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Mr. Tweedy:
What is it?

Mrs. Tweedy:
It’s a pie machine, you idiot. Chickens go in, pies come out.

Mr. Tweedy:
Ooh, what kind of pies?

Mrs. Tweedy:
Apple.

Mr. Tweedy:
My favourite!

Dialogue, Lord, P., Park, N. (����). Chicken Run. DreamWorks
Distribution.





Zusammenfassung/Abstract

Zusammenfassung (Deutsch): Diese Arbeit präsentiert Methoden und Werkzeuge
zur Kalibrierung und Betrieb des CALICE Analogen Hadronenkalorimeters (AHCAL),
eines hochgranularen Stahl-Szintillator-Kalorimeters, das für die Verwendung in der
Teilchenflußrekonstruction (Particle Flow) in einem zukünftigen Präzisions-Leptonen-
Kollisions-Experiment entwickelt wurde und eine hervorragende Energieauflösung für
Jets erfordert. Diese Kalorimetrie-Methode basiert auf hochgranularen Kalorimetern,
exzellenter Detektor-Kalibrierung und anspruchsvollen Clustering-Algorithmen, um
Energiedeposition (energy deposits) von verschiedenen Teilchen zu unterscheiden. Das
AHCAL verfügt über etwa ��.��� Auslesekanäle, die Silizium-Photomultiplier (SiPMs)
zur Detektion von Szintillationslicht verwenden, und ist einzigartig in seiner Fähigkeit,
sowohl Energie als auch einen Zeitstempel mit einer zeitlichen Auflösung von bis zu ���
Pikosekunden zu messen.

In dieser Arbeit werden Software-Werkzeuge und Algorithmen entwickelt, um das
AHCAL und die SiPMs zu kalibrieren und zu betreiben. Zunächst wird ein flexibles
Monte-Carlo-Programm namens LightSimtastic vorgestellt, das die Antwort der SiPMs
im linearen Regime simuliert, in dem Sättigungseffekte vernachlässigt werden können.
Die Eingabewerte für das Programm sind die mittlere Anzahl und die zeitliche Verteilung
der Geiger-Entladungen (Geiger discharge) von Photonen sowie die Dunkelzählrate (dark
count rate). Anschließend wird ein weiteres Software-Werkzeug zur Charakterisierung
der SiPM-Spektren namens PeakOTron eingeführt. Dieses Programm fittet die gesamten
Ladungsspektren (charge spectrum) an, einschließlich der Intervalle zwischen den
Photoelektronen-Spitzen (photoelectron peaks), was es ermöglicht, neben der mittleren
Anzahl detektierter Photonen auch Verstärkung (gain), Verstärkungsverteilung (gain
spread), prompten Übersprechen (prompt cross-talk), Grundlinie (pedestal) und elektro-
nisches Rauschen (electronics noise), die Dunkelzählrate sowie die Wahrscheinlichkeit
und Zeitkonstante von Nachentladungen aus den Ladungsspektren zu bestimmen. Die
Startwerte der Anpassungsparameter werden aus den Ladungsspektren extrahiert, und
das Programm liefert eine gute Beschreibung sowohl von Simulations- als auch von
experimentellen Daten. Drittens wird ein neuronales Netzwerkmodell (neural network
model) zur Softwarekompensation entwickelt, dass für das AHCAL verwendet wird.
Dabei werden räumliche und zeitliche Ereignisinformationen des AHCAL und Energiein-
formationen verwendet, um die Empfindlichkeit für die Entwicklung von Schauern und
den Neutronenanteil des Hadronenschauers zu verbessern. Die Methode erzeugte eine
lineare Detektorantwort (detector response) bei der Kompensation von sowohl simulierten
als auch experimentellen Hadronenschauer-Daten. Sie übertraf eine veröffentlichte Kon-



trollmethode in Bezug auf die Auflösung für jede untersuchte Teilchenenergie. Schließlich
werden neuronale Netzwerkmodelle zur Schauertrennung angewendet, um geladene
und synthetische neutrale Hadronenschauer zu trennen.Das AHCAL erweist sich als ein
äußerst effektiver Teilchenfluß-Kalorimeter, bei dem mehr als 90 % der Ereignisse in der
Kalorimeterauflösung für die meisten Kombinationen von Teilchenenergien rekonstruiert
werden können. Dies verbessert sich signifikant in den anspruchsvollsten Fällen unter
Verwendung von Zeitinformationen als zusätzliche Clustering-Dimension.



Abstract (English): This thesis presents methods and tools for the calibration and
operation for the CALICE Analogue Hadronic Calorimeter (AHCAL), a highly-granular,
steel-scintillator calorimeter designed for use in Particle Flow in a future precision lepton
collider experiment requiring excellent jet energy resolution. This calorimetry method
relies on highly-granular calorimeters, excellent detector calibration and sophisticated
clustering algorithms to resolve energy deposits from different particles. The AHCAL
has around ��,��� readout channels, utilising silicon photomultipliers (SiPMs) to read
scintillation light, and is unique for its capacity to measure both energy and a timestamp
with up to 100 ps timing resolution.

In this thesis, software tools and algorithms are developed to calibrate and operate the
AHCAL and SiPMs. Firstly, a flexible Monte Carlo program called LightSimtastic is
presented which simulates the response of SiPMs in the linear regime in which saturation
effects can be ignored. Inputs to the program are the mean number and time distribution
of Geiger discharges from photons, and the dark-count rate. Then, another software tool
for the characterisation of SiPM spectra called PeakOTron is introduced. This program
fits the entire charge spectra, including the intervals in-between the photoelectron peaks,
which allows determining, in addition to the mean number of detected photons, gain, gain
spread, prompt cross-talk, pedestal, and electronics noise, the dark-count rate as well as the
probability and time constant of after-pulses from charge spectra. The starting values of
the fit parameters are extracted from the charge spectra, and the program provides a good
description of both simulation and experimental data. Thirdly, a neural network model
for software compensation developed for the AHCAL is presented, using spatial and
temporal event information from the AHCAL and energy information, which is expected
to improve sensitivity to shower development and the neutron fraction of the hadron
shower. The method produced a linear detector response in compensating both simulation
and experimental hadron shower data. It outperformed a published control method in
terms of resolution for every particle energy studied. Lastly, neural network models for
shower separation are applied to separating charged and synthetic neutral hadron shower
events using the AHCAL detector. The AHCAL is demonstrated to be a highly effective
Particle Flow Calorimeter, with > 90 % of events being reconstructed in the calorimeter
resolution for most particle energy combinations that improve significantly in the most
challenging cases using timing information as an additional clustering dimension.



High-Learned Mardlin’ ’Bout What I Dun (Norfolk): This big ol’ barney what I ’rit
is ’bout ’ what I larned’ ’bout a big ol’ whatsit called a A-hach-CAL for gorpin’ at tiny
party-cools when yoo hull’em at wun’nother lyke cars on the Acle Straight. As’ got luds’a
tiny little doodahs called silicon pho-to-multi-plyers or S-eye-PMs for seein’ the lyte
whass’ cumin’ orf bits of old party-cools; there’s more’o them doodahs than idjuts and
rum’muns on Prince O’Wales Rud on Fryday Nyght, or even Portman Rud on a Match
Day. Yoo need lots of ’em ’cos yoo myte strain yer eyes if yoo look too hard; an ’as got the
tyme as well, ’case you fergit.

In this ol’ barney, I fiddled ’bout with the old compooter so ’at myte make the A-hach-CAL
work ’bit bettugh. I made a thin’ called LightSimtastic, whass a tool for sim-yew-latin’
the charge and current orf a S-eye-PM. I also made a thin’ called PeakOTron, whass’a tool
for figurin’ out wass gun’ann in that old S-eye-PM from the charge. Thass’ got luds of
bits’un bobs what it spoos out, lyke the gain, the gain sprehd, the prompt cross-blarin’,
pedestal, dark count rayte, and even the probability of arfter-pulses and arfter-pulses
tyme-constants. Blow me down, ’at ’ent too bad compared to the ol’ sim-yew-lation and
data. Thass’ also got a bit gunn’an ’bout a noo-ral network was trained for figurin’ out
what the old A-hach-CAL shuda measured when it dint to improve the resulooshon, and
’as a bit speshul cos ’at dun’t get stuck in the old energy range lyke other meffurds. ’At
uses tyme and spatial infermation, an even does a bit bettugh than the standard meffurd,
which ’ent too bad, all thins’ considered. Fynally, a buncha noo-ral networks for figurin’
out whass’a nootral and whass’a charged shower in the old’ A-hach-CAL were trained.
’At proove the A-hach-CAL ’ent too bad at figurin’ out whass’wat; more ’an 90 % of the
events, are within old resulooshon for most combinashuns of party-cool energies, and get
qyte a bit bettugh for rum’muns using tyme infermation.
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Introduction �
High-energy particle colliders are used to study the products of collisions
to explore the fundamental building blocks of matter and interactions.
Lepton colliders can provide precision measurements of quantities of
scientific interest, such as cross-sections, coupling constants and the
masses of the particles of the Standard Model and beyond. In particular,
since the discovery of the Higgs Boson in ���� [�], linear lepton colliders
such as the International Linear Collider (ILC) and Compact Linear
Collider (CLIC) have been favoured by the physics community for
achieving unprecedented precision in the study of the properties of
the Higgs boson and other fundamental particles, with centre-of-mass-
energies in the range 250 GeV to several TeV.

Both ILC and CLIC require exceptional jet energy resolution in the order
of around 3 % for jet energies in the range ��-200 GeV for precision Higgs
measurements. This is expected to be achieved using Particle Flow (PF),
which exploits 4�-hermetic tracking of charged particles, highly granular
calorimeters and sophisticated clustering algorithms to associate charged
tracks to energy deposits in the calorimeters.

The Analogue Hadronic Calorimeter (AHCAL) is a steel-scintillator
(Fe-Sc) highly granular hadron calorimeter that utilises silicon photo-
multipliers (SiPMs) as detectors and is designed for Particle Flow. It
has around ��,��� readout channels and can measure energy and a
timestamp with up to ��� picoseconds timing resolution. The AHCAL is
designed to be highly granular, so it can accurately measure the energy
deposited by individual particles and the substructure of hadron shower
events. This allows for sophisticated clustering techniques to separate
and measure the energies of individual particles within the jet, which
is necessary to achieve the required jet energy resolution. Each readout
channel is coupled to a silicon photomultiplier (SiPM), a photo-detector
with single-photon resolution, is insensitive to magnetic fields, have
excellent timing resolution and has high photon-detection efficiency,
making them ideal photosensors for AHCAL.

All detector and event reconstruction aspects must be optimised to
achieve the challenging jet energy resolution requirements achievable
using PF. This thesis touches on several fundamental ingredients of PF
reconstruction.

Firstly, at the detector level, the energy measurement achieved by the
AHCAL calorimeter must be as accurate as possible. To do this, single-
channel calibration is required for the SiPMs of the AHCAL. This highly
complex task requires characterising all the device’s properties, includ-
ing noise effects such as thermally-induced ’dark’ counts, cross-talk
between individual pixels and delayed pulses due to de-trapping ef-
fects in damaged silicon. These effects are typically not accounted for
in standard techniques for characterising a SiPM. This shortcoming can
induce significant biases and uncertainties during the calibration of the
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detector. Furthermore, the SiPMs of the AHCAL are too numerous for
channel-by-channel supervision, meaning the AHCAL calibration should
be automated. This motivates research into more sophisticated models
to simulate the behaviour of and automatically characterise SiPMs using
models that include the effect of detector noise.

Secondly, jet energy resolution in PF is found to be limited most by the
capacity for energy deposits in the calorimeters to be correctly associated
with individual particles rather than the resolution of the calorimeters
for jets with energy greater than around 50 GeV. This concept is called
’confusion’. Confusion depends primarily on the performance of the
sophisticated pattern recognition algorithms used to reconstruct the
event. The high granularity of the AHCAL detector enables the device to
capture a rich spatiotemporal measurement of particle showers induced
by interacting hadrons. In PF, one of the main challenges will be the
effective separation of a charged from a neutral particle shower. This
fact motivates research into algorithms to optimally exploit the available
substructure of hadron shower events to minimise confusion using the
AHCAL calorimeter. In addition, the added benefit of timing information
is unknown and studying its influence is important in verifying its
importance to PF reconstruction.

Thirdly, the resolution of the calorimeters is the most important contribut-
ing factor to jet energy resolution for jet energies below 50 GeV. Above
this limit, calorimeter resolution plays a secondary but essential role
in reducing confusion. More accurate measurements of the energy of a
hadron shower can improve the matching of tracks to energy depositions
by charged particles, an essential ingredient for PF reconstruction. This
again motivates research into algorithms that can help to improve the
detector resolution with AHCAL. The influence of time information on
the reconstruction is also relatively unknown.

These topics are the focus of the research performed in this thesis, which
is structured as follows:

I In Chapter �, the physics and motivation for a linear collider, the
AHCAL, silicon photomultipliers and machine learning techniques
are introduced, as well as concepts critical to the thesis such as key
SiPM characterisation parameters and the motivation for calibration
tools for SiPMs, as well as the concepts of software compensation
and confusion in clustering algorithms designed for Particle Flow
are introduced;

I In Chapter �, a flexible Monte Carlo program calledLightSimtastic
for the simulation of transients and charge spectra for SiPMs is
introduced, explained and validated;

I In Chapter �, a program for the characterisation of SiPM charge
spectra called PeakOTron is introduced, which includes noise effects
such as after-pulses, dark counts and cross-talk in the detector
response model used to describe the spectra. The detector response
model is explained, and the pre-fit routine is described to initialise
the parameters. The model is then evaluated on simulation from
LightSimtastic and on experimental data;
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I In Chapter �, a neural network model is devised for software
compensation of the AHCAL. The choice of model is explained
and compared to the performance of a standard CALICE control
method. The models are trained on simulation and experimental
data, and the linearity of response, resolution and comparisons
between features of the models trained on simulation and data, as
well as with and without 100 ps timing information are presented
and studied;

I In Chapter �, three neural network models from the literature are
applied to shower separation of a charged and synthetic-neutral
hadron shower observed with AHCAL by reconstruction of the
energy fractions belonging to each hadron shower. Considerations
are made to assess the quality of synthetic neutral hadron showers
produced from charged hadron showers measured with AHCAL,
and the appropriate inter-shower distance distributions are as-
sessed. The results of the models are then compared with each
other when trained on simulation and data and with and without
timing information, and the properties of the shower separation
algorithms presented and studied;

I Finally, In Chapter �, the conclusions of each study chapter are
summarised.

Each study chapter includes its own independent overview and conclu-
sion, motivating and summarising each study in depth. Furthermore,
the contributions by the author to each chapter is highlighted in a box at
the start of the text.
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not currently known to occur naturally.
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This section acts to motivate the research of this thesis. Firstly, the state
of modern particle physics is discussed. Then the case is made for an
electron-positron linear collider to extend the current understanding of
particle physics. Next, an overview of the energy deposition processes of
particles interacting with matter is provided. Next, an introduction to
calorimeters, their design and calorimeter energy resolution is provided.
Then, the concept of Particle Flow is motivated. Finally, the apparatus
and methods studied in this thesis and summaries of the motivation for
the studies performed are discussed.

�.� The Standard Model

The Standard Model (SM) is the theory classifying all known fundamental
particles and three of the four forces of nature (electromagnetism and the
weak and strong forces). The Standard Model describes seventeen known
fundamental particles, not including antiparticles. These are split into
two groups and four subgroups based on their observed properties.

The main two groups of particles are fermions and bosons. Fermions are
particles with a half-integer spin, while bosons have an integer spin.
Fermions also obey the Pauli Exclusion principle, whereas bosons do
not.

Pauli Exclusion Principle

"Two particles with non-integer spin cannot occupy the same quantum
state."

There are two other groups of fermions: the first class of fermions are
quarks. These elementary spin-half particles interact through the strong
nuclear force, electromagnetic force, weak nuclear force, and gravity.
There are six flavours of quark: the up, charm and top (D, 2, C) quarks have
an electric charge of + 2

3 @0 and the down, strange and bottom (3, B, 1)
quark have an electric charge of � 1

3 @0, where @0 is the elementary charge.
Quarks carry an additional charge, known as ’colour’. There are six labels
for colour charges: red, green, blue, and their ’anti-colours’. Quarks in
nature always form bound states in the form ’colourless’ triplets or pairs
(baryons and mesons, respectively), and some forms of exotic matter� ,
constituting most of the visible matter in the universe.

The second class of fermions are leptons. These elementary spin-half
particles interact through electromagnetism, weak nuclear force, and
gravity. They are distinguished from quarks because they do not interact
via the strong nuclear force. There are three flavours of lepton, each with a
charged and neutral variant. The electron, muon and tau lepton (4� , ⇠�

, ��)
are the charged leptons. These share the same charge and spin yet differ
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Figure �.�: The Standard Model of particle physics. Purple, green, red and yellow lines indicate quarks, leptons, gauge bosons and scalar
bosons, respectively. Masses are shown in units of GeV/22 (see Section �.�.�). Taken from [�].

in invariant mass. They interact through electromagnetism, the weak
nuclear force and gravity. The electron, muon and tau neutrinos (⇡4 , ⇡⇠ , ⇡�)
are the neutral leptons. These particles have a neutral charge and are the
lightest particles of the Standard Model. They interact through gravity
and the weak nuclear force.

Every fermion has a partner known as an ’antiparticle’. Antiparticles of
quarks and charged leptons have the opposite charge to their partner.
An antiparticle relevant to this thesis is the ’positron’ (4+), which has the
same mass and opposite charge to the electron (4�). Neutrinos also have
antiparticles called ’antineutrinos’, with neutral charges.

Bosons mediate the interactions of nature: when fermions interact, it is
through the exchange of bosons. Bosons are grouped in two classes: gauge
bosons, with unit spin, and scalar bosons, with zero spin. The gauge bosons
are as follows: photons and gluons (✏, 6) are massless bosons responsible
for mediating the electromagnetic and strong forces, respectively. The
charged ,± and neutral / bosons mediate the weak force. The Higgs
boson is a unique scalar boson discussed in Section �.�.�.

The Standard Model has been demonstrated to be a highly robust and
predictive description of the observable universe since its inception
in the mid-part of the 20th century [�]. However, it is not without its
current limitations. For example, the Standard Model cannot explain
several observed natural phenomena. Three examples are the hierarchy
of the strengths of fundamental forces, the nature and properties of
dark matter and dark energy, which are expected to account for the
bulk of the mass-energy of the universe and the abundance of matter
compared to antimatter (matter composed of antiparticles) in the universe
(’baryogenesis’). Concepts such as these are described as ’beyond Standard
Model’ (BSM) physics.

Modern experimental particle physics seeks to validate the Standard
Model to discover unknown physical phenomena that might explain
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Figure �.�: Higgs ’Mexican Hat Poten-
tial’, +()) = ⇠2 |) |2 + ⌫|) |4, where ) =
1/
p

2
�
)1 + 8)2

�
is a complex scalar field,

⇠ is a symmetry-breaking term and ⌫
is a self-interaction term. Top: symmetry
breaking term ⇠2 > 0. Bottom: symmetry
breaking term ⇠2 < 0. [�]

�: CP (charge conjugation parity) quan-
tum numbers refer to the eigenvalue of
the C (charge) and P (parity) quantum op-
erators. CP-symmetry refers to the notion
that a particle behaves the same way if the
signs of the charge and the momentum
are flipped. The Standard Model predicts
that the Higgs boson is ’CP-even’, meaning
that it obeys this symmetry.

such discrepancies. This can be achieved by studying the properties of
existing particles and the presence of new particles and interactions.

�.�.� The Higgs Boson

The Higgs is a scalar boson with a neutral charge. As of ����, the
most accurate measurement of the Higgs mass has been measured
to be <H = 125.38 ± 0.14 GeV/c2 by the CMS experiment, utilising
a combination of the quad-leptonic (� ! // ! 4✓ ) and diphoton
(’golden’, � ! ✏✏) decay channels [�].

A longstanding problem with the Standard Model was the paradox
that introducing particle masses violated the local gauge invariance of
quantum electrodynamics (QED). QED is one of the most experimentally
accurate physical theories in existence and describes the interactions
of particles through electromagnetism. In theory, gauge invariance for
bosons was achieved at the time under the assumption that they were
massless. When the, and / bosons were discovered in ���� [�], they
were observed to be among the heaviest particles of the Standard Model,
with rest masses of around 80 GeV/c2 and 91 GeV/c2, respectively. This
mass could not be explained by the existing theory for QED at the time.

The massive properties of the, and / bosons were eventually explained
by adding a self-interacting complex scalar field to the QED Lagrangian.
The potential permits two solutions: one with a minimum value corre-
sponding to the vacuum state, which describes massless bosons such
as photons, and another with a non-zero vacuum expectation value of
the potential. Configurations of the potential are depicted in Figure �.�.
This non-zero vacuum state permits the scalar potential to acquire mass
through a process known as ’spontaneous symmetry breaking’ [�].

Since a particle consistent with the Standard Model Higgs boson was
jointly discovered by the ATLAS and CMS experiments at the LHC in
����, [�], a primary focus of contemporary particle physics is to make
precise, thorough measurements of its properties.

To establish a comprehensive understanding of the Higgs boson’s prop-
erties and its connection to the symmetry-breaking mechanism, three
crucial experimental studies must be conducted [�]:

I the mass, lifetime and width, spin and CP (charge conjugation parity)
quantum numbers � of the particle must be measured with high
precision;

I The couplings of the particle to the weak vector bosons, leptons
and quarks must be found to increase linearly with their mass;

I The particle’s self-coupling must be measured since this quantity
determines the aforementioned non-zero vacuum expectation value
of the Higgs field.

Confirmation that the particle behaves consistently with a Standard
Model Higgs boson ultimately validates the current understanding of the
symmetry-breaking mechanism in the context of the Standard Model and
would complete the framework of the theory as it is currently understood.
For instance, it can help to explain the mass hierarchy of the fermions of
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�: Higher-order processes refer to pro-
cesses that involve more than the mini-
mum number of interaction vertices in a
Feynman diagram (a ’leading order dia-
gram’). These processes can be understood
as more complicated interactions and are
less probable than leading order processes.
They can nonetheless influence calcula-
tions of Standard Model observables, such
as cross-sections and particle masses.

�: Particle energies are typically measured
in electron-volts (eV). An electron-volt is
the energy required to move an elemen-
tary charge through one volt of electric
potential.

the Standard Model through a process called ’fermionic mass generation’,
whereby the strength of the coupling of the Higgs field helps to determine
their mass [�]. Therefore, it is currently of great interest to the particle
physics community to investigate such properties of the Higgs boson.

�.�.� Top Quark

The top quark is a fermion has a charge of 2
3 @0. It was discovered in

���� by the CDF and D� experiments at Tevatron, located at Fermilab
in the USA [�, ��] and completed the full set of quarks in the Standard
Model. It is the heaviest particle of the Standard Model. As of ����, the
CMS experiment has measured to top quark mass using the channel
CC̄ !,

�
1,

+
1̄ to quarks, leptons and neutrinos (see Section �.�.�) to be

171.77 ± 0.37 GeV/c2 [��].

The top quark coupling to the Higgs is the largest expected among
fermions. It, therefore, plays a role in the determination of the higher-order
processes that involve the Higgs boson� [��]. Subsequently, simultaneous
measurements of the top quark and Higgs masses allow a comparison
of the measured values with the predictions of the Standard Model,
which would provide evidence for the validity of the existing theory.
Furthermore, the higher-order processes involving the top quark influence
the shape of the Higgs potential. This can have implications for the long-
term stability of the Higgs field and the properties of the particles to
which it couples (’vacuum-stability’). Therefore, precision measurements
of the properties of the top quark are also of great interest to the scientific
community.

�.� Linear Lepton Colliders

�.�.� Overview of Lepton Colliders

A particle collider is a device designed to collide particles at high en-
ergy, typically of the order gigaelectronvolts� (GeV) to teraelectronvolts
(TeV) at the modern energy frontier to study their constituents and the
fundamental interactions between the particles of nature.

Currently, perhaps the most famous particle collider in the world is the
Large Hadron Collider (LHC) at CERN in Geneva, Switzerland, with a
centre-of-mass energy of

p
B = 14 TeV. The LHC is designed to collide

protons or heavy ions and was responsible for the Higgs discovery
discussed in the preceding section. Here, B is a Mandelstam variable
which encodes the energy, momentum and angles of a scattering process
in a Lorentz-invariant fashion, and

p
B is the centre-of-mass energy of

the collision between two relativistic particles.

This thesis focuses on lepton colliders, unlike hadron colliders such as the
LHC. Lepton colliders are generally designed with the goal of precision
measurements in particle physics for two main reasons:

I leptons are fundamental, pointlike, non-composite particles. Each
collided particle has a precisely defined initial state and momentum
from collision to collision, which aids in event reconstruction and
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Figure �.�: Diagram illustrating the dif-
ference between relativistic collisions of
hadrons (protons) and leptons (electron/-
positron). The substructure of the proton
is indicated by the orange circles (quarks)
and gluons.

Figure �.�: Illustration of the tangential
emission of synchrotron radiation from
accelerated electrons. Taken from [��].

�: Synchrotron radiation is not always an
undesirable effect, since it may be used as
a high-intensity X-ray source i.e. PETRA
III at DESY, Hamburg, Germany.

Figure �.�: Illustration of event displays
illustrating the ’cleaner’ events observed
in the detector aray with a future linear
collider compared to a hadron collider.
Top: LHC ?? ! � + - process. Bottom:
FLC 4

+
4
� ! �/. Taken from [��].

results in collisions where all four-momentum contributes to the
hard interaction. By contrast, hadrons are composite (composed of
partons, or quarks and gluons, collectively), with momentum split
with an unknown fraction between not only the ’valence’ quarks
which give the hadron its properties but also the ’quark-gluon
sea’ that is predicted to exist inside hadrons at highly-relativistic
momenta due to the Heisenberg Uncertainty Principle;

I leptons may only interact by electromagnetism, the weak force
and gravity, which drastically reduces the number of possible
interactions that occur during a collision compared to hadrons,
the latter of which may also interact via the strong force. Lepton
colliders, therefore, benefit from significantly less background than
if hadrons were used;

Heisenberg Uncertainty Principle

The product of the uncertainties on the position and momentum (equivalently,
energy and lifetime) of a particle is never less than ~

2 .

Two designs of particle colliders exist: circular and linear. The former
accelerates particles continuously before collision in a ring; the latter
accelerates them only once. While circular colliders have been used with
leptons in the past (e.g. Large Electron-Positron Collider, or LEP, withp
B = 209 GeV, originally located at CERN in Geneva, Switzerland), the

linear collider design is typically used for leptons. This is because of a
phenomenon known as ’synchrotron radiation’, which causes photons to
be radiated from accelerating charged particles.

This process affects transverse acceleration more than longitudinal ac-
celeration and arises due to special relativity. The radiated power from
this source of radiation and scales as % / ✏4

'
, ✏ = ⇢particle

<particle
, where ✏ is the

Lorentz factor, ⇢particle is the total energy of the particle, and<particle is the
rest mass of the particle and' is the radius of the synchrotron. For this rea-

son, electrons radiate photons in this way a factor of
⇣
<?

<4

⌘4
= 1.13 ⇥ 1013

faster than protons in a synchrotron, where <? and <4 are the proton
and electron rest masses. One solution to this problem is to increase the
radius of the circular collider, but it is often prohibitively costly to build
ever-larger instrumentation for this purpose. Since linear colliders only
accelerate the particle in the longitudinal direction, synchrotron radiation
is greatly reduced in this design� . In addition, one of the advantages of
a linear collider is its ability to operate, with minimal modification, at
any energy within a wide range that its technology makes available [��],
thereby allowing a broad physics program.

4
+
4
� colliders are therefore the experiments of choice for precision

measurements of the Higgs boson, the electroweak sector and potentially
for BSM physics searches. An example of such an accelerator that has
already been built is the Stanford Linear Accelerator (

p
B ' 91 GeV,

located at SLAC in California, USA), which was used to discover the
charm quark in ���� [��] and the � lepton in ���� [��].

It should be noted that linear colliders are not the only available option
for a future precision collider. An alternative experiment that has been
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proposed is the Future Circular Collider (FCC-ee) circular collider, which
can study the / and,± bosons, Higgs boson and top quark and would
have a

p
B of between �� and 365 GeV [��].

This thesis nonetheless focuses on future linear 4+4� colliders. Sum-
maries of two proposed future 4+4� linear collider programs are briefly
summarised for reference.

The International Linear Collider (ILC) The ILC is a proposed high-
luminosity linear 4+4� collider experiment based on 1.3 GHz supercon-
ducting radio-frequency (SCRF) accelerating technology [��]. The acceler-
ator would be ⇠ 31 km in length. It would initially have a

p
B = 250 GeV,

and would be initially designed as a ’Higgs factory’ (a collider that pro-
duces a high frequency of Higgs bosons). The physics program could
be extended in an upgrade program to achieve

p
B = 500 GeV-1 TeV. It is

also noted that ILC will produce a bunch crossing rate of around 5 Hz. A
schematic layout of the proposed collider is shown in Figure �.�a.

The Compact Linear Collider (CLIC) The CLIC is also a proposed high-
luminosity linear collider experiment based on a 12 GHz conventional
radio-frequency (RF) source [��]. The accelerator would be 11.4 km in
length. The accelerator physics program would be extended in three
stages:

p
B = 380 GeV,

p
B = 1 TeV, and

p
B = 3 TeV. A schematic layout

of the proposed collider is shown in Figure �.�b.

�.�.� The Importance of Jets at Future Lepton Colliders

As previously mentioned, Higgs boson precision measurements are a
consistent priority for the physics programs of future lepton collider
experiments. Additionally, the electroweak sector and top quark precision
measurements are also of interest.

The Higgs and top quark production cross-sections available to a lepton
collider experiment operating in the centre-of-mass energy range achiev-
able by ILC and CLIC, as well as the Higgs decay branching ratios for
the low-mass range of the Higgs invariant mass, are shown in Figure
�.�. Two of the major Higgs production modes that may be studied at
ILC and CLIC, ’Higgstrahlung’ (4+4� ! /�) and ’vector boson fusion
(4+4� ! �⇡4 ⇡̄4 ), and the main top production mode (4+4� ! CC̄), are
shown as Feynman diagrams in Figure �.�. The branching ratios to
hadrons of the, and / bosons to hadrons are shown in Table �.�.
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(a) Schematic layout of the ILC, indicating all the major subsystems (not to scale). Taken
from [��].

(b) Schematic layout of the CLIC, indicating all the major subsystems (not to scale). Taken
from [��].

Figure �.�: Schematic layouts of ILC and CLIC, shown in Figures �.�a and �.�b, respectively.

(a) 4+-4� ! �- cross-sections.
(b) 4+4� ! C̄C(+-) cross-sections.

(c) Low-mass Higgs branching ratios.

Figure �.�: Figures �.�a and �.�b show the cross-sections of 4+4� ! �- and 4+4� ! CC̄(+-) in the
p
B = 0 � 3 TeV range. Both taken from

[��]. Figure �.�c shows the Higgs branching ratios for the low mass range on the Higgs. Taken from [��].
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Particle �Hadron
�

,
± ��.�� ± �.��
/ ��.��� ± �.���

Table �.�: Hadronic decay fractions pro-
duced during the decays of the, and /
weak vector bosons. Values obtained from
[��].

Figure �.�: Feynman diagrams of the two
main Higgs production interactions and
the main top quark production interaction
at linear colliders such as ILC and CLIC.
The top diagram shows Higgstrahlung
(yellow line of Figure �.�a). The middle
diagram shows Vector Boson Fusion. The
bottom diagram shows direct C-C̄ produc-
tion (red line of Figure �.�b). Higher order
processes of this interaction can also pro-
duce a Higgs (dark green line of Figure
�.�a)

Figure �.�: A diagram illustrating the for-
mation of a jet from a quark produced in
4
+
4
� ! -

0 ! @@̄-.

The information in these figures and tables highlight an important
observation about the interactions that are intended to be studied with a
future linear collider experiment:

I Higgs bosons decay predominantly into 11̄ pairs, or weak vector
boson pairs, as demonstrated by the black, green and blue lines of
Figure �.�a. The, and / bosons also decay frequently to hadron
final states, shown in Table �.�;

I Higgstrahlung produces a / boson, shown as the yellow line of
Figure �.�a. This fact is critical for Higgs mass measurements,
which is discussed fully in Section �.�.�.

I the primary production mode for top quarks is via direct production
of CC̄ quark pairs. However, the top quark is not observed directly,
instead decaying via CC̄ ! ,

+
1,

�
1̄, which itself decays with a

branching ratio of 45.7 % into final states involving neutrinos and
quarks only and with 54.1 % into final states of charged leptons,
neutrinos and quarks [��]. Notably, the top quark production can
radiate a / boson or a Higgs boson as a higher-order process, as
shown by the blue and green lines of Figure �.�b.

Quarks are therefore produced in many of the most probable interac-
tions involving the Higgs and in top quark production. As previously
mentioned, quarks have a colour charge and cannot exist in isolation.
Instead, the quarks produced from inelastic interactions of high-energy
particles form bound states in a process known as hadronisation. At the
highly relativistic energies of linear collider experiments, the interactions
typically manifest as a final state in the form of highly collimated beams
of particles known as ’jets’.

Figure �.�� illustrates the formation of a jet. At the extremely high energy
densities observed at the interaction point of 4+4� ! -

0 ! @@̄- , quarks
may be viewed as asymptotically free and emit soft gluon radiation as
they propagate through space, which may themselves decay into @@̄

pairs. Almost instantaneously following this stage, the quarks and gluons
hadronise. The final-state particles that constitute the jet are charged and
neutral hadrons, charged leptons and neutrinos. Except for neutrinos,
the energy of these particles may be measured with detectors placed
around the interaction point of the linear collider, from which events are
reconstructed (see Section �.�.�).

Jet energy resolution describes how well the detector can reconstruct
the jet’s energy, which is the sum of the total energy carried by each
particle depositing energy in the calorimeter, correctly attributed to the
jet. A state-of-the-art jet energy resolution is required for both ILC and
CLIC since it is essential for the unambiguous identification of many
decay channels and enhances precision measurements by reducing the
integrated luminosity required for many measurements by processes
with final states involving quarks [��].

An example observable where jet energy resolution is relevant is the
invariant mass� of the particle(s) that initiated the jets. For instance,
the invariant mass of jets from , and / bosons allows unambiguous
distinction between processes involving them (see Section �.�.�).
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�: Invariant mass describes a character-
istic of particles that is conserved under
Lorentz transformation (i.e. all reference
frames). It is reconstructed at lepton col-
lider experiments from the square root
of the difference between the total energy
and three-momentum of all particles that
were involved in an interaction, which
may be comprised of several jets for the
interactions involving decays to quarks.

Figure �.��: Recoil mass distribution and
model-independent analysis of the pro-
cess �/ ! ⇠+⇠�

- in simulation. The
solid red line, dashed and solid blue line
indicate a fit to signal, background and a
combined fit, respectively. Taken from [�].

Therefore, the detector apparatus used in future linear lepton collider ex-
periments designed for precision measurements of Higgs properties must
be tailored specifically to have state-of-the-art jet energy resolution.

�.�.� Example Measurements at Future Lepton Colliders

To illustrate the importance of jet energy resolution to future linear collider
experiments, two complimentary examples of experiments pertinent to
modern particle physics are outlined where excellent jet energy resolution
at future lepton colliders plays a role in precision Higgs measurements,
using the ILC as an example:

Higgs Recoil Mass Measurement Perhaps one of the most critical
Higgs measurements that can be made at a lepton collider is a model-
independent measurement of the Higgs mass and the Higgstrahlung
cross-section. As mentioned in Section �.�.�, the initial conditions (i.e.
the centre of mass energy and momentum) of a lepton collision are
precisely defined, which is not the case for a hadron collision. Using the
Higgstrahlung process (4+4� ! /�), knowledge of the centre-of-mass
energy of the collision and the momenta of the decay products of the /
can be used to reconstruct the Higgs mass indirectly via the relationship
"

2
'

= (?⇠" � ?/!-)2, where the "' is the recoil mass, ?⇠" is the
centre-of-mass energy and ?/!- is the sum of the momenta of the decay
products (2 = 1 in this definition). The critical advantage of this method at
a lepton collider is that any invisible decays of the Higgs can be included
in the mass measurement, which is impossible at a hadron collider for
the reasons presented.

The recoil mass study is typically presented with ?/!- as the leptonic
decay channel, / ! ⇠+⇠� and / ! 4

+
4
�. This is because (anti)muons

and electrons/positrons can be identified precisely from their energy sig-
natures, have well-defined kinematic properties and have comparatively
low backgrounds compared to other decays.

There would be two important experimental outcomes using this method.
Firstly, with an integrated luminosity of 250 fb�1 at ILC, uncertainty on
the Higgs mass of at least 30 MeV can be achieved, [��] which is a factor
of � smaller than the current best measurement by CMS [�]. Additionally,
the same recoil mass study at ILC would be an independent validation
of this study.

However, the branching ratio of the / to leptons is small (BR(/ !
⇠+⇠�) ' BR(/ ! 4

+
4
�) ' 3.4 % [��]). By contrast, the branching ratio of

the hadronic decays of the / is more than an order of magnitude larger
(BR(/ ! @@̄) ' 70 %, see Table �.�). Achieving state-of-the-art jet energy
resolution is crucial to utilise this channel effectively. Combining the
lepton and hadron channels could improve the precision of the mass and
the cross-section, or the required integrated luminosity to achieve the
same precision could be reduced [��].
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Higgs Couplings to Standard Model Particles and Higgs Full Width
According to the Standard Model, the Higgs couplings to weak vector
bosons, charged leptons, and quarks are proportional to their mass
(i.e. 6��� / "�, where 6��� is the coupling, and "� is the mass of
the decay product). The couplings are important verifications of the
Standard Model, which expect ’generation universality’, or the idea that
the Higgs ought to couple to the different generations of particles equally.
Deviations from this expectation could indicate BSM physics [�].

The square of the Higgs coupling is proportional to the partial width
of the process (i.e. 62

���
/ �(� ! ��) = �� · BR(� ! ��), where

�(� ! ��) and BR(� ! ��) are the partial width and branching ratio
of� ! ��, �� is the full width of the Higgs and � is a particle to which
the Higgs couples. It is then the determination of �� with high precision
and in a model-independent way that is the most major stepping stone
to determining the absolute scale of the couplings to Standard Model
particles.

At ILC, Higgstrahlung at
p
B = 250 GeV, the product of the cross-section

and branching ratio of� ! ��, �/� ·�(� ! ��), the cross-section, �/�
and the partial width for � ! ��, �(� ! ��) can all be obtained with
high precision. For instance, with an integrated luminosity of 250 fb�1,
the the Higgstrahlung cross-section, �/� can also be measured, with a
resolution of ��/�/�/� = 2.6 % [�] using the well-known branching
ratios of the /.

From this combined information, the branching ratios can be isolated, and
the full width reconstructed from �� = �(� ! ��)/BR(� ! ��). For
the reconstruction of �� , � = /,,

± are chosen. With the addition of the
bottom quark decay of the W-boson fusion process, �EĒ� ⇥ BR(� ! 11̄),
�(� ! ,

+
,

�) can be reconstructed at
p
B = 500 GeV, at which this

process becomes much more probable. Combining measurements atp
B = 250 GeV with 250 fb�1 integrated luminosity and at

p
B = 500 GeV

with 500 fb�1 integrated luminosity, a model-independent measurement
of �� with resolution ���/�� = 5 % can be achieved with ILC [��].

Presently, the most accurate measurement of �� was made in ���� by the
ATLAS experiment utilising the � ! // ! 4✓ and � ! // ! 2✓2⇡
channels with ✓ = 4 , ⇠. Under the assumption that no new particles enter
the production of the virtual Higgs boson, a value of �� = 4.5+3.3

�2.5MeV
was obtained [��]. This corresponds to a resolution on the full width
of more than 50 %. A measurement from the ILC using the method
described therefore improves the resolution on the �� by a factor of ��
and again would serve as an accurate and model-independent cross-check
to this study.

A straightforward need for exceptional jet energy resolution in this
measurement is the need to distinguish the dĳet events from � !
// ! @@̄@@̄ and � ! ,

+
,

� ! @@̄@@̄ in this procedure. This can be
achieved if the invariant mass distributions of the,± and / jets can be
cleanly separated during analysis. More details on this topic are given in
Section �.�.�.
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�: While all charged particles, experi-
ence radiative losses it is suppressed by
<

�4
particle, as with synchrotron radiation.

Muons have a significantly greater mass
than the electron (<⇠

<4
= 208.8). Therefore,

radiative effects are suppressed for this
particle for energies relevant to modern
collider physics.

�: The density effect arises due to the
relativistic flattening and lengthening of
the electric field of the traversing particle,
which increases the range over which the
particle can interact with matter, and a
competing effect due to polarisation of the
absorber medium [��]. The consequence
of this effect is shown by comparison of
the red and green lines of Figure �.��.

�.� Interaction of Particles With Matter

It is necessary to review the physical processes that govern energy loss in
matter to understand the design of energy detectors intended to be used
in future lepton colliders such as ILC and CLIC. A summary of the main
energy depositing processes and associated phenomena is introduced in
this section.

�.�.� Ionisation

When traversing matter, charged hadrons and leptons may ionise the
detector medium. Ionisation means the liberation of electrons from an
atomic nucleus, resulting in a charged remnant called an ion. Ionisation
is particularly relevant to the energy loss of ’heavy’ charged particles (i.e.
with an invariant mass larger than the electron, most notably muons, for
which it is the main energy loss mechanism in matter) � The average
energy loss of charged particles due to ionisation is governed by the
’Bethe-Bloch Equation’, shown in Equation �.� and in Figure �.��:

⌧
3⇢

3G

�
=  I

2 /

�

1
�2

✓
1
2

log
✓
2<42

2�2✏2
,max

�
2

◆
� �2 � ⇣

2

◆
(�.�)

Where / and � are the atomic and mass number of the traversed matter,
� is the mean excitation energy of the traversed matter, I is the number
of elementary charges carried by the traversing charged particle,,max
is the maximum transferable energy by the particle,  = 4�#�A

2
4
<4 2

2,
where #� is Avogadro’s number and A4 is the radius of the electron, 2 is
the speed of light, � is Lorentz beta, and ⇣ is a correction term describing
the density effect� .

While the Bethe-Bloch Equation describes the average energy deposition
of a massive charged particle, the distribution of ionising energy loss
of a single particle is described in thin sheets of matter by the Landau
distribution [��]. This is a highly skewed distribution. Therefore, the
distribution has a most probable value (MPV) lower than the average.
The reason for the skew is that significant fluctuations in the ionisation
energy known as ’straggling’ may occur. An extreme example of straggling
is when an ionising charged particle transfers its kinetic energy to an
atomic electron entirely.

Figure �.�� shows that the Bethe-Bloch equation has a local minimum,
highlighted in red as ’minimum ionisation’. Particles depositing this
energy are known as ’minimum ionising particles’ (MIPs). The closest
particle in nature to a minimum ionising particle is a muon. Muons are,
nonetheless, therefore often used as a ’standard candle’ for calibrating
the energy response of calorimeters at different energies, as the MPV
of their deposited energy remains relatively constant with momentum
in the range of energies �-100 GeV/c. However, it should be noted that
they are only true minimum ionising particles at the lower end of this
momentum range.
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Figure �.��: A diagram illustrating the behaviour of the Bethe-Bloch equation with momentum, �✏, for an anti-muon (⇠+) interacting with
Cu absorber. Taken from [��].

�: Bremsstrahlung (’deceleration radia-
tion’) is the emission of photons as a result
of a charged particle changing direction in
an electromagnetic field. This effect arises
due to special relativity. Synchrotron radi-
ation is a type of bremsstrahlung.

��: Møller scattering describes the elastic
scattering process 4�4� ! 4

�
4
�.

��: Bahabha scattering describes the elas-
tic scattering process 4+4� ! 4

+
4
�.

��: Pair-production describes the creation
of an electron-positron pair by the interac-
tion of a photon with the electromagnetic
field of an atomic nucleus, ✏ ! 4

+
4
�.

The photon must have at least enough
energy to produce the pair at rest (i.e.
⇢particle � 2<4 , <4 = 0.511 MeV).

��: The photoelectric effect describes the
excitation and subsequent emission of an
electron from an atom by an incident pho-
ton.
��: Compton scattering describes the elas-
tic scattering of a photon with a stationary
electron, resulting in energy transfer to the
electron and consequently a decrease in
the photon’s frequency (4�✏ ! 4

�✏).

��: Rayleigh scattering describes photon
scattering from a particle much smaller
than the wavelength of the light. Photons
scattered in this way do not lose energy
and affect only the spatial distribution of
the energy [��]. This scattering process is
why the sky appears blue.

�.�.� Energy Loss Mechanisms of Electrons and Positrons

Two main energy regimes exist for the energy loss of electrons and
positrons. Above energies of 100 MeV, an energy loss process known as
bremsstrahlung� dominates. This process is induced by the interaction of
the particle with the electromagnetic fields of atomic nuclei. It, therefore,
depends on the proton number of the absorber material (/) and falls
off as ⇢�1

particle [��]. Below 10 MeV, ionisation, with smaller contributions
from scattering processes such as Møller�� and Bahabha�� scattering
dominate (see Figure �.��a). The crossover point between ionisation and
bremsstrahlung is known as the ’critical energy’ and is parameterised for
solid and liquid matter according to Equation �.� [��]:

⌘2 =
610

(/ + 1.24) [MeV] (�.�)

�.�.� Energy Loss Mechanisms of Photons

Photons interact with matter in a markedly different way than electrons
or positrons. In particular, the photon is neutral and cannot ionise the
detector medium. Photons with energy > 1 MeV typically lose energy by
pair-production�� Notably, this process results in the entire energy of the
photon being transferred to the pair: the photon no longer exists after these
interactions. Below 1 MeV, the photoelectric effect�� with contributions
from photon-scattering processes such as Compton scattering�� and
Rayleigh scattering (although this is not an energy loss mechanism)��

dominate [��] (see Figure �.��b).

�.�.� Electromagnetic Showers

Electrons and photons of GeV-scale energy typically induce cascades
of particles called ’electromagnetic showers’. While photons produced by
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(a)
(b)

Figure �.��: Figure �.��a shows energy loss of 4± as a function of particle energy in Pb, by interaction process. Figure �.��b shows
cross-sections for photon interactions in Pb. Cross-sections are defined as follows: �?.4 . indicates photoelectric effect; �Compton/Rayleigh
indicates Compton/Rayleigh scattering; �

6.3.A
is the cross section for ’giant dipole resonance’, a type of collective excitation where

atomic protons move one way and neutrons move another. �
=D2/4 indicates pair-production from the electromagnetic field of an atomic

nucleus/electron [��]. Both taken from [��].

��: At ⇢particle  ⌘2 , the 4+4� pairs are
more likely to undergo ionisation or scat-
tering. The positrons may also annihilate
with atomic electrons (see Figure �.��a).

��: The radiation length is defined as the
distance after which an incident electron
inducing an electromagnetic shower loses
a fraction of 4�1 (36.8 %) of its original en-
ergy via bremsstrahlung in matter, or �/�
of the mean free path of a photon before
undergoing pair production in matter.

bremsstrahlung are typically ’soft’ and undergo Compton scattering
or are absorbed by the photoelectric effect, photons of energy above
5 � 10 MeV go on to induce pair-production in the matter they are
traversing. The electrons and positrons produced in this way experience
bremsstrahlung, thereby radiating more photons. The result is a ’cascade’
of photons and 4+4� pairs that proceed until the energy of the electron
(positron) reaches &2 of Equation �.��� .

The longitudinal development of electromagnetic showers is described
in terms of a quantity called ’radiation length’ (-0)�� . -0 is typically
parameterised in terms of the atomic number (/) and mass number (�)
of the absorbing matter, according to Equation �.� [��]:

-0 =
716.4 �

/(/ + 1) log
⇣

287p
/

⌘ h g
cm2

i
(�.�)

Additionally, the lateral development of a hadron shower can be defined
in terms of a ’Moliere radius’, given by Equation �.� [��]:

⌧M = ⇢s
-0
⌘c

(�.�)

where ⌧M is the Moliere radius, -0 is radiation length, ⌘c is the critical
energy and ⇢s = 21.2 MeV. The Moliere radius describes the lateral
distance from the axis along which the electromagnetic shower develops
(’shower axis’) in which a hadron shower deposits around ��-90 % of its
energy.

Electrons and positrons lose energy continuously as soon as they enter
matter, while photons interact only after 9

7-0 on average. This behaviour
affects the development of electron and photon-induced electromagnetic
showers:
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Figure �.��: Distributions of energy frac-
tion deposited in the first � -0 in Pb of ��
GeV electron and photon showers (taken
from [��]).

Figure �.��: Illustration of the develop-
ment of electron and photon-induced
electromagnetic showers. Top: electron-
induced EM shower. Bottom: photon-
induced EM shower.

��: For this reason, ECALs are always
placed before HCALs in the detector ar-
rays of collider experiments.

I Photon-induced showers deposit energy deeper within matter than
electron/positron induced showers;

I The energy fluctuations of photon showers are typically greater
than for electron/positron-induced showers due to variations in
the starting position of the photon shower.

An example of the differing distributions of energy loss of photons and
electrons are shown in Figure �.��. An illustration of the development
of an electron and photon-induced electromagnetic shower is shown in
Figure �.��.

�.�.� Energy Loss Mechanisms of Hadrons

Hadrons interact by the strong force, as well as electromagnetism, the
weak force and gravity. Hadrons may induce other energy loss mecha-
nisms and behave differently to electrons, positrons or photons.

A neutral hadron may only interact with matter after first encountering
an atomic nucleus. The distance it travels depends on the density of
the matter and the inelastic nuclear cross-section with that matter. On
average, a neutral hadron only interacts only after one nuclear interaction
length (⌫�). By contrast, a charged hadron will typically ionise the detector
medium before such a collision occurs. ⌫� is always longer than the
radiation length�� (i.e. ⌫�

-0
= 9.5 in steel [��], see Figure �.��). ⌫� also

depends on the incident hadron (e.g. neutrons and pions have different
⌫�). The nuclear interaction length is given by [��]:

⌫� =
�

#� · ��
h g
cm2

i

' 35�
1
3

⌧
[cm] (�.�)

where #� is Advogadro’s constant, � is the mass number of the absorber,
�� is its nuclear inelastic cross-section, and ⌧ is the specific density of the
traversed matter.

Hadrons interact with matter mainly by the following processes:

Nuclear Spallation This process refers to the ejection of particles in an
atomic nucleus (nucleons) and light hadrons (most notably �±, �0 and ◆
mesons, see Section �.�.�) in a fast nuclear cascade resulting from quasi-
free collisions of an incident hadron with the nucleons. The particles
ejected from this interaction are called the ’intra-nuclear cascade’ and may
go on to induce further secondary or tertiary spallation events in other
atomic nuclei.

Nuclear Evaporation Excited nuclei from a collision with a hadron may
’evaporate’, radiating neutrons, gamma rays (photons) and � particles (He
nuclei) as they de-excite.
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Figure �.��: Ratio of radiation length to
nuclear interaction length as a function of
absorber proton number. Note that it is
always greater than one. Taken from [��].

��: Due to mass-energy equivalence, the
mass of bound nucleons of hadrons is
less than their individual masses due to
the potential energy (nuclear binding en-
ergy) that holds them together. The mass-
energy required to hold a nucleus together
is known as the ’mass defect’.

��: Hydrogenous matter is matter con-
taining a large fraction of hydrogen. For
example, water is used as a neutron mod-
erator for fission reactors because it is hy-
drogenous.

Nuclear Fission Given sufficient energy transfer, the nucleus may
undergo fission. This process may release gamma rays (photons) and
neutrons.

Invisible Energy in Hadronic Interactions Two concepts relevant to
this thesis arise from consideration of these processes:

I the liberation of nucleons from atoms results in energy loss in the
form of ’nuclear binding energy’�� . This energy cannot be observed
and is called ’invisible energy’. To a lesser extent, invisible energy can
also be in the form of particles produced in the intra-nuclear cascade
(e.g. neutrinos produced by �± ! ⇠± + ⇡⇠(⇡̄⇠)). The fraction of
invisible energy is also highly stochastic from event to event;

I neutrons are abundantly produced in these processes, and their
overall number is directly proportional to the proportion of invisible
energy lost [��]. Neutrons may deposit energy indirectly in matter,
and are typically delayed by comparison to the energy deposited by
electromagnetic processes;

Two important examples of neutron energy deposition processes are:

Neutron Elastic Scattering Neutrons from nuclear evaporation of
energy in the eV to MeV range may elastically scatter from atomic nuclei
with high probability. The smaller the mass of the atomic nuclei, the
greater the average fraction of energy lost by the neutron in the material
because the average fraction of transferred energy in this scattering
process scales with (�+1)�1. Hydrogenous matter�� is, therefore, a better
neutron moderator than heavier matter [��]. The energy transferred to the
nucleus may be re-emitted as a photon by the recoiling atomic nucleus.
Energy depositions from this process were observed an exponential
distribution with a time constant of 7.7 ns from the initial interaction in a
steel calorimeter prototype [��].

Neutron Capture Neutrons of energy in the eV range may be captured
by an atomic nucleus, which is more frequent than for charged particles
because they are not electrostatically repelled. Notably, the binding
energy lost by the nucleus that expelled the captured neutron came from
is given to another nucleus, which may de-excite through the emission
of observable gamma rays (high-energy ✏). This process is much slower
due to the time of flight of the neutron undergoing moderation in the
matter. Energy depositions from this process were observed to have an
exponential distribution with a time constant of 76 ns from the initial
interaction in a steel calorimeter prototype [��].

A diagram illustrating the multi-stage energy loss mechanisms of hadrons
is shown in Figure �.��. A plot showing the results of the timing study
performed on mixed positive hadron beams of �� GeV performed in [��]
is shown in Figure �.��.
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Figure �.��: A diagram illustrating the multi-stage energy loss mechanisms of a charged hadron interacting with Fe nuclei. The red arrows
indicate the order of the processes.

��: The energetically favourable weak de-
cay of �± ! 4

± + ⇡4 (⇡̄4 ) is heavily sup-
pressed due to a concept called ’helicity
conservation’. Helicity is the particle’s spin,
projected onto the direction of its motion.
’Right-handed’ means that the direction
of spin is the same as the direction of
its motion; ’left-handed’ means it is the
opposite. Experimentally, antineutrinos
always spin ’right-handed’, while elec-
trons prefer to spin ’left-handed’, with
’right-handed’ helicity suppressed by a
factor of Lorentz �. However, by angular-
momentum conservation, this decay re-
quires the electron to be ’right-handed’
and is therefore suppressed. The muon
decay �± ! ⇠± + ⇡⇠(⇡̄⇠) is preferential
due to the much higher mass of the muon
permitting a higher likelihood of its ’right-
handedness’ [��]. Therefore, �± decays
generally do not produce electrons re-
quired for an electromagnetic shower to
initiate and have a longer lifetime than �0.

�.�.� Hadronic Showers

Similarly to electrons, positrons and photons, hadrons may induce a
particle cascade. However, as discussed, the physical processes that affect
the hadron shower differ considerably from electromagnetic showers. A
hadronic shower consists of energy deposited in two fractions:

Electromagnetic (EM) Fraction In the spallation process, pions of
all charges are produced in approximately equal numbers on average.
However, the neutral pion, �0 decays nearly instantaneously and almost
certainly into two photons (�0 ! ✏✏), while the decay of �± to 4± is
suppressed�� , meaning they have a much longer lifetime and are therefore
much more likely to go on to induce further nuclear reactions. Photons
may only interact with other matter via the processes shown in Figure
�.��b. The ◆ meson may also be produced in spallation, and typically
decays by processes that include photons and �0 mesons (see Table �.�).
If above the critical energy, these photons initiate an electromagnetic
shower (i.e. when a �0 is produced, none of its energy may be used to
induce further nuclear reactions). The proportion of the hadron’s energy
deposited in this way is called the ’electromagnetic fraction’.
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Figure �.��: Time of first hit distribution of muon data with steel absorbers and hadron data with steel and tungsten absorbers in a time
range of -�� ns to ��� ns. Taken from [��].

Process �8
� (%) �mother (ns)

�+ ! ⇠+⇡⇠ ��.����� ��.�
/�� ! ⇠�⇡̄⇠ ± �.����� ± �.���

�0 ! ✏✏ ��.��� 8.52 ⇥ 10�8

± �.��� ±1.8 ⇥ 10�9

◆ ! 2✏ 39.41 ± 0.20 5.0 ⇥ 10�9

◆ ! 3�0 32.68 ± 0.23 ±3.0 ⇥ ⇥10�10

◆ ! �+���0 22.92 ± 0.28
◆ ! �+��✏ 4.22 ± 0.08
◆ ! �02✏ 2.56 ± 0.22

Table �.�: Highest probability decays in-
volving�±,�0 and ◆ mesons, their branch-
ing ratios and mean lifetimes of the mother
particle in ns. Values obtained from [��].

The fraction of energy deposited in this way depends upon the produc-
tion of �0 and ◆ mesons. As the energy of an incident particle increases,
so does the number of particles in the intra-nuclear cascade increase
on average (due to more generations of nuclear spallations being ener-
getically possible). Since the �0 and ◆ mesons are produced in greater
numbers and cannot go on to induce further nuclear reactions, the elec-
tromagnetic fraction, therefore, increases with incident particle energy.
Phenomenologically, the average EM fraction scales as a power law with
particle energy:

h 5emi = 1 �
✓
⇢

⇢0

◆
:�1

(�.�)

where ⇢0 is an absorber-dependent constant related to the average
multiplicity in hadronic interactions ( �.�-1.3 GeV in Cu up to Pb) for �±

showers, where : ' 0.82 [��].

Hadronic (HAD) Fraction The remaining energy that is not deposited
by the electromagnetic fraction is called the hadronic fraction, which is
deposited predominantly via nuclear interactions. This fraction contains
the highly stochastic proportion of ’invisible energy’.

Development of Hadron Showers The development of a hadron
shower is briefly mentioned, as the following concepts are used in
this thesis.

A hadron shower develops, on average, around a ’shower axis’, which
depends on the axis of incidence of the particle onto the matter it
traverses. This parameter is defined as the axis of motion of the impinging
hadron on the matter. The probability of the shower initiating in matter
depends follows an exponential distribution characterised by the nuclear
interaction length [��].

An average hadron shower develops laterally with an energy-dense
’core’, and an energy-sparse ’halo’, which comprises most of the EM and
HAD fraction, respectively. Hadron showers are also expected to develop
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Figure �.��: Illustrations of the develop-
ment of a hadronic shower in Fe. Top:
development of a hadron shower in terms
of processes. The left side shows the devel-
opment of the hadronic fraction; the right
side shows the electromagnetic fraction.
The interaction vertex is replaced with a
Fe nucleus where the multiple vertices of
nuclear cascades are expected. Bottom: Il-
lustration of the average development of
a hadron shower, as a function of radius
and absorber depth. The colour axis red to
blue indicates high to low energy density.

��: It is well-known from the famous
’double-slit experiment’ that particles can
behave like waves [��]. It is relevant be-
cause this wavelength dictates the interac-
tion scale of a massive particle.

��: A Fermi Gas is a state of matter
composed of non-interacting, quasi-free
fermions in a potential well. Unlike a Bose
gas, which is composed of bosons, the
Pauli Exclusion Principle prevents the oc-
cupation of energy levels by fermions with
identical quantum numbers [��].

isotropically as a function of azimuth angle to the shower axis, on average,
due to multiple scattering. However, individual showers often develop
asymmetrically on an event-by-event basis. An average hadron shower
develops longitudinally with a ’short’ EM component and a ’long’ HAD
component. The lateral and longitudinal development of hadron showers
is uncorrelated, on average. A charged hadron will ionise the detector
medium before a hadron shower initiates, whereas a neutral shower will
not.

A study on the average hadron shower spatial energy density in a highly
granular calorimeter is available in [��]. A diagram illustrating the
development of a hadron shower, by contrast to Figure �.��, is shown in
Figure �.��.

�.�.� Simulations of Hadron Showers

Hadrons interacting with matter involve significantly more physical
processes than electrons or photons, owing to the possibility of strong
interactions. Moreover, the interaction scale changes with particle momen-
tum, as expected from the de Broglie wavelength relationship ⌫ = ~/?�� .
Simulations of hadrons interacting with matter must consider this fact.

For this reason, hadron shower simulations require several different
regimes depending on the energy of particles in the hadron shower and
corresponding physical processes. The components of the model used
in the hadron shower simulations of this thesis relevant to GeV-scale
hadron interactions, in addition to the simpler to describe electromagnetic
processes (e.g. ionisation, bremsstrahlung, pair-production, Compton
scattering, which are included as standard in standard hadron shower
simulation physics lists [��]) are therefore summarised in brief.

Bertini Cacade Model The Bertini Cascade Model is a model of intra-
nuclear cascades, as previously defined. This model is applicable in
the typical energy range 200 MeV < ⇢particle < 3 GeV [��]. In this range,
hadrons can be treated as colliding with a ’Fermi gas’ �� of nucleons in
the nucleus. A cascade initiates due to the incident particle interacting
with the nucleons of a target nucleus, either elastically or inelastically,
and producing secondary particles. These particles can produce further
secondaries until one of two things happens: the secondaries are ab-
sorbed by the nucleus, which results in delayed nuclear evaporation or
fragmentation, or they escape the nucleus.

At around 200 MeV, de Broglie wavelength of the interacting hadrons are
of the same order as the mean free path in dense matter. Below this limit,
atomic nuclei are more likely to experience excitation and evaporate.
Above the 3 GeV limit, several effects mean the cascade model is no longer
valid as the Lorentz contraction of the nucleus and increasingly forward
scattering angles, the ’nucleon gas’ model is no longer appropriate. This
limit nonetheless can and has been extended significantly beyond the
3 GeV limit to a maximum of around 10 GeV.

The Bertini Cascade Model has been implemented in the Geant4 sim-
ulation package and consists of five main steps [��]. First, the incident
hadron’s position on the nucleus’s surface is uniformly selected. Then,
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Figure �.��: Diagram illustrating the Bertini Cascade Model. The energies of an incident 400 MeV nucleon and escaping secondaries are
shown as solid lines exciting the bounds of the circle, which is the nucleus. Crosses indicate where interactions could have taken place but
did not because of the Pauli Exclusion Principle. The lines leading nowhere indicate particles that excited the nucleus. Taken from [��].

the free particle-particle and region-dependent densities are used to
select a path for that hadron. The properties of the products of the next
interaction, such as momentum and particle type, are found. The process
then proceeds for secondaries so long as the Pauli Exclusion Principle is
satisfied and ⇢particle > 2 MeV. A diagram illustrating an intra-nuclear
cascade proceeding according to the Bertini Cascade Model is shown in
Figure �.��.

