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Abstract

Estimates for High Luminosity runs at the Large Hadron Collider show that hundreds of

petabytes of experimental data are expected to be processed in real-time and stored for fu-

ture analysis; comparable amounts of simulated data add to the unprecedented volumes.

In the High-Performance Computing field, many supercomputers have already reached

petascale and even exascale by adopting many-core architectures and accelerators. These

upgrades improve not only the computation power and the memory throughput, but

also the performance per Watt. Nevertheless, numerous scientific applications still do not

efficiently make use of the powerful hardware currently available. Despite of a sustained

effort for code parallelization and GPU porting, the development productivity is hindered

by the need to use a different programming language for each platform in order to achieve

the best runtime performance, while most of the code contributors are natural scientists

without a deep knowledge of computer science nor continuity in their projects.

Using concepts from functional programming and different language extensions, we

prototyped the vecpar framework. It decouples the scientific code from the parallelization

and offloading techniques, and allows a single-source C++ algorithm to be compiled

for multiple hardware platforms, therefore eliminating the need to maintain different

repositories. Additionally, this approach allows targeting future architectures by only

updating vecpar’s backends without interfering with the physics-related algorithms.

In this thesis, we introduce a series of research studies that motivate our technical

decisions regarding the framework, which is discussed at length together with the evalu-

ation of its potential. Tested on different open-source benchmarks and architectures, the

framework ensured the same level of performance as native parallel implementations in

most of the cases, but with the advantage of using plain C++ code; for the edge cases, we

proposed and/or implemented methods to alleviate the overhead which were validated

by preliminary results. As a consequence, the vecpar framework can be used for multiple

purposes, either (a) as an environment for testing the parallelization potential of a given

algorithm and/or implementation, or (b) as a production-ready solution for targeting

CPU and GPU architectures. Despite being developed for track reconstruction code, the

framework’s applicability is extended to any problem that fits its abstractions. However,

multiple performance optimizations and portability improvements are still possible, and

they are therefore listed as future work.
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Zusammenfassung

Schätzungen für High-Luminosity Experimente am Large Hadron Collider zeigen, dass Hunderte
von Petabyte Daten in Echtzeit verarbeitet und für zukünftige Analysen gespeichert werden sollen;
vergleichbare Mengen an Simulationsdaten kommen zu diesen noch nie dagewesenen Mengen
hinzu. Im Bereich des Hochleistungsrechnens haben viele Supercomputer durch den Einsatz von
Many-Core-Architekturen und Beschleunigern bereits PetaFLOPS oder sogar ExaFLOPS erreicht.
Diese Ansätze verbessern nicht nur die Rechenleistung und den Speicherdurchsatz, sondern
auch die Leistung pro Watt. Dennoch nutzen zahlreiche wissenschaftliche Anwendungen die
derzeit verfügbare leistungsstarke Hardware noch immer nicht effizient aus. Trotz anhaltender
Bemühungen wird die Entwicklungsproduktivität dadurch behindert, dass für jede Plattform eine
andere Programmiersprache verwendet werden muss, um die beste Leistung zu erzielen. Dies
ist problematisch, da die meisten Entwickler Naturwissenschaftler sind, die häufig über keine
fundierten Informatikkenntnisse verfügen.

Mithilfe von Konzepten der funktionalen Programmierung und verschiedener Spracherweiterun-
gen haben wir einen Prototypen des vecpar-Frameworks entwickelt. Es entkoppelt den wis-
senschaftlichen Code von den Parallelisierungs- und Offloading-Techniken und ermöglicht es,
einen C++-Algorithmus aus einem einzigen Quellcode für mehrere Hardwareplattformen zu
kompilieren. Darüber hinaus ermöglicht dieser Ansatz die Unterstützung künftiger Architek-
turen, indem die Backends von vecpar angepasst werden, ohne die physikbezogenen Algorithmen
zu beeinträchtigen.

In dieser Arbeit stellen wir mehrere Forschungsstudien vor, die unsere technischen Entschei-

dungen für das Framework motivieren und diskutieren sowohl das Framework als auch seine

Leistungsfähigkeit ausführlich. Bei Tests mit verschiedenen Benchmarks und Architekturen hat

das Framework in den meisten Fällen dasselbe Leistungsniveau wie native parallele Implemen-

tierungen erreicht. Es bietet allerdings den Vorteil, dass einfacher C++-Code verwendet wer-

den kann; für Spezialfälle haben wir Methoden vorgeschlagen und/oder implementiert, die den

Overhead verringern können und diese durch vorläufige Ergebnisse validiert. Folglich kann das

vecpar-Framework für mehrere Zwecke verwendet werden, entweder (a) als Umgebung zum

Ausloten des Parallelisierungspotenzials eines bestimmten Algorithmus oder einer bestimmten

Implementierung oder (b) als produktionsreife Lösung für die Nutzung von CPU- und GPU-

Architekturen. Obwohl das Framework für Track-Rekonstruktions-Code entwickelt wurde, lässt

es sich auf viele weitere Probleme anwenden. Verschiedene Leistungsoptimierungen und Porta-

bilitätsverbesserungen sind möglich und werden als zukünftige Arbeiten aufgeführt.
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1. Introduction

The field of High Performance Computing offers the support for groundbreaking scientific research
in different domains, with High Energy Physics being only one of the examples. In this chapter,
a brief introduction into both of these fields is presented, while the focus lies on the collaboration
between them, which is the main motivation for this thesis.

1.1. High Performance Computing

High performance computing (HPC) refers to computing systems with extremely high

computational power and/or storage capacity that are able to solve complex problems

[Ludwig, 2020]. To evaluate the performance of a system, one of the most widely used

metrics is the number of floating point operations per second: FLOP/s or FLOPS1. In

the last 20 years, HPC facilities have achieved a huge performance leap by increas-

ing the number of compute processing units and their individual efficiency but also

by employing diverse hardware resources. While the most powerful supercomputer

evaluated on the Linpack benchmarks in 1993 had 1024 Central Processing Units (CPU)

and achieved a performance of 59.70 GFLOPS, supercomputers in 2022 reached the ex-

ascale era with the Frontier supercomputing achieving an impressive performance of

1, 102 PFLOPS with its almost 9 million compute cores, both CPU and Graphics Process-

ing Unit (GPU) [Dongarra and Luszczek, 2011, TOP500, 2022].

In this section, the developments that led to today’s capabilities are investigated and the

latest architectures are described in detail since their characteristics shape the motivation

for the current work.

1.1.1. Heterogeneous Architecture

In a famous article published initially in the journal Electronics in 1965, and republished

in 1998, Gordon Moore, one of the co-founders of Intel corporation, predicted that the

number of transistors in a hardware chip would double every 24 months [Moore, 1998].

Known as Moore’s law, this estimate proved to be accurate for the next few decades

until it started to slow down due to CMOS transistors’ limits and power consumption

requirements. Additionally, while wall-clock speedups were automatically obtained with

each new generation of hardware due to increasing clock speeds, researchers noticed that

1Commonly used FLOPS multipliers are GigaFLOPS (1 GFLOPS = 109 FLOPS), PetaFLOPS (1 PFLOPS =
1015 FLOPS) and ExaFLOPS (1 EFLOPS = 1018 FLOPS)
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there is an imbalance between memory bandwidth and processor speed by looking at

the cache miss/hit radio per average cycle per access, which they named the memory
wall [Wulf and McKee, 1995]. This practically meant that the computational performance

is limited by the speed of read/write accesses from/to the memory modules rather than

the CPU’s speed. Consequently, new approaches started to be investigated.

Defined in 1966 and extended in 1972, Flynn’s taxonomy is a categorization of parallel

computer architectures based on the way flows of instructions and data are handled

[Flynn, 2011]. Therefore four classes are proposed:

• Single Instruction, Single Data (SISD) which corresponds to the von Neumann

architecture where there is one control unit that loads the instruction and one bus

that connects the processing unit to the memory;

• Single Instruction, Multiple Data (SIMD) where the same instruction is executed for

several chunks of data; the GPU is a classic example of a SIMD architecture;

• Multiple Instruction, Multiple Data (MIMD) where different processors can execute

an independent flow of instructions on different sets of data in parallel; an example

is a recent CPU, which has several (independent) cores on the same card;

• Multiple Instruction, Single Data (MISD) where several execution units operate on

the same data flow; this model has no practical use cases in HPC for now.

A major breakthrough came with the development of multicore architecture. In this

case, a processor has multiple cores available on the same chip, each having its own

local cache while being connected to a shared cache/global memory interface. Refining

the same idea, the manycore architecture was proposed. This is an enhanced multicore

where the chip contains tens to hundreds of simpler cores which allow massive parallel

execution [Vajda, 2011]. Based on how the memory is accessed from the cores, several

models are valid:

• Uniform Memory Access (UMA) model – the processors use a symmetrical archi-

tecture in respect to the memory module and therefore the latency and bandwidth

are identical;

• Non-Uniform Memory Access (NUMA) – there are at least two different memory

spaces, because the memory is physically distributed but logically shared. In this

case the latency depends on whether the read/write call is made to a local or remote

memory location, but within the same order of magnitude. The data is transferred

from one node to another through high-speed Ethernet connections.

• cache-coherent Non-Uniform Memory Access (ccNUMA) – similar to NUMA but

with the extent that the coherence ensures that modifying the data from one cache

line which resides in several CPU caches will invalidate the caches of all the others.

Depending on the processing unit types and the memory access models, two designs

were proposed: homogeneous architectures, where all the processing cores are of the same
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type and share the same (logical) address space (UMA, NUMA, ccNUMA), and hetero-
geneous architectures, where two or more types of cores are available within the same

computing node but with a distributed memory model (NUMA), as shown in Figure 1.1.

Figure 1.1.: CPU and GPU memory illustration by NVIDIA [NVIDIA Corporation, a]

A concrete example of a heterogeneous compute node with one CPU and four GPUs

is shown in Figure 1.2. While GPUs are usually the common choice for accelerators2,

Figure 1.2.: AMD EPYC Processor with 64 cores is fully connected to the four AMD
Radeon Instinct GPU and to the two high speed DDR cards in Heterogeneous
node of the Frontier Supercomputer [Oak Ridge National Laboratory, 2022]

other cards can also deliver performance improvements. These alternatives include

2Accelerators are hardware processing units tailored to perform certain classes of tasks more efficiently
than a CPU
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co-processors3, Field-Programmable Gate Array4 (FPGA), and Application Specific Inte-

grated Circuits5 (ASIC).

The Peripheral Component Interconnect Express (PCIe) connects the distributed mem-

ory locations as shown in Figure 1.3 [Stephen Jones, 2017]. It is one of the major contribu-

tors to performance penalties, but its impact is alleviated with every new generation that

gets released. This is achieved by increasing the number of connection lines and ensur-

ing simultaneous bi-directional throuput. For example, PCIe Generation 4 guarantees a

bandwidth of 64Gb/s, which is double what PCIe Gen3 could offer.

Figure 1.3.: NVIDIA memory bandwidth in 2017 [Stephen Jones, 2017]

To achieve top performance, state-of-the-art processors implement low-level optimiza-

tion strategies and techniques [Hager and Wellein, 2011]. Some of the most widely used

ones are mentioned below:

1. Development of instruction pipelines – instructions are executed in stages (e.g. read,

fetch, jump) with pipelines overlapping for different instructions

2. Hardware dynamic instruction scheduling – the hardware is allowed to reorder

instructions to exploit instruction-level parallelism, independently from the com-

piler’s actions

3. Hyper-threading or Simultaneous Multi-Threading (SMT) – this provides better

cache and instruction pipeline utilisation, while decreasing power consumption

4. SIMD instructions issue an identical operation on each element of an array of float-

ing point operands (which are usually stored in registers). Also, the number of

available registers and their sizes were extended to ensures support for data level

parallelism. The x86 architecture went through several upgrades, each generation

extending the instruction set further. The first addition was 8 MMX registers × 64

bit. This was followed by a series of extensions — Streaming Single-Instruction-

Multiple-Data Extensions (SSE, SSE2, SSE3, SSE4, SSE5) — which introduced 16

registers × 128 bit. Now two operands fit in an SSE register and the notion of packed

3A co-processor has the same CPU structure but is focused on floating point compute units and less on
interconnect or storage capabilities; A popular example is the Intel Xeon Phi

4FPGA are reconfigurable integrated circuits that can be tailored for simple logical operations
5Similar to FPGA in some sense, ASICs can target complex operations and cannot be reconfigured
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operation as opposed to the existing scalar operations is introduced. Then Intel’s

Advanced Vector Extensions (AVX and AVX2) doubled the size of the SSE regis-

ters to 256 bits while adding masking and shuffling operations. Finally, AVX512

provides 32 registers × 512 bit. An important point to mention here is that while

CPU’s registered kept expending, the GPU registers remain at the same values

defined by the IEEE 754-2008 standard: 32 bit for single-precision and 64 bit for

double-precision [IEEE, 2008]. This often leads to different results delivered by the

arithmetic units from these two architectures.

5. Use a simplified instruction set – While the term reduced instruction set computer
(RISC) was coinded in 1980, the first implementations started to emerge in 1985,

with Advanced RISC Machine (ARM) being one of them.

Nevertheless, just hardware advances are not enough to achieve top performance un-

less the software and middleware are also upgraded to leverage the physical capabilities.

The interaction between all these components is illustrated in Figure 1.4. Parallel and

Figure 1.4.: Software stack of an HPC compute node

distributed file systems like Lustre [Braam, 2019] provide fast I/O operations when han-

dling storages of petabytes. Package managers like Spack [Gamblin et al., 2015] ensure

easy installation, configuration and update of software dependencies automatically and

without requiring administrator rights, while containers pack all the dependencies to-

gether. Workload managers like SLURM [Yoo et al., 2003] provide an efficient scheduling
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mechanism of the computing jobs and distribute the computations. Highly optimized

compilers connect parallel programming techniques to the hardware through applica-

tion programming interfaces (API) like message passing, multi-threading, vectorizations,

acceleration, etc.

1.1.2. Present and Future Supercomputers

The most powerful supercomputers in the world are evaluated constantly and the results

are published twice a year in a Top500 list [TOP500, 2022, Dongarra and Luszczek, 2011].

Commonly, two performance values are provided: the theoretical peak Rpeak and the

achieved maximum Rmax. The former is an upper bound and represents the number of

floating-point additions and multiplications (in full precision) that can be completed dur-

ing a cycle; this depends on hardware factors like the clock frequency of the processor, the

number of cores or the SIMD operation support. The latter is the actual number of floating

point operations in a cycle measured given a specific benchmark. Linpack and Lapack

benchmarks contain linear algebra routines, while a parallel implementation of Linpack

called High-Performance Linpack Benchmark for Distributed-Memory Computers6(HPL) is used

for ranking the supercomputers. HPL package provides algorithms that solve a dense

system of linear equations in double precision with no restriction on the problem size or

matrix element types but with constraints on the accuracy of the results.

Based on the statistics released in 2022, the ten highest ranked supercomputers use a

variety of processing units from different vendors: seven of them have accelerators from

either AMD or NVIDIA combined with many-core CPU from IBM, AMD and Intel, one is

ARM based while one has a Sunway many-core CPU [TOP500, 2022]. A brief summary

of their hardware is presented in Table 1.1.

Rank Name Rmax (PFLOPS) CPU model GPU Model
1 Frontier 1 102.00 AMD EPYC AMD MI250X
2 Fugaku 442.01 Fujitsu A64FX -
3 LUMI 309.10 AMD EPYC AMD MI250X
4 Leonardo 174.70 Intel Xeon 8358 NVIDIA A100
5 Summit 148.60 IBM Power9 NVIDIA V100
6 Sierra 94.64 IBM Power9 NVDIA V100
7 TaihuLight 93.01 Sunway SW 26010 -
8 Perlmutter 70.87 AMD EPYC 7763 NVIDIA A100
9 Selene 63.46 AMD EPYC 7742 NVIDIA A100

10 Tiahe-2A 61.44 Intel Xeon E5-2692v2 -

Table 1.1.: Top 10 HPC Supercomputers in November 2022 [TOP500, 2022]

Intel and NVIDIA are dominating the market for CPU and GPU respectively, while

AMD, Intel, Fujitsu or IBM have started to become significant competitors, as shown in

Figure 1.5. Fujitsu ARM A64FX ensured Fukagu’s supremacy in Top500 for two consec-

utive years and was only recently overtaken by an AMD-based cluster, Frontier. Also,
6https://netlib.org/benchmark/hpl/

https://netlib.org/benchmark/hpl/


1.1. High Performance Computing 7

many of the supercomputers use hybrid platforms, with CPU from one vendor and GPU

from another. An example of using this approach is Levante supercomputer located at

the German Climate Computing Center (DKRZ) in Hamburg, Germany, which uses two

AMD 7713 CPU connected to four NVIDIA A100 GPU for the nodes in the GPU partition.

(a) CPU System Share (b) GPU System Share

Figure 1.5.: CPU and GPU models shares in Top 500, November 2022 [TOP500, 2022]

The decision to use accelerators is not driven only by the desire to increase performance

but stems also from the need to reduce energy consumption. GPUs can offer better

FLOPS per Watts (FLOPS/Watt) and therefore ensure a more energy efficient resource

utilization ratio. This metric is used to rank the supercomputers in GREEN5007. New

additions to top 10 fastest supercomputers like Frontier and LUMI are among the top

10 most efficient too with more than 50 GFLOPS/Watt while older ones like Fugaku and

Summit deliver around 15 GFLOPS/Watt. Nevertheless, focusing on graphic cards only,

the leap in performances is correlated with an increase in power consumption8, as it is clearly

shown in Table 1.2 [Fujitsu, 2020, NVIDIA Corporation, 2017, NVIDIA Corporation, 2021,

AMD, 2020, AMD, 2021].

Name FP32 FP32 Tensor FP64 FP64 Tensor Power
Fujitsu A64FX 6.8 - 3.4 - 170

NVIDIA V100 (PCIe) 14 112 7 - 250
NVIDIA V100 (SXM2) 15.7 7.8 125 - 300

NVIDIA A100-40GB-PCIe 19.5 156 9.7 19.5 250
NVIDIA A100-80GB-SXM2 19.5 156 9.7 19.5 400

AMD Instinct MI100 23.1 46.1 11.5 - 300
AMD Instinct MI250X 47.9 95.7 47.9 95.7 500

Table 1.2.: Computing capabilities of the floating point (FP) units and power consumption
for the major graphic cards compared to a top CPU (Fugaku). The measurement
units for performance and power are TFLOPS and Watts, respectively;

Therefore, less optimized scientific applications that do not take full advantage of the

huge compute potential, might end up using more energy without speeding up their

7https://www.top500.org/lists/green500/
8The vendor-released specifications include the tensor cores’ performance too, which are special FP units

that enable mixed-precision computing, dynamically adapting calculations to accelerate throughput while
preserving accuracy. Commonly, FP8, FP16, FP32 and FP64 units are available in high-end graphic cards.

https://www.top500.org/lists/green500/
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operations despite running on latest hardware.

Table 1.2 also shows that recent AMD GPUs matched and in some cases even out-

performed NVIDIA’s capabilities, and therefore qualify themselves as eligible solutions

for future supercomputers. Examples already include Frontier, which is on its way to

replacing Summit, and El Capitan, which is scheduled to replace Sierra in 2023.

Moreover, Intel has announced the Xe Architecture "Ponte Vecchio", which is currently

being installed in the new exascale supercomputer Aurora at Aragonne National Labora-

tory, in the United States [Argonne National Laboratory, 2022]. In addition, the company

is exploring new architectures for a high-performance GPU targeting AI and supercom-

puting, which is scheduled to be released in the following years.

The vendors diversity translates into a variaty of instruction sets, one for each hardware

resource. Moreover, while most of the top supercomputers are heterogeneous systems,

75% of the Top500 list are still using CPU as only compute resource. Also, Cloud Data Cen-

tres offer huge parallelization opportunities employing ARM-based CPUs like Graviton,

dedicated ASICs like the Tensor Processing Unit (TPU) or GPUs.

In this context, scientific applications are required to ensure a high level of portability.

This is the ability to execute a computer program on architectures with different low-level

instruction set and memory handling routines. High-Energy physics is one of the exciting

scientific domains that relies on massive scale parallelism to handle large amounts of real-

time data that need to be processed and stored in less than a millisecond. Therefore, the

physics software needs to be both portable and performant.

1.2. High Energy Physics

According to Nature Journal, Particle Physics or High-Energy Physics (HEP) "is the study

of the elementary building blocks of matter and radiation and their interaction"9. The

best understanding on how the fundamental particles interact with three out of the four

fundamental forces is comprised in the Standard Model (SM).

Nevertheless, this theory is still unable to answer a number of very interesting questions

like: Why does gravity seem to behave differently from the other fundamental forces,

hence is missing from the SM? What are the properties and decays of the Higgs boson,

whose existence was postulated in 1964 but its discovery was confirmed experimentally

only years later, in 2012? What particles and phenomena are responsible for the dark

matter and dark energy? How is the antimatter involved in the Universe? To search for

answers, physicists design experiments to observe and measure the particle interactions

in colliders, such as the Large Hadron Collider (LHC) at CERN.

9https://www.nature.com/subjects/particle-physics
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1.2.1. Large Hadron Collider

Inaugurated in 2008, the LHC is a circular proton-proton collider with a circumference of

27 kilometres at a depth of ≈ 100 meters underground. Inside, two beams are travelling

close to the speed of light in separate accelerator rings within magnetic fields of oppo-

site polarity and collide in four key locations where the rings intersect. Detectors with

complex sensor systems are installed at each intersection as showed in Figure 1.6. To

reach 99.9999991% of the speed of light, the protons are initially injected into a sequence

of smaller accelerators: first, the PS Booster (PBS), then the Proton Synchrotron (PS) and

finally the Super Proton Synchrotron (SPS) before they are passed to the LHC, which ac-

celerates them further. A critical aspect of the LHC is that it allows the closest laboratory

recreation yet of the conditions in the early universe.

Figure 1.6.: CERN collider infrastructure [Lopienska, 2022]

An important property that characterises a collider’s performance is the number of

potential collision per surface unit in a certain period of time, called instantaneous lu-
minosity. If this measurement is recorded over a given period of time, the integrated
luminosity is obtained. Equations (1.1) and (1.2) show the formulas for computing

these metrics, dN
dt is number of hard collisions produced per second and σ is the cross-

section [Halkiadakis, 2010]. The integrated luminosity is measured in inverse femtobarns10

( f b−1).

L =
1
σ

dN
dt

(1.1)

10The barn is a metric unit of area that equals to 10−24cm. The most commonly used submultiples are the
picobarn (1pb = 10−36cm2) and femtobarn (1 f b = 10−39cm2)
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Lint =

∫ T

0
L dt (1.2)

While the LHC is constantly being upgraded with each run11, a major turning point is

scheduled for 2029, when the luminosity is set to be increased considerably and will mark

the beginning of the High-Luminosity Large Hadron Collider (HL-LHC) era. The amount of

data captured by the detectors will increase proportionally. Currently, the LHC produces

50 PB per year [CERN, 2017]. While at the end of 2018, 150 inverse femtobarns of data

were recorded in total since the beginning of Run 1, HL-LHC is estimated to produce 250

femtobarns/year. Recent technical reports about data taking during Run 3 confirm this

assumption and show that LHC already produces 1 f b−1 a day, even before HL, as shown

in Figure 1.7 [ATLAS Collaboration, 2022c].

Figure 1.7.: Delivered Luminosity for 2011-2022 [ATLAS Collaboration, 2022c]

Worldwide LHC Computing Grid (WLCC) [Shiers, 2007] is the multi-tier infrastructure12,

which currently handles these large amount of data as follows:

• Tier 0 — a data centre with 73 000 cores located at CERN mostly used for storing

raw-data, data aggregation, initial reconstruction and transfers to long storage;

• Tier 1 — 13 key data centres in Asia, North America and Europe focused on perma-

nent storage, re-processing and data analysis;

• Tier 2 — 160 universities and scientific institutions around the world, which perform

simulation and analysis;

• Tier 3 — department cluster or PC where end-user analysis is performed.

11LHC has had three periods of data taking: Run 1 (2009-2013), Run 2 (2015-2018) and Run 3 (2022-2026).
Between consecutive operational runs, the so called Long Shutdown periods are used to upgrade the detector.

12Source: https://wlcg-public.web.cern.ch/tiers, Accessed: October, 2022

https://wlcg-public.web.cern.ch/tiers
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In the current regime, the LHC produces one billion collisions per second. The particles

resulting from a collision need to be counted and tracked by physicists. The charge,

energy and momentum of a particle can be inferred from its trajectory — or in short,

track. For example, high momentum particles travel almost in straight lines while low

momentum ones have higher curvature. Therefore the track reconstruction process is of

a great importance in both (a) validating the properties of a particle and (b) identifying

potential new particles.

To capture the information leading to computing the tracks, detectors use different type

of sensors as shown in Figure 1.8.

Figure 1.8.: Detectors based on particle type [LHC Education and Group, 2017]

Based on the technical design, sensors types and physics goals, there are four large

experiments at CERN: ATLAS — A Toroidal LHC Apparatus is a general-purpose de-

tector for "improving our understanding of the fundamental constituents of matter"13 by

providing precise measurements and search for new physics beyond the standard model;

CMS — Compact Muon Solenoid has a similar focus as ATLAS but the search is done

with different technical solutions and magnet design; ALICE — A Large Ion Collider

Experiment is a specialised detector, which studies the properties of quark-gluon plasma,

a state of matter where quarks and gluons, under conditions of very high temperatures

and densities, are no longer confined inside hadrons; LHCb — is a specialised detector

focused on the symmetry between matter and antimatter present in interactions of the

b-mesons14. While this work is intended to potentially be useful in a wide range of ap-

plications, the ATLAS detector is chosen as a particular use case and therefore it will be

described in more details.

1.2.2. ATLAS Experiment

ATLAS is the largest volume particle detector ever built, measuring 46 meters long,

25 meters heigh and 25 meters wide. Its current structure consists of several layers with

13https://atlas.cern/Discover/Physics
14Particles containing the b quark

https://atlas.cern/Discover/Physics
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different types of sensors wrapped concentrically around the proton beam lines, as shown

in Figure 1.9.

Figure 1.9.: The ATLAS detector at CERN [ATLAS Collaboration, 2022a]

A system of powerful magnets is employed to produce a magnetic field of 2T that bends

the particles’ trajectories so that their momenta can be computed. The hardware used for

Run 2 includes three main components with different functions:

1. The inner detector — measures charge, direction and momentum using three dif-

ferent system of sensors in a magnetic field parallel with the beam axis:

• Pixel detector – A grid of 92 million pixels, which provide just as many data

aquisition channels;

• Semiconductor Tracker (SCT) – A silicon microstrip tracker consisting of 4088

two-sided modules arranged in four barrels and two end-caps with nine wheels

each. They capture over 6 million channels.

• Transition Radiation Tracker (TRT) – A network of 350 000 straw tubes with

4mm diameter, in the centre a 0.03mm diameter gold-plated tungsten wire.

2. The calorimeter — measures the energy15 a particle loses as it passes through the

detector. It has two components:

• Liquid Argon (LAr) Calorimeter, which measures the energy of electrons, pho-

tons and hadrons. It features layers of metal (either tungsten, copper or lead)

that absorb incoming particles, converting them into a “shower” of new, lower

energy particles. It provides 110 000 readout channels.

• Tile Hadronic Calorimeter, which measures the energy of hadronic particles,

which do not deposit all of their energy in the LAr Calorimeter. It is made out

of several layers of steel and plastic scintillating tiles. When a particle hits the

15In particle physics, the unit that is most frequently used for energy is the electronvolt (eV) and its
derivatives Gigaelectronvolt (1GeV = 109eV) and Teraelectronvolt (1TeV = 1012eV)
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layers of steel, a shower of new particle is created. The scintillators convert

high energy radiation into photons which are later converted into an electric

current with the intensity proportional to the original particle’s energy.

3. The muon spectrometer — identifies and measures the momenta of muons (which

pass through previous layers undetected, as shown in Figure 1.8). It has four major

components:

• Thin Gap Chambers (440 000 readout channels)

• Resistive Plate Chambers (380 000 readout channels)

• Monitored Drift Tubes - measure curves of tracks using over 350 000 tubes

• Cathode Strip Chambers – measure precision coordinates at the ends of the

detector (70 000 readout channels)

To summarize, over 10 million data aquisition channels record electric pulses from 109

collisions per second. Nevertheless, not all the collisions that take place within ATLAS

can be stored on disk due to the high data volume, and neither are all the collisions

"interesting" from the physics point of view. Thus, two filters, which decide upon keeping

an event in under a millisecond, are employed: L1 — a hardware electronics trigger, which

chooses approximately 1 in 10 000 events, and High-Level-Trigger (HLC) — a software-

based one, which reconstructs the tracks and keeps 1 in 100 events.

In the shutdown period between Run 2 and Run 3, several upgrades were done for

ATLAS detector: significant architecture improvements at LAr and calorimeter in the L1

trigger and a new small wheel in the muon spectrometer.

In preparation for HL-LHC, ATLAS will upgrade its geometry with a new all-silicon

Inner Tracker (ITk), with an impressive number of readout channels: 5 billion in the pixel

detectors and 50 millions in the strip detectors [Meng, 2021]. The chip’s activity depends

on the hit16 rate and the position of the module in the detectors and it is able to transmit

data via 4 links with a speed of 1.28 Gbit/s [Meng, 2021]. A common data flow is depicted

in Figure 1.10.

Figure 1.10.: Data flow in the ITk detector [Meng, 2021]

16A hit is the 3D location where a charged particle intersects a sensitive surface of a detector.
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1.2.3. Track Reconstruction in ATLAS

In this section, the ATLAS reconstruction process is described, together with the main

concepts required for understanding the algorithmic flow.

1.2.3.1. Concepts

To describe a trajectory, ATLAS uses cylindrical coordinate system around the beam line (z

direction). The parameters that fully characterise the track are called track parameters and

they can be defined as bound track parameters: (l1,l2,φ,θ,q/p), and free track parameters: (~r, ~p,

q). In these notations, l1 and l2 are the local coordinates in the measurement plane, q is the

particle’s charge, ~p is the global momentum that is conserved in the plane perpendicular

to the beam line17, φ and θ are the azimuthal and polar angle of the particle momentum

vector direction at the particle’s position, q/p is the curvature in the cylindrical system,

and ~r and ~p are vector projections in 3D space of the Cartesian system. A particular case

with a measurement surface perpendicular to the beam and defined at the point of closest

approach to a reference point, like the beam (z) axis, is called the perigee surface and it

is shown in Figure 1.1118. Now, l1 and l2 are replaced by d0 and z0, which are called

transverse and longitudinal impact parameters.

Figure 1.11.: Particle tracking inside ATLAS detector using cilindrical coordinate system
(Source: Nicholas Style, EDIT2020)

As briefly mentioned before in this chapter, properties like the intensity and orientation

of the electric or magnetic field (~E and ~B respectively) are tightly connected to a particle’s

trajectory. When a uniform electromagnetic field is applied, the movement governed by

the Lorenz force is described in Equation 1.3.

~F = q(~E + ~v× ~B) (1.3)

Since the electric field is negligible within ATLAS detector, the value of the Lorenz force

becomes F = qvBsin(θ), where θ is the angle between the magnetic field vector and the

17Therefore transverse momentum (pT) is commonly used in computations.
18Excellence in Detector and Instrumentation Technologies (EDIT) 2020, Feb 17-18 2020, DESY, Hamburg
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particle’s velocity vector (~v). Now based on the vectors’ orientation, three trajectories

shapes can be identified:

• a straight line, if ~v ‖ ~B→ θ = 0° orθ = 180°→ F = 0

• a circular trajectory, with radius r, if ~v ⊥ ~B → θ = 90° → Lorenz force equals the

centripetal force, which leads to computing the radius: r = mv/qB

• helical trajectory due to the fact that one component of the velocity vector is constant

in magnitude and direction which implies straight-line motion, while the other com-

ponent of the velocity vector is constant in speed but uniformly varies in direction,

which implies circular motion.

When the magnetic field is non-uniform, which is the case for ATLAS detector, the

equation of motion becomes more difficult to solve, as shown in Equation 1.4. s is the

deviation from the straight line trajectory called sagitta19, B(r) is a 3D vector containing the

intensities of the magnetic field in every point of the detector and d~r
ds =

~T is the normalised

tangent vector to the track.

d2~r
ds2 =

q
p
(

d~r
ds
× ~B(r)) =

q
p
(~T × ~B(~r))) (1.4)

This equation can be solved numerically by using a 4th order Runge-Kutta-Nystrom

(RKN) algorithm that is tailored for second order differential equations. An adaptive

method based on RKN was developed by ATLAS scientists to reduce the error by adjusting

the step size according to the error tolerance as shown in Figure 1.12 [Lund et al., 2009].

Figure 1.12.: Runge-Kutta-Nystrom stages [Lund et al., 2009]

The main steps are:

1. Evaluate the equation in 4 stages k1-k4 using the RKN formulas

2. Compute the local error estimate ε = h2(k1 − k2 − k3 + k4); where h is the current

step size

3. Evaluate the quality of the solution based on acceptance criteria |ε| < 4τ

4. Evaluate the step size using user specified error tolerance hn+1 = hn(
τ
|ε| )

1
q+1 , with q

the order for the lower-order solution (which is 3 in this case)

19The sagitta of a circular arc is the distance from the centre of the arc to the center of its base
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5. Trim the step size using a limitation criterion 1
4 hn ≤ hn+1 ≤ 4hn

6. Compute T and r using the RKN formulas with adjusted step h

The precision of track reconstruction parameters is sensitive to the amount of material of

the tracking detector. The description of the material including the geometrical layout

and atomic composition — or its geometry — is based on engineering design drawings

of the detector, together with supporting measurements of the masses, dimensions and

compositions of detector components. This is later complemented by studies of interac-

tions sensitive to the detector material in data, which allow differences to the assumed

material distribution to be identified and eventually corrected for. Computationally, these

are encoded in a covariance matrix that has the derivatives of each track parameter with

respect to those at the starting point of the propagation.

The estimates produced by the numerical integrator are combined with the measure-

ments recorded by the sensors. A commonly used approached in particle physics is to use

the Kalman Filter (KF) algorithm [Billoir, 1984, Murphy, 2012]. This is a statistical model

that ensures better precision than when considering either measurements or estimates

alone. Another benefit is that KF requires just the current state to compute the next state

because the entire history is already aggregated into the current state. To increase the

precision of an estimated trajectory, an additional smoothing step can be performed at the

end; this will use information about all the measurements and will update the track states

and their associated covariances.

1.2.3.2. Event Data Model

A generic reconstruction flow involves a series of steps a shown in Figure 1.13.

Cluster formation

Measurement  formation

Space point formation

Seeding

Track finding

Track fitting

Vertex finding

Vertex fitting

Figure 1.13.: Generic charged particle reconstruction flow

Data coming from detector’s sensors are initially clustered together based on pattern

matching algorithms. For each cluster, if the collected charge is above a specific threshold,

a measurement can be constructed. This contains the position of a hit together with the

covariance matrix associated with it. Then the measurement is filtered-by detector-specific

knowledge and a space point is obtained.
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The seeding algorithm matches three space points on different detector layers which

could potentially be the source of a trajectory, as depicted in Figure 1.14. Since any three

Figure 1.14.: Visual representation for seeding, track finding and fitting [Salzburger, 2022]

points within a specific detector’s region described by ∆φ in the xy-plane and ∆θ in

the rz-plane could belong to the same trajectory, a combinatorial approach is followed.

Moreover, a space point can be part of several potential trajectories, creating (impossible)

track candidates, which are filtered out as soon as possible to minimise unnecessary

computational overheads.

The seeds are then fed into track finding and fitting algorithms, which could be done

either simultaneous or as separate steps and which follow a potential trajectory starting

from the seeds through the detector’s adjacent layers and provide precise estimates for

the track parameters and covariances by propagating them from one layer of the detector

to the next one. This process is also called propagation or extrapolation. Usually, at this

point, the track duplicates are removed20 and the remaining viable candidates are pro-

cessed further by vertex21 finding and fitting steps, which can employ machine learning

algorithms to deliver optimum results.

In summary, track reconstruction algorithms are mostly sequential, with each step

depending on the result of the previous one. They employ mathematic operations with a

high-computational cost, like matrix multiplications, matrix inversion, partial derivatives

calculations in covariances and jacobians, all in a combinatorial environment. When the

amount of data grows for the HL-LHC, the execution times are expected to increase

linearly, therefore posing a significant challenge on the computing infrastructure.

1.3. Motivation

Track reconstruction software is used when selecting the events in real-time (online) trigger

and when performing the offline physics analysis as shown in Figure 1.15. The online

reconstruction needs to run very fast in order not to miss any events and therefore some

20Typically 20 000 seeds generate 2000 track candidates which lead to 1000 tracks.
21A vertex is the actual proton-proton interaction point in space. Distinctions are made between primary

vertex, pile-up vertex and secondary vertex, which denote interactions with large momentum transfer, low
momentum transfer and decay of long lived particles respectively.
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concessions are made in terms of precision. Later, the offline reconstruction must deliver

high-precision tracks, which in theory means the code is not constrained to fit within

a fixed run time per event. Nevertheless, the highly-increasing computational costs in

supercomputers pose restrictive time constraints on the software. The computing grid

used for particle physics applications is distributed globally and includes some of the top

500 supercomputers, with Horeka at Karlsruher Institut für Technologie (KIT) and Summit
at Oak Ridge National Laboratory (ORNL) being just a few contributors to WLCC tiers 1

and 2 respectively.

StorageHardware trigger

109 events/sec

Software trigger
105 events/sec 103 events/sec

Offline analysis

CPU/GPU farm at CERN Supercomputers around the world General purpose computers
in research centres

Figure 1.15.: Data aquisition and processing chain in ATLAS

Anticipating the increasing volumes of data at HL-LHC and taking into consideration

the hardware developments in supercomputers, HEP Software Foundation (HSF) drafted

a white paper to address the new computational challenges ahead [Albrecht et al., 2019].

One key recommendation was to explore heterogeneous architectures and in particu-

lar: the parallelism enabled by multicore CPU and manycore GPU. This effort started

years ago, triggering software R&D projects within all the major experiments at CERN.

Firstly, some of the software packages were upgraded to use multi-threading support.

For ATLAS experiment, this meant the delivery of AthenaMT, the successor of the ex-

isting Athena framework, which brought thread-safe data structures, re-entrant and

stateless algorithms, and the option to run algorithms in parallel [Leggett et al., 2017].

Similar developments were reported for CMSSW, CMS’s track reconstruction frame-

work [Jones et al., 2015]. Secondly, the ability to target GPU platforms was prototyped by

all major experiments: ALICE developed a GPU-accelerated track reconstruction in the

High Level Trigger, which can run on NVIDIA and AMD GPU, and which facilitated im-

portant speedups translated into cost savings of 1.5 million Swiss francs [Rohr et al., 2017];

ATLAS ported a HEP Parameterized Calorimeter Simulation Code to NVIDIA and AMD

GPUs [Dong et al., 2021]; CMS developed Patatrack workflow, which offloads parts of

the computations to a GPU [Bocci et al., 2020]; LHCb wrote a heterogeneous framework

named Allen, which accommodates both CPU and NVIDIA GPUs [Aaij et al., 2020].

These are only a few examples out of all the results that were published, while some of

the key outcome of these developments are summarised below:

• Most of the projects delivered considerable wall-clock speedups with different de-

grees of portability (either between CPU and GPU or between GPUs from different
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vendors). This can be used as a proof-of-concept to validate the assumption that

accelerators can be successfully used for HEP code.

• There is a huge development effort to learn new programming languages and

their associated extensions to target different architectures using native implemen-

tations22, which is followed by the need to maintain different repositories. This is

exacerbated by the fact that reconstruction code is mostly written by physicists, who

sometimes lack (a) advanced software development training and (b) the motivation

to spend most of their time writing code instead of doing actual physics analysis.

Therefore development productivity was not ideal.

• The reconstruction code is very complex and therefore the parallelization effort was

not trivial as this often required rewrites of the event data flows or the algorithms.

Also several parallelization strategies needed to be employed in order to achieve

the desired speedup. For example, reading event data cannot be done on GPU

yet so it must be covered on the CPU. Then inherently sequential algorithms like

RKN or KF cannot be directly parallelized, therefore the parallelization needs to

happen at an upper level (i.e. propagate different tracks in parallel). Many of the

above-mentioned results were based on trial and error approaches.

While elaborating the white paper for defining the software strategy for the next 10

years, special consideration was given to some specific topics, with Software trigger and

Event reconstruction being two of them [Albrecht et al., 2018]. The initial estimates for

compute requirements are revised (and updated accordingly) every year. Figure 1.16a

and Figure 1.16b are part of the technical report [ATLAS Collaboration, 2022b] published

in March, 2022, and show that to deliver the expected amount of work while fitting into

a realistic budget model requires serious investments in R&D23.

(a) CPU (b) Storage

Figure 1.16.: ATLAS Computing Resource Estimates [ATLAS Collaboration, 2022b]
22Examples detailed in the next chapters include C++ and OpenMP for CPU, and CUDA, OpenCL, HIP

for GPU
23A baseline model represents a state where R&D is kept to the minimum and even dropped altogether in

some cases. The conservative R&D model assumes that both current person-power and technical expertise are
maintained at the same level on the long term, while aggressive R&D assumes larger person-power, which can
be achieved by either hiring new people or allocating more development time for the current collaborators.
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As a consequence, several R&D projects prototyped experiement-independent track

reconstruction using C++ algorithms wrapped in target-specific demonstrator chains

(detailed in Section 3.1.1.1). Inline with this effort, the need for a multi-purpose framework

that would allow a parallel and efficient execution of the algorithms while using only C++

code was identified. As the name suggests, the framework should contribute to improving

performance, portability and productivity of the reconstruction software by providing a

clear distinction between the scientific code (e.g. the physics-related algorithms) and the

computational approach (e.g. multi-threading and/or offloading languages). This should

alleviate the development effort by passing the responsibility for parallelization and/or

GPU utilisation to a (hidden) backend maintained by computer scientists. While there will

be a cost of porting current implementations to the new framework, this should be reduced

to a minimum by providing C++ APIs and by allowing it to happen gradually. Moreover,

the framework should also reduce the need to maintain several code repositories by

allowing an algorithm implementation to be compiled for different architectures.

