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Abstract
The purpose of this work is to investigate the role of electron-electron interaction and
confinement in disordered two-dimensional systems with a strong perpendicular mag-
netic field.

In these systems, the integer quantum Hall effect is observed. The kinetic energy
of the electrons is quantized into equidistant Landau levels, which are broadened into
bands due to the presence of a disorder potential. If the Fermi energy is in the tail of
Landau band i, the Hall conductance exhibits a plateau of magnitude e2/h · i, whereas
the magnetoconductance vanishes. This phenomenon is well understood within a single-
particle picture as a second order phase transition between localized electronic states at
the band edges and extended states in the center, governed by a power law dependence
of the localization length with respect to the energy distance to the band center with an
universal static critical exponent.

One of the topics of this thesis is to scrutinize this power law behaviour in the
presence of mutual electron interactions, which are treated in spin-unrestricted self-
consistent Hartree-Fock approximation. We show for the lowest Landau level that the
static critical exponent is unchanged in the presence of electron-electron interaction and
for various types of disorder. Moreover, we estimate the effects of interaction and dis-
order type on the dynamical critical exponent, which governs the impact of quantum
fluctuations induced by an external time-dependent electric field. We demonstrate by
calculating the frequency-dependent conductivity in linear response theory that the dy-
namical critical exponent can be altered by interaction and disorder.

Furthermore, we discuss an experiment detecting signatures of charging in an in-
teger quantum Hall system, which in general are attributed to Coulomb interaction in
correlated systems. We derive a mean-field description for these charging patterns, that
reproduces the experimental observations at least in the localized regions and is com-
patible with the single-particle picture of the localization-delocalization transition. In
agreement with experimental observations we show that electron-electron interaction
cannot be neglegted in a comprehensive theory of the integer quantum Hall effect.

In the third part, we calculate the two-terminal conductance in a disordered quantum
wire in dependence of energy and wire width. It is found that the conductance plateaux
discontinuously collaps to exactly zero between two plateau levels. Employing an exact
diagonalization study, we find electron states in the vicinity of these transitions that are
superpositions of edge states with opposite chirality, with a vanishing bulk contribution.
We provide arguments that these nonchiral edge states govern the new chiral metal-
insulator transition.

In the last chapter, we calculate the effective g-factor in dependence of magnetic
field and confinement strength and discuss a smooth suppression of the g-factor en-
hancement governed by both direct and exchange interaction in dependence of the elec-
tron density.
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Zusammenfassung

In dieser Arbeit untersuchen wir die Rolle von Elektron-Elektron-Wechselwirkung und
räumlicher Beschränkung in ungeordneten, zweidimensionalen Systemen mit einem
starken, senkrechten Magnetfeld.

In diesen Systemen tritt der integrale Quanten-Hall-Effekt auf. Die kinetische En-
ergie der Elektronen ist in Landau-Niveaus mit konstantem Abstand quantisiert, die
in Gegenwart eines Unordnungspotentials in Bänder aufgespalten werden. Liegt die
Fermi-Energie am Rand des i-ten Bandes, zeigt sich ein Plateau der Größe e2/h ·i in der
Hall-Leitfähigkeit, während die Magnetoleitfähigkeit verschwindet. Diese Phänomen
kann gut im Rahmen eines Einteilchenbildes als Phasenübergang zweiter Ordnung
zwischen lokalisierten Elektronenzuständen an den Bandkanten und ausgedehnten
Zuständen in der Bandmitte verstanden werden, wobei der Übergang als Potenzgesetz
für die
Lokalisierungslänge in Abhängigkeit vom Energieabstand vom Bandzentrum formuliert
ist, mit einem universellen, statischen kritischen Exponenten.

Eines der Themen der vorliegenden Arbeit ist die genaue Untersuchung des Potenz-
gesetzes in Gegenwart von Wechselwirkung zwischen den Elektronen, welche in spin-
aufgelöster, selbstkonsistenter Hartree-Fock-Näherung behandelt wird. Wir zeigen für
das unterste Landau-Band, dass der statische kritische Exponent unabhängig von Wech-
selwirkung und verschiedenen Arten von Unordnung ist. Weiterhin schätzen wir Ef-
fekte von Wechselwirkung und Unordnung auf den dynamischen kritischen Exponen-
ten ab, der den Einfluss von durch äußere zeitabhängige elektrische Felder verursachten
Quantenfluktuationen widerspiegelt. Dazu berechnen wir in linearer Antworttheorie
die frequenzabhängige Leitfähigkeit und demonstrieren eine mögliche Veränderung des
dynamischen Exponenten.

Darüberhinaus diskutieren wir ein Experiment, in dem Hinweise auf Ladungsef-
fekte in integralen Quanten-Hall-Systemen gefunden wurden. Diese werden normaler-
weise mit Coulombwechselwirkungen in korrelierten System erklärt. Wir entwickeln
eine Mean-field-Beschreibung für diese Beobachtungen, die diese wenigstens in den
lokalisierten Bereichen wiedergeben und im Einklang mit dem Einteilchen-Bild des
Lokalisierungs-Delokalisierungs-Übergangs stehen. In Übereinstimmung mit den ex-
perimentellen Daten zeigen wir, dass Elektron-Elektron-Wechselwirkung für eine
vollständige Theorie des integralen Quanten-Hall-Effekts nicht vernachlässigt werden
kann.

Im dritten Teil berechnen wir die Zweipunktleitfähigkeit eines ungeordneten Quan-
tendrahtes in Abhängigkeit von Energie und Drahtbreite. Wir finden, dass die Leitwert-
stufen zwischen zwei Werten diskontinuierlich auf exakt Null abfallen. Mit exakter Di-
agonalisierung finden wir Zustände im Bereich dieser Übergänge, die Superpositionen
von Randzuständen mit entgegengerichteter Chiralität sind, mit verschwindend kleiner
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bulk-Beteiligung. Wir argumentieren, dass diese nichtchiralen Randzustände verant-
wortlich für den neuartigen chiralen Metall-Isolator- Übergang sind.

Im letzten Kapitel gehen berechnen wir den effektiven g-Faktor für einen para-
bolischen Quantendraht in Abhängigkeit von Magnetfeld und Stärke des Einschlusspo-
tentials und diskutieren eine glatte Unterdrückung der g-Faktor-Vergrößerung, die von
direktem Coulomb- und Austauschterm gleichermaßen gestützt wird und von der Elek-
tronendichte abhängt.
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Introduction

One of the most important topics of solid state research within half the last century
has been the investigation of electron systems in semiconductor heterostructures and
MOSFETS. The ability to fabricate structures which confine the motion of the carriers in
zero, one or two dimensions brought the possibility to create new and unique electronic
devices, but also opened a vast range of fundamental problems.

A remarkable observation was made by von Klitzing [1], when measuring the Hall
coefficient on a two-dimensional Si-MOSFET at very low temperature and very large
external magnetic field perpendicular to the plane of electron motion. The outcome of
this experiment was spectacular: Whereas the classical Hall experiment gave a linear
dependence of the Hall resistance on the external field and a constant, non-zero device
magnetoresistance, von Klitzing’s results yielded

• the formation of plateaux in the Hall resistance around certain magnetic fields
with quantized values

RH =
h

e2
1

n
, n = 1, 2, 3, . . . . (1)

• vanishing magnetoresistance in the same range of magnetic fields in which the
Hall plateaux formed.

This phenomenon is referred to as the Integer Quantum Hall effect, in contrast to the
Fractional Quantum Hall effect, which was subsequently discovered by Störmer [2].
The positions of magnetoresistance peaks can be related to the Landau energies

En = (n+
1

2
)~ωc, n = 0, 1, 2, . . . , (2)

5



6 Introduction

which constitute the discrete spectrum of a quantum particle with charge e and mass m
in a magnetic field, undergoing cyclotron motion with frequency ωc = eB/m.

Hall measurements at even higher magnetic fields and samples with larger electron
mobility (”cleaner” samples) show plateaux also at non-integer fractional fillings ν =
p/q, where p, q = 1, 2, 3, . . . . Although similar in outcome, fractional quantum Hall
measurements do not fit in the standard theories for the explanation of the integer effect.
We will simply ignore them for the moment and discuss the integer effect in greater
detail.

A useful reformulation of the effect is obtained by inverting the resistivity tensor
into the conductivity tensor. Away from the Landau energies En, one gets

σxx = 0, (3)

σxy = ν
e2

h
(4)

and

σxx =
e2

2h
, (5)

σxy =

(

ν +
1

2

)

e2

h
(6)

in the vicinity of En.
It has been found that the Hall plateaus are extremely stable against sample quality,

geometry and other microscopic details, and can be reproduced with a precision of the
order 10−10. The plateau value

RK = h/e2 = (25812.807572)Ω (7)

has therefore become the metrological resistance standard, and because it is compara-
tively easy and to enormous precision to determine, an actual discussion is to include
it in the SI set of standard units, along with dropping the Ampere as a standard current
unit.

Apart from this practical relevance, a fundamental question rises: Why do differ-
ent samples with different surface conditions, damage at contact regions, bulk inhomo-
geneities and other defects produce even quantitatively the same results ?

Obviously, the proper explanation is connected with the rather peculiar motion of
two-dimensional conduction band electrons in their quantum limit, i.e. vanishing tem-
perature and strong magnetic field. In the following, we will give a brief overview over
the intuitive pictures taken to understand the integer quantum Hall effect.
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(a) (b)

Figure 1: (a) Recordings of the Hall voltage UH, and the voltage drop between the potential
probes, Upp, as a function of the gate voltage Vg at T = 1.5 K. The constant magnetic
field (B) is 18 T and the source drain current, I , is 1 µA. The inset shows a top view
of the device with a length of L = 400 µm, a width of W = 50 µm, and a distance
between the potential probes of Lpp = 130 µm. (b) Hall resistance RH, and device
resistance Rpp, between the potential probes as a function of the gate voltage Vg in
a region of gate voltage corresponding to a fully occupied, lowest (n = 0) Landau
level. The plateau in RH has a value of 6453.3 ± 0.1 Ω. The geometry of the device
was L = 400 µm, W = 50 µm, and Lpp = 130 µm; B = 13T . Pictures and captions
taken from von Klitzing et. al., Phys. Rev. Lett. (1980) [1].

Disorder-induced localization
A two-dimensional electron system created in a semiconductor is influenced not only
by the artificial electrostatic potential created in the semiconductor in order to freeze
one component of the electron motion, or externally applied electric or magnetic fields,
but also by the effects of crystal defects, impurities or interface roughnesses. These
inhomogeneities (among others) are summarized in the assumption of ”disorder” in the
semiconductor. They are characterized by an immobile electrostatic potential with an
arbitrary shape.

A naive view on the Hall plateaux suggests insulating electronic states everywhere
except at selected positions in magnetic field or energy, which correspond to extended,
”metallic” states. In an insulating state, an electron is stripped off the possibility to move
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through the whole sample and thus contribute to charge transport between the contacts,
since it is localized to a finite area.

It has been shown that electrons moving in such a random disorder potential, pre-
sumably also without mutual Coulomb interaction, are more or less localized [3–6].
In other words, the probability to find an electron in a localized states is finite only in a
small area of the sample, independent of strength and microscopic detail of the disorder.
This absence of a metallic phase in two-dimensional electron systems has been studied
extensively in the context of the scaling theory of localization, which started with the
seminal works of Anderson and cow-workers [3, 7] and has continued up to now (see
[8] for a recent overview of the topic).

The lack of a truly extended and thus conducting 2D state is often described by the
”beta”- function β(g), which relates the dimensionless conductance parameter g to the
linear system size L via

d ln g

d lnL
= β (g(L)) . (8)

The knowledge of β thus allows for computation of the overall conductance in the ther-
modynamic limit L→ ∞. Its explicit form depends on the underlying statistical ensem-
ble, which can be orthogonal (time-reversal symmetry is given), unitary (time-reversal
symmetry is broken e.g. by an external magnetic field) or symplectic (disorder is asso-
ciated with spin-flip scattering or spin-orbit interaction). A perturbative calculation at
B = 0 yields β(g) ∝ g−1 [9], which implies that the orthogonal ensemble is dominated
by a localization length

ξ ∝ eg0 , (9)

with the mean-field conductance parameter g0. For strong disorder, g0 is small, and
consequently the spatial extend of the wavefunction is small. This strong localization
is exponentially lifted for weak disorder and g0 large, but still is ξ finite. The transi-
tion between these two regimes is merely a crossover, with no (quantum) critical point
separating strong and weak localization phases.

The application of an external magnetic field breaks the time-reversal symmetry and
thus requires the usage of the unitary ensemble. The localization length now behaves as

ξ ∝ eg2
0 , (10)

which results in an even weaker, but yet finite localization as compared to the orthogo-
nal case. Again, at least a crossover in terms of g0 is expected which is unlikely to lead
to the formation of well defined resistance plateaux. One must therefore conclude that
the demanded existence of 2D extended states is non-perturbative, which in turn might
imply that the quantum Hall plateau transition is in fact a quantum phase transition in-
cluding quantum critical points in the magnetic field which separate phases of localized
and extended states.
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Although there is up to now no closed and comprehensive analytical theory for this
phenomenon, numerical calculations [10, 11] have established phenomenologically a
power law divergence

ξ(E) ∝ |E − En|−ν̃ (11)

of the localization length at the critical energies. The most successful approach to in-
vestigate scaling behaviour of the localization length is the method of finite-size scal-
ing. The localization length ξM is calculated in a finite strip of width M , solving the
Schrödinger equation for the disordered Hamiltonian with magnetic field via transfer
matrix or recursive Green’s functions techniques, and extrapolates to the infinite system
size localization length via the scaling hypothesis

ξM(E)

M
= f

(

M

ξ(E)

)

, (12)

with a universal scaling function f(x) with asymptotic limits f(x ¿ 1) ≈ const. and
f(x À 1) ∝ 1/x. Many slightly different models of disorder with differing concentra-
tion and correlation length have been tested by this scaling approach [10–14]. They all
found

ν̃ = 2.34 (13)

for the lowest Landau level. On the contrary, the exponent for the next Landau level
ranges between roughly 2 − 6, depending on the range of the scatterers, if they exceed
the smallest length scale lB =

√

~/(eB), the magnetic length, or if disorder coupling
between the Landau levels is taken into account. However, calculations in higher bands
are less accurate.

The universality of the critical exponent at least in the lowest Landau level has
further support from calculations within a quantum percolation network [15–17]. In
the percolation scenario, the disorder varies slowly (on length scales d À lB) and the
center-of-mass coordinate (”guiding center”) of the electron wavefunction drifts along
equipotential lines. If treated classically [18], one can identify a single percolation
threshold at the critical energy, where the percolating cluster covers the entire area. The
corresponding classical critical exponent is obtained as ν̃ = 4/3 ≈ 1.33.

Quantum mechanics can be introduced via tunneling processes in the percolation
picture. A network is set up with its nodes representing saddle points of the disorder
potential and its links being the equipotential contours. Transfer matrix calculations
[16, 17] result in the expected exponent ν̃ = 2.5 ± 0.5. The result has been further
supported by classical arguments including quantum tunneling correction [19], with
ν̃ = 7/3 ≈ 2.33.

Apart from the phase transition of static properties like the localization length, most
quantum phase transitions [5, 20] are driven also by dynamical effects resembling quan-
tum fluctuations. This is quantified by a dynamical exponent z, which governs the
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fluctuation of the critical state. The dynamical exponent is obtained by probing the tran-
sition at finite temperatures and/or by applying external AC electric fields with finite fre-
quency. It turned out, that experiments performing temperature and frequency scaling
[21–26] found either z = 2, associated with diffusive behaviour of non-interacting elec-
trons in two dimensions, or z = 1 indicating anomalous diffusion, which is commonly
attributed to electron-electron interaction. So far, a single experiment [27] indicated no
scaling behaviour at all. Still, the issue of dynamical scaling and the mechanisms that
can lead to a reduction of the dynamical critical exponents, remains one of the most
important, yet unsolved problems in the theory for the integer plateau transition.

Electron-electron interaction is also important for the explanation of the emergence
of fractional plateaux. It has been suggested for low fractional fillings, for instance
ν = 1/5, that in this regime occurs from a Wigner crystal [28] with highly correlated
electrons which are frozen into a regular lattice, to an incompressible liquid state [29,
30]. Here, the Wigner crystal is identified as an insulating state, entirely determined by
Coulomb correlation, with an activation gap much smaller than the gap for the integer
transition (the cyclotron energy). The mechanisms of these fractional quantum Hall
phase transitions are somewhat more involved than the disorder-driven localization and
not subject of this thesis. However, a consistent theory unifying the effect of correlation
and disorder induced localization has yet to be formulated.

We continue with another model for the integer transition, which takes into account
the finite boundaries of a semiconductor sample.

Edges and the existence of extended states
Another approach to the integer quantum Hall effect was formulated by Laughlin [31]
and further extended by Halperin [32]. A Corbino disk, a circular (semi)conducting
sheet with a hole in the center, is placed in a magnetic field perpendicular to the plane of
the disk. In this setup, the directions of the currents along the inner and outer edges are
opposite to each other. As long as the Fermi levels are equal at both edges, they do not
add any net current around the annulus. A mismatch of the Fermi levels by an amount
e∆ leads to a net current contribution of

δI = ne2∆/h (14)

resulting from the edge states around the ring, with n an integer number. This contribu-
tion is in agreement with the quantized Hall conductance.

This annular geometry can furthermore be used to give an intuitive argument for
the existence of extended states in the sample. We have already seen that in infinite
two-dimensional samples with, say, not too strong disorder and perpendicular magnetic
field, there exist energy ranges with extended states, separated by ranges with localized
states and gap regions with vanishing density of states.



Introduction 11

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

PSfrag replacements

r1
r′1

r′2

r2

E/(~ωc)

EF

(a)

 0

 1

 2

 3

 4

 5

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�


��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��































































































��
��

1

2

3

4

5

PSfrag replacements

r1 r′1 r′2 r2

E
/(

~
ω

c
)

EF

(b)

Figure 2: (a) Annulus geometry after Halperin [32]. The shaded area contains a weak disorder
potential. (b) Schematic energy spectrum for the annulus in a magnetic field as a
function of the distance from the center. The shaded regions indicate the disordered
bulk region.

We now consider a flux piercing the center hole of the annulus. Laughlin [31]
showed that if the Fermi energy is located outside the bands of extended states, and
if the flux Φ threading the hole is increased by a single flux quantum φ0 = h/e, the
resulting effect will be that an integral number n of electrons is transferred from the
Fermi level on the outer edge to the Fermi level at the inner edge. If V is the voltage
between inner and outer edge and I is the current around the ring, one has to match
the work done by the flux change −Iφ0 to the net energy change −neV and thus finds
I/V = ne/φ0. An obvious argument is now to identify the integer n with the number of
bands of extended states below the Fermi level. In the following, we divide the annulus
in two potential-free edge regions and a bulk region with a weak disorder potential (see
Fig. 2a). At r1 and r2, we assume hard walls. A schematic energy spectrum for this
geometry is depicted in Fig. 2b. The states are grouped in bands due to disorder around
the center energies Eν = (ν + 1

2
)~ωc. Towards the hard wall boundaries, the levels are

pushed upward. Without loss of generality, we take the disorder so weak that no states
between two Landau levels exist.

Concerning the localization of states in the disordered regions, there are two possi-
bilities: Either, they are localized at all energies with a finite localization length ξ(E),
or there exist some delocalized states at certain energies, supposively in the band center.

Halperin [32] gave an argument leading to a caveat with the first option. Assume that
the Fermi energy lies close to the cyclotron energy, then all states with energy below are
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occupied. The maximal localization length ξmax is supposed to be much smaller than
the bulk width, ξmax ¿ r′2 − r′1. If the flux threading the hole in the center is now
adiabatically increased by one flux quantum and no net current is flowing in the ring,
this process requires no work in the limit of a very large sample. On the other hand, the
wavefunctions in the ordered edge regions will slightly contract due to the change of the
magnetic length, which is their characteristic width. Finally, the occupation will slightly
change, with one state occupied above the Fermi level, and one state empty below. No
energy is paid to achieve the shift in occupation.

However, we have imposed that all states in the disordered region are localized.
Hence, there is no transport path across this area, because the localized states remain
unchanged by the flux increase [31], apart from a change in phase. An electron removed
from the outer edge r2 must somehow get to a new occupied state at r′2. Accordingly,
the hole near r1 must be related to the new electron at r′1. The Fermi level was put far
away from the band of disordered states, and, except possibly from localized impurity
states resulting from a strong disorder potential with no change in occupation due to flux
change, no states in the vicinity of the Fermi energy are available. As a consequence,
one would have to pay energy of the order of ~ωc to force a change of occupation. This
would violate the law of conservation of energy. Therefore, delocalized states must exist
even in the disordered region of the annulus.

The annular geometry is equivalent to a quantum wire, a quasi-two-dimensional
electron gas confined in one spatial direction, with periodic boundary conditions at the
open ends. We will discuss such a geometry in a later chapter and, returning to the
presented argument, show that a new type of state can exist which couples the edges
without interfering strongly with the bulk.

This work
In this thesis, we discuss the effect of electron-electron interaction and the influence of
spatial confinement on the quantum Hall effect by addressing the following subjects.
The first part gives an overview over important effective models for disorder and in-
teraction, which will be used for mainly numerical investigation of the quantum Hall
system. Whereas the disorder potential can be treated exactly by numerical diagonal-
ization for reasonable system sizes, one has to find a proper effective model for the
electron-electron interaction in order to make the numerics tractable. The straightfor-
ward method is the self-consistent Hartree-Fock [33] approximation. Although this kind
of approximation neglects direct Coulomb correlations in the ground state, while taking
the non-local exchange term exactly into account, the self-consistent quasiparticle po-
tential can be used to extract information about charge distribution and electron-electron
contribution to the ground state energy. To make this procedure transparent, we pro-
vide an explicit derivation of the Hartree-Fock equations and discuss a proper solution
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scheme. We pay special attention to treat the spin degree of freedom correctly in the
unrestricted Hartree-Fock approach.

The second part deals with the quantum Hall transition in interacting and non-
interacting systems. We investigate the static and the dynamical critical exponent in
the lowest Landau level by means of the wavefunctions of the system. The participation
ratio, being proportional to the inverse second statistical moment of electron probability
density, serves as a measure for localization, with similar power law scaling as the local-
ization length ξ. Although this method is much less accurate than the usual finite-size
scaling schemes based on transfer matrix or recursive Green’s function methods, we find
consistent results for the static critical exponent for various systems including disorder
and interaction. Moreover, we treat transport in the regime of linear response by means
of the Kubo formula, which grants the possibility to calculate the frequency-dependent
conductivity tensor. Employing a scaling analysis of the magnetoconductivity peak
width, we estimate the value for the dynamical critical exponent. We investigate if it
could be altered from its expected value z = 2 in a zero-range white-noise potential, if
a long-range disorder potential or a Hartree-Fock type interaction is present.

The third part addresses a recent experiment [34], in which the compressibility of
the quantum Hall system was directly measured in dependence of the filling factor. The
filling factor can be tuned independently as a function the magnetic field and the par-
ticle density in the sample. The outcome of the experiment is rather startling, since
it indicates the signatures of correlation effects (Coulomb blockade) in the insulating
phases and promotes a constant number of localized states in each Landau level, in con-
tradiction to the single-particle picture with a more or less constant number of extended
states at the critical energy and localized states everywhere else, with a field-dependent
total number of states. This would irritate the so far consistent single particle scaling
explanation of the quantum Hall effect.

