Embeddings of cycle-like structures

DISSERTATION

zur Erlangung des Doktorgrades an der

Fakulat fir Mathematik, Informatik und Naturwissenschaften

Fachbereich Mathematik

der Universitat Hamburg

vorgelegt von
Giulia Satiko Maesaka

aus Rio de Janeiro

Hamburg
2023



Vorsitzender der Priiffungskommission:

Erstgutachter:
Zweitgutachter:

Datum der Disputation:

urn:nbn:de:gbv:18-ediss-111894

Prof. Dr. Ulf Kithn

Prof. Mathias Schacht, PhD (Betreuer)
Prof. Dr. Anusch Taraz

07. September 2023



Contents

1 Introduction
1.1 Spanning tripartite subgraphs . . . . . . .. ... ...
1.2 The size-Ramsey number of powers of bounded degree trees
1.3 Random perturbation of sparse graphs . . . . . . .. ... .. ...
1.3.1 Hamiltonicity in randomly perturbed sparse graphs . . . . .
1.3.2 Bounded degree trees in randomly perturbed sparse graphs .

1.3.3  Other spanning structures . . . . . . . . .. ... ... ...

2 Spanning tripartite subgraphs

2.1 Absorption method . . . . . .. ...
2.2 Second Power of a Hamiltonian Cycle . . . . . . . . ... ... ...
2.3 Connecting . . . . . .. e
2.4 Absorbing . . . ...
25 Covering . . . . . . ..
2.6 Embedding spanning graphs of small bandwidth . . . . . ... . ..

2.6.1 Lemmafor G . . .. .. .. ... .. ... .. ... ...

2.6.2 Lemmafor H . . .. ... ... ... ... ... ...

2.6.3 Adjusting the partition of V/(G) . . . . ... ..o

2.6.4 Generalizing previous results . . . . . .. ... L

3 The size-Ramsey number of powers of bounded degree trees
3.1 Auxiliary results. . . . . . . ..
3.2 Bijumbledness, expansion and embedding of trees . . . .. ... ..
3.3 Proof of the mainresult . . .. ... ... ... ... ... ... .

3.4 Concluding remarks . . . . . . . ... ...

12
13

16

19
19
21
25
31
43
20
53
70
75
7



4 Random perturbation of sparse graphs 105

4.1 Hamiltonicity . . . . . . . . .. 105
4.2 Bounded degree trees . . . . .. ... 108
Appendix 111
English Summary . . . . . . . ... o 112
Deutsche Zusammenfassung . . . . . . .. ..o 114
Publications related to this dissertation . . . . . . .. .. ... ... ... 116
Declaration of Contributions . . . . . . . . . ... .. ... ... ..., 117
Acknowledgements . . . . . ... 125
Eidesstattliche Versicherung . . . . . . . . ... ... .o oL 126

i



1. Introduction

This thesis concerns problems in Extremal and Probabilistic Combinatorics. In
the core of this work, we will use absorption techniques for embedding spanning
subgraphs, which entails applying regularity and probabilistic methods. The thesis
is organized in three chapters, each related to a different problem.

The work in Chapter 2 aims at a common generalization of classical embedding
results for spanning subgraphs, which rely on a minimum degree condition, and more
recent work based on the edge distribution of the host graph. The classical results
are first a conjecture by Pdésa and Seymour, proven by Hajnal and Szemerédi, that
establishes conditions on the minimum degree of graphs that guarantee Kji-factors
and k-th powers of Hamiltonian cycles and second, the Bandwidth Theorem of
Bottcher, Taraz and Schacht, that gives a condition on the minimum degree that
suffices for the embedding of spanning graphs with bounded chromatic number
and sublinear bandwidth. Our aim was to instead of considering the minimum
degree, to focus on the distribution of edges. Therefore we worked on the setting
where the host graph is dense and inseparable. The minimum degree condition and
the dense and inseparable condition are not comparable to each other and, in the
continuation presented in this thesis, we address the question of finding a common
generalization. We present a setting for the host graph that ensures any tripartite
spanning subgraph with bounded degree and small bandwidth. This proof relies on
the regularity and absorption methods. This work is the main part of this thesis
and we discuss the main result in Section 1.1.

In Chapter 3, we consider the Size-Ramsey number of powers of bounded degree
trees and show that it is linear on the number of vertices of the tree. Our proof
uses expansion properties of random graphs, algorithmic embedding methods of
Friedman and Pippenger, the Kovari-Sés-Turan Theorem and the Local Lemma,

moreover we devise an inductive scheme to obtain the result for any (bounded)
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number of colour. This is joint work with Soéren Berger, Yoshiharu Kohayakawa,
Taisa Martins, Walner Mendonga, Guilherme Oliveira Mota and Olaf Parczyk. The
results on this problem are presented in Section 1.2.

In Chapter 4, we study the model of randomly perturbed graphs, in which we
consider the union of a deterministic graph G, with minimum degree an and the
binomial random graph G(n,p). We want to give a different view to the previous
result of Bohman, Frieze, and Martin that set the threshold for a Hamiltonian cycle
in the randomly perturbed model with o > 0. We are interested in determining
the threshold for the sparse case, when @ = o(1). Here we use thresholds results on
G(n,p) for almost spanning structures combined with the absorption method. This
is joint work with Max Hahn-Klimroth, Yannick Mogge, Samuel Mohr and Olaf

Parczyk. The results on this problem are presented in Section 1.3.

1.1 Spanning tripartite subgraphs

We study sufficient conditions for the existence of spanning subgraphs in large
finite graphs. Our aim is to find a common generalization of previous results for
embedding 3-chromatic graphs with small bandwidth and bounded maximum degree.
An n-vertex graph H = (V, E) has bandwidth at most b € R if there is some bijection
o:V —> [n] such that for every edge zy € E, we have |o(z) —o(y)| < b. We denote
by bw(H) the smallest such b.

We start by approaching the problem of embedding the 2nd power of a Hamilto-
nian cycle. For k € IN the k-th power of a given graph H is the graph H* on the
same vertex set with zy being an edge in H* if x and y are distinct vertices of H
that are connected in H by a path of at most k edges. We refer to a k-th power of a
path as a k-path. Note that every k+ 1 consecutive vertices of a k-path span a clique
and if a graph G = (V| F) contains the k-th power of a Hamiltonian cycle, it also
contains []l%llj pairwise vertex disjoint copies of K., and G contains a K} i-factor
if |V| is divisible by &k + 1.

Dirac’s well known theorem [28] yields a best possible minimum degree condition
for embedding a Hamiltonian cycle. The minimum degree of a graph turned out to

be an interesting parameter for enforcing a given spanning subgraph and establishing

optimal minimum degree conditions for those problems became a fruitful research
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direction in extremal graph theory (see, e.g., [20] and the references therein). Already
about 50 years ago, the minimum degree problem for K, -factors was resolved by
Corradi and Hajnal [23] for k£ = 2 and by Hajnal and Szemerédi [45] for every k > 3.
Pésa (see [38]) and Seymour [82] asked for a common generalisation of those results
on factors and Dirac’s theorem and conjectured that the best possible minimum
degree conditions for K}, i-factors and k-th powers of Hamiltonian cycles are the
same (given that the number of vertices is divisible by k+ 1). The general conjecture
was affirmatively resolved for sufficiently large graphs by Komlés, Sarkozy, and

Szemerédi [59] by establishing the following result.

Theorem 1.1.1 (Komlés, Sarkozy & Szemerédi 1998). For every positive integer k
there exists ng such that if G is a graph on n = ngy vertices with minimum degree
k

(G) = w41 then G contains the k-th power of a Hamiltonian cycle. O

For spanning graphs with fixed chromatic number and maximum degree and

with small bandwidth, we have the following result [20].

Theorem 1.1.2 (Bottcher, Schacht & Taraz 2009). For all r,A € N and v > 0,
there exist constants > 0 and ny € IN such that for every n = ng the following
holds.

If H is a graph on n vertices with chromatic number x(H) < r, with mazimum
degree A(H) < A, and with bandwidth bw(H) < fn and if G is a graph on n vertices
with minimum degree §(G) = (%1 + y)n, then G contains a copy of H. ]

Strictly speaking, the way we state Theorem 1.1.2, besides the v > 0, is not a
generalisation of Dirac’s theorem, since a Hamiltonian cycle might be 3-chromatic.
However, the proof in [20] is robust enough to cover this case and, in fact, to cover
any (r+1)-chromatic graph H which is “essentially” r-chromatic (see [20, Theorem 2]
for details).

Moreover, observe that the condition on the minimum degree is asymptotically
optimal, since complete almost balanced r-partite graphs do not contain almost
perfect K,-factors. Therefore, any attempt to weaken the minimum degree condition
must introduce some new requirements for GG, that prevent those partite lower bound
constructions. One possible way to achieve this, relies in restricting the independence

number of the large graph G (see, e.g., [6]). Staden and Treglown [84] considered
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the following robust restriction that uniformly imposes a positive edge density for

induced subgraphs on linear sized subsets of vertices.

Definition 1.1.3. We say that a graph G = (V,E) is (p,d)-dense for o > 0
and d € [0,1] if e(X) = d@ — o|V'|? for every subset X < V, where e(X) denotes

the number of edges of GG that are contained in X.

Staden and Treglown showed that for any d, p > 0 and sufficiently small o > 0
and sufficiently large n, every n-vertex graph G that is (o, d)-dense and has §(G) >
(% + p1)n contains any spanning subgraph H with constant bounded maximum degree
and sublinear bandwidth (see also [6, Appendix by Reiher and Schacht] for Ky, -
factors). Note that the minimum degree requirement for G becomes independent of
the chromatic number of H (still the chromatic number of H is implicitly bounded
by its maximum degree). This points that the density condition is too strong to
distinguish on the chromatic number of H.

The degree condition 6(G) = (3 + p)n is essentially optimal, since the graph G
consisting of two disjoint cliques on close to § vertices (one of them with the number
of vertices not divisible by k + 1) has no clique factor nor the power of a Hamiltonian

cycle. However, a bipartite version of Definition 1.1.3, which requires
e(X,Y)=|{(z,y) e X xY:aye E(G)} = pn|X||Y] - oV|?, (1.1.1)

for all subsets X, Y < V, rules out this example. It was observed by Glock and Joos
(see [84, Concluding Remarks]) that imposing property (1.1.1) on G allows a further
relaxation on the minimum degree condition for G to §(G) = u|V| for arbitrary
p > 0. In [EMR*20,33] it is shown that property (1.1.1) is not needed for arbitrary

subsets X and Y; it suffices to assume it only for vertex bipartitions of G as follows.

Definition 1.1.4. A graph G = (V, E) is called p-inseparable for some p > 0 if for
every subset X € V we have e(X,V N X) > p|X||V ~ X|.

Invoking this assumption to subsets X consisting of one vertex only, yields
a linear minimum degree condition for p-inseparable graphs G. Equipped with
Definitions 1.1.3 and 1.1.4, the following versions of the theorem for powers of

Hamiltonian cycles and the bandwidth theorem are obtained.



Theorem 1.1.5 (Ebsen et al. 2020). For every d, p € (0,1], and k € IN there
exist 0 > 0 and ng such that every (o, d)-dense and p-inseparable graph G on n = ng

vertices contains the k-th power of a Hamiltonian cycle.

Theorem 1.1.6 (Ebsen et al. 2020). For all d > 0, p > 0 and A € N, there
exist 0,8 > 0, and ng such that the following holds.
If G on n = ng vertices is (p,d)-dense and p-inseparable, then G contains

every n-vertex graph H with A(H) < A and bw(H) < fn.

This generalises the result of Staden and Treglown, since 6(G) = (3 + p)|V|
implies that G is p-inseparable. In view of Theorems 1.1.1 and 1.1.2, even though
Theorems 1.1.5 and 1.1.6 can be applied for sparser graphs, the condition 0(G) =
(“*+~)n does not imply that G is (o, d)-dense, as an example consider the complete
balanced (r + 1)-partite graph on n vertices.

In a work of Knox and Treglown [55], a new condition on G is introduced, that
yields, for the special case of H being bipartite, to a common generalisation for
Theorems 1.1.2 and 1.1.6.

Observe that a necessary condition for a Hamiltonian cycle is that G contains a
perfect matching (plus a vertex if n is odd) and that G being p-inseparable alone
is not enough to assure a perfect matching, as for example unbalanced complete
bipartite graphs show. Moreover, we want a condition which is robust enough to
be transferred to the reduced graph corresponding to G and a regular partition of
its vertices. The previous bandwidth results were also based on applying a simpler
result to the reduced graph, in order to prepare for an application of the blow-up
lemma in the original graph G.

In view of Tutte’s theorem [85], consider a graph G, a set S € V(G) and an
independent set I which has a vertex in each odd component of G[V(G) \ S].
Observe that only vertices of S can have more than one neighbour in /. Therefore

we turn our attention to
No(I) = {ve V(G): [N(w) n I| > 2}. (1.1.2)

If we ask that for every independent I with |I| = c¢n we have |No(I)| = |I], then

(1—c)n '

by Tutte’s theorem we get that a maximum matching of G has size at least ~—

This motivates the following robust version of (1.1.2).
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Definition 1.1.7. Let d > 0, o > 0 be given. A graph G = (V, E) is (g, d)-robust
matchable if for every U < V| either

(i) e(U) = d% — on? or
(ii) |Na(U)| = |{v e VN U: [N(v) n U] = dU]}| > U] + dn.

Obviously (o, d)-dense graphs are (g, d)-robust matchable. The latter does not
necessarily require that every subset of vertices U is dense (only large ones), but if
a subset is sparse, then the set U must have a large robust neighbourhood Ny(U),
meaning many vertices outside U having many neighbours inside U.

It is not directly clear that 6(G) > (3 + v)n implies that G is (o, 1)-robust
matchable for any o > 0; we briefly verify it. For U < V(G) such that |U| >

(% — 2)n, the minimum degree condition implies that each v € U has at least *

neighbours in U, therefore property (7) is satisfied for large sets. For |U| < (% — 2)n,
L

assume e(U) < 2 - 5~. Then consider the edges between U and the vertices which

are neither in U nor in Ny (U), these edges are at most 3|U|n. We have that

UP?

g no) o
N3 @)IU] + 3 |UIn > U,V \U) = U] (5 +m) =22 - 5

o2

From which property (7i) follows

n m - yn v
Ny >~ - In.
(N3 (O) = 5+ = =5 = Ul +5n

Consequently, the following theorem generalises Theorems 1.1.2 and 1.1.6 for the

case of bipartite H.

Theorem 1.1.8 (Knox & Treglown 2012). For every d, > 0, and A € N, there
exist B, 0 > 0, and ng such that the following holds.
If G is a p-inseparable and (o, d)-robust matchable graph on n = ng vertices and H

is a bipartite graph on n vertices with A(H) < A and bw(H) < fpn, then H < G.

Our goal is to find a condition to GG that generalises Theorems 1.1.2 and 1.1.6
for the case of 3-chromatic H, and that hopefully can be generalized for all fixed
chromatic number. Our approach follows the main ideas from [EMR*20,33] and

makes use of the absorbtion method and the regularity method for graphs.
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The first step of the proof is using the absorption method for finding a 2nd
power of a Hamiltonian cycle in the reduced graph corresponding to G and a regular
partition; that will allow us to prepare G for an application of the blow-up lemma.

For the describing that G is well connected, we use the following notions. We

are given a graph G = (V| E) and its robust neighbourhoods, meaning
Re={U, < N(v):veV(G)}.

Definition 1.1.9. Given ¢ > 0 and graph G with R, we define the auziliary graph
A = A(Rg, () by setting

V() =V(G) and  E) = {uv: |[E(G[U]) n E(GU])] = IV(G)P}-

Definition 1.1.10. Given £ > 0, a graph G and R, we say an edge uv € E(G) is

&-connectable in G, if
{w e VI(G): w e E(G[Uu])}| = £IVI(G)].

Moreover if G' contains a 2nd power of a Hamiltonian cycle, then it contains a

triangle-factor (if |V (G)| is multiple of 3); we need the following notion.

Definition 1.1.11. Given G, let
Te = {xyz: zyz is a triangle in G} .

A fractional triangle factor of G is a function f: T — [0, 1] such that for every v €
V(G), the weight of v satisfies X, per, f(zyv) < 1. We define the weight of f
by W(F) = Sayecro f(252).

Given robust neighbourhoods R¢, we say f is a &-connectable triangle factor
if f(zryz) > 0 implies that zyz is {&-connectable in G, meaning that either xy,yz

or xz is {-connectable in G.
We are ready to state the desired property.

Definition 1.1.12. For y, 0,0,(, &, n,v € (0,1] and n > max{2v,4,/0}, £ = 4,/0. A
graph G on n vertices with robust neighbourhoods R¢ is (i, d, C, 0,&, 1, v)-good if
the following holds.



i. BEach G[U,] is p-inseparable and contains at least dn?® different &-connectable

triangles.
ii. The auxiliary graph A(Rg, () is u-inseparable.

iii. For any A < V(@) with |A| < vn and F < E(G) with |F| < gn?, let X <
V(G) be those vertices incident to at least ,/on edges of F' and G4 r be the
graph with

V(Gar) =V(G)~ (AU Xp) and E(Gar) = B(G[V(Gar)]) ~ F.

The graph G 4 contains a §-connectable (in &) fractional triangle factor fg, .
with

W(feue) = 5 —nln—|A]).

Using the absorption method, we are able to proof the following result for the

2nd power of a Hamiltonian cycle.

Theorem 1.1.13. Given 1,0,(,§ > 0 and c,, there exist ny and n,0 > 0 with
n,& = cp/0 such that the following holds.
For every v > 0 such that n,&§ = 2v, if G is (u,6,(, 0,&,n,v)-good, then G

contains the second power of a Hamiltonian cycle.

With the stronger assumption that the auxiliary graph 2 is complete, we are
able to show that there is a regular partition of V(G) for which the reduced graph
inherits the good property of G. Consequently, a slightly stronger version of Theorem
1.1.13 (see Theorem 2.2.1) prepares the reduced graph for an application of the

blow-up lemma. This way, we obtain a bandwidth theorem for good graphs.

Theorem 1.1.14. For every u, 0, (, & > 0 and positive integer A, there exist 3, 0,m,v >
0 and ng such that the following holds.

If G on n = ng vertices is (j,0,¢, 0,&,m,v)-good and Aq is complete and if H
on n vertices is such that x(H) < 3, bw(H) < fn and A(H) < A, then H < G.

In Section 2.6.4, we show that graphs with minimum degree 6(G) = (3 +7)n
are sufficiently good, so that Theorems 1.1.13 and 1.1.14 apply to them. We believe
that the same holds for dense and inseparable graphs. Similar and more general

results were obtained by Lang and Sanhueza-Matamala in [70].
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1.2 The size-Ramsey number of powers of bounded

degree trees

Given graphs G and H and a positive integer s, we denote by G — (H), the
property that any s-colouring of the edges of G contains a monochromatic copy of
H. We are interested in the problem proposed by Erdds, Faudree, Rousseau and
Schelp [35] of determining the minimum integer m for which there is a graph G' with
m edges such that property G — (H ) holds. Formally, the s-colour size-Ramsey
number 7s(H) of a graph H is defined as follows:

7s(H) = min{e(G): G — (H)}.

Answering a question posed by Erdés [34], Beck [8] showed that 75(P,) = O(n)
by means of a probabilistic proof. Alon and Chung [1] proved the same fact by
explicitly constructing a graph G with O(n) edges such that G — (P,)2. In the
last decades many successive improvements were obtained in order to determine the
size-Ramsey number of paths (see, e.g., [8,15,30] for lower bounds, and [8,29, 30, 71]
for upper bounds). The best known bounds for paths are 2n — 2 < f5(P,) < 74n
from [30]. For any s > 2 colours, Dudek and Pratat [30] and Krivelevich [65] proved

that there are positive constants ¢ and C' such that cs*n < #,(P,) < Cs*(log s)n.

Moving away from paths, Beck [8] asked whether 73(H) is linear for any bounded
degree graph. This question was later answered negatively by Rodl and Sze-
merédi [81], who constructed a family {H,},en of n-vertex graphs of maximum
degree A(H,) < 3 such that 7o(H,) = Q(nlog"® n). The current best upper bound
for the size-Ramsey number of graphs with bounded degree was obtained in [57] by
Kohayakawa, Rodl, Schacht and Szemerédi, who proved that for any positive integer
A there is a constant ¢ such that, for any graph H with n vertices and maximum
degree A, we have

Po(H) < en® V2 log? n.

For more results on the size-Ramsey number of bounded degree graphs see [26,41,

48,49, 54, 56).

Let us turn our attention to powers of bounded degree graphs. Let H be a graph
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with n vertices and let k be a positive integer. The kth power H* of H is the graph
with vertex set V(H) in which there is an edge between distinct vertices u and v if
and only if v and v are at distance at most k in H. Recently it was proved that
the 2-colour size-Ramsey number of powers of paths and cycles is linear [21]. This

result was extended to any fixed number s of colours in [46], i.e.,
Ps(PY) = Ops(n) and  7(CR) = Ogs(n). (1.2.1)

In our main result (Theorem 1.2.1) we extend (1.2.1) to bounded powers of bounded
degree trees. We prove that for any positive integers k and s, the s-colour size-
Ramsey number of the kth power of any n-vertex bounded degree tree is linear

inn.

Theorem 1.2.1. For any positive integers k, A and s and any n-vertezx tree T with

A(T) < A, we have
7(T%) = Opas(n).

We remark that Theorem 1.2.1 is equivalent to the following result for the
‘general’ or ‘off-diagonal’ size-Ramsey number 7(Hy,..., Hy) = min{e(G): G —
(Hy,...,H,)}. fH; =TFfori=1,...,swhere T}, ..., T, are bounded degree trees,
then #(Hy, ..., Hy) is linear in max;<;<s v(H;). To see this, it is sufficient to apply
Theorem 1.2.1 to a tree containing the disjoint union of 77, ..., T}.

The graph that we present to prove Theorem 1.2.1 does not depend on 7', but
only on A, k and n. Moreover, our proof not only gives a monochromatic copy
of T* for a given T, but a monochromatic subgraph that contains a copy of the kth
power of every n-vertex tree with maximum degree at most A. That is, we prove
the existence of so called ‘partition universal graphs’ with Oy a s(n) edges for the
family of powers T* of n-vertex trees with A(T) < A.

Theorem 1.2.1 was announced in the extended abstract [12]. While finalizing
this paper, we learned that Kamcev, Liebenau, Wood, and Yepremyan [53] proved,
among other things, that the 2-colour size-Ramsey number of an n-vertex graph
with bounded degree and bounded treewidth is O(n)!. This is equivalent to our

result for s = 2. Indeed, any graph with bounded treewidth and bounded maximum

!They in fact formulate this for the general 2-colour size-Ramsey number #(Hy, Ha).
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degree is contained in a suitable blow-up of some bounded degree tree [27,86] and
a blow-up of a bounded degree tree is contained in the power of another bounded
degree tree. Conversely, bounded powers of bounded degree trees have bounded
treewidth and bounded degree. Therefore, we obtain the following equivalent version
of Theorem 1.2.1, which generalises the result from [53] and answers one of their

main open questions (Question 5.2 in [53]).

Corollary 1.2.2. For any positive integers k, A and s and any n-vertex graph H
with treewidth k and A(H) < A, we have

fs<H) = Ok7A75(7’L).

The proof of Theorem 1.2.1 follows the strategy developed in [46], proving the
result by induction on the number of colours s. Very roughly speaking, we start
with a graph G with suitable properties and, given any s-colouring of the edges of G
(s = 2), either we obtain a monochromatic copy of the power of the desired tree in G,
or we obtain a large subgraph H of G that is coloured with at most s — 1 colours;
moreover, the graph H that we obtain is such that we can apply the induction
hypothesis on it. Naturally, we design the requirements on our graphs in such a way
that this induction goes through. As it turns out, the graph G will be a certain
blow-up of a random-like graph. While this approach seems uncomplicated upon

first glance, the proof requires a variety of additional ideas and technical details.

To implement the above strategy, we need, among other results, two new and key
ingredients which are interesting on their own: (7) a result that states that for any
sufficiently large graph G, either G' contains a large expanding subgraph or there
is a given number of reasonably large disjoint subsets of V(G) without any edge
between any two of them (see Lemma 3.2.4%); (i) an embedding result that states
that in order to embed a power T* of a tree T in a certain blow-up of a graph G it

is enough to find an embedding of an auxiliary tree 7" in G (see Lemma 3.2.6).

2We are grateful to the authors of [53], who pointed out to us that similar lemmas have been
proved in [77,78].
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1.3 Random perturbation of sparse graphs

For a € (0,1) we let G, be an n-vertex graph with minimum degree §(G,) = an.

% and n > 3, then G, contains a

A famous result by Dirac [28] says that if a >
Hamiltonian cycle, i.e. a spanning cycle through all vertices of GG,. This motivated
the more general questions of determining the smallest o such that G, contains a
given spanning structure. For example, there are results for trees [62], factors [45],
powers of Hamiltonian cycles [59,61], and general bounded degree graphs [20]. This
is a problem for deterministic graphs that belongs to the area of extremal graph

theory.

We can consider similar questions for random graphs, in particular, for the
binomial random graph model G(n, p), which is the probability space over n-vertex
graphs with each edge being present with probability p independent of all the others.
Analogous to the smallest o we are looking for a function p = p(n): N — (0,1)
such that if p = w(p) the probability that G(n,p) contains some spanning subgraph
tends to 1 as n tends to infinity and for p = o(p) it tends to 0. We call this p
the threshold function for the respective property (an easy sufficient criteria for
its existence can be found in [14]) and if the first/second statement holds we say
that G(n, p) has/does not have the property asymptotically almost surely (a.a.s.).

One often says that G(n,p) undergoes a phase transition at p. For the Hamiltonian

cycle problem Posa [79] and Korgunov [63] proved independently that p = 182
gives the threshold. Thresholds for various other spanning structures were also
determined, e.g. for matchings [36], trees [66, 73], factors [50], powers of Hamiltonian
cycles [69,74], and general bounded degree graphs [2,39,40,80]. An extensive survey

by Bottcher can be found in [16].

Motivated by the smoothed analysis of algorithms [83], both these worlds were
combined by Bohman, Frieze, and Martin [13]. For any fixed o > 0, they defined the
model of randomly perturbed graphs as the union G, U G(n,p). They showed that
% is the threshold for a Hamiltonian cycle, meaning that there is a graph G, such
that with p = o(2) there is a.a.s. no Hamiltonian cycle in G, u G(n, p) and for any

G, and p = w(+) there is a.a.s. a Hamiltonian cycle in G, U G(n, p). It is important

to note that in G(n,p), p = % is also the threshold for an almost spanning cycle,

that is, for any € > 0 a cycle on at least (1 — ¢)n vertices. Another remark is that,
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if p= 0(10%) there are a.a.s. isolated vertices in G(n,p) and the purpose of G, is
to compensate this and help turning the almost spanning cycle into a Hamiltonian
cycle.

