker
Directional Attacker
Insider Attacker

Figure 5.3: Results: Classification of idealized attackers/𝛿 = 0 (k-shortest paths)

𝑇𝑃𝑅 =
|𝑉𝑡 ∩ 𝑉𝑐|
|𝑉𝑐|

(5.6)

𝐹𝑃𝑅 =
|𝑉𝑡 ⧵ 𝑉𝑐|
|𝑉 ⧵ 𝑉𝑐|

(5.7)

As shown in Equation (5.7) the false positive rate (FPR) is calculated by dividing the
number of incorrectly classified hosts by the number of host (all hosts that are not
in 𝑉𝑐). Based on this, we can perform standard statistic analyses to determine the
performance of the two variants of the algorithm and finally derive a recommended
value for 𝜏. Each experiment was repeated 50 times for both variants—one based on
k-shortest paths and the other based on random walks.

5.1.5.3 Experiments

In this section, we present the experiments we conducted to evaluate our approach
for reconstruction of lateral movement and discuss the obtained results.

Performance for idealized attackers In the first experiment we aim to analyze the
performance of both algorithm variants for idealized attackers that follow our attacker
models exactly (see: Section 5.1.2.2). The result can be treated as ground-truth to
validate the core functionality of our approach.

To achieve this, we set the deviation 𝛿 to zero and measure the TPR for varying values
of 𝜏. Hereby, values greater than 0.6 were not evaluated for 𝜏 as it is typically not
useful nor feasible to analyze more than 60% of the whole network. Additionally, this
limit reduces the runtime of single experiments considerably. The results are shown
in Figure 5.3 (for k-shortest paths) and Figure 5.4 (for random walks) respectively.
The plots show the average TPR across 50 different graphs for each attacker class and
𝜏 ∈ [0, 0.6].

The reconstruction of lateral movement is most accurate for the insider attacker and
least accurate for the basic attacker. The results indicate that both variants are capable

5.1. Reconstruction of Attacker Lateral Movement 115

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

𝜏

Tr
ue

po
si
tiv

e
ra
te

(T
PR

)

Basic Attacker
Directional Attacker
Insider Attacker

Figure 5.4: Results: Classification of idealized attackers/𝛿 = 0 (random walks)

of approximating the set of compromised hosts effectively with the implementation
based on k-shortest paths performing slightly better for both basic and directional
attackers and substantially better for insider attackers.

This is expected as the insider attacker strictly compromises hosts on the shortest path
that is the first path returned by the k-shortest paths algorithm. While directional
attacker movement cannot be fully reconstructed, the TPR is promising especially
for lower values of 𝜏. For the basic attacker the TPR is increasing slightly better than
linear with 𝜏.

The random walk based variant performs strictly inferior for all three attacker classes
with almost linear performance. This is somewhat expected as 𝛿 is set to zero for this
experiment, favoring k-shortest paths. However, we expected a better TPR especially
for insider attackers and a higher maximum TPR for 𝜏 = 0.6 and all three attacker
classes.

Performance for deviating attackers Next, we aim to analyze the performance of
our algorithm for more realistic attackers that deviate from the idealized models.
Although the models capture expected attacker behavior, it is unlikely that a real
attacker follows them exactly. Even if that were the case, we still expect some devia-
tion, because of the different knowledge bases of attacker and security administrator
(see: Section 5.1.2.1).

Therefore, in the second experiment we evaluate the influence of the deviation on
the performance of both algorithm variants. The deviation parameter 𝛿 is varied in
[0, 1] and we measure the TPR for 𝜏 set to 0.2 and 0.5 per attacker class respectively.
The results are shown in Figure 5.5 (for k-shortest paths) and Figure 5.6 (for random
walks) respectively. The plots show the average TPR across the 50 runs for 𝛿 ∈ [0, 1].

The graphs indicate that 𝛿 has a small negative impact on the TPR for both intermediate
and insider attackers, while basic attackers are only minimally affected. The variant
based on k-shortest paths is able to reconstruct ~90% of insider lateral movement
with 𝜏 set to 0.2 even when the attacker deviates 80% from the expected behavior. For
both other attacker classes, the TPR basically scales linearly with the size of 𝜏 as the

116 Chapter 5. Approaches for APT Detection

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Deviation 𝛿

Tr
ue

po
si
tiv

e
ra
te

(T
PR

)

Basic Att. (𝜏 = 0.2) Directional Att. (𝜏 = 0.2) Insider Att. (𝜏 = 0.2)
Basic Att. (𝜏 = 0.5) Directional Att. (𝜏 = 0.5) Insider Att. (𝜏 = 0.5)

Figure 5.5: Results: Influence of 𝛿 on classification (k-shortest paths)

lines for 0.2 and 0.5 are basically offset by a fixed size on the y-axis. This is expected,
when we look at the graphs of these attacker classes in Figure 5.3 and Figure 5.4.
Additionally, the TPR is worse for the directional attacker and high values of 𝛿 while
the performance for the basic attacker is nearly unaffected.

The performance of the random walk-based variant is again strictly inferior. However,
it is even less affected by deviation and even sees an increase in TPR for the insider
attacker and high values of 𝛿. The influence of 𝜏 also appears to be mostly linear. This
poor performance is unexpected, as we explicitly designed this variant to reconstruct
lateral movement graphs that do not closely follow the attack model. One reason for
this could be how the deviation parameter 𝛿 is applied to the graph. As mentioned
previously in Section 5.1.5.1 𝛿 increases the cost for a percentage of the edges to 263 −1,
so that they are not chosen by the attacker. As the edges are chosen randomly, a low
value for 𝛿 could result in the modification of edges that would not have been part
of the lateral movement graph anyway. In these cases, the attacker compromises the
same hosts as if there were no deviation. However, this mostly relates to the insider
attacker, as this class naturally compromises the least amount of hosts compared to
the other models (see: Table 5.1). Thus, it is least affected by our implementation of
the deviation.

Recommendations for 𝜏 In the final experiment, we aim to derive useful values for
𝜏 for real-world production use. As mentioned previously 𝜏 greatly influences the
runtime of the algorithm and thus should be carefully chosen. If the chosen value for
𝜏 is too low, the candidate set 𝑉𝑡 is too small to contain all compromised hosts. High
values of 𝜏 increase runtime of our algorithm and are also expected to increase the
FPR. To approximate real attackers we include runs with a deviation up to 0.75 in this
experiment.

We visualize the effect of 𝜏 on the performance of our approach in a receiver oper-
ating characteristic (ROC) curve in Figure 5.7 (for k-shortest paths) and Figure 5.8
(for random walks) respectively. Each data point represents a value of 𝜏 in [0, 0.6].

5.1. Reconstruction of Attacker Lateral Movement 117

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Deviation 𝛿

Tr
ue

po
si
tiv

e
ra
te

(T
PR

)

Basic Att. (𝜏 = 0.2) Directional Att. (𝜏 = 0.2) Insider Att. (𝜏 = 0.2)
Basic Att. (𝜏 = 0.5) Directional Att. (𝜏 = 0.5) Insider Att. (𝜏 = 0.5)

Figure 5.6: Results: Influence of 𝛿 on classification (random walks)

The plots also contain a graph representing a random classifier,i. e., a function that
randomly classifies hosts as compromised or non-compromised. All points above this
line imply a classification performance better than random. Thus, a perfect classifier
would produce a result at the (0, 1) coordinate. Random classification is of course not
a perfect approximation of real security administrators. However, it serves as a good
baseline to compare both implementations.

The k-shortest paths variant achieves great performance for insider attackers with
0.88 TPR and only 0.01 FPR for 𝜏 = 0.05. The performance for directional attackers
is slightly less good. However, it still offers a big improvement over random classi-
fication especially for low values of 𝜏. The graph for basic attackers also indicate a
good performance trend. The ratio between TPR and FPR favors the TPR,i. e., more
compromised hosts are correctly classified than wrongly classified. For low values of
𝜏 the candidate set 𝑉𝑐 is too small to contain all compromised nodes and thus cannot
offer a high TPR. The same applies for the directional attacker, although the gradient
is nearly identical to the graph of the basic attacker, it decreases faster starting from
𝜏 = 0.15.

The variant based on random walks offers a linear performance. For insider and di-
rectional attackers the TPR is slightly better and for basic attackers inferior to random
guessing. For basic attackers this could be leveraged by inverting the classification
and thus achieving a slightly better performance. However, as k-shortest paths outper-
formed random walks for every attacker class and deviation, we did not implement
this. While these results could be expected from the previous experiment, they ul-
timately disqualify the random walks based variant as a useful implementation of
our approach. Therefore, all recommendations that follow are given for the k-shortest
paths variant.

The recommended value for 𝜏 differs depending on the amount of resources available
and how many false positives should be tolerated. Also, in real-world scenarios a
security administrator would not run our approach once and analyze all results but
rather start from the beginning of the candidate set and rerun the algorithm once a

118 Chapter 5. Approaches for APT Detection

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

False positive rate (FPR)

Tr
ue

po
si
tiv

e
ra
te

(T
PR

)

Basic Attacker
Directional Attacker
Insider Attacker
Random Classification

Figure 5.7: Results: ROC for 𝜏 ∈ [0, 0.6] and 𝛿 ∈ [0, 0.75] (k-shortest paths)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

False positive rate (FPR)

Tr
ue

po
si
tiv

e
ra
te

(T
PR

)

Basic Attacker
Directional Attacker
Insider Attacker
Random Classification

Figure 5.8: Results: ROC for 𝜏 ∈ [0, 0.6] and 𝛿 ∈ [0, 0.75]
(random walks)

5.1. Reconstruction of Attacker Lateral Movement 119

new IoC has been verified. A sensible choice for insider attackers is 𝜏 = 0.05 as this
achieves 0.88 TPR with only 0.01 FPR. If more false positives can be tolerated, 𝜏 = 0.35
achieves 0.99 TPR with a still relatively low FPR of 0.16. For directional attacker the
ideal value for 𝜏 should be between 0.1 and 0.2. Values below 0.1 contain too few
results to achieve a high enough TPR while value above 0.2 start to see increased FPRs.
This results in a TPR of 0.27 for 𝜏 = 0.1 and 0.47 for 𝜏 = 0.2. While this is certainly
not enough to properly identify all compromised hosts, the resulting candidate set
should contain enough compromised machines to yield more IoCs which can then be
fed back into a future iteration of the algorithm.

It is generally difficult to detect all hosts that were compromised by a basic attacker,
as they usually compromise many hosts in the network (see: Table 5.1). The choice of
𝜏 offers multiple points to consider. At 𝜏 = 0.23 the algorithm achieves a TPR of 0.3
with only 0.02 FPR. If more false positives can be tolerated, 𝜏 = 0.54 achieves 0.66 TPR
at the cost of 0.1 FPR. Finally, as so many hosts are compromised anyways, it might
even make sense to chose 𝜏 = 0.6. This results in 0.72 TPR at still only 0.13 FPR.

In summary, our evaluation details how our approach helps to identify machines that
were most likely infected during lateral movement of an APT campaign. From our
two proposed implementations, the variant based on k-shortest paths consistently
outperforms the one based on random walks even for highly deviating attackers, i. e.,
attackers that only roughly follow their assumed attackermodel. Overall, performance
is best for insider attackers, followed by basic attackers, and ultimately directional
attackers. This is expected as the insider attacker compromised the least amount
of nodes that are quickly found by our algorithm. Furthermore, we provide some
recommendations for 𝜏, i. e., the parameter that controls the size of the result set as
well as the overall runtime of the algorithm. While the exact values differ between
expected attacker classes, a value between 0.05 and 0.2 should be sensible for most
insider and directional attackers. As basic attackers compromise large parts of the
network anyway, 𝜏 needs to be significantly higher and the approach overall becomes
slightly less useful. However, APT campaigns usually do not exhibit behavior similar
to basic attackers and thus should remain unaffected.

5.1.5.4 Requirement Comparison

Based on the description and evaluation results, we can now compare our approach for
reconstruction of lateral movement with our requirements formulated in Section 3.1.
R1: Accuracy is marked as partially fulfilled, as the evaluation results indicate good
performance for insider attackers which are conceptually similar to expected APT
behavior. Due to the added context through our formal model, R2: Explainability
is also partially met. SOC analysts can leverage the host properties (and attached
metadata such as software versions) of the identifies hosts to estimate why an attacker
might have attacked it. R3: Low overhead is fully checked as our approach only relies
on abstract alerts/IoCs that mark specific hosts and thus can be very lightweight.
Although not explicitly assessed in the experiments, R4: Scalability is partially checked
as both variants offer some conceptual benefits that help to scale them. The chosen
implementation of k-shortest paths efficiently caches previously found paths while
random walks are completely independent from each other and thus can be massively
parallelized. R5: Security was not explicitly measured and thus is not rated. While
R6: Privacy was not explicitly relevant in the design of our approach, the abstract
alerts do not require extensive personal information, thus partially fulfilling this
requirement. Lastly, R7: Deploy- & Maintainability is partially met as our approach

120 Chapter 5. Approaches for APT Detection

requires some detailed information about the underlying infrastructure to establish
the host properties but operates with any kind of alert/IoC afterwards, effectively
simplifying deployment.

5.1.6 Summary

This section introduced an approach to reconstruct APT lateral movement activity and
thus identify hosts that were likely compromised to answer our formulated research
question RQ3:

RQ3 How can APT mitigation be supported by combining both alerts and security-relevant
host information, e. g., to estimate impacts of the attack?

More specifically, we reconstruct lateral movement activity from an incomplete alert
set based on a formal network model that captures attacker interest. The two host
attributes Importance 𝐼(𝑣) and Vulnerability 𝑉(𝑣) are abstract representations of prop-
erties an attackermight be interested in. The resulting Criticality𝐶(𝑣), i. e., the product
of the first two attributes, then highlights hosts that are both vulnerable and important
and thus highly attractive targets. Based on three attacker classes derived from this
model, we showed an abstract algorithm to identify likely compromised hosts as well
as two concrete implementations based on k-shortest paths and biased random walks.
The evaluation based on synthetic attack paths revealed that the variant based on
k-shortest paths consistently outperforms the random walks across all three attacker
classes. Our results indicate that our approach performs best for insider attackers
(that are conceptually similar to highly targeted APT attacks) and achieves about 90%
TPR for attacker that deviate 80% from our idealized attacker model. Overall, the
parameter 𝜏, i. e., the size of the result set, significantly impacts both TPR and FPR.
Based on our results, we recommend to set 𝜏 = 0.2 for best results across all three
attacker classes. Overall, our approach showed that the combination of alert data and
security relevant host information can help to estimate the impact of lateral movement
during an APT campaign and thus provides an answer to RQ3.

While our approach can help to identify lateralmovement activity and thus contributes
valuable alerts to the overall detection pipeline, most SOCs will perform some kind
of whole-campaign detection. Several approaches in this area are based on anomaly
detection and learn amodel of normality. Anomalies are then classified as APT attacks
and flagged accordingly. However, the underlying models are usually to complex
to infer which part of the underlying data triggered the anomaly (as we discussed
in: Section 3.4.2). Thus, the next section presents an approach to restore this missing
context for anomaly detection-based approaches as the information is essential for
efficient incident response measures.

5.2 Explainability for APT Detection on System Provenance
Graphs

This section describes an approach to obtain explanations for whole-graph classifica-
tion decisions made by any black box anomaly detection model through a variation of
permutation importance. We apply this approach in the context of anomaly detection-
based APT detection via system provenance graphs. This addresses one identified
problem with the approaches discussed in Section 3.4.2, namely the missing combina-
tion of Accuracy and Explainability. Overall, this contribution aims to answer research
question RQ4 as introduced in Section 1.1:

5.2. Explainability for APT Detection on System Provenance Graphs 121

RQ4 Which techniques from XAI can be leveraged to add attack context to classification
decisions made by anomaly detection-based APT detection approaches?

Our approach identifies graph elements that are likely part of the detected anomaly by
systematically modifying the original graph and observing the changing classification
results. While we apply and evaluate our approach in the domain of graph-based
APT detection, the concept should be transferable to any whole-graph classification
problems based on anomaly detection, as our approach make no assumptions about
the underlyingmodel. This contribution is based on preliminary work from aMaster’s
thesis [Wel22] supervised by the author of this thesis. Additionally, this section shares
material with the corresponding publication [WWF23] that further evaluates the
approach developed in the Master’s thesis.

5.2.1 Motivation and Objectives

In recent years, anomaly detection approaches based on whole-system provenance
data have emerged as a popular option for APT campaign detection (see: Section 3.7).
The fine-grained data available in system provenance is well suited for data-hungry ap-
proaches like artificial intelligence (AI)-based anomaly detection and is able to achieve
high detection performance. Systems like UNICORN [Han+20] or Pagoda [Xie+20]
are able to learn sophisticated models of normality for single hosts or network seg-
ments and can detect APT activity as anomalies. After detection has happened, SOC
analysts are faced with mitigation and incident response measures that require de-
tailed knowledge about the past attack. However, the normality models that triggered
the detection are usually not providing explanations beyond the detected anomaly and
are too complex to be manually analyzed. Thus, analysts need to manually investigate
all potentially infected systems consuming precious time the adversary can potentially
remain in the network. While some approaches for XAI exist (like LIME [RSG16] or
SHAP [LL17]), they have not been applied to the graph-based anomaly detectors in
question as they are largely focused on tabular data as the predominant data format.

To address this problem, this contribution aims to achieve the objective of restoring
explanations for graph-based anomaly detection approaches while satisfying the
additional requirement of approach independence, e. g., by not making any assump-
tions about the underlying AI model. This ensures our approach is applicable to any
anomaly detection approach even in other application domains.

The remainder of this section is structured as follows: Section 5.2.2 describes the overall
idea of our approach based on a variation of permutation importance. Section 5.2.3
details two generic modification strategies we employ to systematically alter the
original graph. Section 5.2.4 evaluates our approach based on two established system
provenance datasets and compares it with the requirements established in Section 3.1.

5.2.2 Approach Overview

Our approach is based on input permutation importance similar to LIME. However, as
our target anomaly detection approaches are based on graphs, we need to adapt the
concept to systematically modify graph data instead of tabular data. While graphs
can be represented as tabular data (in form of adjacency matrices), this representation
is unfit to properly represent complex graphs such as data provenance graphs as the
matrix grows quite large and is usually sparse which is suboptimal for modifications.
Additionally, it does not include auxiliary data encoded in the graph such as node or
edge properties. Figure 5.9 gives an overview about our approach. As mentioned, we

122 Chapter 5. Approaches for APT Detection

Original Graph

Modification #1

Modification #2

Black Box

Model

Anomaly

Anomaly

Normal

Figure 5.9: Overview: Explainability for graph-based anomaly detection. An original
attack graph is modified several times. The modified graphs are processed with the
model again. If the prediction changes from anomaly to normal the modified parts are

relevant to the attack.

treat the anomaly detection model as a black box by submitting several graphs to it
and observing the produced anomaly score. Once a graph is marked as anomalous,
we modify it systematically and rerun the anomaly detection. If a modified graph is
the detected as normal (or even just “less abnormal”), this is an indicator that the
removed parts are part of the anomaly, i. e., the APT attack we aim to reveal.

Figure 5.10 visualizes the envisioned result of our approach. Figure 5.10a shows an
example provenance graph that was classified as abnormal by an AI-based anomaly
detector such as UNICORN. The three nodes represent attack activity and are un-
known to the SOC analyst. Figure 5.10b shows the same graph after applying our
approach. The different colors represent the anomaly scores obtained by removing
the node from the graph ranging from green for more abnormal scores (nodes are
likely benign as the score increases compared to the baseline) to dark red for least
abnormal score (nodes that most likely belong to the attack we aim to reveal). This
heat map-style representation helps analysts to identify relevant parts of the attack
needed for further investigation, incident response, and mitigation measures.

Until now, we have not described the modification strategies employed to alter the
original graph. There are several options such as node/edge removal or addition,
node rewiring, or label changes to just name a few. However, our scenario of APT
detection imposes some restrictions on our approach: (i) the overall result (and
thus also the modification) needs to be understandable by human SOC analysts.
This rules out options like node rewiring that completely change the associations
between affected nodes, potentially creating invalid data provenance structures. (ii)
the number of modifications needs to be manageable for the approach to finish in
reasonable time. In our scenario of this is especially important as provenance graphs
capture all system activity and thus grow quickly. This allows nearly unlimited
numbers of modifications. As our goal is to identify subgraphs of the provenance

5.2. Explainability for APT Detection on System Provenance Graphs 123

(a) Original provenance graph (b) Heatmap based on “abnormality”

Figure 5.10: Idea: Permutation-based explanation of subgraphs

graphs which are the result of attack activity, we focus on two concrete modifications
strategies that only remove elements of the graph. The resulting anomaly scores
then help to estimate if the removed elements are part of the subgraph in question.
Both strategies make minimal assumptions about input graphs are therefore widely
applicable while still being easy to understand.

5.2.3 Modification Strategies

This section introduces the two modification strategies we devised in the context
of our approach. Our goal is to identify graph elements that are likely responsible
for the underlying anomaly. Thus, we chose to focus on the systematic removal of
graph elements as the changing anomaly scores then indicate if the removed elements
impacted the classification decision.

5.2.3.1 Strategy 1: Node Removal

The first modification strategy operates on node-level. In our application scenario of
data provenance graphs, this is intuitive as nodes in the graph represent kernel-level
objects. As the attack likely is responsible for the creation of a set malicious objects
(processes, files, sockets etc.), the nodes can act as “barriers” between benign and
malicious system activity. Equation (5.8) formalizes this strategy. Let 𝐺 = (𝑉, 𝐸) be a
graph that should be explained. For each node 𝑣 ∈ 𝑉 a new modified graph is created
without 𝑣 and its corresponding edges. The set of modified graphs is therefore given
as

𝑀 = {𝐺 − 𝑣|𝑣 ∈ 𝑉} (5.8)

with − being the node removal operator [Die17] which simply removes one or more
nodes and its edges. In short, for each node, create a new graph that does not contain
the node.

This strategy has the advantage of simplicity. It is easy to comprehend, therefore iden-
tified attack patterns can be quickly analyzed and transferred into actions. Attention
needs to be payed to the number of created graphs, as provenance graphs can contain
large numbers of nodes. Depending on the application context, nodes may need to be
prioritized to keep computation times at bay. For node prioritization there are several
options which either rely on structural data alone such as node degree or on semantic
data encoded in the graph such as label or other attached data.

124 Chapter 5. Approaches for APT Detection

5.2.3.2 Strategy 2: Edge Removal

The secondmodification strategy operates on edge-level. This resembles the streaming
property of most data provenance graphs which are defined as a sequence of edges.
In our application scenario, this maps closely to malicious activity such as read

and send which is expressed in these edges and thus understandable to the analyst.
Equation (5.9) formalizes this strategy. Let 𝐺 be a graph that should be explained
and is defined as 𝐺 = (𝑉, 𝐸). For each edge 𝑒 ∈ 𝐸 a new modified graph is created
without 𝑒 and any edge that follows afterwards, which is denoted by 𝐸𝑡. This requires
edges to be timestamped or at least ordered which is the case for our data provenance
graphs. The set of modified graphs is therefore given as

𝑀 = {𝐺 − 𝑒 − 𝐸𝑡|𝑒 ∈ 𝐸} (5.9)

with − being the edge removal operator [Die17] which removes one or more edges.

As well as the node removal strategy introduced in the previous section, this strategy
is easy to comprehend for users too. It quickly gives insights at which point during the
creation of the provenance graph it became malicious. Provenance graphs can contain
large numbers of edges which means that removal of every single edge is not feasible.
However, as nodes are removed in an ordered fashion, they can also be removed in
batches. This reduces the number of modified graphs by a factor equal to the batch
size. If one batch seems to be highly relevant to the attack, the contained edges can be
processed again with a smaller batch size. This can be repeated as needed to single
out the relevant part of the provenance graph.

5.2.4 Evaluation

In this section, we evaluate our explainability approach for graph-based anomaly
detection on two data provenance datasets that are commonly used in the domain of
APT detection. First, the two datasets are introduced with some descriptive features.
Next, we describe the experimental setup including the implementation based on
UNICORN [Han+20] and execution environment. Finally, we present our results
obtained for the explainability performance of our approach.

5.2.4.1 Datasets

For our evaluation, we chose two datasets also chosen for the evaluation of UNICORN,
namely StreamSpot [MMA16] and Defense Advanced Research Projects Agency
(DARPA) Transparent Computing (TC) Engagement 3 [DAR18]. Table 5.2 gives an
overview about the number of attack and benign graphs as well as the average node
and edge counts for both datasets.

The StreamSpot dataset was released alongside a proposed IDS [MMA16] and con-
tains 600 graphs in total. 100 of these graphs resemble a drive-by download attack.
The other 500 graphs belong to benign scenarios, e. g., downloading files, using a
mail service, or playing a video game. Each provenance graph consists of system calls
recorded during execution of a single scenario in an automated browser. We use the
first 100 benign graphs (simulating video streaming) to train UNICORN on benign
behavior.

5.2. Explainability for APT Detection on System Provenance Graphs 125

Table 5.2: Key features of the two datasets used in the evaluation

StreamSpot [MMA16] DARPA TC Cadets [DAR18]
Be

ni
gn Graphs 100 109

Mean Nodes 8,292 25,760
Mean Edges 113,229 30,165

A
tta

ck Graphs 100 3
Mean Nodes 8,891 609,378
Mean Edges 28,423 1,004,743

The DARPA TC Program [DAR15] aimed to provide real-world data for researchers
working on intrusion detection. It provides several datasets generated by differ-
ent provenance systems across five engagements. The data was gathered from real
machines while security researchers executed attacks on servers and clients. This
evaluation uses the data generated by the Cadets provenance tracker of engagement
three [DAR18] same as UNICORN. This dataset contains three attack graphs and
109 benign graphs. It is important to note that the attacker graphs from this dataset
are significantly larger than all other graphs and that there is a significant imbalance
between benign graphs (109) and attack graphs (3).

Both datasets have a significant downside in the fact, that they only provide labels
on graph-level. This is too coarse-grained for our evaluation that would require
knowledge about which subgraph of the overall graph is responsible for the attack.
StreamSpot does not provide any information in this regard besides the high-level
description of the attack (“drive-by-download”). DARPA is slightly better as each
engagement contains a human-readable report which describes the attacks in more
detail including timestamps. However, this is not sufficient to clearly and efficiently
identify the relevant subgraph. We address this problem of missing ground truth
by comparing the results of our approach for benign and attack graphs via a novel
metric.

5.2.4.2 Experimental Setup

As mentioned previously, we evaluate our concept on top of UNICORN [Han+20]
as state-of-the-art APT detection approach based on data provenance graphs. The
available implementation consists of three components that are executed in a pipeline
and exchange data via certain text files. Our explainability approachwas implemented
as a Python wrapper around these three components and leverages the detection
component as a black box function. The prototype is able to modify graphs accord-
ing to both proposed modification strategies and executes UNICORN for multiple
modifications in parallel for optimal resource usage.

To prioritize nodes for our node removal strategy, we chose the node degree property as
it relies on structural graph data alone. For StreamSpot, we chose only nodes with a
node degree larger than 1 as these weakly connected nodes are unlikely to be essential
to an attack. In the case of DARPA TC, we increased this threshold to 5 as the relevant
graphs are significantly larger. For the attack graphs in this dataset, we additionally
had to employ a cutoff of 1 000 nodes to keep runtime manageable.

126 Chapter 5. Approaches for APT Detection

(a) Example benign graph (b) Example attack graph

Figure 5.11: Results: Examples of sorted anomaly scores obtained via node removal
for two StreamSpot graphs

Early in the evaluation phase, preliminary results showed that processing of even
batched modifications via the edge removal strategy were taking excessive time. To en-
able evaluation regardless, we implemented an additional variant of the modification
directly on UNICORN’s internal sketch data structure instead of the original graph.
This shortened the runtime significantly and thus enabled the experiments. While
this sacrifices our black box assumption for reduced computation time, it does not
influence the explainability results as the modification on the sketches is identical to
what would be produced by processing the modified graphs through UNICORN.

All experiments were run on a single bare-metal machine with 64 CPU cores and 256
gigabytes of main memory. Our prototype was instructed to use all available cores.