We try to illuminate this discrepancy by using a Hartree-Fock approach to calculate
the compressibility directly from the Hartree-Fock total energy. We calculate a separate
self-consistent field for each combination of electron density and magnetic field. This
gives the system the opportunity to ”relax ” to a new Hartree-Fock ground state and is
equivalent to a charge rearrangement due to changes in magnetic field or the reentrance
of an additional particle. The resulting compressibility patterns show striking similarity
to the reported measurement, at least in the insulating phases. We give comments on
the misfits of the Hartree-Fock approach in the band centers and conclude that electron-
electron interaction is important for a comprehensive theory of the integer quantum Hall
effect. Moreover, we suggest a way to match these results with the established scaling
picture.

The remaining part introduces an additional lateral confinement to the system. In
such modeled quantum wires, we study the quantum phase diagram as function of
wire width and energy. We find zero temperature discontinuous transitions in the two-
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terminal conductance between integer plateau values and (exactly) zero. Characteristic
states are found which are superpositions of edge states with opposite chirality. These
states have the properties of nonchiral edge states and differ significantly from bulk ex-
tended edge states, 2D localized, quasi-1D localized, and 2D critical states. The role of
coupling between edge states and bulk extended states, which is omitted in Halperin’s
argument, is elucidated.

Finally, we comment a recent experiment [35], in which the enhancement of the
electron g-factor in quantum wires is studied. It was found, according to earlier theories
[36], that the enhancement is suppressed in the vicinity of transitions from the spin-
polarized to the mixed state. We show that the shape of the transition is qualitatively
altered, if the Hartree contribution to the self-energy is taken into account, which has
been neglected before [36].
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CHAPTER 1

Electrons in a quantizing magnetic field and disorder

In this chapter, we present a detailed discussion of models and methods we use to de-
scribe a quantum Hall system of interacting electrons.

1.1 The free electron in a quantizing magnetic field
A single electron in the x-y-plane and a perpendicular magnetic field B is described by
the Hamiltonian

H0 =
(p + eA)2

2m∗ , (1.1)

where p is the linear momentum e the elementary charge, m∗ the electron mass and A
the magnetic vector potential. In the Landau gauge A = (0, Bx, 0), the Schrödinger
equation

H0 = |φ〉 = E |φ〉 (1.2)

yields the solution

En = (n+
1

2
)~ωc, n = 0, 1, 2, . . . (1.3)

for the eigenenergies which are discrete and identified by the Landau level index n and

φ̃nX(r) ≡ 〈r|φ〉 =
1

(lBLy

√
π2nn!)

1/2
e
− (x−X)2

2l2
B Hn

(

x−X

lB

)

e
− iXy

l2
B (1.4)

for the infinitely degenerate eigenfunctions. ωc = eB/m is the cyclotron frequency
and lB = ~/(eB) the magnetic length. X = −kl2B with a wavenumber k = p/~

17
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is often referred to as the guiding center or center-of-mass coordinate of the Landau
wavefunction (1.4). Hn(x) are Hermite polynomials.

We observe that the Landau wavefunction resembles an oscillatory motion in the
x-direction, described by oscillator wavefunctions

χ(x) ∝ Hn ((x−X)/lB) exp
(

−(x−X)2/2l2B
)

, (1.5)

and a free motion in the y-direction governed by a plane wave exp(−iXy/lB). This
function can only be normalized in a system of finite length Ly.

Using periodic boundary conditions in y-direction, the wavenumber then is quan-
tized as k = 2π/Ly × j with an arbitrary integer j. If one further restricts the transver-
sal direction by requiring X ∈ [−Lx/2, Lx/2], the number of states per Landau level n
becomes finite and is given by

Nφ =
LxLy

2πl2B
≡ ϕ

ϕ0

, (1.6)

which equals the number of magnetic flux quanta ϕ0 = h/e contained in the total flux
ϕ = BLxLy. One defines the filling factor of N electrons as

ν =
N

Nφ

. (1.7)

The finite set of Landau wavefunctions serves as a suitable basis for representing
additional potentials in the Hamiltonian. In cases where no lateral confinement potential
is present, it is helpful to assume periodic boundary conditions also in the x-direction.
These boundary conditions are met by the periodic Landau functions

φnX(r) =
∑

m∈ �
φ̃n,X+mLx

(r) (1.8)

which remain orthonormal in the unit cell of the periodic system [37, 38].

1.2 Models of disorder
In general, real semiconductor samples are not perfect crystals. Lattice deformations,
surface roughness and substitution of lattice atoms by other atoms deform the regular
electrostatic potential landscape within the crystal. Electronic properties of the semi-
conductor thus depend on the present disorder potential, which significantly determines
transport coefficients via scattering and localization processes.

In order to model effects of disorder, one often uses artificial and spatially ran-
dom potentials instead of solving a complicated electrostatic problem employing doped
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atoms on a grid. Within these models, scattering strength and range are well controlled
and can be tuned e.g. to compare low- and high-mobility situations.

In the following, we will discuss certain models of disorder and their representation
in terms of Landau functions, which is required in our investigation of the quantum Hall
problem.

1.2.1 Uncorrelated disorder

A simple realization of disorder is a random distribution of Nimp pointlike scatterers

Vimp(r) =

Nimp
∑

i

Vi δ(r − ri) (1.9)

with a characteristic energy amplitude Vi ∈ [−V0/2, V0/2], located at random positions
ri in the sample. This type of disorder potential is mathematically easy to handle and
has been widely studied in the literature. Applied to the 2DEG in magnetic fields, the
degeneracy of the Landau levels is lifted and Landau bands are formed. The Landau
level band width can be obtained in self-consistent Born approximation [39] as

Γ =
(

NimpV
2
0 l

2
B

) 1
2 (1.10)

and is independent of the Landau level index. This approximation gives the rather crude
semi-circle result for the density of states:

D(E) =
1

π2l2BΓ

[

1 −
(

E − En

Γ

)2
]1/2

, (1.11)

compared to the exact result [40]

D(E) =

√
2

π2lBV0

eε2

1 + 4π (erf(ε))2 , ε =
√

2πlB(E − E0)/V0, (1.12)

with erf(b) =
∫ b

0
dx exp(−x2). Nevertheless, equation (1.10) is often used as a charac-

teristic disorder energy scale.

1.2.2 Correlated disorder

A disorder setup with a long-range correlation is required in modeling high mobility
samples; the electron can travel without being scattered over a length d. On this scale,
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Figure 1.1: Left panel: Gaussian model of a random disorder potential after equation (1.13).
Right panel: STM measurement of a potential landscape in a GaAs/GaAlAs sample.
Courtesy of Jan Klijn.

the potential is only slowly varying. A convenient realization is given by a random
superposition of Gaussian scatterers

Vimp(r) =

Nimp
∑

i

Vi e
−(r−ri)

2/d2

(1.13)

with a characteristic energy amplitude Vi ∈ [V0/2, V0/2] located at random positions ri

in the sample. The Landau representation is conveniently expressed in terms of Fourier
components as

〈nX | Vimp(r) | n′X ′〉 =
∑

q

Vimp(q)
〈

nX | e−iqr | n′X ′〉 (1.14)

The remaining matrix element 〈nX | eiqr | n′X ′〉 can be found in appendix A. For long-
range scatterers, the bandwidth depends on the Landau level index [39] and is given for
the lowest Landau level as

Γd =
Γ

(1 + d2/l2B)
1/2
. (1.15)

Fig. 1.1 shows a comparison between a random potential calculated using equation
(1.13) with periodic boundary conditions, and a potential landscape measured with a
scanning force microscope. We see, that the essential features of the real potential are
well reproduced in the artificial model. For numerical calculations, it is helpful for
correlated and uncorrelated disorder to choose equal numbers of attractive (Vi < 0) and
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repulsive (Vi > 0) scatterers. This produces on the configurational average a density of
states which is symmetric around the band centers En (”particle-hole symmetry”). This
can be useful to detect the energy range in which quantum critical phenomena occur.
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CHAPTER 2

Electron-electron interaction

In this chapter, we discuss extensively the self-consistent Hartree-Fock approximation,
which we use to treat electron-electron interaction. Although conceptually simple, it
requires some effort to formulate the approximation for a given problem. In order to
make the procedure transparent, we give a textbook-like derivation of the self-consistent
Hartree-Fock equations and discuss the subtleties of its implementation, with a special
attention to spin-dependent Hamiltonians.

2.1 Many-particle states
A generic N -particle Hamiltonian can be written

H =
N
∑

i=1

H(pi, ri) +
N
∑

i=1

N
∑

j>i

Ve−e(ri − rj), (2.1)

and consists of a single-particle term H(p, r), which depends only on a single particle
coordinate set (r,p), and an interaction term Ve−e(ri − rj) describing the interaction
between particles i and j. The solution of the Schrödinger equation is a complete set
of many-particle eigenvalues and corresponding wavefunctions Ψ(r1, . . . , rN ). A usual
way of representing the many-body wavefunction for Fermions (at least in finite sys-
tems) is by means of Slater determinants. If a complete set of single-particle wave func-
tions ψi(r) is known, for instance by solving the single-particle Schrödinger equation
for H , one can write

Ψ(r1, . . . , rN) = c0 |Φ0〉 +
∑

ar

cra |Φr
a〉 +

∑

arbs

crs
ab |Φrs

ab〉 + . . . , (2.2)

23



24 Electron-electron interaction

where

Φ =

∣

∣

∣

∣

∣

∣

∣

ψ1(r1) . . . ψ1(rN)
... . . . ...

ψN(r1) . . . ψN(rN)

∣

∣

∣

∣

∣

∣

∣

. (2.3)

In |Φ0〉, the N single particle functions ψi(r) with the lowest energies enter. In |Φr
a〉, the

ast component of |Φ0〉 is replaced by ψr(r), which is so far not present in |Φ0〉, and so
on. The object (2.3) is called Slater determinant. A complete set of Slater determinants
span the many-particle Hilbert space and fulfill the antisymmetry requirements on the
wavefunction for Fermions. Unfortunately, the number of determinants to be taken
into account grows exponentially with particle number and single-particle basis set size.
Therefore, its use in numerical calculations is limited.

2.2 The Hartree-Fock approximation
The solution of the full many body-problem is possible for only very small systems,
whose corresponding Hilbert space can be spanned by few Slater determinants, and an
accordingly small number of particles . For larger systems with a variety of many-
electron states and a larger number of particles involved, one is forced to make approx-
imations.

The most systematic approximation is perturbation theory in the interaction. In this
framework, approximations are well defined in any given order and can be systemati-
cally improved. The first order in perturbation theory leads naturally to the mean-field
approximation, in which the two-body electron interaction is mapped onto an effec-
tive single-particle potential. This leads to corrections to the one-particle energies and
wavefunctions which have to be obtained in a self-consistent manner. The correspond-
ing single-particle Schrödinger equation is known as Hartree-Fock equation.

In this section we will derive the self-consistent Hartree-Fock equations following
[41] and show that they are variational, thus leading to the minimal ground state energy
in the chosen approximation. This will help in the interpretation of the results.

2.2.1 Variational derivation of the Hartree-Fock equations
The solution of the Schrödinger equation for the generic many-body Hamiltonian (2.1)
can be expanded in the complete orthonormal basis of Slater determinants formed by a
given complete orthonormal set of single-particle spin-orbitals {χa}. The first step in
the Hartree-Fock approximation is to assume that the N -electron ground state is given
by a single Slater determinant

|Ψ0〉 = |χ1χ2 . . . χaχb . . . χN〉 (2.4)
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instead of a linear combination of the complete set. Then the ground state energy

E0 = 〈Ψ0 | H | Ψ0〉 (2.5)

is a functional of the spin-orbitals {χa}. The ground state energy is expected to be
minimal. Thus, in order to make the approximation as good as possible, we have to
minimize E0[{χa}] with the constraint

〈a | b〉 − δab = 0, (2.6)

because the spin-orbitals are to remain orthonormal.
We use the Lagrange method of undetermined multipliers εab and define the func-

tional

L [{χa}] = E0 [{χa}] −
N
∑

a=1

N
∑

b=1

εba (〈a | b〉 − δab) (2.7)

The expectation value E0 is written explicitly in terms of spin-orbitals

E0 [{χa}] =
N
∑

a=1

〈a | h | a〉 +
1

2

N
∑

a=1

N
∑

b=1

(〈ab | ab〉 − 〈ab | ba〉) (2.8)

with the single-particle Hamiltonian h and the two-electron integrals

〈ij | kl〉 =

∫

dr1

∫

dr2 χ
∗
i (r1)χ

∗
j(r2)V12χk(r1)χl(r2), (2.9)

and the interaction potential V12 = V (|r1 − r2|).
Minimizing E0 with the constraint (2.6) is equivalent to minimizing (2.7). There-

fore, for small variations δχa in the spin-orbitals, we find for the variation of (2.7)

δL = δE0 −
N
∑

a=1

N
∑

b=1

εbaδ〈a | b〉 ≡ 0 (2.10)

It follows
δ 〈a | b〉 = 〈δχa | χb〉 + 〈χa | δχb〉 (2.11)

and thus
N
∑

a=1

N
∑

b=1

εba (〈δχa | χb〉 + 〈χa | δχb〉) =
∑

ab

εba 〈δχa | χb〉 +
∑

ab

εab 〈χb | δχa〉

=
∑

ab

εba 〈δχa | χb〉 +
∑

ab

ε∗ba 〈δχa | χb〉∗

=
∑

ab

εba 〈δχa | χb〉 + complex conjugate.

(2.12)
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For the variation of the ground state energy we get

δE0 =
N
∑

a=1

〈δχa | h | χa〉 + 〈χa | h | δχa〉

+
1

2

N
∑

a=1

N
∑

b=1

〈δχaχb | χaχb〉 + 〈χaχb | δχaχb〉 + 〈χaδχb | χaχb〉 + 〈χaχb | χaδχb〉

− 1

2

N
∑

a=1

N
∑

b=1

〈δχaχb | χbχa〉 + 〈χaχb | δχbχa〉 + 〈χaδχb | χbχa〉 + 〈χaχb | χbδχa〉

=
N
∑

a=1

〈δχa | h | χa〉 +
N
∑

a=1

N
∑

b=1

(〈δχaχb | χaχb〉 − 〈δχaχb | χbχa〉) + compl. conj.

(2.13)

The linear variation in L now becomes

δL =
N
∑

a=1

〈δχa | h | χa〉 +
N
∑

a=1

N
∑

b=1

〈δχaχb | χaχb〉 − 〈δχaχb | χbχa〉

−
N
∑

a=1

N
∑

b=1

εba 〈δχa | χb〉 +complex conjugate

≡ 0 (2.14)

We now introduce the notation

χa(r1, s1) ≡ χa(1) (2.15)

for a spin-orbital depending on position r and spin s. The Coulomb operator due to
a particle in spin-orbital χb(2) which interacts via the potential V12 with a particle in
spin-orbital χa(1) can be written as

Jb(1)χa(1) =

[

∑

s2

∫

dr2χ
∗
b(2)V12χb(2)

]

χa(1), (2.16)

the non-local exchange operator as

Kb(1)χa(1) =

[

∑

s2

∫

dr2χ
∗
b(2)V12χa(2)

]

χb(1). (2.17)
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Using these operators, equation (2.14) becomes

δL =
N
∑

a=1

∑

s1

∫

d~r1δχ
∗
a(1)

[

h(1)χa(1) +
N
∑

b=1

(Jb(1) −Kb(1))χa(1) −
N
∑

b=1

εbaχb(1)

]

+ complex conjugate
= 0 (2.18)

The variation δχ∗
a(1) is infinitesimal small, but arbitrary. Therefore, the expression in

square brackets must vanish for all a:

[

h(1) +
N
∑

b=1

Jb(1) −Kb(1)

]

χa(1) =
N
∑

b=1

εbaχb(1) a = 1, 2, . . . , N (2.19)

The quantity in square brackets is called Fock operator f(1); the equation for the spin-
orbitals takes the form

f(1) |χa〉 =
N
∑

b=1

εba |χb〉 . (2.20)

This result is not a standard eigenvalue equation and thus difficult to solve. The reason
is in the variational ansatz, since any single-determinant wavefunction is not uniquely
determined by minimizing the energy expectation value; mixing the spin-orbitals among
themselves, for instance, does not change the expectation value (2.5). Consequently, we
have to find a canonical form of the Hartree-Fock equation, which can be achieved by
unitary transformations.

2.2.2 The canonical Hartree-Fock equations

We define a new set {χ′
a}

χ′
a =

∑

b

χbUba (2.21)

by a unitary transformation U. Since U† = U−1, orthonormality is conserved. The
single-determinant many-body wavefunction |Ψ0〉 can be written as

|Ψ0〉 = (N !)−1/2det(A) (2.22)

with

A =







χ1(1) . . . χN(1)
... . . . ...

χ1(N) . . . χN(N)






(2.23)
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The matrix A′ of transformed spin-orbitals has thus the determinant

det(A′) = det(U) det(A) (2.24)

and also
|Ψ′

0〉 = det(U) |Ψ0〉 (2.25)

The determinant of a unitary matrix is at most a phase factor eiβ , because

det(U†U) = det(U†) det(U) = det(U)∗ det(U) = | det(U)|2 = det(1) = 1 (2.26)

Any expectation value of a single Slater determinant is accordingly invariant under a
unitary transformation of the spin-orbitals it is constructed from.

We will now use this invariance to simplify equation (2.20) by choosing a particular
set of spin-orbitals, in which equation (2.20) appears as an eigenvalue equation.

The Coulomb operator is transformed as
∑

a

J ′
a =

∑

a

∑

s2

∫

dr2χ
∗
a′(2)V12χa′(2)

=
∑

bc

[

∑

a

U∗
baUca

]

∑

s2

∫

dr2χ
∗
b(2)V12χc(2)

=
∑

b

∑

s2

∫

dr2χ
∗
b(2)V12χb(2)

=
∑

b

Jb (2.27)

and thus invariant under unitary transformations of the spin-orbitals. The same holds in
equivalent manner also for the exchange operator and the Fock operator. Therefore, the
spectral properties also remain unchanged.

We now investigate the effect on the Hartree-Fock equation. According to (2.20),
the matrix elements of the Fock operator can be written as

〈χc | f | χa〉 =
N
∑

b=1

εba 〈χc | χb〉 = εca (2.28)

In terms of the transformed spin-orbitals we have

ε′ab =
∑

s1

∫

dr1χ
∗′
a (1)f(1)χ′

b(1)

=
∑

cd

U∗
caUdb

∑

s1

∫

dr1χ
∗
c(1)f(1)χd(1)

=
∑

cd

U∗
caεcdUdb (2.29)
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This is in matrix form
ε′ = U†εU (2.30)

By default, ε is Hermitian, and there always exists a unique unitary matrix U which
diagonalizes ε. Then there must exist a set of spin-orbitals {χ′

a} such that ε is diagonal.
This set is called canonical and uniquely determined via

f |χ′
a〉 = ε′a |χ′

a〉 (2.31)

In the following, we will drop the primes and refer to (2.31) as the Hartree-Fock equa-
tions. Due to the complicated form of the Fock operator, the Hartree-Fock equations are
coupled integro-differential equations which in most cases cannot be solved in closed
form. Instead, one tries to expand the spin-orbitals into a suitable set of basis functions
consistent with given boundary conditions in order to transform (2.31) into an alge-
braic matrix equation. The matrix equation can be solved numerically. The appropriate
procedure will be outlined in section 2.3.

2.3 The self-consistent field procedure

2.3.1 Restricted and unrestricted spin orbitals
Following the above discussion, one can assume the one-particle wavefunctions as spin
orbitals. The most simple approach is to assume

χi(x) =

{

ψi(r)α(s)
ψi(r)β(s)

(2.32)

In that case, a spin-up orbital differs from a spin-down orbital only in the spinor, but not
in the spatial part of the wavefunction. In other words, each spatial orbital with a certain
energy is doubly occupied with a spin-up and a spin-down orbital. These wavefunctions
are often referred to as restricted spin-orbitals (or RHF-wavefunctions).

This description holds well if no spin-dependent operators appear in the Hartree-
Fock Hamiltonian. However, if some kind of symmetry break occurs, the calculation
in the RHF picture may not be sufficient. Such a symmetry breaking effect is for in-
stance the Zeeman splitting adding a spin dependent part to the one-particle Hamilto-
nian, which produces a spin-polarized fine structure in the Fock spectrum. In such a
situation, one can introduce unrestricted spin orbitals or UHF-wavefunctions:

χi(x) =

{

ψ↑
i (r)〈s |↑〉

ψ↓
i (r)〈s |↓〉

(2.33)

The next task is to solve
f sχi = εiχi (2.34)
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Inserting (2.33) yields for the spin-up case

fψ↑
i (r)〈s |↑〉 = ε↑iψ

↑
i (r)〈s |↑〉 (2.35)

and for the spin-down case

f ↓ψ↓
i (r)〈s |↓〉 = ε↓iψ

↓
i (r)〈s |↓〉 (2.36)

By multiplying with 〈↑| s〉 (or 〈↓| s〉, respectively) and integrating over the spin coordi-
nate s, one obtains

F ↑,↓ψ↑,↓
i (r) = ε↑,↓i ψ↑,↓

i (r) (2.37)

Here, the spatial Fock operators are defined as

F ↑,↓(r) =
∑

s

〈↑, ↓| s〉f(r, s)〈s |↑, ↓〉 (2.38)

According to the agreeing structure of both operators, it is possible to concentrate
on F ↑(r). Inserting (2.33) into (2.38) , we get

(F ↑ − h)(r)ψ↑
j (r) =

N↑
∑

a

∫

dr′ψ↑∗
a (r′)V (|r − r′|)ψ↑

a(r
′)

∑

ss′

〈↑| s〉 〈↑| s′〉 〈s| ↑〉 〈s′| ↑〉ψ↑
j (r)

+

N↓
∑

a

∫

dr′ψ↓∗
a (r′)V (|r − r′|)ψ↓

a(r
′)

∑

ss′

〈↑| s〉 〈↓| s′〉 〈s| ↑〉 〈s′| ↓〉ψ↑
j (r)

−
N↑
∑

a

∫

dr′ψ↑∗
a (r′)V (|r − r′|)ψ↑

a(r)

∑

ss′

〈↑| s〉 〈↑| s′〉 〈s| ↑〉 〈s′| ↑〉ψ↑
j (r

′)

−
N↓
∑

a

∫

dr′ψ↓∗
a (r′)V (|r − r′|)ψ↓

a(r)

∑

ss′

〈↑| s〉 〈↓| s′〉 〈s′| ↑〉 〈s| ↓〉ψ↑
j (r

′) (2.39)
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Now the integration over the spin variables can be carried out explicitly, leading to

F ↑(r)ψ↑
j (r) = h(r)ψ↑

j (r) +

N↑
∑

a

∫

dr′ψ↑∗
a (r′)V (|r − r′|)ψ↑

a(r
′)ψ↑

j (r)

+

N↓
∑

a

∫

dr′ψ↓∗
a (r′)V (|r − r′|)ψ↓

a(r
′)ψ↑

j (r)

−
N↑
∑

a

∫

dr′ψ↑∗
a (r′)V (|r − r′|)ψ↑

a(r)ψ
↑
j (r

′)

(2.40)

The last equation can be written as

F ↑(r) = h+

N↑
∑

a

[

J↑
a −K↑

a

]

+

N↓
∑

a

J↓
a , (2.41)

where Coulomb and exchange operator are defined in agreement with (2.16) and (2.17).
The formal result reflects the Pauli principle: the effective interaction of an electron

with a certain spin includes the Coulomb interaction with all electrons independent on
their spin and the exchange interaction with only those electrons with the same spin as
the test particle.

