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1. Introduction

This thesis concerns problems in Extremal and Probabilistic Combinatorics. In
the core of this work, we will use absorption techniques for embedding spanning
subgraphs, which entails applying regularity and probabilistic methods. The thesis
is organized in three chapters, each related to a different problem.

The work in Chapter 2 aims at a common generalization of classical embedding
results for spanning subgraphs, which rely on a minimum degree condition, and more
recent work based on the edge distribution of the host graph. The classical results
are first a conjecture by Pósa and Seymour, proven by Hajnal and Szemerédi, that
establishes conditions on the minimum degree of graphs that guarantee Kk`1-factors
and k-th powers of Hamiltonian cycles and second, the Bandwidth Theorem of
Böttcher, Taraz and Schacht, that gives a condition on the minimum degree that
suffices for the embedding of spanning graphs with bounded chromatic number
and sublinear bandwidth. Our aim was to instead of considering the minimum
degree, to focus on the distribution of edges. Therefore we worked on the setting
where the host graph is dense and inseparable. The minimum degree condition and
the dense and inseparable condition are not comparable to each other and, in the
continuation presented in this thesis, we address the question of finding a common
generalization. We present a setting for the host graph that ensures any tripartite
spanning subgraph with bounded degree and small bandwidth. This proof relies on
the regularity and absorption methods. This work is the main part of this thesis
and we discuss the main result in Section 1.1.

In Chapter 3, we consider the Size-Ramsey number of powers of bounded degree
trees and show that it is linear on the number of vertices of the tree. Our proof
uses expansion properties of random graphs, algorithmic embedding methods of
Friedman and Pippenger, the Kővari-Sós-Turán Theorem and the Local Lemma,
moreover we devise an inductive scheme to obtain the result for any (bounded)
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number of colour. This is joint work with Sören Berger, Yoshiharu Kohayakawa,
Taísa Martins, Walner Mendonça, Guilherme Oliveira Mota and Olaf Parczyk. The
results on this problem are presented in Section 1.2.

In Chapter 4, we study the model of randomly perturbed graphs, in which we
consider the union of a deterministic graph Gα with minimum degree αn and the
binomial random graph Gpn, pq. We want to give a different view to the previous
result of Bohman, Frieze, and Martin that set the threshold for a Hamiltonian cycle
in the randomly perturbed model with α ą 0. We are interested in determining
the threshold for the sparse case, when α “ op1q. Here we use thresholds results on
Gpn, pq for almost spanning structures combined with the absorption method. This
is joint work with Max Hahn-Klimroth, Yannick Mogge, Samuel Mohr and Olaf
Parczyk. The results on this problem are presented in Section 1.3.

1.1 Spanning tripartite subgraphs

We study sufficient conditions for the existence of spanning subgraphs in large
finite graphs. Our aim is to find a common generalization of previous results for
embedding 3-chromatic graphs with small bandwidth and bounded maximum degree.
An n-vertex graph H “ pV, Eq has bandwidth at most b P R if there is some bijection
σ : V ÝÑ rns such that for every edge xy P E, we have |σpxq ´ σpyq| ď b. We denote
by bwpHq the smallest such b.

We start by approaching the problem of embedding the 2nd power of a Hamilto-
nian cycle. For k P N the k-th power of a given graph H is the graph Hk on the
same vertex set with xy being an edge in Hk if x and y are distinct vertices of H

that are connected in H by a path of at most k edges. We refer to a k-th power of a
path as a k-path. Note that every k ` 1 consecutive vertices of a k-path span a clique
and if a graph G “ pV, Eq contains the k-th power of a Hamiltonian cycle, it also
contains t

|V |

k`1u pairwise vertex disjoint copies of Kk`1 and G contains a Kk`1-factor
if |V | is divisible by k ` 1.

Dirac’s well known theorem [28] yields a best possible minimum degree condition
for embedding a Hamiltonian cycle. The minimum degree of a graph turned out to
be an interesting parameter for enforcing a given spanning subgraph and establishing
optimal minimum degree conditions for those problems became a fruitful research
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direction in extremal graph theory (see, e.g., [20] and the references therein). Already
about 50 years ago, the minimum degree problem for Kk`1-factors was resolved by
Corrádi and Hajnal [23] for k “ 2 and by Hajnal and Szemerédi [45] for every k ě 3.
Pósa (see [38]) and Seymour [82] asked for a common generalisation of those results
on factors and Dirac’s theorem and conjectured that the best possible minimum
degree conditions for Kk`1-factors and k-th powers of Hamiltonian cycles are the
same (given that the number of vertices is divisible by k `1). The general conjecture
was affirmatively resolved for sufficiently large graphs by Komlós, Sárközy, and
Szemerédi [59] by establishing the following result.

Theorem 1.1.1 (Komlós, Sarközy & Szemerédi 1998). For every positive integer k

there exists n0 such that if G is a graph on n ě n0 vertices with minimum degree
δpGq ě k

k`1n, then G contains the k-th power of a Hamiltonian cycle.

For spanning graphs with fixed chromatic number and maximum degree and
with small bandwidth, we have the following result [20].

Theorem 1.1.2 (Böttcher, Schacht & Taraz 2009). For all r, ∆ P N and γ ą 0,
there exist constants β ą 0 and n0 P N such that for every n ě n0 the following
holds.

If H is a graph on n vertices with chromatic number χpHq ď r, with maximum
degree ∆pHq ď ∆, and with bandwidth bwpHq ď βn and if G is a graph on n vertices
with minimum degree δpGq ě p r´1

r
` γqn, then G contains a copy of H.

Strictly speaking, the way we state Theorem 1.1.2, besides the γ ą 0, is not a
generalisation of Dirac’s theorem, since a Hamiltonian cycle might be 3-chromatic.
However, the proof in [20] is robust enough to cover this case and, in fact, to cover
any pr`1q-chromatic graph H which is “essentially” r-chromatic (see [20, Theorem 2]
for details).

Moreover, observe that the condition on the minimum degree is asymptotically
optimal, since complete almost balanced r-partite graphs do not contain almost
perfect Kr-factors. Therefore, any attempt to weaken the minimum degree condition
must introduce some new requirements for G, that prevent those partite lower bound
constructions. One possible way to achieve this, relies in restricting the independence
number of the large graph G (see, e.g., [6]). Staden and Treglown [84] considered
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the following robust restriction that uniformly imposes a positive edge density for
induced subgraphs on linear sized subsets of vertices.

Definition 1.1.3. We say that a graph G “ pV, Eq is pϱ, dq-dense for ϱ ą 0
and d P r0, 1s if epXq ě d |X|2

2 ´ ϱ|V |2 for every subset X Ď V , where epXq denotes
the number of edges of G that are contained in X.

Staden and Treglown showed that for any d, µ ą 0 and sufficiently small ϱ ą 0
and sufficiently large n, every n-vertex graph G that is pϱ, dq-dense and has δpGq ě

p1
2 `µqn contains any spanning subgraph H with constant bounded maximum degree

and sublinear bandwidth (see also [6, Appendix by Reiher and Schacht] for Kk`1-
factors). Note that the minimum degree requirement for G becomes independent of
the chromatic number of H (still the chromatic number of H is implicitly bounded
by its maximum degree). This points that the density condition is too strong to
distinguish on the chromatic number of H.

The degree condition δpGq ě p1
2 ` µqn is essentially optimal, since the graph G

consisting of two disjoint cliques on close to n
2 vertices (one of them with the number

of vertices not divisible by k ` 1) has no clique factor nor the power of a Hamiltonian
cycle. However, a bipartite version of Definition 1.1.3, which requires

epX, Y q “
ˇ

ˇ

␣

px, yq P X ˆ Y : xy P EpGq
(
ˇ

ˇ ě µ |X||Y | ´ ϱ|V |
2 , (1.1.1)

for all subsets X, Y Ď V , rules out this example. It was observed by Glock and Joos
(see [84, Concluding Remarks]) that imposing property (1.1.1) on G allows a further
relaxation on the minimum degree condition for G to δpGq ě µ|V | for arbitrary
µ ą 0. In [EMR`20,33] it is shown that property (1.1.1) is not needed for arbitrary
subsets X and Y ; it suffices to assume it only for vertex bipartitions of G as follows.

Definition 1.1.4. A graph G “ pV, Eq is called µ-inseparable for some µ ą 0 if for
every subset X Ď V we have epX, V ∖ Xq ě µ |X||V ∖ X|.

Invoking this assumption to subsets X consisting of one vertex only, yields
a linear minimum degree condition for µ-inseparable graphs G. Equipped with
Definitions 1.1.3 and 1.1.4, the following versions of the theorem for powers of
Hamiltonian cycles and the bandwidth theorem are obtained.
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Theorem 1.1.5 (Ebsen et al. 2020). For every d, µ P p0, 1s, and k P N there
exist ϱ ą 0 and n0 such that every pϱ, dq-dense and µ-inseparable graph G on n ě n0

vertices contains the k-th power of a Hamiltonian cycle.

Theorem 1.1.6 (Ebsen et al. 2020). For all d ą 0, µ ą 0 and ∆ P N, there
exist ϱ, β ą 0, and n0 such that the following holds.

If G on n ě n0 vertices is pϱ, dq-dense and µ-inseparable, then G contains
every n-vertex graph H with ∆pHq ď ∆ and bwpHq ď βn.

This generalises the result of Staden and Treglown, since δpGq ě p1
2 ` µq|V |

implies that G is µ-inseparable. In view of Theorems 1.1.1 and 1.1.2, even though
Theorems 1.1.5 and 1.1.6 can be applied for sparser graphs, the condition δpGq ě

p r´1
r

`γqn does not imply that G is pϱ, dq-dense, as an example consider the complete
balanced pr ` 1q-partite graph on n vertices.

In a work of Knox and Treglown [55], a new condition on G is introduced, that
yields, for the special case of H being bipartite, to a common generalisation for
Theorems 1.1.2 and 1.1.6.

Observe that a necessary condition for a Hamiltonian cycle is that G contains a
perfect matching (plus a vertex if n is odd) and that G being µ-inseparable alone
is not enough to assure a perfect matching, as for example unbalanced complete
bipartite graphs show. Moreover, we want a condition which is robust enough to
be transferred to the reduced graph corresponding to G and a regular partition of
its vertices. The previous bandwidth results were also based on applying a simpler
result to the reduced graph, in order to prepare for an application of the blow-up
lemma in the original graph G.

In view of Tutte’s theorem [85], consider a graph G, a set S P V pGq and an
independent set I which has a vertex in each odd component of GrV pGq ∖ Ss.
Observe that only vertices of S can have more than one neighbour in I. Therefore
we turn our attention to

N2pIq “ tv P V pGq : |Npvq X I| ě 2u. (1.1.2)

If we ask that for every independent I with |I| ě cn we have |N2pIq| ě |I|, then
by Tutte’s theorem we get that a maximum matching of G has size at least p1´cqn

2 .
This motivates the following robust version of (1.1.2).
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Definition 1.1.7. Let d ě 0, ϱ ą 0 be given. A graph G “ pV, Eq is pϱ, dq-robust
matchable if for every U Ď V , either

(i ) epUq ě d |U |2

2 ´ ϱn2 or

(ii ) |NdpUq| “
∣∣∣tv P V ∖ U : |Npvq X U | ě d|U |u

∣∣∣ ě |U | ` dn.

Obviously pϱ, dq-dense graphs are pϱ, dq-robust matchable. The latter does not
necessarily require that every subset of vertices U is dense (only large ones), but if
a subset is sparse, then the set U must have a large robust neighbourhood NdpUq,
meaning many vertices outside U having many neighbours inside U .

It is not directly clear that δpGq ě p1
2 ` γqn implies that G is pϱ, γ

2 q-robust
matchable for any ϱ ą 0; we briefly verify it. For U Ď V pGq such that |U | ą

p1
2 ´

γ
2 qn, the minimum degree condition implies that each v P U has at least γn

2

neighbours in U , therefore property (i ) is satisfied for large sets. For |U | ď p1
2 ´

γ
2 qn,

assume epUq ă
γ
2 ¨

|U |2

2 . Then consider the edges between U and the vertices which
are neither in U nor in N γ

2
pUq, these edges are at most γ

2 |U |n. We have that

|N γ
2
pUq||U | `

γ

2 |U |n ě epU, V ∖ Uq ě |U |

´n

2 ` γn
¯

´ 2 ¨
γ

2 ¨
|U |2

2 .

From which property (ii ) follows

|N γ
2
pUq| ě

n

2 ` γn ´
γn

2 ´
γn

2 ě |U | `
γ

2n.

Consequently, the following theorem generalises Theorems 1.1.2 and 1.1.6 for the
case of bipartite H.

Theorem 1.1.8 (Knox & Treglown 2012). For every d, µ ą 0, and ∆ P N, there
exist β, ϱ ą 0, and n0 such that the following holds.

If G is a µ-inseparable and pϱ, dq-robust matchable graph on n ě n0 vertices and H

is a bipartite graph on n vertices with ∆pHq ď ∆ and bwpHq ď βn, then H Ď G.

Our goal is to find a condition to G that generalises Theorems 1.1.2 and 1.1.6
for the case of 3-chromatic H, and that hopefully can be generalized for all fixed
chromatic number. Our approach follows the main ideas from [EMR`20, 33] and
makes use of the absorbtion method and the regularity method for graphs.

6



The first step of the proof is using the absorption method for finding a 2nd
power of a Hamiltonian cycle in the reduced graph corresponding to G and a regular
partition; that will allow us to prepare G for an application of the blow-up lemma.

For the describing that G is well connected, we use the following notions. We
are given a graph G “ pV, Eq and its robust neighbourhoods, meaning

RG “ tUv Ď Npvq : v P V pGqu .

Definition 1.1.9. Given ζ ą 0 and graph G with RG, we define the auxiliary graph
A “ ApRG, ζq by setting

V pAq “ V pGq and EpAq “ tuv : |EpGrUusq X EpGrUvsq| ě ζ|V pGq|
2
u .

Definition 1.1.10. Given ξ ą 0, a graph G and RG, we say an edge uv P EpGq is
ξ-connectable in G, if

|tw P V pGq : uv P EpGrUwsqu| ě ξ|V pGq| .

Moreover if G contains a 2nd power of a Hamiltonian cycle, then it contains a
triangle-factor (if |V pGq| is multiple of 3); we need the following notion.

Definition 1.1.11. Given G, let

TG “ txyz : xyz is a triangle in Gu .

A fractional triangle factor of G is a function f : TG Ñ r0, 1s such that for every v P

V pGq, the weight of v satisfies ΣxyvPTG
fpxyvq ď 1. We define the weight of f

by W pfq “ ΣxyzPTG
fpxyzq.

Given robust neighbourhoods RG, we say f is a ξ-connectable triangle factor
if fpxyzq ą 0 implies that xyz is ξ-connectable in G, meaning that either xy, yz

or xz is ξ-connectable in G.

We are ready to state the desired property.

Definition 1.1.12. For µ, ϱ, δ, ζ, ξ, η, ν P p0, 1s and η ě maxt2ν, 4?
ϱu, ξ ě 4?

ϱ. A
graph G on n vertices with robust neighbourhoods RG is pµ, δ, ζ, ϱ, ξ, η, νq-good if
the following holds.
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i. Each GrUvs is µ-inseparable and contains at least δn3 different ξ-connectable
triangles.

ii. The auxiliary graph ApRG, ζq is µ-inseparable.

iii. For any A Ď V pGq with |A| ď νn and F Ď EpGq with |F | ď ϱn2, let XF Ď

V pGq be those vertices incident to at least ?
ϱn edges of F and GA,F be the

graph with

V pGA,F q “ V pGq ∖ pA Y XF q and EpGA,F q “ EpGrV pGA,F qsq ∖ F .

The graph GA,F contains a ξ-connectable (in G) fractional triangle factor fGA,F

with
W pfGA,F

q ě
n

3 ´ ηpn ´ |A|q .

Using the absorption method, we are able to proof the following result for the
2nd power of a Hamiltonian cycle.

Theorem 1.1.13. Given µ, δ, ζ, ξ ą 0 and cϱ, there exist n0 and η, ϱ ą 0 with
η, ξ ě cϱ

8
?

ϱ such that the following holds.
For every ν ą 0 such that η, ξ ě 2ν, if G is pµ, δ, ζ, ϱ, ξ, η, νq-good, then G

contains the second power of a Hamiltonian cycle.

With the stronger assumption that the auxiliary graph AG is complete, we are
able to show that there is a regular partition of V pGq for which the reduced graph
inherits the good property of G. Consequently, a slightly stronger version of Theorem
1.1.13 (see Theorem 2.2.1) prepares the reduced graph for an application of the
blow-up lemma. This way, we obtain a bandwidth theorem for good graphs.

Theorem 1.1.14. For every µ, δ, ζ, ξ ą 0 and positive integer ∆, there exist β, ϱ, η, ν ą

0 and n0 such that the following holds.
If G on n ě n0 vertices is pµ, δ, ζ, ϱ, ξ, η, νq-good and AG is complete and if H

on n vertices is such that χpHq ď 3, bwpHq ď βn and ∆pHq ď ∆, then H Ď G.

In Section 2.6.4, we show that graphs with minimum degree δpGq ě p2
3 ` γqn

are sufficiently good, so that Theorems 1.1.13 and 1.1.14 apply to them. We believe
that the same holds for dense and inseparable graphs. Similar and more general
results were obtained by Lang and Sanhueza-Matamala in [70].
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1.2 The size-Ramsey number of powers of bounded

degree trees

Given graphs G and H and a positive integer s, we denote by G ÝÑ pHqs the
property that any s-colouring of the edges of G contains a monochromatic copy of
H. We are interested in the problem proposed by Erdős, Faudree, Rousseau and
Schelp [35] of determining the minimum integer m for which there is a graph G with
m edges such that property G ÝÑ pHq2 holds. Formally, the s-colour size-Ramsey
number r̂spHq of a graph H is defined as follows:

r̂spHq “ mintepGq : G Ñ pHqsu.

Answering a question posed by Erdős [34], Beck [8] showed that r̂2pPnq “ Opnq

by means of a probabilistic proof. Alon and Chung [1] proved the same fact by
explicitly constructing a graph G with Opnq edges such that G ÝÑ pPnq2. In the
last decades many successive improvements were obtained in order to determine the
size-Ramsey number of paths (see, e.g., [8, 15,30] for lower bounds, and [8,29,30,71]
for upper bounds). The best known bounds for paths are 5

2n ´ 15
2 ď r̂2pPnq ď 74n

from [30]. For any s ě 2 colours, Dudek and Prałat [30] and Krivelevich [65] proved
that there are positive constants c and C such that cs2n ď r̂spPnq ď Cs2plog sqn.

Moving away from paths, Beck [8] asked whether r̂2pHq is linear for any bounded
degree graph. This question was later answered negatively by Rödl and Sze-
merédi [81], who constructed a family tHnunPN of n-vertex graphs of maximum
degree ∆pHnq ď 3 such that r̂2pHnq “ Ωpn log1{60 nq. The current best upper bound
for the size-Ramsey number of graphs with bounded degree was obtained in [57] by
Kohayakawa, Rödl, Schacht and Szemerédi, who proved that for any positive integer
∆ there is a constant c such that, for any graph H with n vertices and maximum
degree ∆, we have

r̂2pHq ď cn2´1{∆ log1{∆ n.

For more results on the size-Ramsey number of bounded degree graphs see [26,41,
48,49,54,56].

Let us turn our attention to powers of bounded degree graphs. Let H be a graph
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with n vertices and let k be a positive integer. The kth power Hk of H is the graph
with vertex set V pHq in which there is an edge between distinct vertices u and v if
and only if u and v are at distance at most k in H. Recently it was proved that
the 2-colour size-Ramsey number of powers of paths and cycles is linear [21]. This
result was extended to any fixed number s of colours in [46], i.e.,

r̂spP k
n q “ Ok,spnq and r̂spCk

nq “ Ok,spnq. (1.2.1)

In our main result (Theorem 1.2.1) we extend (1.2.1) to bounded powers of bounded
degree trees. We prove that for any positive integers k and s, the s-colour size-
Ramsey number of the kth power of any n-vertex bounded degree tree is linear
in n.

Theorem 1.2.1. For any positive integers k, ∆ and s and any n-vertex tree T with
∆pT q ď ∆, we have

r̂spT k
q “ Ok,∆,spnq.

We remark that Theorem 1.2.1 is equivalent to the following result for the
‘general’ or ‘off-diagonal’ size-Ramsey number r̂pH1, . . . , Hsq “ mintepGq : G ÝÑ

pH1, . . . , Hsqu. If Hi “ T k
i for i “ 1, . . . , s where T1, . . . , Ts are bounded degree trees,

then r̂pH1, . . . , Hsq is linear in max1ďiďs vpHiq. To see this, it is sufficient to apply
Theorem 1.2.1 to a tree containing the disjoint union of T1, . . . , Ts.

The graph that we present to prove Theorem 1.2.1 does not depend on T , but
only on ∆, k and n. Moreover, our proof not only gives a monochromatic copy
of T k for a given T , but a monochromatic subgraph that contains a copy of the kth
power of every n-vertex tree with maximum degree at most ∆. That is, we prove
the existence of so called ‘partition universal graphs’ with Ok,∆,spnq edges for the
family of powers T k of n-vertex trees with ∆pT q ď ∆.

Theorem 1.2.1 was announced in the extended abstract [12]. While finalizing
this paper, we learned that Kamčev, Liebenau, Wood, and Yepremyan [53] proved,
among other things, that the 2-colour size-Ramsey number of an n-vertex graph
with bounded degree and bounded treewidth is Opnq1. This is equivalent to our
result for s “ 2. Indeed, any graph with bounded treewidth and bounded maximum

1They in fact formulate this for the general 2-colour size-Ramsey number r̂pH1, H2q.
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degree is contained in a suitable blow-up of some bounded degree tree [27,86] and
a blow-up of a bounded degree tree is contained in the power of another bounded
degree tree. Conversely, bounded powers of bounded degree trees have bounded
treewidth and bounded degree. Therefore, we obtain the following equivalent version
of Theorem 1.2.1, which generalises the result from [53] and answers one of their
main open questions (Question 5.2 in [53]).

Corollary 1.2.2. For any positive integers k, ∆ and s and any n-vertex graph H

with treewidth k and ∆pHq ď ∆, we have

r̂spHq “ Ok,∆,spnq.

The proof of Theorem 1.2.1 follows the strategy developed in [46], proving the
result by induction on the number of colours s. Very roughly speaking, we start
with a graph G with suitable properties and, given any s-colouring of the edges of G

(s ě 2), either we obtain a monochromatic copy of the power of the desired tree in G,
or we obtain a large subgraph H of G that is coloured with at most s ´ 1 colours;
moreover, the graph H that we obtain is such that we can apply the induction
hypothesis on it. Naturally, we design the requirements on our graphs in such a way
that this induction goes through. As it turns out, the graph G will be a certain
blow-up of a random-like graph. While this approach seems uncomplicated upon
first glance, the proof requires a variety of additional ideas and technical details.

To implement the above strategy, we need, among other results, two new and key
ingredients which are interesting on their own: (i) a result that states that for any
sufficiently large graph G, either G contains a large expanding subgraph or there
is a given number of reasonably large disjoint subsets of V pGq without any edge
between any two of them (see Lemma 3.2.42); (ii) an embedding result that states
that in order to embed a power T k of a tree T in a certain blow-up of a graph G it
is enough to find an embedding of an auxiliary tree T 1 in G (see Lemma 3.2.6).

2We are grateful to the authors of [53], who pointed out to us that similar lemmas have been
proved in [77,78].
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1.3 Random perturbation of sparse graphs

For α P p0, 1q we let Gα be an n-vertex graph with minimum degree δpGαq ě αn.
A famous result by Dirac [28] says that if α ě 1

2 and n ě 3, then Gα contains a
Hamiltonian cycle, i.e. a spanning cycle through all vertices of Gα. This motivated
the more general questions of determining the smallest α such that Gα contains a
given spanning structure. For example, there are results for trees [62], factors [45],
powers of Hamiltonian cycles [59, 61], and general bounded degree graphs [20]. This
is a problem for deterministic graphs that belongs to the area of extremal graph
theory.

We can consider similar questions for random graphs, in particular, for the
binomial random graph model Gpn, pq, which is the probability space over n-vertex
graphs with each edge being present with probability p independent of all the others.
Analogous to the smallest α we are looking for a function p̂ “ p̂pnq : N Ñ p0, 1q

such that if p “ ωpp̂q the probability that Gpn, pq contains some spanning subgraph
tends to 1 as n tends to infinity and for p “ opp̂q it tends to 0. We call this p̂

the threshold function for the respective property (an easy sufficient criteria for
its existence can be found in [14]) and if the first/second statement holds we say
that Gpn, pq has/does not have the property asymptotically almost surely (a.a.s.).
One often says that Gpn, pq undergoes a phase transition at p̂. For the Hamiltonian
cycle problem Posá [79] and Koršunov [63] proved independently that p̂ “

log n
n

gives the threshold. Thresholds for various other spanning structures were also
determined, e.g. for matchings [36], trees [66,73], factors [50], powers of Hamiltonian
cycles [69,74], and general bounded degree graphs [2,39,40,80]. An extensive survey
by Böttcher can be found in [16].

Motivated by the smoothed analysis of algorithms [83], both these worlds were
combined by Bohman, Frieze, and Martin [13]. For any fixed α ą 0, they defined the
model of randomly perturbed graphs as the union Gα Y Gpn, pq. They showed that
1
n

is the threshold for a Hamiltonian cycle, meaning that there is a graph Gα such
that with p “ op 1

n
q there is a.a.s. no Hamiltonian cycle in Gα Y Gpn, pq and for any

Gα and p “ ωp 1
n

q there is a.a.s. a Hamiltonian cycle in Gα Y Gpn, pq. It is important
to note that in Gpn, pq, p “ 1

n
is also the threshold for an almost spanning cycle,

that is, for any ε ą 0 a cycle on at least p1 ´ εqn vertices. Another remark is that,
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if p “ op
log n

n
q there are a.a.s. isolated vertices in Gpn, pq and the purpose of Gα is

to compensate this and help turning the almost spanning cycle into a Hamiltonian
cycle.

This first result on randomly perturbed graphs [13] motivated subsequent research
on thresholds of spanning structures in the randomly perturbed graph model,
e.g. trees [17, 51, 68], factors [7], powers of Hamiltonian cycles [9, 19], and general
bounded degree graphs [19]. The thresholds for spanning structures in the randomly
perturbed model often differ from the thresholds in Gpn, pq by a log-factor, like
in the case of the Hamiltonian cycle. This difference is due to local restrictions
similar to the isolated vertices in the Hamiltonian cycle case. In most cases a Gα

that gives the lower bound is the complete imbalanced bipartite graph Kαn,p1´αqn.
In this model there are also results with lower bounds on α [10,31,47,75] and for
Ramsey-type problems [24,25].

1.3.1 Hamiltonicity in randomly perturbed sparse graphs

The aim of this note is to investigate a new direction. Instead of fixing an α P p0, 1q

in advance, we allow α to tend to zero with n. This extends the range of Gα to
sparse graphs and we want to determine threshold probabilities in Gα Y Gpn, pq.
For example, with α “ 1

log n
we have a sparse deterministic graph Gα with minimum

degree n
log n

. Then p “ ωp 1
n

q does not suffice in general, but it is sufficient to take
Gα Y Gpn, Θplog log nq

n
q to guarantee a Hamiltonian cycle with high probability. More

generally, we prove the following.

Theorem 1.3.1. Let α “ αpnq : N Ñ p0, 1q and β “ βpαq “ ´p6 ` op1qq logpαq.
Then a.a.s. Gα Y Gpn, β

n
q is Hamiltonian.

This extends the result of Bohman, Frieze, and Martin [13] for constant α ą 0.
For even n a direct consequence of this theorem is the existence of a perfect matching
in the same graph. To prove Theorem 1.3.1 we use a result by Frieze [43] to find
a very long path in Gpn, pq alone and then use the switching technique developed
in [19] to turn this into a Hamilton cycle. As it turns out, our method allows to
prove the existence of a perfect matching with a slightly lower edge probability.

Theorem 1.3.2. Let α “ αpnq : N Ñ p0, 1q and β “ βpαq “ ´p4 ` op1qq logpαq.
Then a.a.s. Gα Y Gpn, β

n
q contains a perfect matching.
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To see that in both theorems β is optimal up to the constant factor, consider
Gα “ Kαn,p1´αqn and note that there cannot be a perfect matching in Gα Y Gpn, β

n
q,

if in Gpn, β
n

q we have more than αn isolated vertices on the p1 ´ αqn side. The
number of isolated vertices in Gpn, β

n
q is roughly np1 ´

β
n

qn´1 – n expp´βq, which is
larger than αn if β “ op´ logpαqq.

For proving results in the model of randomly perturbed graphs, we need good
almost spanning results. Typically, almost spanning means that for any ε ą 0
we can embed the respective structure on at least p1 ´ εqn vertices. For paths
and cycles in Gpn, C

n
q this can be done using expansion properties and the DFS-

algorithm [67]. These almost spanning results are much easier than the spanning
counterpart, because there is always a linear sized set of available vertices. For the
proof of Theorem 1.3.1 this is not sufficient, because if α “ op1q we will not be able
to take care of a linear sized leftover. Thus we have to exploit that we have Gpn, β

n
q

and use the following result showing that we can find a long cycle consisting of all
but sublinearly many vertices.

Lemma 1.3.3 (Frieze [43]). Let 0 ă β “ βpnq ď log n. Then Gpn, β
n

q a.a.s. contains
a cycle of length at least

p1 ´ p1 ´ op1qqβ expp´βqqn.

This is optimal, because it is asymptotically the size of the 2-core (maximal
subgraph with minimum degree 2) of Gpn, pq [42, Lemma 2.16]. A similar result
holds for large matchings.

Lemma 1.3.4 (Frieze [43]). Let 0 ă β “ βpnq ď log n. Then Gpn, β
n

q a.a.s. contains
a matching consisting of at least p1 ´ p1 ´ op1qq expp´βqqn vertices.

Again this is optimal, because the number of isolated vertices is a.a.s. p1 `

op1qq expp´βqn [42, Theorem 3.1]. Observe, that also a bipartite variant of this
lemma holds, which can be proved by removing small degree vertices and employing
Hall’s theorem.

Lemma 1.3.5. Let 0 ă β “ βpnq ď log n. Then the bipartite binomial random graph
Gpn, n, β

n
q a.a.s. contains a matching consisting of at least p1 ´ p1 ´ op1qq expp´βqqn

edges.
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1.3.2 Bounded degree trees in randomly perturbed sparse

graphs

After Hamilton cycles and perfect matchings, the next natural candidates are
n-vertex trees with maximum degree bounded by a constant ∆. In Gpn, pq the
threshold log n

n
was determined in a breakthrough result by Montgomery [73], in Gα

it is enough to have a fixed α ą 1
2 [60], and in Gα Y Gpn, pq with constant α ą 0 the

threshold is 1
n

[68]. To obtain a result similar to Theorem 1.3.1 for bounded degree
trees using our approach, we need an almost spanning result similar to Lemma 1.3.3.
With a similar approach as for Theorem 1.3.1 and 1.3.2 we obtain the following
modular statement.

Theorem 1.3.6. Let ∆ ě 2 be an integer and suppose that α, β, ε : N Ñ r0, 1s are
such that 4p∆ ` 1qε ă α∆`1 and a.a.s. Gpn, β

n
q contains a given tree with maximum

degree ∆ on p1 ´ εqn vertices. Then any tree with maximum degree ∆ on n vertices
is a.a.s. contained in Gα Y Gpn, β

n
q.

Next we discuss the almost spanning results that we can obtain in the relevant
regime. Improving on a result of Alon, Krivelevich, and Sudakov [3], Balogh, Csaba,
Pei, and Samotij [5] proved that for ∆ ě 2 there exists a C ą 0 such that for
ε ą 0 a.a.s. Gpn, β

n
q contains any tree with maximum degree ∆ on at most p1 ´ εqn

vertices, provided that β ě C
ε

log 1
ε
. For the proof they only require that the graph

satisfies certain expander properties. This can be extended to the range where ε Ñ 0
and ωp1q “ β ď log n and following along the lines of their argument we get the
following.

Lemma 1.3.7. For ∆ ě 2 there exists a C ą 0 such that for any 0 ă β “ βpnq ď

log n and ε “ εpnq ą 0 with β ě C
ε

log 1
ε

the following holds. Gpn, β
n

q a.a.s. contains
any bounded degree tree on at most p1 ´ εqn vertices.

Then together with Theorem 1.3.6 we obtain the following.

Corollary 1.3.8. For ∆ ě 2 there exists a C ą 0 such that for α “ αpnq : N Ñ p0, 1q

and β “ βpαq “ Cα´p∆`1q log 1
α

the following holds. Any n-vertex tree T with
maximum degree ∆ is a.a.s. contained in Gα Y Gpn, β

n
q.

The proof for the dense case in [68] uses regularity and it is unlikely to give
anything better in the sparse regime. As remarked in [3] the condition on the almost
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spanning embedding in Gpn, β
n

q could possibly be improved to β ą log C
ε
, then

covering almost all non-isolated vertices. More precisely this asks for the following.

Question 1.3.9. For every integer ∆ there exists C ą 0 such that if 0 ă β “

βpnq ď log n the following holds. Is any given tree with maximum degree ∆ on

p1 ´ C expp´βqqn

vertices a.a.s. contained in Gpn, β
n

q?

With Theorem 1.3.6 this would then give that already β “ ´p∆ ` 1q logpCαq

suffices, which would be optimal up to the constant factors. We want to briefly
argue why it is possible to answer this question for large families of trees and what
the difficulties are. For simplicity we only discuss the case β “ log log n and note
that by Lemma 1.3.7 above we can embed trees on roughly p1 ´ 1

log log n
qn vertices.

A very helpful result for handling trees by Krivelevich [66] states that for integers
n, k ą 2, a tree on n vertices either has at least n

4 k leaves or a collection of at least
n
4 k bare paths (internal vertices of the path have degree 2 in the tree) of length k. If
there are at least n

4 log log n
leaves, we can embed the tree obtained after removing the

leaves. Then we can use a fresh random graph and Lemma 1.3.5 to find a matching
for all the leaves, completing the embedding of the tree.

On the other hand, if there are at least n log log n
4 log n

bare paths of length log n
log log n

, it is
possible to embed all but n

log n
of these paths, which are all but n

log log n
vertices. Then

one has to connect the remaining paths, again using ideas from [73]. In between
both cases it is not clear what should be done, because we might have n

log n
leaves

and n
4 log log n

bare paths of length log log n. The length of the paths are too short to
connect them and the leaves are too few for the above argument. Answering this
questions and thereby improving the result of Alon, Krivelevich, and Sudakov [3] is
a challenging open problem.