(a) (b)

Figure �.��: Diagram illustrating the Quark-Gluon String Model. Figure �.��a illustrates the string formation process. Figure �.��b illustrates
the hadronisation process by successive formation of mesons and new strings.

Quark-Gluon String Model As previously mentioned, at energies over
10 GeV, the cascade model is no longer an appropriate description of
interactions of hadrons with nuclei. At momenta above 20 GeV, the de
Broglie wavelength of the hadron probes the partonic substructure of the
interacting particles. String-parton models model are frequently used to
describe hadron interactions at this momentum scale. One such model is
the Quark-Gluon String Model, also implemented in Geant4 [��].

This model calculates the hadron-nucleon collision probabilities, deter-
mining the number of participating nucleons in the interaction. Then,
a ’string’ is formed corresponding to the parton densities and coupling
pairs of quarks by colour. The interaction is treated as a form of pomeron
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Figure �.��: The energy ranges of the Bertini Cascade Model (BERT), Low Energy Parameterisation Model (LEP) and Quark-Gluon String
precompound Model (QGSP) energy regions. Modified from [��].

��: Pomerons are a mathematical con-
struct used in ’Regge Theory’, which is
used in studying processes involving high-
energy scattering amplitudes, such as
those taking place during a hadron shower.
Pomerons in this context can be under-
stood as a colourless, composite gluon
object, used in the theory as a mediator of
the strong force (and modelled as a pair of
colour triplet strings in Geant4) [��, ��].

exchange�� . The string is defined according to the four-momenta of its
constituent quarks. Hadrons are formed by successive splitting into a
hadron and a new string until the energy falls below a certain threshold.
In summary, this process ’fragments’ the nucleons of the target nucleus,
producing secondary particles and treated as intra-nuclear cascade parti-
cles as required. Figure �.�� illustrates this model’s string forming and
fragmentation process.

Empirical Parameterisation Models In transition energy ranges where
neither of the former two models are appropriate descriptions of nature,
empirical models are used to describe which hadrons will be produced
[��].

QGSP_BERT_HP The QGSP_BERT_HP physics list is used throughout
this thesis to generate simulated hadron shower events. In this model,
three parameterisations are used: the Bertini Cascade (BERT) up to 10 GeV,
an empirical parameterisation called the ’Low Energy Parameterisation’
(LEP) from ��-25 GeV, and the Quark-Gluon String pre-compound Model
(QGSP) onward in energy. The choice of model is randomly selected
in the transition regions, which are demonstrated in Figure �.��, such
that smooth transitions between models is achieved [��]. The HP stands
for ’high-precision’, which is used to improve the accuracy of modelling
neutrons with less than 20 MeV energy and is critical for the studies per-
formed in this thesis due to assessing the potential importance of timing
information to Particle Flow clustering algorithms and the contribution
of neutrons to indirect energy depositions that are correlated with the
proportion of energy carried in the HAD fraction (see Section �.�.�.�).

�.� Calorimeters

’Calorimetry’ means ’measurement of heat’. It was first used in thermo-
dynamics, the branch of physics that relates energy, heat, temperature
and work [��]. In contemporary physics, calorimetry generally refers
to ’measurement of energy’. In experimental particle physics, calorimetry
refers to using devices to measure the energy of final-state particles.
These devices are called ’calorimeters’. A myriad of designs exists for
calorimeters. Calorimeters may be broadly described as an instrument
composed of a volume of matter with which particles may interact, with
sensors to measure the products of interactions with that matter.

Calorimeters play a critical role in reconstructing events at all collider
experiments. There are typically two main classes of calorimeters used
in general collider detector apparatus:
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��: Two examples are (anti)muons (⇠±),
which do not deposit energy through any
other means than ionisation of the detector
medium up to momenta of around 1 TeV.
The momentum of these particles is there-
fore typically measured with special in-
strumentation called ’muon spectrometers’.
Another example is (anti)neutrinos (⇡̄, ⇡),
which are extremely unlikely to interact at
all with any detector apparatus.

I Electromagnetic Calorimeters (ECALs): designed to measure the en-
ergy of electrons, positrons and photons (4±, ✏);

I Hadronic Calorimeters (HCALs) designed to measure the energy of
hadrons (?, =, �±,  0

!
,  ± etc.)

Some common particles do not typically deposit their energy in calorime-
ters and are measured with different detectors, or not at all�� . However,
most final-state particles produced in high-energy particle collisions will
interact with these detectors, providing a measurable signal correspond-
ing to the particle energy.

�.�.� Design of Calorimeters

The basic design of calorimetric devices for high-energy particles is
reviewed in this section. In particular, attention is drawn to the benefits
and limitations of sampling calorimeters, around which this thesis is
based.

Calorimeters come in two main designs:

Homogenous Calorimeters Homogenous calorimeters consist entirely
of ’active material’. The active material is material which is used to
induce a measurable signal. Typical examples of such material are
scintillating crystals (e.g. lead tungstate, PbWO4) or certain types of glass
(e.g. lead glass) An example of a homogenous calorimeter was the OPAL
barrel/endcap calorimeter at LEP, consisting of ⇠ ��,��� 10⇥ 10⇥ 37 cm3

blocks of lead glass [��].

Sampling Calorimeters Sampling calorimeters are interleaved layers of
’passive material’ and active material. Passive material is required to induce
interactions with the incident hadron, producing secondary particles
which can be measured in the active material. The passive material is
typically composed of dense matter (e.g. Fe, Cu, Pb, U, alloys like steel),
so the hadron deposits as much energy as possible in the matter.

Active materials typically include a ’scintillator’ which produces a photon
signal Scintillators are florescent materials that produce a measurable
signal from the secondary particles. The active material in calorime-
ters can be made from a wide range of materials (e.g. plastic, organic
crystals/liquids, and noble elements such as Ar). Fluorescence in these
materials is achieved through processes such as the photoelectric effect.
Scintillators may also include wavelength-shifting material to produce a
frequency suited to read-out. However, the signal from scintillation light
is typically too weak to read out without amplification. Devices called
photomultipliers are employed to convert photons from energy-depositing
processes into a macroscopic signal. A design of photomultiplier used in
modern calorimeters is discussed in depth in Section �.�.�. The active
material in sampling calorimeters may often also be designed with spe-
cial considerations in mind, such as the use of hydrogenous matter (e.g.
plastic) as a neutron moderator (see Section �.�.�).
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��: ◆ (pseudorapidity, defined ◆ =

ln
⇣
tan

⇣

2

⌘⌘
, where  is polar angle) and

) (azimuth angle), both defined concern-
ing the beam axis, is a coordinate system
approximately invariant to longitudinal
Lorenz-boosts invariant co-ordinates used
in collider experiments to reconstruct the
four-momenta of particles produced in col-
lider events. The approximation is valid
for particles as long as Lorentz � ' 1.

Figure �.��: Illustration of the typical de-
sign of a hadron sampling calorimeter.
The calorimeter consists of interleaved
layers of passive (shaded blue) material
and active (shaded red) material, from
which the calorimeter signal is read out
from photomultipliers by a ’data acquisition’
(DAQ) hardware-software interface that
produces event information for further
processing. The purple regions indicate
leakage may occur for sufficiently deep
or broad hadron showers. Purple arrows
indicate albedo (’backscattering’), which
may occur in the first few layers of the
calorimeter.

The active material of sampling calorimeters may also be sub-divided to
improve sensitivity to the spatial distribution of energy inside a calorime-
ter (’segmentation’ or ’granularity’), which is particularly important for
the spatial resolution of energy deposited by independent particles and
is essential for accurate reconstruction of collision events. Sampling
calorimeters are also often much cheaper to construct than homogenous
calorimeters and are therefore used ubiquitously as detectors for collider
experiments. In addition, the amount of passive and active material can
be modified in a sampling calorimeter. All HCALs are therefore sampling
calorimeters because their response to hadrons requires ’compensation’
(see Section �.�.�).

One example of an HCAL is the CMS-HB+/- barrel HCAL, a Fe/CuZn-Sc
calorimeter. [��]. The HB+/- absorber consists of a 40 mm-thick front steel
plate, �⇥50.5 mm, and �⇥ 56.5 mm thick brass plates in order of outwards
placement, with around ��,��� individual �.�/9 mm-thick scintillator
tiles. The detector apparatus has a total thickness of around 5.8⌫� at
90°, and a granularity corresponding to (�◆,�)) = (0.087, 0.087) chosen
to balance the complexity of adding additional readout channels with
spatial resolution �� , though this varies with pseudorapidity.

Another example of an HCAL is the ATLAS Fe-Sc TileCal barrel HCAL
[��, ��]. The TileCal is composed of alternating layers of 14.1 mm-thick
iron plates interleaved with 3 mm-thick plastic scintillator, read out to
photo-multiplier tubes (PMTs) by wavelength-shifting fibres. In total,
TileCal has approximately ���� cells and ��,��� readout channels. The
total detector extends for around 7.4⌫� at 90°, and has a granularity
corresponding to (�◆,�)) = (0.1, 0.1) and (�◆,�)) = (0.1, 0.2) in the �
outermost longitudinal layers.

�.�.� Energy Resolution of Sampling Calorimeters

Energy resolution describes how much the calorimeter signal fluctuates
when measuring a particle of known energy. The energy resolution is
the most crucial figure of merit for a calorimeter. The energy resolution
is typically measured as a unitless quantity, defined as the ratio of the
spread of the measured energy to the known particle energy, or, more
frequently, the mean reconstructed energy by the calorimeter ( �⇢

⇢
). When

referring to calorimeters, the measured energy is also referred to as
’calorimeter response’ to the particle, which can differ depending on the
type of particle.

The main causes for imperfect resolution for sampling calorimeters are
summarised:

Sampling Fluctuations Since only a portion of the material is active in
a sampling calorimeter, only a fraction of the total energy deposited is
measured by the calorimeter. This is called the ’sampling fraction’, and is
given by Equation �.�:

5samp =
⇢

active
MIP

⇢
active
MIP + ⇢passive

MIP

(�.�)
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Figure �.��: Flow chart indicating the rela-
tionship between hadron energy and the
energy measured by a hadron calorimeter.

Where ⇢active
MIP and ⇢passive

MIP is the total energy deposited by a MIP in the
active and passive material and respectively because many different
energy depositing processes occur with stochastically varying numbers
of particles and fluctuating energies deposited by each of those particles,
all sampling calorimeters suffer from ’sampling fluctuations’. The sampling
fluctuations depend on the sampling fraction, the number of particles
contributing to the measurement, and the number of sensors in the active
region of the calorimeter. The number of particles in a shower is expected
to be Poisson distributed. The number of particles produced is directly
proportional to the energy of the event, and therefore the resolution
scales as �

⇢
/ ⇢

� 1
2

particle. Sampling fluctuations correspond to the upper
limit on the resolution for ECALs [��].

Stochastic Fluctuations HCALs, by contrast to ECALs, suffer an addi-
tional penalty to resolution in the form of the fraction of invisible energy
contributing to each measurement. On average, the proportion of invisi-
ble energy in a hadron shower is around ��–40 % of the HAD fraction
of shower energy. However, this varies and can be up to 60 % [��]. The
proportion of observable energy from each sensitivity is denoted 4 and
⌘ respectively, where 4

⌘
> 1 in general. Ways to account for this source

of uncertainty are discussed in Section �.�.�. Stochastic fluctuations, as
with sampling fluctuations, scales as �

⇢
/ ⇢� 1

2
particle, for the same reasons.

Stochastic fluctuations are the main source of uncertainty in measuring
energy for HCALs.

Detector Calibration Quality The calibration quality of the readout
of individual calorimeter detectors may be sub-optimal. For instance,
the inter-calibration of the readout channels contributes to fluctuations
in response. This is because hadron showers develop differently in the
calorimeter volume from event to event. Different calibrations of the
individual sensors therefore result in different responses to hadrons of
the same energy. This contribution to resolution is expected to be directly
proportional to particle energy. Detector calibration is a topic of this
thesis and is discussed in the context of this thesis in Section �.�.�.

Electronics Noise Electronics noise may also affect resolution. For in-
stance, the photomultiplier readout measures signals in a certain window
(’gate length’). Without a discharge, the measured charges fluctuate (see
Section �.�.� for more details). The fluctuations are of a certain, fixed
energy. The resolution, therefore, scales as the reciprocal of the energy of
the particle �

⇢
/ ⇢�1

particle.

Leakage Calorimeters are designed typically of a depth and breadth
sufficient to contain a hadron shower, which depends on the nuclear
interaction length of the absorber. However, in some instances, energy may
escape the calorimeter either laterally or, more frequently, longitudinally,
meaning it cannot be measured. Additionally, energy can back-scatter
from the first few layers of passive material the calorimeter, which
constitutes a form of leakage (’albedo’). As more generations of particles are
produced in higher energy showers, they experience higher proportions
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Figure �.��: Top: The 4

⌘
of the ZEUS

calorimeter as a function of the thickness
ratio of U passive material to active plas-
tic Sc material. Bottom: ZEUS Forward
Calorimeter (FCAL) response to hadrons
of different momenta. Both taken from
[��].

��: Specifically, some example EM process
cross-sections are proportional to atomic
number [��]:

• ionisation / /

• pair production / /
2

• bremsstrahlung / /
2

• photoelectric effect / /
4 � /5

• Compton scattering / /

of energy loss in this way, called ’leakage’. Special calorimeters called ’tail
catchers’ are used to tag longitudinal leakage.

Calorimeter Resolution Assuming negligible electronics noise and
leakage, calorimeter resolution may be described in terms of Equation
�.�:

�⇢
⇢

=
0p

⇢particle
� 1 (�.�)

Where 0 describes the contribution of combined stochastic and sam-
pling fluctuations, 1 describes the quality of detector calibration, and �
indicates addition in quadrature.

�.�.� Improving Hadronic Energy Resolution

As a result of invisible energy loss in hadron showers, the EM response
and HAD response tend not to be intrinsically equal in a sampling hadron
calorimeter (i.e. typically, 4

⌘
> 1 for hadron calorimeters). However, there

are several ways in which the invisible energy of the hadronic fraction
may be accounted for, which are discussed in brief:

Compensating Calorimeters A ’compensating’ calorimeter is designed
to equalise 4 and ⌘ by careful design. A compensating calorimeter
requires several key design features [��, ��]:

I A sampling calorimeter design: compensation cannot be achieved in a
homogeneous calorimeter because the response to 4 and ⌘ cannot
be tuned (i.e. it is composed entirely of the same active material,
which cannot be modified);

I Hydrogenous active material: the response to neutrons by the calorime-
ter can be used to enhance ⌘. Hydrogenous active materials such as
plastic are, therefore, frequently used in compensating calorimeters
to enhance the HAD sampling fraction;

I A high-/ passive material: compensation is achieved by hardware by
attenuating 4 and enhancing ⌘. A high-/ passive material (relative
to active material) reduces the sampling fraction for electrons
and photons because the cross-sections for the processes shown
in Figure �.�� scale with powers of the atomic number of the
absorber�� . This property means more EM energy is deposited
in the passive (and therefore less in the active) material, thereby
attenuating the EM sampling fraction;

I Tuned sampling fractions: the sampling calorimeter requires careful
tuning of the thickness ratio of passive and active material to
balance attenuation of the EM sampling fraction from the high-
/ absorber and the enhancement from the hydrogenous active
material such that 4

⌘
= 1 is achieved.
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��: Dialectric material is material that can
be polarised in an electric field.

Figure �.��: Top: illustration of the ’shock
cone’ of Cerenkov radiation produced by a
relativistic charged particle entering from
a medium with a lower refractive index to
a medium with a higher refractive index.
Here, = is the material’s refractive index, 2
is the speed of light, C is time, and �2 is the
particle’s velocity. Taken from [��] Bottom:
electron resolution of the SuperDREAM
and DREAM Dual-Readout calorimeter
prototype [��, ��]. The fit shown yielded
a resolution of 13.9 %/

p
⇢ � 0.5 % in re-

sponse to electrons. Hadron resolution is
not available.

An example of a compensating calorimeter was the U-Sc ZEUS calorime-
ter, originally located at DESY, Hamburg, which achieved the best
hadronic energy resolution of any calorimeter in history thus far (0 '
35 %/

p
⇢particle) [��]. This calorimeter was designed to exploit uranium’s

high-/ and naturally fissile properties to produce a greater fraction of
neutrons and attenuate the EM signal and used a doped polystyrene-
based plastic scintillator (SCSN-��) to increase ⌘. The thickness of the
absorber of active and passive materials was chosen carefully to achieve
compensation (see Figure �.��).

Dual-Readout Calorimeters When a relativistic charged particle tra-
verses through dialectric�� material, in which its refractive index is
greater than that of vacuum (= > 1), it emits Cerenkov radiation. This
phenomenon occurs due to polarisation and subsequent de-excitation of
the traversed dielectric matter by the charged particle. This phenomenon
is analogous to the ’sonic boom’ that occurs when an object surpasses
the speed of sound in air.

Dual-readout detectors exploit this phenomenon to measure the EM
fraction of a shower on an event-by-event basis [��]. This is achieved
by simultaneously measuring energy in two ways: by Cerenkov light
produced by charged particles and separately by scintillator light. The
average responses from both readout methods are calibrated to be equal
for electrons. However, when measuring a hadron shower, the Cerenkov
signal is only sensitive to the EM fraction. At the same time, the scintillator
is sensitive to signals from both the EM and HAD fractions of the event. If
the HAD fraction is non-zero, then the scintillator and Cerenkov signals
will differ. By exploiting the ratio of the two readout signals and their
respective 4

⌘
ratios are independent of the hadron shower energy, the EM

fraction of the event can be reconstructed. Then, from this information,
the equivalent signal that would have been produced if the HAD fraction
had been zero (i.e. the response expected from an EM shower produced
by an electron of the same energy as the interacting hadron) can be
reconstructed.

A contemporary example of this detector design is the RD�� Super-
DREAM Cu-Fibre Calorimeter. This calorimeter prototype consists of
layers of Cu containing � ⇥ ��,��� Sc-Cerenkov fibres, read out by � PMTs
[��].

Software Compensation If the design requirements of the calorimeter
prohibit a compensating design (e.g. the thicknesses of the passive and
active material cannot be modified within the constraints placed on the
instrumentation), then the event information can be used to compensate
the hadron shower. In particular, the energy density (e.g.the dense EM
’core’ vs the sparse HAD ’halo’) and temporal development of a hadron
shower (e.g. delayed energy depositions caused by neutron interactions)
may be used to infer information about 4 and ⌘ on an event-by-event
basis. Software compensation is one of the topics of this thesis and is
discussed in depth in Chapter �.
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�.�.� Linearity of Response

In an ideal case, a detector should produce a linear response. This means
that the signal produced by the calorimeter increases linearly with the
energy of the incident particle (i.e. the signal is proportional to the particle
energy [��]). Several causes of calorimeter non-linearity are discussed in
brief:

Ionisation Quenching The light yield for scintillators reduces as the
energy loss of a heavy charged particle increases due to an increased
likelihood that ionised electrons and ions recombine into atoms once
again. This results in a non-linear light yield that reduces the energy loss
of the charged particle [��]. Birk’s Law gives the formula describing the
light yield of a particle traversing a scintillator, shown in Equation �.�
[��]:

d!
dG

= (
d⇢
dG

1 + :⌫ d⇢
dG

(�.�)

where ! is light yield, ( is scintillator efficiency, d⇢
dG is the energy loss of

the ionising particle, : is the quenching probability and ⌫ is a constant
relating local density of ionized molecules along the path of the particle to
the specific energy loss. This quantity varies from scintillator to scintillator.
Since :⌫ acts as an overall scaling factor, it is known as ’Birk’s constant’.

Photodetector Saturation Silicon-based photomultipliers may detect
only one photon at once and are thus typically built as arrays of individual
cells. Under a certain illumination intensity, the photomultiplier units
are all active at once and cannot detect more photons. Therefore, as
the intensity of illumination increases on the sensor, its response also
becomes non-linear and saturates at a certain value. This nonlinearity
can, to some extent, be corrected in the calibration of the detector by
applying an inverse mapping of the nonlinear response function, known
as a ’saturation curve’ [��].

�.�.� Particle Flow

Concerning Section �.�.�, many physical interactions of scientific interest
involving the Higgs will result in final states involving multiple jets
of particles. Invariant mass reconstruction from two or more jets is
required at future linear colliders for particle identification (PID) and
event reconstruction. One typical benchmark for detectors used in future
linear colliders is an adequate resolution to enable separation of the,±

and / boson invariant masses from their hadronic decays (final-state
jets). The best possible resolution of the invariant masses depends on the
decay width of these particles and their invariant mass. Figure �.�� shows
the distribution of the energy of the ,± and / bosons and illustrates
that an invariant mass resolution of the same �particle/⇢particle ' �//⇢/ '
�,±/⇢,± ' 2.7 %, which yields a �.�� separation on the peaks of the
Breit-Wigner distribution for the hadronic decays of the, and / boson.
For the typical jet energies at ILC, where the typical jet energy, ⇢9 , is in
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Figure �.��: Plot showing the Breit-Wigner distribution for the,± and / boson, where "particle is invariant mass and �particle is decay
width. The red and blue lines indicate the / and,± bosons respectively, with values taken from [��] and shown in the legend.

Figure �.��: Comparison of particle reso-
lutions from the Tracker, ECAL and HCAL
shown in Table �.�. The tracker is superior
for measuring electrons/positrons of ener-
gies below 131 GeV and charged hadrons
with energy below around 311 GeV, indi-
cated by the dashed purple lines.

the range ���–350 GeV for
p
B in the range �.�-1 TeV, results in a required

jet energy resolution of �9
⇢9

/ 30 %/pEj, which is around 3 % in the range
of jet energies from ��-200 GeV [��].

Studies on jets from short-lived particles have shown that they are
composed primarily of charged hadrons and leptons, with further contri-
butions from photons neutral hadrons and a small fraction of neutrinos,
which cannot be detected (see Table �.�).

Traditional calorimetry measures the energy of all hadrons with the
HCAL. However, because of stochastic fluctuations due to invisible
energy as discussed in Section �.�.�, HCALs always have the worst
energy resolution of any detector used in collider experiments. This
means most of the jet energy measured with the HCAL will result in
sub-optimal jet energy resolutions.

An alternative approach is to exploit that a jet is expected to be composed
primarily of charged particles. The momentum of a relativistic particle can
be used to approximate the energy of a particle in cases where Lorentz
✏ ' 1. Momentum may be measured by using specialised detectors
(’trackers’) to reconstruct its path in a strong magnetic field (⌫ ⇠ O(T))
using conservation of angular momentum and the Lorentz force. The
measured track may then be associated with energy depositions in the
ECAL or HCAL, and this energy is excluded from the energy depositions
in the calorimeters. The energy of the photons and neutral hadrons
may then be measured with the ECAL and HCAL, respectively. This
choice means that around 60 % of the total jet energy can be measured
with a resolution many orders of magnitude better than relying on the
calorimeters only. If the event’s four-momenta of each observable particle
are well reconstructed, the ’missing energy’ from neutrinos may also be
inferred.

This type of calorimetry is called ’Particle Flow’ (PF). PF was first developed
as ’energy flow’ for the ALEPH experiment at LEP �, which achieved a
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Particle Detector Energy Energy Jet Energy
Type Fraction Resolution Resolution
⌘
±/;± Tracker ⇠ 0.6⇢9 10�4

⇢-± < 3.6 ⇥ 10�5
⇢9

✏ ECAL ⇠ 0.3⇢9 0.15/
p
⇢✏ 0.08/

p
⇢9

⌘
0 HCAL ⇠ 0.1⇢9 0.55/p⇢

⌘
0 0.17/

p
⇢9

⇡;(⇡̄;) N/A negligible N/A N/A

Table �.�: Table describing Particle Flow. Charged hadrons/leptons (⌘±/;±) are measured using their momentum by tracking their trajectory
in a magnetic field, which improves the jet energy resolution compared to only using the calorimeters. The remaining photons (✏) and
neutral hadrons (⌘0) are measured using the ECAL and HCAL respectively. This means that only around 10 % of the jet’s total energy is
measured using the HCAL for a given jet, thereby improving the jet energy resolution over traditional calorimetry. Taken from [��].

(a) (b) (c)

Figure �.��: Figure �.��a demonstrates the method utilised by traditional calorimetry to measure the energy of jets. Figure �.��b demonstrates
the PF method, by comparison. Figure �.��c demonstrates the Pandora PFA algorithm, as applied to an ILC jet using the expected PF-based
International Linear Detector (ILD). Each colour represents a different particle type, reconstructed with the Pandora PFA algorithm. All taken
from [��].

Figure �.��: The jet energy resolution as
a function of calorimeter sensor size, mo-
tivating the existence of highly granular
calorimeters. Results obtained for / ! @@̄

induced jets. Top: ECAL. Bottom: HCAL.
Taken from [��].

jet energy resolution corresponding to �⇢9 = 65 %
p
⇢j [��]. However, this

is well above the required jet energy resolution of ILC.

PF has since been developed to meet the standards for future linear
collider experiments such as ILC and CLIC. Both experiments intend to
use PF as the cornerstone of their detector design to achieve state-of-the-
art jet energy resolution.

PF requires reconstruction of the to be achieved, several detector design
requirements must be adhered to:

I High Performance, Hermetic Tracking of Charged Particles: to make
accurate momentum measurements, a full �� tracking system
with an excellent resolution is required such that the momenta of
all charged particles produced in an inelastic collision are recon-
structed accurately [��];

I Highly Granular Calorimeters: the energy depositions from individ-
ual particles must be resolvable to allocate energy depositions to
charged tracks correctly. This has been found in simulation to be
achievable with highly segmented detector arrays, which improve
the jet energy resolution for both ECAL and HCAL with higher
granularity detectors. To achieve the jet energy resolutions required
for ILC, The cell size for ECAL and HCAL transverse granularity
ought to be at least 5 ⇥ 5 mm2 and 3 ⇥ 3 cm2, respectively. [��];

I Energy Clustering Algorithms: to associate the energy depositions
from highly granular calorimeters to tracks and to determine which
depositions came from neutral particles and which came from
charged particles, sophisticated clustering algorithms are required.
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Figure �.��: The jet energy resolution ob-
tained from PF (using Pandora PFA and
a simulation of the International Linear
Detector (ILD), the proposed detector for
ILC). The dotted line indicates the propor-
tion of confusion. The dot-dashed curve
shows jet energy resolution obtained the
detector simulation alone. The dashed
curve shows the jet energy resolution
measured with a traditional calorimetric
approach. using the hadron calorimeter.
Taken from [��].

Figure �.��: Jet energy resolution for the
ILD detector for ILC with the minimum
optimal HCAL cell size without energy
correction (blue), when applying SC for
neutral clusters only (green) and when
applying SC for all clusters (red). The long-
dashed lines show the energy resolution,
the dotted lines present the confusion term
as in Figure �.��. Taken from [��].

An algorithm designed to perform such as Pandora Particle Flow
Algorithm (Pandora PFA). Pandora PFA has been demonstrated
to be able to achieve resolutions of < 3.8 % for jet energies in
the range ��-420 GeV using simulations of jets observed with the
International Linear Detector (ILD) proposed to be used at the ILC
[��].

�.�.�.� Confusion

Unlike traditional calorimetry, PF performance is not limited by ECAL/H-
CAL resolution performance except at energies below 40 GeV. Instead,
the resolution is dominated by the effectiveness of correctly allocating
energy between showers.

Therefore, the main difference between traditional calorimetry and PF
is that the former requires detectors with good energy resolution, and
the latter requires detectors capable of good pattern recognition. The
degradation of jet energy resolution in PF due to misallocation of energy
is known as ’confusion’. There are three main types of confusion, shown
in Figure �.��:

I Photon Resolution: photonic energy depositions in ECALs may be
incorrectly allocated to the charged track, thereby ’losing’ the
energy from the particle to the charged track momentum, shown
in Figure �.��a;

I Neutral Resolution: energy from the neutral particle may be incor-
rectly allocated to charged shower, thereby ’losing’ the energy of
the hadron shower to the charged track momentum, shown in
Figure �.��b;

I failures in Reconstructing Shower Fragments: Fragments of showers
may be reconstructed as separate particles, thereby double counting
the energy depositions, shown in Figure �.��c.

Therefore, sophisticated pattern recognition techniques for energy de-
positions are critical to PF since its performance dictates the jet energy
resolution at the energies of future linear colliders. This fact motivates
research into pattern recognition techniques to resolve charged and
neutral energy depositions and their benefits and limitations (see Figure
�.��.).

(a)
(b) (c)

Figure �.��: Types of confusion experienced by PandoraPFA. All taken from [��]
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Technological
Prototype (����)

Readout SiPM on
scintillator tile

Absorber Layers ��
Number Of Sensors ��,���
Absorber thickness 17.2 mm
Layer thickness 26.1 mm
Tile thickness 3 mm
Cell Area 30 ⇥ 30 mm2

-0 27.3 mm
⌫� 237.1 mm
Moliere Radius 24.9 mm
Total Depth ⇠ 4.5⌫�

⇠ 0.11⌫�/layer
⇠ 40.8-0
⇠ 1.05-0/layer

Table �.�: Table of design components and
values of the CALICE AHCAL Prototype.
Modified from [��].

A different topic discussed in this thesis is software compensation (SC) for
a highly granular calorimeter. Highly granular calorimeters will typically
not be compensating [��]. As shown in Figure �.��, this technique has
been shown to improve the performance of Pandora PFA, which allows
superior measurements of neutral shower energy and association of
energy deposits to charged tracks by correcting for the invisible energy
that may contribute to a hadron shower event [��]. This observation
motivates research into methods to exploit best the rich spatial energy-
density information available from highly granular calorimeters for
compensation.

It is also noted that no usage of timing information for compensation or
shower separation for highly granular calorimeters is a generally new
topic. This also motivates research into the possible gains in performance
using this additional information.

�.� Apparatus and Experimental Methods

This section introduces and discusses the apparatus and methods used
in this thesis.

�.�.� CALICE AHCAL

In this section, the CALICE AHCAL highly-granular calorimeter pro-
totype is introduced, and its design and features are described. Special
attention is drawn to the capacity of the detector to measure the timestamp
of energy depositions.

�.�.�.� Design of the AHCAL Prototype

The CALICE Analogue Hadronic Calorimeter (AHCAL) is a Fe-Sc highly
granular calorimeter prototype built by the CALICE Collaboration, de-
signed for PF in future linear collider experiments such as ILC or CLIC
[��]. It is a sampling hadron calorimeter, consisting of steel plates of the
thickness of 16 mm as passive material and plastic scintillator tiles of
30⇥ 30⇥ 3mm3 volume, which places it at the upper limit on granularity
required for effective PF as discussed in Section �.�.�. The photon signal
is read from the scintillator by optical-range photodetectors called ’silicon
photomultipliers’, or SiPMs. The physics of the SiPMs used in the AHCAL
are introduced separately and in detail in Section �.�.�.

The detector consists of 24 ⇥ 24 ⇥ 38 (⇠ ��,���) individual SiPM-on-
tile readout channels interleaved between layers of steel absorber. The
AHCAL has a depth of around �.� ⌫� . The detector is designed to fit
inside the diameter of the solenoid of a future linear detector. The
AHCAL’s depth is insufficient for an ILC hadron calorimeter optimized
for

p
B = 250 GeV, as it only has fewer than the �� layers required for

� ⌫� longitudinal shower containment. This means that longitudinal
leakage affects the performance of the AHCAL [��]. It is also noted that
the AHCAL is a non-compensating calorimeter due to constraints on
absorber width. A previous prototype for the AHCAL was measured to
have an energy-dependent 4

� ratio of between �.�� and �.� in simulation
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(a) Calorimeter backface. (b) Calorimeter layers.

Figure �.��: Pictures of the CALICE AHCAL, depicting the calorimeter at test beam. The cells are shown in Figure �.��a, wrapped in foil to
improve photon sensitivity. A stack of thirty-eight layers is shown in Figure �.��b.

Figure �.��: Top: Design schematic of the
plastic scintillator tile used in the AHCAL.
The black square indicates the SiPM. Taken
from [��]. Bottom: Photograph of the scin-
tillator tile, with and without foil. Taken
from [��].

and experimental data [��]. The high granularity of the calorimeter is
driven by the need to resolve the energies of hadrons in jets initiating
showers in the detector [��]. Both of these topics are studied in this thesis.
Images of the CALICE AHCAL are shown in Figure �.��

A summary of the important individual components and design features
and aspects of the readout of the AHCAL detector are reviewed as
follows:

Scintillator Tiles and SiPM Readout The scintillator tiles used in AH-
CAL are composed of a polystyrene-based material doped with POPOP
wavelength shifter, thereby giving secondary scintillation corresponding
to a peak spectral wavelength in the high optical frequency range (���
nm, violet light) [��]. The tiles have a small hemispherical dimple of
1.5 mm in height and 6 mm in diameter embedded within the scintillator
tile, where the SiPM readout is located. This dimple provides optimal
placement of the SiPM and focuses the scintillator light. Each tile is
individually wrapped in highly reflective foil (�M Enhanced Specular
Reflector [��]) to improve the sensitivity of the tile via total internal
reflection. The foil is cut and scored for folding by laser and automatically
folded and wrapped around the tile using a robotic method [��], which
allows scaling to the large number of sensors required for the AHCAL.
Furthermore, the scintillator tiles are glued directly to a printed circuit
board (PCB) substrate upon which the readout circuitry is also placed
(see Figure �.��. The sensitivity of the SiPM to photons using this design
was found to be uniform, which is of adequate yield for a single MIP for
most of the scintillator volume (97.1 % of the scintillator volume yielded
within 10 % response of the mean 20.6 MIP photoelectron response to
90Sr � electrons [��]).

The AHCAL detector utilises the Hamamatsu S�����-����PE MPPC as
photodetectors for the SiPM-on-tile design. This device has an active area
of 1.3⇥ 1.3 mm2 and has ���� pixels per device. It is used in the AHCAL
due to its sharp response, fast recovery time, its comparatively low rates
of noise. During the ���� testbeam campaign, the SiPMs of the AHCAL
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��: A Wilkinson ADC unit operates by
comparing a charging capacitor to an input
voltage. The capacitor is then discharged,
and the time it recovers is proportional to
the signal’s amplitude. During discharge,
a high-frequency clock is sampled and
stored in a register. The number of pulses
from the clock during this time is propor-
tional to the voltage, thereby digitising the
signal [��].

Figure �.��: Photograph of the SPIROC�E
Readout Chip. Taken from [��].

Figure �.��: Photograph image of the AH-
CAL HBU. Taken from [��].

were operated at 5 V over-voltage (for a definition of this quantity, see
Section �.�.�) [��]. A detailed discussion on silicon photomultipliers is
provided in Section �.�.�. Further details and references on the specific
manufacturer values of this detector are provided in Section �.�.�, as part
of the research presented in that section.

Each combined ’SiPM-On-Tile’ read-out unit is hereafter referred to as a
’calorimeter cell’, and an active cell during an event as a ’hit’.

SPIROC�E Readout Chip The SPIROC�E (SiPM Integrated Read Out
Chip) is a dedicated front-end electronics unit used for readout from the
SiPMs of the AHCAL, manufactured by Omega [��]. It is an application-
specific circuit (ASIC) capable of auto-triggering and can read out from
� to ���� p.e. with a timing resolution of ��� ps from �� independent
channels.

An analogue memory array of �� for each channel allows for storing the
time and charge measurement of each SiPM in the readout. The SPIROC�E
can operate at under 25 µW, alleviating the need for additional cooling.
The chip can operate in two modes: a high-gain and a low-gain mode,
which modify the dynamic range of operation. The voltage from the SiPM
is shaped and converted to digital information by a ��-bit Wilkinson
Analogue-to-Digital Converter (ADC) unit �� , which allows an analogue
readout of the signal from the SiPMs to which it is connected, which may
later be converted into calibrated MIP units.

The SPIROC�E Time-to-Digital Converter (TDC) unit allows the digitisa-
tion of the timestamp of an event. The TDC operates with two ramped
voltages that operate during one clock cycle, one for even bunch crossings
and one for odd, with a length given by the bunch crossing length of the
ILC design (��� ns), during ’ILC mode’ and ���� ns during ’test beam mode’.
The out-of-phase ramped voltages are cycled to reduce the dead time
between clock cycles. The voltage from the ramp is stored in a register of
�� memory cells, from which the time is reconstructed. The timestamp is
extracted by converting the voltage to a TDC count similarly to the energy
signal from the SiPM. The conversion from TDC units to nanoseconds
is achieved by calibration of each SPIROC�E chip their channels using
an external clock. A linear relationship is expected between the external
clock and the measured TDC value. The slope of this line is common to
all channels on a chip, while the offset is channel-dependent. Both are
extracted for each chip and channel via a fit. The hit time in nanoseconds
is then extracted during an event using this slope and offset, relative
to the time of a coincidence between two trigger scintillators placed in
front of the AHCAL, is used to extract the time in nanoseconds (see [��,
��] for further details on this process). The underlying principle of the
calibration of TDC is nonetheless demonstrated in Figure �.��.

HCAL Base Unit The HCAL Base Unit (HBU) is an electronics unit that
supports all the components required to output the event information
from the layer to the DAQ system of the AHCAL. A single HBU has
dimensions 36⇥ 36 cm2, and supports four SPIROC�E chips, reading out
from ��� individual scintillator-SIPM cells. The HBU has a power unit
(POWER), a calibration (CALIB) and a detector interface (DIF), shown in
Figure �.��.
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Figure �.��: Diagrams illustrating the
method extracting the time in nanosec-
onds from a hit. The top figure shows the
relationship between the two ramps and a
clock cycle. Middle shows the relationship
between voltage and time. The bottom fig-
ure shows the slope extraction and offset
for a chip and channel from an external
clock ()0). Adapted from [��].

The power unit controls the power supplied to the components and
may allow the calorimeter system to operate in ’power pulsing mode’.
Power-pulsing mode at ILC refers to ’pulsed’ bunch trains that arrive at
the interaction point of the detector. During an event, data acquisition
is turned on; the power is turned off between trains. This alleviates the
need for additional cooling and reduces power consumption. The HBU,
therefore, exploits the relatively long bunch crossing timescale expected
of future linear colliders such as ILC to reduce power draw such that the
need for cooling is reduced (see [��]).

Highly relevant to this thesis is that the HBU contains an internal LED
calibration system for the SiPMs. The LED Calibration unit uses UV-
LEDs that are placed beneath each Scintillator-SiPM tile. UV-LEDs are
used because the SiPMs are required only to be triggered only once and
therefore requires fast pulses of ⇠ 10 ns during calibration, at an intensity
that may vary between no SiPM signal and the saturation of the SiPM
[��]. The reasons for the need for automated calibration of the SiPM
signals are discussed in depth in Section �.�.�, and are a significant focus
of this thesis. The voltages supplied to the LED calibration for each LED
are controlled by the calibration unit.

Finally, the detector interface mediates the interface between the afore-
mentioned control units and chips via field-programmable gate array (FPGA)
units. It provides the output of the detector system to the AHCAL DAQ.

�.�.�.� Event Information

As observed by the AHCAL, a hadron shower event consists of many
active cells. An active cell is denoted as a ’hit’. Each ’hit’ has a coordinate
within the matrix of calorimeter cells. The lateral spatial position of an
active cell is defined relative to the front face of the calorimeter is denoted
�hit and �hit, both with values between and including � and �� cell units.
The longitudinal spatial position (depth in layers) is denoted  hit. These
quantities are measured in cell units and defined as values between and
including � and �� cell units, corresponding to the calorimeter layers.
The energy of an active cell is denoted ⇢hit, measured in Analogue-to-
Digital counts by the SiPM cells, calibrated to the energy deposited by
a minimum ionising particle in one cell (MIP) [��]. ⇢hit takes a value
between a noise threshold at 0.5 MIP and the SiPM saturation energy. The
TDC also produces the time of a hit, Chit is bounded between the time at
which the energy deposited in a given cell crosses a pre-defined threshold,
normalised throughout this thesis 0 ns, smeared by the resolution, and
the chosen gate length for the measurement of an event. Additionally,
the incident position of a charged particle in lateral coordinates may
be measured by a tracker before interaction, as would be the case in a
Particle Flow reconstruction, which is denoted as a vector [�track , �track].
Furthermore, the number of active cells in the event is denoted #hits. The
total reconstructed energy in a hadron shower observed by AHCAL is
denoted ⇢sum and described by Equation �.��.

⇢sum =
#hitsX
8=0

⇢hit,8 (�.��)
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The ’centre-of-gravity’ is defined as the energy-weighted mean position
of the hadron shower and is used as described by Equation �.��:

⇥
CoG� ,CoG� ,CoG 

⇤
=
#hitsX
8=0

⇢hit,8 · [�hit,8 , �hit,8 ,  hit,8]
⇢hit,8

(�.��)

In this thesis, calorimeter cells are always used as a unit of distance. In
this unit of measurement, the calorimeter origin point is treated as the
leftmost and bottommost cell in the first calorimeter layer relative to the
beam.

Additionally, studies are sometimes performed with transformed coordi-
nate systems. The additional variables are outlined as follows:

Hit Radius and Azimuthal Angle The hit radius defines the distance, in
calorimeter cells, from the lateral centre-of-gravity. The azimuthal angle
describes a corresponding angle of the hit in radians. The relationships
of these quantities are shown in Equations �.��-�.��:

'hit =
q
(�hit � CoG�)2 + (�hit � CoGJ)2 (�.��)

hit = arctan2
�
�hit � CoGJ , �hit � CoGI

�
(�.��)

Where arctan2 is the �-argument arctangent that implicitly includes the
sign of the angle [��]. The reasons for using these variables are twofold.
Firstly, this coordinate transformation makes hadron showers, on average,
translation invariant, thereby making algorithms designed with hadron
shower data implicitly robust to varying positions of impinging particles
on the calorimeter front face. Secondly, this coordinate system more
adequately describes the lateral development of hadron showers in
matter, on average (see Section �.�.�).

Shower Start-Normalised Hit Depth The shower-starting position
of a single hadron shower is denoted  (. An algorithm achieves the
measurement of  ( . The algorithm studies the depth at which the energy
deposited by a hadron shower event contained within a radius of 10 cm
from the lateral centre-of-gravity (i.e. 'hit) starts to increase laterally
relative the energy contained within a radius of 2 cm. It is compared
to the ratio of one (i.e. the result expected for muons, which typically
deposit their energy via ionisation, and therefore in a highly localised
manner compared to the granularity of the detector). The algorithm uses
a moving average window of three layers to smooth any fluctuations
(e.g. energy deposits from the production of ⇣-electrons from ionisation).
If the ratio becomes less than one, then the hadron shower must have
initiated and yields the value of  ( in layers (see [��] and [��] for more
details). The position of a hit in a hadron shower relative to this position
is denoted  hit �  (. This quantity is used for the same reasons as 'hit
and hit, since the hadron shower only develops after  (.
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Figure �.��: Diagram illustrating the relationship of 'hit, hit and  hit �  ( to the standard co-ordinates provided by the AHCAL readout
for shower event initiated by a charged hadron in AHCAL. 5

⌘
and 54 , coloured purple and orange, indicate the expected hadronic and

electromagnetic fractions of the event, respectively.

Rescaled Energy and Time The detector primarily measures individual
cell energy deposits from ionisation. It is well-known that ionisation
energy loss is Landau-distributed [��]. As discussed in �.�.�, the temporal
distribution of the hadron shower in steel had been observed to follow a
bi-exponential structure: a fast component due to evaporation of MeV-
scale neutrons and a slow component due to nuclear ✏ from neutron
capture and ✏ from recoil protons induced by neutron elastic scattering
[��]. For these reasons, the distributions of ⇢hit and Chit are highly
skewed. Consequently, it is often beneficial to transform the ⇢hit and
Chit co-ordinates. A logarithm may be applied to the positive hit energy
(⇢hit ! log⇢hit). The temporal component may have negative values due
to smearing, which is a stochastic effect and depends on the scale of the
time resolution. Therefore, Chit is transformed with an inverse hyperbolic
sine (Chit ! arcsinh Chit). This transformation performs similarly to the
logarithm for positive values while permitting the presence of a small
proportion of negative values.

�.�.�.� ���� SPS June Testbeam

In May, June and October ����, CALICE performed an experiment at the
’Super Proton Synchrotron’ (SPS) at CERN to study the AHCAL response
to muons, electrons and hadrons (�� mesons). Several 105 events were
measured for each particle, for particle energies in the range ��-��� GeV,
using the full technological prototype for the AHCAL detector.

The testbeam campaign was performed for technical and scientific re-
search [��]. Technical studies were focused on a demonstration of the
effectiveness ’SiPM-on-tile’ technology and the reliability of the perfor-
mance of the detector in power-pulsing mode. Physics studies were
focused on the study of the intrinsic resolution and linearity of the
AHCAL and energy development profiles[��], its shower separation ca-
pabilities using Pandora PFA [��] and particle identification capabilities
of the detector [��].

The June ���� testbeam is studied in this thesis. This testbeam added
several pieces of additional instrumentation to the AHCAL. A single HBU
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(a) (b)

Figure �.��: Pictures of the CALICE AHCAL at ���� Testbeam. Figure �.��a depicts the calorimeter setup at the ���� June SPS testbeam,
indicating the beam position and instrumentation. Taken from [��]. Figure �.��b depicts a wire chamber used for track reconstruction at the
���� June testbeam. Taken from [��].

was used as a ’pre-shower’ detector, mainly for triggering. In addition,
The hadronic calorimeter was complemented by a steel-scintillator Tail
Catcher/Muon Tracker (TCMT) detector, composed of ��� extruded
scintillator strips of � x �.� cm2 area packaged in �� ⇥ � m square
planes interleaved between steel plates. The TCMT corresponds to a total
additional depth of �.� ⌫� to the AHCAL detector [��]. The TCMT was
used in this analysis to tag leakage from the AHCAL. In addition, the
incident track was reconstructed using four delay wire-chambers (DWC)
of �� ⇥ �� cm2 size, which allowed reconstruction of the position (a
pseudo-’track’) of the charged particle impinging onto the calorimeter
[��]. The June ���� Testbeam data is utilised in this thesis for validation
studies. Both the AHCAL and TCMT are utilised in this thesis where
applicable.

It should be noted that the last calorimeter layer of the AHCAL during
this testbeam utilised a ganged layer of 6⇥6 cm2 tiles during this testbeam
(’Tokyo layer’). Energy depositions in this layer are omitted in this thesis
due to the need for isotropy of the cell size distribution in the calorimeter
for the studies of shower separation performed.

Pictures of the CALICE AHCAL at the June Testbeam are shown in
Figure �.��. Further experimental details can be found in [��].

�.�.�.� Software and Simulation Tools for AHCAL

In this thesis, ���� June Testbeam data and simulations of this exper-
iment were used to study high-level algorithms for hadron shower
clustering and software compensation relied on both simulation, detector
descriptions, digitisation of simulation and event reconstruction. Several
software modules were used for this purpose, which is introduced in
brief.
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Parameter Value
Particle ��/ 0

!

Type Beam
Physics List QGSP_BERT_HP

Beam Gun, G -15 mm
Beam Gun, H -15 mm
Beam Gun, I -50 m

Beam Width G 27.1 mm
Beam Width H 25.8 mm

Table �.�: Table of Geant4 simulation pa-
rameters used for hadron shower simula-
tions in AHCAL in this thesis.

iLCSoft iLCSoft [��] is the underlying software framework to simulate
future linear collider instrumentation. iLCSoft v��-��-�� is used in this
thesis. It consists of several specialised submodules which focus on
different aspects of the detector simulation and data reconstruction for
instrumentation:

I Simulation of particle interactions is provided by the ubiquitous
Geant4 simulation package [��]. In this thesis, �� and  0

!
hadron

showers are simulated interacting with the AHCAL apparatus
from a ’beam gun’ at a distance of �� m from the detector front
face. The simulation used the QGSP_BERT_HP physics list, using
Geant4 v.��.�p�.

I Full descriptions of AHCAL detector geometry, detector materials,
alignment, readout and calibration are provided for simulation
using the DD4hep v.��-��-�� package [��];

I Event reconstruction is handled with the ’Modular Analysis and
Reconstruction for the Linear Collider’ (Marlin) framework. Marlin
provides the option to apply custom event reconstruction and anal-
ysis modules to the parity between the methods used to reconstruct
data and simulation [��];

CALICESoft CALICESoft [��] consists of specialised algorithms and
modules for use with Marlin to perform digitisation of simulation,
reconstruction and analysis of both data and simulation taken at the
various testbeam campaigns. CALICESoft v.��-�� includes the specific
simulation, digitisation and reconstruction modules used for June ����
simulation and data in this thesis. Comparisons between simulation and
experimental data from the ���� SPS June Testbeam are studied in depth
in [��] and are presented independently in this thesis in Chapter �.

�.�.�.� Five-Dimensional Calorimetry

The AHCAL is a unique detector in that it is capable of recording energy
depositions with up to 100 ps time resolution. This makes the calorimeter
five-dimensional, rather than the typical four-dimensional calorimeters
required by PF. Sub-nanosecond timing resolution is expected to improve
PF algorithms, which are presently discussed.

Timing in Software Compensation Algorithms As previously men-
tioned in Section Studies of time development of hadron showers in
the AHCAL have revealed that a steel calorimeter such as AHCAL is
sensitive to three distributions of energy deposits from hadron showers:
the electromagnetic fraction, which is instantaneous, and the energy
depositions from the intra-nuclear cascade initiated by elastic neutron
scattering, and those from neutron capture. Timing information is ex-
pected to provide improved event-by-event compensation capability, as
the fraction of energy deposited in the later epochs of the hadron shower
development is highly correlated to the missing energy fraction. Further
discussion and research on this subject are presented in Chapter �.
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��: When a SPIROC�E chip experiences
high memory-cell occupancy, the spread
of the distribution of hit times becomes
so variable that it is effectively impossi-
ble to calculate an offset for the timing
information (see Figure �.��). This may
extend to ’negative times’ because the tim-
ing depends on the parity of the bunch
crossing and the timing information be-
ing encoded as a voltage rather than an
incremental value relative to an external
clock. This effect worsens in significance as
the occupancy increases, such as when a
shower is centred on a single ASIC rather
than spread out across multiple ASICs,
which affects the critical region of times
between the fast EM component of the
hadron shower and the slower HAD com-
ponent and reduces for later, lower occu-
pancy energy depositions deposited by
neutron capture [��].

The extent to which timing information can optimally improve both
aspects of PF is unknown. It, therefore, motivates the work in this thesis
to assess the possible improvements in shower separation performance
that may be achievable with the AHCAL calorimeter operating at 100 ps
timing resolution.

Timing in Shower Separation Algorithms An obvious use for timing
information in hadron shower separation is separating showers by time-
of-flight (i.e. hadrons that shower deeper in the calorimeter have later
energy depositions compared to those that showered in the first few
layers). However, on an event-by-event basis, the temporal development
of a hadron shower is expected to vary significantly due to stochastic
fluctuations in the hadron shower. An appropriate algorithm may utilise
this information to cluster hadron showers not only in space but also in
time, utilising differences between the energy-temporal profiles of the
two showers. It is unclear how useful timing information will improve
shower separation capability compared to without it. Further discussion
and research are presented in Chapter �.

As a caveat in this thesis, it should be noted that timing information is
not currently available in June ���� SPS Testbeam data to the quality
required for use in machine learning algorithms. This is a consequence
of chip occupancy effects, which result in artificial hit times arising from
the challenge of determining a timing offset in these cases. This effect
results in non-physical negative times and artificially many hits in the
critical transition period between the fast EM component of the hadron
shower and the slow HAD component (first �� ns)�� .

�.�.� Silicon Photomultipliers

Silicon photomultipliers (SiPMs), ’multi-pixel photon counters’ (MPPC), or
Geiger Avalanche Photodiode (G-APD) when referring to a single pixel, are
semiconductor devices that are used to amplify the signal of photons in
the near-infrared to the ultraviolet range of frequencies to be detected.
This design of photodetector is advantageous because it offers single
photon resolution, high detection efficiency, unaffected by magnetic fields,
and sub-nanosecond time resolution making them ideal candidates for
calorimeter readout. However, SiPMs are versatile energy detectors used
in a variety of other fields: two further examples include in medicine,
for combining positron emission tomography with magnetic resonance
imaging, which capitalises on the invariance to magnetic fields, as infra-
red detection and ranging (LIDAR) sensors for self-driving cars, which
utilise the high efficiency and fast timing resolution of these detectors.

In this section, the concept of a semiconductor is introduced. Silicon, a
semiconducting element, is then introduced, and the special properties
that arise from doping the material with other elements are discussed.
The concept of a p-n junction is then introduced and described. The
design of the SiPM device itself is then described in brief. The signal of
SiPMs under illumination by light are then discussed, as well as sources
of correlated noise, and related to the AHCAL detector. The need to
characterise SiPM charge spectra is then discussed in the context of the
AHCAL, which motivates part of the studies of this thesis.
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Figure �.��: Diagram illustrating the dif-
ference between conductors, semiconduc-
tors and insulators. The width indicates
the energy level, the height is the density
of states available, and the dashed line
indicates the Fermi level. Black through
white shading indicates the probability an
electron inhabits the state (black: all states
filled, white: no states filled), Taken from
[��].

�.�.�.� Semiconductors

At the atomic level, from the Pauli Exclusion Principle, fermions such
as electrons cannot occupy the same quantum state around an atomic
nucleus. This concept gives rise to the ’atomic band structure’: electrons
occupy discrete energy levels around atomic nuclei. More than one
electron may sit on the same band if their quantum numbers allow it (e.g.
a He nucleus permits two electrons of antiparallel spin to sit on the same
ground state energy level).

Electrons in an atom’s band structure may be considered discrete, single-
particle states. Assuming thermal equilibrium, a hypothetical state where
there is a 50 % probability of occupation by an electron is called the ’Fermi
level’ of the material. The shell of electrons closest to the Fermi level is
called the ’valence band’. The first unfilled state above the Fermi level
is called the ’conduction band’. The difference between the valence and
conduction bands is called the ’band gap’. The Fermi level of the material
sits between these two bands.

Conductive materials (e.g. metals like Fe or Cu) have overlapping con-
duction and valence bands. Therefore electrons may readily flow to and
from the valence band to the conduction band. Conduction is negligibly
likely under any condition for insulators (e.g., plastic, glass, quartz).
Materials called ’semiconductors’ have an electrical conductivity that falls
somewhere between a conductor and an insulator. This means that there
is some finite probability for semiconductors, at ordinary temperatures
and pressures, to conduct. Put another way; the bands are close enough to
the Fermi level in these materials so that they may be thermally occupied
with electrons, or the absence thereof (’holes’).

Semiconductors are used ubiquitously in modern electronics because
they can be made to conduct when certain conditions are met (e.g. in
transistors). In the context of particle physics detectors, this usually
means interacting with a particle, such as a photon or ionising radiation,
thereby producing a signal only when the particle is observed.

�.�.�.� Silicon and Doping

Silicon (Si, Z=��) is a semiconducting element. In nature, pure silicon
forms a crystal. A crystal is any matter that forms regular structures at
the microscopic level that repeats throughout (’crystal lattice’). Silicon
crystal is composed of single atoms, which means the crystal structure is
very stable and has well-known conductivity and electrical properties.
Silicon is plentiful in the Earth’s crust in the form of silicates and silica
(silicon dioxide) and is cheap to extract. Silicon has four valence electrons
and a band gap energy of 1.12 eV.

Silicon, on its own, is a poor conductor and insulator. However, it is a
particularly special element that can be doped with other elements to
change its electrical properties by making it more conductive. The crystal
structure of silicon may be modified with two main classes of dopants:
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Figure �.��: Diagram illustrating the difference between undoped silicon, p-type silicon and n-type silicon. The upper diagram illustrates
the crystal structure of the silicon, with black circles indicating electrons and white circles indicating holes. ⇢⌧ indicates the band gap. ⇢8 is
the intrinsic Fermi level (i.e. as would be the case if unmodified by the dopants). The + and � symbols indicate the charge of the ions.
⇢ionisation indicates the ionisation energy required for transitions between states. The blue-to-white shading indicates the probability of
containing a filled electron state. Adapted from [��].

Donors Donor atoms modify the Fermi level of the silicon so that it is
close to the conduction band of the crystal and introduce a new energy
level above the valence band and below the Fermi level. Electrons at this
level may be easily excited into the conduction band. In summary, this
silicon makes it more probable to have an electron in the conduction band
than in undoped silicon and, therefore, ’donates’ electrons. The resulting
material is called ’n-type silicon’. Donors have five valence electrons,
meaning Group V elements (e.g. P, As, Sb, Bi) are used as donors in
silicon. Of them, phosphorus (P) is most commonly used as a dopant for
silicon.

Acceptors Acceptor atoms modify the Fermi level of the silicon so that
it is close to the valence band and introduce a new energy level above the
Fermi level and below the conduction band. Electrons at this level may
be excited there from the valence band, meaning a hole is left behind. In
summary, this type of silicon makes it more probable that an electron is
not in the valence band of the undoped silicon and, therefore, capable of
’accepting’ electrons there. The resulting material is called ’p-type silicon’.
Acceptors have three valence electrons, meaning Group III elements
(e.g.B, Al, Ga, In) are used as acceptors in silicon. Of them, Boron (B) is
most commonly used as a dopant for silicon.

Different concentrations of doping in silicon may also be used in the
same device. The relative doping concentrations are indicated by + and �
superscripts. Ordinary doped silicon is of a concentration of 1⇥1010 cm�3

dopant and can be many orders of magnitude higher depending on the
application.

�.�.�.� p-n Junctions

Doped silicon has greatly improved conductivity compared to undoped
silicon. However, for use in particle detector experiments, the silicon must
be sensitive to the influence of very small numbers of charge carriers
produced by interactions of light or charged particles with the crystal.
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Figure �.��: Diagram illustrating the dif-
fusion of electrons from the n-type to the
p-type junction, which is indicated by blue
and red regions, respectively. Purple and
orange circles indicate ions formed by elec-
trons and holes recombining with silicon
atoms. Blue and white circles indicate elec-
trons and holes. The green rectangle in-
dicates the depletion region, where no
further electron-hole recombination can
occur.

Figure �.��: Diagram illustrating the
breaking of equilibrium at the p-n junction
by excitation by a photon with a energy
larger than the silicon band gap. Symbols
as in Figure �.��. Adapted from [��].

For instance, a single photon will produce a single electron-hole pair if
it interacts with a silicon atom via the photoelectric effect, which is ’a
drop in the ocean’ of free charge carriers in silicon provided by even the
lightest of doping concentrations, thereby making the event undetectable.
This can be resolved by introducing a ’depletion region’ in the silicon where
the number of free charge carriers is significantly reduced.

Constructing a ’p-n junction’ may create a depletion region. A p-n junction
is a basic diode: it allows current to flow in one direction (’forward bias’)
but not the other (’reverse bias’).

When placed together, holes diffuse across the junction from the p-type
to the n-type silicon and recombine with the free electrons, and vice versa.
This leaves negative ions in the p-type silicon and positive ions in the
n-type silicon. The high electric field of these ions at the junction prevents
further diffusion. This creates a region where the number of free charge
carriers is depleted compared to the rest of the junction. This is called
the depletion region. It should be noted that, under applied reverse bias,
more free charge carriers are pulled from the silicon; therefore, the width
of the depleted region subsequently expands.

�.�.�.� The Design of Silicon Photomultipliers

A SiPM consists of matrices of single-photon avalanche diodes (SPADs). The
typical size of the pixel is 10 ⇥ 10 µm2 to 100 ⇥ 100 µm2. The matrices
consist of hundreds to several tens of thousands of individual pixels,
each of which may measure the presence of single photons.

The light-detection sensor of a SiPM pixel may be viewed as a p-n
junction operated under reverse bias and with an applied voltage across
the device. In this configuration, minimal current flows through the p-n
junction when in a quiescent state. However, when a photon induces
the photoelectric effect in the depletion region or a valence electron
is thermally excited in the depletion region, it generates an additional
electron-hole pair, known as ’excess charge carriers’. The excess charge
carriers drift towards the regions of the majority concentrations (electrons
to cathode, holes to anode). This is because the charge carriers must
travel opposite the direction of the electric field in the depletion region by
moving from the high to the low potential region of the p-n junction.

While current flows in this configuration, it is much more likely that
free charge carriers will recombine with ions than produce a measurable
signal. If, however, the electric field of the depletion region is sufficiently
large (typically ⇠ 300 kV cm�1/30 V µm�1), the electrons will accelerate
and create more charge carriers by ’impact ionisation’. This leads to charge
carrier multiplication. If the applied voltage is sufficiently large, a self-
sustaining micro-plasma tunnel of around 10 µm diameter, typically
involving around 105-106 avalanche electrons per photoelectron called a
’Geiger avalanche’ [��]. This pixel state is called ’breakdown’. Breakdown
may only occur at voltages greater than the ’breakdown voltage’, +bd. The
voltage requirement arises because the electric field in the depletion
region of the junction must be sufficiently strong that charge carrier
multiplication can occur (i.e. the kinetic energy of charge carriers must
therefore become greater than the 1.12 eV gap between the silicon valence
and conduction band within the mean free path of the charge carrier in
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��: Parasitic capacitance is produced by
the interaction of the electric fields of two
close-by components in a circuit.

silicon). If this condition is met, at least one electron-hole pair will be
produced per ionising impact. Therefore, SiPMs are operated at a voltage
above+bd, called the bias voltage,+b [��]. The operation voltage of a SiPM
is typically quoted as an ’over-voltage’, which is defined+OV = +b �+bd.

Next, when the diode breaks down, current flows through the diode,
thereby producing a measurable signal from a photon. However, a Geiger
avalanche is self-sustaining and will continue indefinitely if nothing is
done. Therefore, a ’quenching resistor’ component acts to ’quench’ the
Geiger avalanche and restore the diode to its quiescent state. The voltage
at which the avalanche may not sustain itself is called the ’off-voltage’
(+off), and another discharge may be measured by the device. It should be
noted that in the study of [��], the off-voltage and the breakdown voltage
have been measured to be different. This result is expected because the
energy required to initiate a Geiger avalanche is greater than the energy
required to sustain it [��]. Since there remains ambiguity as to the exact
difference between the off-voltage and breakdown voltage, over-voltage
can also be quoted relative to the off-voltage, +OV = +b �+off.