In (2.41), the sum over theN ↑ states ψ↑
a includes the interaction of a spin-up electron

with itself. However, with (2.16) and (2.17) it can be verified that
[

J↑
a −K↑

a

]

ψ↑
a = 0, (2.42)

i.e. the self-interaction is cancelled.
The spatial Fock operator for spin-down electrons is accordingly given as

F ↓(r) = h+

N↓
∑

a

[

J↓
a −K↓

a

]

+

N↑
∑

a

J↑
a (2.43)

The expressions for the Fock operators (2.41) and (2.43) shows that the corresponding
eigenequations (2.37) are coupled and thus cannot be solved independently, since both
operators depend as well on the occupied spin-up and spin-down orbitals. The equations
must therefore be solved in a simultaneous iterative process.

Of particular interest is the total electronic energy, which can now be determined
from proper expectation values.

The kinetic energy and the potential energy resulting from external potentials for an
electron in the unrestricted orbital ψ↑

i or ψ↓
i is given by the expectation values

h↑ii =
〈

ψ↑
i

∣

∣

∣h↑
∣

∣

∣ψ
↑
i

〉

or h↓ii =
〈

ψ↓
i

∣

∣

∣h↓
∣

∣

∣ψ
↓
i

〉

(2.44)



32 Electron-electron interaction

The Coulomb interaction between two electrons with spins s and s′ (s, s′ ∈ {|↑〉 , |↓〉})
in the orbitals ψs

i and ψs′

j reads

Jss′

ij = 〈ψs
i | Js′

j |ψs
i 〉 =

〈

ψs′

j

∣

∣

∣
Js

i

∣

∣

∣
ψs′

j

〉

= Js′s
ji ≡ 〈ψs

iψ
s
i |ψs′

j ψ
s′

j 〉 (2.45)

The exchange energy between two electrons of parallel spin is

Kss
ij = 〈ψs

i |Ks
j |ψs

i 〉 =
〈

ψs
j

∣

∣Ks
i

∣

∣

∣
ψs′

j

〉

≡ 〈ψs
iψ

s
j |ψs

jψ
s
i 〉 (2.46)

whereas electrons with opposite spin do not feel any exchange interaction. The total
energy can finally be written as

E0 =

N↑
∑

a

h↑aa +

N↓
∑

a

h↓aa +
1

2

N↑
∑

a

N↑
∑

b

(J↑↑
ab −K↑↑

ab ) (2.47)

+
1

2

N↓
∑

a

N↓
∑

b

(J↓↓
ab −K↓↓

ab ) +

N↑
∑

a

N↓
∑

b

J↑↓
ab (2.48)

The factors 1
2

in the third and fourth term occur in order to remove the double counting
in the summation. Again, the self-interaction is eliminated via

J↑↑
aa −K↑↑

aa = J↓↓
aa −K↓↓

aa = 0 (2.49)

2.3.2 The Pople-Nesbet equations
In the last sections, the Hartree-Fock equations have been reduced by eliminating the
spin degrees of freedom in a suitable way.

It still remains to solve the coupled eigenequations (2.37). As mentioned before, this
will be done by transforming the integro-differential equations into matrix equations.

Introduction of a basis

Every quantum mechanical state can be formally expressed as a vector in a Hilbert
space, whose dimension depends on the problem to be treated. The coordinates of this
vector depend on the basis used to span the Hilbert space. The choice of the basis is
not unique, but in most problems infinitely many basis functions are required for an
exact description of the states. In numerical calculations, an infinite dimension cannot
be handled. It is thus necessary to approximate the wavefunctions by expansion into a
finite basis set {φµ(r)|µ = 1, 2, . . . , Nφ}:

ψs
i =

Nφ
∑

µ=1

Cs
µiφµ, (2.50)
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with s =↑, ↓. It is obvious that the approximation gets better for large values of Nφ.
The choice of the basis functions is therefore important for the accuracy of the approx-
imation, since the magnitude of Nφ can be very limited due to available computational
power.

Matrix equations

Matrix equations to obtain the expansion coefficients are generated by inserting (2.50)
into (2.37). This yields

∑

ν

Cs
νjf

sφν = εs
j

∑

ν

Cs
νjφν (2.51)

Multiplying these equations from the left with φ∗
µ and integrating over the spatial

coordinates gives
∑

ν

f s
µνC

s
νj = εs

j

∑

ν

SµνC
s
νj (2.52)

The new matrices

F s
µν =

∫

drφ∗
µ(r)f s(r)φν(r) (2.53)

are called Fock matrices , whereas

Sµν =

∫

drφ∗
µ(r)φν(r) (2.54)

is known as overlap matrix or metric matrix. It is not needed for a basis set to be or-
thonormal. The formal discussion therefore includes the presence of the overlap matrix.
If an orthonormal basis set is chosen, the metric matrix becomes the unity matrix, which
we will assume from now on.

A compact way of writing the eigenequations including all possible values of the
index µ is

F↑C↑ = SC↑ε↑ (2.55)

F↓C↓ = SC↓ε↓ (2.56)

The columns of theNφ×Nφ-matrices C↑,↓ contain the expansion coefficients for ψ↑ and
ψ↓. The matrices ε↑,↓ are diagonal and contain the orbital energies, i.e. the requested
eigenvalues. Equations (2.55) and (2.56) are known as Pople-Nesbet equations. They
form a generalized eigenproblem; in case of orthonormal basis functions, the Hartree-
Fock problem is projected on finding the eigenvalues and eigenvectors of the Fock ma-
trix. This is usually done by numerical diagonalization. The first step, however, is to
find an explicit expression for the Fock matrices.
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2.3.3 Density matrices
It turns out to be helpful to develop the concept of density matrices before continuing
the evaluation of Fock matrix elements. The charge density contribution ofNs electrons
in Ns orbitals ψs

a is given by

ρs(r) =
Ns
∑

a

|ψs
a(r)|2 (2.57)

The total charge density reads

ρT (r) = ρ↑(r) + ρ↓(r) (2.58)

It is also convenient to introduce the spin density

ρS(r) = ρ↑(r) − ρ↓(r) (2.59)

to gain access to the spin distribution in a system: in regions of space where ρS(r) > 0
it is more probable to find a spin-up electron than a spin-down electron and vice versa.
Inserting the basis set expansion (2.50) into (2.57) results in

ρs(r) =
Ns
∑

a

|ψs
a(r)|2 =

∑

µ

∑

ν

Ns
∑

a

φ∗
ν(r)C

s∗
νaC

s
µaφµ(r) =

∑

µ

∑

ν

ρs
µνφ

∗
ν(r)φµ(r)

(2.60)
Here,

ρs
µν =

Ns
∑

a

Cs∗
νaC

s
µa (2.61)

is recognized as the matrix representation of the density operator

ρ̂ =
Ns
∑

a

|φa〉 〈φa| (2.62)

in the basis of orbitals ψs
a. As eigenfunctions of a Hermitian matrix, these orbitals are

orthonormal and form a complete basis set of the finite-dimensional Hilbert subspace.
The use of these density matrices opens a possibility to write down concise expres-

sions for the Fock matrices.

2.3.4 Expressions for the Fock matrices
Returning to the matrices (2.53) , one can continue by inserting the matrix elements for
Coulomb and exchange operator (2.45) and (2.46):

F ↑ = H↑,core
µν +

N↑
∑

a

[

〈φµφν |ψ↑
aψ

↑
a〉 − 〈φµψ

↑
a|ψ↑

aφν〉
]

+

N↓
∑

a

〈φµφν |ψ↓
aψ

↓
a〉 (2.63)
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F ↓ = H↓,core
µν +

N↓
∑

a

[

〈φµφν |ψ↓
aψ

↓
a〉 − 〈φµψ

↓
a|ψ↓

aφν〉
]

+

N↑
∑

a

〈φµφν |ψ↑
aψ

↑
a〉 (2.64)

where

Hs,core
µν =

∫

drφ∗
µ(r)h(r)φν(r) (2.65)

is the matrix representation of all single-particle operators in the selected basis. This
matrix will be referred to as the core Hamiltonian . It has to be remarked, that all en-
ergy contributions resulting from spin-dependent single-particle operators are included
in this matrix; occasionally, it might then be required to calulate two diffferent core
Hamiltonians H↑,core, H↓,core.

Now one can substitute the basis set expansion of ψ↑
a and ψ↓

a and get, e.g. for the
spin-up Fock operator

F ↑ = Hcore,↑
µν +

∑

λ

∑

σ

N↑
∑

a

C↑
λaC

↑∗
σa [〈µν|λσ〉 − 〈µλ|σν〉]

+
∑

λ

∑

σ

N↓
∑

a

C↓
λaC

↓∗
σa〈µν|σλ〉

= Hcore,↑
µν +

∑

λ

∑

σ

ρ↑λσ [〈µν|λσ〉 − 〈µλ|σν〉]

+
∑

λ

∑

σ

ρ↓λσ〈µν|σλ〉

= Hcore,↑
µν +

∑

λ

∑

σ

ρT
λσ〈µν|σλ〉 − ρ↑λσ〈µλ|σν〉 (2.66)

where

〈µν|σλ〉 =

∫

dr

∫

dr′φ∗
µ(r)φν(r)V (|r − r′|)φ∗

σ(r′)φλ(r
′) (2.67)

The same steps as above can be carried out for the spin-down Fock matrix to obtain

F ↓ = Hcore
µν +

∑

λ

∑

σ

ρT
λσ〈µν|σλ〉 − ρ↓λσ〈µλ|σν〉 (2.68)

The coupling of both matrix equations is performed implicitly, because

F↑ = F↑(ρ↑, ρ↓) (2.69)

F↓ = F↑(ρ↑, ρ↓) (2.70)
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so that both Fock matrices depend on the spin-up and spin-down orbitals. Furthermore,
one can insert the basis expansion into the formula for the total energy (2.48) and find

E0 =
1

2

∑

µ

∑

ν

[

ρT
νµH

core
µν + ρ↑νµF

↑
µν + ρ↓νµF

↓
µν

]

(2.71)

2.3.5 Solution to the unrestricted Hartree-Fock equations
The dependence of the Fock matrices on their own eigenvectors requires a solution of
the Pople-Nesbet equations by iteration: a guess for the density matrices is made and
used to build the Fock matrices. The latter are diagonalized and new density matrices
are formed from their eigenvectors. These new density matrices are used to construct
new Fock operators and so on, until the density matrices do not change any more. The
resulting density matrices give an approximation to the charge density formed by the
interacting electrons. This method of defining an effective potential for a many-particle
system, which can be used to rely on a single-particle picture for the electron motion, is
known as the method of self-consistent fields (SCF).

This section provides a detailed description of the unrestricted SCF procedure. The
main steps are listed below, see also [37]:

SCF procedure

1. Specify the Hamiltonian with all external potentials, the number of electrons N
and a basis set of adequate size Nφ, which in general depends on the system
geometry

2. Set up the overlap matrix, the core Hamiltonians and, if possible, the two-electron
matrix

3. Make an initial guess for the density matrices

4. Calculate the Fock matrices from the density matrices and the matrix elements

5. Solve FsCs = SCsεs, s ∈ {↑, ↓} by numerical diagonalization

6. Select the lowest N eigenenergies εs and their eigenvectors Cs from the 2Nφ

levels obtained from the diagonalization

7. Form new density matrices from the selected eigenvectors

8. Check for convergence, i.e. check if the difference between the new total density
matrix and the one from the previous iteration step is smaller than a specified
limit; if the procedure has not converged, return to step 4. with the new density
matrices
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9. After convergence, perform the analysis, i.e. calculate exspectation values and
wavefunctions

Comments

1. This chapter dealt extensively with matrix representations of operators and diffi-
culties in the spin dependent formulations. Naturally, the procedure only works
for N < 2Nφ. The proper choice of the basis set may help to include symmetries
and certain properties of the system.

2. Depending on the basis size, it could be difficult to store the complete two-
electron matrix; note however that there exist certain symmetries in the two-
electron integral which make it obsolete to calculate every element.

3. The initial choice of the density matrices, i.e. the initial occupation configuration
may influence the convergence and accuracy of the SCF procedure, especially in
badly conditioned systems. One possibility is, for instance, to diagonalize the
single-particle Hamiltonian (without interaction) in a first run and construct the
density matrices by defining certain numbers of spin-up and spin-down electrons
occupying single-particle states. This corresponds to ”switching on” the interac-
tion in the following step.

4. The Fock matrices are determined as described in the previous section. This is the
most time consuming step in the procedure.

5. The diagonalization is efficiently done by a standard library; platform-optimized
LAPACK-routines quickly produce good results.

6. The density matrices are determined as described in the previous section.

7. Convergence is not guaranteed in the SCF procedure. Sometimes so called meta-
stable states in the iteration are reached, where the system oscillates between to
possible configurations. One can try to avoid these states by refining the conver-
gence criterion, e.g check if the standard deviation

[

N−2
φ

∑

µ

∑

ν

[P (i)
µν − P (i−1)

µν ]2

]1/2

< δ (2.72)

It is also possible to extrapolate the density matrices from different iteration steps
i. The simplest way to do this is a weighted average

ρ = αρ(i) + (1 − α)ρ(i−1) (2.73)

for 0 ≤ α ≤ 1. A common value is α = 0.1.
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8. After convergence, one has access to the Fock levels and expansion coefficients
of the wavefunctions. These can be used to perform further analysis.
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CHAPTER 3

Localization

3.1 Localization and the metal-insulator transition

The integer quantum Hall transition can be understood as the expansion of the electron
wavefunction in dependence of the magnetic field. The degeneracy of the Landau levels
is lifted in the presence of disorder, and the single-particle energy levels form a band
around the Landau energy EC = (n + 1

2
)~ωc. Knowing the density of states, one can

map the increase of the magnetic field onto an increase of the Fermi energy E. States
far away from the band center are localized; for long-range correlated disorder, one
can show that the wavefunctions follow equipotential lines [18, 42] corresponding to
their energy. Localized wavefunctions encircle local potential pits, whereas states with
energies closer to the band center follow equipotential lines which circumvent larger
areas. At the critical energy, there is a percolating equipotential line which connects
opposite sides of the sample. It has been shown (see [43] for a recent review) that this
transition from localized to delocalized states is governed by the power law

ξ(E) ∝ |E − EC |−ν̃ , (3.1)

where ξ(E) is the correlation length of the percolating line and called localization
length. However, one has to include quantum corrections when trying to calculate the
critical exponent from a percolation model [16].

The critical exponent for the lowest Landau level has been determined with high
numerical precision as [10]

ν̃ = 2.34 ± 0.04. (3.2)

43
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The critical exponent for this transition is only weakly dependent on type and range
of disorder and is regarded as universal for the integer quantum Hall transition of non-
interacting electrons.

The standard methods to determine the localization length and the conductance use
either a refined transfer-matrix method [4, 10] or the method of recursive Green’s func-
tion [44]. Both techniques operate with a tight-binding Hamiltonian; the sample is dis-
cretized, and a random disorder potential is assigned to each grid point. One can now
calculate the probability for hopping between the lattice sites and devise the required
quantities from this information. In case of uncorrelated disorder, it is not necessary to
treat the system in toto.

In case of a correlated potential, or in the presence of mean field interaction, this
is no longer possible. Instead, one has to know the corresponding potentials at every
lattice site simultaneously. This makes the calculation of large systems, required for
these types of calculations, infeasible.

In this chapter, we take a different approach and investigate the localization directly
from the wavefunctions. By this approach, we are also limited to small system sizes, but
long-range disorder and interaction can be included in a natural way. We start with the
definition of a suitable quantity to be extracted from the wavefunction, the participation
ratio.

3.2 Participation ratio and multifractality
If access to the wavefunctions ψα of a disordered system is provided, it is possible to
investigate localization properties via the second statistical moment of the density |ψα|2,
the inverse participation number

℘ =

∫

Vol.

ddr|ψα(r)|4, (3.3)

where d is the spatial dimension.
Following the argument of Aoki [45, 46], the participation ratio

Pα =
1

Ld
∫

Vol.

ddr|ψα(r)|4 (3.4)

is constant for a uniformly distributed wavefunction in a volume Ld, because in this
case ℘ ∝ L−d. In the localized regime, the inverse participation number is related to the
localization length as ℘ ≈ ξ−d. Therefore, Pα → 0 for L→ ∞. In the transition region,
where the wavefunction is extended, Pα / 1. Hence, Pα mimics the localization length
and can be calculated directly from spectral information.
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Figure 3.1: Self-similar partitioning of the density as a tool to calculate the fractal dimension.

However, the critical exponents describing the metal-insulator transition differ for
participation ratio and localization length. This is due to the fact that Pα vanishes also
in the transition region in the thermodynamic limit, although the wavefunction is ex-
tended. Accordingly, ℘ scales with a power d∗ < d. The correct exponent for the
scaling of the participation ratio can be calculated by considering the scaling of statisti-
cal moments of a given local field (in our case the wavefunction) on general grounds. As
a further difficulty for quantum Hall critical states, it has been shown [47] that they are
multifractals. As any multifractal object [48], the scaling of the moments is described
by a whole spectrum of critical exponents. In the following, we summarize the impor-
tant steps for the analysis of a self-similar, multifractal object which lead to the relevant
critical exponent.

We consider a finite two-dimensional quantum Hall system of linear size L at fixed
magnetic field with a disorder correlation length larger than the magnetic length. The
probability to find an electron within a box of linear size Lbox is given by the box
probability

P (Lbox) =

∫

box

d2r|ψ(r)|2 (3.5)

Dividing the quadratic sample into a grid ofN(L,Lbox) boxes (see Fig. 3.1), one defines
the fractal dimension D as

N(λ) ∝ λ−D. (3.6)

N(λ) is the number of boxes in which the probability to find the electron is non-zero,
and λ = Lbox/L.. Since the wavefunction is nowhere exactly zero,N(L,Lbox) = N(λ).
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Therefore, D = d = 2. Somewhat more interesting is the scaling of the box probability
[49]. Using the normalization condition

N(λ)
∑

i

Pi(Lbox) ≡ 1 ≡ N(λ)〈P (Lbox)〉L, (3.7)

we obtain the scaling law for the average

〈P (Lbox)〉L ∝ λD, (3.8)

where the average is as usual defined as

〈P (Lbox)〉L :=
1

N(λ)

N(λ)
∑

i

Pi(Lbox). (3.9)

We now assume that also the higher moments

P (q)(Lbox) =

∫

box

d2r|ψ(r)|2q (3.10)

of the box probability obey power law scaling. This assumption is reasonable if length
scales are absent, as given at the quantum Hall transition [50], as long as

lB ¿ Lbox < L¿ ξC , (3.11)

where ξC is the localization length in the critical regime. In this case, the scaling relation

〈P (q)(Lbox)〉L ∝ λD+τ(q) (3.12)

holds. In the thermodynamical limit L → ∞, critical states only exist at the critical
energy EC . In this limit,

τ(q) = lim
λ→0

ln(〈P (q)(Lbox)〉L)

lnλ
−D. (3.13)

In finite systems,

τ(q) ≈ ∆ ln(〈P (q)(Lbox)〉L)

∆ lnλ
−D, (3.14)

as long as equation (3.11) holds.
The normalization condition (3.7) implies τ(0) = −D and τ(1) = 0. We can also

write
D(q)(q − 1) := τ(q) (3.15)
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with the generalized dimension D(q) and D(0) = D. Specifically, for the inverse
participation ratio q = 2 and thus τ(2) = D(2). With

P (q) ∝ ξ
−τ(q)
C (3.16)

and
ξC ∝ |E − EC |−ν̃ , (3.17)

we have
P (q) ∝ |E − EC |π(q), (3.18)

where
π(q) = ν̃ τ(q). (3.19)

We therefore expect that the participation ratio increases with an exponent π(2) =
ν̃ D(2) when the Fermi energy approaches the critical energy.

3.3 Finite size scaling

The power law scaling of the localization-delocalization transition implies a divergence
of the localization length at the critical energy and thus characterizes a second-order
phase transition. However, if the localization length is viewed as a correlation length
defining the range in which the particle is likely to be found, the overall volume has to
diverge accordingly. In other words, for finite systems of linear size L a ”divergence” in
the localization length ξ is granted for ξ > L. Scaling relations like (3.1) or (3.18) hold,
if the corresponding observable compensates the rescaling of the system size. Quanti-
tatively, the size dependence of phase transitions is expressed via scaling functions. For
the localization-delocalization transition, one calculates the localization length ξL(E) in
the finite system and relates it to the localization length in the infinite system ξ(E) via
a scaling conjecture

ξL(E)

L
= F

(

L

ξ(E)

)

. (3.20)

A similar scaling function Π is taken for the participation ratio [51, 52] away from
the critical point:

Π(L1/ν̃ |E − EC |) = Pα(E,L) L2−D(2) (3.21)

Employing generic results for finite size scaling techniques [4, 11], the correctness of
an estimation of the single scaling parameter ν̃ requires the collapse of scaling functions
Π in dependence of the scaling variable onto a single curve.
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3.4 Critical exponents for non-interacting and Hartree-
Fock systems

We will now investigate how to extract critical exponents from the spectrum of a quan-
tum Hall system, which contains no interparticle interaction, and also for a system in-
cluding Coulomb interactions on Hartree-Fock level. We choose a long-range disorder
potential of the form (1.13) with a correlation length d = 2lB and fix the magnetic field
to B = 8 T. The spin-dependent single-particle Hamiltonian

Hs =
1

2m∗ (p + eA)2 +
1

2
sgµBB + Vdis(r) (3.22)

with the vector potential A = (0, Bx, 0), flux density B and spin s = ±1 enters the
Fock matrix

F s
nXn′X′ ≡ F s

ij = Hs
0,ij +

∑

a

∑

b

ρabMijab − ρs
abMiabj, (3.23)

which has to be determined selfconsistently by an iterative solution of the unrestricted
Hartree-Fock equations

∑

b

F s
abC

αs
b = EαsCαs

a . (3.24)

m∗ is the effective electron mass, µB is the Bohr magneton and g the effective electron
g-factor. 〈nX|αs〉 = Cαs

nX ≡ Cαs
a are the expansion coefficients of the Hartree-Fock

states |αs〉 and Eαs the energy eigenvalues. The interaction matrix elements

Mijab =
γl

L2

∑

qx,qy

V (q)〈i|eiqr|j〉〈a|e−iqr|b〉 (3.25)

are elucidated in Appendix A.2. The spin-resolved density matrix ρij =
∑

s ρ
s
ij is given

as
ρs

ij =
∑

α(occ)

Cαs∗
i Cαs

j . (3.26)

As a first step, we estimate the fractal dimension D(2) by calculating

P (2)(λ, α) =
∑

i







∫

r∈Ωi(λ)

d2r|ψα(r)|2







2

(3.27)

Here, the area of the system with length L is covered with quadratic boxes of size
Lbox = λ L and area Ω = L2

box. The probability to find the electron in each of the boxes
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Figure 3.2: Average values for P (2) according to equation (3.27) for different box sizes. Upper
left: Spin up, noninteracting. Upper right: Spin down, noninteracting. Lower left:
Spin up, interacting. Lower right: Spin down, interacting. A power law fit yields an
average exponent D(2) = 1.63 for all curves. The value for λ = 0.0325 has been
omitted for the fit, since it is beyond the validity region of equation (3.11). The solid
lines are guides to the eye.

is calculated, squared and summed up for all the boxes. For states in the critical region,
the participation ratio is considerably larger than for states in the insulating region (see
Fig. 3.3). D(2) is then obtained using equation (3.14) and averaged boxed probabilities
for a few critical states. Results are shown in Fig. 3.2. For all types of interaction and
disorder we found

D(2) = 1.63 ± 0.03, (3.28)

in agreement with earlier results reported in [52]. A notable result is thus that the mul-
tifractality of the wavefunction is not modified in the presence of interactions.

