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Zusammenfassung

Die Auswirkungen von starken Lichtfeldern auf die Floquet-Bandstruktur
von Graphen werden in einem Multi-Orbital-Tight-Binding-Modell unter-
sucht. Dabei liegt ein besonderer Fokus auf der Spin-Orbit-Wechselwirkung.
Bei linearer und zirkularer Polarisation des Lichts wird beobachtet, dass
Graphen entsprechend ein Z2-topologischer Isolator oder ein Chern-Isolator
ist. Für Frequenzen im PHz-Bereich wird das frequenzabhängige Verhalten
der Bulk-Floquet-Bandstruktur an und um die Dirac-Punkte herum nu-
merisch berechnet und auf topologische Eigenschaften gemäß des

”
Tenfold

Way“ zurückgeführt. Für THz-Frequenzen wird eine Oszillation von Valenz-
und Leitungsband als eine Funktion der eingestrahlten Frequenz beobach-
tet. In Graphen-Streifen mit endlicher Breite führen die Änderungen in der
Topologie zu entsprechenden Änderungen in den Randzuständen. Unter Ein-
strahlung mit zirkular polarisiertem Licht wird die Spin-Entartung der to-
pologisch geschützten Randzustände aufgrund eines photovoltaischen Hall-
Effekts, der mit dem intrinsischen Spin-Hall-Effekt konkurriert, aufgehoben.
Die Beobachtungen zur Topologie werden für leichte Ablenkungen der Licht-
quelle geprüft, und es wird bestätigt, dass die Ergebnisse sich dadurch nicht
ändern.



Abstract

The effects of intense light fields on the Floquet band structure of graphene
are studied in a multi-orbital tight-binding model, paying special attention
to spin-orbit interaction. Under linear and circular polarisation, graphene
is observed to be a Z2- or Chern-topological insulator, respectively. For
frequencies in the PHz regime, the frequency-dependent behaviour of the
bulk Floquet band structure at and around the Dirac points is computed
numerically and attributed to topological properties according to the tenfold
way. For THz frequencies, an oscillating behaviour of valence and conduction
band as a function of the irradiated frequency is observed. In graphene
ribbons of finite width, the changes in topology result in respective changes
to the topological edge states. Under irradiation with circularly polarised
light, the spin degeneracy of the topologically protected edge states is lifted
as a consequence of the competing intrinsic spin-Hall effect of graphene and
a light-induced photovoltaic Hall effect. The observations on the topology
are further confirmed to hold up under small deflections of the light source.



Contents

1 Introduction 1

2 Basics 5
2.1 Graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Periodic Wave Functions . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Bloch Theorem . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Tight-binding Model . . . . . . . . . . . . . . . . . . . 11
2.2.3 LCAO Method . . . . . . . . . . . . . . . . . . . . . . 15
2.2.4 Envelope Functions . . . . . . . . . . . . . . . . . . . . 19

2.3 Spin-orbit Interaction (SOI) . . . . . . . . . . . . . . . . . . . 23
2.3.1 Rashba SOI . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Topological Insulators: Haldane Model . . . . . . . . . . . . . 29
2.4.1 Haldane Model and Symmetry . . . . . . . . . . . . . . 30
2.4.2 Berry Phase and Chern Number . . . . . . . . . . . . . 34
2.4.3 Chern Number and Berry Curvature . . . . . . . . . . 37
2.4.4 Edge States . . . . . . . . . . . . . . . . . . . . . . . . 39
2.4.5 Sublattice Spin Winding Number . . . . . . . . . . . . 42

2.5 Topological Insulators: Spinful Models . . . . . . . . . . . . . 47
2.5.1 Z2-topological Insulators . . . . . . . . . . . . . . . . . 47
2.5.2 The Tenfold Way . . . . . . . . . . . . . . . . . . . . . 56

2.6 Time-dependent Systems . . . . . . . . . . . . . . . . . . . . . 59
2.6.1 Floquet Formalism . . . . . . . . . . . . . . . . . . . . 59
2.6.2 Photon Count . . . . . . . . . . . . . . . . . . . . . . . 62
2.6.3 Electronic and Photonic Band Structure . . . . . . . . 63
2.6.4 Truncation . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.6.5 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3 Electric Fields in Graphene 73
3.1 Implementation of the External Electric Field . . . . . . . . . 73

3.1.1 Coupling of Different k⃗ . . . . . . . . . . . . . . . . . . 76
3.2 Analytical Solutions at the K-point . . . . . . . . . . . . . . . 80

i



ii CONTENTS

3.3 Electric Fields at the K-point . . . . . . . . . . . . . . . . . . 84
3.3.1 Onsite Coupling . . . . . . . . . . . . . . . . . . . . . . 84
3.3.2 Sublattice Potential . . . . . . . . . . . . . . . . . . . . 90

4 Floquet Band Structure at the K-point 93
4.1 General Observations . . . . . . . . . . . . . . . . . . . . . . . 94

4.1.1 Frequency-dependent Floquet Energies . . . . . . . . . 95
4.1.2 Topology and Insulating Properties . . . . . . . . . . . 100

4.2 Orbital Composition (PHz Regime) . . . . . . . . . . . . . . . 106
4.2.1 Circular Polarisation . . . . . . . . . . . . . . . . . . . 106
4.2.2 Linear Polarisation . . . . . . . . . . . . . . . . . . . . 113
4.2.3 Angular Deflection . . . . . . . . . . . . . . . . . . . . 115

4.3 Lower Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.3.1 Visible and Ultraviolet Light . . . . . . . . . . . . . . . 119
4.3.2 THz Frequencies: Floquet Energies at the K-point . . 121
4.3.3 THz Frequencies: Band Structure Around the K-point 129

5 Graphene Ribbons 134
5.1 Concepts and Definitions . . . . . . . . . . . . . . . . . . . . . 134
5.2 General Observations . . . . . . . . . . . . . . . . . . . . . . . 138

5.2.1 Quantum Hall Effects . . . . . . . . . . . . . . . . . . . 138
5.2.2 Angular Deflection . . . . . . . . . . . . . . . . . . . . 142

5.3 Finite-size Effects . . . . . . . . . . . . . . . . . . . . . . . . . 144

6 Conclusion and Outlook 151

A Material Parameters 155

B k⃗-non-diagonal Matrix Elements 157

C Diagonalisation of Tridiagonal Matrices 162

D Oscillating Sublattice Potential 165

Bibliography 169

Acknowledgements 182

Eidesstattliche Versicherung / Declaration on Oath 184



Chapter 1

Introduction

In physics, it is often the simplest systems that shape our understanding the
most. While for atomic physics this system is, without a doubt, the hydrogen
atom, it is less obvious for condensed matter physics. After all, condensed
matter involves countless atoms, often of many different kinds. Nonetheless,
concepts like Bragg’s law [1] and the Bloch theorem [2] have allowed research-
ers to reduce these complex systems to simpler, periodic models (cf. [3–5]).
Still, even in this simpler picture, there are materials that stand out with
their simplicity. One such material is graphene. Even though this two-
dimensional allotrope of carbon was theorised to exist in 1962 already [6], it
was not before 1990 that researchers confirmed its existence [7]. Originally
only discovered out of the motivation to “make films of graphite as thin as
possible” [7], graphene has since then led to many unique discoveries like
Dirac cones [8, 9] and the Klein paradox [10]. Moreover, it was graphene
that sparked the research field of topological insulators [11].
The latter has become a major part of condensed matter theory in gen-
eral, as several properties of materials can be attributed to the topology of
their band structures [12]. Most prominently, the quantum Hall effect, as
discovered by Berry, [13] is an entirely topological phenomenon (cf. [14] for
integer and fractional quantum Hall effect). The results of Berry have been
applied to graphene as well, first with the Haldane model that describes a
Chern insulator [15, 16], and later with the Kane-Mele model that describes a
Z2-insulator [17, 18]. As a Z2-insulator, graphene exhibits a spin-Hall effect,
a phenomenon that was predicted by Dyakonov and Perel [19, 20].
Based on random matrix theory, Altland and Zirnbauer have fully categor-
ised the multitude of different topological and non-topological insulators into
four types of Z, Z2, 2Z and trivial [21]. Depending on its spatial dimensions
and its behaviour under a set of three symmetry operations, every time-
independent insulator can be classified as one of these four types [22–24]. For
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2 CHAPTER 1. INTRODUCTION

time-dependent systems, insulators are categorised into four analogous types
of topological and non-topological insulators [25].
Topological insulators are band insulators whose valence and conduction
band have non-trivial so-called topological quantum numbers, quantum num-
bers that cannot change unless valence and conduction band touch. As
formulated in the bulk-boundary correspondence, bulk insulators in which
valence and conduction band have different topological quantum numbers
exhibit edge states which cross the band gap (cf. [26]). These edge states are
topologically protected, i.e. as long as there is a band gap between valence and
conduction band, and as long as this gap prevents the topological quantum
numbers from becoming trivial, the edge states will always cross the gap.
Since in graphene the band gap between valence and conduction band is
small, it took a great effort to show its existence [27–29]. Its magnitude is
of 42 µeV [30, 31], and it is generated by spin-orbit interaction between the
atomic d-orbitals of the carbon atoms [29, 32].

In this thesis, a tight-binding model with atomic pz-, dxz- and dyz-orbitals
is employed, using the Slater-Koster method [33]. Whenever necessary, ad-
ditional orbitals are considered. The focus of this thesis lies on the general
band structure of graphene and its topological properties in intense light
fields. The latter are described via time-dependent electric fields within a
dipole approximation. In chapter 3, the effects of these fields are studied
analytically at the K-point, a point of high symmetry in the first Brillouin
zone of graphene. These results are then used to explain the phenomena of
the subsequent chapters.
Chapter 4 considers fully periodic graphene, whereas chapter 5 studies graphene
ribbons of finite width, with focus on the edge states. In both chapters, a
main focus lies on the effects of different frequencies and polarisations of the
light field the graphene sample is irradiated with. In particular the polar-
isation has been shown to have a significant impact on the edge states of
graphene (cf. [34–36]). In this thesis, the time-dependence is handled via
Floquet formalism [37–39], a formalism that allows to reduce a linear differ-
ential equation that has a periodic dependence on its parameters, to a purely
algebraic problem.
In the process of the Floquet formalism, the original band structure of
graphene is split into multiple copies that, in this work, are identified with
photonic absorptions and emissions. The formalism gives rise to the field
of Floquet engineering (cf. [40]) that, in turn, allows to heavily modify the
band structures of existing systems via a periodic drive. This has been done
in graphene as well, with a plethora of interesting results (e.g. [41–46]).
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Floquet engineering with a circularly polarised light field gives rise to the
so-called photovoltaic Hall effect, an anomalous Hall effect that is induced
by the electric field of the light. This effect in graphene was predicted by Oka
at al. [47] and later confirmed experimentally by McIver at al. [48]. Their
results are reproduced in chapter 5, but in a system that satisfies different
symmetries than [47]. As a result, a competition between the intrinsic spin-
Hall effect in graphene and the induced photovoltaic Hall effect is observed
to lift the original spin degeneracy of the graphene edge states.
The lift of spin degeneracy can also be noted in the bulk states, i.e. the
states of fully periodic graphene. Analytical results of section 3.3 are used to
determine the correlation between the spin splitting of bulk states and the
polarisation of the light in section 4.2. In addition to this, light of a range of
frequencies in the PHz regime is studied, to determine its effect on the band
structure of the dressed states. As one consequence, the originally 42 µeV
wide band gap increases to the size of several meV.
Due to the originally small width of the band gap, thermal excitations can
transfer electrons from valence to conduction band, turning graphene into
a metal. Hence, to ensure the insulating properties of graphene, there have
been many attempts to increase the band gap [49], be it e.g. via doping [50–
53], strain [54, 55] or substrates [56, 57].
Many of these methods bear the risk of breaking symmetries of the graphene
sample and, as a result, inducing unwanted effects. In particular the Rashba
effect [58, 59] bears the potential of rendering graphene topologically trivial.
While this is very well possible for the irradiation with light as well, no
Rashba effects are found in this thesis, as is shown in sections 4.2.3 and
5.2.2.
While the rest of this thesis focusses on frequencies in the PHz regime, sec-
tions 4.3 and 5.3 discuss the effects of frequencies in the regime of only a few
THz up to the ultraviolet spectrum. In section 4.3.2, an oscillation of the
band gap in periodic graphene is observed as a function of the frequency of
the irradiated light. This oscillation is explained with analytical results from
section 3.3. In section 4.3.3, the surrounding band structure is studied, using
the results of a bachelor thesis [60] that was supervised by the author.
For graphene ribbons of finite width, THz frequencies are used in section
5.3, to study a finite-size effect. The latter is found to lift the topological
protection of the crossing edge states that, in turn, split apart.

The chapters of this thesis are structured as follows:
Chapter 2 introduces the basic concepts, beginning with the graphene lat-
tice, the Bloch theorem, linear combinations of atomic orbitals and spin-orbit
interaction. These concepts are then used to explain topology, edge states
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and Floquet formalism.
Afterwards, the effects of time-dependent electric fields at the K-point are
studied in chapter 3. These results serve as a basis for explaining the phe-
nomena of the subsequent chapters.
Chapter 4 is the first of two chapters that contain the physical results of
this thesis. It focusses on the effects of different frequencies at the K-point.
After some general observations in 4.1, section 4.2 studies how linearly and
circularly polarised light affects the band structure at the K-point. These
results are verified for angular deflections of the laser setup in section 4.2.3.
Section 4.3 then studies the effects of lower frequencies, with a focus on the
low THz regime in 4.3.2 and 4.3.3.
The second results chapter, chapter 5, studies the edge states of the graphene
band structure. The two main parts of the chapter are the sections 5.2 and
5.3. Section 5.2 focusses again on PHz frequencies, whereas section 5.3 stud-
ies finite-size effects and their consequences for the topological protection of
the edge states.
The results of this thesis are summarised and evaluated in chapter 6, together
with a discussion on possible next steps.



Chapter 2

Basics

2.1 Graphene

Graphene is an allotrope of carbon, the sixth element of the periodic table.
Via sp2 hybridisation, every bulk atom is connected to three respective neigh-
bours, giving rise to a honeycomb lattice structure as depicted in Figure 2.1.
The lattice itself is not a Bravais lattice, but can be constructed by overlay-
ing two hexagonal Bravais lattices. This is realised by taking a unit cell with
two basis atoms A and B separated by a displacement vector

δ⃗ =
a√
3

(
0
1

)
(2.1)

with the lattice constant a, the value of which is given in appendix A together
with all other numerical parameters of this thesis. As depicted in the left-

Figure 2.1: Graphene; Carbon
atoms (black) form a honeycomb
lattice. A rectangular sheet has
two types of edges, zigzag and
armchair. Here, the horizontal
edges are zigzag ones while the ver-
tical ones are of the armchair type.
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a⃗1a⃗2
A

B

A

B
A

B
A

B

δ⃗

B B

A A

kx

ky

K

K ′

Γ

M1

M2

M3

Figure 2.2:
Left: Honeycomb lattice - two
identical atoms A and B per unit
cell form a hexagon (red) after
translation to other cells via the
lattice vectors a⃗1/2. The atoms are
separated by a displacement vector
δ⃗, and both give rise to a respect-
ive hexagonal sublattice.
Above: First Brillouin zone - the
first Brillouin zone is hexagonal
as well. Points of high symmetry
have been equipped with their re-
spective labels.

hand side of Fig. 2.2, the translation vectors

a⃗1 =
a

2

(
1√
3

)
and a⃗2 =

a

2

(−1√
3

)
(2.2)

then give rise to the hexagonal lattice structure of the honeycomb lattice
via translational symmetry. The first Brillouin zone is hexagonal as well, as
depicted in the upper right part of Fig. 2.2. Points of high symmetry are
the Γ-point, the K- and K ′point and the Mi-points with i ∈ {1, 2, 3}. They
have been labelled accordingly in the figure. The notion of “K-points” or
“M -points” in this thesis will always refer to all points of the respective type.
The K-points are located at

K⃗ =
1

a

(
4π
3

0

)
and K⃗ ′ =

1

a

(
−4π

3

0

)
. (2.3)
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−2
0

2 −2

0

2
−2

0

2

kx[1/a]
ky[1/a]

E[eV]

Figure 2.3: Graphene band structure; Valence (blue) and conduction band
(purple) would touch at the K-points within the first Brillouin zone if it were
not for Spin-orbit interaction opening a band gap between them.

Neither point can be transformed into the respective other by translation
with a reciprocal translation vector. However, translation does relate their
positions to two other corners of the Brillouin. Hence, each K-point is equi-
valent to the points obtained via rotations by 2π/3 and 4π/3, respectively.

Every carbon atom in graphene has three respective neighbours. However,
carbon has four electrons in its outer shell, one more than possible partners
to bond to. The fourth electron resides in a 2pz-orbital that hybridises with
the pz-orbitals of other carbon atoms to form π-bonds responsible for most of
the electronic properties of graphene. Most importantly, these electrons and
therefore the 2pz-orbitals are the main contributors to valence and conduc-
tion band. If it were not for an additional, small contribution from d-orbitals
and a spin-orbit interaction between the latter, valence and conduction band
would touch at the K-points. This is depicted in Fig. 2.3. The following
section will cover the tight-binding model used to describe graphene in this
thesis. Concepts like spin and topology will follow in the subsequent sec-
tions.
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2.2 Periodic Wave Functions

Parts of this section, in particular its subsections 2.2.1 and 2.2.2, are largely
based on the book of Czycholl [3]. The corresponding proofs and derivations
can be read in greater detail there.

2.2.1 Bloch Theorem

As depicted in Fig. 2.2, the honeycomb lattice can be constructed from the
repeated alignment of a two-atomic unit cell. From this, it becomes apparent
that graphene satisfies a translational symmetry. More precisely, consider an
operation TR⃗ that translates a function f(r⃗) such that

TR⃗f(r⃗) = f(r⃗ + R⃗) (2.4)

with a translation vector R⃗.
The lattice being symmetric under translation means that the Hamiltonian
H commutes with TR⃗, i.e.

[H,TR⃗] = HTR⃗ − TR⃗H = 0. (2.5)

The combination of two translational operations is once again a translation,

TR⃗′TR⃗ = TR⃗′+R⃗ and T−R⃗TR⃗ = T0 = 1. (2.6)

Thus, the order of application does not matter, resulting in

[TR⃗′ , TR⃗] = 0 (2.7)

for any translational vectors R⃗ and R⃗′.
Eq. (2.5) allows for a choice of simultaneous eigenvectors ψ(r⃗) for both H
and TR⃗, such that

Hψ(r⃗) = Eψ(r⃗) and TR⃗ψ(r⃗) = c(R⃗)ψ(r⃗). (2.8)

Because of eq. (2.6), the eigenvalue function c must satisfy

c(R⃗′ + R⃗) = c(R⃗′) · c(R⃗) and c(R⃗) · c(−R⃗) = 1. (2.9)

Furthermore, because of the normalisation of the wave function, c(R⃗) must
be normalised as well, since

|c(R⃗)|2 =
∫
d3r⃗|c(R⃗)|2 |ψ(r⃗)|2 =

∫
d3r⃗|ψ(r⃗ + R⃗)|2 =

∫
d3r⃗|ψ(r⃗)|2 = 1.

(2.10)
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→ →

Figure 2.4: Periodic boundary conditions; Electrons that pass one red or
cyan line re-emerge from the other line of the same respective colour. By
identification of first the cyan and then the red lines, the originally rectan-
gular sheet can first be interpreted mathematically as a cylinder and then
as a torus, but without the depicted curvatures. For illustrative purposes, a
larger number of atoms than in Fig. 2.2 is depicted within one cell.

Eq. (2.9) and (2.10) lead to the conclusion that c(R⃗) can be written as

c(R⃗) = ei⃗kR⃗ (2.11)

with some reciprocal vector k⃗.
Thus, the eigenfunctions to the Hamiltonian need to be of the form

ψk⃗(r⃗) =
1√
N
ei⃗kr⃗ · uk⃗(r⃗) (2.12)

with normalising prefactor 1/
√
N and the lattice-periodic Bloch factor

uk⃗(r⃗) = uk⃗(r⃗ + R⃗), (2.13)

where R⃗ is an arbitrary translation vector R⃗ that leaves the overall system
invariant. Eq. (2.12) is known as the Bloch theorem [2]. It allows to restrict
the overall system to only a single unit cell and treat every electron moving
to a neighbouring cell as if it would re-enter the original cell from the other
side. This allows to consider the unit cell mathematically like a torus as
conceptually illustrated in Fig. 2.4.

Any translation vector R⃗ that describes a symmetry operation on the lattice
like above, can be written as a sum of integer multiples ni of the lattice
vectors a⃗i,

R⃗ =
∑
i

ni · a⃗i. (2.14)

Eq. (2.9) can thus be written as

c(R⃗) =
∏
i

c(a⃗i)
ni . (2.15)
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It is therefore convenient to write k⃗ in terms of reciprocal lattice vectors b⃗i
defined by the relations

a⃗i⃗bj = 2πδij and k⃗ =
∑
i

ki⃗bi (2.16)

with coordinates ki in the reciprocal space.

To discuss the consequences of the Bloch theorem for the Schrödinger equa-
tion, assume a general time-independent Hamiltonian

H(r⃗) = −ℏ2∇2

2m
+ V (r⃗). (2.17)

Application to the wave function (2.12) leads to

H(r⃗)ψk⃗(r⃗) =

(
−ℏ2∇2

2m
+ V (r⃗)

)
1√
N
ei⃗kr⃗uk⃗(r⃗) (2.18)

= ϵ(k⃗)
1√
N
ei⃗kr⃗uk⃗(r⃗) (2.19)

=
1√
N
ei⃗kr⃗

(
ℏ2

2m

(
−i∇+ k⃗

)2
+ V (r⃗)

)
︸ ︷︷ ︸

=:h(k⃗)

uk⃗(r⃗). (2.20)

where the last two lines form a new differential equation

h(k⃗)uk⃗(r⃗) = ϵ(k⃗)uk⃗(r⃗) (2.21)

for only uk⃗(r⃗) and for a fixed k⃗. The solutions un,⃗k(r⃗) to this differential

equation and their eigenvalues ϵn(k⃗) are both lattice-periodic, making eq.
(2.21) a boundary value problem within a single unit cell. The un,⃗k(r⃗) can

thus be orthonormalised within one unit cell, such that for identical k⃗ they
satisfy

1

VUC

∫
VUC

dr⃗ u∗
n,⃗k

(r⃗)un′ ,⃗k(r⃗) = δnn′ (2.22)

with the volume VUC of the unit cell. The same orthonormality is passed on
to the wave functions ψn,⃗k(r⃗) that then satisfy∫

V

ψ∗
n,⃗k

(r⃗)ψ∗
n′ ,⃗k′

(r⃗)dr⃗ = δnn′δk⃗k⃗′ . (2.23)

Note that here the integral is over the entire volume of the lattice, V .
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The overall wave function ψn,⃗k(r⃗) and its energy eigenvalues ϵn(k⃗) are thus
classified by n, which will be labelled the band index, and a reciprocal vec-
tor k⃗. The latter only takes discrete values. However, since these values
are dense in reciprocal space, they will often be treated as if they were con-
tinuous. Furthermore, due to the periodicity of the wave functions and the
eigenvalues, the vectors k⃗ can, due to their periodicity, be restricted to the
first Brillouin zone in reciprocal space. This thesis will use the names Bril-
louin zone and first Brillouin zone interchangeably, as only the first will be
considered. The first Brillouin zone for graphene is depicted in the top-right
part of Fig. 2.2.
The eigenvalues ϵn(k⃗) are therefore continuous functions of k⃗ and form energy
bands throughout the first Brillouin zone. The set of these bands labelled by
n is called the band structure. The valence and conduction band of graphene,
i.e. the energetically highest band that is occupied by electrons and the low-
est that is unoccupied, are depicted in Fig. 2.3. Between them lies the Fermi
energy, the highest energy of the unperturbed occupied band structure.
The following subsections will introduce the tight-binding model as a means
to compute the band structure.

2.2.2 Tight-binding Model

The tight-binding model is a means to simplify lattice-periodic systems and
to therefore ease the computation of the band structure while also improving
the intuitive understanding of the system. It is based on the assumption that
the electrons are localised close to the atoms inside the lattice. The overall
system will therefore be treated as a combination of single-atomic systems.
Let ϕn be the eigenfunction to a Hamiltonian of such an isolated atom at
position R⃗, i.e.

HR⃗(r⃗)ϕn(r⃗ − R⃗) = Enϕn(r⃗ − R⃗) (2.24)

with n here labelling the different quantum numbers. Here, it has been
assumed that the system only consists of identical atoms and that En is
therefore independent of R⃗. The Hamiltonian

HR⃗(r⃗) =
p⃗2

2m
+ v(r⃗ − R⃗) (2.25)

includes the atomic potential v(r⃗ − R⃗) generated from the core charge. A
Hamiltonian describing a lattice system can then be written as a sum of such
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atomic Hamiltonians, i.e.

H(r⃗) =
p⃗2

2m
+
∑
R⃗

v(r⃗ − R⃗) (2.26)

= HR⃗(r⃗) + ∆VR⃗(r⃗) (2.27)

with ∆VR⃗(r⃗) =
∑
R⃗′ ̸=R⃗

v(r⃗ − R⃗′). (2.28)

The term ∆VR⃗(r⃗) is the potential of all atoms not at position R⃗, evaluated
at position r⃗, and will be considered as a small perturbation.
Assuming ∆VR⃗(r⃗) is approximately zero1 in the close vicinity of R⃗, the solu-

tions ϕn(r⃗ − R⃗) to HR⃗ in eq. (2.24) are a good approximation for solutions
to H(r⃗) in eq. (2.26) as well, i.e.

Hϕn(r⃗ − R⃗) = (HR⃗(r⃗) + ∆VR⃗(r⃗)︸ ︷︷ ︸
≈0

)ϕn(r⃗ − R⃗) ≈ Enϕn(r⃗ − R⃗). (2.29)

While these solutions are not yet Bloch states, they can be constructed to
be, via

ψnk⃗(r⃗) =
1√
N

∑
R⃗

ei⃗kR⃗ϕn(r⃗ − R⃗). (2.30)

These new wave functions ψn,⃗k(r⃗) are both periodic in R⃗ and satisfy

H(r⃗)ψn,⃗k(r⃗) ≈ En,⃗kψn,⃗k(r⃗). (2.31)

They are, however, not orthonormal as

⟨ψn,⃗k|ψn′ ,⃗k⟩ =
1

N

∑
R⃗1,R⃗2

eik⃗(R⃗1−R⃗2)

∫
dr⃗ ϕ∗

n(r⃗ − R⃗2)ϕn′(r⃗ − R⃗1)

=
∑
R⃗

eik⃗R⃗
∫
dr⃗ ϕ∗

n(r⃗ − R⃗)ϕn′(r⃗)

=: δnn′ +
∑
R⃗ ̸=0

eik⃗R⃗αnn′(R⃗) (2.32)

with

αnn′(R⃗) =

∫
dr⃗ ϕ∗

n(r⃗ − R⃗)ϕn′(r⃗). (2.33)

1Near the position R⃗ of an atom, the distribution of the other atoms is nearly isotropic.
Thus, their contribution is suppressed by screening effects.
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Due to the strong localisation of the atomic wave functions ϕn(r⃗), the term

αnn′(R⃗) can be assumed to be small. However, it is typically non-zero, mean-
ing that the scalar product (2.32) does not vanish for n ̸= n′. Hence, the
Bloch states (2.30) are not perfectly orthogonal.

Nonetheless, the term αnn′(R⃗) is typically small. Hence, albeit not being
exact, the expression

ϵn(k⃗) =
⟨ψnk⃗|H(r⃗)|ψnk⃗⟩

⟨ψn,⃗k|ψn,⃗k⟩
(2.34)

is a good approximation to the energy values of the system. While its de-
nominator has been computed in Eq. (2.32), its numerator is

⟨ψnk⃗|H(r⃗)|ψnk⃗⟩ = En
〈
ψnk⃗
∣∣ψnk⃗〉

+
1

N

∑
R⃗1,R⃗2

eik⃗(R⃗1−R⃗2)

∫
dr⃗ ϕ∗

n(r⃗ − R⃗2)
∑
R⃗3 ̸=R⃗1

v(r⃗ − R⃗)ϕn′(r⃗ − R⃗1).

(2.35)

The product over the three functions ϕ∗
n(r⃗−R⃗2), v(r⃗−R⃗) and ϕn(r⃗−R⃗1) will

not be discussed here. A full discussion can instead be found in [3, pg. 121-

122] where they show that the energy ϵn(k⃗) can, in good approximation, be
assumed to only involve terms coupling nearest and possibly next-nearest
neighbouring atoms.

To solve the issue of the non-orthogonal states that was shown in equa-
tion (2.32), the basis will be modified in the following. The resulting basis
functions consists of the so-called Wannier functions, also called Wannier
states.

Wannier Functions

The problem with the tight-binding approach as introduced in the parent
subsection is that the atomic wave functions ϕn(r⃗ − R⃗) in Eq. (2.30) do not
lead to an orthogonal basis of Bloch states ψnk⃗(r⃗). To solve this issue, instead
assume that the ψnk⃗(r⃗) are orthogonal to begin with, and therefore replace
the atomic wave functions with Wannier functions defined as

wn(r⃗ − R⃗) :=
1√
N

∑
k⃗

e−i⃗kR⃗ψnk⃗(r⃗) (2.36)

with discrete reciprocal lattice points k⃗. For an infinite lattice, the sum is
replaced with an integral. The Wannier functions are orthonormal to one
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another with respect to their index n. The Bloch states, in turn, are re-
obtained via

ψnk⃗(r⃗) =
1√
N

∑
R⃗

ei⃗kR⃗wn(r⃗ − R⃗). (2.37)

With the use of Wannier functions, Eq. (2.35) simplifies to

ϵn(k⃗) := ⟨ψnk⃗|H(r⃗)|ψnk⃗⟩ = Ẽn(k⃗) +
∑
R⃗ ̸=0

e−i⃗kR⃗λ̃(R⃗) (2.38)

with Ẽn(k⃗) =

∫
dr⃗ w∗

n(r⃗)

 p⃗2

2m
+
∑
R⃗

v(r⃗ − R⃗)

wn(r⃗) (2.39)

and λ̃R⃗(k⃗) =

∫
dr⃗ w∗

n(r⃗ − R⃗)v(r⃗ − R⃗)wn(r⃗), (2.40)

where three-centre integrals have been neglected. The argument for why
those can be neglected, is given in [3, pg. 121-122], but will not be discussed
further, here.
The same reasoning also states that λ̃(R⃗) is non-vanishing only if R⃗ con-
nects two nearest neighbours or possibly second-nearest neighbours. Equa-
tion (2.38) therefore allows to intuitively write the tight-binding Hamiltonian
in matrix form as

H(k⃗) =
∑
n,R⃗

Ẽ(k⃗)|n, R⃗⟩⟨n, R⃗|+
∑
n,R⃗,R⃗′

tR⃗R⃗′(k⃗)|n, R⃗⟩⟨n, R⃗′| (2.41)

with the hopping matrix elements

tR⃗R⃗′(k⃗) =

{
t := λ̃R⃗(k⃗) for R⃗ connecting nearest neighbours

0 else
. (2.42)

The Wannier states are related to Eq. (2.41) via

wn(r⃗ − R⃗) = ⟨r⃗|n, R⃗⟩. (2.43)

The hopping matrix elements describe the tunnelling of an electron between
two lattice sites which can be imagined as an electron “hopping” from one
lattice site to another. Computations throughout this thesis will only as-
sume hopping between nearest neighbours like in Eq. (2.42), unless stated
otherwise.
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2.2.3 LCAO Method

The Wannier states (2.36) of a system can be difficult to obtain. A common
approach is to instead use a linear combination of atomic orbitals or short
the LCAO method. This method uses the same point of departure as the
previous section, but the Wannier states are replaced with sums of atomic
orbital wave functions

w(r⃗ − R⃗) =
∑
n

anϕn(r⃗ − R⃗). (2.44)

with coefficients an denoting the contribution of the respective orbital. The
label n here denotes all the quantum numbers corresponding to it.
While a single atomic orbital typically does not suffice to properly describe
the physical properties of a tight-binding system, an increasing number of
orbitals gradually improves this situation and makes for a better approxim-
ation. The computation of the resulting matrix elements of the Hamiltonian
matrix (2.41) is then simplified by the incorporation of the symmetries of the
atomic orbitals.
Slater and Koster [33]2 have computed which terms contribute the most to the
tight-binding Hamiltonian based on angle, orbitals involved and two-centre
integrals between the respective nearest-neighbour orbitals up to atomic d-
orbitals. The numerical values of these two-centre integrals are given in ap-
pendix A. The Slater-Koster terms allow to easily construct a lattice Hamilto-
nian where every atomic orbital for every lattice site is represented by one
respective basis vector. For graphene, a frequent choice throughout this
thesis will be the basis of 2pz-, 3dxz- and 3dyz-orbitals.

3 The resulting vector
representation for this configuration is then

(|A, pz⟩, |A, dxz⟩, |A, dyz⟩, |B, pz⟩, |B, dxz⟩, , |B, dyz⟩) , (2.45)

where the first entry A/B denotes the sublattice and the second the atomic
orbital. In the choice of basis (2.45), e.g. a vector

v =
1√
3
(1, 0, 0, 0, 1, 1)t (2.46)

would consist of equal portions of an electron in the pz-orbital on sublattice
A and in the dxz- and dyz-orbital on sublattice B.

2See [32, pg. 14] for a notation that is more in agreement with the notation used here.
3As mentioned in section 2.1, the pz-orbitals are most relevant for the graphene band

structure. The energetically closest orbitals that have non-vanishing matrix elements with
pz, are the dxz- and dyz-orbitals. Some of their effects will be discussed in section 2.3.
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Figure 2.5: Graphene band structure plotted along points of high symmetry;
With the introduction of d-bands (dashed, black), valence (cyan) and con-
duction band (red) change in shape. Furthermore, the Fermi energy gets
shifted slightly towards negative values. Since the band structure is symmet-
ric in the reciprocal space, it has not been specified which K- or M -points
are depicted.

Note that the addition of d-orbitals has a notable effect to valence and con-
duction band as depicted in Fig. 2.5. As a consequence, particle-hole sym-
metry, a symmetry that relates every state of energy E(k⃗) to a a state with

energy −E(k⃗), is broken. The resulting discrepancy between valence and
conduction band is illustrated in Fig. 2.6. This will be of particular import-
ance in section 2.5.2.

The system will be expanded further via the inclusion of spin. The latter
doubles the dimension of the vector space by assigning every orbital to either
the configuration spin-up or spin-down, with z as the spin quantisation axis.
Spin-orbit interaction between the d-orbitals then opens a band gap between
valence and conduction band at the K-points. Before the corresponding dis-
cussion in section 2.3, however, the completeness and compatibility of the
system under inclusion of an external electric field will be discussed in the
remainder of section 2.2.

Completeness of the Orbital Basis

The orbital basis (2.45) consists of 2pz- and 3dxz/yz-orbitals. As will be shown
in section 2.3, this basis suffices to describe unperturbed graphene with spin-
orbit interaction. However, it is insufficient for the description of general
electric perturbations acting on a single atom (cf. [61–65]).
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Figure 2.6: Asymmetry between valence and conduction band; With the in-
troduction of d-orbitals, valence and conduction band are no longer energet-
ically symmetric around the Fermi energy. The deviation from the symmetry,
∆E = ||ECB − EF| − |EVB − EF||, gives a measure for the asymmetry. Here,
CB and VB denote conduction and valence band, and F denotes the Fermi
energy.

To understand this, consider a spatially constant electric field in x-direction
with a field strength E0. It corresponds (possibly after a gauge transforma-
tion) to a scalar potential Φ(x) = E0 ·x. Similarly, fields in y- and z directions
correspond to potentials proportional to y and z. The problem with the or-
bital basis then becomes aware by considering the following diagram:

dyz ?

pz dxz

x

y y

x

(2.47)

Since the n-quantum number is always n = 2 for pz and n = 3 for dxz/yz in
this chapter, it has no longer been written explicitly.
A spatially constant electric field in x-direction couples the pz- and the dxz-
orbital, whereas a field in y-direction analogously couples the pz- and the
dyz-orbital. However, a field in y-direction does not couple the dxz-orbital
to anything. Similarly, the dyz-orbital has no coupling partner for a field in
x-direction. Hence, the diagram (2.47) does not commute, and neither do
the scalar potentials, i.e.

[E0 · x,E0 · y] = E2
0 · [x, y] ̸= 0 (2.48)

in the restricted orbital space. Thus, the system depends on the order of
application of electric fields in x- and y- direction. This is particularly prob-
lematic for circularly polarised light that oscillates between both.
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To solve this issue, it is necessary to include an additional, artificial 4fxyz-
orbital. With it, the diagram does commute:

dyz fxyz

pz dxz

x

y y

x

(2.49)

This fxyz-orbital is not a natural one, as will be derived below. The following
steps are based on similar computations by Foreman [61].