In the absence of noise effects, the signal from a SiPM device under
illumination by light is a pulse of current caused by a Geiger avalanche
initiated by a photon. Each SPAD pixel can independently produce
a signal from a photon under illumination. The number of photons
the device measures during an event is proportional to the total charge
measured within an integration window. The number of photons incident
on the SiPM array can therefore be measured.

The pulse is bi-exponentially distributed, depending upon two time
constants [��]:

I Fast-component time constant, � 5 : the fast component of the pulse is
caused by parasitic capacitance�� to the silicon bulk, � 5 = 's · ⇠q,
where 's is 's is a shunt resistance that converts the current signal
into a voltage and ⇠q is parasitic capacitance. This time constant is
around �-5 ns.

I Slow-component time constant, �B/�: the slow component of the pulse
is caused by the recharging of the pixel through the quenching
resistor, (�B = '@ ·

�
⇠3 + ⇠@

�
, where '@ is quenching resistance,

and ⇠@ and ⇠3 are the parasitic and diode capacitance, respectively.
This time constant is around ��-40 ns.

A cross-section of a SiPM pixel is shown in Figure �.��a, showing a circuit
diagram of a SiPM in Figure �.��b.

The leading producer of SiPMs in the world contemporary with this
thesis is Hamamatsu [��].
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(a) (b)

Figure �.��: Figure �.��a shows a cross-section of a typical SiPM pixel under illumination. = and ? indicate ? and =-type silicon, and � is the
’drift region’. The rotated graph on the right-hand side indicates the electric field in the device. The high electric field region (the depletion
region) indicates the junction between the ? and = type material. It indicates where amplification of the excess charge carriers is produced
via the photoelectric effect. The depth of the device is indicated on the left-hand side (Property of the University of Hamburg). Figure �.��b
shows an example circuit diagram illustrating the design of a SiPM pixel array. +bias (+b) represents a reverse-bias voltage applied to the
SiPM, to increase the depletion region of the diode and thereby increase the amplification of the device. 'd and ⇠d and represent the
resistance and capacitance of each pixel, respectively. �disc represents the discharge current caused by a Geiger Discharge. ( represents a
’switch’ that switches on during a discharge and off once a certain off-voltage (+off) is reached. 's is a shunt resistance that converts the
current signal into a voltage. 'q and ⇠q represent a quenching resistance and a parasitic capacitance to the silicon bulk. Taken from [��].

Figure �.��: A representative two-
dimensional histogram representing the
voltage over a �� ⌦ resistor produced by
a SiPM over time in nanoseconds of a
Hamamatsu SiPM under low-intensity il-
lumination by pulsed light, after a factor
of �� linear charge amplification. The bi-
exponential pulse shape of the discharges
of the SiPM is visible. The number of pho-
toelectrons and discharges from correlated
noise sources, such as cross-talk and after-
pulsing are indicated. Property of the Uni-
versity of Hamburg.

.

�.�.� Characterisation of SiPMs

The main variables of interest characterising the behaviour of a SiPM
under illumination and noise sources that influence the pulses are now
introduced [��–��]. Next, the concept of a charge spectrum is introduced,
and an example experiment for measuring them is described. How they
can be used to characterise SiPMs is explained. The relevance of SiPM
characterisation to the AHCAL calibration is then discussed.

�.�.�.� SiPM Performance Parameters and Noise Sources

Parameters for describing the behaviour of SiPMs are introduced and
discussed in the following section.

Gain The total amplification achieved by the SiPM sensor measured in
charge is defined as the product of the overvoltage and the combined
capacitance of the diode and parasitic capacitance of the quenching
resistor:

⌧ =
�
⇠d + ⇠q

� ·+OV (�.��)

It should be noted that only a fraction of the total gain is reconstructed if
the pulse is integrated within a gate. The gain measured, in this case, is
called an ’effective gain’, ⌧⇤ = 5gate ·⌧, where ⌧⇤ in this thesis is defined as
the effective gain in this thesis and 5gate is the fraction of total integrated
charge of a SiPM pulse allowed by an integration gate length [��]. The
gain may also be quoted in avalanche electrons per photoelectron in units
of the elementary charge. It is also clear that gain increases linearly with
over-voltage. Therefore, the off-voltage of the SiPM may be extracted
from experiment. It also converts the measured charge to a number of
photoelectrons that can be counted.
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��: The fill factor of a SiPM describes the
ratio of the active area to the total area of
the pixel.

��: Quantum efficiency is the joint prob-
ability that a photon traverses the anti-
reflective coating of the pixel and produces
an electron-hole pair that reaches the de-
pletion region. It depends on the frequency
of light.

��: The avalanche-triggering probability
describes the likelihood that a photon-
induced electron-hole pair induces a
Geiger avalanche. It depends on over-
voltage, the pixels’ temperature and the
light frequency. The frequency depen-
dence arises because higher frequencies
of light have a lower attenuation depth in
silicon and, therefore may not travel deep
enough into the depletion region to be
fully amplified. The thermal dependence
arises because producing a free charge
carrier in silicon requires a photon and a
phonon from the silicon lattice. Therefore,
as the temperature decreases, so too does
the likelihood that a Geiger avalanche oc-
curs.

��: ’Interstitial’ means an atom that is not
part of the regular structure of the crystal.

Pedestal Position The pedestal position (or simply ’pedestal’) is the mean
charge measured from the SiPM device when no photons are incident
on the device. It converts the charge to some photoelectrons that can be
counted.

Photon Detection Efficiency The ’photon detection efficiency’ (PDE) of
a SiPM describes the total probability an incident photon is to induce a
Geiger avalanche and produce a measurable signal. The PDE is equal to
the product of the ’fill factor’ of the device �� , the ’quantum efficiency’��

and the ’avalanche-triggering probability’�� [��]. As the light intensity
on a SiPM increases, more pixels will fire, and the PDE will saturate.
The SiPM will no longer produce additional discharges, resulting in
the non-linearity of the SiPM response under illumination (see Section
�.�.� and Section �.�.�.�). Furthermore, the PDE of a SiPM will change
depending on the temperature of the SiPM. Consequently, the PDE
is a critical figure-of-merit of a SiPM’s performance. More details on
measurements of the PDE are discussed in Appendix Section �.�.�.�.

Electronics Noise and Gain Fluctuations The integrated charge from a
SiPM around the pedestal value is normally distributed due to electronics
noise (denoted �0). As the number of firing pixels increases, so too do
gain fluctuations within one pixel and across multiple pixels (denoted �1)
contribute to the noise. Gain fluctuations arise primarily from pixel-to-
pixel fluctuations of +off. +off fluctuates because the quenching of Geiger
discharges is a stochastic process. Differences in the capacitance of pixels
in a SiPM also contribute to the gain fluctuations [��].

Prompt and Delayed Cross-talk Cross-talk is a type of discharge where
charge carriers from a primary Geiger discharge in a pixel contribute
to the signal measured by other pixels and are produced as a result of
secondary photons from a Geiger avalanche producing an electron-hole
pair in another pixel. Suppose the photon passes into the depleted region
of another pixel directly. In that case, it is called ’prompt cross-talk’, and a
coincident pulse of the same amplitude as the primary Geiger discharge
pulse. If the secondary photon enters the non-depleted region of another
pixel, the charge carriers will diffuse to the depleted region of that cell;
it is called ’delayed cross-talk’. It will produce another delayed pulse of
the same amplitude as the primary Geiger discharge. The influence of
cross-talk is typically defined as an ’excess noise factor’.

After-pulsing Charge carriers can be captured by ’defects’ in the silicon
crystal (e.g. ’deep defects’ such as interstitial �� carbon and oxygen atoms
in the crystal, known as a CiOi defect, or vacancy-related traps in the
silicon) which introduce undesired energy levels in the silicon band gap.
Charge carriers may be captured by such a defect and released later.
This is called ’trapping’. The charge carriers may be released after some
time and contribute a delayed signal to the same pixel with diminished
amplitude depending on the recharge state of the SiPM. Afterpulses can
only occur if a primary Geiger discharge first takes place in the pixel.
Delayed cross-talk in the same cell as the primary discharge is analogous
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Figure �.��: Example experiment illustrating how SiPM spectra may be measured. A SiPM is illuminated with light from an LED or laser.
Geiger avalanches are produced in the SiPM pixels, producing voltage pulses. Next, the signal from the SiPM is amplified and measured
with an oscilloscope. The charge is then integrated within a window known as a gate (Cgate) from a time slightly before the start of the pulse
(Cstart), and may include a period before the gate to measure dark counts (C0). Finally, the charge (&) is recorded in a computer database. The
distribution of a charge spectrum is produced from many discharges, which may be used to characterise the SiPM under test.

��: This is due to the +off-temperature
dependence, discussed in Section �.�.�.�.
Therefore, the bias voltage of SiPMs must
be increased on the SiPMs as the temper-
ature increases. The average temperature
of the detector will increase during opera-
tion, so the detector’s performance must
be monitored.

to an afterpulse. The probability with which a discharge produces a
single afterpulse is called ’after-pulse probability’.

Dark Counts Thermal excitations of electron-hole pairs can also initiate
discharges, called ’dark counts’, which are uniformly distributed in time.
This effect is temperature-dependent and may increase with radiation
damage to the SiPM. The contribution of dark counts to a SiPM signal is
measured as a ’dark count rate’ (⇡⇠'), measured as a frequency typically
in the order of kHz. After irradiation, it may increase to MHz.

�.�.�.� Characterisation of SiPMs from Charge Spectra

One method of extracting SiPM parameters is to measure the device’s
response under illumination by low-intensity LED or laser. The voltage
pulses from the SiPM may be measured and recorded using an oscil-
loscope. The current produced by the SiPM may be integrated within
a certain gate length, yielding a charge. The result is a distribution of
charges, known as a ’charge spectrum’. A diagram illustrating an exper-
iment for measuring a charge spectrum is presented in Figure �.��.
This diagram also shows an SiPM charge spectrum that is influenced
by correlated noise, dark counts and after-pulses. A breakdown of the
contribution of several common sources of correlated noise to a single
photon pulse is shown in Figure �.��.

As mentioned in Section �.�.�.�, there are ⇠ ����� channels in AHCAL,
and therefore as many SiPMs. The characterisation of each SiPM must be
performed as part of the detector calibration procedure. Detector cali-
bration here means the accurate conversion of the discharge amplitudes
measured from the pulses of SiPMs to an appropriate physical energy
unit, as well as monitoring changes in the response of the detector to
temperature�� and, eventually, degradation in the performance of the
devices with radiation damage. As discussed in Section �.�.�, detector
calibration plays a role in detector resolution and therefore must be
performed as accurately as possible.

Section �.�.�.� introduced ⇢hit, the calibrated energy measured by an
AHCAL cell. This must be obtained from the signals measured by the
SIPMs. Specifically, several steps are required to produce a calibrated
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Figure �.��: Illustration of several possible sources of noise that might influence a particular event. The red pulse indicates a discharge from
a photon incident on the device. Noise sources, such as dark counts, cross-talk and after-pulsing, are shown in purple, indigo and green.

��: Each aspect of AHCAL calibration was
studied in depth in the references. Specific
details on the methods and results ob-
tained during these studies are available.

and equalized response from all calorimeter cells. Three main steps are
required �� :

I MIP Calibration, ⇠MIP: a measurement of each channel to a muon
from a testbeam (i.e. a MIP-like particle) to determine the MPV, in
ADC units from the expected Landau energy distribution from
ionisation observed from the device [��];

I Saturation Correction Function 5 �1
sat : a measurement of a function that

linearises the response of a SiPM as the intensity of illumination
increases on the device, which is related to the PDE of the SiPM.
This correction factor is necessary to linearise the response of the
SiPMs under intense illumination that may be experienced in high-
energy-density events (i.e. the EM fraction of a hadron shower)[��,
��];

I High-Gain/Low-Gain Intercalibration Factor, ⇠IC: a measurement of a
factor which accounts for discontinuous ’switching’ between the
high-gain mode of the readout (used for low-intensity signals, to
improve the photon resolution, for up to around ��� fired pixels)
and low-gain mode of the readout (used for high-intensity signals,
to reduce power draw) [��].

⇢hit is therefore obtained using Equation �.��a

⇢hit = 5
�1
sat ( · ⇠IC) ·

(& �&0) · ⇠IC
⇠MIP

[MIP] (�.��a)

 =
(& �&0)

⌧
⇤ (�.��b)

where & is the ADC value measured by the SiPM, and  is defined as
the pedestal and gain-normalised charge measured by the SiPM, in the
number of photoelectrons (p.e), &0 and ⌧⇤ are the SiPM pedestal and
effective gain.
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(a) Low dark count rate. (b) High dark count rate.

Figure �.��: Histogram illustrating a gain measurement of a Hamamatsu S�����-����PE MPPC SiPM of an AHCAL cell, taken during an
LED run in external trigger mode, measured in ’analogue to digital’ (ADC) charge units, indicated by the blue filled region. The distribution
has been fitted using a ’multi-Gaus’ distribution, indicated by a red line. The peaks are indicated by downwards facing red arrows. Figure
�.��a shows a fit of this model to a spectrum with a low dark count rate. Figure �.��b shows the same model applied to a spectrum with a
high dark count rate. Both taken from [��].

It is clear from this equation that all named quantities need to be extracted
for each channel separately. Mass calibration of the SiPMs is therefore
necessary.

SiPMs may be characterised using the distribution of discharges measured
from the device under illumination. These distributions are called ’charge
spectra’ and contain a wealth of information on the performance of the
SiPM device and the sources of noise it experiences under experimental
conditions. It is used to extract the pedestal and gain.

Firstly, in Figure �.��a, not all the peaks have been fitted, and the
individual normal distributions exhibit deviations from the experimental
peak values. The effect is even more relevant in Figure �.��b; the effect
of dark counts, which correspond to the underlying distribution that
reduces the prominence of the peaks, has not been included in the model.
This means that the normal distributions alone produce a poor agreement
with experimental data. This disagreement motivates a tool to fit the
entire charge spectrum, thereby obtaining more accurate values for the
gain and pedestal, which propagate to better detector calibration and,
therefore, better AHCAL energy resolution. Furthermore, such a tool
would implicitly fit the pedestal position that may readily be extracted
from these spectra, thereby making a separate measurement unnecessary.
In addition, noise effects such as after-pulses, cross-talk and dark count
play a role in the saturation correction function, and it is interesting to
study these effects en masse.

�.�.� Machine Learning

Machine learning describes a subset of artificial intelligence (AI) involving
the study of methods of using empirical data to make predictive models
of physical reality.

In many cases, computer algorithms written by a human being often
perform effectively enough to achieve an intended result. Pandora PFA is
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��: Boosted decision trees are classifiers
based on sets of sequential decisions ap-
plied to a set of input data. The ’gradient
boosting’ refers to the combination of sev-
eral weak classifiers which together form
a strong classifier [��] [���].

��: A graphics processing unit (GPU) is
a computer component that is designed
for rendering images and was used almost
exclusively for producing �D graphics for
video games up until the mid-����s. Com-
pared to a ’central processing unit’ (CPU),
present in every computer, a GPU has
many small processors, which greatly ac-
celerate tasks that can be divided into
smaller subtasks that run in parallel. The
time taken for the tensor operations re-
quired in machine learning can be greatly
sped up using this parallelism, making
training deep learning models possible.
The leading manufacturers of GPUs in the
world today are NVidia [���] and AMD
[���]

��: A time-projection chamber is a homo-
geneous particle detector that enables a
full two or three-dimensional reconstruc-
tion of a particle trajectory or a decay.

Figure �.��: Example of gradient descent
minimisation. The gradient of the function
is evaluated in small steps, and the original
position is updated, step by step, based
on that value, indicated by the red arrows,
until a minimisation criterion is achieved.

an example of such an algorithm. However, as the number of dimensions
or complexity of a problem increases, so too do the number of conditions,
caveats and nuances required to achieve an intended goal, and the
effectiveness of an algorithm typically reduces.

Another solution is to use empirical data to infer a model based on trial
and error (’learning’), which can be rendered as a mathematical problem
to be solved. A simple form of machine learning used ubiquitously in
particle physics is ’boosted decision trees’�� , which have been implemented
for particle identification (PID) using event information from the AHCAL
detector, and is used for analysis in this thesis [��]. Developments in the
performance and price of the ’graphics processing unit’ (GPU) �� , ’deep
learning’ has become a reality and influenced the modern field of AI.
Deep learning, though nebulous in definition, refers to models with
thousands up to billions of tunable parameters in layers of operations.
The deepest machine learning model in the world as of ���� is the GPT-�
natural language model, which has ��� billion free parameters [���, ���].
Concerning particle physics, such models allow exploitation of the entire
parameter space available from the experiment to perform some desired
algorithmic result [���].

Examples of applications of machine learning to the challenges faced
by the physics community at large are numerous as of the writing of
this thesis. Three examples are given: the tagging of 1-jets in the ATLAS
detector, of particular interest for top quark reconstruction [���]; back-
ground selection for the decays of two-body jet decays using correlated
jet-substructure variables in the ATLAS detector [���] and image recog-
nition for time projection chambers for the reconstruction of neutrino
interactions that occurred in the LAr time-projection chambers�� of the
proposed DUNE experiment, providing the neutrino flavour and de-
cay products of interactions of neutrinos [���] (see [���] for additional
literature on applications of machine learning to particle physics).

In particular reference to the AHCAL detector, machine learning the
generation of fast Monte Carlo simulations of showers in highly granular
calorimeters has been performed in [���].

�.�.�.� Design of Neural Networks

Machine learning comprises five components: a set of input features,
G 2 X = R# ; a set of target values, H 2 Y = R" ; a model with tunable
free parameters, 5 : R# ! R" ; a loss function, that characterises
the performance of the function L[ 5 ] : XY ! R and a strategy for
optimisation [���]. Here, R refers to the real set, # and " are the
dimensions of the set, X and Y are the sets of input and targets, G and H
are samples from each set, respectively. In this thesis, bH is defined as the
predicted value of H from the model 5 , bH = 5 (G;), where  is defined
as all the free parameters that make up the model.

A machine learning model uses ’gradient descent’ to achieve the local
minimum of the cost function. At its most basic level, this is achieved
through making small updates in the values of the parameters, given the
gradient of the loss function:
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 !  � ◆ · �L (�.��)

where ◆ is a small step (’learning rate’) that defines the step by which
the gradient should be updated. The principle of gradient descent is
demonstrated by minimising the Higgs Potential by gradient descent
shown in Figure �.��.

"A ’neural network’ is a machine learning model designed to mimic brain
processes for learning functions. It consists of sets of ’neurons’ that apply
sequential biased weightings to input data. These biases and weightings
are optimised to achieve the desired output. By connecting multiple
neurons, the network gains the capacity to generate more complex
outputs. Neural networks are employed in two studies within this thesis.
A brief summary of the learning process of a neural network is provided
henceforth.

There are two steps in the training of neural network models: a ’feed-
forward’ step and a ’backpropagation’ step [���]. These are explained as
follows in the context of the simplest possible neural network, consisting
of single neurons. It is then shown the method is extensible to neural
networks consisting of many neurons per layer.

Feed-Forward Step The simplest possible ’fully connected’ neural net-
work can be summarised as a series of layers of single neurons, I(;), that
multiply a previous input, the input G or the output from a previous
layer, 0(;�1) by weight F(;), and adds a bias of 1(;), where the superscripts
(;) is the ’layer’ of the neuron, of ! total layers, as shown in Equation �.��.
Here, ’fully connected’ means that the outputs of all layers are connected
to all the inputs of the next layer, which in the simplest case is only to
one other neuron. In order that nonlinear relationships can be learned
between the input and the output, I(;) is passed through a non-linear
’activation function’, �, to produce the output for the next layer (see Section
�.�.�.�). This is shown in Equation �.��b

I
(;) = F(;) · 0(;�1) + 1(;) (�.��a)

0
(;) = �(I(;)) (�.��b)

This process of propagating inputs through different layers by applying
weights and activations continues until reaching the output layer. Then,
the loss function, L, is applied to the output of the neural network, 0(!),
by comparison to the desired output, H (i.e. L(0(!) , H)). This function
condenses the output of the model into a single scalar value, which
describes the overall performance of the network.

This description summarises the feed-forward step of the neural network,
which is visualised in Figure �.��a.
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Backpropagation Step The network must update all the weights and
biases in the network based on the value of the loss. The backpropagation
step achieves this goal.

If we consider the outputs of the last output of the network at layer !, 0!,
then we may calculate the partial derivative of the loss with respect to the
output of the network, %L

%0(!)
, which may be calculated numerically. By the

chain rule, the derivative for the weight, the bias and the activation input
in the previous neuron may also be calculated using a product of partial
derivatives if the functions used to produce the output are continuously
differentiable.

For instance, the weight of the neuron of the output may be calculated
according to Equation �.��:

%L

%F(!) =
✓
%I(!)

%F(!)

◆
·
✓
%0(!)

%I(!)

◆
·
✓
%L

%0(!)

◆
= 0

(!�1) · �0
⇣
I
(!)

⌘
·
✓
%L

%0(!)

◆
(�.��)

where all symbols have there previous meanings, �0 is the derivative of
the activation function with respect to I(!).

The weight can then be updated using a learning rate, ◆, that defines a
small step for the weight in that layer to move based on the value of the
gradient. While more advanced schemes exist for updating the weights,
the basic idea is presented in Equation �.��:

F
(!) ! F

(!) � ◆ ·
✓
%L

%F(!)

◆
(�.��)

The bias can be updated similarly.

The partial derivative of the neuron in the penultimate layer, %L
%0(!�1) may

also be calculated using the information in the last layer, according to
Equation �.��:

%L

%0(!�1) =
✓
%I(!)

%0(!�1)

◆
·
✓
%0(!)

%I(!)

◆
·
✓
%L

%0(!)

◆
= F(!) ·�0

⇣
I
(!)

⌘
·
✓
%L

%0(!)

◆
(�.��)

Since the same rules apply to the previous layer, the derivative in Equation
�.�� can be used to calculate the derivative of the weights and biases
of the penultimate layer, which can be used in the layer before, and so
on. This recursive operation ’backpropagates’ the gradient from the loss
backwards, all the way back to the first layer of the network.

The critical step of backpropagation allows the calculation of the updates
of all the weights and biases of the network until the first layer of the
neural network is reached.

This description summarises backpropagation, the most important fea-
ture of how a neural network learns.
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Generalisation to Multiple Neurons Per Layer In practice, as in the
human brain, a neural network will have more than one neuron and
receive input from all previous layers. In this case, the neuron I(;)

:
refers

to the :th neuron in a layer. However, most of the training method for
the single neuron case remains the same.

In this case, I(;)
:

becomes a sum of a vector of weights applied as a dot
product to all the inputs of the previous layer. There are as many weights
in a neuron as inputs into the neuron with a single bias, as shown in
Equation �.��a. I(;)

:
is once again passed through the activation function to

produce an activation for the neuron, 0(;)
:

, as shown in Equation �.��b:

I
(;)
:

=
#;�1�1X
9=0

F
(;)
9:

· 0(;�1)
9

+ 1(;)
:

(�.��a)

0
(;)
:

= �(I(;)
:
) (�.��b)

where the additional index 9 corresponds to the weight index of one
of the activations from the previous layer, and #;�1 is the number of
neurons in the previous layer. It should be noted that, for a weighting
vector less than the number of input activation values, then the operation
becomes a cross-correlation rather than a dot product, which is referred
to as ’convolution’ in machine learning and deep learning communities.

The feed-forward step proceeds otherwise in the same way as the single
neuron case. The feed-forward part of the multi-neuron case is shown in
Figure �.��a.

In backpropagation, once again starting from the output layer !, a
derivative of each weight in the previous layer neuron must be calculated,
which is performed in the same way as for the single neuron case, but
for each weight in the neuron:

%L

%F(!)
9:

= ©≠
´
%I(!)

9

%F(!)
9:

™Æ
¨
· ©≠
´
%0(!)

9

%z(!)
9

™Æ
¨
· ©≠
´
%L

%0(!)
9

™Æ
¨

(�.��)

Once again, there is only one bias per neuron and the derivative proceeds
as in the one-dimensional case.

However, for the derivative of the activation value of the neuron in
the penultimate layer, %L

%0(!�1)
:

, there are multiple neurons in layer ! that

received input from that neuron. However, the derivatives may simply
be added together across the layer !. Put another way, the total gradient
for a neuron in ! � 1 combines the gradients of the neurons that used
their activation value in the last layer, !. This is shown in Equation �.��
and visualised in Figure �.��:

%L

%0(!�1)
:

=
#!�1X
:=0

©≠
´

%z(!)
9

%0(!�1)
:
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¨
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9
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9
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· ©≠
´
%L
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9
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(�.��)
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Once again, all the weights and biases of previous layers can be calcu-
lated through backpropagation. The backpropagation step of the neural
network is shown in Figure �.��b.

In practice, special software libraries are used for highly optimised
automatic differentiation. The two main libraries are TensorFlow [���]
and Torch [���].

This section summarises the basic principle of the operation of neural
networks.

�.�.�.� Activation Functions

Activation functions are nonlinear operations applied to the outputs
of neural networks. These enable more complex output from neural
networks by mapping the neuron output to a non-linear space. Non-
linear activation functions applied to neural networks have been shown to
allow a neural network model to act as a universal function approximator
[���].
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(a)

(b)

Figure �.��: Figure �.��a and Figure �.��b show the feed-forward and backpropagation steps of a single-neuron neural network. Colour
coding is provided for each of the elements of the process: the neuron output (I(;)), the weights (F(;)), the biases (1(;)), the activation
function and values (�, 0(;)) and the loss L, are coloured in blue, purple, green, brown and red respectively. The orange lines indicate the
application of � to I(;). Black arrows indicate the ’direction’ of the flow of information. Red arrows specifically indicate the backpropagation
of the loss. ◆ is the learning rate. Relevant partial derivatives are shown with colour coding to illustrate how the chain rule is used to
determine the derivatives for the weights, bias and for activation in the previous layer.
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(a)

(b)

Figure �.��: Figure �.��a and Figure �.��b show the feed-forward and backpropagation steps of a single-neuron neural network. The
notation and colour coding is as in Figure �.��. Additionally, 9, : and < indicate the indices for neurons in layers !, ! � 1 and ! � 2. The
feed-forward and backpropagation steps show the specific activation and derivatives contributing to the layer’s first neuron.
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Figure �.��: Activation functions used
in this thesis. Top: ReLU. Middle: Leaky
ReLU, with a gradient of �.� for negative
values. Bottom: Softmax over two neurons.
The activation of the first neuron is shown
on the colour axis as a function shown as a
function of the output of the two neurons.
The activation of the second neuron is the
dual of this function.

��: The vanishing gradient problem is a
nuisance effect experienced by deep neural
networks. This effect occurs when, dur-
ing the backpropagation step, the par-
tial derivative of the weights in a neuron
becomes so small that no change in the
weight occurs. This may result in the fail-
ure of the network to update the weights
due to ’dead neurons’ in the network [���].

In this thesis, three activation functions are used, and are highlighted in
brief:

Rectified Linear Unit The rectified linear unit (ReLU) is defined as the
output of a neuron if greater than zero, and zero otherwise:

�ReLU(I(;)
8
) = max

⇣
I
(;)
8
, 0

⌘
(�.��)

ReLU is used in this thesis as the output activation for AHCAL cell
energy, which must always be a positive number.

Leaky Rectified Linear Unit The Leaky ReLU tackles the problem of
’vanishing gradients’�� in deep neural networks by giving negative values
a small gradient, &, to negative values. In this way, a gradient is defined
for all the possible outputs of a neural network except where the neuron
outputs �:

�LReLU(I(;)
8
) =

(
I
(;)
8

if I(;)
8

> 0
& · I(;)

8
otherwise

(�.��)

Leaky ReLU activations are used in this thesis’s deep neural network
models to reduce the effect of vanishing gradients.

Softmax The Softmax function takes the output of multiple neurons, z,
and maps them to a probability for each input neuron:

�Softmax(z;
8
) = 4

I
(;)
8

Pdim(z)�1
9=0 4

I
(;)
9

for 8 = 0, . . . , dim(z) � 1

and z =
⇣
I
(;)
0 , . . . , Idim(z�1)

⌘
2 Rdim(z)

(�.��)

Softmax is used in this thesis as the output activation for fractions of
energy in a single AHCAL cell. If two hadron showers are observed
simultaneously by the detector, a model to separate them may use a
Softmax output layer to produce a fraction for each belonging to each
hadron shower.

Plots showing each activation function are shown in Figure �.��.

�.�.�.� Loss Functions and Optimisation Algorithms

A ’loss function’ (L) is an objective function that defines a ’cost’ describing
the performance of the neural network function 5 . The gradient updates
are performed relative to the gradient of this function with respect to a
desired output, H. Loss functions in this thesis are tailored specifically for
the tasks to be performed and are introduced in the relevant sections.

To accelerate the training of neural networks, optimisation algorithms
are often employed in machine learning algorithms. The stochastic
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Figure �.��: Top: a representation of a
hadron shower, measured by highly gran-
ular calorimeters. Each voxel represents en
energy deposit in a set of calorimeters. Bot-
tom: the same hadron shower, rendered
as a graph. Adapted from [���]

optimisation technique employed in this thesis is called ’adaptive moment
estimation’ (ADAM) [���]. ADAM employs a more advanced approach
compared to the simpler method described in Equation �.�� for updating
the free parameters’ learning rates in the model. It achieves this by
estimating the first and second moments of the gradients and computing
individual adaptive learning rates accordingly. This is done through the
use of two hyperparameters, �1 , �2 2 [0, 1) and control the exponential
decay rates of the moving averages for the gradient and its square. All
parameters are optimised according to their own individual learning rate
in this scheme.

Machine learning algorithms require an approximately consistent dy-
namic range between the input variables in order for the loss function.
This nearly always motivates the parameter space to be chosen carefully.

For AHCAL data, the cells and layers of the calorimeter are already
recorded in the unit distance, so the dynamic range of the input is
acceptable for machine learning. The energy and time are of a much
greater dynamic range, and so are re-scaled according to Section �.�.�.�.

�.�.�.� Graph Neural Networks

Graph neural networks are particular classes of neural networks that
operate on mathematical constructs called ’graphs’. Graphs are used to
describe pairwise relationships between points in space. A graph consists
of two components: ’vertices’, corresponding to a measured value in space,
and ’edges’, the vectors between vertices. Graph neural networks (GNNs)
are designed to exploit data as graphs [���].

An example of a graph representation of a hadron shower as observed
with a highly granular calorimeter array is shown in Figure �.��.

Graphs are advantageous representations of experimental data for several
reasons:

I Effective Representation of Complex Data: Graphs implicitly capture
complex relationships between elements of a set of data.

I No Grid-Based Structure: Neural networks typically rely on grid-
like structures. A graph, by contrast, places no constraints on the
dimensions of the data used to define the graph;

I Handling of Sparsity: a graph may represent sparse data without
the requirement that the data be projected to a grid without an
artificial ordering scheme;

A summary of the basic structure of a graph neural network is explained
in brief.

A graph typically consists of vertices, denoted + , which could be energy
deposits in a calorimeter, and E, the edges between them (i.e. spatial
distances). A basic graph convolution operation shares act both transform
the graph and share inform network consists of two main components: an
’update’ function, defined ), and an ’pooling’ function, defined ⌧ [���]. The
update function most commonly takes the form of a fully connected neural
network (FCN), also known as a ’multi-layer perceptron.’ The pooling
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operation involves one or more operations that condense information
about the graph, such as maximum, sum, mean, variance, skew, an FCN,
or combinations thereof. A graph neural network operates by pooling
information about + and Ewith ⌧ and using that information as the
input into ) to update the graph. This concept is known as ’message
passing’, because pooled information about vertices is used to inform the
update of edges, and vice versa. Pooled information (’messages’) about +
can be used to update Eand vice versa in any particular configuration.
In this way, information is diffused throughout a small graph region.
Through successive graph ’convolutions,’ nodes can be updated with
information about the entire graph.

The concept of an update function, pooling function and graph convolu-
tion are summarised in Figure �.��.

One application of GNNs to high energy physics is in the form of event
reconstruction, specifically in clustering and classification tasks [���].
Highly relevant for this thesis is that graph neural networks have been
shown to outperform traditional grid-based networks at distinguishing
the energy deposits of two individual hadron showers observed by the
same highly-granular calorimeter [���], similarly to Pandora PFA. This
study demonstrated the benefit of graph neural networks applied to
the task of reducing confusion for a four-dimensional, highly granular
hadron calorimeter.

Referencing the discussions of Section �.�.�.�, the effectiveness of a
five-dimensional (i.e. temporal) clustering has yet to be demonstrated.
The success of graph neural networks in this study motivates applying
these models to five-dimensional calorimetry by clustering in time. A
graph-neural network trained with time will illustrate the benefits of
using temporal information for clustering and how this manifests.

Furthermore, the same principles of graph neural networks can be used
to study the local energy density of hadron showers, exploiting the
efficient representation of graphs to perform software compensation and
detector calibration, which local-neighbourhood graphs may achieve.
The message-passing properties of GNNs may also be used for software
compensation studies.

These observations motivate research into the use of graph neural net-
works for both shower separation and software compensation.
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(a)

ı
(b)

(c)

Figure �.��: Diagrams illustrating the components of a graph neural network. Figure �.��a shows the ’update’ function ). ) acts on a
graph, composed of vertices and edges, denoted by+ and E, respectively, indicated by points connected with lines, with a certain fixed size,
indicated by the coloured bars, and applies the same function to the elements of the set to achieve an updated representation of the input.
Figure �.��b shows a pooling function, ⌧, which performs an aggregation operation on the graph about its properties. In the example
shown, ⌧ counts the colours of the vertices (nodes) and edges, indicated by the bar charts. Figure �.��c indicates a graph convolution
operation. The black lines indicate the operations used to modify the graph. Message passing is demonstrated by ⌧+!E and ⌧E!+ , which
act on the vertices (edges) and inform the update of the edges (vertices) by pooling information about them with ⌧[E] (⌧+ ) and using it to
update the vertices (edges) with )+ ()E)). The result is a modified graph, where the orange lines indicate the diffusion of information
throughout the graph. All diagrams were modified from [���] and [���].
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Contributions by Author

The author implemented a program for simulating SiPM charge spectra in
Python and transients under the supervision of and developed by Prof. Dr.
Robert Klanner. This chapter is an abridged version of the paper of [��], to
which the author is a co-author.

Original Abstract

A Monte Carlo program is presented which simulates the response of
SiPMs in the linear regime in which saturation effects can be ignored.
Inputs to the program are the mean number and the time distribution
of Geiger discharges from photons, as well as the dark-count rate. For
every primary Geiger discharge, correlated Geiger discharges due to
prompt and delayed cross-talk and after-pulses are simulated, and a
table, called Geiger Array, of the amplitudes and times of all Geiger
discharges in a specified time window is generated.

A number of different physics-based models and statistical treatments
for the simulation of correlated Geiger discharges can be selected.
The Geiger Arrays for many events together with different options
for the pulse shapes of single Geiger discharges can be used to
simulate charge spectra, as measured by a current-integrating charge-
to-digital converter. In addition, current transients convolved with
electronics response functions, as recorded by a digital oscilloscope,
and time-difference distributions can be simulated. The program can
be used to compare simulation results with different assumptions
to experimental data, and thus find out which model is the most
appropriate for a given SiPM, optimise the operating conditions and
readout for a given application, and test programs for extracting SiPM
parameters from experimental data. A Python version of the program
is available on request.

�.� Overview Of Study

Silicon Photomultipliers (SiPMs) are arrays of single-photon avalanche
diodes (SPADs) operated above the breakdown voltage. Their single-
photon detection capability and their high photon-detection efficiency
(PDE) have led to many applications in industry and in science from
astrophysics over high-energy physics to nuclear medical imaging.

SiPMs can operate in one of two states:

I Low-occupancy: where the number of Geiger discharges is small
compared to the number of pixels of the SiPM within an integration
window similar to that of the pulse-shape of the SiPM;
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I High-occupancy: where the number of Geiger discharges reaches or
possibly exceeds the number of pixels of the SiPM.

The former case is studied in this chapter. Specifically, in this regime, it is
assumed that the response of the SiPM is to good approximation linear
(at least one fired pixel per photon initiating a Geiger avalanche) and that
correlations between Geiger discharges from noise such as dark counts
and after-pulses are negligible.

A simulation program for SiPMs could be used for several applications.
Relevant to this thesis, the program is used to verify the PeakOTron
characterisation program of Chapter � and to evaluate the effect of
different light sources, parameterisations for afterpulse and cross-talk
and readout on the response of SiPMs to light.

Several simulation tools exist for low-occupancy SiPMs. A Monte Carlo
program simulating the multiplication process responsible for Geiger
discharges is presented in [���]. Programs that simulate the transients’
shape for different options for the readout electronics are discussed in
[���, ���] and associated references. Monte Carlo programs focused on
the light readout from scintillators with SiPMs are studied in [���–���],
the latter of which has been implemented in Geant4 [���]. The study of
[���] focuses on optimising the time resolution of SiPMs for positron
emisson tomography (PET) scanners.

However, these models do not offer the possibility to modify the pulse
shapes of light and the SiPM discharge, the contribution of correlated
noise sources such as dark counts or afterpulses, or the readout mode or
electronic response function. Therefore, a simple, flexible simulation tool
called LightSimtastic was developed to perform simulations of SiPM
charge spectra and transients.

This study first introduces and describes the free parameters and methods
of the program, including the concept of the ’Geiger Array’. Then, example
charge spectra and transients under different conditions are provided.

�.� Method And Tools

�.�.� Detector Response Mode and Free Parameters

The detector response model used in LightSimtastic is superficially
similar to the one used in PeakOTron, which is discussed in depth in
Chapter �. A critical difference is that the detector response model of
each Geiger discharge and its time are individually simulated, and
the possibility to modify the types of distribution used for the Geiger
discharge light, cross-talk and afterpulse distributions. By contrast, in
PeakOTron, the model is presented as a probability density function. A
general overview is provided in this section relevant to the operation of
the program, and references to the more detailed discussion of Section
�.�.� is provided as necessary.
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Figure �.�: Diagram illustrating the concept of the Geiger Array in LightSimtastic. An ’event’ consists of some (or no) Geiger discharges.
The Geiger Array describes the amplitude and time of a discharge. From this information, and parameters provided to the model, transients
and total discharge amplitudes can be reconstructed.

�.�.�.� Geiger Array

LightSimtastic is built around the concept of a ’Geiger Array’. The
LightSimtasticprogram simulates events, which correspond to a period
during which the signal from the SiPM is read out (the ’gate’). For each
event, the Geiger Array holds both the amplitude of a discharge and
the time the discharge took place, both simulated by the program. Each
discharge has a user-selected pulse shape assigned to it. The Geiger array
can therefore be used to generate both charge spectra and transients as
observed on an oscilloscope.

Free parameters and probability distributions of the LightSimtastic
detector response model are shown in Table �.�. Table �.�a shows the
free parameters of the detector response model, Table �.� shows the
probability distributions available to the user. The physics motivation for
each element is discussed in brief.

A diagram illustrating the concept of the Geiger Array is shown in Figure
�.�

�.�.�.� Time And Integration Gate (C0, Cgate, Cstart)

In LightSimtastic, the time interval �C0  C  Cstart + Cgate is modelled
by the program, where C is the time of the Geiger discharge, �C0 is the
minimum time at which Geiger discharges occur in the simulation, Cstart
is the start of an integration gate with length Cgate. =C is the bins used for
transient simulations.
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Group Symbol Description Default

pulse shape
� time constant of slow component 20 ns
� 5 time constant of fast component 1.5 ns
A 5 fraction fast component �.�

gate
and
time

parameters

Cstart gate start �5 ns
Cgate gate length 100 ns
�C0 start time simulation �100 ns
=C number time bins of transient ����

primary Geiger
discharges light

#✏⌧ mean number of discharges �
=✏⌧ actual number of discharges Table �.�b
�8✏⌧ amplitudes of discharges local
C8✏⌧ times of discharges Table �.�b

primary Geiger dis-
charges dark counts

⇡⇠' dark-count rate 500kHz
=dark actual number of dark counts Table �.�b
�8dark amplitudes of discharges local
C8dark times of discharges Table �.�b

prompt
cross-talk

??-) probability �.�
=pXT actual number of discharges Table �.�b
�8pXT amplitudes of discharges local
C8pXT times of discharges Table �.�b

delayed
cross-
talk

?3-) probability �.�
�dXT time constant 25 ns
=dXT actual number of discharges Table �.�b
�8dXT amplitudes of discharges local
C8dXT times of discharges Table �.�b

after-
pulses

?�% probability �.��
�Ap time constant 7.5 ns
�rec Geiger probability recovery time 20 ns
=Ap actual number of discharges Table �.�b
�8Ap amplitudes of discharges Table �.�b
C8Ap times of discharges Table �.�b

noise
and

electronics
response
function

�1 gain fluctuations �.��
�0 electronics noise Q-measurement �.���
�� transient current noise �.��
'(C) electronics response function Gauss
�' A<B width of Gaussian '(C) 1.5 ns

Geiger array
=⌧ total number of Geiger discharges output
�8⌧ amplitudes of Geiger discharges output
C8⌧ times of Geiger discharges output

(a)

Group Symbol Options Default

Geiger discharge =✏⌧ Poisson, Gauss, ⇣-function Poisson
light C8✏⌧ Poisson, Gauss, � Exp., Double exp. Gauss

prompt cross-talk =pXT Binomial, Poisson, Borel Binomial
delayed

cross-talk
=Ap Binomial, Poisson, Borel Borel
C8dXT Exponential Exponential

after-pulses
=3-) Binomial, Poisson Binomial
�8Ap Exponentials; see text Exponential
C8Ap Exponential Exponential

(b)

Table �.�: Table �.�a shows parameters and variables used in the simulation program. Default gives the values of input parameters which
are implemented as default in the Python program, which the user can modify. References to Table �.�b are provided where appropriate.
Local and output indicate that the variables are local or output results, respectively. The units used in the program are in s for time and Hz
for rates. The amplitudes, �, are normalised to �. The � parameters are also normalised to �, meaning they represent a fraction of the gain of
the SiPM. Table �.�b shows the available probability distributions to describe Geiger discharges and default values. Further discussion on
key SiPM parameters can be found in Section �.�.�.

�.�.�.� Gain Fluctuations (�1)

The gain of a SiPM can fluctuate. The main reason is that Geiger avalanches
are statistical processes, and fluctuations are expected from discharge to
discharge. Other reasons for gain fluctuations can be pixel-wise capaci-
tance variations or electric fields inside a single pixel. The reasons are
discussed in Section �.�.�. To simulate this property of Geiger discharges,
their amplitudes are multiplied with a Gaussian-distributed random
number with width �1. This parameter is also discussed in Section �.�.�.
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�: The Borel distribution, which describes
a branching process, whereby the num-
ber of new discharges caused by ongo-
ing discharges is distributed as a Poisson
distribution with a mean number of dis-
charges, ⌫ 2 [0, 1] [���]. The probability
distribution of the combined discharges
from light and prompt cross-talk is called
the Generalised Poisson distribution and is
introduced in Section �.�.�.

�.�.�.� Number, Times and Amplitudes of Photon-Induced Geiger
Discharges (#✏⌧, =✏⌧, �8✏⌧, C8✏⌧)

Photons incident on the SiPM has a probability and time distribution
depending on their source.

I Number of Geiger Discharges: #✏⌧ is the mean number of Geiger
discharges induced by photons from incident light on the SiPM.
The number of discharges in an event =✏⌧ can be either constant
or sampled from a Poisson or Gaussian distribution. The Pois-
son distribution describes pulsed light sources like LED or laser.
The Gaussian distribution is more appropriate for light from a
scintillator;

I Times of Geiger Discharges: C8✏⌧ are sampled for each discharge
8✏⌧ 2

⇥
0, =✏⌧

⇤
from one of three distributions: a Gaussian which

describes light from LED or laser, a bi-exponential distribution�
4
�⌫1 ·C � 4�⌫2 ·C � · ⌫1/(⌫2 � ⌫1) which describes the distributions of

scintillator light read out from wavelength-shifters;

I Amplitudes of Geiger Discharges: amplitudes �8✏⌧ for each discharge
8✏⌧ 2

⇥
0, =✏⌧

⇤
are normalised to one unit of gain, smeared by �1.

�.�.�.� Number, Times and Amplitudes of Dark Counts (⇡⇠', =dark,
�8dark, C8dark)

Dark counts are, in general, discharges by thermally induced charge
carriers. More discussion is given in Section �.�.�.

I Number of Geiger Discharges: the number of dark counts is modelled
as a Poisson distribution with rate parameter ⇠dark = ⇡⇠' · (C0 +
Cstart+ Cgate. In the limit Cstart ! 0, the definition provided in Section
�.�.� is recovered;

I Times of Geiger Discharges: dark counts are uniformly distributed
in time and therefore, for each dark count 8dark 2 [0, =dark], the
uniform distribution is sampled from �C0 to Cstart + Cgate.

I Amplitudes of Geiger Discharges: similarly as for light-induced dis-
charges, Amplitudes �8dark for each discharge 8dark 2 [0, =dark] are
normalised to one unit of gain, smeared by �1.

�.�.�.� Number, Times and Amplitudes of Prompt Cross-Talk (?pXT,
=pXT, �8pXT, C8pXT)

Prompt cross-talk occurs by photons produced in the Geiger avalanche
in the depletion region of another pixel (i.e. from bremsstrahlung by
accelerated charge carriers in the high electric field region of the pixel)
and are observed in another pixel (see Section �.�.�).

I Number of Geiger Discharges: to sample =pXT, three probability distri-
butions are implemented: Binomial, Poisson and Borel characterised
by ?pXT. �
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�: This is not an accurate description of the
diffusion process, and is not considered
accurate in the original publication [��].

I Times of Geiger Discharges: Geiger discharges are, by definition,
prompt because the photons travel at light speed (2 = 3⇥105 µm ns�1,
and the pixel size is of the order 30 µm). Therefore, it can be con-
sidered to occur at the same time as the primary Geiger discharge.

I Amplitudes of Geiger Discharges: similarly as for light-induced dis-
charges, Amplitudes �8pXT for each discharge 8pXT 2

⇥
0, =pXT

⇤
are

normalised to one unit of gain, smeared by �1.

�.�.�.� Number, Times and Amplitudes of Delayed Cross-Talk (?dXT,
=dXT, �8dXT, C8dXT)

Delayed cross-talk refers to photons produced in the Geiger avalanche in
the non-depleted region of another pixel. By contrast to prompt cross-talk,
the charge carriers must first drift to the depletion region before a Geiger
discharge is initiated, meaning that it is delayed compared to the primary
Geiger discharge. See Section �.�.� for details). Delayed cross-talk and
after-pulses, discussed in the next subsection, are indistinguishable if
they occur in the same pixel.

I Number of Geiger Discharges: to sample =dXT, as for prompt cross-talk,
three probability distributions are implemented: Binomial, Poisson
and Borel, characterised by ?dXT.

I Times of Geiger Discharges: to model the diffusion of the charge carri-
ers through the non-depleted region, for each 8dXT 2 [0, =dXT], and
an additional random number is added to the time of the original
discharge of 4�C/�dXT/�dXT · ⇥(C), where ⇥(C) is the Heaviside step
function � ;

I Amplitudes of Geiger Discharges: similarly as for light-induced dis-
charges, Amplitudes �8dXT for each discharge 8dXT 2 [0, =dXT] are
normalised to one unit of gain, smeared by �1.

�.�.�.� Number, Times and Amplitudes of After-pulses (?Ap, =Ap,
�8Ap, C8Ap)

After-pulses are discharges caused by charge carriers being trapped by
defects in the silicon crystal, which contribute additional energy levels in
the silicon band gap. The charge carriers are then released, potentially
resulting in another delayed discharge, with a probability depending
on how much the pixel has recovered (see Section �.�.�). Additional
discussion of the afterpulse model is provided in Section �.�.�.

I Number of Geiger Discharges: the probability of an afterpulse taking
place is time-dependent because it depends on the recharge state
of the SiPM. Physically, an afterpulse is much less likely to occur
in a pixel if it has not recovered sufficiently from the primary
Geiger avalanche. The afterpulse probability is sampled from
?�? ·

⇣
1 � 4�C/�rec

⌘
·⇥(C), where ⇥(C) is the Heaviside step function.

In other words, =Ap is conditioned on the distribution of C8Ap.
Experimental justification for the parameterisation

⇣
1 � 4�C/�rec

⌘
,
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�: This ’recovery’ is not the same as the
probability of the Geiger discharge, which
has a time constant � and is typically
shorter than � (see Appendix Section
�.�.�.�)

Figure �.�: Plots of pulse shape and in-
tegrated charge as a function of time, of
Equation �.� and �.� using the input values
are shown in Table �.�, except for the fast
component of the pulse, which is set to a
A
5
= 0.2 and �

5
= 11 ns and a gate length

of Cgate = 100 ns, for demonstration pur-
poses. Note the bottom plot (&0 ) is shifted
in time compared to the upper plot (�1).

which describes the Geiger discharge probability as the pixel
recovers, is provided in Appendix Section �.�.�.�. Equation �.��
gives the total afterpulse probability density in the gate.

I Times of Geiger Discharges: to model the de-trapping of charge
carriers, for each 8Ap 2

⇥
0, =Ap

⇤
. A random number is added to

the time of the original discharge drawn from an exponential
distribution 4�C/�Ap/�Ap · ⇥(C), where ⇥(C) is again the Heaviside
step function.

I Amplitudes of Geiger Discharges: the amplitude of an afterpulse is
based on the recovery of the voltage over the pixel from +b to +off,
which occurs with a time constant �� . The amplitude is given by⇣
1 � 4�C/�

⌘
· ⇥(C), and are smeared by �1.

Each of the discharges and times in Section �.�.�.�-�.�.�.� are added to the
Geiger Array. All the discharges occurring during the event are included
in the Geiger Array.

�.�.�.� Pulse Shape Model

Each pulse is modelled the sum of two exponentials, given by Equation
�.�:

�1(C) =
✓1 � A 5

�
· 4�C/�B +

A 5

� 5
· 4�C/� 5

◆
· ⇥(C) (�.�)

where � and � 5 are the time constants of the slow and fast component of
the SiPM pulse, and A 5 is the fraction of the pulse integral belonging to
the fast component. ⇥(C) is again the Heaviside step function. The pulse
shape is normalised to one.

�.�.�.�� Charge of The Event

The charge for each event is constructed using Equation �.�

&
0 =

=⌧X
8⌧=1

�8⌧ ·
π

Cstart +Cgate

Cstart

�1 (C � C8⌧)dC (�.�)

where &0 is the charge, =⌧ are the total number of Geiger discharges in
the event (=⌧ = =✏⌧ + =dark + =pXT + =dXT + =Ap), �8⌧ and C8⌧ are the
amplitude and time of each Geiger discharge, and �1(C) is from Equation
�.�. A random variable from a Gaussian centred at � with width of �0
is added to simulate electronic noise. The distribution of &0 for many
events simulates a typical charge spectrum measured from experimental
data.
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�.�.�.�� Transient of The Event, Electronics Response Function and
Width (�� , �', '(C))

Transients may similarly be simulated according to Equation �.�

�
0(C) =

=⌧X
8⌧=1

�8⌧ · �1 (C � C8⌧) (�.�)

with the same notation as Equation �.�. The distribution is then convolved
with the electronics response function '(C), which is a Gaussian with
width �' by default.

The entire program is developed to be reliant on no more than four
external common Python libraries: numpy [���], scipy [���], pandas [���]
and matplotlib [���].

�.� Results

A qualitative comparison between transients from the CAEN educational
kit operated at 31 V [���] and the transients produced by LightSimtastic
are shown in Figure �.�. Scans through the input parameters of Table
�.�a, which are later used in Chapter �, are shown in Figure �.�.

Summary Comment to Figures �.� and �.�

The LightSimtastic program can produce transients similar to those
observed in experimental data, producing a wide range of charge
spectra depending on the input parameters.
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Comparison of Transients Of LightSimtastic With Transient of CAEN Kit

(a)

(b)

Figure �.�: Qualitiative comparison of the transients from experimental data and LightSimtastic simulation. Figure �.�a shows experimental
data recorded with the CAEN setup [���], which has a bandwidth of 125 MHz operated at 31 V. Figure �.�b shows the same pulses,
produced under baseline conditions outlined in Table �.�, albeit with the �' of 3 ns. Figure �.�b shows the probability density of the
currents obtained for 1 ⇥ 104 events.

Comments:

I Each band of each histogram corresponds to an additional Geiger discharge and is well distinguished.

I Afterpulses and dark counts are visible in both figures.
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Scans of Simulated Charge Spectra of LightSimtastic As a Function Of The Parameters Of Table �.�a

(a) (b) (c)

(d) (e)
(f)

(g) (h)

Figure �.�: Scans of simulated charge spectra produced with LightSimtastic. Figures �.�a-�.�h show scans of the parameters relative to
the baseline shown in Table �.� for ⇠, ?pXT (⌫), ?dXT (using �dXT = 25 ns and scanned over the same range as ?pXT), �0, �1, ⇡⇠', ?�? and
��? , in that order. Each simulation has 1 ⇥ 106 events and is presented in units of bin, with bin width = 0.05 G, where ⌧ is gain. The colour
axis indicates the value of the changed variable, with red to blue indicating the low to high values of that variable. The G-scales are chosen
to illustrate the influence of the parameter best.

Comments:

I Overall, the simulation tool is demonstrated to produce a wide range of possible SiPM charge spectra shapes.
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�.� Conclusion

A Monte Carlo simulation program for SiPM transients and charge
spectra has been implemented in Python. The flexible program allows
flexible modelling of charge spectra based on various SiPM parameters
and probability distributions. The program can be used to compare
experimental data with simulation, evaluate the influence on SiPM
response under different operating conditions and readout schemes
and the performance of methods to characterise SiPMs, as discussed in
Chapter �.
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Contributions By The Author

The detector response model for SiPMs of [��] was implemented as a Python
class for automated SiPM characterisation. A pre-fitting algorithm to produce
estimates for the fit and the implementation of the afterpulse model of [���]
into the detector response model was developed under the supervision of Prof.
Dr. Robert Klanner. The author performed all validation on simulation and
experimental data. This chapter is presented from [���], for which the author
of the thesis is also the main author, with minor modifications and with a
section describing the theory of the model, which is based on the Appendix of
that paper, which the co-authors of that paper edited.

Original Abstract

A Pythonprogram has been developed which fits a published detector-
response model to SiPM charge spectra to characterise SiPMs. Spectra
for SiPMs illuminated by low-intensity pulsed light with a Poisson-
distributed number of photons and a time spread of order nanosec-
onds or less can be analysed. The entire charge spectra, including the
intervals in-between the photoelectron peaks, are fitted, which allows
determining, in addition to the mean number of detected photons,
gain, gain spread, prompt cross-talk, pedestal, and electronics noise,
the dark-count rate as well as the probability and time constant of
after-pulses. The starting values of the fit parameters are extracted
from the charge spectra.

The program performance has been evaluated using simulated charge
spectra with the different SiPM parameters varied in a wide range. By
analysing ��� simulated spectra for every parameter set, the biases
and statistical uncertainties of the individual parameters have been
determined. It is found that the parameters are precisely determined
and that the entire spectra are well described, in most cases with a
"2/NDF close to �. In addition, measured spectra for two types of
SiPMs for a wide range of over-voltages have been analysed. The
program achieves mostly a good description of the spectra, and the
parameters determined agree with the values from the producers and
expectations.

The program can be used for detailed analyses of single spectra, but,
as it is compatible with the native Python multiprocessing module,
also for the automatic characterisation of large samples of SiPMs.

�.� Overview of Study

Silicon Photomultipliers (SiPMs) are arrays of single-photon avalanche
diodes (SPADs) operated above the breakdown voltage. Their single-
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photon detection capability and high photon-detection efficiency (PDE)
have led to many applications in industry and science, from astrophysics
over high-energy physics to nuclear medical imaging.

Different methods have been developed to characterise SiPMs [��, ��,
���]. This paper describes a software tool to determine the values of
parameters that may be extracted from charge spectra, namely the number
of detected photons, gain, gain spread, prompt cross-talk, after-pulsing,
dark count rate, and electronics noise.

Spectra with and without illuminating the SiPM can be analysed. They
are obtained by integrating the SiPM current during a gate. For the light
source, it is assumed that a Poisson distribution can describe the number
of photons and that their time spread is short compared to the gate
length. The entire charge spectrum is fitted by the detector response
model (DRM), proposed in [��], that describes the spectrum, including
the regions in-between the peaks, accounting for prompt cross-talk, after-
pulsing and dark counts. However, delayed cross-talk, as described in [��],
is not implemented. This method is in contrast to the standard methods
of analysing charge spectra, which is to fit the peaks corresponding to
�, �, �, . . . discharges by individual Gaussian distributions to extract the
gain, the gain spread, the distribution of the number of discharges, and
the electronics noise [���, ���]. Since the latter approach does not include
pulses from dark counts and after-pulses, their influence on the values
of the measured SiPM parameters is not apparent.

A generally-available Python module has been developed to provide a
robust and user-friendly way to fit the detector response model of [��] to
characterise SiPMs. In [��, ���] the detector response model was used to
analyse SiPM charge spectra.

In Section �.� a modification of the after-pulse probability of [��] to
account for the recharging of the SiPM, introduced in [��], is presented. It
results in an improved description of the effects of after-pulses. Given that
the fit has ten free parameters, determining their initial values, presented
in Section �.�.�, is an essential part of the software tool.

Details of the fit are discussed in Section �.�.�. The validation of the
program for a wide range of SiPM parameters is presented in Section
�.�.�, using SiPM spectra generated by the simulation program of [��].
Finally, in Section �.�.�, the program is used to analyse experimental
data from two SiPMs operated at room temperature for a wide range of
over-voltages.

In this chapter, a ’Geiger discharge’ indicates a discharge of the SiPM
caused by the device entering a breakdown for any reason. A ’primary
Geiger Discharge’ initiates a macroscopic cascade in the SiPM. This can
be, for instance, a discharge caused by a photon incident on the device or
a dark count. By contrast, other types of discharge are dependent on the
primary discharge having first occurred.

�.� Theory

The program described in this chapter is a Python implementation of the
SiPM detector response model for photons and dark counts of [��], with



�.� Theory ��

�: A critical point of note is that the dis-
tribution of the sum of two independent
random variables is given by their convo-
lution:

5/(I) =
π 1

�1
5- (G) 5.(I � G)3G (�.�)

where / = - + ., and - and . are in-
dependent random variables. This fact is
used implicitly henceforth. Proof may be
found in [���].

improved treatment of after-pulses and the simultaneous treatment of
the signals from photons and dark counts.

This section thoroughly describes the model and its physical motivation
for later reference in the chapter.

�.�.� Detector Response Model And Free Parameters

The detector response model used in this paper is defined in [��]. However,
a notable change is the treatment of after-pulses, which includes the
influence of the recharging of the SiPM on the after-pulse probability.
The definitions of the free and fixed parameters of the model are first
given in Table �.�a and Table �.�b.

The probability density function (p.d.f.) implemented in PeakOTron to
describe charge spectra of SiPMs in response to low-intensity light and
dark counts is summarised in Eq. �.�. It has nine free parameters, ,
explained in Table �.�a. The remaining fixed parameters are shown in
Table �.�b.

5DRM( ;) = 5✏( ;) ⇤ 5dark( ;), (�.�)

where 5✏( ;) and 5dark( ;) are the photon and the dark-count induced
p.d.fs, respectively,  = (& � &�)/⌧⇤ is the charge in the number of
photo-electrons scale (p.e.), with & the measured charge, ⌧⇤ the effective
gain, &0 the pedestal, which is the mean measured charge of the 0 p.e.
peak, and ⇤ the convolution operator� .

In this chapter, a distinction is made between the effective gain, ⌧⇤,
which is the integral of the SiPM current pulse from a single primary
Geiger discharge over the gate of length Cgate. The gain, ⌧, the integral
for Cgate ! 1, which is used in the simulation program of [��]. Here,
Cgate is the length of the integration range, or ’gate length’, during which
an SiPM pulse is integrated.

The model is presented using the variable  , the measured charge, &,
with the pedestal, &0, subtracted and divided by the gain, ⌧⇤. Thus, for
the variable  , the mean of the pedestal peak is at �, and the mean of the
1 p.e. peak is at �. The probability density as a function of & is obtained
by dividing the probability density in the variable  by ⌧⇤.

The probability distributions 5✏( ;) and 5dark( ;), as well as the
treatment of the after-pulse model, are detailed later in this section.

�.�.� Generalised Poisson Distribution

.

A common model for the discrete probability of a SiPM discharge
induced by a single photon, with the possibility to produce cross-talk, is
the ’Generalised Poisson Distribution’ (GP) [���, ���]. The GP distribution
is a discrete probability distribution and is the convolution of a Poisson
distribution and the Borel distribution. The Borel distribution describes a
Poisson-distributed number of successive discharges (prompt cross-talk),
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Parameter Definition Range

⇠ Mean Number of Primary 10�10 to 1
Geiger Discharges from Photons

⌫ GP-Branching Parameter 10�10 to 1 � 10�10

⌧
⇤ Effective Gain � Bin to 1

&0 Pedestal Position �1 to +1
�0 Pedestal Width �.� Bin to 1
�1 Gain Spread �.� Bin to 1
⇡⇠' Dark Count Rate � Hz to 1
?Ap After-pulse Probability 10�10 to 1 � 10�10

�Ap After-pulse Time Constant � ns to Cgate/2
�sc Scale Factor #events ± 3 · p#events

(a)

Parameter Definition Default

� Slow Time Constant SiPM Pulse �� ns
C0 Time Before Gate for Dark Counts ��� ns
�rec Recovery Time of SiPM 0.65 · �
Cgate Length of Integration Gate ��� ns
8
max
✏ Max. No. of Photon Primary Discharges �
8
max
dark Max. No. of Dark Primary Discharges �
"2

red, Ped, =d
� , =u

� Parameters for Non-Gaussian Pedestals �, �, �
#Peak Min. No. of Events in Peaks ���
bin� First Bin for Fit �
bin_method Binning Method Knuth’s Rule
prefit_only Run Prefit Only false

(b)

Table �.�: Tables �.�a and �.�b show the free and fixed parameters of the PeakOTron fits and their default values, which the user can change.
The maximum number of primary discharges from photons, 8max

✏ is obtained from the charge spectrum.

Figure �.�: Probability mass functions of
the Poisson and Generalised Poisson dis-
tributions in blue and red dashed lines,
respectively. The input values are shown
in Table �.�.

with a mean number of ⌫ successors. The total number of discharges is
therefore the sum of the original Poisson process initiating the discharge
(e.g. from packets of laser light) and the Borel-distributed successive
discharges, yielding the GP distribution. This distribution has been found
to yield a good description of SiPM discharge probability [���, ���].