5.2.4.3 Results

Our approach generates an anomaly score for each graph modification. Depending
on the modification strategy employed, the results allows us to assign an anomaly
score to the removed node or edges. A lowered anomaly score indicates, that the
respective graph element(s) are likely to belong to the attack (as the graph became
“more normal” with the element(s) removed). Figure 5.11 shows two example plots
highlighting the different anomaly scores for removed nodes. Both underlying graphs
belong to the StreamSpot dataset with 15 as the example benign graph and 330 as the
example attack graph. The anomaly scores were sorted descendingly and plotted on
the y-axis while the x-axis shows the node index. Additionally, the dashed red line
marks the baseline anomaly score 𝐵 that was scored by the original graph and is also
given in the title. We observe three key facts: (i) the baseline of the benign graph is
lower than the attack graph as expected. (ii) for a large number of nodes, the removal
only minimally impacts the assigned anomaly score for both the benign and attack
graph (visualized by the black line closely tracking the dashed baseline in the middle
of the plots). (iii) there are no nodes in the benign graph that decreased the anomaly
score when removed, while the attack graph contains 1 476 nodes that do. This is
consistent with our expectation that the benign graph only contains benign nodes
(as their removal would make the model “more abnormal”) while the attack graph
contains a limited set of nodes caused by the embedded attack. When we consider
our application scenario of APT detection, the deviation from the baseline can also be
used to prioritize nodes for analysis. As our plots contain sorted data, analysts would

5.2. Explainability for APT Detection on System Provenance Graphs 127

Figure 5.12: Results: Example of sorted anomaly scores obtained via edge removal for
a StreamSpot graph

then start their investigation on the nodes farthest to the right as they produced the
lowest anomaly scores.

While the anomaly scores for the node removal strategy are promising, the edge
removal strategy is less convincing. Figure 5.12 shows an example plot with the edge
removal strategy applied to benign graph 11 from StreamSpot [MMA16]. The x-axis
again shows the detection rate, while the y-axis contains the unsorted numbers of
removed edges. As mentioned previously, the edges were removed in batches of
size 2000. Initially, the graph seems to indicate that many removed edge batches
lower the anomaly score and thus are likely to belong to our attack. However, we also
see a constant decline in the anomaly score that increases monotonically with more
removed edges. This implies that the overall anomaly score generally increases with
more edges added to the graph. In fact, this is true for all attack and benign graphs
across both datasets: The anomaly score lowers with more removed edges starting
from the baseline. As this does not offer any insightful information about the graphs
but rather on the inner workings of UNICORN, we do not consider the edge removal
strategy throughout the remainder of this evaluation. While the strategy might be
helpful for other anomaly detection approaches or other application domains, it does
not seem to produce valuable results in our scenario.

The two plots based on node removal already indicate that our approach is able to
identify graph elements that are likely to belong to an attack. However, the anomaly
score alone is not the best choice as a metric as it is only applicable to the respective
graph element(s) and thus does not allow for comparisons between graphs. To address
this, we define a new metric that describes the area below the original detection value
𝐵 that we use as a baseline. We call this metric area under baseline (AUB) and is is
calculated from the detection rates of our modifications 𝑑𝑖 as shown in Equation (5.10).
The factor of 1 000 is used for clarity and for better comparability as the original
numbers are very low.

128 Chapter 5. Approaches for APT Detection

Figure 5.13: Results: Example attack graph with shaded area under baseline (AUB)

Table 5.3: Results: Median area under baseline (AUB) for node removal

Graph Type StreamSpot [MMA16] DARPA TC Cadets [DAR18]

Benign 0.3419 0.0000
Attack 1.0182 0.1224

AuB𝐺 = −1000 ∗
∑𝑛−1

𝑖=0 𝑚𝑎𝑥(𝑑𝑖 − 𝐵, 0)
𝑛

(5.10)

The AUB is basically a numeric representation of the graph elements that result in
lower anomaly scores when removed. The example graphs shown in Figure 5.11 in
fact exactly match our expectation that benign graphs exhibit an AUB of 0 while attack
graphs result in a low AUB. This is important as a high AUB would indicate that large
parts of the graph are part of the anomaly and thus would need to be investigated
by SOC analysts. Figure 5.13 shows the previous attack graph from the StreamSpot
dataset (330) with the AUB shaded and in the title.

We can now compare the median values of the AUB across the benign and attack
graphs of our datasets respectively. Table 5.3 gives an overview across both datasets
and graph types. The median AUB for both datasets is larger for the attack graphs
than for the benign graphs. This is expected and confirms our hypothesis that the
metric accurately represents the anomalous graph elements in the attack graphs. For
DARPA TC Cadets, we even see a median AUB of 0 for benign graphs, indicating that
our metric represented the non-existent anomaly perfectly.

To further support our results we also analyzed the difference in AUB distribution
between benign and attack graphs for statistical significance using the Wilcoxon rank-
sum test [Wil92]. The test reported a p-value of 0.00004088 (0.0041%) for the results
obtained from StreamSpot, strongly indicating that the difference in distribution of

5.2. Explainability for APT Detection on System Provenance Graphs 129

AUB for benign and attack graphs respectively is indeed statistically significant. For
DARPA TC Cadets, we did not conduct the test as the sample size of just three attack
graphs in the dataset is too small to yield meaningful results. However, the median
AUB of 0 for benign graphs is promising and indicates that the obtained values for
the attack graphs are also representative of the contained anomalies.

5.2.4.4 Discussion

Our results indicate, that our approach using the node removal strategy is able to
reveal graph elements that are likely to be part of the hidden attack subgraph we
aim to identify. The lowered anomaly score when removing those elements suggests
that the elements are part of the anomaly (i. e., attack). However, due to the missing
granularity in the state-of-the-art datasets used for evaluation, we cannot completely
confirm this claim. Our novel metric area under baseline (AUB) thus aims to evaluate
our approach with the available labels, i. e., graph-level classification as benign or
abnormal, by summarizing the identified elements. The results indicate, that attack
graphs consistently score higher median values for AUB supporting our hypothesis
that the summarized elements belong to the anomaly (which are not present in benign
graphs). While this is not the optimal outcome, we are confident, that our approach
could support security analysts in their investigations. Although some benign graphs
exhibit a non-zero AUB, this is not a problem for analysts, as they would apply our
approach only on graphs that the anomaly detector marked as anomalous. The
resulting graph elements can then be prioritized for improved analysis and incident
response.

5.2.4.5 Requirement Comparison

Based on the description and evaluation results, we can now compare our approach for
explainability of graph-based anomaly detection with our requirements formulated
in Section 3.1. R1: Accuracy is partially fulfilled as our results strongly indicate that
anomalous graph elements are identified although this is not completely confirmed
due to the missing fidelity of the datasets. As R2: Explainability was the explicit
goal of our approach, it is fully met. The added contexts supports SOC analysts in
identifying relevant details about the detected anomaly. R3: Low overhead is partially
checked as our approach does not require additional data but incurs some significant
computations. As runtime performance was not explicitly measured, R4: Scalability is
not rated. Similarly, R5: Security is not directly applicable to our approach and was
thus not evaluated. R6: Privacy remains an open question in any approaches based on
system provenance graphs. However, our approach does not impact this requirement
directly thus marking this requirement as neutral. Lastly, R7: Deploy- &Maintainability
also remain unsolved as the reliable capture and processing of high-volume system
provenance data still poses significant operational challenges. As our approach again
does not impact this requirement, it is also rated neutral.

5.2.5 Summary

This section presented an approach to obtain explainability for graph-based anomaly
detection approaches through a variation of permutation importance to answer our
formulated research question RQ4:

RQ4 Which techniques from XAI can be leveraged to add attack context to classification
decisions made by anomaly detection-based APT detection approaches?

130 Chapter 5. Approaches for APT Detection

The added context about specific classification decisions enables SOC analysts to
better understand the detected attack and informs incident response measures. Addi-
tionally, our concept is also applicable to whole-graph classification problems in other
application domains as we treat the anomaly detection function is treated as a black
box and no assumptions about the underlying model are made. More specifically, we
systematically modify the graphs that were classified as anomalies and observe the
changing anomaly scores. If the result is “more normal”, we likely removed (part
of) the anomaly. Our evaluation leverages UNICORN [Han+20] as the anomaly
detection black box and is based on two established datasets in the system provenance
domain: StreamSpot [MMA16] and DARPA TC [DAR18]. While we cannot fully con-
firm our explainability results due to the lack of fidelity in the datasets, we devised a
metric to quantify the anomalous graph elements and evaluate our approach based on
that. Our analysis shows statistically significant deviations in median values between
benign and attack graphs (as confirmed using the Wilcoxon rank-sum test [Wil92])
as expected. Overall, our obtained results indicate that our approach successfully
leverages a variation of permutation importance to identify likely anomalous graph
elements and thus provides an answer to RQ4.

The presented approach helps to obtain context about detected attacks and signifi-
cantly supports SOC analysts. However, one issue with system provenance-based
APT detection approaches remains in the form of difficult deploy- and maintainability
as the reliable capture and processing of this kind of high volume data is challeng-
ing. The next section addresses this problem by suggesting an alternative approach
for whole-campaign APT detection that requires only minimal information in the
input alert set. Additionally, it can ingest both regular untagged alerts as well as
alerts with associated stage label as produced by stage-specific approach as discussed
in Section 3.6 or presented in the first section of this chapter.

5.3 APT Contextualization via Kill Chain State Machines

This section introduces a novel approach to contextualize APT activity according
to the UKC [Pol21]. The algorithm is based on a Kill Chain State Machine (KCSM)
that describes multi-stage attack campaign progress in its states and contains attack
stages from the UKC as transitions between them. The resulting scenario graphs are
compact representations of potential APT activity that support SOC analysts in their
investigations. Overall, this contribution aims to answer research questions RQ5 and
RQ6 as introduced in Section 1.1:

RQ5 How can established kill chain-based APT models be leveraged for campaign detection
with only minimal assumptions about the lower-level alert set?

RQ6 Which level of volume reduction can be achieved during APT campaign reconstruction
to lessen the impact of alert fatigue on SOC analysts?

Our approach ingests network-based alerts (both with and without attached APT
stage labels) and links them according to the pre- and post-conditions of the state
machines. After several optimization steps, we obtain compact APT scenario graphs
that offer extended context about the reconstructed campaign activity. Additionally,
we describe an extended version of our approach that includes prioritizationmeasures
that further support SOC analysts in working with the obtained scenarios.

This contribution is based on preliminary work from a Master’s thesis [Ort19] su-
pervised by the author of this thesis. Furthermore, this section shares material with

5.3. APT Contextualization via Kill Chain State Machines 131

the corresponding publication [Wil+21] that significantly revises and extends the
approach developed in the thesis. The optimizations and approaches for scenario
prioritization described in Section 5.3.5 were developed in a Bachelor’s thesis [Lau22]
that was supervised by the author of this thesis.

5.3.1 Motivation and Objectives

Campaign-based APT detection is a promising area of research that aims to detect the
presence of APT adversaries by analyzing their activity as a whole. This is achieved
by either detecting anomalies that diverge from normal system activity as APT activity
or by reconstructing potential campaigns based on an underlying APT model. How-
ever, both approaches from both areas have significant shortcomings (as described
in Section 3.7): (i) anomaly detection approaches fail to explain which malicious
activity triggered the anomaly, thus effectively hindering incident response measures,
(ii) current reconstruction approaches are based on system provenance data that
is expensive to capture and difficult to reliably maintain, (iii) most reconstruction
approaches use outdated models that are too limited to accurately describe current
APT activity, and (iv) most approaches from both categories are not extensible and
thus hard to integrate into existing detection environments.

To address this problem, this contribution aims to achieve the following objective:
detect APT activity on campaign level by reconstructing the campaign according to a
comprehensive model. In contrast to prior approaches from literature, the following
requirements should be satisfied (in addition to the overall requirements formulated
in Section 3.1):

• Self-contained stage mapping: The approach needs to be able to deduce poten-
tial APT stages from the input data without relying on any external detection
systems. This ensure that the approach can be deployed in greenfield scenarios
without any existing security infrastructure.

• Extensibility: In addition to 1., the approach should nonetheless integrate with
potentially existing detection approaches and integrate their generated IoCs &
alerts into the reconstruction process. This is especially helpful for stage-based
detection approaches that may offer higher detection accuracy for a single APT
stage compared to the provided stage mapping.

• Lightweight data sources: To simplify deployment in large organizations, the ap-
proach should not be based on system provenance data. Alternative lightweight
data sources like network traffic or coarse-grained host data is easier to reliably
capture and should thus be preferred.

• Compact representation: The representation of the reconstruction is aimed at
SOC analysts that need to further investigate if the detected scenario is (part of)
an actual APT campaign is present in the network. To support the analyst as
good as possible, the representation should be compact enough to quickly gain
a good overview about the potential campaign while maintaining references to
all underlying data for further analysis.

This section describes our approach for multi-stage attack detection. We first apply
alert correlation to preprocess alerts into clustered meta-alerts and unclustered single
alerts. Next, we feed both types of alerts to our APT detection and contextualization
approach. We assign potential attack stages to alerts and link subsequent stages ac-
cording to our KCSM to generate APT scenario graphs. These scenarios reveal potential

132 Chapter 5. Approaches for APT Detection

Target
selected

2.1
Delivery

1.2
Weaponization

Attack
vectors
known

2.3
ExploitationTarget

prepared

1.1
Reconnaissance

Ready to
act

Infected

Goal

2.4 Lateral Movement
2.5 Command & Control (C&C)

2.2 Social
Engineering

Persistent

2.6
Persistence

2.7 Defense
Evasion

3.2 Discovery Foothold
in new
zone

3.1
Pivoting

3.3
Privilege Escalation

Zone Intel

3.5
Credential AccessRoot on

infected
box

Zone
Perms

2.4 Lateral
Movement

3.4 Execution

4.1 CollectionDominant
in network

Target
Intel

4.2 Objectives
4.3 Target

Manipulation

4.2 Objectives3.2
Discovery

4.4 Exfiltration

1. Outside of target organization

2. General target infection

3. Breaching of new network zones

4. Campaign goals

Figure 5.14: Kill Chain State Machine (KCSM) derived from UKC [Pol21]

multi-stage attacks present in the alert data and aid the human analyst during incident
triage and mitigation.

The remainder of this section is structured as follows: Section 5.3.2 introduces the
KCSM that we derived fromUKC [Pol17; Pol21]. This formalizationmakes the existing
model more actionable and lays the groundwork for our approach. Section 5.3.4
describes our algorithm to characterize and detect APT and other multi-stage attacks.
We show how potential attack stages can be derived from single alerts and meta-
alerts and leverage the state machine to connect these attack stages to expressive APT
scenario graphs. Next, Section 5.3.5 describes some extensions to the base approach
that improve the algorithm and help to prioritize the generated APT scenarios. In
Section 5.3.6 we evaluate both the base approach and the extended prototype on
synthetic and real-world data and discusses the obtained results in the context of the
requirements established in Section 3.1.

5.3.2 The Kill Chain State Machine (KCSM)

A segregation of a network into multiple network zones, which is standard in security-
sensitive organizations, forces an APT actor to follow a kill chain model [BYG14]. The
UKC [Pol17; Pol21] is the most comprehensive model from related work and was thus
chosen as basis for our approach. The original UKC involves 18 stages (see: [Pol21])
that might manifest in different host and network activity. Some stages might occur
repeatedly, others might be left out. Nonetheless, there is a certain ordering of attack
stages that cannot be changed. For example, malware Delivery necessarily comes
before command & control (C2/C&C). Likewise, some stages might reoccur such as
lateral movement (LM). Additionally, Delivery can happen via the network in the form
of an email or offline via an infected thumb drive. Exploitation is a host-level activity
and Pivoting is often visible on the network and hosts likewise. Monitoring every
individual device of an organization is almost impossible [Mar+16], but monitoring
the entire network of an organization is feasible even though expensive. As about half
of all UKC APT stages and transitions between them are visible on network level, we
limit our approach to these stages, enabling us to work on network data only.

5.3. APT Contextualization via Kill Chain State Machines 133

To make the model actionable for our algorithms, we formalize the stages and their
ordering to a finite-state machine in Figure 5.14 that we call the KCSM. We map APT
stages to transitions as they represent attacker actions. States in KCSM represent the
campaign progress with “Target selected” as the common start state. As the goals of
APT campaigns can be quite diverse, the end state is abstractly labeled “Goal”. Overall,
both states and transitions are divided into four major categories:

Outside of target organization (purple) AnAPT campaign starts when the attacker
has selected the target. 1.1 Reconnaissance follows to determine possible attack vectors
and to choose an attack strategy. The attack is tailored to the target and malware is
1.2 Weaponized with an exploitable bug.

General target infection (orange) Once the APT actors are ready to act, they 2.1
Deliver the weapon to the target, e. g., malicious Dropbox implant or a water-holedweb
server. The next goal is to get the delivered weapon executed in the target network.
Therefore, tactics like 2.2 Social Engineering might be employed. After the initial 2.3
Exploitation, KCSM reaches the central state of infection. From here on, all further
APT actions take place inside the target’s infrastructure. The central state of “Infected”
allows an APT to take various paths. Colors in KCSM states indicate different action
paths that can be pursued. The states for infection and persistence are marked orange.
Whenever a new box is infected, malware may be 2.6 Persisted and 2.7 Defense Evasion
techniques are applied. It is possible to take actions in form of 2.5 C2/C&C and
2.4 lateral movement (LM), just circling in the infected state. LM is considered the
movement to a known target. Identifying new targets, however, falls into the third
category.

Breaching of new network zones (green) An APT might need to 3.1 Pivot from an
infected box or might already be in a position where it is worthy to start 3.2 Discovery.
The 3.2 Discovery action is similar to 1.1 Reconnaissance but is conducted in the internal
networks of an organization. Thereafter, the zone is known. Once the attacker 3.3
Escalates Privileges, they may 3.5 Access Credentials to gain network-wide permissions.
After that 2.4 LM is possible within the new network zone, which brings the attacker
back to the general state of infection. Note: The KCSM makes the entire process of
network zone breaching an optional path. Controlling the infection or spreading
it to new machines, is always possible via taking the circular 2.4 LM and 2.5 C&C
transitions in the “Infected” state. However, this path would presume that the attacker
possess comprehensive knowledge of the network.

Campaign goals (red) The last category of states marks the path for acting towards
objectives. From the state of infection, the attacker can reach a predominant network
position or even directly proceed to the campaign goal. These unlabeled transitions
indicate that APT campaign goals can be highly diverse. It is not required for an APT
to 4.1 Collect or 4.3 Manipulate data. Similarly, 4.4 Exfiltration is not required to happen.
However, in case data is exfiltrated, the attacker is required to collect the targeted data
first. The unlabeled backwards transition from “Goal” to “Infected” state symbolizes
how APTs remain in a system as long as possible. Acting on objectives, exploring new
network zones, controlling and spreading are not necessarily bound to ever finish.

It is also important to note that we can differentiate between stages that compromise
new hosts and others that do not. The simplest example for the first category would be

134 Chapter 5. Approaches for APT Detection

Target
Selected

2.1
Delivery

1.1
Reconnaissance

Ready Infected Goal

2.2 Lateral Movement
2.3 C&C

3.2
Discovery

2.2 LM

Zone

3.1 Pivoting

Zone
Intel

2.2 LM

4.1 Objectives
4.2 Exfiltration

2.2 LM

4.1 Objectives
4.2 Exfiltration

3.2 Discovery

1. Outside of target organization

2. General target infection

3. Breaching of new network zones

4. Campaign goals

Figure 5.15: Network Kill Chain State Machine (NKCSM) derived from UKC [Pol21]

2.1 Delivery while 2.3 Command and Control does not compromise a new host. We will
use this information later in the detection algorithm approach to improve the results.

APT stages can be observed in many parts of a compromised network. 2.1 Delivery
can happen via the network in the form of an email or offline via an infected thumb
drive. 2.3 Exploitation or 3.3 Privilege Escalation are solely host-level activities and 3.1
Pivoting is often both a network and a host action. Monitoring the entire network of an
organization is expensive. But monitoring every individual device of an organization
is almost impossible [Mar+16]. With a network monitoring system (NMS) like
Zeek [Zee22] it is possible to monitor the network traffic even of large networks
with little administrative overhead. In contrast, collecting, shipping, and unifying
traces from thousands of heterogeneous system components is more challenging.
Interestingly, about half of the state transitions (and thus APT stages) might be
observable on network level. The other half of all transitions may be observed on
host level or even outside of the organizations scope. To highlight this, we present
the Network Kill Chain State Machine (NKCSM) in Figure 5.15, a version of the KCSM
reduced to all stages that might be detectable at the network level.

The NKCSM keeps the start and end states from the original state machine (Target
Selected and Goal). APT stages that either occur outside of the target’s network (1.2
Weaponization, 2.1 Social Engineering) or on host level (2.3 Exploitation, 3.3 Privilege
Escalation, 3.4 Execution, 3.5 Credential Access, 2.6 Persistence, 2.7 Defense Evasion, 4.1
Collection and 4.3 Target Manipulation) are excluded. This reduces the total number of
states from thirteen to six, while preserving core semantics of KCSM. The numbering of
APT stages is preserved for simplicity. The general progression from initial infection
over optional lateral movement and zone breaching to action on objectives is still
present in NKCSM. However, all remaining transitions are network-based and thus
potentially observable via a NMS.

5.3.3 Approach Overview and Example Scenario

Figure 5.16 gives an overview about our approach to contextualize APT campaigns.
The input consists of both tagged alerts (alerts that are labeled with a set of potential
APT stages it represents) and untagged alerts (regular alerts that are either host- or
network-based) as well as a set of network zone definitions that describe the segmented
zones of the network. In the first phase, the untagged alerts are preprocessed in

5.3. APT Contextualization via Kill Chain State Machines 135

Untagged
Alerts

Tagged
Alerts

APT Stage
Assignment

Zone
Definitions

Alert Graph
Construction

Infection Graph
Refinement

APT Scenario
Extraction

Pre-Processing APT Contextualization

Pruning and
Prioritization

Post-Processing

Figure 5.16: Overview: APT contextualization via KCSM

the APT stage assignment and received stage labels based on their innate network
direction. Next, all alerts contain stage labels and can be linked to construct alert
graphs based on the pre- and post-conditions of the KCSM. The resulting graphs are
then refined to infection graphs through aggregation and elimination of superfluous
information. In the last phase of the APT contextualization, the approach extracts APT
scenario graphs from the set of infection graphs. Finally, the resulting set of scenarios
is optionally post-processed by pruning and prioritization. The resulting set of APT
scenarios is then ready for manual investigation by SOC analysts. We now describe
each of these phases in more detail along a small example APT campaign.

For demonstration purposes, we present a small artificial multi-stage attack scenario,
that we use as an example throughout this section to illustrate the reconstruction
process. In this scenario, the target network is divided in two zones 𝑍1 (10.1.0.0/16)
and 𝑍2 (10.2.0.0/16). The attacker aim to find valuable hosts in 𝑍2 and uses three
attacking machines with public IP addresses (4.4.4.4, 1.3.3.7, 1.4.4.7) during the
campaign. While a real APT campaign would perform more attack steps, especially
after key hosts are discovered, this example is intentionally kept small. The attacker
performs the following five steps in order:

1. Reconnaissance: The attacker uses an Internet host to scan four hosts in 𝑍1
(4.4.4.4→ [10.1.0.1, 10.1.0.2, 10.1.0.3, 10.1.0.4]).

2. Delivery: The attacker uses another Internet host to deliver a malware-dropper
to a host in 𝑍1 (1.3.3.7→ 10.1.0.4).

3. Delivery (Download): The infected machine downloads a second-stage malware
from the Internet (10.1.0.4→ 1.4.4.7).

4. Pivot: The malware pivots to two hosts in 𝑍2 (10.1.0.4→ [10.2.0.1, 10.2.0.3]).

5. Discovery: The malware scans the three remaining machines in 𝑍2 for valuable
services (10.2.0.3→ [10.2.0.2, 10.2.0.4, 10.2.0.5])

5.3.4 APT Contextualization

This section presents the algorithm for APT campaign reconstruction based on the
KCSM as described in the conference publication [Wil+21] (that was based on the
supervised Master’s thesis [Ort19]) up to basic scenario pruning that is applied to
the final result set. We implemented this approach as a Python-based prototype, that
we refer to as APT Contextualizer v1.

136 Chapter 5. Approaches for APT Detection

Full name Abbreviation Network direction

Reconnaissance R 𝑍0 → 𝑍𝑖
Delivery D1 𝑍0 → 𝑍𝑖
Delivery (2nd stage DL) D2 𝑍𝑖 → 𝑍0
C2/C&C C 𝑍𝑖 → 𝑍0
Lateral Movement L 𝑍𝑖 → 𝑍𝑗
Discovery (“Scan”) S 𝑍𝑖 → 𝑍𝑗
Pivoting P 𝑍𝑖 → 𝑍𝑗, 𝑖 ≠ 𝑗
Exfiltration E 𝑍𝑖 → 𝑍0
Objectives O 𝑍𝑖 → 𝑍𝑗

Table 5.4: Network-visible stages of APT attacks

5.3.4.1 APT Stage Assignment

The states and transitions formalized in the KCSM can be used to trace a multi-stage
attack campaign. However, we still lack a way to map network alerts to potential
APT stages. Looking back at the KCSM, we realize that all APT stages still present
in the state machine are characterized by movement between specific network zones.
Thus, we can use the network direction of an alert to derive potential attack stages it
can represent. We define the network direction of a (meta-)alert to be the transition
between the network zones of the source and destination IP of the alert. A network
zones describes one or more subnets of the same trust level. Examples of typical
network zones in an enterprise network are external, intranet, and dmz. Given the
topology information of the target network, we can assign the network direction for
any network-based alert. This makes our approach extremely flexible as it does not
require special stage information in our source alerts.

Table 5.4 shows which network directions are found in each stage of APT attack
stage. As expected, there is an overlap between the stages, e. g., a meta-alert from 𝑍0
(Internet) to 𝑍𝑖 might be an indicator for either Reconnaissance or Delivery. Thus, our
goal is not to assign a single APT stage to each alert and meta-alert but rather a set of
potential stages. Given the information from Table 5.4, we obtain four distinct sets
of potential APT stages depending on the network direction of the alert. Outgoing
connections to the Internet (𝑍0) are labeled with [D2, C, E] and incoming connections
with [R, D1]. Internal connections are tagged either with [L, S, O] if both hosts are
part of the same zone or [L, S, P, O] if the zones differ between source and destination
host.

5.3.4.2 Alert Graph Construction

With the implied transition order from KCSM and the mapping of alerts to potential
APT stages, we can build a directed graph based on pre- and post-conditions of each
state. Each meta-alert results in a node with the potential stages, sources and targets
of the attack attached as additional labels. Two nodes 𝑢, 𝑣 are connected with an edge
𝑒 if the following three conditions are met. The resulting edge 𝑒 is then labeled with
the set of APT stage preconditions,i. e., the set of APT stages of 𝑢 that represent a
precondition to any stage of 𝑣.

1. The latest timestamp of 𝑢 is smaller than the earliest timestamp of 𝑣.

5.3. APT Contextualization via Kill Chain State Machines 137

D1

D1

stages: [D1, R]
source: [1.3.3.7]
target: [10.1.0.4]

D1

D1stages: [D1, R]
source: [4.4.4.4]

target: [10.1.0.1, 10.1.0.2,
10.1.0.3, 10.1.0.4']

E,D2,C

stages: [E, D2, C]
source: [10.1.0.4]
target: [1.4.4.7]

P,L

stages: [P, O, L, S]
source: [10.1.0.4]

target: [10.2.0.1, 10.2.0.3]

stages: [P, O, L, S]
source: [10.2.0.3]

target: [10.2.0.2, 10.2.0.4
10.2.0.5]

Figure 5.17: Alert graph comprising five alerts generated from the example scenario

2. The potential APT stages of 𝑢 contain at least one stage, that is a precondition
for any APT stage of 𝑣. If multiple stages match, the ones that compromise new
hosts are preferred.

3. The source and target IP addresses of 𝑢 and 𝑣match according to the APT stages
of 𝑢. For stages that move infection (D1, L, P) the target address of 𝑢matches a
source address of 𝑣. Other APT stages, that do not compromise new hosts, are
valid if any source IP address overlaps between 𝑢 and 𝑣.