Consider a basis of orbitals centred at only one single atom. For the basis

(|pz⟩, |dxz, ⟩, |dyz⟩) , (2.50)

compute the matrix elements

⟨l1|ô|l2⟩ (2.51)

with l1/2 ∈ {pz, dxz, dyz} and ô ∈ {x, y}. The only non-zero elements are

⟨pz|x|dxz⟩ = ⟨pz|y|dyz⟩ =: c ∈ R (2.52)

and their identical conjugates, with some real value c. Thus, when written as
a matrix in the basis (2.50), the operators corresponding to x and y become

x =

0 c 0
c 0 0
0 0 0

 and y =

0 0 c
0 0 0
c 0 0

 (2.53)

whose commutator is

[x, y] =

0 0 0
0 0 c2

0 −c2 0

 ̸= 0. (2.54)

However, via the inclusion of the 4fxyz-orbital, one obtains additional non-
zero matrix elements

⟨fxyz|y|dxz⟩ = ⟨fxyz|x|dyz⟩ =: b ∈ R (2.55)

which in the basis

(|pz⟩, |dxz, ⟩, |dyz⟩, |fxyz⟩) (2.56)
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lead to a change in the matrices (2.53) and thus to the new commutator

[x, y] =


0 0 0 0
0 0 c2 − b2 0
0 b2 − c2 0 0
0 0 0 0

 . (2.57)

This commutator does indeed vanish for b = ±c. For that reason, assume

b ≡ c. (2.58)

This condition is not satisfied by natural 4fxyz-orbitals as they appear in
graphene. Hence is why the notion of artificial orbitals is emphasised here.
This may seem unintuitive, since for real graphene the coordinates x and y
do commute. However, to exactly describe real graphene, one would need
to include all orbitals. Since this cannot be done in this thesis, one singular
artificial fxyz-orbital will serve in their stead.

The new effective 4fxyz-orbital has been found to restore the commutativ-
ity if its effective Bohr radius is approximately 5/3 times that of the other
orbitals in graphene. Similarly to the Slater-Koster approach, the leading
terms connecting the fxyz-orbitals with orbitals of neighbouring atoms are
provided by Lendi [66]. Since no reference for the corresponding two-centre
integrals has been found in the literature, they have been estimated based
on a comparison with the other orbitals, under consideration of the modi-
fied effective Bohr radius. However, there has neither been a notable change
to valence- and conduction band nor to the d-bands based on the choice of
these parameters at all. This is due to the significant energetic difference of
the fxyz-orbital. Its onsite energy has been set to ϵfxyz = 26 eV. This is an
estimate based on the comparison of the energy levels of graphene to those
of fullerenes for which the f-orbital energies have been computed by multiple
groups [67–69].

2.2.4 Envelope Functions

Since the external fields affecting graphene in this thesis typically do not
satisfy the symmetries of the lattice, it is necessary to introduce the notion
of envelope functions. The latter will be used to further isolate the part of
the wave function that resides within a unit cell, and to then apply the non-
periodic part of the perturbation only to these external envelope functions.
The following derivation will be based on and largely copied from the lecture
notes of Schmalian [70].
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Assume a spatially non-periodic perturbation Vext(r⃗, t) to the Schrödinger equa-
tion, i.e.

H(r⃗, t) =
(−iℏ∇)2

2m
+ U(r⃗) + Vext(r⃗, r) = H0(r⃗) + Vext(r⃗, t). (2.59)

The typical perturbation in this thesis will be of the form Vext(r⃗, t) = −eΦ(r⃗, t).
Assume the resulting electric force eE⃗(r⃗, t) = −∇Vext(r⃗, t) to be small in
comparison to the energy scales of the unperturbed Hamiltonian. Further
assume wave functions like in Eqs. (2.36) and (2.37), i.e.

ψnk⃗(r⃗) =
1√
N

∑
R⃗

ei⃗kR⃗wn(r⃗ − R⃗) (2.60)

with lattice vectors R⃗ and Wannier functions

wn(r⃗ − R⃗) =
1√
N

∑
k⃗

e−i⃗kR⃗ψnk⃗(r⃗). (2.61)

Application of H0 to Eq. (2.61) yields

H0wn(r⃗ − R⃗) =
1√
N

∑
k⃗

e−i⃗kR⃗ϵn,⃗kψnk⃗(r⃗), (2.62)

where the ϵn,⃗k are the respective eigenvalues ϵn(k⃗) of the ψn,⃗k under applica-

tion of H0, as defined in Eq. (2.38). The functional dependency on k⃗ has been
demoted to an index, since all computations in this subsection are performed
in real space.
Expanding Eq. (2.62) according to (2.61) then leads to

H0wn(r⃗ − R⃗) =
∑
R⃗′

1

N

∑
k⃗

ei⃗k(R⃗
′−R⃗)ϵn,⃗kwn(r⃗ − R⃗)

=
∑
R⃗′

ϵn(R⃗
′ − R⃗)wn(r⃗ − R⃗) (2.63)

with

ϵn(R⃗) :=
1

N

∑
k⃗

ϵn,⃗ke
i⃗kR⃗. (2.64)

Now define envelope functions fn,R⃗(t) as a part of a general wave function

ψ(r⃗, t) =
∑
n,R⃗

fn,R⃗(t)e
i⃗kR⃗wn(r⃗ − R⃗) (2.65)
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in such a way that they satisfy normalisation conditions. Their physical
interpretation will follow at the end of this subsection, when their connection
to the Schrödinger equation has been established. The latter reshapes to

iℏ
∂ψ(r⃗, t)

∂t
= (H0(r⃗) + Vext(r⃗, t))ψ(r⃗, t)

=
∑
n,R⃗

fn,R⃗(t)(H0(r⃗) + Vext(r⃗, t))wn(r⃗ − R⃗)

=
∑
n,R⃗

fn,R⃗(t)
∑
R⃗′

ϵn(R⃗
′ − R⃗)wn(r⃗ − R⃗)

+
∑
n,R⃗

fn,R⃗(t)Vext(r⃗, t)wn(r⃗ − R⃗). (2.66)

The completeness of the Wannier basis allows for a comparison of coefficients.
By taking the scalar product with wm(r⃗ − R⃗′) from the left, Eq. (2.66) can
thus be reduced to

iℏ
∂fm,R⃗′(t)

∂t
=
∑
R⃗

fm,R⃗(t)ϵm(R⃗
′ − R⃗)

+
∑
n,R⃗

fn,R⃗(t)

∫
w∗
m(r⃗ − R⃗′)Vext(r⃗, t)wn(r⃗ − R⃗) d3r. (2.67)

The first resulting term is then rewritten as∑
R⃗

fm,R⃗(t)ϵm(R⃗
′ − R⃗) =

∑
R⃗′′

ϵm(R⃗
′′)fm,R⃗′−R⃗′′(t)

=
∑
R⃗′′

ϵm(R⃗
′′)e−iR⃗′′(−i∇

R⃗′ )fm,R⃗′(t) = ϵm(k⃗ → −i∇R⃗′)fm,R⃗′(t), (2.68)

where in the second step it was assumed that fm,R⃗′(t) is a smooth function

of a spatial coordinate R⃗′.
The second term on the right-hand side of Eq. (2.67) is approximated as∑

n,R⃗

fn,R⃗(t)

∫
w∗
m(r⃗ − R⃗′)Vext(r⃗, t)wn(r⃗ − R⃗) d3r

≈Vext(R⃗, t)fm,R⃗′(t), (2.69)

making Eq. (2.67) diagonal in fm,R⃗′(t). For this approximation to hold,
Vext(r⃗, t) must vary slowly on the scale of a unit cell while the Wannier func-
tions are localised to one cell (cf. Eq. (2.44)). For this reason, the assumption
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Figure 2.7: Separation of a linear potential; The overall potential (a) can be
separated into a sum of a staggered (b) and a sawtooth potential (c). The
latter is periodic in the spatial parameter x.

of the electric force eE⃗(r⃗, t) = −∇Vext(r⃗, t) being weak was made at the be-
ginning of this subsection.
As a result of Eq. (2.69), Eq. (2.67) becomes a Schrödinger equation for the
envelope functions fn,R⃗ as

iℏ
∂fn,R⃗(t)

∂t
= (ϵm(k⃗ → −i∇R⃗) + Vext(R⃗, t))fn,R⃗(t). (2.70)

For an electromagnetic perturbation as considered at the beginning of the
subsection, this equation further reshapes to

iℏ
∂fn,R⃗(t)

∂t
=
(
ϵm

(
k⃗ →

(
−i∇R⃗ +

e

ℏc
A⃗
))

+ Φ(R⃗, t)
)
fn,R⃗(t), (2.71)

i.e. the envelope functions fn,R⃗ perceive the electromagnetic potentials sim-
ilarly to how it would näıvely be expected.
It is now intriguing to separate the perturbation into one part that acts on the
envelope functions and one that acts on the Wannier functions. Under this
premise, Emin and Hart have separated a linear potential into a staggered
and a sawtooth one [71, 72]. This is illustrated in Fig. 2.7 where only the
sawtooth potential in part (c) is assumed to act on the unit cell while the
full potential (a) is only to be considered on the envelope function.

However, as was shown by Kleinman [73], this separation is an approxima-
tion that is not universally applicable, as there arise terms not diagonal in
the reciprocal vector k⃗. These k⃗-non-diagonal terms will be computed in sec-
tion 3.1.1 of this thesis. This allows to estimate their effect while restricting
the scalar potential Φ(r⃗, t) to a sawtooth-like potential that is defined only
within one unit cell.
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2.3 Spin-orbit Interaction (SOI)

So far, the tight-binding model has been introduced with the LCAO method
to include multiple atomic orbitals. The remaining degree of freedom for
electrons to be included into the model is spin. While spin itself can be
introduced by merely doubling the dimension of the Hilbert space and as-
signing spin-up and spin-down to the respective halves of the new Hilbert
space, the existence of an atomic orbital basis requires the consideration of
spin-orbit interaction (SOI) between those orbitals and their respective spins.
This thesis will differentiate between intrinsic SOI that originates from the
electromagnetic potential of the nuclei, and Rashba SOI that arises from a
broken out-of-plane symmetry.

Intrinsic SOI is obtained as a correction term for the Schrödinger equa-
tion after deriving the latter as a classical limit from the Dirac equation
as performed by Foldy and Wouthuysen [74]. The schematic derivation and
discussion in the following is based on the notes of Murayama [75].
For the electric field originating from the charge of the nucleus, assume a
time-independent electric four-potential A = (ϕ, A⃗) consisting of a scalar

potential ϕ and a vector potential A⃗. Both are constant in time, but have
a spatial dependence that, for the sake of readability, will not be written
explicitly. The momentum then is replaced by p⃗ → p⃗ − e

c
A⃗, and the time-

independent Dirac equation for an electron can be written

 (eϕ+mc2)12×2 cσ⃗ ·
(
−iℏ∇− e

c
A⃗
)

cσ⃗ ·
(
−iℏ∇− e

c
A⃗
)

(eϕ−mc2)12×2

ψ(r⃗) = Eψ(r⃗) (2.72)

with the speed of light c, the particle mass m, the momentum operator
p⃗ = −iℏ∇ and the Pauli vector σ⃗ = (σx, σy, σz) consisting of the 2× 2 Pauli
matrices σi acting on the spin. Eq. (2.72) describes a four-component spinor
ψ depending on position r⃗ and time t.

The solutions to the Dirac equation can then be found perturbatively as

an expansion in orders of σ⃗ ·
(
−iℏ∇− e

c
A⃗
)
which is analogue to an expan-

sion in orders of the momentum. During this procedure, Eq. (2.72) gives rise
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to the Hamiltonian

H =β

mc2 +
(
p⃗− e

c
A⃗
)2

2m
− p⃗4

8m3c2

+ eϕ− eℏ
2mc

βσ · B⃗

− ieℏ2

8m2c2
σ⃗ ·
(
∇× E⃗

)
− eℏ

4m2c2
σ⃗ ·
(
E⃗ × p⃗

)
︸ ︷︷ ︸

=:HSOI

− eℏ2

8m2c2
∇ · E⃗. (2.73)

The focus of this section lies on the SOI term HSOI. Before going into further
detail on it, the other terms will be discussed briefly, to allow for an isolated
discussion of the SOI term.
β is a diagonal 4 × 4-matrix acting on the components of ψ(r⃗, t). B⃗ is a
possible external magnetic field. The terms in the first line are, in order, the
rest energy, the relativistic kinetic energy, a relativistic correction to it, the
Coulomb potential, and the coupling to the external magnetic field. The first
term in the second line vanishes for a gradient field like that from the nucleus
potential. The last term is the so-called Darwin- or Zitterbewegung-term.4

The SOI term can be reshaped to

HSOI =
eℏ

4m2c2
σ⃗ ·
(
E⃗ × p⃗

)
=

eℏ
4m2c2

σ⃗ · |E⃗|
(
r⃗

|r⃗| × p⃗

)
=

eℏ
4m2c2

dV

dr

1

|r⃗| σ⃗ · L⃗.
(2.74)

It describes the intrinsic SOI with angular momentum operator L⃗ and the
electric core potential V (r⃗). Via ladder operators L± = 1/2 · (Lx ± iLy) and
σ± = 1/2·(σx±iσy), the scalar product in the last term in Eq. (2.74) reshapes
to

σ⃗L⃗ =
1

2
(σ−L+ + σ+L− + 2σzLz) . (2.75)

This expression can be evaluated in matrix form on the basis atomic orbitals
with spin. For the basis5

{s↑/↓, p↑/↓
x , p↑/↓

y , p↑/↓
z , d↑/↓

xy , d
↑/↓
x2−y2 , d

↑/↓
xz , d

↑/↓
yz , d

↑/↓
z2

}, (2.76)

4The Zitterbewegung as well as other relativistic corrections except for SOI will not be
taken into account in this thesis, since their effects are negligibly small.

5The electron shell quantum number n is not displayed here, since the SOI operator
does not affect it. The matrix (2.77) looks identical for any two orbitals that share the
same n.
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Eq. (2.75) can be expressed as a matrix

σ⃗L⃗ =
ℏ
2



0
0 −iσz iσy
iσz 0 −iσx
−iσy iσx 0

0 i2σz −iσx iσy 0
−i2σz 0 iσy iσx 0

iσx −iσy 0 −iσz i
√
3σy

−iσy −iσx iσz 0 −i
√
3σx

0 0 −i
√
3σy i

√
3σx 0


(2.77)

with the Pauli matrices acting on the spin. The matrix is block diagonal,
since SOI only couples orbitals with identical n-quantum number. All entries
that are not written explicitly in Eq. (2.77) are zero. Since the effect of SOI is
small compared to the hopping parameters, intrinsic SOI will only be taken
into account on-site and otherwise be assumed to be zero.

In the graphene tight-binding model, SOI couples the dxz- and dyz-orbitals
which, in third order perturbation theory (cf. [76]) leads to a band gap
between valence and conduction band as illustrated in Fig. 2.8. The gap
has a width of

∆SOI ∝
Vpdπ

(ϵp − ϵd)2
λI, (2.78)

where Vpdπ is the hopping strength between a p- and a d-orbital that are
coupled via a π-bond. The terms ϵp/d are the onsite energies of the respective
orbitals. λI is the combined prefactor of the SOI term in Eq. (2.74) and
determines the strength of the intrinsic SOI via6

HSOI = λI ·
2

ℏ
σ⃗L⃗. (2.79)

Note that while the matrix (2.77) is independent of the electron shell quantum
number n, the overall SOI term HSOI is not, as the SOI strength varies for
different l quantum numbers. Since the graphene band gap is known to be
of ∆SOI = 42 µeV, the value of λI in this thesis will be adapted to reproduce
this value measured by Sichau at al. [30, 77]. The numerical values of the
parameters mentioned in this section are listed in appendix A.

6The prefactor 2/ℏ is the inverse to the prefactor of the matrix (2.77) and therefore
allows to compute HSOI as the product of only λI and the entries inside the matrix.
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Figure 2.8: Gap opening; Intrinsic spin-orbit interaction lifts the degeneracy
at the Dirac points and thus leads to a band gap between the Dirac cones of
graphene.

2.3.1 Rashba SOI

An external field parallel to the z-axis breaks mirror symmetry through
the xy-plane. Since this symmetry relates an arrow that points out of the
graphene plane to its counterpart mirrored through the graphene sheet, it
will be called out-of-plane symmetry.

As a result of this broken symmetry, the substitution to L⃗ as performed
in Eq. (2.74) is impossible. Instead, the Rashba SOI [58] arises. The follow-
ing computation will use HSOI from Eq. (2.73) as a starting point as well,
but will then derive matrix elements connecting nearest neighbours based on
the computations of [78].

Via permutation of the triple product and insertion of an external electric
field E⃗ext = E0 · e⃗z, the term HSOI in Eq. (2.73) reshapes to

HSOI =
eℏ

4m2c2
σ⃗ ·
(
E⃗ext × p⃗

)
=

eℏ
4m2c2

· E0e⃗z (p⃗× σ⃗) =
E0eℏ
4m2c2

(pxσy − pyσx),

(2.80)
where again the σ matrices act on the spin. To translate the term (pxσy −
pyσx) to the tight-binding formalism, consider a Wannier function w(r⃗− R⃗i).
A derivation by r⃗ can then be written as

∇w(r⃗ − R⃗i) = lim
d⃗→0

d⃗

|d⃗|

(
w(r⃗ − R⃗i + d⃗)− w(r⃗ − R⃗i)

)
|d⃗|

. (2.81)
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For small |d⃗|, it is a good approximation to drop the limit and instead say

∇w(r⃗ − R⃗i) ≈
d⃗

d

(
w(r⃗ − R⃗i + d⃗)− w(r⃗ − R⃗i)

)
d

(2.82)

with d⃗ =: dxe⃗x + dye⃗y + dz e⃗z and d := |d⃗|. This d⃗ will later be the vector
connecting two nearest neighbours in the lattice.
This approximation of the derivative together with definition (2.37) allows to
evaluate the action of the momentum operator p⃗ on a general wave function
Ψ(r⃗) in a piecewise manner via

pxΨ(r⃗) = −iℏ
∂

∂x

∑
i

cie
i⃗kR⃗iwn(r⃗ − R⃗i) = −iℏ

∑
i

cie
i⃗kR⃗i

∂

∂x
wn(r⃗ − R⃗i)

= −iℏ
∑
i

cie
i⃗kR⃗i

dx
d2

(
w(r⃗ − R⃗i + d⃗)− w(r⃗ − R⃗i)

)
(2.83)

with coefficients ci that satisfy the overall normalisation condition of the
wave function. Eq. (2.83) leads to∫

R3

Ψ†(r⃗)pxΨ(r⃗) dr⃗

= −iℏ
∑
i,j

c†icje
i⃗k(R⃗j−R⃗i)

dx
d2

∫
R3

w†(r⃗ − R⃗i)
(
w(r⃗ − R⃗j + d⃗)− w(r⃗ − R⃗j)

)
dr⃗

= −iℏ
∑
⟨i,j⟩

c†icj
dx
d2
, (2.84)

where the orthogonality of the Wannier functions has been used to reduce the
sum over all i and j to a sum over nearest neighbours ⟨i, j⟩, as the integral∫
R3 w

†(r⃗ − R⃗i)w(r⃗ − R⃗j + d⃗) dr⃗ vanishes unless7 R⃗j = R⃗i + d⃗. Similarly, py
yields ∫

R3

Ψ†(r⃗)pyΨ(r⃗) dr⃗ = −iℏ
∑
⟨i,j⟩

c†icj
dy
d2
. (2.85)

Under the assumption that the vectors d⃗ connecting two neighbouring sites
are small enough to allow for the approximation (2.82), it is therefore possible
to translate Eq. (2.80) into the tight-binding formalism as

(HSOI)i,j = −i
E0eℏ2

4m2c2d2
((R⃗i − R⃗j)xσy − (R⃗i − R⃗j)yσx), (2.86)

7Since the honeycomb lattice contains two atoms per unit cell, R⃗i−d⃗ is no lattice vector.
The sublattices instead need to be incorporated into the index n in the definition (2.36)

of the Wannier functions wn(r⃗ − R⃗). One then has orthogonal wn(r⃗ − R⃗) and wn′(r⃗ − R⃗)

centred at R⃗ for n and at R⃗+ δ⃗ for n′, with the displacement vector δ⃗ from Eq. (2.1).
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Figure 2.9: Trigonal warping at
the K-point; As a consequence of
the Rashba effect, the Dirac cones
of graphene split into four, respect-
ively. Of these four cones, one
lies in the centre and is surrounded
by the other three in a triangular
formation.

where the indices x and y refer to the components of the vector (R⃗i − R⃗j).
The Pauli matrices σx and σy act on the spin.

Eq. (2.86) relates the sublattices and spins. Its effects are most notable
at the K-points. However, since some of these effects need the definition of
topology to be discussed in appropriate detail, this section will only focus on
a select few effects. A further discussion will follow in section 2.4.3.

The Rashba effect leads to a coupling of one K-point to the other. As a res-
ult, the symmetries of both respective pairs of cones interfere. Consequently,
the cones reshape as depicted in Fig. 2.9. This effect is known as triangular
warping. Furthermore, the Rashba effect lifts spin degeneracy. As a result,
valence and conduction band are split into two energetically non-degenerate
pairs. They will be referred to as inner and outer valence band, based on
their proximity to the Fermi energy. This is illustrated via the dashed red
cones in Fig. 2.10.

A similar Rashba effect can also be caused by the combined effects of intrinsic
SOI, nearest-neighbour hopping, sp2 hybridisation and broken out-of-plane
symmetry. When the latter is broken, the matrix elements between the pz-
orbitals and the s-orbitals are no longer zero. The s-orbitals, in turn, are
coupled to the px- and py-orbitals via sp2 hybridisation. This hybridisa-
tion together with the intrinsic SOI between the px- and py-orbitals then
causes an effect similar to expression (2.86). In this thesis, both effects will
be considered, and systems with possibly broken out-of-plane symmetry will
therefore always involve s- and px/y-orbitals.
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Figure 2.10: Separation of cones; A broken out-of-plane symmetry induces
Rashba SOI which makes one Dirac cone split into four, with the three outer
cones aligned like in Fig. 2.9. The formerly spin-degenerate valence and con-
duction band split, forming a second pair (red) with a gap in between. The
trigonally warped cones do not exhibit a gap except for a possible intrinsic
one.

2.4 Topological Insulators: Haldane Model

Graphene with intrinsic SOI between the d-orbitals exhibits a band gap
between valence and conduction band. Therefore, it is a band insulator.
However, valence and conduction band both have a non-trivial topological
quantum number, i.e. a quantum number that only changes when a band gap
closes or a new one opens. This quantum number, as will be explained in this
section, leads to gap-crossing edge states that make graphene a topological
insulator.

The classification of materials and band structures based on topology was
pioneered by Thouless et al. [79] and has since become a major field of re-
search. In the following, a modified version of the Haldane model [15] will
be defined, to study the topological properties of spinless graphene. Via the
inclusion of spin, the Haldane model will then be extended to the Kane-Mele
model [17]. The models will be used to derive the first Chern number and
the so-called Z2-topological invariant. Since this section will only cover the
details that are important for graphene, the course by Asbóth, Oroszlány
and Pályi [12] is recommended for a broader understanding of topological
insulators.
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2.4.1 Haldane Model and Symmetry

In the following, a model analogous to the Haldane model [15] will be de-
rived. The original Haldane model can be obtained from the model used in
this section via a basis transformation. This section will use the same basis
as the overall thesis, to ensure coherence of the interpretations and results.

To concentrate the focus on only the valence and conduction band of graphene,
assume a model without spin and with only pz-orbitals, where only nearest
neighbour hopping is considered. The graphene tight-binding Hamiltonian
(in reciprocal space) then becomes a 2× 2-matrix

H0(k⃗) =

(
0 h(k⃗)

h†(k⃗) 0

)
(2.87)

with

h(k⃗) = t1
∑
i

exp(i⃗ka⃗i) = t1

(
1 + 2e−i

√
3
2
ky cos

(
kx
2

))
, (2.88)

where the lattice vectors (0, 0)t, a⃗1 and a⃗2 from section 2.1 have been inser-
ted. The lattice constant a has been set to 1. kx and ky therefore assume
real values without a unit. The parameter t1 denotes the hopping strength
between two p-orbitals. Eq. (2.87) gives rise to the band structure of Fig. 2.3

(pg. 7) without a band gap. H0(k⃗) can be written in terms of Pauli matrices
acting on the sublattice:

H0(k⃗) = σ⃗d⃗(k⃗) (2.89)

with

d⃗(k⃗) =

 ℜ(h(k⃗))
−ℑ(h(k⃗))

0

 = t1 ·


1 + 2 cos

(
kx
2

)
cos
(√

3ky
2

)
−2 cos

(
kx
2

)
sin
(√

3ky
2

)
0

 (2.90)

and the vector of Pauli matrices σ⃗ = (σx, σy, σz)
t. This definition will become

advantageous for solving the eigenvalue problem, especially when additional
terms proportional to σz will be added, later.
Furthermore, the notation introduces the effective sublattice spin analogous
to the real spin, but with the Pauli matrices acting on the sublattices instead.
The components of d⃗ are therefore directly related to the components of the
sublattice spin. Note that, since Eq. (2.90) contains no term proportional to
σz, the bands can and do touch at the K-points.
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Two fundamental symmetries of graphene8 can be concluded from the model,
namely

� sublattice or chiral symmetry σzH0(k⃗)σz = −H0(k⃗) and

� time-reversal symmetry H0(k⃗) = H∗
0 (−k⃗).

One important effect of the time-reversal symmetry is that it exchanges the
K- and the K ′-point in the Brillouin zone (cf. Fig. 1.2 on page 6).
When combined, these two symmetries give rise to particle-hole symmetry
σzH

∗
0 (−k⃗)σz = −H0(k⃗) that, in turn, relates every energy E+(k⃗) to an op-

posite energy E−(−k⃗) = −E+(k⃗).

Since (H0(k⃗))
2 = d⃗212, the absolute value of its eigenvalues is |d⃗|. Thus, they

are E±(k⃗) = ±|d⃗(k⃗)| = ±|h(k⃗)|.

The model (2.89) does not yet give rise to any topological quantum num-
bers. Hence, it defines merely a conventional semi-metal. This is because,
for non-trivial topological quantum numbers to arise, a system must have
a specific behaviour under symmetry transformations, depending on the di-
mension of the system. The exact dependencies for general systems will be
discussed later in section 2.5.2, but the consequence for the model (2.89) is
that, for it to be topologically non-trivial, time-reversal symmetry needs to
be broken.

Symmetry Breaking

Before breaking time-reversal symmetry, it is instructive to first break sub-
lattice symmetry. Not only is this achieved by simpler means, but also will
knowledge about it be of great advantage in later discussions. Sublattice
symmetry can be broken by adding a σz matrix to the system, i.e.

H0(k⃗) → H0(k⃗) +Mσz (2.91)

with a real-valued parameter M . This new term leads to a potential +M on
site A and −M on site B. As a result, the new eigenvalues of H0 become

E±(k⃗) = ±
√

|h(k⃗)|2 +M2, i.e. a band gap opens, depending on the absolute

value |M |. With increasing |M |, the eigenstates become localised on the
respective sublattices.

8As will be shown in section 2.4.2, the definitions for these symmetries differ for bosons
and fermions.
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Figure 2.11: Next-nearest neighbour hopping; The red and blue arrows in-
dicate how tunnelling across two edges leads back to the same sublattice.
The picture is based on a similar illustration in [80].

Time-reversal symmetry will be broken via a term proportional to σz as well.
However, the new term will not define an onsite potential like the previous
one proportional to M . Instead, it will describe an effective next-nearest-
neighbour hopping. Fig. 2.11 illustrates how next-nearest-neighbour hopping
translates a particle from one sublattice to the same sublattice.

For the next-nearest-neighbour hopping, define an amplitude9 +it2 if the
hopping direction is the same as that of the arrows in Fig. 2.11 and −it2 for
the opposite direction. The model (2.89) then reshapes to

H(k⃗) = H0(k⃗) +Mσz + 2t2
∑
b⃗i

sin(k⃗⃗bi)σz︸ ︷︷ ︸
time-reversal symmetry breaking

(2.92)

with vectors b⃗i ∈ {a⃗1, (⃗a1 − a⃗2),−a⃗2} translating between the unit cells of
next-nearest neighbours.10 Again, a is set to 1. The new term breaks time-
reversal symmetry, since it assumes opposite values, depending on whether
the hopping depicted in Fig. 2.11 is performed in the direction of the arrows or
oppositely to them. The new symmetry-breaking term will be labelled g(k⃗).

9The complex prefactor i before t2 is necessary, since the direction-dependent hopping
would otherwise be non-Hermitian.

10The sum would originally run over six vectors b⃗i. However, since for every vector b⃗i
there is a partner vector b⃗j = −b⃗i, and since these pairs have respective hopping amplitudes

+it2 and −it2, the sum over six Bloch phases exp(i⃗k⃗bi) becomes a sum over three sines.
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With the definitions for a⃗1/2 from section 2.1, Eq. (2.92) further reshapes to

g(k⃗) =: 2t2
∑
b⃗i

sin(k⃗⃗bi) = 2t2

(
2 cos

(√
3ky
2

)
sin

(
kx
2

)
− sin(kx)

)
. (2.93)

Since model (2.92) is identical to the Haldane model, except for its different
rotational symmetry, it will be called the modified Haldane model.11

Analogously to the notation of Eqs. (2.89) and (2.90), the modified Haldane
model can again be expressed as a sum of sigma matrices

H(k⃗) = σ⃗d⃗(k⃗) (2.94)

with the vectors

d⃗(k⃗) =

 ℜ(h(k⃗))
−ℑ(h(k⃗))
M + g(k⃗)

 and σ⃗ =

σxσy
σz

 . (2.95)

The Hamiltonian matrix then satisfies (H(k⃗))2 = d⃗212. Hence, the eigenval-

ues of H(k⃗) are

E±(k⃗) = ±|d⃗(k⃗)| = ±
√
|h(k⃗)|2 + (M + g(k⃗))2 (2.96)

with the index “−” for valence and “+” for conduction band. The corres-
ponding eigenstates are

|⃗k±⟩ =
1

N±(k⃗)

(
h∗(k⃗)

E±(k⃗) + (M + g(k⃗))

)
(2.97)

with a normalising term

N±(k⃗) =

√
2E±(k⃗)

(
E±(k⃗) +M + g(k⃗)

)
. (2.98)

As a result of the broken time-reversal symmetry, the relation E−(−k⃗) =

−E+(k⃗) no longer holds. This is particularly notable, at theK-points, i.e. k⃗ ∈
{K⃗, K⃗ ′}. There,

E±(k⃗ = K⃗) = ±|M + 3
√
3t2| and E±(k⃗ = K⃗ ′) = ±|M − 3

√
3t2|.
(2.99)

11The unmodified Haldane model can be obtained via a basis transformation
Hunmod.(k⃗) = B†H(k⃗)B with the basis matrix B = diag(e−

i
2 k⃗δ⃗, e+

i
2 k⃗δ⃗) and the displace-

ment vector δ⃗ from equation (2.1).
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There is a different sign between M and 3
√
3t2 in the energy solutions at the

K-points. As a result, the band gaps ∆(K⃗(′)) at the K-points are

∆(K⃗) = 2|M + 3
√
3t2| ̸= 2|M − 3

√
3t2| = ∆(K⃗ ′), (2.100)

i.e. they are of different magnitude if both M and t2 are non-zero and satisfy
3
√
3M ̸= t2.

In the following, it will be shown how the modified Haldane model makes
graphene a so-called Chern insulator.

2.4.2 Berry Phase and Chern Number

Graphene as described by model (2.92) is a Chern insulator, i.e. a band in-
sulator whose valence and conduction band exhibit non-trivial, topologically
protected first Chern numbers. The latter and the meaning of its topological
protection will be derived in the following, beginning with the definition of
the Berry phase.

Berry Phase

The Berry phase, in condensed matter physics, is a geometrical property,
associated with the change a state perceives upon transport through the
Brillouin zone. To quantify it, imagine an adiabatic time-evolution of a non-
degenerate12 state Ψ(k⃗(t)) with energy E(k⃗(t)) moving along the path C as

depicted in Fig. 2.12. After a time T , the state Ψ(k⃗(t)) will again be at its
initial position in reciprocal space, i.e.

k⃗(t = T ) = k⃗(t = 0) ⇒ Ψ(k⃗(T )) = c ·Ψ(k⃗(0)), (2.101)

The prefactor c = eτ · eγ that the wave function picks up along the path C
is composed of two phases. One is the so-called dynamical phase

τ := −i

∫ T

0

E(k⃗(t))dt (2.102)

as a result of the time evolution. The other is the Berry phase13

γ :=

∮
C

A⃗(k⃗)dk⃗ (2.103)

12The state needs to be non-degenerate for a path C to be unambiguous. Otherwise, a
transition between bands would be possible.

13For a derivation of the Berry phase, the Berry connection and any related quantities,
see e.g. [14] or [81].
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Figure 2.12: Closed path in reciprocal space; The path C begins and ends at
the same point.

with the Berry connection

A⃗(k⃗) = i⟨ψ(k⃗)|∇k⃗ψ(k⃗)⟩. (2.104)

With these definitions, it is possible to define the first Chern number.

First Chern Number

The Berry phase bears notable similarity to the Peierls phase, a phase systems
obtain from electromagnetic vector potentials [82, 83]. Indeed, via the Berry
connection (2.104), the Berry phase can be related to a vector potential as
well. The latter also gives rise to an analogue quantity to a magnetic field,
in momentum space. This field is called the Berry curvature

Ω⃗(k⃗) = ∇k⃗× A⃗(k⃗) = i

(〈
∂ψ(k⃗)

∂kx

∣∣∣∣∣∂ψ(k⃗)∂ky

〉
−
〈
∂ψ(k⃗)

∂ky

∣∣∣∣∣∂ψ(k⃗)∂kx

〉)
e⃗z. (2.105)

Through Stokes’ theorem, the Berry curvature can be used to compute the
Berry phase around the entire Brillouin zone. The result is∮

∂BZ

A⃗(k⃗)dk⃗ =

∫∫
BZ

Ω⃗(k⃗)dS⃗ = 2πW (2.106)

with the first Chern number W ∈ Z. It is zero if and only if A⃗(k⃗)dk⃗ is an
exact differential form on the entire (periodic) Brillouin zone. If it is not,
then the Berry phase (2.103) is bound to be a multiple of 2π, since the wave
function (2.101) does not depend on the path that lead to it. Thus, the first
Chern number must be integer-valued.
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There are higher Chern numbers as well. Since those, however, will not
be discussed in this thesis, the notion first will be omitted in the following,
and it will instead be called the Chern number.
The Chern number is a topological invariant of the system. This means that
it does not change under continuous transformations of the system it belongs
to. This system, in this case, is the band structure of graphene. Thus, the
Chern number remains unchanged upon any deformations of the band struc-
ture as long as no band gaps close or new ones open.

A non-zero Chern number can be understood similarly to the existence of a
magnetic monopole, but in momentum space. To understand this, note that
the Berry curvature has been defined as the k⃗-curl of a vector potential in
Eq. (2.105), similar to a magnetic field in real space. The integral over the
Berry curvature can thus be identified with an effective magnetic flux.
For graphene, there are two such monopoles, namely at the K- and the K ′-
point. Under time-reversal symmetry, they together add up to a net-zero
flux. This will be discussed in more detail in section 2.4.3.

Before that, however, an alternative formula for the computation of the Berry
curvature will be presented. This formula will be better suited for numerical
computations. First, consider two eigenstates |ϕ⟩ ≠ |ψ⟩ to a Hamiltonian H,
with eigenvalue Eψ. The following steps are copied and adapted from [12]:

H|ψ⟩ = Eψ|ψ⟩
⇒ (∇k⃗H)|ψ⟩+H|∇k⃗ψ⟩ = (∇k⃗Eψ)|ψ⟩+ Eψ|∇k⃗ψ⟩

⇒ ⟨ϕ|(∇k⃗H)|ψ⟩+ ⟨ϕ|H|∇k⃗ψ⟩ = Eψ ⟨ϕ|∇k⃗ψ
〉

⇒ ⟨ϕ|∇k⃗ψ
〉
=

⟨ϕ|(∇k⃗H)|ψ⟩
Eψ − Eϕ

. (2.107)

From the first line to the second, a gradient in k⃗ has been applied. From the
second to the third line, ⟨ϕ| has been multiplied from the left, and the scalar
product has been performed. Rearrangement of the terms then leads to the
fourth line.
Eq. (2.107) can be substituted into Eq. (2.105), as first mentioned by Berry
[13]. The resulting term

Ω⃗ψ(k⃗) = ℑ
∑
ϕ ̸=ψ

⟨ψ(k⃗)|
(
∇k⃗H(k⃗)

)
|ϕ(k⃗)⟩ × ⟨ϕ(k⃗)|

(
∇k⃗H(k⃗)

)
|ψ(k⃗)⟩

(Eϕ(k⃗)− Eψ(k⃗))2
(2.108)

no longer depends on the derivatives of the states, but instead only involves
the derivative of the Hamiltonian. Since it is typically significantly easier to
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obtain an analytical Hamiltonian than it is to obtain analytical eigenstates
to it, this formula is often better suited for the computation of the Berry
curvature than Eq. (2.105).

2.4.3 Chern Number and Berry Curvature

The Chern number (2.106) equals an integral of the Berry curvature (2.108)
over the entire Brillouin zone. For that reason, it is instructive to further
study the Berry curvature.
In the modified Haldane model (2.92), the parameter t1 describes the amp-
litude of conventional nearest-neighbour hopping, t2 the amplitude of time-
reversal breaking next-nearest-neighbour hopping, and M is the sublattice
potential that opens a band gap and breaks sublattice symmetry.
For the time-reversal symmetric system, i.e. for t2 = 0, the Berry curvature
takes opposite values for opposite lattice momenta k⃗,

Ω⃗ψ(k⃗) = −Ω⃗ψ(−k⃗). (2.109)

Thus, the integral of the Berry curvature over the whole Brillouin zone is
bound to be zero. The relation (2.109) can be seen for the valence band in
Fig. 2.13 where the sublattice potential has been set to M = 0.1 to open a
band gap everywhere.14

For the Chern numbers not to be trivial, time-reversal symmetry must there-
fore be broken. This is achieved by setting t2 ̸= 0. The resulting Berry
curvatures for the valence band with t2 = ±0.1 are depicted in Fig. 2.14. Re-
lation (2.109) no longer holds, and instead the Berry curvature throughout
the entire Brillouin zone is positive or negative semi-definite, respectively.
The Chern number can therefore no longer possibly be zero. Instead, it is
W = +1 for t2 > M/(3

√
3), and it is W = −1 for t2 < −M/(3

√
3). The

Chern number for the conduction band satisfies WCB = −WVB, i.e. it always
has the opposite sign compared to the valence band.15

As a consequence of the non-trivial Chern numbers, graphene exhibits topo-
logically protected conducting edge states. This concept will be introduced
and discussed in the following subsection.