The GP distribution is given by Equation �.�.

GP: ,⇠,⌫ =
⇠ · (⇠ + : · ⌫):�1 · 4�(⇠+:·⌫)

:!
(�.�)

where : are the total number of Geiger discharges, ⇠ is the mean number
of Geiger discharges,⌫ is the GP- branching parameter describing prompt
cross-talk probability, defined in the range ⌫ 2 [0, 1].

It is noted for later reference that the first raw moment and the second
and third central moments of the GP-distribution (<1, <2, <3), and the
corresponding data moments ("1, "2, "3), are given in terms of the GP
parameters ⇠ and ⌫ by [���, ���]:

<1 = ⇠/(1 � ⌫), "1 = ⌧
⇤ · <1 +&0 ,

<2 = ⇠/(1 � ⌫)3 , "2 = (⌧⇤)2 · <2 ,

<3 = ⇠ · (1 + 2⌫)/(1 � ⌫)5 , "3 = (⌧⇤)3 · <3.

(�.�)

From these equations, ⌫ is calculated using:

(1 + 2⌫) = ("1 �&0) ·"3

"
2
2

, (�.�)

and ⇠ and ⌧⇤ from:

⇠ · (1 � ⌫) = ("1 �&0)2
"2

, (�.�)

⌧
⇤

(1 � ⌫)2 =
"2

("1 �&0)
. (�.�)

Therefore,⇠,⌫ and⌧⇤ can be independently estimated using the moments
of the GP-distribution.
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Figure �.�: Probability density functions
of after-pulses, shown as red lines as a
function of  . The top figure shows the
1st order distribution defined in Equation
�.��. The middle and lower plot show the
2nd and 3rd order autoconvolutions. The
input values are shown in Table �.�.

�.�.� Model for After-pulses

In contrast to what was expected, in [��], the additional charge of a
single after-pulse had to be modelled by an exponential distribution to
describe the measured spectra. The expected charge distribution derived
in Appendix A of [��] did not describe experimental data. In the model,
an after-pulse time dependence 4�CAp/�Ap and a signal reduction by a
factor 1 � 4�CAp/� was assumed. The time between the after-pulse and the
primary Geiger discharge is CAp, the after-pulse time constant is �Ap, and
the voltage-recovery time constant is �.

The model did not take into account the reduction of the Geiger-discharge
probability during the recharging of the pixel, which in PeakOTron is
parameterized by 1 � 4�CAp/�rec , with the recovery-time constant �rec. The
contribution of a single after-pulse to the charge spectrum is described
by Equation �.�:

?Ap · 5Ap(CAp; �rec , �Ap , Cgate), (�.�)

where:

5Ap(CAp) =
(
(1 � 4�CAp/�rec) · 4�CAp/�Ap/Norm 0 < CAp < Cgate

0 otherwise.
(�.�)

In Equation �.�, 5Ap is the after-pulse probability density function (p.d.f.),
?Ap the probability of a single after-pulse for a single primary Geiger
discharge, and Norm the normalisation factor. Justification for the model
is provided in Appendix Section �.�.�.�.

The motivation for this parameterisation is now discussed. Compared to
a photon-induced signal at the time C = 0, the signal from an after-pulse
at 0  C  Cgate is reduced by the factor

⇣
1 � 4�C/�

⌘
·
Ø
Cgate �C

0

⇣
4
�C0/�/�

⌘
dC0.

The first term describes the decrease of the signal due to the recharging
of the pixel, and the second term is the fraction of the signal integrated
by the gate.

The after-pulse-time probability density is modelled in Equation �.�.
The first term, 1 � 4

�C/�rec , describes the decrease in Geiger-discharge
probability due to the recharging of the pixel, and the second term,
4
�C/�Ap , the time distribution of charge carriers de-trapped from states in

the silicon band gap. Both terms are parametrisations, which are only
approximate. The second term assumes de-trapping from a single state
only and no electric-field dependence of �Ap.

For a single Geiger discharge at C = 0 and a gate of length Cgate starting at
C = 0, Norm of Equation �.� is given by Equation �.��:

Norm(�Ap , �rec , Cgate) =
�Ap

✓
�Ap � 4�

Cgate
�Ap

✓
�Ap + �rec

✓
1 � 4�

Cgate
�rec

◆◆◆
�
�Ap + �rec

� .

(�.��)

The treatment of after-pulses is then the same as in Appendix A of [��].
As charge spectra are fitted, changing the after-pulse-time variable CAp
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to charge  is required. The relationship between  and CAp has two
branching solutions, one for 0 < CAp  Cgate/2 and one for Cgate/2 <
CAp  Cgate. The probability density is calculated as the sum of the two
branches.

5Ap( ; �, �Ap , �rec , Cgate) =����d dC (CAp( ; �, Cgate); �, Cgate)
����
�1

·
�
5Ap(CAp( ; �, Cgate), �Ap , �rec) +
5Ap(Cgate � CAp( ; �, Cgate), �Ap , �rec)

�
, (�.��)

where:
����d dC (CAp; �, Cgate)

���� = 2
��sinh

�(Cgate/2 � CAp)/�
� ��
4
�Cgate/2�

�
, (�.��)

and

CAp( ; �, Cgate) =
Cgate

2
� � arcosh

✓ (1 �  ) 4Cgate/2� + 4�Cgate/2�

2

◆
, (�.��)

with 5Ap( ) defined in the range 0    (1� 4�Cgate/2�)2. The derivations
of Equations �.�� and �.�� for Geiger discharges induced by photons at
C = 0 can be found in [��].

�.�.� Model for Photon-Induced Discharges

The treatment of the photon-induced charge spectrum is the same as in
[��], except that the after-pulse distribution is replaced by Equation �.��.
The probability density distribution is shown in Equation �.��.

5✏( ;) =
GP0,⇠,⌫ ·N( ; 0, �0/⌧⇤) +
8
max
✏X
8=1

GP8 ,⇠,⌫ ·N( ; 8 , � (8; �0/⌧⇤
, �1/⌧⇤)) ⇤

⇣
Bi0,8 ,?Ap · ⇣( ) + Bi1,8 ,?Ap · 5 (1)Ap ( ; �, �Ap , �rec , Cgate) +
8X
9=2

Bi9 ,8 ,?Ap · 5
(9)
Ap( ; �, �Ap , �rec , Cgate)

⌘
, (�.��)

where N, GP, Bi and ⇣ represent the normal, Generalised Poisson,
Binomial and Dirac delta distributions, ⇤ the convolution operator, 
the parameters of Table �.�a, 5 (8)Ap( ;) the 8 � 1st auto-convolution of

5Ap( ;) (i.e. 5 (1)Ap ( ;) = 5Ap( ;), 5 (2)Ap ( ;) = 5Ap( ;) ⇤ 5Ap( ;),
etc.), and �(8; �0 , �1) =

q
�2

0 + 8 · �2
1 .
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Figure �.�: Probability density functions
of dark counts, shown as red lines as a
function of  . The top figure shows the
1st order distribution defined in Equation
�.��. The middle figure shows the 2nd or-
der auto-convolution. The bottom figure
shows the 1st-order ’stretched’ probability
density functions defined in Equation �.��.
The input values are shown in Table �.�.

Here, the convolved Gaussian distributions describe the combined effect
of the electronic noise from the experimental setup (�0) and the ’gain
smearing’ (�1). The latter component arises from fluctuations in the
off-voltage of the SiPM due to the stochastic nature of Geiger avalanches
or pixel-to-pixel fluctuations in the capacitance or electric field [��, ��]
and is introduced in Section �.�.�. These processes are uncorrelated and
therefore added in quadrature.

Delayed cross-talk is not implemented.

�.�.� Dark Count Model

The probability density distribution for a single dark pulse in the time
interval �C0 < Cdark < Cgate is given by Equation �.��:

5
(1)
dark( ; �, C0 , Cgate) =

8>>>><
>>>>:

�
C0+Cgate

·
⇣

1
 
+ 1

1� 
⌘

for  min
dark     

max
dark ,

�
C0+Cgate

·
⇣

1
1� 

⌘
, for 0 <    

min
dark ,

0 otherwise,

(�.��)

where  max
dark =

⇣
1 � 4�Cgate/�

⌘
and  min

dark = 4
�C0/�

⇣
1 � 4�Cgate/�

⌘
. Note that

C0 is defined to be positive.

The probability density distributions for more than one primary Geiger
discharge from dark counts for �C0 < C < Cgate, are obtained by auto-
convolutions of 5 (1)dark. Prompt cross-talk distributions are stretched single
dark-count distributions:

⌘8 ,dark( ; �, C0 , Cgate) =
5
(1)
dark

�
 /(8 + 1); �, C0 , Cgate

�
8 + 1

, (�.��)

where 8 is the number of cross-talk discharges.

The program calculates the charge distributions to arbitrary numbers of
dark counts. The first four terms are given in Table �.�, modified from
[��]. The sum of all terms yields 5dark. The number of primary discharges
are assumed to be Poisson distributed (P), characterised by the mean
⇠dark = ⇡⇠' · (C0 + Cgate). The prompt cross-talk discharges are Borel
distributed (B), characterised by the probability ⌫.

After-pulses and delayed cross-talk are not implemented in the present
dark count model.

A comparison of the modified model and the original model of of [��]
are shown in Figure �.�a and �.�b.
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No. of Primary Cross
dis- Comb. Geiger Talk Distribution

charges Probability Probability

� � %0,⇠dark N/A ⇣

� � %1,⇠dark B0,⌫ 5
(1)
dark

� � %1,⇠dark B1,⌫ ⌘1,dark

� � %2,⇠dark (B0,⌫)2 5
(2)
dark

� � %1,⇠dark B2,⌫ ⌘2,dark

� � %2,⇠dark B0,⌫ ·B1,⌫ 5
(1)
dark ⇤ ⌘1,dark

� � %3,⇠dark (B0,⌫)3 5
(3)
dark

� � %1,⇠dark B3,⌫ ⌘3,dark

� � %2,⇠dark B0,⌫ ·B2,⌫ 5
(1)
dark ⇤ ⌘2,dark

� � %2,⇠dark (B1,⌫)2 ⌘
(2)
1,dark

� � %3,⇠dark (B0,⌫)2 · B1,⌫ 5
(2)
dark ⇤ ⌘1,dark

� � %4,⇠dark (B0,⌫)4 5
(4)
dark

Table �.�: The first four terms of the model of [��] for discharges from dark counts, with a modified notation. P stands for the Poisson- and
B for the Borel-probability distribution. Note, that [��] has a typographical error in the zero-discharge column, which is corrected here.

Comparison of the Original And PeakOTron SiPM Detector Response Models

(a) (b)

Figure �.�: Comparison of the charge spectra of the detector response model of [��] (blue continuous line) with the model of this paper (red
dashed line). The spectra are generated using the program of [��] with the parameters of Table �.� for Figure �.�a, and the same parameters
with �rec ! 0 for Figure �.�b.

Comments:

I the modified model reduces the probability of afterpulse discharges as the SiPM recharges. This results in the reduced probability of
the region between the peaks, indicated by the dashed red line in Figure �.�a;

I the original distribution of [��] can be recovered with the limit �rec ! 0, or that the SiPM recovers instantaneously.
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�.� Methods And Tools

The design of the software is presented hereafter.

�.�.� Model Input Parameters

PeakOTron requires charge spectra as input data. At first, the data is
prepared as a histogram in Section �.�.�, and then initial estimates for the
effective gain in Section �.�.�, pedestal and peak positions in Section �.�.�,
and of the dark-count rate in Section �.�.� are made. These estimates are
used to determine the input parameters for the fit.

�.�.� Data Preparation

Users can provide charge spectra in arbitrary units (C, V s, ADC, ...) either
as histograms or lists of charge values, accepted in a standard numpy
array format [���]. If a list of charges is provided, the program supports
manual or automatic binning using one of the three methods (Scott’s
rule, Freedman-Diaconis Rule, Knuth’s Rule) [���–���]. Figure �.� shows
an example of a SiPM spectrum simulated using the program of [��].
The prefitting, i.e. the determination of the input parameters for the fit,
and the fit itself, is demonstrated using this histogram.

Example Simulated Charge Spectrum To Illustrate The Prefitting Method Of PeakOTron

Figure �.�: Exemplary charge spectrum containing 2 ⇥ 104 events, which have been simulated using the program of [��] with the baseline
values of Table �.� except for ⇡⇠' = 5 MHz. For the bin width 0.05 · ⌧ has been chosen, where ⌧ is the total charge of a single Geiger
discharge.As the assumed gate width Cgate = 100 ns, the effective gain ⌧⇤ = 19.865 Bin.

�.�.� Effective Gain using the Fourier Transform (⌧⇤
FFT)

In this step, an estimate for the effective gain, ⌧⇤
FFT, is made. First, the

frequency domain representation of the histogram is calculated using
the numpy Fast Fourier Transform [���]. Next, the power spectral density
is calculated by taking the absolute square of the frequency-domain
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Power Spectral Density of Simulated Charge Spectrum Used To Estimate Used To Estimate Effective Gain in
PeakOTron

Figure �.�: Power spectral density of the Fourier-transformed charge spectrum shown in Figure �.�. The dashed vertical line indicates the
gain frequency extracted using a spline fit. Its reciprocal is the estimate of the effective gain, ⌧⇤

FFT, shown in the legend in Bin units, which
can be compared to ⌧⇤ = 19.865 Bin for the simulation.

histogram. Then, a spline fit is made to the power spectral density [���],
and the position of the lowest peak is determined. The reciprocal of this
value is an estimate of the effective gain, ⌧⇤

FFT.

An example of the method, as applied to the example histogram, is shown
in Figure �.�.

�.�.� Peak Finding

�.�.�.� Initial Estimation of Peak Positions

A cubic spline fit to the entire charge spectrum is made, and the position
of the highest peak is defined as the reference peak position, &max. The
remaining peak positions in the spectrum are obtained from&max±8 ·⌧⇤

FFT
for positive integers 8.

This peak-finding method is chosen because it does not require events in
the peak to estimate its position. This can occur for the pedestal peak if
the mean number of Geiger discharges is high, and thus the probability
for pedestal events is low.

�.�.�.� Pedestal Estimation

Assuming that the first three moments of the charge distribution can be
approximately described using the moments of a Generalized Poisson
(GP) distribution, the pedestal position can be estimated [���, ���].

As illustrated previously in Section �.�.�, the gain ⌧⇤ is related to the
pedestal, &0, the first raw moment, "1, and the second and third central
moments, "2 and "3, of the charge spectrum by:
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⌧
⇤(&0 ,"1 ,"2 ,"3) =

✓
"2

("1 �&0)

◆
· (1 � ⌫(&0;"1 ,"2 ,"3))2

(�.��a)

⇠(&0 ,"1 ,"2 ,"3) =
✓ ("1 �&0)2
"2 · (1 � ⌫(&0 ,"1 ,"2 ,"3))

◆
(�.��b)

⌫(&0 ,"1 ,"2 ,"3) =
1
2

 
("1 �&0) ·"3

"
2
2

� 1

!
(�.��c)

The parameters of the GP distribution are ⇠ and ⌫, with ⌫ the branching
parameter and ⇠ the mean value for ⌫ = 0.

⌧
⇤, ⇠ and ⌫ may be estimated from a charge spectrum using these

relationships [���, ���]. The relationship of Equation �.��b is introduced
here for subsequent use. An outline of proof for these relations has been
provided in Section �.�.�.

The pedestal is estimated by minimizing the square of the difference
between ⌧⇤, calculated from the charge spectrum using Equation �.��a,
and ⌧⇤

FFT, the gain extracted from the power spectral density:

&
est
0 = arg min

&0  &max

⇣ �
⌧

⇤(&0;"1 ,"2 ,"3) � ⌧⇤
FFT

�2
⌘
. (�.��)

The function arg min gives the value of &0 which minimizes the expres-
sion in parentheses. The specified limit for &0 assures that the pedestal
value,&0, is less or equal to&max, the peak with the maximum number of
counts of the spectrum. Finally, the candidate peak from the set obtained
in Section �.�.� nearest to &est

0 is selected as pedestal. The peaks in the
set with values less than &est

0 are removed.

�.�.�.� Improved Peak Position Estimate

The peaks sit on a background from dark counts and delayed correlated
pulses. If the background has a finite slope, the peak position is shifted.
To improve the estimated peak positions a background is subtracted.

The background is estimated by a cubic spline fit to the minima of
the spectrum in-between the peaks, which requires that the peaks are
resolved. An example of the estimated background is shown in Figure
�.�a.The bin contents are set to zero if the background subtraction results
in negative numbers. Figure �.�b shows the background-subtracted
spectrum.

The estimates of the peak positions are improved by determining an im-
proved&max from the background-subtracted spectrum and by applying
the methods described in Section �.�.�.�.
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Background Subtraction and The First Estimate For Peak Positions In PeakOTron

(a) (b)

Figure �.�: Figure �.�a shows the original and the estimated background as a blue line and a red-shaded area. Figure �.�b shows the
background-subtracted charge spectra as a red line with the peak positions indicated by vertical lines, estimated after the background
subtraction. The inverted triangle indicates the position of the estimated pedestal, &est

0 , and the dashed vertical purple line indicates the
nearest peak position. The coloured lines indicate subsequent peaks.

Linear Fits To Mean And Variance Of Peak Positions in PeakOTron For The Prefitting of The &0, �0 and �1
Free Parameters of the Detector Response Model

(a) (b)

Figure �.�: Straight-line fits to the means and variances extracted as described in Section �.�.�.�. Figure �.�a shows the fit to the means, with
the slope fixed to ⌧⇤

FFT, is shown as dashed line.The intercept determines the prefit value for the pedestal position, &0. Its value is given in
the insert. Figure �.�b shows the fit (dashed line) to the variances of the peaks. The intercept determines the prefit value for �2

0 , and the
slope, the prefit value for �2

1 . The values are given in the insert.



�.� Methods And Tools ��

�: In order to reduce the sensitivity to
outliers, Huber Loss is used as the cost
function of the straight-line fits in Section
�.�.�.�. Huber Loss is defined in Equation
�.��:

!⇣(I) =
(

1
2 I

2 for |I |  ⇣

⇣
�|I | � 1

2 ⇣
�

otherwise,
(�.��)

where I = (bH � H)/�H with the value of
the fit function, Ĥ, the measured value,
H, and �H , the uncertainty of H. ⇣ is the
threshold parameter, which is typically set
to �.���, to ensure at least a ��% statistical
efficiency compared to a least squares fit,
if the true distribution is a Gaussian [���].

�.�.� Determination of the Input Parameters

This section discusses the determination of the input parameters for the
fits to the charge spectra, using the background-subtracted spectrum and
the initial estimates of the effective gain, pedestal and peak positions.

�.�.�.� Pedestal Position and Width, Gain Spread (&0, �0, �1)

The pedestal is re-estimated in this step.Ranges of ± ⌧⇤
FFT/2 from each

estimated peak position are selected from the background-subtracted
spectrum, with the requirement that more than#Peak events are observed
in that range.The default value of #Peak = 100 may be changed by the
user.

First, the mean, <, and the standard deviation, �, of the spectrum in the
range of the pedestal peak are calculated. If � < ⌧FTT/4, the sub-range
< ± 2 · � is selected, and a Gaussian fit is performed to the background-
subtracted spectrum in this sub-range. Then, a new sub-range is selected
using the< and � from the Gaussian fit. This fitting procedure is repeated
for a maximum of ten iterations or until < and � have changed by less
than � % of the bin width from the preceding iteration. Once one of the
criteria is fulfilled, the < and � from the last iteration are recorded.

The iterative fit procedure described for the pedestal is then repeated for
each subsequent peak. This procedure results in a mean and a standard
deviation for each peak. If there are fewer than three peaks with at
least #Peak events, then the means and standard deviations in the ranges
± ⌧⇤

FFT/2 from the three peaks which contain most events in that ranges
are used instead. Once the described procedure has been completed,
straight-line fits are performed to the means and standard deviations
from the iterative procedure.

First, a straight-line fit to the mean peak positions versus peak number
with the slope fixed to ⌧

⇤
FFT is performed. The intercept is the final

estimate for &0. Next, a straight-line fit to the variances, �2, versus peak
number is performed. The intercept and slope are used to obtain the final
estimates of �0 and �1. Both fits are performed with MIGRAD, using the
Huber Loss cost function, which reduces the influence of outliers. The
Huber Loss is a combination of a quadratic and a linear cost function
that attributes a lower weight to outliers than the purely quadratic cost
function used for the "2 goodness-of-fit � .

In Fig. �.�a the straight-line fit to the means for estimating &0, and in
Fig. �.�b the straight-line fit to the variances for estimating �0 and �1, are
shown.

�.�.�.� Estimates of ⇠ and ⌫

The mean number of photon-induced primary Geiger discharges, ⇠, and
the prompt cross-talk probability, ⌫, are calculated from Eq. �.��b and
Eq. �.��c, respectively, with the moments calculated from the original
charge spectrum shown in Figure �.�. The number of photoelectron peaks
in the spectrum to be fitted is 8max

✏ = floor
� �
&up �&0

� /⌧⇤
FFT

�
, where
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&up is the maximum charge of the spectrum and floor(G) gives the largest
integer  G.

�.�.�.� Dark Count Rate Estimate (⇡⇠')

The starting values of⇡⇠' for the fit are calculated using Equation �.��a
and Equation �.��b:

⇡⇠' = ⇡⇠'
0 · 4⇡⇠'0·� (�.��a)

⇡⇠'
0 =

d#dark/d ( = 0.5)
4 · � · #�.�

, (�.��b)

where #0.5 is the number of entries in the spectrum up to  = 0.5 and
d#/d ( = 0.5) is estimated from the counts of the histogram in the
range 0.45    0.55.

As discussed in [��], in the absence of illumination, the spectrum as
a function of  of a single dark count randomly distributed in time
is d#/d = ⇡⇠' · � · (1/ + 1/(1 �  )). From this follows that for a
total of #dark events, d#/d ( = 0.5) = 4 · ⇡⇠' · � · #dark. In [��], it
is also shown that the mean number of dark counts with  > 0.5 is
⇠dark = Cgate · ⇡⇠'. If ⇠dark ⌧ 1, one can replace #dark by #0.5, giving
d#/d ( = 0.5) ⇡ 4 ·⇡⇠' · Cgate ·#0.5. If ⇠dark increases and approaches
�, the approximation #0.5 ⇡ #dark worsens, and in addition, #0.5 is
reduced by the Poisson probability of no dark count in the time interval
Cgate, %(0;⇠dark) = 4

�Cgate ·⇡⇠'. At the same time, the probability of more
than one dark count producing a significant signal increases, which
further weakens above arguments. Using the simulation program of [��],
it was found that replacing 4�⇠dark by 4��·⇡⇠' , yields better initial values
for DCR. An example of the  -ranges used to estimate DCR is shown in
Figure �.�.

The maximum number of peaks from dark counts in the fit is 8max
dark. Its

default value is �. The user may modify the value above or equal to a
minimum of �.

�.�.�.� After-pulse Parameters (?Ap, �Ap)

The after-pulse parameters cannot be readily extracted from the spectrum
without performing the fit. Therefore, the ad-hoc initial values, ?Ap = 0.1
for the after-pulse probability, and �Ap = 5 ns for the after-pulse time
constant, are used.

To take into account the physics constraints 0  ?Ap < 1 and �Ap � 0, the
parameter limits shown in Table �.�a are applied in the fit. These choices
can be changed by the user.
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Illustration of the Method Used To Prefit The Dark Count Rate In PeakOTron

Figure �.�: Charge spectrum of Figure �.� for   2.5 p.e. The estimate of #dark is shown in red-line shading, and the region for determining
d#dark/d ( = 0.5) in solid green shading. The estimate of DCR using Equation �.��a is given in the insert. The spectrum was simulated
with DCR = 5 MHz.

�.�.� Implementation of the Fit

After determining the input parameters of the model, the spectra are fitted
with the binned maximum-likelihood method using MIGRAD implemented
in iminuit, a Python interface to the MINUIT2 C++ package [���]. The
logarithmic likelihood function used is:

L⌫!(& ,# ;) = �
X

1 2 bins

 
#1 · ln

 b#1(&;)
#1

!
+

⇣
#1 � b#1(&;)

⌘!
.

(�.��)

The bin index is 1, # denotes the histogram, #1 are the counts in bin 1,
and b#1 are the counts in bin 1 predicted by the model.

b#1 is obtained from �sc · 5DRM(&;) · �&, where the scaling factor
�sc ⇡ #events is a free parameter, & the measured charge, �& the bin
width, and 5DRM the p.d.f. of the detector response model. The last term
in parentheses of Equation �.�� results in a pure parabolic behavior for
each term at the minimum. In addition to the ten free parameters of the
fit, PeakOTron also uses a number of fixed parameters, which are given
in Table �.�b together with their default values, which can be changed by
the user.

The PeakOTron fit result for the spectrum of Figure �.� is shown in
Figure �.��, together with the pulls, the difference of fitted and measured
number of counts divided by the estimated statistical uncertainty. For the
uncertainty the square root of the fitted number of events, which can be
less than one, has been assumed. It can be seen that the model provides a
description of the simulated spectrum within its statistical uncertainty.

Frequently, measured spectra show non-Gaussian tails below the pedestal
peak. Examples are given in Section �.�.�. To deal with this problem,
"2

red, the "2 up to a charge of &0 + =u
� · �0 divided by the corresponding
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Example Fit Performed By PeakOTron

Figure �.��: Fit to the spectrum of Figure �.� using PeakOTron. The blue continuous line shows the spectrum and the dashed orange line the
fit result. The subfigure at the bottom shows the pulls, the difference of the counts of the spectrum minus the fit results, divided by the
statistical uncertainty of the data. The pulls and the "2/NDF, given in the insert, allow judging the quality of the fit.

number of bins for the PeakOTron fit to the entire spectrum, is calculated.
If "2

red > "2
red, Ped, the spectrum starting at &0 � 4 · �0 is fitted. If also in

this case "2
red > "2

red, Ped, the fit is repeated for charge values exceeding
&0 � 3.5 · �0. This procedure is iterated in 0.5 · �0 steps until either
"2

red  "2
red, Ped or the limit &0 � =d

� · �0 is reached. The default values
of =d

� , =u
� and "2

red, Ped, which can be changed by the user, are given in
Table �.�b.

PeakOTron is compatible with the native Python multiprocessing module
[���]. Thus, it is recommended that fits of many SiPM spectra are
performed in parallel. In addition, PeakOTron fit objects can be directly
stored on disk, and recovered for later analyses [���].

�.� Results

In this section, the performance of the PeakOTron program is evaluated
using simulation and experimental data.

�.�.� Validation of PeakOTron with Simulated Spectra

The performance of PeakOTron was validated using spectra simulated
with the program from [��], which is also discussed in Chapter �. First,
baseline parameters were selected with values typical for SiPMs. Each
parameter was scanned in a wide range of values while keeping the other
parameters fixed to the baseline values. Table �.� shows the baseline
values and the scan ranges for each parameter. For every parameter set
��� simulations, each with 2 ⇥ 104 events, were made.

The simulation program produces for every event charge values in units
of n.p.e., which were scaled by the effective gain, ⌧⇤, and shifted by the
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pedestal, &0, with the values given in Table �.�. The charge values were
binned into a histogram with the bin widths shown in Table �.�, and
then fitted with PeakOTron.

The following models were used for the simulations:

I The SiPM pulse from photons was modeled by an exponential
starting at C = 0 with the time constant � and the area n.p.e. The
charge was obtained by integrating the SiPM pulse from C = 0 to
C = Cgate. As shown in Figure �.��, SiPM pulses typically have two
components: a slow component due to the recharging of the pixel
and a fast one arising from a capacitance parallel to the quenching
resistor [��]. Like in [��], no contribution from a fast component
was simulated;

I Primary photon-induced SiPM pulses were generated with Poisson-
distributed n.p.e. values with a mean of ⇠ n.p.e;

I Primary dark-count induced SiPM pulses were generated with
a charge of one n.p.e. Their number was modeled by a Poisson
distribution with the mean ⇠dark = ⇡⇠' · (Cgate + C0), and their
times were uniformly generated in the time interval �C0 < C < Cgate.

I Prompt cross-talk, which causes discharges at the same time as the
primary Geiger discharges, was generated with a Borel distribution
[���] with the branching parameter ⌫;

I After-pulses for primary and prompt-cross-talk discharges were
generated with the time distribution given by Equation �.� and an
amplitude proportional to (1 � 4�CAp/�);

I Delayed cross-talk, which was not modelled in [��], was not simu-
lated.

For each of these simulations the spectrum was fitted with PeakOTron.
More information on the simulation is presented in Chapter �. Fitting
��� simulated spectra for every parameter set allows estimating the
systematic bias and the statistical uncertainty of the fitted parameters
from the mean and RMS spread of the distribution of the differences
between fitted and simulated parameter values, respectively.

�.�.�.� Overall Performance Of Fit

The results of the fits are presented in Figures �.��-�.��, which show
the fitted and prefit parameter values, their biases and their statistical
uncertainties. In addition, for the extreme values of the parameter scan
range, simulated and fitted spectra together with the pulls are presented.
The results for the bias and the statistical uncertainty of each parameter
scan for the values from the fit and from the prefit are summarised in
Table �.�. It should also be noted that for most parameters the fit improves
the bias and statistical uncertainty of the prefit values.



�� � PeakOTron� A Tool For SiPM Characterisation

Parameter Baseline Scan Range Scaling

&0 20.0 Bin � constant
⌧ 20.0 Bin � constant
⌧
⇤ 19.865 Bin � constant

⇠ � �.� � � linear
⌫ �.� �.�� � �.� linear
�0 0.075 G (�.�� � �.��) G linear

(1.5 Bin) (�.� � �) Bin
�1 0.02 G (�.�� � �.��) G linear

(0.4 Bin) (�.���) Bin
⇡⇠' 100 kHz 100 kHz � 5 MHz linear
?Ap �.���� �.���� � �.���� linear
�Ap 7.5 ns (�.� � ��.�) ns linear
� 20 ns � constant
�rec 20 ns � constant
C0 100 ns � constant
Cgate 100 ns � constant
Afast � - constant
bin width 0.05 G (�.�� � �.��) G linear
#events 2 ⇥ 104 events (103 � 5 ⇥ 105) events linear

Table �.�: Summary of the baseline values and scan ranges of the parameters used in the simulations for the validation of PeakOTron.
⌧
⇤/⌧ = (1/�) ·

Ø
Cgate

0 4
�C/�dC is the fraction of the SiPM signal integrated during the gate.

Parameter unit Bias Stat. Uncertainty Bias Stat. Uncertainty

&0 Bin �0.0017 0.0250 �0.124 0.185
⌧ Bin 0.0017 0.0186 0.073 0.092
⇠ � �0.0319 0.0385 �0.020 0.120
⌫ � 0.0075 0.0057 �0.005 0.015
�0 Bin 0.0307 0.0282 0.043 0.190
�1 Bin �0.0108 0.0356 �0.207 0.353
?Ap � 0.0009 0.0023 � �
�Ap ns �0.2681 0.9618 � �
⇡⇠' MHz �0.0587 0.1546 �0.130 0.298

Table �.�: Biases and statistical uncertainties of the fitted parameters for the scans of Table �.�.

Summary Of Figures �.��-�.�� and Table �.�

From Figures �.��-�.�� it is concluded that the simulated spectra are
well described by the fit with values of "2/NDF close to one and no
regions with significant differences between fit and simulation. The
figures and Table �.� show that, for the parameters which are varied
in the scan the biases are small: below �.� p.e. for ⇠, below �.��� Bin
for ⌧⇤, below �.��� Bin for &0, below �.�� for ⌫, about �.�� Bin for �0,
about �.�� Bin for �1, about �.��� for ?Ap, and below 0.5 ns for �Ap.
Typically the biases are smaller than the statistical uncertainties.
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⇠ Scan of Fits With PeakOTron To Simulation In The Range ⇠ = 0.5 � 8 p.e.

(a)

To

(b) (c)

Figure �.��: Comparison of the fit and the prefit values to the simulated values for the scan ⇠ = 0.5 � 8 p.e.. Figure �.��a shows mean
fitted and prefit values and in the subplot the mean difference and spread of the fitted/prefit values minus the simulated values vs. the
simulated values. Figures �.��b and �.��c show imulated charge spectrum and fit results, and below the pulls for ⇠ = 0.5 p.e. and ⇠ = 8 p.e.,
respectively.

Comments:

I Minor systematic biases are observed as ⇠ ' 8 in Figure �.��a. This is a consequence of ⇠ being more challenging to measure as
proportionally fewer events are spread across a greater number of Geiger discharge peaks. It is, however, demonstrated in Table �.�,
this effect is minor overall.

⌫ Scan of Fits With PeakOTron Simulation In The Range ⌫ = 0.01 � 0.3

(a) (b) (c)

Figure �.��: Comparison of the fit and the prefit values to the simulated values for the scan ⌫ = 0.01 to �.�. Figure �.��a shows mean fitted
and prefit values and in the subplot the mean difference and spread of the fitted/prefit values minus the simulated values vs. the simulated
values. Figures �.��b and �.��c show simulated charge spectrum and fit results, and below the pulls for ⌫ = 0.01 and ⌫ = 0.3, respectively.

Comments:

I An overall bias is observed for both prefit and fit. The reason is unknown. However, it is shown to reduce with the number of events
in the sample in Figure �.��, and is therefore likely a consequence of limited statistics.
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�0 Scan of Fits With PeakOTron To Simulation In The Range �0 = 0.02 � 0.15⌧

(a) (b) (c)

Figure �.��: Comparison of the fit and the prefit values to the simulated values for the scan �0 = 0.02� 0.15⌧. Figure �.��a shows fitted and
prefit values, and below, mean difference and spread of the fitted/prefit values minus the simulated values vs. the simulated values. Figures
�.��b and �.��c show simulated charge spectrum and fit results, and below the pulls for �0 = 0.02 G and �0 = 0.3 G, respectively.

Comments:

I As shown in Figure �.��a, the bias of �0 increases if �0 is smaller than the bin width. This could be cured if in the fit the integral over
the bins of the fit function is used instead of its value at the bin centre.

�1 Scan of Fits With PeakOTron To Simulation In The Range �1 = 0.02 � 0.15⌧

(a)

To

(b) (c)

Figure �.��: Comparison of the fit and the prefit values to the simulated values for the scan �1 = 0.02 � 0.15⌧. Figure �.��a showes fitted
and prefit values, and below, mean difference and spread of the fitted/prefit values minus the simulated values vs. the simulated values.
Figures �.��b and �.��c show simulated charge spectrum and fit results, and below the pulls for �1 = 0.02 G and �1 = 0.3 G, respectively.

Comments:

I Figure �.��a illustrates that the bias of �1 increases for the prefit, which illustrates the increased challenge of estimating the gain
spread as the width of the peaks increase with independent Gaussian fits. By contrast, the model can describe �1.
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⇡⇠' Scan of Fits With PeakOTron To Simulation In The Range ⇡⇠' = 0.1 � 5 MHz

(a) (b) (c)

Figure �.��: Comparison of the fit and the prefit values to the simulated values for the scan ⇡⇠' = 0.1 � 5 MHz. Figure �.��a shows fitted
and prefit values, and below, mean difference and spread of the fitted/prefit values minus the simulated values vs. the simulated values.
Figures �.��b and �.��c show simulated charge spectrum and fit results, and below the pulls for ⇡⇠' = 0.1 MHz and ⇡⇠' = 5 MHz,
respectively.

Comments:

I Figure �.��a illustrates that the bias and error of the fitted ⇡⇠' increases for the prefit with simulated ⇡⇠'. By contrast, the model
is capable of describing ⇡⇠' with smaller errors and bias than the prefit.

?Ap Scan of Fits With PeakOTron To Simulation In The Range ?Ap = 0.0027 � 0.0818

(a) (b) (c)

Figure �.��: Comparison of the fit and the prefit values to the simulated values for the scan ?Ap = 0.0027� 0.0818. Figure �.��a showes fitted
and prefit values, and below, mean difference and spread of the fitted/prefit values minus the simulated values vs. the simulated values.
Figures �.��b and �.��c show simulated charge spectrum and fit results, and below the pulls for ?Ap = 0.0027 and ?Ap = 0.0818, respectively.

Comments:

I Figures �.��b-Figure �.��c indicate that the model is able to describe the regions between the peaks caused by afterpulses.
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�Ap Scan of Fits With PeakOTron To Simulation In The Range �Ap = 4 � 19 ns

(a) (b) (c)

Figure �.��: Comparison of the fit and the prefit values to the simulated values for the scan �Ap = 4 � 19 ns. Figure �.��a shows fitted and
prefit values, and below, mean difference and spread of the fitted/prefit values minus the simulated values vs. the simulated values. Figures
�.��b and �.��c show simulated charge spectrum and fit results, and below the pulls for ?Ap = 0.0027 and ?Ap = 0.0818, respectively.

Comments:

I Figure �.��a shows that the afterpulse time constant can be reconstructed with around 1 ns precision.

I Figures �.��b-Figure �.��c indicate that the model is able to describe the regions between the peaks caused by afterpulses.
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Bin Width Scan of Fits With PeakOTron To Simulation In The Range 0.01 � 0.25 G

(a) (b)

(c) (d)

Figure �.��: Comparison of the fit and the prefit values to the simulated values for the scan bin width = 0.01 � 0.25 G. Figure �.��a shows
ratios of the mean fitted and prefit values for ⌧⇤ to the simulated ⌧ values in bin widths, and below, the mean differences and spreads of
the fitted/prefit values minus the simulated values. Figure �.��b shows ratios of the mean fitted and prefit values for &0 to the simulated
values, and below, the mean differences and spreads of the fitted/prefit values minus the simulated values. Figure �.��c and Figure �.��d
show simulated charge spectrum and fit results, and below the pulls for the bin width for 0.01 G and 0.25 G, respectively.

Comments:

I Figure �.��a It can be seen that for a bin width of 0.01 G, the ⌧⇤ bias is less than �.�� bins, which corresponds to a relative bias of
5 ⇥ 10�4.

I Figure �.��b show that, independent of the bin width, the fits determine &0 with an accuracy of a small fraction of the bin width;

I Figures �.��c-�.��d indicate that the model can describe distributions with a variety of bin widths.
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�.�.�.� Systematic Biases and Statistical Uncertainties Of Fit

So far, only the uncertainties of the parameters scanned have been
presented. However, changing one parameter in the simulation may
influence the uncertainties of other parameters. Figures �.��-�.�� show the
biases and statistical uncertainties on&0, ⌧⇤, ⇠, ⌫, and⇡⇠' for the scans
of bin width, ⇠, and ⇡⇠'. Also, it is expected that the number of events
used, #events, will increase the accuracy of the fit tool. Figure �.�� shows
the dependence of the statistical uncertainty of the fitted parameters on
the number of entries in the spectrum, for the baseline-parameter set.

Summary Comment To Figures �.��-�.��

With few exceptions, the biases and systematic uncertainties are
small. The increased error on ⇡⇠' and ⌫ in the ⇠ and ⇡⇠' scans
can be attributed to having proportionally fewer events from which
these parameters may be estimated as they increase (i.e. fewer events
per photoelectron peak). Also, it is noted that the accuracy of the
parameters increases with the number of events as expected.

�.�.�.� CPU Time for the Fit and the Prefit

Figure �.�� shows the mean CPU time and its spread for ��� fits to spectra
simulated with the baseline parameters using an Intel®Xeon® E�-����
v� CPU operating at 2.2 GHz for scans of ⇠, ⇡⇠' and the number of
events.

Summary Comment to Figure �.��

The prefit time never exceeded 0.5 s. The mean overhead for the prefit
is 0.15 s, and for the fit 16 s. The fit time increases exponentially with
⇠ and linearly with ⇡⇠'.

This section, therefore, demonstrates that PeakOTron can fit and precisely
describe the simulated SiPM spectra over a wide range of parameter
values and reconstruct the parameters with high accuracy, and can be
used to fit spectra in a reasonable timescale.
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Statistical Uncertainty of Fitted Parameters in PeakOTron vs. Number of Events

Figure �.��: Statistical uncertainty of fitted parameters as a function of #events, the number of entries in the spectrum, for the baseline-
parameter set. For &0, the uncertainties are shown in bin widths, shown on the scale on the right, and for ⇠, ⌧⇤, ⌫ and ⇡⇠', as a percentage
of their values, shown on the scale on the left.

Comments:

I As expected, the variances of parameters follow approximately a 1/p#events dependence.

Systematic Bias and Statistical Uncertainty of Fitted Parameters in PeakOTron vs. Bin Width

(a) (b)

Figure �.��: Figure �.��a and Figure �.��b show the bias and statistical uncertainty of &0, ⌧⇤, ⇠, ⌫, and ⇡⇠' for the scans of the bin width.
For &0, the uncertainties are shown in bin widths, shown on the scale on the right, and for ⌧⇤, ⇠, ⌫ and DCR, as a percentage of their values,
shown on the scale on the left.

Comments:

I Figure �.��a shows that the bin width has a significant influence on the determination of ⌫ and DCR, but hardly affects ⇠, ⌧⇤ and &0.
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Systematic Bias and Statistical Uncertainty of Fitted Parameters in PeakOTron vs. ⇠

(a) (b)

Figure �.��: Figure �.��a and Figure �.��b show the bias and statistical uncertainty of &0, ⌧⇤, ⇠, ⌫, and ⇡⇠' for the scans of ⇠. For &0, the
uncertainties are shown in bin widths, shown on the scale on the right and for ⌧⇤, ⇠, ⌫ and ⇡⇠', as a percentage of their values, shown on
the scale on the left.

Comments:

I From Figure �.��b it is concluded that a change in ⇠ influences significantly the determination of DCR, but hardly of&0, ⌧⇤, ⇠, and ⌫.

Systematic Bias and Statistical Uncertainty of Fitted Parameters in PeakOTron vs. ⇡⇠'

(a) (b)

Figure �.��: Figure �.��a and Figure �.��b show the bias and statistical uncertainty of &0, ⌧⇤, ⇠, ⌫, and ⇡⇠' for the scans of ⇠. For &0, the
uncertainties are shown in bin widths, shown on the scale on the right, and for ⌧⇤, ⇠, ⌫ and ⇡⇠', as a percentage of their values, shown on
the scale on the left.

Comments:

I From Figure �.��a and Figure �.��b and shows that the biases and statistical uncertainties remain small when increasing ⇡⇠'.
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Fit and Prefit Time in PeakOTron For Different Parameters

(a) (b)

(c) (d)

(e) (f)

Figure �.��: Figure �.��a-�.��b, Figure �.��c-�.��d and Figure �.��e-�.��f show the mean fit times and their spread for the ��� simulations
of 2 ⇥ 104 events each. The mean fit times and their spread shown as points and error bars for the scans of ⇠, ⇡⇠', and of #events on each
row, respectively. The left column shows the fit time and the right column shows the prefit time.

Comments:

I The mean CPU time per fit increases approximately exponentially with ⇠ and linearly with ⇠dark (approximately according to
hCfiti / 4

0.31·⇠ · (0.1 + ⇠dark)).

I The prefit time increases linearly with ⇠, logarithmically with the number of events, and is approximately independent of ⇠dark.

I As expected for a binned log-likelihood fit, the fit time increases only slowly with the number of events.
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SiPM Area Pixel size Pixels %⇡⇢ ⌧ ⇡⇠' +off
[mm2] [µm] [%] [@0] [kHz mm�2] [V]

PM����NS-SB� 1.2 ⇥ 1.2 �� ���� �� 1.5 ⇥ 106 typ.: ��� ��.�
S�����-����PE 1.3 ⇥ 1.3 �� ���� �� 0.7 ⇥ 106 typ.: ��, max.: ��� ��.�

Table �.�: Manufacturers’ specifications of the Ketek SiPM PM����NS-SB� [���] and the Hamamatsu MPPC S�����-����PE [���]. Area
refers to the photo-sensitive area. The values for %⇡⇢, ⌧ (in units of elementary charges, @0), ⇡⇠' and +off refer to a temperature of
25 °C and an over-voltage of 5 V.They are typical values that may differ among SiPMs. The photon-detection efficiency (PDE) refers to a
wavelength of 430 nm for the Ketek and to 450 nm for the Hamamatsu SiPM.

SiPM A 5 � 5 [ns] � [ns] +off [V]

PM����NS-SB� �.�� ± �.�� �.�� ± �.�� ��.� ± �.� ��.�� ± �.��
S�����-����PE �.�� ± �.�� �.�� ± �.�� ��.� ± �.� ��.�� ± �.��

Table �.�: SiPM pulse-shape parameters determined from fits to the transients. The measured transients are shown as continuous blue lines
in Figure �.��. The function � ·

⇣
(1 � A

5
) · 4�C/�/� + A

5
· 4�C/� 5 /�

5

⌘
is fitted to the data. Here, � and �

5
are the slow and fast time constants,

respectively, and A
5

is the fractional contribution of the fast component. The voltages at which the Geiger discharge stops, +off, are obtained
from the fits of the effective gain vs voltage shown in Figure �.��.

�.�.� Fits to Experimental Data

In this section, the PeakOTron fit program is applied to charge spectra
taken from the

�.�.�.� SiPMs and Setup

Measured spectra from two SiPMs have been analysed: a Hamamatsu
MPPC S�����-����PE [���] and a Ketek SiPM PM����NS-SBO [���]. Both
have a pixel size of 25 µm. Their properties are summarised in Table �.�.

Charge measurements were performed with the SiPM educational kit
from CAEN [���, ���]. It consists of a power supply and amplification
unit (PSAU). The SiPMs are soldered to custom printed circuit boards
that can be plugged into the PSAU. The PSAU consists of an AC-coupled
amplifier, a leading-edge discriminator and a coincidence logic. After
amplification, the pulses are digitised by a DT����A CAEN Desktop
Digitiser, with a sampling frequency of 250 MS/s.

An LED driver powers an LED, which emits light of approximately
400 nm wavelength with a sub-nanosecond rise time and a 5 ns decay
time. The light is transported to the SiPM by an optical fibre. The CAEN
kit with the SiPM is located in a light-tight Al housing, which also serves
as electric shielding.

Example transients of the two SiPMs from single Geiger discharges are
displayed in Figure �.��. They show a fast and a slow time component, and
the sum of two exponentials can fit them. The fit results are summarized
in Table �.�.

For obtaining the charge spectra, the transients are integrated during a
gate with the width Cgate = 104 ns, starting 4 ns before the start of the signal
from the light pulse. Figure �.�� shows charge spectra for low-intensity
illumination for a range of bias voltages for both SiPMs.
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Typical Waveforms of Hamamatsu MPPC S�����-����PE and Ketek SiPM PM����NS-SBO

(a) (b)
.

Figure �.��: Figures �.��a and �.��b show typical waveforms (voltage vs time) of the Hamamatsu MPPC S�����-����PE and the Ketek SiPM
PM����NS-SBO for single Geiger discharges are shown as blue continuous lines, respectively. A dashed square corresponds to 20 ns in the
horizontal and 20 mV in the vertical direction. The sum of two exponentials fits the transients. The assumed measurement uncertainties are
1 mV. The fit results are shown as dashed orange lines, and the fitted parameters are reported in Table �.�. Pulls are shown on the subplot.

Comments:

I the pulls on each figure shown indicate good agreement with the double-exponential structure of the SiPM pulse.

Fitted Charge Spectra vs. Over-voltage For Hamamatsu MPPC S�����-����PE and Ketek SiPM
PM����NS-SBO

(a) (b)

Figure �.��: Figure �.��a and �.��b show measured charge spectra in logarithmic scale of the Hamamatsu MPPC S�����-����PE and of the
KETEK SiPM PM����NS-SBO, respectively, illuminated with low-intensity light, for increasing bias voltages. The results of the PeakOTron
fits are shown as orange dashed lines.

Comments:

I Generally, good agreement is observed for all studied spectra, as indicated by the agreement of the dashed orange line with the blue
histogram.
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SiPM ⇠0 [p.e.] +0 [V] +bd �+off [V] � [ns] +off [V]

PM����NS-SB� 0.87 ± 0.01 2.22 ± 0.03 0.13 ± 0.01 34.0 ± 0.8 27.15 ± 0.01
S�����-����PE 1.37 ± 0.01 2.91 ± 0.03 0.31 ± 0.01 22.0 ± 0.6 51.58 ± 0.01

Table �.�: Values of the parameters from the fits of Equation �.�� to the data of Figure �.��. The values for � and of +off are taken from
Table �.�.

�.�.�.� PeakOTron Fits

The results of the PeakOTron fits to the measured spectra presented
in Figure �.��, are shown in the Figures �.�� to �.��, as a function of
over-voltage. The over-voltage is the difference of the bias voltage and
+off, where +off, which is the voltage at which the Geiger discharge stops.
This quantity is obtained from the intercept of a straight-line fit of ⌧⇤

as a function of bias voltage presented in Figure �.��. The breakdown
voltage is the voltage at which +bd, is extracted from a fit to the mean
number of photon-induced primary Geiger discharges, ⇠, as a function
of over-voltage. This quantity is expected to saturate with increasing
overvoltage, as expected from the voltage-dependence of PDE. The
voltage dependence of ⇠ Equation �.��.

⇠(+) = ⇠0 ·
⇣
1 � 4�max(+�+bd , 0)/+0

⌘
, (�.��)

where ⇠0 is the ⇠-saturation value, +bd the breakdown voltage and +0 a
parameter which characterises the voltage dependence.

Summary Comment To Figures �.��-�.��

The parameters extracted with PeakOTron from the Hamamatsu
MPPC S�����-����PE and Ketek SiPM PM����NS-SBO under test are
in agreement with expectations from the manufacturer as outlined in
Table �.� and with expected voltage dependences, including the dark
count rate and afterpulse probability and time constant. The "2/NDF
indicates generally good agreement with the SiPM spectra.
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Charge Spectra of the Hamamatsu MPPC S�����-����PE and the Ketek SiPM PM����NS-SBO SiPMs,
Illuminated With Low-Intensity Light For The Lowest and Highest Voltages Of The Voltage Scans

(a) (b)

(c) (d)

Figure �.��: Measured (blue continuous lines) and fitted (orange dashed lines) charge spectra of the Hamamatsu MPPC S�����-����PE and
the Ketek SiPM PM����NS-SBO SiPMs, illuminated with low-intensity light for the lowest and highest voltages of the voltage scans. In
the lower subfigures, the pulls, the differences measured minus fitted divided by the square root of the expected number of counts, are
displayed. Figures �.��a and �.��c show the results for the Hamamatsu MPPC operated at 53 V and 60 V, respectively, and Figures �.��b
and �.��d for the Ketek SiPM, operated at 28.5 V and 33 V, respectively. Note that for low over-voltages the spectra are only fitted above
&0 � 2 · �0.

Comments:

I It is noted that the spectra at low over-voltages show non-Gaussian tails for charge values below the pedestal &0.Using the iterative
procedure described in Section �.�.�, the fit is only performed for charge values & � &0 � = · �0. A value of = = 2 is found for low
over-voltages, and n increases to � at high over-voltages.

I Else, as in Figure �.��.
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⌧
⇤ As a Function Of Overvoltage for The Hamamatsu MPPC S�����-����PE and Ketek SiPM

PM����NS-SBO

Figure �.��: ⌧⇤ as a function of over-voltage for the Ketek SiPM and the Hamamatsu MPPC, shown as blue and red triangles, respectively.
The over-voltages are the differences of the bias voltages and +off, where +off is obtained from the intercepts of the straight-line fits to ⌧⇤ as
a function of bias voltage.The dashed lines cyan and magenta lines represent the straight-line fits shown as a function of over-voltage.

Comments:

I The gain is expected to increase linearly with over-voltage, as shown in Equation �.��. Therefore,+off can be extracted from the offset
of a linear fit.

I The measured +off values obtained this way, which are reported in Table �.�, agree with the values from the producers.

⇠ As a Function Of Overvoltage for The Hamamatsu MPPC S�����-����PE and Ketek SiPM PM����NS-SBO

Figure �.��: The mean number of photon-induced primary discharges, ⇠, in units of n.p.e, as a function of over-voltage for the Ketek SiPM
and the Hamamatsu MPPC, shown as blue and red triangles, respectively. The fits using Equation �.�� are shown by solid lines, and the
extrapolations by dashed lines. The fit parameters are given in Table �.�.

Comments:

I As expected from the voltage dependence of the photon detection efficiency, ⇠ increases rapidly at low over-voltages and then
flattens. The cyan and red lines indicate good agreement is observed with the model of Equation �.��, corresponding to RMS
deviations between the fit and the ⇠ values from PeakOTron of around 5 ⇥ 10�3 p.e.

I Table �.� shows the values of the parameters determined by the fit. It is noted that +bd > +off, i.e. the breakdown voltage is larger
than the voltage at which the Geiger discharge is quenched. Similar observations have been reported in [��]. A difference is expected
because a Geiger avalanche takes more energy to initiate than sustain.
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Reduced "2 As a Function Of Overvoltage for The Hamamatsu MPPC S�����-����PE and Ketek SiPM
PM����NS-SBO

Figure �.��: "2/NDF as a function of over-voltage.

Comments:

I The degradation of the fit at low over-voltages is a result of non-Gaussian pedestals, as indicated by Figure �.��. Possible causes of
non-Gaussian tails are low frequency (multiple of 50 Hz) noise or dark pulses preceding the gate at times significantly earlier than
��, for which the AC-coupling causes a negative baseline shift at the time of the gate.

I It is seen that for the Ketek SiPM the "2/NDF increases to about �.� for over-voltages exceeding 4.5 V. The reason for this worsening
of the fit quality is not understood.

⌫ As a Function Of Overvoltage for The Hamamatsu MPPC S�����-����PE and Ketek SiPM PM����NS-SBO

Figure �.��: ⌫ as a function of over-voltage, as in Figure �.��.

Comments:

I The prompt-cross-talk parameter ⌫ is observed to increase with over-voltage.

I It is noted that for the Ketek SiPM, the value of ⌫ is larger than for the Hamamatsu MPPC.
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&0 As a Function Of Overvoltage for The Hamamatsu MPPC S�����-����PE and Ketek SiPM
PM����NS-SBO

Figure �.��: &0 as a function of over-voltage, as in Figure �.��.

Comments:

I A small increase of less than one bin is observed with over-voltage, which is ascribed to the non-Gaussian tails of the pedestal peak.

�0 As a Function Of Overvoltage for The Hamamatsu MPPC S�����-����PE and Ketek SiPM
PM����NS-SBO

Figure �.��: �0 as a function of over-voltage, as in Figure �.��.

Comments:

I A small increase of less than one bin is observed with over-voltage, which is ascribed to the non-Gaussian tails of the pedestal peak.

I The value of �0, which is about 8.6 bins for both SiPMs, is ascribed to the electronics noise of the setup.
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�1/⌧⇤ As a Function Of Overvoltage for The Hamamatsu MPPC S�����-����PE and Ketek SiPM
PM����NS-SBO

Figure �.��: The relative gain spread, �1/⌧⇤ as a function of over-voltage, as in Figure �.��.

Comments:

I It is observed that the relative gain spread decreases with over-voltage for both SiPMs, but more so for the Hamamatsu SiPM.

I As the width of the :th photoelectron peak is �
:pe =

q
�2

0 + : · �2
1 , the decrease of �1/⌧⇤ means that the ability to separate n.p.e. peaks

improves significantly with over-voltage. This observation can also be deduced from Figure �.��.

⇡⇠' As a Function Of Overvoltage for The Hamamatsu MPPC S�����-����PE and Ketek SiPM
PM����NS-SBO

Figure �.��: ⇡⇠' as a function of over-voltage, as in Figure �.��.

Comments:

I The value of DCR, increases linearly from 160 kHz mm�2 at an over-voltage of 2.9 V to 310 kHz mm�2 at 8.4 V for the Hamamatsu
MPPC, and from 140 kHz mm�2 at 2.8 V to 310 kHz mm�2 at 5.8 V for the Ketek SiPM. Thus, DCR per unit area of the Ketek SiPM
increases faster with over-voltage than of the Hamamatsu SiPM.

I The values obtained for the DCR at � V approximately agree with the manufacturers’ values given in Table �.�.

I At low over-voltages, the determination of DCR is problematic: Its value is mainly derived from the spectrum at the minimum
between the pedestal and the one photoelectron peak. If the two peaks overlap, as is the case in Figure �.��a, the contribution of dark
counts to the spectrum cannot be determined reliably. This is apparently is the case for the Hamamatsu MPPC at low over-voltage.
where an unphysically high DCR value is seen.
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?Ap As a Function Of Overvoltage for The Hamamatsu MPPC S�����-����PE and Ketek SiPM
PM����NS-SBO

Figure �.��: ?Ap as a function of over-voltage, as in Figure �.��.

Comments:

I As expected, the probability of after-pulses, ?Ap, increases with over-voltage. The reason is that the number of charge carriers
trapped by states in the Si band-gap is proportional to the number of charge carriers in the avalanche and thus to the gain.

I The non-linear dependence of ?Ap reflects the fact that the spatial distribution of the trapped charge carriers is approximately
uniform, whereas the Geiger-discharge probability depends on position.

I For the Ketek SiPM, ?Ap is between � and 18 % in the over-voltage range studied, which is significantly higher than for the
Hamamatsu MPPC, where it is between � and 7.5 % in the wider over-voltage range.
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�Ap As a Function Of Overvoltage for The Hamamatsu MPPC S�����-����PE and Ketek SiPM
PM����NS-SBO

Figure �.��: �Ap as a function of over-voltage, as in Figure �.��.

Comments:

I The time constants for after-pulse candidates, �Ap, for both SiPMs have only a minor over-voltage dependence and are quite similar
for both SiPMs, about 10 ns for the Ketek SiPM, and 7.5 ns for the Hamamatsu MPPC.

I It is noted that only few determinations of �Ap are reported in the literature, and most of them do not account for the reduction
of Geiger-discharge probability because of the recharging of the pixels. These analyses use the time differences between Geiger
discharges and not the charge spectra.

I In [���], a fast trap with �Ap = 15 ns and a slow trap with �Ap = 82 ns are reported. [���] finds that the fast trap, with �Ap ⇡ 10 ns, is
�.� times more effective at trapping charge carriers than the slow trap with �Ap ⇡ 100 ns. Qualitatively, the results from PeakOTron
agree with these findings.
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�.�.� Requirements and Limitations of Fits with
PeakOTron

As a caveat, the model makes several assumptions, and the SiPMs and the
charge spectra must meet several requirements to successfully determine
the SiPM parameters with PeakOTron.

I The program assumes the model described in [��]. For SiPMs for
which these assumptions are not valid, the parameters determined
by the program may have significant systematic biases.

I The model assumes that a single exponential can describe the
SiPM pulse shape. For SiPMs with a fast in addition to the slow
component, the contribution of the fast component should be
/ 25 %. This is the case for practically all SiPMs.

I The peaks of different n.p.e. values have to be clearly resolved.
This may not be true for high electronics noise or high DCR from
radiation damage or ambient light. In addition, the bin width
should be smaller than a quarter of the peak separation, and the
determination of ⌧⇤, �0 and �1 becomes unreliable for bin widths
larger than �0/2.

I Threshold cuts, which remove a part of the pedestal peak, can
result in poor fits and biased results for the gain, the gain spread,
the electronics noise, and the pedestal position.

I The maximum number of dark counts for the time interval �C0 to
Cgate is set to 8max

dark = 6. If the probability of more than � dark counts
in this time interval is significant, this number has to be increased
at the cost of additional CPU time.

I The determination of the after-pulse parameters is sensitive to
additional correlated noise that affects the inter-peak regions, such
as delayed cross-talk, which is not modelled in PeakOTron.

�.� Conclusion

A generally-available Python program, called PeakOTron, is presented,
which uses an improved version of the detector response model of [��]
to fit SiPM charge spectra. Different to other programs, entire spectra,
including the regions in between the photoelectron peaks, are fitted. This
allows determining from charge spectra, in addition to gain, the mean
number of photon-induced primary Geiger discharges, prompt cross-talk
probability, pedestal, electronics noise and gain variations, the dark-count
rate, the after-pulse probability and the after-pulse time constant. The
initial values of the parameters for the fit are obtained from the charge
spectra.

Using charge spectra simulated with the program of [��], it is shown
that for a wide range of parameter values, PeakOTron provides a good
description of the spectra and achieves a precise determination of the
parameters. Analysing for every parameter set ��� spectra, each with
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2⇥104 simulated events, bias and statistical uncertainty of the parameters
are obtained. Finally, it is shown, that experimental charge spectra of two
types of SiPMs measured over a wide range of over-voltages are well
described by the model using the parameters obtained with PeakOTron.
The voltage dependencies of the parameters agree with expectations.
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Contributions By The Author

The author fully devised the proposed SC model discussed in this section.
The author implemented and analysed all subsequent software compensation
methods described henceforth.

�.� Overview of Study

The response of hadronic calorimeters may be described in terms of two
components: an electromagnetic component (i.e. �0/◆ ! ✏✏, nuclear
✏), and a hadronic component, which contains the remainder of energy
depositing processes. The calorimeter response is split into an EM
response (4), and a HAD response (⌘). Part of the hadronic fraction
cannot be detected and is called ’invisible energy’ (e.g. neutrinos, nuclear
binding energy losses). This fraction also experiences significant stochastic
fluctuations from event to event.

A calorimeter for which 4

⌘
< 1 is called a non-compensating calorimeter.

The highly granular sampling calorimeters designed to be used in PF
are typically non-compensating because PF calorimeters require a high
degree of longitudinal segmentation, which imposes limitations on the
structure of the calorimeter.

Compensation describes a method to equalise 4 and ⌘, typically by
attenuating 4 and enhancing ⌘. Therefore, software compensation (SC)
algorithms are employed for this purpose and operate by estimating
the EM fraction of a shower using information measured in each event.
Notably, spatial and temporal readout information available from highly
granular calorimeter may be used for SC:

I A hadron shower in a calorimeter exhibits an EM-dominated,
energy-dense ’core’ that propagates over a short longitudinal and
lateral range and a HAD-dominated, diffuse energy-sparse ’halo’,
which propagates over a wider range [��]. A highly granular
calorimeter may be able to resolve these two components and
therefore exploit spatial energy density for SC;

I The number of neutrons produced in nuclear interactions is pro-
portional, on average, to the invisible energy of the hadron shower.
Energy deposits from neutrons can be measured indirectly pre-
dominantly from ✏ produced by recoil protons from elastic neutron
scattering in hydrogenous active material such as plastic scintillator
and nuclear ✏ from neutron capture. Energy deposits induced by
neutrons are delayed by an exponential distribution with a time
constant of around 78 ns in steel, which is distinguishable from the
instantaneous EM component of the shower [��]. A time-sensitive
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hadron calorimeter may therefore exploit temporal information for
SC.

