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Abstract

Just as the recent Tonga eruption in January 2022 showed, explosive volcanic

eruptions can emit large ash clouds that reach high into the atmosphere, which

in turn can impact atmospheric behavior over a range of spatial and temporal

scales. Since these atmospheric processes occur on many scales, it is of interest

to have numerical schemes that can resolve physical processes over all these

scales without the need to rely solely on high performance computing.

One way to face this obstacle is to utilize adaptive mesh refinement techniques,

which allow to control the (spatial) resolutions so that high spatial resolution

is ensured in regions of high interest, while areas of low interest also have low

spatial resolution.

Such adaptive meshing tools have not been used in models which are used to

model the fluid dynamics of volcanic plumes, yet.

The approach within this thesis is to use a nodal Discontinuous Galerkin

Method that is able to model volcanic jets and plumes by discretizing equa-

tions that are based on the Euler equations.

While this thesis is just a conceptual study on how much computational cost

can be saved for 2D volcanic plume models, the results from the numerical

scheme show that at least 42% of CPU time can be saved (compared to uni-

form runs) if adaptivity is used correctly, while still maintaining results that

resemble the uniform runs, qualitatively.



Zusammenfassung

Wie die Tonga-Eruption im Januar 2022 gezeigt hat, können explosive Vulkane-

ruptionen große Aschewolken emittieren, die auch in hohe Bereiche der Atmo-

sphäre gelangen können. Wenn Vulkanasche in diese Bereiche gelangt kann dies

das atmosphärische Verhalten über eine Bandbreite an Raum-, sowie Zeitskalen,

beeinflussen. Da atmosphärische Prozesse über viele verschiedene Skalen hinweg

auftreten, sind numerische Verfahren, welche all diese Skalen auflösen können

ohne nur auf Hochleistungsrechner zurückzugreifen von Interesse.

Eine Möglichkeit all diese Skalen in einem Verfahren aufzulösen ist die Ver-

wendung von adaptiver Gitterverfeinerung, welche die (räumliche) Auflösung

steuert und so für hohe räumliche Auflösung in Gebieten von hoher Relevanz

sorgt, während Gebiete, welcher weniger von Interesse sind auch weniger hoch

aufgelöst sind.

Verfahren, die adaptive Gitter verwenden sind bis dato noch nicht Modellen für

vulkanische Plumes, die die Fluiddynamik simulieren, zum Einsatz gekommen.

Der Ansatz, welcher in dieser Dissertation verwendet wird, greift auf eine nodale

Diskontinuierliche Galerkin-Methode zurück, die vulkanische Jets und Plumes

mit Hilfe eines Modells auf Basis der Euler-Gleichungen simulieren kann.

Obwohl diese Arbeit nur eine konzeptionelle Studie zur Analyse der Rechen-

zeitersparnis von 2D vulkanischen Plume-Modellen darstellt, ergeben die Resul-

tate, dass mindestens 42% der Rechenzeit (im Vergleich zu uniformen Simulatio-

nen) eingespart werden können wenn adaptive Gitterverfahren korrekt benutzt

werden können sodass diese qualitativ den uniformen Ergebnissen ähneln.
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1 INTRODUCTION

1 Introduction

Throughout history, there have been many large volcanic eruptions which also have had

drastic impacts on humanity, such as the latest Toba eruption roughly 74,000 years ago and

influenced civilised life on planet Earth in one way or another, such as the Mt. Pinatubo

(1991) or Eyjafjallajökull (2010) eruptions (Oppenheimer, 2011). In addition, just at the

start of this year, the Tonga eruption has emitted the highest volcanic plume ever recorded

(Proud et al., 2022). Consequently, with no shortage of unique volcanic events, the fasci-

nation about volcanoes is nothing new for mankind.

In addition to the fascination inspired by volcanoes, the fertile ground in volcanic regions

has been a reason why people choose to live close to volcanoes despite the dangers. Es-

pecially in Southeast Asia and Central America people tend to live close to regions where

volcanism might pose a threat and it is estimated that around 14% of the world population

(as of 2015) live in a 100 km radius around a Holocene volcano (see Freire et al., 2019a;

Freire et al., 2019b). Today, as the Earth’s population keeps increasing, with just over 8

billion people (worldometers, 2022) living on Earth, the amount of people living close to

volcanoes will probably keep rising.

Since the probability that people will live close to volcanoes will increase, this will cer-

tainly result in an increase of people being potentially influenced by the dangers volcanism

poses.

While certain volcano types - such as shield volcanoes - prove to be more of a localized risk

and threat to e.g. infrastructure instead of people themselves, more explosive volcanoes

can influence people’s lives much more drastically. While explosive volcanism is not a

topic too prevalent in Western media, the 2010 Eyjafjallajökull eruption has shown that a

spontaneous explosive eruption with airborne volcanic ash can disrupt infrastructure and

impact (Western) society and economy as well, despite the eruption being only medium

sized (VEI 4, Smithsonian Institution, 2022).

Consequences of the 2010 Eyjafjallajökull eruption entail about 100,000 flights being can-

celed due to a no-fly zone that was established (The Telegraph, 2011; BBC, 2010), a cost

of 130 million GBP per day (Guardian, 2010) and an estimated total loss to airlines in

the range of 1.7 billion USD (The Telegraph, 2011; BBC, 2010).

This recent example is of course just one of the few, with it being very prominent in the

Western world - both in the scientific and journalistic media - for the deep impact such

an eruption can have.

Risk assessments can be improved by thorough monitoring and observation of volcanoes,

especially if those are in the vicinity of densely populated areas, which is done in part

by volcano advisory centers (e.g. Zidikheri et al., 2017a; Zidikheri et al., 2017b). Addi-

tionally, there are also satellites used for tracking the development of volcanic clouds that

p. 1 of 188



1 INTRODUCTION

are erupted into the atmosphere. Ideally, this monitoring, along with precise and accurate

forecasting tools can lead to a mitigation of injury to people and possibly prevent damages.

The modeling of volcanic clouds bears resemblance to the modeling of climate and weather

phenomena which is an essential tools for either everyday life (weather forecasts) or for

example within the aviation industry. Usually, these models come with a high computa-

tional cost, however.

As was shown in Müller et al. (2013), the computational cost for atmospheric models can

be reduced by up to 50% without losing important features if adaptive mesh refinement

techniques are utilized. With these techniques, the model resolution can be improved in

regions of for example high turbulence and coarsened where very little dynamics occur.

Since models for simulating volcanic eruption have a lot in common with climate and

weather models, it stands to reason that adaptive mesh refinement could also be an effec-

tive tool in a volcanic setup where the resolution of the model could be improved in the

presence of volcanic ash, for example.

1.1 Review of the most prominent 3D plume models

Within the community that models volcanic eruption columns, it is of high interest to

accurately model the physical behavior and development of the volcanic ash clouds. Models

used for this purpose are called plume models. For the case of 3D volcanic eruptive

columns, four prominent algorithms have been developed:

• ASHEE (Ash Equilibrium Eulerian model; Cerminara et al., 2016a) which uses a so

called dusty (Marble, 1970) or pseudo gas (Cerminara et al., 2016b) model, where a

single ash-gas mixture phase is used to model the eruptive column which is treated

as a gas.

• ATHAM (Active Tracer High-resolution Atmospheric Model; Herzog et al., 2003)

which is also based on pseudo gas approach.

• PDAC (Pyroclastic Dispersal Analysis Code; Neri et al., 2003; Ongaro et al., 2007)

which is the only of the four algorithms that relies on a multi-phase approach and

considers different (gaseous and ash) phases.

• SK-3D (Suzuki et al., 2005; Suzuki and Koyaguchi, 2009; Suzuki and Koyaguchi, 2013;

Suzuki and Koyaguchi, 2015) which, again, is a pseudo gas model.

Throughout the years, additional codes for modeling volcanic plumes have been devel-

oped, these four 3D codes are the most prominent ones, however, which resulted in them

being compared in the International Association of Volcanology and Chemistry of Earth’s

Interior (IAVCEI) Commission on Tephra Hazard modeling intercomparison study (for

the 3D model comparison see Suzuki et al., 2016). For a more detailed description of

each approach, either the separate papers within the IAVCEI intercomparison study or

the literature that was provided above can be consulted.
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Each plume model uses a different numerical approach. Regarding the spatial discretiza-

tion, ASHEE and PDAC rely on some use of the Finite Volume Method, while ATHAM

and SK-3D are based on Finite Difference Method schemes to solve the respective partial

differential equation sets that arise. Except for SK-3D, all plume models are based on the

Navier-Stokes equations, while SK-3D uses the Euler equations as basis. Regarding the

accuracy, ASHEE and ATHAM are 2nd order accurate while PDAC and SK-3D are 3rd

order accurate.

The IAVCEI intercomparison study (Suzuki et al., 2016) also summarizes the numerical

approaches fot the respective algorithms:

ASHEE :

ASHEE uses the fluid dynamics open-source code OpenFOAM (https://openfoam.org)

as a basis. For the time stepping scheme, a Crank-Nicholson time-integration (Crank and

Nicolson, 1996) is utilized (in addition to an unlimited, centered linear scheme). The

PISO-PIMPLE (Pressure Implicit with Splitting of Operators; Issa, 1986) scheme which

uses a semi-implicit solution, which is based on a pressure correction algorith, ensures that

the system of discretized partial differential equations can be resolved for low, as well as

high Mach numbers.

ATHAM :

ATHAM relies on transport equations, which are formulated in flux form. This results in

a mass and momentum conservation. To circumvent over- or undershoots within the solu-

tion, a correction term is added to the solution similar to Smolarkiewicz (1984). ATHAM

also uses a Crank-Nicholson time-integration; general Crank-Nicholson scheme with a for-

ward weight of 0.25.

PDAC :

Using the limited MUSCL (Monotone Upstream-centred Scheme for Conservation Laws)

reconstruction (Leer, 1977) as basis, PDAC solved the partial differential equations by a

semi-implicit Finite Volume discretization scheme in conjunction with a pressure-based

iterative non-linear solver that was designed for compressible (multiphase) flows.

SK-3D :

SK-3D also utilizes the MUSCL interpolation for spatial integration (Leer, 1977) in ad-

dition to the Roe scheme (Roe, 1981), while the time splitting method is used as time

stepping scheme.

All algorithms allow for the modeling of water (vapor) and ash particles within the eruptive

column which is ejected from the vent into an atmosphere comprised of air.

The plume models that are based on the Navier-Stokes equations all use some form of
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1 INTRODUCTION

Table 1: Maximum and minimum (vertical) grid spacing for the IAVCEI’s intercomparison

study strong plume case. D0 denotes the vent diameter for each algorithm, respectively.

Additionally, the plume heights and the (rough) grid spacing at that height are provided.

ASHEE ATHAM PDAC SK-3D

D0 1408 m 1417 m 1410 m 1400 m

∆zmin
D0

32 = 44 m D0

13 = 109 m D0

30 = 47 m D0

40 = 35 m

∆zmax 300 m 4 km 1 km 300 m

Plume height H 36.7 km 33.4 km 42.5 km 39.9 km

∆z at plume height 150 m 800 m 500 m 300 m

Large Eddy Simulation (LES) approach (Smagorinsky, 1963) which allow to take sub-grid

turbulence mixing effects into account.

All algorithms use non-uniform grids for their calculations. These grids differ in reso-

lution and size. Apart from ASHEE (which uses a cylindrical, non-orthogonal mesh),

all codes use Cartesian meshes. The algorithms are usually set up in such a way that

the highest resolution and minimal grid spacing is determined by the volcanic vent ra-

dius/diameter. Using the strong plume test case from the intercomparison study as an

example, it becomes evident that the grid sizes for each code vary a lot compared to the

other algorithms. Table 1 shows the respective vent diameters, as well as maximum and

minimum grid spacing. Appendix A of Suzuki et al. (2016) shows how the grid spacing

varies with increasing height - for all algorithms, the spacing decreases (and consequently

the resolution) with height. For ASHEE, the resolution decreases with a constant factor

which is kept close to one. For ATHAM, the resolution decreases only until the lowest

resolution/maximum grid spacing is reached which then remains constant. SK-3D and

PDAC behave similarly, only that for PDAC, the resolution remains constant until a cer-

tain height before it decreases. Within SK-3D, the resolution decreases by 1.02 with each

cell in either horizontal or vertical direction.
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1.2 Motivation

As Table 1 shows, the pre-existing, prominent plume models face the problem that the

spatial (vertical) resolution gets quite low with increasing height. If the plume heights

for the strong plume case from Suzuki et al. (2016) are analyzed, it can be seen that the

heights range from at least (roughly) 33 km for ATHAM to a maximum heights of 42.5

km for PDAC. Comparing that with the Appendix figure for the vertical grid size at those

heights, it can be observed that the resolutions are rather coarse with ASHEE having the

finest (vertical) resolution of roughly 150 m, which would still allow for estimating the

plume height to one significant figure while the other spatial resolutions at the respective

plume heights raise the question whether those estimates are significant.

Of course, it is still a minor remark and while the plume height does not indicate the layer

of neutral buoyancy, having an algorithm that is equipped with a high spatial resolution

where the volcanic cloud is present is desirable.

One way to circumvent this resolution problem is to use adaptive mesh refinement tech-

niques that refine (and coarsen) the grid where additional resolution is necessary (while

coarsening the grid where the resolution is not needed). This would, in theory, allow to

better capture plume heights and layers of neutral buoyancy/umbrella regions. Addition-

ally, while being a minor aspect, using adaptive mesh refinement techniques can also be

useful when it comes to file storage since the output produced by algorithms with refined

meshes require less storage.

1.3 Goal and structure of the thesis

This thesis builds upon the work done in Bänsch (2017) and follows a very similar outline

while improving upon the specific implementations regarding the volcanic setups. Addi-

tionally, Section 6.6 presents a stabilization scheme which is based on both the work

done in Bänsch (2017), as well as Bänsch et al. (2022). As of the date of the submission of

the thesis, the paper (Bänsch et al., 2022) has not been accepted, yet. For this paper, the

stabilization scheme was developed by Stefan Vater and me, the tests were designed by

Jörn Behrens and me while conducting the experiments and writing the draft were done

just by me whereas everyone contributed to parts of the submitted text.

Within the scope of this thesis, the idea is to implement an algorithm that is able to

simulate 2D volcanic plumes, which will utilize adaptive mesh refinement techniques. Ad-

ditionally, instead of a Finite Difference or Finite Volume Method basis, this algorithm

will use a Discontinuous Galerkin Method basis.

It should be stressed that this thesis provides mostly a conceptual approach to analyze

the question whether adaptive mesh refinement and the Discontinuous Galerkin Method

are viable options for plume models.
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Consequently, for this approach, the following research questions arise:

• Can a plume model be implemented using the Discontinuous Galerkin Method?

• Are adaptive grids a viable option for volcanic modeling?

• How much CPU time can be saved by using adaptive mesh refinement?

The thesis will be structured in the following way: After this introduction, the theoretical

backgrounds will be presented starting with the underlying equation sets for fluid dynamics

in Section 2, the spatial discretization alongside boundary and initial conditions, a brief

part about slope limiters and grid adaptivity in Section 3, the time stepping or time-

integration schemes in Section 4, an overview over the numerical bases that will be used

throughout the thesis - StormFlash and deal.II with verification, as well as validation -

in Section 5, different stabilization methods for the numerically solved Euler equations

with gravity in Section 6, the results for these stabilization methods in Section 7, a

detailed depiction on the approach on the plume model with background, equation sets,

different test cases and their respective results in Section 8 and finally, concluding the

thesis, discussion, conclusion and outlook in Section 9.

The appendix will feature a list of variables (for the equation sets) and physical parameters,

definitions for triangulations, the AMATOS and deal.II library, respectively and finally

the results for the adaptive volcanic jet or plume setups.
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2 Basic equations

In this chapter, the equations are outlined on which the models are based. The Navier-

Stokes equations are introduced as the overarching equation set that describes mass, mo-

mentum and energy conservation for a Newtonian fluid and as a result allow to model

its behavior while also allowing to capture complex phenomena such as turbulence or

boundary layers. In this thesis, none of these phenomena are depicted in detail and more

detailed analyses can be found in textbooks such as Hirsch (1988) or Chorin and Marsden

(1993).

Throughout this thesis, however, mainly the Euler equations are used which can be de-

rived from the Navier-Stokes equations. This chapter serves as a general approach while

the more specific case of a volcanic setup will be discussed in a Section 8.

2.1 Compressible Navier-Stokes equations

The compressible Navier-Stokes equations (with gravity as body force/source term) in a

space-time domain Ω× [0, tmax] ⊂ Rd ×R (with d = 2,3) can be written as the following set

of partial differential equations:

∂ρ

∂t
+∇ ⋅ (ρu) = 0,

∂(ρu)
∂t

+∇ ⋅ (ρu⊗ u + PId) = −ρ∇φ +∇ ⋅Fvisc
u , (Navier-Stokes equations)

∂ (ρe)
∂t

+∇ ⋅ [(ρe + P )u] = −ρu ⋅ ∇φ +∇ ⋅Fvisc
e ,

with ρ ∈ R being the density, ρu ∈ Rd the momentum, ρe ∈ R the total energy density

(without potential energy), P ∈ R the pressure, φ ∈ R the gravitational potential and

Fvisc
u ∈ Rd, Fvisc

e ∈ R the viscous fluxes. For this thesis, the gravitational potential is given

by φ = gkx = gz (k: vertical unit vector, x Cartesian coordinates).

For the operators, ∂
∂t(⋅) is the partial time derivative, ∇ ⋅A(x) denotes the divergence of

a vector field A(x) ∈ Rd while ∇B(x) is the gradient of B(x) ∈ R, ⋅, ⊗ are the scalar and

tensor product, respectively and Id is the identity matrix in d = 2,3 dimensions.

The system of equations needs to be closed by the equation of state which is given by the

ideal gas law:

P = ρRT, (1)

where R ∈ R is the specific gas constant of the gas and T ∈ R its temperature. Since an

ideal gas is assumed, the energy can be calculated by

e = 1

2
u ⋅ u + cvT = 1

2
u ⋅ u + P

ρ(γ − 1)
, (2)

with γ = cp
cv

∈ R being the ratio of the specific heats of the gas (or specific heat capacities to

be more correct) cp ∈ R (isobaric; at constant pressure) and cv ∈ R (isochoric; at constant
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volume) and by making use of the equation of state (Equation 1) as well as the fact that

R = cp − cv. Rearranging Equation 2 then also allows to calculate the pressure in terms

of conserved variables:

P = (γ − 1)(ρe − 1

2

(ρu) ⋅ (ρu)
ρ

) = (γ − 1) (ρe − 1

2
ρu ⋅ u) . (3)

The viscous fluxes are defined as in Giraldo and Restelli (2008):

Fvisc
u = µ [∇u + (∇u)⊺ + λ(∇ ⋅ u)Id)] (4)

and

Fvisc
e = u ⋅Fvisc

u +
µcp

Pr
∇T, (5)

where µ ∈ R is the dynamic viscosity, λ = 2
3 follows from the Stokes hypothesis, Pr ∈ R is

the Prandtl number and ⊺ denotes the transpose operator.

Values for the physical constants can be found in Appendix A (if not defined otherwise

in the respective sections).

2.2 Compressible Euler equations

The compressible Euler equations are a simplification of the compressible Navier-Stokes

equation in the inviscid case where viscosity is neglected (µ = 0) which leaves us with the

following set of fully hyperbolic partial differential equations:

∂ρ

∂t
+∇ ⋅ (ρu) = 0

∂(ρu)
∂t

+∇ ⋅ (ρu⊗ u + PId) = −ρ∇φ (Euler equations)

∂(ρe)
∂t

+∇ ⋅ [(ρe + P )u] = −ρu ⋅ ∇φ.

This form is what will be used as basis for most of the work in this thesis.

2.3 Rewriting the equation sets

For simplicity, the equation sets can be rewritten into flux form, such that:

∂q

∂t
+∇ ⋅F(q) = S(q) +∇ ⋅Fvisc(q), (6)

for the Navier-Stokes equations where q are the conserved variables (ρ, ρu⊺, ρe)⊺, while

the fluxes and source are given by:

F(q) =
⎛
⎜⎜⎜
⎝

ρu

ρu⊗ u + PId
(ρe + P )u

⎞
⎟⎟⎟
⎠
, S(q) =

⎛
⎜⎜⎜
⎝

0

−ρ∇φ
−ρu∇φ

⎞
⎟⎟⎟
⎠

and Fvisc(q) =
⎛
⎜⎜⎜
⎝

0

Fvisc
u

Fvisc
e

⎞
⎟⎟⎟
⎠
.
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For the Euler equations, the viscous flux is omitted so that the flux form is reduced to

∂q

∂t
+∇ ⋅F(q) = S(q). (7)

The flux forms are introduced here, as they are more convenient for later formulations.

2.4 Boundary and initial conditions

To ensure that physical behavior can be modeled by the equation sets, initial values - i.e.

values at the the start of a simulation t0 (usually with t = t0 s) have to be prescribed

for all variables. Depending on the problem the initial conditions might be given in

primitive variables or the conserved variables. Additionally, values at the boundary of

our computational domain Ω have to be prescribed as well. There are several types

of boundaries that are possible and a simulation can feature a combination of different

boundary conditions as well. For boundary conditions, very often Dirichlet boundary

conditions (where values are prescribed), Neumann boundary conditions (where values for

the normal derivative are prescribed and thus usually depend on the values of the element

adjacent to the edge) or a combination of both are utilized.

2.4.1 Periodic boundaries

These boundaries can be very useful for testing and verifying or if the computational

domain is for example a 2D representation of the Earth’s surface (map projection). For

periodic boundaries, two edges ∂Ω1 and ∂Ω2 are paired and the values at the points of

these boundaries x1 and x2 from one edge are mapped to the other that q(x1) = q(x2).

2.4.2 Wall type boundaries

These boundaries mimic a wall that the flow cannot penetrate. Two cases of this are

the no-flux, free-slip and no-slip boundary conditions. The no-flux and free-slip boundary

conditions are enforced by n ⋅u = 0 (with velocity u and n being the normal vector at the

edge) while the no-slip condition demands that u = 0. Free-slip boundaries also require

the tangential stress to be zero (Tan, 2018).

Depending on whether the Euler or Navier-Stokes equations are used energy fluxes can

be neglected or have to be set (for example for the Euler equations, the stress field is

neglected and thus free-slip are equivalent to no-flux boundaries). For details regarding

these conditions, please refer to Giraldo and Restelli (2008) or Birken (2013).

2.4.3 Inflow/outflow boundaries

For inflow boundaries, Dirichlet boundaries are used so that the values of the variables

are prescribed at certain points while the outflow boundaries are of mixed type where the

values of the energy fluxes are prescribed but the other variables (density and momentum)

depend on the values of the element that shares the boundary.
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3 Spatial discretization

To solve sophisticated partial differential equations - such as the Navier-Stokes equations -

with an algorithm, it becomes necessary to discretize the equation sets (both in space and

time), since a computer is not able to compute analytical solutions for such an involved

problem. There are many choices for spatial discretization one could choose from. As a

brief overview over the most notably used methods, there is the straight-forward approach

of using Finite Difference methods (FDM), Finite Volume methods (FVM) which are

well-suited for conservation laws and Galerkin methods such as Finite Element methods

(FEM) where the solution is approximated by basis functions and finally the Discontin-

uous Galerkin Finite Element or just Discontinuous Galerkin methods (DG-FEM/DGM)

which are a combination of FEM and FVM methods. A brief overview over the methods

will be given now, while the next subsection will focus on the DGM in particular.

For the FDM, the approach is rather simple as the partial derivatives are approximated

by Taylor expansion such that for example the forward difference in 1D becomes:

∂f(x)
∂x

≈ f(x +∆x) − f(x)
∆x

, (8)

where f is the function whose derivative is to be calculated, x is the spatial variable and

∆x is the grid size. This method has the advantage of being easily implemented but lacks,

for example, strategies on how to cope with complex geometries.

For the FVM, balance laws are solved by taking the integral form of the respective partial

differential equations

d

dt
∫
Ωe

q(x, t) dx + ∫
Γe

F(q(x, t)) ⋅ n dS = ∫
Ωe

S(q(x, t)) dx, (9)

where Ωe is the local cell for which the quantities are calculated, Γe is the cell’s boundary,

n is the outer normal vector (for the cell’s boundary) and the rest of the quantities are

the same as in Equation 7. With this relation, the quantities get discretized by taking

their mean values and summation over each cell. For details on this approach, one can

refer to, for example, LeVeque (1992) or Birken (2013). The FVM is a very natural way

to solve conservation laws which makes it a good candidate to use in Computational Fluid

Dynamic (CFD) models. A drawback however is the lack of higher order schemes, as most

FVM schemes only allow for second order accuracy.

For the FEM, instead of discretizing the calculation domain (such as cells) the function

space is approximated. The functions space can be approximated using basis functions

such as continuous, piece-wise polynomials which have compact support:

qN(x, t) =∑
i

qi(t)ψi(x), (10)
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Table 2: Table (taken from Hesthaven and Warburton, 2007) to summarize generic prop-

erties of widely used spatial discretization methods: Finite Difference methods (FDM),

Finite Volume methods (FVM), Finite Element methods (FEM) and Discontinuous Galk-

erin finite element methods (DG-FEM). The symbols represent that the respective method

has the given property, ✓, is not suited for that property, ⨉, or to be improved upon to

be able to but does not intrinsically fulfill that property, (✓).

Complex

geometries

High-order accuracy and

hp-adaptivity

Explicit semi-

discrete form

Conservation

laws

Elliptic

problems

FDM ⨉ ✓ ✓ ✓ ✓
FVM ✓ ⨉ ✓ ✓ (✓)

FEM ✓ ✓ ⨉ (✓) ✓
DG-FEM ✓ ✓ ✓ ✓ (✓)

where qi are time-dependent coefficients for the variables while ψi are the basis functions.