This first result on randomly perturbed graphs [13] motivated subsequent research
on thresholds of spanning structures in the randomly perturbed graph model,
e.g. trees [17,51,68], factors [7], powers of Hamiltonian cycles [9,19], and general
bounded degree graphs [19]. The thresholds for spanning structures in the randomly
perturbed model often differ from the thresholds in G(n,p) by a log-factor, like
in the case of the Hamiltonian cycle. This difference is due to local restrictions
similar to the isolated vertices in the Hamiltonian cycle case. In most cases a G,
that gives the lower bound is the complete imbalanced bipartite graph Koy (1—a)n-
In this model there are also results with lower bounds on « [10,31,47,75] and for

Ramsey-type problems [24,25].

1.3.1 Hamiltonicity in randomly perturbed sparse graphs

The aim of this note is to investigate a new direction. Instead of fixing an « € (0, 1)
in advance, we allow « to tend to zero with n. This extends the range of G, to

sparse graphs and we want to determine threshold probabilities in G, U G(n, p).

For example, with o = @ we have a sparse deterministic graph G, with minimum
degree ;-°—. Then p = w(%) does not suffice in general, but it is sufficient to take
gn n

Gq U G(n, M) to guarantee a Hamiltonian cycle with high probability. More

generally, we prove the following.

Theorem 1.3.1. Let a = a(n) : N — (0,1) and § = B(a) = —(6 + o(1)) log(a).

Then a.a.s. Go U G(n,2) is Hamiltonian.

This extends the result of Bohman, Frieze, and Martin [13] for constant a > 0.
For even n a direct consequence of this theorem is the existence of a perfect matching
in the same graph. To prove Theorem 1.3.1 we use a result by Frieze [43] to find
a very long path in G(n,p) alone and then use the switching technique developed
in [19] to turn this into a Hamilton cycle. As it turns out, our method allows to

prove the existence of a perfect matching with a slightly lower edge probability.

Theorem 1.3.2. Let o« = a(n) : N — (0,1) and 8 = f(a) = —(4 + o(1)) log(«).

Then a.a.s. Go U G(n,2) contains a perfect matching.
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To see that in both theorems f is optimal up to the constant factor, consider
Go = Kan,(1—a)n and note that there cannot be a perfect matching in G, u G(n, g),
if in G(n, 2) we have more than an isolated vertices on the (1 — a)n side. The
number of isolated vertices in G(n, g) is roughly n(1 — g)”*l ~ nexp(—p), which is
larger than an if 5 = o(—log(a)).

For proving results in the model of randomly perturbed graphs, we need good
almost spanning results. Typically, almost spanning means that for any ¢ > 0
we can embed the respective structure on at least (1 — €)n vertices. For paths
and cycles in G(n, %) this can be done using expansion properties and the DFS-
algorithm [67]. These almost spanning results are much easier than the spanning
counterpart, because there is always a linear sized set of available vertices. For the
proof of Theorem 1.3.1 this is not sufficient, because if a = o(1) we will not be able
to take care of a linear sized leftover. Thus we have to exploit that we have G(n, %)

and use the following result showing that we can find a long cycle consisting of all

but sublinearly many vertices.

Lemma 1.3.3 (Frieze [43]). Let 0 < 8 = B(n) < logn. Then G(n, 2) a.a.s. contains
a cycle of length at least

(1= (1= o(1))B exp(=p))n.

This is optimal, because it is asymptotically the size of the 2-core (maximal
subgraph with minimum degree 2) of G(n,p) [42, Lemma 2.16]. A similar result

holds for large matchings.

Lemma 1.3.4 (Frieze [43]). Let0 < 8 = B(n) < logn. Then G(n,2) a.a.s. contains
a matching consisting of at least (1 — (1 — o(1)) exp(—[))n vertices.

Again this is optimal, because the number of isolated vertices is a.a.s. (1 +
o(1)) exp(—p)n [42, Theorem 3.1]. Observe, that also a bipartite variant of this
lemma holds, which can be proved by removing small degree vertices and employing

Hall’s theorem.

Lemma 1.3.5. Let 0 < 5 = $(n) < logn. Then the bipartite binomial random graph
G(n,n, %) a.a.s. contains a matching consisting of at least (1 —(1—o0(1))exp(—05))n

edges.
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1.3.2 Bounded degree trees in randomly perturbed sparse
graphs

After Hamilton cycles and perfect matchings, the next natural candidates are
n-vertex trees with maximum degree bounded by a constant A. In G(n,p) the
threshold k’% was determined in a breakthrough result by Montgomery [73], in G,
it is enough to have a fixed a > 3 [60], and in G, U G(n, p) with constant a > 0 the
threshold is 1

- [68]. To obtain a result similar to Theorem 1.3.1 for bounded degree
trees using our approach, we need an almost spanning result similar to Lemma 1.3.3.
With a similar approach as for Theorem 1.3.1 and 1.3.2 we obtain the following

modular statement.

Theorem 1.3.6. Let A = 2 be an integer and suppose that o, 5,: N — [0, 1] are
such that 4(A + 1)e < o®*! and a.a.s. G(n, %) contains a given tree with mazimum
degree A on (1 — e)n vertices. Then any tree with mazimum degree A on n vertices

is a.a.s. contained in Go U G(n,2).

Next we discuss the almost spanning results that we can obtain in the relevant
regime. Improving on a result of Alon, Krivelevich, and Sudakov [3], Balogh, Csaba,
Pei, and Samotij [5] proved that for A > 2 there exists a C' > 0 such that for
e >0 a.a.s. G(n, g) contains any tree with maximum degree A on at most (1 — ¢)n
vertices, provided that 5 > glog % For the proof they only require that the graph
satisfies certain expander properties. This can be extended to the range where ¢ — 0

and w(l) = § < logn and following along the lines of their argument we get the

following.

Lemma 1.3.7. For A > 2 there exists a C' > 0 such that for any 0 < § = (n) <
logn and e = e(n) > 0 with § > glog% the following holds. G(n, g) a.a.s. contains

any bounded degree tree on at most (1 — e)n vertices.
Then together with Theorem 1.3.6 we obtain the following.

Corollary 1.3.8. For A > 2 there exists a C > 0 such that for « = a(n) : N — (0, 1)
and f = B(a) = Ca=@logl the following holds. Any n-vertex tree T with
mazximum degree A is a.a.s. contained in G, v G(n, %)

The proof for the dense case in [68] uses regularity and it is unlikely to give

anything better in the sparse regime. As remarked in [3] the condition on the almost
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spanning embedding in G(n, g) could possibly be improved to g > logg, then

covering almost all non-isolated vertices. More precisely this asks for the following.

Question 1.3.9. For every integer A there exists C' > 0 such that if 0 < § =

B(n) < logn the following holds. Is any given tree with maximum degree A on

(1= Cexp(=p))n
vertices a.a.s. contained in G(n, g)‘?

With Theorem 1.3.6 this would then give that already 8 = —(A + 1) log(Ca)
suffices, which would be optimal up to the constant factors. We want to briefly
argue why it is possible to answer this question for large families of trees and what
the difficulties are. For simplicity we only discuss the case 5 = loglogn and note

that by Lemma 1.3.7 above we can embed trees on roughly (1 n vertices.

~ Toglogn)
A very helpful result for handling trees by Krivelevich [66] states that for integers
n,k > 2, a tree on n vertices either has at least 7k leaves or a collection of at least
%k bare paths (internal vertices of the path have degree 2 in the tree) of length k. If

there are at least leaves, we can embed the tree obtained after removing the

410g7iogn
leaves. Then we can use a fresh random graph and Lemma 1.3.5 to find a matching

for all the leaves, completing the embedding of the tree.

On the other hand, if there are at least %ﬂ bare paths of length ; 10{3" , it is
zn oglogn

possible to embed all but % of these paths, which are all but @ vertices. Then

one has to connect the remaining paths, again using ideas from [73]. In between

both cases it is not clear what should be done, because we might have % leaves

and bare paths of length loglogn. The length of the paths are too short to

Tioglogn
connect them and the leaves are too few for the above argument. Answering this
questions and thereby improving the result of Alon, Krivelevich, and Sudakov [3] is

a challenging open problem.

1.3.3 Other spanning structures

As mentioned above, embeddings of spanning structures in G,, G(n,p), and G, U
G(n,p) for fixed o > 0 have also been studied for other graphs such as powers of

Hamilton cycles, factors, and general bounded degree graphs. In most of these cases

16



almost spanning embeddings (e.g. Ferber, Luh, and Nguyen [39]) can be generalised
such that previous proofs can be extended to the regime a = o(1) with § = a~ Ve,
similar to what we do in Corollary 1.3.8. Further improvements seem to be hard,
because better almost spanning results are similar in difficulty to spanning results
in G(n,p) alone. We want to discuss this on one basic example, the triangle factor,
which is the disjoint union of % triangles.

In G, we need a > %, in G(n, p) the threshold is n-s log% n, and in G, U G(n,p)
with a fixed o > 0 it is n=3. Note that the log-term in G(n, p) is needed to ensure that
every vertex is contained in a triangle, which is essential for a triangle factor. Using
Janson’s inequality [42, Theorem 21.12] it is not hard to prove the almost spanning
result for a triangle factor on at least (1 — )n vertices with p = w(n~3). This can
be generalised to G(n, Bn’%) giving a.a.s. a triangle factor on at least (1 — %)n
vertices. Again, this can only give something with § = @ T in Gy U G(n,ﬁn’g)

and to improve this we ask the following.

uestion 1.3.10. Let 0 < 8 = (n) < lo 3 n. Does G(n ﬁn’g a.a.s. contain a
Q g :

triangle factor on at least

(1~ (1~ o(1)) exp(~5%)) n

vertices?

Observe, that this is a.a.s. the number of vertices of G(n, Sn~3) that are not
contained in a triangle. Similar questions for other factors or more general structures
would be of interest. It took a long time until Johannson, Kahn, and Vu [50]
determined the threshold for the triangle factor. This conjecture seems to be of
similar difficulty, whereas for our purposes it would already be great to obtain a

triangle factor on at least (1 — C exp(—/3?))n vertices for some C' > 1.
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2. Spanning tripartite subgraphs

We aim for a good condition on graphs that generalizes Theorems 1.1.2 and 1.1.6.
This condition has to first, ensure the existence of a 2nd power of a Hamiltonian
cycle. This is done by an application of the absorption method. Second, we show
that the reduced graph inherits the good properties of the original graph and prepare

for an application of the blow-up lemma.

2.1 Absorption method

We are given a (u,06,(, 0,&,n,v)-good graph G on n vertices. As a consequence
of G being good, we have a bound on the minimum degree. Since the auxiliary
graph 2 is p-inseparable, 0(2() > p(n — 1). This implies for every v € V(G), we
have |E(G[U,])| = ¢(n?. Also, G[U,] contains at least én® triangles. Therefore,

IN(v)| = |U,| = max{2+/Cn, V65n} . (2.1.1)

We also observe that there are many p-connectable edges contained in G[U, |, for
every v € V(G). Indeed, since A = A(R, () is p-inseparable, Ny(v) = pu(n — 1) and
for every u € Ny(v), we have |E(G[U,]) n E(G[U,])| = (n?. A standard averaging
argument gives us E! < E(G|U,]) such that

(n?

Bl = CIEG) = = (2.1.2)

and for each ab € E! there is Ny(v,ab) € Ny(v) with |Ny(v,ab)| = (|Ng(v)| and
u € Ny(v,ab) implies ab € E(G[U,]) n E(G|U,]). Therefore ab is (p-connectable.
Throughout our application of the absorption method, we refer to the 2nd power

of a path/walk as a triangle path/walk. We take roughly the following steps:
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1. we ensure the abundant existence of so-called absorbers,
2. find an almost perfect cover of only “few” triangle paths, and

3. connect those absorbers and triangle paths to an almost spanning 2nd power

of cycle.

Here we state the lemmas that allows us to take these steps. The following lemma
will allow us not only to take step 3, but also to connect the absorbers into an

absorbing path.

Lemma 2.1.1 (Connecting Lemma). For every p € (0,1], 6,(,& > 0, there ex-
ist ¢, &% > 0 and integers L,ng such that the following holds.

If G on n = ng vertices with robust neighbourhoods R¢ satisfies properties i.
and ii. of good graphs, then for every two distinct &-connectable pairs xy, 'y,
there is some integer ((xy,x'y’) = ¢ with £ < L and { = 1 (mod 3) such that
the number of (zy,x'y')-triangle walks with { inner vertices in G is at least cn’.
Moreover if xyxy ... x3p12'y" is such a walk, the edges x3;_1x3;, with i € [k], are

&*-connectable.

After establishing that G is well connected, we take step 1 to set aside an
absorbing path. A triangle path P in a graph G = (V, E) is a-absorbing when given
any set X € V \ V(P) of size | X| < o|V] divisible by 3, there is a triangle path P’
with the same ending pairs as P and V(P') = V(P) u X.

Lemma 2.1.2 (Absorbing Path Lemma). For every u,0,(,& >0 and ¢ = ¢(§) > 0,
there exist k,ap, a, &' > 0 and ng, such that the following holds.

Given v > 0, a graph G on n = ngy vertices with Rq satisfying properties 1.
and . of good graphs and sets Iy,..., 1, < V(G), with m < 25", such that the
number of triangles with a &-connectable edge in G[I;] is at least c(§)n®, there exist

two vertex disjoint triangle paths Pa, P < G, such that
(i) [V(Pa)l, [V(P)] < min{, 3, §, Y=, n =3,
(it) Pga is ag-absorbing,

(7ii) Pa begins with a triangle path x1xox3x4, where Ty, Tox3, T3y are £ -connectable

and Py ends in a £ -connectable edge,
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(iv) for allie [m], the number of triangle paths Ps = y1y2ysysys contained in Py
such that y1,v2, Y3, Y, Y5 € I; is at least an.

(v) Pr begins and ends in &'-connectable edges.

The path P; is an addition towards the embedding of graphs with small band-
width, for the result concerning a 2nd power of a Hamiltonian cycle it is not needed.
Properties i. and ii. of good graphs ensured us steps 1 and 3. For step 2 we use

property iii. of good graphs.

Lemma 2.1.3 (Covering Lemma). Given &, a > 0, ¢, = 1 there exist n,0,¢ > 0
with o < %, § = cod/0, N = cp¢/0 and ng such that the following holds. For every
2=2v>0,if G onn = ng vertices with Rg satisfies property iii. of good graphs,
then there is a collection P of |P| < ¢ triangle paths with &-connectable ends covering

all but at most an vertices of G.

In the next section we use these lemmas to show that good graphs contain the

second power of a Hamiltonian cycle.

2.2 Second Power of a Hamiltonian Cycle

In view of Theorem 1.1.14, we show the following version of Theorem 1.1.13 that
includes special segments needed for preparing G for an application of the blow-up

lemma.

Theorem 2.2.1. Given 11,9,(,€ > 0, ¢(6) > 0 and ¢, > 1, there exist ny and
Ky, n, 0 > 0 with n,& = c,/0 such that the following holds.

For every i > v > 0 such that n = 2v, if G is (u,9,(, 0,&,m,v)-good and for
some m < 2" we are given Iy, ..., I, € V(G) such that the number of triangles
with a &-connectable edge contained in each I; is at least c(8)n3, then G contains the

second power of a Hamiltonian cycle with segments
- Ps = x1...x¢ which is the 3rd power of a path,

- Py such that for all i € [m], the number of triangle paths y1y2ysysys contained
in Pr such that yi,vy2,ys3,Ya, ys € I; is at least an.
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For embedding graphs with small bandwidth, we apply Theorem 2.2.1 to the
reduced graph of G and a certain regular partition Vj, ..., V. The triangle path P;
is needed for redistributing Vj into the partition classes without losing the regularity

of the involved pairs and the 3-path P, for the balancing of the sizes of the classes.

Proof of Theorem 2.2.1. Apply the Absorbing Path Lemma (Lemma 2.1.2) with the
given u,6,(, €, ¢(8) > 0. Get r,ag,a, & > 0 and n)), set £ = min{% R 8, 8} Apply

the Covering Lemma (Lemma 2.1.3) with &,2 ¢, > 0 to get n and ¢/,1,co > 0

4 27
with §,1 > ¢,4/¢’. Apply the Connecting Lemma (Lemma 2.1.1) with £, 2,5’ and
get ¢; > 0 and integers n{, L (we also get £* > 0, but here we do not need the

“moreover” part of the lemma). Set

1 ,{u5C2usa}
8’4,4710\/574’2

0=V4¢, p=gmin

and let ny be large enough. Let ¢, and v > 0 be given such that n > ¢,v. Let G be
a (u,9,C,0,&n,v)-good graph with robust neighbourhoods R¢.
Lemma 2.1.2 gives us disjoint triangle paths P4 and P; in G. Take

G = GIV(G) ~ (V(P1)OV(P)] with Rer = {U’ = U, n Nev(v): v e V(G)}.

Since |V (P4)OV(P;)| < min{#, %5, 2“\[}71 6, Lemma 2.4.6 gives us that G’

satisfies properties i. and ii. of good graphs with £ Lemma 2.4.7 gives a third

2’272

UAUSY NN RSN e | /
power of path P = @) zhzixztzy with 2-connectable ends x|z}, zizy in G'.

Consider X < V(G) containing the vertices in the ending pairs zy;, 27y} of Py,
the vertices x1, xo, x3, x4 in the initial segment of P4, the ending pair xy4 of Pa

and the vertices in the ending pairs @z}, zixf; of P, note that | X| = 14. Take
G* = GV(G) \ ((V(Pa) OV (P)OV (Ps)) ~ X)] and

Rex ={Us = U, n Ngx(v): ve V(G¥)}.

. : 2 .
Since |V (Pa)OV (Pr)OV (Ps)| < min{#, 2, $, “%/, inand v < 1, 0 < £,
that G* is (4, %, %, %, 5:1, 5)-good.

Choose a reservoir set S € V(G) \ (V(Pa)UV (P;)UV (Fs)) by including vertices

we have

independently at random with probability p > 0. We show that with positive
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probability there is a choice of S such that the following holds:

: 2 | 2 *
(a) S| < min {82 ¢ 2V ¢ aljy (G| - |x]
(b) for two distinct &’-connectable (in G*) pairs zy, 2'y’ € E(G*) there is ¢ < L,

with ¢ = 1 (mod 3), such that there are at least %]V(G*)V distinct (zy, 2'y)-

triangle paths in G* with ¢ inner vertices, all in S.

For property (a), observe that p|V(G*)| = p|v2(G)| > 28p + 14 = 2p| X| + | X| and

use Markov’s inequality to get

. (2.2.1)

DN | —

P (5] = 3plV(G™)| = [X]) < P(IS] = 2p([V(G7)] + [X])) <

For property (b), the Connecting Lemma (Lemma 2.1.1) guarantees for every
two &’-connectable pairs zy, 2'y/, at least ¢; |V (G*)|“@¥*') different triangle walks
between xy and x'y’ with ¢(zy, 2’y") < L inner vertices (note that if G* is good with
%, it is also good with &’). At most half of these walks have vertex repetition or an
inner vertex in X, thus we have at least 2|V (G*)|“®¥*¥) triangle paths between
zy and z'y’ with {(zy, 2’y") inner vertices in V(G) \ (V(Pa)OV(Pr) UV (F)).

Let X (¢(xy,2'y"), xy, 2'y") be the number of triangle paths between xy and x'y’
with all its ¢ = ¢(zy, 2’y’) inner vertices in S. For an application of the Azuma-
Hoeffding inequality, note that the inclusion or exclusion of a vertex in S changes

X (€, zy,2'y') by at most £|V(G*)[*~!. Thus,

o a(lV(GH)p) A(V(GH)p)*
P<X(€’ 7, 7Y < f) S exp ( T 16 2£2|V(G*)|2f—1)

2. 21
ap

< exp ( -5 |V(G*)|> . (2.2.2)

There are up to L - |V(G*)|* triples (¢, zy,«'y’), thus by the union bound and
for ngy large enough, the probability that there is a triple such that (2.2.2) holds is
smaller than % Considering this and (2.2.1), we may fix an instance S satisfying
properties (a) and (b).

Consider
G" = G[V(G) \ (V(Pa) OV (P)UV (Ps)US)] = G*[V(G*) ~ (SUX)] and

RG” = {Ug = Uv M NGV/(U)i Ve V(G”)} .
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Since | X US| < min{E 5 ¢ /Gy Q}IV(G*)L we have G” is (¥, ¢ o £, %)
good.

Lemma 2.1.3 gives us a collection Qy of at most ¢y triangle paths with %—
connectable (in G”) ends covering all vertices but at most $|V(G")| vertices of G".
Let Q be the collection of triangle paths containing Qg and in addition Py, P;
and Fg.

We note that all paths in @ have &’-connectable ends in G*. First, the paths
in Qy have §-connectable ends zy in G”. If zy € E(G"[U!]), since G"[U!'] < G*[U¥]
and |V(G")| = %G*)', we have that xy is %—Connectable in G*. Second, if zy is an
end pair of P4 or Py, then x,y € X < V(G*) and z,y € U, for {yn different v € V(G).
If ve V(G*), then z,y € U;. Since [V(G*)| = §, we have that x,y are in at least
%y different UZ. Third, if zy is an end pair of Ps = 2} zhziaatay, then 2,y € X
and x,y € U, for 2|V(G")| different v € V(G'). Since V(G*) 2 V(G') \ {24, 2}},
if v ¢ {z}, 2}, then z,y € Ur. Moreover |V(G)| = |[V(G*)| — 8, thus zy is $-
connectable in G*.

Using the reservoir S, we connect the triangle paths in this collection into a
single triangle path in GG. Consider a maximal subset @' < Q such that there is a
triangle path Pg in G with £’-connectable (in G*) ends containing all triangle paths
from Q', intersecting no other element of Q@ \. @’ and containing at most L(|Q'| — 1)
vertices from S. The set @' is non-empty and we show that Q' = Q.

Otherwise, let ) € O\ Q' be a triangle path with an end zgyg and let xoyo be an
end of Py, both are {’-connectable pairs in G*. Property (b) of S gives %\V(G*)]Z
different (zqyq, voyo)-triangle paths in G* with all its ¢ < L inner vertices in S.
The path Pg intersects at most L(]Q'|—1)¢|V (G*)|*~! of these paths and for ng large,
it assures at least one triangle path between zqyo and z¢gyg with inner vertices
in S that is disjoint from Pg/. Thus we may extent Po to Pgor gy intersecting S in
at most L(|Q v {Q}| — 1) vertices.

We find the second power of a cycle C' containing roughly all Py. At this point
we shall address the parity issue. Since the absorbing path P4 absorbs triples of
vertices, we have to ensure that |V(G)| — [V(C)] is a multiple of 3. For that, we
take P4 to be the first triangle path in Py, and therefore Py begins with x;x51314
such that all edges are &-connectable in G*; say xgyg is the other end of Pg.

For z;x; € E(z1x91324), property (b) of S gives many (z;x;, voyo)-triangle paths
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with 3k;; + 1 inner vertices in S. If |[V(G)| — |[V(Pg)| is of the form 3k, we will
connect the pairs zox3 and xgyg and |V (G)|—|V (C)] is of the form 3(k' —ko3) —1+1,
since x is a left over. If |V(G)| — |V (Pg)|

pairs x122 and xgyg. If |V(G)| — |V(Pg)| is of the form 3k’ + 2, we connect the

is of the form 3%k’ + 1, we connect the

pairs z3x4 and Toyo.

Property (b) of S gives at least %\V(G*)V triangle paths between the selected
pairs, having its inner vertices in S. By the same argument as above, there is a
path with all its ¢ inner vertices in S\ V' (Pg). Consequently there exists the second
power of a cycle C' with |V (G)| — |V(C)| a multiple of 3 and containing Pg except
by possibly its first two vertices x1, 5.

The paths in Qg leave at most §|V(G”")| uncovered vertices in G” and since
V(Pa) ~A{xy1, 22}, V(Pr),V(Ps) € V(Pg), the triangle path Pg leaves at most |S| +
SIV(G")| + 2 uncovered vertices in G. Since |S| < §[V(G*)| — 14 and Py is o-
absorbing in GG, we may absorb all uncovered vertices, obtaining the second power

of a Hamiltonian cycle containing the special segments Py and F. O

In the following sections we prove Lemmas 2.1.1, 2.1.2 and 2.1.3.

2.3 Connecting

We use the fact that between any two vertices in a p-inseparable graph there are
many paths with a certain number of inner vertices. This is shown in [EMR*20]

and we also include the proof here.

Lemma 2.3.1 (Many paths). For every p € (0,1], there exist ¢ > 0 and integers L,
no such that every p-inseparable graph G = (V, E) on |V| = n = ng vertices satisfies
the following. For every two distinct vertices x, y € V, there is some integer {
with 1 < 0 < L such that the number of (x,y)-walks with ¢ inner vertices in G is at

least cnt.
Proof. Given u we define
i+1)

3 2 i (% 12

Let G be a sufficiently large u-inseparable graph on n vertices and x, y be two

distinct vertices of G. Consider for each 7 > 0 the set of vertices v that can be
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reached from x by “many” walks in G with ¢ inner vertices. For that we define

X; = {v e V: there are §;n’ (x,v)-walks with ¢ inner vertices} and X' = U X;.
0<j<i
Analogously, consider the vertices v that can be reached from y by §;n’ walks in G
with ¢ inner vertices and define the sets ¥; and Y in the same way.
Observe that Xy = X° = N(z) and since G is p-inseparable, |N(z)| = u(n — 1).
Moreover, X* < X! and we shall show that as long as |X?| is not too large,

then | X**1| is substantially larger than | X"*|. More precisely, we show for every i > 0

that

\V]
=

X7 < —  |X"'N X' =Tn. (2.3.2)

-n
3 6

Before verifying (2.3.2), we conclude the proof of Lemma 2.3.1. In fact, (2.3.2)
implies that there is some 75 < [%J such that | X%| > %” Applying the same argument
for Y, we get some jy < [%J such that [Y7°| > 2% and, hence, |[X® n Y| > 2.

Each vertex v € X n Y7 can be used to create many (y, z)-walks with possibly
different number of inner vertices. However, by the pigeonhole principle there are
integers a, b with 0 < a < 7o and 0 < b < jy such that

| X0 A Yol - u>n

(io+1)(o+1) ~ 48 °

| Xo " Y| = (2.3.3)
For each v € X, n'Y; there exist 6,n® (x,v)-walks and §n® (v,y)-walks with a
and b inner vertices, respectively. Concatenating these walks leads to at least
8a0pn®T | X, N Yy different (z,y)-walks, with £ = a + b + 1 inner vertices. Owing
to the choice of constants in (2.3.1) we conclude the proof.
It is left to verify (2.3.2). Suppose |X?| < % and consider the complement

3
Z =V ~ X" Owing to the p-inseparability of G we have

e(X', Z) = ul X' Z]. (2.3.4)

0j41

Note that each vertex v with at least 5N neighbours in X; belongs to X, ;.