Artificial neural network models have already been demonstrated to effec-
tively exploit the spatial development of hadron showers to improve SC.
For example, a study performed in [���] demonstrated that a deep neural
network was found to improve the response of a highly-granular hadron
calorimeter system from 48 %/

p
⇢particle � 2.2 % to 37 %/

p
⇢particle � 1 %

using simulation. However, a similar study performed for AHCAL in
[���] demonstrated the incapacity of a similar model to interpolate or
extrapolate compensation from the limited hadron shower data typ-
ically available for such studies. This effect means the model cannot
be effectively used in an experimental setting, thereby motivating the
development of a model that can exploit the spatial and temporal in-
formation from AHCAL and simultaneously remain unbiased to the
training particle energies.

In this section, a neural network was designed to perform SC on simulated
�� hadron showers observed with the AHCAL calorimeter, using the
spatial and temporal energy density from the event rather than just
energy. This information was expected to reduce the effect of stochastic
fluctuations by improving sensitivity to the shower development and the
neutron fraction of the event. In addition, the neural network was carefully
designed to reduce the effect of energy biasing. Finally, the neural network
was compared to the standard CALICE software compensation method
used as a control. The results were then compared.

In the following analysis, ’simulation’ and ’data’ are defined as event
information produced by Geant4 simulation or during the CALICE ����
Testbeam campaign. Furthermore, ⇢ and �⇢ is the mean and standard
deviation of the response of the calorimeter to a hadron of ⇢particle, 0
describes the combined sampling and stochastic fluctuations experienced
by the calorimeter, 1 the quality of detector calibration as defined in
Equation �.�.

The response of the calorimeter to a hadron shower event in AHCAL is
defined as the sum of the energy density deposited in each of the active
cells in the event (⇢sum =

Pevent
8=0 ⇢hit). Compensated active cell energy

densities are denoted b⇢hit, and their sum is the compensated response of
the calorimeter, b⇢sum. All other symbols are defined in Section �.�.�.�.

�.�.� Biasing of Software Compensation Models

Software compensation models are typically trained indirectly since the
EM/HAD fraction is unknown in a hadron shower event a priori. The
resolution of a hadron calorimeter is described in AHCAL according to
Equation �.�. This equation is valid under the assumption of a normally-
distributed response (i.e. full shower containment, negligible electronics
noise).

Since reductions in the calorimeter response width, �⇢ imply compensa-
tion due to a smaller stochastic resolution term, 0, "2 minimisation of the
calorimeter response to the known particle energy are commonly used
to optimise SC algorithms [��, ��]. However, over-training can occur if
the model is exposed to the mean responses of the calorimeter using
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Figure �.�: Illustration of the method of most software compensation algorithms. The theoretical calorimeter response distributions of a
perfectly calibrated non-compensating hadron calorimeter (0 = 55 %, 1 = 0 %) for 10 GeV and 20 GeV hadron showers are shown in shaded
blue and green, respectively. The coloured arrows indicate the direction of the gradient defined by a mean square loss in in the reconstructed
energy for each sample.

training samples with coarsely binned particle energies that are typically
available for this purpose. In particular, two failure modes have been
observed for software compensation models applied to AHCAL:

Interpolation Failure It was observed in [���] that training using
coarsely binned particle momenta in the training set resulted in fail-
ures of the model to reconstruct the responses of hadron showers it had
not been trained to compensate. A likely hypothesis is that the model
learned to ’classify’ the hadron shower events by learning the mean
responses of the training distribution.

For example, suppose an SC model has learned the mean response of
the training distributions at 10 GeV and 20 GeV. In that case, a likely
result might be that the SC model infers that a 15 GeV sample is either
a 10 GeV sample with a large EM fraction or a 20 GeV sample with a
large HAD fraction, thereby ’classifying’ the 15 GeV sample according to
the data it was trained on. A visual example of this is Figure �.�a. The
results of [���] pertinent to this hypothesis are presented in Figure �.�b,
which shows that the SC network trained in that study was unable to
compensate hadron showers with energies in the ranges between particle
energies. A visual explanation of this hypothesis and the results of [���]
illustrating this behaviour are presented in Figure �.�a and Figure �.�b,
respectively.

Extrapolation Failure Even when the binning of the momentum of
the training sample was increased in [���], biasing to the edges of the
training range was observed. The reason for this can also be explained
by the algorithm learning the mean particle energies, specifically be-
cause there is no penalty to overcompensating the training sample’s
uppermost/lowermost bin edges.

For example, suppose the SC algorithm is trained up to a maximum
particle energy of 80 GeV and is allowed to learn the mean response of
the 80 GeV. Since no penalty is associated with overcompensating events
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(a)

(b)

Figure �.�: Figure �.�a shows a hypothesis for a source of interpolation failure in SC models. The purple shaded distribution indicates the
response distribution of a standard hadron calorimeter with stochastic term 0 = 55 % to 15 GeV hadron showers, to which an SC algorithm
has never been exposed. The blue and green lines indicate the same distributions as in Figure �.�, to which an SC algorithm has been
exposed. The best linear discriminant is indicated as the red line, with a possible solution to minimising "2 deviation to the particle energy
indicated by the directions of the blue and green arrows beneath the purple curve. Figure �.�b illustrates the compensated energy responses
obtained using a convolutional neural network (CNN) applied to compensation of AHCAL hadron shower data in [���]. The black and red
lines indicate the compensated response distributions of the algorithm presented there, applied to a validation sample of �� hadron shower
events used for training and not used for training, respectively. The black lines indicate the correctly compensated samples. The red lines
show that the model cannot interpolate compensation between those training energies, meaning it cannot be used experimentally.

with a higher/lower response than the mean response than the training
sample’s uppermost/lowermost bin edges, the model will likely learn to
overcompensate these training energy bins. For instance, according to
this hypothesis, a 120 GeV sample trained using this model will always
be weighted down in energy.

In summary, biasing effects are often observed in data-driven SC models
due to biasing of the model to features of the training dataset. These limi-
tations would not be a problem if unlimited training data were available.
However, it is costly in time and resources to generate hadron shower
simulations of arbitrary particle energies and to collect experimental data
at a fine granularity and ever higher energies. This motivates a method
to exploit the available dataset without biasing.
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(a) (b)

Figure �.�: Figure �.�a presents a hypothesis for a source of extrapolation failure in SC models. The shaded blue distribution represents a
response distribution of a standard hadron calorimeter with stochastic term 0 = 55 % to 80 GeV hadron showers, to which an SC algorithm
has been exposed. The purple shaded distribution indicates the response distribution of the same calorimeter to 120 GeV hadron showers,
to which the same SC algorithm has not been exposed. The blue and purple arrows indicate the expected behaviour of the algorithm
for the 80 GeV and 120 GeV distributions, respectively. Figure �.�b illustrates the result of a fully connected neural network (FCN) and
convolutional neural network (CNN) applied to the compensation of AHCAL hadron shower simulation. At the edges of the validation
sample, severe biasing of the model is observed. A rapid decrease in resolution may be observed in the bottom plot below 15 GeV and above
60 GeV, indicating unphysical resolution, and the non-linear response produced by the algorithm below 15 GeV and above 60 GeV. This
result means the model has biased to the training range of particle momenta and cannot be used experimentally.

�.�.� Proposed Method to Reduce Bias in Software
Compensation Models

For biasing to be reduced, constraints must be introduced to the model
to prevent the SC model from learning the properties of the training
calorimeter response distributions while allowing the model to attenuate
or enhance active cell energies.

The simplest way to achieve this goal is to explicitly blind the model
to the response distribution entirely by exploiting the highly-granular
properties of the AHCAL calorimeter. This model would estimate a cell’s
EM/HAD fraction based on the energy density of the surrounding cells
for every active cell in an event, independently of the overall energy
distribution observed by the calorimeter. Knowledge of the overall
distribution of energy of a hadron shower, and therefore the overall
response of the calorimeter to the hadron, is no longer necessary for the
SC algorithm to succeed.

One way of achieving this is applying :-nearest neighbours (:-NN)
clustering to the active cells of AHCAL during an event and using a
graph neural network. This method finds the nearest : neighbours to
each active cell, representing the local energy density surrounding that
cell. The hadron shower could then be ’split’ into a set of clusters. In a
machine learning context, each batch element is not an entire hadron
shower event, which would be typical in most methods, but instead
a cluster surrounding each cell. Each cluster is associated back to its
hadron shower after processing by the model. The SC model would then
determine an independent attenuation or enhancement of the active cell
energy based on the energy distribution of that cluster, independently
of all other clusters. The model, therefore, acts to classify each hit in an
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Figure �.�: Illustration of a method for software compensation by which biasing may be reduced. First, a hadron shower of # measured
with AHCAL, indicated by the event display on the left, is decomposed into a series of :-NN cluster graphs, indicated by the vertices and
red lines, indicating edges between them, denoted G. At this stage, each active cell is now represented as a local neighbourhood graph, G8 ,
where 8 is the index of the active cell. In this diagram, the � nearest neighbours are shown for illustration. Next, for each cluster, a SC model,
5SC(G8 ;), is applied to each graph, where  is the model’s free parameters, producing an attenuated or enhanced calorimeter response to
the kernel cell of G8 , b⇢hit,8 . The sum of the individually weighted active cells is then the compensated calorimeter response, b⇢sum.

event as part of the EM/HAD fraction based on its local energy density
and attenuates or enhances the cell energy accordingly. In summary,
the model is designed to achieve compensation by cell classification
rather than the overall response of the calorimeter or event properties.
Furthermore, this model cannot learn undesirable features, like the
number of active cells or reconstructed energy of the hadron shower by
design. The fundamental idea is illustrated in Figure �.�.

It is noted that a similar technique was applied to overcome bias in [���].
In this study, the goal was to produce photorealistic images from video
game footage. In a first attempt, artefacts were initially found due to
global differences in feature distributions between target domains (e.g.
amount of vegetation). The study significantly alleviated the effect by
using small patches of images from both domains to train the model. In
the case of the presented study, it is argued that software compensation
is analogously biased and can also benefit from the same subdivision as
in that study.

From a physics perspective, it may be argued that the total reconstructed
hadron shower energy is a poor indicator of the distribution of energy-
depositing processes caused by stochastic fluctuations. Instead, the EM
and HAD fractions may be inferred entirely from local energy density
in a highly granular calorimeter, governed by the particular energy-
depositing processes surrounding a particular active cell of the hadron
shower.
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�.� Methods and Tools

The methods for studying software compensation for AHCAL are pre-
sented in this section. First, an implementation of a neural network
model based on the proposal discussed in Section �.�.� and additional
considerations for its application are discussed. Then, a standard control
method is introduced, and its implementation is described.

�.�.� Neural Network SC Method

The neural network architecture was designed based on a single Edge-
Conv operator of the Dynamic Graph Convolutional Neural Network
(DGCNN) as described in [���]. The transformed coordinate system
described in Section �.�.�.� was used as the input.

I Input: The neural network is provided with two inputs. The first is
the hadron shower event in natural/transformed coordinates ('hit,
hit,  hit �  (, log⇢hit, arcsinh Chit), where arcsinh Chit is optional.
The second is the original cell energy, ⇢hit, which is used to inform
the neural network of the output scale of the compensated energy.
Definitions for these variables are given in Section �.�.�.�;

I k-NN clustering: The neural network clusters the input according
to the :-nearest neighbours to each active cell in the event. Their
positions and vectors relative to that cell are calculated, including
a self-loop;

I Up-scaling: Each cluster is up-scaled through a module consisting
of three sequential �D fully-connected convolutional layers ��, ��,
and �� channels, each using leaky ReLU activation and instance
normalisation;

I Processing: Each cluster is passed through a deep processing layer
consisting of � sequential �D fully-connected layers of �� channels,
each using leaky ReLU activation and instance normalisation;

I Aggregation: The maximum, mean and variance of the cluster
dimension : is used as activation values for the cluster. These are
concatenated with the cell energies of the event for each active cell;

I Down-scaling: The final layers of the network are five dense layers,
with ����, ���, ��� and ��� channels and leaky ReLU activation, with
an output layer with ReLU activation such that the final output is
positive. All dense layers, excluding the final layer, include dropout
with probability ?dropout. The neural network’s final output is a
single value for each active cell, which is the compensated hit
energy, b⇢hit. The sum of these outputs yields the total compensated
response, b⇢sum =

Pevent b⇢hit, where b⇢hit 2 [0,1].

A diagram representing the proposed neural network architecture is
shown in Figure �.�.



��� � �D Software Compensation with Machine Learning

Figure �.�: Flowchart describing the proposed neural network for software compensation studied in this chapter. The black, blue and grey
boxes indicate inputs and outputs, convolutional operations and general operations, respectively. Additional operations are specified on the
right of the figure.

Figure �.�: Distribution of ⇢hit from the
training dataset distribution shown in Ta-
ble �.�. Each alternating blue and orange
coloured area indicates a decile bin.

�.�.� Control SC Method

The neural network is compared to the standard CALICE software
compensation method called ’local software compensation’, abbreviated
hereafter as the control method and based on the method of [���], is
described as follows.

The ⇢hit distribution is binned in deciles (i.e. a 10 % probability for a
given ⇢hit to be found in any one of the bins). For each bin, an appropriate
function is used for weighting. A function approximator in the form of a
second-order Chebyshev polynomial of the first kind, $1 , is defined as a
function of the total calorimeter response, ⇢sum, scaled using a factor, (,
such that ⇢sum/( 2 [0, 1] for the typical range of hadron shower energies
of AHCAL (( = 150 GeV). $1 has three free parameters, �1 , �1 and ✏1 ,
shown in Eq. �.�:

$1(⇢sum;(, �1 , �1 , ✏1) =

�1 + �1 ·
✓
⇢sum
(

◆
+ ✏1 ·

 
2
✓
⇢sum
(

◆2

� 1

!
(�.�)

For each bin, the corresponding weight is calculated. Finally, the energy
of each active cell within the ranges defined by bin 1 is scaled by $1 .

b⇢sum =
binsX
1

$1 · ⇢sum,1 (�.�)

The idea underlying this method is that higher hit energy bins attenuate
the energy, as these are more likely to belong to an EM fraction and
enhance the energy of low energy bins, which are more likely to belong
to the HAD fraction. A figure showing the decile binning used in this
study is shown in Figure �.�.
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�.�.� Datasets and Training

�.�.�.� Datasets

The simulation and data used for the study presented in this chapter are
introduced, analysed and studied.

Both the neural network model defined in Section �.�.� and the control
model defined in Section �.�.� were trained and validated using simulated
�� hadron shower events observed with the AHCAL detector. The
simulation of the particle showers was achieved using Geant4 [��], with
a full detector simulation developed using DD4hep [��]. Additional effects,
such as digitisation of the analogue signal and reconstruction of the
detector variables, were achieved using CALICESoft [��]. The physics
list used was QGSB_BERT_HP. The simulation was based on the June
CALICE testbeam study taken at the Super Proton Synchrotron at CERN
in ���� [��]. Data used in the study was taken from the same experiment,
where reconstruction of the detector variables were also achieved using
CALICESoft.

Selection Criteria The sample was subject to the following selection
criteria. Data and simulation were subject to the same cuts except where
specified:

The following selection criteria were applied:

I events were required to be identified using the standard CALICE
particle identification algorithm [��] as being a single particle and
having less than a 0.5 % probability of being a muon to exclude
non-showering, ’punch-through’ pions;

I the ��th layer of the AHCAL is ganged and requires special treat-
ment beyond the scope of this paper. Therefore, energy deposits
were considered up to the ��th layer of the calorimeter;

I events with a correctly reconstructed track position (i.e. a track
position with a corresponding position inside the 24 ⇥ 24 cell
AHCAL front-face) and a shower starting layer within layers 1-4
of the AHCAL calorimeter were selected. This choice was made
to reduce the effect of longitudinal and lateral leakage on the
experiment. These cuts are supplemented, for the measurement of
detector resolution and linearity only, by an additional cut using the
TCMT detector. This criterion requires the TCMT to measure a total
deposited energy of less than 25 MIP (⇢TCMT

sum < 25 MIP/670 MeV).

The training and validation dataset of simulation consisted of simulated
showers induced by �� hadrons with ⇢particle in the range 10-80 GeV,
in increasing steps of 10 GeV. By contrast, the test sample contained
showers induced by �� hadrons with ⇢particle in the range 10-120 GeV, in
increasing steps of 5 GeV. The finer granularity tests the hypothesis that
the neural network is unbiased to the particular particle energies used
for training. Energies higher than the training range are included to test
the generalisation capacity of each compensation method. By contrast,
the training, testing and validation sample of data was performed across
all available samples, to assess the performance of the methods when
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Type June ���� SPS Testbeam Data Simulation
Sample Test Test Training Validation Test Test Training Validation

+ TCMT Cut + TCMT Cut
⇢particle [GeV]

�� ���� ���� ����� ���� ����� ����� ����� ����
�� - - - - ����� ����� - -
�� ���� ���� ����� ���� ����� ����� ����� ����
�� - - - - ����� ����� - -
�� - - - - ����� ����� ����� ����
�� - - - - ����� ����� - -
�� ����� ���� ����� ����� ����� ����� ����� ����
�� - - - - ����� ����� - -
�� - - - - ����� ����� ����� ����
�� - - - - ����� ����� - -
�� ����� ����� ������ ����� ����� ����� ����� ����
�� - - - - ����� ����� - -
�� - - - - ����� ����� ����� ����
�� - - - - ����� ����� - -
�� ����� ���� ����� ����� ����� ����� ����� ����
�� - - - - ����� ����� - -
�� - - - - ����� ����� - -
�� - - - - ����� ����� - -
��� - - - - ����� ����� - -
��� - - - - ����� ���� - -
��� - - - - ����� ���� - -
��� - - - - ����� ���� - -
��� ����� ���� ����� ����� ����� ���� - -
Total Events ����� ����� ������ ����� ������ ������ ������ �����

Table �.�: Table of events used for training SC models after all cuts except the TCMT cut (shown separately), split into simulation and data
and by the testing, training and validation samples and by data and simulation. Hyphens indicate � events.

applied to a realistic training dataset. The event count of the final training,
testing and validation datasets are summarised in Table �.�.

Comparisons of the main event-level, cell-level and shower profile distri-
butions of the training sample for the entire samples of 10 GeV, 40 GeV
and 80 GeV common between the simulation and data training sets are
presented in Figures �.�-�.��. Event level distributions are shown in
Figures �.�-�.��. Cell-level distributions are shown in Figures �.��-�.��.
Shower profile distributions are shown in Figures �.��-�.��.

Additionally, Equation �.� cannot be applied to a calorimeter under the
influence of leakage, as the model assumes full shower containment. For
this reason, when evaluating the resolution of the calorimeter before
and after compensation has been applied, an additional cut using the
tail catcher/muon tracker detector (TCMT) that was included in the June
���� testbeam and discussed in Section �.�.�.� and may be used as an
independent detector to tag leakage events. Analysis of the proposed
TCMT cut is presented in Figure �.�� and Figure �.��.

Summary Comment to Figures �.�-�.��

Simulation and data have similar distributions in most event-level
and cell-level distributions. However, several significant discrepan-
cies relevant to energy reconstruction are observed. The simulation
produces more active cells than data and has a higher energy density
core than in data. This motivates the study of the effectiveness of
training on simulation and data independently and studies of the
differences between the models.
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Summary Comment to Figure �.�� and Figure �.��

The proposed TCMT cut is demonstrated to cause a significant reduc-
tion in the proportion of leaked events, evidenced by the normally-
distributed response at each studied energy. The energy distributions
after the cut are also in good agreement between the simulation and
data after the cut has been applied, which indicates that the cut can
be used in both.
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Event Level: Distributions of Reconstructed Shower Energy

(a) (b) (c)

Figure �.�: Distributions of the reconstructed shower energy (⇢sum) for the training dataset for software compensation, for ��, �� and 80 GeV
samples, shown in the left, middle and right columns, respectively. The blue histograms indicate simulation, and the orange histograms
indicate June ���� SPS Testbeam data.

Comments:

I Figures �.�a-�.�c indicate qualitatively good agreement between the reconstructed calorimeter response, ⇢sum, in simulation and
data. The absence of a peak at low shower energy demonstrates the removal of punch-through pions by the applied cuts.

I Although a stringent shower start criterion is applied, a left-skewed power-law leakage tail is visible in Figure �.�b and �.�c. This
effect demonstrates the necessity of an additional cut during validation to reduce the effect of leakage.

Event Level: Distributions of Number of Active Cells

(a) (b) (c)

Figure �.�: Distributions of the number of active cells per hadron showers for software compensation. Else, as in Figure �.�.

Comments:

I Figures �.�a-�.�c indicate that more cells are active during �� hadron events in simulation than in data on average.

I Because of the good agreement of Figures �.�a-�.�c, this means the average energy density of the hadron showers must be greater on
average in simulation than in data (i.e. more energy deposited per active cell, on average).

I MIP-tracks are expected to have no more than about �� active cells in the event. The absence of a peak in Figures �.�a-�.�c indicates
the removal of punch-through pions by cuts.

I As in Figure �.�, leakage is observed in the left-skewed tail of the distribution.
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Event Level: Joint Distributions of Lateral Centres-of-Gravity And Track Position

(a) (b) (c)

(d) (e) (f)

Figure �.�: Joint distributions of the lateral centre-of-gravity and track position for the training dataset for software compensation, for ��,
�� and 80 GeV samples, shown in the left, middle and right columns, respectively. Figures �.�a-�.�c show the distribution of CoG� , �track,
and Figures �.�d-�.�f show the distribution of CoG� , �track. The upper and lower subplots indicate the distribution of simulation and data,
respectively. The colour axis indicates probability density. Else, as in Figure �.�.

Comments:

I As a cross-check, the track position is expected to be highly correlated with the centre-of-gravity of the hadron shower. If the track
information is correctly reconstructed, then the distribution should be similar to a �:� correspondence, illustrated by the purple line
in the figures.

I Figures �.�a-�.�c and Figures �.�d-�.�f indicate that track positions and lateral centres-of-gravity of the hadron showers in the
dataset are close to the central co-ordinates of the calorimeter.

I The agreement of each distribution with the purple line indicates the track is highly correlated with the centre of gravity, with a �:�
correspondence on average.

I The correlation between the lateral centres-of-gravity and the track position are observed to increase as the particle energy increases.
This may be explained because of a larger EM-fraction leads to a more energy-dense core, on average, as the particle energy increases.
If the core carries a greater fraction of the total shower energy on average and varies less in space, it is expected that the centre of
gravity also varies less compared to the known particle position.

I It is noted by comparing the upper and lower subfigures that there are differences between the distribution of tracks and centres of
gravity between simulation and data. The reason for this is that the delay wire chamber constrains the position of tracks in data,
while in simulation, there is no constraint on the track’s position.
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Event Level: Distributions of Longitudinal Centres-of-Gravity

(a) (b) (c)

Figure �.��: Distributions of the shower starting layer ( () for the training dataset for software compensation. As in Figure �.�.

Comments:

I Figures �.��a - �.��c indicate qualitatively good agreement between the longitudinal centre-of-gravity between simulation and data.

Event Level: Distributions of Shower Start Layer

(a) (b) (c)

Figure �.��: Distributions of the shower starting layer ( () for the training dataset for software compensation. As in Figure �.�.

Comments:

I Figures �.��a-�.��c indicate that the selection criteria have functioned as intended, and the shower start occurs within the first four
layers of the calorimeter.

I Qualitatively good agreement is observed between the distributions of simulation and data.
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Cell Level: Distributions of Lateral Active Cell Positions Relative to Centre-Of-Gravity

(a) (b) (c)

(d) (e) (f)

Figure �.��: Distributions of the lateral cell indices for the training dataset for software compensation. Figures �.��a-�.��c and Figures
�.��d-�.��f show the distributions of �hit and �hit minus their corresponding centres-of-gravity, CoGI and CoGJ, respectively, presented in
units of cells. Figures �.��a-�.��c show the hit radius distributions as defined in �.�.�.�. Else, as in Figure �.�.

Comments:

I Figures �.��a-�.��c, Figures �.��d-�.��f indicate that simulation produces slightly more active cells in the halo of the hadron shower
than in data (see Figure �.��).

I Notwithstanding the previous remark, qualitatively good agreement is observed between the distributions of simulation and data.
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Cell Level: Distributions of Hit Radius

(a) (b) (c)

Figure �.��: Distributions of hit radius ('hit) as defined in Section �.�.�.� for the training dataset for software compensation. Else, as in
Figure �.�.

Comments:

I Figures �.��a-�.��c indicate that simulation produces slightly more active cells in the halo of the hadron shower ('hit > 1 ⌧" ) than
in data.

I Notwithstanding the previous remark, qualitatively, good agreement is observed between the distributions of simulation and data.

Cell Level: Distributions of Hit Azimuthal Angle

(a) (b) (c)

Figure �.��: Distributions of hit azimuthal angle (hit) as defined in Section �.�.�.� for the training dataset for software compensation. Else,
as in Figure �.�.

Comments:

I Figures �.��a-�.��c indicate that simulation and data result in isotropically distributed azimuth angles with relative to the centre-of-
gravity. This is expected from multiple scattering expected of hadron showers.

I Qualitatively good agreement is observed between the distributions of simulation and data.
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Cell Level: Distributions of Reconstructed and Shower-Start Normalised Longitudinal Layer Position

(a) (b) (c)

(d) (e) (f)

Figure �.��: Distributions of longitudinal cell-level indices for the training dataset for software compensation, respectively. Figures �.��a-�.��c
and Figures �.��d-�.��f show the distributions of  hit and  hit �  ( , respectively. Else, as in Figure �.�.

Comments:

I Figures �.��a-�.��c and Figure �.��d-�.��f indicate qualitatively good agreement between the distributions of active cells in the
longitudinal spatial dimensions of the calorimeter for the 40 GeV and 80 GeV samples.

I For the 10 GeV sample, a more significant proportion of the hits in the sample are observed later in the longitudinal development of
the hadron shower. This observation indicates that more cells are active in data near the longitudinal centre-of-gravity for 10 GeV ��
hadrons than for simulation.

I For the 40 GeV and 80 GeV samples, the distribution is truncated at the end of the calorimeter, which is not the case for the 10 GeV
sample. This observation is due to the effect of longitudinal leakage in the AHCAL calorimeter.



��� � �D Software Compensation with Machine Learning

Cell Level: Distributions of Active Cell Energy and its Logarithm

(a) (b) (c)

(d) (e) (f)

Figure �.��: Distributions of active cell energy for the training dataset for software compensation, respectively. Figures �.��a-�.��c and
Figures �.��d-�.��f show the distributions of ⇢hit and its logarithm, respectively. Else, as in Figure �.�.

Comments:

I Figures �.��a- �.��c and Figures �.��d-�.��f indicate that, while simulation and data generally agree, the simulation over-predicts the
number of active cells with ⇢hit < 1 MIP. Figure �.�� presents a more substantive analysis of this discrepancy.

I Figures �.��d-�.��f demonstrate the effect of applying the logarithm to the hit energy distribution. The distribution is demonstrated
to reduce the variable’s variance, indicated by the greatly reduced scale on the G-axis.
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Cell Level: Distributions of Active Cell Timestamp and its Hyperbolic Sine in Simulation with a Resolution
of ��� ps

(a) (b) (c)

(d) (e) (f)

Figure �.��: Distributions of the cell timestamp for the training dataset for software compensation in simulation, with 100 ps time resolution.
Figures �.��a-�.��c and Figures �.��e-�.��f show the distributions of the active cell timestamp in simulation smeared by of 100 ns and its
hyperbolic sine, respectively.

Comments:

I Figures �.��c-�.��c indicate the bi-exponential structure of time (smeared by Gaussian noise) expected from the fast and slow
component of the time distribution illustrated in Figure �.�� of Section �.�.�.

I Figures �.��d-�.��f indicate the effect of applying a hyperbolic sine to the hit time distribution. The distribution is demonstrated to
reduce the variable’s variance, indicated by the greatly reduced scale on the G-axis. Additionally, the rising probability density
observed in the range 5 < arcsinh(Chit) < 12.5 (74 ns < Chit < 0.1342 ms) is due to an exponentially distributed variable being
modified by a logarithm-like function and is not a physical effect.
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Cell Level: Distributions of Active Cell Timestamp with a Resolution of � ps

(a) (b) (c)

Figure �.��: Distributions of the cell timestamp for the training dataset for software compensation in simulation, with 5 ns time resolution.
Figures �.��a-�.��c show the distributions of the active cell timestamp in simulation smeared by of 5 ns.

Comments:

I Figures �.��a-�.��c indicate that there are significant deviations in the time distribution in simulation and data, as demonstrated
by the shoulders in the data (orange) in the range 10 ns < Chit < 100 ns and �100 ns < Chit < �10 ns and at that do not appear
in simulation (blue). These effects arise from the chip occupancy effects discussed in Section �.�.�.�. Therefore, hit timestamp
information is not used in training or evaluating data.

Average Radial Energy Profile

(a) (b) (c)

Figure �.��: Figures �.��a-�.��c show the average radial shower energy profile distributions per unit radial surface area of a circle with
radius ' (denoted () Blue and orange dots indicate simulation and data, respectively.

Comments:

I Figures �.��a-�.��c describe mean energy deposited by a hadron shower per unit area of a circle (i.e. a thin ring) around the
centre-of-gravity (( = 2�'hit .d'hit, where d'hit is a bin width). A circle is used because, as demonstrated by Figure �.��, energy is
deposited by hadron showers isotropically in azimuthal angle due to multiple scattering.

I It is observed that simulation produces excess energy deposited in the core and far from the hadron shower core, independently of
hadron shower energy. These results are corroborated by the analysis of [��], which observed similar trends.
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Average Longitudinal Energy Profile

(a) (b) (c)

Figure �.��: Figures �.��a-�.��c show the average longitudinal shower energy profile distributions per layer of the calorimeter, relative to
shower starting position ( (). Blue and orange dots indicate simulation and data, respectively.

Comments:

I Figures �.��a-�.��c describe mean energy deposited by a hadron shower per layer of the calorimeter, relative to shower starting
position ( ().

I It is observed that simulation produces excess energy deposited close to the shower start, independently of hadron shower energy,
and is otherwise similar. These results are corroborated by the analysis of [��], which observed similar trends.
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Average Joint Radial-Longitudinal Energy Profile and Ratio of Simulation to Data

(a) (b) (c)

(d) (e) (f)

Figure �.��: Figures �.��a-�.��c show the joint average radial shower energy profile distributions per unit radial surface area of a circle with
radius ' (denoted (), per layer of the calorimeter relative to the shower start ( (). The colour axis indicates probability density. Figures
�.��d-�.��f show the ratio of simulation and data shown in Figures �.��a-�.��c, where the colour axis indicates the ratio.

Comments:

I Figures �.��a-�.��c indicate that simulation has a slightly narrower energy profile than data. This observation agrees with the
hypothesis that the core is more energy dense in simulation than in data.

I Figures �.��d-�.��f indicate an excess of energy density in the hadron shower core ('hit < 1 ⌧" and  �  ( > 0) and in the region
where  �  ( > 1⌫� and 'hit > 7.5 ⌧" . It is in excess by around 20 % for all studied samples in these regions.

I A minor dearth of energy density is observed in the region 1 < 'hit < 1 ⌧" < 7.5 and  �  ( > 1⌫� , also by around 20 %.
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Joint Distribution of the Reconstructed Shower Energy Measured by AHCAL and the TCMT

(a) (b) (c)

Figure �.��: Joint distributions of the total reconstructed energy measured by the AHCAL (⇢sum) and the TCMT (⇢TCMT
sum ) for the testing

sample. The subplots indicate simulation and data, respectively. The purple dashed line indicates the applied cut. The colour axis indicates
probability density.

Comments:

I Figure �.��a indicates that 10 GeV hadron showers are, in essence, already well contained within the calorimeter geometry in both
simulation and data. This observation is indicated by the low vertical spread of the distribution, which means that the TCMT
typically measure a signal for a 10 GeV hadron shower.

I Figure �.��b-�.��c indicates that 40 GeV and 80 GeV hadron showers are not well contained within the calorimeter. A weak correlation
is observed between the TCMT and AHCAL reconstructed energy, indicating that the signal in the TCMT increases as the AHCAL
signal decreases, which that the TCMT tags the calorimeter leakage.

I The cut, indicated by the purple dashed line, shows that it retains events which are comparatively well contained in the calorimeter.
More stringent cuts were not found to significantly influence the ⇢sum distribution, yet greatly reduced the numbers of available
statistics.
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Reconstructed Energy Distributions Before and After the TCMT Cut is Applied

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure �.��: Distributions of reconstructed energy before and after the TCMT cut is applied. Figures �.��a-�.��a and Figures �.��a-�.��d
show the distributions of simulation, in blue and orange, respectively. The dashed line and the solid line filled with dots indicate the
distribution before and after the cut has been applied. Figure �.��g-�.��h show a comparison of the simulation and data. Else, as in Figure
�.�.

Comments:

I The 10 GeV samples shown in Figure �.��a and Figure �.��d indicate that the cut has little to no influence on the distribution of
these samples since the showers are already well contained. By contrast, Figures �.��b- �.��c and Figures �.��e- �.��f indicate that
the cut significantly reduces the leakage tail that appears at high energies.

I Figures �.��g-�.��g indicate that the cut results in similar distributions in simulation and data, respectively. This means that the cut
performs similarly in both samples.
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Parameter Value
Learning Rate 9 ⇥ 10�5

Batch Size 32
�1 0.9
�2 0.999

?dropout 0.15
: ��

Table �.�: Table of hyperparameters used
to train the neural network. In this table, �1
and �2 are the ADAM momentum param-
eters, ?dropout is the dropout probability,
and : is the number of nearest-neighbours
per cluster. The parameters were informed
by a hyperparameter scan using Optuna
[���].

�.�.�.� Training

For simulation, two independent neural networks based on the model
defined in Section �.�.� were trained on the training dataset: one without
timing information and one with timing information. For data, a single
neural network was trained without timing information. The proposed
compensation networks were developed in PyTorch [���] and trained
using the PyTorch Lightning research framework [���] on an NVidia
V��� GPU. The ADAM optimiser was used to improve the convergence
rate for ten epochs. The hyperparameters used for training are shown
in Table �.�, selected based on the results of a scan using Optuna
hyperparameter optimisation framework [���], and shown in Table �.�.

The control method was also trained using the training dataset for simula-
tion and data, using the MIGRAD algorithm of the Minuit minimisation
program [���]. Weights were initialised such that the compensation
algorithm acted as the identity operator (�1 = 1, �1 = 0, ✏1 = 0).

The loss was chosen to be the "2 goodness-of-fit of the compensated
energy to the known particle energy of the hadron shower:

L(b⇢sum;⇢particle) =

⇣b⇢sum � ⇢particle

⌘2

⇢particle · (1 GeV) (�.�)

The denominator in the loss arises from the uncertainty on the Poisson-
distributed sampling quanta measured by the calorimeter, �⇢ =

p
⇢particle.

The dummy constant of 1 GeV in the denominator is formally included
to make the loss unitless and merely acts to scale the loss. The mean loss
was used for both implementations to optimise the control and network
methods. For the network methods, the epoch with the smallest mean
loss of the validation sample was chosen for further study. The control
method was minimised with the MIGRAD algorithm until the mean
training loss reached convergence.
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�.� Results

In this section, analysis is performed to assess the performance and prop-
erties of the models described in Section �.�.� and Section �.�.�, trained
on the datasets described in Section �.�.�.� and trained as described in
Section �.�.�.�.

�.�.� Simulation Model

This section discusses the model trained and applied to the simulation
test set in Table �.�.

�.�.�.� Response Distributions in Simulation

A subsample of the normalised energy response distributions for each
particle energy for hadron showers in the test sample with the TCMT cut
applied is shown in Figure �.�� A full set of figures for each available
particle energy are available in Appendix Figure �.�. The uncompensated
sample and each sample after compensation are shown in each plot. The
Freedman-Diaconis rule was applied to each sample to determine the
bin width [���].

�.�.�.� Resolution and Linearity of Response in Simulation

The energy response distributions for each particle energy in the testing
dataset, with the TCMT, cut applied, were estimated by fitting the
calorimeter response distributions shown in Figure �.� with a normal
distribution in the range of ±2 standard deviations from their mean. The
location and scale parameters of the fit, ⇠ and �, were used to estimate
⇢ and �⇢ of Equation �.� and used to study resolution (�/⇠ vs. ⇢particle)
and linearity of response (⇠/⇢particle vs. ⇢particle). The fitted values are
shown in Appendix Table �.�.

The location and scale parameters of the fit,⇠ and �, were used to estimate
⇢ and �⇢ of Equation �.� and used to study resolution (�/⇠ vs. ⇢particle)
and linearity of response (⇠/⇢particle vs. ⇢particle). The results are shown
in Figure �.��. The fit values for Equation �.� are shown in Table �.�.

Summary Comment to Figure �.�� and Table �.�

The neural network SC methods applied to simulation are demon-
strated to perform compensation beyond the edge of the training
range. In contrast, the control is observed to bias to the training range.
The machine learning methods outperform the control method in
the linearity of response and resolution, resulting in an improvement
of the intrinsic stochastic resolution term of 9.3 % and 12.2 %, out-
performing the control method in both cases. The neural networks
also reduce the constant resolution term by 5 %, indicating the neural
networks perform some detector calibration and SC.



�.� Results ���

Reconstructed Energy Distributions for SC Models Trained On and Applied To Simulation,
with the TCMT Cut Applied

(a) (b)

(c) (d)

Figure �.��: Example normalised histograms showing the simulated calorimeter response before and after compensation applied to the test
dataset of Table �.�, with the TCMT cut applied. Blue lines indicate intrinsic calorimeter response, while orange, green and red lines indicate
the control, network without and network with time compensation methods, respectively. ⇢particle is indicated as a dashed purple line. In
this sample, the 10 GeV, 40 GeV, 80 GeV and 120 GeV samples are shown.

Comments:

I Figures �.��a-�.��b shows that the neural network methods outperform the control method in the range of samples at particle
energies f 10 GeV and 40 GeV, indicated by the lower spread of the response than for the control method.

I The inclusion of timing information results in superior energy resolution than excluding it. The likely reason for this is an
enhancement of the HAD fraction is expected to play a more significant role in compensation at this energy scale due to a larger
HAD fraction on average than at higher energies in the training sample. This occurs because the EM fraction increases on average
with ⇢particle [��], indicated by the lower variance of the red distributions compared to the green.

I The linearity of samples between the training energies demonstrates that the neural network methods produce a more linear
response than the control method and are, therefore, able to interpolate SC to samples between training energies.

I Figure �.��c indicates that the control method outperforms the neural network methods in the range of samples for this sample.
However, by examination of Figure �.��d, it becomes apparent that this result is due to the control method biasing to the upper edge
of the training sample. This statement is justified by the artificial attenuation of the response by the control method, resulting in a
highly non-linear compensated response. In contrast, the neural network methods preserve the linearity of response beyond the
training range. Therefore, it is demonstrated that the neural network model can extrapolate the compensation to higher particle
energies without further training.



��� � �D Software Compensation with Machine Learning
Linearity and Resolution Fits for SC Models Trained On and Applied To Simulation,

with the TCMT Cut Applied

(a) (b)

Figure �.��: Figure �.��a and Figure �.��b show AHCAL linearity of response and resolution to simulation using all methods under test,
respectively. Blue indicates intrinsic calorimeter response, while orange, green and red indicate the control, network without and network
with time compensation methods, respectively. Circle and cross markers indicate energies used for both training and testing, and testing
only. Figure �.��a shows the fitted ⇠ to ⇢particle, where the purple dashed line indicates ⇠ = ⇢particle. The bottom subplot shows the ratio of
⇠ to ⇢particle. Figure �.��b shows the fitted �/⇠, where the dashed lines indicate fits of Equation �.�. The bottom subplot indicates the ratio
of the resolution of each compensation method to the intrinsic calorimeter response.

Comments:

I Figure �.��a indicates the neural network methods offer improved linearity of response compared to the control, which overestimates
the hadron shower energy by up to 5 % compared to �-3 % for the network methods for most of the training range of particle energies.
Moreover, the network and control methods are demonstrated to interpolate within the training range. However, for particle energies
greater than 80 GeV, the control method fails to reconstruct the particle energy entirely. The divergence of the orange points from
the dashed purple line demonstrates this observation.

I Figure �.��b demonstrates that for ⇢particle up to around 60 GeV, the neural network methods produce superior compensation,
indicated by the smaller value of the compensated response to the intrinsic response. However, beyond this range, the resolution
produced by the control method diverges from the model of Equation �.�. For this reason, the fit to this method was only performed
for ⇢particle in the range 10-60 GeV. By contrast, the uncompensated and network methods showed good agreement with the
expectations of Equation �.� and were fitted over the entire range.

a [%] b [%] "2/#⇡�
Calorimeter Response 49.516 ± 0.401 7.147 ± 0.067 4.575
Control 43.387 ± 0.119 0.010 ± 2.873 14.333
Network, no Time 40.236 ± 0.217 2.158 ± 0.087 0.857
Network, + Time 37.275 ± 0.208 2.448 ± 0.070 1.440

Table �.�: Table of fitted parameters of Equation �.� to the training range of energies in the simulation shown as dashed lines in Figure
�.��b, except for the control method, which was fitted up to 60 GeV due to the effect of energy biasing.

Comments:

I The uncompensated stochastic resolution for simulated �� hadron showers in AHCAL is in agreement within 1-2 % with the
0 = 51.7 ± 0.97 % obtained in the study of [��].

I The neural network solutions improve the calorimeter’s stochastic resolution, 0, by around 9.3 % (around 3 % better than control
method) and 12.2 % (around 6 % better than control method) compared to the uncompensated resolution, using spatial information
and both spatial and temporal information, respectively. It is also noted that the neural networks also produce a smaller constant
term, 1, by around 5 %, indicating that the neural network is performing detector calibration. The control method produces a
constant term with a comparatively large error compared to the neural networks SC and uncompensated response.

I By contrast to the control, the neural network methods produce a much lower reduced "2 consistent with �, indicating superior
agreement with expectations of the model in Equation �.�.



�.� Results ���

�.�.�.� Correlations with Spatial and Temporal Information in
Simulation

The results for the spatial correlations ('hit ,  hit �  () and energy-
temporal correlations (Chit , ⇢hit) are shown in Figure �.�� the top row
(Figures �.��a-�.��c) and bottom row (Figures �.��d-�.��f), respectively,
to the test sample without the tail-catcher cut applied, presented as the
percentage change in energy as a result of the compensation algorithm
having been applied.

Summary Comment to Figure �.��

The neural network SC methods are demonstrated to learn a more
sophisticated weighting technique that more effectively describes the
expected temporal and spatial development of the hadron shower than
the control. This improvement manifests as a superior sensitivity to
the shower shape, leakage correction and MIP-track subtraction. The
inclusion of time also results in a continuous weighting compared to
the control and exhibits time dependence following the expectations of
bi-exponential time distribution. These additional effects corroborate
with the results of Section �.�.�.�, where improved detector calibration
was observed.
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Average Percentage Change of Original AHCAL Active Cell Energy for SC Models Trained On and Applied
To Simulation, without the TCMT Cut Applied

(a) (b) (c)

(d) (e) (f)

Figure �.��: Average percentage change in active cell energy in simulation (⇢hit) as a result of compensation as a function of 'hit and
 hit �  ( (top row, presented in units of Moliere radius from the lateral centre-of-gravity, ⌧" = 24.9 mm, and nuclear interaction length
from the shower start, ⌫� = 237.1 mm, respectively), and ⇢hit and Chit (bottom row, presented in units of MIP and ns, respectively). Each
column indicates the control, network method without and with timing information in that order. The colour axis indicates the percentage
change, where blue regions indicate where the energy has been attenuated, and green through red shows where the energy has been
enhanced. White space indicates no data available. Regions of interest are labelled accordingly for reference. The values of �slow and �fast
were taken from [��].

Comments:

I Figure �.��a demonstrates that the control method shows only a weak dependence on lateral and longitudinal development of
the shower, with attenuation occurring only within 'hit . 1⌧" (the EM fraction) and enhancement beyond, with minor variation,
as expected. By contrast, the neural network methods attenuate and enhance the active cell energy with much stronger spatial
dependence, indicated by the broadening of the weighting profile with longitudinal shower development.

I Two additional effects are observed for the network methods, shown in Figure �.��b and Figure �.��c. The first is a tendency to
enhance ⇢hit in the region above the white dashed line. The second is to attenuate ⇢hit where 'hit . 1⌧" (close to the lateral
shower core) and  ( < 0 (before the shower start). These effects are not present in Fig. �.��a and must therefore be a consequence
of including spatial information in the models. These results suggest the network models have learned leakage correction and to
remove the energy deposited by minimum ionisation of the �� particle before showering, demonstrating an improved capacity of
the proposed model to learn the physical properties of hadron showers and detector geometry compared to the control method.

I Figures �.��d- �.��f demonstrate that all methods are observed to attenuate active cell energies above 5 MIP and enhance below
that threshold, which is expected of all SC algorithms. The binned structure of the weighting of the control method is visible in
Figure �.��d. By contrast, the neural network methods in Figures �.��e and �.��f indicate a continuous weighting function has been
learned. Furthermore, Figure �.��f indicates that the model with timing information enhances the threshold for energy deposited in
the order of several ns to several tens of ns, A reduction in the threshold is observed after around 100 ns. These observations are
consistent with the timescales of the two main neutron energy-depositing processes discussed in Section �.�.�.�. Comparison of
Figure �.��f and Figures �.��d and �.��e indicate that this effect must be due to the inclusion of timing information since no such
effect is observed in the control or method without timing information.



�.� Results ���

�.�.�.� Robust Statistics of Response Distributions in Simulation

A study of the consequence of the compensation methods was also
performed on simulation without applying the TCMT cut (i.e. the same
selection criteria as the training data). This was performed to assess the
influence of leakage correction on the energy spectra of the test sample.
Figure �.�� shows the same distributions as in Figure �.��, without the
TCMT cut applied. A full set of distributions is available in Appendix
Section �.�.

The consequences of the compensation methods on the resolution dis-
tribution with leakage are presented in terms of robust, non-parametric
statistics of the compensated distributions. Robust statistics were chosen
over standard moments (mean, standard deviation, standard skewness),
as outliers may heavily influence these statistics and lead to incorrect
conclusions about the distribution, which is particularly relevant to
energy spectra with a high proportion of leakage. By contrast, robust
statistics require a significantly greater number of statistics to be outliers
(e.g. arbitrarily small/large observations) before yielding an incorrect
(e.g. arbitrarily small/large) result. The distributions’ centrality, spread
and skewness were studied with the median, median absolute deviation
[���] (MAD), and medcouple [���]. The median describes the value
that separates the lower from the upper half of the ordered values of a
distribution. The MAD is defined as the median of absolute differences
between the distribution and its median. The medcouple is a scaled
median difference of the left and right half of a distribution relative to
its median. The medcouple is defined between -� (entirely left-tailed)
and � (entirely right-tailed). A medcouple of � indicates left-right-tailed
symmetry. The results are shown in Figure �.��.

Summary Comment for Figure �.�� and Figure �.��

The SC models result in better linearity of response and skewness
and smaller variance than the control. This indicates that the network
methods have learned not only SC but leakage correction, indicating
that the model has learned the local properties of the detector.
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Reconstructed Energy Distributions for SC Models Trained On and Applied To Simulation,
without the TCMT Cut Applied

(a) (b)

(c) (d)

Figure �.��: Example normalised histograms showing the simulated calorimeter response before and after compensation applied to the test
dataset of Table �.�, without the TCMT cut applied. Else, as in Figure �.��.

Comments:

I The distributions shown indicate that the application of the neural network methods results in a reduction of leakage, shown as the
reduced tail in the green and red distributions compared to the blue.

I Else, as in Figure �.��.
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Median, MAD and Medcouple of the Reconstructed Energy Distributions for SC Models Trained On and
Applied To Simulation, without the TCMT Cut Applied

(a) (b)

(c)

Figure �.��: Figure �.��a, Figure �.��b and Figure �.��c show the median, median absolute deviation (MAD) and medcouple of the response
distributions of each model applied to the test sample of simulation, without TCMT cut. Blue lines indicate intrinsic calorimeter response,
while orange, green and red lines indicate the control, network without and network with time compensation methods. Circle and cross
markers indicate energies used for both training and testing and testing only. Figure �.��a shows the fitted ⇠ to ⇢particle, where the purple
dashed line indicates ⇠ = ⇢particle.

Comments:

I Figure �.��a demonstrates the same conclusions as made for Figure �.��a. The shift observed beyond the training range in Figure
�.��a compared to Figure �.��a is a consequence of the leakage biasing the distribution and demonstrates the necessity of performing
a leakage cut to assess the resolution of the methods.

I Figure �.��b shows that the spread of the neural network methods is always the same or smaller than the control method, with
un-physical resolutions above the 80 GeV training sample for the control method, again due to energy biasing for this method. The
improvement in resolution due to time is less pronounced than shown in Figure �.� and Figure �.��b. This is a consequence of the
MAD remaining sensitive to leakage and once again demonstrates the necessity of performing a leakage cut.

I Figure �.��c shows that, for the training range, the left-tailed skewness is reduced (i.e. closer to �) over the uncompensated
distribution for the neural network methods, whereas it is increased significantly using the control method. Above the training
range, both methods produce a more heavily left-tailed distribution than the uncompensated sample. This may be explained by the
compensation of high-energy hadron showers reducing the proportion of events above the median compared to below. Nonetheless,
the network methods produce a less left-skewed response distribution than the control method. This plot demonstrates the positive
effect of the leakage compensation learned by the neural network on the calorimeter response.
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�.�.� Data Model

In this section, the models trained on the training set and applied to
the test set of data in Table �.� are discussed. It is also compared to the
network model trained on the training set of simulation. This is done to
assess the differences between simulation and data and the effectiveness
of a model trained on simulation and applied to data.

�.�.�.� Response Distributions in Data

As in Section �.�.�, the normalised response distributions of data are
shown in Figure �.��. A full response distribution set is available in
Appendix Figure �.�.

Summary Comment to Figure �.��

As in Section �.�.�.�, the network methods produce a superior resolu-
tion than the control method for experimental data, indicated by the
smaller variance of the responses using the neural network than the
control method for most of the training dataset.

�.�.�.� Resolution and Linearity of Response in Data

As in Section �.�.�.�, the study resolution (�/⇠ vs. ⇢particle) and linearity
of response (⇠/⇢particle vs. ⇢particle) is shown in Figure �.��. The fitted
values are shown in Appendix Table �.�. Fit results of Equation �.� are
shown in Table �.�.

Summary Comment to Figure �.�� and Table �.�

As in Section �.�.�.�, the machine learning methods outperform the
control method in resolution, resulting in an improvement of the
intrinsic stochastic resolution term of 9.3 % and 12.2 %, outperforming
the control method in both cases. The neural networks also reduce
the constant resolution term by 2 %, indicating the neural networks
perform some detector calibration and SC. A slightly superior linearity
of response overall is observed compared to the control method and
less than for simulation.
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Reconstructed Energy Distributions for SC Models Trained On and Applied To ���� June SPS Testbeam
Data, with the TCMT Cut Applied

(a) (b)

(c) (d)

Figure �.��: Example normalised histograms showing the data calorimeter response before and after compensation applied to the test
dataset of Table �.�, with the TCMT cut applied. Blue lines indicate intrinsic calorimeter response, while orange, green and red lines indicate
the control, network without and network with time compensation methods, respectively. ⇢particle is indicated as a dashed purple line. In
this sample, the 10 GeV, 40 GeV, 80 GeV and 120 GeV samples are shown.

Comments:

I As in Figure �.��, the neural network method produces superior resolution than the control up to the 120 GeV sample shown in
Figure �.��d, for which the control method is superior. This again indicates that the control method also has a bias to the training
range in data.
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Linearity and Resolution Fits for SC Models Trained On and Applied To ���� June SPS Testbeam Data, with
the TCMT Cut Applied

(a) (b)

Figure �.��: Figure �.��a and Figure �.��b show AHCAL linearity of response and resolution to data using all methods under test,
respectively. Blue indicates intrinsic calorimeter response, while orange and green indicate the control, network without time compensation
methods, respectively. Circle markers indicate energies used for both training and testing. Figure �.��a shows the fitted ⇠ to ⇢particle, where
the purple dashed line indicates ⇠ = ⇢particle. The bottom subplot shows the ratio of ⇠ to ⇢particle. Figure �.��b shows the fitted �/⇠, where
the dashed lines indicate fits of Equation �.�. The bottom subplot indicates the ratio of the resolution of each compensation method to the
intrinsic response.

Comments:

I Figure �.��a indicates that, from ��-40 GeV, the neural network and control methods provide similar linearity of response. In the
40 GeV-120 GeV range, the neural network method demonstrates a slightly superior linearity of response by no more than 1 %.
Notably, the improvement in linearity of response in simulation, shown in �.��a, is more significant than in data. Nonetheless, all
methods are observed to reconstruct the linearity of response within 5 % of ⇢particle and overestimate the hadron shower energy as
in Figure �.��a.

I Figure �.��b indicates that the neural network outperforms the control method significantly in data up to 80 GeV. This is reflected in
Table �.�.

a [%] b [%] "2/#⇡�
Calorimeter Response 56.124 ± 0.684 6.117 ± 0.133 10.063
Control 51.501 ± 0.416 1.017 ± 0.325 38.919
Network, No Time 41.859 ± 0.491 4.064 ± 0.083 6.477

Table �.�: Table of fitted parameters of Equation �.� to the training range of energies in simulation shown as dashed lines in Figure �.��b.
All methods were fitted to the full energy range of the test sample.

Comments:

I The uncompensated stochastic resolution for data �� hadron showers in AHCAL is in agreement within �-2 % with the stochastic
resolution term 0 = 57.70 ± 1.06 % obtained in[��].

I The neural network is seen to improve the stochastic resolution term, 0, by around 9.6 % compared to the control method and yields
a similar stochastic resolution to simulation, within �-2 % of the same neural network model trained on and applied to simulation in
Table �.�, which suggests the neural network can be trained effectively with experimental data.

I It should be noted as a caveat that the control method produces a smaller constant 1 term than the neural network by around 3 %,
which is most likely biased since the reduced "2 of the fit is significantly worse for the control than the neural network methods.

I As in Section �.�.�.�, the neural network model provides a slightly better reduced "2 than uncompensated data, whereas the control
method produces a significantly worse agreement to uncompensated data.



�.� Results ���

�: MIP-track hits are selected according
to a special cut which is described in full
in Section �.�.�.� in Chapter �. The cut
consists of hits fulfilling the following cri-
teria: 'hit < 60 mm, ⇢hit < 3 MIP and
 hit �  (  �2)
�: ’Knee’ and ’elbow’ points of a curve
are subjective and depend on the choice
of coordinate system [���]. Additionally,
’bumps’ in the curve are not local min-
ima because they may be on an increas-
ing slope. Local maxima in curvature are
therefore used to indicate where the line
changes direction most prominently in a
mathematically straightforward manner.

Figure �.��: Reconstructed global hit en-
ergy spectrum of 100 GeV electron show-
ers for the June ���� testbeam indicating
hit amplitudes measured in high gain (red
line) or low gain (blue line) mode. The
sum of red and blue curves is indicated by
the green curve, which shows a smooth
transition around 5 MIP. Taken from [��].

�.�.�.� Correlations with Spatial and Temporal Information in Data

As in Section �.�.�.�, the spatial and energy-temporal correlations are
presented in Figure �.��.

As an additional measurement, the relationship between ⇢hit and the
average b⇢hit (i.e. the relationship between the input active cell energy
and the compensated cell energy) was performed.

The curve was fitted for all active cells and for selected MIP-track hits� .
and is shown in Figure �.�� and Figure �.��a, respectively.

This curve relating ⇢hit and the average b⇢hit was highly non-linear, and
therefore local minima, local maxima of its curvature� and the crossing
points between the curve and hb⇢hiti = ⇢hit, indicating where attenuation
and enhancement take place, were measured from a spline fit to the
measured compensated energy value. Regions are also compared to the
study of energy ranges presented in [���], which proposes that calorimeter
energy deposits can be characterised according to three bins: EM-like
(⇢hit > 3.5 MIP), HAD-like (1.7 MIP  ⇢hit  3.5 MIP) and track-like
(⇢hit < 1.7 MIP).

Curvature is defined according to Equation �.�:

�(G) = |H00(G)|
(1 + H02(G))3/2

(�.�)

where �(G) is curvature, G and H(G) are a line’s independent and depen-
dent variables, and primes indicate the order of the derivative.

Summary Comment to Figure �.��

As in Section �.�.�.�, the machine learning methods learn a more so-
phisticated weighting technique than the control. A different weight-
ing is learned for simulation than data, which reflects the differences
in energy density between simulation and data observed in Figure
�.��.

Summary Comment to Figure �.��

Regions of interest in the relationship between⇢hit and the average b⇢hit
are found to be in agreement with the values predicted for different
physics regimes by [���]. The threshold between attenuation and
enhancement, on average, strongly agrees with the threshold for the
gain-switching mode of AHCAL. The neural network learned these
features without prior information than hadron shower events. The
track weighting is found to weight down MIP-like hits with energy
in the range �.�-1.5 MIP, which is in agreement with the results of
Figure �.��.
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Average Percentage Change of Original AHCAL Active Cell Energy for SC Models Trained On and Applied
To ���� SPS June Testbeam Data, without the TCMT Cut Applied

(a) (b) (c)

(d) (e) (f)

Figure �.��: Average percentage change in active cell energy in data. Each column indicates the control and network methods without
timing information in that order, with the middle column trained on data and the rightmost column trained on simulation. Else, as in
Figure �.��.

Comments:

I The control method shown in Figure �.��a indicates weaker spatial correlations of the compensation than Figure �.��b.

I Figure �.��b demonstrates the model trained on data also learns a different spatial weighting than the control method trained on
data �.��a. Most notably, the core and halo, indicated by the blue region where ('hit < 1 ⌧" and  �  ( > 0) and in the red region
where 'hit < 7.5 ⌧" . This is due to the different energy densities observed between simulation and data shown in Figure �.��.
Further analysis is provided in the comments to Figure �.�� and Figure �.��a.

I Figure �.��d and Figure �.��e both indicate that the model learns to attenuate active cell energies above and enhance active cell
energies below ⇢hit = 5 MIP, and do not show strong correlations with the time measured by AHCAL. This agrees with Section
�.�.�.� and Figure �.�� that when timing information is not included, correlations with time are not observed.
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Average Compensated Active Cell Energy Compared to the Original Active Cell Energy using the SC Model
Applied to ���� June SPS Testbeam Data, without the TCMT Cut Applied

(a) (b)

Figure �.��: Relationships between average compensated hit energy (hb⇢hiti) and the original calorimeter active cell energy (⇢hit). The top
subplot of Figure �.��a and �.��b show the original curve, shown in blue, and a spline fit, shown as a dashed orange line, to the network
model output, without timing information, trained on June ���� SPS Testbeam data for all active cells and MIP-track cells, respectively.
The red upwards-facing triangles, red downwards-facing triangles and red empty circle markers indicate local minima, local maxima in
curvature, and crossing points with hb⇢hiti = ⇢hit, therefore indicating where enhancement and attenuation are observed. The middle
subplot shows the curvature of the spline on a logarithmic scale. The bottom subplot shows the pulls of the spline to data.

Comments:

I Good agreement is observed between the spline fit and the average compensated energy, with a reduced "2 of �.� in Figure �.�� and
�.�� in Figure �.��b.

I Figure �.�� indicates a local minimum in the compensation curve found at 1.6 MIP, and local maxima of curvature (excluding the
trivial point at 0.5 MIP) are found at 1.4 MIP, 3.4 MIP, 5.2 MIP and 6.7 MIP. It is noted that the range between the local minimum
and the next local maximum of curvature (1.6 MIP and 3.4 MIP) is similar to the range suggested in [���] (1.7 MIP and 3.5 MIP, and
differ both by 0.1 MIP (2.68 MeV).

I It is also noteworthy that there is a single crossing point for the line hb⇢hiti = ⇢hit at 5 MIP. This value is the energy at which the
SIPMs of AHCAL switch from low-gain to high-gain mode, which is illustrated in Figure �.��. The model learns to attenuate active
cell energies above this value and enhance them below, indicating it has learned properties of the detector apparatus with no prior
information.

I Figure �.��b indicates a local minimum at 1 MIP, points of local maxima of curvature at 0.99 MIP, 2.2 MIP and 2.8 MIP. Two
crossing points are observed for the line hb⇢hiti = ⇢hit, at 0.8 MIP and 1.5 MIP. The main observation is that the model attenuates
the energy between these limits, most strongly at 1 MIP, and the model enhances it beyond them. The result is consistent with the
MIP-subtraction weighting shown in Figure �.��a.
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�.�.�.� Robust Statistics of Response Distributions in Data

As in Section �.�.�.�, sample distributions without the TCMT cut are
presented for data in Figure �.��, with a full set of figures available in
Appendix Figure �.�.

Robust statistics were applied to the calorimeter response distributions
without the TCMT cut, to assess the effect of each model on leakage. The
results are shown in Figure �.��.

Summary Comment for Figure �.�� and Figure �.��

As in Section �.�.�.�, the SC models resulting in better linearity
of response and skewness and smaller variance than the control.
This indicates that the network methods have learned not only SC
but leakage correction, indicating that the model has learned local
properties of the detector.
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Reconstructed Energy Distributions for SC Models Trained On and Applied To ���� June SPS Testbeam
Data, without the TCMT Cut Applied

(a) (b)

(c) (d)

Figure �.��: Example normalised histograms showing the data calorimeter response before and after compensation applied to the test
dataset of Table �.�, without the TCMT cut applied. Else, as in Figure �.��.

Comments:

I As in Figure �.��.
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Median, MAD and Medcouple of the Reconstructed Energy Distributions for SC Models Trained On and
Applied To ���� June SPS Testbeam Data, without the TCMT Cut Applied

(a) (b)

(c)

Figure �.��: Figure �.��a, Figure �.��b and Figure �.��c show the median, median absolute deviation (MAD) and medcouple of the response
distributions of each model applied to the test sample of data, without TCMT cut. Else, as in Figure �.��

Comments:

I As in Figure �.��.
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�.�.�.� Comparison of Simulation Model to Data Model

The differences between models trained on simulation and data are now
discussed.