Figure 5.17 shows the alert graph that contains five alerts derived from the stages in
our example. For simplicity we assume that an IDS produced a alert for eachmalicious
action without any false positives. The alert graph already shows promising results.
The path the attackers took throughout the zones is clearly visible. However, we can
already see at least two suboptimal properties of the graph: First, the APT stage labels
on the edges are broad and thus sometimes contain more APT stages than only the
correct one. This is not a problem, as the more relevant information, i. e., IP addresses
and alert identifiers, is contained in the nodes anyway. Second, the alert graph contains
edges that do not add any useful information (indicated by dashed lines in the figure)
as they lie on a path shorter than the longest path between two nodes. This means,
they discard the additional information that is present on the nodes that are not
included on these paths. While it is possible, that this represents the actual attack and
the skipped node is the result of a false positive alert, the longest path offers more
information to the threat hunter (namely the hosts to investigate for further indicators
of compromise). Additionally, this type of graph can grow quite large quite easily.
Due to the loose requirements for linking two nodes, resulting graphs can be almost
fully connected in real-world scenarios. This would not efficiently support human
threat-hunters as they cannot extract meaningful information anymore. However, our
example graph is relatively compact, it only represents a small attack without any
false positives.

5.3.4.3 Refinement to APT Infection Graphs

We can reduce the density of the alert graph without losing important context by
aggregating existing information and eliminating obsolete information. We start the
graph consolidation on a node that does not possess any outgoing edges. We can
guarantee the existence of at least one such node due to our timestamp requirement
on the edges (condition 1 for connecting two nodes in the alert graph). Starting from
this node, we recursively iterate through the incoming edges while aggregating those
with identical APT stage labels. Longest paths are preferred during the iteration and

138 Chapter 5. Approaches for APT Detection

e2

stages: [D1]
source: [1.3.3.7,
 4.4.4.4]
target: [10.1.0.4]

e3

stages: [P, L]
source: [10.1.0.4]
target: [10.2.0.3]

e4

stages: [P, O, L, S]
source: [10.2.0.3]
target: [10.2.0.2,
10.2.0.4,10.2.0.5]

e1

stages: [E, C, D2]
source: [10.1.0.4]
target: [1.4.4.7]

Figure 5.18: APT infection graph for the example scenario without false positives

2

4

e 1

stages: D1
source: [8.8.8.8]

target: [10.0.0.1]

stages: D2, E, C
source: [10.0.0.1,
 10.0.0.2]
target: [1.2.3.4]

e

stages: D2, E, C
source: [10.0.0.2]

target: [1.2.3.4]

stages: D1
source: [5.5.5.5]
target: [10.0.0.2]

e
e 3

Figure 5.19: Example for a transitively invalid APT infection graph

paths shorter than the longest path between two nodes are discarded. The source and
target sets of the connected nodes are combined for matching edges to obtain the set
union.

The compact graph obtained by this process is calledAPT infection graph. In this graph,
nodes mark APT campaign progress, while the edges represent the APT stages with
the related information such as involved IP addresses and alert identifier. Figure 5.18
shows theAPT infection graph for our example scenario. It is significantly smaller than
before, while retaining the important information about IP addresses and stages. The
progress of the potential APT campaign is clearly visible, and the reduced branching
helps focusing on the important information for threat hunters. The combination
of the set of potential APT stages and IP addresses directly hints at how the hosts
should be further investigated as the different stages usually leave distinct indicators
of compromise on the machine. When we described KCSM, we differentiated between
stages that compromise new hosts and stages that do not. Until now we only used
this information to prioritize stages while constructing alert graphs. As a result, the
APT infection graph might contain edge pairs that represent consecutive stages in
KCSM (and thus are valid in the infection graph) but have a non-infected host as the
source for any following stage. An example for that is given in Figure 5.19.

In the figure we see that host 10.0.0.1 gets infected from the Internet (𝑒1). This is
followed by outbound connections from the hosts 10.0.0.1 and 10.0.0.2 (𝑒2) and another
outbound connection from 10.0.0.1 only (𝑒3). While the stage sequence D1→ [D2, E,
C]→ [D2, E, C] is valid, the host 10.0.0.2 was never infected on the red path (𝑒1, 𝑒2)
and thus cannot be responsible for the outbound connection in 𝑒3. If we follow the
blue path (𝑒4, 𝑒3) the host is infected, but the source IP for the preceding Delivery
stage differs (5.5.5.5). Thus, the graph actually contains two distinct potential APT
scenarios that partially overlap in hosts that should be extracted separately.

5.3.4.4 APT Scenario Graph Extraction and Basic Pruning

Overall, APT infection graphs provide a decent overview about potential multi-stage
attack campaigns. However, we saw that they can still contain invalid edges compared

5.3. APT Contextualization via Kill Chain State Machines 139

{'D1'}{'Internet'}

{'E','C','D2'}

{'P','L'}{'10.1.0.4'}

{'P','L','O','S'}

{'10.2.0.3'}

{'Internet'} {'10.2.0.2,10.2.0.4,10.2.0.5'}

Figure 5.20: APT scenario graph representing the example APT campaign

with our original state machine KCSM or even multiple APT scenarios as separate
paths. To address this, we introduce another optimization step to obtain the final
graph representation for potential APT scenarios.

APT scenario graphs can be obtained by extracting transitively valid paths from APT
infection graphs. The structure closely resembles the KCSM. Edges are labeled with
sets of potential APT stages while nodes contain the involved IP addresses in the
respective attack steps. Figure 5.20 shows the APT Scenario graph that the algorithm
produces for our example scenario. The graph is concise and supports the human
analyst in combating the alert fatigue by highlighting the affected internal hosts and the
progress of the potential APT campaign. External IP addresses are replaced with the
’Internet’ label to limit the potential state expansion. These are of secondary interest to
the analyst anyway, as they can only directly investigate internal hosts. However, they
are not “lost” as the full alert data is available through the alert identifiers attached
to the graph (left out here for brevity). To sum up, the APT scenario graph not only
represents a significant reduction from the original alert set it was generated of but also
offers essential context about the campaign progress to human analysts.

The final set of APT scenario graphs can be further reduced and optimized. Due to
the process for graph construction, we can sometimes obtain two graphs, where one
is an isomorphic subgraph of the other. In our context, this means, that both graphs
describe the same potential APT scenario and the larger graph just contains additional
steps that are not present in the smaller one. Similar to the edge elimination step
from alert graphs to APT infection graph, we can eliminate these smaller graphs entirely
without losing relevant information. While the problem of subgraph isomorphism
is known to be NP-complete, it can often be solved efficiently. Our prototype uses
the implementation from the Python library networkx that is based on Cordella’s
work [Cor+04] to prune and deduplicate the final result set. Additionally, some very
basic semantic pruning is performed to further eliminate scenarios that are unlikely to
be of interest to the analysts such as “very short scenarios” that only contain two nodes.
While our first prototype does not perform any sophisticated optimization, a real-
world deployment can add additional post-processing of the final set of APT scenario
graphs, e. g., prioritization of scenarios that contain a specific critical host or scenarios
with the longest chains. As APT and other multi-stage attacks are highly dynamic and
tailored to the target, we want to emphasize the opportunities for further optimization
here, but leave the actual implementation to the respective target organization.

Te recap, we implemented the approach described so far as a prototype in Python that
we refer to as APT Contextualizer v1. It is based on the reduced NKCSM, can derive
potential APT stages for any network-based alert and produces APT scenario graphs
that are checked for isomorphic subgraphs and run through the simple pruning
process described in the previous paragraph. This prototype was evaluated as part of

140 Chapter 5. Approaches for APT Detection

the corresponding publication [Wil+21] which we describe further in Section 5.3.6.2.
The following section describes extensions to this base prototype that improve both
overall performance as well as improve prioritization of the result set.

5.3.5 Extensions and Scenario Prioritization

The approach presented in the previous section is able to generate helpfulAPT scenario
graphs that can be used by SOC analysts to quickly obtain an overview about potential
APT campaigns in the network. However, the result set remains rather large and
analysts have to be able to efficiently prioritize which graph to investigate first. This
section presents extensions to the base approach as well as scenario prioritization
measures aimed at reducing the load on SOC analysts. These approaches were
developed as part of a supervised Bachelor’s thesis [Lau22] that extended and applied
the contextualization prototype in a real-world enterprise environment. The resulting
implementation is referred to as APT Contextualizer v2.

5.3.5.1 Extensions

The extensions presented in this section are based on learnings from applying the
prototype in a real-world enterprise setting and aim to improve the overall detection
performance for such environments. The first extension adds support for two host-
based APT stages to the implementation while the second improves the approach’s
ability to consume low-level event data without significant performance degradation.

General Improvements The APT Contextualizer v1 represents a fully-functional
implementation of the presented contextualization approach. However, as typicalwith
academic implementations, it is strongly tied to the original evaluation environment
and thus not easily usable in other contexts. APT Contextualizer v2 improves on that
by modernizing the code and introducing Python interfaces for several key steps in
the algorithm such as data ingestion, optimizations, and result prioritization. The
original code was adapted by the student that wrote the corresponding Bachelor’s
thesis and the latest version is available on Github [WOL22].

Integration of basic host-based stages The enterprise environment that was used to
evaluate the approach, features two key host-based alert types: a general host alert and
a more specific objectives alert. The full KCSM, as presented in Section 5.3.2, covers the
entire UKC [Pol21] and includes all its 18 stages. Thus, the overall contextualization
approach conceptually supports all stages also. However, the APT Contextualizer
v1 described in the previous section focuses on network-visible stages by using the
reduced NKCSM.While the implementation could be extended to match the complete
state machine this would mean that most if not all host-based stages would need to
be detected to prevent “incomplete scenarios” that end in a certain part of the state
machine as no alert for the following stage is generated. The alternative is to slightly
adapt the currently used NKCSM to include the two new stages as additional infor-
mation. This resulted in the Extended Network Kill Chain State Machine (ENKCSM)
as show in Figure 5.21.

Compared to the NKCSM, the ENKCSM features threemajor changes: (i) The delivery
stage is split into two phases with the second one being optional, thus resulting in
two “Infected” nodes. This resembles a change that was already present in the APT
Contextualizer v1 implementation but not yet reflected in the model. (ii) The “host”

5.3. APT Contextualization via Kill Chain State Machines 141

Figure 5.21: Extended Network Kill Chain State Machine (ENKCSM) [Lau22]

stage is added as reflexive edges on both “Infected” nodes. This enables the approach
to optionally attach one or more host alerts to the chain and thus enrich it without
impacting the contextualization process of the following stages. (iii) The “Objective”
stage is conceptually extended to also cover host alerts. While this does not change the
state machine itself, it is important to mention as the original NKCSM was explicitly
limited to network-based objective actions.

Graph connectivity-based approach for event enrichment The enterprise environ-
ment used to evaluate the approach features alerts for several network- and host-based
alerts. However, certain stages such as lateral movement are not currently covered by
regular alerts. The environment does however provide event-level logs for some
benign events that could be the result of such missing stages, e. g., legitimate-looking
SSH or RDP connections. While the original approach was designed to potentially
ingest such events, e. g., as events tagged with lateral movement as the matching APT
stage, this naive implementation proved to be unfeasible in the high-volume enterprise
environment—the runtime of the contextualization process increased massively to
the point of being unusable. To address this, an alternative method for such event
enrichment was devised based on the concept of graph connectivity.

The basic idea is to (i) find two nodes across all infection graphs that could be poten-
tially connected (based on the pre- and post-conditions of the kill chain) and (ii) find
a potentially matching event that “fills this gap” based on timestamps. If a matching
event is found, it is used to connect the two nodes (and the rest of their respective
infection graphs) and saved as a separate new infection graph, i. e., all three infection
graphs (the two original ones containing 𝑆 and 𝐷 as well as the connected one) are
kept. This is important as the event may be a false-positive thus potentially creating
an invalid scenario.

(𝐶𝑝𝑟𝑒(𝑆) ∩ 𝐶𝑝𝑜𝑠𝑡(𝐷)) ∧ (𝑡𝑠(𝑆) < 𝑡𝑠(𝐷)) (5.11)
𝑡𝑠(𝑆) < 𝑡𝑠(𝐸) < 𝑡𝑠(𝐷) (5.12)

142 Chapter 5. Approaches for APT Detection

More formally, we aim to connect a source node 𝑆with a destination node 𝐷 via an
event 𝐸 based on the pre- and post-conditions 𝐶 and timestamp 𝑡𝑠. Equation (5.11)
shows the first condition that is first checked to find potential node pairs to match.
If at least one node pair is found, the second condition shown in Equation (5.12)
is checked for all available events to find matching transitions. All matched events
𝐸 ∈ 𝐸𝑚𝑎𝑡𝑐ℎ are then connected in new infection graphs in the form of 𝑆 → 𝐸 → 𝐷 and
used throughout the remainder of the contextualization process.

With the graph connectivity approach, APT Contextualizer v2 is able to efficiently
leverage event-level information to connect partial infection graphs with stages that
did not produce an alert. As the event lookup is only performed selectively if a poten-
tially missing edge is found, the implementation can retain the runtime performance
required for real-world scenarios.

5.3.5.2 Scenario Prioritization

The extensions described in the previous section already improve the quality of the
final set of APT scenario graphs. Adding host-based alerts and leveraging events
produces graphs that are able to describe complex campaigns more closely. However,
the problem of efficient scenario prioritization still remains as SOC analysts are starved
for time and need to use their available resources effectively. A prioritization strategy
helps to rank APT scenario graphs based on their estimated threat level. This section
describes an approach for scenario prioritization via an aggregated prioritization
score composed of four subscores with configurable weights:

1. Asset Risk: This subscore is based on the notion of notion of distance to asset
(DtA), i. e., the number of required network transitions to compromise a key
asset in the network. The DtA is based on the concept of reachability between
network zones and the assets contained within. In contrast to the transitions
in the state machines, that resemble general campaign progress across zones,
the zone transitions used to calculate the DtA are actual network zones that
need to be crossed to reach a target zone and asset, i. e., 0 if the attacker has
already compromised the asset, 1 if the attacker has access to a zone that in
turn has direct access to the asset in question, and 𝑛 + 1 if the attacker is n
zones away from accessing the asset. The risk subscore for one APT scenario
graph is then calculated via (i) detailed information about zone access rules
(to calculate the number of required transitions), (ii) the critical assets (as
predefined information from the configuration file), and (iii) the compromised
hosts in the scenario. This subscore thus represents the estimated threat of the
APT campaign to the business goals of the organization.

2. Attack Authenticity: This subscore aims to approximate the likeliness of the
APT scenario graph in question being an actual attack based on known graph
patterns that are commonly encountered. For each pattern found in the scenario,
the subscore increases. The current implementation of APT Contextualizer v2
supports three “universal” patterns that are mostly independent from the envi-
ronment it runs in, but can be extended with additional environment-specific
ones if so desired. Currently supported are these patterns: (i) known infection
start, i. e., graphs that contain a start node with a valid start stage, (ii) pivoting
and scanning, i. e., graphs that contain at least one instance of these optional
stages as this indicates higher attacker sophistication, and (iii) host alerts after
zone transitions, i. e., graphs that contain a host alert after a zone transition, as the

5.3. APT Contextualization via Kill Chain State Machines 143

compromise of a new host should trigger a host-based alert (assuming perfect
visibility).

3. Number of Infected Hosts: This subscore is simply based on the number of
infected hosts as a rough indicator of potential damage the campaign might
cause. Although this might not be true for stealthy APT attacks, which might
inflict high damage with minimal infections, a large number of hosts usually
results in increased mitigation efforts as machines need to be reinstalled or
otherwise cleaned.

4. Scenario Length: This subscore is another simplemetric counting the number of
nodes in the graph as an indicator of scenario complexity. APT scenario graphs
are an aggregated summary of the underlying alert data they were generated
from. As same-stage activity is grouped, longer graphs are the result of an
increased number of distinct stages across the whole campaign. This subscore
therefore provides a rough indication of the complexity and “completeness” of
the campaign.

Each of the four scores is calculated and weighted to obtain the overall prioritization
score. While the final score is normalized to [0, 100], the subscores are not required
to fit to this range. This is an explicit design choice to enable individual subscores
to drastically influence the overall prioritization in severe cases. Furthermore, the
system offers an “escape hatch” to assign the highest priority for two special cases:
(i) compromise of a key asset (identified by IP address) or (ii) presence of key stages,
that are deemed especially critical in the target environment. This ensures that APT
scenario graphs that are likely tomassively damage the organization can be prioritized
independent of their other properties.

5.3.5.3 Summary

In summary, APT Contextualizer v2 improves upon the initial prototype APT Con-
textualizer v1 implemented as part of [Wil+21] by (i) increasing overall code quality
and modularity, (ii) adapting the NKCSM to the ENKCSM to include two host-based
stages, and (iii) providing a configurablemechanism to prioritize APT scenario graphs
through an extensible prioritization score. The resulting implementation is thus better
suited for real-world deployments and will likely produce improved results in any
scenario.

5.3.6 Evaluation

We evaluate our approach for APT contextualization in two main aspects: volume
reduction and campaign reconstruction. The first experiment demonstrates how our
approach can reduce overall alert volume and thus lessen the burden on SOC analysts.
To calculate this, we divide the number of obtained APT scenario graphs by the total
number of alerts produced. Both the reduction and number of scenarios (in total and
per day) are key metrics to estimate the impact on day-to-day SOC operations. The
second experiments evaluates the functional performance of campaign reconstruction.
For this synthetic APT campaigns are injected into the respective dataset and processed
by the approach. The final set of APT scenario graphs (that has potentially been
filtered) should then contain the campaign.

We evaluate both the original approach (APT Contextualizer v1) as presented in Sec-
tion 5.3.4/[Wil+21] on the CSE-CIC-IDS2018 dataset [SHG18] as well as the extended

144 Chapter 5. Approaches for APT Detection

Type Network traffic (pcap)
Timespan 14.02.–02.03.2018 (10 days; some skipped)

Hosts/Subnets 450/6
Connections 64 151 422

Table 5.5: Dataset Overview: CSE-CIC-IDS2018 [SHG18]

version (APT Contextualizer v2) described in Section 5.3.5/[Lau22] on the real-world
enterprise datasets obtained in the associated Bachelor’s thesis. The remainder of
this section is structured as follows: Section 5.3.6.1 introduces the two datasets and
matching synthetic APT campaigns. In Section 5.3.6.2 we evaluate the original ap-
proach via CSE-CIC-IDS2018 for both volume reduction and campaign reconstruction.
Section 5.3.6.3 does the same for the extended version based on the real-world enter-
prise datasets and Section 5.3.6.4 discusses the obtained results in the context of the
requirements established in Section 3.1.

5.3.6.1 Datasets and APT Scenarios

This section introduces both datasets used throughout our evaluation and their re-
spective synthetic APT campaigns that were carefully designed to closely resemble
potential real-world attacks.

Datasets We designed our approach to cover the whole detection pipeline from
securitymonitoring to security analytics, i. e., to ingest rawnetwork traffic and produce
high-level APT scenario graphs. To the best of our knowledge, there are no public
network traffic datasets that contain real APT campaigns. In combination with the
highly dynamic nature of APT campaigns this renders the evaluation of detection and
campaign reconstruction approaches difficult. We address this problem by using a
well-known dataset for intrusion detection, namely CSE-CIC-IDS2018 [SHG18], and
injecting a custom APT campaign into it.

The CSE-CIC-IDS2018 dataset is intended for the evaluation of network IDSs and
contains several unrelated attacks as well as benign traffic. Table 5.5 shows some
key characteristics of the dataset. The scope of six internal zones as well as 450
hosts matches a small to mid-sized company. The duration of ten days is quite
small when considering APT scenarios, however it still allows for a multi-step attack
campaign with certain delays in between. Although no APT campaign is present
in the original dataset, some of the seven contained attacks resemble single steps
of an APT campaign, e. g., an infiltration attack. Additionally, some other attacks,
such as distributed denial of service (DDoS) or password guessing via brute-force
usually produce large amounts of traffic and a large number of alerts unrelated to
the APT campaign. This makes it a great candidate for our evaluation as both types
of unrelated alert should be filtered by the reconstruction process as no connecting
stages can be found.

The second dataset used for evaluation of the extended prototype was captured on
alert-level during the supervised Bachelor’s thesis that also developed the exten-
sions [Lau22]. As it is based on real traffic from customers of a mid-sized managed-
security provider, the data was only available on alert-level and pseudonymized to
avoid leakage of potential sensitive information. Table 5.6 shows some key character-
istics about the two variants of the dataset “Enterprise-Small” and “Enterprise-Large”.

5.3. APT Contextualization via Kill Chain State Machines 145

Enterprise-Small Enterprise-Large

Type — Alerts (network- and host-based)—
Timespan 25.07.–25.08.2022 (30 days) 26.05.–25.08.2022 (90 days)
Servers — ~13 000 —
Clients — ~130 000 —
Alerts 17 726 54 220

Table 5.6: Dataset Overview: Enterprise Datasets [Lau22]

The datasets span 30–90 days with the small variant being entirely contained in the
large variant. The captured network segments contained about 13 000 servers and
130 000 client machines. The captured network traffic and host logs are processed
by an unspecified security information and event management (SIEM) system that
generates both network- and host-based alerts. The small dataset consists of 17 726
alerts while the large variant contains 54 220.

Synthetic APT Scenarios To evaluate the detection performance of our contextu-
alization approach, we designed a realistic APT campaign. As the source dataset
contains network traffic over ten days, we could not exceed this duration in our sce-
narios. We named this campaign IDS2018-APT and its attack steps are summarized
in Table 5.7.

The APT campaign proceeds as follows: On day 1 the attackers perform a remote
code execution (RCE) via the EternalRomance exploit on a vulnerable host in the R&D
department of the target organization with the IP address 172.31.64.67. Thereafter,
the malware downloads a second stage trojan from a compromised Internet host
with the IP address 12.34.12.34 and persists on the machine. Three days later, the
malware performs C2/C&C communication to the attacker-controlled Internet host
1.1.14.47. On day 5 the malware moves laterally to a server machine 172.31.69.20
via PsExec, a tool for legitimate Windows remote administration. On day 10 the
compromised server exfiltrates a copy of a core database to the attacker-controlled
Internet host 1.1.15.57. Overall, IDS2018-APT involves four malicious Internet hosts
(1.1.13.37, 12.34.12.34, 1.1.14.47, and 1.1.15.57) and two internal hosts that are targeted
by attacks (172.31.64.67, 172.31.69.28). The movement across two zones resembles
a potential APT campaign in which the attackers had inside knowledge about the
network segmentation and directly moves to the target host.

The APT campaign was injected into the CSE-CIC-IDS2018 dataset, which contains
benign traffic as well as some unrelated attacks. The pcap files for the attack steps

Day / Date Attack Source Target

01 / 14.02.18 RCE via EternalRomance 1.1.13.37 172.31.64.67
01 / 14.02.18 2nd stage trojan download 172.31.64.67 12.34.12.34
04 / 20.02.18 Cosmic Duke C2/C&C 172.31.64.67 1.1.14.47
08 / 28.02.18 PsExec via SMB 172.31.64.67 172.31.69.20
10 / 02.03.18 Data exfiltration via HTTPS 172.31.69.20 1.1.15.57

Table 5.7: Campaign Overview: IDS2018-APT

146 Chapter 5. Approaches for APT Detection

Date Attack Source Target

26.07.22 Delivery via an zero-day exploit 2.2.2.2 10.61.99.69
11.08.22 C2 Communication via HTTPS 10.61.99.69 2.2.2.1
16.08.22 SSH Connection with stolen credentials 10.61.99.69 10.59.22.3
16.08.22 Process hollowing to prepare deployment — 10.59.22.3 —
20.08.22 Domain controller access via kerberoasting 10.59.22.3 10.61.4.3
25.08.22 Domain account creation — 10.61.4.3 —

Table 5.8: Campaign Overview: Enterprise APT

were collected from various web sources: ericconrad.com [Con17] for the EternalRo-
mance RCE and trojan download, University of Twente [Uni17; Bor+17] for the Data
Exfiltration Malware samples and more specifically Cosmic Duke C2/C&C traffic and
github.com/401trg [40117] for pcaps containing PsExec via SMB. The exfiltration was
performed locally and the traffic recorded via tcpdump [Tcp22]. As mentioned before
all attacks were chosen on the basis of previous exploitation in the wild, e. g., PsExec is
commonly used for lateral movement in typical Windows-based enterprise networks
at the time of writing. The pcap files were then rewritten in both IP addresses and
timestamps via tcprewrite [KA22] and Wireshark’s editcap [Wir22] to match our APT
campaign steps. This process resulted in a coherent attack scenario that took place at
the time of the original CSE-CIC-IDS2018 dataset (February 2018–March 2018).

For our enterprise dataset we also designed a synthetic APT campaign, this time
on alert level. The concrete attack steps were designed by the student based off
his experience as part of a SOC from a managed security provider. All internal IP
addresses have been anonymized as was performed on the whole enterprise dataset.

The APT campaign proceeds as follows: On the first day of the campaign, the adver-
sary delivers initial malware from an infected Internet host (2.2.2.2) via a zero-day
exploit (a recent example would be Log4Shell aka CVE-2021-44221) to an internal
host (10.61.99.69). Next, the malware idles for sixteen days before proceeding to
perform C2/C&C communication to another Internet host (2.2.2.1). The timespan is
deliberately chosen to avoid naive detection measures that only consider data from
the last fourteen days. Another five days later, the attack spreads via SSH to another
internal host in another subnet (10.59.22.3) by using stolen credentials. Immediately
after, the adversary uses process hollowing to disguise their steps and prepare for the
following deployment. Four days later, the attacker accesses the domain controller
via the kerberoasting attack. Finally, after another five days have passed, the attack
concludes by creating an account on the domain controller effectively gaining access
to the managed zone.

Overall, the enterprise APT campaign involves two malicious Internet hosts (2.2.2.2
and 2.2.2.1) and three internal hosts that are targeted by attacks (10.61.99.69, 10.59.22.3,
and 10.61.4.3). The targeting of a domain controller represents a typical goal when
targeting enterprise networks as it provides access to the whole network zone it
manages.

Construction of the enterprise APT campaignwas done on alert-level as the underlying
production network, the alerts were generated in, was not accessible. Thus, one alerts
was generated for each campaign step resulting in six total alerts. Naturally, this

1see: https://www.cve.org/CVERecord?id=CVE-2021-44228

https://www.cve.org/CVERecord?id=CVE-2021-44228

5.3. APT Contextualization via Kill Chain State Machines 147

Dataset
(pcap)

Zeek
Alerts
& Logs

Single Alerts

Meta-Alerts

APT Scenario
Graphs

 GAC
[HF18]

APT
Contextualization

Figure 5.22: Experimental Setup: CSE-CIC-IDS2018

assumes that all activity is actually observed by a sensor. Furthermore, all evaluation
on the enterprise dataset (with and without the presented APT campaign) was done
on-premise by the student and not accessible to us for compliance reasons.

5.3.6.2 CSE-CIC-IDS2018

This section contains the evaluation of our original approach for APT contextualization
via KCSMs (APT Contextualizer v1) based on the CSE-CIC-IDS2018 [SHG18] and
our embedded synthetic APT campaign IDS2018-APT.

Experimental Setup We prepared an evaluation pipeline starting from scenario
pcap files and resulting in a set of generated APT scenario graphs. Figure 5.22 given
an overview about the involved components and artifact. The pcaps were processed
by Zeek as network-based IDS, resulting in alerts and log files. Next, we used Graph-
based Alert Correlation (GAC) [HF18] as an established alert correlation algorithm.
This resembles a real-world deployment with Zeek as IDS and some alert correlation
to reduce alert volume. The processing with GAC yields clustered meta-alerts and
unclustered alerts. Both sets of alerts are persisted in Elasticsearch [Ela22] for later
use in the APT contextualization. Our prototype is written in Python and leverages
networkx [Net+22] for graph processing.

For alert generation we use Zeek v3.1.4 in two distinct configurations: MIN and FULL.
MIN loads almost all scripts that Zeek offers per default. Exceptions include file
extraction, as the transferred files are not needed in the process, and SSL/TLS/OCSP
validation, as these scripts produce false positives for the self-signed certificates in
CSE-CIC-IDS2018. In addition to the default scripts, we wrote some Zeek scripts
tailored to our organization scenario including detection of downloaded Windows
executables and large outgoing connections. These organization-specific scripts are
not written to exactly detect the attack steps of our APT campaign directly, but rather
match the overall scenario of a mostly Windows-based enterprise network. Thus, they
also produce false positives especially as the traffic unrelated to our APT campaign
also consists of the same protocols that the scripts monitor, e. g., SMB. MIN therefore
resembles an organization that customizes Zeek to some extent, however, does not
include any third-party scripts for improved visibility.

