
Eclipsing Time Variations from 3D
Magnetohydrodynamical

Simulations

Dissertation
zur Erlangung des Doktorgrades

an der Fakultät für Mathematik, Informatik und Naturwissenschaften
Fachbereich Physik der Universität Hamburg

vorgelegt von
Felipe Hernán Navarrete Noriega

Hamburg
2023





ii

Gutachter/innen der Dissertation: : Prof. Dr. Robi Banerjee

: Dr. Petri Käpylä
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Prof. Dr. Jochen Liske

Prof. Dr. Dominik Schleicher
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Abstract

Magnetic fields are ubiquitous in the Universe. In particular, the mag-
netic activity of the Sun has been observed for centuries and studied for
more than a century. Nowadays we know that most stars are magnetized.
Yet, the mechanism by which magnetic fields are sustained is not well un-
derstood. Dynamo theory, which describes how magnetic fields are ampli-
fied and sustained, has mostly been used to explain solar phenomena with
moderate success.

A field where dynamo theory has hitherto not been exploited is in bi-
nary stars. Most of our knowledge of stellar structure and evolution come
from carefully inferring stellar parameters from binaries. Measures of mag-
netic fields in stars are much more difficult to obtain, therefore limiting our
knowledge thereof. A possibility to overcome this is encountered in close
binaries via gravitational quadrupole variations which arise from density
fluctuations of magnetic origin. This is observed as periodic eclipsing time
variations in some close binaries. Two mechanisms stand out as potential
explanations, namely the Applegate and Lanza mechanisms.

This thesis expands previous analytical works by solving the magneto-
hydrodynamic equations in a convective shell, representing a Sun-like star.
It is found that the density fluctuations are too small to explain the observa-
tions with the original Applegate mechanism. However, when the magnetic
field has a strong non-axisymmetric component, the Lanza mechanism can
predict the observations to an order-of-magnitude approximation.

The simplicity of the Lanza mechanism allows to overcome the prob-
lems of the Applegate mechanism and may offer a new way of studying
stellar magnetic fields by measurements of eclipsing time variations in close
binaries.
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Zusammenfassung

Magnetfelder sind allgegenwärtig im Universum. Insbesondere wurde
die magnetische Aktivität der Sonne seit Jahrhunderten beobachtet und
seit über einem Jahrhundert erforscht. Heutzutage wissen wir, dass die
meisten Sterne magnetisiert sind. Dennoch ist der Mechanismus, durch
den Magnetfelder aufrechterhalten werden, nicht gut verstanden. Die Dy-
namotheorie, die beschreibt, wie Magnetfelder verstärkt und aufrechter-
halten werden, wurde hauptsächlich verwendet, um solare Phänomene mit
mäßigem Erfolg zu erklären.

Ein Bereich, in dem die Dynamotheorie bisher kaum genutz wurde, sind
Doppelsterne. Ein Großteil unseres Wissens über die Struktur und Evolu-
tion von Sternen stammt aus sorgfältigem Ableiten von stellaren Param-
etern aus Doppelsternen. Messungen von Magnetfeldern in Sternen sind
jedoch viel schwieriger zu erhalten, was unser Wissen darüber einschränkt.
Eine Möglichkeit, dies zu überwinden, findet sich in engen Doppelsternen
über Gravitationsquadrupolvariationen, die aus Dichteschwankungen mag-
netischen Ursprungs resultieren. Dies wird als periodische Veränderungen
der Verfinsterungszeit in einigen engen Doppelsternen beobachtet. Zwei
Mechanismen zeichnen sich als potenzielle Erklärungen ab, nämlich der
Applegate- und der Lanza-Mechanismus.

Diese Arbeit erweitert vorherige analytische Arbeiten, indem die mag-
netohydrodynamischen Gleichungen in einer konvektiven Schale gelöst wer-
den, die einen sonnenähnlichen Stern darstellt. Es wird festgestellt, dass
die Dichteschwankungen mit dem ursprünglichen Applegate-Mechanismus
zu gering sind, um die Beobachtungen zu erklären. Wenn das Magnet-
feld jedoch eine starke nichtachsensymmetrische Komponente hat, kann
der Lanza-Mechanismus die Beobachtungen mit einer Genauigkeit von etwa
einer Größenordnung vorhersagen.

Die Einfachheit des Lanza-Mechanismus ermöglicht es, die Probleme
des Applegate-Mechanismus zu überwinden, und könnte einen neuen Weg
bieten, um stellare Magnetfelder durch Messungen von Verfinsterungszeit-
variationen in engen Doppelsternen zu untersuchen.
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Chapter 1

Introduction

Magnetic fields in stars have been historically studied mostly in the Sun. It started with
the observations of sunspots by Galileo Galilei1, although little he knew about their
origin. The solar cycle, now known to reproduce the butterfly diagram, was identified
for the first time during the 1843 by Samuel Schwabe. By the second half of the 19th
century, solar flares were already observed and spectroscopy was being used on the Sun.
In the early 20th century, George Hale had applied the technique known as Zeeman
effect to solar observation. He showed that the sunspots are magnetic structures in
the photosphere which intensified the research in the field. By 1955, Eugene Parker
published the first systematic study of hydromagnetic dynamos applied to the Sun
(Parker 1955).

By now, we know that most stars are magnetically active all along the main sequence
and beyond. The theory that explains the generation and maintenance of a magnetic
field is called dynamo theory. There exists a plethora of different dynamo mechanism,
such as slow and fast dynamos, small scale and large scale dynamos, αΩ, α2Ω, and
α2 dynamos. Several comprehensive reviews exist that address the details of these
dynamos such as Brandenburg and Subramanian (2005), Rincon (2019), and Tobias
(2021).

1.1 Stellar magnetism

It is widely accepted that differential rotation plays a key role in generating and main-
taining stellar magnetic fields. Equally accepted is the key role played by the kinetic
helicity. To begin explaining this, we shall start with the induction equation,

∂B

∂t
= ∇× (u×B)−∇× (η∇×B), (1.1)

1Although Thomas Harriot, David Fabricius, and Johannes Fabricius observed the Sun before
Galileo Galilei did, they did not record or publish drawings or detailed notes about them.

1



2 CHAPTER 1. INTRODUCTION

which describes the temporal evolution of a magnetic field B, and where u is the ve-
locity field and η is the magnetic diffusivity. We can construct the mean-field induction
equation by first introducing the Reynolds decomposition

u = u+ u′, (1.2)

B = B +B′, (1.3)

where overlines denote averages and primes denote fluctuations. By applying this to
Eq. 1.1, the mean-field induction equation can be written as

∂B

∂t
= ∇×

(
U ×B + E − ηJ

)
, (1.4)

where J = ∇ × B is the mean field current density, and E = u′ ×B′ is the mean
electromotive force (EMF), which can be recast as (Krause and Rädler 1980; Rincon
2019)

E i = aijBj + bijk∂jBk, (1.5)

E i = αijBj + (γ ×B)i − βij(∇×B)j − [δ × (∇×B)]i −
1

2
κijk(∇jBk +∇kBj),

(1.6)

where

αij =
1

2
(aij + aji), (1.7)

βij =
1

4
(ϵiklbjkl + ϵjklbikl), (1.8)

γi = −1

2
ϵijkajk, (1.9)

δi =
1

4
(bjji − bjij), (1.10)

κijk = −1

2
(bijk + bikj), (1.11)

and ϵijk is the Levi-Civita symbol. The α effect amplifies the magnetic field via helical
flows. β is similar to η in that it acts as a turbulent diffusion. The γ effect is interpreted
as a turbulent pumping of B. The δ effect, also called the Rädler effect, is a term that
can lead to dynamo action in nonhelical flows with shear. Lastly, there is no clear
interpretation of κ.

Generally speaking, in the presence of differential rotation (shearing) there is also
the contribution of the Ω effect, which enters in the RHS of the induction Eq. 1.4 as
B · ∇u, but it cannot maintain a magnetic field on its own. This effect also amplifies
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Figure 1.1: Schematics of α2, αΩ, and α2Ω dynamos. Here, Bpol is a mean poloidal
field, and Btor is a mean toroidal field.

the magnetic field like the α effect but via shearing. The interplay between these two
effects gives rise to a family of three types of dynamos. Namely, the α2, αΩ, and α2Ω
dynamos. A simple schematic of these dynamos is shown in Fig. 1.1. Starting from a
mean poloidal field Bpol, the α effect can convert a Bpol from and to a toroidal field
Btor and vice versa. In the presence of differential rotation, the Ω effect stretches the
poloidal magnetic field lines differentially. For example, the rotation of the Sun is faster
at the equator than in the poles and it converts Bpol to Btor. The α effect converts it
back to Bpol by means of flow helicity which twists and breaks the toroidal field.

This simple qualitative description hides a great deal of complexity behind it. For
example, there is a closure problem when attempting to solve the mean field induction
equation. This is because, in order to solve it, we should express it in terms of mean
quantities only but the fluctuating field appears in E . There is also the problem that
the dynamics and energetics most relevant to dynamos are hidden under the stellar
surfaces. As such, we have to resort to drawing conclusions based on what theories
and simulations tell us about what happens in the stellar convection zone, and then
attempt to link this to surface phenomena and then to observations of magnetic fields
on the stellar surface. Alternatively, we can also infer the internal dynamics of stars
by means of astero/helioseismology (Hanasoge, Gizon, and Sreenivasan 2016).

1.1.1 Observational evidence of stellar dynamos

Despite the great challenges related to studying stellar dynamos, we have observational
hints of an internal mechanism that gives rise to the observed magnetic phenomena
at the surface of stars. Most of it comes from observations of our nearest star, the
Sun. It is characterized by cool spots with a particularly strong magnetic field, know
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Figure 1.2: Sunspots position in latitude as a function of time. Image credits to NASA.

as sunspots, which start appearing at mid latitudes and at lower latitudes as the cycle
progresses. The tracking of this migration pattern as a function of time and latitude
is know as “butterfly diagram”, which is shown in Fig. 1.2. The cycle starts with
sunspots appearing at mid latitudes (±30◦) and newer sunspots appear at lower and
lower latitudes with an average period of 11 years. This is only half the cycle as the
polarity of the magnetic field over each hemisphere also changes every 11 years, and so
the solar magnetic cycle is 22 years long. Another feature of the Sun are solar flares,
which involve the release of at least 1020 J from the surface. It is believed that this
release of energy is related to magnetic reconnection in the sunspots as flares usually
coincide with spots. Furthermore, coronal mass ejections (CME) usually follow solar
flares.

While a huge amount of detailed data exists for the Sun with a long baseline, this
is not the case for other stars. Thus, for stars other than the Sun we have to deal
with sparse data with a much lower level of detail as compare with the one of the
Sun. For example, butterfly diagrams for other stars were only recently obtained for
ϵ Eridani and 61 Cygni A by Jeffers et al. (2022). Both stars were found to have Sun-
like characteristics, with two chromospheric cycles of ∼ 3 and ∼ 13 years for ϵ Eridani.
It is yet unknown whether dynamo waves are a common feature among Sun-like stars.

A few interesting scaling properties can be identified. Wright et al. (2011) performed
an analysis of more than 800 late-type main-sequence stars. It was found that the X-ray
luminosity scales with the Rossby number (Ro), defined as

Ro =
Prot

τc
, (1.12)

where Prot is the rotation period of the star and τc is the convective turnover time. It was
found that X-ray luminosity increases with decreasing Rossby number down to Ro ∼ 0.1
and a saturated regime was found for lower values of Ro (see Fig. 1.3). Subsequently,
Wright et al. (2018) extended this study by adding fully convective stars to the analysis
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Figure 1.3: X-ray luminosity vs Rossby number for 824 solar and late-type stars. Figure
from Wright et al. (2011).

and found that they follow the same scaling law. This is a very interesting result
which might have deep theoretical implications. In the Sun, it was believed that the
thin transition region between the radiative core and the convective envelope, called
tachocline, was an important ingredient for the dynamo. This is because the tachocline
is a region of strong shear and thus important for convertingBpol toBtor. However, due
to the absence of tachoclines in fully convective stars and because they follow the same
scaling properties, this might mean that a tachocline is not important for dynamos. To
test this picture even further Lehtinen et al. (2020) identified a dependence of magnetic
activity of post-main-sequence stars with Ro, The scaling is such that magnetic activity,
which is derived by using chromospheric emissions of Ca II H and K as a proxy, increases
with decreasing Ro, such that main-sequence and giant stars follow the same sequence.

One could question the link between the above results and the dynamo that takes
place in the convective zone. Indeed, it is not yet clear how the magnetic field strength
connects to chromospheric activity and/or X-ray emissions. A more direct measure-
ment was presented by Reiners et al. (2022). The average surface magnetic field
strength was derived for 292 low-mass main-sequence stars and a similar result to
that of Wright and Drake (2016) was found. It now seems more clear that rotation
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and differential rotation, a key ingredient of dynamo theory, is very well correlated to
magnetic field strength. However, the reason for the scaling and saturated regimes are
not understood.

Overall, there are many aspects of stellar magnetism what are not yet explained.
It is currently not possible to directly access the interior of stars, thus making a direct
comparison with results from dynamo theory unfeasible. We can attempt to bridge
this gap with stellar dynamo simulations and look for similarities between the two.

1.1.2 Stellar dynamo simulations

Simulations of stellar dynamos can be divided in two main groups. These are:

1. (semi-)global simulations. Here, either the full extent of the convective zone or a
large part of it is simulated.

2. local boxes. In this case, Cartesian box in the stellar region of interest is simu-
lated. The box is small compared to the size of the star.

Both approaches come with pros and cons. The nature of global simulations implies
that the parameter regime is far away from real stars. This is because the characteristic
length scale, the stellar radius, greatly reduces dimensionless numbers such as the
Reynolds number. Thus, even larger grid resolutions are needed to increase these
numbers. However, in this case the gain is that global dynamics and global magnetic
field features are captured. Examples of this type of simulations can be found in Dobler,
Stix, and Brandenburg (2006), Browning et al. (2006), Käpylä et al. (2013), Hotta and
Kusano (2021), and Popovas, Nordlund, and Szydlarski (2022). Local boxes have a
much smaller characteristic length and in general the parameters can be pushed more
to real stars, although in general they are still very far away (Kupka and Muthsam
2017). However, they come with the loss of global phenomena. Usually, these type of
simulations are targeted towards more fundamental aspects of dynamo theory. Some
examples include Brandenburg (2001) and Bushby et al. (2018).

This thesis makes use of global dynamo simulations for reasons that will become
clear in the next chapters. Some aspects and results, with special emphasis on long
standing problems of this type of simulations are summarized in the following to give
a sense of what the current status of the field is.

Several dimensionless parameters are used to characterized convective flows with
rotation and magnetic fields. The most important ones are the Coriolis number, fluid
and magnetic Reynolds numbers, and fluid and magnetic Prandtl numbers. These are
defined as

Co =
τc
Prot

, Re =
uL

ν
, ReM =

uL

η
, Pr =

ν

χ
, PrM =

ν

η
, (1.13)
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where u is a typical flow velocity at a length scale L, ν is the viscosity of the flow, η is
the magnetic diffusivity, and χ is the thermal diffusivity.

It is not exactly clear what any of these numbers are in the Sun. It is estimated
that, in the convection zone, they range between (see Jermyn et al. 2022)

Co ∼ 10−2...10, (1.14)

Re ∼ 1012...1014, (1.15)

ReM ∼ 106...1010, (1.16)

Pr ∼ 10−6...10−3, (1.17)

PrM ∼ 10−6...10−2. (1.18)

However, we can not achieve these parameters with simulations, with the only
exception being the Coriolis number. The gap is as large as several order of magnitude
and essentially boils down to the huge range of physically relevant scales in stars. For
example, the magnetic Prandtl number is a property of the fluid and does not depend
on the flow properties such as velocity. It can be seen as the scale separation between
the kinetic and magnetic spectra. For very small PrM, this means that a lot of the
magnetic energy is contained at scales larger than any scale relevant to turbulence. If
we want to capture both the turbulent scale and scales relevant to magnetic fields, we
would need a tiny grid spacing and so the timestep becomes infeasible small. A similar
issue is encountered with the magnetic Reynolds number. Due to the small values of η
in the convective zone, ReM is very large. These values are not possible to capture in
simulations due to severely reducing the timestep. Furthermore, the resolution would
have to be infeasibly high.

As a consequence, a few approaches are used in simulations to overcome these issues.
For example, the simulations of Hotta and Kusano (2021) artificially reduce the speed
of sound which would otherwise also negatively affect the timestep. More common
approaches are the usage of the anelastic or Boussinesq equations. The anelastic equa-
tions simplify of hydrodynamic equations by assuming that the density is a function
of temperature and pressure only, and fluctuations of the density field are neglected.
On the other hand, the Boussinesq approximation includes density fluctuations but
assumes that they do not have an impact on the flow other than being important for
buoyancy. These are accurate only in the deep convection zone where density variations
are indeed small enough to justify both approaches.

Every approximation above is just a different approach to avoid solving the fully
compressible MHD equations. A different approach is the so-called “enhanced luminos-
ity” method. Here, the input luminosity of the model is artificially enhanced by several
orders of magnitude. This has the effect to increase the Mach number so that it be-
comes computationally feasible. The thermal relaxation timescale (Kelvin-Helmholtz
timescale) is also greatly reduced such that the required computational time to reach
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the thermally saturated regime is achievable. It comes with the cost of increasing the
velocity of the flow and so several timescales such as the convective timescale are short-
ened. To compared with real stars, a scaling procedure is employed (e.g. Käpylä et al.
2020).

1.2 Planets Around Close Binary Stars

It can be difficult to distinguish between planets and magnetic activity. This is es-
pecially difficult in post common envelope binaries (PCEBs), where eclipsing time
variations (ETVs) can be interpreted as either being produced by planets or magnetic
activity. Before turning to the observations and theory behind ETVs induced by mag-
netic activity in PCEBs, some aspects of planets around close binaries are presented.

1.2.1 Post-common-envelope binaries

PCEBs are close binaries composed of a white dwarf (the primary star) and a main-
sequence star (the secondary star). In general, the main-sequence star is a red dwarf
and a typical binary separation is very small, of the order of a solar radius and smaller.
This small separation results in very short orbital periods which are generally shorter
than a day. Furthermore, the intrinsic differences between the stellar parameters of the
white dwarf and the red dwarf can be exploited to derive these parameters with great
precision through eclipses.

The theory behind the formation of such short period binaries was proposed by
Paczynski (1976) and a schematics of the process is shown in Fig. 1.4 Before the
common envelope (CE) phase, the binary had a wider separation of the order of 1
AU. Due to differences in the mass between the two stars, the one with larger mass
evolves faster and thus reaching the giant branch sooner. When the radius of the now
red giant (RG) is larger than 1 AU, the secondary star is engulfed in the convective
envelope of the RG. As the secondary star is now surrounded by a medium, the drag
forces convert orbital energy into thermal energy. The secondary is now forced to move
inwards towards the core of the RG and the envelope is slowly ejected from the system.
If there is no merger between the companion and the RG core (i.e. white dwarf), then
eventually a PCEB is revealed. In Fig. 1.5 a simulation of a common envelope phase
is shown (Ohlmann et al. 2016). It should be noted that the timescale of this process
is of the order of a few hundred days. As such, it is extremely unlikely to observe a
CE in action. PCEBs are also believed to be the progenitors of type Ia supernovae.
The latter would take place once the secondary star enters the RG branch and mass
transfer into the white dwarf begins.

Binary stars, and in particular PCEBs, are of great interest in astrophysics. They
can be used for precise measurements of stellar parameters and to test extreme astro-
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Figure 1.4: Schematics of the common-envelope phase. The dashed vertical line denotes
the Roche equipotential surface. Any material past this point will be pulled by the
gravitational potential of the other star. (a) The more massive star, marked as “1”,
enters the red giant (RG) branch. (b) As the star evolves, it expands past the Roche
equipotential surface. (c) The RG fills its Roche lobe and the mass transfer begins. (d)
The expansion of the RG continues and is faster than the mass than can be accreted.
(e) A CE is formed. Image by Philip D. Hall and reproduced here under CC BY-SA
3.0
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Figure 1.5: Simulation of a common envelope evolution. The “+” sign is the position
of the core of the red giant (RG) and the “x” sign is the position of the secondary star.
The gas density, which represents the convective envelope of the RG, is shown with
the color map. After a period of 110 days, the binary went from a separation of about
25 solar radius to less than 10 solar radius. Figure from Ohlmann et al. (2016).
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Figure 1.6: Observed-minus-calculated (O− C)diagram of the post-common-envelope
binary NN Ser. The observations, shown as yellow and green data points, are fitted
with the black line. The two green lines are the individual contributions to the model
and are interpreted as circumbinary planets. Figure from Beuermann et al. (2010).

physical environments such as extreme mass transfers and mergers. One less explored
physics is magnetic fields in close binaries and how it connects to dynamo theory
specially because, due to the short binary separation, tidal locking should bring the
main-sequence star to extreme rotation rates.

1.2.2 ETVs and the planetary hypothesis

Upon close inspection and after a relatively long observational baseline of the eclipsing
times, it has become clear that approximately 90% of observed PCEBs have apparent
period variations (Zorotovic and Schreiber 2013). A typical observed-minus-calculated
(O − C) diagram of the eclipsing times is shown in Fig. 1.6. The O − C diagrams of
the eclipsing times are constructed by measuring the time of an eclipse. Then, one
assumes that the orbits of the binary is governed by the Kepler laws and that no other
bodies are present. The expected time when the eclipses would take place is computed
and is subtracted from the observed time. Finally, the result is plotted as a function of
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time. If the assumption of no extra physics such as gravitational pull by other bodies
is correct, then the data points would lie on O − C = 0. Otherwise, the hypothesis
is incorrect and a physical process is at place which the calculation did not account
for. This is the case in PCEBs and the fact that ∼ 90% of them show this phenomena
points at a underlying systematic physical mechanism.