Results for the participation ratio are shown in Fig. 3.3.
A power law fit according to equation (3.18) in the tails of the curves give the critical

exponents π(2) for the participation ratio and accordingly ν̃ for the localization length.
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Figure 3.3: Averaged participation ratio for a system of size L = 30 lB at B = 8 T, averaged
over 60 realizations of Gaussian disorder with correlation length d = 2lB , V0 = 10
meV and Nimp = 200.

The estimated critical exponents are shown in Table 3.1. Within the accuracy pro-
vided by the relatively small system size, we do not find significant deviations from the
expected values even in presence of Hartree-Fock-like interaction. This supports the
conjecture of a universal critical exponent at least in the lowest Landau level. However,
the Hartree-Fock spectrum has to be treated with some care, because certain correlation
effects are negleced it this approximation. The participation ratio is evaluated at fixed
filling factor. Nevertheless, the fitting has been performed over the Hartree-Fock single
particle energies approaching the critical region. Thus, the single-particle spectrum is
assumed to be stable against adding or removing a particle, and the levels depict the
correct Fermi energy. No possibility is given for charge rearrangement and renormal-
ization of the Fermi energy. We return to this point in chapter 5 and note that our results
are consistent with those presented in Ref. [52], and remain unchanged also for spin-
split Landau levels. For the sake of completeness, results for the scaling function are
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Table 3.1: Results for the critical exponents π(2) and ν̃ for a system as in Fig. 3.3.

spin d νf γ π(2) ν
0 2l 1/Nφ 0 3.96 ± 0.41 2.43
↑ 2l 1 1 3.64 ± 0.38 2.23
↓ 2l 1 1 3.74 ± 0.39 2.29
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Figure 3.4: Scaling function for systems with parameters as in Fig. 3.3, but different linear sizes
L. At constant magnetic field, L2 = 2πNφl2B with the total number Nφ of magnetic
flux quanta in the system.
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shown in Fig. 3.4, using ν̃ = 2.34. A reasonable collapse onto a single scaling curve is
observed for different system sizes.

3.5 Conclusions
In summary, we have derived a procedure to extract information about the metal-
insulator transition from spectral data of a single-particle Hamiltonian. We investigated
the localization properties of electrons in a quantum Hall system by calculating the
participation ratio for eigenstates of a suitable Hamiltonian with and without Coulomb
interaction.

Specifically, we have elucidated that a multifractal analysis (in particular, the deter-
mination of the correlation dimension D(2)) of the wavefunctions is required to obtain
the correct critical exponent. We found, that for fixed filling factor the transition from
localized states in the Landau band tails to extended states in the vicinity of the band
center remains quantitatively unchanged even in the presence of mean field Coulomb
interaction.



CHAPTER 4

Frequency-dependent transport of disordered
electrons

4.1 Introduction

Experimental determination of the resistance and conductivity of a two-dimensional
electron system in a strong perpendicular magnetic field and disorder along
(”xx-direction”) and perpendicular to (”xy-direction”) the direction of the applied ex-
ternal electric field is the central issue in the exploration of the quantum Hall phase
transition[1, 25, 53]. A characteristic result is that in dependence of filling factor the
Hall conductivity σxy is quantized to integer multiples of the conductivity quantum e2/h
over a certain range of filling factors, with sharp transitions between these plateaux. Si-
multaneously, the longitudinal conductivity σxx exhibits peaks at position of the plateau
transition and vanishes elsewhere. Width of the Hall plateaus and slope of the transition
between as well as width and height of the longitudinal peaks depend on temperature
T and frequency ω of a stimulating external electric field. The additional energy scales
kBT and ~ω make a single parameter power law scaling like equation (3.1) unlikely. In
fact, it represents the dynamics of the system, which is expected to decelerate when the
system approaches criticality. In other words, the divergence of the localization length
ξ is accompanied by a divergence of a characteristical correlation time τC for E → EC .
The finite-size scaling theory predicts power law scaling also for the transport coeffi-
cients. This behaviour is reflected in the scaling of the conductivity tensor [54]

σαβ =
e2

h
Sαβ

[

L
1/ν̃
eff (E − EC)

]

(4.1)

53
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with the effective system size Leff and the critical exponent for the localization length ν̃
(see equation (3.1)). At temperature T = 0, Leff = L, whereas at T > 0, the effective
system size is given by the phase coherence length Lφ [55]. It is then argued that

dσαβ

dB
∝ L

1/ν̃
eff ∝ T−γ , (4.2)

with γ = ν̃ z. z is the dynamical critical exponent, which can be obtained by tempera-
ture dependent measurements of the Hall conductivity.

A similar effect on scaling is expected, if the system is stirred up by an externally
applied AC field of angular frequency ω. With increasing ω, the peak width ∆E of the
σxx-peaks increases. Above a temperature-dependent saturation frequency, the width is
expected to scale as

∆E ∝ ωκ̃ (4.3)

The dynamical scaling assumption for the longitudinal conductivity can then be written
as

σxx(L, ω) =
e2

h
Sxx [L/ξ(E), ωτ0(E)] , (4.4)

where
τ0(E) ∝ ξ(E)z ∝ |E − EC |−ν̃z, (4.5)

For frequencies high enough, the scaling function Sxx is mainly determined by ωτ0(E).
Thus ∆E scales as ω1/ν̃z, which implies κ̃ = 1/zν̃.

We now set T = 0 and concentrate on the case of frequency scaling. Experiments
using a coplanar waveguide to excite the 2DEG in a GaAs/GaAlAs heterostructure [25]
revealed power law scaling with an exponent κ̃ = 0.41 for the broadening of the lowest
conductivity peak. With ν̃ = 2.34, this value is consistent with a dynamical expo-
nent z = 1. Other experiments [21, 23, 53] found κ̃ = 0.21 and accordingly z = 2
for spin-unresolved Landau levels and z = 1 for spin-split Landau levels. The value
of z = 2 for dynamical scaling is anticipated for non-interacting electron systems in
the diffusive limit; it has been shown [56] that correlations in the two-particle spectral
function resulting from eigenfunction correlations with a correlation length shorter than
the localization length leads to anomalous scaling with a reduced dynamical exponent
z = 1.

Theoretical attempts have been made on a semiclassical basis [57] and quantum
mechanically [58]. The latter intended to explain the experimental results by calculating
the frequency-dependent conductivity in time-dependent Hartree-Fock approximation
via the Einstein relation. This involves the calculation of the irreducible susceptibility,
which is connected to the polarization function. As a result, the exponent z = 1 was
validated for the interacting system.

However, the reported calculation was not free of systematic errors, because vertex
corrections linking the disorder potential to local exchange fields had to be neglected
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in order to make the calculation numerically possible. These corrections are crucial for
the density-density response function, and their omission leads to spurious results in
the screening properties [59]. Therefore, it is yet unknown if interactions between the
electrons emerge as the observed behaviour.

Another approach [60] used the Kubo formula [61] with a spatially long-range corre-
lated disorder potential to calculate the longitudinal conductivity from disordered eigen-
states. In order to handle only a single Landau level, the full current operator entering
the Kubo formula (which is in fact a current-current correlation function) was replaced
by velocity matrix elements of the guiding center coordinates [39] (see Appendix A.4.2).
Finite-size scaling leads to z = 1.19. This result is surprising; although the finite-range
disorder potential may have an effect, it seems more likely that the semiclassical ap-
proximation used here is not suitable. It was demonstrated later [62] for δ-like scatter-
ers using the recursive Green function method, that the conductivity follows diffusive
scaling with z = 2.

The issue of frequency-dependent transport in the quantum Hall regime remains
therefore unclear. In this chapter, we try to contribute some insight by deriving an
expression for the frequency-dependent conductivity tensor of a non-interacting system
using the complete quantum mechanical current density operator and compare scaling
results to the earlier works in order to understand the validity of the Kubo approach to
address frequency scaling.

4.2 Transport and linear response
We start with a brief review of linear response theory. In particular, we study the cal-
culation of the conductivity tensor in terms of energy spectrum and eigenstates and the
special cases of single-particle and Hartree-Fock Hamiltonians [63, 64] . Measurements
of electrical conductivity in solid state devices involves the response of its charge car-
riers to an external electromagnetic field, which is defined by the potentials A(r, t) an
Φ(r, t). The many-particle Hamiltonian forN two-dimensional electrons in the external
potential V

H =
N
∑

i=1

(

(pi + eA(ri, t))

2m∗ + eΦ(ri, t)

)

+ V (r1, . . . , rn) (4.6)

can alternatively be written in position representation

H =

∫

d2r′ (j(r’)A(r′, t) + en(r′)Φ(r′, t)) +
e2

2m∗n(r′)A2(r′, t)) +H0, (4.7)

where H0 is the N -electron Hamiltonian without electromagnetic field,

j(r, t) =
e2

2m

N
∑

i=1

[(pi − eA(ri, t)) δ(r − ri) + δ(r − ri) (pi − eA(ri, t))] (4.8)
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is the symmetrized current density operator and

n(r) =
∑

i=1

Nδ(r − ri) (4.9)

the particle density operator. The electromagnetic field thus couples via particle and cur-
rent density with a system of charged particles. This is known as diamagnetic coupling
due to the charge, in contrast to the Zeeman coupling via magnetic moments.

Transport is described by the expectation value of the current operator (4.8). In
linear order in the perturbation due to the electric field its α-component given as

〈jα(r)〉ρ(t) =
e2

m
Aα(r, t)〈n(r)〉ρ0

−
∫

d2r′
∫

dt′

(

2
∑

γ=1

χj0
α(r),j0

γ(r′)(t− t′)Aγ(r
′, t′)

+ eχj0
α(r),n(r′)(t− t′)Φ(r′, t′)

)

, (4.10)

where j0 is the current density for A = 0 and

χj0
α(r),j0

γ(r)(t− t′), χj0
α(r),n(r′)(t− t′) (4.11)

are current-current and current-density response functions, respectively [64, 65].
In the following, we restrict ourselves to a spatially independent AC electric field

E(t) = E0 e
−i(ω+iδ)t. (4.12)

Here, ω is the frequency of the AC field E0 a constant amplitude and δ an infinitesimal
convergence factor, which turns out to be helpful later. The spatial homogeneity implies
wavelength larger than the mean characteristic length scale of the sample. Note, that
the choice of a monochromatic field does not require an additional restriction, since
arbitrary fields can be decomposed into Fourier components, which are additive in linear
response theory.

The time-dependent vector- and scalar potentials can now be chosen as

A(t) = −i 1

ω + iδ
E0e

−i(ω+iδ)t Φ = 0, (4.13)

which satisfied Ė ∝ −Ȧ.
Moreover, the spatial homogeneity allows to neglect the spatial dependence of the

expectation value, which can be replaced by its average

〈j〉 =
1

L2

∫

d2r〈j(r)〉. (4.14)
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Substituting the particle density

n =
1

L2

∫

d2r〈n(r)〉, (4.15)

we get

〈jα〉 = i
ne2

m(ω + iδ)
E0,αe

−i(ω+iδ)t +
1

V

i

ω + iδ

2
∑

γ=1

χj0
α(r),j0

γ(r)(ω + iδ)E0,γe
−i(ω+iδ)t.

(4.16)
The conductivity σ relates current density and electric field as j = σE. From (4.16)

follows

σα,γ(ω + iδ) =
i

ω + iδ

1

V
χj0

α(r),j0
γ(r)(ω + iδ) + i

ne2

m(ω + iδ)
δαγ ≡ σ̃α,γ + σdia. (4.17)

This expression is referred to as Kubo formula [61] for the frequency-dependent con-
ductivity.

On general grounds, one can write the response function of an arbitrary operator
A to the action of another operator B in spectral representation using (many-particle)
eigenstates |m〉 of the unperturbed Hamiltonian H0 as [63, 64]

χB,A(ω + iδ) = − 1

Z0

∑

lm

〈l | B | m〉 〈m | A | l〉
~ω + iδ + El − Em

(

e−βEl − e−βEm
)

, (4.18)

where Z0 =
∑

l e
−βEl is the partition function orresponding to H0 and β−1 = kBT .

This leads obviously to

σα,γ(ω+iδ) =
−i

ω + iδ

1

V

1

Z0

∑

lm

〈l | jα | m〉 〈m | jγ | l〉
~ω + iδ + El − Em

(

e−βEl − e−βEm
)

+
ine2δαγ

m(ω + iδ)
.

(4.19)
This formula grants the possibility to calculate the conductivity as linear transport co-
efficient, if the complete spectrum of the corresponding Hamiltonian and the current
density matrix elements in its many-particle eigenbasis are known. Therefore, the us-
ability is limited to systems which can be exactly diagonalized. In particular, it is well
applicable for single-particle systems.

4.3 Kubo formula for single-particle systems
The αth component of the current density operator can be written in second quantization
as

jα =
∑

il

e

m
〈i | pα + eAα | l〉 c†icl :=

∑

il

jil;αc
†
icl, (4.20)
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where |i〉 , |l〉 are arbitrary one-particle basis kets and ci (c†i ) the corresponding annihi-
lation (creation) operators. We have included a time-independent vector potential A in
the kinetic momentum, which is suitable to model a constant external magnetic field.
This does not qualitatively alter the considerations in the previous section.

This leads immediately to an expression for the conductivity in a single-particle
system. Starting from equation (4.19), and assuming

H0 =
∑

i

εic
†
ici, (4.21)

we obtain

1

Z0

∑

lm

〈

l | c†icn | m
〉〈

m | c†jck | l
〉

(

e−βEl − e−βEm
)

= δnjδik(fi − fn), (4.22)

where fi = f(εi) is the usual Fermi factor. This leads to the frequency-dependent
conductivity for a single-particle model

σαγ(ω + iδ) =
i

L2(ω + iδ)

∑

lk

jlk;αjkl;γ
fl − fk

~ω + iδ + εl − εk
+ i

ne2

m(ω + iδ)
δαγ (4.23)

4.4 Frequency scaling of the integer quantum Hall tran-
sition

With the help of equation (4.23) we can calculate the frequency-dependent conductivity
tensor, neglecting Coulomb interaction between the electrons for the moment. We deter-
mine the eigenvalues and eigenfunctions using periodic boundary conditions via exact
diagonalization and the corresponding current density matrix elements as shown in Ap-
pendix A.4.1. The use of equation (4.23) requires some attention in the quantum Hall
system. The current density matrix elements couple disordered eigenstates belonging to
adjacent Landau levels. Therefore, the spectrum for at least m± 1 Landau levels has to
be evaluated if one is interested in the current response of m Landau levels. Moreover,
the σxx = σyy-component diverges in the band center for δ → 0, a behaviour, which
is unsuitable for numerical evaluation. To overcome this obstacle, one chooses a finite
value for δ of the order of a few times the mean level spacing. The observable con-
ductivity Re(σxx) then depends on δ, which must not be selected too large. As usual in
linear response theory, E0 → 0 has been tacitly assumed. In the following, we calculate
σab separately for several (≈ 10) disorder configurations and frequencies and perform
the disorder average afterwards.
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4.4.1 Short-range disorder
We diagonalize the Hamiltonian

H =
(p + eA)2

2m
+

Nimp
∑

i

Vi δ(r − ri), (4.24)

assumingNimp = 200 zero-range scatterers at positions ri, with amplitudes |Vi| ≤ V0 =
5 meV and a magnetic flux density of B = 7 T. The linear system size is L = 30lB .
All other parameters are set to the material values of GaAs (see Appendix B). We
use the Landau representation as described in Chapter 1. We found acceptable results
for δ = 8Γ/Nφ in equation (4.23), where Γ = 0.2~ωc is the bandwidth of the lowest
Landau level. A disorder-averaged result for short-range scatterers is shown in Fig.
4.4.1 for different driving frequencies ω. σxx(E, ω) shows peaks around E = EC =
~ωc(n + 1

2
). The width of the peaks ∆E is enlarged towards higher frequencies ω.

The peak maximum decreases with increasing frequency. This observation has been the
central issue of the dynamical scaling theory of the quantum Hall plateau transition.

To quantify the relation between ω and ∆E, we have fitted each peak in the lowest
Landau level to a Gaussian

f(E) = A e−(E−EC)2/∆E2

+ C, (4.25)

where all energies are taken in units of ~ωc and C compensates the offset of the conduc-
tivity curve, which is a finite-size effect depending on the frequency.

The results for the width are plotted against the frequency in Fig. 4.2. A power-law
fit of the form

∆E = Aωκ̃ + C (4.26)

yields
κ̃ = 0.24 ± 0.16 (4.27)

which leads to the dynamical critical exponent

z =
1

κ̃ν̃
= 1.78 ≈ 2 for ν̃ = 2.34. (4.28)

The constant C has been used as an additional fitting parameter in order to compensate
the finite width at ω = 0, which is solely determined by the artificial parameter δ in
the Kubo formula. These results are within the limits imposed by the small system size
and numerical accuracy close to the values κ̃ = 0.21 and z = 2 expected for noninter-
acting systems. We conclude that the dissipative component of the Kubo formula for
the electrical conductivity is able to describe qualitatively and even quantitatively the
integer quantum Hall transition in the presence of magnetic field and disorder, but so far
without interaction between the electrons.
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Figure 4.1: Real part of the magnetoconductivity for a system of size L = 30lB with 200 δ-
impurities at B = 7 T. The disorder strength is Γ = 0.2~ωc. The curves show
results for different external frequencies ω. External frequencies are color coded:
ω/ωc = 0.0342 (red), 0.0684 (green), 0.1026 (blue), 0.1369 (yellow), 0.1711
(brown), 0.2053 (grey), 0.2396 (violet). The inset shows a magnification of the
lowest Landau level peak.

The frequency-dependent Hall conductivity σxy(ω) for the same system is shown
in Fig. 4.4.1 for the first two Landau levels. The slope around the critical points is
depending on the frequency. The DC conductivity σxy(0) (black curve) matches integer
multiples of e2/h exactly around integer filling factors. For ω > 0, the plateaux differ
from these values. This is probably due to an increasing localization length in higher
Landau bands.

4.4.2 Long-range disorder

We now discuss the effect of long-range disorder on dynamical scaling. The Hamilto-
nian

H =
(p + eA)2

2m
+

Nimp
∑

i

Vi e
−(r−ri)

2/d2

, (4.29)
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Figure 4.2: Scaling of the width for the peaks in Fig. 4.4.1 as a function of frequency. The solid
line is a least-square fitted function ∆(E) = Aωκ̃ + C, with κ̃ = 0.24.

is diagonalized with Nimp = 200 scatterers of range d = lB at positions ri, with am-
plitudes |Vi| ≤ V0 = 15 meV and a magnetic flux density of B = 7 T. The linear
system size is L = 30lB . All other parameters as before are set to the material values
of GaAs (see Appendix B). Again, we use δ = 8Γ/Nφ in the Kubo formula (4.23),
where Γ = 0.2~ωc is the bandwidth of the lowest Landau level. As for the case of
δ-impurities, the spectrum and eigenfunctions for the lowest three Landau levels have
been calculated.

Fig. 4.4.2 shows disorder-averaged results for σxx(E, ω) and σxy(E, ω) in the lowest
Landau level, without qualitative difference to the features of zero-range scatterers. The
frequency dependence of the peak widths ∆ has been investigated with the help of the
Gaussian fitting function (4.25). ∆ as a function of ω is shown in Fig. 4.5. We find

κ̃ = 0.49 ± 0.24, (4.30)

and therefore
z = 0.87 ≈ 1. (4.31)

Again, these results are contaminated with relatively large statistical errors, as discussed
in the previous section. Within these limits, our results for long-range impurities with
d = 1 seem to be consistent with earlier works [60]. This leads to the conclusion
that the critical exponent z governing dynamical scaling is strongly influenced by the
microscopic properties of the sample. This seems reasonable, since the motion of the
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Figure 4.3: Results for the Hall conductivity at various frequency. System parameters are the
same as in Fig. 4.4.1. External frequencies are color coded: ω/ωc = 0 (black),
0.0342 (red), 0.0684 (green), 0.1026 (blue), 0.1369 (yellow), 0.1711 (brown),
0.2053 (grey), 0.2396 (violet). The inset shows a magnification of the lowest Lan-
dau level curvature.

electron in the presence of a smooth disorder potential exhibits a considerably different,
diffusive behaviour compared to the free, ballistic motion or the motion in presence
of zero-range scatterers. We therefore expect also a strong dependence of dynamical
scaling on electron-electron interaction.

4.4.3 The effect of Coulomb interaction

We finally discuss the influence of Coulomb interaction in the Hartree-Fock approxima-
tion. Starting with

H =
∑

i

(pi + eA)2

2m
+
∑

i

Nimp
∑

j

Vi δ(ri − rj) + Ve−e, (4.32)
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Figure 4.4: Real part of the magnetoconductivity for a system of size L = 30lB with 200 Gaus-
sian impurities of range d = lB at B = 7 T. The disorder strength is Γ = 0.6~ωc.
The curves show results for different external frequencies ω. The inset shows the
Hall conductivity σxy. External frequencies are color coded: ω/ωc = 0.0342 (red),
0.0684 (green), 0.1026 (blue), 0.1369 (yellow), 0.1711 (brown), 0.2053 (grey),
0.2396 (violet).

where
Ve−e =

1

4πεε0

∑

i>j

1

|ri − rj|
, (4.33)

we solve the Hartree-Fock equations as devised in chapter 2 and elaborated in section
3.1. We will show results for a system of linear size L = 25lB containing 400 δ-
impurities of strength V0 = 15 meV with random sign and position. The magnetic flux
density is B = 7 T, material parameters have been set as usual to the bulk values of
GaAs. The infinitesimal parameter δ in equation 4.23 was chosen eight times the mean
level spacing in presence of interaction. Figs. 4.6, 4.7 and 4.8 show results for the con-
ductivity in the lowest Landau level for filling factors 0.05, 0.5 and 0.96, respectively.
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Figure 4.5: Scaling of the width for the peaks in Fig. 4.4.2 as a function of frequency. The solid
line is a least-square fitted function ∆(E) = Aωκ̃ + C, with κ̃ = 0.49.

We observe that the peak values of the magnetoconductivity is raised in the presence
of electron-electron interaction. The high-energy tail is lifted, and thus the conductivity
peak deformed, although the Coulomb interaction strength is smaller than the Landau
level gap, thus prohibiting a cyclotron resonance signature. It is difficult to decide,
what exactly the origin of this behaviour is. The most probable is connected to a severe
shortcoming in the Kubo formula we used. The expression (4.23) resembles a response
function obtained in time dependent Hartree or random phase approximation (RPA). On
the other hand, the self-energies entering the spectrum of the effective Hamiltonian are
calculated in Hartree-Fock theory. The latter is not conserved in the RPA, because di-
rect particle-hole interactions (”ladder contributions”) during the polarization process (a
moving electron leaves a positively charged zone behind) are omitted. If these contribu-
tions are important, spurious results in the RPA response functions can occur. However,
including the ladders leads to a much more involved problem, which is so far beyond
the scope for our considerations. Anyway, we can conclude that the scaling of the peak
width is likely to be changed by electron-electron interactions.