The mean compensated energy (b⇢hit) is presented as a function of the
original compensated energy (⇢hit) for the model trained on simulation
and data in Figures �.�� and �.��b for the test sample in data, and are
compared using the hit classification regimes of [���]. Figure �.�� shows
the overall average compensated energy, while �.��b shows the MIP-track
hits as discussed in Section �.�.�.�.

Additionally, the response distributions of the model trained on simu-
lation and data are shown in Figure �.��. Finally, the influence on the
mean response ⇢ and �⇢ of the response distributions by using a model
trained on simulation and a model trained on data are studied using the
location and scale parameter using the Gaussian fits applied to measure
resolution. These are shown in Figure �.��.

Summary Comment for Figure �.��

Simulated hadron shower events were observed in Figure �.�� to be
more energy dense than hadron showers in data, on average. The
average modified active cell energy from the compensation algorithm
trained on data is observed to always be greater, on average, than for
simulation. These observations are in agreement. This result suggests
that the compensated response trained on simulation will produce a
systematically lower mean response when applied to data.

Summary Comment for Figure �.��

While the network compensated response distributions are essentially
the same for 10 GeV hadron showers, as the shower energy increases,
the mean of the response is less for the network trained on simulation
than on data. The most probable reason for this is that the SC network
trained on simulation over-attenuates the hadron shower core because
it has been trained on hadron showers which are more energy dense
on average.
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Average Compensated Active Cell Energy Compared to the Original Active Cell Energy using the Network
SC Model Trained on Simulation and the Network SC Model Trained on ���� June SPS Testbeam Data,

Both Applied to Data, without the TCMT Cut Applied

(a) (b)

Figure �.��: Relationships between average compensated hit energy (hb⇢hiti) and the original calorimeter active cell energy (⇢hit). As in
Figure �.��, except that the network model output, without timing information, trained on simulation is shown as the blue curve, and
the same model trained on data is shown as the orange curve. The vertical purple dash-dotted lines estimate the crossing point between
attenuation and enhancement of the cell energy. The bottom subplot indicates the ratio of simulation to data. The regions for EM-like,
HAD-like and track-like energy depositions from [���] are indicated.

Comments:

I Figures �.��a-�.��c indicate that simulation has an excess of energy density both in the hadron shower core and in the hadron shower
halo in comparison to data. Compensation attenuates the EM-core’s energy density and enhances the HAD-halo’s energy density. It
should be expected then that the SC model trained on simulation should attenuate the EM-like active cell energies of the hadron
shower more strongly and enhance the HAD-like halo more weakly in the model trained in simulation than for the model trained
in data (i.e b⇢hit should be greater overall for data than simulation because both the core and halo of data are observed to be less
energy-dense overall than for simulation).

I Figure �.��a shows that the model trained on data, indicated by the orange line, always produces a larger mean compensated
response than simulation, indicated by the blue line in the subplot falling below the dashed purple line. This agrees with the
expectations of Figure �.��a-�.��c.

I Figure �.��b indicates the opposite behaviour for most of the distribution. This again agrees with the expectations of Figure
�.��a-�.��c, which indicates the energy density in the MIP region close to the core and before the shower start has more energy in
data than in simulation, indicated by the blue region in those plots.
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Reconstructed Energy Distributions for SC Models Trained On Simulation and ���� June SPS Testbeam
Data and Applied To Data, with the TCMT Cut Applied

(a) (b)

(c) (d)

Figure �.��: Example normalised histograms showing the simulated calorimeter response after compensation applied to the data test
dataset of Table �.�. Blue lines indicate intrinsic calorimeter response, while green and brown lines indicate the network without time
compensation methods, trained on simulation and data, respectively. ⇢particle is indicated as a dashed purple line.

Comment:

I Comparing the brown curve to the green curve indicates that at 10 GeV, the response for the network trained with simulation is
around the same as the one trained on data. However, as the particle energy increases, the mean response of the brown distribution
decreases compared to the known particle energy. This result indicates that the model underestimates the compensated energy. This
result agrees with expectations from Figure �.��a and therefore the hypothesis that the model trained on simulation over-attenuates
the energy of the hadron shower core.
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The influence on the mean response, ⇢, and the response width, �⇢ , was
then studied to determine whether or not the effect was a result of a
systematic discrepancy of the model, as indicated in Figure �.��, or an
effect of biasing. For this reason, the ⇠ and � of the data distributions
were fitted with a line and Equation �.�, based on Equation �.�:

�⇢ = 0

p
⇢ � 1⇢ (�.�)

The variables were treated separately such that the expectations of the
width of each distribution can be studied independently of the particular
energy scaling of each model (i.e. � and ⇠ should independently agree
with expectations). The agreement with expectations was then assessed
using the difference of each model to the fit value at each particle energy.
⇠ and � were measured the same way as described in Section �.�.�.�.

Under the hypothesis that biasing does not occur, the mean calorimeter
response should remain linear, and the width should follow the ex-
pectations of Poisson-distributed stochastic fluctuations. In other words,
divergences indicate bias from the physics expectations for compensation.
For instance, this could manifest as saturation of either value.

The results are shown in Figure �.��.

Summary Comment for Figure �.��

Good agreement is observed with expectations of the relationship
between ⇠, � and the particle energy with both neural networks
trained on simulation and data, respectively. There is, therefore, no
evidence to support the hypothesis that the decrease in the mean
response due to training the SC model with simulation compared to
data is due to biasing; by contrast, the � of the control method trained
on data saturates with particle energy and is not in agreement with
Equation �.�, indicating bias to the training range.
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Relationship of ⇠ and � of Reconstructed Energy Distributions of SC Models Trained On Simulation and
���� June SPS Testbeam Data and Applied To Data with Particle Energy, with the TCMT Cut Applied

(a) (b)

Figure �.��: The top subplot of Figure �.��a and Figure �.��b show the ⇠ and � for the network model trained with data and the network
model trained with simulation. Orange, green and brown indicate the control method trained on data for reference, the network model
without time trained on data and the network model without time trained on simulation, respectively. Dashed lines show fits. A linear fit is
presented in Figure �.��a as a function of particle energy, while a fit of Equation �.� is shown in Figure �.��b as a function of the square root
of the particle energy. The bottom subplot shows the difference between the compensated energy and the best-fit value. In Figure �.��b, the
solid orange line indicates the line between points for the control method, which could not be fitted with Equation �.� due to bias.

Comments:

I Figure �.��a shows that, as expected, the mean response is lower on average for the SC model trained on simulation than the SC
model trained on data. The reasons for this can be explained by the simulation being more energy-dense on average, as shown in
Figure �.�� and corroborated by Figure �.��a.

I Figure �.��a indicates that the ⇠ of all models under test agree well with the linearity of response. The neural network SC model
trained on simulation agrees with the linear fit as the same model trained on data, indicated by the same differences observed for the
brown and green points in the subplot. Better overall agreement is observed with the neural network methods than with the control
method with the hypothesis of linearity, once again indicated by the greater differences shown by the orange points in the subplot.

I Figure �.��b indicates that the � of the neural network SC model trained on simulation is also found to agree with the expectations
of Equation �.� as the same model trained on data, indicated by the similar agreement of the brown and green points in the subplot.
By contrast, the control method could not be fitted with Equation �.�, and is observed to saturate at particle energies greater than
80 GeV. This is a clear indication of unphysical bias to the training range.

I It is notable that the brown curve of Figure �.��b sits below the green curve, indicating a smaller width. However, it is ambiguous
from this plot as to whether this is due to superior compensation or the lower mean response predicted by the SC model.
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�.� Conclusion

A neural network method for performing software compensation was
devised, trained, and tested on simulation for the AHCAL calorimeter.
The model was designed to function using a local energy density estimate
to overcome biasing effects on particle energies.

The neural network model was trained with and without timing infor-
mation and is compared to a control method after accounting for the
effect of leakage compensation learned by the networks. They yielded
superior overall compensation and linearity of response to the control
method when trained on simulation, resulting in calorimeter resolutions
of 40.2 %/

p
⇢particle � 2.2 % and 37.2 %/

p
⇢particle � 2.4 %. This corre-

sponded to an improvement of stochastic resolution by 9.3 % and 12.2 %,
respectively. The constant resolution term was also found to reduce by
around 5 %, indicating that the model was capable of detector calibration.
Both methods obtained a linearity of response within around 2-3 % of
the particle energy. The network without timing information trained
on CALICE ���� SPS testbeam data achieved a comparable resolution
of 41.9 %/

p
⇢particle � 4.0 %. This corresponded to an improvement in

stochastic resolution term by 9.6 % and of constant resolution by around
2 %, indicating that the model can be trained with limited experimental
data to a similar level as simulation. Additionally, the control method
was observed to bias to the training range of particle energies. In contrast,
the neural network method was demonstrated to both interpolate and
extrapolate compensation to energies not used for training.

The basic method of SC learned by the networks was found to be
in agreement with expectations: the attenuation of high-energy (EM)
deposits and the enhancement of low-energy deposits. However, the
network method was found to apply SC differently depending on the stage
of the shower development, both in space and in time, the latter of which
was found to agree with expectations of a bi-exponential time distribution
for energy deposits in a steel-scintillator calorimeter expected from
[��]. Additionally, the relationship between mean compensated active
and original cell energy indicated similar energy regions for different
energy depositions proposed in [���], without prior knowledge, and that
therefore the SC model is capable of learning energy regimes similar
to track-like, hadronic and electromagnetic energy depositions directly
from experimental data. The model was also observed to attenuate active
cell energies above 5 MIP and enhance them below that threshold. This
result agrees with the hypothesis that the model has learned the gain-
switching mode of the SiPM readout of the AHCAL, again without prior
knowledge. Moreover, the model was observed to be capable of learning
MIP-track subtraction and leakage correction in both simulation and
data. Combined, these results strongly suggest that both the physical
properties of hadron showers and the AHCAL detector can be learned
by the network and contribute to superior hadron shower resolution.

The model was observed to produce different behaviour if trained on
simulation and data, which could be explained by comparing these
differences to the observations made on the difference in energy density
between them. It was noted that the model trained on simulation could be
applied to data, but resulted in a proportionally lower average response.
This effect was observed not to arise from energy biasing and was most
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likely due to the differences in energy density between hadron showers
in simulation and data.

In summary, this study, therefore, indicates that superior resolution can
be obtained in highly granular calorimeters using spatio-temporal event
information and neural networks and that careful model design can be
used to overcome the limitations of previous data-driven compensation
techniques by reducing energy biasing.
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Contributions By The Author

The author first processed, simulated, and analysed both simulation and ex-
perimental data presented in this chapter. Specifically, a method of producing
synthetic charged-neutral hadron shower events from charged hadron shower
events was thoroughly examined and validated. Appropriate shower sepa-
ration networks were selected from literature and rewritten in PyTorch to
support the inclusion of timing and track information and to follow a similar
data-flow to Pandora PFA. The author then analysed the results, focusing on
assessing the improvements in clustering achievable by a temporally sensitive
calorimeter.

�.� Overview of Study

For future linear colliders to achieve the challenging jet energy resolutions
required of around 3 % in the range of jet energies from ��-200 GeV, highly
granular calorimeters must be exploited by accurate energy clustering
algorithms as part of PF. Pandora PFA is an example of a clustering
algorithm for resolving the energy deposits of particles.

It has been demonstrated in [��] that the main contributing factor to jet
energy resolution for jet energies greater than 50 GeV using Pandora PFA
is ‘confusion’ between the energy deposits of particles, as discussed in
Section �.�.�. Therefore, it is of scientific interest to reduce confusion
between particles by developing methods to cluster hadron shower
energy deposits more accurately by optimally exploiting the calorimeter
geometry and the rich energy density information available in highly
granular calorimeters.

Machine learning models provide a powerful tool for developing a
bespoke shower separation algorithm using event information. As dis-
cussed in Section �.�.�, PF relies on highly granular calorimeters and
sophisticated clustering and pattern recognition algorithms. However,
traditional convolutional neural networks (CNNs) assume a dense �D
or �D ’energy image’ matrix of voxels as an input. Typically, hadron
shower events activate no more than a small fraction of the total number
of sensors in the detector (e.g. the most probable number of sensors
activated during a simulated 80 GeV hadron shower comprises only 2 %
of the total sensors in the AHCAL calorimeter), resulting in relatively
inefficient models for highly granular calorimeters due to the sparsity of
relevant information in the input. It is also noted that a �D input (e.g. the
inclusion of timing information) results in even more sparsity due to the
curse of dimensionality � Furthermore, these models assume a regular
grid of sensors, which is problematic for clustering for detectors where
the geometry is more complex, such as the transition region between
barrel or endcap calorimeters.
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�: The study of [���] includes a calorime-
ter of differing sensor sizes. In principle,
this also applies to the AHCAL, with the
ganged Tokyo layer in the 39th layer. How-
ever, due to the requirements that the per-
formance of the algorithm be tested on
experimental data, a method of produc-
ing synthetic hadron shower events is re-
quired and discussed in Section �.�.�.�,
which requires displacing the event in the
calorimeter space. In this case, the energy
deposited in the ganged layer becomes
ambiguous and, therefore, cannot be con-
sidered in this study.

A study performed in [���] demonstrated improved performance of
graph neural networks over CNNs applied to shower separation in
calorimetry. The model presented in this study gains by being designed
to learn an optimal representation of detector geometry, exploiting
a graph neural network. The study, however, involved a calorimeter
simulation with a greatly lower average sensor density than AHCAL
(a total of ��� sensors, compared to the ��,��� sensors of AHCAL, in a
calorimeter of approximately half its volume). Thus, it is unknown how
such models perform with the increased granularity of AHCAL. This
study also includes only the basic �D calorimeter information: the total
energy deposited in each cell, the cell position and layer number� . In
a future 4+-4� collider experiment utilising PF, two additional sources
of information are available: tracking information for charged particles
(the track position and energy of the impinging particle in a magnetic
field) and, for AHCAL, timing information. Both of these sources of
information are expected to influence clustering performance:

I Track information provides an advantage to shower separation
because a strong correlation exists between the centre-of-gravity
of a charged hadron shower and the position of the charged track,
which can be used to infer with high accuracy the shower axis of
the charged hadron shower;

I It is unknown whether or not timing information available from
AHCAL benefits the task of shower separation and by how much.
An example of how timing information might aid event reconstruc-
tion is that the temporal distribution of late-showering hadrons
will be delayed by the time of flight in the calorimeter. Timing in-
formation is expected to provide a richer description of the hadron
shower. For example, sub-showers ought to be correlated in time
relative to the hadron shower core, providing an additional degree
of freedom that can be used to determine whether a fragment was
part of a specific shower, even in cases where spatial resolution is
insufficient to do so.

This study evaluated the performance of three published neural network
models for hadron shower separation in the AHCAL highly granular
calorimeter between a charged and synthetic neutral hadron shower
produced using data synthesis techniques. The performance of the
algorithms is tested using both simulation and experimental data. Fur-
thermore, the software compensation algorithm described in Chapter �
is applied to the separated shower events in simulation, and the results
are studied.

As an important caveat, this study focuses on the effectiveness of clus-
tering energy deposits from a charged and neutral hadron shower with
the AHCAL detector. It neither assesses the effectiveness of the track-
cluster association required to ’label’ individual energy deposits as either
charged or neutral nor the effectiveness of determining the number of
simultaneous hadron showers in an event. Results should be interpreted
with these caveats in mind. This discussion is considered in more depth
in Section �.�.�.�.

In this chapter, superscripts & and # indicate variables associated with
charged and neutral hadrons or showers. Furthermore, the same notation
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�: ’Vanilla software’ is a common term for
software that has not been expressly cus-
tomised [���]. It refers to the most common
flavour of ice-cream [���].

as in Chapter � is used for predicted shower energy, b⇢sum. For instance,
⇢
#

sum and b⇢#sum denote the neutral energy measured by the calorimeter
and the value reconstructed by the neural networks. Additionally, the
predicted and true fractions of energy belonging to an event in a particular
active cell of the calorimeter are denoted 5hit and b

5hit, respectively.

�.� Methods and Tools

In this section, the methods and tools used to experiment are introduced.
First, the raw data from the simulation and CALICE ���� Testbeam are
introduced. Then, data synthesis techniques are introduced to produce
the two-shower events.

�.�.� Network Architectures

�.�.�.� Overview

The AHCAL is a five-dimensional calorimeter. As a form of data, the
hadron shower event may be described adequately as a ’point cloud’, or a
set of points with Cartesian coordinates in space, time and energy.

In the study of this chapter, the aim is to produce a fraction of energy for
each active cell belonging to one of two hadron showers, one charged and
one neutral. This task is analogous to ’semantic segmentation’, where each
point is labelled with a class. Therefore, machine learning models with
a demonstrable capacity to segment complex data with an underlying
structure based on the geometrical distribution of the points, such as �D
models or scenes, are appropriate to apply to shower separation.

Therefore, three published network models suited to the task of hadron
shower separation in highly granular calorimeters were studied in this
analysis: PointNet [���], Dynamic Graph Convolutional Neural Network
(DGCNN) [���], and GravNet [���]. Of these networks, only GravNet is
specifically designed for the study of this chapter.

In this chapter, the same notation is used as in Chapter �.

�.�.�.� Summary of Models

This section provides a summary of the models used to assess the
performance of hadron shower separation and summaries of the specific
implementations and modifications to the models to support the inclusion
of timing and track information. First, modifications to vanilla models�

are discussed. Then, specific implementations of each model are reviewed
in brief.
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�: Aggregation functions summarise
global properties of a data set. The maxi-
mum is typically used.

�: Variance is used instead of standard de-
viation for two reasons. Firstly, the square
root function adds no additional informa-
tion to the aggregation and is thus unnec-
essary. Secondly, in the special case that
the variance is close to �, which can hap-
pen if the input tensor is padded with a
constant (i.e. the nearest neighbours to the
padded value are also the padded value),
then the gradient of the standard deviation
is not defined in PyTorch.

Modifications to Vanilla Models Changes based on the requirements
of the studied models are reasoned and described. These changes are
relatively minor and discussed as follows.

Firstly, AHCAL offers timing and track information from the delay wire
chamber (see Section �.�.�.�) which was not used in the shower separation
study of [���]. Therefore, it is ambiguous how this information should be
added to the network and in what order. For this reason, the information
flow into each network is staggered to reduce the complexity of the
high-dimensional problem and encourage the models to learn inspired
by the successful template of Pandora PFA. The steps relevant to hadron
shower clustering are highlighted, and the staggering is explained in the
context of each relevant step of the algorithm [��]:

I After treating tracks for ’kinks’ and potential decays of neutral
particles, Pandora PFA first selects isolated active sensors, excludes
them from the initial clustering stage, and aggregates information
related to the cell geometry and hit distribution in the calorimeter
sensor array. This step requires only spatial information. Therefore,
the first operation of all networks uses only the cell indices of the
active cells of an AHCAL event to first build a spatial representation
of a hadron shower;

I Pandora PFA then applies a cone-based clustering algorithm start-
ing from the track projection onto the calorimeter’s front face, from
the innermost to the outermost layer. Then, topological clustering
based on templates of energy depositing processes (i.e. pattern
recognition, such as MIP tracks, which have been demonstrated in
Chapter � to be identified by neural networks, illustrated in Figures
�.��a and �.��a). For this reason, the shower ’feature’ information
(active cell energy/time stamp information, track position) is fed
into the network later than the spatial information, where the main
bulk of clustering and pattern recognition takes place.

I After topological clustering, a statistical clustering step is performed
to inform re-clustering by aggregating the energy of a cluster (⇢&sum)
and associating it to a charged track energy (⇢&track). This step
is performed to improve performance for hadron showers from
jets with ⇢9 > 50 GeV, where it is expected that there will be
significant confusion between hadron showers. Therefore, in the
final stages of each model, track energy and unmodified hit energy
information are added such that the algorithm can correct any
clustering mistakes using this information.

Secondly, the study of [���] observed that the choice of aggregation
functions� played a critical role in the convergence of the model. In
particular, aggregation functions that included the properties of the entire
set of vertices (i.e. active cells in the event) improved convergence. For this
reason, in addition to the maximum (used in the basic implementations
of all studied networks), the mean and the variance were also included�

. Since this choice leads to three times as many channels, additional
fully connected layers were added in certain cases to downsample this
additional information where necessary.
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Figure �.�: Diagram illustrating the PointNet implementation in this study. As in Figure �.�. Additionally, matrix multiplication is indicated
as a ⇥ symbol, batch normalisation is denoted ’BN’ and the Softmax activation is indicated in the legend.

�: Here, symmetric refers to a specific type
of operation that does not depend on the
order of the input. For this study, the max-
imum, mean and variance are symmet-
ric functions. For example, the maximum,
mean and variance of the vector [1, 2, 3]
and [3, 2, 1] are 3, 2 and 1, respectively. Put
another way, the value of the aggregation
function is independent of the permuta-
tions of the input vector.

�: An ’affine’ transformation means that
the transformation preserves co-linearity
of points (i.e. a minimum of three points
on the same line before transformation are
also on a line after the transformation),
the parallelism (i.e. lines that are parallel
before the transformation remain that way
after the transformation), convexity (i.e.
the extreme points before transformation
are also the extreme points after transfor-
mation) and the ratios of the lengths of
parallel line segments. An affine transfor-
mation has a linear algebra representa-
tion of H(G) = � · G + 1, where H is some
transformed vector, G is an input vector,
� is a transformation matrix with shape
dim(G) ⇥ dim(G), and 1 is a translation
vector with shape dim(G). Rotations and
mirroring are examples of affine transfor-
mations [���].

Lastly, each model was designed to have around 2 ⇥ 106 weights, though
this varied slightly from model to model depending upon the particular
hyperparameters. This is a factor of �� more free parameters than in [���].
However, around �� times the number of sensors are in AHCAL as was
used in that study (see Section �.�). This choice preserves the proportion
of around ��-��� weights per sensor used in the reference.

Other differences specific to each network are mentioned explicitly in
the following network summaries.

PointNet This neural network architecture is designed for learning on
generic point clouds [���]. The main feature of this model is invariance
to the order of the input, which is achieved through the multiplication of
a transformation matrix and the application of symmetric aggregation
functions� to the input points. This is chosen in preference to ordering
the high-dimensional points, as, in general, there does not exist a stable
ordering of the set of points in the presence of point perturbations,
meaning sorting is not a viable option for unordered points. By contrast,
multiplying the input by an affine� transformation matrix determined
from a multi-layer perceptron and activating the output, a general func-
tion can be approximated. The model also supports higher-dimensional
features (e.g. energy, time, track position), necessary to describe a hadron
shower event fully.

PointNet is a robust baseline neural network for the segmentation of �D
point clouds and is included in the study for that reason. Additionally,
the state-of-the-art shower separation typically employs graph neural
networks, and the application of PointNet allows examination of the
advantages of more sophisticated neural network models. Application
of this network model has been found in a physics setting, for instance,
as a geometrically-sensitive partial differential equation solver for fluid
dynamics [���]. It should be noted that this method is not, however, a
graph neural network since no graph is constructed before or during the
application of the model.
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Figure �.�: Qualitative performance of
PointNet on �D scene segmentation using
the S�DIS dataset [���]. The top plot shows
the input point cloud, representing an of-
fice scene in �D. The bottom plot shows
the PointNet model, trained to classify
each point as one of �� categories. Taken
from [���].

The specific implementation used in this study was based on an imple-
mentation of PointNet in PyTorch [���] and is illustrated in Figure �.�. It
is described as follows:

I �D Transform: The active cell indices of the event (i.e. (�hit, �hit,
 hit) are passed through a ’transformation network’ (T-Net), which
consists of two parts: an upsampling module of four sequential �D
fully-connected layers with ��, ���, ��� and ��� channels, which is
activated upon using the mean, variance and maximum over the
channels, and a downsampling module of a further three sequential
�D fully-connected layers of ���, ��� and � (3 ⇥ 3) channels, with
batch normalisation and leaky ReLU activation for all layers except
the last layer. The output is a matrix, initialised as the identity
matrix, multiplied by the input of this step. More details of the
PointNet Encoder can be found in [���].

I Upscaling and Concatenation With Features: The additional ’features’
of the hadron shower relevant to clustering (log⇢hit, arcsinh Chit,
�track, �track) are concatenated to the output and upscaled by a �D
fully-connected layers with �� channels;

I Feature Transform: Similarly to the �D Transform, the output is
passed through a second T-Net of the same structure as the �D
Transform with a 64 ⇥ 64 layers. The output is a second matrix,
also initialised as the identity matrix and defined � in this section,
and multiplied by the input of this step as is the case for the �D
Transform step.

I Aggregation: The mean, variance and maximum over the points are
used to activate over the points and the remaining active cell energy
and track energy information [Ehit, ⇢&particle are concatenated to
the output.

I Downscaling and Output: The final module of the network consists
of four sequential �D fully-connected layers with ���, ���, ��� and
�� channels, with batch normalisation and leaky ReLU activation,
and dropout in the last layer of the sequence. The final layer has
two outputs, one for b

5
&

hit and one for b
5
#

hit, with Softmax activation.
The result is a set of reconstructed energy fractions for each active
cell in the event.

Importantly, the � matrix is constrained to be close to an orthogonal
matrix by including a regularisation condition in the loss as in Equation
�.� [���]:

Lreg(�) =
��
� � ��)

��2 (�.�)

where � is the identity matrix, superscript) indicates the matrix transpose
operation. This is because orthogonal matrices produce a flip or rotation
and preserve the lengths of vectors and angles between vectors, meaning
the transformation is affine as required by the model [���].
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(a)

(b)

Figure �.�: Figure �.�a illustrates the EdgeConv operator. The orange Utah teapot [���] indicates some ’point cloud’, or distribution of points,
G, with some underlying distribution, to be operated upon. The orange dots indicate vertices, + , of a local-neighbourhood :-NN graph
around the central red dot. The green arrows indicate the vectors (edges) between the central red dot and its neighbours, E. The orange
arrows indicate ’message-passing’ between the vertices and the edges as discussed in Figure �.��c, which modifies the graph as indicated
by the colour inversion. Figure �.�b shows a diagram illustrating the DGCNN implementation in this study. Else, as in Figure �.�

DGCNN This graph neural network model is also designed for learning
on generic point clouds [���]. DGCNN was designed as an improvement
on PointNet. Specifically, PointNet operates on vertices (i.e. calorimeter
energy deposits) individually in the T-Net and does not encode infor-
mation about the model’s local energy density in space and time. By
contrast, DGCNN encodes local energy density information by calculat-
ing the :-nearest neighbours (:-NN) denoted ’vertex’ features (V) and
the vectors between these nearest neighbours in the calorimeter space or
’edge’ features, (E). A self-loop is included. A special operation called
’EdgeConv’ is then applied, which consists of convolutional layers with
activation followed by a symmetric pooling operation. The ’dynamic’
aspect of the network is that finding neighbours and applying convolu-
tions and pooling are repeated sequentially, resulting in a ’dynamically
updated’ graph. In the context of PF, the model can learn properties of
the calorimeter readout at a local and calorimeter-wide level by diffusing
local information (i.e. the energy density of the :-NN) across the graph
by successive re-clustering. The model also supports higher-dimensional
features (e.g. energy, time, track position), necessary for a full description
of a hadron shower event.

Application of this network model has also been found in a physics
setting. In addition to the hadron shower separation task of [���], the
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�: Top-quark tagging means identifying a
jet based on whether or not it originated
from a top quark. Scientific interest in the
top quark is discussed in Section �.�.�.

Figure �.�: Qualitative performance of
DGCNN on �D scene segmentation using the
S�DIS dataset [���]. The top plot shows
the input point cloud, representing an of-
fice scene in �D. The bottom plot shows
the DGCNN model, trained to classify each
point as one of �� categories. Taken from
[���].

�: Shortcut, or ’skip’ connections are typ-
ically used in deep neural networks that
enable deeper layers in the neural network
to learn to do nothing at all, which can im-
prove performance when the complexity
of the problem is simpler than the model
architecture allows for. This concept is
known as the ’degradation problem’ [���].
They may also be used to capture informa-
tion at varying scales, which may improve
performance by enabling comparison be-
tween those scales [���].

template of DGCNN and EdgeConv has been demonstrated to be used for
jet-tagging. In [���], state-of-the-art top-quark tagging� performance
using jets reconstructed via Particle Flow in ATLAS [���] with a specially
modified version of the same model.

The specific implementation used in this study was based on the imple-
mentation of [���]. EdgeConv and the DGCNN model used are illustrated
in Figure �.�a and �.�b, respectively.

I EdgeConv: The EdgeConv operation is briefly explained. This func-
tion is designed to perform a convolution on a graph. The idea is
that the graph’s origin is like the central pixel of an image, and the
neighbours to that pixel are like a surrounding ’patch’ of the image
[���]. The operation consists of three stages, illustrated in Figure
�.�a. Firstly, a cluster of points is found using a :-NN operation,
and the vectors between the vertices (edges) are found. Then, the
vertices and edges are jointly operated on by an ’edge feature
function’, which is, in this case, a series of standard fully-connected
convolutional layers. Then, the graph is aggregated. Additional
aggregation functions are used in this study, and therefore an
additional fully-connected convolutional layer is used to condense
the aggregates to a single value. More information on this operation
can be found in [���];

I Clustering: Four EdgeConv operators are defined. In each operation,
the input is concatenated with its mean. Then, the :-NN clustering
is applied, and the data is passed through two fully-connected �D
layers with �� channels. The mean, variance and max are calculated
over the clusters and passed through a �D fully-connected layer with
�� channels with batch normalisation and leaky ReLU activation for
all layers. The first EdgeConv operator uses only active cell indices
of the event, ( �hit, �hit,  hit). The additional ’features’ of the hadron
shower that are relevant to clustering ( log⇢hit, arcsinh Chit, �track,
�track) are concatenated to the output are later concatenated to the
output of the first EdgeConv operator before the second operator
is applied. At each stage, the output from each EdgeConv operator
is recorded and later concatenated into a single tensor. These are
called ’shortcut connections’� .

I Embedding: One shared �D fully-connected layer with ���� channels
with batch normalisation and leaky ReLU activation condenses the
features learned at the clustering stage;

I Aggregation: The mean, variance and maximum over the points are
used to activate over the points and the remaining active cell energy
and track energy information (⇢hit, ⇢&particle) are concatenated to the
output.

I Downscaling and Output: The final module of the network consists
of four sequential �D fully-connected layers with ���, ���, ��� and
�� channels, with batch normalisation and leaky ReLU activation,
and dropout in the last layer of the sequence. The final layer has
two outputs, one for b

5
&

hit and one for b
5
#

hit, with Softmax activation.
The result is a set of reconstructed energy fractions for each active
cell in the event.
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��: In the original implementation of [���],
it was noted that the ✏ factor was not mod-
ified. It is noted that a similar procedure
is applied in a dimensionality reduction
technique called kernel principal component
analysis, and for similar reasons, in ’support
vector machines’, another machine learning
classification method. Both methods call
the ’potential well’ a ’Gaussian radial ba-
sis function’, which acts to map a lower
dimensional space to a higher one with
more dimensions by combining the for-
mer in non-linear combinations [���]. In
the quoted applications, performance is
nearly always improved if ✏ is treated as
a hyperparameter to be tuned. For this
reason, ✏ is tuned in this study.

GravNet This graph neural network model exploits dynamic graph
updates similarly to DGCNN. It is specifically designed for reconstructing
hadron showers in highly granular calorimeters.

DGCNN is powerful but computationally intensive due to dynamically
updating the graph at each stage during clustering in high-dimensional
space. GravNet overcomes this limitation by learning two embeddings: a
low-dimensional clustering space and a high-dimensional feature space.
The distance between the points in the clustering space is used to assign
attention to the features employing a ’potential well’, from which GravNet
gets its name. The learned features are scaled by the potential, which
indirectly performs message-passing between the edges and the vertices.
This method is advantageous in computation because the dimensions of
the :-NN calculation are greatly reduced. Additionally, GravNet offers
some control over the strength of the potential well by allowing its width
to be controlled by a hyperparameter, ✏, which was not explored in the
reference�� .

GravNet was designed for the application studied in this chapter. It is
demonstrated in [���] to produce a similar performance to DGCNN when
applied to the task of hadron shower separation in a segmented tungsten
calorimeter.
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(a)

(b)

Figure �.�: Figure �.�a illustrates the GravNet operator. The orange Utah teapot [���] indicates some ’point cloud’, or distribution of points, G,
with some underlying distribution, to be operated upon. The ( and �!' operations indicate the clustering and feature space representations
learned by the neural network. The green arrows and Ecorrespond to vectors between the red point and its orange neighbours, its norm
indicating a distance in a potential well given by !, indicated by the shaded green region. 5 and 5

0 indicate unscaled and potential-scaled
features. Else as in Figure �.�a. Figure �.�b shows a diagram illustrating the DGCNN implementation in this study. Else, as in Figure �.�.
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Figure �.�: Qualitative performance of
GravNet on hadron shower separation in
a �D calorimeter composed of tungsten
for two charged pions with an energy of
around 50 GeV The colours indicate the
energy fraction belonging to each hadron
shower. Top: Ground Truth Event. Bottom:
Reconstructed Event. Taken from [���].

��: In reality, the :-NN clustering step
ranks distances ranks based on their ’top :
negative square distance’, using the equa-
tion �|E8 9 |2 = � |G8 |2 �

��
G9

��2 + 2
⌦
G8 , G9

↵
,

where G8 and G9 are two vertices to be
compared, and

⌦
G8 , G9

↵
is the inner prod-

uct between G8 and G9 and |E8 9 |2 is the
square Euclidean distance between G8 and
G9 . This is mentioned because taking the
square root only to square the result again
would be redundant.

The GravNet model was based on the implementation of [���]. GravNet
and specifically the GravNet layer that substitutes the EdgeConv are
illustrated in Figure �.�a and Figure �.�b, respectively. The model has
the same underlying structure as the DGCNN model, except the GravNet
layer and the structure of the clustering operator replacing EdgeConv.

I GravNet Layer: The GravNet layer operation is briefly explained.
This function projects points to a low-dimensional clustering space,
B, and high-dimensional learned feature space, �!', respectively.
This is achieved with two individual �D fully-connected layers with
� (� if time is included) and �� channels, respectively. Then, the
:-NN cluster is found in the B-space, similar to DGCNN. At this stage,
the Euclidean distances of the neighbours to the origin of the graph
(including a self-loop, as in DGCNN) are calculated for each cluster,
denoted |E8 9 |, where E8 9 is the vector from the origin of the graph
at vertex 8 to a neighbour at vertex 9 �� . The elements of the �!'
space are then scaled by a Gaussian potential, !(|E8 9 |) = 4

�✏ |E8 9 |2 ,
where ✏ is a hyperparameter to be tuned. For example, if 5 is a
vector of features in �!' , 5 0

9
= !(|E8 9 |) · 59 . The result is aggregated

across the cluster using the maximum, mean and variance. Then,
a �D fully-connected layer with �� channels, batch normalisation
and leaky ReLU activation as an output layer to condense the
aggregates to a single value. More information on this operation
can be found in [���].

I Clustering: As for DGCNN, except that before each GravNet layer, the
mean is concatenated to the input and passed through two �D
fully-connected layers with batch normalisation and leaky ReLU
activation with �� channels.

The remaining steps are as for DGCNN.

�.�.� Raw Datasets

The raw simulation and data used for the study presented in this chapter
are introduced, analysed and studied.

The studied models for shower separation discussed in Section �.�.�
were trained and validated using simulated �� and  0

!
hadron shower

events observed with the AHCAL detector. The simulation of the particle
showers was achieved using Geant4 [��], with a full detector simulation
developed using DD4hep [��]. Additional effects, such as digitisation of
the analogue signal and reconstruction of the detector variables, were
achieved using CALICESoft [��]. The physics list used was QGSB_BERT_-
HP. The simulation was based on the June CALICE testbeam study taken
at the Super Proton Synchrotron at CERN in ���� [��]. Data used in the
study was taken from the same experiment, where the detector variables
were reconstructed using CALICESoft.

Selection Criteria The sample was subject to the following selection
criteria. Data and simulation were subject to the same cuts as in Chapter
� except where specified:
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I events were required to be identified using the standard CALICE
particle identification algorithm [��] as being a single particle and
having less than a 0.5 % probability of being a muon to exclude
non-showering, ’punch-through’ pions;

I the ��th layer of the AHCAL is ganged and requires special treat-
ment beyond the scope of this paper. Therefore, energy deposits
were considered up to the ��th layer of the calorimeter;

I events with a correctly reconstructed track position (i.e. a track
position with a corresponding position inside the 24 ⇥ 24 cell
AHCAL front-face).

I events were required to have at least �� active cells after the MIP-
track cut discussed in the following section. This criterion reduces
the influence of partially-showering punch-through pions, which
may initiate a small cascade and continue through the calorimeter.
Details of this cut are discussed in Section �.�.�.

The event count of the final training, testing and validation datasets are
summarised in Table �.�.

Comparisons of the main event-level, cell-level and shower profile distri-
butions of the training sample for the entire samples of 10 GeV, 40 GeV
and 80 GeV common between the simulation and data training sets are
presented in Appendix Figures �.�-�.��, which have the same comments
as Figures �.�-�.��.

Comments to these plots are the same as in Chapter �, and the figures
are shown for consistency between analyses.

Hadron  
0
!

��

Type Simulation June ���� SPS Testbeam Data Simulation
Purpose Analysis Testing Training Validation Testing Training Validation
Particle Energy [GeV]

� - - - - ����� ����� ����
�� - ����� ������ ����� ����� ����� ����
�� - - - - ����� ����� ����
�� - ����� ������ ����� ����� ����� ����
�� - - - - ����� ����� ����
�� - - - - ����� ����� ����
�� - - - - ����� ����� ����
�� ����� ����� ������ ����� ����� ����� ����
�� - - - - ����� ����� ����
�� - - - - ����� ����� ����
�� - - - - ����� ����� ����
�� - ����� ������ ����� ����� ����� ����
�� - - - - ����� ����� ����
�� - - - - ����� ����� ����
�� - - - - ����� ����� ����
�� - ����� ������ ����� ����� ����� ����
�� - - - - ����� ����� ����
�� - - - - ����� ����� ����
�� - - - - ����� ����� ����
��� - - - - ����� ����� ����
��� - - - - ����� ����� ����
��� - - - - ����� ����� ����
��� - - - - ����� ����� ����
��� - ����� ������ ����� ����� ����� ����

Total Events ����� ������ ������� ������ ������� ������� ������

Table �.�: Table of events used for training shower separation models and performing analysis models after all cuts, split into simulation
and data and by the testing, training and validation samples and by data and simulation. An additional sample of 40 GeV  

0
!

hadrons
simulated under the same conditions as the �� hadrons is incuded for analysis. Hyphens indicate � events.
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�.�.� Data Synthesis Techniques

Data synthesis describes the creation of artificial examples of a source
of information used to test mathematical models and to train artificial
neural networks [���]. Monte Carlo simulation is ubiquitously used in
particle physics for these purposes. For instance, the study in [��], which
demonstrates the performance of Pandora PFA and its capacity to achieve
the jet energy resolution required for future linear colliders, is based on
simulation.

An example of data synthesis is Monte Carlo simulation, which can
generate two-particle events, as presented in the study of [���]. However,
a technique of producing synthetic neutral hadron showers and artificial
two-shower events is required to validate shower separation methods on
experimental data and simulation is required so that the performance of
the networks can be evaluated from being trained on both simulation and
data fairly. Specifically, data has shown to have non-negligible differences
in energy density to simulation (see the comments to Figures �.��-�.��
in Section �.�.�.�). Additionally, there is no available neutral hadron
shower data for AHCAL because these particles cannot be guided to the
calorimeter by magnetic chicane. Therefore, the only way to assess the
performance of shower separation techniques on experimental data is to
synthesise showers produced by neutral hadrons from charged ones.

This section discusses the methods of data synthesis and studies validat-
ing these methods.

�.�.�.� Generation of Synthetic Neutral Events

On average, no differences in the physical processes involved in a hadron
interacting with dense matter are expected between charged and neutral
hadrons, except for minimum ionisation before a hard interaction. This
assumption may be exploited to produce synthetic neutral hadrons.

An ad-hoc cut developed in [��] was applied to select MIP-tracks from
hadron showers observed with AHCAL. This cut operates under the
assumption that the MIP-track is expected to leave a rectilinear, highly-
localised energy signature in the calorimeter, parallel to the axis of motion
of the particle through the matter, before the shower starting layer.

The cut, therefore, consists of three conditions:

I 'hit < 60 mm

If a hadron shower occurs, the MIP-track rectilinear energy signa-
ture is expected to occur close to the hadron shower core. This cut
also allows for the possibility that the MIP-track may be shared
between multiple ’towers’ of cells if the particle is centred on the
edges of the AHCAL cells. This is particularly relevant if there is a
slight angle at which the particle enters the calorimeter;

I ⇢hit < 3 MIP

The energy from ionising heavy particles is expected to be Landau-
distributed. The choice of 3 MIP balances the efficiency of selecting
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Figure �.�: An example ’partially shower-
ing’ 80 GeV�� hadron shower as observed
with AHCAL. Each axis represents the spa-
tial coordinates of the calorimeter, and the
purple points indicate ⇢hit in a logarith-
mic scale. The lines on each calorimeter
face indicate the ’energy shadow’ of the
hadron shower to indicate its profile. This
example illustrates an example of an event
where a hadron only partially showered
and continued through the calorimeter,
depositing only a fraction of its energy. Re-
moval of the MIP-track of this event would
not result in a convincing neutral event.

��: The offset of 3 layer presented in Fig-
ure arises because no energy is expected to
be removed by the cut before  ( = 4 (the
third layer of AHCAL). Thus,  ( = 3 layer
is subtracted from the G-axis with the ex-
pectation that the curve crosses the H-axis
at near zero.

MIP-like active cells while reducing the number of EM-like active
cells removed by the cut in the EM-core of the shower;

I    ( � 2 layers

The MIP-track is expected to occur before the first hard interaction
by the hadron with matter. A study of the shower start algorithm
in [��] indicated that there is a 90 % efficiency at finding the shower
start within ±2 layers. For this reason, the cut is chosen slightly
before the selected shower start to reduce the likelihood of selecting
hits from the EM-core.

As in [��], a synthetic neutral hadron can be produced by subtracting
energy from the event that satisfies the selection criteria.

This assumption has clear limitations:

I ’Lost’ Ionisation Energy: the subtracted energy of the active cells
identified in a hadron shower event would not have been deposited
after the hard interaction in a true neutral shower. This means
that energy that would have contributed to further generations of
particles in the fake neutral hadron event is ’lost’ in the pseudo-
neutral event;

I Partially-Showering Charged Hadrons: There is a non-negligible prob-
ability that a �� hadron will ’punch through’ the AHCAL, ionising
the passive medium only. In contrast, a neutral hadron of the
same energy will not interact with the detector. A �� hadron will
shower within the AHCAL detector with cumulative probability
%shower = 1 � 4�4.2 = 98.5 %, where 4.2⌫� is the longitudinal depth
of AHCAL, and therefore the probability that punch-through pi-
ons are observed with AHCAL is considerable. While it has been
demonstrated that these ’muon-like’ events can be excluded with
high-efficiency [��], a complication is the possibility of producing
pseudo-neutral hadron showers from partially-showering charged
hadrons, which can occur if there is a ’glancing blow’ with an
atomic nucleus. Attempting to generate synthetic neutral hadron
showers from such ’partially showering’ pions, the event will still
contain the MIP-track of the ’punch through’ hadron after the
shower is initiated, which would not be detected for a neutral
particle of the same energy. An example event display is provided
in Figure �.�;

I Ad-hoc Cut: Based on physical expectations, the cut presented is
ad-hoc and has not been optimised.

It is then necessary to attempt to quantify the quality of the cut at
producing pseudo-neutral hadrons, which is studied in this section.

Firstly, the expectations from physics for the cut applied were analysed.
Example cases of MIP-track selection according to the described cut is
shown for simulation in Figure �.�, which can be used to inspect the
behaviour of the cut visually. Quantitive analyses were then performed
to assess the performance of the MIP cut. The average total calorimeter
response to the MIP-track according to the applied cut is studied as
a function of the shower starting layer,  (, presented with an offset
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of 3 layer subtracted to aid in interpretation�� , shown in Figure �.�.
The results were compared to expectations on ionising energy loss by
relativistic heavy charged particles in the momentum range ��-100 GeV.
The distributions of the active cell energy, ⇢hit, were measured and fitted
with a Landau-Gaussian convolution distribution [���] in Figure �.��,
to measure the likelihood that the deposited energy was caused by
ionisation.

Summary Comment to Figures �.�-�.��

The relationship between the energy deposited and the number of
active cells per layer agrees with physical expectations of ionisation
energy loss by charged, heavy particles in Fe at the energy scale of the
hadrons studied. The active cells selected by the MIP-track cut agree
with a Landau-Gaussian distribution for the energy range between
�.�-2 MIP. Since the same bias is applied to simulation as in data and
therefore does not affect the comparison of the results from simulation
to data.
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Event Displays of Simulated Pion Showers observed with AHCAL Illustrating the MIP-Track Cut

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure �.�: Event displays of �� hadron showers demonstrating the MIP cut applied to simulated �� hadrons of the training sample.
Selected MIP-track hits are shown as red circles. The red cylinder indicates the cut region in space. The energy criterion cannot be shown.
The leftmost, middle and rightmost column indicate examples of 10 GeV, 40 GeV and 80 GeV �� hadron showers, respectively.

Comments:

I Inspection of the examples shown indicates that the cut is qualitatively effective at selecting the MIP-track. This is indicated by the
expectation of the rectilinear MIP-track energy signature, before the shower start.
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Average Reconstructed Hadron Shower Energy and Number of Active Cells for Selected MIP-Tracks in
Events used for Shower Separation Training

(a) (b) (c)

(d) (e) (f)

Figure �.�: Figures �.�a-�.�c show average total response to energy classified as a MIP-track in Section �.�.�, as a function of the shower
starting layer. The y-axis indicates the average energy deposited in an event in MIP. Figures �.�d-�.�f show the average number of cells
classified as a MIP-track in Section �.�.�. The x-axis for both sets of figures indicates the shower starting depth in layer (starting from
 ( = 3 layer. The blue and orange circle markers indicate simulation and data, respectively. Dashed lines indicate linear fits, with values
shown in the legend. < indicates the additional energy deposited per layer/ additional hits per layer traversed of AHCAL in MIP/layer or
the number of hits/layer, 2 indicates the offset in MIP or hits, which should pass through �. Results from the 10 GeV, 40 GeV and 80 GeV
training samples are shown in the leftmost, middle and rightmost columns, respectively.

Comments:

I In Figures �.�a-�.�c and Figures �.�d-�.�f for both simulation and data, a clear linear relationship between the shower starting
position and the average energy subtracted by the MIP-track cut in a given event is observed. This means that the change in the
cumulative energy and number of active cells selected by the cut are approximately constant with the shower starting layer. A
constant energy loss per layer at the relativistic momenta of the impinging particle is expected from the Bethe-Bloch formula shown
in Equation �.�, which indicates the cut is selecting ionising energy deposits.

I Figures �.�a-�.�c indicate that the cumulative average energy loss selected by the cut is directly proportional to the shower starting
position in both simulation and data. The average increase in energy deposited with the shower starting layer is observed to be
slightly larger than 1 MIP/layer, which is expected due to the average of the Landau distribution describing ionising energy loss
being larger than the most probable value (MPV) of the distribution (see Section �.�.� and Figure �.��).

I Figures �.�d-�.�f show that slightly less than 1 hit/layer is selected by the cut is observed, which agrees with a similar comparison
performed in [��]. Furthermore, the constant terms for all fits are in agreement with the expectation of passing through the origin (i.e.
no active cells are selected at or below  ( = 3 layer). For Figures �.�a-�.�c, the fit constant is less than the AHCAL noise threshold at
0.5 MIP and for Figures �.�d-�.�f, it is well below 1 hit.

I The fitted slopes between simulation and data for average hit energy and average number of active cells are greater by only 1 % and
3 %, respectively, indicating the cut has a similar effect on both samples. The fitted intercept values are all close to zero active cells,
indicating that no energy is selected by the cut for  (  3, as expected.
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Fits of Landau-Gauss Distribution to the Distributions of Active Cell Energy Selected By the MIP-Track Cut

(a) (b) (c)

Figure �.��: Active cell energy (⇢hit) of hits passing the MIP-track selection criteria, for 10 GeV, 40 GeV and 80 GeV events from the training
samples of simulation and data. The normalised histograms are shown in blue and orange for simulation and data, with fits of the
Landau-Gaussian function up to 2 MIP shown as cyan and magenta dashed lines, respectively. Subplots indicate fit pulls. The MPV and � of
the Landau-Gaus distribution are shown in the legend.

Comments:

I For ⇢hit < 1.8 MIP, good agreement is observed between both simulation and data with a convolved Landau-Gaus distribution. In
addition, the MPV of each distribution is around 1 MIP. The MIP scale corresponds to the most probable value MPV of the ionisation
energy deposited by 40 GeV muons from the May and June ���� SPS Testbeam data, using a total of 1.4 ⇥ 107 events [��].

I While the Landau-Gaussian convolution generally agrees with simulation and data where ⇢hit < 1.8 MIP, clear deviations are
observed beyond this range, as indicated by the deviation observed in the residuals at around 1.8 < ⇢hit  2 MIP and beyond. This
result indicates that the cut includes additional depositions not caused by ionisation. These cells are most likely part of the hadronic
shower start, which can be included in the cut due to the ±2 layer uncertainty on the shower starting position.
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Hadron  
0
!

��

Type Simulation Simulation
Purpose Testing Training Validation Testing Training Validation
Particle Energy [GeV]

�� ����� ����� ����� ����� ����� �����

Table �.�: Subsample of Table �.�, used for training the gradient-boosted decision tree to assess the performance of the synthetic neutral
hadron showers produced via the MIP-track cut.

��: Note that this definition is not the same
as the MIP-track cut described. This cut
includes rectilinearly-distributed energy
deposits beyond the shower starting layer,
with no requirement that they close to the
shower core.

Hyperparameter Value

Objective SoftMax
Metric Multi-Log Loss
Classes �
Metric Frequency �
Leaves ��
Max Depth ��
Min Child Samples ��
Learning Rate �.�
Feature Fraction �.�
Bagging Fraction �.�
Bagging Frequency �

Table �.�: Table of hyperparameters used
for the gradient-boosted decision tree used
to analyse the effectiveness of the MIP-
track cut. Further information about these
parameters can be found in [���].

The studies of Figures �.�-�.�� provide evidence that the cut selects
primarily ionising energy deposits of interacting charged hadrons, and
therefore operates as intended. These studies, however, offer no conclusive
statement as to the quality of the synthetic pseudo-neutral events if the
MIP track is removed from the event.

For this reason, a separate study was performed to quantify this property.
The properties of simulated  0

!
hadron showers were compared to the ��

hadron showers of the training dataset. A simple and illustrative method
was devised, which may describe the method’s performance in a single
summary statistic for 40 GeV hadrons in simulation.

Firstly, the training sample of 40 GeV �� and the entire  0
!

sample from
simulation was selected from the available simulation shown in Table �.�
and was itself split into a training, validation and test sample. The events
are shown in Table �.�.

Next, the standard CALICE AHCAL Particle Identification (PID) clas-
sifier is introduced. This is a gradient-boosted decision tree classifier
implemented in the LightGBM framework [��, ��, ���]. This classifier
has been demonstrated to utilise event-level information to accurately
classify hadrons, electrons and muon-like events observed with AHCAL.
The model uses the following thirteen event-level variables: ⇢sum, the
total number of active cells in the event, the average hit radius (h'hiti),
CoG ; the fraction of ⇢sum deposited in the first �� AHCAL Layers, the
fraction of ⇢sum deposited after the shower start layer  (, the fraction
of ⇢sum in the ’core’ of hadron shower (defined as satisfying 'hit < 1
cell, � 2 adjacent active cells and > 0 cells active in the same layer)",
the ’track’ fraction of ⇢sum

�� (defined as satisfying � 2 adjacent active
cells and � cells active in the same layer), the ’detached’ fraction of ⇢sum
(defined as having � adjacent active cells)", the shower starting layer ( (),
the number of active cells in the event occurring after  (, the number
of active cells contributing to the ’track fraction’ of ⇢sum and finally the
number of active cells contributing to the event in the last � AHCAL
layers.

The gradient-boosted decision tree, using the same conditions as was
used to train the standard CALICE PID, was re-optimised to distinguish
the training and validation set of simulated  0

!
from simulated�� hadron

showers in AHCAL. The new classifier was then applied to the testing
dataset, without applying the MIP-track cut on the event. Then, the
classifier was applied again to the same testing dataset, but this time
applying the MIP-track cut to the �� events. The classifier’s performance
in both cases was then measured using the area-under-curve (AUC) of the
classifier’s receiver operating characteristic (ROC) curve. The ROC curve
measures the relationship between the true positive rate and the false
positive rate (the ratio of showers correctly/incorrectly classified as  0

!

to all showers correctly/incorrectly classified as  0
!
).
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AUC is a measure of inter-class separability. An AUC above �.� means the
classifier is better than a random guess. An AUC of �.� means the classifier
is no better than a random guess. Therefore, if the applied MIP-track cut
results in synthetic pseudo-neutral hadron showers more similar to real
neutral particles in the test sample, it then follows that the AUC of the
classifier should reduce from above �.� to near �.� after the cut is applied.
The performance of the cut at producing synthetic pseudo-neutral events
can be measured as the difference between the AUC after the cut and
the random classifier, before and after the cut is applied. Evaluating
cut performance in this way is advantageous as a classifier optimally
condenses the distributions of potentially correlated shower variables
into a single quantity with clear metrics for evaluation.

The importance of each variable to the model is shown as a bar chart in
Figure �.��. The five most important PID distributions to the classifier
are shown in Figures �.��a-�.��e, with a full set of distributions available
in Appendix Figure �.��. The ROC curves of the model applied to the
testing sample of Table �.� as described is shown in Figure �.��.

Furthermore, as a cross-check, the comparisons of the differential energy
distributions of the synthetic neutral produced with a �� hadron shower
by applying the MIP-track cut and the  0

!
hadron samples, in the same

manner as was performed in Figures �.��a-�.��f. The results are shown
in Figure �.��.

Summary Comment to Figures �.��-�.��

The AUC of the ROC curve of the trained �� / 0
!

classifier drops from
�.�� to �.��� if the MIP-cut is applied to the �� events in the testing
dataset. This means it is highly effective at producing convincing
synthetic neutral 40 GeV hadron showers at the event level. These
showers also have an energy density distribution that deviates by no
more than a 10 % deviation compared to  0

!
hadrons.

This analysis shows that the synthetic neutral hadrons developed us-
ing the method described in this section may be treated as acceptable
replacements for true neutral hadron shower events, on average.
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Information Gain of Boosted Decision Tree Classifier by PID Variable

Figure �.��: Information gain (difference in entropy after a split in the tree compared to before) as blue bars for different variables presented
in Figure �.��.

Comments:

I Figure �.�� indicates that the five most significant variables for the classifier model are, in descending order of importance:  ( , the
number of active cells in the track fraction, h'hiti, the number of active cells in the event, and the number of cells after the shower
start, and that other variables are comparatively less relevant to determining the distinction between  0

!
and �� hadron showers.
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Distribution of Top � PID Variables by Information Gain for Comparison of 40 GeV ��/Synthetic Neutral
and  0

!
Simulated Hadron Showers in AHCAL

(a) (b) (c)

(d) (e)

Figure �.��: Top � PID variables calculated according to [��, ��], compared for the simulated �� and  
0
!
, from Table �.� in terms of

information gain of the BDT, as shown in Figure �.�� The green line indicates  0
!

hadron showers, while the blue and blue dashed lines
indicate �� hadron showers, with and without the applied MIP-track cut.

Comments:

I In Figures �.��a-�.��e, it may be seen that the solid blue line differs from the green line in these figures, illustrating that differences
are observed between  0

!
and �� hadrons. Furthermore, the variables with the most information gain in the model are related

to the expectations for variables associated with the MIP-track, and therefore is suggestive the model is using this information to
distinguish the charged from the neutral hadron shower.
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Receiver Operating Curve (ROC) for the BDT ��/ 0
!

Classifier, Applied Before and After the Application of
The MIP-Track Cut

Figure �.��: ROC curves from the trained classifier applied to the test sample from the BDT sample of Table �.�. The blue and orange lines
indicate the performance of the model applied to the same testing sample of the BDT sample of  0

!
and �� hadron shower event variables,

without and with the MIP-track cut applied. The purple dashed line indicates the expected curve for a random classifier.

Comments:

I Figure �.�� shows that the classifier performs with an AUC of �.�� for �� and  0
!

showers in the BDT sample test sample before the
MIP-track cut, and an AUC of �.��� to the same sample after the MIP-track cut was applied. It may be concluded that event level
information can be used to distinguish between 40 GeV  

0
!

and �� hadron showers significantly more frequently than a random
classifier, and that the removal of the energy of deposited by the MIP-track results in a classifier only marginally better than a
random classifier. This means that the synthetic neutral hadron showers produced from �� events and  0

!
showers have similar

event level distributions, and the removal of the MIP-track obtained the similarity.
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Radial, Longitudinal And Joint Radial-Longitudinal Energy Profiles to Compare �� and  0
!

Hadron Showers

(a) (b)

(c) (d)

Figure �.��: Figures �.��a and �.��b show the differential shower profile distributions in radial surface area (() and longitudinal depth ( ),
presented on the G-axis in units of Moliere radius and on the H-axis in units of nuclear interaction lengths, for the neutral events produced
from simulated �� hadrons showers with the MIP-track cut applied and simulated  0

!
hadron showers samples at 40 GeV, respectively. The

subplots indicate the ratio of the simulated  0
!

to the neutral. Figures �.��c indicate the joint (�D) differential energy distribution in ( and  ,
presented in the same units. Figure �.��d shows the ratio between the simulated  0

!
to the neutral of Figure �.��d, presented in the same

units on the G-axis and H-axis, and the ratio presented on the colour axis.

Comments:

I Figures �.��a and �.��b indicate a slight excess of energy density overall for the  0
!

by comparison to the synthetic neutral, except the
region within 1 ⌧" from the core and within the 0�1⌫� from the shower starting layer, which shows a deficit. Nonetheless, both
distributions agree within 10 %, demonstrated in the subplots. Similar trends were observed in a similar analysis performed in [��].

I Figures �.��c and �.��d indicates the same overall trends as Figures �.��a and �.��b. The blue region before the shower start where
'hit < 1 ⌧" indicates that the MIP-track cut leaves an excess of energy density, indicating the cut is suboptimal.
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�.�.�.� Shower Displacement

Confusion between two hadron shower events is expected to be correlated
to many observables (e.g. particle energy, shower starting position, energy
density). However, an obvious caveat of synthetically producing charged-
neutral hadron shower events is that the lateral distance between the
particles initiating the hadron shower, which plays a critical role in the
level of intrinsic confusion, is left as a free parameter.

The study of [���] uses a uniform distribution of impinging particle
positions on the calorimeter. One critical observation is that the average
distance between uniformly selected incidence positions of the hadrons
upon a circle/square sampling region scales linearly with the radius/side
length. However, the study of [��] indicates an approximately S-shaped,
and therefore nonlinear, dependence of confusion energy on inter-shower
distances. Evaluation of the appropriate value of this quantity is therefore
critical when considering the quotation of performance of the neural
networks, which, unlike algorithms such as Pandora PFA, bias to the
dataset they trained upon. This also means both hadron showers must
be displaced in the synthesised dataset, rather than just one, to prevent
the networks from biasing to incorrect assumptions (e.g. the algorithm
may learn to expect all charged showers to be observed in the centre of
the calorimeter, which is an unfair bias).

A study ensures that the average distance between the charged and
neutral shower is neither too small nor too large. In the former case, the
algorithms will be biased to mostly unresolvable events. In the latter case,
the shower separation task becomes trivial on average (i.e. separation
of energy deposits with a plane in space through the calorimeter cells),
which would mean the influence of the additional benefits of a temporal
calorimeter cannot be effectively studied. The study produces a physically-
motivated relationship between the radial distance from the hadron
shower and the average cumulative integrated energy at that distance
is obtained which may be used to calculate an appropriate average
separation distance based on the average distribution of energy of a
hadron shower in AHCAL, such that the model has a balance between
well-separated and overlapping hadron shower events.

Firstly, as in Figures �.��a-�.��c, the differential energy loss by a hadron
shower per unit area of a circle (i.e. a thin ring) around the centre of
gravity (d( = 2�'hit d'hit, where d'hit is a bin width), using the entire
training sample of Table �.�, was determined. In this study, the bin width
was chosen using the Freedman-Diaconis bin rule [���], resulting in
much finer binning than shown in these figures. A spline was then fitted
to the distribution. The spline was then integrated over the surface area,
according to Equation �.�:

h⇢sum('hit)i =
π

'hit

0

⌧
d⇢sum

d(

�
· 2�'hit d'hit (�.�)

The cumulative average energy deposited in AHCAL as a function of
'hit can be obtained for each particle energy of the training sample by
numerical integration. The cumulative integral was then normalised
to a percentage of h⇢sumi, for each particle energy. These curves were
evaluated at the of h⇢sumi to find the corresponding 'hit, corresponding
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Figure �.��: Comparison of the distribu-
tion of distances between points sampled
uniformly with the same mean distance
of �.� in a circle area, shown in red, and
in a square area, shown in blue. Remade
from [���].

to the radius of a circle with its origin at the centre-of-gravity, within
which that percentage of the total calorimeter response for that energy
would be measured, on average. This quantity determines the relationship
between the particle energy and how far away in radial distance they
should be separated.

The distance corresponding to 80 % of h⇢sumi was chosen to characterise
the synthetic dataset. It was found that the measured relationship between
'hit and ⌧" could be fitted within �-2 % of the value using an ad-hoc
relationship shown in Equation �.�:

'
80 %
hit (⇢particle) = 0' + 1' · log⇢particle + 2' · ⇢particle (�.�)

The distribution of synthetic shower separation distances can then be
calculated. The choice was made to distribute the events randomly and
uniformly in a circle of radius 'circ so that the neural network learns
no anisotropic biases in the distribution of the centres-of-gravity of the
hadron shower. The radius is chosen such that 80 % of h⇢sumi would be
integrated, on average.