14A similar figure, but for the unmodified Haldane model, can be found in [80]. Notably,
that figure does not exhibit the same vertical white lines as Fig. 2.13 This is a result of
the different choice of periodic boundary conditions.

15Since the energy eigenvalues of the modified Haldane model have been computed in
Eq. (2.108), one can insert the diagonalised Hamiltonian into Eq. (2.96) to easily verify
all results for Berry curvature and Chern number.
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Figure 2.13: Berry curvature of the graphene valence band in the modified
Haldane model (2.92); The curvature assumes its maxima (red) and minima
(blue) at the vertices of the Brillouin zone. The total curvature inside the
Brillouin zone adds up to zero.
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Figure 2.14: Berry curvature of the valence band of the Haldane model;
Upon a change of the sign of the next-nearest-neighbour hopping term t2,
the curvature vanishes at one set of Dirac points and emerges with opposite
sign at the other set.
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GrapheneVacuum

Edge
Figure 2.15: Interface between two topologies; At the edge of the material,
there must be a transition between the non-trivial topology of graphene and
the trivial one of the vacuum. As a result, the bands with non-trivial topo-
logical quantum numbers are bound to cross at the edges.

2.4.4 Edge States

The Chern numbers of the modified Haldane model cannot change unless
valence and conduction band touch. However, the Chern numbers do dis-
appear upon transition from a topologically non-trivial material to a trivial
one, e.g. at the interface between graphene and the vacuum as depicted in
Fig. 2.15. As a consequence, valence and conduction band are bound to
touch at the edges of the material.

States that reside at the edges of a material are called edge states. Edge
states can be obtained by considering a graphene unit cell that is periodic
in only one direction, but not in the other. Such a unit cell is depicted in
Fig. 4.16.16 These new periodic boundary conditions are also illustrated in
the second part of Fig. 2.4 (pg. 9) where the unit cell forms a cylinder instead
of a torus like in the fully periodic case.

Since a semi-finite lattice like that in Fig. 4.16 is periodic in only one dir-
ection, its reciprocal space is one-dimensional. The resulting band structure
can be related to bulk and edge. The bulk part, i.e. the part that is localised
within the lattice, is a projection of band structure in two reciprocal dimen-
sions onto one dimension. This projection is depicted in Fig. 2.17.

The actual band structure of graphene with a unit cell like in Fig. 4.16, how-
ever, also has edge states. For topologically non-trivial graphene, these edge
states cross at k = π/a as depicted in Fig. 2.18. In the figure, the hopping
parameter has been set to t1 = 3.59 eV, in accordance to the parameters
given in appendix A. This has been done in order to be able to relate the

16The unit cell has zigzag edges at its upper and lower end. It is also possible to consider
armchair edges that, however, do not lead to edge states (cf. Castro Neto at al. [84]). For
this reason, this thesis only considers unit cells like that depicted in Fig. 4.16.
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Figure 4.16: Graphene ribbon; By
applying periodic boundary con-
ditions in only one direction,
the reciprocal space becomes one-
dimensional. This unit cell (grey,
dashed) contains 14 carbon atoms
(red and cyan). Wider graphene
sheets can be constructed by in-
cluding more atoms in the y-
direction. The atoms on the outer
parts of the edges belong to sub-
lattice A (red) and sublattice B
(cyan), respectively.

Figure 2.17: Valence and conduction band of p-band graphene; Without d-
orbitals, valence and conduction band are energetically symmetric around the
Fermi energy of E = 0 eV. The left picture shows the bands in a vanishing-
point perspective, whereas the right shows an orthographic projection onto
the kx-E-axis. The band gap assumes its local maxima at kx = 0 and at
kx = ±πa−1. It closes at kx = ±2π

3
a−1 and kx = ±4π

3
a−1.
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Figure 2.18: Band structure of a graphene ribbon with only pz-orbitals;
The bands are one-dimensional due to the lattice only being periodic in one
direction. All bands lie either above or below the Fermi energy at E = 0 eV,
except for the two edge states depicted in red/cyan. The unit cell used for
the computation consists of 40 carbon atoms that are aligned like the 14
illustrated in Fig. 4.16.

figure to the results of chapter 5.

The bands in figure 2.18 that are depicted in black correspond to bulk
states like exemplified in Fig. 2.17. The other bands, depicted in red and
cyan, belong to states that only lie within the bulk for k < 4π/(3a) and
k > 4π/(3a). Within the interval k ∈ [−4π/(3a), 4π/(3a)], they are localised
on the edges.17

Furthermore, both states are localised on opposite edges, respectively. The
colours red and cyan in Fig. 2.18 correspond to the same colours in Fig. 4.16,
i.e. one edge state is localised entirely at the top edge (cyan atoms) while the
other is localised at the lower edge (red atoms) of the graphene ribbon. Since
the slope of the lines is positive (red) or negative definite (cyan), this has an
effect on the conductance of graphene. The group velocity of electrons in a
material (cf. [85, 86]),

v⃗(k⃗) =
1

ℏ
∇k⃗E(k⃗) (2.110)

is proportional to the dispersion relation. Hence, currents can flow only in
one direction at one edge and the opposite direction at the other. Thus,

17This relation repeats with the 2π-periodicity of the band structure.
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graphene is a quantum Hall insulator. It is also possible to compute a quant-
ised Hall conductivity18 of σxy = W · e2/h for the (modified) Haldane model
(cf. [87]), with the Chern number W as defined in Eq. (2.106).

Since this Hall effect together with the crossing of the edge states is a con-
sequence of the Chern numbers, both are topologically protected as well. As
long as the band gap in the bulk, i.e. for the band structure of fully periodic
graphene, does not close, the crossing of the edge states and therefore the
quantised Hall effect prevail. This is true under any perturbation to the sys-
tem that does not change the topology. The relation between the topology
of the bulk and the existence (and number) of crossing edge states is called
bulk-boundary correspondence.

In the following subsection, the concept of sublattice spin will be elaborated
on, and it will be motivated via its relation to the Chern number.

2.4.5 Sublattice Spin Winding Number

As shown by de Lisle et al. [88] and elaborated on by Alba, Pachos and
Garćıa-Ripoll [89], the Chern number of the Haldane model is related to
winding numbers of the sublattice spin.

Since graphene has two sublattices and therefore an even-dimensional Hilbert
space, the vector components that correspond to the respective sublattices
can be treated similar to spinor components. For the sublattice spin, the first
component of the spinor, i.e. the component of sublattice A, then corresponds
to spin-up and the second component relates sublattice B to spin-down.
Similarly to the real spin, the expectation value for this sublattice spin can
be defined via Pauli matrices. For a state (1, 0)t that is fully localised on
sublattice A, one then obtains

⟨σz⟩ = (1, 0)σz

(
1
0

)
= 1. (2.111)

Similarly, a state (0, 1)t has a sublattice spin ⟨σz⟩ = −1. At the K-points,
the sublattice spin of unperturbed graphene is ⟨σz⟩ = ±1. Away from them,
however, the absolute value |⟨σz⟩| is no longer 1. Instead, the states gain

18The relation between the quantised Hall conductivity and the Chern number is a direct
consequence of the Kubo formula. For a definition and proof of the latter, see e.g. the
Lecture notes of Tong [14].
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Figure 2.19: In-plane components of the sublattice spin; The two sublattices
can be treated as the two components of a spin. It is therefore possible
to assign a direction to them. The sublattice spin directions of the valence
band of the modified Haldane model with t1 = 1, t2 = 0.1 and M = 0.2 are
depicted as arrows throughout the Brillouin zone (red). The length of the

arrows depends linearly on the length of the projection of the vector ⟨σ⃗(k⃗)⟩
onto the xy-plane.

sublattice spins parallel to the graphene plane. These are given by the com-
ponents of the Pauli matrix vector σ⃗ = (σx, σy, σz)

t whose k⃗-dependent ex-
pectation values are defined as

⟨σi(k⃗)⟩ = ⟨ψ(k⃗)|σiψ(k⃗)⟩ with i ∈ {x, y, z}. (2.112)

The in-plane sublattice spins of the valence band of the model (2.126) are de-
picted in Fig. 2.19. They mostly follow closed paths, except at the K-points.

The expectation value of the sublattice spin vector (2.112) is almost parallel
to the xy-plane everywhere except in the vicinity of the K-points where it
obtains a z-component that becomes ±1 exactly at theK-points. On circular
paths around the K-points, the sublattice spin rotates, either with or against
the rotation direction of the path. This rotation is illustrated in Figs. 2.20
for valence and conduction band at both the K- and the K ′-point, and in
Fig. 2.21 for only the valence band at the K-point.

This phenomenon allows for the computation of individual winding numbers
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CB +1 −1

VB +1 −1

K-point K’-point

Figure 2.20: Sublattice spin winding numbers; the expectation values of the
sublattice spin components (2.112) in a vicinity around the K- and K ′-point
are projected onto the xy-plane, allowing for an illustration as arrows. The
number of rotations the sublattice spin performs around itself during a full
rotation around the respective Dirac point results in the depicted winding
numbers for valence and conduction band (VB and CB).

Figure 2.21: Sublattice spin structure; Around the K-point, the sublattice
spin of the valence band aligns in the xy-plane (cyan), whereas in the centre it
is perpendicular to the plane (red). Conduction band and K ′-point are ana-
logous, in correspondence to Fig. 2.20. The structure resembles a Skyrmion,
with the difference that the spins on the outside are not fully inverted.
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of the sublattice spin around the Dirac points via (cf. [12, 90])

n =
1

2π

∫ 2π

0

e⃗z ·
(
1

4
⟨σ⃗(ϕ)⟩ ×

(
d

dϕ
⟨σ⃗(ϕ)⟩

))
dϕ, (2.113)

where ϕ is the rotational angle of the path around the respective Dirac point.
The overall winding numbers are additive (cf. [91]), i.e. the sum of the wind-
ing numbers of two paths equals that of the combined path. Thus, the wind-
ing numbers around the Dirac points can be used to construct the winding
number for a more general path through the Brillouin zone. For that reason,
take the modified Haldane model of Eq. (2.92) evaluated in the vicinity of
the K-points, i.e.

H ′
κ(∆kx,∆ky) := H

(
κ⃗+

(
∆kx
∆ky

))
with κ⃗ ∈ {K⃗, K⃗ ′}. (2.114)

Expanding this expression in first orders of ∆kx and ∆ky then yields

H ′
K/K′(∆kx,∆ky) (2.115)

=

√
3

2
t1(∓σx∆kx + σy∆ky) + (M ± 3

√
3t2)σz (2.116)

=

(
M ± 3

√
3t2

√
3
2
t1(∓∆kx + i∆ky)

√
3
2
t1(∓∆kx − i∆ky) −(M ± 3

√
3t2)

)
(2.117)

=:

(
±3

√
3t2 ∓

√
3
2
t1e

∓iϕr

∓
√
3
2
t1e

±iϕr −(M ± 3
√
3t2)

)
(2.118)

with

r :=
√
∆k2x +∆k2y and ϕ := arctan

(
∆kx
∆ky

)
. (2.119)

The eigenvectors to the matrix (2.118) are at the K-point

|ΨK,±(r, ϕ)⟩ =
1√

1 + (c±K)
2

(
c±K · e−iϕ/2

e+iϕ/2

)
(2.120)

and at the K ′-point

|ΨK′,±(r, ϕ)⟩ =
1√

1 + (c∓K′)2

(
c∓K′ · e+iϕ/2

e−iϕ/2

)
(2.121)
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with

c±K :=
−2M − 6

√
3t2 ∓

√
4M2 + 3r2t21 + 24

√
3Mt2 + 108t22√

3rt1
(2.122)

and

c±K′ :=
+2M − 6

√
3t2 ∓

√
4M2 + 3r2t21 − 24

√
3Mt2 + 108t22√

3rt1
. (2.123)

Close to the K-points, i.e. in the limit r → 0, and for t1 > 0 and M > 0, the
terms c±κ behave as

lim
r→0

c+κ = 0 and lim
r→0

c−κ = ∞ (2.124)

for κ ∈ {K,K ′}.
Thus, either the first or the second component of the solutions (2.120) and
(2.121) vanishes. Hence, for r = 0, they are perfectly localised at one sub-
lattice and have ⟨σz⟩ = ±1.
For r > 0, however, the other respective component increases. Furthermore,
there is a phase e±iϕ between the two components. Because of this phase, the
sublattice spin alignment rotates across a path around the K- or K ′-point as
is depicted in Fig. 2.20.

It is also possible to compute the Chern number from the sublattice spin
via (cf. [88, 89])

W =
1

4π

∫∫
BZ

⟨σ⃗(k⃗)⟩ ·
((

∂

∂kx
⟨σ⃗(k⃗)⟩

)
×
(

∂

∂ky
⟨σ⃗(k⃗)⟩

))
dk⃗. (2.125)

There are two major differences between Eqs. (2.113) and (2.125). The triple

product in the latter equation contains a third term ⟨σ⃗(k⃗)⟩ that is multiplied
with the cross product instead of a vector e⃗z. Also, the integration domain is
no longer only an interval from ϕ = 0 to 2π around one Dirac cone. Instead,
Eq. (2.125) includes an integration over the entire Brillouin zone. Still, the
main contribution to the integral comes from the Dirac points, since they are
where the derivatives in Eq. (2.125) become the largest.

This discussion on the significance of the sublattice spin concludes the study
of spinless graphene. As will be demonstrated in the next section, the exist-
ence of spin leads to a different topological quantum number with another
type of Hall effect related to it.
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2.5 Topological Insulators: Spinful Models

Without external perturbations, graphene satisfies time-reversal symmetry
and can therefore neither be a Chern insulator nor can it exhibit a quantum
Hall effect.19 However, as opposed to the electrons of the (modified) Haldane
model of the previous section, real electrons actually have spin. Furthermore,
there is SOI coupling opposing spins. It was first noted in [11] and later dis-
cussed in [17] how, due to SOI, a new topological invariant, the Z2 invariant,
characterises a new type of topological insulators. This subsection is based
on a course on topological insulators by Kane [92].

2.5.1 Z2-topological Insulators

As discussed in section 2.3, SOI in graphene opens a band gap between the
Dirac cones. In the (modified) Haldane model (2.89), such a band gap is
generated by a sublattice potential (2.91) or a time-reversal breaking term
(2.93) which are both proportional to σz. For a spinful model, these terms
no longer act only on the sublattices, but also on the spins. Hence, the new
model is of the form

HKM(k⃗) = 12 ⊗H0(k⃗) + sz ⊗ σz · (M + t2 · g(k⃗)), (2.126)

where the new matrix sz = σz acts as a third Pauli matrix, but on real spin
instead of sublattice spin. The sublattice potential M and the time-reversal
breaking term g(k⃗) thus obtain opposite signs for the respective spins. The

matrix 12 in front of the Haldane Hamiltonian H0(k⃗) creates two identical
copies of the time-reversal symmetric modified Haldane model (2.87), one for
each real spin component. While time-reversal symmetry is broken for both
individual spins in model (2.126), the overall model is again symmetric. It
is equivalent to the Kane-Mele model [11], except for the periodic boundary
conditions. This spin-dependent setup leads to spin-polarised edge states.

Spin-polarised Edge States

The model (2.126) gives rise to a band structure that is mostly identical to
that of the modified Haldane model, except for one major difference. Every
band in Fig. 2.18 now has a spin-degenerate counterpart. Recall that the
colours in the figure denote the edges the corresponding states are localised
at. Cyan denotes the upper edge whereas red denotes the lower.

19The classical and the quantum Hall effect themselves are odd under time-reversal
symmetry, i.e. they pick up a minus sign when reversed.
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While in the original figure there is only a cyan line with negative slope and
a red line with positive slope the spinful system has two more lines. These
are a red line with negative slope and a cyan line with positive slope, i.e. the
same lines as before, but with inverted colours.
Thus, there indeed is no typical quantum Hall effect. However, a spin-Hall
effect is present. This effect was first predicted by Dyakonov and Perel [19,
20] and leads to two quantum Hall currents in opposite directions for opposite
spins. Hence, while they individually break time-reversal symmetry, together
the spin currents do not. The additional currents manifest in Fig. 2.18 in
form of the additional two lines mentioned above.

The term sz⊗σz in the model (2.126) leads to a correlation of sublattice and
real spin while generating two Chern insulators, one for each respective spin.
Since one edge of the graphene lattice always corresponds to one respective
sublattice (cf. Fig. 4.16), this correlation separates the spin-dependent edge
states by real and sublattice spin.
By the same reasoning as in section 2.4.4, the definite group velocities of
the respective bands lead to edge currents that depend on both the spin
they have and which edge they are localised at, i.e. graphene exhibits spin-
polarised edge states. This phenomenon is illustrated in Fig. 2.22 and defines
graphene as a spin-Hall insulator (SHI).

One more difference to Fig. 2.18 arises from SOI, but is not captured by
the model (2.126). In real graphene, the bands bend in the vicinity around
k = π/a. As discussed in section 2.3, the band gap is caused not directly by a
coupling of pz-orbitals, but rather by SOI between d-orbitals that are coupled
to the pz-orbitals. Since the d-orbitals are energetically significantly higher
than the pz-orbitals, this coupling induces an energetic shift that ultimately
leads to bending of the bands near k = π/a. This phenomenon is depicted in
Fig. 2.23. For the model (2.126) without d-orbitals, the edge states assume
the form depicted in Fig. 2.23a.

Because of their definite relation between spin and lattice momentum, the
edge states are commonly called helical, a terminology stemming from high-
energy physics where the momentum of a particle is used as the quantisation
axis for its spin (cf. [93]). Helicity is defined as the projection of the spin
onto the momentum as depicted in Fig. 2.24.

To fully understand what causes the spin-polarised edge states, it is neces-
sary to introduce a more general notion of time-reversal symmetry as well as
Kramers’ degeneracy.
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Figure 2.22: Spin-polarised edge states; States with spin up (red) and down
(cyan) only move in one direction depending on the edge of the graphene
sheet. The illustration is inspired by [31], but adapted to fit the geometry
used in this thesis. The colours are correlated to, but not in direct corres-
pondence with those in Figs. 2.18 and 2.23.
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Figure 2.23: Edge states without (a) and with (b) d-orbitals and SOI; The
bands curve due to an effective next-nearest neighbour coupling via the SOI
and the d-orbitals. A linear energy offset has been added in (b) such that
the band crossing occurs at E = 0 eV. Each line is doubly spin-degenerate.



50 CHAPTER 2. BASICS

S

P

S

P

Left-handed Right-handed

Figure 2.24: Helicity is the projection of the spin onto the momentum of a
particle. If both point into the same direction, the particle is called right-
handed. For opposite directions, it is called left-handed. The figure is inspired
by a similar one in [94]. In the case of helical edge states in graphene, the
momenta are replaced with lattice momenta.

Time-reversal Symmetry and Kramers’ Degeneracy

For spinful systems, the time-reversal operation is no longer only the con-
jugation of the Hamiltonian matrix, but instead the conjugation with the
antiunitary operator (cf. Altland and Zirnbauer [21])

T = exp

(
iπ

ℏ
Sy

)
︸ ︷︷ ︸

=:U

K, (2.127)

where Sy is the y-component of the total spin operator and K is the com-
plex conjugation operator. For a single free spin-1

2
particle, the expression

simplifies to

T = −iσyK =

(
0 −1
1 0

)
K. (2.128)

For fermions in general, operator (2.127) exhibits the property

T 2 = −1. (2.129)

For bosons, the sign would be positive. With definition (2.127), time reversal
symmetry for the tight-binding model assumes the form

TH(k⃗)T † = H(−k⃗) ⇔ TH(k⃗) = H(−k⃗)T. (2.130)

As performed in [12], one can conclude from Eq. (2.127) that for two wave
functions |Φ⟩ and |Ψ⟩,
⟨TΦ|TΨ⟩ = (U |Φ∗⟩)†U |Ψ∗⟩ = |Φ∗⟩†U †U |Ψ∗⟩ = ⟨Φ∗|Ψ∗⟩ = ⟨Φ|Ψ⟩∗ . (2.131)

Note that U †U = 1 is not in disagreement with (2.129). The next conclusion
is that

⟨TΨ|Ψ⟩ 2.131
=
〈
T 2Ψ

∣∣TΨ⟩∗ 2.129
= −⟨Ψ|TΨ⟩∗ = −⟨TΨ|Ψ⟩ (2.132)
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and thus that |Ψ⟩ and T |Ψ⟩ are orthogonal to each other. From Eq. (2.130,
it follows for these two distinct states that first

H(k⃗) |Ψ(k⃗)⟩ = (2.133)

UH(−k⃗)∗U † |Ψ(k⃗)⟩ = E(k⃗) |Ψ(k⃗)⟩ (2.134)

and then, by conjugating both sides of line (2.134)and multiplying from the
left with U †,

H(−k⃗) U †|Ψ(k⃗)⟩∗ = E(k⃗) U †|Ψ(k⃗)⟩∗. (2.135)

Thus, when |Ψ(k⃗)⟩ is an eigenvector to H(k⃗) with eigenvalue E(k⃗), then

U †|Ψ(k⃗)⟩∗ is an eigenvector to H(−k⃗) with eigenvalue E(+k⃗), i.e. every state

has a time-reversed partner state with its energy mirrored along the (k⃗ = 0)-
axis. Such a pair of partner states is known as a Kramers pair.

As will be explained below, the states on the same site depicted in red and
cyan in Figs. 2.18 and 2.23 are such Kramers pairs. This is how the full sys-
tem satisfies time-reversal symmetry while the symmetry breaks down when
only considering one of the respective partner states. With this information,
it is possible to properly define the Z2-topological invariant.

The Z2-topological Invariant

From Kramers’ degeneracy, it follows that at points where k⃗ equals −k⃗, i.e. at
k⃗ = 0 and at some points at the edge of the Brillouin zone, the Kramers pair
states must be degenerate. Such a point of high symmetry is often referred
to as a time-reversal invariant momentum (TRIM) and leads to the crossing
of the lines for the spinful system at k = π/a in Figs. 2.18 and 2.23. At
points other than k = π/a and k = 0 (which is equivalent to k = 2π/a), SOI
lifts the degeneracy in Fig. 2.18.

As a consequence, both the red and cyan line cross the Fermi energy exactly
once (for fixed spin), i.e. an odd number of times. This is a crucial attribute
of a Z2-topological insulator. As illustrated in Fig. 2.25, an odd number of
crossings leads to a topologically protected conducting edge states. On the
other hand, if the Fermi energy is crossed an even number of times, there
exists a continuous transformation that moves all energies either above or
below the Fermi energy, opening a gap between the edge states. Thus, the
conducting behaviour is not topologically protected.20

20For a mathematical proof of this phenomenon, see e.g. Fu and Kane [18].
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Figure 2.25: Edge states within the bulk band gap; Red and cyan shaded
areas indicate bulk continuum states. There are two ways by which edge
states (black) between the bulk states can satisfy Kramers’ degeneracy at
points of high symmetry Λ1/2. Either the Fermi energy EF is crossed an
odd (a) or an even number of times (b). In the even case, a continuous
transformation can move them above and below the Fermi energy. Only in
the odd case, there are topologically protected conducting edge states. The
figure is inspired by similar ones created by Fu and Kane [18, 92].

The quantum number associated with this phenomenon is the Z2-topological
invariant ν. To define it, choose a set of Bloch functions un(k⃗) continuous
throughout the entire Brillouin zone, and define the unitary matrix

wnm(k⃗) := ⟨um(k⃗)|T |un(−k⃗)⟩. (2.136)

One can check that

wt(k⃗) = −w(−k⃗). (2.137)

For a d-dimensional system, there are 2d points where k⃗ is equivalent to
−k⃗. In Fig. 2.18, these are k = 0 and k = ±π/a. In graphene that is
periodic in two directions, these points are the Γ-point and the M -points
of the Brillouin zone depicted in Fig. 1.2. For such points Λi, Eq. (2.137)
means that w is skew-symmetric. The Pfaffian pf(w(Λi)) of a skew-symmetric
2N × 2N -matrix w is defined as

pf(w) =
1

2NN !

∑
σ∈S2N

sgn(σ)
N∏
i=1

wσ(2i−1) σ(2i) (2.138)



2.5. TOPOLOGICAL INSULATORS: SPINFUL MODELS 53

with the symmetric group S2N of order (2N)! and the signature sgn(σ) of a
permutation σ. From this, define

δi = sgn(pf(w(Λi))) =
pf(w(Λi))√
det(w(Λi))

= ±1 (2.139)

with the sign sgn(x) of a complex number x. The second equality in Eq. (2.139)
stems from the fact that pf(w)2 = det(w).
The Z2-topological invariant ν is then defined via

(−1)ν =
∏
i

δi (2.140)

with i accounting for all high-symmetry points Λi.
For graphene, the computation of the Z2 invariant can be reduced to the com-
putation of the Chern numbers of the individual spins, as will be explained
in the following.

Alternative Methods of Computation

For two-dimensional systems that conserve the spin component sz, the com-
putation of ν can be simplified considerably by taking the two Chern num-
bers W↑ and W↓ of the individual spin copies of the Haldane model (cf. [92]).
While time-reversal symmetry leads to W↑ +W↓ = 0, the quantity

Wσ =
W↑ −W↓

2
(2.141)

is typically non-trivial. From it, the Z2 invariant can be computed as

ν = Wσ mod 2. (2.142)

Note that in the presence of sz-nonconserving terms as they e.g. arise from
Rashba SOI (2.150), Wσ is no longer a good quantum number, ν however
still is (cf. [18, 92]). To give further interpretation to the Z2 invariant, one
more computation method will be summarised briefly.

It is possible to compute ν from the eigenvalues of the parity operator P
as well. The action of P on a spatial wave function |ψ(r⃗)⟩ is defined as

P |Ψ(r⃗)⟩ = |Ψ(−r⃗)⟩. (2.143)

At the high-symmetry points in reciprocal space, one obtains the eigenvalues

P |Ψ(Λi)⟩ = ξm(Λi)|Ψ(Λi)⟩. (2.144)
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From this, one obtains (cf. [18, 92])

δi =
∏
m

ξm(Λi) (2.145)

and thus an alternative method to compute ν via Eq. (2.140). The index m
in Eq. (2.145) runs over the bands below the gap while only considering one
band per (parity-degenerate) Kramers pair.
Even though this procedure will not be used in this thesis, it does help
understanding the Z2 invariant. Parity at the high-symmetry points can be
interpreted as either

� a band crossing the gap (ξm(Λi) = −1, e.g. at k = π/a in the middle
of Fig. 2.18) or

� a band avoiding the gap (ξm(Λi) = +1, e.g. at k = 0 at the left part of
Fig. 2.18).

The Z2 invariant is thus a measure for whether there is an even or odd
number of gap crossings, like in Fig. 2.25. ν can therefore be computed via
the number N(E) of edge states (cf. [12])

ν =
N(E)

2
mod 2 =

N+(E) +N−(E)

2
mod 2, (2.146)

where N+(E)+N−(E) = N(E) denote the number of right-moving and left-
moving states, respectively. Due to Kramers’ theorem, both numbers are
identical.

With this additional interpretation at hand, it is possible to discuss the
physical meaning of the Z2 invariant in appropriate detail.

Interpretation

The Z2-topological invariant ν ∈ {0, 1} thus defines the parity of the gap
crossings and therefore, as argued further above, the existence of conducting
edge states in a topological insulator. Unperturbed spinful graphene has ν =
1 and is therefore a Z2-topological insulator. Both time-reversal asymmetric
subsystems, individually, are Chern insulators.
Each of these systems exhibits a Hall conductivity of ±e2/h, even without an
external magnetic field applied (cf. Hao at al. [87]). An electric field would
thus lead to Hall currents for sz = ±1 which cancel each other out, but
generate a net spin current as described by Kane [92]

J⃗s =
ℏ
2e

(J⃗↑ − J⃗↓) (2.147)
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with a quantised spin Hall conductivity

σsxy =
e

2π
. (2.148)

This quantisation, however, breaks down in the presence of sz-nonconserving
terms, in particular Rashba terms (2.150) that were introduced in section
2.3.1. In the following, it will be briefly discussed how the Rashba effect acts
on the topological properties of graphene.

Rashba SOI

Despite being affected by the Rashba effect, the edge states remain robust
and retain their spin-polarised properties as long as the Rashba strength is
small. For large Rashba strength, the system becomes topologically trivial.
This can be demonstrated by adding a term

(HRashba)i,j = −iλR((R⃗i − R⃗j)xsy − (R⃗i − R⃗j)ysx) (2.149)

to model (2.126). The matrices si = σi act on the spin. Expression (2.149)
depends on the relative positions of neighbouring lattice sites, similar to the
equivalent definition in Eq. (2.86).

Near the K-points, the term (2.149) can be approximated to (cf. [11, 29])

HRSOI,K/K′ = λ′R (±σxsy − σysx) , (2.150)

where λ′R is the modified strength λR after the approximation. σi here acts on
the sublattice spin and si on the real spin. Note that the Rashba effect lifts
spin degeneracy. In the following, only the bands closer to the Fermi energy
will be considered, i.e. the blue cones of Fig. 2.10 (pg. 29). The approximate
combined effect of intrinsic and Rashba SOI on the intrinsic band gap ∆SOI

between the blue cones is, according to [11],

∆SOI+R = 2(∆SOI − λR) (2.151)

for 0 < λR < ∆SOI, and it is ∆SOI+R = 0 for λR > ∆SOI.
A strong Rashba effect thus closes the band gap, rendering the Chern num-
bers trivial. As a consequence, graphene can only be topologically non-trivial
when one of the effects is negligibly weak.

This brief discussion on the Rashba effect concludes the discussions that
are limited to the topology of graphene. In the following, general topological
systems will be discussed under the topic of the so-called ten-fold way.
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Class Symmetry Dimension
T 2 P 2 C2 0 1 2 3 4 5 6 7

A 0 0 0 Z 0 Z 0 Z 0 Z 0
AIII 0 0 1 0 Z 0 Z 0 Z 0 Z

AI 1 0 0 Z 0 0 0 2Z 0 Z2 Z2

BDI 1 1 1 Z2 Z 0 0 0 2Z 0 Z2

D 0 1 0 Z2 Z2 Z 0 0 0 2Z 0
DIII −1 1 1 0 Z2 Z2 Z 0 0 0 2Z

AII −1 0 0 2Z 0 Z2 Z2 Z 0 0 0

CII −1 −1 1 0 2Z 0 Z2 Z2 Z 0 0
C 0 −1 0 0 0 2Z 0 Z2 Z2 Z 0
CI 1 −1 1 0 0 0 2Z 0 Z2 Z2 Z

Table 2.1: Periodic table of topological invariants; If a system satisfies time-
reversal (T ), particle-hole (P ) or chiral symmetry (C), the squared values of
the operators define symmetry classes. If they do not satisfy a symmetry, a
0 is written instead. Depending on the dimension of the system, this results
in a topological invariant of either Z, Z2 or 2Z. A 0 denotes the absence
of any topological invariant. Graphene with p- and d-orbitals and spin is a
two-dimensional system of the class AII and therefore has a Z2-topological
invariant. The table is periodic for dimensions of d→ d+ 8.

2.5.2 The Tenfold Way

The fact that graphene is a Z2-topological insulator stems not only from its
symmetry, but also from its dimension. In different dimensions, different
types of topological and trivial insulators can arise from the same symmet-
ries. Altland and Zirnbauer have detailed this connection[21], which then
lead to the creation of the periodic table of topological invariants [22–24].
The latter is given in Tab. 2.1. The table is separated into ten classes of ran-
dom matrices21 which are characterised by their symmetry based on three
operators:

� T is the time-reversal operator as defined in Eq. (2.127).

� P is the particle-hole operator as specified on page 31 and

� C is the chiral operator as also specified on page 31.

21This thesis will not go into any detail on random matrices. Instead, it will only work
with the results of the corresponding computations. For information on random matrices,
it is recommended to instead resort to other sources, e.g. [95].
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The matrix classes will henceforth be dubbed Altland-Zirnbauer classes.
Graphene satisfies time-reversal symmetry, and the time-reversal operator
itself squares to −1. Since the d-orbitals break particle-hole symmetry, the
appropriate Altland-Zirnbauer class is AII. In two dimensions, this results in
the appropriate Z2-topological invariant ν.

Graphene in the (modified) Haldane model (2.92) differs from real graphene
in two ways. It is particle-hole symmetric, and its particles are spinless.
Note that it was the introduction of spin that led to the relation T 2 = −1 in
section 2.5.1. For the Haldane model, one therefore has P 2 = 1 and either
T 2 = 1 or T 2 = 0, depending on whether t2 = 0 or t2 ̸= 0. For t2 = 0, the
corresponding Altland-Zirnbauer class is therefore BDI which, in two dimen-
sions, has no topological invariant.
For t2 ̸= 0, time-reversal symmetry is broken. The corresponding class is D
which, in two dimensions, has a topological invariant isomorphic to Z. This
invariant is the Chern number computed in section 2.4.3.
The class of the Kane-Mele model with T 2 = −1 and P 2 = 1 is DIII.

Both the Chern and the Haldane model are models with only one (possibly
spin-degenerate) valence and conduction band. In models with more bands,
the number of the topologically protected edge states is defined not only by
the Chern number of the valence band, but instead by the sum of all Chern
numbers of all occupied bands (cf. [96–98]). Accordingly, a Hall conductance
is computed as the sum

σxy =
∑

occupied n

Wn · e2/h (2.152)

with the respective Chern number Wn of the band with index n. This phe-
nomenon is illustrated in Fig. 2.26. In Eq. (2.152), the sum∑

occupied n

Wn =: W (2.153)

equals the number of edge states that cross the Fermi energy in a Chern
insulator. For Z2-topological insulators, the sums over the Chern numbers
in Eq. (2.152) and (2.153) only take one spin into account and are taken
modulo 2. The Hall conductance then corresponds to only one spin current.

As a final remark to this section on topology, note that the concept of edges
of a two-dimensional material can be generalised. As depicted in Fig. 2.27, a
three-dimensional object has two-dimensional surfaces. The latter are separ-
ated by one-dimensional edges that, again, are separated by zero-dimensional
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Figure 2.26: Topological edge states in a multi-band insulator; Bands
above the Fermi energy EF = 0 are depicted in red, those below in blue.
Wn :=

∑n
i=1Wi is the sum over the Chern numbers of the lowest n bands.

(a) Even though the Chern numbers of valence and conduction band are both
zero, i.e. W2 = W3 = 0, the sum W2 = −1 over the Chern numbers of all
bands below the Fermi energy is non-zero. Hence, an edge state (purple)
between valence and conduction band occurs. The edge states below and
above do not contribute directly towards conductivity. (b) The Chern num-
bers below the Fermi energy add up to W2 = −2, leading to two currents
crossing it. The sum W4 over all Chern numbers is zero in both (a) and (b).

vertices. Edges and surfaces can both give rise to topologically non-trivial
gapped systems that therefore exhibit topologically protected gap-crossing
states in the respectively lower dimension. These systems are called higher-
order topological insulators (HOTI), as defined by Schindler at al. [99]. An
n’th-order topological insulator is a d-dimensional system that exhibits to-
pologically protected edge states on its (d − n)-dimensional boundary. The
topological quantum numbers associated with HOTIs are called weak topo-
logical invariants and can be obtained from Tab. 2.1 by considering lower
dimensions d.

The classes BDI, D and DIII all do have topological invariants for d = 1.
Thus, both the Haldane and the Kane-Mele model bear the potential of de-
scribing HOTIs if their one-dimensional band structures are gapped and have
corresponding non-trivial weak topological invariants. In chapters 4 and 5,
however, graphene will always be of either the class AII or A. Thus, it will
not have a weak topological invariant at d = 1, and it will therefore not
exhibit any higher-order edge states. Even though one should be aware of
the concept of HOTIs, it will thus not affect the results of this thesis.
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d=3d=2
d=1 d=0

Figure 2.27: Higher-order edges; A three-dimensional object has two-
dimensional surfaces (cyan) that, in turn, have one-dimensional edges (red).
Those edges have zero-dimensional vertices (blue). These boundaries of
boundaries are called higher-order edges. Only a selection of higher-order
edges has been highlighted.

On the other hand, time-dependent electric perturbations will affect the to-
pological invariants. The time-dependence will be handled via Floquet form-
alism which will be discussed in the following, together with its consequences
for the topological invariants.

2.6 Time-dependent Systems

All discussions so far have considered systems that have not been explicitly
time-dependent. Even time-reversal symmetry has only been applied to the
lattice momentum k⃗. An electromagnetic field generated by continuous ir-
radiation of a sample with laser light, however, is explicitly time-dependent.
For such a dependence, the time-reversal symmetry relation (2.130) reshapes
to

TH(k⃗, t)T † = H(−k⃗, t0 − t) (2.154)

with a point in time t0 about which the system is symmetric (cf. [25]).
While there are typically no static solutions to an explicitly time-dependent
system, the periodicity of the light-induced electromagnetic fields gives rise
to quasi-static solutions. The latter will be derived in the following as a
consequence of Floquet formalism.