The FULL configuration loads all scripts from MIN and adds two well-known third-
party scripts, namelyBro/ZeekATT&CK-basedAnalytics andReporting (BZAR) [The22a]
for the detection of adversarial activity related to the Mitre ATT&CK framework and
0xl3x1/zeek-EternalSafety [0xl22] to detect potentially malicious SMB protocol vio-
lations that are used in the Eternal* family of Windows exploits. FULL therefore
resembles a realistic setup in high-security environments, in which security adminis-
trators perform threat hunting to detect APT campaigns. Asmentioned in Section 2.2.3
theMitre ATT&CK framework is well known in the community and aimed at detecting

148 Chapter 5. Approaches for APT Detection

Level Metric MIN FULL

Zeek Alerts 12 675 446 407

G
A
C

Meta-Alerts 119 10 713
Singleton Alerts 4 432 39 649
Alerts for Contextualization 4 551 50 362

A
PT

APT infection graphs 442 456
Total APT scenario graphs 3 452 4 305
Distinct APT scenario graphs 611 686
Volume reduction 4.82% 0.15%

Table 5.9: Results: APT contextualization for IDS2018-APT

attack steps of complex multi-step attacks such as APT campaigns. Both configura-
tions are examples for organizations with different threat profiles. MIN includes less
scripts and might therefore miss important attack steps. FULL includes scripts that
will result in an increased alert volume with more false positives, which will also
complicate successful detection of APT campaigns. The configurations highlight the
range of scenarios our approach addresses.

We chose GAC [HF18] as state-of-the-art approach for alert correlation to cluster
alerts. However, any correlation algorithm can be used as both meta-alerts and single
alerts are are used as input to the following APT contextualization process. GAC was
run in batches on all alerts of a day in the dataset. It is important to note, that our
approach is not strongly tied to any alert correlation or APT stage detection scheme.
Other alert correlation approaches can be used and stage-specific alerts for any APT
stage are supported.

Experiment I: Volume Reduction In the first experiment, we aim to evaluate how
the contextualization process reduces the data volume SOC analysts need to manually
investigate. To measure this, we run our approach on the unmodified CSE-CIC-
IDS2018 [SHG18] dataset and compare the number of generated APT scenario graphs
with the size of the original alert set that was used as input. Note: As the unmodified
dataset does not contain any APT attack traces, all results can be considered false
positives. However, the volume reduction is especially important in this setting, as
the dataset contains data from a typical mid-sized enterprise environment and the
number of generated scenarios helps to estimate the amount of time that needs to be
invested by SOC analysts.

Table 5.9 summarizes the obtained results the of the contextualization process for
both Zeek configurations on the unmodified dataset. For the MIN configuration
12 675were generated by Zeek resulting in 611deduplicated APT scenario graphs—a
significant reduction to 4.82%. For the FULL configuration, the reduction percentage is
further improved to 0.15(based on 446 407alerts and 686scenario graphs). This result
especially highlights how the IP-based aggregation of alerts throughout the process
helps to lower the amount of generated scenarios. Considering our ten day timespan
from the dataset, the number of scenarios would require the SOC to investigate 61–69
scenarios per day, which seems feasible given the dataset contains 450 hosts across 6
subnets and APT Contextualizer v1 only performs basic deduplication and pruning.

5.3. APT Contextualization via Kill Chain State Machines 149

Experiment II: Campaign Reconstruction The first experiment already provided
some promising results related to the level of volume reduction that our approach is
able to achieve. In this section, we aim to evaluate the reconstruction performance
of our prototype based on IDS2018-APT, the synthetic APT campaign we embedded
into CSE-CIC-IDS2018 [SHG18]. To fully understand how the different stages of our
evaluation pipeline (as shown in Figure 5.22) impact the final result, we discuss each
stage starting from the alert-level that was generated by Zeek up to the final set of
APT scenario graphs.

Table 5.10 shows all alerts generated by Zeek for the two different configurations
grouped by their alert type. The first block contains alerts generated by scripts that
were shipped with Zeek. The second block contains all scripts written by us tailored to
the organization scenario (prefixed with “Org”). The third and fourth blocks are only
included in the FULL configuration and contain alerts produced by MITRE’s BZAR
(prefixed with “ATTACK”) and EternalSafety (prefixed with that name) respectively.
For each alert type and configuration, the table lists lists the total number of alerts
observed of that type, the total number of alerts thatwere produced as a result of our in-
jected APT campaign, and the ratio between all alerts of that type and the ones related
to the campaign. This ratio is the TPR related to our APT campaign. The remaining
alerts are the result of either attacks unrelated to the APT (as present in the original
dataset) or false positives. The table shows that the overall TPR is very small with
0.0237% for MIN and 0.000245% for FULL, respectively. The type of alerts provides
some insight about which parts of our APT campaignwere detected. The organization-
specific script related to executable downloads over a non-HTTP channel revealed
the second stage trojan download on day 1, while the SMB script detected the PsExec
lateral movement on day 8. The alert Org::Very_Large_Outgoing_Tx was generated
for the exfiltration on the last day. Overall four out of the 12 675 total alerts produced
by the MIN configuration relate to IDS2018-APT in some way. In the FULL configura-
tion, BZAR adds seven additional APT related alerts that are all caused by the lateral
movement. EternalSafety produces three more APT related alerts as a result of the
initial EternalRomance RCE on day 1. While the alerts EternalSafety::DoublePulsar
and EternalSafety::EternalSynergy are all related to our APT campaign, the other
types and EternalSafety::ViolationTx2Cmd produce high volumes of unrelated
alerts and are responsible for a large increase of alerts from MIN to FULL.

Summing up, the MIN configuration produced Zeek alerts for the second stage trojan
download, the lateral movement via PsExec, and the data exfiltration. It missed the
initial RCE and the Cosmic Duke C2/C&C communication, which thus cannot be
contained in any further processing. The FULL configuration improves the detection
of lateral movement via additional alerts from BZAR, while the EternalSafety package
is able to produce a few alerts related to the RCE among a large number of false
positives.

Meta-alerts and single alerts After correlation via GAC, we obtained clustered
meta-alerts and unclustered that both serve as input for the APT contextualization.
Table 5.11 shows which meta-alerts and unclustered alerts are related to IDS2018-APT
for both configurations.

For theMIN configuration GAC produced 119meta-alerts and 4 432 unclustered alerts.
Out of these total 4 551 alerts, only three single alerts are related to IDS2018-APT. This
reinforces the expectation, that alerts caused by APT activity are not clustered by
traditional alert correlation algorithms. Given these results we expect an accurate

150 Chapter 5. Approaches for APT Detection

ID
S2018-A

PT-M
IN

ID
S2018-A

PT-FU
LL

Source
A
lertType

#
A
lerts

A
PT

related
Ratio

#
A
lerts

A
PT

related
Ratio

Zeek
C
onn::Retransm

ission_Inconsistency
1171

0
0.00

1171
0

0.00
SSL::W

eak_K
ey

120
0

0.00
120

0
0.00

Organization-specific

O
rg::Stalled_H

TTP_C
onnection

4976
0

0.00
4976

0
0.00

O
rg::H

TTP_W
indow

s_Executable_D
l

6
0

0.00
6

0
0.00

O
rg::N

O
N
_H

TTP_W
indow

s_Executable_D
l

4
1

0.25
4

1
0.25

O
rg::SM

B_Executable_File_Transfer
1

1
1.00

1
1

1.00
O
rg::Javascript_W

eb_Injection_U
RI

336
0

0.00
336

0
0.00

O
rg::SQ

L_W
eb_Injection_U

RI
78

0
0.00

78
0

0.00
O
rg::W

eb_Login_G
uessing

14
0

0.00
14

0
0.00

O
rg::Large_O

utgoing_Tx
5772

0
0.00

5772
0

0.00
O
rg::M

ultiple_Large_O
utgoing_Tx

187
0

0.00
187

0
0.00

O
rg::Very_Large_O

utgoing_Tx
10

1
0.10

10
1

0.10

BZAR

A
TTA

C
K
::Execution

—
—

—
2

2
1.00

A
TTA

C
K
::Lateral_M

ovem
ent

—
—

—
4

4
1.00

A
TTA

C
K
::Lateral_M

ovem
ent_Extracted_File

—
—

—
1

1
1.00

EternalSynergy

EternalSafety::D
oublePulsar

—
—

—
1

1
1.00

EternalSafety::EternalBlue
—

—
—

53
0

0.00
EternalSafety::EternalSynergy

—
—

—
1

1
1.00

EternalSafety::V
iolationC

m
d

—
—

—
1389

0
0.00

EternalSafety::V
iolationN

tRenam
e

—
—

—
8731

0
0.00

EternalSafety::V
iolationPidM

id
—

—
—

6133
0

0.00
EternalSafety::V

iolationTx2C
m
d

—
—

—
408686

1
0.000002

Signatures::Sensitive_Signature
—

—
—

8731
0

0.00

Total
12675

3
0.000237

446407
13

0.00000245

Table
5.10:Results:G

round
truth

in
Zeek

alertsforID
S2018-A

PT

5.3. APT Contextualization via Kill Chain State Machines 151

IDS2018-APT-MIN IDS2018-APT-FULL

Attack Step Type Source Target Type Source Target

EternalRomance — — — Meta 1.1.13.37 172.31.64.67+ 7 unrelated
2nd stage trojan Single 172.31.64.67 12.34.12.34 Single 172.31.64.67 12.34.12.34
Cosmic Duke — — — — — —
PsExec via SMB Single 172.31.64.67 172.31.69.20 Single 172.31.64.67 172.31.69.20
Data exfiltration Single 172.31.69.20 1.1.15.57 Single 172.31.69.20 1.1.15.57

Table 5.11: Results: Ground truth in clustered alerts for IDS2018-APT

{'unknown'}{<empty>}

{'D2','C','E'}

{'L'}{'172.31.64.67'} {'E','C'}{'172.31.69.20'}

{'Internet'}

{'1.1.15.57'}

Figure 5.23: Result: APT scenario graph for IDS2018-APT-MIN

contextualization result as all alerts contain single IP addresses for as source and
destination. In the FULL configuration GAC generated 10 713 meta-alerts and 39 649
unclustered alerts. Compared to the unmodified dataset these numbers are in the
expected range. Out of the four relevant alerts, we see three single alerts for the
same attack steps as in MIN plus an additional alert for the initial RCE as expected
from the Zeek alerts show previously. However, the alert that captured this step is
a meta-alert clustered by GAC and contains multiple source IP addresses. This has
two implications: First, the resulting APT scenario graph will likely contain all eight
IP addresses as the algorithm cannot split this set without additional intelligence.
Second, this example shows that meta-alerts may also carry (partial) information
related to APTs. While the results from the MIN configuration may indicate that
it is sufficient to only investigate unclustered alerts, this does not hold in the FULL
configuration. Thus, we expect a similar contextualization result compared to MIN
with more details about the initial point of infection.

APT scenario graphs For theMIN configuration, the APT Contextualization yielded
611 distinct APT scenario graphs. From the original set of 12 675 alerts, this implies
a reduction to 4.82%. Among the result set is one graph that describes our APT
campaign. Figure 5.23 shows the APT scenario graph that was generated from the
alerts of IDS2018-APT. As mentioned before the initial infection via EternalRomance
and the Cosmic Duke C2/C&C did not generate an alert and are thus not included
in the graph. Most stages are labeled correctly with IP addresses and APT stages.
The only imprecision relates to the second stage trojan download: the edge is labeled
ambiguously with [E, D2, C] and the corresponding node not only contains the
target IP address 12.34.12.34 but the label “Internet”. The stage mismatch is expected
as our approach derives potential stages from network direction and can not reduce
the set of stages further without additional context for outgoing connections to the
Internet. The label is the result of imperfect meta-alert generation as the algorithm
grouped multiple Internet IP addresses and thus produced that label. However, the
scenario references all used meta-alerts and unclustered alerts via a unique identifier.

The FULL configuration produced an alert for the initial RCE that was missed in MIN.
Ideally, the produced APT scenario graph should thus correctly identify the first node
in the chain that is labeled as with {<empty>} in Figure 5.23. The contextualization

152 Chapter 5. Approaches for APT Detection

{'D1'}{'Internet'}

{'D2','C','E'}

{'L'}{'172.31.64.67'} {'E','C'}{'172.31.69.20'}

{'Internet'}

{'1.1.15.57'}

Figure 5.24: Result: APT scenario graph for IDS2018-APT-FULL

Alerts
& Events

APT Scenario
Graphs

APT
Contextualization

Scenario
Prioritization

Prioritized
APT Scenario

Graphs
Production

Environment
In-house
Detection

Existing Infrastructure

Figure 5.25: Experimental Setup: Enterprise datasets

yielded 686 distinct APT scenario graphs—a reduction to 0.15% of the total alert set.
Figure 5.24 shows the one that closely resembles our APT campaign. The new APT
scenario graph matches our campaign with similar precision than the one from MIN.
The initial RCE is picked up and added to the scenario. However, as multiple alerts
relate to incoming connections to 172.31.64.67, the node is labeledwith “Internet”. The
referenced alerts indeed contain the one related to the RCE. Overall the FULL scenario
matches the campaign more closely as expected from the generated alerts. Human
analysts can use the graph to further investigate the referenced alerts to confirm APT
activity.

5.3.6.3 Enterprise Datasets

This section contains the evaluation of the extended approach for APT contextual-
ization developed in the supervised Bachelor’s thesis [Lau22] (APT Contextualizer
v2) based on the two variants of the associated enterprise dataset and the embedded
synthetic APT campaign.

Experimental Setup Due to the amount of private information in the enterprise
dataset, evaluation of APT Contextualizer v2 was performed on-site by the student
with only aggregated results being available due to compliance reasons. Additionally,
the evaluation started on alert-level as this was the only available data source in the
production environment of the medium-sized managed security provider. However,
the previous evaluation already demonstrated, that our approach is able to cover the
whole detection pipeline from pcap to APT scenario graphs. Figure 5.25 gives an
overview about the evaluation pipeline that was used. The existing infrastructure
already generates alerts from the production environment via a custom in-house
detection pipeline that our approach treats as opaque. The alerts are stored in a SIEM
from where our approach retrieves them for the contextualization process. After
APT scenarios are generated, they are prioritized based on the scoring mechanism
described in Section 5.3.5.2 to obtain the final set of prioritized scenario graphs.

Experiment III: Volume Reduction Similar to the first experiment, we first analyze
the volume reduction achieved by APT Contextualizer v2. We chose to perform this
experiment on the datasets that include the six embedded alerts from the synthetic
APT campaign, as the system works on alert-level anyway and the difference in alerts
is negligible. Both dataset variants are processed by our pipeline and the number of
resulting APT scenario graphs is compared with the size of the respective original
alert sets.

5.3. APT Contextualization via Kill Chain State Machines 153

Baseline Stage Mapping
v1 v2 Alerts +Events v2 Alerts +Events

Alerts — 17 726 false positives + 6 APT-related —
Infection Trees 146 165 175 147 213
APT Scenarios 276 145 192 171 211
- Average Nodes 3.01 3.90 4.28 2.10 2.10
- Average Edges 2.01 2.90 3.28 1.90 2.90

Reduction [%] 1.56 0.82 1.08 0.96 1.19
Scenarios per Day 9.20 4.83 6.40 5.70 7.03

Table 5.12: Results: Volume reduction for Enterprise-Small

Table 5.12 shows the results for Enterprise-Small. The first column contains the results
of APT Contextualizer v1 applied to the small 30-day dataset (Enterprise-Small).
The total number of APT scenarios is moderate with 146 which equals to 9.2 scenarios
per day. The reduction of 9.20% of the original alert set is larger than our previously
obtained results on CSE-CIC-IDS2018 [SHG18]. The second column contain the
results of APT Contextualizer v2 in the base configuration that only relies on the
network direction tomapAPT stages to alerts. We already see an improvement in both
total scenario obtained (145) and average number of graph elements compared to
the APT Contextualizer v1. The third column also adds event enrichment via graph
connectivity as described in Section 5.3.5.1. As expected this increases the number of
generated APT scenario graphs again to 192 total or 6.4 per day. The last two columns
show results for enabled stage mapping, i. e., usage of attached stage labels on alerts
for improved precision of assigned stages. The results are comparable to the APT
Contextualizer v2 baseline with slightly more generated scenarios. However, the
number of average graph elements is slightly surprising with the lowest among the
table. This is likely the result of some short graphs consisting of mostly host alerts.

Table 5.13 contains the same configurations for Enterprise-Large, the 90-day dataset.
Due to the increased number of alerts, the total amounts of scenarios is rising as
expected. While the reduction is still decent with 6.69% for APT Contextualizer
v1 and 3.30–3.59% for APT Contextualizer v2, the high number of about 54k alerts
results in 40 and 20–21 scenarios per day. This might strain a small- to medium-sized
SOC. It is also interesting to note, that the overall average count of graph elements
drops compared to Enterprise-Small, indicating that this dataset contains more short
APT scenarios. This is caused by differing traffic patterns between the months of
capture. Overall, the results for volume reduction are promising for both datasets
and highlight the improvements made by APT Contextualizer v2. The number of
APT scenarios is consistently lower compared to APT Contextualizer v1 with similar
or even higher complexity (as indicated by the average number of graph elements).
The next experiment investigates if these improvements impacted the reconstruction
performance.

Experiment IV: Campaign Reconstruction While volume reduction is essential to
unburden SOC analysts, our approach would be significantly less valuable if APT
campaigns cannot be accurately reconstructed. To evaluate this, the resulting scenario
graphs are manually analyzed to find our injected, synthetic APT campaign, that
we described in Section 5.3.6.1. As alerts for all attack steps were injected into the

154 Chapter 5. Approaches for APT Detection

Baseline Stage Mapping
v1 v2 Alerts +Events v2 Alerts +Events

Alerts — 54 220 false positives + 6 APT-related —
Infection Trees 1 888 1 856 2 029 1 859 2 029
APT Scenarios 3 626 1 888 1 936 1 790 1 945
- Average Nodes 3.05 3.30 3.30 2.01 2.01
- Average Edges 2.05 3.20 3.21 2.00 2.00

Reduction [%] 6.69 3.48 3.57 3.30 3.59
Scenarios per Day 40.31 20.98 21.51 19.89 21.61

Table 5.13: Results: Volume reduction for Enterprise-Large

Figure 5.26: Result: APT scenario graph in the enterprise dataset

timeframe of the datasets present in both Enterprise-Small and Enterprise-Large, we
expect a fully reconstructed scenario without any missing stages to be found in all
experiments. This is exactly what happened and Figure 5.26 shows the reconstructed
APT campaign. We see, that the complete campaign is reconstructed including the
host-based reflexive edge and the last objective stage which was also detected on
host-level. Combined with the results for volume reduction shown in the previous
experiment, we can conclude, that APT Contextualizer v2 is capable of extracting
embedded information about potential APT campaign activity from a large set of
alerts resulting in detailed visual representations of them.

Experiment V: Scenario Filtering and Prioritization Another important improve-
ment made by APT Contextualizer v2 is the ability to filter the resulting set of APT
scenario graphs to reduce the investigation load on SOC analysts even further. The
current implementation offers two filtering strategies to achieve this that can also be
used on conjunction if desired:

• Length-based filtering improves upon the basic filtering feature already present
in APT Contextualizer v1. Instead of simply filtering all graphs with less than
two nodes (including potential unknown infection start nodes), the new algorithm
prunes all scenarios with less that two stage transition edges. This results in
chains of host-based alerts (without any other involved hosts) to be deleted.

• Priority-based filtering uses the priority score as described in Section 5.3.5.2 and
filters all scenarios that score less than a configurable threshold. As the score
aims to represent an overall threat level, this strategy is a good fit for SOCs that
are strained for resources.

5.3. APT Contextualization via Kill Chain State Machines 155

Baseline/None Length-based Priority-based (40)
Alerts +Events Alerts +Events Alerts +Events

Alerts — 17 726 false positives + 6 APT-related —
APT Scenarios 171 211 4 15 148 178
- Average Nodes 2.10 2.10 4.30 3.89 2.11 3.31
- Average Edges 1.90 2.90 4.20 3.94 2.00 3.21

Reduction [%] 0.96 1.19 0.02 0.08 0.83 1.00
Scenarios per Day 5.70 7.03 0.13 0.50 4.93 5.93

Table 5.14: Results: Scenario filtering for Enterprise-Small

Stage Mapping Length-based Priority-based (40)
Alerts +Events Alerts +Events Alerts +Events

Alerts — 54 220 false positives + 6 APT-related —
APT Scenarios 1 790 1 945 16 32 1 328 1 368
- Average Nodes 2.01 2.01 2.18 2.11 2.01 2.01
- Average Edges 2.00 2.00 2.18 2.13 2.00 2.00

Reduction [%] 3.30 3.59 0.03 0.06 2.44 2.52
Scenarios per Day 19.89 21.61 0.17 0.35 14.76 15.20

Table 5.15: Results: Scenario filtering for Enterprise-Large

We evaluate both strategies on both datasets. Table 5.14 contains the results for the
30-day Enterprise-Small dataset. The left two columns are the same results with from
the volume reduction experiment with stage mapping enabled. As both filtering
strategies rely on precise stage assignments for alerts (which is achieved by stage
mapping), these results serve as a baseline. The following columns show the results
for both filtering strategies with optional event enrichment (40 was chosen as the
threshold for priority-based filtering). It is important to note, that our synthetic APT
campaign was never filtered.

We see, that length-based filtering performs exceptionally well, reducing the total
number of APT scenario graphs to 4 when only alerts are considered and 15 with
enabled event enrichment. This implies a massive reduction to 0.13%(!) and 0.50% of
the total alert set respectively. As expected, the average number of graph elements
is thus comparatively high with 3.89–4.30 nodes and 3.94–4.20 edges. This indicates
that the filtering worked as intended and retained complex campaigns. However, we
gave to consider, that our scenario was injected with “perfect visibility” assuming
alerts are actually generated for all relevant attack steps. The results show, that length-
based filtering is highly efficient when such long and complex scenarios need to be
reconstructed. For other scenarios, e. g., incomplete or in-progress campaigns, priority-
based filtering is a better choice. With our moderate threshold of 40, the strategy
filtered 23–33 APT scenarios compared to the baseline resulting in 148 total scenarios
derived from just the alert set and 178 scenarios with added event enrichment. It is
also important to keep in mind that both the priority score calculation as well as the
threshold can be changed to adapt APT Contextualizer v2 to a custom environment.
Furthermore, the remaining graphs can still be prioritized via the score to further
improve SOC efficiency.

156 Chapter 5. Approaches for APT Detection

Results for Enterprise-Large are shown in Table 5.15. As expected, length-based
filtering performswell again achieving reductions to 0.17–0.35%. However, the average
number of graph elements drops significantly to 2.11–2.18 nodes and 2.13–2.18 edges
which is slightly surprising. Nonetheless, our synthetic APT campaign is still retained.
For priority-based filtering the improvements compared to the baseline are nearly the
same as for the small dataset and we see scenarios per day reduced from 19.89–21.16
to 14.76–15.20. This indicates a manageable investigation load for the SOC especially
compared to the initial baseline set byAPT Contextualizer v1 in the volume reduction
experiment of 40.31 APT scenario graphs per day.

In summary, our evaluation indicates that our approach for contextualization of APT
campaigns based on kill chain state machines works as intended. (i) it significantly
reduces the overall set of alerts to be investigated by two to three orders of magnitude
and (ii) it can detect and contextualize complex attacks. Although not all nodes
are labeled perfectly, large parts of our APT campaign are visualized. While our
APT campaign is obviously not representative of all potential APT campaigns it
does include zone movement that is characteristic of typical multi-stage attacks. The
movement of the attacker across different zones should result in longer chains in
our APT scenario graphs and thus reveal the campaign. APT Contextualizer v2
further improves upon the original implementation in several ways and adds features
to prioritize and filter the result set of APT scenario graphs. Our results indicate
that SOC analysts can be significantly unburdened as the compact representation of
potential APT campaigns combined with prioritization measures helps to quickly
reveal connected APT activity.

5.3.6.4 Requirement Comparison

Based on the description and evaluation results, we can now compare our approach
for APT contextualization based on KCSMs with our requirements formulated in Sec-
tion 3.1. R1: Accuracy is fulfilled as our approach achieves a massive reduction in alert
volume while retaining essential information about the potential APT campaign em-
bedded in the alert set. While the absolute accuracy, i. e., number of relevant scenarios
compared to the overall number of scenarios, is not perfect, especially APT Contextu-
alizer v2 achieves good results while balancing the trade-off between over-filtering
and low accuracy. R2: Explainability is also fully met as the APT scenario graphs
compactly visualize the additional information revealed of our contextualization
process. There are two factors influencing R3: Low overhead: (i) the little restrictions
imposed on the input alert set (tagged or untagged) and (ii) the medium amount of
computation required for the contextualization process. As a consequence, we mark
this requirements as partially checked. Due to the missing runtime measurements,
R4: Scalability cannot be reliably rated and is left as unknown. R5: Security was not an
explicit design goal of our approach as it is only tangentially relevant. It is thus left
as neutral. We mark R6: Privacy as partially fulfilled as our approach requires only
high-level information in its input alerts and can thus work with potentially redacted
alerts (as long as IP addresses are left intact). Lastly, R7: Deploy- & Maintainability is
fully met as our approach is highly flexible in which alert types can be consumed and
should thus be comfortably integrable in most enterprise environments.

5.3.7 Summary

This section presented an approach for APT campaign reconstruction based on a novel
Kill Chain State Machine (KCSM), an actionable formalization of the UKC [Pol21],

5.4. Summary 157

that generates compact representations of potential APT campaigns to answer our
formulated research questions RQ5 and RQ6:

RQ5 How can established kill chain-based APT models be leveraged for campaign detection
with only minimal assumptions about the lower-level alert set?

RQ6 Which level of volume reduction can be achieved during APT campaign reconstruction
to lessen the impact of alert fatigue on SOC analysts?

Our algorithm ingests both regular untagged alerts and stage-specific alerts and links
them according to pre- and post-conditions of the KCSM to obtain APT scenario
graphs. The original approach was implemented as a Python-based prototype and
evaluated on theCSE-CIC-IDS2018 dataset [SHG18] thatwe enhancedwith a synthetic
APT campaign. This “end-to-end” evaluation starts on pcap level and results in APT
scenario graphs and thus demonstrates that our approach is applicable in real-world
settings. Additionally, the implementation was improved to better handle host-based
stages and improved prioritization measures. This version was evaluated in a real-
world enterprise setting with an injected APT campaign to further show how our
approach is capable of real-world usage. Results across both evaluations indicate
strong performance in both (i) reducing the overall alert volume to 0.96–3.59% of the
original alert set (depending on the exact configuration and scenario) and (ii) correctly
reconstructing the APT. Furthermore, we show how the configurable prioritization
feature can further improve the final result set and thus saving valuable time of SOC
analysts. Overall, our experiments and obtained results across two datasets provide
answers to the research questions: (i) The successful reconstruction of both synthetic
APT campaigns indicates that our formalization of established kill chain-basedmodels
to the KCSMenables our approach to detect APT campaign activity. (ii)The significant
volume reduction achieved in both the unmodified datasets and with the injected APT
campaigns indicates that we can obtain volume reductions to 2–3 order of magnitude
while preserving the contextual information of potential APT campaign activity.

5.4 Summary

APT detection approaches extract higher-level meaning from the low-level alerts
and events obtained through security monitoring. APT campaigns impose extra
challenges on this process due to their extended stay in the network and their overall
sophistication. This chapter introduced three core contributions of this thesis that
advance the state-of-the-art in the area of APT detection. A stage-specific approach
for lateral movement detection is followed by a state machine-based approach for APT
detection as well as a concept to regain explainability for graph-based AI detection
approaches. Together, these three approaches offers improvements throughout the
APT detection process in both forensic and detection settings.

The approach presented in Section 5.1 aims to reveal hosts that have been compromised
by lateral movement during an APT campaign based on an incomplete set of alerts or
IoCs. A formal model describing both the underlying network and three potential
attacker classes lays the foundation for the algorithm. It is based on the notion of
Criticality, a node feature that combines host vulnerability and importance to mark
hosts that are most likely to become compromised. We then designed an abstract
algorithm that approximates the set of infected nodes without specifying a concrete
implementation to obtain nodes and implemented two variants based on k-shortest
paths and randomwalks. We evaluate our approach on synthetic datasets consisting of

158 Chapter 5. Approaches for APT Detection

(i) randomized network topologies according to our formal model that resemble real-
world organization networks and (ii) generated attacks that are reduced to incomplete
alert sets based on our three attacker classes. Our results indicate that k-shortest paths
consistently outperform random walks even for attackers that strongly deviate from
our proposed attacker classes and are thus the recommended implementation.