1.4. Contribution

The goal of this thesis is to study efficient ways of running track reconstruction code on

supercomputing hardware, while maximizing developers’ productivity. Our contribution

is threefold. First, we explore state-of-the-art parallel approaches to get insights about the

algorithms’ characteristics and to setup a test bench for further evaluations; the outcome

consists of parallel implementations in open-source physics applications and a series of

performance studies. Second, we introduce clang-offload, a simple standalone prototype

for C++ automatic source-to-source translation tool, that transforms sequential code to

a parallel one and enables execution on different hardware. Third, we introduce the

vecpar framework, our proposed solution designed to address the concerns expressed in

the motivation section.

1.5. Thesis Structure

This thesis is structured as follows: Chapter 2 presents an overview of state-of-the-

art parallel and distribute programming approaches in current HPC environments and

introduces the main concepts and terminology of the field. Chapter 3 summarises our

experimental work of (a) applying state-of-the-art libraries to particle physics examples

extracted from the track reconstruction flow and (b) developing a trivial prototype tool;

the results and observations define the functional and technical specifications for our

proposed solution: the vecpar framework, which is detailed in Chapter 4. Chapter 5 covers

related work and compares vecpar to existing approaches. Several metrics together with

evaluation results obtained in selected experimental setups are presented in Chapter 6,

while future developments are proposed in Chapter 7.
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2. State of the Art

Dedicated programming languages and specific extensions were developed based on C/C++ lan-
guage to ensure the best hardware exploitation through performance optimizations at all levels:
application, compiler, driver, runtime and hardware. In this chapter, we summarise the state-
of-the-art APIs and tools for parallelization and offloading targeting heterogeneous architectures,
highlighting the key points that shaped our work.

2.1. Basic Concepts

It is important to note the difference between concurrent and parallel execution. The former

refers to different actions that happen in the same time but not necessarily simultaneously;

an example is a single-core CPU, which executes several processes at the same time; in

practice, only one instruction (belonging to one of the processes) is executed at a time, but

the scheduler mimics the parallelism by allocating a number of cycles when each process

executes its code and then stops to give priority to the next one in line. The latter refers

to dividing the work that can be done simultaneously; if the same code is executed on

different chunks of data, we talk about data parallelism, while if the code is divided into

smaller pieces, called tasks, which can be executed on the same or on different chunks of

data, we talk about task parallelism.

As mentioned in Section 1.1, most of the current supercomputers use NUMA architec-

tures composed of multiprocessors and accelerators within the same computing node. In

this case, we talk about distributed computing or offloading rather than parallelism because

data that resides in CPU memory must be made accessible to accelerator(s) at runtime, if

computations are expected to happen on both devices1. Memory transfers can be done

explicitly, by invoking appropriate APIs or implicitely, by delegating this task to the com-

piler and driver for the GPU that offer the concept of unified memory or shared memory2.

The implicit way usually trades performance for usability.

Moreover, the memory capacity of a GPU is much smaller than the one of a CPU.

Therefore, several constraints apply on both execution and data. First, there is typically

no support for recursive function calls since the stack is limited. Second, memory cannot

be allocated dynamically. Recently, different mechanisms that emulate the dynamic

1CPU and GPU memories are often refered to host and device respectively, because a process usually
starts on the host and then it can continue on the device, and not vice-versa.

2These terms can be misleading since they refer to a common way of accessing memory rather than a single
shared physical card.
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allocations were proposed and they will be discussed later in this chapter. Third, there

is limited support for runtime object polymorphism and in some cases, virtual functions

are not yet supported at all. Fourth, there is no support for C++ Standard Library

functionality on the device (this includes both functions and containers).

2.2. C++ Standard Template Library

Traditionally, C++ has not offered dedicated support for parallelism or concurrency.

However, in the last years, the C++ Standard Template Library (STL) has started to

provide features in this direction as a part of an ongoing effort3 to setup a standardized

approach to handle different memory resources of a NUMA system and different types

of hardware and logical threads within the same application.

C++17 delivers algorithm library, which defines routines like searching, sorting and

manipulating data sets and support for iterators. The notion of execution policy is defined

for an algorithm and it expresses the way the operations are carried out. For example,

parallel policy denoted by std::execution::parmarks that the algorithm can be executed

in parallel in a multi-threading setup while the parallel unsequenced policy denoted by

std::execution::par_seq signals that the algorithm can be parallelized either through

multi-threading or vectorization but the order of the results is not guaranteed. Important

algorithms to mention in scope of this thesis are for_each and transform; the former

applies a function on every iterator in a range while the latter has a similar functionality

except for the fact that it returns the results stored in a different iterator. A trivial example

is shown in Listing 2.1. Numeric operations like reduce, inner product, accumulate

etc. provide overloaded implementations with execution policies to ensure the support

for parallelism. Another important component is the new polymorphic allocator, which

enables run-time polymorphism based on the memory resource that it is constructed

with. Conceptually, this means that both CPU and GPU memory are handled similarly

from the user code’s perspective while the details concerning actual read/write operations

are hidden through abstractions.

1 int a[N]; // initialize a ...

2 std::for_each(std::execution::par, std::begin(a), std::end(a),

3 [&](int& i) {

4 i++;

5 });

Listing 2.1: Increment the values from an array of size N in parallel using C++17

C++20 develops algorithm library further by adding unsequenced execution policy, which

enables vectorization within the same thread. Additionally, ranges library is an extension

and generalization of the algorithms and iterators exposed by algorithm library. With this

3Besides the input from the C++ community, there is also an important contribution from GPU vendors
to the ISO C++.
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new addition, the algorithms are now more easily composable, thus building pipelines

becomes a trivial process. Furthermore, several extensions to the existing concurrency
support library were introduced: new thread cancellation mechanisms, new synchroniza-

tion objects like semaphores, latches and barriers, and support for atomic operations on

non-atomic objects.

New features, meant for increasing the support for targeting heterogeneous architec-

tures, were also made available. First, concept library is a collection of functions that

support compile-time polymorphism. This has a critical importance for code compiled

for GPU since this platform has limitations in handling polymorphism, as discussed pre-

viously. Second, span view is added to container library; it is a non-owning view over

a contiguous sequence of objects, the storage of which is owned by some other object.

Third, the memory resources can now support allocation/deallocation of raw aligned

memory from the underlying resource; again, this can be a generic approach for any type

of memory from a NUMA system if the compilers/drivers handle the particularities of

the targeted platform.

While parallel policies proposed by ISO C++17 are already supported by most of

compilers, new concepts like thread pool executors containing different types of resources

(i.e. CPU and/or GPU threads) are proposed for C++23/C++26 and prototyped in some

proprietary compilers [Larkin, 2022].

2.3. Multi-platform Standards and APIs

In this section, we investigate the standards and APIs driven by community effort, re-

gardless whether they were designed having a heterogenous model in mind, or they were

initially used for shared-memory CPU architecture and adapted to include accelerators

later on.

While an API might have several versions that cover more programming languages,

we will focus only on C/C++ APIs since this is in scope for our domain application.

2.3.1. OpenMP

With the rise of the shared-memory parallel computers in the 1980s, there was the need

for directives to let the compiler know how to execute the instructions in parallel on

different nodes; while nowadays SMP are replaced by Massively Parallel Processor

(MPP), the directives roles are more important than ever. Initially, the specifications

were drafted by a group of hardware vendors in the 1990s and they were based on the

work done by the Parallel Computing Forum, and more exactly a parallel loop for Fortran

language [Chapman et al., 2008].

OpenMP API defines “a portable, scalable model with a simple and flexible interface for

developing parallel applications on platforms from the desktop to the supercomputer”4.

4https://www.openmp.org/

https://www.openmp.org/
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It is not a programming language, but a set of directives and utility functions, which

instruct the compiler which instructions can be executed in parallel and how to handle

the shared memory among threads. If used on supercomputer nodes with many cores

and distinct memory locations, the compiler could receive information about how to (a)

distribute threads to the available cores, (b) access memory spaces and (c) synchronize

among workers. Each compiler that wants to support OpenMP standard must provide a

custom implementation for the API.

First OpenMP specifications for C/C++ were published in 1998. In 2013, OpenMP

added support for accelerators with the release of version 4.0. This was the point when

the standard extended its portability to shared-memory CPU node and heterogeneous
(CPU and GPU) node. The main C/C++ compilers fully support OpenMP 4.5 (2015) and

partially support OpenMP 5.0 (2017), while the most recent standard specification is 5.2

(2021). Next, when mentioning OpenMP features we will be referring to 4.5 version

unless stated otherwise.

The execution model of OpenMP is based on a fork-join mechanism: the initial thread

executes sequentially until it reaches a parallel region when it creates a team of threads with

the initial thread being the master. One (implicit5) task is created for each thread and one

(implicit) barrier is set at the end of the parallel region to join the threads. One thread is

bound to a specific place within the current place partition6 according to the default value

of the bind-var internal control variable (initially set by the OpenMP implementation), but

the distribution strategy is configurable through directives and environment variables.

Similarly, many other execution-related configurations can be set in this way; a few

examples include: the number of working threads and/or teams, the device to offload

the computations to, the thread affinity policy for the nested regions, the visibility of a

variable (shared, private, firstprivate), the reduction function that applies for the given

loop, and the synchronization directives.

OpenMP uses a host-centric execution model when a GPU is required; this means that

a thread starts executing on the host and it can offload the computations to a target device

with the main thread expecting the task’s completion on the device before exiting. While

multiple threads can be started on both host and device, they cannot migrate from one

platform to another.

The memory model is fairly straight-forward when only CPU are performing the exe-

cution since all the threads share the same address space. They also have private variables

allocated in the thread’s local memory. When GPU threads are required as well, the mem-

ory needs to be mapped between host and device unless unified memory is used. OpenMP

5.0 brings support for memory allocators (based on C++17 memory resource concepts)

while OpenMP 5.2 extends it by adding dynamic allocators and unified memory alloca-

tors. Next, we briefly explain some the main OpenMP features that are in scope for the

5Additionally, OpenMP defines the API needed for the developer to setup tasks and barriers explicitely.
6The place partition defines the execution environment and contains information about how threads,

cores and sockets could bind logically to OpenMP threads.
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current work [van der Pas et al., 2017].

1. Work sharing

• Create a team of threads to execute the region

#pragma omp parallel [clause[ [,] clause] ... ] //new-line

structured -block

• Create a league of teams with the initial thread in each team executing the

region

#pragma omp teams [clause[ [,] clause] ... ] //new-line

structured -bloc

• Specify the loops that are executed by the thread team

#pragma omp distribute [clause[ [,] clause] ... ] //new-line

loop

• Specify the iterations that will be executed in parallel by threads from the

configured teams

#pragma omp for [clause[ [,] clause] ... ] //new-line

loop

2. Device execution directives

• Instruct the compiler that the following structured block can be executed on a

device (if available)

#pragma omp target clause[ [ [,] clause] ... ] //new-line

structured -bloc

• Allows the function or variable (declared or defined) after the directive to be

executed on the device

#pragma omp declare target [clause[ [,] clause] ... ] //new-line

structured -bloc

3. Data mapping between host and device

• Map variables to a device environment; set map clause

#pragma omp target data clause[ [ [,] clause] ... ] //new-line

structured -block

• Similar to the one above but divided into 2 explicit steps

#pragma omp target enter data [ clause[ [,] clause]...] //new-line

...

#pragma omp target exit data [ clause[ [,] clause]...] //new-line

4. Specialized execution7 – this is a run-time switch, which can choose a dedicated

implementation for a specific architecture, sub-architecture or vendor.

7Avaible starting with OpenMP 5.0
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• Specify multiple directive variants of which one may be conditionally selected

to replace the metadirective based on the enclosing OpenMP context

#pragma omp metadirective [clause[ [,] clause] ... ] //new-line

when(context-selector -specification: [directive -variant])

default(directive -variant)

• Declare a specialized variant of a base function and specifies the context in

which that specialised variant is used

#pragma omp declare variant(variant-func-id) clause //new-line

match(context-selector-specification)

function definition or declaration

The API allows that several features are combined, as shown in Listing 2.2.

1 // define the size N

2 int a[N], b[N], c[N];

3 // initialize vectors a,b,c ...

4 #pragma omp target teams distribute parallel for \

5 map(to:a[0:N], b[0:N]) map(from:c[0:N])

6 for (int i = 0; i < N; i++)

7 c[i] = a[i] + b[i];

Listing 2.2: Simple OpenMP example for adding together two vectors of size N

Also, it is important to note that an OpenMP program that contains target regions is

compiled for all available8 platforms by default. Therefore the executable will run on a

CPU as an automatic fallback mechanism if no accelerator is available at run-time. This

behaviour can be configured through appropriate compilation flags.

To ensure the massive scale of parallelism that is required in supercomputers, OpenMP

is usually used in conjunction with Message Passing Interface (MPI), which distributes

the computations on different nodes to obtain a collaborative solution. MPI code is more

difficult to implement and it usually requires the core to be rewritten in order to fit the

paradigm, but it can exploit large-scale parallelism. On the contrary, OpenMP is easy

to implement, can be done incrementally, but it was limited to shared-memory systems.

There is also the hybrid approach (MPI + OpenMP), which exploits all levels of parallelism

and decreases the need for network communication. A summary of this comparison is

shown in Table 2.1. MPI is also extending its capabilities to support communications

between GPU nodes besides the existing CPU ones, but this is beyond the scope of this

thesis.

In summary, OpenMP has an important series of advantages. First, OpenMP 4.5

is supported by all C/C++ compilers [Huber et al., 2022] and can be enabled through

-fopenmp flag. Second, there is a very active community, which contributes to its devel-

opment including experts from hardware vendors who are involved in both (a) defining

8Available platforms are the ones which can be discovered by the compiler based on shared libraries on
the build machine or the ones explicitly specified through compiler flags (like for example -march)
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Criteria OpenMP MPI Hybrid (OpenMP + MPI)
Address space Shared Distributed Shared + Distributed

Implementation difficulty Easy Moderate complexity Very complex
Incremental porting Yes No No

Table 2.1.: OpenMP and MPI comparison

the standard further and (b) providing low level optizations in vendor-proprietary and

open-source compilers. Linear algebra libraries like for example eigen or lapack have also

optimized their code to run safely and efficiently in a multi-threading environment using

OpenMP [Anderson et al., 1999, Guennebaud et al., 2010]. Third, OpenMP offers a high

degree of portability due to its vendor-agnostic approach, with the directives covering

x86 CPU produced by all vendors, ARM CPU, GPU from NVIDIA and AMD, and FPGA.

Fourth, from a single-source OpenMP code, one executable can be built to target several

platforms.

2.3.2. OpenACC

Open Accelerators9 (OpenACC) is a programming model that uses high-level compiler

directives to expose parallelism in the code with the help of compilers to target a variety

of parallel accelerators. Launched in 2011, when there was no support for accelerators in

existing parallelization standards like OpenMP, OpenACC was designed with the goal of

closing this gap. Next, we will focus on features of version 3.1 released in 2020.

OpenACC defines an abstract model for accelerated computing with several levels of

parallelism, similar to the OpenMP one: a coarse-grain one covered by gangs, a fine-grain

level covered by workers and vector level for SIMD operations. For an offloading region,

OpenACC might create one or more gangs, each with one or more workers, while each

worker can have one or more vector lanes. Gang, worker and vector are the OpenACC

naming for team, thread and SIMD concepts in OpenMP, although the execution model

works a little bit differently: The gangs start executing in gang-redundant (GR) mode,

which means that one worker in each gang executes the same vector lane. When a

parallel region is encountered, the program executes in gang-partition (GP) mode, which

partitions the iterations of a loop among gangs. At this point, there is still one worker

per gang and one vector lane per worker. When an imbricated loop is encountered, the

execution moves to worker-partitioned (WP) mode, which activates all threads inside a

gang. Further, if a SIMD operation is required, the execution happens in vector partitioned
(VP) mode, which means that all vector lanes of the worker are now active.

The memory model is handled through directives. Similar to OpenMP, the programmer

is responsible for making sure that the data is accessible at run-time by explicitly mapping

the memory between the devices.

9https://www.openacc.org

https://www.openacc.org
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Some of the most common directives relevant for accelerator programming are sum-

marized next:

1. Work sharing

• Create one or more gangs with one or more workers each

#pragma acc parallel [clause [[,] clause]...] //new-line

{ structured block }

• Distribute the computation to the appropriate parallelization layers as ex-

plained above; set gang / worker / vector clauses as needed

#pragma acc loop [clause [[,] clause]...] // new-line

loop

• Parallelizes the loops across gangs; it relies on the programmer to identify

which loops are data-independent but leaves the decision on how to map the

parallelism on the device to the compiler

#pragma acc parallel loop [clause [[,] clause]...] // new-line

loop

• Marks the loop that will be executed on the device

#pragma acc kernels [clause [[,] clause]...] // new-line

{ structured block }

2. Data mapping between host and device

• Maps a list of objects from host memory to device memory by specifying copy

/ copy_in / copy_out clauses

#pragma acc data [clause[[,] clause]...] //new-line

{ structured block }

• Similar data mapping but divided into two explicit steps

#pragma acc enter data [clause[[,] clause]...] //new-line

...

#pragma acc exit data [clause[[,] clause]...] //new-line

3. Specialized execution – the device_type clause can be passed to parallel or kernel

directives to target a specific platform (e.g. acc_device_nvidia or

acc_device_radeon).

In summary, OpenACC has a few strong points. First, it is supported by some of the

C++ compilers but not all; currently, LLVM/clang [Fandrey, 2010] is working on building

a front-end to compile ACC based on OpenMP backend and runtime. The compilers that

support OpenACC usually enable it through the -fopenacc flag. Second, it offers some

degree of portability, currently covering x86 architecture, and GPU from NVIDIA and

AMD vendors. Nevertheless, using a CPU as an offloading device is currently supported

only by vendor-proprietary compilers (e.g. NVIDIA HPC SKD compiler), while general

C++ compilers like gcc (v.12) are still lacking this ability.
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2.3.3. OpenCL

Open Computing Language(OpenCL) is “an open, royalty-free standard for cross-platform,

parallel programming of diverse accelerators found in supercomputers, cloud servers,

personal computers, mobile devices and embedded platforms”10. It was released in 2009

and the most recent version is 3.0 (2022).

The execution model of OpenCL involves one host and one or more devices. Each

device can have one or more compute units (CU) with each CU having one or more

processing elements (PE). The host submits a kernel to the device and it is executed by CU

and PE. If all the processing elements of a compute unit execute the same instruction then

an efficient converged work flow is achieved, as opposite to a diverged one.

The computations offloaded to the accelerator inside a kernel is a work-item. A collec-

tion of work-items that are executed on a single compute unit form a work-group. The

host interacts with the device(s) through command queues, which instruct the runtime to

perform particular operations like registering a kernel for execution, transfering memory

from host to device or vice-versa or setting explicit synchronization points. An entity that

holds commands and work-groups from kernel-instances that are ready to execute form

a work-pool. There is one work-pool associated with each device.

The OpenCL execution model defines three types of kernels. First, the OpenCL kernels
are built and managed by OpenCL API; second, native kernels are accessed through host

function pointers; the semantics is implementation specific and their support is optional;

third, built-in kernels are specific to a particular device; they are not built from source-code

and are usually used to expose hardware or middleware functionality specific to a device.

The OpenCL memory model gives explicit access to the regions of an accelerator mem-

ory. All work-items have read/write rights to global memory in a given context. The

constant memory can only be allocated and instantiated by the host and the work-items

have read-only rights to access it. All work-items in a work-group share the local memory
while each of them has access to a private memory, which cannot be shared.

To compile OpenCL code, a specific compiler is needed since most of the C/C++

compilers cannot build OpenCL code. Nevertheless, the major advantage of OpenCL is

its portability; it can currently target x86, ARM and GPU from NVIDIA, AMD and Intel.

2.3.4. SYCL

SYCL11 is a C++ programming model for OpenCL based on C++17 and developed by

Khronos. Similar to OpenMP and OpenACC, this is not just an API but it includes also

a runtime. On the other hand, similar to OpenCL, SYCL requires a dedicated compiler.

Initially proposed in 2014, SYCL has developed significantly over the years. In this section

we will focus on the features of SYCL 2020, released in 2021.

10https://www.khronos.org/opencl/
11https://www.khronos.org/sycl/

https://www.khronos.org/opencl/
https://www.khronos.org/sycl/
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As a programming model designed for heterogeneous resources, SYCL provides ab-

stractions for both memory handling and parallel computing scheduling, all controlled

by the SYCL runtime. Unlike the previous APIs, SYCL has no host-device model, since

one SYCL interface might have multiple backends.

The memory model is based on buffer/accessor model or on Unified Shared Memory

(USM). For the former, a buffer is defined in host code, which is the owner of the data

while the accessor requests access to data for different valid operations12. For the latter,

GPU’s driver and runtime handle the shared pointers, so no further API calls are required.

The execution model is based on commands submitted to a queue, which is associated

with a device. The commands can require data copy, kernel execution, synchronization,

etc. Commands can be aggregated in command groups, which can later be composed

together and submitted asynchronously to the scheduler; this can decide to either trigger

an execution or to wait for appropriate preconditions. Nevertheless a command group

can have only one kernel invocation as named or unnamed lambda function.

SYCL defines nd-range as n-dimensional layout of the iteration space, which handles

the distribution of tasks per threads or group of threads. Different global, group and local

identifiers are accessible within each thread, while the associated memory locations are

read/written at different speeds and latencies.

While the SYLC API is very rich and complex, we mention the main entry point function

for device execution: parallel_for. There are several overloaded implementations,

templated on data types, kernel name, nd-ranges, etc.

A single-source program requires two compilation passes to produce an executable,

as shown in Figure 2.1. The dedicated compiler produces either intermediate device

Figure 2.1.: SYCL compilation model [Codeplay Software, 2022]

representation (IR), like for example the Standard Portable Intermediate Representation

(SPIR) used in OpenCL environment, or Instruction Set Architecture (ISA), for example,

Parallel Thread Execution (PTX), which is the instruction set for NVIDIA hardware. To

12Some of the valid operations include read, write, read_write, discard_write, discard_read_write, atomic
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build the executable, it requires a host compiler that handles the compilation for CPU

architectures and links the appropriate dependencies.

At the time of this thesis, there are several SYCL compilers available as shown in

Figure 2.2: dpcpp is the Intel’s compiler, hipSycl is the AMD alternative, computeCpp is the

compiler developed by Codeplay Software.

Figure 2.2.: SYCL supported backends and compilers [Khronos Group, 2022]

To summarize, SYCL’s strong point is the portability that it ensures. Currently, SYCL

code can target any CPU, GPU from all major vendors and Intel FPGA. Moreover, SYCL

oneAPI DPC++ compiler supports targeting multiple architectures in one excutable. The

main drawbacks are: the major open-source C++ compilers cannot build SYCL code yet

and the verbosity of SYLC heterogenous code.

2.4. Vendor-Proprietary Frameworks

In this section, we describe the heterogenous frameworks proposed by the major hardware

vendors: NVIDIA, AMD and Intel. These include language extensions, run-times and

dedicated compilers, all being highly optimized for the targeted devices.

2.4.1. NVIDIA CUDA

NVIDIA corporation has released seven GPU architectures: Fermi, Kepler, Maxwell, Pas-

cal, Volta, Turing and Ampere, with each of these having a particular hardware layout

characterised by different features: number of compute units for single and double preci-

sion, memory size, connectivity options, the existence of tensor cores, etc. To exploit this

knowledge, the generated binary code is architecture-specific, yet backward compatible13

13Support for Fermi, Kepler and Maxwell was dropped in the lastest releases.
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but with a lower degree of efficiency. The CUDA Toolkit provides a set of tools needed

to write parallel code on NVIDIA GPUs: compilers, libraries, profiling and optimization

tools, and last but not least, runtime support. CUDA HPC Software Development Kit

(SDK) is the complete set of tools for developers [NVIDIA Corporation, c], as shown in

Figure 2.3. The ones meaningful for the present work are described next.

Figure 2.3.: NVIDIA SDK [NVIDIA Corporation, c]

Compute Unified Device Architecture (CUDA) is “the parallel computing platform

and programming model developed by NVIDIA for general computing on graphical

processing units” [NVIDIA Corporation, b]. Initially launched in 2007, CUDA is a C

language extension, which has had eleven main releases and many updates throughout

the years. The features described in this section focus on version 11.5 (released in 2021).

The execution model exposes several levels of parallelism; more threads are grouped in

a block, while both of them can have a 1D, 2D or 3D layout over the hardware. Figure 2.4

shows an example of 1D threads and 2D blocks, allocated on a GPU with 4 Streaming

Multiprocessors (SM); this means that 4 blocks can be executed simultaneous. More

recently, several GPUs can be connected by high-throughput connectors, which ensure

an extra layer of coarse-grained parallelism.

Figure 2.4.: CUDA execution model [NVIDIA Corporation, a]

Inside a block, the threads are grouped in warps; these are groups of 32 threads that are

executed in parallel or in lockstep14. When not all the threads execute the same instruction,

as it is the case of if-then-else statement for example, the warp diverges, which means

that the threads are divided into two sub-groups, one for each branch, which execute

14The same instruction is executed by all the threads; it loads distict operands from different memory
locations, ideally within the same or adjacent cache line(s) to increase performance
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sequentially. This is highly inefficient not only due to this induced serialization but also

from the memory perspective because it no longer deals with consecutive addresses,

therefore triggering unnecessary reads/writes in caches. While threads inside a block can

be sychronized, each block is independent; regardless, the device can be sychronized,

which means that the barrier waits for the completion of all threads (from all blocks).

Similar to all the other execution models that involve GPUs, the data needs to be

copied over PCIe, from host to device memory card, before the computations can start.

For NVIDIA devices, improved performance can be obtained by overlapping data trans-

fers and execution using streams, which are the logical communication channel with the

device15. Another approach to boost performance is to share the memory among threads

within the same block if user data is aligned and if the algorithms require multiple reads

from the same memory locations. Similar, improving the algorithm’s data access patterns

to ensure cache coherence can also bring important speedups.

A selection of the most relevant routines from CUDA C API is listed below, aggreegated

by functionality. __host__ and __device__ specify the context in which a function can

be invoked.

1. Memory allocation of size bytes in device’s global memory, as page-locked memory

on the host and memory handled by the Unify Memory system respectively

__host__ __device__ cudaError_t cudaMalloc(void** devPtr, size_t size);

__host__ cudaError_t cudaMallocHost(void** ptr, size_t size);

__host__ cudaError_t cudaMallocManaged(void** devPtr, size_t size,

unsigned int flags = cudaMemAttachGlobal);

2. Deallocate memory from device or page-locked memory on the host

__host__ __device__ cudaError_t cudaFree(void* devPtr);

__host__ cudaError_t cudaFreeHost(void* ptr);

3. Transfer the memory to/from device either synchronously or asynchronously

__host__cudaError_t cudaMemcpy(void* dst, const void* src, size_t count,

cudaMemcpyKind kind);

__host__ __device__ cudaError_t cudaMemcpyAsync(void* dst, const void*

src, size_t count, cudaMemcpyKind kind, cudaStream_t stream = 0);

4. Launch a device function and wait for the results

__host__ cudaError_t cudaLaunchKernel(const void* func, dim3 gridDim,

dim3 blockdim , void** args, size_t sharedMem , cudaStream_t stream);

__host__ __device__ cudaError_t cudaDeviceSynchronize(void);

15Choosing the appropriate number of parallel streams that would hide the latency and therefore minimise
the total wall clock time, depends both on the actual hardware and the problem’s characteristics.
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To compile CUDA code together with C sources, the nvcc compiler is provided. It

handles the CUDA code while delegating the C sources to a so called host compiler. A fat

binary is produced in the end by linking together the object files with different instruction

sets.

Basic Linear Algebra Subroutines (cuBLAS)16 provides hardware accelerated implemen-

tations for the main mathematic operations using mixed and low precision. It is highly

optimized for NVIDIA hardware and provides an extension for distributing computations

on several GPUs in parallel. While cuBLAS is available in both Toolkit and HPC SDK, an

advanced library targeting high-end GPUs is cuTENSOR17, which provides routines for

exploiting the tensor cores available in HPC GPU.

Since the C++ STL is not portable to NVIDIA hardware, some of the parallelization

features are supported through libcu++18, which implements a heterogeneous implemen-

tation for utility functions and thread synchronization mechanism across devices. Thrust
library19 extends the C++ STL support for NVIDIA devices, in terms of memory resources

and models, parallel policies, executors, etc; while it was heavily extended in the last few

years to cover most of the parallel operations, it lacks portability among GPU architectures

since it only targets NVIDIA devices.

Recently, a different approach to heterogeneous C++20 standard has been developed

with the release of stdpar library and its associated compiler, nvc++20. It builds upon the

parallel concepts defined in Section 2.2; the solution provides a pool of CUDA threads or

OpenMP threads as executors for the parallel policies. Unlike CUDA language extension

that required the code to adhere to NVIDIA abstractions, stdpar enables the user to use

plain C/C++ code. No need to mark functions __host__ / __device__ if they are in

the same compilation unit as the calling function; moreover, offloaded code in parallel

loops is wrapped in lambda objects and passed on the GPU automatically. The memory

is handled as unified memory if the allocations are done on the heap and in the same

compilation unit. As all these facilitate the development productivity by removing the

need to (a) learn CUDA C, (b) explicitily handle memory copies between host and device,

and (c) maintain different repositories for CPU and GPU targets, there are a few drawbacks

too. First, there is an impact on performance due to the usage of managed memory and

therefore the performance does not match CUDA’s yet. Second, the compilation: the GPU

code needs to be compiled with nvc++, so that the functions are marked appropriately at

compile time and hence using external libraries in device code becomes more complicated.

Also, there is still poor support for cmake integration since both nvc++ and gcc compilers

are involved in compiling several pieces of the code. Third, while the result is a single-

source heterogeneous code, the decision on which platform to target is done through

16https://docs.nvidia.com/cuda/cublas/index.html
17https://docs.nvidia.com/cuda/cutensor/index.html
18https://nvidia.github.io/libcudacxx/
19https://docs.nvidia.com/cuda/thrust/index.html
20https://docs.nvidia.com/hpc-sdk/archive/20.7/pdf/hpc207c++_par_alg.pdf

https://docs.nvidia.com/cuda/cublas/index.html
https://docs.nvidia.com/cuda/cutensor/index.html
https://nvidia.github.io/libcudacxx/
https://docs.nvidia.com/cuda/thrust/index.html
https://docs.nvidia.com/hpc-sdk/archive/20.7/pdf/hpc207c++_par_alg.pdf
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compilation flags, and therefore is currently no option to mark that some of the stdpar

functions should be executed parallel on CPU while others should use the GPU. Fourth,

the code, which is not open-source, is being actively developed with new compiler releases

that add new functionality and address bugs happening almost monthly.

Nvc++ is the CUDA C++ compiler provided by the HPC SDK. Beside compiling std-

par and CUDA code, it can also support OpenMP and OpenACC offload from C/C++

sources. The HPC SDK provides insightful profiling tools, like nsight-systems21 and

nsight-compute22, which were extensively used in our research.

Looking at the future HPC achitectures, NVIDIA has recently introduced their state-

of-the-art heterogeneous superchip: Grace Hopper23. As shown in Figure 2.5, it features a

72-cores ARM based CPU with 4 128-bit SIMD units per core, a high-performance GPU

with 3x higher FP32 and FP64 throuput than the A100, a hardware-coherent interconnect

between the CPU and GPU that enables Hopper GPU to address all Grace CPU memory

(up to 608 GB RAM) and a link switch that connects up to 256 Grace Hopper superchips

together. To program it, std::par, CUDA, OpenMP and OpenACC are a few supported

platforms, together with the NVIDIA CUDA LLVM compiler.

Figure 2.5.: NVIDIA Grace Hopper Architecture [Evans et al., 2022]

In summary, CUDA has a very important advatage: it guarantees the best performance

out of NVIDIA devices. With thrust, libcu++, stdpar and nvc++, NVIDIA contributes to

the implementation of the C++20 parallel standard, opening the way for heterogenous

approaches. Nevertheless, currently, CUDA has a limited portability on heterogeneous

devices as it can target x86 and ARM CPU and NVIDIA GPUs.

21https://developer.nvidia.com/nsight-systems
22https://developer.nvidia.com/nsight-compute
23https://resources.nvidia.com/en-us-grace-cpu/nvidia-grace-hopper

https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-compute
https://resources.nvidia.com/en-us-grace-cpu/nvidia-grace-hopper
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2.4.2. AMD HIP

AMD is one of the leading vendors on the CPU market that has recently achieved out-

standing performance with their GPU lines as well. They provide two main GPU architec-

tures: Radeon-DNA (RDNA) and Compute-DNA (CDNA), as shown in Figure 2.6. The

former is optimized for gaming to deliver high number of frames per second; to achieve

this, the cards have hardware accelerated support for rasterization, tessellation, graphic

caches, blending operations and even display engines. The latter is optimized for data

centres with intense compute operations with the end goal of maximizing FLOP/s; it has

less graphic capabilities but more compute units, wider registers, hierarchical memory

structures with multiple layers of caches and fast AMD Infinity Fabric links.

Figure 2.6.: AMD GPU Architectures [AMD, 2022a]

While several generations of RDNA and CDNA were made available, we would like to

mention two GPU models relevant for the current work: firstly, the AMD Radeon RX 6600,

which belongs to RDNA 2 and delivers up to 8.93 TFLOP/s single-precision performance

at low power consumption24 (132 W), and secondly, the AMD Instinct MI250 found in top

supercomputers mentioned in Section 1.1.2, which belongs to the CDNA 2 architecture;

this enables more GPUs tightly connected on the same chip, following a ccNUMA layout,

to produce a Graphics Compute Die (GCD), which delivers 47.9 TFLOP/s peak double-

precision vector FP64 throughput25.

Radeon Open eCosystem (ROCm) is the AMD open-source software development

platform, which includes libraries (linear algebra, Fourier transforms, random number

generators, etc), compilers and profiler, debugger and other tools, as shown in Figure 2.7.

In this section, we discuss version 5.0.

24https://www.amd.com/en/products/graphics/amd-radeon-rx-6600
25https://www.amd.com/system/files/documents/amd-cdna2-white-paper.pdf

https://www.amd.com/en/products/graphics/amd-radeon-rx-6600
https://www.amd.com/system/files/documents/amd-cdna2-white-paper.pdf
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Figure 2.7.: AMD ROCm Platform [AMD, 2022b]

The execution model is similar to NVIDIA GPU, with some small differences in terms

of naming: more threads are grouped in blocks, which are then mapped to a grid of 1D,

2D, 3D dimension. A wavefront26 is a group of threads from the same block that are

executed in lockstep; the only technical difference is that AMD uses 64 threads in a

wavefront, while NVIDIA usually keeps the warp size at 32. For execution, each block is

mapped to a Compute Unit27, whereas the number of compute units gives a measure of

the coarse-grain parallelism.

Regarding the memory model, ROCm enables two coherency options for host memory:

coherent memory implies that an atomic operation that alters GPU memory is immediately

visible to the CPU or to other GPU peers with the price of no caching mechanism, and

non-coherent memory, which can be cached but cannot support synchronization while the

kernel is running. The former is recommended for fined-grained parallelism while the

latter is optimal for high-performance access when no fined-grained sychronization is

required.

Heterogeneous-Compute Interface for Portability (HIP) is the AMD GPU programming

environment; it contains a C++ language extension and an associated runtime, which

allows creating portable applications. A selection of representative routines is presented

below to demonstrate the similarity with the CUDA API described in the previous section.

1. Memory allocation of size bytes in device’s global memory, as page-locked memory

on the host and memory handled by the Unify Memory system respectively

hipError_t hipMalloc(void** devPtr, size_t size);

hipError_t hipMallocHost(void** ptr, size_t size);

26A wavefront is equivalent to NVIDIA’s warp
27A Compute Unit is the equivalent to NVIDIA’s Streaming Multiprocessor
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hipError_t hipMallocManaged(void** devPtr, size_t size, unsigned int

flags = hipMemAttachGlobal);

2. Deallocate memory from device or page-locked memory on the host

hipError_t hipFree(void* devPtr);

hipError_t hipFreeHost(void* ptr);

3. Transfer the memory to/from device either synchronously or asynchronously

hipError_t hipMemcpy(void* dst, const void* src, size_t count,

hipMemcpyKind kind);

hipError_t hipMemcpyAsync(void* dst, const void* src, size_t count,

hipMemcpyKind kind, hipStream_t stream = 0);

4. Launch a device function and wait for the results

hipError_t hipLaunchKernel(const void* func, dim3 gridDim, dim3 blockdim ,

void** args, size_t sharedMem , hipStream_t stream);

hipError_t hipDeviceSynchronize(void);

Similar to CUDA, hardware accelerated and highly optimized mathematical libraries

are provided; a few examples include rocBLAS28 a basic linear algebra routines package

implemented in C++14 and HIP (over ROCm runtime) and rocSPARSE29the linear algebra

routines for sparse matrices.

Besides mirroring the CUDA API, HIP offers support for automatic source-to-source

translation from CUDA to HIP using a so called HIPify operation. This uses OpenCL to

implement functionalities that cannot be translated in a straight-forward way. Neverthe-

less, if the users still want to use CUDA code, the hipcc compiler can act as a wrapper: it

identifies the CUDA code and delegates it to nvcc while using the hip-clang to compile

HIP code. OpenMP and OpenCL are also supported on AMD GPU, but a dedicated

compiler30 is required to leverage this feature.

In summary, HIP has two strong points: first, the language extension, compiler and

runtime ensure optimized performance on AMD GPUs; second, it offers an increased

level of portability on different GPU models. Currently, HIP can target x86 and ARM CPU,

and NVIDIA and AMD GPUs. Nevertheless, while development productivity can be

increased when using HIP in comparison to CUDA due to its portability, it might also be

negatively influenced by the fact that AMD tools are not mature enough yet31.

28https://rocblas.readthedocs.io/en/rocm-5.3.0/
29https://rocsparse.readthedocs.io/en/rocm-5.3.0
30AOMP compiler is part of ROCm toolbox
31From our experience, most of the ROCm tools are difficult to install on both clusters and develop-

ment stations/laptops, with limited package manager support and many driver/operating system/libraries
incompatibilities

https://rocblas.readthedocs.io/en/rocm-5.3.0/
https://rocsparse.readthedocs.io/en/rocm-5.3.0
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2.4.3. Intel DPC++

In 2020, Intel launched oneAPI as their open-source, unified programming model for

heterogeneous compute environments, which include CPU, GPU, FPGA and other accel-

erators, as shown in Figure 2.8. Distinct toolkits for developing applications that target

diverse hardware were made public since then, with oneAPI Base32 and HPC33 toolkits

being the equivalent of NVIDIA ones34, and consequently, in our focus. These contain

Data Parallel C++ (DPC++) programming language, libraries, compilers, runtimes, pro-

filers and migration tools from CUDA to DPC++. In addition, dedicated frameworks for

Artificial Intelligence Analytics, Deep learning, Internet-of-Things and Visualizations are

also made available to users.

Figure 2.8.: Intel oneAPI [Intel Corporation, 2022]

DPC++ Language is based on C++17 and SYCL (see Section 2.3.4). The API pro-

vides implementations for parallel and vectorized execution policies for both host and

device, together with iterators, algorithms and utility classes, following the STL defi-

nition described in Section 2.2. To achieve the heterogeneous behaviour, there are two

preconditions that have to be met: first, use a compiler with OpenMP 4.5 support or add

a dependency to Threading Building Blocks35 (TBB) library to cover the host parallelism,

and second, use a compiler with support for SYCL 2020 to cover the device parallelism.

Intel oneAPI DPC++/C++ Compiler satisfies the above requirements and is available

in the Base toolkit. Moreover it has experimental support for NVIDIA CUDA and AMD

HIP backends for a limited ranges of operating systems and devices.

In summary, Intel’s approach to heterogeneous computing has the following advan-

tages: first, it enables developing single-source code that can be compiled for different

instruction sets to target all Intel hardware (CPU, GPU, FPGA), ensuring a series of per-

formance optimizations; second, it delivers a high degree of portability for other vendors’

accelerators by leveraging SYCL’s portability.

32https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html
33https://www.intel.com/content/www/us/en/developer/tools/oneapi/hpc-toolkit.html
34I.e. the CUDA Toolkit and the CUDA SDK Toolkit
35https://spec.oneapi.io/versions/latest/elements/oneTBB/source/intro.html

https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/hpc-toolkit.html
https://spec.oneapi.io/versions/latest/elements/oneTBB/source/intro.html
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2.5. Compilers for Heterogeneous Programming

In this section, we provide an overview of the compiler support for targeting heteroge-

neous architectures, the interoperability between parallel APIs and different compilation

chains and we focus on outstanding features exposed by some of the compilers.

Gnu Compiler Collection36 (gcc) and g++ are a set of open-source tools, which contain front

end for compiling C/C++ sources and provide implementation for different standards in

the form of libraries, for example, C++ STL. Due to more than 30 years of development,

gcc is one of the most robust and mature compilers, actively supported by the C++

community from both academia and industry.