2.6.1 Floquet Formalism

To derive the Floquet formalism, first assume a Hamiltonian

H(t) = H(t+ τ), (2.155)

that is periodic by some time τ . This time-dependent Hamiltonian is then
Fourier-decomposed to ultimately reduce the corresponding linear first-order
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differential equations to a purely algebraic problem. The decomposition is
performed as

Hn =
1

τ

∫ τ

0

einωtH(t)dt with ω =
2π

τ
. (2.156)

From Floquet’s theorem [39] (cf. [37] for a detailed derivation), it follows that
a system

iℏ
∂

∂t
Ψ⃗(t) = H(t)Ψ⃗(t) with H(t) =

∞∑
n=−∞

e−inωtHn, (2.157)

oscillating in time t with frequency ω is solved by wave functions

Ψ⃗(t) = η⃗(t) exp

(
− i

ℏ
ϵt

)
with η⃗(t) =

∞∑
n=−∞

einωtζ⃗n, ζ⃗n ∈ C
d (2.158)

with respective Floquet quasi-energies ϵ. The vectors Ψ⃗(t), η⃗(t) and ζ⃗n are
all d-dimensional, where d is the dimension of the original Hilbert space. The
terms ϵ and ζ⃗n are derived from the recursive formula

ϵζ⃗n = (H0 + nℏω · 1)ζ⃗n +
∑
m ̸=n

Hm−nζ⃗m, (2.159)

which can be obtained by inserting Eqs. (2.158) into (2.157). Eq. (2.159) can
be written as an eigenvalue problem

ϵζ⃗ = HFζ⃗ (2.160)

with the infinite-dimensional composite vector

ζ⃗ := (.., ζ⃗−2, ζ⃗−1, ζ⃗0, ζ⃗1, ζ⃗2, ..)
t (2.161)

and the Floquet Hamiltonian matrix

HF :=

. . .
...

...
...

· · · (H0 − 2ℏω1) H+1 H+2
...

· · · H−1 (H0 − 1ℏω1) H+1 H+2
...

· · · H−2 H−1 H0 H+1 H+2 · · ·
... H−2 H−1 (H0 + 1ℏω1) H+1 · · ·

... H−2 H−1 (H0 + 2ℏω1) · · ·
...

...
...

. . .


.

(2.162)
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Figure 2.28: Floquet replica bands; In Floquet formalism, the time-
independent part of the band structure (red) is replicated for every integer
multiple of ℏω. These replica bands (blue) can have gaps between them (a)
or intersect one another (b), depending on whether the original spectrum lies
within one energy interval of the length ℏω. The intersection area between
the red and blue bands is highlighted in purple. More intersections can occur,
depending on whether the energy interval of the original spectrum surpasses
further integer multiples of ℏω.

In Eq. (2.162), colours have been used to separate the orders n = 0 (black),
n = ±1 (blue) and n = ±2 (red). Higher order terms H±n with n > 2 lie
on the n’th respective diagonal from the middle, counting upwards or down-
wards with respect to the sign. The identity matrices 1 will be dropped in
the following if the expressions are clear without them.

After solving the eigenvalue equation (2.160) for a Floquet energy ϵ and vec-

tor ζ⃗, the corresponding solution Ψ⃗(t) to the original time-dependent system

(2.157) is reconstructed via Eqs. (2.158). Since Ψ⃗(t) only acquires a phase
after a full oscillation period, via

Ψ⃗(t+ τ) = e−
i
ℏ ϵτ Ψ⃗(t), (2.163)

it is called quasi-static or sometimes steady.

The diagonal entries of HF in Eq. (2.162) are matrices of the form (H0+nℏω)
with n ∈ Z. They are coupled to one another via the matrices H±m with
m > 0. Without the latter, the eigenvalues ϵ of HF would be copies of the
original eigenvalues of H0 plus integer multiples of ℏω. This is illustrated in
Fig. 2.28 for a one-dimensional band structure. The copies of the original
bands are called Floquet replica bands. In the following, these replica bands
will be identified with photonic excitations.
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2.6.2 Photon Count

The decomposition of electric fields into their Fourier components belonging
to specific energies ℏω suggests treating those terms as photon energies as
is done in an analysis of Shirley [100]. The term H+1 then belongs to the
excitation by the absorption of one photon whereas H−1 corresponds to the
emission. This interpretation can be extended to n photons and H±n. Note,
however, that the fields here are treated only classically, i.e. the formalism
does not describe spontaneous emissions or absorptions.

According to this interpretation, a photon count matrix can be defined as

Γ :=



. . . 0
0 −2 · 1 0

0 −1 · 1 0
0 0 · 1 0

0 +1 · 1 0
0 +2 · 1 0

0
. . .


(2.164)

with unit matrices of dimension d, similar to the ζ⃗n in Eq. (2.158). The
expectation value

⟨Γ⟩ = ζ⃗ tΓζ⃗ (2.165)

will therefore be identified with the number of photons a state has absorbed
or emitted. Solutions to HF with ⟨Γ⟩ ≈ 0 will be interpreted has hav-
ing zero mean absorbed or emitted photons. Together with their respective
quasi-energies ϵ, these solutions will therefore be dubbed the electronic band
structure. Oppositely, those solutions that have ⟨Γ⟩ ≈ ±n with n > 0 can be
interpreted as having either absorbed or emitted n photons, depending on
the sign. Together with their respective quasi-energies, these solutions will be
called photonic band structure. As noted by Shirley [100], the identification
of the Floquet energies with photonic excitations relies on a large number
of photons being present. Thus, both the electronic and the photonic band
structure need to be considered inside a continuum of photons.

Based on the definitions (2.161) and (2.183) for ζ⃗, the condition ⟨Γ⟩ ≈ 0
can be met in two ways:

1. All ζ⃗n inside ζ⃗ vanish, except for n = 0.

2. A state ζ⃗ satisfies
∑

n>0 n ·
∣∣∣ζ⃗n∣∣∣2 = −∑n<0 n ·

∣∣∣ζ⃗n∣∣∣2.
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The second condition in particular includes states with |ζ⃗n| = |ζ⃗−n| ∀n. States
that satisfy condition 2, but not condition 1 are dressed by virtual photons,
i.e. a photon is absorbed and emitted in a coherent process. Such dressed
states will be said to have effectively zero photons, since it is only the ζ⃗0
contribution that directly corresponds to no photonic excitation. Condition
1 can only be satisfied if there is no interaction with the photon field.

The Floquet band structure illustrated in Fig. 2.28a can be separated into
replicas that correspond to certain photon numbers. The electronic band
structure is depicted in red. The n-photon replicas are are depicted in blue
and are centred around the energies nℏω, for n ∈ Z\{0}. In Fig. 2.28b, the
electronic bands intersect with some photonic bands. Such an intersection
occurs when f = ω/(2π) is a resonance frequency for the two respective
bands. In the Floquet Hamiltonian HF (see Eq. (2.162), such a resonant
coupling is generated by the terms H±1.
Even though the figure only shows an intersection between the 0- and the
1-photon bands, it is also possible for the 0- and the 2-photon bands to cross.
Those bands can then be coupled either via terms H±2 or via multiple in-
stances of H±1. The coupling via H±1 is a second-order process associated
with the exchange of two photons, whereas the terms H±2 are associated
with a single photon of twice the frequency.
These concepts can be generalised to any higher resonances. The processes
via multiple H±1, however, are typically suppressed, similar to higher-order
perturbative processes. All these processes can also occur between two sets
of photonic bands. However, as will be explained in the following, it suffices
to only consider the effects on the electronic bands.

2.6.3 Electronic and Photonic Band Structure

The 0-photon bands and the n-photon bands are entirely identical, except
for two aspects:

1. Their Floquet quasi-energies ϵ differ by nℏω.

2. The entries ζ⃗i of their eigenvectors ζ⃗ (see Eq. (2.161)) are shifted by n
places relative to one another inside the vectors. Thus, their photonic
expectation values differ by n.

To further exemplify this, consider a 0-photon state with Floquet energy ϵ0

and eigenvector

ζ⃗ 0 := (.., ζ⃗ 0
−2, ζ⃗

0
−1, ζ⃗

0
0 , ζ⃗

0
1 , ζ⃗

0
2 , ..)

t (2.166)
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as defined in section 2.6.1. If the state ζ⃗ 0 exists, then a similar 2-photon
state exists with Floquet energy ϵ2 = ϵ0 + 2ℏω and eigenvector

ζ⃗ 2 := (.., ζ⃗ 0
−4, ζ⃗

0
−3, ζ⃗

0
−2, ζ⃗

0
−1, ζ⃗

0
0 , ..)

t. (2.167)

When these solutions are recombined into the solution Ψ⃗(t) of the original,
time-dependent system via Eq. (2.158), then the the 0-photon state yields

Ψ⃗0(t) = exp

(
− i

ℏ
ϵ0t

) ∞∑
n=−∞

einωtζ⃗ 0
n . (2.168)

The 2-photon state, on the other hand, yields

Ψ⃗2(t) = exp

(
− i

ℏ
(ϵ0 + 2ℏω)t

) ∞∑
n=−∞

einωtζ⃗ 0
n−2 (2.169)

= exp

(
− i

ℏ
ϵ0t

)
e−2iωt

∞∑
n=−∞

ei(n+2)ωtζ⃗ 0
n (2.170)

= exp

(
− i

ℏ
ϵ0t

) ∞∑
n=−∞

einωtζ⃗ 0
n (2.171)

=Ψ⃗0(t). (2.172)

Thus, both the 2-photon state and the 0-photon state correspond to the same
time-dependent solution of the original system. It therefore suffices to only
consider the Floquet energies in an interval

ϵ ∈
(
−ℏω

2
,+

ℏω
2

]
(2.173)

to fully understand the time-dependent solutions of the original Schrödinger equa-
tion (2.157). Alternatively, if the photon expectation values ⟨Γ⟩ assume ap-
proximately integer values, it is also possible to only consider the electronic
band structure, since all n-photon bands with n ̸= 0 are replicas of it. In the
latter case, it is possible to use the instantaneous energy expectation values
⟨E(t)⟩ := ⟨Ψ0|H(t)|Ψ0⟩ of a time-dependent solution |Ψ0(t)⟩ at times t to
make assumptions on the filling of the Floquet states. For actual 0-photon
states, one can compute

⟨E(t)⟩ = ⟨Ψ0|H(t)|Ψ0⟩ = ⟨Ψ0|iℏ ∂
∂t

|Ψ0⟩ = iℏ(ζ⃗ 0)†
(
e+

i
ℏ ϵ

0t ∂

∂t
e−

i
ℏ ϵ

0t

)
ζ⃗ 0 = ϵ0,

(2.174)
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i.e. the energy expectation value is identical to the Floquet energy. For
mixed photon states, Eq. (2.174), one needs to take the time average over
the interval from t = 0 to t = τ = 2π/ω One then obtains

⟨E⟩ = 1

τ

∫ τ

0

Ψ†(t)

(
iℏ
∂

∂t

)
Ψ(t) dt (2.175)

=
1

τ

∫ τ

0

e+
i
ℏ ϵtη†(t)

(
iℏ
∂

∂t

)
e−

i
ℏ ϵtη(t) dt (2.176)

=
1

τ

∫ τ

0

e+
i
ℏ ϵte−

i
ℏ ϵtη†(t)

(
− i

ℏ
ϵ+ iℏ

∂

∂t

)
η(t) dt (2.177)

=
1

τ

∫ τ

0

ϵ+ η†(t)

(
iℏ
∂

∂t

)
η(t) dt (2.178)

= ϵ+
1

τ

∫ τ

0

∑
n

e−inωtζ⃗†n

(
iℏ
∂

∂t

)∑
m

e+inωtζ⃗m dt (2.179)

= ϵ− 1

τ

∫ τ

0

∑
n

e−inωtζ⃗†n
∑
m

mℏωe+inωtζ⃗m dt (2.180)

= ϵ−
∑
n,m

mℏωζ⃗†nζ⃗m
1

τ

∫ τ

0

e+i(n−m)ωt dt︸ ︷︷ ︸
δnm

(2.181)

= ϵ−
∑
n

nℏω|ζ⃗n|2. (2.182)

From line (2.175) to (2.176), only definitions have been inserted. In the step
to (2.177), the product rule was used. (2.178) was achieved by changing the
order of terms and solving some of the products. The insertion of the defin-
ition of η(t) then leads to line (2.179), where the time-derivative is applied
to obtain line (2.180). By pulling the integral into the sum in line (2.181),
one can see that only the summands with n = m can contribute towards the
final energy expectation value given in line (2.182).

If the condition
∑

n>0 n ·
∣∣∣ζ⃗n∣∣∣2 = −∑n<0 n ·

∣∣∣ζ⃗n∣∣∣2 is satisfied, i.e. if the state is
an effective 0-photon state, then the final summand in line (2.182) vanishes,
and the Floquet quasi-energy ϵ is identical to ⟨E⟩. Thus, for band struc-
tures with mostly near-integer photon expectation values, the Floquet quasi-
energies can be treated as the energy expectation values. The electronic band
structure can then be treated like the band structure of a time-independent
system, in particular to predict its filling.

As will be explained in the following, it often suffices to only consider a trun-
cated Floquet Hamiltonian matrix HF to study the electronic band structure.
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2.6.4 Truncation

By restricting the n-photon bands that are being considered to −N ≤ n ≤ N
for N ∈ N, the vectors ζ⃗n and the Floquet matrix HF (cf. Eqs. (2.161) and
(2.162)) both become finite-dimensional.22 The vector

ζ⃗ = (ζ⃗−N , .., ζ⃗−1, ζ⃗0, ζ⃗1, .., ζ⃗N)
t (2.183)

is then the solution to a Floquet Hamiltonian matrix of 2N + 1 times the
dimension d of the original Hamiltonian matrix H(t), i.e. it has d · (2N + 1)
eigenvalues ϵ and eigenvectors ζ. In this thesis, N will be called the Floquet
order.

Due to the truncation by N , the original time-dependent Schrödinger equa-
tion (2.157) becomes a finite-dimensional algebraic problem, only omitting
terms corresponding to multiples of ω higher than N -fold. This involves
in particular N -photon processes and processes that involve photons that
correspond to N -times the driving frequency.23 This is further motivated for
systems with only one driving frequency, as will be explained in the following.

For processes that oscillate periodically with exactly one frequency, such as
irradiation with monochromatic light, the Hamiltonian (2.157) only involves
up to three summands, H0 and H±1, as these describe constant systems and
systems with time dependence of the form cos(ωt) and sin(ωt). Thus, after
truncation by N , the Floquet Hamiltonian (2.162) assumes the form

HF =

(H0 −Nℏω) H+1 0

H−1
. . . H+1 0

0 H−1 (H0 − 1ℏω) H+1 0
0 H−1 H0 H+1 0

0 H−1 (H0 + 1ℏω) H+1 0

0 H−1
. . . H+1

0 H−1 (H0 +Nℏω)


.

(2.184)

Hence, the electronic bands are only coupled directly to the (±1)-photon
states. When considered perturbatively, a coupling to the (±n)-photon states

22The truncation does not need to be symmetrical. All results of this section can be
derived analogously for independent upper and lower limits N+ and N−.

23More precisely, any combinations of ni-photon processes with |∑i ni| ≥ N are omit-
ted. Here, ni can be positive for absorptions and negative for emissions.
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only occurs as an (2n)’th order correction to the electronic bands.24 Thus, if
the matrix elements of H±1 are smaller than the unperturbed eigenenergies
of H0, it is appropriate to truncate the system by some Floquet order N after
which further corrections become negligible.

As a conclusion to this chapter, the effect of time-dependence and Floquet
formalism on the general topology of a system will be discussed.

2.6.5 Topology

The effects on the topology due to time-dependence can be of great con-
sequence to the topological invariants and the topological edge states, as has
been shown by Roy and Harper [25]. In the following, their work will be
summarised and adapted to the notation of this thesis. Analogously to Roy
and Harper, consider the time evolution operator25

U(t) := T exp

(
− i

ℏ

∫ t

0

H(t′)dt′
)

(2.185)

with the time ordering operator T and a time t, such that

Ψ⃗(t) = U(t)Ψ⃗(0). (2.186)

The eigenvalues of U(t) are complex and have absolute value 1. Thus, they

can be written as e−
i
ℏ ϵ(t)t with a function ϵ(t) that satisfies

ϵ : t→ ϵ(t) ∈
(
−πℏ
t
,+

πℏ
t

]
for t ̸= 0 (2.187)

and ϵ(0) = 0. It is not by coincidence that the function ϵ(t) uses the same
symbol as the Floquet quasi-energy. In fact, if H(t) is periodic, the following
relation holds

e−
i
ℏ ϵ(τ)τ = e−

i
ℏ ϵτ , (2.188)

i.e. the function ϵ(τ) and the quasi-energy ϵ are identical modulo 2πℏ/τ . In
accordance with Eq. (2.173), the Floquet energy ϵ can thus be limited to the
interval

ϵ ∈
(
−πℏ
τ
,+

πℏ
τ

]
=

(
−ℏω

2
,+

ℏω
2

]
(2.189)

24E.g. a (−1)- and a (+1)-photon state |−1⟩ and |+1⟩ are coupled via an in-
termediate 0-photon state |0⟩. The lowest-order correction term that couples |−1⟩
and |+1⟩ perturbatively is of fourth order and involves an expression proportional to
|⟨+1|H+1|0⟩⟨0|H+1|−1⟩|2.

25As can be seen from the acquired prefactor in Eq. (2.163), the time evolution operator
is not necessarily periodic in time, even if the underlying system is. This is similar to how
Bloch wave functions obtain a phase upon translation from one unit cell to another.
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k [1/a]

ϵ (τ) τ

ℏ

Figure 2.29: Spectrum of a Floquet Hamiltonian H ′
F, defined for a fixed time

τ ; A time evolution possibly changes the topology of the band structure and
can therefore give rise to edge states (purple) between bands (red). In a
system that satisfies particle-hole or chiral symmetry, the only topologically
non-trivial gaps can occur at ϵ(τ) = 0 and ϵ(τ) = ±πℏ

τ
. If these symmetries

are absent from the system, additional non-trivial gaps can occur at arbitrary
ϵ(τ). Since the eigenvalues e−

i
ℏ ϵ(τ)τ of the time-evolution operator U(τ) lie on

a circle in the complex plane, the values +π and −π are identified, allowing
for edge modes to arise at ϵ(τ) = ±πℏ

τ
. The figure is inspired by [25].

with the time τ over which the time-dependent system is periodic. Notably,
the interval in Eq. (2.189) has a length equal to the energy ℏω of one photon.
It is sometimes referred to as the first Brillouin zone of the Floquet energy.
An alternative Floquet Hamiltonian can be defined to have its values within
the interval (2.189), by

H ′
F := i ln(U(τ)). (2.190)

As opposed to HF from Eq. (2.162), the spectrum of H ′
F from Eq. (2.190)

is bounded from above and below by ±πℏ
τ
. This is because the spectrum

identifies a circle. Those values of the Floquet energy ϵ that lie beyond the
bounds correspond to values of ϵ(τ) that, after a modulo operation, lie again
within the bounds.
The identification with a circle allows for topological band gaps that span
across the bounds, as the points ϵ(τ) = +πℏ

τ
and ϵ(τ) = −πℏ

τ
are identified

with one another. Since a time-evolution can change the topology of the sys-
tem, edge modes can arise both within the spectrum and across the bounds
as illustrated in Fig. 2.29.

As Roy and Harper have shown, such edge modes, both within the bounds
and across them, can arise as a consequence of any time-evolution, not
only those that stem from a time-periodic system. Let X be the manifold



2.6. TIME-DEPENDENT SYSTEMS 69

that describes the periodic Brillouin zone.26 For a time-periodic system,
X is extended by a manifold that describes the periodic time, i.e. the one-
dimensional sphere S1. The new manifold S1 × X then gives rise to a new
periodic table of Floquet topological invariants that is given at the end of
this section in Tab. 2.2.

As proved by Roy and Harper, the topological invariants G ∈ {Z, 2Z,Z2}
obtain an exponent and are therefore replaced with either G×np for systems
that satisfy particle-hole or chiral symmetry, or G×n for systems that do not.
The integers n ∈ N\{0} and np ∈ {1, 2} denote the number of physically
relevant gaps in the spectrum given by ϵ(τ). The nomenclature “physically
relevant” is based on [25] and denotes d-dimensional bulk bands that still
exhibit a band gap after projection onto d − 1 dimensions. Only if there is
a physically relevant gap both at ϵ(τ) = 0 and ϵ(τ) = ±πℏ

τ
, does np assume

the value 2. n can generally assume any positive integer value.

To elaborate on the meaning of physically relevant band gaps, an example
of Rudner at al. [101] will be used.
Consider a two-dimensional particle-hole symmetric two-band insulator with
trivial Chern numbers W = 0. The latter can be computed for the quasi-
bands ϵ(τ) as a function of k⃗ by the same formulae as for a conventional
band structure. In the time-independent case, this system would not exhibit
any topologically protected conducting edge states. In the time-dependent
case, this is not necessarily true. To understand this, consider Fig. 2.30.
A topologically trivial system like in Fig. 2.30a can be made non-trivial by
closing and reopening the band gap27 at ϵ(τ)τ/ℏ = ±π. In the process, the
Chern numbers of valence and conduction band become W = ±1. As a con-
sequence, chiral edge states (purple) appear in Fig. 2.30b.
By closing and reopening the gap at ϵ(τ)τ/ℏ = 0, the Chern numbers can
be made trivial again, i.e. W = 0. However, the edge states that cross
ϵ(τ)τ/ℏ = ±π cannot disappear, since the corresponding band gap remains
open. As a consequence, new edge modes arise at ϵ(τ)τ/ℏ = 0, as depicted
in Fig. 2.30c.

26Due to its periodicity, the Brillouin zone can be considered mathematically as a torus.
This is similar to how it was illustrated for the lattice in Fig. 2.4 (pg. 9).

27This closing and reopening of the band gap does not happen on any time scale. In fact,
the Chern numbers are time-independent (cf. [102, 103]). Instead, the three systems in
Fig. 2.30 should be considered as three topologically different system that therefore have no
continuous transformation connecting them. The closing and reopening is an artificial non-
continuous transformation to visualise the connection between Chern numbers, topological
protection and edge states.
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Figure 2.30: Edge states in a periodic Floquet band structure at time t =
τ ; A topologically trivial system (a) can become non-trivial (b) by closing
and reopening the band gap between bulk bands (red) at the quasi-energy
values ϵ(τ)τ/ℏ = ±π. As a consequence, topologically protected edge states
(purple) arise. By closing and reopening another band gap at ϵ(τ)τ/ℏ = 0,
the Chern numbers W become trivial again (c). New topologically protected
conducting edge states arise to compensate the other ones. The figure is
inspired by [25] and [101].

The system described above has n = 2 physically relevant band gaps. How-
ever, all observations can be generalised to any Floquet topological insulators.
The system exhibits two topologically protected edge states despite having
trivial Chern numbers W = 0. This does not change the fact that non-
zero Chern numbers still indicate the existence of topologically protected
edge states. However, it is possible that these edge states stretch across the
boundary of the Floquet Brillouin zone. In a time-dependent system, the
sum of the Chern numbers is therefore no longer equal to the number of edge
states that cross ϵ(τ) = 0 like in Eq. (2.153) and Fig. 2.26.

Rudner at al. [101] instead give an explicit form for the topological invari-
ant of a system as described above in form of what they call the winding
number28

W [U ] :=
1

8π2

∫∫∫
Tr

(
U−1 ∂

∂t
U

[
U−1 ∂

∂kx
U,U−1 ∂

∂ky
U

])
dt dkx dky,

(2.191)
where the dependencies of the time-evolution operator U have not been
written explicitly. Rudner at al. show that the winding number W [U ] is
equal to the number of edge states that cross the Floquet Brillouin zone at
ϵ(τ)τ/ℏ = ±π. Together with the Chern numbers of the n physically relevant

28This winding number should not be confused with the sublattice spin winding number
defined in Eq. (2.113).
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band gaps,29 it is then possible to conclude the number of edge states that
cross every respective band, similarly to how it has been done in Eq. (2.153)
and Fig. 2.26.

In spinful graphene with d-orbitals, as it is considered in this thesis, a
time evolution would replace the Z2-topological invariant with either a Z×n

2 -
topological invariant or a Zn-topological invariant, depending on the time-
reversal symmetry. However, no edge states that cross the boundary of the
Floquet Brillouin zone are found in this thesis. Hence, the Chern numbers
and the Z2-topological invariant suffice to describe the topology of the time-
dependent system like in the time-independent case.

29Since the sum over all Chern numbers is zero, it is only necessary to compute n − 1
of them. Together with the winding number (2.191), this makes a total of n individual
Z-topological quantum numbers. Hence, the system is a Z×n-topological insulator.
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Class Symmetry Dimension
T 2 P 2 C2 0 1 2 3 4 5 6 7

A 0 0 0 Z
×n 0 Z

×n 0 Z
×n 0 Z

×n 0
AIII 0 0 1 0 Z

×np 0 Z
×np 0 Z

×np 0 Z
×np

AI 1 0 0 Z
×n 0 0 0 (2Z)×n 0 Z

×n
2 Z

×n
2

BDI 1 1 1 Z
×np

2 Z
×np 0 0 0 (2Z)×np 0 Z

×np

2

D 0 1 0 Z
×np

2 Z
×np

2 Z
×np 0 0 0 (2Z)×np 0

DIII −1 1 1 0 Z
×np

2 Z
×np

2 Z
×np 0 0 0 (2Z)×np

AII −1 0 0 (2Z)×n 0 Z
×n
2 Z

×n
2 Z

×n 0 0 0

CII −1 −1 1 0 (2Z)×np 0 Z
×np

2 Z
×np

2 Z
×np 0 0

C 0 −1 0 0 0 (2Z)×np 0 Z
×np

2 Z
×np

2 Z
×np 0

CI 1 −1 1 0 0 0 (2Z)×np 0 Z
×np

2 Z
×np

2 Z
×np

Table 2.2: Periodic table of topological invariants for Floquet-topological insulators; Similarly to Tab. 2.1, systems
have topological invariants, depending on their time-reversal (T ), particle-hole (P ) and chiral symmetry (C). The
table is periodic for Brillouin zone dimensions of d → d + 8. The integers n ∈ Z

+ and np{1, 2} denote the number
of physically relevant band gaps of the system. np assumes the value 2 only if there is a non-trivial gap both at
ϵ(τ) = 0 and ϵ(τ) = ±πℏ

τ
. The exponents ×n and ×np denote the respective n- and np-fold direct product of a group

with itself. The Altland-Zirnbauer class AII in d = 2 dimensions has been highlighted with thick borders as it is the
class corresponding to graphene.



Chapter 3

Electric Fields in Graphene

This chapter will discuss the effects of a time-dependent electric field on the
graphene Floquet band structure analytically. First, section 3.1 will cover the
choice of a scalar potential as well as its compatibility with the periodicity
of the lattice. Afterwards, section 3.2 will derive analytical solutions for
the unperturbed graphene band structure at the K-point. In section 3.3,
the discussions of both previous sections will then be combined to predict
the behaviour of the Floquet energies of graphene at the K-point under
irradiation with circularly polarised light.

3.1 Implementation of the External Electric

Field

Since the magnetic component B⃗ of an electromagnetic field is suppressed
by a factor c compared to its electric one E⃗, i.e.

|B⃗| = 1

c
|E⃗|, (3.1)

this thesis will restrict to only the electric component. In the following, an
electric field generated by a laser beam perpendicular to the graphene sample
will be considered. It will be assumed perpendicular to ensure that all field
components are in-plane. As discussed in section 2.3.1 and at the end of
section 2.5.1, an out-of-plane component can lead to a Rashba effect that
affects the topology of the band structure. Out-of-plane components and
their effect on the topology will be discussed separately in sections 4.2.3 and
5.2.2.

73
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Figure 3.1: The incoming laser beam (straight red arrow), depending on the
polarisation (circular red arrow), gives rise to an oscillating electric field in
the plane of the graphene sheet (blue).

The polarisation of the laser beam determines the shape of the correspond-
ing electric field. For circular and linear polarisation, the respective in-plane
fields are

E⃗circ(r⃗, t) = E0 ·

cos(ωt− κ⃗r⃗)
sin(ωt− κ⃗r⃗)

0

 and E⃗lin(r⃗, t) =
√
2E0 ·

 0
sin(ωt− κ⃗r⃗)

0

 ,

(3.2)
where the indices “circ” and “lin” denote the respective polarisations. The
wave vector κ⃗ = e⃗z · 2π/λ with the wavelength λ points in the z-direction.
Linearly polarised light has been equipped with a prefactor

√
2 to ensure

that both fields have the same intensity for identical electric field strength
E0. The effects of elliptically polarised light are expected to be a combination
of those of circular and linear polarisation. However, the details of elliptical
polarisation will be left to future work. The irradiation with circularly po-
larised light is illustrated in Fig. 3.1.

It is possible to choose a gauge such that the corresponding electromagnetic
vector potentials for the electric fields (3.2) are

A⃗circ(r⃗, t) =
E0

ω
·

− sin(ωt− κ⃗r⃗)
cos(ωt− κ⃗r⃗)

0

 , A⃗lin(r⃗, t) =

√
2E0

ω
·

 0
cos(ωt− κ⃗r⃗)

0

 ,

(3.3)
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together with trivial scalar potentials

Φcirc/lin(r⃗, t) = 0. (3.4)

In the following, the indices “circ” and “lin” will only be written explicitly
when it is necessary to distinguish between both polarisations. Note that
the vector potentials in Eq. (3.3) are not yet rotation-free, i.e. they lead to
magnetic fields. The latter, however, disappear under the assumption κ⃗r⃗ ≈ 0.
This dipole approximation is justified by the small extent of graphene into the
z-direction, as λ ≫ aBohr. The approximation takes the spatial dependence
from the potential. Via a gauge transformation

A⃗(r⃗, t) → A⃗′(r⃗, t) = A⃗(r⃗, t) +∇χ(r⃗, t) (3.5)

Φ(r⃗, t) → Φ′(r⃗, t) = Φ(r⃗, t)− ∂χ(r⃗, t)

∂t
, (3.6)

it is then possible to change to a gauge where the vector potential is trivial.
For circular polarisation, the gauge term

χcirc(r⃗, t) =
E0

ω
· (x sin(ωt)− y cos(ωt)) , (3.7)

leads to the new electromagnetic potentials

Φ′
circ(r⃗, t) = −E0 · (x cos(ωt) + y sin(ωt)) and A⃗′

circ(r⃗, t) =

0
0
0

 .

(3.8)
An equivalent transformation for linear polarisation leads to

Φ′
lin(r⃗, t) = −

√
2E0 · y sin(ωt) and A⃗′

lin(r⃗, t) =

0
0
0

 . (3.9)

The Schrödinger equation for a particle of charge q inside a lattice potential
U(r⃗) transforms accordingly from

i
∂

∂t
ψ(r⃗, t) =


(
p⃗− qA⃗(r⃗, t)

)2
2m

+ U(r⃗)

ψ(r⃗, t). (3.10)

to

i
∂

∂t
ψ′(r⃗, t) =

(
p⃗2

2m
− qΦ′(r⃗, t) + U(r⃗)

)
ψ′(r⃗, t), (3.11)
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In Eq. (3.11), the wave functions have been transformed as well, according
to

ψ(r⃗, t) → ψ′(r⃗, t) = ψ(r⃗, t) · exp
(
−i
q

ℏ
χ(r⃗, t)

)
, (3.12)

to ensure overall gauge invariance. These two gauges are called velocity
gauge1 for Φ(r⃗, t) = 0 and length gauge for A⃗(r⃗, t) = 0, respectively (cf. [61]).

Both Schrödinger equations (3.10) and (3.11) are equivalent. However, there
is a vast difference in how they are typically handled in a tight-binding model.
Eq. (3.10) is commonly treated by means of Peierls substitution [82, 83] where
the hopping terms in the Hamiltonian are modified as

tij → tij · exp
(
i
q

ℏ

∫ r⃗j

r⃗i

A⃗(r⃗′, t)dr⃗′
)

(3.13)

with positions r⃗i and r⃗j of the respective atoms i and j.
However, as noted by many of the original authors of this method, it is not
suited for a strongly time-dependent LCAO model [105–107]. The reason is
that the substitution is the result of a transformation quite similar to the
gauge transformation in Eq. (3.12), but performed individually on each lat-
tice site. As a result, one would end up with new, individual effective scalar
potentials for every site (cf. [44, 108]).2

Instead, this thesis will exclusively work with Eq. (3.11). Nonetheless, this
ansatz bears a problem as well. Since the scalar potential of a spatially con-
stant electric field is incompatible with the periodicity condition of the Bloch
theorem, the wave functions need to be separated into Wannier and envelope
functions (cf. section 2.2.4). As a consequence of this procedure, the Wannier

functions are no longer orthogonal for different reciprocal vectors k⃗. Hence,
it is mandatory to discuss the effect of the resulting k⃗-non-diagonal terms.

3.1.1 Coupling of Different k⃗

As was shown by Kleinman [73], a separation of a linear potential into a

staggered part and a sawtooth part like in Fig. 2.7 (pg. 22) leads to k⃗-non-
diagonal terms between the Wannier functions.

1The definition of the velocity gauge differs between fields of research as e.g. mentioned
in [104] regarding velocity gauge in laser-matter interactions.

2These new terms are proportional to the time-derivative of the vector potential and
typically only couple different bands. Hence, they can be neglected for slowly varying
perturbations or single-band models.
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To study the k⃗-non-diagonal terms that arise from a scalar potential Φ(r⃗, t),
the notation of section 2.2 will be modified slightly to write

|ψnk⃗, k⃗⟩ := ei⃗kr⃗ψnk⃗(r⃗, t) (3.14)

with

ψnk⃗(r⃗, t) :=
1√
N

∑
R⃗

∑
s=±1

f s
n,R⃗

(t)ei⃗kR⃗wn(r⃗ − (R⃗ + s · δ⃗/2)). (3.15)

The R⃗ are lattice vectors and δ⃗ the displacement vector according to defini-
tions (2.1) and (2.2). s ∈ {−1,+1} defines whether a wave function is local-
ised on sublattice A (+1) or sublattice B (−1). The wn(r⃗) are the Wannier
functions composed of atomic orbitals according to Eq. (2.44). The f s

n,R⃗
(t)

are envelope functions like in Eq. (2.65), but equipped with a label s for the
respective sublattice.3 n denotes the quantum numbers associated with the
atomic orbitals.

The Hamiltonian describing an electron in the graphene lattice together with
the scalar potential Φ(r⃗, t) can be expressed as

H(r⃗, t) =
p⃗2

2m
+ U(r⃗)︸ ︷︷ ︸
=:H0

− e− · Φ(r⃗, t)︸ ︷︷ ︸
=:H1

, (3.16)

where e− is the electron charge. Note that the minus sign is not included
in the definition of H1. This has no physical relevance and only serves the
purpose of easing later computations. The dependencies on r⃗ and t will not
be written explicitly in the following. The matrix elements

⟨ψn1k⃗
, k⃗|H|ψn2k⃗

, k⃗′⟩ (3.17)

can be separated into

⟨ψn1k⃗
, k⃗|H|ψn2k⃗′

, k⃗′⟩ = ⟨ψn1k⃗
, k⃗|H0|ψn2k⃗′

, k⃗′⟩ − ⟨ψn1k⃗
, k⃗|H1|ψn2k⃗′

, k⃗′⟩, (3.18)

where the first summand corresponds to the unperturbed, k⃗-diagonal Hamilto-
nian of graphene.

3Equivalently, one could include the label s into the label R⃗. This distinction has only
been made because of the clear sublattice structure of graphene.
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For H1 = e− · Φ(r⃗, t) = (V (t) · x), i.e. a spatially homogeneous electric
field that varies in time, the second summand becomes

⟨ψn1k⃗
, k⃗|H1|ψn2k⃗′

, k⃗′⟩

=

∫
R3

ei(k⃗−k⃗
′)r⃗ · ψn1k⃗

†(r⃗) · V (t)x · ψn2k⃗′
(r⃗) dr⃗

=
∑

lattice vectors R⃗

∫
unit cell

ei(k⃗−k⃗
′)(r⃗+R⃗) · V (t)ψn1k⃗

†(r⃗)(Rx + x)ψn2k⃗′
(r⃗) dr⃗

=V (t)
∑
R⃗

ei(k⃗−k⃗
′)R⃗

Rx ·
∫
u.c.

ei(k⃗−k⃗
′)r⃗ · ψn1k⃗

†(r⃗)ψn2k⃗′
(r⃗) dr⃗︸ ︷︷ ︸

=:ηn1,n2,k,k
′

+

∫
u.c.

ei(k⃗−k⃗
′)r⃗ · ψn1k⃗

†(r⃗) x ψn2k⃗′
(r⃗) dr⃗︸ ︷︷ ︸

=:ξn1,n2,k,k
′


=V (t)

∑
R⃗

ei(k⃗−k⃗
′)R⃗ ·Rx · ηn1,n2,k,k′ + V (t)

∑
R⃗

ei(k⃗−k⃗
′)R⃗ · ξn1,n2,k,k′︸ ︷︷ ︸

=N ·δkk′ ·ξn1,n2,k,k
′ , diagonal in k⃗

. (3.19)

Going from the second to the third line, the integral over the R3 has been
separated into a sum of identical integrals over the unit cell.4 This changes
the global x-component into a local one plus the x-component Rx of the re-
spective lattice vector.