A straight-forward approach is to use continuous, piece-wise linear polynomials (so-called

hat functions) which have certain values in the local cell/element and are zero elsewhere.

The partial differential equations can then be rewritten into a system of equations which

can then be solved. For details see Ern and Guermond (2004) or Giraldo (2020).

3.1 Discontinuous Galerkin Method

The Discontinuous Galerkin Method (from now on called DGM) is a spatial discretization

method. Essentially, it combines the FVM and FEM (Giraldo and Restelli, 2008), as the

integration methods (which it consists of) allow for discontinuities (analogous to FVM)

while discretizing the function space itself rather than the calculation domain (analogous

to FEM).

Using local operators (per element), local solutions can be approximated - instead of

calculating a global solution. The prescribed equations are solved using the DGM, by

following an approach similar to Beisiegel et al. (2020) or literature such as Hesthaven and

Warburton (2007), Dolejsi and Feistauer (2015) and Giraldo (2020).

Using the DGM approach, the flux from Equation 7 with the variables q, the flux F(q)
and the source vector S(q) as previously described can be discretized. The computational

domain Ω can be decomposed into conforming elements (either triangles or quadrilaterals

in this thesis) Ωi such that Ω = ⋃iΩi. In this case, conforming means that all elements

make up the boundary, elements do not overlap, each element boundary neighbors another

element or is part of the boundary of the domain. A local approximation for the variables

qN(x, t) = ∑i qi(t)ψi(x) can be calculated, where ψi(x) are Lagrange polynomials and

qi(t) are (time-dependent) coefficients.

Integrating by parts once yields the semi-discrete weak form (also refer to the mentioned

p. 12 of 188



3 SPATIAL DISCRETIZATION

literature):

∫
Ωe

(
∂qN,e

∂t
−FN,e ⋅ ∇ − SN,e)ψi,e(x) dx = −∫

Γe

ψi,e(x)n ⋅F∗
N,e dS, (weak form)

where qN,e, FN,e, SN,e are the local approximation of the conserved variables qN,e, FN,e =
F(qN,e) and SN,e = S(qN,e) inside each element. Ωe is the element, Γe its boundary, n its

normal unit vector, ψ are the test/basis functions and F∗
N,e is the numerical (Rusanov)

flux for q−N,e and q+N,e (which are the local approximation of the conserved quantities on

both sides of the element boundary Γe, respectively) with:

F∗(q−N,e,q+N,e) =
1

2
[F(q−N,e) +F(q+N,e) − ∣λ∣(q+N,e − q−N,e)n] , (11)

where λ = maxi=L,R(∣U i∣ +
√
γP i/ρi) is the characteristic speed which is comprised of the

normal component of velocity with respect to the edge Γe given by U i = u ⋅n and the speed

of sound
√
γP i/ρi, where γ is the specific heat ratio.

Regarding the elements, it should be noted that while there are many other choices for ele-

ments, triangular and quadrilateral elements are easily implemented (compared to hexag-

onal element, for example), which is also a standard approach. The property that the

elements are to be conforming elements makes sure that every element edge is either part

of the domain boundary or neighbors another while none of the elements overlap (Müller,

2012).

Advantages of triangular elements include their flexibility concerning the geometry. Es-

pecially curved shapes can be represented well by using triangular grids for which reason

they are well suited for complex geometries. On the other hand, quadrilateral elements

make calculations easier.

After the domain has been decomposed into the elements, all calculations are performed

on reference elements - reference triangle or reference square which are the [−1,1] right

triangle or [−1,1]2 reference square, respectively (for 2D). As an example, Figure 1

shows the reference triangle. In theory, an element can have any triangular or quadrilat-

eral shape which makes a mapping from the elements to the reference elements necessary.

This mapping is given by x = Ψ(ξ) from the reference triangle coordinates ξ = (ξ, η)τ to

the element with Cartesian coordinates x = (x, z)τ . The reference triangle is then defined

as Ω̂e = {(ξ, η) ∈ R2,−1 ≤ ξ, η ≤ 1, ξ + η ≤ 0} (see Giraldo and Warburton, 2008) while

the reference square is defined as Ω̂e = {(ξ, η) ∈ [−1,1]2} (see Giraldo et al., 2002). For

quadrilateral elements, the mapping is similar but a reference rectangle/square is used

instead of a reference triangle.

The Lagrange polynomials ψ(x) that are part of the local approximation are the basis

functions which are also mapped to the reference elements. In this thesis, this basis is
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Figure 1: Reference triangle with coordinate directions ξ, η and normal vectors n (taken

from Giraldo and Warburton, 2008).

constructed as a set of nodal (physical space) basis functions.

Using those Lagrange polynomials, we can define the mass and differentiation matrix

which we can use for a more convenient formulation of the weak form. The mass matrix

is defined as

M e
ij = ∫

Ωe

ψi,e(x)ψj,e(x) dx (12)

for the interior of the element and as

M s
ij = ∫

Γe

ψi,e(x)ψj,e(x)n dS (13)

for the edges. The differentiation matrix is defined as

De
ij = ∫

Ωe

ψi,e(x)∇ψj,e(x) dx. (14)

The weak form can be rewritten into a semi-discrete system:

∫
Ωe

ψi,e(x)ψj,e(x) dx
∂qj

∂t
− ∫

Ωe

ψi,e(x)∇ψj,e(x) dx ⋅ Fj − ∫
Ωe

ψi,e(x)ψj,e(x) dx Sj

= − ∫
Γe

ψi,e(x)ψj,e(x)n dS ⋅ F∗
j , (15)

with Fj = F(qj), Sj = S(qj) and F∗
j = F∗(q−j ,q+j ) which simplifies to

M e
ij

∂qj

∂t
− (De

ij)⊺Fj −M e
ij Sj = −(M s

ij)⊺ F∗
j , (16)
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if the mass and differentiation matrices are utilized. The matrix form allows for a faster

overview of what needs to be calculated (also in terms of elements or edges). There is

also the possibility to eliminate the mass matrix by substituting the basis functions by

basis functions that are multiplied with the inverse mass matrix. For details see Giraldo

and Warburton (2008). Please remark that the calculation for both Equation 13 and

Equation 14 contain vectors while the calculation for Equation 12 is just a scalar. In

the end, the dimensions do match up, however, since the fluxes that get multiplied with

the mass matrix for the edges, as well as the differentiation matrix contain vectorized

quantities themselves.

As mentioned in Giraldo and Warburton (2008), the DGM form that is used here, is valid

for all ψ that are twice integrable and elements of the N dimensional polynomial space:

ψ ∈ S with

S = {ψ ∈ L2(Ω) ∶ ψ∣Ωe ∈ PN(Ωe)∀Ωe} ,

PN being the polynomial space defined on every element Ωe and Ω = ⋃iΩi being the whole

computational domain.

Additionally, it is necessary to define the (numerical) integration for all the integrals that

have been defined in this subsection. The integration can be performed by utilizing the

Gauss quadrature. The equations for boundary and area integrals for two functions f and

g are defined as follows:

∫
Ωe

f(x)g(x) dx ≈
Nq,e

∑
i=1

λei ∣Je(ξi)∣f(ξi)g(ξi), (17)

∫
Γe

f(x)g(x) dS ≈
Nq,g

∑
i=1

λgi ∣J
g(ξi)∣f(ξi)g(ξi), (18)

where Nq,e and Nq,g are the numbers of quadrature points for both area and boundary

integral, λei , λ
g
i are the weights associated with each quadrature point ξi and Je, Jg are

the respective area of the element or length of the edge (Giraldo and Warburton, 2008).

3.2 Slope limiter

Even though slope limiters are not used extensively in this thesis, they should find a short

mention. The name of the Discontinuous Galerkin Method already suggests that it allows

or rather is based on allowing for discontinuous solutions at the element boundaries which

results in (possibly) different values at the nodes of neighboring elements.

If a so called slope limiter is introduced, it ensures stability and dampens oscillations

(such as Gibbs phenomena) around the element edges. The limiter works by adjusting
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the gradient between elements to better fit the values at the nodes and reduced over- and

undershoots as a result. For a detailed approach on slope limiters, either Cockburn and

Shu (1998) or Cockburn and Shu (2001a) are advised.

Following the mentioned literature, the limiter is applied by calculating average values

of all quantities in the current element and deviations at the edge midpoints from the

averages and then determining a parameter from these deviations that gets added to the

average values. If smooth extrema occur, the limiter ensures that the original values

(before applying the limiter) are kept.

3.3 Grid adaptivity

Grid adaptivity describes a numerical procedure to control the resolution/accuracy of a

numerical scheme by increasing the resolution where it is necessary while decreasing it in

regions where it is not as relevant. Adaptive calculations have the advantage of reduced

computational cost since the accuracy in irrelevant areas can be decreased which leads to

an improvement in CPU time on the one hand, while on the other hand, the resolution can

be increased in areas in need of (e.g.) finer grids without having a fine uniform grid. Müller

et al. (2013) states that the total CPU time can be reduced by up to 50 % if adaptive grids

are utilized, while the error in respect to the uniform calculation becomes insignificant with

increasing resolution. Consequently, adaptivity is very useful for prognostic simulations

(such as volcanic eruptions).

Adaptive mesh refinement can be achieved in different ways which vary greatly in their

procedure. According to Müller (2012), there are three distinct kinds of adaptivity:

• h-adaptivity: Here, the (spatial) resolution is increased or decreased by adding or

removing grid nodes which leads to a locally refined or coarsened grid. Since array

storage is not static for these procedures, a good grid management becomes a necessity.

In addition, by adding nodes into the grid, the values at these coordinates have to

be calculated (usually via interpolation). Ideally, neighboring nodes should be stored

in proximity to one another inside the respective arrays for computational efficiency.

This kind of adaptivity is used in this thesis.

• p-adaptivity: Here, the grid resolution remains constant while the numerical accu-

racy is controlled by changing the order of the basis functions (polynomials). For

areas where better resolution is required, the polynomial order is increased while it is

decreased if that accuracy is longer needed. A description of this kind of adaptivity

can be found in Babuška et al. (1981).

• r-adaptivity: Here, the number of degrees of freedom remains constant during the

calculation. The accuracy of the scheme is varied by shifting around the nodes so that

the mesh is refined in areas where higher resolution is needed. Adding or removing

nodes is not an issue with this procedure, however, the mesh can be distorted if the

node spacing becomes too great in certain areas. As a result, this can lead to an addi-
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Figure 2: Example of a space filling curve on a triangulation composed of right triangles

(taken from Müller, 2012).

tional reduction in accuracy in these areas, especially since many numerical methods

are not well-suited to deal with distorted elements. Additionally, the algorithms for

r-adaptivity have to take moving nodes into account. This kind of adaptivity is used

in Kühnlein et al. (2012).

These kinds of adaptivity can be combined (Lang et al., 2003; Piggott et al., 2005), but

in this thesis only h-adaptivity is utilized.

3.3.1 Space filling curves

First discovered by Peano (Peano, 1890), space filling curves provide an algorithm or a

method to fill 2D space by a 1D curve with the goal that points in close proximity to one-

another in the 2D plane will also be close to each other inside the curve as well. Usually,

the idea is to have an iteration that starts with a ”coarse” curve and fills up more space

as the scheme is iterated. The Hilbert curve presented by David Hilbert in 1891 (Hilbert,

1891) is one prominent example of a space filling curve.

The properties space filling curves have is advantageous and desirable for an h-adaptive

mesh, so many mesh refinement methods utilize space filling curves to manage node and

element connections. For triangulations, a space filling curve is created in similar ways as

the example shown in Figure 2.

3.3.2 Grid refinement and coarsening criteria

In order to have a useful grid adaption which means efficient refinement, as well as coars-

ening, a refinement criterion is required (Behrens et al., 2005). The choice of refinement

criterion is a highly debated topic both in the adaptive mesh refinement (AMR) commu-

nity (e.g. Li, 2010; Fryxell et al., 2000; Berger and Oliger, 1984), as well as in this thesis.
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Within this thesis, refinement and coarsening will be performed by using an error estimator

or indicator: For each cell, an error is calculated and compared to the maximum error

that has been calculated weighted by a certain tolerance. If the error is larger than the

maximum error weighted by a refinement tolerance, the cell will be refined and similarly,

if the error is smaller than the maximum error weighted by a coarsening tolerance, the

cell will be coarsened.

The criteria can also be expressed as follows:

e(Ωi) > σref max
Ωi⊂Ω

e(Ωi), (19)

for refinement and

e(Ωi) < σcoarse max
Ωi⊂Ω

e(Ωi), (20)

for coarsening, where e(Ωi) is the error (either calculated by error indicator or error

estimator) within each cell Ωi, σref is the tolerance for grid refinement while σcoarse is the

tolerance for grid coarsening.

The values for the refinement/coarsening tolerances σref and σcoarse, as well as the specifics

on how to approximate the errors will be presented in the respective sections where adap-

tivity will be relevant.
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4 Time stepping/time-integration

In addition to having to make a choice how to discretize an equation in space, another

choice has to be made on how to advance the solution in time - a time stepping or time-

integration scheme.

Once the equations are discretized spatially, one is left with a system of ordinary differential

equations (ODEs)

dq(t)

dt
= L(t,q(t)), q(t0) = q0, t ∈ [t0, tmax], (21)

where q are the conserved variables as in the equation section and L is the differential

operator of the respective PDE, which are either the Navier-Stokes or Euler equations.

If the differential operator should have no explicit dependence on time, a reformulation

into an autonomous system is possible such that

dq(t)

dt
= L(q(t)), q(0) = q0, t ∈ [t0, tmax]. (22)

In the literature, there exists a large number of methods on how to solve problems of this

type. For an overview, please refer to Hairer et al. (2000) or Hairer and Wanner (1996).

In general, to advance the solution (or system of ODEs) in time, a choice has to be made

whether an explicit or implicit time stepping scheme is picked. Additionally, a combination

of both forms is also possible which in turn leads to solving problems in the form of either

qn+1 = qn +∆tf(qn), or qn+1 = qn +∆tf(qn+1),

where qn ∈ Rm is the solution vector at the current time step n with time step size ∆t and

f is an operator that determines values for the previous time steps (and depends on the

differential operator L). Depending on the time stepping method, the operator f can be

very different.

The very basic approaches for either explicit or implicit time stepping methods are given

by the explicit/implicit Euler method, where

qn+1 = qn +∆tL(qn), or qn+1 = qn +∆tL(qn+1).

Explicit methods have the advantage that the solution can be computed in a rather

straight-forward manner but come with time step size restrictions while implicit methods

require an additional system of equations to be solved but have better stability properties.

In this thesis, there will be no focus on the whole theory of stability of a time stepping

scheme (just certain aspects which will be explained in the next subsection).

4.1 Conditional stability for explicit time stepping methods

For explicit time stepping methods, the time step size needs to be restricted as there

is a relationship between the spatial and temporal resolution in conjunction with the
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Figure 3: This figure is taken from Birken (2013) and illustrates the CFL condition.

In particular, it shows how the exact solution for a linear equation at (xi, tn+1) can be

influenced by points within the shaded area. As a result, the numerical domain (grey;

would correspond to Ω from Section 3.1) has to contain the shaded area if stability is to

be ensured which results in constraints for the ratio of the spatial and temporal resolution

∆t/∆x.

propagation speed of the flow. This condition is known as the CFL (or Courant-Friedrichs-

Levy) criterion (Courant et al., 1928) which states that explicit time stepping schemes can

only be stable up to certain CFL numbers. For elements of order p the restriction for the

time step is given by (see Schoeder et al., 2018):

∆t = CFLmax∆x

p1.5c
, (23)

where we have the time step size ∆t, the spatial resolution ∆x, maximum propagation

speed of the flow c and the maximum CFL number CFLmax. The propagation speed is

given by the eigenvalues of the Jacobian of the inviscid flow (see e.g. Birken, 2013).

Implicit methods automatically satisfy this condition which is the reason why they are

stable regardless of time step size.

4.2 Runge-Kutta methods

Runge-Kutta are one of the most widely used (one-step) methods to solve ODEs. For

Runge-Kutta methods, the so-called stages ki are calculated which then are used to up-

date the solution vector. For an s-stage Runge-Kutta method these coefficients can be

calculated by (following Hairer and Wanner, 1996)

ki = L(tn + ci∆t,qn +∆t
s

∑
j=1

aijkj), i = 1, . . . , s

qn+1 = qn +∆t
s

∑
i=1

biki. (24)
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In the case of an autonomous system (Equation 22), this can be reduced to:

ki = L(qn +∆t
s

∑
j=1

aijkj), i = 1, . . . , s

qn+1 = qn +∆t
s

∑
i=1

biki. (25)

For both cases of the Runge-Kutta method, the coefficients aij , bi and ci have to be defined.

For simplicity, these coefficients can be collected as A = (aij)ij ∈ Rs×s, b = (b1, . . . , bs)⊺ and

c = (c1, . . . , cs)⊺ and rewritten into a Butcher tableau (which is the usual way of describing

a Runge-Kutta method):

c1 a11 . . . a1s

⋮ ⋮ ⋮
cs as1 . . . ass

b1 . . . bs

=
c A

b⊺
.

A Runge-Kutta method that has a lower triangular matrix A is an explicit method, while

those that have at least one non-zero entry in the upper triangle (so also on the diagonal)

has implicit entries.

An explicit Runge-Kutta method then has a Butcher tableau like

0

c2 a12

⋮ ⋮ ⋱
cs as1 . . . as,s−1 0

b1 . . . . . . bs

In this thesis, two types of Runge-Kutta methods are used: the strongly stability pre-

serving Runge-Kutta (SSPRK) method (Cockburn and Shu, 2001b) and the low-storage

Runge-Kutta method (Kennedy et al., 2000). As an overview, the LSRK needs less dis-

tinct values in the Butcher tableau as additional structure in the coefficients is assumed

so that the tableau is reduced to:

0

c2 a1

⋮ b1 a2

⋮ ⋮ b2 a3

⋮ ⋮ ⋮ ⋱ ⋱
cs b1 . . . . . . bs−1 0

b1 . . . . . . . . . bs

The SSPRK method enforces stricter stability conditions for flow problems. This method

includes a total variation diminishing (TVD) properties which is for example used in TVD

Runge-Kutta methods which were introduced in Shu (1988) and Shu and Osher (1988).
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TVD schemes need to satisfy that the total variation (TV) does not increase with each

timestep such that TV(qn+1) ≤ TV(qn) where n denotes the time step or written in another

way:

∥qn+1∥ ≤ max
0≤k≤s

∥qk∥.

In addition to the scheme being a TVD scheme, SSPRK methods need to satisfy the

following conditions:

• if βij ≠ 0 then αij ≠ 0,

• αij ≥ 0

• ∑i−1
j=0 αij = 1,

where αij and βij are coefficients as presented in Cockburn and Shu (2001b). It should be

noted that another notation for the RK method is used.

The SSPRK is used because of stability properties while the LSRK is useful due to its

computational efficiency. In this thesis, schemes of at least order 2 are used. The exact

methods (with the respective values for the coefficients) can be found in Cockburn and

Shu (2001b) and Kennedy et al. (2000) while Birken (2013) also provides the coefficient

values in line with the notation for the RK method used in this thesis.

4.3 Rosenbrock-type methods

Rosenbrock-type (also known as Rosenbrock-Wanner; ROW for short) methods are in a

sense related to Runge-Kutta methods. They are similar to so-called diagonally implicit

Runge-Kutta (DIRK) methods. For this, an s-stage DIRK method is taken and the op-

erator L is linearized. As a result, accuracy and stability are sacrificed while gaining

computational efficiency. Nonetheless, they prove to be a good alternative to DIRK meth-

ods and have been found to be competitive (John and Rang, 2010; Jax et al., 2021).

For a derivation and more explanations regarding the Rosenbrock method compared to

the (S)DIRK, one should refer to Birken (2013).

For implicit schemes, the linear system that arises is solved using Krylov subspace methods

- namely GMRES which is explained in Saad and Schultz (1986). Out of the two numerical

bases presented in the next section, deal.II does not allow for implicit time stepping, while

capabilities for ROW time stepping are present in StormFlash. Unfortunately, a code

restructure led to errors within the ROW implementation and thus it is not usable on an

operational level. Consequently, the results that will be shown in this thesis will be results

obtained by explicit methods.
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5 Numerical bases used in this thesis - StormFlash and

deal.II

After getting familiar with the theoretical background, the approaches for modeling fluid

flow with the Euler equations in a DG context can be presented.

In this thesis, mainly two implementations for the Euler equations with a DGM are utilized:

• StormFlash, a code that is based on the AMATOS library (see Appendix B) and

is used in the Numerical Methods in Geosciences working group at the University of

Hamburg.

• Code adapted from a deal.II tutorial (step-67) which is a very well-developed and

maintained library (Arndt et al., 2020).

The main difference between these two libraries for the implementations for this thesis is

the use of elements: StormFlash makes use of triangular elements while the deal.II utilizes

quadrilateral elements.

StormFlash is implemented in such a way that SSPRK or ROW methods are used for

time stepping, whereas the implementation based on the deal.II example uses the LSRK

time stepping. As mentioned previously, the ROW within StormFlash is not implemented

fully, however.

It should be noted that during my time as PhD candidate StormFlash was restructured

which led to changes in the code. All results for the verification and validation were ob-

tained after the code was restructured.

While, in many cases, the results from deal.II do not prove to be as physically plausible as

expected (see e.g. Section 7.3.2 or Section 8.3.1), they are still presented here because

of the large part they took throughout the PhD.

Furthermore, a 1D DG code similar to StormFlash is used for research of the stabilization

method (next main section) but verification and validation will not be shown for this

implementation as it only plays a minor role. Additionally, this code did produce better

results (as can be seen in a later section).

Both verification and validation are done without gravity source term as this is the topic

of the next main section.

5.1 Verification of the implementations

The verification of the implementations is done using a convergence study. For the sake

of comparing and quantifying results between different setups (e.g. different resolutions

or implementations), we have to calculate the error of an implementation. The analysis

of an implementation’s error is done by calculating the L2 and L∞ errors. The relative

p. 23 of 188



5 NUMERICAL BASES USED IN THIS THESIS - STORMFLASH AND DEAL.II

errors are calculated by

∥q∥L2 =

¿
ÁÁÀ∫Ω(q − qexact)2 dx

∫Ω q2
exact dx

(26)

for the L2 errors and

∥q∥L∞ = maxx∈Ω ∣q − qexact∣
maxx∈Ω ∣qexact∣

(27)

for the L∞ errors. If absolute errors are necessary, they can be calculated similarly by

omitting the normalization by the division by the denominators.

If the L2 or L∞ are mentioned in later sections they are calculated as defined by these

equations.

The (experimental) rate of convergence σ can be calculated which allows for a better

analysis of the convergence order of the respective method. The rate of convergence is

defined by the quotient of errors for a resolution and the next coarser case:

σq(∆i) = log2 (
∥q(∆i−1)∥k
∥q(∆i)∥k

) , (28)

where q are the respective variables, ∆i (or ∆i−1) are the respective resolutions of the

case and k = 2,∞. Similarly to the errors, if the rate of convergence is mentioned in later

sections, this definition is used.

Since the deal.II example page which the deal.II implementation is based on (https:

//www.dealii.org/current/doxygen/deal.II/step_67.html) already features a con-

vergence study, only the convergence study for StormFlash will be shown. For conve-

nience, a different test case is used that was already used to analyze the convergence rates

and consequently the order of the numerical scheme in my master’s thesis (Bänsch, 2017).

For the convergence study, a test case similar to the vortex test cases in Vater (2013)

and Benacchio (2014) is used. Here, a quasi-stationary vortex is transported along the

diagonal on the unit square (with the domain Ω = [0 m,1 m]2). The boundary conditions

are chosen to be periodic everywhere. Once the vortex has completed one period and

has returned to its starting position, the simulation is stopped. The period and thus the

simulation length tmax is set to one second (with velocities of 1 m s−1 in both directions

as well).

The derivation of this vortex test case is done using the axisymmetric Euler equations

(Zheng and Zhang, 1998), where the density ρ = 1 kg m−3, the radial velocity vr is set to

0 m s−1, the tangential velocity vθ and pressure P will be defined in the following equa-

tions. The vortex center (xm, ym) m is located in the center of the unit square so that

(xm, ym) = (0.5,0.5) m.
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The tangential velocity is given by

vθ(r) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

vmax
s ⋅ r

r2
m − r2

⋅

¿
ÁÁÀ2 exp( 1

r2 − r2
m

) 0 ≤ r < rm,

0 otherwise,

where the distance to the center r can be calculated with

r =
√

(x − xm)2 + (y − ym)2.

rm = 0.45 m is the fixed radius of the vortex, vmax = 0.5 m s−1 is the maximum tangential

velocity and s is a scaling factor that is calculated by

s = ∣r2
m − r2

vm∣

rvm

√
2 exp ( 1

r2
vm−r2

m
)
,

with rvm being the distance at which the tangential velocity reaches its maximum value.

rvm = 1

2

√
−2 + 2

√
1 + 4r4

m

The velocities are initialized as:

u0(x, y) = ubg − vθ(r) sin(θ) and v0(x, y) = vbg + vθ(r) cos(θ),

where (ubg, vbg) = (1,1) m s−1 are the background velocities in x- and y-direction respec-

tively (so that the vortex is transported diagonally across the domain). The angle θ can

be obtained via θ = arctan((y − ym)/(x − xm)).