Section 5.2 introduced a concept to restore explainability for graph-based anomaly
detection approaches by leveraging a variation of the established XAI technique
permutation importance. We can identify graph elements that are likely part of the
anomalous part of the graph by systematically modifying the original graph and
observing the changing anomaly score that are reported by the anomaly detection
approach in question. While we apply and evaluate our prototype implementation
in the domain of APT detection based on system provenance data, the concept is
transferable to other graph-based whole-graph classification problems as the anomaly
detection function is treated as a black box without any further assumptions about the
underlying AI model. We evaluate our approach on two popular system provenance
datasets, namely StreamSpot [MMA16] and DARPA TC Engagement 3 [DAR18] using
UNICORN [Han+20] as our anomaly detection approach to augment. Our results
indicate that our approach is able to identify nodes that are likely part of the anomaly
using the node removal strategy. While the fidelity of the datasets is insufficient to
fully validate our findings, we successfully tested our results for statistical significance
using the Wilcoxon rank-sum test [Wil92].

The approach presented in Section 5.3 aims to reconstruct APT campaign activity
based on a Kill Chain State Machine (KCSM) derived from the UKC [Pol21] by
representing general campaign progress as states and kill chain stages as transitions.
The model can be used to track APT campaign progress throughout the network and
also keeps track of potentially infected hosts (via their IP addresses). The approach
contains an algorithm to map potential APT stages to any network-based alert and
is this independent from the underlying alerting. However, it can also ingest alerts
that are specifically tagged with a set of potential APT stages and include them in
the reconstruction process. Next to the network-based prototype, an extension, that
features several improvements including support for a subset of host-based stages,
is also presented and evaluated. The algorithm results in APT scenario graphs that
offer a compact visual representation of reconstructed potential APT campaigns and
can support SOC analysts in incident response and mitigation measures. Our results
indicate that both implementations of our approach are able to (i) significantly reduce
the overall alert volume to 0.96–3.59% of the original size and (ii) compactly represent
connected malicious activity from potential APT campaigns in the network.

Together with the approaches for improved visibility introduced in the previous
chapter, this chapter presented the contributions of this thesis. The five presented
approaches improve several key areas required for APT detection from low-level
visibility to whole campaign detection. The approaches can be used individually or
in conjunction. One example deployment could leverage our system for visibility into
TLS encrypted traffic to obtain a baseline alert set by via a NMS/IDS. This baseline
is then further augmented with stage-specific alerts from from both the analysis
of brute-force login attempts (tagged with reconnaissance) and our algorithm to
reconstruct lateral movement. All three types of alerts can then be processed by our
APT reconstruction via the KCSM to obtain a holistic overview about the current
potential campaigns in the network. This flexibility marks one additional benefit of

5.4. Summary 159

the approaches presented in this thesis. The following chapter summarizes this work
once more and provides an outlook on remaining open questions and future work.

161

6 Conclusion

This chapter briefly summarizes the open challenges for the detection of advanced
persistent threat (APT) campaigns in enterprise networks, the contributions towards
these challenges made in this thesis as well as potential directions for future research.
Section 6.1 recaps the requirements for APT detection established in this thesis and
how they relate to relevant prior work and the contributions made towards improved
security monitoring and APT detection. Section 6.2 concludes this thesis with remain-
ing problems and open challenges for future work in this domain.

6.1 Summary of Contributions

The emerging hazard from APTs poses a challenge for large organizations, critical
infrastructure, and governments alike. Detection of APT activity is hindered by their
stealthiness and overall sophistication level, such that adversaries often remain in
networks for extended periods of time. The process is hindered two major factors:
(i) limited visibility due to insufficient security monitoring such that key APT activity
remains undetected and (ii) alert fatigue of security operations center (SOC) analysts,
who are overwhelmed by the high-volume alert stream due to a lack of accurate
detection and reconstruction approaches. Both high-quality security monitoring that
reliably obtains indicators of even stealthy activity and sophisticated security analytics
that filters and correlates the large amounts of generated alerts down to a manageable
level are essential for successful detection of APT attacks.

This thesis formulates requirements for APT detection in enterprise networks and
discusses relevant literature across the whole detection process according to them.
The survey of prior work in the respective areas reveals multiple open challenges for
both security monitoring and security analytics which this thesis aims to address.
On event-level, adoption of encryption for network traffic, e. g., via TLS, has limited
the visibility network monitoring systems (NMSs) can obtain into application-level
payloads. Existing proposals exhibit several drawbacks including security issues,
privacy concerns for users and lack of wide-spread adoption among others. Addi-
tionally, the potential of APT reconnaissance through brute-force login attempts is
not covered by existing approaches as they focus on the classification task between
benign and malicious logins. On alert-level, there are some promising approaches
to detect APT activity through anomaly detection on system provenance data that
achieve generally good detection performance. However, due to the complexity of
the underlying models, results are not easily interpretable and thus fail to deliver
additional attack context. This hinders effective incident response as security experts
need to further investigate details about the attack to estimate their impacts Alert
correlation is another relevant research area, as it also aims at reducing the overall
alert volume, e. g., by clustering related alerts. However, approaches from this area
are usually not directly applicable to APT campaigns as they result in few alerts only
(if any). This hypothesis has also been confirmed by our analysis of selected works

162 Chapter 6. Conclusion

in this area as the approaches fail to achieve good accuracy. Approaches for APT
stage detection are valuable tools to obtain indicators for APT activity. Our analysis
of three key APT stages revealed that no approach manages to achieve high accuracy
while also being deployable in enterprise contexts. APT campaign reconstruction is
the most promising area of research related to the overall goals of this thesis. The
survey of the relevant literature revealed that no approach achieves good accuracy
without relying on system provenance data, which is still hard to reliably capture and
process in enterprise environments. Overall, our literature survey of APT detection
concluded that there are many promising approaches but also several unresolved
challenges. This thesis thus aims to propose mechanisms that address these gaps for
both enhanced security monitoring and detection of entire APT campaigns.

The first contribution to enhance securitymonitoring is offered in formof our approach
for passive TLS decryption via cooperating endhosts. This helps to regain visibility lost
by the use of TLS encryption. The approach significantly improves upon the current
state of the art, in which TLS-intercepting proxy servers are used, by keeping the
integrity properties of the TLS connection intact. This is achieved by cooperatively
forwarding key material from the network stack of the endhosts to the trusted NMS
where it can be used for decryption. We implemented the approach as a prototype
module for the Zeek NMS [Pax99; Zee22] and a Python-based daemon that runs
on the endhost. Conceptually, our approach requires less computational resources
compared to systems that rely on active interception of the TLS connection, such as
proxy servers, as these systems need to both decrypt and encrypt all payload bytes
twice. As our NMS only needs to passively decrypt payloads for analysis (and can
even skip “uninteresting” traffic), it is less CPU intensive. Furthermore, it supports
selective decryption (in applicable scenarios) and thus allow users of the endhosts
to retain conceptually guaranteed privacy for selected connections. Our evaluation
results indicate that the overhead induced by performing decryption in the NMS
is acceptable at around 2.5 times the original runtime. Considering the resources
that can be saved by not performing costly active interception, our approach should
not result in overall increased resource requirements. Additionally, we evaluate the
impact of delay resulting from the transfer of key material via the network on the
decryption performance. The results indicate that a small traffic buffer of about 40ms
should be enough to decrypt 99.9% of observed connections in our test scenario.
Lastly, our prototype gained traction in the Zeek community, prompting us to further
improve it. As a result, our modifications have been upstreamed to mainline and are
available starting from Zeek version 5.0.0.

Another improvement towards better external visibility on APT activity is contributed
by our novel approach for characterization of brute-force attackers. By using both estab-
lished metrics from literature and two novel metrics proposed by us, SOC analysts
can make estimates about attacker behavior that are helpful when triaging login
attempts on their publicly accessible hosts. Single metrics or metric combinations
can be used to cluster attacking IPs and thus reveal potential collusion. Also, both
standalone metrics or combinations thereof can offer insights about attacker behavior
and likely sophistication level. They can thus be leveraged to prioritize attacks and
attack clusters for analysis. Our evaluation on a real-world dataset captured by our
Honeygrove [Hon+22] honeypot indicates that the analysis process based on our
set of metrics can provide strong indicators for collusion for otherwise unrelated IP
addresses and produce useful clusters that speed up the following analysis.

Next to these two enhancements for security monitoring, this thesis also proposes

6.1. Summary of Contributions 163

three mechanisms to effectively support SOC analysts in coping with alert fatigue
via sophisticated security analytics approaches. The following contributions all aim
to extract higher-order meaning from the existing alert set by (i) estimating impact
of lateral movement for improved incident response, (ii) adding missing context
about detected anomalies cause by APT attacks and (iii) reconstructing entire APT
campaigns.

The first contribution in the area of security analytics is a stage-specific approach to recon-
struct lateral movement from an incomplete alert set. The algorithm identifies hosts that
were likely compromised as during lateral movement of a detected APT attack based
on an underlying model that encompasses both host security properties and already
attributed alerts. The resulting ordered lists of hosts speeds up incident response as
security experts can prioritize hosts for cleanup procedures. We implemented two
variants of our approach, one based on k-shortest paths as well as one based on biased
random walks, and evaluated both on a synthetic dataset. Our results indicate that
the variant based on k-shortest paths strongly outperforms the alternative across all
three attacker classes. In addition to the experiments with idealized attackers, we also
evaluated the influence of attacker deviation on the detection performance. Similar to
the idealized attackers detection performance is best for insider attackers with a true
positive rate (TPR) of about 90% at even 80% deviation. Overall, we recommend to
configure the approach with the result set size parameter 𝜏 set to 0.2 to achieve best
results across all three attacker classes.

Next, this thesis presents an approach to restore explainability for graph-based anomaly
detection approaches that adds essential context about a detected attack that is typically
unavailable due to the complexity of the underlying normality models. In the case
of APT detection this loss is especially important as SOC analysts rely on detailed
information about why a certain system was deemed compromised to inform mitiga-
tion and recovery processes. Our approach addresses this problem by treating the
anomaly detection function as a blackbox, systematically permuting the input data,
and observing the generated anomaly scores. The permutation choices are governed
by modular strategies of which we provide two: one based on node removal as well as
another one based on edge removal. While our approach is designed for the specific
domain of anomaly-based APT detection on data provenance graphs, our proposal is
not strongly tied to the domain and can be used for other whole-graph classification
problems as well. In fact, the two presented permutation strategies do not rely on
semantic information from the graph and only leverage structural data also present
in graphs from other domains. Our evaluation uses UNICORN [Han+20] as the
anomaly detection approach and is based on the StreamSpot [MMA16] and Defense
Advanced Research Projects Agency (DARPA) Transparent Computing [DAR18]
datasets. While the fidelity of the datasets did not allow us to fully confirm our identi-
fied abnormal graph elements, we showed how our area under baseline (AUB) metric
can be used to quantify the “abnormality” of the graph in question. We observed a
difference in AUB distribution between benign and abnormal StreamSpot graphs in-
dicating higher median values for the abnormal graphs (i. e., the ones that contain an
attack). This aligns with our hypothesis that the AUB quantifies the abnormality, thus
resulting in higher (median) values for attack graphs. Additionally, we confirmed
the statistical significance of these results using the Wilcoxon rank-sum test [Wil92].

The last contribution is an approach for APT campaign reconstruction based on the novel
concept of a Kill Chain State Machine (KCSM). By deriving a state machine from the most
comprehensive kill chain model to date, the unified kill chain (UKC) [Pol21], wemake

164 Chapter 6. Conclusion

the abstract concept of kill chains more actionable. The resulting algorithm ingests
alerts (that may optionally be clustered in a preprocessing step) and traces potential
APT campaign activity across all hosts in the network. After potential APT stages for
an alert are derived based on network direction, the algorithm links related alerts and
finds connected infection chains based on the pre- and post-conditions of the KCSM.
The resulting artifacts are called APT scenario graphs and offer a compact overview
about the reconstructed campaigns. SOC analysts can then leverage this information
for triage or further threat hunting activities. In addition to the base algorithm
described above, we improved out prototype implementation to (i) better handle
alerts that are pre-tagged with APT stage information and (ii) filter and prioritize
the result set to better utilize the limited analyst time. The resulting implementation
is more modular, offers slightly increased performance and can be adapted to new
environments easily. Our evaluation is based on two scenarios: (i) We evaluate
the basic algorithm “end-to-end”, e. g., from pcap level up to the final graphs, on an
established intrusion detection dataset that we enrichwith a carefully crafted synthetic
APT campaign. Our results indicate that our APT campaign is fully reconstructed
as long as alerts are available in the underlying alert set. This demonstrates that
our algorithm is able to trace typical APT campaigns and highlights once again
the importance of good-quality security monitoring as enhanced by the first two
contribution of this thesis. Additionally, our approach is capable of reducing the alert
volume drastically down to 0.15%(!) of the original alert set. While our approach still
produces some false-positives even when no APT activity is present, this reduction
and the added context enables SOC analysts to investigate the remaining scenarios
more effectively compared to the singular alerts before. (ii) We deploy the extended
approach in a medium-size security provider to evaluate the detection performance
in a real-world scenario. Similar to the first experiment, we also inject a synthetic APT
campaign based on analyst experience. The results indicate that the extended version
is capable of tracing APT campaigns in real-world scenarios that include host-based
alerts while maintaining volume reduction ratios between 0.96–3.59%. Additionally,
a comparison of added prioritization methods highlights how SOC analysts can be
supported even after scenarios are generated resulting in reduction rates of down to
0.02% (4 generated scenarios from 17 732 total alerts) in extreme cases. Although,
this specific configuration is not applicable to all organizations, it demonstrates the
flexibility of our approach in ideal settings.

In summary, this thesis presents two approaches that enhance security monitoring
to obtain alerts of both higher quality and quantity as well as three approaches for
improved security analytics to lower the burden of the large amounts of alerts on SOC
analysts. The five contributions in total each address a pressing need in their respective
area and thus support the overall goal of APT detection. They can be used individually
or in conjunction to improve the detection capabilities of any SOC protecting an
enterprise network. However, some areas still need further improvements as the next
section describes.

6.2 Future Work and Outlook

APT detection remains an extremely challenging task. While the contributions pre-
sented in this thesis address important gaps in the state of the art, several research
areas retain further questions that remain open. This section briefly highlights some
of these problems that arise from either limitations of the approaches presented in
this thesis or remain from challenges that have not been addressed yet.

6.2. Future Work and Outlook 165

The approach for passive TLS decryption via cooperative key sharing from endhosts
(that we present in Section 4.1) is designed to conceptually support selective decryp-
tion, i. e., allowing users to withhold key material and thus retain some privacy for
selected connections. We argued that this can improve user trust and willingness to
participate in the overall system in certain scenarios. Future research is required to
evaluate the applicability of selective decryption in different real-world scenarios such as a
university campus or a mid-sized company that wants to promote employee privacy.
A quantitative user study could then provide insights in how the feature is accepted
by real users and how it influences their acceptance of the overall security monitoring.

Accuratemapping of security-relevant properties of hosts and other assets is a complex
task that should also be improved by future work. As the network constantly evolves
by either hardware changes and host churn or changing software versions that fix
and introduce new vulnerabilities, a comprehensive database that details the security
state of the network and all assets can provide substantial benefits for defense. While
tools exist for sub-areas like nessus [Ten22] for network scanning and asset discovery,
vulnerability databases like CVSS [For15], or nmap [Ln22] to detect software versions,
future work should aim to combine and reconcile the results to obtain a unified overview
about the security state of the network. Such a database could also serve as the input to
our approach for lateral movement reconstruction (that we introduce in Section 5.1).

The approach to restore explainability to complex graph-based models for APT detec-
tion (that we describe in Section 5.2) already shows promising results. Although the
current evaluation can not sufficiently prove that our approach correctly identifies the
correct nodes resulting from the detected attack, the results based on our AUB metric
provide good indications for subsets of nodes that are likely part of the anomaly. Due
to missing accurate ground truth, the current datasets are unfit to obtain ideal results.
Future work can improve this by either generating new datasets of higher granularity
such that individual graph elements of anomalies can be identified or by manually
annotating the existing datasets based on expert analysis. Furthermore, more com-
plex permutation strategies which leverage the semantic information encoded into
the nodes should be investigated to further improve results in the context of APT
detection.

Another opportunity for future research in theAPT context lies in the reliable detection
of host-based APT stages (or chains thereof) that can be used as part of a larger
reconstruction algorithm. While there are several approaches that tackle network-
based stages, the host-based stages are somewhat underrepresented in the state of the
art. The high fidelity of system-level host data is appealing for artificial intelligence
(AI)-based approaches that rely on a broad training set. As stage-specific detection
approaches are usually not investigated on their own but in context with other related
alerts, a novel approach could leverage complex AI models that are not interpretable
as the resulting stage label offers enough context for the reconstruction compared to a
anomaly detection-based approach that treats any anomaly as an attack.

Our presented approach for APT contextualization based on the KCSM (that we
introduce in Section 5.3) produces good results for alert- and event-data data obtained
in the network. Future work should extend the reconstruction algorithm to efficiently
integrate external cyber threat intelligence (CTI) to further improve accuracy of the
generated scenarios. CTI is already a valuable asset in APT detection that is currently
mostly used for either automated rule-based blocking or manually consulted during
investigations. This integration could also help to address the remaining problem

166 Chapter 6. Conclusion

of handling missing stages that is still unsolved for our approach and other related
reconstruction algorithms.

In summary, this thesis provides five contributions for both improved security moni-
toring and overall APT detection that help to lessen the burden on SOC analysts and
threat hunters defending large networks. However, there are some areas that could
benefit from additional improvements across the detection stack from event-level
security monitoring up to detection of entire APT campaigns. This includes (i) a
qualitative user study about selective TLS decryption, (ii) automated generation and
maintenance of a security-aware asset database, (iii) generation of fine-grained system
provenance datasets and evaluation of explainability approaches, (iv) application of
AI-based approaches for detection of host-based APT stages, and (v) integration of
CTI to our approach for APT contextualization based on KCSM.

167

A Appendix

A.1 Main Publications
[WF20b] Florian Wilkens and Mathias Fischer. “Towards Data-Driven Character-

ization of Brute-Force Attackers”. In: 2020 IEEE Conference on Commu-
nications and Network Security (CNS). 2020 IEEE Conference on Com-
munications and Network Security (CNS). Virtual Event (Avignon,
France): IEEE, 2020-06, pages 1–9. isbn: 978-1-72814-760-4. doi: 10.1109/
CNS48642.2020.9162326. (Visited on 02/10/2022).

[Wil+19a] FlorianWilkens, Steffen Haas, Dominik Kaaser, Peter Kling, andMathias
Fischer. “Towards Efficient Reconstruction of Attacker Lateral Move-
ment”. In: Proceedings of the 14th International Conference on Availability,
Reliability and Security. ARES ’19: 14th International Conference on Avail-
ability, Reliability and Security. Canterbury, United Kingdom: ACM,
2019-08-26, pages 1–9. isbn: 978-1-4503-7164-3. doi: 10.1145/3339252.
3339254. (Visited on 02/10/2022).

[Wil+21] Florian Wilkens, Felix Ortmann, Steffen Haas, Matthias Vallentin, and
Mathias Fischer. “Multi-Stage Attack Detection via Kill Chain State Ma-
chines”. In: Proceedings of the 3rd Workshop on Cyber-Security Arms Race.
CCS ’21: 2021 ACM SIGSAC Conference on Computer and Communica-
tions Security. Virtual Event (Seoul, Republic of Korea): ACM, 2021-11-19,
pages 13–24. isbn: 978-1-4503-8661-6. doi: 10.1145/3474374.3486918.
(Visited on 02/10/2022).

[Wil+22] Florian Wilkens, Steffen Haas, Johanna Amann, and Mathias Fischer.
“Passive, Transparent, and Selective TLS Decryption for Network Secu-
rity Monitoring”. In: ICT Systems Security and Privacy Protection. IFIP SEC
2022. Edited by Weizhi Meng, Simone Fischer-Hübner, and Christian D.
Jensen. Volume 648. IFIP Advances in Information and Communica-
tion Technology. Cham: Springer International Publishing, 2022-06-13,
pages 87–105. isbn: 978-3-031-06975-8. doi: 10.1007/978-3-031-06975-
8_6. (Visited on 01/09/2023).

[WWF23] Felix Welter, Florian Wilkens, and Mathias Fischer. “Tell Me More: Black
Box Explainability for APT Detection on System Provenance Graphs”. In:
Accepted for Publication at: 2023 IEEE International Conference on Communi-
cations (ICC): Communication and Information System Security Symposium
(IEEE ICC’23 - CISS Symposium). Accepted for Publication at: 2023 IEEE
International Conference on Communications (ICC): Communication
and Information System Security Symposium (IEEE ICC’23 - CISS Sym-
posium). Rome, Italy, 2023-05.

https://doi.org/10.1109/CNS48642.2020.9162326
https://doi.org/10.1109/CNS48642.2020.9162326
https://doi.org/10.1145/3339252.3339254
https://doi.org/10.1145/3339252.3339254
https://doi.org/10.1145/3474374.3486918
https://doi.org/10.1007/978-3-031-06975-8_6
https://doi.org/10.1007/978-3-031-06975-8_6

168 A. Appendix

A.2 Additional Publications
[HWF19] SteffenHaas, FlorianWilkens, andMathias Fischer. “Efficient Attack Cor-

relation and Identification of Attack Scenarios Based onNetwork-Motifs”.
In: 2019 IEEE 38th International Performance Computing and Communica-
tions Conference (IPCCC). London, UK: IEEE, 2019-10, pages 1–11. doi:
10.1109/IPCCC47392.2019.8958734.

[HWF20] Steffen Haas, Florian Wilkens, and Mathias Fischer. “Scan Correlation –
Revealing Distributed Scan Campaigns”. In: NOMS 2020 - 2020 IEEE/I-
FIP Network Operations and Management Symposium. Budapest, Hungary:
IEEE, 2020-04, pages 1–6. doi: 10.1109/NOMS47738.2020.9110470.

[Wil+19b] Florian Wilkens, Nurefsan Sertbas, Malte Hamann, and Mathias Fischer.
“Towards Flexible Security Testing of OTDevices”. In: 10. Jahreskolloquium
Kommunikation in Der Automation (KommA 2019). Kommunikation in Der
Automation (KommA 2019). Magdeburg, Germany, 2019-11, page 10.

A.3 Datasets
[WF20a] Florian Wilkens and Mathias Fischer. Dataset: Brute-Force Logins 2020

(BFL2020). Dataset. 2020-04-20. doi: 10.25592/uhhfdm.856.
[WHF22] Florian Wilkens, Steffen Haas, and Mathias Fischer. Evaluation Dataset:

Cooperative TLS-Decryption via Zeek. Dataset. 2022-06-13. doi: 10.25592/
uhhfdm.10116.

A.4 Supervised Theses
[Grä19] Lars Leo Grätz. “Botmaster Attribution in Large-Scale P2P Botnets”.

Bachelor’s thesis. Universität Hamburg, 2019-11-01.
[Kad20] JanKadel. “Detection ofAdvancedPersistent ThreatAttacks via aKillchain-

based Correlation of Host and Network Alerts”. Bachelor’s thesis. Uni-
versität Hamburg, 2020-12-11.

[Lau22] Jona Robin Laudan. “APT Detection for Enterprise Networks via Kill
Chain StateMachineswithHighAccuracy”. Bachelor’s thesis. Universität
Hamburg, 2022-08-31.

[Lei20] Alexander Leib. “Dynamic Data-Driven Risk Assessment for Cloud
Environments”. Master’s thesis. Universität Hamburg, 2020-07-20.

[Mar22] FinnMartens. “Aggregating Distributed Summary Statistics for Network
Security Monitoring with Zeek”. Master’s thesis. Universität Hamburg,
2022-02-14.

[Poh20] Jan Pohlmann. “Designing a Stealthy, Distributed, Multi-Purpose Net-
work and Malware Scanner”. Bachelor’s thesis. Universität Hamburg,
2020-10-28.

[Sch20] Henning Schütt. “Towards Transparent Decryption of TLS-encrypted
End-User Traffic in Enterprise Networks”. Master’s thesis. Universität
Hamburg, 2020-11-09.

[Sob19] Dennis Sobczak. “Summary Statistics in a Large-Scale Collaborative In-
trusion Detection SystemCluster”.Master’s thesis. Universität Hamburg,
2019-05-24.

[Wel22] Felix Welter. “Explainability in Machine Learning-based Intrusion De-
tection Systems”. Master’s thesis. Universität Hamburg, 2022-02-20.

https://doi.org/10.1109/IPCCC47392.2019.8958734
https://doi.org/10.1109/NOMS47738.2020.9110470
https://doi.org/10.25592/uhhfdm.856
https://doi.org/10.25592/uhhfdm.10116
https://doi.org/10.25592/uhhfdm.10116

169

Bibliography

[0xl22] 0xl3x1. Zeek-EternalSafety. 2022. url: https://github.com/0xl3x1/zeek-
EternalSafety (visited on 08/11/2022).

[40117] 401trg | Threat Research Group @ ProtectWise.Detections/Pcaps at Master
· 401trg/Detections. GitHub. 2017-12-20. url: https : / / github . com /
401trg/detections (visited on 04/26/2022).

[AB02] Réka Albert and Albert-László Barabási. “Statistical Mechanics of Com-
plexNetworks”. In:Reviews ofModern Physics 74.1 (2002-01-30), pages 47–
97. issn: 0034-6861, 1539-0756. doi: 10.1103/RevModPhys.74.47. (Visited
on 02/10/2022).

[ABvO16] AbdelRahman Abdou, David Barrera, and Paul C. van Oorschot. “What
Lies Beneath? Analyzing Automated SSH Bruteforce Attacks”. In: PASS-
WORDS 15: Technology and Practice of Passwords. Edited by Frank Stajano,
Stig F. Mjølsnes, Graeme Jenkinson, and Per Thorsheim. Volume 9551.
Springer International Publishing, 2016, pages 72–91. isbn: 978-3-319-
29938-9. doi: 10.1007/978-3-319-29938-9_6. (Visited on 02/10/2022).

[AL15] Michael J. Assante and Robert M. Lee. “The Industrial Control Sys-
tem Cyber Kill Chain”. In: SANS Institute Whitepapers (2015-10-05). url:
https://www.sans.org/white-papers/36297/.

[Alg09] Algorithmics Group, University of Konstanz. MDSJ: Java Library for Mul-
tidimensional Scaling. 2009. url: http://www.inf.uni-konstanz.de/
algo/software/mdsj/.

[ALV08] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. “A Scal-
able, Commodity Data Center Network Architecture”. In: Proceedings
of the ACM SIGCOMM 2008 Conference on Data Communication - SIG-
COMM ’08. The ACM SIGCOMM 2008 Conference. Seattle, WA, USA:
ACM, 2008-08, page 63. isbn: 978-1-60558-175-0. doi: 10.1145/1402958.
1402967. (Visited on 02/10/2022).

[AM20] Almuthanna Alageel and Sergio Maffeis. Hawk-Eye Dataset. Dataset.
2020-12-17. doi: 10.14469/hpc/7675. (Visited on 05/16/2022).

[AM21] Almuthanna Alageel and Sergio Maffeis. “Hawk-Eye: Holistic Detec-
tion of APT Command and Control Domains”. In: Proceedings of the
36th Annual ACM Symposium on Applied Computing. SAC ’21: The 36th
ACM/SIGAPP Symposium on Applied Computing. Republic of Korea
(Virtual Event): ACM, 2021-03-22, pages 1664–1673. isbn: 978-1-4503-
8104-8. doi: 10.1145/3412841.3442040. (Visited on 02/28/2022).

[Ami+21] MdAli Reza Al Amin, Sachin Shetty, Laurent Njilla, Deepak K. Tosh, and
Charles Kamhoua. “Hidden Markov Model and Cyber Deception for the
Prevention of Adversarial Lateral Movement”. In: IEEE Access 9 (2021),
pages 49662–49682. issn: 2169-3536. doi: 10.1109/ACCESS.2021.3069105.