Since Z is disjoint from X*, we have

i—1
. 35
e(X7Y, 2) < |Z|- ﬂT“n (2.3.5)
j=0 J
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Moreover, supposing by contradiction that (2.3.2) fails, we also have

(X1, Z) < |Z]- :5“ +%yxi|n. (2.3.6)

Combining (2.3.5) and (2.3.6) we arrive at

s 5
e(X' ET +12]- =+ n|X|—|Z| Z 01, —|—%n|Xi|.(2.3.7)

]

Owing to the choice of §; in (2.3.1) we have

2

”“ “Z() <%.

Furthermore, since | X*| > | X = [N(z)| = p(n — 1) and |Z] = |V \ X*| = n/3, we

J=0

derive for sufficiently large n from (2.3.7) that

2

o(X',2) < | ZIn + Gl Xdn < §1ZI1X7 + 51X 2] < X712

which contradicts (2.3.4). O

Our triangle paths between connectable ordered pairs zy and z'y’ will be obtained
by including a vertex between the vertices in every second edge of a (y, 2’)-path
(Figure 2.3.1). Thus we need that the number of inner vertices in these paths is

even. We can obtain this, whenever we have p-inseparability and many triangles.

Corollary 2.3.2. Given u € (0,1] and 6 > 0, there exist ¢ > 0 and L such that
the following holds. If G is p-inseparable and contains on® triangles, then for any
different x,y € V, there is an odd (even) integer £,(x,y) < L (l.(z,y) < L) such
that there are cn@Y) ( ente@) ) walks with C,(z,y)( Le(,y)) inner vertices between x

and y.
Proof. Let u, 0 be given. Apply Lemma 2.3.1 with p and get ¢ > 0, L'. Set

(5 C/Q

77 and L=2L"+3.

C =

Let Ty be the triangles in G. Consider different vertices x,y € V. For each abc =

T € T, Lemma 2.3.1 gives ¢'nfse walks with ¢,, < L’ inner vertices between x
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and a and ¢'n*ve walks with ¢, < L’ inner vertices between y and c. Each triangle
is associated to a pair ({sq,y) and there is a pair (£, {,) common to at least 2;n?

triangles, let To(z,y) < T be such triangles.

If abc € T (z,y) and £, + ¢, is odd, then we use the edge ac to complete and

odd walk between z and y. In total we have

3
12, lo+y on

1
¢ 2 ' n

walks between z and y with ¢, + ¢, + 2 = {,(x,y) inner vertices (the factor 1/n
excludes the possible n triangles on the same edge ac). If ¢, + ¢, is even, we
complete walks between x and y by taking the segment abc of T and get an odd
number ¢, + ¢, + 3 = {,(z,y) of inner vertices. The total number of walks in this
case is

ons3

172 '

C/2 nﬂz +4ly

Completing the walks with abc when ¢, + ¢, is odd and with ac when it is even,

we get many paths between x and y with an even number of inner vertices. O]

We are ready to prove the Connecting Lemma.

Proof of Lemma 2.1.1. We are given pu, 6, (, &, apply Lemma 2.3.1 with p and get ¢
and Lo apply Corollary 2.3.2 with p,d to get ¢; and L;. Take ¢ = min{co, c1},
L' = maX{Lo, Ll};

3L/ . C/2£2CL/+1
L:(L’+2)<7+1>+2(L’+1), &< s and
CE\LHL e\ L'+2 C/CL/HV (L'+2)L
=(m) (5) )

Let G with robust neighbourhoods R¢ be given. For any edge ab € E(G), set

U(ab) = {ve V(G): abe E(G|U,])}.

Let zy, 'y’ be &-connectable edges, thus we have |U(zy)|, |U(z'y)| = én.
Consider the auxiliary graph 2 = A(R, (). For any U, W < V(G) and v € (0, 1],
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define
d,(U,W) = min{i: 3yn'"" walks in 2 between U and W of length i} .

Note that d,(U, W) = 0, iff |U n W| = yn.

Observe that d,(U(zy),U(z'y')) < L'+1, with y = ic,l Indeed, assume |U(zy) N

U(2'y')] < $n. Since the 2 is p-inseparable, Lemma 2.3.1 gives for each distinct

uwe U(xy), veU(x'y), a value 1 < (u,v) < L. There exists an ¢ which is the

2 £
4L’ 4L’

U(zy) and U(z'y’) of length ¢ + 1.
We now prove the lemma by induction on d,(U(zy),U(z'y’)). For the base case,

nf*? = yn'*? walks between

same for at least >-n? pairs. Thus, we get at least

assume d(U(zy),U(z'y')) = 0 for 4/ = ¢L'+1y. For u e U(zy) n U(z'y'), we have
that zy, 2’y € E(G[U,]). Since G[U,] is u-inseparable and contains dn? triangles,
Corollary 2.3.2 gives us £, (u) < L’ and ¢n‘® different (y, 2')-walks with £, (u) inner
vertices in G[U,]. By the pigeonhole principle there is ¢, common to at least %
vertices in U(xy) n U(z'y).

By a standard averaging argument we have a set P of (y,z’)-paths with ¢, inner
vertices with |P| > Sn such that for each P € P, there is U(P) < U(zy) n U(2"y’)
with |U(P)| = <%n and u € U(P) implies P = G[U,]. Observe that all edges in P

2L/
!

5r-connectable.

are

We note that including some vertices of U(P) into P gives a triangle walk

between zy and x'y’. Say P = yv; ... vg a'; for any choice,
[l
{uie U(P):ic [§+ 1}},

we have that xyu,vivaus - - - ug, j2412"y’ is a triangle walk.

Figure 2.3.1: Including some vertices of U(P) into P.

The number of triangle walks between zy and 2y’ with 2 + 1 < 37” +1<1L

inner vertices is at least

PIUP)

/241 < C/<C/7/>€e/2+1n366/2+1 > C/<C/<L +17>Ln3ee/2+1
~2\2L “ 2\ ar '
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For the induction hypothesis, let 1 < ¢/ < L'+1 and assume that if ab, a’t’ € E(G)
are such that d,(U(ab),U(a't")) < €' — 1 for o/ = (¥'==V+1y then there is £ = 1
(mod 3),

!/

£<€’<32L+1>+2(£’—1)<L,

such that the number of triangle walks with ¢ inner vertices between ab and a’’ is

<g2 >z'—1 (c’)f’ (c’CL/Jrlfy)E’L ,
L2 2 2L "

Moreover if abzx ...x,a'b" is such a walk, the edges z3;_ix3;, with i € [*5], are

at least

&*-connectable.

Now consider that d.(U(xy),U(z'y')) = ¢' for ' = ¢¥'=+1y. Set
Up = {uy: 3 walk uouy . .. up_jup in A with vy € U(zy), up € U(z'y')} .

Note that the set Ey(U(zy),U;) of edges in E(2A) between U(xy) and U; is such
that |Ey(U(zy),Uy)| = v/'n?.

We want a large set E/ < E(G) such that for any ab € E', we have d,»(U(zy), U(ab)) =
0 and d./(U(ab),U(z'y')) < ¢ — 1 for " = (4. Indeed, considering each uv €
Eo(U(zy),U;), since wv € E(21) we have |E(G[U,]) n E(G[U,])| = ¢(n*. By
a standard averaging argument, there is £’ € E(G) with |E’| = (|E(G)| such
that ab € E’ implies that there is Ey(ab) < Ey(U(zy),U;) with |Ey(ab)| =
C|Ba(U(zy),Uy)| = (v'n? and for every uv € Ey(ab), we have ab € E(G[U,]) n
E(G[U,]). Thus |U(ab) n U(zy)| = ¢y'n and |U(ab) n Uy| = ¢y'n = (V- =D+1y,
which for 4" = {4/, gives us that ab is y"-connectable, that d.(U(zy),U(ab)) = 0
and d.»(U(ab),U(z'y")) < ¢ —1.

According to our induction hypothesis, there are ¢}, ¢, < L, with ¢{,¢, = 1
(mod 3), such that the number of triangle walks between xy and ab with ¢} inner

vertices and between ab and x'y’ with ¢, inner vertices are at least

!, AL+ L 2001 0 ;A LA WL
3 (Cap) e e () (9) (G

2L/ L2 2 2L/
We have values ¢; and ¢5 common to at least % > Ci—’f edges in E’. For each

such edge ab, we concatenate the walks between xy and ab and between ab and z'y’.

The number of (zy,2'y’)-triangle walks with ¢; + fo +2 =1 (mod 3) inner vertices
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that we obtain is at least

<<'2>Z/ <C/>€/+1 (C/C'L/‘f‘l,-y) (Z/+1)Ln£1+é2+2

2) \2 2L/

Moreover,

L L
£1+€2+2<3+1+€’<3+1>+2(£’—1)+2
2 2
/

<(£’+1)<32L+1>+2£’<L. 0

2.4 Absorbing

We start by introducing the desired “absorbing” structures. Roughly, the structure
consists of disjoint triangle paths with the property that they can be modified to
include other vertices, without changing the ending (ordered) edges of each triangle
path.

To describe the absorbers precisely, we use the following structure, see Figure 2.4.1
for guidance. Given a positive integer k, an open Cy-path Ly is obtained from disjoint
Ci,...,Cy and uy,...,ux_1, where C; (i € [k]) are Cy’s and u; (i € [k — 1]) are
vertices such that C;, C;1 1 < N(u;). For vertices z,y disjoint from Ly, such that
Cy; € N(z) and Cy, < N(y), we say Ly is a Cy-path connecting z and y and we
refer to k as its length.

The following definition describes the absorbers.

Definition 2.4.1. Given ¢ > 0, a graph G, vertices x,y, z € V(G) and positive
integers ki, ko, ks, we say a tuple A = (S, Lg,, Ly, Li,) is a (K1, ka2, k3)e-absorber

for x,y and z with switch S, when

1. Sis a K332 with parts {wy, s4, w7}, {w2, s5,ws}, {ws, se} and such that the

edges wyws and wrwsg are £-connectable.

2. xLg, S4, yLi,ss and 2Ly, se are Cy-paths of lengths ki, ko, k3 respectively and for
each C; in these Cy-paths, we have that all edges in F(C;) are {-connectable.

3. The vertices x,y, z, the open Cy-paths and S are disjoint.

We also say A is a (k1, k2, ks)¢e-absorber if it is a (K1, k2, k3)¢-absorber for some triple

of vertices z, y and z.
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In the following observation we describe how the vertices in a (ky, k2, k3 )e-absorber
for the vertices x,y, z can be covered by disjoint triangle paths and how they can

be modified to include z,y, 2.

Observation 2.4.2. The vertices in a (ki, k2, k3)e-absorber A = (S, Ly, , Ly,, Ly, )
can be covered by disjoint triangle paths with &-connectable ending pairs. Let the
Cy-path xLy sy be such that C; = vg;_1v90h, V5, then take the triangle paths
Vai—1V2iUiVy;_1Vy; for i € [ky — 1] and wvog, —1vVap, 5405y, _1Vy, , do it similarly for
yLy,ss and zLy,se, and for the switch S take wiwswswrws.

Moreover if A is a (ki, k2, k3)e-absorber for x,y,z € V(G), we say A absorbed
x,y, 2 when we consider the following disjoint triangle paths covering all vertices
of A plus x,y,z. For the Cy-path xLy,s4 take vivxv|vy and vg; VU1V 1V
for 2 < i < [k1], proceed similarly for yLy,ss and zLy,ss, for the switch S take
wiwewszSyssSgwrws. All the ending pairs of these triangle paths are the same as

when covering A without absorbing x,y, z.

v b vy V) vy UG
o — o — o — e W1 o 54 o Wy o W1 o Sy o Wy
/<Z>\ XN LN ‘/ / /
T e U o U o . 84
\o—o/ \o—o/ \o—o/ e “Wo Sy o WY o W e S o Wg
V1 Vg V3 Uy Vs Vg
45 45 45 ‘/ /
o= N~ o= e W3 o Sp e W3 o Sg
CARNARNARN
X7 N\oX7 N\hx”7
1 2 1 2 1 2

Figure 2.4.1: A Cy-path xLsss and switch both absorbing x and not.

We take step 1 in our application of the absorption method and show the
existence of many absorbers in a good graph. For that we use the following result of
Erdés [37], that ensures many r-partite complete hypergraphs K™ (¢1,...,¢,) in a
dense r-uniform hypergraph G .

Theorem 2.4.3 (Erdés 1964). Given integers r, 0y, ..., ¢, and ¢ > 0, there is ¢ > 0
and ng such that, if G is an r-uniform hypergraph on n = ngy vertices and at least

e’ edges, then there are ¢n* 4 copies of KW (4, ..., 0,) in G,
The following lemma guarantees that good graphs have many absorbers.
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Lemma 2.4.4. For every p,9,( > 0, there exist c,£* > 0 and integers L,ngy such
that the following holds.

If G on n = ng vertices with robust neighbourhoods R¢ satisfies properties i.
and ii. of good graphs, then for every distinct x,y,z € V(G) there are inte-
gers ki, ko, ks < L such that the number of (ki, ks, ks)ex-absorbers for x,y,z is

at least cn5k1+5k2+5k3+5 )

Proof. Given pu,d,¢ > 0, apply Lemma 2.1.1 with u,6,(,§ = Cu > 0 and get ¢/, &* >
0 and L, assume wlog £* < (u. Constants co, 1, ¢2, c3 will be given by applications

of Theorem 2.4.3. Take
_ CoC1C2C3

203

We want to apply Theorem 2.4.3 to find many switches in GG, for that we need
many triangles with a connectable edge. Equation (2.1.2) gives us that for any
v e V(Q), if E! are the (u-connectable edges in G[U,], then |E!| > %. For each
ab € E! we get a triangle abv, thus there are at least % triangles with at least
one (p-connectable edge in G.

Take a random partition of V(G) into {V4, Va, V3}, where P(v € V;) = £. Let X be
the number of triangles vyvov3 with a connectable edge and vy € Vi, v9 € Vo, v3 € V3.
The expected value is w6 s

EX > S R T
Thus there is a partition {V}, V4, V3} with at least % such triangles and by averaging,

n?

165 Of these triangles have

we may assume without loss of generality that at least
its connectable edge between Vi, V5.

Consider the hypergraph G® on V(G) and vivyvs € E(G®)) when vivqvs is a
triangle in G with v; € Vi, v9 € V5,03 € V3 and vjvy connectable. Theorem 2.4.3,
gives us con® copies of K®)(3,3,2). Since all hyperedges had a connectable pair
between V; and V5, each of these K®)(3,3,2) corresponds to a possible switch in G,
let S be the set containing these corresponding Ks39’s.

Consider vertices x,y, z and S € S (with vertices labelled as in Figure 2.4.1). We
want a value k; and many Cy-paths Ly, ss. Take (u-connectable edges vivy € E!,
and vivy € B . Lemma 2.1.1 gives us {(vivp,vjvy) = ¢ < L and £ = 1 (mod 3).
Excluding pairs of connectable edges that intersect, there are at least % different

choices of (v1vq,vjvh) and thus there is a value ¢; = 3(k; — 2) + 1 common to at
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2,4 . .
least 2= such choices. The number of (v1vs, v]v})-triangle walks of form
)
V1V T1X2X3%4 ... Ly V1Vgy,

is at least ¢n® and the edges x3; 173 (i € [k — 2]) are £*-connectable. For all

choices of (vyvg, v]vh), let W be the set of all such walks.

Consider the partite hypergraph G4 with
V(GO = V1O, OV, Vi=V(G) and E(GH)=w.

We have that |E(G“+)] > %n“*‘l. Theorem 2.4.3 gives us that the number of
copies of partite cliques K(“¥4(2,2,1,2,2,1...,1,2,2) is at least ¢;n**1=2+9 and
at least half of them have no vertex repetition. In GG, each such partite clique forms
an open Cy-path

Lkl = C’lul e uk1,10k1 .

We have that z Ly, s, is a Cy-path where the edges in E(C;) are £*-connectable.
Repeating the argument for the pairs (y, s5) and (2, s), we get cyn*2~1 differ-

ent yLy,ss of length ko and c3n®3~! different 2Ly, s of length k. For x,y, z, there

Con8
L3

are at least switches associated to the same values kq, ks, k3. Picking such a
switch S and Cy-paths xLy, sS4, yLk,ss, 2Lk, s¢, then excluding choices with vertex
repetition, the number of (K, k2, k3)ex-absorbers for x,y, 2 is at least

1 8

——=Co C1N

5k1—1 5ka—1 5k3—1
Camn C3Nn
203

_ Pk +5kat5ks 5 0

To get an absorbing path, we will start with a collection of disjoint absorbers.
Then one by one we connect the triangle paths that cover the first absorber, then
the second and so on, always making sure that the triangle path we constructed so
far and the following one to be incorporated do not intersect. For ensuring these
connections, we show that the good property of G holds for subgraphs obtained

after the removal of few vertices.

We need the following property of p-inseparable graphs.

Property 2.4.5. If G is a p-inseparable graph on n vertices, [ € (0, %) and U <

V(G) has |U| < Bun, then G' = G[V(G) \ U] is (1 — 2p)u-inseparable.
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Indeed, assume for a contradiction that this is not valid, then there exists X <

V' =V (G)\ U with | X] < |V| < 4 such that
eq (X, V' N X) < (1 =28)u|lX||V'\ X].

Consider the partition of V(G) into the sets X and (V' N X)u U = V(G) N X. We
have that

ea(X, V(G) ~ X) < (1= 28)ulX|[V' . X| + [U]|X]
— (1 - 28)ulX|(V(G)| - U] - [ X]) + [U][X]
— pIX[IV(G) ~ X| — 28ulX([V(G) ~ X| + (1 - (1 - 28)w)|U]|X].

Since [V(G) \ X| = %, Bun > |U|, and 8 < § we have
26p|X[[V(G) N X[ = pun|X| = [U]|X] = (1 = (1 =26)p)|U[|X].
We derive that eq(X, V(G) N\ X) < u|X||V(G) ~ X]|, which is a contradiction.
In the following lemma we show that good graphs have a similar property.
Lemma 2.4.6. Given p,9,( >0, if G satz‘sﬁes properties i. and . of good graphs

and X < V(G) is such that | X| < min{#,$ 2”\/}71 then G' = G|V (G) \ X]

)99 9
with Ry = {U}, = U, n Ne(v): v € V(G')} satisfies properties i. and ii. of good

. 5§ ¢
graphs with &, 3, 5.

1

16 VS i, if G satisfies property iii. of

Moreover, given o,&,mn,v > 0, 0 <
good gmphs and X < V is such that |X| < %, then G’ satisfies property ii.
with 4 4 27 35 2
Proof of Lemma 2.4.6. Given G satisfying properties i. and ii. and given X such
that | X| < mm{4, 53 2“\/}71 we check that G’ with R¢ has property i. of good

graphs. We have for any v € V(G) \ X, that

2
X< 2 = 2 (202 - 2V < B o) - 1x) < .

Property 2.4.5 gives us that each G’[U}] is p/2-inseparable. The number of triangles
in G[U,] containing a vertex in X is at most |X||U,[> < $n?, thus each G'[U}]

contains at least $n® > 2|V(G’)|? triangles.
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For property ii., observe that |E(G) \ E(G')| < |X|n < §n? and if u,v € V(G)
are such that uv € E(A(R,()), then |E(G'[U]) n E(G'[U}])| = $n?. Thus for Ag =
A(Rer,(/2) and g = A(R, (), we have A = Ag[V(G) \ X] and | X| < £n implies
that ¢ is pu/2-inseparable.

Next consider G satisfying property iii. and | X| < &n be given. We check that G’
satisfies property iii. with %2, §.m,%, thus take A’ € V(G') with [4'| < %|V(G)]
and F' < E(G') with [F'| < %|V(G’)|2. Consider X < V(G') and G’y 1 as in
property iii. and take

A=A uvX and F={weFEG): ueXp}uF,

since | X| < ¥n and [Xp| < ¢n, we have that |[A| < vn and |F| < on®. Thus G4

contains a &-connectable fractional triangle factor with
n n , ,
Wfaur) 2 5 —nln—A]) = 3 = n([V(G)] — |A).

We check that xyz € Ty, . implies xyz € Ter, - Indeed, if xy € E(Gar),
then by the choice of A and F', we have x,y ¢ A’ U X U X and xy ¢ F’, thus

!

fa i w(xyz) = 0 otherwise, then we have that W(fng, F/) =W(faur)

vy € E(Gy ). We set fa, F,(:zryz) = fanr(zyz) for vyz € Te, , N Ta,p and

We check that this is a g—connectable fractional triangle factor. We have the

robust neighbourhoods

Raar =1Uar(v) =U, n Ng, ,(v): veV(Gar)} and
RG’ == {UA/’F/(/U) = Uv M NGZA/,F’ ('U): v e V( ZA’,F’)} .

Al F!

Take 2y € E(Gar) and z,y € Ugr(v) for |V (G4 )| different v € V(Gar). We
already observed that E(Gar) S E(G ), thus z,y € NG:A’,F’(U) and z,y €
Uly (v). Considering v <  and ¢ < 15, the number of different v € V(G ) for
which z,y € Uy pr(v) is at least

§

V(Gar)| > £ln—|X| - |4 - 1Xp]) 2 €(1- 2 - 2 - Vo) = V(G| O

In Lemma 2.1.2, we require that the absorbing path P, starts with a triangle
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path xyx9x374 and in Theorem 2.2.1 we require Fg, which is the 3rd power of a path

on 6 vertices. Here we show that a good graph has many of these structures.

Lemma 2.4.7. For every u,d > 0 there are ¢1,co > 0 such that if G = (V, E)
satisfies property i. of good graphs, then G contains c;n®* triangle paths 727314,
where all 5 edges are %-connectable and con® third power of paths x1x2x3T4T5%6,

where x1x9 and rsxg are g-connectable.

Proof. Take ¢; = 362 and ¢, will be given by an application of Theorem 2.4.3.
Since the number of triangles in G[U,] is at least dn3, by a standard averaging

argument we have 7" a set of triangles abc such that |T"| > gn?’

and abc is in at
least 2n different G[U,]. Therefore, all edges in abc are 2-connectable.
For finding triangle paths zyzox324, denote by dz(ab) the number of triangles
in 7" containing ab. A standard application of Cauchy-Schwartz gives us
S = 20009

nz2 - ’
abeE(G)

and excluding vertex repetitions, there are at least %n‘l = ¢in* triangle paths
r1x9w3xy With all 5 edges being g—connectable.

For finding the third power of paths, consider the set K, of K; = abcv, where
abc € T" and abc = G[U, ], then |[K4| = (%)2n4 and all edges in abc are connectable.
Take a random partition V(G) = V;UVoUV3UVy, where v € V; with p = 1/4. Let X
be the number of vyvv3v4 € Ky with v; € V;. We have that

4! 7§ 362
EX > ( > nt=""n?t.
44\ 2 128

t36

128n such K4’s. By the pigeonhole principle there

Fix a partititon with at leas
is K < K4 with |}
g—connectable.

Define the partite hypergraph G® on V(GW) = ViUVaUVaUV, and E(GW) =

K. Theorem 2.4.3 gives us cyn® copies of K®(2,2,1,1). Let x;,2; € V; for j € [2],

| > 256n4 such that vyvevgvy € K iff v; € V; and vyv, is

x5 € Vs and x4 € Vj be the vertices of such a K9 (2,2,1,1), then 252324225 < G
is such that every 4 consecutive vertices form a K, and the first and last edges are

connectable, as desired. O

We prove the Absorbing Path Lemma.
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Proof of Lemma 2.1.2. We are given u,9,(, &, ¢(d) > 0. Apply Lemma 2.4.4 with
1, 0,C, get &1,¢1 > 0 and L. Take

J

&= min{i,fl} and ¢ =,

Apply Lemma 2.1.1 with £, g, %, %, get ¢; > 0 and Ly (we also get a constant &,
but here we do not require the moreover part of Lemma 2.1.1). Moreover ¢ > 0 is

given by an application of Theorem 2.4.3. Set

C1 Co
24 - 400 - L?’ 27(5 + L2)<3L1 + 1)L§5’ 4(5 + L2>(3L1 + 1)L‘f

p < min{

. § ¢ /< by
. (¢ e mm{%@ivTaz}
p <mln{ ) Y }7
4-7524(5 + Lo) 4(5 4 Lo)
/ // //
04023%, az% and liz%.

Let v > 0 be given. First we find the path P4 and put it to the side. In the
remaining graph, we proceed in a very similar way to find P; and conclude the proof.

Fix a triangle path xixox3x4 given by Lemma 2.4.7. Let
A = {(k1, ko, k3)ex-absorber € G ky, ko, ks € [L1]} .

Consider a random choice A of absorbers in A, where each (ky, k2, k3)ex-absorber is

included independently with probability

_ 1. —5(k1+ko+ks)—4
pklkgkg, - p n ( ) .

We prove that with positive probability, A is such that the following holds.

(a) For each ki, ko, ks € [Lq], the number of (ki, ks, k3)ex-absorbers in A is less
than 3L3p'n.

(b) For every z,y,z € V(G), there exist kq, ko, k3 € [L;1] such that the number

of (k1, ko, ks)ex-absorbers for z,y, z in A that do not intersect z1x22374 is at
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c1p'n

least =

(¢) The number of pairs of absorbers in A that share at least one vertex is less

than @27
£

For property (a), let A(ky, ko, ks) be the number of (ky, ko, k3)ex-absorbers in A.
We have that EA(ky, ko, ks) < nkitketka)+5y, = p'n and by Markov’s inequality,

P [A(ky, ko, k3) = 3L3p'n] < P [A(k1, ko, k3) = 3LIEA(ky, ko, k3)] < 32:{)
Consequently the union bound gives us that property (a) holds with probability at
least %

For property (b), fix z,y,z € V(G) and Lemma 2.4.4 assures ky, ko, k3 € [L1]
such that the number of (ky, kg, k3)ex-absorbers for z,y,  is at least ¢;n®k1Fke+ks)+5,
At least half of these absorbers do not intersect z1zox324. Let A,y. be the number
of (ki, k2, ks)ex-absorbers for x,y,z in A not intersecting = x9z3x4. We have by

Chernoft’s inequality, that

/ /
Pl A, < 9P| <p|a,,, < Blos| <o (—PY
4 2 16

In view of the union bound for all triples z,y,z € V(G), we derive that a.a.s. A
enjoys property (b).
For property (c), fix ki, ko, ks, ki, kb, k% € [L1]. For a (ky, ko, k3)ex-absorber Ay,

the number of (k{, k%, k%)ex-absorbers A, that intersect A; is at most
(5(ky + ko + ks) + 5)(B(K, + kb + ki) + 5)n>Firketka)+d < 400 2 (R tkothy)+4

The number of intersecting pairs (A, As) is at most

400[/%”5(161 +ka+k3+k] +kh+k%)+9 )

Let X (ky, ka, ks, k1, kb, k%) be the number of such intersecting pairs in A, we have

RN 2, 5(k1+ka+k3+E| +kL+k5)+9
EX (k1 ka, ks, Ky, Ky, K5) < Dhykoks Pro i, - 400Ln> R Fheths Tk ks k)
cip'n

< 400L%p"*n < .
WS ours
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Since this upper bound is independent of ki, ko, k3, k7, k5, k5, for the number of

pairs of absorbers in A sharing a vertex,

XS Xk ek K KD

k1,k2,ks k] kb, khe[L1]

we have EX < % and Markov’s inequality yields

/
IP[X>C”§”]<

1
3

From the previous observations we conclude that there exists an instance set of
absorbers satisfying properties (a), (b) and (¢). Removing one absorber for each

intersecting pair in this instance yields a set of disjoint absorbers B satisfying (a)

and

(V') for every x,y,z € V(G), there exist ki, ko, k3 € [L1] such that there are at
least % = % different (ky, ko, k3)ex-absorbers for z,y, 2 in B that are also

disjoint from the triangle path xzox324.