Since ξn1,n2,k,k′ is independent of R⃗, the second sum over R⃗ in Eq. (3.19)

obtains a Kronecker delta δk,k′ . For k⃗ = k⃗′, the term ξn1,n2,k,k =: ξn1,n2 is
k-independent and becomes the regular dipole matrix element. The first
sum in Eq. (3.19), on the other hand, contains an expression Rx. Because

of it, the overall sum is not diagonal with respect to k⃗. The term ηn1,n2,k,k′

corresponds to the integral over the function ei(k⃗−k⃗
′)r⃗ coupling the two states

ψn1k⃗
and ψn2k⃗′

. Via Eq. (3.15), the latter states are defined as weighted sums
of Wannier functions that, in turn, can be expressed as sums of orbital wave
functions (cf. section 2.2.3). In appendix B, the term ηn1,n2,k,k′ has been eval-
uated for wave functions that are localised on the same sublattice. Limiting

4These integrals still include an integration over the entire z-axis that has not been
written explicitly.
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Figure 3.2: Matrix elements of η(k′x−kx) from eq. (3.20): Rows and columns
are ordered pz, dxz, dyz. Red lines denote real, blue imaginary part. The label
“Lat” serves to better distinguish lattice constant and effective Bohr radius.

the wave functions to the orbitals pz, dxz and dyz, the term can be expressed
as a matrix

(ηn1,n2,k,k′)n1,n2∈{2pz,3dxz,3dyz}

=


1

((aLat∆kx)2+1)3
b·iaLat∆kx(

( 6
5
aLat∆kx)

2
+1

)4 0

b·iaLat∆kx(
( 6
5
aLat∆kx)

2
+1

)4

1−7( 3
2
aLat∆kx)

2(
( 3
2
aLat∆kx)

2
+1

)5 0

0 0 1(
( 3
2
aLat∆kx)

2
+1

)4

 (3.20)

with5 ∆kx := (k′x − kx). The parameter b = 211 · 34/57 has no physical sig-
nificance and is merely an analytical result. The lattice constant has been
equipped with an index “Lat” to avoid confusion with the effective Bohr ra-
dius that is used in the computations in appendix B. A field in y-direction

5In Appendix B, the definition for ∆k⃗ differs by a prefactor included there to simplify
computations. However, due to the unintuitive nature of that prefactor, the definition
here is without it.



80 CHAPTER 3. ELECTRIC FIELDS IN GRAPHENE

would result in a similar expression as Eq. (3.20), but with dxz and dyz in-
terchanged. Eq. (3.20) has been plotted in Fig. 3.2. As can be seen from
the figure, η, while generally non-zero, does never have entries with absolute
values larger than 1. More importantly, η drops off notably after quarter the
length of the Brillouin zone. Therefore, since the K-points have a distance
of 2π/3 · a−1

Lat between one another, a coupling between them is suppressed.

This motivates the exclusion of the k⃗-non-diagonal terms in the model in this
thesis, in general. Comparison of the results of chapters 4 and 5 will further
justify this decision.

Without the k⃗-non-diagonal terms, the Floquet Hamiltonian matrix (2.184)
shapes to

HF =

(H0 −Nℏω) −ξ+ 0

−ξ− . . . −ξ+ 0
0 −ξ− (H0 − 1ℏω) −ξ+ 0

0 −ξ− H0 −ξ+ 0
0 −ξ− (H0 + 1ℏω) −ξ+ 0

0 −ξ− . . . −ξ+
0 −ξ− (H0 +Nℏω)


(3.21)

with matrix entries

ξ±n1,n2,k,k
= ξn1,n2,k,k ·

ω

2π
·
∫ 2π

ω

0

V (t) · e±iωt dt (3.22)

in accordance to Eq. (2.156) (pg. 60). The dipole matrix elements ξ±n1,n2,s1,s2

couple respective orbitals and sublattices. In Eq. (3.21), the unit matrices 1
in front of the multiples of ℏω have been dropped for the sake of readability.
The minus signs in front of the matrices ξ± correspond to the minus sign in
front of H1 in Eq. (3.16).

3.2 Analytical Solutions at the K-point

A major focus of this thesis lies on the behaviour of valence and conduction
band of graphene at the K-points under irradiation with light. To under-
stand the effects that occur, it is crucial to first discuss the properties of
unperturbed graphene.
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Assume an orbital basis

(|A, pz⟩, |A, dxz⟩, |A, dyz⟩, |B, pz⟩, |B, dxz⟩, , |B, dyz⟩) , (3.23)

similar to that given in Eq. (2.45) on page 15. At the K-point, the spinless
multi-orbital tight-binding Hamiltonian for graphene with this basis simpli-
fies to

Htb =



0 0 0 0 −i
3Vpdπ

2

3Vpdπ
2

ϵd 0 i
3Vpdπ

2
Vddδ−Vddπ

2
−iVddδ−Vddπ

2

0 0 ϵd −3Vpdπ
2

−iVddδ−Vddπ
2

−Vddδ−Vddπ
2

0 −i
3Vpdπ

2
−3Vpdπ

2
0 0 0

i
3Vpdπ

2
Vddδ−Vddπ

2
iVddδ−Vddπ

2
ϵd 0

3Vpdπ
2

iVddδ−Vddπ
2

−Vddδ−Vddπ
2

0 0 ϵd


(3.24)

with hopping terms Vijα between two orbitals i, j ∈ {p,d} on neighbour-
ing atoms. The index α ∈ {σ, π, δ} denotes the molecular bond that couples
the orbitals. The numerical values of the parameters are given in appendix A.

For the intrinsic SOI matrix, assume the basis

(|pz, ↑⟩, |pz, ↓⟩, |dxz, ↑⟩, |dxz, ↓⟩, |dyz, ↑⟩, |dyz, ↓⟩). (3.25)

Note that, since SOI is only taken into account within one atom, this basis
only considers one lattice site. The SOI matrix is then of the form

HiSOI = λI

0 0 0
0 0 −iσz
0 iσz 0

 , (3.26)

where every 0 represents a matrix(
0 0
0 0

)
, (3.27)

and the σz are Pauli matrices acting on the spins.

It is then possible to combine the matrices (3.24) and (3.26) via

Hgraphene = Htb ⊗ 12 + 12 ⊗HiSOI + λSL · σz ⊗ 16, (3.28)
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with a basis

(|A, pz, ↑⟩, |A, pz, ↓⟩, |A, dxz, ↑⟩, |A, dxz, ↓⟩, |A, dyz, ↑⟩, |A, dyz, ↓⟩,
|B, pz, ↑⟩, |B, pz, ↓⟩, |B, dxz, ↑⟩, |B, dxz, ↓⟩, |B, dyz, ↑⟩, |B, dyz, ↓⟩).

In Eq. (3.28), the Kronecker products with the two-dimensional identity
matrices account for the spin in the tight-binding Hamiltonian and the second
lattice site in the SOI matrix. λI is the strength of the intrinsic SOI in
graphene and is also given in appendix A. The final summand is an artifi-
cial sublattice potential that elevates one sublattice energetically against the
other one. λSL = 0 throughout this thesis, but the term helps to distinguish
the solutions of the eigenproblem and to draw connections to section 2.4.5.

Exact diagonalization of the Hamiltonian (3.28) leads to the the solutions
listed in Tab. 3.1. In the table, the notation has been modified to regard for
the symmetries of graphene at the K-point and to thus simplify the expres-
sions. The wave functions Φ3dxz and Φ3dyz that describe dxz- and dyz-orbitals
consist of cubic harmonics and therefore have cubic symmetry. Since the hon-
eycomb lattice does not satisfy that symmetry, it is advantageous to switch
to spherical harmonics Y 0

1, Y
−1
2 and Y 1

2 via

Φ2pz(r, θ, ϕ) = R10(r) · Y 0
1(θ, ϕ) (3.29)

Φ3dxz(r, θ, ϕ) = R32(r) ·
1√
2

(
Y 1

2(θ, ϕ)− Y −1
2 (θ, ϕ)

)
(3.30)

Φ3dyz(r, θ, ϕ) = R32(r) ·
i√
2

(
Y 1

2(θ, ϕ) + Y −1
2 (θ, ϕ)

)
, (3.31)

where Rnl is the radial part of the wave function and is identical for cubic
and spherical symmetry. Since only 2p- and 3d-orbitals are considered, the
expressions are abbreviated to what will be called spherical orbitals

Y m
l,A/B,↕(r⃗) := R(l+1) l(|r⃗ − R⃗A/B|) · Y m

l (r⃗ − R⃗A/B) · |↕⟩, (3.32)

where the n-quantum number has been replaced with l + 1. The angles θ
and ϕ in Y m

l are taken from the argument in spherical coordinates. R⃗A/B

denotes the position of one of the two basis atoms A and B, and the state |↕⟩
denotes the spin ↕∈ {↓, ↑}. With the expressions (3.29-3.31), every solution
in Tab. 3.1 consist of only two spherical orbitals, respectively. Moreover, the
table shows a correlation between spin and sublattice as discussed in section
2.4.5. The results at the K ′-point can be obtained by interchanging m = +1
and m = −1 as well as spin-up and spin-down in Tab. 3.1.
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# vector energy eV

1 −iVpdπ · Y 0
1,B↓ +

(
ϵd − λ′

I + 2λSL −
√
V ′2
pdπ + (ϵd − λ′

I + 2λSL)2
)
· Y 1

2,A↓
1
2

(
ϵd − λ′

I −
√
V ′2
pdπ + (ϵd − λ′

I + 2λSL)2
)

−0.18104

2 +iVpdπ · Y −1
2,B↑ +

(
ϵd − λ′

I − 2λSL +
√

V ′2
pdπ + (ϵd − λ′

I − 2λSL)2
)
· Y 0

1,A↑
1
2

(
ϵd − λ′

I −
√
V ′2
pdπ + (ϵd − λ′

I − 2λSL)2
)

−0.18104

3 −iVpdπ · Y 0
1,B↑ +

(
ϵd + λ′

I + 2λSL −
√
V ′2
pdπ + (ϵd + λ′

I + 2λSL)2
)
· Y 1

2,A↑
1
2

(
ϵd + λ′

I −
√
V ′2
pdπ + (ϵd + λ′

I + 2λSL)2
)

−0.181

4 +iVpdπ · Y −1
2,B↓ +

(
ϵd + λ′

I − 2λSL +
√

V ′2
pdπ + (ϵd + λ′

I − 2λSL)2
)
· Y 0

1,A↓
1
2

(
ϵd + λ′

I −
√
V ′2
pdπ + (ϵd + λ′

I − 2λSL)2
)

−0.181

5
(
λ′
I + λSL −

√
∆V 2 + (λ′

I + λSL)2
)
· Y −1

2,A↓ −∆V · Y 1
2,B↓ ϵd −

√
∆V 2 + (λ′

I + λSL)2 7.423

6
(
λ′
I − λSL +

√
∆V 2 + (λ′

I − λSL)2
)
· Y −1

2,A↑ +∆V · Y 1
2,B↑ ϵd −

√
∆V 2 + (λ′

I − λSL)2 7.423

7 +iVpdπ · Y −1
2,B↑ +

(
ϵd − λ′

I − 2λSL −
√
V ′2
pdπ + (ϵd − λ′

I − 2λSL)2
)
· Y 0

1,A↑
1
2

(
ϵd − λ′

I +
√
V ′2
pdπ + (ϵd − λ′

I − 2λSL)2
)

12.1796

8 −iVpdπ · Y 0
1,B↓ +

(
ϵd − λ′

I + 2λSL −
√

V ′2
pdπ + (ϵd − λ′

I + 2λSL)2
)
· Y 1

2,A↓
1
2

(
ϵd − λ′

I +
√
V ′2
pdπ + (ϵd − λ′

I + 2λSL)2
)

12.18

9 +iVpdπ · Y −1
2,B↓ +

(
ϵd + λ′

I − 2λSL +
√
V ′2
pdπ + (ϵd + λ′

I − 2λSL)2
)
· Y 0

1,A↓
1
2

(
ϵd + λ′

I +
√
V ′2
pdπ + (ϵd + λ′

I − 2λSL)2
)

12.182

10 −iVpdπ · Y 0
1,B↑ +

(
ϵd + λ′

I + 2λSL +
√

V ′2
pdπ + (ϵd + λ′

I + 2λSL)2
)
· Y 1

2,A↑
1
2

(
ϵd + λ′

I +
√
V ′2
pdπ + (ϵd + λ′

I + 2λSL)2
)

12.182

11
(
λ′
I − λSL −

√
∆V 2 + (λ′

I − λSL)2
)
· Y −1

2,A↑ +∆V · Y 1
2,B↑ ϵd +

√
∆V 2 + (λI − λSL)′2 16.577

12
(
λ′
I + λSL +

√
∆V 2 + (λ′

I + λSL)2
)
· Y −1

2,A↓ −∆V · Y 1
2,B↓ ϵd +

√
∆V 2 + (λ′

I + λSL)2 16.577

Table 3.1: Eigenvectors and energies of the tight-binding graphene Hamiltonian at the K-point under consideration
of SOI. The numerical values of the parameters can be concluded from appendix A, where λ′I = λI/2, ∆V =
3/2 (Vddδ − Vddπ) and V

′
pdπ = 3

√
2 Vpdπ have been substituted for better readability, and λSL = 0, since it does not

occur in unperturbed graphene. The functions Y m
l,A/B↕ are defined in Eqs. (3.29-3.31) and denote spherical orbitals

with angular quantum numbers l and m on sublattice A/B, equipped with spin ↕. The numerical energy values
are rounded to four decimal places, unless more are necessary for distinction. The vectors are not normalised. If
a function Y m

l,A/B↕ has a frame around it, then the absolute value of its prefactor after normalisation evaluates to
more than 0.99, i.e. this function makes up approximately 99% of the eigenstate. If neither of the functions that
constitute an eigenstate is framed, then both prefactors become approximately 1/

√
2 after normalisation.
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Since each of the twelve states in Tab. 3.1 only consists of only two respective
spherical orbitals Y 0

1,A/B,↕ and Y m
2,B/A,↕, it is possible to associate every state

with a quantum number m ∈ {−1,+1}. This m plays a direct role in the
coupling to circularly polarised light, as will be shown in the following.

3.3 Electric Fields at the K-point

In the following, the effect of a circularly polarised time-dependent electric
field on the basis states in Tab. 3.1 will be studied. The action of the electric
field on these is dominated by two contributions: an onsite coupling and an
effective sublattice potential. Both will be discussed in the following.

3.3.1 Onsite Coupling

Consider a scalar potential

Φ(r⃗, t) = −E0 · (x cos(ωt) + y sin(ωt)) (3.33)

for a circularly polarised electric field like in Eq. (3.8). Furthermore, con-
sider two spherical orbitals Y m

l,A/B,↕(r, θ, ϕ) and Y m′
l′,A/B,↕(r, θ, ϕ) as defined

in Eq. (3.32). Since the electric field does not couple different spins, assume
that both spins are identical. Moreover, assume that both orbitals are local-
ised on the same lattice site A/B. As will be seen in chapter 4, the coupling
between orbitals on the same site suffices to describe the phenomena at the
K-point of graphene. The much smaller matrix elements between different
lattice sites will therefore not be discussed in this chapter.
Based on the assumptions above, the matrix element ⟨l,m|Φ(t)|l′,m′⟩ is in-
dependent of the lattice site and the spin. It is only non-zero if l′ = l±1 and
m′ = m± 1. Hence, assume l = 1, l′ = 2, m = 0 and m′ = ±1, to compute

⟨l = 1,m = 0| Φ(t) |l′ = 2,m′ = ±1⟩

=

∫∫∫
Y 0∗

1 (θ, ϕ)R10(r) Φ(r, θ, ϕ, t) Y
±1
2 (θ, ϕ)R32(r) dr dθ dϕ

=∓ E0a
∗
Bohr · e∓iωt · c0 with c0 =

√
2 · 82944

78125
≈ 1.5. (3.34)

a∗Bohr is the effective Bohr radius. c0 is derived from the orbital wave functions
and, importantly, does not depend on the sign ofm′. Under use of Eq. (3.34),
it is possible to construct the matrix elements coupling the twelve eigenstates
ψi of graphene at the K-point that are given in Tab. 3.1. Define the matrix
elements as

Ξi,j(t) := ⟨ψi|Φonsite(t)|ψj⟩ · e−. (3.35)
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i ↓ j → 1 2 3 4 5 6 7 8 9 10 11 12

1 + − + −
2 − + − +
3 + − + −
4 − + − +

5 + − + −
6 − + − +
7 − + − +
8 + − + −
9 − + − +
10 + − + −
11 − + − +
12 + − + −

Table 3.2: Relative m-quantum numbers mi,j = ±1 based on the definition
in Eq. (3.36); An entry ”−” denotes mi,j = −1, and ”+” denotes mi,j = +1.
No entry means that the corresponding matrix element ξ′i,j in Tab. 3.3 is
zero. Hence, no mi,j can be defined.

The term e− denotes the charge of an electron. For the following computa-
tions, it will be assumed that the electric field does not couple orbitals on
different atoms and that it has the same effect on every respective atom.
With the analytical expressions in Tab. 3.1 and Eq. (3.34), one can conclude
that there always exists an mi,j ∈ {−1,+1} and some constant ξ′i,j and, such
that

Ξi,j(t) = ξ′i,j · eimi,jωt. (3.36)

Themi,j and ξ
′
i,j are given in Tabs. 3.2 and 3.3. Tab. 3.3 consists of constants

ci that are defined as follows:

c1 =
V ′
pdπλI

V ′2
pdπ + ϵ2d

· c0 · E0a
∗
Bohr · e− ≈ Ẽ0 · 3 µeV (3.37)

c2 =
1

2

√√√√1 +
ϵd√

V ′2
pdπ + ϵ2d

· c0 · E0a
∗
Bohr · e− ≈ Ẽ0 · 75meV (3.38)

c3 =
1

2

√√√√1− ϵd√
V ′2
pdπ + ϵ2d

· c0 · E0a
∗
Bohr · e− ≈ Ẽ0 · 9.1meV (3.39)

c4 =1 · c0 · E0a
∗
Bohr · e− ≈ Ẽ0 · 107meV, (3.40)
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i ↓ j → 1 2 3 4 5 6 7 8 9 10 11 12

1 c1 ic2 −c4 −ic2
2 −c1 −c2 −c4 c2
3 −c1 −ic2 −c4 −ic2
4 c1 c2 −c4 c2
5 −ic2 c2 −ic3 −c3
6 −c2 ic2 c3 ic3
7 −c4 c3 c1 −c3
8 −c4 ic3 −c1 −ic3
9 −c4 −c3 −c1 −c3
10 −c4 −ic3 c1 −ic3
11 c2 ic2 −c3 ic3
12 ic2 c2 ic3 −c3

Table 3.3: Matrix elements ξ′i,j based on the definitions in Eqs. (3.35) and (3.36); The onsite component of a circularly
polarised field only couples certain states from Tab. 3.1 to one another. The absolute value of this coupling can
only assume the values ci with i ∈ {1, 2, 3, 4}. The latter values are defined in Eqs. (3.37-3.40). For the indices
i ∈ {2, 3, 4}, λI = 0 has been assumed. c1 is the result of a first-order Taylor expansion in λI. An empty cell at entry
(i, j) indicates ξ′i,j = 0.
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where Ẽ0 is the number value of E0 in units of V/nm. a∗Bohr is again
the effective Bohr radius, and c0 is defined in Eq. (3.34). The parameters
V ′
pdπ = 3

√
2 Vpdπ and λ′I = λI/2 from section 3.2 have been used to simplify

the expressions. All numerical values can be concluded from appendix A.
For the computation of Eqs. (3.38-3.40), it has been assumed that λ′I = 0,
since the effect of SOI on them is negligible. This assumption could not be
made in Eq. (3.37). Instead, it is the result of a first-order Taylor expansion
in λ′I.

Throughout this thesis, the time-dependence of the electric field will be
handled via Floquet formalism. The form of the Floquet Hamiltonian HF

was given in Eq. (3.21). When only onsite interaction is taken into account,
HF can be constructed from the results of Tabs. 3.2 and 3.3 together with
Eq. (3.36). In Eq. (3.21), the dipole matrix ξ± denotes the coupling between
two subsystems of different photon count. Its entries ξ±i,j are related to the
ξ′i,j of Tab. 3.3 via

ξ±i,j = −δmi,j ,±1 · ξ′i,j. (3.41)

The Kronecker deltas are the result of the Fourier decomposition of the
Hamiltonian: Depending on whether mi,j = +1 or −1, the only non-zero
Fourier components of Eq. (3.36) are the components +1 and −1. The re-
lative m-quantum number mi,j of Tab. 3.2 therefore relates the polarisa-
tion direction of the light to the upper and lower diagonal matrices ξ± in
Eq. (3.21). The additional minus sign in Eq. (3.41) stems from the defini-
tions in Eqs. (3.16) and (3.21). Since most of the matrix elements ξ′i,j are
zero, it is possible to restrict to an isolated selection of the basis vectors of
Tab. 3.1. Hence, consider the reduced basis

(|ψi,−1⟩, |ψj,−1⟩, |ψi, 0⟩, |ψj, 0⟩) (3.42)

composed of the (−1)-photon and 0-photon (replica) states ψi and ψj. The
notion “photon” here refers to the identification of dressed states in Floquet
formalism with photonic excitations, as explained in section 2.6.2. With the
basis (3.42), it is possible to restrict the overall Floquet Hamiltonian to only
the section that couples its elements, to study the matrix

Ei − ℏω 0 0 δmi,j ,+1ξ
′
i,j

0 Ej − ℏω δmj,i,+1ξ
′
j,i 0

0 δmi,j ,−1ξ
′
i,j Ei 0

δmj,i,−1ξ
′
j,i 0 0 Ej

 , (3.43)

where Ei/j denotes the energy of the unperturbed 0-photon state ψi/j as given
in Tab. 3.1. Based on Eq. (3.43), the onsite component of the electric field
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couples a (−1)-photon replica of a state ψi and a 0-photon state ψj if and
only if mi,j = 1. Since mi,j = −mj,i, this directly implies that a (−1)-photon
replica of the state ψj and the 0-photon state ψi are not coupled.

In the following, assume mi,j = +1. The eigenvalues that belong to the
coupled part of the system are then

ϵi,j± (ω) =
1

2

(
Ei + Ej − ℏω ±

√
ξ′i,jξ

′
j,i + (Ei − Ej − ℏω)2

)
, (3.44)

with corresponding eigenstates

Ψi,j
± (ω) =

1√
(ϵi,j± )2(ω) + ξ′i,jξ

′
j,i

(
ϵi,j± (ω)− Ej

ξ′j,i

)

=
1√

(ϵi,j± )2(ω) + ξ′i,jξ
′
j,i

(
(ϵi,j± (ω)− Ej)|ψi,−1⟩+ ξ′j,i|ψj, 0⟩

)
. (3.45)

At resonance, the eigenvalues and eigenstates become

lim
ℏω→(Ei−Ej)

ϵi,j± (ω) = Ej±
√
ξ′i,jξ

′
j,i, lim

ℏω→(Ei−Ej)
Ψi,j

± (ω) =
1√
2

(
±1
1

)
. (3.46)

At resonance frequencies fi,j = ωi,j/(2π) := (Ei − Ej)/(2πℏ), the Floquet
energies thus become the energy of the unperturbed state ψj plus or minus
the absolute value of the matrix element ξ′i,j = (ξ′j,i)

∗, i.e. they exhibit an
avoided crossing of width 2|ξ′i,j|. This is illustrated in Fig. 3.3.

The unperturbed valence and conduction band mostly consist of atomic p-
orbitals and will therefore often be referred to as p-bands. They correspond
to the first four states in Tab. 3.1. According to Tab. 3.3 and Eq. (3.37-
3.40), the coupling among those four is negligible compared to the coupling
between them and the d-bands that correspond to the numbers 5 through
12 in Tab. 3.1. From Tab. 3.2 and the Kronecker deltas in Eq. (3.43), one
can see that the only couplings between 0-photon p-bands and (−1)-photon
d-bands are the following:

� 1 to 9

� 3 to 7

� 2 to 6 and 11

� 4 to 5 and 12

Their energies satisfy the following relation:

E1 = E2 ⪅ E3 = E4︸ ︷︷ ︸
≈−0.18 eV

< E5 = E6︸ ︷︷ ︸
≈7.42 eV

< E7 ⪅ E9︸ ︷︷ ︸
≈12.18 eV

< E11 = E12︸ ︷︷ ︸
≈16.58 eV

, (3.47)
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0 ℰi-ℰj 2(ℰi-ℰj)

ℰj

ℰi

ℏω

ϵ±
i,j

Figure 3.3: Floquet quasi-energies near resonance; The Floquet quasi-
energies ϵi,j− (ω) (cyan) and ϵi,j+ (ω) (red) are defined in Eq. (3.44). Beyond
the resonance at ℏω = Ei−Ej, they behave like the uncoupled photon replica
energies Ei − ℏω and Ej. At resonance, they exhibit an avoided crossing of
width 2|ξ′i,j|. Here, ξ′i,j = (Ei − Ej)/20 has been assumed.

as can be seen in greater detail in Tab. 3.1. As a consequence of the relation
E5 = E6 < E7 ⪅ E9, the respective (angular) resonance frequencies ωi,j also
satisfy

ω2,6 ⪅ ω4,5︸ ︷︷ ︸
≈2π·1.84PHz

< ω1,9 ⪅ ω3,7︸ ︷︷ ︸
≈2π·2.99PHz

, (3.48)

and the couplings 2-6 and 4-5 occur at lower frequencies than the couplings
1-9 and 3-7. This induces an energetic shift, pushing the energies ϵ2,6− (ω) and
ϵ4,5− (ω) below the energies ϵ1,9− (ω) and ϵ3,7− (ω).
As a result, the onsite coupling leads to a crossing of the Floquet energies
ϵ1,9− (ω) and ϵ4,5− (ω). For frequencies ω < ω4,5, these Floquet energies cor-
respond to the original spin-down states 1 and 4. The consequence of the
relation (3.48) is therefore a band inversion for spin-down states. This will
be verified and elaborated on in section 4.2.

Since all states in Tab. 3.1 are eigenstates to the unperturbed Hamiltonian
Hgraphene as defined in Eq. (3.28), they are orthogonal under its induced ses-
quilinear form, i.e.

⟨ψi|Hgraphene|ψj⟩ = δijEj. (3.49)

Consequently, via the definition (3.45), one obtains for pairwise different
i, j, a, b ∈ {1, ..., 12} that

⟨Ψi,j
± |Hgraphene|Ψa,b

± ⟩ = 0. (3.50)

Since SOI is part of Hgraphene, this does in particular mean that SOI does
not avoid the crossing of the Floquet energies ϵ1,9− (ω) and ϵ4,5− (ω). However,
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another component of the electric field does lead to an avoided crossing.
So far, only the onsite contribution of Φ(r⃗, t) has been considered. Aside
from this contribution, an electric field also induces an effective sublattice
potential, as will be discussed in the following.

3.3.2 Sublattice Potential

Because of their relative positions within the unit cell, the two basis atoms
on sublattice A and B perceive a different electric potential. This potential
oscillates in time, similarly to the original electric field. The result is an
effective sublattice potential of +M sin(ωt) on sublattice A and −M sin(ωt)
on sublattice B, with

M =
aLat

2
√
3
E0 · e− ≈ Ẽ0 · 71meV, (3.51)

where Ẽ0 is again the number value of the field strength E0 in V/nm.
aLat/(2

√
3) is half the distance between two atoms. The lower index ”Lat”

serves to distinguish the lattice constant from the effective Bohr radius a∗Bohr

used in other computations in this chapter. Analogously to Eq. (3.35) and
(3.36), the matrix elements of the sublattice potential coupling the basis
vectors of Tab. 3.1 can be written as

Mi,j(t) := ⟨ψi|σz,sublat.M sin(t)|ψj⟩ · e− = µi,j · sin(t), (3.52)

where σz,sublat.M sin(t) is the overall sublattice potential with a Pauli matrix
σz acting on the sublattices. The time-independent matrix elements are
given in Tab. 3.4 and depend on functions di, i ∈ {1, 2, 3, 4} of the system
parameters. They are given in the following:

d1 =
ϵd√

ϵ2d + V ′2
pdπ

·M ≈ Ẽ0 · 69meV (3.53)

d2 = −
V ′
pdπ√

ϵ2d + V ′2
pdπ

·M ≈ −Ẽ0 · 17meV (3.54)

d3 =
λ′I
∆V

·M ≈ Ẽ0 · 23 µeV (3.55)

d4 = 1 ·M ≈ Ẽ0 · 71meV. (3.56)

The term d3 is a result of a first-order Taylor expansion in λ′I. For all other
terms, the SOI contributions are negligible. Hence, λI = 0 has been as-
sumed. The numerical values of the analytical parameters V ′

pdπ = 3
√
2 Vpdπ,
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∆V = 3/2(Vddδ − Vddπ) and λ′I = λI/2 can be computed from appendix A.
Since the sine in Eq. (3.52) consists of two opposing phases e+iωt and e−iωt,
there is no second table similar to Tab. 3.2 for the effective sublattice po-
tential. Consequently, the polarisation leads to no further limitations as to
which basis vectors are coupled to one another. Thus, an expression similar
to Eq. (3.43) would not contain any Kronecker deltas.

The most consequential coupling term in Tab. 3.4 is the one between the
states ψ4 and ψ9. As discussed in the previous subsection, neither the onsite
potential nor the graphene Hamiltonian itself would prevent the Floquet
quasi-energies ϵ1,9− (ω) and ϵ4,5− (ω) from crossing. The sublattice potential,
however, does couple these states due to their contributions of the states ψ4

and ψ9. This will also be verified and elaborated on in section 4.2.

With these analytical results at hand, the next chapter will discuss the quant-
itative behaviour of the Floquet quasi-energies.
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i ↓ j → 1 2 3 4 5 6 7 8 9 10 11 12

1 −d1 d2
2 d1 d2
3 −d1 d2
4 d1 d2
5 −d3 d4
6 d3 −d4
7 d2 −d1
8 d2 d1
9 d2 −d1
10 d2 d1
11 −d4 −d3
12 d4 d3

Table 3.4: Matrix elements µi,j based on the definitions in Eqs. (3.35) and (3.36); The spatial dependence of a
scalar potential leads to an effective sublattice potential that couples the basis states Tab. 3.1 to one another. The
absolute value of this coupling can only assume the values di with i ∈ {1, 2, 3, 4}. The latter values are computed
from the definition (3.53-3.56). For the indices i ∈ {1, 2, 4}, λI = 0 has been assumed. The term d3 is the result of
a first-order Taylor expansion in λI. An empty cell at entry (i, j) indicates µ′

i,j = 0.



Chapter 4

Floquet Band Structure at the
K-point

Floquet engineering is a powerful tool for the modification of band structures
via time-driven perturbations. In graphene, this has been demonstrated by
multiple authors. Among these authors are Mathey and Broers [41, 42] who
used the Floquet formalism to open a band gap at the Dirac points as a
result of irradiation with light. Oka at al. [47] have derived how circularly
polarised light turns topologically trivial graphene into a Chern insulator.
This effect has then been verified experimentally by McIver at al. [48].

This chapter and chapter 5 will consider the work of the authors mentioned
above and extend it to a spinful model that involves p- and d-orbitals. This
extended model will then be studied for circularly and linearly polarised
light. The coupling between spin, sublattice and the angular momentum of
the d-orbitals will be demonstrated to give rise to several new phenomena.
Irradiation with circularly polarised light will lead to a change in topology
and to a lift of spin degeneracy. Moreover, a frequency-dependent band gap
enhancement will be observed for both linearly and circularly polarised light.
Like in section 3.1, the light will be assumed to generate electric fields with
corresponding scalar potentials

Φcirc(r⃗, t) = −E0 · (x cos(ωt) + y sin(ωt)) , Φlin(r⃗, t) = −
√
2E0 · y sin(ωt),

(4.1)
where the indices denote circular and linear polarisation.

This chapter focusses on the behaviour of the Floquet quasi-energies of
graphene at the K-point as a result of irradiation with light. It is structured
into three parts:

93
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Section 4.1 will discuss the general aspects of the quasi-energy bands, fo-
cussing on the band gap at the K-point and the topology of the Floquet
band structure. Section 4.2 will then explain the origin of those phenomena
and put them into relation with the previous chapter. After the first two
parts focus on frequencies in the PHz regime, section 4.3 will focus on lower
frequencies.

4.1 General Observations

To gain an intuition for the figures in this chapter, it is instructive to first
consider a system where the time-periodic perturbation does not couple to
the band structure. This can e.g. be achieved by setting the field strength
E0 of the electric potentials in Eq. (4.1) to zero. For Floquet order N = 1,
consider the Floquet Hamiltonian

HF =

H0 − ℏω 0 0
0 H0 0
0 0 H0 + ℏω

 (4.2)

with the unperturbed graphene LCAO Hamiltonian H0. For the sake of read-
ability, the dependence of HF and H0 has not been written explicitly.
Since E0 = 0, it follows that the only non-zero entries of HF consist of H0 and
multiples of ℏω. The eigenvalues of HF are Ei + nℏω with n ∈ {−1, 0,+1},
where the Ei are the eigenvalues of H0. The eigenvalues Ei(k⃗ = K⃗) of
graphene at the K-point are given in Tab. 3.1 (pg. 83). The Floquet quasi-

energies Ei(k⃗ = K⃗) + nℏω as functions of the frequency f = ω
2π

are depicted
in Fig. 4.1.

For the eigenstates of Eq. (4.2), the integer n is identical to the photon
expectation value ⟨Γ⟩ defined in Eq. (2.165) (pg. 62), i.e. n = ⟨Γ⟩. Accord-
ingly, Floquet states will henceforth be called n-photon states.1 Since HF in
Eq. (4.2) only consists of uncoupled replicas of the time-independent system,
n assumes integer values. If E0 ̸= 0, these replicas would be coupled, leading
to non-integer values of n. In accordance with the nomenclature of section
2.6.2, the band structure will be labelled electronic or photonic, based on
whether n is close to zero or not.

1As explained in section 2.6.2, the Floquet Hamiltonian HF does not describe a quant-
ised photon field. The identification of multiples of ℏω with photon energies relies on a
large number of photons being present (cf. [100]).
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+1 photon

±0 photons

-1 photon

Figure 4.1: Floquet quasi-energies E at the K-point as functions of the
frequency f , without an external electric field; Orange, black and azure lines
depict energies with n ∈ {−1, 0,+1} photons, respectively. With increasing
frequency, they change according to nhf = nℏω. Intersections occur at
resonance frequencies.

Fig. 4.1 only shows states that are associated with 0 or ±1 photons. States
with +1 photon are depicted in orange, those with −1 in azure and those with
0 in black. Their quasi-energies behave linearly with nℏω. The diagonal azure
lines and the horizontal black one at 0 eV cross at the resonance frequencies
connecting p- and d-bands. The latter can be computed from Tab. 3.1. Since
the effect of a light field on the band structure is expected to be strongest
close to those resonances, a significant part of this chapter will focus on them.

4.1.1 Frequency-dependent Floquet Energies

When a monochromatic electromagnetic field is assumed to couple to the
band structure, i.e. E0 ̸= 0 in Eq. (4.1), then the Floquet Hamiltonian as-
sumes the form of Eq. (3.21), i.e.

HF =

(H0 −Nℏω) −ξ 0

−ξ . . . −ξ 0
0 −ξ (H0 − 1ℏω) −ξ 0

0 −ξ H0 −ξ 0
0 −ξ (H0 + 1ℏω) −ξ 0

0 −ξ . . . −ξ
0 −ξ (H0 +Nℏω)


(4.3)
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with the unperturbed graphene Hamiltonian H0, the dipole matrix ξ, the
angular frequency ω = 2πf and the Floquet order N ∈ N. In Eq. (4.2), N
was set to 1, for illustrative purposes.

In the following, a constant field strength of E0 = 0.8V/nm will be as-
sumed for the electromagnetic scalar potentials (4.1). The value has been
chosen this way because it is both experimentally achievable (cf. [109]) and
large enough to make the qualitative behaviour of the perturbation on the
band gap observable. The orbitals to be considered throughout this chapter
are, unless stated otherwise, 2pz, 3dxz/yz and, for circular polarisation, the
effective 4fxyz-orbital. The latter is necessary to ensure that the coordinates
x and y commute, as has been discussed in section 2.2.3.

Fig. 4.2 depicts the Floquet quasi-energies of the Floquet Hamiltonian HF

from Eq. (4.3) at the K-point for a circularly polarised electric field. A de-
tailed discussion on the couplings between the individual bands will follow in
section 4.2 while this section will focus on the qualitative behaviour instead.
There are two major differences between Figs. 4.1 and 4.2a:

1. While the only photonic excitations that are included in Fig. 4.1 are
n ∈ {−1, 0, 1}, Fig. 4.2a includes excitations up to n = ±4, as can also
be deduced from the greater number of Floquet energies.

2. Since Eq. (4.2) assumes a vanishing field strength of E0 = 0, the lines
in Fig. 4.1 cross without interaction. The model with E0 ̸= 0, however,
leads to avoided crossings. This can be seen in Fig. 4.2b. As will
be discussed in section 4.2, these avoided crossings are the same as
illustrated in Fig. 3.3 (pg. 89). The crossing at f = 3PHz will also be
discussed there.

The dashed black lines in Fig. 4.2b correspond to the unperturbed lines from
Fig. 4.1 and have been added as a guide to the eye. From those lines, one
can see the exact points of resonance. For the given frequencies, an energetic
shift between the horizontal solid and the dashed lines can be observed. This
is due to the interaction of p- and d-bands under irradiation:
As discussed in section 2.2.3, the coupling between p- and d-bands in un-
perturbed graphene lowers the energy eigenvalues of valence and conduction
band at the K-point from 0 eV in graphene without d-orbitals to approxim-
ately E = −181meV with d-orbitals (cf. Tab. 3.1). The electric potential of
the light field enhances the coupling of the p- and d-bands, further lowering
the energy values.
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Figure 4.2: Frequency-dependent Floquet quasi-energies for graphene at the
K-point under the effect of a circularly polarised electric field of field strength
E0 = 0.8V/nm, with a Floquet order of N = 4; (a) With increasing fre-
quency, the energies change depending on the number of photons associated
with them. (b) The red lines from (a) have been zoomed in, unveiling avoided
crossings. Dashed lines depict the behaviour without interactions, to better
pinpoint resonances.