1.3.3 Other spanning structures

As mentioned above, embeddings of spanning structures in Gα, Gpn, pq, and Gα Y

Gpn, pq for fixed α ą 0 have also been studied for other graphs such as powers of
Hamilton cycles, factors, and general bounded degree graphs. In most of these cases
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almost spanning embeddings (e.g. Ferber, Luh, and Nguyen [39]) can be generalised
such that previous proofs can be extended to the regime α “ op1q with β “ α´1{C ,
similar to what we do in Corollary 1.3.8. Further improvements seem to be hard,
because better almost spanning results are similar in difficulty to spanning results
in Gpn, pq alone. We want to discuss this on one basic example, the triangle factor,
which is the disjoint union of n

3 triangles.
In Gα we need α ě 2

3 , in Gpn, pq the threshold is n´ 2
3 log

1
3 n, and in Gα Y Gpn, pq

with a fixed α ą 0 it is n´ 2
3 . Note that the log-term in Gpn, pq is needed to ensure that

every vertex is contained in a triangle, which is essential for a triangle factor. Using
Janson’s inequality [42, Theorem 21.12] it is not hard to prove the almost spanning
result for a triangle factor on at least p1 ´ εqn vertices with p “ ωpn´ 2

3 q. This can
be generalised to Gpn, βn´ 2

3 q giving a.a.s. a triangle factor on at least p1 ´ C
β

qn

vertices. Again, this can only give something with β “ α´ 1
C in Gα Y Gpn, βn´ 2

3 q

and to improve this we ask the following.

Question 1.3.10. Let 0 ă β “ βpnq ď log
1
3 n. Does Gpn, βn´ 2

3 q a.a.s. contain a
triangle factor on at least

`

1 ´ p1 ´ op1qq expp´β3
q
˘

n

vertices?

Observe, that this is a.a.s. the number of vertices of Gpn, βn´ 2
3 q that are not

contained in a triangle. Similar questions for other factors or more general structures
would be of interest. It took a long time until Johannson, Kahn, and Vu [50]
determined the threshold for the triangle factor. This conjecture seems to be of
similar difficulty, whereas for our purposes it would already be great to obtain a
triangle factor on at least p1 ´ C expp´β3qqn vertices for some C ą 1.
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2. Spanning tripartite subgraphs

We aim for a good condition on graphs that generalizes Theorems 1.1.2 and 1.1.6.
This condition has to first, ensure the existence of a 2nd power of a Hamiltonian
cycle. This is done by an application of the absorption method. Second, we show
that the reduced graph inherits the good properties of the original graph and prepare
for an application of the blow-up lemma.

2.1 Absorption method

We are given a pµ, δ, ζ, ϱ, ξ, η, νq-good graph G on n vertices. As a consequence
of G being good, we have a bound on the minimum degree. Since the auxiliary
graph A is µ-inseparable, δpAq ě µpn ´ 1q. This implies for every v P V pGq, we
have |EpGrUvsq| ě ζn2. Also, GrUvs contains at least δn3 triangles. Therefore,

|Npvq| ě |Uv| ě maxt2
a

ζn,
3

?
6δnu . (2.1.1)

We also observe that there are many ζµ-connectable edges contained in GrUvs, for
every v P V pGq. Indeed, since A “ ApR, ζq is µ-inseparable, NApvq ě µpn ´ 1q and
for every u P NApvq, we have |EpGrUvsq X EpGrUusq| ě ζn2. A standard averaging
argument gives us E 1

v Ď EpGrUvsq such that

|E 1
v| ě ζ|EpGq| ě

ζn2

4 , (2.1.2)

and for each ab P E 1
v there is NApv, abq Ď NApvq with |NApv, abq| ě ζ|NApvq| and

u P NApv, abq implies ab P EpGrUvsq X EpGrUusq. Therefore ab is ζµ-connectable.
Throughout our application of the absorption method, we refer to the 2nd power

of a path/walk as a triangle path/walk. We take roughly the following steps:
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1. we ensure the abundant existence of so-called absorbers,

2. find an almost perfect cover of only “few” triangle paths, and

3. connect those absorbers and triangle paths to an almost spanning 2nd power
of cycle.

Here we state the lemmas that allows us to take these steps. The following lemma
will allow us not only to take step 3, but also to connect the absorbers into an
absorbing path.

Lemma 2.1.1 (Connecting Lemma). For every µ P p0, 1s, δ, ζ, ξ ą 0, there ex-
ist c, ξ˚ ą 0 and integers L, n0 such that the following holds.

If G on n ě n0 vertices with robust neighbourhoods RG satisfies properties i.
and ii. of good graphs, then for every two distinct ξ-connectable pairs xy, x1y1,
there is some integer ℓpxy, x1y1q “ ℓ with ℓ ď L and ℓ ” 1 pmod 3q such that
the number of pxy, x1y1q-triangle walks with ℓ inner vertices in G is at least cnℓ.
Moreover if xyx1 . . . x3k`1x

1y1 is such a walk, the edges x3i´1x3i, with i P rks, are
ξ˚-connectable.

After establishing that G is well connected, we take step 1 to set aside an
absorbing path. A triangle path P in a graph G “ pV, Eq is α-absorbing when given
any set X Ď V ∖ V pP q of size |X| ď α|V | divisible by 3, there is a triangle path P 1

with the same ending pairs as P and V pP 1q “ V pP q Y X.

Lemma 2.1.2 (Absorbing Path Lemma). For every µ, δ, ζ, ξ ą 0 and c “ cpδq ą 0,
there exist κ, α0, α, ξ1 ą 0 and n0, such that the following holds.

Given ν ą 0, a graph G on n ě n0 vertices with RG satisfying properties i.
and ii. of good graphs and sets I1, . . . , Im Ď V pGq, with m ď 2κn, such that the
number of triangles with a ξ-connectable edge in GrIis is at least cpδqn3, there exist
two vertex disjoint triangle paths PA, PI Ď G, such that

(i ) |V pPAq|, |V pPIq| ď mint
µ
8 , δ

4 , ζ
4 ,

µ
?

ζ

5 , ν
4 un ´ 3,

(ii ) PA is α0-absorbing,

(iii ) PA begins with a triangle path x1x2x3x4, where x1x2, x2x3, x3x4 are ξ1-connectable
and PA ends in a ξ1-connectable edge,
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(iv ) for all i P rms, the number of triangle paths P5 “ y1y2y3y4y5 contained in PI

such that y1, y2, y3, y4, y5 P Ii is at least αn.

(v ) PI begins and ends in ξ1-connectable edges.

The path PI is an addition towards the embedding of graphs with small band-
width, for the result concerning a 2nd power of a Hamiltonian cycle it is not needed.

Properties i. and ii. of good graphs ensured us steps 1 and 3. For step 2 we use
property iii. of good graphs.

Lemma 2.1.3 (Covering Lemma). Given ξ, α ą 0, cϱ ě 1 there exist η, ϱ, c ą 0
with ϱ ď 1

16 , ξ ě cϱ
8

?
ϱ, η ě cϱ

8
?

ϱ and n0 such that the following holds. For every
η
2 ě ν ą 0, if G on n ě n0 vertices with RG satisfies property iii. of good graphs,
then there is a collection P of |P | ď c triangle paths with ξ-connectable ends covering
all but at most αn vertices of G.

In the next section we use these lemmas to show that good graphs contain the
second power of a Hamiltonian cycle.

2.2 Second Power of a Hamiltonian Cycle

In view of Theorem 1.1.14, we show the following version of Theorem 1.1.13 that
includes special segments needed for preparing G for an application of the blow-up
lemma.

Theorem 2.2.1. Given µ, δ, ζ, ξ ą 0, cpδq ą 0 and cϱ ě 1, there exist n0 and
κ, α, η, ϱ ą 0 with η, ξ ě cϱ

4
?

ϱ such that the following holds.

For every 1
4 ě ν ą 0 such that η ě 2ν, if G is pµ, δ, ζ, ϱ, ξ, η, νq-good and for

some m ď 2κn we are given I1, . . . , Im Ď V pGq such that the number of triangles
with a ξ-connectable edge contained in each Ii is at least cpδqn3, then G contains the
second power of a Hamiltonian cycle with segments

- P6 “ x1 . . . x6 which is the 3rd power of a path,

- PI such that for all i P rms, the number of triangle paths y1y2y3y4y5 contained
in PI such that y1, y2, y3, y4, y5 P Ii is at least αn.
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For embedding graphs with small bandwidth, we apply Theorem 2.2.1 to the
reduced graph of G and a certain regular partition V0, . . . , Vt. The triangle path PI

is needed for redistributing V0 into the partition classes without losing the regularity
of the involved pairs and the 3-path P6, for the balancing of the sizes of the classes.

Proof of Theorem 2.2.1. Apply the Absorbing Path Lemma (Lemma 2.1.2) with the
given µ, δ, ζ, ξ, cpδq ą 0. Get κ, α0, α, ξ0 ą 0 and n1

0, set ξ1 “ mint
ξ0
2 , ξ

8 , δ
8u. Apply

the Covering Lemma (Lemma 2.1.3) with ξ
4 , α

2 , cϱ ą 0 to get n2
0 and ϱ1, η, c0 ą 0

with ξ, η ě cϱ
8
?

ϱ1. Apply the Connecting Lemma (Lemma 2.1.1) with µ
2 , δ

2 , ξ1 and
get c1 ą 0 and integers n3

0 , L (we also get ξ˚ ą 0, but here we do not need the
“moreover” part of the lemma). Set

ϱ “
4
a

43ϱ1, p “
1
3 min

!µ

8 ,
δ

4 ,
ζ

4 ,
2µ

?
ζ

10
?

2
,
ν

4 ,
α

2

)

,

and let n0 be large enough. Let cν and ν ą 0 be given such that η ě cνν. Let G be
a pµ, δ, ζ, ϱ, ξ, η, νq-good graph with robust neighbourhoods RG.

Lemma 2.1.2 gives us disjoint triangle paths PA and PI in G. Take

G1
“ GrV pGq ∖ pV pPAq 9YV pPIqqs with RG1 “ tU 1

v “ Uv X NG1pvq : v P V pG1
qu .

Since |V pPAq 9YV pPIq| ď mint
µ
4 , δ

2 , ζ
2 ,

2µ
?

ζ

5 un ´ 6, Lemma 2.4.6 gives us that G1

satisfies properties i. and ii. of good graphs with µ
2 , δ

2 , ζ
2 . Lemma 2.4.7 gives a third

power of path P6 “ x1
1x

1
2x

1
3x

1
4x

1
5x

1
6 with δ

4 -connectable ends x1
1x

1
2, x1

5x
1
6 in G1.

Consider X Ď V pGq containing the vertices in the ending pairs xIyI , x1
Iy1

I of PI ,
the vertices x1, x2, x3, x4 in the initial segment of PA, the ending pair xAyA of PA

and the vertices in the ending pairs x1
1x

1
2, x1

5x
1
6 of P6, note that |X| “ 14. Take

G˚
“ G

“

V pGq ∖
`

pV pPAq 9YV pPIq 9YV pP6qq ∖ X
˘‰

and

RG˚ “ tU˚
v “ Uv X NG˚pvq : v P V pG˚

qu .

Since |V pPAq 9YV pPIq 9YV pP6q| ď mint
µ
4 , δ

2 , ζ
2 ,

2µ
?

ζ

5 , ν
2 un and ν ď 1

4 , ϱ ď 1
16 , we have

that G˚ is p
µ
2 , δ

2 , ζ
2 , ϱ2

4 , ξ
2 , η, ν

2 q-good.

Choose a reservoir set S Ď V pGq∖ pV pPAq 9YV pPIq 9YV pP6qq by including vertices
independently at random with probability p ą 0. We show that with positive
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probability there is a choice of S such that the following holds:

(a ) |S| ď min
!

µ
8 , δ

4 , ζ
4 ,

2µ
?

ζ

10
?

2 , ν
4 , α

2

)

|V pG˚q| ´ |X|;

(b ) for two distinct ξ1-connectable (in G˚) pairs xy, x1y1 P EpG˚q there is ℓ ď L,
with ℓ ” 1 pmod 3q, such that there are at least c1pL

4 |V pG˚q|ℓ distinct pxy, x1y1q-
triangle paths in G˚ with ℓ inner vertices, all in S.

For property (a ), observe that p|V pG˚q| ě
p|V pGq|

2 ě 28p ` 14 “ 2p|X| ` |X| and
use Markov’s inequality to get

P p|S| ě 3p|V pG˚
q| ´ |X|q ď P p|S| ě 2pp|V pG˚

q| ` |X|qq ď
1
2 . (2.2.1)

For property (b ), the Connecting Lemma (Lemma 2.1.1) guarantees for every
two ξ1-connectable pairs xy, x1y1, at least c1|V pG˚q|ℓpxy,x1y1q different triangle walks
between xy and x1y1 with ℓpxy, x1y1q ď L inner vertices (note that if G˚ is good with
ξ
2 , it is also good with ξ1). At most half of these walks have vertex repetition or an
inner vertex in X, thus we have at least c1

2 |V pG˚q|ℓpxy,x1y1q triangle paths between
xy and x1y1 with ℓpxy, x1y1q inner vertices in V pGq ∖ pV pPAq 9YV pPIq 9YV pP6qq.

Let Xpℓpxy, x1y1q, xy, x1y1q be the number of triangle paths between xy and x1y1

with all its ℓ “ ℓpxy, x1y1q inner vertices in S. For an application of the Azuma-
Hoeffding inequality, note that the inclusion or exclusion of a vertex in S changes
Xpℓ, xy, x1y1q by at most ℓ|V pG˚q|ℓ´1. Thus,

P
´

Xpℓ, xy, x1y1
q ď

c1p|V pG˚q|pqℓ

4

¯

ď exp
´

´
c2

1p|V pG˚q|pq2ℓ

16 ¨ 2ℓ2|V pG˚q|2ℓ´1

¯

ď exp
´

´
c2

1p
2L

32L2 |V pG˚
q|

¯

. (2.2.2)

There are up to L ¨ |V pG˚q|4 triples pℓ, xy, x1y1q, thus by the union bound and
for n0 large enough, the probability that there is a triple such that (2.2.2) holds is
smaller than 1

2 . Considering this and (2.2.1), we may fix an instance S satisfying
properties (a ) and (b ).

Consider

G2
“ GrV pGq ∖ pV pPAq 9YV pPIq 9YV pP6q 9YSqs “ G˚

rV pG˚
q ∖ pS 9YXqs and

RG2 “ tU2
v “ Uv X NG2pvq : v P V pG2

qu .
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Since |X 9YS| ď min
!

µ
8 , δ

4 , ζ
4 ,

2µ
?

ζ

10
?

2 , ν
4 , α

2

)

|V pG˚q|, we have G2 is p
µ
4 , δ

4 , ζ
4 , ϱ4

43 , ξ
4 , η, ν

4 q-
good.

Lemma 2.1.3 gives us a collection Q0 of at most c0 triangle paths with ξ
4 -

connectable (in G2) ends covering all vertices but at most α
2 |V pG2q| vertices of G2.

Let Q be the collection of triangle paths containing Q0 and in addition PA, PI

and P6.

We note that all paths in Q have ξ1-connectable ends in G˚. First, the paths
in Q0 have ξ

4 -connectable ends xy in G2. If xy P EpG2rU2
v sq, since G2rU2

v s Ď G˚rU˚
v s

and |V pG2q| ě
|V pG˚q|

2 , we have that xy is ξ
8 -connectable in G˚. Second, if xy is an

end pair of PA or PI , then x, y P X Ď V pG˚q and x, y P Uv for ξ0n different v P V pGq.
If v P V pG˚q, then x, y P U˚

v . Since |V pG˚q| ě n
2 , we have that x, y are in at least

ξ0
2 n different U˚

v . Third, if xy is an end pair of P6 “ x1
1x

1
2x

1
3x

1
4x

1
5x

1
6, then x, y P X

and x, y P U 1
v for δ

4 |V pG1q| different v P V pG1q. Since V pG˚q Ě V pG1q ∖ tx1
3, x1

4u,
if v R tx1

3, x1
4u, then x, y P U˚

v . Moreover |V pG1q| “ |V pG˚q| ´ 8, thus xy is δ
8 -

connectable in G˚.

Using the reservoir S, we connect the triangle paths in this collection into a
single triangle path in G. Consider a maximal subset Q1 Ď Q such that there is a
triangle path PQ1 in G with ξ1-connectable (in G˚) ends containing all triangle paths
from Q1, intersecting no other element of Q∖Q1 and containing at most Lp|Q1| ´ 1q

vertices from S. The set Q1 is non-empty and we show that Q1 “ Q.

Otherwise, let Q P Q∖Q1 be a triangle path with an end xQyQ and let xQ1yQ1 be an
end of PQ1 , both are ξ1-connectable pairs in G˚. Property (b ) of S gives c1pL

4 |V pG˚q|ℓ

different pxQyQ, xQ1yQ1q-triangle paths in G˚ with all its ℓ ď L inner vertices in S.
The path PQ1 intersects at most Lp|Q1|´1qℓ|V pG˚q|ℓ´1 of these paths and for n0 large,
it assures at least one triangle path between xQyQ and xQ1yQ1 with inner vertices
in S that is disjoint from PQ1 . Thus we may extent PQ1 to PQ1YtQu intersecting S in
at most Lp|Q1 Y tQu| ´ 1q vertices.

We find the second power of a cycle C containing roughly all PQ. At this point
we shall address the parity issue. Since the absorbing path PA absorbs triples of
vertices, we have to ensure that |V pGq| ´ |V pCq| is a multiple of 3. For that, we
take PA to be the first triangle path in PQ, and therefore PQ begins with x1x2x3x4

such that all edges are ξ1-connectable in G˚; say xQyQ is the other end of PQ.
For xixj P Epx1x2x3x4q, property (b ) of S gives many pxixj, xQyQq-triangle paths

24



with 3kij ` 1 inner vertices in S. If |V pGq| ´ |V pPQq| is of the form 3k1, we will
connect the pairs x2x3 and xQyQ and |V pGq|´|V pCq| is of the form 3pk1 ´k23q´1`1,
since x1 is a left over. If |V pGq| ´ |V pPQq| is of the form 3k1 ` 1, we connect the
pairs x1x2 and xQyQ. If |V pGq| ´ |V pPQq| is of the form 3k1 ` 2, we connect the
pairs x3x4 and xQyQ.

Property (b ) of S gives at least c1pL

4 |V pG˚q|ℓ triangle paths between the selected
pairs, having its inner vertices in S. By the same argument as above, there is a
path with all its ℓ inner vertices in S ∖V pPQq. Consequently there exists the second
power of a cycle C with |V pGq| ´ |V pCq| a multiple of 3 and containing PQ except
by possibly its first two vertices x1, x2.

The paths in Q0 leave at most α
2 |V pG2q| uncovered vertices in G2 and since

V pPAq ∖ tx1, x2u, V pPIq, V pP6q Ď V pPQq, the triangle path PQ leaves at most |S| `

α
2 |V pG2q| ` 2 uncovered vertices in G. Since |S| ď α

2 |V pG˚q| ´ 14 and PA is α-
absorbing in G, we may absorb all uncovered vertices, obtaining the second power
of a Hamiltonian cycle containing the special segments PI and P6.

In the following sections we prove Lemmas 2.1.1, 2.1.2 and 2.1.3.

2.3 Connecting

We use the fact that between any two vertices in a µ-inseparable graph there are
many paths with a certain number of inner vertices. This is shown in [EMR`20]
and we also include the proof here.

Lemma 2.3.1 (Many paths). For every µ P p0, 1s, there exist c ą 0 and integers L,
n0 such that every µ-inseparable graph G “ pV, Eq on |V | “ n ě n0 vertices satisfies
the following. For every two distinct vertices x, y P V , there is some integer ℓ

with 1 ď ℓ ď L such that the number of px, yq-walks with ℓ inner vertices in G is at
least cnℓ.

Proof. Given µ we define

L “

R

8
µ

V

` 1, δi “

ˆ

µ2

3

˙i ˆ1
2

˙pi`1
2 q

, and c “
µ2

48δ2
t4{µu . (2.3.1)

Let G be a sufficiently large µ-inseparable graph on n vertices and x, y be two
distinct vertices of G. Consider for each i ě 0 the set of vertices v that can be
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reached from x by “many” walks in G with i inner vertices. For that we define

Xi “
␣

v P V : there are δin
i

px, vq-walks with i inner vertices
(

and X i
“

ď

0ďjďi

Xj .

Analogously, consider the vertices v that can be reached from y by δin
i walks in G

with i inner vertices and define the sets Yi and Y i in the same way.

Observe that X0 “ X0 “ Npxq and since G is µ-inseparable, |Npxq| ě µpn ´ 1q.
Moreover, X i Ď X i`1 and we shall show that as long as |X i| is not too large,
then |X i`1| is substantially larger than |X i|. More precisely, we show for every i ě 0
that

|X i
| ď

2
3n ùñ |X i`1 ∖ X i

| ě
µ

6 n . (2.3.2)

Before verifying (2.3.2), we conclude the proof of Lemma 2.3.1. In fact, (2.3.2)
implies that there is some i0 ă

X 4
µ

\

such that |X i0 | ą 2n
3 . Applying the same argument

for Y i, we get some j0 ă
X 4

µ

\

such that |Y j0 | ą 2n
3 and, hence, |X i0 X Y j0 | ě n

3 .

Each vertex v P X i0 X Y j0 can be used to create many py, xq-walks with possibly
different number of inner vertices. However, by the pigeonhole principle there are
integers a, b with 0 ď a ď i0 and 0 ď b ď j0 such that

|Xa X Yb| ě
|X i0 X Y j0 |

pi0 ` 1qpj0 ` 1q
ě

µ2n

48 . (2.3.3)

For each v P Xa X Yb there exist δana px, vq-walks and δbn
b pv, yq-walks with a

and b inner vertices, respectively. Concatenating these walks leads to at least
δaδbn

a`b ¨ |Xa X Yb| different px, yq-walks, with ℓ “ a ` b ` 1 inner vertices. Owing
to the choice of constants in (2.3.1) we conclude the proof.

It is left to verify (2.3.2). Suppose |X i| ď 2n
3 and consider the complement

Z “ V ∖ X i. Owing to the µ-inseparability of G we have

epX i, Zq ě µ|X i
||Z| . (2.3.4)

Note that each vertex v with at least δj`1
δj

n neighbours in Xj belongs to Xj`1.
Since Z is disjoint from X i, we have

epX i´1, Zq ă |Z| ¨

i´1
ÿ

j“0

δj`1

δj

n . (2.3.5)
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Moreover, supposing by contradiction that (2.3.2) fails, we also have

epXi, Zq ă |Z| ¨
δi`1

δi

n `
µ

6 |Xi|n . (2.3.6)

Combining (2.3.5) and (2.3.6) we arrive at

epX i, Zq ă |Z| ¨

i´1
ÿ

j“0

δj`1

δj

n ` |Z| ¨
δi`1

δi

n `
µ

6 n|Xi| “ |Z| ¨

i
ÿ

j“0

δj`1

δj

n `
µ

6 n|Xi| . (2.3.7)

Owing to the choice of δj in (2.3.1) we have

i
ÿ

j“0

δj`1

δj

“
µ2

3

i
ÿ

j“0

ˆ

1
2

˙j`1

ď
µ2

3 .

Furthermore, since |X i| ě |X0| “ |Npxq| ě µpn ´ 1q and |Z| “ |V ∖ X i| ě n{3, we
derive for sufficiently large n from (2.3.7) that

epX i, Zq ă
µ2

3 |Z|n `
µ

6 |Xi|n ď
µ

2 |Z||X i
| `

µ

2 |Xi||Z| ď µ|X i
||Z| ,

which contradicts (2.3.4).

Our triangle paths between connectable ordered pairs xy and x1y1 will be obtained
by including a vertex between the vertices in every second edge of a py, x1q-path
(Figure 2.3.1). Thus we need that the number of inner vertices in these paths is
even. We can obtain this, whenever we have µ-inseparability and many triangles.

Corollary 2.3.2. Given µ P p0, 1s and δ ą 0, there exist c ą 0 and L such that
the following holds. If G is µ-inseparable and contains δn3 triangles, then for any
different x, y P V , there is an odd (even) integer ℓopx, yq ď L ( ℓepx, yq ď L) such
that there are cnℓopx,yq( cnℓepx,yq) walks with ℓopx, yq( ℓepx, yq) inner vertices between x

and y.

Proof. Let µ, δ be given. Apply Lemma 2.3.1 with µ and get c1 ą 0, L1. Set

c “
δc12

L12 and L “ 2L1
` 3.

Let TG be the triangles in G. Consider different vertices x, y P V . For each abc “

T P TG, Lemma 2.3.1 gives c1nℓxa walks with ℓxa ď L1 inner vertices between x
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and a and c1nℓyc walks with ℓyc ď L1 inner vertices between y and c. Each triangle
is associated to a pair pℓxa, ℓycq and there is a pair pℓx, ℓyq common to at least δ

L12 n3

triangles, let TGpx, yq Ď TG be such triangles.

If abc P TGpx, yq and ℓx ` ℓy is odd, then we use the edge ac to complete and
odd walk between x and y. In total we have

c12nℓx`ℓy
δn3

L12 ¨
1
n

walks between x and y with ℓx ` ℓy ` 2 “ ℓopx, yq inner vertices (the factor 1{n

excludes the possible n triangles on the same edge ac). If ℓx ` ℓy is even, we
complete walks between x and y by taking the segment abc of T and get an odd
number ℓx ` ℓy ` 3 “ ℓopx, yq of inner vertices. The total number of walks in this
case is

c12nℓx`ℓy
δn3

L12 .

Completing the walks with abc when ℓx ` ℓy is odd and with ac when it is even,
we get many paths between x and y with an even number of inner vertices.

We are ready to prove the Connecting Lemma.

Proof of Lemma 2.1.1. We are given µ, δ, ζ, ξ, apply Lemma 2.3.1 with µ and get c0

and L0 apply Corollary 2.3.2 with µ, δ to get c1 and L1. Take c1 “ mintc0, c1u,
L1 “ maxtL0, L1u,

L “ pL1
` 2q

´3L1

2 ` 1
¯

` 2pL1
` 1q, ξ˚

ď
c12ξ2ζL1`1

8L12 and

c “

´ ζ2

L2

¯L1`1´c1

2

¯L1`2´c1ζL1`1γ

2L1

¯pL1`2qL

.

Let G with robust neighbourhoods RG be given. For any edge ab P EpGq, set

Upabq “ tv P V pGq : ab P EpGrUvsqu .

Let xy, x1y1 be ξ-connectable edges, thus we have |Upxyq|, |Upx1y1q| ě ξn.

Consider the auxiliary graph A “ ApR, ζq. For any U, W Ď V pGq and γ P p0, 1s,
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define

dγpU, W q “ minti : Dγni`1 walks in A between U and W of length iu .

Note that dγpU, W q “ 0, iff |U X W | ě γn.
Observe that dγpUpxyq, Upx1y1qq ď L1`1, with γ “

ξ2c1

4L1 . Indeed, assume |UpxyqX

Upx1y1q| ď
ξ
2n. Since the A is µ-inseparable, Lemma 2.3.1 gives for each distinct

u P Upxyq, v P Upx1y1q, a value 1 ď ℓpu, vq ď L1. There exists an ℓ which is the
same for at least ξ2

4L1 n
2 pairs. Thus, we get at least ξ2c1

4L1 nℓ`2 “ γnℓ`2 walks between
Upxyq and Upx1y1q of length ℓ ` 1.

We now prove the lemma by induction on dγpUpxyq, Upx1y1qq. For the base case,
assume dγ1pUpxyq, Upx1y1qq “ 0 for γ1 “ ζL1`1γ. For u P Upxyq X Upx1y1q, we have
that xy, x1y1 P EpGrUusq. Since GrUus is µ-inseparable and contains δn3 triangles,
Corollary 2.3.2 gives us ℓepuq ď L1 and c1nℓepuq different py, x1q-walks with ℓepuq inner
vertices in GrUus. By the pigeonhole principle there is ℓe common to at least γ1n

L1

vertices in Upxyq X Upx1y1q.
By a standard averaging argument we have a set P of py, x1q-paths with ℓe inner

vertices with |P | ě c1

2 nℓe such that for each P P P , there is UpP q Ď Upxyq X Upx1y1q

with |UpP q| ě
c1γ1

2L1 n and u P UpP q implies P Ď GrUus. Observe that all edges in P

are c1γ1

2L1 -connectable.
We note that including some vertices of UpP q into P gives a triangle walk

between xy and x1y1. Say P “ yv1 . . . vℓex
1; for any choice,

!

ui P UpP q : i P

”ℓe

2 ` 1
ı)

,

we have that xyu1v1v2u2 ¨ ¨ ¨ uℓe{2`1x
1y1 is a triangle walk.

x y u1 v1 v2 u2 x1 y1

Figure 2.3.1: Including some vertices of UpP q into P .

The number of triangle walks between xy and x1y1 with 3ℓe

2 ` 1 ď 3L1

2 ` 1 ď L

inner vertices is at least

|P ||UpP q|
ℓe{2`1

ě
c1

2

´c1γ1

2L1

¯ℓe{2`1
n3ℓe{2`1

ě
c1

2

´c1ζL1`1γ

2L1

¯L

n3ℓe{2`1 .
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For the induction hypothesis, let 1 ď ℓ1 ď L1`1 and assume that if ab, a1b1 P EpGq

are such that dγ1pUpabq, Upa1b1qq ď ℓ1 ´ 1 for γ1 “ ζL1´pℓ1´1q`1γ, then there is ℓ “ 1
pmod 3q,

ℓ ď ℓ1
´3L1

2 ` 1
¯

` 2pℓ1
´ 1q ď L ,

such that the number of triangle walks with ℓ inner vertices between ab and a1b1 is
at least

´ ζ2

L2

¯ℓ1´1´c1

2

¯ℓ1´c1ζL1`1γ

2L1

¯ℓ1L

nℓ .

Moreover if abx1 . . . xℓa
1b1 is such a walk, the edges x3i´1x3i, with i P r ℓ´1

3 s, are
ξ˚-connectable.

Now consider that dγ1pUpxyq, Upx1y1qq “ ℓ1 for γ1 “ ζL1´ℓ1`1γ. Set

U1 “ tu1 : D walk u0u1 . . . uℓ1´1uℓ1 in A with u0 P Upxyq, uℓ1 P Upx1y1
qu .

Note that the set EApUpxyq, U1q of edges in EpAq between Upxyq and U1 is such
that |EApUpxyq, U1q| ě γ1n2.

We want a large set E 1 Ď EpGq such that for any ab P E 1, we have dγ2pUpxyq, Upabqq “

0 and dγ2pUpabq, Upx1y1qq ď ℓ1 ´ 1 for γ2 “ ζγ1. Indeed, considering each uv P

EApUpxyq, U1q, since uv P EpAq we have |EpGrUusq X EpGrUvsq| ě ζn2. By
a standard averaging argument, there is E 1 P EpGq with |E 1| ě ζ|EpGq| such
that ab P E 1 implies that there is EApabq Ď EApUpxyq, U1q with |EApabq| ě

ζ|EApUpxyq, U1q| ě ζγ1n2 and for every uv P EApabq, we have ab P EpGrUusq X

EpGrUvsq. Thus |Upabq X Upxyq| ě ζγ1n and |Upabq X U1| ě ζγ1n “ ζL1´pℓ1´1q`1γ,
which for γ2 “ ζγ1, gives us that ab is γ2-connectable, that dγ2pUpxyq, Upabqq “ 0
and dγ2pUpabq, Upx1y1qq ď ℓ1 ´ 1.

According to our induction hypothesis, there are ℓ1
1, ℓ1

2 ď L, with ℓ1
1, ℓ1

2 “ 1
pmod 3q, such that the number of triangle walks between xy and ab with ℓ1

1 inner
vertices and between ab and x1y1 with ℓ1

2 inner vertices are at least

c1

2

´c1ζL1`1γ

2L1

¯L

nℓ1
1 and

´ ζ2

L2

¯ℓ1´1´c1

2

¯ℓ1´c1ζL1`1γ

2L1

¯ℓ1L

nℓ1
2 .

We have values ℓ1 and ℓ2 common to at least ζ|EpGq|

L2 ě
ζ2n2

L2 edges in E 1. For each
such edge ab, we concatenate the walks between xy and ab and between ab and x1y1.
The number of pxy, x1y1q-triangle walks with ℓ1 ` ℓ2 ` 2 “ 1 pmod 3q inner vertices
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that we obtain is at least

´ ζ2

L2

¯ℓ1´c1

2

¯ℓ1`1´c1ζL1`1γ

2L1

¯pℓ1`1qL

nℓ1`ℓ2`2 .

Moreover,

ℓ1 ` ℓ2 ` 2 ď
3L1

2 ` 1 ` ℓ1
´3L1

2 ` 1
¯

` 2pℓ1
´ 1q ` 2

ď pℓ1
` 1q

´3L1

2 ` 1
¯

` 2ℓ1
ď L .

2.4 Absorbing

We start by introducing the desired “absorbing” structures. Roughly, the structure
consists of disjoint triangle paths with the property that they can be modified to
include other vertices, without changing the ending (ordered) edges of each triangle
path.

To describe the absorbers precisely, we use the following structure, see Figure 2.4.1
for guidance. Given a positive integer k, an open C4-path Lk is obtained from disjoint
C1, . . . , Ck and u1, . . . , uk´1, where Ci (i P rks) are C4’s and ui (i P rk ´ 1s) are
vertices such that Ci, Ci`1 Ď Npuiq. For vertices x, y disjoint from Lk, such that
C1 Ď Npxq and Ck Ď Npyq, we say xLky is a C4-path connecting x and y and we
refer to k as its length.

The following definition describes the absorbers.

Definition 2.4.1. Given ξ ą 0, a graph G, vertices x, y, z P V pGq and positive
integers k1, k2, k3, we say a tuple A “ pS, Lk1 , Lk2 , Lk3q is a pk1, k2, k3qξ-absorber
for x, y and z with switch S, when

1. S is a K3,3,2 with parts tw1, s4, w7u, tw2, s5, w8u, tw3, s6u and such that the
edges w1w2 and w7w8 are ξ-connectable.

2. xLk1s4, yLk2s5 and zLk3s6 are C4-paths of lengths k1, k2, k3 respectively and for
each Ci in these C4-paths, we have that all edges in EpCiq are ξ-connectable.

3. The vertices x, y, z, the open C4-paths and S are disjoint.

We also say A is a pk1, k2, k3qξ-absorber if it is a pk1, k2, k3qξ-absorber for some triple
of vertices x, y and z.

31



In the following observation we describe how the vertices in a pk1, k2, k3qξ-absorber
for the vertices x, y, z can be covered by disjoint triangle paths and how they can
be modified to include x, y, z.

