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Abstract
High performance computing is a complex field, with many homogeneous and hetero-
geneous hardware architectures, and numerous programming paradigms, libraries and
compilers. OpenMP and netCDF are relatively widely used in Earth system research
because they are comparatively easy to learn and yet can exploit the potential of a single
compute node. However, Earth system scientists without the appropriate training may
find it difficult to run their application on a distributed HPC infrastructure. As Earth
system applications generally benefit from being able to run on large input problems,
they would particularly benefit from HPC features such as process parallelisation, data
reduction or parallel input and output. However, their use is not trivial and requires a
lot of experience and work. In order to support them, this dissertation develops a tool
that allows them to quickly apply useful HPC frameworks without having to deal with
the implementation first, by automatically incorporating the necessary code changes into
their application.

Different approaches are considered that can be used to automatically traverse, analyse
and transform code. Based on this, the design of a new tool is presented: CATO is
based on the LLVM framework and uses its rich API for automatic code analysis and
transformation to add new features to an application. CATO analyses the existing
OpenMP kernels of an application and transforms them into equivalent MPI code so
that they can be executed on distributed memory systems. If the application also uses
netCDF, it can be automatically adapted to use the data compression and parallel
input/output features of the netCDF library. In this way, the user can test the effect of
the HPC concepts mentioned without having to adapt his application.

The evaluation of CATO is based on a PDE solver as well as on netCDF micro-
benchmarks to examine the functionality and performance of the modified applications.
The tests showed that there was no runtime performance benefit due to the additional
overhead caused by CATO. However, it can now use the aggregated memory of multiple
nodes and the memory consumption per process is optimised. In addition, the memory
footprint as well as the runtime of the I/O phase of the modified application can be
significantly improved by using parallel I/O. Through the automatic integration of
netCDF compression algorithms, the user can also decide at runtime to compress his
output, which can also significantly reduce the memory consumption in the file system.
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Zusammenfassung
High Performance Computing ist ein komplexes Gebiet, in dem es viele homogene aber
auch heterogene Hardwarearchitekturen gibt, für deren Nutzung zahlreiche Programmi-
erparadigmen, Bibliotheken und Compiler zur Verfügung stehen. OpenMP und netCDF
sind in der Erdsystemforschung relativ weit verbreitet, da sie vergleichsweise einfach
zu erlernen sind und dennoch das Potential eines einzelnen Rechenknotens ausschöpfen
können. Für Fachanwender aus der Erdsystemforschung ohne entsprechende Ausbildung
können sich jedoch Schwierigkeiten ergeben, wenn sie ihre Anwendung auf einer verteilten
HPC-Infrastruktur ausführen wollen. Da Anwendungen der Erdsystemforschung generell
davon profitieren, wenn sie auf großen Eingabeproblemen ausgeführt werden können,
würden sie besonders von HPC-Features wie Prozessparallelisierung, Datenreduktion
oder paralleler Ein- und Ausgabe profitieren. Deren Nutzung ist jedoch nicht trivial und
erfordert viel Erfahrung und Arbeit. Um die Anwender dabei zu unterstützen, wird in
dieser Dissertation ein Werkzeug entworfen, das es erlaubt, nützliche HPC-Frameworks
schnell zu nutzen, ohne sich mit der Implementierung beschäftigen zu müssen, indem die
notwendigen Code-Änderungen automatisch in die Anwendung integriert werden.

Es werden verschiedene Ansätze untersucht, die verwendet werden können, um Code
automatisch zu traversieren, zu analysieren und zu transformieren. Darauf aufbauend
wird das Design eines neuen Werkzeugs vorgestellt: CATO basiert auf dem LLVM-
Framework und nutzt dessen umfangreiche API zur automatischen Code-Analyse und
-Transformation, um neue Features in eine Anwendung zu integrieren. CATO analysiert
die vorhandenen OpenMP-Kernel einer Anwendung und transformiert sie in äquivalenten
MPI-Code, so dass sie auf Systemen mit verteiltem Speicher ausgeführt werden können.
Wenn die Anwendung zusätzlich netCDF verwendet, kann sie automatisch so angepasst
werden, dass sie auch die Datenkompression und parallele Ein- und Ausgabe der netCDF-
Bibliothek nutzt. So kann der Anwender, ohne seine Anwendung selbst anpassen zu
müssen, die Auswirkungen der genannten HPC-Konzepte testen.

Die Evaluierung von CATO wird auf Basis eines PDE-Tools und netCDF Micro-
Benchmarks durchgeführt, um die Funktionalität und Performance der modifizierten
Anwendungen untersuchen zu können. Die Untersuchungen haben gezeigt, dass sich durch
den von CATO verursachten Overhead kein Vorteil in der Laufzeitperformance ergibt. Im
Gegenzug kann jedoch der Speicher mehrerer Knoten genutzt und der Speicherverbrauch
pro Prozess optimiert werden. Durch parallele I/O kann auch der Speicher-Footprint
sowie die Laufzeit der I/O-Phase der modifizierten Anwendung deutlich verbessert werden.
Durch das automatische Einbinden von netCDF Kompressionsalgorithmen kann der
Benutzer zur Laufzeit entscheiden, ob er seine Daten komprimieren möchte, was ebenfalls
den Speicherverbrauch im Dateisystem reduzieren kann.
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1. Introduction
Computational simulation and data-driven science are the third and fourth paradigms
of science, after theory and experiment. To achieve higher performance in the last two
paradigms, High Performance Computing (HPC) systems are inevitable: They offer
better Input/Output (I/O) and computing performance and are equipped with large
memory and storage capacity. However, they come at the price of making the hardware
mix quite complex and heterogeneous. The increasing complexity of these experiments
and simulations, as well as the systems they run on, are forcing scientists to acquire
even more computational skills (Agrawal & Choudhary, 2016). However, especially
in HPC, they are usually still underrepresented and inadequately taught in materials
science courses at universities (MacLachlan et al., 2020). Staying updated with the
latest advancements in computing and fully capitalizing on them can be a challenging
task. Especially for domain scientists who are more experienced in their research domain
than in computing. They cannot be expected to know all the relevant frameworks,
or be aware of the specific situations where each framework is best suited for their
particular needs. Providing support would enable them to get more out of their research
applications (MacLachlan et al., 2020).

There are ways to help users select and customise the right frameworks. Large data
centres have dedicated user support departments that can spend up to half a year on
intensive code optimisation of an application, or provide specialised training to their user
group. Such staff can cost the employer around 80 000 €/yr/person in Germany1. Another
approach is automatic tool support, which offers a supplementary and easy way to get to
grips with complex functions without long and specialised training. Since many scientists
actively seek assistance, possess specific ideas and are willing to learn independently,
their own code expertise coupled with tool-assisted optimisations could already lead to
success. Automatic optimisations often cannot achieve optimal performance but provide
benefits like fast prototyping for a wide range of users. This is especially useful when
gaining a comprehensive understanding of existing techniques and get an impression of
their potential benefits for one’s own purposes.

1.1. Perspectives
The following two Sections 1.1.1 and 1.1.2 highlight different facets, presenting two
contrasting perspectives on the same topic. From one perspective, computer science
provides a set of tools to develop highly optimised code that can take advantage of
various HPC techniques. On the other hand, the physical sciences construct simulation

1Data has been provided via an interview at Deutsches Klimarechenzentrum (DKRZ)
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models to represent and emulate processes. When these two domains converge, their
collective synergy drives their capabilities beyond what they can achieve individually.

1.1.1. Computer Science
HPC is essential for performing simulations with high demands on computing power and
memory or storage capacity. It serves as a valuable tool for tackling a wide range of
numerical problems across various application domains: Complex problems in sustainable
agriculture, efficient energy networks, artificial intelligence, molecular medicine and
materials research are just a few of the use cases that benefit from HPC (The European
Technology Platform For High-Performance Computing, 2018).

‘Supercomputing allows us to understand the past, to control the present, and in a
limited number of cases to predict the future’ (Sterling et al., 2017)

Typically, applications can be transitioned from a simple development environment
to an HPC environment. However, without modifications, only a small portion of the
immense potential offered by an HPC system can be utilised. This limitation arises from
the complex nature of the constraints and the methodologies required to overcome them,
which are exclusive to the field of computer science. Today’s HPC systems consist of
several components:

• Compute nodes containing multiple CPUs, each having multiple cores, and some-
times accelerators (e.g. GPU, Field-Programmable Gate Array (FPGA), Data
Processing Unit (DPU)).

• I/O nodes, which handle the data management on storage (usually compute nodes
are disk-less or only have a small one to keep their Operating System (OS) or to
use as a burst buffer).

• Offloading interconnect (e.g. InfiniBand, Fujitsu Tofu, Cray Slingshot) to move
data between nodes.

To achieve higher peak performance per node, the trend is towards increasing the
number of CPU cores rather than increasing CPU clock speeds due to power and thermal
constraints (Esmaeilzadeh et al., 2012). Figure 1.1 shows the relative stagnation of the
clock rate and the rise of many-core server CPUs beginning in 2004. In fact, according
to the Top500 list, the first dual-core systems appeared as early as 2002 (there are 46
dual-core systems on the June 2002 list, whereas there were none on the November 2001
list). It is therefore inevitable to use parallelisation techniques on shared memory to fully
exploit the power of a node. One prominent solution is OpenMP, which allows concurrent
threads to run on shared memory within a single node. Due to OpenMP’s compiler-based
directive approach, it typically requires minimal modifications to the source code and
allows incremental parallelisation. Consequently, this significantly reduces the obstacles

16
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Figure 1.1.: The evolution of server CPU metrics over the last 50 years (K.Rupp et al.,
2022). While the frequency and performance of a single core have been
in a stalemate for some years, the number of cores continues to increase.
This combination leads to ever increasing system performance, resulting in
the first exascale machine Frontier, which has entered the Top500 in June
2022 (Strohmaier et al., 2023).

faced by scientific developers, making it more accessible for them to engage in parallel
programming.

However, OpenMP parallelisation is limited to a single node with shared memory. This
has a direct impact on the type of problem that can be solved by a scientific application,
as it must fit into the main memory of a single node. Nevertheless, solving large-scale
problems necessitates the adoption of distributed computing: While single compute nodes
typically offer main memory configurations in the range of several hundred gigabytes,
large-scale simulations often demand several terabytes of main memory. There are several
frameworks to take advantage of distributed memory, which are discussed in more detail
in Section 3.2.2. They usually require code changes or even significant code restructuring,
especially when used in codes that do not yet make use of distributed computing. This
complexity can pose challenges for domain scientists.

In line with the growing trend of increasing data sizes (cf. Section 1.1.2), I/O emerges
as a critical subject in HPC and will become even more important in the age of exascale
computing (cf. Figure 1.1) (Lockwood et al., 2017; Lüttgau et al., 2018). Like distributed
computing, using I/O frameworks efficiently can become difficult. When memory or
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Figure 1.2.: Increasing gap between CPU and memory performance (Hennessy & Patter-
son, 2012, Fig. 2.2).

I/O requirements pose a challenge, one solution is to reduce the size of the input
problem. Even before the advent of many-core architectures, there were discussions
highlighting that the growth in peak CPU performance was outpacing the growth in
memory performance (Wulf & McKee, 1995). This observation is consistent with the
ongoing trend in hardware development, shown in Figure 1.2, which tends to focus on
peak CPU performance. Memory performance is a secondary goal, which can lead to new
problems. If compute performance per core increases faster than memory performance
(be it size or bandwidth) per core, applications may tend to become memory bound.

1.1.2. Natural Science
There are several categories of natural science, such as biology, physics, chemistry, Earth
System Science (ESS) or astronomy. All of them have use cases where HPC systems can
be used quite well. ESS covers a wide range of academic fields related to the systematic
study of the Earth. It is an interdisciplinary research field covering a wide range of
scales, from microscopic to macroscopic in space and time. For example, ESS includes
research on the pedosphere, hydrosphere, biosphere and atmosphere. Models originating
from these domains can be examined independently or in relation to their mutual
dynamic interactions and feedback mechanisms. The latter is usually advantageous for
incorporating dynamic interactions to derive new results.

Wendland et al., 2023 describes how different processes such as infiltration, evaporation
and transpiration influence precipitation runoff. Neglecting the dynamic feedback from
each component would have resulted in less significant outcomes. Another example
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Figure 1.3.: Simplified overview of how land use changes alter the water cycle: among
others, effects from the pedosphere, atmosphere, hydrosphere and biosphere
as well as their interactions are involved (Douville et al., 2021, FAQ 8.1,
Fig. 1)

from the last Intergovernmental Panel on Climate Change (IPCC) report combines
several land use components and their multiple interactions to derive their impact on
several components of the hydrological cycle (cf. Figure 1.3). Considering all the forcing
components and their interactions provides a much more detailed drought model than
considering each forcing component in isolation.

The IPCC report shows what the globalisation of science can look like. To produce
this report, several institutes from around the world have collaborated and contributed
their model runs to produce the final result. Figure 1.4 shows the institutions that
participated. As climate change becomes more of a concern, ESS is important because
it can help us to understand its progress and to evaluate climate change mitigation
measures. The DKRZ is for example an HPC centre, which focuses essentially on ESS
applications.

In general, the accuracy of these models benefits from larger input sizes used during
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Figure 1.4.: World map of major contributors to Coupled Model Intercomparison Project
(CMIP) to create the IPCC report (Chen et al., 2021, Fig. 1.20)

the computation phase. For many use cases, the tolerance for (moderately) longer
runtimes resulting from the use of larger input problems is acceptable, usually within
the same order of magnitude. Such refinement can be achieved by creating larger grids
to cover a larger area, or by reducing the spacing of a grid on a fixed area. This
helps to model large scale effects (e.g. monsoons) or small scale effects (e.g. convective
precipitation (Brune et al., 2020)). Another approach to enhance the capability of a
model is by incorporating an additional dimension. This technique can be employed to
convert a static model into a dynamic one by introducing a time dimension, or to expand
the spatial dimension (Hauschildt & Baron, 2006).

Computer procurement in climate research can never meet the demands of computa-
tional tasks, as these will always exceed the performance of the systems available
in the medium term. Instead, the computational tasks and their accuracy must be
trimmed to the limited computer power. (Palfner, 2012)

In the ESS community, netCDF is a fairly common self-describing data format that
makes it much easier for scientists to share data without knowing its exact provenance.
NetCDF provides a serial I/O interface as well as support for parallel I/O to access such
a file from storage and to work on it in memory. It also provides features to reduce the
memory or storage footprint of an application, but these require more in-depth knowledge
of the library.
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1.2. Problem Statement
Given unlimited time, the necessary skills and motivation, performing code transforma-
tions manually will always result in better code than automatically generated code.

The reality is that time is always limited. Acquiring a comprehensive understanding of
available frameworks, their functionality, and their potential benefits for an application
requires a significant amount of time and effort. Once a framework is selected, the user
must invest time in learning how to effectively utilise it. Using an unfamiliar technique
is likely to lead to some rookie mistakes, requiring more time to debug or even redesign
the approach.

In this case, automated code transformation solutions can be beneficial. Even if
individual transformations, such as various compiler optimisations, may be simple, their
cumulative impact can be substantial. Performing these transformations manually would
be a tedious task, particularly considering that not every transformation guarantees a
noticeable benefit (Jayatilaka et al., 2021). Ideally, an automated solution should incur
no additional cost for the user. On the contrary, the automatic solution may also make
use of well optimised third-party transformations that the user may not even know exist.

The ultimate goal of this work is to provide domain scientists with an automatic
code transformation solution so that they can benefit from HPC frameworks without
having to learn the ropes first. The decision to use source transformation is discussed
in more detail later in Section 2.1. In summary, the preferred approach is to utilise a
tool that can automatically transform the user’s code without requiring them to make
significant modifications themselves. This streamlined process ensures a more efficient
and user-friendly experience. Especially since this work focuses on domain experts
working in a highly heterogeneous environment, which will be discussed in Section 1.3.2,
this approach is very promising.

The spread of advanced features for parallelisation and I/O is discussed in Section 3.2.
The following Sections 1.2.1 to 1.2.4 will establish the fundamental research questions of
this work, serving as the basis for evaluating the proposed solution. These cornerstones
provide the essential focus for designing and developing the solution, aiming to achieve
the ultimate goal: enabling domain scientists to build their applications and benefit from
HPC concepts without the need for extensive contributions or modifications.

1.2.1. Research Question 1: Distributed Computing
In the case of a straightforward problem with no need for intercommunication, memory
constraint of a single node can be bypassed by partitioning the problem into smaller sub-
problems. Each sub-problem can then be solved independently by a distinct application
process running on its dedicated node. These problems are called embarrassingly parallel.
Once the sub-problems need to share data, a new distributed memory parallelisation
scheme must be applied.

If the development team of a scientific application consists mainly of experts in the
problem domain, building the required parallelisation scheme can become difficult. A
common parallelisation scheme used by scientific users in the context of ESS is as already
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mentioned OpenMP, which allows to achieve quite good parallelisation efficiency on
shared memory (cf. Section 3.2.1).

Research Question 1

Assuming that OpenMP is already used: How can an automatic trans-
formation solution enable the application to make use of a distributed
memory parallelisation scheme?

The design how to replace OpenMP with a distributed memory solution will be
discussed in Section 4.1.

1.2.2. Research Question 2: Parallel Input/Output
Using a single compute node inevitably imposes an upper bound on the size of the input
problem. Figure 1.5 illustrates the issue that arises when the input problem becomes
excessively large. This problem can also occur when the input data would fit in main
memory, but the application requires additional temporary memory that is allocated
during the computation phase. When the peak memory usage of an application exceeds
the available memory of a node, it becomes infeasible to use the input problem for
computation.

‘A supercomputer is a device for turning compute-bound problems into
I/O-bound problems’ – Ken Batcher (Date unknown)

One possible solution would be to load only specific portions of the input problem,
rather than loading the entire dataset all at once. Then the computation could be done
one by one on subproblems that fit in memory. There are three different appraoches,
how this can be done (Mendez & Lührs, 2019, Ch. 2.2.2):

• The input problem is split into one file per process, which is accessed by a single
process. This is at first easy to implement but can become problematic, if the
input problem cannot be split easily or if multiple files need to be accessed after
all (e.g. for postprocessing). If many processes shall be used, spliting the input
problem every time becomes inpractical.

• The input problem is stored within a single file and all processes access the file
independently, so that each process has a local, process related view on the data.

• The input problem is stored within a single file and all processes access the file
collectively, which provides all processes with the same global data view.
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Figure 1.5.: The total main memory of a single compute node places a hard limit on the
size of the input problem that can be loaded. The maximum potential input
problem size must be reduced even further if a significant amount of memory
is allocated on the heap at runtime, competing with the input problem for
resources.

All approaches lead to the same result but may have different performance results,
whereas the last approach, the parallel I/O approach, is expected to perform best.

I/O can become a significant bottleneck for an HPC application. Paul et al. (2020)
conducted a survey on Lawrence Livermore National Laboratory (LLNL): applications
that perform I/O spend, on average, 78% of their runtime on I/O. This is because only
a small minority write efficient I/O code. The best parallelisation of the computation
phase is therefore of no use if the execution is thwarted by I/O contention.

Research Question 2

Assuming that serial netCDF I/O is already used: How can an automatic
transformation solution transform the application to use parallel I/O
with reduced runtime and memory footprint?

The design how to use parallel I/O will be discussed in Section 4.2.1.

1.2.3. Research Question 3: Chunking and Compression
Besides parallel I/O, netCDF has more features to offer like chunking and compres-
sion. Chunking can improve the runtime of storage accesses and renders intrinsic data
compression possible.

The utilisation of compression can provide various advantages in different scen-
arios (Cappello et al., 2019; Kuhn et al., 2016):

• Less storage consumption: Reducing the data size results in less memory and
storage consumption, i.e. storage efficiency increases.
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• Faster data movement: In comparison to intra-node access, network bandwidth and
latency are typically a potential bottleneck. Compressing data before transmitting
it over the interconnect to other compute nodes or I/O nodes can increase the
effective bandwidth by transmitting smaller data. Disk latency and bandwidth are
typically less performant than the interconnect, especially when using magnetic
rather than flash-based storage devices with mechanical components. In addition,
compression can help mitigate the impact of this bottleneck when transferring data
from a fast storage tier to a slower storage tier. Fast data movement is crucial
in large scientific instruments that collect data in real time, as it ensures that
information is not lost due to the inability to rapidly transfer data from the sensor.

• Improved cost and energy efficiency: In return of additional demand on the CPU,
the interconnect and I/O components are less stressed. They can therefore be
used more efficiently, or a system can be designed with fewer demands on these
components. If the additional CPU demand also optimises its idle times (reducing
them without becoming a new bottleneck), then the efficiency of CPU usage is
also improved. The total energy consumption can be used as a proxy to assess
the system’s load. If the load on the CPU increases too much then the energy
consumption could increase excessively. There is no general statement possible
because the scaling behaviour depends on the actual hardware (Kuhn et al., 2020;
Miyoshi et al., 2002)

• Visualisation: The human eye and display devices have a finite capability to perceive
or display resolution, which is limited by their inherent capabilities. Depending on
the application, it may not be necessary to store the entire data set, and in this
case lossy compression may even be appropriate.

Whether or not these benefits actually occur depends on the actual use case. To
benefit from a reduced data size, data content must be compressible, i.e. the Compression
Ratio (CR) to be greater than 1 (defining the CR as CR = original size

compressed size). The CR can
be improved if the use case allows the use of lossy compression.

According to the increasing gap between peak compute and memory performance
shown in Figure 1.2, the chances are high that a memory bottleneck will remain relevant
for quite some time.

Research Question 3

Assuming that serial netCDF I/O is already used: How can an automatic
transformation solution transform the application to transparently use
chunking and compression?

The design how to adjust netCDF I/O will be discussed in Section 4.2.2.
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1.2.4. Research Question 4: User Support
The basic intention of the automatic code transformation solution is to enable the user
to use selected advanced HPC concepts without having to learn or even fully understand
them. This enables the user to rapidly navigate through different options and assess
their impact on their specific use case. As previously mentioned, automated solutions
can always be outperformed by manually implementing the transformation. So if the
user is then interested in gaining insight into what happened during the automatic code
transformation step, it would be beneficial to provide some assistance.

Research Question 4

How can an automatic transformation solution provide feedback to
enable the user to comprehend the modifications?

The design how to give feedback to the user will be discussed in Section 4.3.

1.3. Approach
A significant contribution of this work is the design and implementation of an automatic
code transformation tool to automatically analyse and transform high-level code. This
tool enables domain scientists to effortlessly and rapidly experiment with various HPC
concepts without the need for extensive prior knowledge or learning. This will allow
them to assess the benefits that their application can derive from such an approach. The
tool, Compiler Assisted Transformation of OpenMP kernels (CATO), is named after the
OpenMP focus mentioned in the first research question in Section 1.2.1. It only requires
that the application already makes use of basic OpenMP if memory sharing is to be used,
or basic netCDF if parallel I/O and compression are to be used. Both components can
be used independently, but the parallel I/O performance of the netCDF component can
benefit from the memory allocation component.

The selected HPC concepts and used frameworks are disscussed in Chapter 3 in more
detail.

1.3.1. Source Transformation
Automatic source code transformation has played a role in computer science from the very
beginning. As soon as developers stopped writing machine code directly - that is, they
used an abstraction language known as a high-level language - some kind of automatic
code transformation was used to generate the low-level machine code. The ability of
the computer to read and modify a program written by a human developer has had a
huge impact. By leveraging an operating system and compilers, the computer can assist
developers in their work by offering support in various aspects. This assistance enables
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programming to be conducted at a higher level of abstraction, resulting in accelerated
productivity on a larger scale.

1.3.2. Target Audience
HPC and ESS are a large domain, with diverse characteristics. Before the design of
CATO is discussed it is therefore important to have a closer look on the target audience
before. Those aspects have an influence on the requirements and intentions of CATO.
The major questions are:

• Who shall use CATO?

• Which kind of application shall be modified with CATO?

• What hardware will be used to execute the modified application?

User Characterisation

Natural science is the driving factor behind this work as it has a large community,
which can benefit from HPC systems but potentially do not have appropriate training
within their curriculum. Domain experts are highly knowledgeable in their specific fields
of application, possessing deep understanding and expertise. However, proficiency in
computer science concepts often remains optional and necessitates self-directed learning
and autodidactic efforts. In most cases, leveraging additional HPC resources scales up
the scientific output of applications, making it a sensible and advantageous choice.

Indeed, the field of HPC encompasses several core areas, including compute components,
internal and external interconnects, memory or storage systems, and accelerators and
more. These fields are characterised by their evolving nature, with constant advances
and developments. Over the last twenty years, HPC systems have become much more
heterogeneous. And while some frameworks have been established for many years and
are likely to remain relevant for years to come, the software is adapting just as quickly as
the hardware is evolving. This makes it even more difficult for domain experts to keep
track of existing solutions and their best practices.

‘The questions don’t change, but the answers do’ – Daniel Reed (2023)

Chapter 3 gives an overview of which features of the investigated HPC frameworks are
commonly used and which CATO can make use of. Two additional studies, Arvanitou
et al., 2021 and Amaral et al., 2020, have examined the working conditions of domain
scientists, specifically focusing on their abilities and needs. According to their findings,
scientific applications are increasing in complexity, demanding a greater understanding
of computer science. Domain scientists are seeking tool support that is easy to learn and
use. This is precisely the area where CATO aims to provide assistance and support.
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Application Characterisation

Due to the extensive scope of ESS, it is challenging to pinpoint a singular application
that can adequately represent the entirety of ESS development. In Section 4.1.1, several
potential communication patterns are discussed, and a decision is made on which pattern
to base the design of CATO on. However, due to the nature of HPC bandwidth
hierarchies, it is preferable to focus on applications that are computationally intensive
and require comparatively little (external) communication. This argues for concentrating
on structured data structures. To reduce the overhead caused by CATO, it would be
beneficial for the application to work on a single, large (i.e. memory filling) problem in
heap memory.

Many domain scientists are familiar with OpenMP for shared memory parallelisation,
as it has a short training period to achieve significant runtime improvements quite quickly.
Therefore, the first component of CATO will use an existing OpenMP kernel to derive
knowledge about which variables are worth distributing and where the computational
intensity is likely to be high. These are only assumptions, but they can help to optimise
CATO’s design so that it can work automatically without any additional input from the
user. Since OpenMP is used not only in ESS, but in all sorts of applications that need
to take advantage of shared memory parallelism, the first component of CATO can be
used in any application that uses OpenMP.

Above a certain level of complexity, the application is unlikely to benefit from the
automatic code replacement introduced by CATO. The more complex an application is,
the more overhead CATO could introduce, and the more likely it is that a more complex
replacement will be required to take account of the circumstances. The latter is difficult
to achieve by automatic replacement, and is likely to require manual code changes by a
developer with domain knowledge.

There are still ample applications that stand to gain significant benefits from the
implementation of CATO. Some complex software, such as the Icosahedral Nonhydrostatic
(ICON) model, which consists of multiple components coupled together and already uses
parallelisation frameworks to run on the distributed memory of many compute nodes, is
not in the target audience of CATO (Zängl et al., 2014).

There are many applications developed by a small team of domain scientists who also
run their application on HPC hardware, but are limited to the entry-level features of
HPC frameworks. This can be demonstrated examining job data from an HPC system.
Therefore, job scheduling data is taken from the HPC system Mistral at DKRZ, which
was collected for a master’s thesis, which I supervised (Coym, 2021). The data was
provided by Slurm and covers the year 2020 (Deutsches Klimarechenzentrum GmbH,
n.d.-a).

Cores 1 2 3-4 5-8 9-16 17-32 33-64 65+
12.30% 1.51% 18.14% 16.14% 18.86% 3.10% 18.27% 11.64%

Table 1.1.: Frequency distribution of allocated cores on single node jobs. A node has two
CPUs with 18 cores each.
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Figure 1.6.: Share of used compute nodes per job on Mistral in 2020
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Figure 1.7.: Number of allocated cores per single node job on Mistral in 2020
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Figure 1.6 shows the distribution of jobs grouped by the number of nodes allocated
over the year. Job allocations for one (55.91%) and two (31.47%) nodes predominate.
It is not clear from this data how many single node jobs are truly productive jobs and
not just configuration tests or debugging runs, for example, but their number is still
significant. Those jobs that do not take advantage of distributed memory parallelisation
are potentially part of the target group.

Depending on the partition chosen, Slurm may assign jobs exclusively, so it is not
possible to tell whether the jobs using a single node used some form of parallelisation.
Figure 1.7 can be used as a proxy measure: It shows single-node jobs, and apparently
the majority of these jobs allocated at least two cores (87.7%) on the shared partition.
The share of each node configuration over a year is shown in Table 1.1.

The parallelisation framework utilised by these jobs to distribute the workload across
cores, or whether they effectively utilised all the allocated cores, remains unclear. In
summary, there is a significant proportion of HPC jobs that are already using shared
memory. These jobs could therefore benefit from CATO.

Hardware Characterisation

Experience shows that there are many applications from ESS that are optimised to run
on CPUs. HPC supercomputers such as Mistral or Levante at DKRZ primarily use CPUs.
There are efforts to include more GPUs, but this is still an ongoing process (Giorgetta
et al., 2022). Therefore CATO’s design will focus on OpenMP rather than a GPU centric
framework like CUDA, OpenCL or OpenACC. Based on this, Chapter 3 will discuss
which HPC frameworks will be used to perform the code transformation.

‘From a user perspective, the “ideal high performance computer” has an infinitely
fast clock, executes a single instruction stream program operating on data stored in
an infinitely large and fast single-memory, and comes in any size to fit any budget or
problem.’ (Sterling et al., 2017)

1.4. Outline
The present thesis is structured into the following sections: Chapter 3 presents the HPC
frameworks used to perform the code transformations needed to answer the research
questions in Section 1.2. Having established this basis, the actual design of CATO is
worked out. First of all, Chapter 2 discusses possible methods of code transformation
in general. Once this decision has been made, the actual design of CATO is developed
in Chapter 4. The elaborated design is then mapped to the chosen transformation
framework in Chapter 5 to complete the construction of CATO. Chapter 6 examines
related work that can be used to somehow (semi-)automatically transform the code.
Differences are then addressed and compared with this work.

The evaluation of how effectively CATO performs in relation to the research questions is
conducted in Chapter 7. The concluding remarks of this work can be found in Chapter 8.
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1.5. Summary
CATO, a compiler-assisted high-level code transformation tool designed, developed and
evaluated in this thesis, will support a collection of relevant HPC frameworks. The
use of this tool will allow the target users or their written applications to benefit from
those HPC frameworks that are not easy to implement manually, if done without prior
training.

Targeting users and their applications from the ESS community narrows down the
actual purpose of CATO to four central aspects:

• Allow OpenMP kernels to run on distributed memory.

• Turn serial netCDF I/O operations into parallel I/O operations.

• Optimise data size by extending netCDF kernels through chunking and compression.

• Soften up the black-box behaviour of CATO’s design so that a user is able to
understand it better.

30



2. Surveying Techniques for Code
Insertion

In Chapter 1 some problems have been worked out, which can be boiled down to the
fact that the HPC environment has become quite heterogeneous on many levels, and in
order to get optimal performance complex frameworks have to be used. This can quickly
become overwhelming for untrained users to use or even keep track of all the available
solutions. In this work, a new tool called Compiler Assisted Transformation of OpenMP
kernels (CATO) is constructed. CATO is designed as a toolbox that takes into account
HPC concepts that can be automatically inserted into an application’s source code by
the user. Its design relies on an automatic source code transformation mechanism, so
that the user only needs to decide which primed transformation to apply to the code.
The code passages in the control are searched and adapted accordingly by prepared
replacement code within CATO, the nature of the benefit depends on the CATO tool
used. To demonstrate the capabilities of CATO, the design specification will focus on
the transformation of OpenMP parallelisation and netCDF I/O.

This chapter gives a general overview, starting with the specification of CATO (Sec-
tion 2.1). Based on this, the desired interaction with a user can be described. Once the
general behaviour has been clarified, a more detailed view of CATO and the technologies
it uses, which will be introduced in Chapters 3 and 6, is given. Two topics are covered in
Section 2.2:

User Interaction (Section 2.2.1) There are several ways to control the code transform-
ation by the user. They differ in how much users need to interact with CATO and
adapt their application code on the one hand, and how much CATO needs to auto-
matically derive information and perform (transparent) application modifications
on the other. Since CATO’s target audience are domain experts, its use should be
as user-friendly as possible and provide sufficient feedback.

Code interaction (Section 2.2.2) What is the best way to handle high-level code?
There are many different approaches, all with their own advantages and disadvant-
ages. The criteria CATO must meet are discussed here, and a decision is made
based on this. Once the main technology is chosen and its capabilities are known,
two important issues are discussed: how to analyse high-level code, and how to
detect and replace kernel patterns (cf. Section 2.3).

A more detailed description of the individual components is given later in Section 2.4
as well as in Sections 4.1 to 4.3.
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The specification of CATO is formulated based on these topics and allows the selection
of specific technologies and libraries to meet the requirements. Based on this general
discussion, the complete workflow of the tool can be elaborated in Section 4.4.

2.1. Specification
CATO has to fulfil several tasks that are not easy to combine.

On the one hand, it needs to be quite generic and provide a very modular internal
structure so that many different libraries can be integrated. This is made even harder by
the fact that the only constraint is that they must be libraries from the HPC environment.
Even if HPC itself is a very specific discipline, it can still be broken down into many
unique methods within HPC (e.g. with a focus on GPUs, FPGAs or I/O). There are
many HPC use cases and many different types of hardware and software designed to
solve these particular use cases. Many HPC systems use GPUs and CPUs from different
vendors (e.g. ARM, Intel, AMD), each providing its own software ecosystem, resulting
in a rather heterogeneous landscape of specialised hardware and software (Trott et al.,
2022).

For each type of scientific application, there is a specific type of hardware that
provides the best performance.
For each type of HPC machine architecture, there is a specific type of application
that uses the machine to its full capacity.

Finding the best libraries to use in an application to run on a particular HPC
environment is a difficult problem for a user with limited prior knowledge, and may
require lengthy implementations and performance testing. To achieve this, it is probably
not enough to use the same optimisation library all the time, so users need to familiarise
themselves with different libraries and learn how best to use them.

Each specialised library then has its own modus operandi, and it becomes difficult to
fit several different libraries into a single standardised interface. This is where CATO
helps the user by taking care of the implementation so that the user can concentrate on
evaluating the library. Currently, the modularity of CATO is designed to integrate two
different types of HPC methods, which will be described in detail later in Section 4.1
(focus on OpenMP) and Section 4.2 (focus on parallel I/O using netCDF).

On the other hand, the user, who is a domain expert but not necessarily a computer
scientist, cannot be expected to invest a lot of time in training to use CATO. If it is not
easy enough to use, it will not be used at all.

Balancing these two aspects is a major challenge and must be considered in the design
and implementation of CATO. The main strategy is to provide a decent default mode
that allows CATO to be used without any complex configuration, but still provides a
creditable benefit. The user simply chooses which tools he wants to use and integrates
CATO into his build chain. In addition, the user should still have the ability to provide
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more complex hints or even add optimised modules to assist CATO in its work to improve
the result.

2.2. Code Transformation
There are several approaches to code transformation. They cover a wide range of
functionality and practicality. The focus on a specific user group (cf. Section 1.3.2)
already leads to some limitations regarding the maximum reasonable complexity to use
an approach and therefore excludes some of them. Among the remaining ones, the
most promising one is chosen to perform the code transformation while fulfilling the
requirements set by Section 1.2.

2.2.1. User Interaction
A fundamental design decision to be made at the outset is how the user is to control
CATO’s interaction with the original high-level code on which the new technologies are
to be applied. There are several approaches, which differ in how explicit the user needs
to be (in descending order of the amount of work required from the user):

• The user manually adds new code that has a direct impact (e.g. new data structures
or algorithms from external libraries).

• The user adds annotations that later lead to automatic code transformation (e.g.
hints or pragmas).

• The user applies a tool to his original code, and the tool performs the necessary
code changes (semi-)automatically (e.g. Polly, Chapter 6).

• The user does not need to do anything, as the runtime automatically and transpar-
ently optimises the execution.

All these approaches have their pros and cons; they differ in the degree of control the
user has, but also in the amount of code changes required. To assess the suitability of
each approach, they will be discussed in more detail.

Manual code changes Manually modifying the code to extend it with new libraries
would require a considerable amount of effort on the part of the user, both to learn
them and to integrate them into their code base. For example, the current Message
Passing Interface (MPI) 4.0 specification contains 664 functions (not including
profiling functions). Not all of them are needed (about ten functions are sufficient
to write trivial MPI applications), but this is still a lot of material to work through.
This has to be done for each individual library, and can quickly become tedious
and error-prone if the user is not an expert. The complexity of this approach can
be mitigated by using some sort of abstraction layer that allows the backend to be
changed at compile-time or run-time. For example, Kokkos was created to provide
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a hardware abstraction so that an application can run on different types of HPC
infrastructure consisting of different types of heterogeneous or homogeneous cluster
architectures (Trott et al., 2022). This solution focuses on hardware abstraction
rather than software abstraction, and therefore does not meet the requirements.
For CATO, only high-level codes that do not already take such modularity into
account will be considered.

User annotations The second approach considers only minor code changes that have
an indirect impact. Usually these are annotations that help the compiler by
providing expert knowledge that only the user or domain expert has. An important
type of annotation are language attributes in C, which can be used by adding
__attribute__((attr)) (non-standard implementation extension, e.g. recognised
by gcc) or [[attr]] (since C++11). Fortran provides an equivalent approach
via the DIR$ ATTRIBUTES compiler directives. Using them does not change the
behaviour of the application, but a user can exercise control over how the compiler
works, or assist the compiler in its work by providing expert knowledge to optimise
the size or runtime of the final binary. For example, the compiler might omit
warnings about unused variables or enforce function inlining. Another example
could be directives like those in OpenMP. The user annotates parts of the high-level
source code, and the compiler then transparently forks, executes and merges the
necessary threads. In both cases, the user shares his expert knowledge with the
compiler, which can then optimise its work during the compilation process. If an
unknown attribute is used or a directive is not supported by the compiler, the
compiler will issue a warning or simply ignore it.

Tool support The user is using a tool that, in the best case, can be installed in his user
space. How the tool is actually used depends on the tool itself. It could be run on
the application binary, which is then modified (e.g. using binary instrumentation,
cf. Section 2.3.1). Another option is to integrate it into the build process of the
application. In the best case, this just means replacing the compiler call within the
application build process: The wrapper script passes the application code through
the tool and then finishes building the binary using the original build instructions
on the now modified application code. This allows the user to install the tool on his
own, without any help from the system administrator; The user can also explicitly
control the execution mode of the tool if he wishes. It is then absolutely clear
to the user that their application has been modified and how (generally omitting
unnecessary details).

Runtime environment By introducing a new runtime environment as an additional
layer, all calls to the underlying layers can be intercepted and replaced. On the one
hand, this reduces the user’s effort, but on the other hand, with even less interaction
or explicitly passed hints from the user, a runtime environment has to invest much
more work in automatic detection algorithms. And even then, similar approaches
like Single System Image (SSI) have been shown not to meet the requirements of
CATO (cf. Chapter 6). Furthermore, it is questionable to transparently modify the
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user’s code, as this would manipulate the user’s expectations of the runtime and
could even degrade performance; this would be disappointing if the user had done
this on purpose, but unacceptable if done unknowingly. Building a new runtime,
probably best implemented within the OS layer, to directly access internal functions
such as memory and network management for optimal performance, is therefore
out of scope.

Manual code changes were ruled out as a solution because of their complexity in use.
For a similar reason, user annotations were rejected; although they are easier to use,
they still require code changes. Since they are comparatively simple, they could still
be used as an optional tuning choice: the user could add hints to the application to
influence the code transformation. Since the runtime environment was also ruled out,
CATO is set up as an external tool, more precisely as a compiler wrapper. The user
triggers the code changes simply by adding CATO to his build chain and choosing which
of its tools to use. This has the additional advantage that the default settings of CATO
make it easy to produce exploratory results quickly, without the need to add optional
hints due to the short learning curve. Other tools such as MUST (Hilbrich et al., 2013)
or MPI-checker (Droste et al., 2015) have already shown that such an approach can be
used without extensive training and still be beneficial to the user.