4.5 Conclusions
We have derived a Kubo formula which enables us to calculate the four-terminal con-
ductivity obtained in quantum Hall measurements directly from eigenstates and eigen-
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Figure 4.6: Real part of the magnetoconductivity for a system of size L = 25lB with 400 zero-
range impurities at B = 7 T. The disorder strength is Γ = ~ωc, the Coulomb
interaction strength is γ = 0.5Γ. The curves show results for different external
frequencies ω at filling factor ν = 0.05. The inset shows the Hall conductivity
σxy. External frequencies are color coded: ω/ωc = 0 (black), 0.0342 (red), 0.0684
(green), 0.1026 (blue), 0.1369 (yellow), 0.1711 (brown), 0.2053 (grey), 0.2396 (vi-
olet).

values of the Hamiltonian. The conductivity depends also on the frequency of an ex-
ternally applied electromagnetic field. We have investigated the frequency dependence
of the magnetoconductivity peak width and found that the expected power law scaling
∆E ∝ ωκ̃ is not governed by a universal exponent κ̃. The exponent κ̃ = 1/(zν̃) is
strongly dependent on the type of disorder and interaction. On the other hand, we have
shown in section 3.1 that the static exponent ν̃ is robust against microscopic properties
in the range of the parameters we have assumed. This implies, that the time-dependent
transport properties must be handled with care. Within our quite corsegrained model,
we can quantitatively support earlier theoretical work and experiments. Especially con-
cerning the correct treatment of mutual electron interaction, further work is desirable to
identify the role of correlation in comparison to effective field treatment of the integer
plateau transition.
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Figure 4.7: Real part of the magnetoconductivity for the system of Fig. 4.6 at filling factor
ν = 0.5. The curves show results for different external frequencies ω. The inset
shows the Hall conductivity σxy. External frequencies are color coded: ω/ωc =
0 (black), 0.0342 (red), 0.0684 (green), 0.1026 (blue), 0.1369 (yellow), 0.1711
(brown), 0.2053 (grey), 0.2396 (violet).
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Figure 4.8: Real part of the magnetoconductivity for the system of Fig. 4.6 at filling factor
ν = 0.96. The curves show results for different external frequencies ω. The inset
shows the Hall conductivity σxy. External frequencies are color coded: ω/ωc =
0 (black), 0.0342 (red), 0.0684 (green), 0.1026 (blue), 0.1369 (yellow), 0.1711
(brown), 0.2053 (grey), 0.2396 (violet).



CHAPTER 5

Coulomb blockade in the integer quantum Hall effect

In this chapter, the compressibility of a two-dimensional electron system with spin in
a spatially correlated random potential and a quantizing magnetic field is investigated.
Electron-electron interaction is treated in Hartree-Fock approximation. Numerical re-
sults for the influences of interaction and disorder on the compressibility as a function
of the particle density and the strength of the magnetic field are presented. Localization-
delocalization transitions associated with highly compressible region in the energy spec-
trum are found at half-integer filling factors. Interaction-induced g-factor enhancement
is clearly detected. Coulomb blockade effects are found near integer fillings in the re-
gions of low compressibility. Results are compared with recent experiments.

The unique features of the 2DEG discussed in the previous chapters are determined
by the quantization of the energy into Landau levels in the absence of disorder and
interaction, the broadening of these levels into bands in the presence of disorder and the
energy gaps between the spin-split bands in the presence of interaction.

Information about the energy spectrum and thus the relevant single-/many-particle
processes in a given sample can be gathered by measuring thermodynamic properties
like entropy, compressibility or magnetization[34, 66–70]. These equilibrium quantities
are expected to reveal the significance of Coulomb interactions. In this chapter we
focus on calculating the chemical potential and the compressibility in the limit where
Coulomb interaction prevails and discuss a charging pattern required for a thorough
understanding of the integer quantum Hall transition.

67
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5.1 Thermodynamic properties of the electron gas in
magnetic fields

5.1.1 The model
The Hamiltonian of the 2DEG is Hs

0 + VC with

Hs
0 =

1

2m∗ (p + eA)2 +
1

2
sgµBB + Vdis(r) (5.1)

with the vector potential A = (0, Bx, 0), flux density B and spin s = ±1. m∗ is the
effective electron mass µB is the Bohr magneton and g the effective electron g-factor.
The impurity potential is assumed as Vdis(r) =

∑Ni

i=1(Vi/πd
2) exp [(r − ri)

2/d2] with
Ni the number of scatterers at random positions ri with random strengths Vi, −V0 <
Vi < V0. The range d of the impurity potential is the spatial correlation length of the
randomness, d = 0 corresponds to uncorrelated disorder, d > lB (lB =

√

~/mωc

magnetic length, ωc = eB/m cyclotron frequency) yields a slowly varying potential
which is believed to be adequate for high mobility samples. The disorder introduces the
energy scale Γ = (NiV

2
0 /l

2
BL

2)1/2 (L2 area of the 2DEG). The Coulomb interaction

VC(r − r′) =
e2

4πεε0

1

|r − r′| (5.2)

introduces an energy scale γ = e2/4πεε0lB (e elementary charge, dielectric constant
ε = 12.4 for GaAs). Periodic boundary conditions are assumed [39, 71]. Neglect-
ing disorder and interaction, the Schrödinger equation yields the Landau wavefunctions
|mX〉 (X = −kjl

2
B guiding center coordinate, kj = 2πj/L wavenumber) that are used

for the construction of the Hartree-Fock basis.
The Hartree-Fock equation is

∑

b

F s
abC

αs
b = EαsCαs

a (5.3)

where 〈mX|αs〉 = Cαs
NX ≡ Cαs

a are the expansion coefficients of the Hartree-Fock
states |αs〉 and Eαs the energy eigenvalues. The Fock matrix

F s
mXm′X′ ≡ F s

ij = Hs
0,ij +

∑

a

∑

b

ρabMijab − ρs
abMiabj (5.4)

has to be determined self-consistently. It contains the interaction matrix elements

Mijab =
γl

L2

∑

qx,qy

V (q)〈i|eiqr|j〉〈a|e−iqr|b〉 (5.5)
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and the density matrix ρij =
∑

s ρ
s
ij ,

ρs
ij =

∑

α(occ)

Cαs∗
i Cαs

j . (5.6)

5.1.2 The chemical potential
The chemical potential µ at T = 0 is defined as the energy required to add a particle to
a system with already N particles present:

µ = E(N + 1) − E(N), (5.7)

whereE(N) the ground state energy for theN -particle system. The ground state energy
in Hartree-Fock approximation is given as

EB,N
HF =

1

2

∑

ab

[

(ρ↑ab + ρ↓ab)H0,ab + ρ↑baF
↑
ab + ρ↓baF

↓
ab

]

(5.8)

with the Fock operators F ↑,↓ (see equations (2.41) and (2.43)) and the density matrices
ρ↑,↓ (equation (2.61). Figure 5.1 shows the dependence of the chemical potential on the
magnetic field for a sample system with and without mutual electron interaction. The
curves are obtained at fixed electron density n = N/L2 and varying magnetic field,
which results in different fillings of the Landau bands. The filling factor ν = N/Nφ =
nh

e
B−1 decreases with increasing magnetic field, whereas the Landau level width Γ

increases proportional to
√
B. The energy of the occupied single-particle states thus

evolves with the magnetic field. In the case of non-interacting electrons, the chemical
potential grows linear with the magnetic field. The Zeeman splitting is negligible, which
results in equal occupation of spin-up and spin-down levels. Effectively, there are 2Nφ

states per Landau level. With increasing magnetic field, the number of states per Landau
level increases. This leads to a depletion of the Landau levels. Close to even integer
fillings, levels are completely drained of electrons, which results in sharp discontinuities
in the chemical potential which drops to the next lowest Landau level.

The effect of interaction on this behaviour is twofold. The quantum mechanical in-
teraction consists of the repulsive direct term and the attractive exchange term, which
lowers the energy expectation value accounting for the fact that the Pauli principle pro-
hibits particle to be in the same quantum state. The Coulomb energy contributions of
these configuration are thus subtracted. The most severe shortcoming of the Hartree-
Fock approximation used in the present calculations is the neglect of all Coulomb cor-
relations whereas exchange correlation is treated exactly. This results in a strong renor-
malization of the ground state energy. The µ-B-curve for interacting electrons therefore
is shifted towards smaller values, when plotted on the same energy scale.
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Figure 5.1: Chemical potential µ as a function of the magnetic field B for interacting (black)
and noninteracting (red) electrons. The system contains 170 electrons ( density
n = 18.9 · 1010 cm−2) with Γ = 0.41

√

B/TmeV.

Furthermore, one observes additional discontinuities at odd integer fillings. They
resemble the interaction-induced g-factor enhancement. The different spin subbands
are now well separated and subsequently filled (see Figure 5.2). The depletion of Lan-
dau levels therefore happens at every integer filling factor. The slope of the chemical
potential remains linear, but is larger than for non-interacting electrons.

5.1.3 Tunneling and thermodynamic density of states
The density of states D(E) can be regarded as the number of particle eigenstates avail-
able in an energy range [E,E + dE] and is normalized for an N -particle system with
Fermi energy εF by requiring

N =

εF
∫

−∞

dED(E), (5.9)

with
D(E) =

∑

states i

δ(E − εi). (5.10)
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Figure 5.2: Schematic tunneling density of states for non-interacting and interacting electrons.

This quantity can be used to determine the probability for a new particle to tunnel into
the system without changing the energy level structure and is therefore known as the
tunneling density of states (TDOS).

Figure 5.3 shows an example of the TDOS for a disordered system of non-interacting
(red) and interacting electrons (blue). In the presence of Hartree-Fock interaction, the
TDOS shows a gap at the Fermi level (dashed lines). This gap indicates a clear sep-
aration of occupied and unoccupied energy levels, which is not related to criticality,
because it occurs at every Fermi energy, regardless of the corresponding localization
length. An astonishing similarity is observed with the Efros-Shklovskii-gap [72], which
is an interaction induced linear decrease of the TDOS on two-dimensional systems.
However, it has been shown [59] that the Hartree-Fock TDOS differs significantly from
the thermodynamical density of states dµ/dn, which specifies the change in the chemi-
cal potential as a response to changes in the particle density n. It is the latter which has
to be used in order to determine quantum transport behaviour in the presence of disorder
and interaction.

5.2 Coulomb blockade in the integer quantum Hall ef-
fect

In this section, we discuss a recent experiment giving evidence for charging effects in
the integer quantum Hall regime and present an effective single-particle theory which
aims to integrate these results into the consistent single-particle theory describing the
metal-insulator transition in this regime.

In a recent attempt to identify localized states of a two-dimensional electron gas in
a high mobility GaAs/GaAlAs sample, Ilani and coworkers [34] measured the change
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Figure 5.3: Tunneling density of states for non-interacting (red) and interacting (blue)electrons
in a fixed realization of disorder at B = 7 T. The histogram for the interacting
spectrum shows a linear Coulomb gap at the Fermi energy. Dashed lines are guides
to the eye.

of the chemical potential with respect to the particle density n and magnetic field B,
which is proportional to the voltage Vbg applied to a metallic back gate mounted onto
the sample.

Consistent with the expectations discussed in the previous section, the results ex-
hibit incompressible lines in the n-B-plane along integer filling factors. In addition, a
pattern of alternating compressible and incompressible lines parallel to these filling fac-
tors appear, also in the insulating phase parallel to ν = 0. These regions are of constant
width with a constant number of states belonging to them, the states evolve in the n-B-
plane with exactly the slope of the corresponding quantum Hall phase ν = 0, 1, 2, . . . .
In particular, the constant width of the stripes indicate a constant number of localized
states, which is in clear contradiction to the common understanding of the quantum Hall
transition, since the number of states per Landau level grows linearly with B and only a
few states (one in the thermodynamical limit) are expected to be extended and thus com-
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Figure 5.4: Compressibility measurements in dependence of filling factor as function of mag-
netic field and particle density. Picture taken from Ilani et. al., Nature 2004 [34].

pressible. Therefore, a mechanism must be active which keeps the number of localized
states constant. This must apparently be attributed to Coulomb interactions.

Single electron transport through quantum dots is a standard setup to study the effect
of inter-electron relations in confined geometries. A central observation in this case is
the emergence of periodic oscillation in transmission conductivities, related to a similar
oscillation in the chemical potential. This phenomenon is known as Coulomb blockade
[73].

The underlying mechanism is related to strong Coulomb interaction between the
electrons in the dot and the entering electron: The energy required to add an electron to
the dot is given by the chemical potential. If this energy is paid, the additional charge
within the dot is screened by the rearrangement of charges in the dot. The resulting
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electrostatic potential is flat and gives rise to a lower chemical potential, which favors
the entry of another charge. In this manner, the observed oscillatory behaviour of the
chemical potential is created. The related charging patterns are surprisingly similar to
those shown in Fig. 5.4.

From these results, one can conclude, that each line corresponds to the charging of
an individual localized state, governed by a Coulomb blockade of localized states.

The appearance of Coulomb blockade in integer quantum Hall phases demonstrates
the presence and importance of Coulomb interaction in this regime. As a consequence,
the nature of the integer quantum Hall transition must be characterized by the proper-
ties of an interacting, strongly correlated electron system. On the other hand, single-
particle physics yields a qualitatively and quantitatively convincing description of the
localization-delocalization transition and is supported by many experiments. In the re-
mainder of this chapter, we discuss the Hartree-Fock approach for Coulomb interaction
in the quantum Hall system and try to connect the two competing interpretations of the
transition.

5.3 Compressibility patterns in the Hartree-Fock ap-
proximation.

5.3.1 Introduction
The integer quantum Hall Effect occurs when a two-dimensional electron system
(2DEG) is subject to a strong perpendicular magnetic field [1]. The integer quanti-
zation of the Hall conductance can be understood in terms of quantum phase transitions
near the centres of the Landau bands associated with disorder-induced localization-
delocalization transitions of single-electron states which can be described within the
frame of a one parameter scaling model. Neglecting the Coulomb interaction, the local-
ization length has been found to diverge, ξ ∝ |E −EC |−ν̃ , where Ec corresponds to the
critical energy. The universal value of the critical exponent, ν̃ = 2.34± 0.04 [10, 11], is
widely accepted. In this model, peaks in the magneto-conductance are associated with
the critical energies Ec in the Landau bands. The localized states in the band tails are
associated with zero conductance at zero temperature [74].

Despite this picture has been found to be consistent with several transport experi-
ments [21–23, 53], the validity of the one-parameter scaling model has been controver-
sely discussed during the past decade, on the basis of both experimental and theoretical
results. Modifications due to Coulomb interaction have been suggested [56, 58] refer-
ring to results of frequency-dependent scaling [25]. Whether or not interactions are of
importance for understanding the experiments has been debated theoretically [59, 75].
Other experimental findings [76] suggest the influence of interactions on the tunneling
density of states. In recent experiments, mesoscopic conductance fluctuations found in
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Table 5.1: Cyclotron energy ~ωc, disorder strength Γ = (NiV
2
0 /l2BL2)1/2, Coulomb energy

γ0 = (e2/4πε0εGaAslB) and number of flux quanta Nφ used in the calculations with
material parameters for GaAs..

~ωc/meV Γ/meV γ0/meV Nφ

B = 1 T 1.728 0.412 4.526 21
B = 6 T 10.367 1.01 11.087 131

silicon MOSFETs in dc-transport show regular patterns which have been interpreted as
due to charging effects [77]. Regular patterns associated with Coulomb blockade in lo-
calized states have also been found in measurements of the shift dµ/dn of the chemical
potential µ with a scanning SET probe when changing the particle density n [34]. The
latter results have been interpreted very convincingly in a model in which the quantum
Hall transition appears as a consequence of the strong and complete screening of the
disorder potential near half-integer filling factors. The absence of screening in the in-
compressible regions of the energy spectrum leads to localized states that account for
the observed charging effects. In this model, the phase transition has been interpreted
as a percolation threshold between incompressible and compressible regions at certain
concentrations of localized charge islands. It is obvious that this is not consistent with
the non-interacting one-parameter scaling scenario.

We report results of an extensive unrestricted Hartree-Fock study of the 2DEG with
spin in the presence of long-range correlated disorder and a strong perpendicular mag-
netic field that can contribute towards more detailed understanding of the experiments.
We have studied the change dµ/dn of the chemical potential µ with the particle density
n as a function of n and the magnetic field strength B. This quantity is proportional
to the inverse compressibility κ−1 ∝ dµ/dn. We find evidence for strong interaction-
induced enhancement of the g-factor. We also find strong evidence for charging effects
in regions near integer filling factors. At the same time, however, analyzing the shapes
of the Hartree-Fock quasiparticle wave functions indicates that the localization behav-
ior does not seem to be significantly changed as compared to the non-interacting limit.
Most of our results are fully consistent with the picture that has been deduced from re-
cent experimental data [34]. However, from the participation number corresponding to
the wave functions we deduce strong evidence that the critical behavior near the quan-
tum Hall transition is the same as the one for non-interacting electrons. This is due to
quantum corrections which modify the simple percolation mechanism [43].
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5.3.2 The delta-SCF approach

We have performed self-consistent calculations for B in the range of 1 . . . 6T and n =
(2 . . . 200)/L2 in a square of length L = 30a for a = 10 nm. This yields electron
densities n = (0.22 . . . 22) 1010 cm−2. We used 250 impurities with d = 2a and V0 = 2
meV to model a high mobility sample. Table 5.1 summarizes the energy scales used in
the calculations.

In order to study the effect of Coulomb interactions, it is useful to control its strength
with respect to the other energy scales. We therefore set γ = cγ0, so that c = 0 cor-
responds to the noninteracting system, and c = 1 to the non-screened Coulomb in-
teraction in a GaAs/GaAlAs heterostructure. For each combination of parameters, the
self-consistent field and related quantities like total energy and chemical potential are
determined separately. Therefore, the self-consistent field can relax and the ground
state, the Fock spectrum and the quasiparticle wavefunctions are optimized to the given
set of parameters N and B. The chemical potential is then calculated as the difference
µ = E(B,N + 1) − E(B). This method is sometimes referred to as the ”delta-SCF-
method” [78, 79]. As pointed out, the difference between total energies is calculated
successfully in Hartree-Fock approximation, because the response of the N -particle
system to the addition of another electron or hole -the screening of the additional or
missing particle- is contained in the calculation of the N ± 1-particle wavefunction.

Interband coupling due to interaction and disorder has been taken into account. The
number of Landau levels per spin direction included in the calculation has been chosen
as 1 +L2nmax/Nφ in order to provide enough states available during the self-consistent
field calculations.

5.3.3 Localization of Hartree-Fock particles

At the energies in the band tails, the wave functions are localized and located roughly
near equipotential lines, at least for strong magnetic fields. In the center of the band, the
wave function is delocalized (for an example, see Fig. 5.5).

The quantitative analysis of the participation number P of the wavefunctions near
the Fermi energyE, P−1 =

∫

d2r|ψ4(r)|4 ∝ ξ−2(E) as a function of the filling factor at
the Fermi energy (Fig. 5.6) has been tested by its scaling function [52], using the method
described in section 3.2.The exponent ν̃ = 2.3 yields a reasonable collapse of the data
for different system sizes to a single curve consistent with the critical behavior of the
localization length without interaction taken into account. The curve also resembles the
scaling of Hartree-Fock wave functions obtained at fixed filling factor using occupied
and empty Hartree-Fock orbitals [52].
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Figure 5.5: Absolute square of wavefunctions at the Fermi level for an interacting system in the
lowest Landau level. Left panel: State in the low-energy tail. Central panel: State
in the band center. Right panel: State in the high-energy tail.

5.3.4 Compressibility and localization

In the following, we will investigate the localization from a different point of view. It
can be argued, that localized wavefunctions are much less sensitive to volume changes
than wavefunctions with a localization length of the order of the system size. Therefore,
extended states are more ”compressible” than localized states.

The compressibility κ is related to the total energy E as follows. Being an extrinsic
quantity, the total energy is proportional to the number of particles N in a volume V .
The pressure P is the change of energy with respect to change in volume at fixed particle
number,

P = −
(

dE

dV

)

N

. (5.11)

Likewise, the inverse compressibility is the rate of change of P at constant N ,

1

κ
= −V

(

dP

dV

)

N

. (5.12)

If Eg = E/N is the ground state energy per particle, the only volume dependence of
the energy is given by the density n = N/V . Thus we get

P = −N dEg

dV
= n2dEg

dn
, (5.13)

and
1

κ
= n2 d

2

d2n
(nEg(n)). (5.14)
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Figure 5.6: Scaling function Π = L2−D(2)P as a function of filling factor (ν − νc)L
1/ν̃ , av-

eraged over a few realizations of the disorder potential for each system length L
[52]. Parameter values ν̃ = 2.3 (critical exponent) and D(2) = 1.6 (correlation di-
mensions of wavefunctions [80]) give the shown data collapse. The inset shows the
dependence of Pν at the Fermi level on the filling factor ν for spin-up (solid line) and
spin-down (dashed line) electrons for a system of length L = 30.1a, averaged over
a few realizations of disorder. The g-factor enhancement for the illustrated system
is so large, that a subsequent filling of the spin-split Landau level is observed.

On the other hand, an N + 1-particle system with density (N + 1)/V = n + 1/V has
the total energy

E(N + 1) = (N + 1)Eg

(

n+
1

V

)

= (N + 1)

(

Eg(n) +
1

V

∂Eg

∂n

)

= E(N) + Eg(N) +
n∂Eg

∂n
+ O

(

1

V

)

, (5.15)

and, using equation (5.7), we get

µ =
d

dn
(nEg), (5.16)

a result known as Seitz theorem, and accordingly

1

κ
= n2dµ

dn
. (5.17)
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Figure 5.7: Dependence of Pν at the Fermi level on the filling factor ν for spin-up (solid line)
and spin-down (dashed line) electrons for a system of length L = 30.1a, averaged
over a few realizations of disorder. The g-factor enhancement for the illustrated
system is so large, that a subsequent filling of the spin-split Landau level is observed.

Therefore, the inverse compressibility and thus the localization can be related to the
change of the chemical potential with particle number, and this is what was measured
in the experiment presented above.

We will continue with an investigation of the role of Coulomb interactions on this
quantity.