The AHCAL calorimeter front-face is square (24 ⇥ 24 cells). Thus, it may
seem natural to sample distances to separate hadron showers within
a square area. However, uniform random sampling in a square area
produces a more heavily right-tailed distribution of separation distances
(i.e. skewed to greater distances) than for the same separation distance in
a circle [���]. A more symmetric distribution of inter-shower distances
about the mean will result in a fairer assessment of the shower separation
models because the models will experience less bias to already well-
separated events. The distributions are plotted for reference in Figure
�.��

The relationship between the radius of a circle and the average distance
at which two uniformly distributed points within the circle is given by
[���]:

'sep =
128
45�

'circ (�.�)

Finally, the 'circ required to achieve 80 % of h⇢sumi is given by Equation
�.�:

'circ(⇢&particle , ⇢
#

particle) =
45�
128

⇣
'

80 %
hit (⇢&particle) + '80 %

hit (⇢#particle)
⌘

(�.�)

The method described was applied to the training sample of Table �.�.
The differential energy distributions and their cumulative integrals are
shown for the 10 GeV, 40 GeV and 80 GeV samples in Figure �.��. The
distances corresponding to 60 %, 70 %, 80 % and 90 % of h⇢sumi, as well
as a fit of Equation �.� to the 80 % curve, are shown in Figure �.��.



�.� Methods and Tools ���

Summary Comment to Figure �.�� and Figure �.��

The applied spline fits are found to give excellent agreement to the
differential energy distributions. The distance at which 80 % of the
reconstructed energy is measured from the shower core, on average, is
found to follow an approximately logarithmic relationship according
to Equation �.� in agreement within �-2 %.
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Radial Energy Profile and Radial Cumulative Integral of the Events Used for Shower Separation Training

(a) (b) (c)

(d) (e) (f)

Figure �.��: Figures �.��a-�.��c show differential energy loss per unit surface area as a function of 'hit for the training sample of ��
simulation in Table �.�, as shown in Figures �.��a-�.��c, using finer binning. The blue points show the simulation, and the orange dashed
line indicates a spline fit to the points. The pulls are shown in the bottom subplot. Figures �.��d-�.��f indicate the cumulative integral of the
spline fit, according to Equation �.�. The solid purple line indicates the expected mean energy loss from the training sample, illustrating
that the model saturates at that value.

Comments:

I The spline fits shown in Figures �.��a-�.��c indicate excellent agreement to simulation, with a reduced "2 ' 1. This observation is
also illustrated in the pulls of the fit.

I Figures �.��d-�.��f indicate that the cumulative integral of Figures �.��a-�.��c saturate at the expected mean value for the hadron
shower energy. This means that the integration has been performed correctly.
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Relationship Between Radial Distance and Integrated Energy, for 60 %, 70 %, 80 % and 90 % Percentiles of
Average Reconstructed Energy for Events used in Shower Separation Training

Figure �.��: Extracted distances at which proportions of the average �� hadron shower energy in simulation have been integrated. The blue,
teal, orange, and red circle markers indicate the 60 %, 70 %, 80 % and 90 % percentiles of h⇢sumi, presented as a function of particle energy.
The dashed orange line indicates an ad-hoc fit to the 80 % percentile.

Comments:

I Two effects can be observed in Figure �.��. The first is that the distance required to separate different percentages of energy changes
non-linearly, indicated by the non-equidistant vertical spacing between the different coloured points. This is expected from the
expectation of bi-exponential energy distribution as a function of the differential area from the centre-of-gravity [��]. The other effect
is that the radius required to integrate a certain percentage of the hadron shower decreases with the particle energy. This is also
expected since the EM-fraction of the hadron shower increases with particle energy, thus becoming more energy dense (see Section
�.�.�).

I The distance corresponding to 80 % of h⇢sumi was chosen to characterise the synthetic dataset. The subplot of the figure indicates
that the measured relationship between 'hit and ⌧" could be fitted within �-2 % of the value using an ad-hoc relationship, shown in
Equation �.�. For 80 % of h⇢sumi, 0' = 6.677 ⌧" , 1' = �0.831 ⌧"/logGeV and 2' = 5.231 ⇥ 10�3 ⌧"/GeV.
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�.�.�.� Synthetic Neutral and Charged Hadron Shower Events

With the results of Section �.�.�.� and Section �.�.�.�, an algorithm to
combine a sample of single �� hadron showers into an event with a
charged hadron and a synthetic neutral hadron shower is introduced.

The algorithm is defined as follows:

�. Two �� hadron shower events are selected by a weighted random
subsample of the main sample. One is designated the charged
candidate, &; the other the synthetic neutral candidate, # . The
weight is selected such that it is no more likely to combine a certain
combination of particle energies than any other;

�. For the neutral shower only, the MIP-track cut described in Section
�.�.�.� is applied to # .

�. Four integers, ��& , ��# , ��& and ��# , are defined as distances in
cells by which to displace both & and # in � and � in calorimeter
space. These quantities are sampled within a circle of 'circ and
centred at �hit = 0 cell, �hit = 0 cell. All of the active cells and
track positions of & and # are then shifted by the two sampled
integers. For example, all the hits in & are displaced by ��& and
��& , (i.e. �&hit ! �

&

hit +��& , �&hit ! �
&

hit +��&), and the track position
is also shifted by the same integers (i.e. �&track ! �

&

track + ��& ,
�
&

track ! �
&

track + ��&). The modified ’track position’ of # is only
used in Figure �.�� and Figure �.�� in this section;

�. Any active cells from both events displaced outside the calorimeter
are cut from the event. If there is more than 95 % of each event’s
energy still contained within the calorimeter and if the maximum
energy cells are not shared for consistency with the study of [���],
then the algorithm proceeds. At this stage, event-level variables
such as the centre-of-gravity are recalculated based on the MIP-
track cut and removed active cells due to the containment criteria. If
the criteria are not satisfied, the event is vetoed, and the integers for
displacement are sampled again until the criteria are satisfied. The
fraction of energy remaining in the event is recorded for analysis
(see Figure �.��);

�. & and # are merged by combining the energy of the events. For
active cells in & and # sharing energy:

I the active cell energies from & and # are summed, such that
⇢hit = ⇢

&

hit + ⇢#hit;

I the minimum Chit of & and # is chosen to characterise the
active cell, such that Chit = min

⇣
C
&

hit , C
#

hit

⌘
. In the simulation, the

true Chit is known, and therefore a random Gaussian smearing
of the hit time of 100 ps is applied after the minimum is
selected. Since the Chit in data is not studied and already
includes the resolution of the AHCAL detector, no additional
smearing is applied;

I The fractions of energy belonging to each hadron shower, 5 &hit
and 5

#

hit, are calculated from the new ⇢hit, such that 5 &hit =
⇢
&

hit/⇢hit and 5
#

hit = ⇢
#

hit/⇢hit; .

�. The event is then stored for later use.
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The result of the algorithm is an charged-synthetic neutral AHCAL
two-hadron shower event that may be applied to both simulation and
experimental data to train and validate machine learning algorithms for
shower separation. A diagram of the algorithm is shown in Figure �.��.

Figure �.��: Illustration of the shower-combination algorithm used to produce synthetic charged-neutral hadron shower events from a
sample of pure �� hadron showers observed with AHCAL. The red and blue arrows indicate the paths taken by the charged and synthetic
neutral hadron shower. The squared circle indicates the distribution of available cells by which the event can be displaced from its entry
position.

�.�.� Synthetic Datasets and Training

�.�.�.� Two-Shower Charged-Synthetic Neutral Datasets

The synthetic datasets used in the analysis in this section were produced
using the method described in Section �.�.�.�. Showers were combined in
the training, validation and testing samples using events exclusively from
the corresponding datasets shown in Table �.�, such that the network
performance could be evaluated without the possibility that the models
had been exposed to the same events during the training phase as during
the in-training validation or testing phases.

For simulation, 7.2 ⇥ 105 and 8 ⇥ 104 synthetic charged-neutral hadron
shower events were produced for training and validating the neural
networks during the training phase, respectively, while 8 ⇥ 105 events
were produced to test the models. It is reiterated that each combined
sample contained events purely from the corresponding source samples
outlined in Table �.�.

The same number of events for training and validation samples were
chosen for data. However, owing to a smaller sample of test events in
the source, as shown in Table �.�, a smaller sample of 2 ⇥ 105 events was
used to test the models using data.

Appendix Table �.� and Appendix Table �.� break down the synthetic
datasets used for the study for simulation and data, respectively. The
weighted sampling is illustrated by the equal proportions of each possible
combination of hadron shower energies.

A summary analysis of applying the algorithm of Section �.�.�.� was
performed. Figure �.�� and Figure �.�� show example event displays of
the synthetic training sample in simulation before and after the shower



��� � �D Shower Separation with Machine Learning

combination has been applied. Figure �.�� show the distributions of the
fractions of the ⇢sum remaining in the calorimeter after the shower com-
bination algorithm has been applied, and the distribution of distances
between the charged and synthetic neutral hadron showers after combi-
nation. Figure �.�� and Figure �.�� shows the joint distribution between
the track position and the lateral centre-of-gravity after combination.
Figure �.�� show the joint distribution of the centres-of-gravity before
and after the combination.

Summary Comment to Figures �.��-�.�� and Appendix Tables
�.�-�.�

Equal proportions of each shower combination are obtained by
weighted sampling. Good agreement is observed with respect to
expectations on the distribution of showers in the calorimeter and
the fraction of energy remaining after the synthesis algorithm was
applied.
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Event Displays of Ground Truth Charged and Synthetic Neutral Hadron Showers in Simulation Observed
With AHCAL

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure �.��: Example event displays of combined synthetic neutral and charged hadron showers. Events are picked from the list in Table �.�,
for combinations of 10 GeV, 40 GeV and 80 GeV hadron shower events. The red and blue points indicate an unmodified simulated charged
�� hadron shower and a synthetic neutral hadron shower produced with the MIP-track cut of Section �.�.�.�, displaced from their initial
position by random uniform displacement according to the method of Section �.�.�.�. Figures �.��a-�.��i show event displays of the same
events, combined according to the algorithm of Section �.�.�.�.

Comments:

I The event displays qualitatively illustrate that the charged and synthetic neutral hadron showers are distributed in a wide range of
configurations and that the MIP-track has been subtracted for the neutral hadron shower.
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Event Displays of Merged Charged and Synthetic Neutral Hadron Showers in Simulation Observed With
AHCAL

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure �.��: Example event displays of combined synthetic neutral and charged hadron showers. Events are the same hadron shower events
as shown in Figure �.��.

Comments:

I Figures �.��a-�.��i demonstrate that the algorithm of Section �.�.�.� and that the combined events are qualitatively close enough
together that not all of the hadron showers are trivially separable, as indicated by the overlapping ’energy shadows’ projected on the
sides of the plot. The red triangle also demonstrates that the track has been displaced since it remains highly correlated with the
centre of gravity of the charged shower.
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Fraction of Reconstructed Synthetic Neutral Energy Contained within the AHCAL After Application of the
Shower Combination Algorithm

(a) (b) (c)

Figure �.��: Distribution of the fraction of energy remaining in the AHCAL after the shower combination algorithm has been applied
(i.e. the percentage of energy that would have been observed in the AHCAL if the incidence position had been shifted by ��# and ��#
compared to if it had never been displaced) for 10 GeV, 40 GeV and 80 GeV synthetic neutral hadron showers, after the shower combination
algorithm of Section �.�.�.� has been applied. Blue and orange lines indicate simulation and data, respectively.

Comments:

I Figures �.��a-�.��c illustrate that the fraction of energy contained by the calorimeter after the shower combination algorithm for the
neutral hadron shower is in the range ��-100 %.

I It may be observed by comparing the axes of Figure �.��a and �.��c that, as the energy of the particle increases, so too does the
proportion of events with energy missing due to being observed outside the calorimeter decrease, for both simulation and data. This
is expected from the greater influence of the HAD halo for 10 GeV hadron showers than 80 GeV hadron showers, meaning that
energy is more likely to be deposited outside the calorimeter when the event has a sparser halo.

I In the figures, the distribution of contained energy is found to follow an approximately exponential distribution, which is consistent
between data and simulation. It is noted that slight differences were observed between data and simulation in Figure �.��a, though
these differ. The reasons for this effect are unknown but are likely related to the greater energy density of simulation compared to
data in the HAD halo as discussed in Section �.�.�.� and shown in the red regions at 'hit > 2 ⌧" in Appendix Figure �.��. This
observation does not significantly affect the distribution at 40 GeV and 80 GeV.
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Inter-shower Distance Distributions Between the Charged and Synthetic Neutral Hadron Showers After
Application of the Shower Combination Algorithm

(a) (b) (c)

Figure �.��: Distributions of the distance between the lateral centres-of-gravity (CoG� , CoG� ) after the shower combination algorithm has
been applied after the shower combination algorithm has been performed, for 10 GeV, 40 GeV and 80 GeV synthetic neutral hadron showers.
Blue and orange lines indicate simulation and data, respectively. The expected mean distance between hadron showers from Equation �.� is
shown as a dash-dotted purple line, which is the sum of the distance at the particular particle energy and the average of the curve shown in
Figure �.��, sampled at all possible charged particle energies shown in Table �.�. The mean of the simulation and data distributions are
shown as blue and orange lines respectively, for comparison.

Comments:

I Figures �.��a-�.��c indicate excellent agreement of the mean separation distance for each sample of synthetic neutral particle energy
with the expectations of Equation �.�. This indicates that the distance distribution agrees with the expectations of the centres of
gravity being separated in a circle. Additionally, the shape of the distribution also agrees with the example illustrated by the blue
curve in Figure �.��. A fit is not performed here, since the circular distribution is demonstrated visually in Figure �.��. The distance
between showers is around 7.5 ⌧" overall.

I Simulation and data produce the same distributions of shower distances, which is expected. A broad distribution of distances
between hadron showers is observed for both samples. The lower and upper quartile of each distribution is around 4.7 ⌧" and
10.5 ⌧" , respectively, indicating a wide range of possible shower configurations. It is also noted that the total probability of a
distance falling above and below the mean is approximately equal. Therefore, it may be argued that a fair dataset for training shower
separation models has been produced.
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Joint Distributions Lateral Centres-of-Gravity And Track Position in � of Synthetic Neutral After
Application of the Shower Combination Algorithm

(a) (b) (c)

(d) (e) (f)

Figure �.��: Figures �.��a - �.��c and Figures �.��d - �.��f show the joint distributions between CoG� and �track, before and after the shower
combination has been performed. The top and the bottom subplot of each figure indicate the distribution before and after the combination,
respectively. The purple dashed line indicates CoG� = �track where appropriate. The colour axis indicates probability density.

Comments:

I Figures �.��a-�.��c and Figures �.��d-�.��f indicate that the track position remains highly correlated with the centre=of-gravity
after the shower separation algorithm was applied.
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Joint Distributions Lateral Centres-of-Gravity And Track Position in � of Synthetic Neutral After
Application of the Shower Combination Algorithm

(a) (b) (c)

(d) (e) (f)

Figure �.��: Figures �.��a - �.��c and Figures �.��d - �.��f show the joint distributions between CoG� and �track, before and after the shower
combination has been performed. The top and the bottom subplot of each figure indicate the distribution before and after the combination,
respectively. The purple dashed line indicates CoG� = �track where appropriate. The colour axis indicates probability density.

Comments:

I As in Figure �.��.
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Joint Distributions Of Centres-of-Gravity in � and � of Synthetic Neutral After Application of the Shower
Combination Algorithm

(a) (b) (c)

(d) (e) (f)

Figure �.��: Figures �.��a - �.��c and Figures �.��d - �.��f show the joint distributions between CoG� and CoG� , before and after the
shower combination has been performed, for simulation and data respectively. The top and the bottom subplot of each figure indicate the
distribution before and after combination, respectively. The colour axis indicates probability density.

Comments:

I In Figure �.��, it is demonstrated that the centre-of-gravity distribution of the synthetic hadron shower is broadened by the
displacement of the hadron shower, by convolving the intrinsic distribution with a circle function. This indicates a broader range of
possible positions for the hadron shower after the combination.
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Parameter PointNet, no Time PointNet, + Time GravNet, no Time GravNet, + Time DGCNN, no Time DGCNN, + Time

Learning Rate 2.567 ⇥ 10�4 5.681 ⇥ 10�5 2.012 ⇥ 10�4 5.169 ⇥ 10�4 1.252 ⇥ 10�5 1.660 ⇥ 10�4

?dropout 0.332 0.259 0.268 0.469 0.167 0.164
✏ - - 8.137 12.815 -
: - - 16 24 15 18
�1 0.9 0.9 0.9 0.9 0.9 0.9
�2 0.99 0.99 0.99 0.99 0.99 0.99

Table �.�: Table of hyperparameters used to train the neural network. In this table, �1 and �2 are the ADAM momentum parameters,
?dropout is the dropout probability, and : is the number of nearest-neighbours per cluster. Hyphens indicate hyperparameters that do not
apply to the model. The parameters were informed by a hyperparameter scan using Optuna [���].

�.�.�.� Training

For simulation, two independent neural networks based on the model
defined in Section �.�.� were trained on the training dataset: one without
timing information and one with timing information for each model
under test. For data, a single neural network with the best performance
in the simulation was trained without timing information. The proposed
compensation networks were developed in PyTorch [���] and trained
using the PyTorch Lightning research framework [���] on an NVidia
V��� GPU. The ADAM optimiser was used to improve the convergence
rate for ten epochs. The hyperparameters used for training are shown
in Table �.�, selected based on the results of a parameter scan using
Optuna hyperparameter optimisation framework [���], and shown in
Table �.�. It is noted that the ✏ parameter of GravNet was also varied as
a hyperparameter.

The loss was chosen to be the same as in the study of [���]. This study
applied a square-root energy-weighted mean square loss during training
to encourage the models to correctly cluster the most energy-dense parts
of the event.

It was noted in [���] that a spurious source of confusion was the ’shower-
swapping’. This was an effect where the neural network correctly clustered
the showers but was compared to the wrong permutation of hadron
showers during training and evaluation. This effect arises because the
event comprises the sum of& and# with a single track position and track
energy in the example studied. The network has no inherent information
to determine the correct order to output.

Assigning a fixed order to the output fractions without any meaningful
basis from which the network can learn would be arbitrary when the
study’s goal is to evaluate the energy clustering performance of the model,
which specifically refers to the AHCAL detector’s ability to reconstruct
the energy deposits accurately by characterising the shower structure
and clustering them into distinct showers, not to label them as charged or
neutral. The same argument is given by the authors of the study of [���]:
’since the labelling is irrelevant in a clustering problem, this behaviour (’shower
swapping’) is not a real inefficiency of the (shower clustering) algorithm’.

In [���], while it is mentioned that the effect was accounted for in the
model evaluation, it is ambiguous whether or not any attempt was
made to resolve the problem during training. Therefore, adopting a
permutation-invariant training regime to address this issue is a more
suitable solution for the experiment performed in this chapter than
only accounting for the effect after the fact. In this approach, the neural
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network learns to predict the energy fractions without being constrained
by a specific output ordering scheme.

Firstly, the loss function finds the permutation of the output that best
matches the predicted and true energy fractions. It is presented in a way
applicable for future studies involving more than two hadron showers of
any permutation of & or # , shown in Equation �.�:

L(b5hit; 5hit , ⇢hit) =

min
�

0 2Sym(�)

dim(�)X
8=0

P
event

q
⇢hit · 5 �8

hit · (b5 �0
8

hit � 5
�8

hit )2P
event

q
⇢hit · 5 �8

hit

(�.�)

where � denotes the set of possible hadrons in the event, in order
� = {& ,#}, where & and # are charged and neutral hadrons inducing
showers in the AHCAL,�0 denotes an element in the set of permutations
of �, Sym(�), where Sym is the group of all permutations of the set
�.

Secondly, during the evaluation, the combination of showers with the
lowest loss was used to assign the predicted energy fractions to the
ground truth showers.

It is nonetheless noted that two unavoidable biases arise in training in
this analysis:

I The Model Assumes A Charged and A Neutral Hadron Shower: the
shower separation studies only the case of a simultaneous charged
and a neutral hadron shower event. The model is not designed to
support arbitrary numbers of hadron showers;

I The Model Cannot Explicitly Label An Output: following the argumen-
tation provided in this section and the study of [���], the bias of
ambiguity of the output order must also be accepted in this study
if ’shower-swapping’ is to be eliminated as a source of spurious
confusion.

In summary, while the permutation-invariant training regime and the
consideration of ’shower-swapping’ address important challenges in the
study, they also introduce certain limitations. It is important to recognize
these limitations and interpret the results within the context of the specific
event scenario and the inherent ambiguities of the clustering problem.

Future studies could explore more complex scenarios and models (e.g.
a ’shower labelling’ module to perform cluster-track association after
shower separation) to further enhance the understanding of machine
learning performance in a full Particle Flow analysis.

�.� Results

In this section, the shower separation capabilities of each neutral network
presented in Section �.�.� are presented and analysed.
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��: RMS90 is an observable used by the PF
community to quantify the spread of the
response of the calorimeter, oftentimes to
quantify resolution. It is formally defined
as the minimum standard deviation in the
set of all possible central 90 % percentile
ranges allowed by the data in question (i.e.
calculate the standard deviation in a slid-
ing window, covering all percentile ranges
between �-90 % to ��-100 %, and select the
range that produces the lowest standard
deviation). It is used in preference to the
standard deviation in PF due to the preva-
lence of extreme outliers when studying
highly skewed distributions, or distribu-
tions with extreme outliers, which calls for
greater robustness than the statistic allows.
It is mentioned in [��] that: ’..one should
then not use the term ’energy resolution’ for the
results obtained in this way, and compare re-
sults obtained in terms of RMS90 with genuine
energy resolutions. This misleading practice
is followed by the proponents of Particle Flow
Analysis’. Arguably, a more robust mea-
surement for spread achieving the same
result is the median absolute deviation
(MAD), for the same reasons as Chapter
�. RMS90 is nonetheless presented for the
consistency with other analyses.

Figure �.��: Illustration of extracting the
MPV from a highly skewed confusion en-
ergy distribution. The green line indicates
the histogram of the confusion energy dis-
tribution, for GravNet, without time. The
orange dashed line is the fitted KDE spline.
The blue and red lines indicate the MPV
and the mean, respectively.

The neutral hadron shower, # , is the reference shower. Confusion energy
is therefore defined according to the difference between the true and
predicted reconstructed calorimeter response and the Equation �.�:

⇢
#

confusion(b⇢#sum;⇢#sum) = b⇢#sum � ⇢#sum (�.�)

The mean, MPV, RMS90
�� MAD and medcouple of the confusion energy

distributions are presented in this section to study the properties of the
models up to the third statistical moment and therefore provide a broad
overview of the reconstruction performance.

The MPV of confusion energy may be very different from the mean if its
distribution is very heavily skewed, and allows additional discussion if
there is a difference between the two. Therefore, this study is measured
using a non-parametric density estimation technique called a kernel density
estimate (KDE). The particular method used in this study convolves a
Gaussian around the confusion energy measured in the event, with width
given by a ’bandwidth’ term, ⌘, normalised to the number of events, as
shown in Equation �.�:

b
5KDE(⇢;⇢#confusion , ⌘) =

1
#event

X
event2events

N

 
⇢ � ⇢#confusion

⌘

!
(�.�)

where b
5KDE is a continuous density estimate of the confusion distribution.

The bandwidth parameter ⌘ is selected using Silverman’s Rule and
the KDEpy [���] package and interpolated using a spline. The MPV is
extracted by finding the root of the spline with the maximum probability
density, similar to the method for initial gain estimation from SiPM
charge spectra presented in Chapter �. An example of the application of
the method and the difference between MPV and mean is presented in
Figure �.��.

Finally, the energy reconstruction quality as measured by the spread
(RMS��, MAD), while indicative, is not necessarily representative of the
performance of the shower separation without considering its resolution.
The precision of the energy of a particle cannot be greater than the
width of the calorimeter response distribution caused by stochastic
fluctuations at a particular particle energy. An alternative measurement
of performance is therefore required.

5rec is therefore defined as the total number of events with confusion
energy less than the threshold criterion, which is the calorimeter reso-
lution at the particle energy of the neutral, �⇢ as defined in Equation
�.�, divided by the total number of events in the sample. This formula
provides a quantitative measure of how well the models reconstruct the
energy of neutral hadrons separated from charged ones compared to the
calorimeter’s energy resolution, shown in Equation �.�:

5rec =
#|⇢#confusion |<�⇢

#events
(�.�)

|⇢#confusion | < �⇢ is satisfied, and #events are the total number of events in
a studied subsample of the test dataset.
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5rec is used as the main figure of merit in for clustering performance in
this study.

�.�.� Simulation Models

In this section, the shower separation models described in Section �.�.�
trained on simulation are evaluated.

�.�.�.� Example Event Displays

Example event displays of three events, separating a 10 GeV, 40 GeV and
80 GeV synthetic neutral hadron shower from a 40 GeV charged hadron
shower are shown in Figures �.��-�.��.

Summary Comment to Figures �.��-�.��

The models are demonstrated to qualitatively reconstruct shower
events as expected. The showers are demonstrated to be compared
in the same permutation as the original event, indicating that the
evaluation can be performed with minimal contribution from ’shower-
swapping’ confusion.
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Example Event Displays of a 10 GeV Synthetic Neutral and a 40 GeV Charged Hadron Shower, After the
Application of Each Shower Separation Model Under Test, Applied To The Test Sample of Simulation

(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure �.��: Example event displays illustrating the application of the trained algorithms to a test charged and synthetic neutral hadron
shower event. Figure �.��a shows the initial combined event, as in Figure �.��d. Figure �.��b shows the original event to be reconstructed,
as in Figure �.��d. Figures �.��c-�.��e and Figures �.��f-�.��h indicate the reconstructed event obtained by applying PointNet, DGCNN and
GravNet models as described in Section �.�.� (left to right) for the models trained without (middle row) and with timing information
(bottom row). Else, as in Figure �.�� and Figure �.��.

Comments:

I Figure �.��. Figures �.��c-�.��e and Figures �.��f-�.��h with Figure �.�� indicate the models under test are qualitatively able to
resolve the chosen hadron shower event, indicated by their agreement.

I The agreement of the colours indicates that the best output channel permutation has been selected for study, meaning that the
contribution of confusion can be studied with no possibility of ’shower swapping’.
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Example Event Displays of a 40 GeV Synthetic Neutral and a 40 GeV Charged Hadron Shower, After the
Application of Each Shower Separation Model Under Test, Applied To The Test Sample of Simulation

(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure �.��: Example event displays illustrating the application of the trained algorithms to a test charged and synthetic neutral hadron
shower event. Figure �.��a shows the initial combined event, as in Figure �.��e. Figure �.��b shows the original event to be reconstructed, as
in Figure �.��e. Figures �.��c-�.��e and Figures �.��f-�.��h indicate the reconstructed event obtained by applying PointNet, DGCNN and
GravNet models as described in Section �.�.� (left to right) for the models trained without (middle row) and with timing information
(bottom row). Else, as in Figure �.�� and Figure �.��.

Comments:

I As in Figure �.��.
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Example Event Displays of a 80 GeV Synthetic Neutral and a 40 GeV Charged Hadron Shower, After the
Application of Each Shower Separation Model Under Test, Applied To The Test Sample of Simulation

(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure �.��: Example event displays illustrating the application of the trained algorithms to a test charged and synthetic neutral hadron
shower event. Figure �.��a shows the initial combined event, as in Figure �.��f. Figure �.��b shows the original event to be reconstructed, as
in Figure �.��f. Figures �.��c-�.��e and Figures �.��f-�.��h indicate the reconstructed event obtained by applying PointNet, DGCNN and
GravNet models as described in Section �.�.� (left to right) for the models trained without (middle row) and with timing information
(bottom row). Else, as in Figure �.�� and Figure �.��.

Comments:

I As in Figure �.��.
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Figure �.��: Support Vector Machine clas-
sifier using a ’radial basis function’ similar
to GravNet, for different values of the ✏
’potential strength’ parameter with a con-
stant regularisation parameter, ⇠. The red
and blue points indicate data to be classi-
fied, and the blue and red regions indicate
the decision regions, the black line indi-
cates the boundary and the dashed lines
indicate the ±� margin. The effect of in-
creasing gamma is a more ’local’ classifier,
which is indicated by the shrinking of the
decision boundary around the blue points.
Modified from [���].

�.�.�.� Linearity of Response

The distributions of the reconstructed hadron shower energy are pre-
sented as a function of the original shower energy for all implemented
shower separation models under test and are shown in Figure �.��. The
linearity of response for the reconstructed neutral is measured using the
mean and the MPV, as defined, of the confusion energy distribution as
defined in Equation �.� shown in Figure �.��.

Summary Comment to Figure �.��

All neutral networks frequently reconstruct neutral hadron shower
events accurately, which is indicated by the MPV of the distribution be-
ing well within �-1.5 GeV for the test dataset. However, a significantly
more biased mean indicates energy-dependent skewness, which was
also observed in [���]. Further analysis is required to understand
this result and is discussed in Section �.�.�.�. A clear improvement
in reconstruction quality is observed from the inclusion of timing
information in the model for DGCNN and GravNet.

�.�.�.� Spread of Confusion Energy

The complete distributions of the reconstructed hadron shower energy are
presented as a function of the original shower energy for all implemented
shower separation models under test and are shown in Figure �.��, with
the RMS90 and MAD of each distribution shown.

Summary Comment to Figure �.��

For the graph neural networks (DGCNN and GravNet), a significant
improvement in resolution due to the inclusion of timing information
was observed. For the best-performing neural network (GravNet) this
corresponded to a reduction of the MAD by around 23 %. By contrast,
PointNet did not observe an improvement due to timing information.

The failure of PointNet compared to the considerable success of DGCNN
and GravNet to exploit the timing information available from AHCAL
indicates a physical result. It is mentioned in [���] that: ’Instead of working
on individual points like PointNet.. we exploit local geometric structures
by constructing a local neighbourhood graph and applying convolution-like
operations, on the edges connecting neighbouring pairs of points, in the spirit of
graph neural networks.’. Therefore, the use of ’local geometry’ (i.e. ’local’
energy density) summarises the fundamental difference between the
PointNet and DGCNN and GravNet models. It may therefore be tentatively
concluded that the reason for the improvement of DGCNN and GravNet
compared to PointNet is that timing information improves ’local’ en-
ergy density clustering. Corroborating the above statement, it is noted
from Table �.� that the optimised ✏ parameter for the GravNet network
is much larger with timing information. As previously mentioned, ✏
indicates the ’strength’ of the potential in GravNet, which is related to the
significance of local energy density in the model. Therefore, including
timing information may directly increase the ’locality’ of the GravNet
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��: ’N-subjettiness’ is an observable used
in jet reconstruction to determine the
agreement of a jet with having multiple
’cores’ or ’prongs’ associated with the jet,
which are associated with electroweak bo-
son decays (i.e.,±// ! @@̄) or top-quark
decays. By contrast, QCD jets are expected
to only have one core. This quantity has
applications in jet-tagging [���].

model operating under optimal conditions. This is demonstrated visually
in Figure �.�� using a support vector machine, a type of classifier that
uses a ’radial basis function’ kernel similar to the ’potential’ function
used in GravNet, illustrates the increasing ’locality’ of the classifier.

The hypothesis is presently challenging to verify without a standard
aggregate measure of the amount of ’substructure’ or ’locality’ in a
hadron shower. The locality would refer to the number of locally varying
energy deposits, such as sub-showers, tracks, decaying particles, etc.
Further research into a ’N-subshoweriness’ observable, analogous to ’N-
subjettiness’ �� , which would be beneficial for this purpose. Preliminary
studies have investigated event reconstruction methods involving neural
networks and cluster counting using unsupervised clustering techniques
[���]. However, these techniques have yet to be fully verified and remain
conjecture.
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Joint Distribution between Predicted and True Reconstructed Neutral Shower Response of the Test Sample
of Simulation for Each Shower Separation Model Under Test

(a) (b) (c)

(d) (e) (f)

Figure �.��: Figures �.��a -�.��b (top row) Figures �.��d -�.��e show the joint distributions of the predicted and true reconstructed neutral
shower response for each shower separation model under test, without and with timing information, respectively. The colour axis indicates
probability density. The purple dashed line indicates perfect reconstruction. The bottom subplot shows the mean and MPV on the H-axis at
each bin along the G-axis.

Comments:

I The MPV and the red region indicated on the histograms indicate, in general, that the models learn to frequently reconstruct the
neutral shower with nearly the same energy as the original. The MPV differs by no more than 1.5 GeV, and typically varies much
less than that.

I The mean and green region in the figures indicate a bias. This means that, for all models, the shower energy of neutrals tends to be
overestimated below 60 GeV and underestimated above that value. The bias is observed for all models under test and is indicated by
the larger slope of the mean compared to the MPV of each distribution.

I Comparison of the top row with the bottom row indicates that DGCNN and GravNet show significant improvements in the reconstruction
of the neutral hadron shower for DGCNN and GravNet with the inclusion of 100 ps time resolution, indicated by the narrowing of the
distributions around the purple line. By contrast, PointNet shows no improvement.
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Distributions of Confusion Energy for the Entire Test Sample of Simulation, With and Without Timing
Information, For Each Shower Separation Model Under Test

(a) (b) (c)

Figure �.��: Figures �.��a -�.��c show the distributions of the neutral confusion energy for each shower separation model under test. The
green and red lines indicate the same models, without and with timing information, respectively. RMS90 and MAD are shown in the legend
for each model.

Comments:

I Comparison of Figure �.��a and Figures �.��b-�.��c indicate that thePointNetmodel produces similar performance for reconstructing
hadron showers whether or not timing information is included. By contrast, the DGCNN and GravNet models show significantly better
resolution overall than PointNet, and also show significant improvements using timing information.

I The best-performing model both with and without timing information was GravNet by a small margin. GravNet was found to
achieve a better result without timing information and produced overall a similar result to DGCNN with timing information. This
corresponded to a 23 % reduction in the MAD of the distribution.
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�.�.�.� Fraction of Events Reconstructed Within Calorimeter
Resolution vs. Charged/Neutral Particle Combination

The fraction of events reconstructed within the calorimeter resolution as
described in Equation �.� as a function of the combination of charged
and neutral particle energy are shown in Figure �.��. Sample confusion
energy distributions are shown for the best-performing network, GravNet,
in Figure �.��, and for PointNet and DGCNN in Appendix Figures �.��
and Figure �.��. The resolution was obtained from the study of Chapter
� presented in Table �.� of 'sim = 49.5 %/

p
⇢particle � 7.2 %.

Summary Comment to Figure �.��

Above ��-90 % of events are reconstructed within the calorimeter
resolution where the neutral hadron energy is greater than the charged
hadron energy. The performance degrades for the opposite case.
Timing information is observed to result in a ��-20 % improvement
in the number of events reconstructed within the resolution for the
DGCNN and GravNet models, with no improvement for the PointNet
model in the case where the charged shower energy is greater than
the neutral. No strong improvement was observed in the opposite
case.

A plausible hypothesis for this observation is that the track information is
employed by the models. If the neutral hadron has more energy than the
charged hadron, the centre-of-gravity (dominated by the neutral hadron)
is sufficiently displaced from the track position that both axes can be used
for clustering. In the opposite case, the centre-of-gravity (dominated by
the charged hadron) is similar to the track position, and therefore less
information is gained as to the position of the other hadron shower in
the opposite case. The concept is illustrated in Figure �.��.

An ideal test for this hypothesis would involve training the models with
a combination of double neutral shower pairs and charged-neutral pairs,
and evaluating the differences in performance of the two possible event
configurations. However, this study is beyond the scope of the study and
is left to future research.

A weaker experiment is nonetheless performed to probe the hypothesis.
A subsample of 10 GeV synthetic neutrals, separated at a distance greater
than 12 ⌧" for charged showers of any other energy in the sample was
selected. At this distance, no less than around ��-80 % of 10 GeV hadron
showers are correctly reconstructed within the calorimeter resolution (see
Figure �.��g) regardless of their energy, by comparison with Figure �.��.
The distance of the centre-of-gravity of the entire two-shower event to
the charged track position was calculated. It is expected that the distance
between the track and the lateral centre-of-gravity ought to decrease as
the charged shower energy increases. Then, the mean absolute confusion
energy achieved by GravNet, with and without time, as a percentage of
the true shower energy, was calculated as a function of both distance and
charged shower energy. Suppose the confusion increases as the distance
between the centre-of-gravity and the track position decreases. In that
case, it may be concluded that these variables are correlated with one
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Figure �.��: Illustration of the hypothesis made for the asymmetry in reconstruction performance depending on the charged-neutral
energy difference. Charged and neutral hadron showers are indicated as red and blue ovals, and the orange and green lines indicate the
centre-of-gravity and charged track of the event. The diagram on the left indicates the case where the neutral hadron shower has more
energy than the charged. In this case, the track is sufficiently displaced from the centre of gravity that both may be used as clustering axes.
By contrast, the diagram on the right indicates the case where the charged shower has more energy than the neutral shower. The track and
centre-of-gravity are sufficiently similar that little advantage to separation comes with its inclusion by comparison.

another and is indicative of the hypothesis made. The correlations are
shown in Figure �.��.

Summary Comment To Figure �.��

It may be concluded that the charged shower energy, the distance
between the track position and centre-of-gravity of the two-shower
event and the proportion of confusion energy are strongly correlated
for 10 GeV neutrals separated at lateral distances greater than 10 ⌧" ,
which is in agreement with the observations of Figure �.��. The
improvement due to timing information also equalises as the charged
shower energy decreases (distance between track and centre-of-gravity
increases), which is also in agreement with the results of Figure �.��.
These observations cannot be explained by overlapping showers due
to the constraint on the shower distance.

Therefore, it may be concluded that the hypothesis remains compatible
with observations, even when the possibility of overlapping showers is
excluded. Nonetheless, further study as suggested is required to fully
interpret the results obtained in this section.
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Matrices of the Fraction of Events Reconstructed Within Calorimeter Resolution for Each Shower Separation
Model Under Test Applied To The Test Sample of Simulation

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure �.��: Figures �.��a, �.��d �.��g and Figures �.��b, �.��e �.��h show the matrices of the fraction of events with energy reconstructed
within the calorimeter resolution as a function of the charged and neutral particle energy, for PointNet, DGCNN and GravNet, respectively,
where red to blue indicates a higher to lower percentage of events. The turquoise dashed line indicates ⇢&particle = ⇢#particle, while white lines
indicate contours. Figures �.��c, �.��f �.��i indicate the ratios of the fractions for models trained with and without timing information.

Comments:

I The leftmost column (Figures �.��a, �.��d and�.��g) and middle column (Figures �.��b, �.��e and �.��h) indicate that there is
an asymmetry in shower reconstruction performance depending on whether or not the charged particle energy is greater than
the neutral particle energy. Where the neutral hadron had more energy than the charged hadron, above 80 % (90 % for DGCNN and
GravNet) of events are reconstructed within the calorimeter resolution. By contrast, performance degrades in the opposite case.

I The rightmost column (Figures �.��c, �.��f and �.��i) indicates that for DGCNN and GravNet, improvements of up to an additional
��-20 % of events by the use of timing information is observed for the case where the charged hadron has more energy than the
neutral hadron, indicated by the red region below the equality line, while in the opposite case, no strong improvement is observed.
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Distributions of Confusion Energy for Possible Combinations of Charged and Neutral Hadron Particle
Energies at 10 GeV, 40 GeV and 80 GeV For All Shower Separation Models Under Test, Applied To The Test

Sample of Simulation

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure �.��: Distributions of confusion energy for the GravNet network applied to the test sample. The green and red lines indicate
the models trained without and with timing information, respectively. The purple dashed lines indicate the resolution of the AHCAL
calorimeter in simulation.

Comments:

I A correlation between left and right-tailed skewness in confusion energy is observed as the disparity between hadron shower
energies increase. This is discussed in Section �.�.�.�.

I In all cases, an improvement in energy reconstruction due to the inclusion of timing information is observed, indicated by the greater
proportion of events falling within the purple dashed lines.
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Correlation Between Charged Shower Energy, Distance of Track to Charged and Neutral Shower Centre of
Gravity and Mean Confusion Energy from GravNet, With and Without Timing Information, for 10 GeV

Neutral Showers Displaced From Charged Showers, Both from the Test Sample of Simulation, By Distances
Of Greater Than 12 ⌧"

(a) (b)
(c)

Figure �.��: Figures �.��a-�.��b show the joint correlation between charged shower energy and the distance between the position of
the charged track and centre-of-gravity of the entire event on the H-axis and G-axis, respectively. The colour axis shows mean absolute
percentage of confusion energy in percent of the shower energy for the GravNet model. Events separated by more than 12 ⌧" are shown.
Figure �.��a shows the model trained without timing information and Figure �.��b with timing information. Figure �.��c shows the ratio of
the model’s performance with and without timing information, indicated in percent on the colour axis. Blue to white on this plot means
superior to no improvement in confusion.

Comments:

I Figures �.��a-�.��b the banana-shaped distribution indicates the expected behaviour that, as the charged shower carries a higher
proportion of the energy of the combined event, the distance between the centre of gravity of the whole event and the track position
decreases, and vice versa.

I The gradient from red to blue in these plots indicates that as the charged shower energy decreases and the distance between the
centre-of-gravity and track increases, the model’s performance also improves. It may be concluded that model performance, the
distance of track to centre-of-gravity and the proportion of confusion energy are all correlated and in agreement with the results of
Figure �.��.

I Figure �.��c indicates that each model’s improvement in confusion energy equalises as the shower energy decreases. This means
that the relevance of timing information is also correlated to the charged shower energy and the distance between centre-of-gravity
and track, and is also in agreement with the observations of Figure �.��.
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��: It was confirmed with the author of
[��] that the definition of the quantity
called 5rec in this thesis is equivalent to the
quantity %2� , so named to indicate cover-
age of the central 2�⇢ region (i.e. ±1�⇢)
of the confusion energy distribution. %3� ,
therefore, indicates the central 3�⇢ region
8.4 . ± 1.5�⇢ .

�.�.�.� Fraction of Events Reconstructed Within Calorimeter
Resolution vs. Lateral Shower Distance

As in Section �.�.�.�, the fraction of reconstructed events within the
calorimeter resolution was determined as a function of lateral shower
distance for each model under test. The results are shown in Figure �.��.
The number of correctly reconstructed events is expected to saturate with
separation distance.

Summary Comment to Figure �.��

As the lateral distance between hadron showers increases, the fraction
of reconstructed events also increases and saturates after around
��-15 ⌧" for all studied energies. Including timing information in-
creased 5rec up to 10 % for the DGCNN and GravNet networks. There
is limited evidence to support the hypothesis that the improvement
of the performance of the GravNet and DGCNN models with timing is
correlated with the lateral shower distance.

A similar study measuring the performance of Pandora PFA as a function
of the inter-shower distance between charged-neutral shower pairs was
performed in [��]. Specifically, 10 GeV synthetic neutrals showers were
combined with 10 GeV and 30 GeV charged hadron showers produced
from �� hadrons simulated using QGSB_BERT_HP in the same way as
described in this chapter. Good agreement is observed comparing the en-
ergy profile distributions of the samples used in both studies is presented
in Figure �.��. In [��], the definition of 5rec as defined in this thesis, in
Equation �.�, uses 1.5 �⇢ instead of 1 �⇢ for the performance �� Therefore,
5

1.5�
rec = #|⇢#confusion |<1.5�⇢/#events is defined for this measurement with the

same variables defined as in Equation �.�.

A comparison is presented as a clustering algorithm’s lateral shower
separation capabilities are crucial for assessing its performance. As a
caveat, Pandora PFA does not assume the presence of two showers in the
event, whereas this is true for the trained neural networks. This means
that an unavoidable bias is introduced. Therefore, directly comparing
the methods is impossible without a full dedicated study. Nonetheless, a
comparison is indicative of potential improvements over Pandora PFA
using machine learning. The results are shown in Figure �.��.
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Summary Comment to Figure �.��

The models tested, DGCNN and GravNet, significantly outperformed
Pandora PFA in shower separation, according to the study of [��].
For 10 GeV charged showers and 10 GeV synthetic neutral hadron
showers, DGCNN and GravNet achieved up to a 25 % increase in recon-
structed events within the calorimeter resolution, regardless of timing
information. PointNet performed better than Pandora PFA but not
as well as the other models. For 30 GeV charged showers and 10 GeV
synthetic neutral hadron showers, GravNet and DGCNN showed even
greater improvements, reaching up to 30 % without timing informa-
tion and 35 % to 45 % with timing information. PointNet performed
similarly to Pandora PFA in this case.

These results indicate a promising improvement compared to the standard
method of shower separation applied in Particle Flow, notwithstanding
the specified caveats.

�.�.�.� Fraction of Events Reconstructed Within Calorimeter
Resolution vs. Longitudinal Shower Distance

As in Section �.�.�.�, the fraction of reconstructed events within the
calorimeter resolution was determined as a function of longitudinal
shower distance for showers within 5 ⌧" of one another, for each model
under test, measured as the difference between the shower starting
positions in nuclear interaction lengths for ’closeby’ hadron showers.
This study allows analysis of whether or not the performance increase
due to timing information is correlated with the difference in the shower
starting positions. This would imply that clustering in time improves the
ability to resolve longitudinally displaced energy deposits. The results
are shown in Figure �.��.

Summary Comment to Figure �.��

The performance of the models increases as the difference between
shower starts increases, with less of an effect the greater the particle
energy is. There is limited evidence to support the hypothesis that the
improvement of the performance of the GravNet and DGCNN models
due to time is correlated with longitudinal distance.

Therefore, the improvement due to timing information for DGCNN and
GravNet affects all hadron showers, with no strong dependence on
the particular distribution of the hadron showers in the event. This is
compatible with the hypothesis that the use of timing information to
hadron shower clustering is a ’local’ phenomenon that requires more
complex, locally-defined observables to understand fully.
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Mean Fraction of Events Reconstructed Within Calorimeter Resolution vs. Lateral Shower Distance for
10 GeV, 40 GeV and 80 GeV Synthetic Neutrals Separated From 5-120 GeV Charged Showers for Each Shower

Separation Model Under Test Applied To The Test Sample of Simulation

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure �.��: Figures �.��a-�.��c, Figures �.��d-�.��f and Figures �.��g-�.��i show the mean fraction of events reconstructed within the
calorimeter resolution as a function of lateral shower distance for PointNet, DGCNN and GravNet, respectively. The green and red points
show the models trained without and with timing information, respectively.

Comments:

I For all models, as the energy of the neutral particle increases, the reconstructed fraction also increases and saturates after around
��-15 ⌧" . The distance required decreases with energy, which is expected due to the increased energy density of hadron showers
with particle energy due to a greater EM-fraction.

I For the DGCNN and GravNet models shown in Figures �.��d-�.��f and Figures �.��g-�.��i, significant improvements by up to 10 % are
observed with the inclusion of timing information, indicated by the red line compared to the green line and is in agreement with the
results of Figure �.��. It is noted that this improvement typically increases with separation distance before equalising at around
��-15 ⌧" separation distance. However, no strong correlation is observed between the improvement and shower distance.
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Mean Fraction of Events Reconstructed Within Calorimeter Resolution vs Lateral Shower Distance for
10 GeV Synthetic Neutral Showers Separated from 10 GeV and 30 GeV Charged Showers, For Each Shower
Separation Model Under Test Applied To The Test Sample of Simulation, Compared to the Study of [��]

(a) (b) (c)

(d) (e) (f)

Figure �.��: Figures �.��a-�.��c and Figures �.��d-�.��f show the mean fraction of events reconstructed within the calorimeter resolution as
a function of lateral shower distance for PointNet, DGCNN and GravNet, for 10 GeV synthetic neutral showers separated from 10 GeV and
30 GeV Charged Showers, respectively. The green and red points show the models trained without and with timing information, respectively.
The blue markers indicate the performance of Pandora PFA as applied in the study of Figure �.�� of [��], and were extracted from these plots.

Comments:

I Except in the case of PointNet in Figure �.��d, all networks show a significant improvement in performance compared to Pandora
PFA.

I For 10 GeV synthetic neutral showers separated from 10 GeV charged showers, GravNet and DGCNN reconstruct nearly all of the
events within the calorimeter resolution at inter-shower distances greater than 50 mm, corresponding to a maximum improvement
of an additional 25 % of events reconstructed within the calorimeter resolution, with or without timing information.

I For 10 GeV synthetic neutral showers separated from 30 GeV charged showers, GravNet and DGCNN show a significant improvement
over Pandora PFA inter-shower distances greater 50 mm, corresponding to a maximum improvement of an additional ��-30 % of
events reconstructed within the calorimeter resolution without timing information, and an additional ��-45 % of events reconstructed
within the resolution with timing information.

I It is notable that the reconstruction efficiency of Pandora PFA ’flattens out’ by comparison to the methods under test at distances
below 50 mm since a more reasonable expectation would be continuous degradation in the performance as a function of distance, as
is observed for the models under test. The reason for this effect is unknown.

I It is interesting to note that the performance of PointNet with timing information in Figure �.��d is essentially the same as Pandora
PFA for most distances under test, and is more consistent with the ’s’-shape of the performance in this case than GravNet or DGCNN.
However, the reasons why are again unknown.
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Mean Fraction of Events Reconstructed Within Calorimeter Resolution vs. Longitudinal Shower Distance
for Showers Within 5 ⌧" Of One Another for 10 GeV, 40 GeV and 80 GeV Synthetic Neutrals Separated From
5-120 GeV Charged Showers for Each Shower Separation Model Under Test Applied To The Test Sample of

Simulation

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure �.��: Figures �.��a-�.��c, Figures �.��d-�.��f and Figures �.��g-�.��i show the mean fraction of events reconstructed within the
calorimeter resolution as a function of longitudinal shower distance (i.e. the shower starting position of both showers) for PointNet, DGCNN
and GravNet, respectively. The green and red points show the models trained without and with timing information, respectively.

Comments:

I For all models, an improvement in the shower separation capacity of hadron showers with differing shower starting positions is
observed for 10 GeV hadron showers and is less prevalent for other particle energies.

I In Figures �.��d-�.��f and Figures �.��g-�.��i, significant improvements of up to additional 10 % due to timing information is
observed. This improvement, however, is largely independent of the difference in the shower starting positions within the error.
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�.�.�.� Skewness of Confusion Energy

Biases in confusion energy are observed in the study, which is indicated in
Figure �.��, Figure �.�� and Figure �.��. These biases may be quantified
by the skewness of the confusion energy distributions such that they may
be studied.

To quantify the skewness, the medcouple as defined in Chapter � was
calculated for all possible shower energy combinations for each combina-
tion of charged and neutral particle energies as in Figure �.��. It is noted
that essentially the same conclusions may be obtained with standard
skewness, and therefore this is not shown.

Summary Comment to Figure �.��

All methods of shower separation tend to produce an ’altruistic’
shower separation technique, where the higher energy shower ’do-
nates’ energy to the lower energy one. This is indicated by the tendency
for the neutral shower energy to be overestimated where the charged
particle energy is greater than the neutral particle energy, and vice
versa.

The study of [���] observed similar skewness in confusion when separat-
ing two charged hadrons with implementations of GravNet and DGCNN.
In the study, the effect was attributed to the expectation value of the loss
function being above/below the limits of 5hit 2 [0, 1], resulting in bias
that results in this effect. No verification of this argument is provided in
the reference and is therefore speculative.

This claim can be assessed by comparison to the results of Pandora
PFA, which has no loss function and is instead a designed algorithm.
A study to the one performed in this chapter was performed in [��],
instead validating the performance of Pandora PFA in shower separation,
using simulation and ���� June Testbeam data obtained under the same
conditions as presented in this chapter. Specific differences in the analysis
chain may be found in the reference. Under the hypothesis made in [���],
if the effect of skewness is entirely a result of the loss function, then the
Pandora PFA method ought not to be skewed when separating hadron
showers with a disparity between particle energies.

A comparison between distributions is shown between studies in Figure
�.��

Summary Comment to Figure �.��

It may be concluded that both distributions produced by Pandora PFA
and GravNet, without timing information, applied to shower separa-
tion of a 10 GeV neutral and a 30 GeV charged hadron shower, result
in similar distributions with right-tailed skewness. The hypothesis
made in [���] cannot explain the agreement between studies.

Another plausible hypothesis is that distributing energy from a high-
energy to a low-energy hadron shower during clustering is the optimal
strategy for reconstructing an event with a significant disparity between
them. It is noted that Pandora PFA preferentially splits up true clusters
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instead of aggregating them in the initial clustering phase, by design
[��], which states that: "by design the initial clustering stage errs on the side
of splitting up true clusters rather than merging energy deposits from more
than one particle into a single cluster.". This strategy is logical: the most
energy-dense region of a shower event is more probable to be a shower.
It can be used as a clustering prior alongside the track position. If true,
then the neural networks have learned the same technique autonomously.
However, this hypothesis is also speculative and requires further analysis
beyond the studies performed to confirm.
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Matrices of Medcouple of Confusion Energy Distributions for Each Shower Separation Model Under Test,
Applied to The Test Sample of Simulation

(a) (b) (c)

(d) (e) (f)

Figure �.��: Figures �.��a-�.��c and Figures �.��d-�.��f show the medcouple as a function of the charged and neutral particle energy, for
PointNet, DGCNN and GravNet, respectively. The colour axis indicates the medcouple. Red to blue indicates right-to-left-tailed skewness,
whereas white indicates no skewness. Red indicates that the confusion energy tends towards the overestimation of the shower energy, while
blue tends towards the underestimation of the shower energy.

Comments:

I In all shower separation models, with or without timing information, a clear observation is that the neutral shower energy tends to
be more frequently underestimated where the neutral shower energy is greater than the charged shower energy, and vice versa. In
the case where they are approximately equal, negligible skewness is observed. It may be concluded that the shower with the higher
of the two energies typically ’donates’ energy to the lower energy shower.
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Comparison of the Confusion Energy Distributions Comparing 10 GeV Neutral from 30 GeV Charged
Hadron Showers By GravNet and Pandora PFA

(a)

(b)

Figure �.��: Figure �.��a shows the confusion energy distribution produced by GravNet, without timing information, for the test sample of
simulation, separating a 10 GeV neutral hadron shower from a 30 GeV charged hadron shower. The purple and lilac dashed lines indicate
the 1� and 1.5� resolution bands for simulation. Figure �.��b shows the confusion energy distribution of the same event configuration
reconstructed at a distance of ���-325 mm (approximately ��-13 ⌧" , i.e. well-separated) applied to an analogous shower separation task
performed in [��] using Pandora PFA, showing June ���� Testbeam Data, and two sources of the simulation produced using the same
conditions as this the study presented in this Chapter. The green and orange lines indicate the 1� and 1.5� resolution bands for CALICE
June ���� Testbeam Data. Taken from [��]. Note that the original nomenclature for the limits in [��] errantly presented the limits as 2 � and
3 � in that study.

Comments:

I The distributions of confusion energy, including the skewness observed in the GravNet model under test, show excellent agreement
with the study of [��], indicating that similar skewness is also observed in Pandora PFA.
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�.�.�.� Examples Event Displays of Failure Modes

Two main examples of failure modes (i.e. where the confusion energy
was greater than 3 �⇢) were observed: the case where the neutral particle
energy is greater and the case where the charged and neutral hadron
showers are observed with close centres of gravity. Both modes are
expected from the analysis in this section and are presented in Figure
�.�� and Figure �.��.

Summary Comment To Figure �.�� and Figure �.��

Confusion energy is expected to affect the HAD-halo in events with
⇢
&

particle � ⇢
#

particle. It is noted timing may aid in the reassociation of
clusters that may otherwise be difficult to separate purely from the
spatial dependence of the energy. In the case of two completely over-
lapping showers, with similar shower starting layers and impinging
positions, bias is observed towards the shower with the lowest energy.
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Example Event Displays of a 25 GeV Synthetic Neutral Hadron Shower and a 115 GeV Charged Shower, After
the Application of Each Shower Separation Model Under Test, With |⇢#confusion | > 3�⇢

(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure �.��: Example event displays illustrating the application of the trained algorithms to test charged and synthetic neutral hadron
shower event. This case gives more than a 3�⇢ confusion energy in the observed confusion case where ⇢&particle > ⇢

#

particle. Else, as in Figure
�.�� and Figure �.��.

Comments:

I It is noted that, in general, most confusion energy is in the HAD-halo region of the hadron shower, in the form of energy that
belonged to the charged hadron shower in red to the neutral shower in blue. This is observed for all models studied in this example
and is therefore expected to degrade the performance of SC models in the HAD-halo.

I Comparison of Figures �.��d and �.��g and Figures �.��e and �.��h indicates that the addition of timing information results in a
better association of the confusion energy at the ’boundary’ between the two showers. This could indicate that confusion of neutral
fragments is reduced using timing information compared to without.
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Example Event Displays of a 85 GeV Synthetic Neutral Hadron Shower and a 25 GeV Charged Shower, After
the Application of Each Shower Separation Model Under Test, With |⇢#confusion | > 3�⇢

(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure �.��: Example event displays illustrating the application of the trained algorithms to test charged and synthetic neutral hadron
events. This case gives more than a 3�⇢ confusion energy due to a shower configuration where one is on top of the another. Else, as in
Figure �.�� and Figure �.��.

Comments:

I In this event, both hadron showers were observed in a configuration where one shower is on top of the another with similar shower
starting positions. It is expected to be broadly unresolvable. This configuration thus grants some insight into the default behaviour
of the algorithms.

I All models, with or without time, is observed to allocate more energy to the neutral shower than the charged one than in the ground
truth where no clear separation of showers is achieved, indicating a learned bias in the reconstruction.

I Additionally, comparison of Figures �.��d and �.��g to Figures �.��e and ?? indicate that the DGCNN and GravNet models result in
superior clustering using timing information.



��� � �D Shower Separation with Machine Learning

�.�.�.� Software Compensation of Separated Neutral Hadron Showers

In this section, the performance of the software compensation models
developed in Chapter � is applied to simulation for the best perform-
ing shower separation model, GravNet, using the same two-standard
deviation Gaussian fitting method as described in Section �.� of Chapter
�.

In addition to the cuts specified in Section �.�.�, three additional cuts
were applied to the testing dataset:

I events were selected as having reconstructed energy within 1 �⇢
for the particle energy under test;

I the same tail-catcher cut is applied as in Chapter � of ⇢N,TCMT
sum <

25 MIP is applied to reduce leakage to neutral hadron showers
reconstructed within the resolution of the AHCAL. It is assumed
that the tail catcher energy is known perfectly since it is used
for tagging leakage in this study and does not contribute to the
evaluation of the clustering performance;

I a 0.5 MIP active cell energy threshold is applied to the minimum
energy of the separated neutral event. This is required because
the SoftMax function cannot output a hard � or � for a fraction,
often resulting in negligibly small energy deposits below the noise
threshold for AHCAL. This is problematic because the SC model
has no exposure to active cells with energies below 0.5 MIP and
was observed to enhance the energy of these spurious confusion
hits very strongly as if they were part of the HAD fraction. This
problem can be cured by applying a threshold cell energy of that
value to the separated neutral event, or training the model with
energy fraction information as proposed later in this section.

For GravNet, a total of 82 % and 87 % of the entire test sample were
reconstructed within the calorimeter resolution. Therefore this study
limits the amount of confusion experienced by the SC model. However,
the SC model trained in Chapter � has no exposure to events with any
amount of confusion energy. The influence of the confusion is studied by
comparing the performance of the SC model on the whole dataset and
separately for the subset ⇢#particle � ⇢

&

particle, which is demonstrated in
Figure �.��g and �.��h to be the best case scenario for shower separation.
It is expected that SC will perform optimally for the subset and degrade
as confusion energy is introduced.

The uncompensated and compensated reconstructed neutral energy
distributions are shown for all events in Figure �.�� and for ⇢#particle �
⇢
&

particle in Figure �.��. The linearity and resolution for both cases are
shown in Figure �.��.
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Summary Comment to Figures �.��-�.��

The SC network trained in Chapter � improves resolution for separated
neutral showers in simulation, indicating that the technique can be
applied to separated hadron showers. Bias is served, which can be
attributed to confusion by comparison of the results with for cases
where ⇢#particle > ⇢

&

particle.

A limitation to training the SC model without including confusion and
then applying it to showers with confusion energy is observed bias in
the reconstruction.

As a potential solution to the caveats presented in this section, a practical
application of the SC model will likely have to be made aware of the
predicted energy fractions from the shower separation model such that
the SC model can adapt to the concept of confusion energy. The models
could be trained in tandem as part of the same network: one to separate
the energy deposits and another to perform energy reconstruction.

This could be achieved by first determining fractions of each hadron
shower using a shower separation network like GravNet then, indexing
the energy fractions of neighbours as part of the :-NN operation applied
in the SC network as explained in Section �.�.�. This would allow the
network to identify clusters that are likely to have come from confusion
and develop a more sophisticated weighting technique to account for
this possibility. This would involve minor modifications to the existing
models and could be achieved by training the SC model as a submodule
of the shower separation network.

Nonetheless, the resolution is improved in both cases studied, and
therefore the SC network presented in Chapter � indicates a promising
new technique for PF software compensation.
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Synthetic Neutral Reconstructed Energy Distributions Produced After Shower Separation By GravNet On
Events Reconstructed Within The Calorimeter Resolution, Without and With Timing Information, After

Separation, Without and With SC, Without And With SC Timing Information, with TCMT Cut Applied, For
All Charged Hadron Shower Energies, Applied To 10 GeV, 40 GeV and 80 GeV Neutral Hadron Particle

Energies In The Test Sample of Simulation

(a) (b) (c)

(d) (e) (f)

Figure �.��: Reconstructed neutral hadron shower energy distributions for the GravNet network applied to the test sample of simulation,
with no other selection criteria applied. The blue dashed line indicates the ground truth (perfectly known) reconstructed energy distribution.
The green and red lines indicate the SC trained and applied without and with timing information, respectively, applied after separation.
The purple dashed line indicates the particle energy.

Comments:

I Comparison of the blue dashed and blue lines illustrate that the GravNetmodel typically produces a reconstructed energy distribution
close to the original shower energy distribution, thereby indicating that GravNet is an effective shower separation algorithm.

I It is observed that the SC networks tend to produce distributions with a smaller width, indicating that compensation is being
performed.

I Figure �.��a and Figure �.��d indicate a systematic bias in the mean reconstructed shower energy. This bias was not observed in
Chapter �, and therefore can only be a consequence of the confusion energy.

I Overall, the distributions observed appear qualitatively Gaussian.
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Synthetic Neutral Reconstructed Energy Distributions Produced After Shower Separation By GravNet On
Events Reconstructed Within The Calorimeter Resolution, Without and With Timing Information, After

Separation, Without and With SC, Without And With SC Timing Information, with TCMT Cut Applied, For
⇢
#

particle > ⇢
&

particle, Applied To 10 GeV, 40 GeV and 80 GeV Neutral Hadron Particle Energies In The Test
Sample of Simulation

(a) (b) (c)

(d) (e) (f)

Figure �.��: Reconstructed neutral hadron shower energy distributions for the GravNet network applied to the test sample of simulation,
with no other selection criteria applied. The blue dashed line indicates the ground truth (perfectly known) reconstructed energy distribution.
The green and red lines indicate the SC trained and applied without and with timing information, respectively, applied after separation.
The purple dashed line indicates the particle energy.