Usually the installation of a compiler can be done in user space, so the user is
independent of the current platform or its administrators. Write permissions to their
home directory are sufficient. To simplify the installation process, CATO comes with
an installation script. It uses spack to handle the installation of necessary software
dependencies in userspace. This makes the initial setup easy for the user; what exactly
the user workflow looks like is discussed in Section 4.4.

2.2.2. Code Interaction
When reviewing existing code transformation tools, it became clear that there is no single
solution that meets all the requirements. They range from simple approaches, which are
easy to use but perform quite explicit code replacement, to more generalised solutions,
which operate at a higher level of abstraction and can therefore be more difficult to use,
but can also perform more powerful code transformations.

Given the target audience of CATO, it is important that all the complexity of a more
sophisticated and abstract approach is hidden within CATO’s internals, to maintain ease
of use. This does not preclude advanced interfaces to provide hints, or some rewriting
component to add user-defined replacement schemas, as long as they can remain optional.
The default mode of CATO must be easy to use for untrained users, otherwise it would
miss its core target audience. Therefore, we will only discuss solutions that can be
pre-configured by an experienced user, so that the domain expert only has to exclude it
without having to know anything about the internals.
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Source transformation techniques are either too simple for complicated use cases or
too complex to be modified or even used by non-experts (Johnson et al., 2022)

For example, a simple approach might be to automatically perform replacements using
regular expressions. These expressions can be applied to strings and return a logical
value or a set of matches. Tools such as sed or awk or languages such as Python or
Perl support the use of regular expressions. Even more complex replacements can be
performed because, despite their name regular expression, they are usually more powerful
than regular languages and are instead context-sensitive languages. To distinguish these
more powerful regular expressions from the theoretical construct, they will be referred to
as Extended Regular Expression (RegEx) (Câmpeanu et al., 2003).

An Extended Regular Expression (RegEx) can be used to automatically search for
specific text, e.g. function calls, and then perform an adjustment on the matches found.
For many non-trivial use cases it is necessary to consider the context as well, e.g. to track
a variable that has been modified by a function call. The larger the scope of the context
to be considered, and the more diverse the semantics of the analysed code, the more
complex the RegEx or chain of regexes must become. Disruptive code elements such as
newlines and comments, which can split the code unpredictably, further complicate this
process. This can become arbitrarily complex when this approach needs to be generalised
to fit different code applications written by different user groups, each following their
own coding style. Therefore, this RegEx-centric approach will not be used to develop
CATO.

More sophisticated solutions than using a RegEx are offered by MARTINI and No-
brainer (Johnson et al., 2022; Savchenko et al., 2019). They take prepared snippets of
code and use a Abstract Syntax Tree (AST) matcher to find and replace significant pieces
of code. The replacement rules are relatively easy to write, but only apply to a limited
scope, which is too narrow for the needs of CATO.

An advanced solution would be to use an existing tool that is capable of automatically
traversing source code and performing analysis and transformation. Using a compiler
framework as a foundation has several advantages, making initial development easier and
harder in terms of robustness and correctness. Choosing the right compiler framework
makes it possible to iterate through the high-level code, searching for specific code kernels
and adjusting them as necessary. It also makes it easier to discover and incorporate the
context and relationships of the kernel within the overall application code. This is a
necessary feature because a kernel is not just a set of statements and expressions that
are valid only in the local environment, but can affect the whole compilation unit (e.g. if
memory is allocated outside the kernel).

For example, at the beginning of Listing 2.1 (line 5) a variable error is declared and
initialised, later assigned the value of a library call (line 9) and finally read (line 14).
These accesses are still traceable, but it becomes more complicated when variables are
passed as parameters. The handling of the call to the free function on buffer in line 13
needs to be considered within CATO, as free is an important function; its appearance
in application code must be expected. When a pointer is passed to an external third
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1 # include "external_lib.h"
2 # include <stdlib.h>
3 # include <stdio.h>
4 int main() {
5 int error = 0;
6 int *buffer = malloc(10 * sizeof int);
7 int *alias = buffer;
8 // [...]
9 error = external_call(buffer);

10 alias[0] = 0;
11 printf("%d", buffer[0]);
12 // [...]
13 free(buffer);
14 return error;
15 }

Listing 2.1.: The scope of a variable can easily be spread through the whole application
code.

party library (cf. line 9), it is unclear what is done with this variable. Without going into
the source code of the external library, it is impossible for the compiler or a human being
to derive this information. If CATO is supposed to do this, it needs to be applied to the
external library as well. At the very least, CATO will need to parse, if not transform,
the library’s source code, but then the library will also need to be recompiled. If the
source code of the library is not available, the task becomes even more difficult and
binary instrumentation could be used. Automated evaluation of an external library using
CATO would require significant additional effort and is therefore beyond the scope of
this work. CATO’s design focuses on explicit variable assignments and selected libraries
that are relevant to the intended user group (as noted in cf. Section 1.3.2).

It can become very difficult to keep track of memory accesses when pointer aliases are
involved. In line 7 a new pointer alias *alias is created, pointing to the same memory
area as *buffer. So not only accesses to the primary pointer need to be monitored,
but also to its aliases (cf. line 10). With increasing complexity, this becomes difficult to
follow; multiple indirection levels induced by aliases are even NP-hard (Landi & Ryder,
1991; Ramalingam, 1994). As this is a significant problem, it will be discussed in more
detail in Section 5.2.

Finally, there will be special use cases where CATO may not be able to perform the
desired code transformation without additional hints. The design aims to reduce the
number of such use cases by using heuristics that work at least for the intended audience.
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2.3. Compiler-Assisted Approach
Based on these findings, LLVM was chosen as the framework on which to build CATO.
This choice is elaborated further in Section 3.1. The architecture of LLVM and its
components are described in more detail in Chapter 5. Following the tool design, the
implementation of CATO is also discussed in detail there.

2.3.1. LLVM Component Sequence
In the previous section, the decision was made to implement CATO as a tool that uses the
capabilities of a compiler framework. How code adaptation is handled via the compiler
approach is discussed in detail in this section. Since the tool focuses on applications in
the HPC context (cf. discussion in Section 4.1), only compiler frameworks capable of
compiling C, C++ and Fortran code will be considered.

There have been several shifts in the way programming languages work and the kind of
features they offer. At the same time, compilers have had to adapt to the new demands
placed on them to support new language features and back-end technologies. A modern
compiler is made up of many phases, which step by step analyse and transform the
original high-level code into the final machine code that can be executed. In Section 3.1.1
the individual phases that a compiler typically consists of have been presented.

On the way from the original high-level source code to the final binary, there are three
(intermediate) code states that are generally generated by a compiler. Together with
the original high-level source code, this gives five code states that CATO could work on:
the original high-level code, the AST, the Intermediate Representation (IR), the Control
Flow Graph (CFG) and the final binary. Each level will be discussed in order to choose
the most appropriate one. The explanation of individual LLVM constructs will be kept
short in this section, a more detailed description will follow in Section 5.1.

A simple test application (see Listing 2.2) is used to demonstrate the techniques.
Although this minimal example omits many of the language features of C, it covers four
important concepts: reading from and writing to memory, conditional branching and
loops. To spice things up, user input is used to decide which branch to take during
application execution. This cannot be evaluated statically, but only at runtime (since
it depends on the user’s input). Table 2.1 shows, for selected examples of C syntax
from the simple test application, which lines of the generated AST and IR output are
associated. This is not always a one-to-one mapping: if it is not, only the beginning
of the corresponding block is referenced. To recreate the individual code layers, LLVM
tools can be used, which are listed in Appendix A.1.

Original high-level code: To work directly on the original high level code, a combination
of code recognition and transformation could be used. This could be done by a
combination of RegEx (code recognition) and sed (code transformation), but this
has already been ruled out in the previous Section 2.2.2. Other approaches suffer
from the same drawback of being quite language-specific, and most likely style-
specific as well, since there are countless ways to achieve the same behaviour. More
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1 # include <stdlib.h>
2

3 int main(int argc, char **argv) {
4 int result = 0;
5 int counter = 0;
6

7 if (argc == 1)
8 counter = 1;
9 else

10 counter = atoi(argv[1]);
11

12 for(int i = 0; i < counter; i++)
13 {
14 result += 1;
15 }
16 return result;
17 }

Listing 2.2.: Trivial C code with conditional branches depending on dynamic input to
demonstrate potential levels during compilation process where CATO could
step in.

Original Code AST IR
result: line 4 (Listing 2.2) line 6 (Listing 2.3) –
if: line 7 (Listing 2.2) line 11 (Listing 2.3) line 23 (Listing 2.5)
for: line 12 (Listing 2.2) line 32 (Listing 2.4) line 39 (Listing 2.6)
Unary ++: line 12 (Listing 2.2) line 42 (Listing 2.4) line 51 (Listing 2.6)
Binary <: line 12 (Listing 2.2) line 37 (Listing 2.4) line 42 (Listing 2.5)

Table 2.1.: Association of code elements from the original code and the AST. Often a
high-level one-liner is split up into several elements on a low-level layer; in
this case the line number denotes the beginning of the associated block.
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5 `-CompoundStmt 0xf432c18 <col:33, line:33:1>
6 |-DeclStmt 0xf431610 <line:18:3, col:17>
7 | `-VarDecl 0xf431588 <col:3, col:16> col:7 used result 'int' cinit
8 | `-IntegerLiteral 0xf4315f0 <col:16> 'int' 0
9 |-DeclStmt 0xf4316a8 <line:19:3, col:22>

10 | `-VarDecl 0xf431640 <col:3, col:7> col:7 used iteration_count 'int'
11 |-IfStmt 0xf432960 <line:21:3, line:26:3> has_else

Listing 2.3.: Extract of the textual and machine readable AST representation of List-
ing 2.2 with focus on variable usage and conditional branches.

sophisticated solutions such as Source-to-source transformation (S2S) compilers
are discussed in Section 3.1.1 and decided against. Major code changes by the user
were also ruled out as a possible solution, as CATO should be easy to use for the
target audience (see Section 1.3.2).

AST Two extracts of the AST generated with clang are visible in Listing 2.3 and
Listing 2.4 as textual representations. In Figure 2.1 the AST can be seen as a tree
representation, where the structure of the original source code can be seen after it
has been tokenised and parsed (cf. Section 3.1.1).
This code representation is a welcome way to perform static code analysis, as the
structure is broken down. LLVM provides an API to programmatically access the
AST for analysis and iteration. Individual statements in the original code can be
moved to the AST.
An example of how to use this layer is demonstrated by MPI-checker (Droste
et al., 2015), which started as a standalone tool and has since been merged into
clang-tidy in LLVM version 4.0. It tracks MPI calls and checks for clear errors
like type mismatches or undefined behaviour due to missing completion calls like
MPI_Wait. This static approach works independently of runtime values such as the
number of processes used, allowing for more generic assertions. On the other hand,
it provides limited reasoning about interactions based on heap memory (Droste,
2020). The reason for this is that the AST provides only an outline of the general
execution flow of the application.
This becomes a major drawback to using it as a basis for CATO, since its required
memory handling capabilities rely heavily on values that are only known at runtime.
Although the AST is customisable (the LLVM API does not provide setter functions
for the AST, but there are existing workarounds), the LLVM philosophy is to ensure
the immutability of the AST (LLVM Project, n.d.-b). Therefore, the AST could
be used for information gathering, but not for the necessary source transformation,
which should be done by CATO.

IR Two snippets of Intermediate Representation (IR) code generated with clang are
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32 |-ForStmt 0xf432b98 <line:28:3, line:31:3>
33 | |-DeclStmt 0xf432a30 <line:28:7, col:16>
34 | | `-VarDecl 0xf4329a8 <col:7, col:15> col:11 used i 'int' cinit
35 | | `-IntegerLiteral 0xf432a10 <col:15> 'int' 0
36 | |-<<<NULL>>>
37 | |-BinaryOperator 0xf432ab8 <col:18, col:22> 'int' '<'
38 | | |-ImplicitCastExpr 0xf432a88 <col:18> 'int' <LValueToRValue>
39 | | | `-DeclRefExpr 0xf432a48 <col:18> 'int' lvalue Var 0xf4329a8 'i'

'int'↪→

40 | | `-ImplicitCastExpr 0xf432aa0 <col:22> 'int' <LValueToRValue>
41 | | `-DeclRefExpr 0xf432a68 <col:22> 'int' lvalue Var 0xf431640

'iteration_count' 'int'↪→

42 | |-UnaryOperator 0xf432af8 <col:39, col:40> 'int' postfix '++'
43 | | `-DeclRefExpr 0xf432ad8 <col:39> 'int' lvalue Var 0xf4329a8 'i'

'int'↪→

44 | `-CompoundStmt 0xf432b80 <line:29:3, line:31:3>

Listing 2.4.: Extract of the textual and machine readable AST representation of List-
ing 2.2 with focus on the for loop.

CompoundStmt

DeclStmt DeclStmt IfStmt ForStmt ReturnStmt

IntegerLiteral BinaryOperator CompoundStmt CompoundStmt DeclStmt BinaryOperator UnaryOperator CompoundStmt ImplicitCastExpr

ImplicitCastExpr IntegerLiteral BinaryOperator BinaryOperator

DeclRefExpr DeclRefExpr IntegerLiteral DeclRefExpr CallExpr

ImplicitCastExpr ImplicitCastExpr

DeclRefExpr ArraySubscriptExpr

ImplicitCastExpr IntegerLiteral

DeclRefExpr

IntegerLiteral ImplicitCastExpr ImplicitCastExpr DeclRefExpr CompoundAssignOperator

<NULL>

DeclRefExpr DeclRefExpr DeclRefExpr IntegerLiteral

DeclRefExpr

Figure 2.1.: Graphical AST representation of Listing 2.2. Blue nodes correspond to the
textual extract in Listing 2.3, red nodes correspond to the textual extract
in Listing 2.4. The colours have been manually added to match the colours
from the CFG in Figure 2.4 to indicate associated nodes.
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23 if.then: ; preds = %entry
24 store i32 1, i32* %iteration_count, align 4
25 br label %if.end
26

27 if.else: ; preds = %entry
28 %1 = load i8**, i8*** %argv.addr, align 8
29 %arrayidx = getelementptr inbounds i8*, i8** %1, i64 1
30 %2 = load i8*, i8** %arrayidx, align 8
31 %call = call i32 @atoi(i8* %2) #2
32 store i32 %call, i32* %iteration_count, align 4
33 br label %if.end

Listing 2.5.: IR extract of Listing 2.2 with focus on the if condition.

shown in Listing 2.5 and Listing 2.6 as textual representations. This layer of code
uses a Static Single Assignment (SSA) form (i.e. each variable is only assigned once,
which makes compiler optimisations easier) and is already quite close to assembly
language compared to the original C code, but uses the LLVM instruction set. This
instruction set provides instructions at a slightly higher level of abstraction than
assembly, uses unlimited virtual registers and makes no assumptions about the
underlying hardware, nor does it use machine instructions (LLVM Project, 2023j).
Section 5.1.1 has a more detailed description of IR.
Because IR code provides a layer between high level code and assembly, it is
completely abstracted from the language in which the original application was
written. Therefore, it is quite general and still relatively human readable. The last
point is just a nice-to-have, as it does not affect CATO’s workflow, but it helps a
lot with tool development and debugging.
As with AST, LLVM provides an API to analyse and iterate it, and this time also
to modify it. In Listing 2.5 you can see both branches (then and else), where
the variable iteration_count is set depending on user input. The second code
snippet in Listing 2.6 shows the loop header, where the loop condition is evaluated,
and the body. The former unary increment operator from the original code (line 12
in Listing 2.2) and the corresponding AST representation (line 51 in Listing 2.6)
has now become more complex (from line 51 to 55 in Listing 2.4) because there is
no equivalent IR statement. Since the generation of IR code is predictable, this is
not a significant problem during the modification. Details on how to perform the
transformation are given later in Section 5.1.2.

CFG The Control Flow Graph (CFG) is a directed graph constructed on the basis of
the IR. It extends the IR by an assumed control flow that includes all possible
branches. It is based on Basic Blocks (BBs) (cf. Section 5.1.1), which are preceded
by a label in IR (e.g. Listing 2.5, line 23 or Listing 2.6, line 39). Each BB is
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39 for.cond: ; preds = %for.inc,
%if.end↪→

40 %3 = load i32, i32* %i, align 4
41 %4 = load i32, i32* %iteration_count, align 4
42 %cmp1 = icmp slt i32 %3, %4
43 br i1 %cmp1, label %for.body, label %for.end
44

45 for.body: ; preds = %for.cond
46 %5 = load i32, i32* %result, align 4
47 %add = add nsw i32 %5, 1
48 store i32 %add, i32* %result, align 4
49 br label %for.inc
50

51 for.inc: ; preds = %for.body
52 %6 = load i32, i32* %i, align 4
53 %inc = add nsw i32 %6, 1
54 store i32 %inc, i32* %i, align 4
55 br label %for.cond, !llvm.loop !4

Listing 2.6.: IR extract of Listing 2.2 with focus on the for loop.

represented in the CFG as individual nodes, which are connected according to the
BB’s terminator instruction. The result is a (potentially) cyclic and directed graph,
the CFG for the test application (cf. Listing 2.2) is shown in Figure 2.4.

For each BB or node, a block frequency analysis (LLVM Project, 2023i, 2023k)
is performed by LLVM. It assigns a probability to each outgoing BB edge and
estimates how many times a loop could be executed to evaluate a node’s frequency.
This frequency is represented as the node’s colour, with a reddish colour indicating
higher frequencies than bluish colours. This estimate could be used for a static
analysis of the relevance of code snippets that CATO could focus on.

Even more advanced static analysis can be performed on the CFG. An example of
this is the LLVM tool PhASAR (Heing-Becker, 2019; Schubert et al., 2019), which
can be used to perform model checking on the CFG. It uses a context and flow
sensitive approach to solving data flow problems (Reps et al., 1995). This allows
information to be inferred about possible variable values at specific places in the
code. As this is done statically, it can result in a large set of possible configurations
for a single variable, but it can also reduce the number of possible states and allow
additional information such as reachability to be gained.

This has been used for example in the master’s thesis from Marcel Heing-Becker,
which I have supervised, to check if an application uses one-sided MPI commu-
nication operations correctly. To do this, several grammars were constructed to
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represent different use cases, such as

• Initialise window before access

• Compatible window flavours

• Correct use of corresponding lock calls

A complete overview of the checks performed on the AST can be found in Heing-
Becker, 2019, Tbl. 4.1. Interprocedural, Finite, Distributive, Subset problems
(IFDS) have been used to construct each check, as they allow potential variable
assignments to be considered on a subset of potential paths within different parts
of an application.

However, there are two major problems with this approach:

State explosion Although a source code can have a fairly compact textual descrip-
tion, the set of potentially reachable states can become huge. Many high-level
code constructs can lead to multiple potential assignments to variables, e.g.
dynamic input, non-deterministic (random) behaviour, or simply conditional
branches. If these constructs do not interfere with each other, but are executed
sequentially, their space states will add up. Figure 2.2 shows the expansion of
the state space when two independent variables x and y are assigned values
from a set of size N and M respectively. In this case the state space reaches
a worst case complexity of O(N + M). This changes drastically if the second
assignment of the variable y depends on the value of the first assignment,
e.g. due to a conditional branch in between. In this case, the state space
reaches a complexity of O(N ·M) in the worst case, as shown in Figure 2.3.
When the state space of an application grows exponentially, this is called
state explosion and has a major negative impact on the performance of static
model checking (Das et al., 2002; Jhala & Majumdar, 2009).

Rice’s theorem: Any non-trivial property cannot be decided algorith-
mically

There are ways to improve the model checking or construction of IFDSs to
reduce the state space complexity, but there is no general solution for any
application. Although the reduction may work for corner cases (e.g. if static
assignments such as x = 0 are used) or if heuristics take effect. In general,
it remains undecidable which specific value, for example, a variable will be
assigned. This is supported by Rice’s theorem (Rice, 1953), which states
that any non-trivial property of a language is generally not decidable. The
problem is exacerbated when static code analysis is applied to code that uses
library symbols that are dynamically linked at runtime. This further inflates
the state space and degrades the validity of the static analysis, since more
conservative assumptions must be used (Mock, 2003).
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Figure 2.2.: Potential state space of two variable assignments, which are independent of
each other.

Figure 2.3.: Potential state space of two variable assignments, where the potential as-
signment space for y depends on the value of x and each space is disjunct.
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Code transformation Like the AST, the CFG is not intended to be modified. It is
intended to perform dataflow analysis, like a topographical sort of the code’s
Strongly Connected Components (SCCs).

Binary Finally, changes could be made after the final step in the compilation chain has
been executed to build the final binary. This can be done using static (offline,
i. i.e. before execution) or dynamic (at runtime) binary instrumentation, which
inserts new code into an existing binary. This is usually done to profile or trace an
application without having to recompile it. However, it can also be used to modify
or even replace calls, thereby inducing new behaviour.
There are several ways in which binary instrumentation can be performed, ranging
from the simple to the complex and powerful. A simple approach, for example, is to
wrap or overshadow all calls to a particular function. The GNU linker ld provides
a flag --wrap=symbol which can be used to select symbol so that all undefined
references are replaced by __wrap_symbol, which the user can provide. Another
way, without the need to re-link the binary (which requires rebuilding the original
source, or at least the availability of all the necessary object files), is to overshadow
a function by providing an alternative implementation of that function. The loader
can then be forced to prefer the function’s redefinition by setting the LD_PRELOAD
environment variable.
Figure 2.5 demonstrates this with a simple example. The original application
(cf. Listing A.3) simply prints a sine function to the terminal, which can be seen
in Figure 2.5a. These values are taken from sin from the C maths library. A
trivial replacement library (cf. Listing A.5) redefines the sin function with a
constant value and is prioritised by calling LD_PRELOAD=sin_redefinition.so
./original_application.x; the result is shown in Figure 2.5b. Without making
any changes to the original application, its binary has been instrumented and its
behaviour changed.
This method is quite simple to implement, but has several disadvantages:

• All occurrences are replaced, a more selective approach is not possible.
• The function to be replaced must not be defined in the same translation unit,

since only undefined references are replaced. As soon as the symbol definition
is placed within the current translation unit, no external symbol reference is
created; changing the load order during translation will have no effect on this
symbol.

• This approach is rather crude and only works at the function level, it is not
possible to reuse parts of the replaced function without copying the original
source code into the function redefinition.

There are more advanced tools for dynamic binary instrumentation like BinOpt (En-
gelke & Schulz, 2020b), Instrew (Engelke & Schulz, 2020a) or CrossDBT (Li et al.,
2022). A very well known one is Valgrind. It uses so-called shadow values to in-
tercept every access to registers and memory, and can therefore perform additional
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CFG for 'main' function

entry:
 %retval = alloca i32, align 4
 %argc.addr = alloca i32, align 4
 %argv.addr = alloca i8**, align 8
 %result = alloca i32, align 4
 %iteration_count = alloca i32, align 4
 %i = alloca i32, align 4
 store i32 0, i32* %retval, align 4
 store i32 %argc, i32* %argc.addr, align 4
 store i8** %argv, i8*** %argv.addr, align 8
 store i32 0, i32* %result, align 4
 %0 = load i32, i32* %argc.addr, align 4
 %cmp = icmp eq i32 %0, 1
 br i1 %cmp, label %if.then, label %if.else

T F

if.then: 
 store i32 1, i32* %iteration_count, align 4
 br label %if.end

if.else: 
 %1 = load i8**, i8*** %argv.addr, align 8
 %arrayidx = getelementptr inbounds i8*, i8** %1, i64 1
 %2 = load i8*, i8** %arrayidx, align 8
 %call = call i32 @atoi(i8* %2) #2
 store i32 %call, i32* %iteration_count, align 4
 br label %if.end

if.end: 
 store i32 0, i32* %i, align 4
 br label %for.cond

for.cond: 
 %3 = load i32, i32* %i, align 4
 %4 = load i32, i32* %iteration_count, align 4
 %cmp1 = icmp slt i32 %3, %4
 br i1 %cmp1, label %for.body, label %for.end

T F

for.body: 
 %5 = load i32, i32* %result, align 4
 %add = add nsw i32 %5, 1
 store i32 %add, i32* %result, align 4
 br label %for.inc

for.end: 
 %7 = load i32, i32* %result, align 4
 ret i32 %7

for.inc: 
 %6 = load i32, i32* %i, align 4
 %inc = add nsw i32 %6, 1
 store i32 %inc, i32* %i, align 4
 br label %for.cond, !llvm.loop !4

Figure 2.4.: Graphical CFG representation of Listing 2.2. The colour of each node (BB)
is a sign of the expected execution frequency.
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(a) Original terminal output of test applic-
ation (cf. Listing A.3).
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(b) Modified terminal output after over-
shadowing the original sin definition
(cf. Listing A.5).

Figure 2.5.: Comparison of the outputs from the original application with the execution,
where sin has been overshadowed during runtime.

checks in the background. In its earlier stages, it also used the LD_PRELOAD mech-
anism, but has now been extended to do the loader’s job. This allows Valgrind
to provide its own address space manager and memory allocator, which are then
automatically used by the target application (Nethercote & Seward, 2007).
A more detailed description of binary instrumentation techniques is given in
(Priyadarshan, 2019).

Now that all the major LLVM layers have been presented, the most promising one can
be chosen to work on implementing CATO. Working directly on the original source code
has been ruled out, as has working on the AST. Using a static analysis approach has
the advantage of being able to derive universally valid statements from the examined
code. However, it is also a limiting factor in terms of the number of possible predictions,
since other properties can very quickly become ambiguous (cf. Section 5.2). Therefore,
a dynamic approach is inevitable, where properties are decided at runtime by simply
checking their current value. Unlike the static approach, this does not provide possible
future values and therefore limits the decision context to past and present values. Binary
instrumentation has the advantage that the target application does not need to be rebuilt,
but is more focused on analysis than transformation.

Choosing the IR layer also has some disadvantages, since the user has to rebuild his
application, and the changes made on the IR layer are not as easy to read as on the
high-level source code layer. In principle, this approach is independent of the language
or coding style of the input application, and independent of the chosen machine backend.
The syntax is always the same, but each front-end may do things a little differently. If
the same source code written in C (Figure 2.6a) and Fortran (Figure 2.6b) is run through
its respective LLVM frontend (clang and flang), the resulting IR codes (Listings 2.8
and 2.9 shows the unmodified IR code of the first BB) are still semantically equivalent,
but have a slightly different sequence of operations. Not only are the names different,
but some additional calling instructions are added (in this case to perform data type
conversions for the Fortran write calls). Some level of abstraction that does not depend
on a specific sequence of IR commands must therefore be preserved.
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17 int a;
18 int b[2];
19

20 a = 10;
21 b[0] = 20;
22 b[1] = 30;
23

24 printf("%d\n", a);
25

26 for (int i = 0; i < 2; i++) {
27 printf("%d\n", b[i]);
28 }

(a) C code version

16 integer :: a, i
17 integer, dimension(2) :: b
18

19 a = 10
20 b(1) = 20
21 b(2) = 30
22

23 print*, a
24

25 do i = 1, 2
26 print*, b(i)
27 end do

(b) Fortran code version

Listing 2.7.: Same boilerplate code in two languages (C and Fortran)

On the other hand, the IR layer can be used to iterate, analyse and modify the original
IR code, so that the modified IR can then be compiled into the final binary.

Figure 5.3 shows a selection of supported front-ends and back-ends. As long as the
LLVM community keeps track of current developments, CATO does not need to be
adapted and can rely on the LLVM infrastructure. For example, the emerging shift
in processor architectures from Complex instruction set computer (CISC) to Reduced
instruction set computer (RISC), which is becoming increasingly relevant in HPC, would
already be incorporated (Shah, 2022).

2.4. Pass Design
Once the decision has been made to use the LLVM IR layer as the basis for CATO, the
general construction of CATO can be done. Before the individual components of CATO
are discussed in the next section, the general intentions need to be made clear.

CATO consists of several elements:

• Helper scripts for building dependencies, and the CATO LLVM (hereafter referred
to as CATO pass).

• A test suite controlled by LLVM’s internal test suite lit (LLVM Project, 2023g).

• Wrapper scripts to run CATO to modify and build high-level source code.

LLVM makes it necessary to be careful about matching versions. As discussed in
Section 3.1.1 LLVM is rather merciless in introducing API-breaking changes with the
introduction of new major releases. Therefore, it is important to stick to a specific major
release of LLVM and that the target application is built with the frontend of the same
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10 define dso_local i32 @main() #0 {
11 %1 = alloca i32, align 4
12 %2 = alloca i32, align 4
13 %3 = alloca [2 x i32], align 4
14 %4 = alloca i32, align 4
15 store i32 0, ptr %1, align 4
16 store i32 10, ptr %2, align 4
17 %5 = getelementptr inbounds [2 x i32], ptr %3, i64 0, i64 0
18 store i32 20, ptr %5, align 4
19 %6 = getelementptr inbounds [2 x i32], ptr %3, i64 0, i64 1
20 store i32 30, ptr %6, align 4
21 %7 = load i32, ptr %2, align 4
22 %8 = call i32 (ptr, ...) @printf(ptr noundef @.str, i32 noundef %7)
23 store i32 0, ptr %4, align 4
24 br label %9

Listing 2.8.: Extract of IR from Listing 2.6a

15 define void @_QQmain() !dbg !3 {
16 %1 = alloca i32, i64 1, align 4, !dbg !7
17 %2 = alloca i32, i64 1, align 4, !dbg !9
18 store i32 10, ptr %2, align 4, !dbg !10
19 store i32 20, ptr @_QFEstack_array, align 4, !dbg !11
20 store i32 30, ptr getelementptr inbounds ([2 x i32], ptr

@_QFEstack_array, i64 0, i64 1), align 4, !dbg !12↪→

21 %3 = call ptr @_FortranAioBeginExternalListOutput(i32 -1, ptr
@_QQcl.2E2F646966666572656E63655F666F727472616E2E66393000, i32 25),
!dbg !13

↪→

↪→

22 %4 = call i1 @_FortranAioOutputAscii(ptr %3, ptr
@_QQcl.5363616C6172207661726961626C653A, i64 16), !dbg !14↪→

23 %5 = load i32, ptr %2, align 4, !dbg !15
24 %6 = call i1 @_FortranAioOutputInteger32(ptr %3, i32 %5), !dbg !15
25 %7 = call i32 @_FortranAioEndIoStatement(ptr %3), !dbg !13
26 br label %8, !dbg !16

Listing 2.9.: Extract of IR from Listing 2.6b
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version. To make these requirements easier to handle, the build and run scripts of CATO
make use of spack, which on the one hand allows all necessary dependencies to be built
from source, and on the other hand makes it easy to comply with the version requirements.
The first point in particular is a significant advantage, as CATO can be built easily
in userspace without the need for root privileges. Thus, the user is not restricted to a
specific Linux distribution or needs the help of the system administrator. Since CATO
is used on applications from the HPC context, it is not uncommon for a user to work
on variable HPC cluster systems, which are often restricted in terms of permissions and
where the availability of the correct dependency versions is not guaranteed. Especially if
the debug functionality of CATO is to be used, there is no way around compiling LLVM
as a debug build yourself, because the RelWithDebInfo build (approximately 84 GiB1) is
much larger than the Release build (about 3.1 GiB2), and has much worse performance;
therefore it is usually not available in the official distribution repositories.

2.4.1. Code Transformation

First of all, CATO is an LLVM pass (cf. Section 5.1.2) that analyses the user’s application
code and automatically transforms it during the compilation phase. Unlike the original
code, the rebuilt binary then makes use of new features provided by CATO, such as a
hybrid parallelisation scheme, as well as parallel I/O and compression using netCDF.

Currently, only static information is derived from the IR level (cf. Section 8.2). However,
it is necessary to perform code replacement based on the execution context. For example,
it makes a difference whether a memory allocation requires only a single page of memory
or most of the available memory. Unless simple static values are used (i.e. actual static
numbers within a malloc call), the size is unpredictable at first sight. Therefore, CATO
extends the IR code and encapsulates each potential code transformation in a conditional
branch (cf. Mishra et al., 2020, Ch. III D). During the execution of the modified
binary, the actual environment is safely set and the appropriate code replacement is
executed. Listing 2.10 demonstrates the principle of this approach. In the original code
in Listing 2.7a statement_b is executed and needs to be changed. The replacement in
Listing 2.7b then adds as many branches as necessary to distinguish all relevant cases that
have been previously elaborated and where different versions of the original statement are
executed. For this to work well, it is important to consider each relevant case, for which
an individual type of transformation must be performed by CATO. This can become
quite extensive, but this drawback is mainly limited to the build time and file size of the
modified binary. An example of this is how CATO handles variables within an OpenMP
kernel, which will be discussed in Section 4.1. Another example in Section 4.2 shows
how the user can influence the execution of the modified application via environment
variables that are evaluated at runtime.

1llvm@13.0.0 using spack #e5bd319c19
2See Footnote 1
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1 int main() {
2 // [...]
3 statement_a;
4 statement_b;
5

6

7

8

9

10 statement_c;
11 // [...]
12 }

(a) Unmodified code (vertical spaces added
for easy comparability), where original
statement_b is executed.

1 int main() {
2 // [...]
3 statement_a;
4 if(condition_x)
5 statement_b_x;
6 else if(condition_y)
7 statement_b_y;
8 else
9 statement_b_z;

10 statement_c;
11 // [...]
12 }

(b) Modified code, in this case consider-
ing three different branches. On each
branch, a differently modified version
of statement_b can then be executed.

Listing 2.10.: Demonstration of how the code replacement can react according to the
actual environment, even though the replacement code has already been
inserted at compile time. In each conditional branch, a modified version of
statement_b can be executed. This demonstration is only figurative, since
the replacement is not performed on the original high-level code layer, but
on the IR layer.
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Equivalent Code Replacement

How the code transformation is actually performed differs between CATO’s components.
In general, certain keywords in the original IR are searched for to identify significant
kernels of code. Based on these findings, additional analysis (e.g. regarding dependencies)
is performed, and then the actual replacement takes place, which is generally described
in Chapter 4.

2.5. Summary
There are several abstraction layers of high-level source code that can be traversed and
transformed: the original high-level itself, the AST, the IR, the CFG or even the final
binary. All layers were examined and discussed for their advantages and disadvantages.
From this discussion it seemed most promising to focus on the IR layer. It was decided
to use a compiler-based approach to construct a LLVM pass that would provide the core
functionality of CATO.
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3. Background
The background chapter provides a comprehensive overview of the relevant concepts,
setting the foundation for the subsequent discussions and analysis. According to the
research questions from Section 1.2, there are three different areas of concepts, which
will play a major role:

• Code Transformation

• Parallelisation

• I/O

For every concept, a decision must be made regarding the framework to prioritise
and concentrate on. Particularly in the latter two domains, the selection is made
while considering the target audience specified in Section 1.3.2, which imposes certain
limitations. CATO requires that some frameworks are used, at least in a simplified form,
in the domain scientist’s original high-level source code, since this is used to gather the
necessary information. This is elaborated in Sections 3.1 to 3.3.

During the course of this work, a tool called AGSearch was developed. It has been
used to search GitHub for specific repositories and analyse them locally to see if certain
function calls are being used (Squar et al., 2022). This tool is used to get an idea of
the reach of frameworks and to check if certain (advanced) features are being used or
ignored by the community. These analyses are specifically focused on repositories hosted
on GitHub. As a result, AGSearch excludes repositories hosted on other platforms like
GitLab or SourceForge, as well as repositories that are not publicly accessible, such as
the ICON model repositories.

It is important to approach the results of AGSearch with some caution, as the tool does
not differentiate between source files, comments, or documentation within a repository.
All files are treated equally in the analysis. However, it is assumed that the statistical
distribution of meaningful and meaningless hits for each keyword searched within the
repository remains consistent. With this assumption, the proportions obtained from the
analysis should still hold significance.

3.1. Source Transformation Techniques
Source-to-source transformation (S2S) is a technique for taking high-level source code and
modifying it. S2S is a common practice employed within compilers. It involves taking
high-level source code as input and performing various optimisations and transformations.
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The modified code can then be transformed into the final executable binary code. This
technique can also be used deliberately by a user to automatically modify their high
level code. In this case, it is most likely to be used to move high-level code from one
language to another, while keeping its semantical behaviour intact. However, a survey
by (Milewicz2021) showed that there are some negative perceptions in the community:

• S2S interferes with the final compiler optimisations.

• S2S tools are difficult to customise.

• S2S interferes with the otherwise solid compilation process.

• S2S requires parsing, which is difficult to manage.

• S2S is just a placeholder technology until it is replaced by something more robust
and competent.

Milewicz et al., 2021 already refutes these perceptions as far as possible. Moreover,
they do not really apply to CATO: The users of CATO do not need to concern themselves
with customizing or configuring the parsing step of the tool. CATO is integrated into the
standard LLVM compilation process, and is integrated into the Pass Manager workflow
as early as possible to minimise any interference (cf. Section 5.1.2). The potential benefits
of using CATO for S2S transformations outweigh these perceptions.

Given unlimited time and effort, the efficiency of manual code transformations can
always match that of automatic code transformations. As time is a limited resource,
automatic code transformations are a valuable and unavoidable asset for improving
efficiency at low cost.

3.1.1. Compiler
In Section 2.2, the decision was made to use a compiler-based approach as a robust and
feature-rich foundation. Using the ability of a compiler to apply transformations auto-
matically is an important technique within HPC (Bacon et al., 1994). Several compiler
frameworks have gained a solid reputation and are widely used in both production and
research environments. These frameworks provide stability, reliability, and often offer
unique benefits for various use cases. These include, but are not limited to ROSE (Quin-
lan & Liao, 2011), Cetus (C. Dave et al., 2009), Mercurium (Balart et al., 2004),
Insieme (Jordan et al., 2013), OpenARC (S. Lee & Vetter, 2014), Xevolver (Komatsu
et al., 2020), Omni (Sato et al., 1999), PLuTo (Bondhugula et al., 2008), Clava (Bispo &
Cardoso, 2020) and Prospect (Süßkraut et al., 2010).

Some focus on OpenMP or OpenACC, others on automatic parallelisation. What they
all have in common is that they are not so much general purpose compilers as they are
compilers for very specific use cases. The main general-purpose compiler frameworks
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Figure 3.1.: Visualisation of the temporal distribution of LLVM releases. Major releases (V
x.0.0) are printed on the baseline, and minor releases (V x.y.0 and patch
releases (V x.y.z) are printed below the baseline. Since version 4.0.0,
LLVM has received a major release approximately every 6 months (LLVM
Project, 2023d)

.

that are open source are the GNU compiler suite and LLVM. GCC is older than LLVM
and supports more high-level languages than LLVM, although it is hard to quantify.

For example, Fortran is well supported by the gfortran frontend, while the LLVM
Fortran frontend, flang is still under development and not yet ready for production
use (LLVM Project, 2023c). However, this is only a matter of time as development is
progressing rapidly.

However, using LLVM as a base is advantageous as it is comparatively easy to jump
into and less monolithic than GCC. It has a large community and many research related
tools are built using LLVM (Desaulniers, 2017). A selection of LLVM based research
tools will be discussed later in Chapter 6. Both compiler frameworks use a Intermediate
Representation (IR): LLVM IR and its GNU counterpart GENERIC (GNU, n.d.; LLVM
Project, 2023j). The IR acts as an intermediate layer that is independent of the high-level
language used or the machine backend targeted. This allows for simplified and reusable
code analysis and transformation techniques. Both compiler frameworks allow user-
defined routines to be dynamically loaded via a LLVM pass or gcc plugin to traverse and
transform IR. There is even a gcc plugin available called DragonEgg to replace middle-
end and back-end components from gcc with equivalent components from LLVM (LLVM
Project, n.d.-a). By leveraging the optimisation and code generation capabilities of
LLVM, it becomes now possible to provide support for all the languages covered by GCC,
expanding their potential.

A drawback of LLVM is its tendency to introduce significant API-breaking changes
with each major release, occurring every six months (cf. Figure 3.1), which can hinder

57



Chapter 3 – Background

Figure 3.2.: General code transformation steps following the general composition of a
compiler (cf. Figure A.1). Figure is from Winkler, 2022.

compiler developers. Adapting the developed tools is necessary when utilising new
features of LLVM. Alternatively, if one chooses not to adapt the tools, they may miss
out on the benefits of new features and instead opt to install a specific release version of
LLVM, which can be done without requiring root privileges.

Ultimately, the choice between LLVM and GCC is a matter of personal preference, as
there is no clear argument favouring one over the other. However, in the context of HPC
research tools, many are built using LLVM, which has a better documentation than that
of GCC. Therefore, LLVM has been selected for this project.