Observation 2.4.2. The vertices in a pk1, k2, k3qξ-absorber A “ pS, Lk1 , Lk2 , Lk3q

can be covered by disjoint triangle paths with ξ-connectable ending pairs. Let the
C4-path xLk1s4 be such that Ci “ v2i´1v2iv

1
2i´1v

1
2i, then take the triangle paths

v2i´1v2iuiv
1
2i´1v

1
2i for i P rk1 ´ 1s and v2k1´1v2k1s4v

1
2k1´1v

1
2k1, do it similarly for

yLk2s5 and zLk3s6, and for the switch S take w1w2w3w7w8.
Moreover if A is a pk1, k2, k3qξ-absorber for x, y, z P V pGq, we say A absorbed

x, y, z when we consider the following disjoint triangle paths covering all vertices
of A plus x, y, z. For the C4-path xLk1s4 take v1v2xv1

1v
1
2 and v2i´1v2iui´1v

1
2i´1v

1
2i

for 2 ď i ď rk1s, proceed similarly for yLk2s5 and zLk3s6, for the switch S take
w1w2w3s4s5s6w7w8. All the ending pairs of these triangle paths are the same as
when covering A without absorbing x, y, z.

x

v1 v2

u1

v1
1 v1

2

v3 v4

u2

v1
3 v1

4

v5 v6

s4

v1
5 v1

6

x

1 2

3

4 5

1 2

3

4 5

1 2

3

4 5

w1 s4 w7

w2 s5 w8

w3 s6

w1 s4 w7

w2 s5 w8

w3 s6

Figure 2.4.1: A C4-path xL2s4 and switch both absorbing x and not.

We take step 1 in our application of the absorption method and show the
existence of many absorbers in a good graph. For that we use the following result of
Erdős [37], that ensures many r-partite complete hypergraphs Kprqpℓ1, . . . , ℓrq in a
dense r-uniform hypergraph Gprq .

Theorem 2.4.3 (Erdős 1964). Given integers r, ℓ1, . . . , ℓr and c ą 0, there is c1 ą 0
and n0 such that, if Gprq is an r-uniform hypergraph on n ě n0 vertices and at least
cnr edges, then there are c1nℓ1`¨¨¨`ℓr copies of Kprqpℓ1, . . . , ℓrq in Gprq.

The following lemma guarantees that good graphs have many absorbers.
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Lemma 2.4.4. For every µ, δ, ζ ą 0, there exist c, ξ˚ ą 0 and integers L, n0 such
that the following holds.

If G on n ě n0 vertices with robust neighbourhoods RG satisfies properties i.
and ii. of good graphs, then for every distinct x, y, z P V pGq there are inte-
gers k1, k2, k3 ď L such that the number of pk1, k2, k3qξ˚-absorbers for x, y, z is
at least cn5k1`5k2`5k3`5.

Proof. Given µ, δ, ζ ą 0, apply Lemma 2.1.1 with µ, δ, ζ, ξ “ ζµ ą 0 and get c1, ξ˚ ą

0 and L, assume wlog ξ˚ ď ζµ. Constants c0, c1, c2, c3 will be given by applications
of Theorem 2.4.3. Take

c “
c0c1c2c3

2L3 .

We want to apply Theorem 2.4.3 to find many switches in G, for that we need
many triangles with a connectable edge. Equation (2.1.2) gives us that for any
v P V pGq, if E 1

v are the ζµ-connectable edges in GrUvs, then |E 1
v| ě

ζn2

4 . For each
ab P E 1

v we get a triangle abv, thus there are at least ζn3

12 triangles with at least
one ζµ-connectable edge in G.

Take a random partition of V pGq into tV1, V2, V3u, where Ppv P Viq “ 1
3 . Let X be

the number of triangles v1v2v3 with a connectable edge and v1 P V1, v2 P V2, v3 P V3.
The expected value is

EX ě
ζn3

12 ¨
6
27 “

ζn3

54 .

Thus there is a partition tV1, V2, V3u with at least ζn3

54 such triangles and by averaging,
we may assume without loss of generality that at least ζn3

162 of these triangles have
its connectable edge between V1, V2.

Consider the hypergraph Gp3q on V pGq and v1v2v3 P EpGp3qq when v1v2v3 is a
triangle in G with v1 P V1, v2 P V2, v3 P V3 and v1v2 connectable. Theorem 2.4.3,
gives us c0n

8 copies of Kp3qp3, 3, 2q. Since all hyperedges had a connectable pair
between V1 and V2, each of these Kp3qp3, 3, 2q corresponds to a possible switch in G,
let S be the set containing these corresponding K3,3,2’s.

Consider vertices x, y, z and S P S (with vertices labelled as in Figure 2.4.1). We
want a value k1 and many C4-paths xLk1s4. Take ζµ-connectable edges v1v2 P E 1

x

and v1
1v

1
2 P E 1

s4 . Lemma 2.1.1 gives us ℓpv1v2, v1
1v

1
2q “ ℓ ď L and ℓ “ 1 pmod 3q.

Excluding pairs of connectable edges that intersect, there are at least ζ2n4

17 different
choices of pv1v2, v1

1v
1
2q and thus there is a value ℓ1 “ 3pk1 ´ 2q ` 1 common to at
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least ζ2n4

17L
such choices. The number of pv1v2, v1

1v
1
2q-triangle walks of form

v1v2 x1x2x3x4 . . . xℓ1 v1
1v

1
2 ,

is at least c1nℓ1 and the edges x3i´1x3i (i P rk1 ´ 2s) are ξ˚-connectable. For all
choices of pv1v2, v1

1v
1
2q, let W be the set of all such walks.

Consider the partite hypergraph Gpℓ1`4q with

V pGpℓ1`4q
q “ V1 9Y . . . 9YVℓ1`4, Vi “ V pGq and EpGpℓ1`4q

q “ W .

We have that |EpGpℓ1`4qq| ě
ζ2c1

17L
nℓ1`4. Theorem 2.4.3 gives us that the number of

copies of partite cliques Kpℓ1`4qp2, 2, 1, 2, 2, 1 . . . , 1, 2, 2q is at least c1n
5pk1´2q`9 and

at least half of them have no vertex repetition. In G, each such partite clique forms
an open C4-path

Lk1 “ C1u1 . . . uk1´1Ck1 .

We have that xLk1s4 is a C4-path where the edges in EpCiq are ξ˚-connectable.

Repeating the argument for the pairs py, s5q and pz, s6q, we get c2n
5k2´1 differ-

ent yLk2s5 of length k2 and c3n
5k3´1 different zLk3s6 of length k3. For x, y, x, there

are at least c0n8

L3 switches associated to the same values k1, k2, k3. Picking such a
switch S and C4-paths xLk1s4, yLk2s5, zLk3s6, then excluding choices with vertex
repetition, the number of pk1, k2, k3qξ˚-absorbers for x, y, z is at least

1
2L3 c0n

8c1n
5k1´1c2n

5k2´1c3n
5k3´1

“ cn5k1`5k2`5k3`5 .

To get an absorbing path, we will start with a collection of disjoint absorbers.
Then one by one we connect the triangle paths that cover the first absorber, then
the second and so on, always making sure that the triangle path we constructed so
far and the following one to be incorporated do not intersect. For ensuring these
connections, we show that the good property of G holds for subgraphs obtained
after the removal of few vertices.

We need the following property of µ-inseparable graphs.

Property 2.4.5. If G is a µ-inseparable graph on n vertices, β P p0, 1
2q and U Ď

V pGq has |U | ď βµn, then G1 “ GrV pGq ∖ U s is p1 ´ 2βqµ-inseparable.
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Indeed, assume for a contradiction that this is not valid, then there exists X Ď

V 1 “ V pGq ∖ U with |X| ď
|V 1|

2 ď n
2 such that

eG1pX, V 1 ∖ Xq ă p1 ´ 2βqµ|X||V 1 ∖ X| .

Consider the partition of V pGq into the sets X and pV 1 ∖Xq Y U “ V pGq ∖X. We
have that

eGpX, V pGq ∖ Xq ă p1 ´ 2βqµ|X||V 1 ∖ X| ` |U ||X|

“ p1 ´ 2βqµ|X|p|V pGq| ´ |U | ´ |X|q ` |U ||X|

“ µ|X||V pGq ∖ X| ´ 2βµ|X||V pGq ∖ X| ` p1 ´ p1 ´ 2βqµq|U ||X| .

Since |V pGq ∖ X| ě n
2 , βµn ě |U |, and β ă 1

2 we have

2βµ|X||V pGq ∖ X| ě βµn|X| ě |U ||X| ě p1 ´ p1 ´ 2βqµq|U ||X| .

We derive that eGpX, V pGq ∖ Xq ă µ|X||V pGq ∖ X|, which is a contradiction.
In the following lemma we show that good graphs have a similar property.

Lemma 2.4.6. Given µ, δ, ζ ą 0, if G satisfies properties i. and ii. of good graphs
and X Ď V pGq is such that |X| ď mint

µ
4 , δ

2 , ζ
2 ,

2µ
?

ζ

5 un, then G1 “ GrV pGq ∖ Xs

with RG1 “ tU 1
v “ Uv X NG1pvq : v P V pG1qu satisfies properties i. and ii. of good

graphs with µ
2 , δ

2 , ζ
2 .

Moreover, given ϱ, ξ, η, ν ą 0, ϱ ď 1
16 , ν ď 1

4 , if G satisfies property iii. of
good graphs and X Ď V is such that |X| ď νn

2 , then G1 satisfies property iii.
with ϱ2

4 , ξ
2 , η, ν

2 .

Proof of Lemma 2.4.6. Given G satisfying properties i. and ii. and given X such
that |X| ď mint

µ
4 , δ

2 , ζ
2 ,

2µ
?

ζ

5 un, we check that G1 with RG1 has property i. of good
graphs. We have for any v P V pGq ∖ X, that

|X| ď
2µ

5
a

ζn “
µ

4

´

2
a

ζ ´
2
?

ζ

5

¯

n ď
µ

4 p|Uv| ´ |X|q ď
µ

4 |U 1
v| .

Property 2.4.5 gives us that each G1rU 1
vs is µ{2-inseparable. The number of triangles

in GrUvs containing a vertex in X is at most |X||Uv|2 ď δ
2n3, thus each G1rU 1

vs

contains at least δ
2n3 ě δ

2 |V pG1q|3 triangles.
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For property ii., observe that |EpGq ∖ EpG1q| ď |X|n ď
ζ
2n2 and if u, v P V pG1q

are such that uv P EpApR, ζqq, then |EpG1rU 1
usqXEpG1rU 1

vsq| ě
ζ
2n2. Thus for AG1 “

ApRG1 , ζ{2q and AG “ ApR, ζq, we have AG1 “ AGrV pGq∖Xs and |X| ď
µ
4 n implies

that AG1 is µ{2-inseparable.

Next consider G satisfying property iii. and |X| ď ν
2 n be given. We check that G1

satisfies property iii. with ϱ2

4 , ξ
2 , η, ν

2 , thus take A1 Ď V pG1q with |A1| ď ν
2 |V pG1q|

and F 1 Ď EpG1q with |F 1| ď
ϱ2

4 |V pG1q|2. Consider XF 1 Ď V pG1q and G1
A1,F 1 as in

property iii. and take

A “ A1
Y X and F “ tuv P EpGq : u P XF 1u Y F 1 ,

since |X| ď ν
2 n and |XF 1 | ď

ϱ
2n, we have that |A| ď νn and |F | ď ϱn2. Thus GA,F

contains a ξ-connectable fractional triangle factor with

W pfGA,F
q ě

n

3 ´ ηpn ´ |A|q “
n

3 ´ ηp|V pG1
q| ´ |A1

|q.

We check that xyz P TGA,F
implies xyz P TG1

A1,F 1
. Indeed, if xy P EpGA,F q,

then by the choice of A and F , we have x, y R A1 Y X Y XF 1 and xy R F 1, thus
xy P EpG1

A1,F 1q. We set fG1

A1,F 1
pxyzq “ fGA,F

pxyzq for xyz P TG1

A1,F 1
X TGA,F

and
fGA1,F 1 pxyzq “ 0 otherwise, then we have that W pfG1

A1,F 1
q “ W pfGA,F

q.

We check that this is a ξ
2 -connectable fractional triangle factor. We have the

robust neighbourhoods

RGA,F
“ tUA,F pvq “ Uv X NGA,F

pvq : v P V pGA,F qu and

RG1

A1,F 1
“ tU 1

A1,F 1pvq “ Uv X NG1

A1,F 1
pvq : v P V pG1

A1,F 1qu .

Take xy P EpGA,F q and x, y P UA,F pvq for ξ|V pGA,F q| different v P V pGA,F q. We
already observed that EpGA,F q Ď EpG1

A1,F 1q, thus x, y P NG1

A1,F 1
pvq and x, y P

U 1
A1,F 1pvq. Considering ν ď 1

4 and ϱ ď 1
16 , the number of different v P V pG1

A1,F 1q for
which x, y P UA1,F 1pvq is at least

ξ|V pGA,F q| ě ξpn ´ |X| ´ |A1
| ´ |XF |q ě ξ

´

1 ´
ν

2 ´
ν

2 ´
?

ϱ
¯

n ě
ξ

2 |V pG1
A1,F 1q| .

In Lemma 2.1.2, we require that the absorbing path PA starts with a triangle
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path x1x2x3x4 and in Theorem 2.2.1 we require P6, which is the 3rd power of a path
on 6 vertices. Here we show that a good graph has many of these structures.

Lemma 2.4.7. For every µ, δ ą 0 there are c1, c2 ą 0 such that if G “ pV, Eq

satisfies property i. of good graphs, then G contains c1n
4 triangle paths x1x2x3x4,

where all 5 edges are δ
2-connectable and c2n

6 third power of paths x1x2x3x4x5x6,
where x1x2 and x5x6 are δ

2-connectable.

Proof. Take c1 “ 3δ2 and c2 will be given by an application of Theorem 2.4.3.
Since the number of triangles in GrUvs is at least δn3, by a standard averaging

argument we have T 1 a set of triangles abc such that |T 1| ě δ
2n3 and abc is in at

least δ
2n different GrUvs. Therefore, all edges in abc are δ

2 -connectable.
For finding triangle paths x1x2x3x4, denote by dT 1pabq the number of triangles

in T 1 containing ab. A standard application of Cauchy-Schwartz gives us

ÿ

abPEpGq

d2
T 1pabq ě

2p3|T 1|q2

n2 ě
9δ2

2 n4 ,

and excluding vertex repetitions, there are at least 9δ2

3 n4 “ c1n
4 triangle paths

x1x2x3x4 with all 5 edges being δ
2 -connectable.

For finding the third power of paths, consider the set K4 of K4 “ abcv, where
abc P T 1 and abc Ď GrUvs, then |K4| ě

`

δ
2

˘2
n4 and all edges in abc are connectable.

Take a random partition V pGq “ V1 9YV2 9YV3 9YV4, where v P Vi with p “ 1{4. Let X

be the number of v1v2v3v4 P K4 with vi P Vi. We have that

EX ě
4!
44

´δ

2

¯2
n4

“
3δ2

128n4 .

Fix a partititon with at least 3δ2

128n4 such K4’s. By the pigeonhole principle there
is K1

4 Ď K4 with |K1
4| ě 3δ2

256n4, such that v1v2v3v4 P K1
4 iff vi P Vi and v1v2 is

δ
2 -connectable.

Define the partite hypergraph Gp4q on V pGp4qq “ V1 9YV2 9YV3 9YV4 and EpGp4qq “

K1
4. Theorem 2.4.3 gives us c2n

6 copies of Kp4qp2, 2, 1, 1q. Let xj, x1
j P Vj for j P r2s,

x3 P V3 and x4 P V4 be the vertices of such a Kp4qp2, 2, 1, 1q, then x1x2x3x4x
1
1x

1
2 Ď G

is such that every 4 consecutive vertices form a K4 and the first and last edges are
connectable, as desired.

We prove the Absorbing Path Lemma.
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Proof of Lemma 2.1.2. We are given µ, δ, ζ, ξ, cpδq ą 0. Apply Lemma 2.4.4 with
µ, δ, ζ, get ξ1, c1 ą 0 and L1. Take

ξ˚
“ min

!δ

2 , ξ1

)

and ξ1
“

ξ˚

2 .

Apply Lemma 2.1.1 with µ
2 , δ

2 , ζ
2 , ξ˚

2 , get c2 ą 0 and L2 (we also get a constant ξ2,
but here we do not require the moreover part of Lemma 2.1.1). Moreover c ą 0 is
given by an application of Theorem 2.4.3. Set

p1
ď min

! c1

24 ¨ 400 ¨ L8
1
,

c2

27p5 ` L2qp3L1 ` 1qL6
1
,
min

!

µ
4 , δ

4 , ζ
4 ,

µ
?

ζ

5 , ν
4 , ξ˚

2 , cpδq

2

)

4p5 ` L2qp3L1 ` 1qL6
1

)

,

p2
ď min

! c

4 ¨ 75 ,
c2

24p5 ` L2q
,
min

!

µ
4 , δ

4 , ζ
4 ,

µ
?

ζ

5 , ν
4

)

4p5 ` L2q

)

,

α0 “ 3c1p
1

8 , α “
p2c

4 and κ “
p2c

16 .

Let ν ą 0 be given. First we find the path PA and put it to the side. In the
remaining graph, we proceed in a very similar way to find PI and conclude the proof.

Fix a triangle path x1x2x3x4 given by Lemma 2.4.7. Let

A “ tpk1, k2, k3qξ˚-absorber Ď G : k1, k2, k3 P rL1su .

Consider a random choice A of absorbers in A, where each pk1, k2, k3qξ˚-absorber is
included independently with probability

pk1k2k3 “ p1n´5pk1`k2`k3q´4 .

We prove that with positive probability, A is such that the following holds.

(a ) For each k1, k2, k3 P rL1s, the number of pk1, k2, k3qξ˚-absorbers in A is less
than 3L3

1p
1n.

(b ) For every x, y, z P V pGq, there exist k1, k2, k3 P rL1s such that the number
of pk1, k2, k3qξ˚-absorbers for x, y, z in A that do not intersect x1x2x3x4 is at
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least c1p1n
4 .

(c ) The number of pairs of absorbers in A that share at least one vertex is less
than c1p1n

8 .

For property (a ), let Apk1, k2, k3q be the number of pk1, k2, k3qξ˚-absorbers in A.
We have that EApk1, k2, k3q ď n5pk1`k2`k3q`5pk1k2k3 “ p1n and by Markov’s inequality,

P
“

Apk1, k2, k3q ě 3L3
1p

1n
‰

ď P
“

Apk1, k2, k3q ě 3L3
1EApk1, k2, k3q

‰

ď
1

3L3
1
.

Consequently the union bound gives us that property (a ) holds with probability at
least 2

3 .
For property (b ), fix x, y, z P V pGq and Lemma 2.4.4 assures k1, k2, k3 P rL1s

such that the number of pk1, k2, k3qξ˚-absorbers for x, y, z is at least c1n
5pk1`k2`k3q`5.

At least half of these absorbers do not intersect x1x2x3x4. Let Axyz be the number
of pk1, k2, k3qξ˚-absorbers for x, y, z in A not intersecting x1x2x3x4. We have by
Chernoff’s inequality, that

P

„

Axyz ď
c1p

1n

4

ȷ

ď P

„

Axyz ď
EAxyz

2

ȷ

ď exp
ˆ

´
c1p

1n

16

˙

.

In view of the union bound for all triples x, y, z P V pGq, we derive that a.a.s. A

enjoys property (b ).
For property (c ), fix k1, k2, k3, k1

1, k1
2, k1

3 P rL1s. For a pk1, k2, k3qξ˚-absorber A1,
the number of pk1

1, k1
2, k1

3qξ˚-absorbers A2 that intersect A1 is at most

p5pk1 ` k2 ` k3q ` 5qp5pk1
1 ` k1

2 ` k1
3q ` 5qn5pk1

1`k1
2`k1

3q`4
ď 400L2

1n
5pk1

1`k1
2`k1

3q`4 .

The number of intersecting pairs pA1, A2q is at most

400L2
1n

5pk1`k2`k3`k1
1`k1

2`k1
3q`9 .

Let Xpk1, k2, k3, k1
1, k1

2, k1
3q be the number of such intersecting pairs in A, we have

EXpk1, k2, k3, k1
1, k1

2, k1
3q ď pk1k2k3pk1

1k1
2k1

3
¨ 400L2

1n
5pk1`k2`k3`k1

1`k1
2`k1

3q`9

ď 400L2
1p

12n ď
c1p

1n

24L6
1

.
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Since this upper bound is independent of k1, k2, k3, k1
1, k1

2, k1
3, for the number of

pairs of absorbers in A sharing a vertex,

X “
ÿ

k1,k2,k3,k1
1,k1

2,k1
3PrL1s

Xpk1, k2, k3, k1
1, k1

2, k1
3q ,

we have EX ď
c1p1n

24 and Markov’s inequality yields

P

„

X ě
c1p

1n

8

ȷ

ď
1
3 .

From the previous observations we conclude that there exists an instance set of
absorbers satisfying properties (a ), (b ) and (c ). Removing one absorber for each
intersecting pair in this instance yields a set of disjoint absorbers B satisfying (a )
and

(b1) for every x, y, z P V pGq, there exist k1, k2, k3 P rL1s such that there are at
least c1p1n

8 “ α0n
3 different pk1, k2, k3qξ˚-absorbers for x, y, z in B that are also

disjoint from the triangle path x1x2x3x4.

The next step is to obtain PA by “connecting all absorbers from B”. Observa-
tion 2.4.2 tells us that a pk1, k2, k3qξ˚-absorber in B consists of k1`k2`k3`1 ď 3L1`1
triangle paths on 5 vertices with ξ˚-connectable ends. Let QpBq be the set of all
such paths, considering (a ) we have that

|QpBq| ď L3
1 ¨ 3L3

1p
1np3L1 ` 1q ď

c2

5 ¨ 8n . (2.4.1)

The paths in QpBq will be connected by repeated applications of Lemma 2.1.1.
Consider a maximal subset Q1 Ď QpBq such that there exists a path PQ1 in G on
at most p5 ` L2q|Q1| vertices that contains every path Q of Q1 and is disjoint from
each path in QpBq ∖ Q1. We shall show that Q1 “ QpBq.

Otherwise, let Q P QpBq ∖ Q1 and let xy, uv be ending pairs of Q and PQ1

respectively. We have that

|V pPQ1q Y V pQq| ď p5 ` L2q|Q1
| ` 5

(2.4.1)
ď p5 ` L2qp3L1 ` 1q3L6

1p
1n ` 5 ď

c2

8 n .

(2.4.2)
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By Lemma 2.1.1, there is ℓ ď L2 and at least c2n
ℓ different pxy, uvq-triangle walks

in G with ℓ inner vertices, at least half of these are triangle paths. At most c2
8 nℓ of

these paths intersect V pPQ1q Y V pQq and at most c2
8 nℓ intersect V pQpBq∖ pQ1 Y Qqq.

Then PQ1 can be extended to a path PQ1YtQu with number of vertices at most

|V pPQ1q| ` |Q| ` L2 ď p5 ` L2qp|Q1
| ` 1q “ p5 ` L2q|Q1

Y tQu| .

Take PA “ PQpBq, equation (2.4.2) gives us that

|V pPAq| ď min
!µ

4 ,
δ

4 ,
ζ

4 ,
µ

?
ζ

5 ,
ξ˚

2 ,
cpδq

2 ,
ν

4

)

n ´ 3 ,

and we observe that the path PA is α0-absorbing. In fact, given any set X Ď V pGq∖

V pPAq with |X| ď α0n divisible by 3, it can be split in up to α0n
3 triples px, y, zq

and owing to property (b1) and the disjointness of the absorbers in PA, we may
inductively absorb all triples, as in Observation 2.4.2.

Consider G1 “ GrV pGq ∖ V pPAqs and locate PI in G1. Lemma 2.4.6 gives us
that G1 with RG1 satisfies properties i. and ii. of good graphs with µ

2 , δ
2 , ζ

2 . Moreover
if ab P EpG1q Ď EpGq and ab is ξ˚-connectable in G, then a, b R V pPAq and ab P Uw

for ξ˚n different w. For w R V pPAq, we have a, b P Uw XNG1pwq. Since |V pPAq| ď
ξ˚n

2 ,
if ab is ξ˚-connectable in G, it is ξ˚

2 -connectable in G1.
For every i P rms, set I 1

i “ Ii ∖ V pPAq and since |V pPAq| ă
cpδq

2 n we have
that the number of triangles with a ξ˚

2 -connectable edge in G1rI 1
is is at least cpδq

2 n3.
Theorem 2.4.3 gives us at least cn5 disjoint triangle paths on 5 vertices with ξ˚

2 -
connectable end pairs in G1rI 1

is. Thus for each i P rms, let

Bpiq “

!

y1y2y3y4y5 : disjoint triangle path with ξ˚

2 -connectable ends in G1
rI 1

is

)

and |Bpiq| ě cn5 .

We carry out a similar argument as before; we fix the probability p “ p2n´4.
Consider a random set B of triangle paths on 5 vertices, P5, each included inde-
pendently with probability p. We show that with positive probability B enjoys the
following properties.

(a ) The number of P5 in B is at most 3p2n.
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(b ) For all i P rms the number of P5 P B such that P5 P Bpiq is least p2c
2 n.

(c ) The number of pairs pP5, P 1
5q sharing a vertex is at most 75p22n ď

p2c
4 n.

Similarly as in the selection of A for PA, it follows from Markov’s inequality that
each of properties (a ) and (c ) holds with probability at least 2

3 .
For property (b ), let Xi (i P rms) be the number of P5 P B such that P5 P Bpiq.

We have that EXi ě p2cn. Chernoff’s inequality yields,

P
”

Xi ď
p2c

2 n
ı

ď exp
´

´
p2c

8 n
¯

.

Since m ď 2κn, the union bound over all i P rms gives that a.a.s. B enjoys property (b ).
Hence, there exists a set of triangle paths on 5 vertices satisfying properties (a ), (b ),
and (c ). After deleting one such triangle path for each intersecting pair pP5, P 1

5q, we
arrive at a set B of disjoint triangle paths on 5 vertices satisfying (a ) and

(b1) For all i P rms, we have |B X Bpiq| ě
p2c
4 n “ αn.

Let B1 “
Ť

iPrms
B XBpiq and B˚ Ď B1 be maximal such that there is a triangle path

PB˚ Ď G1 containing all P5 P B˚, being disjoint from B1∖B˚, having ξ˚

2 -connectable
end pairs xy, x1y1 and |V pPB˚q| ď p5 ` L2q|B˚|.

We show that B˚ “ B1, otherwise take y1y2y3y4y5 P B1 ∖ B˚, Lemma 2.1.1 gives
us ℓ ď L2 and c2

2 nℓ different px1y1, y1y2q-triangle paths in G1 with ℓ inner vertices.
We have that

|V pPB˚q| ď p5 ` L2q|B1
|

(a )
ď p5 ` L2qp3p2nq ď

c2

8 n .

Thus we have at least c2
4 nℓ different px1y1, y1y2q-triangle paths that are disjoint

from PB˚ and each path in B1 ∖ pB˚ Y ty1y2y3y4y5uq. Thus we may use such a
px1y1, y1y2q-triangle path to get a pxy, y4y5q-triangle path PB˚Yty1y2y3y4y5u, such that

|V pPB˚Yty1y2y3y4y5uq| ď |V pPB˚q| ` L2 ` 5 ď p5 ` L2q|B˚
Y ty1y2y3y4y5u| ,

contradicting the maximality of B˚.
Set PI “ PB1 and

|V pPIq| ď p5 ` L2q|B1
|

(a )
ď p5 ` L2qp3p2nq ď min

!µ

4 ,
δ

4 ,
ζ

4 ,
µ

?
ζ

5 ,
ν

4

)

n ´ 3 .
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Property (b1) gives us that for each Ii, there are at least αn different y1y2y3y4y5 Ď PI

with y1, y2, y4, y5 P Ii.

2.5 Covering

For step 2 in our application of the absorption method, we will use property iii. of
good graphs and the Regularity Lemma. Our aim is to obtain a triangle factor in
the reduced graph and from each pε, dq-regular triangle ijk in this factor, extract a
triangle path covering of the vertices in Vi, Vj, Vk.

In order to transform a fractional triangle factor in the reduced graph into an
(integer) triangle factor, we need to refine the regular partition. We use the following
lemma.

Lemma 2.5.1. For every ε ą 0, γ1, γ2 ě 0, ε
56 ě γ1 ą 0, integers t ą 0 and spiq ě 0

for i P rts, and weights fipjq ą 0 for j P rspiqs such that
ř

jPrspiqs
fipjq ď 1, the

following is true for sufficiently large n.
For any graph G on n vertices and partition P “ tV0, V1, . . . , Vtu of V pGq with

p1 ´ γ1q
n

t
ď |Vi| ď p1 ` γ2q

n

t
,

there exists a refinement P 1 “ tV0u Y tVi0, Vij : i P rts, j P rspiqsu with
Ť

0ďjďspiq Vij “

Vi such that,

i. for i P rts and j P rspiqs,

p1 ´ γ1
qp1 ´ γ1q

n

t
¨ fipjq ď |Vij| ď p1 ` γ1

qp1 ` γ2q
n

t
¨ fipjq ,

ii. if pVi, Vi1q is pε, dii1q-regular, then pVij, Vi1j1q is p5ε1{4, dii1q-regular for all j P

rspiqs, j1 P rspi1qs.

iii. if we are given c ą 0 and for each v P V pGq, a set Uv Ď V pGq such that
|Uv X Vi| ě c|Vi|, then |Uv X Vij| ě

1´γ1

1`γ1 c|Vij| for all j P rspiqs.

Moreover, if
ř

jPrspiqs
fipjq “ 1, then Vi0 “ ∅.

For the proof of Lemma 2.5.1, we use an equivalence between a pair being
pε, dq-regular and having small number of homomorphisms of C4 in the bipartite
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graph induced by the pair. We use the following definition.

Definition 2.5.2. Let G “ pV, Eq be a graph and X, Y Ď V be non-empty and
disjoint subsets of vertices. Given ε ą 0 and d P r0, 1s, the pair pX, Y q is pε, dq-
minimal, if

epX, Y q ě pd ´ εq|X||Y | and hompC4, X, Y q ď pd4
` εq|X|

2
|Y |

2 ,

where hompC4, X, Y q denotes the number of partite graph homomorphisms from C4

to GrX, Y s for a fixed ordered bipartition of C4.

We use the following equivalence.

Theorem 2.5.3. For every graph G “ pV, Eq and non-empty disjoint subsets X, Y Ď

V , and ε ą 0 and d P r0, 1s the following holds.

i. If the pair pX, Y q is pε, dq-regular, then it is p4ε, dq-minimal.

ii. If the pair pX, Y q is pε, dq-minimal, then it is p3ε1{4, dq-regular.

We now prove that we can refine the regular partition and keep the regularity in
the subpairs.

Proof of Lemma 2.5.1. We are given ε ą 0, γ1, γ2 ě 0, ε
56 ě γ1 ą 0, integers

t ą 0 and spiq ě 0 for i P rts, and weights fipjq ą 0 for j P rspiqs such that
ř

jPrspiqs
fipjq ď 1. We are also given G on large enough n vertices and a partition P .

Take a random refinement P 1 of P , where each v P Vi is included in Vij indepen-
dently with probability fipjq. We shall derive from the sharp concentration of the
binomial distribution, that a.a.s. P 1 satisfies properties i., ii. and iii. of the lemma.

Chernoff’s inequality gives for fixed i P rts, j P rspiqs that

P
´∣∣∣|Vij| ´ |Vi|fipjq

∣∣∣ ě γ1
|Vi|fipjq

¯

ď 2 exp
ˆ

´
γ12fipjqp1 ´ γ1qn

3t

˙

.

Therefore by the union bound, a.a.s. for all i P rts and j P rspiqs (spiq ď p1 ` γ2qn
t
),

we have that

p1 ´ γ1
q |Vi|fipjq ď |Vij| ď p1 ` γ1

q |Vi|fipjq. (2.5.1)
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For property ii. of the lemma, we appeal to Theorem 2.5.3. We have that pVi, Vi1q

is pε, dii1q-regular, then part i. of Theorem 2.5.3 gives that

E hompC4, Vij, Vi1j1q “ hompC4, Vi, Vi1qfipjq
2fi1pj1

q
2

ď pd4
ii1`4εq|Vi|

2
|Vi1 |

2fipjq
2fi1pj1

q
2.

Next we apply the Azuma-Hoeffding inequality for establishing the concentration
of hompC4, Vij, Vi1j1q. Note that the inclusion or exclusion of a vertex in Vij or Vi1j1

changes hompC4, Vij, Vi1j1q by at most maxt|Vi||Vi1 |2, |Vi1 ||Vi|
2u, thus we obtain

P
`

hompC4, Vij, Vi1j1q ě pd4
ii1 ` 5εq|Vi|

2
|Vi1 |

2fipjq
2fi1pj1

q
2˘

ď exp
ˆ

´
ε2|Vi|

4|Vi1 |4fipjq4fi1pj1q4

4|Vi|
5|Vi1 |2

˙

ď exp
ˆ

´
ε2fipjq4fi1pj1q4p1 ´ γ1q2n

4p1 ` γ2qt

˙

.

Therefore a.a.s. for all ε-regular pVi, Vi1q and j P rspiqs, j1 P rspi1qs, we have that

hompC4, Vij, Vi1j1q ď pd4
ii1 ` 5εq|Vi|

2
|Vi1 |

2fipjq
2fi1pj1

q
2. (2.5.2)

Similarly, another application of the Azuma-Hoeffding inequality gives us that
a.a.s. for all ε-regular pVi, Vi1q and j P rspiqs, j1 P rspi1qs, we have that

epVij, Vi1j1q ě pdii1 ´ 2εq|Vi||Vi1 |fipjqfi1pj1
q . (2.5.3)

For property iii. of the lemma, fix v P V pGq, i P rts and j P rspiqs. An application
of the Chernoff’s inequality implies

P p|Uv X Vij| ď p1 ´ γ1
qc|Vi|fipjqq ď exp

ˆ

´
γ12cp1 ´ γ1qfipjqn

2t

˙

.

By the union bound, a.a.s. for all v P V pGq, i P rts, j P rspiqs, we have that

|Uv X Vij| ě p1 ´ γ1
qc|Vi|fipjq . (2.5.4)

Consequently there exists a refinement P 1 satisfying (2.5.1), (2.5.2), (2.5.3) and
(2.5.4). Thus for all ε-regular pVi, Vi1q and j P rspiqs, j1 P rspi1qs,

hompC4, Vij, Vi1j1q ď
pd4

ii1 ` 5εq

p1 ´ γ1q4 |Vij|
2
|Vi1j1 |

2 ,
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and

epVij, Vi1j1q ě
pdii1 ´ 2εq

p1 ` γ1q2 |Vij||Vi1j1 | .

Since γ1 ď ε{56, we have

dii1 ´ 2ε

p1 ` γ1q2 ě
dii1 ´ 2ε

1 ` 3γ1
ě dii1 ´ 3ε and d4

ii1 ` 5ε

p1 ´ γ1q4 ď
d4

ii1 ` 5ε

1 ´ 8γ1
ď d4

ii1 ` 6ε .

Thus pVij, Vi1j1q is p6ε, dii1q-minimal. Consequently part ii. of Theorem 2.5.3 gives
that pVij, Vi1j1q is p5ε1{4, dii1q-regular.