The pressure is defined by the following equation:

P =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Pref − 2ρv2
maxs

2 exp( 1

r2 − r2
m

) 0 ≤ r < rm,

Pref otherwise,

where Pref = 1 Pa. In this convergence study, linear elements are used which should result

in a scheme of second order. The L2 and L∞ errors for resolutions of ∆i = ∆x = ∆y = 2−(3+i)

m with i = 1,2,3,4,5,6 are shown Figure 4 with a time step that is adapted via a fixed

CFL number of 0.15. Both plots include an error curve for a scheme of order 2 for

easier comparison between the errors and the expected outcome. Upon inspection, it is

observable that the errors for all variables seem to fit a scheme of order 2. Additionally,

this can be verified by the rates of convergence given in Table 3 which confirm that the

rates of convergence are of order 2. Consequently, this test case verifies that StormFlash

is a scheme that is second order accurate with linear elements. While it will not be shown

here, StormFlash also allows for higher order elements that also provide schemes with

expected order of accuracy.
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Figure 4: L2 and L∞ errors for quasi-stationary vortex for StormFlash. The plot on the

left-hand side shows the L2 errors while the figure on the right shows the L∞ errors. The

errors show density in red, x-momentum in black, y-momentum in blue and the energy in

magenta and show the results for resolutions of ∆x = ∆y = 2−(3+i) with i = 1,2,3,4,5,6 .

Additionally, a line with slope 2 (for the logarithmic plots; dashed black line) is added as

reference.

Table 3: Relative errors and rate of convergence for the quasi-stationary vortex for Storm-

Flash.

L2 error after tmax with ρ σρ ρu σρu ρw σρw ρe σρe

∆1 = 2−4 m 4.678e-03 - 1.557e-02 - 1.395e-02 - 6.949e-03 -

∆2 = 2−5 m 1.102e-03 2.09 4.004e-03 1.96 3.529e-03 1.98 1.699e-03 2.03

∆3 = 2−6 m 2.504e-04 2.14 8.136e-04 2.30 7.448e-04 2.24 3.660e-04 2.21

∆4 = 2−7 m 5.895e-05 2.09 1.546e-04 2.40 1.471e-04 2.34 8.235e-05 2.15

∆5 = 2−8 m 1.432e-05 2.04 3.231e-05 2.26 3.135e-05 2.23 1.968e-05 2.07

∆6 = 2−9 m 3.531e-06 2.02 7.536e-06 2.10 7.377e-06 2.09 4.839e-06 2.02

L∞ error after tmax with ρ σρ ρu σρu ρw σρw ρe σρe

∆1 = 2−4 m 1.889e-02 - 6.021e-02 - 5.636e-02 - 1.905e-02 -

∆2 = 2−5 m 4.481e-03 2.08 2.021e-02 1.57 1.888e-02 1.58 6.331e-03 1.59

∆3 = 2−6 m 1.084e-03 2.05 5.238e-03 1.95 4.771e-03 1.98 1.630e-03 1.96

∆4 = 2−7 m 2.568e-04 2.08 1.088e-03 2.27 9.904e-04 2.27 3.932e-04 2.05

∆5 = 2−8 m 6.247e-05 2.04 2.086e-04 2.38 1.862e-04 2.41 9.581e-05 2.04

∆6 = 2−9 m 1.538e-05 2.02 4.351e-05 2.26 4.315e-05 2.11 2.367e-05 2.02
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5.2 Validation of the implementations

The implementations are validated using the prominent test case with flow around a cylin-

der. This is done as to ensure that the two implementations are comparable. This test

case is one of the cases that is implemented in the deal.II step-67 tutorial. In 2D, it is im-

plemented in such a way that flow in a channel around a cylinder (without source term) is

simulated (see the deal.II example page: https://www.dealii.org/current/doxygen/

deal.II/step_67.html).

The channel domain is set up such that Ω = [0 m,2.2 m]×[0 m,0.41 m] and the mentioned

cylinder is positioned at [0.2 m,0.2] m with a diameter of 0.1 m (for 2D).

For the boundaries, an inflow boundary is situated at the left wall. Top, bottom and

cylinder walls are imposed with a no-penetration (wall) boundary and finally a subsonic

outflow boundary is prescribed for the right wall boundary such that the boundary value

q+ is given by q+ = (ρ−, (ρu−, (ρe)D))⊺ with density and momentum from values q− inside

the neighboring element and the prescribed Dirichlet values for energy.

The flow field is initialized as a subsonic field with a Mach number of Ma = 0.307, a con-

stant velocity in x-direction (of 0.4), no velocity in y-direction, constant density (of 1) and

an energy that corresponds to 1.3 times the speed of sound compared to the background

velocity field. These values are also imposed for the inflow.

For both the deal.II implementation, as well as StormFlash, fixed meshes (in time) are

used and are shown in in Figure 5. For this test case, the polynomial degree of the

elements is set to be quadratic so that the results from the deal.II example page can be

used as reference.

To allow for an easier comparison with the ”reference” solution shown on the deal.II

tutorial example web-page for step-67, the pressure profiles are shown with a color bar

from 0.87 to 1.6 Pa. Snapshots for both deal.II and StormFlash are plotted at t = 0.1 s and

t = 2.0 s while for the latter, part of the domain close to the outflow boundary is shown

to focus on the waves that get reflected at the boundary. These results are presented in

Figure 7 (t = 2.0 s).

Both StormFlash, as well as deal.II yield very similar results. In certain regions, however,

deal.II yields results with more prominently outlined pressure profiles which can most

likely be explained by higher spatial resolution in these areas since StormFlash has a

finely refined grid close to the cylinder but coarser resolution compared to the deal.II

case if further away from the cylinder. This can be observed in the comparison of the

development of the acoustic wave at t = 0.1 s (Figure 6) or for the acoustic waves at

the back at t = 2.0 s (Figure 7) where the pressure profile for the simulation with deal.II
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Figure 5: Comparison of the meshes for the channel flow with cylinder test case (around

the cylinder). The grid generated with deal.II is shown in the first picture and uses quadri-

lateral elements whereas the second picture shows the triangular grid used in StormFlash.

With a certain distance to the cylinders both grids are more or less uniform in both cases.

seems to be less diffused compared to the results from the StormFlash implementation.

Nonetheless, the results from both implementations are very comparable which allows

for the conclusion that both codes work reasonably well and can be validated by this

experiment.
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Figure 6: Comparison of the pressure profiles for the channel flow with cylinder test case

at time t = 0.1 (showing contour lines in 10 steps between 0.87 and 1.6). The results for

deal.II are shown on the top while the results for StormFlash are shown at the bottom.

The development of the front of the acoustic wave shows a distinct difference since the

resolution for StormFlash is coarser in that area. For reference, the solution from the

deal.II tutorial (step-67) can be used.
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Figure 7: Comparison of the pressure profiles for the channel flow with cylinder test case at

time t = 2.0 close to the outflow boundary (showing contour lines in 10 steps between 0.87

and 1.6). The results for deal.II are shown on the top while the results for StormFlash

are shown at the bottom. The pressure profile for deal.II shows fronts that are more

pronounced compared to StormFlash which is likely explained by a difference in spatial

resolution.
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6 Stabilization of the Euler equations with gravity source

term

For the Euler equations, discrete (numerical) solvers for conservation laws suffer from the

drawback that steady state solutions might not necessarily be preserved and that those

solvers lead to spurious oscillations or otherwise incorrect results, in general (Li and Xing,

2016). Should a scheme, however, preserve steady states without the need for high spa-

tial resolution close to machine precision - by using for example hydrostatic solutions -

they are called well-balanced. Counter examples (what happens if a scheme is not well-

balanced/stabilized) will be shown in later sections (see e.g. Figure 13).

For numerical solvers, problems arise as soon as the flux and gravity source term do not

cancel in the hydrostatic case:

∇P ≠ −ρgk = ∇P h,

where ∇P is the calculated pressure gradient for each degree of freedom and −ρgk = ∇P h is

the pressure gradient of a hydrostatic pressure. The hydrostatic relationship (−ρgk = ∇P h)

can be obtained from the Euler equations - in particular the momentum equation - if

u = 0 is assumed.

While Section 7 shows that not many of the schemes that are presented here produce

viable results, all of these methods are shown because they were part of the PhD and

should not be omitted.

6.1 SUPG and IDDG

One way to deal with spurious oscillations in compressible or incompressible flows (both

viscous and inviscid flows) is to use the so-called streamline-upwind/Petrov-Galerkin (or

SUPG in short) method (Aliabadi et al., 1993).

For details on this scheme, resources such as Aliabadi and Tezduyar (1993), Tezduyar

(1992) and Kler et al. (2013) should be referred to. The basic idea is to apply a stabiliza-

tion matrix to the flux term of the equation set which leads to an additional perturbation

along streamlines which acts as an additional numerical diffusion. This stabilization ma-

trix is composed of a part due to the advection term, a part term to account for shocks in

the flow and a part that handles physical diffusion. While these schemes have shown to

be effective for ensuring stable results for these flow problems, they are defined for Finite

Element methods.

As a result, the need for a similar methods for the Discontinuous Galerkin method arose.

The Implicit Diffusive Discontinuous Galerkin method (IDDG) provides an approach sim-

ilar to that of the SUPG as it is basically a combination of implementing the idea of the
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SUPG in a DG context with the utilization of a Runge-Kutta time stepping as shown in

Calle et al. (2005a) or Calle et al. (2005b). As mentioned in these papers, the IDDG is

alternative to having a slope limiter for preventing spurious oscillations as it provides local

streamline diffusion.

As taken from Calle et al. (2005b), the IDDG replaces a traditional Galerkin method with

the following (without source terms):

∫
Ωe

(
∂qN,e

∂t
−FN,e ⋅ ∇)ψi,e(x) dx −∫

Ωe

δ(∇ψi,e ⋅ β)∇ ⋅FN,e
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

diffusion term

∇ψi,e(x) dx = −∫
Γe

ψi,e(x)n ⋅FN,e dS,

(29)

where δ is an artificial diffusion coefficient while β is a tensor/matrix diffusion term (for

2D or 3D). For example for 2D β is given by

β = (f ′1τ, f ′2) (30)

with f ′i being the derivatives of the flux tensor and τ being

τ = [∣∂ξ
∂x
f ′1 +

∂ξ

∂y
f ′2∣ + ∣∂η

∂x
f ′1 +

∂η

∂y
f ′2∣]

−1

(31)

As the name of the method suggests, the time stepping is done in an implicit manner

where the mentioned papers suggest an implicit Euler scheme.

6.2 Filtering

Another way to ensure stability for numerical schemes is to make use of filtering tech-

niques. One prominent filter is the so-called Boyd-Vandeven filter (Boyd, 1996) which

spatially filters the results after each time step. This filter is for example applied in Gi-

raldo and Restelli (2008).

After each completed time step, the filtering matrix F is applied to the numerical approx-

imation qN such that we receive the filtered solution qFN :

qFN = FqN . (32)

According to Giraldo and Restelli (2008), only the highest modes are reduced by 5%. The

definition of the filter matrix can be found in Giraldo and Rosmond (2004).

6.3 Switch to equation sets with perturbed variables

The approach to switch to equation sets which are based on perturbed variables is not a

way to stabilize the numerical scheme, per se, but it limits the incorrect behavior or oscil-

lations that occur since the variables that are calculated have a much smaller magnitude.

Giraldo and Restelli (2008) describes the way that this switch to perturbed variables - by
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splitting up the variables - is done: for the Euler equations, the density, energy and pres-

sure are split up in such a way that (for 2D) ρ(x, t) = ρ(z)+ρ′(x, t), e(x, t) = e(z)+e′(x, t)
and P (x, t) = P (z) + P ′(x, t) where q describes mean values (for the respective variable)

that are in hydrostatic balance and q′ are the perturbed variables which also represent the

deviation towards the hydrostatic background, for example. Using these variable splitting,

we yield the following Euler equations:

∂ρ′

∂t
+∇ ⋅ (ρu) = 0

∂(ρu)
∂t

+∇ ⋅ (ρu⊗ u + P ′Id) = −ρ′∇φ (33)

∂ρe′

∂t
+∇ ⋅ [(ρe + P )u] = −ρu ⋅ ∇φ.

An advantage of this method is that it requires minimal change to the algorithm used for

solving the Euler equations which makes it straight-forward to implement.

6.4 Stabilization via the use of the Navier-Stokes equations

In the literature, there are many sources (e.g. Müller et al., 2013, just to give one example)

that rely on so-called ”artificial viscosity” to add diffusion to ensure stability and to

dampen or get rid of spurious oscillation. This basically leads to a change in equation

set as the Navier-Stokes equations are solved - instead of the Euler equations. Still,

this shows that using fluid flows where some form of viscosity is added can yield stable

results. For the approaches in this thesis, there are two types of methods that were

tried to implement ways to model the Navier-Stokes equations as to get stable flows:

the Local Discontinuous Galerkin (LDG) method and the Interior Penalty (IP) method.

The additional discretization of the elliptic term for the diffusion/viscosity increases the

computational cost of the scheme.

As a note, the Navier-Stokes equations - especially in the case of compressible fluids -

are notorious for the lack of analytical solutions. Consequently, code verification for the

Navier-Stokes equations can be done by utilizing the Method of Manufactured Solutions

(MMS). This method produces an analytical solution by including an analytical source

term into the equation and using its derivatives for the flux terms, for example. As

reference, Bond et al. (2007), Roache (2001) or Roy et al. (2004) can be used.

6.4.1 The Local Discontinuous Galerkin Method - LDG

The Local Discontinuous Galerkin Method (LDG) was proposed in Bassi and Rebay (1997)

and is also used in Giraldo and Restelli (2008) to implement the Navier-Stokes equations.

The elliptical term in the equation set has to be discretized, which is done by introducing

auxiliary variables for the velocity and temperature gradient instead of directly approxi-

mating the Laplacian (as these auxiliary quantities are included in the calculation of the
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Laplacian) for the viscous fluxes:

U = ∇u, T = ∇T.

The auxiliary variables are then discretized by applying the weak form which leads to

UN = −∫
Ωe

uN,e∇ψi,e(x) dx + ∫
Γe

ψi,e(x)n ⋅ u∗ dS,

TN = −∫
Ωe

TN,e∇ψi,e(x) dx + ∫
Γe

ψi,e(x)n ⋅ T ∗ dS, (34)

where UN and TN are the approximations for the auxiliary variables and u∗ or T ∗ numerical

fluxes for the velocity or temperature inside the element. While other numerical fluxes

can be chosen, a very straight-forward approach is to use the average values of both sides

of an interior face at the element boundary (similar as for the numerical flux in Section

3.1) so that

u∗ =
u−N,e + u+N,e

2
, T∗ =

T−N,e + T+N,e
2

.

With these variables, the viscous flux Fvisc (with the separate fluxes from Equation 4 and

Equation 5) can be expressed as functions in terms of U and T with Fvisc = Fvisc(U ,T ).
The Navier-Stokes equation can then be solved by using the weak form

∫
Ωe

(
∂qN,e

∂t
− (FN,e −Fvisc

N,e(U ,T )) ⋅ ∇ − SN,e)ψi,e(x) dx = −∫
Γe

ψi,e(x)n ⋅ (F∗
N,e −Fvisc

N,e(U∗,T ∗)) dS,

(35)

where the numerical fluxes U∗ and T ∗ are chosen as the averages again:

U∗ =
U−N,e + U+N,e

2
, T ∗ =

T −N,e + T +N,e
2

.

6.4.2 The Interior Penalty Method - IP

The Interior Penalty method (IP) that is presented here is a method that is similar to the

LDG in the sense that the elliptical terms of the Navier-Stokes equations are expressed

in terms of an auxiliary variable. The approach that is outlined here is taken from Fehn

et al. (2019). For this strategy, let this auxiliary variable be the viscous flux such that

Q = Fvisc(q,∇q).

Applying the usual Galerkin method with integrating the (auxiliary) variable yields the

following discretization after rearranging and repeated integration-by-parts:

∫
Ωe

QN,eχi(x) dx = ∫
Ωe

Fvisc(qN,e,∇qN,e)χi(x) dx+∫
Γe

Fvisc(qN,e, (q∗N,e − qN,e)⊗ n)nχi(x) dS,

(36)
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where χi is the basis function for the auxiliary variable, q∗N,e is a numerical flux again

and the tensor product has to be used for the second argument of the viscous flux for

the edge integral. Using the weak form in conjunction with Equation 36 for the viscous

flux (similar to the LDG), as well as setting the basis function χ to χ = ∇ψi,e leads to the

Interior Penalty method:

∫
Ωe

(
∂qN,e

∂t
− (FN,e −Fvisc(qN,e,∇qN,e)) ⋅ ∇ − SN,e)ψi,e(x) dx

= −∫
Γe

ψi,e(x)n ⋅ (F∗
N,e −Q∗) dS − ∫

Γe

Fvisc(qN,e, (q∗N,e − qN,e)⊗ n)n∇ψi,e(x) dS. (37)

The numerical fluxes q∗N,e and Q∗ are defined as:

q∗N,e =
q−N,e + q+N,e

2

Q∗ =
Fvisc(q−N,e,∇q−N,e) +Fvisc(q+N,e,∇q+N,e)

2
− τIPId(q+ − q−)n. (38)

Here, τIP is the penalty parameter which is given by

τIP = ν(p + 1)2A(Γe/ΓN)/2 +A(Γe ∩ ΓN)
V (Ωe)

, (39)

where A is the surface area/edge length, V is the volume, Γe is the element edge/face, ΓN

the current face or edge, Ωe is the element and p is the (polynomial) order of the basis

functions. ν = µ/ρ0 is the kinematic viscosity which is obtained by dividing the dynamic

viscosity µ by a reference density ρ0 to obtain the correct units.

6.5 Specific well-balancing schemes for the Discontinuous Galerkin method

Since the well-balancing question for the Euler equations with gravity term is a research

topic with high interest for (e.g.) atmospheric modeling, there are methods to ensure

well-balanced solutions in the case of using Discontinuous Galerkin methods. The meth-

ods that will be presented in the following subsections are taken from Li and Xing (2016)

and Chandrashekar and Zenk (2017). These methods have the big advantage of actually

ensuring a well-balanced solution - so preserving steady states up to machine precision

- while they have the drawback of having certain assumptions the flow needs to satisfy.

The assumptions presented here are either isothermal flow (which is unrealistic for vol-

canic modeling) and polytropic flow (which is more realistic but not necessarily fulfilled

for ash-gas mixtures).

In general, if a hydrostatic state is to be satisfied, the following equation holds:

∇P = −ρ∇φ = −ρgk, (40)
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which can be obtained from the Euler equations and u = 0 just as mentioned at the start

of the stabilization section. The hydrostatic state is the basis for the following schemes.

For the following schemes, only the source term approximation for the momentum equation

will be presented. The source term for the energy equation is obtained by a scalar product

of the velocity and the momentum source term approximation.

6.5.1 Isothermal flows

For this scheme, an ideal gas is assumed so that the pressure is given by Equation 1

(P = ρRT ) as well as isothermy - such that T = Tc = const. Inserting the ideal gas law into

Equation 40 and integrating, the following relationship is obtained:

P exp( φ

RTc
) = const. (41)

With this relation, the source term Sρu (for the momentum) can be rewritten in terms of

the ideal gas law and the quantities in Equation 41, such that

Sρu = −ρ∇φ = ρRT̄K exp( φ

RT̄K
)∇ exp(− φ

RTK
) , (42)

where T̄K is the cell averaged temperature in cell K. This source term can then be

discretized like all quantities in the section about the Discontinuous Galerkin Method:

Sρu,N = ρNRT̄K exp(φ(x)
RT̄K

)∇∑
i

exp(−φ(xi)
RT̄K

)ψi(x). (43)

As shown in the mentioned literature, if source terms like this are used instead, a steady

state can be preserved for isothermal flows and the scheme is well-balanced.

6.5.2 Polytropic flows

Polytropic flows (a flow in a polytropic equilibrium) satisfy the condition that

Pρ−γ = α = const. (44)

Similar to the isothermal case, this relation can be used and inserted into Equation 40

which then yields:
αγ

γ − 1
ργ−1(x) + φ(x) = β = const. (45)

For this method, a function H(x) is defined for each cell K with

H(x) = γ

γ − 1
ln(γ − 1

αKγ
(βK − φ(x))) , (46)

where the constants αK and βK have to be chosen. This function H(x) can be used to

rewrite the source term (for the momentum) as

Sρu = −ρ∇φ = γ − 1

γ
ρ(βK − φ(x)) exp(−H(x))∇ exp(H(x)). (47)
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Again, similar to the isothermal case, the source term (for the momentum) is discretized

with the DGM in such a way that:

Sρu,N = γ − 1

γ
ρN(βK − φ(x)) exp(−H(x))∇∑

i

exp(H(xi))ψi(x). (48)

The parameters αK and βK are chosen in such a way as to chose each node where the

polytropic condition is maximized inside each cell (for that cell node the notation i∗ is

used):

βK = max
i

[ γ

γ − 1

Pi
ρi
+ φ(xi)] , αK = Pi∗ρ−γi∗ . (49)

Again, as shown in the literature, this scheme is well-balanced for polytropic flows.

6.6 General linear low-effort stabilization scheme

In contrast to the methods that were already presented, the goal of this general linear low-

effort stabilization scheme is to find a numerical approach to stabilize the Euler equations

with gravity source term with the use of a low order (linear elements) DGM. The advan-

tage that this scheme has is that it is implemented in a rather straight-forward way since

no assumptions to the flow have to be made - unlike the two methods presented in the

previous sections. That means that the flow does not have to be polytropic or isothermal

to achieve stable results. Unfortunately, the method, as it is implemented right now, has

the drawback of not preserving hydrostatic solutions up to machine precision. Hence it is

only a stabilization method and not a well-balanced scheme.

We follow the approach as in Bänsch et al. (2022). This general stabilization scheme is

similar to Blaise et al. (2016) in a way, as the polynomial order of the source term approx-

imation is reduced by one.

This general linear stabilization scheme is not a well-balanced scheme. Nonetheless, the

approach on how well-balancing would be achieved will be presented.

This well-balancing is obtained by exchanging the conventional source term in the Euler

equations (i.e. −ρgk) with a new source term which is a quantity that is akin to a

hydrostatic pressure. If the weak form is used, the source term can be replaced with:

SN = ∇ ⋅P, (50)

where P is comprised of (0, P hI2, (P hI2) ⋅ u)⊺ and ∇ ⋅P = (0,∇ ⋅ (P hI2), ∇ ⋅ (P hI2) ⋅ u)⊺,

where P h is the quantity that represents a hydrostatic pressure (reconstruction). Fol-

lowing this approach, the polynomial order of the source term (the hydrostatic pressure

gradient) is identical to the order of the pressure gradient. This is where the similarity to

Blaise et al. (2016) comes into play.
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If the DG discretization is applied to Equation 50, we get:

−∫
Ωe

SN,eψi,e(x) dx = −∫
Ωe

∇ ⋅Pψi,e(x) dx = ∫
Ωe

P∇ψi,e(x) dx−∫
Γe

ψi,e(x)n ⋅P∗ dS. (51)

Using Equation 51 and inserting it into the weak form yields

∫
Ωe

(
∂qN,e

∂t
− (FN,e −P) ⋅ ∇)ψi,e(x) dx = ∫

Γe

ψi,e(x)n ⋅ (P∗ −F∗
N,e) dS.

(well-balanced weak form)

To achieve this well-balancing, the hydrostatic pressure as well as the numerical flux for

that hydrostatic pressure (so the numerical hydrostatic flux) P∗ have to be calculated.

6.6.1 Pressure reconstruction

The hydrostatic pressure has to satisfy

P h = (γ − 1)(ρe)h, (52)

where (ρe)h is the hydrostatic total energy which is obtained from the energy equation

(Equation 2) when u = 0, as well as the hydrostatic relationship as defined at the very

beginning of this section of stabilization of the Euler equations:

∂P h

∂z
= −ρg. (53)

Here, only the vertical derivative (in z-direction) is considered since the gravitational

potential is defined as non-zero only in the vertical direction for the setups in this thesis.

Inserting Equation 52 into Equation 53 yields

(γ − 1)∂(ρe)
h

∂z
= −ρg. (54)

Rearranging and integrating (similar to the mean value theorem for integrals) allows to

solve for the hydrostatic energy:

(ρe)h = ρe − gρ

γ − 1
(z − z), (55)

where the quantities with bars are the respective element-averages.

This hydrostatic energy representation is quickly calculated for every element which makes

it straightforward. Advantageously, the derivation of the (linear) hydrostatic pressure

profile now also becomes rather simple:

P h = (γ − 1)ρe − gρ(z − z). (56)

Finally, we can define the numerical flux for the hydrostatic pressure P∗. It is defined as:

P∗ = F∗ ((ρL,uL = 0, P hL/(γ − 1))⊺, (ρR,uR = 0, P hR/(γ − 1))⊺) , (57)
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where we either can, for example, use the Rusanov flux (see Equation 11) or a straight-

forward approach of a mean value similar to the numerical fluxes for the LDG or IP.

In theory, the pressure reconstruction (along with the numerical flux) preserves hydro-

static initial conditions. While hydrostatic initial conditions are preserved, perturbations

of balanced states are not transported correctly, however. This problem was encountered

by implementing the second test case from Chandrashekar and Zenk (2017) where a pres-

sure perturbation is added. The results do not differ that much from the initial conditions

(which is incorrect).

This raises the question whether a different approach - most likely for the numerical flux -

can be found. Instead, linear (hydrostatic) profiles for all variables could be calculated as

in Botta et al. (2004). For this method, these profiles could then be used for calculating

the numerical flux.

IfQ would be the hydrostatic variables, then the numerical flux should be P∗ = F∗(QL,QR).
However, it should be noted that this approach would result in an additional assumption

to the flow field since the initial condition would have to be polytropic (i.e. P /ργ = const.)

and that the velocity is not set to zero by default in the arguments for the numerical flux.

Obviously, this would remove one mentioned advantage for this novel approach.

6.6.2 Stabilization scheme instead of well-balanced method

Instead of another a costly method for calculating the numerical flux for the hydrostatic

pressure, we can also follow a very straight-forward approach by setting P∗ = 0.

The obvious drawback is that with this approach the well-balancedness of the method

is lost. Still, this approach for the method yields stable results (as will be shown in the

following sections). To differentiate between the well-balanced method and the choice

of P∗ = 0, the method with prescribed numerical flux will be called stabilized scheme

from now on. Since setting the numerical flux for the hydrostatic pressure to zero leads

to a stabilized method, this supports the claim in the previous subsection that different

approaches for calculating the numerical flux could lead to a well-balanced method. For

correct well-balancing properties, further research is needed but was not done in the scope

of this thesis due to time constraints.