The energetic offset caused by the electric field increases with the field
strength. Its magnitude is depicted in Fig. 4.3 where the Floquet quasi-
energies associated with valence and conduction band are given as a func-
tion of the field strength E0 of the irradiated light. In the remainder of
this chapter, the energies of the graphene band structure will be shifted by
181.02meV, such that figures like 4.2 are centred around E = 0 eV.

As the frequency reaches f = 6PHz in Fig. 4.2, the Floquet energies con-
verge towards the field-free limit. Since there are no resonances at frequencies
higher than f = 4.1PHz (cf. intersections in Fig. 4.2), the effect of the electric
perturbation becomes weaker with increasing frequency. At lower frequen-
cies, higher resonances play an important role, as will be discussed for THz
frequencies in section 4.3.2.

Both Figs. 4.2 and 4.3 indicate an increase of the band gap between valence
and conduction band. As depicted in Fig. 4.4 for f = 3.85PHz,2 this leads
to an increase by two orders of magnitude compared to the natural graphene
band gap.

2The frequency of f = 3.85PHz in Fig. 4.5 has no particular physical significance
aside from lying between two resonances. At an early stage of this thesis, before the
implementation of the tight-binding model was completed, this frequency denoted a local
minimum of the band gap. Since then, it continues to serve as a reference point.
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Figure 4.3: Floquet quasi-energies that correspond to the 0-photon valence
and conduction band of graphene at the K-point, under irradiation with
circularly polarised light of frequency f = 0.1PHz; With increasing field
strength E0 of the irradiated light, the quasi-energies of the bands are
lowered. At zero field strength, both valence and conduction band lie at
approximately E = −0.181 eV, similar to the unperturbed case given in
Tab. 3.1.

Due to the avoided crossings in Fig. 4.2b, the definition of a band gap is
not unambiguous. This thesis always refers to the band gap as the gap
between those bands that have valence and conduction band character. From
Eqs. (3.44,3.45) (pg. 88) and Fig. 3.3, one can conclude that these bands are
typically those that are energetically closest to the bands of the unperturbed
system. The magnitude of the band gap depends on the field strength E0

and the frequency f of the electric field, as depicted in Fig. 4.5. It becomes
maximal at the resonances. Between the resonances, it increases approxim-
ately quadratically, as is implied by Eq. (3.44). This can be seen in Fig. 4.5b.
This behaviour is identical for other frequencies away from the resonances
and will be discussed in greater detail in section 4.2.

An increase of the band gap can be of great value to experiments that deal
with the topological properties of graphene. Since the natural band gap
is vanishingly small, thermal excitations can lead to electrons crossing the
gap. This in turn makes insufficiently cooled graphene a conductor. Band
gaps like those depicted in Fig. 4.5a and 4.4, however, are less prone to such
thermal excitations and therefore enable more elaborate experimental setups
for the study of quantum Hall effects. In the following, it will be discussed
whether graphene is still a topological insulator under irradiation with light,
and how the polarisation of the light affects the type of topological insulator.
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Figure 4.4: Band gap enhancement under the irradiation of graphene with
circularly polarised light of frequency f = 3.85PHz and field strength
E0 = 0.8V/nm; The original band gap between valence band (cyan) and
conduction band (red) increases by more than a factor of 100. ∆kx/y denotes
the distance from the K-point.
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(b) f = 3.85PHz

Figure 4.5: Band gap between valence and conduction band of the graphene
Floquet band structure at the K-point; (a) At a field strength of E0 =
0.8V/nm, the band gap is depicted as a function of the frequency f . Close
to resonances, the band gap increases quadratically. Hence, its magnitude
seems to diverge. (b) The gap is depicted as a function of the field strength
for a constant frequency of f = 3.85PHz. In both (a) and (b), the frequency
and the field strength of the other figure is highlighted via a dashed line.
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Figure 4.6: Berry curvature Ωz(k⃗) of the valence (VB) and conduction band
(CB) of unperturbed spinful graphene with d-orbitals; The spin-degenerate
bands have different Chern numbers W depending on the spin. The first
Brillouin zone has been marked.

4.1.2 Topology and Insulating Properties

As discussed in section 2.6.5, a time-dependent perturbation bears the po-
tential of significantly altering the topological properties of a material. One
effect is the change from a Z- or Z2-insulator to a Z

×n- or Z×n
2 -insulator

due to the periodicity of the Floquet band structure. The other effect is the
breaking of time-reversal that changes the corresponding Altland-Zirnbauer
class of a system (cf. Tab. 2.1, pg. 56).

Unperturbed graphene is a spin-Hall insulator whose topological quantum
number ν ∈ Z2 can be computed from the difference of the Chern numbers
of the spin-degenerate valence and conduction bands via Eqs. (2.141) and
(2.142) (pg. 53). As can be concluded from Fig. 4.6, this results in a Z2-
topological quantum number of ν = 1 for unperturbed graphene.
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Figure 4.7: Berry curvature Ωz(k⃗) of the 0-photon bands of graphene irra-
diated with circularly polarised light of frequency f = 3.85PHz and field
strength E0 = 0.8V/nm; As opposed to the unperturbed system in Fig. 4.6,
the Chern numbers of both bands above the Fermi energy (CB) are W = +1
while those below it are W = −1. This implies a spin-independent quantum
Hall effect as opposed to a spin-Hall effect. Note the varying scales for the
Berry curvature. The first Brillouin zone has been marked.

Fig. 4.6 shows the Berry curvature of unperturbed graphene similarly to
the figures in section 2.4.3, but under the inclusion of d-orbitals and spin.
Time-reversal symmetry leads to opposite Berry curvature for opposite spins.
Irradiation with circularly polarised light breaks this symmetry, as can be
seen in Fig. 4.7 for an exemplary frequency of f = 3.85PHz.

As discussed by Oka at al. [47] for spinless graphene, circularly polarised light
induces a Berry curvature. In Fig. 4.7, for spinful graphene, this curvature
is negative for the valence and positive for the conduction band. As a con-
sequence, the valence band has a Chern number of W = +1 regardless of
spin, while the conduction band hasW = −1. Graphene is therefore a Chern
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insulator. A result of this is a photovoltaic Hall effect, a quantum Hall effect
that is induced by the electric field of the light. It is an anomalous Hall ef-
fect, as there is no magnetic field involved. The resulting Hall current in the
material aligns with the polarisation direction of the light (cf. [110]). This
photovoltaic Hall effect has also been measured by McIver at al. [48].

Linearly polarised light does not break time-reversal symmetry. As a con-
sequence, the Chern numbers do not change, and graphene remains a spin-
Hall insulator. The Berry curvatures are not depicted explicitly.

The discussions above only consider the topological quantum numbers of
(0-photon) valence and conduction band. As discussed in section 2.6.5, it is
possible in Floquet systems that edge states form between all bands, regard-
less of those quantum numbers. This, however, depends on the existence
of edge states that cross the boundary of the first Floquet Brillouin zone.
As will be demonstrated in chapter 5, no such states are observed for any
polarisation or frequency. Instead, the only edge states between valence and
conduction band are those one would näıvely expect based on the discussions
above, i.e. those of a quantum (anomalous) Hall or spin-Hall insulator.

Even though only the results for f = 3.85PHz have been depicted explicitly
in this section, the results are assumed to be similar for any other frequencies
away from resonances. This thesis does not make any assumptions on what
happens at resonance.

In the above discussions, it was implicitly assumed that the 0-photon rep-
licas of the original valence and conduction band are also the valence and
conduction band of the system irradiated with light. This assumption, how-
ever, is not guaranteed and therefore needs to be verified in the following.
First, recall the discussion of section 2.6.3: For near-integer photon expect-
ation values ⟨Γ⟩, the 0-photon band structure can be treated like a regular
band structure of a time-independent system. To determine which bands
correspond to valence and conduction band, one therefore needs to count
the number of 0-photon states. For the system (4.2) with vanishing field
strength, these are depicted as black lines in Fig. 4.1. The number of black
lines below valence and above conduction band does not change as a function
of the frequency. This is also true for the system (4.3), as can be seen in
Fig. 4.8.

Fig. 4.8 shows the same energies as Fig. 4.2b, but with the shading of Fig. 4.1.
The energies have been shifted by 181.02meV as discussed in the previous
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Figure 4.8: Floquet quasi-energies E at the K-point as functions of the
frequency f ; Orange, black and azure depict quasi-energies that correspond
to states with n ∈ {−1, 0,+1} photons, respectively. The lines closest to
E = 0meV are all black, except for one azure line crossing at f = 3PHz.
Hence, they belong to 0-photon states.

subsection. From Fig. 4.8, one can see that the Floquet quasi-energies close
to the original valence and conduction band correspond to Floquet bands
with a photon expectation value of approximately n = 0, i.e. they are part
of the electronic band structure.

Alternatively, this can also be concluded from Eqs. (3.44) and (3.45) (pg.88)
that, away from resonances, describe one 0- and one (−1)-photon state. Only
near the resonance do both states mix. Therefore, this thesis makes again
no assumptions on what happens at the resonances. Fig. 4.9 shows the be-
haviour of the Floquet energies similarly to Fig. 4.8, but at the M - and the
Γ-point.

In Fig. 4.9, the 0-photon valence and conduction band lie at E ≈ ±3.6 eV
for the M - and E ≈ ±10 eV for the Γ-point. Thus, the gap between them
is significantly larger than at the K-point. As a consequence, (−1)- and
(+1)-photon lines (azure and orange) can cross between them. As men-
tioned in section 2.6.2, a linear combination of such states could yield an
effective 0-photon state, i.e. a new electronic state between valence and con-
duction band. Consequently, the bulk of graphene could become conducting.
Since the Floquet Hamiltonian (3.21) does not allow any direct two-photon
processes, a (+1)- and a (−1)-photon state can only be coupled via an inter-
mediate (unperturbed) 0-photon state. Let

|i, n⟩ and Ei,n with i ∈ {p, d}, n ∈ {−1, 0,+1} (4.4)
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Figure 4.9: Floquet quasi-energies E at the M - and Γ-point as functions of
the frequency f , in the limit of vanishing field strength; At the M -point,
valence and conduction band originally reside at E ≈ ±3.6 eV. At f ≈
0.829PHz, a (+1)-photon valence and a (−1)-photon conduction band cross
at E ≈ 0 eV. If these bands were to interact, they could form an effective
0-photon band that turns graphene into a conductor. At the Γ-point, the
same happens three times between f = 2.4 and 3.4THz. A line at E = 0 eV
has been added as a guide to the eye.

denote an n-photon i-orbital state with its energy. The first non-zero cor-
rection term that couples a (+1)-photon p-band and a (−1)-photon d-band
arises in fourth order perturbation theory as

⟨p, 1|ξ|i, 0⟩⟨i, 0|ξ|d,−1⟩⟨d,−1|ξ|j, 0⟩⟨j, 0|ξ|p, 1⟩
(Ep,1 − Ei,0 + ℏω)(Ep,1 − Ed,−1 + 2ℏω)(Ep,1 − Ej,0 + ℏω)

(4.5)

with i, j ∈ {p, d}. The expression ξ denotes the dipole matrix elements
from Eq. (4.3) that couple the respective states. A coupling between a (+1)-
photon state (orange line in Fig. 4.9) and a (−1)-photon state (azure line) is
thus suppressed by the product

(Ep,1 − Ei,0 + ℏω)(Ep,1 − Ej,0 + ℏω) (4.6)

of the energy differences to the closest 0-photon energies Ei,0 and Ej,0 (black
lines), possibly with i = j. In Fig. 4.9, an azure and an orange line cross
at the M -point near E = 0 eV at3 f ≈ 0.829PHz. At this frequency, the
energy differences to the closest 0-photon bands are more than 3 eV. Hence,

3Without d-orbitals, this frequency would be exactly f = Vppπ/(2πℏ) = 0.87PHz.
However, the energetic shift discussed in the context of Fig. 2.5 (pg. 16) leads to lower
resonance frequencies.
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Figure 4.10: Intersection of a (+1)- and a (−1)-photon band; Left: The
Floquet replica of the valence band (orange) is shifted by a photon energy of
+ℏω = +3.43 eV while the replica of the conduction band (blue) is shifted by
−ℏω = −3.43 eV. Consequently, they intersect. Right: Effective 0-photon
bands form across the intersection (black) of the replica bands.

Eq. (4.6) assumes large values, and Eq. (4.5) becomes vanishingly small,
unless

2 · 2πf = 2ω ≈ Ed,−1 − Ep,1

ℏ
, (4.7)

i.e. unless f is a second-order resonance frequency. However, this resonance
is also k⃗-dependent. As can be seen in Fig. 4.10, the values k⃗ for which the
resonance condition (4.7) is satisfied, lie on the intersection lines of the (+1)-
and the (−1)-photon band. Thus, the effective 0-photon bands only exist
on a quasi-one-dimensional subset of the reciprocal space. Because of this,
the bands are expected to be either completely filled or completely empty.
Moreover, for frequencies other than f = 0.829PHz, the intersection lines
form closed paths within the Brillouin zone that are not connected to one
another. Hence, the effective 0-photon bands are not expected to contribute
towards charge transport. It is, however, expected that these bands can be
measured via Shubnikov–de Haas measurements, similarly to impurity bands
(cf. [111]).

After the general discussions of this section, the next section will go into
more detail on the processes involved in every avoided crossing of Fig. 4.2.
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4.2 Orbital Composition (PHz Regime)

Every avoided crossing in Fig. 4.2 of the previous section is of the same type as
the one depicted in Fig. 3.3 (pg. 89). As can be seen from Eq. (3.45) (pg. 88),
the processes involve two respective basis states from Tab. 3.1 (pg. 83). In
this section, all avoided crossings of Fig. 4.2 will be discussed individually,
and they will be attributed to two respective states of Tab. 3.1. Due to this
analysis, additional spin-dependent features will become apparent. Moreover,
it will be demonstrated that the understanding of the processes under cir-
cularly polarised light suffices to also explain the processes under linearly
polarised light.

Recall that the origin of the band gap is the intrinsic SOI. As discussed
in section 2.5.1, SOI couples real spin sz and sublattice spin σz. In unper-
turbed graphene, both spins are consequently either parallel or antiparal-
lel for valence and conduction band at the K/K ′-point, and one obtains4

⟨szσz⟩ ≈ ±1 for the states 1 through 4 in Tab. 3.1. Due to this spin-spin
relation, the selection rules for circularly polarised light from section 3.3 will
in the following be observed to lead to a lift of spin degeneracy. Since linearly
polarised light has identical contributions from clockwise and anticlockwise
polarisation, it does not lift spin degeneracy. Similarly, only circularly polar-
ised light leads to a change of the topological properties of the band structure:
As discussed in section 4.1.2, circular polarisation breaks time-reversal sym-
metry and consequently changes graphene from a Z2-topological insulator to
a Chern insulator that exhibits a quantum anomalous Hall effect. In the
following, the orbital and spin composition of valence and conduction band
will be studied for both polarisations, with a focus on the quantity ⟨szσz⟩.

4.2.1 Circular Polarisation

Fig. 4.11 shows the orbital composition (lower parts of (a-f)) of the states
that belong to the respective frequency-dependent Floquet quasi-energies5

(upper parts of (a-f)) of graphene irradiated with circularly polarised light.
The upper parts depict the separate lines of Fig. 4.2, but with shading ac-
cording to ⟨szσz⟩. Only the spin-up states are depicted in the upper parts
of Fig. 4.11. As predicted in section 3.3.1, spin degeneracy is lifted, but the
lift of degeneracy is not visible on the scale of Fig. 4.11. It will therefore be
discussed separately after the discussion of Fig. 4.11.

4⟨szσz⟩ is not exactly ±1, due to the small d-orbital contributions of the eigenstates.
5As explained in the previous section, the quasi-energies in the figures have been shifted

by 181.02meV, to be centred around E = 0 eV.
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# vector energy [eV]

2 0.12i · Y −1
2,B↑ + 0.99 · Y 0

1,A↑ −0.18104

3 −0.99i · Y 0
1,B↑ + 0.12 · Y 1

2,A↑ −0.181

6 0.71 · Y 1
2,B↑ + 0.71 · Y −1

2,A↑ 7.423

7 0.99i · Y −1
2,B↑ + 0.12 · Y 0

1,A↑ 12.1796

10 −0.12i · Y 0
1,B↑ + 0.99 · Y 1

2,A↑ 12.182

11 0.71 · Y 1
2,B↑ + 0.71 · Y −1

2,A↑ 16.577

Table 4.1: Normalised spin-up states of Tab. 3.1 with corresponding eigenen-
ergies in eV; The numbers correspond to the original table. The basis func-
tions Y m

l,A/B,↕ are defined in Eq. (3.32). Functions with l = 1 and m = 0,

i.e. Y 0
1,A/B,↕, correspond to pz-orbitals. Others belong to dxz- and dyz-orbitals.

Since only spin-up states are depicted in Fig. 4.11, the correlation between
real and sublattice spin reduces to ⟨szσz⟩ = ⟨σz⟩, i.e. it directly corresponds
to the localisation on the sublattices A (red) and B (cyan). The lower parts
of the subfigures in Fig. 4.11 depict the orbital compositions of both the
spin-up and spin-down states, as they are easily distinguishable via solid and
dashed lines.

In the following, the Floquet quasi-energies of Fig. 4.11 will be discussed
successively from (a) to (f). (g) is a composite figure providing an overview
of the relative energy landscape. The corresponding Floquet states will be
related to the numbers 1 to 12 of the unperturbed basis that is given in
Tab. 3.1. The relevant entries of Tab. 3.1 are summarised again in Tab. 4.1.
First, only the spin-up states will be discussed. The discussion of the spin-
down states and their relation to the spin-up states will follow afterwards.

Recall from section 3.3.1 that the onsite component of the electric field only
couples certain states to one another. Circularly polarised light has clear se-
lection rules on which 0- and (−1)-photon states are coupled to one another.
Precicely, a (−1)-photon state ψi and a 0-photon state ψj are coupled to one
another via onsite terms of the electric field if and only if their respective
entry in Tab. 3.2 (pg. 85) is “+”. The strongest couplings involving the
valence and conduction band states 1 through 4 are the following:

� 1 to 9

� 3 to 7

� 2 to 6 and 11

� 4 to 5 and 12
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Figure 4.11: Orbital compositions of the Floquet quasi-energies at the
K-point under the effect of a circularly polarised electric field with
E0 = 0.8V/nm; (a-f) depict pairs of Floquet quasi-energies (upper pictures)
and their orbital compositions (lower pictures). Only the energies of spin-up
states are depicted as their nearly degenerate spin-down counterparts look
similar, but with opposite shading according to ⟨szσz⟩. The compositions
are shown for both the spin-up and the spin-down states and can be distin-
guished via solid/dashed lines. (g) shows the composites of (a-f).
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Meanwhile, the spin-up valence and conduction band states are also weakly
coupled to one another:

� 2 to 3

With this in mind, one can conclude the eigenstates involved in Fig. 4.11:

(a) This energy lies below (b) and belongs to the Floquet valence band.
For frequencies below f = 1.84PHz, it belongs to a linear combination
of the states 2 and 3 of Tab. 4.1, i.e. valence and conduction band of
the unperturbed system. The coupling between the states 2 and 3 also
couples (a) to (b).
At f = 1.84PHz, the states 2 and 6 are at resonance. Below this
frequency, the subfigure (c) corresponds to a (−1)-photon replica of the
state 6. The avoided crossing between (a) and (c) leads to an energetic
shift of (a). As a result, the band gap between (a) and (b) increases
as f approaches 1.84PHz, and the coupling between the states 2 and 3
decreases. This can be seen from the increased sublattice localisation
in the orbital composition.
After f = 1.84PHz, (c) takes over the 0-photon p-band character of
(a), and (a) instead obtains (−1)-photon d-band character. (a) then
no longer denotes the Floquet valence band. Instead, (b) becomes the
new valence band and (c) the conduction band.

(b) As the frequency increases, the mixing with (a) decreases, and the con-
tribution of state 3 towards the Floquet state of (b) increases, together
with the localisation on sublattice B. At f = 2.99PHz, (b) exhibits an
avoided crossing with (e), corresponding to state 7. Again, the original
0-photon p-band character changes to (−1)-photon d-band character
in the process.

(c) After the avoided crossing with (a) at f = 1.84PHz, the Floquet state
corresponds to state 2 and has 0-photon p-band character. After a
second avoided crossing with (f) at f = 4.05PHz, this contribution
changes to the (−1)-photon replica of state 11 and therefore d-band
character.

(d) The Floquet state corresponds to the (−1)-photon replica of state 10.
There is no onsite coupling between the states 10 and 2, the latter of
which corresponds to (c). State 10 involves the same atomic orbitals
as state 2. Since the light field only directly couples atomic orbitals
on the same atom if they have different angular momentum quantum
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numbers l, the only coupling between (c) and (d) stems from matrix
elements that couple neighbouring atoms. As a result, the coupling is
too weak to be noticeable in the figure.

(e) After the avoided crossing with (b) at f = 2.99PHz, (e) corresponds
to the 0-photon state 3 and therefore has p-band character. Near f =
5.1PHz, it exhibits a second avoided crossing with (f) that exchanges
the composition of both respective Floquet states.

(f) This Floquet energy exhibits one avoided crossing with (c) at f =
4.05PHz and one with (e) near f = 5.1PHz. The corresponding state
of (f) changes first from 11 to 2 and then from 2 to 3. The latter change
is only possible because (e) and (f) are energetically close to one an-
other.
In addition to this, the orbital composition shows that there is at least
one more avoided crossing at f = 1.84PHz. Before this avoided cross-
ing, (f) belongs to the (+1)-photon replica of state 2. The processes
that eventually change it to state 11, however, are not depicted in the
figure, and will not be detailed, as they have no notable effect on the
physics of the 0-photon valence and conduction band.

Every single avoided crossing in Fig. 4.11 induces a band inversion between
valence and conduction band. In unperturbed graphene as defined in this
thesis, the spin-up valence band is localised on sublattice A and the spin-up
conduction band on B. As can be seen from the colours of the Floquet en-
ergies in Fig. 4.11g, this relation changes at f = 1.84PHz, f = 2.99PHz,
f = 4.05PHz and near f = 5.1PHz. At frequencies below f = 0.1PHz,
additional effects occur that are not captured by the figure. These effects
correspond to a separate phenomenon that will be discussed in section 4.3.2.

The lower parts of Figs. 4.11 (a), (b), (e) and (f) show that the spin-down
states behave differently than the spin-up states. To understand this, con-
sider again the discussions in section 3.3.2 and at the end of section 3.3.1:

� The states 1 and 2 correspond to the unperturbed valence band with
spin-down and spin-up, respectively.

� The states 3 and 4 correspond to the unperturbed conduction band
with spin-up and spin-down, respectively.

� The onsite interaction leads to the coupling 1-9, 2-6, 3-7 and 4-5. Each
coupling decreases the energy of the corresponding valence and con-
duction band state.
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(b)
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Figure 4.14: Lift of spin degeneracy; The Floquet energies depicted in
Fig. 4.11 are no longer spin-degenerate, since the different spins are coupled
at different frequencies. At frequencies below f = 0.1PHz, higher order ef-
fects occur. These effects will not be discussed in this section and will instead
be the focus of section 4.3.2.
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Figure 4.15: Lift of spin degeneracy without sublattice potential; When the
effective sublattice potentialM is artificially set to zero, the avoided crossings
in Fig. 4.14 become actual crossings.

� The couplings 2-6 and 4-5 occur before the couplings 1-9 and 3-7. As
a result, the spin-up valence band and the spin-down conduction band
are the first to have their energy decreased.

As a result of these processes, the spin-down valence band would cross the
spin-down conduction band if it were not for the effective sublattice potential
discussed in section 3.3.2. Because of the latter, the Floquet energies exhibit
an avoided crossing as depicted in Fig. 4.14a.

Fig. 4.14c also shows that a similar avoided crossing occurs near f = 5.1PHz.
One can see from Fig. 4.15 how the Floquet energies would cross if one were
to artificially disable the sublattice potential. Notably, Fig. 4.15b involves a
crossing of not only the spin-down, but also the spin-up states. The processes
leading to this are the same as described above for Fig. 4.14a and Fig. 4.15a,
but with different states involved. In this thesis, they will not be discussed
in further detail.

The different behaviour of the Floquet energies leads to a lift of the spin
degeneracy that can be seen in both Figs. 4.14 and 4.15. Fig. 4.14b shows
that this lift of degeneracy is also present away from the frequencies that
lead to the processes described above. The energetic difference between the
spins is approximately of the magnitude of the band gap of unperturbed
graphene, i.e. ∆Espin ≈ 42 µeV. Since the magnitude of the band gap in
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Fig. 4.14 is given by the onsite coupling and the effective mass term, the ori-
ginal SOI gap is only a small perturbation that then lifts the spin degeneracy.

A reversion of the polarisation direction of the light changes the selection
rules from section 3.3.1. Instead of a “+”, it is then a “−’ in Tab. 3.2 that
denotes a coupling. As a result, all spin-dependent effects described here
are inverted. Spin-down states then behave like the here-described spin-up
states and vice versa. Since linearly polarised light is a linear combination
of both polarisation directions, it does not give rise to any spin-dependent
effects, as will be discussed in the following.

4.2.2 Linear Polarisation

As a linear combination of two opposite circular polarisations, linearly po-
larised light couples a (−1)-photon state ψi and a 0-photon state ψj inde-
pendently of their respective sign in Tab. 3.2. Thus, both a “+” and a
“−” denote a coupling. Conclusively, linearly polarised light leads to an in-
creased number of basis states that are involved in every process. Also, the
spin-dependent effects of either circular polarisation direction are cancelled
by the opposite one. As a result, all Floquet energies of graphene that is
irradiated with linearly polarised light are spin-degenerate.

As discussed in section 4.1.2, linearly polarised light does not break time-
reversal symmetry. However, it does break the rotational symmetry of the
honeycomb lattice. This becomes more apparent when going from a spher-
ical orbital basis to a cubic one: As detailed in section 2.2.3, an electric field
in x-direction couples the pz- and dxz-orbital, whereas a field in y-direction
couples the pz- and the dyz-orbital. For circularly polarised light, the con-
tribution is shifted equally from the pz- to both the dxz- and the dyz-orbital.
For light that is linearly polarised in y-direction, however, the dyz-orbital
contribution dominates. Since a dyz-orbital consists a linear combination of
spherical harmonics, this bias towards dyz-orbitals manifests in the greater
number of basis states involved in every coupling than compared to circular
polarisation. As a result, the correlation between real and sublattice spin,
⟨szσz⟩ is lifted.

Fig. 4.16 shows the Floquet energies for linearly polarised light as a function
of the frequency, together with the corresponding orbital compositions, simil-
arly to Fig. 4.11 before. In the following, only the major differences between
Figs. 4.11 and 4.16 will be discussed.
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Figure 4.16: Orbital compositions of the Floquet quasi-energies at the K-
point under the effect of a linearly polarised electric field with E0 = 0.8V/nm;
(a-f) depict pairs of Floquet quasi-energies (upper pictures) and their orbital
compositions (lower pictures). Only the energies of spin-up states are depic-
ted as their degenerate spin-down counterparts look similar, but with oppos-
ite shading according to ⟨szσz⟩. The compositions are shown for both the
spin-up and the spin-down states and can be distinguished via solid/dashed
lines. (g) shows the composites of (a-f).
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Figure 4.17: Avoided crossing due to SOI; Two Floquet energies approach
one another with increasing frequency. SOI leads to an avoided crossing and
to an increased correlation ⟨szσz⟩ between real and sublattice spin. (a) and
(b) show the same energies, but on different scales.

The first noteworthy difference between the figures is the aforementioned
lift of the correlation ⟨szσz⟩ in Fig. 4.16. The Floquet energies are depicted
mostly in black, indicating ⟨szσz⟩ = 0. Accordingly, the orbital contributions
of both sublattices are nearly identical. Only close to f = 2.5PHz, there are
spikes in the lower parts of (b) and (c), indicating a strong correlation. This
is a result of SOI that leads to an avoided crossing between (b) and (c) which
would otherwise cross. Consequently, the correlation ⟨szσz⟩ = ±1 is restored
near 2.5PHz. The avoided crossing is depicted in greater detail in Fig. 4.17.

The second notable change between Figs. 4.11 and 4.16 is that in the latter,
there is no straight line crossing without coupling like in 4.11d. The inclusion
of both “+” and “−” in Tab. 3.2 leads to fewer restrictions on which states
of Tab. 3.1 are coupled to one another. As a result, the argument d from
the previous subsection can no longer be made, and the states 2 and 10 are
coupled. Similarly, their spin-down counterparts 1 and 9 are coupled as well.

The next subsection will discuss whether the observations of this section are
still valid if the light source is not perfectly perpendicular to the sample.

4.2.3 Angular Deflection

As discussed in sections 2.3.1 and 2.5.1, the absence of out-of-plane symmetry
can lead to a Rashba effect, possibly rendering graphene topologically trivial.
This can be caused by many things like e.g. a substrate the graphene sample
is placed on (cf. [112–114]). Another possible cause is an angular deflection
of the laser beam irradiating the sample as illustrated in Fig. 4.18.



116 CHAPTER 4. FLOQUET BAND STRUCTURE AT THE K-POINT

→

Figure 4.18: As a result of an angular deflection of the incoming laser beam
(straight red arrow), the polarisation of the light (circular red arrow) and
therefore also the electric field are no longer fully in-plane with the graphene
sheet (blue). As a consequence, the system no longer satisfies out-of-plane
symmetry.

For an angularly deflected laser beam, the scalar potentials (3.8) and (3.9)
derived in section 3.1 are no longer valid. Hence, consider a deflection of
an angle α around the x-axis. The electric fields in Eq. (3.2) (pg. 74) then
assume the form

E⃗circ(r⃗, t) = E0 ·

 cos(ωt− κ⃗r⃗)
cos(α) sin(ωt− κ⃗r⃗)
sin(α) sin(ωt− κ⃗r⃗)

 , (4.8)

E⃗lin(r⃗, t) =
√
2E0 ·

 0
cos(α) sin(ωt− κ⃗r⃗)
sin(α) sin(ωt− κ⃗r⃗)

 (4.9)

with

κ⃗ =
1

λ

 0,
− sin(α)
cos(α)

 . (4.10)

For small6 α, the dipole approximation of κ⃗r⃗ = 0 is still valid. It removes the
explicit spatial dependence from the electric fields, allowing to again describe

6For α = 5◦, one obtains a wave vector κ⃗ ≈ 1/λ · (0,−0.087, 0.996)t ≈ 1/λ · e⃗z whose
only component that is not orthogonal to the lattice, is vanishingly small.
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the fields exclusively via scalar potentials

Φcirc(r⃗, t) = E0 · (x cos(ωt) + (y cos(α) + z sin(α)) sin(ωt)) , (4.11)

Φlin(r⃗, t)) =
√
2E0 · (y cos(α) + z sin(α)) sin(ωt). (4.12)

Only the effects of circularly polarised light will be depicted in this section.
For it, the orbitals to be considered in the computations are 2s, 2px/y/z,
3dxz/yz and the effective 4fxyz-orbital (cf. section 2.2.3). The deflection angle
will be chosen to be α = 5◦ which is significantly more than is expected to
occur by accident. A frequency screening similar to Figs. 4.11g and 4.16g is
depicted in Fig. 4.19. Apart from four new, weakly coupled lines, there is
no notable change due to the deflection. The new lines correspond to s- and
px/y-orbitals with photon expectation values of ⟨Γ⟩ = +1.

Most importantly, the angular deflection does not lead to any Rashba effects.
The time-dependent perturbation leaves the Chern numbers computed in sec-
tion 4.1.2 intact, and graphene irradiated with circularly polarised light is
still a Chern insulator. Similarly, the Chern numbers remain unchanged for
linearly polarised light. As a consequence, graphene is bound to exhibit topo-
logically protected edge states, as will be demonstrated for both polarisations
in section 5.2.2.

As discussed in the context of Eqs. (2.141) and (2.142) (pg. 53), the computa-
tion of the the Z2-topological invariant from the Chern numbers depends on
the absence of sz-nonconserving terms from the model. One could therefore
näıvely assume that the the arising Rashba terms in Eq. (2.86) (pg. 27) would
destroy the topology of graphene under irradiation with deflected linearly
polarised light. The above observation, however, indicates that graphene re-
mains a Z2-topological insulator, even under an angular deflection. This is
attributed to the oscillatory behaviour of the electric field. The z-component
of the electric field and therefore the Rashba terms vanish when averaged
over an entire time period t ∈ [0, 1/ω).

This section has only studied possible Rashba effects as the result of Eq. (2.86)
(pg. 27). As computed by Sun at al. [115], higher-order Rashba terms can lead
to a significant light-induced Rashba effect. The incorporation of such terms
into the model of this thesis is left to future work. Instead, the remainder of
this chapter will focus on lower frequencies of the irradiated light.
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Figure 4.19: Changes to valence and conduction band under irradiation with
a not perfectly perpendicular light source; A deflection of the incoming laser
beam by α = 5◦ leads to a qualitatively mostly similar behaviour as for
perfectly perpendicular light in Figs. 4.11g and 4.14. The only notable dif-
ference are some additional Floquet energies that stem from the additionally
included s- and px/y-orbitals that couple weakly to the other bands. Two
intervals have been zoomed-in, to better compare them to Fig. 4.14.
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4.3 Lower Frequencies

The frequencies considered thus far have been in the PHz range and there-
fore correspond to energies of multiple eV. Frequencies around f = 300PHz,
i.e. a wavelength of λ ≈ 100 nm, correspond to an energy of Ephoton ≈ 12.4 eV.
Since this is above the ionisation energy EIon = 11.26 eV of elemental carbon
[116], this section will instead focus on lower frequencies. First, the visible
and ultraviolet spectrum will be considered, then low THz frequencies will
be studied. Since the visible spectrum (0.4 - 0.8PHz) is well below the res-
onance frequencies, the most important effects on fully periodic graphene
will stem from multi-photon processes (cf. [117]). It is therefore necessary to
consider a higher Floquet order N than in the previous section where even
N = 1 was often sufficient for the results to converge.

This section is divided into two parts. Section 4.3.1 will study the visible and
ultraviolet spectrum. Then, section 4.3.2 will focus on low THz frequencies.

4.3.1 Visible and Ultraviolet Light

As indicated by perturbation theory, multi-photon processes become weaker
with higher order. Thus, the previously considered field strength of E0 =
0.8V/nm is too weak to properly study the qualitative effects of low fre-
quencies on the graphene sample. For this reason, this section will consider
a field strength of E0 = 5V/nm.

As discussed in the context of Fig. 4.5b (pg. 99), the width of the band gap
near the resonances scales quadratically with the field strength. The same
behaviour has been observed for all phenomena of this section, i.e. band
gaps and energetic shifts at E0 = 1V/nm are of approximately 0.04 times
the magnitude of those at E0 = 5V/nm. Even though E0 = 5V/nm lies
almost an order of magnitude above the field strengths in realistic experi-
mental situations (cf. [109]), it will therefore be assumed that the results for
lower field strengths are qualitatively comparable to those in this section.

Fig. 4.20 depicts the range of frequencies belonging to the wavelengths between
λ = 750 nm (deep, visible red) and 100 nm (upper end of UV). A Floquet
order of N = 4, i.e. an emission and absorption of up to four photons is
taken into account. As can be seen from the shading, the sublattice-real spin
correlation remains intact for circular polarisation, but disappears for linear
polarisation, similarly to Fig. 4.16. Only closer inspection of the energies at
f = 2.5PHz would again reveal a shading, similar to Fig. 4.17.
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(a) Circular polarisation (b) Linear polarisation
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Figure 4.20: Floquet energies at theK-point under irradiation with circularly
(a) and linearly (b) polarised light in the visible and ultraviolet spectrum
at E0 = 5V/nm according to Eq. (4.1). While for circular polarisation
the correlation between sublattice and real spin is notable for almost all
frequencies, for linear polarisation it can only barely be observed if at all.

In the previous sections, the effects of the light field on the quasi-energies
have been most notable near the resonances at approximately f1 = 1.8PHz,
f2 = 3PHz and f3 = 4PHz. Fig. 4.20 shows new notable effects when
f = fi/2 for i ∈ {1, 2, 3}, i.e. f = 0.9PHz, f = 1.5PHz or f = 2PHz.
Similar to how the phenomena of the previous section have been related to
single-photon processes, the avoided crossings in Fig. 4.20 can be related to
two-photon processes, as they involve the coupling between lines of photon
expectation values ⟨Γ⟩ = 0 and ⟨Γ⟩ = −2. As discussed in the context of
Eqs. (4.5) and (4.6) (pg. 104), such a coupling occurs in fourth order of per-
turbation theory. Consequently, it is suppressed by the square of the energy
difference to the energetically closest (−1)-photon state.

Recall that the magnitude of the gaps between the Floquet energies scales
quadratically with the field strength and is therefore enhanced almost 40-
fold compared to those generated in the previous section at field strength
E0 = 0.8V/nm. At similar field strengths, the magnitude of the gaps in
Fig. 4.20 would therefore be in the sub-meV regime, which would make it
difficult to distinguish the effects of the electric field from the intrinsic, SOI-
induced band gap. Analogously, to see couplings between p- and d-bands
for frequencies lower than f = 0.9PHz, an even higher field strength would
be necessary. Thus, Fig. 4.20 shows no visible interactions between p- and
d-bands for 0.5PHz ≤ f ≤ 0.9PHz. However, as will be shown in the next
subsection, new effects can be observed for f < 0.1PHz, as the frequency
approaches the resonances between two p-bands.
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4.3.2 THz Frequencies: Floquet Energies at the K-
point

At frequencies below f = 0.1PHz = 100THz, the coupling between different
p-bands dominates compared to the coupling between p- and d-bands. As
a result, the effects that will be observed in this subsection will be vastly
different from those in the previous sections. d-orbitals will nonetheless play
an important role because of the polarisation dependence of their coupling
to the p-orbitals.