3.2. Parallelisation Techniques
In modern HPC hardware, there are several levels of parallelism. Some need to be
explicitly addressed by the user, some are used automatically by the OS or the hardware.
Figure 3.3 gives a rough overview of potential sources of parallelism. The following
description is not exhaustive (Schmidt et al., 2017).

Starting from the bottom, there is a core with its components such as the Arithmetic
Logic Unit (ALU) and registers. The execution of an instruction requires several steps
(Fetch, Decode, Execute, Memory, and Write), all of which can be executed in a parallel
pipeline if not a single instruction, but a stream of instructions, enters it. This is
instruction-level parallelism. If a core has a vector unit, a single instruction can be
executed on multiple data simultaneously.

One level up is the CPU, which can have multiple cores. In addition to parallelism
within a single core, multiple cores can now be used simultaneously. On a motherboard
with more than one socket, multiple CPUs can be used simultaneously. More parallelism
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Figure 3.3.: Overview of some levels of parallelism from a single instruction up to a
cluster.
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can be achieved by using accelerators (e.g. GPUs), but these are not used in this work
because many ESS codes do not use them prominently.

Going up one level, we move from a single compute node to a whole cluster of compute
nodes connected by some kind of network. Theoretically, you could go up another level
and connect clusters together to form a grid or, more abstractly, a cloud, but this is not
covered in this work.

These levels of hardware parallelism can now be used to run applications concurrently.
Some levels can only be influenced indirectly by the developer, since the hardware itself
or the OS takes care of this. Other levels can be used explicitly. Within the application,
he can choose between two paradigms, which can also be mixed:

• Code-level parallelism: The application can be divided into successive phases (e.g.
preprocessing, computation, postprocessing) and then executed in parallel. Using
a data stream, it is then possible to build an execution pipeline in which each actor
performs different operations. This is similar to the instruction-level parallelism
discussed earlier.

• Data-level parallelism: The data is split and processed simultaneously, with each
actor performing the same operations.

The central execution unit in modern computer systems is a process representing an
application. This abstraction contains not only the actual instructions of the application,
but also a snapshot of its current execution, for example a reference to the current
instruction or memory allocations. Within a process there is a master thread, but more
threads can be forked during execution (OpenMP Architecture Review Board, 2021, Ch.
1.3). The user can control this by spawning new processes or forking new threads within
a process. Threads are bound to the same shared memory address space assigned to their
process, and are therefore confined to a single node. Processes are more independent
(they can communicate with each other) and can therefore be distributed across multiple
compute nodes and operate on distributed memory.

3.2.1. Shared Memory
There are many frameworks that allow developers to parallelise their code using threads,
for example OpenMP, TBB and POSIX Thread (pThread) (Stpiczynski, 2018). This
work is based on OpenMP 5.2, which offers many advantages:

Easy usage OpenMP uses pragmas, which are interpreted by the preprocessor, and a
few runtime routines and environment variables. So, by using simple compiler
pragmas, the user does not write the actual parallelisation code, but only gives
directives to the compiler. The compiler and the OpenMP runtime library take care
of thread creation and the distribution of data and computation. Parallelising a
trivial workshare is easy and can be kept fairly short. Because of its low threshold,
OpenMP is very popular - especially scientific software makes heavy use of it.
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Incremental use Another aspect of using pragmas is that a serial application can easily
be upgraded with OpenMP parallelisation. The programmer does not need to add
extensive parallelisation logic beforehand, nor do they need to rewrite all the code
at once – the application can be adapted incrementally. Therefore, the resulting
code looks similar to the serial version and debugging is easier (Basumallik &
Eigenmann, 2005).
If the application is compiled without the OpenMP flag, all pragmas are ignored
and the original serial application is built. Only the few runtime routines need
to be encapsulated with #ifdef macros. This makes it easy to gradually add the
OpenMP code and compare the serial and parallel applications.

Availability To give an example of how widespread OpenMP is, a survey of He (2015)
was consulted. As Figure 3.5 shows, OpenMP is quite popular on National Energy
Research Scientific Computing Center (NERSC), making up the second largest
share. Since it is closely coupled to the compiler, and all major compilers have
OpenMP support, it is available on most HPC systems. If an application is to run
on a machine without an OpenMP runtime, it should be sufficient to build the
application without the OpenMP flag - there is no need to provide an additional
version without OpenMP pragmas in this case. Also, OpenMP is available for the
major languages used for scientific applications: C, C++ and Fortran.

Using AGSearch to search GitHub gives a ranking of the most used OpenMP features.
9430 repositories were found, of which 7418 use C or C++ as their main language (about
78.7%). Figure 3.4 shows the most used directive, which is pragma omp parallel,
followed by pragma omp parallel for and pragma omp for. On the eighth position
is pragma omp task, which is most likely used with GPUs, which has been omitted in
this work. This shows that over 88 % of the repositories found focus on pragma omp
parallel or pragma omp parallel for. This is a strong indicator to focus on these
first when developing CATO to get more coverage.

3.2.2. Distributed Memory
In Chapter 6 about related work, there are many frameworks that can be used to work
on distributed memory with some kind of coordination. MPI is quite popular in HPC,
on NERSC it is the main framework used (cf. Figure 3.5). Looking through GitHub with
AGSearch found 10791, of which the majority use C or C++ as their main programming
language (cf. Figure 3.7a).

MPI can be used for both intra-node and inter-node communication, allowing the user
to run their application on multiple compute nodes. By default, processes do not share
the same address space, so messages are passed between them to exchange data over
the interconnect. An MPI implementation provides a convenient abstraction between
the application and the network. The most commonly used interconnect types on HPC
systems are according to the Top500 list of June 2023 (cf. Figure 3.6) InfiniBand and
Ethernet. There are several implementations of MPI (e.g. MPICH/MVAPICH or Open
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Figure 3.4.: Popularity of OpenMP directives and functions derived from 7418 public
GitHub repositories.

Figure 3.5.: Share of used parallelisation frameworks at NERSC. Figure is from He, 2015.

62



Chapter 3 – Background
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Figure 3.6.: Overview of the interconnect architectures used on the Top500 list as of
June 2023 (Strohmaier et al., 2023).

MPI ) that can be used on these interconnects. The implementation uses the appropriate
API (e.g. sockets or Verbs) in the background, the user API is unaffected.

Communication with MPI can be via point-to-point communication or collective com-
munication; communication can be blocking or non-blocking (there are more categories,
but they will not be discussed further). Another important addition to MPI is one-sided
communication, which is practical when unpredictable access patterns are used, but the
data distribution is rather static (MPI Forum, 2021, Ch. 12). The process that initiates
the communication is the source rank, and the process that has the accessed data is
the target rank. The novelty of using one-sided communication is that only the origin
rank needs to perform the communication operation. The target rank only needs to
actively participate in synchronisation calls if active target communication is used. If
passive target communication is used, the target rank does not even participate in the
synchronisation. The latter is similar to using shared memory. For this to work, each
participating rank must explicitly mark the memory if it is to be accessible via one-sided
communication. This is a so-called window, of which there are several flavours. One-sided
MPI operations have been added in MPI 2 and extended with MPI 3. Figure 3.8 shows
an (incomplete) overview of one-sided MPI operations (represented as leaves in the tree).
Most relevant MPI implementations have implemented one-sided communication (MPI
Forum, n.d.). Still, it is not so popular like two-sided MPI communication, since only
4% of all found repositories also used one-sided MPI operations (cf. Figure 3.7b). One
reason for this is probably that it is more difficult to use than two-sided MPI operations.

Using one-sided MPI communication increases the difficulty of development. Not-
withstanding the considerable number of operations available for communication and
synchronisation, the correct handling of epochs can become quite complicated. It is
necessary to keep track of the epochs opened and to be careful not to damage the integrity
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C

40%

C++

32%

Python

11%

Java

4%

Fortran

3% Others
10%

(a) Distribution of languages.

no 96%

yes4%
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Figure 3.7.: Search results using AGSearch on 10791 public repositories using MPI.

Figure 3.8.: Overview diagram of MPI one-sided operations. Figure is from Hoefler et al.,
2015.

64



Chapter 3 – Background

Figure 3.9.: Overview diagram of MPI one-sided ‘locking’ mechanisms. Figure is from
Dinan et al., 2016.

or consistency of the data. The developer must be particularly careful with the latter,
since the one-sided communication differs between the two memory models (RMA unified
and RMA separate), depending on the hardware actually used. In addition, windows can
be accessed during an open epoch using MPI operations or local reads or writes, which
must be done carefully. Figure 3.9 represents a state machine showing the correct use
of synchronisation for a single process on a single window. Using multiple processes on
multiple windows at the same time increased the complexity.

MPI communication can be performed via Remote Direct Memory Access (RDMA),
which can provide lower latency and higher bandwidth. RDMA can be used if a compatible
interconnect such as InfiniBand or Cray Slingshot (using RDMA over Converged Ethernet
(RoCE) ) is available (MacArthur et al., 2017; Sensi et al., 2020). In addition, it can
facilitate the inclusion of shared memory and irregular access patterns. On top of
this one-sided MPI communication can potentially achieve better latency values than
two-sided communication, because the target process is less involved (Gerstenberger
et al., 2013).

3.3. Input/Output
I/O in HPC often takes a back seat to compute performance, but can play a significant
role in performance if the application is memory bandwidth bound or particularly
I/O bandwidth bound. Two approaches to reducing the I/O load are parallel I/O or
compression. Both can be used to reduce the load on the I/O interface of a single
compute node, but come with a few postulates:

• Parallel I/O: Multiple compute nodes are involved so that the aggregated bandwidth
of their I/O interfaces can be used to access multiple I/O servers concurrently. The
application’s I/O operations are suitable for partitioning.

• Compression: The data is compressible (CR > 1) and the runtime overhead caused
by (de-)compression is either acceptable or only uses idle CPU resources.
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Figure 3.10.: Distribution of languages using netCDF.

The following description in Section 3.3.1 gives a brief overview of how I/O can be
handled in the context of HPC. This sequence fits a specific HPC system (in this case
Levante at DKRZ), details may differ on other systems. However, the general concept
remains the same. In Section 3.3.2 the potential benefits of compression are discussed.

In both cases, the netCDF library is used for demonstration purposes, which is a
highly relevant I/O library in the field of ESS (cf. Section 1.2.2). AGSearch was used to
search public GitHub repositories to show how netCDF is used within the community.

345 repositories use C/C++ or Fortran as their main programming language. Fig-
ure 3.10 shows that the majority use Python or Jupyter Notebook (which usually uses a
Python kernel). Since Python is easy to learn and use, and popular among data scientists,
many Python repositories are probably used for pre- or post-processing of netCDF files
(e.g. to create visualisations). CATO is not suitable for working on Python code, so the
most common language must be omitted.

Looking at the frequencies of found netCDF functions in Figure 3.11 shows that usually
parallel I/O or compression is not used. Similar functions are grouped together: For
example, there are many functions to read data with different granularities (single, array,
strided array or mapped array) on different datatypes, which have been collected in
Read some. Their counterparts are the read functions in Read all, which read the whole
variable and differ only in the datatype. Three lessons can be learnt:

1. Usually only serial I/O is used.

2. Reading the whole variable rather than just a part has a slight advantage.

3. Functions related to compression (alignment, chunking, filtering) are rarely used.
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Figure 3.11.: Frequency of netCDF function usages divided into groups.

It can therefore be assumed that there is fundamental potential for improvement,
which CATO could provide.

3.3.1. Parallel Input/Output
Portable Operating System Interface (POSIX) provides an interface for performing file
I/O, which provides all the basic operations required. It provides a file handle through
which the OS grants access to the data on the storage device. The same file can be
accessed concurrently, the user is then responsible for maintaining data integrity and
consistency. There are other I/O libraries such as MPI-IO, HDF5 or netCDF which add
an additional layer of abstraction to assist the user. Be it by collecting multiple I/O
calls before the actual (expensive) system call is made on a batch or by taking care of
proper synchronisation.

The general procedure, which is displayed in Figure 3.12 is as follows:

1. The HPC application wants to access data in a file in parallel.

2. An I/O library like netCDF 4 is used, which provides functions to open and access
a file.

3. NetCDF uses its HDF5 backend.

4. HDF5 forwards the request to its MPI-IO backend.

5. Often MPI-IO uses POSIX to perform the parallel file access.
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Figure 3.12.: Layers of the I/O stack through which data passes until it is written to the
actual block device.

6. The file does not reside on a storage device that is physically integrated into the
compute node. Instead, the file location is only mounted within the compute node’s
local File System (FS).

7. The Lustre client on the compute node attempts to forward the I/O request over
the interconnect.

8. A network API such as Verbs is used to deliver the request.

9. If the Lustre client does not know, where the file stripes are stored, the file layout
is requested from the Metadata Server (MDS) server (cf. Section 4.2.1). Then a
request is sent to the correct Object Storage Server (OSS).

10. On the OSS the request is forwarded to the Object Storage Target (OST) on the
right, where the local file system, ZFS or ldiskfs, performs the I/O operation on
the block device.

In order to benefit from this procedure, which is mostly transparent, the user must
ensure that his data is stored in a parallel FS such as Lustre and that the file stripes
match the use case (e.g. the number of I/O processes).

3.3.2. Compression
Regardless of whether an application uses parallel I/O, it can benefit from compression.
In addition to a more efficient use of memory, computation and I/O can benefit from
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compression by increasing the effective bandwidth beyond the physical limits of the
hardware.

If lossless compression is used, the data can be recovered by decompression without loss
of information. The only limit to achieving higher CRs is how compressible the data is, as
the entropy of the data sets a theoretical limit. Entropy is a measure of the information
density of data (or a bit). A high entropy means that the bits are very important, and
taking away a few would severely damage the data’s integrity. Conversely, low entropy
means that the information density is low and the contribution of a single bit is unlikely
to be very significant. Compressing data means removing unnecessary bits or finding a
shorter representation for a set of bits. The information content remains the same while
the data size is reduced, so the entropy of the compressed data increases. When the
maximum entropy is reached, the data cannot be compressed any further (Balakrishnan
& Touba, 2007; Hansel et al., 1992).

Under certain conditions, the use of a lossy compressor may also be appropriate. In
this case, data is potentially lost by applying a non-bijective function. This does not
necessarily increase the entropy because information is potentially lost. However, it can
be used in conjunction with another compressor that has a higher degree of efficiency.
Especially for floating-point data, which is usually hard to compress, this can be a real
advantage.

Most computer systems use the IEEE Standard for Floating-Point Arithmetic repres-
entation, which uses one sign bit, 8 exponent bits and 23 mantissa bits to represent a
32-bit floating point number (‘IEEE Standard for Floating-Point Arithmetic’, 2019). Fig-
ure 3.13 shows the information density of bits of different CAMS variables to demonstrate
the potential benefits of using compression. Grey boxes provide no valuable content to
define the value of the variable, so these bits provide no valuable information. In this
case, they could simply be omitted without changing the value of the variable. Because
of the fixed structure of floating-point variables, they cannot simply be left out, but since
they are zeroed out, applying lossless compression can definitely reduce the number of
bits needed. If some error is acceptable (which could be the case if the use case does not
require the precision provided, or the precision is not needed due to data noise induced
by the measurement methods used), then lossy compression can also be used. Most
variables show great potential in this case as well, as some have many bits that store
only the last percent of information.

Neglecting the impact on runtime and the additional load on CPU and memory,
lossless compression can always be applied transparently. The data is not damaged by
the (de-)compression. On the other hand, this is not possible with a lossy compressor.
It depends on the use case how much information loss is tolerable and this can only be
decided by the domain scientist who knows what the data is used for (Cappello et al.,
2019).

Choosing a Compressor

Using the right compressor is heavily depending on the use case and the user’s require-
ments:
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Figure 3.13.: Analysis by Klöwer et al. of the significance of bits that are part of the
floating-point representation of variables from Copernicus Atmosphere Mon-
itoring Service (CAMS) (provided by Inness et al. (2019)). While the
exponent bits (which indicate the size of the variable) are quite important
(i.e. their bits have a high information content), the mantissa bits are less
significant. Figure is from Klöwer et al., 2021, Fig. 2.

70



Chapter 3 – Background

• Is a lossless algorithm required or can a lossy algorithm also be used?

• Which compression metric has priority? Compression Ratio (CR), compression
speed or decompression speed?

• Is the application compute-bound or memory-bound? Can (un)compressing data
only use idle resources, or can runtime performance be compromised in favour of
compression?

These questions are not easy to answer. Whether the algorithm can be lossy or
must be lossless cannot be decided automatically, but only by the user who knows the
requirements of his application. In addition, there are many compression algorithms
available, which may already have different compression and decompression speeds.
Improving the compression ratio usually increases the time needed for (de-)compression
and vice versa. So every algorithm already has a bias, in which case it works quite well.
There are algorithms that can be rejected if there are alternatives that outperform them
in every metric. However, this still leaves a wide range of algorithms. To make matters
worse, their metrics can change depending on the data they are applied to. For example,
it can make a significant difference if the data uses integers or floats, or if it has high
entropy (e.g. due to noise induced by your measurement process).

NetCDF has some lossless compressors and a lossy preprocessor built in, which will
be discussed later in Section 5.3.2. More compressors can be used by adding them as
HDF5 filters. Duwe et al., 2020, Ch. 1.1, 1.2 lists many available compressors and the
methods they use, some of which are also available as HDF5 filters (e.g. SZ and ZFP (Di
& Cappello, 2016)). In order to use a compressor, the variable definition in the source
code must be adjusted by the user after deciding which compressor to use.

Chunking Data

Data is usually stored contiguously in memory. When data is accessed, it has to be
loaded into the cache and neighbouring data is also prefetched. If the application’s
use case requires the data to be accessed in the same order, this is beneficial in terms
of runtime performance because the data has already been loaded. This is a sensible
heuristics because it allows the correlation of spatial and temporal locality to be exploited,
which is a common property of real-world datasets (cf. discussion of nature’s locality
in Section 4.1.1). Jumping between memory addresses can be detrimental to runtime
if it leads to an increased number of cache misses (if data is moved from memory to
cache) or additional physical repositioning of the disk read head (if data is moved from
disk to memory). The average access time to memory is defined by Equation (3.1) with
tm � tc (Wulf & McKee, 1995). The aim is therefore to minimise the cache miss rate.

tavg = p× tc + (1− p)× tm (3.1)
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Figure 3.14.: DWD OpenData ICON 2m temperature from 2023-05-18 (spatial view).

With:

p Probability of cache hit
tm Access time memory
tc Access time cache

Very often data is multi-dimensional (e.g. four dimensions for 3D time series) but is
still mapped into one-dimensional memory. Now it depends on the use case if the data
access is still contiguous or if more and more jumps have to be performed.

For demonstration purposes the time series of a 2 metre temperature output is taken
from ICON. It is stored as a netCDF file and its internal structure is such that the
time dimension is the first, slow moving dimension and the two spatial dimensions are
the fast moving dimensions. One use case could be to look at the map at a particular
point in time, which is shown in Figure 3.14. The access to the virtual data is shown in
Figure 3.16a. The data access iterates over the fast, spatial dimensions and cache misses
only occur when the prefetched data has been fully consumed. This access is optimal
and has a low average time.

Another use case would be if you were only interested in the temperature forecast
for a specific point (e.g. ‘How warm will it be in Hamburg over the next few days?’),
which is shown in Figure 3.15. The data access would now move along the time axis as
in Figure 3.16b. However, this time the slow-moving dimension is iterated, and for a
given minimum dimension size this results in a cache miss for every data point and a
high average access time. Another demonstration of good and bad chunking is given by
Rew, 2013b.

Writing a netCDF file allows you to define the default Chunks size for each variable.
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Figure 3.17.: Merging potential chunking directions.

This is particularly useful if it is foreseeable that the data will be accessed in a particular
pattern most of the time. Then the Chunk shape can be adjusted to fit that access
pattern. Even if there is no dominant access pattern, chunking can help to reduce
the worst-case time. Even if the best case time gets worse, improving the worst case
time helps to optimise the average time. For many decades it has been shown that a
good choice is to use multidimensional rectangular chunks, which can be thought of as
multidimensional tiles (Rew, 2013a, 2013b). How the demonstration data could look like
using this Chunk pattern is shown in Figure 3.17.

The shape of the Chunks has a significant impact on performance and is also mandatory
if compression is to be used. A Chunk defines the block of data to be compressed. Using
only standard Chunk sizes could affect the compression result (Vader, 2016).

3.4. Summary
LLVM has been chosen as the compiler framework. Based on this decision, the design
of CATO can now be done in the next Chapter 4. After looking at several layers of
hardware and software that could be used for parallelisation, it was decided to focus on
applications that already use OpenMP and modify them using one-sided MPI operations.
This preserves the semantical behaviour of the original application, but allows the
modified application to use distributed memory. Building on this, netCDF is considered
to introduce parallel I/O and compression into the original application. The use of
chunking or compression may have a negative impact on the runtime performance of
the application, as (de-)compression is not free in terms of CPU load, but the benefit
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of reduced data size may still be worth it. If the application is not compute-bound but
memory-bound, using compression can provide some relief if it is done during the idle
time of the CPU.
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4. Tool Design
In order to demonstrate the versatility of CATO as a toolbox, three basic components
have been designed to serve as the basis for further extensions. The following three
Sections 4.1 to 4.3, will outline these components and their respective requirements for
integration with CATO. In addition to the general description, each topic will highlight
two key aspects.

1. Minimum requirements: Users should be able to enable or disable specific compon-
ents within CATO. However, CATO must remain operational without additional
user input. This is particularly important when a component not only performs
analysis but also code transformations. It is necessary to define the requirements for
each component to include all relevant code kernels belonging to the component’s
use case (high true positive rate), while ensuring that the component does not
interfere with unrelated code kernels (high true negative rate). As the feedback
component described in Section 4.3 does not involve any code transformations,
the declaration of minimal required characteristics only applies to the first two
components.

2. Generic replacement: By using predefined characteristics to identify relevant code
kernels, we can make assumptions about the code structure, such as that certain
data structures or function calls are used in a particular way in that kernel. This
allows to prepare generic replacement code that can be inserted at compile time
and automatically calibrated and executed at runtime.
This is why a replacement code in CATO is called a Equivalence Class (not to
be confused with a class in the traditional sense of object-oriented programming).
To enable this, CATO requires a mapping between identified code properties and
specific Equivalence Classes (ECs). An EC needs to be designed with sufficient
generality to accommodate the original code kernel’s behaviour. While the replace-
ment code may introduce additional functionality, it must preserve the original
semantical behaviour. Although these considerations hold in theory, practical
constraints may arise.

In the current design of CATO, a single generic replacement kernel is intended for
each potential code kernel. However, it is possible to offer several alternative kernels.
There are two general ways to determine the choice of kernel:

• User selection: The user can manually select the desired kernel for replacement.

• Automatic selection: CATO can automatically determine the most appropriate
kernel for substitution.
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Allowing the user to choose a replacement kernel may seem straightforward, but it
places an additional decision burden on the user, which could potentially be complex.
On the other hand, the second approach shifts this responsibility to CATO, but requires
the implementation of a new decision component. Developing such a component can be
a significant task, given the number of decision criteria that may exist.

As discussed in Section 2.1, the performance of an application depends not only on
the application itself but also on the software and hardware environment in which it is
executed. If CATO needs to choose between several equivalent replacement kernels, an
abstract cost function would be required. This function would provide a performance
model to estimate important metrics such as absolute runtime, peak memory/storage
consumption, or the trade-off between redundancy, recomputation and communication.

Calibration of this abstract cost function would require consideration of the performance
metrics of the specific environment. There are several approaches to deriving these
metrics:

Benchmarks Specialised benchmarks can be used to derive realistic performance metrics
that reflect the capabilities of the underlying hardware. These benchmarks serve
as upper bounds, determining the optimal performance that similar code cannot
exceed. Various benchmarks exist for stress testing specific components such as I/O
(MACSio (LLNL, 2020)), MPI or the network layer (Intel MPI Benchmarks (Intel,
2018), OSU Microbenchmarks (Barrett & Hemmert, 2009), SKaMPI (Reussner
et al., 1998), GPCNeT (Chunduri et al., 2019)) or CPU (HPL (netlib, 2018),
HPCG (HPCG Benchmark, 2022)), or the entire system (NAS Parallel Bench-
marks (Bailey et al., 1993; NASA, 2022), StressBench (Chester et al., 2021)).

Models Benchmarks can also be used to create additional model layers, such as a
roofline model. This helps to increase the expressiveness of the benchmarks and
to identify potential system boundaries based on the arithmetic intensity of the
original kernel (Williams et al., 2009).

Profiles A profile-guided approach involves profiling or tracing the original, unmodified
application to capture its actual behaviour on the specific hardware. This approach
provides direct observation of the application, eliminating any doubt introduced by
proxy measurements. However, the profiling process itself can introduce overhead
and potentially distort timing results. Trace generation, which provides more
detailed insight than sampling approaches, can have a significant impact on the
application’s timing. Tools such as ScalaBenchGen (Wu et al., 2012) can assist
with profiling.

Ultimately, this process would lead to a potential calibration that aligns with both
hardware and software, allowing the selection of a specific replacement kernel. However,
achieving such a calibration would require extensive research and implementation efforts.
As a result, the current design of CATO only allows for a single replacement kernel per
component, as this simplifies the complexity associated with research and implementation.
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The parts of CATO that perform code analysis will be hardwired into the code
itself, since detection and analysis must be deeply integrated into CATO. Unlike the
core modifications made to the IR, the transformation components will be relatively
customizable. These components can be included as C++ files, allowing users to make
required adjustments as described in Section 5.1.3. In addition, developers working on
CATO have the flexibility to easily modify or extend these components.

In the current design of CATO, users have access to two different tools:

1. OpenMP distribution tool (cf. Section 4.1)

2. I/O parallelisation tool (cf. Section 4.2)

The first tool allows easy testing of the benefits of distributed computation using MPI
compared to single node computation using OpenMP. This approach offers potential
benefits in terms of overall performance by utilising additional computing resources
beyond the limitations of a single node with shared memory. In addition, data can
be partitioned, allowing scalability of usable memory, which is limited by the number
of independent Concurrent Operational Units (COUs) (CPUs, cores) on a single node.
This capability allows the computation of larger input problems that would exceed the
memory capacity of a single node (see Sections 4.1 and 4.2).

The primary focus of this tool is not runtime improvement, but rather extended
memory utilisation that would otherwise be infeasible due to the limited hardware
resources of a single node. Converting an algorithm that relies on shared memory into a
form that uses distributed memory involves several aspects. Not only do communication
calls need to be replaced, but in some cases the data structure or even the algorithm
itself needs to be modified.

The second tool focuses on improving parallel file access for reading and writing,
prioritising it over serial file I/O. In the current design, this capability is implemented
specifically for netCDF, but it can be extended by incorporating additional I/O libraries
that support parallel I/O interfaces. This I/O component simplifies data distribution and
collection by eliminating the need for sequential data handling by the primary COU. In
doing so, the tool reduces the complexity of the application’s internal logic and improves
I/O performance. This tool provides significant benefits for applications that involve
I/O operations on large data sets throughout their runtime, including the creation of
checkpoints, rather than just at the beginning and end.

Modifications made to the original high-level source code of the user’s application
are not directly observable. These modifications occur at the IR code level, which
is then compiled into the final binary. While users have the ability to examine the
modified IR code, it can be difficult to interpret, especially for those without specialised
training, as it is very similar to assembly code. To address this issue, CATO includes an
additional component that provides feedback to the user. The function of this component
is to provide a summary of the code changes and give hints about the general nature
of the changes that have been made. In this way, the user can gain an approximate
understanding of the changes made and grasp their complexity. Details of the feedback
component are presented in Section 4.3.
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4.1. Component: Memory Handling
The target audience of users and applications has already been addressed in Section 1.3.2.
As a result, the focus is primarily on scientific applications that predominantly use basic
shared memory parallelisation, such as OpenMP, and I/O functionalities, especially
those of netCDF. In line with the motivation described in Section 7.1, efficient data
handling is a critical aspect. The I/O component also makes use of the memory handling
capabilities.

4.1.1. Communication Patterns
In Section 1.1.2 the targeted applications have already been outlined. Based on the
scientific background, there is a distinct variety of communication patterns that are used.
In particular, heap variables marked shared within the OpenMP kernel are assumed
to be crucial for optimal handling by CATO. Therefore, CATO focuses specifically on
understanding and analysing the communication patterns of these shared heap variables.

The communication pattern plays an important role in determining the optimal
replacement approach. In particular, an intesive read-only (RO) pattern could benefit
from a higher degree of redundancy, resulting in reduced communication requirements.
On the other hand, a write-heavy pattern requires more communication to ensure data
integrity and consistency. Therefore, the communication pattern has a significant impact
on the choice of the optimal replacement strategy.

Given the target audience of CATO as discussed in Section 1.3.2, the communication
patterns under consideration are derived from numerical methods used in science and
engineering. These methods can be grouped into clusters based on similarities in
computational and data access behaviour, while still maintaining some level of abstraction
from individual implementations. One such cluster is called Dwarf. While the set of
Dwarves may not be exhaustive in capturing all important behaviours, they are considered
representative of the most important patterns in science and engineering (Che et al.,
2009). CATO’s design was created specifically with these patterns in mind, allowing it
to address a wide range of algorithmic problems within its target audience by focusing
on these Dwarves.

Initially there were seven Dwarves based on general numerical methods, as mentioned
in (Colella, 2004). Subsequently, six more Dwarves were introduced, derived from
benchmarks on embedded, desktop and server computing (four Dwarves) and machine
learning (two Dwarves) (Asanovic et al., 2006). A brief overview of these Dwarves is
given in Table 4.1.

An important communication pattern found in various application areas is the stencil,
which is associated with the Structured Grid Dwarf. In the real world, many phenomena
can be described in terms of particles that have both wave and particle properties and
interact with each other. A perfect simulation of reality would require taking into account
the interaction between each particle and every other particle in the observed system.
However, such an approach introduces a complexity overhead of O(n2) for each particle
interaction, which becomes infeasible at a certain point. Fortunately, in most cases, a
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Dwarf Description
Dense Linear Algebra Densely packed vector/matrix with local accesses

Sparse Linear Algebra Sparsely packed (i.e. compressed) vector/matrix with
local accesses

Spectral Methods Decomposition into partial frequencies usually using
butterfly stages

N-Body Methods
Interaction between a set of discrete points, without
optimisation every point needs to communicate with
every other point

Structured Grids Regular grid with high spatial locality (e.g. using a
stencil), working in-place or in a buffer

Unstructured Grids Like Structured Grids but the access order is only pre-
destined by the application

Monte Carlo Statistical methods working on random trials, usually
embarrassingly parallel

Combinational Logic Simple (logical) operations on large data sets usually
exploiting bit-level parallelism

Graph traversal
Data is organised in a graph and needs to be quickly
iterated, usually lookup is more decisive than computa-
tion.

Construct Graphical Models Problem domain is converted into a graph, where some
variables are connected over attributes

Finite State Machine Machine transitions between distinct states based on
external input

Dynamic Programming
Solve problem by solving overlapping subproblems, re-
ordering and caching their computation avoid redund-
ant computation

Backtracking
Divide and conquer approach, which skips subproblems,
which cannot fulfil the orginal question (usually an
optimisation)

Table 4.1.: Overview of 7+6 Dwarves; the first seven entries are the original Dwarves,
the latter six entries are the extension.
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(a) 5-point stencil
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(b) 9-point stencil

Figure 4.1.: 2D examples for stencils, which traverse through the structured grid to
update grid cells. The corresponding Equations (4.1) and (4.2) are simplified
and do not consider boundary conditions.

cutoff radius can be used to limit the interaction between particles to a certain distance.
This allows a significant reduction in complexity. The cutoff radius approach is effective
because the strength of most physical forces tends to decrease with distance. Although
the strength of a physical force between two particles never reaches zero, it decreases
exponentially with distance and can be considered negligible beyond a certain point.
Of the four fundamental forces, only the Strong Interaction behaves differently, as it
increases proportionally with distance. However, the Strong Interaction and the Weak
Interaction operate primarily at the subatomic level, while other forces arise from the
Gravitational Interaction and/or Electromagnetic Interaction (Braibant et al., 2012).

Nature is local, therefore caching works.

A stencil can be interpreted as a cut-off radius, where the parameter n in an n-point
stencil represents the number of (neighbouring) grid cells involved in updating the value
of a single cell. While in theory the distribution pattern of the involved cells could be
arbitrarily distributed across the grid, nature tends to favour locality. As a result, the
cells involved are typically concentrated in the immediate vicinity of the target cell. This
fixed pattern is used to update the value of a grid cell by taking into account the values
of the other involved cells. The importance of stencils is reflected in their inclusion in
supercomputer benchmarks such as NAS Parallel Benchmarks (web:nas_benchmarks;
Bailey et al., 1993) and Rodinia (web:Rodinia_benchmarks; Che et al., 2009). They
are also widely used in climate research applications.

Figure 4.1 shows two examples of different stencil patterns: A 2D 5-point stencil (cf.
Equation (4.1)) and a 2D 9-point stencil (cf. Equation (4.2)). Whether the update is
performed in-place or in a buffer depends on the underlying algorithm.
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Figure 4.2.: Schematic diagram of the stencil pattern executed concurrently by multiple
processes. Green arrows represent reading from local memory, while red
arrows indicate the need to obtain values from neighbouring processes using
MPI. The halo lines denote the cells that will be targeted by a neighbouring
process for reading. The buffer memory required for MPI communication is
omitted in this diagram.

f(x, y)5−point =C + a0 · f(x, y)
+ a1 · f(x− 1, y) + a2 · f(x + 1, y)
+ a3 · f(x, y − 1) + a4 · f(x, y + 1)

(4.1)

f(x, y)9−point =C + a0 · f(x, y)
+ a1 · f(x− 1, y) + a2 · f(x + 1, y)
+ a3 · f(x, y − 1) + a4 · f(x, y + 1)
+ a5 · f(x− 1, y − 1) + a6 · f(x− 1, y + 1)
+ a7 · f(x + 1, y − 1) + a8 · f(x + 1, y + 1)

(4.2)

Building on this discussion, CATO is developed primarily with a focus on stencils.
This includes an emphasis on heap memory allocation. The heap memory is divided into
even shares, which reduces the amount of communication required between processes.
During the stencil iteration through the memory block, inter-process communication
is only required at boundaries where reading f(x, y ± 1) is required but belongs to the
neighbouring process (cf. Figure 4.2).
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1 # include <stdlib.h>
2 # include <stdio.h>
3 # include <omp.h>
4

5 int main(int argc, char const *argv[])
6 {
7 double *p = malloc(sizeof(double) * 64);
8 double a = 0.0;
9 double b[2] = {1.0,1.0};

10 double d = 10.0;
11

12 # pragma omp parallel for shared(a,b,d)
13 for (size_t i = 0; i < 2; i++)
14 {
15 double c = 2.0 ;
16 # pragma omp critical
17 a = 3.0;
18 b[i] = i*d;
19 }
20

21 free(p);
22 return 0;
23 }

Listing 4.1.: Simple OpenMP code to demonstrate the process’ memory management (cf.
Figure 4.3a)

4.1.2. Distribute Memory of Stencil Pattern

Listing 4.1 provides a code example that demonstrates how CATO handles different
types of variables. When the source code is compiled and executed, the OS spawns
a new process with a nested master thread. The properties of a process, such as the
binary code, initialised static/global variables, accounting information, child processes,
and the address space for heap and stack data, are shared by all nested threads. Each
thread is associated with a process and has its own set of properties, including program
counters, registers and stack memory within the process address space (Tanenbaum,
2009). Figure 4.3a shows the memory layout at the end of the execution of the source
code with a single thread. Not all properties are visualised in this figure, the focus is on
the address space, specifically the stack and the heap.

The variables in the code example differ in four aspects: data sharing between threads,
memory location (stack or heap), access type (read or write) and whether they are scalars
or arrays. An overview of the possible combinations is given in Table 4.2. In line 7 of
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(a) Executing a binary means to create a
new process and assign memory to it.
Each process has a single master thread,
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(b) Spawning a new thread within an pro-
cess assigns a private stack to the new
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Figure 4.3.: Visualisation of a process’ memory composition, highlighting the stack and
heap as the most significant components. The presentation is idealised and
does not consider technical details such as data type sizes or alignment. It
merely represents the general memory layout depicted in Listing 4.1. The
loop variable i, which requires special handling by CATO, and other implicit
data stored on the stack, such as function calls, are omitted.

Data-Sharing Memory Access Dimension
p shared Stack read scalar
*p shared Heap write dim.
a shared Stack write scalar
b shared Stack write dim.
c private Stack write scalar
d shared Stack read scalar
i private Stack read/write scalar

Table 4.2.: Overview of variable property combinations from Listing 4.1.
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Listing 4.1 dynamic memory is allocated and assigned to the pointer variable *p. The
allocated memory is stored on the heap, while the pointer variable that references it is
stored on the stack. Since the allocated memory is on the heap, which is shared by all
threads, declaring it private would not add any value if the allocation happened outside
the OpenMP kernel. This is because even though the pointer variables are private,
they all point to the same memory value, which can be accessed by all threads. If the
allocation happens inside the OpenMP kernel, then each thread gets a unique region of
the shared heap memory. This work does not address the scenario of allocating memory
within the OpenMP kernel itself.

The other variables are a (cf. line 8 (Listing 4.1)), b (cf. line 9 (Listing 4.1)), c (cf.
line 15 (Listing 4.1)) and d (cf. line 10 (Listing 4.1)) are allocated statically during
compile time and are therefore also stored on the thread’s stack. c is created on each
thread’s stack, the other variables are created on the master thread’s stack and are
referenced by the other threads. The loop variable i, which is used by OpenMP to
distribute work among newly spawned threads, requires special handling by CATO
during the load balancing phase.

If the code is built with OpenMP support, additional threads will be spawned during
execution. The execution flow remains the same until line 12, where a significant change
occurs. As soon as a thread encounters the parallel directive, it creates a new team of
threads and becomes their master. Until the end of the OpenMP kernel is reached, the
memory layout is modified as shown in Figure 4.3b (a team size of two is assumed for
demonstration purposes). The private variable c declared within the OpenMP kernel is
created on the stack as usual. However, the other implicitly shared variable p, as well as
the explicitly shared variables a, b and d, which already exist on the master thread’s stack,
are not copied but only referenced (cf. red arrows) by the new team threads (OpenMP
Architecture Review Board, 2021, Ch. 1.4.1). Therefore, their individual memory
addresses are the same in each thread.

This is where CATO comes in. Instead of using threads, new MPI processes are
spawned to replicate the behaviour of the original threads. These processes are also
able to make use of the heap by dividing it up and sharing it equally between all the
processes involved. If the processes are running on different compute nodes, they can
use shared memory over the network, which was not possible in the original OpenMP
version. In this setup, each process has its own copy of the original stack and only its
allocated portion of the original heap memory, as shown in Figure 4.4.

This requires additional operations to ensure data integrity and consistency, as required
by the use of MPI, as well as the introduction of new data structures on the stack
(represented by the generic red blocks in Figure 4.4). The sizes of instances of these
new data structures are not necessarily the same as the original data. In particular,
when dealing with scalar variables of primitive data types, their handling may require
noticeably more memory. This overhead is only necessary for shared variables written
to within the OpenMP kernel (i.e., variables a and b). The d variable is read only and
remains unchanged, so it can simply be copied.

CATO distinguishes between three memory schemes for handling variables, primarily
based on where they are stored. The main distinction is between variables stored on the
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Figure 4.4.: Visualisation of CATO’s memory adjustments. To ensure proper tracking of
changes and accommodate new data structures, additional auxiliary stack
variables need to be created. However, in return, significant variables residing
on the heap can now be partitioned and distributed across multiple compute
nodes connected through an interconnect.

stack and those stored on the heap. Stack variables are further categorised based on
OpenMP’s data sharing attributes. However, it does not make sense to further subdivide
heap variables into shared or private categories, since the pointer variable itself only
references the allocated heap memory, which is inherently shared by all threads within
the same process.

Private stack variable: Each process has its own private copy of this variable. All read
and write operations are thread-local. Private variables, unlike shared variables,
are not intended for communication between threads. This includes stack variables
that are explicitly declared as private within an OpenMP clause, or implicitly
marked as private because they are declared within the OpenMP kernel (OpenMP
Architecture Review Board, 2021, Ch. 5.1.1). For simplicity, the term private
variable includes all derivatives of the private clause, such as firstprivate and
lastprivate.