The next step is to obtain P4 by “connecting all absorbers from B”. Observa-
tion 2.4.2 tells us that a (ky, ko, k3)ex-absorber in B consists of ki +ko+ks+1 < 3Ly +1
triangle paths on 5 vertices with £*-connectable ends. Let Q(B) be the set of all

such paths, considering (a) we have that

1Q(B)| < L? - 3L3/n(3L, + 1) < 50—28n (2.4.1)

The paths in Q(B) will be connected by repeated applications of Lemma 2.1.1.
Consider a maximal subset Q" € Q(B) such that there exists a path Pg in G on
at most (5 + Lo)|Q'| vertices that contains every path @) of Q" and is disjoint from
each path in Q(B) \ Q'. We shall show that Q' = Q(B).

Otherwise, let @ € Q(B) ~ Q' and let zy,uv be ending pairs of  and Py
respectively. We have that

(2.4.1)
V(Po) UV(Q)| < (5+ L2)|Q)+5 < (5+ Ly)(3L1 + 1)3L8p'n + 5 < %n
(2.4.2)
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By Lemma 2.1.1, there is £ < Ly and at least cpn® different (2y, uv)-triangle walks
in G with £ inner vertices, at least half of these are triangle paths. At most ¢ nt of
these paths intersect V(Pg) U V(Q) and at most 2n’ intersect V(Q(B) \ (Q' v Q)).
Then Pg can be extended to a path Poyq) Wlth number of vertices at most

V(Po)l + QI+ L2 < (5 + L)(1Q] + 1) = (5+ L2)|Q" v {Q}].
Take P4 = Pg(p), equation (2.4.2) gives us that

(0 CopG & (o) v
V(P <min {80 S IVEEAD VY, g

and we observe that the path P, is ap-absorbing. In fact, given any set X < V(G) \
V(Pa) with |X| < agn divisible by 3, it can be split in up to “3* triples (,y, 2)
and owing to property (') and the disjointness of the absorbers in P4, we may
inductively absorb all triples, as in Observation 2.4.2.

Consider G' = G[V(G) N\ V(P4)] and locate P in G'. Lemma 2.4.6 gives us

that G’ with R satisfies properties i. and ii. of good graphs with £ Moreover

585
if abe E(G') € E(G) and ab is £*-connectable in G, then a,b ¢ V(P,) and ab € U,
for £*n different w. For w ¢ V(P,), we have a,b € U, Ng/(w). Since |V (Py)| < é*Tn,
if ab is £*-connectable in G, it is —-Connectable in G'.

For every i € [m], set I! = I, ~ V(P4) and since |V (P4)] < “2pn we have

c(9) 3
2

2
that the number of triangles with a 7—connectable edge in G'[I] is at least

Theorem 2.4.3 gives us at least cn® disjoint triangle paths on 5 vertices with %—

connectable end pairs in G’[I/]. Thus for each i € [m], let

*

B(i) = {y1y2y3y4y5: disjoint triangle path with é—connectable ends in G’ [I{]}

and |B(i)| = cn®.

We carry out a similar argument as before; we fix the probability p = p"n=%.
Consider a random set B of triangle paths on 5 vertices, Ps, each included inde-
pendently with probability p. We show that with positive probability B enjoys the

following properties.

(a) The number of P; in B is at most 3p"n
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(b) For all i € [m] the number of Ps € B such that Ps € B(i) is least %n.

(¢) The number of pairs (Ps, P.) sharing a vertex is at most 75p"*n < %n.

Similarly as in the selection of A for P4, it follows from Markov’s inequality that
each of properties (a) and (c¢) holds with probability at least 3.

For property (b), let X; (i € [m]) be the number of Ps € B such that P5 € B(i).
We have that EX; > p”cn. Chernoff’s inequality yields,

/" //
IP[Xi < %n] < exp ( — %n) .

Since m < 27" the union bound over all i € [m] gives that a.a.s. B enjoys property (b).
Hence, there exists a set of triangle paths on 5 vertices satisfying properties (a ), (b),

and (c). After deleting one such triangle path for each intersecting pair (Ps, Ps), we

arrive at a set B of disjoint triangle paths on 5 vertices satisfying (a ) and
(¢') For all i € [m], we have |B n B(i)| > Z%n = an.

Let B' = Ul.e[m] Bn B(i) and B* € B’ be maximal such that there is a triangle path
Pp+ € G’ containing all P; € B*, being disjoint from B’ ~\ B*, having %—connectable
end pairs xy, 2y’ and |V (Pg+)| < (5 + L2)|B*|.

We show that B* = B’ otherwise take y1y2ysysys € B’ ~ B*, Lemma 2.1.1 gives
us ¢ < Ly and %nz different (2'y/, y1y2)-triangle paths in G’ with ¢ inner vertices.

We have that
(a)
V(Ppe)| < (5+ Lo)| B < (5 + Lo)(3p"n) < %n

Thus we have at least 2n’ different (2'y/, y1y2)-triangle paths that are disjoint
from Pg+« and each path in B’ ~\ (B* U {y1%2y3y4y5}). Thus we may use such a
(2'y', y1y2)-triangle path to get a (zy, yays)-triangle path Ppgsy(y, yoysyays}, Such that

’V(PB*U{y1y2y3y4ys})| < |V(PB*)’ + LQ +5 < (5 + L2>‘B* U {y1y2y3y4y5}’ 5

contradicting the maximality of B*.

Set P] ZPB/ and

(a)
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Property (V') gives us that for each I;, there are at least an different y1y2y3y4y5 < Py
with y1, Y2, ys, Y5 € ;. ]

2.5 Covering

For step 2 in our application of the absorption method, we will use property iii. of
good graphs and the Regularity Lemma. Our aim is to obtain a triangle factor in
the reduced graph and from each (g, d)-regular triangle ijk in this factor, extract a
triangle path covering of the vertices in V;, V}, V;.

In order to transform a fractional triangle factor in the reduced graph into an
(integer) triangle factor, we need to refine the regular partition. We use the following

lemma.

Lemma 2.5.1. For everye >0, v1,72 =0, & =" > 0, integers t > 0 and s(i) = 0

’ 56
for i € [t], and weights fi(j) > 0 for j € [s(i)] such that Y,y fi(7) < 1, the

following is true for sufficiently large n.

For any graph G on n vertices and partition P = {Vy, V1,..., Vi} of V(G) with

(1—=m)

ﬁ\ﬁ

n
< |V;| < (1"’_72)?7

there exists a refinement P" = {Vo} v {Vio, Vij: i € [t], j € [s(i)]} with Uye <y Vi =
Vi such that,

i. forie[t] and j € [s(i)],
(1—7)(1—%) fild) < Vil < (1+7)(1+72) fild)

ii. if (Vi, Vi) is (e, dir)-regular, then (Vij, Vi) is (5eY*, diyr)-regular for all j €
[s(D)]. j" € [s(i)].

iti. if we are given ¢ > 0 and for each v € V(G), a set U, < V(G) such that
Uy, " V3| = c|V;|, then |U, n'V;;| = 1Jr,c|V;J|fo1" all j € [s(1)].

Moreover, if 3;ciyy fi(d) = 1, then Vig =

For the proof of Lemma 2.5.1, we use an equivalence between a pair being

(¢,d)-regular and having small number of homomorphisms of Cy in the bipartite
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graph induced by the pair. We use the following definition.

Definition 2.5.2. Let G = (V, E) be a graph and X, Y < V be non-empty and
disjoint subsets of vertices. Given € > 0 and d € [0, 1], the pair (X,Y) is (g,d)-

minimal, if
e(X,Y) = (d—¢)|X||Y| and hom(Cy, X,Y) < (d* +¢)|X|*|Y|?,

where hom(Cy, X, Y') denotes the number of partite graph homomorphisms from Cj

to G[X, Y] for a fixed ordered bipartition of Cj.
We use the following equivalence.

Theorem 2.5.3. For every graph G = (V, E) and non-empty disjoint subsets X, Y <
V, and e > 0 and d € [0,1] the following holds.

i. If the pair (X,Y) is (e,d)-regular, then it is (4e,d)-minimal.
i. If the pair (X,Y) is (g,d)-minimal, then it is (3e¥/*, d)-regular.

We now prove that we can refine the regular partition and keep the regularity in

the subpairs.

£
7 56

t > 0 and s(i) = 0 for i € [t], and weights f;(j) > 0 for j € [s(i)] such that

Proof of Lemma 2.5.1. We are given ¢ > 0, 71,72 = 0 >+ > 0, integers
> iels()] fi(j) < 1. We are also given G on large enough n vertices and a partition P.

Take a random refinement P’ of P, where each v € V; is included in V;; indepen-
dently with probability f;(j). We shall derive from the sharp concentration of the
binomial distribution, that a.a.s. P’ satisfies properties i., ii. and iii. of the lemma.

Chernoff’s inequality gives for fixed i € [t], j € [s(i)] that

Y2 £i(7)(1 — %)n)
3t '

(Vi - WA > 7IWIAG) < 2o (-

Therefore by the union bound, a.a.s. for all i € [t] and j € [s(i)] (s(7) < (1 +72)%),

we have that

(L= Vilfi(G) < Vil < (L+ ) [Vil£i(G). (2.5.1)
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For property ii. of the lemma, we appeal to Theorem 2.5.3. We have that (V;, Vi)
is (g, d;y)-regular, then part i. of Theorem 2.5.3 gives that

Ehom(Cy, Vij, Viyr) = hom(Cy, V;, Vir) f;(5)? [ (7)< (diy+4e)| Vi [Vir P £:(5) fir (57)?

Next we apply the Azuma-Hoeffding inequality for establishing the concentration
of hom(Cy, V;j, Viry). Note that the inclusion or exclusion of a vertex in V;; or Vi,

changes hom(Cy, V;;, Viryr) by at most max{|Vi||Vi|?, |Vi||Vi|*}, thus we obtain

59

P (hom(C4, Vij, Viryr) = (d?i’ + 55)“/1“2"/;"in(j)2fi’<j/)2)

< ex (_62|%-| Vel fi(J')4fz"(j/)4) < ex (_s2fi<j>4fi/<j'>4<1—m?n)
=P AVi [V 2 =P 41+ 7o)t |

Therefore a.a.s. for all e-regular (V;, Vi) and j € [s(i)], j' € [s(i")], we have that

hom(Cy, Vij, Vi) < (diyy + 52)|Vil* Vi > i (5) i ()7 (2.5.2)

Similarly, another application of the Azuma-Hoeffding inequality gives us that

a.a.s. for all e-regular (V;, Vi) and j € [s(4)], 5’ € [s(i')], we have that

e(Vij, Viyr) = (div = 26)|Vil Vi | fi(G) i (57) - (2.5.3)

For property iii. of the lemma, fix v € V/(G), i € [t] and j € [s(7)]. An application
of the Chernoff’s inequality implies

P (U, A Vil < (1= ¥)elVil () < exp (—7'20(1 ‘QZl)ff(j)”> |

By the union bound, a.a.s. for all v € V(G), i € [t], j € [s(4)], we have that
Uy 0 Vil = (1 =)elVil fi(5) - (2.5.4)

Consequently there exists a refinement P’ satisfying (2.5.1), (2.5.2), (2.5.3) and
(2.5.4). Thus for all e-regular (V;, Vi,) and j € [s(3)], j' € [s(i")],

(df + be)

hom(Cy, Vii, Vi) <
( 4 J ]) (1 ’Y)

|VZJ| |V;/]|
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and

S (d“/ — 25)

e(Vij, Viryr) = W\%‘Hvﬂj/’-
Since 7' < /56, we have
dijr — 2 digr — 2 di, +5 d +5
= > © > diy — 3¢ and -~ e e < djy + 6¢.
T+y)? " 1+3 (1=7)t = 18y

Thus (Vij, Viryr) is (6€, d;)-minimal. Consequently part ii. of Theorem 2.5.3 gives
that (Vi;, Viry) is (5eV/4, diy)-regular. O

Next we prove the Covering Lemma.

Proof of Lemma 2.1.3. We are given {,a > 0 and ¢, > 1. Take

O<n<%, Qémin{<§>8,<n)8 1} and

o)) 6

) d3\8 /v 16 1
0 <dy <o, 5=m1n{(ﬁ),(6) }, t0:g.

Apply the Regularity Lemma with 5,7, and get ng, To, take

A5TY

c= )
33,3
dpesn

Let 2 > v > 0 and G with R¢ satisfying property iii. with &, v, 0,7 be given.
Consider the subgraphs G¢ and G¢ of G on the same vertex set V(G), where G¢
contains the &-connectable edges and E(G¢) = E(G) \ E(G¢). By the Regularity
Lemma there is a partition P = {V;,...,V;} of V(G) with ¢, < t < T which
is S-regular for both G¢ and G¢. Thus P is a e-regular partition for G.

We remove a set F' of edges in E(G), namely those which are incident to Vj,
inside partition classes, between pairs which are not e-regular, pairs with density less
than dy in G, and for pairs with density less than dy in G¢, delete the %—connectable
edges. We have,

n? n? n? _ be+dp 2 o

Fl<en®’+t— +et?— + dp— < < on’.
|F| <en 572 8752 0 i n on

Take @ = A < V(G) and consider Xr, G4 as in property iii. of good graphs
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and get a {-connectable fractional triangle factor fg, . of weight

W(fGA,F) = ﬁ

3~

Take the cleaned graph G’ = G(V(G), E(G)\F), since G r S G’ we may view fa, ,

also as a fractional triangle factor for G'.

Consider the reduced graph R = R(P, dy,¢). Since & < % it follows from the
triangle counting lemma that Ty, v, v,) # < if and only 1f 17k € Tyw. Define a
fractional triangle factor fx of R in the following way. For distinct 4, j,k € [t],

let W (ijk) be the total weight of the triangles in G'[V;, Vj, Vi] under fg, ,.. Set
- N
fwlijk) = W(@Jk)ﬁ

We check that for every io € [t], we have that >}, ;.. fw(iojk) < 1. Since the

sum of weights of fg, . in a vertex is at most 1 and |V;| < %

t n
i0jk) W( k: - —=1.
Z fw(iog Z (407 Z Z fa, »(vzy) n 1
iojkeTn iojkeln veV;, vayeTl ey
Moreover,

W(fw) = W(fGA,F):L = <i1’> - U)t'

Consider a refined partition P’ in the following way. Let T}, » be all triangles
T € Ty with fx(T) = % and for i € [t], let T, »(i) = {T7{,...,T{;} be all triangles
=,t,5(i) and
for j € [s(i)], the weight f;(j) = fa(T}) (here we set n' = |V(G) \ Vp|). We get
= {Vo} u {Vio, Viri: i € [t],7 € [s(7)]} such that

in T, % containing ¢. Apply Lemma 2.5.1 with €,7; = v, = 0,7 =

(1 9) 2 al(T)) < Vi

< (L+9) T fx(T));

ii. If (V;, Vi) is (e,d)-regular, then for any j € [s(i)],5" € [s(i')], the pair
(V;T]?: Vigir) is (5¢'/4, d)-regular.
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For the number of vertices in Uiem Vio, we observe that

!/

Zmo <% Y e

i€[t] TeTy m (i)

*(t—z > (T +72 > (T )
]TETT] iR( ) ]TETn 9{( )

n

7( =3 ) MM +3 > () +3y ) fm(ﬂ)
TETER TETm \TU»ER TETm

n n

7(1&— (1— 377)t+t3— —i—vt) = (4n ++")n’

Take Vg = Vo U Ujery Vio and set P' = {Vi} 0 {Vipa i € [t], j € [s(2)]}.

If ij' =Te¢€ Tnvm, then there is UiU;Ug € TG’[V;,VJ-,Vk] with fGAyF(Uinuk) > 0.
Since fa, . is a {-connectable fractional triangle factor in G, we have that one of its

edges is connectable, say w;u; € E(Gc).

We have G4 p € G' and G’ only contains {-connectable edges between dense
pairs in G¢. Thus (Vir, Vir) is (54, d)-regular in G for some d > dy. The number

of triangles in Ty, ] with a §-connectable edge between Vir, Vjr is at least

Vir,Vir,Vir

(di = 153/2) | Varl Vi |Var] = (d — 15/6)(1 = +/)*(1 — €>3(}]2)3<7Z>3 > 60@3_

Consider the 3-uniform partite hypergraph Ggg) with V(GSS)) = VirOVipOVir
and v;v;vy, € E(G ) iff vivjur € Torvip,vir vir) With viv; € E(Ge). The number of

con

hyperedges containing a pair with codegree at most is at most

con C n\3 _ co/mn\3
SE(VarllVirl + VirllVal + VirlVirl) < 2+ 02(3) < 3(3) -

This assures a tight path P < G with [V(P®)] = o + 2. We may always
start Pl( ) with a &-connectable pair and the last pair in P G can be made

&-connectable by possibly removing the last vertex. Thus we have a tight path Pl(?’) c
G\ with |V(P1(3))| > 9 + 1 and {-connectable ends.

For s > 1, consider

GO = GOW(EP) N V(PP and V(GE) = VDOV ovi™.

s 7 J
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While |V(SJrl | = V5e/4|Vip| and similarly for |V, (SH | and |Vks+1)| we have that
each pair among V, (e+l), VJ;H) VkSH) is (Vbel/4, d)-regular for some d > dy. Thus

the number of &-connectable triangles is at least

(d3 — 3Vl VR [V V)
3 3
> (d - 3V5e ) (Ve (1 — (1= ) (75) (%)

d3y 31/ m\3/n\3 ny\3
>3 (L) (5) =al-) .
262(T02> (t) Cl(t)

Repeating the previous procedure we get a tight path Ps e G(3)1 with |[V( s+1>’ >

cln

+ 1 and &-connectable ends. Observe that each P! +)1 is a triangle path in
G[V;TUV}TUVkT]-

The number of disjoint triangle paths we obtain in this way is at most

ot not _27(1+7)
V(GY < 3(1 —— < —.
VG- <301+ 97

cn c1in C1

They cover all but at most v/5¢/4|Vjp| vertices of Vip and similarly for Vir, Vir.

Repeat the procedure for each triangle in T;, . We arrive at a collection P of

disjoint triangle paths with &¢-connectable ends such that

T3 27(1 !
"p‘g;.wgc

C1

The triangle paths in P cover all but at most

Vaet 3 ([Virl + [Virl + [Var]) + Vo] < (V5eV/1 4 dip + 2¢)n

ijk=TeT,

< (BNe+4n)n <

vertices of GG. O
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2.6 Embedding spanning graphs of small band-
width

In order to show that the good property implies the existence of spanning 3-chromatic
subgraphs with bounded degree and sublinear bandwidth, we follow the approach
in [20]; that is, we show that the reduced graph contains the 2nd power of a

Hamiltonian cycle and use it for applying the blow-up lemma.

Theorem 2.6.1 (Blow-up Lemma (Theorem 1.4 in [18])). For all A, AR,k and
d > 0 there exist e, > 0 such that for every t there is ng such that the following
holds.

For every nq,...,ny with ng < n =Y ,n; and n; < kn; for all i,j € [t], assume
that we are given graphs R, R* with V(R) = [t],A(R) < Agr and R* < R, and
graphs G, H on V(G) = ViU ... OV, and V(H) = Wi O ... OW, with

(G1) |Vi| = n; for every i€ [t],
(G2) (Vi)iery s (e,d)-reqular on R, and
(G3) (Vi)iepy s (e,d)-super-regular on R*.

Further let A(H) < A, and let there be a function f: V(H) — [t] with f~(i) = W,
and a set X < V(H) with

(H1) | X nW;| < an,,

(H2) |W;| < ny; for every i€ [t],

(H3) for every edge {u,v} € E(H) we have {f(u), f(v)} € E(R),

(HY) for every edge {u,v} € E(H) ~ E(H[X]) we have {f(u), f(v)} € E(R*).
Then H < G.

When preparing G for the blow-up lemma, after showing that the reduced graph
contains the 2nd power of a Hamiltonian cycle, we want to determine the graphs R
and R*. In our case, R will be a ladder.

A graph L on 3t vertices V(L) = Uie[t]{ai,bi,ci} is a ladder when a;b;c; are
triangles and between a;b;¢; and a;41b;41¢;41 for @ € [t], with ay1bi41¢401 = arbicy,

we have all edges, except a;a;;1,b;ib;is1, cicit1.
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Theorem 2.6.2 (Lemma for G). For every u,d,(,& > 0, there exist n, 0,v > 0,
dy > 0 such that for ¢ > 0, there is ¢ = 1 > 0, t; and ng such that the following
holds.

If G on n = ng vertices is (i, 6, (, 0,&,m,v)-good and Ag is complete, there is a
partition

V(@) = | Va0V, 0Ve,)

ie[t1]

and a ladder L with V(L) = J;cf,y{ai, bi, ¢}, such that

(g1) for any i€ [t1], we have 0 < ||V,

- ’%z

NV,

- H/Cz

Ve,

— V]l <1

(92) (1= ~do)gp < [Va, | Vo, | Ve | < (1 4+ Vdo) 5,
(93) G is (e1,dp)-reqular on Lt = (V(L), E(L) U {aias, babs, c3ca}),
(94) G is (1, do, %) -super-reqular on L.

For preparing H, we want to determine a homomorphism that maps V(H) into
vertices of the ladder. While defining the homomorphism, we follow the bandwidth
order of H and we watch out that the sizes of images and partition classes of V(G)
almost match, that is possible when the bandwidth is small enough. We get the

following lemma.

Lemma 2.6.3 (Lemma for H). For every a,v > 0, integers t and ng,, ny,, Ne,

(i € [t]) such that X (e, + 1, + ne,) =N, 55 < Mgy + M, + 1y < §

’ and

‘nai - nbi" ’nai — N,

7’nbi_nci <17

there exists § > 0 such that the following holds.

For H on n wvertices with x(H) < 3 and bw(H) < pn and for L a ladder
with V(L) = Ujep{ai bi, i}, we have a homomorphism f: V(H) — V(L) and a set
of special vertices X < V(H) such that

(h1) for every i€ [t], [|f 7 (a:)| — na,

TG = 1,

)] = e,

/
< 375

(h2) for every i€ [t], [ X n f7Hai)[, | X f7H0)] X A f7He)] < §F

3t 7
(h3) for everyuv € E(H[V (H)\X]), we have f(u)f(v) € E(a;bic;) for somei € [t].
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The last step in the preparation for the blow-up lemma is to adjust the sizes of
the partition classes of G according to the images of the homomorphism from H

into the ladder.

Lemma 2.6.4. Let G on n vertices with V(G) = ;g (Va, UV, OVe,) and a ladder L
satisfying properties (92), (¢93), (g4 ) of Lemma 2.6.2 with €,dy > 0 be given. There
exists v* > 0 such that for any integers mq,, my,, me, (i € [t]) with 3i_, (mq, +my, +

Mme,) = n and
n

§ )
there is V(G) = Ueg(Va, OVi, OV,) satisfying that G is (2e, do)-reqular on L™, that

G is (2¢,dy, %)—super—regular on the triangles a;b;c; of the ladder, and

*

[IVa,

AV,

Ve,

— My, — My, — M| S Y

"/;,1’ = mCLiJ ‘/b/z’ = mb17 ‘4’2| - mci .
These lemmas will be proven in the following sections. Now we show how they

can be combined to prove our desired bandwidth result.

Theorem 2.6.5. For every i, 6,(, & > 0 and positive integer A, there exist 3,m, 0,V >
0 and ng such that the following holds.

If G on n = ng vertices is (1, 0,¢, 0,&,m,v)-good and A¢ is complete, if H on n
vertices is such that x(H) < 3, bw(H) < pn and A(H) < A, then H is contained
inG.

Proof. Let p,0,(,€ > 0 and A be given. Apply Lemma 2.6.2 and get 79, 0, > 0
dy > 0. Set Ag = 6,k = 3 and apply Lemma 2.6.1 to get £(dp),« > 0. For e(dy),
Lemma 2.6.2 gives us £(dy) = &1 > 0, t,ny. For ¢, Lemma 2.6.1 gives is ny,.

We are given G on n > max{ng,ny} vertices such that G is (u,d,¢, 0,&,n,v)-
good and 2l is complete. According to Lemma 2.6.2, we get a partition V(G) =
Ui iVais Vo Ve, } and ladder L. Apply Lemma 2.6.4 for G and L and get v* > 0.
Apply Lemma 2.6.3 with

7’=l*
3

7nCi = |‘/C7,

) O/ = Oé(l - \/dio_ 3,)/)7 t’ and Na; = “/al » Ty = |%Z

Y

to get 5 > 0.
Let H on n vertices such that x(H) < 3, bw(H) < fn and A(H) < A.
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Lemma 2.6.3 gives us a homomorphism f: V(H) — V(L) and X € V(H). Set

‘f_l(ai)’ = Mg, f_l(bz)‘ = My, f_l(ci)‘ = My, -

Property (k1) of the homomorphism gives us that ||V,| — m,,| < 7*3;, similarly
to b; and ¢;. Lemma 2.6.4, gives us V(G) = Uy (Va, OV5, OVL).

We note that V(G) = Uy (Va, OV5, OVY) with R = Land R* = (e Ll{ai, bi, c:}]
and V(H) = U, (f (@) Of 1 (0:) O f 1 (i) satisfy the conditions of Lemma 2.6.1.
Indeed, properties (¢3) and (g4 ) give us (G2) and (G3). Since f is a homomorphism,
we get (H3) and property (h3) gives (H4).