Low Level Virtual Machine37 (LLVM) is a distinct set of compiler toolchains, which

can be used to develop front ends for any programming language and back ends for

any instruction set architecture (ISA); its flexibility stems from the usage of a language-

independent intermediate representation (IR), which is generated by the front ends38 and

serves as a portable high-level assembly language, which can be then converted into

specific ISAs [Lattner, 2002].

Both gcc and clang support compilation for heterogeneous architecture by imple-

menting OpenMP and OpenACC standards. Additionally, clang supports native CUDA

code compilation to nvptx, while front ends for SYCL and HIP are currently discussed39.

Table 2.2 summarises the available support for all previously mentioned APIs in main

compilers; it shows that currently OpenMP is the only parallel standard implemented by

all major compilers.

Compiler Parallel C++ OpenMP OpenACC OpenCL SYCL CUDA HIP DPC++

nvc++ Yes Yes Yes No No Yes No No
hipcc No YesI No No No YesI Yes No
dpcpp Yes Yes No Yes Yes YesE YesE Yes
clang YesL Yes Yes Yes No Yes NoS NoS

gcc YesL Yes Yes Yes No No No No
cce No Yes Yes No No No No No

Table 2.2.: Heterogeneous API support in main compilers; E stands for Experimental; I
stands for Indirect and means that the compiler cannot do the operation but it
can delegate to an appropriate compiler, which can handle the compilation; S
stands for Scheduled; L marks Limited support for CPU parallelism only

We would like to underline the support for ISO C++ parallel algorithms and execu-

tion policies mentioned in Section 2.2, since this is relevant for the present work. The

parallel features are supported by gcc only for CPU through Intel TBB library. Similarly,

LLVM/clang also currently provides only CPU support, but through a cross-platform im-

36https://gcc.gnu.org/
37https://llvm.org/
38LLVM’s C and C++ front ends are clang and clang++ respectively.
39Efforts are currently in progress to support the integration of SPIR with LLVM IR and therefore to allow

clang to support SYCL compilation eventually.

https://gcc.gnu.org/
https://llvm.org/
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plementation with Intel TBB, OpenMP and Apple Grand Central Dispatch (GCD) back-

ends [Lin et al., 2022]. Intel compiler is a private fork from the LLVM project, therefore

it inherits the same support level; nevertheless, Intel extends the parallel executors with

a SYCL backend and therefore ensures the ability to run on Intel GPUs as well. To sum-

marize, the same C++ code (based on ISO C++ parallel policies) can be compiled with

different compilers to ensure portability and represents a distinct approach to single-source
heterogeneous programming.

Table 2.2 also shows that LLVM/clang is currently the most versatile compiler for single-

source code targeting different platforms. This is also confirmed by the fact that in 2022,

Frontier offers four compilers: gcc, LLVM, cce (HPE-Cray) and hipcc (AMD ROCm), the

last two being LLVM-based. Therefore, LLVM’s impact in HPC community is significant.

Focusing on compilation for heterogeneous resources, LLVM version 15.0.0 offers a

series of features that are not (yet) available in other compilers. First, improved interop-

erability between OpenMP target and CUDA code; for example, it is now possible to call

a CUDA function within a target region. Second, special OpenMP target optimizations in

dedicated LLVM passes ensure improved wall-clock execution time for the applications.

Third, assumptions and remarks provided to the OpenMP runtime at compile time can

bring important performance benefits even further due to tailored optimizations that can

be enabled. Fourth, compilation for several GPU types (even of different ISA like AMD

and NVIDIA) within the same executable. Fifth, debugging options like using a virtual

GPU [Patel et al., 2021, Doerfert et al., 2021].

Moreover, recent successful prototypes for remote GPU offloading demonstrate the

potential for massive parallelism [Lu et al., 2022]. On-going research on OpenMP as tar-
get independent intermediate layer aims to convert device-specific code (e.g. CUDA) to

OpenMP and therefore make it portable so that it can run on GPUs from any ven-

dors [Doerfert et al., 2023], as shown in Figure 2.9.

Figure 2.9.: OpenMP as target independent runtime layer; green color marks supported
platform while red marks the unsupported ones [Doerfert et al., 2023]
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In conclusion, there are many libraries, standards and frameworks that allow devel-

opers to express parallel code in different ways, using distinct approaches to target het-

erogenous architectures. While some of them might be interoperable (e.g. CUDA and

OpenACC) or interchangeble (e.g. CUDA code can be converted into HIP code), most of

them are not compatible. Additionally, the C++ compilers are trying to accomodate the

heterogeneous computing model by supporting these APIs at different levels.

The present work is based on features of OpenMP 4.5/5.0 and CUDA 11. While this

leverages the advantages of the clang compiler, the code is not restricted to using it.

2.6. Functional Programming in HPC

The scientific community had been relying on procedural programming languages like

C and Fortran for several decades, whereas many branches of science (including High

Energy Physics) started moving towards object oriented languages like C++ and Python,

while maintaining the same imperative paradigm.

With the rise of data science and machine learning, newer languages that combine

imperative and declarative approaches like R40, Julia41 or Scala42 are becoming more

popular due to their ease-of-use, portability and availability in big data centers; they

provide built-in parallel routines for numerical computations and hide this complexity

from the user. Along with that, functional concepts like lambdas, higher-order functions or

immutability started to make their way into C++ and Python in the last ten years. For C++,

some of these were brielfy mentioned in Section 2.2. Moreover, the pipe operator in C++20

is the implementation of the higher-order function concept. Also, the std::ranges and

std::functional namespaces provide support for using functions as first-class citizens

of the language, as shown in Listing 2.343.

1 #include <iostream>

2 #include <ranges>

3 int main() {

4 auto const ints = {0, 1, 2, 3, 4, 5};

5 auto even = [](int i) { return 0 == i % 2; };

6 auto square = [](int i) { return i * i; };

7 // the "pipe" syntax of composing the views:

8 for (int i : ints | std::views::filter(even) | std::views::transform(square))

9 std::cout << i << ’ ’;

10 // a traditional "functional" composing syntax:

11 for (int i : std::views::transform(std::views::filter(ints, even), square))

12 std::cout << i << ’ ’;

13 }

Listing 2.3: C++20 function composition example

40https://www.r-project.org
41https://julialang.org
42https://www.scala-lang.org
43Source: https://en.cppreference.com/w/cpp/ranges

https://www.r-project.org
https://julialang.org
https://www.scala-lang.org
https://en.cppreference.com/w/cpp/ranges
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Merging these two programming paradigms offers an advantage over purely functional

languages like Lisp44, because the code does not diverge too much from the imperative

style even though the functional features are being used; for example, the behaviour

of a parallel function can easily be encapsulated into a C++ object, ideally stateless, by

overloading the parenthesis-operator.

Additionally, GPU language extensions like CUDA move into the same direction of data

parallelism by applying the same function (i.e. the global kernel) to different chunks of

data, ideally independent and located at consecutive memory addresses. Also, a parallel

region in OpenMP is just an anonymous function executed on the data segment assigned

to it.

Nevertheless, while using functional concepts for expressing parallelism on indepen-

dent data can be a natural choice, it has some limitations when a certain level of coop-

eration between executors is required. Undoubtedly, in this case, sharing the data and

sychronizing the write accesses become less trivial. To achieve an optimal performance,

especially on GPUs, (a) the entire functionality must be ported to a specific language

and (b) computing experts tune the algorithms based on particular needs. Therefore,

advanced knowledge together with a substantial development effort might be required,

whereas natural scientists usually do not have a deep expertise in computer science.

Our contribution aims to simplify the parallelization approach by hidding it completely

from the user, who can still develop the algorithm as a C++ class and call a function for

its execution, in an imperative way.

The next chapter covers a series of research studies performed by the author in order

to gather the specification for the framework. Since these studies focus on common use

cases of the track reconstruction flow, our abstractions will not fit any problem type (e.g.

stencil algorithms), and are mostly recommended for independent data parallel tasks

with at most one synchronization point at the end. More details about this are provided

in Chapter 4.

44Lisp language was invented in 1960 [McCarthy, 1960], while more recent and popular dialects are
CommonLisp (1994) and Clojure (2007)
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3. Research Studies

In this chapter, an example of track reconstruction software is described together with our contri-
butions to its development, driven by an R&D effort. The outcome provided us with important
insights into ways of improving the performance and portability, thus serving as requirements and
technical specifications for our advanced work, which are discussed later in this section. Details
about the first attempt to transform the requirements into a framework conclude this chapter.

3.1. Track Reconstruction Software

Despite the fact that common track reconstruction principles are shared among experi-

ments, their unique technical design and physics goals push the physicists of each ex-

periment to develop their own reconstruction software stack. As hardware accelerators

become more prominent as a powerful and efficient option for high performance com-

puting, HEP Software Foundation decided to support the development of common but

highly configurable solutions that could be reused by several experiments. In this section,

we briefly describe one of these projects and our contribution to its development.

3.1.1. A Common Tracking Software

A Common Tracking Software (ACTS) is an experiment-independent toolkit for charged

particle track reconstruction in high energy physics experiments implemented in C++

[Ai et al., 2022]. Initiated in 2015, ACTS is currently a stable framework used by several

physics experiments like ATLAS, sPHENIX or ALICE for different parts of the reconstruc-

tion flow in production environments. It is an open-source project1, which consist of the

main reconstruction algorithms, ACTS Core, together with a list of plugins that extend the

basic functionality, like the geometry description plugin dd4hep, the fast simulation tool

Fatras or the visualisation tool actSVG. ACTS requires minimal build dependencies2 and

is covered by extensive automated tests, which ensure a high degree of both code quality

and physics performance.

ACTS is designed for concurrency and ensures a thread-safe environment by providing

stateless algorithms aligned to const correctness3 standard; the few exceptions where const

1https://github.com/acts-project/acts
2Library dependency for ACTS Core are cmake, eigen and boost. Plugins might have additional require-

ments like dd4hep or tgeo packages for geometry description.
3In C++, passing an argument to a function as a constant reference or pointer marks it as immutable and

any attempt to modify it leads to a compile-time error.

https://github.com/acts-project/acts
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corectness is bypassed in ACTS are clearely explained in the online documentation. The

framework makes use of C++17 templating features that allow user libraries to chain

together several algorithms and to parametrize the reconstruction based on specific de-

tector geometries. This feature allows not only multiple experiments to reuse the same

code but also within the same experiment, the backward compatibility with past detector

geometries is easily ensured.

The main algorithms exposed by ACTS and a valid way of chaining them together

are depicted in Figure 3.1 where the reconstruction-related steps are being highlighted.

ACTS provides several implementations for the main reconstruction steps. Clusterization
and Space point building transform the data from the sensors to meaningful points in the

detector coordinate system. The seed finding approach follows either the ATLAS logic

—where points from the middle layers are identified first, then matched to points from

bottom and top layers within specific regions and finally confirmed by a weighting score—

or employs a k-d tree4, which divides the search space into smaller orthogonal regions and

thus reduces the complexity to an average ofO(log n). Seeds are fed to the Combinatorial

Kalman Filter (CKF), which handles both track finding and fitting in the same step and

computes the fitted track parameters for all found tracks. The Propagator class in ACTS is

templated on a Navigator, which provides the next candidate surface, and a Stepper, which

is a module based on the RKN integrator that ensures the transport of track parameters

and their covariances through the magnetic field.

Figure 3.1.: ACTS Core reconstruction toolkit [Salzburger, 2022]

The track parameters description used in ACTS is based on the ATLAS model de-

scribed in Section 1.2.3 with an extra parameter: time. Detectors with timing capabilities

provide extra information for separating interactions that occur within the same event

window, and hence have significant potential benefits for next-generation tracking detec-

tors. Therefore, the ACTS track parameters are (l1,l2,φ,θ,q/p,t) for bound state and (~r, ~p,

4A k-d tree is a k-dimensional generalisation of a binary search tree.
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q/p, t) for free state, respectively. Using one state representation or the other impacts the

computations twofold. First, when using the free track parameters, there is the constant

need to check the distance to the destination surface, which could require extra compute

cycles. Second, the linear algebra operations handle matrices of sizes 6× 6, 6× 8, 8× 6 and

8× 8 when computing the transport jacobians for all the possible combinations of source

and destination surfaces; the smoothing step of the KF alone employs the following ma-

trix operations: five multiplications, one addition, three subtractions, two transpositions

and one inversion, whose performance usually varies with the matrix size. Therefore,

the execution time to reconstruct the trajectory of a particle using free track parameters is

slightly larger than the case when bound surfaces are involved.

Despite being computationally intensive, most of the ACTS algorithms are memory-

bound due to the large amount of memory that is required for computing each track

(and that has to be accessible from the device as well). For the data volume estimated

for HL-LHC (e.g. ttbar5 µ = 200), the ATLAS magnetic field description uses 200MB,

the CKF produces 3GB of track states and the KF used for truth tracking adds an extra

100MB [Gessinger, 2022]. In the light of these demanding computing requirements, sev-

eral experimental projects based on ACTS code were developed with the goal to explore

heterogeneous architectures. These will be briefly described next.

3.1.1.1. ACTS Heterogeneous Libraries

The R&D projects aimed to re-develop the ACTS core algorithms and data model hav-

ing in mind the potential but also the limitations of a GPU and therefore to allow the

heterogenous hardware to share an implementation, when this is possible, or to provide

highly specialized native code, otherwise. Nevertheless, the entry point that assembles

the reconstruction chain is always written in a dedicated language: C++, CUDA or SYCL.

This was considered to be as close to "single-source code" as possible without trading off

performance. The outcome of this (ongoing) effort is summarized in Figure 3.2 and briefly

explained below [Gessinger et al., 2023].
traccc

algebra-plugins

traccc

detray

covfievecmem

Item

Header (module)Cell (item object)
- channel id
- signal strength
...

Cell (item object)
- channel id
- signal strength
...

Item (cells)

Figure 3.2.: ACTS R&D Heterogeneous Libraries [Gessinger et al., 2023]
5A top quark and top antiquark pair of particles with an average number of pileup interactions µ
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Vecmem [Swatman et al., 2023] is a memory management library, which provides ef-

ficient data structures (e.g. vecmem::vector or vecmem::jagged_vector) and memory

transfer mechanisms for handling both host and device storages. Based on the C++17

STL features described in Section 2.2, vecmem has a C++ core functionality that defines

the heterogenous-friendly containers and the memory resources and allocators. Nev-

ertheless, the implementations are done in native languages by each of the supported

backends, which currently are C++, CUDA, HIP and SYCL.

Algebra-plugin is a linear algebra library with fast algorithms for common vector and

matrix operations, including affine transformations. For each algorithm, a home-brew

implementation (cmath) and a wrapper to an eigen function are provided. Also, the data

structures can have different storage type, either based on std::array, vecmem::vector

or Eigen::Matrix. When invoking algebra-plugin, a combination of the implementation

backend and the storage backend has to be provided.

Detray [Salzburger et al., 2023] is a new concept for geometry description without layers

that avoids runtime polymorphism; instead, flat data structures with lists of indexes to

adjacent volumes steer the navigation. ACTS RKN stepper was ported and adapted to

use vecmem data structures, and was integrated with the new geometry description and

material interaction model. Regardless of the fact that detray is written in C++, the user

libraries need to ensure that the detector is built on data structures with appropriate

memory allocators so that it can be accessed on both host and device.

Covfie is a co-processor vector field library that optimises the layout and accessibility to

n-space tensors. To deliver this, covfie relies heavily on category theory concepts to provide

a generic, composable and extendable C++ header-only library, which allows the user

to configure the storage location, the memory layout and the associate transformations

based on provided functors. Covfie is currently being integrated into the detray project

with the goal to provide fast access to read-only but very large tensor that describes the

inhomogeneous magnetic field.

Traccc is the tracking chain demonstrator that employs all the other projects to develop

algorithms for the reconstruction flow. To achieve the heterogeneity goal, traccc provides

a common interface but with different backends for host and accelerator code, while

striving for reusing as many functionalities as possible. At the moment, clusterization

and track finding are supported in various degrees by the existing backends —C++,

CUDA, SYCL and Futhark—, with the rest of the reconstruction steps currently being

implemented.

Preliminary performance tests show considerable speedups in comparison to CPU

code [Gessinger et al., 2023]. In parallel, other heterogeneous libraries like NVIDIA stdpar
or Kokkos are currently being benchmarked using the R&D infrastructure.
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3.1.2. Case studies: Evaluate the Parallelization Potential with ACTS

Before designing the ACTS heterogeneous libraries presented above, a series of perfor-
mance studies6 were conducted to evaluate the parallelization potential of the reconstruc-

tion chain on different hardware platforms by either adding multi-threading capabilities

or by porting to an accelerator language. While many scientists contributed to gather

comprehensive feedback, the results described next cover only the projects where we had

a direct contribution in developing the code, running the experiments and providing the

interpretation.

3.1.2.1. Multi-threaded Kalman Fitter

This performance study was performed in collaboration with Dr. Xiaocong Ai (University

of California, Berkeley), who supported this effort by running the experiments on the

NERSC/Cori7 cluster.

Intel Threading Building Blocks (TBB) was used to parallelize the ACTS implementation

of the Kalman Fitter8. The algorithm has two major loops: an outer loop that reads from

the disk the available events and extracts useful information in local data structures, and

an inner loop that iterates over the tracks inside each event, fits them and stores them in a

local data structure ready for serialization. While both loops work on independent data,

the results produced by the inner loop must be aggregated per event and written to an

output file for validation (a Comma Separated Values (CSV) format in this case), therefore

it involves a synchronization point at the end.

For the experimental part, three different CPU architectures from NERSC/Cori and

UHH were used. Their configurations are described in Table 3.1.

System Processor Compute Units Memory (GB)
Cori-Haswell Intel Xeon E5-2698 v3 16 x 2 128
Cori-KNL Intel Xeon Phi 7250 68 x 4 96
AMD Opteron AMD Opteron 6168 48 x 1 128

Table 3.1.: CPU configuration Compute Units denotes the number of cores multiplied by
the number of threads

We first looked at the fitting time for 10 000 tracks within the same event. This evaluation

represents the inner loop described above and does not include any I/O operations. As

explained in Section 1.2.3.1, the Kalman Filter algorithm relies on a numerical integrator

that estimates the position and momentum of a particle inside the detector. Based on the

magnetic field that is applied, three scenarios were investigated: (a) no magnetic field, (b) a

magnetic field constant in z direction with the value of 1T, and (c) ATLAS inhomogeneous

magnetic field9. The runtime of the algorithm was measured in 10 independent runs and
6These use some of the metrics detailed in Section 6.1.
7https://docs.nersc.gov/systems/cori
8This is a Kalman Filter implementation for Track Fitting step of the particle reconstruction flow.
9https://gitlab.cern.ch/acts/acts-data

https://docs.nersc.gov/systems/cori
https://gitlab.cern.ch/acts/acts-data
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the mean value was used for the plots in Figure 3.3, which show speedup factors between

4 and 8 when using a multi-threading environment. This is lower than the number of

executors, which according to Amdahl’s law indicates that there are still parts of the code

that are executed sequentially, so the code is not written entirely efficiently. Therefore

adding more threads does not increase the benefits of the parallelization.

(a) AMD Opteron

(b) Intel Cori-KNL

(c) Intel Cori-Haswell

Figure 3.3.: Speedup of the parallel version over the sequential one when using different
number of threads and different magnetic field values for fitting 10 000 tracks

Besides the values of the magnetic field, the particle’s energy is another contributor
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to the total wall clock time for the fitting algorithm because it influences the trajectory

estimated by the numerical integrator, i.e. more or less integration steps could be required

until convergence. Consequently we plotted the fitting time for different transverse

momenta and number of threads in Figure 3.4.

Figure 3.4.: Wall clock time in seconds for fitting 10 000 tracks at different momenta when
using multi-threading configurations on AMD cluster

Secondly, we investigated the entire algorithm, which contains two levels of parallel

loops and I/O operations. As shown in Figure 3.5, 65% of the time is spent in I/O operations

when there is no parallelization available. Since read and write operations for different

Figure 3.5.: Time distribution for fitting and I/O operations in sequential mode for fitting
10 events with 10 000 tracks each on AMD cluster

events are independent, they can be overlapped in multi-threading mode to hide some

of the latency. By increasing the number of threads, the heap memory consumption also

increases. An important point to mention is that the I/O operations are used only for

algorithm validation and debugging. In production environment, these are not used

since the fitting is an intermediate step of the reconstruction flow and the data is already
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loaded in memory data structures.

Figure 3.6 shows that for this given scenario, an efficient parallelization strategy that

would balance the execution time and the RAM memory required, involves a hierarchical

scheme with two levels of 4 × 12 threads, on the given AMD system. The tests ran on

the Intel nodes showed similar correlations between the number of available threads, the

memory consumption and execution times. The last configuration with 48 threads per

level uses 48 threads in total due to TBB policies. The observations are summarized in

the Table 3.2.

(a) Heap memory at peak

(b) Wall clock time

Figure 3.6.: Memory consumption vs execution time trade-off when fitting 10x 10 000
particles using different number of threads on AMD cluster; the most efficient
configuration is highlighted in green

Increase number of
threads for / Impact on

Memory Execution time per event Total execution time

Event loop Higher peak No impact Reduce considerably
Tracks loop Small impact Reduce considerably Reduce marginally

Table 3.2.: TBB Parallelization empirical observations

When running the Kalman Fitter in a parallel environment, the order of both (a) the

fitted tracks within events and (b) the results per event might differ from the solution
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obtained by the sequential algorithm, but this does not have a physical relevance10. A

sample file is listed in Figure 3.7. The correctness of the results was validated by running

a comparison script on the output files after they were previously sorted by event identifier

and internally, by particle identifier.

Figure 3.7.: Fitting results obtained when running the Kalman Fitter sequentially and in
parallel mode for 10 tracks per event

3.1.2.2. Kalman Fitter porting from C++ to CUDA

This project was the work of several contributors and the results were published in the

article A GPU-Based Kalman Filter for Track Fitting [Ai et al., 2021].

The C++ Kalman Fitter implementation available in ACTS was used as a starting point

for the CUDA implementation. While the C++ code uses a generic detector geometry

that can be configured for a specific detector, the CUDA prototype used a simplified and

hardcoded telescope-like geometry with 10 planar surfaces perpendicular to the global x
axis and placed equidistantly with 30 mm between two adjacent planes. The reasoning for

this simplification was that a realistic detector description would have required increased

resources, both memory- and computation-wise. The magnetic field was also simplified

from a non-uniform 3D layout to a constant field of 2T along the z axis. The ground truth

used to evaluate the correctness of the solution is a sample of Monte Carlo simulated

muons and their associated hits smeared by Gaussian noise.

The CUDA implementation diverged from the C++ one due to numerous changes

required for the GPU compilation and optimization. For example, Curiosly Recurring

Template Pattern (CRTP) was used to define the polymorphic classes that describe the

geometry. Also, the detector’s surfaces were allocated in page-locked memory on the

host using cudaMallocHost in order to become easily accesible from the device at a

higher bandwidth than pageable memory. While the C++ code relied heavily on linear

10The ACTS repository provides unit tests, which check that the results are within a given error tolerance.
Also, a physicist also manually checked the results.
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algebra library eigen, this had some limitations regarding matrix inversion algorithms on

GPU at the time of our experiments. One of the issue was that some of the algorithms

provided by this library were implemented as recursive functions, which are known to be

incompatible with the small thread stack available on GPUs. Also, cuBLAS library, which

provided routines for most of the linear algebra operation, had removed the support

for calling the inversion kernel from another CUDA kernel. Therefore, we provided a

custom iterative matrix inversion implementation in CUDA based on co-factor algorithm.

Despite the fact that it was chosen due to its high degree of parallelism, it was only used

in single-thread mode because of the technical limitations imposed by the actor-model of

the Kalman Filter.

Several Intel CPUs and NVIDIA GPUs, described in Table 3.3, from NERSC and NAF

facilities were used to benchmark the prototype.

System Processor Compute Units Memory (GB)
Cori-Haswell-CPU Intel Xeon E5-2698 v3 16 x 2 128
Cori-KNL-CPU Intel Xeon Phi 7250 68 x 4 96
NAF-SL-CPU Intel Xeon Gold 5115 20 x 2 376
Cori-V100-GPU NVIDIA V100 SXM2 5120 | 2560 16
NAF-P100-GPU NVIDIA P100 PCIe 3584 | 1792 16
NAF-V100-GPU NVIDIA V100 SXM2 5120 | 2560 32

Table 3.3.: CPU and GPU configurations; Compute Units denotes the number of cores
multiplied by the number of threads for the CPUs and the number of floating
point arithmetic units in single and double precision for the GPUs

The experiments investigated some key points:

1. the correctness and precision of the results considering that the x86 floating point units

use extended double precision registers (80-bit) while CUDA limits the size to 32-bit

and 64-bit respectively as described in IEEE 754-2008 [IEEE, 2008];

2. the wall clock time when using different parallelization strategies

• track-level parallelization – each OpenMP or CUDA thread handles the fit-

ting for a different track; this is the straightforward case since the tracks are

independent;

• intra-track level parallelization – since the C objects that describe the Kalman

Filter, the geometry and the magnetic field are constant but yet they have to be

read for each track, this could make use of CUDA shared memory; therefore

allocating one CUDA block to handle the fitting for one track and several

CUDA threads within the block to boost the linear algebra operations;

3. the potential speedup of the CUDA implementation over a CPU multi-threaded

implementation using OpenMP

4. the impact of different GPU architecture, block size, grid size, number of streams

and registers on the wall clock time and occupancy when targeting the GPU
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5. the impact on distributing the work load on two distinct GPUs and combining the

results at the end; in this case, two OpenMP threads connect to two CUDA streams

on different devices in parallel.

There are two observations that can be extracted from Figure 3.8. Firstly, the GPU starts
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Figure 3.8.: The fitting time as a function of the number of tracks using float and double
operands on Cori-Haswell-CPU and Cori-V100-GPU [Ai et al., 2021]

producing better wall-clock times than the CPU when the number of tracks exceeds 1000.

Secondly, there is little impact on the CPU code when the precision of the operands is

doubled, in contrast with the GPU where there difference is notable. In both scenarios,

the number of OpenMP and CUDA threads was chosen to maximise performance.

Figure 3.9 shows that the runtimes on the V100 are better than on the P100 due to

increased single/double precision performance and memory bandwidth.

101 102 103 104 105

The number of  racks

101

102

103

Ti
m

e[
m

s]

[NAF-P100-GPU]
[Cori-V100-GPU]

Figure 3.9.: The fitting time as a function of the number of tracks on NAF-P100-GPU and
Cori-V100-GPU [Ai et al., 2021]

In terms of parallelization strategies, Figure 3.10 shows that intra-track one starts to

bring benefits only when the number of tracks exceed 1000.
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Figure 3.10.: The fitting time as a function of the number of tracks with linear grid of
size 100 000 × 1 with or without intra-track parallelization on Cori-V100-
GPU [Ai et al., 2021]

Figure 3.11 and Figure 3.12 show that there is a trade-off between the execution time

and the memory (more precisely the number of registers) used for each thread. While

a 2D block of 32 × 32 threads and 64 registers per thread ensure an occupancy close to

the theoretical maximum (50% in this case), it requires the largest runtime to perform

the computations, regardless of the number of CUDA parallel streams or the grid’s size.

When there are 1024 threads per block, maximum 64 registers per thread are allowed.
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Figure 3.11.: The fitting time as a function of bidimensional (left) or unidimensional (right)
block sizes with linear grids of sizes 5 120× 1 (top) and 100 000× 1 (bottom)
on Cori-V100-GPU, with one or four streams per device [Ai et al., 2021]

Distributing the work load to two distinct GPUs using OpenMP threads brings little
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Figure 3.12.: Warp occupancy levels using various number of registers per thread and
block sizes when using one stream with linear grid of size 5 120× 1 on Cori-
V100-GPU [Ai et al., 2021]. The black dashed line is the theoretical warp
occupancy.

benefits to the total wall-clock times as shown in Figure 3.13. MPI could probably be a

more efficient alternative in this case, but this was left for future development.
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Figure 3.13.: The fitting time as a function of the number of tracks executed in one stream
per device with linear grid of size 5120× 1 and block size of 8× 8× 1, when
using one NAF-V100-GPU (solid blue) and two NAF-V100-GPU in parallel
(dashed red) [Ai et al., 2021]

Finally, the implementation effort for porting the C++ version of the Kalman Fitter

to CUDA was evaluated. Due to the fact that the CUDA example involved multiple

physics simplifications11, comparing the source lines of code (sloc) in the two exam-

ples might not be very relevant in this case. Nevertheless, we counted the sloc for

main classes that handle the KF (e.g. KalmanFilter.hpp, GainMatrixUpdater.hpp and

11Having a simplified hard-coded geometry and a constant magnetic field impact the numerical integra-
tion and surface intersection processes
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GainMatrixSmoother.hpp) and the results showed 1295 sloc vs 1024 sloc for C++ and

CUDA respectively12. Additionally, the classes that handle the propagation and stepping

were almost completely rewritten. From a subjective point of view, we asked the physicist,

who was the main contributor to both C++ and CUDA implementations, to evaluate the

effort, in three phases: (1) ramp-up process, (2) development, and (3) physics validation

and performance improvements. First, C++ and ACTS knowledge required 3 months of

study while learning basic CUDA skills added another 1.5 months. Second, assuming

technical and domain knowledge is aquired, the C++ implementation took 2 weeks while

the CUDA one took 2.5 months13. The final phase, took an equivalent amount of time in

both cases14.

To conclude, this project demonstrated that there is a significant parallelization potential

of this important step of the reconstruction flow. However, limitations imposed by CUDA

language, incompatibilities between the ACTS data and actor execution models, and the

porting effort were also substantial. These observation have had an important impact

on the design of the new EDM in traccc and the new layer-less geometry in detray. A

final point to mention is that, at the time of the prototype, an OpenMP target offloading

implementation was also explored but we failed to deliver a compilable solution due to

the lack of debugging tools and insufficient documentation.

3.1.2.3. Parallelization Strategies for traccc

In an early development stage for traccc, we conducted a performance study on the

efficiency of several parallelization strategies for the first steps of the reconstruction

chain, which produce the space points representation required for seed finding step, as

shown in Figure 3.14, where F1, F2 and F3 are cluster f ormation, measurement f ormation

Figure 3.14.: Algorithm flow for transforming detector readouts into space point repre-
sentation as implemented in traccc

12These values do not include code in utility functions like error handling.
13The initial development started during a hackathon supported by NVIDIA experts.
14Physics validation and performance improvement for C++ took 6 months for one developer while for

CUDA, it took 3 months, but more people contributed to the outcome.
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and spacepoint f ormation algorithms, N is the number of detector cells (from one event), M
(with M < N) is the number of potential clusters/measurements/space points. The cluster

and space points formation steps include reading the input data from a file and writing

the results to another file, respectively.

Starting from this sequential implementation developed by the ACTS group (denoted

with the name seq), the author provided three parallel alternatives, as follows: Firstly,

par is a trivial OpenMP parallel loop with two imbricated critical regions for results

aggregation. Secondly, io_dec is an approach based on par where the I/O operations are

decoupled from the actual physics algorithms. This can be summarised in three steps:

(1) read all the input data in parallel and store it in memory data structures; (2) run the

algorithms in parallel and store the temporary results in memory; (3) write all the result

files in parallel. Thirdly, io_dec_dec is based on io_dec but it provides a better granularity of

the parallel regions, as shown in Figure 3.15; here f 1, f 2, f 3 are the actions of algorithms

F1, F2 and F3 applied to one entity of a collection. Once all the clusters are identified,

we can run the measurement formation followed by the space point formation for each

of them in parallel without the need to finalise all intermediate steps for all clusters in

between. This removes the need of one of the barriers and reduces the size of the critical

regions.

Figure 3.15.: Proposed algorithm flow for transforming detector readouts into space point
representation as implemented in traccc.

The experiments used simulated data generated by the ACTS Fatras module, which

contain muons in a constant magnetic field of 2T. The CPU used for the test was an Intel

i7-1087H @2.2GHz, 8 physical cores, 16 threads. For each point, 5 measurements were

taken and the average value was used for plotting.

To evaluate the impact of the I/O operations, we measured the time spent for reading

and writing using io_dec implementation with 1 thread for 1000 events and when the

events number variated. The results are shown in Figure 3.16a and 3.16b. More than 92%

of the execution time is spent on I/O.
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(a) Time distribution [%] (b) I/O Overhead

Figure 3.16.: Impact of the I/O operations when using one thread in io_dec implementation

Figure 3.17 shows that the parallel implementation scales well with an increasing

number of events while keeping a constant number of OpenMP threads at 16. A speedup

of 7× is obtained by the par implementation when the number of events reaches 1000.

The other two parallel implementation have a time penalty for creating and storing the

intermediate in-memory data structures used for the algorithms. While decoupling I/O

from the rest of the computations could be beneficial for evaluating the reconstruction

algorithms in isolation, it is not the fastest solution. Nevertheless, it should be noted that

the I/O operations are not part of a production use case since space point formation is an

intermediate algorithm that assumes the data is already in memory.

Figure 3.17.: Weak scaling analysis for the three parallel implementations in comparison
with the sequential one

As a consequence of this work, par implementation was merged15 into traccc by the

author and an effort to improve the I/O operations triggered by these observations is still

on-going within the ACTS developer group at the time of this thesis.

15https://github.com/acts-project/traccc/pull/40

https://github.com/acts-project/traccc/pull/40
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3.1.3. Case study: Evaluate Matrix Inversion GPU Implementations

One way to address the limitations described in Section 3.1.2.2 could be to improve

and extend the GPU implementation for matrix inversion. In this case study, several

approaches were investigated.

The co-factors method allows the computation of each element of the inverse matrix

of size N independently, which translates into a trivially parallel algorithm with 2 ×N
threads.

A challenge was to find an efficient way to allocate device memory for temporary

matrices such as minors and cofactors. Dynamically allocating larger chunks in global

memory proved to be highly inefficient. To address it, we used the information that the

size of the matrix is known at compile time and therefore statically allocated this space in

thread’s stack in local memory.

Another optimization was to use shared memory to store the initial matrix since its

elements are being used by all threads in the block. Finally, we replaced the eigenmatrices

and associated calls to eigen partitioning functions with C arrays and pointer arithmetic

to ensure better data coalescence.

All the improvements brought a speedup of an order of magnitude between the CUDA

kernel that inverts a matrix of 6 × 6 using a single CUDA thread and the optimized

(shared-memory) kernel executed by a block of 6× 6 threads.

Furthermore, a CUDA implementation for Gauss-Jordan algorithm was also provided.

The advantage of this approach consists in a reduced amount of memory required for

computations since the cofactors are no longer needed, but also comes with a downside:

less parallelizable code. This stems from the fact that a set of operations (e.g. update

and normalize) are applied to all matrix lines in each step. Also, the algorithm uses

a temporary aggregated matrix of size N × 2N but which can be statically allocated and

passed as a device pointer. To ensure full parallelism, the CUDA kernel should be invoked

with a block of N × 2N threads. This solution, reduced the kernel time for inverting a

6× 6 matrix by a factor of 20, to 2.3× 10−5 seconds.

Starting from the above implementation, the student Yannik Könneker and I investi-

gated the performance of several implementations of Gauss algorithm using OpenMP,

OpenACC and CUDA programming languages. While HIP and SYCL alternatives where

also in focus, we decided to drop them due to the lack of debugging infrastructure avail-

able at the time of the project. The code is open-source16 and was forked from my private

repository, which contained several CUDA implementations and a simple testing mech-

anism. The student extended the code with 6 new variations and wrote the evaluation

framework. We ran the experiments on different machines and aggregated the results,

which were published as part of his Bachelor Thesis [Koenneker, 2022].

In this new implementation form, the Gauss algorithm is done in 3 steps: normalization,

Gaussian-elimination and update. For performance considerations, all implementations

16https://github.com/DoodleSchrank/matrix_inversion

https://github.com/DoodleSchrank/matrix_inversion
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feature distinct small kernels for each of the steps, which are offloaded to the device

exploring the maximum level of parallelism available in the given language and sup-

ported by the associated compiler. For example, the key pragmas were omp target

teams distribute parallel for simd and acc parallel loop gang worker vector

for OpenMP and OpenACC respectively. Naturally, the execution configuration would

use N blocks with N threads each, where N is the size of the matrix. While the launch

bounds of the kernels are usually limited to 1024 threads regardless of the programming

language and since the matrix to be inverted could potentially be larger than that, it was

decided to partitioned it into N chunks. The CUDA implementation also made use of

shared memory to optimize the access to elements of a given row, shared by all the threads

in the block. The correctness of the GPU results was validated by (a) comparing them with

the CPU results and (b) inverting the matrix twice and comparing the result with identity

matrix. The performance was checked on two test environments described in Table 3.4.

The following compilers were used: gcc@9.3.0, clang@12.0.0, nvidia hpc++@21.9 in

conjunction with libraries cuda@10.2 and eigen@3.4.0.

Several types of matrices were pseudo-randomly generated: normal contain floats/dou-

bles in [−1.0, 1.0], natural contain integers in [−100, 100] while sparse with floats/doubles

[−1.0, 1.0] on the main diagonal and the rest is filled with zeroes.

System CPU GPU GPU Memory (GB)
1 Intel Xeon Gold 5218 NVIDIA Tesla V100 32
2 Intel i7 9700k NVIDIA GTX 1080 8

Table 3.4.: Test environment setip

A selection of the resulting plots and conclusion is presented next. In most of the plots,

the benchmark is the eigen implementation compiled for a CPU architecture. As per

eigen’s documentation17, multi-threading support is enabled by default when the code

is compiled with -fopenmp. Then we can assume that eigen implementation is already

parallelized, but there is no way of actually validating that. In case of a GPU execution,

the final time measurements include the memory transfers from host to device and back.

Figure 3.18 shows the speedup of OpenMP and OpenACC implementations compiled

with gcc versus the eigen CPU implementation for normal matrices of different sizes. As

expected, the GPU offload implementation performs badly for small matrices since the

memory transfers cost much more than the actual kernels. Nevertheless, they start to be

faster than the benchmark once the matrix size exceeds 1024, reaching a speedup of 15×

and 150× for OpenMP and OpenACC, respectively.

To evaluate the compiler’s contribution when it comes to the parallel and/or offload

implementations (with default configurations), we compiled the same code with gcc and

clang using the same optimization level. The results are showed in Figure 3.19. Firstly,

the measurements for inverting matrices larger than 1024 are missing for the executable
17https://eigen.tuxfamily.org/dox/TopicMultiThreading.html

https://eigen.tuxfamily.org/dox/TopicMultiThreading.html
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Figure 3.18.: Speedup over the eigen CPU implementation for matrices with different
sizes when the executables were compiled with gcc or clang for host and
device, on System 1 [Koenneker, 2022]

compiled with clang due to a runtime error. We assume that in this particular case, the

compiler’s mechanism, which ensures no more than 1024 threads are started simulta-

neously, does not work as expected, and throws an exception instead of automatically

limiting the number to threads. Secondly, the executable compiled with clang show

better runtimes than the ones compiled with gcc, up to 100× faster. The assumption here

is that clang must use some extra performance optimization or different default values

for the OpenMP runtime.

Figure 3.19.: Speedup over the eigen CPU implementation for normal matrices with dif-
ferent sizes containing floats when the executables were compiled with gcc
or clang for host and device, on System 1 [Koenneker, 2022]

Figure 3.20 shows the performance comparison between several GPU implementations

on System 2 and includes cuBLAS too. The nvcc-compiled openACC, CUDA and cuBLAS

scale well with problem size up to a maximum speedup of ≈ 25× over the OpenMP

offloading one until the matrices are smaller than 512, but then the performance starts to

degrade reaching ≈ 0.25× for a matrix of size 213.

Since OpenACC offload outperforms OpenMP in all cases, NVIDIA Visual Profiler

Tool (NVVP) was used to investigate the generated kernels’ configurations on System 2.
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Figure 3.20.: Speedup over eigen GPU OpenMP offload implementation for normal matri-
ces with different sizes containg floats compiled with gcc, clang and nvc++,
and cuBLAS on System 2 [Koenneker, 2022]

OpenACC allocates 1920 blocks with 32× 24 threads for the Gauss elimination kernel, in

comparison to 60 blocks with 32 × 8 threads for OpenMP. Thus the speedup is expected

given the fact that OpenACC allocates ≈ 96× more resources. Another interesing ob-

servation is that while offloaded implementations compiled with gcc and clang keep a

fixed grid configuration regardless of the problem size, the nvc++ versions factors it in:

(1 ×N × 1) blocks with (max(2 ×N, 1024) × 1,×1) threads for CUDA and (N/4 × 1 × 1)

blocks with (32× 4× 1) threads for OpenACC.

Figure 3.21 shows that when using double precision the wall clock of the algorithms

roughly doubles, which is to be expected. This holds true for all compilers and scenarios.

Figure 3.21.: Speedup over eigen CPU implementation for normal matrices with different
sizes of floats and double compiled with gcc, clang and nvcc, on System
1 [Koenneker, 2022]

The error distribution of the implementations is also investigated. For example, for

sparse matrices of size 1024, the errors are around 10−8, with similar values for all the

implementations, as showed in Figure 3.22.

In summary, we showed that offload techniques with OpenMP or OpenACC pragmas

could bring important performance gains (up to 100×) when matrices required to be
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Figure 3.22.: Error distribution for several implementation when inverting a sparse matrix
of size 1024 on System 1 [Koenneker, 2022]

inverted are larger than 211
× 211. Since the particle reconstruction algorithm in our

concern do not fall into this category, we decided to set aside this approach and still use

the CUDA version. At the time of writing this thesis, there is an ongoing discussion

about the integration of Gauss-Jordan implementation into CUDA backend of the algebra-
plugin.