Shared stack variable: For a stack variable that is shared between threads (or processes
after the changes made by CATO), CATO distinguishes between read-only variables
and variables that are updated within the OpenMP kernel. In the case of a shared
RO variable, it is simply copied to every process.
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When a variable is written, additional effort is required to protect data integrity
against data races. Updates must also be synchronised between all participating
COUs to maintain data consistency. In the case of OpenMP, this was relatively
straightforward, as shared stack variables were accessed via their references, and no
additional data transfer was required apart from the necessary locking mechanisms.
However, when using MPI, additional communication operations are required to
replicate this behaviour. To minimise unnecessary communication and keep the
communication scheme simple, these variables are always updated at the master
level. Consequently, each process must retrieve the current values from the master
rank each time it accesses them and communicate its updates back to the master
rank.

Heap variable: Of particular interest are heap variables, which store a sequence of
primitive data types. These sequences can be shared equally by all participating
processes. If equal distribution is not possible, the overlap is shared by the processes
in front using the modulo operator. In the original OpenMP version, all threads
could access the shared heap directly. However, in the modified version, each
process must keep track of the specific segment of the original continuous memory
that it needs to access. This ensures that the correct message handler is used for
the corresponding MPI read or write operation.

The methods described for handling shared and private variables stored on the stack
have the drawback of increased memory consumption, as these variables are duplicated,
and only the access pattern changes with respect to the shared or private use case.
OpenMP use case. However, this overhead is likely to be negligible as the stack size is
much smaller compared to the potential size of heap memory. Typical maximum stack
sizes are usually in the low megabyte range, such as 8 MiB on an Intel Core i7-6700
CPU running Fedora 371. Although this limit can be increased, it is generally more
appropriate to store large amounts of data on the heap rather than the stack. In addition,
as discussed earlier in Section 1.3.2, CATO focuses on applications with a small number
of main variables that are significant in terms of relevance and memory consumption.
While it is possible for a local scalar stack variable to have a significant impact on
application performance, such as a tracking variable that is accessed disproportionately
often, this particular use case is not considered by the heuristic.

4.1.3. Optimal Memory Consumption
The first two replacement schemes for handling stack variables are primarily aimed at
ensuring correct replacement rather than providing performance improvements at this
stage. The significant performance improvement is achieved by the third replacement
scheme, which handles heap memory. With this scheme, heap memory can be shared
among all participating processes, allowing the combined main memory of all participating
compute nodes (in the extreme case, one physical compute node per process) to be

1Result of ulimit -s
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utilised. This fulfils the initial goals of using distributed memory (cf. Section 1.2.1) and
increasing the potential size of the input problem (cf. Section 1.1.2).

Peak memory consumption is crucial for limiting the size of the problem, as the
capacity of main memory sets an irrevocable physical limit that cannot be exceeded by
the application’s requirements. Usually a scientific application consists of several phases
of memory consumption.

1. Initialisation

2. Computation

3. Result collection
The initialisation step can be optional if the application does not require any input.

Usually, the user can control the application by setting input parameters (rather small
memory footprint) or providing input files (can range from small to large memory
footprint). After the application has used the input to initialise its internal data
structures, the actual computations are performed. Finally, some form of output is
usually provided, ranging from small terminal output to huge output files. These phases
are not necessarily strictly separated, but can be interchanged (some applications split
up the computation phase and insert (multiple) I/O phases, for example to create
checkpoints).

Since CATO distributes heap variables, this can be used to increase the maximum input
problem provided during the initialisation phase. There are two potential optimisations
that CATO handles. Splitting and distributing the heap memory allocated during
the computation phase reduces the peak memory consumption; the larger the ratio of
temporary heap variables during the computation phase to the total memory consumption,
the more significant the savings. The other optimisation takes effect when each process
collects only a part of the input problem. This can drastically reduce the peak memory
consumption during the initialisation phase. The latter will be discussed in more detail
later in Section 4.2.

The original application loads the input problem into the heap (cf. Figure 4.5a). If no
additional heap memory is needed during the runtime of the application, the whole heap
can be used for the initialisation data. Otherwise, the size of the input problem must
be limited to leave enough free memory for the computation phase (cf. Figure 4.5b).
An example for this is partdiff, an application used for teaching at the Scientific
Computing research group at the University of Hamburg. It is a solver for Partial
Differential Equations (PDEs) using the Gauss-Seidel and Jacobi methods. The choice of
method has a significant effect on the temporary memory consumption. If Gauss-Seidel
is used, the result of the calculation is stored directly on the input matrix. If Jacobi is
used, another temporary matrix must be allocated and used to hold the values of the
previous iteration. This means that the memory requirement on the heap is doubled in
this mode, or the size of the initial matrix must be halved. In general, the ratio between
the initial input memory and the temporary heap memory is not fixed, but depends
on the computation. To fully utilise a node’s memory, the size of the input and the
resolution of the computation must be optimally matched.
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Figure 4.5.: The unmodified application’s memory usage.

CATO would distribute the input data after the initialisation phase, so that each
process only stores a share of the initial data. If the computation phase is inflexible
with respect to the size of the temporary memory, the same amount of additional heap
memory is required, but this time the node’s memory would not be used to its full
capacity (cf. Figure 4.6). On the other hand, if the application can be tuned for increased
memory consumption during the computation phase (e.g.. due to finer resolution or
additional layers used by the computation algorithm as described in Section 1.1.2), the
modified application could now use twice as much temporary memory (cf. Figure 4.7).

Apart from the memory consumption, this distribution also has an impact on the
runtime performance of the modified application. By default, CATO optimises for
maximum potential memory consumption, so that it avoids unnecessary data redundancy,
but distributes the input data evenly. Because of the minimised redundancy, this is likely
to result in higher communication demands if a process needs to access data that has
been moved to another process. On the other hand, the application now benefits from
the additional computing power that has become available by using many more cores
from multiple nodes instead of cores from a single node. There are many factors that
come into play to influence the final runtime performance, ranging from the network
topology and bandwidth, to the compute pattern that defines how often communication
needs to occur, to the node hardware performance metrics (i.e. memory and cores).

4.1.4. Memory Model
As the focus of this component is on improved memory usage, the baseline of what
is possible needs to be analysed. To do this, a generalised model of memory usage is
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Memory - Process 0

S
TA

C
K

T
h
re

a
d

H
E
A

P

Tmp (1/8)

Tmp (2/8)

Input (1/4)

Input (2/4)

Tmp (3/8)

Tmp (4/8)

var

var'

Memory - Process 1

S
TA

C
K

T
h
re

a
d

H
E
A

P

Tmp (5/8)

Tmp (6/8)

Input (3/4)

Input (4/4)

Tmp (7/8)

Tmp (8/8)

var

var'
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constructed, focusing on the main participants. This omits anything not directly involved
in the CATO’s process, such as the call stack; although CATO is likely to affect this as
new function calls are inserted, its impact is likely to be negligible.

First, we need to determine the status quo, which is defined by the use of the stack
and heap on a single compute node. Superscript terms identify the general environment,
and subscript terms and control variables are used to specify the term. Constant terms
refer to a specific variable within the source code. Functional terms refer to the same
variables, but this time also take into account how their memory demand changes when
declared and stored within multiple COUs, which may be spread across multiple nodes.
The specific meaning of a Concurrent Operational Unit (COU) is either a thread or a
process, depending on the context.

Starting with Equation (4.3), the total stack memory used is the sum of all stack
variables. Since CATO must behave differently on different types of stack variables,
they are further subdivided into private and shared variables; the latter are further
subdivided into variables that are read-only (RO) or read-write (RW). The combined size
of all these variables represents the total stack memory occupied when a single thread
is used. If more threads are used (nT many), additional overhead is introduced, so the
requirement for a single thread cannot simply be multiplied by the number of threads.
Private stack variables are simply copied to each thread’s stack, so their consumption
scales by a factor of 1 with the number of threads on a single node (cf. Equation (4.4)).
Shared variables on the other side remain in the stack memory of the master thread that
forked the additional threads. Each forked thread stores a reference to the master thread’s
stack variable (cf. Figure 4.3b), which still claims some memory (cf. Equations (4.5)
and (4.6)2) and are represented by the constants Cro,i,t and Crw,i,t. Equation (4.7) then
sums up all these terms and represents the actual stack memory consumption on a single
node when nT many threads are used.

For heap memory, no such differentiation is necessary, so Equation (4.8) can be kept
simple in comparison and simply sums all heap variables.

Somp(1) =
∑

i

Spr,i︸ ︷︷ ︸
Spr

+
∑

i

Ssh(ro),i︸ ︷︷ ︸
Ssh(ro)

+
∑

i

Ssh(rw),i︸ ︷︷ ︸
Ssh(rw)

+Comp(1) (4.3)

Somp
pr (nT ) =nT · Spr (4.4)

Somp
sh(ro)(nT ) =

∑
i

(
Ssh(ro),i +

nT−1∑
t=1

Comp
ro,i,t

)
(4.5)

Somp
sh(rw)(nT ) =

∑
i

(
Ssh(rw),i +

nT−1∑
t=1

Comp
rw,i,t

)
(4.6)

2Sum starts at t = 1 as the master thread does not need a reference to its own variables and is therefore
excluded
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Somp(nT ) =Somp
pr (nT ) + Somp

sh(ro)(nT ) + Somp
sh(rw)(nT ) + Comp(nT ) (4.7)

Homp =
∑

i

Homp
i (4.8)

With:

Somp(nT ) Total used stack memory on a single node using nT threads
Spr,i Individual private stack variable
Spr All private stack variables

Somp
pr (nT ) All private stack variables on a single node using nT threads
Ssh(ro),i Individual shared stack variable, which is RO within the OpenMP kernel
Ssh(ro) All shared stack variables, which are RO within the OpenMP kernel

Somp
sh(ro)(nT ) All shared RO stack variables on a single node using nT threads

Ssh(rw),i Individual shared stack variable, which is RW within the OpenMP kernel
Ssh(rw) All shared stack variables, which are RW within the OpenMP kernel

Somp
sh(rw)(nT ) All shared RW stack variables on a single node using nT threads

Comp
ro,i,t Reference overhead of RO stack variable i on thread t

Comp
rw,i,t Reference overhead of RW stack variable i on thread t

Comp(nT ) Remaining stack variables like function calls on a single node using nT

threads
Homp

i Individual heap variable

Homp Total used heap memory on a single node (this value does not depend
on the number of used threads)

In total, this gives the total memory consumption of a given configuration (cf. Equa-
tion (4.9)), which can then be compared with the total memory available and which
could be used by the application (cf. Equation (4.10)).

M omp(nT ) = Somp(nT ) + Homp (4.9)

Mmax(1)
!
≥M omp(nT ) (4.10)
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With:

M omp(nT ) Total memory consumption of original application on a single node using
nT threads

Mmax(x) Aggregated memory on x nodes

omp(nT ) and Homp take into account not only stack and heap variables accessed within
the OpenMP kernel, but every variable. By default, each variable is private if declared
inside the kernel, or shared otherwise, unless explicitly mentioned in a data sharing
clause.

As described earlier, CATO now optimises memory usage by prioritising heap variables
that offer the greatest potential for improvement (cf. Section 1.3.2). However, some
stack variables must also be transformed to maintain the correctness of the application.
Figure 4.4 shows a selection of variable classes; CATO’s handling of these must be
tailored to your particular needs.

Stack variables, which are private, need no special treatment from CATO. Each process
simply declares and initialises its own instance and performs any read or write operation
on it. Since they are private, there is no need to update the instances of other processes
(cf. Equation (4.11)). The same goes for stack variables that are declared as shared but
are RO within the OpenMP kernel. A basic premise is that the original application only
uses OpenMP for parallelisation. It follows that every other piece of code is executed
sequentially by a single thread. And since this variable is only accessed in a RO manner
in the OpenMP kernel, it does not need to be updated in parallel, and therefore no
mechanism is needed to maintain its integrity and consistency. As with private variables,
it is therefore sufficient for each process to declare and initialise its own instance (cf.
Equation (4.12)). The last case, RW shared stack variables, requires special treatment.
Again, each process has its own copy of the variable Ssh(rw),i. However, these are just
buffers to store the results of the communication in order to get an up-to-date version.
The master rank acts as the primary node where the current version of Ssh(rw),i is stored.
If a process needs to access the variable, it must perform the following steps to get the
current value from the master rank:

1. Lock the variable at the master level.

2. Get the current value of the variable.

3. In the case of writing, the process returns an updated value to the master.

4. Release the lock.

How exactly this mechanism works is explained in Section 5.2. Since each process
has a copy of this variable with additional management overhead (Ccato

rw,i), this memory
requirement is needed for each process (cf. Equation (4.13)).
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Scato
pr (nP ) =nP ·

∑
i

Spr,i (4.11)

Scato
sh(ro)(nP ) =nP ·

∑
i

Ssh(ro),i (4.12)

Scato
sh(rw)(nP ) =nP ·

∑
i

(
Ssh(rw),i + Ccato

rw,i

)
(4.13)

With:

Scato
pr (nP ) All private stack variables on nP processes

Scato
sh(ro)(nP ) All RO shared stack variables on nP processes

Scato
sh(rw)(nP ) All RW shared stack variables on nP processes

Ccato
rw,i

Constant overhead of CATO for managing concurrent access on shared
RW stack variable

The total stack memory demand is shown in Equation (4.14). Looking at the heap
variables3, now the big advantage becomes visible: As shown in Figure 4.4, each process
does not store the whole heap variable, but only a part of it. Therefore the total
memory consumption is the sum of all heap variables without any significant overhead
(cf. Equation (4.15)).

Scato(nP ) =Scato
pr (nP ) + Scato

sh(ro)(nP ) + Scato
sh(rw)(nP ) + Ccato(nP ) (4.14)

Hcato =
∑

i

Hcato
i (4.15)

With:

Scato(nP ) Total used stack memory on nP processes

Hcato Total used heap memory (by design of CATO this value does not depend
on the number of used processes)

Hcato
i Individual heap variable

Unlike the original application, the binary built with CATO is then able to use
processes instead of threads, and can therefore run on more than one compute node. This
increases the amount of memory potentially available: Instead of the memory of a single

3In this discussion, scalar heap variables (e.g. a mutex variable) will be omitted, as they are rarely
useful and usually have no significant effect on memory usage
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compute node, it is now the aggregated sum of multiple compute nodes. The memory
consumption of the modified application is the sum, which is shown in Equation (4.16).
If each process is spawned on a single compute node, the maximum usable aggregated
memory can be achieved, which is shown in Equation (4.17) and which can be used by
the modified application (cf. Equation (4.18)).

M cato(nP ) = Scato(nP ) + Hcato (4.16)
Mmax(nP ) = nP ·Mmax(1) (4.17)

Mmax(nP )
!
≥M cato(nP ) (4.18)

With:

M cato(nP ) Total memory consumption of modified application using nP processes
Mmax(x) Aggregated memory on x nodes

Having established the basics of the memory demands of the original and modified
applications, we can now compare the two versions. The initial assumption was that
the user can directly control the initial heap consumption by tinkering with the input
parameters or choosing an appropriate input file. To achieve the initial goal of being
able to compute larger input problems, it would be beneficial if two goals could be met:

1. The modified application uses less stack memory than the original application.

2. The modified application can deliberately use more heap memory than the original
application.

Comparison: Stack

At first, the stack memory Equation (4.7) for threads of the original application will be
reduced. The reduction of both terms for RO and RW shared stack variables proceeds
in the same way. All used constants are non-negative, therefore the inequations in
Equations (4.20) and (4.25) can be used.
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Somp
sh(ro)(nT ) =

∑
i

(
Ssh(ro),i +

nT−1∑
t=1

Comp
ro,i,t

)
(4.19)

≤
∑

i

(
Ssh(ro),i +

nT−1∑
t=0

Comp
ro,i,t

)
(4.20)

=
∑

i

Ssh(ro),i +
∑

i

nT−1∑
t=0

Comp
ro,i,t (4.21)

=Ssh(ro) + nT ·
∑

i

Comp
ro,i (4.22)

=Ssh(ro) + nT · Comp
ro (4.23)

Somp
sh(rw)(nT ) =

∑
i

(
Ssh(rw),i +

nT−1∑
t=1

Comp
rw,i,t

)
(4.24)

≤
∑

i

(
Ssh(rw),i +

nT−1∑
t=0

Comp
rw,i,t

)
(4.25)

=
∑

i

Ssh(rw),i +
∑

i

nT−1∑
t=0

Comp
rw,i,t (4.26)

=Ssh(rw) + nT ·
∑

i

Comp
rw,i (4.27)

=Ssh(rw) + nT · Comp
rw (4.28)

Both results (cf. Equations (4.23) and (4.28)) can be substituted into Equation (4.7).

Somp(nT ) ≤nT · Spr + Ssh(ro) + nT · Comp
ro + Ssh(rw) + nT · Comp

rw + Comp(nT ) (4.29)
=nT · Spr + Ssh(ro) + Ssh(rw) + nT · Comp

sh + nT · Comp(1) (4.30)
=nT · Spr + Ssh + nT · Comp

sh + nT · Comp(1) (4.31)

Now the same can be done for the modified application using the result of Equa-
tion (4.14).
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Scato(nP ) =Scato
pr (nP ) + Scato

sh(ro)(nP ) + Scato
sh(rw)(nP ) + Ccato(nP ) (4.32)

=nP ·
(∑

i

Spr,i +
∑

i

Ssh(ro),i +
∑

i

(
Ssh(rw),i + Ccato

rw,i

))
+ Ccato(nP ) (4.33)

=nP ·
(

Spr + Ssh(ro) + Ssh(rw) +
∑

i

Ccato
rw,i

)
+ Ccato(nP ) (4.34)

=nP ·
(

Spr + Ssh +
∑

i

Ccato
rw,i

)
+ Ccato(nP ) (4.35)

=nP · Spr + nP · Ssh + nP · Ccato
rw + Ccato(nP ) (4.36)

=nP · S + nP · Ccato
rw + Ccato(nP ) (4.37)

=nP ·
(
S + Ccato

rw + Ccato(1)
)

(4.38)

The same number of COUs is used, i.e. nP
!= nT . A contradiction proof can be used

to show that the stack memory usage of the original application is less than that of the
modified application. Suppose Scato(nP ) < Somp(nT ):

Scato(nP ) !
< Somp(nT ) (4.39)

nP ·
(
S + Ccato

rw + Ccato(1)
)

< Ssh + nT · (Spr + Comp
sh + Comp(1)) (4.40)

nP ·
(
Ssh + Ccato

rw + Ccato(1)
)

< Ssh + nT · (Comp
sh + Comp(1)) (4.41)

(nP − 1) · Ssh + nP ·
(
Ccato

rw + Ccato(1)
)

< nT · (Comp
sh + Comp(1)) (4.42)

In Chapter 5 it will become obvious that by design of CATO it is impossible that the
overhead induced by OpenMP (nT · (Comp

sh + Comp(1))), which by itself is marginal, could
become larger than ((nP − 1) · Ssh + nP · (Ccato

rw + Ccato(1)), even if only a single process
(i.e. nP = 1) is used. Therefore Equation (4.42) cannot be true.

The modified application consumes more stack memory than the original application,
resulting in an increased stack memory usage.

Comparison: Heap

The second comparison has a slightly different goal. In the case of stack usage, which is
kept low in the best case, Section 4.1.4 compares the minimum stack usage required. In
this case, the goal is exactly the opposite: The goal is not to keep the used heap memory
to a minimum, but to keep it to a maximum, which is one of the main research questions
(cf. Section 1.2.1). Therefore, it must be analysed whether the original or modified
version of the target application can use more heap memory (assuming that the user
can influence the behaviour of the application via input parameters). A contradiction
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proof can be used to show that the potential heap memory consumption of the original
application is less than that of the modified application. Suppose Hcato

max ≤ Homp
max, where

Homp|cato
max is the maximum heap usage configuration; again, the same number of COUs

will be used.
According to Equation (4.10) and Equation (4.18), the maximum potential size of the

heap is related to the maximum size of the memory of the participating compute nodes.
The stack memory also uses some of the memory, but is ignored in this calculation because
the stack memory consumption is significantly less than the heap memory consumption.
Assuming that the heap is increased in order to use the corresponding compute nodes at
full capacity, the heap memory usage can be replaced by the compute node memory in
Equation (4.44):

Hcato
max

!
< Homp

max (4.43)
Mmax(nP ) < Mmax(1) (4.44)

nP ·Mmax(1) < Mmax(1) (4.45)

Since nP ≥ 1 this gives that Equation (4.45) is false. Assuming that the maximum heap
memory requirement is significantly larger than the minimum stack memory requirement,
it became clear that the design of CATO allows the original application to be modified
to compute larger input problems.

The modified application can consciously use the combined memory of all participat-
ing compute nodes.

Memory Model Consequences

In Section 7.1 two different approaches are presented, how the evaluation of CATO
can be performed. The results from this section will be revisited there to discuss the
relevance of each approach.

4.1.5. Automatic Code Recognition
A primary goal is to minimise the need for user interaction; users should not have to
guide CATO in their work. Therefore, CATO must automatically detect relevant code
snippets. Automatic code recognition based on semantical usage is not trivial. There
are several possible approaches, ranging from the analysis of lexicographical locality to
the use of a data flow graph, Control Flow Graph (CFG) or the (extended) Abstract
Syntax Tree (AST) (Ben-Nun et al., 2018). By focusing on the distribution of OpenMP
kernels, CATO can drastically simplify this step: The developer of the original application
has written the code and added OpenMP instructions, taking into account his expert
knowledge of the problem domain in which his application operates, in order to gain a
runtime performance advantage. Under these conditions, valuable information can be
derived by focusing on the existing OpenMP kernels:
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• Sections of code to run concurrently. This is really useful, because otherwise
the auto-replacement would have to decide for itself which sections of code to
parallelise and which to run sequentially (to avoid unnecessary overheads from
parallelising unworthy workloads). By focusing on the OpenMP kernels, it is
clear that the developer considered these to be significant in terms of runtime
performance.

• Shared variables indicate memory that should be processed concurrently.
If a variable is declared as private, this means that there is no communication
between threads regarding this variable. It is therefore very likely that it would
be more logical for each process to have its own local copy, rather than forcing
sharing. On the other hand, a variable created on the heap and declared shared
allows two guesses: It is quite large (so it is allocated on the heap) and it is either
RO (reading from a single instance without having to lock write access might be
advantageous) or threads need to communicate updates of this variable.

4.1.6. Equivalence Classes
Once the memory to be shared has been identified, the code needs to be transformed.
Most of the application is likely to remain unchanged, with only the affected memory
accesses being adapted. Sometimes equivalent operations already exist. For example,
both OpenMP and MPI have the ability to reduce values aggregated over all participating
COUs: OpenMP has a reduction clause and MPI provides the MPI_Reduce operation.
These constructs can be substituted directly without much concern. In other cases,
additional effort is required to replicate or preserve the behaviour of the original code in
a multi-stage semantical reproduction. There are already well-established MPI commu-
nication patterns available for certain Dwarves (e.g. an MPI-3 implementation of a 2D
stencil solver (Kumar & Blocksome, 2014) or an existing framework for multidimensional
stencils (Dursun et al., 2009) or optimised matrix multiplication using MPI (an Mey,
2008)) which can be used as a basis for the replacement code.

Without further analysis of the exact pattern, automatically performing a performance-
optimal memory allocation is a hard problem. Related to this is, for example, the
optimisation of cache-conscious data placement, which has been shown to be NP-
hard (Petrank & Rawitz, 2002). Therefore, heuristics are used to optimise memory
allocation. One consequence of this is that the auto-inserted replacement kernel may
be less scalable and perform less well than equivalent hand-written, optimised code.
However, since CATO’s focus is on additional horizontal weak scaling, and is aimed
at users who do not have the ability to implement the memory allocation themselves,
this is only a minor drawback. Furthermore, since the user does not have to write the
replacement code themselves, as it is already nested within CATO, advanced features
of MPI can be used, which are beneficial but might otherwise be too cumbersome and
buggy to be written by untrained users. The CATO replacement kernels will use the
one-sided communication operations of MPI-3 (cf. Section 3.2.2).

In the best case, for every Dwarf there would be a corresponding EC available in CATO.
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Figure 4.8.: If not only rank 0 but all processes read their share of the input problem
concurrently the peak memory consumption of a single node is reduced
and allows to load input, which would not fit into a single node’s memory
otherwise (cf. Figure 1.5).

In fact, it would be even better if there were alternating ECs for each individual Dwarf,
since the categorisation on the Dwarf level is still somewhat abstract and could be further
subdivided. Also, unpredictable environmental effects (e.g. idle waves induced by shared
CPU times (Afzal et al., 2021)) could negatively affect a particular EC while leaving an
alternative EC unaffected. This would require an improved design for automatic Dwarf
detection, which is currently out of scope, so the focus remains on a single EC for the
stencil Dwarf.

Section 5.2 will show how the code detection and replacement is actually done.

4.2. Component: IO Handling
In Section 1.2.2 another enhancement was proposed in addition to memory distribution:
CATO allows the user to compute input problems that would otherwise not fit into
the main memory of a single compute node (cf. Figure 1.5). There are many ways to
I/O (e.g. POSIX I/O or MPI-IO) How to solve this problem is part of the design of
this section, which will examine the possibilities of distributing I/O (Section 4.2.1) and
reducing the storage footprint using compression (Section 4.2.2).

4.2.1. Parallel IO
Using parallel I/O is not as trivial as using serial I/O, but it has two significant advantages:

1. Each process can load or write its own share of the data.
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2. By enabling parallel data access, potentially faster runtime performance can be
achieved.

The situation in Figure 1.5 illustrates the problem that the input problem does not
fit into the memory of a single node. To solve this problem, the input problem needs
to be split up and distributed across enough compute nodes, as shown in Figure 4.8.
The trivial approach to doing this distribution is to put the master rank in charge: It
reads the input file in chunks and forwards each one to the appropriate process. This
sequential order of loading and distributing can be optimised using parallel I/O: Each
process participates in the initial read I/O phase and loads its share of the input data
directly.

Parallel I/O not only facilitates the loading of large input data but also potentially
provides a runtime speedup. Typically, network and disk bandwidth is less than a node’s
memory and subsequent bus bandwidth and therefore acts as a bottleneck when large
data needs to be moved. To solve this problem, parallel FSs, which are common in HPC,
can be used. An example of such a parallel FS is Lustre. Lustre is deployed on dedicated
storage nodes on which the Lustre servers run and with which the Lustre clients running
on the compute nodes can interact. By separating storage and compute resources in this
way, Lustre can provide optimal performance for data-intensive workloads. Figure 4.9
shows a rough structure of Lustre:
MGS A Lustre deployment uses a Management Server (MGS), which handles the overall

Lustre configuration, and to which every server and client connect at the beginning.

MDS The MDSs manage the index of the entire FS, which includes the directory hierarchy
of Lustre, file names and permissions and other attributes, and most importantly
the file layout, i.e. which file chunks are allocated where. A MDS can have several
Metadata Targets (MDTs) attached to it to improve its storage, but also access
times. For small Lustre deployments, it is sufficient to run one instance of a MGS
and MDS on a single server.

OSS Usually there are several OSSs embedded in Lustre. While the MGS/MDS are
responsible for managing the metadata, the OSSs store the actual file chunks.
Many OSTs, which can be any kind of storage device (e.g. Hard Disk Drive (HDD),
Solid State Drive (SSD) or Non-Volatile Memory Express (NVMe)), are attached
to a OSS.

It is important to get at least a glimpse of the structure of a Lustre deployment
to take advantage of its potential runtime benefits. An example use case of Lustre
is demonstrated in Figure 4.9, where chunks of File A are stored on a single OSS,
but chunks of File B are distributed across the OSSs: File B is striped across three
OSSs. In Figure 4.9a a single compute node loads File A. In this case, there are several
potential bottlenecks through which the file must be moved:

1. A single OSS must respond to the data request (this bottleneck may be reduced if
the file is at least striped across several OSTs on that OSS4).

4Not shown in Figure 4.9
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single OSS (one-to-one mapping).
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(b) Multiple nodes load data from multiple
OSSs (still one-to-one mapping).

Figure 4.9.: Leveraging performance of parallel I/O by using Lustre. Coloured connec-
tions indicate network load.

2. A network.

3. A single compute node that must retrieve the data and move all the chunks from
the Network Interface Controller (NIC) into memory.

To overcome these bottlenecks, an improved pattern can be used, shown in Figure 4.9b.
The requested File B is striped across multiple OSSs and each compute node only
requests file chunks from a single OSS. In this case, the aggregated bandwidth of the
network can be used (the central switch is usually not a problem as all ports are fully
connected internally). The only disadvantage is the increased load on the MDS as more
compute nodes send requests, but this can usually be neglected.

To benefit from both advantages of parallel I/O, the original code must be transformed
by replacing serial I/O instructions with equivalent parallel I/O instructions. This can be
done automatically by CATO. The second benefit (improved runtime) depends strongly
on the correct striping settings of the file to be used for I/O, and can be changed by the
user (theoretically this could also be done by CATO, but this is currently out of scope).
In the worst case, the striping does not match the I/O pattern, and all compute nodes
are fetching chunks from the same OSS, which would again affect the network bottleneck.

It depends on the I/O framework used to choose a suitable replacement for parallel
I/O, if one exists. For example, to perform parallel I/O using POSIX one could use
pThread or MPI-IO could be used, or if serial netCDF calls are used, the parallel netCDF
interface could be used instead. This design will focus on the handling of the netCDF
interface.

Automatic Code Recognition and Replacement

There are two important classes of netCDF operations that need to be replaced, and
therefore need to be recognised:
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1. Opening an existing or new netCDF file

2. read and write operations

NetCDF offers special functions for parallel I/O to include all involved processes
together: nc_open_par and nc_create_par. CATO must look for the occurrence of the
serial variants nc_open and nc_create, which can then be modified by the EC. The
code allocation calls, on the other hand, do not need to be modified because the memory
allocation has already been done by the CATO component for memory handling (cf.
Section 4.1). In the current design, every heap allocation call is distributed, so this works
regardless of the presence or absence of OpenMP.

What remains are the read and write operations on the allocated memory buffer,
which has already been shared. In the original version, when a single process or its
master thread accesses the netCDF file on the FS, the data is mirrored to the heap, on
which the master thread (and possibly other threads) can operate directly using local
I/O functions (cf. Figure 4.10a). Therefore all calls to nc_get_var* and nc_put_var*
have to be detected and modified, because the local buffers are now smaller than in the
original serial version and the address references have to be adapted. nc_get_vara* and
nc_put_vara* have to be inserted with adapted vectors indicating the start and count
of the accessed values. These are only needed if the local memory area is to be read
from or written to the file within Lustre. All other memory accesses can be handled
by unmodified local operations or must be replaced by MPI operations. The latter is
already done by the memory handling component and therefore does not need to be
considered in the I/O component (cf. Figure 4.10b).

How the code replacement is done in detail is shown in Section 5.3. Preparing the
code of the EC in advance offers significant advantages, as it allows for the consideration
of best practices and potential optimisations (Bartz et al., 2015; Lawrencea et al., 2017)
that might otherwise be too complex for the user to implement or even be aware of.

4.2.2. Compression
Sections 1.2.3 and 3.3.2 has shown that there are several ways to reduce the physical
size of data using compression, this work focuses on compression using netCDF. Using a
binary compressor directly on the input or output data already works, but has several
drawbacks: The metadata is also compressed, and before the data can be used it must
be fully decompressed. Therefore, using the compression capabilities of netCDF is
preferable, as it still allows access to the metadata. I/O operations via the netCDF API
will perform the necessary compression or decompression operations transparently and
only on the required chunks of data rather than on the whole file at once. The current
netCDF-4 library backend uses HDF5 (cf. overview of I/O layers in Figure 3.12) and can
therefore use 30 filters (HDF Group, 2023) officially supported by the HDF Group to
apply lossless or lossy compression to data chunks. Since HDF5 1.10.2 compression can
be used in combination with MPI-IO, netCDF supports this HDF5 feature since version
4.7.4 (HDF Group, 2018; Unidata News Comments, 2020).
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Figure 4.10.: Demonstration how the access pattern has to be adjusted by CATO. Green
arrows signalise accesses on local memory, red arrows on remote memory
and blue arrows FS access (e.g. Lustre).

To further improve the compression ratio of lossless compression, lossy compression
can be used. There are already some lossy compressors available as HDF5 filters (e.g.
SZ (Di & Cappello, 2016) or ZFP (Lindstrom, 2014)), but netCDF itself also provides a
quantisation filter (Unidata, n.d.-a). This can be applied to floating-point variables and
harmonises insignificant bits (using Bit Grooming, Granular Bit Round or Bit Round).
By itself, this filter is lossy, but does not yet reduce the data size. However, it can
significantly improve the performance of lossless compressors applied on top of it.

The steady state of disks is full (Vader, 2016)

Automatic Code Recognition and Replacement

It is very difficult to choose the best compressor for a specific use case, which is discussed
in more detail in Section 3.3.2. Choosing the right algorithm for a specific use case is a
research topic in itself and is therefore beyond the scope of this work (Plehn et al., 2022).
Instead of an automatic decision component, the user, who knows his use case best, has
to decide if and how to apply compression to the data. To support the user and relieve
him of the burden of implementation, CATO takes care of this part.

To use compression, chunking must be enabled, and the compressor must be enabled
during variable definition. CATO looks for these (nc_def_var) in the original code and
adds the necessary netCDF operations during their definition epoch. To enable chunking,
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nc_def_var_chunking() is used, but the way to enable compression is inconsistent as
for some explicit netCDF functions:

• nc_def_var_blosc for Blosc (The Blosc Developers, 2023)

• nc_def_var_bzip2 for bzip2 (Seward, 2019)

• nc_def_var_szip for Szip (HDF Group, n.d.)

• nc_def_var_deflate for Zlib (Gailly & Adler, 2023)

• nc_def_var_zstandard for Zstandard (Collet, n.d.)

The other HDF5 compressors can be used as a so-called filter, which is set during
the definition of the variable via nc_def_var_filter and takes a certain number of
parameters depending on the individual filter. How the code replacement is done in
detail is described in Section 5.3.2.

The decision about which type of compression and which settings to use is made
at the time the application is run. Otherwise, the user would have to recompile his
application every time he wants to change the compressor or its settings. Therefore, all
potential compressors are built in but remain shielded behind if conditions. By setting
the correct environment variables to select a compressor and control its parameters, the
user can then decide which branch of the EC to run without knowing the details of the
implementation itself. CATO provides instructions (cf. Section 4.3) for the user to know
how to control this approach.

Most compressors require their library to be installed on the system, or netCDF
cannot use them. The same applies if the data is to be read again on another system:
The compressor must also be available there. The reading application does need to be
modified, as the compressor and its configuration are automatically written into the
variable’s attributes, and netCDF can therefore handle this automatically. Setting up
the necessary libraries is not the responsibility of CATO but of the user.

4.3. Component: Feedback
The goal of CATO is to allow the user to benefit from HPC techniques that are automat-
ically and transparently integrated into the original application. The resulting improved
binary could then be executed by the user, but the modified code snippets remain a black
box. Only the modified IR code can be viewed, but due to its larger size and low-level
syntax, it is difficult to read for anybody, who is not familiar with compilers or assembly.
Therefore, a number of ways are explored to help users understand the changes and how
to apply them themselves. By addressing the following points, the questions posed in
Section 1.2.4 can be answered:

• How can CATO give the user an idea of what the modified high-level code might
look like? (Section 4.3.1)
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• How can CATO help the user to avoid known pitfalls? (Section 4.3.2)

• How can CATO help the user to gather performance metrics? (Section 4.3.3)

• How can CATO help the user to understand how to implement the HPC frameworks
used by CATO? (Section 4.3.4)

4.3.1. Decompilation
Obviously, an easy way to allow the user to understand the code changes would be to
give them the high-level code version of the modified code. According to the decisions
made in Chapter 2, the modifications provided by ECs written in C++ are performed
at the IR level, which means that a high-level code version of the modified code is
now available. However, it is still possible to generate an equivalent high-level code by
using a decompiler. A decompiler generates high-level code from low-level code, i.e. it
reverses the original compilation process. It has almost the same phases as a compiler
(cf. Section 3.1.1) and produces an equivalent high-level code based on the derived CFG
and IR code (Cifuentes, 1994). The resulting high-level code is usually not literally
equivalent, but semantically equivalent, because some information is lost during the
compilation process. This can result in code that compiles and behaves the same as the
original code, but is difficult for humans to read.

Since CATO generates not only the final binary, but also the modified IR code of
the original application, there are two possible approaches: The decompiler generates
high-level source code from the binary, or from the IR code. Theoretically, there is a third
approach, which is to decompile the binary into IR (e.g. by using Dagger (Bougacha,
2017; Kirchner & Rosenthaler, 2017), llvm-mctoll (Yadavalli & Smith, 2019, 2022)) or
Rellume (Engelke & Schulz, 2020a) first and then use a decompiler on that code, but
this will not provide any additional information that is not already in the IR generated
by CATO and will therefore not be examined further.

Binary Decompilation

To decompile a binary into high-level C code, RetDec (Křoustek, 2014, 2023) can be
used. According to the corresponding GitHub page, development of the tool is currently
on hold, but it still works with current versions of LLVM5. The results are quite readable
compared to the original source code. As mentioned earlier, some information is lost
in the compilation process. For example, the reference to the size of the int data type
for memory allocation in the original code (Listing 4.2, line 5) is completely lost in the
decompiled version (Listing 4.3, line 6), where only the exact machine-dependent number
of bytes remains. Also the original for loops (Listing 4.2, lines 6 and 9) have been
replaced by while loops (Listing 4.3, lines 13 and 25); reading and writing variables
has also become much more cryptic than before. And similar to memory allocation, the
first loop condition (Listing 4.2, line 6 respectively Listing 4.3, line 13) has changed

5Tested with LLVM 13.0.0 and LLVM 15.0.7
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1 # include <stdlib.h>
2 # include <stdio.h>
3

4 int main() {
5 int *buffer = malloc(sizeof(*buffer) * 4);
6 for(size_t i = 0; i < 4; i++) {
7 buffer[i] = i*10;
8 }
9 for(size_t i = 0; i < 4; i++) {

10 printf("Buffer at position %zu:%d\n",i,buffer[i]);
11 }
12 return 0;
13 }

Listing 4.2.: Trivial C code for demonstration of decompilation techniques.

semantically. Instead of iterating over the sequence 0, 1, 2, 3, it has now changed to
iterate over 0, 10, 20, 30. This has the same effect as the original version, but is not
an obvious change that might make it difficult for the user to follow the code changes.

Later in Section 7.3.4 there will also be an evaluation of how well this approach works
with binaries created by CATO.

IR Decompilation

To decompile IR code to high level code, it used to be possible to do this with LLVM
in house tools. llc could be passed -march=c to perform the decompilation, but this
feature was removed with LLVM 3.1: ‘It had numerous problems, to the point of not
being able to compile any non-trivial program’ (LLVM Project, 2012). An unofficial
successor has been built, called LLVM-CBE (JuliaHubOSS, 2022). Currently LLVM-CBE
only supports LLVM up to version 10, but is able to decompile the trivial example from
Listing 4.2. Listing 4.4 shows a snippet of the decompiled C code.

Compared to the version generated by RetDec (cf. Listing 4.3) this is much harder to
read. The whole snippet only shows the memory allocation using malloc in line 86, the
rest of the code from line 94 is needed to express the first for loop.

An alternative tool for decompiling IR into high level code is llvm2c. It has similar
version restrictions on LLVM as LLVM-CBE, but compared to RetDec and especially
LLVM-CBE, the decompiled code in Listing 4.5 looks more readable. The allocation call
in line 16 is not much different, but the two loops in line 20 and line 29 are easier to see.
llvm2c has significantly fewer runtime options than LLVM-CBE and RetDec, so it is
questionable how each decompiler behaves on more complex code.