Table 4: Overview for the source term approximations

Trivial source term well-balanced source term stabilized source term

SN = (0,−ρgk,−ρgk ⋅ u)⊺ SN = ∇ ⋅P , P∗ included SN = ∇ ⋅P, P∗ = 0

with hydrostatic pressure reconstruction
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7 Results for the stabilization problem

In this section, the results (if any usable ones were produced) of the respective meth-

ods to stabilize the Euler equations with gravity source term will be presented. In this

scope, mainly two test cases will be used: an atmosphere at rest test case which is taken

from Benacchio (2014) that is used to verify the stability and order of the scheme and

the prominent rising warm air bubble test case (taken from Giraldo and Restelli, 2008).

Other test cases will be defined in the sections where they are used. The main test cases

are defined in the following two subsections:

7.1 Neutrally stratified atmosphere after Benacchio (2014)

This test case sets up an atmosphere that is neutrally stratified and satisfies hydrostacy.

As a result, it serves as a basis to check whether a scheme or an approach presented in

the previous section preserves hydrostatic states.

The neutrally stratified, homentropic atmosphere (i.e. constant potential temperature) is

implemented as in Benacchio (2014) which has the following initial conditions:

P (z) = Pref (1 − Γ
gρref

Pref
z)

1
Γ

,

ρ(z) = ρref (
P (z)
Pref

)
1
γ

, (58)

ρref =
Pref

RTref
,

where Γ = (γ − 1)/γ and R = 287.17 J kg−1 K−1 is the gas constant for dry air. Pref =
105 Pa is the reference pressure and Tref = 300 K the reference temperature for this

atmosphere. The velocities are initialized to be zero. The calculation domain is set to

be Ω = [0 m,10000 m]2 with 33, 65 and 129 nodes in each direction, respectively, which

leads to spatial resolutions of ∆x = ∆z = ∆ with ∆1 = 312.5 m, ∆2 = 156.25 m and

∆3 = 78.125 m.

The simulation is run for 3600 simulated seconds (Tmax = 3600 s) where the time step sizes

are set up to be ∆t1 = 0.0675 s, ∆t2 = 0.03375 s and ∆t3 = 0.016875 s (which correspond

to a CFL number of about 0.15 with the corresponding spatial resolution ∆i).

The boundaries are set up to be inflow/Dirichlet boundaries.

After Tmax is reached, the errors can be calculated (in regards to the initial condition)

which is done as defined in Equation 26 and Equation 27, respectively. For the mo-

mentum, however, instead of the relative error, the absolute error has to be calculated

since the initial momentum is zero which does not allow for a relative error analysis. Con-

sequently, the relative errors will only be calculated for density and energy.

Ideally, the initial condition should be preserved (up to machine precision).
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Figure 8: Initial density for the neutrally stratified atmosphere. The values range from

1.1608 kg m−3 at the bottom to 0.4342 kg m−3 at the top.

In addition to this rather straight-forward approach, a setup where the lower right corner

of the domain will be removed will also be shown for StormFlash with stabilization and

deal.II. To be more precise, a triangle will be ”cut out” starting at x = (5000,0) m and

ending at x = (0,5000) m from the initial domain of Ω = [0 m,10000 m]2. For deal.II this

change in domain also leads to a rearranged mesh due to its quadrilateral structure. This

leads to the spatial resolution ∆i being just an approximate resolution in this case.

The time step sizes will be adjusted for the three different spatial resolutions such that

∆t1 = 0.0675 s, ∆t2 = 0.03375 s and ∆t3 = 0.016875 s. All other parameters remain the

same.

The goal of this setup is to see whether more complex geometries influence the results.

7.2 Rising warm air bubble as in Giraldo and Restelli (2008)

The rising warm air bubble test case is a prominent test case first introduced by Robert

(1993). In this thesis however, the definition of the test case from Giraldo and Restelli

(2008) is taken. Here, an atmosphere with constant potential temperature θref (which is

similar to the previous test case with θref = 300 K) is perturbed by a warm air bubble

which is introduced with a cosine-profile. This allows to model the evolution and rise of

this warm air bubble.

Similar to the previous test case (neutrally stratified atmosphere), the energy and density

are inferred from the potential temperature and pressure profile, while no background

velocity is prescribed (hence initial x- and z-momentum are zero).
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The potential temperature θ is initialized as:

θ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

θref r > rc,

θref +
θc
2

(1 + cos(πr
rc

)) r ≤ rc,

where θref is the background or reference potential temperature which is set to 300 K.

θc = 0.5 K is the maximum potential bubble temperature, the distance from the center

of the bubble is given by r =
√

(x − xc)2 + (z − zc)2. The center of the bubble is located

at (xc, zc) = (500,350) m. rc = 250 m is the bubble radius and the calculation domain is

defined as Ω = [0 m,1000 m]2 with no-flux/wall boundaries.

The so-called Exner pressure can be calculated with the use of the potential tempera-

ture which allows for the calculation of the other variables so that density, pressure and

consequently also the energy can be inferred:

Π = 1 − gz

cpθref
,

ρ = Pref

Rθ
Π

1
γ−1 ,

P = Pref (
Rρθ

Pref
)
γ

,

where cp = Rγ/(γ − 1) is the specific heat capacity at constant pressure. γ, R and Pref are

defined as in the neutrally stratified atmosphere test case. The test case is modeled for

700 s. As for the previous test case, the spatial resolution is set to be equal in horizontal

and vertical direction so that ∆x = ∆z = ∆. If not otherwise specified, the resolution is

set to ∆ = 15.625 m with a time step size of ∆t = 0.004 s while the reference solution is

shown for a spatial resolution of 20 m (but with 10th order polynomials and filtering).

7.3 Without any stabilization

In this section, the results for StormFlash and deal.II without the use of stabilization will

be shown.

7.3.1 StormFlash - with and without slope limiter

For the case of the trivial source term where the source term is just discretized by apply-

ing the usual DG discretization (without any stabilization), the results with StormFlash

become unstable.

In this subsection, results from before and after the code restructuring for StormFlash

will be shown. This should be taken into account because the simulation post-restructure

for the finest spatial resolution (∆3 = 78.125 m) is stopped after t = 14 minutes due to
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Figure 9: Initial potential temperature perturbation for the rising warm air bubble. The

contour lines range from 0 K to 0.525 K with interval sizes of 0.025 K.

instabilities.

In addition to the trivial source term, the simulation is also run with a slope limiter to

check whether the application of a limiter can stabilize the trivial source term. While the

results with limiter vary significantly (compared with the non-limited case), they still are

unstable.

The instability and as a result the scheme’s divergence (if the trivial source term is used)

is clearly observable in Figure 10, Figure 11 and Figure 12.

Figure 10 shows a comparison between limited and non-limited solution after 24 minutes

in 6 minute increments until the maximum simulation time (60 minutes) is reached with

a spatial resolution of ∆1 = 312.5 m. Neither approach yields stable results which is very

clearly visible as the results should be visually indistinguishable when compared to Fig-

ure 8 if the scheme would be second order accurate.

Figure 11 shows the results for all three different spatial resolutions after t = 34 minutes.

When looking at this figure, the plots show behavior reminiscent of Kelvin-Helmholtz

instabilities which is physically unrealistic for a neutrally stratified atmosphere that sat-

isfies the hydrostatic property. It is observable that the smaller scales of higher spatial

resolutions drastically influence the results as they appear to model flows that look very

turbulent.

Figure 12 shows the L∞ errors for the density and vertical momentum as examples for

the errors for StormFlash with the trivial source term. It becomes evident that the scheme
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Table 5: Errors and rates of convergence for the neutrally stratified atmosphere test case

for StormFlash without the stabilization scheme. Note that the momentum errors are

absolute errors and not relative errors and that the results for ∆ = 78.125 m are shown

after t = 840 s because the calculation was interrupted afterwards (due to instability). As

a result, the rates of convergence for ∆3 cannot be shown for this resolution. These results

were obtained post-StormFlash restructure.

L2 error after Tmax with ρ σρ ρu σρu ρw σρw ρe σρe

∆1 = 312.500 m 9.213e-02 - 4.172e+03 - 3.526e+03 - 4.681e-02 -

∆2 = 156.250 m 1.025e-01 -0.15 1.276e+04 -1.61 8.913e+03 -1.34 6.521e-02 -0.48

∆3 = 78.125 m 1.561e-01 - 2.138e+04 - 2.015e+04 - 7.449e-02 -

L∞ error after Tmax with ρ σρ ρu σρu ρw σρw ρe σρe

∆1 = 312.500 m 2.503e-01 - 1.334e+02 - 9.600e+01 - 8.272e-02 -

∆2 = 156.250 m 4.063e-01 -0.70 2.137e+02 -0.68 1.249e+02 -0.38 1.712e-01 -1.05

∆3 = 78.125 m 1.246 - 2.205e+02 - 2.013e+02 - 1.701e-01 -

is not consistent as the error does not get smaller with an increase in spatial resolution.

The errors even oscillate very strongly in time for each respective spatial resolution. For

the finest resolution ∆3 = 78.125 m, the simulation is stopped after after t = 14 minutes,

as previously mentioned. This leads to the error plot for that resolution having fewer data

points.

Additionally to the figures, Table 5 (which shows the errors and convergence rates post-

code restructure) supports the claim that the scheme is divergent as the errors for the

velocities are beyond reason for a scheme that would be stable. It should be noted that

calculating the rates of convergence for a scheme that divergences is unreasonable but the

rates are shown nonetheless to further the claim that the scheme is nowhere close to being

second order accurate if the trivial source term is chosen.

For the simulations of the rising warm air bubble, the results (shown in Figure 13) are also

physically unreasonable as they are nowhere close to the reference solution from Giraldo

and Restelli (2008). The contour lines are chosen to be the same as in Figure 9 to allow

for better comparison and makes it obvious that StormFlash with trivial source term leads

to physically unrealistic behavior as the scheme is unstable. Consequently, StormFlash

cannot be used for simulations where the gravity term is implemented trivially.
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Figure 10: Comparison of non-limited (left) and limited density results (right) for the

neutrally stratified atmosphere with the trivial (unstable) source term. The results are

shown after 24, 30, 36, 42, 48, 54 and 60 minutes from top to bottom for ∆ = ∆1 = 312.5

m. The maximum and minimum densities are exceeded in the colormap which was chosen

in this way to allow for better comparison with the initial condition in Figure 8. These

results were obtained pre-StormFlash restructure.
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Figure 11: Results for the density after t = 34 min for different resolutions for the neutrally

stratified atmosphere with the trivial (unstable) source term. The left plot shows the

result for ∆1 = 312.5 m, the plot in the middle for ∆2 = 156.25 m and the right plot

for ∆3 = 78.125 m. The higher the resolution, the more refined small scale instabilities

can occur which leads to the observable structures. These results were obtained pre-

StormFlash restructure.

Figure 12: L∞ errors for the density (relative error) and momentum in vertical direction

(absolute error) for StormFlash with the trivial source term. On the left-hand side, the

error plot for the density is shown while on the right-hand side the error plot for the

vertical momentum is presented. For the finest spatial resolution, the simulation is inter-

rupted (due to instability) after 14 minutes. These results were obtained post-StormFlash

restructure.
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Figure 13: Results for the rising warm air bubble obtained from StormFlash with the

trivial source term on the left and a reference solution from Giraldo and Restelli (2008) on

the right. The contour lines are chosen to be same as for the initial condition in Figure 9

(and Giraldo and Restelli, 2008) to allow for a better comparison. The contour lines for

StormFlash without stabilization do not resemble the reference solution at all.

7.3.2 deal.II

The results that will be shown for deal.II are done without any stabilization approach.

While the attempt was made to implement the stabilization scheme, due to time con-

straints, it had to be abandoned since more pressing matters had to receive the focus of

the work (i.e. the implementation of the plume model itself).

That being said, this section will present the results for the test cases that were obtained

using the implementation in deal.II. For the neutrally stratified atmosphere test case,

Figure 14 shows the L∞ errors for density and vertical momentum (as examples) for

the duration of the simulation. The figure suggests that the error - while decreasing with

higher spatial resolution (as is expected) - in density increases the longer the simulation

is run. This behavior is only observed for the density. The errors for all other variables

either remain stable or even decrease with time (plots not shown for the other variables).

Table 6 shows the errors and rates of convergence for this test case after Tmax. The table

shows that the rates of convergence do not allow us to conclude that deal.II is second

order accurate for a setup with gravity source term - at least when looking at the L2 error

since the scheme is second order accurate for the L∞ error.

The results for the neutrally stratified atmosphere with a slope inside the domain yield

similar results. Figure 15 again shows errors for density and vertical momentum. Here,

the errors again increase the longer the simulation is run for. For the coarsest spatial
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Figure 14: L∞ errors for the density (relative error) and momentum in vertical direction

(absolute error) for deal.II for the neutrally stratified atmosphere. The plot on the left-

hand side shows the errors for density, the right-hand side for the momentum. For the

density, the errors increase with time while a higher resolution leads to smaller errors for

both cases.

resolution the error curves do not follow a clear pattern and do not exert predictable

behavior. Table 7 shows the numerical values for the errors and convergence rates after

Tmax. The values again suggest that the scheme is not second order accurate - this time

both for the L2 and L∞ error. Hence, a change in geometry seems to influence the results

for deal.II.

Finally, the results for the rising warm air bubble from deal.II are presented in Figure 16.

As is observable in this figure, deal.II produces results that do not fully resemble the

reference solution from Giraldo and Restelli (2008). If this observation is combined with

the knowledge from the previous test case, it is very likely that the different behavior is

due to the scheme not being second order accurate for the use of linear elements which

leads to unexpected behavior and causes errors.

7.4 Stabilization scheme

The stabilization scheme was implemented in StormFlash as outlined in Section 6.6. Just

as in the previous sections, the neutrally stratified atmosphere, as well as rising warm air

bubble test case were run using this setup. In addition to the square domain setup, as in

the section about deal.II, the atmosphere test case was also run with a domain with slope.

All the parameters for the test cases are the same as presented at the start of this result

section.

Figure 17 shows the L∞ errors for the density and vertical momentum for neutrally
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Figure 15: L∞ errors for the density (relative error) and momentum in vertical direction

(absolute error) for deal.II for the neutrally stratified atmosphere case with slope. The plot

on the left-hand side shows the errors for density, the right-hand side for the momentum.

In both cases, the errors increase with time while a higher resolution leads to smaller

errors. For the coarsest resolution the errors do not follow a clear pattern for both density

and momentum.

Figure 16: Results for the rising warm air bubble obtained from deal.II (left) and a

reference solution from Giraldo and Restelli (2008) on the right. The contour lines are

chosen to be the same as for the initial condition in Figure 9 (and Giraldo and Restelli,

2008) to allow for a better comparison. The results from deal.II resemble the ones from

the reference solution but the curvature of the eddies on the outside of the bubble differ

compared to the reference solution.
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Table 6: Errors and rates of convergence for the atmosphere at rest test case for deal.II.

Note that the momentum errors are absolute errors and not relative errors.

L2 error after Tmax with ρ σρ ρu σρu ρw σρw ρe σρe

∆1 = 312.500 m 1.596e-04 - 2.724e-01 - 2.356 - 3.952e-05 -

∆2 = 156.250 m 2.624e-05 2.61 1.529e-01 0.83 1.186 0.99 1.086e-05 1.86

∆3 = 78.125 m 4.712e-06 2.48 8.118e-02 0.91 5.959e-01 0.99 2.890e-06 1.91

L∞ error after Tmax with ρ σρ ρu σρu ρw σρw ρe σρe

∆1 = 312.500 m 5.703e-04 - 1.615e-02 - 5.927e-02 - 7.791e-05 -

∆2 = 156.250 m 1.333e-04 2.10 4.114e-03 1.97 1.423e-02 2.06 2.073e-05 1.91

∆3 = 78.125 m 3.353e-05 1.99 1.053e-03 1.97 3.492e-03 2.03 5.366e-06 1.95

Table 7: Errors and rates of convergence for the atmosphere at rest test case for deal.II

with slope. Note that the momentum errors are absolute errors and not relative errors. ∆

is the approximate resolution for this case.

L2 error after Tmax with ρ σρ ρu σρu ρw σρw ρe σρe

∆1 ≈ 312.500 m 4.634e-04 - 38.505 - 48.582 - 6.602e-05 -

∆2 ≈ 156.250 m 8.573e-05 2.32 18.828 1.43 23.712 1.43 1.083e-05 2.47

∆3 ≈ 78.125 m 1.426e-05 2.45 10.014 1.37 7.924 1.73 2.059e-06 2.29

L∞ error after Tmax with ρ σρ ρu σρu ρw σρw ρe σρe

∆1 ≈ 312.500 m 1.565e-03 - 1.942 - 2.674 - 2.469e-04 -

∆2 ≈ 156.250 m 5.675e-04 1.66 9.041e-01 1.47 1.402 1.38 7.763e-05 1.85

∆3 ≈ 78.125 m 1.521e-04 1.93 5.354e-01 1.30 3.657e-01 1.96 1.511e-05 2.27

stratified atmosphere test case (which are shown as examples). The figure shows that the

errors remain constant throughout the simulation. As is expected of a consistent scheme,

the error decreases with increase in spatial resolution. Table 8 shows the corresponding

errors after Tmax. Interestingly, convergence rate for the L2 error for both momenta is

of order 1 instead of 2 while it is of order 2 for density and energy. Additionally, all

convergence rates for the L∞ are of order 2. Similar to Blaise et al. (2016), a reduction in

order of the source term approximation stabilizes or balances the Euler equations which is

similar to the approach for the stabilization scheme utilized in StormFlash. This however,

does not explain the rate of convergence of 1 for the L2 error while the order remains 2 in

the case of the L∞ error.

In the atmosphere test case with slope, the results also have an increased rate of conver-

gence for the L2 error of the momenta (about 1.6 instead of 1.0; see Table 9). Figure 19
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Figure 17: L∞ errors for the density (relative error) and momentum in vertical direction

(absolute error) for the neutrally stratified atmosphere case for StormFlash with stabi-

lization. The plot on the left-hand side shows the errors for density, the right-hand side

for the momentum. In both cases, the errors remain constant throughout the simulation

while a higher resolution leads to smaller errors.

shows the same errors as Figure 17 but for the sloped case. In this case, the errors in-

crease with time which is probably due to the more complex geometry or rather the more

complex (Dirichlet) boundaries.

Furthermore, Figure 18 shows a snap shot of the vertical momentum which clearly shows

the imprint of the triangular mesh. This imprint is caused by the calculation of the linear

hydrostatic pressure reconstruction and might be related to the issue regarding the rate of

convergence for both horizontal and vertical momentum. It has to be noted that further

research into this matter is needed.

Regarding the rising warm air bubble test case, the results for StormFlash with stabiliza-

tion are presented in Figure 20. For this case, the results resemble the reference solution

quite well with an exception of the eddy structure ”inside” of the bubble where the eddies

with StormFlash reach higher into the inside. But especially if compared to the results ob-

tained with deal.II (Figure 16), StormFlash yields results that are more accurate (when

compared to the reference solution).

While there still is an open question regarding the order of the scheme when it comes to

the momentum, the stabilization scheme is at least able to model the physical behavior of

the rising warm air bubble - and consequently fluid flow - reasonably well.
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Figure 18: Vertical momentum for the stabilized StormFlash for the atmosphere at rest

test case (which is the same for all time steps after t = 0 s). For demonstration purposes,

the results for a resolution of ∆ = 1250 m are presented but the structure remains the

same for all finer resolutions with the exception that the magnitude of error in momentum

decreases with finer grids. A grid imprint from the triangular mesh is clearly visible. The

imprint is caused by the linear hydrostatic pressure reconstruction.

Figure 19: L∞ errors for the density (relative error) and momentum in vertical direction

(absolute error) for the neutrally stratified atmosphere case with slope for StormFlash

with stabilization. The plot on the left-hand side shows the errors for density, the right-

hand side for the momentum. In both cases, the errors increase with time while a higher

resolution leads to smaller errors.
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Table 8: Errors and rates of convergence for the atmosphere at rest test case for StormFlash

with stabilization. Note that the momentum errors are absolute errors and not relative

errors.

L2 error after Tmax with ρ σρ ρu σρu ρw σρw ρe σρe

∆1 = 312.500 m 2.254e-05 - 2.924e-01 - 3.200e-01 - 3.578e-05 -

∆2 = 156.250 m 6.117e-06 1.88 1.463e-01 1.00 1.595e-01 1.00 8.949e-06 2.00

∆3 = 78.125 m 1.601e-06 1.93 7.320e-02 1.00 7.957e-02 1.00 2.239e-06 2.00

L∞ error after Tmax with ρ σρ ρu σρu ρw σρw ρe σρe

∆1 = 312.500 m 3.110e-05 - 6.584e-03 - 7.744e-03 - 4.256e-05 -

∆2 = 156.250 m 7.724e-06 2.00 1.650e-03 2.00 1.938e-03 2.00 1.073e-05 1.99

∆3 = 78.125 m 1.925e-06 2.00 4.139e-04 2.00 4.847e-04 2.00 2.714e-06 1.98

Table 9: Errors and rates of convergence for the atmosphere at rest test case for StormFlash

with stabilization and slope. Note that the momentum errors are absolute errors and not

relative errors.

L2 error after Tmax with ρ σρ ρu σρu ρw σρw ρe σρe

∆1 = 312.500 m 3.226e-05 - 7.495e-01 - 8.613e-01 - 4.717e-05 -

∆2 = 156.250 m 8.374e-06 1.96 2.941e-01 1.60 3.610e-01 1.54 1.180e-05 2.00

∆3 = 78.125 m 2.147e-06 1.97 1.202e-01 1.56 1.482e-01 1.56 2.951e-06 2.00

L∞ error after Tmax with ρ σρ ρu σρu ρw σρw ρe σρe

∆1 = 312.500 m 6.260e-05 - 5.010e-02 - 5.363e-02 - 5.835e-05 -

∆2 = 156.250 m 1.611e-05 1.97 1.274e-01 1.98 1.364e-02 1.98 1.474e-05 1.99

∆3 = 78.125 m 4.153e-06 1.97 3.229e-02 1.99 3.459e-03 1.99 3.701e-06 2.00

7.5 Methods that did not work or did not produce any significant results

7.5.1 Slope limiter in combination with the stabilization scheme

To see whether the slope limiter improves the results for the stabilization scheme, the slope

limiter was utilized for the neutrally stratified atmosphere test case as well. Initially, the

idea was to present a difference plot to show the error between the use of a slope limiter and

the approach without but in fact, the results with the slope limiter in conjunction with

the stabilization scheme are identical to simulations with just the stabilization scheme.

Consequently, the slope limiter will also not be used further in this thesis. Additionally,

no difference plot will be shown.
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Figure 20: Results for the rising warm air bubble obtained from StormFlash with sta-

bilization (left) and a reference solution from Giraldo and Restelli (2008) on the right.

The contour lines are chosen to be the same as for the initial condition in Figure 9 (and

Giraldo and Restelli, 2008) to allow for a better comparison. The results from StormFlash

resemble the ones from the reference solution with the eddies on the ”inside” of the bubble

differing from the reference solution a little.

7.5.2 IDDG

Unfortunately, implementing the IDDG was unsuccessful and only led to erroneous or

unstable simulations. As a result, nothing from those simulations will be shown here.

7.5.3 Filtering

The idea for the filtering approach was to use a Boyd-Vandeven filter using StormFlash for

runs on the rising warm air bubble to dampen the oscillations that occur. Unfortunately,

the filter could not be implemented correctly in StormFlash. The work that would have

been necessary did not warrant the time investment for this method, however, so after the

attempts to implement the filter, the idea was dismissed.

7.5.4 Background/perturbation equation set

For the Euler equations with background or perturbation approach, the initial idea was

the same as for the results with slope limiter in addition to the stabilization scheme where

a difference should be plotted. However, just as with the slope limiter approach, the

difference between the different equation sets was zero for which reason no results will be

shown and this approach to solving the Euler equations will also not be used any further.
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Figure 21: Results for the quasi-stationary vortex with a viscosity of µ = 0.01 Pa s. The

figure shows the initial energy on the left and the results for the energy after one period

(Tmax = 1 s) on the right. Both energies are shown in J. The results after one second are

diffused compared to the initial values for energy.

7.5.5 Navier-Stokes equations

The Navier-Stokes equations were implemented in StormFlash using the LDG method and

seemed to work reasonably well. While the results look promising visually, a verification

via the MMS was inconclusive - probably due to incorrect implementations.

To showcase the visual reasonableness, the quasi-stationary vortex test case (from Section

5.1) was used. Figure 21 shows the results for this vortex test case where a viscosity of

µ = 0.01 Pa s was used. The results after one period are clearly more diffused which is the

reason why the argument was made that the results look visually promising.

Additionally to the quasi-stationary vortex test case, results for the rising warm air bubble

were calculated with the implementation for the Navier-Stokes equations. For this, a

viscosity of µ = 0.1 Pa s was used. The results are presented in Figure 22, where the

rising warm air bubble test case was run with spatial resolutions of ∆x = ∆z = ∆ = 7.8125

m and ∆x = ∆z = ∆ = 3.90625 m, respectively, which are compared with reference solutions

from Giraldo and Restelli (2008) with spatial resolutions of 10 m and 5 m. With a viscosity

of µ = 0.1 Pa s, the results for StormFlash do not quite resemble the reference solution

(both in curvature of the warm air bubble from the center at the front of the bubble and

the eddy structure for the run with a resolution of ∆ = 3.90625 m) but the plots suggest

that utilizing viscous flux terms both stabilizes and removes oscillations from the flow.

Were it not for the code restructure of StormFlash, runs with smaller viscosities could

have been performed which might have led to better results.