For the graphene model of this thesis, a new, oscillatory behaviour arises
at low THz frequencies. Fig. 4.21a shows the frequency-dependent Floquet
energies of valence and conduction band and their replica bands under irra-
diation with circularly polarised light with frequencies up to f = 100THz.
No frequencies below f = 7THz are depicted, as they would need a higher
Floquet order to converge.
Fig. 4.21b zooms in on the 0-photon valence and conduction band. As will be
explained later in this subsection, the notion “0-photon band” is not entirely
correct for these bands, as their photon expectation value ⟨Γ⟩ is zero only for
some frequency intervals. However, they will still be referred to as 0-photon
bands, since they satisfy ⟨Γ⟩ ≈ 0 for frequencies f > 50THz.
The 0-photon valence and conduction band exhibit oscillations that, in turn,
lead to a band gap that oscillates with the frequency as depicted in Fig. 4.21c.
Whenever the gap becomes small, the bands become localised on one respect-
ive sublattice, as can be seen from the orbital composition of the conduction
band in Fig. 4.21d for spin-up and 4.21e for spin-down.

The sublattice localisation in Fig. 4.21d and 4.21e differs slightly for both
spins. Like in section 4.2.1, this is a consequence of of the angular momentum
of the light. By the same means, spin degeneracy is lifted as well. This be-
comes particularly notable whenever valence and conduction band approach
one another, as depicted in Fig. 4.22. Moreover, at f = 20.25THz, the spin-
down bands seem to cross. To understand this behaviour, it is necessary to
first understand the cause of the oscillatory behaviour.

The oscillations in Fig. 4.22 are caused by the direct coupling of valence
and conduction band to one another. Even though there is only a minor
contribution from the d-orbitals to either of them, the coupling between p-
and d-orbitals will be shown to be one of the two factors that give rise to the
oscillations. In the following, a toy model that only describes valence and
conduction band will be employed.
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Figure 4.21: Frequency-dependent Floquet energies of graphene at the K-
point under irradiation with circularly polarised light of THz frequencies,
with a field strength of E0 = 5V/nm and a Floquet order of N = 16; The
plethora of black lines in (a) shows several replicas of valence and conduc-
tion band. The 0-photon valence and conduction band (red) are depicted
separately in (b). (c) shows the gap between them. (d) and (e) depict
the orbital composition of the conduction band for spin-up and -down, re-
spectively. From the spikes, a notable sublattice-real spin correlation can be
concluded to only occur when the gap in (c) becomes small. No frequencies
below f = 7THz are depicted, since a higher Floquet order would be neces-
sary for the states to converge.



4.3. LOWER FREQUENCIES 123

〈sz σz〉

-1.0

-0.5

0

0.5

1.0

Spin ↑
Spin ↓

Figure 4.22: Zoom of the frequency-dependent Floquet energies of Fig. 4.21b;
Whenever the energies come close, their polarisation ⟨szσz⟩ between real and
sublattice spin increases, indicating that SOI couples the energies to one
another. Spin degeneracy is lifted because of how circularly polarised light
couples to the eigenstates of graphene.

Based on the discussions of section 3.3, a model that describes only valence
and conduction band coupled by circularly polarised light can be written as

Hσ(t) := 2M · σz sin(ωt) + C · (σx cos(ωt) + σy sin(ωt)) (4.13)

with a sublattice potentialM and a coupling term C, both of which are real-
valued. The coupling term equals c1 as it was defined in Eq. (3.37) (pg. 85).
It describes the onsite coupling of the electric field. The sublattice potential7

M equals half the value d1 defined in Eq. (3.53) (pg. 90), where the factor 1/2
serves to compensate for the preceding 2 in front of the M · σz in Eq. (4.13).
The parameters are thus

M ≈ Ẽ0 · 34.5meV and C ≈ Ẽ0 · 3 µeV, (4.14)

7Note that the letter M has been used in section 3.3.2 as well, but with a slightly
different meaning. It has been repurposed here, since it is the standard symbol for a
sublattice potential in most literature.
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where Ẽ0 denotes the number value of the electric field strength E0 in V/nm.

Note that Hσ(t) does not depend on k⃗, since it shall only serve as a toy model
at the K-point.8 Moreover, it has no time-independent terms, in particular
no time-independent sublattice potential. As a result, it has no static band
gap. However, a band gap does arise in the Floquet band structure, as can
be seen in Fig. 4.23.
The Floquet Hamiltonian for Eq. (4.13) consists of the Fourier components

H1 =

(
iM C
0 −iM

)
and H−1 = H†

1. (4.15)

All other Fourier components are zero. The overall Floquet Hamiltonian is
then of the shape

HFσ =



. . .
...

...
...

...

· · · −ℏω 0
0 −ℏω

iM C
0 −iM

0 · · ·

· · · −iM 0
C iM

0 0
0 0

iM C
0 −iM

· · ·

· · · 0
−iM 0
C iM

ℏω 0
0 ℏω · · ·

...
...

...
...

. . .


, (4.16)

where straight lines have been added to distinguish the Fourier components.
For M = C = 0, the matrix (4.16) only has diagonal entries in the form of
nℏω with n ∈ Z. Accordingly, the first graph in Fig. 4.23 only depicts un-
perturbed straight lines. For M ̸= 0, the different Floquet replica bands are
coupled to one another. With Floquet order N = 1, the Floquet Hamiltonian
is a 6 × 6-matrix and only consists of the entries that are written explicitly
in Eq. (4.16). Its eigenvalues then are

ϵ ∈ {−
√

2M2 + (ℏω)2, 0, +
√
2M2 + (ℏω)2}. (4.17)

In the static limit ω → 0, they become −M , 0 and +M . For C = 0, the
eigenvalues in the static limit have been computed in appendix C. They are

ϵm = −2M cos

(
mπ

2N + 2

)
with m ∈ {1, 2, ..., 2N + 1}, (4.18)

where N ∈ N is the Floquet order.

8The model can be adapted to describe the band structure in a vicinity around the
K-point by adding a term kxσx + kyσy, to arrive at a k⃗-dependent model as used e.g. by
Broers and Mathey [41, 42].
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Figure 4.23: Toy model Floquet energies for Floquet order N = 3; Depending
on the parameters M and C, the toy model (4.13) exhibits different interac-
tions between the replica bands. For increasing M , the energy difference of
the energies in the limit ℏω → 0 increases. For increasing C, the degeneracy
between the bands is lifted, and avoided crossings become more prominent.
In the limit ω → 0, the Floquet order is insufficient for the energy values to
converge towards the correct solutions of the time-dependent system. Their
depiction only serves the better understanding of the processes involved.
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The eigenvalues can be seen for N = 3 in the C = 0 column in Fig. 4.23.
With increasing ℏω, the energies spread further apart, similarly to those for
N = 1 given in Eq. (4.17). Since M ̸= 0 denotes a sublattice potential via
a matrix σz, every eigenstate is perfectly localised on either sublattice A or
B. The Floquet energies on both sublattices are identical, giving rise to a
two-fold degeneracy of the eigenvalues in Eqs. (4.17) and (4.18).

Before discussing the effects of a non-trivial coupling term C, the oppor-
tunity will be used to compare the Floquet spectrum (4.18) to the explicitly
time-dependent solutions of the Schrödinger equation for the Hamiltonian
(4.13) with C = 0. The Schrödinger equation

iℏ
∂

∂t
ψ⃗(t) = Hσ,C→0(t)ψ⃗(t) with Hσ,C→0(t) = 2M · σz sin(ωt) (4.19)

has two solutions

ψ⃗1(t) = c1 ·
(
1
0

)
e+

2iM cos(ωt)
ℏω and ψ⃗2(t) = c2 ·

(
0
1

)
· e− 2iM cos(ωt)

ℏω (4.20)

with complex coefficients c1/2. The vector ψ⃗1(t) satisfies

ψ⃗1(t) = e+
2iM(cos(ωt)−1)

ℏω︸ ︷︷ ︸
=:e−

i
ℏ ϵ(t)t

·ψ⃗1(0), (4.21)

where ϵ(t) is the eigenvalue of the time-evolution operator as it was specified
in Eq. (2.187) (pg. 67). Based on Eq. (4.21), ϵ(t) is defined as

ϵ(t) = −2M(cos(ωt)− 1)

ωt
. (4.22)

At the time of a full period t = τ = 2π/ω and in the limit ω → 0, this
reshapes to

ϵ(τ) = 0 = ϵN+1, (4.23)

i.e. it corresponds only to the ϵm with m = N+1 in Eq. (4.18). Based on the
discussions of section 2.6.5, one would now assume that the other ϵm could
be obtained via

ϵm = ϵN+1 + lℏω (4.24)

for some l ∈ Z. While this would be true for Floquet quasi-energies with
ω ̸= 0, the energies ϵm in Eq. (4.18) were computed for ω = 0. The relation
(4.24) therefore is not applicable.
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This observation illustrates a problem with the order of limit operations
that have been performed. Recall that in the derivation of Eq. (4.18), the
Fourier decomposition (4.15) has been performed before the limit operation
ω → 0 was taken. However, the latter operation denotes the transition to
the time-independent system. If one were to first take the limit, then the
Hamiltonian would reshape to

lim
ω→0

Hσ,C→0(t) = lim
ω→0

(2M · σz sin(ωt)) = 0 · 12. (4.25)

Consequently, the Floquet Hamiltonian in Eq. (4.16) would only consist of
zeroes as well. Its eigenvalues ϵm = 0 for all m would therefore be in agree-
ment with Eq. (4.23). This demonstrates that the Floquet matrix does not
converge in the limit ω → 0. However, it does converge for any ω ̸= 0. For
ω = 0, the eigenvalues ϵm ̸= 0 in Eq. (4.18) are the instantaneous eigenvalues
of Hσ,C→0(t0) at a fixed time t0.

Even though the Floquet matrix in Eq. (4.16) does not adequately represent
the time-independent limit, it is still a correct analytical continuation of the
Floquet matrices9 for the system with ω ̸= 0. It will therefore be used for
predictions despite its shortcomings.

For M = 0 and C ̸= 0, the Floquet Hamiltonian HFσ couples states that
correspond to n photons and sublattice A to eigenstates with either n − 1
or n+ 1 photons on sublattice B. Importantly, not all states are coupled to
one another. E.g. HFσ,M→0 couples the state |A, 0⟩ only to the state |B,−1⟩,
where |A/B, n⟩ denotes a state on sublattice A/B with photon number n.
Similarly, the state |B, 0⟩ is coupled only to the state |A,+1⟩. This can be
deduced from Tab. 3.2 like it has been done in the previous sections. Since
the eigenvalues of the matrix HFσ,M→0 are coupled only in pairs of two, and
since all matrix entries are identical with value C, the eigenvalues are

ϵn,±(ω) = nℏω +
ℏω
2

±
√
C2 +

(ℏω)2
4︸ ︷︷ ︸

=:p±(ω)

, (4.26)

where n assumes integer values with −N ≤ n < N for the Floquet order N .
Note that in the static limit,

lim
ω→0

ϵn,± = ±C. (4.27)

9The Floquet matrices for ω ̸= 0 have not been computed analytically. However,
Fig. 4.23 shows that their eigenvalues converge to Eq. (4.18) in the limit ω → 0.
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The respectively N -fold degenerate ϵn,+ and ϵn,− correspond to eigenstates

ψn,±(ω) =
1√

p2±(ω) + C2
(−p±(ω) · |A, n⟩+ C · |B, n+ 1⟩) . (4.28)

In the static limit, they reshape to

lim
ω→0

1√
2
(±|A, n⟩+ |B, n+ 1⟩) , (4.29)

i.e. the states have equal contributions of both sublattices. Due to the finite
dimension of the matrix HFσ, the two states |A,−N⟩ and |B,N⟩ are not
coupled to any other states. They therefore have the quasi-energies

ϵN,±(ω) = ±Nℏω (4.30)

with their corresponding states

ψN,+(ω) = |B,N⟩ and ψN,−(ω) = |A,−N⟩. (4.31)

They arise as a result of the truncation of the Floquet system and can be
interpreted as edge states to it, similarly to the definition of edge states for
spatial lattices, but for a temporal lattice instead. The truncation is artificial
and does not occur in an actual physical system. Hence, the states ψN,±(ω)
are artefacts and will not be studied in further detail. Since they correspond
to (±N)-photon states, their effect on the 0-photon band structure is negli-
gible for sufficiently high Floquet orders N . For a more detailed study the
Floquet band structure of the two-level system, see e.g. [118–120].

The behaviour of the Floquet energies ϵn,± can be seen in the M = 0 row
in Fig. 4.23. At ℏω = 0, they only assume the three values −C, 0 and +C.
Beyond those points, the energies behave nearly linearly with multiples of ℏω.

Neither M ̸= 0 nor C ̸= 0 alone suffices to give rise to an oscillatory be-
haviour like in Fig. 4.22. As Fig. 4.23 shows, the behaviour only arises due
to the combined effect of both M ̸= 0 and C ̸= 0. For M ̸= 0, the Flo-
quet energies are split into 2N + 1 pairs that are degenerate with respect to
sublattice spin. The parameter C ̸= 0 then lifts this degeneracy by coup-
ling states that belong to different sublattices and photon numbers to one
another. Moreover, this coupling leads to avoided crossings between the en-
ergies. The multitude of these avoided crossings is what ultimately gives rise
to the oscillatory behaviour. As can be seen in Fig. 4.23 for C = 0.1, the
energy distances between the Floquet quasi-energies increase with M .
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For a field strength of E0 = 5V/nm like in Figs. 4.21 and 4.22, the para-
meters assume the values M = 172.5meV and C = 14.9 µeV. Thus, M is
significantly larger than C. As discussed above, larger values of M increase
the differences between the Floquet energies. The relation M ≫ C therefore
explains the relative distance of the Floquet energies in Fig. 4.21a from one
another.

The only property of Fig. 4.22 left to explain is that the spin-down ener-
gies seem to cross at f = 20.25THz. To understand this, consider Fig. 4.24.
In the figure, the oscillating Floquet energies of the toy model have been
shaded based on their photon expectation values ⟨Γ⟩. The bands assume a
shade of orange or azure whenever they cross. This implies that the states no
longer exclusively consist of components that correspond to the same photon
numbers. Since SOI acts only between components that belong to the same
photon number, it is therefore strongly suppressed. As a consequence, the
matrix element becomes so small that the spin-down bands seem to cross in
Fig. 4.22. However, due to higher-order couplings, the SOI matrix element
is never exactly zero. Hence, the energies are bound to exhibit an avoided
crossing after all, albeit one that is smaller than the double point precision
of the numerical computations. The spin-up bands are energetically further
apart, as has been explained with the effects of circularly polarised light in
section 4.2. As a consequence, the spin-down bands in Fig. 4.22 appear to
be crossing while the spin-up bands show a clear gap.

Since the processes in this subsection involve direct couplings between p-
bands, it is necessary to also consider couplings away from the K-point.
This will be done in the next subsection.

4.3.3 THz Frequencies: Band Structure Around the
K-point

At low frequencies, the replica bands of the graphene band structure are en-
ergetically close to one another. As a result, they intersect in the vicinity of
the K-point, as can be seen for f = 35THz in Fig. 4.25. The main contribu-
tion to the band structure in Fig. 4.25 is the oscillating sublattice potential of
Eq. (4.13). Since a k⃗-dependence drastically increases the complexity of the
model (4.13), the analytical computations of this subsection will be restric-
ted to a spinless model with only pz-orbitals. Nonetheless, the figures will
correspond to the original spinful model that includes pz- and dxz/yz-orbitals.
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〈Γ〉 ≥ +1 〈Γ〉 = 0 〈Γ〉 ≤ -1

Figure 4.24: Floquet bands of the toy model (4.13) as a function of ℏω. The
other parameters areM = 0.5 and C = 1/10 with a Floquet order of N = 16.
The bands around E = 0 exhibit qualitatively the same oscillatory behaviour
as in the spinful graphene model in Fig. 4.21a. No results below ℏω < 0.1
are depicted, since a higher Floquet order would be necessary for them to
converge. For values below ℏω = 0.4, the photon expectation values ⟨Γ⟩ of
the bands around E = 0 vary as a function of the frequency.

Figure 4.25: Band structure of Graphene around the K-point under irra-
diation with circularly polarised light of frequency f = 35THz and field
strength E0 = 5V/nm; The Floquet replica bands cut one another. The
colour only indicates the energy value. Since there are notable numerical
artefacts whenever two bands cross, Fig. 4.26b gives a better impression on
the actual crossing and anti-crossing behaviour.
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In the model restricted to pz-orbitals, the term C of Eq. (4.13) becomes zero,
since the electric field does not couple orbitals of the same n and l quantum
numbers. Consequently, the only time-dependent term left in Eq. (4.13) is
the oscillating sublattice potential. A similar model describing an oscillat-
ing sublattice potential has been studied in detail in the bachelor thesis of
Martens [60], supervised by the author. A reproduction of his calculations
regarding an oscillating sublattice potential is given in appendix D. In the
following, the results of [60] that are relevant for the problem at hand will
be summarised and adapted to the graphene system of this thesis.

Spinless graphene that consists only of pz-orbitals can be expressed simil-
arly to the Haldane model in Eq. (2.87) (pg. 30) as

H0(k⃗) =

(
0 h(k⃗)

h†(k⃗) 0

)
(4.32)

with functions h(k⃗) that satisfy the symmetry of the honeycomb lattice and
become zero only at the K-points. An oscillating sublattice potential10 of
the form

H ′(t) =

(
V cos(ωt) 0

0 V sin(ωt)

)
(4.33)

with perturbation strength V then leads to a Floquet band structure similar
to that in Fig. 4.25. It is shown in appendix D that, for a Floquet order of
N = 1, the toy model defined by Eqs. (4.32) and (4.33) leads to three main
observations:

1. Valence and conduction band touch at the K-point (h(k⃗) = 0). In

Fig. 4.25, the K-point is at ∆k⃗ = 0. It cannot be seen in the figure,
since other bands are in front of it. Instead, see Fig. 4.26 for a depiction
that only depends on ∆kx.

2. Valence and conduction band exhibit avoided crossings with their Flo-
quet replicas when |h(k⃗)| = ℏω/2. In Figs. 4.25 and 4.26, this occurs

at approximately |∆k⃗| = 0.025 a−1.

3. Valence and conduction band touch when |h(k⃗)| = ℏω. In Figs. 4.25

and 4.26, this occurs at approximately |∆k⃗| = 0.05 a−1.

10The sublattice potential H ′(t) Martens has used differs from that in Eq. (4.13) via
a phase between the respective time-dependencies of the sublattice components. This
reproduction will keep this phase, to faithfully reproduce the results of [60]. Both toy
models lead to a similar qualitative behaviour.
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+1 photon

±0 photons
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Figure 4.26: Cut of the Floquet energies E = ∆E − 181.02meV of graphene
around the K-point under irradiation with circularly polarised light of fre-
quency f = 35THz and field strength E0 = 0.8V/nm; The colours are
according to the photonic expectation values. (a) At a Floquet order N = 1,
the (±1)-photon replica bands exhibit avoided crossings with the 0-photon
valence and conduction band. The dashed black lines show the the behaviour
of the Floquet replica bands in the field-free limit E0 = 0. (b) At N > 1, the
Floquet replica bands exhibit avoided crossings not only with the 0-photon
bands, but also with one another. The dashed grey lines denote ±n-photon
states with n > 1
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Observations 1 and 3 do not hold true in the actual spinful system with d-
orbitals, since SOI and onsite coupling lead to avoided crossings. However,
these avoided crossings are significantly smaller than the one described in
observation 2, as can be seen in Fig. 4.26 that depicts the spinful system
with d-orbitals.

Fig. 4.26a depicts the band structure as a function of only ∆kx for a Floquet
order of N = 1. The dashed lines in the figure represent the Floquet energies
in the field-free limit E0 → 0. The colours illustrate the photon expectation
values ⟨Γ⟩ of the respective bands. From this shading, one can see how the
avoided crossings of observation 2 above involve an exchange of photons. At
|∆k⃗| = 0.05 a−1, the valence and conduction band touch as described in ob-
servation 3. Due to the onsite coupling that is not included in the toy model,
those crossings are actually avoided crossings as well. However, the matrix
element coupling them is small, since they are a (+1)- and a (−1)-photon
state. As explained in the context of Eqs. (4.5) and (4.6) (pg. 104), such
bands are coupled only in fourth- and higher-order perturbation theory.

These processes repeat in higher Floquet order, as is depicted in Fig. 4.26b.
The result is a multitude of replica bands with dents near |∆k⃗| = 0.025 a−1.
This behaviour is radially symmetric and gives rise to Fig. 4.25.

Broers and Mathey [41, 42] have studied a similar similar system, albeit with
a different model. They observe notable avoided crossings, not only near
|∆k⃗| = 0.025 a−1, but also whenever other replica bands cross. Moreover,
they observe a significant opening of a band gap at the K-point, even at
smaller field strengths than used in this thesis. Fig. 4.26 does not show any
enhancement of that magnitude. This is attributed to a different choice of
parameters that constitute the respective graphene systems. Furthermore, as
shown in the previous subsection, the band gap oscillates due to the coupling
between p- and d-orbitals.

After this chapter has studied the effects of different frequencies and po-
larisations on the band structure of fully periodic graphene, the next chapter
will study the the edge states of graphene ribbons that are finite in one spatial
direction. As a consequence of the altered topological properties of graphene,
different kinds of quantum Hall effects will arise.



Chapter 5

Graphene Ribbons

As discussed in sections 4.1.2 and 4.2.3, the topological quantum numbers of
graphene depend on the light it is being irradiated with. Circularly polarised
light breaks time-reversal symmetry, replacing the Z2-topological invariant
of unperturbed graphene with a Z-topological invariant. Hence, graphene
is expected to become a Chern insulator. Linearly polarised light, on the
other hand, is time-reversal symmetric and therefore does not affect the Z2-
topological quantum number. As a result, graphene is expected to remain a
spin-Hall insulator.
The topological quantum numbers are bulk properties, and graphene is a
band insulator. As discussed in section 2.4.4, the non-trivial topology leads
to conducting edge states. These edge states and their topologically protec-
ted conducting properties will be studied in the following.

This chapter is separated into three parts. In section 5.1, the general concepts
and definitions will be discussed. By introducing a unit cell that is periodic
in only one spatial direction, the band structure of graphene ribbons will
be studied, with and without a light field. Section 5.2 will then discuss the
topological properties, in particular the edge states and the type of quantum
Hall effect that is to be expected in graphene. After those discussions on
topological properties, section 5.3 will discuss finite size effects that have
been found to play an important role in the band structure of topologically
non-trivial graphene.

5.1 Concepts and Definitions

In section 2.4.4, the emergence of edge states has been discussed for graphene
that is periodic in only one spatial direction. A corresponding unit cell is

134
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Figure 5.1: Graphene ribbon; By
applying periodic boundary con-
ditions in only one direction,
the reciprocal space becomes one-
dimensional. This unit cell (grey,
dashed) contains 14 carbon atoms
(red and cyan) and two passivating
hydrogen atoms (white). The last
carbon atoms before the passiva-
tion are considered the edges and
belong to sublattice A (red) and
sublattice B (cyan), respectively.

again illustrated in Fig. 5.1. At the lower and upper edge of Fig. 5.1, the
white atoms represent hydrogen atoms that passivate the otherwise open
bonds of the connected carbon atoms. The parameters associated with them
in the model of this thesis are given in appendix A. The notion “edge” still
relates to the uppermost cyan and the lowermost red carbon atom of Fig. 5.1.

Fig. 5.2a depicts the band structure of an unperturbed graphene ribbon,
compared to the band structure under the irradiation with circularly polar-
ised light in Fig. 5.2b. An n-photon state in Fig. 5.2 denotes a state with
photon expectation value n := ⟨Γ⟩ according to definition (2.165) (pg. 62).
Like in section 4.1 before, the frequency f = 3.85PHz serves as reference,
with a field strength E0 = 0.8V/nm. These parameters have been found to
be well-suited for example computations. For the computation of Fig. 5.2, a
unit cell with 18 carbon atoms has been considered.1 The electric field has
been included identically to Eqs. (4.11) and (4.12), i.e.

Φcirc(r⃗, t) = E0 · (x cos(ωt) + (y cos(α) + z sin(α)) sin(ωt)) , (5.1)

Φlin(r⃗, t)) =
√
2E0 · (y cos(α) + z sin(α)) sin(ωt) (5.2)

with a vanishing angular deflection α = 0, unless it is stated otherwise.
Fig. 5.2b shows how some of the originally higher-positioned d-bands (grey)
have their energies shifted downwards via Floquet formalism and thus reach

1The figures in this chapter only depict unit cells with 14 carbon atoms. Larger cells
are constructed by attaching more carbon atoms in the y-direction.
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(a) no illumination (b) circularly polarised light

edge

0 photons

±1 or more

photons

bulk

0 photons

±1 or more

photons

Figure 5.2: Effects on the band structure of a graphene ribbon irradiated
by circularly polarised light; With a frequency f = 3.85PHz and a field
strength E0 = 0.8V/nm, the energies of several d-bands get shifted close to
those of the gap-crossing edge states. States that reside at the edge have
been highlighted in red and cyan, depending on their photon expectation
value. Some of the grey photonic bands couple to the black electronic bands.
The cyan bands are replicas of d-band edge states.

the proximity of the gap-crossing edge states (red). Even though the d-bands
do not directly affect the edges, they do couple to the bulk bands, as can be
seen in particular around E = −2 eV where the 0-photon bulk bands (black)
appear to be interrupted. This is due to avoided crossings with the (−1)-
photon d-bands similar to those discussed in the context of Fig. 3.3 (pg. 89).
At those avoided crossings, the d-bands exchange a photon with the 0-photon
p-bands. Fig. 5.2b also depicts cyan bands. These are (−1)-photon replicas
of non-topological edge states that form between the d-bands of unperturbed
graphene. As was discussed in section 4.1.2, such replica bands are expected
to not contribute to the conductive properties of graphene.

Fig. 5.3 depicts a larger interval of Floquet energies for the same setup as
Fig. 5.2b. Notably, Fig. 5.3 includes additional 0-photon edge states (red).
They correspond to the same d-bands as the aforementioned (−1)-photon
replicas and are by the same means not expected to contribute to the conduct-
ing properties of graphene. The most significant observation from Fig. 5.3
is that there are no edge states that connect the separate Floquet Brillouin
zones. The first Floquet Brillouin zone defined in section 2.6.5 as the interval
(−hf/2,+hf/2] = (−7.96 eV,+7.96 eV]. All edge states inFig. 5.3 can be
related to edge states that exist in unperturbed graphene as well. Hence,
none of them arise from the coupling of different Floquet Brillouin zones.
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Figure 5.3: Floquet band structure of a graphene ribbon under irradiation
with light of frequency f = 3.85PHz and field strength E0 = 0.8V/nm; All
Floquet bands can be projected into the first Floquet Brillouin zone defined
by the interval (−hf/2,+hf/2] = (−7.96 eV,+7.96 eV]. An interval of twice
the length is depicted, to illustrate the periodicity of the Floquet bands.
(±1)-photon replicas of the red bands at E ≈ 0 eV can be seen in cyan
at E ≈ ±16 eV. Bands are shaded depending on their photon expectation
values and on whether they are localised at the edges or in the bulk.
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As discussed in sections 2.6.5 and 4.1.2, the absence of edge states connecting
the Floquet Brillouin zones allows to treat the Floquet band structure the
same way one would treat a time-independent band structure, i.e. by study
of the Chern numbers of the 0-photon band structure. The Chern numbers
have been computed in the previous chapter. In the following, it will be dis-
cussed how these results affect the band band structure depicted in Figs. 5.2b
and 5.3. As explained in section 4.1.2, graphene is expected to be a spin-Hall
or a Chern insulator, depending on the polarisation of the light field.

5.2 General Observations

Near the Fermi energy EF = 0.181 eV of unperturbed graphene, Figs. 5.2b
and 5.3 show the existence of edge states in graphene irradiated with cir-
cularly polarised light. This section will study these edge states for both
circularly and linearly polarised light. Section 5.2.1 will study how the po-
larisations lead to different types of quantum Hall effects. Section 5.2.2 will
then verify these results for an angular deflection of the light field, similar to
section 4.2.3.

5.2.1 Quantum Hall Effects

Figs. 5.2b and 5.3, on the depicted scale, look identical for circularly and
for linearly polarised light. A closer inspection, however, shows a notably
different behaviour of the 0-photon edge states (red). Fig. 5.4 depicts the
edge states on a smaller scale around k = π/a.

Most notably in Fig. 5.4, circularly polarised light lifts the spin degeneracy of
the graphene band structure. This phenomenon has already been observed
in section 4.2.1 where it was a consequence of the correlation between an-
gular momentum and spin of the eigenstates of the unperturbed graphene
Hamiltonian at the K-point. The magnitude of the spin splitting in Fig. 5.4
is smaller than of the spin splittings in section 4.2.1, since ∆k = 0 does not
describe the K-point in the Brillouin zone. Instead it describes the projec-
tion of an M -point, as can be seen in Figs. 2.17 (pg. 40) and 2.2 (pg. 6). At
the M -points, the correlation between spin and angular momentum of the
atomic orbitals is significantly weaker than at the K-points.

A second difference between the band structure of graphene irradiated with
circularly polarised light in Fig. 5.4 and that of unperturbed graphene is
that in Fig. 5.4 the dispersion of the edge states does not depend on the
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Circular polarisation,
E = ∆E − 0.145 eV

Linear polarisation,
E = ∆E − 0.158 eV

upper edge

lower edge

spin ↑

spin ↓

unspecified

Figure 5.4: 0-photon edge states around k = π/a; For linear polarisation
(right), the spin-degenerate energies cross similarly to unperturbed graphene.
For circular polarisation (left), spin degeneracy is lifted by a competing spin-
Hall and photovoltaic Hall effect as illustrated in Fig. 5.5. For linear polar-
isation, only spin-up bands are depicted. Spin-down states have the same
dispersion, but are localised on the respectively opposite edges.

spin. Instead, it only depends on the edge, indicating a quantum anomalous
Hall effect as depicted in Fig. 5.5b. More precisely, this is a photovoltaic Hall
effect as discussed in section 4.1.2. This is in agreement with the predictions
of Oka at al. [47] and the observations of McIver at al. [48].

The photovoltaic Hall effect also gives rise to a different explanation for the
lift of spin degeneracy: Fig. 5.5 depicts both the spin-Hall effect and the
photovoltaic Hall effect. For spin-up states (red), both Hall effects have the
same, anticlockwise propagation direction. The spin-down currents, however,
have opposing directions. Since circularly polarised light turns graphene into
a Chern insulator, the intrinsic spin-Hall effect therefore supports the spin-up
current, but opposes the spin-down one. As a result, the spin-down bands
in Fig. 5.4 lie energetically above the spin-up ones for circular polarisation.
Oka at al. only considered spinless graphene and therefore did not predict
this phenomenon. It is plausible that the spin splitting was not observed by
McIver at al., since its magnitude is of only a few µeV.



140 CHAPTER 5. GRAPHENE RIBBONS

(a) Spin-Hall effect (b) Anomalous/photovoltaic Hall effect

Figure 5.5: Spin-Hall effect and anomalous Hall effect agree for one spin
(here: spin-up, illustrated in red) and oppose one another for the other spin
(here: spin-down, illustrated in cyan). The angular momentum of circularly
polarised light (yellow) induces a photovoltaic Hall effect that competes with
the intrinsic spin-Hall effect of graphene.

As opposed to circularly polarised light, linearly polarised light leaves the
spin degeneracy intact, as can be seen in the right part of Fig. 5.4. Due to
perturbations, the dispersion differs from that of unperturbed graphene as it
was depicted in Fig. 2.23 (pg. 49). Nonetheless, Fig. 5.6 shows that the edge
states (green and purple) still connect valence and conduction band in the
bulk (black), indicating a quantum (spin-)Hall effect.

Recall that in section 3.1.1 the decision was made to exclude k⃗-non-diagonal
terms. The latter arise from the incompatibility of a spatially homogeneous
electric field with the periodic boundary conditions of the fully periodic hon-
eycomb lattice. Since the unit cell depicted in Fig. 5.1, is finite in y-direction,
it does not give rise to any such k⃗-non-diagonal terms. The agreement of the
spin-Hall effect in Fig. 5.4 with the predictions of section 4.1.2 therefore legit-
imises the exclusion of the k⃗-non-diagonal terms in fully periodic graphene.

In section 4.2.3, the topological quantum numbers were shown to not change
under an angular deflection of the light source. In the following, the obser-
vations of this subsection will be probed against a similar deflection.



5.2. GENERAL OBSERVATIONS 141

circular polarisation

Circular polarisation,
E = ∆E − 0.145 eV

linear polarisation

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

0

5

10

15

20

Δk [10-3/a]

Δ
E
[n
eV

]

-3 -2 -1 0 1 2 3

0.0

0.2

0.4

0.6

0.8

1.0

Δk [10-3/a]

Δ
E
[μ
eV

]

Linear polarisation,
E = ∆E − 0.158 eV

upper edge

lower edge

unspecified

unspecified

Figure 5.6: Floquet band structure of a graphene ribbon around k = π/2a,
under irradiation with light of E0 = 0.8V/nm and f = 100THz; A zoom
relates the bands in Fig. 5.4 and the red bands at the centre of Fig. 5.3.
Bands are solid or dashed, to make it easier to distinguish them from one
another. For linear polarisation, only spin-up states bands are depicted.
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Figure 5.7: Floquet band structure of a graphene ribbon under irradiation
with circularly polarised light of frequency f = 3.85PHz, field strength E0 =
0.8V/nm and with a deflection angle α = 5◦; At the depicted scale, both
linear and circular polarisation look identical. Edge and bulk states as well
as photon count are distinguished by colours. Edge states of zero photons
are close to the Fermi energy.

5.2.2 Angular Deflection

As discussed in section 4.2.3, a deflection can give rise to an out-of-plane
component of the electric field and therefore induce a Rashba effect that, in
turn, can render graphene topologically trivial. To account for this possib-
ility, Eqs. (5.1) and (5.2) consider a deflection angle α. Fig. 5.7 shows the
resulting band structure for α = 5◦. On the depicted scale, the figure looks
identical for both linearly and circularly polarised light.

In Fig. 5.7, a significantly increased number of bands can be observed com-
pared to Fig. 5.2b. This is due to (+1)-photon replicas of s- and px/y-orbitals.
In section 4.2.3, these additional bands were not as prominent, since only
the K-point was studied. Most notably, when comparing Fig. 5.7 to Fig. 5.2,
there are new (+1)-photon edge states (cyan) forming an arc around the ori-
ginal 0-photon edge states (red). The additional states are replicas of non-
topological edge states that form between the sp2-hybridised lower bands
of unperturbed graphene. Similarly to the (−1)-photon replica d-bands
in Fig. 5.2, they are expected to not affect the conducting properties of
graphene.
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Circular polarisation,
E = ∆E − 0.1375 eV

Linear polarisation,
E = ∆E − 0.138 eV

upper edge

lower edge
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Figure 5.8: Floquet band structure of a graphene ribbon around k = π/a, un-
der irradiation with circularly and linearly polarised light of E0 = 0.8V/nm
and f = 3.85PHz, with a deflection angle α = 5◦; The crossing behaviour of
the bands is similar to Fig. 5.4. The dispersion is different due to couplings
to s- and other p-bands.

Closer inspection of the 0-photon edge states in Fig. 5.7 again reveals a dif-
ferentiation between spin-Hall effect and a quantum anomalous Hall effect,
depending on the polarisation of the light field. This can be seen in Fig. 5.8
and confirms the observations of section 4.2.3 where it was predicted that
graphene would remain a topological insulator even under an angular deflec-
tion of the light source. There are two notable differences between Figs. 5.4
and 5.8:

1. The spin splitting due to circularly polarised light is smaller with an-
gular deflection than without it.

2. For linearly polarised light, the deflection leads to a change of the
dispersion of the band structure. Unlike in Fig. 5.4, there are no dents
at approximately ∆k = ±0.2 · 10−3a−1 in Fig. 5.8.

Both observations are attributed to the small energy scales of only a few µeV
or neV that cause even small perturbations to have a notable effect. The
perturbation in this case is the coupling to the replicas of the sp2-hybridised
lower bands. Moreover, it is possible that the z-component of the electric field
does impose a Rashba effect after all, albeit one that is too weak compared to
the intrinsic SOI and therefore does not affect the topology (cf. Eq. (2.151)
on page 55). The further study of this phenomenon is left to future work.

For circular polarisation, there is one more possible perturbing factor that
will only be introduced here, but not be analysed further. The electric fields
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for both polarisations (under dipole approximation) are of the following form:

E⃗circ(r⃗, t⃗) =

 cos(ωt)
cos(α) sin(ωt)
sin(α) sin(ωt)

 , E⃗lin(r⃗, t⃗) =

 0
cos(α) sin(ωt)
sin(α) sin(ωt)

 . (5.3)

Via the decomposition

E⃗circ(r⃗, t⃗) =

sin(α) cos(ωt)
0

sin(α) sin(ωt)


︸ ︷︷ ︸

=:E⃗L

+

(1− sin(α)) cos(ωt)
cos(α) sin(ωt)

0

 , (5.4)

the circularly polarised electric field obtains an effective angular momentum
in y-direction due to the component E⃗L. In section 3.3.1, it was the angular
momentum in z-direction that gave rise to the Kronecker deltas in Eq. (3.41)

(pg. 87). Accordingly, the term E⃗L is expected to give rise to new types of
couplings. This assumption is reinforced by the observations of section 2.4.5
regarding the in-plane alignment of the sublattice spin in the Brillouin zone.
Even though no notable couplings of this type have been observed in this
work, they may become relevant at greater deflections, as the term sin(α)
increases.