Next we prove the Covering Lemma.

Proof of Lemma 2.1.3. We are given ξ, α ą 0 and cϱ ě 1. Take

0 ă η ď
α

8 , ϱ ď min
!´ ξ

cϱ

¯8
,
´ η

cϱ

˘8
,

1
16

)

and

0 ă d0 ď ϱ, ε “ min
!´d3

0
14

¯8
,
´α

6

¯16)
, t0 “

1
ε

.

Apply the Regularity Lemma with ε
2 , t0 and get n0, T0, take

c “
45T 9

0
d3

0ε
3η3 .

Let η
2 ě ν ą 0 and G with RG satisfying property iii. with ξ, ν, ϱ, η be given.

Consider the subgraphs GC and GC of G on the same vertex set V pGq, where GC

contains the ξ-connectable edges and EpGCq “ EpGq ∖ EpGCq. By the Regularity
Lemma there is a partition P “ tV0, . . . , Vtu of V pGq with t0 ď t ď T0 which
is ε

2 -regular for both GC and GC . Thus P is a ε-regular partition for G.
We remove a set F of edges in EpGq, namely those which are incident to V0,

inside partition classes, between pairs which are not ε-regular, pairs with density less
than d0 in G, and for pairs with density less than d0 in GC , delete the ξ

2 -connectable
edges. We have,

|F | ď εn2
` t

n2

2t2 ` εt2 n2

t2 ` d0
n2

2 ď
5ε ` d0

2 n2
ď ϱn2.

Take ∅ “ A Ď V pGq and consider XF , GA,F as in property iii. of good graphs
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and get a ξ-connectable fractional triangle factor fGA,F
of weight

W pfGA,F
q ě

n

3 ´ ηn .

Take the cleaned graph G1 “ GpV pGq, EpGq∖F q, since GA,F Ď G1 we may view fGA,F

also as a fractional triangle factor for G1.

Consider the reduced graph R “ RpP , d0, εq. Since ε ă
d3

0
3 , it follows from the

triangle counting lemma that TG1rVi,Vj ,Vks ‰ ∅ if and only if ijk P TR. Define a
fractional triangle factor fR of R in the following way. For distinct i, j, k P rts,
let W pijkq be the total weight of the triangles in G1rVi, Vj, Vks under fGA,F

. Set

fRpijkq “ W pijkq
t

n
.

We check that for every i0 P rts, we have that
ř

i0jkPTR
fRpi0jkq ď 1. Since the

sum of weights of fGA,F
in a vertex is at most 1 and |Vi0 | ď n

t
,

ÿ

i0jkPTR

fRpi0jkq “
ÿ

i0jkPTR

W pi0jkq
t

n
“

t

n
¨
ÿ

vPVi0

ÿ

vxyPTG1

fGA,F
pvxyq ď

t

n
¨

n

t
“ 1.

Moreover,
W pfRq “ W pfGA,F

q
t

n
ě

´1
3 ´ η

¯

t .

Consider a refined partition P 1 in the following way. Let Tη,R be all triangles
T P TR with fRpT q ě

η
t2 and for i P rts, let Tη,Rpiq “ tT i

1, . . . , T i
spiqu be all triangles

in Tη,R containing i. Apply Lemma 2.5.1 with ε, γ1 “ γ2 “ 0, γ1 “ ε
56 , t, spiq and

for j P rspiqs, the weight fipjq “ fRpT i
j q (here we set n1 “ |V pGq ∖ V0|). We get

P˚ “ tV0u Y tVi0, ViT i
j
: i P rts, j P rspiqsu such that

i. p1 ´ γ1q n1

t
fRpT i

j q ď |ViT i
j
| ď p1 ` γ1q n1

t
fRpT i

j q;

ii. If pVi, Vi1q is pε, dq-regular, then for any j P rspiqs, j1 P rspi1qs, the pair
pViT i

j
, Vi1T i1

j1
q is p5ε1{4, dq-regular.
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For the number of vertices in
Ť

iPrts
Vi0, we observe that

ÿ

iPrts

|Vi0| ď
ÿ

iPrts

´n1

t
´

ÿ

T PTη,Rpiq

p1 ´ γ1
qfRpT q

n1

t

¯

ď
n1

t

´

t ´
ÿ

iPrts

ÿ

T PTη,Rpiq

fRpT q ` γ1
ÿ

iPrts

ÿ

T PTη,Rpiq

fRpT q

¯

ď
n1

t

´

t ´ 3
ÿ

T PTR

fRpT q ` 3
ÿ

T PTR∖Tη,R

fRpT q ` 3γ1
ÿ

T PTR

fRpT q

¯

ď
n1

t

´

t ´ p1 ´ 3ηqt ` t3 η

t2 ` γ1t
¯

“ p4η ` γ1
qn1 .

Take V 1
0 “ V0 Y

Ť

iPrts
Vi0 and set P 1 “ tV 1

0u Y tViT i
j
: i P rts, j P rspiqsu.

If ijk “ T P Tη,R, then there is uiujuk P TG1rVi,Vj ,Vks with fGA,F
puiujukq ą 0.

Since fGA,F
is a ξ-connectable fractional triangle factor in G, we have that one of its

edges is connectable, say uiuj P EpGCq.

We have GA,F Ď G1 and G1 only contains ξ-connectable edges between dense
pairs in GC . Thus pViT , VjT q is p5ε1{4, dq-regular in GC for some d ě d0. The number
of triangles in TG1rViT ,VjT ,VkT s with a ξ-connectable edge between ViT , VjT is at least

pd3
0 ´ 15 4

?
εq|ViT ||VjT ||VkT | ě pd3

0 ´ 15 4
?

εqp1 ´ γ1
q

3
p1 ´ εq

3
´ η

T 2
0

¯3´n

t

¯3
ě c0

´n

t

¯3
.

Consider the 3-uniform partite hypergraph G
p3q

1 with V pG
p3q

1 q “ ViT 9YVjT 9YVkT

and vivjvk P EpG
p3q

1 q iff vivjvk P TG1rViT ,VjT ,VkT s with vivj P EpGCq. The number of
hyperedges containing a pair with codegree at most c0n

9t
is at most

c0n

9t
p|ViT ||VjT | ` |ViT ||VkT | ` |VjT ||VkT |q ď

c0

3 p1 ` γ1
q

2
´n

t

¯3
ď

c0

2

´n

t

¯3
.

This assures a tight path P
p3q

1 Ď G
p3q

1 with |V pP
p3q

1 q| “ c0n
9t

` 2. We may always
start P

p3q

1 with a ξ-connectable pair and the last pair in P
p3q

1 Ď G
p3q

1 can be made
ξ-connectable by possibly removing the last vertex. Thus we have a tight path P

p3q

1 Ď

G
p3q

1 with |V pP
p3q

1 q| ě c0n
9t

` 1 and ξ-connectable ends.

For s ě 1, consider

G
p3q

s`1 “ Gp3q
s rV pGp3q

s q ∖ V pP p3q
s qs and V pG

p3q

s`1q “ V
ps`1q

iT 9YV
ps`1q

jT 9YV
ps`1q

kT .
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While |V
ps`1q

iT | ě
4

?
5ε1{4|ViT | and similarly for |V

ps`1q

jT | and |V
ps`1q

kT |, we have that
each pair among V

ps`1q

iT , V
ps`1q

jT , V
ps`1q

kT is p
?

5ε1{4, dq-regular for some d ě d0. Thus
the number of ξ-connectable triangles is at least

pd3
0 ´ 3

?
5ε1{4q|V

psq

iT ||V
psq

jT ||V
psq

kT |

ě pd3
0 ´ 3

?
5ε1{4qp

4
?

5ε1{4q
3
p1 ´ γ1

q
3
p1 ´ εq

3
´ η

T 2
0

¯3´n

t

¯3

ě
d3

0
2 ε3 1

2

´ η

T 2
0

¯3´n

t

¯3
“ c1

´n

t

¯3
.

Repeating the previous procedure we get a tight path P
p3q

s`1 Ď G
p3q

s`1 with |V pP
p3q

s`1q| ě

c1n
9t

` 1 and ξ-connectable ends. Observe that each P
p3q

s`1 is a triangle path in
GrViT 9YVjT 9YVkT s.

The number of disjoint triangle paths we obtain in this way is at most

|V pG
p3q

1 q|
9t

c1n
ď 3p1 ` γ1

q
n

t

9t

c1n
ď

27p1 ` γ1q

c1
.

They cover all but at most 4
?

5ε1{4|ViT | vertices of ViT and similarly for VjT , VkT .

Repeat the procedure for each triangle in Tη,R. We arrive at a collection P of
disjoint triangle paths with ξ-connectable ends such that

|P | ď
T 3

0
3 ¨

27p1 ` γ1q

c1
ď c .

The triangle paths in P cover all but at most

4
?

5ε1{4
ÿ

ijk“T PTη,R

p|ViT | ` |VjT | ` |VkT |q ` |V 1
0 | ď p

4
?

5ε1{4 ` 4η ` 2εqn

ď p3 16
?

ε ` 4ηqn ď αn

vertices of G.
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2.6 Embedding spanning graphs of small band-

width

In order to show that the good property implies the existence of spanning 3-chromatic
subgraphs with bounded degree and sublinear bandwidth, we follow the approach
in [20]; that is, we show that the reduced graph contains the 2nd power of a
Hamiltonian cycle and use it for applying the blow-up lemma.

Theorem 2.6.1 (Blow-up Lemma (Theorem 1.4 in [18])). For all ∆, ∆R, κ and
d ą 0 there exist ε, α ą 0 such that for every t there is n0 such that the following
holds.

For every n1, . . . , nt with n0 ď n “
ř

ni and ni ď κnj for all i, j P rts, assume
that we are given graphs R, R˚ with V pRq “ rts, ∆pRq ă ∆R and R˚ Ď R, and
graphs G, H on V pGq “ V1 9Y . . . 9YVt and V pHq “ W1 9Y . . . 9YWt with

(G1 ) |Vi| “ ni for every i P rts,

(G2 ) pViqiPrts is pε, dq-regular on R, and

(G3 ) pViqiPrts is pε, dq-super-regular on R˚.

Further let ∆pHq ď ∆, and let there be a function f : V pHq Ñ rts with f´1piq “ Wi

and a set X Ď V pHq with

(H1 ) |X X Wi| ď αni,

(H2 ) |Wi| ď ni for every i P rts,

(H3 ) for every edge tu, vu P EpHq we have tfpuq, fpvqu P EpRq,

(H4 ) for every edge tu, vu P EpHq ∖ EpHrXsq we have tfpuq, fpvqu P EpR˚q.

Then H Ď G.

When preparing G for the blow-up lemma, after showing that the reduced graph
contains the 2nd power of a Hamiltonian cycle, we want to determine the graphs R

and R˚. In our case, R will be a ladder.
A graph L on 3t vertices V pLq “

Ť

iPrts
tai, bi, ciu is a ladder when aibici are

triangles and between aibici and ai`1bi`1ci`1 for i P rts, with at`1bt`1ct`1 “ a1b1c1,
we have all edges, except aiai`1, bibi`1, cici`1.
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Theorem 2.6.2 (Lemma for G). For every µ, δ, ζ, ξ ą 0, there exist η, ϱ, ν ą 0,
d0 ą 0 such that for ε ą 0, there is ε ě ε1 ą 0, t1 and n0 such that the following
holds.

If G on n ě n0 vertices is pµ, δ, ζ, ϱ, ξ, η, νq-good and AG is complete, there is a
partition

V pGq “
ď

iPrt1s

pVai
9YVbi

9YVci
q ,

and a ladder L with V pLq “
Ť

iPrt1s
tai, bi, ciu, such that

(g1 ) for any i P rt1s, we have 0 ď ||Vai
| ´ |Vbi

||, ||Vai
| ´ |Vci

||, ||Vci
| ´ |Vbi

|| ď 1,

(g2 ) p1 ´
?

d0q n
3t1

ď |Vai
|, |Vbi

|, |Vci
| ď p1 `

?
d0q n

3t1
,

(g3 ) G is pε1, d0q-regular on L` “ pV pLq, EpLq Y ta1a2, b2b3, c3c4uq,

(g4 ) G is pε1, d0,
d0
8 q-super-regular on L.

For preparing H, we want to determine a homomorphism that maps V pHq into
vertices of the ladder. While defining the homomorphism, we follow the bandwidth
order of H and we watch out that the sizes of images and partition classes of V pGq

almost match, that is possible when the bandwidth is small enough. We get the
following lemma.

Lemma 2.6.3 (Lemma for H). For every α, γ1 ą 0, integers t and nai
, nbi

, nci

(i P rts) such that
ř

iPrts
pnai

` nbi
` nci

q “ n, n
2t

ď nai
` nbi

` nci
ď n

t
and

|nai
´ nbi

|, |nai
´ nci

|, |nbi
´ nci

| ď 1 ,

there exists β ą 0 such that the following holds.
For H on n vertices with χpHq ď 3 and bwpHq ď βn and for L a ladder

with V pLq “
Ť

iPrts
tai, bi, ciu, we have a homomorphism f : V pHq Ñ V pLq and a set

of special vertices X Ď V pHq such that

(h1 ) for every i P rts, ||f´1paiq| ´ nai
|, ||f´1pbiq| ´ nbi

|, ||f´1pciq| ´ nci
| ď 3γ1 n

3t
,

(h2 ) for every i P rts, |X X f´1paiq|, |X X f´1pbiq|, |X X f´1pciq| ď αn
3t

,

(h3 ) for every uv P EpHrV pHq∖Xsq, we have fpuqfpvq P Epaibiciq for some i P rts.
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The last step in the preparation for the blow-up lemma is to adjust the sizes of
the partition classes of G according to the images of the homomorphism from H

into the ladder.

Lemma 2.6.4. Let G on n vertices with V pGq “
Ť

iPrts
pVai

9YVbi
9YVci

q and a ladder L

satisfying properties (g2 ), (g3 ), (g4 ) of Lemma 2.6.2 with ε, d0 ą 0 be given. There
exists γ˚ ą 0 such that for any integers mai

, mbi
, mci

pi P rtsq with
řt

i“1pmai
` mbi

`

mci
q “ n and

||Vai
| ´ mai

|, ||Vbi
| ´ mbi

|, ||Vci
| ´ mci

| ď γ˚ n

3t
,

there is V pGq “
Ť

iPrts
pV 1

ai
9YV 1

bi
9YV 1

ci
q satisfying that G is p2ε, d0q-regular on L`, that

G is p2ε, d0,
d0
34q-super-regular on the triangles aibici of the ladder, and

|V 1
ai

| “ mai
, |V 1

bi
| “ mbi

, |V 1
ci

| “ mci
.

These lemmas will be proven in the following sections. Now we show how they
can be combined to prove our desired bandwidth result.

Theorem 2.6.5. For every µ, δ, ζ, ξ ą 0 and positive integer ∆, there exist β, η, ϱ, ν ą

0 and n0 such that the following holds.

If G on n ě n0 vertices is pµ, δ, ζ, ϱ, ξ, η, νq-good and AG is complete, if H on n

vertices is such that χpHq ď 3, bwpHq ď βn and ∆pHq ď ∆, then H is contained
in G.

Proof. Let µ, δ, ζ, ξ ą 0 and ∆ be given. Apply Lemma 2.6.2 and get η0, ϱ, ν ą 0
d0 ą 0. Set ∆R “ 6, κ “ 3 and apply Lemma 2.6.1 to get εpd0q, α ą 0. For εpd0q,
Lemma 2.6.2 gives us εpd0q ě ε1 ą 0, t, n0. For t, Lemma 2.6.1 gives is n1

0.
We are given G on n ě maxtn0, n1

0u vertices such that G is pµ, δ, ζ, ϱ, ξ, η, νq-
good and AG is complete. According to Lemma 2.6.2, we get a partition V pGq “
Ť

iPrts
tVai

, Vbi
, Vci

u and ladder L. Apply Lemma 2.6.4 for G and L and get γ˚ ą 0.
Apply Lemma 2.6.3 with

γ1
“

γ˚

3 , γ, α1
“ αp1 ´

a

d0 ´ 3γ1
q, t, and nai

“ |Vai
|, nbi

“ |Vbi
|, nci

“ |Vci
| ,

to get β ą 0.
Let H on n vertices such that χpHq ď 3, bwpHq ď βn and ∆pHq ď ∆.
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Lemma 2.6.3 gives us a homomorphism f : V pHq Ñ V pLq and X Ď V pHq. Set

|f´1
paiq| “ mai

, |f´1
pbiq| “ mbi

, |f´1
pciq| “ mci

.

Property (h1 ) of the homomorphism gives us that ||Vai
| ´ mai

| ď γ˚ n
3t

, similarly
to bi and ci. Lemma 2.6.4, gives us V pGq “

Ť

iPrts
pV 1

ai
9YV 1

bi
9YV 1

ci
q.

We note that V pGq “
Ť

iPrts
pV 1

ai
9YV 1

bi
9YV 1

ci
q with R “ L and R˚ “ 9

Ť

iPrts
Lrtai, bi, cius

and V pHq “
Ť

iPrts
pf´1paiq 9Yf´1pbiq 9Yf´1pciqq satisfy the conditions of Lemma 2.6.1.

Indeed, properties (g3 ) and (g4 ) give us (G2 ) and (G3 ). Since f is a homomorphism,
we get (H3 ) and property (h3 ) gives (H4 ).

For the conditions concerning the sizes of the partition classes, note that |V 1
ai

| “

|f´1paiq| (satisfying (H2 )). To check property (H1 ), note that (h1 ) ||f´1paiq| ´

nai
|| ď 3γ1 n

3t
and (g2 ) nai

ě p1 ´
?

d0q n
3t

give us |f´1paiq| ě p1 ´
?

d0 ´ 3γ1q n
3t

and
(h2 ) gives us (H1 ). Moreover, assuming

?
d0 ` 3γ1 ď 1

2 ,

|f´1paiq|

|f´1pbiq|
ď

1 `
?

d0 ` 3γ1

1 ´
?

d0 ´ 3γ1
ď 3 “ κ .

Therefore H Ď G.

2.6.1 Lemma for G

When preparing G for the blow-up lemma, we take a regular partition of G such
that the reduced graph inherits the properties of good graphs from G and then
we find the 2nd power of a Hamiltonian cycle in the reduced graph. In order to
get a ladder, given the 2nd power of a Hamiltonian cycle, we exchange each vertex
for 3 independent vertices. We make every edge of the ladder super-regular, by
moving vertices to the exceptional class V0 of our regular partition. Then we need
to redistribute the exceptional class V0 using the special paths PI in the 2nd power
of the Hamiltonian cycle, thus we use the following sets.

Given c ą 0, a graph G with RG and a partition P “ tV0, V1, . . . , Vtu of V pGq,
for each v P V pGq we define

IP,G
c pvq “ ti P rts : |Uv X Vi| ě c|Vi|u .

These are the classes that significantly intersect the robust neighbourhood of v.
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When applying the Theorem 1.1.5 for the reduced graph, we will give the sets
IP,G

c as inputs, but the number of such sets must be at most 2κt, where t is the
number of vertices in the reduced graph. For this technical reason, we first exchange
the vertices in the reduced graph for independent sets of size 1

κ
. We define the

complete s-blow-up of a graph G to be the graph Gs with V pGsq “ 9
Ť

vPV pGq
Vv,

where Vv “ tvp1q, . . . , vpsqu is independent and for each uv P EpGq, we have
upiqvpjq P EpGsq for all i, j P rss. We need to show that the complete s-blow-up of
a good graph is also good.

Lemma 2.6.6. Given µ, δ, ζ, ϱ, ξ, η, ν ą 0, such that ξ ě maxt4?
ϱ, 4ν2u and

η ě maxt6ν, 6?
ϱu and given an integer s ě 2, if G with RG is pµ, δ, ζ, ϱ, ξ, η, νq-

good, then the complete s-blow-up Gs with

RGs “

!

Uvpiq “
ď

uPUv

Vu : vpiq P V pGs
q

)

is p
µ
2 , δ, ζ, ϱ4

4 , ξ, 2η, ν2q-good.

Proof. Let µ, δ, ζ, ϱ, ξ, η, ν ą 0, an integer s ě 2, a good graph G with RG and
|V pGq| “ n be given. Consider Gs and RGs .

First check that GsrUvpi0qs is µ
2 -inseparable and contains at least δpnsq3 con-

nectable triangles. Take X Ď Uvpi0q with |X| ď
|Uvpi0q|

2 . Say Uv “ tw1, . . . , wku

and choose V 1 “ tw1pi1q, . . . , wkpikqu for some i1, . . . , ik P rss. We get that GsrV 1s

is a copy of GrUvs. Observe that for every i, i1 P r|Uv|s and j, j1 P rss such that
wipjqwi1pj1q P EGsrUvpi0qspX, Uvpi0q ∖ Xq we have that wipjqwi1pj1q P EGsrV 1spX X

V 1, V 1 ∖ Xq for s|Uv |´2 different choices of V 1, thus

eGsrUvpi0qspX, Uvpi0q ∖ Xq “
1

s|Uv |´2

ÿ

V 1

eGsrV 1spX X V 1, V 1 ∖ Xq .

Moreover,

ÿ

V 1

|X X V 1
||V 1 ∖ X| “ s|Uv |´2

p|X||Uvpi0q ∖ X| ´
ÿ

wiPUv

|X X Vwi
||Vwi

∖ X|q .
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Since |Vwi
| “ s, |Uv| ě 4, |Uvpi0q| “ s|Uv| and |X| ď

|Uvpi0q|

2 , we have that

ÿ

wiPUv

|X X Vwi
||Vwi

∖ X| ď
ÿ

wiPUv

|X X Vwi
|s ď s|X| ď s|X|

|Uv|

4 “
|X||Uvpi0q|

4

ď
|X||Uvpi0q|

2 ´
|X|2

2 “
|X||Uvpi0q ∖ X|

2 .

Since eGsrV 1spX X V 1, V 1 ∖ Xq ě µ|X X V 1||V 1 ∖ X|, we conclude that

eGsrUvpi0qspX, Uvpi0q ∖ Xq ě
µ

2 |X||Uvpi0q ∖ X| .

We have that GrUvs contains δn3 triangles w1w2w3 and GsrVw1 Y Vw2 Y Vw3s

contains s3 triangles w1piqw2pi1qw3pi2q with i, i1, i2 P rss. We have that GsrUvpi0qs “

Gsr
Ť

wiPUv
Vwi

s, thus there are at least δpnsq3 triangles in GsrUvpi0qs. If w1, w2 is in
Uv for ξn different v P V pGq, then w1piq, w2pi1q P Uvpjq for all j P s and w1piqw2pi1q

is ξ-connectable in Gs.

We check that the auxiliary graph AGs “ ApRGs , ζq is µ
2 -inseparable. Let AG “

ApRG, ζq and take uv P EpAGq. We have |EpGrUusq X EpGrUvsq| ě ζn2, for each
xy P EpGrUusqXEpGrUvsq, we have s2 edges xpjqypj1q P EpGsrUupiqsqXEpGsrUvpi1qsq

for all i, i1 P rss, therefore upiqvpi1q P EpAGsq. The graph AGs is the complete s-blow-
up of AG and as shown before, AGs is µ

2 -inseparable.

Let A1 Ď V pGsq with |A1| ď ν2ns and F 1 Ď EpGsq such that |F 1| ď
ϱ4

4 pnsq2 and
consider XF 1 Ď V pGsq and Gs

A1,F 1 as in the definition of good graphs, we have that
|XF 1 | ď

ϱ2

2 ns.

Take A Ď V pGq to be all vertices x such that |Vx X A1| ě νs and take F Ď EpGq

such that xy P F if and only if, |XF 1 X Vx| ě ϱs or |EpVx, Vyq X F 1| ě ϱ2s2. We have
that |A| ď

|A1|

νs
ď νn and

|F | ď
|XF 1 |

ϱs
n `

|F 1|

ϱ2s2 ď
ϱ

2n2
`

ϱ2

4 n2
ď ϱn2 .

Since G is good, we get a connectable fractional triangle factor fGA,F
.

For each triangle xyz P TGA,F
, we get s3 triangles in GsrVx Y Vy Y Vzs. Note that

x R A implies |Vx XA1| ă νs and x not being isolated in GA,F implies |XF 1 XVx| ă ϱs,
thus |Vx X V pGs

A1,F 1q| ě p1 ´ ν ´ ϱqs, similarly for Vy and Vz. Moreover, xy R F gives
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us |EpVx, Vyq X F 1| ď ϱ2s2, similarly for xz, yz. Therefore,

|TGs
A1,F 1 rVx,Vy ,Vzs| ě s3

´ 3pν ` ϱ ` ϱ2
qs3 . (2.6.1)

For xpiqypi1qzpi2q P TGs
A1,F 1 rVx,Vy ,Vzs, set

fGs
A1,F 1

pxpiqypi1
qzpi2

qq “
fGA,F

pxyzq

s2 , if xyz P TGA,F

fGs
A1,F 1

pxpiqypi1
qzpi2

qq “ 0, if xyz R TGA,F
.

We check the total weight in a vertex x0piq P Vx0 .

ÿ

x0piqypi1qzpi2qPTGs
A1,F 1

fGs
A1,F 1

px0piqypi1
qzpi2

qq ď s2
ÿ

x0yzPTGA,F

fGA,F
px0yzq

s2 ď 1 .

For the total weight, consider ν ď 1
6 and observe that

|A1
| ď |A|s ` pn ´ |A|qνs ď p|A| ` νnqs and |A| ď νn ď

´1
2 ´ 2ν

¯

n .

Then, using (2.6.1) and considering ν ď 1
6 and ν ` ϱ ` ϱ2 ď

η
2 ,

W pfGs
A1,F 1

q ě

´n

3 ´ ηpn ´ |A|q

¯

p1 ´ 3pν ` ϱ ` ϱ2
qqs

ě
ns

3 ´ ηns ` η|A|s ´ pν ` ϱ ` ϱ2
qns

ě
ns

3 ´ 2ηns ` 2η|A|s `
η

2ns ´ η|A|s

ě
ns

3 ´ 2ηns ` 2η|A|s `
η

2ns ´

´1
2 ´ 2ν

¯

ηns

ě
ns

3 ´ 2ηns ` 2η|A|s ` 2ηνns

ě
ns

3 ´ 2ηpns ´ p|A| ` νnqsq ě
ns

3 ´ 2ηpns ´ |A1
|q .

We check that fGs
A1,F 1

is a ξ-connectable fractional triangle factor. If a triangle
xpiqypi1qzpi2q in Gs

A1,F 1 is such that fGs
A1,F 1

pxpiqypi1qzpi2qq ą 0, then fGA,F
pxyzq ą 0

and we may assume that xy is ξ-connectable in G. Thus x, y P Uv for ξn different
v P V pGq and, for every j P rss, we have Vx, Vy Ď Uvpjq. Thus xpiq, ypi1q P Uvpjq for
ξns different vpjq.

We are now able to prepare G for our application of the blow-up lemma.
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Proof of Lemma 2.6.2. Let µ, δ, ζ, ξ ą 0 be given. Take

µ1
“

µ3p
?

ζq4

4 , δ1
“

δ

2 , ξ1
“

ξ

8 , ζ 1
“

ζ

2 .

Apply Theorem 2.2.1 with µ1

2 , δ1, ζ 1, ξ1, cpδq “ δ
4 and cϱ ě 16 8

?
4. Get

κ, α, 2η1,
ϱ14

4 ą 0 with 2η1, ξ1
ě cϱ

´ϱ14

4

¯
1
8

.

Set

k1 “ γ “ M “ min
!µ

?
ζ

8 ,
ξ4

164 ,
ζ

14 ,
δ2

82 ,
´ η1

8
?

3
´

?
ϱ1

?
3

¯4)
and γ1

“
γ2

2
4
γ

`4
.

Then take
d0 “ min

!µ3?
ζ

4

8 ,
M

8 ,

c

104

4 ¨ 14 ¨ 36

Q1
κ

U´1)
.

Let ε ą 0. Take

ε0 “ min
!´ε

5

¯8
,
´d0

10

¯4)
, t0 “

1
ε0

and ε1 “ 5 8
?

ε0 .

Apply the Regularity Lemma, get T and n1
0.

Take
η “

η1

2 and ϱ ě ϱ1
` 3

?
M .

Take ν 1 ď mint
η1

6 ,

?
ξ1

2 u and ν “ ν 1 ` 3 4
?

ε0.

Let G on large enough n vertices with robust neighbourhoods RG be pµ, δ, ζ, ϱ, ξ, η, νq-
good. By the Regularity Lemma there is a partition P “ tV0, . . . , Vtu of V pGq

with t0 ď t ď T which is an ε0-regular partition for G.

We delete edges of EpGq in two steps. First delete E1 Ď EpGq containing the
edges inside partition sets, incident to V0 and between irregular pairs, then

|E1| ď

ˆ

|Vi|

2

˙

t ` |V0|n ` |Vi|
2ε0t

2
ď

´ 1
2t

` ε0 ` ε0

¯

n2
ď 3ε0n

2 .

Let Y1 Ď V pGq be the vertices incident to at least Mn
2 edges in E1,

|Y1| ď
6ε0

M
n ď

?
ε0n .
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Secondly delete E2 Ď EpGq∖E1 containing the edges between pairs with density
smaller than d0. We have that |E2| ď d0n

2 .

Observe that if pVi, Vjq is pε0, dijq-regular with dij ă d0 and Xij Ď Vi are the
vertices with at least M

4 |Vj| neighbours in Vj, then

|Xij|
M

4 |Vj| ď epXij, Vjq ď d0|Xij||Vj| ` ε0|Vi||Vj| thus |Xij| ď
ε0

M
4 ´ d0

|Vi| .

Let Xi “
Ť

Xij with the union over all j P rts such that pVi, Vjq is pε0, dijq-
regular, but dij ă d0. Let X˚

i be the vertices v P Xi such that v P Xij for at least
M
4 t different j P rts. Then

|X˚
i | ď

ř

jPrts
ε0

M
4 ´d0

n
t

M
4 t

ď
ε0

pM
4 ´ d0qM

4

n

t
.

Let Y2 be the vertices incident to at least Mn
2 edges in E2. We show that

Y2 Ď
Ť

iPrts
X˚

i . For v P Vi ∖ Xi, we have that

|tvw : w P NGpvqu X E2| ă
M

4
n

t
t ď

Mn

4 ,

thus pVi ∖ Xiq Ę Y2. For v P Xi ∖ X˚
i , we have that

|tvw : w P NGpvqu X E2| ă
n

t

M

4 t `
M

4
n

t
t ď

Mn

2 ,

thus pXi ∖ X˚
i q Ę Y2. We have that,

|Y2| ď
ÿ

iPrts

|X˚
i | ď

ε0n

pM
4 ´ d0qM

4
ď

ε0n
M2

32
ď

?
ε0n .

Let E 1 “ E1 9YE2 and Y “ Y1 Y Y2, we have that if v is incident to at least Mn

edges in E 1, then v P Y . Moreover,

|E 1
| ď

´

3ε0 ` d0

¯

n2 and |Y | ď 2?
ε0n .

We move the classes Vj such that |Vj X Y | ě 4
?

ε0|Vj| to V0 and get the partition
P 1 “ tV 1

0 , V1, . . . , Vt1u, such that |V 1
0 | ď ε0n ` 2 4

?
ε0n and p1 ´ 2 4

?
ε0qt ď t1 ď t. Set

t1 “ r 1
κ

st1.
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Let G1 “ pV pGq∖V 1
0 , EpGq∖E 1q and R “ Rpε0, d0, P 1q with RR “ tUi : i P rt1su,

where we take Ui in the following way.

Consider the bipartite graph Hi “ pVi ∖ Y 9Yrt1s, Eiq where tv, ju P Ei when
|NG1pvq X Uv X Vj| ě k1|Vj|. We show that there is V 1

i Ď Vi ∖ Y and Ui Ď rt1s such
that

(1) |V 1
i | ě p1 ´ γq|Vi ∖ Y |,

(2) if v P V 1
i then |NHi

pvq X Ui| ě |NHi
pvq| ´ γt,

(3) if j P Ui then |NHi
pjq X V 1

i | ě
γ2

2
4
γ `4 |Vi ∖ Y |.

Observe that if v P Vi ∖ Y , then

|Uv X NG1pvq| ě 2
a

ζn ´ Mn ´ |V 1
0 ∖ V0| ě

a

ζn .

If Bpvq Ď rt1s are the classes j such that |NG1pvq X Uv X Vj| ě k1|Vj|, then

a

ζn ď |Uv X NG1pvq| ď |Bpvq|
n

t
` t1k1

n

t
and |Bpvq| ě tp

a

ζ ´ k1q . (2.6.2)

That is |NHi
pvq| ě tp

?
ζ ´ k1q.

We set a sequence of sets B1, . . . , Bk0 , Bk0`1 Ď rt1s with |Bk| ě
γ
2 t1 for k P rk0s

and |Bk0`1| ă
γ
2 t1 and we also set a sequence A1, . . . , Ak0 Ď pVi ∖ Y q such that

B1 “

!

j P rt1
s : |NHi

pjq| ă

´γ

4

¯2
|Vi ∖ Y |

)

,

A1 “

!

v P Vi ∖ Y : |NHi
pvq X B1| ą

γ

4 t1
)

,

B2 “

!

j P rt1
s ∖ B1 : |NHi

pjq X pVi ∖ pY Y A1qq| ă

´γ

8

¯2
|Vi ∖ Y |

)

,

and for 3 ď k ď k0 ` 1,

Ak´1 “

!

v P Vi ∖ pY Y A1 Y ¨ ¨ ¨ Y Ak´2q : |NHi
pvq X Bk´1| ą

γ

2k
t1
)

,

Bk “

!

j P rt1
s∖pB1Y¨ ¨ ¨YBk´1q : |NHi

pjqXpVi∖pY YA1Y¨ ¨ ¨YAk´1qq| ă

´ γ

2k`1

¯2
|Vi∖Y |

)

.

Since |Bk| ě
γ
2 t1 for k P rk0s, we have that k0 ď 2

γ
.
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For k P rk0 ` 1s, let B1
k “ B1 Y ¨ ¨ ¨ Y Bk and A1

k´1 “ A1 Y ¨ ¨ ¨ Y Ak´1 (A1
0 “ ∅),

we take V 1
i “ Vi ∖ pY Y A1

k0q and Ui “ rt1s ∖ B1
k0`1.

For (1), observe that for k P rk0s,

γ

2k`1 t1
|Ak| ď epAk, Bkq ď epVi∖pY YA1

k´1q, Bkq ď |Bk|

´ γ

2k`1

¯2
|Vi∖Y | ď

´ γ

2k`1

¯2
t1

|Vi∖Y | ,

thus |Ak| ď
γ

2k`1 |Vi ∖ Y | .

Therefore,
ÿ

kPrk0s

|Ak| ď

8
ÿ

k“1

γ

2k`1 |Vi ∖ Y | ď
γ

2 |Vi ∖ Y | .