3.1.4. Conclusions

Several conclusions could be made based on the preliminary R&D efforts. First, all the

case studies showed promising speedups when parallelization is applied, either using

multi-threading on the CPU or CUDA threads on an NVIDIA GPU. Second, CUDA lan-

guage constraints and execution limitations incompatible with the current ACTS design

were identified and recommendations were provided to the developer forum. These

contributed to the refinement of specifications for the ACTS heterogeneous libraries de-

scribed in Section 3.1.1.1. Third, despite the ACTS libraries’ potential to provide signif-

icant speedups when using GPUs, they require different backends to achieve this, thus

forcing the developers to learn and then to maintain several implementations for the same

algorithm, which decreases productivity.

Based on these observations, we derived the specification for a new framework, which

will be detailed next.

3.2. Framework Specifications

Figure 3.23 summarizes the native programming languages and extensions for the major

heterogeneous hardware currently available in supercomputers; the hashed surfaces de-

note that a language can be used to target a non-associate architecture but with external

support from a specific compiler. For example C++ can be translated to NVPTX using

either clang or nvc++ compilers but can also use OpenMP target features to run on AMD
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GPU if the code is compiled with clang or gcc.

CISC
CPU

RISC
CPU

NVIDIA
GPU

AMD
GPU

Intel
GPU

Hardware platforms

Low level instruction set

x86 NVPTX GCNARM
SSE

AVX
EU ISA

CUDA DPC++

Native programming languages

Compilers (gcc, clang, nvcc, hipcc, dpcc,...)

HIPC/C++

Neon

Figure 3.23.: Hardware platforms and their native programming languages

In general, all state-of-the-art approaches can achieve efficient execution on CPU and/or

GPU, with different degrees of portability and productivity. CUDA ensures best wall-

clock times on NVIDIA hardware but cannot target GPUs from other vendors. Similar to

CUDA, HIP, OpenCL and SYCL are language extensions that require complete porting

from C++, so more work for developers to learn them and to port the code. OpenMP

and OpenACC are portable but they require changes to the existing implementations by

adding compiler pragmas and do not always deliver the maximum performance on GPUs,

as will be shown in the studies detailed in Section 5.2. C++ parallel standard ensures

single-source code to target multiple architectures, but each executable has to be compiled

with a different compiler, while not all parallel features are supported consistently. Also,

for all of them except C++ STL, parallelization and offloading code is tightly coupled with the
domain algorithm. This is the most important point we wanted to address with the current

work: separation of concerns that will increase productivity by allowing domain scientists

to focus on writing algorithms rather than keeping up with many language extensions

that might offer speedups with the cost of portability, which later translates into the need

of maintaining several implementations for modeling the same process. While C++ STL

will probably close this gap in the future years, a viable solution is required now. In this

context, we introduce vecpar framework, which aims to deliver the following:

1. Increased development productivity by providing

• separation of concerns – the particle physicists will only focus on the recon-

struction algorithm and leave the computational decisions like parallelization
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strategies or support for different runtimes to the backends maintained by com-

puter scientists; this is achieved by abstracting the parallel execution notions;

• straight-forward code development – by offering a reduced set of operations as

a Domain Specific Language (DSL) in C++; this eliminates the need to learn

hardware specification (like memory layout concepts in targeted clusters) and

software language extensions (like CUDA). Also, incremental porting to vecpar
is also possible;

• code maintainability – by reducing the need to maintain multiple repositories

for different architectures; any new supported backend requires minimal or no

changes in the user code.

2. Increased portability of the reconstruction code so that it can be executed efficiently

on heterogeneous architectures of modern supercomputers; initially vecpar targets

execution on a single cluster node with (a) shared-memory CPU, (b) NVIDIA or

AMD GPUs, (c) Big Data Platforms (like Graviton-based clouds) but its architecture

allows adding support for new platforms and/or extending to distributed memory

nodes; more details about this are presented in the final chapter;

3. A prototyping environment to validate the parallelization potential of a given algo-

rithm on CPU and GPU while using a single-source implementation that targets

different platforms; useful observations can later be fed back into other projects

of the same nature (like for example the ACTS Parallelization libraries mentioned

earlier in this chapter) or vecpar can directly be used as a production-ready solution.

4. Speedups over sequential executions by (automatically) choosing the parallelization

strategy adapted to the targeted platform.

The first implementation approach to achieve these goals was through the clang-offload
framework, which served as a starting point for the final solution, the vecpar framework.

However, some functionalities from the initial code base haven’t been merged into the

vecpar framework yet and are planed for future work. In the next section, the clang-

offload prototype will be briefly introduced, while vecpar’s technical details are discussed

at length in Chapter 4.

3.3. Clang-offload Prototype

The LLVM/clang compiler has the ability to expose an intermediate representation (IR) of

a source code as an abstract syntax tree (AST) to outside caller libraries. This is achieved by

three different methods depending on the desired outcome: first, by calling libClang which

is an interface that can be invoked from any language; it is easy to integrate in code and

provides read-only access to the AST; second, by implementing a new clang plugin, which

enables full read/write access to the AST as part of the compilation step while the code

reinterpretation has to be added to the LLVM repository; third, by using libTooling interface
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to write standalone tools18 while having full access to the AST without the limitation of a

specific clang version. Based on this last method, we designed a prototype framework

named clang-offload, which contains a C++ header-only library used to mark the pieces of

the code that should be parallelized, and a source-to-source translation tool, which converts

C++ sequential code into different parallel implementations.

For this prototype, we had a simplified use case in mind: the scientific code would

define a behaviour as a C++ function that is later invoked in a for-loop (potentially in a

different C++ file), for each element of an input collection. Moreover, the function has

one input and one output parameter. A particle reconstruction example would be: fit a

track, for each set of track parameter objects in a list, in the context of a constant (and

hard-coded) magnetic field.

3.3.1. Design and Execution Flow

Figure 3.24 shows an overview of the execution flow. The clang-offload tool is invoked

on the source folder that needs to be parallelized. The user can provide a set of options

and configurations, which include a desired architecture for the build, a specific backend
(one from the three supported backends: OpenMP for CPU, OpenMP target and CUDA)

and an action (translate the code with or without building an executable from the new

sources, which is the result of running the tool).

Initial C++ code

Configurations

clang-offload tool
(source-to-source translation)

Modified C++ code

Executable

Figure 3.24.: Clang-offload execution flow

The clang-offload tool comprises four different tools, which are run in order as sequential

steps for the main tool, as shown in Figure 3.25. The FileGeneratorTool duplicates the

Code duplication
(File Generator Tool)

Code validation
(Validator Tool) 

Code translation 
(Generator Tool) 

Build executable 
(Builder Tool) 

Figure 3.25.: The clang-offload modules; the ones in dashed line are optional for the
execution flow

folder containing the source code; this is a precaution and stems from the fact that the

code translation is a destructive process. The ValidatorTool makes sure that a series of

preconditions are met in the context of a given backend; for example, for the CUDA

18Standalone refers to independent from of a specific LLVM repository.
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backend, the code must not use any calls to the C++ standard library since these are not

supported. The GeneratorTool is the key component of the entire flow because it rewrites

the source code. Both the validator and the generator tools are implemented based

on clang::tooling API, which allows the definition of AST matchers and associated

callback functions that are invoked in different passes of the compilation process. Finally,

the BuilderTool is called when the user specifies that an executable must be built after the

source transformation. This is optional and the execution flow can end before this step.

If one of these tools fails, an error is shown to the user and the entire flow stops.

To decide which parts of the source-code to translate, the tool uses input from the user,

who will mark the code by replacing a for-loop with a call to the framework’s mark API

function run_efficiently() and include the appropriate marker header, as shown in

Listing 3.1, while the signature of the API interface is shown Listing 3.2. When passed

through the clang-offload tool, line 11 from Listing 3.1 gets replaced by a piece of generated

code for each backend. The OpenMP for CPU version is shown in Listing 3.3 while the

generated code for OpenMP target and CUDA backends is listed in Appendix B.1 since

more changes are required in different files.

1 #include "functions.cpp"

2 #include "include/mark-offload/marker.hpp"

3
4 int main(int argc, char** argv) {

5 // int n = ..

6 int *h_data = (int *) malloc(sizeof(int) * n); // initialization ...

7 int *h_result = (int *) malloc(sizeof(int) * n); // initialization ...

8 // initial for-loop

9 // for (int i = 0; i < N; i ++)

10 // functions::f(h_data[i], h_result[i]);

11 api::run_efficiently <int*, int, int*, int>(functions::f, h_data, h_result , n);

12 }

Listing 3.1: Sample user code using clang-offload API

1 // define function type

2 template <typename TDataItem , typename TResultItem >

3 using func_t = void (*)(TDataItem&, TResultItem&);

4
5 template <typename TData, // TData<TDataItem >

6 typename TDataItem ,

7 typename TResult, // TResult<TResultItem >

8 typename TResultItem >

9 void run_efficiently(func_t<TDataItem , TResultItem > func,

10 TData &data, // input vector

11 TResult &result, // output vector

12 int n); // size of the vector(s)

Listing 3.2: Mark API
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1 auto lambda = []<typename T, typename R>(T* data, R* result, int n) {

2
3 #pragma omp teams distribute parallel for

4 for (int idx = 0 ; idx < n; idx ++) {

5 functions::f(data[idx], result[idx]);

6 }

7 };

8
9 lambda(h_data, h_result, n);

Listing 3.3: Generated code for OpenMP CPU backend

The decision to generate a lambda function (when the code could have been generated

as part of the original function) is due to the need of renaming some variables in the

predefined templates with the names extracted while parsing the abstrac syntax tree.

3.3.2. Implementation Details

The implementation is composable and revolves around modules, which makes it flexible

and maintainable. It defines the notion of a ToolBox, which is a placeholder for a set of tools

that defines the behaviour of a backend, and which is required to provide implementations

for the four tools. The tools are C++ classes with a default behaviour, which might be

overriden for specific backends. The implementation relies heavily on polymorphism and

virtual functions when needed19. For example, the BuilderTool extracts a build command

from the compilecommands file generated by the cmake invocation on the original sources

and extends it with the appropriate compilation flags and linked libraries as provided

by each backend. Then the command is invoked using std::system API. Likewise, the

FileGenerator tool is implemented based on STD API, however its behaviour is identical

for all backends.

The most complex modules are the ValidatorTool and the GeneratorTool, which extend

clang::tooling::ClangTool and have a similar structure: firstly, a virtual addMatcher

function, which allows specific MatchFinder20 objects to be added for each backend. Sec-

ondly, a run_tool() function that instructs the clang frontend to create a new compilation

pass with the given matchers. Each matcher is basically an association between a con-

dition that triggers the execution of a callback during compilation phase. An example

of such condition is shown in Listing 3.4 and a sample callback function is shown in

Listing 3.5. While the callback is rather generic, each backend defines its own notion of

included libraries and uses a different template for the lambda generation. Lines 4 and

16 from Listing 3.5 identify the exact file location where run_efficiently() is being

called and its arguments (e.g. variable names and types); the callback will replace the

call with a template-based generated code (which includes a lambda and its invocation

19As a remark, this is the implementation of the tool and does not interfere with the execution of a backend,
therefore the limitations imposed by a GPU backend do not apply here.

20clang::ast_matchers::MatchFinder class allows finding matches over the Clang AST
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call) defined by each backend. This callback can repeatedly be triggered if several calls

are made throughout the user code.

1 static const StatementMatcher OffloadFnInvocationMatcher =

2 declRefExpr(

3 hasParent(

4 implicitCastExpr(

5 hasParent(

6 callExpr(

7 callee(

8 functionDecl(

9 hasName(Constant::offloadFnName)))) // "run_efficiently"

10 .bind(Constant::offloadCall)))))

11 .bind(Constant::funcDecl);

Listing 3.4: Matcher statement for identifying the run_efficiently() call

1 virtual void run(const MatchFinder::MatchResult &Result) override {

2 ASTContext *Context = Result.Context;

3 SourceManager *SM = Result.SourceManager;

4 const CallExpr *CE = Result.Nodes.getNodeAs <clang::CallExpr >(Constant::

offloadCall);

5 if (CE) {

6 std::vector<std::string> params;

7 params.reserve(3);

8 for (int i = 1; i < CE->getNumArgs(); i++) {

9 const VarDecl* p = dyn_cast<VarDecl >(CE->getArg(i)->

getReferencedDeclOfCallee());

10 if (p)

11 params.emplace_back(p->getDeclName().getAsString());

12 }

13 m_nodeIdToFnInfo.insert(std::make_pair(CE->getArg(0)->children().begin()->

getID(*Context),params));

14 }

15 // get the arguments from the "run_efficiently" call

16 const DeclRefExpr *DRE = Result.Nodes.getNodeAs <clang::DeclRefExpr >(Constant

::funcDecl);

17 if (DRE && (hasNodeId(DRE->getID(*Context)))) {

18 m_offloadNodeIds.insert(DRE->getDecl()->getID());

19 StringRef location = SM->getFilename(Context->getFullLoc(DRE->getBeginLoc()

));

20 // include <omp.h> or <cuda.h> ..

21 includeDriverLib(location);

22 // generate code that will be inserted into "location"

23 generateOffloadingLambda(CE, DRE, Context, SM, location);

24 }

25 }

Listing 3.5: Callback function for identifying offloading region registered in the

GeneratorTool for the OpenMP Target backend
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The code replacements are chunks of code that can be include statements, OpenMP

pragmas, function decorators (like adding __device__ attribute to a function), or even

functions all together in the form of C++ lambdas21. Also, the AST is searched in depth,

so for example if a function is annotated with __device__ attribute, then all the functions

invocated by the current function are also annotated accordingly.

3.3.3. Limitations and Conclusions

While the tool works fine for this simple use case, we found it difficult to generalize it for

more complex scenario, like the case when the threads need synchronization mechanisms.

To address this, we noticed that run_efficiently() function must be (a) more flexible in

defining the parameters and (b) more knowledgeable about what kind of operations are

happening inside.

The code generation is based on some hard-coded templates for each backend. If the

function becomes more generic and can accept more parameters, this model will no longer

work. Also, we found different limitations of the tooling mechanism when identifying the

functions as part of C++ classes/structures, which is a more probable case for a scientific

code.

Also, since the parallelization happens at compile-time, only one backend can be active

at a time; this means that addressing two platforms, the clang-offload tool will generate

two source-folders. Nevertheless, since the transformations are deterministic, one can

store only one implementation in a repository, while generating different versions only at

compile time when the code is built for a specific target.

Based on this experience, we decided to design the vecpar framework as a library

instead of a compile-time tool that allows extraction of more information from the user

by fitting the code into a series of abstractions. This also removes the need for hard-coded

templates and opens the possibility to compile the code with other compilers and is no

longer limited to clang. Nonetheless, the vecpar framework could benefit from such an

external tool to implement advanced performance optimizations, as detailed in the final

chapter.

21Lambdas were chosen to match easier with the template code for each backend.
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This chapter describes the vecpar framework, from its mathematical foundation to C++ implemen-
tation details.

4.1. Conceptual Design

Vecpar relies on the notations and calculus from functional programming for specifying

and manipulating computable functions over lists. Section 4.1.1 briefly sumarizes these

concepts introduced by Richard Bird in [Bird, 1987], while the description of the vecpar

abstractions concludes this section.

4.1.1. Mathematical Concepts

A list (or equivalent, a sequence) is a linearly ordered collection of values of the same type.

The elementary operatations are governed by the following operators:

• Map – The operator ∗ applies a function to each element of a list and it is defined by

the Equations (4.1) and (4.2), where f is a function of type α→ β, and a1, a2, ..., an ∈ α

while the result is another list with elements of type β, of the same length as the

input one.

f ∗ [a1, a2, ..., an] = [ f a1, f a2, ..., f an] (4.1)

∗ : (α→ β) × [α]→ [β] (4.2)

• Filter – The operator / takes a predicate p and a list x and returns the list of elements

of x that satisfy p. This is defined by Equations (4.3) and (4.4).

/ : (α→ Bool) × [α]→ [α] (4.3)

p : α→ Bool (4.4)

Filter obeys the three laws described in Equation (4.5): commutativity states that

filtering a list with the predicate q and then filtering the result with the predicate p
gives the same answer as first filtering with p and then with q; idempotency ensures

that multiple filtering with predicate p give the same result as when p is applied

once; and finally, commutativity of map and filter says that mapping with function f
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followed by filtering with predicate p gives the same result as first filtering with p · f
and then mapping with f .

p / q / x = q / p / x

p / p / x = p / x

p / f ∗ x = f ∗ (p · f ) / x

(4.5)

• Reduce – The operator / takes an operator ⊕ on the left and a list x on the right and

it inserts ⊕ between adjacent elements of x, as shown in Equations (4.6) and (4.7).

In order to avoid ambiguity, ⊕must be associative. If ⊕ additionally has an identity

element, then / is a homomorphism1.

⊕/[a1, a2, ..., an] = a1 ⊕ a2 ⊕ · · · ⊕ an (4.6)

/ : (α× α→ α) × [α]→ α (4.7)

• Direct reductions – The operators 8 (right-reduce) and 9 (left-reduce) are related

with the reduction operator / but there are several key differences, shown in Equa-

tions (4.8) and (4.9). Firstly, each takes three arguments: an operator ⊕, a value e
and a list x; secondly, in this case, ⊕ does not need to be associative; lastly, the type

of ⊕ is not restricted to α× α→ α. For the right reduction, the result is determined

incrementalluy from right to left, therefore the progress of the computation is recur-
sive, which can be more time-efficient if the operator is non-strict2 while the size of

the intermediate expression grows proportionally to the length of the original list.

In contrast, left reductions can be more efficient regarding the space required for the

computation because in this case, the intermediate expression never grows beyond

a constant amount.

8: ((β× α→ β) × β)→ [α]→ β (4.8)

9: ((α× β→ β) × β)→ [α]→ β (4.9)

Since every homomorphism can be expressed as a directed reduction, if ⊕ is asso-

ciative and has identity element e, then the undirected reduction can be expressed

as a directed one as shown in Equation (4.10).

⊕/ = (⊕9 e) = (⊕8 e) (4.10)

An important consequence of using homomorphisms is the promotion lemma, which

states that for arbitrary function f , predicate p and associative operator ⊕, the statements

1As an observation, we note that map and f ilter are also homomorphisms.
2A non-strict operator’s value does not always depend on the full evaluation of the right-hand argument.



4.1. Conceptual Design 75

in (4.11) hold, where ++ is the concatenation operator. This means that rather than

applying map, filter and reduce on a large sequence, one can divide the list into shorter

ones, then map, filter and reduce each of these, and then collect the outcome.

(∗ promotion) ( f ∗) · (++/) = (++/) · (( f ∗) ∗)

(/ promotion) (p /) · (++/) = (++/) · ((p /) ∗)

(/ promotion) (⊕/) · (++/) = (⊕/) · ((⊕/) ∗)

(4.11)

4.1.2. Vecpar Abstractions

Building on top of the equations and notations above, vecpar defines several types of

abstractions to support the implementations for:

1. the operators map, filter and reduce, which are named parallel_map, parallel_filter
and parallel_reduce respectively – These decide how a function will be executed

with different vecpar backends providing different parallelization strategies. Vecpar

extends the domain of these operators by adding additional information regard-

ing the algorithm that needs to be executed, the storage location of the data and

contextual information in some cases. For the parallel_map (and similarly for the

parallel_mmap3) operator, vecpar allows up to five4 lists to be iterated in parallel,

while for paralel_reduce and parallel_filter only one list is accepted. Details about

function signatures will be presented in Section 4.3.

There is also the option to use composed operators map-filter and map-reduce, named

parallel_map_filter and parallel_map_reduce in vecpar, which implement some perfor-

mance optimizations when executed on GPUs.

Vecpar also exposes a generic parallel_algorithm, which delegates to one of the above

for further execution and a mechanism for executing consecutive steps of an algo-

rithmic chain by composing them together, in the mathematical sense, if they can be

expressed as vecpar operators. Assuming the function chain depicted in Figure 4.1

is applied to a list x, the framework can produce the composed result shown in

Equation (4.12).

(reduce1( f ilter2(map3(map2( f ilter1(map1(x))))))) =

(reduce1 ◦ f ilter2 ◦map3 ◦map2 ◦ f ilter1 ◦map1)(x)
(4.12)

3Parallel_mmap is parallel_map that operates on mutable input data.
4This comes from the most complex use case in the reconstruction flow implemented in ACTS detray

project that handles the particle propagation through the detector’s layers; for this, vectors containing the
track parameters, the intersection candidates, the path lenghts, the position data and the transport jacobians
are needed together with the contextual description of the detector geometry in order to compute the final
track states. Nevertheless, this number can be extended in the future.



76 4. Technical Design

map1 filter1 map2

map3 filter2 reduce1

Figure 4.1.: Algorithm steps example

2. the function f , the predicate p and the direct reduction function ⊕, which are named

mapping_function, filtering_function and reducing_function respectively.

Mapping_function extends the domain of f to include the context θ as shown in

Equation (4.13).

mapping_ f unction : α× θ→ β (4.13)

In the particular case when α = β and the list which f is applied to is expected to

be mutable, (4.13) becomes (4.14):

mapping_ f unction : α× θ→ α (4.14)

Equation (4.4) remains unchanged, therefore filtering_function is defined as:

f iltering_ f unction : α→ Bool (4.15)

For reduction case, vecpar supports only homomorphic functions with α = β and

can be defined as a left-reduction:

reducing_ f unction : α× α→ α (4.16)

Additionally, vecpar defaults the identity element for the reduction operation

through the function defined by Equation (4.17). The user is required to over-

load this function only in the case when the identity element is different than the

value provided by the default constructor of that type (i.e. for numerical types this

is 0).

identity_ f unction : α→ α (4.17)

Technically, all these functions are wrapped in vecpar::algorithm classes or structures

that provide a placeholder for the numerous templates required for an efficient

execution, and are detailed in Section 4.3.

These abstactions are implemented through C++ structures and functions and they

form the vecpar API, detailed later in this chapter.
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4.2. High-level Design

Besides the higher-order algebra of program invariants such as the map-reduce list homo-

morphisms described above, which are inherently parallel, other concepts from functional

programming are built into vecpar. Firstly, while the vecpar algorithms can be C++ func-

tors, the desired behaviour is the one of a stateless class/struct with constant member

functions; this ensures a GPU-friendly layout that allows both instantiation and copy of

an algorithm to a device. Secondly, immutability is guaranteed by default (by obeying

const correctness priciple) unless the user explicitely requires otherwise; working with im-

mutable data structures enhances the multi-threading capabilities by reducing potential

race conditions or deadlocks, since each function works on its own data.

The vecpar framework is designed as a C++ header-only library that acts like a frame-

work due to its inversion of control characteristic; this means that by implementing vecpar’s

abstract features, the user library releases the execution flow to the framework, which de-

cides when and how to invoke the user code [Piętak and Kisiel-Dorohinicki, 2013]. The

main goal of this approach is to ensure the decoupling between a scientific algorithm

(which can be implemented by a domain expert), the way to compile and execute it on

different hardware platforms (which is based on parallelization strategies developed by

computer scientists) and the data storage location (which can be tailored for different

scenarios), as shown in Figure 4.25. Moreover, this separation of concerns contributes

to a high degree of maintainability of the source code since (a) new parallel execution

backends can be added without changing the client code that uses vecpar, and (b) within

vecpar, adding new functionality is simplified due to the design’s modularity.

vecpar

algorithm execution

data storage

User code app

specialized
algorithm

data storage

specialized
execution

Figure 4.2.: High Level Design; the dashed line represents an optional module/choice

Vecpar has minimum dependencies: the vecmem library and the CUDA and OpenMP

libraries and runtimes.

From the implementation perspective, vecpar relies on C++20 key features like concepts
to avoid runtime polymorphism and replace it with a compile-time version of it whenever

possible.

5This scheme is detailed later in Section 4.4 after all the modules are completely explained.
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4.2.1. Execution Flow

Vecpar’s execution flow is summarized in Figure 4.3. Assuming there is a user application

that defines an algorithm by extending the vecpar::algorithm functionality, as suggested

by the dashed arrow, run-time execution follows the numbered arrows. The entry point

is the user code (1) that invokes vecpar::parallel_algorithm6 with a given algorithm imple-

mentation. The execution moves next into the vecpar API (2); since the algorithm is a

vecpar algorithm, the framework handles parallel task distribution and memory transfers

if needed (3), and then the execution moves back into the user code to perform the actual

computations (4). The results are then available to the user code (5).

vecpar

algorithm

parallel_algorithm

3

1 2

5

User code app

algorithm

execution

4

Figure 4.3.: Vecpar execution flow

4.3. Low-level Design

An in-depth view of the architecture based on the execution flow in Figure 4.3 is shown

in Figure 4.4. The three key concepts here (the algorithm, the backend and the memory

resource) and their interaction are exposed through the vecpar API, which will be covered

next in this section.

Figure 4.4 also shows the automatic backend selection mechanism (detailed in Sec-

tion 4.3.3.4). If the user does not explicitly require a specific backend by prefixing the

function call accordingly, the decisional state machine passes through the depicted steps.

Firstly, the algorithm type7 decides the data distribution mechanism between workers.

Secondly, based on compilation flags, the execution backend8 employs the parallelization

and/or offloading strategy. Lastly, in case a GPU backend was identified, the location

of the data is checked to see if host-device transfers might be required; in case they are,

vecpar will perform them automatically.

6A more specific invocation like vecpar::parallel_map() or vecpar::cuda::parallel_algorithm()
can also be used for a specialized execution. These are detailed in the next section.

7Valid vecpar::algorithms are detailed in Section 4.3.2.
8The backends and the way to setup these configurations are detailed in Section 4.3.3.
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vecpar::backend::
parallel_algorithm
   (algorithm,
    memory-resource,
    data, ...)

Algorithm type

map/mmap
filter
reduce
map/mmap-filter
map/mmap-reduce

Dispatch via
algorithm type

Run with CPU 
threads

Backend
type

CPU

GPU Memory
resource

Run with GPU
threads

CPU/GPU
Unified Memory

Copy data to device

Run with GPU
threads

Copy data to host

CPU Memory

(CUDA /
OpenMP Target*)

(OpenMP)

(optional)

* experimental

Figure 4.4.: Vecpar’s components and decision flow

4.3.1. Data Types and Memory Resources

The list types that vecpar can parallelize across are the containers defined by the vecmem

library, introduced in Section 3.1.1.1. Vecmem::vector extends std::vector so that it

can be used in a GPU environment as well. Vecmem::jagged_vector is a 2-dimensional

container currently being prototyped, which is an array of arrays of different sizes. Similar

to the vectors exposed by the C++ Standard Library, vecmem containers are templated

on the elements’ type. To ensure a successful GPU allocation, the types must be default

constructible.

The user can specify a memory resource for a vecmem container that is used to read

the input data from and to store the result(s). This can be CPU memory or GPU mem-

ory, with the last one being handled either directly or through unified memory APIs.

Vecmem wrapps CUDA, HIP and SYCL allocators, and offers enriched proxies with

extended functionality that even emulate dynamic memory allocations on device. Vec-

par currently uses only the C++ and CUDA backends from vecmem, so the memory

allocators that are used are represented by the vecmem::host_memory_resource class

for the former, and vecmem::cuda::managed_memory_resource and vecmem::cuda::

device_memory_resource for the latter. Vecmem also handles the memory deallocations

automatically, when a variable goes out of scope.

The type vecmem::device_vector is the counterpart for a std::vector that allows

modification of the vector’s elements in device code; nevertheless it does not allow the

vector to be resized nor to be allocated only on the device. Vecmem provides access

to the data inside a container through objects defined in the vecmem::data namespace,

which can either own the data (e.g. vector_buffer and jagged_vector_buffer) or not

(e.g. vector_view and jagged_vector_view). Portability between host and device is
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achieved using these notations as shown in Listing 4.1 and Listing 4.29. While the former

example is easier to implement, the second one most likely ensures better performance

due to CUDA’s way of handling read/write operations when managed memory is in-

volved. Vecpar aims to hide all this complexity from the user and perform these steps

automatically, behind the scene.

1 // init memory resource

2 vecmem::cuda::managed_memory_resource mm_mr;

3 vecmem::vector<int> host_vec(10, &mm_mr); // initialization ...

4 // get the view to the data

5 auto view = vecmem::get_data(host_vec);

6 // pass the view to the CUDA kernel

7 kernel <<<...>>>(view);

8 // inside the CUDA kernel code ...

9 vecmem::device_vector <int> device_vec(view);

Listing 4.1: CUDA kernel invocation with vectors allocated in CUDA mananged memory

1 // init memory resource(s)

2 vecmem::host_memory_resource host_mr;

3 vecmem::cuda::device_memory_resource device_mr;

4 // copy tool which wrapps cuda::memcpy calls

5 vecmem::cuda::copy copy;

6 vecmem::vector<int> host_vec(10, &host_mr); // initialization ...

7 // get the view to the data

8 auto view = vecmem::get_data(host_vec);

9 // copy host to device

10 auto vec_buffer = copy.to(view, device_mr , vecmem::copy::type::host_to_device);

11 // get the view to the buffer

12 auto vec_buff_view = vecmem::get_data(vec_buffer);

13 // pass the view to the CUDA kernel

14 kernel <<<...>>>(vec_buff_view);

15 // inside the CUDA kernel code

16 vecmem::device_vector <int> device_vec(vec_buff_view);

17 // copy device to host

18 copy(vec_buffer , host_vec , vecmem::copy::type::device_to_host);

Listing 4.2: CUDA kernel invocation with vectors allocated in CPU memory; data transfer

to and from the device are mandatory in this case

For going further, the term iterable will be used to denote a vecmem::vector or a

vecmem::jagged_vector.

4.3.2. Algorithms

Building on top of the equations defined in Section 4.1.2, vecpar exposes the notion of an

algorithm, which wraps the mapping_function, the filtering_function, the reducing_function

9There is one important observation to note here: while lines 6 and 8 can be combined together, this is
not possible for lines 8 and 10 due to the dependency in line 16.
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and the optional identity_function. The available algorithms are briefly summarized in

Table 4.1 and each will be detailed next in this section.

No Simple No Composed
1 parallelizable_map 5 parallelizable_map_filter
2 parallelizable_mmap 6 parallelizable_mmap_filter
3 parallelizable_filter 7 parallelizable_map_reduce
4 parallelizable_reduce 8 parallelizable_mmap_reduce

Table 4.1.: Vecpar algorithm types

From the implementation perspective, these are C++ structures10 templated on several

types that will be detailed for each algorithm next. The types are used to configure the

behaviour for data distribution, parallelization and offloading stategies in the backends.

For notation purposes, the input data types will be denoted with Iterable < Typei >with

i ∈ 1, n and their count is n, n <= 5 and the result type is Iterable < RType > or RType;

all iterables are colored in green, while parameters as their count is shown in yellow. The

generic types that define the context are denoted CType j, j ∈ 0, m, and colored in purple.

In the function signatures, the bold notation stands for mutable parameters, while the

others are considered constant. Also in the signatures, the qualifier vecpar::TARGET is

a macro, which expands to different qualifiers based on the backend; a valid example

is __inline__ (or __forceinline__ for CUDA), which can be added for performance

considerations.

Since some of the eight algorithms are similar, they will be described together, in the

following five sections.

4.3.2.1. Parallelizable_(m)map

Parallelizable_map and parallelizable_mmap classes provide similar behaviour in the sense

that they each define one member function, mapping_function, which will be invoked for

every element of the input list(s) based on different parallelization stategies provided by

the vecpar backends. The difference comes from the way they handle the data and store

the result: while the former treats the input parameters as constant and returns a new

iterable collection (allocated automatically by vecpar), the latter will treat the first collection

as mutable and will therefore override it; the latter could be used as a performance

optimization over the former in the case when the following conditions are simultaneously

satisfied: (a) the return type of the map is the same as the type of the first input collection,

and (b) the input data is safe to be modified (i.e. it will not generate race conditions for

example).

The user code that uses these abstractions must extend parallelizable_map (or parallleliz-

10While for the basic map, filter and reduce operators the usage of a C++ structure could be redundant
since each exposes only one member function, this design is needed for the composed operators map-filter
and map-reduce, which inherit the behaviour from two different basic algorithms and therefore expose more
member functions.



82 4. Technical Design

able_mmap) class and provide an implementation for its function11.

This algorithm can support up to five12 input collections (of identical size) that are

iterated at the same time13. Also, these collections can be of different types (as long as

they are iterable), as shown in Figure 4.5a and Figure 4.6a, which lead to the required

signature for the mapping_function as shown in Figure 4.5b and Figure 4.6b.

Collection
Count (n)

 Iterable
<RType>

Iterable
<Type1>

Iterable
<Typen> CType1 CTypem

Input array types Context typesResult array type

(a) Class template definition

RType& Type1& Typen& CType1& CTypem&mapping_function( , , ,, );, , RType&TARGET

(b) Function signature

Figure 4.5.: Parallelizable_map class templates and member function signature

Collection
Count (n)

Iterable
<Type1>

Iterable
<Typen> CType1 CTypem

Input array types Context types

Result array type

(a) Class template definition

Type1& Typen& CType1& CTypem&mapping_function( , ,, );, , RType&TARGET

(b) Function signature

Figure 4.6.: Parallelizable_mmap class templates and member function signature

While the collection(s) type and their number are less important when the code targets

a CPU resource, there are significant differences when it comes to transferring the data

to/from a GPU; these are detailed in Section 4.3.3 since they are particular to each backend.

Due to the need for further specialization, from the implementation’s perspective, a

different class is defined for each number of input collections, leading to having five base

11In an early implementation of vecpar, the member function was marked virtual, but this restriction was
later removed due to performance consideration when invoked on a GPU. Currently, if the implementing code
does not obey the required signature, a compilation error is thrown. This observation of avoiding virtual
functions is valid for the entire vecpar API, therefore it will be omitted while introducing the remaining
algorithms.

12This is specified through the collection count parameter, which is implemented as an enumeration.
13A trivial yet very common use case, which uses several collections, is the vector addition example:

c[i] = a[i] + b[i], i ∈ 1, n.
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templates. Nevertheless, this is hidden from the users of vecpar library as can be seen in

Listing 4.3, which shows a simple implementation example.

1 template <class T>

2 struct vector_addition :

3 public vecpar::algorithm::parallelizable_mmap <

4 vecpar::collection::Three, // a,b,c

5 vecmem::vector<T>, // c

6 vecmem::vector<T>, // a

7 vecmem::vector<T>> // b

8 {

9 TARGET T& mapping_function(T& c_i, const T& a_i, const T& b_i) const {

10 c_i = a_i + b_i ;

11 return c_i;

12 }

13 };

Listing 4.3: Parallelizable_mmap implementation example

4.3.2.2. Parallelizable_filter

Parallelizable_filter algorithm allows the definition of a predicate (by providing an imple-

mentation to filtering_function), which is used to filter out elements of the input collection.

Since the output result of filtering is another list of elements of the same type, the template

required by the C++ classes is trivial, as shown in Figure 4.7. Filter never modifies the

input collection and the results is always a new vector.

Iterable
<Type1>

Input and output
arrays type

(a) Class template definition

Type1&filtering_function( );TARGET bool

(b) Function signature

Figure 4.7.: Parallelizable_filter class templates and member function signature

An example of a trivial parallelizable_filter implementation that keeps only the even

numbers in a list is shown in Listing 4.4.

1 struct vector_filtering :

2 public vecpar::algorithm::parallelizable_filter <

3 vecmem::vector<int> // input type

4 {

5 TARGET bool filtering_function(int& a_i) const {

6 return (a_i % 2) == 0;

7 }

8 };

Listing 4.4: Parallelizable_filter implementation example
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4.3.2.3. Parallelizable_reduce

As the name suggests, parallelizable_reduce algorithm reduces the input list using the

behaviour defined by a reducing_function. Similar to the previous case, only the list type

is required for the parametrization since the result type can be inferred automatically.

This is shown in Figure 4.8 below. If the identity element for the reducing_function is not 0

(which is the default for a number type), then the user should override identity_function as

well and provide the correct value. Since the reducing operation is performed in parallel,

the global result is protected by sychronization mechanism implemented in each backend

to avoid race conditions; an example is the OpenMP implementation in Listing 4.10.

Iterable
<Type1>

Input array type

(a) Class template definition

Type1*reducing_function( );TARGET Type1&,Type1*

identity_function();TARGET Type1

(b) Functions signatures

Figure 4.8.: Parallelizable_reduce class templates and member function signature

A trivial example of an algorithm, which adds together all the elements of a list, is

shown in Listing 4.5. Here, the implementation of identity_function is optional. Similar to

parallelizable_filter, parallelizable_reduce does not modify the input collection.

1 struct vector_reducing :

2 public vecpar::algorithm::parallelizable_reduce <

3 vecmem::vector<int> // input type

4 {

5 TARGET int* reducing_function(int* result, int& a_i) const {

6 *result += a_i;

7 return result;

8 }

9 // optional to override

10 TARGET int identity_function() const {

11 return 0;

12 }

13 };

Listing 4.5: Parallelizable_reduce implementation example

4.3.2.4. Parallelizable_(m)map_filter

Parallelizable_map_filter and parallelizable_mmap_filter extend either parallelizable_map or

parallelizable_mmap class and parallelizable_filter class; therefore the implementing class

inherits both templates and is required to provide implementation for two member func-

tions, as shown in Figure 4.9 and Figure 4.10. Grouping a map and a filter together can

bring performance optimization when the code is executed on a GPU, as detailed later in

this chapter.
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Collection
Count (n)

 Iterable
<RType>

Iterable
<Type1>

Iterable
<Typen> CType1 CTypem
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(a) Class template definition

RType& Type1& Typen& CType1& CTypem&mapping_function( , , ,, );, , RType&TARGET
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(b) Functions signatures

Figure 4.9.: Parallelizable_map_filter class templates and member functions signatures
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filtering_function( );TARGET  bool Type1&

(b) Functions signatures

Figure 4.10.: Parallelizable_mmap_filter class templates and member functions signatures

A trivial example using map-filter behaviour is shown in Listing 4.6 where each ele-

ment of an input vector of integers is multiplied by a double and only the even values are

kept for the final result list.

1 struct vector_addition_filtering :

2 public vecpar::algorithm::parallelizable_map_filter <

3 vecpar::collection::One,

4 vecmem::vector<double>, // map result type

5 vecmem::vector<int> // input type

6 {

7 TARGET double& mapping_function(double& result_i , const int& a_i) const {

8 result_i = a_i * 1.0 ;

9 return result_i;

10 }
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11
12 TARGET bool filtering_function(double& a_i) const {

13 return (a_i % 2) == 0;

14 }

15 };

Listing 4.6: Parallelizable_map_filter implementation example

4.3.2.5. Parallelizable_(m)map_reduce

Parallelizable_map_reduce and parallelizable_mmap_reduce extend either parallelizable_map

or parallelizable_mmap class and parallelizable_reduce class; therefore the implementing

class inherits both templates as shown in Figure 4.11a14 and Figure 4.12a. In this case, the

user library must provide implementations for mapping_function and reducing_function
(and identity_function if needed) as shown in Figure 4.11b and Figure 4.12b.

Collection
Count (n)

 Iterable
<RType>

Iterable
<Type1>

Iterable
<Typen> CType1 CTypem

Input array types Context typesMap result
array type

RType

Reduce
result type

(a) Class template definition

RType& Type1& Typen& CType1& CTypem&mapping_function( , , ,, );, , RType&TARGET

RType*reducing_function( );TARGET RType&,RType*

identity_function();TARGET Type1

(b) Functions signatures

Figure 4.11.: Parallelizable_map_reduce class templates and member functions signatures

A sample implementation of a dot product operation between two vectors is shown in

Listing 4.7.

1 template <class T>

2 struct vecpar_dot:

3 public vecpar::algorithm::parallelizable_map_reduce <

4 vecpar::collection::Two,

5 T, // reduction result

6 vecmem::vector<T>, // map result

7 vecmem::vector<T>, // a

8 vecmem::vector<T>> // b

9 {

14Note that providing the map return type is mandatory since there is no way to identify whether the
iterable is a 1D or a 2D vector since this is specified by the implementation.
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10 TARGET T& mapping_function(T& result_i, const T& a_i, const T& b_i) const {

11 result_i = a_i * b_i;

12 return result_i;

13 }

14 TARGET T* reducing_function(T* result, T& crt) const {

15 *result += crt;

16 return result;

17 }

18 };

Listing 4.7: Parallelizable_map_reduce implementation example

Collection
Count (n)

Iterable
<Type1>

Iterable
<Typen> CType1 CTypem
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(a) Class template definition

Type1& Typen& CType1& CTypem&mapping_function( , ,, );, , Type1&TARGET

Type1*reducing_function( );Type1&,Type1*TARGET

identity_function();TARGET Type1

(b) Functions signatures

Figure 4.12.: Parallelizable_mmap_reduce class templates and member functions signa-
tures

4.3.2.6. Implementation Recommendations for Jagged Vectors

When implementing the mapping_function, reducing_function and filtering_function, the

types in the functions’ signatures are extracted from the lists template, as shown in the code

snippets above. Nevertheless, when one of the input collection is a jagged_vector<T>,

there is a technical challenge due to the fact that the parallelization goes one level in depth;

in this case, the elements of avecmem::jagged_vector<T> are of typevecmem::vector<T>.

Since this is actually an std::vector<T> and C++ STL is not implemented for CUDA,

the code will not compile with the default approach in Listing 4.8.

To work around this limitation while ensuring that the same C++ implementation

works on both host and device, the recommended solution is to replace the type

vecmem::vector<T> with auto; in this way, the function signature changes to the one in
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Listing 4.9 (see parameter zi).