5.3.5 Results
The total Hartree-Fock energy for N particles

EB,N
HF =

1

2

∑

ab

(

ρabH0,ab + ρ↑baF
↑
ab + ρ↓baF

↓
ab

)

(5.18)

is used to determine the chemical potential µ = EN+1,B
HF − EN,B

HF and accordingly

dµ

dn
= L2

(

EN+1,B
HF − 2EN,B

HF + EN−1,B
HF

)

∝ 1

κ
(5.19)

Figures 5.8, 5.9 and 5.10 show dµ/dn for various particle numbers and magnetic
fields without and with interaction. Without interaction (Fig. 5.8), the pattern indicates
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compressible states everywhere except near lines that correspond to even integer filling
factors ν = N/Nφ and some deviations for small particle numbers. This is the expected
behaviour, since every new particle that enters finds many states at energies close to
the Fermi level. Therefore, the Fermi energy remains almost unchanged with respect to
the particle number, as long as the actual Landau level is not completely filled. Near
even integer filling, the Fermi level jumps to the next Landau level due to vanishingly
small level density. In the presence of Zeeman splitting, there exist Nφ states per spin
alignment in each Landau level. Since the Zeeman energy in GaAs is very small in com-
parison to the other energies (the effective electron g-factor in GaAs is g = −0.44), the
levels overlap strongly and are equally occupied. Therefore, lines marking incompress-
ible states are only obtained for even fillings. With interaction, the Zeeman splitting is
large due to exchange enhancement of the g-factor [81]. Spin-up levels and spin-down
levels are now well separated, resulting in additional incompressible lines at odd filling
factors. This effect is exaggerated in our spin-unrestricted Hartree-Fock-approximation
[82], which treats the exchange term exactly but neglects other correlations.

Figures 5.9 and 5.10 show compressibility patterns for different interaction
strengths. The compressibility of the interacting electrons exhibit several regular struc-
tures. Horizontal lines of equal compressibility parallel to the B-axis appear below
ν = 1/2, enclosed by lines of low or even negative compressibility. At ν ≈ 1/2, a
region of high compressibility exists. At filling factors close to ν = 1, lines of low
compressibility parallel to the line n = νnB = j/2πl2B = jeB/h corresponding to this
filling factor are observed. The width of region of electron density where this happens
is independent ofB. The number of the strongly localized states must therefore be inde-
pendent of B. This has been ascribed before to Coulomb blockade in strongly localized
states associated with deep potential wells [34]. Localized electrons block the entrance
of another electron and require a jump in the chemical potential, until the potential land-
scape is completely screened, which then makes the addition of a further electron more
favorable. This can even result in a negative compressibility, which in this case is not
related to a thermodynamic instability, but rather to the fact that a positive impurity can
be screened and even overcompensated by an entering electron, which in turn causes
a depletion of electronic charge afterwards in this region [83]. Structures resembling
charging effects are repeated in the higher Landau levels, although less prominent, be-
cause the localization length of the electrons in high Landau increases with the Landau
level index, thus making the interacting system more sensitive to compression. We em-
phasize that the behavior of the Hartree-Fock total energy with n and B provides the
correct charging pattern in the strongly localized region.

In addition to these Coulomb interaction-dominated features related to the charging
of localized states, we observe highly compressible regions around half integer filling
factors ν = j/2, nB = jeB/2h. These correspond to the centers of the Landau bands
where the disorder is considerably screened. The width of these regions, ∆next is con-
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Figure 5.8: dµ/dn (in units of meV/L2) in the (n, B)-plane for non-interacting electrons with
γ/γ0 = 0. Dark (blue) regions high, bright (red) regions low compressibility. Solid
white lines are guide to the eyes.

stant as a function of B. The total number of the effectively extended states (states with
diameters larger than the system size) in a Landau band must be considered as indepen-
dent of B although the total number of single-electron states per Landau band increases
linearly with B. This can be qualitatively understood by noticing that in the one-band
approximation the single particle density of states D(E) scales as [84]

D(E/Γ) = (Nφ/Γ)f(EB/Γ). (5.20)

The energy interval ∆E = |E−Ec| in which the localization length exceeds the system
size is defined by

ξ(E) = ξ0|E − E0|−ν̃ > L. (5.21)

Thus,
∆E = (L/ξ0)

−1/ν̃ ∝ B−1/ν̃ , (5.22)
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since ξ0 ∝ Γ−2 ∝ B−1. Thus,

δnext ≈ D(0)∆E ∝ B1/2−1/ν̃ = B0.065 ≈ const., (5.23)

with ν ≈ 2.3.
Between the low-compressibility regions of Coulomb blockade in the strongly lo-

calized states and the high compressibility regions of delocalization, there are large
regions of intermediate statistically fluctuating compressibility. These correspond to
localized states that cover larger spatial regions with randomly fluctuating areas. The
charging energies of these states, if applicable at all, should be much smaller than in the
regimes of strongly localized states, and also strongly fluctuating. As a consequence,
one would not expect regular compressibility patterns in these intermediate regions, and
this is what is observed in Fig. 5.10. In these regions, the localization properties are
determined by the competition of tunneling between, and destructive interference along
the percolating equipotential lines, and it is this competition that is responsible for the
critical behavior [43]. The regimes of strong localization and extended states are clearly
observed, separated by regions of intermediate states.
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The appearance of charging lines parallel to integer filling factors raises the question
if correlations beyond the Hartree-Fock approximation can affect the compressibility
pattern. Rigorous calculations are very demanding from a computational point of view
and will not be reported here. It remains an open issue if correlated ground states can
suppress the strong fluctuations in the critical region as indicated in the experiment
[34]. However, the Hartree-Fock results reproduce the charging effects in the domain
of localized states very well and support the assumption that the critical behaviour of
the integer quantum Hall transition can be understood within an effective single particle
picture.

5.4 Conclusions

In conclusion, we have investigated quantitatively the density dependence of the chem-
ical potential as a function of electron density and magnetic field for a quantum Hall
system. We have shown that electron-electron interactions –treated in Hartree-Fock
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approximation, but with the possibility for the ground state to respond to changes in
magnetic field or electron density – modify the corresponding compressibility pattern.
The appearance of regular structures can be interpreted as charging of localized states.
This is in agreement with recent experiments and suggests that interactions are impor-
tant for the understanding of the integer quantum Hall effect especially in the plateau
regions. It is important to note that the latter results are not contradictory to the conjec-
ture that the critical behaviour of the metal-insulator transition remains unaffected from
interaction and microscopic details of the disorder potential. The scaling of the partici-
pation number of the wavefunction at the Fermi energy is consistent with the results for
single-particle wavefunctions, although for each electron density the effective potential
changes in response to the charge rearrangement due to the entrance of a new particle.

Our results therefore imply that an effective one-particle approximation can be used
to study the critical behaviour at the quantum Hall phase transition, although interaction
effects are important for understanding the behaviour in the band tails.
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CHAPTER 6

The chiral metal-insulator transition

The quantum phase diagram of disordered wires in a strong magnetic field is studied as
function of wire width and energy. The two-terminal conductance shows zero temper-
ature discontinuous transitions between exactly integer plateau values and zero. In the
vicinity of this transition, the chiral metal insulator transition (CMIT), peculiar states
are identified which are superpositions of edge states with opposite chirality. The bulk
contribution of such states is found to decrease with increasing wire width. Based on
exact diagonalization results for the eigenstates and their participation ratios, we con-
clude that these state are characteristic for the CMIT, have the appearance of nonchiral
edges states, and are thereby distinguishable from other states in the quantum Hall wire,
namely, extended edge states, two-dimensionally (2D) localized, quasi-1-D localized,
and 2D critical states.

This chapter has been published as a scientific paper [85].

6.1 Introduction
Recently, there has been renewed interest in quantum Hall bars of finite width, where
the interplay between localized states in the bulk of the two-dimensional electron sys-
tem (2DES) and edge states with energies lifted by the confinement potential above the
energies of centers of bulk Landau bands, En0 [32], results in the quantization of the
Hall conductance. The study of mesoscopically narrow quantum Hall bars [86], re-
vealed new types of conductance fluctuations [87–89], edge state mixing [81, 90–100],
the breakdown of the quantum Hall effect [101], and the quenching of the Hall effect
due to classical commensurability effects [102]. In the presence of white noise disorder

87
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the edge states do mix with the bulk states when the Fermi energy is moved into the
center of a Landau band. It had been suggested that this might result in localization
of edge states [94–96, 99, 100, 103]. Recently, it has been shown that at zero temper-
ature the two-terminal conductance of a quantum wire in a magnetic field exhibits for
uncorrelated disorder and hard wall confinement discontinuous transitions between in-
teger plateau values and zero [104]. These transitions have been argued to be due to
sharp localization transitions of chiral edge states, where the localization length of the
edge states jumps from exponentially large to finite values, driven by the dimensional
crossover of localized bulk states, and are accordingly called chiral metal insulator tran-
sitions (CMIT).

In this article, we will study the nature of this transition in more detail, and in par-
ticular find that at this transition there exists a new type of state, with properties distin-
guishable from both localized and extended bulk states, and extended edge states. This
new state is a superposition of edge states with opposite chirality. Since it is still located
mainly close to the edges, we will call this state nonchiral edge state.

The article is organized in the following way. In the next section, we present transfer
matrix calculations of the quantum phase diagram of a quantum Hall bar with uncorre-
lated disorder, being characterized by the two–terminal conductance G as function of
energy E and width w of the wire. Sharp jumps in the conductance from integer val-
ues to zero are found as function of energy. These CMITs are seen to become more
pronounced with increasing wire widths w.

In the third section we will study with exact diagonalization the eigenstates of a
disordered quantum Hall wire. We will classify these states into five classes, the edge
states, the 2D localized states, the quasi-1-D localized states, 2D extended states, and
the new nonchiral edge states at the chiral metal insulator transition. These states are
characterized by their specific participation ratio as function of energy and wire width
w, their distribution of coefficients in an expansion in eigenstates of the clean 2DES,
and the spatial distribution of the eigenfunction amplitudes. This allows us to identify
the state at the transition as a superposition of edge states of opposite chirality.

The final section contains our conclusions, and a discussion on how the CMIT could
be observed experimentally.

6.2 The Quantum Phase Diagram of the CMIT
Using the transfer matrix method1 [4], we have calculated the two-terminal conductance
[105] G as function of energy E in a tight binding model with band width 8t, where t
is the hopping amplitude, of a disordered quantum wire in a perpendicular magnetic
field (Fig. 6.1), with hard wall boundary conditions at y = ±Lbulk/2 and finite length

1All results on localization length and two-terminal conductance used in this section are based on
programs by courtesy of Prof. Tomi Ohtsuki, Sophia University, Japan.
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Figure 6.1: The conductance as function of energy for increasing values of the width Lbulk

(left), and in a contour plot as function of energy and Lbulk (lower right), as com-
pared with the schematic phase diagram (upper right). Finite integer values of the
conductance correspond to the number of extended edge states. The disorder is uni-
formly distributed in an interval of width W = 0.8t. There are x = 0.025 magnetic
flux quanta per elementary cell of area a2.

L = 2000a [104]. Here we have assumed a square lattice with lattice spacing a. The
disorder potential is uniformly distributed in an interval [−W/2,W/2]. These results
are summarized in the phase diagram (Fig. 6.1), where the value of G, in units of e2/h,
is given as function of bulk width Lbulk and energy E in units of ~ωB , for a disorder
strength W = 0.8t. As expected, G = m, where m is the number of extended edge
states between the Landau bands. Close to the middle of the Landau bands, however,
the conductance plateaus collapse abruptly to G = 0.

When the wires are so narrow, that the edge states cannot form, as it is the case when
the width is smaller than the cyclotron length, or when edge states of opposite chirality
are mixed by backscattering, then all the states become localized and the conductance
is vanishing with only small mesoscopic fluctuations due to the finite length L of the
wire. Previously, it has been pointed out that, when the bulk localization length ξ is
smaller than the physical wire width w, backscattering between edges is exponentially
suppressed. As a result, the localization length of edge states increases strongly.



90 The chiral metal-insulator transition

-4 -3 -2 -1 0
0

500

1000

1500

2000

2500

Maximal edge localization length with hard wall BC
Bulk localization length with periodic BC

-3.5 -3 -2.5 -2 -1.5 -1
0

100

200

-3.85 -3.8
0

20

40

60

a

b c

w

w

P
S
fra

g
rep

la
cem

en
ts

ξ
ξ

ξ
ed

g
e

E E

E

E
=

(0
.2
±

0
.1)

~
ω

c

E
=

(E
C
±

0
.1)

~
ω

c

E
=

(0
.7
±

0
.1)

~
ω

c

E
=

(1
.0
±

0
.1)

~
ω

c

Figure 6.2: (a) The localization length for a disordered wire calculated with the transfer matrix
method with periodic boundary conditions (full line) and with hard wall boundary
conditions (dashed line) for uniformly distributed uncorrelated disorder in an inter-
val of width W = 0.8t. The straight line indicates the bulk width w = 40a. There
are x = 0.025 magnetic flux quanta per elementary cell of area a2. (b) Enlargement
of the low-energy region of (a). Edge and bulk localization length coincide as long
as no edge state is present. (c) The functions ξedge/ξ(E) (black) and e2w/ξ (green).

The overlap of opposite edge states is known to decrease exponentially with in-
creasing wire width w [91–93]. Thus, the backscattering rate between edges, being
proportional to the square of the overlap integral is 1/τ ∼ exp(−2w/ξ). Since the edge
states are one-dimensional, their localization length due to the back scattering is given
by ξedge = 2vF τ , with Fermi velocity vF . On the other hand, when the bulk localiza-
tion length ξ becomes equal to the wire width, one expects that the edge states become
mixed with the bulk states, and localized with a length proportional to the bulk local-
ization length ξ. Therefore, we conjectured the edge localization length to behave like
[104]

ξedge = ξ exp(2w/ξ), (6.1)
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In Fig. 6.2a, the localization length is plotted as function of energy, as obtained with
the transfer matrix method in a tight binding model of a disordered quantum wire in
a perpendicular magnetic field with hard wall boundary conditions, dashed line. Since
the edge states are the most extended states in the wire, this localization length can be
identified with the edge localization length ξedge.

Using the transfer matrix method [4], we have also calculated the localization length
ξ as function of energy E for a disordered quantum wire with identical properties, but
with periodic boundary conditions, Fig. 6.2a, solid curve. Since there are no edge states
this bulk localization length is small in the tails of Landau bands, and has maxima,
which are seen to increase linearly with n.

Indeed the behavior of the edge state localization length follows qualitatively the
behaviour suggested by Eq. (6.1). The edge localization length does increase sharply,
whenever the bulk localization length becomes smaller than the wire width w (full
straight line). Note that the minima in the middle of the Landau bands do increase lin-
early with the Landau band number n. In Fig. 6.2c, we have explicitly plotted ξedge/ξ
and exp(2w/ξ), using the numerically calculated values for ξedge and ξ, as function of
E. We find that both functions coincide for all energies above the lowest Landau band
and for lcyc < w, so that edge states exist in the tails of the Landau bands.

An abrupt decrease of the inverse localization length has been found before for ener-
gies in the upper tail of the lowest Landau level and the tails of the second Landau level
in Ref. 8. In agreement with our above results, it has been found there, that the inverse
localization length decays exponentially in the tails, like 1/ξedge ∼ exp(−β(E)w). The
fitted values of β have been found there to depend weakly on energy, whereas we iden-
tified it directly with the energy dependent inverse bulk localization length 1/ξ(E).

From these results we can conclude that the energy at which edges states backscatter
and become localized, is, given by the condition that the bulk localization length is
on the order of the wire width, ξ(Em,p) = w. At this energy, m edge states mix and
transitions from extended edge states to insulating states occur. This causes sharp jumps
of G from finite integer to vanishingly small values, as seen in Fig. 6.1. This can be
explained by the exponential decrease of the edge state localization length, Fig. 6.2. We
note that m = n when the energy is above the n-th Landau band , whereas m = n− 1,
if it is below.

A more detailed understanding of this drastic behaviour of the conductance can be
obtained by considering the dimensional crossover of the bulk localization length in
disordered wires [104, 106, 107]. In a 2DES with broken time reversal symmetry, scal-
ing theory [7, 40, 108–110] and numerical scaling studies [4, 44, 111] find that the bulk
localization length ξ is independent of the wire width, ξ2D = l0 exp(π2g2). Here, g,
is the 2D conductance parameter per spin channel. l0 is the short distance cutoff, the
elastic mean free path l = 2g(B = 0)/kF (kF Fermi wave number) at weak magnetic
fields, b ≡ ωcτ < 1. For stronger magnetic fields, b > 1, the short length scale l0
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becomes the cyclotron length lcyc. The conductance parameter g exhibits Shubnikov-
de-Haas oscillations as function of magnetic field for b > 1. Maxima occur when
the Fermi energy is in the center of Landau bands. The localization length in tails
of Landau bands, where g ¿ 1 is very small, is of the order of the cyclotron length
lcyc = vF/ωB =

√
2n+ 1lB . It increases towards the centers of the Landau bands,

En0 = ~ωB(n + 1/2) (n = 0, 1, 2, ...), with ωB = eB/m∗ the cyclotron frequency (e
elementary charge, m∗ effective mass), vF the Fermi velocity, and l2B = ~/eB defines
the magnetic length. In an infinite 2DES in perpendicular magnetic field, the localiza-
tion length at energy E diverges as ξ ∼ |E − En0|−ν . The critical exponent ν is known
from numerical finite size scaling studies for the lowest two Landau bands, n = 0, 1,
to be ν = 2.33 ± 0.04 for spin-split Landau levels [11, 56, 112], in agreement with
analytical [113, 114] and experimental studies [21–26]. In a finite 2DES, a region of
state exists in the centers of disorder broadened Landau-bands, which cover the whole
system of size L. The width of these regions is given by ∆E = (lcyc/L)1/νΓ, where
Γ = ~(2ωB/πτ)

1/2 is the band width, with elastic scattering time τ .
However, the 2D localization length is seen to increase strongly from band tails to

band centers, even when the wire width w is so narrow, that it is far from the critical
point at w → ∞. One can estimate the noncritical localization length for uncorrelated
impurities, by inserting g, as obtained within self consistent Born approximation [81, 97,
98]. Its maxima are g(E = En0) = (2n+1)/π = gn. Thus, ξ2D(En0) = lcyc exp (π2g2

n)
are macroscopically large in centers of higher Landau bands, n > 1 [11, 115]. When
the width of the system w is smaller than ξ2D, electrons in centers of Landau bands
can diffuse between the edges of the system. In long wires, however, the electrons are
localized due to quantum interference along the wire with a localization length that is
found to depend linearly on g and w [104, 116–120],

ξ1D = 2g(B)w. (6.2)

The conductance per spin channel, g(b) = σxx(B)/σ0, is given by the Drude formula
g(b) = g0/(1 + b2), (g0 = Eτ/~, b = ωBτ ) for weak magnetic field, b < 1. For b > 1,
when the cyclotron length lcyc is smaller than the mean free path l, disregarding the
overlap between Landau bands, g is obtained in SCBA [81, 97, 98], g(B) = (1/π)(2n+
1)(1 − (EF − En)2/Γ2), for | E − En |< Γ. One obtains the localization length for
b > 1 and | ε/b− n− 1/2 |< 1 by inserting g. It oscillates between maximal values in
centers of Landau bands, and minimal values in band tails. For n > 1, one finds in band
centers,

ξn =
2

π
(2n+ 1)w



1 −
ln
√

1 + (w/lcyc)
2

(n+ 1/2)2





1/2

. (6.3)
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Thus, the localization length in the center of Landau bands is found to increase lin-
early with Landau band index n. This is exactly the behaviour observed above in the
numerical results, Fig. 6.2.

While it is reasonable to conclude that the edge states do mix with the bulk states at
the energy where the bulk localization length is equal to the wire width, and the electrons
diffuse freely from edge to edge but are localized along the wire, the question arises,
how exactly this transition from extended edge states to localized states does occur.
One can gain some further insight by connecting the two ends of the wire together to
form an annulus. Piercing magnetic flux through the annulus affects only states whose
localization length is larger than the circumference of the annulus. Guiding centers of
those states which extend around the annulus do shift in position and energy [32] with
a change in magnetic flux. As shown above, in the middle of the Landau band, the
electrons can diffuse freely from edge to edge, but are localized along the annulus with
ξ > w. When adiabatically changing the magnetic flux, the energy of an edge state
changes continously. However, it cannot enter the band of localized states, so that at the
energy Em, with ξ(Em) = w, the edge state must be transfered to the opposite edge.
There it moves up in energy when the magnetic flux is increased further [32].

In the following, we study the states at this transition in detail in order to find out,
whether the edge states become localized mainly by mixing completely with the bulk
states, or rather the transition from extended chiral edge states to localized states occurs
due to the nonlocal coherent superposition of edge states with opposite chirality, located
at opposite edges.

6.3 Exact diagonalization
In this section, we study the localization properties of electrons in quasi one-
dimensional wires in the presence of disorder and a strong magnetic field by means
of exact diagonalization.

6.3.1 The model
The Hamiltonian of the quasi-1D-wire in the presence of a disorder potential Vdis and a
confinement potential Vconf , is given by

H =
1

2m∗ (p + eA)2 + Vdis(r) + Vconf(r) , (6.4)

where e > 0 is the elementary charge and m∗ the effective electron mass.
The disorder potential is modelled as

Vdis(r) =

Nimp
∑

i=1

Viδ(r − ri), (6.5)
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Figure 6.3: Model of a quantum wire with length L, parabolic confinement and finite bulk re-
gion of width Lbulk. The physical width w(Emax) is indicated, where Emax is the
largest energy considered.

where Nimp is the number of impurities with uniformly distributed amplitude Vi ∈
[−V0, V0]. ri is the random position of the impurity.

As we seek to investigate the interplay and localization of edge states and bulk states
in a quantum wire, we assume periodic boundary conditions in the x-direction along the
wire and choose

Vconf(y) =







1
2
mω2

p(y − Lbulk/2)
2 y ≥ Lbulk/2

0 −1
2
Lbulk < y < 1

2
Lbulk

1
2
mω2

p(y + Lbulk/2)
2 y ≤ −Lbulk/2

(6.6)

as confinement potential in the transversal direction (see Fig. 6.3). This model allows
us to tune the confinement strength with the parameter ωp. The wire width is now
defined by the bulk width Lbulk. In the limit Lbulk = L, we get the usual 2D model for
the Quantum Hall effect [39], while for Lbulk = 0 we have the parabolic wire model
[50]. In the limit of large confinement frequency ωp > ωc, one approaches hard-wall
boundary conditions. This type of confinement provides a smooth transition between
the edge potential and the potential-free bulk region and renders the situation in real
wires better than assuming hard wall boundaries.
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The physical width w of parabolic wires w is a function of the Fermi energy E,

w(E,Lbulk) = 2

√

2E − ~Ω

~ωB

ωB

ωp

lB + Lbulk, (6.7)

with Ω =
√

ω2
p + ω2

B. It is obtained by finding the energy eigenvalue of the clean
wire which is equal to E and has its guiding center at ±w/2. We fix the basis width
Lbasis to be larger than the physical width w(Emax) at the highest considered energy
Emax. The total number of magnetic flux quanta in the model system is then fixed to
Nφ = LbasisL/(2πl

2
B).

6.3.2 Wavefunction analysis
The Hamiltonian, Eq. (6.4) is diagonalized in the Landau representation with basis
functions

〈r|nX〉 =
1

(lBL
√
π2nn!)

1/2
e
− (y−X)2

2l2
B Hn

(

y −X

lB

)

e
− iXx

l2
B (6.8)

Here we have assumed the Landau gauge for the vector potential. The matrix elements
of the confinement potential in the Landau representation are given in Appendix A.

The exact diagonalization of the Hamiltonian (6.4) yields eigenenergies Eα with
corresponding wavefunctions

ψα(r) =
∑

nX

〈r|nX〉〈nX |α〉 (6.9)

The spatial extention of these wavefunctions is characterized by their participation ratio

Pα =

(

LbulkL

∫

d2r|ψα(r)|4
)−1

, (6.10)

which is small for localized states and large for extended states. Note that in this defini-
tion, Pα relates to the fixed bulk area LbulkL while the wave functions can cover a larger
area due to the smooth confinement, so that Pα > 1 is possible for all states.