For (2), observe that for any v P Vi ∖ pY Y A1
k0q,

ÿ

kPrk0s

|NHi
pvq X Bk| ď

ÿ

kPrk0s

γ

2k`1 t1
ď

γ

2 t1 .

Since |Bk0`1| ă
γ
2 t1, we have that |NHi

pvq X Ui| ě |NHi
pvq| ´ p

γ
2 `

γ
2 qt.

For (3), consider j P rt1s∖B1
k0`1. Then j P rt1s∖B1

k0 and by our choice of Bk0`1,
we have that |NHi

pjq X pVi ∖ pY Y A1
k0qq| ě p

γ
2k0`2 q2|Vi ∖ Y |. Since k0 ď 2

γ
, we have

that |NHi
pjq X V 1

i | ě
γ2

2
4
γ `4 |Vi ∖ Y |.

For any i P rt1s and v P V 1
i , let

U 1
v “ Uv X NG1pvq X

ď

jPUi

Vj .

Then,

|Uv ∖ U 1
v| ď |NGpvq ∖ NG1pvq| ` |NG1pvq X Uv X

ď

jRUi0

Vj| ď pM ` 2 4
?

ε0 ` k1 ` γqn

|EpGrUvsq ∖ EpG1
rU 1

vsq| ď pM ` 2 4
?

ε0 ` k1 ` γ ` 3ε0 ` d0qn2
ď 4Mn2 .

We want to show that Ui0 is µ1-inseparable. First we consider the minimum
degree δpRrUi0sq. Let j0 P Ui0 , v P NHi0

pj0q X V 1
i0 and w P pUv X Vj0q ∖ Y . Since Uv
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is µ-inseparable |NGrUvspwq| ě µp|Uv| ´ 1q. We have that,

|NG1rU 1
vspwq| ě µp|Uv| ´ 1q ´ |Uv ∖ U 1

v| ´ |tuw : uw P E 1
u|

ě µ|Uv| ´ µ ´ pM ` 2 4
?

ε0 ` k1 ` γ ` Mqn

ě µ|Uv| ´
3pM ` k1q

2
?

ζ
2
a

ζn ě
µ|Uv|

2 . (2.6.3)

Therefore,
|NRrUi0 spj0q| ě

µ|Uv|

2
t

n
ě µ

a

ζt .

For any subset X Ď Ui0 such that |X| ď
µ
?

ζ

2 t, we have that

eRrUi0 spX, Ui0 ∖ Xq ě |X|
µ

?
ζ

2 t ě
µ

?
ζ

2 |X||Ui0 ∖ X| .

Now consider a partition X Ď Ui0 , X̄ “ Ui0 ∖ X such that

|X|, |X̄| ě
µ

?
ζ

2 t .

For v P V 1
i0 , take the following partition of U 1

v,

Xv “ Uv X NG1pvq X
ď

iPX

Vi and X̄v “ Uv X NG1pvq X
ď

iPX̄

Vi .

For a first case, assume there is v P V 1
i0 such that,

|Xv|, |X̄v| ě µ2
p
a

ζq
2
|U 1

v| ě µ2
p
a

ζq
3n .

Assume wlog that |Xv| ď |X̄v|, thus |Uv∖Xv| ě
?

ζn and since Uv is µ-inseparable
we have that eGpXv, Uv ∖ Xvq ě µ|Xv||Uv ∖ Xv| and

eG1pXv, X̄vq ě µ|Xv||Uv ∖ Xv| ´ |Uv ∖ U 1
v||Xv| ´ |E 1

|

ě pµ
a

ζ ´ M ´ 2 4
?

ε0 ´ k1 ´ γqn|Xv| ´ p3ε0 ` d0qn2

ě

´µ3p
?

ζq4

2 ´ p3ε0 ` d0q

¯

n2

We have that
eRrUi0 spX, X̄q ě

µ3p
?

ζq4

4 t2
ě

µ3p
?

ζq4

4 |X||X̄| .
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For a second case, we have that for every v P V 1
i0 either

|Xv| ă µ2
p
a

ζq
2
|U 1

v| ď µ2
p
a

ζq
2n or |X̄v| ă µ2

p
a

ζq
2
|U 1

v| .

Consider V 1
i0pXq Ď V 1

i0 such that v P V 1
i0pXq implies |X̄v| ă µ2p

?
ζq2|U 1

v| and
v P V 1

i0pX̄q implies |Xv| ă µ2p
?

ζq2|U 1
v|; note that V 1

i0pX̄q “ V 1
i0 ∖ V 1

i0pXq. Since AG

is complete, if V 1
i0pXq, V 1

i0pX̄q ‰ ∅, then there is uv P EpAGq with u P V 1
i0pXq and

v P V 1
i0pX̄q. We have that |Uu X Uv| ě 2

?
ζn and we derive a contradiction, since,

a

ζn ď 2
a

ζn ´ 2pM ` 2 4
?

ε0 ` k1 ` γqn ď |U 1
u X U 1

v| ă 2µ2
p
a

ζq
2n .

If say V 1
i0pX̄q “ ∅, then for every j P X̄, property (h3 ) gives us γ1|Vi0∖Y | vertices

in v P V 1
i0 such that |NG1pvqXUv XVj| ě k1|Vj|, thus |U 1

v XpVj ∖Y q| ě pk1 ´ 4
?

ε0q|Vj|.
Take w P U 1

v X pVj ∖ Y q, we have by (2.6.3), that |NG1rU 1
vspwq| ě µ

?
ζn.

Since |X̄v| ď µ2p
?

ζq2n,

|NG1rU 1
vspwq X Xv| ě µ

a

ζn ´ µ2
p
a

ζq
2n ě

µ
?

ζ

2 n .

Thus eRrUi0 sptju, Xq ě
µ
?

ζ

2 t. Going over all j P X̄, we get

eRrUi0 spX, X̄q ě
µ

?
ζ

2 |X̄||X| .

If ab P EpG1q is ξ-connectable in G, then it is in Uv for ξn ´ |V 1
0 | ě

ξ
2n vertices

in V pG1q. Therefore, there are at least ξ
4t classes Ipabq Ď rt1s such that for i P Ipabq,

at least ξ
4

n
t

´ p 4
?

ε0 ` γqn
t

ě
ξ
8

n
t

vertices v P V 1
i are such that ab P EpGrUvsq.

The number of pairs pab, vq, where ab P EpGrUvsq ∖ EpG1rU 1
vsq and v P V pG1q is

at most 4Mn3. Therefore, the set Eloss of connectable edges that are in EpGrUvsq∖

EpG1rU 1
vsq for at least 4

?
Mn different v P V pG1q has size

|Eloss|4
?

Mn ď 4Mn3 and |Eloss| ď
?

Mn2 .

Thus we have that for any ξ-connectable edge ab P EpG1q ∖ Eloss the number of
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classes i P Ipabq that do not contain any v P V 1
i such that ab P EpG1rU 1

vsq is at most

4
?

Mn
ξ
4

n
t

ď
16

?
M

ξ
t ď

4
?

Mt .

Therefore if a P Vj0 , b P Vj1 , then j0j1 is in at least p
ξ
4 ´

4
?

Mqt ě
ξ
8t different robust

neighbourhoods Ui for i P rt1s.

Let v P V 1
i0 , we have that GrUvs contains δn3 different ξ-connectable triangles.

Excluding the triangles with an edge in EpGrUvsq ∖ EpG1rU 1
vsq or in Eloss and

projecting the remaining ones into RrUi0s, the number of ξ
8 -connectable triangles in

RrUi0s is at least

pδ ´ 4M ´
?

Mqn3 t3

n3 ě
δ

2t3 .

Next we want that AR “ ApRR, ζ 1q is inseparable and we start with the following
observation. Consider uv P EpAGq such that u P V 1

i , v P V 1
j for i, j P rt1s, we have

|EpGrUusq X EpGrUvsq| ě ζn2 and

|EpG1
rU 1

usq X EpG1
rU 1

vsq| ě ζn2
´ |Uu ∖ U 1

u|n ´ |Uv ∖ U 1
v|n ´ |E 1

|

ě ζn2
´ p2M ` 4 4

?
ε0 ` 2k1 ` 2γ ` 3ε0 ` d0qn2

ě
ζ

2n2 .

Projecting these edges to R, we get |EpRrUisq X EpRrUjsq| ě
ζ
2t2 and ij P EpARq.

Take B Ď V pARq with |B| ď t1

2 and BG “
Ť

iPB Vi. Since AG is µ-inseparable,
then eAG

pBG, V pGq∖BGq ě µ|BG||V pGq∖BG|. The set BG contains all the vertices
in the classes of B and V pGq ∖ B1 contains V 1

0 and the other classes. Consider the
edges in EAG

pBG, V pGq ∖BGq, ignore those ending in V 1
0 or in Vi ∖ V 1

i for all i P rt1s

and project the remaining ones into EAR
pB, rt1s∖Bq, since |V 1

0 | ď pε0 ` 2 4
?

ε0qn and
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|rt1s ∖ B| ě t1

2 and |Vi ∖ V 1
i | ď p 4

?
ε0 ` γqn

t
, we get

eAR
pB, rt1

s ∖ Bq ě

´

µ|BG||pV pGq ∖ V 1
0q ∖ BG| ´ p1 ´ µq|BG||V 1

0 |

´ |B||Vi ∖ V 1
i ||pV pGq ∖ V 1

0q ∖ BG| ´ |rt1
s ∖ B||Vi ∖ V 1

i ||BG|

¯ t2

n2

ě

´

µ|B||rt1
s ∖ B|

n2

t2 ´ |V 1
0 ||B|

n

t

´ p|B||rt1
s ∖ B|

n

t
` |rt1

s ∖ B||B|
n

t
qp 4

?
ε0 ` γq

n

t

¯ t2

n2

ě µ|B||rt1
s ∖ B| ´ 4pε0 ` 2 4

?
ε0q|B|

t1

2 ´ 2p 4
?

ε0 ` γq|B||rt1
s ∖ B|

ě
`

µ ´ p4ε0 ` 10 4
?

ε0 ` 2γq
˘

|B||rt1
s ∖ B| ě

µ

2 |B||rt1
s ∖ B| .

Thus AR is µ
2 -inseparable.

Finally we show that R satisfies property iii. of good graphs. Let A Ď rt1s with
|A| ď ν 1t1 and F Ď EpRq with |F | ď ϱ1t12. Take A1 “

Ť

iPA Vi Y V 1
0 , then |A1| ď νn

and take F 1 “
Ť

ijPF EpVi, Vjq Y E 1 Y Eloss, then

|F 1
| ď pϱ1

` 3ε0 ` d0 `
?

Mqn2
ď ϱn2 .

Then GA1,F 1 contains a ξ-connectable fractional triangle factor fGA1,F 1 with

W pfGA1,F 1 q ě
n

3 ´ ηpn ´ |A1
|q .

For each ijk P T pRA,F q, set

fRA,F
pijkq “

ÿ

uvwPT pGA1,F 1 rViYVjYVksq

fGA1,F 1 puvwq
t

n
.

The total weight in i0 P V pRA,F q is

ÿ

i0jkPT pRA,F q

ÿ

uvwPT pGA1,F 1 rVi0 YVjYVksq

fGA1,F 1 puvwq
t

n
ď |Vi0 |

t

n
ď 1 .

For each uvw P T pGA1,F 1q with u P Vi, v P Vj, w P Vk, if i, j, k R XF , then
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ijk P T pRA,F q. Using that |A1| ě |A|n
t
, η

2 ě
?

ϱ1 and ν 1 ď 1
2 , the total weight is

W pfRA,F
q “

ÿ

ijkPT pRA,F q

ÿ

uvwPT pGA1,F 1 rVi,Vj ,Vksq

fGA1,F 1 puvwq
t

n

ě
t

n

ÿ

T pGA1,F 1 q

fGA1,F 1 puvwq ´
t

n
|XF |

n

t

ě
t

n

´n

3 ´ ηpn ´ |A1
|q

¯

´ |XF |

ě
t

3 ´ ηt ´
a

ϱ1t ` η|A1
|
t

n

ě
t

3 ´
`

η `
a

ϱ1 ` ην 1
˘

t ` ην 1t ` η|A|

ě
t

3 ´ 2ηt ` 2η|A| ě
t

3 ´ η1
pt ´ |A|q .

We are left to check that this fractional triangle factor is connectable. If
fRA,F

pijkq ą 0, then there is uvw P TGA1,F 1 rVi,Vj ,Vks such that fGA1,F 1 puvwq ą 0
and one of the edges is ξ-connectable in G, say uv with u P Vi, v P Vj . Since V 1

0 Ď A1

and E 1 Ď F 1, we have that uv P EpG1q and since Eloss Ď F 1, we have that ij P EpRq

is a ξ
8 -connectable edge in R. We showed that R is pµ1, δ1, ζ 1, ϱ1, ξ1, η1, ν 1q-good.

Now let w P V pGq, we address the number of connectable triangles with all
vertices in I

P,G
δ{8 pwq. The number of triangles in Uw with a vertex outside

Ť

iPIP,G
δ{8 pwq

Vi

is at most
pt ´ |IP,G

δ{8 pwq|q
δ

8
n

t
¨ n2

` |V 1
0 |n2

ď
δ

4n3 .

We have that |E 1|n ` |Eloss|n ď δ
4n3 , thus we have a set TIpwq of ξ-connectable

triangles with vertices in pUwX
Ť

iPIP,G
δ{8 pwq

Viq and edges in EpG1q∖Eloss and |TIpwq| ě

δ
2n3. The projections of the triangles in TIpwq into R gives us at least δ

2t3 different
ξ
8 -connectable triangles in R with all vertices in IP,G

δ{8 pwq.
Apply Lemma 2.5.1 to P with ε0, γ1 “ γ2 “ 0, γ1 ď ε0

56 , t1, spiq “ r 1
κ

s (i P rts)
and for j P rspiqs, fipjq “ r 1

κ
s´1. We get

P 1
“ tV 1

0u Y tVij : i P rt1
s, j P rr1{κssu ,

such that

1. p1 ´ γ1qr 1
κ

s´1 n
t

ď |Vij| ď p1 ` γ1qr 1
κ

s´1 n
t
,

2. if i P IP,G
δ
8

pvq, then ij P IP 1,G
p1´γ1q

p1`γ1q

δ
8
pvq for all j P rr1{κss.
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Since |Vij| ě p1 ´ γ1qr 1
κ

s´1|Vi|, if pVi, Vi1q is pε0, d0q-regular, then for

ε1
“

ε0

p1 ´ γ1q2

Q1
κ

U2
,

each pVij, Vi1j1q is pε1, d0q-regular.

The reduced graph R1 “ Rpε1, d0, P 1q is a complete r 1
κ

s-blow-up of R. Take

RR1 “

!

UR1

ipjq “
ď

kPUR
i

tkp1q, . . . , kpr1{κsqu : i P rts, j P rr1{κss

)

,

and Lemma 2.6.6 gives us that R1 is p
µ1

2 , δ1, ζ 1, ϱ14

4 , ξ1, 2η1, ν 12q-good.

We have that IP 1,G
p1´γ1q

p1`γ1q

δ
8
pvq “

Ť

iPIP,G
δ
8

pvq
tip1q, . . . , ipr1{κsqu, thus

|tIP 1,G
p1´γ1q

p1`γ1q

δ
8
pvq : v P V pGqu| “ |tI1, . . . , Imu| ď 2t1

ď 2κ|V pR1q| .

Each triangle in R gives us r 1
κ

s3 different triangles in R1. If xx1 P EpRq is in ξ1t1

different Ui, then for j, j1 P rr 1
κ

ss the edge xpjqx1pj1q P EpR1q is in UR1

ipj2q for j2 P rr 1
κ

ss,
therefore xpjqx1pj1q is ξ1-connectable in R1. Since there are at least δ

2t3 connectable
triangles in IP,G

δ
8

pvq, we get at least δ
2 |V pR1q|3 distinct ξ1-connectable triangles in R1

with vertices in IP 1,G
p1´γ1q

p1`γ1q

δ
8
pvq.

Theorem 2.2.1 gives us that R1 contains the second power of a Hamiltonian cycle
C2 “ x1 . . . x|V pR1q|, with a segment P6 “ x1 . . . x6, which is the third power of a path
and another segment PI such that for all i P rms, we have that PI contains αt1r1{κs

different triangle paths on 5 vertices, all in Ii.

Apply Lemma 2.5.1 to P 1 with

ε1, γ1 “ γ2 “ γ1, γ2
“ γ1

ď
ε1

56 , spiq “ 3 and fipjq “
1
3 ,

get

P2
“ tV0u Y tVij1 , Vij2 , Vij3 : i P rts, j P rr1{κssu and Vij “ Vij1 9YVij2 9YVij3 ,

such that

1. p1 ´ 2γ1qr 1
κ

s´1 n
3t

ď |Vija | ď p1 ` 2γ1qr 1
κ

s´1 n
3t

, for a P r3s,
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2. if ij P IP 1,G
p1´γ1q

p1`γ1q

δ
8
pvq, then ij1, ij2, ij3 P IP2,G

p1´2γ1q

p1`2γ1q

δ
8
pvq.

Since |Vija | ě
p1´2γ1q

3 r 1
κ

s´1|Vi|, if pVi, Vi1q is pε0, d0q-regular, then for

ε2
“

9ε0

p1 ´ 2γ1q2

Q1
κ

U2
,

each pVija , Vi1j1
b
q is pε2, d0q-regular for a, b P r3s.

We get that R2 “ Rpε2, d0, P2q is the complete 3-blow-up of R1 and contains the
complete 3-blow-up of the second power of a Hamiltonian cycle C2p3q. We rename the
classes of P2 according the second power of a Hamiltonian cycle C2 “ x1 . . . x|V pR1q|,
is such way that,

P2
“ tV0u Y tVai

, Vbi
, Vci

: i P rt1r1{κssu ,

where,

Vxi
“ Vai´2 9YVai´1 9YVai

, for i ” 1 pmod 3q ,

Vxi
“ Vbi´2 9YVbi´1 9YVbi

, for i ” 2 pmod 3q ,

Vxi
“ Vci´2 9YVci´1 9YVci

, for i ” 0 pmod 3q ,

with a0 “ at1r1{κs, a´1 “ at1r1{κs´1, b0 “ bt1r1{κs (See Figure 2.6.1). We get that
V pLq “

Ť

iPt1r1{κs
tai, bi, ciu are the vertices of a ladder in R2. The segment P6 gives

us the edges a1a2, b2b3, c3c4 and we get L` Ď R2.

a1

at1r1{κs´1

at1r1{κs

b1

b2

bt1r1{κs

c1

c2

c3

a4

a2

a3

b4

b5

b3

c4

c5

c6

a7

a5

a6

x1 x2 x3 x4 x5 x6 x7

Figure 2.6.1: L` Ď R2.

We make all edges in L` super-regular by moving vertices to V0. If pVai
, Vbi

q is
pε2, dq-regular, let X Ď Vai

be the vertices that have less than d0
2 |Vbi

| neighbours
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in Vbi
, then |X| ď 2ε2

d0
|Vai

|, since

|X|
d0

2 |Vbi
| ě epX, Vbi

q ě d0|X||Vbi
| ´ ε2

|Vai
||Vbi

| .

We have degree dL`paiq ď 7 and for each neighbour of ai we move X to V0, let V 1
ai

be
the new set. We have that for any Vai

(similarly for Vbi
or Vci

), since ε2 ď 36r 1
κ

s2ε0

and by our choices of d0 and ε0,

|V 1
ai

| ě
`

1 ´
14ε2

d0

˘

|Vai
| ě

`

1 ´
d0

4
˘

|Vai
| .

In fact, for each class Vai
, we move exactly d0

4 p1 ` 2γ1qr 1
κ

s´1 n
3t

vertices to V0. Thus,

p1 ´ 3γ1
´

d0

4 q

Q1
κ

U´1 n

3t
ď |V 1

ai
| ď p1 ` 2γ1

q

Q1
κ

U´1 n

3t
.

If pVai
, Vbj

q is pε2, dq-regular, then pV 1
ai

, V 1
bj

q is pε˚, dq-regular where, taking C “

36r 1
κ

s2 and assuming without loss of generality that ?
ε0 ď ε ď 1

56C
, we have

ε2

`

1 ´ d0
4

˘2 ď
Cε0

1 ´ d0
2

ď 2Cε0 ď

?
ε0

28 “ ε˚ .

For any aibj P EpL`q and v P V 1
ai

, we have that

|NGpvq X V 1
bj

| ě

´d0

2 ´
d0

4

¯

|Vbi
| ě

d0

4 |Vbi
| . (2.6.4)

The new set V 1
0 is such that

|V 1
0 | ď ε0n ` 2 4

?
ε0n `

14ε2

d0
n

ď ε0n ` 2 4
?

ε0n `
4

?
ε0

56 n “ 3 4
?

ε0n .

We redistribute the vertices in V 1
0 keeping the super-regularity in EpLq and the

regularity on EpL`q∖EpLq. For that we use the special segment PI Ď C2 Ď R1. For
any IP 1,G

p1´γ1q

p1`γ1q

δ
8
pvq there are at least αt1r1{κs different triangle paths xi1xi2xi3xi4xi5 Ď PI

with all vertices in IP 1,G
p1´γ1q

p1`γ1q

δ
8
pvq.

To each v P V 1
0 we associate such a triangle path P5pvq “ xi1xi2xi3xi4xi5 satisfying

that at most |V 1
0 |

αt1r1{κs
different vertices vi, vj P V 1

0 have P5pviq “ P5pvjq. Move v to
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either V 1
ai2

or V 1
bi2

or V 1
ci2

, making sure that the sets after the redistribution of V0

have sizes as even as possible. That is, for each triangle aibici in the ladder L, we
have

||Vai
| ´ |Vbi

||, ||Vai
| ´ |Vci

||, ||Vbi
| ´ |Vci

|| ď 1 .

Let V 2
ai

, V 2
bi

, V 2
ci

be the partition sets after redistributing V 1
0 . We have that, since

wlog 8
?

ε0 ď ε ď α
36 and |Vai

| ě n
12t1 r

1
κ

s´1

|V 2
ai

| ď |V 1
ai

| `
3 4

?
ε0n

αt1

Q1
κ

U´1
ď |Vai

| `
36 4

?
ε0

α
|Vai

| ď p1 ` 8
?

ε0q|Vai
| . (2.6.5)

We have

p1 ´ 3γ1
´

d0

4 q

Q1
κ

U´1 n

3t
ď |V 2

ai
| ď p1 ` 3γ1

` 8
?

ε0q

Q1
κ

U´1 n

3t

p1 ´
a

d0q

Q1
κ

U´1 n

3t
ď |V 2

ai
| ď p1 `

a

d0q

Q1
κ

U´1 n

3t
.

See Figure 2.6.1 and observe that for any u P V 2
ai
∖ V 1

ai
(or V 2

bi
or V 2

ci
) and any

edge in EpLq incident to ai, say aibj, we have, using that d0 ď δ
16 and γ1 ď ε0

56 ,

|NGpuq X V 2
bj

| ě
p1 ´ 2γ1q

p1 ` 2γ1q

δ

8 |Vbj
| ´

d0

4 |Vbj
| ě

d0

2 |Vbj
| . (2.6.6)

Considering (2.6.4), (2.6.5) and (2.6.6), we have that for any edge in EpLq, say aibj ,
if v P V 2

ai
, then

|NGpvq X V 2
bj

| ě
d0

4 |Vbj
| ě

d0

4p1 ` 8
?

ε0q
|V 2

bj
| ě

d0

8 |V 2
bj

| .

Moreover for any edge in EpL`q, say aibj, we have that pV 1
ai

, V 1
bj

q is pε˚, dq-
regular and Observation 2.6.7 with (2.6.5) and |V 1

ai
| ě

|Vai |

2 gives us that pV 2
ai

, V 2
bj

q is
pε1, dq-regular with

ε˚
` 4 8

?
ε0 ď 5 8

?
ε0 “ ε1 .

Observation 2.6.7. If pVi, Vjq is an pε, dq-regular pair and V 1
i , V 1

j are such that
|V 1

i ∖ Vi| ď α|Vi|, |V 1
j ∖ Vj| ď β|Vj|, then pV 1

i , V 1
j q is an pε ` α ` β, dq-regular pair.
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Take X Ď V 1
i , Y Ď V 1

j . Then,

epX, Y q ď epX X Vi, Y X Vjq ` epX ∖ Vi, Y q ` epY ∖ Vj, Xq

ď d|X X Vi||Y X Vj| ` ε|Vi||Vj| ` |V 1
i ∖ Vi||Vj| ` |V 1

j ∖ Vj||Vi|

ď d|X X Vi||Y X Vj| ` pε ` α ` βq|Vi||Vj|

ď d|X||Y | ` pε ` α ` βq|V 1
i ||V 1

j | .

Moreover,

epX, Y q ě d|X X Vi||Y X Vj| ´ ε|Vi||Vj|

ě dp|X| ´ α|Vi|qp|Y | ´ β|Vj|q ´ ε|Vi||Vj|

ě d|X||Y | ´ pε ` dα ` dβq|Vi||Vj|

ě d|X||Y | ´ pε ` α ` βq|V 1
i ||V 1

j | .

2.6.2 Lemma for H

Here we discuss the mapping of the vertices of H into the ladder, needed for our
application of the blow-up lemma.

Proof of Lemma 2.6.3. We are given α, γ1 ą 0, integers t and nai
, nbi

, nci
(i P rts),

such that
ř

iPrts
pnai

` nbi
` nci

q “ n, n
2t

ď nai
` nbi

` nci
ď n

t
and

|nai
´ nbi

|, |nai
´ nci

|, |nbi
´ nci

| ď 1 . (2.6.7)

Take
β “ min

! γ1

12tpt ` 1q
,

αγ1

18t2 ,
pγ1q2

24t2

)

.

Let H be a 3-chromatic graph on n vertices with bwpHq ď βn and let L` be a
ladder with additional edges,

V pL`
q “

ď

iPrts

tai, bi, ciu, EpL`
q “ EpLq Y ta1a2, b2b3, c3c4u .

We now set the homomorphism f : V pHq Ñ V pL`q and special set X Ď V pHq.
Fix a 3-colouring V pHq “ V1 9YV2 9YV3 of H and let u1 . . . un be an ordering

of V pHq in bandwidth order. We split the ordered V pHq into consecutive sets Uij,
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i P rts, j P r 1
γ1 s in the following order

U11, . . . , U1 1
γ1

, U21, . . . , Ut 1
γ1

.

Let
Ni “ nai

` nbi
` nci

,

and set the size |Uij| “ γ1Ni for every j P r 1
γ1 s (we omit ceilings and floors, since

anyway we work with slightly unbalanced classes). We have that
ř

jPr 1
γ1 s

|Uij| “ Ni

and the vertices in
Ť

jPr 1
γ1 s

Uij will be mapped into tai, bi, ciu.
Let

U
p1q

ij “ Uij X V1, U
p2q

ij “ Uij X V2 and U
p3q

ij “ Uij X V3 .

We map each U
p1q

ij , U
p2q

ij , U
p3q

ij to a different vertex tai, bi, ciu. We set auxiliary map-
pings, g : rts ˆ r 1

γ1 s Ñ
Ť

iPrts
tai, bi, ciu

2, where

gpijq P tpai, biq, pai, ciq, pbi, aiq, pbi, ciq, pci, aiq, pci, biqu

and g1 : V pHq Ñ
Ť

iPrts
tai, bi, ciu. To set g1 consider v P V pHq, if v P Uij and

gpijq “ pδ1, δ2q, we have

- if v P U
p1q

ij , then g1pvq “ δ1,

- if v P U
p2q

ij , then g1pvq “ δ2,

- if v P U
p3q

ij , then g1pvq “ tai, bi, ciu ∖ tδ1, δ2u.

Note that |U
p1q

ij |, |U
p2q

ij |, |U
p3q

ij | might be different. For i P rts, let Ai be the number
of vertices v P

Ť

jPr 1
γ1 s

Uij such that g1pvq “ ai, similarly define Bi, Ci. We make sure
that

|Ai ´ Bi|, |Ai ´ Ci|, |Bi ´ Ci| ď γ1Ni (2.6.8)

using the following procedure to define g. Let i P rts and suppose we have gpijq for
j P rj0s (j0 ď 1

γ1 ´ 1) and Aipj0q, Bipj0q, Cipj0q are the number of vertices that have
been associated to ai, bi and ci and they differ by at most γ1Ni. Say

Aipj0q ď Bipj0q ď Cipj0q ,
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then for setting gpipj0 ` 1qq, take the largest among |U
p1q

ipj0`1q
|, |U

p2q

ipj0`1q
|, |U

p3q

ipj0`1q
| and

associate it to ai, the second larger to bi and the smallest to ci. If the relations Aipj0`

1q ď Bipj0 ` 1q ď Cipj0 ` 1q are kept, since we associated more vertices to ai than
to bi and more to bi than to ci, we have

|Aipj0 ` 1q ´ Bipj0 ` 1q| ď |Aipj0q ´ Bipj0q| ď γ1Ni ,

similarly for |Bipj0 ` 1q ´ Cipj0 ` 1q| and |Aipj0 ` 1q ´ Cipj0 ` 1q|. If any relation
changes, say Aipj0 ` 1q ě Bipj0 ` 1q, then

|Aipj0 ` 1q ´ Bipj0 ` 1q| ď max
x,yPr3s

ˇ

ˇ|U
pxq

ipj0`1q
| ´ |U

pyq

ipj0`1q
|
ˇ

ˇ

ď |Uipj0`1q| ď γ1Ni .

If uv P EpHrUijsq, then u, v are in different colour classes and g1puqg1pvq P

Epaibiciq and we would have a homomorphism if not by the edges between differ-
ent Uij and Ui1j1 . Owing to the small bandwidth of H, there might be edges only
between UijUipj`1q (for j P r 1

γ1 ´ 1s) or Ui 1
γ1

Upi`1q1 (where Upt`1q1 “ U11). We remap
some vertices of Uij to set a homomorphism f : V pHq Ñ V pL`q. The vertices we
redistribute are part of the special set X Ď V pHq.

We set X “
Ť

iPrts,jPr 1
γ1 s

Xij, where Xij is taken in the following way. Let i P rts,
j ě 2 and assume gpipj ´ 1qq “ pai, biq, that is

g1
pU

p1q

ipj´1q
q “ ai, g1

pU
p2q

ipj´1q
q “ bi, g1

pU
p3q

ipj´1q
q “ ci .

For j “ 1, assume gppi ´ 1q 1
γ1 q “ pai´1, bi´1q (where gp0 1

γ1 q “ gpt 1
γ1 q), that is

g1
pU

p1q

pi´1q 1
γ1

q “ ai´1, g1
pU

p2q

pi´1q 1
γ1

q “ bi´1, g1
pU

p3q

pi´1q 1
γ1

q “ ci´1 .

Now consider the following case, in which the three colours in Uij are rotated
compared to the colours of Uipj´1q (or Upi´1q 1

γ1
), the other cases are similarly resolved.

We have

gpijq “ pbi, ciq, that is g1
pU

p1q

ij q “ bi, g1
pU

p2q

ij q “ ci, g1
pU

p3q

ij q “ ai .
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We consider the following triangle walk on 3ℓ ` 2 vertices in L` (see Figure 2.6.2)

paicibiq . . . pa2c2b2qb3c3pc4b4a4q . . . pcibiaiq .

ai ci bi
... at ct bt

a1 c1 b1 a2 c2 b2 b3 c3 c4 b4 a4
... ci bi

ai

Figure 2.6.2: Triangle walk in L`.

ai

bi

ci

U
p1q

ipj´1q U
p3q

ij

U
p2q

ipj´1q U
p1q

ij

U
p3q

ipj´1q U
p2q

ij

Xijp2q

ci ct c1 c2 c3 a4 ai

Xijp1q

ai

Xijp4q

ai`1 “ at a1 a2 b3 b4 bi

Xijp3q

bi bt b1 b2 c4 ci

Figure 2.6.3: Setting fpXq.

If i P rts ∖ t3u, then ℓ “ t. For i “ 3, we have ℓ “ 2t.

Say Uij “ u1 . . . uγ1Ni
in bandwidth order. We include in Xij the following

vertices (see Figure 2.6.3).

- Xijp1q containing the vertices of U
p1q

ij among the first βn vertices in Uij.

- Xijp2q containing the vertices of U
p3q

ij among the first 2βn vertices in Uij.

- Xijp3mq, for m P rt ´ 1s, containing the vertices in U
p2q

ij among

upm´1q3βn`1 . . . um3βn .

- Xijp3m ` 1q, for m P rt ´ 1s, containing the vertices in U
p1q

ij among

uβn`pm´1q3βn`1 . . . uβn`m3βn .

- Xijp3m ` 2q, for m P rt ´ 1s, containing the vertices in U
p3q

ij among

u2βn`pm´1q3βn`1 . . . u2βn`m3βn .
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We set fpU
p3q

ij ∖ Xijq “ ai, fpU
p1q

ij ∖ Xijq “ bi, fpU
p2q

ij ∖ Xijq “ ci and we map
the edges incident to Xij into edges of L` in the following way, all indices being
taken pmod tq.

- fpXijp1qq “ ai, fpXijp2qq “ ci;

- for m P rt ´ i ` 3s, set fpXijp3mqq “ bi`m´1;

- for m P rℓ ´ 1s ∖ rt ´ i ` 3s, set fpXijp3mqq “ c4`m´pt´i`3q´1;

- for m P rt ´ i ` 2s, set fpXijp3m ` 1qq “ ai`k;

- for m P rℓ ´ 1s ∖ rt ´ i ` 2s, set fpXijp3m ` 1qq “ b3`m´pt´i`2q´1;

- for m P rt ´ i ` 3s, set fpXijp3m ` 2qq “ ci`m;

- for m P rℓ ´ 1s ∖ rt ´ i ` 3s, set fpXijp3m ` 2qq “ a4`m´pt´i`3q´1.

We observe that, for k P rts, we have

|Xij X f´1
pakq|, |Xij X f´1

pbkq|, |Xij X f´1
pckq| ď 6βn , (2.6.9)

since the worst case is when i “ 3 and each ak, bk, ck gets at most 6βn vertices
from Xij.

By our choice of β, we have |Uij| “ γ1Ni ě 6βnpt ` 1q, so for any v among the
last βn vertices in Uij , we have fpvq “ g1pvq. It is not hard to check that f is indeed
a homomorphism between V pHq and L`.

Since X “
Ť

iPrts,jPr 1
γ1 s

Xij, using (2.6.9) and our choice of β, we have that for
any k P rts,

|X X f´1
pakq| ď

ÿ

iPrts,jPr 1
γ1 s

|Xij X f´1
pakq| ď

6βtn

γ1
ď

αn

3t
,

and similarly for |X X f´1pbkq|, |X X f´1pckq|.