While the exact reason is unknown, the code restructure for StormFlash led to problems
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with the Navier-Stokes implementation. Consequently, afterwards the results looked very

differently to what was calculated beforehand. As an example, Figure 23 shows the re-

sults that were obtained for a run of the rising warm air bubble with a spatial resolution

of ∆x = ∆z = ∆ = 31.25 m. If the general structure of the results is compared with those

of Figure 22, it becomes evident that at the code restructure of StormFlash caused some

issues since the latest results show an asymmetric structure which is not physically plau-

sible. This was one of the reasons why the further development of the plume model with

StormFlash as basis was abandoned and a switch to deal.II was made.

In the scope of using deal.II for a plume model, the effort was made to implement both

an LDG, as well as an IP method approach using the deal.II step-67 tutorial as basis.

Unfortunately, the implementation was unsuccessful and then also abandoned in favor of

implementing a plume model based on the Euler equations (see Section 8).

7.5.6 Polytropic/isothermal well-balancing schemes

While it was already mentioned in the section where the models were presented, using

an isothermal approach for well-balancing is not really realistic for the goal of modeling

volcanic plumes. Still, the attempt to implement this well-balancing approach was made,

in addition to the attempt to implement the polytropic well-balancing scheme.

Unfortunately, neither of the methods could be implemented correctly. In both cases,

the simulations became unstable and did not yield results. The attempts were made for

StormFlash in 2D and a simpler approach with a 1D python model which is very similar

to StormFlash.

Since no usable results were produced, no results can be presented here.

7.5.7 Stabilization scheme with well-balanced source term

The attempt to correctly well-balance the Euler equations was the first focus of this thesis

(and the one which was focused on most as well).

For this, the part that was researched the most was the edge integral part of the well-

balanced source term approach. Within StormFlash, the neutrally stratified atmosphere

test case was used as basis to analyze the numerical flux for the hydrostatic pressure re-

construction. With the numerical flux being calculated as in Equation 57 the results

could not be improved much more than with P∗ = 0 which is one of the reasons why this

approach was used for the stabilization method.

As a second test case, the first 1D hydrostatic test case from Chandrashekar and Zenk

(2017) (isothermal case with pressure perturbation) with gravitational potential φ = x was

implemented.
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Figure 22: Results for the rising warm air bubble with the Navier-Stokes implementation

before the code restructure of StormFlash. The plots on the left-hand side show the results

for StormFlash with a viscosity of µ = 0.1 Pa s (top: ∆ = 7.8125 m, bottom: ∆ = 3.90625

m) while the reference solutions are shown on the right (top: ∆ = 10 m, bottom: ∆ = 5

m). The contour lines are chosen to be the same as for the initial condition in Figure 9

(and Giraldo and Restelli, 2008) to allow for a better comparison. The results obtained

with StormFlash do not quite resemble the reference solutions - gaps form at the front of

the bubble, the curvature of the bubble is different and the eddies inside the bubble are

dampened for the bottom left plot.
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Figure 23: Results for the rising warm air bubble with the Navier-Stokes implementation

after the code restructure of StormFlash. The contour lines are chosen to be the same as

for the initial condition in Figure 9 (and Giraldo and Restelli, 2008) to allow for a better

comparison. The results show asymmetric behavior. Here, no reference solution is shown.
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This test case was used within StormFlash (as a pseudo 1D case) and a 1D python model

that is similar to StormFlash in regards to structure and implementation.

Unfortunately, in both cases the implementations did not provide meaningful results. With

StormFlash, the results for this test case are comparable to the results for the neutrally

stratified atmosphere test case (for that reason they are not shown here). With the 1D

python model, after the well-balanced source term was implemented, the results are con-

served up to machine precision but apparently there was an error in the flux calculations.

Consequently, the initial condition only changed in the first time step and remained con-

stant afterwards. Since the 1D python code was used to get an idea what to change in

StormFlash to get the scheme well-balanced, this approach unfortunately did not yield

conclusive results.

Consequently, at some point, answering the well-balancing question was postponed as im-

plementing the actual plume model became more important (due to time constraints).

Following this section about the results for the stabilization problem, in the next section

about the plume model, both StormFlash (with the stabilization scheme), as well as deal.II

will be used. Although deal.II did not show promise regarding the physical behavior when

it comes to model fluid flow with gravity, it may still be of interest to see the behavior

for the plume model. Since StormFlash (with stabilization scheme) showed the most

promising results, it is also an obvious choice for the basis of a plume model.
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8 Plume model

Plume models are (geo)physical models that can be used to simulate eruptions that pro-

duce clouds or volcanic plume which occur in explosive volcanic eruptions - such as Vul-

canian, sub-Plinian, Plinian or ultra-Plinian eruptions (Parfitt and Wilson, 2008). Fig-

ure 24 shows the Walker classification scheme for different eruption types. As the figure

shows, the volcanic eruptions that are relevant for plume models are eruptions with large

ash dispersal.

These models should allow to model all three important regions of volcanic ash cloud de-

velopment: the inertia dominated gas thrust region, the convective region and the umbrella

region which are shown as sketch in Figure 25.

The gas thrust region characterizes the first part of a volcanic eruption where erupted

material leaves the volcanic vent at potentially high velocities which can create acoustic

or pressure waves.

In the convective region, the initial inertia becomes less significant and the entrainment

of the surrounding air (which is usually less dense) is of greater importance. This en-

trainment leads to a decompression in the eruptive column which then accelerates the ash

cloud once more.

Once the plume reaches a level of neutral buoyancy, since the cloud has about the same

density as the surrounding air, the plume starts to spread horizontally while vertical move-

ment of the cloud is of lesser importance (there is still some inertia left so that the plume

overshoots the level of neutral buoyancy). At this stage, the cloud is also called umbrella

cloud because of the horizontal spreading and thus also the term umbrella region is used

(Parfitt and Wilson, 2008).

Plume models usually aim to simulate eruptions to estimate the plume height which for

example can be input data for volcanic ash dispersion models which in turn can be used to

determine no-fly zones for air traffic. For this purpose, usually 1D plume models are used.

Most plume models that are currently used in the plume modeling community have been

compared in the IAVCEI’s eruptive column model inter-comparison study (Costa et al.,

2016). In this study, nine 1D plume models are presented: Puffin (e.g. Bursik, 2001),

Degruyter (e.g. Degruyter and Bonadonna, 2012), PlumeMoM (e.g. de’ Michieli Vitturi

et al., 2015), Devenish (e.g. Devenish, 2013), FPluMe (e.g. Cai et al., 2016), PPM (e.g.

Girault et al., 2014), Plumeria (e.g. Mastin, 2007), PlumeRise (e.g. Woodhouse et al.,

2013a) and ASH1D (e.g. Cerminara, 2015).

The goal for plume models with higher dimension is to model the plume height more

accurately and especially to model physical processes which can then be used to analyze,

for example, the dynamics of a volcanic eruption. The most prominent 3D models (which

are also presented in the inter-comparison study) are ATHAM (e.g. Herzog et al., 2003),
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Figure 24: Walker classification scheme (Walker, 1973) where the different types of volcanic

eruptions are classified according to ash dispersion or ”Dispersal” and fragmentation of

the magmatic material. The larger the ash dispersion, the more relevant volcanic clouds

become and as a result the more applicable plume models become. This graphic was taken

from Parfitt and Wilson (2008).

Figure 25: Schematic overview of an eruption column with its three distinct regions.
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SK-3D (e.g. Suzuki et al., 2005), ASHEE (e.g. Cerminara et al., 2016a) and PDAC (e.g.

Neri et al., 2003).

Since the correct height determination and the modeling of correct physics is of interest

for plume models that are not 1D models, it stands to reason that a high spatial resolution

is desirable. Most of the 3D models have a fixed grid size with fine resolution close to

the vent that gets coarser the farther away a cell is from the vent (usually with a certain

scaling factor).

In this thesis, the approach to circumvent this resolution problem is to utilize h-adaptive

mesh refinement (as presented in Section 3.3).

8.1 Equation set for volcanic scenarios and setup

In this thesis, the same approach as for the SK-3D model is taken. This means that the

underlying physics are modeled using the Euler equations with an additional equation

for advection of the erupted material and a slightly changed calculation for the equation

of state.

This approach is called pseudo-gas or dusty gas approach. The assumptions that allow for

the use of this approach are outlined concisely in Cao et al. (2021), which is also based on

the approach from Suzuki et al. (2005). The assumptions are quoted as follows:

• Molecular viscosity and heat conduction are neglected since turbulent energy and

momentum exchange are dominant.

• Erupted material consisting of solid with different sizes and the mixture of gases is

assumed to be well-mixed and behaves like a single-phase fluid (phase 2), which is

valid for eruptions with fine particles and ash.

• Air, which is assumed to be a well-mixed mixture of different gases, is assumed to be

another phase (phase 1).

• Assume thermodynamic equilibrium and dynamic equilibrium between the two phases.

As a result, both phases share the common energy equation and momentum equations.

• All other microphysical processes (such as the phase changes of H2O, aggregation,

disaggregation, absorption of gas on the surface of solids, solution of gas into a liquid)

and chemical processes are not considered in this model.

• The effect of wind is also not currently considered in this model.

Using the Euler equations as basis (with all its variables that have been introduced),

together with these assumptions, the following set of equations is obtained:
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∂ρ

∂t
+∇ ⋅ (ρu) = 0,

∂(ρξ)
∂t

+∇ ⋅ (ρξu) = 0, (volcanic setup)

∂(ρu)
∂t

+∇ ⋅ (ρu⊗ u + PId) = −ρgk,

∂(ρe)
∂t

+∇ ⋅ [(ρe + P )u] = −gρu ⋅ k.

As already mentioned, compared to the Euler equations, an additional equation is added

for the advection of erupted material and the equation of state is adjusted to account for

an ash-gas mixture. The mass fraction of erupted material ξ is taken into account with

the additional equation so that material that is added to the simulated environment gets

distributed. The calculation for the equation of state is basically unchanged such that:

P = (γm − 1) (ρe − 1

2
ρu ⋅ u) , (59)

where the specific heat ratio γ is changed to γm to make sure the erupted material is

considered. This assumption is valid for pressures close to atmospheric pressure (as stated

in Suzuki et al., 2005). While this does not necessarily describe all volcanic eruptions, this

approach is used for ease of implementation and similarity with SK-3D. Due to consider-

ation of erupted material in the mixture, the following relations are taken into account:

γm = Rm
cvm

+ 1, (60)

Rm = ξgRg + ξaRa, (61)

cvm = ξscvs + ξgcvg + ξacva, (62)

ξa = 1 − ξ, (63)

ξg = ξ ⋅ ξg0, (64)

ξs = ξ − ξg = ξ(1 − ξg), (65)

where the physical parameters are the same as in Section 2 with the addition that the in-

dices indicate mixture (m), surrounding (atmospheric) air (a), erupted gas (g) and erupted

solids or ash (s). As a result the mass fractions with index also represent the mass frac-

tion of the respective portions. ξg0 is the mass fraction of erupted gas at the vent. In this

thesis, the erupted gas will just be water vapor (without any other gases).

At the volcanic vent, the following (constant) quantities have to be provided:

• Atmospheric (reference) pressure Pref (at z = 0 m) which is also assumed at the vent

(no overpressure),

• Vertical exit velocity w0, whereas the horizontal exit velocity is set to zero,
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• Temperature of the erupted material Tm,

• Initial mass fraction of volcanic gas (water vapor) ξg0.

Using these quantities, the density of erupted material at the vent ρm,0 can be calculated

using the equation of state (ideal gas law):

ρm,0 =
Pref

RmTm
, (66)

where it should be noted that Rm = ξg,0Rg at the vent since ξ = 1.

For 3D volcanic plumes, Morton et al. (1956) found a relationship between the height of

the volcanic plume and the mass flux. Within this study, a proportionality was found

that the plume height H (in km) is proportional to the mass flux at the vent Mf to a

power of 1/4. Parfitt and Wilson (2008) gives the following relationship for a ”standard

atmosphere” on Earth:

H = αM1/4
f , (67)

where α is a parameter that contains the fit to this ”standard atmosphere”. This param-

eter is comprised of a constant factor c, a density factor for air ρa0 (units: kg m−3), the

gravitational acceleration g (units: m s−2) and the buoyancy frequency N (units: s−1),

where α = cρ−1/4
a0 g1/4N−3/4 (see Woodhouse et al., 2013b). For the ”standard atmosphere”,

this factor α is 236 m kg−1/4 s1/4 or 0.236 km kg−1/4 s1/4. As a remark, instead of Mf ,

many pieces of literature also use either Q or Q0 as notation for the mass flux. It should

be noted that the plume model used in this thesis will just be used in 2D for now (in line

with the previous chapters). This is mainly to showcase the possibility that adaptive mesh

refinement offers for the modeling of volcanic eruptive columns and easier implementation

in 2D compared to a full 3D model.

8.2 General overview of volcanic test cases

Following the approach from Suzuki et al. (2005), in general, the domain is chosen in such

a way that the symmetry of the (Cartesian) 2D setup is used. Since a (Cartesian) 2D

plume model basically models a line volcano, the flow is axisymmetric (with respect to

the vertical axis) which allows to model just one half of the volcanic eruption. As a result,

the volcano is chosen to be placed at the bottom left-hand corner of the domain which

corresponds to the origin. At the volcanic vent, the necessary quantities (see previous

section) are given as constant inflow conditions.

The vertical axis or axis of the flow which corresponds with the left boundary of the domain

is prescribed with a no-flux/free-slip boundary condition to preserve the symmetry of the

flow.

Differing from Suzuki et al. (2005), the bottom boundary (other than the volcanic vent) is

prescribed with a no-slip boundary condition while the top and right boundaries are also
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set up to be Dirichlet boundary conditions.

For the no-slip boundary, all variables on the one side of the boundary q+ are set to the

values on the other side q− except for the velocities (and consequently the momenta) which

are set to 0.

For the Dirichlet boundary, the boundary values are the initial conditions for Section 7.1.

Regarding the different numerical bases, the plume model has been implemented in both

StormFlash, as well as deal.II. Unfortunately, at the time of writing this thesis, a bug

within deal.II occurred, which did not allow for adaptive mesh refinement for the array

structure for which the CFD approach with deal.II step-67 was implemented. Conse-

quently, no adaptive runs will be shown for deal.II. For all simulations with just air, the

CPU times that will be given were performed on an Intel Core i7-7500U. For the simula-

tions with water vapor, an Intel i5-8350U was used as well. It should be noted that the

CPU times for the run with deal.II will not be provided. The CPU times just serve as a

way to calculate speed up for the adaptive mesh refinement cases, which is not necessary

for the case with deal.II.

In total, four test cases will be used:

• A volcanic jet where the erupted material is comprised of dry air that has the same

temperature as the surrounding atmosphere,

• a volcanic jet where the erupted material is comprised of hot dry air,

• a volcanic jet where hot water vapor is erupted,

• a volcanic plume that is comprised of hot water vapor and ash.

With each setup, the implementation will be improved incrementally. Consequently, ways

to solve issues that occur will often be implemented in conjunction with making the setup

more complicated (but also realistic).

8.3 Volcanic jet without water vapor and ash

For the first test case, the neutrally stratified atmosphere from Section 7.1 is used as

a basis (with the exception that Pref = 101325 Pa) with just air being erupted from the

volcano. Hence, no water vapor or solids are erupted and ξ = 0 everywhere.

As previously mentioned, a volcanic vent is added in the bottom left corner. The domain

extends 10 km in each direction, respectively, and the vent has a radius of 625 m. For

this test case, the maximum simulation length tmax is set to be 50 s. For this simplified

volcanic jet, only the vertical exit velocity and temperature have to be provided. The exit

velocity is set to w0 = 275 m s−1 while the temperature will be set to the same as the

atmospheric air such that Tm = Tref = 300 K for the first jet case and Tm = 1053 K for the

second jet case.
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Most of those parameters are taken from the strong plume test case from Costa et al.

(2016). As will be roughly estimated later in this section, the plume height would be

much larger than the domain size. For this reason especially, the maximum simulation

length is chosen to be 50 s as to just simulate the initial phase of a volcanic setup. Conse-

quently, the plume or jet does not reach large heights and as a result, no boundary effects

from the right or top boundaries on the eruptive column occur.

The idea of this first test case is to show the general behavior of the fluid flow and analyze

the adaptive mesh refinement for a simple case first before a ”full” volcanic setup is used.

For the following runs, the finest resolution will be set to 39.0625 m. In the case of uni-

form calculations, this is both the vertical and horizontal resolution while in the adaptive

case, the resolution can range from ∆finest = 39.0625 m to ∆coarsest = 625 m. All of these

simulations are run with a time step size constraint due to the CFL number which is set

to 0.015. This small CFL number is chosen to ensure stability also for higher stiffness due

to the more complex problem with the volcanic setups.

Initially, while running adaptive test cases for StormFlash, runs were performed where

no coarsening was used. Unfortunately, these runs became unstable after several seconds

of simulated time. These instabilities are likely caused by incorrect values for quantities

(density and velocities) close to the vent. One way to solve these issues was to switch to

different boundary conditions for the bottom edge of the domain (which represents the

ground). This approach was used for the jet where the jet temperature is the same as for

the surrounding atmosphere.

Another idea on how to deal with the instabilities close to the vent is to use a dampening

factor fdamp close to the outer rim of the volcanic vent to enable a smooth transition from

all ejected quantities to the atmospheric ones and have a less pronounced discontinuity at

the junction from volcanic vent to ground. The following dampening factor is used:

fdamp = sin(π∣x − rv ∣
2Ldamp

) , (68)

where x ∈ Γvent are the coordinates for the nodes that make up the volcanic vent, rv is

the radius of the vent (625 m) and Ldamp is the length over which the quantities are

dampened (which is set to 200 m). Consequently, the dampening factor is applied for

x ∈ [425 m, 625 m]. It should be noted that using such a dampening factor reduces the

mass flux at the vent compared to a discontinuous profile, if nothing else is changed (such

as vent radius, for example).

With these implementations (different boundary conditions and/or including a dampening

factor), adaptive runs with coarsening are stable.
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Without the dampening factor, the mass flux for three-dimensional plumes can be calcu-

lated via:

Mf = ρm,0w0πr
2
v . (69)

Even though this is not realistic for this plume model (since it is two-dimensional), this

would lead to a mass flux of roughly 3.97 ⋅ 108 kg s−1 with the parameters for the jet with

the same temperature as the surrounding atmosphere, which in turn would lead to a jet

height of about 33.3 km and a mass flux of roughly 1.13 ⋅ 108 kg s−1 with corresponding

height of 24.3 km for the jet with hot air. Since this plume model is just 2D, this plume

height is just a very rough estimate, which is incorrect since the mass flux and plume

height estimations rely on the three-dimensionality of the problem. However, this shows

that a plume (and jet) should not collapse at very low heights.

Regarding the figures for the jets/plumes, only the plots for deal.II will be explicitly labeled

as such, all other plots will feature results obtained with StormFlash. The results for the

uniform runs will be shown in the next sections while most plots for the adaptive runs can

be found in Appendix E (for readability).

8.3.1 Results for deal.II

As already mentioned, no adaptive runs could be performed with deal.II due to problems

within the library. Hence, only the results for a uniform run will be shown.

The detailed results can be found in Appendix D, while Figure 26 shows the density

after tmax. The plot shows that the jet basically collapses after reaching a height of ap-

proximately 2 km despite having a large vertical momentum. This behavior is not an

expected behavior of a jet that exits the vent with a velocity of 275 m s−1 and has a mass

flux of about 3.97 ⋅ 108 kg s−1 which should results in jet heights of several kilometers at

least (even if the 33.3 km approximation from Equation 67 is not precise for a 2D model).

This incorrect behavior might be a result of a missing stabilization scheme and is in line

with the results for the warm air bubble test case, where the simulations with deal.II

differed from the reference solution. Additionally, since deal.II does not allow for correct

adaptive mesh refinement as of the time of writing this thesis (at least for the approach

used in deal.II step-67), deal.II will not be used for the purpose of modeling volcanic erup-

tions until this issues have been addressed.

8.3.2 Results for StormFlash

For the test case with StormFlash, both uniform and adaptive simulations are run. These

simulations are set up as stated earlier.
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Figure 26: Density for the uniform run of the volcanic jet without water vapor and ash

with the same temperature as the surrounding atmosphere for deal.II after 50 seconds of

simulated time. The colorbar shows values in kg m−3. As the plot shows, the jet reaches

a maximum height of around 2 km and then collapses.

Jet with Tm = Tref = 300 K

As stated in Section 8.3, instabilities start to develop. These instabilities bear resem-

blance to Kelvin-Helmholtz instabilities and seem to appear at the boundary between

volcanic vent and ground and are transported along the trajectory of the jet. Interest-

ingly, these instabilities are also somewhat similar to von Kármán vortex streets rising

from where the quantities above the junction from volcanic vent to ground appear to have

discontinuities.

As previously mentioned, different boundary conditions for the bottom boundary which

represents the ground are used. The uniform results for the no-slip boundary are presented

in Figure 27, Figure 28, Figure 29 and Figure 30 while the results for the Dirichlet

boundary are shown in Figure 31, Figure 32, Figure 33 and Figure 34.

These figures show that the jet starts to develop large vortex structures which reach a

height of roughly 3000 m after tmax is reached. The plots also suggest that if the sim-

ulation were to keep on running the jet would keep on rising due to the large vertical

momentum and no sign of collapse, as in the deal.II run. With a mass flux of 3.97 ⋅ 108

kg s−1, the jet should reach an approximate height of 33.3 km so a continued ascent of
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the jet would be realistic. In the future, simulations with larger domain and thus longer

simulation will be performed to verify this behavior.

Regarding the adaptivity, in this scope, the following combinations of tolerances for re-

finement σref and coarsening σcoarse are used, respectively:

• Case A: σref = 0.01, σcoarse = 0.005, no-slip boundary;

• Case B: σref = 0.001, σcoarse = 0.0005, no-slip boundary;

• Case C: σref = 0.01, σcoarse = 0.005, Dirichlet boundary.

Regarding the refinement and coarsening, the procedure as presented in Section 3.3.2 is

used. For Case A and Case B, the error indicator e is set to be the gradient of the vertical

momentum such that e = ∇(ρw). For Case C, the error indicator is switched to be the

maximum of the gradient of either of the momenta such that e = max ∣∇(ρu)∣.
The results for these cases are presented in Appendix E.

For Case C, the switch in boundary conditions was necessary as to enable runs with better

setups for the initial mesh. With the adaptive simulations for Case A and Case B (see

Appendix E), the initial grid was not refined around the vent region until roughly one

second of simulated time. Consequently, the results after tmax look different due to the

non-linearity of the equation set.

The idea for Case C then was to ensure a region close to the vent was refined to the

finest resolution. In this case, this region was chosen to be a square with side length 625

m (which is the vent radius) directly above the vent. Without the switch in boundary

conditions, the adaptive results became unstable after a certain amount of time (which

differed depending on the parameters for grid refinement).

Table 10 shows the CPU times for the uniform runs for the setups where the volcanic jet

has the same temperature as the surrounding atmosphere. As the table shows, both Case

B and C have a speed of factor of about 8 which is quite substantial. However, it should

be noted that the adaptive results after tmax differ from those obtained with the uniform

simulation. This is due to the initial adaptive mesh being not refined enough in regions

where high resolution would be required (e.g. regions directly above the volcanic vent).

Consequently, a mismatch between small and large scale effects leads to different results

down the line due the non-linearity of the equation set. Figure 35 shows the comparison

between the adaptive and the uniform simulations for the no-slip boundary for the ground

while Figure 36 shows the comparison between the adaptive and the uniform simulations

for the Dirichlet boundary for the ground. In both figures, just the horizontal momentum

is shown since this is the variable that presents the difference between the runs the best.

All three adaptive cases show a distinct mismatch with the uniform simulations which is

due to the already mentioned effects within the (initial) grid. Both for Case A and Case C,

the grids also do not capture the complete structure of the jet in the top regions. Since the
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Table 10: CPU times for all setups for the volcanic jet without water vapor and ash with

Tm = Tref = 300 K. Additionally, the percentage of the CPU time of the uniform runs is

provided, as well as speed up and the refinement/coarsening tolerances.

boundary type

for the ground
CPU time [s]

percentage of

uniform run
speed up σref σcoarse

no-slip

uniform 158800

Case A 19660 12.380 8.078 0.01 0.005

Case B 84590 53.268 1.877 0.001 0.0005

Dirichlet
uniform 164100

Case C 20310 12.380 8.078 0.01 0.005

adaptive results differ from the uniform ones, the mesh refinement needs to be adjusted.

This will be done within the next test case setup (volcanic jet with just hot air).
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Figure 27: Density for the uniform run of the volcanic jet without water vapor and ash

with the same temperature as the surrounding atmosphere with no-slip boundary for

the ground. The plots are shown for 0 (top-left), 10 (top-right), 20 (mid-left), 30 (mid-

right), 40 (bottom-left) and 50 (bottom-right) seconds of simulated time. The colorbar

shows values in kg m−3. The plots show the development of an acoustic wave that travels

through and leaves the domain after 30 seconds. With time, an area of lower density

develops which is roughly centered at (2000 m, 3000 m) after tmax is reached. Effects

which are similar to Kelvin-Helmholtz instabilities occur along the path which appears to

be the trajectory of the air parcels that make up the large eddy structure.
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Figure 28: Horizontal momentum for the uniform run of the volcanic jet without water

vapor and ash with the same temperature as the surrounding atmosphere with no-slip

boundary for the ground. The plots are shown for 0 (top-left), 10 (top-right), 20 (mid-

left), 30 (mid-right), 40 (bottom-left) and 50 (bottom-right) seconds of simulated time.