1 class jagged_algorithm :

2 public vecpar::algorithm::parallelizable_map <

3 Three,

4 /* result type of map*/

5 vecmem::vector<double>,

6 /* input collections: */

7 vecmem::vector<double>, // x

8 vecmem::vector<int>, // y

9 vecmem::jagged_vector <float>, // z

10 /* context parameters */

11 float > {

12 public:

13 TARGET double &mapping_function(double &result,

14 const double &xi,

15 const int &yi,

16 const vecmem::vector<float> &zi,

17 float &a) const {

18 result = a * xi + yi * zi[0];

19 return result;

20 }

21 };

Listing 4.8: Parallelizable_map implementation using a jagged_vector collection as one of

the input lists; this will compile only for the CPU backend

1 TARGET double &mapping_function(double &result, const double &xi,

2 const int &yi, auto zi, float &a) const;

Listing 4.9: Function signature that ensures compilation for all backends

4.3.3. Execution Backends

As mentioned earlier, to make sure an algorithm is executed in parallel on a CPU or a

GPU, a parallelization strategy is required. The strategies are implemented by different

backends building on a common behaviour templated by the framework. Each backend

must provide implementations for how to execute a vecpar::algorithm. For example, there

are different strategies for executing a parallel_map, which works on independent and

immutable data, and a parallel_reduce, which can compute partial results in parallel but

which requires at least one global synchronization point at the end to aggregate the

results; moreover, the CPU and the GPU reductions might have different approaches due

to advantages and disadvantages of the hardware like the cache behaviour, the number

of parallel threads or the available amount of memory per worker.

Following the concepts and algorithms introduced in Section 4.1.2 and in Section 4.3.2

respectively, each backend has to provide a way of executing each vecpar algorithm,
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therefore there are 8 valid operators. For example, parallel_map provides a paralleliza-

tion strategy for parallelizable_map algorithm which wraps the user-defined behaviour

implemented in mapping_function. The parallel execution interface exposes the following

functions (with the associated signatures):
1. parallel_map and parallel_mmap15 – This is the implementation of the map operator.

The Arguments parameter can include more iterable collections and context informa-

tion; the fact that the algorithm is a parallelizable_map or parallelizable_mmap is taken

in consideration later on for a specific dispatch to the proper implementations.

template <class Algorithm , class MemoryResource ,

typename R = typename Algorithm::intermediate_result_t ,

typename T, typename... Arguments >

R &parallel_map(Algorithm &algorithm , MemoryResource &mr,

/* optional */ vecpar::config config,

T &data, Arguments &...args);

2. parallel_filter – This is the implementation of the filter operator.

template <class Algorithm , class MemoryResource , typename T>

T &parallel_filter(Algorithm &algorithm , MemoryResource &mr, T &data);

3. parallel_reduce – This is the implementation of the direct left-reduce operator.

template <class Algorithm , class MemoryResource , class R>

typename R::value_type &parallel_reduce(Algorithm &algorithm ,

MemoryResource &mr, R &data);

4. parallel_map_filter and parallel_mmap_filter – These are compound operations ob-

tained by composing map and filter.

template <class Algorithm , class MemoryResource ,

class R = typename Algorithm::result_t,

typename T, typename... Arguments >

R &parallel_map_filter(Algorithm &algorithm , MemoryResource &mr,

/* optional */ vecpar::config config,

T &data, Arguments &...args);

5. parallel_map_reduce and parallel_mmap_reduce – These are compound operations ob-

tained by composing map and reduce.

template <class Algorithm , class MemoryResource ,

class R = typename Algorithm::intermediate_result_t ,

class Result = typename Algorithm::result_t,

typename T, typename... Arguments >

Result &parallel_map_reduce(Algorithm &algorithm , MemoryResource &mr,

/* optional */vecpar::config config,

T &data, Arguments &...args);

6. parallel_algorithm – A series of overloaded generic functions which dispatch to the

correct implementation based on C++ concepts (at compile-time). There are eight

15Parallel_mmap is similar to C++20 STL function std::for_each, which works on iterators.
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valid signatures corresponding to the eight vecpar operators described above. From

the perspective of a scientific application which uses vecpar, this could be the only
function needed; nevertheless, the above ones have to be provided by the backends.

template <class Algorithm , class MemoryResource ,

class T, typename... Arguments >

requires <concept>

R &parallel_algorithm(Algorithm algorithm , MemoryResource &mr,

/*optional*/ vecpar::config config,

T &data, Arguments &...args);

All these functions have similar parameters:

• a reference to the vecpar::algorithm

• a reference to the memory resource where the input data can be found (and

where the result is going to be stored). At the moment, vecpar only supports

vecmem::host_memory_resource and vecmem::cuda::managed_memory_resource; for the

second one, a CUDA library must be accessible at compile and runtime.

• a configuration parameter which the user can specify tailored on the problem size.

The vecpar::config16 parameter is a data structure containing numerical fields asso-

ciated with the number of threads in a block (m_blockSize), the number of blocks

in a grid (m_gridSize) and the size of the external shared memory allocated stati-

cally before a kernel execution on a GPU (m_memorySize). When the code targets a

CPU, the number of OpenMP threads is computed by multiplying m_blockSize and

m_gridSize. As a general recommendation, the user is advised not to use this option

unless one has advanced information regarding the hardware configuration, the

size of the problem in bytes and the data distribution patterns (which are particular

to each vecpar backend).

• a number of references to the actual input data for the given algorithm. The ref-

erence count is variable but uniquely determined by the algorithm; for example,

a parallelizable_map algorithm could receive up to five iterable collections and a

variable number of contextual parameters while a parallelizable_filter algorithm

can only receive one parameter, which is the iterable collection that needs to be

filtered.

At the moment, vecpar fully supports two backends: OpenMP for CPU execution and

CUDA for NVIDIA GPU. The OpenMP Target backend is experimental and provides

limited functionality. There is also support for deciding at compile-time which backend

to use based on specific flags set by the user. Next, we detail how these parallelization

and offloading strategies are implemented in each of the backends and how the user can

impact their execution.

16These are similar to CUDA’s execution configuration parameters denoted by the <<< ... >>> notation.
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4.3.3.1. OpenMP

For the functions which implement the map operator17, if the user passes a valid configuration18,

the vecpar framework will try to start as many threads as the user requested. Nevertheless,

the OpenMP runtime might limit this number to the value set by either an environment

variable or to a compiler hard-coded limit (e.g. no more than 10 000 active threads).

As discussed earlier in Section 3.1.2.1, starting more threads than the number of cores

will likely bring no speedup (and can even induce slow-downs due to scheduling and

context switching mechanisms). For the rest of the operators, there is no option to pass a

configuration since filtering and reducing are more efficient when using a small number

of parallel threads due to the linear dependency between the thread number and the

count of critical regions or synchronization points, therefore this decision is left to the

vecpar library.

The implementations for all the parallel strategies rely on the OpenMP pragmas de-

scribed in Section 2.3.1. While map works on independent data which can be easily

translated into a parallel loop, filter and reduce operations compute partial results in par-

allel, which are later aggregated inside critical regions. A short implementation of a core

function used by the reduce operator is shown in Listing 4.10. Composed operators like

map-filter and map-reduce are implemented as a chain of simple operators.

1 template <typename R, typename Function>

2 void offload_reduce(int size, R *result, Function f, vecmem::vector<R> &

map_result) {

3 #pragma omp parallel

4 {

5 R *tmp_result = new R();

6 #pragma omp for nowait

7 for (int i = 0; i < size; i++)

8 f(tmp_result , map_result[i]);

9 #pragma omp critical

10 f(result, *tmp_result);

11 }

12 }

Listing 4.10: Implementation used by vecpar::parallel_reduce in OpenMP backend; f is the

reducing_function provided by the user

Since the input data should be distributed to OpenMP threads, it is already directly

accessible, no further transfers are required. The memory resource passed as argument

is used to allocate the results, if needed19.

To access the parallel functions from the OpenMP backend, one must use the

vecpar::omp prefix, as shown in Listing 4.11.

17parallel_map, parallel_mmap, parallel_map_reduce, parallel_mmap_reduce, parallel_map_filter and paral-
lel_mmap_filter

18Not empty and non zero-ed
19In the case of mutable algorithms, this step is bypassed since the memory is already allocated.
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1 vector_filtering algorithm;

2 vecmem::host_memory_resource mr;

3 vecmem::vector<int> vec(10, &mr);

4 // initialize vec ...

5
6 vecmem::vector<int> result =

7 vecpar::omp::parallel_algorithm(algorithm , mr, vec);

Listing 4.11: Example of using OpenMP backend assuming the vector_ f iltering algorithm

defined in Listing 4.4

4.3.3.2. CUDA

Similar to the OpenMP backend, the CUDA backend offers the user the option to provide a

configuration for the parallelization only for the operators which include a map operation.

This configuration includes the number of threads in a block, the number of blocks in a

grid and the size of the shared memory in bytes. If provided, vecpar will pass them to the

CUDA kernel directly, therefore invalid or inefficient values translates into CUDA kernel

launch errors or slow-running kernels, respectively.

While the CPU-targeting backend had a straight-forward implementation based on the

OpenMP standard, the CUDA version is more complex, because besides providing the

parallelization strategy, the operators must also ensure that the input data is accessible

from the device at runtime and that the results are accessible to the host at the end.

In the current prototype, we assume the input data is either the CPU memory or the

CUDA managed memory, while the results are expected to reside in the same location;

this is achieved by implementing the parallelization strategies as common features but

wrapped in two distinct modules20, each handling different memory resources, while the

dispatch decision is based on the reference type of the memory resource, at compile-time,

as pictured in Figure 4.13.

The core functionality provides implementations for all vecpar operations, regardless

of the memory location of the operands, by expecting vecmem::data::views instead of

iterables input and output collections. These can come from extracting the data from

either (a) vectors stored in managed memory or (b) buffers obtained after copying the

data to the device.

There are 8 vecpar operations21, out of which 6 of them contain maps which could

have up to 5 versions each (based on the number of the input iterables), and each iterable

can be either vector or jagged_vector (which do not have a common C++ ancestor), and

each function could receive a configuration or not, which leads us to 240 valid function

signatures. Moreover, all have parameters packs already to allow customizable context

arguments. To this number, we add the 4 valid reducers and filters (depending on the

20Implemented as two C++ files: managed_memory.hpp and host_memory.hpp
21map, mmap, filter, reduce, map-filter, mmap-filter, map-reduce, mmap-reduce
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CUDA Backend

Entry point
(vecpar::cuda_parallelization)

vecpar::
host_memory

Common features
(vecpar::internal)

Data source
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Figure 4.13.: CUDA backend implementation structure

iterable type). To avoid such a coding duplication effort, several wrapper functions

were designed. The type of the iterable can be templated and automatically extracted at

compile-time using member typedef types and concept features of the C++20 standard.

A slightly more complicated scenario was to keep track of the memory copied to the

device, by storing the references to the associated buffers in a local variable to avoid

vecmem to release the memory before the kernel completion. The variable-arguments

parsing functions are shown in Listing 4.12. The function at line 16 iterates through the

incoming arguments (accepted by the matcher concepts defined above it) and returns

either (a) a non-owning data container from a vecmem::jagged_vector (line 20), (b) a

vecmem::vector_buffer obtained by copying the initial vecmem_vector to the device

(line 25), or (c) the unchanged input argument if this is not an iterable (line 27).

1 // concept matcher for vecmem::vector<T> type

2 template <typename T>

3 concept Vector_type = std::same_as<T, vecmem::vector<typename T::value_type >>;

4 // concept matcher for vecmem::jagged_vector <T> type

5 template <typename T>

6 concept Jagged_vector_type = std::same_as<T,

7 vecmem::jagged_vector <typename T::value_type::value_type >>;

8
9 template <typename... T>

10 std::tuple<std::conditional_t <

11 (std::is_object <T>::value && Jagged_vector_type <T>),

12 vecmem::data::jagged_vector_data <value_type_t <T>>,

13 std::conditional_t <

14 (std::is_object <T>::value && Vector_type <T>),

15 vecmem::data::vector_buffer <value_type_t <T>>, T>>...>
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16 get_buffer_of_copied_container_or_obj(T &...obj) {

17 return {([](T &i) {

18 if constexpr (Jagged_vector_type <T>) {

19 auto data = vecmem::get_data(i);

20 return data;

21 } else if constexpr (Vector_type <T>) {

22 auto buffer = internal::copy.to(vecmem::get_data(i), internal::d_mem,

23 vecmem::copy::type::host_to_device);

24 return buffer;

25 } else {

26 return i;

27 }

28 }(obj))...};

29 }

Listing 4.12: CUDA wrapper to handle a variable number of arguments of potentially

different types

Having these in place, the common CUDA namespace implements 14 overloaded

functions. Each one builds a lambda function that constructs a device vector from every

vecmem::data::view and then it parallelizes across the iterables using the user-defined

mapping_function, filtering_function or reducing_function. The lambda is passed on the

device as a template parameter of a global kernel function similar to the one in Listing 4.13.

After the execution, the results are then returned to the calling process on the host.

1 template <typename Function , typename... Arguments >

2 __global__ void kernel(const size_t size, const Function f, Arguments... args){

3 size_t idx = blockIdx.x * blockDim.x + threadIdx.x;

4 if (idx >= size)

5 return;

6 f(idx, args...);

7 }

Listing 4.13: CUDA kernel example; f is the lambda function which wraps the user-

defined behaviour

Similar to the OpenMP backend, the reduce and filter cases are more complex since

there is dependency between threads. A code snippet from the CUDA implementation

for reduce is shown in Listing 4.14. By default, the reduce configuration uses 32, 64 or

256 threads per block depending on the problem size, while the extern shared memory

size (in line 6) depends on the size of R and the problem size. The for-loop on line 11 uses

binary shifts operators which require the size of a block to be a multiple of 2 in order to

perform the reduction correctly22. Synchronization mechanisms among the threads in a

block and at the device’s level are required to ensure the correctness of the result. The

filter operation is implemented in a similar way with the difference that it uses an array

for storing the temporary results for every block before the global synchronization point.

22Since this a mandatory requirement which comes with the implementation, the user does not have the
option to configure the parameters in this case.
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1 vecpar::cuda::rkernel<<<m_gridSize , m_blockSize , m_memorySize >>>(

2 lock, size,

3 [=] __device__(int *lock) {

4 vecmem::device_vector <R> partial_result(partial_result_view);

5
6 extern __shared__ char smem[];

7 R* temp = reinterpret_cast <R*>(smem);

8 size_t tid = threadIdx.x;

9 temp[tid] = partial_result[tid + blockIdx.x * blockDim.x];

10 size_t gidx = threadIdx.x + blockIdx.x * blockDim.x;

11 for (size_t d = blockDim.x >> 1; d >= 1; d >>= 1) {

12 __syncthreads();

13 /// for odd size and (larger) even number of threads, make sure

14 /// we do not read from outside of the array

15 bool within_array = ((tid + d) < blockDim.x) && (gidx + d < size);

16 if (tid < d && within_array) {

17 algorithm.reducing_function(&temp[tid], temp[tid + d]);

18 }

19 }

20 if (tid == 0) { /// only one thread in a block synchronizes the results

21 do {} while (atomicCAS(lock, 0, 1)); // acquire the lock

22 algorithm.reducing_function(result, temp[0]);

23 __threadfence(); // wait for write completion

24 atomicCAS(lock, 1, 0); // release the lock

25 }

26 });

Listing 4.14: CUDA internal reducer

The composed operations parallel_(m)map_reduce and parallel_(m)map_filter implement a

memory optimization if the initial data is in host memory, in the sense that the intermediate

result (obtain by applying the first operation) is already accessibile from the device and

will not be re-transferred for the second operation.

From the point of view of a scientific application which calls vecpar to parallelize an

algorithm, a sample invocation is shown in Listing 4.15. Here, the memory resource

can also be replaced with CUDA managed memory, if the user wants to, but it is not

mandatory since vecpar is able to transfer the memory behind the scenes.

1 vector_filtering algorithm;

2 vecmem::host_memory_resource mr;

3 vecmem::vector<int> vec(10, &mr);

4 // initialize vec ...

5
6 vecmem::vector<int> result =

7 vecpar::cuda::parallel_algorithm(algorithm , mr, vec);

Listing 4.15: Example of using CUDA backend assuming the vector_ f iltering algorithm

defined in Listing 4.4
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Listing 4.15 is almost identical to Listing 4.11 with the only difference being the names-

pace invoked in line 7. If that is left out, a single-source implementation (which can run

with either OpenMP threads or CUDA threads) is obtained; this is further detailed in

Section 4.3.3.4.

4.3.3.3. OpenMP Target

In order to increase vercpar’s portability, the development of an OpenMP target backend

has started, while contributions from people outside our research group was encour-

aged23.

In comparison to the existing backends, the OpenMP target one is experimental since

(a) a series of simplifications are assumed due to limitations in 3rd party libraries or

compilers, (b) not the entire functionality is supported at the moment, and (c) some

specific performance optimizations are prototyped for compilers that implement newer

features of OpenMP 5.0 and 5.2. All these together with some technical implementation

details are summarised next.

The OpenMP Target backend provides implementations for all the eight operators, but

GPU performance optimizations are available only for a few limited scenarios24 for the

composed operators parallel_(m)map_filter and parallel_(m)map_reduce. This means that

the framework will transfer the data to and from the device at the beginning and at the

end of an algorithm, resulting in redundant copies which induce performance penalities.

A maximum of three input vecmem::vectors are supported as input/output containers

for the map-related algorithms and operators. We are currently investigating ways of

extending this without the need to duplicate the code. Also, no support for jagged

vectors is implemented.

Due to the OpenMP target implementation in some of the C++ compilers25 which requires

that the number of threads in a block is a multiple of a warp26 (or a wavefront27), vecpar

will not accept a configuration from the user for the map operations. The OpenMP

runtime will decide the grid and block sizes for mapping, while similar to the previous

backends, the filtering and reducing operations use a limited number of blocks (and a

block size of 32 threads) for performance reasons.

Also, during implementation, we noticed many inconsistencies either between com-

pilers or targeted platforms. For example, the clang compiler can automatically map

non-trivial C++ objects to the GPU memory when used to build an executable for an

NVIDIA GPU and it only shows a warning about it; whereas the aomp compiler (which

is clang-based) will throw a compilation error requesting explicit mapping. A com-

23The student Henning Lindemann has contributed to the development of OpenMP Target backend and
its testing on AMD resources as part of his Bachelor project, under the author’s supervision. Detailed
contribution graph is available in Appendix A.

24This includes a parallel_map_reduce operation with one input collection
25For example: LLVM/clang and ROCm/AOMP
26in NVIDIA terminology
27in AMD terminology
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mon ground was found by using the OpenMP basic functions like omp_target_alloc,

omp_target_memcpy and omp_target_free. Nevertheless, by using this GPU-targeted

features, the vecpar backend code can no longer be shared between CPU and GPU

through the native fallback option of the omp target pragma. Despite the fact that the

OpenMP 5.0 standard specifies mechanisms for customizing behavior based on architec-

ture using variants and metadirectives (described in Section 2.3.1), most of the compilers

do not support them yet. Therefore, we needed to rely on compilation flags provided

by the user to choose between distinct implementations for the same operation; these

are COMPILE_FOR_DEVICE and COMPILE_FOR_HOST. The first one is mandatory to be set in

order to target a device while leaving it out or setting the second one will instruct vecpar

to parallelize using OpenMP (CPU) threads (by delegating the execution to the OpenMP

backend) even if a GPU is available. Nevertheless, the same C++ class of a scientific

application, which invokes vecpar::ompt:parallel_map for example, can be part of two

executables, each compiled with a different flag, as will be shown later in this chapter.

Building on clang’s support for OpenMP 5.2 and more precisely on the shared memory

allocators, vecpar has an optimized version of a parallel_map execution on GPUs when

one iterable collection is provided; a code snippet is extracted in Listing 4.16. This

kind of optimization proves its benefits when the input vector contains large objects,

potentially misaligned in respect to the cache lines; using the shared memory will alleviate

the uncoalesced accesses for read and write and therefore improve the performance.

Nevertheless, the block size for this parallelization is defaulted to 32 threads.

1 Algorithm *d_alg = (Algorithm *)omp_target_alloc(sizeof(Algorithm), 0);

2 const int grid_size = (size + BLOCK_SIZE - 1) / BLOCK_SIZE;

3 // execution on device

4 #pragma omp target teams num_teams(grid_size) \

5 is_device_ptr(d_alg) \

6 map(to : d_data[0 : size]) \

7 map(from : map_result[0 : size])

8 {

9 value_type_t <T> inbuffer[BLOCK_SIZE];

10 #pragma omp allocate(inbuffer) allocator(omp_pteam_mem_alloc)

11 // thread 0 from each block loads data into shared memory

12 for (int i = 0; i < BLOCK_SIZE; i++) {

13 if (omp_get_team_num() * BLOCK_SIZE + i < size) {

14 inbuffer[i] = d_data[omp_get_team_num() * BLOCK_SIZE + i];

15 }

16 }

17 // allocate space in shared memory for the results

18 value_type_t <R> outbuffer[BLOCK_SIZE];

19 #pragma omp allocate(outbuffer) allocator(omp_pteam_mem_alloc)

20 // run in parallel

21 #pragma omp parallel num_threads(BLOCK_SIZE)

22 {

23 // all threads use the shared memory for computing the output result

24 if (omp_get_team_num() * BLOCK_SIZE + omp_get_thread_num() < size) {
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25 d_alg->mapping_function(outbuffer[omp_get_thread_num(),

26 inbuffer[omp_get_thread_num()], rest...);

27 }

28 }

29 // thread 0 in each block copies the results from shared memory to global

memory

30 for (int i = 0; i < BLOCK_SIZE; i++) {

31 if (omp_get_team_num() * BLOCK_SIZE + i < size) {

32 map_result[omp_get_team_num() * BLOCK_SIZE + i] = outbuffer[i];

33 }

34 }

35 }

36 // free the memory

37 omp_target_free(d_alg, 0);

Listing 4.16: Code snippet from the parallel_map implementation used when OpenMP 5.2

is supported

In short, line 1 allocates the algorithm pointer to the GPU memory; note that in this very

particular case, there is no need for an explicit memory copy because the vecpar::algorithm
is stateless. Lines 4-7 instruct the OpenMP runtime to create grid_size teams28, to copy

the input data d_data to the device, to allocate the space for the result map_result (and

request a transfer to the host at the end of the target region) and to use the d_alg pointer

which is already a device pointer so therefore no need for further transfers. Lines 9− 10

and 18 − 19 ensure that temporary buffers are allocated in the team’s shared memory.

Line 21 starts a parallel region of BLOCK_SIZE threads in each team, while the results

are transfered from the shared buffers to the global memory in lines 30 − 34 (outside of

the parallel region). While the shared memory is automatically deallocated when the

variables go out of scope, the memory allocated explicitely must be released manually,

as shown in the last line. Similar implementations are provided for the other parallel

operations but are not listed here.

As it was shown above, the OpenMP target implementation can become complex and

highly adapted to a specific platform in order to maximize the performance. Regardless

of the backend complexity, calling vecpar from another project is still simple, as shown

in Listing 4.17. Note the similarity between Listing 4.11 , Listing 4.15 and Listing 4.17.

1 vector_filtering algorithm;

2 vecmem::host_memory_resource mr;

3 vecmem::vector<int> vec(10, &mr);

4 // initialize vec ...

5
6 vecmem::vector<int> result =

7 vecpar::ompt::parallel_algorithm(algorithm , mr, vec);

Listing 4.17: Example of using OpenMP target backend assuming the vector_ f iltering
algorithm defined in Listing 4.4

28At this point, each team has only one thread
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4.3.3.4. Backend Selection - Generic Dispatch

The option of explicitly invoking one of the backends is still important for the cases when

the user knows that for a given problem, a specific implementation is either more efficient

or the only one valid; an example could be reading files from the disk in a parallel loop;

this only makes sense using OpenMP threads.

The vecpar API exposed for the single-source compilation for multiple backends (avail-

able in vecpar/all/main.hpp), provides two levels of delegation: first, overloaded ver-

sions of vecpar::parallel_algorithm dispatch the computation to the appropriate vecpar op-

erators; second, the operator dispatches further to a given implementation (OpenMP CPU

or NVIDIA CUDA) which is chosen at compile-time based on the associated compilation

flags. A code snippet for each of these steps are shown in Listing 4.18 and Listing 4.1929

respectively; similar implementations are provided for all the other (operator-backend)

combinations.

1 template <class Algorithm , class MemoryResource ,

2 class R = typename Algorithm::intermediate_result_t ,

3 class T, typename... Arguments >

4 requires algorithm::is_map<Algorithm , R, T, Arguments...> ||

5 algorithm::is_mmap<Algorithm , R, Arguments...>

6 R &parallel_algorithm(Algorithm algorithm , MemoryResource &mr,

7 vecpar::config config,

8 T &data, Arguments &...args) {

9 return vecpar::parallel_map(algorithm , mr, config, data, args...);

Listing 4.18: Sample dispatch function based on algorithm type

1 template <class Algorithm , class MemoryResource ,

2 class R = typename Algorithm::intermediate_result_t ,

3 class T, typename... Arguments >

4 R &parallel_map(Algorithm &algorithm , MemoryResource &mr,

5 vecpar::config config,

6 T &data, Arguments &...args) {

7 #if defined(__CUDA__) && defined(__clang__)

8 return vecpar::cuda::parallel_map <Algorithm , R, T, Arguments...>(algorithm ,

mr, config, data, args...);

9 #elif defined(_OPENMP)

10 return vecpar::omp::parallel_map <Algorithm , R, T, Arguments...>(algorithm ,

mr, config, data, args...);

11 #endif

Listing 4.19: Sample dispatch function based on compilation flags

29As mentioned in previous chapters, the LLVM/clang compiler can build NVPTX assembly from C++
natively; to be able to use this branch, a compiler with CUDA support has to be available and this is checked
in line 7. Since most of the C++ compilers support OpenMP standard, there is no restriction on the compiler
type for this backend, as shown in line 9.
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The OpenMP target is not yet added to this dispatch system since it is still experimental.

Nevertheless, once all the parallel operators are fully supported, to plug in a new backend

is a trivial process and involves adding one if-branch statement which would delegate

the call to the appropriate header file.

4.3.4. Lambda Functionality

By fitting a scientific problem into a vecpar::algorithm, the user passes the responsibility

for parallelization and/or offloading to vecpar framework while no knowledge of multi-

threading operations or GPU architecture is required. Nevertheless, if the user wants

control over the way the memory is handled to potentially implement some optimizations

that are customized for the given problem, vecpar offers the possibility to pass a lambda

function which will be executed "as is" in a multi-threaded environment; this means that

the user is responsible for memory transfers and sychronizations, if needed, therefore

different lambdas need to be provided for CPU and GPU executors therefore losing the

single-source benefit. An example of the vector addition problem mentioned earlier is

shown in Listings 4.20-4.22. Since the CPU allocation and initialization for the arrays ∗a,

∗b and ∗c are identical in all cases, they are left out from the listings.

1 vector_addition <T> algorithm;

2 vecpar::parallel_algorithm(algorithm , memoryResource , *c, *a, *b);

Listing 4.20: Single-source user code when the algorithm is defined as a vecpar::algorithm
in Listing 4.3; memoryResource is the CPU/C++ memory resource

1 using namespace vecmem::copy::type; // host_to_device / device_to_host

2 vecmem::cuda::device_memory_resource device_mr;

3 vecmem::cuda::copy copy;

4 // transfer data to device

5 d_a = copy.to(vecmem::get_data(*a), device_mr , host_to_device);

6 d_b = copy.to(vecmem::get_data(*b), device_mr , host_to_device);

7 d_c = copy.to(vecmem::get_data(*c), device_mr , host_to_device);

8 // offload lambda to CUDA kernel

9 vecpar::cuda::parallel_map(

10 array_size ,

11 [=] __device__ (int idx,

12 vecmem::data::vector_view <T> &a_view,

13 vecmem::data::vector_view <T> &b_view,

14 vecmem::data::vector_view <T> &c_view) {

15 vecmem::device_vector <T> da(a_view);

16 vecmem::device_vector <T> db(b_view);

17 vecmem::device_vector <T> dc(c_view);

18 dc[idx] = da[idx] + db[idx] ;

19 },

20 vecmem::get_data(d_a),

21 vecmem::get_data(d_b),

22 vecmem::get_data(d_c));
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23 // copy results to host

24 copy(d_a, *a, device_to_host);

25 copy(d_b, *b, device_to_host);

26 copy(d_c, *c, device_to_host);

Listing 4.21: CUDA user code for vector addition

1 vecpar::omp::parallel_map(array_size , [&] (int idx) {

2 c->at(idx) = a->at(idx) + b->at(idx);});

Listing 4.22: OpenMP user code for vector addition

4.3.5. Algorithm Chain

As mentioned earlier, a common use case in particle reconstruction software is to retrieve

a data set (either simulated or read from the detector electronics) and pass it through

consecutive steps of processing, transforming and filtering to obtain some meaningful

physics results. Mathematically, this means composing together a series of functions and

applying the resulting operator to the data set.

Vecpar implements this abstraction and provides a simplified way of chaining together

multiple algorithms using a DSL-like API, through a method chaining approach based on

the builder design pattern, where each function call returns the object class that it belongs

to [Fowler, 2011]. The implementation uses the FunctionComposition30 open-source project

which builds on top of the C++19 functional and utility namespaces to compose an

arbitraty number of std::functions.

The vecpar::chain class (partially listed in Listing 4.23) is templated on the memory

resource, the input types for the first function in the chain, and the result type of the last

function in the chain. The class exposes three functions which allow the user to provide

(a) a configuration for the parallelization, (b) the list of algorithms to be chained, and (c)

the input data for the execution.

1 template <class MemoryResource , class R, class T, class... Context>

2 class chain {

3 public:

4 // constructor

5 chain(MemoryResource&);

6 // optional method to provide a specific parallel configuration

7 chain& with_config(vecpar::config);

8 // method to provide algorithms (in a specific order)

9 template <typename First, typename... Rest>

10 chain& with_algorithms(First first_alg , Rest... rest_alg);

11 // execute the chain (run the composition on the data)

12 R execute(T& coll, Context &...rest);

13 };

Listing 4.23: Vecpar::chain class definition

30https://github.com/nestoroprysk/FunctionComposition

https://github.com/nestoroprysk/FunctionComposition
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Passing a vecpar::config is optional, otherwise vecpar will use the defaults for each backend.

At least one vecpar::algorithm is mandatory for building the chain; vecpar will wrap the

algorithm provided by the user in a vecpar::parallel_algorithm function call automatically

which also handles memory transfers if needed; if the memory resource is the host one

and the code is compiled for the CUDA backend, each algorithm will copy the input data

to the device and copy the results to host. This means that there are some redundant

copies of the intermediate results between the algorithm runs31. Calling the execute

function on a vecpar::chain object triggers the invocation of the composed function on

the data given as input arguments, and returns the result of the chain.

There are two restrictions. Firstly, the functions should be composable, namely the

codomain of one function must match the domain of the other. Secondly, only the first

function can support a variable number of context parameters while the other functions

must accept as input only the output of the previous invocation. For example, a two-step

chain made of a parallelizable_map_filter and parallelizable_map_reduce, each working on

one vecmem::vector<double> argument, is a valid composition; on the other hand, just

switching the order of the algorithms, an invalid chain is obtained (e.g. a map-filter

cannot work on the result of a reduce operation which is a single object instead of an

iterable) and therefore, a compilation error will be shown.

A sample code that uses the chain functionality which adds together two arrays, element

by element, and then reduces the resulting array, is shown in Listing 4.24.

1 vecmem::host_memory_resource memoryResource;

2 // allocate the vectors

3 vecmem::vector<int> a(N, &memoryResource); // N = size of the vector

4 vecmem::vector<int> b(N, &memoryResource);

5 vecmem::vector<int> c(N, &memoryResource);

6 // ... initialize the vectors

7 vector_addition <int> addition_alg; // mmap c[i]=a[i]+b[i]

8 vector_reducing <int> reducing_alg; // reduce r=c[0]+..+c[N]

9 // define the chain

10 vecpar::chain<vecmem::host_memory_resource ,

11 int, // result of the chain

12 vecmem::vector<int>, // c

13 vecmem::vector<int>, // a

14 vecmem::vector<int> // b

15 > chain(memoryResource);

16 // compose the algorithms and get the results

17 int result = chain

18 .with_config({10,32}) // optional

19 .with_algorithms(addition_alg , reducing_alg)

20 .execute(c,a,b);

Listing 4.24: Chain use case; vector_addition and vector_reducing algorithms are defined in

Listing 4.3 and Listing 4.5

31A prototype that addresses this shortcoming is described in Section 4.3.5.1.
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4.3.5.1. CUDA chain

As a performance optimization, vecpar provides a specific chain implementation for

the case when the following preconditions are simultaneously satisfied: first, the input

iterable for the chain is one vecmem::vector (and not vecmem::jagged_vectornor several

vectors) allocated in the CPU host memory resource, and second, the code is compiled

for NVIDIA GPU offloading using the vecpar CUDA backend.

In this case, a custom implementation of the vecpar operators is provided; it uses raw

pointers32 allocated directly in the device memory as the result of each operation, which is

passed as input further to the next function call. Consequently, no CPU-GPU transfers for

intermediate results are done and only the final result is then copied to the host. Moreover,

all the required data transfers are hidden from the users and are done automatically by

the vecpar framework.

4.4. Compilation for Multiple Targets

There are two ways to compile a C++ code base (which uses the vecpar framework) for

different architectures: using the (native) single-source functionality and using the ompt

backend; these will be described next. Regardless of the approach, the vecpar library

has to be installed locally. OpenMP and CUDA/ROCm runtimes must also be available.

Vecpar provides easy integration with cmake system as shown in Listing 4.25. For the

ARM platform, the cmake is instructed to use a different default search path for the

system libraries.

1 find_package(vecpar REQUIRED 0.0.3)

Listing 4.25: Find local installation using cmake

4.4.1. Native Single-source Functionality

This approach means to define an algorithm as a vecpar::algorithm and to call a parallel

executor by invoking vecpar::parallel_algorithm. Since at the moment only the LLVM/clang
compiler can build C++ code into NVPTX, it is the only compiler that can be used.

Assuming the C++ files are defined as specified above (i.e. an algorithm as in Listing 4.4

passed to a parallel_algorithm() function like in Listing 4.18) and they are added to

a cmake target named example, the Listing 4.26 and Listing 4.27 below show a sample

configuration for targeting a CPU and an NVIDIA V100 GPU, with the same implemen-

tation. In the case of the CPU target, the dependency to vecmem::cuda is only needed if

CUDA managed memory is the default memory resource used by the code. Line 3 (in

both listings) shows the dependency to either the OpenMP runtime or the CUDA runtime

respectively. Additionally, the GPU target requires the compilation options in lines 5-8,

which instruct clang to generate NVPTX optimized for the V100 (SM_70).

32The vecmem::device_vector is not used in this case.
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1 target_link_libraries (example

2 vecmem::core vecmem::cuda

3 vecpar::all OpenMP::OpenMP_CXX)

Listing 4.26: CPU target

1 target_link_libraries (example

2 vecmem::core vecmem::cuda

3 vecpar::all CUDA::cudart)

4
5 target_compile_options (example

6 PUBLIC

7 $<$<COMPILE_LANGUAGE:CXX>:-x cuda

8 --offload-arch=sm_70>)

Listing 4.27: GPU target

4.4.2. Ompt Functionality

This approach requires the definition of an algorithm as a vecpar::algorithm and a call

to vecpar::ompt::parallel_algorithm. Clang, gcc, icc, aomp, and hipcc compilers support

OpenMP target features at different levels, so either of them can be used for this. The

compiler must be built with offloading support, which usually requires several extra steps

in the installation and configuration process. Nevertheless, some of them have automated

this process through package managers like Spack33.

Sample configurations when using the clang compiler to build executables for CPU

x86_64 only, NVIDIA V100 and AMD Radeon 6600 are shown in Listing 4.28, Listing 4.29,

and Listing 4.30 respectively34.

1 target_compile_options(example PUBLIC $<$<COMPILE_LANGUAGE:CXX>:-fopenmp >)

2 target_compile_definitions(example PRIVATE COMPILE_FOR_HOST)

3
4 target_link_libraries(example vecpar_ompt OpenMP::OpenMP_CXX)

5 target_link_options(example PRIVATE -fopenmp -fopenmp-targets=x86_64)

Listing 4.28: CPU x86_64 target

1 target_compile_options(example PUBLIC

2 $<$<COMPILE_LANGUAGE:CXX>:-fopenmp -fopenmp-targets=nvptx64 >)

3 target_compile_definitions(example PRIVATE COMPILE_FOR_DEVICE)

4
5 target_link_libraries(example vecpar_ompt OpenMP::OpenMP_CXX)

6 target_link_options(example PRIVATE -fopenmp -fopenmp-targets=nvptx64)

Listing 4.29: NVIDIA V100 target

1 target_compile_options(example PUBLIC

2 $<$<COMPILE_LANGUAGE:CXX>:-fopenmp-targets=amdgcn-amd-amdhsa

3 -Xopenmp-target=amdgcn-amd-amdhsa -march=gfx1030 >)

33The command to install the lastest GCC compiler with OpenMP target offload for NVIDIA hardware:
spack install gcc +nvptx. Nevertheless, there isn’t such an easy installation path for AMD devices.

34LLVM/clang 16 already prototypes an easier integration with cmake by automatically detecting the
platform when setting �offload-arch=native, which would replace the need for using specific values for
each platform.



4.5. Performance Optimizations 105

4 target_compile_definitions(example PRIVATE COMPILE_FOR_DEVICE)

5
6 target_link_libraries(example vecpar_ompt OpenMP::OpenMP_CXX)

7 target_link_options(example PRIVATE -march=gfx1030

8 -fopenmp-targets=amdgcn-amd-amdhsa -Xopenmp-target=amdgcn-amd-amdhsa)

Listing 4.30: AMD Radeon 6600 target

In Listing 4.28, setting the flag COMPILE_FOR_CPU is redundant (but added here for

more clarity); on the other hand, setting COMPILE_FOR_GPU flags in the other two listings

is mandatory.

An important observation to make here is that different compilers use different names

for similar flags. For example, to force OpenMP target to build only the CPU variants

(without the GPU ones), the -fopenmp-targets=x86_64 configuration has to be made

for the clang compiler, while the gcc compiler requires -foffload=disable. This will

be made easy in future clang releases, since version 16 already exposes an experimental

FindOpenMPTarget.cmake file that is able to find and set the appropriate flags automati-

cally by inferring the details about the platform.

4.4.3. Conclusion

The first approach has the advantage that it targets NVIDIA hardware using native code

and therefore maximizes the performance, while the main disadvantage is that it has

limited portability (e.g. x86, ARM and NVIDIA GPU). Whereas the second approach

increases portability to include AMD GPU but might not ensure top performance since

it is not using vendors’ native APIs. Nevertheless, LLVM has ongoing development to

support AMD and Intel GPUs through OpenMP target backend; when this functionality

will be available, the scientific code that uses vecpar will just need to be recompiled

with the latest compiler and the appropriate compilation flags for each platform, and the

executables will be portable without any further code changes in the C++ files.

4.5. Performance Optimizations

The focus of the current work was to provide the optimizations that are connected to

the library itself, while platform-specific optimizations are left for future work. While all

optimizations are focused on reducing the execution time on GPU, some of them can be

beneficial for CPU execution as well, but the impact is limited.

Firstly, mmap functionality reuses the memory allocated for one of the input collections

as for the result; in this way, avoiding to allocate, deallocate and copy (bi-directionally)

a chunk of memory could reduce the execution time of an algorithm substantially if the

output list size in bytes is large enough. As mentioned in previous chapters, memory

transfers are expensive due to much smaller bandwidths of the PCIe in comparison to

on-board transfers; therefore, by avoiding some redundant ones, is highly desirable.
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Secondly, the benefit of implementing an algorithm as a parallelizable_map_reduce in-

stead of a parallelizable_map followed by a parallelizable_reduce is to avoid copying the

intermediate results from the GPU to the CPU and then back to the GPU for the second

algorithm. Similar to the previous case, this can speedup the total execution time by

reducing the time needed for data transfers (since the data is already on device).

Thirdly, the chain functionality described above also brings a significant speedup when

a series of algorithms that work on a list stored on the host is offloaded to a GPU. The

potential of this optimization is detailed in Chapter 6.

Finally, using compile-time polymorphism wherever is possible means less decisions

at runtime, which can also increase the performance.

4.6. Automated Tests

The vecpar framework currently has a few hundred automated tests written using

GoogleTest35 infrastructure. There are test cases that cover (a) APIs coming from a single

backend (like the tests in the subfolders omp, cuda and ompt), (b) single-source cross-

compilation (e.g. single_source subfolder covers different scenarios of vecpar::algorithms

using generic backend with automatic dispatch for appropriate implementation) and (c)

less common but accepted scenarios (e.g. hybrid subfolder tests an implementation of

the omp backend using vecmem::cuda::managed_memory_resource). Different problem

sizes are evaluated using vectors between ten and one million elements, in single and

double precision, including testing edge cases like vectors of prime numbers size36.

Benchmarks that compare native CUDA and OpenMP implementation of trivial exam-

ples are also implemented in order to evaluate the overhead of the library in comparison

to native implementations. For the OMPT case, the GPU tests can run on either NVIDIA

or AMD hardware, the only change required is the appropriate compilation flags and the

availability of the vendor’s runtime libraries.

More about our experimental setup and evaluation results are detailed in Chapter 6.