We observe that f satisfies property (h1 ). We have that (2.6.7) implies

ˇ

ˇ

ˇ
nai

´
Ni

3

ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ

na1

3 ´
na1

3

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ

na1

3 ´
nb1

3

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ

na1

3 ´
nc1

3

ˇ

ˇ

ˇ
ď

2
3 .
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Thus |nai
´ Ni

3 |, |nbi
´ Ni

3 |, |nci
´ Ni

3 | ď 1. By (2.6.8) and |Ai| ` |Bi| ` |Ci| “ Ni we
have that

ˇ

ˇ

ˇ
|pg1

q
´1

paiq| ´
Ni

3

ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ

Ai

3 ´
Bi

3

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ

Ai

3 ´
Ci

3

ˇ

ˇ

ˇ
ď

2γ1Ni

3 .

Therefore
ˇ

ˇ|pg1
q

´1
paiq| ´ nai

ˇ

ˇ ď
2γ1Ni

3 ` 1 .

We have that
ˇ

ˇ|pg1
q

´1
paiq| ´ |f´1

paiq|
ˇ

ˇ ď
6βtn

γ1
.

Thus
ˇ

ˇ|pf 1
q

´1
paiq| ´ nai

ˇ

ˇ ď
2γ1Ni

3 ` 1 `
6βtn

γ1
ď

3γ1n

3t
.

2.6.3 Adjusting the partition of V pGq

The last step in the preparation of G and H is to match the sizes of classes in the
partition of V pGq to the sizes of the pre-images of the homomorphism of H into the
ladder. For that we use the following lemma.

Proof of Lemma 2.6.4. We are given ε, d0 ą 0 and integer t. We are given a graph
G on n vertices with a partition V pGq “

Ť

iPrts
pVai

9YVbi
9YVci

q and a ladder L, such
that properties (g2 ), (g3 ) and (g4 ) of Lemma 2.6.2 hold. Set γ1 ď ε2

t
and we are

given integers mai
, mbi

, mci
(for i P rts) such that

ř

iPrts
pmai

` mbi
` mci

q “ n and

|mai
´ |Vai

||, |mbi
´ |Vbi

||, |mci
´ |Vci

|| ď γ1 n

3t
.

For

xa “
ÿ

iPrts

|Vai
| ´

ÿ

iPrts

mai
, xb “

ÿ

iPrts

|Vbi
| ´

ÿ

iPrts

mbi
, xc “

ÿ

iPrts

|Vci
| ´

ÿ

iPrts

mci
,

we have that |xa|, |xb|, |xc| ď γ1 n
3 ď ε2 n

3t
. We get a new partition V pGq “

Ť

iPrts
pV 1

ai
9YV 1

bi
9YV 1

ci
q in the following way. We have that xa ` xb ` xc “ 0, as-

sume for example that xa ą 0, xb ą 0, xc ă 0, then use a1a2 and b2b3 to move
vertices from Va1 to Vc2 and from Vb2 to Vc3 and get

ÿ

iPrts

|V 1
ai

| “
ÿ

iPrts

mai
,

ÿ

iPrts

|V 1
bi

| “
ÿ

iPrts

mbi
,

ÿ

iPrts

|V 1
ci

| “
ÿ

iPrts

mci
.
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We had to move at most ε2 n
3t

vertices and pVa1 , Va2q being pε, dq-regular ensures at
least 2ε

d0
|Va1 | vertices with at least d0

2 |Va2 | neighbours in Va2 and for every xy P EpL`q

with x P ta1, b2, c2, c3u the new pair pV 1
x, V 1

yq is p2ε, dq-regular. Thus, the edges
in EpL`q correspond to p2ε, d0q-regular pairs and the edges aibici correspond to
p2ε, d0,

d0
8 q-super-regular pairs.

We want to achieve |V ˚
ai

| “ mai
and for that, set x1 “ |V 1

a1 | ´ ma1 . Next if x1 ą 0
move x1 vertices from V 1

a1 to V 1
a2 ; if x1 ă 0, move the x1 vertices in the opposite

direction. Set V ˚
a1 and V 2

a2 as the sets V 1
a1 and V 1

a2 after moving x1 vertices. Note
that

|x1| ď ε2 n

3t
`

ε2n

3t2 ď 2ε2 n

3t
.

Let i0 ď t ´ 2 and assume we have sets V ˚
ai

for i ď i0 and V 2
ai0`1

such that
|V ˚

ai
| “ mai

and

||V 2
ai0`1

| ´ |Vai0`1 || ď ε2 n

3t
` i0ε

2 n

3t2 ď 2ε2 n

3t
.

Set xi0`1 “ |V 2
ai0`1

| ´ mai0`1 ,

|xi0`1| ď ε2 n

3t
` pi0 ` 1qε2 n

3t2 ď 2ε2 n

3t
.

We move xi0`1 vertices from V 2
ai0`1

to V 1
ai0`2

, if xi0`1 ą 0 and the other way around,
if xi0`1 ă 0. After moving xi0`1 vertices, we have V ˚

ai0`1
and V 2

ai0`2
. We set V ˚

at
“ V 2

at
.

Do a similar procedure to achieve |V ˚
bi

| “ mbi
and |V ˚

ci
| “ mci

, for i P rts.

Each class is involved in 2 movements and for α P ta, b, cu,

|Vαi
X V ˚

αi
| ě |Vαi

| ´ 4ε2 n

3t
and

p1 ´
a

d0 ´ γ1
q

n

3t
ď |Vαi

| ´ γ1 n

3t
ď |V ˚

αi
| ď |Vαi

| ` γ1 n

3t
ď p1 `

a

d0 ` γ1
q

n

3t
.

For α P ta, b, cu and β P ta, b, cu ∖ tαu, we have that the pairs pVαi
, Vβi`1q are super

regular, therefore, at least |V 1
αi

X V 2
αi

| ě |Vαi
| ´ 2ε2 n

3t
ě xi vertices in V 2

αi
have at
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least

d0

8 |Vβi`1 | ´ |Vβi`1 ∖ V ˚
βi`1

| ě
d0

8 |Vβi`1 | ´ |Vβi`1 | ` |Vβi`1 X V ˚
βi`1

|

ě
d0

8 p1 ´
a

d0q
n

3t
´ 4ε2 n

3t
ě

d0

17
n

3t

ě
d0

17p1 `
?

d0 ` γ1q
|V ˚

βi`1
| ě

d0

34 |V ˚
βi`1

|

neighbours in V ˚
βi`1

. Therefore it is always possible to move vertices from V 2
αi

into
V 1

αi`1
and keep the degree condition in the triangle ai`1bi`1ci`1. Similarly, we can

move vertices from V 1
αi`1

into V 2
αi`1

and keep the degree condition in the triangle
aibici.

Moreover if pVαi
, Vβi

q is a pε, dq-regular pair and X Ď V ˚
αi

, Y Ď V ˚
βi

, then for
X 1 “ X X Vαi

and Y 1 “ Y X Vβi
, we have

|X 1
| ě |X| ´ |V ˚

αi
∖ Vαi

| ě |X| ´ |V ˚
αi

| ` |Vαi
X V ˚

αi
|

ě |X| ´ |V ˚
αi

| ` |Vαi
| ´ 4ε2 n

3t
ě |X| ´ pγ1

` 4ε2
q

n

3t
.

Thus,

epX, Y q ď d|X 1
||Y 1

| ` ε|Vαi
||Vβi

| ` |X||Y ∖ Y 1
| ` |Y ||X ∖ X 1

| ď d|X||Y | ` 2ε|V ˚
αi

||V ˚
βi

|

and

epX, Y q ě d|X 1
||Y 1

| ´ ε|Vαi
||Vβi

| ě d|X||Y | ´ 2ε|V ˚
αi

||V ˚
βi

| .

Therefore all edges in EpLq correspond to p2ε, d0q-regular pairs and the edges in the
triangles aibici correspond to p2ε, d0,

d0
34q-super-regular pairs.

2.6.4 Generalizing previous results

In this section, we show that the conditions needed for a graph to be good are satisfied
by graphs with the minimum degree condition from the Bandwidth Theorem 1.1.2,
thus Theorem 1.1.14 generalizes this previous result.

We believe that pϱ, dq-dense, µ-inseparable graphs are also good and with a
relaxation on the condition AG being complete, the bandwidth result for tripartite
graphs shall also be generalized; this proof is not included.

77



Theorem 2.6.8. For ε ą 0, there exists n0 such that if G is a graph on n ě n0

vertices with minimum degree δpGq ě 2
3n ` εn, then G is pµ, δ, ζ, ϱ, ξ, η, νq-good with

µ “
2ε

3 , δ “
ε

9 , ζ “
ε

2 , ϱ “
ε2

16 , ξ “
1
3 , η “

ε

2 and ν “
ε

4 .

Proof. Let G with δpGq ě 2
3n ` εn be given, set Uv Ď Npvq with |Uv| “ 2

3n ` εn.
First we show that GrUvs is 2ε

3 -inseparable. Indeed, for any x P V pGq, we have

|Ux X Uv| ě 2
ˆ

2
3 ` ε

˙

n ´ n ě

ˆ

1
3 ` 2ε

˙

n . (2.6.10)

Take A Ď Uv and B “ Uv ∖ A, assume |A| ď
|Uv |

2 . Then for any x P A

|Npxq X B| ě

ˆ

1
3 ` 2ε

˙

n ´ |A| ě

ˆ

1
3 ` 2ε

˙

n ´

ˆ

1
3 `

ε

2

˙

n ě
3ε

2 n.

We have that epA, Bq ě |A|3ε
2 n ě 3ε

2 |A||B|.

The number of triangles in GrUvs is at least 3ε3n3. Indeed, take x P Uv and y P

Uv X Npxq. We have that

|Npyq X pUv X Npxqq| ě

ˆ

2
3 ` ε `

1
3 ` 2ε ´ 1

˙

n ě 3εn . (2.6.11)

Then x is in at least |Uv X Npxq|3ε
2 n triangles in Npvq. The total number of triangles

in Uv is at least
ˆ

2
3 ` ε

˙ˆ

1
3 ` 2ε

˙

1
2εn3

ě
ε

9n3 .

Note that if xv P EpGq, equation (2.6.10) gives us that xv is p1
3 ` 2εq-connectable.

Note that (2.6.11) gives for every v, x P V pGq, that

|EpUv X Uxq| ě

ˆ

1
3 ` 2ε

˙

3ε

2 n2
ě

ε

2n2 ,

thus A “ ApR, ε
2q is complete and, in particular, 3ε

2 -inseparable.

Finally we show that G has a fractional triangle factor f with W pfq “ n
3 .

Consider f a maximal fractional triangle factor of G and let A be the set of
unsaturated vertices. We show that A is an independent set. Otherwise con-
sider x, y P A such that xy P EpGq. Let the total weight in x be fpxq “ 1 ´ ε
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and in y be fpyq “ 1 ´ ε1. If there is a triangle uvw with u, v P Npxq X Npyq

and fpuvwq ą 0, then take α “ mintfpuvwq, ε, ε1u. Set a new weight function f 1

which is the same as f except

• f 1puvwq “ fpuvwq ´ α{2,

• f 1pxyuq “ fpxyuq ` α{2,

• f 1pxyvq “ fpxyvq ` α{2.

The weights f 1puq “ fpuq, f 1pvq “ fpvq, f 1pxq “ 1 ´ ε ` α, f 1pyq “ 1 ´ ε1 ` α are
at most 1 and W pf 1q “ W pfq ` α{2, contradicting the maximality of f . Then all
triangles with positive weight can have at most one vertex in Npxq X Npyq.

Note that all vertices in Npxq X Npyq must be saturated. Otherwise if z P

NpxqXNpyq has fpzq “ 1´ε2, take α “ mintε, ε1, ε2u and set f 1pxyzq “ fpxyzq`α.
Then W pfq ě |Npxq X Npyq| ě p1{3 ` 2εqn, which is a contradiction.

If A is independent and x P A, we have that Npxq contains only saturated vertices.
If uvw is a triangle in Npxq, then fpuvwq “ 0, otherwise take α “ mint2ε{3, fpuvwqu

and set

• f 1pxuvq “ fpxuvq ` α{2,

• f 1pxuwq “ fpxuwq ` α{2,

• f 1pxvwq “ fpxvwq ` α{2,

• f 1puvwq “ fpuvwq ´ α.

The weights f 1puq “ fpuq, f 1pvq “ fpvq, f 1pwq “ fpwq and f 1pxq “ 1 ´ ε ` 3α{2
are at most 1 and W pf 1q “ W pfq ` α{2, contradicting the maximality of f . Thus,
adding the weights of the vertices in Npxq, we count the weight of a triangle at most
twice and we have that W pfq ě |Npxq|{2 ě p1{3 ` ε{2qn, which is a contradiction.
This gives us that all vertices must be saturated.

If we are given A P V pGq with |A| ď ε
4n and F P EpGq with |F | ď ε2

16n2, we
get |XF | ď ε

4n and if v P V pGA,F q, then

NGA,F
pvq “ NGpvq ∖ pA Y XF Y tw : vw P F uq .
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Since v R XF , we have that |NGA,F
pvq| ě p2

3 ` ε ´ 3p ε
4qqn. By the argument

above, we have that GA,F contains a fractional triangle factor fGA,F
such that

W pfGA,F
q ě n

3 ´ εn
6 ě n

3 ´ ε
2pn ´ |A|q.
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3. The size-Ramsey number of pow-
ers of bounded degree trees

3.1 Auxiliary results

In this section we state a few results which will be needed in the proof of our main
theorem. The first lemma guarantees that, in a graph G that has edges between
large subsets of vertices, there exists a long “transversal” path along a constant
number of large subsets of vertices of G. Denote by eGpX, Y q the number of edges
between two disjoint sets X and Y in a graph G.

Lemma 3.1.1 ([21, Lemma 3.5]). For every integer ℓ ě 1 and every γ ą 0 there
exists d0 “ 2 ` 4{pγpℓ ` 1qq such that the following holds for any d ě d0. Let G be
a graph on dn vertices such that for every pair of disjoint sets X, Y Ď V pGq with
|X|, |Y | ě γn we have eGpX, Y q ą 0. Then for every family V1, . . . , Vℓ Ď V pGq of
pairwise disjoint sets each of size at least γdn, there is a path Pn “ px1, . . . , xnq

in G with xi P Vj for all 1 ď i ď n, where j ” i pmod ℓq.

We will also use the classical Chernoff’s inequality and Kővári–Sós–Turán theo-
rem.

Theorem 3.1.2 (Chernoff’s inequality). Let 0 ă ε ď 3{2. If X is a sum of
independent Bernoulli random variables then

Pp|X ´ ErXs| ą εErXsq ď 2 ¨ e´pε2{3qErXs .

Theorem 3.1.3 (Kővári–Sós–Turán [64]). Let k ě 1 and let G be a bipartite graph
with x vertices in each vertex class. If G contains no copy of K2k,2k, then G has at
most 4x2´1{p2kq edges.
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3.2 Bijumbledness, expansion and embedding of

trees

In this section we provide the necessary tools to obtain the desired monochromatic
embedding of a power of a tree in the proof of Theorem 1.2.1. We start by defining
the expanding property of a graph.

Property 3.2.1 (Expanding). A graph G is pn, a, bq-expanding if for all X Ď V pGq

with |X| ď apn ´ 1q, we have |NGpXq| ě b|X|.

Here NGpXq is the set of neighbours of X, i.e. all vertices in V pGq that share an
edge with some vertex from X. The following embedding result due to Friedman
and Pippenger [41] guarantees the existence of copies of bounded degree trees in
expanding graphs.

Lemma 3.2.2. Let n and ∆ be positive integers and G a non-empty graph. If G is
pn, 2, ∆ ` 1q-expanding, then G contains any n-vertex tree with maximum degree ∆
as a subgraph.

Owing to Lemma 3.2.2, we are interested in graph properties that guarantee
expansion. One such property is bijumbledness, defined below.

Property 3.2.3 (Bijumbledness). A graph G on N vertices is pp, ϑq-bijumbled if,
for all disjoint sets X and Y Ď V pGq with ϑ{p ă |X| ď |Y | ď pN |X|, we have
ˇ

ˇeGpX, Y q ´ p|X||Y |
ˇ

ˇ ď ϑ
a

|X||Y |.

We remark that, in the definition above, we restrict our sets X and Y not to be
too small; such a restriction is not usually imposed when defining bijumbledness,
but we have to do so here for certain technical reasons.

Note that bijumbledness immediately implies that

for all disjoint sets X, Y Ď V pGq with |X|, |Y | ą ϑ{p we have eGpX, Y q ą 0.
(3.2.1)

Moreover, a simple averaging argument guarantees that in a pp, ϑq-bijumbled graph
G on N vertices we have

ˇ

ˇ

ˇ

ˇ

epGq ´ p

ˆ

N

2

˙
ˇ

ˇ

ˇ

ˇ

ď ϑN. (3.2.2)

82



We now state the first main novel ingredient in the proof of our main result
(Theorem 1.2.1). The following lemma ensures that in a sufficiently large graph
we get an expanding subgraph with appropriate parameters or we get reasonably
large disjoint subsets of vertices that span no edges between them. This result was
inspired by [76, Theorem 1.5]. Furthermore, we remark that similar results have
been proved in [77,78].

Lemma 3.2.4. Let f ě 0, D ě 0, ℓ ě 2 and η ą 0 be given and let A “

pℓ ´ 1qpD ` 1qpη ` fq ` η.

If G is a graph on at least An vertices, then

1. there is a non-empty set Z Ď V pGq such that GrZs is pn, f, Dq-expanding, or

2. there exist V1, . . . , Vℓ Ď V pGq such that |Vi| ě ηn for 1 ď i ď ℓ and eGpVi, Vjq “

0 for 1 ď i ă j ď ℓ.

Proof. Let us assume that 1 does not hold. Since G is not pn, f, Dq-expanding, we
can take V1 Ď V pGq of maximum size satisfying that |V1| ď pη ` fqn and |NGpV1q| ă

D|V1|. We claim that |V1| ě ηn. Assume, for the sake of contradiction that |V1| ă ηn.
Let

W1 “ V pGq ∖ pV1 Y NGpV1qq.

Then |W1| ą An ´ pD ` 1qηn ą 0. Applying that 1 does not hold, we get X Ď W1

such that |X| ď fpn´1q and |NGrW1spXq| ă D|X|. Note that NGpXq Ď NGrW1spXqY

NGpV1q. Thus

|NGpX 9YV1q| “ |NGrW1spXq Y NGpV1q|

ă Dp|X| ` |V1|q.

Also |X 9YV1| ď pη ` fqn, deriving a contradiction to the maximality of V1.
Let 1 ď k ď ℓ ´ 2 and suppose we have pV1, . . . , Vkq such that

1. |Vi| ě ηn, for 1 ď i ď k;

2. epVi, Vjq “ 0, for 1 ď i ă j ď k;

3. |
Ťk

i“1pVi Y NGpViqq| ă kpD ` 1qpη ` fqn.
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We can increase this sequence in the following way. Let Wk “ V pGq ∖
Ťk

i“1pVi Y

NGpViqq and note that

|Wk|
3
ě An ´ pℓ ´ 2qpD ` 1qpη ` fqn

ě pD ` 1qpη ` fqn ` ηn

ą 0.

Since 1 does not hold, there exists Vk`1 Ď Wk of maximum size with |Vk`1| ď pη`fqn

such that |NGrWkspVk`1q| ă D|Vk`1|. Note that eGpVi, Vk`1q ď eGpVi, Wk`1q “ 0, for
every 1 ď i ď k. Therefore we have that 2 holds for the sequence pV1, . . . , Vk`1q.
Furthermore, note that

NGpVk`1q Ď

k
ď

i“1
NGpViq Y NGrWkspVk`1q . (3.2.3)

This gives us 3 for the sequence pV1, . . . , Vk`1q, since
ˇ

ˇ

ˇ

ˇ

ˇ

k`1
ď

i“1
pVi Y NGpViqq

ˇ

ˇ

ˇ

ˇ

ˇ

(3.2.3)
“

ˇ

ˇ

ˇ

ˇ

ˇ

k
ď

i“1
pVi Y NGpViqq Y Vk`1 Y NGrWkspVk`1q

ˇ

ˇ

ˇ

ˇ

ˇ

ă pk ` 1qpD ` 1qpη ` fqn.

To see that pV1, . . . , Vk`1q satisfies 1, define

Wk`1 “ V pGq ∖
k`1
ď

i“1
pVi Y NGpViqq

(3.2.3)
“ Wk ∖ pVk`1 Y NGrWkspVk`1qq.

Assume that |Vk`1| ă ηn and derive a contradiction as before.
Therefore, when k “ ℓ ´ 2, we generate a sequence pV1, . . . , Vℓ´1q with the

properties required by 2. To complete the sequence, note that 3 gives that |Wℓ´1| ě

ηn and set Vℓ “ Wℓ´1.

As a corollary of the previous lemma, we get the following lemma that says that
sufficiently large bijumbled graphs contain a non-empty expanding subgraph.

Lemma 3.2.5 (Bijumbledness implies expansion). Let f , ϑ, D and c ě 1 be positive
numbers with c ě 4pD ` 2qϑ and a ě 2pD ` 1qf . If G is a pc{panq, ϑq-bijumbled
graph with an vertices, then there exists a non-empty subgraph H of G that is
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pn, f, Dq-expanding.

Proof. Let p “ c{panq and let G be a pp, ϑq-bijumbled graph. Suppose for a
contradiction that no subgraph of G is pn, f, Dq-expanding. We apply Lemma 3.2.4
with ℓ “ 2 and η “ 2ϑa{c. Note that, since a ě 2pD ` 1qf and c ě 4pD ` 2qϑ, from
the choice of η we have

a ě pD ` 1qf `
a

2 ě pD ` 1qf `
2pD ` 2qϑa

c

ě pD ` 1qf ` pD ` 2qη “ pD ` 1qpf ` ηq ` η.

Then, we get two disjoint sets V1, V2 Ď V pGq with |V1| “ |V2| “ ηn ą ϑ{p such
that eGpV1, V2q “ 0. On the other hand, by (3.2.1), we have eGpV1, V2q ą 0, a
contradiction. Therefore, there is some subgraph of G that is pn, f, Dq-expanding.

The next lemma is crucial for embedding the desired power of a tree. Let G be
a graph and ℓ ě r be positive integers. An pℓ, rq-blow-up of G is a graph obtained
from G by replacing each vertex of G by a clique of size ℓ and for every edge of G

arbitrarily adding a complete bipartite graph Kr,r between the cliques corresponding
to the vertices of this edge.

Lemma 3.2.6 (Embedding lemma for powers of trees). Given positive integers k

and ∆, there exists r0 such that the following holds for every n-vertex tree T with
maximum degree ∆. There is a tree T 1 “ T 1pT, kq on at most n ` 1 vertices and
with maximum degree at most ∆2k such that for every graph J with T 1 Ď J and any
pℓ, rq-blow-up J 1 of J with ℓ ě r ě r0 we have T k Ď J 1.

Proof. Given positive integers k, ∆, take r0 “ ∆4k. Let T be an n-vertex tree with
maximum degree ∆. Let x0 be any vertex in V pT q and consider T as rooted at x0.
For each vertex v P V pT q, let Dpvq denote the set of descendants of v in T (including
v itself). Let Dipvq be the set of vertices u P Dpvq at distance at most i from v in T .

Let T 1 be a tree with vertex set consisting of a special vertex x˚ and the vertices
x P V pT q such that the distance between x and x0 is a multiple of 2k. The edge
set of T 1 consists of the edge x˚x0 and the pairs of vertices x, y P V pT 1q ∖ tx˚u for
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which x P D2kpyq or y P D2kpxq. That is,

V pT 1
q “ tx P V pT q : distT px0, xq ” 0 pmod 2kqu Y tx˚

u

EpT 1
q “

"

xy P

ˆ

V pT 1q ∖ tx˚u

2

˙

: x P D2k
pyq or y P D2k

pxq

*

Y tx˚x0u.

In particular, note that ∆pT 1q ď ∆2k and |V pT 1q| ď n ` 1. Let us consider T 1 as a
tree rooted at x˚.

Now suppose that J is a graph such that T 1 Ď J and J 1 is an pℓ, rq-blow-up of J

with ℓ ě r ě r0. Our goal is to show that T k Ď J 1. First, since J 1 is an pℓ, rq-blow-up
of J , there is a collection tKpxq : x P V pJqu of disjoint ℓ-cliques in J 1 such that for
each edge xy P EpJq, there is a copy of Kr,r between the vertices of Kpxq and Kpyq.
Let us denote by Kpx, yq such copy of Kr,r.

For each x P V pT 1q ∖ tx˚u, let D`pxq “ Dk´1pxq and D´pxq “ D2k´1pxq ∖

Dk´1pxq. In order to fix the notation, it helps to think in D`pxq and D´pxq as the
upper and lower half of close descendants of x, respectively. We denote by x` the
parent of x in T 1. Suppose that there exists an injective map φ : V pT q Ñ V pJ 1q

such that for every x P V pT 1q ∖ tx˚u, we have

1. φpD`pxqq Ď Kpx, x`q X Kpx`q;

2. φpD´pxqq Ď Kpx, x`q X Kpxq.

Then we claim that such map is in fact an embedding of T k into J 1. Figure 3.2.1
should help to visualize the concepts developed so far.

Claim 3.2.7. If φ : V pT q Ñ V pJ 1q is an injective map such that for all x P

V pT 1q ∖ tx˚u the properties (1) and (2) hold, then φ is an embedding of T k into J 1.

Proof. We want to show that if u and v are distinct vertices in T at distance at
most k, then φpuqφpvq is an edge in J 1. Let ũ and ṽ be vertices in V pT 1q ∖ tx˚u

with u P D2k´1pũq and v P D2k´1pṽq. If ũ “ ṽ, then by properties (1) and (2), we
have φpuq and φpvq adjacent in J 1, once all the vertices in φpD2k´1pũqq are adjacent
in J 1 either by edges from Kpũq, Kpũ`q or Kpũ, ũ`q. If ũ “ ṽ`, then we must have
u P D´pũq and v P D`pṽq and properties (1) and (2) give us φpuq, φpvq P Kpũq.
Analogously, if ṽ “ ũ`, then v P D´pṽq and u P D`pũq and properties (1) and (2)
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(c) Embedding T k into an pℓ, rq-blow-up of T 1.

Figure 3.2.1: Illustration of the concepts and notation used throughout the proof of
Lemma 3.2.6 when ∆ “ 3 and k “ 2. 87



imply that φpuq, φpvq P Kpṽq. If ũ` “ ṽ` (with ũ ‰ ṽ), then we have u P D`pũq

and v P D`pṽq and property (1) give us φpuq, φpvq P Kpũ`q.
Therefore we may assume that ũ and ṽ are at distance at least 2 in T 1 and do

not share a parent. But this implies that

mintdistT px, yq : x P D2k´1
pũq, y P D2k´1

pṽqu ě 2k ` 1,

contradicting the fact that u and v are at distance at most k in T . l

We conclude the proof by showing that such a map exists.

Claim 3.2.8. There is an injective map φ : V pT q Ñ V pJ 1q for which (1) and (2)
hold for every x P V pT 1q ∖ tx˚u.

Proof. We just need to show that for every x P V pT 1q, there is enough room in Kpxq

and in Kpx, x`q to guarantee that (1) and (2) hold. In order to do so, Kpxq should
be large enough to accommodate the set

D´
pxq Y

ď

yPV pT 1q

y`“x

D`
pyq. (3.2.4)

Since T 1 has maximum degree at most ∆2k and T has maximum degree ∆, we have
that the set in (3.2.4) has at most ∆4k vertices. Since |Kpxq| “ ℓ ě r0 “ ∆4k, the
set Kpxq is indeed large enough to accommodate the set in (3.2.4). Finally, since
|Kpx, x`q X Kpxq| “ |Kpx, x`q X Kpxq| “ r ě r0 “ ∆4k the set Kpx, x`q is also
large enough to accommodate D´pxq or D`pxq as in properties (1) and (2). l

We end this section discussing a graph property that needs to be inherited by
some subgraphs when running the induction in the proof of Theorem 1.2.1.

Definition 3.2.9. For positive numbers n, a, b, c, ℓ and ϑ, let Pnpa, b, c, ℓ, ϑq denote
the class of all graphs G with the following properties, where p “ c{panq.

(i ) |V pGq| “ an,

(ii ) ∆pGq ď b,
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(iii ) G has no cycles of length at most 2ℓ,

(iv ) G is pp, ϑq-bijumbled.

Only mild conditions on a, b, c, ℓ and ϑ are necessary to guarantee the existence
of a graph in Pnpa, b, c, ℓ, ϑq for sufficiently large n. These conditions can be seen
in (i )–(iii ) in Definition 3.2.10 below. In order to keep the induction going in our
main proof we also need a condition relating k and ∆, which represents, respectively,
the power of the tree T we want to embed and the maximum degree of T (see (iv )
in the next definition).

Definition 3.2.10. A 7-tuple pa, b, c, ℓ, ϑ, ∆, kq is good if

(i ) a ě 3,

(ii ) c ě ϑℓ,

(iii ) b ě 9c,

(iv ) ℓ ě 21∆2k.

Next we prove that conditions (i )–(iii ) in Definition 3.2.10 together with ϑ ě

32
?

c are enough to guarantee that there are graphs in Pnpa, b, c, ℓ, ϑq as long as
n is large enough. We remark that next lemma is stated for a good 7-tuple, but
condition (iv ) of Definition 3.2.10 is not necessary and, therefore, also ∆ and k are
irrelevant.

Lemma 3.2.11. If pa, b, c, ℓ, ϑ, ∆, kq is a good 7-tuple with ϑ ě 32
?

c, then for
sufficiently large n the family Pnpa, b, c, ℓ, ϑq is non-empty.

Proof. Let pa, b, c, ℓ, ϑ, ∆, kq be a good 7-tuple with ϑ ě 32
?

c and let n be sufficiently
large. Put N “ an and let G˚ “ Gp3N, pq be the binomial random graph with 3N

vertices and edge probability p “ c{N . From Chernoff’s inequality (Theorem 3.1.2)
we know that almost surely

epG˚
q ď 2p

ˆ

3N

2

˙

ď 9cN. (3.2.5)

From [49, Lemma 8], we know that almost surely G˚ is pp, e2
a

6pp3Nqq-bijumbled,
i.e. the following holds almost surely: for all disjoint sets X and Y Ď V pG˚q with
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e2
?

18N{
?

p ă |X| ď |Y | ď pp3Nq|X|, we have

ˇ

ˇeG˚pX, Y q ´ p|X||Y |
ˇ

ˇ ď pe2
?

6q
a

pp3Nq|X||Y |. (3.2.6)

The expected number of cycles of length at most 2ℓ in G˚ is given by EpCď2ℓq “
ř2ℓ

i“3 EpCiq, where Ci is the number of cycles of length i. Then,

EpCď2ℓq “

2ℓ
ÿ

i“3

ˆ

3an

i

˙

pi ´ 1q!
2 pi

ď

2ℓ
ÿ

i“3
p3cq

i
ď 2ℓp3cq

2ℓ.

Then, from Markov’s inequality, we have

P
`

Cď2ℓ ě 4ℓp3cq
2ℓ
˘

ď
1
2 . (3.2.7)

Since (3.2.5) and (3.2.6) hold almost surely and the probability in (3.2.7) is at
most 1/2, for sufficiently large n there exists a pp, e2

?
18cq-bijumbled graph G1

with 3N vertices that contains less than 4ℓp3cq2ℓ cycles of length at most 2ℓ and
epG1q ď 2p

`3N
2

˘

ď 9cN . Then, by removing 4ℓp3cq2ℓ vertices we obtain a graph G2

with no such cycles such that

|V pG2
q| “ 3an ´ 4ℓp3cq

2ℓ
ě 2an and epG2

q ď 9cN.

To obtain the desired graph G in Pnpa, b, c, ℓ, ϑq, we repeatedly remove vertices of
highest degree in G2 until N vertices are left, obtaining a subgraph G Ď G2 such
that ∆pGq ď 9c ď b, as otherwise we would have deleted more than epG2q edges.
Note that deleting vertices preserves the bijumbledness. Therefore, for all disjoint
sets X and Y Ď V pGq with e2

?
18N{

?
p ă |X| ď |Y | ď pp3Nq|X| we have

ˇ

ˇeGpX, Y q ´ p|X||Y |
ˇ

ˇ ď pe2
?

6q
a

pp3Nq|X||Y | ď p32
a

pNq
a

|X||Y | ď ϑ
a

|X||Y |.

(3.2.8)

We obtained a graph G on N vertices and maximum degree ∆pGq ď b such
that G contains no cycles of length at most 2ℓ and is pp, ϑq-bijumbled, for p “ c{N .
Therefore, the proof of the lemma is complete.
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3.3 Proof of the main result

We derive Theorem 1.2.1 from Proposition 3.3.1 below. Before continuing, given
an integer ℓ ě 1, let us define what we mean by a sheared complete blow-up Htℓu

of a graph H: this is any graph obtained by replacing each vertex v in V pHq by a
complete graph Cpvq with ℓ vertices, and by adding all edges but a perfect matching
between Cpuq and Cpvq, for each uv P EpHq. We also define the complete blow-up
Hpℓq of a graph H analogously, but by adding all the edges between Cpuq and Cpvq,
for each uv P EpHq.

Proposition 3.3.1. For all integers k ě 1, ∆ ě 2, and s ě 1 there exists rs and
a good 7-tuple pas, bs, cs, ℓs, ϑs, ∆, kq with ϑs ě 32?

cs for which the following holds.
If n is sufficiently large and G P Pnpas, bs, cs, ℓs, ϑsq then, for any tree T on n vertices
with ∆pT q ď ∆, we have

Grstℓsu Ñ pT k
qs.

Theorem 1.2.1 follows from Proposition 3.3.1 applied to a certain subgraph of a
random graph.

Proof of Theorem 1.2.1. Fix positive integers k, ∆ and s and let T be an n-vertex
tree with maximum degree ∆. Proposition 3.3.1 applied with parameters k, ∆ and
s gives rs and a good 7-tuple pas, bs, cs, ℓs, ϑs, ∆, kq with ϑs ě 32?

cs.
Let n be sufficiently large. By Lemma 3.2.11, since ϑs ě 32?

cs, there exists a
graph G P Pnpas, bs, cs, ℓs, ϑsq. Let χ be an arbitrary s-colouring of EpGrstℓsuq. Then,
Proposition 3.3.1 gives that Grstℓsu Ñ pT kqs. Since |V pGq| “ asn, the maximum
degree of G is bounded by the constant bs, and since rs and ℓs are constants, we
have epGrstℓsuq “ Ok,∆,spnq, which concludes the proof of Theorem 1.2.1.

The proof of Proposition 3.3.1 follows by induction in the number of colours.
Before we give this proof, let us state the results for the base case and the induction
step.