In the case of NN Ser, which is shown in Fig. 1.6, the quasi-periodic variation of the
O − C diagram has been interpreted as the gravitational pull from two circumbinary
planets (e.g. Marsh et al. 2014). Another example includes V471 Tau, a prototypical
PCEB for which the theory of common envelope evolution was developed (Paczynski
1976). A recent study revisited the binary parameters, and revealed that it consists of
a main-sequence star of M = 0.853M⊙ and R = 0.816R⊙, and a white dwarf of M =
0.792M⊙ and R = 0.01134R⊙, while the binary separation is a = 3.19R⊙ (Muirhead,
Nordhaus, and Drout 2022). This system has been studied with unique detail. It was
first reported by Lohsen (1974) that V471 Tau undergoes period variations. Beavers,
Herczeg, and Lui (1986) proposed that a third body could be the responsible for the
eclipsing time variations and it was later determined that the parameters of the third
body would correspond to a brown dwarf (Guinan and Ribas 2001).

The planetary hypothesis attributes ETVs to circumbinary bodies, such as those
above. These planets could have been formed together with the binary or from the
common envelope material. These two hypothesis are know as first and second gener-
ation formation scenarios, respectively (e.g., Schleicher and Dreizler 2014; Völschow,
Banerjee, and Hessman 2014). Regardless of when the planets were formed, they must
fulfill the basic requirement of orbital stability over long periods of time. It this regard,
it is commonly found in the literature that a proposed set of planets for a given PCEB
fail to withstand orbital stability tests or fail to predict upcoming eclipsing times. This
was recently summarized by Pulley et al. (2022) who reanalyzed the eclipsing times of
seven PCEBs with new data and concluded that in all of them but one (NY Vir), the
proposed circumbinary models fail to predict the new eclipsing times.

In the particular case of V471 Tau, the search of the proposed brown dwarf was
pursued by Hardy et al. (2015). They attempted to directly image the brown dwarf with
the SPHERE instrument which, however, resulted in a non-detection. Independently,
Vanderbosch et al. (2017) studied the presence of a brown dwarf in V471 Tau by
constructing an O−C diagram of the spin-period of the white dwarf and of the orbital
period of the binary. If there was a third body, the authors proposed that the wobbling
barycenter would introduce variations of the same order of magnitude in the two O−
C diagrams. However, the authors found that the O−C diagram of the spin-period is
flat and thus ruled out the existence of a third body in V471 Tau. Overall, the data
points to the inadequateness of the planetary hypothesis in this system (Kundra et al.
2022).
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1.3 Period Variations from Magnetic Activity

Period variations were first connected to magnetic activity in binary stars by Applegate
and Patterson (1987). The gravitational potential outside of the magnetically active
star can be written as

ϕ(r) = −GM

r
− 3G

2

∑
i,j

Qij
xixj

r5
, (1.19)

where r is the distance from the center of the active star, G is the gravitational constant,
M is the mass of the active star, Qij are the quadrupole moment tensor components,
and xi, xj are the Cartesian coordinates as measured from the center of the active star.
The sum is performed over i, j = 1, 2, 3. Explicitly, the quadrupole moment can be
computed as

Qij = Iij −
1

3
δijTr I, (1.20)

where

Iij =

∫
V

ρ(x)xixjdV (1.21)

is the inertia tensor, Tr I is the trace of the inertia tensor, δij is the Kronecker delta, and
ρ is the density at (xi, xj, xk). By adopting a coordinate system which rotates with the
binary and points towards the secondary star, Applegate and Patterson (1987) showed
that the period of the binary can be modulated as

∆P

P
= −9

∆Qxx

Ma2
. (1.22)

Here, ∆P/P is the change of the orbital period as a fraction of the mean, ∆Qxx is
the change in the quadrupole moment, and a is the binary separation. Under the
assumption of the coordinate system above, only the xx component of Qij survives.
Equation 1.22 can be directly compared with observations by considering that (Apple-
gate 1992)

∆P

P
= 2π

O− C

Pmod

, (1.23)

where O−C is the amplitude of the O−C diagram of the eclipsing times and Pmod is
the period over which the O− C diagram is modulated. Thus

∆Qxx = −2

9
πMa2

O− C

Pmod

. (1.24)

All of the quantities of the right hand side of Eq. 1.24 are observable. The required
changes of Qxx that produce any observed O − C variations can be estimated from
here. However, it is unknown what the values of the quadrupole moment are. This is
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because the density distribution of the star is hidden to observations. It can, however,
be computed from numerical simulations.

Changes in the density field alter the moments of inertia as seen in Eq. 1.21, which
in turn change the quadrupole moment (Eq. 1.20). The gravitational potential will thus
change as seen in Eq. 1.19. The orbital period changes according to Eq. 1.22 and can
be observed in eclipsing binaries if sufficiently long observations are available. At this
point, the attention is shifted to finding a mechanism which can alter the quadrupole
moment in such a way that explains observations.

1.3.1 The Applegate mechanism

Rapid rotation and convective envelopes, ingredients necessary for a dynamo, are quite
common in post-common envelope binaries. As such, Applegate and Patterson (1987)
proposed that a varying magnetic field of mean strength Bsurf = 100 G could produce
the necessary quadrupole moment variations. It was proposed that the quadrupole
moment is connected to the magnetic field strength as

∆Q ∼ Ip
MCZ

M

B2

8πP
, (1.25)

where Ip is the moment of inertia of the primary star, MCZ is the mass of the convective
region, M is the total mass of the star, and P is the total pressure. The ratio B2/8πP
(in cgs units) was estimated to be 10−4 is V471 Tau in order to explain observations.

The first mechanism which explains eclipsing time variations through magnetic
activity was presented by Applegate (1992). This is now known as the Applegate
mechanism. We start by considering a thin shell that surrounds the interior of the star,
modeled as a point mass at the center of the star. The idea is to find a mechanism
which can change the angular momentum of the shell. The approximation is justified
by considering that the moment of inertia tensor has a factor of r2, with r being the
radius of the star. Thus, changes in the outer layers of the star will contribute much
more to changes in the quadrupole moment. Because of the rotation Ω of the star, the
shell of mass Ms is oblate. The quadrupole moment and moment of inertial of the shell
are

Q =
1

9
MsR

2

(
Ω2R3

GM

)
, (1.26)

I =
2

3
MsR

2. (1.27)

The derivative dQ/dJ , where J is the angular momentum, of the shell, can be
estimated as

dQ

dJ
=

1

3

ΩR3

GM
. (1.28)
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By combining Eqs. 1.22 and 1.28, Applegate (1992) showed that the necessary angular
momentum exchange ∆J to produce a period variation of ∆P is

∆J = −GM2

R

( a

R

)2 ∆P

6π
. (1.29)

The periodic exchange of angular momentum between the core and the thin shell
requires a torque N , which is

N = π
∆J

Pmod

, (1.30)

where Pmod is the modulation period of the binary period. By assuming that the torque
is provided by a magnetic field, the expected field strength is of the order of a few kilo
Gauss. Such field strengths are common in stars and thus, the system seems feasible.
A key aspect of the Applegate mechanism is that it relies on the centrifugal force of the
star. The magnetic field provides the torque that redistributes the angular momentum
within the star. As the outer layers carry more angular momentum, they spin-up and
due to the centrifugal force they become more oblate.

Since then, the Applegate mechanism has gone through many improvements and
tests. For example, Brinkworth et al. (2006) extended the Applegate mechanism to
the scenario where the angular momentum is exchanged between the core and a shell
which is no longer thin. This leads to an energy exchange between the two

∆E = (Ωs − Ωc)∆J +
1

2

(
1

Is
+

1

Ic

)
(∆J)2, (1.31)

where Ωs and Ωc are the rotation rates of the shell and core, respectively, and Is and Ic
their moments of inertia. The minimum energy that is required to drive these changes
was shown to be ten times larger than what is available from the luminosity variations
of the magnetically active star in NN Ser (Brinkworth et al. 2006). Völschow et al.
(2016) used this formalism, together with more realistic stellar density profiles derived
with the Evolve ZAMS code instead of density profiles calculated from the Lane-Emden
equation as it was done by Brinkworth et al. (2006), and applied it to a set of 16 PCEBs.
From energetic grounds, they found that the Applegate mechanism is more feasible for
systems with smaller binary separation. In general, however, the energy required to
drive the necessary quadrupole moment variations were still larger than the energy
provided by the stellar luminosity.

Much more detailed studies exist to date. For example, a more general approach
was first introduced by Lanza, Rodono, and Rosner (1998). Here, the effects of the
internal magnetic fields were considered. It was found that in this case, the energetic
requirements are reduced by a factor of two. The subsequent model of Lanza (2006)
aimed at solving the angular momentum equation along the stellar convective zone.
Building upon this framework, Völschow et al. (2018) extended the model of Lanza
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(2006) by considering time-fluctuating velocity and magnetic fields. The angular mo-
mentum transfer equation within the star reads (Lanza 2006; Völschow et al. 2018)

∂ω

∂t
− 1

ρr4
∂

∂r

(
r4ηt

∂ω

∂r

)
− ηt

ρr2
1

1− µ2

∂

∂µ

(
(1− µ2)2

∂ω

∂µ

)
= S(r, µ, t), (1.32)

where ω is the angular momentum, ρ is the mass density, r is the radius, ηt = ηt(r)
is the turbulent dynamical viscosity, and µ = cos θ, where θ is the latitudinal angle.
S is a source term which controls the transport of momentum via the Reynolds and
Maxwell stress tensors. It is computed as (Völschow et al. 2018)

S = − ∇·τ
ρr2(1− µ2)

, (1.33)

where

τi = r sin θ

(
Λiϕ +

1

µ̃
(BiBϕ +Miϕ)

)
. (1.34)

Here, Λiϕ = ρv′iv
′
ϕ and Miϕ = B′

iB
′
ϕ are the Reynolds and Maxwell stress tensors,

respectively, and µ̃ is the magnetic permeability. The magnetic field is chosen to be
purely azimuthal and the velocity purely radial (convective) uc. Both Λ and M are
assumed to fluctuate with over the magnetic cycle of period Pact, with amplification
coefficients Av and AB, and phase f(t) = sin(2πt/Pact). Thus,

Λiϕ = Λiϕ(r, t) = ρ(r)A2
vu

2
c(r) sin

2(2πt/Pact), (1.35)

Miϕ = Miϕ(r, t) = A2
BB

2
surf sin

2(2πt/Pact), (1.36)

where Bsurf is the magnetic field at the surface.
By adopting moderate values of fluctuation amplitudes, Av = AB, and Bsurf =

1 kG, Völschow et al. (2018) showed that the calculated ∆P/P is always smaller than
observations. However, an interesting result was that the calculated period variations
peaks at the transition from fully- to partially convective stars (see Fig. 1.7). The
amplitude here is about 7× 10−8, which is still smaller than observations but expected
to produce a significant contribution to the observed values of ∆P/P .

It seems unlikely that the Applegate mechanism is an adequate explanation to ETVs
in close binaries. From energetic grounds, it requires more energy than the available
energy produced by nuclear reactions. With analytic models becoming more realistic,
the energy requirements were relaxed but still too large (Brinkworth et al. 2006; Lanza,
Rodono, and Rosner 1998; Völschow et al. 2018). However, this does not mean that
the physics of the Applegate mechanism is flawed. On the contrary, it is very likely
that it is working, but with just a smaller observable impact than what was initially
thought. Careful monitoring of the period variations and re-analysis of the currently
available O−C diagrams will help disentangle the third bodies from magnetic-activity
induced perturbations.
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Figure 1.7: Expected period variations as a function of zero-age-main-sequence (ZAMS)
mass. Figure from Völschow et al. (2018).

1.3.2 Lanza mechanism

An underlying assumption of the Applegate mechanism is the presence of a purely
axisymmetric magnetic field. This forces the quadrupole moment perturbations to be
axisymmetric. From a point of view of the binary, the assumption of non-tidally locked
or tidally locked is irrelevant. This physical picture changes when the magnetic field is
allowed to have modes different from m = 0.

Applegate (1989) had already considered this scenario. However, the period vari-
ations that he had in mind were of the order of a few years at most. Lanza (2020)
extended the model and applied it to the modulation periods of eclipsing times in
PCEBs, which are of the order of tens of years.

Consider a flux tube fixed in space and time inside the convective region of a star.
The equation for the density perturbations inside (i) and outside (e) the flux tube can
be written as

∂pi,e(r, σ)

∂r
= −GM(r)

r2
ρi,e, (1.37)

where pi,e is the plasma pressure inside and outside the flux tube, M(r) is the mass
contained inside a radius r, and ρi,e is the density inside and outside the flux tube.
Furthermore, σ is the distance from the axis of symmetry of the flux tube to a point at
constant radius. Figure 1.8 shows and illustration of the system under consideration.
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Figure 1.8: Illustration of the configuration considered by Lanza (2020). The plane xy
lies on the plane of the binary, as well as ss′. The axis x points towards the companion
star, shown in green, and s coincides with the axis of symmetry of the flux tube, shown
in yellow with angular radius of θ0. The angle α is the angular separation between x
and s. The effects of the flux tube can be modeled as two point masses A and A′ which
produce the forces F and FA′ , respectively, on the companion. Figure from Lanza
(2020).
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In this configuration, where there is a non-axisymmetric magnetic field which pro-
duces a non-axisymmetric quadrupole moment and without tidal locking, the gravita-
tional potential can be written as

ϕ = −GM

r
− 3G

2r3
(
δQxx sin

2 θ cos2 α + δQyy sin
2 θ sin2 α + δQzz cos

2 θ
)
, (1.38)

where

δQxx = δQ+
T

2
, (1.39)

δQyy = δQ− T

2
, (1.40)

δQzz = −2δQ, (1.41)

T = δQxx − δQyy. (1.42)

The deltas represent perturbations due to the presence of the flux tube, while θ is
colatitude. The equation of motion of the binary is governed by the oscillation of the
angle α, which can be written as

d2α

dt2
+

1

2
ω2
P sin 2α = 0, (1.43)

where

ω2
P = 3

GmST

r3

(
1

mr2
+

1

Ip

)
(1.44)

is the amplitude of the oscillation, mS is the mass of the secondary star, m is the
reduced mass of the binary, and Ip is the moment of inertia of the magnetically active
star about the spin axis.

Two solutions to Eq. 1.43 were identified by Applegate (1989) and Lanza (2020).
In particular, Lanza (2020) found solutions by looking at the first integral of Eq. 1.43,
i.e.

1

2

dα2

dt
+

1

2
ω2
P sin2 α =

1

2
E2, (1.45)

where E is the integration constant which is a constant of motion that depends on the
initial conditions. For E ≤ ωP , the solution is a libration of α. That is, a pendulum-like
oscillation with amplitude α0 = arcsin(E/ωP ). If E > ωP , then α varies monotonically
because it has enough energy to go over the maxima, solution which is referred as
circulation.

Lanza (2020) applied this model to three close binaries: HR 1099, V471 Tau, and
NN Ser. The solutions were found by finding the best parameters that would fit the
observations. In the first case, the libration model was favored over the circulation as
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the latter is not able to reproduce the observations. In V471 Tau, it was found the two
models reproduce observations. The energy requirements are 102 − 103 times smaller
than in the previous models such as in Applegate (1992). Lastly, in NN Ser, the low
luminosity of the active star does not appear to be high enough to power the models,
and so the presence of planets that change the eclipsing times is favored.

Overall, this newer mechanism is much more energetically feasible than the previous
models. The requirement of asynchronous stellar spin and binary period will need to be
tested. For example, Lurie et al. (2017) identified 21 asynchronous eclipsing binaries
with orbital periods less tan 10 days. The authors attributed this asynchonization
to either them being too young or having a complex dynamical history. The latter
explanation would certainly fit post common envelope binaries because their formation
history involves a complex common envelope interaction (Paczynski 1976). Thus, it
seems at least plausible that PCEBs are not tidally locked, but a careful determination
of it is still pending.



Chapter 2

Aims and methods

The Applegate mechanism have only been studied in detail with analytic tools. The
value of the quadrupole moment has usually been worked out by taking the core-to-
shell transition at position of the star where the energy required to drive the Appelgate
mechanism is minimized (Brinkworth et al. 2006; Völschow et al. 2016). In the studies
of Lanza (2006) and Völschow et al. (2018), the period variations of the binaries were
computed from a model where the magnetic and velocity fields and fluctuations were
constant in the former and time-dependent in the latter. While more general, these
models rely on adopting a certain value of the fields and their respective fluctuations.

This thesis is concerned on finding the gravitational quadrupole moment from a
more self-consistent magnetohydrodynamical model. With Qij at hand, the goal is to
look for the mechanism that gives rise to it and whether it is large enough to reproduce
the observed eclipsing time variations in post-common-envelope binaries.

2.1 Gravitational quadrupole moment from dynamo

simulations

Stellar dynamo models are already mature enough to start being used to tackle astro-
physical questions other than the ones related to dynamos per se.

The gravitational quadrupole moment arises from an asymmetric distribution of
density. The anelastic and Boussinesq approximations do not take the density fluctu-
ations or only consider these as very small. These fluctuations can only be captured
with the fully compressible (magneto) hydrodynamical equations. It is for this reason
that this thesis focuses on solving these equations in particular. However, in the real
scenario of a very rapidly rotating star with rotation rate more than fifty times the rota-
tion of the Sun, one would expect a star that deviates from perfect spherical symmetry.
On top of this, a sufficiently strong magnetic field in the surface layer would produce

21
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an asymmetric density distribution with the possibility of inflating and deflating the
star if the magnetic field is cyclic as those found in dynamo simulations. To capture
such effects self-consistently, we would need a numerical model of a stellar dynamo
with flexible boundary conditions that allow for stellar deformations, thus producing
a time dependent ellipsoidal star. However, such models do not exist to date. The
reason for this is that efforts to model stellar dynamo have focused on situations where
these deformations are small such as in the Sun.

Still, it is possible to capture variations of Q from spherically symmetric stars.
This was done by Navarrete et al. (2020) where it was shown that Q closely follows the
magnetic cycles. This approach gives a good estimate of the expected variations of Q
in a real physical star under the assumption of negligible variations of the shape and
size of the secondary.

2.2 Numerical Setup

From a numerical perspective, it is extremely challenging to self-consistently model the
Applegate or Lanza-Applegate mechanisms. One would need to model the physics of
the interior of the secondary star, and also the dynamics of the binary. A way to over-
come this is to model just the physics of the convective region of the secondary, which
is where stellar dynamos take place. One can measure the changes in the quadrupole
moment and attempt to find their origin, and use analytic results to estimate the
eclipsing time variations. The numerical model used in this thesis is explained here.

Consider the convective region of a solar-like star without the polar caps. The
computational domain is 0.7R ≤ r ≤ R, θ0 ≤ θ ≤ π−θ0, and 0 ≤ ϕ < 2π, where (r, θ, ϕ)
are the usual spherical coordinates, and θ0 = π/12. The equation of compressible
magnetohydrodynamics are solved in this domain. These are

∂A

∂t
= u×B − ηµ0J , (2.1)

D ln ρ

Dt
= −∇ · u, (2.2)

Du

Dt
= Fgrav + FCor + F cent − 1

ρ
(∇p− J ×B −∇ · 2νρS), (2.3)

T
Ds

Dt
=

1

ρ

[
ηµ0J

2 −∇ · (F rad + F SGS)
]
+ 2νS2, (2.4)

where B = ∇ × A is the magnetic field and A is the magnetic vector potential,
u is the velocity field, η is the magnetic diffusivity, µ0 is the vacuum permeability,
J = ∇×B/µ0 is the electric current density, ρ is the mass density, p is the pressure,
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ν is the viscosity, T is the temperature, and s is the specific entropy. Furthermore,

Sij =
1

2
(ui;j + uj;i)−

1

3
δij∇ · u (2.5)

is the rate-of-strain tensor and where semi-colons denote covariant differentiation. The
above system of equations is closed by an equation of state which here is assumed as
ideal, i.e.

p = (γ − 1)ρe, (2.6)

where γ = 5/3 and e is the specific internal energy.
Two fluxes can be identified in the energy equation 2.4. These are the radiative

flux
F rad = −K∇T, (2.7)

which models transport of heat by radiation with K being the radiative heat conduc-
tivity, and the sub-grid scale (SGS) flux

F SGS = −χSGSρT∇s, (2.8)

which models the unresolved heat transport by turbulence and where χSGS is the tur-
bulent entropy diffusivity.

Three forces appear in Eq. 2.3,

Fgrav = −GM

r2
r̂, (2.9)

FCor = −2Ω0 × u, (2.10)

F cent = −cfΩ0 × (Ω0 × u), (2.11)

which are the gravitational, Coriolis, and centrifugal terms, respectively. Here, G is
the gravitational constant and Ω0 = Ω0(cos θ,− sin θ, 0) is the rotation vector of the
star. The factor cf that appear in the centrifugal term is added as a control parameter,
which we keep equal to zero in Paper I and vary it in Papers II and III. It is needed
in simulations that enhance the luminosity, as otherwise F cent would be too large and
blow up the star (see below).