4.7. Summary

The vecpar framework offers a functional approach on parallelism by using functions

as first class citizens; this allows easy composition and behaviour encapsulation. By

leveraging C++ features like templated concepts and const-correctness, vecpar ensures

compile-time polymorphism and thread-safety mechanisms, which are vital to concur-

rent execution, especially on GPUs. In addition, domain scientists can develop their

code in C++ using vecpar abstractions without any previous knowledge of hardware

architectures or other dedicated programming languages.

35https://github.com/google/googletest
36These are especially relevant for the complex CUDA reducers.

https://github.com/google/googletest
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Having the same single-source implementation to target multiple architecture is an approach
explored in many ways. While the standards and APIs mentioned in Chapter 2 aim to achieve
this through language extension and/or compiler support, there are also other possible ways. In
this chapter, related work to vecpar is summarized and compared against the present solution.
While the focus is on similar heterogeneous C++ APIs, other automatic parallelization and of-
floading solutions are briefly mentioned together with related heterogeneous software in particle
reconstruction domain.

5.1. Heterogeneous Frameworks

Since vecpar is a framework expressed as a header-only library, it shares some features

with other similar heterogeneous approaches like Kokkos, RAJA, Alpaka, Charm++ and

even OpenMP.

5.1.1. Kokkos

Kokkos is a “portability framework that provides abstractions for parallel execution in

the form of a header-only library, a set of mathematical kernels, profiling and debugging

tools”1, available as open-source software [Edwards et al., 2014, Trott et al., 2022]. Ini-

tially relased in 2014, Kokkos has evolved significantly in recent years through the effort

of a large community mostly based around research facilities in the United States. Version

3 was released in 2021 and it is the one covered in this section.

Similar to vecpar, Kokkos provides a series of execution and memory abstractions to

ensure performance portability. These are briefly described next.

Execution spaces provide a description of the location where the code will be executed,

more precisely which core, NUMA node, GPU, etc. Supported backends include Se-

rial, OpenMP, Cuda, HIP, OpenMPTarget, HPX, Threads and SYCL, with the remark

that not all the functionalities are available for all backends. An application must de-

cide which backend to choose at compile-time, by setting the variable KOKKOS_DEVICES.

Execution patterns define independent units of work. Examples include parallel_for,

parallel_reduce or parallel_scan, which can be called with functors or lambdas as

arguments; vecpar has a similar feature but using an extended set of functions, which

include groups like map-filter or map-reduce. These can bring an advantage when

1https://github.com/kokkos

https://github.com/kokkos
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run on a GPU since two intermediate (and redundant) memory transfers2 are avoided.

Nevertheless, Kokkos release 3.0 introduced advanced reductions and improved lock-

ing mechanisms; while this brings performance improvements, the code becomes more

verbose for programmers, as shown in Listing 5.1, which might decrease productivity.

1 double min; // the result

2 Kokkos::Min<double> min_reducer(min); // the pre-defined reducer

3 Kokkos::parallel_reduce( "MinReduce", N,

4 KOKKOS_LAMBDA (const int& x, double& lmin) {

5 double val = (1.0*x- 7.2) * (1.0*x- 7.2) + 3.5;

6 min_reducer.join(lmin, val);

7 }, min_reducer);

Listing 5.1: Compute the minimum value (min) from processed element of an array of size

N using Kokkos pre-defined reducers; Source: Kokkos Programming Guide

Execution policies configure how a pattern is executed and connects the kernel with work

items and execution spaces through scheduling mechanisms. Kokkos provides support

for multidimensional ranges and hierarchical parallelism, which are not yet supported

by vecpar.

Memory spaces is the abstraction for memory resources. Examples for NVIDIA hard-

ware include CudaSpace, CudaUVMSpace and CudaHostPinnedSpace, which encapsulate the

paged, unified and pinned resources respectively. Memory layouts provide the mapping

between multidimensional array indices and the storage locations. Examples include Lay-
outLeft and LayoutRight, which describe the column-major and row-major representations.

Memory traits add additional information about the memory; for example, if the access is

atomic or not. Views connect all the memory abstractions together; they are templated on

the (memory) space, layout and trait and behave as a multidimensional shared pointers.

Kokkos is shipped with an entire library for containers. In comparison, vecpar uses the

vecmem3 library, which has similar functionality but having the memory layout modeled

after the EDM in particle physics. Kokkos views are more generic than vecmem views

due to the fact that they can support n-dimensions, configured at compile-time.

To summarize, Kokkos provides more complex abstractions than vecpar, which allow

a detailed configuration of computing and memory resources. Also Kokkos supports

architecture-specific features like SIMD execution for CPU or CUDA execution graphs on

NVIDIA GPU. Nevertheless, they come with two trade-offs: first, there is a much larger

learning curve for Kokkos than for vecpar and second, highly configured executions are

neither single-source nor portable. This is highlighted in Listing 5.2; here the data type is

templated on the memory space, so this will not compile for an AMD GPU.

Kokkos::View<int **, Kokkos::LayoutLeft , Kokkos::CudaUVMSpace > A("A", 1, 2);

Listing 5.2: Define a 2D vector named "A", with 1 row and 2 columns, stored in CUDA

unified memory in column-major representation

2The results from map are copied to the host and then copied back to the device for reduce
3vecmem library was introduced in Section 3.1.1.1.
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5.1.2. RAJA

Another open-source alternative, called RAJA, was proposed by Lawrence Livermore

National Laboratory [Beckingsale et al., 2019]: a C++ portability layer that ensures single-

source compilation for multiple architectures. Similar to Kokkos and vecpar, RAJA is also

an open-source project4.

There are a few features that RAJA and vecpar share: first, RAJA allows incremen-

tal adoption with platform specific data and parallelization strategies isolated from the

scientific code; second, RAJA was designed with the goal of increasing productivity

by ease-of-use; third, the portability is covered through platform-specific backends. At

present, supported backends include sequential, SIMD, OpenMP for CPU platforms and

CUDA and HIP for GPU, with TBB and OpenMP_target as experimental5 projects. The

user code must decide which backend to use at compile-time.

Similar to Kokkos, RAJA defines its own abstractions. Execution policies configure how

a loop will run. Each policy defines 3 components: a policy type, which is the execution

backend: sequential, OpenMP or CUDA; a launch category, which configures how the

code is executed, whether sychronously or asynchronously; and an execution platform,

which defines where the code is executed in terms of memory spaces. Hierarchical

parallelism is ensured by nested policies. Moreover, the user can also define custom

policies if the default ones are not covering all the use cases. Iteration spaces describe the

data distribution model and have two potential approaches: segments containing a set of

loop indices to be executed in a unit or index set a container of arbitrary segments used

mostly for hierarchical parallelism. The latter is also an optimization setup for sparse

data sets. Execution templates define an operation on a kernel based on an execution policy

and an iteration space. Examples include forall, kernel, scan, 5 custom reductions

and atomics. Views represent device-agnostic data abstractions and multi-dimensional

access patters. RAJA views do not manage memory allocations, covering only pointer

arithmetic. The user-code is responsible to make sure that a pointer is accessible on the

device at runtime. Therefore, the developers still need to be familiar with CUDA and/or

HIP memory management API. This is one major difference from vecpar, which handles

memory operations automatically and hides the complexity from the user. RAJA tries to

address this gap by providing additional libraries6 to wrap specific implementations into

more generic and portable versions. Nevertheless, calling this intermediate layer is also

the user’s responsibility.

The authors published evaluation results using RAJA Portability suite, which is a set of

software abstractions that enable portable parallel numerical kernel execution for physics

use cases ranging from hundred of tousands to over one million lines of code that use

MPI for distributing computations accros the nodes and RAJA for fine-grained parallelism

4https://github.com/LLNL/RAJA
5Not all the features are currently supported
6An example is CHAI library: https://github.com/LLNL/CHAI

https://github.com/LLNL/RAJA
https://github.com/LLNL/CHAI
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within the nodes [Beckingsale et al., 2019]. Three backends (sequential, OpenMP for CPU

and CUDA for GPU) were compared with native implementations. In 55% of the cases,

RAJA performs within a 10% variation from the baselines, while in 48% of the cases, it

performs better at least on one backend. Overall, speedups of 9 × −17× were observed

for specific scenarios.

To conclude, RAJA API, which has been evolving for 10+ years, can provide portability

and productivity with some known penalty costs in performance.

5.1.3. Alpaka

An Abstraction Library for Parallel Kernel Acceleration (ALPAKA) is a C++ header-only

library initially released in 2016, which is still being developed and extended today as

an open-source project7 [Zenker et al., 2016]. Moreover, the main repository offers an

automatic translation tool from CUDA to Alpaka, called cupla8.

Similar to CUDA, Alpaka has four parallelization levels: grid, block, thread and element,
which map to three memory types: global, shared and register. Algorithms expressed as

functors or lambdas can be offloaded to hierarchical parallelization levels on different

architectures.

Currently supported backends include OpenMP, TBB, std::thread, Boost::fiber for CPU

and OpenMP target, CUDA and HIP for GPU; also, Alpaka has experimental support

for OpenACC. In contrast to Kokkos, it allows multiple backends simulaneously in the

same source file while the final decision about the execution platform can be delayed until

runtime.

Alpaka provides a set of abstractions that allow a single-source implementation to

be compiled for different targets, but in a distinct way when compared to vecpar. First,

since Alpaka is inspired from CUDA programming syntax, it exploits parallelism through

abstractions like kernel indexing, work sharing or work queues, which therefore are very dif-

ferent to the abstractions defined by vecpar. Second, while the user-code is responsibile

for data availablity on device at runtime, vecpar hides this complexity in order to increase

productivity. Similar to RAJA, external libraries like llama9 can be used to overcome this

limitation. Third, to ensure both task and data parallelism, Alpaka does not automatically

decompose the algorithmic execution domain or data domain, but it is the user-code’s re-

sponsibility to do so; while this offers increased flexibility for the developers, which could

translate into better runtime performance, it requires more GPU knowledge. The required

code complexity can be seen from a simplified example10 of invoking a "Hello World"

kernel, shown in Listing 5.3; here the backend is initially chosen in line 2, the commu-

nication queue with the device is set to be a blockingqueue in lines 3 − 4, the distribution

of the data is handled by the WorkDivMembers defined in line 6 without vectorization

7https://github.com/alpaka-group/alpaka
8https://github.com/alpaka-group/cupla
9https://github.com/alpaka-group/llama

10https://github.com/alpaka-group/alpaka/blob/develop/example/helloWorld

https://github.com/alpaka-group/alpaka
https://github.com/alpaka-group/cupla
https://github.com/alpaka-group/llama
https://github.com/alpaka-group/alpaka/blob/develop/example/helloWorld
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support (line 10) and fully configured in lines 12 − 14; the execution is triggered in line

17 while the results are available after line 18, which waits for the queue’s completion.

Finally, while one C++ file can be compiled for different architectures, Alpaka requires

distinct kernel implementation and distinct memory accessibility patterns for each plat-

form; otherwise, the performance is not guaranteed: “It is possible to write a single source

kernel that performs well on all tested Alpaka backends without a drop in performance

compared with the native implementation. In order to reach this performance, the devel-

oper needs to abstract the access to data, optimize the work division and consider cache

hierachies” [Zenker et al., 2016]. In the performance tests to evaluate the overhead in the

same paper, two kernels were implemented, one to mirror OpenMP (for CPU) and the

other one for CUDA (on GPU); when reusing the same kernel, the performance was very

poor.

1 using Idx = std::size_t;

2 using Acc = alpaka::AccCpuSerial <Dim, Idx>;

3 using QueueProperty = alpaka::Blocking;

4 using Queue = alpaka::Queue<Acc, QueueProperty >;

5 using Vec = alpaka::Vec<Dim, Idx>;

6 using WorkDiv = alpaka::WorkDivMembers <Dim, Idx>;

7
8 auto const devAcc = alpaka::getDevByIdx <Acc>(0u);

9 Queue queue(devAcc);

10 Vec const elementsPerThread(Vec::all(static_cast <Idx>(1)));

11 Vec const threadsPerGrid(Vec::all(static_cast <Idx>(8)));

12 WorkDiv const workDiv = alpaka::getValidWorkDiv <Acc>(devAcc,

13 threadsPerGrid , elementsPerThread , false,

14 alpaka::GridBlockExtentSubDivRestrictions::Unrestricted);

15
16 HelloWorldKernel helloWorldKernel;

17 alpaka::exec<Acc>(queue, workDiv, helloWorldKernel);

18 alpaka::wait(queue);

Listing 5.3: Configure serial execution on CPU, using a blocking communication queue

with the accelerator (CPU in this case), in a vectorized execution

In summary, while Alpaka offers an increased level of portability, the development

productivity is highly impacted by (a) the need to handle memory management, (b)

complex abstractions and (c) required kernel duplication to match native performance.

5.1.4. Charm++

Charm++ is an “object-oriented asynchronous message passing parallel programming

paradigm” [Acun et al., 2014], which gets shipped with a dedicated runtime and set of

tools to enable C++ developers to easily write parallel code. While it has no offloading

support, it is worth mentioning it here due to its novel mechanism of approaching auto-

matic parallelizations: a program is divided into logical collections of objects that interact
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with each other, called "chares". A chare is a stateful object that can: (a) contain data, (b)

send and receive asynchronous messages to other chares, and (c) execute a task. The user

has no need to configure parallelization strategies, since the Charm++ Runtime makes

all the decisions regarding resource allocation and scheduling.

5.1.5. OpenMP

Through the accelerator support introduced 10 years ago, OpenMP also qualifies as an API

that allows a single C++ implementation to be compiled for different platforms. While

the details were already covered at length in Section 2.3.1, there are two observations to

note here: first, sometimes specific pragmas or data decomposition strategies are required

to improve the performance for one of the platforms; this moves away from the single-

source concept. Second, there is no clear separation between the scientific code and the

parallelization strategy.

5.2. Performance Studies Review

In this section, a few significant performance studies that analyse the main GPU offloading

APIs are reviewed. Since all libraries are actively maintained and improved, the results

are presented in chronological order, which also shows the progress in portability and

performance.

A performance study published by Gayatri et al. in 2018 [Gayatri et al., 2018] in-

vestigated OpenMP (4.5), OpenACC and CUDA for Intel Xeon/Xeon Phi and NVIDIA

P100/V100 architectures. The authors implemented a material science kernel that com-

putes the electron self-energy using general plasmon pole approximation through tensor

contractions for double-precision arrays followed by a reduction to a 3 × 3 matrix. The

overall memory footprint is 2GB, due to its 4 imbricated loops: the first two can be col-

lapsed and distributed to threads on CPU and thread blocks on GPU; the 3rd loop can

be vectorised on CPU and executed by parallel threads on GPU; 4th loop is small can be

unrolled, targeting SIMD operations. The results are aggregated in Figure 5.1 and can

be summarized as follows: First, at the time of the tests, OpenMP/OpenMP target was

portable but not performance-portable; to obtain good execution times, an optimization

was required, which made the GPU code to diverge from the CPU one. Second, OpenACC

required several algorithm changes to parallelize the code on CPU and vectorization was

still not possible with the pgi compiler, version 18.4; the OpenACC code ran on CPU is 4×

slower than OpenMP as shown in Figure 5.1a. Third, CUDA implementation targets GPU

only, is not portable, but it shows the best GPU occupancy from the three implementations

(50%) while providing comparable wall clock times; an optimized CUDA version, which

uses 32 threads per block (instead of 64), can achieve increased performance, as shown in

Figure 5.1b.

In an in-depth study of Kokkos (vers 2.7), RAJA (0.6.0), OpenMP (for CPU only),
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(a) OpenMP 4.5 on CPU (b) Performance evaluation on GPU

Figure 5.1.: Performance and portability results for OpenMP, OpenACC and CUDA im-
plementations [Gayatri et al., 2018]

OpenACC and CUDA published in 2019, Artigues et al evaluate the performance and

portability of these APIs on particle-in-cell method used to study the evolution of a species

of plasma in its self-consistent and external electromagnetic field [Artigues et al., 2020].

This is modeled by a subset of the Vlasov-Maxwell equations that identify the position of

a particle in the grid, evaluate the magnetic field intensity at the particle position, update

the position and velocity, and accumulate the first component of the current density. From

a coding perspective, this is a parallel loop followed by a reduction. The results are shown

in Figure 5.2 and are summarized next.

(a) Log-log plot of compute times per iteration
as functions of the number of CPU cores

(b) Plot of the times per iteration for various
GPU models. The horizontal line is the best
time obtained by a CPU model

Figure 5.2.: Performance results for OpenMP, Kokkos, OpenACC, RAJA and CUDA in
comparison to C++ code on CPU [Artigues et al., 2020]

First, when using RAJA, the user handled memory allocations and transfers, which

resulted in two code branches, one for CPU and one for GPU; moreover, RAJA showed
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false sharing11, which was partially addressed through cache alignment and padding.

Second, OpenMP and OpenACC required fewer and more straight-forward code changes,

while CUDA, Kokkos and RAJA needed a significant rewrite of the code, which led to

a lower productivity and code clarity. Third, for Kokkos and RAJA, the generated code

was more difficult to debug since it is not accessible for inspection. Finally, from the

performance perspective, there are different observation for each platform: for the CPU,

OpenACC, OpenMP and Kokkos (with OpenMP backend) scale nearly ideally, while

Kokkos is 1.21x slower and RAJA is far worse due to memory issues listed above; for the

GPU, on NVIDIA P100 and V100, CUDA implementations is the fastest, with Kokkos and

RAJA approximately 2− 3.15× slower.

A more extensive study [Deakin et al., 2020] published in 2020 used the performance
portability metric12 defined by Pennycook to evaluate OpenMP, OpenCL, OpenACC,

CUDA, Kokkos and SYCL implementations for two memory-bound kernels from the

Babel Stream Benchmark [Deakin et al., 2018]. The studied kernels are Dot, which com-

putes the sum of element-wise product of two arrays and it is implemented as a parallel

loop with a reduction operation, and Triad or DAXPY, which computes a · ~x+ ~y, with dou-

ble precision operands and which is an embarrassingly parallel loop with independent

data. Having used cards from Intel, ARM, AMD, NVIDIA and Fujitsu, the experiments

cover all major vendors.

The results for Triad are shown in Figure 5.3. OpenMP and Kokkos provide highest

scores for performance portability metric with OpenMP being the only solution covering

all the platforms from all vendors with the note that the implementation required spe-

cialization for CPU and GPU. While CUDA ensures the best wall clock times on NVIDIA

GPUs, it provides the lowest performance portabilty score due to the lack of support on

many architectures and/or vendors. OpenCL and SYCL show good results for GPU plat-

forms but the portability on CPU resources is still limited to 30.8% and 36.1% respectively.

Figure 5.3.: BabelStream triad performance portability results for arrays of length 225 FP64
elements [Deakin et al., 2020]

11False sharing happens when more threads simultaneously update distinct locations from the same line
of cache, which therefore is marked as invalid, and the threads are forced to retrieve it again; this happens
because the granularity of the cache is at the line level rather than on the element’s level and induces overhead
due to increased (redundant) communication.

12Performance portability is “defined as the harmonic mean of efficiencies over a set of platforms, or else
zero if one of more platforms in the set is not supported. The metric represents the expected performance of
the application on the set of platforms” [Pennycook et al., 2016].
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On Dot kernel, lower efficiencies than Triad were observed due to reductions, as shown

in Figure 5.4. OpenMP is the only one that covers all the architectures, with Kokkos being

the most efficient one; OpenMP for CPU is fast but reductions on GPU could be improved.

Similar to Triad, OpenCL and SYCL show good efficiency on GPU while performing bad

or not at all on CPU.

Figure 5.4.: BabelStream dot performance portability results for arrays of length 225 FP64
elements [Deakin et al., 2020]

In summary, these APIs prove that performance portability can be achieved with a

single-source implementation compiled for different architectures; nevertheless, for im-

proved results, specialized backends have to be provided.

5.3. Automatic Parallelization and Offloading Tools

5.3.1. Source-to-source Translators

While we briefly mentioned HIPify in Section 2.4.2 as a tool that increases portability

among GPU vendors, here we focus on tools that perform automatic parallelization

and offloading starting from C++ code bases. This is related to clang-offload prototype

described in Section 3.3.

ToGPU [Marangoni and Wischgoll, 2016] is a research project at the Wright State Univer-

sity, which prototyped a source-to-source translation tool that converts C++ to CUDA.

It is based on the Matchers concept of LLVM/clang plugin mechanism. While the ini-

tial paper showed promising results in comparison to native CUDA implementations,

the project doesn’t seem to be maintained anymore and is not open-source. OP2-
Clang [Balogh et al., 2018] is another LLVM/Clang-based translator capable of generating

target parallel code based on SIMD, OpenMP, CUDA and their combinations with MPI.

The particularity of this project is that it was designed for the OP2 DSL, which targets

unstructured mesh computations. While the project is open-source13, it isn’t currently

maintained anymore. Another project that aims to offload computations to NVIDIA and

AMD GPUs is clad14 [Ifrim et al., 2022]; nevertheless, it is limited to automatic differenti-

ation operations. Similar to the previous examples, it manipulates the AST of a C++ file

with the help of Clang tools.

13https://github.com/OP-DSL/clang-op-translator
14https://github.com/vgvassilev/clad

https://github.com/OP-DSL/clang-op-translator
https://github.com/vgvassilev/clad
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While all the above mentioned projects are targeted to a particular use case, more

generic approaches started to be explored recently. Future Offload Target Virtualization
(FOTV) [Vázquez and Sánchez, 2021] is a proposed prototype tool that converts OpenMP

code to OpenCL and OpenMP target regions.

To summarize, the R&D efforts on source-to-source translators that enable automatic

offload support are just starting to emerge; only limited use-cases approaches have been

proved to be efficient so far.

5.3.2. Futhark Programming Language

Futhark [Henriksen et al., 2017] is a purely functional, statically typed, data-parallel array

programming language designed to generate efficient OpenCL code for GPU execution.

It is based on high-level invariants as second-order array combinators (SOAC), which

include map, reduce and scan. These operators are used to define programs through

mathematical composition. Nested parallelism is also built in the language and trivially

expressed as shown in Listing 5.4, where the main function receives a 32-bit floating point

matrix and returns a tuple containing the updated matrix by adding 1.0 to each element

and a vector that represents the sums for each row in the initial matrix.

fun main (matrix : [n][m]f32): ([n][m]f32, [n]f32) =

map (λ row : ([m]f32, f32) →

let row_1 = map (λ x : f32 → x+1.0) row

let s = reduce (+) 0 row

in (row_1,s))

matrix

Listing 5.4: Map-reduce example in Futhark [Henriksen et al., 2017]

An important emphasis is on the data shapes that provide useful information for

compile-time optimization [Henriksen et al., 2014], which is achieved in two steps. First,

the input program is desugared15 and translated into an intermediate representation (IR),

which is an internal dialect of the language. This is required because the arrays of tuples

cannot be efficiently represented in memory and therefore they are recursively converted

to tuples containing arrays of the original tuple components. The external SOACs are

also converted to tuple-less SOACs. While this conversion in reversible, the result is

guaranteed to be equivalent but not necessarily identical to the external representation.

Second, several optimizations are applied to the internal IR, which include: aggresive

inlining of the non-recursive functions, tuple expression normalization, copy propagation16

and constant folding17, hoisting18, common subexpression elimination (CSE)19, loop fusions,

etc. The compiler pipeline is summarized in Figure 5.5.
15Desugaring is converting the simplified syntax (denoted as syntactic sugar) back to the expanded/base

versions.
16Copy propagation is the process which eliminates bindings that are merely copies of existing variables.
17Constant-folding is the process of evaluating a constant expression at compile time
18Hoisting is the movement of loop-invariant expressions out of a loop
19CSE identifies identical expressions and replaces them with a variable holding the computed value
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Figure 5.5.: Compiler pipeline in Futhark [Henriksen et al., 2017]

While vecpar offers similar invariants, the syntax is closer to C++ rather than functional

programming languages like Haskell. This also means that a main stream compiler

like clang can be used to build the executables as opposed to Futhark, which requires

a dedicated compiler; nevertheless, Futhark compiler provides advanced optimizations

based on knowledge extracted from the internal IR, which cannot be easily mirrored in

general C++ compilers.

Futhark speedup ranges from 0.6× to 16× when evaluated on several benchmarks

using NVIDIA and AMD GPUs. While Futhark code is slightly slower in some cases

when compared to hand-optimized code, the benefits of hiding the GPU complexity from

the user is expected to surpass the minimal performance loss.

5.4. Parallel Frameworks for Track Reconstruction

All CERN experiments face the same computational challenges for track reconstruction

due to higher luminosity that leads to an increasing number of tracks and vertices. This

makes the pattern recognition and hit classification a harder combinatorial problem. Be-

fore starting the R&D effort towards a detector-agnostic software toolkit, each experiment

tackled this problem independently, leveraging information about specific setup condi-

tions, like detector geometry, intensity of the magnetic field or the size of incoming raw

detector data. Particularly, LHCb and CMS implemented GPU workflows within the ex-

isting data processing frameworks; the resulting solutions are called Allen and Patatrack,

respectively.

5.4.1. Allen

In LHCb’s case, there are two software high-level triggers (HLT) that filter interesting

events for long-term storage: HLT1 and HLT2. Allen Framework’s goal is to lower the

workload on existing CPU nodes, by implementing the HLT1 in CUDA and therefore,

leveraging the GPU farm, as shown in Figure 5.6. A memory manager based on CUDA

streams and a custom scheduler ensure that data is efficiently transferred between the
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resources and that the computing power is fully utilized by parallelizing over fully-

independent and low size events. Each CUDA block handles one event at a time while

intra-event parallelism is used process raw-data from a readout unit, to evaluate hits

combination during pattern matching, to fit a track and then to combine them together to

find vertices.

(a) CPU-only
(before Allen)

(b) CPU and GPU
(with Allen)

Figure 5.6.: LHCb workflow proposals [Aaij et al., 2020]

Allen proved to deliver high efficiency20 and decreased HLT1 event rates of up to 30×,

while reaching 14TFLOPS 32-peak performance for a throughput of 80kHz on a NVIDIA

V100 card. At the time of this thesis, Allen framework is being extended with a HIP

backend.

5.4.2. Patatrack

CMS experts proposed a GPU reconstruction flow as shown in Figure 5.7 [Bocci et al., 2020].

While all the steps run on the GPU, intermediate results are transfered on the CPU and

converted to legacy formats for validation purposes. There are several parallelization

strategies used in this workflow. The digitization step is parallelized on two levels: digi-

tized detector data above a signal-over-noise threshold coming from different modules is

processed in parallel by blocks of threads while each digi21 within a module is assigned

to a thread. Clustering is done in parallel, with each digi assigned to a thread while a

global atomic counter is used to mark the seeds. Clusters are linked together to form

n-tuples; this process starts with creating the doubles and connecting them into a direct

acyclic graph (DAG) starting from a root doublet; a DAG is then assigned to a thread that

perform a depth-first-search algorithm; finally, fitting combines the results together, us-

20Efficiency is defined as the fraction of simulated tracks having produced at least three hits in the pixel
detector that have been associated with at least one reconstructed track.

21A digi represents a pixel with the charge above the signal-over-noise threshold and contains information
about the local coordinates within the grid



5.4. Parallel Frameworks for Track Reconstruction 119

ing one thread per n-tuplet, to obtain the track parameters and their covariance matrices.

The vertex finding is parallelized in one dimension, while the reconstruction ends with

sorting the vertices by the sum of p2
T of the contributing tracks.

(a) Start workflow (b) Workflow Continuation

Figure 5.7.: Reconstruction flow proposed by Patatrack [Bocci et al., 2020]

In comparison to previous CMS solutions, this approach has improved efficiency, fake
rate22, duplicate23 rejection and resolution24, while the events throughput increased up to

3×, when no CPU transfer nor data conversion is performed.

While the approaches described in the current chapter allow the code to run on both

CPU and GPU platforms, they are either (a) generic and efficient but too complex to use,

or (b) tailored for a specific problem and therefore difficult to reuse in similar scenarios.

Vecpar could be an easy-to-use alternative for simple parallel flows without complex data

access patterns while maintaining a single C++ code repository.

22Fake rate is defined as the fraction of all the reconstructed tracks coming from a reconstructed primary
vertex that are not associated uniquely to a simulated track.

23A duplicate track is a reconstructed track matching to a simulated track that itself has been matched to
at least two times.

24The resolution of the estimations is a measurement of the accuracy of the fitted value in comparison to
the true value
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6. Evaluation

In this chapter, the evaluation criteria are initially presented and then they are used to compare the
vecpar framework to other state-of-the-art and/or related APIs using different benchmarks, includ-
ing a vecpar implementation of the most computationally intensive step of the track reconstruction
chain: the numerical integrator. Details regarding the reproducibility of the results are available in
Appendix D and are inline with the latest guidelines1 on publications proposed by the Association
for Computing Machinery.

6.1. Evaluation criteria

Runtime performance, platform portability and development productivity are the main

metrics used for the evaluation; these are briefly summarized next.

6.1.1. Performance

One straight-forward criteria is the wall clock execution time and the derived metrics

that can be computed based on it. For example, for the track reconstruction flow, one can

measure the time to fit 10 000 particles2 or how many particles can be processed during a

time interval, like a millisecond.

In computer science, common metrics to evaluate the performance of an application

that employs a certain level of parallelism, are speedup (S(p)) and efficiency (E(p)), defined

by Equation 6.1 and Equation 6.2; here T(1) and T(p) are the wall clock time for optimal

serial execution and parallel execution using p processors respectively [Ludwig, 2020].

While the speedup shows how a parallel implementation can increase the execution

speed of an algorithm, the efficiency is a normalization over the number of processors.

S(p) =
T(1)
T(p)

(6.1)

E(p) =
S(p)

p
(6.2)

There are two types of scaling that can be used to evaluate a parallel implementation and

they are governed by different laws. First, strong scaling refers to the speedup obtained

when the problem size is kept constant while the number of workers p is increased.

1https://www.acm.org/publications/artifacts
2This is the volume estimated for the HL-LHC

https://www.acm.org/publications/artifacts
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Amdahl’s law provides the upper bound of this speedup using the Equations 6.3 where f
is the fraction of serial code [Amdahl, 1967]. The dependency of the maximum theoretical

speedup Smax on f and p, is summarized in Equations (6.4), which show that adding more

processors without reducing the amount of sequential code (i.e. f → 0) will heavily

impact the ideal speedup, which is already limited to the number of processors. Second,

weak scaling refers to the notion of scaled speedup, which means keeping the same workload

per processor, so increasing both the number of workers p and the problem size, like in

Equation 6.5 [Gustafson, 1988, Gustafson, 2011].

S ≤
1

f + 1− f
p

(6.3)

Smax = lim
p→∞

1

f + 1− f
p︸         ︷︷         ︸

1
f

≤ lim
f→0

1

f + 1− f
p︸        ︷︷        ︸

p

(6.4)

S = f + (1− f )p (6.5)

6.1.2. Portability

An implementation is considered portable when the same code can be executed on dif-

ferent platforms. For the purpose of this thesis, a solution that ensures the same C++

source file can be compiled for x86_64 CPU and NVIDIA GPU is acceptable given the

hardware resources currently available at CERN. Nevertheless, the option of extending

the portability to other GPU vendors is highly desirable.

6.1.3. Productivity

To evaluate this, we take in consideration multiple factors, both objective, like the number

of lines of code needed to develop an application, and subjective, like the effort to (a) learn

new programming languages, language extensions or DSLs, (b) gather the knowledge

about hardware resources (e.g. compute units, memory layouts, interface interconnects,

etc) required to achieve the maximum performance, and (c) maintain one implementation

for each targeted platform, if needed.

6.2. Test Configuration Setup

Several hardware resources were used for the evaluation. Their configurations are listed

below:

• Environment 1 (Env1) – Mainstream laptop with Intel Core i7-10870H (8 cores ×

2 hyperthreads) @2.2GHz CPU, 32 GB of RAM memory and an NVIDIA GeForce
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RTX 3060Ti GPU (8 GB GDDR); the CUDA driver was 510.47.03, which supports

CUDA library versions up to 11.6.

• Environment 2 (Env2) – HPC Cluster node with Intel Xeon Gold 5115 @2.4GHz

CPU (2 sockets × 10 cores × 2 hyperthreads) and NVIDIA Tesla V100 GPU (32 GB

GDDR), with CUDA driver 510.47.03 and CUDA library 11.5

• Environment 3 (Env3) – Raspberry Pi cluster node with an ARM Cortex A72 CPU,

with 4 symmmetrical cores

• Environment 4 (Env4) Intel Core i5-8600K CPU @3.60GHz, AMD Radeon RX6750

XT and ROCm 5.3.3

Unless stated otherwise, the above hardware environments had the following config-

urations: all used googletest 1.10.0, eigen 3.4.0 and vecmem 0.22.0; for compilation and

parallelization support we used clang 14.0.0 and CUDA 11.6 on Env1 and Env2, gcc 12.1.0

on Env3, ROCm aomp 16.0.3 on Env4. All compilers provide OpenMP 4.5 support. Each

test is repeated 20 times and the first run is always discarded as considered a warm-up

test.

6.3. Benchmarks

The vecpar framework is evaluated using two different benchmarks. Firstly, as part of

the vecpar repository, beside the automated tests for validating the API, we developed a

number of benchmarks, which allow the evaluation of several features in a comparative

manner; these will be introduced in Section 6.3.1. Secondly, the BabelStream Bench-

mark [Deakin et al., 2018] briefly mentioned in the previous chapter, is used to evaluate

not only the runtime but also the memory bandwidth of different kernels and the results

are discussed in Section 6.3.2.

6.3.1. Vecpar Internal Benchmark

Each of the tests in the internal benchmark generates single and/or double precision values

using the C++ Standard Mersenne Twister Engine (from the C++ Standard Library) in

a uniform real distribution between 0 and 1. This mechanism, together with the fact

that distinct arrays are allocated for the benchmark and the vecpar case ensure that there

should not be any caching impact in repeating the tests several times. Beside recording

the wall clock time (which includes the host-device transfers in case of running on a GPU),

the tests also validate the results of executing the algorithms using the EXPECT_EQ macro

defined by the googletest infrastructure. To reproduce the results, check Appendix D.1.

6.3.1.1. SAXPY and DAXPY

Single-precision A×X + Y (SAXPY) and double-precision A×X + Y (DAXPY) are two com-

mon trivial kernels used for benchmarking numerical applications and defined by Equa-
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tion (6.6).

yi = A× xi + yi,∀i ∈ 1, N, A = ct (6.6)

For the evaluation, only parallel implementations were investigated. The benchmark

is composed of three native implementations: the first using OpenMP pragmas and the

remaining two using CUDA (one that handles the memory allocations and copies ex-

plicitely, and the other using CUDA managed memory), while the test chooses one over

the other using built-in macros to identify the platform. The associated code listings are

available in Appendix B.2. Unlike these native approaches, we implemented the vecpar

SAXPY/DAXPY kernel as a templated vecpar::parallelizable_mmap algorithm, shown

in Listing 6.1, which is passed to the vecpar API as shown in the code sample in Listing 6.23

compiled for host and device as detailed in Section 4.4. In conclusion, the implementa-

tions show that there is no need for explicit memory transfers or parallelization hints

(like OpenMP pragmas or CUDA indexing mechanism), therefore vecpar could increase

productivity by allowing developers who are not HPC experts to easily write scalable code.

1 #include "vecpar/core/algorithms/parallelizable_map.hpp"

2 template <typename T>

3 class axpy :

4 public vecpar::algorithm::parallelizable_mmap <

5 Two, // X and Y vectors

6 vecmem::vector<T>, vecmem::vector<T>, T // input data types

7 > {

8 public:

9 TARGET T &mapping_function(T &yi, const T &xi, T &a) const {

10 yi = a * xi + yi;

11 return yi;

12 }

13 };

Listing 6.1: SAXPY/DAXPY vecpar algorithm class definition

1 axpy<float> saxpy;

2 // invocation for the vecpar native OpenMP/CUDA backends

3 vecpar::parallel_algorithm(saxpy, mr, y, x, a);

4 // invocation for the vecpar OpenMP target backend

5 vecpar::ompt::parallel_algorithm(saxpy, mr, y, x, a);

Listing 6.2: Vecpar SAXPY invocation code samples

Since vecpar is expected to work within libraries that already use heterogeneous mem-

ory allocators (like the ones exposed by the vecmem library for example), we evaluate the

performance and scalability on SAXPY and DAXPY kernels when the initial data is stored

in CPU memory with or without CUDA unified memory support. For a CPU platform,

3At the time of the tests, the clang compiler cannot accept both OpenMP target code and C++ code
compiled for CUDA in the same compilation unit; therefore, the user library should not mix the two GPU
approaches. Consequently the calls in lines 3 and 5 cannot belong to the same compilation unit. Moreover,
executing vecpar OpenMP target backend functions on data using CUDA unified memory and compiled for
a GPU is not a valid scenario since this would mean mixing the two approaches.
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when the data is allocated through the CUDA unified memory allocator, no transfer to

the GPU (if one exists in the system) is actually done, but there is a small overhead from

initializing the CUDA runtime; whereas for a GPU platform, the memory transfers are

done automatically by the CUDA runtime based on the page-fault mechanism.

Figure 6.1 investigates the performance of the SAXPY/DAXPY kernels when executed on

a CPU. All the measurements show that both vecpar implementations (using the OpenMP

and the OpenMP Target4 backends) are in the same order of magnitude as the OpenMP

native implementations, with vecpar being identical or slightly faster in 14 out of the 20
test cases5; nonetheless, the time improvement/overhead is within 10−6 seconds, which

can be due to operating system interruptions.
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Figure 6.1.: Mean execution time and standard deviation of vecpar OpenMP and OpenMP
target backend implementations in comparison to a native OpenMP version,
on a logarithmic scale, when using input data vectors of size N, on x86_64
platform, Env1

Similar to the CPU results, the GPU measurements, plotted in Figure 6.2, show that

vecpar is in the same order of magnitude with CUDA kernels, with the vecpar CUDA

and OpenMP target backends being identical or slightly faster than the native code in 15

and respectively 14 test cases out of 20. The time improvement/overhead is within 10−5

seconds.

To illustrate the portability using vecpar, we compiled the vecpar algorithm in Listing 6.1

using the two vecpar GPU backends (CUDA and OpenMP target) for NVIDIA and AMD

devices, while the results are shown in Figure 6.3. While the AMD GPU seems slower for

smaller problem sizes, it proves to be faster for vectors of one million elements in both

single and double precision. We credit this speedup to vendor-specific optimizations

done by the ROCm aomp compiler.

4As a reminder, the OpenMP target backend will delegate the execution to the OpenMP backend when
compiled for a CPU platform.

5The 20 cases = 5 values for N × 2 memory allocators × 2 kernels (SAXPY/DAXPY)



126 6. Evaluation

N

10−4

10−3

Ti
m
e[
s]

CPU-GPU Hos -device memory
CUDA
vecpar CUDA
vecpar OMPT

100 1000 10000 100000 1000000
N

10−4

10−3

Ti
m
e[
s]

CPU-GPU Unified memory

(a) SAXPY

N
10−5

10−4

10−3

Ti
m
e[
s]

CPU-GPU Ho t-device memory
CUDA
vecpar CUDA
vecpar OMPT

100 1000 10000 100000 1000000
N

10−4

10−3

Ti
m
e[
s]

CPU-GPU Unified memory

(b) DAXPY

Figure 6.2.: Mean execution time and standard deviation of vecpar CUDA and OpenMP
target backend implementations in comparison to a native CUDA version, on
a logarithmic scale, when using input data vectors of size N, on an NVIDIA
platform, Env1
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Figure 6.3.: Mean execution time and standard deviation of the same vecpar implemen-
tation compiled for different platforms, on a logarithmic scale, when using
input data vectors of size N, on Env1 and Env4

6.3.1.2. Algorithm chaining

The vecpar chain functionality introduced in Section 4.3.5 was designed to improve

development productivity by allowing a simplified way of calling a sequence of steps

from a more complex use case and to increase performance when using an NVIDIA GPU

by making the chain aware of the entire flow, so that intermediate results are no longer

copied to the host for performance reasons. The main goals of these experiments are

to (a) identify the potential overhead in comparison to the common way of function

invocation, and (b) evaluate the impact of the performance optimization for the vecpar

CUDA backend when the user data is initially in host memory.

The experiments consist in defining two vecpar algorithms, f and g, which are in-

voked either as the default parallel_algorithm(g, parallel_algorithm(f,..)) or

through a vecpar chain with_algorithms(f,g) composition function while the data is

in either host memory or CUDA unified memory. The same C++ files are then compiled
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for CPU and GPU using the appropriate compilation flags. The first algorithm, f , is a

parallelizable_map_filter that performs a double precision multiplication between

an integer and a double constant and then keeps only the even numbers. The second

algorithm, g, is a parallelizable_mmap_reduce that performs a double precision mul-

tiplication for each element of a collection and then sums up the results. The size of the

input data array varies from ten to one million elements.

Firstly, we want to motivate the need for the performance optimization we had in place

for the GPU chain. Initially, we compared running parallel_algorithm(g,

parallel_algorithm(f,..)) on NVIDIA GPU with an input vector of one million single-

precision elements stored either in host memory or managed memory. It was expected that

the former is faster than the latter because the read/write access to the data is faster6 but the

impact needed to be quantified. For this, Nsight Compute and Nsight Systems tools from

NVIDIA Toolkit are used to visualize more information about the device execution. Each

of them have 4 kernels: fmapping, f f iltering, gmmapping and greducing, which are independently

traced by the profilers. Table 6.1 shows the duration, the compute throughput and the

memory throughput7 for these kernels. f is executed with 3907 blocks × 256 threads and

while g uses 1954 blocks × 256 threads. While the grid configuration is chosen by vecpar,

the low level features like the register count is decided by the CUDA runtime; in this

case, all kernels use 16 registers, except for f f iltering, which uses 40. Table 6.28 zooms even

further into the fmapping kernel. The numbers show that, for this scenario, there is a great

benefit of explicitly transferring the data between host and device. Nevertheless, these

operations can increase the total execution time, which is investigated further.