In clean 2D systems all states in a Landau level are degenerate. In a disordered wire
this degeneracy is lifted by the disorder, and at the edges by the confinement potential.
Therefore, localized states in the tail of the Landau bands in the bulk region near the
center of the wire coexist with states at the edges at the same energy, and, in principle,
mixing of states from the bulk with edge states is possible.

These features are clearly seen in the left part of Fig. 6.4. For a wire of length L =
40.1lB in a perpendicular magnetic field of B = 8T, corresponding for m∗ = 0.067 in
units of the bare electron mass to ~ωc = 13.82 meV, for three different bulk widths Lbulk
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Figure 6.4: Left: The energy eigenvalues Eα of all states in a wire of length L = 40.1lB in a
perpendicular magnetic field of 8 T for three different bulk widths are plotted versus
the expectation value of the transversal position, 〈α | y | α〉. The disorder amplitude
is fixed to V0 = 0.73~ωc with Ni = 150 impurities and the confinement energy is
chosen to have the same magnitude with ~ωp = 0.73~ωc. The basis width is chosen
as Lbasis = 1.5 w(Emax), Eq. (6.7), with Emax = 2~ωc. Right: Corresponding
participation ratio Pα versus Eα.

the eigenenergies are plotted versus the expectation value of their transversal position,
〈α | y | α〉. Although we have chosen a smooth confinement potential, these results
are in good agreement with earlier results with short ranged disorder in Ref. [94–96].
Obviously, the edge states between the Landau bands are hardly affected by the disorder
potential. There is a coupling of edge states of the same chirality in the second and
higher Landau bands which leads to the formation of minibands in between the Landau
band[94–96] , as seen most clearly in Fig. 6.5. There, we show the same quantities for
a longer system with L = 100lB and Lbulk = 8lB at B = 8 T. The disorder is realized
by 400 scatterers with V0 = 0.73 ~ωc, with the same value as the confinement energy
~ωp = 0.73 ~ωc. However, there is an abrupt shift of the center of the eigenstates
towards the middle of the wire, when their energy is approaching the middle of the
Landau band. Still, one can not conclude, if this fact is mainly due to the backscattering



6.3 Exact diagonalization 97

-1 -0.5 0 0.5
0

1

2

3

0 0.2 0.4 0.6 0.8 1

P
S
fra

g
rep

la
cem

en
ts

X/Lbulk P (E)

E
/~

ω
c

Figure 6.5: Energy dispersion E(X) and corresponding participation ratio P (E) for a longer
system with L = 100lB and Lbulk = 8lB at B = 8 T. The disorder is realized
by 400 scatterers with uniformally distributed amplitude with maximal value, V0 =
0.73 ~ωc, which equals the confinement energy ~ωp = 0.73 ~ωc.

between edge states from opposite edges, having opposite chirality, or if it is mainly due
to a mixing with the bulk localized states.

In order to learn more about the nature of these states, we have calculated the Fermi
energy dependence of the participation ratio for different bulk widths with fixed disor-
der potential and constant magnetic field as shown in the right part of Figs. 6.4, 6.5. It
is observed for all three widths that the participation ratio and the eigenenergies, fluc-
tuate as a result of disorder especially in the center of the wire. The participation ratio
increases with energy in the tails of the Landau bands and reaches a maximum close to
the corresponding center energy (between 0.5 ~ωc for Lbulk → ∞ and 0.5 ~(ω2

c +ω2
p)

1/2

for Lbulk → 0). The participation ratio saturates to a constant value between the Landau
bands, where only edges states exist, as confirmed by comparison with the left side of
Fig. 6.4.
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In the following, we scrutinize the localization behaviour in the different energy re-
gions identified above by the energy dispersion and the participation ratio. To determine
the nature of the states, we plot the basis state contributions and spatially resolved prob-
abilities for a sample with L = 100lB and Lbulk = 8lB at typical energies, with disorder
amplitude and confinement energy comparable to the cyclotron energy. We concentrate
on the lowest Landau level and investigate wavefunctions at energies in characteristic
regions of the participation ratio. The result is displayed in figure 6.6.

We find states at E = 0.3~ωc (Fig. 6.6a) which are 2D localized, as confirmed by
the fact that they have contributions from basis states with guiding centers in the bulk
region, only. In the band center around E = 0.5~ωc the participation ratio fluctuates
strongly. In this region we find 2D localized states as well as 1D localized states with a
localization length larger than the bulk width, but much smaller than the wire length (Fig
6.6b). In the latter case, basis states from bulk and edge region mix with comparable
contributions. Furthermore, we can identify states which cover the whole sample, as
shown in Fig 6.6c. These states couple to all regions as well, although the contributions
from the left and right edges seem to prevail slightly. The trend indicated by the maxima
close to the edges intensifies in the transition region (Fig. 6.6d). At a specific energy,
the contribution of the bulk states is small compared to the sharp maxima at the edges,
while the electron is found with the same probability on the right or the left edge of
the wire (Fig. 6.6e). We believe that this nonchiral edge state is unique at least in the
thermodynamic limit, ofw → ∞ and governs the new type of metal-insulator transition,
the CMIT, in quasi-1D quantum Hall wires. This state exhibits notable localization
features: being an edge state concerning the participation ratio, it has to be considered
localized concerning the conductance, since current flows with equal probability, but
reversed sign on both edges. This behaviour is consistent with the sudden breakdown of
the conductance observed in Fig. 6.1.

At higher energies, below the next Landau band, edge states are formed as seen in
Fig. 6.6. These states are found to be insensitive to disorder.

This sequence of transitions from 2D bulk states, quasi-1-D localized states, states
with peaks on both edges of the wire, and decoupled edge states is visible in Fig. 6.7a,
where we show the basis state contributions for every fifth state in the lowest Landau
level. All features discussed above are seen clearly, with a remarkably narrow transition
region from 1D localized states to edge states, as one moves from state 125 to state 145.

In order to visualize this transition in detail, we plot in this interval all states in Fig.
6.7b. The higher energy states are clearly edge states, which are decoupled from the
bulk, and are alternatingly located either on the left or on the right side of the wire.
The lower the energy, the smaller becomes that peak in intensity at the edge. Still,
each state stays located in the edge region, with only a small coupling to the nearest
part of the bulk. Then, suddenly, at state (α = 143 in Fig. 6.7), there appear two
peaks of comparable amplitude on both edges, while the contribution of the bulk is still
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Figure 6.6: Basis state contributions to eigenstates at selected energies. The right insets show
the correponding probability densities (blue for low, red for high values), solid lines
mark the bulk region. System parameters are the same as in Fig. 6.5.
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Figure 6.7: Basis state contributions | 〈nX|α〉|2 to eigenstates α at different energies (a) for
every fifth state in the lowest Landau level, (b) for every state with energy between
0.6 ~ωc and 0.8 ~ωc. System parameters are the same as in Fig. 6.5. Different
colors are used for adjacent curves in order to distinguish them clearly.
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participation ratio in the lowest Landau band. System parameters are the same as
in Fig. 6.4. Solid lines are fitting functions: (a) Pα = 0.21 (Lbulk/lB)−0.86, (c)
Pα = 2.62 (Lbulk/lB)−1.09, (d) Pα = 2.41 (Lbulk/lB)−1.02.

small. All states α = 139 − 143 share the two pronounced peak at the edges, while the
bulk contribution increaes only slowly with lowering the energy. Before the transition
to quasi-1D-states with more or less uniform distribution across the bulk, there is a
reappearance of edge like states α = 135 − 138, which we attribute to mesoscopic
fluctuations due to the random distribution of disorder in this rather mesoscopic sample.
The transition which we observed here happens thus rather smooth as compared to the
sharp transitions in the transfer matrix results shown in Fig. 6.1. This can be attributed to
the fact that the finite system with L = 100lB which we have diagonalized here is much
smaller than the system which was handled by the transfer matrix method. As expected
far away from the thermodynamic limit, L,w → ∞, L/w = const., the transition
occurs in a finite energy interval rather than at a single point. Finite size effects can be
revealed further by studying the dependence of the states on the bulk width.
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To this end we next study the system size dependence of the participation ratio. Fig.
6.8 shows the participation ratio of all states in a given energy interval for systems with
different bulk widths Lbulk. Disorder configuration, wire length and confinement energy
~ωp are kept fixed for all the systems. As a characteristic example for the behaviour in
the low energy region, we investigate states in an interval around energy E = 0.2~ωc

(Fig. 6.8a). In this region, the participation ratio scales with the wire width approxi-
mately as P ∝ L−1

bulk. This is in agreement with the expected scaling of 2D localized
states which give a contribution ψ2

α ∝ 1/ξ2
2D, only within a localization area ξ2

2D where
ξ2D is the 2D localization length of the wavefunction, which is independent of the wire
length L and width Lbulk. It follows that,

P2D ∝ ξ2
2DL

−1L−1
bulk ¿ 1, (6.11)

in good agreement with Fig. 6.8a.
The behaviour changes in the center of the Landau band (Fig. 6.8b). There, the

density of states is higher, and the disorder results in a wide range of participation ratios.
For large bulk widths, Lbulk > 5lB , the range of participation ratios becomes constant
and saturates to a finite value. Note that quasi-1-D localized states cover approximately
an area Lbulkξ1D ∼ gL2

bulk, and contribute in this area with probability density ψ2
α ∼

1/(ξ1DLbulk). As a result, one expects for quasi-1-D localized states, according to Eq.
(6.2),

P1D ∝ ξ1D

L
∼ g

Lbulk

L
, (6.12)

increasing linearly with Lbulk. When the wire is comparable or shorter than the quasi-
1D localization length, however, the participation ratio shows rather the behavior of 2D
extended states which cover the whole wire area Lw with probability density 1/(Lw),
yielding the typical participation rato of extended states

Pext ∼ w/Lbulk = const > 1, (6.13)

being independent of the width Lbulk. Note that for extended states one would expect
Pα = w/Lbulk, which according to equation (6.7) converges to unity for Lbulk → ∞.
Whereas Pα in Fig. 6.8b is indeed seen to saturate to a constant mean value, this value
is found not to exceed 1. This is consistent with the fact that the wavefunction is multi-
fractal [47, 121, 122].

The scaling of the participation ratios in the high energy tail of the lowest Landau
band (Fig. 6.8c,d) is again a power law P ∝ L−1

bulk, but with an absolute value much
larger than in Fig. 6.8a. This resembles the expected feature for edge states, which
cover an area lBL with probability density 1/(lBL), yielding,

Pedge ∝ lB/Lbulk, (6.14)
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which is both in magnitude and in the functional dependence onLbulk in good agreement
with Fig. 6.8d. Note that in the transition region, Fig. 6.8c, the large mesoscopic
fluctuations do not allow to distinguish characteristic features of the nonchiral edge
states at the transition, but the functional dependence on Lbulk is that expected for edge
states and localized bulk states alike, which both coexist in this energy region, as we
had seen above in Fig. 6.7.

In summary, our model allows to study the mutual influence between the states in
the bulk region, where the influence of the disorder potential is strong, and states in
the edge region, where the confinement potential prevails. We have found that in the
narrow energy region of the CMIT the disorder-induced coupling between the edges
creates nonchiral edge states which have comparable weights on both edges, but only a
negligible mixing with the bulk.

6.4 Conclusions
We conclude, that in quantum Hall bars of finite width w ¿ ξn at low temperatures
quantum phase transitions occur between extended chiral edge states and a quasi-1D
insulator. These are driven by the crossover from 2D to 1D localization of bulk states.
These metal-insulator transitions resemble first-order phase transitions in the sense that
the localization length abruptly jumps between exponentially large and finite values,
which we have confirmed by calculating the edge state localization length, explicitly.
In the thermodynamic limit, fixing the aspect ratio c = L/w, when sending L → ∞,
then c → ∞, the two–terminal conductance jumps between exactly integer values and
zero. The transitions occur at energies where the localization length of bulk states is
equal to the geometrical wire width. Then, m edge states mix and electrons are free
to diffuse between the wire boundaries but become Anderson localized along the wire.
Close to that transition we found with exact diagonalization studies that particular states
exist, which are superpositions of edge states with opposite chirality, with an order of
magnitude smaller bulk contribution. Although this state is located at the edges, it is a
nonlocal state, having comparable weights on opposite sides of the sample. Thus, it can
have a mesoscopic extension across the width of the Hall bar, if it is more narrow than
the phase coherence length. The Chiral Metal–Insulator Transition is of mesoscopic
nature since, at finite temperature, the phenomenon of the CMIT can only be observed,
when the phase coherence length exceeds the quasi-1D localization length in centers of
Landau bands, Lϕ > ξn. One then should observe transitions of the two-terminal resis-
tance from integer quantized plateaus, Rn = h/ne2 to a Mott variable-range hopping
regime of exponentially diverging resistance. Such experiments would yield informa-
tion about the coupling between edge and bulk states in quantum Hall bars. At higher
temperature, when Lϕ < ξn, the conventional form of the integer quantum Hall effect is
recovered [1].
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We have studied the modification of the CMIT by correlations in the disorder poten-
tial and due to interactions. These results will be presented in a subsequent publication.
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CHAPTER 7

Interaction induced g-factor enhancement in parabolic
quantum wires

7.1 Introduction
At high magnetic field the energy spectrum of noninteracting electrons in electron inver-
sion layers in semiconductor heterostructures consists of Zeeman split, disorder broad-
ened Landau bands. In AlGaAs/GaAs the corresponding Landé g-factor can be much
larger than the bulk value (g = −0.44) and it decreases with increasing electron con-
centration [67, 97, 123]. This is assigned to electron exchange interaction. When the
electron density is varied such that the Fermi energy traverses a Landau band, the Zee-
man splitting acquires a maximum when only the energetically lower band (with spin
s =↑) is occupied. Then, the exchange energy of the electrons will dominate, and the
occupied band will be shifted to lower energy.

The 2D electron system (2DES) confined in lateral direction forms a quasi-1D elec-
tron system. The degeneracy of the Landau levels is lifted due to the confinement. Still,
the enhancement of the Zeeman splitting is present although the Landau subbands cor-
responding to the two directions of the spin overlap at high energies. For high electron
density ρ, such that the partial densities ρ↑ ≈ ρ↓, and there is no spin polarization, the
Zeeman splitting is close to the bulk value. However, for densities below some crossover
value ρ < ρc, only the lowest spin polarized subband will be occupied at temperatures
close to zero. Due to the alignment of the spins, the exchange interaction will decrease
the energy and enhance the Zeeman splitting. Eventually, all of the electrons will only
occupy the polarized state. It has been suggested that this is similar to a first-order phase
transition [36]. Such effect has been observed in magnetotransport measurements done
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on GaAs/AlGaAs quantum wires [124, 125] and on narrow silicon inversion channels
[126, 127].

In previous works on the 2DES [97, 123] and quantum wires [36, 128] the Hartree
contribution to the selfenergy has been neglected. However, for quantum wires, it has
been shown that the Hartree term is very important for quantitavely estimating the en-
ergy dispersion and the self-consistent potential [129, 130]. Then, one can expect that
this must influence ρc and change the g-factor. It is indeed not clear whether the g-
factor enhancement in a quantum wire is similar to a first-order phase transition or must
be considered as a simple crossover, even at zero temperature.

7.2 Mechanism of g-factor enhancement
We address this question by using the selfconsistent Hartree-Fock method. We find
that Hartree and Fock selfenergies are of the same order. They partially cancel each
other, such that the Hartree-Fock selfenergy is much smaller than the kinetic energy. As
a consequence, the interaction does not change the energy dispersion of the occupied
spin subband significantly. This implies that it is the spin independent Hartree term that
forces the system into the totally polarized state and supports the polarizing effect of the
exchange interaction.

We compare the results with magnetocapacitance experiments [35] in which ρc and
the Zeeman splitting have been estimated. Within experimental errors, the Hartree-Fock
results can be fitted reasonably well to the experimental data if the interaction is assumed
to be exponentially screened. In contrast to the earlier suggestions [36, 128] we find a
smooth crossover from the polarized to the unpolarized state. Our results indicate that
correlation effects beyond mean field are likely to be important for understanding the
g-factor in nanostructures.

The interacting 2DES in a perpendicular magnetic field, parabolically confined to
1D, is described by the Hamiltonian H = H0 +Hi where

Hs
0 =

1

2m

N
∑

i=1

[

(pi + eA)2+
m

2
ω2

0x
2
i +

s

2
gµ0B

]

(7.1)

with the vector potential A = (0, Bx, 0), the effective mass m, the confinement fre-
quency ω0, and s = ±1 the spin directions. The interaction Hi =

∑

i<j V (ri − rj)

contains a Yukawa potential V (r) = V0 exp (−κr)/r with V0 = e2/4πεε0 > 0 and a
screening parameter κ.

The eigenvalues of the non-interacting part H0

εs
nk = ~Ω

(

n+
1

2

)

+
~

2k2

2m(B)
+
s

2
gµB . (7.2)
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consist of the discretization energy due to the confinement and the magnetic field, the
kinetic energy in the non-confined y-direction, and the Zeeman contribution. Periodic
boundary conditions in y-direction imply wavenumbers kj = 2πj/Ly (integer j, wire
length Ly). The effective mass m(B) = mΩ2/ω2

0 contains the renormalized frequency
Ω =

√

ω2
0 + ω2

c (ωc = eB/m cyclotron frequency). It diverges in the quantum Hall
limit, B → ∞. The corresponding wave functions 〈x, y|nk〉 = L

−1/2
y exp (iky)χn(x−

Xk) contain the states χn of the 1D harmonic oscillator at position Xk = −k`2A with
the characteristic length ` =

√

~/mΩ and A = ωc/Ω.

7.3 Hartree-Fock equations and exchange effects for the
Q1DEG

The Hartree-Fock equations in Landau representation
∑

n′k′

〈nk|(Hs
0 + F s)|n′k′〉csα(n′k′) = Es

αc
s
α(nk) (7.3)

determine the expansion coefficients 〈nk|αs〉 = cs
α(nk) of the electron states and the

eigenenergies Es
a. The size of the basis in a Landau level is determined by the degener-

acy Nφ = LxLy/2π`
2. We use indices i, j, a, b for labeling the basis states. The Fock

matrix is
F s

ij =
∑

ab

ρabMijab +
∑

ab

ρs
abMibaj, (7.4)

with interaction matrix elements

Mijab =

∫

dqV (q)〈i|eiq·r|j〉〈a|e−iq·r|b〉 (7.5)

and density matrices
ρs

ab =
∑

Es
α≤εF

cs∗α (a)csα(b) . (7.6)

Furthermore, 〈i|eiqr|j〉 = 〈nk|eiqx|n′, k′〉δqy ,k−k′ ,

〈nk|eiqx|n′k′〉 = e−[|qA|2+iq(k+k′)A]`2/2

×
√

m

n

(

qA`√
2

)m−n

Lm−n
n

( |qA|2`2
2

)

, (7.7)

with qA = iq − sign(n− n′) (k − k′)A, n = Min(n, n′), m = Max(n, n′), and Lm−n
n

the associated Laguerre polynomials.
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The single particle energiesEs
α = εsα+Σs

α obtained by solving (7.3) self-consistency
contain the selfenergy

Σαs =
∑

ij

F s
ijc

s∗
α (i)csα(j) ≡ ΣH

α + ΣF
αs (7.8)

with Hartree and Fock terms, ΣH
α and ΣF

αs, respectively.
In the self-consistent Hartree-Fock method the charge distribution in the system is

determined by searching for the electronic configuration for which the ground state
energy E({α, s}) =

∑(occ)
αs Eαs is minimized,

Eg = Min{αs}E({α, s}) . (7.9)

This implicitly determines the spin polarization

γ =
ρ↑ − ρ↓
ρ↑ + ρ↓

=
δρ

ρ
(7.10)

with
ρs =

∑

α(g)

∑

nk

|csα(nk)|2 . (7.11)

The effective g-factor is defined by

g∗ = g +
2

Nµ0B

∑

α(g)

(Σα↑ − Σα↓) . (7.12)

The self-consistent numerical solution of the Hartree-Fock equations requires a trun-
cation of the complete othonormal set |nk〉. This is done by defining a cutoff wave
number kmax via Xk,max = kmax`

2 = Lx. The integral over qx in Mijab (7.5) is ap-
proximated by a sum over discrete wave numbers qx = 2πnx/w with w À Lx and nx

integer. We have achieved convergence for the integrals, spectra and the wavefunctions
for w > 50Lx and −w/` < nx < w/`. For obtaining the results described in the
following we have used w = 100Lx.

For electron numbers such that the Fermi energy is located in the second Landau
level, there are states with low wave numbers at approximately the same energies as
states with high wave numbers of the lower Landau levels (Fig. 7.1). In order to treat
these correctly, inter-Landau level interaction matrix elements have to be taken into ac-
count. The maximum system size Lx depends then on the number of Landau levels
included, and the confinement strength. We have estimated Xk,max by using the spec-
trum of noninteracting electrons. We have done calculations for increasing Lx > Xk,max

until the eigenenergies became insensitive to the value of Lx. The system length Ly, has
been used to adjust the size of the basis, independently of Lx, but always Ly > Lx.
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We have assumed that convergence of the self-consistent Hartree-Fock procedure is
achieved when ∆ρ/ρ < 10−7 with ∆ρ the difference between the densities ρ = ρ↑ + ρ↓

corresponding to successive iterations. In all of the results shown below, the electronic
energies have converged within a relative error of 10−3. Due to the translational invari-
ance in the y-direction k is a good quantum number for the Hartree-Fock states.

7.4 Results
Figure 7.1 shows the energy dispersions of the four lowest subbands for different elec-
tron numbers. If the electron density is small such that only energy levels in the lowest
subband (spin ↑) are occupied, the Zeeman splitting is large. With increasing density
the second subband (spin ↓) becomes occupied. Then, the Zeeman splitting decreases
until it reaches the bulk value. This is periodically repeated when higher spin subbands
are occupied.

In order to identify the roles of the Hartree and the Fock parts of the self energy,
we consider the lowest subband (n = 0, ↑). In a strong magnetic field, both, Fock
and Hartree terms depend on the wave number. The Hartree energy is of the same
order as the Fock energy, but of opposite sign. The total interaction energy Σ is then
much smaller than the absolute values of ΣH andΣF . The latter are comparable to the
kinetic energy εk (Fig. 7.2). This suggests that for determining the crossover density one
can replace the selfconsistent Hartree-Fock approximation by lowest-order perturbation
theory [36]. The result for the lowest subband is

ΣH
k =

2V0√
2l

∑

s

∫ Q+

Q−

dk′
∫

dq
e−[q2−iAqk′]

√

q2 + q2
κ

, (7.13)

ΣF
ks = − 4V0√

2l

Q+
∫

Q−

dk′e−[(2A2−1)k′2+q2
κ]/2K0

[

(k2 + q2
κ)/2

]

(7.14)

where Q± =
√

2l(k ± kFs), qκ = κl/
√

2 and K0(z) is a modified Bessel function.
In 2DES the Hartree term is often neglected. It is argued that it yields only a con-

stant shift of the energy scale [97, 123]. Intuitively, one would neglect it also for the
quasi-1DES [36, 128, 131]. However, for a quantum wire in a strong magnetic field the
wave number is associated with a transversal position X = −kl2. At zero tempera-
ture, in the totally polarized state, ρ↑ = ρ and ρ↓ = 0, when only the lowest subbands
is occupied with electrons, additional electrons will occupy states with wave numbers
near the Fermi wave number kF↑ = πρ↑. These have to be added near the edge of the
wire, |xF↑| = kF↑l

2 (Fig. 7.1) thus minimizing the electrostatic repulsion. However,
if the spin-↓ subband starts to become occupied, additional electrons would be added
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Figure 7.1: Hartree-Fock energies of a quantum wire in a magnetic field for the four lowest
subbands at densities where the 2nd (spin ↓, left) and 3rd (spin ↑, right) subbands
start to be occupied (bullets: s = ↑, circles: s = ↓, dashed: Fermi level).

at smaller wave numbers in the center of the wire, near the minimum of E↓(k) where
the electron density is large. This would lead to a strongly repulsive energy contribu-
tion. Thus, it is energetically favorable to continue with the occupation of the states
near the edges in the lowest subband before occupying the states in the second subband.
The crossover density ρc is increased and it is due to the avoided Hartree- and not the
Fock-energy that the system remains in the totally polarized state.