2.2.1 Initial conditions

For the initial conditions, we choose an isentropic state. The density stratification fol-
lows from hydrostatic equilibrium. Velocity and magnetic fields are initialized with low-
amplitude, Gaussian white noise. As such, these two fields peak at the grid scale and
the magnetic field quickly decay due to dissipative effects. For an evolution of volumet-
ric quantities such as root-mean-squared velocity and magnetic fields, see Sect. 2.2.3.
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Figure 2.1: Initial (solid lines) and final (dashed lines) radial profiles of entropy (upper
left), temperature (upper right), pressure (bottom left) and density (bottom right), of
a typical run of the spherical wedge setup. All quantities have been normalized by the
value at the bottom of the domain.
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Figure 2.1 shows the initial and final radial profiles of thermodynamical quantities in
a typical run.

The simulations are characterized by several input parameters. These are the Cori-
olis, Taylor, Reynolds, magnetic Reynolds, Prandtl, magnetic Prandtl, SGS Prandtl,
and Péclet number, which are defined as

Co =
2Ω0

urmsk1
, Ta =

[
2Ω0(0.3R)2

ν

]2
, Re =

urms

νk1
, (2.12)

ReM =
urms

ηk1
, Pr =

ν

χm

, PrM =
ν

η
, PrSGS =

ν

χm
SGS

, (2.13)

Pe =
urms

χm
SGSk1

, (2.14)

where urms is the rms velocity, k1 = 2π/0.3R is an estimate of the wavenumber of the
largest eddies, and χm

SGS = 0.4ν is the subgrid scale entropy diffusion in the middle of
the convective region.

2.2.2 Boundary conditions

Boundary conditions for u, A, ln ρ, and s have to be chosen for the radial and latitu-
dinal boundaries, but as the model considers the full azimuthal extent, the boundary
conditions there are periodic.

The radial velocity is anti-symmetric at the radial boundaries (vanishing ur) and is
symmetric at the latitudinal boundaries (vanishing first derivative). At the latitudinal
boundary, the first derivative of uθ is also set to vanish. All of the other boundary
conditions for the velocity field are chosen as stress-free. For the magnetic field, we set
the boundary at the bottom as a perfect conductor. The same applies to the latitudinal
boundaries, and the magnetic field at the surface is chosen as radial. Both the density
and entropy are chosen to have vanishing first derivative and so there are no outflows
and no heat flux through these boundaries.

2.2.3 Temporal evolution

The temporal evolution of some quantities of interest is shown in Fig. 2.2. The velocity
quickly reaches a saturated regime after about 3 years of simulated time. The magnetic
field is quickly dissipated as mentioned earlier, but after a quick exponential growth it
reaches a saturated regime after 10 years. The thermal energy takes about 15 years
to saturate. This is a typical characteristic of stellar convection simulations, namely,
convection is slow at transporting heat. This is the reason why we use the enhanced
luminosity method. When compared to the Sun, our input luminosity is about six
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Figure 2.2: Temporal evolution of the rms velocity (top left), rms magnetic field (top
right), thermal energy (bottom left), and gravitational quadrupole moment (bottom
right). Each one is characterized by its own growth timescale and steady state.



2.2. NUMERICAL SETUP 27

orders of magnitude larger. This makes the Kelvin-Helmholtz time scale, which quan-
tifies the time it takes to reach thermal saturation, corresponding to a factor of 106

times shorter.
The xx component of the gravitational quadrupole moment, a key quantity of

interest in this thesis, is shown in the lower right panel of Fig. 2.2. It reaches a steady
state plus some fluctuations on top at 15 years, which is the same time it takes to reach
thermal saturation. The effects that the enhanced luminosity method has on Qxx are
discussed in Paper I.

The temporal evolution of some quantities follow a much longer timescale. For ex-
ample, in one run we find that the axisymmetric magnetic field evolves over a timescale
of 80 − 100 years. In general, we need to run until we see at least one cycle of Qxx,
which closely follows the cycles we see in the magnetic energy (see Paper I and II).
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Chapter 3

Paper I

Contribution

In the following paper, the three simulations were run by me at the HLRN cluster in
Germany. To do so, I wrote a computing proposal and planned the simulations. All of
the data analysis was performed by me as well as the preparation of the manuscript.
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ABSTRACT

Context. The possibility to detect circumbinary planets and to study stellar magnetic fields through eclipsing time variations (ETVs)
in binary stars has sparked an increase of interest in this area of research.
Aims. We revisit the connection between stellar magnetic fields and the gravitational quadrupole moment Qxx and compare different
dynamo-generated ETV models with our simulations.
Methods. We present magnetohydrodynamical simulations of solar mass stars with rotation periods of 8.3, 1.2, and 0.8 days and
perform a detailed analysis of the magnetic and quadrupole moment using spherical harmonic decomposition.
Results. The extrema of Qxx are associated with changes in the magnetic field structure. This is evident in the simulation with a rotation
period of 1.2 days. Its magnetic field has a more complex behavior than in the other models, as the large-scale nonaxisymmetric field
dominates throughout the simulation and the axisymmetric component is predominantly hemispheric. This triggers variations in the
density field that follow the magnetic field asymmetry with respect to the equator, affecting the zz component of the inertia tensor,
and thus modulating Qxx. The magnetic fields of the two other runs are less variable in time and more symmetric with respect to the
equator, such that the variations in the density are weaker, and therefore only small variations in Qxx are seen.
Conclusions. If interpreted via the classical Applegate mechanism (tidal locking), the quadrupole moment variations obtained in the
current simulations are about two orders of magnitude below those deduced from observations of post-common-envelope binaries.
However, if no tidal locking is assumed, our results are compatible with the observed ETVs.

Key words. magnetohydrodynamics (MHD) – dynamo – convection – turbulence – stars: activity – binaries: eclipsing

1. Introduction

Post-common-envelope binaries (PCEBs) are commonly com-
posed of a white dwarf and a low-mass main-sequence star.
Observations of eclipses in these systems reveal deviations from
the calculated eclipsing times in approximately 90% of these
systems (Zorotovic & Schreiber 2013), with binary period vari-
ations on the order of 10−6−10−7 modulated over periods on the
order of decades.

The two main explanations, although not mutually exclu-
sive, are the planetary hypothesis (Brinkworth et al. 2006;
Völschow et al. 2014) and the Applegate mechanism (Applegate
1992; Lanza et al. 1998; Völschow et al. 2018; Lanza 2020). In
the planetary hypothesis, sufficiently massive planets can force
the barycenter of the binary to change its location as they orbit,
which would then explain the observed-minus-calculated (O−C)
diagram of the eclipsing times. On the other hand, the Applegate
mechanism explains the variations via the connection between
stellar magnetic fields and the gravitational quadrupole moment
Q. The idea behind this mechanism is that when Q increases,
the gravitational field also increases. For this to happen, there
must be a redistribution of angular momentum within the star.
When angular momentum is carried to the outer parts of the
convective zone (CZ), these layers rotate faster and, overall, the

star becomes more oblate, which is reflected by an increase in
the gravitational quadrupole moment. As there is no angular
momentum exchange between the orbit and the star, the orbital
velocity increases and the radius decreases in order to maintain
the angular momentum of the binary. Thus, the orbital period
shortens. In order for this mechanism to work, Applegate (1992)
invoked the presence of a cyclic subsurface magnetic field on the
order of 10 kG which is responsible for redistributing the internal
angular momentum of the star.

Confirming the planetary hypothesis requires a detection of
the proposed circumbinary bodies in PCEBs either by directly
imaging them, as attempted by Hardy et al. (2015), or via indi-
rect methods such as those employed by Vanderbosch et al.
(2017). However, these studies did not detect the proposed third
body, a brown dwarf, in V471 Tau, which is a PCEB with a Sun-
like main-sequence star and a white dwarf. It was the system
Paczynski (1976) used to develop the theory of PCEB formation.
Direct modeling of the Applegate mechanism is challenging,
and targeted numerical simulations that may help to under-
stand observations have been lacking. Navarrete et al. (2020)
presented the first self-consistent 3D magnetohydrodynamical
(MHD) simulations of stellar magneto-convection addressing
this problem. In that study, the time evolution of the gravita-
tional quadrupole moment and its correlation with the stellar
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magnetic field and rotation was studied using two simulations
of a solar mass star with three and twenty times solar rotation,
corresponding to rotation periods of 8.3 and 1.2 days. However,
the centrifugal force, a key ingredient in the original Applegate
mechanism, was not included in these simulations. Nevertheless,
there were still significant temporal variations of Q due to the
response of the stellar structure to the dynamo-generated mag-
netic field. Such variations were absent in hydrodynamical sim-
ulations, confirming their magnetic origin.

Recently, Lanza (2020) presented an alternative to the Apple-
gate mechanism by extending the earlier work of Applegate
(1989). He assumed the presence of a persistent nonaxisymmet-
ric magnetic field inside the CZ of the main-sequence star that
was modeled as a single flux tube lying at the equatorial plane.
The density is lower within the magnetic region in comparison
to the rest of the CZ, and the effects of the magnetic field were
modeled as two point masses lying on a line perpendicular to the
axis of the flux tube at the equator. By further assuming that the
star is not tidally locked with the primary, this nonaxisymmet-
ric contribution to the quadrupole moment exerts an additional
force onto the companion. Applegate (1989) and Lanza (2020)
identified two possible scenarios: the libration model, where the
orientation of the flux tube oscillates around a fixed position, and
the circulation model, where the axis of the flux tube changes in a
monotonic way. These models reduce the energetic requirements
by a factor of 102 to 103 in comparison to the Applegate mech-
anism, which is much more restrictive from an energetic point
of view (see e.g., Brinkworth et al. 2006; Völschow et al. 2016,
2018; Navarrete et al. 2018). Previous models generally require
luminosity variations on the order of 10%, whereas the improved
model of Lanza (2020) reduces the energy requirement by a fac-
tor of 102−103.

The transition to predominantly nonaxisymmetric large-
scale magnetic fields in solar-like stars for rapid rotation was
investigated by Viviani et al. (2018) with the same model as
that used by Navarrete et al. (2020). They found that the dom-
inant dynamo mode switches from axi- to nonaxisymmetric at
roughly three times the solar rotation rate. However, this study
also showed that the dominant dynamo mode depends on the
resolution of the simulations such that rapidly rotating models at
modest resolutions were again more axisymmetric. In the present
study we revisit both simulations presented in Navarrete et al.
(2020) with a more detailed analysis and include an additional
run to explore the importance of (non-) axisymmetric mag-
netic fields in the modulation of the gravitational quadrupole
moment. The main goal of this study is to investigate whether
dynamo-generated quadrupole moment variations can lead to the
observed period variations and to compare the classical Apple-
gate machanism with the one of Lanza (2020) by means of our
simulations. The dynamo solution is particularly sensitive to the
rotation rate, which is the parameter we focus on in the present
study.

In Sect. 2 we present the model and the methods that we use.
The results are presented in Sect. 3 and a more in-depth discus-
sion follows in Sect. 4. The conclusions are drawn in Sect. 5.

2. The model

The model employed here is the same as that described in
Käpylä et al. (2013) and Navarrete et al. (2020). We solve the
compressible MHD equations in a spherical shell configuration
resembling the solar convection zone with the Pencil Code1

1 https://github.com/pencil-code

(Pencil Code Collaboration 2021). The equations are

∂A
∂t

= u × B − µ0ηJ, (1)

D ln ρ
Dt

= −∇ · u, (2)

Du
Dt

= g − 2Ω0 × u +
1
ρ

(J × B − ∇p + ∇ · 2νρS) , (3)

T
Ds
Dt

=
1
ρ

[
−∇ ·

(
Frad + FSGS

)
+ µ0ηJ2

]
+ 2νS2, (4)

where A is the magnetic vector potential, u is the velocity field,
B = ∇ × A is the magnetic field, and J = µ−1

0 ∇ × B is the elec-
tric current density where µ0 is the vacuum permeability. Also,
D/Dt = ∂/∂t+u ·∇ is the convective derivative, and ρ is the den-
sity. Frad = −K∇T is the radiative flux and FSGS = −χSGSρT∇s
is the subgrid-scale (SGS) flux. The former accounts for the
flux coming from the radiative core to the CZ whereas the lat-
ter represents the unresolved turbulent transport of heat. K is the
radiative heat conductivity and χSGS is the turbulent entropy dif-
fusivity. s is the specific entropy, p is the pressure, and T the
temperature. We assume an ideal gas law, that is,

p = (γ − 1)ρe, (5)

where γ = cp/cV = 5/3 is the ratio of specific heats at constant
pressure and volume, and e = cVT is the specific internal energy.
The traceless rate-of-strain tensor, S, is defined as

Si j =
1
2

(ui; j + u j;i) − 1
3
δi j∇ · u, (6)

where semicolons denote covariant differentiation. g ∝ r̂/r2 is
the gravitational acceleration. The rotation vector is given by
Ω0 = (cos θ,− sin θ, 0)Ω0.

2.1. Initial and boundary conditions

The thermodynamic initial state is isentropic. The density profile
follows from hydrostatic equilibrium. The simulations are char-
acterized by a number of input parameters. These are the energy
flux at the bottom, the angular velocity, viscosity, magnetic diffu-
sivity, and the radiative and turbulent heat conductivities and the
radial profiles of the latter two. We keep all of them fixed except
for the angular velocity (see Sect. 2.3). Velocity and magnetic
fields are initialized with small-scale low-amplitude Gaussian
noise perturbations. These have amplitudes of 0.25 m s−1 and
4 G, respectively.

The computational domain is given by 0.7R ≤ r ≤ R,
θ0 ≤ θ ≤ π − θ0, 0 ≤ φ ≤ 2π, for the radial, latitudinal, and lon-
gitudinal coordinates, respectively, with θ0 = π/12. Both radial
boundaries are impenetrable and stress-free for the flow. The bot-
tom boundary is a perfect conductor and the magnetic field at
the surface is radial. The upper boundary follows a blackbody
condition. The latitudinal boundaries are stress-free and perfect
conductors. The derivatives of the density and entropy are zero
on both latitudinal boundaries. This implies that there is no heat
flux through these surfaces.

The modeled star is assumed to have one solar mass with
a convective envelope covering 30% of the stellar radius. The
simulations labeled as Run A and Run B are run3x and run20x
presented in Navarrete et al. (2020). The main difference is that
a significantly longer (over 160 instead of 85 years) time series
is available for Run B. Furthermore, we perform a more in-depth
analysis of both simulations and include a third simulation,
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labeled as Run C, to ascertain the significance of the non-
axissymmetric magnetic fields for the gravitational quadrupole
moment (see Sect. 3). Runs A and B have a resolution of
128×256×512 in the radial, latitudinal, and azimuthal directions
respectively, and Run C has a resolution of 128 × 288 × 512.

2.2. Spherical harmonic decomposition

To investigate the proposed connection between the nonaxisym-
metric component of the magnetic field and the fluid density,
we perform the same decomposition as in Viviani et al. (2018)
for the radial magnetic field and density field at various radial
depths (see Figs. B.1–B.4 for snapshots of the first and second
nonaxisymmetric modes near the surface of the three runs). A
function f = f (θ, φ) can be written as

f (θ, φ) =

lmax∑

l=0

l∑

m=−l

f̃ m
l (θ, φ)Ym

l (θ, φ), (7)

where

f̃ m
l =

∫ 2π

0

∫ π−θ0

θ0

f (θ, φ) Ym∗
l sin θ dθ dφ. (8)

For the radial magnetic field Br(θ, φ), we impose the condition
(see Krause & Rädler 1980)

B−m
r,l = (−1)mBm∗

r,l , (9)

and because the same property applies to the spherical harmonics
Ym

l , we have

Br(θ, φ) =

lmax∑

l=1

B0
l,rY

0
l + 2 Re


lmax∑

l=1

l∑

m=1

Bm
l,rY

r
l

 . (10)

The term containing l = 0 has been dropped because it violates
solenoidality of the magnetic field.

2.3. Simulation parameters

Each run is characterized by the Taylor, Coriolis, fluid and mag-
netic Reynolds numbers, and fluid, SGS and magnetic Prandtl
numbers. These are defined as

Ta =

[
2Ω0(0.3R)2

ν

]2

, Co =
2Ω0

urmsk1
, (11)

Co(ω) =
2Ω0

ωrms
, Re =

urms

νk1
, ReM =

urms

ηk1
, (12)

Pr =
ν

χm
, PrM =

ν

η
, PrSGS =

ν

χm
SGS

, (13)

where ν is the viscosity, urms the root-mean-square velocity,
Co(ω) is an alternative definition of the Coriolis number based
on the rms vorticity, k1 = 2π/0.3R an estimate of the wavenum-
ber of the largest convective eddies, η the magnetic diffusivity,
and χm

SGS is the SGS entropy diffusion at r = 0.85 R�.

3. Results

We present the results of three runs, labeled as A, B, and C, with
rotation periods of 8.3, 1.2 days, and 0.8 days, corresponding to
3, 20, and 30 times the solar rotation rate. We keep all other sys-
tem parameters fixed. We summarize input and diagnostic quan-
tities that characterize each simulation in Table 1.

3.1. Magnetic activity and quadrupole moment evolution

We begin our analysis by comparing the time-dependent diag-
nostics of magnetic fields and the gravitational quadrupole
moment. In Fig. 1 we show the azimuthally averaged radial mag-
netic field (Br) near the surface of the stars at r/R = 0.98 (color
contours), along with the evolution of the xx component of the
gravitational quadrupole moment Q (black lines)2. The latter is
defined as

Qi j = Ii j − 1
3
δi j TrI, (14)

where

Ii j =

∫
ρ(x)xix jdV (15)

is the i j component of the inertia tensor expressed in Carte-
sian coordinates and ρ(x) is the density. All of the simulations
show low-amplitude variations of Qxx on a timescale of roughly
0.2 years. These are attributed to sound waves and have a purely
hydrodynamic origin (Navarrete et al. 2020). Hence such sig-
nals are left out of the data in this study by working with low-
cadence snapshots and interpolating the data with a cubic inter-
polator. In Run A, the variations of Qxx are small, on the order
of 1039−2×1039 kg m2 and by visual inspection we estimate that
they have a similar period (roughly 6−8 years) as the axisym-
metric part of the magnetic field. Run B shows a larger ampli-
tude long-term variation of Qxx that repeats at least once in the
data. Roughly half of the data for Run B, up to about 80 years,
was presented in Navarrete et al. (2020). The steady decrease of
Qxx between t ≈ 30 to t ≈ 85 years was interpreted as a tran-
sient due to insufficient thermodynamic and magnetic saturation.
However, with the longer time series we see that the quadrupole
moment is modulated on a timescale of about 80 years. It also
appears that Qxx is roughly correlated to Br: low values of the
quadrupole moment approximately coincide with times when Br
is weak on both hemispheres (t = 70−85 and t = 140−160 years,
respectively). The cycle is perhaps starting again at t = 160 as
the magnetic activity appears to be resuming with a correspond-
ing change in Qxx. The largest variation of Qxx occurs between
t = 100−155 years, with an amplitude of 1040 kg m2. It corre-
sponds to the largest variation of Qxx of the three runs. Over-
all, the gravitational quadrupole moment appears to follow the
radial magnetic field strength near the surface of the star inde-
pendently of the hemispheric asymmetry. In contrast to the other
two runs, diagnostics for Qxx in Run C are available starting at
t = 0 yr. The quadrupole moment in this run remains more or
less constant and only starts to decrease after the magnetic field
approaches the saturated regime at t ≈ 10 yr. The magnetic field
back-reacts and re-adjusts the thermodynamic quantities, such as
density, after which Qxx settles to a state with smaller variations
around a mean value of 1.70 × 1040 kg m2. These variations are
about half of those in Run A. As seen in Fig. 1, the axisymmet-
ric part of Br is similar in Runs A and C, but clearly different
in Run B. In the first two, Br migrates toward higher latitudes
in a regular fashion and in the latter the dynamo is more hemi-
spheric such that activity alternates between both hemispheres
seemingly every 50 to 60 years. Overall, cycles of Qxx in Runs A
and C follow more closely the polarity reversals of the magnetic

2 We note that the values of Qxx for Runs A and B differ from
Navarrete et al. (2020). This is because in that study, Izz was erroneously
calculated (see Navarrete et al. 2021). However, this difference does not
change their conclusions.
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Table 1. Summary of simulation parameters.

Run Ω/Ω� Prot (days) Ta Co Co(ω) Ma Re ReM Pr PrM PrSGS ∆t (yr)

A 3 8.3 5.68 × 107 2.8 1.28 6.46 × 10−2 66.6 66.6 58 1.0 2.5 39
B 20 1.2 2.52 × 109 62.4 12.4 3.29 × 10−2 20.3 20.3 58 1.0 2.5 138
C 30 0.8 5.68 × 109 139.1 22.4 2.06 × 10−2 13.6 13.6 58 1.0 2.5 145

Notes. Ω/Ω� is the rotation rate in units of the mean solar angular velocity. Co and Co(ω) are the Coriolis numbers, Ma is the volume and time
averaged Mach number, Re and ReM are the fluid and magnetic Reynolds numbers. Pr, PrM, and PrSGS are the fluid, magnetic, and subgrid scale
Prandtl numbers, respectively. ∆t is the total simulated time.