So far, this chapter has only explicitly discussed the frequency f = 3.85PHz.
While this thesis does not make any assumptions on what happens at res-
onance frequencies, the results for all non-resonance frequencies have been
found to be in agreement with those for f = 3.85PHz. Thus, the predic-
tions of chapter 4 regarding the edge states of graphene have been confirmed.
This, however, is true only for sufficiently wide graphene ribbons. As will be
shown in the following, finite-size effects can lift the topological protection
of the edge states and split them apart.

5.3 Finite-size Effects

If the finite width of a graphene ribbon is below a certain threshold, it is
possible that the edge states of the sample are coupled via the bulk. As a
result, the crossing of the edge states is no longer topologically protected,
and the edge states split (cf. [121]). As will be demonstrated in this section,
such a splitting can be observed for some frequencies if the graphene unit
cell depicted in Fig. 5.1 has 72 or fewer carbon atoms.
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f = 100THz,
E = ∆E − 0.14 eV

f = 200THz,
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f = 300THz,
E = ∆E − 0.14 eV

f = 400THz,
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Figure 5.9: Floquet band structure of a graphene ribbon around k = π/2a,
under irradiation with circularly polarised light of field strength E0 =
0.8V/nm and varying frequency f ; The edge states from Fig. 5.14 behave dif-
ferently, depending on the frequency of the irradiated light. At f = 800THz,
a resonant coupling enhances a splitting due to finite-size effects. A similar
splitting can be seen at the higher resonances f = 400THz and 200THz.
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Figure 5.10: Floquet band structure of graphene around k = π/2a, under
irradiation with linearly polarised light with E0 = 0.8V/nm and varying f ;
At f = 800THz and 400THz, resonant couplings enhance finite-size effects.

Actual graphene nanoribbons have a width of 1 to 100 nm (cf. [122]). With
a lattice constant of a = 2.46 Å, this corresponds to approximately 4 to 368
atoms2 in the y-direction of a unit cell like that in Fig. 5.1. Even though
graphene samples with less than 72 atoms are on the smaller size of this
already small scale, they are subject of current research (cf. [123, 124]). The
finite-size effects and the consequential splitting of the otherwise topologic-
ally protected edge states may thus be relevant for experimental setups and
will therefore be discussed in further detail in the following.

The edge states of graphene with 18 atoms in y-direction, that is irradiated
with circularly and linearly polarised light can be seen in Figs. 5.9 and 5.10,
respectively. The negative energetic shift at f = 800THz in both figures is
the same as in Fig. 4.3 (pg. 98). Fig. 5.9 also shows a notable splitting of the
edge states under irradiation with circularly polarised light of f = 800THz.
The splitting is of the same order of magnitude as the spin splitting in section
4.2. A similar, albeit smaller splitting can be seen at the integer fractions

2A width of 100 nm actually corresponds to 367 atoms. However, for an odd number,
one edge of Fig. 5.1 would not have a zigzag shape and would instead be a so-called bearded
edge with carbon atoms that are bonded to only a single other carbon atom, respectively.
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Figure 5.11: Splitting between the edge states of a graphene ribbon under
irradiation of linearly polarised light of frequency f = 800THz with field
strength E0 = 0.8V/nm; (a) Under consideration of 18 carbon atoms per
unit cell, a splitting occurs between the edge states around k = π/2a, where
E = ∆E−0.145 eV is the Floquet energy. (b) The magnitude of the splitting
varies as a function of the number of carbon atoms per unit cell. For 72
or more atoms, the splitting falls below double point precision. Only unit
cells with sublattice A on the lower and sublattice B on the upper edge
(cf. Fig. Fig. 5.1) have been taken into account.

f = 400THz and 200THz. Under irradiation with linearly polarised light,
the spins are degenerate. Hence, the splitting of the edge states is signific-
antly smaller. The splitting for f = 800THz in Fig. 5.10 is enhanced in
Fig. 5.11a.

Fig. 5.11b shows how the width of the band gap depicted in Fig. 5.11a var-
ies with the number of carbon atoms per unit cell. For 72 or more atoms,
the width falls below the computational double point precision. With higher
accuracy, it would be expected to decrease exponentially (cf. [121]). For cir-
cularly polarised light, the threshold of 72 atoms is the same, but it is not
depicted explicitly, here.

The relevance of the frequencies f = 800THz, 400THz and 200THz stems
from one specific resonant coupling and its higher resonances. Fig. 5.12
shows the bands of a graphene ribbon at ∆k = 0, i.e. k = π/2 as a function
of the frequency of the irradiated light, with Floquet order of N = 1. At
f ≈ 829THz, both an orange and an azure line cross the black line near
E = 0 eV. This implies a threefold crossing of a (+1)- and a (−1)-photon
bulk band with the (black) 0-photon edge state. This crossing is in fact the
same crossing as was already depicted in Fig. 4.9 (pg. 104).
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+1 photon ±0 photons -1 photon

Figure 5.12: Floquet energies of a graphene ribbon at k = π/2a, under irradi-
ation with circularly polarised light; On the left, energies with an expectation
value of (minus) one photon are depicted in orange (azure). On the right,
the energies around ∆E = E − 135meV have been zoomed in on. At ap-
proximately 829THz, both an orange and an azure line cross the black line
nearly simultaneously. The field strength is E0 = 0.8V/nm, and there are 18
carbon atoms per unit cell. No (±n)-photon states with n > 1 are depicted.

In the context of Fig. 4.9, it was discussed how a coupling of a (+1)- and a
(−1)-photon band is suppressed by the square of the energy difference to the
energetically closest 0-photon band (cf. Eqs. (4.5) and (4.6) on page 104).
Since the point ∆k = 0 in Figs. 5.9, 5.10 and 5.11a is the projection of
the M -point onto a lower dimension,3 one could näıvely assume that, as in
Fig. 4.9, the energy difference to the closest 0-photon band would be more
than 2 eV. However, the existence of the edge states reduces this energy dif-
ference drastically. As can be seen in Fig. 5.12, the edge states serve as a cata-
lyst between the (+1)- and a (−1)-photon bands that cross at f ≈ 829THz.
It is therefore the lifted topological protection due to the finite width of the
graphene ribbon together with the simultaneous coupling to a (+1)- and
a (−1)-photon states that gives rise to the significant splitting of the edge
states in Figs. 5.9 and 5.10.

On a larger scale, the bands depicted in Figs. 5.9 and 5.10 look like Fig. 5.13.
Since the frequencies considered here are in the THz regime, it is necessary to
consider high Floquet orders N . However, since the great number of replica
bands in Fig. 5.13 makes the figure difficult to interpret, the Floquet band

3The projection of the band structure onto a lower-dimensional Brillouin zone is illus-
trated in Fig. 2.17 (pg. 40).
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Figure 5.13: Floquet band structure of a graphene ribbon under irradiation
with circularly polarised light of frequency f = 100THz, field strength E0 =
0.8V/nm and with a Floquet order of N = 8; The Floquet energies of the
2N = 16 grey and cyan Floquet replicas around the black and red 0-photon
bands at the centre differ by multiples of hf = ℏω. Around the 0-photon
edge states (red), the black lines appear to be interrupted, since they merge
into grey ones.

structures for multiple frequencies are depicted in Fig. 5.14 as well, but with
only a Floquet order of N = 1.

Fig. 5.14 shows how with increasing frequency the Floquet replica bands
move closer to the centre until they cross the 0-photon edge states at a fre-
quency of f = 800THz. The frequencies of f = 400THz and 200THz show
no such crossing, since it would be a second- or fourth-order resonance, re-
spectively. The couplings therefore require Floquet orders of N = 2 and
N = 4. As deduced from Fig. 5.12, the actual resonance does not lie at
f = 800THz, but at 829THz instead. This explains why there is no notable
splitting for f = 300THz and for 100THz. The integer multiple of 300THz
that is closest to resonance is 900THz and is therefore not close enough to
829THz for the third-order resonance to have a similar effect. Similarly,
100THz would need an eighth-order resonance.
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Figure 5.14: Floquet band structure of a graphene ribbon under irradiation
with circularly polarised light of field strength E0 = 0.8V/nm and varying
frequency f , with a Floquet order of N = 1; As the frequency increases, the
Floquet replica bands move across the energy axis. Consequently, replicas
and original bands cross, and (±1)-photon bands exhibit avoided crossings
with the 0-photon bands near the centre.



Chapter 6

Conclusion and Outlook

In this thesis, Floquet formalism was used to study the effects of light fields
on the band structure of a spinful LCAO model of graphene. After preceding
analytical observations in chapter 3, chapter 4 focussed on a fully periodic
lattice, whereas chapter 5 instead considered a graphene ribbon that is finite
in one spatial direction.
Over the course of these chapters, the Floquet band structure of graphene
as well as its topology have been found to be strongly dependent on the fre-
quency and, even more so, the polarisation of the light field. Consequently,
graphene that is irradiated with linearly polarised light or no light at all is
a spin-Hall insulator, whereas circularly polarised light turns it into a Chern
insulator. While the latter result on its own is in agreement with [47, 48],
a new property has also been observed: The change from a spin-Hall to a
Chern insulator lifts spin degeneracy.
In section 5.2.1, the lift of spin degeneracy was attributed to the effects of the
angular momentum of the irradiated light. The latter is only partially com-
patible with the opposing spin-flow directions of the spin-Hall insulator. Due
to the spin-Hall effect, the edge currents flow clockwise around the material
for one spin and anti-clockwise for the other spin. Since the photovoltaic Hall
effect induced by the light leads to the same flow direction for both spins,
one current is supported while the other is suppressed. Consequently, the
spin degeneracy of the edge states in a graphene ribbon is lifted.
The same lift of degeneracy was also observed in fully periodic graphene.
In section 3.3.1, the coupling between eigenstates of unperturbed graphene
due to circularly polarised light was determined to be spin-dependent. The
resulting lift of spin degeneracy in section 4.2.1 was then found to lead to the
aforementioned lift of spin degeneracy for the topologically protected edge
states in section 5.2.1.
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The observations regarding the topology have also been tested against de-
flections of the incoming light beam by an angle of 5◦. Despite the resulting
field component in z-direction, the deflection has been found to not lead to
any notable Rashba effects, as was shown in sections 4.2.3 and 5.2.2. This
is attributed to the time-dependent oscillation of the electric field that, av-
eraged over a time-period, does not break the out-of-plane symmetry of the
system, as opposed to a static electric field.
Further effects on the band structure have been found, including, but not
limited to an enhancement of the intrinsic, SOI-induced band gap between
the Dirac cones of fully periodic graphene. As shown in section 4.1.1, irradi-
ation with certain PHz frequencies leads to a widening of the band gap by two
orders of magnitude. For THz frequencies, the widening is far less prominent,
but a different phenomenon occurs: In section 4.3.2, the width of the band
gap has been found to oscillate with the frequency of the irradiated light.
Based on the results of section 3.3, a toy model was created, to understand
and describe this phenomenon. With the help of that model, the oscillations
were then shown to be the result of an interplay of a time-dependent onsite
coupling term and sublattice potential that lead to two types of interactions
between the Floquet replica bands.
In section 4.3.3, one fixed THz frequency was chosen to study the band struc-
ture around the K-point. Several avoided crossings between Floquet replica
bands were observed. These avoided crossings were found to be similar to
those described by a toy model studied in [60], a bachelor thesis that was
supervised by the author.
For graphene ribbons that are finite in one spatial direction, THz frequencies
were used in section 5.3 to illustrate how higher-order resonant couplings en-
hance a finite-size effect. In ribbons with a width of 72 or fewer carbon atoms,
the otherwise crossing edge states were found to split. This was attributed to
the finite width of the ribbon that leads to a lift of the topological protection
of the crossing edge states. The magnitude of the consequent splitting was
shown to increase drastically at resonance frequencies.

The significant enhancement of the band gap in section 4.1.1 only occurs
at frequencies in the PHz regime. Also, the spin splitting in sections 4.2 and
5.2 is only of a magnitude of a few µeV. Both effects are therefore difficult
to study experimentally. Otherwise, in particular the band gap widening,
would have been valuable for the general study of topological insulators, as
the intrinsic graphene band gap is small and bears the danger of being sur-
passed by thermal excitations of the electrons. The phenomena of section 4.3
and 5.3, on the other hand, are results of frequencies in the THz regime. The
oscillations of valence and conduction band as a function of the frequency
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in section 4.3 occur between 10 and 50THz and are therefore experiment-
ally verifiable. The finite-size effects of section 5.3 have been found to be
significantly enhanced for a multitude of frequencies in the range from 200
to 800THz and should be taken into account when designing an experiment
that studies spin-Hall and quantum (anomalous) Hall effects in graphene.

A possible continuation of this thesis lies in the study of the transition
between these Hall effects. The topology of the Floquet band structure has
only been studied for circularly and linearly polarised light. A study of el-
liptically polarised light is expected to give valuable insight on the transition
from graphene as a spin-Hall insulator to a no longer spin-degenerate Chern
insulator. Moreover, such studies could reveal new topological properties.
As discussed in section 2.6.5, Floquet band structures can give rise to topo-
logically protected edge states that cross the boundary of the first Floquet
Brillouin zone. While no such edge states have been observed in this thesis,
it is possible that elliptically polarised light could have new effects on the
topology that do give rise to such states.

It is also possible and appropriate to extend the research of this thesis by ex-
panding the model used in it to account for effects that have been neglected
so far. In section 3.1.1, the coupling of different reciprocal vectors k⃗ via the
electric perturbation has been determined to be small in comparison to the
coupling between identical k⃗ and was therefore neglected. A continuation of
this thesis should incorporate the terms that couple different k⃗.
Furthermore, only electric fields have been considered in this thesis. The
magnetic component of the light fields has been neglected, as it is signific-
antly weaker than its electric counterpart. Magnetic fields can give rise to
interesting spin dynamics. In particular the interplay with the lifted degen-
eracy of the edge states in chapter 5 should be probed.
In this thesis, no notable Rashba effects have been observed. However, as
explained in section 4.2.3, it is possible that higher-order Rashba terms could
give rise to such effects. Also, an understanding of greater angular deflections
than 5◦ is expected to be beneficial towards the design of new experiments.
The absence of Rashba effects for these deflections should therefore be veri-
fied as well.
Ultimately, the thesis has only considered single-electron band structures. A
continuation of this thesis should put its results into the broader context of
multi-electron systems. In particular, occupation dynamics are important to
consider. These should also be studied in the context of thermodynamics as
well.
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The computations in this thesis have all been performed either in Math-
ematica or by hand. The Mathematica code has been written in such a way
that it is easily accessible for other people to work with it and to repro-
duce the results of this thesis. The accessibility has been demonstrated by
Martens who also performed the computations for his bachelor thesis within
the same framework [60]. The code is highly modular and allows to easily
change from graphene to other materials with the same lattice symmetry,
e.g. silicene. The extension to the latter or possibly similar materials like
molybdenum disulphide (MoS2) is expected to lead to similar results as for
graphene. Other than via a change in material, it is also possible to expand
the model via the consideration of different geometries. Graphene nanotubes
or fullerenes, as well as graphene sheets with ripples are experimentally avail-
able shapes. The Mathematica code of this thesis has been written with these
geometries in mind and only needs minor modifications for their full imple-
mentation. The code will be published in addition to the physical results of
this thesis.



Appendix A

Material Parameters

The spinful multi-orbital tight-binding model of this thesis requires numer-
ous parameters most of which have been determined empirically [27, 125,
126] or from first principles [29]. The complete list of parameters is given in
Tab. A.1. A cornerstone of this thesis is the simplified LCAO model of Slater
and Koster [33]. Its parameters, if available, stem from Gosálbez-Mart́ınez,
Palacios and Fernandez [125]. The missing parameters for the hydrogen pas-
sivation (cf. Fig. 5.1 on page 40) stem from Huertas-Hernando, Guinea and
Brataas [126]. The intrinsic SOI strength has been chosen in such a way that
it satisfies the band gap of 42 µeV measured by Sichau at al. [30].

For the effective fxyz-orbital, the parameters have been estimated as dis-
cussed in section 2.2.3. Accordingly, their effective Bohr radius has been
chosen to be 5/3 times that of carbon. The respective hopping terms Vifα
with i ∈ {s, p, d} and α ∈ {σ, π, δ} have then been estimated through numer-
ical computations and comparison to the other hopping terms. No hopping
between two f-orbitals is considered.

For the coupling of neighbouring atoms via the electric field, an effective
atomic radius needs to be assumed. In this thesis, its value is

a∗Bohr =
adistance

2
=

a

2
√
3
= 0.71 Å (A.1)

with the distance adistance between two atoms. This is in good agreement
with other estimates (cf. [127–129]).
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s- and p-orbitals, and general parameters

ϵs ϵp ϵd ϵf λI a

−8.8 eV 0 eV 12 eV 26 eV 2.87meV 2.46 Å

Vssσ Vspσ Vppσ Vppπ aBohr aBohr∗,f

−7.76 eV 8.16 eV 7.48 eV 3.59 eV 0.71 Å 1.183 Å

d-orbitals
Vsdσ Vpdσ Vpdπ
0 eV −4.308 eV −0.7 eV

Vddσ Vddπ Vddδ
−3.949 eV 0.359 eV −2.693 eV

f-orbitals
Vsfσ Vpfσ Vpfπ
0 eV 0 eV −1.44 eV

Vdfσ Vdfπ Vdfδ
0 eV −4.24 eV −4.15 eV

Hydrogen passivation

ϵs,H Vspσ,H Vssσ,H
−2.7 eV −4.5 eV −4.2 eV

Table A.1: Numerical parameters of graphene used throughout this thesis.
ϵi is the on-site energy of an orbital i. Vijα is the hopping strength between
two neighbouring orbitals i and j, where α denotes how they are bonded to
one another. λI is the intrinsic SOI strength. The terms for the f-orbitals
correspond to the effective f-orbital discussed in section 2.2.3. Terms Vffα
associated with the hopping between two f-orbitals have been assumed zero.
For hydrogen atoms, only s-orbitals are considered, and only the coupling to
p- and other s-orbitals of neighbouring atoms is taken into account.



Appendix B

k⃗-non-diagonal Matrix
Elements

In the final expression of Eq. (3.19) (pg. 78), there are two summands, the
former of which will be discussed here. The summand itself is a sum of the
form ∑

R⃗

ei(k⃗−k⃗
′)R⃗ ·Rx · ηn1,n2,k,k′ . (B.1)

The term ηn1,n2,k,k′ is an integral over the unit cell,

ηn1,n2(k
′ − k) := ηn1,n2,k,k′ =

∫
u.c.

e−i(k⃗′−k⃗)r⃗ · ψn1k⃗
†(r⃗)ψn2k⃗′

(r⃗) dr⃗ (B.2)

with

ψnk⃗(r⃗, t) :=
1√
N

∑
R⃗

∑
s=±1

f s
n,R⃗

(t)ei⃗kR⃗wn(r⃗ − (R⃗ + s · δ⃗/2)), (B.3)

according to definition 3.15 (pg. 77). In the following, the sums over lattice

vectors R⃗ and sublattice indices s = ±1 will be replaced with a sum over
lattice sites R⃗ ∈ {R⃗±δ⃗/2}. The envelope functions are redefined accordingly,
as f

n,R⃗+s· ⃗δ/2 := f s
n,R⃗

(t).
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Eqs. (B.3) and (B.2) then together yield∫
u.c.

e−i(k⃗′−k⃗)r⃗ · (ψn1k⃗
)†(r⃗)ψn2k⃗′

(r⃗) dr⃗ (B.4)

=
1

N

∑
R⃗,R⃗′

f ∗
n1,R⃗

(t)fn2,R⃗′(t)·

·
∫
u.c.

e−i(k⃗′(r⃗−R⃗′)−k⃗(r⃗−R⃗)) · w∗
n1
(r⃗ − R⃗)wn2(r⃗ − R⃗′) dr⃗ (B.5)

=
1

N

∑
R⃗,R⃗′

f ∗
n1,R⃗

(t)fn2,R⃗′(t) · e−i⃗k∆R⃗

·
∫
u.c.

e−i(k⃗′−k⃗)(r⃗−R⃗′) · w∗
n1
(r⃗ − R⃗′ −∆R⃗)wn2(r⃗ − R⃗′) dr⃗ (B.6)

=
1

N

∑
R⃗,R⃗′

f ∗
n1,R⃗

(t)fn2,R⃗′(t) · e−i⃗k∆R⃗

·
∫
u.c.

e−i(k⃗′−k⃗)r⃗ · w∗
n1
(r⃗ −∆R⃗)wn2(r⃗) dr⃗. (B.7)

From (B.4) to (B.5), the definition (B.3) was used. From (B.4) to (B.5),

∆R⃗ := R⃗′ − R⃗ was inserted, to simplify the exponential function. From
(B.6) to (B.7), the substitution R⃗′ → R⃗′ +∆R⃗ was performed.

Based on the LCAO approach (2.44) described on page 15, the Wannier
functions wn are assumed to be sums of atomic orbital wave functions1 Φn,
where n labels the atomic orbital. In the following, the integral at the end
of Eq. (B.7) will therefore be evaluated for the following atomic orbitals:

Φ2pz(r, θ, ϕ) =
1√
a∗Bohr

5

er/(2a
∗
Bohr)r cos(θ)

4
√
2π

,

Φ3dxz(r, θ, ϕ) =
1√
a∗Bohr

7

e−r/(3a
∗
Bohr)−iϕ(1 + e2iϕ)r2 cos(θ) sin(θ)

81
√
2π

,

Φ3dyz(r, θ, ϕ) =
1√
a∗Bohr

7

ie−r/(3a
∗
Bohr)−iϕ(−1 + e2iϕ)r2 cos(θ) sin(θ)

81
√
2π

(B.8)

with the effective Bohr radius a∗Bohr.

1The symbol Φ instead of ϕ like in section 2.2.3 has been chosen here to clearly distin-
guish the wave function from the polar angle with the otherwise same symbol.
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The strong localisation of the orbital wave functions allows for the replace-
ment of the integral in Eq. (B.7) with an integral over the entire real space
without changing the result significantly.
A second approximation2 that will be made in the following is that for orbital
wave functions the integral vanishes for ∆R⃗ ≠ 0, i.e. for R⃗ ≠ R⃗′.
Eq. (B.7) then reshapes to∑

R⃗

f ∗
n1,R⃗

(t)fn2,R⃗(t)

 ·
∫
R3

e−i(k⃗′−k⃗)r⃗ · Φ∗
n1
(r⃗)Φn2(r⃗) dr⃗. (B.9)

Due to the normalisation condition of the envelope functions given in Eq. (2.65)
in section (2.2.4), the absolute value of the preceding sum in Eq. (B.9) is
bounded from above3 by 1. In the following, the preceding sum in equation
(B.9) will hence be neglected, and only the integral over the atomic orbital
wave functions will be considered.
The sum over the y- and the z-components of R⃗ in Eq. (B.1) results in a Kro-
necker delta for ky and k′y and for kz and k

′
z. Thus, the y and z-dependence

in the exponential function of Eq. (B.9) disappears. As a result of this ob-
servation and of the preceding assumption, Eq. (B.9) is reduced to∫

R3

e−i(k′x−kx)rx · Φ∗
n1
(r⃗)Φn2(r⃗) dr⃗. (B.10)

To solve this new integral, express x in spherical coordinates and write

ei(kx−k
′
x)x =

∞∑
n=0

((kx − k′x) · r cos(ϕ) sin(θ))n
n!

=:=
∞∑
n=0

κn
n!
. (B.11)

Thus, instead of solving the entire integral (B.2), the integrals of atomic wave
functions times the κn of Eq. (B.11) will be solved first and summed over,
later. The integrals over the summands are

⟨Φn1| κn |Φn2⟩ := (B.12)∫
R3

((kx − k′x)r cos(ϕ) sin(θ))
n · Φn1

†(r, θ, ϕ)Φn2(r, θ, ϕ) r
2 sin(ϕ) dr dθ dϕ.

2Not only is the overlap between atomic orbitals on neighbouring atoms small, but

also does the factor e−i(k⃗′−k⃗)r⃗ lead to an oscillating behaviour that further suppresses the
integral.

3For a quickly oscillating electric field with a small field strength, the envelope functions
fn,R⃗ are approximately identical for all lattice vectors R⃗ and orbital quantum numbers
ni. In that case, the sum becomes almost exactly 1.
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Further, write
∆k := aLat · (k′x − k′x) ∈ [0, 2π) (B.13)

to simplify the handling of Eqs. (B.12) and (B.8). aLat replaces the lattice
constant a to better distinguish it from a∗Bohr. Evaluation of Eq. (B.12) then
yields, for 2pz-2pz

⟨Φ2pz |κn|Φ2pz⟩ = ((−1)n + 1) · (−1)n/2+1 (n/2 + 1)2 + (n/2 + 1)

4
∆kn,

(B.14)

for 3dxz-3dxz

⟨Φ3dxz|κn|Φ3dxz⟩ = ((−1)n + 1)
3n−1

25+n
6 + n

3 + n
∆kn Γ(5 + n), (B.15)

for 3dyz-3dyz

⟨Φ3dyz |κn|Φ3dyz⟩ = ((−1)n + 1)
3n−1

4
√
π

∆kn Γ(4 + n/2) Γ((1 + n)/2) (B.16)

and for 2pz-3dxz

⟨Φ2pz |κn|Φ3dxz⟩ = ⟨Φ3dxz|κn|Φ2pz⟩ = iπ
24+n · 32+n

56+n
(i∆k)n

Γ(6 + n)

Γ(3 + n/2)Γ(−n/2) ,
(B.17)

where Γ(z) is the gamma function.
The remaining two matrix elements for 2pz-3dyz and 3dxz-3dyz are zero. After
executing the sum (B.11), one can write the 3× 3 matrix

(ηn1,n2(∆k))n1,n2∈{2pz,3dxz,3dyz}
(B.18)

=


1

(∆k2+1)3
829440i∆k

(36∆k2+25)4
0

829440i∆k
(36∆k2+25)4

−256(63∆k2−4)
(9∆k2+4)5

0

0 0 256
(9∆k2+4)4

 (B.19)

=


1

(∆k2+1)3
b·i∆k(

( 6
5
∆k)

2
+1

)4 0

b·i∆k(
( 6
5
∆k)

2
+1

)4

1−7( 3
2
∆k)

2(
( 3
2
∆k)

2
+1

)5 0

0 0 1(
( 3
2
∆k)

2
+1

)4

 (B.20)

with ∆k⃗ as defined in Eq. (B.13) and b = 211 · 34/57.
In Fig. 3.2, the matrix elements ηn1,n2(∆k) have been plotted as functions of
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(k′x − kx) · aLat. The horizontal axis ranges from 0 to 2π, such that it covers
the distance of an entire Brillouin zone.

As a final remark, note that one can see from Fig. 3.2 that η(∆k) is not
Hermitian by itself. However, this is not an issue, since it only needs to
satisfy η(∆k)† = η(−∆k), which it does.



Appendix C

Diagonalisation of Tridiagonal
Matrices

In section 4.3.2, a Floquet Hamiltonian HFσ (Eq. (4.16), pg. 124) has been
defined as

HFσ =



. . .
...

...
...

...

· · · −ℏω 0
0 −ℏω

iM C
0 −iM

0 · · ·

· · · −iM 0
C iM

0 0
0 0

iM C
0 −iM

· · ·

· · · 0
−iM 0
C iM

ℏω 0
0 ℏω · · ·

...
...

...
...

. . .


, (C.1)

where straight lines have been added to distinguish its Fourier components.
M denotes a sublattice potential and C the strength of an onsite coupling of
basis states in the original system.
In the following, the matrix (C.1) will be diagonalised in the static limit
ω → 0 and for C = 0. First note that for C = 0 the matrix can be separated
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into a sum of two commuting matrices

H1
Fσ :=



. . .
...

...
...

...

· · · −ℏω 0
0 0

iM 0
0 0

0 · · ·

· · · −iM 0
0 0

0 0
0 0

iM 0
0 0

· · ·

· · · 0
−iM 0
0 0

ℏω 0
0 0

· · ·
...

...
...

...
. . .


(C.2)

and

H−1
Fσ :=



. . .
...

...
...

...

· · · 0 0
0 −ℏω

0 0
0 −iM

0 · · ·

· · · 0 0
0 iM

0 0
0 0

0 0
0 −iM

· · ·

· · · 0
0 0
0 iM

0 0
0 ℏω · · ·

...
...

...
...

. . .


. (C.3)

Both matrices have the same respectively non-degenerate eigenvalues. These
eigenvalues are also the same as those of HFσ, with the exception that for
HFσ they are degenerate. It thus suffices to find the spectrum of H1

Fσ. Fur-
thermore, since every second row and every second column in H1

Fσ is zero,
its eigenvalues are the same as those of

Htridiag :=



. . . . . .

. . . −2ℏω iM
−iM −1ℏω iM

−iM 0 iM
−iM ℏω iM

−iM 2ℏω . . .
. . . . . .


, (C.4)

where all entries that have not been written explicitly are zero. To compute
the eigenvalues of Htridiag, consider the characteristic polynomial

P (λ) = det(Htridiag − λ1). (C.5)
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Htridiag is a tridiagonal matrix, as is (Htridiag − λ1) as well. For an n-
dimensional tridiagonal matrix

Tn :=


a1 b1
c1 a2 b2

c2
. . . . . .
. . . . . . bn−1

cn−1 an

 , (C.6)

the determinant satisfies the recurrence relation

det(Tn) = an det(Tn−1)− cn−1bn−1 det(Tn−2). (C.7)

In the limit ω → 0, it is possible to adapt this relation to (Htridiag − λ1)

by inserting ai = −λ and bi = c†i = iM for all i ∈ N\{0}. The recurrence
relation for the characteristic polynomial P (λ) as defined in Eq. (C.5) then
becomes

Pn(λ) = −λPn−1(λ)−M2Pn−2(λ). (C.8)

For a Floquet order of N , the characteristic polynomial of Htridiag is given by
P2N , with the first two polynomials defined as

P0(λ) = −λ and P1(λ) = (λ−M)(λ+M). (C.9)

The recursion relation (C.8) can be used to show via induction that the
eigenvalues are

λm = −2M cos

(
mπ

n+ 1

)
with m ∈ {1, 2, ..., n}, (C.10)

similarly to what Kulkarni, Schmidt and Tsui derived in their book [130] for
more general matrices. For Floquet matrices with Floquet order N , the λm
are the Floquet quasi-energies

ϵm = −2M cos

(
mπ

2N + 2

)
with m ∈ {1, 2, ..., 2N + 1}. (C.11)

For N = 1, the eigenvalues are identical to those given in Eq. (4.17) on page
124 in the limit ℏω → 0. For higher N , the eigenvalues in Eq. (C.10) assume
algebraic values within the interval [−2M, 2M ]. Notably, the eigenvalues be-
come dense in this interval as n increases. This indicates the transition from
a finite to an infinite system. The Floquet energies can then be interpreted
as continuous and reciprocal to the time, similarly to how the k⃗ that are
reciprocal to the spatial coordinates. A more detailed discussion on this con-
nection for a similar system as in this appendix can be found in the article
by Blekher, Jauslin and Lebowitz [118].
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Oscillating Sublattice Potential

The computations in the following are based on those performed by Martens
in his bachelor thesis [60]. Consider p-band graphene similar to Eq. (2.87)
on page 30, i.e.

H0(k⃗) =

(
0 h(k⃗)

h†(k⃗) 0

)
(D.1)

with functions h(k⃗) that do not need to be specified further for the compu-
tations in the following.
A sublattice potential is then introduced via

H ′(t) =

(
V cos(ωt) 0

0 V sin(ωt)

)
, (D.2)

where V is the strength of the sublattice potential in units of eV.
The Fourier decomposition of the overall Hamiltonian H(k⃗, t) := H0(k⃗) +
H ′(t) according to Eq. (2.157) (pg. 60) results in the Floquet matrices

H±1 =

(
1
2

0
0 ∓ 1

2i

)
(D.3)

with H0 defined in Eq. (D.1) and H±i = 0 for i > 1.
The eigenvectors of the matrix (D.1) are given in Eq. (2.95) (pg. 33). They
can be rewritten as

v⃗V/C(k⃗) :=
1√
2

(
∓ h(k⃗)

|h(k⃗)|
1

)
(D.4)

with eigenvalues

EV/C(k⃗) = ∓|h(k⃗)|. (D.5)
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Via a basis transformation with the matrix S(k⃗) := (v⃗V (k⃗), v⃗C(k⃗)), the

matrices H0(k⃗) and H±1(t) reshape to

G0(k⃗) := S†H0(k⃗)S =

(
−|h(k⃗)| 0

0 +|h(k⃗)|

)
(D.6)

and

G±1 :=
1

V
S†H±1S =

1

4

(
1± i −1± i
−1± i 1± i

)
. (D.7)

From the matrices (D.6) and (D.7), it is possible to define a Floquet Hamilto-

nian HF(k⃗) := H0
F(k⃗) + V ·HS

F , where

H0
F(k⃗) :=

G0(k⃗)− ℏω 0 0

0 G0(k⃗) 0

0 0 G0(k⃗) + ℏω

 , HS
F :=

 0 G+1 0
G−1 0 G+1

0 G−1 0

 .

(D.8)

The matrix H0
F(k⃗) is diagonal. Its six eigenvalues are

ϵ0V/C(k⃗) := ∓|h(k⃗)| and ϵ0V/C,±(k⃗) := ϵ0V/C(k⃗)± ℏω. (D.9)

The corresponding eigenvectors are of the form e⃗i with i ∈ {1, 2, 3, 4, 5, 6}.
Since e⃗ t

i H
S
F e⃗i = 0 for all i, the first-order perturbation terms for HS

F vanish.

In second order, however, the energies ϵ0V/C(k⃗) are modified by terms

ϵ2V (k⃗) = −ϵ2C(k⃗) = −V
2

4
· |h(k⃗)|
|2h(k⃗)|2 − ℏ2ω2

. (D.10)

These correction terms are depicted as a function of h(k⃗) in Fig. D.1a. The
figure uses arbitrary units, as the strength of the sublattice potential has been
set to V = 1. Since the functions (D.10) are divergent for |h(k⃗)| = ℏω/2, the
perturbative approach above is insufficient to cover the perturbative correc-
tions for all values of h(k⃗). For that reason, consider only the eigenvectors

v⃗ 0
C,−(k⃗) := e⃗2 and v⃗ 0

V (k⃗) := e⃗3 (D.11)

with their respective unperturbed eigenenergies

ϵ0C,−(k⃗) = |h(k⃗)| − ℏω and ϵ0V (k⃗) = −|h(k⃗)|. (D.12)

These eigenvectors and eigenenergies correspond to the conduction band with
one emitted photon (v⃗ 0

C,−(k⃗) and ϵ
0
C,−(k⃗)) and the unperturbed valence band
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Figure D.1: Second order perturbation theory corrections to the energies of
0-photon valence (cyan) and conduction band (red) and their (±1)-photon
Floquet replica bands (black, dashed); (a) The corrections to the energies of

the 0-photon valence and conduction band cross at h(k⃗) = 0 and diverge at

|h(k⃗)| = ℏω/2. (b) Quasi-degenerate perturbation theory shows that the 0-
photon valence band and the (−1)-photon conduction band actually exhibit

an avoided crossing at |h(k⃗)| = ℏω/2. The figure is inspired by the bachelor
thesis of Martens [60].

(v⃗ 0
V (k⃗) and ϵ0V (k⃗)), respectively. The coupling between these is what gives

rise to one of the divergences in Eq. (D.10). The part of the Floquet Hamilto-
nian HF describing these two states and their interaction can be written as

(HF(k⃗))(2,3) :=(
ϵ0C,−(k⃗) + (HS

F )(2,2) (HS
F )(2,3)

(HS
F )(3,2) ϵ0V (k⃗) + (HS

F )(3,3)

)
=

(
|h(k⃗)| − ℏω −1 + i

−1− i −|h(k⃗)|

)
,

(D.13)

where the subscripts (i, j) denote the i’th row and the j’th column of the
respective matrix. The eigenvalues of the matrix in Eq. (D.13) are

ϵ2± = −ℏ
2
± 1

2
√
2

√
V 2 + 2(ℏω − 2|h(k⃗)|), (D.14)

where the index “+” denotes the correction to the 0-photon valence band
and “−” to the (−1)-photon conduction band.
The energies (D.14) are depicted in Fig. D.1b. As can be seen from the fig-

ure, they actually exhibit an avoided crossing for h(k⃗) = ℏω/2. Analogously,
the other divergences of Eq. (D.10) turn into avoided crossings as well.
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Figure D.2: Floquet quasi-energies of spinless graphene with a time-
dependent sublattice potential of V cos(ωt) on sublattice A and V sin(ωt)
on sublattice B, with Floquet order N = 1; Valence (cyan) and conduction

band (red) touch at h(k⃗) = 0 and |h(k⃗)| = ℏω. Between those values, the
bands exhibit avoided crossing with Floquet replica bands (black, dashed) at

|h(k⃗)| = ℏω/2. Close the K(′)-point, |h(k⃗)| scales linearly with the distance

|⃗k − K⃗(′)|.

The actual, non-perturbative eigenvalues of the Floquet Hamiltonian HF

are depicted in Fig. D.2. They touch at h(k⃗) = 0, exhibit avoided crossings

at |h(k⃗)| = ℏω/2 and again touch at |h(k⃗)| = ℏω.
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périodiques”, fr, Annales scientifiques de l’École Normale Supérieure,
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