The colorbar shows values in kg m−2 s−1. The plots show the development of an acoustic

wave that travels through and leaves the domain after 30 seconds. With time, areas of

high and low (negative) momentum, respectively, develop which are situated around a

center that is roughly located at (2000 m, 3000 m) after tmax is reached. Effects which

are similar to Kelvin-Helmholtz instabilities occur along the path which appears to be the

trajectory of the air parcels that make up the large eddy structure.
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Figure 29: Vertical momentum for the uniform run of the volcanic jet without water vapor

and ash with the same temperature as the surrounding atmosphere with no-slip boundary

for the ground. The plots are shown for 0 (top-left), 10 (top-right), 20 (mid-left), 30 (mid-

right), 40 (bottom-left) and 50 (bottom-right) seconds of simulated time. The colorbar

shows values in kg m−2 s−1. The plots show the development of an acoustic wave that

travels through and leaves the domain after 30 seconds. With time, areas of high and

low (negative) momentum, respectively, develop which are situated around a center that

is roughly located at (2000 m, 3000 m) after tmax is reached. Effects which are similar to

Kelvin-Helmholtz instabilities occur along the path which appears to be the trajectory of

the air parcels that make up the large eddy structure.
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Figure 30: Energy density for the uniform run of the volcanic jet without water vapor and

ash with the same temperature as the surrounding atmosphere with no-slip boundary for

the ground. The plots are shown for 0 (top-left), 10 (top-right), 20 (mid-left), 30 (mid-

right), 40 (bottom-left) and 50 (bottom-right) seconds of simulated time. The colorbar

shows values in J m−3. The plots show the development of an acoustic wave that travels

through and leaves the domain after 30 seconds. With time, an area of lower energy

density develops which is roughly centered at (2000 m, 3000 m) after tmax is reached.

Effects which are similar to Kelvin-Helmholtz instabilities occur along the path which

appears to be the trajectory of the air parcels that make up the large eddy structure.
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Figure 31: Density for the uniform run of the volcanic jet without water vapor and ash

with the same temperature as the surrounding atmosphere with Dirichlet boundary for

the ground. The plots are shown for 0 (top-left), 10 (top-right), 20 (mid-left), 30 (mid-

right), 40 (bottom-left) and 50 (bottom-right) seconds of simulated time. The colorbar

shows values in kg m−3. The plots show the development of an acoustic wave that travels

through and leaves the domain after 30 seconds. With time, an area of lower density

develops which is roughly centered at (2000 m, 3000 m) after tmax is reached. Effects

which are similar to Kelvin-Helmholtz instabilities occur along the path which appears to

be the trajectory of the air parcels that make up the large eddy structure.
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Figure 32: Horizontal momentum for the uniform run of the volcanic jet without water

vapor and ash with the same temperature as the surrounding atmosphere with Dirichlet

boundary for the ground. The plots are shown for 0 (top-left), 10 (top-right), 20 (mid-left),

30 (mid-right), 40 (bottom-left) and 50 (bottom-right) seconds of simulated time. The

colorbar shows values in kg m−2 s−1. The plots show the development of an acoustic wave

that travels through and leaves the domain after 30 seconds. With time, areas of high and

low (negative) momentum, respectively, develop which are situated around a center that

is roughly located at (2000 m, 3000 m) after tmax is reached. Effects which are similar to

Kelvin-Helmholtz instabilities occur along the path which appears to be the trajectory of

the air parcels that make up the large eddy structure.
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Figure 33: Vertical momentum for the uniform run of the volcanic jet without water

vapor and ash with the same temperature as the surrounding atmosphere with Dirichlet

boundary for the ground. The plots are shown for 0 (top-left), 10 (top-right), 20 (mid-left),

30 (mid-right), 40 (bottom-left) and 50 (bottom-right) seconds of simulated time. The

colorbar shows values in kg m−2 s−1. The plots show the development of an acoustic wave

that travels through and leaves the domain after 30 seconds. With time, areas of high and

low (negative) momentum, respectively, develop which are situated around a center that

is roughly located at (2000 m, 3000 m) after tmax is reached. Effects which are similar to

Kelvin-Helmholtz instabilities occur along the path which appears to be the trajectory of

the air parcels that make up the large eddy structure.
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Figure 34: Energy density for the uniform run of the volcanic jet without water vapor and

ash with the same temperature as the surrounding atmosphere with Dirichlet boundary

for the ground. The plots are shown for 0 (top-left), 10 (top-right), 20 (mid-left), 30 (mid-

right), 40 (bottom-left) and 50 (bottom-right) seconds of simulated time. The colorbar

shows values in J m−3. The plots show the development of an acoustic wave that travels

through and leaves the domain after 30 seconds. With time, an area of lower energy

develops which is roughly centered at (2000 m, 3000 m) after tmax is reached. Effects

which are similar to Kelvin-Helmholtz instabilities occur along the path which appears to

be the trajectory of the air parcels that make up the large eddy structure.
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Figure 35: Comparison between uniform and adaptive runs for the volcanic jet without

water vapor and ash with the same temperature as the surrounding atmosphere with no-

slip boundary for the ground. On the left, the horizontal momentum is shown after tmax

while the right shows the corresponding grid. The colormap is setup just as in the previous

(uniform) figures. The top rows shows the uniform results, the middle row the results for

Case A and the bottom row shows the results for Case B. The adaptive plots differ visually

from the uniform plots with different behavior regarding the instabilities.
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Figure 36: Comparison between uniform and adaptive runs for the volcanic jet without

water vapor and ash with the same temperature as the surrounding atmosphere with

Dirichlet boundary for the ground. On the left, the horizontal momentum is shown after

tmax while the right shows the corresponding grid. The colormap is setup just as in the

previous (uniform) figures. The top rows shows the uniform results and the bottom row

shows the results for Case C. For the adaptive run, the instabilities are less pronounced

in the upper part of the jet. The grid is not refined to capture the whole jet structure.
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Jet with Tm = 1053 K

For this setup, the dampening factor that was introduced earlier is applied to all quanti-

ties at the vent. As a result, the results from the simulations no longer show instabilities

reminiscent of Kelvin-Helmholtz instabilities within the jet.

Because of improved stability, Dirichlet boundary conditions are used for the ground for

all simulations for this test case.

Another issue within this scope is that physically unrealistic densities have to be tackled.

Within several seconds of the simulation, a vacuum within a forming vortex would develop

which is due to the scheme not having diffusion or viscosity. While the approach for other

numerical implementations - as for example the one with SK-3D - might not lead to such

problems, the approach with how the DGM is implemented within StormFlash leads to a

scheme that does not provide enough numerical diffusion, for example.

The lack of friction within the system then leads to a cascade where the densities get very

low which in turn leads to very high velocities that again influences time step sizes, for

example.

Consequently, an idea on how to deal with these low density is needed. As a very heuristic

and almost trivial approach, the quantities get limited to a certain range so that this ap-

proach basically works like a filter. Limiting the quantities obviously raises the question

where they should be cut-off. As a simple approach, a low to medium vacuum is assumed

which ranges from atmospheric pressure to 10−2 Torr which would correspond to about

1.33 Pa (Roth, 2012). As first, rather arbitrary value, a pressure of 15000 Pa (for a low

vacuum) is used to calculate the corresponding vacuum density ρv that would occur within

dry air and the jet temperature of Tm = 1053 K. Using the ideal gas law, ρv ≈ 0.05 kg

m−3 is obtained. In addition, to ensure stable simulations, the energy is limited to be

positive and the momenta are set up to lie between ±1500 kg m−2 s−1 to somewhat limit

the maximum velocities that can occur.

Figure 37, Figure 38, Figure 39 and Figure 40 show the plots for the uniform run.

These plots clearly show the vertical rise of the volcanic jet. Compared to the previous

setups, the jet rises higher within the simulated 50 seconds which is to be expected. Again,

the plots for the adaptive runs are presented in Appendix E.

For the adaptive setups, the same error indicator as in Case C is used (which is the max-

imum gradient for the momenta). In addition to the refinement carried out due to the

refinement criteria, for these cases, extra layers of refined cells are added that the most

refined region is extended to allow to better capture the areas of interest (where the gra-

dients are higher).
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Figure 37: Density for the uniform run of the volcanic jet without water vapor and ash

with Tm = 1053 K. The plots are shown for 0 (top-left), 10 (top-right), 20 (mid-left),

30 (mid-right), 40 (bottom-left) and 50 (bottom-right) seconds of simulated time. The

colorbar shows values in kg m−3. The plots show the development of an acoustic wave

that travels through and leaves the domain after 30 seconds. The jet of low density rises

upwards from the vent whose highest point reaches a height of roughly 6 km while a

portion of the jet also spreads out horizontally.
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Figure 38: Horizontal momentum for the uniform run of the volcanic jet without water

vapor and ash with Tm = 1053 K. The plots are shown for 0 (top-left), 10 (top-right), 20

(mid-left), 30 (mid-right), 40 (bottom-left) and 50 (bottom-right) seconds of simulated

time. The colorbar shows values in kg m−2 s−1. The plots show the development of an

acoustic wave that travels through and leaves the domain after 30 seconds. The jet rises

upwards from the vent whose highest point reaches a height of roughly 6 km while a

portion of the jet also spreads out horizontally.
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Figure 39: Vertical momentum for the uniform run of the volcanic jet without water vapor

and ash with Tm = 1053 K. The plots are shown for 0 (top-left), 10 (top-right), 20 (mid-

left), 30 (mid-right), 40 (bottom-left) and 50 (bottom-right) seconds of simulated time.

The colorbar shows values in kg m−2 s−1. The plots show the development of an acoustic

wave that travels through and leaves the domain after 30 seconds. The jet rises upwards

from the vent whose highest point reaches a height of roughly 6 km while a portion of the

jet also spreads out horizontally.
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Figure 40: Energy density for the uniform run of the volcanic jet without water vapor and

ash with Tm = 1053 K. The plots are shown for 0 (top-left), 10 (top-right), 20 (mid-left),

30 (mid-right), 40 (bottom-left) and 50 (bottom-right) seconds of simulated time. The

colorbar shows values in J m−3. The plots show the development of an acoustic wave that

travels through and leaves the domain after 30 seconds. The jet rises upwards from the

vent whose highest point reaches a height of roughly 6 km while a portion of the jet also

spreads out horizontally.
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Table 11: CPU times for all setups for the volcanic jet without water vapor and ash

with Tm = Tref = 1053 K. Additionally, the percentage of the CPU time of the uniform

runs is provided, as well as speed up, the refinement/coarsening tolerances and additional

refinement layers.

CPU time [s]
percentage of

uniform run
speed up σref σcoarse

additional layers

of refinement

uniform 303700

Case D 183900 60.553 1.651 0.01 0.005 3

Case E 175400 57.754 1.731 0.01 0.01 2

The following cases are used:

• Case D: σref = 0.01, σcoarse = 0.005, 3 extra layers of refined cells;

• Case E: σref = 0.01, σcoarse = 0.01, 2 extra layers of refined cells.

For the adaptive cases, similar to the previous setup, a square area directly above the

vent is refined to the highest spatial resolution. In this case however, the square has a

side-length of 1000 m (instead of 625 m).

As Table 11 shows, the adaptive cases for the jet with hot air has a much smaller speed

up (with factors of 1.651 and 1.731, respectively) than the previous case where the jet has

the same temperature as the surrounding atmosphere (where the factors are 8.078 and

1.877, respectively). This is due to the fact that the adaptive grid is refined much more

compared to the previous case. While the speed up is smaller, the simulations with the

adaptive grid resemble the uniform solutions which, ultimately, is the desired result which

is still achieved much faster than the uniform solution.

Figure 41 shows the comparison between horizontal momentum for the uniform run,

Case D and Case E. As previously mentioned, the adaptive results resemble the uniform

results. Just as previously, the horizontal momentum is used for the comparisons because

deviations are most visible in this variable. While there are minimal deviations between

the adaptive and uniform results, this is likely explained with the non-linearity of the

equation set. Compared to the jet where Tm = 300 K, however the deviations between the

adaptive and uniform run are negligible for this case of hot air. Since Case D and Case

E do not really differ drastically, using the setup that has the better speed up factor is

more advantageous. Consequently, for this jet setup, a minimum speed up factor of at

least 1.731 can be expected.
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Figure 41: Comparison between uniform and adaptive runs for the volcanic jet without

water vapor and ash with Tm = 1053 K. On the left, the horizontal momentum is shown

after tmax while the right shows the corresponding grid. The colormap is setup just as

in the previous (uniform) figures. The top rows shows the uniform results, the middle

row shows the results for Case D and the bottom row shows the results for Case E. The

adaptive results resemble the uniform closely while there are minimal deviations. The

adaptive grid fully captures the jet.

p. 87 of 188



8 PLUME MODEL

8.4 Volcanic jet with water vapor but without ash

For this setup, most of the previous case without water vapor and ash is taken over with

the only exception being that the erupted material mass fraction ξ is set to one. For this

case, the fraction of erupted gas at the vent ξg0 is set to 1 since no ash will be erupted

for this setup. In the following, two different limits for the density will be used. The

limiting/filtering for the simulation will be performed as previously but with this setup,

the density will be cut off at 0.05 kg m−3 on the one hand, while it will be cut off at 0.1

kg m−3 on the other hand.

The results for this setup are obtained using an Intel i5-8350U CPU (instead of an Intel

Core i7-7500U).

Limit 1: density limited at 0.05 kg m−3

Figure 42, Figure 43, Figure 44, Figure 45 and Figure 46 show the results for the

uniform run for Limit 1.

As these figures show, the results look different if the erupted material is comprised of wa-

ter vapor instead of (dry) air. The water vapor-air mixture for Limit 1 spreads out over

a larger area than the results for dry air. Interestingly, the plots show the development of

shock fronts after 40 seconds. This is likely caused by very high velocities (about 900 m

s−1) which are physically implausible and is probably a result of the lack of diffusion - be

that large numerical or physical diffusion. Apart from that, the behavior of the erupted

cloud seems plausible.

For the adaptive runs, several combinations of criteria are used with the error indicator

being the same as before (e = max ∣∇(ρu)∣). Unfortunately, for this setup, the error

indicator is not a good choice since for some reason, the adaptivity does not really work

that well and runs sometimes become either unstable or the grid remains almost constant

throughout the run (similar to Case C). The runs are stable for two setups where the

coarsening was disabled and the refinement criterion σref was set to 0.001. The setups

differ in the additional layers of refinement that are added but in the end, after roughly

4 seconds of simulated time, no further grid refinement is performed. Consequently, only

one case will be shown here:

• Case F: σref = 0.001, no coarsening, 20 layers of refined cells.

The comparison between uniform and adaptive run for Limit 1 are shown in Figure 47

while the CPU times and speed up are shown in Table 12. The adaptive results are, as

per usual, shown in Appendix E While a calculation of speed up is possible, in this case,

it is not really of use since the adaptive results do not capture the volcanic jet because

parts of the plume have resolution where the grid has its coarsest possible resolution (625

m), similar to Case C. The results show that for a more realistic setup (such as this jet

with water vapor), a better refinement criterion is required.
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Figure 42: Density for the uniform run of the volcanic jet with water vapor and no ash

with Tm = 1053 K (Limit 1). The plots are shown for 0 (top-left), 10 (top-right), 20 (mid-

left), 30 (mid-right), 40 (bottom-left) and 50 (bottom-right) seconds of simulated time.

The colorbar shows values in kg m−3. The plots show the development of an acoustic

wave that travels through and leaves the domain after 30 seconds. The jet of low density

rises upwards from the vent whose highest point reaches a height of roughly 5 km while

a portion of the jet also spreads out horizontally. After 40 seconds, the development of

shock fronts around the jet is observable.
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Figure 43: Horizontal momentum for the uniform run of the volcanic jet with water vapor

and no ash with Tm = 1053 K (Limit 1). The plots are shown for 0 (top-left), 10 (top-right),

20 (mid-left), 30 (mid-right), 40 (bottom-left) and 50 (bottom-right) seconds of simulated

time. The colorbar shows values in kg m−2 s−1. The plots show the development of an

acoustic wave that travels through and leaves the domain after 30 seconds. The jet rises

upwards from the vent whose highest point reaches a height of roughly 5 km while a

portion of the jet also spreads out horizontally. After 40 seconds, the development of

shock fronts around the jet is observable.
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Figure 44: Vertical momentum for the uniform run of the volcanic jet with water vapor and

no ash with Tm = 1053 K (Limit 1). The plots are shown for 0 (top-left), 10 (top-right),

20 (mid-left), 30 (mid-right), 40 (bottom-left) and 50 (bottom-right) seconds of simulated

time. The colorbar shows values in kg m−2 s−1. The plots show the development of an

acoustic wave that travels through and leaves the domain after 30 seconds. The jet rises

upwards from the vent whose highest point reaches a height of roughly 5 km while a

portion of the jet also spreads out horizontally. After 40 seconds, the development of

shock fronts around the jet is observable.
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Figure 45: Energy density for the uniform run of the volcanic jet with water vapor and

no ash with Tm = 1053 K (Limit 1). The plots are shown for 0 (top-left), 10 (top-right),

20 (mid-left), 30 (mid-right), 40 (bottom-left) and 50 (bottom-right) seconds of simulated

time. The colorbar shows values in J m−3. The plots show the development of an acoustic

wave that travels through and leaves the domain after 30 seconds. The jet rises upwards

from the vent whose highest point reaches a height of roughly 5 km while a portion of

the jet also spreads out horizontally. After 40 seconds, the development of shock fronts

around the jet is observable.
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Figure 46: Mass fraction ξ of erupted material for the uniform run of the volcanic jet

with water vapor and no ash with Tm = 1053 K (Limit 1). The plots are shown for 0

(top-left), 10 (top-right), 20 (mid-left), 30 (mid-right), 40 (bottom-left) and 50 (bottom-

right) seconds of simulated time. The colorbar shows values in J m−3. The plots show

the development of an acoustic wave that travels through and leaves the domain after

30 seconds. The jet rises upwards from the vent whose highest point reaches a height of

roughly 5 km while a portion of the jet also spreads out horizontally.
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Table 12: CPU times for the volcanic jet with water vapor and no ash with Tm = Tref = 1053

K (Limit 1). Additionally, the percentage of the CPU time of the uniform runs is provided,

as well as speed up, the refinement/coarsening tolerances and additional refinement layers.

Note that the values are obtained using an Intel i5-8350U CPU.

CPU time [s]
percentage of

uniform run
speed up σref σcoarse

additional layers

of refinement

uniform 285500

Case F 18410 6.448 15.508 0.001 - 20

Limit 2: density limited at 0.1 kg m−3

Figure 48, Figure 49, Figure 50, Figure 51 and Figure 52 show the results for the

uniform run for Limit 2.

The plots show similar behavior to Limit 1 as the development of the water vapor jet is

similar. While some areas exhibit deviations if the results are studied in detail, the gen-

eral shape of the clouds that the jets produce are comparable qualitatively. However, the

occurrence and development of shock fronts for Limit 2 seems to be not as pronounced

as for Limit 1. Still, shock appear for Limit 2 as the velocities are too large in certain

areas which is physically implausible.

For the adaptive setups, the previous error indicator is changed since Limit 1 showed that

the maximum of the gradient of the momenta was not well suited. Since the jet with water

vapor is set up to have mass fraction of ejected material ξ that is larger than 0, an idea

for tracking the jet correctly with adaptive meshes is to use the mass fraction as indicator

since regions where ξ is larger than 0 mark regions where the jet is present. For that, two

cases - Case G and Case H - are used. In both cases, the grid is refined if ρξ > 0.2, while

additionally, e = ∇(ρξ) is used as error indicator for Case G while e = ∇(ξ) is the error

indicator for Case H. Regarding the tolerances, Case G and Case H are set up as follows:

• Case G: σref = 0.75, σcoarse = 0.0001, 8 layers of refined cells.

• Case H: σref = 0.1, σcoarse = 0.05, 8 layers of refined cells.

This setup for the adaptive mesh refinement very quickly refines the grids for both cases.

Interestingly, the grid is quickly refined very finely in regions where the jet is not present

at all. While an initial worry was that the mesh refinement would not track the acoustic

wave, this behavior is not observed for the grid. This results, however, in a rather large

computational time. Still, a speed ups of about 1.8 (Case G) and 1.7 (Case H) are achieved,

as can be seen in Table 13.
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Figure 47: Comparison between uniform and adaptive runs for the volcanic jet with water

vapor and no ash with Tm = 1053 K (Limit 1). On the left, the mass fraction ξ is shown

after tmax while the right shows the corresponding grid. The colormap is setup just as in

the previous (uniform) figures. The top rows shows the uniform results and the bottom

row shows the results for Case F. The adaptive results differ from the uniform results since

the grid does not capture the jet fully.
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Table 13: CPU times for the volcanic jet with water vapor and no ash with Tm = Tref = 1053

K (Limit 2). Additionally, the percentage of the CPU time of the uniform runs is provided,

as well as speed up, the refinement/coarsening tolerances and additional refinement layers.

CPU time [s]
percentage of

uniform run
speed up σref σcoarse

additional layers

of refinement

uniform 285500

Case G 158500 55.517 1.801 0.75 0.0001 8

Case H 164600 57.653 1.735 0.1 0.05 8

Figure 53 shows the comparison between the uniform and adaptive runs. The results

from Case H resemble the uniform results better than the results from Case G because

the mesh for Case G has coarser regions close to the jet. Still, both adaptive cases do not

match the uniform results completely which is a similar result to the jet with hot air. The

non-linearity of the equation set can lead to different results if the grid for the adaptive

cases is not as finely refined as it would be in the uniform run. However, qualitatively, the

results from the adaptive runs compare to the ones from the uniform run.

8.5 Volcanic plume which includes water vapor and ash

For the plume test case, all of the parameters from Limit 2 from the previous jet with

water vapor are used, with the only exception that now, the fraction of erupted gas at the

vent ξg0 is set to a quantity other than 1.

The first tries for more realistic volcanic plumes with large ash content (over 90% of ash)

did not yield stable results, so the idea was to increase the ash content in the eruption with

each consecutive setup. For this, first a plume with a mass fraction of 25% ash, 75% water

vapor was run, followed by a simulation with 50% ash, 50% water vapor. Unfortunately,

in both cases the simulation did not yield very plausible results. While the simulations

are stable, the results - especially for the density - after tmax = 50 s do not seem realistic,

with the maximum density being about 1150 kg m−3 and 780 kg m−3, respectively. Addi-

tionally, the other variables exhibit behavior that does not seem physically plausible.

Figure 54 presents the mass fraction after tmax for both plumes which shows the physi-

cally implausible results. Due to this implausibility, no other results from these runs will

be shown.

Since the densities for both these plumes have very large maxima, similar to the previous

jet test cases, the idea for a very primitive approach arose to just give an upper limit
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Figure 48: Density for the uniform run of the volcanic jet with water vapor and no ash

with Tm = 1053 K (Limit 2). The plots are shown for 0 (top-left), 10 (top-right), 20 (mid-

left), 30 (mid-right), 40 (bottom-left) and 50 (bottom-right) seconds of simulated time.

The colorbar shows values in kg m−3. The plots show the development of an acoustic

wave that travels through and leaves the domain after 30 seconds. The jet of low density

rises upwards from the vent whose highest point reaches a height of roughly 5 km while

a portion of the jet also spreads out horizontally. After 40 seconds, the development of

shock fronts around the jet is observable.
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Figure 49: Horizontal momentum for the uniform run of the volcanic jet with water vapor

and no ash with Tm = 1053 K (Limit 2). The plots are shown for 0 (top-left), 10 (top-right),

20 (mid-left), 30 (mid-right), 40 (bottom-left) and 50 (bottom-right) seconds of simulated

time. The colorbar shows values in kg m−2 s−1. The plots show the development of an

acoustic wave that travels through and leaves the domain after 30 seconds. The jet rises

upwards from the vent whose highest point reaches a height of roughly 5 km while a

portion of the jet also spreads out horizontally. After 40 seconds, the development of

shock fronts around the jet is observable.
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Figure 50: Vertical momentum for the uniform run of the volcanic jet with water vapor and

no ash with Tm = 1053 K (Limit 2). The plots are shown for 0 (top-left), 10 (top-right),

20 (mid-left), 30 (mid-right), 40 (bottom-left) and 50 (bottom-right) seconds of simulated

time. The colorbar shows values in kg m−2 s−1. The plots show the development of an

acoustic wave that travels through and leaves the domain after 30 seconds. The jet rises

upwards from the vent whose highest point reaches a height of roughly 5 km while a

portion of the jet also spreads out horizontally. After 40 seconds, the development of

shock fronts around the jet is observable.
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Figure 51: Energy density for the uniform run of the volcanic jet with water vapor and

no ash with Tm = 1053 K (Limit 2). The plots are shown for 0 (top-left), 10 (top-right),

20 (mid-left), 30 (mid-right), 40 (bottom-left) and 50 (bottom-right) seconds of simulated

time. The colorbar shows values in J m−3. The plots show the development of an acoustic

wave that travels through and leaves the domain after 30 seconds. The jet rises upwards

from the vent whose highest point reaches a height of roughly 5 km while a portion of

the jet also spreads out horizontally. After 40 seconds, the development of shock fronts

around the jet is observable.
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Figure 52: Mass fraction of erupted material for the uniform run of the volcanic jet with

water vapor and no ash with Tm = 1053 K (Limit 2). The plots are shown for 0 (top-left), 10

(top-right), 20 (mid-left), 30 (mid-right), 40 (bottom-left) and 50 (bottom-right) seconds

of simulated time. The colorbar shows values in J m−3. The plots show the development

of an acoustic wave that travels through and leaves the domain after 30 seconds. The jet

rises upwards from the vent whose highest point reaches a height of roughly 5 km while a

portion of the jet also spreads out horizontally.
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Figure 53: Comparison between uniform and adaptive runs for the volcanic jet with water

vapor and no ash with Tm = 1053 K (Limit 2). On the left, the horizontal momentum

is shown after tmax while the right shows the corresponding grid. The colormap is setup

just as in the previous (uniform) figures. The top rows shows the uniform results, the

middle row shows the results for Case G and the bottom row shows the results for Case

H. The adaptive results resemble the uniform closely while there are minimal deviations.

The adaptive grids almost fully capture the jet but especially for case G some areas have

a coarser resolution.

p. 102 of 188



8 PLUME MODEL

Figure 54: Mass fraction for both unrealistic plumes after tmax. The plot on the left

shows the result for the plume with 50% ash, 50% water vapor, while the plot on the right

shows the result for the plume with 25% ash, 75% water vapor. In both cases, the ash-gas

mixture is spread out over a large part of the domain.

for the density as well so that in the end ρ ∈ [0.1,10] kg m−3. Figure 55, Figure 56,

Figure 57, Figure 58 and Figure 59 show the results for this plume run.