For the conditions concerning the sizes of the partition classes, note that |V | =
|f (a;)| (satisfying (H2)). To check property (H1), note that (k1) ||f~ (a;)| —
Ne,|| <372 and (92) ne, = (1 —/do)4 give us [~ (a;)] = (1 —+/dy — 37) % and
(h2) gives us (H1). Moreover, assuming /do + 37 < 3

ST @) _ 1+ Vdo + 3y
|f=1 ()| ST Vo -3y S

Therefore H < G. O

<3 =

2.6.1 Lemma for G

When preparing G for the blow-up lemma, we take a regular partition of G' such
that the reduced graph inherits the properties of good graphs from G and then
we find the 2nd power of a Hamiltonian cycle in the reduced graph. In order to
get a ladder, given the 2nd power of a Hamiltonian cycle, we exchange each vertex
for 3 independent vertices. We make every edge of the ladder super-regular, by
moving vertices to the exceptional class V| of our regular partition. Then we need
to redistribute the exceptional class V|, using the special paths P; in the 2nd power
of the Hamiltonian cycle, thus we use the following sets.

Given ¢ > 0, a graph G with R¢ and a partition P = {V, V4,..., V;} of V(G),
for each v € V(G) we define

I7C ) = {ielt]: U, n Vi = c|Vil}.

These are the classes that significantly intersect the robust neighbourhood of v.

23



When applying the Theorem 1.1.5 for the reduced graph, we will give the sets
I7¢ as inputs, but the number of such sets must be at most 2%, where t is the
number of vertices in the reduced graph. For this technical reason, we first exchange
the vertices in the reduced graph for independent sets of size % We define the
complete s-blow-up of a graph G to be the graph G* with V(G*) = UUEWG)VU,
where V, = {v(1),...,v(s)} is independent and for each wv € E(G), we have
u(i)v(j) € E(G®) for all 4,5 € [s]. We need to show that the complete s-blow-up of

a good graph is also good.

Lemma 2.6.6. Given 1,6,(,0,&,n,v > 0, such that £ > max{4,/0,4v°} and
n = max{6v, 6,/0} and given an integer s = 2, if G with R¢ is (1,9,¢, 0,§,m,v)-
good, then the complete s-blow-up G* with

R = {Usiy = |J Va: v(0) € (G}

uel,

is (%7 57 C7 %47 57 27]7 V2)—900d.

Proof. Let 1,6,(,0,&,m,v > 0, an integer s > 2, a good graph G with R and
[V(G)| = n be given. Consider G* and Rgs.

First check that G®[Uy,)] is 4-inseparable and contains at least d(ns)* con-
nectable triangles. Take X < U,y with |X| < lU“éio)‘ Say U, = {wy,...,w}
and choose V' = {w;(i1),...,wx(ig)} for some iq,..., i € [s]. We get that G*[V’]
is a copy of G[U,]. Observe that for every i,7 € [|U,|] and j, 7" € [s] such that
wi(J)wi(§') € Egs(u, )1 (X; Uniio) ~ X) we have that w;(j)wy(j) € Egsp(X n
V' V' X) for s!Y1=2 different choices of V’, thus

1
eGs[UWO)](X, Uv(io) AN X) = 75‘Uv|*2 Zecs[vl] (X ) V/’ V'~ X) .
v/
Moreover,

MIX A VIVINX] = s (X Uiy ~ X = DX A Vi [[Va, ~ X])

v’ w; €Uy
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Since [Vi,| = s, [Uy] = 4, [Uygio)| = /U] and [X] < 2202 wwe have that

U, XUyt
3K A VlVa n X € 31X A Vifs < sl < s 0] = K Ovtw
w; Uy w; €Uy 4

_ XMUuiol _ [XP X Usgig) ~ X
= 2 2 2 '

Since eqspy(X NV, V!N X) = p|X n V||V’ X, we conclude that

eGs[Uv(io)](X’ Uv(io) ) |X||U )N X|

We have that G[U,] contains dn® triangles wiwyws and G*[Vy, U Vi, U Vi, ]
contains s* triangles wy (i)ws (' )ws(¢") with i,7',4" € [s]. We have that G*[U,,)] =
G*[U,ev, Vi, thus there are at least d(ns)? triangles in G*[Uy()]. If wi,wy is in
U, for &n different v € V(G), then wy (i), wo(i') € Uy for all j € s and wy (i)wo(7)

is &-connectable in G*.

We check that the auxiliary graph 2dgs = A(Rgs,() is §-inseparable. Let 2g =
A(Rg,¢) and take uv € E(/g). We have |E(G[U,]) n E(G|U,])| = (n?, for each
zy € E(G|U,]) n E(G[U,]), we have s* edges z(7)y(j') € E(G*[Uyg)]) 0 E(G*[Uyiny])
for all 7,4’ € [s], therefore u(i)v(i') € E(gs). The graph Ags is the complete s-blow-

up of ™Ag and as shown before, ™gs is §-inseparable.

Let A’ € V(G?) with |A’| < v?’ns and F’ < E(G?) such that |F'| < ( 5)% and
consider X € V(G®) and G%, j» as in the definition of good graphs, we have that

|XF/’ < %QTLS.

Take A < V(G) to be all vertices x such that |V, n A’| = vs and take F' < E(G)
such that zy € F' if and only if, | Xm nV,| = gs or |E(V,, V) n F'| = . We have
that |A| < |A| < vn and

X/ F/ 2
|F|<|Q§|n+|028|2< 21 202 < on?.

Zn
2

Since G is good, we get a connectable fractional triangle factor fq, ...

For each triangle zyz € T, ., we get s* triangles in G*[V,, u V,, U V.]. Note that
x ¢ Aimplies |V, n A’| < vs and « not being isolated in G 4 r implies | X NV, | < gs,

thus [V, nV(G% )| = (1 —v — g)s, similarly for V,, and V.. Moreover, zy ¢ F' gives
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us |E(V,,V,) n F'| < ¢*s?, similarly for zz,yz. Therefore,

Te:

Al F!

v val = 8% = 3(v + o+ 0%)s. (2.6.1)

S Vi Vi Ve, €t

(z(d)y(i")z(i")) = fanr(yz)

fG;,’F, T\? &2

fGS (x(z)y(@’)z(z”)) =0, if TYz ¢ TGA,F :

Al F!

, ifryzeTq, ,

We check the total weight in a vertex z((i) € V.

fGA,F (a:oyz)

<1.
52

Jor, , @oliy()2(") <83

o ()y(i)z(3")eT, zoyz€la
(@)y(")=(i") S AF

!

For the total weight, consider v < = and observe that

1

6
1

A" < |Als + (n— |A])vs < (JA] + vn)s and |A| <wvn < (5 - 2y>n.

Then, using (2.6.1) and considering v < ¢ and v + ¢ + 0* < 1,

W(fer, ) = (5 —n(n—IA)) (1 =3+ 0+ ¢*)s

ns
> 5 —ms +n]Als — (v + 0+ 0*)ns
> ? — 2nns + 2n|Als + gns —n|Als

1
> g —2nns + 2n|A|s + gns - (5 - 21/)77713

> % — 2nns + 2n]Als + 2nvns

> = 2n(ns — (|A] + vn)s) = = — 2n(ns — |4).

We check that fGZ/,F/ is a £-connectable fractional triangle factor. If a triangle
x(i)y(i')z(i") in G% p is such that fGiv,F/ (z(i)y(i")z(i")) > 0, then fq, .(zyz) >0
and we may assume that zy is £-connectable in GG. Thus z,y € U, for &n different
v e V(G) and, for every j € [s], we have V,,V,, < Uyyy. Thus z(i),y(i') € Uy for
&ns different v(7). O

We are now able to prepare GG for our application of the blow-up lemma.
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Proof of Lemma 2.6.2. Let p,0,(,& > 0 be given. Take

Apply Theorem 2.2.1 with %,5@@’,5’,0(5) = g and ¢, > 16v/4. Get

14 /4

1
Kk, «a, 21, € -0 with 277’,5'209(0—)8
4 4
Set
Y O S S RV A ,_
ky=~=M= {77777777< - >} d = i
1= 1min 8 7164714 82°\8y/3 /3 and. 7y S+

Then take

3 /74 _
Sl

Let € > 0. Take

8 rdo\4 1
gozmin{<§),(l—g) }, t0=; and e = Hy/ep .

Apply the Regularity Lemma, get 7" and ny,.

Take

772% and 0= 0 +3VM.

Take v/ < min{%/, @} and v = ' + 3y/&.
Let G on large enough n vertices with robust neighbourhoods R be (i, 9, ¢, 0,&,m, v)-

good. By the Regularity Lemma there is a partition P = {Vp,...,V;} of V(G)

with ty <t < T which is an gp-regular partition for G.

We delete edges of F(G) in two steps. First delete Fy < E(G) containing the

edges inside partition sets, incident to V4 and between irregular pairs, then

Vi 1
|E1| < (’ 9 ’)t + \V0|n + |V;|2€0t2 < <% + &0+ 50)n2 < 350712 .

Let Y; = V(G) be the vertices incident to at least 2% edges in Ej,

6
Vil < %n < Veon.
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Secondly delete Fy € E(G) \ E; containing the edges between pairs with density

smaller than dy. We have that |Fa| < don? .
Observe that if (V;,V;) is (e, d;;)-regular with d;; < dy and X;; < V; are the
vertices with at least 2'|V;| neighbours in V;, then

€0

M
[ X Vil < (X, V) < dol Xl [Vi] + <o ViV thus |.X5] < fdoﬂ/ﬂ'

4

Let X; = JX,;; with the union over all j € [t] such that (V;,V}) is (eo,d;j)-
regular, but d;; < dy. Let X be the vertices v € X; such that v € X;; for at least

Mt different j € [¢]. Then

X7] <
My (4 — do)%
Let Y5 be the vertices incident to at least % edges in F,. We show that

Y, € Uie[t] X}. For v e V; \ X;, we have that

M M
{vw: we Ne(v)} n B < Z?t < T”

thus (V; N\ X;) € Ys. For v e X; ~ X, we have that
Mn Mn

M
[{vw: w e Ng(v)} n Byl < %Zt + o< o

thus (X; N X[) € Ys. We have that,

|}6|<2|X;|<M607;L1\4<i\3?<\/%n‘
i€lt] (% —do) 7 32

Let B/ = E1UF, and Y = Y; U Y3, we have that if v is incident to at least Mn

edges in E’, then v € Y. Moreover,

|E'| < <360 + d0>n2 and |Y| < 2y/eon.

We move the classes V; such that [V; nY| > ¢/eo|Vj| to V and get the partition

P = {V§,Vi,...,Vp}, such that |Vj| < eon + 2¢/egn and (1 — 2¢/E0)t < t' < t. Set

t= [+
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Let G/ = (V(G)~ VI, E(G)~ E') and %% = R(eq, do, P') with Roy = {Us: i € [¢']},
where we take U; in the following way.

Consider the bipartite graph H; = (V; N\ YU[t'], E;) where {v,j} € E; when
|Ner(v) n U, n'V;| = Ek1|V;|. We show that there is V/ < V; \Y and U; < [t'] such
that

(1) V=@ =yViNy],

(2) if v e V/ then [Ny, (v) nU;| = | Ny, (v)| — t,

(3) if j € U; then |Ng,(j) n V/| = 4+4]V\Y]
Observe that if v e V; \\ Y, then
U, A Neu(0)] = 24/Cn— M — |V~ V| = +/Cn.

If B(v) < [t'] are the classes j such that |[Ng/(v) nU, 0 V;| = ki|V}], then
\/n < |U, A Ner(v)] < 13(1})\% + t'zﬁ% and |B()| = t(\/C— k). (2.6.2)

That is [Ny, (v)| = t(v/C — k).
We set a sequence of sets By, ..., By, Bror1 S [t'] with |By| = 3t for k € [ko]

and |By,11| < 2t" and we also set a sequence Ay, ..., Ay, < (Vi \Y) such that
oy : 7\
B ={jelt]: INa,G)l < (7) Vi~ Y1},
A= {ve VinY: [N (v) 0 Byl > T#},

B, — {j e [t']~ Bi: [N, (j) 0 (Vi~ (Y U A1)| < (g)Qm \Y|},

and for 3 <k < ky + 1,

Ak_lz{UE‘/Z‘\(YUAluu'UAk_Q)Z|NH( )f\Bk 1|>7t}

B, = {j e [I'IN(B1u- - -UBy1): [Nt () (Vi (YU A U U A1) < (2k+1) |V\Y|}

Since |By| = 3t' for k € [ko], we have that &k < %
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For ke [ko +1],1let B, =By u---u Byand A},_; = A; U -

U Ak—l (A6 = Q)a
we take V/ = Vi (Y U A ) and U; = [t'] \ By, ;.

For (1), observe that for k € [ko],

ol 2
1A < oA, Be) < eVin (Yodyy), B < Bl (5 ) V] < (5) vy,

thus |Ag| < 2k+1|V\Y|

Therefore,
o0

DA < )] 2,€+1|v Y| < m Y.
ke[ko] k=1

For (2), observe that for any v e V; \ (Y U A} ),

YoV
DT INg (W) A B < ) et < ot
ke[ko] ke[ko]

Since |Byy4+1| < 2t', we have that [Ny, (v) n U;| = [Ny, (v)| = (3 + 3)t.

For (3), consider j € [t'] \ B}, ;. Then j € [t'] \ B}, and by our choice of By, 41,

we have that [Ny, (7) 0 (Vi (Y U A))| = (5e52)?|Vi N Y. Since ko < %, we have
that |Ng. () n V/| > g'; Vi Y.

For any i € [t'] and v e V], let

U' =U, n Ne (v Uv
jeU;

Then,

|Uv AN U{)| < |Ng<’0) AN Ngl(l))’ + |N0/<U) N UU M U ‘/j| < (M + 2\4/8704- k?l + 7)n
J#Us,

|E(G[U,]) ~ E(G'[UL])| < (M + 2/gq + ki + 7 + 30 + do)n* < 4Mn?.

We want to show that U,, is p/-inseparable. First we consider the minimum

degree §(R[Uy,]). Let jo € Uiy, v € Nu, (jo) NV, and w € (U, n Vj,) N Y. Since U,

60



is pi-inseparable |Ngv,j(w)| = p(JUy| — 1). We have that,

|Nerug(w)| = p(|Uy| = 1) — [Uy N U — {uw: uvw € E'}

> p|Uy| — o — (M + 2o + k1 + v+ M)n
(M =+ kl) M’Uv’
= = . 2.6.3
Therefore,
| t
| Nar[w;,1(Jo)| = ﬁ > pn/Ct.

For any subset X < U;, such that | X| < “\T/Et, we have that

uxf u\f

enfu;,) (X, Ui \ X) = | X[~ |XHU10 X[

Now consider a partition X < U;,, X = U;, ~ X such that

109

X, |X| = t.

S
2
For v € V;/, take the following partition of Uy,

X, = U, n Nev(v Uv and X, = U, n Ngi (v Uv

ieX eX

For a first case, assume there is v € V; such that,

X, ], [ Xy = 12(WVOUL = 12 (\/C)*n.

Assume wlog that | X,| < | X,|, thus |U,~X,| = +/Cn and since U, is u-inseparable
we have that eq(X,, U, N X,) = u|X,||Uy, N X,| and

eG’(XvaXv) = pl XUy N Xy| = Uy N U1/1|‘Xv| - ’El|
> (un/C — M — 220 — k1 — v)n| X, | — (3g0 + do)n?

(“3(*2/@4 ~ (30 + dg)>n2

\%

We have that




For a second case, we have that for every v € V; either
Xl < WU < PV or [ X ] < 1PV

Consider V/ (X) < V/ such that v € V} (X) implies |X,| < p2(v/¢)*|U}| and
v e V! (X) implies | X,| < p>(v/C)?|U}]; note that V; (X) = Vi \ Vi (X). Since g
is complete, if V/ (X), V] (X) # @, then there is uv € E(2g) with u € V (X) and

veV, (X). We have that |U, n U,| = 24/Cn and we derive a contradiction, since,

VCn < 24/Cn — 2(M + 220 + ky + y)n < UL n U] < 2u*(1/C)*n.

If say V. (X) = @, then for every j € X, property (h3) gives us v'|V;, \Y| vertices
in v e V! such that [Ng/(v) nU, nVj| = k1|Vj|, thus |U; n (V;N\Y)| = (k1 — /o) |Vl
Take w € U} n (V; \Y), we have by (2.6.3), that |Nery(w)| = pa/Cn.

Since | X,| < 1?(v/C)*n,

Nooy () 0 X| > /T — g2(y/Qn > 1Y%

Thus ex, ({7}, X) = ”\Q/Et. Going over all j € X, we get

u\f
e, ) (X, X) = \XHX!

If ab e E(G') is &-connectable in G, then it is in U, for &n — V| = §n vertices

in V(G ) Therefore, there are at least §t classes I(ab) < [t'] such that for i € I(ab),
at least 52 — (/2o + v)% = 3% vertices v € V; are such that ab e E(G[U,]).

The number of pairs (ab,v), where ab € E(G[U,]) ~ E(G'[U!]) and v € V(G’) is
at most 4Mn?. Therefore, the set Fj,,, of connectable edges that are in E(G[U,]) ~
E(G'[U]]) for at least 4/ Mn different v € V(G’) has size

| Eloss |4V Mn < 4Mn®  and | Ej| < VMn?.

Thus we have that for any {-connectable edge ab € E(G’) \ Ej,ss the number of
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classes i € I(ab) that do not contain any v € V/ such that ab € E(G'[U}]) is at most

4N M 167/ M
"< 0 t < vV Mt.

c
it §

Therefore if a € Vj,, b e Vj,, then joj; is in at least (% — VM)t = gt different robust

Jo»

neighbourhoods U; for i € [t'].

Let v € V;, we have that G[U,] contains én® different &-connectable triangles.
Excluding the triangles with an edge in E(G[U,]) ~ E(G'[U!]) or in Ej,ss and
projecting the remaining ones into R[U;, |, the number of g—connectable triangles in
R[U,, | is at least

B3 6
3 3
(6 —4M — v M)n - > it .

Next we want that 2Ax = A(Rpn, (') is inseparable and we start with the following
observation. Consider uv € E(Rg) such that v e V/, v e V] for i, j € [t'], we have

|E(G[U.]) n E(G[U.])] = ¢n? and

|E(G'[UL]) 0 E(G'[UD] = ¢n® = [Uu \ Uyln = [Us N Uyln — | E'|

2

> (n® — (2M + 4y/eg + 2k; + 2y + 3go + do)n® = 2n?.

BN

Projecting these edges to R, we get |E(R[U;]) n E(R[U;])| = §t* and ij € E(As).

Take B € V() with |B| < & and Bg = ;.3 Vi- Since g is p-inseparable,
then ey, (Bg, V(G) N\ Bg) = 1|Bg||V(G) N\ Bg|. The set Bg contains all the vertices
in the classes of B and V(G) \ B’ contains Vj and the other classes. Consider the
edges in Ey,(Bg, V(G) N\ Bg), ignore those ending in Vj or in V; \ V// for all i € [t/]

and project the remaining ones into Eq,, (B, [t'] \ B), since |Vj| < (€0 + 2/29)n and
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[F]~ B> % and |V VY] < (Y20 + 7)1, we get

ean (B[]~ B) = (lBall(V(G) ~ Vi) ~ Bol = (1= )| Bal|Vy|

t?

— [BI[Vi ~ VIIV(G) N Vi) ~ Bal = [[#]~ BV~ VI1Bal )
n2 n

> (uBII¥) ~ Bl5 = Vil1BI%

t2
n?

— (BIE]~ B +|[#] ~ BIIBIT) (20 + )% )
> ulBIII) ~ Bl ~4(eo + 24/20) B —2(420 + MIBI[F]~ B

> (= (20 + 1035 + 29) | BII[] ~ Bl = LI BI[[#] ~ B

Thus Ry is S-inseparable.

Finally we show that R satisfies property iii. of good graphs. Let A < [¢'] with
|A] < V't and F < E(R) with |F| < ¢t”. Take A" = J,., Vi v V{, then |[A| <wvn
and take F' = UijeF E(V;,V;) U E" U Ejpss, then

|F') < (0 + 30 + do + VM)n? < on®.

Then G 4 contains a §-connectable fractional triangle factor fg,, ., with

n /
Wi(fe ) = 5 —nln—|A1).

For each ijk € T(Rar), set

f%A,F (Z]k) = Z fGA',F/ (uvw)fl .

wweT (G 41 pr [ViuV;0Vi])

The total weight in ig € V(R4 r) is

Z Z f6 (uvw)

iojkET(mA’F) uU’LUET(GA/YF/ [VZO UVj UVk])

t
< |Vi ’g

N

1.

SRS

For each wvw € T(Ga p) with u € V;,v € V;,w € Vi, if 4,4,k ¢ Xp, then
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ijk € T(Rar). Using that |[A'| = |A|2, 2 > /¢ and V' < 3, the total weight is

t)

W) = ) S e lw)

ijkET(%A F) u’uweT(GA/ Jald [V V‘ Vk])

= > Jaypwow) - *\XFI*

T(G g1 pr)

M — 1A —
(3 nn —A))) = |Xr]
—nt—\an!A’\*

— (40 + /)t + 't + | Al
St
3

3

\%

w\ww\ww\ws\w

— 2t + 2| Al = 5 —n'(t - |A]).

We are left to check that this fractional triangle factor is connectable. If
foap(ijk) > 0, then there is uvw € 16 1 ivi,v; 03 such that fGA,qF,(uvw) > 0
and one of the edges is {-connectable in G, say uv with w € V;, v € V. Since Vj < A’
and E' < F’, we have that uv € F(G’) and since Ej,ss € F’, we have that ij € F(R)
is a g—connectable edge in . We showed that R is (i, ¢, ', o', &, 1, V' )-good.

Now let w € V(G), we address the number of connectable triangles with all

vertices in ];j’SG (w). The number of triangles in U,, with a vertex outside | J,_ 176 (w) Vi
5/8
1s at most
on )
t—|I5¢ ——-n®+ |Vjn* < -n®.
(¢~ LS 2 + Vil < G
We have that |E'|n + |Ejss/n < $n® , thus we have a set Tj(w) of {-connectable

triangles with vertices in (U, mUzGIP 5 (w) V;) and edges in E(G')\ Ejoss and |T7(w)| =
5n3. The projections of the trlangles in T7(w) into R gives us at least %t?’ different
&_connectable triangles in R with all vertices in Igf (w).

Apply Lemma 2.5.1 to P with g, 71 = 72 =0, o' <
and for j & [s(0)], £:(j) = [1]"". We et

.t s() =[] (i e [t])

= {Voy v {Vijrie[t'],je[[1/x]]},
such that
L (L= < Vgl < 0+,

2. if i € I7%(v), then ij € ](1 (v) for all j € [[1/k]].

8 Gl

) 6
8

65



Since |Vi;| = (1 —+")[£]7Y| Vi, if (V;, Vi) is (o, do)-regular, then for

each (Vi;, Viry) is (€, dp)-regular.
The reduced graph R’ = R(¢’, dy, P') is a complete [+1]-blow-up of R. Take

Rov = {U = |J (kD). k(D)) i e [t e [11/m10}

keUR

and Lemma 2.6.6 gives us that R’ is (i/, o', "7/:1, ¢, 21, v'"*)-good.
We have that 17,9, (v) = Ulelm (1), ,i([1/k])}, thus

1="s
(1++7) 8

HIDS) () ve V(G = [{I,..., In}| <2 < 28VenI

@) 8

Each triangle in R gives us [£]? different triangles in R'. If 22’ € F(R) is in 't/

different U, then for j, 5" € [[1]] the edge z(j)a'(j") € E(R') is in UZ(],, for j” € [[1]],

therefore z(j)2'(j') is ¢-connectable in . Since there are at least $¢3 connectable
triangles in I5°%(v), we get at least SIV(R)|? distinct &'-connectable triangles in R’
8

. . . PG
with vertices in I}, "7, ; (v).

(1+97) 8
Theorem 2.2.1 gives us that R’ contains the second power of a Hamiltonian cycle

C? =x.. . Ty (9|, With a segment Ps = xy ...z, which is the third power of a path
and another segment P; such that for all i € [m], we have that P; contains at'[1/k]

different triangle paths on 5 vertices, all in [;.

Apply Lemma 2.5.1 to P’ with

/ / " /

€ ) )
e, m=r=7, V"=9<- s()=3 and fi(j)=
get
7)” = {%} o {V;jm‘/;jza‘/;js: (S [t]a.] € ”1/5”} and ‘/U V;]lu‘/;pu‘/;JS?

such that

L (1= 2) A8 < Vi < (14 29)[H7' 8 for a e [3],
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2. le]Elﬁ f)a( ), then ijy,ij2,ij3 EI(l 2~/)5(v)

(7 8 (1727 8
Since |Vij, | = W21V, if (Vi, Vi) is (€0, do)-regular, then for
e = 9eo [1—‘2
(A =2y)2lsl

each (Vi;,, Vijr) is (€, dp)-regular for a,b € [3].

We get that R” = R(e”, dy, P") is the complete 3-blow-up of 8" and contains the
complete 3-blow-up of the second power of a Hamiltonian cycle C2®). We rename the
classes of P” according the second power of a Hamiltonian cycle C? = ;... 2y o)),

is such way that,

= {Vo} v {Va,, Vi, Ve i e [E[1/k]]}

where,

Vi,

7

Vi, = Vo, ,UVh, UV, fori=2 (mod 3),

=V 0V, UV, fori=1 (mod 3),

Vi, = Vo, ,OV,, OV, fori=0 (mod 3),

with ag = appjw), a—1 = appje—1,00 = by (See Figure 2.6.1). We get that
V(L) = Uicr1/mii@is bis ci} are the vertices of a ladder in . The segment Fs gives

us the edges ajas, babs, c3c4 and we get LT < R”.

Figure 2.6.1: L™ < R”".

We make all edges in LT super-regular by moving vertices to Vg. If (V,., V},) is
(¢”,d)-regular, let X = V,, be the vertices that have less than %[V,

67



in Vp,, then [ X| < %~

Qg |

"

ag

We have degree dj+(a;) < 7 and for each neighbour of a; we move X to Vj, let Va’ be
the new set. We have that for any V,, (similarly for V,, or V,,), since ¢” < 36[+]%

and by our choices of dy and &g,

145”

Vil = (1-

—)

g (1—*)

a;

1n

5; vertices to V. Thus,

In fact, for each class V;,, we move exactly ©(1 + 2v/)[1]~

do.T177 1 17-t'n
1_3,_7[7] Dewi<a 2’[4 iy

If (Vo V) is (€”, d)-regular, then (V;,V;) is (e, d)-regular where, taking C' =
36[1]? and assuming without loss of generality that /gy < & < ==, we have

"
€ Cep A/€0
< < 2C¢p < =e*.

(-4 1% 2

For any a;b; € E(L™) and v € V, , we have that

S oqdo d d
No(v) n V| = (5 = F)IVel = LIl (2.6.4)

2

The new set Vj is such that

14//

Vo] < eon + 2¢/ggn + dg
0
\é(?nzii\‘*/an.