[AW22] Johanna Amann and Florian Wilkens. Rudimentary Decryption for TLS
1.2 by 0xxon · Pull Request #1814 · Zeek/Zeek. GitHub. 2022-03-02. url:
https://github.com/zeek/zeek/pull/1814 (visited on 10/31/2022).

https://github.com/0xl3x1/zeek-EternalSafety
https://github.com/0xl3x1/zeek-EternalSafety
https://github.com/401trg/detections
https://github.com/401trg/detections
https://doi.org/10.1103/RevModPhys.74.47
https://doi.org/10.1007/978-3-319-29938-9_6
https://www.sans.org/white-papers/36297/
http://www.inf.uni-konstanz.de/algo/software/mdsj/
http://www.inf.uni-konstanz.de/algo/software/mdsj/
https://doi.org/10.1145/1402958.1402967
https://doi.org/10.1145/1402958.1402967
https://doi.org/10.14469/hpc/7675
https://doi.org/10.1145/3412841.3442040
https://doi.org/10.1109/ACCESS.2021.3069105
https://github.com/zeek/zeek/pull/1814

170 Bibliography

[BBM15] AdamBates, Kevin R. B. Butler, and ThomasMoyer. “TrustworthyWhole-
System Provenance for the Linux Kernel”. In: 24th USENIX Security
Symposium (USENIX Security 15). Washington, D.C., USA: USENIX As-
sociation, 2015-08, page 17. isbn: 978-1-931971-23-2. url: https://www.
usenix.org/conference/usenixsecurity15/technical-sessions/

presentation/bates.
[BC22] Kiran Bandla and Santiago Castro. Aptnotes/Data. Github: aptnotes/-

data. 2022-09-26. url: https://github.com/aptnotes/data (visited on
09/28/2022).

[Bej10] Robert Bejtlich. What Is APT and What Does It Want? TaoSecurity Blog.
2010-01-16. url: https://web.archive.org/web/20220320044226/
https://taosecurity.blogspot.com/2010/01/what-is-apt-and-

what-does-it-want.html (visited on 04/05/2022).
[Bej20] Robert Bejtlich. Greg Rattray Invented the Term Advanced Persistent Threat.

TaoSecurity Blog. 2020-10-10. url: https://taosecurity.blogspot.
com/2020/10/greg-rattray-invented-term-advanced.html (visited
on 04/05/2022).

[Beu+17] Von Patrick Beuth, Kai Biermann, Martin Klingst, and Holger Stark.
“Cyberattack on the Bundestag: Merkel and the Fancy Bear”. In: ZEIT
ONLINE (2017-05-12). url: https://www.zeit.de/digital/2017-
05/cyberattack-bundestag-angela-merkel-fancy-bear-hacker-

russia (visited on 11/11/2022).
[Bie+17] Michael Bierma, Aaron Brown, Troy DeLano, Thomas M. Kroeger, and

Howard Poston. “Locally Operated Cooperative Key Sharing (LOCKS)”.
In: 2017 International Conference on Computing, Networking and Commu-
nications (ICNC). 2017 International Conference on Computing, Net-
working and Communications (ICNC). Silicon Valley, CA, USA: IEEE,
2017-01, pages 356–362. isbn: 978-1-5090-4588-4. doi: 10.1109/ICCNC.
2017.7876154. (Visited on 07/18/2022).

[Bor+17] Riccardo Bortolameotti et al. “DECANTeR: DEteCtion of Anomalous
outbouNd HTTP TRaffic by Passive Application Fingerprinting”. In:
Proceedings of the 33rd Annual Computer Security Applications Conference.
ACSAC 2017: 2017 Annual Computer Security Applications Conference.
Orlando, FL, USA: ACM, 2017-12-04, pages 373–386. isbn: 978-1-4503-
5345-8. doi: 10.1145/3134600.3134605. (Visited on 02/10/2022).

[BP04] Kevin Borders and Atul Prakash. “Web Tap: Detecting Covert Web Traf-
fic”. In: Proceedings of the 11th ACM Conference on Computer and Com-
munications Security - CCS ’04. The 11th ACM Conference. Washington
DC, USA: ACM, 2004, page 110. isbn: 978-1-58113-961-7. doi: 10.1145/
1030083.1030100. (Visited on 05/02/2022).

[Bro17] Kevin Broughton. Automate Incident Response & Respond to Every Alert.
Swimlane [Security Operations]. 2017-03-03. url: https://swimlane.
com/blog/automated-incident-response-respond-every-alert (vis-
ited on 03/24/2022).

[Bro96] John Brooke. “SUS: A ’Quick and Dirty’ Usability Scale”. In: Usability
Evaluation In Industry. Edited by Patrick W. Jordan, B. Thomas, Ian Lyall
McClelland, and Bernard Weerdmeester. 1st edition. London, UK: CRC
Press, 1996-06-11, pages 207–212. isbn: 978-0-429-15701-1. doi: 10.1201/
9781498710411-35. (Visited on 10/30/2022).

[BS17] Blake D. Bryant and Hossein Saiedian. “A Novel Kill-Chain Framework
for Remote Security Log Analysis with SIEM Software”. In: Computers

https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/bates
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/bates
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/bates
https://github.com/aptnotes/data
https://web.archive.org/web/20220320044226/https://taosecurity.blogspot.com/2010/01/what-is-apt-and-what-does-it-want.html
https://web.archive.org/web/20220320044226/https://taosecurity.blogspot.com/2010/01/what-is-apt-and-what-does-it-want.html
https://web.archive.org/web/20220320044226/https://taosecurity.blogspot.com/2010/01/what-is-apt-and-what-does-it-want.html
https://taosecurity.blogspot.com/2020/10/greg-rattray-invented-term-advanced.html
https://taosecurity.blogspot.com/2020/10/greg-rattray-invented-term-advanced.html
https://www.zeit.de/digital/2017-05/cyberattack-bundestag-angela-merkel-fancy-bear-hacker-russia
https://www.zeit.de/digital/2017-05/cyberattack-bundestag-angela-merkel-fancy-bear-hacker-russia
https://www.zeit.de/digital/2017-05/cyberattack-bundestag-angela-merkel-fancy-bear-hacker-russia
https://doi.org/10.1109/ICCNC.2017.7876154
https://doi.org/10.1109/ICCNC.2017.7876154
https://doi.org/10.1145/3134600.3134605
https://doi.org/10.1145/1030083.1030100
https://doi.org/10.1145/1030083.1030100
https://swimlane.com/blog/automated-incident-response-respond-every-alert
https://swimlane.com/blog/automated-incident-response-respond-every-alert
https://doi.org/10.1201/9781498710411-35
https://doi.org/10.1201/9781498710411-35

Bibliography 171

& Security 67 (2017-06), pages 198–210. issn: 01674048. doi: 10.1016/j.
cose.2017.03.003. (Visited on 02/22/2022).

[BYG14] Parth Bhatt, Edgar Toshiro Yano, and Per Gustavsson. “Towards a Frame-
work to Detect Multi-stage Advanced Persistent Threats Attacks”. In:
2014 IEEE 8th International Symposium on Service Oriented System Engi-
neering. 2014 IEEE 8th International Symposium on Service Oriented
System Engineering (SOSE). Oxford, United Kingdom: IEEE, 2014-04,
pages 390–395. isbn: 978-1-4799-3616-8. doi: 10.1109/SOSE.2014.53.
(Visited on 02/10/2022).

[Chi+11] Shih-Chuan Chiu, Hua-Fu Li, Jiun-Long Huang, and Hsin-Han You.
“Incremental Mining of Closed Inter-Transaction Itemsets over Data
Stream SlidingWindows”. In: Journal of Information Science 37.2 (2011-04),
pages 208–220. issn: 0165-5515, 1741-6485. doi: 10.1177/0165551511401539.
(Visited on 10/31/2022).

[CHK21] Aldo Cortesi, Maximilian Hils, and Thomas Kriechbaumer. Mitmproxy
— an Interactive TLS Proxy. 2021. url: https://mitmproxy.org.

[Cis18] Cision US Inc.New Research from Advanced Threat Analytics FindsMSSP In-
cident Responders Overwhelmed by False-Positive Security Alerts. 2018-02-12.
url: https://www.prnewswire.com/news-releases/new-research-
from-advanced-threat-analytics-finds-mssp-incident-responders-

overwhelmed-by-false-positive-security-alerts-300596828.html

(visited on 03/24/2022).
[Cis22] Cisco. Snort - Network Intrusion Detection & Prevention System. Cisco, 2022.

url: https://www.snort.org/ (visited on 07/13/2022).
[CJ21] Katie Canales and Isabella Jibilian. The US Is Readying Sanctions against

Russia over the SolarWinds Cyber Attack. Here’s a Simple Explanation of How
the Massive Hack Happened and Why It’s Such a Big Deal. Business Insider.
2021-04-15. url: https : / / www . businessinsider . com / solarwinds -
hack-explained-government-agencies-cyber-security-2020-12

(visited on 11/11/2022).
[CNN16] CNN Editorial Research. “2016 Presidential Campaign Hacking Fast

Facts”. In: CNN (2016-12-27). url: https://www.cnn.com/2016/12/26/
us/2016-presidential-campaign-hacking-fast-facts/index.html

(visited on 11/12/2022).
[Con+16] Andrea Continella et al. “ShieldFS: A Self-Healing, Ransomware-Aware

Filesystem”. In: Proceedings of the 32nd Annual Conference on Computer
Security Applications. ACSAC ’16. New York, NY, USA: ACM, 2016-12-05,
pages 336–347. isbn: 978-1-4503-4771-6. doi: 10.1145/2991079.2991110.
(Visited on 04/22/2022).

[Con17] Eric Conrad. ShadowBrokers PCAPs, Etc. Eric Conrad’s blog | Author,
SANSFaculty Fellow, andCTOof BackshoreCommunications. 2017-04-17.
url: https://www.ericconrad.com/2017/04/shadowbrokers-pcaps-
etc.html (visited on 04/26/2022).

[Cor+04] L.P. Cordella, P. Foggia, C. Sansone, and M. Vento. “A (Sub)Graph Iso-
morphism Algorithm for Matching Large Graphs”. In: IEEE Transactions
on Pattern Analysis and Machine Intelligence 26.10 (2004-10), pages 1367–
1372. issn: 0162-8828. doi: 10.1109/TPAMI.2004.75. (Visited on 02/10/2022).

[Cuc22] Cuckoo Contributors. Cuckoo Sandbox — Automated Malware Analysis.
2022. url: https://cuckoosandbox.org/.

https://doi.org/10.1016/j.cose.2017.03.003
https://doi.org/10.1016/j.cose.2017.03.003
https://doi.org/10.1109/SOSE.2014.53
https://doi.org/10.1177/0165551511401539
https://mitmproxy.org
https://www.prnewswire.com/news-releases/new-research-from-advanced-threat-analytics-finds-mssp-incident-responders-overwhelmed-by-false-positive-security-alerts-300596828.html
https://www.prnewswire.com/news-releases/new-research-from-advanced-threat-analytics-finds-mssp-incident-responders-overwhelmed-by-false-positive-security-alerts-300596828.html
https://www.prnewswire.com/news-releases/new-research-from-advanced-threat-analytics-finds-mssp-incident-responders-overwhelmed-by-false-positive-security-alerts-300596828.html
https://www.snort.org/
https://www.businessinsider.com/solarwinds-hack-explained-government-agencies-cyber-security-2020-12
https://www.businessinsider.com/solarwinds-hack-explained-government-agencies-cyber-security-2020-12
https://www.cnn.com/2016/12/26/us/2016-presidential-campaign-hacking-fast-facts/index.html
https://www.cnn.com/2016/12/26/us/2016-presidential-campaign-hacking-fast-facts/index.html
https://doi.org/10.1145/2991079.2991110
https://www.ericconrad.com/2017/04/shadowbrokers-pcaps-etc.html
https://www.ericconrad.com/2017/04/shadowbrokers-pcaps-etc.html
https://doi.org/10.1109/TPAMI.2004.75
https://cuckoosandbox.org/

172 Bibliography

[DAR15] DARPA Information Innovation Office (I2O). DARPA Transparent Com-
puting Program. 2015-12-04. url: https://www.darpa.mil/program/
transparent-computing (visited on 03/25/2022).

[DAR18] DARPA Information Innovation Office (I2O). Transparent Computing
Engagement 3 Data Release. Dataset. 2018-08-30. url: https://github.
com/darpa-i2o/Transparent-Computing (visited on 03/25/2022).

[DAR20] DARPA Information Innovation Office (I2O). Transparent Computing
Engagement 5 Data Release. Dataset. 2020-04-29. url: https://github.
com/darpa-i2o/Transparent-Computing (visited on 03/25/2022).

[dCM16] Xavier de Carné de Carnavalet and Mohammad Mannan. “Killed by
Proxy: Analyzing Client-end TLS Interception Software”. In: Proceedings
2016 Network and Distributed System Security Symposium. Network and
Distributed System Security Symposium. SanDiego, CA: Internet Society,
2016. isbn: 978-1-891562-41-9. doi: 10.14722/ndss.2016.23374. (Visited
on 03/21/2022).

[Die17] Reinhard Diestel. Graph Theory. New York, NY: Springer Berlin Heidel-
berg, 2017. isbn: 978-3-662-53621-6.

[Dij59] EdsgerW.Dijkstra. “ANote onTwoProblems inConnexionwithGraphs”.
In: Numerische mathematik (1959).

[DPV05] Imre Derényi, Gergely Palla, and Tamás Vicsek. “Clique Percolation
in Random Networks”. In: Physical Review Letters 94.16 (2005-04-29),
page 160202. issn: 0031-9007, 1079-7114. doi: 10.1103/PhysRevLett.94.
160202. (Visited on 03/16/2022).

[DRT09] Lorenzo De Nardo, Francesco Ranzato, and Francesco Tapparo. “The
Subgraph Similarity Problem”. In: IEEE Transactions on Knowledge and
Data Engineering 21.5 (2009-05), pages 748–749. issn: 1558-2191. doi:
10.1109/TKDE.2008.205.

[Dur+17] Zakir Durumeric et al. “The Security Impact of HTTPS Interception”.
In: Proceedings 2017 Network and Distributed System Security Symposium.
Network and Distributed System Security Symposium. San Diego, CA:
Internet Society, 2017. isbn: 978-1-891562-46-4. doi: 10.14722/ndss.2017.
23456. (Visited on 03/21/2022).

[EKX96] Martin Ester, Hans-Peter Kriegel, and Xiaowei Xu. “A Density-Based
Algorithm for Discovering Clusters in Large Spatial Databases with
Noise”. In: KDD. 1996, page 6.

[Ela22] Elasticsearch Contributors. Elasticsearch. Elasticsearch B.V., 2022. url:
https://github.com/elastic/elasticsearch (visited on 10/20/2022).

[Eng14] Giora Engel.Deconstructing The Cyber Kill Chain. DarkReading. 2014-11-18.
url: https://www.darkreading.com/attacks-breaches/deconstructing-
the-cyber-kill-chain (visited on 02/22/2022).

[FA16] Fatemeh Faraji Daneshgar andMaghsoud Abbaspour. “Extracting Fuzzy
Attack PatternsUsing anOnline FuzzyAdaptiveAlert Correlation Frame-
work: Fuzzy Adaptive Alert Correlation”. In: Security and Communica-
tion Networks 9.14 (2016-09-25), pages 2245–2260. issn: 19390114. doi:
10.1002/sec.1483. (Visited on 10/31/2022).

[Fir22] Firefox Contributors. Firefox Browser. Mozilla Corporation, 2022. url:
https://www.mozilla.org/en-US/firefox/new (visited on 11/01/2022).

[Fon+10] Romain Fontugne, Pierre Borgnat, Patrice Abry, and Kensuke Fukuda.
“MAWILab : Combining Diverse Anomaly Detectors for Automated
Anomaly Labeling and Performance Benchmarking”. In: Proceedings of
the 6th International Conference on Emerging Networking EXperiments and

https://www.darpa.mil/program/transparent-computing
https://www.darpa.mil/program/transparent-computing
https://github.com/darpa-i2o/Transparent-Computing
https://github.com/darpa-i2o/Transparent-Computing
https://github.com/darpa-i2o/Transparent-Computing
https://github.com/darpa-i2o/Transparent-Computing
https://doi.org/10.14722/ndss.2016.23374
https://doi.org/10.1103/PhysRevLett.94.160202
https://doi.org/10.1103/PhysRevLett.94.160202
https://doi.org/10.1109/TKDE.2008.205
https://doi.org/10.14722/ndss.2017.23456
https://doi.org/10.14722/ndss.2017.23456
https://github.com/elastic/elasticsearch
https://www.darkreading.com/attacks-breaches/deconstructing-the-cyber-kill-chain
https://www.darkreading.com/attacks-breaches/deconstructing-the-cyber-kill-chain
https://doi.org/10.1002/sec.1483
https://www.mozilla.org/en-US/firefox/new

Bibliography 173

Technologies. Co-NEXT ’10: The 6th International Conference on Emerging
Networking EXperiments and Technologies. Co-NEXT ’10. Philadelphia,
PA, USA: ACM, 2010-11-30, pages 1–12. isbn: 978-1-4503-0448-1. doi:
10.1145/1921168.1921179. (Visited on 04/21/2022).

[For15] Forum of Incident Response and Security Teams, Inc. “Common Vulner-
ability Scoring System Version 3.1”. 2015. url: https://www.first.org/
cvss/v3-1/cvss-v31-specification_r1.pdf.

[Fra17] Julian Frangopoulos. “Automatische Generierung von Angriffspfaden
zur Angriffserkennung und für digitale Forensik”. Bachelor’s thesis.
Universität Hamburg, 2017-06-08.

[Fri+15] Ivo Friedberg, Florian Skopik, Giuseppe Settanni, and Roman Fiedler.
“Combating Advanced Persistent Threats: From Network Event Corre-
lation to Incident Detection”. In: Computers & Security 48 (2015-02-01),
pages 35–57. issn: 0167-4048. doi: 10.1016/j.cose.2014.09.006. (Vis-
ited on 07/20/2022).

[Gep22] Gephi Consortium. Gephi - The Open Graph Viz Platform. Gephi, 2022. url:
https://github.com/gephi/gephi (visited on 09/04/2022).

[Goo22] Google Inc. Google Transparency Report. HTTPS encryption on the web –
Google TransparencyReport. 2022-08-16. url: https://transparencyreport.
google.com/https/overview (visited on 08/16/2022).

[Grä19] Lars Leo Grätz. “Botmaster Attribution in Large-Scale P2P Botnets”.
Bachelor’s thesis. Universität Hamburg, 2019-11-01.

[Gre+09] Albert Greenberg et al. “VL2: A Scalable and Flexible Data Center Net-
work”. In: Proceedings of the ACM SIGCOMM 2009 Conference on Data
Communication - SIGCOMM ’09. The ACM SIGCOMM 2009 Conference.
Barcelona, Spain: ACM, 2009-08, page 51. isbn: 978-1-60558-594-9. doi:
10.1145/1592568.1592576. (Visited on 02/10/2022).

[Gro22] Cisco Talos Intelligence Group. PhishTank | Join the Fight against Phishing.
2022-05. url: https://www.phishtank.com/ (visited on 05/19/2022).

[GT12] Ashish Gehani and Dawood Tariq. “SPADE: Support for Provenance
Auditing inDistributed Environments”. In:Middleware 2012. Middleware
2012. Edited by Priya Narasimhan and Peter Triantafillou. Lecture Notes
in Computer Science. Berlin, Heidelberg: Springer, 2012, pages 101–120.
isbn: 978-3-642-35170-9. doi: 10.1007/978-3-642-35170-9_6.

[Hah+15] Adam Hahn, Roshan K. Thomas, Ivan Lozano, and Alvaro Cardenas. “A
Multi-Layered and Kill-Chain Based Security Analysis Framework for
Cyber-Physical Systems”. In: International Journal of Critical Infrastructure
Protection 11 (2015-12), pages 39–50. issn: 18745482. doi: 10.1016/j.
ijcip.2015.08.003. (Visited on 02/11/2022).

[Han+20] XueyuanHan, Thomas Pasquier, AdamBates, JamesMickens, andMargo
Seltzer. “Unicorn: Runtime Provenance-Based Detector for Advanced
Persistent Threats”. In: Proceedings 2020 Network and Distributed System Se-
curity Symposium. Network and Distributed System Security Symposium.
San Diego, CA, USA: Internet Society, 2020-02. isbn: 978-1-891562-61-7.
doi: 10.14722/ndss.2020.24046. (Visited on 02/11/2022).

[Has+19] Wajih Ul Hassan et al. “NoDoze: Combatting Threat Alert Fatigue with
Automated Provenance Triage”. In: Proceedings 2019 Network and Dis-
tributed System Security Symposium. Network and Distributed System
Security Symposium. San Diego, CA, USA: Internet Society, 2019-02-24.
isbn: 978-1-891562-55-6. doi: 10.14722/ndss.2019.23349. (Visited on
02/11/2022).

https://doi.org/10.1145/1921168.1921179
https://www.first.org/cvss/v3-1/cvss-v31-specification_r1.pdf
https://www.first.org/cvss/v3-1/cvss-v31-specification_r1.pdf
https://doi.org/10.1016/j.cose.2014.09.006
https://github.com/gephi/gephi
https://transparencyreport.google.com/https/overview
https://transparencyreport.google.com/https/overview
https://doi.org/10.1145/1592568.1592576
https://www.phishtank.com/
https://doi.org/10.1007/978-3-642-35170-9_6
https://doi.org/10.1016/j.ijcip.2015.08.003
https://doi.org/10.1016/j.ijcip.2015.08.003
https://doi.org/10.14722/ndss.2020.24046
https://doi.org/10.14722/ndss.2019.23349

174 Bibliography

[HCA11] EricM.Hutchins,Michael J. Cloppert, and RohanM.Amin. “Intelligence-
Driven Computer Network Defense Informed by Analysis of Adversary
Campaigns and Intrusion Kill Chains”. In: Proceedings of the 6th Interna-
tional Conference on Information Warfare and Security. 2011, page 14.

[HF18] Steffen Haas and Mathias Fischer. “GAC: Graph-based Alert Correlation
for the Detection of Distributed Multi-Step Attacks”. In: Proceedings of the
33rd Annual ACM Symposium on Applied Computing. SAC 2018: Sympo-
sium on Applied Computing. Pau, France: ACM, 2018-04-09, pages 979–
988. isbn: 978-1-4503-5191-1. doi: 10.1145/3167132.3167239. (Visited
on 02/10/2022).

[HF19] Steffen Haas and Mathias Fischer. “On the Alert Correlation Process
for the Detection of Multi-Step Attacks and a Graph-Based Realiza-
tion”. In: ACM SIGAPP Applied Computing Review 19.1 (2019-04-08),
pages 5–19. issn: 1559-6915. doi: 10.1145/3325061.3325062. (Visited on
03/16/2022).

[HFS98] Steven A. Hofmeyr, Stephanie Forrest, and Anil Somayaji. “Intrusion
Detection Using Sequences of System Calls”. In: Journal of Computer
Security 6.3 (1998-01-01), pages 151–180. issn: 0926-227X. doi: 10.3233/
JCS-980109. (Visited on 07/28/2022).

[Hil90] Mark D. Hill. “What Is Scalability?” In: ACM SIGARCH Computer Ar-
chitecture News 18.4 (1990-12-02), pages 18–21. issn: 0163-5964. doi: 10.
1145/121973.121975. (Visited on 04/11/2022).

[HMW20] Junaid Haseeb, Masood Mansoori, and Ian Welch. “A Measurement
Study of IoT-Based Attacks Using IoT Kill Chain”. In: 2020 IEEE 19th
International Conference on Trust, Security and Privacy in Computing and
Communications (TrustCom). 2020 IEEE 19th International Conference on
Trust, Security and Privacy in Computing and Communications (Trust-
Com). IEEE, 2020-12, pages 557–567. doi: 10.1109/TrustCom50675.2020.
00080.

[HNR68] Peter Hart, Nils Nilsson, and Bertram Raphael. “A Formal Basis for the
Heuristic Determination of Minimum Cost Paths”. In: IEEE Transactions
on Systems Science and Cybernetics 4.2 (1968), pages 100–107. issn: 0536-
1567. doi: 10.1109/TSSC.1968.300136. (Visited on 02/10/2022).

[Hol13] Rick Holland. Introducing Forrester’s Cyber Threat Intelligence Research.
Forrester Blogs | Rick Holland’s Blog. 2013-02-14. url: https://web.
archive.org/web/20140415054512/http://blogs.forrester.com/

rick_holland/13-02-14-introducing_forresters_cyber_threat_

intelligence_research (visited on 04/05/2022).
[Hon+22] Honeygrove Contributors et al. Honeygrove: A Modular Python Honeypot

Based on Broker and Twisted. UHH/NET, 2022. url: https://github.com/
UHH-ISS/honeygrove (visited on 09/04/2022).

[Hos+17] Nahid Hossain et al. “SLEUTH: Real-time Attack Scenario Reconstruc-
tion fromCOTSAuditData”. In: 26thUSENIXSecurity Symposium (USENIX
Security 17). Vancouver, BC, Canada: USENIX Association, 2017-08-16,
page 19. isbn: 978-1-931971-40-9. url: https : / / www . usenix . org /
conference/usenixsecurity17/technical-sessions/presentation/

hossain.
[Hos+20] MdDelwarHossain,HideyaOchiai, Fall Doudou, andYoukiKadobayashi.

“SSH and FTP Brute-Force Attacks Detection in Computer Networks:

https://doi.org/10.1145/3167132.3167239
https://doi.org/10.1145/3325061.3325062
https://doi.org/10.3233/JCS-980109
https://doi.org/10.3233/JCS-980109
https://doi.org/10.1145/121973.121975
https://doi.org/10.1145/121973.121975
https://doi.org/10.1109/TrustCom50675.2020.00080
https://doi.org/10.1109/TrustCom50675.2020.00080
https://doi.org/10.1109/TSSC.1968.300136
https://web.archive.org/web/20140415054512/http://blogs.forrester.com/rick_holland/13-02-14-introducing_forresters_cyber_threat_intelligence_research
https://web.archive.org/web/20140415054512/http://blogs.forrester.com/rick_holland/13-02-14-introducing_forresters_cyber_threat_intelligence_research
https://web.archive.org/web/20140415054512/http://blogs.forrester.com/rick_holland/13-02-14-introducing_forresters_cyber_threat_intelligence_research
https://web.archive.org/web/20140415054512/http://blogs.forrester.com/rick_holland/13-02-14-introducing_forresters_cyber_threat_intelligence_research
https://github.com/UHH-ISS/honeygrove
https://github.com/UHH-ISS/honeygrove
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/hossain
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/hossain
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/hossain

Bibliography 175

LSTM andMachine Learning Approaches”. In: 2020 5th International Con-
ference on Computer and Communication Systems (ICCCS). 2020 5th Interna-
tional Conference on Computer and Communication Systems (ICCCS).
2020-05, pages 491–497. doi: 10.1109/ICCCS49078.2020.9118459.

[HS19] Cormac Herley and Stuart Schechter. “Distinguishing Attacks from Le-
gitimate Authentication Traffic at Scale”. In: Proceedings 2019 Network
and Distributed System Security Symposium. Network and Distributed Sys-
tem Security Symposium. San Diego, CA, USA: Internet Society, 2019.
isbn: 978-1-891562-55-6. doi: 10.14722/ndss.2019.23124. (Visited on
02/10/2022).

[HWF19] SteffenHaas, FlorianWilkens, andMathias Fischer. “Efficient Attack Cor-
relation and Identification of Attack Scenarios Based onNetwork-Motifs”.
In: 2019 IEEE 38th International Performance Computing and Communica-
tions Conference (IPCCC). London, UK: IEEE, 2019-10, pages 1–11. doi:
10.1109/IPCCC47392.2019.8958734.

[HWF20] Steffen Haas, Florian Wilkens, and Mathias Fischer. “Scan Correlation –
Revealing Distributed Scan Campaigns”. In: NOMS 2020 - 2020 IEEE/I-
FIP Network Operations and Management Symposium. Budapest, Hungary:
IEEE, 2020-04, pages 1–6. doi: 10.1109/NOMS47738.2020.9110470.

[Hyn+20] Karel Hynek, Tomáš Beneš, Tomáš Čejka, and Hana Kubátová. “Refined
Detection of SSH Brute-Force Attackers Using Machine Learning”. In:
ICT Systems Security and Privacy Protection. Edited by Marko Hölbl, Kai
Rannenberg, and Tatjana Welzer. IFIP Advances in Information and
Communication Technology. Cham: Springer International Publishing,
2020, pages 49–63. isbn: 978-3-030-58201-2. doi: 10.1007/978-3-030-
58201-2_4.

[Jar12] Jeff Jarmoc. “SSL/TLS Interception Proxies and Transitive Trust”. In:
Black Hat Europe 2012. 2012, page 21.

[JP13] Mobin Javed and Vern Paxson. “Detecting Stealthy, Distributed SSH
Brute-Forcing”. In: Proceedings of the 2013 ACM SIGSAC Conference on
Computer & Communications Security. CCS ’13. New York, NY, USA: Asso-
ciation for Computing Machinery, 2013-11-04, pages 85–96. isbn: 978-1-
4503-2477-9. doi: 10.1145/2508859.2516719. (Visited on 11/09/2022).