Lemma 3.3.2 (Base Case). For all integers h ě 1, k ě 1 and ∆ ě 2 there is an
integer r and a good 7-tuple pa, b, c, ℓ, ϑ, ∆, kq with ϑ ě 2h´132

?
c such that if n

is sufficiently large, then the following holds for any G P Pnpa, b, c, ℓ, ϑq. For any
n-vertex tree T with ∆pT q ď ∆, the graph Grtℓu contains a copy of T k.
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Lemma 3.3.3 (Induction Step). For any positive integers ∆ ě 2, s ě 2, k, r, h ě 1
and any good 7-tuple pa, b, c, ℓ, ϑ, ∆, kq with ϑ ě 2h32

?
c, there is a positive integer r1

and a good 7-tuple pa1, b1, c1, ℓ1, ϑ1, ∆, kq with ϑ1 ě 2h´132
?

c1 such that the following
holds. If n is sufficiently large then for any graph G P Pnpa1, b1, c1, ℓ1, ϑ1q and any
s-colouring χ of EpGr1

tℓ1uq

(i ) there is a monochromatic copy of T k in Gr1

tℓ1u for any n-vertex tree T with
∆pT q ď ∆, or

(ii ) there is H P Pnpa, b, c, ℓ, ϑq such that Hrtℓu Ď Gr1

tℓ1u and Hrtℓu is coloured
with at most s ´ 1 colours under χ.

Now we are ready to prove Proposition 3.3.1.

Proof of Proposition 3.3.1. Fix integers k ě 1, ∆ ě 2 and s ě 1 and define hi “ s´i

for 1 ď i ď s. Let r1 and a good 7-tuple pa1, b1, c1, ℓ1, ϑ1, ∆, kq with ϑ1 ě 2h132?
c1

be given by Lemma 3.3.2 applied with s, k and ∆.
We will prove the proposition by induction on the number of colours i P t1, . . . , su

with the additional property that if the colouring has i colours, then ϑi ě 2hi32?
ci.

Lemma 3.3.2 implies that for sufficiently large n, if G P Pnpa1, b1, c1, ℓ1, ϑ1q, then
Gr1tℓ1u Ñ pT kq1. Therefore, since ϑ1 ě 2h132?

c1, if i “ 1, we are done.
Assume 2 ď i ď s and suppose the statement holds for i ´ 1 colours with

the additional property that ϑi´1 ě 2hi´132?
ci´1, where ri´1 and a good 7-tuple

pai´1, bi´1, ci´1, ℓi´1, ϑi´1, ∆, kq are given by the induction hypothesis. Therefore, for
any tree T on n vertices with ∆pT q ď ∆, we know that for a sufficiently large n

Hri´1tℓi´1u Ñ pT k
qi´1 for any H P Pnpai´1, bs´1, ci´1, ℓi´1, ϑi´1q. (3.3.1)

Note that since i ď s, we have hi´1 “ s ´ pi ´ 1q ě 1. Then, since ϑi´1 ě

2hi´132?
ci´1, we can apply Lemma 3.3.3 with parameters

∆, s, k, ri´1, hi´1 and pai´1, bi´1, ci´1, ℓi´1, ϑi´1, ∆, kq ,

obtaining
ri and pai, bi, ci, ℓi, ϑi, ∆, kq ,

with ϑi ě 2hi32?
ci.
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Let G P Pnpai, bi, ci, ℓi, ϑiq and let n be sufficiently large. Now let χ be an
arbitrary i-colouring of EpGritℓiuq. From Lemma 3.3.3, we conclude that either (i )
there is a monochromatic copy of T k in Gritℓiu for any tree T on n vertices
with ∆pT q ď ∆, in which case the proof is finished, or (ii ) there exists a graph
H P Pnpai´1, bi´1, ci´1, ℓi´1, ϑi´1q such that Hri´1tℓi´1u Ď Gritℓiu and Hri´1tℓi´1u

is coloured with at most i ´ 1 colours under χ. In case (ii ), the induction hy-
pothesis (3.3.1) implies that we find the desired monochromatic copy of T k in
Hri´1tℓi´1u Ď Gritℓiu.

Lemma 3.3.2 follows by proving that for a good 7-tuple pa, b, c, ℓ, ϑ, ∆, kq with
ϑ ě 2h´132

?
c, large graphs G in Pnpa, b, c, ℓ, ϑq are expanding (using Lemma 3.2.5).

Then, we use Lemma 3.2.2 to conclude that G contains the desired tree T . After
this step we greedily find an embedding of T k in Gtℓuk.

Proof of the base case (Lemma 3.3.2). Let h ě 1, k ě 1 and ∆ ě 2 be integers. Let

r “ k, ℓ “ 21∆2k, ϑ “ 4h256ℓ, c “ ϑℓ, b “ 9c

and put D “ ∆ ` 1. Note that ϑ ě 2h´132
?

c and let

a ě 4pD ` 1q.

Since ℓ ě 4p∆ ` 3q, we have c ě 4pD ` 2qϑ. From the lower bounds on c and a

we know that we can use the conclusion of Lemma 3.2.5 applying it with f “ 2, ϑ,
D “ ∆ ` 1 and c.

Note that from our choice of constants, pa, b, c, ℓ, ϑ, ∆, kq is a good tuple. Let
n be sufficiently large and let T be a tree on n vertices with ∆pT q ď ∆. Let
G P Pnpa, b, c, ℓ, ϑq. From Lemma 3.2.5 we know that G has an pn, 2, ∆ ` 1q-
expanding subgraph and, therefore, from Lemma 3.2.2 we conclude that G contains
a copy of T . Clearly, the graph Gk contains a copy of T k. It remains to prove that
the graph Gktℓu also contains a copy of T k.

Let tv1, . . . , vnu be the vertices of Tn and denote by Tj the subgraph of T induced
by tv1, . . . , vju. Given a vertex v P V pGq, let Cpvq denote the ℓ-clique in Gktℓu that
corresponds to v. Suppose that for some 1 ď j ă k we have embedded T k

j in Gktℓu

where, for each 1 ď i ď j, the vertex vi was mapped to some wi P Cpviq.
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By the definition of Gktℓu, every neighbour v of vj`1 in Gk is adjacent to all but
one vertex of Cpvj`1q. Therefore, since ∆pT kq ď ∆k and |Cpvj`1q| “ ℓ ě ∆k ` 1,
we may thus find a vertex wj`1 P Cpvj`1q such that wj`1 is adjacent in Gktℓu to
every wi with 1 ď i ď j such that vivj`1 P EpT k

j`1q. From that we obtain a copy
of T k

j`1 in Gktℓu where wi P Cpviq for 1 ď i ď j ` 1. Therefore, starting with any
vertex w1 in Cpv1q, we may obtain a copy of T k in Gktℓu inductively, which proves
the lemma.

The core of the proof of Theorem 1.2.1 is the induction step (Lemma 3.3.3). We
start by presenting a sketch of its proof.

Sketch of the induction step (Lemma 3.3.3). We start by fixing suitable constants
r1, a1, b1, c1, ℓ1 and ϑ1. Let n be sufficiently large and let G P Pnpa1, b1, c1, ℓ1, ϑ1q be
given. Consider an arbitrary colouring χ of the edges of a sheared complete blow-
up Gr1

tℓ1u of Gr1 with s colours. We shall prove that either there is a monochromatic
copy of T k in Gr1

tℓ1u, or there is a graph H P Pnpa, b, c, ℓ, ϑq such that a sheared
complete blow-up Hrtℓu of Hr is a subgraph of Gr1

tℓ1u and this copy of Hrtℓu is
coloured with at most s ´ 1 colours under χ.

First, note that, by Ramsey’s theorem, if ℓ1 is large then each ℓ1-clique Cpvq

of Gr1

tℓ1u contains a large monochromatic clique. Let us say that blue is the most
common colour of these monochromatic cliques. Let these blue cliques be C 1pvq Ď

Cpvq. Then we consider a graph J Ď Gr1 induced by the vertices v corresponding
to the blue cliques C 1pvq and having only the edges tu, vu such that there is a blue
copy of a large complete bipartite graph under χ in the bipartite graph induced
between the blue cliques C 1puq and C 1pvq in Gr1

tℓ1u.
Then, by Lemma 3.2.4 applied to J , either there is a set ∅ ‰ Z Ď V pJq such

that JrZs is expanding, or there are large disjoint sets V1, . . . , Vℓ with no edges
between them in J . In the first case, Lemma 3.2.6 guarantees that there is a tree T 1

such that, if T 1 Ď JrZs, then there is a blue copy of T k in Gr1

tℓ1u. To prove that
T 1 Ď JrZs, we recall that JrZs is expanding and use Lemma 3.2.2. This finishes the
proof of the first case.

Now let us consider the second case, in which there are large disjoint sets V1, . . . , Vℓ

with no edges between them in J . The idea is to obtain a graph H P Pnpa, b, c, ℓ, ϑq

such that Hrtℓu Ď Gr1

tℓ1u and, moreover, Hrtℓu does not have any blue edge. For
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that we first obtain a path Q in G with vertices px1, . . . , x2aℓnq such that xi P Vj for
all i where i ” j mod ℓ. Then we partition Q into 2an paths Q1, . . . , Q2an with ℓ

vertices each, and consider an auxiliary graph H 1 on V pH 1q “ tQ1, . . . , Q2anu with
QiQj P EpH 1q if and only EGpV pQiq, V pQjqq ‰ ∅. To ensure that H 1 inherits
properties from G we use that there can bet at most one edge between Qi and Qj

in G, because there are no cycles of length less than 2ℓ in G.
We obtain a subgraph H2 Ď H 1 by choosing edges of H 1 uniformly at random

with a suitable probability p. Then, successively removing vertices of high degree,
we obtain a graph H Ď H2 with H P Pnpa, b, c, ℓ, ϑq. It now remains to find a
copy of Hrtℓu in Gr1

tℓ1u with no blue edges. To do so, we first observe that the
paths Qi P V pH 1q give rise to ℓ-cliques in Gr1 (r1 ě ℓ). One can then prove that
there is a copy of Hrtℓu in Gr1 that avoids the edges of J . By applying the Lovász
local lemma we can further deduce that there is a copy of Hrtℓu in Gr1

tℓ1u with no
blue edges.

Proof of the induction step (Lemma 3.3.3). We start by fixing positive integers ∆ ě

2, s ě 2, k, r, h and a good 7-tuple pa, b, c, ℓ, ϑ, ∆, kq with

ϑ ě 2h32
?

c.

Recall that from the definition of good 7-tuple, we have

b ě 9c.

Let d0 be obtained from Lemma 3.1.1 applied with ℓ and γ “ 1{p2ℓq (note that
d0 ď 10). Further let

a2
“ ℓp∆2k

` 2qp2a ¨ d0 ` 2q.

Notice that a2 is an upper bound on the value A given by Lemma 3.2.4 applied with
f “ 2, D “ ∆2k ` 1, ℓ and η “ 2a ¨ d0.

Let r0 be given by Lemma 3.2.6 on input ∆ and k. We may assume r0 is even.
Furthermore, let

t “ maxtr0,
`

40pℓbr`1
` ℓq

˘r0
u and ℓ1

“ maxt4sℓ2, rsptqu,
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where rsptq “ rpt, . . . , tq “ rpKt, . . . , Ktq denotes the s-colour Ramsey number for
cliques of order t. Let a1 “ ℓ1a and note that a1{s ě 2a2 because ℓ ě 21∆2k. Define
constants c˚, c1 and r1 as follows.

c˚
“ 2ℓ1c, c1

“
ℓ1

2ℓ2 c˚
“

ℓ12

ℓ2 c, r1
“ ℓr. (3.3.2)

Put
b1

“ 9c1 and ϑ1
“

c˚

4cℓ
ϑ “

ℓ1

2ℓ
ϑ

Claim 3.3.4. pa1, b1, c1, ℓ1, ϑ1, ∆, kq is a good 7-tuple and ϑ1 ě 2h´132
?

c1.

Proof. We have to check all conditions in Definition 3.2.10. Clearly a1 ě 3, b1 ě 9c1

and ℓ1 ě ℓ ě 21∆2k. Below we prove that the other conditions hold

• c1 ě ϑ1ℓ1:
c1

“
ℓ12

ℓ2 c ě
ℓ12

ℓ
ϑ “ 2ϑ1ℓ1

ą ϑ1ℓ1.

• ϑ1 ě 2h´132
?

c1:
ϑ1

“
ℓ1

2ℓ
ϑ ě

ℓ1

2ℓ
2h32

?
c “ 2h´132

?
c1. l

Let G be a graph in Pnpa1, b1, c1, ℓ1, ϑ1q. Assume

NG “ a1n and pG “ c1
{NG

and let T be an arbitrary tree with n vertices and maximum degree ∆ and consider
an arbitrary s-colouring χ : EpGr1

tℓ1uq ÝÑ rss of the edges of Gr1

tℓ1u. We shall
prove that either there is a monochromatic copy of T k in Gr1

tℓ1u, or there is a graph
H P Pnpa, b, c, ℓ, ϑq such that a sheared complete blow-up Hrtℓu of Hr is a subgraph
of Gr1

tℓ1u and this copy of Hrtℓu is coloured with at most s ´ 1 colours under χ.
By Ramsey’s theorem (see, for example, [22]), since ℓ1 ě rsptq, each ℓ1-clique Cpwq

in Gr1

tℓ1u (for w P V pGq) contains a monochromatic clique of size at least t. Without
lost of generality, let us assume that most of those monochromatic cliques are
blue. Let W Ď V pGq be the set of vertices w such that there is a blue t-clique
C 1pwq Ď Cpwq. We have

|W | ě
|V pGq|

s
“

a1n

s
ě 2a2n. (3.3.3)
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Define J as the subgraph of Gr1 with vertex set W and edge set

EpJq “

!

uv P EpGr1

rW sq : there is a blue copy of Kr0,r0 in Gr1

tℓ1
urC 1

puq, C 1
pvqs

)

.

That is, J is the subgraph of Gr1 induced by W and the edges uv such that there is
a blue copy of Kr0,r0 under χ in the bipartite graph induced by Gr1

tℓ1u between the
vertex sets of the blue cliques C 1puq and C 1pvq.

We now apply Lemma 3.2.4 with f “ 2, D “ ∆2k ` 1, ℓ, and η “ 2a ¨ d0 to the
graph J (notice that |V pJq| ě 2a2n is large enough so we can apply Lemma 3.2.4),
splitting the proof into two cases:

1 there is ∅ ‰ Z Ď V pJq such that JrZs is pn ` 1, 2, ∆2k ` 1q-expanding,

2 there exist V1, . . . , Vℓ Ď V pJq such that |Vi| ě 2ad0n for 1 ď i ď ℓ and JrVi, Vjs

is empty for any 1 ď i ă j ď ℓ.

In case JrZs is pn ` 1, 2, ∆2k ` 1q-expanding, we first notice that Lemma 3.2.6
applied to the graph JrZs implies the existence of a tree T 1 “ T 1pT, ∆, kq of maximum
degree at most ∆2k with at most n ` 1 vertices such that if JrZs contains T 1, then
T k Ď J 1 for any pr0, r0q-blow-up J 1 of J . But since JrZs is pn ` 1, 2, ∆2k ` 1q-
expanding, Lemma 3.2.2 implies that JrZs contains a copy of T 1. Therefore, the
graph Gr1

tℓ1u contains a blue copy of T k, as we can consider J 1 as the subgraph of
Gr1

tℓ1u containing only edges inside the blue cliques C 1puq (which have size t ě r0)
and the edges of the complete blue bipartite graphs Kr0,r0 between the blue cliques
C 1puq. This finishes the proof of the first case.

We may now assume that there are subsets V1, . . . , Vℓ Ď V pJq with |Vi| ě 2ad0n

for 1 ď i ď ℓ and JrVi, Vjs is empty for any 1 ď i ă j ď ℓ. We want to obtain a
graph H P Pnpa, b, c, ℓ, ϑq such that Hrtℓu Ď Gr1

tℓ1u and contains no blue edges.
Let J 1 “ JrV1 Y¨ ¨ ¨YVℓs, G1 “ GrV1 Y¨ ¨ ¨YVℓs and note that |V pG1q| “ |V pJ 1q| ě

d0 ¨ 2aℓn, where we recall that d0 is the constant obtained by applying Lemma 3.1.1
with ℓ and γ “ 1{p2ℓq. We want to use the assertion of Lemma 3.1.1 to obtain
a transversal path of length 2aℓn in G1 and so we have to check the conditions
adjusted to this parameter.

First note, that we have |Vi| ě 2ad0n ě γd0 ¨ 2aℓn for 1 ď i ď ℓ. Moreover,
since G1 is an induced subgraph of G and G P Pnpa1, b1, c1, ℓ, ϑ1q, we know by (3.2.1)
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that for all X, Y Ď V pG1q with |X|, |Y | ą ϑ1a1n{c1 we have eG1pX, Y q ą 0. Observe
that ϑ1a1n{c1 ă an “ γ ¨ 2aℓn once a1 “ ℓ1a and c1 ą ϑ1ℓ1. Therefore, we may use
Lemma 3.1.1 to conclude that G1 contains a path P2aℓn “ px1, . . . , x2aℓnq with xi P Vj

for all i, where j ” i pmod ℓq.

We split the obtained path P2aℓn of G1 into consecutive paths Q1, . . . , Q2an each
on ℓ vertices. More precisely, we let Qi “ pxpi´1qℓ`1, . . . , xiℓq for i “ 1, . . . , 2an. The
following auxiliary graph is the base of our desired graph H P Pnpa, b, c, ℓ, ϑq.

H 1 is the graph on V pH 1
q “ tQ1, . . . , Q2anu such that QiQj P EpH 1

q if and only if

there is an edge in G between the vertex sets of Qi and Qj.

Claim 3.3.5. H 1 P Pnp2a, ℓb1, c˚, ℓ, ℓϑ1q.

Proof. We verify the conditions of Definition 3.2.9. Since H 1 has 2an vertices,
condition (i ) clearly holds. Since ∆pGq ď b1 and for any Qi P V pH 1q we have
|Qi| “ ℓ (as a subset of V pGq), there are at most ℓb1 edges in G with an endpoint in
Qi. Then, ∆pH 1q ď ℓb1.

For condition (iii ), recall that any vertex of H 1 corresponds to a path on ℓ

vertices in G. Thus, a cycle of length at most 2ℓ in H 1 implies the existence of a
cycle of length at most 2ℓ2 in G. Since 2ℓ1 ě 2ℓ2 and G has no cycles of length at
most 2ℓ1, we conclude that H 1 contains no cycle of length at most 2ℓ, which verifies
condition (iii ).

Let NH 1 “ 2an and

pH 1 “
c˚

NH 1

“
c˚

2an
. (3.3.4)

Let us verify condition (iv ), i.e., we shall prove that H 1 is ppH 1 , ℓϑ1q-bijumbled.

Consider arbitrary sets X and Y of V pH 1q with ℓϑ1{pH 1 ă |X| ď |Y | ď pH 1NH 1 |X|.
For simplicity, we may assume that X “ tQ1, . . . , Qxu and Y “ tQx`1, . . . , Qx`yu.
Let XG “

Ťx
j“1 Qj Ď V pGq and YG “

Ťx`y
j“x`1 Qj Ď V pGq. Note that |XG| “ ℓ|X|

and |YG| “ ℓ|Y |. As there are no cycles of length smaller than 2ℓ in G, we only have
at most one edge between the vertex sets of Qi and Qj. Therefore we have

eH 1pX, Y q “ eGpXG, YGq. (3.3.5)
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We shall prove that |eH 1pX, Y q ´ pH 1 |X||Y || ď ℓϑ1
a

|X||Y |. From the choice of c1,
we have

pH 1 |X||Y | “
c˚

2an
|X||Y | “

c1

a1n
ℓ|X|ℓ|Y | “

c1

a1n
|XG||YG| “ pG|XG||YG|. (3.3.6)

From the choice of ϑ1, c1, and pH 1 , since ℓϑ1{pH 1 ă |X| ď |Y | ď pH 1NH 1 |X|, we obtain

ϑ1

pG

ă |XG| ď |YG| ď pGNG|XG|.

Combining (3.3.6) with (3.3.5) and the fact that G is ppG, ϑ1q-bijumbled, we get
that

|eH 1pX, Y q´pH 1 |X||Y || “ |eGpXG, YGq´pG|XG||YG|| ď ϑ1
a

|XG||YG| “ ℓϑ1
a

|X||Y |.

(3.3.7)
Therefore, H 1 is ppH 1 , ℓϑ1q-bijumbled, which verifies condition (iv ). l

The parameters for Pnp2a, ℓb1, c˚, ℓ, ℓϑ1q are tightly fitted such that we can find
the following subgraph of H 1.

Claim 3.3.6. There exists H Ď H 1 such that H P Pnpa, b, c, ℓ, ϑq.

Proof. We first obtain H2 Ď H 1 by picking each edge of H 1 with probability

p “
2c

c˚
“

1
ℓ1

independently at random. Note that p ď 1{2.

From (3.2.2), we get

epH 1
q ď pH 1

ˆ

2an

2

˙

` ℓϑ12an ď pc˚
` 2ℓϑ1

qan ď pc˚
` 2ℓ

c1

ℓ1
qan ď 2c˚an

From Chernoff’s inequality, we then know that almost surely we have

epH2
q ď 2p ¨ epH 1

q ď 2 ¨

ˆ

2c

c˚

˙

¨ 2c˚an ď 8acn ď abn. (3.3.8)

Let NH2 “ 2an and
pH2 “ p ¨ pH 1 “

c

an
.
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We shall prove that H2 is ppH2 , ϑq-bijumbled almost surely. For that, we will
first prove by using Chernoff’s inequality (Theorem 3.1.2) that, for any disjoint sets
X and Y of V pH 1q with ϑ{pH2 ă |X| ď |Y | ď pH 1NH 1 |X|, we have

|eH2pX, Y q ´ p ¨ eH 1pX, Y q| ď
ϑ

2
a

|X||Y |. (3.3.9)

Note that for such sets X and Y , since |X| ą ϑ{pH2 ě ℓϑ1{pH 1 , we can use (3.3.7).
Since |X|, |Y | ą ϑ{pH2 , we have

a

|X||Y | ą ϑan{c. From
a

|X||Y | ą ϑan{c, we
obtain that ℓ1ϑ ă

2ℓ1c
?

|X||Y |

2an
from which we can conclude that 2ℓϑ1 ă pH 1

a

|X||Y |.
Thus, we get ℓϑ1

a

|X||Y | ă pH 1 |X||Y |{2. Therefore, combining this with (3.3.7) we
have

pH 1 |X||Y |

2 ă eH 1pX, Y q ă 2pH 1 |X||Y |. (3.3.10)

Let ε “ ϑ
a

|X||Y |{p2p ¨eH 1pX, Y qq and note that from (3.3.10) we have ε ă 1. Since
ϑ ě 10

?
c, also from (3.3.10) we obtain

ε2p ¨ eH 1pX, Y q

3 “
|X||Y |ℓ1ϑ2

12 ¨ eH 1pX, Y q
ą 4an.

Therefore, by using Chernoff’s inequality, since there are at most 24an choices of
pairs of sets tX, Y u, almost surely we have that for any disjoint subsets X and Y of
vertices of H2 with ϑ{pH2 ă |X| ď |Y | ď pH 1NH 1 |X|, inequality (3.3.9) holds.

Observe that pH2NH2 |X| “ 2c|X| ď c˚|X| “ pH 1NH 1 |X|. Therefore, H2 is almost
surely ppH2 , ϑq-bijumbled, as by (3.3.7) and (3.3.9) we get

|eH2pX, Y q ´ pH2 |X||Y || ď |eH2pX, Y q ´ p ¨ eH 1pX, Y q| ` |p ¨ eH 1pX, Y q ´ pH2 |X||Y ||

(3.3.9)
ď

ϑ

2
a

|X||Y | ` pp|eH 1pX, Y q ´ pH 1 |X||Y ||q

(3.3.7)
ď

ϑ

2
a

|X||Y | `
ℓϑ1

ℓ1

a

|X||Y |

“ ϑ
a

|X||Y |.

Therefore, there exists a ppH2 , ϑq-bijumbled graph H2 as above. We fix such a
graph and construct the desired graph H from this H2 by sequentially removing
the an vertices of highest degree. Notice that H has maximum degree at most b,
otherwise this would imply that H2 has more than abn edges, contradicting (3.3.8).
Since H is a subgraph of H 1, and H 1 does not contain cycles of length at most 2ℓ,
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the same holds for H. Finally, since deleting vertices preserves the bijumbledness
property, we conclude that H P Pnpa, b, c, ℓ, ϑq. l

Recall that J is the subgraph of Gr1 induced by W , with |W | ě a1n{s and edges uv

such that there is a blue copy of Kr0,r0 under χ in the bipartite graph induced by the
vertex sets of blue cliques C 1puq and C 1pvq in Gr1

tℓ1u. Furthermore, recall that there
are subsets V1, . . . , Vℓ Ď V pJq with |Vi| ě 2ad0n for 1 ď i ď ℓ and JrVi, Vjs is empty
for any 1 ď i ă j ď ℓ, and we defined J 1 “ JrV1 Y¨ ¨ ¨YVℓs and G1 “ GrV1 Y¨ ¨ ¨YVℓs.
Lastly, recall that Qi “ pxpi´1qℓ`1, . . . , xiℓq for i “ 1, . . . , 2an, where the vertices
xi belong to G1. Assume, without loss of generality, V pHq “ tQ1, . . . , Qanu. In
what follows, when considering the graph Hrpℓq, the ℓ-clique corresponding to Qi is
composed of the vertices xpi´1qℓ`1, . . . , xiℓ, and hence one can view V

`

Hrpℓq
˘

as a
subset of V pG1q.

Claim 3.3.7. Hrpℓq Ď Gr1. Moreover, Gr1 contains a copy of Hrtℓu that avoids the
edges of J .

Proof. We will prove that Hrpℓq Ď Gr1 where Q1, . . . , Qan Ď V pJq are the ℓ-cliques
of Hrpℓq. Suppose that Qi and Qj are at distance at most r in the graph H.
Without loss of generality, let Qi “ Q1 and Qj “ Qm for some m ď r. Moreover, let
pQ1, Q2, . . . , Qmq be a path in H. Note that there exist vertices u1, . . . , um´1 and
u1

2, . . . , u1
m in V pG1q such that u1 P Q1, u1

m P Qm, uj, u1
j P Qj for all j “ 2, . . . , m ´ 1

and tui, u1
i`1u is an edge of G1 for i “ 1, . . . , m ´ 1.

Let u1
1 P Q1 and um P Qm be arbitrary vertices. Since for any j, the set Qj is

spanned by a path on ℓ vertices in G1, it follows that uj and u1
j are at distance at

most ℓ ´ 1 in G1 for all 1 ď j ď m. Therefore, u1
1 and um are at distance at most

pℓ´1qm`pm´1q ă ℓr ď r1 in G1 and hence u1
1um is an edge in GrV1Y. . .YVℓs

r1

Ď Gr1 .
Since the vertices u1

1 and um were arbitrary, we have shown that if Qi and Qj are
adjacent in Hr (i.e., Qi and Qj are at distance at most r in H) then pQi, Qjq gives
a complete bipartite graph CpQi, Qjq in Gr1 . Moreover, taking i “ j we see that
each Qi in Gr1 must be complete. This implies that Hrpℓq is a subgraph of Gr1 .

For the second part of the claim we consider which of the edges of this copy
of Hrpℓq can also be edges of J . Recall from the definition of J 1 that we found
subsets V1, . . . , Vℓ Ď J such that no edge of J lies between different parts. Moreover
each set Qi Ď J takes precisely one vertex from each set V1, . . . , Vℓ. It follows that
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each Qi is independent in J . Now let us say we have x P Qi and y P Qj (i ‰ j)
that are adjacent in J . We can not have x and y in different parts of the partition
tV1, . . . , Vℓu. Thus x and y lie in the same part. Therefore edges from J between Qi

and Qj must form a matching. Then we can find a copy of Hrtℓu that avoids J by
removing a matching between the l-cliques from Hrpℓq. l

To complete the proof of Lemma 3.3.3, we will embed a copy of the graph
Hrtℓu Ď Gr1 found in Claim 3.3.7 in Gr1

tℓ1u in such a way that Hrtℓu uses at most
s ´ 1 colours.

Claim 3.3.8. Gr1

tℓ1u contains a copy of Hrtℓu with no blue edges.

Proof. Recall that each vertex u in J corresponds to a clique C 1puq Ď Gr1

tℓ1u of
size t and that this clique is monochromatic in blue in the original colouring χ of
EpGr1

tℓ1uq. Recall also that if an edge tu, vu of Gr1

rW s is not in J , then there is
no blue copy of Kr0,r0 in the bipartite graph between C 1puq and C 1pvq in Gr1

tℓ1u.
By the Kővári–Sós–Turán theorem (Theorem 3.1.3), there are at most 4t2´1{r0 blue
edges between C 1puq and C 1pvq. Recall further that C 1puq and C 1pvq are, respectively,
subcliques of the ℓ1-cliques Cpuq and Cpvq in Gr1

tℓ1u. Since tu, vu is an edge of Gr1 ,
there is a complete bipartite graph with a matching removed between Cpuq and
Cpvq in Gr1

tℓ1u and so there is a complete bipartite graph with at most a matching
removed for C 1puq and C 1pvq. It follows that there are at least

t2
´ t ´ 4t2´1{r0

non-blue edges between C 1puq and C 1pvq.

Using the copy of Hrtℓu Ď Gr1 avoiding edges of J obtained in Claim 3.3.7 as a
‘template’, we will embed a copy of Hrtℓu in Gr1

tℓ1u with no blue edges. For each
vertex u P V pHrtℓuq Ď V pJq we will pick precisely one vertex from C 1puq Ď Gr1

tℓ1u

in our embedding. The argument proceeds by the Lovász Local Lemma.

For each u P V pHrtℓuq Ď V pJq let us choose xu P C 1puq uniformly and indepen-
dently at random. Let e “ tu, vu be an edge of our copy of Hrtℓu in Gr1 that is
not in J . As pointed out above, we know that there are at least t2 ´ t ´ 4t2´1{r0

non-blue edges between C 1puq and C 1pvq. Letting Ae be the event that txu, xvu is a
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blue edge or a non-edge in Gr1

tℓ1u, we have that

PrAes ď
t ` 4t2´1{r0

t2 ď 5t´1{r0 .

The events Ae are not independent, but we can define a dependency graph D

for the collection of events Ae by adding an edge between Ae and Af if and only
if e X f ‰ ∅. Then, ∆ “ ∆pDq ď 2∆pHrtℓuq ď 2pbr`1ℓ ` ℓq. From our choice of t

we get that
4∆PrAes ď 40pbr`1ℓ ` ℓ2

qt´1{r0 ď 1

for all e. Then the Local Lemma [4, Lemma 5.1.1] tells us that P
“
Ş

e Āe

‰

ą 0, and
hence a simultaneous choice of the xu’s (u P V pHrtℓuq) is possible, as required. This
concludes the proof of Claim 3.3.8. l

The proof of Lemma 3.3.3 is now complete.

3.4 Concluding remarks

To construct our graphs we need that Pnpa, b, c, ℓ, ϑq is non-empty given a good
7-tuple pa, b, c, ℓ, ϑ, ∆, kq with ϑ ě 32

?
c. We prove this in Lemma 3.2.11 using

the binomial random graph. Alternatively, it is possible to replace this by us-
ing explicit constructions of high girth expanders. For example, the Ramanujan
graphs constructed by Lubotzky, Phillips, and Sarnak [72] can be used to prove
Lemma 3.2.11.

We now discuss further connections between powers of trees and graph parameters
related to treewidth. As pointed out in the introduction, every graph with maximum
degree and bounded treewidth is contained in some bounded power of a bounded
degree tree and vice versa. This implies that Corollary 1.2.2 is equivalent to
Theorem 1.2.1. For bounded degree graphs, bounded treewidth is equivalent to
bounded cliquewidth and also to bounded rankwidth [52]. Therefore, Corollary 1.2.2
also holds with treewidth replaced by any of these parameters. Finally, an obvious
direction for further research is to investigate the size-Ramsey number of powers T k

of trees T when k and ∆pT q are no longer bounded.
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4. Random perturbation of sparse
graphs

4.1 Hamiltonicity

We will prove the following proposition that will be sufficient to prove Theorem 1.3.1
together with known results on Hamilton cycles in Gpn, pq.

Proposition 4.1.1. Let α “ αpnq : N Ñ p0, 1q such that α “ ωpn´ 1
6 q, and let

β “ βpαq “ ´p6 ` op1qq logpαq. Then a.a.s. Gα Y Gpn, β
n

q is Hamiltonian.

Proof of Theorem 1.3.1. Let α, β ą 0 such that β “ ´p6 ` op1qq logpαq. If α “

Opn´ 1
6 q, we have β ě p1 ` op1qq log n and we can infer that a.a.s. there is a Hamil-

tonian cycle in Gpn, β
n

q (this follows from an improvement on the result concerning
the threshold for Hamiltonicity [58]). On the other hand, if α “ ωpn´ 1

6 q, then we
apply Proposition 4.1.1 to a.a.s. get the Hamilton cycle.

Proof of Proposition 4.1.1. To prove the proposition we apply the following strategy.
We first find a long path in Gpn, pq alone. Then, by considering the union with Gα,
we obtain a reservoir structure for each vertex that allows us to extend the length
of the path iteratively. Finally, we will also be able to close this path into a cycle on
all vertices. W.l.o.g. we can assume that α ă 1

10 .

Let P “ p1, . . . , pℓ be the longest path that we can find in G1 “ Gpn, β´1
n

q and
let V 1 “ tv1, . . . , vku “ V pG1q ∖ tp1, ..., pℓu be the leftover. By Lemma 1.3.3, we get
a.a.s. that

k “ |V 1
| “ n ´ ℓ ď p1 ´ op1qqβ expp1 ´ βqn. . (4.1.1)
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p1 p2 p3 . . . pj´1 pj pj`1 . . . pℓ

v

p1 p2 p3 . . . pj´1 pjpj`1 . . . pℓv

Figure 4.1.1: The top shows a path P “ p1, . . . , pℓ and the left-over vertex v. Thin
edges belong to the random graph, thick edges can be found in Gα. The bottom
shows the graph after absorbing v using that pj P Bppℓ, vq.

Next, let P 1 be a collection of vertices of P , where we take every other vertex of the
path, excluding the last, that is

P 1
“ tpi : i ” 0 pmod 2qu ∖ tpℓu . (4.1.2)

In the following, we will ensure certain absorbing structures that do not overlap,
such that the leftover can be absorbed. Consider the union Gα Y G1. The following
absorbing structure is the key to the argument.

Definition 4.1.2. For any vertices u, v P V pGα Y G1q let

Bpu, vq “ tx P NGαpuq X P 1 : NP pxq Ď NGαpvqu . (4.1.3)

If for some v P V 1 there is a pj P Bppℓ, vq we can proceed as follows (see Figure
4.1.1). By definition we have pj´1, pj`1 P NGαpvq and pj P NGαppℓq X P 1. Then pj

can be replaced by v in the path P and then readded to the path P after pℓ. We
get the path P̃ “ p1, . . . , pj´1, v, pj`1, . . . , pℓ, pj, where P̃ Ď P Y Gα.

To iterate this argument we show that a.a.s. for any pair of vertices u and v, the
set Bpu, vq is large enough.