Comments:

I Comparison of Figure �.�� with this figure indicates that, overall, smaller bias and proportionally greater compensation are
⇢
#

particle > ⇢
&

particle than when all events are included. This is expected from the prior observation that the reconstruction worsens
depending on the particular combination of charged and neutral hadron.

I Else, as in Figure �.��.
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Linearity And Resolution of Separated Neutral Hadron Showers Obtained From GravNet Model With and
Without SC, Applied To The Test Sample Of Simulation, Studied For All Events and Events Where

⇢
#

particle < ⇢
&

particle

(a) (b)

(c) (d)

Figure �.��: Figures �.��a and �.��b and Figures �.��c and �.��d show the linearity and resolution of the neutral showers after separation by
GravNet, using all events and for the case ⇢#particle < ⇢

&

particle. The up and down arrows indicate the use of timing information in the shower
separation model. The blue, green and red colours indicate the intrinsic calorimeter responses, and SC networks with and without timing
information, after separation. Else, as in Figures �.��a and �.��b.

Comments:

I Figures �.��c and �.��d indicate an improvement in resolution is observed by application of SC for both studied cases, as observed
in Figures �.�� and �.��.

I Comparison of Figures �.��a and �.��b and Figures �.��c and �.��d indicate that, if applied to the entire dataset, a significantly
greater bias (no more than �-7 %) and slightly worse resolution is produced than in the case where ⇢#particle > ⇢

&

particle, which
produces a linear response and a superior overall resolution. In particular, confusion energy affects the events in the energy range
��-40 GeV, which in particular experience overestimation of the shower energy. Small amounts of confusion energy could explain
this in the HAD halo, which is energy-enhanced and produces a greater overall SC response.

I The effect could be explained by the inclusion of low-energy hits from another shower, which are typically in the HAD-halo and
most likely to be confused between showers (e.g. in Figure �.��, confusion energy is wrongly attributed to the neutral hadron shower.
Most of it could be confused with the HAD halo.). The study of Chapter � indicates that these energy deposits are likely to be
enhanced, resulting in a general tendency to overestimate the response of the event. This would also explain the downwards-sloping
bias observed in Figure �.��a compared to Figure �.��b.

I The inclusion of timing information produces a marginally superior resolution, as indicated by the red arrows being lower overall
than the green arrows. improvement in resolution in Figures �.��c and �.��d. The biases are observed Figures �.��a and �.��b are
found to be relatively similar with time as without.
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�.�.� Data Model

In this section, the best-performing network from the previous section,
GravNet, as described in Section �.�.� was trained on data, without
timing information, and evaluated. The corresponding network trained
on simulation was then evaluated using the same events to determine
if significant differences were observed between the performance on
simulation and data and if the shower separation can be trained on a
limited data sample.

�.�.�.� Example Event Displays

As in Section �.�.�.�, example event displays are shown for 10 GeV, 40 GeV
and 80 GeV neutral hadron showers separated from a 40 GeV charged
hadron shower in Figures �.��-�.��. The models trained on simulation
and data are compared in these example events.

Summary Comment to Figures �.��-�.��

The shower separation models show qualitatively similar performance
when applied to shower separation of data showers as simulation
showers, evidenced by the similar performance of the model trained
on simulation as the model trained on data.
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Example Event Displays of a 10 GeV Synthetic Neutral and a 40 GeV Charged Hadron Shower, After the
Application of The GravNet Shower Separation Model Trained On Simulation And Data, Applied To

Testing Dataset in Data

(a) (b)

(c) (d)

Figure �.��: Example event displays illustrating the application of the trained algorithms to a test charged and synthetic neutral hadron
shower event. Figure �.��a shows the initial combined event, as in Figure �.��. Figure �.��b shows the original event to be reconstructed, as
in Figure �.��. Figures �.��c and �.��d show the GravNet models as described in Section �.�.� trained on simulation and data, respectively.

Comments:

I As for Figures �.��-�.��, the GravNet model qualitatively separates hadron showers in good agreement with the ground truth.

I Figures �.��c and �.��d indicate that the model trained on simulation and data perform similarly overall.
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Example Event Displays of a 40 GeV Synthetic Neutral and a 40 GeV Charged Hadron Shower, After the
Application of The GravNet Shower Separation Model Trained On Simulation And Data, Applied To

Testing Dataset in Data

(a) (b)

(c) (d)

Figure �.��: Example event displays illustrating the application of the trained algorithms to a test charged and synthetic neutral hadron
shower event. Figure �.��a shows the initial combined event, as in Figure �.��. Figure �.��b shows the original event to be reconstructed, as
in Figure �.��. Figures �.��c and �.��d show the GravNet models as described in Section �.�.� trained on simulation and data, respectively.

Comments:

I As in Figure �.��.
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Example Event Displays of a 80 GeV Synthetic Neutral and a 40 GeV Charged Hadron Shower, After the
Application of The GravNet Shower Separation Model Trained On Simulation And Data, Applied To

Testing Dataset in Data

(a) (b)

(c) (d)

Figure �.��: Example event displays illustrating the application of the trained algorithms to a test charged and synthetic neutral hadron
shower event. Figure �.��a shows the initial combined event, as in Figure �.��. Figure �.��b shows the original event to be reconstructed, as
in Figure �.��. Figures �.��c and �.��d show the GravNet models as described in Section �.�.� trained on simulation and data, respectively.

Comments:

I As in Figure �.��.
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�.�.�.� Linearity Of Response

As in �.�.�.�, the distributions of the reconstructed hadron shower energy
are presented as a function of the original shower energy for all for
the GravNet model, trained on simulation and data. They are shown in
Figure �.��. The linearity of response for the reconstructed neutral is
once again measured using the mean and the MPV.

Summary Comment to Figure �.��

Bias is once again observed in the energy reconstruction, indicating
this effect is not a consequence of using simulation to train the models.
Performance is similar between networks trained on simulation and
data.

�.�.�.� Spread of Confusion Energy

As in Section �.�.�.�, the complete distributions of the reconstructed
hadron shower energy are presented as a function of the original shower
energy for the GravNet model, trained on simulation and data. They are
shown in Figure �.��, with the RMS90 and MAD of each distribution
shown.

Summary Comment to Figure �.��

Both networks trained on simulation and data achieve similar perfor-
mance, with minor differences in the order of 100 MeV in MAD and
RMS90. This indicates that shower separation networks are unaffected
by the particular average energy density of the hadron showers and
can be applied in experimental data.

�.�.�.� Fraction of Events Reconstructed Within Calorimeter
Resolution vs. Charged/Neutral Particle Combination

As in Section �.�.�.�, the fraction of events reconstructed within the
calorimeter resolution as described in Equation �.� as a function of the
combination of charged and neutral particle energy are shown in Figure
�.��. The resolution was obtained from the study of Chapter � presented
in Table �.� of 'sim = 56.1 %/

p
⇢particle � 6.1 %.

Summary Comment to Figure �.��

As in Section �.�.�.�, above ��-90 % of events are reconstructed within
the calorimeter resolution where the neutral hadron energy is greater
than the charged hadron energy. The performance degrades for the
opposite case. There is no more than a 5 % difference between the
results obtained from training with simulation and data.



��� � �D Shower Separation with Machine Learning

Joint Distribution between Predicted and True Reconstructed Neutral Shower Response of the Test Sample
of Data For GravNet Trained on Simulation and Data

(a) (b)

Figure �.��: Distributions of the neutral confusion energy for each shower separation model under test. The green and brown lines indicate
the GravNet models, trained on RMS90 and MAD are shown in the legend for each model.

Comments:

I Comparison of Figure �.��a and Figure �.��b indicate that the two models perform with about the same overall performance at
separating hadron showers in data.

I Similar biasing is observed when applying the models to data, as in Figure �.��.

Distributions of Confusion Energy for the Entire Test Sample of Data, With and Without Timing
Information, For GravNet Trained Without and With Timing Information

Figure �.��: Distributions of the neutral confusion energy for each shower separation model under test. The green and brown lines indicate
the GravNet models, trained on RMS90 and MAD are shown in the legend for each model.

Comments:

I Comparison of the brown and green curves indicate that the two models perform with about the same overall performance at
separating hadron showers in data. A slightly larger RMS90 and MAD are observed for the model trained with simulation than the
one trained with data, though the width depends on the energy combinations chosen for study.

I This result implies that the differences in energy density observed in Section �.�.�.� and Section �.�.� do not significantly affect the
performance of the reconstruction or that shower separation models.

I It is noted that the SC network of Chapter � observed a much greater influence of the energy density on the output of the model.
However, this is expected because the shower separation algorithm presented does not involve reconstructing the energy but instead
the fraction of the shower energy belonging to each shower in each cell.
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Matrices of the Fraction of Events Reconstructed Within Calorimeter Resolution for Each Shower Separation
Model Under Test Applied To The Test Sample of Data

(a) (b) (c)

Figure �.��: Figures �.��a and �.��b show the matrices of the fraction of events with energy reconstructed within the calorimeter resolution
as a function of the charged and neutral particle energy for GravNet, trained with and without timing information, respectively, where red
to blue indicates a higher to lower percentage of events. The turquoise dashed line indicates ⇢&particle = ⇢#particle, while white lines indicate
contours. Figure �.��c indicates the ratios of the fractions.

Comments:

I Figures �.��a-�.��b indicate the same assymmetry as observed in Figure �.��. This result indicates that the effect is not necessarily
from using simulation or data to train the neural networks.

I Figure �.��c indicates that the fraction of events reconstructed within the resolution of the AHCAL by the GravNet network trained
on simulation and data varies by no more than around 5 %. This result means that the performance of the neural networks is not
strongly related to the choice to use simulation or data for training the models.
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Distributions of Confusion Energy for Possible Combinations of Charged and Neutral Hadron Particle
Energies at 10 GeV, 40 GeV and 80 GeV For GravNet Trained On Simulation And Data, Applied To The Test

Sample Of Data

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure �.��: Distributions of confusion energy for the GravNet network applied to the test sample of data. The green and brown lines
indicate the models trained on data and simulation, respectively. The purple dashed lines indicate the resolution of the AHCAL calorimeter
in simulation.

Comments:

I No significant differences between the model trained on simulation and on data were observed.

I Else, as in Figure �.��.
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�.�.�.� Fraction of Events Reconstructed Within Calorimeter
Resolution vs. Lateral Shower Distance

As in Section �.�.�.�, the fraction of reconstructed events within the
calorimeter resolution was determined as a function of lateral shower
distance for the GravNet model trained on simulation and data. The
results are shown in Figure �.��.

Summary Comment to Figure �.��

As the lateral distance between hadron showers increases, so too does
the fraction of reconstructed events increase and saturate after around
��-15 ⌧" . No significant differences between the model trained on
simulation and on data were observed.

�.�.�.� Fraction of Events Reconstructed Within Calorimeter
Resolution vs. Longitudinal Shower Distance

As in Section �.�.�.�, the fraction of reconstructed events within the
calorimeter resolution was determined as a function of longitudinal
shower distance for the GravNet model trained on simulation and data.
The results are shown in Figure �.��.

Summary Comment to Figure �.��

The performance of the models increases as the difference between
shower starts increases, with less of an effect the greater the particle
energy is. No significant differences between the model trained on
simulation and on data were observed.

�.�.�.� Skewness of Confusion Energy

As in Section �.�.�.�, the medcouple as defined in Chapter � was calculated
for all possible shower energy combinations for each combination of
charged and neutral particle energies as in Figure �.��. The results are
shown in Figure �.��

Summary Comment to Figure �.��

All methods of shower separation tend to produce an ’altruistic’
shower separation technique, where the higher energy shower ’do-
nates’ energy to the lower energy one. No significant differences
between the model trained on simulation and on data were observed.
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Mean Fraction of Events Reconstructed Within Calorimeter Resolution vs. Lateral Shower Distance for
10 GeV, 40 GeV and 80 GeV Synthetic Neutrals Separated From 10-120 GeV Charged Showers for GravNet

Trained On Simulation and Data, Applied To The Test Sample of Data

(a) (b) (c)

Figure �.��: Figures �.��a-�.��c, show the mean fraction of events reconstructed within the calorimeter resolution as a function of lateral
shower distance for GravNet. The green and brown points show the models trained on simulation and data, respectively.

Comments:

I No significant differences between the model trained on simulation and on data were observed.

I Else, as in Figure �.��.

Mean Fraction of Events Reconstructed Within Calorimeter Resolution vs. Longitudinal Shower Distance
for 10 GeV, 40 GeV and 80 GeV Synthetic Neutrals Separated From 10-120 GeV Charged Showers for GravNet

Trained On Simulation and Data, Applied To The Test Sample of Data

(a) (b) (c)

Figure �.��: Figures �.��a-�.��c, show the mean fraction of events reconstructed within the calorimeter resolution as a function of
longitudinal shower distance (i.e. the shower starting position of both showers) for GravNet. The green and brown points show the models
trained on simulation and data, respectively.

Comments:

I No significant differences between the model trained on simulation and on data were observed.

I Else, as in Figure �.��.
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Matrices of Medcouple of Confusion Energy Distributions for Each Shower Separation Model Under Test,
Applied to The Test Sample of Simulation

(a) (b)

Figure �.��: Figures �.��a and �.��b show the medcouple as a function of the charged and neutral particle energy, for PointNet, DGCNN
and GravNet, respectively. The colour axis indicates the medcouple. Red to blue indicates right-to-left-tailed skewness, whereas white
indicates no skewness. Red indicates that the confusion energy tends towards overestimation of the shower energy, while blue tends towards
underestimation of the shower energy.

Comments:

I No significant differences between the model trained on simulation and on data were observed.

I Else, as in Figure �.��.

�.�.�.� Software Compensation of Separated Neutral Hadron Showers

As in Section �.�.�.�, SC is applied to the separated neutral shower in data,
using the same method and cuts as described in that section. Around
81 % of events were reconstructed within the calorimeter resolution for
both the model trained on simulation and data and therefore SC applies
to the majority of events studied.

The uncompensated and compensated reconstructed neutral energy
distributions are shown for all events in Figure �.�� and for ⇢#particle �
⇢
&

particle in Figure �.��. The linearity and resolution for both cases are
shown in Figure �.��.

Summary Comment to Figures �.��-�.��

The SC network trained in Chapter � improves resolution for separated
neutral showers in data, indicating that the technique can be applied
to separated hadron showers, and experiences lower bias for the
⇢
#

particle > ⇢
&

particle sample than the sample where all events are used
for the same reasons as discussed in Section �.�.�.�. No significant
differences between the model trained on simulation and on data
were observed.

This result illustrates that both the shower separation and software
compensation networks trained in and this chapter and Chapter � are
applicable to experimental data. This means that both models can be
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applied in an experimental setting, which therefore validates the work
performed in both of those chapters.
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Neutral Reconstructed Energy Distributions Produced After Shower Separation By GravNet On Events
Reconstructed Within The Calorimeter Resolution, Trained On Simulation And Data, After Separation,
With and Without SC, with TCMT Cut Applied, For All Charged Hadron Shower Energies, Applied To

10 GeV, 40 GeV and 80 GeV Neutral Hadron Particle Energies In The Test Sample of Data

(a) (b) (c)

(d) (e) (f)

Figure �.��: Reconstructed neutral hadron shower energy distributions for the GravNet network applied to the test sample of data, with no
other selection criteria applied. The blue dashed line indicates the ground truth (perfectly known) reconstructed energy distribution. The
green lines indicate the SC trained and applied without timing information on data, applied after separation. The top and bottom rows
show the shower separation network trained on data and simulation. The purple dashed line indicates the particle energy.

Comments:

I No significant differences are observed in the response obtained for the shower separation model trained on simulation and data,
both in qualitatively good agreement with the ground truth, indicated by the agreement of the dashed and solid blue lines.

I Comparison of the solid blue and green lines indicate that compensation is being applied, indicated by the reduced width of the
distribution.

I Else, as in Figure �.��.
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Neutral Reconstructed Energy Distributions Produced After Shower Separation By GravNet On Events
Reconstructed Within The Calorimeter Resolution, Trained On Simulation And Data, After Separation,

With and Without SC, with TCMT Cut Applied, For For ⇢#particle < ⇢
&

particle, Applied To 10 GeV, 40 GeV and
80 GeV Neutral Hadron Particle Energies In The Test Sample of Data

(a) (b) (c)

(d) (e) (f)

Figure �.��: Reconstructed neutral hadron shower energy distributions for the GravNet network applied to the test sample of data, with no
other selection criteria applied. The blue dashed line indicates the ground truth (perfectly known) reconstructed energy distribution. The
green lines indicate the SC trained and applied without timing information on data, applied after separation. The top and bottom rows
show the shower separation network trained on data and simulation. The purple dashed line indicates the particle energy.

Comments:

I Comparison of Figure �.�� with this figure indicates that, overall, smaller bias and proportionally greater compensation are
⇢
#

particle > ⇢
&

particle than when all events are included, which is the same conclusion as for Figure �.��.

I Else, as in Figure �.��.



�.� Results ���

Linearity And Resolution of Separated Neutral Hadron Showers Obtained From GravNet Model With and
Without SC, Applied To The Test Sample Of Data, Studied For All Events and Events Where

⇢
#

particle < ⇢
&

particle

(a) (b)

(c) (d)

Figure �.��: Figures �.��a and �.��b and Figures �.��c and �.��d show the linearity and resolution of the neutral showers after separation
by GravNet, using all events and for the case ⇢#particle < ⇢

&

particle. The up and down arrows indicate the use of timing information in the
shower separation model. The blue, green and red colours indicate the intrinsic calorimeter responses, and SC networks with and without
timing information, after separation. Else, as in Figures �.��a and �.��b.

Comments:

I Figures �.��c and �.��d indicate that reconstruction of the event trained with or without timing information has a negligible effect
on the resolution;

I Figure �.��d indicates a maximum of a 20 % improvement in the resolution is observed for the ⇢#particle < ⇢
&

particle case.

I Else, as in Figure �.��.
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�.� Conclusion

Three neural networks designed for the classification of point clouds
were applied to the task of separating a charged and neutral hadron
shower with the AHCAL highly-granular calorimeter in order to evaluate
the shower separation performance of the calorimeter. Firstly, a method
for producing synthetic neutral events by removal of the MIP-track was
evaluated and found to produce events nearly indistinguishable from
 

0
!

hadrons. Secondly, a choice of the average lateral distance between
hadron showers was considered, and a baseline distance at which 80 % of
a hadron shower of a particular energy would be integrated was chosen as
a baseline average distance. Synthetic two-shower events well contained
within the AHCAL were then produced using a shower combination
algorithm. The properties of the clustering by the neural network were
evaluated, including the influence of timing information in the neural
networks, both for simulation and data.

Firstly, it was observed that PointNet did not observe an improvement in
resolution using timing information, whereas DGCNN and GravNet were
capable of doing so. For the best-performing neural network (GravNet)
this corresponded to a reduction of the MAD by around 23 %. By contrast,
PointNet did not observe an improvement due to timing information.
This result was tentatively attributed to the improved sensitivity of
GravNet and DGCNN to ’local energy density’ compared to PointNet,
which does not exploit this information by design. This result was also
compatible with the improvements observed with lateral and longi-
tudinal shower separation distances, which suggested a minor to no
correlation between the improvement due to timing information and
these observables. This result tentatively suggests that the benefit of
using timing information in shower separation algorithms is more so-
phisticated than was first anticipated. Specifically, the increased optimal
✏ hyperparameter of the GravNet model indicates that the decision
boundary achieved captures more of the local structure, or substructure
of the hadron shower using timing information than without. However,
this result is speculation and requires further analysis beyond the scope
of this study to fully verify.

Secondly, all models exhibited asymmetry in performance depending on
whether or not the charged shower had more energy than the neutral one.
For ⇢#particle � ⇢

&

particle, ��-90 % of the events were reconstructed within

the calorimeter resolution. For ⇢&particle > ⇢
#

particle, model performance
was observed to degrade. This can be attributed to the better performance
achievable with a disparity between track position and the centre-of-
gravity of the most energetic shower. This is rarely the case where
the charged shower has more energy than the neutral. This result was
compatible with observed trends between the confusion energy, the
charged shower energy and the difference between the charged track
and the centre of gravity. Additionally, timing information was found to
explicitly increase the number of events reconstructed correctly of the
case ⇢&particle > ⇢

#

particle by ��-20 %, making a strong case for the temporal
sensitivity of AHCAL for the use of shower separation, and also suggests
that the model exploits track information during clustering. This result
may be inferred with certainty that timing information provides a better
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description of the hadron shower development than without it.

Thirdly, a comparison was made to a previous shower separation study
using AHCAL and Pandora PFA in [��] of the fraction of events recon-
structed within �.� calorimeter resolutions was evaluated as a function of
inter-shower distance in this chapter and from that study. The results in-
dicate significant improvements in the performance of the tested models
compared to Pandora PFA. For example, the number of events recon-
structed within the AHCAL resolution increased by up to an additional
25 % for 10 GeV charged showers separated from 10 GeV synthetic neu-
tral hadron showers, and by a maximum of ��-45 % for 30 GeV charged
showers separated from 10 GeV synthetic neutral showers. Although
the models are trained with the assumption of the presence of both a
charged and synthetic neutral hadron shower in the event, these findings
tentatively suggest that the clustering capacity of GravNet and DGCNN,
applied to Particle Flow shower separation, outperforms Pandora PFA in
the task of two-shower separation. Further investigation could involve
integrating the neural networks studied in this chapter as a module
within Pandora PFA and evaluating the reconstruction performance with
and without the module.

Fourthly, all models exhibited skewness in the confusion energy dis-
tributions, which suggested that all models independently learned an
’altruistic’ energy allocation model, which preferentially allocated more
confusion energy to the lower of the two energy showers than the one
with more. It was noted that the same distribution is observed for the
same particle energies and types in a complementary study using Pan-
dora PFA, tentatively suggesting the models autonomously learned a
similar strategy as humans have designed.

Fifthly, the SC network of Chapter � was applied to the separated neutral
showers. Improvements in the resolution were observed at all energies,
but biasing was observed due to the inclusion of confusion energy. This
is a consequence of the strong influence confusion energy can have on
the energy density of hadron showers with comparatively low energy
(< 40 GeV). It is suggested that this could be resolved by including energy
fractions in the SC models.

Finally, the studies on simulation were repeated for ���� June SPS Test-
beam data, and the simulation and data-trained models were compared.
No significant difference was observed between the model trained on
simulation and the model trained on data regarding performance and
properties. SC was also applied to data and achieved similar performance
as on simulation.

In summary, this study suggests that the AHCAL calorimeter is a highly
effective Particle Flow Calorimeter, enhanced by the temporal sensitivity
of the detector, and the models presented in Chapter � and this chapter
can be applied to experimental data.
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�.� Summary of Research

Future lepton collider experiments are required to achieve a jet energy
resolution of around 3 % in the jet energy range from ��-200 GeV to for
precision particle physics measurements. Particle Flow (PF) is expected
to attain this challenging requirement by utilising excellent tracking,
highly granular calorimeters and sophisticated clustering algorithms to
associate charged tracks with energy deposits in the calorimeters.

The CALICE AHCAL Fe-Sc prototype is a highly-granular calorimeter
prototype designed for PF, with around ��,��� individual SiPM-on-tile
readout channels per m3, and can measure the energy density of hadron
showers in both space and time.

All detector and event reconstruction aspects of the AHCAL must be
optimised to achieve these challenging jet energy resolution requirements,
which was the primary motivation for this thesis.

The research topics and conclusions of each chapter are therefore sum-
marised henceforth:

I High-precision calorimeter calibration requires single-channel cal-
ibration parameters. Therefore, two generally-available software
tools, LightSimtastic and PeakOTron, were developed to simulate
and automatically characterise the charge spectra of SiPMs for this
purpose.

In Chapter �, LightSimtastic was demonstrated to provide a
highly flexible simulation tool for SiPMs that can be used to study
the influence of different physics models and detector properties
on the device’s response.

In Chapter �, PeakOTron was demonstrated to accurately measure
critical SiPM parameters, such as the gain and pedestal position,
and non-standard parameters, like after-pulse probability, after-
pulse time-constant and dark count rate, from charge spectra.
These tools have a straightforward application in calibrating and
monitoring the individual channels of the AHCAL calorimeter.
For instance, PeakOTron can be used to measure and account for
effects such as decreasing breakdown voltage with increases in
temperature during the running of AHCAL. However, notably,
the tools developed can also be used in applications beyond the
AHCAL and therefore represents a helpful addition to the field of
SiPM characterisation.

I The HCAL resolution plays a role in jet energy resolution for
jet energies below 50 GeV and for the improved association of
energy deposits from charged particles to charged tracks. However,
the AHCAL is a non-compensating calorimeter. This means that
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the effects of stochastic fluctuations in the energy measurement
must be reduced by specially designed software compensation
(SC) algorithms that equalise the electromagnetic and hadronic
response of the calorimeter.

In Chapter �, a neural network method was developed to overcome
the limitations of energy biasing in software compensation models.
This was achieved by blinding the model to the overall energy
of the hadron shower and instead focusing the attention of the
network explicitly on local distributions of energy in the AHCAL
during a hadron shower. This is in contrast to many standard SC
methods, which typically result in bias to the training range due to
overtraining due to limited particle energies.

The application of the SC network resulted in calorimeter resolu-
tions for simulation of 40.2 %/

p
⇢particle�2.2 % and 37.2 %/

p
⇢particle�

2.4 %, without and with timing information. The network without
timing information trained on CALICE ���� SPS testbeam data also
achieved a comparable resolution of 41.9 %/

p
⇢particle � 4.0 %. In

both cases, the neural network outperformed the control method.

Explicit dependencies of the compensation on the development
of the hadron shower in space and time were observed, in line
with expectations from physics. The model also highlighted energy
regimes in agreement with the expectations from literature, with
no prior information than experimental data, and highlighted
differences between the energy densities of simulation and data.
This method directly improves the hadronic energy resolution and,
therefore, the clustering capability of the AHCAL. In addition,
the improved performance with timing information motivates the
temporal sensitivity of AHCAL.

I The jet energy resolution in PF for jet energies above 50 GeV is
influenced most heavily by confusion between energy deposits. Of
particular interest is reducing the confusion charged and neutral
hadron showers. Sophisticated clustering techniques are required
to utilise the five-dimensional sensitivity of the AHCAL for this
purpose. Machine learning has been demonstrated to accurately
cluster energy deposits of hadron showers in highly granular
calorimeters. However, existing studies have not explicitly included
critical information available to AHCAL, such as track information
for the charged shower and timing information.

In Chapter �, neural network methods from the literature were ap-
plied to the hadron shower separation of a single charged and single
synthetic neutral hadron shower to evaluate the additional cluster-
ing performance that can be achieved using temporal clustering
information. The experiment was carefully evaluated, accounting
for data synthesis techniques such as inter-shower distance and
the validity of generating synthetic hadron shower events from
charged ones by topological cuts. The neural networks were then
trained to attribute a fraction of energy to each hadron shower in
the event.

The neural networks demonstrated that AHCAL is a highly effective
Particle Flow Calorimeter and that upwards of 90 % of events
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can be reconstructed within the AHCAL calorimeter resolution
in simulation and data in most cases where the neutral shower
has more energy than the charged shower. Timing information
was highly beneficial for cases where the charged shower had
more energy than the neutral shower, increasing the number of
events within the resolution by ��-15 %. Additionally, while the
study’s limitations play a role in the interpretation of the result, the
performance of the machine learning models was demonstrated to
outperform Pandora PFA at the task of shower separation.

The importance of timing information was found to be more
complex than first anticipated, indicated by the capacity of graph
neural networks to exploit timing information compared to a point-
based model without access to local-energy density information,
which showed no substantial improvement with timing information.
Bias was observed, where the model allocated energy preferentially
from the higher to the lower-energy shower. This was noted as the
case for Pandora PFA in an adjacent study. It indicates that the
neural networks learned to preferentially ’split up’ energy deposits
rather than merge them. The energy separation capabilities of the
neural network were also superior regarding the lateral resolution
to this external study.

The SC model of Chapter � was successfully applied after shower
separation, indicating a promising new possibility of training both
energy reconstruction and shower separation algorithms in tandem.
The models trained on simulation performed the same as those
trained on data, meaning that the shower separation algorithms can
be applied in an experimental setting. This study demonstrates the
performance of the AHCAL detector and again motivates temporal
sensitivity as an observable.

These results are interpretable within the caveats of only applying
to the case of a charged shower separated from a synthetic neutral
one and that the model performs no track-labelling.

�.� Future Prospects

Finally, a selection of prospects for further study is presented which
could use this work as a basis.

AHCAL Calibration with PeakOTron A topic of future research is the
application of PeakOTron to LED calibration spectra taken from AHCAL.
This study was already performed in [��], but did not include the effects of
detector noise in the model. It would therefore be of interest to determine
the influence of SiPM noise effects and changes in the values obtained
for the gain and pedestal position. It would also prove a vital validation
study for the method presented in this thesis.
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End-to-End Machine-Learning-based Particle Flow Two modules of
Particle Flow have been assessed in this thesis: software compensation
and shower separation. Both have been proven to be successful in their
intended purpose. However, there are clear limitations to the study. A
true PFA would ultimately result in ’Particle Flow Objects’ (PFOs), high-
level objects condensing the combined information about an event from
the trackers and calorimeter. The study in this thesis has focused only on
limited subsets of this problem under specific conditions. Additionally,
the influence of detector noise on the effectiveness of training these
models has not been assessed.

Contemporary developments have proposed a method of Particle Flow
reconstruction called ’object condensation’ [���]. The fundamental idea
behind this is similar to standard Particle Flow algorithms: to condense
the properties of a hadron shower into a single object. The advantage
of this method is that the number of showers is not fixed and that an
arbitrary number of additional observables that are typically submodules
of a PFA would be condensed into a single function. Another advantage
is that it implicitly includes the possibility of identifying detector noise.

Based on this method and using a simplified version of the CMS Highly
Granular Calorimeter (HGCAL) proposed for High-Luminosity LHC
(HL-LHC), the proposed successor of the LHC as a calorimeter, the
study of [���] developed an end-to-end PFA utilising the GravNet model
with an object condensation approach for PF. The method demonstrated
successful single 4�, ✏ and �+ energy reconstruction, and even trans-
verse momenta of reconstructed @@̄ ! CC̄ induced-jets. Notably, timing
information, software compensation, PID and tracking information were
not included in the study.

A clear prospect is to implement this method for AHCAL. Many of the
basic ingredients (e.g. fake neutrals, shower combination techniques,
the GravNet model) have already been established in Chapter � and
can be readily repurposed to produce a more complex event topology
and implement the missing ingredients into this study. However, one
challenge would be the application of software compensation in this
framework. As has been demonstrated in Chapter �, energy reconstruc-
tion is highly sensitive to over-training in the single-particle case, and
it is unclear how to resolve the opposed approaches of blinding the
model to the reconstructed energy for learning compensation weights to
produce an unbiased, generalised SC algorithm, while simultaneously
producing object-like representations of particles in an event using object
condensation. A possible solution is to train the SC algorithm to operate
on multiple hadron showers (i.e. before separation) and use it as an input
into the object condensation network. This may be possible due to the
locally-defined nature of the model.

Generative Design for Particle Flow The effect of detector noise on
confusion is not trivial. In particular, it is unclear if it influences the
ideal AHCAL calorimeter design (i.e. cell size, absorber thicknesses).
A remarkable approach to this problem is to utilise a fully end-to-end
machine-learning-based PFA to optimise these quantities as ’hyperpa-
rameters’. This would allow a complete study into the optimal detector
design to achieve PF.



�.� Closing Remark ���

The procedure of optimising a device’s characteristics or design using on
an optimisation problem is called ’generative design’. Generative design
has been successfully used in physics cases to optimise instrumentation.
For instance, [���] used generative design to optimise the shape of the
magnetic coils of stellarators for nuclear fusion research. This study
is mentioned as it is analogous in its complexity and stringent design
requirements to those of a PF calorimeter.

Such an undertaking would require accurate simulations of jets and
particle interactions with matter, models of detector noise, carefully
defined design constraints and a PFA that can be entirely optimised using
arbitrary detector geometry and configurations. An end-to-end ML-
based PFA capable of identifying detector noise that could be trained to
perform best with fundamentally different detector designs could be one
ingredient for the potential of generative design to be applied to collider
experiments and confirm if the current specifications of AHCAL remain
optimal. However, this is speculation and would require considerable
effort, yet it remains an intriguing prospect.

�.� Closing Remark

This thesis has presented promising developments in traditional and
artificial intelligence-enhanced detector calibration techniques for the
highly granular AHCAL hadron calorimeter, from the sub-detector level
to high-level reconstruction algorithms. It is hoped that the methods
and techniques developed and evaluated in this thesis reach their full
potential and can be used to achieve state-of-the-art jet-energy resolution
in future lepton collider experiments.

Software developed in this thesis is available from https://gitlab.
desy.de/jack.rolph.

https://gitlab.desy.de/jack.rolph
https://gitlab.desy.de/jack.rolph
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�.� PeakOTron: A Python Tool For SiPM
Characterisation

�.�.�.� Geiger-Discharge Probability for After-pulses

In Equation �.�, the time dependence of the Geiger-breakdown probability
during the recharging of the pixel for a primary Geiger discharge at C = 0
is parameterised by Equation �.�:

?Geiger(C) = (1 � 4�C/�rec) (�.�)

where �rec is the recovery time constant. This appendix discusses the
motivation for this parameterisation and how �rec can be estimated from
data. For a primary discharge at C = 0, the time dependence of the voltage
over the pixel is given by Equation �.�:

+d(C) = +off + (+b �+off) · (1 � 4�C/�), (�.�)

where+b is the bias voltage,+off the voltage at which the Geiger discharge
stops, and � the time constant of the slow component of the SiPM pulse.

In Section �.�.�, ⇠(+b) has been determined for the Hamamatsu MPPC
and the Ketek SiPM and fitted using Equation �.��. The values of the
parameters ⇠0 and +0 from the fit, and of +off, are given in Table �.�.

Using ⇠(+b) in Equation �.�� and +d(C) in Equation �.�, the Geiger-
discharge probability at time C relative to the saturation value for the bias
voltage +b is estimated by Equation �.�:

?
rel
Geiger(C) ⇡

⇠ (+d(C))
⇠(+b)

. (�.�)

It is noted that the spatial distribution of the charge carriers which
produce after-pulses is very different from the distribution of the charge
carriers from light with a wavelength of 400 nm (violet light). As the
Geiger-breakdown probability depends on the position at which a charge
carrier is generated, one may doubt the validity of Equation �.� for
after-pulses. However, if the shape of the voltage dependence of the
Geiger-breakdown probability is approximately independent of position,
this approach is valid.

Figure �.� shows ?rel
Geiger for several +b values using Equation �.� with

the parameters of Table �.�, as continuous lines for the Ketek and
Hamamatsu SiPMs, respectively. ?rel

Geiger only approximately follow (1 �
4
�C/�rec) dependencies, which are shown by the dashed lines. The value
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of �rec(+b) is obtained by demanding that ?Geiger = ?
rel
Geiger at C = 0 and

C = �, which gives Equation �.�:

�rec(+b) =
�

ln
✓
4

+b�+bd
+0 � 1

◆
� ln

✓
4

+b�+bd
+0 ·4 � 1

◆ . (�.�)

Figure �.� shows 5rec, the ratio �rec/�, for the Hamamatsu MPPC and the
Ketek SiPM as a function of over-voltage using the parameters of Table
�.�.

It can be seen that �rec decreases with over-voltage, and that at a given
over-voltage, �rec for the Ketek SiPM, which has � = 34 ns, is � to 10 %
lower than for the Hamamatsu MPPC with � = 22 ns.

The values of �rec = 5rec · � shown in Figure �.� were used for the fits
presented in Section �.�.�. If 5rec is not known, PeakOTron will use the
value 0.65. If 5rec is known, the user can set its value. It is concluded that
the parameterisation of Equation �.� provides an appropriate description
of the decrease of the Geiger-breakdown probability for after-pulses.
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Geiger Breakdown Probability As a Function Of Time Measured Using PeakOTron For The Hamamatsu and
Ketek SiPMs Under Test

(a) (b)

Figure �.�: Relative Geiger-breakdown probability as a function of the time of the after-pulse after the primary Geiger discharge for different
bias voltages, +b. The continuous lines are the values determined using Equation �.� and the dashed lines the parametrisation 1 � 4�C/�rec

with the �rec values of Figure �.�, in Figure �.�a the Hamamatsu MPPC at +b = 53 V, 56.5 V and 60 V, and in Figure �.�b for the Ketek SiPM
at +b = 28.5 V, 31 V, and 33 V.

Comments:

I Good agreement is observed between the approximation made by Equation �.� and the measured Geiger discharge probability by
PeakOTron.

Measured Ratio of �rec to � As a Function Of Over-voltage For The Hamamatsu and Ketek SiPMs Under Test

Figure �.�: The over-voltage dependence of 5rec = �rec/� for the Hamamatsu MPPC (� = 22 ns) and the Ketek SiPM (� = 34 ns) determined,
as described in the text.

Comments:

I The measured ratio shows that as over-voltage increases, so too does the recovery time constant �rec decrease.
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June ���� SPS Testbeam Data Total Events
Testing Training Validation

⇢particle [GeV] Run Number

�� ����� ���� ����� ���� �����
����� ���� ����� ���� �����
����� ���� ����� ���� �����
����� ���� ����� ���� �����

�� ����� ���� ����� ���� �����
����� ���� ����� ���� �����
����� ���� ����� ���� �����
����� ���� ����� ���� �����
����� ���� ����� ���� �����

�� ����� ���� ����� ���� �����
����� ���� ����� ���� �����
����� ���� ����� ���� �����
����� ���� ����� ���� �����
����� ���� ���� ���� �����

�� ����� ���� ����� ���� �����
����� ���� ����� ���� �����
����� ���� ����� ���� �����
����� ���� ����� ���� �����
����� ���� ����� ���� �����
����� ���� ����� ���� �����

�� ����� ���� ����� ���� �����
����� ���� ����� ���� �����
����� ���� ����� ���� �����
����� ���� ����� ���� �����
����� ���� ����� ���� �����

��� ����� ���� ����� ���� �����
����� ���� ����� ���� �����
����� ���� ����� ���� �����
����� ���� ����� ���� �����

Total Events ����� ������ ����� ������

Table �.�: Table of events used from CALICE June ���� SPS Testbeam data, split by particle energy and run number, used for training,
validation and testing of SC models.

Simulation
Bin Range [MIP] �1 �1 ✏1

�.��� - �.��� -�.��� ��.��� -�.���
�.��� - �.��� -�.��� �.��� -�.���
�.��� - �.��� -�.��� �.��� -�.���
�.��� - �.��� -�.��� �.��� -�.���
�.��� - �.��� -�.��� �.��� -�.���
�.��� - �.��� �.��� �.��� -�.���
�.��� - �.��� �.��� �.��� -�.���
�.��� - �.��� �.��� �.��� -�.���
�.��� - �.��� �.��� �.��� -�.���
�.��� - 1 �.��� -�.��� �.���

(a)

June ���� SPS Testbeam Data
Bin Range [MIP] �1 �1 ✏1

�.��� - �.��� -�.��� ��.��� -��.���
�.��� - �.��� -�.��� ��.��� -��.���
�.��� - �.��� -�.��� �.��� -�.���
�.��� - �.��� �.��� -�.��� �.���
�.��� - �.��� �.��� -�.��� �.���
�.��� - �.��� �.��� �.��� -�.���
�.��� - �.��� �.��� �.��� �.���
�.��� - �.��� �.��� �.��� �.���
�.��� - ��.��� �.��� �.��� �.���
��.��� - 1 �.��� �.��� -�.���

(b)

Table �.�: Bin ranges and weights obtained for the control method described in Section �.�.�. Table �.�a shows the values obtained obtained
for simulation. Table �.�b shows the values obtained for CALICE June ���� SPS Testbeam data.
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Reconstructed Energy Distributions, Before and After SC, Trained On and Applied To Simulation with
TCMT Cut

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure �.�: Example normalised histograms showing the simulated calorimeter response before and after compensation applied to the
simulation test dataset of Table �.�, with the TCMT cut applied. Blue lines indicate intrinsic calorimeter response, while orange, green and
red lines indicate the control, network without and network with time compensation methods, respectively. ⇢particle is indicated as a dashed
purple line.

Comments:

I As in Figure �.��.
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Reconstructed Energy Distributions, Before and After SC, Trained On and Applied To Simulation with
TCMT Cut

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

Figure �.� continued: Example normalised histograms showing the simulated calorimeter response before and after compensation applied
to the test dataset of Table �.�, with the TCMT cut applied. Blue lines indicate intrinsic calorimeter response, while orange, green and red
lines indicate the control, network without and network with time compensation methods, respectively. ⇢particle is indicated as a dashed
purple line.

Comments:

I As in Figure �.��.
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Reconstructed Energy Distributions, Before and After SC, Trained On and Applied To Simulation with
TCMT Cut

(s) (t) (u)

(v) (w)

Figure �.� continued: Example normalised histograms showing the simulated calorimeter response before and after compensation applied
to the test dataset of Table �.�, with the TCMT cut applied. Blue lines indicate intrinsic calorimeter response, while orange, green and red
lines indicate the control, network without and network with time compensation methods, respectively. ⇢particle is indicated as a dashed
purple line.

Comments:

I As in Figure �.��.
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Reconstructed Energy Distributions, Before and After SC, Trained On and Applied To Simulation, without
the TCMT Cut Applied

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure �.�: Example normalised histograms showing the simulated calorimeter response before and after compensation applied to the
simulation test dataset of Table �.�, without the TCMT cut applied. Else, as in Figure �.�.

Comments:

I As in Figure �.��.



��� � Appendix

Reconstructed Energy Distributions, Before and After SC, Trained On and Applied To Simulation, without
the TCMT Cut Applied

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

Figure �.� continued: Example normalised histograms showing the simulated calorimeter response before and after compensation applied
to the simulation test dataset of Table �.�, without the TCMT cut applied. Else, as in Figure �.�.

Comments:

I As in Figure �.��.
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Reconstructed Energy Distributions, Before and After SC, Trained On and Applied To Simulation without
the TCMT Cut Applied

(s) (t) (u)

(v) (w)

Figure �.� continued: Example normalised histograms showing the simulated calorimeter response before and after compensation applied
to the simulation test dataset of Table �.�, without the TCMT cut applied. Else, as in Figure �.�.

Comments:

I As in Figure �.��.
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Reconstructed Energy Distributions, Before and After SC, Trained On and Applied To ���� June Testbeam
Data with the TCMT Cut Applied

(a) (b) (c)

(d) (e) (f)

Figure �.�: Example normalised histograms showing the simulated calorimeter response before and after compensation applied to the test
dataset of data of Table �.�, with the TCMT cut applied. Blue lines indicate intrinsic calorimeter response, while orange and green lines
indicate the control and network without time compensation methods. ⇢particle is indicated as a dashed purple line.

Comments:

I As in Figure �.��.
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Reconstructed Energy Distributions, Before and After SC, Trained On and Applied To ���� June Testbeam
Data without the TCMT Cut Applied

(a) (b) (c)

(d) (e) (f)

Figure �.�: Example normalised histograms showing the simulated calorimeter response before and after compensation applied to the test
dataset of data of Table �.�, without the TCMT cut applied. Else, as in Figure �.�.

Comments:

I As in Figure �.��.
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Simulation
⇠ d⇠

CR CTRL NN,-Time NN,+Time CR CNTRL NN,-Time NN,+ Time
⇢particle [GeV]

�� �.��� ��.��� ��.��� ��.��� �.��� �.��� �.��� �.���
�� ��.��� ��.��� ��.��� ��.��� �.��� �.��� �.��� �.���
�� ��.��� ��.��� ��.��� ��.��� �.��� �.��� �.��� �.���
�� ��.��� ��.��� ��.��� ��.��� �.��� �.��� �.��� �.���
�� ��.��� ��.��� ��.��� ��.��� �.��� �.��� �.��� �.���
�� ��.��� ��.��� ��.��� ��.��� �.��� �.��� �.��� �.���
�� ��.��� ��.��� ��.��� ��.��� �.��� �.��� �.��� �.���
�� ��.��� ��.��� ��.��� ��.��� �.��� �.��� �.��� �.���
�� ��.��� ��.��� ��.��� ��.��� �.��� �.��� �.��� �.���
�� ��.��� ��.��� ��.��� ��.��� �.��� �.��� �.��� �.���
�� ��.��� ��.��� ��.��� ��.��� �.��� �.��� �.��� �.���
�� ��.��� ��.��� ��.��� ��.��� �.��� �.��� �.��� �.���
�� ��.��� ��.��� ��.��� ��.��� �.��� �.��� �.��� �.���
�� ��.��� ��.��� ��.��� ��.��� �.��� �.��� �.��� �.���
�� ��.��� ��.��� ��.��� ��.��� �.��� �.��� �.��� �.���
�� ��.��� ��.��� ��.��� ��.��� �.��� �.��� �.��� �.���
�� ��.��� ��.��� ��.��� ��.��� �.��� �.��� �.��� �.���
�� ��.��� ��.��� ��.��� ��.��� �.��� �.��� �.��� �.���
��� ��.��� ��.��� ��.��� ��.��� �.��� �.��� �.��� �.���
��� ���.��� ��.��� ���.��� ���.��� �.��� �.��� �.��� �.���
��� ���.��� ��.��� ���.��� ���.��� �.��� �.��� �.��� �.���
��� ���.��� ���.��� ���.��� ���.��� �.��� �.��� �.��� �.���
��� ���.��� ���.��� ���.��� ���.��� �.��� �.��� �.��� �.���

(a)

Simulation
� d�

CR CTRL NN,-Time NN,+Time CR CNTRL NN,-Time NN,+ Time
⇢particle [GeV]

�� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.���
�� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.���
�� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.���
�� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.���
�� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.���
�� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.���
�� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.���
�� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.���
�� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.���
�� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.���
�� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.���
�� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.���
�� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.���
�� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.���
�� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.���
�� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.���
�� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.���
�� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.���
��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.���
��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.���
��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.���
��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.���
��� ��.��� �.��� �.��� �.��� �.��� �.��� �.��� �.���

(b)

Reduced "2

CR CTRL NN,-Time NN,+Time
⇢particle [GeV]

�� �.��� �.��� �.��� �.���
�� �.��� �.��� �.��� �.���
�� �.��� �.��� �.��� �.���
�� �.��� �.��� �.��� �.���
�� �.��� �.��� �.��� �.���
�� �.��� �.��� �.��� �.���
�� �.��� �.��� �.��� �.���
�� �.��� �.��� �.��� �.���
�� �.��� �.��� �.��� �.���
�� �.��� �.��� �.��� �.���
�� �.��� �.��� �.��� �.���
�� �.��� �.��� �.��� �.���
�� �.��� �.��� �.��� �.���
�� �.��� �.��� �.��� �.���
�� �.��� �.��� �.��� �.���
�� �.��� �.��� �.��� �.���
�� �.��� �.��� �.��� �.���
�� �.��� �.��� �.��� �.���
��� �.��� �.��� �.��� �.���
��� �.��� �.��� �.��� �.���
��� �.��� �.��� �.��� �.���
��� �.��� �.��� �.��� �.���
��� �.��� �.��� �.��� �.���

(c)

Table �.�: Table of ⇠ and � from the Gaussian fits performed on the SC models trained on simulation in Section �.�.�. Tables �.�a, �.�b and
�.�c show the ⇠, � and their errors, and reduced "2, as a function of particle energy for each studied method applied to the testing dataset.
CR, CTRL, NN,-Time and NN,+Time are abbreviations of: ’intrinsic calorimeter response’, ’control method’, ’neural network, without time’
and with ’neural network, with time’, respectively.
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June ���� SPS Testbeam Data
⇠ d⇠

CR CTRL NN,-Time NN,-Time CR CNTRL NN,-Time NN,-Time
⇢particle [GeV] (Data) (Data) (Sim) (Data) (Data) (Sim)

�� �.��� ��.��� ��.��� �.��� �.��� �.��� �.��� �.���
�� ��.��� ��.��� ��.��� ��.��� �.��� �.��� �.��� �.���
�� ��.��� ��.��� ��.��� ��.��� �.��� �.��� �.��� �.���
�� ��.��� ��.��� ��.��� ��.��� �.��� �.��� �.��� �.���
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CR CTRL NN,-Time NN,-Time
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(c)

Table �.�: Table of ⇠ and � from the Gaussian fits performed on the SC models trained on data in Section �.�.�. Tables �.�a, �.�b and �.�c
show the ⇠, � and their errors, and reduced "2, as a function of particle energy for each studied method applied to the testing dataset. Else,
as in Table �.�.
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��� ����� ���� ����� ���� �����
����� ���� ����� ���� �����
����� ���� ����� ���� �����
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Total Events ������ ������� ������ �������

Table �.�: Table of events used from CALICE June ���� SPS Testbeam data, split by particle energy and run number, used for training,
validation and testing of SC models.
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Event Level: Distributions of Reconstructed Shower Energy

(a) (b) (c)

Figure �.�: Distributions of the reconstructed shower energy (⇢sum) for the training dataset for shower separation, for ��, �� and 80 GeV
samples, shown in the left, middle and right columns, respectively. The blue histograms indicate simulation, and the orange histograms
indicate June ���� SPS Testbeam data.

Comments:

I As in Figure �.�.

Event Level: Distributions of Number of Active Cells

(a) (b) (c)

Figure �.�: Distributions of the number of active cells per hadron showers for shower separation. As in Figure �.�.

Comments:

I As in Figure �.�.
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Event Level: Joint Distributions of Lateral Centres-of-Gravity And Track Position

(a) (b) (c)

(d) (e) (f)

Figure �.�: Joint distributions of the lateral centre-of-gravity and track position for the training dataset for shower separation, for ��, ��
and 80 GeV samples, shown in the left, middle and right columns, respectively. Figures �.�a-�.�c show the distribution of CoG� , �track, and
Figures �.�d-�.�f show the distribution of CoG� , �track. The upper and lower subplots indicate the distribution of simulation and data,
respectively. The colour axis indicates probability density. Else, as in Figure �.�

Comments:

I As in Figure �.�.

Event Level: Distributions of Longitudinal Centres-of-Gravity

(a) (b) (c)

Figure �.��: Distributions of the shower starting layer ( () for the training dataset for shower separation. As in Figure �.�.

Comments:

I As in Figure �.��
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Event LeveL: Distributions of Shower Start Layer

(a) (b) (c)

Figure �.��: Distributions of the shower starting layer ( () for the training dataset for shower separation. As in Figure �.�.

Comments:

I As in Figure �.��.

Cell Level: Distributions of Lateral Active Cell Positions Relative to Centre-Of-Gravity

(a) (b) (c)

(d) (e) (f)

Figure �.��: Distributions of the lateral cell indices for the training dataset for shower separation. Figures �.��a-�.��c and Figures �.��d-�.��f
show the distributions of �hit and �hit minus their corresponding centres-of-gravity, CoGI and CoGJ, respectively, presented in units of cells.
Figures �.��a-�.��c show the hit radius distributions as defined in �.�.�.�. Else, as in Figure �.�.

Comments:

I As in Figure �.��.



�.� Shower Separation in Five Dimensions Using Machine Learning ���

Cell Level: Distributions of Hit Radius

(a) (b) (c)

Figure �.��: Distributions of hit radius ('hit) as defined in Section �.�.�.� for the training dataset for shower separation. Else, as in Figure �.�.

Comments:

I As in Figure �.��.

Cell Level: Distributions of Hit Azimuthal Angle

(a) (b) (c)

Figure �.��: Distributions of hit azimuthal angle (hit) as defined in Section �.�.�.� for the training dataset for shower separation. Else, as in
Figure �.�.

Comments:

I As in Figure �.��.
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Cell Level: Distributions of Reconstructed and Shower-Start Normalised Longitudinal Layer Position

(a) (b) (c)

(d) (e) (f)

Figure �.��: Distributions of longitudinal cell-level indices for the training dataset for shower separation, respectively. Figures �.��a-�.��c
and Figures �.��d-�.��f show the distributions of  hit and  hit �  ( , respectively. Else, as in Figure �.�.

Comments:

I As in Figure �.��.
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Cell Level: Distributions of Active Cell Energy and its Logarithm

(a) (b) (c)

(d) (e) (f)

Figure �.��: Distributions of active cell energy for the training dataset for shower separation, respectively. Figures �.��a-�.��c and Figures
�.��d-�.��f show the distributions of ⇢hit and its logarithm, respectively. Else, as in Figure �.�.

Comments:

I As in Figure �.��.
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Cell Level: Distributions of Active Cell Timestamp and its Hyperbolic Sine in Simulation with a Resolution
of ��� ps

(a) (b) (c)

(d) (e) (f)

Figure �.��: Distributions of the cell timestamp for the training dataset for shower separation in simulation, with 100 ps time resolution.
Figures �.��a-�.��c and Figures �.��e-�.��f show the distributions of the active cell timestamp in simulation smeared by of 100 ns and its
hyperbolic sine, respectively.

Comments:

I As in Figure �.��.
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Cell Level: Distributions of Active Cell Timestamp with a Resolution of � ps

(a) (b) (c)

Figure �.��: Distributions of the cell timestamp for the training dataset for shower separation in simulation, with 5 ns time resolution.
Figures �.��a-�.��c show the distributions of the active cell timestamp in simulation smeared by of 5 ns.

Comments:

I As in Figure �.��.

Average Radial Energy Profile

(a) (b) (c)

Figure �.��: Figures �.��a-�.��c show the average radial shower energy profile distributions per unit radial surface area of a circle with
radius ' (denoted () Blue and orange dots indicate simulation and data, respectively.

Comments:

I As in Figure �.��.
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Average Longitudinal Energy Profile

(a) (b) (c)

Figure �.��: Figures �.��a-�.��c show the average longitudinal shower energy profile distributions per layer of the calorimeter, relative to
shower starting position ( (). Blue and orange dots indicate simulation and data, respectively.

Comments:

I As in Figure �.��.

Average Joint Radial-Longitudinal Energy Profile and Ratio of Simulation to Data

(a) (b) (c)

(d) (e) (f)

Figure �.��: Figures �.��a-�.��c show the joint average radial shower energy profile distributions per unit radial surface area of a circle with
radius ' (denoted (), per layer of the calorimeter relative to the shower start ( (). The colour axis indicates probability density. Figures
�.��d-�.��f show the ratio of simulation and data shown in Figures �.��a-�.��c, where the colour axis indicates the ratio.

Comments:

I As in Figure �.��.
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PID Variables for Comparison of 40 GeV ��/Synthetic Neutral and  0
!

Simulated Hadron Showers in
AHCAL

(a) (b) (c)

(d)
(e)

(f)

(g)
(h)

(i)

Figure �.��: Particle ID variables calculated according to [��, ��], compared for the simulated �� and  0
!
, from Table �.�. The green line

indicates  0
!

hadron showers, while the blue and blue dashed lines indicate �� hadron showers, with and without the applied MIP-track cut.

Comments:

I As in Figure �.��.
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PID Variables for Comparison of 40 GeV ��/Synthetic Neutral and  0
!

Simulated Hadron Showers in
AHCAL

(j)
(k) (l)

(m)

Figure �.�� continued: Particle ID variables calculated according to [��, ��], compared for the simulated �� and  0
!
, from Table �.�. The

green line indicates  0
!

hadron showers, while the blue and blue dashed lines indicate �� hadron showers, with and without the applied
MIP-track cut.

Comments:

I As in Figure �.��.
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Simulation, Training Sample
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(c)

Table �.�: Table �.�a, �.�b and �.�c show the event tables for the training, validation and testing samples of simulation, combined from the
source events shown in Table �.�. Each table is split by each possible combination of charged and neutral hadron shower particle energy,
indicated by the ⇢&particle and ⇢#particle combinations, respectively.
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June ���� SPS Data, Training Sample
⇢
#

particle [GeV] �� �� �� �� �� ��� Total Events

⇢
&

particle [GeV]

�� ����� ����� ����� ����� ����� ����� ������
�� ����� ����� ����� ����� ����� ����� ������
�� ����� ����� ����� ����� ����� ����� ������
�� ����� ����� ����� ����� ����� ����� ������
�� ����� ����� ����� ����� ����� ����� ������
��� ����� ����� ����� ����� ����� ����� ������

Total Events ������ ������ ������ ������ ������ ������ ������

(a)

June ���� SPS Data, Validation Sample
⇢
#

particle [GeV] �� �� �� �� �� ��� Total Events

⇢
&

particle [GeV]

�� ���� ���� ���� ���� ���� ���� �����
�� ���� ���� ���� ���� ���� ���� �����
�� ���� ���� ���� ���� ���� ���� �����
�� ���� ���� ���� ���� ���� ���� �����
�� ���� ���� ���� ���� ���� ���� �����
��� ���� ���� ���� ���� ���� ���� �����

Total Events ����� ����� ����� ����� ����� ����� �����

(b)

June ���� SPS Data, Testing Sample
⇢
#

particle [GeV] �� �� �� �� �� ��� Total Events

⇢
&

particle [GeV]

�� ���� ���� ���� ���� ���� ���� �����
�� ���� ���� ���� ���� ���� ���� �����
�� ���� ���� ���� ���� ���� ���� �����
�� ���� ���� ���� ���� ���� ���� �����
�� ���� ���� ���� ���� ���� ���� �����
��� ���� ���� ���� ���� ���� ���� �����

Total Events ����� ����� ����� ����� ����� ����� ������

(c)

Table �.�: Table �.�a, �.�b and �.�c show the event tables for the training, validation and testing samples of data, combined from the source
events shown in Table �.�. Each table is split by each possible combination of charged and neutral hadron shower particle energy, indicated
by the ⇢&particle and ⇢#particle combinations, respectively.
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Distributions of Confusion Energy for Possible Combinations of Charged and Neutral Hadron Particle
Energies at 10 GeV, 40 GeV and 80 GeV using PointNet

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure �.��: Distributions of confusion energy for the PointNet network applied to the test sample. The green and red lines indicate
the models trained without and with timing information, respectively. The purple dashed lines indicate the resolution of the AHCAL
calorimeter in simulation, as determined in Chapter �.

Comments:

I As in Figure �.��, except that no overall improvement is observed using timing information.
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Distributions of Confusion Energy for Possible Combinations of Charged and Neutral Hadron Particle
Energies at 10 GeV, 40 GeV and 80 GeV using DGCNN

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure �.��: Distributions of confusion energy for the DGCNN network applied to the test sample. The green and red lines indicate the models
trained without and with timing information, respectively. The purple dashed lines indicate the resolution of the AHCAL calorimeter in
simulation, as determined in Chapter �.

Comments:

I As in Figure �.��.
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Comparison Of Reconstructed Energy Distribution Used In Shower Separation in The Pandora PFA
Two-Particle Shower Separation Study of [��] and In Chapter �

(a) (b)

(c) (d)

(e) (f)

Figure �.��: Distributions of reconstructed energy comparing the simulated testing dataset of �.� to the distributions of the study of [��].
The left and right columns shows distributions from [��] and from Table �.�. Each row shows the distributions for ⇢&particle = 10 GeV,

⇢
&

particle = 30 GeV and ⇢#particle = 10 GeV. Figures �.��b, �.��d and �.��f are selected from the samples where the combination of charged
(&) and neutral (#) shower is 10 GeV & + 10 GeV # , 30 GeV & + 10 GeV # , and 10 GeV & + (10 GeV # or 30 GeV #) respectively. In both
figures, blue indicates simulation with the QGSP_BERT_HP physics list.

Comments:

I Good agreement is observed between the reconstructed energy distribution of the two studies.
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Comparison Of Number of Active Cells Distributions Used In Shower Separation in The Pandora PFA
Two-Particle Shower Separation Study of [��] and In Chapter �

(a) (b)

(c) (d)

(e) (f)

Figure �.��: Distributions of number of active cells comparing the simulated testing dataset of �.� to the distributions of the study of
[��]. The left and right columns shows distributions from [��] and from Table �.�. Each row shows the distributions for ⇢&particle = 10 GeV,

⇢
&

particle = 30 GeV and ⇢#particle = 10 GeV. Figures �.��b, �.��d and �.��f are selected from the samples where the combination of charged
(&) and neutral (#) shower is 10 GeV & + 10 GeV # , 30 GeV & + 10 GeV # , and 10 GeV & + (10 GeV # or 30 GeV #) respectively. In both
figures, blue indicates simulation with the QGSP_BERT_HP physics list.

Comments:

I Good agreement is observed between the number of active cells distribution of the two studies.
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Comparison Of Radial Energy Profiles Used In Shower Separation in The Pandora PFA Two-Particle Shower
Separation Study of [��] and In Chapter �

(a) (b)

(c) (d)

(e)
(f)

Figure �.��: Radial Energy Profiles comparing the simulated testing dataset of �.� to the distributions of the study of [��]. The left and right
columns shows distributions from [��] and from Table �.�. Each row shows the distributions for ⇢&particle = 10 GeV, ⇢&particle = 30 GeV and
⇢
#

particle = 10 GeV. Figures �.��b, �.��d and �.��f are selected from the samples where the combination of charged (&) and neutral (#)
shower is 10 GeV & + 10 GeV # , 30 GeV & + 10 GeV # , and 10 GeV & + (10 GeV # or 30 GeV #) respectively. In both figures, blue indicates
simulation with the QGSP_BERT_HP physics list.

Comments:

I Good agreement is observed between the radial energy profiles distribution of the two studies.
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Comparison Of Longitudinal Energy Profiles Used In Shower Separation in The Pandora PFA Two-Particle
Shower Separation Study of [��] and In Chapter �

(a) (b)

(c) (d)

(e) (f)

Figure �.��: Longitudinal Energy Profiles comparing the simulated testing dataset of �.� to the distributions of the study of [��]. The left and
right columns shows distributions from [��] and from Table �.�. Each row shows the distributions for ⇢&particle = 10 GeV, ⇢&particle = 30 GeV
and ⇢#particle = 10 GeV. Figures �.��b, �.��d and �.��f are selected from the samples where the combination of charged (&) and neutral (#)
shower is 10 GeV & + 10 GeV # , 30 GeV & + 10 GeV # , and 10 GeV & + (10 GeV # or 30 GeV #) respectively. In both figures, blue indicates
simulation with the QGSP_BERT_HP physics list.

Comments:

I Good agreement is observed between the radial energy profiles distribution of the two studies, with the exception of the bin at
 
⌘8C

=  ( comparing Figures �.��a and �.��b and Figures �.��e �.��f. The reason for this discrepancy is unclear.
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