[KA22] Fred Klassen and AppNeta Contributors. Tcpreplay. AppNeta, Inc., 2022.
url: https://github.com/appneta/tcpreplay (visited on 11/01/2022).

[Kad20] JanKadel. “Detection ofAdvancedPersistent ThreatAttacks via aKillchain-
based Correlation of Host and Network Alerts”. Bachelor’s thesis. Uni-
versität Hamburg, 2020-12-11.

[Kam21] Hanife Kamen. “Honeypotbasierte Analyse von Angriffen auf Weban-
wendungen”. Master’s thesis. Universität Hamburg, 2021-10-10.

[KC03] Samuel T. King and Peter M. Chen. “Backtracking Intrusions”. In: Pro-
ceedings of the Nineteenth ACM Symposium on Operating Systems Principles
- SOSP ’03. ACM Symposium on Operating Systems Principles. Bolton
Landing, NY, USA: ACM, 2003, page 223. isbn: 978-1-58113-757-6. doi:
10.1145/945445.945467. (Visited on 02/11/2022).

[KC05] Samuel T. King and Peter M. Chen. “Backtracking Intrusions”. In: ACM
Transactions on Computer Systems 23.1 (2005-02-02), pages 51–76. issn:
0734-2071, 1557-7333. doi: 10 . 1145 / 1047915 . 1047918. (Visited on
02/11/2022).

https://doi.org/10.1109/ICCCS49078.2020.9118459
https://doi.org/10.14722/ndss.2019.23124
https://doi.org/10.1109/IPCCC47392.2019.8958734
https://doi.org/10.1109/NOMS47738.2020.9110470
https://doi.org/10.1007/978-3-030-58201-2_4
https://doi.org/10.1007/978-3-030-58201-2_4
https://doi.org/10.1145/2508859.2516719
https://github.com/appneta/tcpreplay
https://doi.org/10.1145/945445.945467
https://doi.org/10.1145/1047915.1047918

176 Bibliography

[KE10] Hugo Krawczyk and Pasi Eronen. HMAC-based Extract-and-Expand Key
Derivation Function (HKDF). Request for Comments (RFC) 5869. Inter-
net Engineering Task Force (IETF), 2010-05. 14 pages. doi: 10.17487/
RFC5869. (Visited on 08/12/2022).

[KKK19] Hyeob Kim, HyukJun Kwon, and Kyung Kyu Kim. “Modified Cyber
Kill Chain Model for Multimedia Service Environments”. In: Multimedia
Tools and Applications 78.3 (2019-02), pages 3153–3170. issn: 1380-7501,
1573-7721. doi: 10.1007/s11042-018-5897-5. (Visited on 02/22/2022).

[Kli04] Ralf Klinkenberg. “LearningDrifting Concepts: Example Selection vs. Ex-
ampleWeighting”. In: IntelligentDataAnalysis 8.3 (2004-08-13), pages 281–
300. issn: 15714128, 1088467X. doi: 10.3233/IDA-2004-8305. (Visited on
03/18/2022).

[Lau22] Jona Robin Laudan. “APT Detection for Enterprise Networks via Kill
Chain StateMachineswithHighAccuracy”. Bachelor’s thesis. Universität
Hamburg, 2022-08-31.

[Lee+19] Hyunwoo Lee et al. “maTLS: How to Make TLS Middlebox-Aware?”
In: Proceedings 2019 Network and Distributed System Security Symposium.
Network and Distributed System Security Symposium. San Diego, CA,
USA: Internet Society, 2019. isbn: 978-1-891562-55-6. doi: 10.14722/ndss.
2019.23547. (Visited on 02/16/2022).

[Lei20] Alexander Leib. “Dynamic Data-Driven Risk Assessment for Cloud
Environments”. Master’s thesis. Universität Hamburg, 2020-07-20.

[Li+16] Meicong Li, Wei Huang, Yongbin Wang, Wenqing Fan, and Jianfang Li.
“The Study of APT Attack Stage Model”. In: 2016 IEEE/ACIS 15th Interna-
tional Conference on Computer and Information Science (ICIS). IEEE/ACIS
International Conference on Computer and Information Science (ICIS).
Okayama, Japan: IEEE, 2016-06, pages 1–5. isbn: 978-1-5090-0806-3. doi:
10.1109/ICIS.2016.7550947. (Visited on 02/11/2022).

[Liu+18] Yushan Liu et al. “Towards a Timely Causality Analysis for Enterprise
Security”. In: Proceedings 2018 Network and Distributed System Security
Symposium. Network and Distributed System Security Symposium. San
Diego, CA, USA: Internet Society, 2018-02. isbn: 978-1-891562-49-5. doi:
10.14722/ndss.2018.23254. (Visited on 02/11/2022).

[LL17] Scott M Lundberg and Su-In Lee. “A Unified Approach to Interpret-
ing Model Predictions”. In: Advances in Neural Information Processing
Systems. Volume 30. Long Beach, CA, USA: Curran Associates, Inc.,
2017-12-04. url: https : / / proceedings . neurips . cc / paper / 2017 /
hash/8a20a8621978632d76c43dfd28b67767-Abstract.html (visited on
07/28/2022).

[Ln22] Gordon Lyon and nmap Contributors. Nmap: The Network Mapper. 2022.
url: https://nmap.org/ (visited on 07/26/2022).

[LTZ08] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. “Isolation Forest”. In:
2008 Eighth IEEE International Conference on Data Mining. 2008 Eighth
IEEE International Conference on Data Mining. 2008-12, pages 413–422.
doi: 10.1109/ICDM.2008.17.

[Ma+17] Shiqing Ma et al. “{MPI}: Multiple Perspective Attack Investigation
with Semantic Aware Execution Partitioning”. In: 26th USENIX Security
Symposium (USENIX Security 17). 26th USENIX Security Symposium
(USENIX Security 17). Vancouver, BC, Canada: USENIX Association,
2017-08-16, pages 1111–1128. isbn: 978-1-931971-40-9. url: https://www.

https://doi.org/10.17487/RFC5869
https://doi.org/10.17487/RFC5869
https://doi.org/10.1007/s11042-018-5897-5
https://doi.org/10.3233/IDA-2004-8305
https://doi.org/10.14722/ndss.2019.23547
https://doi.org/10.14722/ndss.2019.23547
https://doi.org/10.1109/ICIS.2016.7550947
https://doi.org/10.14722/ndss.2018.23254
https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://nmap.org/
https://doi.org/10.1109/ICDM.2008.17
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/ma
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/ma

Bibliography 177

usenix.org/conference/usenixsecurity17/technical-sessions/

presentation/ma (visited on 07/27/2022).
[Mal16] Sean T. Malone. “Using an Expanded Cyber Kill ChainModel to Increase

Attack Resiliency”. Black Hat USA 2016 (Las Vegas, NV, USA). 2016-08.
[Man10] Mandiant Inc. “Mandiant M-Trends: The Advanced Persistent Threat”.

In: Mandiant M-Trends (2010), page 32.
[Man13] Mandiant. OpenIOC 1.1. 2013. url: https://github.com/fireeye/

OpenIOC_1.1 (visited on 03/25/2022).
[Mar+16] Mirco Marchetti, Fabio Pierazzi, Michele Colajanni, and Alessandro

Guido. “Analysis of High Volumes of Network Traffic for Advanced Per-
sistent Threat Detection”. In:Computer Networks 109 (2016-11), pages 127–
141. issn: 13891286. doi: 10.1016/j.comnet.2016.05.018. (Visited on
02/10/2022).

[Mar22] FinnMartens. “Aggregating Distributed Summary Statistics for Network
Security Monitoring with Zeek”. Master’s thesis. Universität Hamburg,
2022-02-14.

[MC21] Wojciech Mazurczyk and Luca Caviglione. “Cyber Reconnaissance Tech-
niques”. In: Communications of the ACM 64.3 (2021-03), pages 86–95. issn:
0001-0782, 1557-7317. doi: 10.1145/3418293. (Visited on 04/22/2022).

[McD+10] Patrick McDaniel et al. “Towards a Secure and Efficient System for End-
to-End Provenance”. In: Proceedings of the 2nd Conference on Theory and
Practice of Provenance. 2nd USENIX Workshop on the Theory and Prac-
tice of Provenance (TaPP ’10). TAPP’10. San Jose, CA, USA: USENIX
Association, 2010-02-22, page 2.

[MDN22] MDN Contributors. Firefox Source Docs: NSS Key Log Format. 2022. url:
https://firefox-source-docs.mozilla.org/security/nss/legacy/

key_log_format/index.html (visited on 03/31/2022).
[Mei+13] Simon Meier, Benedikt Schmidt, Cas Cremers, and David Basin. “The

TAMARIN Prover for the Symbolic Analysis of Security Protocols”. In:
International Conference on Computer Aided Verification 2013. CAV 2013:
International Conference on Computer Aided Verification. Edited by
Natasha Sharygina and Helmut Veith. Redacted by David Hutchison
et al. Volume 8044. Computer Aided Verification. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pages 696–701. isbn: 978-3-642-39798-1.
doi: 10.1007/978-3-642-39799-8_48. (Visited on 10/30/2022).

[MF21] Kathleen Moriarty and Stephen Farrell. Deprecating TLS 1.0 and TLS
1.1. Request for Comments (RFC) 8996. Internet Engineering Task Force
(IETF), 2021-03. 18 pages. doi: 10.17487/RFC8996. (Visited on 08/12/2022).

[Mic22] MicroFocus CyberRes. ArcSight Enterprise Security Manager. MicroFocus,
2022. url: https://www.microfocus.com/en-us/cyberres/secops/
arcsight-esm (visited on 07/27/2022).

[Mil+02] R. Milo et al. “Network Motifs: Simple Building Blocks of Complex
Networks”. In: Science 298.5594 (2002-10-25), pages 824–827. issn: 0036-
8075, 1095-9203. doi: 10.1126/science.298.5594.824. (Visited on
07/26/2022).

[Mil+19a] SadeghM.Milajerdi, BirhanuEshete, RigelGjomemo, andV.N.Venkatakr-
ishnan. “POIROT: Aligning Attack Behavior with Kernel Audit Records
for Cyber Threat Hunting”. In: Proceedings of the 2019 ACM SIGSAC Con-
ference on Computer and Communications Security. CCS ’19. New York, NY,
USA: ACM, 2019-11-06, pages 1795–1812. isbn: 978-1-4503-6747-9. doi:
10.1145/3319535.3363217. (Visited on 03/18/2022).

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/ma
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/ma
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/ma
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/ma
https://github.com/fireeye/OpenIOC_1.1
https://github.com/fireeye/OpenIOC_1.1
https://doi.org/10.1016/j.comnet.2016.05.018
https://doi.org/10.1145/3418293
https://firefox-source-docs.mozilla.org/security/nss/legacy/key_log_format/index.html
https://firefox-source-docs.mozilla.org/security/nss/legacy/key_log_format/index.html
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.17487/RFC8996
https://www.microfocus.com/en-us/cyberres/secops/arcsight-esm
https://www.microfocus.com/en-us/cyberres/secops/arcsight-esm
https://doi.org/10.1126/science.298.5594.824
https://doi.org/10.1145/3319535.3363217

178 Bibliography

[Mil+19b] Sadegh M. Milajerdi, Rigel Gjomemo, Birhanu Eshete, R. Sekar, and V.N.
Venkatakrishnan. “HOLMES: Real-Time APT Detection through Cor-
relation of Suspicious Information Flows”. In: 2019 IEEE Symposium on
Security and Privacy (SP). 2019 IEEE Symposium on Security and Privacy
(SP). San Francisco, CA, USA: IEEE, 2019-05, pages 1137–1152. isbn: 978-
1-5386-6660-9. doi: 10.1109/SP.2019.00026. (Visited on 02/11/2022).

[MIS22] MISP contributors. MISP Open Source Threat Intelligence Platform & Open
Standards For Threat Information Sharing. 2022. url: https://www.misp-
project.org/ (visited on 03/25/2022).

[MIT00] MIT Lincoln Laboratory. 2000 DARPA Intrusion Detection Scenario Spe-
cific Datasets. Dataset. 2000-07. url: https : / / www . ll . mit . edu / r -
d/datasets/2000-darpa-intrusion-detection-scenario-specific-

datasets.
[MMA16] EmaadManzoor, SadeghM.Milajerdi, andLemanAkoglu. “FastMemory-

efficient Anomaly Detection in Streaming Heterogeneous Graphs”. In:
Proceedings of the 22nd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining. KDD ’16. New York, NY, USA: ACM,
2016-08-13, pages 1035–1044. isbn: 978-1-4503-4232-2. doi: 10 . 1145 /
2939672.2939783. (Visited on 03/15/2022).

[Mül+01] Klaus-Robert Müller, Sebastian Mika, Gunnar Ratsch, Koji Tsuda, and
Bernhard Schölkopf. “An Introduction to Kernel-Based Learning Algo-
rithms”. In: IEEETransactions onNeuralNetworks 12.2 (2001-03), pages 181–
201. issn: 10459227. doi: 10.1109/72.914517. (Visited on 04/24/2022).

[Mun+06] Kiran-Kumar Muniswamy-Reddy, David A. Holland, Uri Braun, and
Margo Seltzer. “Provenance-Aware Storage Systems”. In: Proceedings of
the Annual Conference on USENIX ’06 Annual Technical Conference. ATEC
’06. Boston, MA, USA: USENIX Association, 2006-03-30, page 4.

[Naj+15] Maryam M. Najafabadi, Taghi M. Khoshgoftaar, Chad Calvert, and Clif-
fordKemp. “Detection of SSHBrute ForceAttacksUsingAggregatedNet-
flowData”. In: 2015 IEEE 14th International Conference onMachine Learning
and Applications (ICMLA). 2015 IEEE 14th International Conference on
Machine Learning and Applications (ICMLA). 2015-12, pages 283–288.
doi: 10.1109/ICMLA.2015.20.

[Nay+15] David Naylor et al. “Multi-Context TLS (mcTLS): Enabling Secure In-
Network Functionality in TLS”. In: ACM SIGCOMM Computer Commu-
nication Review 45.4 (2015-08-17), pages 199–212. issn: 0146-4833. doi:
10.1145/2829988.2787482. (Visited on 02/16/2022).

[Nay+17] David Naylor, Richard Li, Christos Gkantsidis, Thomas Karagiannis, and
Peter Steenkiste. “And Then There Were More: Secure Communication
for More Than Two Parties”. In: Proceedings of the 13th International Con-
ference on Emerging Networking EXperiments and Technologies. CoNEXT
’17: The 13th International Conference on Emerging Networking EXperi-
ments and Technologies. CoNext ’17. Incheon, Republic of Korea: ACM,
2017-11-28, pages 88–100. isbn: 978-1-4503-5422-6. doi: 10.1145/3143361.
3143383. (Visited on 02/16/2022).

[NDD21] Antonio José Horta Neto, Anderson Fernandes Pereira Dos Santos, and
Marcos Dos Santos. “Polymer: An Adaptive Kill Chain Expanding Cy-
ber Threat Hunting to Multi-Platform Environments”. In: 2021 IEEE
International Conference on Big Data (Big Data). 2021 IEEE International
Conference on Big Data (Big Data). 2021-12, pages 2128–2135. doi: 10.
1109/BigData52589.2021.9671731.

https://doi.org/10.1109/SP.2019.00026
https://www.misp-project.org/
https://www.misp-project.org/
https://www.ll.mit.edu/r-d/datasets/2000-darpa-intrusion-detection-scenario-specific-datasets
https://www.ll.mit.edu/r-d/datasets/2000-darpa-intrusion-detection-scenario-specific-datasets
https://www.ll.mit.edu/r-d/datasets/2000-darpa-intrusion-detection-scenario-specific-datasets
https://doi.org/10.1145/2939672.2939783
https://doi.org/10.1145/2939672.2939783
https://doi.org/10.1109/72.914517
https://doi.org/10.1109/ICMLA.2015.20
https://doi.org/10.1145/2829988.2787482
https://doi.org/10.1145/3143361.3143383
https://doi.org/10.1145/3143361.3143383
https://doi.org/10.1109/BigData52589.2021.9671731
https://doi.org/10.1109/BigData52589.2021.9671731

Bibliography 179

[Net+22] NetworkX Developers, Aric Hagberg, Dan Schult, and Pieter Swart. Net-
workX. NetworkX, 2022. url: https://github.com/networkx/networkx
(visited on 10/20/2022).

[NET21] NETRESEC AB. PolarProxy TLS Proxy. NETRESEC AB, 2021. url: https:
//www.netresec.com/?page=PolarProxy.

[NSS22] NSS Contributors. Network Security Services (NSS). Mozilla Corporation,
2022. url: https://developer.mozilla.org/en-US/docs/Mozilla/
Projects/NSS (visited on 11/01/2022).

[OAS21] OASISCyber Threat Intelligence (CTI) TC. Introduction to STIX. 2021-06-10.
url: https://oasis-open.github.io/cti-documentation/stix/
intro (visited on 03/25/2022).

[OGA05] Xinming Ou, Sudhakar Govindavajhala, and Andrew W. Appel. “Mul-
VAL: A Logic-Based Network Security Analyzer”. In: 14th USENIX Secu-
rity Symposium (USENIX Security 05). SSYM’05. USA: USENIX Associa-
tion, 2005-07-31, page 8.

[OM08] Jim Owens and Jeanna Matthews. “A Study of Passwords and Methods
Used in Brute-Force SSH Attacks”. In: USENIX Workshop on Large-Scale
Exploits and Emergent Threats (LEET). 2008, page 8.

[Ope22] Open Information Security Foundation & Contributors. Suricata. 2022.
url: https://suricata.io/ (visited on 05/25/2022).

[Ort19] Felix Christian Ortmann. “Temporal and Spatial Alert Correlation for the
Detection of Advanced Persistent Threats”. Master’s thesis. Universität
Hamburg, 2019-07-18.

[OT22] Michel Oosterhof and Upi Tamminnen. Cowrie SSH and Telnet Honeypot.
2022. url: https://www.cowrie.org/ (visited on 05/20/2022).

[Pas+17] Thomas Pasquier et al. “Practical Whole-System Provenance Capture”.
In: Proceedings of the 2017 Symposium on Cloud Computing. SoCC ’17:
ACM Symposium on Cloud Computing. Santa Clara, CA, USA: ACM,
2017-09-24, pages 405–418. isbn: 978-1-4503-5028-0. doi: 10.1145/3127479.
3129249. (Visited on 02/11/2022).

[Pax99] Vern Paxson. “Bro: A System for Detecting Network Intruders in Real-
Time”. In: 7th USENIX Security Symposium (USENIX Security 99). Vol-
ume 7. San Antonio, TX, USA: USENIX Association, 1999-01. doi: 10.
1016/S1389-1286(99)00112-7.

[Ped+11] Fabian Pedregosa et al. “Scikit-Learn: Machine Learning in Python”. In:
The Journal of Machine Learning Research (JMLR) (2011), page 6.

[Pei+16] Kexin Pei et al. “HERCULE: Attack Story Reconstruction via Community
Discovery on Correlated Log Graph”. In: Proceedings of the 32nd Annual
Conference on Computer Security Applications. ACSAC ’16: 2016 Annual
Computer Security Applications Conference. Los Angeles, CA, USA:
ACM, 2016-12-05, pages 583–595. isbn: 978-1-4503-4771-6. doi: 10.1145/
2991079.2991122. (Visited on 02/10/2022).

[Poh+12] Devin J. Pohly, Stephen McLaughlin, Patrick McDaniel, and Kevin Butler.
“Hi-Fi: Collecting High-Fidelity Whole-System Provenance”. In: Pro-
ceedings of the 28th Annual Computer Security Applications Conference on -
ACSAC ’12. The 28th Annual Computer Security Applications Confer-
ence. Orlando, Florida: ACM, 2012, page 259. isbn: 978-1-4503-1312-4.
doi: 10.1145/2420950.2420989. (Visited on 02/11/2022).

[Poh20] Jan Pohlmann. “Designing a Stealthy, Distributed, Multi-Purpose Net-
work and Malware Scanner”. Bachelor’s thesis. Universität Hamburg,
2020-10-28.

https://github.com/networkx/networkx
https://www.netresec.com/?page=PolarProxy
https://www.netresec.com/?page=PolarProxy
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS
https://oasis-open.github.io/cti-documentation/stix/intro
https://oasis-open.github.io/cti-documentation/stix/intro
https://suricata.io/
https://www.cowrie.org/
https://doi.org/10.1145/3127479.3129249
https://doi.org/10.1145/3127479.3129249
https://doi.org/10.1016/S1389-1286(99)00112-7
https://doi.org/10.1016/S1389-1286(99)00112-7
https://doi.org/10.1145/2991079.2991122
https://doi.org/10.1145/2991079.2991122
https://doi.org/10.1145/2420950.2420989

180 Bibliography

[Pol17] Paul Pols. “The Unified Kill Chain: Designing a Unified Kill Chain
for Analyzing, Comparing and Defending against Cyber Attacks”. Lei-
den, Netherlands: Cyber Security Academy (CSA), Leiden University,
2017-12-07. url: https://www.unifiedkillchain.com/assets/The-
Unified-Kill-Chain-Thesis.pdf.

[Pol21] Paul Pols. “The Unified Kill Chain - Raising Resilience against Advanced
Cyber Attacks”. 2021. url: https : / / www . unifiedkillchain . com /
assets/The-Unified-Kill-Chain.pdf.

[RAL17] Juan E. Rubio, Cristina Alcaraz, and Javier Lopez. “Preventing Advanced
Persistent Threats in Complex Control Networks”. In: Computer Secu-
rity. ESORICS 2017. Edited by Simon N. Foley, Dieter Gollmann, and
Einar Snekkenes. Lecture Notes in Computer Science. Cham: Springer
International Publishing, 2017, pages 402–418. isbn: 978-3-319-66399-9.
doi: 10.1007/978-3-319-66399-9_22.

[RCM11] Sebastian Roschke, Feng Cheng, and Christoph Meinel. “A New Alert
Correlation Algorithm Based on Attack Graph”. In: Computational Intelli-
gence in Security for Information Systems. Edited by Álvaro Herrero and
Emilio Corchado. LectureNotes in Computer Science. Berlin, Heidelberg:
Springer, 2011, pages 58–67. isbn: 978-3-642-21323-6. doi: 10.1007/978-
3-642-21323-6_8.

[RD08] Eric Rescorla and Tim Dierks. The Transport Layer Security (TLS) Protocol
Version 1.2. Request for Comments (RFC) 5246. Internet Engineering
Task Force (IETF), 2008-08. 104 pages. doi: 10.17487/RFC5246. (Visited
on 08/12/2022).

[Res18] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. Re-
quest for Comments (RFC) 8446. Internet Engineering Task Force (IETF),
2018-08. 160 pages. doi: 10.17487/RFC8446. (Visited on 08/12/2022).

[RN03] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Ap-
proach. 2nd edition. Prentice Hall Series in Artificial Intelligence. Upper
Saddle River,NJ, USA: PrenticeHall/PearsonEducation, 2003. 1080 pages.
isbn: 978-0-13-790395-5.

[Ros11] Ronald S. Ross. “Managing Information Security Risk: Organization,Mis-
sion, and Information System View”. In: NIST Special Publication (NIST
SP) 800-39 (2011-03-01). url: https://www.nist.gov/publications/
managing-information-security-risk-organization-mission-and-

information-system-view (visited on 04/05/2022).
[RSG16] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “”Why Should I

Trust You?”: Explaining the Predictions of Any Classifier”. In: Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. KDD ’16. New York, NY, USA: Association for Com-
puting Machinery, 2016-08-13, pages 1135–1144. isbn: 978-1-4503-4232-2.
doi: 10.1145/2939672.2939778. (Visited on 07/28/2022).

[Rub+18] Juan E. Rubio, Rodrigo Roman, Cristina Alcaraz, and Yan Zhang. “Track-
ing Advanced Persistent Threats in Critical Infrastructures Through
Opinion Dynamics”. In: Computer Security. ESORICS 2018. Edited by
Javier Lopez, Jianying Zhou, and Miguel Soriano. Lecture Notes in
Computer Science. Cham: Springer International Publishing, 2018-08-08,
pages 555–574. isbn: 978-3-319-99073-6. doi: 10.1007/978-3-319-99073-
6_27.

https://www.unifiedkillchain.com/assets/The-Unified-Kill-Chain-Thesis.pdf
https://www.unifiedkillchain.com/assets/The-Unified-Kill-Chain-Thesis.pdf
https://www.unifiedkillchain.com/assets/The-Unified-Kill-Chain.pdf
https://www.unifiedkillchain.com/assets/The-Unified-Kill-Chain.pdf
https://doi.org/10.1007/978-3-319-66399-9_22
https://doi.org/10.1007/978-3-642-21323-6_8
https://doi.org/10.1007/978-3-642-21323-6_8
https://doi.org/10.17487/RFC5246
https://doi.org/10.17487/RFC8446
https://www.nist.gov/publications/managing-information-security-risk-organization-mission-and-information-system-view
https://www.nist.gov/publications/managing-information-security-risk-organization-mission-and-information-system-view
https://www.nist.gov/publications/managing-information-security-risk-organization-mission-and-information-system-view
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1007/978-3-319-99073-6_27
https://doi.org/10.1007/978-3-319-99073-6_27

Bibliography 181

[SAN22] SANS Internet Storm Center. DShield Data. SANS Internet Storm Center.
2022-11-02. url: http://www.dshield.org/data/index.html (visited
on 11/02/2022).

[Sch20] Henning Schütt. “Towards Transparent Decryption of TLS-encrypted
End-User Traffic in Enterprise Networks”. Master’s thesis. Universität
Hamburg, 2020-11-09.

[Sea21] Jim Seaman. “Combating the Cyber-Security Kill Chain: Moving to a
Proactive Security Model”. In: Artificial Intelligence in Cyber Security: Im-
pact and Implications. Edited by Reza Montasari and Hamid Jahankhani.
Cham: Springer International Publishing, 2021, pages 121–155. isbn:
978-3-030-88039-2. doi: 10.1007/978-3-030-88040-8_5. (Visited on
11/11/2022).

[SEC22] SECEF. IDMEF V1 | Overview. 2022-05. url: https://www.secef.net/
secef/idmef/idmef-introduction/ (visited on 05/03/2022).

[Sec22] SecurityTrails. SecurityTrails | Cyber Security API, Threat Intelligence API,
Domain, DNS and IP Forensics. 2022-05. url: https://securitytrails.
com/corp/api (visited on 05/16/2022).

[Sen22] SentinelOne. What Is The Cyber Kill Chain? SentinelOne. 2022-11-11. url:
https://www.sentinelone.com/cybersecurity-101/cyber-kill-

chain/ (visited on 11/11/2022).
[SFF14] Florian Skopik, Ivo Friedberg, and Roman Fiedler. “Dealing with Ad-

vanced Persistent Threats in Smart Grid ICT Networks”. In: ISGT 2014.
ISGT 2014. Washington, DC, USA: IEEE, 2014-02, pages 1–5. doi: 10.
1109/ISGT.2014.6816388.

[Sha48] C. E. Shannon. “A Mathematical Theory of Communication”. In: Bell
System Technical Journal 27.3 (1948-07), pages 379–423. issn: 00058580.
doi: 10.1002/j.1538-7305.1948.tb01338.x. (Visited on 02/10/2022).

[SHG18] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A. Ghorbani. “Toward
Generating a New Intrusion Detection Dataset and Intrusion Traffic
Characterization:” in: Proceedings of the 4th International Conference on
Information Systems Security and Privacy. 4th International Conference on
Information Systems Security and Privacy. Funchal, Madeira, Portugal:
SCITEPRESS - Science and Technology Publications, 2018-01, pages 108–
116. isbn: 978-989-758-282-0. doi: 10.5220/0006639801080116. (Visited
on 02/10/2022).

[Shi+12] Ali Shiravi, Hadi Shiravi, Mahbod Tavallaee, and Ali A. Ghorbani. “To-
wardDeveloping a SystematicApproach toGenerate BenchmarkDatasets
for IntrusionDetection”. In:Computers&Security 31.3 (2012-05), pages 357–
374. issn: 01674048. doi: 10.1016/j.cose.2011.12.012. (Visited on
10/31/2022).

[Sko+14] Florian Skopik, Giuseppe Settanni, Roman Fiedler, and Ivo Friedberg.
“Semi-Synthetic Data Set Generation for Security Software Evaluation”.
In: 2014 Twelfth Annual International Conference on Privacy, Security and
Trust. 2014 Twelfth Annual International Conference on Privacy, Security
and Trust. Toronto, Canada: IEEE, 2014-07, pages 156–163. doi: 10.1109/
PST.2014.6890935.