Fig. 1. Azimuthally averaged radial magnetic field (Br) near the surface
of the domain at r = 0.98R as a function of latitude and time for Run A
(top, Prot = 8.3 d), Run B (middle, Prot = 1.2 d), and Run C (bottom,
Prot = 0.8 d). Qxx for each run is shown from the time periods where
this diagnostic is available. The color scale of Br in each panel has been
clipped at ±8 kG.

field. There are also such cycles in Run B. However, they are hid-
den by the longer cycle that follows the migration of the hemi-
spheric component of the magnetic field.

In Fig. 2 we show instantaneous snapshots of the radial mag-
netic field near the surface of the three runs at the times of inter-
est, that is, maxima (minima) of Qxx at top (bottom) row. These
correspond to t = 62, 74 yr for Run A, t = 110, 155 yr for Run B,
t = 64, 98 yr for Run C. In Run A, a predominantly m = 1
large-scale mode is seen at high latitudes but this is subdomi-
nant in comparison to the axisymmetric (m = 0) component (see
Appendix B). In Run B there is a dominant m = 1 mode on
the northern hemisphere, while a predominantly m = 2 mode
dominates on the southern hemisphere at the maximum. At the
minimum of Qxx (middle panel in the lower row), Br is symmet-
ric with respect to the equator with a dominating m = 1 mode on
both hemispheres. These large-scale structures cover the entire
hemispheres from the equator to the latitudinal boundaries. This
is qualitatively similar to Run H of Viviani et al. (2018) and
Run C of Cole et al. (2014). As suggested by Fig. 1, a similar
pattern repeats for Run B at t ≈ 36 yr and t ≈ 75 yr but in oppo-
site hemispheres. Run C is similar to Run B in the sense that
the large-scale nonaxisymmetric structures are promiment over
a large region, but the m = 1 and m = 2 modes appear to be
similar in strength. These modes appear to alternate between the

hemispheres but the variations in the gravitational quadrupole
moment are weak in this case in comparison to Run B. However,
the low-order nonaxisymmetric fields in Run C are of the same
order of magnitude as the m = 0 mode whereas in Run B the
m = 1 mode is clearly stronger than the axisymmetric fields. A
possible explanation of the smaller cycles of Qxx found in Run C
can be attributed to the dynamo solution. Slow rotators tend to
produce dominant m = 0 modes. Faster rotators typically show
a predominant m = 1 mode although sometimes the m = 0 com-
ponent can become dominant again at very high rotation rates if
the convection is only weakly supercritical (Viviani et al. 2018).
It is plausible that this is happening in our Run C. These results
suggest that a dominant nonaxisymmetric magnetic field with
hemispheric asymmetry is associated with the strongest varia-
tions of Q.

3.2. Density variations and structural changes due to
magnetic fields

The variations of the gravitational quadrupole moment are
related to changes in the mass distribution within the star as can
be seen from Eqs. (14) and (15). Snapshots of the density from
all three runs near the surface of the star are shown in Fig. 3.
As before, the shown times correspond to maxima (top row) and
minima (bottom row) of Qxx. Snapshots of the m = 1 and m = 2
modes of density are show in the Appendix B.

In Run A there is an overall change in density between the
two times. At t = 62 yr (top panel), when the gravitational
quadrupole moment is larger, there are no noticeable large-scale
nonaxisymmetric features, whereas when Qxx is at a minimum
(t = 74 yr), weak nonaxisymmetric features appear. This can be
seen from the two blue stripes around θ = ±30◦ where the overall
density decreases with patches of increased (decreased) density
around φ = 270◦ (φ = 60◦). Closer to the poles and near the
equator the average density increases but no clear nonaxisym-
metric features are present. In Run B we identify a few character-
istics. First, when the quadrupole moment is larger at t = 110 yr,
there is a clear asymmetry with respect to the equator, such that
the density is larger close to the north pole. As Qxx decreases, the
asymmetry disappears, and nonaxisymmetric structures become
visible at 230◦ < φ < 340◦ and θ = ±40◦. As the magnetic field
changes its configuration from one that is dominated by an m = 1
mode only at the northern hemisphere to predominantly m = 1
on both hemispheres (see Fig. 2), the density field reacts and also
changes to a nonaxisymmetric configuration with a correspond-
ing change in the gravitational quadrupole moment. In contrast,
large-scale density variations in Run C between the two times
are clearly weaker. The density field at the surface remains sym-
metric with respect to the equator as well as in the azimuthal
direction.
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Fig. 2. Instantaneous radial magnetic field at r = 0.98R for each run at two times. Top (bottom) row: corresponds to a maxima (minima) of Qxx.

To investigate the importance of equatorial asymmetry on
the gravitational quadrupole moment, we define the equatorially
asymmetric part of density as

ρasym(r, θ, φ) =
ρ(r, θ, φ) − ρ(r,−θ, φ)

2
(16)

and compute the root mean square according to

ρs,rms =
(
〈ρ2

asym〉θφ
)1/2

. (17)

The time evolution of ρs,rms, together with Qxx, is shown in the
top row of Fig. 4. In Run A (left panel) there is an anticorre-
lation between the two. However, in the case of Run B (mid-
dle panel) there is a positive correlation between the two but
with an apparent time delay. The rms value of ρs,rms lags behind
Qxx by roughly 10 yr for example near the extrema between 80
and 100 yr. In Run C both the variations of the density and Qxx
are weak. It is also less clear whether a correlation between the
two exists. The variations of ρs,rms are between 6 to 10 times
larger in Run B than in Runs A and C, indicating that the for-
mer is in a different dynamo regime where the magnetic field
is more strongly coupled to the density field leading to stronger
quadrupole moment variations.

The differences in density with respect to the equator should
translate in variations of the moment of inertia aligned with the
rotational axis of the star, namely, Izz. The lower row of Fig. 4
shows the evolution of the three components of the inertia tensor
that contribute to Qxx, which is computed from

Qxx = Ixx − 1
3

(
Ixx + Iyy + Izz

)
. (18)

The vertical component Izz is always smaller than the two other
components. In Runs A and C all components of Ii j have com-
parable variations, whereas in Run B (middle panel) the vari-
ations of Izz are significantly larger. This coincides with larger
variations of ρm=1,2 in this run. In Run B a maximum of Qxx
coincides with a minimum of Izz. This corresponds to the star
rotating slightly faster at maxima (minima) of Qxx (Izz).

To see such differences, we compute the azimuthally aver-
aged rotation profiles

Ω(r, θ) = Ω0 +
uφ(r, θ)
r sin θ

(19)

for all runs, average them over time, and show the deviations
from such averages during the two times of interest in Fig. 5.
There are minor differences in the rotation profiles of Runs A and
B between maxima and minima of Qxx, while almost no differ-
ences are observed in Run C. Runs A and B have a larger differ-
ence between angular velocities of polar and equatorial regions
at a minima of Qxx (lower panels), but an accelerated northern
pole is seen in the top panel of Run B. A large difference in dif-
ferential rotation implies that the star would deform and adopt
an ellipsoidal shape as a consequence of the centrifugal force,
adding a further contribution to the quadrupole moment. How-
ever, as we have fixed boundary conditions, we cannot model
such a reaction. All of our runs show a solar-like rotation profile
with equatorial regions rotating faster than the poles as a con-
sequence of Coriolis numbers above the transition region from
antisolar to solar-like differential rotation. This transition occurs
around Co & 1 (see e.g., Gastine et al. 2014; Käpylä et al. 2014)
whereas the rotation profile approaches solid body rotation for
rapid rotation (e.g., Viviani et al. 2018; Käpylä 2021).

The energies of the axisymmetric and first two nonaxisym-
metric modes of Br are shown in the lower row of Fig. 6 and a
scatter plot between Bm=i

r and Qxx is shown in the upper row.
In Run A (first column) the axisymmetric m = 0 is domi-
nant, which seems to be anticorrelated with Qxx. There are short
episodes where the m = 0 and m = 1 modes have comparable
energies. The latter is correlated to Qxx. In Run A, the m = 2
mode is always subdominant. From the scatter plot we see that
no noticeable increase in magnetic energy is needed to reach a
larger quadrupole moment. The situation in Run B is different
as there is a persistent m = 1 mode that dominates throughout
the simulation with minor fluctuations in its energy. The axisym-
metric mode seems to be correlated to Qxx. This is because, as
explained in the previous section, it produces equatorially asym-
metric density fluctuations that modulate the moment of inertia
aligned with the rotation axis of the star. The second nonaxisym-
metric mode (m = 2) is as strong as the axisymmetric mode and
also correlates with Qxx. Larger quadrupole moment values are
related to higher energies in the m = 0 and m = 2 modes. In
Run C all modes have similar energy levels, with m = 0 being
slightly stronger than the other two. The scatter plot reveals
that there is no relation between the magnetic energy and the
quadrupole moment.

To quantify the relation between magnetic field modes and
quadrupole moment, we perform a correlation analysis. We use
the Pearson correlation coefficient to study the linear correlation
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Fig. 3. Instantaneous snapshots of density at r = 0.98R for each run.

Fig. 4. Top row: Qxx (black) and rms value of the equatorically asymmetric part of density ρs,rms (yellow) according to Eq. (17) as functions of
time. Bottom row: time evolution of the diagonal components of the inertia tensor. First, second, and third columns correspond respectively to
runs A, B, and C.

between the density and magnetic fields. The coefficient between
a paired data (x, y) of n pairs is defined as

x|y =

∑n
i=1(xi − x̄)(yi − ȳ)

√∑n
i=1(xi − x̄)2

√∑n
i=1(yi − ȳ)2

, (20)

where x̄ and ȳ are the sample mean and −1 ≤ x|y ≤ 1. A value of
x|y = 1 (x|y = −1) implies perfect (anti-)correlation.

The correlations between the gravitational quadrupole
moment and magnetic energy are calculated using the data pre-
sented in Fig. 6 and in this case the barred quantities in Eq. (20)
represent time averages of Qxx and Emag, whereas xi and yi are
the time-dependent quantities of Qxx (calculated over the whole
volume) and Emag (calculated over the surface layer). This is
shown in the second, third, and fourth columns of Table 2. In
general, we find correlations higher than 0.5 for the m = 1 mode
in Run A and for the m = 1 and m = 2 modes in B.

Next, we compute the correlation coefficients between the
mean surface density ρsurf and quadrupole moment, and ρsurf and
the magnetic energies. These are shown in the last four columns
of Table 2. In each run we find that the values of ρsurf |Qxx are
relatively large. This is due to the direct relation between the

density distribution and Qxx. The outer regions of the stars are
particularly important due to the x2 dependence of the inertia
tensor. As noted earlier, the dynamo solution in Run B alternates
between the two hemispheres and so does the density field. As
ρsurf increases, so does Izz and thus Qxx decreases (see Eq. (18)).
Overall, we see the clearest correlations in Run B.

The magnetic energy increases with the rotation rate as
expected, but this does not suffice to explain the variations in
the gravitational quadrupole moment. Overall, Run B has the
largest magnetic energy and Run A and C have comparable ener-
gies (see Table 3). However, Run C has smaller fluctuations in
Qxx which can be attributed to the fact that the variations of the
magnetic field do not result in significant density perturbations
relevant for the quadrupole moment.

3.3. Azimuthal dynamo waves

Azimuthal dynamo waves (ADWs) are magnetic structures that
migrate in the azimuthal direction. ADWs can be prograde or
retrograde and their propagation is unaffected by the differential
rotation of the star (see e.g., Krause & Rädler 1980; Cole et al.
2014; Viviani et al. 2018). The periods of ADWs are usually on
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Fig. 5. Deviations from the time-averaged mean angular velocity (Ω − 〈Ω〉t) normalized by the angular velocity of the frame of reference (Ω0) for
each run from the times indicated in the legends.

Fig. 6. Quadrupole moment, density, and moments of inertia. Top row: scatter plot of the magnetic field energy and the quadrupole moment.
Bottom row: time evolution of the gravitational quadrupole moment (black line) together with the magnetic energy contained in the axisymmetric
mode (m = 0, yellow), as well as the first (m = 1, red) and second (m = 2, blue) non-axisymmetric modes. Run A, Run B, and Run C are shown
in the left, middle, and right columns respectively.

Table 2. Correlation coefficients between the time series of the quadrupole moment and magnetic energy, mean surface density and quadrupole
moment, and mean surface density and magnetic energy.

Run Qxx|Em=0
mag Qxx|Em=1

mag Qxx|Em=2
mag ρsurf |Qxx ρsurf |Em=0

mag ρsurf |Em=1
mag ρsurf |Em=2

mag

A −0.41 0.54 0.13 −0.67 0.20 −0.18 −0.07
B 0.38 −0.64 0.66 −0.94 −0.40 −0.53 −0.57
C 0.26 0.22 −0.34 −0.40 0.25 0.11 −0.11
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Table 3. Summary of some quantities of interest corresponding to data
shown in Fig. 1.

Run Qmax
xx Qmin

xx B
max
r B

min
r Emax

mag,total Emin
mag,total

A 2.25 1.94 8.65 −9.70 2.98 1.26
B 1.38 0.315 24.7 −19.7 3.98 2.28
C 1.80 1.54 16.8 −13.8 2.32 1.30

Notes. Qxx is in units of 1040 kg m2 and Br in units of kG. Emag,total is the
volume-averaged magnetic energy in units of 105 J m−3.

the order of a few years for slow rotators and of tens of years
for faster rotators (Viviani et al. 2018). This is comparable to the
period of the quadrupole moment variations of the present study.
We therefore briefly study ADWs. We take m = 1 and m = 2
modes of the radial magnetic field near the surface of each run
at latitude +60◦ and show the evolution of the field in Fig. 7 and
its phase in Fig. 8.

Run A has an m = 1 ADW that migrates in the retrograde
direction with a period of ∼8 years in particular after around t =
60 yr. Meanwhile, the m = 2 ADW has a similar amplitude with
no clear periodicity. In Run B there is a clear m = 1 wave which
migrates in the prograde direction. However, between 115 and
145 yr the migratory process is stalled for nearly thirty years. The
ADW in Run B has a period of roughly ∼80−100 years. There is
an m = 2 ADW but it is only noticeable during the first ∼40 years
of the simulation. In Run C there are two equally strong ADWs.
Both migrate in a prograde way with the difference that the period
of the m = 1 wave is shorter than the one of m = 2.

The evolution of the phase of the m = 1 mode correlates
well with the evolution of the gravitational quadrupole moment
in Runs A and B, whereas the second nonaxisymmetric mode is
noisier and does not correlate with Qxx. The phase of Bm=1

r does
not show any particular evolution in Run C, while for m = 2
the phase is constantly decreasing which is uncorrelated with
Qxx. The cases of Runs A and B point to an underlying relation
between a nonaxisymmetric dynamo mode and the gravitational
quadrupole moment evolution.

4. Discussion and implications

The Applegate mechanism (Applegate 1992) is based on the
redistribution of angular momentum throughout the star due to
the centrifugal force. More recently, Lanza (2020) presented a
new mechanism where the centrifugal force is no longer needed.
In this work the quadrupole moment is constant in the frame of
reference of the magnetically active star due to a time-invariant
nonaxisymmetric magnetic field modeled by a single flux tube.
The companion star experiences a time-varying nonaxisymmet-
ric gravitational quadrupole moment due to the assumption that
the active star is not tidally locked.

In our simulations we compute the gravitational quadrupole
moment in the rotating frame of reference of the star. The sim-
ulations thus provide a test whether magnetic activity can sig-
nificantly influence stellar structure. We stress that the physi-
cal process occurring here is not the classical Applegate mecha-
nism which is based on the centrifugal force, and which is not
included in our simulations. The results described in Sect. 3
show that the connection between magnetic fields and gravi-
tational quadrupole moment is quite complex. It is due to the
asymmetry of the magnetic field with respect to the equator
rather than due to nonaxisymmetry, which is particularly notice-

able in Run B. The three simulations we present differ only in the
rotation rate of the star and yet they present different scenarios
of quadrupole moment variations.

4.1. Behavior of the dynamo itself

Simulations of stellar magneto-convection have shown that
dynamo solutions depend mainly on the rotation rate of the star.
For example, Viviani et al. (2018) studied the transition from
axi- to nonaxisymmetric magnetic fields as a function of rota-
tion and found that the transition to nonaxisymmetry occurs for
Ω & 1.8Ω�. However, Viviani et al. (2018) found that at suffi-
ciently rapid rotation, the magnetic field returns to a predomi-
nantly axisymmetric configuration if the resolution is not high
enough. A similar sequence is also observed in the simulations
described in this paper. Run A is at a regime where the axisym-
metric mode is slightly stronger than the first nonaxisymmetric
mode. The rotation rate in Run B is 6.7 times greater than in
Run A and there the m = 1 mode dominates, while m = 0 and
m = 2 are comparable. In Run C, with 10 times faster rotation
than in Run A, the dominant mode is again m = 0. If the resolu-
tion was to be increased, corresponding to higher Reynolds num-
bers, it is possible that a nonaxisymmetric solution with stronger
quadrupole moment variations would be recovered.

Besides resolution effects, it is possible that Run B is in
a parameter regime where hemispherical dynamos are pre-
ferred; see, for example, Grote & Busse (2000), Busse (2002),
and Käpylä et al. (2010). Brown et al. (2020) reported a cyclic
single-hemisphere dynamo in a simulation of a fully convective
star, and mentioned that such dynamos are present in other simu-
lations with similar parameters. Käpylä (2021) presented a set of
simulations of fully convective stars where in a single run short
periods of hemispheric dynamo action were seen, but even in this
case the dynamo is predominantly present on both hemispheres.
It is important to explore this parameter regime in more detail
as it can potentially help to address the question of whether the
ETVs in PCEBs have a magnetic origin. If this is the main ingre-
dient, however, it would imply that PCEBs that show variations
in the O−C diagram are in this particular regime.

4.2. Classical Applegate mechanism

If we first consider the case where the eclipsing time variation
is due to a time-dependent quadrupole moment (classical Apple-
gate mechanism), the expected period variation due to a change
of the gravitational quadrupole moment can be computed from
(Applegate 1992)

∆P
P

= −9
∆Qxx

Ma2 = 2π
O−C
Pmod

, (21)

where ∆P/P is the amplitude of the orbital period modulation,
M the stellar mass, and a the binary separation, O−C is the
amplitude of the observed-minus-calculated diagram and Pmod
its modulation period. We choose V471 Tau as a reference sys-
tem with which we compare our results, The reason for this is
that its main-sequence star has a mass of M = 0.93 M� and
is thus structurally similar to the Sun and the current simula-
tions. It is also rotating at a speed that is computationally feasi-
ble to achieve, whereas in many other systems the main-seuqnce
stars have lower masses and rotation rates up to a hundred times
the one of the Sun. Our results are only applicate to PCEBs
where the magnetically active star has a Sun-like structure. This
is because our model is constructed to resemble such stars. We
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Fig. 7. Migration of the m = 1 (top row) and m = 2 (bottom row) modes of the radial magnetic field at the surface along the longitudinal direction.
for Run A (left), Run B (middle), and Run C (right).

Fig. 8. Time evolution of the phase of the m = 1 (top row) and m = 2 modes (bottom row) of radial magnetic field at φ = 180◦ for Run A (left
panels), Run B (middle panels), and Run C (right panels) in yellow. The black line corresponds to Qxx.

nevertheless note that this comparison is very approximate, as
for example the Reynolds numbers of a real stellar system can-
not be numerically reproduced.

For V471 Tau, the orbital separation is a = 3.3 R�
and there are two contributions to the orbital period modula-
tion that individually result in two orbital period modulations
(Marchioni et al. 2018). These are

(∆P/P)1 = 8.5 × 10−7, (22)

(∆P/P)2 = 4.5 × 10−7. (23)

The corresponding quadrupole moment variations are

∆Qxx,1 = 9.4 × 1041 kg m2, (24)

∆Qxx,2 = 4.5 × 1041 kg m2. (25)

For the purpose of comparing with the quadrupole moment
variations in simulations, we recall here that density fluctuations
and the quadrupole moment itself need to be scaled as explained
in Navarrete et al. (2020). They scale as

∆ρ ∼ L2/3
r , (26)

where Lr is the ratio between the luminosities in the simulation
and the target star, that is,

Lr =
Lsim

L? , (27)

so the quadrupole moment is accordingly scaled as

Q? =
1

L2/3
r

Qsim. (28)

Details of the scaling are presented in Appendix A.
In Run B the amplitude of the variation is ∆Qxx = 1.2 ×

1040 kg m2 corresponding to ∆P/P = 1 × 10−8. By adopting a
modulation period of Pmod = 80 yr, which corresponds to the
period of Qxx, we have an observed minus calculated value of
O−C = 4.7 s. This O−C amplitude is still four and thirty times
smaller than the values reported by Marchioni et al. (2018).
There are a few possible reasons behind this mismatch. First,
we are not including the centrifugal force and so the quadrupole
moment fluctuations are produced by the evolution of the mag-
netic field and the resulting redistribution of the density rather
than by the deformation of the star like in the Applegate mech-
anism. Secondly, the stars we are modeling have convective
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envelopes of 30% of the radius, whereas the main-sequence star
in the target system V471 Tau has a mass of 0.93 M� and there-
fore a slightly more extended CZ. In a deeper CZ it is possible
to perturb the density and the angular momentum distribution in
a larger portion of the star (Völschow et al. 2018), although we
expect this contribution to be very small. Lastly, we are impos-
ing sphericity which is especially important at the surface of the
star. Boundary conditions that dynamically react to the physical
quantities inside of the star may allow larger variations of the
quadrupole moment, especially if the star change its shape and
size.