We redistribute the vertices in Vj keeping the super-regularity in (L) and the

regularity on E(L*)~ E(L). For that we use the special segment P; = C? = R'. For

any [ Z f,) 5 (v) there are at least at'[1/x] different triangle paths z;, z, 2,75, 7i; S Pr

1+ 8
with all vertices in I(1 5 (V).
(1+'y ) )
To each v € V{ we associate such a triangle path P5(v) = x;, x;,2;,2;,x;, satisfying

that at most at‘,‘(fl)ﬁ] different vertices v;,v; € V have Ps(v;) = Ps(v;). Move v to
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either Vo or Vy or V[ , making sure that the sets after the redistribution of V4
have sizes as even as possible. That is, for each triangle a;b;c; in the ladder L, we

have

H‘/a1| - |%1||’ ||Vaz| - |‘/Cz||7 ||‘/bz| - |‘/Cz|| <1

Let V', Vi7, V.’ be the partition sets after redistributing V. We have that, since
wlog ¢/ep < & < & and |V, | > &[]

3. 17-1 364
e IV;,-|+¢H < Vil + 20 < (14 YRVl (265)
at K «
We have
do.T17 1n 17-1n
1—3’——[—] Do o< a3y wsﬁ[—} n

nwl[E < e vl

See Figure 2.6.1 and observe that for any u e V! NV, (or Vb” or V”) and any

edge in £(L) incident to a;, say a;b;, we have, using that dy < and ~v' <
1-29)4 do
N, |7 2(771/ ——V = V. . 2.6.6

Considering (2.6.4), (2.6.5) and (2.6.6), we have that for any edge in E(L), say a;b;,
if ve V), then

dy do dy
s 20y s A=l

Moreover for any edge in E(L"), say a;b;, we have that (V;,V;) is (¢*,d)-
regular and Observation 2.6.7 with (2.6.5) and |V | > | “" gives us that (V;7,V}") is
(€1, d)-regular with

€ + 40 < BYep = €1 O

Observation 2.6.7. If (V;,V}) is an (e, d)-regular pair and V/, V] are such that
Vi Vil < alVi[, V] N Vi < BIVj|, then (V] V) is an (e + a + B, d)-regular pair.

17 77
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Take X < V/, Y < V/. Then,

e(X,)Y)<e(X NV, Y nV))+e(X \NV,Y)+eY NV, X)
<dX A VIIY n Vil +|Vil[Vj| + [V N Vil V3] + [V S ViV

N

dX A Vi||Y nVj| + (e + o+ B)|Vil|V}]
dX|[Y]+ (e +a+ B)V/|IV]].

N

Moreover,

e(X.Y) = dX A Vi|IY n V)| — VIV

> d([X] = a[Vi(IY] = BIV;]) — e[ VillVj|
> d|X[[Y] = (¢ + da + dB)|Vi||V}|
= dIX|[Y] = (e +a+ BV/IIV]].

2.6.2 Lemma for H

Here we discuss the mapping of the vertices of H into the ladder, needed for our

application of the blow-up lemma.

Proof of Lemma 2.6.3. We are given a, ' > 0, integers t and ng,, ny,, ne, (i € [t]),

such that > (e, + M, +ne,) =1, 55 < Mg, + 1, + 1, < 7 and

<1 (2.6.7)

‘nai — T, ’nai — N, ’nbi — N,

Take

5 — min { Y o (7')2}
12¢(t + 1) 1827 24¢% )

Let H be a 3-chromatic graph on n vertices with bw(H) < Sn and let L™ be a
ladder with additional edges,

V(L+) = U{ai,bi,ci}, E(L+) = E(L) v {G1G27bzb370304}-
€[t]

We now set the homomorphism f: V(H) — V(L") and special set X < V(H).
Fix a 3-colouring V(H) = V1UVL,UV3 of H and let wy...u, be an ordering
of V(H) in bandwidth order. We split the ordered V(H) into consecutive sets U,;,
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i€ [t], j € [%] in the following order

,y/

Ull; ey Ul%? U21, ey Ut%
Y v
Let

N; = ng, + np, + 1, ,

and set the size |U;j| = v'N; for every j € [%] (we omit ceilings and floors, since

anyway we work with slightly unbalanced classes). We have that >, 11, |Uy| = N;
Yy
and the vertices in Uje[i] U,; will be mapped into {a;, b;, ¢;}.
,Y/
Let

Ui(jl) =Ujn Vi, U =UynVe and Ui(j?)) =UynV;.

1,

We map each UZ-(jl)7 Ui(jZ), Ui(jg) to a different vertex {a;, b;, ¢;}. We set auxiliary map-

pings, g: [t] % [5] = Uiegy{as, bi, ci}?, where
Q(U) € {(aia bl)v (ai7 Ci)a (blv ai)7 (bza Ci)a (Cia ai>7 (Cia bz)}

and ¢: V(H) — Uie[t]{ai,bi,ci}. To set ¢’ consider v € V(H), if v € U;; and
g(Z]) = ((51,(52), we have

-ifve UZ‘(jl)7 then ¢'(v) = 01,
-ifve Ui(f), then ¢'(v) = 0,
-ifve Ui(;))7 then ¢'(v) = {a;, b;, i} \ {01, 02}

Note that \Ui(jl)], |Ui(j2)|, \Ui(;’)\ might be different. For i € [t], let A; be the number
of vertices v € Uje[ 11Uy such that ¢'(v) = a;, similarly define B;, C;. We make sure
that

using the following procedure to define g. Let i € [t] and suppose we have g(ij) for
7 € [jo] (o < $ — 1) and A;(jo), Bi(jo), Ci(jo) are the number of vertices that have
been associated to a;, b; and ¢; and they differ by at most v/ N;. Say

A;(jo) < Bi(jo) < Ci(jo)
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then for setting g(i(jo + 1)), take the largest among |U J0+1)| |U ot |U (ot | and
associate it to a;, the second larger to b; and the smallest to ¢;. If the relations A;(jo+
1) < B;(jo + 1) < Ci(jo + 1) are kept, since we associated more vertices to a; than

to b; and more to b; than to ¢;, we have
|4i(jo + 1) = Bi(jo + 1| < |Ai(jo) — Bi(jo)| < ' Ni,

similarly for |B;(jo + 1) — C;(jo + 1)| and |A;(jo + 1) — C;(jo + 1)|. If any relation
changes, say A;(jo + 1) = B;(jo + 1), then

|Ai(jo + 1) — Bi(jo + 1)| < Ir;ax HU(?ZH Uz(yjz)H)H

< Uigorn)| < 7' Ni.

If ww e E(H[U;l), then u,v are in different colour classes and ¢'(u)g’'(v) €
E(a;bic;) and we would have a homomorphism if not by the edges between differ-
ent U;; and Uyjy. Owing to the small bandwidth of H, there might be edges only
between U;;Usj41y (for j € [% —1]) or UZ%U(HM (where U1y = Urr). We remap
some vertices of U;; to set a homomorphism f: V(H) — V(L"). The vertices we

redistribute are part of the special set X < V(H).

We set X = U el Xi;, where X;; is taken in the following way. Let i € [¢],
j = 2 and assume g( (] — 1)) = (a;, b;), that is

1 2 3
g/(Ui((j)_l)) = Ay, g/(Uz‘((j)_l)) = b, 9/(U¢((j)_1)) =G .
For j = 1, assume g((7 — 1)%) = (aj_1,b;—1) (where g(O%) = g(t%)), that is

GO ) =aia, §UD ) =bia, U 1) =ciot.
v

2

Now consider the following case, in which the three colours in U;; are rotated
compared to the colours of Uj(; 1y (or U(;_y1 ), the other cases are similarly resolved.
Y

We have

g(ij) = (biy i), thatis ¢'(US)) = by, ¢(US) = ¢, ¢ (UD) = a;.
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We consider the following triangle walk on 3¢ + 2 vertices in L™ (see Figure 2.6.2)

(CLiCibi) Ce (GQCsz)b3C3(C4b4a4> PN (clblaz) .

a; C; bz Qg Ct bL aq C1 bl az Co bz bi C3 Cyq b1 ag G bz a;

1) (3)
Uiii-1 Xij(2) Uij
a; Ci ' c ' 1 ' Co ' C3 I £ I a;
(2) 1
Ui(j—l) Xu(l) Xz](-/l) Uij
b; a; | Gig=a ay ' as ' b3 I by I b;
3) 2
Uiii-1) Xi;(3) Ui(j :
} } } } }
Ci b; by by bo Cq Ci

Figure 2.6.3: Setting f(X).
If i € [t] ~ {3}, then ¢ = t. For ¢ = 3, we have ¢ = 2t.

Say U;; = u;...uyn, in bandwidth order. We include in X;; the following

vertices (see Figure 2.6.3).
- X;;j(1) containing the vertices of Ui(jl) among the first Sn vertices in U;;.
- X;;(2) containing the vertices of Ui(;’) among the first 28n vertices in Uj;.

- X;j(3m), for m € [t — 1], containing the vertices in Uigg) among
Um-1)3fn+1  --- Um3pn -
- X;;(3m + 1), for m € [t — 1], containing the vertices in Ui(jl) among
UBn+(m—1)38n+1 -+ UBn+m3pn -
- X;j(3m +2), for m € [t — 1], containing the vertices in Ui(f’) among

U2Bn+(m—1)38n+1 -+ U2Bntm3pn -

73



We set f(Ug’) N Xij) = a;, f(UZ-(jl) N Xi;) = by, f(Ui(jQ) N\ Xi;) = ¢; and we map
the edges incident to X;; into edges of L™ in the following way, all indices being

taken (mod t).
(1) = a F(X(2) = e
- for me [t —i+ 3], set f(X;;(3m)) = bipm—_1;
- forme [0 —1] N[t —i+ 3], set f(X;;(3m)) = Cagm—(t—i+3)-1;
- forme [t —i+2],set f(X;;(3m+ 1)) = ajix;
- forme [0 — 1]\ [t —i+ 2], set f(Xy(3m + 1)) = bgjm—(t—it2)-1;
- for me [t —i+ 3], set f(X;;(3m + 2)) = Cipm;
- forme [0 —1] N[t — i+ 3], set f(Xi;(3m +2)) = Gusm—(1—i+3)-1-
We observe that, for k € [t], we have
X5 0 f 7 aw)], [ Xy 0 f7H 0] Xy o f 7 (ew)| < 66, (2.6.9)

since the worst case is when i = 3 and each ay, by, ¢, gets at most 65n vertices
from X;.

By our choice of /3, we have |U;;| = v'N; = 66n(t + 1), so for any v among the
last Sn vertices in U;;, we have f(v) = ¢'(v). It is not hard to check that f is indeed
a homomorphism between V(H) and L*.

Since X = Uie[t“e[ﬁ Xij, using (2.6.9) and our choice of 3, we have that for
any k € [t],

_ _ 65tn  an
X fMa)l < Y Xy o f N a)] < oS3

ielt] e[ 4]

and similarly for | X n f=1 (o), | X 0 f~ (er)|-

We observe that f satisfies property (h1). We have that (2.6.7) implies
N;

<

Ng, — —

3

Nay Nay

3 3

nal nbl

3 3

Nay Ney

3 3

2
< =

3

~ ~
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Thus |n,, — 5|, [, — 5|, Ine, — 3| < 1. By (2.6.8) and |4;] + |B;| + |C;] = N; we
have that
N, A, B, A, C 2+'N;
Nl — | [ 2 i |2 T i
Therefore
_ QV/N’L
16)7 (@)l = na,| < =5+ 1.
We have that
_ _ 65tn
H(g/) Hag) = |f 1(%)” S
Y
Thus
_ 2+'N; 66tn  3y'n
() )] = na,| < 1 — < . O
3 ol 3t

2.6.3 Adjusting the partition of V(G)

The last step in the preparation of G and H is to match the sizes of classes in the
partition of V' (G) to the sizes of the pre-images of the homomorphism of H into the

ladder. For that we use the following lemma.

Proof of Lemma 2.6.4. We are given ¢, dy > 0 and integer t. We are given a graph
G on n vertices with a partition V(G) = U, (Va, OVh,UVe,) and a ladder L, such
that properties (¢2), (¢3) and (g4 ) of Lemma 2.6.2 hold. Set v/ < % and we are
given integers mq,, my,, me, (for i € [t]) such that >, 1, (mq, + my, +me,) =n and

n

|mai - |Vai||7 |mbi - |VE7¢||7 |mCi - “/;z|’ < 7/3t .

For

Lo = 2 |Vai| - Zmam Ty = Z |V271| - 2 My, Le = 2 |‘/Cz| - 2 Me;
i€(t] €[t] i€(t] i€(t] i€(t] i€[t]

we have that |z.|,|zs],|z.] < 7% < 2. We get a new partition V(G) =
Uierg (Va, V5, OVL) in the following way. We have that z, + 2, + 2. = 0, as-
sume for example that z, > 0,2, > 0,z. < 0, then use ajay and byb3 to move

vertices from V,, to V., and from V;, to V., and get

Z ‘Va/l‘ = Z Ma;, Z ‘Vbi’ = Z My, , Z ’VZZ‘ = Z My -
i€[t] i€[t] i€[t] i€[t] i€(t] i€[t]
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We had to move at most e*£ vertices and (V,,, V,,) being (e, d)-regular ensures at
least Z—z |V, | vertices with at least %|V,,| neighbours in V,, and for every zy € E(L™)
with @ € {ay, by, ¢, c3} the new pair (V;,V)) is (2¢,d)-regular. Thus, the edges
in E(L") correspond to (2¢,dp)-regular pairs and the edges a;b;c; correspond to

(2¢, do, ‘éjo)—super—regular pairs.

We want to achieve |V;*| = m,, and for that, set x; = |V | —m,,. Next if 21 > 0

move z; vertices from V; to V_ ;if ; < 0, move the x; vertices in the opposite

a’?
direction. Set V;* and V. as the sets V; and V, after moving z; vertices. Note

that

2
s &N

n
<e?— < 2e?— .
ml < etg g <2y

Let ip < t — 2 and assume we have sets V* for i < iy and Va’goﬂ such that

V| = my, and

" 2 1 2 M 21!
Vaigirl = Vol S €75 +iee™55 < 2670
Set Tig+1 = |VZZO+1’ ~ Magg i1
n . n i
[zinl < €3 + (o + g <2<

We move z;, ., vertices from V/  to V! if z;,,1 > 0 and the other way around
o+ @ig+1 io o+ )

Aig+27
: . . * " x _ /N
if x;,11 < 0. After moving x;,1 vertices, we have V%+ , and Vai0+ ,- Weset Vo = V.

Do a similar procedure to achieve |V;¥| = my, and |V}| = m,,, for i € [t].

Each class is involved in 2 movements and for « € {a, b, ¢},

Vi A VE = [Va| — 462 and
; 3t
n n n n
1—do =)o < Vel =7 or < |VE] < Vol +7 5 <A +/do+7)5 -
( 0=z < Vel =73 Vi Vol +7'3, < L+ Vdo+7) 5,

For a € {a,b,c} and 5 € {a,b, c} \ {a}, we have that the pairs (V,,, V3,,,) are super

regular, therefore, at least [V, n V| > |V,

— 2¢22 > x; vertices in V. have at
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least

d(] dO
g’vﬁi+1| - ’Vﬁi+1 N V;L-H‘ = g‘vﬁzurl’ - ‘V5i+1| + ’VBiH M VEZH‘

neighbours in Vi . Therefore it is always possible to move vertices from V. into
V! and keep the degree condition in the triangle a;,1b;1¢;41. Similarly, we can

Q41
move vertices from V! into V! —and keep the degree condition in the triangle
i+1 +1
aibici.
Moreover if (Vg,,Vp,) is a (g,d)-regular pair and X < V7, Y < Vj, then for

X'=XnV, andY' =Y n Vj, we have

(X' = [ X] = Ve, NV,

> X[ = Vel + Ve, 0 Vi

4 > |X| - (7 +4e) g

> | X| = (VX + |V,
X] = V2] + Ve -

Thus,

e(X,Y) < dIX'||Y| + |V,

V/Bi

HIX|Y N Y+ [YIX N XY < dIX|[Y] + 2¢|VE ||V
and

e(X,Y) = dX'||Y'| — e|Va,

Vs,

> d|X|]Y| - 22|V

*
Vﬁi

Therefore all edges in E(L) correspond to (2¢, dy)-regular pairs and the edges in the

triangles a;b;c; correspond to (2¢, do, %)-super—regular pairs. O]

2.6.4 Generalizing previous results

In this section, we show that the conditions needed for a graph to be good are satisfied
by graphs with the minimum degree condition from the Bandwidth Theorem 1.1.2,
thus Theorem 1.1.14 generalizes this previous result.

We believe that (g, d)-dense, p-inseparable graphs are also good and with a
relaxation on the condition 2l being complete, the bandwidth result for tripartite

graphs shall also be generalized; this proof is not included.
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Theorem 2.6.8. For e > 0, there exists ng such that if G is a graph on n = ng

vertices with minimum degree 6(G) = %n +en, then G is (u, 9, ¢, 0,&,n,v)-good with
p=— 06=—, C:E 0=—, &= 7]:% and v = —.

Proof. Let G with 6(G) = 2n + en be given, set U, = N(v) with |U,| = 2n + en.

First we show that G[U,] is %-inseparable. Indeed, for any z € V(G), we have

2 1
|Umev|>2<3+5>n—n (3+25) (2.6.10)

Take A < U, and B = U, \ A, assume |A| < 5%, Then for any z € A

1 1 1 3
|IN(z) n B| = <3+25)n—|A|> <3+25>n—<3+;)n22€n.

We have that e(A, B) > |A|%$n = %£|A||B|.

The number of triangles in G[U,] is at least 3e3n®. Indeed, take x € U, and y €
U, n N(x). We have that

IN(y) A (U, ~ N(2))| > <§+5+§+2£—1> > 3en. (2.6.11)

Then z is in at least |U, n N(z)|%n triangles in N(v). The total number of triangles

2 1 1
<3 + 5> <3 + 25) 58713 > gn?’.

Note that if zv e E(G), equation (2.6.10) gives us that zv is (5 + 2¢)-connectable.

in U, is at least

Note that (2.6.11) gives for every v,z € V(G), that

3¢ €
n2 > Sp2

1
E > 2
|E(U, nU,)| <3 + 5> 5 5"

thus A = A(R, §) is complete and, in particular, 3-inseparable.

2
Finally we show that G has a fractional triangle factor f with W(f) = %.
Consider f a maximal fractional triangle factor of G and let A be the set of
unsaturated vertices. We show that A is an independent set. Otherwise con-

sider z,y € A such that xy € E(G). Let the total weight in x be f(z) = 1—¢

78



and in y be f(y) = 1 —¢&'. If there is a triangle vvw with u,v € N(z) n N(y)
and f(uvw) > 0, then take o« = min{f(uvw),e,£'}. Set a new weight function f’

which is the same as f except
o flww) = fluow) — /2,
o flayu) = flayu) + /2,
o flayv) = flayv) + a/2.

The weights f'(u) = f(u), f'(v) = f(v), f'(zr) =1—c+a, f'(y) =1—¢ + « are
at most 1 and W (f") = W(f) + a/2, contradicting the maximality of f. Then all
triangles with positive weight can have at most one vertex in N(x) n N(y).

Note that all vertices in N(z) n N(y) must be saturated. Otherwise if z €
N(z)nN(y) has f(z) = 1—¢", take @ = min{e, &', "} and set f'(zyz) = f(zyz)+ .
Then W(f) = |N(z) n N(y)| = (1/3 + 2¢)n, which is a contradiction.

If A is independent and x € A, we have that N (x) contains only saturated vertices.
If wow is a triangle in N (z), then f(uvw) = 0, otherwise take v = min{2¢/3, f(uvw)}

and set
o flaw) = flzuv) + o/2,
o flauw) = flauw) + a/2,
o [llavw) = flzow) + /2,
. f(uvw) = f(uvw) — a.

The weights f'(u) = f(u), f'(v) = f(v), f'(w) = f(w) and f'(z) = 1 — e + 3a/2
are at most 1 and W(f") = W(f) + «/2, contradicting the maximality of f. Thus,
adding the weights of the vertices in N(z), we count the weight of a triangle at most
twice and we have that W (f) > |N(z)|/2 = (1/3 + ¢/2)n, which is a contradiction.
This gives us that all vertices must be saturated.

If we are given A € V(G) with |A| < {n and F' € E(G) with |F| < %ZnQ, we
get | Xp| < §nand if ve V(G4r), then

N, »(v) = Ne(v) N (Au Xpu{w:vwe F}).
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Since v ¢ Xp, we have that |Ng, .(v)] = (2 + & — 3(5))n. By the argument
above, we have that G4 r contains a fractional triangle factor fg, . such that

W(fo,r) =8 — 2 > %= 5(n—|A]). =
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3. The size-Ramsey number of pow-

ers of bounded degree trees

3.1 Auxiliary results

In this section we state a few results which will be needed in the proof of our main
theorem. The first lemma guarantees that, in a graph G that has edges between
large subsets of vertices, there exists a long “transversal” path along a constant
number of large subsets of vertices of G. Denote by eg(X,Y’) the number of edges
between two disjoint sets X and Y in a graph G.

Lemma 3.1.1 ([21, Lemma 3.5]). For every integer { = 1 and every vy > 0 there
exists dy = 2+ 4/(~v(€ + 1)) such that the following holds for any d = dy. Let G be
a graph on dn vertices such that for every pair of disjoint sets X, Y < V(G) with
| X1, Y| = yn we have eq(X,Y) > 0. Then for every family V1,...,V, < V(G) of
pairwise disjoint sets each of size at least ~ydn, there is a path P, = (x1,...,z,)

in G with x; € V; for all 1 <i<mn, where j =i (mod /).

We will also use the classical Chernoft’s inequality and Kévari-Sés—Turan theo-

rem.

Theorem 3.1.2 (Chernoff’s inequality). Let 0 < ¢ < 3/2. If X is a sum of

independent Bernoulli random variables then
P(|X — E[X]| > eE[X]) < 2 e /BT

Theorem 3.1.3 (K6vari-S6s—Turan [64]). Let k = 1 and let G be a bipartite graph

with x vertices in each vertex class. If G contains no copy of Koy ok, then G has at

2-1/(2k

most 4x ) edges.
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3.2 Bijumbledness, expansion and embedding of

trees

In this section we provide the necessary tools to obtain the desired monochromatic
embedding of a power of a tree in the proof of Theorem 1.2.1. We start by defining
the expanding property of a graph.
Property 3.2.1 (Expanding). A graph G is (n, a,b)-expanding if for all X < V(G)
with | X| < a(n — 1), we have |Ng(X)| = b/ X].

Here Ng(X) is the set of neighbours of X, i.e. all vertices in V' (G) that share an
edge with some vertex from X. The following embedding result due to Friedman
and Pippenger [41] guarantees the existence of copies of bounded degree trees in

expanding graphs.

Lemma 3.2.2. Let n and A be positive integers and G a non-empty graph. If G is
(n,2, A + 1)-expanding, then G contains any n-vertex tree with maximum degree A

as a subgraph.

Owing to Lemma 3.2.2, we are interested in graph properties that guarantee

expansion. One such property is bijumbledness, defined below.

Property 3.2.3 (Bijumbledness). A graph G on N wvertices is (p,9)-bijumbled if,
for all disjoint sets X and Y < V(G) with ¥/p < |X| < |Y| < pN|X]|, we have
ea(X, V) = plX|[Y] < 94/IXTIY].

We remark that, in the definition above, we restrict our sets X and Y not to be
too small; such a restriction is not usually imposed when defining bijumbledness,
but we have to do so here for certain technical reasons.

Note that bijumbledness immediately implies that

for all disjoint sets X, Y < V(G) with | X|, |Y| > ¥/p we have eq(X,Y) > 0.
(3.2.1)

Moreover, a simple averaging argument guarantees that in a (p, ¥)-bijumbled graph

G on N vertices we have

e(G) — p( ) ) ‘ < ON. (3.2.2)



We now state the first main novel ingredient in the proof of our main result
(Theorem 1.2.1). The following lemma ensures that in a sufficiently large graph
we get an expanding subgraph with appropriate parameters or we get reasonably
large disjoint subsets of vertices that span no edges between them. This result was
inspired by [76, Theorem 1.5]. Furthermore, we remark that similar results have

been proved in [77,78].

Lemma 3.2.4. Let f > 0, D > 0, £ > 2 and n > 0 be given and let A =

(L=1)D+ 1)+ f)+n
If G is a graph on at least An vertices, then

1. there is a non-empty set Z < V(G) such that G[Z] is (n, f, D)-ezpanding, or

2. there exist Vi, ..., V, € V(G) such that |V;| = nn for1 <i </l andeq(V;,V;) =

0forl<i<j<Vt.

Proof. Let us assume that 1 does not hold. Since G is not (n, f, D)-expanding, we
can take V; € V(@) of maximum size satisfying that |V1| < (n+ f)n and |Ng(V1)| <
D|Vi|. We claim that |V}| = nn. Assume, for the sake of contradiction that |V;| < nn.
Let

Wy =V(G) ~ (V1 u Ng(W1)).

Then |W1| > An — (D + 1)nn > 0. Applying that 1 does not hold, we get X < W,
such that | X | < f(n—1) and |Ngpw,1(X)| < D|X]|. Note that Ng(X) S Namw,(X)u
N¢g(V1). Thus

|INg(XOV1)| = |Nemw,1(X) u Ng(V1)|
< D(|X]| + [V1]).

Also | X UVi| < (n + f)n, deriving a contradiction to the maximality of V;.
Let 1 < k < ¢ — 2 and suppose we have (Vi,...,V}) such that

1. |Vi] = nn, for 1 < i < k;
2. e(Vi,V;) =0, for 1 <i<j<k;

3. |ULi(Vi v Na(V))| < k(D + 1)(n + f)n.
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We can increase this sequence in the following way. Let W, = V(G) ~ Uf;l(Vi U
N¢(V;)) and note that

Wil 2 An — (6= 2)(D + D)(n + f)n
>(D+1)(n+ f)n+nn
0.

\%

Since 1 does not hold, there exists Vj11 € Wy of maximum size with |Vi41| < (n+ f)n
such that ’NG[Wk](Vkﬁ-l)‘ < D‘Vk-&-l’ Note that eg(‘/;, V}c-&-l) < EG(V;, Wk-i—l) = 0, for
every 1 < i < k. Therefore we have that 2 holds for the sequence (V1,..., Vii1).

Furthermore, note that

k

Ne(Vir) < | Na(Vi) U Napwg (Vi) - (3.2.3)
i=1
This gives us 3 for the sequence (V,...,Vii1), since

k+1

Ui v Ne(V2)

i=1

k
(3.2:3) U(VZ v Ng(vz)) U Vi1 U NG[Wk](VkJFl)

i=1

<(k+1)(D+1)(n+ f)n.

To see that (V4,..., Vi) satisfies 1, define

k41
Wi = V(&) ~ [J W0 Na(V) P27 Wi (Vs 0 Nogwyg (Vis)).
i=1
Assume that |[Vj41]| < nn and derive a contradiction as before.
Therefore, when k& = ¢ — 2, we generate a sequence (Vi,...,V,_1) with the
properties required by 2. To complete the sequence, note that 3 gives that |[W,_q| =
nn and set V, = W,_1. ]

As a corollary of the previous lemma, we get the following lemma that says that

sufficiently large bijumbled graphs contain a non-empty expanding subgraph.