Another approach is LLVis, which has been created in a project supvervised by me,
which is based on the idea of merging the CFG and the original high-level code. LLVis
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1 # include <stdint.h>
2 # include <stdio.h>
3 # include <stdlib.h>
4

5 int main() {
6 int64_t mem = (int64_t)malloc(16); // 0x401149 ||
7 int64_t v1 = mem; // 0x401156
8 int64_t v2 = 0;
9 *(int32_t *)v1 = (int32_t)v2;

10 int64_t v3 = v2 + 10; // 0x40116e
11 v1 += 4;
12 int64_t v4 = 0; // 0x40116e
13 while (v2 != 30) {
14 // 0x401160
15 v2 = v3;
16 *(int32_t *)v1 = (int32_t)v2;
17 v3 = v2 + 10;
18 v1 += 4;
19 v4 = 0;
20 }
21 uint32_t v5 = *(int32_t *)(4 * v4 + mem); // 0x401180
22 printf("Buffer at position %zu:%d\n", v4, (int64_t)v5);
23 int64_t v6 = v4 + 1; // 0x401193
24 v4 = v6;
25 while (v6 != 4) {
26 // 0x401180
27 v5 = *(int32_t *)(4 * v4 + mem);
28 printf("Buffer at position %zu:%d\n", v4, (int64_t)v5);
29 v6 = v4 + 1;
30 v4 = v6;
31 }
32 // 0x40119c
33 return 0;
34 }

Listing 4.3.: Extract of the decompiled code using RetDec on the binary, which has been
built from the high-level code on Listing 4.2.
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85 _1 = 0;
86 _5 = malloc(16);
87 _2 = (((uint32_t*)_5));
88 _3 = 0;
89 goto _18;
90

91 do { /* Syntactic loop '' to make GCC happy */
92 _18:
93 _6 = _3;
94 if ((((((uint64_t)_6) < ((uint64_t)UINT64_C(4)))&1))) {
95 goto _19;
96 } else {
97 goto _20;
98 }
99

100 _19:
101 _7 = _3;
102 _8 = _2;
103 _9 = _3;
104 *((&_8[((int64_t)_9)])) = (((uint32_t)(llvm_mul_u64(_7, 10))));
105 goto _21;
106

107 _21:
108 _10 = _3;
109 _3 = (llvm_add_u64(_10, 1));
110 goto _18;
111

112 } while (1); /* end of syntactic loop '' */

Listing 4.4.: Extract of the decompiled code using LLVM-CBE on the IR code of List-
ing 4.2.
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9 int main(void){
10 unsigned int var0;
11 unsigned int* var1;
12 unsigned long var2;
13 unsigned long var3;
14 block0:
15 var0 = 0;
16 var1 = ((unsigned int*)malloc(16));
17 var2 = 0;
18 goto block1;
19 block1:
20 if (var2 < 4) {
21 (*(((unsigned int*)(var1)) + var2)) = ((unsigned int)(var2 *

10));↪→

22 var2 = (var2 + 1);
23 goto block1;
24 } else {
25 var3 = 0;
26 goto block5;
27 }
28 block5:
29 if (var3 < 4) {
30 printf(&(_str[0]), var3, *(((unsigned int*)(var1)) + var3));
31 var3 = (var3 + 1);
32 goto block5;
33 } else {
34 return 0;
35 }
36 }

Listing 4.5.: Extract of the decompiled code using llvm2c on the IR code of Listing 4.2.
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main

for(size_t i = 0; i < 4; i++) {
#include <stdlib.h>
buffer[i] = i*10;

%4 = phi i64 [ 0, %0 ], [ %8, %3 ]
#include <stdlib.h>
}
buffer[i] = i*10;
#include <stdlib.h>
buffer[i] = i*10;

%12 = phi i64 [ %16, %11 ], [ 0, %3 ]
#include <stdlib.h>
}
printf("Buffer at position %zu:%d\n",i,buffer[i]);
#include <stdlib.h>
printf("Buffer at position %zu:%d\n",i,buffer[i]);

}

Figure 4.11.: CFG of Listing 4.2 created by LLVis. Original high level code replaces
corresponding IR code to increase readability and stay close to the real
original code.

is an LLVM pass, which is based on the orginal LLVM RegionInfoPass and has been
extended. The original pass creates a visualisation of the application’s CFG and collects
IR instructions that belong to the same region. LLVis replaces the IR code with the
corresponding lines from the original high-level source whenever possible, using the
mapping provided by debug symbols. This works to some extent: Figure 4.11 shows the
corresponding CFG with the high level code mapping of Listing 4.2. The rough structure
of the original application is visible, but some important code sections are missing (e.g.
malloc) or have been added several times.

Providing a decompiled version of the modified IR code seems an obvious solution
to the question of how to show the user what has happened during the transformation
phase. Although there are (limited) promising results for the trivial application, it may
be much harder to get a decompiled version of the transformed code. It may not even
help the user to understand the changes due to the generic nature of the ECs. Unlike
the manually written and therefore more polished code, the decompiled modified code
could confuse the user rather than help them understand the changes.

One solution might be to let CATO do the decompilation step, since it has access to
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both the original source code and the high-level replacement code. However, this is not
a trivial task, since there are also direct changes at the IR level without corresponding
high-level source code. Therefore, it will probably be necessary to modify an existing
decompilation tool there, which is beyond the scope of this work.

4.3.2. Sanity Checks
The current design of CATO relies on detecting and replacing function calls in unmodified
IR code. Therefore, the automatic replacement of function calls also provides an
opportunity to perform sanity checks that are not always performed in user-written code.
One reason for this may be that including them can become tedious, or the user may
simply forget to include them. Using the automatic approach of CATO allows you to
work out a sanity check once and include it in the replacement code so that the check is
applied automatically.

For example, these three sanity checks for netCDF code can be included quite easily:

Error checking: Each netCDF function returns an integer error code which must be
explicitly checked, otherwise an error may go unnoticed at runtime. To enforce that
the return value is at least caught, a function could be annotated with the attribute
__attribute__((warn_unused_result)), which is supported by gcc (GCC Team,
n.d.) and clang (LLVM Project, 2023a). If the return value of a function with
this annotation is not assigned to a variable in the source code, a warning is raised
at compile time. However, this would require code changes to the declaration of
the (presumably external) function itself, and so far netCDF does not use them.
CATO can work around this problem by intercepting the return values of netCDF
functions and inserting checks if they are not equal to zero. In this case a warning
is printed by default (cf. Section 5.4.2).

File existence: Attempting to open a file that does not exist with nc_open or nc_open_par
fails and the return value is set accordingly. CATO can check beforehand if the
requested file really exists. This is similar to the error checking above, but can give
a more sophisticated answer even before the netCDF function is called.

Close file: Any file opened by nc_open must be closed at the end. CATO can check if
this is done for the corresponding file handles.

How a failed sanity check is handled is up to the user and can be changed by setting an
environment variable. If a sanity check fails, a warning may be printed, the application
may be aborted, or it may simply be ignored. Even if the sanity checks are simple, they
can, like compiler sanitisers, improve the overall quality of the code without additional
user effort. In the case of netCDF, if the user does not check return values to implement
some kind of error handling, the application may still continue, but its state will be
undefined. Depending on the behaviour of the subsequent application, or even luck, the
application may still exit successfully or fail during execution.
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A study conducted on the IBM Blue Gene/Q Mira HPC system looked at the causes
of job failures, examining hundreds of thousands of jobs over a period of more than five
years. They found that I/O errors such as missing files were a problem. Focusing only on
jobs that failed, and excluding jobs that failed only because of a timeout (which is not
necessarily a bug, but rather a misconfiguration of the job), I/O-related failures account
for about 8% of all job failures (Di et al., 2019). The intended simple sanity checks could
reduce the number of I/O-related failures if they are applied extensively.

4.3.3. Performance Metrics
Measuring performance metrics is an important step when benchmarking an application
to evaluate the efficiency of code changes or different runtime parameters. One important
metric is the time it takes the application to run. Another, especially with respect to the
memory focus of CATO, is peak memory consumption. Focusing on a single node, if the
application had a peak memory usage above the available memory, it would be terminated
prematurely. It is therefore beneficial for the user to gain a general understanding of the
memory behaviour of the modified application.

By way of comparison, measuring runtime is fairly straightforward, but measuring
peak memory usage requires a bit more effort. If CATO could collect these metrics
automatically, it would be helpful to the user.

4.3.4. Providing User Guidance
CATO performs the IR code modification transparently. The purpose of CATO is to
allow the user to easily try out different HPC technologies to observe the effects and
assess their suitability for their use cases. By definition, it is always possible to write
code manually that is at least as good as automatically generated code (not counting
the effort involved). In the long run, it would be best if the user could do the code
transformation themselves to write more efficient code that is specifically tailored to
their use case. To help the user in his learning effort, CATO can provide an overview of
relevant netCDF or MPI properties and resources such as learning material and code
examples. Relevant properties could be, for example, an estimate of the level of difficulty
and entry points that are important with respect to the HPC environment.

The common structure might change depending on the associated HPC technique, but
in general interesting topics to be mentioned by CATO might be:

• Generic description

• Reference to the (official) documentation

• Tips for usage

• Reference to existing code examples
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This documentation could be outsourced to a separate helper script, or integrated
directly into CATO. In the latter case, the output of the help messages could be controlled
by the user using additional flags or environment variables. The information provided by
CATO is discussed in Section 5.4.

4.4. General CATO Workflow
A major goal is to provide a user-friendly interface for using CATO (cf. Section 1.3.2).
The generation of the IR code, the execution of the pass and the building of the final
binary are handled by the LLVM infrastructure itself. To use CATO, the following steps
are considered, of which only the first and last need to be performed by the user:

1. Execute CATO’s build script on the original application source code

2. LLVM frontend translates original code into IR

3. CATO analyses and modifies IR

4. LLVM backend translates IR into machine code

5. optional: Set environment variables to influence the behaviour of the modified
application

6. Execute modified binary via mpiexec or srun

To build the modified binary, CATO must provide a build script. Any necessary
flags such as include or library paths or required libraries should be passed by setting
appropriate environment variables, which could then be picked up by CATO’s build
script to pass to the LLVM frontend or backend. Additional environment variables are
used to fine-tune the behaviour of the modified binary, which need to be included by
CATO.

Since the modified binary then contains MPI function calls, it must also be run as an
MPI application. Consequently, the execution of the application (possibly controlled by a
run script) must also be adapted. This involves deciding on the number of processes and
threads per process. In addition, the user must decide on the optimal binding of processes
and threads to the hierarchical topology of his HPC system. Choosing the correct
thread/process/data affinity is important to achieve optimal performance (Rabenseifner
et al., 2009).

4.5. Summary
Three components are designed to be integrated into CATO to demonstrate the feasibility
and versatility of this approach. The first is the memory handling component, which
automatically detects OpenMP code and replaces it with equivalent MPI code. This
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allows distributed memory to be used, so that larger problem sizes can be used within
applications, benefiting their expressiveness. In addition, this is an opportunity to
introduce advanced MPI features that are not well known, but can again provide
additional benefits. An important computational pattern in the earth and climate science
community is the stencil, so the design is geared towards this. Although the stack
memory consumption increases due to the overhead of CATO, the big advantage is
that the modified application can then use the aggregated memory of the participating
compute nodes instead of just a single one.

Based on the memory handling, the second component is designed to take advantage
of netCDF and its capabilities regarding parallel I/O and compression. This component
can take advantage of the synergy of the memory handling component and benefit from
improved performance during the I/O phase, if the hardware environment is suitable.

Finally, the design of a feedback component is presented. This allows us to give real
feedback to the user, to give them an idea of what is happening during the modification.
By providing hints and guidance on MPI and netCDF, CATO is not just a black box,
but can be a resource for the user if they wish to delve further into these frameworks.
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5. Mapping onto LLVM
In Chapters 2 and 4 several approaches were discussed on how to perform the central
mechanics of CATO, code detection and transformation by ECs. The decision was made
to perform the analysis and transformation step at the IR level using LLVM. First, the
Section 5.1 explores different approaches to how the interaction on the IR can actually
be realised. Based on these findings, the transformation pass, which forms the core of
CATO, is derived in Section 5.1.2. The chosen approach is then applied to the three
main components of CATO: Memory Handling (Section 5.2), I/O (Section 5.3) and
Feedback (Section 5.4).

5.1. Using the LLVM Infrastructure
LLVM is a three-phase compiler framework, as shown in Figure 5.1, and allows developers
to interact with all phases of the compilation of a high-level code by reusing already
established parsing and transformation components of the framework. It is also easy to
install in userspace as it does not require elevated privileges (which are rarely granted
on HPC systems). It contains many quality of life tools (e.g. for linting, testing and
debugging) and has been used as a backend for many projects (cf. LLVM Project, n.d.-c).
Since its initial introduction in 2004 by Lattner and Adve, it has been widely adopted in
many areas and is used by major institutions in both research and industry.

As shown in Figure 5.2, the initial high-level source code is passed to the language-
specific compiler front-end, which parses and pre-processes the input code (cf. Figure 3.2).
The high-level code is first transformed into an Intermediate Representation (IR) and
regardless of the chosen frontend, the syntax of the IR code remains consistent. However,
they may differ in their general procedure for transforming the code (cf. Listing 2.8 and
Listing 2.9). Within the optimiser, the IR code is further analysed and modified, and
then passed to the machine-specific backend. There the IR code is transformed into the
final binary that can be executed.

Frontend Assuming that the source code is written in C, clang would be used as the

Frontend Optimiser Backend BinaryHigh-level
code

Figure 5.1.: General component overview of a three-phase compiler like LLVM (based
on (Lattner, n.d.)).
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Figure 5.2.: Modular LLVM infrastructure (based on (Lattner, n.d.)).

frontend. Therefore, there are now several ways of using clang to interact with
the source code (LLVM Project, 2023b).

• LibClang: Limited interface for interacting with the AST, which is fairly
stable between major releases (LLVM Project, 2023e).

• Clang Plugin: A shared library that is loaded at runtime by clang to interact
with AST in a more comprehensive way.

• LibTooling: This library allows you to write standalone tools using clang as a
backend, with full control over the AST (LLVM Project, 2023f).

Optimiser The optimiser runs passes to iterate, analyse and modify the IR code. It
provides good code coverage by making it easier to handle conditions that can
only be evaluated at runtime. Since a pass can be freely moved within the chain of
passes, the code can be optimised before or after, depending on what best supports
the intended workflow.

Backend The main focus of CATO is to analyse and modify the original code, so there is
no need for interaction within the backend phase, as its primary task is to generate
equivalent machine code from IR.

In Section 2.3.1, the AST layer has been ruled out for code modification, and using
the backend to work on low-level machine code does not provide any additional benefits
for the required use case. Therefore, the code modification focuses on the optimisation
phase of LLVM. In addition, focusing on this phase allows to be somewhat independent
of the limitations listed in Section 2.3.1. Moreover, focusing on this phase allows to be
independent of the high-level language used, which would otherwise be bound to C if
clang were used. Since no code changes are required within the LLVM architecture
itself (an LLVM pass is a shared library dynamically loaded by the optimiser), there is
less hassle when updating the LLVM installation, or the range of acceptable versions is
wider. As discussed in Section 3.1.1, there are regular major release updates, in which it
is not uncommon to introduce API breaking changes, which would require an update of
the pass as well.

The main functionality of CATO’s is implemented as LLVM pass, which can then be
inserted into the chain of passes executed by the Pass Manager during the optimisation
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(a) Compiler structure without an IR inter-
layer.
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IR

(b) Reduced complexity through an addi-
tional IR layer.

Figure 5.3.: Comparison of compilation workflows with and without an intermediate
language layer (based on (Appel, 1998)).

phase. This allows the IR code to be analysed and modified according to the tool design
elaborated in Chapter 4. How the new pass will interact with the IR code is discussed in
Section 5.1.2.

5.1.1. Dissecting IR
A three-phase compiler uses frontends to handle different types of high-level languages
allowed as input, and backends to address different machine architectures to produce the
final binary. In an HPC environment, there is no single dominant high-level language
or machine architecture. One could argue that C, C++ and Fortran are dominant, but
depending on the scientific domain, other high-level languages such as Python or Java
become relevant. The same applies to machine backends. Looking at the installed CPU
architectures used by the first five entries in the Top500 list (Nov 2022 (Strohmaier et al.,
2023)), AMD EPYC, Fujitsu ARM, Intel Xeon and IBM POWER9 are represented.
Without an abstraction layer between the frontend and the backend, each possible
combination of high-level language and machine architecture would have to be considered
separately (cf. Figure 5.3a).

Using Intermediate Representation (IR) as an additional layer adds complexity, but
has significant advantages. It decouples the language-specific compiler frontend from the
machine-specific backend. In Figure 5.3b, the IR code generated by each frontend, which
always uses the same syntax, is integrated in between. This simplifies the development
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...

Instruction
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...
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Function
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Global Symbols

Function
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(a) IR components.

; ModuleID = 'main_original.c'
source_filename = "main_original.c"
target datalayout = "[...]"
target triple = "x86_64-redhat-linux-gnu"

@.str = [...] c"Buffer at position %zu:%d\0A\00", align 1

; Function Attrs: noinline nounwind optnone uwtable
define dso_local i32 @main() #0 {
  %1 = alloca i32, align 4
  %2 = alloca ptr, align 8
  %3 = alloca i64, align 8
  %4 = alloca i64, align 8
  store i32 0, ptr %1, align 4
  %5 = call noalias ptr @malloc(i64 noundef 16) #3
  store ptr %5, ptr %2, align 8
  store i64 0, ptr %3, align 8
  br label %6

6:                                                ; preds = %16, %0
  %7 = load i64, ptr %3, align 8
  %8 = icmp ult i64 %7, 4
  br i1 %8, label %9, label %19

(b) Colour-coded IR extract from Listing 4.2.

Figure 5.4.: Converting high-level code into IR code creates a hierarchy of LLVM con-
tainers, which orient themselves at the high-level code’s structure.

and maintenance of all frontends and backends. It also has the great advantage that
code optimisations can be applied at the IR level, so they always work regardless of
the high-level language or machine infrastructure used. Many frontends such as clang
(C/C++) and flang (Fortran) and several backends are natively supported by LLVM.
For a list of supported backends, see llc --version. Additional backends such as
support for older hardware such as the Z80 are also available (Cocoacrumbs, 2021).

IR code follows a hierarchical structure, shown in Figure 5.4a. Usually a module
corresponds to a compilation unit within the high-level language, although it is possible
to have multiple modules within a single IR file. A module basically has global symbols
(e.g. global variables or strings) and functions (like the main function). Now each function
consists of at least one Basic Block (BB), which contains a sequence of instructions.
A BB has a single entry point and a single exit point (also called terminator), which
can for example return to the calling frame or switch to another BB based on a branch
condition.

The smallest unit in this hierarchy is an instruction, which is a single line of IR code
such as a load/store or call instruction (an overview of available instructions can be
found in the official LLVM documentation (LLVM Project, 2023j)). Instructions have an
assembly-like appearance, but do not impose a specific runtime environment: There are
no machine-specific commands and the registers used are virtual, not physical. Variables
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are strongly typed and in SSA form to improve the efficiency of dataflow analysis, since
each variable or virtual register is defined only once (cf. Appel, 1998, Ch. 19).

At this level, CATO performs the code analysis and transformations.

5.1.2. Performing Code Transformation
During the optimisation phase, the Pass Manager executes a predefined chain of passes
to perform code analysis and transformations on IR code and return valid IR code. This
allows to change the order of the passes or to insert a new pass anywhere in the chain.
In LLVM 15.0.7 there are 332 passes available within the optimiser1.

There are three different categories of passes built into the optimiser (LLVM Project,
2023l):

Analysis pass: Derives information from the IR code without making any changes, which
can be used by other passes or provide insight into the IR (e.g. for debugging or
visualisation purposes).

Transform pass: May use information from previous analysis passes and transform the
IR in some way.

Utility pass: Any pass that does not fit into the other categories (e.g. a pass to generate
LLVM bitcode).

LLVM provides a Pass superclass, which provides the generic interface. There are
five subclasses (omitting two legacy pass types), which differ in which part of the IR
hierarchy (cf. Figure 5.4a) they are executed in (LLVM Project, 2023m):

• ModulePass: Performed on the module level

• CallGraphSCCPass: The IR code is divided into SCCs on which the pass is
executed.

• FunctionPass: Runs on individual functions

• LoopPass: Performed on individual loops

• RegionPass: A region is a collection of simple subregions and/or BBs that have a
single entry BB and a single exit BB (cf. Figure 5.5). So the use of a RegionPass
is not necessarily limited to a single BB.

CATO needs access to the whole compilation unit, since heap operations are not
limited to a single function. In fact, it needs to access the whole file, so only single file
applications are currently supported. This can be done for any application, but may
require some manual work (e.g. to resolve name collisions). Therefore, CATO inherits
from ModulePass and redefines the corresponding runOnModule entry point, which is
executed by the Pass Manager.

1Result of opt -print-passes.
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Figure 5.5.: Region plot of Listing 4.2, the numbers are labels and each represents a
single BB. Each coloured block represents a (sub)region.

The pass must be registered so that the Pass Manager knows to run it. There are
twelve different possible entry points2, but not each one can be used for every pass
subclass.

To benefit from the optimisations of the pass pipeline, it makes sense to register CATO
as early as possible in the Pass Manager’s workflow. Therefore EP_ModuleOptimizerEarly
is used so that CATO is executed before the main module is optimised. In addition, the
pass defines a isRequired function which returns true, so that the Pass Manager cannot
simply decide to ignore this pass (LLVM Project, 2023n). Otherwise, elements with the
optnone attribute could be ignored. The workflow of CATO is shown in Figure 5.6:

1. The user calls the CATO wrapper on their C high-level source, clang generates
the corresponding IR code.

2. The IR code is passed to the Pass Manager, which is responsible for running the
IR through the passes pipeline.

3. CATO is inserted early in the pass pipeline, then the modified IR code is run
through the rest of the pipeline as usual.

4. The modified IR code is compiled by the backend into the final machine code.

Currently CATO supports transforming a single C code file using this approach. This
could be extended by using llvm-link to link all IR code files into a single one, which
could then be modified by CATO.

2cf. include/llvm/Transforms/IPO/PassManagerBuilder.h
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1 std::vector<std::unique_ptr<MemoryAllocation>>
find_memory_allocations(Module &M) {↪→

2 std::vector<std::unique_ptr<MemoryAllocation>> mem_allocs;
3 std::vector<StringRef> allocation_functions = {"malloc", "calloc",

"_Znam", "_Znwm"};↪→

4

5 for (auto alloc_func : allocation_functions) {
6 auto alloc_users = get_function_users(M, alloc_func);
7

8 for (auto &user : alloc_users) {
9 if (auto *call = dyn_cast<CallInst>(user)) {

10 mem_allocs.push_back(std::make_unique<MemoryAllocation>(call));
11 }
12 }
13 }
14 return mem_allocs;
15 }

Listing 5.1.: Searching allocation calls within IR code.

Since CATO is a ModulePass, the main function serves as an entry point into the
IR code. The pass traverses the different levels (cf. Figure 5.4a) looking for specific IR
instructions to perform the required analysis and transformations. Listing 5.1 shows an
example of how such an analysis can be performed at the module level:

1. line 3:A vector of allocation functions to search for with CATO (_Znam and _Znwm
are mangled names of C++ new expressions). C++ allocation functions are
considered, but C++ has not been extensively tested.

2. line 6: Returns all llvm::User references that call one of the allocation functions.

3. line 9: Check if a llvm::User reference is actually a llvm::CallInst. If it is,
CATO creates a MemoryAllocation abstraction object to handle this particular
allocation call.

After the analysis, the code transformation itself can be performed. These transforma-
tions range from simple replacements of function calls (while retaining the arguments of
the replaced function call) to entirely new added operations. Simple replacement of a
function can be done by using the function setCalledFunction of a llvm::CallInst to
be replaced. This is only sufficient if the original arguments remain the same. Otherwise,
an IRBuilder can be used to construct a new LLVM statement, which can then be
inserted at an explicitly set insertion point.
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Figure 5.6.: Workflow through the Pass Manager (based on (Sampson, 2015))

1 MemoryAbstraction::MemoryAbstraction(...);
2 MemoryAbstraction::~MemoryAbstraction();
3

4 void MemoryAbstraction::store(...);
5 void MemoryAbstraction::load(...);
6 void MemoryAbstraction::sequential_store(...);
7 void MemoryAbstraction::sequential_load(...);
8

9 void MemoryAbstraction::pointer_store(...);
10

11 void *MemoryAbstraction::get_base_ptr();
12 long MemoryAbstraction::get_size_bytes();
13 MPI_Datatype MemoryAbstraction::get_type();

Listing 5.2.: Generic memory abstraction interface.

5.1.3. Equivalence Classes
CATO has two parts: The first is the LLVM pass itself, which is built as a shared library
and then loaded by the optimiser at compile time. How this part works in general has
already been discussed.

The second part is the runtime library, where the replacement codes or ECs are
stored. ECs are implemented as C++ classes that follow an elaborate interface shown in
Listing 5.2. This ensures that there is a suitable operation for every possible situation,
and that one EC can be supplemented or replaced by another. The interface includes
operations for initialisation (line 1) and load (lines 5 and 7) and store accesses (lines 4
and 6, 9).

The runtime library is built separately as LLVM bytecode and loaded by CATO as an
LLVM module using the getLazyIRFileModule function. Following this modular design
principle, these functions can then be accessed and used by CATO. The central function
is shown in Listing 5.3, which allows you to use a function from the replacement module
referenced by its mangled name. First it is loaded from the module in the line 3. Then
in line 5 a table lookup of the symbol is performed to get the function callee, from which
the callee pointer can be inserted into the IR code. Since the called pointer is just an
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1 void RuntimeHandler::match_function(llvm::Function
**function_declaration, llvm::StringRef name)↪→

2 {
3 llvm::Function *func = _rtlib_module->getFunction(name);
4 if (func != nullptr) {
5 *function_declaration =

cast<llvm::Function>(_M->getOrInsertFunction(func->getName(),
func->getFunctionType()).getCallee());

↪→

↪→

6 }
7 else {
8 errs() <<name << " was not found in rtlib\n";
9 *function_declaration = nullptr;

10 }
11 }

Listing 5.3.: Setting up the connection between the CATO’s core and the external
replacement code.

instance of llvm::Value *, this must be cast to llvm::Function *.
Loading the replacement from an external runtime library has the great advantage

that the replacement code can be written in C++, which is then translated by LLVM
into IR code. This makes the development of replacement code much easier and less
error-prone, as it does not have to be written manually as IR code. However, now a new
category of uncertainty comes into focus: semantical correctness. The local behaviour is
different, but the result due to side effects must be the same. As far as the output of the
application is concerned, the user should see no difference between the original and the
modified binary.

The ECs must mimic the behaviour of the original code while using newly added
frameworks such as MPI. This makes developing an EC more complex, and correctness
more difficult to ensure. Proving correctness is already a very difficult (generally
impossible) task, usually using a model that ignores the underlying hardware (M. A.
Dave, 2003; D’Silva et al., 2015). Measures can be implemented to increase confidence in
the correctness of the replacement code. For example, one could use PhASAR, which
has already been introduced in Section 2.3.1. This may improve the code quality, but is
limited to a specific code snippet. Whether a replacement code works correctly can only
be determined by running it before and after the original code. Due to the potentially
long runtime and effort to implement such a test case, this has been postponed.

Instead, another testing strategy is implemented in CATO:

Unit tests : Individual functions are tested to see if they behave correctly for a given
input. CATO uses GoogleTest to perform unit tests on some functions within
CATO (e.g. from environment_interaction.cpp) (Google, 2023). They are quite
fast (currently under a second), and therefore serve as a regression test when CATO
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is built (they are registered as a test in CATO’s CMake setup).

End-to-end tests : The unit tests are not sufficient to verify that the code replacement
works as intended. Therefore, more complex end-to-end tests are set up using
LLVM’s internal test suite lit. There are currently three categories of end-to-end
tests:

• Basic non-OpenMP tests
• Basic OpenMP tests
• Intermediate tests

First, they check if CATO works at all by running it on trivial applications without
any OpenMP kernels that would be replaced by CATO. Then there are trivial
applications that use OpenMP and are modified by CATO. Finally, there are
more intermediate tests that check if CATO can handle not only microkernels,
but also a combination of them. The tests consist of several use cases such as
(multidimensional) dynamic arrays, pointer aliasing, critical sections, barriers and
reductions. lit runs CATO on these tests and compares the output with the
expected output.
Since these tests have a longer runtime (currently about ten seconds), they are run
manually using CATO’s test script run_test.sh.

The next Sections 5.2 and 5.3 discuss in detail, how the replacement is performed to
achieve the memory distribution and I/O handling.

5.2. Memory Handling
The first use case of CATO deals with memory allocation using MPI processes. How
this is done in general has already been discussed in Section 4.1.

The final binary contains MPI operations, so how the modified binary is executed
compared to the unmodified binary changes. CATO only modifies the application code,
but does not take any action during execution. In order to take advantage of the code
modification, the user has to make two adjustments.

• Run the application as an MPI application using the correct startup commands
(e.g. mpirun or srun).

• The input problem or runtime parameters must be adjusted so that the modified
binary takes advantage of the memory gains (cf. Section 4.1.3).

CATO uses advanced MPI features that are not easy for untrained personnel to use.
Section 3.2.2 has shown that using one-sided MPI communication can be advantageous
in terms of performance compared to two-sided or collective communication. On the
other hand, the usage can be confusing (considering that some synchronisation calls are
called ‘lock’ but handle epochs) and it is hard to keep track of active and passive target
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communication operations. Even the official MPI specification document acknowledges
this difficulty, as there are only two dedicated chapters on correctness: one for collective
communication and one for one-sided communication (MPI Forum, 2021, ch. 12.7).
Therefore, the automatic substitution of CATO provides a great way for the user to
use one-sided MPI operations without having to fully understand them. During the
development, the replacement codes have been carefully prepared and extensively tested.

CATO assumes that the high-level code does not yet include MPI communication. If it
did, it would make the replacement much more complicated. And if the user was already
able to insert some MPI communication, then he probably had enough knowledge to do
the whole replacement himself. In that case, he would probably not benefit from CATO,
so this hybrid case is omitted.

Before CATO takes care of the OpenMP kernels, there is some preparation to be
done: First, the MPI environment needs to be initialised, which requires the insertion of
MPI_Init as well as the insertion of MPI_Comm_rank and MPI_Comm_size. This is quite
trivial because the application has only one entry point. So the required functions are
simply inserted before the initial BB. The finalisation is a bit more complicated, as there
can be several potential exit points of the application. So a call to MPI_Finalize is
added before each exit point.

The next step is to modify the memory allocation calls. By default, CATO assumes
that every heap variable is relevant. This heuristic can lead to false positives, but there
are probably no relevant (in terms of size) variables on the stack. The chances of missing
a relevant variable (or false negative) are therefore lower. Listing 5.1 shows how to
search for allocation calls. Each occurrence is replaced by an instance of the memory
abstraction class that handles the memory allocation. This is an important step: each
process allocates only its share of the original memory size using a static load balancing
algorithm. At this point, the benefits of the aggregated memory of multiple nodes can
be fully exploited. CATO distinguishes between dimensioned and single-valued data,
and internally maps the actual memory addresses to their corresponding abstraction
object, so that later references to an address can be correctly mapped. During memory
allocation, the corresponding MPI windows are also created (using MPI_Win_create),
which are needed for one-sided MPI communication. All free calls will be adjusted
accordingly to respect the changed allocation strategy and free the created windows as
well.

This is sufficient for one-dimensional variables, but requires additional actions for
multidimensional variables. Checking which specific memory address a high-dimensional
pointer is actually pointing to is a pointer alias problem, which is a relevant topic in
computer science (Hind, 2001; LLVM Project, 2023h; Mock, 2003). Static analysis
of pointer aliasing is a difficult problem, which for some circumstances can become
NP-hard (Landi & Ryder, 1991). A fully exact pointer analysis is generally undecidable
unless heuristics are used (Ramalingam, 1994). Using a dynamic analysis alleviates this
problem, but is then limited to a specific run (Guo et al., 2006). The advantage of the
CATO approach is that this problem does not need to be solved statically. Instead, it
builds trees of all explicit usages of a shared pointer variable to collect all potential usage
paths through the IR code, resolving the pointer hierarchy in the process. Each node is
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then checked to see if it is a StoreInst, LoadInst or CallInst (e.g. free) and replaced
accordingly. This approach is limited and currently only works with one-dimensional
and two-dimensional pointer variables.

How store and load operations on memory are handled by CATO is discussed in the
following Section 5.2.1.

5.2.1. OpenMP Code Handling
There is no general conclusion as to whether an MPI-only approach should be preferred
over a hybrid MPI-OpenMP approach, as their suitability varies from case to case (Yan
& Regueiro, 2018). In the current state of CATO, the replacement process removes all
OpenMP functionality from the original application.

Given the previous chapter on handling memory allocation, the focus is on heap
variables. The OpenMP kernels are used to determine how processes can concurrently
work on distributed memory. By setting up the kernel, the user provides valuable
information about the intended semantics of the code, which can be exploited during
automatic modification:

• Which loop is worth parallelising?

• Which variables should be treated as private or shared?

It is difficult to automatically determine which sections of code should be parallelised.
There are tools such as Polly, but this is not a challenge to be solved by CATO. Instead,
this knowledge is derived directly from the user’s actions. By parallelising sections of
code with OpenMP, he has shown that they are worthwhile in this sense.

Moreover, the data-sharing attribute, which the user (implicitly) sets for all variables
involved in any way in the OpenMP kernel, allows CATO to make assumptions about
how variables are likely to be accessed. According to these assumptions, the replacement
can then be performed in the correct way.

The following steps are performed by CATO:

1. Replace OpenMP functions: There are some OpenMP runtime functions for
which an exactly equivalent MPI version exists. Since the OpenMP functions do
not take parameters, they can be replaced by corresponding MPI wrapper functions
(cf. Table 5.1).

Original Replacement
omp_get_thread_num → MPI_Comm_rank

omp_get_num_threads → MPI_Comm_size
__kmpc_barrier → MPI_Barrier

Table 5.1.: Replacement of OpenMP functions by MPI wrapper.
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1 void __kmpc_fork_call (ident_t *loc,
2 kmp_int32 argc,
3 kmpc_micro microtask,
4 ...)

Listing 5.4.: Function signature of __kmpc_fork_call.

The OpenMP barrier replacement includes not only explicit barriers, but also
implicit ones. For example, an implicit barrier is set when a worksharing construct
terminates but the thread team has not yet terminated.

2. Find and replace fork calls: The OpenMP kernels can be automatically detected
within the IR code. For example, #pragma omp parallel for specifies a parallel
worksharing loop, which means that new threads are likely to be created. To do
the actual forking of threads, __kmpc_fork_call (cf. Listing 5.4) is called, which
takes the microtask and pointers to shared variables as parameters, among other
things. The microtask is an outlined function that represents the body of the
corresponding OpenMP kernel. To replace the OpenMP kernel, the fork call is
removed and the outlined microtask is called directly instead. This does not spawn
any threads, instead each process executes the microtask on its own.

3. Adjust loops: This step is performed when a loop has been marked for parallel
work sharing (e.g. by using #pragma omp for). In the original OpenMP code, the
loop is shared among the responsible thread team by assigning different values
of the loop counter variable to each member of the team. It depends on the
type of schedule clause used (static, dynamic, guided, auto, runtime) how
the potential loop counter values are assigned. When using the static scheduler,
each thread, knowing its own thread id, computes the loop interval for which it is
responsible using __kmpc_for_static_init_* functions. The end of the parallel
block is marked by __kmpc_for_static_fini.
In its current state, CATO is able to split the loop iteration across processes when us-
ing the static scheduler. It retrieves the values for the lower bound, upper bound and
increment of the loop counter from the parameters of __kmpc_for_static_init_*,
which is then removed. Then the behaviour of the OpenMP implementation is mim-
icked and new bounds are computed with respect to the current process rank and
the total number of processes. This allows the original behaviour to be replicated
using processes instead of threads.

4. Handle reductions and criticals: Replacing the critical construct is quite simple.
CATO looks for calls to __kmpc_critical (start point) and __kmpc_end_critical
(end point) to determine the sequence of code that must be executed sequentially.
These calls are replaced by corresponding calls to a mutex implemented with MPI.
It is initialised at the beginning of the microtask and destroyed at the end. As
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1 kmp_int32 __kmpc_reduce (ident_t *loc,
2 kmp_int32 global_tid,
3 kmp_int32 num_vars,
4 size_t reduce_size,
5 void *reduce_data,
6 void(*)(void *lhs_data, void *rhs_data) func,
7 kmp_critical_name *lck)

Listing 5.5.: Function signature of __kmpc_reduce.

soon as the critical section is about to be entered by a process, the lock is set (and
unset after leaving the section).
Replacing reductions is more complex. Reductions are found by looking for the
corresponding function call of __kmpc_reduce, shown in Listing 5.5. Parsing the
parameters gives information about which variables to reduce with which operation.
In the original OpenMP code, the master thread simply stores its variable value
in a buffer. Each other thread of the corresponding team performs an atomic
read-modify-write operation on this buffer to contribute its variable’s value. CATO
determines the type of reduction from the latter branch and replaces the reduction
with an MPI_Allreduce call with the appropriate parameters. Currently, reductions
using the Add, Min and Max operations are supported.

5. Replace serial and shared accesses: How the general replacement must be
done was already discussed in Section 4.1.5. There are two use cases: variable
access inside the microtask and variable access outside the microtask. For each use
case there are corresponding functions of CATO, which are shown in Listing 5.2.
For access within the microtask, the MemoryAbstraction class provides load (cf.
line 5) and store (cf. line 4) and for external accesses there are corresponding load
(cf. line 7) and store (cf. line 6) operations.
This distinction is necessary because the basic idea of the replacement is to focus the
parallelisation efforts on the OpenMP kernels and make only minimal changes to
the primary serial parts. Since the user does not provide any additional information
about the serial parts, CATO treats these parts conservatively, and each rank runs
the same code. The main difference is which MPI operations are used. Since the
code outside the microtask is executed by each rank simultaneously, the sequence
of communication is the same for all ranks and follows the same logical time
steps (neglecting system-induced delays). Therefore, active target communication
is used and the epochs are handled by MPI_Win_fence. To avoid unnecessary
multiple write operations, which would all be performed with the same value, only
rank 0 performs write operations. Read operations are then performed by all
operations. On the other hand, the sequence of operations within the microtask is
potentially less homogeneous and therefore passive target communication is used
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for memory accesses using exclusive epoch locks (MPI_Win_lock/MPI_Win_unlock).
To determine if a rank needs to access local or remote memory, CATO provides an
operation get_target_rank_and_disp_for_offset to get the owner’s rank and
local offset on its window.
This only applies to shared variables that are also written to within the microtask.
If a variable is private, then each rank has its own copy and there is no need for
a collective update. The same applies to RO shared variables, as they behave
semantically the same. So each process performs the same computations on its
own copy, and in the microtask section each process can read its own value, which
is the same for all processes. And because there are no write accesses within the
microtask, the processes do not update it at all.

5.2.2. Semantical Equivalence
The general testing strategy has already been presented in Section 5.1.3. It is difficult
to prove semantical equivalence between the ECs and the corresponding original code
kernels. However, the design was chosen to be as close to the original as possible to
reduce the number of potential pitfalls.

One potential problem could still arise from floating-point arithmetic. It was discussed
in Section 1.2.3 that floating-point accumulation is not associative, although in theory
it should be. However, this is a problem that already arises in the OpenMP kernel,
where the result can depend on the order and number of threads used (van der Pas
et al., 2017, Ch. 2.4.3). The reduction result can be forced to be reproducible by using
the KMP_DETERMINISTIC_REDUCTION environment variable to specify a fixed order of
execution, which is supported by at least the Intel and LLVM OpenMP implementation.

MPI also assumes that the reduction operation is associative, but also notes the non-
associative nature of floating-point arithmetic. To enforce a specific order of execution,
this could be done by first performing the reduction locally with MPI_Reduce_local and
then sending it via a fixed communication pattern (MPI Forum, 2021, Ch. 6.9).

So using MPI instead of OpenMP does not introduce any new problems, and if the
same number of COUs is used, in many cases it will not be a problem at all. Other
than the approaches already mentioned, there are also alternative solutions to this
problem (Kapre & DeHon, 2007).

5.3. Input/Output Handling

‘Many users think I/O is free’ – Philippe Deniel

To use this component, it is essential that the original application already uses serial
netCDF to read and write data. CATO does not currently support the inclusion of
netCDF in code without such an existing basis. Since netCDF is a fairly common data
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1 // [...]
2 nc_create(...);
3 nc_def_var(...);
4 nc_enddef();
5

6 nc_put_var_float(...);
7 nc_close(...);
8 // [...]

(a) Original pseudocode.

1 // [...]
2 err = nc_create_par(...);
3 err = nc_def_var(...);
4 err = nc_enddef();
5 err = nc_var_par_access(...);
6 err = nc_put_vara_float(...);
7 err = nc_close(...);
8 // [...]