As these figures show, the plume starts to ascend into the atmosphere and the entrainment

of air after 20 seconds leads to a distribution of the erupted material which is character-

ized by very localized vortex/eddy structures. The behavior almost seems chaotic and

resembles vortex shedding for most variables except for maybe the density even though,

due to the equation set, the flow is set up to be inviscid.

The density, on the other hand, does not appear to have such a localized structure and

distributes more evenly. However, right at the boundary next to the volcanic vent and

above, the density increases drastically. For the plumes cases without upper bound for the

density, this is also the region where the density was largest. This leads to the conclusion

that in conjunction with a need for more diffusion within the scheme, the behavior at

the bottom boundary needs to be investigated. A primitive and temporary fix might be

to give an even stricter upper limit for the density which, however, does not tackle the

underlying issue of the implementation. Then again, this might allow for runs with larger

ash content to be stable.

Regarding the adaptive setup, the previous cases showed that the error indicators did not

capture the jets as precisely as expected. Consequently, for the plume setup, the mesh

refinement in this case is performed as follows:

• Case I: refine if ξ > 0.8, coarsen if ξ < 0.1, 15 layers of refined cells.

As usual, the results for the adaptive runs can be found in Appendix E. The refinement

strategy for Case I shows a great increase in speed up, as shown in Table 14, while the
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Figure 55: Density for the uniform run of the volcanic plume with Tm = 1053 K. The plots

are shown for 0 (top-left), 10 (top-right), 20 (mid-left), 30 (mid-right), 40 (bottom-left)

and 50 (bottom-right) seconds of simulated time. The colorbar shows values in kg m−3.

The plots show the development of an acoustic wave that travels through and leaves the

domain after 30 seconds. The jet of low density rises upwards from the vent whose highest

point reaches a height of roughly 5 km. Additionally, there are also portions of the plume

that spread out horizontally and that sink down. After 40 seconds, the development of

shock fronts around the jet is observable.

p. 104 of 188



8 PLUME MODEL

Figure 56: Horizontal momentum for the uniform run of the volcanic plume with Tm = 1053

K. The plots are shown for 0 (top-left), 10 (top-right), 20 (mid-left), 30 (mid-right), 40

(bottom-left) and 50 (bottom-right) seconds of simulated time. The colorbar shows values

in kg m−2 s−1. The plots show the development of an acoustic wave that travels through

and leaves the domain after 30 seconds. The jet rises upwards from the vent whose

highest point reaches a height of roughly 5 km while a portion of the jet also spreads

out horizontally. After 40 seconds, the development of shock fronts around the jet is

observable.
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Figure 57: Vertical momentum for the uniform run of the volcanic plume with Tm = 1053

K. The plots are shown for 0 (top-left), 10 (top-right), 20 (mid-left), 30 (mid-right), 40

(bottom-left) and 50 (bottom-right) seconds of simulated time. The colorbar shows values

in kg m−2 s−1. The plots show the development of an acoustic wave that travels through

and leaves the domain after 30 seconds. The jet rises upwards from the vent whose

highest point reaches a height of roughly 5 km while a portion of the jet also spreads

out horizontally. After 40 seconds, the development of shock fronts around the jet is

observable.
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Figure 58: Energy density for the uniform run of the volcanic plume with Tm = 1053 K. The

plots are shown for 0 (top-left), 10 (top-right), 20 (mid-left), 30 (mid-right), 40 (bottom-

left) and 50 (bottom-right) seconds of simulated time. The colorbar shows values in J

m−3. The plots show the development of an acoustic wave that travels through and leaves

the domain after 30 seconds. The jet rises upwards from the vent whose highest point

reaches a height of roughly 5 km while a portion of the jet also spreads out horizontally.

After 40 seconds, the development of shock fronts around the jet is observable.
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Figure 59: Mass fraction of erupted material for the uniform run of the volcanic jet with

water vapor and no ash with Tm = 1053 K (Limit 2). The plots are shown for 0 (top-left), 10

(top-right), 20 (mid-left), 30 (mid-right), 40 (bottom-left) and 50 (bottom-right) seconds

of simulated time. The colorbar shows values in J m−3. The plots show the development

of an acoustic wave that travels through and leaves the domain after 30 seconds. The jet

rises upwards from the vent whose highest point reaches a height of roughly 5 km while a

portion of the jet also spreads out horizontally.
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Table 14: CPU times for the volcanic plume with Tm = Tref = 1053 K. Additionally, the

percentage of the CPU time of the uniform runs is provided, as well as speed up, the

refinement/coarsening conditions and additional refinement layers.

CPU time [s]
percentage of

uniform run
speed up refine if coarsen if

additional layers

of refinement

uniform 440400

Case I 174400 39.600 2.525 ξ > 0.8 ξ < 0.1 15

results for the adaptive run differs somewhat to the uniform results (see Figure 60). Yet

again, the adaptive results are qualitatively comparable to the ones obtained with the

uniform setup, which makes this refinement a good option as runs performed with this

setup are sped up significantly. To improve the resemblance of adaptive and uniform runs,

lowering the refinement threshold for ξ would likely be a valid approach.

8.6 Comparison of the StormFlash results with runs produced with

ATHAM

In addition to all the simulations run with StormFlash, the jet with water vapor and both

25% ash, 75% water vapor, as well as 50% ash, 50% water vapor plume cases were run

with ATHAM as well. The inputs or parameters for the setups are similar to the ones for

the StormFlash cases with the most noticeable difference being the grid and volcano setup.

The domain is also a 10 km by 10 km square domain (with some ”slices” of a third spatial

dimension since this is necessary in order for ATHAM to run) but the volcano is located

at the center of the domain, instead of the bottom left corner as for StormFlash. At the

vent, the horizontal spatial resolution is 50 m, while the vertical resolution is about 33 m.

The vent radius (for these parameters) can only be set to 300 m. For bigger vent radii the

simulations become unstable, unfortunately (Matthias Hort, personal communication).

For ATHAM, atmospheric parameters have to be provided as to resemble real volcanoes.

For this, the atmospheric setup is chosen to resemble the atmosphere for the Pinatubo

1991 eruption. As a reminder, it should be noted that the atmosphere for StormFlash is

a rather simple (neutrally stratified) setup.

The simulated eruption emits material for 50 seconds with a ”ramp up” and ”dampening”

over 1 second, respectively, and is run for about 150 seconds in total with an initial time

step size of 1 second, where ATHAM then adapts the time step size if necessary.
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Figure 60: Comparison between uniform and adaptive runs for the volcanic plume and no

ash with Tm = 1053 K. On the left, the horizontal momentum is shown after tmax while

the right shows the corresponding grid. The colormap is setup just as in the previous

(uniform) figures. The top rows shows the uniform results, while the bottom row shows

the results for Case I. The adaptive results resembles the uniform while there are small

deviations at the top of the plume. The adaptive grid fully captures the plume.
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While the output files provide information about many different quantities (e.g. temper-

ature, velocities, concentration of the active tracers), most of the output has a similar

shape. Consequently, only the densities from all different runs will be compared. Fig-

ure 61 shows the densities for all three ATHAM runs after (approximately) 50 seconds.

While the densities of the jet or the plumes differ slightly (larger ash content leads to

a decrease in jet/plume density), the results are very comparable for each of the three

ATHAM runs. Additionally, in stark contrast to the results obtained with StormFlash,

the density data is very smooth for all three runs.

Since ATHAM is based on some form of the Navier-Stokes equations and utilizes a turbu-

lence closure, a dampening is introduced. This dampening smooths out the solution and

is, of course, absent within StormFlash.

In Figure 61, it can be observed that the eruptive columns simulated within ATHAM all

reach the top boundary of the calculation domain. Since the parameters are chosen mimic

the strong plume test case from Suzuki et al. (2016), the eruptive columns having a large

height (and consequently the columns reaching the top boundary) is of no surprise. While

the velocity data is not shown here, it should be noted that also the runs with ATHAM

have velocities that become very large (e.g. about 900 m s−1 after 50 s for the 50% ash,

50% water vapor plume case) but these large velocities do not produce incorrect shocks.

Since the runs with ATHAM hit the boundary of the domain at some point, the comparison

between the jets and plumes obtained from both ATHAM, as well as StormFlash, are

shown for 25 seconds of simulated time (instead of showing the results for tmax = 50 s).

Figure 62 and Figure 63 show the comparison of the (uniform) StormFlash runs of

the jet with water vapor with the one obtained from ATHAM and the comparison of the

(uniform) StormFlash runs for the 25% ash, 75% water vapor plume with the one obtained

from ATHAM, respectively. Even though the volcanic vent is only half as wide for ATHAM

(which leads to smaller mass flux and should consequently lead to a smaller column height),

these figures clearly display that the runs with ATHAM produce eruptive columns that

are at least 2.5 times higher than the ones obtained with StormFlash. Additionally, the

ATHAM results do not show small scale features while the StormFlash results obviously do.

This is also very likely part of the explanation why StormFlash produces eruptive columns

that have a significantly lower height: the energy cascades down into the smaller scales

instead of remaining in the larger scales and driving the upward motion of the column.

The primitive limiting of the solution space probably also furthers this procedure.

Both the ATHAM results presented here, as well as all of the results in Suzuki et al.

(2016) show that the high plume densities that StormFlash produces are not realistic.

Consequently, it is necessary to take a more sophisticated approach for managing the

incorrect densities.
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Figure 61: Densities after roughly 50 s for all three ATHAM runs. The plots increase in

ash content from left to right, with the left plot being just erupted gas, the middle plot

having 25% ash, 75% water vapor and the right plot having 50% ash, 50% water vapor.

The colorbar shows values in kg m−3. The eruptive columns all reach the top boundary

of the domain while the minimum for the density decreases the larger the ash content.

Figure 62: Comparison of the density of the jet with water vapor for both (uniform)

StormFlash cases and ATHAM after 25 seconds. The plot on the left shows Limit 1 for

the StormFlash jet, the one in the middle shows Limit 2 and the one on the right shows

the results from ATHAM. The colorbar shows values in kg m−3. The StormFlash jets

show clear smaller scale features and reach only a maximum height of about 2.5 km while

the ATHAM jet shows no small scale features and reaches a height over 6 km.
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Figure 63: Comparison of the density of the volcanic plumes with 75% water vapor and

25% ash for both (uniform) StormFlash cases and ATHAM after 25 seconds. The plot on

the left shows the unlimited StormFlash plume, the one in the middle shows the limited

StormFlash plume and the one on the right shows the results from ATHAM. The colorbar

shows values in kg m−3. The StormFlash plumes show clear smaller scale features and

reach only a maximum height of about 2.5 km while the ATHAM plume shows no small

scale features and reaches a height of roughly 7 km. The white color within the StormFlash

plots corresponds to areas where the density exceeds 1.3 kg m−3.

9 Discussion, conclusion and outlook

All (StormFlash) results for volcanic jets or volcanic plumes in the previous section only

show the initial phase of an eruption (50 simulated seconds), which is done as to save time

and computational costs since a small domain of 10 km by 10 km can be used. Logically,

using a larger domain where the volcanic jet or plume can fully develop and reach the layer

of neutral buoyancy is one of the next steps. Consequently, the runs will also be longer -

the simulations in Suzuki et al. (2016) are run for at least 1000 (simulated) seconds.

Since only the initial phase is shown, no correct plume height can be shown (since the

neutral buoyancy is not yet reached), yet. As discussed in the previous section, the com-

parisons with ATHAM show, however, that the results obtained with StormFlash exhibit

behaviors where the erupted material is accelerated too much which is likely due to a lack

of friction.
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Focusing on the plume model itself leads to discussing and answering the first research

question: Can a plume model be implemented using the Discontinuous Galerkin Method?

The results show that a plume model - in theory - can be implemented using the Dis-

continuous Galerkin Method. What the previous section also shows, however, is that the

implementation in the current state does not produce results that would be expected (see

Suzuki et al., 2016). Especially the highly primitive approach of limiting the range of

values for the variables is something that needs to be exchanged for something that is

more plausible.

While the simple atmospheric setup (neutrally stratified atmosphere) might play a role,

the much more important fact is that the implementation appears to lack diffusion, which

in turn accelerates the erupted material inside the eddy structures too much. Conse-

quently, a very likely problem that arises, is that all the energy is transported into the

smaller scales where the energy cannot be dissipated (due to a lack of diffusion). If, for

example, an LES would be implemented, this energy within the smallest (Kolmogorov)

scales could very likely be dissipated.

Probably due to the energy cascading into the smaller scales, the jet or plume heights

are smaller - compared to the ATHAM runs. Additionally, the large velocities produce

physically incorrect shocks. While shock fronts are something to be expected for volcanic

eruptions, they occur close to the vent rather than several kilometers into the atmosphere

(as is the case for the results obtained with StormFlash).

Consequently, the current implementation would probably benefit from a switch to Navier-

Stokes equations as basis (instead of the Euler equations) or another way to add friction -

and as a result introducing necessary dampening - within the flow. Also, just as Section

7 shows, the first results for the Navier-Stokes implementation look promising, the code

restructure for StormFlash lead to incorrect results, however.

Another possible error source for the incorrect physics might be the incorrect order of the

numerical scheme if gravity is introduced (Section 7.4). In this case, exchanging the

stabilization scheme with another scheme that works should also improve results.

One way this could be done is by utilizing entropy stable methods, which have also been

developed for the Euler equations and other conservation laws (see e.g. Waruszewski et al.,

2022; Renac, 2021; Ranocha, 2018a,b; Ranocha et al., 2021).

Of course, all these possible explanations and possible approaches to improve the plume

model have nothing to do with the Discontinuous Galerkin Method itself, necessarily - it

is more of a problem regarding the model or the implementation - and consequently, using

the DGM as a basis is possible.
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The second research question,

Are adaptive grids a viable option for volcanic modeling?,

can be answered with: yes, adaptive grids are a viable option for volcanic modeling. While

the results from the previous section show that uniform and adaptive runs differ slightly

(even if the adaptive grids at some point in time are almost uniform), qualitatively, they

are very comparable. Additionally, the results between the different plume models differ

in the specific results for each plume, as is shown in Suzuki et al. (2016). However, this

is not meant as an excuse to say that the adaptive results should not match the uniform

results (ideally). An obvious idea regarding the adaptive mesh refinement is to find better

criteria and parameters for refinement and coarsening tolerances as to improve the grid

adaptation. Additionally, adaptive grids are also viable to reduce the file sizes which leads

to less storage space being used up by data. For Case H, for example, about 32% of storage

space can be saved (with 30.2 GB of adaptive data versus 44.2 GB of uniform data). With

better refinement criteria this can likely be improved as well.

Regarding the final research question,

How much CPU time can be saved by using adaptive mesh refinement?,

with correct setup, the use of an adaptive mesh can at least save 42% (Case H) while the

results are comparable to the uniform ones (but only qualitatively and not exactly). The

difference between the uniform and adaptive results becomes evident when the results are

shown right next to each other. If mesh refinement is performed as with Case I, an even

greater speed up can be achieved.

Furthermore, while saving almost half the CPU time for a simulation is incredibly useful,

it should be noted that this is only viable for the initial phase of the eruption. As the

results in the previous section show, the grids for the adaptive runs after 50 simulated

seconds are almost uniform and for longer simulations, the save in CPU time will very

likely be minor. Still, improving the mesh refinement with better refinement criteria will

also very likely yield better results for capturing the volcanic jet or plume while reducing

the amount of degrees of freedom which have to be solved.

Additionally, since the results in this thesis are obtained for just 2D, the save in CPU time

will probably be even better for 3D runs.
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When it comes to the future development of the plume model, the following ideas should

be considered: The plume model for StormFlash is just implemented for 2D so it is evident

that the extension into a full 3D model is something that needs to be done.

For further improvement and speed up, the implementation of faster time stepping schemes

(such as finishing the implementation of the ROW schemes) is probably very useful since

the time step size was very restricted due to the CFL condition for explicit Runge-Kutta

schemes.

As mentioned previously, the runs for StormFlash use a simple, neutrally stratified atmo-

sphere. Consequently, changing the initialization of the atmospheric data to one that is

more realistic (i.e. based on atmospheric data) could be an additional source for improving

the physics of the implementation within StormFlash.

When it comes to the implementation within deal.II, finding the cause for the physical

implausible behavior and improving the code could lead to it being a viable option as basis

for a plume model. As discussed in previous sections, such an improvement could include

some form of stabilization, which might lead to better results for deal.II. Unfortunately,

the adaptive mesh refinement could not be used within this thesis due to bugs in the library

but once these bugs are dealt with, using deal.II would be very desirable since the library

is incredibly well maintained and offers powerful high performance computing capabilities.
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Kühnlein, Christian; Smolarkiewicz, Piotr K. and Dörnbrack, Andreas (2012). Modelling atmo-

spheric flows with adaptive moving meshes. Journal of Computational Physics, 231(7):2741 –

2763

URL http://www.sciencedirect.com/science/article/pii/S0021999111007224

Lang, Jens; Cao, Weiming; Huang, Weizhang and Russell, Robert D. (2003). A two-dimensional

moving finite element method with local refinement based on a posteriori error estimates. Applied

Numerical Mathematics, 46(1):75–94

URL https://www.sciencedirect.com/science/article/pii/S0168927403000138

Leer, Bram Van (1977). Towards the ultimate conservative difference scheme III. Upstream-

centered finite-difference schemes for ideal compressible flow. Journal of Computational Physics,

23(3):263 – 275

URL http://www.sciencedirect.com/science/article/pii/0021999177900948

LeVeque, Randall J. (1992). Numerical Methods for Conservation Laws. Birkhäuser Basel, Basel.
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A Appendices

A List of variables and parameters

Table 15: List of variables and parameters

Variable Value and units Meaning Reference

ρ kg m−3 density of the gas or the ash-gas mixture

u = (u,w)τ m s−1 velocity in x- and z-direction respectively

ρe J m−3 total energy density excluding potential energy Equation 2

P Pa = N m−2 pressure

Equation 1,

Equation 3,

Equation 59

R or Ra 287 J kg−1 K−1 specific gas constant for dry air

Rg 461 J kg−1 K−1 specific gas constant for water vapor

cp 1004.67 kg m2 K−1 s−2 specific heat capacity of dry air at constant pressure

cv or cv,a 717.5 kg m2 K−1 s−2 specific heat capacity of dry air at constant volume

cv,g 1340 kg m2 K−1 s−2 specific heat capacity of water vapor at constant volume

cv,s 1100 kg m2 K−1 s−2 specific heat capacity of volcanic ash at constant volume

γ 1.4 specific heat ratio for air

γm specific heat ratio for ash-gas mixture
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B AMATOS

The AMATOS library is a Fortran 95 library that was developed by Jörn Behrens (Behrens

et al., 2005) that allows for the creation and management of adaptive meshes. The library

was used for many cases in this thesis. For the simulations, initial triangulation files with

information about nodes, elements, edges and boundary conditions have to be provided.

Usually, these files start with a small amount of (triangular) elements for which the grid

can be refined - adaptively if needed.

For the code basis that was used, right isosceles triangles are utilized that can be refined

by section (Behrens et al., 2005).

During a simulation - if adaptive mesh refinement is desired - the grid is adapted if enough

elements have been flagged for either coarsening or refinement. With this procedure, the

user has the advantage that they do not have to worry about grid creation or management

since this is taken care of by the library. The unknowns that are solved for during the

simulation are stored in arrays whose sizes can vary throughout the run. To ensure quick

memory access, the data is always sorted by means of space filling curves so that values

for neighboring cells are also stored close to each other in memory which allows for faster

access.

AMATOS takes care of grid management in two steps: the data is provided by a gather

functionality (where the algorithm receives a data array from AMATOS) in step one where

the data is scattered to the grid again (after numerical calculations such as solving the

respective PDEs) so that AMATOS can take care of grid adaption and manipulation as

the second step, if necessary (see 64). This procedure is repeated for each time step.

As mentioned in Section 3.3.2, to ensure correct mesh refinement and coarsening, the

algorithm needs an error indicator/estimator or refinement criterion (Behrens et al., 2005).
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Figure 64: Schematic calculation procedure of AMATOS (taken from Behrens et al., 2005)

C deal.II

As stated on its homepage (https://www.dealii.org/about.html), deal.II is the suc-

cessor to the Differential Equations Analysis Library. It is a C++ library that started off

from work done by the Numerical Methods Group at Universität Heidelberg, Germany.

As of today, there are many international contributors.

The goal of the library is to provide opportunities to create modern finite element codes

that can easily be supported by an array of different tools such as adaptive mesh refine-

ment, routines for automatic differentiation and preconditioners to name just a few.

Similar to the AMATOS library, the deal.II library can be used to take care of grid

management. Different (adaptive) finite element approaches that solve partial differential

equations can be implemented with this library and there already exist a plethora of ex-

amples or codes for many applications.
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D Plots for the jet runs with deal.II

Figure 65: Density for the uniform run of the volcanic jet without water vapor and ash with

the same temperature as the surrounding atmosphere for deal.II. The plots are shown for

0 (top-left), 10 (top-right), 20 (mid-left), 30 (mid-right), 40 (bottom-left) and 50 (bottom-

right) seconds of simulated time. The colorbar shows values in kg m−3. Within the plots,

an acoustic wave travelling outwards (from the vent) is barely visible. The jet reaches a

maximum height of around 2 km and then collapses.

p. 136 of 188



A APPENDICES

Figure 66: Horizontal momentum for the uniform run of the volcanic jet without water

vapor and ash with the same temperature as the surrounding atmosphere for deal.II. The

plots are shown for 0 (top-left), 10 (top-right), 20 (mid-left), 30 (mid-right), 40 (bottom-

left) and 50 (bottom-right) seconds of simulated time. The colorbar shows values in kg

m−2 s−1. Within the plots, an acoustic wave travelling outwards (from the vent) is barely

visible. As with the density plot, a collapse of the jet is visible with increasing time.
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Figure 67: Vertical momentum for the uniform run of the volcanic jet without water vapor

and ash with the same temperature as the surrounding atmosphere for deal.II. The plots

are shown for 0 (top-left), 10 (top-right), 20 (mid-left), 30 (mid-right), 40 (bottom-left)

and 50 (bottom-right) seconds of simulated time. The colorbar shows values in kg m−2 s−1.

Within the plots, an acoustic wave travelling outwards (from the vent) is barely visible.

As with the density plot, a collapse of the jet is visible with increasing time
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Figure 68: Energy density for the uniform run of the volcanic jet without water vapor and

ash with the same temperature as the surrounding atmosphere for deal.II. The plots are

shown for 0 (top-left), 10 (top-right), 20 (mid-left), 30 (mid-right), 40 (bottom-left) and

50 (bottom-right) seconds of simulated time. The colorbar shows values in J m−3. Within

the plots, an acoustic wave travelling outwards (from the vent) is barely visible. As with

the density plot, a collapse of the jet is visible with increasing time

E Plots for the adaptive jet or plume setups

This appendix show the plots for the results of the volcanic plumes with adaptive mesh

refinement. To ensure a quicker overview, the following sections are labeled with Tm which

states the temperature of the ejected material, σref or σcoarse for refinement or coarsening

tolerances and e for the error indicator.

In the following, single-phase (air) run means that no water vapor and ash are simulated

and the ejected material is just comprised of air. The cases are labeled as in Section 8.3.

Furthermore, two-phase (water) run means that water vapor is included in the simulation

and the erupted material is comprised completely of water vapor that gets injected into

an atmosphere of air which then is mixed. The cases are labeled as in Section 8.4.

Finally, plume run means that both ash and water vapor are present in the eruption

column while the atmosphere is still comprised of (dry) air. The cases are labeled as in

Section 8.5.
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E.1 Case A: Adaptive single-phase (air) run with Tm = 300 K, σref = 0.01,

σcoarse = 0.005, e = ∇(ρw) and no-slip boundary for the ground

Figure 69: Grid for the adaptive run of the volcanic jet for Case A. The plots are shown for

0 (top-left), 10 (top-right), 20 (mid-left), 30 (mid-right), 40 (bottom-left) and 50 (bottom-

right) seconds of simulated time. The plots show the development of the adaptive mesh

for the respective times. For this setup, the gradient for the vertical momentum was used

as error indicator.
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Figure 70: Density for the adaptive run of the volcanic jet for Case A. The plots are

shown for 0 (top-left), 10 (top-right), 20 (mid-left), 30 (mid-right), 40 (bottom-left) and

50 (bottom-right) seconds of simulated time. The colorbar shows values in kg m−3. The

plots show the development of an acoustic wave that travels through and leaves the domain

after 30 seconds. With time, an area of lower density develops which is roughly centered

at (2000 m, 3000 m) after tmax is reached. Effects which are similar to Kelvin-Helmholtz

instabilities occur along the path which appears to be the trajectory of the air parcels that

make up the large eddy structure.
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Figure 71: Horizontal momentum for the adaptive run of the volcanic jet for Case A. The

plots are shown for 0 (top-left), 10 (top-right), 20 (mid-left), 30 (mid-right), 40 (bottom-

left) and 50 (bottom-right) seconds of simulated time. The colorbar shows values in kg

m−2 s−1. The plots show the development of an acoustic wave that travels through and

leaves the domain after 30 seconds. With time, an area of lower density develops which is

roughly centered at (2000 m, 3000 m) after tmax is reached. Effects which are similar to

Kelvin-Helmholtz instabilities occur along the path which appears to be the trajectory of

the air parcels that make up the large eddy structure.
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Figure 72: Vertical momentum for the adaptive run of the volcanic jet for Case A. The

plots are shown for 0 (top-left), 10 (top-right), 20 (mid-left), 30 (mid-right), 40 (bottom-

left) and 50 (bottom-right) seconds of simulated time. The colorbar shows values in kg

m−2 s−1. The plots show the development of an acoustic wave that travels through and

leaves the domain after 30 seconds. With time, an area of lower density develops which is

roughly centered at (2000 m, 3000 m) after tmax is reached. Effects which are similar to

Kelvin-Helmholtz instabilities occur along the path which appears to be the trajectory of

the air parcels that make up the large eddy structure.
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Figure 73: Energy density for the adaptive run of the volcanic jet for Case A. The plots

are shown for 0 (top-left), 10 (top-right), 20 (mid-left), 30 (mid-right), 40 (bottom-left)

and 50 (bottom-right) seconds of simulated time. The colorbar shows values in J m−3.