Kernel Duration [msec] Compute throughput [%] Memory throughput [%]
fmapping 0.04 (-98.72%) 32.84 (+8473%) 85.27 (+3070%)
f f iltering 2.81 (-42.11%) 13.43 (+72.02%) 15.41 (+65.30%)
gmmaping 0.02 (+1.89%) 25.98 (+2.52%) 87.22 (+3.51%)
greducing 1.24 (-5.65%) 11.18 (+0.10%) 7.04 (+0.12%)

Table 6.1.: Performance metrics for the CUDA kernels when the initial data is in host
memory benchmarked against the same kernels using data stored in unified
memory on Env1

Figure 6.4 shows a comparison between the execution time using default mechanism

and the chain API. While for most of the cases the chain is faster, there is an overhead of

up to 37% (3× 10−4) for the GPU case when managed memory is used, when the problem

size is smaller than 10 000 elements.

6In the case of managed memory, the data is copied to the device based on page faults, when it is needed.
Therefore, this can increase the total execution time.

7For the duration, smaller is better; for the throughput, a larger percent is better
8These are extracted from the reports produced by Nsight Compute.



128 6. Evaluation

Metric Value
Memory throughput [Gbyte/sec] 255.62 (+2786%)
L1 Hit Rate [%] 0 (0%)
L2 Hit Rate [%] 66.74 (+10.85%)
Theoretical occupancy [%] 100 (0%)
Achieved occupancy [%] 80.29 (-19.37%)
SM busy [%] 35.07 (+9070%)
Avg. Active threads per warp 32 (0%)

Table 6.2.: Perfomance metrics for fmapping on one million floats to produce one million
doubles, for the CUDA kernel using host-device memory benchmarked against
the same kernel using unified memory on Env1
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Figure 6.4.: Mean execution time and standard deviation of vecpar default paral-
lel_algorithm function calls vs vecpar chain invocation on different archi-
tectures, on a logarithmic scale, when using input data vectors of size N

Moreover, when the input vectors have one million elements, the slowest GPU con-

figuration (using host-device intermediate transfers) is still ≈ 10× faster than the CPU

parallel alternative, while the chain optimized GPU execution is≈ 30× faster. For the CPU

platforms in Figure 6.4a and Figure 6.4c, the vecpar dispatch system uses the OpenMP

backend and runs the code with 16 and 4 threads respectively, whereas it uses the CUDA

backend (with min(N,256) threads per block) for the plots in Figure 6.4b.

The GPU run in Figure 6.4b is analysed further on Env1, by looking into speedups

when vectors of different lengths are used and by analysing several device execution
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parameters when vecpar’s performance optimization is employed. Therefore, Figure 6.5

shows the comparison between the wall clock time of the default execution flow and the

chain flow when the data is initially in host memory, plotted on a logarithmic scale. The

time spent for transfers between host and device are included in the total time plotted

here. This shows that the chain API is always faster than the default one for this use case,

with a speedup factor between 1.24 and 3.19 for an input vector of 210 and 225 elements

respectively.
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Figure 6.5.: Mean execution time and standard deviation for vecpar default
parallel_algorithm function calls vs vecpar chain, when using input data
vectors of size N, on a logarithmic scale, using an NVIDIA platform, Env1

6.3.2. BabelStream Benchmark

The BabelStream [Deakin et al., 2018] is an implementation of the McCalpin STREAM

benchmark with adaptation for HPC: heap memory is used instead of stack memory, the

size of arrays is known at runtime, etc. It provides an infrastructure to evaluate several

kernels defined by the formulas in Equation (6.7), in single and double precision using

different streams. Beside validating the correctness of a result computed by a chosen

backend, it also evaluates the average memory bandwidth and the execution runtime of a

given kernel, by reruning them 100 times. To reproduce the results, check Appendix D.2.

triad : ai = bi + scalar ∗ ci

copy : ci = ai

mul : bi = scalar ∗ ci

add : ci = ai + bi

dot : sum = sum + ai ∗ bi

(6.7)

We extended the BabelStream with a vecpar stream in an open-source repository9, forked

from the main project. The valid usecases (controlled through optional build flags MEM,

VECPAR_BACKEND and OFFLOAD) and their appropriate vecpar implementations to guaran-

tee meaningful measurements are shown in Table 6.3; the highlighted ones are used for

9https://github.com/wr-hamburg/BabelStream

https://github.com/wr-hamburg/BabelStream
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an in-depth analysis further in this section10.

No. Memory Backend Offload Implementation
1 DEFAULT NATIVE OFF single-source
2 DEFAULT NATIVE ON lambda
3 DEFAULT OMPT OFF single-source
4 DEFAULT OMPT ON single-source
5 MANAGED NATIVE OFF single-source
6 MANAGED NATIVE ON single-source
7 MANAGED OMPT OFF -
8 MANAGED OMPT ON -

Table 6.3.: Valid BabelStream scenarios using Vecpar Stream; the measurements extracted
from the highlighted test cases are the basis of the current evaluation

Vecpar backend NATIVE means targeting GPU using CUDA backend, as opposed to

using OMPT. Despite the fact that a single-source implementation is possible for all the valid

scenarios, we chose a lambda offloading approach for the GPU-CUDA case in order to

avoid counting the memory allocation and transfer time twice11. Code samples extracted

from the VecparStream implementation that illustrate the algorithms were already shown

in Listing 4.3 (on page 83) and Listing 4.7 (on page 86), while the single-source/lambda

approaches were shown in Listing 4.20 and Listing 4.21 (both on page 100). The first three

listings show that no previous knowledge of parallelization and/or offloading is required

to implement the single-source vecpar versions, which is an important advantage over

the other approaches shown in Listing 6.312; the lines 12 − 18 have to be duplicated for

each array, which means 3× in this case. Also, the Kokkos library requires extra calls to

initialize and tear down the parallel environment.

1 // define the Kokkos vector addition kernel

2 template <class T>

3 void KokkosStream <T>::add() {

4 Kokkos::View<T*> a(*d_a);

5 Kokkos::View<T*> b(*d_b);

6 Kokkos::View<T*> c(*d_c);

7 Kokkos::parallel_for(array_size , KOKKOS_LAMBDA (const long index) {

8 c[index] = a[index] + b[index];

9 });

10When the OMPT backend is compiled for CPU, vecpar will delegate the execution (through compile-
time pragmas) to the OMP backend therefore making case 3 identical to 1. Test cases 5 and 6 do not have
a correspondent using a Kokkos implementation; while the GPU targeting versions of vecpar and CUDA
using managed memory could be compared against each other, the prelimiary results showed that the latter
is twice faster than the former but further investigation is required to validate the assumption. Test cases 7
and 8 are invalid since the OMPT backend is designed to support pointers allocated in host memory only; if
future production use case show the need for a different approach, this can easily be extended.

11The memory handling step is hidden by the vecpar API (in order to relieve the user from handling it
explicitely) and it is one of the last steps in the vecpar’s state machine, as shown in Figure 4.4. Therefore, a
clear separation of the data transfer time from the function execution was not straight-forward for the CUDA
backend as it is against the library’s design.

12Code extracted from https://github.com/UoB-HPC/BabelStream/blob/main/src/kokkos

https://github.com/UoB-HPC/BabelStream/blob/main/src/kokkos
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10 Kokkos::fence();

11 }

12 // define the device side array

13 typename Kokkos::View<T*>* d_a;

14 d_a = new Kokkos::View<T*>("d_a", ARRAY_SIZE);

15 // map the host array to the device array

16 typename Kokkos::View<T*>::HostMirror* hm_a;

17 hm_a = new typename Kokkos::View<T*>::HostMirror();

18 *hm_a = create_mirror_view(*d_a);

19 // transfer the memory from device to host

20 deep_copy(*hm_a, *d_a);

Listing 6.3: BabelStream Kokkos code samples

BabelStream allows the evaluation of the runtime and the bandwidth obtained by the

VecparStream in comparison to other four streams: OpenMP (OMPStream), OpenMP

target (OMPTStream), CUDA (CUDAStream) and Kokkos v.3.7.1 (KokkosStream); the

first three are considered the benchmarks for state-of-the-art solutions targeting CPU and

GPU, while KokkosStream is the benchmark that represents the closest similar library

in terms of single-source approaches. For both vecpar and kokkos frameworks, the

backends OMP, CUDA and OMPT are compared. In terms of hardware platform (and

the associated targeted API), there are several test cases: CPU (OMP), GPU (CUDA) and

GPU (OMPT), corresponding to test cases 1, 2 and 4 from Table 6.3.

Figure 6.6 and Figure 6.7 show the results for executing the triad kernel implemented us-

ing either (a) native solutions (OMPStream, OMPTStream, CUDAStream), (b) Kokkos-
Stream or (c) VecparStream, on different platforms, in single and double precision re-

spectively. The plots show that vecpar adds an overhead between 9% and 11% over the

native OMP CPU implementation while it varies with±0.8% in comparison to the Kokkos

implementation. For the GPU, when the default memory model is used, vecpar is within

±1% of the native approaches. The bandwidth is inversely proportional to the runtime,

so the minimum execution time is associated with the highest bandwidth; due to this

dependency, the bandwidth plots for the remaining kernels are omitted.
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Figure 6.6.: Runtime and bandwidth for the triad kernel with vectors of 225 FP32 elements,
on Env1
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Figure 6.7.: Runtimes and bandwidth for the triad kernel with vectors of 225 FP64 elements,
on Env1

Figure 6.8, Figure 6.9 and Figure 6.10 show the runtimes for the kernels mul, add and

copy of the BabelStream, executed in single and double precision. The vecpar OMP

backend adds an overhead of up to 12% and 1% in comparison to the OMPStream

and KokkosStream respectively. For the GPU (CUDA) test case, vecpar is between

−5% and +1% when compared to CUDAStream and between 0% and 1% compared

to KokkosStream. Finally, for the GPU (OMPT) case, VecparStream is consistently faster

than both native and kokkos implementations for all the configurations, with speedups

of up to 3% over the former and 9% over the latter.

As a general observation when running the experiments on NVIDIA hardware, the

CUDA implementations are roughly 4× and 2× faster than OpenMP target implemen-

tations for single-precision and for double-precision respectively. Newer LLVM/clang

versions that support link-time optimizations13 showed improved performance in prelimi-

nary measurements and are expected to minimize this gap.
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Figure 6.8.: Runtimes for the mul kernel with vectors of 225 elements in single and double
precision, on Env1

13Feature enabled using -foffload-lto flag.
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Figure 6.9.: Runtimes for the add kernel with vectors of 225 elements in single and double
precision, on Env1
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Figure 6.10.: Runtimes for the copy kernel with vectors of 225 elements in single and double
precision, on Env1

Lastly, we investigated the dot kernel, which is the only one that involves reductions.

A general observation is that all of the OMPT implementations are slower than native

CUDA-based approaches. Figure 6.11 shows that VecparStream is much slower than

the benchmarks, with a factor of 6 − 8× for the OMP and OMPT APIs and 32 − 64× for

CUDA. The cause of this poor performance is the fact that vecpar allocates an intermediate

array to store the result of the map operation, which is later reduced; this induces an

overhead because of (a) allocating 225 float or double values before starting the parallel

loop (which also justifies why the CUDA backend is slower than the CPU one), and (b)

going through a loop of length 225 twice. To alleviate this problem, we prototyped14

a new approach for executing the parallel_map_reduce, marked with VecparStream-Opt in

the OMPT backend which demonstrates a performance improvement which could allow

vecpar to be competitive with other solutions, while being 2× faster than OMPStream

and KokkosStream (using OMP backend) on NVIDIA hardware. The generalization of

this approach to the other overloaded implementations in all the vecpar backends is left

14This optimization is in place only when one or two iterable collections are passed to the operators
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for future work.
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Figure 6.11.: Runtimes for the dot kernel with vectors of 225 elements in single and double
precision, on Env1

To evaluate the portability, we tested OMPTStream, KokkosStream (with the OMPT

backend) and VecparStream on an AMD GPU as shown in Figure 6.12. For all the kernels

that use independent data, in both single and double precision, vecpar is 1 − 3.3% faster

than Kokkos, while both frameworks are slighly slower than the native OMPTStream.

Similar to the NVIDIA results above, for the dot kernel, VecparStream15 is roughly 3×

slower than Kokkos.

Copy Mul Add Triad Dot
AMD GPU

0.000

0.005

0.010

0.015

0.020

0.025

Ti
m

e 
[s

]

OMPTS ream
KokkosS ream
VecparS ream

(a) FP32

Copy Mul Add Triad Dot
AMD GPU

0.000

0.005

0.010

0.015

0.020

0.025

Ti
m

e 
[s

]

OMPTS ream
KokkosS ream
VecparS ream

(b) FP64

Figure 6.12.: Runtimes for the BabelStream kernels with vectors of 225 elements in single
and double precision, on Env4

To summarize this section, we can conclude that for the parallel cases when no reduc-

tions are involved, the vecpar framework ensures comparable performance to native or

similar approaches, with the GPU backends being faster in most of the cases or induce an

overhead of under 1% otherwise. Nevertheless, the GPU offloading code was constantly

faster than the CPU code, with a speedup factor between 5 and 15 depending on the Babel-

Stream benchmark and the vecpar backend (OMPT/CUDA). We identified the problems

15Note that this test already uses the optimized functionality for parallelizable_map_reduce but for the AMD
case, the impact is limited
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behind the lack of performance in case reductions are used and proposed an adaptive

algorithm, which shows promising results in preliminary tests using the BabelStream dot
kernel with the OMPT backend for the NVIDIA hardware; an in-depth investigation is

required to fully explain the minimal improve in performance for the AMD hardware.

6.4. Track Reconstruction – RKN Stepper

Section 1.2.3 summarized the track reconstruction flow, which requires several steps,

while the parallelization potential lies in reconstructing multiple tracks in parallel and

aggregating them in vertices belonging to the same event at the end. One of the most

computationally intensive steps is the numerical integrator used to estimate the position

and momentum of a charged particle. As detailed in Section 3.1.1, the ACTS R&D project

detray provides an implementation of the adaptive RKN method that uses the linear

algebra API exposed by the algebra-plugin library through its two backends: cmath and

eigen. This is encapsulated into an algorithm named RKN stepper, which repeatedly calls

the integrator (i.e. RKN_Stepper.step(...) function) to compute the estimated track

states. The computational cost comes mostly from working with arrays and matrices to

model track parameters, 3D projections, propagation error estimations, etc. While these

operations can be performed in single precision for the online reconstruction, for the

offline case they require increased precision.

In this section, we evaluate two versions of algorithms working with the RKN stepper

in detray. The first one is a simplified use case that computes the track states without

taking into consideration the material interaction with the detector surfaces and their

potential impact on final solutions; these are accounted for and modeled through co-

variance matrices in the second version. Nevertheless, both versions assume the motion

happens in a constant magnetic field, which is a simplification from a frequent scenario

in experiements, where magnetic fields are often non-homogenous.

For these two versions, several implementations are compared: seq_cpu – C++ se-

quential version, which runs on CPU, omp_cpu – C++ with OpenMP pragmas, cuda_nvcc

– CUDA implementation exploiting managed memory support, and finally, vecpar_cpu

/ vecpar_gpu – single-source C++/vecpar implementation compiled for CPU and GPU.

The vecmem library (v.0.12.0) is used to store the data and to handle CPU-GPU transfers.

While the C++ and CUDA code was written by domain experts, our contributions are: the

OpenMP parallelization of the (existing) RKN stepper working scenario and its porting

to vecpar. The code is open-source on github16 and it is pending review in order to be

merged into the main repository17. To reproduce the results, check Appendix D.3.

16https://github.com/georgi-mania/detray, the vecpar branch
17https://github.com/acts-project/detray

https://github.com/georgi-mania/detray
https://github.com/acts-project/detray
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6.4.1. Simplified RKN Stepper

This simplified version computes the global position (using free track parameters) and

momentum by integrating the equation using a fixed number of integration steps. Unless

stated otherwise, each test estimate 10 000 track parameters in 100 integration steps.

The development productivity is investigated by comparing the CUDA and the vecpar

implementations in the detray repository18 in Listing 6.4 and Listing 6.5 respectively. While

the former requires knowledge of CUDA, by computing the index based on the grid

layout, the latter uses only C++ concepts. The parallelizable_mmap algorithm abstracts

away all the complexity (including the thread indexing, memory copies and device syn-

chronization). The highlighted areas mark the code that instantiates the RKN stepper

and computes the estimates by performing integration steps in forward and backward

directions, and it is identical in both implementations.

1 __global__ void rk_stepper_test_kernel (

2 vecmem::data::vector_view <free_track_parameters > tracks_data ,

3 const vector3 B) {

4 int gid = threadIdx.x + blockIdx.x * blockDim.x;

5 vecmem::device_vector <free_track_parameters > tracks(tracks_data);

6 // Prevent overflow

7 if (gid >= tracks.size()) {

8 return;

9 }

10 // Get a track

11 auto& traj = tracks.at(gid);

12 // Define RK stepper

13 rk_stepper_type rk(B);

14 // Index for stepping

15 unsigned int i_s=0;

16 // Forward direction

17 rk_stepper_type::state forward_state(traj);

18 for (i_s=0; i_s<rk_steps; i_s++) {

19 rk.step(forward_state);

20 }

21 // Backward direction

22 traj.flip();

23 rk_stepper_type::state backward_state(traj);

24 for (i_s=0; i_s<rk_steps; i_s++) {

25 rk.step(backward_state);

26 }

27 }

Listing 6.4: A CUDA kernel that uses the RKN stepper

18The code snippet is extracted from a stable version of the project from April 2022; the repository has
been continuosly evolving due to a large number of contributors. While the same vecpar abstractions are
used, the physics related part is enhances with some extra function calls.
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1 struct rk_stepper_algorithm :

2 public vecpar::algorithm::parallelizable_mmap <free_track_parameters , vector3 >{

3 TARGET free_track_parameters& mapping_function(free_track_parameters& traj,

vector3 B) override {

4 // Define RK stepper

5 rk_stepper_type rk(B);

6 // Index for stepping

7 unsigned int i_s=0;

8 // Forward direction

9 rk_stepper_type::state forward_state(traj);

10 for (i_s=0; i_s<rk_steps; i_s++) {

11 rk.step(forward_state);

12 }

13 // Backward direction

14 traj.flip();

15 rk_stepper_type::state backward_state(traj);

16 for (i_s=0; i_s<rk_steps; i_s++) {

17 rk.step(backward_state);

18 }

19 return traj;

20 }

21 };

Listing 6.5: A C++/vecpar algorithm using the RKN stepper

To evaluate the performance portability, several experiments are run on Env1, Env2

and Env3, using vecmem 0.12.0 and clang 13.0.0 as host compiler for CUDA.

Figure 6.13 shows that regardless of the test environment when using double precision

operands, the vecpar implementation is as fast or slightly faster than the OpenMP one

while being up to 12× and 30× faster than the sequential version that runs on a single

processor when using either algebra-plugin backend on Env1 and Env2 respectively; this

is more clearly shown in Figure 6.14, where speedup-ups of 27×-32× are recorded for

Env2.
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Figure 6.13.: Mean and standard deviation for sequential, OpenMP and vecpar imple-
mentations using the RKN stepper, in double precision, running with 40 and
16 threads, on Env1 and Env2 respectively
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Figure 6.14.: Speed-up factors over initial sequential version for the multi-threading
OpenMP (omp_cpu) and vecpar (vecpar_cpu) implementations using cmath-
/eigen backends, in double precision, running with 40 threads, on Env2

Figure 6.15 shows the results for the tests focusing on single precision, which validate

the above observations: both OpenMP and vecpar versions provide close to ideal strong

scaling performance.
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Figure 6.15.: Strong-scaling evaluation: RKN stepper multi-threading implementations
in single precision for cmath/eigen backends, on Env2

The GPU tests assume the initial track data is stored in CUDA unified memory in both

cuda_nvcc and vecpar_gpu. Additionally, we take in consideration advanced compiler

support of using hardware intrinsic replacement for some mathematical operations. Both

the nvcc and the clang compiler offer this performance optimization by enabling different

fastmath-related flags. The impact is investigated on NVIDIA GPU when the computa-

tions use single and double precision. The CUDA implementation compiled with nvcc

(using clang as host compiler) is compared with the vecpar single-source implementation

compiled with clang. Figure 6.16 and Figure 6.17 show that the vecpar implementation

is 7− 21% faster than the native CUDA in both cmath or eigen backends for each NVIDIA

GPU that we tested. Figure 6.18 and Figure 6.19 confirm the above observation, in this

case with a speedup of 8− 26%, regardless of the operands’ precision.
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Figure 6.16.: Mean and standard deviation when using the RKN stepper and cmath back-
end on different NVIDIA GPU with grid configuration: 157 × 64 CUDA
threads
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Figure 6.17.: Mean and standard deviation when using the RKN stepper and eigen backend
on different NVIDIA GPU with grid configuration: 157× 64 CUDA threads
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Figure 6.18.: Mean and standard deviation when using the RKN stepper and cmath back-
end, in single and double precision, with grid configuration 157× 64 CUDA
threads, on Env2
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Figure 6.19.: Mean and standard deviation when using the RKN stepper and eigen back-
end, in single and double precision, with grid configuration 157× 64 CUDA
threads, on Env2

The speedup diagram in Figure 6.20 shows that vecpar implementation (vecpar_gpu)

is slightly faster than the native CUDA version (cuda_nvcc) compiled with nvcc. This

advantage is assumed to be due to NVPTX optimizations done by clang since compiling

the same RKN kernel with clang already shows a slight speedup over the executable

produced by nvcc.
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Figure 6.20.: Speed-up factors over initial sequential version (seq_cpu) for GPU CUDA
(cuda_nvcc) and vecpar (vecpar_gpu), using detray cmath/eigen backends
in double precision, with fastmath disabled, on Env2

Figure 6.21 summarizes these experiments with the conclusion that for this given sce-

nario, the vecpar single-source implementation ensures an order of magnitude speedup

over the initial sequential implementation, comparable to native OpenMP and CUDA

implementations.

Next, we evaluated the performance of the vecpar implementation in an extreme-load

test using one million tracks instead of just 10 000. The results in Figure 6.22 show that

vecpar implementation is comparable with native OpenMP and CUDA, with the GPU
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Figure 6.21.: Speedup for vecpar implementation over the base (sequential) CPU imple-
mentation, using cmath/eigen backends, in single/double precision, on Env2

implementations showing a speedup factor up to 70×over the sequential one; the speedup

on CPU is limited by the number of threads (which is 16 in this case) while further runs

with more threads showed no visible time improvement.
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Figure 6.22.: Speedup diagram for simplified RKN stepper using cmath/eigen backends,
in single precision, one million tracks, with fastmath disabled, on Env1

6.4.2. A More Realistic RKN Stepper

A more recent implementation19 of a realistic RKN stepper in detray provides functionality to

propagate both track parameters (either using free or bound states), and their covariances.

The full listings for the these two algorithms (the free and bound ones) are available in

Appendix B.3. While the former implements a parallelizable_mmap algorithm, which

updates the input track states array with the newly computed values, the latter uses a

parallelizable_map and does not change the input array. Moreover, when using bound

parameters, an extra context parameter is required for the coordinate transformations

19Detray repository version from July 2022
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from 3D space to a 2D plane and vice-versa.

Due to the requirement of computing the partial derivatives of the track parameters,

the complexity is increased further. Since the double precision use case is more realistic

for a production environment, we focus the experiments on this level of precision, while

disabling fastmath support. Again, we assume the motion happens in a constant magnetic

field.

For the ARM CPU on Env3, Figure 6.23a shows that the vecpar implementations are

within ±9% of the native OpenMP ones, while being 3.55× and 3.73× faster than the

sequential ones for cmath and eigen backends. This is close to the maximum theoretical

speedup of 4×, which is limited by the number of OpenMP threads. For an x86_64

platform, the vecpar implementations are within ±3% when compared with the OpenMP

one while being 15× and respectively 19× faster than the sequential one for the cmath

and eigen backend respectively, as shown in Figure 6.23.
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Figure 6.23.: Mean and standard deviation when using the RKN stepper (with error prop-
agation) for 10 000 free track parameters, in double precision, on CPU Env2
and Env3

For the GPU platform, the existing CUDA implementation uses managed memory;

vecpar can also support this, but additionally, the arrays can be initially stored in CPU

memory relying on the framework to copy them to the device if/when needed. Therefore

Figure 6.24 shows the runtimes for the benchmark (mng_cuda_nvcc), and two vecpar

implementations (mng_vecpar_gpu and host_vecpar_gpu), which use vecmem’s host

memory allocator and managed memory allocator respectively. Despite much better

memory and computation throughput, there are several uncoalesced global accesses

due to unnecessary duplication of the offloaded algorithmic code, which seem to make

vecpar slower than the native approach. This is expected to be alleviated when using the

new __grid__constant feature of CUDA 11.7, which allows storing read-only objects in

constant cache20. This will relieve thread’s local memory from the need to load the vecpar

algorithm object. This also explains why this behaviour was not seen in the previous

20The code is already implemented in vecpar, but clang 14 does not support CUDA 11.7 so we could not
perform the validation
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Figure 6.24.: Mean and standard deviation for RKN stepper (with error propagation)
for 10 000 free track parameters, data in host/managed memory, in double
precision, on Env2

experiments when the algorithm was less complex and required less mememory.

Nevertheless, there is still a benefit of having a single parallel implementation that can

be executed on different platforms as it is shown in Figure 6.25. Speedup factors up to 19

and 108 can be observed for CPU and GPU respectively when compared to the sequential

version.
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Figure 6.25.: Speedup of the vecpar implementation for RKN stepper (with error propa-
gation) for 10 000 tracks over the sequential implementation for cmath and
eigen backends, in double precision, on Env2

Additionally, we can also generate a track with the appropriate physics parameters

(local position, momentum and charge) and a 2D plane that the trajectory would intersect

in a first estimation step. In this setup, the RKN stepper will use bound track parameters

instead of free track parameters. Figure 6.26 shows almost identical times for vecpar

implementation vs CUDA native implementation in case one track state is updated. A

test case that works with more planes, would require a geometry description in order to

identify the intersected surfaces; at the time of our tests, this infrastruction was pending

development in the detray project.
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Figure 6.26.: Mean and standard deviation when using RKN stepper (with error propaga-
tion) for one bound track parameter stored in managed memory, in double
precision, using cmath backend on Env2

To evaluate vecpar’s OpenMP target backend, the call tovecpar::parallel_algorithm

was replaced by vecpar::ompt::parallel_algorithm. Figure 6.27 shows the compari-

son between the runtime for estimating 10 000 tracks on a CPU using OpenMP threads

and on an AMD GPU using vecpar. The initial parameters are stored in CPU memory,

so when running on the GPU, the vecpar OpenMP target backend handles the memory

transfers in both directions. This should be taken in consideration when evaluating the

performance on the GPU, which in this case, is comparable to a multi-threaded CPU

but not better. Nevertheless, this experiment shows that vecpar reached the expected

portability level, while having one C++ implementation (the one listed in Appendix B.3).
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Figure 6.27.: Mean and standard deviation when using RKN stepper (with error prop-
agation) for 10 000 free track parameters, in double precision, using cmath
backend on Env4

To summarize this chapter, we showed that the vecpar framework is as efficient as

other competitive APIs while keeping the domain specific code separated from the par-

allelization strategies. For the GPU platform, there are two corner cases for which vecpar

currently underperforms, but ongoing developments on improving (a) the memory coa-

lescing for CUDA and (b) the parallel patterns for reductions, are expected to minimize

the overhead.
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7. Conclusion and Future Work

In this chapter, the current work is summarized while highlighting its potential and limitations,
together with a series of ongoing and future developments.

7.1. Contribution Summary

The parallelization coding tasks together with the performance evaluation reports using

the ACTS framework described in Section 3.1.1 contributed to the development of the

heterogeneous R&D projects that aim to redesign the data flow and to rewrite the re-

contruction code so that it can make use of parallel execution capabilities on CPU and

GPU. Using the lessons learned through this step, we proposed two different approaches

to automatic parallelization in order to relieve physics experts from the burden to main-

tain different repositories targeting different hardware platforms. Firstly, the clang-offload
source-to-source translator introduced in Section 3.3 proved its strength by having the

ability to modify and/or rewrite the abstract syntax tree of a C++ file based on predefined

templates; while the tool generates different sources for CPU and GPU, the repository

can only hold the C++ sequential implementation and generate the appropriate executa-

bles when needed. Nevertheless, this solution proved difficult to generalize when more

complex parallelization patterns (like reductions) were in place. Secondly, and the most

important contribution, is the development of the vecpar framework, introduced in Chap-

ter 4. This allows a C++ file (written using the vecpar abstractions) to be compiled for

multiple targets with close-to-native runtimes as shown in Chapter 6. We identified a few

corner cases in which vecpar induces a larger overhead and discussed and/or prototyped

solutions to alleviate this. Additionally, we ensure the reproducibility of our results by (a)

having all the code publicly available on github and (b) describing the test methodology

in Appendix D. The framework’s potential and limitations are summarized next.

7.1.1. Potential

Even though the vecpar framework was designed having the particle reconstruction use

cases in mind, it is not limited to this application domain. Any problem that can be

described in terms of a vecpar::algorithm and vecpar::parallel_algorithm(...),

can be parallelized on CPU and GPU. As detailed in Section 2.6, the scientific world is

adopting more functional programming concepts lately with the increasing number of

use cases for data parallelism.
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Additionally, by having platform-specific implementations, vecpar extracts the com-

plexity of addressing multiple architectures and therefore it can simplify the develop-

ment of a scientific application by requiring only a single-source platform-agnostic im-

plementation. The domain experts can provide the algorithms in C++ and by calling

vecpar::parallel_algorithm() they pass the responsibility for parallelization and po-

tential data transfers to the framework. Knowing that vecpar adds a minimum over-

head to native implementations, it can speedup the process of benchmarking to evaluate

whether there are significant advantages to using a specific technology choice. In case

there is, scientists can then decide to (a) implement the algorithms using OpenMP or

CUDA, or (b) use vecpar as a production-ready solution (which eases the ramp-up pro-

cess for the junior developers since no additional languages need to be learned). Also,

adding new vecpar backends to target new future architectures can be done transparently

for the vecpar developers and without any impact on the domain scientific code that is

decoupled from the parallelization strategies.

One of the major benefits of having the code written in a standardized API (like

OpenMP) is the guarantee for long-term support in all major compilers. Moreover with

the development of the OpenMP target runtime in LLVM/clang mentioned in Section 2.5,

a scientific application will soon be able to target GPUs from any vendor, just by recompil-

ing the code that calls the vecpar::ompt backend with the help of the new compiler. No

further code changes will be required to ensure portability. Therefore, coding productivity

is maximized by reducing the development effort.

7.1.2. Limitations

In order to use vecpar, besides the code porting to fit the above mentioned abstractions,

the data structures must also be converted to vecmem container types1. Moreover, the

size of a collection must be known at compile-time and the object types must be default
constructible; these are due to the GPU static memory allocation restriction.

There is currently limited support for hierarchial parallelism. By default, each backend

can parallelize over one direction; however, there is the option to imbricate the algorithms

as follows: an vecpar::omp::parallel_algorithm could use an algorithm that calls

vecpar::cuda::parallel_algorithm. Nevertheless, the execution is not expected to

be optimal since each OpenMP thread will use the same (default) CUDA stream to

communicate with the GPU and therefore create a potential bottleneck.

Also, at the moment, the OpenMP target backend does not fully support all the func-

tionality of vecpar. We prototyped efficient versions of a map-reduce algorithm but this

still has to be generalized to all use cases.

Another point would be regarding the concept of using "code as data", which is highly

exploited in functional programming. For the CUDA backend, vecpar sends the algorithm

1Nevertheless, since these are extensions of the std::vector, the conversion is not expected to introduce
notable time delays.
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as an argument to the global kernel function, which is then stored on the stack. When

its size is limited (like in the SAXPY/DAXPY or BabelStream examples), there is no real

impact on the overal performance. But when this is much larger in size (like in the track

reconstruction use case), it occupies most of the registers, creating uncoalesced memory

reads due to the need to constantly use both local and global memory. We estimate this

side-effect will be alleviated by storing the algorithm in CUDA’s constant cache, which

should free the other caches for the rest of the arguments. This still has to be tested with

a compiler that supports the __grid_constant__ descriptor (CUDA 11.7).

Lastly, there are several limitations with respect to the compilation process. First, since

vecpar relies on features from the C++20 standard, the compilation must be performed by

a compiler that supports this; examples of such compilers and their minimum versions

include LLVM/clang 10.x (2020), GNU/gcc 10.x (2020) and NVIDIA nvcc 12.x (2022);

therefore, while many C++ compiler versions can be used, the limitation is more on

the GPU side, when newer compilers are required. Second, as mentioned previously,

LLVM/clang is the only C++ compiler that is able to build all the vecpar backends; the

alternative is to use any C++ compiler2 for vecpar::omp and vecpar::ompt backends

and an nvidia compiler for vecpar::cuda backend. Third, for performance purposes, a

compiler with support for newer OpenMP standards is preferred; a notable example is

LLVM/clang 15.x.

7.2. Future Work

While an exhaustive list of development tasks for vecpar is presented in Appendix C, we

would like to draw the attention on a few significant changes. Firstly, the optimizations

prototyped for various edge-cases will be extended to all the vecpar backends; examples

of these include using shared memory in CUDA blocks for all the operations and fusing

composed operators (e.g. map-reduce and map-filter) in order to avoid an extra pass over

the input array(s). These should bring important speedups for GPUs. Secondly, make

use of latest OpenMP 5.2 specifications to write custom implementations for each accel-

erator family; this will allow the compilers to do an extra set of optimizations. Thirdly,

adding new capabilities like the support for imbricated parallelism would increase the

framework’s readiness to be used in production-like environments. Finally, making the

installation easier on any architecture by providing a spack package, would increase the

number of developers/projects interested in testing it.

Since the main motivation for this work resides in the domain of particle reconstruction,

a next milestone would be to port more steps of this workflow so that vecpar could compete

with other approaches that are currently being evaluated.

2For the OpenMP Target, the compiler has to be built and configured to provide offloading support.
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7.3. Development Experience Report

Based on the development effort conducted for this thesis, we would like to summarize

a few observation with respect to our experience. Firstly, using the Equations (4.11)

to optimize the operations most likely will not guarantee bitwise reproducibility due

to the non-associative nature of the floating point operations. Secondly, the OpenMP

target ecosystem (e.g. compilers, tools and profilers) has improved significantly in the

last 3 years, with support for NVIDIA GPU being much better than the one for AMD

ones. Additionally, the level of OpenMP support is different in every compiler so one

is required to have multiple implementations to ensure the best performance. Thirdly,

there are many inconsistencies throughout the compilers regarding the ways to configure

a build for a GPU; the flags are named differently, the expected values are sometimes

ambiguous, and the documentation regarding the correlation between them is usually

sparse or is missing all together. For example, when using the LLVM/clang compiler,

setting -fno-fast-math flag without setting -ffp-contract to OFF, will still instruct

the compiler to use aggressive optimizations for floating point operations; the GNU/gcc

compiler does not have a description of the flags’ behaviour in their documentation.

7.4. Conclusion

The vecpar framework provides performance-portable C++ abstractions that allow code

execution on multiple platforms with no prerequisite knowledge about hardware archi-

tectures from the domain scientists.



149

Bibliography

[Aaij et al., 2020] Aaij, R., Albrecht, J., Belous, M., Billoir, P., Boettcher, T., Rodríguez,

A. B., vom Bruch, D., Pérez, D. H. C., Vidal, A. C., Craik, D. C., Declara, P. F., Funke,

L., Gligorov, V. V., Jashal, B., Kazeev, N., Santos, D. M., Pisani, F., Pliushchenko, D.,

Popov, S., Quagliani, R., Rangel, M., Reiss, F., Mayordomo, C. S., Schwemmer, R.,

Sokoloff, M., Stevens, H., Ustyuzhanin, A., Cardona, X. V., and Williams, M. (2020).

Allen: A high-level trigger on GPUs for LHCb. Computing and Software for Big Science,

4(1). (Cited on pages 18, 118, and 181)

[Acun et al., 2014] Acun, B., Gupta, A., Jain, N., Langer, A., Menon, H., Mikida, E.,

Ni, X., Robson, M., Sun, Y., Totoni, E., Wesolowski, L., and Kale, L. (2014). Parallel

programming with migratable objects: Charm++ in practice. In SC ’14: Proceedings
of the International Conference for High Performance Computing, Networking, Storage and
Analysis, pages 647–658. (Cited on page 111)

[Ai et al., 2022] Ai, X., Allaire, C., Calace, N., Czirkos, A., Ene, I., Elsing, M., Farkas, R.,

Gagnon, L.-G., Garg, R., Gessinger, P., Grasland, H., Gray, H. M., Gumpert, C., Hrdinka,

J., Huth, B., Kiehn, M., Klimpel, F., Krasznahorkay, A., Langenberg, R., Leggett, C.,

Niermann, J., Osborn, J. D., Salzburger, A., Schlag, B., Tompkins, L., Yamazaki, T., Yeo,

B., Zhang, J., Mania, G., Kolbinger, B., Moyse, E., and Rousseau, D. (2022). A common

tracking software project. Computing and Software for Big Science. (Cited on page 45)

[Ai et al., 2021] Ai, X., Mania, G., Gray, H. M., Kuhn, M., and Styles, N. (2021). A

GPU-Based Kalman Filter for Track Fitting. Computing and Software for Big Science.

(Cited on pages 53, 55, 56, 57, and 180)

[Albrecht et al., 2019] Albrecht, J., Alves, A. A., Amadio, G., Andronico, G., Anh-Ky, N.,

Aphecetche, L., Apostolakis, J., Asai, M., Atzori, L., and et al. (2019). A Roadmap

for HEP Software and Computing R&D for the 2020s. Computing and Software for Big
Science, 3(1). (Cited on page 18)

[Albrecht et al., 2018] Albrecht, J., Bloom, K., Boccali, T., Boveia, A., De Cian, M.,

Doglioni, C., Dziurda, A., Farbin, A., Fitzpatrick, C., Gaede, F., George, S., Gligorov, V.,

Grasland, H., Grillo, L., Hegner, B., Kalderon, W., Kama, S., Koppenburg, P., Krutelyov,

S., Kutschke, R., Lampl, W., Lange, D., Moyse, E., Norman, A., Petric, M., Polci, F.,

Potamianos, K., Ratnikov, F., Raven, G., Ritter, M., Rizzi, A., Rodrigues, E., Rousseau,

D., Salzburger, A., Kennedy, L. S., Sokoloff, M. D., Stewart, G., Ustyuzhanin, A., Viren,



150 Bibliography

B., Williams, M., Winklmeier, F., and Wuerthwein, F. (2018). Hep community white

paper on software trigger and event reconstruction. (Cited on page 19)

[AMD, 2020] AMD (2020). AMD Instinct MI100 accelerator. Technical report. Accessed

on October 2022. (Cited on page 7)

[AMD, 2021] AMD (2021). AMD INSTINCT MI200 SERIES ACCELERATOR. Technical

report. Accessed on October 2022. (Cited on page 7)

[AMD, 2022a] AMD (2022a). AMD CDNA Whitepaper. Online, https://www.amd.

com/system/files/documents/amd-cdna-whitepaper.pdf, Accessed on June 2022.

(Cited on pages 36 and 179)

[AMD, 2022b] AMD (2022b). AMD ROCm Open Ecosystem. Online, https://

www.amd.com/en/graphics/servers-solutions-rocm, Accessed in October 2022.

(Cited on pages 37 and 179)

[Amdahl, 1967] Amdahl, G. M. (1967). Validity of the single processor approach to achiev-

ing large scale computing capabilities. In Proceedings of the April 18-20, 1967, Spring
Joint Computer Conference, AFIPS ’67 (Spring), page 483–485, New York, NY, USA.

Association for Computing Machinery. (Cited on page 122)

[Anderson et al., 1999] Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Don-

garra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., and Sorensen,

D. (1999). LAPACK Users’ Guide. Society for Industrial and Applied Mathematics,

Philadelphia, PA, third edition. (Cited on page 27)

[Argonne National Laboratory, 2022] Argonne National Laboratory (2022). AURORA.

Online, https://alcf.anl.gov/aurora. Accessed on October 2022. (Cited on page 8)

[Artigues et al., 2020] Artigues, V., Kormann, K., Rampp, M., and Reuter, K. (2020). Eval-

uation of performance portability frameworks for the implementation of a particle-in-

cell code. Concurrency and Computation: Practice and Experience, 32(11):e5640. e5640

cpe.5640. (Cited on pages 113 and 180)

[ATLAS Collaboration, 2022a] ATLAS Collaboration (2022a). ATLAS Experiment - De-

tector and Technology. Online https://atlas.cern/Discover/Detector, Accessed

in June 2022. (Cited on pages 12 and 179)

[ATLAS Collaboration, 2022b] ATLAS Collaboration (2022b). ATLAS Software and Com-

puting HL-LHC Roadmap. Technical report, CERN, Geneva. (Cited on pages 19

and 179)

[ATLAS Collaboration, 2022c] ATLAS Collaboration (2022c). Public ATLAS Luminos-

ity Results for Run-3 of the LHC. Technical report. Accessed on October 2022.

(Cited on pages 10 and 179)

https://www.amd.com/system/files/documents/amd-cdna-whitepaper.pdf
https://www.amd.com/system/files/documents/amd-cdna-whitepaper.pdf
https://www.amd.com/en/graphics/servers-solutions-rocm
https://www.amd.com/en/graphics/servers-solutions-rocm
https://alcf.anl.gov/aurora
https://atlas.cern/Discover/Detector


Bibliography 151

[Balogh et al., 2018] Balogh, G., Mudalige, G., Reguly, I., Antao, S., and Bertolli, C.