Lemma 3.2.5 (Bijumbledness implies expansion). Let f, ¢, D and ¢ = 1 be positive
numbers with ¢ = 4(D + 2)¥ and a = 2(D + 1)f. If G is a (¢/(an),d)-bijumbled
graph with an vertices, then there exists a non-empty subgraph H of G that is
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(n, f, D)-expanding.

Proof. Let p = ¢/(an) and let G be a (p,?)-bijumbled graph. Suppose for a
contradiction that no subgraph of G is (n, f, D)-expanding. We apply Lemma 3.2.4
with £ = 2 and 1 = 29a/c. Note that, since a > 2(D + 1)f and ¢ = 4(D + 2)¥, from
the choice of n we have

2(D + 2)Va

az=(D+1) >(D+1)f +

f+3
>D+1)f+(D+2n=(D+1)(f+n)+n.

Then, we get two disjoint sets Vi, Vo € V(G) with |Vi| = [Va| = nn > 9/p such
that eq(V1,V2) = 0. On the other hand, by (3.2.1), we have eq(Vi,V2) > 0, a
contradiction. Therefore, there is some subgraph of G that is (n, f, D)-expanding. [

The next lemma is crucial for embedding the desired power of a tree. Let G be
a graph and ¢ > r be positive integers. An (¢, r)-blow-up of G is a graph obtained
from G by replacing each vertex of G by a clique of size ¢ and for every edge of G
arbitrarily adding a complete bipartite graph K, , between the cliques corresponding

to the vertices of this edge.

Lemma 3.2.6 (Embedding lemma for powers of trees). Given positive integers k
and A, there exists ro such that the following holds for every n-vertex tree T with
mazimum degree A. There is a tree T' = T'(T, k) on at most n + 1 vertices and
with maximum degree at most A** such that for every graph J with T' < J and any

(¢,7)-blow-up J' of J with £ =1 > ry we have TF < J'.

Proof. Given positive integers k, A, take ro = A*. Let T be an n-vertex tree with
maximum degree A. Let xy be any vertex in V(7T') and consider T" as rooted at xo.
For each vertex v € V(T'), let D(v) denote the set of descendants of v in T (including
v itself). Let D¥(v) be the set of vertices u € D(v) at distance at most i from v in 7.

Let T" be a tree with vertex set consisting of a special vertex x* and the vertices
x € V(T) such that the distance between x and xg is a multiple of 2k. The edge

set of T" consists of the edge x*x( and the pairs of vertices x,y € V(T") \ {z*} for
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which x € D%*(y) or y € D?**(x). That is,

V(T") = {x e V(T): distr(zg,z) =0 (mod 2k)} U {z*}

E(T") = {a:y € (V(T/)Q\ {x*}) cxeD¥(y)orye D%(x)} v {z*z0}.
In particular, note that A(T") < A% and |[V(T")] < n + 1. Let us consider T” as a
tree rooted at x*.

Now suppose that J is a graph such that 77 < J and J' is an (¢, r)-blow-up of J
with £ > r > ry. Our goal is to show that T* < J'. First, since J’ is an (£, r)-blow-up
of J, there is a collection {K (z) : x € V(J)} of disjoint ¢-cliques in J’ such that for
each edge zy € E(J), there is a copy of K, , between the vertices of K (z) and K (y).
Let us denote by K (x,y) such copy of K.

For each z € V(T") \ {z*}, let D*(x) = D*(z) and D~ (z) = D*1(x) <
D*=1(x). In order to fix the notation, it helps to think in D*(z) and D~ (z) as the
upper and lower half of close descendants of x, respectively. We denote by z*t the
parent of z in 7". Suppose that there exists an injective map ¢ : V(7)) — V(J')
such that for every x € V(T") \ {z*}, we have

1. (D" (x)) € K(z,z%) n K(z%);
2. (D~ (x)) € K(z,z") n K(z).

Then we claim that such map is in fact an embedding of T* into .J'. Figure 3.2.1

should help to visualize the concepts developed so far.

Claim 3.2.7. If ¢ : V(T) — V/(J') is an injective map such that for all x €
V(T") ~ {z*} the properties (1) and (2) hold, then ¢ is an embedding of T* into J'.

Proof. We want to show that if v and v are distinct vertices in T" at distance at
most k, then ¢(u)p(v) is an edge in J'. Let @ and v be vertices in V(T") ~ {z*}
with u € D?*~1(@) and v € D?**=(%). If & = ¥, then by properties (1) and (2), we
have p(u) and ¢(v) adjacent in J’, once all the vertices in ¢(D?*~1(@)) are adjacent
in J' either by edges from K(a), K(a*) or K(ua,u*). If & = 0", then we must have
uw e D~ (a) and v € D*(0) and properties (1) and (2) give us p(u), p(v) € K(a).
Analogously, if o = @, then v € D~ (0) and w € D* (@) and properties (1) and (2)
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(a) Tree T. (b) Corresponding 7".
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(c) Embedding T* into an (¢,7)-blow-up of T".

Figure 3.2.1: Illustration of the concepts and notation used throughout the proof of
Lemma 3.2.6 when A =3 and k =2. 87



imply that ¢(u), p(v) € K(0). If a* = 0% (with 4 # 0), then we have u € D" ()
and v € DT (v) and property (1) give us p(u), ¢(v) € K(a").
Therefore we may assume that @ and v are at distance at least 2 in 77 and do

not share a parent. But this implies that
min{disty(z,y) : x € D* (@), y e D*1(0)} = 2k + 1,

contradicting the fact that v and v are at distance at most k in 7. O

We conclude the proof by showing that such a map exists.

Claim 3.2.8. There is an injective map ¢ : V(T) — V(J') for which (1) and (2)
hold for every x € V(T") \ {z*}.

Proof. We just need to show that for every x € V(T"), there is enough room in K (x)
and in K (x,z") to guarantee that (1) and (2) hold. In order to do so, K(x) should

be large enough to accommodate the set

D™ (z) v U D*(y). (3.2.4)
yeV(T")

Since 7" has maximum degree at most A?* and T has maximum degree A, we have
that the set in (3.2.4) has at most A% vertices. Since |K (z)| = £ = 1y = A% the
set K (x) is indeed large enough to accommodate the set in (3.2.4). Finally, since
|K(z,27) n K(x)| = |K(2,27) n K(z)| = r = rg = A% the set K(x,27) is also

large enough to accommodate D~ (z) or D" (z) as in properties (1) and (2). O
[

We end this section discussing a graph property that needs to be inherited by

some subgraphs when running the induction in the proof of Theorem 1.2.1.

Definition 3.2.9. For positive numbers n, a, b, ¢, £ and ¥, let P, (a,b, ¢, ¢,9) denote
the class of all graphs G with the following properties, where p = ¢/(an).

(1) V(G)] = an,
(i) A(G) <b,
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(74) G has no cycles of length at most 2/,
(i) G is (p,V)-bijumbled.

Only mild conditions on a, b, ¢, £ and 1 are necessary to guarantee the existence
of a graph in P,(a,b, ¢, ¢, ) for sufficiently large n. These conditions can be seen
in (7)—(74) in Definition 3.2.10 below. In order to keep the induction going in our
main proof we also need a condition relating £ and A, which represents, respectively,
the power of the tree T" we want to embed and the maximum degree of T' (see (iv)

in the next definition).

Definition 3.2.10. A 7-tuple (a,b,c,¢,9, A k) is good if

(iii) b= 9c,
(iv) €= 21A%.

Next we prove that conditions (7)—(7) in Definition 3.2.10 together with 9 >
324/c are enough to guarantee that there are graphs in P,(a,b,c,¢,9) as long as
n is large enough. We remark that next lemma is stated for a good 7-tuple, but
condition (iv) of Definition 3.2.10 is not necessary and, therefore, also A and k are

irrelevant.

Lemma 3.2.11. If (a,b,c,(,9,A k) is a good 7-tuple with ¥ > 32+/c, then for
sufficiently large n the family P,(a,b,c,€,19) is non-empty.

Proof. Let (a,b,c,£,9, A k) be a good 7-tuple with ¢ = 32,/c and let n be sufficiently
large. Put N = an and let G* = G(3N, p) be the binomial random graph with 3N
vertices and edge probability p = ¢/N. From Chernoff’s inequality (Theorem 3.1.2)

we know that almost surely

e(G*¥) < Qp(gév) < 9¢N. (3.2.5)

From [49, Lemma 8], we know that almost surely G* is (p, e*4/6p(3N))-bijumbled,
i.e. the following holds almost surely: for all disjoint sets X and Y < V(G*) with
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e>V18N//p < |X| < [Y]| < p(3N)|X]|, we have

leqs (X, Y) = pIX[[Y]| < (V6)y/pBNIX]IY]. (3.2.6)

The expected number of cycles of length at most 2¢ in G* is given by E(Ccq) =

Zfig E(C;), where C; is the number of cycles of length i. Then,

E(Cea) = ) (3‘:”> ( _21)! ph< D (3e) < 20(3¢)*.

i=3 i=3
Then, from Markov’s inequality, we have

P(Cear = 40(3¢)*") < L (3.2.7)

[\)

Since (3.2.5) and (3.2.6) hold almost surely and the probability in (3.2.7) is at
most 1/2, for sufficiently large n there exists a (p, e*y/18¢)-bijumbled graph G’
with 3NV vertices that contains less than 4¢(3¢)?* cycles of length at most 2¢ and
e(G) < 2p(3év) < 9¢cN. Then, by removing 4£(3c)?* vertices we obtain a graph G”

with no such cycles such that
V(G")| = 3an — 4£(3¢)* = 2an  and ¢(G”") < 9cN.

To obtain the desired graph G in P,(a,b,c, {,7), we repeatedly remove vertices of
highest degree in G” until N vertices are left, obtaining a subgraph G < G” such
that A(G) < 9¢ < b, as otherwise we would have deleted more than e(G”) edges.
Note that deleting vertices preserves the bijumbledness. Therefore, for all disjoint

sets X and Y < V(G) with e>v/18N/,/p < |X| < |Y| < p(3N)|X| we have

lec(X,Y) = pIX[[Y ]| < (2V6)/pBN)IX|IY] < (32¢/pN)V/IX[[Y] < 94/|X[]Y].

(3.2.8)

We obtained a graph G on N vertices and maximum degree A(G) < b such
that G contains no cycles of length at most 2¢ and is (p, ¥)-bijumbled, for p = ¢/N.

Therefore, the proof of the lemma is complete. n
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3.3 Proof of the main result

We derive Theorem 1.2.1 from Proposition 3.3.1 below. Before continuing, given
an integer ¢ > 1, let us define what we mean by a sheared complete blow-up H{(}
of a graph H: this is any graph obtained by replacing each vertex v in V(H) by a
complete graph C'(v) with ¢ vertices, and by adding all edges but a perfect matching
between C'(u) and C(v), for each uv € E(H). We also define the complete blow-up
H({) of a graph H analogously, but by adding all the edges between C(u) and C(v),
for each uwv e E(H).

Proposition 3.3.1. For all integers k > 1, A > 2, and s > 1 there exists rs and
a good T-tuple (as, bs, ¢, U, Vs, A k) with O = 32,/c, for which the following holds.
If n is sufficiently large and G € Py (as, bs, s, ls, Us) then, for any tree T on n vertices
with A(T) < A, we have

G {l;} — (T"),.

Theorem 1.2.1 follows from Proposition 3.3.1 applied to a certain subgraph of a

random graph.

Proof of Theorem 1.2.1. Fix positive integers k, A and s and let T be an n-vertex
tree with maximum degree A. Proposition 3.3.1 applied with parameters k£, A and
s gives r, and a good 7-tuple (as, by, cs, £y, U5, A, k) with Oy > 32,/c,.

Let n be sufficiently large. By Lemma 3.2.11, since ¥, > 32,/c;, there exists a
graph G € P, (as, bs, cs, s, J5). Let x be an arbitrary s-colouring of E(G"*{{s}). Then,
Proposition 3.3.1 gives that G™{(,} — (T*),. Since |V(G)| = asn, the maximum
degree of GG is bounded by the constant b,, and since r, and ¢, are constants, we

have e(G"{ls}) = Ok, s(n), which concludes the proof of Theorem 1.2.1. O

The proof of Proposition 3.3.1 follows by induction in the number of colours.
Before we give this proof, let us state the results for the base case and the induction

step.

Lemma 3.3.2 (Base Case). For all integers h > 1, k > 1 and A > 2 there is an
integer v and a good 7-tuple (a,b,c,0,9, A k) with ¥ = 2"132./c such that if n
is sufficiently large, then the following holds for any G € P,(a,b,c,(,9). For any
n-vertex tree T with A(T) < A, the graph G"{{} contains a copy of T*.
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Lemma 3.3.3 (Induction Step). For any positive integers A =2, s > 2, k, r, h > 1
and any good 7-tuple (a,b, c, £,9, A, k) with 9 = 2"32\/c, there is a positive integer 1’
and a good T-tuple (a’,b',c/, 0,9, A k) with V' = 2"132+/¢ such that the following
holds. If n is sufficiently large then for any graph G € P,(a',V/,c,0',¥) and any
s-colouring x of E(G{{'})

(i) there is a monochromatic copy of T* in G™{{'} for any n-vertex tree T with

A(T) <A, or

(ii) there is H € Py(a,b,c,(,9) such that H™{{} < G"{¢'} and H"{(} is coloured

with at most s — 1 colours under x.
Now we are ready to prove Proposition 3.3.1.

Proof of Proposition 3.3.1. Fix integers k > 1, A > 2 and s > 1 and define h; = s—1
for 1 <i <'s. Let r1 and a good 7-tuple (a1, by, c1, 01,91, A, k) with 97 > 2M32, /¢y
be given by Lemma 3.3.2 applied with s, k£ and A.

We will prove the proposition by induction on the number of coloursi € {1, ..., s}
with the additional property that if the colouring has ¢ colours, then ¥; > 2}“’32\/07 .

Lemma 3.3.2 implies that for sufficiently large n, if G € P, (a1, b1, ¢1,¢1,71), then
G™{l,} — (T*);. Therefore, since ¥; = 2"32,/cy, if i = 1, we are done.

Assume 2 < ¢ < s and suppose the statement holds for ¢ — 1 colours with
the additional property that 9, | > 2’”—132@, where r;_; and a good 7-tuple
(@i—1,bi_1,¢i—1,4i—1,9;_1, A, k) are given by the induction hypothesis. Therefore, for

any tree T on n vertices with A(T) < A, we know that for a sufficiently large n
H' =l 1} — (TF);-q forany  H € Py(ai—1,bs—1, i1, bi1,Vi-1). (3.3.1)

Note that since i < s, we have h;_1 = s — (i —1) > 1. Then, since 0, >

2hi-132, /¢;_1, we can apply Lemma 3.3.3 with parameters
A, s ki1, hior and (aifla bi—1, i1, lic1, Vi1, A, k) )

obtaining
r; and (ambi,cz‘,@,ﬁi,A; k) )
with 0; > 2"32,/c;.
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Let G € Pn(a;,b;,ci, 0, 9;) and let n be sufficiently large. Now let x be an
arbitrary i-colouring of E(G"{¢;}). From Lemma 3.3.3, we conclude that either ()
there is a monochromatic copy of T* in G"{(;} for any tree T on n vertices
with A(T) < A, in which case the proof is finished, or (ii) there exists a graph
H € Pp(a;_1,b;i_1,¢i-1,0i_1,%;_1) such that H"-{¢; 1} < G"i{{;} and H"-'{{; 1}
is coloured with at most ¢ — 1 colours under y. In case (ii), the induction hy-
pothesis (3.3.1) implies that we find the desired monochromatic copy of T% in
Hr={t;_1} < G"{{;}. O

Lemma 3.3.2 follows by proving that for a good 7-tuple (a, b, ¢, £,9, A, k) with
¥ = 27132, /c, large graphs G in P,(a, b, c, £,19) are expanding (using Lemma 3.2.5).
Then, we use Lemma 3.2.2 to conclude that G contains the desired tree T. After

this step we greedily find an embedding of T* in G{/}*.

Proof of the base case (Lemma 3.3.2). Let h > 1, k > 1 and A > 2 be integers. Let
r==k, (=21A%  9=4"2560, c=9¢ b=9c
and put D = A + 1. Note that ¥ > 2"7132,/c and let
a=4(D+1).

Since ¢ = 4(A + 3), we have ¢ = 4(D + 2)9. From the lower bounds on ¢ and «a
we know that we can use the conclusion of Lemma 3.2.5 applying it with f = 2, 1,
D=A+1andc.

Note that from our choice of constants, (a,b,c,?¢,9,A k) is a good tuple. Let
n be sufficiently large and let T be a tree on n vertices with A(T) < A. Let
G € Pula,b,c,0,9). From Lemma 3.2.5 we know that G has an (n,2,A + 1)-
expanding subgraph and, therefore, from Lemma 3.2.2 we conclude that G contains
a copy of T'. Clearly, the graph G* contains a copy of T*. It remains to prove that
the graph G*{¢} also contains a copy of T*.

Let {vq,...,v,} be the vertices of T, and denote by T} the subgraph of 7" induced
by {v1,...,v;}. Given a vertex v € V(G), let C(v) denote the (-clique in G¥{¢} that
corresponds to v. Suppose that for some 1 < j < k we have embedded Tf in Gk{¢}

where, for each 1 < i < j, the vertex v; was mapped to some w; € C(v;).
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By the definition of G*{¢}, every neighbour v of v;,; in G* is adjacent to all but
one vertex of C(v;;1). Therefore, since A(T*) < A* and |C(v;11)] = € = AF + 1,
we may thus find a vertex wjy1 € C(v;41) such that w;,; is adjacent in G*{¢} to

every w; with 1 <4 < j such that v;v;1 € E(TF, ;). From that we obtain a copy

Jj+1
of TF,, in G*{¢} where w; € C(v;) for 1 <i < j + 1. Therefore, starting with any
vertex w; in C(v;), we may obtain a copy of T% in G¥{¢} inductively, which proves

the lemma. O

The core of the proof of Theorem 1.2.1 is the induction step (Lemma 3.3.3). We
start by presenting a sketch of its proof.

Sketch of the induction step (Lemma 3.3.3). We start by fixing suitable constants
a0 and . Let n be sufficiently large and let G € P, (d/, b, , ', ¥') be
given. Consider an arbitrary colouring y of the edges of a sheared complete blow-
up G"'{¢'} of G" with s colours. We shall prove that either there is a monochromatic
copy of T* in G™{¢'}, or there is a graph H € P,(a,b,c,{,?9) such that a sheared
complete blow-up H"{¢} of H" is a subgraph of G™ {{'} and this copy of H"{(} is
coloured with at most s — 1 colours under Y.

First, note that, by Ramsey’s theorem, if ¢ is large then each ¢'-clique C'(v)
of G"'{¢'} contains a large monochromatic clique. Let us say that blue is the most
common colour of these monochromatic cliques. Let these blue cliques be C’(v) <
C(v). Then we consider a graph J € G induced by the vertices v corresponding
to the blue cliques C’(v) and having only the edges {u, v} such that there is a blue
copy of a large complete bipartite graph under y in the bipartite graph induced
between the blue cliques C’(u) and C’(v) in G {¢'}.

Then, by Lemma 3.2.4 applied to J, either there is a set @ # Z < V(J) such
that J[Z] is expanding, or there are large disjoint sets Vi,...,V,; with no edges
between them in J. In the first case, Lemma 3.2.6 guarantees that there is a tree T’
such that, if 7" < J[Z], then there is a blue copy of T% in G™{¢'}. To prove that
T" < J[Z], we recall that J[Z] is expanding and use Lemma 3.2.2. This finishes the
proof of the first case.

Now let us consider the second case, in which there are large disjoint sets Vi, ...,V
with no edges between them in J. The idea is to obtain a graph H € P,(a,b, ¢, ¢, 9)
such that H™{¢} € G {¢'} and, moreover, H"{{} does not have any blue edge. For
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that we first obtain a path () in G with vertices (21, ..., Z2.,) such that z; € V; for
all ¢ where ¢ = j mod ¢. Then we partition @) into 2an paths Q1, ..., Qou, with ¢
vertices each, and consider an auxiliary graph H' on V(H') = {Q1, ..., Qaun} With
QiQ; € E(H') if and only Eq(V(Q,),V(Q;)) # @. To ensure that H' inherits
properties from G we use that there can bet at most one edge between @); and @),
in G, because there are no cycles of length less than 2/ in G.

We obtain a subgraph H” < H' by choosing edges of H’ uniformly at random
with a suitable probability p. Then, successively removing vertices of high degree,
we obtain a graph H < H” with H € P,(a,b,c,{,9). It now remains to find a
copy of H™{¢} in G"{¢'} with no blue edges. To do so, we first observe that the
paths Q; € V/(H') give rise to (-cliques in G”" (' = £). One can then prove that
there is a copy of H"{¢} in G*' that avoids the edges of J. By applying the Lovész
local lemma we can further deduce that there is a copy of H"{{} in G™ {¢'} with no

blue edges. O]

Proof of the induction step (Lemma 3.5.3). We start by fixing positive integers A >
2, s>=2,k, r, hand a good 7-tuple (a,b,c, 0,9, A, k) with

¥ = 2"32+/c.
Recall that from the definition of good 7-tuple, we have
b= 9c.

Let dy be obtained from Lemma 3.1.1 applied with ¢ and v = 1/(2¢) (note that
do < 10). Further let

a" = (A% +2)(2a - dy + 2).

Notice that a” is an upper bound on the value A given by Lemma 3.2.4 applied with
f=2,D=A%+1+1,/(andn = 2a-dp.
Let r¢ be given by Lemma 3.2.6 on input A and k. We may assume r( is even.

Furthermore, let

t = max{ro, (40((6""" +0))""} and ¢ = max{4sl® r(t)},

95



where 74(t) = r(t,...,t) = r(Ky, ..., K;) denotes the s-colour Ramsey number for
cliques of order t. Let a’ = ’a and note that a//s > 2a” because ¢ > 21A%. Define

constants ¢*, ¢ and " as follows.

g/ 6/2

=2, = 2720* =56 r = fr. (3.3.2)
Put
g/
b =9¢ d ¥ 19
9¢ and ¥ = 4c€ 2619

Claim 3.3.4. (a/,0/,c, 0,9, A k) is a good T-tuple and ¥ = 2"~'32+/¢’.

Proof. We have to check all conditions in Definition 3.2.10. Clearly o’ > 3, v/ > 9¢
and ¢ > ¢ > 21A%. Below we prove that the other conditions hold

o =9/
5/2 6,2
C, ﬁc 77,9 = 2'[9/€/ > 7,9 gl
o ¥ =2 1324/¢:
!/
V= 2@19 72;132\/ 2h=1324/¢. 0

Let G be a graph in P, (a/, ', , ;). Assume
Ng=dn and pg=c/Ng

and let T" be an arbitrary tree with n vertices and maximum degree A and consider
an arbitrary s-colouring x: E(G" {¢'}) — [s] of the edges of G™{¢'}. We shall
prove that either there is a monochromatic copy of 7% in G™ {¢'}, or there is a graph
H e P,(a,b,c,t,9) such that a sheared complete blow-up H"{¢} of H" is a subgraph
of G"'{¢'} and this copy of H"{¢} is coloured with at most s — 1 colours under Y.

By Ramsey’s theorem (see, for example, [22]), since ¢’ > r(t), each ¢'-clique C'(w)
in G {¢'} (for w € V(G)) contains a monochromatic clique of size at least ¢. Without
lost of generality, let us assume that most of those monochromatic cliques are
blue. Let W < V(G) be the set of vertices w such that there is a blue t-clique
C'(w) < C(w). We have

W= =20 s 9qn. (3.3.3)
S



Define J as the subgraph of G"" with vertex set W and edge set
E(J) = {uv e E(G"[W]) : there is a blue copy of K,,,, in G {€'}[C"(u), C”(v)]} :

That is, J is the subgraph of G" induced by W and the edges uv such that there is
a blue copy of K,,,, under x in the bipartite graph induced by G™ {{'} between the
vertex sets of the blue cliques C’(u) and C'(v).

We now apply Lemma 3.2.4 with f =2, D = A?* + 1, ¢, and n = 2a - d; to the
graph J (notice that |V(J)| = 2a"n is large enough so we can apply Lemma 3.2.4),

splitting the proof into two cases:
1 there is @ # Z < V(J) such that J[Z] is (n + 1,2, A?* + 1)-expanding,

2 there exist Vi, ..., V, € V(J) such that |V;| = 2adyn for 1 <i < ¢ and J[V;, V]

is empty for any 1 <17 < j < /.

In case J[Z] is (n + 1,2, A?* + 1)-expanding, we first notice that Lemma 3.2.6
applied to the graph J[Z] implies the existence of a tree T" = T"(T, A, k) of maximum
degree at most A?* with at most n + 1 vertices such that if J[Z] contains 7", then
TF < J' for any (ry,ro)-blow-up J' of J. But since J[Z] is (n + 1,2, A% + 1)-
expanding, Lemma 3.2.2 implies that J[Z] contains a copy of T7". Therefore, the
graph G™ {¢'} contains a blue copy of T*, as we can consider J’ as the subgraph of
G™'{'} containing only edges inside the blue cliques C’(u) (which have size t > r)
and the edges of the complete blue bipartite graphs K, ,, between the blue cliques
C"(u). This finishes the proof of the first case.

We may now assume that there are subsets Vi,...,V, <€ V(J) with |V;| = 2adon
for 1 < i < ¢ and J[V;,V;] is empty for any 1 < i < j < £. We want to obtain a
graph H € P,(a,b,c,,1) such that H"{¢} € G" {¢'} and contains no blue edges.

Let J' = J[Viu---uV,], G' = G[V,u---UV,] and note that |V(G")| = |V (J')| =
dy - 2aln, where we recall that dy is the constant obtained by applying Lemma 3.1.1
with ¢ and v = 1/(2¢). We want to use the assertion of Lemma 3.1.1 to obtain
a transversal path of length 2afn in G’ and so we have to check the conditions
adjusted to this parameter.

First note, that we have |V;| = 2adyn = ~dy - 2aln for 1 < i < ¢. Moreover,

since G’ is an induced subgraph of G and G € P, (d/, V', £,9"), we know by (3.2.1)
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that for all X|Y < V(G') with | X|, |Y| > ¢a'n/c we have eq(X,Y) > 0. Observe
that ¥a'n/c < an = v -2aln once o' = {'a and ¢ > ¥'¢'. Therefore, we may use
Lemma 3.1.1 to conclude that G’ contains a path Page, = (21, ..., Toaem) With z; € V;
for all ¢, where j =4 (mod /).