(b) Modified pseudocode using parallel I/O. Checks
of error values are ommitted for brevity reasons.

Listing 5.6.: Comparison how a netCDF code is roughly modified by CATO with focus
on parallel I/O.

format in several scientific fields (e.g. in geoscience or climate science), this is a reasonable
decision.

The general procedure for handling I/O with netCDF is quite similar to the memory
handling in the previous section. Again, relevant netCDF functions are searched for
and replaced with wrapper functions. Unlike the memory handling component, the
I/O component inserts many functions that are hidden behind environment variable
conditions. They are inserted at compile time, but the user can control which functions
are executed at runtime by setting the appropriate environment variables. Only optional
functions such as compression are shielded in this way; if the user does not set an
environment variable, the application will still work.

CATO assumes that only significant variables are worth handling with netCDF, so
there is no preselection routine to potentially sort out I/O kernels. The replacement is
done in the following domains:

• File initialisation and closing

• Variable definition

• Data access

The general intentions of the replacement steps have already been discussed in Sec-
tion 4.2, in the following Sections 5.3.1 and 5.3.2 the actual transformations are discussed.

5.3.1. NetCDF: Parallel Input/Output
Figure 4.8 on page 101 shows the goal to be achieved with CATO. The memory

handling component has already made it possible to split up heap variables that would
otherwise not fit into the memory of a single node. Before the computation can begin,
the data needs to be initialised somehow. If this is done dynamically without any input,
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this is not a problem, as each process can do this on its own. However, if the initialisation
is done by reading data from storage, it is best to use parallel I/O. Each process can
then get its own share and does not have to read the whole oversized file first.

Listing 5.6b shows an idealisation of what the replacement might look like in pseudocode.
Using parallel I/O in netCDF requires adapting the file initialisation and any operations
that read or write directly to the file in memory. CATO looks for initialisation calls
for serial I/O, namely nc_open and nc_create, and replaces them with appropriate
wrapper calls (cf. line 2). Inside these wrappers are, among other things, netCDF calls
to initialise parallel I/O: nc_open_par and nc_create_par. The same goes for the file
close operation, nc_close is searched for and replaced by a wrapper function.

There are two possible parallel access modes that can be selected for a file: inde-
pendent or collective. The netCDF API suggests using the collective mode whenever
possible (Unidata, 2023a). However, which mode works best depends on the communica-
tion pattern used. In general, the independent mode is preferable if few synchronisations
are required (e.g. in an 1-to-1 client-OST pattern or if data is only read). The collective
mode, on the other hand, might be preferable if more synchronisations are required
(e.g. in an all-to-all client-OST pattern or if data is being written) (Bartz et al., 2015).
CATO allows to change the used mode by inserting nc_var_par_access (cf. line 5),
which can then be configured by the user at runtime. The collective mode is used by
default, but the user can explicitly set the mode by setting the environment variable
CATO_NC_PAR_MODE to COLLECTIVE or INDEPENDENT.

Now the data itself can be accessed. Accessing data via the netCDF functions requires
passing a pointer to the memory area which is used to mirror the data from storage to
memory and vice versa. CATO’s I/O component utilises the benefits from the memory
component if the used memory section is allocated on the heap (which is most probably
the case for relevant input data). All local memory accesses are also handled by the
CATO memory component, but all file accesses using netCDF need to be modified as
well. Each process only accesses its share after the modification. So instead of reading
the whole variable, the corresponding array variant of the original I/O operation is used
(cf. line 6).

After this step, each process can initialise its input or save its results to disk on its
own. This can now be used to not only enable parallel I/O, but also in combination
with a parallel FS to improve the runtime of the I/O phases. Figure 4.9 showed how
an application could benefit from spreading the accesses of all processes across multiple
OSSs to benefit from the aggregated bandwidth of the network and disks. To take
advantage of this, the file being accessed needs to be striped across multiple OSSs so
that all process accesses are evenly distributed across multiple OSSs. This is not done by
CATO, as it requires detailed knowledge of the application’s use case and the parallel FS
environment available. However, if the user takes care of the correct setup, then CATO’s
modification will allow the application to benefit from this.
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5.3.2. NetCDF: Compression
The use of compression is enabled in netCDF by calling the appropriate functions during
the definition phase of a variable. NetCDF compression does not affect the metadata and
only works on the actual data section. To enable compression, two netCDF functions
need to be considered and set appropriately, which have been introduced in Section 3.3.2:

Chunking: If compression or any other HDF5 filter is to be used, chunking must be
used. Since netCDF 4.7.4, using HDF5 1.10.2 or later, it is also possible to
use filters and parallel I/O at the same time (Unidata, 2020). In this case, the
use of collective mode for parallel access is mandatory. The maximum size of a
(multidimensional) chunk is limited and must not exceed 4 GiB (Unidata, 2023b).
The expected runtime performance of accesses to chunked data is lower than that
of accesses to contiguous data, but since the compression is applied to individual
chunks and not to the whole piece of data, this must be accepted.

Alignment: If data chunks are not aligned to the underlying disk block size or stripe
size of a parallel FS, runtime performance is much worse (Bartz et al., 2015).
Since netCDF 4.9.0, the API provides a function to enforce the alignment of any
variable. Using alignment can potentially leave holes between file objects, so there
is a sweet spot between access speed and file size (Unidata, 2023a). A threshold
can be set to ignore small files that would not benefit from this alignment. By
default CATO uses the recommended threshold of 8192 B (Unidata, n.d.-b).

The current focus of CATO is on the quantize filter for lossy preprocessing, the lossless
compressor Zlib, and the filter interface, which allows arbitrary use of any filter that
is part of HDF5 and installed on the system. NetCDF also provides calls to the Blosc,
bzip2, Szip, Zstandard compressors, but these have been omitted for now, as they
are just wrapping calls to nc_def_var_filter. It is up to the user to decide if and
which filter to use, as this can have a significant impact on the runtime performance
of the application. Therefore, CATO inserts all the necessary netCDF functions, but
hides chunking, alignment and filter usage behind conditional checks if the appropriate
environment variables have been set. The modified application is equipped with the
necessary functions, and the user can decide at runtime which ones to use with which
configuration.

A demonstration of how CATO does this is shown in Listing 5.7 using the example
of the Zlib compressor. In line 2 the environment variable CATO_NC_CMPR_DEFLATE is
parsed, which contains at most two values (cf. line 3). A small sanity check in line 6
ensures that only supported compression levels are used. Finally, if the shuffle parameter
is set (which reorders data bytes to improve compression results) (cf. line 10), the netCDF
call to use the deflate compressor is inserted in line 12.

To demonstrate the effect on the original source code, the example from Listing 5.6 is
extended by adding an arbitrary filter. The modified pseudocode is shown in Figure 5.8b.
The alignment and chunking are set in line 2 and line 5. If the user selects a valid filter
(cf. line 6) and enables quantisation, it will be enabled in line 8.
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1 if (std::getenv("CATO_NC_CMPR_DEFLATE")) {
2 deflate_values = parse_env_list("CATO_NC_CMPR_DEFLATE");
3 if(deflate_values.size() > 2)
4 // [ Error handling ]
5 else {
6 deflate_level = std::stoi(deflate_values.at(0));
7 if(deflate_level < 0 deflate_level > 9)
8 // [ Error handling ]
9 else {

10 if(deflate_values.size() == 2)
11 shuffle = std::stoi(deflate_values.at(1));
12 err = nc_def_var_deflate(ncid, varid, shuffle, 1, deflate_level);
13 }
14 }
15 }

Listing 5.7.: Truncated code snippet for handling netCDF compression using Zlib.

CATO takes care of setting up the mandatory functionality, the user has to explicitly
choose parameters to suit his use case. Since there are many combinations available,
it can be a non-trivial task to find the best one. However, he can also use nccopy to
try them out until he finds a satisfactory combination, which he can then pass to the
modified application via environment variables. In addition, CATO offers also a script,
to automatically try out different configurations so that the user can then use the best
fitting configuration (cf. Section 7.3.3).

5.3.3. Semantical Equivalence

Most netCDF modifications are not a problem, because they don’t change the semantical
behaviour. Changes to the file initialisation and closing calls have no additional visible
effect, only the internal handling within netCDF changes. The same applies to changes
in the definition of a variable (e.g. alignment and chunking). They affect runtime
performance and storage requirements, but not the data integrity itself. Applying
compression filters does not affect data integrity as long as a lossless compressor is chosen.
Data is potentially altered when a lossy compressor is used, but since the user must
explicitly enable lossy compression, he is aware of this.

A critical point is the change in access operations. They are replaced by different
access operations working on a different part of the data. If there were errors in the
replacement scheme, this would result in incorrect data. CATO’s testing infrastructure
can reduce the risk of errors, but it is impossible to guarantee correctness.
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1 // [...]
2

3 nc_create(...);
4 nc_def_var(...);
5

6

7

8

9

10 nc_enddef();
11

12 nc_put_var_float(...);
13 nc_close(...);
14 // [...]

(a) Original pseudocode.

1 // [...]
2 err = nc_set_alignment(...);
3 err = nc_create_par(...);
4 err = nc_def_var(...);
5 err = nc_def_var_chunking(...);
6 if(nc_inq_filter_avail(...)) {
7 err = nc_def_var_quantize(...);
8 err = nc_def_var_filter(...);
9 }

10 err = nc_enddef();
11 err = nc_var_par_access(...);
12 err = nc_put_vara_float(...);
13 err = nc_close(...);
14 // [...]

(b) Modified pseudocode using parallel I/O and fil-
ters. Error value checks are omitted for brevity.

Listing 5.8.: Comparison of how a netCDF code is roughly modified by CATO, focusing
on parallel I/O and compression.

5.4. Providing Feedback
Rather than simply using a black box, the feedback component can allow the user to
understand and try out the change for themselves. The previous Section 4.3 defined four
questions about how CATO can help the user understand the changes:

• How can CATO give the user an idea of what the modified high-level code might
look like?

• How can CATO help the user to avoid known pitfalls?

• How can CATO help the user to gather performance metrics?

• How can CATO help the user to understand how to implement the HPC frameworks
used by CATO?

They are answered in the following four Sections 5.4.1, 5.4.2 and 5.4.4.

5.4.1. Trace Code Changes
Preliminary evaluations of decompiling the modified IR or binary have shown that the
target user is unlikely to benefit from them due to their high complexity. Therefore, this
approach was not pursued further.
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5.4.2. Hardening Code Quality
To avoid the common pitfalls mentioned in the second question, CATO can apply sanity
checks to the original source code (cf. Section 4.3.2). Three different types of sanity
checks have been included so far:

1. Error checking

2. File existence

3. Closing file

Each netCDF function returns an integer error code that can be checked. If the user
does not check these errors, it is easy to overlook them until a subsequent, more severe
error occurs in a later section of code. In the worst case, the error goes unnoticed and the
application suffers from undefined behaviour. This can make debugging quite frustrating
for the user. CATO catches the return value of all replaced netCDF functions and checks
them. It would also be possible to check for each original netCDF function call if the
return value is somehow retrieved and checked. If not already checked, CATO could
also add error checking for unmodified netCDF calls. However, this has not yet been
implemented.

The second sanity check is applied to each replaced nc_open function. If the file to
be opened does not exist, the function returns an appropriate error code, but otherwise
simply continues execution. Reading data from a non-existent file results in junk data
and may go unnoticed if the user does not check. Replacing nc_open with nc_open_par
adds a sanity check to verify the existence of the file.

The third sanity check can ensure that any file that is opened or created will be closed
at some point. This sanity check simply scans the code for a call to nc_close with the
correct ncid. It does not perform an analysis of the CFG to check if this function call
appears on every possible execution path.

If a sanity check registers an error, a warning is printed by default, but the user can
also set an environment variable to force abort or disable error checking.

5.4.3. Metric Collection
To assist the user in evaluating the performance of the modified application, CATO
offers the possibility to collect the runtime and peak memory performance.

The C library offers two functions, which can be used to achieve this: gettimeofday
(time) and getrusage (peak memory consumption). Both functions collect their metrics
at the time of call within structs. Since the user is interested in the metrics over the
whole applications runtime, they are added at the earliest and latest possible moment.
Section 5.2 already describes that CATO inserts initialisation and finalisation functions
immediately at the entry and all exit BBs and this is where the metric function calls are
inserted as well.

At the exit BBs the difference of timestamp and peak memory consumption structs
are calculated. The metrics are collected for each process independently, therefore rank
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0 first collects the sum of all values via an MPI reduction and then divides the result by
the number of participating processes to derive an average value, which is then printed.
Results for the peak memory consumption are not determined byte-exactly from OS,
but can fluctuate slightly (Siebenmann, 2012). This can be neglected if at least a few
kilobytes are used.

To avoid unnecessary overhead, which could be induced for example by the reduction,
the metric functions are encapsulated behind a conditional check, if the user had the
appropriate environment variables set to enable the metric collection. To activate enable
the collection of both metrics, the user can for example set CATO_METRICS=TIME:MEM,
but TIME and MEM can also be set solely.

5.4.4. Textual User Support
Section 1.2 set the baseline for CATO: To provide an easy-to-use tool for domain scientists
who have to cope with the sheer number of available HPC tools and frameworks if they
want to make full use of the available hardware. CATO supports them by providing a
framework with a diverse set of tools, which can be further extended with additional
HPC libraries. This allows them to try them out without having to learn them the
hard way. If the user likes the changes made to his source code, CATO can help him
implement the changes himself.

For each library included, CATO provides a quick reference guide with a general
description and a link to the official documentation. More importantly, it also provides a
section with general usage tips and references to existing code examples. Especially the
last point can be very helpful, as the user can simply look at how the library can be used.
A library with good documentation will also provide code examples, but very often these
are trivial and quite short. Sometimes there are unofficial repositories of tutorials and
code skeletons that CATO can point to.

The help overview also lists all the environment variables supported by CATO. Using
them allows the user to control which components of the replaced code are executed at
runtime.

5.5. Summary
After defining the general requirements of CATO in Chapter 4, this chapter deals with
its implementation. LLVM is a large framework with many possible starting points. In
the end, it was decided to build the core of CATO as LLVM pass to be introduced into
the Pass Manager’s pipeline. The changes are made at the IR level, which has the great
advantage that they are decoupled from a specific frontend (with reservations) and from a
specific backend. By using a ModulePass as a base class, the modifications can be applied
to the entire translation unit without losing contextual information. To implement the
memory handling component and the I/O handling component, replacement codes are
prepackaged as ECs, which perform the modification at compile time and are then
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executed at runtime. Setting environment variables allows the user to influence the
behaviour of the modified application at runtime to suit their needs.
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6. Related Work
Leaving aside the feedback component of CATO, the development focused on three main
themes:

• Memory handling

• Parallel I/O

• Compression

There are many solutions that address the problem of memory allocation, and a few
that also address parallel I/O and compression. This chapter provides an overview of
alternatives to CATO that offer a similar feature set, but differ in their ultimate purpose.
They cover a wide range of usability concepts, from fully transparent mechanisms to
programming languages and libraries that the user has to consciously use. This chapter
follows this idea and discusses them in order of increasing need for active user interaction.

6.1. Virtual Shared Memory
Virtual Shared Memory describes the concept of a transparent layer within the memory
access workflow, in order to hide from the user where the memory device is actually
located. This is already done anyway, as the user does not have to worry about which
actual bank they want to access, the memory address is already a transparent layer.
However, virtual shared memory takes this principle one step further by hiding the actual
node where the data is stored. It aggregates distributed memory and provides a whole
new virtual address space, the only limit being the aggregated memory of all participating
nodes and the upper limit of possible memory addresses. The actual mapping of virtual
memory addresses to the corresponding node bank is done transparently by a runtime
environment or library. Depending on the actual solution, and ignoring usability and
performance limitations, this concept is very advantageous because the user does not
have to worry about hardware configuration and can act as if he were using a single,
very powerful node.

6.1.1. Single System Image
Virtual shared memory comes in several variations. Single System Image (SSI) is the
one that probably requires the least user interaction, as it provides a unified system view
of all included nodes. Strictly speaking, the concept of SSI is not limited to memory,
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but can include other components such as process, device or file space. From this point
of view, a parallel FS like Lustre is also a kind of SSI, as it hides the complex storage
handling behind the Lustre client. It allows to potentially improve I/O performance if
the application uses parallel I/O by removing the bottleneck represented by a single
block device.

The user’s application can be run inside a SSI without changing the source code. Healy
et al. (2016) have done a survey on SSIs and listed examples for different system levels
on which a SSI can be used. There are hardware implementations such as the Stanford
Dash multiprocessor (Lenoski et al., 1992) and software implementations such as a OS,
e.g. Popcorn Linux, openMosix or OpenSSI (Barbalace et al., 2014; Lottiaux et al., 2005).
Healy et al. show that there was a peak of interest in this concept in the 2000s, but
there were also early critical voices (Buyya et al., 2001). Some drawbacks include limited
scalability and the need to set up the entire HPC cluster using a SSI image. There
were HPC systems like the now decommissioned HLRBII at Leibniz-Rechenzentrum
or the Cenju-4 from NEC that used SSI for memory, but these systems are in the
minority (GWDG, n.d.; Kusano et al., 2001). And since the user cannot install a SSI
without root privileges, he cannot rely on its existence.

6.1.2. Partitioned Global Address Space
Partitioned Global Address Space (PGAS) is a parallel programming concept that uses a
software layer to emulate a virtual shared memory space. Each node has allocated its
share of the total memory space so that the actual node holding the data to be accessed
can be computed by the PGAS system. Locality and latency can become a serious
problem, as the user is no longer forced to think about where to put his data, which
makes it easier to use, but can add stress due to data movement and measurements to
keep the cache coherent on the system (Sterling et al., 2017, Ch. 21.5.3). On the other
hand, the PGAS system can optimise data movement that might otherwise be beyond
the user’s capabilities. Two popular PGAS libraries respectively standards are GASPI
and OpenSHMEM. Regarding the performance there is no definite statement if PGAS
performs better or worse than MPI. It depends on the use case and which implementation
has been used. H. Shan et al. (2012) (which do not use one-sided but two-sided MPI
operations for comparison) show that PGAS outperforms MPI but on the other hand
Hammond et al. (2014) and Si et al. (2021) use MPI to implement OpenSHMEM.

PGAS is not considered in this thesis because it already provides a way to use the
shared memory of all participating nodes. And if the user’s application does not already
use a PGAS library, he would have to rewrite his entire application.

6.1.3. Distribution of OpenMP
The focus of this thesis is on OpenMP, and there are some approaches that are capable
of executing OpenMP code on distributed memory. Shortly after the initial release of the
OpenMP specification in 1997, an OpenMP compiler was proposed by Sato et al. (1999).
The Omni OpenMP compiler does not actually distribute, but relies on an existing
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software SSI such as TreadMarks or the built-in XcalableMP extension (Amza et al.,
1996). There is also an extension to the Omni compiler to create a PGAS and simplify
the handling of multiple GPUs by virtually merging their memory (Nakao et al., 2019).
As mentioned above, data locality and cache coherency can be a major drawback of a
SSI, and the Omni compiler aims to optimise an OpenMP application on such a system.

Based on TreadMarks, Intel developed Cluster OpenMP, an OpenMP implementation
for using distributed memory (Hoeflinger, 2006). Case studies showed that it was
at least difficult to use without sacrificing scalability, and the project has since been
abandoned (Terboven et al., 2008; Wong et al., 2008).

Unlike the XcalableMP extension, CATO does not need mandatory compiler directives,
but derives the necessary information from the existing OpenMP directives. Therefore,
CATO knows which variables to distribute, and the focus on the stencil pattern already
provides an optimised distribution strategy. Of course, the optimised distribution strategy
could perform worse if another communication pattern is used, but this is beyond the
scope of this thesis and will be discussed in Section 8.2.3.

Other approaches target the task directives, which define a kernel of code that can be
executed independently. Defining multiple tasks allows the OpenMP runtime to execute
the tasks concurrently. OpenMP Cluster Programming Model (OMPC) creates a new
OpenMP runtime that uses the task definition and adopts the OpenMP directive pragma
omp target, which is used to offload code to local GPUs. The customisation adds the
ability to specify another node as a target, to which a task and its dependent data is
offloaded and then executed on (Yviquel et al., 2022). A similar approach is taken by
OmpSs-2@Cluster , which is an extension of the OmpSs-2 programming model (Mena
et al., 2022). OmpSs-2 is an alternative to OpenMP, but uses a very similar set of
directives and clauses, and can be used to develop and benchmark new features for
OpenMP. This extension takes a similar approach to OMPC and derives a dependency
graph from task directives. A virtual address space is set up and all participating nodes
contribute their share to this space. The OmpSs-2 runtime then manages the distributed
execution of the application, including the necessary data movement.

A fairly new approach is the remote offloading implementation of Patel and Doerfert
(2022). It works like the usual offloading component that could be used to run code
kernels on local GPUs, but has been extended to allow the use of devices on remote
nodes. The authors claim that, at least for now, they are not aiming to compete with
MPI or other distributed programming models. Currently, this approach is gaining a lot
of traction and a lot of work is being done on it (Lu et al., 2022; B. Shan et al., 2023).

This approach requires the use of additional mandatory compiler directives that are
not needed for CATO. However, as this is still fairly new, it is worth keeping an eye on
it so that it can be re-evaluated in due course.

Recent developments in OpenMP distribution are quite promising and could become a
serious approach to replacing, or at least complementing, MPI. However, it is important to
remember that the tasking and offloading capabilities of OpenMP are at least intermediate,
if not advanced, features of OpenMP. The sighting of used OpenMP features on GitHub
in Section 3.2.1 showed that the majority of user-generated code does not use them yet.
So they cannot benefit from the remote offloading features either.
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6.2. Direct Code Parallelisation
There are several approaches to parallelising (serial) code in a more explicit way than
those described in the previous section. The approaches differ in the amount of work
that needs to be done directly by the user. Starting with the most involved and invasive,
this section shows different approaches and lists them in order of decreasing complexity
and increasing automatic support.

6.2.1. Parallel Programming Languages
There are many programming languages, each with its own merits and focus. Some
stand out for their ability to express parallelism. This is not an exhaustive list, but some
notable ones include

• Chapel (Chamberlain et al., 2007)

• Cilk (Frigo et al., 1998) (C++ extension)

• Fortress (Jr., 2006)

• X10 (Charles et al., 2005)

Their purpose is usually to meet the needs of numerical applications. For example,
Fortress provides a notation that is very close to the actual mathematics to make it
easier for the domain scientist to express himself. Chapel, on the other hand, provides a
high level of abstraction by using anonymous threads, which makes it much easier to
parallelise an application and achieve high performance. It allows to target different
platforms such as accelerators or FPGAs.

6.2.2. Parallel Libraries
Using a library is less invasive than learning a new programming language (assuming
the library supports the user’s usual programming language). You can use specialised
parallel data structures such as Python Dask (Dask core developers, 2022) or TBB (Intel,
n.d.), provide functions for message passing such as MPI or functions for parallel I/O
such as MPI-IO and netCDF. Others like Charm++ (University of Illinois, 2021) or
Kokkos (Trott et al., 2022), focus on performance portability by abstracting the device
(e.g. CPU, GPU, FPGA, . . . ) on which code kernels run, so that they can be easily
moved between HPC systems with very different hardware configurations. Still others
expose the functionality of a PGAS environment, e.g. OpenSHMEM (Silicon Graphics
International Corp., 2022), GASPI (H. Shan et al., 2012) or Unified Parallel C (Schmidt
et al., 2017, Ch. 10).

Listing 6.1 shows a code snippet to demonstrate what OpenSHMEM code can look
like. There are clear similarities between the OpenSHMEM functions used and MPI.
Line 3 initialises the library and is the counterpart to MPI_Init. The so-called Processing
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1 static long source[10] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
2 long target[10];
3 start_pes(0);
4 if (_my_pe() == 1) {
5 /* get 10 words into target from PE 0 */
6 shmem_long_get(target, source, 10, 0);
7 }
8 if (_my_pe() == 1) {
9 for(i=0;i<10;i++)

10 printf("target[0] on PE %d is %d\n", _my_pe(), target[0]);
11 }

Listing 6.1.: Code snippet using OpenSHMEM (Pophale & Curtis, n.d.).

Element (PE) is given an ID in line 4, in MPI the process would get its rank from
MPI_Comm_rank. And finally the PE gets an element via one-sided communication in
line 6, which in MPI would have been done with MPI_Get. There are other similarities
such as synchronisation and collective operations. Unlike MPI, OpenSHMEM focuses
only on one-sided communication and makes global and static variables automatically
accessible from remote. Local variables can also be made remotely accessible, but this
must be done via an explicit operation call. The concept of MPI epochs echoes in
OpenSHMEM, but in OpenSHMEM the concept is more relaxed and does not ensure
the completion of operations, only the order.

6.2.3. Domain Specific Languages
Domain Specific Languages (DSLs) are not necessarily easier to use than the parallel
libraries mentioned above, since both categories have trivial and complex examples.
The way they are implemented can also vary considerably: some are simply C/C++
or Fortran libraries, others are a whole language with its own compiler. PATUS, for
example, uses a C-like syntax and adds special keywords that act like OpenMP directives
and clauses (Christen et al., 2011). It has been optimised to work on stencil codes
on structured grids, offering a number of strategies that differ in how the data and
computations are mapped to the hardware. It is quite limited in what the data layout
can look like and requires the structured grid to be represented as a struct of arrays.
Its code generation component uses OpenMP for parallelisation and CUDA to address
GPUs. Listing 6.2 shows a short code snippet using PATUS which performs two domain
decompositions (the subdomains are then processed in parallel) and then applies the
stencil operation in line 3.

On the other hand, Green-Marl is a more descriptive language that ends up being
compiled into equivalent C++ code. It specialises in parallelising graph analysis al-
gorithms (Hong et al., 2012). Listing 6.3 shows an example of code to traverse a graph.
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1 for subgrid v(blk1) in u[:;t] parallel
2 for subgrid w(blk2) in v[:,t] parallel
3 for point p in w[:,t]
4 ...

Listing 6.2.: Example of PATUS to apply a stencil (Christen et al., 2011).

1 Int sum=0;
2 Foreach(s: G.Nodes) {
3 Int p_sum = u.A;
4 Foreach(t: s.Nbrs)
5 p_sum *= t.B;
6 sum += p_sum;
7 }
8 Int y = sum / 2;

Listing 6.3.: Example of Green-Marl to traverse a graph (Hong et al., 2012).

In lines 2 and 4, the application iterates over all nodes and all their neighbours in parallel,
using a fork-join approach to sum one of their attributes.

OP2 and SPar are two DSLs that are preferably used to perform computations on
unstructured or structured grids (Christen et al., 2011; Mudalige et al., 2012).

The examples have clearly demonstrated the benefits of using DSLs: The programming
focus is not so much on constructing the necessary data structures or setting up the
parallelisation environment, but rather on expressing the problem itself. Since a DSL
knows its domain, it can then convert the expressed problem into actual code, taking
advantage of features such as compression, which can then be compiled into the final
binary.

6.2.4. Tool-Assisted Parallelisation
The last category is probably the easiest to use. This does not necessarily mean that
these solutions are less powerful than the previous ones. In some cases, they have a fairly
narrow use case, such as OpenACC, which focuses on offloading code kernels to GPUs.
Others like OpenMP mainly provide compiler directives that are transformed during the
compilation process. More explicit solutions such as pThreads may be able to achieve
better runtime performance, but are more difficult to use. And if difficult usability is a
deterrent to the majority of domain scientists, then a simpler solution, which may result
in lower potential performance, is preferable. OpenMP’s feature set has been growing
for over 25 years, and several examples throughout this thesis have also shown that it
has become quite capable.
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Since OpenMP and MPI have become a quasi-standard in HPC, there are a number
of tools that can be used to automatically generate code that includes OpenMP or MPI.
Polly analyses the IR of a source and uses polyhedral techniques (analysis focusing on
time dependencies and potential concurrency) to optimise it by parallelising loops with
inserted OpenMP directives (Grosser et al., 2012). Further development led to Molly,
which distributes computations in addition to Polly (Kruse, 2014). Its runtime uses MPI
for data exchange, but it is intended more as a prototype than for productive use. It
also requires that the loop boundaries can be derived statically. If they are based on a
dynamic user, for example, Molly cannot adjust the loop. On the other hand, CATO
can handle dynamic loop boundaries.

Two other approaches, like OpenMP, provide a language extension to C, but with
the ability to use distributed memory: XcalableMP and OpenMPD (J. Lee et al., 2007;
XcalableMP Specification Working Group, 2018). The user must explicitly cite the data
and work sharing using these directives. OpenMPD is based on the Omni OpenMP
compiler, which translates the directives into MPI code. XcalableMP has been integrated
into the Omni compiler and uses special directives which can then be transformed using
modern MPI features such as one-sided communication.

Hamidouche et al. (2011) developed a two-stage automatic framework for creating
hybrid MPI-OpenMP codes. The first phase is an analysis component to predict the
potential runtime of each function within the original code based on the size of the input
data. The user must then provide an XML file that roughly describes which functions
should be parallelised and when communication or synchronisation should take place.
The code generator then uses a Bulk synchronous parallel model with actual node and
core counts to estimate the best load distribution and generates the modified code.

Arora et al. (2014) have built an interactive tool, Interactive Parallelization Tool (IPT),
with a Graphical User Interface (GUI) so that a user can manually select code kernels
to parallelise. The user can decide whether the parallelisation should be done using
OpenMP, MPI or CUDA (a hybrid version is also possible). In a later extension, support
for MPI-IO was also added, so that the user can also instruct the tool to automatically
add parallel I/O to the code (Arora & Ba, 2019). It uses the ROSE compiler as a backend
to perform the code transformations. User interaction is not optional in this tool, the
user must provide the necessary information. And the I/O component is quite limited,
as it requires a specific pattern and delimiters.

Schneider et al. (2023) created MPI-rical, a tool for automatically inserting MPI
operations into serial code. MPI-rical uses machine learning to identify equivalent MPI
substitution code and a serial code. It has been trained on over 25000 serial code snippets
and 50000 MPI code snippets scraped from GitHub. It is already showing promising
results, but is still in an early stage of development, and as machine learning is based
on probabilities, there is no guarantee that the replacement code will be semantically
equivalent. So additional testing and manual user checks are probably advisable.

There are some tools that focus on code with existing OpenMP directives and translate
it to equivalent code using MPI instead. Saà-Garriga et al. (2015) has created a S2S
compiler using Mercurium as a code generation backend. The code analysis is triggered
by adding a new target clause and the transformation is then performed on the AST
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layer. A similar approach by Basumallik and Eigenmann (2005) uses Cetus as the code
transformation backend. Shared data is assigned to all processes, and updates are sent
based on a producer-consumer flow that tries to estimate potential consumers. Millot
et al. (2008) developed a solution for Fortran code, focusing on OMP SECTION and OMP
PARALLEL DO. All of these solutions focus on two-sided MPI communication which could
lead to higher latency.

There are also solutions for other languages such as Python and Java. They usually
analyse read and write operations in the source code to construct a dependency graph of
the data. From this graph, tasks are derived that describe a self-contained workflow of
operations. Fonseca et al. (2016) provides a runtime to create these tasks and schedule
their execution. Shirako et al. (2022) separates the focused tasks from the rest of the
code and uses polyhedral techniques similar to Polly to optimise and then distribute
them.

There is a large and diverse field of concepts for automatically distributing the
computation phase of an application. Many of them require the user to provide additional
information about what part of the code is of interest and how it should be handled.
This is a feasible approach for computer scientists, but could be overwhelming for domain
scientists who are not trained to use such tools. Fully automated concepts such as SSI
help to reduce this barrier, but are rarely found in the HPC domain. Other tools that
do not require the user to modify their code are limited to a specific use case or do not
care about optimising usable memory space.

6.3. Transparent Compression
Automated and transparent compression, where the user doesn’t have to do anything, is
currently limited in its implementation. Looking at different levels, from the application
close to the user to the system further away from the user, there are layers such as
hardware, system (low-level, operating system, file system), middleware and application.

In the context of HPC, there are compression options at the hardware level, such as
sensor-based compression, which filters data in physical experiments (Hung et al., 2013).
Closer to the HPC system, there are hardware components and technologies such as QAT
that provide efficient compression tools that can be used by lower system layers (Hu
et al., 2019).

At the FS level, there are several local FSs with limited adoption in the HPC domain.
The most prominent FSs in HPC are Spectrum Scale and Lustre, both of which support
server-side compression (Lustre only with a ZFS backend) (IBM, 2021; Kuhn et al.,
2016). There are ongoing developments for client-side compression (Blagodarenko &
Faber, 2023). These layers are virtually invisible to the user, require no action, and are
not consciously chosen. If the user is using such a system, they will automatically use its
features. However, these features are not widely establishe.d

Middleware provides more or less automated compression through the use of data
formats. Many data formats such as FITS (Flexible Image Transport System), CDF
(Common Data Format), DICOM (Digital Imaging and Communications in Medicine),
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HDF5 and netCDF provide compression functionality. In rare cases, such as when
data is transferred to the GRIB format, even lossy compression may occur without
user intervention (Iza-Teran & Lorentz, 2005). In most cases, the application developer
needs to explicitly enable compression (Delaunay et al., 2019). This can be more or less
complicated and acts as a threshold for conscious use (Knox & Pourmal, 2018; Pourmal
& Knox, 2017). At this point, the user has control over, but also responsibility for, the
conscious use of the feature.

In the case of netCDF and its HDF5 backend, compression is applied opaquely, so
the user must at least insert specific calls during the definition of a variable to enable
compression. If this step is not taken, no compression will be applied. CATO intervenes in
this step and inserts the necessary compression calls. To the best of my knowledge, there
is no related work that automatically transforms source code to enable the compression
features of a used library.

6.4. Summary
In this section several different approaches have been presented for running computations
on distributed memory. One promising approach was the concept of virtual shared
memory, as this makes the underlying distributed memory hardware transparent to the
user. In particular, the SSI concept means that the application does not need to be
modified at all. It is simply executed on an SSI and the OS takes care of handling the
application’s memory access requests. SSI had its heyday in the 2000s, and at least
within the software layer it is hardly used within HPC.

PGAS describes an abstraction of memory space within the software layer. Following
this concept, for example, is the OpenSHMEM standard, which offers a similar feature
set as one-sided MPI.

In addition, several approaches have been presented that aim to achieve distributed
execution of OpenMP applications. Although there are some promising concepts, they are
no longer supported (e.g. TreadMarks) or require code changes (e.g. the Omni OpenMP
compiler and OpenMP’s remote offloading capabilities). Although the code changes
would probably be unambiguous, at least they belong to the intermediate feature set,
which could be a problem for domain scientists.

The alternative is not to rely on virtual shared memory, but to make the memory
allocation more explicit. And although there are many different solutions, such as parallel
libraries and DSLs, they probably require even more code changes in this case. A real
alternative might be tools that do the necessary code transformations automatically. And
while there are a few that can actually transform OpenMP code into equivalent MPI,
this is only the first step of CATO, which also supports parallel I/O and compression
based on netCDF.

The only tool from , which could at least support automatic insertion of MPI and
MPI-IO for parallel I/O into a high-level source was IPT. However, it requires interactive
input from the user and is quite limited, at least within the I/O component (only one
element can be written at a time and a delimiter is required).
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7. Evaluation

Now that the design of CATO is complete, a prototype has been built and will now
be tested. The discussion in the introduction (cf. Chapter 1) led to the decision to
implement three components in CATO, which will be evaluated in this chapter. The main
components are memory distribution (Section 7.3.1) and parallel IO and compression
(Section 7.3.3). The feedback component is also considered in Section 7.3.4, although it
is less relevant in terms of performance. Secondary side effects on the binary caused by
CATO will be discussed in Section 7.3.5 at the end.

At first, an appropriate testing strategy is set up in Section 7.1 and the test environment
is defined in Section 7.2.

7.1. Speedup Limitations

This section runs and evaluates a number of micro-benchmarks, focusing on OpenMP
and netCDF. The use of automatic code transformation will have an impact on the
resulting performance of the modified binaries as new frameworks are used and new
execution configurations become possible. The question then emerges as to what the
measurement strategy should be to assess whether or not the initial objectives of the
Section 1.2 are being met. To clarify this, a general performance model is used to get a
feel for the potential outcome.

The general question is how well the modified application benefits from an HPC system,
given an unlimited amount of resources. Using speedup or speedup efficiency gives a
single result that can be used to assess the performance benefit of an application using
more COUs. Whether a COU is a software unit (e.g. thread or process) or a hardware
unit (e.g. core or CPU) depends on the context. For this theoretical investigation, the
true nature of the COUs is irrelevant. The following definitions follow Sun and Ni (1993).
The intermediate steps are therefore omitted, and only the relevant results are used in
this section.

Speedup describes the scaling behaviour of an application as the number of COUs
increases. There are different views on this term, each with a different emphasis: Fixed-
size speedup and fixed-time speedup. Their effect on the time and workload metrics
varies, Figure 7.1 shows an abstract representation. The following equations will confirm
this.
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Figure 7.1.: Comparing the effects of focusing on fixed-size or fixed-time speedup on the
handling of time and workload (based on Sun and Ni, 1993).

7.1.1. Fixed-Size Speedup
For fixed-size speedup, the workload remains the same while the runtime varies. The
focus is on the ability to reduce execution time. Equation (7.1) shows the baseline.

SN(W ) = T1(W )
TN(W ) (7.1)

With:

W Workload
Ti(W ) Execution time to complete workload W using i many COUs

SN(W ) Speedup on workload W using N many COUs

Sun and Ni are now considering some restrictions:

• The workload cannot be divided into arbitrarily small chunks. If the limit is m,
then W = ∑m

i=1 Wi.

• Once there are at least two COUs involved, they must interact with each other.
Whether it is using locks on shared memory or sending messages over the inter-
connect, the interaction introduces latency. This latency is accounted for by the
notion of QN(W ).

Following these constraints, Equation (7.1) is rewritten:
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SN(W ) =
∑m

i=1 Wi(∑m
i=1

Wi

i
d i

N
e
)

+ QN(W )
(7.2)

With:

m Maximum parallelism degree of W

QN(W ) Latency induced by using N COUs on workload W

If latency is neglected and it is assumed that there are only two workload classes W1
and WN with W1 + WN = 1, Equation (7.2) can be further simplified:

SN(W ) = W1 + WN

W1 + WN

N

(7.3)

= 1
W1 + WN

N

(7.4)

lim
N→∞

SN,max(W ) ≤ 1
W1

(7.5)

So this simplification leads to Equation (7.4) or its estimate in Equation (7.5) for the
case of infinitely many COUs, which is Amdahl’s law (Amdahl, 1967) and allows an
estimate of the maximum potential fixed-size speedup.

7.1.2. Fixed-Time Speedup
In fixed-time speedup, the execution time is fixed and the workload size varies. In this
case, the focus is on the ability to scale up a problem and still solve it within the fixed
time interval. W ′ is again the workload, but this time it is scaled proportionally to the
number of COUs. The first term looks like Equation (7.1) using now dynamic workload
sizes. Since the time is fixed, the condition T1(W ) = TN(W ′) is true (cf. Figure 7.1).

SN(W ′) = T1(W ′)
TN(W ′) (7.6)

=
∑m′

i=1 W ′
i(∑m′

i=1
W ′

i

i
d i

N
e
)

+ QN(W ′)
(7.7)

Using the same simplification as in the treatment of fixed-size speedup, Equation (7.7)
can be simplified:
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Figure 7.2.: Estimate the maximum potential speed-up as the number of COUs increases
from a fixed size or time size perspective.

SN(W ′) = W1 + N ·WN

W1 + WN

(7.8)

= W1 + N ·WN (7.9)
lim

N→∞
SN,max(W ′) ≤ ∞ (7.10)

Equation (7.9) or its estimate in Equation (7.10) for the case of infinitely many COUs
is the result of Gustafson’s law (Gustafson, 1988).

Choosing a Speedup Variant

Choosing the fixed-size speedup following Amdahl would lead to a rather pessimistic
speedup estimate (Furtunato et al., 2020). Using a fixed-size speedup puts the emphasis
on a high proportion of code that can be executed in parallel. The higher the potential
maximum speedup, the more efficiently the processing units can be used. This view is of
interest if the goal is to minimise execution time by using more COUs, or if the input
problem does not scale well.