The plots show the development of an acoustic wave that travels through and leaves the

domain after 30 seconds. With time, an area of lower density develops which is roughly

centered at (2000 m, 3000 m) after tmax is reached. Effects which are similar to Kelvin-

Helmholtz instabilities occur along the path which appears to be the trajectory of the air

parcels that make up the large eddy structure.
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E.2 Case B: Adaptive single-phase (air) run with Tm = 300 K, σref = 0.001,

σcoarse = 0.0005, e = ∇(ρw) and no-slip boundary for the ground

Figure 74: Grid for the adaptive run of the volcanic jet for Case B. The plots are shown for

0 (top-left), 10 (top-right), 20 (mid-left), 30 (mid-right), 40 (bottom-left) and 50 (bottom-

right) seconds of simulated time. The plots show the development of the adaptive mesh

for the respective times. For this setup, the gradient for the vertical momentum was used

as error indicator.
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Figure 75: Density for the adaptive run of the volcanic jet for Case B. The plots are

shown for 0 (top-left), 10 (top-right), 20 (mid-left), 30 (mid-right), 40 (bottom-left) and

50 (bottom-right) seconds of simulated time. The colorbar shows values in kg m−3. The

plots show the development of an acoustic wave that travels through and leaves the domain

after 30 seconds. With time, an area of lower density develops which is roughly centered

at (2000 m, 3000 m) after tmax is reached. Effects which are similar to Kelvin-Helmholtz

instabilities occur along the path which appears to be the trajectory of the air parcels that

make up the large eddy structure.
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Figure 76: Horizontal momentum for the adaptive run of the volcanic jet for Case B. The

plots are shown for 0 (top-left), 10 (top-right), 20 (mid-left), 30 (mid-right), 40 (bottom-

left) and 50 (bottom-right) seconds of simulated time. The colorbar shows values in kg

m−2 s−1. The plots show the development of an acoustic wave that travels through and

leaves the domain after 30 seconds. With time, an area of lower density develops which is

roughly centered at (2000 m, 3000 m) after tmax is reached. Effects which are similar to

Kelvin-Helmholtz instabilities occur along the path which appears to be the trajectory of

the air parcels that make up the large eddy structure.
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Figure 77: Vertical momentum for the adaptive run of the volcanic jet for Case B. The

plots are shown for 0 (top-left), 10 (top-right), 20 (mid-left), 30 (mid-right), 40 (bottom-

left) and 50 (bottom-right) seconds of simulated time. The colorbar shows values in kg

m−2 s−1. The plots show the development of an acoustic wave that travels through and

leaves the domain after 30 seconds. With time, an area of lower density develops which is

roughly centered at (2000 m, 3000 m) after tmax is reached. Effects which are similar to

Kelvin-Helmholtz instabilities occur along the path which appears to be the trajectory of

the air parcels that make up the large eddy structure.
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Figure 78: Energy density for the adaptive run of the volcanic jet for Case B. The plots

are shown for 0 (top-left), 10 (top-right), 20 (mid-left), 30 (mid-right), 40 (bottom-left)

and 50 (bottom-right) seconds of simulated time. The colorbar shows values in J m−3.

The plots show the development of an acoustic wave that travels through and leaves the

domain after 30 seconds. With time, an area of lower density develops which is roughly

centered at (2000 m, 3000 m) after tmax is reached. Effects which are similar to Kelvin-

Helmholtz instabilities occur along the path which appears to be the trajectory of the air

parcels that make up the large eddy structure.
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E.3 Case C: Adaptive single-phase (air) run with Tm = 300 K, σref = 0.01,

σcoarse = 0.005, e = max ∣∇(ρu)∣ and Dirichlet boundary for the ground

Figure 79: Grid for the adaptive run of the volcanic jet for Case C. The plots are shown for

0 (top-left), 10 (top-right), 20 (mid-left), 30 (mid-right), 40 (bottom-left) and 50 (bottom-

right) seconds of simulated time. The plots show the development of the adaptive mesh

for the respective times. For this setup, the maximum gradient of the momenta was used

as error indicator.
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Figure 80: Density for the adaptive run of the volcanic jet for Case C. The plots are

shown for 0 (top-left), 10 (top-right), 20 (mid-left), 30 (mid-right), 40 (bottom-left) and

50 (bottom-right) seconds of simulated time. The colorbar shows values in kg m−3. The

plots show the development of an acoustic wave that travels through and leaves the domain

after 30 seconds. With time, an area of lower density develops which is roughly centered

at (2000 m, 3000 m) after tmax is reached. Effects which are similar to Kelvin-Helmholtz

instabilities occur along the path which appears to be the trajectory of the air parcels that

make up the large eddy structure.
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Figure 81: Horizontal momentum for the adaptive run of the volcanic jet for Case C. The

plots are shown for 0 (top-left), 10 (top-right), 20 (mid-left), 30 (mid-right), 40 (bottom-

left) and 50 (bottom-right) seconds of simulated time. The colorbar shows values in kg m−2

s−1. The plots show the development of an acoustic wave that travels through and leaves

the domain after 30 seconds. With time, areas of high and low (negative) momentum,

respectively, develop which are situated around a center that is roughly located at (2000 m,

3000 m) after tmax is reached. Effects which are similar to Kelvin-Helmholtz instabilities

occur along the path which appears to be the trajectory of the air parcels that make up

the large eddy structure.
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Figure 82: Vertical momentum for the adaptive run of the volcanic jet for Case C. The

plots are shown for 0 (top-left), 10 (top-right), 20 (mid-left), 30 (mid-right), 40 (bottom-

left) and 50 (bottom-right) seconds of simulated time. The colorbar shows values in kg m−2

s−1. The plots show the development of an acoustic wave that travels through and leaves

the domain after 30 seconds. With time, areas of high and low (negative) momentum,

respectively, develop which are situated around a center that is roughly located at (2000 m,

3000 m) after tmax is reached. Effects which are similar to Kelvin-Helmholtz instabilities

occur along the path which appears to be the trajectory of the air parcels that make up

the large eddy structure.
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Figure 83: Energy density for the adaptive run of the volcanic jet for Case C. The plots

are shown for 0 (top-left), 10 (top-right), 20 (mid-left), 30 (mid-right), 40 (bottom-left)

and 50 (bottom-right) seconds of simulated time. The colorbar shows values in J m−3.

The plots show the development of an acoustic wave that travels through and leaves the

domain after 30 seconds. With time, an area of lower energy density develops which is

roughly centered at (2000 m, 3000 m) after tmax is reached. Effects which are similar to

Kelvin-Helmholtz instabilities occur along the path which appears to be the trajectory of

the air parcels that make up the large eddy structure.
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E.4 Case D: Adaptive single-phase (air) run with Tm = 1053 K, σref = 0.01,

σcoarse = 0.005, e = max ∣∇(ρu)∣ and three additional layers of refinement

Figure 84: Grid for the adaptive run of the volcanic jet for Case D. The plots are shown for

0 (top-left), 10 (top-right), 20 (mid-left), 30 (mid-right), 40 (bottom-left) and 50 (bottom-

right) seconds of simulated time. The plots show the development of the adaptive mesh

for the respective times. For this setup, the maximum gradient of the momenta was used

as error indicator.
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Figure 85: Density for the adaptive run of the volcanic jet for Case D. The plots are

shown for 0 (top-left), 10 (top-right), 20 (mid-left), 30 (mid-right), 40 (bottom-left) and

50 (bottom-right) seconds of simulated time. The colorbar shows values in kg m−3. The

plots show the development of an acoustic wave that travels through and leaves the domain

after 30 seconds. The jet of low density rises upwards from the vent whose highest point

reaches a height of roughly 6 km while a portion of the jet also spreads out horizontally.
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Figure 86: Horizontal momentum for the adaptive run of the volcanic jet for Case D. The

plots are shown for 0 (top-left), 10 (top-right), 20 (mid-left), 30 (mid-right), 40 (bottom-

left) and 50 (bottom-right) seconds of simulated time. The colorbar shows values in kg m−2

s−1. The plots show the development of an acoustic wave that travels through and leaves

the domain after 30 seconds. The jet rises upwards from the vent whose highest point

reaches a height of roughly 6 km while a portion of the jet also spreads out horizontally.
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Figure 87: Vertical momentum for the adaptive run of the volcanic jet for Case D. The

plots are shown for 0 (top-left), 10 (top-right), 20 (mid-left), 30 (mid-right), 40 (bottom-

left) and 50 (bottom-right) seconds of simulated time. The colorbar shows values in kg m−2

s−1. The plots show the development of an acoustic wave that travels through and leaves

the domain after 30 seconds. The jet rises upwards from the vent whose highest point

reaches a height of roughly 6 km while a portion of the jet also spreads out horizontally.
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Figure 88: Energy density for the adaptive run of the volcanic jet for Case D. The plots

are shown for 0 (top-left), 10 (top-right), 20 (mid-left), 30 (mid-right), 40 (bottom-left)

and 50 (bottom-right) seconds of simulated time. The colorbar shows values in J m−3.

The plots show the development of an acoustic wave that travels through and leaves the

domain after 30 seconds. The jet rises upwards from the vent whose highest point reaches

a height of roughly 6 km while a portion of the jet also spreads out horizontally.
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E.5 Case E: Adaptive single-phase (air) run with Tm = 1053 K, σref = 0.01,

σcoarse = 0.01, e = max ∣∇(ρu)∣ and two additional layers of refinement

Figure 89: Grid for the adaptive run of the volcanic jet for Case E. The plots are shown for

0 (top-left), 10 (top-right), 20 (mid-left), 30 (mid-right), 40 (bottom-left) and 50 (bottom-

right) seconds of simulated time. The plots show the development of the adaptive mesh

for the respective times. For this setup, the maximum gradient of the momenta was used

as error indicator.
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Figure 90: Density for the adaptive run of the volcanic jet for Case E. The plots are

shown for 0 (top-left), 10 (top-right), 20 (mid-left), 30 (mid-right), 40 (bottom-left) and

50 (bottom-right) seconds of simulated time. The colorbar shows values in kg m−3. The

plots show the development of an acoustic wave that travels through and leaves the domain

after 30 seconds. The jet of low density rises upwards from the vent whose highest point

reaches a height of roughly 6 km while a portion of the jet also spreads out horizontally.
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Figure 91: Horizontal momentum for the adaptive run of the volcanic jet for Case E. The

plots are shown for 0 (top-left), 10 (top-right), 20 (mid-left), 30 (mid-right), 40 (bottom-

left) and 50 (bottom-right) seconds of simulated time. The colorbar shows values in kg m−2

s−1. The plots show the development of an acoustic wave that travels through and leaves

the domain after 30 seconds. The jet rises upwards from the vent whose highest point

reaches a height of roughly 6 km while a portion of the jet also spreads out horizontally.
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Figure 92: Vertical momentum for the adaptive run of the volcanic jet for Case E. The

plots are shown for 0 (top-left), 10 (top-right), 20 (mid-left), 30 (mid-right), 40 (bottom-

left) and 50 (bottom-right) seconds of simulated time. The colorbar shows values in kg m−2

s−1. The plots show the development of an acoustic wave that travels through and leaves

the domain after 30 seconds. The jet rises upwards from the vent whose highest point

reaches a height of roughly 6 km while a portion of the jet also spreads out horizontally.
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Figure 93: Energy density for the adaptive run of the volcanic jet for Case E. The plots

are shown for 0 (top-left), 10 (top-right), 20 (mid-left), 30 (mid-right), 40 (bottom-left)

and 50 (bottom-right) seconds of simulated time. The colorbar shows values in J m−3.

The plots show the development of an acoustic wave that travels through and leaves the

domain after 30 seconds. The jet rises upwards from the vent whose highest point reaches

a height of roughly 6 km while a portion of the jet also spreads out horizontally.

p. 164 of 188



A APPENDICES

E.6 Case F: Adaptive two-phase (air and water vapor) run with Tm = 1053

K, σref = 0.001, no coarsening, e = max ∣∇(ρu)∣ and 20 additional layers of

refinement for Limit 1

Figure 94: Grid for the adaptive run of the volcanic jet for Case F. The plots are shown for

0 (top-left), 10 (top-right), 20 (mid-left), 30 (mid-right), 40 (bottom-left) and 50 (bottom-

right) seconds of simulated time. The plots show the development of the adaptive mesh

for the respective times. For this setup, the maximum gradient of the momenta was used

as error indicator.
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Figure 95: Density for the adaptive run of the volcanic jet for Case F. The plots are

shown for 0 (top-left), 10 (top-right), 20 (mid-left), 30 (mid-right), 40 (bottom-left) and

50 (bottom-right) seconds of simulated time. The colorbar shows values in kg m−3. The

plots show the development of an acoustic wave that travels through and leaves the domain

after 30 seconds. The jet of low density rises upwards from the vent whose highest point

reaches a height of roughly 5 km while a portion of the jet also spreads out horizontally.

After 40 seconds, the development of shock fronts around the jet is observable.
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Figure 96: Horizontal momentum for the adaptive run of the volcanic jet for Case F. The

plots are shown for 0 (top-left), 10 (top-right), 20 (mid-left), 30 (mid-right), 40 (bottom-

left) and 50 (bottom-right) seconds of simulated time. The colorbar shows values in kg m−2

s−1. The plots show the development of an acoustic wave that travels through and leaves

the domain after 30 seconds. The jet rises upwards from the vent whose highest point

reaches a height of roughly 5 km while a portion of the jet also spreads out horizontally.

After 40 seconds, the development of shock fronts around the jet is observable.
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Figure 97: Vertical momentum for the adaptive run of the volcanic jet for Case F. The

plots are shown for 0 (top-left), 10 (top-right), 20 (mid-left), 30 (mid-right), 40 (bottom-

left) and 50 (bottom-right) seconds of simulated time. The colorbar shows values in kg m−2

s−1. The plots show the development of an acoustic wave that travels through and leaves

the domain after 30 seconds. The jet rises upwards from the vent whose highest point

reaches a height of roughly 5 km while a portion of the jet also spreads out horizontally.

After 40 seconds, the development of shock fronts around the jet is observable.
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Figure 98: Energy density for the adaptive run of the volcanic jet for Case F. The plots

are shown for 0 (top-left), 10 (top-right), 20 (mid-left), 30 (mid-right), 40 (bottom-left)

and 50 (bottom-right) seconds of simulated time. The colorbar shows values in J m−3.

The plots show the development of an acoustic wave that travels through and leaves the

domain after 30 seconds. The jet rises upwards from the vent whose highest point reaches

a height of roughly 5 km while a portion of the jet also spreads out horizontally. After 40

seconds, the development of shock fronts around the jet is observable.
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Figure 99: Mass fraction ξ of erupted material for the adaptive run of the volcanic jet

for Case F. The plots are shown for 0 (top-left), 10 (top-right), 20 (mid-left), 30 (mid-

right), 40 (bottom-left) and 50 (bottom-right) seconds of simulated time. The colorbar

shows values in J m−3. The plots show the development of an acoustic wave that travels

through and leaves the domain after 30 seconds. The jet rises upwards from the vent whose

highest point reaches a height of roughly 5 km while a portion of the jet also spreads out

horizontally.
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E.7 Case G: Adaptive two-phase (air and water vapor) run with Tm = 1053

K, σref = 0.75, σcoarse = 0.0001, e = ∇(ρξ), refinement where ρξ > 0.2 and 8

additional layers of refinement for Limit 2

Figure 100: Grid for the adaptive run of the volcanic jet for Case G. The plots are shown for

0 (top-left), 10 (top-right), 20 (mid-left), 30 (mid-right), 40 (bottom-left) and 50 (bottom-

right) seconds of simulated time. The plots show the development of the adaptive mesh

for the respective times. For this setup, the gradient of the mass fraction density was used

as error indicator.
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Figure 101: Density for the adaptive run of the volcanic jet for Case G. The plots are

shown for 0 (top-left), 10 (top-right), 20 (mid-left), 30 (mid-right), 40 (bottom-left) and

50 (bottom-right) seconds of simulated time. The colorbar shows values in kg m−3. The

plots show the development of an acoustic wave that travels through and leaves the domain

after 30 seconds. The jet of low density rises upwards from the vent whose highest point

reaches a height of roughly 5 km while a portion of the jet also spreads out horizontally.

After 40 seconds, the development of shock fronts around the jet is observable.
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Figure 102: Horizontal momentum for the adaptive run of the volcanic jet for Case G. The

plots are shown for 0 (top-left), 10 (top-right), 20 (mid-left), 30 (mid-right), 40 (bottom-

left) and 50 (bottom-right) seconds of simulated time. The colorbar shows values in kg m−2

s−1. The plots show the development of an acoustic wave that travels through and leaves

the domain after 30 seconds. The jet rises upwards from the vent whose highest point

reaches a height of roughly 5 km while a portion of the jet also spreads out horizontally.

After 40 seconds, the development of shock fronts around the jet is observable.
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Figure 103: Vertical momentum for the adaptive run of the volcanic jet for Case G. The

plots are shown for 0 (top-left), 10 (top-right), 20 (mid-left), 30 (mid-right), 40 (bottom-

left) and 50 (bottom-right) seconds of simulated time. The colorbar shows values in kg m−2

s−1. The plots show the development of an acoustic wave that travels through and leaves

the domain after 30 seconds. The jet rises upwards from the vent whose highest point

reaches a height of roughly 5 km while a portion of the jet also spreads out horizontally.

After 40 seconds, the development of shock fronts around the jet is observable.
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Figure 104: Energy density for the adaptive run of the volcanic jet for Case G. The plots

are shown for 0 (top-left), 10 (top-right), 20 (mid-left), 30 (mid-right), 40 (bottom-left)

and 50 (bottom-right) seconds of simulated time. The colorbar shows values in J m−3.

The plots show the development of an acoustic wave that travels through and leaves the

domain after 30 seconds. The jet rises upwards from the vent whose highest point reaches

a height of roughly 5 km while a portion of the jet also spreads out horizontally. After 40

seconds, the development of shock fronts around the jet is observable.
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Figure 105: Mass fraction ξ of erupted material for the adaptive run of the volcanic jet

for Case G. The plots are shown for 0 (top-left), 10 (top-right), 20 (mid-left), 30 (mid-

right), 40 (bottom-left) and 50 (bottom-right) seconds of simulated time. The colorbar

shows values in J m−3. The plots show the development of an acoustic wave that travels

through and leaves the domain after 30 seconds. The jet rises upwards from the vent whose

highest point reaches a height of roughly 5 km while a portion of the jet also spreads out

horizontally.
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E.8 Case H: Adaptive two-phase (air and water vapor) run with Tm = 1053 K,

σref = 0.1, σcoarse = 0.05, e = ∇(ξ), refinement where ρξ > 0.2 and 8 additional

layers of refinement for Limit 2

Figure 106: Grid for the adaptive run of the volcanic jet for Case H. The plots are shown for

0 (top-left), 10 (top-right), 20 (mid-left), 30 (mid-right), 40 (bottom-left) and 50 (bottom-

right) seconds of simulated time. The plots show the development of the adaptive mesh

for the respective times. For this setup, the gradient of the mass fraction was used as error

indicator.
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Figure 107: Density for the adaptive run of the volcanic jet for Case H. The plots are

shown for 0 (top-left), 10 (top-right), 20 (mid-left), 30 (mid-right), 40 (bottom-left) and

50 (bottom-right) seconds of simulated time. The colorbar shows values in kg m−3. The

plots show the development of an acoustic wave that travels through and leaves the domain

after 30 seconds. The jet of low density rises upwards from the vent whose highest point

reaches a height of roughly 5 km while a portion of the jet also spreads out horizontally.

After 40 seconds, the development of shock fronts around the jet is observable.
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Figure 108: Horizontal momentum for the adaptive run of the volcanic jet for Case H. The

plots are shown for 0 (top-left), 10 (top-right), 20 (mid-left), 30 (mid-right), 40 (bottom-

left) and 50 (bottom-right) seconds of simulated time. The colorbar shows values in kg m−2

s−1. The plots show the development of an acoustic wave that travels through and leaves

the domain after 30 seconds. The jet rises upwards from the vent whose highest point

reaches a height of roughly 5 km while a portion of the jet also spreads out horizontally.

After 40 seconds, the development of shock fronts around the jet is observable.
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Figure 109: Vertical momentum for the adaptive run of the volcanic jet for Case H. The

plots are shown for 0 (top-left), 10 (top-right), 20 (mid-left), 30 (mid-right), 40 (bottom-

left) and 50 (bottom-right) seconds of simulated time. The colorbar shows values in kg m−2

s−1. The plots show the development of an acoustic wave that travels through and leaves

the domain after 30 seconds. The jet rises upwards from the vent whose highest point

reaches a height of roughly 5 km while a portion of the jet also spreads out horizontally.

After 40 seconds, the development of shock fronts around the jet is observable.
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Figure 110: Energy density for the adaptive run of the volcanic jet for Case H. The plots

are shown for 0 (top-left), 10 (top-right), 20 (mid-left), 30 (mid-right), 40 (bottom-left)

and 50 (bottom-right) seconds of simulated time. The colorbar shows values in J m−3.

The plots show the development of an acoustic wave that travels through and leaves the

domain after 30 seconds. The jet rises upwards from the vent whose highest point reaches

a height of roughly 5 km while a portion of the jet also spreads out horizontally. After 40

seconds, the development of shock fronts around the jet is observable.
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Figure 111: Mass fraction ξ of erupted material for the adaptive run of the volcanic jet

for Case H. The plots are shown for 0 (top-left), 10 (top-right), 20 (mid-left), 30 (mid-

right), 40 (bottom-left) and 50 (bottom-right) seconds of simulated time. The colorbar

shows values in J m−3. The plots show the development of an acoustic wave that travels

through and leaves the domain after 30 seconds. The jet rises upwards from the vent whose

highest point reaches a height of roughly 5 km while a portion of the jet also spreads out

horizontally.
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E.9 Case I: Adaptive plume run with Tm = 1053 K, refinement if ξ > 0.8,

coarsening if ξ < 0.1 and 15 additional layers of refinement

Figure 112: Grid for the adaptive run of the volcanic jet for Case I. The plots are shown for

0 (top-left), 10 (top-right), 20 (mid-left), 30 (mid-right), 40 (bottom-left) and 50 (bottom-

right) seconds of simulated time. The plots show the development of the adaptive mesh

for the respective times. For this setup, no error indicator was used.
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Figure 113: Density for the adaptive run of the volcanic jet for Case I. The plots are

shown for 0 (top-left), 10 (top-right), 20 (mid-left), 30 (mid-right), 40 (bottom-left) and

50 (bottom-right) seconds of simulated time. The colorbar shows values in kg m−3. The

plots show the development of an acoustic wave that travels through and leaves the domain

after 30 seconds. The jet of low density rises upwards from the vent whose highest point

reaches a height of roughly 5 km. Additionally, there are also portions of the plume that

spread out horizontally and that sink down. After 40 seconds, the development of shock

fronts around the jet is observable.
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Figure 114: Horizontal momentum for the adaptive run of the volcanic jet for Case I. The

plots are shown for 0 (top-left), 10 (top-right), 20 (mid-left), 30 (mid-right), 40 (bottom-

left) and 50 (bottom-right) seconds of simulated time. The colorbar shows values in kg m−2

s−1. The plots show the development of an acoustic wave that travels through and leaves

the domain after 30 seconds. The jet rises upwards from the vent whose highest point

reaches a height of roughly 5 km while a portion of the jet also spreads out horizontally.

After 40 seconds, the development of shock fronts around the jet is observable.
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Figure 115: Vertical momentum for the adaptive run of the volcanic jet for Case I. The

plots are shown for 0 (top-left), 10 (top-right), 20 (mid-left), 30 (mid-right), 40 (bottom-

left) and 50 (bottom-right) seconds of simulated time. The colorbar shows values in kg m−2

s−1. The plots show the development of an acoustic wave that travels through and leaves

the domain after 30 seconds. The jet rises upwards from the vent whose highest point

reaches a height of roughly 5 km while a portion of the jet also spreads out horizontally.

After 40 seconds, the development of shock fronts around the jet is observable.
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Figure 116: Energy density for the adaptive run of the volcanic jet for Case I. The plots

are shown for 0 (top-left), 10 (top-right), 20 (mid-left), 30 (mid-right), 40 (bottom-left)

and 50 (bottom-right) seconds of simulated time. The colorbar shows values in J m−3.

The plots show the development of an acoustic wave that travels through and leaves the

domain after 30 seconds. The jet rises upwards from the vent whose highest point reaches

a height of roughly 5 km while a portion of the jet also spreads out horizontally. After 40

seconds, the development of shock fronts around the jet is observable.
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Figure 117: Mass fraction ξ of erupted material for the adaptive run of the volcanic jet

for Case I. The plots are shown for 0 (top-left), 10 (top-right), 20 (mid-left), 30 (mid-

right), 40 (bottom-left) and 50 (bottom-right) seconds of simulated time. The colorbar

shows values in J m−3. The plots show the development of an acoustic wave that travels

through and leaves the domain after 30 seconds. The jet rises upwards from the vent whose

highest point reaches a height of roughly 5 km while a portion of the jet also spreads out

horizontally.

p. 188 of 188



Hiermit versichere ich an Eides statt, dass ich die vorliegende Promotion im Fachbe-
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