[Sob19] Dennis Sobczak. “Summary Statistics in a Large-Scale Collaborative In-
trusion Detection SystemCluster”.Master’s thesis. Universität Hamburg,
2019-05-24.

[SR11] Guido Schwenk and Konrad Rieck. “Adaptive Detection of Covert Com-
munication in HTTP Requests”. In: 2011 Seventh European Conference on

http://www.dshield.org/data/index.html
https://doi.org/10.1007/978-3-030-88040-8_5
https://www.secef.net/secef/idmef/idmef-introduction/
https://www.secef.net/secef/idmef/idmef-introduction/
https://securitytrails.com/corp/api
https://securitytrails.com/corp/api
https://www.sentinelone.com/cybersecurity-101/cyber-kill-chain/
https://www.sentinelone.com/cybersecurity-101/cyber-kill-chain/
https://doi.org/10.1109/ISGT.2014.6816388
https://doi.org/10.1109/ISGT.2014.6816388
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.5220/0006639801080116
https://doi.org/10.1016/j.cose.2011.12.012
https://doi.org/10.1109/PST.2014.6890935
https://doi.org/10.1109/PST.2014.6890935

182 Bibliography

Computer Network Defense. 2011 Seventh European Conference on Com-
puter Network Defense. Gothenburg, Sweden: IEEE, 2011-09, pages 25–
32. doi: 10.1109/EC2ND.2011.12.

[SS62] P. H. A. Sneath and Robert R. Sokal. “Numerical Taxonomy”. In: Nature
193.4818 (4818 1962-03), pages 855–860. issn: 1476-4687. doi: 10.1038/
193855a0. (Visited on 04/21/2022).

[ST22] Salvadore Sanfilippo and The redis community. Redis. Redis, 2022. url:
https://github.com/redis/redis (visited on 09/04/2022).

[SV10] David Silver and Joel Veness. “Monte-Carlo Planning in Large POMDPs”.
In: Advances in Neural Information Processing Systems. Volume 23. Curran
Associates, Inc., 2010. url: https://proceedings.neurips.cc/paper/
2010/hash/edfbe1afcf9246bb0d40eb4d8027d90f-Abstract.html (vis-
ited on 07/27/2022).

[Tcp22] Tcpdump Group. Tcpdump. The Tcpdump Group, 2022. url: https://
github.com/the-tcpdump-group/tcpdump (visited on 07/25/2022).

[Ten22] Tenable Inc. Nessus® Vulnerability Assessment. 2022. url: https://www.
tenable.com/products/nessus (visited on 07/26/2022).

[The22a] The MITRE Corporation. BZAR (Bro/Zeek ATT&CK-based Analytics and
Reporting). MITRE ATT&CK, 2022. url: https://github.com/mitre-
attack/bzar (visited on 08/11/2022).

[The22b] TheMITRECorporation.MITREATT&CK®.MITREATT&CK®. 2022-08-11.
url: https://attack.mitre.org/ (visited on 08/11/2022).

[Tia+19] Zhihong Tian et al. “Real-Time Lateral Movement Detection Based on
Evidence Reasoning Network for Edge Computing Environment”. In:
IEEE Transactions on Industrial Informatics 15.7 (2019-07), pages 4285–
4294. issn: 1941-0050. doi: 10.1109/TII.2019.2907754.

[TYH22] The OpenSSL Project, Eric A. Young, and Tim J. Hudson. OpenSSL -
TLS/SSL and Crypto Library. OpenSSL, 2022. url: https://github.com/
openssl/openssl (visited on 10/29/2022).

[UC 04] UC Santa Barbara. Treasure Hunt Dataset. Dataset. 2004. url: http://
www.cs.ucsb.edu/rsg/datasets%20%3Cno%20longer%20available%

20online%3E.
[Uni17] University of Twente.Data ExfiltrationMalware (DEM) | Services and Cyber-

Security Group | University of Twente. Universiteit Twente. 2017. url: https:
//www.utwente.nl/en/eemcs/scs/output/downloads/20171127_DEM/

(visited on 04/26/2022).
[Uss+16] Martin Ussath, David Jaeger, Feng Cheng, and Christoph Meinel. “Ad-

vanced Persistent Threats: Behind the Scenes”. In: 2016 Annual Conference
on Information Science and Systems (CISS). 2016 Annual Conference on
Information Science and Systems (CISS). Princeton, NJ, USA: IEEE,
2016-03, pages 181–186. isbn: 978-1-4673-9457-4. doi: 10.1109/CISS.
2016.7460498. (Visited on 02/10/2022).

[Vas+13] Emmanouil Vasilomanolakis et al. “This Network Is Infected: HosTaGe -
a Low-Interaction Honeypot for Mobile Devices”. In: Proceedings of the
Third ACM Workshop on Security and Privacy in Smartphones & Mobile
Devices - SPSM ’13. Berlin, Germany: ACM Press, 2013, pages 43–48.
isbn: 978-1-4503-2491-5. doi: 10.1145/2516760.2516763. (Visited on
02/10/2022).

[Wat16] Dave Watson. “KTLS: Linux Kernel Transport Layer Security”. In:Netdev
1.2. Tokyo, Japan, 2016, page 4. url: https://netdevconf.org/1.2/
papers/ktls.pdf (visited on 02/10/2022).

https://doi.org/10.1109/EC2ND.2011.12
https://doi.org/10.1038/193855a0
https://doi.org/10.1038/193855a0
https://github.com/redis/redis
https://proceedings.neurips.cc/paper/2010/hash/edfbe1afcf9246bb0d40eb4d8027d90f-Abstract.html
https://proceedings.neurips.cc/paper/2010/hash/edfbe1afcf9246bb0d40eb4d8027d90f-Abstract.html
https://github.com/the-tcpdump-group/tcpdump
https://github.com/the-tcpdump-group/tcpdump
https://www.tenable.com/products/nessus
https://www.tenable.com/products/nessus
https://github.com/mitre-attack/bzar
https://github.com/mitre-attack/bzar
https://attack.mitre.org/
https://doi.org/10.1109/TII.2019.2907754
https://github.com/openssl/openssl
https://github.com/openssl/openssl
http://www.cs.ucsb.edu/rsg/datasets%20%3Cno%20longer%20available%20online%3E
http://www.cs.ucsb.edu/rsg/datasets%20%3Cno%20longer%20available%20online%3E
http://www.cs.ucsb.edu/rsg/datasets%20%3Cno%20longer%20available%20online%3E
https://www.utwente.nl/en/eemcs/scs/output/downloads/20171127_DEM/
https://www.utwente.nl/en/eemcs/scs/output/downloads/20171127_DEM/
https://doi.org/10.1109/CISS.2016.7460498
https://doi.org/10.1109/CISS.2016.7460498
https://doi.org/10.1145/2516760.2516763
https://netdevconf.org/1.2/papers/ktls.pdf
https://netdevconf.org/1.2/papers/ktls.pdf

Bibliography 183

[Wel22] Felix Welter. “Explainability in Machine Learning-based Intrusion De-
tection Systems”. Master’s thesis. Universität Hamburg, 2022-02-20.

[WF20a] Florian Wilkens and Mathias Fischer. Dataset: Brute-Force Logins 2020
(BFL2020). Dataset. 2020-04-20. doi: 10.25592/uhhfdm.856.

[WF20b] Florian Wilkens and Mathias Fischer. “Towards Data-Driven Character-
ization of Brute-Force Attackers”. In: 2020 IEEE Conference on Commu-
nications and Network Security (CNS). 2020 IEEE Conference on Com-
munications and Network Security (CNS). Virtual Event (Avignon,
France): IEEE, 2020-06, pages 1–9. isbn: 978-1-72814-760-4. doi: 10.1109/
CNS48642.2020.9162326. (Visited on 02/10/2022).

[WHF22] Florian Wilkens, Steffen Haas, and Mathias Fischer. Evaluation Dataset:
Cooperative TLS-Decryption via Zeek. Dataset. 2022-06-13. doi: 10.25592/
uhhfdm.10116.

[Wil+19a] FlorianWilkens, Steffen Haas, Dominik Kaaser, Peter Kling, andMathias
Fischer. “Towards Efficient Reconstruction of Attacker Lateral Move-
ment”. In: Proceedings of the 14th International Conference on Availability,
Reliability and Security. ARES ’19: 14th International Conference on Avail-
ability, Reliability and Security. Canterbury, United Kingdom: ACM,
2019-08-26, pages 1–9. isbn: 978-1-4503-7164-3. doi: 10.1145/3339252.
3339254. (Visited on 02/10/2022).

[Wil+19b] Florian Wilkens, Nurefsan Sertbas, Malte Hamann, and Mathias Fischer.
“Towards Flexible Security Testing of OTDevices”. In: 10. Jahreskolloquium
Kommunikation in Der Automation (KommA 2019). Kommunikation in Der
Automation (KommA 2019). Magdeburg, Germany, 2019-11, page 10.

[Wil+21] Florian Wilkens, Felix Ortmann, Steffen Haas, Matthias Vallentin, and
Mathias Fischer. “Multi-Stage Attack Detection via Kill Chain State Ma-
chines”. In: Proceedings of the 3rd Workshop on Cyber-Security Arms Race.
CCS ’21: 2021 ACM SIGSAC Conference on Computer and Communica-
tions Security. Virtual Event (Seoul, Republic of Korea): ACM, 2021-11-19,
pages 13–24. isbn: 978-1-4503-8661-6. doi: 10.1145/3474374.3486918.
(Visited on 02/10/2022).

[Wil+22] Florian Wilkens, Steffen Haas, Johanna Amann, and Mathias Fischer.
“Passive, Transparent, and Selective TLS Decryption for Network Secu-
rity Monitoring”. In: ICT Systems Security and Privacy Protection. IFIP SEC
2022. Edited by Weizhi Meng, Simone Fischer-Hübner, and Christian D.
Jensen. Volume 648. IFIP Advances in Information and Communica-
tion Technology. Cham: Springer International Publishing, 2022-06-13,
pages 87–105. isbn: 978-3-031-06975-8. doi: 10.1007/978-3-031-06975-
8_6. (Visited on 01/09/2023).

[Wil92] Frank Wilcoxon. “Individual Comparisons by Ranking Methods”. In:
Breakthroughs in Statistics: Methodology and Distribution. Edited by Samuel
Kotz and Norman L. Johnson. Springer Series in Statistics. New York, NY:
Springer, 1992, pages 196–202. isbn: 978-1-4612-4380-9. doi: 10.1007/978-
1-4612-4380-9_16. (Visited on 10/16/2022).

[Wir22] Wireshark Foundation. Wireshark · GitLab. Wireshark Foundation, 2022.
url: https://gitlab.com/wireshark/wireshark (visited on 11/01/2022).

[WOL22] Florian Wilkens, Felix Christian Ortmann, and Jona Laudan. APT Con-
textualizer. Version v2. UHH/NET, 2022. url: https://github.com/UHH-
ISS/apt-contextualizer.

[WWF23] Felix Welter, Florian Wilkens, and Mathias Fischer. “Tell Me More: Black
Box Explainability for APT Detection on System Provenance Graphs”. In:

https://doi.org/10.25592/uhhfdm.856
https://doi.org/10.1109/CNS48642.2020.9162326
https://doi.org/10.1109/CNS48642.2020.9162326
https://doi.org/10.25592/uhhfdm.10116
https://doi.org/10.25592/uhhfdm.10116
https://doi.org/10.1145/3339252.3339254
https://doi.org/10.1145/3339252.3339254
https://doi.org/10.1145/3474374.3486918
https://doi.org/10.1007/978-3-031-06975-8_6
https://doi.org/10.1007/978-3-031-06975-8_6
https://doi.org/10.1007/978-1-4612-4380-9_16
https://doi.org/10.1007/978-1-4612-4380-9_16
https://gitlab.com/wireshark/wireshark
https://github.com/UHH-ISS/apt-contextualizer
https://github.com/UHH-ISS/apt-contextualizer

184 Bibliography

Accepted for Publication at: 2023 IEEE International Conference on Communi-
cations (ICC): Communication and Information System Security Symposium
(IEEE ICC’23 - CISS Symposium). Accepted for Publication at: 2023 IEEE
International Conference on Communications (ICC): Communication
and Information System Security Symposium (IEEE ICC’23 - CISS Sym-
posium). Rome, Italy, 2023-05.

[Xie+13] Yulai Xie, Kiran-Kumar Muniswamy-Reddy, Dan Feng, Yan Li, and Dar-
rell D. E. Long. “Evaluation of a Hybrid Approach for Efficient Prove-
nance Storage”. In: ACM Transactions on Storage 9.4 (2013-11-01), 14:1–
14:29. issn: 1553-3077. doi: 10.1145/2501986. (Visited on 07/27/2022).

[Xie+16] Yulai Xie, Dan Feng, Zhipeng Tan, and Junzhe Zhou. “Unifying Intrusion
Detection and Forensic Analysis via Provenance Awareness”. In: Future
Generation Computer Systems 61 (2016-08), pages 26–36. issn: 0167739X.
doi: 10.1016/j.future.2016.02.005. (Visited on 04/05/2022).

[Xie+20] Yulai Xie et al. “Pagoda: A Hybrid Approach to Enable Efficient Real-
Time Provenance Based Intrusion Detection in Big Data Environments”.
In: IEEE Transactions on Dependable and Secure Computing 17.6 (2020-11),
pages 1283–1296. issn: 1941-0018. doi: 10.1109/TDSC.2018.2867595.

[Yam+15] Masahiro Yamada, Masanobu Morinaga, Yuki Unno, Satoru Torii, and
Masahiko Takenaka. “RAT-basedMaliciousActivities Detection on Enter-
prise Internal Networks”. In: 2015 10th International Conference for Internet
Technology and Secured Transactions (ICITST). 2015 10th International
Conference for Internet Technology and Secured Transactions (ICITST).
London, UK: IEEE, 2015-12, pages 321–325. isbn: 978-1-908320-52-0. doi:
10.1109/ICITST.2015.7412113. (Visited on 10/25/2022).

[Yan+17] Dingqi Yang, Bin Li, Laura Rettig, and Philippe Cudré-Mauroux. “His-
toSketch: Fast Similarity-Preserving Sketching of Streaming Histograms
with Concept Drift”. In: 2017 IEEE International Conference on DataMining
(ICDM). 2017 IEEE International Conference on Data Mining (ICDM).
2017-11, pages 545–554. doi: 10.1109/ICDM.2017.64.

[Yen71] Jin Y. Yen. “Finding the K Shortest Loopless Paths in a Network”. In:
Management Science 17.11 (1971-07), pages 712–716. issn: 0025-1909, 1526-
5501. doi: 10.1287/mnsc.17.11.712. (Visited on 02/10/2022).

[Zan+03] Tom Zanussi, Karim Yaghmour, Robert Wisniewski, Richard Moore, and
Michel Dagenais. “Relayfs: An Efficient Unified Approach for Transmit-
ting Data from Kernel to User Space”. In: Proceedings of the Ottawa Linux
Symposium 2003. Ottawa, Canada, 2003-07-23.

[Zee22] Zeek Project Contributors. The Zeek Network Security Monitor. 2022. url:
https://zeek.org.

[Zet14] KimZetter. “AnUnprecedented Look at Stuxnet, theWorld’s First Digital
Weapon”. In: Wired (2014-11-03). issn: 1059-1028. url: https://www.
wired.com/2014/11/countdown-to-zero-day-stuxnet/ (visited on
11/11/2022).

https://doi.org/10.1145/2501986
https://doi.org/10.1016/j.future.2016.02.005
https://doi.org/10.1109/TDSC.2018.2867595
https://doi.org/10.1109/ICITST.2015.7412113
https://doi.org/10.1109/ICDM.2017.64
https://doi.org/10.1287/mnsc.17.11.712
https://zeek.org
https://www.wired.com/2014/11/countdown-to-zero-day-stuxnet/
https://www.wired.com/2014/11/countdown-to-zero-day-stuxnet/

185

List of Figures

1.1 Example APT scenario graph . 6

2.1 APT stages according to UKC . 17
2.2 TLS 1.2: Full handshake . 19
2.3 TLS 1.2: Resumed handshakes . 19

3.1 Taxonomy of APT detection . 23
3.2 Overview: TLS interception via MitM proxy servers 25
3.3 PrioTracker: Dependency tracking algorithm 41
3.4 UNICORN: Pipeline overview . 43
3.5 Haas et al.: Four nodes generated for and alert in the CSG 49

4.1 Overview: Passive TLS decryption via cooperative endpoints 71
4.2 Experimental Setup: Dataset capture for decryption overhead 78
4.3 Results: Decryption overhead for passive TLS decryption 80
4.4 Experimental Setup: Dataset capture for key transmission latency . . 80
4.5 Results: Decryption success rate depending on traffic delay 82
4.6 Example: Brute-force sessions . 89
4.7 CDF: Dictionary Size |𝐷𝑥| . 93
4.8 CDF: Total Dictionary Overlap 𝑜𝑡(𝐷𝑥) 94
4.9 Influence of session timeout 𝜏 on Time-between-Logins (TbL) 94
4.10 Influence of session timeout 𝜏 on Time-between-Sessions (TbS) 95
4.11 CDF: Dictionary Entropy 𝐸𝑥 . 96
4.12 DBSCAN: Dictionary Size and Total Dictionary Overlap (no outliers) 97
4.13 DBSCAN: Mean Session Duration and Mean TbL (no outliers) 97

5.1 Lateral movement graphs for different attacker models 105
5.2 Probability distribution for 𝐼(𝑣) (𝛼 = 4, 𝛽 = 0.075) 112
5.3 Results: Classification of idealized attackers/𝛿 = 0 (k-shortest paths) . 114
5.4 Results: Classification of idealized attackers/𝛿 = 0 (random walks) . 115
5.5 Results: Influence of 𝛿 on classification (k-shortest paths) 116
5.6 Results: Influence of 𝛿 on classification (random walks) 117
5.7 Results: ROC for 𝜏 ∈ [0, 0.6] and 𝛿 ∈ [0, 0.75] (k-shortest paths) 118
5.8 Results: ROC for 𝜏 ∈ [0, 0.6] and 𝛿 ∈ [0, 0.75] 118
5.9 Overview: Explainability for graph-based anomaly detection 122
5.10 Idea: Permutation-based explanation of subgraphs 123
5.11 Results: Examples of sorted anomaly scores obtained via node removal 126
5.12 Results: Example of sorted anomaly scores obtained via edge removal 127
5.13 Results: Example attack graph with shaded area under baseline (AUB) 128
5.14 Kill Chain State Machine (KCSM) . 132
5.15 Network Kill Chain State Machine (NKCSM) 134
5.16 Overview: APT contextualization via KCSM 135
5.17 Alert graph comprising five alerts generated from the example scenario 137

186 List of Figures

5.18 APT infection graph for the example scenario without false positives . . 138
5.19 Example for a transitively invalid APT infection graph 138
5.20 APT scenario graph representing the example APT campaign 139
5.21 Extended Network Kill Chain State Machine (EKCSM) 141
5.22 Experimental Setup: CSE-CIC-IDS2018 147
5.23 Result: APT scenario graph for IDS2018-APT-MIN 151
5.24 Result: APT scenario graph for IDS2018-APT-FULL 152
5.25 Experimental Setup: Enterprise datasets 152
5.26 Result: APT scenario graph in the enterprise dataset 154

187

List of Tables

1.1 Thesis Overview & Contributions . 6

3.1 Requirement Comparison: Visibility into Encrypted Network Traffic . 30
3.2 Requirement Comparison: Anomaly Detection 45
3.3 Requirement Comparison: Alert Correlation 51
3.4 Requirement Comparison: APT Stage Detection 61
3.5 Requirement Comparison: APT Campaign Detection & Reconstruction 67

4.1 Simplified computational complexity for typical TLS connections . . . 75
4.2 Features and Metrics: Characterization of brute-force attackers 91
4.3 Dataset Overview: BFL2020 . 92
4.4 Results: Priorization for clusters . 98

5.1 Dataset Overview: Reconstruction of attacker lateral movement 113
5.2 Key features of the two datasets used in the evaluation 125
5.3 Results: Median area under baseline (AUB) for node removal 128
5.4 Network-visible stages of APT attacks 136
5.5 Dataset Overview: CSE-CIC-IDS2018 144
5.6 Dataset Overview: Enterprise Datasets 145
5.7 Campaign Overview: IDS2018-APT . 145
5.8 Campaign Overview: Enterprise APT 146
5.9 Results: APT contextualization for IDS2018-APT 148
5.10 Results: Ground truth in Zeek alerts for IDS2018-APT 150
5.11 Results: Ground truth in clustered alerts for IDS2018-APT 151
5.12 Results: Volume reduction for Enterprise-Small 153
5.13 Results: Volume reduction for Enterprise-Large 154
5.14 Results: Scenario filtering for Enterprise-Small 155
5.15 Results: Scenario filtering for Enterprise-Large 155

189

List of Algorithms

1 Lateral movement reconstruction from incomplete alert sets 108
2 Lateral movement reconstruction via k-shortest paths 109
3 Lateral movement reconstruction via biased random walks 110

191

List of Abbreviations & Acronyms

ACM Association for Computing Machinery

AEAD authenticated encryption with associated data

AES Advanced Encryption Standard

AG attack graph

AI artificial intelligence

API application programming interface

APT advanced persistent threat

AS autonomous system

AUB area under baseline

BAG Bayesian attack graph

BFS breadth-first search

BNF Backus-Naur form

BSD Berkeley Software Distribution

BZAR Bro/Zeek ATT&CK-based Analytics and Reporting

C2/C&C command & control

CDF cumulative distribution function

CDN content delivery network

CPM clique percolation method

CPS cyber physical system

CPU central processing unit

CSG communication structure graph

CTI cyber threat intelligence

CV certificate validation

CVE Common Vulnerabilities and Exposures

CVSS Common Vulnerability Scoring System

DARPA Defense Advanced Research Projects Agency

DBSCAN density-based spatial clustering of applications with noise

DDoS distributed denial of service

192 List of Abbreviations & Acronyms

DECANTeR DEteCtion of Anomalous outbouNd HTTP TRaffic by Passive Applica-
tion Fingerprinting

DFS depth-first search

DMZ demilitarized zone

DNS Domain Name System

DoS denial of service

DSA Digital Signature Algorithm

DSL domain-specific language

DtA distance to asset

ECDHE Elliptic-curve Diffie–Hellman Ephemeral

ENKCSM Extended Network Kill Chain State Machine

ERN evidence reasoning network

ESM enterprise security manager

FPR false positive rate

FQDN fully-qualified domain name

FTP File Transfer Protocol

GAC Graph-based Alert Correlation

GCM Galois/Counter Mode

GPL GNU General Public License

GPM graph pattern matching

HDFS Hadoop Distributed File System

HIDS host intrusion detection system

HKDF HMAC-based Extract-and-Expand Key Derivation Function

HMAC hash-based message authentication code

HMM hidden Markov model

HSG High-level Scenario Graph

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

ICS industrial control system

ICSI International Computer Science Institute

IDMEF Intrusion Detection Message Exchange Format

IDS intrusion detection system

IEEE Institute of Electrical and Electronics Engineers

IFIP International Federation for Information Processing

List of Abbreviations & Acronyms 193

IKC intrusion kill chain

IoC indicator of compromise

IoT Internet of Things

IoTKC Internet of Things Kill Chain

IP Internet Protocol

IPS intrusion prevention system

ISP Internet Service Provider

IT Information Technology

IV initialization vector

JSON JavaScript Object Notation

KCSM Kill Chain State Machine

KE key exchange

kTLS in-kernel Transport Layer Security

LIME Local Interpretable Model-agnostic Explanations

LM lateral movement

LoC lines of code

LOCKS Locally Operated Cooperative Key Sharing

LPM Linux Provenance Modules

LSM Linux Security Modules

maTLS Middlebox-aware TLS

mbTLS Middlebox TLS

mcTLS Multi-Context TLS

MitM Man-in-the-Middle

ML machine learning

NIST US National Institute of Standards and Technology

NKCSM Network Kill Chain State Machine

NMS network monitoring system

NSS Network Security Services (library)

OCSP Online Certificate Status Protocol

OISF Open Information Security Foundation

OS operating system

OSINT open-source intelligence

OT Operational Technology

PaaS platform as a service

194 List of Abbreviations & Acronyms

PASS Provenance-Aware Storage System

PDF Portable Document Format

PIDAS Provenance-aware Intrusion Detection and Analysis System

PKI public-key infrastructure

PLA People’s Liberation Army

PoC proof-of-concept

POMCP partially observable Monte-Carlo planning

PRF pseudo-random function

PSK pre-shared key

QA quality assurance

QoS Quality of Service

R&D Research and Development

RAM Random Access Memory

RAT remote access trojan/remote administration tool

RCE remote code execution

rDNS reverse DNS

RDP remote desktop protocol

RFC Request for Comments

ROC receiver operating characteristic

RSA Rivest-Shamir-Adleman

SCADA supervisory control and data acquisition

SDK software development kit

SGX Software Guard Extensions

SHAP SHapley Additive exPlanations

SIEM security information and event management

SMB Server Message Block

SMTP Simple Mail Transfer Protocol

SOC security operations center

SSH Secure Shell

SSL Secure Sockets Layer

SUS System Usability Scale

SVM support vector machine

TbL Time-between-Logins

TbS Time-between-Sessions

List of Abbreviations & Acronyms 195

TCB trusted computing base

TCP Transport Control Protocol

TLD top-level domain

TLS Transport Layer Security

TPM trusted platform module

TPR true positive rate

TTP tactics, techniques, and procedures

UDP User Datagram Protocol

UKC unified kill chain

UP-GMA unweighted pair group method with arithmetic mean

URI Uniform Resource Identifier

US United States

USB Universal Serial Bus

VM virtual machine

VPN virtual private network

XAI explainable artificial intelligence

XML Extensible Markup Language

197

Eidesstattliche Erklärung
Hiermit erkläre ich an Eides statt, dass ich die vorliegende Dissertationsschrift mit
dem Titel „Methods for Enhanced Security Monitoring and APT Detection in Enter-
prise Networks“ selbst verfasst und keine anderen als die angegebenen Quellen und
Hilfsmittel benutzt habe.

Ich bin weiterhin damit einverstanden, dass meine Dissertationsschrift in den Bestand
der Fachbereichsbibliothek eingestellt wird.

Hamburg, Deutschland, 15.11.2022 .
Florian Wilkens

	Abstract
	Zusammenfassung
	Contents
	Introduction
	Problem Statement and Research Questions
	Contributions
	Outline

	Background
	APT Definition
	APT Models
	Intrusion Kill Chain (IKC)
	Kill Chain Variations
	MITRE ATT&CK®
	Unified Kill Chain (UKC)

	TLS Fundamentals
	TLS Handshakes
	TLS Key Derivation

	Chapter Summary

	Requirements and State of the Art
	Requirements for APT Detection
	Classification of State of the Art
	Event-Level Monitoring
	Visibility into Encrypted Network Traffic
	Data Provenance Generation

	Alert-Level Detection
	Signature- and Policy-based Detection
	Anomaly Detection

	Alert Correlation
	APT Stage Detection
	Reconnaissance
	Command & Control
	Lateral Movement

	APT Campaign Detection and Reconstruction
	Chapter Summary

	Approaches for Enhanced Security Monitoring
	Transparent TLS Decryption for Network Monitoring
	Motivation and Objectives
	Approach Overview
	Approach Details
	Discussion and Evaluation
	Summary

	Characterization of Brute-Force Attackers
	Motivation and Objectives
	Formal Model
	Established Features and Metrics
	Novel Metrics: Brute-Force Sessions and Dictionary Entropy
	Characterization and Prioritization
	Evaluation
	Summary

	Summary

	Approaches for APT Detection
	Reconstruction of Attacker Lateral Movement
	Motivation and Objectives
	Formal Model
	Approach Overview
	Implementation Variants
	Evaluation
	Summary

	Explainability for APT Detection on System Provenance Graphs
	Motivation and Objectives
	Approach Overview
	Modification Strategies
	Evaluation
	Summary

	APT Contextualization via Kill Chain State Machines
	Motivation and Objectives
	The Kill Chain State Machine (KCSM)
	Approach Overview and Example Scenario
	APT Contextualization
	Extensions and Scenario Prioritization
	Evaluation
	Summary

	Summary

	Conclusion
	Summary of Contributions
	Future Work and Outlook

	Appendix
	Main Publications
	Additional Publications
	Datasets
	Supervised Theses

	Bibliography
	Eidesstattliche Erklärung