Figure 7.2 shows results for the Zeeman splitting averaged over the wave number as
a function of the mean electron density ρ. In a given Landau level, g∗ increases with
increasing density until the upper spin subband starts to become occupied. Then, at
crossover density ρc, g∗(ρ) starts to decrease. The oscillating behavior of g∗ is accom-
panied by oscillations in the spin polarization γ. For γ ≈ 0, g∗ ≈ g. Taking into account
the Hartree term, the crossover to the bulk value is smooth, in contrast to the case when
only the Fock term is considered [36]. In the lowest subband, the crossover density ρc,
at which the g-factor starts to decrease, agrees within 10% with the result obtained in
lowest order perturbation theory.

The influence of the screening length on ρc is shown in Fig. 7.3. The crossover den-
sity decreases with increasing κ. As expected, the self-energy decreases with decreasing
interaction range. For comparison with experiment we assume κ = 2/ell. This turns
out to reproduce the experimental findings reasonably well.
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Figure 7.2: Spin polarization γ (top) and effective g-factor g∗ (bottom) as functions of the den-
sity ρ obtained from the self-consistent Hartree-Fock method taking into account
the three lowest Landau bands (Parameters: B = 14 T, ~ω0 = 6 meV, ρc = 1.1/`
in the lowest subband, screening parameter κ = 2/`). Inset: Energy ε(k) (dashed)
in the noninteracting limit; selfenergies Σ, ΣF (Fock), and ΣH (Hartree) at ρc,
respectively, as functions of the wave number kl; solid: perturbational, bullets: self-
consistent results.

The crossover density in the lowest subband as a function of the confinement energy
has been determined from measurements of the capacitance of a quantum wire in a
strong magnetic field [35]. It has been found that the crossover density increases with
increasing magnetic field (Fig. 7.4) and with decreasing the voltage applied to a side
gate, Vside. For estimating the confinement energy ωexp a parabolic confinement has
been assumed. By varying the side-gate voltage from −1.5 V to −3.5 V ~ωexp increases
from 4.8 ± 0.5 meV to 6.6 ± 0.7 meV.

The potential, which corresponds to the experimentally determined confinement en-
ergy ~ωexp, is composed of the parabolic external confinement potential ~ω0 tuned by
Vside and of the screening potential due to the charge density of the electrons in the
wire. The confinement energy ~ω0 in general will be larger than the experimentally
determined ~ωexp. We assume that the external confining potential dominates such that
~ω0 ≈ ~ωexp. With the screening length 1/κ = l/2 the calculated crossover density ρc

fits the decrease of experimental data with increasing confinement energy qualitatively
(Fig. 7.4). Neglecting the Hartree term [36], the dependence of ρc on the confinement
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Figure 7.3: Crossover density as a function of the screening length κ−1. Data points: selfcon-
sistent Hartree-Fock approximation with B = 14 T, ~ω0 = 6 meV in the lowest sub-
band; wire width 16 ` wire length 50 `. Inset: selfenergy with κ = 0.5/` (dashed),
κ = 2.0/` (full) and κ = 6.0/` (dotted).

is considerably weaker even if the screening length is assumed to be ∞ and thus the
exchange-enhanced critical density is maximized (Fig. 7.4 inset).

However, our model does not reproduce the experimental data at very small side gate
voltages, |Vside| ≤ 1 V. We believe that in this regime the external potential of the wire is
modified by impurities and thus cannot be described by a parabolic potential. Also there
are quantitative discrepancies between experimental data and the self-consistent theory
at smaller magnetic field strength (B = 9T). Given the relatively large experimental
errors, we did not try to get a better fit. In summary, we confirm the experimentally
observed trends, namely that by increasing the confinement energy, i.e. decreasing the
effective wire width, and decreasing the magnetic field strength, the crossover density
for the enhancement of the Zeemann splitting is depleted considerably.

7.5 Conclusions

In summary, we have calculated the Zeeman splitting of the subbands in a quasi-1D
quantum wire in a strong magnetic field by using the self-consistent Hartree-Fock ap-
proximation to electrons interacting via a screened Coulomb interaction. We have found
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Figure 7.4: Crossover density ρc at magnetic fields as indicated as a function of the confine-
ment energy ~ω0. Full lines: Hartree-Fock results with screening length `/2; open
symbols: experimental data of Ref. [9] corresponding to side gate voltages Vside

from -1.5 to -4 V . Inset: results for B =9 T and B =14 T obtained selfconsis-
tently (dots), and perturbationally (full lines) compared with the results obtained by
neglecting the Hartree term (dashed).

that Hartree and Fock parts of the selfenergy are of the same order but of opposite sign
such that the total selfenergy becomes small. We have quantitatively determined the ef-
fective g-factor and the spin polarization. When γ vanishes g∗ is close to the bulk value
while it is strongly enhanced if the spin polarization is close to one. Our results imply
that the Hartree term cannot be neglected for the enhancement of the g-factor in quan-
tum wires. Especially, it appears that it plays a crucial role in determining the crossover
density quantitatively. By comparing calculated crossover densities with experimental
data we have found the the dependence on the confinement energy can be reproduced
within experimental uncertainties for not too small side gate voltages if the screening
length is assumed to be about half of the magnetic length. Since the screening can be
viewed as being due to correlations, our results imply that these cannot be neglected for
understanding the g-factor enhancement in quantum wires.
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CHAPTER 8

Conclusions

We have investigated the interplay of Coulomb interaction, spatial confinement and dis-
order on transport and localization properties of two-dimensional electrons in a strong
perpendicular magnetic field under various aspects. Most of our results were based on
the wavefunctions and eigenvalues of a suitable single-particle Hamiltonian, which was
extended by a self-consistent Hartree-Fock field modelling electron-electron interaction
when necessary. In the following, we summarize the most important results.

Coulomb interactions
In the first part, we have investigated the transition from localized states in the tails of
the lowest Landau band to extended states in the band center. As a model for disorder,
we have used Gaussian scatterers with a finite range of the order of the magnetic length.
In lieu of calculating the localization length directly, we extracted the static critical ex-
ponent ν̃ from the participation ratio of the wavefunction, which has a similar power law
dependence as the localization length. However, corrections due to the multifractality
of the wavefunctions in the critical region have to be taken into account. Our data con-
firmed the usual value ν̃ = 2.3 within the accuracy limited by the rather small system
sizes implied by the used method. This value remains unchanged also in the presence
of electron-electron interaction, which was treated in unrestricted Hartree-Fock approx-
imation. Results for the participation ratio of the quasiparticle wavefuntion obtained at
fixed magnetic field and fixed filling factor showed spin-split bands with the same value
for ν̃ and the same fractal dimension of the wavefunctions. The results strongly support
the universality of the static critical exponent in the lowest Landau level.
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Another issue is the analysis of dynamical scaling in the above sort of systems. Mea-
surements have shown that the width of the frequency-dependent magnetoconductivity
peak σxx(ω) scales ∝ ωκ, with an exponent κ = 1/(zν̃). Experimentally, κ = 0.21
and κ = 0.41 have been found in systems with supposively interactionless electrons or,
respectively, relevant electron interactions. Assuming ν̃ = 2.3, the dynamical exponent
z seems to be reduced by a factor of 2 in the presence of interaction.

We calculated the frequency-dependent conductivity tensor directly from the wave-
functions by means of the Kubo formula. We found for systems with uncorrelated
disorder and no interactions included a dynamical critical exponent z ≈ 2, consistent
with earlier theoretical work and experiments. A deviation from this value was found
for a Gaussian potential with correlation length d = lB , and also for uncorrelated disor-
der with Hartree-Fock interaction. We carefully conclude that the type of the disorder
potential significantly changes the diffusive behaviour of the electrons. Thus, the dy-
namical critical exponent is reduced. However, our approach cannot produce result
with high numerical precision, because the system sizes considered are quite small. In
case of interaction present, our Kubo formula represents the current-current correlation
function in the random phase approximation, which is not entirely compatible with the
Hartree-Fock self-energy, because it neglects exchange local field corrections. A sys-
tematic evaluation of the current response in the conserving time-dependent Hartree-
Fock approximation could shed some light on the role of correlations for obtaining the
dynamical critical exponent. Yet, we conclude that the sensitivity of the dynamical ex-
ponent in comparison with the robustness of the static exponent seems to give a hint on
the importance of electron-electron interaction for a proper description of the quantum
Hall plateau transition.

Another convincing argument for the influence of Coulomb interaction on the quan-
tum Hall phase diagram is provided by experiments measuring the change of the chem-
ical potential. It has been found that charging lines appear parallel to integer filling
factors in the plane spanned by magnetic field and electron density. We demonstrated
within a refined Hartree-Fock approach, which allows the self-consistent field to relax
with respect to a newly entering particle and thus mimics the screening of the parti-
cle, that these lines can be reproduced by an effective single-particle pictures including
Coulomb interaction. We showed that states at the actual Fermi level behave like true
single-particle states concerning their localization-delocalization transition. This gives
a consistent picture for the phase diagram in the insulating phases, which are most im-
portant for previous finite-size scaling studies in order to obtain the critical exponent.
The evidence of charging can be related to significant changes in the compressibility of
the localized electrons due to charge rearrangements as a response to density changes.
The transition, on the other hand, is governed by states at the Fermi level following more
or less the anticipated metal-insulator transition as a function of filling factor. From this
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phenomenological point of view, signatures of Coulomb interaction in the compressibil-
ity patterns do not contradict the one-parameter scaling assumption.

Confinement
Coulomb interactions are also expected to play a significant role in the wire geome-
try. We have demonstrated in a clean parabolic wire that the g-factor of the electron
is strongly enhanced by interaction as long as only one spin level is occupied. The g-
factor decreases to its bulk value when the other spin level is occupied, thus exhibiting
smooth oscillation as a function of the electron density. We found that this effect cannot
be described properly by considering only the exchange term and is also support by the
direct interaction. It is likely that correlations give an important contribution for the
understanding of the g-factor oscillations.

Apart from Coulomb interaction, we have studied the effect of spatial confinement
on the chiral metal insulator transition. We have shown for disordered quasi one-
dimensional quantum wires with a finite, confinement-free bulk region a variety of states
can coexist. Localized states in the bulk or at the edges dominate the insulating phases,
even if a coupling of the edges by a 1D-localized state occurs. Conducting phases are
determined by chiral edge states or 2D-extended states. A new class of states, the non-
chiral edge states, has been found. A non-chiral edge state shows no different behaviour
in participation ratio or localization length compared to an ordinary edge state, but is not
conducting due to the nonchiral coupling of both edges without bulk (2D extended) con-
tribution. These states occur in the vicinity of the plateau transition. A calculation of the
two-terminal conductance starting from an independet model indeed reveals an abrupt
breakdown of the conductance between the plateaux. This behaviour devises a new
metal-insulator transition in quantum wires and should be experimentally detectable.
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APPENDIX A

Matrix elements

A.1 The Fourier components of the density matrix

In finite systems with periodic boundary conditions, the guiding center Xj =
2πl2B
Ly

j
of the Landau function (1.4) is discrete and determined by the integer number j =
1, . . . , Nφ. For the matrix element 〈nX | eiqr | n′X ′〉 ≡ 〈nj | eiqr | n′j′〉 we get

〈nj| eiqr |n′j′〉 = exp(−|q|2l2
4

) exp(
iπnx(j + j ′)

Nφ

δ′ny ,j′−jAnn′ (A.1)

with

Ann′ =



















√

n′!
n!

[

(iqx+qy)l√
2

]n−n′

Ln−n′

n′ ( |q|
2l2

2
) (n ≥ n′)

√

n!
n′!

[

(iqx−qy)l√
2

]n′−n

Ln′−n
n ( |q|

2l2

2
) (n < n′)

(A.2)

The Kronecker delta is for the periodic case is defined as

δ′mn =

{

1 n = m mod Nφ

0 else

A detailed calculation and discussion of the matrix element and the adjustment to pe-
riodic boundary conditions can be found in [37]. For the case of open boundaries
(ψ(r → ±∞) = 0), the periodic Kronecker symbol reduces to ordinary version.
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A.2 Coulomb matrix element
In calculations involving Coulomb interaction, the two-particle matrix element in Lan-
dau representation

Mn1j1n2j2n3j3n4j4 =

∫

d2r φ∗
n1Xj1

(r)φ∗
n2Xj2

(r′)V (r − r′)φn3Xj3
(r)φn4Xj4

(r′), (A.3)

where n is the Landau level index and Xj = 2πl2B/Ly j is the guiding center of the
Landau function. We can write

Mn1j1n2j2n3j3n4j4 =
γl

L2

∑

qx,qy

V (q)〈n1j1|eiqr|n2j2〉〈n3j3|e−iqr|n4j4〉, (A.4)

with qx = 2π/Lx nx and qy = 2π/Ly ny Using the results from section A.1, we find
with α := Ly/Lx

Mn1n2n3n4
JK := Mn1j1n2j2n3j3n4j4 = e

− π
Nφ

[n2
x+( J

α
)2]
e

i 2πnx
Nφ

K
An1n3(J)An2n4(−J), (A.5)

with J = j3 − j1 and K = j3 − j2 and

Ann′(J) =



















√

n!
n′!

[

π
Nφ

√
α(inx − J/α)

]n′−n

Ln′−n
n

(

π
Nφ

(n2
x + (J/α)2

)

(n′ > n)

√

n′!
n!

[

π
Nφ

√
α(inx + J/α)

]n−n′

Ln−n′

n′

(

π
Nφ

(n2
x + (J/α)2

)

(n′ ≤ n)

(A.6)

A.3 Parabolic wire with finite bulk region
A quasi-1D wire with steep confinement potential at the edges and zero potential in the
center is modelled by the potential

Vconf(r) =







1
2
mω2

0(x− a)2 x ≥ a
0 −a < x < a

1
2
mω2

0(x+ a)2 x ≤ −a

The matrix element in Landau representation 〈nX|Vconf |n′X ′〉 is given by

〈nX|Vconf |n′X ′〉 = δXX′

1√
πl2n+n′n!n′!

∞
∫

−∞

dx χ∗
nX(x)Vconf(x)χn′X′ , (A.7)
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where

χnX(x) = e−
(x−X)2

2l2 Hn

(

x−X

l

)

(A.8)

is the not normalized harmonic oscillator function with the Hermite polynomial Hn(x).
Using the symmetry of the basis functions, equation (A.7) can be written as

〈nX|Vconf |n′X ′〉 = δXX′

1√
πl2(n+n′)n!n′!

[

Mnn′(a,X) + (−1)(n+n′)Mnn′(a,−X)
]

(A.9)
and

Mnn′(a,X) =

∞
∫

a

dx e−
(x−X)2

2l2 Hn

(

x−X

l

)

Hn′

(

x−X

l

)(

x− a

l

)2

(A.10)

= l

∞
∫

y

dξ e−ξ2

(ξ − y)2Hn(ξ)Hn′(ξ) , (A.11)

where ξ = (x−X)/l and y = (a−X)/l.
By expanding all polynomials in equation (A.11) into monomials in ξ using the

relation

Hn(ξ) = n!

[n
2
]

∑

m=0

(−1)m 2n−2m

m!(n− 2m)!
ξn−2m, (A.12)

where [x] denotes the largest integer smaller than x, one gets

Mnn′(a,X) = l n!n′!

[n
2
]

∑

l=0

[n′

2
]

∑

k=0

[

(−1)l+k 2n−2l+n′−2k

l!k!(n− 2l)!(n′ − 2k)!

×
(

f (2+n−2l+n′−2k)(y) − 2yf (1+n−2l+n′−2k)(y) + y2f (n−2l+n′−2k)(y)
)

]

In the last expression,

f (M)(y) =

∞
∫

y

dξ ξMe−ξ2

=
M − 1

2
f (M−2)(y) + yM−1 1

2
e−y2

(A.13)

This recursive formula can be obtained by repeated partial integration and is valid for
even and odd M . An explicit evaluation requires the initial expressions

f (1)(y) =
1

2
e−y2

(A.14)

f (0)(y) =
1

2

√
π erfc(y) , (A.15)
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with the complementary error function

erfc(y) =

∞
∫

y

dξ e−ξ2

. (A.16)

A.4 Current density matrix elements

A.4.1 Exact expressions

Expressions like the Kubo formula (4.23) require the evaluation of current density ma-
trix elements. In the presence of a magnetic fields and the formation of Landau levels, it
turns out that matrix elements between states pertaining to the same Landau level van-
ish. This requires some care in the evaluation of current response functions, since the
single band approximation fails even for strong magnetic fields.

In the following, we derive an expression for matrix elements of arbitrary states
ψα(r) written in Landau functions φnX(r) as

ψ(r) =
∑

nX

Cα
nXφnX(r). (A.17)

For reasons of generality, we choose the Landau functions for the 1D parabolic confine-
ment 1

2
mω2

0x
2 in Landau gauge A = (0 − Bx, 0). As usual, we define Ω =

√

ω2
c + ω2

0

and ` =
√

~/mΩ as renormalized versions of the cyclotron energy ωc = eB/m and the
magnetic length lB = ~/(mωc).

The vector-valued current density matrix can be written as

jαβ =
e2

i2m
[ψ∗

α∇ψβ − ψβ∇ψ∗
α] − e2

m
Aψ∗

αψβ (A.18)

The components are written

jαβ;y =
e2~

2im

[(

∑

nX

Cα∗
nXφnX

)(

∑

n′X′

Cβ
n′X′

−iX ′

`2
φn′X′

)

−
(

∑

n′X′

Cβ
n′X′φn′X′

)(

∑

nX

Cα∗
nX

iX

`2
φnX

)]

− e2

m
Bxψ∗

αψβ

=
e~

2m

[

∑

nn′

∑

XX′

Cα∗
nXC

β
n′X′φnXφn′X′

X +X ′

`2

]

− e2

m
Bxψ∗

αψβ (A.19)
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and similarly

jαβ;x =
e2~

2im

[

∑

nn′

∑

XX′

Cα∗
nXC

β
n′X′

(√
2n′

`
φ∗

nXφn′−1X′ −
√

2n

`
φ∗

n−1Xφn′X′

)

+
X ′ −X

`2
φ∗

nXφn′X′

]

(A.20)

using

∇φnX(r) =





√
2n
`
φn−1X − x−X

`2
φnX

− iX
`2
φnX



 (A.21)

The calculation of the matrix elements can be done by straightforward integration using
the orthonormality conditions of the Landau functions and the relation

Hn+1(x) = 2xHn(x) − 2nHn−1(x) (A.22)

for Hermite polynomials Hn and leads after some tedious algebraic manipulations to

〈α | jx | β〉 =

∫

d2rjαβ;x =
e√
2i
`Ω
∑

n

∑

X

Cα∗
nXC

β
n+1X

√
n+ 1 − Cα∗

nXC
β
n−1X

√
n

(A.23)
and

〈α | jy | β〉 = e`(ωc−Ω)
∑

nX

X

`
Cα∗

nXC
β
nX+

e`ωc√
2

∑

nX

Cα∗
nXC

β
n+1X

√
n+ 1+Cα∗

nXC
β
n−1X

√
n

(A.24)

A.4.2 Semiclassical expressions (guiding center velocity approxi-
mation)

In this section we give an expression for the classical velocity operator for electrons in
strong magnetic field and disorder for comparison with the quantum mechanical expres-
sion for the current density.

We see from equations (A.23) and (A.24) that the current density operator for the
quantum Hall system couples neighboring Landau bands. Therefore, it is prohibitive
to work with currents and conductivities in a single band approximation even for the
strong-field limit with vanishing energetic overlap of the bands. In order to circumvent
this difficulty, it has been proposed for long-range correlated disorder V (x, y) [39, 132,
133] to replace the current density operator with the semiclassical velocity operator of
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the center-of-mass coordinate (X,Y ) of the wavefunction. The velocity components
can then be written as [39]

Ẋ =
l2B
~

∂V

∂y
; Ẏ =

l2B
~

∂V

∂x
(A.25)

As devised in the preceding section, we calculate the matrix element
〈

α | (Ẋ, Ẏ ) | β
〉

.
We assume a long-range potential V (x − xi, y − yi) with a set of randomly distributed
scatterers located at positions ri.

Using its Fourier transform V (q ; xi, yi) and ∇rV = −∇ri
V , we get

〈

α | Ẋ | β
〉

=
l2B
~

∑

nn′

∑

XX′

Cα∗
nXC

β
n′X′

〈

nX | Ẋ | n′X ′
〉

= − l
2
B

~

∑

nn′

∑

XX′

Cα∗
nXC

β
n′X′

〈

nX | ∂V
∂yi

| n′X ′
〉

= − 2πl2B
~LxLy

∑

nn′

∑

XX′

Cα∗
nXC

β
n′X′

∑

q

∂

∂yi

V (q ; xi, yi)
〈

nX | e−iq ·r | n′X′〉

= −i 2πl2B
~LxLy

∑

nn′

∑

XX′

Cα∗
nXC

β
n′X′

∑

q

qy
∂

∂yi

V (q ; xi, yi)
〈

nX | e−iq ·r | n′X′〉

(A.26)

〈

α | Ẏ | β
〉

= i
2πl2B

~LxLy

∑

nn′

∑

XX′

Cα∗
nXC

β
n′X′

∑

q

qx
∂

∂yi

V (q ; xi, yi)
〈

nX | e−iq ·r | n′X′〉

(A.27)



APPENDIX B

Material data for GaAs

The presented calculations have been performed with material data for GaAs, because
this semiconductor is commonly used in experiments. It follows a collection of material
parameters and numerical values for quantities used in the calculations.

Electrons in bulk GaAs have an effective mass of m∗ = 0.067m0, an effective g-
factor g = −0.44 and a dielectric constant ε = 12.4. These quantities were used to
scale the simulation parameters.

Landau energy:

EN = (N +
1

2
)~ωc = ~

eB

m∗ = 1.728
meV

T
B[T] (B.1)

Zeeman energy:

EZ = σgµBB = ±1

2
g · 5.788 · 10−2 meV

T
B[T] (B.2)

Coulomb energy:

EC =
e2

4πε0ε
= 1.44 · 10−6meV m

1

ε
(B.3)

Magnetic length:

lB =

√

~

eB
= 2.5656 · 10−8

√
Tm

1√
B

(B.4)

Current density:
e~

m∗lB
= 2.7684 · 10−10pAm

1

lB
(B.5)
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