Claim 4.1.3. We have a.a.s. that |Bpu, vq| ě α3n
4 for any u, v P V pGα Y G1q.

Proof. Let u, v be arbitrary vertices in V “ V pGα YG1q. The set Bpu, vq is uniformly
distributed over P 1, because Gpn, β´1

n
q is sampled independently of the deterministic
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graph Gα. Then by definition

Er|Bpu, vq|s ě
9
10α3

|P 1
| ě

2
5α3

p1 ´ p1 ´ op1qqβ expp1 ´ βqn ě
α3n

3 . (4.1.4)

An immediate consequence of Bpu, vq being uniformly settled over Gpn, β´1
n

q is that
|Bpu, vq| „ Binp|P 1|, α3q. It follows from (4.1.4) and the Chernoff bound that there
is a sufficiently small, but constant, δ ą 0 s.t.

P
`

|Bpu, vq| ă
α3n

4
˘

ď P
`

|Bpu, vq| ă p1 ´ δqEr|Bpu, vq|s
˘

ď expp´
δ2

8 α3nq ă expp´
?

nq .

(4.1.5)

The claim follows from a union bound over all
`

n
2

˘

choices for u, v and (4.1.5). l

We now have everything at hand to absorb the leftover vertices V 1 “ tv1, . . . , v|V 1|u

into a path P̃ of length n´2, we leave two vertices of V 1 out of P̃ for closing the cycle.
Set P0 “ P and for every u, v P V pGαYG1q, let B0pu, vq “ Bpu, vq. For 0 ď i ď |V 1|´

1, assume we have Pi “ ui,1 . . . ui,ℓ`i with VPi
“ V pP q Y tv1, . . . , viu and for every

u, v, we have Bipu, vq with |Bipu, vq| ě α3n
8 . To get Pi`1 take ui,j P Bipui,ℓ`i, vi`1q

and switch it with vi`1. Then for every u, v set Bi`1pu, vq “ Bipu, vq∖ui,j . We have

|Bpu, vq ∖ Bipu, vq| ď i ď |V 1
| ď β expp1 ´ βqn ă

α3

8 n ,

where the last inequality holds for our choice of β “ ´p6 ` op1qq logpαq, with α ă 1
10 .

Set P̃ “ P|V 1|´2.

We have found a path P̃ “ p1, . . . , pn´2 and we are left with two vertices
v|V 1|´1, v|V 1| that are not on the path. We observe that it is possible to close the
Hamilton cycle by absorbing v|V 1|´1 and v|V 1| if there is an edge between A :“
B|V 1|pp1, v|V 1|´1q and B :“ B|V 1|ppn´2, v|V 1|q. Indeed, we then have w.l.o.g. i ă j such
that pi P A, pj P B, and pipj P EpGα Y G1q. By definition of A and B we can then
obtain the Hamilton cycle

pi, p1, . . . , pi´1, v|V 1|´1, pi`1, . . . , pj´1, v|V 1|, pj`1, . . . , pn´2, pj.

It remains to prove that we have an edge between A and B. For this we take
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G2 “ Gpn, 1
n

q. Since |A|, |B| ě α3n
8 , we get

EreG2pA, Bqs ě
1
n

¨

´α3n

16

¯2
“ ωp1q, (4.1.6)

as α “ ωpn´1{6q. Together with Chernoff’s inequality this implies that a.a.s.
eG2pA, Bq ą 0. Since the union of G1 and G2 can be coupled as a subgraph of
Gpn, β

n
q, this implies that a.a.s. there is a Hamilton cycle in Gα Y Gpn, β

n
q.

Theorem 1.3.2 can be proven similarly. Moreover, a better constant can be
obtained by adapting the definition of Bpu, vq to the setup of perfect matchings and
then proving that a.a.s. |Bpu, vq| ě α2n

4 .

4.2 Bounded degree trees

Theorem 1.3.6 shows that an almost spanning embeddings in the random graph
implies a spanning embedding in the union Gα Y Gpn, β

n
q. The proof is very similar

to the proof for Hamilton cycles and we will skip some details.

Proof of Theorem 1.3.6. Let Gα be given and G “ Gpn, β
n

q. Let T be an arbitrary
tree on n vertices with maximum degree ∆. Denote by Tε the tree obtained from T

by the following construction.

1. Set T0 “ T .

2. In every step i, check whether Ti has at most p1 ´ εqn vertices.

• If this is the case, set Tε “ Ti and finish the process.

• Otherwise, create Ti`1 by deleting one leaf of Ti.

Let L “ V pT q ∖ V pTεq be the leftover.
Then

|V pTεq| ď p1 ´ εqn, |L| ď εn ` 1, and V pT q “ V pTεq Y L.

Let I Ď V pTεq be independent and such that for every v P I, we have NT pvq Ď V pTεq.
Observe that there exists such an I with |I| ě

p1´∆εqn
∆`1 .
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By assumption we a.a.s. have an embedding T 1
ε of Tε into G and we denote by I 1

the image of I under this embedding. We adapt Definition 4.1.2 and define for any
two vertices u, v

BT pu, vq “ tx P NGαpuq X I 1 : NT 1
ε
pxq Ă NGαpvqu.

As before, if we want to embed a vertex w that is a neighbour of an already embedded
vertex u in Tε and v is an available vertex, we can do it if BT pu, vq is non-empty.
More precisely, with x P BT pu, vq, we can re-embed the vertex embedded into x

to v and then embed w into x, and obtain a valid embedding of T rV pTεq Y tuu.
Analogously to Claim 4.1.3 we get the following.

Claim 4.2.1. We a.a.s. have |BT pu, vq| ě α∆`1n
4p∆`1q

for any u, v P V pGα Y Gq.

Therefore, we can iteratively add leaves to Tε to obtain an embedding of T into
Gα Y G. Since in every step we lose at most one vertex from each BT pu, vq this
works as long as

|L| ď εn ` 1 ă |BT pu, vq| ,

which holds by Claim 4.2.1 and the assumption on ε and α.
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English Summary

In this thesis we focus on problems in Extremal and Probabilistic Combinatorics.
The thesis is organized in three parts, each concerning a problem regarding sufficient
conditions for a host graph under different settings to contain some cycle-like
subgraph.

In the first and main part, we want to embed spanning 3-chromatic graphs H

with small linear bandwidth and bounded maximum degree into graphs G “ pV, Eq.
For this kind of spanning subgraph, the condition we require from G is a common
generalisation of the bandwidth theorem from Böttcher, Schacht and Taraz, which
requires minimum degree δpGq ě p2{3 ` op1qq|V | and a previous joint work with
Ebsen et al., which requires uniform density d ą 0 in linear sized subsets of vertices
and density at least µ ą 0 in every cut. These two previous results are incomparable.
On the one hand, the latter result applies to sparser graphs G, since d and µ can
be arbitrarily small. On the other hand, the degree condition of the bandwidth
theorem does not ensure the uniform density condition. Here we relax this notion
of uniform density by requiring instead a robust almost perfect fractional triangle
factor in G and thus obtaining a common generalisation of both results. This and
more general results were shown independently in a recent work of Richard Lang
and Nicolás Sanhueza-Matamala.

In the second part, we study the following parameter. Given a positive integer s,
the s-colour size-Ramsey number of a graph H is the smallest integer m such that
there exists a graph G with m edges and the property that, in any colouring of EpGq

with s colours, there is a monochromatic copy of H. We prove that, for any positive
integers k and s, the s-colour size-Ramsey number of the kth power of any n-vertex
bounded degree tree is linear in n. As a corollary we obtain that the s-colour
size-Ramsey number of n-vertex graphs with bounded treewidth and bounded degree
is linear in n, which answers a question raised by Kamčev, Liebenau, Wood and
Yepremyan.

In the third part, we are interested in the model of randomly perturbed graphs
that consider the union of a deterministic n-vertex graph Gα with minimum degree
αn and the binomial random graph Gpn, pq. This model was introduced by Bohman,
Frieze, and Martin and for Hamilton cycles their result bridges the gap between
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Dirac’s theorem and the works of Posá and Koršunov on the threshold in Gpn, pq. We
extend this result in Gα Y Gpn, pq to sparser graphs with α “ op1q. More precisely,
for any ε ą 0 and α : N Ñ p0, 1q we show that a.a.s. Gα Y Gpn, β{nq is Hamiltonian,
where β “ ´p6 ` εq logpαq. If α ą 0 is a fixed constant this gives the aforementioned
result by Bohman, Frieze, and Martin and if α “ Op1{nq the random part Gpn, pq is
sufficient for ensuring a Hamiltonian cycle. We also discuss embeddings of bounded
degree trees and other spanning structures in this model, which lead to interesting
questions on almost spanning embeddings into Gpn, pq.
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Deutsche Zusammenfassung

Diese Dissertation konzentriert sich auf Probleme der Extremalen und Probabilis-
tischen Kombinatorik. Sie ist in drei Teile gegliedert, die sich jeweils mit einem
Problem befassen, das die hinreichenden Bedingungen dafür betrifft, dass ein Graph
unter verschiedenen Bedingungen einen kreisartigen Untergraph enthält.

Im ersten Teil wollen wir 3-chromatische Graphen H mit kleiner linearer Bandweite
und beschränktem Maximalgrad in Graphen G “ pV, Eq einbetten. Für diese Art
von aufspannenden Untergraphen ist die Bedingung, die wir von G verlangen, eine
Verallgemeinerung des Bandweitensatzes von Böttcher, Schacht und Taraz, der
einen Minimalgrad δpGq ě p2{3 ` op1qq|V | erfordert, und einer früheren gemein-
samen Arbeit mit Ebsen et al., die eine gleichmäßige Dichte d ą 0 in linear großen
Teilmengen von Knoten und eine Dichte von mindestens µ ą 0 in jedem Schnitt
erfordert. Diese beiden früheren Ergebnisse sind nicht vergleichbar. Einerseits gilt
das letztere Ergebnis für dünne Graphen G, da d und µ beliebig klein sein können.
Andererseits gewährleistet die Gradbedingung des Bandweitensatzes die Bedingung
der einheitlichen Dichte nicht. Hier schwächen wir den Begriff der gleichmäßigen
Dichte ab, indem wir stattdessen einen robusten fast perfekten Dreiecksfaktor in
G verlangen und so eine gemeinsame Verallgemeinerung beider Ergebnisse erhal-
ten. Dieses und allgemeinere Ergebnisse wurden unabhängig voneinander in einer
aktuellen Arbeit von Richard Lang und Nicolás Sanhueza-Matamala gezeigt.

Im zweiten Teil untersuchen wir den folgenden Parameter. Für eine positive
ganze Zahl s ist die s-size-Ramseyzahl eines Graphen H die kleinste ganze Zahl m,
bei der es einen Graphen G mit m Kanten und der Eigenschaft gibt, dass es in jeder
Färbung von EpGq mit s Farben, eine monochromatische Kopie von H existiert.
Wir beweisen, dass für beliebige positive ganze Zahlen k und s die s-size-Ramseyzahl
der kten Potenz eines beliebigen Baumes auf n Ecken mit beschränktem Grad linear
in n ist. Als Korollar erhalten wir, dass die s-size-Ramseyzahl von Graphen mit
beschränkter Baumbreite und beschränktem Grad linear in der Anzahl der Ecken
ist, was eine Frage von Kamčev, Liebenau, Wood und Yepremyan beantwortet.

Im dritten Teil interessieren wir uns für das Modell der zufällig augmentierten
Graphen, welches die Vereinigung eines deterministischen Graphen Gα mit Mini-
malgrad αn und des binomischen Zufallsgraphen Gpn, pq betrachtet. Dieses Modell
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wurde von Bohman, Frieze und Martin eingeführt. Für Hamiltonkreise schließt
ihr Ergebnis die Lücke zwischen Diracs Theorem und den Arbeiten von Posá und
Koršunov über den Schwellenwert in Gpn, pq. Wir erweitern dieses Ergebnis in
Gα Y Gpn, pq auf dünne Graphen mit α “ op1q. Genauer gesagt zeigen wir für
jedes ε ą 0 und α : N Ñ p0, 1q, dass a.f.s. Gα Y Gpn, β{nq Hamiltonisch ist, wobei
β “ ´p6 ` εq logpαq. Wenn α ą 0 eine feste Konstante ist, ergibt sich das bereits
erwähnte Ergebnis von Bohman, Frieze und Martin, und wenn α “ Op1{nq, ist der
Zufallgraph Gpn, pq ausreichend, um einen Hamiltonkreis zu gewährleisten. Wir
diskutieren auch Einbettungen von Bäumen mit beschränktem Grad und andere
aufspannende Strukturen in diesem Modell, die zu interessanten Fragen über fast
aufspannende Einbettungen in Gpn, pq führen.
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Declaration of Contributions

This thesis is a combination of three results. Each result is joint work with different
research groups and here I intend to specify my contributions in each of them.

The result presented in Chapter 2, concerning a generalization for the Theo-
rems 1.1.2 and 1.1.6, is my main contribution. This problem was suggested to me
by my advisor Mathias Schacht. I was already familiar to the topic, because of my
participation on the paper “Embedding spanning subgraphs in uniformly dense and
inseparable graphs” [EMR`20] and later I started to work on the generalization. I
worked alone under the guidance of my advisor, and we discussed the progress on a
regular basis.

The paper “The size-Ramsey number of powers of bounded degree trees” [BKM`21]
is the result of a two-months visit from Sören Berger and myself to Brazil. At IMPA
we met Taísa Martins, Walner Mendonça and two visitors, Guilherme Mota and
Olaf Parczyk. The problem was presented by Guilherme Mota and initial ideas
were discussed. Later, the visitors moved to the University of São Paulo, where
Yoshiharu Kohayakawa joined with valuable insights. I had a normal share of work,
first following ideas or questioning them, then writing and proofreading. I presented
this result at Eurocomb 2019 [BKM`19].

The last work presented in this thesis is based on the article “Random perturba-
tion of sparse graphs” [HKMM`20] was initiated during a workshop in Cuxhaven
organized by the Hamburg University of Technology. Each participant presented
a problem and some of these were chosen to be worked on in groups. Our group
members were Max Hahn-Klimroth, Yannick Mogge, Samuel Mohr, Olaf Parczyk
and myself. The problem was suggested by Olaf Parczyk. I had a normal contribu-
tion in discussing the initial ideas for the absorption method in the proof and then
proofreading the final note.

117



118



Bibliography

[1] N. Alon and F. R. K. Chung, Explicit construction of linear sized tolerant networks, Discrete
Math. 72 (1988), no. 1-3, 15–19. MR975519 Ò1.2

[2] N. Alon and Z. Füredi, Spanning subgraphs of random graphs, Graphs and Combinatorics 8
(1992), no. 1, 91–94. Ò1.3

[3] N. Alon, M. Krivelevich, and B. Sudakov, Embedding nearly-spanning bounded degree trees,
Combinatorica 27 (2007), no. 6, 629–644. Ò1.3.2, 1.3.2, 1.3.2

[4] N. Alon and J. H Spencer, The probabilistic method, 2nd ed., John Wiley & Sons, 2004. Ò3.3

[5] J. Balogh, B. Csaba, M. Pei, and W. Samotij, Large bounded degree trees in expanding graphs,
the electronic journal of combinatorics (2010), R6–R6. Ò1.3.2

[6] J. Balogh, T. Molla, and M. Sharifzadeh, Triangle factors of graphs without large independent
sets and of weighted graphs, Random Structures & Algorithms 49 (2016), no. 4, 669–693. Ò1.1,
1.1

[7] J. Balogh, A. Treglown, and A. Z. Wagner, Tilings in randomly perturbed dense graphs,
Combinatorics, Probability and Computing 28 (2019), no. 2, 159–176. Ò1.3

[8] J. Beck, On size Ramsey number of paths, trees, and circuits. I, J. Graph Theory 7 (1983),
no. 1, 115–129. MR693028 Ò1.2

[9] W. Bedenknecht, J. Han, Y. Kohayakawa, and G. O Mota, Powers of tight Hamilton cycles in
randomly perturbed hypergraphs, Random Structures & Algorithms 55 (2019), no. 4, 795–807.
Ò1.3

[10] P. Bennett, A. Dudek, and A. Frieze, Adding random edges to create the square of a Hamilton
cycle, arXiv preprint arXiv:1710.02716 (2017). Ò1.3

[11] S. Berger, Y. Kohayakawa, G. S. Maesaka, T. Martins, W. Mendonça, G. O. Mota, and O.
Parczyk, The size-ramsey number of powers of bounded degree trees, Journal of the London
Mathematical Society 103 (2021), no. 4, 1314–1332. Ò4.2

[12] S. Berger, Y. Kohayakawa, G. Maesaka, T. Martins, W. Mendonça, G. Mota, and O. Parczyk,
The size-ramsey number of powers of bounded degree trees, Acta Mathematica Universitatis
Comenianae 88 (2019), no. 3, 451–456. Ò1.2

119

http://www.ams.org/mathscinet-getitem?mr=975519
http://www.ams.org/mathscinet-getitem?mr=693028


[13] T. Bohman, A. Frieze, and R. Martin, How many random edges make a dense graph Hamilto-
nian?, Random Structures & Algorithms 22 (2003), no. 1, 33–42. Ò1.3, 1.3.1

[14] B. Bollobás and A. G. Thomason, Threshold functions, Combinatorica 7 (1987), no. 1, 35–38.
Ò1.3

[15] B. Bollobás, Extremal graph theory with emphasis on probabilistic methods, CBMS Regional
Conference Series in Mathematics, vol. 62, Published for the Conference Board of the Mathe-
matical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI,
1986. MR840466 Ò1.2

[16] J. Böttcher, Large-scale structures in random graphs., Bcc, 2017, pp. 87–140. Ò1.3

[17] J. Böttcher, J. Han, Y. Kohayakawa, R. Montgomery, O. Parczyk, and Y. Person, Univer-
sality for bounded degree spanning trees in randomly perturbed graphs, Random Structures &
Algorithms 55 (2019), no. 4, 854–864. Ò1.3

[18] J. Böttcher, Y. Kohayakawa, A. Taraz, and A. Würfl, An extension of the blow-up lemma to
arrangeable graphs, SIAM Journal on Discrete Mathematics 29 (2015), no. 2, 962–1001. Ò2.6.1

[19] J. Böttcher, R. Montgomery, O. Parczyk, and Y. Person, Embedding spanning bounded degree
graphs in randomly perturbed graphs, Mathematika 66 (2020), no. 2, 422–447. Ò1.3, 1.3.1

[20] J. Böttcher, M. Schacht, and A. Taraz, Proof of the bandwidth conjecture of Bollobás and
Komlós, Mathematische Annalen 343 (2009), no. 1, 175–205. Ò1.1, 1.1, 1.1, 1.3, 2.6

[21] D. Clemens, M. Jenssen, Y. Kohayakawa, N. Morrison, G. O. Mota, D. Reding, and B. Roberts,
The size-Ramsey number of powers of paths, J. Graph Theory 91 (2019), no. 3, 290–299. Ò1.2,
3.1.1

[22] D. Conlon, J. Fox, and B. Sudakov, Recent developments in graph Ramsey theory, Surveys in
combinatorics 2015, 2015, pp. 49–118. MR3497267 Ò3.3

[23] K. Corrádi and A. Hajnal, On the maximal number of independent circuits in a graph, Acta
Mathematica Academiae Scientiarum Hungaricae 14 (1963), 423–439. Ò1.1

[24] S. Das, P. Morris, and A. Treglown, Vertex Ramsey properties of randomly perturbed graphs,
Random Structures & Algorithms 57 (2020), no. 4, 983–1006. Ò1.3

[25] S. Das and A. Treglown, Ramsey properties of randomly perturbed graphs: cliques and cycles,
Combinatorics, Probability and Computing 29 (2020), no. 6, 830–867. Ò1.3

[26] D. Dellamonica Jr., The size-Ramsey number of trees, Random Structures Algorithms 40
(2012), no. 1, 49–73. MR2864652 Ò1.2

[27] G. Ding and B. Oporowski, Some results on tree decomposition of graphs, J. Graph Theory
20 (1995), no. 4, 481–499. MR1358539 Ò1.2

[28] G. A. Dirac, Some theorems on abstract graphs, Proceedings of the London Mathematical
Society 2 (1952), no. 1, 69–81. Ò1.1, 1.3

120

http://www.ams.org/mathscinet-getitem?mr=840466
http://www.ams.org/mathscinet-getitem?mr=3497267
http://www.ams.org/mathscinet-getitem?mr=2864652
http://www.ams.org/mathscinet-getitem?mr=1358539


[29] A. Dudek and P. Prałat, An alternative proof of the linearity of the size-ramsey number of
paths, Combinatorics, Probability and Computing 24 (2015), no. 3, 551–555. Ò1.2

[30] , On some multicolor ramsey properties of random graphs, SIAM Journal on Discrete
Mathematics 31 (2017), no. 3, 2079–2092. Ò1.2

[31] A. Dudek, C. Reiher, A. Ruciński, and M. Schacht, Powers of hamiltonian cycles in randomly
augmented graphs, Random Structures & Algorithms 56 (2020), no. 1, 122–141. Ò1.3

[32] O. Ebsen, G. S Maesaka, C. Reiher, M. Schacht, and B. Schülke, Embedding spanning subgraphs
in uniformly dense and inseparable graphs, Random Structures & Algorithms 57 (2020), no. 4,
1077–1096. Ò1.1, 1.1, 2.3, 4.2

[33] O.-A. Ebsen, Homomorphism thresholds and embeddings of spanning subgraphs in dense graphs,
Ph.D. Thesis, 2020. Ò1.1, 1.1

[34] P. Erdős, On the combinatorial problems which I would most like to see solved, Combinatorica
1 (1981), no. 1, 25–42. MR602413 Ò1.2

[35] P. Erdős, R. J. Faudree, C. C. Rousseau, and R. H. Schelp, The size Ramsey number, Period.
Math. Hungar. 9 (1978), no. 1-2, 145–161. MR479691 Ò1.2

[36] P. Erdős and A. Rényi, On the existence of a factor of degree one of a connected random
graph, Acta Math. Acad. Sci. Hungar 17 (1966), 359–368. Ò1.3

[37] P. Erdös, On extremal problems of graphs and generalized graphs, Israel Journal of Mathematics
2 (1964), no. 3, 183–190. Ò2.4

[38] P. Erdős, Problem 9, Theory of graphs and its applications (proc. sympos. smolenice, 1963),
1964, pp. 85–90. Ò1.1

[39] A. Ferber, K. Luh, and O. Nguyen, Embedding large graphs into a random graph, Bulletin of
the London Mathematical Society 49 (2017), no. 5, 784–797. Ò1.3, 1.3.3

[40] A. Ferber and R. Nenadov, Spanning universality in random graphs, Random Structures &
Algorithms 53 (2018), no. 4, 604–637. Ò1.3

[41] J. Friedman and N. Pippenger, Expanding graphs contain all small trees, Combinatorica 7
(1987), no. 1, 71–76. MR905153 Ò1.2, 3.2

[42] A. Frieze and M. Karoński, Introduction to random graphs, Cambridge University Press, 2016.
Ò1.3.1, 1.3.1, 1.3.3

[43] A. M Frieze, On large matchings and cycles in sparse random graphs, Discrete Mathematics
59 (1986), no. 3, 243–256. Ò1.3.1, 1.3.3, 1.3.4

[44] M. Hahn-Klimroth, G. S Maesaka, Y. Mogge, S. Mohr, and O. Parczyk, Random perturbation
of sparse graphs, arXiv preprint arXiv:2004.04672 (2020). Ò4.2

[45] A. Hajnal and E. Szemerédi, Proof of a conjecture of P. Erdős, Combinatorial theory and its
applications 2 (1970), 601–623. Ò1.1, 1.3

121

http://www.ams.org/mathscinet-getitem?mr=602413
http://www.ams.org/mathscinet-getitem?mr=479691
http://www.ams.org/mathscinet-getitem?mr=905153


[46] J. Han, M. Jenssen, Y. Kohayakawa, G. O. Mota, and B. Roberts, The multicolour size-ramsey
number of powers of paths, J. Comb. Theory Ser. B 145 (2020), 359–375. Ò1.2, 1.2

[47] J. Han, P. Morris, and A. Treglown, Tilings in randomly perturbed graphs: Bridging the gap
between Hajnal-Szemerédi and Johansson-Kahn-Vu, Random Structures & Algorithms 58
(2021), no. 3, 480–516. Ò1.3

[48] P. E. Haxell and Y. Kohayakawa, The size-Ramsey number of trees, Israel J. Math. 89 (1995),
no. 1-3, 261–274. MR1324465 Ò1.2

[49] P. E. Haxell, Y. Kohayakawa, and T. Łuczak, The induced size-Ramsey number of cycles,
Combin. Probab. Comput. 4 (1995), no. 3, 217–239. MR1356576 Ò1.2, 3.2

[50] A. Johansson, J. Kahn, and V. Vu, Factors in random graphs, Random Structures & Algorithms
33 (2008), no. 1, 1–28. Ò1.3, 1.3.3

[51] F. Joos and J. Kim, Spanning trees in randomly perturbed graphs, Random Structures &
Algorithms 56 (2020), no. 1, 169–219. Ò1.3

[52] M. Kamiński, V. V. Lozin, and M. Milanič, Recent developments on graphs of bounded
clique-width, Discrete Appl. Math. 157 (2009), no. 12, 2747–2761. MR2536473 Ò3.4

[53] N. Kamčev, A. Liebenau, D. R. Wood, and L. Yepremyan, The size Ramsey number of graphs
with bounded treewidth (2019), available at 1906.09185. Ò1.2, 2

[54] X. Ke, The size Ramsey number of trees with bounded degree, Random Structures Algorithms
4 (1993), no. 1, 85–97. MR1192528 Ò1.2

[55] F. Knox and A. Treglown, Embedding spanning bipartite graphs of small bandwidth, Combina-
torics, Probability and Computing 22 (2013), no. 1, 71–96. Ò1.1

[56] Y. Kohayakawa, T. Retter, and V. Rödl, The size-Ramsey number of short subdivisions of
bounded degree graphs, Random Structures Algorithms 54 (2019), no. 2, 304–339. Ò1.2

[57] Y. Kohayakawa, V. Rödl, M. Schacht, and E. Szemerédi, Sparse partition universal graphs for
graphs of bounded degree, Adv. Math. 226 (2011), no. 6, 5041–5065. MR2775894 Ò1.2

[58] J. Komlós, G. N. Sárközy, and E. Szemerédi, Limit distribution for the existence of Hamiltonian
cycles in a random graph, Discrete Mathematics 43 (1983), no. 1, 55–63. Ò4.1

[59] , On the Pósa-Seymour conjecture, Journal of Graph Theory 29 (1998), no. 3, 167–176.
Ò1.1, 1.3

[60] J. Komlós, G. N Sárközy, and E. Szemerédi, Proof of a packing conjecture of Bollobás,
Combinatorics, Probability and Computing 4 (1995), no. 3, 241–255. Ò1.3.2

[61] , Proof of the Seymour conjecture for large graphs, Annals of Combinatorics 2 (1998),
43–60. Ò1.3

[62] J. Komlós, G. N Sárkózy, and E. Szemerédi, Spanning trees in dense graphs, Combinatorics,
Probability and Computing 10 (2001), no. 5, 397–416. Ò1.3

122

http://www.ams.org/mathscinet-getitem?mr=1324465
http://www.ams.org/mathscinet-getitem?mr=1356576
http://www.ams.org/mathscinet-getitem?mr=2536473
1906.09185
http://www.ams.org/mathscinet-getitem?mr=1192528
http://www.ams.org/mathscinet-getitem?mr=2775894


[63] A. D. Korshunov, Solution of a problem of Erdős and Renyi on Hamiltonian cycles in
nonoriented graphs, Doklady akademii nauk, 1976, pp. 529–532. Ò1.3

[64] T. Kővári, V. T. Sós, and P. Turán, On a problem of K. Zarankiewicz, Colloq. Math. 3 (1954),
50–57. MR0065617 Ò3.1.3

[65] M. Krivelevich, Long cycles in locally expanding graphs, with applications, Combinatorica 39
(2019), no. 1, 135–151. Ò1.2

[66] M. Krivelevich, Embedding spanning trees in random graphs, SIAM Journal on Discrete
Mathematics 24 (2010), no. 4, 1495–1500. Ò1.3, 1.3.2

[67] , Long paths and Hamiltonicity in random graphs, Random graphs, geometry and
asymptotic structure 84 (2016), no. 1. Ò1.3.1

[68] M. Krivelevich, M. Kwan, and B. Sudakov, Bounded-degree spanning trees in randomly
perturbed graphs, SIAM Journal on Discrete Mathematics 31 (2017), no. 1, 155–171. Ò1.3,
1.3.2, 1.3.2

[69] D. Kuhn and D. Osthus, On Pósa’s conjecture for random graphs, SIAM Journal on Discrete
Mathematics 26 (2012), no. 3, 1440–1457. Ò1.3

[70] R. Lang and N. Sanhueza-Matamala, On sufficient conditions for hamiltonicity in dense
graphs, Extended abstracts eurocomb 2021: European conference on combinatorics, graph
theory and applications, 2021, pp. 527–532. Ò1.1

[71] S. Letzter, Path Ramsey number for random graphs, Combin. Probab. Comput. 25 (2016),
no. 4, 612–622. MR3506430 Ò1.2

[72] A. Lubotzky, R. Phillips, and P. Sarnak, Ramanujan graphs, Combinatorica 8 (1988), no. 3,
261–277. MR963118 Ò3.4

[73] R. Montgomery, Spanning trees in random graphs, Advances in Mathematics 356 (2019),
106793. Ò1.3, 1.3.2, 1.3.2

[74] R. Nenadov and N. Škorić, Powers of Hamilton cycles in random graphs and tight Hamilton
cycles in random hypergraphs, Random Structures & Algorithms 54 (2019), no. 1, 187–208.
Ò1.3

[75] R. Nenadov and M. Trujić, Sprinkling a few random edges doubles the power, SIAM Journal
on Discrete Mathematics 35 (2021), no. 2, 988–1004. Ò1.3

[76] A. Pokrovskiy, Calculating Ramsey numbers by partitioning colored graphs, J. Graph Theory
84 (2017), no. 4, 477–500. Ò3.2

[77] A. Pokrovskiy and B. Sudakov, Ramsey goodness of paths, J. Combin. Theory Ser. B 122
(2017), 384–390. MR3575209 Ò2, 3.2

[78] , Ramsey goodness of cycles, SIAM J. Discrete Math. 34 (2020), no. 3, 1884–1908. Ò2,
3.2

123

http://www.ams.org/mathscinet-getitem?mr=0065617
http://www.ams.org/mathscinet-getitem?mr=3506430
http://www.ams.org/mathscinet-getitem?mr=963118
http://www.ams.org/mathscinet-getitem?mr=3575209


[79] L. Pósa, Hamiltonian circuits in random graphs, Discrete Mathematics 14 (1976), no. 4,
359–364. Ò1.3

[80] O. Riordan, Spanning subgraphs of random graphs, Combinatorics, Probability and Computing
9 (2000), no. 2, 125–148. Ò1.3

[81] V. Rödl and E. Szemerédi, On size Ramsey numbers of graphs with bounded degree, Combina-
torica 20 (2000), no. 2, 257–262. MR1767025 Ò1.2

[82] P. D Seymour, Problem 3, Combinatorics (proc. british combinatorial conf., univ. coll. wales,
aberystwyth, 1973), 1974, pp. 201–202. Ò1.1

[83] D. A Spielman and S.-H. Teng, Smoothed analysis of algorithms: Why the simplex algorithm
usually takes polynomial time, Journal of the ACM (JACM) 51 (2004), no. 3, 385–463. Ò1.3

[84] K. Staden and A. Treglown, The bandwidth theorem for locally dense graphs. Available at
arXiv:1807.09668. Submitted. Ò1.1, 1.1

[85] W. T. Tutte, A short proof of the factor theorem for finite graphs, Canadian Journal of
Mathematics 6 (1954), 347–352. Ò1.1

[86] D. R Wood, On tree-partition-width, Eur. J. Comb. 30 (2009), no. 5, 1245–1253. Ò1.2

124

http://www.ams.org/mathscinet-getitem?mr=1767025


Acknowledgements

It was a great beginning to be able to visit Brazil and work with excitement with
Taísa, Walner, Guilherme, Olaf, Sören and Yoshiharu. I am also grateful for my peers
at the University of Hamburg, especially my advisor Mathias, who quickly included
me in their research and for the group at the Hamburg University of Technology,
especially Anusch; our workshops together were always a motivational peak for me.

The middle period of this work coincided with the COVID-19 pandemic and my
strong feelings of not belonging. Therefore, I am grateful for the welcoming green
paths next to water streams that spread all over Hamburg. The ladybugs, who are
everywhere, inspired me to trust I am part of wherever I am.

I thank my family, Célia, Jorge, Tati, Vítor, for I always feel refilled with
confidence after talking to them. I hope to share more of mathematics with them
someday, since they were always there supporting this “madness”.

I thank my friends. The ones that, given the distance, I had to call: Lie, Luiz,
Pedro, Ludy, Rangel and T19. The ones I met in Hamburg: Yannick, Attila, Zsuzsi,
Babi, Ann-Kathrin, Nina, Richard, Oliver, Simon, Alena, Konoka, Masa, Herbert,
Solveig, Henriette. The four-legged friends: Mynghau, Foxy and Michi. They are
very unique and relate to me in most different ways. My best friend in Hamburg,
who is now sitting next to me, is Julian and I thank him for exactly that.

If I am able to believe in this work, it is because of the journey I had to take so
that this could become concrete. Mathematics has given me ways to follow and now
I will make way for the mathematics in me. I am looking forward to it.



Eidesstattliche Versicherung

Hiermit versichere ich an Eides statt, die vorliegende Dissertation selbst verfasst und
keine anderen als die angegebenen Hilfsmittel benutzt zu haben. Darüber hinaus
versichere ich, dass diese Dissertation nicht in einem früheren Promotionsverfahren
eingereicht wurde.


	Introduction
	Spanning tripartite subgraphs
	The size-Ramsey number of powers of bounded degree trees
	Random perturbation of sparse graphs
	Hamiltonicity in randomly perturbed sparse graphs
	Bounded degree trees in randomly perturbed sparse graphs
	Other spanning structures


	Spanning tripartite subgraphs
	Absorption method
	Second Power of a Hamiltonian Cycle
	Connecting
	Absorbing
	Covering
	Embedding spanning graphs of small bandwidth
	Lemma for G
	Lemma for H
	Adjusting the partition of V(G)
	Generalizing previous results


	The size-Ramsey number of powers of bounded degree trees
	Auxiliary results
	Bijumbledness, expansion and embedding of trees
	Proof of the main result
	Concluding remarks

	Random perturbation of sparse graphs
	Hamiltonicity
	Bounded degree trees

	Appendix
	English Summary
	Deutsche Zusammenfassung
	Publications related to this dissertation
	Declaration of Contributions
	Acknowledgements
	Eidesstattliche Versicherung