We split the obtained path Psq, of G’ into consecutive paths Q1, ..., Q.. each
on ¢ vertices. More precisely, we let Q; = (x(—1)¢41, ..., %) for i = 1,...,2an. The

following auxiliary graph is the base of our desired graph H € P,(a,b,c, ¢, 1).

H' is the graph on V(H') = {Q1, ..., Qaan} such that Q;Q; € E(H') if and only if

there is an edge in GG between the vertex sets of (); and Q).
Claim 3.3.5. H' € P,(2a, V', c*, (,09").

Proof. We verify the conditions of Definition 3.2.9. Since H' has 2an vertices,
condition (7) clearly holds. Since A(G) < b and for any Q; € V(H’) we have
|Q;| = ¢ (as a subset of V(G)), there are at most £0’ edges in G with an endpoint in
Qi. Then, A(H') < (V.

For condition (4ii), recall that any vertex of H' corresponds to a path on ¢
vertices in G. Thus, a cycle of length at most 2¢ in H’ implies the existence of a
cycle of length at most 2¢? in G. Since 2¢' > 2¢% and G has no cycles of length at
most 2¢', we conclude that H' contains no cycle of length at most 2¢, which verifies
condition (747 ).

Let Ny = 2an and

* k

c c
Ny 2an’

Pu' (3.3.4)

Let us verify condition (v), i.e., we shall prove that H' is (pg, £9")-bijumbled.
Consider arbitrary sets X and Y of V/(H') with 00 /py < | X| < |Y| < puw N | X

For simplicity, we may assume that X = {Q1,...,Q,} and Y = {Qu11, ..., Quiy}-

Let X = U;_, Q; € V(G) and Yo = ;22,1 Q; = V(G). Note that [X¢| = £]X]

and |Yg| = £]Y|. As there are no cycles of length smaller than 2¢ in G, we only have

at most one edge between the vertex sets of (); and @);. Therefore we have

€H/(X, Y) = €G<Xg,Yg>. (335)
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We shall prove that |eg (X,Y) — pu | X||Y || < €9'4/|X]|]Y]. From the choice of ¢,

we have

C*

p | XY ] =

d d
S | XY= U X Y] = —[Xel[Ya| = pelXallYel.  (3.3.6)

From the choice of ¢, ¢/, and py, since £’ /py < | X| < |Y| < pyNg| X |, we obtain

,19/
e < |X¢g| < |Yo| < paNa|Xal

Combining (3.3.6) with (3.3.5) and the fact that G is (pg,?’)-bijumbled, we get
that

ler (X, Y)—pmw | X[|Y|| = lea(Xa. Ya) —pal Xal[Yel| < V'V Xal|Ya| = 0"/ X]]Y].
(3.3.7)
Therefore, H' is (pgr, £9")-bijumbled, which verifies condition (iv). 0

The parameters for P, (2a, (b, c¢*, £, 09") are tightly fitted such that we can find
the following subgraph of H'.

Claim 3.3.6. There exists H < H' such that H € P,(a,b,c,{,1).

Proof. We first obtain H” < H’ by picking each edge of H' with probability

21

p_c*:@

independently at random. Note that p < 1/2.
From (3.2.2), we get

Cl

2
e(H') < pH/< ;m) + 09"2an < (¢* + 200" )an < (¢* + %6’

Jan < 2c¢*an

From Chernoft’s inequality, we then know that almost surely we have

2
e(H") <2p-e(H')<2- (cf) -2c¢*an < 8acn < abn. (3.3.8)

Let Ng» = 2an and
P =D pm = —.
an
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We shall prove that H” is (pg»,?)-bijumbled almost surely. For that, we will
first prove by using Chernoff’s inequality (Theorem 3.1.2) that, for any disjoint sets
X and Y of V(Hl> with 19/le/ < |X| < ‘Y| < pH’NH’|X|) we have

9
e (X,Y) = p e (X, V)] < S+/IXTV]. (3.3.9)

Note that for such sets X and Y, since |X| > ¢/py» = €9’ /py:, we can use (3.3.7).

Since |X|,|Y| > 9/pun, we have /| X|[|Y| > dan/c. From +/|X||Y| > dan/c, we
obtain that 9 < %T\/W from which we can conclude that 260’ < py+/|X]|Y].
Thus, we get (9'\/|X|[Y] < pr| X|[Y|/2. Therefore, combining this with (3.3.7) we

have
pa | XY
2
Let e = 94/| X||Y]/(2p-em (X, Y)) and note that from (3.3.10) we have ¢ < 1. Since

¥ = 104/c, also from (3.3.10) we obtain

ep-ep(X,Y) X[V |09
3 C12-em(X,Y)

> 4an.

Therefore, by using Chernoff’s inequality, since there are at most 249" choices of
pairs of sets {X, Y}, almost surely we have that for any disjoint subsets X and Y of
vertices of H” with O/py» < |X| < |Y| < pw Ng| X |, inequality (3.3.9) holds.

Observe that pyr» Ngn| X | = 2¢|X| < ¢*|X| = pa N| X|. Therefore, H” is almost
surely (pgr,)-bijumbled, as by (3.3.7) and (3.3.9) we get

ler (X,Y) = pur| X|YI| < lenn(X,Y) —p - en (X, V)| + |p- e (X,Y) = par | XY

(3.3.9) 9

< SVIXIVT+ pller (X, ) - pul X1V
(3.3.7) ) oy

<" SVIXIVT+ - VIXTY

— 9/[X[Y].

Therefore, there exists a (pyr,?)-bijumbled graph H” as above. We fix such a
graph and construct the desired graph H from this H” by sequentially removing
the an vertices of highest degree. Notice that H has maximum degree at most b,
otherwise this would imply that H” has more than abn edges, contradicting (3.3.8).
Since H is a subgraph of H', and H' does not contain cycles of length at most 2,
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the same holds for H. Finally, since deleting vertices preserves the bijumbledness

property, we conclude that H € P,(a,b,c,{,9). 0

Recall that J is the subgraph of G” induced by W, with |W| = a’n/s and edges uv

such that there is a blue copy of K, ,, under x in the bipartite graph induced by the

0,70
vertex sets of blue cliques C’(u) and C’(v) in G™ {¢'}. Furthermore, recall that there
are subsets Vi,...,Vy € V(J) with |V;| = 2adyn for 1 < i < ¢ and J[V;, V}] is empty
forany 1 <7 < j </, and we defined J' = J[Vyu---u V] and G = G[Viu---U V.
Lastly, recall that Q; = (x(—1)e11, ..., %) for i = 1,...,2an, where the vertices
z; belong to G'. Assume, without loss of generality, V(H) = {Q1,...,Qu}. In
what follows, when considering the graph H"(¢), the ¢-clique corresponding to @); is

composed of the vertices x(;_1)s41, .., Ty, and hence one can view V(HT (6)) as a
subset of V(G’).

Claim 3.3.7. H"({) < G"". Moreover, G" contains a copy of H"{(} that avoids the
edges of J.

Proof. We will prove that H"(£) € G™ where Qy,...,Qun S V(J) are the (-cliques
of H"(¢). Suppose that (); and @; are at distance at most r in the graph H.
Without loss of generality, let Q); = @1 and Q); = @), for some m < r. Moreover, let
(Q1, QQ, ...,Qn) be a path in H. Note that there exist vertices uq, ..., u,_1 and
Us, . .., Up, in V(G') such that uy € Q1, uy, € Qm, uj,u; € Q; forall j =2, —1
and {u;,u;,,} is an edge of G’ fori =1,...,m — 1.

Let v} € @y and u,, € @, be arbitrary vertices. Since for any j, the set Q; is
spanned by a path on ¢ vertices in G’ it follows that u; and v’ are at distance at
most £ — 1 in G’ for all 1 < j < m. Therefore, v} and u,, are at distance at most
(l—=1)m+(m—1) < fr <r’in G’ and hence ) u,, is an edge in G[Viu...uV,]" < G"'.
Since the vertices v} and u,, were arbitrary, we have shown that if ); and @); are
adjacent in H" (i.e., Q; and (), are at distance at most  in H) then (Q;, Q);) gives
a complete bipartite graph C(Q;, ;) in G"'. Moreover, taking i = j we see that
each Q; in G"" must be complete. This implies that H"(¢) is a subgraph of G"'.

For the second part of the claim we consider which of the edges of this copy
of H"(¢) can also be edges of J. Recall from the definition of J’ that we found
subsets Vi, ..., V, € J such that no edge of J lies between different parts. Moreover

each set (); < J takes precisely one vertex from each set Vi, ..., V,. It follows that
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each (); is independent in J. Now let us say we have x € ; and y € Q); (i # j)
that are adjacent in J. We can not have x and y in different parts of the partition
{Vi,...,Vy}. Thus x and y lie in the same part. Therefore edges from J between Q;
and (); must form a matching. Then we can find a copy of H"{¢} that avoids J by

removing a matching between the I-cliques from H"({). O

To complete the proof of Lemma 3.3.3, we will embed a copy of the graph
H™{¢} < G" found in Claim 3.3.7 in G {¢'} in such a way that H"{¢} uses at most

s — 1 colours.

Claim 3.3.8. G"{{'} contains a copy of H"{{} with no blue edges.

Proof. Recall that each vertex u in .J corresponds to a clique C'(u) € G™ {{'} of
size t and that this clique is monochromatic in blue in the original colouring x of
E(G"{¢'}). Recall also that if an edge {u,v} of G"[W] is not in J, then there is
no blue copy of K, ,, in the bipartite graph between C’(u) and C’(v) in G™{¢'}.
By the K6vari-Sés-Turan theorem (Theorem 3.1.3), there are at most 4¢2~'/7 blue
edges between C’(u) and C’(v). Recall further that C’(u) and C’(v) are, respectively,
subcliques of the ¢-cliques C(u) and C'(v) in G™{¢'}. Since {u, v} is an edge of G",
there is a complete bipartite graph with a matching removed between C'(u) and
C(v) in G™{¢'} and so there is a complete bipartite graph with at most a matching
removed for C'(u) and C’(v). It follows that there are at least

non-blue edges between C’(u) and C’(v).

Using the copy of H"{{} € G"" avoiding edges of .J obtained in Claim 3.3.7 as a
‘template’, we will embed a copy of H"{¢} in G" {¢'} with no blue edges. For each
vertex u e V(H"{¢}) < V(J) we will pick precisely one vertex from C’(u) < G {¢'}
in our embedding. The argument proceeds by the Lovasz Local Lemma.

For each w e V(H"{(}) < V(J) let us choose x,, € C'(u) uniformly and indepen-
dently at random. Let e = {u,v} be an edge of our copy of H"{¢} in G that is
not in .J. As pointed out above, we know that there are at least t2 — ¢t — 42~ 1/

non-blue edges between C’(u) and C’(v). Letting A, be the event that {z,,z,} is a
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blue edge or a non-edge in G {'}, we have that

P[A,] < W < 5t
The events A, are not independent, but we can define a dependency graph D
for the collection of events A, by adding an edge between A, and A; if and only
if en f# @. Then, A = A(D) < 2A(H™{(}) < 2(b""Y + ). From our choice of ¢
we get that
4AP[A.] < 40(b" 0 + 2yt < 1

for all e. Then the Local Lemma [4, Lemma 5.1.1] tells us that P[ (), A.] > 0, and
hence a simultaneous choice of the x,’s (u € V(H"{(})) is possible, as required. This

concludes the proof of Claim 3.3.8. O

The proof of Lemma 3.3.3 is now complete. n

3.4 Concluding remarks

To construct our graphs we need that P,(a,b,c,¢,9) is non-empty given a good
7-tuple (a,b,c, 0,9, A, k) with ¥ = 324/c. We prove this in Lemma 3.2.11 using
the binomial random graph. Alternatively, it is possible to replace this by us-
ing explicit constructions of high girth expanders. For example, the Ramanujan
graphs constructed by Lubotzky, Phillips, and Sarnak [72] can be used to prove
Lemma 3.2.11.

We now discuss further connections between powers of trees and graph parameters
related to treewidth. As pointed out in the introduction, every graph with maximum
degree and bounded treewidth is contained in some bounded power of a bounded
degree tree and vice versa. This implies that Corollary 1.2.2 is equivalent to
Theorem 1.2.1. For bounded degree graphs, bounded treewidth is equivalent to
bounded cliquewidth and also to bounded rankwidth [52]. Therefore, Corollary 1.2.2
also holds with treewidth replaced by any of these parameters. Finally, an obvious
direction for further research is to investigate the size-Ramsey number of powers 7%

of trees T' when k and A(T') are no longer bounded.
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4. Random perturbation of sparse

graphs

4.1 Hamiltonicity

We will prove the following proposition that will be sufficient to prove Theorem 1.3.1

together with known results on Hamilton cycles in G(n, p).

Proposition 4.1.1. Let a = a(n) : N — (0,1) such that @ = w(n"5), and let
B =B(a)=—(6+o0(1)log(a). Then a.a.s. Go U G(n, ) is Hamiltonian.

Proof of Theorem 1.3.1. Let a, 8 > 0 such that § = —(6 + o(1)) log(a). If o =
O(n~5), we have 3 = (1 + o(1)) logn and we can infer that a.a.s. there is a Hamil-
tonian cycle in G(n, g) (this follows from an improvement on the result concerning
the threshold for Hamiltonicity [58]). On the other hand, if & = w(n"s), then we
apply Proposition 4.1.1 to a.a.s. get the Hamilton cycle. O

Proof of Proposition 4.1.1. To prove the proposition we apply the following strategy.
We first find a long path in G(n, p) alone. Then, by considering the union with G,,
we obtain a reservoir structure for each vertex that allows us to extend the length
of the path iteratively. Finally, we will also be able to close this path into a cycle on
all vertices. W.l.o.g. we can assume that a < 1—10.

Let P = py,...,pe be the longest path that we can find in G; = G(n, %) and
let V' ={vy,...,0} = V(G1) ~ {p1, ..., pe} be the leftover. By Lemma 1.3.3, we get

a.a.s. that
k=|VI=n—-£<(1-o0(1))Bexp(l —f)n.. (4.1.1)
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0%

Figure 4.1.1: The top shows a path P = py,...,p, and the left-over vertex v. Thin
edges belong to the random graph, thick edges can be found in G,. The bottom
shows the graph after absorbing v using that p; € B(py, v).

Next, let P’ be a collection of vertices of P, where we take every other vertex of the

path, excluding the last, that is
P ={p;:i=0 (mod 2)} \ {p/}. (4.1.2)

In the following, we will ensure certain absorbing structures that do not overlap,
such that the leftover can be absorbed. Consider the union G, u G;. The following

absorbing structure is the key to the argument.

Definition 4.1.2. For any vertices u,v € V(G, u Gy) let
B(u,v) = {x € Ng,(u) n P': Np(x) < Ng,(v)}. (4.1.3)

If for some v € V' there is a p; € B(py, v) we can proceed as follows (see Figure
4.1.1). By definition we have p;_1,p;+1 € Ng,(v) and p; € Ng, (pr) n P'. Then p,
can be replaced by v in the path P and then readded to the path P after p,. We
get the path P = py,. .. Dj—1,U,Dj+1, - - -, e, Dj, Where Pc PuQG,.

To iterate this argument we show that a.a.s. for any pair of vertices u and v, the

set B(u,v) is large enough.

Claim 4.1.3. We have a.a.s. that |B(u,v)| = ‘“?T" for any u,v € V(G U Gy).

Proof. Let u,v be arbitrary vertices in V' = V(G,uGy). The set B(u,v) is uniformly

distributed over P’, because G(n, %) is sampled independently of the deterministic
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graph G,. Then by definition

9 2 an

E[|B(u,v)|] = 1—Oa3yP’\ > goﬁ(l — (1 —o(1)Bexp(l — p)n = < (4.1.4)

An immediate consequence of B(u,v) being uniformly settled over G(n, %) is that
|B(u,v)| ~ Bin(|P'|,a?). Tt follows from (4.1.4) and the Chernoff bound that there

is a sufficiently small, but constant, § > 0 s.t.

3

P(|B(u,v)| < %) < P(|B(u,v)| < (1 = 0)E[|B(u,v)|])

5 (4.1.5)

< exp(—gof’n) < exp(—+/n).
The claim follows from a union bound over all (Z) choices for u,v and (4.1.5). o
We now have everything at hand to absorb the leftover vertices V' = {vy, ..., v}

into a path P of length n—2, we leave two vertices of V/ out of P for closing the cycle.
Set Py = P and for every u,v € V(G,uG), let By(u,v) = B(u,v). For0 <i < |[V'|—
1, assume we have P, = u; 1 ... u;04; with Vp, = V(P) u {vy,...,v;} and for every
u, v, we have B;(u,v) with |B;(u,v)| > a%”. To get Piyq take u;; € Bi(wipti, Vit1)

and switch it with v;41. Then for every u, v set B;11(u,v) = B;(u,v) \ u; ;. We have

3
|B(u,v) N\ Bi(u,v)] <i < V| < Bexp(l - PB)n < %n,

where the last inequality holds for our choice of § = —(6 4 o(1)) log(c), with o < 5.
Set P = Py .

We have found a path P = pi,...,p,_s and we are left with two vertices
vv|-1, Vv that are not on the path. We observe that it is possible to close the
Hamilton cycle by absorbing vjy+—; and v}y if there is an edge between A :=
Byv(p1,vjyr-1) and B := By (pn—2,vjv|). Indeed, we then have w.l.o.g. i < j such
that p; € A, p; € B, and p;p; € E(G, v G1). By definition of A and B we can then

obtain the Hamilton cycle
DPisP1y- -5 Pi—1, Vv |=15 Pit1y - - -5 Pi—1 Vv, Pj+1y - - - s Pn—2, Pj-

It remains to prove that we have an edge between A and B. For this we take

107



Gy = G(n, ). Since |Al,|B| = O‘%", we get

1 /any\?2
Eleg,(4,B)] =~ (%) = 416
o (A.B)] = 2 (S0 o), (.16
as o = w(n~Y%). Together with Chernoff’s inequality this implies that a.a.s.

eg,(A,B) > 0. Since the union of G; and Gy can be coupled as a subgraph of
G(n, g), this implies that a.a.s. there is a Hamilton cycle in G, u G(n, g) O

Theorem 1.3.2 can be proven similarly. Moreover, a better constant can be

obtained by adapting the definition of B(u,v) to the setup of perfect matchings and

. 2
then proving that a.a.s. |B(u,v)| = .

4.2 Bounded degree trees

Theorem 1.3.6 shows that an almost spanning embeddings in the random graph
implies a spanning embedding in the union G, U G(n, g) The proof is very similar

to the proof for Hamilton cycles and we will skip some details.

Proof of Theorem 1.3.6. Let G, be given and G = G(n, g) Let T" be an arbitrary
tree on n vertices with maximum degree A. Denote by 7. the tree obtained from T’

by the following construction.
1. Set TO =T.
2. In every step ¢, check whether T; has at most (1 — €)n vertices.

« If this is the case, set T, = T; and finish the process.
e Otherwise, create T;,1 by deleting one leaf of T;.

Let L = V(T) ~ V(T.) be the leftover.
Then

V(T.)| < (1 —e)n, L] <en+1, and  V(T)=V(T.) v L.

Let I < V(T:) be independent and such that for every v € I, we have Np(v) < V(T%).

(1—-Ae)n

Observe that there exists such an I with [I| > =375
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By assumption we a.a.s. have an embedding 7} of T} into G and we denote by I’
the image of I under this embedding. We adapt Definition 4.1.2 and define for any

two vertices u, v
Br(u,v) = {x € Ng,(u) n I': Nps(x) © Neg, (v)}.

As before, if we want to embed a vertex w that is a neighbour of an already embedded
vertex u in 7. and v is an available vertex, we can do it if Br(u,v) is non-empty.
More precisely, with z € Byr(u,v), we can re-embed the vertex embedded into x
to v and then embed w into x, and obtain a valid embedding of TV (T;) u {u}.
Analogously to Claim 4.1.3 we get the following.

Claim 4.2.1. We a.a.s. have |Br(u,v)| = % for any u,v € V(G U G).

Therefore, we can iteratively add leaves to 7. to obtain an embedding of T" into
G, U G. Since in every step we lose at most one vertex from each Bp(u,v) this
works as long as

|L| <en+1 < |Br(u,v)|,

which holds by Claim 4.2.1 and the assumption on € and «. O
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English Summary

In this thesis we focus on problems in Extremal and Probabilistic Combinatorics.
The thesis is organized in three parts, each concerning a problem regarding sufficient
conditions for a host graph under different settings to contain some cycle-like
subgraph.

In the first and main part, we want to embed spanning 3-chromatic graphs H
with small linear bandwidth and bounded maximum degree into graphs G = (V, E).
For this kind of spanning subgraph, the condition we require from G is a common
generalisation of the bandwidth theorem from Bottcher, Schacht and Taraz, which
requires minimum degree 6(G) = (2/3 + o(1))|V] and a previous joint work with
Ebsen et al., which requires uniform density d > 0 in linear sized subsets of vertices
and density at least © > 0 in every cut. These two previous results are incomparable.
On the one hand, the latter result applies to sparser graphs G, since d and p can
be arbitrarily small. On the other hand, the degree condition of the bandwidth
theorem does not ensure the uniform density condition. Here we relax this notion
of uniform density by requiring instead a robust almost perfect fractional triangle
factor in G and thus obtaining a common generalisation of both results. This and
more general results were shown independently in a recent work of Richard Lang

and Nicolds Sanhueza-Matamala.

In the second part, we study the following parameter. Given a positive integer s,
the s-colour size-Ramsey number of a graph H is the smallest integer m such that
there exists a graph G with m edges and the property that, in any colouring of E(G)
with s colours, there is a monochromatic copy of H. We prove that, for any positive
integers k£ and s, the s-colour size-Ramsey number of the kth power of any n-vertex
bounded degree tree is linear in n. As a corollary we obtain that the s-colour
size-Ramsey number of n-vertex graphs with bounded treewidth and bounded degree
is linear in n, which answers a question raised by Kamcev, Liebenau, Wood and
Yepremyan.

In the third part, we are interested in the model of randomly perturbed graphs
that consider the union of a deterministic n-vertex graph G, with minimum degree
an and the binomial random graph G(n,p). This model was introduced by Bohman,

Frieze, and Martin and for Hamilton cycles their result bridges the gap between
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Dirac’s theorem and the works of Posa and Korsunov on the threshold in G(n, p). We
extend this result in G, U G(n,p) to sparser graphs with o = o(1). More precisely,
for any € > 0 and a: N — (0, 1) we show that a.a.s. G, U G(n, 3/n) is Hamiltonian,
where § = —(6+¢) log(a). If o > 0 is a fixed constant this gives the aforementioned
result by Bohman, Frieze, and Martin and if & = O(1/n) the random part G(n,p) is
sufficient for ensuring a Hamiltonian cycle. We also discuss embeddings of bounded
degree trees and other spanning structures in this model, which lead to interesting

questions on almost spanning embeddings into G(n, p).
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Deutsche Zusammenfassung

Diese Dissertation konzentriert sich auf Probleme der Extremalen und Probabilis-
tischen Kombinatorik. Sie ist in drei Teile gegliedert, die sich jeweils mit einem
Problem befassen, das die hinreichenden Bedingungen dafiir betrifft, dass ein Graph

unter verschiedenen Bedingungen einen kreisartigen Untergraph enthalt.

Im ersten Teil wollen wir 3-chromatische Graphen H mit kleiner linearer Bandweite
und beschranktem Maximalgrad in Graphen G = (V, E) einbetten. Fiir diese Art
von aufspannenden Untergraphen ist die Bedingung, die wir von G verlangen, eine
Verallgemeinerung des Bandweitensatzes von Bottcher, Schacht und Taraz, der
einen Minimalgrad 6(G) = (2/3 + o(1))|V| erfordert, und einer fritheren gemein-
samen Arbeit mit Ebsen et al., die eine gleichméfiige Dichte d > 0 in linear grofien
Teilmengen von Knoten und eine Dichte von mindestens p > 0 in jedem Schnitt
erfordert. Diese beiden fritheren Ergebnisse sind nicht vergleichbar. Einerseits gilt
das letztere Ergebnis fiir diinne Graphen G, da d und p beliebig klein sein kénnen.
Andererseits gewahrleistet die Gradbedingung des Bandweitensatzes die Bedingung
der einheitlichen Dichte nicht. Hier schwachen wir den Begriff der gleichméfigen
Dichte ab, indem wir stattdessen einen robusten fast perfekten Dreiecksfaktor in
G verlangen und so eine gemeinsame Verallgemeinerung beider Ergebnisse erhal-
ten. Dieses und allgemeinere Ergebnisse wurden unabhangig voneinander in einer

aktuellen Arbeit von Richard Lang und Nicolas Sanhueza-Matamala gezeigt.

Im zweiten Teil untersuchen wir den folgenden Parameter. Fiir eine positive
ganze Zahl s ist die s-size-Ramseyzahl eines Graphen H die kleinste ganze Zahl m,
bei der es einen Graphen GG mit m Kanten und der Eigenschaft gibt, dass es in jeder
Férbung von E(G) mit s Farben, eine monochromatische Kopie von H existiert.
Wir beweisen, dass fiir beliebige positive ganze Zahlen k und s die s-size-Ramseyzahl
der kten Potenz eines beliebigen Baumes auf n Ecken mit beschrinktem Grad linear
in n ist. Als Korollar erhalten wir, dass die s-size-Ramseyzahl von Graphen mit
beschrankter Baumbreite und beschréinktem Grad linear in der Anzahl der Ecken

ist, was eine Frage von Kamcev, Liebenau, Wood und Yepremyan beantwortet.

Im dritten Teil interessieren wir uns fiir das Modell der zufillig augmentierten
Graphen, welches die Vereinigung eines deterministischen Graphen G, mit Mini-

malgrad an und des binomischen Zufallsgraphen G(n, p) betrachtet. Dieses Modell
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wurde von Bohman, Frieze und Martin eingefithrt. Fiir Hamiltonkreise schlief3t
ihr Ergebnis die Liicke zwischen Diracs Theorem und den Arbeiten von Posa und
Korsunov iiber den Schwellenwert in G(n,p). Wir erweitern dieses Ergebnis in
Ga U G(n,p) auf dinne Graphen mit o = o(1). Genauer gesagt zeigen wir fur
jedes e > 0 und a: N — (0,1), dass a.f.s. G, U G(n, /n) Hamiltonisch ist, wobei
= —(6+¢)log(a). Wenn o > 0 eine feste Konstante ist, ergibt sich das bereits
erwdahnte Ergebnis von Bohman, Frieze und Martin, und wenn o = O(1/n), ist der
Zufallgraph G(n,p) ausreichend, um einen Hamiltonkreis zu gewéhrleisten. Wir
diskutieren auch Einbettungen von Badumen mit beschranktem Grad und andere
aufspannende Strukturen in diesem Modell, die zu interessanten Fragen tber fast

aufspannende Einbettungen in G(n, p) fiihren.
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This thesis is a combination of three results. Each result is joint work with different
research groups and here I intend to specify my contributions in each of them.
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