4.3. Models without tidal locking

In the previous calculation of ∆P/P following Applegate (1992),
we made the implicit assumption of tidal locking and that the
stellar rotation axis is perpendicular to the plane of the orbital
motion. In this scenario, the x̂ axis points towards the com-
panion and thus it rotates together with the stellar spin. Under
those conditions, only the Qxx component of the gravitational
quadrupole moment contributes to the modulation of the binary
period (Applegate 1992). In contrast, in the scenario put forward
by Applegate (1989) and Lanza (2020), the star is not yet tidally
locked, and its companion effectively experiences a time-varying
quadrupole moment due to the relative rotation of the magneti-
cally active star. This holds even if the quadrupole moment in the
corotating frame of the star was constant. This implies then that
different components of Qi j contribute. In the simplified Lanza
(2020) scenario, the magnetic field is modeled as a permanent
single flux tube that lies at the equator and produces a nonax-
isymmetric density distribution and thus, a permanent nonax-
isymmetric gravitational quadrupole moment.

While there is a strong nonaxisymmetric magnetic field in
our Run B, it is stronger at mid- and at high latitudes rather than
at the equator. In our simulations, the choice of the x̂ and ŷ axes
in the equatorial plane along which the moments of inertia are
calculated is arbitrary, that is, as the companion star is not being
modeled. Once fixed, we perform rotations about the ẑ axis in
steps of π/16 up to π, and then we calculate the two moments of
inertia about the rotated axes. These axes would correspond to ŝ
and ŝ′ of Lanza (2020). The former is the rotated x̂ axis, and the
latter is the rotated ŷ axis. In Lanza (2020) ŝ is chosen to be along
the axis of symmetry of the magnetic flux tube, which is the only
magnetic structure in the CZ of the magnetically active star. In
our simulations the rotation is not unique as there is no single
radial magnetic field structure that extends from the bottom to
the surface of the CZ in our simulations that would otherwise
allow us to unequivocally choose ŝ. However, a clear radial mag-
netic structure at the equator is seen at t = 155 yr (see Fig. 9), but
magnetic fields with different structure and strength dominate
at different latitudes. In this configuration, the nonaxisymmetric
quadrupole moment is defined as T = Is − I′s, where Is and I′s are
the moments of inertia about the ŝ and ŝ′ axes. The moment of
inertia of the active star about the spin axis is Ip = Ixx + Iyy. The
order of magnitude of the period variations can then be estimated
as (Eq. (2) of Lanza 2020)

T
Ip
≈ 4

3

(
MT

mS

) (
ma2

Ip

) (
P

Pmod

) ∣∣∣∣∣
∆P
P

∣∣∣∣∣ , (29)

where MT is the total mass of the binary, mS is the mass of
the companion, m is the reduced mass, P is the orbital period,
and Pmod is the modulation period. We take the density fields
of Run B at t = 110 yr and t = 155 yr and compute the two

Fig. 9. Radial magnetic field of Run B at the equator at t = 155 yr. The
x̂ and ŷ axes lie at φ = 0◦ and φ = 90◦, respectively. The ŝ and ŝ′ axes
are obtained by performing clockwise rotations.

Fig. 10. Absolute value of ∆P/P as a function of separation angle α
between x̂ and ŝ for t = 110 yr (black dots) and t = 155 yr (yellow
triangles).

quadrupole moments T and Ip. By using Eq. (29) and the param-
eters of V471 Tau (see e.g., Hardy et al. 2015; Vaccaro et al.
2015) we can obtain an order of magnitude estimate of ∆P/P.
Figure 10 shows the absolute value of the amplitude of the orbital
period modulation as a function of separation angle α between
x̂ and ŝ for t = 110 yr (black dots) and t = 155 yr (yellow trian-
gles). |∆P/P| ranges between 1.5 × 10−7 and 1.5 × 10−6, which
contains the two contributions to the observed variations as well
as their sum (Marchioni et al. 2018). From our simulations we
get a value of Ip that is of the same order of magnitude as in
Lanza (2020), while T is about one order of magnitude larger
here. It is important to note that we have obtained T based on
a detailed 3D magneto-hydrodynamical simulation, while Lanza
(2020) simply calculated which T would be required to explain
the observed ETVs.

In general, the gravitational potential felt by the companion
can be written as (Applegate 1992; Lanza 2020)

Φ = −GM
r
− 3G

2r3

∑

i, j

Qi jxix j

r2 , (30)

where G is the gravitational constant, M is the mass of the active
star, r is the distance between the center of the active star and the
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companion, Qi j is the quadrupole moment tensor, and x refers to
Cartesian coordinates. Writing out the summation explicitly and
expressing xi and x j in a spherical coordinate system (r, θ′, φ′)
with its origin coinciding with the center of the star, we arrive at

Φ = − GM
r
− 3G

2r3

{
Qxx sin2 θ′ cos2 φ′

+ Qyy sin2 θ′ sin2 φ′

+ Qzz cos2 θ′

+ 2
(
Qxy sin2 θ′ cos φ′ sin φ′

+ Qxz sin θ′ cos θ′ cos φ′

+ Qyz sin θ′ cos θ′ sin φ′
)}
. (31)

The case of θ′ = π/2 and φ′ = 0 is analogous to the assump-
tions that the rotation axis is perpendicular to the plane of the
orbit and that the orbital motion is tidally locked, respectively.
By assuming only the former, Eq. (31) is reduced to

Φ = − GM
r
− 3G

2r3

(
Qxx cos2 φ′

+ Qyy sin2 φ′ + 2Qxy cos φ′ sin φ′
)
. (32)

Here the effects of deviations from tidal locking can be mod-
eled by making φ′ time-dependent. There are two alternatives,
namely

φ′1 = α cos(ωt), (33)
φ′2 = ωt. (34)

In the former case, the companion is seen in the frame of refer-
ence of the rotating star as oscillating in the orbital plane with
amplitude α and angular velocity ω. In that case, φ′1 corresponds
to the analogous of the libration model. The latter expression
for φ′2 corresponds to the circulation model presented by Lanza
(2020). This introduces two further contributions to the binary
period variation that come from Qyy and Qxy (see Eq. (32)). In
Run B Qyy is, on average, the same as Qxx. Meanwhile, Qxy is
102−103 times smaller so it can be neglected. Thus,

Φ = −GM
r
− 3G

2r3

(
Qxx cos2 φ′ + Qyy sin2 φ′

)
. (35)

In contrast to previous studies, we can directly calculate
each component of the gravitational quadrupole moment from
our simulations. In this case it is advantageous to use Eqs. (31)
and (32) rather than taking the limit of φ′ = 0. However, we
would need to use new expressions to derive ∆P/P considering
the libration and circulation models. Alternatively, it is also pos-
sible to try different values of α and ω, and then directly solve
Eq. (31) in a two-body simulation, which is however beyond
the scope of the presented study. The influence of differences
between Qxx and Qyy can be studied with N-body simulations by
prescribing their time evolution and varying their amplitudes. It
would be interesting to derive the parameters that can reproduce
the observations and to compare them with our simulations.

5. Conclusions

We have presented three MHD simulations of stellar convec-
tion with different rotation rates, and studied the gravitational
quadrupole moment and its connection to dynamo-generated

magnetic fields. The analysis is based on a spherical harmonic
decomposition of density and magnetic fields. Our results for
Run B (P = 1.2 days) show that a hemispheric dynamo mode
can be an important ingredient for the eclipsing time variations
in close binaries. This hemispheric dynamo produces equatori-
ally asymmetric density variations and changes the moment of
inertia along the rotation axis. The hemispheric activity migrates
seemingly periodically between hemispheres and modulates the
gravitational quadrupole moment. Furthermore, nonaxisymmet-
ric magnetic fields modulate the other two diagonal components
of the inertia tensor, adding a further modulation of Q. We also
expect to have a further modulation of Q that comes from the
centrifugal force which will be included in a future work as it
is the responsible for the angular momentum redistribution in
the Applegate mechanism (Applegate 1992). Linear correlation
analysis confirms the role of the magnetic field in changing the
quadrupole moment via density variations (Table 2) and the scat-
ter plot between magnetic energy and quadrupole moment shows
that large quadrupole moments are related to increased magnetic
energy (see Fig. 6).

When our results are interpreted in the context of the classi-
cal Applegate mechanism, that is the star is tidally locked, then
only the Qxx component of the quadrupole moment contributes
to the period variations. In this scenario, we obtain orbital period
modulations between one and two orders of magnitude smaller
than observed in the target system V471 Tau (Marchioni et al.
2018). We emphasize that our results here should be taken with
caution. We model the CZ of a Sun-like star while the CZ
extends inward for less massive stars which are more com-
mon among PCEBs. It is yet to be investigated if large enough
quadrupole moments are found in magnetohydrodynamical sim-
ulations of fully convective stars.

In the context of the models by Applegate (1989) and Lanza
(2020), the order of magnitude estimate of the amplitude of the
period modulation is 10−6−10−7. This range encompasses the
two observed contributions to the O−C diagram, as well as their
combined effect. The observed period variations could be a com-
bination of both, namely, both the axi- and nonaxisymmetric
quadrupole moments contribute to them. The implication of the
first interpretation is that there must be a hemispheric dynamo
with an alternating active hemisphere in order to modulate Qxx
as seen in our simulations. The second interpretation implies
that the star is not tidally locked and that there is a nonaxisym-
metric magnetic field in the CZ of the magnetically active star.
We emphasize, however, given the caveats of the model such
as imposed spherical symmetry, the coincidence in the order of
magnitude between the ETVs, and in our model must be taken
with caution. More importantly, relaxing the assumption of tidal
locking leads to period variations that are between one and two
orders of magnitude larger than in the tidal-locking scenario.

Observational studies suggest that both scenarios discussed,
namely asymmetric magnetic fields and nontidally locked stars,
are plausible. Firstly, a recent study by Klein et al. (2021) reported
the reconstruction of the surface magnetic field of Proxima Cen-
tauri using Zeeman-Doppler imaging (ZDI). They found that
the magnetic field is mainly poloidal with a dominant feature
that is tilted at 51◦ to the rotation axis (see their Fig. 3) with a
strength of 135 G, that is a field distribution that is asymmetric
with respect to the equator. This is a rather weak field so density
fluctuations should be smaller than what we find in our simula-
tions. However, Proxima Centauri is a slowly rotating M5.5 fully-
convective star. The magnetic field strength of fully-convective
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stars increases with rotation until a saturation regime is reached,
as measured by X-ray emission (see e.g., Wright & Drake 2016),
so density variations in magnetically active components of PCEBs
are expected to be larger due to the increased magnetic field
strength. This might also be the case for more evolved partially
convective stars as a similar scaling property was recently found
(Lehtinen et al. 2020). Studying the differences of stellar spots
during a minima and maxima of of O−C diagrams in PCEBs will
provide direct evidence of the connection between the underlying
dynamo and the orbital period variations. Secondly, the determi-
nation of tidal synchronization is equally important, as a deviation
from synchronization results in a more complex relation between
the gravitational quadrupole moment and eclipsing time varia-
tions and potentially larger binary period variations (see Lanza
2020, and also Sect. 4.3 of this paper). Lurie et al. (2017) stud-
ied tidal synchronization of F, G, and K stars in short-period
binaries. The authors find 21 eclipsing binaries that are not syn-
chronized and argue that this could be explained either because
they are young or have a complex dynamical history. Consider-
ing the dynamical evolution of PCEBs, where the secondary star
is engulfed by the companion and spirals inwards toward the core
of the more massive star (Paczynski 1976), it is conceivable that
they fall in this category.

The determination of the degree of synchronization in
post common envelope binaries would be beneficial to further
improve the understanding of the ETVs. The surface magnetic
field distribution would be as equally important because such
nonaxisymmetric fields produce larger quadrupole moments.
Furthermore, there is also unexplored grounds in the simula-
tions, such as the impact of the centrifugal force. Numerical
models, specially for fully convective stars such as those in
Käpylä (2021), that allow more freedom on the surface and near-
surface layers of stars are desired as changes in the oblateness of
the star can be captured.
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Appendix A: Scaling of the quadrupole moment
with Mach number

In Navarrete et al. (2020) the scaling of the quadrupole moment
was assumed to be

Qxx,phys ∝ L−2/3
r Qxx,code, (A.1)

where Qxx,phys is the physical quadrupole moment, and Lr
3 is

the ratio of simulation to solar luminosities at the bottom of the
CZ, and Qxx,code is the quadrupole moment in code units. Equiv-
alently,

Qxx,phys ∝ Ma2Qxx,code, (A.2)

where Ma is the Mach number. We test this scaling with two
sets of simulations. Set L uses the same parameters as in Run B
but we omit magnetic fields and rotation. Set M includes both
rotation and magnetic fields. In particular, Run L2 has the same
input parameters as Run B such as Lr, but without rotation
and magnetic fields. Relevant quantities are shown in Table 1.
Run L2 produces a maximum variation of the quadrupole
moment ∆Qxx = 6.8 × 1038 kg m2, which is about 18 times
smaller than in Run B. These variations develop on a timescale
of 5 years and remain below the aforementioned level after that.

The rms value of the quadrupole moment fluctuations as a
function of Mach number is shown in Fig. A.1 for Set L and in
Fig. A.2 for Set M. The results are in reasonable agreement with
the theoretical scaling, which is indicated by the dotted line in
each plot.

Table A.1. Parameters of sets L and M.

Run Fr Ma ∆Qrms
xx

L1 2.74 × 105 5.67 × 10−2 1.07 × 10−5

L2 8.07 × 105 7.97 × 10−2 2.85 × 10−5

L3 2.34 × 106 1.11 × 10−1 6.87 × 10−5

M1 2.12 × 105 9.60 × 10−2 3.44 × 10−5

M2 6.37 × 105 1.25 × 10−1 5.60 × 10−5

M3 2.12 × 106 1.42 × 10−1 9.30 × 10−5

3 Lr corresponds to Fr of Navarrete et al. (2020).

Fig. A.1. Root-mean-squared quadrupole moment fluctuations as a
function of Mach number for Set L (without rotation and magnetic
fields). The dotted line is proportional to the Mach number squared and
the dash-dotted line joins the data points.

Fig. A.2. Root-mean-squared quadrupole moment fluctuations as a
function of Mach number for Set M (with rotation and magnetic fields).
The dotted line is proportional to the Mach number squared and the
dash-dotted line joins the data points.
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Appendix B: Figures of the decomposed fields

Fig. B.1. First nonaxisymmetric mode of the radial magnetic field (Bm=1
r ) at r = 0.98R for each run.

Fig. B.2. Second nonaxisymmetric mode of the radial magnetic field (Bm=2
r ) at r = 0.98R for each run.
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Fig. B.3. First nonaxisymmetric mode of density at r = 0.98R for each Run.

Fig. B.4. Second nonaxisymmetric mode of density at r = 0.98R for each Run.
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Chapter 4

Paper II

Contribution

To understand the effects of the centrifugal force, I planned and applied for computing
time for the simulations presented below. The data was analyzed by myself and I also
prepared the manuscript.
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ABSTRACT

Eclipsing time variations in post-common-envelope binaries were proposed to be due to the time-varying component of the stellar
gravitational quadrupole moment. This is suggested to be produced by changes in the stellar structure due to an internal redistribution
of angular momentum and the effect of the centrifugal force. We examined this hypothesis and present 3D simulations of compress-
ible magnetohydrodynamics performed with the Pencil Code. We modeled the stellar dynamo for a solar-mass star with angular
velocities of 20 and 30 times solar. We included and varied the strength of the centrifugal force and compared the results with ref-
erence simulations without the centrifugal force and with a simulation in which its effect is enhanced. The centrifugal force causes
perturbations in the evolution of the numerical model, so that the outcome in the details becomes different as a result of nonlinear
evolution. While the average density profile is unaffected by the centrifugal force, a relative change in the density difference between
high latitudes and the equator of ∼10−4 is found. The power spectrum of the convective velocity is found to be more sensitive to
the angular velocity than to the strength of the centrifugal force. The quadrupole moment of the stars includes a fluctuating and a
time-independent component, which vary with the rotation rate. As very similar behavior is produced in absence of the centrifugal
force, we conclude that it is not the main ingredient for producing the time-averaged and fluctuating quadrupole moment of the star.
In a real physical system, we thus expect contributions from both components, that is, from the time-dependent gravitational force
from the variation in the quadrupole term and from the spin-orbit coupling that is due to the persistent part of the quadrupole.

Key words. magnetohydrodynamics (MHD) – dynamo – methods: numerical – binaries: eclipsing

1. Introduction

Eclipsing time variations (ETVs) have been observed in
a wide range of post-common-envelope binaries (PCEBs;
Zorotovic & Schreiber 2013; Bours et al. 2016). Traditionally,
two explanations have been proposed for the observed varia-
tions: One explanation refers to the possible presence of a third
body, preferentially with a mass of a few Jupiter masses in the
case of NN Ser (Beuermann et al. 2010) and a brown dwarf of
0.035 M� in V471 Tau (Vaccaro et al. 2015), and on a wide orbit,
which could explain the observed ETVs as due to the orbit of
the binary system around the common center of mass via the
light travel time effect (e.g., Beuermann et al. 2012, 2013). The
presence of such planets might be explained either because they
survived the common-envelope event (Völschow et al. 2014) or
because they formed from the ejecta of common-envelope mate-
rial (Schleicher & Dreizler 2014). However, the planetary sys-
tems were sometimes found to be unstable (Mustill et al. 2013),
and at other times, the predicted planets were not detected
(Hardy et al. 2015).

An alternative possibility is that the ETVs is caused in
the binary system itself, as a result of magnetic activity.
This might occur in different forms. An early suggestion by
Decampli & Baliunas (1979) considered a rocket effect pro-

duced by anisotropic mass loss, but the hypothesis was finally
rejected. Tidal torques are another possibility, but their magni-
tudes are so low (Zahn & Bouchet 1989; Ogilvie & Lin 2007)
that they cannot transfer the necessary angular momentum
(Applegate & Patterson 1987). As a different solution, both
Matese & Whitmire (1983) and Applegate & Patterson (1987)
proposed that the orbital period would be changed if the stellar
quadrupole moment changed as a result of magnetic activity.

This was a central step, but the cause for the change in
the stellar quadrupole moment remains to be defined and its
strength needs to be determined. In the original models (e.g.,
Matese & Whitmire 1983; Applegate & Patterson 1987), it was
assumed that the magnetic field deforms the star by causing a
deviation from its hydrostatic equilibrium, requiring thus a very
strong magnetic field. Marsh & Pringle (1990) showed, however,
that the required periodic deformation was too strong to be sus-
tained by the luminosity of the star. A different scenario thus
emerged in which the change of the quadrupole moment is not
caused directly by the magnetic field, but is a result of angu-
lar momentum redistribution inside the star through the dynamo
process, which then leads to stellar distortions as a result of
the centrifugal force (Applegate 1992). Within a simplified thin-
shell model, considering an inner core and an infinitely thin
shell, Applegate (1992) calculated the quadrupole moment of the
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shell as

Q =
1
9

MsR2
(
Ω2R3

GM

)
, (1)

where M is the mass of the star, Ms � M is the mass of the
shell, Ω is the angular velocity of the shell, R is the radius from
the center of the star to the shell, and G is the gravitational con-
stant. Applegate (1992) calculated the angular momentum to be
transferred within the star to produce a period variation ∆P as

∆J = −GM2

R

( a
R

)2 ∆P
6π

, (2)

with a the separation of the binary system. The energy required
to transfer the angular momentum is then

∆E = Ωdr∆J +
(∆J)2

2Ieff

, (3)

where Ωdr refers to the difference of angular velocity between
the shell and the core, and Ieff is the effective moment of inertia,
corresponding to about half of the inertial moment of the shell.

This model was extended by Brinkworth et al. (2006), who
considered a finite instead of an infinitely thin shell, show-
ing that the latter increased the energy required to produce the
deformation by roughly one order of magnitude. Völschow et al.
(2016) subsequently applied this model in a systematic way
to the sample of Zorotovic & Schreiber (2013), showing that
the energy requirement is sometimes fulfilled and sometimes
it is not. A similar conclusion was obtained by Navarrete et al.
(2018) through an extension of the analysis. On the other hand,
more detailed 1D models solving the evolution equation for the
stellar angular momentum indicated that the energetic require-
ment may actually be reduced (Lanza 2006), and Völschow et al.
(2018) concluded that the mechanism is feasible for stars with
masses of 0.3−0.36 M�.

Other types of solutions have also been proposed. For
instance, Applegate (1989) derived librating and circulating
solutions in the presence of a constant quadrupole moment,
although they were originally predicted to provide modulations
over shorter periods than observed in the PCEBs. Lanza (2020)
re-examined this scenario, however, and proposed that a persis-
tent nonaxisymmetric internal magnetic field could produce an
appropriate quadrupole moment to explain the observed devia-
tions at a much lower energetic expense than in the scenario in
which the quadrupole moment variation is produced via the cen-
trifugal force (e.g., Applegate 1992).

This problem was recently revisited in 3D magnetohydrody-
namical (MHD) simulations, and although the centrifugal force
was not included, quasi-periodic quadrupole moment variations
caused by magnetic activity were found. They were roughly still
one order of magnitude lower than required by observations,
however (Navarrete et al. 2020). As they were not driven via
the centrifugal force, it seems more likely that a change in the
internal circulation in the star rather than a redistribution of the
angular momentum has caused this result. This was recently con-
firmed via an extended set of simulations with a more detailed
analysis (Navarrete et al. 2022).