The second approach, using a time-fixed speedup according to Gustafson, emphasises
the ability to scale the input problem with minimal negative impact on the computational
performance per COU. This approach is preferable when the input problem can be scaled
easily and the user benefits from it.
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Figure 7.2 shows the potential maximum speedup with respect to different ratios
between serial and parallel code. Amdahl requires high parallel ratios to achieve significant
speedup, but there is actually an upper limit. Gustafson offers a more optimistic speedup
with no upper bound.

For comparison purpose both speedup variants will be analysed during the final
evaluation. Amdahl’s approach will be considered during the strong scaling benchmarks,
in which the problem size stays fixed and the number of COUs is increased. The other
side, Gustafson’s approach, is represented through weak scaling benchmarks, in which the
problem size and number of COUs are increased proportionally. The question remains
which speedup variant is more relevant for the problem statement of this work. In
Section 1.1.2 use cases were discussed that benefit from larger datasets to extend or
improve their expressiveness. An automatic code transformation approach to try out
several HPC frameworks that will be used to enable larger data sizes suggests that the
weak sclaing benchmark will give a meaningful evaluation. Since the original goal was
to reduce the memory consumption per COU, one evaluation will focus on the memory
trend.

7.2. Test Environment
Three systems were used to run the benchmarks. The first two are typical HPC systems
on which most of the benchmarks were run.

The first is Levante, located at DKRZ in Hamburg (Deutsches Klimarechenzen-
trum GmbH, n.d.-b, 2021). It is currently ranked 60th on the Top500 list from June
2023 (Strohmaier et al., 2023). The compute nodes used have two AMD 7763 CPUs with
a total of 128 cores and 256 GB/512 GB/1024 GB main memory. They use a 100 Gb/s
InfiniBand interconnect and are connected to an ExaScaler 5 (ES7990X) storage system
from DDN (Microway, 2023). The storage nodes even use 200 Gb/s InfiniBand, so unless
multiple nodes are fully loading a single Lustre server, the compute nodes’ 100 Gb/s
InfiniBand interconnect will not bottleneck the I/O servers. The analysis of Slurm job
logs carried out in Section 1.3.2 was performed on Levante’s predecessor system, Mistral.
The nodes are running a Red Hat Enterprise Linux Release 8.6 OS. As a parallel FS it
uses Lustre 2.12, modified by DDN. The corresponding libraries were installed using
spack: LLVM 13.0.0, netCDF 4.9.2 with HDF5 1.10.8 and MPICH 3.4.2.

The other HPC system is the research cluster of the Scientific Computing group (from
now on abbreviated to WR-Cluster) at the University of Hamburg (WR, 2023). The
compute nodes used have two Intel Xeon X5650 CPUs with a total of 12 cores and
12 GB of memory. They use a 1 Gb/s Ethernet connection and are equipped with a
Lustre 2.15.2 parallel FS. The clients’ OS is Ubuntu 20.04 and the relevant libraries
have been installed using spack: LLVM 13.0.0, netCDF 4.9.0 with HDF5 1.12.2 and
MPICH 4.0.2. The servers use Rocky 8.7 and have a Intel Xeon E31275 CPU with
four cores and 16 GB of memory.

The last system is a desktop PC used for the compression benchmarks in Section 7.3.3.
It has a single Intel Core i7-6700 CPU with a total of 4 cores and 32 GB of main memory.
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Its local FS is ext4 and the OS is Fedora 37. The appropriate libraries have been installed
using spack: LLVM 13.0.0, netCDF 4.9.0 with HDF5 1.12.2 and MPICH 4.0.2.

To measure the runtime and memory consumption of an application run, the CATO’s
metric collection component is used (cf. Section 5.4.3), which prints out the total runtime,
an estimate of the total maximum memory consumption, and the maximum memory
consumption per process.

The benchmarks are run against a variety of applications. For the runtime and memory
consumption tests in the evaluation, a mimic version of partdiff is used, which was
presented in Section 4.1.3. The emulated version of partdiff removes most of the user
interface and reduces the complexity of the code, but retains the central computation
component, which uses a stencil pattern to compute on a two-dimensional matrix using
the Jacobi method. As with the original version of partdiff, the runtime of the mimic
version is manipulated by a single parameter that sets the side length of the internal
two-dimensional matrix. Therefore, the computational cost is expected to increase
quadratically with the side length of the matrix. All mentions of partdiff in this
chapter refer to the mimicked version.

Since partdiff does not use I/O, it could not be used for the I/O benchmarks.
Instead, a netCDF micro-benchmark was written, which has no significant computational
load, but focuses on reading a netCDF file. For compression evaluation, a netCDF
micro-benchmark has been created that writes netCDF files with different data patterns.

7.2.1. Current State of Functionality
partdiff covers already many popular OpenMP features (cf. analysis of GitHub repos-
itories in Section 3.2.1). CATO is not feature complete, it is not capable of transforming
arbitrary OpenMP code. Unsupported directives are simply ignored, or cause the ap-
plication to behave differently if the ignored directive had a significant impact. The
focus of CATO is on the parallel or parallel for directive and the private and
shared clauses. Related clauses such as firstprivate or lastprivate work in principle,
even though they are not used by partdiff. The reduction clause and the critical
directive are also supported. A more detailed description can be found in Section 5.2.1.

To check the functionality of CATO, a small test script has been created to modify
several micro-testkernels with CATO. Each micro-testkernel focuses on a single variable
that is accessed in a specific way in an OpenMP kernel. The type of variable also changes,
it can be a scalar or dimensional variable allocated on the stack or heap. In the OpenMP
kernel it is declared as shared or private and is read or written to. In some cases
where a private heap variable should be accessed, it was necessary to use firstprivate
instead of private so that the initial value is retained when the OpenMP kernel is
entered. Otherwise, the memory address allocated before the OpenMP kernel will not
be preserved when the OpenMP kernel is entered.

The result of the functionality check is shown in Table 7.1. Most of the 16 possible
combinations work, with a few exceptions. These were not needed for partdiff and
have been postponed. Some can also be handled with a workaround, e.g. the variable
from the private stack read scalar test case could be embedded in a single element array.
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Heap Stack
read write read write

private dim X X X X
scalar X ∼ X X

shared dim X X X ∼
scalar X X X X

Table 7.1.: Overview of the implementation status of CATO regarding variable properties.
X: CATO cannot generate modified binary yet.
∼: Modified binary is created, but its execution hangs in an infinite loop.
∼: Binary execution terminates, but the result is wrong.
X: Result of the modified binary matches the output of the original binary.

7.3. Evaluation of CATO
This section evaluates the suitability of CATO to support the users of the ESS com-
munity addressed in Section 1.3.2. The following Sections 7.3.1, 7.3.3 and 7.3.4 will
use benchmarks to evaluate CATO from the perspectives identified as relevant by the
research questions set out in Section 1.2. The final Section 7.3.5 will address some final
secondary considerations.

7.3.1. CATO Component: Memory Distribution
The main goal of the CATO’s memory component is to automatically allocate memory
so that larger input problems can be computed. First, the impact of the change on the
runtime is examined, and how well it scales with increasing number of processes and
nodes. The number of nodes and COUs (threads or processes) used are combined into
a configuration C(N-n), where N is the number of nodes used and n is the number of
COUs used per node. This notation is used in almost all visualisations.

There are two relevant runtimes that are measured: the loop time and the total time.
The loop time is measured and printed internally by the application itself and includes
only the actual computation loop. It excludes everything before and after it, such as data
initialisation. The total time is measured with CATO for the modified binary or with
Linux time command for the unmodified binary. Measuring both values gives additional
insight into the potential overhead of the modified version during the initial setup and
finalisation phases.

During testing, it became apparent that the same problem sizes could not be used for
the unmodified and modified binaries. Jobs running the modified binary ran significantly
longer than jobs running the unmodified binary and were aborted due to system timeout.
Therefore, larger input sizes have been used for jobs running the unmodified binary,
so that the runtime trend of both versions can still be compared. The length of the
square matrix dimension is given as MD in the figure captions to facilitate comparison.
For strong scaling tests the dimension size remains the same for all configurations, for
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Figure 7.3.: Strong scaling with unmodified binary (WR-Cluster, MD: 25000).

weak scaling tests it is the dimension size for the first configuration C(1-1) (even if it
is not printed in the corresponding visualisation) and is then scaled according to the
number of participating COUs. To facilitate comparison of the results of the modified
binary of Levante and WR-Cluster, the same job files with the same partdiff input
parameters have been used. Only the number of processes used has been adjusted to suit
the system configuration. To reduce the effect of the initialisation phase of the binaries,
40 iterations of partdiff were computed in all benchmarks. The results of the strong
and weak scaling benchmarks are discussed first, followed by an analysis of the runtime
behaviour.

Strong scaling

First, the strong scaling behaviour is evaluated, i.e. the number of COUs is increased
while keeping the input size fixed. Figure 7.3 shows the results of the WR-Cluster using
up to 24 threads (taking advantage of hyper-threading). The results of the corresponding
benchmark run on Levante are shown in Figure 7.4. The visualisations show a good
strong scaling behaviour, so the threads are used quite efficiently. The compute nodes on
Levante’s are better equipped than the compute nodes on WR-Cluster, so the absolute
runtimes on Levante are faster.

Contrary to expectations, the modified binary has a significantly worse runtime. In
order to stay within system time limits (especially on Levante), the problem size had to
be reduced from 25000 (used by the unmodified binary) to 60.

Figure 7.5 shows runtime results for the WR-Cluster. On a single node (C(1-x)) the
runtime decreases as more processes are used, but from C(1-12) the runtime increases
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Figure 7.4.: Strong scaling with unmodified binary (Levante, MD: 25000).

again. This could be due to the hardware configuration of WR-Cluster: each compute
node uses two CPUs with six cores each (two NUMA nodes). So, probably starting with
C(1-12), the performance of intra-node communication decreases as soon as another
NUMA node needs to be accessed.

Even more drastic is the increase in runtime when a second compute node is used.
In the best case, C(1-2) and C(2-1) should have the same run time, but the Ethernet
connection is likely to degrade performance. Except for the C(5-x) configurations,
all multi-node configurations have significantly worse strong scaling behaviour, as the
average runtime does not decrease but increases with more processes. On the C(5-x)
configurations there is at least a decrease in runtime, except when switching to C(5-24).

The pattern of partdiff described in Section 4.1.1 does not require all-to-all commu-
nication between processes, but only communication between neighbouring processes.
Therefore, at most two processes need to perform inter-node communication, the rest
will always perform intra-node communication. Going from a single node configuration
to a dual node configuration showed a significant increase in runtime: This may be an
offset in the runtime that affects any multi-node configuration.

The corresponding runtime results on Levante are shown in Figure 7.6. Not only
is the absolute runtime worse, but the scaling behaviour is also comparatively worse.
The absolute runtime of the longest runs is significantly longer, even though the same
matrix size is used: 23.04 s on C(4-4) (WR-Cluster) instead of 17 886.1 s on C(5-64)
(Levante). Since the input matrix has a rather small dimension (60× 60), C(5-64) (320
processes in total) is probably not suitable anyway, as the amount of computation on
each process is too small to achieve good performance. However, even on a probably more
suitable configuration, such as C(1-4), the result is similar: 0.834 455 s on WR-Cluster
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Figure 7.5.: Strong scaling with modified binary (WR-Cluster, MD: 60).

compared to 913.4 s on Levante. This is unexpected, as both the compute component
and the InfiniBand interconnect are significantly more powerful than their WR-Cluster
counterparts, as demonstrated by the strong scaling benchmarks using the unmodified
binary. Apart from a longer worst case runtime, the single node configuration also has
really long runtimes with core counts starting at four. This cannot be attributed to an
interconnect bottleneck.

Weak Scaling

Given the primary goal of CATO, the weak scaling behaviour is important. The size of the
matrix dimension in partdiff is chosen so that the number of matrix elements increases
linearly with the number of COUs. Figure 7.7 and Figure 7.8 show the weak scaling
results on Levante and WR-Cluster respectively for the unmodified binary. As before in
the weak scaling benchmarks, the unmodified binary has good scaling behaviour as the
runtime is quite stable. There is a significant increase in runtime when using 24 instead
of 12 threads on WR-Cluster, but this can probably be attributed to hyper-threading as
a single node only has 12 physical cores in total. The run with 64 threads on Levante
shows a visible difference between the total runtime and the loop runtime; this may be
due to the thread creation overhead.

The benchmarks on the modified binary show a similar overall picture to the high
scaling benchmarks. For the first four configurations on WR-Cluster in Figure 7.9, the
impression is still that there might be a fairly constant runtime, which is to be expected
in a weak scaling benchmark. However, the following configurations all have significantly
worse runtimes. Again, the bottleneck is communication between nodes, as C(2-1) has
a longer runtime than C(1-2). The overhead introduced by CATO and the share of
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Figure 7.6.: Strong scaling with modified binary (Levante, MD: 60).
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Figure 7.7.: Weak scaling with unmodified binary (WR-Cluster, MD: 5100).
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Figure 7.8.: Weak scaling with unmodified binary (Levante MD: 5100).

message passing communication affect the runtime performance.
Again, the general view in Figure 7.10 on Levante shows similar behaviour to the

corresponding strong scaling benchmark (cf. Figure 7.6). Configurations C(x-1) and
C(x-2) have passable scaling behaviour, but all other configurations have a large offset
in runtime that does not resemble a constant trend in runtime. In this case, some
configurations (e.g. C(5-8)) could not be executed within the time limit on Levante. As
the initial size of the matrix dimension is set to 40, which is already quite small, the
missing configurations have been omitted, as it is expected that they still follow the
trend.

7.3.2. Runtime Influences
The scaling benchmarks show that the modified binary performs worse than the un-
modified binary in terms of absolute runtime. Although the basic idea is that a slower
runtime is acceptable in exchange for the ability to compute larger input problems, the
change in runtime cannot be ignored.

The benchmarks show a wide range of runtimes. To facilitate comparison, the following
four visualisations, Figures 7.11 to 7.14, show the performance factors.

A performance factor indicates how much a particular configuration deviates from the
expected result if it had perfectly followed the weak scaling or strong scaling trend. As
the single-node jobs ran significantly faster than the multi-node jobs, all factors refer
to the corresponding C(x-1) configuration. Optimal weak scaling results in a constant
runtime, so the performance factor is the result of C(x−y)

C(x−1) . For the strong scaling factor,
the number of participating processes per node has multiplied up (C(x−y)

C(x−1) · y), because
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Figure 7.9.: Weak scaling with modified binary (WR-Cluster, MD: 40).
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Figure 7.10.: Weak scaling with modified binary (Levante, MD: 40).

163



Chapter 7 – Evaluation

1-
1

1-
2

1-
4

1-
6

1-
12

1-
24

 
2-

1
2-

2
2-

4
2-

6
2-

12
2-

24
 

3-
1

3-
2

3-
4

3-
6

3-
12

3-
24

 
4-

1
4-

2
4-

4
4-

6
4-

12
4-

24
 

5-
1

5-
2

5-
4

5-
6

5-
12

5-
24

 

Configuration

100

101

102

Fa
ct

or
Performance Factor - Strong Scaling

Baseline
C(1-1)
C(2-1)

C(3-1)
C(4-1)
C(5-1)

Figure 7.11.: Performance factors of strong scaling with modified binary (WR-Cluster,
MD: 60).

optimal strong scaling does not have a constant, but a linearly decreasing runtime. If a
configuration behaves as expected, it has a factor of 1 (dashed line).

The results for WR-Cluster (cf. Figures 7.11 and 7.13) and for Levante (cf. Figures 7.12
and 7.14) show that in both cases the weak scaling performs better than the strong
scaling. Regardless of the absolute runtime, this is promising since the design of CATO
was deliberately chosen to focus on weak scaling. Figure 7.13 shows that there are
several configurations with good prospects near the expected baseline. In particular,
configurations that use few processes per node do quite well. This suits CATO well,
as the main goal is to allow the computation of larger input problems, and the fewer
processes involved, the greater the potential memory share per process on a node.

There are a few factors that may have affected the runtime, and these will be discussed.

Interconnect The offset that appeared in the runtime of the modified binary once
the execution was spread across multiple nodes was expected. CATO adds MPI
communication operations to the original code, which are executed quite often
during the benchmarks. Since the latency and bandwidth of the interconnect is an
order of magnitude worse than that of the internal bus system of a single node, this
leads to a bottleneck as soon as inter-node communication is used. When deriving
Gustafson’s law (cf. Section 7.1), the authors neglected the influence of latency to
keep things simple. This latency now shows up in the benchmark results.

Conditional branches A general runtime degradation is expected due to the way CATO
handles variables on the heap (cf. Section 5.2). As the template traverses the
matrix, it accesses each cell and its four immediate neighbours. The modified
binary must then check for each access whether the memory address belongs to
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Figure 7.12.: Performance factors of strong scaling with modified binary (Levante, MD:
60).
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Figure 7.13.: Performance factors of weak scaling with modified binary (WR-Cluster,
MD: 40).
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Figure 7.14.: Performance factors of weak scaling with modified binary (Levante, MD:
40).

its own share or is held by another process. If it is on another process, it must be
retrieved using MPI, otherwise a local access operation is used.

Halo lines The processes must exchange data from the boundary lines, the halo lines (cf.
Figure 4.2). Let the dimension of the matrix be dim and the number of processes
n. CATO’s modification of partdiff distributes the matrix by rows and keeps the
number of columns intact. Assuming two neighbouring processes (and therefore
two halo lines), and neglecting that the neighbouring processes also request local
lines, this results in the following proportion H of halo line elements to internal
(not part of a halo line) elements:

H(n) = 2 · dim
dim2

n

(7.11)

= 2 · n
dim (7.12)

Equation (7.12) shows that the share of halo line elements increases as more
processes are used or as the matrix dimension becomes smaller.

The fraction can be adjusted with respect to a strong scaling factor s, which
increases the number of processes, or a weak scaling factor w, which increases both
the number of processes and the number of elements.
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H(n, s) = 2 · n · s
dim (7.13)

H(n, w) = 2 · n · w
dim ·

√
w

(7.14)

= 2 · n ·
√

w

dim (7.15)

The proportion of halo line elements grows faster for strong scaling (Equation (7.13))
than for weak scaling (Equation (7.13)). This again favours CATO’s focus on weak
scaling, as internal (intra-process) communication on non-halo elements is likely to
be cheaper than external (inter-process) communication.

Matrix size Compared to the unmodified binary benchmark, the size of the matrix
dimension had to be kept small to meet the maximum job runtime on the test
systems. In this case, load balancing can become difficult because the number of
rows per process decreases when using a small matrix but many processes. If the
distribution is not even (there are remaining rows), then some processes will have
to take an extra row. And if there are not many rows in total, some processes
will have to take on significantly more load than other processes, and therefore
take more time. In addition, a smaller matrix size leads to a higher proportion of
(expensive) halo elements, which could particularly affect the strong scaling results.

Experimental Software Cache

It can be assumed that the overhead caused by MPI communication, compared to the
local operations performed by the original OpenMP code, degrades runtime performance.
Some relief could be provided by implementing a software cache. partdiff has many
single element accesses during the stencil operations, which are replaced by CATO with
a corresponding MPI. It would be beneficial to use a software cache, so that an MPI
operation does not just retrieve a single value, but an array of values, speculating that
they will be needed in the near future. The stencil pattern moves through the matrix
line by line, so this would definitely lead to many cache hits. And these would reduce
the runtime.

There is an experimental version of a software cache in CATO, which has been
implemented in a master’s thesis supervised by me. Based on these results, which have
also been published in Squar et al., 2020, Figures 7.15 and 7.16 show a modified partdiff
version running on the WR-Cluster. The first figure demonstrates the strong scaling
capabilities of the WR-Cluster. There is still some offset between the two runtimes,
but this time the unmodified and modified binaries have been run with the same input
parameters. And this time the offset is only about a factor of 2, while the weak scaling
behaviour remains as before.

However, this feature has been implemented with very specific optimisations to the
stencil pattern. Before it can be integrated into CATO, further work on generalisations
is needed.
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Figure 7.15.: Potential strong scaling using a software cache on up to two nodes (WR-
Cluster, MD: 10008) (Squar et al., 2020).
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Figure 7.16.: Potential weak scaling using a software cache (WR-Cluster, MD:
1552) (Squar et al., 2020).
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Memory Consumption

CATO focuses on optimising the memory footprint of an application by distributing heap
memory so that larger problems can be computed. Therefore the memory consumption
is examined. For demonstration purposes, the measurements from the weak scaling
benchmarks have been used.

The benchmark on the unmodified binary on WR-Cluster and Levante respectively is
shown in Figures 7.17 and 7.18. The peak memory consumption starts at 408 977 kB
(WR-Cluster) or 409 916 kB, which is quite close to the minimum requirement of the
stencil matrix: 5100 · 5100 · 2 · 8B ≈ 406406kB (two matrices filled with values of type
float). The other configurations also scale quite well.

The corresponding benchmarks on the modified binary are shown in Figures 7.19
and 7.20 and the initial peak memory consumption is 1034 kB on both systems. The
matrix used has a dimension size of 40, so its share of the process memory requirement
is 40 · 40 · 2 · 8B = 25kB. Moving to a two-process configuration has a visible effect
on the peak memory usage. This should not be caused by CATO, and perhaps the
reason lies in the MPI implementation, which handles a single process differently to a
multi-process environment. This is the only notable jump, the trend in peak memory
usage behaves as expected and scales quite well. In particular, the average peak memory
usage has a good scaling behaviour. On WR-Cluster it starts at C(1-1) with an average
peak consumption of 1034 kB and ends at C(5-24) with an average peak consumption of
9105 kB. The memory footprint of a single process increased by a factor of 8.8, while
a total of 120 processes could be used. The average peak memory consumption is not
optimal, because CATO adds some mandatory overhead to the application’s memory
footprint (cf. Figure 4.4). For larger input problems this would not be significant, because
the overhead scales with the number, but not the size, of heap variables.

7.3.3. CATO Component: Input/Output
The previous section showed some bugs in the runtime of the modified binary, but also
showed that the memory usage is optimised so that larger input problems can now be
computed. Based on this result, the parallel I/O component of CATO is now evaluated.

Parallel Input/Output

To demonstrate the ability of CATO to perform parallel I/O, a microbenchmark is used
that loads a netCDF file with a one-dimensional variable whose size is adjusted during
the evaluation. The input file is freshly generated inside the attached parallel FS (Lustre)
before each benchmark run to avoid cache effects. Each run is repeated three times.
On WR-Cluster there are five compute nodes connected to Lustre, so this is the upper
limit of the possible node count. On Levante all 2832 nodes from the compute partition
are connected to Lustre. To facilitate comparison with the results from WR-Cluster,
and because no additional insights are expected from using more nodes, the limit has
been set at ten nodes. Therefore, the striping of the input files has been set to 5 for
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Figure 7.17.: Peak memory consumption of unmodified binary using weak scaling (WR-
Cluster, MD: 5100).
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Figure 7.18.: Peak memory consumption of unmodified binary using weak scaling (Le-
vante, MD: 5100).

170



Chapter 7 – Evaluation

1-
1

1-
2

1-
4

1-
6

1-
12

1-
24 2-

1
2-

2
2-

4
2-

6
2-

12
2-

24 3-
1

3-
2

3-
4

3-
6

3-
12

3-
24 4-

1
4-

2
4-

4
4-

6
4-

12
4-

24 5-
1

5-
2

5-
4

5-
6

5-
12

5-
24

Configuration

103

104

105

106

M
em

or
y 

[k
B]

Modified Binary - Memory Requirements
Sum
Avg

Figure 7.19.: Peak memory consumption of modified binary using weak scaling (WR-
Cluster, MD: 40).
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Figure 7.20.: Peak memory consumption of modified binary using weak scaling (Levante,
MD: 40).
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WR-Cluster and 10 for Levante to match the maximum number of nodes used in this
benchmark, so that in the best case each process accesses a different block device.

The efficiency metric can be used to judge how well additional COUs improve the
runtime and memory footprint. It is calculated as defined in Equation (7.17):

S(n) = M(1)
M(n) (7.16)

E(n) = S(n)
n

(7.17)

With:

n Number of used COUs
M Measured metric (e.g. time or memory consumption)

S(n) Metric speedup using n COUs
E(n) Metric efficiency using n COUs

All tested configurations use one process per node and three file sizes have been tested:
5 GiB, 10 GiB and 50 GiB.

Figure 7.21 shows the results of the 5 GiB test case executed on WR-Cluster. The
first configuration 1-1 shows that there is no advantage to the modified binary if no
additional processes are used. Both binaries (unmodified and modified) are bottlenecked
by the 1 Gb Ethernet network, which sets the minimum runtime for reading a 5 GiB file
to at least 42.95 s. This is roughly the runtime of both binaries (with some additional
initialisation overhead), and both processes have a memory footprint of 5 GiB. This
changes once the modified binary can use additional processes: The runtime scales down
quite efficiently, as does the memory footprint of a single process (cf. Table 7.2). If
two processes are used on two nodes, the runtime is approximately halved because each
process only needs to read half the data due to memory sharing.

The same benchmark has been repeated on Levante (cf. Figure 7.22) and the results
from Table 7.3 show again that memory consumption scales quite well with the increasing
number of nodes used. Compared to the same run on WR-Cluster, the runtime is worse
than the unmodified binary. Only the 8-8 configuration could keep up. Compute nodes
on Levante are connected via a 100 Gb InfiniBand to the Lustre storage servers, so the
network bottleneck limits the time to read a 5 GiB file to 0.43 s. The unmodified binary
takes considerably longer, probably due to the startup overhead. As the I/O phase is
quite short, it no longer has a significant impact on the runtime. The same reasoning
applies to the modified binary, where the initialisation of the application and its MPI
environment takes significantly longer than I/O, which cannot be sped up by using more
processes. So there is no advantage or disadvantage in terms of runtime, only a decrease
in runtime efficiency. However, the application benefits from a smaller memory footprint,
which again scales quite well with increasing number of nodes.
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Figure 7.21.: Trend of memory consumption and runtime on WR-Cluster using a 5 GiB
netCDF file. Table 7.2 shows the efficiency.

Configuration 1-1 2-2 3-3 4-4 5-5
Runtime Efficiency [%] 100.3 95.9 86.9 82.4 82.2
Memory Efficiency [%] 99.9 99.7 99.6 99.4 99.3

Table 7.2.: Efficiency of parallel I/O on WR-Cluster reading a 5 GiB netCDF file visual-
ised in Figure 7.21.

Configuration 1-1 2-2 3-3 4-4 5-5 6-6 7-7 8-8 9-9 10-10
Runtime Efficiency [%] 88.6 26.7 21.5 19.3 14.9 11.2 11.8 12.2 9.9 9.0
Memory Efficiency [%] 99.9 99.8 99.7 99.7 99.6 99.5 99.4 99.2 99.2 99.1

Table 7.3.: Efficiency of parallel I/O on Levante reading a 5 GiB netCDF file visualised
in Figure 7.22.
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Figure 7.22.: Trend of memory consumption and runtime on Levante using a 5 GiB
netCDF file. Table 7.3 shows the efficiency.

Figure 7.23 shows the results of reading the 10 GiB file on WR-Cluster. In this
test, the first configuration with one process and one node (1-1 ) failed. It failed with
error code NC_EHDFERR inside the netCDF. partial read call. According to the netCDF
documentation, this indicates an error in the HDF5 layer. This error could be reproduced
on both systems with sufficiently large files. Therefore, the measurements for configuration
1-1 for the 10 GiB file and all configurations from 1-1 to 6-6 for the 50 GiB file are
missing because they all failed with the same error. In all cases, this error was thrown
when a single process tried to read a chunk size of at least something between 7.1 GiB
and 8.3 GiB. This will be discussed in future work in Section 8.2.

Other than that, memory usage behaves as before. The total memory consumption is
quite stable, and the memory share per process decreases in proportion to the number of
nodes. The runtime of the modified binary also decreases in proportion to the number of
nodes, as each process only needs to read a portion of the whole file. Again, the network
is likely to be the bottleneck: Reading a 10 GiB file over an Ethernet network with a
1 Gb bandwidth takes at least 85.9 s. This is close to the serial I/O duration of 106.7 s.

Running the same test case on Levante gives the results shown in Figure 7.24. Due
to the bug mentioned above, C(1-1) failed. The limit imposed by InfiniBand to read a
10 GiB file is now 0.86 s, so still not the dominant cause of the runtime. However, the
effect can already be seen, as the general level of runtime is higher than in Figure 7.21,
which used the same configuration except for the input file. Apart from that, the efficiency
in Table 7.5 is comparable to the run on the 5 GiB file (cf. Table 7.3).

The last I/O benchmark is run on a 50 GiB netCDF file. This could only be run
on Levante because the bug that is triggered when reading more than 7 GiB requires
at least seven nodes connected to Lustre, which is not the case on WR-Cluster. The
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Figure 7.23.: Trend of memory consumption and runtime on WR-Cluster using a 10 GiB
netCDF file. Table 7.4 shows the efficiency.

Configuration 2-2 3-3 4-4 5-5
Runtime Efficiency [%] 94.2 88.9 84.0 83.5
Memory Efficiency [%] 99.9 99.8 99.7 99.6

Table 7.4.: Efficiency of parallel I/O on WR-Cluster reading a 10 GiB netCDF file visu-
alised in Figure 7.23.

Configuration 2-2 3-3 4-4 5-5 6-6 7-7 8-8 9-9 10-10
Runtime Efficiency [%] 27.5 22.2 19.4 15.4 15.3 16.4 13.1 9.9 9.0
Memory Efficiency [%] 99.9 99.9 99.8 99.8 99.7 99.7 99.6 99.6 99.5

Table 7.5.: Efficiency of parallel I/O on Levante reading a 10 GiB netCDF file visualised
in Figure 7.24.
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Figure 7.24.: Trend of memory consumption and runtime on Levante using a 10 GiB
netCDF file. Table 7.5 shows the efficiency.

Configuration 7-7 8-8 9-9 10-10
Runtime Efficiency [%] 61.8 57.3 60.9 50.6
Memory Efficiency [%] 99.9 99.9 99.9 99.9

Table 7.6.: Efficiency of parallel I/O on Levante reading a 50 GiB netCDF file visualised
in Figure 7.25.

results are shown in Figure 7.25 and the corresponding efficiency in Table 7.6. Again,
the memory efficiency scales very well. The runtime efficiency became much better than
in the benchmark on the 10 GiB file (cf. Table 7.5). The limit set by InfiniBand for
reading the 50 GiB file is 4.29 s. So the unmodified binary now takes significantly more
time to read the file, probably because the file has to be fetched sequentially from up to
10 different OSSs, which could still cause some overhead, or because of other internal
handling done by the netCDF library.

The evaluation of the parallel I/O component has demonstrated how an application
can benefit from using CATO. By using the memory handling component to distribute
large heap memory to multiple processes on independent nodes, the CATO’s parallel
I/O component allows the modified application to perform I/O on larger files that would
not fit in the memory of a single node.

Compression

The third major transformation component of CATO deals with compression. As a
test case, a netCDF micro-benchmark was created that writes a one-dimensional float
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Figure 7.25.: Trend of memory consumption and runtime on Levante using a 50 GiB
netCDF file. Table 7.6 shows the efficiency.

variable with a fixed dimension size. CATO was then used to modify the micro-benchmark
to automatically insert the necessary netCDF calls to enable compression.

This time, the focus is not on the runtime or memory performance of the micro-
benchmark, but on the resulting size of the written output file. As the chosen data
pattern has a strong influence on the entropy of the data and therefore how well it can
be compressed, six different patterns were used, which are visualised in Figure 7.26:

zeros: Zeros only.

lin_inc: The data values increase linearly from 0.0 to the last number (depending on
the chosen file size) with 1.0 increments.

lin_mod: Like lin_inc but a modulo of 10 has been applied so that the data ranges are
in [0.0, 10.0).

rand_1000: Random values between 0.0 and 1000.0.

rand_norm: Random values between 0.0 and 1.0.

rand_mod_2: Random values between 0.0 and 1.0 and every other value is set to 0.0.

To avoid transparent compression by the FS, which is not uncommon on HPC systems,
the execution and measurements were performed on a desktop PC, as described in
Section 7.2. Since compression has an impact on runtime and memory performance,
and in the case of lossy compression also on data quality, the user must explicitly
enable compression by setting the appropriate environment variables. These settings
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zeros lin_inc lin_mod

rand_1000 rand_norm rand_mod_2

Figure 7.26.: Sample visualisation of examined data patterns.

include alignment and chunking in netCDF, as well as two parameters (mode and
number of significant digits) for the lossy quantize preprocessor and two parameters (level
and shuffle) for the deflate compressor. Since there are many possible combinations
(all parameters can be set independently), a script for iterating and evaluating these
combinations, which is part of the CATO’s script collection, has been used. This
allows the combination space to be automatically explored to find the most appropriate
combination of parameters. A selection of 384 combinations were tested on each pattern,
for a total of 2304 combinations.

During the investigation, an unforeseen peculiarity was discovered. The modified
binary inserts a large, empty data block between the metadata section and the data
section of the written netCDF file. To demonstrate this, binocle was used to visualise
the contents of the file (Peter, 2023).

Figure 7.27 shows a comparison of the netCDF files written by the unmodified and
modified binaries. In the upper part of Figure 7.27 you can see some non-zero lines
belonging to the metadata header of the file. The big black block is just zeros followed
by the actual data using the lin_inc pattern. It is currently unclear why this block is
inserted into the output file. It is not part of the data itself, since it can still be read,
and using ncdump shows that the data is intact and has the correct dimensional length,
so netCDF does not consider these zeros to be part of the data.

Two Linux tools were used to determine the file size needed to evaluate the compression
results: ls and du. ls shows the file size in bytes and du shows the actual use of disk
space, allocated in blocks. ls includes the unknown block between the metadata and
the actual data, so the file size results are larger than the size of the file created by the
unmodified binary. du excludes this block and therefore reports smaller file size results.
ls includes the block when printing the file size, ncdump does not show the block within
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(a) Data created by original binary. (b) Uncompressed data created by modified
binary.

Figure 7.27.: Visualisation of actual data bytes on disk using binocle.

the data and du excludes the data when printing the disk usage.
As it is not clear which statement is correct, the resulting file sizes have been plotted

with both ls and du. The trend of both graphs is the same, the only difference is the
offset added by ls. Figure 7.28 shows the results of ls and Figure 7.29 shows the results
of du. The configurations have been sorted by the compression ratio achieved to give a
clearer picture.

The output file from the unmodified binary always has a size of 16 390 144 Byte (about
15.6 MiB), regardless of the chosen pattern. As expected, the more trivial data pattern
zeros achieves a high compression ratio, and the more noisy rand_* patterns are harder
to compress. In Figure 7.29 there are some configurations visible that increase the file
size above 15.6 MiB, so compression can indeed lead to larger output files. This is not the
fault of CATO but is simply something that can happen, if inappropriate compression
settings are chosen. Therefore, the user cannot use any configuration without checking its
effect. Table 7.7 gives an overview of the five best configurations for each data pattern.

The effect of compression is visualised with binocle inf Figure 7.30. On the left is
the uncompressed output file created by the unmodified binary. On the right is the
compressed file created by the modified binary. Again, the metadata header is visible
at the top, followed by a large block. This block is probably related to the black block
of zeros in Figure 7.27b, but now these are all FF values (hence the block is white).
You can see a small section at the bottom, which is the supposedly compressed data.
ls reports that both files are about the same size, while du reports a file size of about
0.57 MiB.
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Figure 7.28.: Overview of all benchmarked configurations using the results of ls.
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Figure 7.29.: Overview of all benchmarked configurations using the results of du.
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ID Pattern ls [MB] du [MB] alignment [B] chunking [B] quantize deflate
213 zeros 16.47 0.60 8 4096 2:6 6:1
149 zeros 16.47 0.60 8 4096 2:6 6:0
348 zeros 16.47 0.60 1 4096 3:6 9:1
349 zeros 16.47 0.60 8 4096 3:6 9:1
276 zeros 16.47 0.60 1 4096 2:6 9:0
316 lin_inc 16.47 0.60 1 4096 3:1 9:0
252 lin_inc 16.47 0.60 1 4096 3:1 6:1
308 lin_inc 16.47 0.60 1 4096 2:1 9:0
180 lin_inc 16.47 0.60 1 4096 2:1 6:0
380 lin_inc 16.47 0.60 1 4096 3:1 9:1
380 lin_mod 16.50 0.62 1 4096 3:1 9:1
252 lin_mod 16.50 0.62 1 4096 3:1 6:1
372 lin_mod 16.50 0.63 1 4096 2:1 9:1
220 lin_mod 16.50 0.63 1 4096 3:6 6:1
348 lin_mod 16.50 0.63 1 4096 3:6 9:1
252 rand_1000 18.94 3.00 1 4096 3:1 6:1
253 rand_1000 18.94 3.01 8 4096 3:1 6:1
380 rand_1000 18.94 3.01 1 4096 3:1 9:1
381 rand_1000 18.94 3.02 8 4096 3:1 9:1
317 rand_1000 19.15 3.22 8 4096 3:1 9:0
252 rand_norm 18.94 3.00 1 4096 3:1 6:1
253 rand_norm 18.94 3.01 8 4096 3:1 6:1
380 rand_norm 18.94 3.01 1 4096 3:1 9:1
381 rand_norm 18.94 3.02 8 4096 3:1 9:1
316 rand_norm 19.16 3.22 1 4096 3:1 9:0
380 rand_mod_2 17.96 2.05 1 4096 3:1 9:1
381 rand_mod_2 17.96 2.06 8 4096 3:1 9:1
252 rand_mod_2 17.96 2.06 1 4096 3:1 6:1
253 rand_mod_2 17.97 2.06 8 4096 3:1 6:1
316 rand_mod_2 17.99 2.08 1 4096 3:1 9:0

Table 7.7.: Overview of the five best compression configurations. Rows are sorted by
size within each pattern. ID is a random but unique identifier of a specific
configuration.
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(a) Data created by original binary. (b) Compressed data created by modified
binary using configuration ID 316 from
Table 7.7.

Figure 7.30.: Visualisation of actual data bytes on disk using binocle.

Depending on the use case and the nature of the data being written, compression can
be very beneficial in reducing the memory and storage footprint of an application. It can
also be used to improve the efficiency of hardware usage by utilising idle components or
to speed up data transfer over the network. The potential advantages and disadvantages
of compression have been discussed in Section 3.3.

7.3.4. CATO Component: Feedback
As discussed in Section 5.4 CATO provides four different ways, to assist the user in using
CATO:

• Help the user to reenact the code changes.

• Improve the code quality.

• Provide performance metrics.

• Help the user to use CATO.

All together they help to avoid mistakes, provide more insight if the user is interested
and eases the handling of CATO.

In Section 4.3.1 decompilers have been examined if they are a reasonable choice to
show to the user what the modfied code could look like. The tested solutions, which
decompiled the modified binary or modified IR code back into high-level code, worked
but already for trivial examples the results became hard to read for untrained people. An
alternate solutions, LLVis, had been tried, which took advantage, that the original source
code of the application is available and combined the CFG of the unmodified source
code with the IR code of CATO’s ECs. Trivial examples where promising but already
showed some flaws. If CATO is applied on the same source code and then the CFG with
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high-level code mapping is generated, the output quality becomes worse. This was to
be expected, because in the current design CATO does not pay attention to the debug
symbols, which means, that misleadingly debug symbols of replaced IR instructions
are taken over or the debug symbols are simply missing. LLVis had been tried on the
netCDF micro-benchmark, which was used to read the netCDF file during the parallel
I/O evaluation. The output of LLVis after CATO has modified the code is visible in
Figure A.2, which barely has any high-level code.

Measures to improve the code quality have already been discussed in Section 5.4.2,
therefore there is no need to pick up this topic here again.

Section 5.4.3 described how CATO inserts code to collect metrics about the runtime
as well as the total peak memory consumption. Printing them can easily be enabled by
the user at runtime and makes it possible for him to easily assess the performance of the
modified binary. This is especially useful if the user wants to try out several runtime
configurations for the modified binary for example, as their runtime and memory metrics
can easily be compared This feature has also ben used heavily during the evaluation in
this chapter to gather the values of runtime, total peak memory consumption and the
assumed average peak memory consumption per process.

Section 5.4.4 described how CATO can present its features to the user. CATO adds all
possible functions during the replacement into the transformed code. By default only the
memory distribution and parallel I/O using netCDF is enabled. All compression features
are not enabled since the user should decide for himself, if his use case can benefit from
compression. To keep the overview of all environment variables, which are used to enable
optional features, CATO provides a help page, which lists all environment variables but
also provides links for official documentation and repositories with example codes, which
the user can as teaching material if he is interested. At the moment there are help pages
for the general usage of CATO, netCDF and MPI. Figure 7.31 is a screenshot, which
shows an extract of CATO’s help page about netCDF.