(2018). Op2-clang: A source-to-source translator using clang/llvm libtooling. In 2018
IEEE/ACM 5th Workshop on the LLVM Compiler Infrastructure in HPC (LLVM-HPC), pages

59–70. (Cited on page 115)

[Beckingsale et al., 2019] Beckingsale, D., Scogland, T. R. W., Burmark, J., Hornung, R.,

Jones, H., Killian, W., Kunen, A. J., Pearce, O., Robinson, P., and Ryujin, B. S. (2019).

RAJA: portable performance for large-scale scientific applications. In 2019 IEEE/ACM
International Workshop on Performance, Portability and Productivity in HPC, P3HPC@SC
2019, Denver, CO, USA, November 22, 2019, pages 71–81. IEEE. (Cited on pages 109

and 110)

[Billoir, 1984] Billoir, P. (1984). Track Fitting With Multiple Scattering: A New Method.

Nucl. Instrum. Meth., A225:352–366. (Cited on page 16)

[Bird, 1987] Bird, R. S. (1987). An introduction to the theory of lists. In Broy, M., editor,

Logic of Programming and Calculi of Discrete Design, pages 5–42, Berlin, Heidelberg.

Springer Berlin Heidelberg. (Cited on page 73)

[Bocci et al., 2020] Bocci, A., Kortelainen, M., Innocente, V., Pantaleo, F., and Rovere, M.

(2020). Heterogeneous reconstruction of tracks and primary vertices with the cms pixel

tracker. (Cited on pages 18, 118, 119, and 181)

[Braam, 2019] Braam, P. (2019). The lustre storage architecture. (Cited on page 5)

[CERN, 2017] CERN (2017). CERN Brochure. Online, https://home.cern/sites/

default/files/2018-07/CERN-Brochure-2017-002-Eng_0.pdf. (Cited on page 10)

[Chapman et al., 2008] Chapman, B. M., Jost, G., and van der Pas, R. (2008). Using
OpenMP - portable shared memory parallel programming. Scientific and engineering com-

putation. MIT Press. (Cited on page 23)

[Codeplay Software, 2022] Codeplay Software (2022). Online, https://github.com/

codeplaysoftware/syclacademy, Accessed on June 2022. (Cited on pages 30 and 179)

[Deakin et al., 2020] Deakin, T., Poenaru, A., Lin, T., and McIntosh-Smith, S. (2020). Track-

ing performance portability on the yellow brick road to exascale. In 2020 IEEE/ACM
International Workshop on Performance, Portability and Productivity in HPC (P3HPC), pages

1–13. (Cited on pages 114, 115, and 180)

[Deakin et al., 2018] Deakin, T., Price, J., Martineau, M., and McIntosh-Smith, S. (2018).

Evaluating attainable memory bandwidth of parallel programming models via Babel-

Stream. International Journal of Computational Science and Engineering, 17(3):247–262.

Special Issue on Novel Strategies for Programming Accelerators. (Cited on pages 114,

123, and 129)

https://home.cern/sites/default/files/2018-07/CERN-Brochure-2017-002-Eng_0.pdf
https://home.cern/sites/default/files/2018-07/CERN-Brochure-2017-002-Eng_0.pdf
https://github.com/codeplaysoftware/syclacademy
https://github.com/codeplaysoftware/syclacademy


152 Bibliography

[Doerfert et al., 2021] Doerfert, J., Huber, J., and Cornelius, M. (2021). Advancing OpenMP
Offload Debugging Capabilities in LLVM. Association for Computing Machinery, New

York, NY, USA. (Cited on page 41)

[Doerfert et al., 2023] Doerfert, J., Jasper, M., Huber, J., Abdelaal, K., Georgakoudis,

G., Scogland, T., and Parasyris, K. (2023). Breaking the vendor lock: Performance

portable programming through openmp as target independent runtime layer. In Pro-
ceedings of the International Conference on Parallel Architectures and Compilation Techniques,

PACT ’22, page 494–504, New York, NY, USA. Association for Computing Machinery.

(Cited on pages 41 and 179)

[Dong et al., 2021] Dong, Z., Gray, H., Leggett, C., Lin, M., Pascuzzi, V. R., and

Yu, K. (2021). Porting hep parameterized calorimeter simulation code to gpus.

(Cited on page 18)

[Dongarra and Luszczek, 2011] Dongarra, J. and Luszczek, P. (2011). TOP500, pages

2055–2057. Springer US, Boston, MA. (Cited on pages 1 and 6)

[Edwards et al., 2014] Edwards, H. C., Trott, C. R., and Sunderland, D. (2014). Kokkos:

Enabling manycore performance portability through polymorphic memory access

patterns. Journal of Parallel and Distributed Computing, 74(12):3202 – 3216. Domain-

Specific Languages and High-Level Frameworks for High-Performance Computing.

(Cited on page 107)

[Evans et al., 2022] Evans, J., Andersch, M., Sethi, V., Brito, G., and

Mehta, V. (2022). Online,https://developer.nvidia.com/blog/

nvidia-grace-hopper-superchip-architecture-in-depth/, Accessed on Novem-

ber 2022. (Cited on pages 35 and 179)

[Fandrey, 2010] Fandrey, D. (2010). Clang/LLVM Maturity Report. Moltkestr. 30, 76133

Karlsruhe - Germany. Computer Science Dept., University of Applied Sciences Karl-

sruhe. (Cited on page 28)

[Flynn, 2011] Flynn, M. (2011). Flynn’s Taxonomy, pages 689–697. Springer US, Boston,

MA. (Cited on page 2)

[Fowler, 2011] Fowler, M. (2011). Domain-Specific Languages. The Addison-Wesley signa-

ture series. Addison-Wesley. (Cited on page 101)

[Fujitsu, 2020] Fujitsu (2020). FUJITSU Processor A64FX. Technical report. Accessed on

October 2022. (Cited on page 7)

[Gamblin et al., 2015] Gamblin, T., LeGendre, M., Collette, M. R., Lee, G. L., Moody, A.,

de Supinski, B. R., and Futral, S. (2015). The spack package manager: Bringing order

to hpc software chaos. In Proceedings of the International Conference for High Performance

https://developer.nvidia.com/blog/nvidia-grace-hopper-superchip-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-grace-hopper-superchip-architecture-in-depth/


Bibliography 153

Computing, Networking, Storage and Analysis, SC ’15, New York, NY, USA. Association

for Computing Machinery. (Cited on page 5)

[Gayatri et al., 2018] Gayatri, R., Yang, C., Kurth, T., and Deslippe, J. (2018). A case study

for performance portability using openmp 4.5. In Chandrasekaran, S., Juckeland, G.,

and Wienke, S., editors, Accelerator Programming Using Directives - 5th International
Workshop, WACCPD 2018, Dallas, TX, USA, November 11-17, 2018, Proceedings, volume

11381 of Lecture Notes in Computer Science, pages 75–95. Springer. (Cited on pages 112,

113, and 180)

[Gessinger, 2022] Gessinger, P. (2022). Event data model: Upcoming develop-

ments. Online, https://indico.cern.ch/event/1184037/contributions/

5053609/attachments/2516564/4326715/2022-09-27-acts-ws-edm_v2.pdf.

(Cited on page 47)

[Gessinger et al., 2023] Gessinger, P., Grasland, H., Gray, H., Joube, S., Kusiak, K., Krasz-

nahorkay, A., Leggett, C., Mania, G., Niermann, J., Salzburger, A., Styles, N., Swatman,

S. N., and Yeo, B. (2023). CTD2022: traccc - GPU Track reconstruction demonstrator

for HEP. In 7th International Connecting the Dots Workshop, Princeton, USA, Proceedings.

Zenodo. (Cited on pages 47, 48, and 179)

[Guennebaud et al., 2010] Guennebaud, G., Jacob, B., et al. (2010). Eigen v3.

http://eigen.tuxfamily.org. (Cited on page 27)

[Gustafson, 1988] Gustafson, J. L. (1988). Reevaluating Amdahl’s Law. Commun. ACM,

31(5):532–533. (Cited on page 122)

[Gustafson, 2011] Gustafson, J. L. (2011). Amdahl’s Law. Springer US, Boston, MA.

(Cited on page 122)

[Hager and Wellein, 2011] Hager, G. and Wellein, G. (2011). Introduction to High Perfor-
mance Computing for Scientists and Engineers. Chapman and Hall / CRC computational

science series. CRC Press. (Cited on page 4)

[Halkiadakis, 2010] Halkiadakis, E. (2010). Proceedings for tasi 2009 summer school

on "physics of the large and the small": Introduction to the lhc experiments.

(Cited on page 9)

[Henriksen et al., 2014] Henriksen, T., Elsman, M., and Oancea, C. E. (2014). Size slicing:

A hybrid approach to size inference in futhark. In Proceedings of the 3rd ACM SIGPLAN
Workshop on Functional High-performance Computing, FHPC ’14, pages 31–42, New York,

NY, USA. ACM. (Cited on page 116)

[Henriksen et al., 2017] Henriksen, T., Serup, N. G. W., Elsman, M., Henglein, F., and

Oancea, C. E. (2017). Futhark: purely functional gpu-programming with nested paral-

lelism and in-place array updates. In Cohen, A. and Vechev, M. T., editors, Proceedings of

https://indico.cern.ch/event/1184037/contributions/5053609/attachments/2516564/4326715/2022-09-27-acts-ws-edm_v2.pdf
https://indico.cern.ch/event/1184037/contributions/5053609/attachments/2516564/4326715/2022-09-27-acts-ws-edm_v2.pdf


154 Bibliography

the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2017, Barcelona, Spain, June 18-23, 2017, pages 556–571. ACM. (Cited on pages 116,

117, and 180)

[Huber et al., 2022] Huber, T., Pophale, S., Baker, N., Carr, M., Rao, N., Reap, J., Holsap-

ple, K., Davis, J. H., Burnus, T., Lee, S., Bernholdt, D. E., and Chandrasekaran, S. (2022).

Ecp sollve: Validation and verification testsuite status update and compiler insight for

openmp. (Cited on page 26)

[IEEE, 2008] IEEE (2008). IEEE 754-2008 Standard for Floating-Point Arithmetic.

(Cited on pages 5 and 54)

[Ifrim et al., 2022] Ifrim, I., Vassilev, V., and Lange, D. J. (2022). GPU accelerated automatic

differentiation with clad. CoRR, abs/2203.06139. (Cited on page 115)

[Intel Corporation, 2022] Intel Corporation (2022). OneAPI Specification - Software

Architecture. Online, https://spec.oneapi.io/versions/latest/architecture.

html, Accessed in October 2022. (Cited on pages 39 and 179)

[Jones et al., 2015] Jones, C. D., Contreras, L., Gartung, P., Hufnagel, D., and Sexton-

Kennedy, L. (2015). Using the CMS threaded framework in a production environment.

Journal of Physics: Conference Series, 664(7):072026. (Cited on page 18)

[Khronos Group, 2022] Khronos Group (2022). Online, https://www.khronos.org/

sycl/, Accessed on June 2022. (Cited on pages 31 and 179)

[Koenneker, 2022] Koenneker, Y. (2022). Performance study on GPU of-

floading techniques using the Gauß matrix inverse algorithm. Online

https://wr.informatik.uni-hamburg.de/_media/research:theses:yannik_

koenneker_performance_study_on_gpu_offloading_techniques_using_the_

gauss_matrix_inverse_algorithm.pdf. (Cited on pages 61, 63, 64, 65, and 180)

[Larkin, 2022] Larkin, J. (2022). Developing HPC Applications with Standard C++,

Fortran, and Python. Online https://www.nvidia.com/en-us/on-demand/session/

gtcfall22-a41087/. NVIDIA GTC. (Cited on page 23)

[Lattner, 2002] Lattner, C. (2002). LLVM: An Infrastructure for Multi-Stage Optimization.

Master’s thesis, Computer Science Dept., University of Illinois at Urbana-Champaign,

Urbana, IL. http://llvm.cs.uiuc.edu. (Cited on page 40)

[Leggett et al., 2017] Leggett, C., Baines, J., Bold, T., Calafiura, P., Farrell, S., van Gem-

meren, P., Malon, D., Ritsch, E., Stewart, G., Snyder, S., Tsulaia, V., and and, B. W. (2017).

AthenaMT: upgrading the ATLAS software framework for the many-core world with

multi-threading. Journal of Physics: Conference Series, 898:042009. (Cited on page 18)

https://spec.oneapi.io/versions/latest/architecture.html
https://spec.oneapi.io/versions/latest/architecture.html
https://www.khronos.org/sycl/
https://www.khronos.org/sycl/
https://wr.informatik.uni-hamburg.de/_media/research:theses:yannik_koenneker_performance_study_on_gpu_offloading_techniques_using_the_gauss_matrix_inverse_algorithm.pdf
https://wr.informatik.uni-hamburg.de/_media/research:theses:yannik_koenneker_performance_study_on_gpu_offloading_techniques_using_the_gauss_matrix_inverse_algorithm.pdf
https://wr.informatik.uni-hamburg.de/_media/research:theses:yannik_koenneker_performance_study_on_gpu_offloading_techniques_using_the_gauss_matrix_inverse_algorithm.pdf
https://www.nvidia.com/en-us/on-demand/session/gtcfall22-a41087/
https://www.nvidia.com/en-us/on-demand/session/gtcfall22-a41087/


Bibliography 155

[LHC Education and Group, 2017] LHC Education, C. and Group, O.

(2017). Online, https://home.cern/sites/default/files/2018-07/

CERN-Brochure-2017-002-Eng_0.pdf, Accessed in June 2022. (Cited on pages 11

and 179)

[Lin et al., 2022] Lin, W.-C., Deakin, T., and McIntosh-Smith, S. (2022). Evaluating ISO

C++ Parallel Algorithms on Heterogeneous HPC Systems. In International Workshop on
Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems
held in conjunction with Supercomputing (PMBS). IEEE. in press. (Cited on page 41)

[Lopienska, 2022] Lopienska, E. (2022). The CERN accelerator complex, layout in 2022.

Complexe des accélérateurs du CERN en janvier 2022. General Photo. (Cited on pages 9

and 179)

[Lu et al., 2022] Lu, W., Shan, B., Raut, E., Meng, J., Araya-Polo, M., Doerfert, J., Malik,

A. M., and Chapman, B. (2022). Towards efficient remote openmp offloading. In

Klemm, M., de Supinski, B. R., Klinkenberg, J., and Neth, B., editors, OpenMP in a
Modern World: From Multi-device Support to Meta Programming, pages 17–31, Cham.

Springer International Publishing. (Cited on page 41)

[Ludwig, 2020] Ludwig, T. (2020). Lecture notes on Scientific Computing. On-

line, https://wr.informatik.uni-hamburg.de/teaching/wintersemester_2019_

2020/hochleistungsrechnen. (Cited on pages 1 and 121)

[Lund et al., 2009] Lund, E., Bugge, L., Gavrilenko, I., and Strandlie, A. (2009). Track

parameter propagation through the application of a new adaptive runge-kutta-nyström

method in the ATLAS experiment. Journal of Instrumentation, 4(04):P04001–P04001.

(Cited on pages 15 and 179)

[Marangoni and Wischgoll, 2016] Marangoni, M. and Wischgoll, T. (2016). Paper: Togpu:

Automatic source transformation from C++ to CUDA using clang/llvm. In Kao, D. L.,

Wischgoll, T., and Zhang, S., editors, Visualization and Data Analysis 2016, San Francisco,
California, USA, February 14-18, 2016, pages 1–9. Ingenta. (Cited on page 115)

[McCarthy, 1960] McCarthy, J. (1960). Recursive functions of symbolic expressions and

their computation by machine, part I. Commun. ACM, 3(4):184–195. (Cited on page 43)

[Meng, 2021] Meng, L. (2021). Atlas itk pixel detector overview. (Cited on pages 13

and 179)

[Moore, 1998] Moore, G. E. (1998). Cramming more components onto integrated circuits.

Proc. IEEE, 86(1):82–85. (Cited on page 1)

[Murphy, 2012] Murphy, K. P. (2012). Machine learning - a probabilistic perspective. Adaptive

computation and machine learning series. MIT Press. (Cited on page 16)

https://home.cern/sites/default/files/2018-07/CERN-Brochure-2017-002-Eng_0.pdf
https://home.cern/sites/default/files/2018-07/CERN-Brochure-2017-002-Eng_0.pdf
https://wr.informatik.uni-hamburg.de/teaching/wintersemester_2019_2020/hochleistungsrechnen
https://wr.informatik.uni-hamburg.de/teaching/wintersemester_2019_2020/hochleistungsrechnen


156 Bibliography

[NVIDIA Corporation, a] NVIDIA Corporation. CUDA C Programming Guide. Online

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html. Online,

Accessed on June 2022. (Cited on pages 3, 32, and 179)

[NVIDIA Corporation, b] NVIDIA Corporation. CUDA Zone. Online https://

developer.nvidia.com/cuda-zone. Online, Accessed on June 2022. (Cited on page 32)

[NVIDIA Corporation, c] NVIDIA Corporation. HPC-SDK. Online, https://

developer.nvidia.com/hpc-sdk. Online, Accessed on June 2022. (Cited on pages 32

and 179)

[NVIDIA Corporation, 2017] NVIDIA Corporation (2017). TESLA V100 PCIe GPU Ac-

celerator. Technical report. Accessed on October 2022. (Cited on page 7)

[NVIDIA Corporation, 2021] NVIDIA Corporation (2021). NVIDIA A100 TENSOR

CORE GPU. Technical report. Accessed on October 2022. (Cited on page 7)

[Oak Ridge National Laboratory, 2022] Oak Ridge National Laboratory (2022). Frontier.

Online, https://www.olcf.ornl.gov/frontier/. Online, Accessed on June 2022.

(Cited on pages 3 and 179)

[Patel et al., 2021] Patel, A., Tian, S., Doerfert, J., and Chapman, B. (2021). A Virtual GPU
as Developer-Friendly OpenMP Offload Target. Association for Computing Machinery,

New York, NY, USA. (Cited on page 41)

[Pennycook et al., 2016] Pennycook, S. J., Sewall, J. D., and Lee, V. W. (2016). A metric for

performance portability. CoRR, abs/1611.07409. (Cited on page 114)
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A. Contributors to Vecpar

Vecpar repository is open-source https://github.com/wr-hamburg/vecpar. The main

contributors until the time of this thesis are detailed in Figure A.1.

Figure A.1.: Vecpar’s contributors

https://github.com/wr-hamburg/vecpar
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B. Code Samples

B.1. Clang-offload Generated Code Samples

When the OpenMP target backend is used, starting from the same file in Listing 3.1, both

the main C++ file and the included header file are rewritten, as shown in Listing B.1 and

Listing B.2. In the former, the parallel pragmas are added while the data is moved on

device; in the latter, the functions invoked from a target region are marked accordingly

so that an assembly version for both CPU and GPU is generated at compile time. Note

that the functions are recursively included while the ones not needed in device code are

not affected (e.g. function h in Listing B.2).

1 #include "include/marker.hpp"

2 #include "functions.hpp"

3
4 int main(int argc, char** argv) {

5 // int n = ...

6 int *h_data = (int *) malloc(sizeof(int) * n);

7 int *h_result = (int *) malloc(sizeof(int) * n);

8 // init arrays ...

9
10 auto lambda = []<typename T, typename R>(T* data, R* result, int n) {

11
12 T* d_data = &data[0];

13 R* d_result = &result[0];

14
15 #pragma omp target enter data map(to:d_data[0:n], d_result[0:n])

16 #pragma omp target teams distribute parallel for

17 for (int idx = 0 ; idx < n; idx ++) {

18 functions::f(d_data[idx], d_result[idx]);

19 }

20 #pragma omp target exit data map(from:d_result[0:n])

21 };

22
23 lambda(h_data, h_result, n);

Listing B.1: Translated code for the main file using OpenMP target

1 namespace functions {

2 int h(int i) {

3 i = i - 5;

4 return i;

5 }
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6
7 #pragma omp declare target

8 int g(int i) {

9 i = i + 100;

10 return i;

11 }

12 #pragma omp end declare target

13
14 #pragma omp declare target

15 void f(int& data_i, int& result_i) {

16 result_i = g(data_i) + 10;

17 }

18 #pragma omp end declare target

19 }

Listing B.2: Translated code for the functions namespace using OpenMP target

Similarly to the OpenMP target backend, when using the CUDA backend, both initial

C++ files are modified as shown in Listing B.3 and Listing B.4. In the former, the memory

is allocated and transferred to the device, a kernel is being called and the results are copied

to the host; also, CUDA headers are being included. In the latter, the functions called

by the CUDA kernel are marked with appropriate specifiers and the function pointer is

copied to the device.

1 #include <cuda.h>

2 #include "include/mark-offload/marker.hpp"

3 #include "functions.hpp"

4
5 int main(int argc, char** argv) {

6 // int n = ...

7 int *h_data = (int *) malloc(sizeof(int) * n);

8 int *h_result = (int *) malloc(sizeof(int) * n);

9 // init arrays ...

10
11 auto lambda = []<typename T, typename R>(T* data, R* result, int n) {

12
13 T* d_data;

14 R* d_result;

15 api::func_t<T,R> h_f;

16
17 cudaMalloc(&d_data, n*sizeof(data[0]));

18 cudaMalloc(&d_result, n*sizeof(result[0]));

19
20 cudaMemcpy(d_data, data, n*sizeof(data[0]), cudaMemcpyHostToDevice);

21 cudaMemcpy(d_result, result, n*sizeof(result[0]), cudaMemcpyHostToDevice);

22
23 // copy function pointer to the device

24 cudaMemcpyFromSymbol(&h_f, functions::redirect<T,R>,

25 sizeof(api::func_t<T,R>));

26
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27 api::kernel<<<1,n>>>(h_f, d_data, d_result , n);

28 // wait for device execution

29 cudaDeviceSynchronize();

30
31 cudaMemcpy(result, d_result, n*sizeof(result[0]), cudaMemcpyDeviceToHost);

32
33 cudaFree(d_data);

34 cudaFree(d_result);

35 };

Listing B.3: Translated code for the main file using CUDA

1 namespace functions {

2 int h(int i) {

3 i = i - 5;

4 return i;

5 }

6 __host__ __device__ int g(int i) {

7 return i;

8 }

9 __host__ __device__ void f(int& data_i, int& result_i) {

10 result_i = g(data_i) + 10;

11 }

12 template <typename TData, typename TResult>

13 __device__ api::func_t<TData&, TResult&> redirect = f;

14 }

Listing B.4: Translated code for the functions namespace using CUDA

B.2. Vecpar SAXPY/DAXPY Benchmark

The input/output for SAXPY/DAXPY are vecmem::vector container allocated using the

memory resources exposed by the vecmem library (e.g. host memory and CUDA man-

aged memory). We leave out the test setup and initialization part since this is identical

for both the benchmark and vecpar use cases. Header files includes are also left out for

space purposes; nevertheless the code can be checked online in the github repository.

The native OpenMP implementation is shown in Listing B.5.

1 template <class T>

2 void benchmark(vecmem::vector<T> &x, vecmem::vector<T> &y, T a) {

3 #pragma omp parallel for

4 for (size_t i = 0; i < y.size(); i++) {

5 y[i] = x[i] * a + y[i];

6 }

7 }

Listing B.5: OpenMP SAXPY/DAXPY kernel implementation
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For the CUDA part, the global kernel is shown in Listing B.6, and it is called from

a function which either explicitely handles the memory copies or assumes the data is

accessible through CUDA managed memory mechanism; these are shown in Listing B.7

and Listing B.8 respectively. In these listings, a vecpar::config variable is set in order

to make sure the same default1 number of threads and blocks are used for all the tests.

Also, the CHECK_ERROR macro is defined by the vecpar library inline with the CUDA

documentation to check and log device errors.

1 template <class T>

2 __global__ void kernel(vecmem::data::vector_view <T> x_view,

3 vecmem::data::vector_view <T> y_view, T d_a) {

4 vecmem::device_vector <T> d_x(x_view);

5 vecmem::device_vector <T> d_y(y_view);

6 size_t idx = blockIdx.x * blockDim.x + threadIdx.x;

7 if (idx >= d_x.size())

8 return;

9 d_y[idx] = d_x[idx] * d_a + d_y[idx];

10 }

Listing B.6: SAXPY/DAXPY CUDA kernel

1 vecmem::cuda::device_memory_resource d_mem;

2 vecmem::cuda::copy copy;

3 using vecmem::copy::type;

4
5 template <class T>

6 void benchmark(vecmem::vector<T> &x, vecmem::vector<T> &y, T a) {

7 // copy x vector to the device

8 auto x_buffer = copy.to(vecmem::get_data(x), d_mem, host_to_device);

9 auto x_view = vecmem::get_data(x_buffer);

10 // copy y vector to the device

11 auto y_buffer = copy.to(vecmem::get_data(y), d_mem, host_to_device);

12 auto y_view = vecmem::get_data(y_buffer);

13 // set the kernel configuration

14 vecpar::config c = vecpar::cuda::getDefaultConfig(x.size());

15 // invoke the CUDA kernel

16 kernel<T><<<c.m_gridSize ,c.m_blockSize , c.m_memorySize >>>(x_view, y_view, a);

17 // synchronize and check errors

18 CHECK_ERROR(cudaGetLastError());

19 CHECK_ERROR(cudaDeviceSynchronize());

20 // copy result (y) back to host

21 copy(y_buffer , y, device_to_host);

22 }

Listing B.7: CUDA function which handles memory allocation and invokes the

SAXPY/DAXPY kernel in Listing B.6

1If vector’s size is smaller than 256, then it is used as block size; otherwise, the block size is set to 256 and
the number of blocks are computed to cover the problem size.
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1 template <class T>

2 void benchmark(vecmem::vector<T> &x, vecmem::vector<T> &y, T a) {

3 // get the non-owning view of the data

4 auto x_view = vecmem::get_data(x);

5 auto y_view = vecmem::get_data(y);

6 // set the default configuration

7 vecpar::config c = vecpar::cuda::getDefaultConfig(x.size());

8 // invoke the CUDA kernel

9 kernel<<<c.m_gridSize , c.m_blockSize , c.m_memorySize >>>(x_view, y_view, a);

10 // sychronize and check potential errors

11 CHECK_ERROR(cudaGetLastError());

12 CHECK_ERROR(cudaDeviceSynchronize());

13 }

Listing B.8: CUDA function which uses vectors in managed memory and invokes the

SAXPY/DAXPY kernel in Listing B.6

B.3. Detray RKN Algorithms

At the moment, we ported two algorithms to vecpar. These use either free or bound

parameters to estimate the next track states and are listed in Listing B.9 and Listing B.10

respectively.

1 #ifndef DETRAY_RK_FREE_ALG_HPP

2 #define DETRAY_RK_FREE_ALG_HPP

3
4 #include "common.hpp"

5
6 namespace detray {

7
8 struct rk_stepper_free_algorithm

9 : public vecpar::algorithm::parallelizable_mmap <

10 vecpar::collection::One,

11 vecmem::vector<free_track_parameters >,

12 const vector3> {

13
14 TARGET free_track_parameters& mapping_function(

15 free_track_parameters& track,

16 const vector3& B) const {

17
18 free_track_parameters c_traj(track);

19
20 // Define RK stepper

21 rk_stepper_t rk_stepper(B);

22 crk_stepper_t crk_stepper(B);

23
24 // RK Stepping into forward direction

25 prop_state <rk_stepper_t::state, nav_state > propagation{
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26 rk_stepper_t::state{track}, nav_state{}};

27 prop_state <crk_stepper_t::state, nav_state > c_propagation{

28 crk_stepper_t::state{c_traj}, nav_state{}};

29
30 crk_stepper_t::state& crk_state = c_propagation._stepping;

31
32 nav_state& n_state = propagation._navigation;

33 nav_state& cn_state = c_propagation._navigation;

34
35 crk_state.template set_constraint <step::constraint::e_user >(

36 0.5 * unit_constants::mm);

37 n_state._step_size = 1. * unit_constants::mm;

38 cn_state._step_size = 1. * unit_constants::mm;

39
40 for (unsigned int i_s = 0; i_s < rk_steps; i_s++) {

41 rk_stepper.step(propagation);

42 crk_stepper.step(c_propagation);

43 crk_stepper.step(c_propagation);

44 }

45
46 // Backward direction

47 // Roll the same track back to the origin

48 n_state._step_size *= -1. * unit_constants::mm;

49 cn_state._step_size *= -1. * unit_constants::mm;

50
51 for (unsigned int i_s = 0; i_s < rk_steps; i_s++) {

52 rk_stepper.step(propagation);

53 crk_stepper.step(c_propagation);

54 crk_stepper.step(c_propagation);

55 }

56
57 return track;

58 }

59 }; // end algorithm

60
61 } // namespace detray

62
63 #endif

Listing B.9: RKN stepper using free track parameters

1 #ifndef DETRAY_RK_BOUND_ALG_HPP

2 #define DETRAY_RK_BOUND_ALG_HPP

3
4 #include "common.hpp"

5
6 namespace detray {

7
8 struct rk_stepper_bound_algorithm

9 : public vecpar::algorithm::parallelizable_map <
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10 vecpar::collection::One,

11 vecmem::vector<bound_track_parameters >,

12 vecmem::vector<bound_track_parameters >,

13 const vector3,

14 const transform3> {

15
16 TARGET bound_track_parameters& mapping_function(

17 bound_track_parameters& out_param ,

18 const bound_track_parameters& in_param,

19 const vector3& B,

20 const transform3& trf) const {

21
22 mag_field_t mag_field(B);

23 prop_state <crk_stepper_t::state, nav_state > propagation{

24 crk_stepper_t::state(in_param , trf), nav_state{}};

25 crk_stepper_t::state& crk_state = propagation._stepping;

26 nav_state& n_state = propagation._navigation;

27
28 // Decrease tolerance down to 1e-8

29 crk_state.set_tolerance(rk_tolerance);

30
31 // RK stepper and its state

32 crk_stepper_t crk_stepper(mag_field);

33
34 // Path length per turn

35 scalar S = 2. * std::fabs(1. / in_param.qop()) / getter::norm(B) * M_PI;

36
37 // Run stepper for half turn

38 unsigned int max_steps = 1e4;

39
40 for (unsigned int i = 0; i < max_steps; i++) {

41 crk_state.set_constraint(S - crk_state.path_length());

42 n_state._step_size = S;

43 crk_stepper.step(propagation);

44 if (std::abs(S - crk_state.path_length()) < 1e-6) {

45 break;

46 }

47 }

48
49 // Bound state after one turn propagation

50 out_param = crk_stepper.bound_state(propagation , trf);

51 return out_param;

52 }

53
54 }; // end algorithm

55
56 } // namespace detray

57 #endif

Listing B.10: RKN stepper using bound track paramters
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C. Vecpar Backlog

Ongoing and future work address the known issues and optimizations listed below.

C.1. Known issues

1. Results are incorrect when a parallel_reduce algorithm whose identity element is not

0 is executed using the native CUDA backend. This is the motivation for adding

the identity_function to the algorithm’s definition. While the OpenMP and OpenMP

Target backends are already using this approach, the CUDA backend still needs to

be adapted.

2. The BabelStream benchmark shows an error of 10−4 for float operands when using

the optimized prototype version of parallel_map_reduce in the OpenMP target

backend, while double precision operations are within the accepted tolerance. While

this is assumed to be due the non-associativity of the floating point operations, it

needs further investigation before a similar implementation is generalized to the

other backends.

3. There is an edge case when the vecmem library is prevented from releasing the

GPU memory because vecpar references are not properly deleted. This can be

reproduced only when using the CUDA backend, with large arrays stored in host-

memory. To solve this but also to slightly improve the performance, we plan to use

shared pointers as input and output for arrays in future vecpar versions.

C.2. Productivity and Performance Optimizations

1. Add context parameters for parallelizable_filter and parallelizable_reduce. This would

allow easy porting of some other reconstruction steps like clustering.

2. Add CUDA implementations for vecpar operators that could handle device pointers

directly. At the moment, vecpar only supports input data stored in CPU memory

or CUDA managed memory. By extending this to device memory as well, the

algorithms can be easier and more efficiently composed in execution chains. This is

correlated to the bugfix related to the usage of shared pointers.

3. Extend the portability by adding a new SYCL-based backend using the SYCL sup-

port from the vecmem library.



172 C. Vecpar Backlog

4. Enhance chain functionality to support vecmem::jagged_vectors as well.

5. Support a user-specified number of iterable collections as input parameters to vecpar

operations; currently this number is 5 for the OpenMP and CUDA backends, and 3

for the OpenMP target.

6. Hierarchical parallelism – Not only support this in an efficient way (using a pool of

streams that communicate with the GPU(s)) but also provide an automatic detection

of invalid usecases (e.g. no I/O operation should happen in a code that is supposed

to be executed on a GPU).

7. Support massive parallelism by adding an MPI backend based on 3rd party libraries,

like for example ompcluster1.

8. Integrate clang-offload tool into the vecpar framework; this can trigger optimiza-

tions around the AST rooted in the vecpar function calls.

9. Use new heuristics and machine learning techniques to estimate an optimal config-

uration for a vecpar algorithm based on a given platform using 3rd party libraries

like hwloc2.

10. Extend the prototype approaches for parallel_map and parallel_map_reduce from the

OpenMP target backend to other overloaded versions of them from the same and

from the other backends.

11. Improve productivity by providing a Spack package for an easy installation and

Python bindings.

1https://ompcluster.gitlab.io/
2https://www.open-mpi.org/projects/hwloc/

https://ompcluster.gitlab.io/
https://www.open-mpi.org/projects/hwloc/
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D. Reproducibility Artifacts

The vecpar framework is open-source on github: https://github.com/wr-hamburg/

vecpar. The only required dependency is the vecmem library. To compile all the vecpar

backends (including the CUDA one), a version of LLVM/clang compiler with offloading

support is required and CUDA libraries have to be installed; otherwise, gcc with offload-

ing support can only build the OpenMP and OpenMP target backends. For testing on an

AMD GPU, ROCm package has to be reachable.

The recommended setup can be created using spack package manager as shown in

Listing D.1. Note that the latest version of CUDA will be automatically installed to-

gether with LLVM. For downloading a specific version (compatible to an existing driver),

explicitely add this to the install command.

# install clang with offloading support

spack install llvm@14.0.0 +all_targets +cuda cuda_arch=<XY>

# install vecmem

spack install vecmem@0.22.0

# setup the support for the test infrastructure

spack install googletest

Listing D.1: Install dependencies and the compiler

For compiling on an AMD GPU, download and install the AOMP compiler as docu-

mented online1.

To download, build and install vecpar follow the steps in Listing D.2. Disable the

CUDA backend if the compilation happens either on a machine which does not have an

NVIDIA GPU or the compiler is not clang. Disable the OpenMP Target (OMPT) backend

if the compiler does not have offloading capabilities.

# download the sources

git clone --recurse-submodules https://github.com/wr-hamburg/vecpar.git

# compile

cmake -DCMAKE_BUILD_TYPE=Release -S vecpar -B vecpar-build

cmake --build vecpar-build \

-DVECPAR_BUILD_OMP_BACKEND=On \

-DVECPAR_BUILD_CUDA_BACKEND=On \

-DVECPAR_BUILD_OMPT_BACKEND=On \

-DVECPAR_BUILD_TESTS=On

# local installation default location is /usr/local/lib64 and /usr/local/

include (sudo rights might be required)

1https://github.com/ROCm-Developer-Tools/aomp

https://github.com/wr-hamburg/vecpar
https://github.com/wr-hamburg/vecpar
https://github.com/ROCm-Developer-Tools/aomp
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cmake --install vecpar-build

Listing D.2: Setup vecpar framework

D.1. Vecpar Internal Benchmark

To run the performance tests, invoke the shell script saxpy_and_chain.sh from the vecpar

repository:

sh vecpar/test/scripts/saxpy_and_chain.sh $1 $2 $3 $4

with the following arguments: $1 is the number of repetition for each test, $2 is the number

of OpenMP threads, $3 is the fully qualified path to the location of vecpar-build/test/

and $4 is the fully-qualified path to the location where to store the CSV files generated by

the tests. The script loads the specific versions of the libraries using spack, runs the test

executables and then unloads the packages. The name of the result files use the format:

platform_kernel_memoryallocator.csv, e.g. gpu_saxpy_mm.csv; the results produced

by the OpenMP target executable have ompt in the file name.

D.2. BabelStream Benchmark

The vecpar implementation is part of an open-source repository on github2. To run the

vecpar tests, see the following steps3:

1. Choose a vecpar setup by configuring the build

• VecparStream using the OMP backend on CPU

cmake -Bbuild/ -H. -DCMAKE_BUILD_TYPE=Release

-DMODEL=vecpar

-DOFFLOAD=OFF

-DVECPAR_BACKEND=NATIVE

• VecparStream using the CUDA backend, arrays allocated in host memory, on

NVIDIA GPU with sm_XY compute capability

cmake -Bbuild/ -H. -DCMAKE_BUILD_TYPE=Release

-DMODEL=vecpar

-DOFFLOAD=NVIDIA:sm_XY

-DVECPAR_BACKEND=NATIVE

-DMEM=DEFAULT

• VecparStream using the OMPT backend, arrays allocated in host memory, on

NVIDIA GPU with sm_XY compute capability

2https://github.com/wr-hamburg/BabelStream, checkout the vecpar branch.
3The BabelStream authors recommend removing an existing build folder before changing the test setup

for a new one.

https://github.com/wr-hamburg/BabelStream
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cmake -Bbuild/ -H. -DCMAKE_BUILD_TYPE=Release

-DMODEL=vecpar

-DOFFLOAD=NVIDIA:sm_XY

-DVECPAR_BACKEND=OMPT

• VecparStream using OMPT backend, arrays allocated in host memory, on AMD

card with architecture gfx1031

cmake -Bbuild/ -H. -DCMAKE_BUILD_TYPE=Release

-DMODEL=vecpar

-DOFFLOAD=AMD:gfx1031

-DVECPAR_BACKEND=OMPT

-DCXX_EXTRA_FLAGS=-fopenmp-targets=amdgcn-amd-amdhsa -Xopenmp-

target=amdgcn-amd-amdhsa -march=gfx1031

2. Build the code

cmake --build build

3. Run different scenarios by setting the variables PRECISION and BENCHMARK control.

If PRECISION is left unset, the tests will allocate double-precision arrays; to request

single-precision, set it to --float. By default, all the benchmarks are being executed

when BENCHMARK is not set; to run only the triad benchmark, set --triad-only.

./build/vecpar-stream $PRECISION $BENCHMARK --csv > vecpar.csv

For the comparison plots, Kokkos 3.7.1 was installed locally and was built by the

BabelStream together with the associated tests by setting the flag -DKOKKOS_IN_TREE.

To check the performance optimization proposed for the map_reduce case, run the exe-

cutable created by the automated tests: vecpar-build/test/ompt/benchmark_ompt_gpu.

This will generate a CSV file with the same name which contains entries for running the

tests with different vector sizes; the column "lib_total" states the time for running the

code with the initial implementation which was parallel_reduce(parallel_map(...)),

while the column "lib_grouped" states the time for the optimized version.

D.3. Track Reconstruction – RKN Stepper

To run the tests, a local installation of vecpar is mandatory. The code is available open-

source on github4. Since our first evaluation tests, the code has been improved by the

ACTS team. Nevertheless, for the simplified RKN stepper test, commenting out line 281

from the file /core/include/detray/propagator/rk_stepper.ipp which computes the

transport jacobians. No additional code change has to be done for the realistic. The

cmake file which configure the tests5 should be adapted to use the architecture for the

4https://github.com/georgi-mania/detray, vecpar branch, revision number
e3cebacbab47d02e4732336d4e88744dca f d f 3 f 7

5detray/tests/unit_tests/vecpar/CMakeLists.cmake

https://github.com/georgi-mania/detray
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GPU. Then the last step, is to configure the build to use a specific precision (float or

double), in release mode. An example is shown below:

cmake -DCMAKE_BUILD_TYPE=Release \

-DDETRAY_CUSTOM_SCALARTYPE=float \

-S detray \

-B detray-build

cmake --build detray-build/ -j 12

On an environment with CUDA support and an NVIDIA GPU, the compilation will

produce the following executables:

• detray_test_array_cuda and detray_test_eigen_cuda – CUDA code with alge-

bra backends array6 or eigen compiled with nvcc

• detray_test_vecpar_array_cpu, detray_test_vecpar_array_gpu,

detray_test_vecpar_eigen_cpu, detray_test_vecpar_eigen_gpu – The same

C++/vecpar code with algebra backends array or eigen, compiled for host or device

(NVIDIA GPU).

• detray_test_vecpar_array_ompt_gpu – C++/vecpar implementation using vecpar

OpenMP target compiled for NVIDIA/AMD GPU

For a system with an AMD GPU, only the executables using OpenMP and OpenMP

target backends will be generated. Special compilation flags might be required for AMD

GPU.

A couple of shell scripts7 were written to setup the test environment and to easily

produce the csv files with the runtimes. Similar to the script in Section D.1, the input

parameters are the number of test repetions, the number of CPU OpenMP threads, the

fully-qualified location of the build folder and the location to store the resulting files.

Nevertheless, the executables can also be invoked manually like in the following example:

./detray_test_vecpar_array_gpu --gtest_repeat=$N \

--gtest_filter=rk_stepper_vecpar.free_state_host_mr_time

6The naming array is interchangable with cmath for the algebra backend developed by the ACTS team
7The scripts are available under detray/tests/unit_tests/vecpar/scripts
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