As the correct mechanism that gives rise to the ETVs is still
not established, it is fundamental to investigate how the centrifu-
gal force influences the change in the quadrupole moment within
the stars. For this purpose, we present 3D MHD simulations of
a solar-mass star that include and vary the centrifugal force to
assess in this way how it affects the stellar structure. Thus, we

aim to verify whether the origin of these variations is based on
the centrifugal force as proposed by Applegate (1992), or if other
mechanisms must be at play to cause the observed variations.
Our numerical approach is presented in Sect. 2, and the results
are given in Sect. 3. We finally present our discussion and con-
clusions in Sect. 4.

2. Model

We present two sets of simulations with rotation rates 20Ω� and
30Ω�, where Ω� is the solar rotation rate. These are part of an
overall larger set of simulations that has been pursued to analyze
dynamos in the context of young stars (Navarrete et al., in prep.).
We label the first set simulation group C and the second set group
D. Within each set, we varied the centrifugal force amplitude.

The compressible MHD equations were solved on a spheri-
cal grid with coordinates (r, θ, φ), where 0.7 6 r 6 R is the radial
coordinate, R is the radius of the star, π/12 6 θ 6 11π/12 is
the colatitude, and 0 6 φ < 2π is the longitude. The model is
the same as in Käpylä et al. (2013) and Navarrete et al. (2020,
2022). The equations were solved in the following form:

∂A
∂t

= u × B − ηµ0 J, (4)

D ln ρ
Dt

= −∇ · u, (5)

Du
Dt

= F grav + FCor + F cent − 1
ρ

(∇p − J × B − ∇ · 2νρS),

(6)

T
Ds
Dt

=
1
ρ

[
ηµ0 J2 − ∇ · (Frad + FSGS)

]
+ 2νS2, (7)

where A is the magnetic vector potential, B = ∇× A is the mag-
netic field, u is the velocity field, η is the magnetic diffusivity,
µ0 is the vacuum permittivity, J is the current density, ρ is the
density, p is the pressure, ν is the viscosity, S is the rate of strain
tensor, T is the temperature, and s is the entropy. Frad and FSGS

are the radiative and the subgrid scale fluxes, respectively (see,
e.g., Käpylä et al. 2013). The SGS flux is given by

FSGS = −χSGSρT∇s, (8)

where χSGS = χm
SGS = 0.4ν at 0.75 < r/R < 0.98 and increases

smoothly to 12.5χm
SGS above r = 0.98R. Below r = 0.75R, it

decreases smoothly and approaches zero. This term is a param-
eterization of the unresolved turbulent heat transport. The SGS
diffusivity is needed because the radiative diffusivity χ = K/cPρ,
where K is the heat conductivity and cP is the specific heat at
constant pressure, is insufficient to smooth grid-scale fluctua-
tions even with the enhanced luminosity of the current simula-
tions. Furthermore,

F grav = −(GM/r2)r̂, (9)

FCor = −2Ω0 × u, (10)

F cent = −c fΩ0 × (Ω0 × r) (11)

are the gravitational, Coriolis, and centrifugal forces. Here,Ω0 is
the rotation rate of the modeled star. The parameter c f was intro-
duced by Käpylä et al. (2020) and controls the strength of the
centrifugal force. c f = 1 corresponds to the unaltered centrifu-
gal force amplitude, and c f = 0 implies no centrifugal force. It
is defined as

c f =

∣∣∣F cent
∣∣∣

∣∣∣F cent
0

∣∣∣
, (12)
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with |F cent
0 | being the physically consistent magnitude of the cen-

trifugal force. The need to control the centrifugal force arises
due to the enhanced luminosity and rotation rate in simulations
of stellar (magneto-) convection. This approach is necessary to
avoid a too large gap between acoustic, convective, and ther-
mal relaxation timescales in simulations that solve the compress-
ible MHD equations (e.g., Brandenburg et al. 2005; Käpylä et al.
2013). Using the realistic stellar luminosity would have the con-
sequence that flow velocities would be much lower than the
sound speed. The time step would then become prohibitively
short and the thermal relaxation (Kelvin-Helmholtz) time pro-
hibitively long (see Käpylä et al. 2020, for the effects of vary-
ing luminosity on the flow properties). The enhancement of the
luminosity is described by

Lr =
Lsim

L∗ , (13)

whereLsim is the luminosity in our model andL∗ is the luminos-
ity of the target, the physical star. We have Lr = 8.07 × 105 for
the setup adopted here for a solar-like target star (Navarrete et al.
2020). The angular velocity has to be enhanced correspond-
ingly to produce a realistic Coriolis number. For the centrifugal
force, on the other hand, the strength should be limited so that
the impact on the structure of the star is not overestimated. For
numerical stability and as outlined by Käpylä et al. (2020), each
run was initialized with c f = 0, and it was increased in small
incremental steps after the saturated regime was reached. In this
way, the effect of the centrifugal force can be explored in the
simulation.

To quantify the strength of the centrifugal force, we com-
puted the ratio of gravitational to centrifugal forces in the simu-
lations presented here as well as for a real Sun-like star with the
same rotation rate. The ratio of the two is defined as

F =
(|F cent|/|F grav|)sim

(|F cent|/|F grav|)?
, (14)

where the subscript asterisk denotes the real star and sim the
simulations. If this ratio is equal to unity, the relative strength
of the centrifugal force with respect to gravity is the same in
the simulation as in the real star. Particularly for rapidly rotating
stars, it is in principle harder to model a case with F = 1, and we
typically remain somewhat below this ratio, but we also present
a case with F > 1 for comparison.

The details of the model are further described in
Navarrete et al. (2020, 2022) and in Käpylä et al. (2013), and
we refer to these papers to avoid repetition. We nonetheless
recall that the model assumes an outer spherical boundary at
the stellar radius that is assumed to be impenetrable and stress-
free. At the lower boundary at 70% of the stellar radius, the
magnetic field is assumed to obey a perfect conductor bound-
ary condition, while at the top boundary, the field is assumed
to be radial. The temperature gradient is fixed at the bottom,
while a blackbody condition is applied at the surface. The setup
includes colatitudinal boundaries at 15◦ and 165◦, which are
assumed to be stress-free and perfectly conducting. Density and
entropy are assumed to have zero first derivatives on colatitu-
dinal boundaries. The gravitational potential is spherically sym-
metric and independent of time, and self-gravity is not taken into
account. The equations are solved with the Pencil Code1, a
high-order finite-difference code for compressible MHD equa-
tions (Pencil Code Collaboration 2021).

1 https://github.com/pencil-code/pencil-code

We define the Coriolis, Taylor, Reynolds, magnetic
Reynolds, Prandtl, magnetic Prandtl, SGS Prandtl, and Péclet
numbers as

Co =
2Ω0

urmsk1
, Ta =

[
2Ω0(0.3R)2

ν

]2

, Re =
urms

νk1
, (15)

ReM =
urms

ηk1
, Pr =

ν

χm
, PrM =

ν

η
, PrSGS =

ν

χm
SGS

, (16)

Pe =
urms

χm
SGSk1

, (17)

where urms is the root-mean-square velocity, k1 = 2π/0.3R is an
estimate of the wavenumber of the largest convective eddies, and
χm

SGS = 0.4ν is the subgrid-scale entropy diffusion in the middle
of the convective region. Each run is characterized by Pr = 60,
PrM = 1, and PrSGS = 2.5. The other quantities are shown in
Table 1. Throughout this paper, overbars denote averages over
longitude.

3. Results

We present the results of two sets of three simulations each.
Set C is characterized by a rotation rate of 20Ω� and set D by
30Ω�. Runs C1 and D1 correspond to the parent runs without
centrifugal force from which C2 and C3, and D2 and D3 were
forked, respectively. The last four runs were initialized with the
centrifugal force. For runs C2 and C3, we considered F = 0.875,
but they were initialized from C1 at different times. This was
done to test whether the initial magnetic state of the parent run
alters the solution of the forked run. Runs D2 and D3 have
F = 0.875 and 8.75, respectively. This last run is considered
as an extreme case where we exaggerated the effect of the cen-
trifugal force to show the corresponding implications. Each sim-
ulation had a resolution of 144×288×576 grid points in (r, θ, φ).

3.1. Dynamical state in the simulations

In our simulations, the azimuthally averaged density profile at
the equatorial plane of the star is basically unaffected by the
centrifugal force; the only change we see occurs at high lati-
tudes. We focus here on relative density differences between the
region 60◦ above the equator and the density profile at the equa-
tor, which we define via

ρdiff =
ρ(90◦ − θ = 60◦) − ρ(90◦ − θ = 0◦)

〈ρ〉rθ , (18)

where 〈ρ〉rθ is the volume-averaged density. In the context of
the enhanced luminosity method, we recall that density dif-
ferences scale as (Brandenburg et al. 2005; Käpylä et al. 2013;
Navarrete et al. 2020)

ρdiff ∝ L2/3
r . (19)

This implies that we should multiply with a factor L−2/3
r to

obtain the expected density difference in a physical star. We cal-
culated these density differences and averaged them over the last
80 yr of the simulation. They are shown in Fig. 1 as a func-
tion of radius. These differences are more relevant in the inte-
rior of the star, at 70−80% of the stellar radius, where they
have a typical magnitude of about 10−4. These density varia-
tions show clear trends with the centrifugal force, which tends
to increase the density difference between higher latitudes and
equator toward positive values. There are marked differences
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Table 1. Summary of the dimensionless parameters that characterize the simulations.

Run Ω/Ω� c f Co Ta Re ReM Pe F 〈∆(r)
Ω
〉t 〈∆(60◦)

Ω
〉t ∆

′(r)
Ω,rms ∆

′(60◦)
Ω,rms

C1 20 0 57.2 2.53(9) 22.1 22.1 55.3 0 9.16(−4) 3.42(−3) 4.26(−4) 5.02(−4)
C2 20 1.0(−4) 55.6 2.53(9) 22.8 22.8 57.0 8.75(−1) 9.27(−4) 3.60(−3) 4.62(−4) 5.30(−4)
C3 20 1.0(−4) 56.7 2.53(9) 22.3 22.3 55.8 8.75(−1) 8.40(−4) 3.66(−3) 6.23(−4) 6.28(−4)
D1 30 0 137.9 5.72(9) 13.8 13.8 34.6 0 −2.51(−4) 4.51(−4) 8.05(−5) 1.23(−4)
D2 30 1.0(−4) 137.8 5.72(9) 13.8 13.8 34.8 8.75(−1) −2.42(−4) 4.75(−4) 1.15(−4) 1.54(−4)
D3 30 1.0(−3) 130.1 5.72(9) 14.6 14.6 36.6 8.75 −6.34(−5) 8.70(−4) 1.52(−4) 2.39(−4)

Notes. Co is the Coriolis number, Ta is the Taylor number, Re and ReM are the fluid and magnetic Reynolds numbers, and Pe is the Péclet number.
For each run, Pr = 60, PrM = 1, and PrSGS = 2.5. ∆

(r),(60◦)
Ω

denote the radial and latitudinal differential rotation and are defined in Eqs. (21) and
(22), respectively. 〈...〉t denotes averages over time, and the prime denotes fluctuating quantities.

Fig. 1. Density difference between regions at 60◦ above the equator and
the equator.

between runs C1 and C2, but not between runs D1 and D2. A
possible explanation for this might be the different dynamo solu-
tions. In general, runs in set C show dynamos that tend to alter-
nate between the two hemispheres. This produces an asymmetry
on the density field with respect to the equator. In this case, ρdiff
increases when the magnetic field is more concentrated in one
hemisphere. This is the case for runs C1 and C2. The difference
comes from the location of the magnetic field structure, which
reduces the local density. This is not the case for runs D1 and
D2, however, and so the density profiles are the same. A similar
explanation can be given for run D3.

Snapshots of the final state of the radial (convective) velocity
near the surface of the star are given in Fig. 2 for simulations D1
and D3, which are also representative of the other runs within
our set of simulations. The series of runs C and D correspond to
fast rotators, and the convective cells are therefore very small
toward medium to high latitudes, whereas they become elon-
gated near the equator. This is a common phenomenon obtained
in simulations of stellar convection (see, e.g., Viviani et al. 2018)
and is consistent with the Taylor-Proudman balance. The result
for D3 is very similar as for D1, but it is not identical. While
both runs were evolved until the same time, an identical result
is not expected because the dynamics are nonlinear and because
the centrifugal force causes perturbations within the star. On the
other hand, and even though in principle the strength of the cen-
trifugal force is quite significant in run D3, the impact on the
flow pattern appears to be relatively minor.

Similar projections, now for the radial component of the
magnetic field, are presented in Fig. 3. In run D1, clear non-
axisymmetric structures are present that extend throughout each
hemisphere. Nonaxisymmetric structures seem to be somewhat

Fig. 2. Mollweide projections of radial velocity near the surface for runs
D1 and D3.

smaller in run D3, that is, an m = 2 mode is also present. The
amplitude of Br remains very similar.

We decomposed the radial velocity field at the surface of
selected runs into spherical harmonics and calculated the nor-
malized convective power spectra as

Pkin =
Ekin, l∑
l Ekin, l

, (20)

where Ekin, l is the kinetic energy of the lth degree. This is shown
in Fig. 4, where we plot P as a function of l up to lmax = 288.
This is the maximum resolution we can achieve because we
used 576 grid points along the φ direction. The convective power
peak is shifted toward higher l for higher rotation rates, but the
centrifugal force has no significant influence on it, even in the
extreme case of run D3. We note that the contribution of the
polar caps, which are not part of the computational domain, are
not included in the spherical harmonic decomposition or in the
power spectra.
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Fig. 3. Mollweide projections of radial magnetic field near the surface
for runs D1 and D3.

Fig. 4. Normalized convective power spectra for runs C1, C2, C3, D1,
D2, and D3.

In Fig. 5 we show the time-averaged and azimuthally aver-
aged angular velocity normalized with the angular velocity of the
rotating frame for simulations with different rotation rates and
with and without the centrifugal force. In set D, where the angu-
lar velocity is higher in general, we find that stellar differential
rotation is reduced compared with set C, which is expected for
more rapidly rotating runs (e.g., Kitchatinov & Rüdiger 1995;
Viviani et al. 2018). Measures of the radial and latitudinal differ-
ential rotation are shown in Table 1. They are defined as

∆
(r)
Ω

=
Ωeq −Ωbot

Ωeq
, (21)

∆
(60◦)
Ω

=
Ωeq −Ω60◦

Ωeq
, (22)

respectively. Here, Ωeq, Ωbot, and Ω60◦ are the angular veloci-
ties at the equator near the surface, at the equator near the bot-

Fig. 5. Mean rotation rate averaged over the last 80 yr of the simulation
and normalized to the rotation rate of the star. 〈...〉t denotes the average
over time.

tom of the convective zone, and near the surface at a latitude of
60◦, respectively. The time-averaged radial differential rotation
remains practically the same within each set. The time-averaged
radial and latitudinal differential rotation only changes apprecia-
bly in run D3 by a factor of four and two, respectively, where we
enhanced the centrifugal force. We fail to find strong evidence
for a direct effect of the centrifugal force from the time aver-
ages, however. We also show the rms values of the fluctuations
(instantaneous minus average) of ∆

(r)
Ω

and ∆
(60◦)
Ω

in the last two
columns of Table 1. In general, there is a tendency of increased
fluctuations when the centrifugal force is included and when its
amplitude is larger.

Observations of the rapidly rotating K2 dwarf V471 Tau,
which is a PCEB rotating at about 50 times faster than the
Sun, show that it has a solar-like differential rotation (Zaire et al.
2022). The surface differential rotation is about ∆

(60◦)
Ω

= 3.7 ×
10−3, as measured from the shearing of brightness inhomo-
geneities (Stokes I), and ∆

(60◦)
Ω

= 2.6 × 10−3 from magnetic
structures (Stokes V). The sign of the differential rotation agrees
with our simulations, and the amplitude here is about ten times
smaller. We note, however, that in some cases, the instantaneous
value of ∆

(60◦)
Ω

can be as high as 10−3.

3.2. Gravitational quadrupole moment

We analyzed the xx-component of the gravitational quadrupole
moment for runs C1, C2, and C3 and for runs D1, D2, and D3.
It is defined as

Qi j = Ii j − 1
3
δi jTrI, (23)

where

Ii j =

∫
ρ(x)xix jdV (24)

is the inertia tensor, with ρ being the density, and xi, x j are Carte-
sian coordinates. The time evolution of Qxx for all runs is shown
in Fig. 6. Their yy- and zz-components evolve very similarly, as
demonstrated in Navarrete et al. (2020). The average quadrupole
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Fig. 6. Qxx component of the gravitational quadrupole moment as a
function of time for all runs.

Table 2. Summary of the rms value and standard deviation of the
quadrupole moment obtained in the simulations.

Run rms [kg m2] σ [kg m2]

C1 9.44(39) 2.19(39)
C2 8.25(39) 2.14(39)
C3 7.70(39) 2.08(39)
D1 1.76(40) 6.38(38)
D2 1.71(40) 5.94(38)
D3 1.02(40) 1.66(39)

Notes. Parentheses indicate powers of ten.

moment and its standard deviation are summarized in Table 2 for
each simulation.

For series C with the somewhat lower rotation rate, the aver-
age value of the quadrupole moment appears to be slightly lower
(∼7−9 × 1039 kg m2) than in series D (∼1−2 × 1040 kg m2),
while the standard deviation appears to be larger for series C
(∼2 × 1039 kg m2) than for series D (∼6−10 × 1038 kg m2).
Within the range of uncertainty, the mean value and the varia-
tion appear to be similar within the set of simulations C1, C2,
and C3, as well as within the set of simulations D1, D2, and
D3. This is to say that the centrifugal force does not appear to
affect the mean value of the quadrupole moment very strongly.
The standard deviation appears to be almost unaffected by the
centrifugal force within set C. Some more coherent variations
are visible in run D2 and particularly in run D3, where the cen-
trifugal force is the strongest of all runs. We note further that the
drop of the mean quadrupole moment value in run D3 around
t = 100 yr coincides with a decrease in the mean radial magnetic
field around the same time, which is shown in Fig. 7. The mag-
netic field structure and its time evolution is clearly different in
all simulations, and we also find differences in simulations with
and without the centrifugal force. It is difficult to assess, how-
ever, whether the origin of this difference is essentially related to
a possible bimodality of the solutions or if the centrifugal force
specifically introduces a different type of behavior. Overall, the
results thus indicate that the stellar quadrupole moment is not
very sensitive to the centrifugal force.

4. Discussion and conclusions

We presented a series of numerical simulations with which we
investigated stellar dynamos of solar-mass stars with angular
velocities of 20 and 30 times the solar rotation. The simula-

tions were performed using the enhanced luminosity method
(Brandenburg et al. 2005; Käpylä et al. 2013; Navarrete et al.
2020) to avoid prohibitively large gaps in the relevant timescales.
This entails the use of correspondingly enhanced rotation rates
to ensure a realistic Coriolis number in the simulations, which is
required to reach realistic magnitudes of the drivers of dynamo
action, such as the α and Ω effects. We included and varied the
strength of the centrifugal force in these simulations, including
cases without the centrifugal force or where the strength of the
centrifugal force was enhanced by an order of magnitude.

The centrifugal force in general causes perturbations during
the nonlinear evolution, so that the models evolve differently in
the details, although it is hard to identify clear systematic effects.
We note in particular that the averaged radial density profile of
the stars remains almost unchanged, while the density difference
between the equator and high latitudes (60◦) changes by a rela-
tive amount of 10−4. We see some difference between the dis-
tribution of axisymmetric and nonaxisymmetric modes of the
dynamo, and the convective power spectra are affected by the
strength of the angular velocity, but not so much by the cen-
trifugal force. Except for the behavior of the density difference
(Fig. 1), we found no clear systematic effects that were due to
the centrifugal force.

We similarly find that the mean and standard deviation of
the quadrupole moment depend more strongly on the angular
velocity, while the influence of the centrifugal force is weak
or almost nonexistent, even in the simulation in which the cen-
trifugal force term is enhanced by an order of magnitude. This
is highly relevant because in the original models proposed by
Applegate (1992), the centrifugal force term was supposed to
give rise to the variation in stellar quadrupole moment, while
here we find similar variations regardless of the presence of the
centrifugal force. This suggests that the centrifugal force plays
only a minor role in causing this variation, as the overall flow
patterns within the star are driven by more complex dynamics
resulting from the nonlinear evolution of the system. Adopting
the parameters of V471 Tau (Völschow et al. 2016) and inserting
the quadrupole variations that we find here into the framework
of Applegate (1992; see Navarrete et al. 2022), that is,

∆P
P

= −9
∆Qxx

Ma2 , (25)

where ∆P/P is the variation of the period of the binary, ∆Qxx
is the variation of the quadrupole moment, M is the stellar
mass, and a is the binary separation, we obtain period varia-
tions of the order of 10−8...10−9, whereas the amplitude of the
period variation of close binaries is around 10−6...10−7 (see,
e.g., Völschow et al. 2018), and about 8.5 × 10−7 for V471 Tau
(Zaire et al. 2022). While the original model was useful to moti-
vate the possible origin of the fluctuations via magnetic activity,
it appears to have difficulties overall in explaining the observed
magnitude of the variations, and the centrifugal force is unlikely
to be the main driver of the variations.