7.3.5. Influence on Compilation Workflow
Using CATO not only directly changes the final binary, but also affects the user’s
workflow. The compilation process is adjusted and things like compile time or binary size
may change. For small applications this is probably not worth mentioning, but for large
applications it can become significant. A larger binary size is probably not a problem,
since the targeted HPC applications are usually not executed in a space-constrained
environment (e.g. embedded systems). In fact, the micro-benchmarks used during the
evaluation had an even smaller binary size. Using the same level of optimisation (-O2),
the unmodified partdiff binary has a size of 41 kB, while the modified binary has a size
of only 29 kB. The reason for this is that OpenMP is removed during the transformation,
which means that for example all the code needed for forking and merging and load
balancing the threads is removed. In return, CATO modifies and adds to the IR code,
but most of the replacement code, which is wrapped in ECs, is outsourced to a shared
runtime library. Function calls are often added to the IR code or existing function calls
are simply replaced. The runtime library currently has a size of 1.7 MB and is needed to
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Figure 7.31.: Screenshot of CATO’s help page about netCDF showing a snippet of usage
hints. They can be used when running the modified binary to enable or
disable netCDF features at runtime.

run the modified binary. It would be possible to link the replacement code statically via
a static library rather than dynamically via a shared library. This would increase the
size of the modified binary, but could reduce the load cost at runtime.

7.4. Summary
In this chapter, all the main features of CATO have been evaluated: memory sharing with
MPI, as well as parallel I/O and compression with netCDF. There was some inconsistent
behaviour, such as the unknown block added during compression, or the fact that parallel
I/O does not work if a single process reads a data block size above a certain limit.
Otherwise, the parallel I/O and compression components worked as expected and showed
very good results in reducing the memory footprint of the application.

The memory reduction of the memory handling component also worked. A drawback
of this component is the increase in runtime. There are many reasons why the runtime
performance could have become worse, some important ones are indicated by the
Starvation, Latency, Overhead, Waiting for Contention (SLOW) acronym (Sterling et al.,
2017, p. 19f.):

Starvation: Not all components are running at full capacity. There are several possible
reasons: There is not enough parallelism, the load is imbalanced, or the algorithm
can only use a limited set of hardware features. It is likely that the user can avoid
this degradation by using the correct process configuration. During the evaluation,
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the modified binary could only be executed with a fairly small matrix size, which
in combination with high process counts could lead to a load imbalance.

Latency: Messages take some time to reach their destination. This problem tends to
get worse when multiple nodes are used, because the latency on the interconnect
is generally worse than on the internal bus system. Therefore, swapping threads
for processes leads to increased latency. The evaluation showed that for several
benchmarks there was a shift in the runtime once the application was running on
more than one node.

Overhead: CATO adds additional data structures and encapsulates original variables
to handle the more complex communication using MPI. Even if some OpenMP
structures are removed, this is probably not enough to compensate.

Waiting: The amount of waiting for resources may remain relatively the same, because
OpenMP and MPI have to perform locking on the same data. Differences in the
duration of each other’s locking mechanism are already taken into account in the
latency or overhead part.

An experimental software cache proved that there are ways to improve the runtime of
a modified binary, but this requires additional work.
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8. Conclusion
In this thesis, the needs and challenges of domain scientists in using HPC systems have
been analysed and the decision has been made to support their use cases through an
automated, tool-based approach. This takes away some of the user’s responsibilities and
allows them to focus on their science. To achieve this, several approaches were discussed
and it was decided to create an LLVM pass, which makes all the necessary changes
during compilation of the original high-level source code. The modified binary is then
equipped with all the features needed to support the use cases of the domain scientists.
The LLVM pass, a test environment and helper scripts have been bundled into the tool
that this work is about: CATO.

8.1. Research Questions
In Section 1.2 four research questions have been formulated, and the following summary
will assess whether CATO provides adequate answers. Open questions from this discussion
are then reviewed, leading to the concluding section on future work.

8.1.1. Distributed Computing
OpenMP is a compiler extension for using threads on shared memory and is quite popular
in ESS. With a handful of compiler directives, an application can use the entire computing
capacity of a single node. In the HPC domain, a node can consist of multiple CPUs,
each with multiple cores. However, if a single node is too limited for the scientist’s use
case and additional nodes are required, a distributed computing framework must be
used in addition. Compared to OpenMP, they tend to be more complex and harder to
learn than OpenMP. For example, MPI is a popular solution in HPC when distributed
memory is to be used.

Research Question 1: Assuming that OpenMP is already used: How can an
automatic transformation solution enable the application to make use of a distributed
memory parallelisation scheme?

The evaluation was done on a benchmark that uses a stencil pattern on a regular
grid. So the communication pattern is predictable, but the CATO implementation uses
a mixture of active-target and passive-target one-sided MPI communication, so CATO
could have handled irregular patterns as well.
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Without any additional input from the domain scientist, CATO analyses the original
high-level code using OpenMP and transforms it to use MPI instead. All accesses within
the serial part as well as within the OpenMP kernels are automatically adjusted. The
evaluation showed that this worked, as the modified application was not limited to a
single node any more and partdiff still returned a correct result even if it was executed
on several nodes.

Memory has been distributed and the memory footprint of a single process has been
reduced accordingly. In Section 7.3.2 C(1-1) had a memory footprint of 1034 kB during
the weak scaling benchmarks, which increased to 9105 kB for C(5-24). On average, this
is only an increase of 67.8 kB

process . There is some overhead caused explicitly by CATO, so
some degradation in memory scaling was to be expected. CATO’s overhead per process
essentially scales with the number of variables accessed within the unmodified OpenMP
kernel, not with their size. So even if the matrix size in this benchmark only had a
dimension size of 40, this is still a good result as something similar can be expected for
larger matrix sizes.

One drawback was the runtime performance overhead, which was noticeable. This is
probably due to the fact that every single access to a heap variable has to be encapsulated
to check whether it belongs to local memory or needs to be fetched from another process.
This led to the need to reduce the size of the input problem to meet the time limits of
the test systems, which conflicts with the original goal of using the sum of the memory of
all participating nodes. On the other hand, the evaluation of the experimental software
cache showed very promising results that the runtime limitation can be relaxed.

CATO can therefore approve the first research question of how existing OpenMP
kernels can be automatically transformed to use distributed memory, but currently has
still some limitations in terms of its practicality. However, this is a flaw in the current
implementation of CATO, which can be mitigated.

8.1.2. Parallel Input/Output
The memory handling component distributes the allocation and initialisation of heap
memory. For dynamically generated input data this works already quite well, i.e. the
application generates the data itself at runtime, but there are many use cases where the
input data is provided via a file. NetCDF is a popular ESS library that can perform
the required file I/O. Using the default, every process would make the same serial I/O
calls to update its local memory segment and the segments of the other processes. This
would lead to a lot of redundant and inefficient communication calls.

Research Question 2: Assuming that serial netCDF I/O is already used: How
can an automatic transformation solution transform the application to use parallel
I/O with reduced runtime and memory footprint?

The netCDF interface provides operations for both serial and parallel I/O. CATO
replaces all serial I/O calls and modifies the access operations so that each process
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does not load the entire input file, but only its share. If a process needs to access data
from another process, this is not done via the netCDF interface, but via a local access
operation. This is therefore already handled by the first component of CATO’s, the
memory distribution component. Therefore, the parallel I/O component can use the
synergy with this component to achieve a better (i.e. reduced) memory footprint. As
all processes only access their share of the file concurrently, there is a potential runtime
benefit. The latter requires that the file is read from a parallel FS, otherwise the parallel
netCDF I/O operations will be sequenced by a single block device.

In addition, the input file must be striped across multiple I/O servers to match the
number of processes used. This must be done by the user, as it is outside the control
of the application, and therefore not done by CATO. CATO’s help page gives some
information about this, so that the user knows that he has to take care of it, and has an
idea where to start.

The parallel I/O benchmark in Section 7.3.3 showed really good memory efficiency,
never falling below 99% for any configuration. In comparison, the runtime efficiency
scaled a bit worse, but there was still a benefit from shorter runtimes, at least on
WR-Cluster. This was easy to observe because the bottleneck of the 1 GiB interconnect
throttles the data transfer rate. On Levante, runtime efficiency was lower because the
100 GiB interconnect provides fast data transfer, and therefore other sources of overhead
became more important. Regardless of the number of processes used, the runtime is
always the same order of magnitude as the runtime of the unmodified file, which is still a
success. The larger the input file and the slower the interconnect bandwidth, the better
the runtime efficiency.

A problem arises when a single process has to read more than 7.1 GiB, because in this
case the modified binary throws an error. As a workaround, the user can make sure
to use enough processes to keep the size of their file share below the critical line. The
runtime could also be improved if the interconnect acted as a bottleneck.

8.1.3. Chunking and Compression
Many use cases in ESS can benefit from using larger datasets, allowing larger areas to
be simulated, finer resolution to be used, or more variables to be considered. A FS such
as ZFS can already provide transparent compression capabilities. The user is unaware of
this because ZFS does it automatically and decompresses a file when it is accessed again.

NetCDF can also use compression, as it has some compressors like Zlib built in, but it
can also use any filter supported by its HDF5 backend. In this case, however, compression
must be explicitly enabled using specific functions within the application code.

Research Question 3: Assuming that serial netCDF I/O is already used: How
can an automatic transformation solution transform the application to transparently
use chunking and compression?
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CATO scans for netCDF variable definitions and adds the necessary functions. The
evaluation showed that this worked quite well and can result in smaller file sizes: The
original file has a size of 15.6 MiB and the best configuration was able to compress it
down to at least 3.0 MiB (rand_norm and rand_1000 pattern) or even 0.6 MiB (zeros and
lin_inc). On the downside, it is important that the user chooses the right configuration
of compression parameters, as a bad configuration could actually increase the file size.
This is currently not done automatically by CATO, as it depends on the use case which
configuration is good (usually a balance has to be found between compression ratio and
(de-)compression bandwidth). However, CATO provides a script that can be used to
automatically check any number of configurations, so that the user can choose the best
one based on the results.

The analysis also showed that an unknown block of memory appears between the
metadata header and the actual data of the output file. The reason for this is currently
unknown, but at least it does not affect the data integrity (according to ncdump), nor does
it have a negative impact on the number of blocks allocated by the local FS, according
to the output of du.

Since any compressor can be used for which a corresponding filter has been registered
in HDF5, netCDF can use more advanced filters such as SZ or Zstandard. In this case,
it is necessary to set up the filters on each system where the compressed data is to
be accessed, in order to preserve the portability of the application. However, this is a
general requirement of HDF5 filters that is not imposed by CATO first.

8.1.4. User Support
CATO acts conservatively so that no changes are made that could have a negative impact
on data integrity. During the transformation, CATO has already inserted all available
features, but has disabled them by encapsulating them behind a conditional check if a
specific environment variable is set by the user at runtime. Therefore, there are some
parameters that are set by environment variables that allow the user to enable a specific
feature at runtime. This allows CATO to include many different features that are not
necessarily interdependent. For example, the CATO’ compression component and the
memory handling component do not need each other and could be used independently.
Therefore, the functionality of CATO can be extended by a developer without any
limitation.

The primary purpose of CATO is to allow the user to quickly try out different HPC
frameworks without having to learn the ropes. It can be seen as an experimental kit,
where the focus is on trying out new concepts rather than using it within a productive
workflow.

Research Question 4: How can an automatic transformation solution provide
feedback to enable the user to comprehend the modifications?

CATO offers two main types of feedback:
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Help pages: Integrated into CATO are help pages for each of the included frameworks.
Currently there are help pages for a general manual on how to use CATO, and for
the MPI and netCDF components. They provide information about the features
and how to enable them via environment variables, as well as links to (un)official
documentation and repositories of sample code. Especially linked collections of
sample code can be very useful when learning a new framework, and the official
developers do not always provide enough examples.

Metrics collection: Using CATO’s metrics collection feature makes it easy to compare
modified binaries built with different configurations. Usually time is not an issue,
but obtaining values for peak memory usage and the average share of a process in
that memory usage can be more difficult for domain scientists. CATO integrates
the metrics collection into the modified binary so that the user can intentionally
enable it at any time.

This allows the user to quickly try out new HPC concepts. And if the tests with
CATO are promising, they will also know where to get educational resources if they want
to start integrating this feature into their codebase by hand to get a more optimised
version that is easier to maintain.

8.2. Future Work
During the development and evaluation of CATO some points unfolded, which could be
worked on further. The following Sections 8.2.1 to 8.2.3 present three potential directions
for future work.

8.2.1. Runtime Performance
Improving runtime performance by reducing the overhead caused by CATO would benefit
the memory handling component, and therefore the parallel I/O component could also
benefit indirectly. During the evaluation, single value accesses were identified as a
potential source of runtime degradation. The evaluation of an experimental software
cache in Section 7.3.2 showed at least an improvement in runtime, allowing larger input
sizes to be computed within acceptable runtimes. Molly uses a similar approach by
bundling multiple accesses into a single communication operation, so this could be
used as a starting point (Kruse, 2014). This could be further refined if, for example,
additional information is used. Currently, no information about the underlying hardware
is used. Collecting this could allow additional optimisations such as optimised message
sizes. In addition, more information could be gathered from the AST and CFG of the
application. The llvm::BlockFrequencyInfo class can be used to estimate how often
a BB is executed, which could lead to a distinction between important and unimportant
variables.

Another memory handling strategy could also be considered: instead of performing
memory allocation using user-written ECs, the suitability of the new OpenMP remote
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offloading directive could be explored (Patel & Doerfert, 2022). Another approach that
could be used for CATO has been proposed by Wahlgren et al. (2022), who suggest
creating a memory pooling system for HPC systems based on the new Compute Express
Link (CXL) standard, which could directly interconnect the local memory of each node.
This would remove the need for the memory distribution component and could provide
performance benefits. However, CXL is still at an early stage of development, and what
exactly it will be able to achieve will only become evident in the future. If it only works
on a few HPC systems, a fallback solution will still be needed.

Another important point is that OpenMP is completely removed in the current state.
The evaluation of parallel I/O has shown that in this case the best configuration is to use
a single process per node, as this allows to maximise the size of the share of the input
problem. To make full use of the node, CATO could use OpenMP again. In this case,
more advanced solutions could be incorporated, such as partitioned MPI operations,
which could be of significant benefit when using multithreaded MPI (Jammer & Bischof,
2021). However, using a hybrid parallelisation scheme may place higher demands on a
good startup configuration, which will need to be found by the domain scientist (Gahvari
et al., 2015).

8.2.2. Feature Coverage
There are some code patterns that do not yet work (cf. Section 7.2.1) and fixing th
would improve the robustness of CATO. One problem is for example that the modified
application will abort if a process tries to read a file share larger than about 7.1 GiB
during parallel I/O. One possible workaround is to just read a share of a file will up to a
certain limit, and if a larger share is about to be accessed, then this request will be split
into more smaller requests, which will then be executed sequentially.

Apart from this basic functionality, there are variants of already implemented fea-
tures that are missing. For example, the memory handling can only work on limited
pointer depths. And the parallel I/O component expects the original application to
use nc_get_var or nc_get_var on int or float variables. At the moment it cannot
handle other datatypes. Also, if the original application already reads only a part of the
file instead of the whole file (e.g. by using nc_*_vara_*, nc_*_var1_*, nc_*_varm_* or
nc_*_vars_*), they are simply ignored. And the compression component can currently
only use the quantize and Zlib filters, and has not yet included the Blosc, bzip2, Szip or
Zstandard compressors.

8.2.3. Usability Improvement
Currently, the only way the user can influence the transformation process is through
environment variables, which currently do not allow a feature to be restricted to a
particular variable. An example would be to use different compression configurations
on different variables. At the moment the user can only set this configuration for all
variables. One way to do this would be to create new pragmas which can then be used
to annotate individual variables within the source code (Mishra et al., 2020). This would
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disable the ability to switch an optional feature on or off at runtime, as using pragmas
limits the user’s influence to compilation time. However, this would also allow the user
to fine-tune the replacement, for example by ignoring heap variables that the user knows
from domain knowledge are not important for performance. In addition, more CATO
functionality could be integrated so that the analysis phase provides more information
that can be exploited.

To facilitate the development and integration of new ECs, which are currently somehow
hard-coded into CATO (replacement code is already outsourced to C++ files), associated
identification snippets could be used, as in MARTINI(Johnson et al., 2022). It uses
snippets to find specific code and then uses the appropriate matching snippet to replace
it. In the case of MARTINI, templates are used for both matching and replacement,
which would probably not be sufficient for CATO, where the detection of relevant code
snippets usually requires more abstract information, which may be difficult to capture in
a template.

Regardless of how the replacement is done, the code recognition strategy could also use
a more sophisticated approach. Currently it is based on the stencil pattern. Evaluations
of PGAS (cf. Section 6.1.2) have criticised that performance degrades quickly if data
locality is not taken into account. So this is a problem that could also apply to CATO if
a different communication pattern is used. CATO requires additional replacement and
data placement strategies for other Dwarves to avoid performance degradation due to
misplaced data. In addition, CATO needs to detect which Dwarf an application most
resembles, assuming it has a prominent pattern. A simple approach would be to use
the expertise of the domain scientist, who is likely to know the communication pattern
of his application. So he could give CATO a hint about what kind of communication
pattern is being used. This only works if the domain scientist wrote the software being
used. If he is not the developer, but just a user, he is less likely to be able to identify the
communication pattern correctly. In this case, it would be more useful if CATO could
detect the communication itself. Pattern recognition can become arbitrarily complicated,
as this is a large field of research in itself.

8.3. Summary
The research questions established at the beginning of this thesis (cf. Section 1.2) have
been evaluated according to the results of the evaluation in Chapter 7. The primary goal
of CATO’s is to provide an automatic solution to these questions for a domain scientist,
so that he can easily try out HPC concepts that are quite complicated to learn (making
a quick manual evaluation difficult) or that he didn’t even know existed. He only needs
to use OpenMP and netCDF together if he wants to make use of all components of
CATO, but they can also be used independent from each other (with reduced efficiency).
OpenMP is comparatively easy to use as well as the serial I/O interface of netCDF.
CATO can then automatically analyse and transform the code to replace OpenMP with
MPI and serial netCDF with parallel netCDF. So just by building their application with
CATO it can now be executed on mulitple nodes and can utilise a parallel FS at its full
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potential. In addition the user can enable the optional compression component, so that
the size of the written data can be reduced based on the data properties and chosen
compression configuration.

The poor runtime performance of the memory allocation component is a drawback,
but otherwise all questions could be answered satisfactorily.
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A. Appendix

A.1. LLVM Visualisation Tools
• Create AST output: clang-check -ast-dump -ast-dump-filter=main source.c

(add -extra-arg="-fno-color-diagnostics" flag to supress colours, if output
shall be redirected into a file)

• Create AST visualisation:
– Get output from clang -cc1 -ast-view source.c (requires debug build of

llvm)
– Convert graph description with graphviz: dot -Tpdf /tmp/TMPNAME -o

source_ast.pdf

• Create CFG visualisation:
– Create IR without optnone attribute: clang -emit-llvm -S -Xclang -

disable-O0-optnone source.c
– Create dot file: opt -dot-cfg source.ll
– Convert graph description with graphviz: dot -Tpdf -o source_cfg.pdf

.main.dot
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Figure A.1.: General composition of a compiler including all phases a high-level source
code it passed through to be transformed into the final binary. Figure is
from Appel, 1998.
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1 # include "llvm/Pass.h"
2 # include "llvm/IR/Function.h"
3 # include "llvm/Support/raw_ostream.h"
4

5 using namespace llvm;
6 namespace
7 {
8 struct printFunction : public FunctionPass
9 {

10 static char ID;
11 printFunction() : FunctionPass(ID) {}
12

13 bool runOnFunction(Function &F) override
14 {
15 errs() << "Hello: ";
16 errs().write_escaped(F.getName()) << '\n';
17 return false;
18 }
19 };
20 }
21

22 char printFunction::ID = 0;
23 static RegisterPass<printFunction> X("hello", "Hello World Pass",

false, false);↪→

Listing A.1.: Simple LLVM function pass

1 #Compile pass
2 $ clang++ -fno-rtti -fPIC -shared -o pass.so pass.cpp
3 #Link pass into application
4 $ mpicxx -cxx=clang++ -fopenmp -Xclang -load -Xclang pass.so -o app.x

app.cpp↪→

Listing A.2.: Linking an LLVM module pass
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1 # include <stdio.h>
2 # include "eingabeTrafo.h"
3

4

5 int main()
6 {
7 const int xDimension = 160;
8 const int yDimension = 40;
9 // Male einen schönen Rundbogen

10 for (int y = 0; y < yDimension; ++y)
11 {
12 for (int x = 0; x < xDimension; ++x)
13 {
14 if(checkLocationPrint(x,y,xDimension,yDimension))
15 {
16 printf("#");
17 }
18 else
19 {
20 printf(" ");
21 }
22 }
23 printf("\n");
24 }
25 }

Listing A.3.: Main application, which adds elements to the ‘canvas’.
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1 # include <math.h>
2 # include <stdlib.h>
3 # include "eingabeTrafo.h"
4

5 const float PI = 3.14;
6

7 // Gib Werte zurück, ob an der gegebenen Position ein Zeichen
ausgegeben werden soll↪→

8 int checkLocationPrint(int x, int y, int xDim, int yDim)
9 {

10 // x und y auf bildfläche bzgl. pi skalieren, damit kurve bild
ausfüllt↪→

11 float scaledX = (double)x/(double)xDim;
12 float scaledY = (double)y/(double)yDim*2.0 - 1 ;
13

14 float sinValue = sin(scaledX*4*PI);
15 if(fabs(scaledY-sinValue) < 0.075)
16 {
17 return 1;
18 }
19 else
20 {
21 return 0;
22 }
23 }

Listing A.4.: Helper function, which decides based on the value of sin if the main
application shall draw a sign.

1 double sin(double input)
2 {
3 return 0;
4 }

Listing A.5.: Replacement code, which redefines sin and overshadows the definition from
math.h respectively the math library.
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main

%3 = alloca i32, align 4
call void @_Z15cato_initializeb(i1 false)
br label %.split

%4 = alloca %struct.timeval, align 8
%5 = alloca %struct.timeval, align 8
%6 = alloca %struct.timeval, align 8
%7 = alloca %struct.timeval, align 8
%8 = alloca i32, align 4
%9 = alloca i32, align 4
#include <assert.h>
struct timeval time_main_end, time_read_end;
double time_main, time_read;
%14 = call i32 @gettimeofday(%struct.timeval* nonnull %4, i8* null)
                #8, !dbg !49
#include <assert.h>
%15 = bitcast i32* %8 to i8*, !dbg !50
#include <assert.h>
assert(!err);
#include <assert.h>
%18 = icmp eq i32 %17, 0, !dbg !52

assert(!err);
#include <assert.h>
assert(!err);
#include <assert.h>
%23 = icmp eq i32 %22, 0, !dbg !62

call void @__assert_fail(i8* getelementptr inbounds ([5 x i8], [5 x
                i8]* @.str.1, i64 0, i64 0), i8* getelementptr inbounds
                ([17 x i8], [17 x i8]* @.str.2, i64 0, i64 0), i32 26,
                i8* getelementptr inbounds ([29 x i8], [29 x i8]*
                @__PRETTY_FUNCTION__.main, i64 0, i64 0)) #9, !dbg !52

assert(data_in);
#include <assert.h>
%27 = icmp eq i8* %26, null, !dbg !67

call void @__assert_fail(i8* getelementptr inbounds ([5 x i8], [5 x
                i8]* @.str.1, i64 0, i64 0), i8* getelementptr inbounds
                ([17 x i8], [17 x i8]* @.str.2, i64 0, i64 0), i32 29,
                i8* getelementptr inbounds ([29 x i8], [29 x i8]*
                @__PRETTY_FUNCTION__.main, i64 0, i64 0)) #9, !dbg !62

call void @__assert_fail(i8* getelementptr inbounds ([8 x i8], [8 x
                i8]* @.str.4, i64 0, i64 0), i8* getelementptr inbounds
                ([17 x i8], [17 x i8]* @.str.2, i64 0, i64 0), i32 32,
                i8* getelementptr inbounds ([29 x i8], [29 x i8]*
                @__PRETTY_FUNCTION__.main, i64 0, i64 0)) #9, !dbg !67

assert(data_in);
#include <assert.h>
%31 = call i32 @gettimeofday(%struct.timeval* nonnull %5, i8* null)
                #8, !dbg !71
assert(!err);
#include <assert.h>
assert(!err);
#include <assert.h>
assert(!err);
#include <assert.h>
%35 = icmp eq i32 %34, 0, !dbg !75

%38 = call i32 @gettimeofday(%struct.timeval* nonnull %7, i8* null)
                #8, !dbg !79
assert(!err);
#include <assert.h>
assert(!err);
#include <assert.h>
free(data_in);

call void @__assert_fail(i8* getelementptr inbounds ([5 x i8], [5 x
                i8]* @.str.1, i64 0, i64 0), i8* getelementptr inbounds
                ([17 x i8], [17 x i8]* @.str.2, i64 0, i64 0), i32 37,
                i8* getelementptr inbounds ([29 x i8], [29 x i8]*
                @__PRETTY_FUNCTION__.main, i64 0, i64 0)) #9, !dbg !75

call void @_Z18shared_memory_freePv(i8* %26), !dbg !86
%44 = call i32 @gettimeofday(%struct.timeval* nonnull %6, i8* null)
                #8, !dbg !87
(time_main_end.tv_usec - time_main_start.tv_usec) * 1e-6;
time_read = (time_read_end.tv_sec - time_read_start.tv_sec) +
(time_main_end.tv_usec - time_main_start.tv_usec) * 1e-6;
#include <assert.h>
(time_read_end.tv_usec - time_read_start.tv_usec) * 1e-6;
%65 = getelementptr inbounds %struct.timeval, %struct.timeval* %7,
                i64 0, i32 1, !dbg !106
(time_read_end.tv_usec - time_read_start.tv_usec) * 1e-6;
#include <assert.h>
printf("Time (main): \t%f\n", time_main);
%74 = call i32 (i8*, ...) @printf(i8* nonnull dereferenceable(1)
                getelementptr inbounds ([18 x i8], [18 x i8]* @.str.6,
                i64 0, i64 0), double %58), !dbg !113
call void @llvm.lifetime.end.p0i8(i64 4, i8* nonnull %16) #8, !dbg
                !114
}

free(data_in);

}

Figure A.2.: CFG of netCDF parallel I/O benchmark, after it has been modified by
CATO, created by LLVis.
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Glossary
AGSearch Advanced GitHub Search is a tool to traverse through GitHub repository

matching a user-defined set of filters and analyses them locally (e.g. if specific
functions are called).

API Application Programming Interface, a set of defined rules and protocols that
allows different software applications to communicate and interact with each other,
facilitating the exchange of data and functionality.

assembly Low-level programming language that represents machine instructions in a
human-readable form and is directly understandable by the computer’s processor.

atmosphere Gaseous envelope surrounding the Earth, composed of various layers and
responsible for weather patterns, climate dynamics, and the exchange of gases
between the Earth’s surface and outer space.

awk Flexible programming language and text processing tool used for extracting and
manipulating data, primarily in UNIX and Linux environments.

binocle Graphical tool to visualise binary data on disk.

BinOpt LLVM library to perform binary optimisation and specialisation.

biosphere Zone on Earth where living organisms exist, encompassing all ecosystems and
interactions between organisms and their environment.

Blosc A blocking, shuffling and lossless compression library.

Bulk synchronous parallel Bridging model between hardware and software to design
parallel algorithms.

bzip2 Widely used data compression algorithm and software tool for lossless data
compression.

C General-purpose, imperative programming language known for its efficiency, low-level
control, and portability, widely used for developing operating systems, embedded
systems, and performance-critical applications.

C++ Object-oriented powerful programming language that extends the capabilities of
C with features such as classes, templates, and polymorphism, enabling efficient
and modular development of a wide range of applications.

Cetus S2S compiler for automatic parallelisation on multicore systems with focus on
reasearch capabilites.

Charm++ Parallel programming framework in C++ with focus on portability.
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Chunk Hyper-rectangle of arbitrary shape, which defines strong adjacencies between
single data.

clang Compiler front-end for the C, C++, and Objective-C programming languages,
providing robust and efficient compilation, supporting various platforms and archi-
tectures.

clang-tidy A C++ linter tool based on clang, offering a flexible framework for identifying
and correcting common programming errors through static analysis and enabling
easy creation of new checks.

Clava S2S compiler based on clang to translate JavaScript based DSL into C.

CMake Tool suite to build and test software.

CPU Central Processing Unit.

Cray Slingshot High-performance network designed for HPE Cray supercomputers and
HPE HPC clusters, integrating various simulation, modeling, AI, and analytics
workloads into a single system for supercomputing in the era of Exascale computing.

CrossDBT Dynamic binary translation emulator.

CUDA Parallel computing platform and programming model developed by NVIDIA
that enables efficient utilisation of GPU resources for accelerated computing tasks.

Dagger LLVM tool to decompile a binary into IR.

decompiler Tool to reverse the usual compilation process by generating high-level code
from low-level code.

DragonEgg gcc plugin to use LLVM’s optimisation and code generation components.

du Linux command line tool to estimate a file’s space usage.

Dwarf Classes of numerical communication patterns.

epoch Execution span between two synchronisation calls, in which .

ext4 Widely-used, scalable, and robust FS for Linux-based operating systems, offering
features such as support for large file sizes, journaling, and backward compatibility
with its predecessor, ext3.

flang Fortran language compiler based on the LLVM infrastructure, designed to compile
and optimise Fortran programs forHPC environments.
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Fortran Programming language widely used in the field of HPC due to its strong
numerical and scientific computing capabilities, making it well-suited for computa-
tionally intensive applications such as simulations, modeling, and data processing
in scientific and engineering domains.

Frontier Exascale supercomputer at Oak Ridge National Laboratory.

Fujitsu Tofu Specialised network topology developed by Fujitsu for supercomputers
like the K computer and Fugaku, featuring a six-dimensional mesh structure,
exceptional scalability of over 100000 nodes, and high-speed, bidirectional links
with a peak bandwidth of 10 Gb/s per link.

GASPI PGAS specification, an alternative to MPI.

GCC GNU Compiler Collection.

gcc GCC compiler frontend for C.

GENERIC GNU IR.

gfortran GCC compiler frontend for Fortran.

GitHub Web-based platform that provides version control, collaboration tools, and
hosting for software development projects, allowing developers to work together
and track changes to code repositories.

GNU Comprehensive collection of free software that can function as an operating system
or be used alongside other operating systems, and it is closely associated with the
Linux family of operating systems.

GoogleTest Test framework by Google, which supports many kind of tests and mockups.

GPCNeT Benchmark suite to induce and measure network congestion on HPC systems.

GPU Graphics Processing Unit.

graphviz Open-source graph visualisation software that allows users to create, analyse,
and render graphs and diagrams programmatically or through a simple textual
description.

Green-Marl DSL to ease the parallelisation of graph analysis algorithms.

HDF5 Hierarchical Data Format version 5 is a flexible and efficient self describing
file format designed for storing and managing large and complex scientific data,
providing high-performance data storage and organisation capabilities.

HPCG Creates a new ranking metric for high-performance computing systems, com-
plementing HPL benchmark, by testing patterns that match a broader set of
applications and incentivising system designers to enhance performance.
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HPL Benchmarking tool used to measure the computational power and performance of
computer systems by solving a system of linear equations, often used to rank the
world’s fastest supercomputers in the TOP500 list.

hydrosphere Includes all forms of water found on Earth, such as oceans, lakes, rivers,
groundwater, and atmospheric moisture, contributing significantly to global climate
regulation, the water cycle, and the sustenance of diverse ecosystems.

InfiniBand High-speed networking standard designed for interconnecting computer
systems, storage devices, and communication infrastructure; latencies of less than
one microsecond and data rates of up to 100 Gb/s per link.

Insieme S2S compiler infrastructure for researching parallel languages within the HPC
context.

Instrew Client-Server framework for dynamic binary instrumentation.

Intel MPI Stands out for its optimised performance, portability across multiple operating
systems, adherence to MPI standards, and seamless integration with Intel tools,
making it a preferred choice for high-performance message passing and parallel
computing on Intel architectures.

Intel MPI Benchmarks Collection of elementary benchmarks adhering to MPI-1, MPI-
2, and MPI-3 standards, enabling users to run the supported benchmarks, either in
their entirety or selectively, by specifying different settings through command-line
parameters.

Java Widely-used, object-oriented programming language known for its platform in-
dependence, extensive library support, and ability to build robust and scalable
applications for various domains such as enterprise software, mobile development,
and embedded systems.

JavaScript Flexible, interpreted programming language used primarily for web develop-
ment, allowing dynamic and interactive behavior on websites through client-side
scripting.

Kokkos Library for programming with portable performance.

ld GNU linker.

ldiskfs FS based on ext4 with improved performance.

Levante Supercomputer for ESS research, which is located at the Deutsches Klimarechen-
zentrum GmbH in Hamburg, Germany. It is operational since 2022.
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Linux Popular open-source operating system kernel that forms the foundation of various
Linux distributions, providing a robust and customisable platform for running
computer systems ranging from servers to personal computers and embedded
devices.

lit LLVM Integrated Tester.

llc LLVM static compiler, which translates LLVM IR into machine code for a specific
target architecture, enabling efficient compilation and optimisation of programming
languages.

LLVis LLVM pass to create CFG with mapping of IR onto high-level code.

LLVM Modular compiler framework, first developed by Chris Lattner, which allows to
easily step into every component of the compilation workflow. High-level code is
translated into a assembly-like but machine-independent IR, which can be easily
analysed and transformed before translated by the backend into the final machine
code.

LLVM-CBE LLVM backend to compile IR into C code.

llvm-mctoll LLVM tool to decompile a binary into IR.

llvm2c Tool for converting LLVM bitcode into C code.

ls Linux command line tool to list files and their attributes.

Lustre High-performance parallel distributed client-server file system designed for large-
scale computing clusters, offering scalable storage capacity and high-speed data
access for demanding workloads.

MACSio Application-focused and scalable I/O proxy application that aims to address
the longstanding need for evaluating I/O performance, data models, library inter-
faces, and parallel I/O paradigms in multi-physics, high-performance computing
applications.

MARTINI Tool prototype based on clang to match and replace code automatically
using rules.

Mercurium S2S compiler offering a testbed for new OpenMP features.

Mistral Supercomputer for ESS research, which was located at the Deutsches Kli-
marechenzentrum GmbH in Hamburg, Germany. It has been used from 2015 up to
2022.

Molly Further development of Polly, utilising MPI.
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MPI-checker Static analysis tool that utilises clang[’s] Static Analyser to validate
proper usage of the MPI API in C and C++ code, supporting both path-sensitive
and non-path-sensitive analysis by leveraging the abstract syntax tree representation
of the source code.

MPI-IO MPI interface, which focuses on file I/O. A well known implementation is
ROMIO, which is used by major MPI implementations like MPICH, MVAPICH or
Intel MPI.

MPI-rical Tool for automatic parallelisation of serial code using MPI based on machine
learning functionality.

MPICH High-performance implementation of the MPI standard developed by the Ar-
gonne National Laboratory and the Mississippi State University.

MUST Tool for efficient runtime MPI error checking.

MVAPICH High-performance implementation of the MPI standard, developed by the
Ohio State University and the University of Tennessee.

NAS Parallel Benchmarks Set of benchmarks to mimic the computational and data
access behaviour of large scale computational fluid dynamics developed by NASA
Ames Research Center.

nccopy Command-line tool to copy and compress netCDF files.

ncdump Linux command line tool to print metadata and data of a netCDF file.

netCDF Network Common Data Form.

Nobrainer Matches and replaces code snippets using an AST matcher.

NP-hard Refers to a class of computational problems that are at least as challenging as
the hardest problems in the class NP (nondeterministic polynomial time), indicating
they are difficult to solve efficiently.

Omni OpenMP S2S compiler intended to be used on SMP cluster with focus on the
AST.

OmpSs-2 Programming model with an OpenMP-like approach using a thread pool
instead of a fork-join model.

OP2 DSL specialised for unstructured grids.

Open MPI Open-source implementation of the MPI standard, developed and maintained
by a community of contributors from academia, research institutions.
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OpenACC Open Accelerators, a programming standard that simplifies the process of
parallelising code for heterogeneous computing systems, such as GPUs, by providing
directives to offload computations to accelerators.

OpenARC S2S research compiler framework with focus on OpenACC.

OpenCL Open Computing Language, an open standard for programming heterogeneous
computing platforms, enabling developers to write code that efficiently utilises
CPUs, GPUs, and other accelerators for parallel computation tasks.

OpenMP Open Multi-Processing, an compiler based API specification for parallel
programming that allows developers to write multi-threaded and shared-memory
parallel applications, enabling efficient utilisation of multi-core processors.

OpenMPD Language extension prototype to provide compiler directives, which are
translated into MPI code.

OpenSHMEM PGAS standard, an alternative to MPI.

OSU Microbenchmarks Created by Ohio State University, encompasses independent
MPI performance benchmarks, evaluating latency, bandwidth, and host overhead
for both traditional and GPU-enhanced nodes.

partdiff Partial differential equation solver using iterative methods like Jacobi and
Gauss-Seidel.

pass Program transformation or analysis performed on the IR of a program, enabling
optimisations or collecting information for further compilation stages.

Pass Manager An LLVM compiler infrastructure component that orchestrates the
execution of a sequence of LLVM passes for optimising or analysing the IR of a
program.

PATUS DSL specialised for structured grids.

pedosphere Layer of the Earth composed of soil, including its formation, composition,
and interactions with other spheres.

Perl Flexible, high-level programming language known for its text processing capabilities,
regular expression support, and extensive collection of modules, making it suitable
for a wide range of tasks including system administration, web development, and
data manipulation.

PhASAR Static Analysis Framework based on LLVM.

PLuTo S2S framework for high-level loop and data-locality optimisations.

Polly LLVM framework for high-level loop and data-locality optimisations.
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Prospect S2S compiler framework to build two-phase applications: a slow and robust
version and a faster but more instable version.

Python High-level, dynamically-typed programming language known for its simplicity,
readability, and vast collection of libraries, making it popular for a wide range of
applications from web development to data analysis.

QAT Intel QuickAssist is a hardware-based technology to accelerate compression and
encryption.

Rellume Decompiler from binary to IR.

RetDec LLVM decompiler to transform a binary into high-level code.

Rodinia Benchmark suite for heterogeneous computing consisting of compute kernels
inspired by Dwarves.

ROSE S2S compiler with focus on large scale, robustness, and automatic parallelisation,
which is funded by the US Department of Energy.

ScalaBenchGen Tool for auto-generation of communication benchmarks traces.

sed Stream Editor, command-line text manipulation tool used for performing automated
editing operations on streams of text, including file processing, search and replace,
and line-by-line transformations.

SKaMPI Benchmark of MPI implementations.

Slurm Open source job scheduler for HPC systems.

spack Package management tool to build various versions and configurations of HPC
software on a wide variety of platforms and environments.

SPar DSL to exploit stream parallelism in C++.

Spectrum Scale Parallel FS from IBM to support parallel I/O on HPC systems.

StressBench Configurable full system network and I/O benchmark framework.

SZ Lossy compressor using a multidimensional prediction model.

Szip Lossless compressor.

TBB Threading Building Blocks is a C++ library developed by Intel for parallelisation
on shared memory.

Top500 A list that ranks and benchmarks the world’s most powerful supercomputers
based on their performance on the LINPACK benchmark, providing insights into
the state of high-performance computing worldwide.
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TreadMarks Software implementation of an SSI, to provide a virtual shared memory of
all nodes.

Unified Parallel C PGAS implementation.

Valgrind Framework for dynamic binary instrumentation.

WR-Cluster Research cluster of the research group Scientific Comuting at University of
Hamburg.

XcalableMP Language extension of C and Fortran offering OpenMP-like compiler
directives to utilise distributed memory.

Xevolver S2S compiler framework based on ROSE to work on an XML representation
of the AST.

ZFP Compressor performing a normalisation on chunks, to to improve compressibility.

ZFS FS with advanced features like compression.

Zlib Compressor, which uses the DEFLATE compression algorithm.

Zstandard Very fast and efficient. lossless data compressor developed at Facebook
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