As in our previous studies, we chose to apply our results to
V471 Tau alone because of the similarities between the exten-
sion of the convective zones of our model and the real K2 dwarf.
We can roughly rescale the gravitational quadrupole moment
variations obtained here to a target star of mass M̃ and radius R̃
by assuming that the quadrupole moment scales with the stellar
inertial moment, that is,

∆Q̃xx =
M̃R̃2

MR2 ∆Qxx, (26)
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Fig. 7. Mean (azimuthally averaged)
radial magnetic field near the surface for
all runs.

where M and R are the mass and radius of our simulated star.
Choosing the parameters of NN Ser of M̃ = 0.111M�, R̃ =
0.149R�, and a = 0.934R� (Völschow et al. 2016) yields

∆P
P

= 2.34 × 10−9, (27)

which is a few hundred times lower than the value estimated
from observations (Völschow et al. 2016). This number should
be taken with extreme caution, however. A potential error source
is the missing effect of rotation in Eq. (26). The value of ∆Q̃xx is
a rather crude estimate and results from self-consistent simula-
tions that will be presented elsewhere.

As in previous work (e.g., Navarrete et al. 2020, 2022), our
simulations confirm that MHD simulations of stellar dynamos
naturally produce an evolution of the stellar quadrupole moment,
including one varying and one approximately constant com-
ponent. The time-varying component may be somewhat too
small to explain the observed ETVs. As suggested in mod-
els by Applegate (1989) and Lanza (2020), a roughly constant
component might produce the variations caused by spin-orbit
coupling via libration or circulation (see also the discussion in
Navarrete et al. 2022). As our simulations indeed show a mean
and a fluctuating part of the quadrupole moment, the observed
real variation may well consist of a superposition of the two
components, where the relative strength may depend on the spe-
cific system and its parameters. As has been demonstrated by
Navarrete et al. (2020), the presence of magnetic fields is crucial
because purely hydrodynamic simulations only produce short-
term variations on the sound-crossing timescale of the star, but
no longer-term variations on timescales of years or decades.

From the results obtained here, we thus conclude that nei-
ther the thin-shell model by Applegate (1992) nor the finite-shell
model by Brinkworth et al. (2006) correctly describes the origin
of the quadrupole moment variation because they both assume it
to originate in the centrifugal force and in an internal redistribu-
tion of the angular velocity, while in our simulations, a change
in centrifugal force term does not lead to any appreciable change
in the mean or fluctuating component of the quadrupole. The
physics causing these variations thus requires modeling the stel-
lar dynamo with compressible MHD in three dimensions.

Another possibility is given by hybrid solutions in which
ETVs receive contributions of magnetic origin and from plan-
ets. Mai & Mutel (2022) considered such a scenario for three
PCEBs as neither planets nor the Applegate mechanism can
fully account for ETVs. We conclude by encouraging studies of
the detection of circumbinary planets around PCEBs as well as
Zeeman-Doppler imaging of their main-sequence components.
The combination of these subjects will help us constrain the

planetary orbits and masses, and to understand to which extent
we can use ETVs to study stellar magnetic fields.
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Chapter 5

Paper III

Contribution

Similarly to the previous two papers, the simulations were run by me in the context
of my computing proposal. The data was analyzed by me and I prepared the paper.
This was accepted in Astronomy & Astrophysics and its status is in press. A preprint
can be found on https://arxiv.org/abs/2305.01312.
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ABSTRACT

Context. The centrifugal force is often omitted from simulations of stellar convection either for numerical reasons or because it
is assumed to be weak compared to the gravitational force. However, the centrifugal force might be an important factor in rapidly
rotating stars, such as solar analogs, due to its Ω2 scaling, where Ω is the rotation rate of the star.
Aims. We study the effects of the centrifugal force in a set of 21 semi-global stellar dynamo simulations with varying rotation rates.
Included in the set are three control runs aimed at distinguishing the effects of the centrifugal force from the nonlinear evolution of
the solutions.
Methods. We solved the 3D magnetohydrodynamic equations with the Pencil Code in a solar-like convective zone in a spherical
wedge setup with a 2π azimuthal extent. The rotation rate and the amplitude of the centrifugal force were varied. We decomposed
the magnetic field into spherical harmonics and studied the migration of azimuthal dynamo waves (ADWs), the energy of different
large-scale magnetic modes, and differential rotation.
Results. In the regime with the lowest rotation rates, Ω = 5 − 10Ω�, where Ω� is the rotation rate of the Sun, we see no marked
changes in either the differential rotation or the magnetic field properties. For intermediate rotation, Ω = 20 − 25Ω�, we identify
an increase in the differential rotation as a function of centrifugal force. The axisymmetric magnetic energy tends to decrease with
centrifugal force, while the non-axisymmetric one increases. The ADWs are also affected, especially in the propagation direction. In
the most rapidly rotating set with Ω = 30Ω�, these changes are more pronounced, and in one case the propagation direction of the
ADW changes from prograde to retrograde. The control runs suggest that the results are a consequence of the centrifugal force and
not due to the details of the initial conditions or the history of the run.
Conclusions. We find that the differential rotation and properties of the ADWs only change as a function of the centrifugal force when
rotation is rapid enough.

Key words. Turbulence – Convection – Dynamo – Stars: magnetic field

1. Introduction

Simulations of stellar convection, usually aimed at explaining
solar phenomena, often omit the centrifugal force. This is due to
the assumption that its amplitude is small due to the relatively
slow rotation of the Sun. Earlier in its history, however, the Sun
must have been rotating much more rapidly because, in general,
stars are born with larger angular momenta that are slowly re-
duced via magnetic braking (Skumanich 1972; Matt et al. 2012).
Therefore, the influence of the centrifugal force is expected to be
more important at earlier stages because its amplitude increases
as the square of the rotation rate. To study these phases of rapid
ration in the solar context, such as magnetic field evolution, one
has to study young solar analogs at earlier phases that are rotat-
ing much faster than the Sun (e.g., Lehtinen et al. 2016). This
allows us to study the evolution of the Sun up to the present,
given that outflows that are produced by magnetic braking do
not significantly affect the structure of the star, only the rotation
rate.

Observations by Lehtinen et al. (2016) of magnetic fields of
solar analogs reveal that they are active and show a character-

? e-mail: felipe.navarrete@hs.uni-hamburg.de

istic split between the axisymmetric and non-axisymmetric spot
distributions. These authors also estimate that, among solar-like
stars with non-axisymmetric spot distribution, the active lon-
gitude periods are shorter than the rotation period of the star.
One plausible explanation is the presence of azimuthal dynamo
waves (ADWs). These waves propagate in the rotating frame of
reference of the star either in prograde or retrograde fashion with
a uniform frequency irrespective of the underlying fluid motions.
Such solutions were first discovered in linear mean-field dynamo
models (e.g., Krause & Rädler 1980). To explain their observa-
tions, Lehtinen et al. (2016) argue that the propagation of the
ADWs must be prograde.

V530 Per is an extreme case of a rapidly rotating Sun-like
star with an estimated rotation period of 0.32 days (Cang et al.
2020), which corresponds to about 75Ω�, where Ω� is the ro-
tation rate of the Sun. This makes the gravitational force at its
surface only 9.5 times larger than the centrifugal force. In com-
parison, in the Sun this ratio is 5.3 × 104. There are also clear
differences between the magnetic field of V530 Per and the Sun.
For example, Cang et al. (2020) also find that the magnetic field
distribution of V530 Per is asymmetric with respect to the equa-
tor. It is characterized by a stronger magnetic field near the north
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pole, with a peak field strength of 1 kG. It is as yet unclear why
similar stars have different field strengths and symmetries, but
there are indications that rotation may play an important role in
the magnetic activity of Sun-like stars (Lehtinen et al. 2016) as
well as low-mass stars (e.g., Reiners et al. 2022).

Such rapid rotation is commonly found in close binaries
if tidal locking is assumed. For example, V471 Tau is a post-
common-envelope binary in which the secondary is a main-
sequence solar-like star with a mass of 0.93M�, a radius of
0.96R�, and a binary period of about 0.5 days (e.g., Völschow
et al. 2016). If tidal locking is assumed, this gives a ratio of grav-
itation to centrifugal forces of about 22. Interestingly, Zaire et al.
(2022) analyzed the magnetic activity of the K2 star in V471 Tau
and find that the magnetic field is also dominated by a concentra-
tion on one hemisphere. They also find that the spot coverage and
brightness map, derived from Zeeman-Doppler imaging, do not
follow the magnetic activity cycle inferred from Hα variability.
This suggests that it might be inappropriate to use spot cover-
age to study magnetic cycles in rapidly rotating stars (Zaire et al.
2022).

Simulations of stellar dynamos often produce ADWs whose
characteristics change with the rotation rate and the physics in-
volved. Cole et al. (2014) studied the propagation properties of
ADWs in a set of three runs with moderate rotation rates of up to
6.7 times the solar value with 3D magnetohydrodynamic simula-
tions. They find that the waves have a rotation rate that is slower
than that of the gas, that is, they are retrograde. The magnetic
structure in the ADW propagates like a rigid body, and therefore
such motion cannot be explained by advection by the fluid in a
differentially rotating convection zone. This result was later con-
firmed by Viviani et al. (2018) with a larger set of runs. Most of
their runs show retrograde ADWs independently of the rotation
rate, but in some cases standing or prograde waves appeared. Re-
cently, Viviani & Käpylä (2021) presented a set of four runs with
moderate rotation rates where the usual prescribed radial depen-
dence of the radiative heat conductivity was replaced by the more
realistic Kramers opacity law (Brandenburg et al. 2000; Käpylä
et al. 2017). This suggests that using this heat conductivity might
affect the direction of the propagation of ADWs indirectly by af-
fecting the flow through the pressure gradient and/or dissipation.
However, it might come with the cost of pushing the transition
point of differential rotation profiles of simulations from anti-
solar profiles to solar-like profiles to even larger Coriolis num-
bers (Viviani & Käpylä 2021).

Navarrete et al. (2022b) explored the effect of the centrifu-
gal force in the context of changes in the internal structure of
the stars, with the aim to check whether the resulting changes
are sufficient to explain the observed eclipsing time variations in
post-common-envelope binaries, as proposed in the Applegate
scenario (Applegate 1992). In this paper we study the effects of
centrifugal force in semi-global dynamo simulations further. We
focus on differential rotation, magnetic energy, and ADW prop-
agation. In Sect. 2 we present the model and the implementation
of the centrifugal force. Section 3 presents the results, and our
conclusions are drawn in Sect. 4.

2. Model

We solved the fully compressible magnetohydrodynamic equa-
tions in a spherical grid with coordinates (r,Θ, φ), where 0.7R 6
r 6 R is radius and R is the radius of the star, π/12 6 Θ 6 11π/12
is the colatitude, and 0 6 φ < 2π is the longitude. The model is
the same as in Käpylä et al. (2013) and Navarrete et al. (2020,

2022a). The equations adopt the following forms:

∂A
∂t

= u × B − ηµ0 J, (1)

D ln ρ
Dt

= −∇·u, (2)

Du
Dt

= F grav + FCor + F cent − 1
ρ

(∇p − J × B − ∇ · 2νρS),

(3)

T
Ds
Dt

=
1
ρ

[
ηµ0 J2 − ∇ · (Frad + FSGS)

]
+ 2νS2, (4)

where A is the magnetic vector potential, B = ∇× A is the mag-
netic field, u is the velocity field, η is the magnetic diffusivity, µ0
is the vacuum permeability, t is the time, J = ∇ × B/µ0 is the
electric current density, ρ is the mass density, p is the pressure, ν
is the viscosity,

S i j =
1
2

(ui; j − u j;i) − 1
3
δi j∇ · u (5)

is the rate-of-strain tensor, where semicolons denote covariant
differentiation, T is the temperature, and s is the specific en-
tropy. Furthermore, Frad = −K∇T is the radiative flux, which
we modeled with the diffusion approximation, where K = K(r)
has a fixed spatial profile (see Sect. 2.1 in Käpylä et al. 2014).
We also investigated the effects of Kramers opacity in some runs
(see Sect. 3.3). We did this by replacing the radiative heat con-
ductivity, K, in the radiative flux term Frad = −K∇T with

K = K0

(
ρ

ρ0

)−(a+1) ( T
T0

)3−b

, (6)

where a = 1 and b = −7/2 correspond to the Kramers opacity
law (Brandenburg et al. 2000). Here, K0 is a constant that de-
pends on natural constants and, in simulations, on the luminosity
of the model (Viviani & Käpylä 2021). The FSGS = −χSGSρT∇s
is a sub-grid scale flux that we implemented to smooth grid-
scale fluctuations that would otherwise make the system unsta-
ble. Here, χSGS is the sub-grid scale entropy diffusivity, and it
varies smoothly from 0 at r/R = 0.7 to 0.4ν at r/R = 0.72; it
then smoothly increases by a factor of 12.5 at r/R = 0.98, above
which it is constant. The first three terms on the right-hand side
of Eq. (4),

F grav = −(GM/r2)r̂, (7)

FCor = −2Ω0 × u, (8)

F cent = −c fΩ0 × (Ω0 × r), (9)

are the gravitational, Coriolis, and centrifugal forces.

2.1. Boundary and initial conditions

The magnetic field follows a perfect conductor condition at the
bottom of the convective zone and is radial at the surface. The
temperature gradient was kept fixed at the bottom, whereas at
the top we applied a black-body condition. For the entropy and
density, we assumed a vanishing first derivative at both latitu-
dinal boundaries. The latitudinal boundaries are stress-free and
perfectly conducting. The initial state is isentropic. Perturbations
were introduced by initializing the magnetic and velocity fields
with low-amplitude Gaussian white noise.
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2.2. Centrifugal force

The parameter c f in Eq. (9) was introduced by Käpylä et al.
(2020) and controls the strength of the centrifugal force. A c f
value of 1 corresponds to the unaltered centrifugal force ampli-
tude, and c f = 0 implies no centrifugal force. It is defined as

c f =

∣∣∣F cent
∣∣∣

∣∣∣F cent
0

∣∣∣
, (10)

with |F cent
0 | being the unaltered magnitude of the centrifugal

force. The necessity of controlling the centrifugal force is due
to the enhanced luminosity and rotation rate in simulations of
compressible stellar (magneto-)convection. Similarly to Käpylä
et al. (2020), each run was initialized with c f = 0 and was in-
creased in small incremental steps after the saturated regime is
reached.

To get a sense of how strong the centrifugal force is in our
simulations, we computed the ratio of centrifugal to gravitational
forces in the simulations as well as in a real Sun-like star with
the same rotation rate. We defined the ratio between the two as

F =
(|F cent|/|F grav|)sim

(|F cent|/|F grav|)?
, (11)

where the subscripts ? denote the real star and “sim” the simu-
lations. These values are shown in the last column of Table. 1.
By using a value as low as c f = 10−4, our simulations are in-
fluenced by the centrifugal force just below the value that the
equivalent star with the same rotation rate and radius would have,
and the simulations that have the strongest centrifugal force have
F = 87.

3. Results

We ran a total of 21 simulations separated into five sets: C, D, E,
F, and G. Each set is characterized by a fixed rotation rate of 5,
10, 20, 25, and 30 times the solar rotation rate, respectively. We
varied the value of the centrifugal force within each set.

3.1. Differential rotation

We began by exploring changes in the differential rotation of the
simulations by defining

∆
(60◦)
Ω

=
Ω(0◦, s) −Ω(60◦, s)

Ω(0, s)
(12)

and

∆
(r)
Ω

=
Ω(0◦, s) −Ω(0◦, b)

Ω(0◦, s)
(13)

as measures of latitudinal and radial differential rotation. Here,
s and b indicate that the values are taken near the surface
(r = 0.98R) and the bottom (r = 0.72R), respectively, and
Ω = Ω0 + uφ/(r sin θ), where the overbars denote azimuthal av-
eraging, namely

uφ =
1

2π

∫ 2π

0
uφ(r, θ, φ, t) dφ. (14)

In what follows, additional time-averaging is denoted by 〈·〉t.
Time averages of ∆

(60◦)
Ω

and ∆
(r)
Ω

are listed in columns 8 and 9
of Table 1.
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Fig. 1. Time-averaged differential rotation for sets E, F, and G in red,
blue, and yellow, respectively. The top and bottom panels show ∆

(60◦)
Ω

and ∆
(r)
Ω

according to Eqs. (12) and (13), respectively.
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Fig. 2. Time-averaged radial differential rotation as defined in Eq. (15).

In the slowly rotating runs, sets C and D, there are changes
in both radial and latitudinal differential rotation, but they are
very small. Comparing the runs without the centrifugal force
with those with the largest value of c f , the biggest change in ∆

(r)
Ω

,
of about 20%, is in set D. However, larger deviations are found
in sets E, F, and G. They are also shown in Fig. 1 with the cor-
responding error bars, which were estimated by computing the
average of three equally long parts of the time series and taking
the largest deviation from the total as the error. In set E we see
that the differential rotation of the runs that were initialized with
the same c f but at a different time, namely E2 with E3 and E4
with E5, have very similar values. This shows that the averaged
differential rotation does not significantly depend on the initial
conditions when the centrifugal force is added. Within this set,
the maximum deviation of ∆

(r)
Ω

is about 23% between runs E1
and E5. In contrast, ∆

(60◦)
Ω

is reduced by about 17%.
Recently, Käpylä (2023) noted that the details of the radial

profile of Ω can introduce spurious effects into the measure of
differential rotation as defined in Eq. (13). Following their ap-
proach, we defined the mean rotational profile at the equator as
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Table 1. Summary of the simulation parameters.

Run Ω/Ω� c f Co Ta Re Rm 〈∆(60◦)
Ω
〉t 〈∆(r)

Ω
〉t F

C1 5 0 7.3 1.6 × 108 3.0 × 103 3.0 × 103 4.2 × 10−2 2.5 × 10−2 0
C2 5 10−4 7.3 1.6 × 108 3.0 × 103 3.0 × 103 4.3 × 10−2 2.5 × 10−2 0.87
C3 5 10−3 7.3 1.6 × 108 3.0 × 103 3.0 × 103 4.4 × 10−2 2.6 × 10−2 8.7
C4 5 10−2 6.8 1.6 × 108 3.2 × 103 3.2 × 103 4.8 × 10−2 2.8 × 10−2 87
D1 10 0 20 6.3 × 108 2.2 × 103 2.2 × 103 1.3 × 10−2 5.6 × 10−3 0
D2 10 10−4 20 6.3 × 108 2.2 × 103 2.2 × 103 1.4 × 10−2 6.1 × 10−3 0.87
D3 10 10−3 20 6.3 × 108 2.2 × 103 2.2 × 103 1.4 × 10−2 6.2 × 10−3 8.7
D4 10 10−2 20 6.3 × 108 2.2 × 103 2.2 × 103 1.5 × 10−2 7.0 × 10−3 87
E1 20 0 57 2.5 × 109 1.6 × 103 1.6 × 103 3.4 × 10−3 9.0 × 10−4 0
E2 20 10−4 56 2.5 × 109 1.6 × 103 1.6 × 103 3.7 × 10−3 9.9 × 10−4 0.87
E3 20 10−4 54 2.5 × 109 1.6 × 103 1.6 × 103 3.7 × 10−3 8.1 × 10−4 0.87
E4 20 10−3 53 2.5 × 109 1.7 × 103 1.7 × 103 3.9 × 10−3 1.1 × 10−3 8.7
E5 20 10−3 53 2.5 × 109 1.7 × 103 1.7 × 103 4.0 × 10−3 1.1 × 10−3 8.7
F1 25 0 100 4.0 × 109 1.1 × 103 1.1 × 103 6.9 × 10−4 -3.6 × 10−4 0
F2 25 10−4 93 4.0 × 109 1.2 × 103 1.2 × 103 1.6 × 10−3 3.9 × 10−4 0.87
F3 25 10−3 94 4.0 × 109 1.2 × 103 1.2 × 103 1.8 × 10−3 5.2 × 10−4 8.7
G1 30 0 140 5.7 × 109 9.7 × 102 9.7 × 102 4.5 × 10−4 −2.5 × 10−4 0
G2 30 10−4 140 5.7 × 109 9.7 × 102 9.7 × 102 4.6 × 10−4 −2.5 × 10−4 0.87
G3 30 10−3 130 5.7 × 109 1.0 × 103 1.0 × 103 9.0 × 10−4 −3.0 × 10−5 8.7
G4 30 2 × 10−3 110 5.7 × 109 1.2 × 103 1.2 × 103 1.5 × 10−3 1.8 × 10−4 17
G5 30 0 140 5.7 × 109 9.6 × 102 9.6 × 102 4.5 × 10−4 −2.2 × 10−4 0

Notes. For each run, Pr = 60, PrM = 1, and PrSGS = 2.5.

∆̃
(r)
Ω

=

∫ rout

rin
r2[Ω(θeq, r) − 1]dr

∫ rout

rin
r2dr

, (15)

where rin = 0.72R and rout = 0.98R. In Fig. 2 we plot this
quantity as a function of c f . The differential rotation is solar-like
(∆̃(r)

Ω
> 0), as already seen in the top panel of Fig. 1. This shows

that, if there are transients of anti-solar differential rotation in
our simulations, they are not very long and a similar scaling is
seen with both definitions.

As the rotation velocity increases more, the amplitude of the
latitudinal differential rotation decreases further in run F1. This
is a common feature of convection in rotating spherical shells
(see, e.g., Brown et al. 2008; Gastine et al. 2014; Viviani et al.
2018), which is also found in Cartesian coordinates with the
star-in-a-box setup (Käpylä 2021). In runs F2 and F3, 〈∆(60)

Ω
〉t is

larger by a factor of about 2.3 and 2.6. Run F1 has bottom layers
that rotate slightly faster than the surface layers, as indicated by
the negative sign of 〈∆(r)

Ω
〉t. The addition of the centrifugal force

changes this pattern back to a solar-like one, where the surface
layers rotate faster, although the overall differential rotation re-
mains weak.

We do not see major differences between runs G1 and G2,
and in G3 the latitudinal (radial) differential rotation increases
(decreases) by a factor of about 2 (10). Each of these runs has
〈∆(60)

Ω
〉t > 0 and 〈∆(r)

Ω
〉t < 0. In run G4, 〈∆(60)

Ω
〉t is comparable to

that in F2, and, similarly, the radial differential rotation is shifted
back to a solar-like pattern. However, the amplitudes are all very
small and close to rigid rotation. In the control simulation (G5)
we took a snapshot from run G3 and switched off the centrifugal
force; we obtained a solution that is nearly the same as in run
G1. This hints at the possibility that the effects we are seeing are
due to a systematic effect of the centrifugal force rather than a
chaotic behavior due to the change in the initial conditions.

Overall, we find that changes in the differential rotation due
to the centrifugal force are only noticeable in the rapidly and
very rapidly rotating sets E, F, and G. We conclude that the
changes in both 〈∆(60)

Ω
〉t and 〈∆(r)

Ω
〉t are due to the centrifugal

force and are likely insensitive to the details of the initial con-
ditions taken from the parent runs. In a real star, the centrifugal
force would also change the geometry of the star. However, we
cannot assess the extent of this change because the fixed grid in
our model does not allow the geometry to change.

3.2. Magnetic energy

The magnetic energy of the first three azimuthal modes near the
surface are listed in Table 2 and shown as a function of the cen-
trifugal force amplitude in Fig. 3. It is defined as

Em=i
mag =

1
2µ0

〈∑

l≥m

B2
l,m=i

〉

θφt

, (16)

where Bl,m=i are obtained from the spherical harmonic decom-
position. At slow rotation, sets C and D do not show signifi-
cant changes in the energy as the centrifugal force increases. At
the same time, we also see that in set C the axisymmetric mode
dominates the runs. This contrasts with the previous study of Vi-
viani et al. (2018), who find that, at rotation rates larger than
Ω/Ω� ∼ 1.8, the m = 1 mode dominates the runs, and after
Ω/Ω� ∼ 20 the dominance falls back to m = 0. However, at
higher grid resolutions, they find that this trend is suppressed
and so the m = 1 mode dominated again. In the current simula-
tions, we find that this trend only starts to show up in set D. In
all cases, the m = 2 mode is always subdominant by a factor of
roughly 10.

Similarly to the differential rotation, the effects of the cen-
trifugal force are more noticeable in sets E, F, and G. In this
rapidly rotating regime, the axisymmetric mode is always sub-
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Fig. 3. Magnetic energy of the three lowest azimuthal modes (m) as a function of the centrifugal force amplitude. Runs with c f = 0 are given a
fiducial value of c f (Ω/Ω�)2 = 10−4.

Table 2. Magnetic energy density from the spherical harmonic decomposition for each run in units of 105 J m−3.

Run Em=0
mag Em=1

mag Em=2
mag

C1 3.2 × 10−2 ± 4.7 × 10−3 2.7 × 10−2 ± 6.6 × 10−3 5.4 × 10−3 ± 1.0 × 10−3

C2 3.6 × 10−2 ± 1.8 × 10−3 2.6 × 10−2 ± 5.4 × 10−3 6.2 × 10−3 ± 3.3 × 10−4

C3 2.9 × 10−2 ± 1.0 × 10−3 2.8 × 10−2 ± 1.0 × 10−3 6.3 × 10−3 ± 1.5 × 10−4

C4 4.5 × 10−2 ± 2.1 × 10−2 2.3 × 10−2 ± 1.1 × 10−2 6.8 × 10−3 ± 1.2 × 10−3

D1 2.7 × 10−2 ± 1.4 × 10−2 7.3 × 10−2 ± 6.3 × 10−2 7.5 × 10−3 ± 5.4 × 10−4

D2 3.9 × 10−2 ± 2.8 × 10−2 7.4 × 10−2 ± 3.5 × 10−2 8.0 × 10−3 ± 1.5 × 10−3

D3 4.1 × 10−2 ± 2.7 × 10−2 9.1 × 10−2 ± 2.5 × 10−2 8.3 × 10−3 ± 1.8 × 10−3

D4 1.1 × 10−2 ± 8.8 × 10−4 6.3 × 10−2 ± 2.0 × 10−4 6.4 × 10−3 ± 1.5 × 10−4

E1 6.3 × 10−2 ± 3.3 × 10−2 2.4 × 10−1 ± 1.0 × 10−1 3.0 × 10−2 ± 1.4 × 10−2

E2 2.3 × 10−2 ± 1.3 × 10−2 2.2 × 10−1 ± 1.8 × 10−2 1.3 × 10−2 ± 3.7 × 10−3

E3 3.7 × 10−2 ± 2.0 × 10−2 3.1 × 10−1 ± 2.4 × 10−2 1.5 × 10−2 ± 2.2 × 10−3

E4 2.1 × 10−2 ± 1.1 × 10−2 2.2 × 10−1 ± 1.7 × 10−2 1.3 × 10−2 ± 2.5 × 10−3

E5 1.5 × 10−2 ± 3.9 × 10−3 3.0 × 10−1 ± 7.9 × 10−3 1.2 × 10−2 ± 4.0 × 10−5

F1 9.4 × 10−2 ± 7.8 × 10−2 1.4 × 10−1 ± 8.9 × 10−2 4.3 × 10−2 ± 2.8 × 10−2

F2 4.4 × 10−2 ± 1.7 × 10−2 7.2 × 10−2 ± 2.1 × 10−2 1.7 × 10−1 ± 5.4 × 10−2

F3 3.7 × 10−2 ± 1.2 × 10−2 1.2 × 10−1 ± 7.4 × 10−2 7.4 × 10−2 ± 3.6 × 10−2

G1 1.4 × 10−1 ± 3.9 × 10−2 1.3 × 10−1 ± 3.2 × 10−2 1.2 × 10−1 ± 3.0 × 10−2

G2 1.4 × 10−1 ± 4.3 × 10−2 1.5 × 10−1 ± 3.2 × 10−2 1.2 × 10−1 ± 3.0 × 10−2

G3 3.4 × 10−2 ± 9.4 × 10−3 6.6 × 10−2 ± 1.9 × 10−2 1.7 × 10−1 ± 3.7 × 10−2

G4 2.5 × 10−2 ± 3.8 × 10−3 1.6 × 10−1 ± 5.7 × 10−2 4.5 × 10−2 ± 1.2 × 10−2

G5 8.5 × 10−2 ± 4.3 × 10−2 8.8 × 10−2 ± 4.6 × 10−3 1.1 × 10−1 ± 3.2 × 10−2

dominant. In set E, the m = 1 mode always has the highest
energy, and as the amplitude of the centrifugal force increases,
Em=0

mag decreases and so does Em=2
mag . We do not see noticeable dif-

ferences between runs E2 and E3, which have the same centrifu-
gal force but were initialized at different times. This is also the
case for runs E4 and E5, meaning no hysteresis is observed and
the results are independent of the history of the run. In set F, we
see that the energy in the m = 0 mode decreases, and in run F2

the m = 2 mode carries most of the energy. However, when the
centrifugal force is increased further, the m = 1 mode becomes
dominant once again.

In run G1 there is no clearly dominating mode, and the en-
ergy in the m = 0 mode is only roughly 5% larger than in m = 1.
As the centrifugal force is first added in run G2, the energy of the
m = 0 mode increases by about 10%. However, similarly to run
F2, run G3 has most of the magnetic energy in the m = 2 mode,
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Fig. 4. Period of the ADWs as a function of the normalized rotation rate
for runs without the centrifugal force.

which is about 66% higher than Em=0
mag and Em=1

mag combined. In-
creasing the centrifugal force further, we see that the dominant
mode is m = 1, same as in the case of run F3. When the centrifu-
gal force is switched off, the distribution of the energy goes back
to levels nearer to run G1 with c f = 0.

3.3. Azimuthal dynamo waves

We began by estimating the period of the ADWs by building a
periodogram and identifying the signal with the greatest power
as the main cycle. We then investigated whether there are ten-
dencies between the period of the ADW and the rotation rate in
runs without the centrifugal force. This is shown in Fig. 4. From
Ω = 5Ω� to Ω = 20Ω�, the period of the ADWs of the m = 1
and m = 2 modes seems to increase with rotation. For more rapid
rotation, the period of the m = 1 ADW decreases, whereas for
the m = 2 mode this tendency appears for Ω ≥ 25Ω�. For the
two most rapidly rotating cases, the period of the m = 2 ADW
exceeds that of the m = 1 mode.

To explore the migration pattern of the ADW, we show in
Fig. 5 the m = 1 mode of the radial magnetic field near the
surface at a latitude of 60◦ for runs C1, C3, D1, D3, E1, and
E5, as well as the m = 2 mode for runs F1, F2, G1, and G3.
Overplotted is the advection path due to differential rotation. In
Table 3 we list the periods of the ADWs at θ = 60◦ and the
direction of the propagation.

In runs C1 and C3 we obtain a retrograde migration with no
evidence of changes due to the centrifugal force. Both migration
patterns appear to be constant in time with no interruptions. Sim-
ilarly, the ADWs in runs D1 and D3 have a retrograde migration
pattern but are characterized by a longer period. Run E1 has an
interesting non-axisymmetric dynamo solution that shows peri-
ods of prograde and standing ADWs for the m = 1 mode. The
migration of the ADW is changed by the centrifugal force, as
evidenced by the panel for run E5. This run has a retrograde mi-
gration, similarly to sets C and D, and shows no similarity to run
E1. As shown in Sect. 3.1, the change in the latitudinal differen-
tial rotation between runs E1 and E5 is about 17%. However, the
ADWs propagate almost like rigid structures, so differential rota-
tion cannot directly be used to explain their behavior. The precise
origin of ADWs is unclear even in the case where the centrifugal
force is absent, but quantities relevant for large-scale dynamos,
such as differential rotation, kinetic helicity, and other turbulent
quantities, along with their spatio-temporal profiles, likely play
roles. However, the changes we observe when the centrifugal
force is included suggest that subtle changes in the velocity field
are enough to significantly alter the behavior of ADWs.

Table 3. Properties of the ADWs.

Run PADW [yr] Propagation
C1 11.44∗m1

R
C2 9.64∗m1

R
C3 8.48m1 R
C4 8.80m1 R
D1 22.88m1 R
D2 22.45m1 R
D3 19.73m1 R
D4 21.60m1 R
E1 >187.30m1 S,P
E2 - S
E3 >116.40m1 R,P
E4 >64.07m1 R
E5 >73.48m1 R
F1 >52.64†m2 R,P
F2 >35.84m2 R
F3 >15.04m2 R
G1 26.62∗,†m2 P
G2 40.74∗,†m2 P
G3 69.68m2 R
G4 31.65∗m2

R
G5 65.60∗m2

P

Notes. Data were taken at latitude θ = 60◦ for each run. The “greater
than” symbol indicates that the period of the ADW is not covered in
the simulated time. Asterisks denote a difference between the period of
the ADW at the opposite latitude, and “†′′ denotes nearly equally strong
m = 1 and m = 2 signals. S, R, and P stand for standing, retrograde, and
prograde propagation. In the case of Run E1, a wave with a period of
about 80 years can also be identified.

In run F1 the wave is standing or very slowly migrating in a
retrograde direction. The migration period seems to decrease as
the centrifugal force is added in the lower panel of Fig. 6, where
the wave travels about 120◦ in azimuth. Also evident here is the
increase in the magnitude of the m = 2 mode at the southern
hemisphere. It also seems that this part contributes the most to
the change in magnetic energy seen in Fig. 3. It is only toward the
end of the simulations that the Bm=2

r at the northern hemisphere
catches up and becomes comparable in strength to the southern
hemisphere counterpart, as can be seen by comparing the panels
of run F2 in Figs. 5 and 6.

In the rapidly rotating regime, the m = 2 mode of run G1
has a periodic wave with a period of about 26 years (see Ta-
ble 3), with clear prograde propagation. The centrifugal force
changes the propagation direction, as can be seen in the last panel
of Fig. 5 (run G3), and the period of the ADW is also affected
such that now it is about 70 years. In this case, the latitudinal
differential rotation is doubled in run G3 as compared to run G1.
Although this is the most obvious change between the simula-
tions, it is difficult to explain the change in the ADWs with this
alone, as discussed above.

In general, we find a preference for retrograde propaga-
tion, as in Viviani et al. (2018). Interestingly, however, run E1
shows a combination of standing and prograde waves and G1
is prograde. A subsequent study by Viviani & Käpylä (2021),
where the prescribed heat conductivity was replaced by the
Kramers opacity law, showed that there is a tendency of pro-
ducing prograde-propagating ADWs. We replaced the fixed ra-
dial profile K(r) with the corresponding quantity from Kramers
opacity (see Eq. 6) and branched run E1 off to a new run, K1.
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Fig. 6. Same as Fig. 5 but at θ = −60◦ for runs F1 (top) and F2 (bottom).

The centrifugal force was added in run K2 with c f = 5 × 10−4.
Figure 7 shows the reconstructed m = 1, 2 modes for these two
runs. It is clear that run E1 is different than K1, as the proper-
ties of the ADW are not reproduced when the Kramers opacity
is used. In the latter case, the ADW is prograde for both m = 1
and m = 2 modes, which also have comparable energies. This
is in accordance to Viviani & Käpylä (2021) in that it seems as
if prograde migration is favored when the Kramers opacity is
used. When the centrifugal force is added in run K2, the strength
of the first non-axisymmetric mode decreases down to around
1 kG, but the direction of the propagation appears to be unaf-
fected. Interestingly, the m = 2 mode increases from about 4 kG
in run K1 to roughly 6 kG in run K2. The propagation pattern
is interesting in that it seems to oscillate around a mean azimuth
with an amplitude of 40◦ between t = 40 yr and t = 110 yr.
After this, the strength of the m = 2 (m = 1) mode decreases
(increases), and at around t = 150 yr the m = 2 mode reappears
without a corresponding decrease in the m = 1 mode. In contrast
to set E, the combination of Kramers opacity and the centrifugal
force produces a dominant m = 2 mode, which was only found
in the more rapidly rotating runs F2 and G3.

Fig. 7. ADWs for the runs with Kramers opacity without the centrifugal
force (top) and with the centrifugal force (bottom).

4. Summary and conclusions

In this paper we have studied the effects of the centrifugal force
in semi-global dynamo simulations. It is important to assess its
effects in the context of young solar analogs, which are used to
study the Sun in an astrophysical context.

The amplitude of the centrifugal force is considered in our
setup as a free parameter and is thus decoupled from the Coriolis
term and the rotation of the star. In this way, its amplitude is
artificially reduced by the control parameter c f . This allows us
to avoid an unrealistically large centrifugal force (Käpylä et al.
2013). This approach was applied to a total of 21 simulations
divided into five sets, each characterized by a different rotation
rate and with different values of c f within each set. We find that
the centrifugal force induces changes in the differential rotation
and magnetic field only when rotation is rapid enough.

Both the latitudinal and radial differential rotation tend to in-
crease with increasing centrifugal force. In the two most rapidly
rotating runs without the centrifugal force, we obtained an anti-
solar radial differential rotation. After including the centrifugal
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force, this solutions changed to solar-like differential rotation.
Namely, the outer layers of the convection zone went from ro-
tating more slowly to more rapidly relative to the deeper layers.
All of our runs have a solar-like latitudinal differential rotation,
where high latitudes rotate more slowly than the regions nearer
to the equator. This difference increases as the centrifugal force
becomes stronger (see Fig. 1).

The magnetic energy, shown in Fig. 3, also shows noticeable
effects only when the rotation is rapid enough in sets E, F, and
G. All runs are dominated by the m = 0 mode in set C and by
the m = 1 mode in set D, and they show small changes in energy
as a function of the centrifugal force amplitude. In the rapidly
rotating regime, it is common to find a dominating m = 1 mode,
and the energy of the m = 0 and m = 2 modes decreases as c f
increases in set E. This trend is also present in sets F and G, with
the difference that there are some cases where the m = 2 mode
dominates.

By analyzing the ADWs near the surface of our runs, we
find that the direction of the propagation changes from prograde
to retrograde in some rapidly rotating runs as a function of the
centrifugal force. This is most easily seen in runs E5 and G3 in
Fig. 5. For run F2, we find that the direction of the propagation
of the ADW is not clearly affected, but there are indications that
its period might be affected (see Fig. 6).

To confirm the effects of the centrifugal force, we introduced
three control runs. First, in order to test the importance of the
initial conditions, we started run E3 (E5) with the same value of
c f as E2 (E4) from run E1 but at a different time. There are neg-
ligible differences in the differential rotation, as can been seen in
columns 8 and 9 of Table 1 and in the overlapping points at con-
stant c f in Fig. 1. The magnetic energy is only slightly affected,
as seen in the third panel of Fig. 3 from the data points at con-
stant c f (Ω/Ω�)2. Secondly, it is important to look at the solution
of a run with the centrifugal force when it is turned off again.
We did this experiment with run G3, in which the propagation of
the ADW was retrograde (see the last panel of Fig. 5). When the
centrifugal force was turned off, the propagation changed back
to prograde, as it was in the original run, G1. Overall, the control
runs show that the changes described above are due to the cen-
trifugal force and not likely the outcome of the nonlinear evolu-
tion of the equations.

A previous study by Viviani & Käpylä (2021) shows that the
propagation of the ADWs can be affected by the introduction of
the Kramers opacity instead of a fixed radial profile of heat con-
ductivity. We combined the Kramers opacity with the centrifugal
force in runs K1 and K2 and find that, first, the solution of the
ADW is different for the runs without the centrifugal force (K1)
and with the centrifugal force (K2) as compared with the cor-
responding runs with the spatially fixed heat conductivity (set
E). Notably, run K2 showed a migration pattern that was not ob-
tained in any of the other runs (see Fig 7). This confirms that the
Kramers opacity changes the ADW solution, but it is even more
complex when the centrifugal force is included.

Despite our experiments, we were unable to identify the
mechanism responsible for changing the behavior of the ADWs.
The clearest change due to the centrifugal force is seen in the dif-
ferential rotation, but its effect must be indirect through the dy-
namo mechanism because advection by a shear flow is incompat-
ible with the practically rigidly propagating ADWs. The details
of the dynamo process in 3D simulations are highly complex
(e.g., Warnecke et al. 2021), and current mean-field methods are
applicable only in the axisymmetric case. Observations, specif-
ically an analysis of the surface magnetic field and its cycles as
a function of rotation, could help us better understand this. Such

a study was performed by Lehtinen et al. (2016), who find that
the photometric rotation period and activity period of a group of
stars show clear differences. They proposed that this trend could
be explained by the presence of prograde ADWs. However, our
simulations suggest that when a prograde wave is affected by the
centrifugal force, it changes to a retrograde propagation. Such a
discrepancy could be better understood by extending the obser-
vations and by performing more realistic simulations in a wider
parameter regime.
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Chapter 6

Conclusions and Outlook

From the most simple theoretical grounds to the more detailed MHD simulations pre-
sented here, mounting evidence has revealed that the Applegate mechanism cannot
adequately explain the observed eclipsing time variations. The required variations
of the quadrupole moment are much larger than what we would expect in physical
systems.

It was shown in Paper I that the origin of the quadrupole moment fluctuations are
related to the different modes of the magnetic dynamo. However, the amplitude is too
small to explain the observations. An important point is that these simulations did
not include the centrifugal force, which is expected to play a key role in the Applegate
mechanism. However, in Paper II it was found that the centrifugal force only plays a
minor role in the quadrupole moment fluctuations.

However, an important step forward was taken by Lanza (2020). Lanza’s model
does no longer rely on the centrifugal force but on relaxing the assumption of tidal
locking. By doing this, a persistent non-axisymmetric quadrupole moment of reason-
able amplitude was found to be enough to explain the observations. We confirm this
in Paper I by computing the non-axisymmetric quadrupole moment in one of our runs
where we find that the computed period variations are of the same order of magnitude
as the observed one for V471 Tau.

An interesting scenario arises where stellar magnetism can be linked to eclipsing
time variations without the shortcomings of the Applegate mechanism. These eclipsing
time variations can potentially be attributed to strong non-axisymmetric magnetic
fields in the convective zones of magnetically active stars in post-common-envelope
binaries. These magnetic fields tend to become stronger when the centrifugal force is
included as presented in Paper III.

A few more steps can be taken to further make progress in the study of stellar
magnetic fields through eclipsing times:

1. Solve Eq. (31), (32), or (35) of Navarrete et al. (2022) with N-body codes. Here
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the idea is to present an independent way of proving the Lanza’s mechanism and
using the computed quadrupole moment variations of Paper I as a guide for more
realistic variations.

2. Observationally prove if post-common-envelope binaries are tidally locked. Ob-
servations have shown that some close binaries are unsynchronized and this has
been attributed to their past complex and dramatic history. Common envelopes
may well fall in this category. Thus, the assumption of

Overall, the Lanza mechanism seems like a promising new way of explaining the
connection between magnetic activity and eclipsing time variations. After a proper
characterization, we could begin to draw some first conclusions about the internal
magnetic fields of the active component in close binaries which show eclipsing time
variations.
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